tgp/0000755000176200001440000000000014665616552011064 5ustar liggesuserstgp/README0000644000176200001440000000414313531032535011726 0ustar liggesusersThis is the R-package: tgp. It has been tested on Linux, FreeBSD, OSX, and Windows. This README is a sub. Please see the R-package documentation or vignette for more information. It should be possible to install this source package via "R CMD INSTALL tgp", where "tgp" is this directory, from "../". Below are some comments on compiling with support for pthreads, and linking with ATLAS, or other linear algebra library (different than the one already used by R). SUPPORT FOR PTHREADS -------------------- 1.) Add "-DPARALLEL" to PKG_CXXFLAGS of src/Makevars 2.) You may need to add "-pthread" to PKG_LIBS of src/Makevars, or whatever is needed by your compiler in order to correctly link code with pthreads functions. SUPPORT FOR ATLAS ----------------- ATLAS is supported as an alternative to standard BLAS and LAPACK for fast, automatically tuned, linear algebra routines. There are three easy steps to enable ATLAS support (assuming, of course, you have already installed it -- http://math-atlas.sourceforge.net) which need to be done before you install the package from source: Note that this is not the recommended method for getting fast linear algebra routines for tgp. The best way to do this is to compile R with ATLAS (or other libraries) support. See the R installation manual: http://cran.r-project.org/doc/manuals/R-admin.html under A.2.2 -- Begin ATLAS Instructions 1.: Edit src/Makevars. Comment out the existing PKG_LIBS line, and replace it with: PKG_LIBS = -L/path/to/ATLAS/lib -llapack -lcblas -latlas you may need replace "-llapack -lcblas -latlas" with whatever ATLAS recommends for your OS. (see ATLAS README.) For example, if your ATLAS compilation included F77 support, you would might need to add "-lF77blas", of if you compiled with pthreads, you would might use "-llapack -lptcblas -lptf77blas -latlas". 2.: Continue editing src/Makevars. Add: PKG_CFLAGS = -I/path/to/ATLAS/include 3.: Edit src/linalg.h and commend out lines 40 & 41: /*#define FORTPACK #define FORTBLAS*/ --- End ATLAS Instructions -- Reverse the above instructions to disable ATLAS. Don't forget to re-install. tgp/INDEX0000644000176200001440000000362613531032535011645 0ustar liggesusersblm Bayesian hierarchical linear model btlm Bayesian treed Linear (CART) model bgp Bayesian Gaussian process model bgpllm Bayesian Gaussian process with jumps to the limiting linear model (LLM) btgp Bayesian treed Gaussian process model btgpllm Bayesian treed Gaussian process with jumps to the LLM default.itemps creating inverse temperatures ladder for simulated/importance tempering dopt.gp sequential D-optimal design for a stationary Gaussian process exp2d 2-d exponential Data, for examples exp2d.rand randomly subsampled 2-d exponential Data, for examples exp2d.Z Z-values for 2-d exponential Data, for examples friedman.1.data first Friedman dataset, for examples fried.bool a version of the First Friedman dataset, with boolean indicators interp.loess Loess based interpolation of spatial data onto a regular grid lhs Latin Hypercube sampling mapT plot the MAP partition, or add one to an existing plot optim.step.tgp one step in the optimization of a noisy black box function optim.ptgpf calls the R optim function on the predictive surface of a tgp model partition partition data according to the MAP tree plot.tgp plotting for treed Gaussian process Models predict.tgp prediction for (MAP estimates of) treed GP Models sens Bayesian Monte Carlo sensitivity analysis for treed GP Models tgp generic interface to treed Gaussian process models tgp.default.params default treed Gaussian process model parameters tgp.design sequential treed D-Optimal design for treed Gaussian process models tgp.trees plot MAP tree for each height encountered by the Markov chain tgp/MD50000644000176200001440000001511614665616552011400 0ustar liggesusers9808c51bea33c742105737d63f13051d *ChangeLog 86d8c3d97f671713bd9cb43a5f1a5b7a *DESCRIPTION b84738697ab332f3042e16de92e9420e *INDEX cbc0f15c9caed6bf5b0a4b51e4d17205 *NAMESPACE 2b25f8615fc58fa288ef0d0b3d7ef3e0 *R/btgp.R d62cc5b2b7203f4b94647830d1c8cd73 *R/check.matrix.R 3baf3bbc79b7a061fae989fc329d1f47 *R/default.itemps.R 4a035497f663b856b9450bfc7fd9b278 *R/exp2d.R 951ef8c644b0a22d6722564190efd66f *R/friedman.1.data.R 9a3c7f4f872fc8ec3fdff0c10d83bba9 *R/lhs.R cf6f6d40875b697a94b2fb4fd812cd15 *R/mapT.R 41b3d32269dfc34702dbee96fda2795a *R/mean0.range1.R 3e7a3f52c48eb4918fbf96b2a3d38515 *R/mrtgp.R 5c009114b3d0298abb24c92a1fb7cf5b *R/optim.tgp.R bea43b15c98c51ca22a81c84807eb31c *R/plot.tgp.R 1ca650a4e004740dd3286e14653da285 *R/predict.tgp.R aaa1cd4e51a2713a7ae4c97942001d90 *R/print.tgp.R bc0d00e4f6a16fe1b7e2385d52d2ad0b *R/sens.R b55821e40d897bea0fef41c383166644 *R/tgp.R e87f123e3887aa98a07818faac2858fc *R/tgp.choose.R 4061b57137c57516dfe26198645aff16 *R/tgp.cleanup.R f8c0385180c2703fb264deb2e88f787c *R/tgp.default.params.R 76299c616e9a6da8eebb8bea064b2535 *R/tgp.design.R 5ad976e27d25155614c38873829216d2 *R/tgp.plot.proj.R be17e99e2760ba03a39209d75ac58c55 *R/tgp.plot.slice.R f47a264bbe0fca8f60e39d893a3f80fc *R/tgp.postprocess.R 21af361fc357c91c43074ad161273590 *R/tgp.read.traces.R 4fa0e61ec5bed0a51b38a2ca0b2070a8 *R/tgp.trees.R d77f4eb76d59d9f4c85bdee74bce7b5e *README b52aabe9a2757fc86742763db9dafc9b *build/partial.rdb 223a07ffab5a671d613ba8639cb412a9 *build/vignette.rds 30867c2669006c1186dcf89a68be23f4 *data/exp2d.rda bb12c5c06151a8a7a542038b628aa1fe *demo/00Index 4f07c99ea7ca7b8153532fa7707438b1 *demo/as.R a09a287c6f46c3deb33537c0d5044adc *demo/cat.R 238011da83b0344a91696feca7529a45 *demo/exp.R f0a1a08b41eeeff848dc11f0a69d5997 *demo/fried.R 04fdf433d57f6a9d5754f475e11b192a *demo/it.R 2410171831030fd180b7fb267d548600 *demo/linear.R 7a7662bc8eddfac5d0fefe4877ed9c74 *demo/moto.R d780d05ff7012a3c105429b4894a8d98 *demo/optim.R 8f73ca69ecea2bcb03c7881e547af214 *demo/pred.R 28f468247ca35ea5e0012e911dc65728 *demo/sens.R 09ccb8e980d6b0cfc892e1e5017f83e4 *demo/sin.R 13399b4390c8ed75a7ac5d912d1bfa63 *demo/traces.R 7e2abf7c0f1f76268898b0900e15fbe2 *inst/CITATION c4cf139ecaca1796f659b603a0c13de9 *inst/doc/tgp.R c9473233763575d3294e38d8a45e46c2 *inst/doc/tgp.Rnw 833005367d2af30c53ab055559d480f9 *inst/doc/tgp.pdf d1c7333ca11c53dde551cf55ac4a969a *inst/doc/tgp2.R faad6232951c6a2bb7f42251d9a7932d *inst/doc/tgp2.Rnw 40fdbbd8a68367634f5ffa121d45a573 *inst/doc/tgp2.pdf 526916435ed607c4152877fee4e0edaa *man/btgp.Rd 0371a55aa5b40d2fd41b3da75366d7e9 *man/default.itemps.Rd aa2db8aeaeaf556366bc06ad578a1f23 *man/dopt.gp.Rd 7d73de9f660ca475a2dc116810a77f8a *man/exp2d.Rd 372f60db7a2f71f18d8321f3c63b3691 *man/exp2d.Z.Rd 1aef80ce0b6e9dbf18b9609be09d3356 *man/exp2d.rand.Rd 3510482850ba06256b41df887ccab7c8 *man/friedman.1.data.Rd a13b0f5e887e5b6bb9279de78413e96e *man/interp.loess.Rd fdfdf1e2df07ee951aac2cb11af6176f *man/itemps.Rd ce238db3adb0d3b0adfb4987f153dd39 *man/lhs.Rd 36b2d2c7d7e247a82bdebeafb5a14278 *man/mapT.Rd 497aa2700abed35df72f4b33071307ee *man/optim.tgp.Rd c52a79d9eb635e72b74af994141cbe77 *man/partition.Rd 861bbb8b6e10c77db18fd1beae84b090 *man/plot.tgp.Rd a7d55b1f82b45f26864d2fefb2e4e68d *man/predict.tgp.Rd e3c9a396b9ee91ff826a62ad4b88d7f3 *man/sens.Rd 3826e0f33399d21dac9851bdc251056c *man/tgp-internal.Rd 975715eb8ce5e6e101a0561faa69c6d9 *man/tgp-package.Rd 2560bc4824bcfe1ee75abd885b87fbbf *man/tgp.default.params.Rd 018123175bcaf3a4a7302dea4c845feb *man/tgp.design.Rd 229df6d44e2fd539b16aa2ae5459bde6 *man/tgp.trees.Rd d22e99123d41fdc1f1f67f627da2e743 *src/Makevars 962bed84091207761197f376dcc963f8 *src/all_draws.c 391f87ba3c7cf48b56013e480a301d89 *src/all_draws.h 420801b5ba2d066337c001cdfd79024e *src/base.cc 37573f3fa856b77a76a232572ac20dd8 *src/base.h 6583d8694fccd204ec471126ed1eb5f7 *src/corr.cc a1e7b68ce6a577e9110dbf0e199c15e7 *src/corr.h 8d9d878b96394108722a2b4d3247d0f9 *src/dopt.c 8f92a351cacd58155c78a0232fa1575e *src/dopt.h 71368ec17ed24966c9b7710084cda00d *src/exp.cc 74fca95a0cdc63dd73296c6c7752442e *src/exp.h cb3d499b0d78c1434fbf08c0c21d2d2f *src/exp_sep.cc 8677f3d3650c46cb3d6cda44936e398e *src/exp_sep.h 927196f92ff5613a8d4f79a0fdc23476 *src/gen_covar.c d356cc0e8ba88a9c14aa5b5157540c24 *src/gen_covar.h 33e5587743ea595214e19df68f21781f *src/gp.cc 09748aa3b85a52f1ca85b60a82db86c9 *src/gp.h 86efbebf06e4b05aa0df594a0e6608d1 *src/init.c 76e4383c1b96152afe4a83e20a62f0ec *src/lh.c 86119f93629c41d4767c8ef289d2690b *src/lh.h dda82977135ff3bb2f2345d4b66727a6 *src/lik_post.c 71646e59fcc920a1fcf3df16960482d1 *src/lik_post.h ba9736dcffd4a8a31474ffef8593725a *src/linalg.c 34bb5ea52a0789339e46df5bf45badce *src/linalg.h 921e51200c80d386cf0572bda0c4d2be *src/list.cc 52371e91736361411faf5786323b101f *src/list.h 2099f1737e2f5f36f917071c798e86c3 *src/matern.cc 682be0a76094ef37bc0e6f423f492ed3 *src/matern.h 66a8b1cc6b15b70d588ccd5184b80446 *src/matrix.c 82a72086e29c44601a675e129bea5401 *src/matrix.h 4c3b627b6f6423fad4b600e3f1566d26 *src/model.cc 17aab050a33da1ab8ec5e0ee9aa1f3b9 *src/model.h 2080abd109b0be1c2927d8d73cf804da *src/mr_exp_sep.cc dccb206ebe50dc0eacff0cb0697963e4 *src/mr_exp_sep.h 00df6a495850d4c7c5f2a76bd5e6884c *src/mstructs.cc 19d2790d825bbb5726639cdb86b0400a *src/mstructs.h 4f24cccef6901307fe1d8d20c83d6c0a *src/params.cc 81ab1ee751bcd8f4e2e83c61ca4ead18 *src/params.h a7ebdf876ed7033a0fb15592c4882a33 *src/predict.c 635136c61fcbb917386bf0bef2096127 *src/predict.h fa1fe3950a06ff0ca9ecd87ab47a72fd *src/predict_linear.c 9f8baae92d7b46ddd89378c7f95a9144 *src/predict_linear.h 08fb6cd766da1d6a29003f654944b6e6 *src/rand_draws.c 1a0cfd8a66d11e536fd9fcc4c34b44e1 *src/rand_draws.h 1cb7b5312a1b27f5972bcb89fbabcf9e *src/rand_pdf.c fee24fd60fe088cc52686f8760d5e2fc *src/rand_pdf.h dd4469bb5e4138916c028c85f096ba06 *src/randomkit.c 59896798fb57e6b2bf4e8c8251e8d55a *src/randomkit.h 566af35ef5275604911cef5092623510 *src/rhelp.c 0d15bec96e74af5b9701effc6fc85286 *src/rhelp.h 9562e72294b19469340390631aa83865 *src/sim.cc ed84e3cf4bebc7703dbb7e8b7657124a *src/sim.h 219cd1032687154dad651b62f5ee4199 *src/temper.cc 9cab37ec7a79da5d9f0ca1c59b133203 *src/temper.h c5c2b43e9bb3d7a2c33c00174d865deb *src/tgp.cc 119fc3370516cb64b80acda8b9d5873b *src/tgp.h e9f21970d41f85885fde83db49149bff *src/tree.cc ada0f53f3fba837987d48f61ae6a85d0 *src/tree.h 86278dd720817f2dce5c80d766a45010 *src/twovar.cc 30824f73ccaf02d3c9df1c86f51bf7d8 *src/twovar.h 96f319b5ffbbe69cac4bce9874609584 *vignettes/motovate_bgp.pdf 4a5a106a111ed23c4c01b7f39e16aadc *vignettes/motovate_btgp.pdf c9473233763575d3294e38d8a45e46c2 *vignettes/tgp.Rnw c457ca0ff12c858d3a65fd4c6f2b9bd8 *vignettes/tgp.bib faad6232951c6a2bb7f42251d9a7932d *vignettes/tgp2.Rnw e6816bfd32b05acc8703a1add5a4d339 *vignettes/tree.pdf tgp/R/0000755000176200001440000000000013723731201011244 5ustar liggesuserstgp/R/default.itemps.R0000644000176200001440000002051513531032535014317 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## default.itemps: ## ## create a default inverse temperature ladder for importance ## tempering (IT) together with pseudo-prior and parameters ## for calibrating it by stochastic approximation. There are three ## choices of ladder as specified by type "default.itemps" <- function(m=40, type=c("geometric", "harmonic", "sigmoidal"), k.min=0.1, c0n0=c(100,1000), lambda=c("opt", "naive", "st")) { ## check m argument if(length(m) != 1 || m <= 0) stop("m should be a positive integer") ## check type argument type <- match.arg(type) ## check k.min argument if(length(k.min) != 1 || k.min >= 1 || k.min < 0) stop("k.min should be a integer satisfying 0 <= k.min < 1") ## check the c0n0 argument if(length(c0n0) != 2 || !prod(c0n0 >= 0)) stop("c0n0 should be a nonnegative 2-vector") ## check the lambda argument lambda <- match.arg(lambda) ## check if importance sampling only if(m == 1) return(list(c0n0=c(0,0), k=k.min, pk=1, lambda="naive")) if(type == "geometric") { ## calculate the delta for the geometric which reaches ## k.min in m steps delta <- k.min^(1/(1-m)) - 1 ## geometric temperature ladder i <- 1:m k <- (1+delta)^(1-i) } else if(type == "harmonic") { ## calculate the delta for the geometric which reaches ## k.min in m steps delta <- ((1/k.min) - 1)/(m-1) ## harmonic temperature ladder i <- 1:m k <- 1/(1+ delta*(i-1)) } else { ## sigmoid ## calculate the indices which provide the sigmoid which ## begins at 1 and ends at k.min with m steps x <- c(1,k.min) ends <- log((1.01-x)/x) t <- seq(ends[1], ends[2], length=m) ## logistic/sigmoid temperature ladder k <- 1.01 - 1.01/(1+exp(-t)) } ## return the generated ladder, as above, with a vector of ## observation counts for tgp to update return(list(c0n0=c0n0, k=k, pk=rep(1/m, m), lambda=lambda)) } ## check.itemps: ## ## check the itemps create by hand or from default.itemps or ## as modified by tgp or predict tgp and assembled inside ## the tgp.postprocess function "check.itemps" <- function(itemps, params) { ## if null, then just make one temperature (1.0) with all the prob if(is.null(itemps)) return(c(1,0,0,1,1,0,1)) ## if it is a list or a data frame else if(is.list(itemps) || is.data.frame(itemps)) { ## get the four fields c0n0 <- itemps$c0n0 pk <- itemps$pk lambda <- itemps$lambda k <- itemps$k counts <- itemps$counts ## check for non-null k m <- length(k) if(m == 0) stop("must specify k vector in list") ## check for null pk if(is.null(pk)) pk <- rep(1/m, m) ## check the dims are right if(m != length(pk)) stop("length(itemps$k) != length(itemps$pk)") ## put into decreasing order o <- order(k, decreasing=TRUE) k <- k[o] pk <- pk[o] ## checks k if(prod(k >= 0)!=1) stop("should have 0 <= itemps$k") if((m > 1 || k != 1) && params$bprior != "b0") warning("recommend params$bprior == \"b0\" for itemps$k != 1", immediate.=TRUE) ## checks for pk if(prod(pk > 0)!=1) stop("all itemps$pk should be positive") ## init and checks for c0n0 if(! is.null(c0n0)) { if(length(c0n0) != 2 || !prod(c0n0 >= 0)) stop("itemps$c0n0 should be a nonnegative 2-vector") } else c0n0 <- c(100,1000) ## check lambda if(! is.null(lambda)) { if(lambda == "opt") lambda <- 1 else if(lambda == "naive") lambda <- 2 else if(lambda == "st") { if(k[1] != 1.0) stop("cannot use lambda=\"st\" when itemps$k[1] != 1.0\n") lambda <- 3 } else stop(paste("lambda = ", lambda, "is not valid\n", sep="")) } else lambda <- 1 ## check the counts vector if(! is.null(counts)) { if(m != length(counts)) stop("length(itemps$k) != length(itemps$counts)") } else counts <- rep(0,m) ## return a double-version of the ladder return(c(m, c0n0, k, pk, counts, lambda)) } ## if it is a matrix else if(is.matrix(itemps)) { ## check dims of matrix if(ncol(itemps) != 2) stop("ncol(itemps) should be 2") ## get the two fields pk <- itemps[,2] k <- itemps[,1] m <- length(k) ## put into decreasing order o <- order(k, decreasing=TRUE) k <- k[o] pk <- pk[o] ## checks k if(prod(k >= 0)!=1) stop("should have 0 <= itemps[,1]") if((m > 1 || k != 1) && params$bprior != "b0") warning("recommend params$bprior == \"b0\" for itemps[,1] != 1", immediate.=TRUE) ## checks for pk if(prod(pk > 0)!=1) stop("all probs in itemps[,2] should be positive") ## return a double-version with a counts vector at the end return(c(m, 100, 1000, k, pk, 1, rep(0,m))) } ## if itemps is a vector else if(is.vector(itemps)) { ## get length of inverse temperature ladder m <- length(itemps) ## checks for itemps if(prod(itemps >= 0)!=1) stop("should have 0 <= itemps ") if((length(itemps) > 1 || itemps != 1) && params$bprior != "b0") warning("recommend params$bprior == \"b0\" for itemps != 1", immediate.=TRUE) ## return a double-version with a counts vector at the end return(c(m, 100, 1000, itemps, rep(1/m, m), 1, rep(0,m))) } else stop("invalid form for itemps") } ## hist2bar: ## ## make a barplot to compare the (discrete) histograms ## of each column of the input argument x hist2bar <- function(x) { ## make a matrix if(is.vector(x)) x <- matrix(x, ncol=1) ## calculate the number of, and allocate the space for, ## the bins, b, of the histogram r <- range(as.numeric(x)) b <- matrix(0, ncol=ncol(x), nrow=r[2]-r[1]+1) ## calculate the histogram height of each bin for(i in r[1]:r[2]) for(j in 1:ncol(x)) b[i-r[1]+1,j] <- sum(x[,j] == i) ## make have thr right data.frame format so that ## it will place nice with the barplot function, ## and return b <- data.frame(b) row.names(b) <- r[1]:r[2] return(t(b)) } ## itemps.barplot: ## ## make a histogram (via barplot) of the number of times ## each inverse-temperature was visited in the ST-MCMC ## chain. Requires that traces were collected itemps.barplot <- function(obj, main=NULL, xlab="itemps", ylab="counts", plot.it=TRUE, ...) { ## check to make sure traces were collected if(is.null(obj$trace)) stop(paste("no traces in tgp-object;", "re-run the b* function with argument \"trace=TRUE\"")) ## check to make sure tempering was used if(is.null(obj$itemps)) stop("no itemps in tgp-object") ## create a bin for each inverse-temperature bins <- rep(0,length(obj$itemps$k)) ## count and store the number in the first bin m <- obj$trace$post$itemp == obj$itemps$k[1] bins[1] <- sum(m) ## count and store the number in the rest of the bins for(i in 2:length(obj$itemps$k)) { m <- obj$trace$post$itemp == obj$itemps$k[i] if(sum(m) == 0) next; bins[i] <- sum(m) } ## make into a data frame for convenient barplotting bins <- data.frame(bins) row.names(bins) <- signif(obj$itemps$k,3) ## make the barplot histogram if(plot.it==TRUE) { smain <- paste(main, "itemp counts") barplot(t(bins), xlab=xlab, ylab=ylab, ...) } ## return the barplot structure for plotting later return(invisible(bins)) } tgp/R/tgp.trees.R0000644000176200001440000000664213531032535013313 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## tgp.trees: ## ## plot the MAP tree found at each tree in the Markov chain ## for the tgp-class object (or, possibly constrin the plotting ## to certain heights -- requires the maptree library for plotting "tgp.trees" <- function(out, heights=NULL, main=NULL, ...) { ## get the full set of heights if none specified, and length if(is.null(heights)) heights <- out$posts$height else if(heights[1] == "map") { ## only plot the MAP heights <- out$post$height[which.max(out$posts$lpost)] } howmany <- length(heights) ## calculate how many sub-windows to make with par if(howmany > 1) { h <- howmany if(sum(out$posts$height == 1) >= 1) { h <- h - 1; } rows <- floor(sqrt(h)); cols <- floor(h / rows) while(rows * cols < h) cols <- cols + 1 par(mfrow=c(rows, cols), bty="n") } else par(mfrow=c(1,1), bty="n") ## create a vector of names for the main text section of each plot names <- names(out$X) if(is.null(names)) { for(i in 1:out$d) { names <- c(names, paste("x", i, sep="")) } } ## plot each tree for(j in 1:howmany) { if(is.null(out$trees[[heights[j]]])) next; p <- (1:length(out$posts$height))[out$posts$height == heights[j]] tgp.plot.tree(out$trees[[heights[j]]], names, out$posts[p,], main=main, ...); } } ## tgp.plot.tree: ## ## actually use maptree to plot each tree specified in the ## tree frame with specified name and posterior probability "tgp.plot.tree" <- function(frame, names, posts, main=NULL, ...) { ## don't plot (null) trees of height one if(dim(frame)[1] == 1) { cat(paste("NOTICE: skipped plotting tree of height 1, with lpost =", posts$lpost, "\n")) return() } ## concatenate the log-posterior probability to the main text main <- paste(main, " height=", posts$height, ", log(p)=", posts$lpost, sep="") ## create a frame vector that maptree understands frame[,2] <- as.character(frame[,2]) n.i <- frame[,2] != "" frame[n.i,2] <- names[as.numeric(frame[n.i,2])+1] frame[,2] <- factor(frame[,2]) splits <- as.matrix(data.frame(cutleft=as.character(frame[,6]), cutright=as.character(frame[,7]))) new.frame <- data.frame(frame[,2:5], splits=I(splits), row.names=frame[,1]) tree <- list(frame=new.frame) ## draw the tree and add a title draw.tree(tree, ...) title(main) } tgp/R/tgp.R0000644000176200001440000002154713723714746012211 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## tgp: ## ## the master tgp R function which checks for valid inputs and ## calls the C-side via .C on those inputs -- and then calls the ## post-processing code accordingly "tgp" <- function(X, Z, XX=NULL, BTE=c(2000,7000,2), R=1, m0r1=FALSE, linburn=FALSE, params=NULL, itemps=NULL, pred.n=TRUE, krige=TRUE, zcov=FALSE, Ds2x=FALSE, improv=TRUE, sens.p=NULL, trace=FALSE, verb=1, rmfiles=TRUE) { ## (quitely) double-check that tgp is clean before-hand tgp.cleanup(message="NOTICE", verb=verb, rmfiles=TRUE); ## what to do if fatally interrupted? on.exit(tgp.cleanup(verb=verb, rmfiles=rmfiles)) ## check for two unsupported combinations of modeling options if(params$corr == "mrexpsep" && linburn) stop("Sorry, the linear burn-in is not available for corr=\"mrexpsep\"") if(params$corr == "mrexpsep" && !is.null(sens.p)) stop("Sorry, sensitivity analysis is not available for corr=\"mrexpsep\"") ## get names Xnames <- names(X) response <- names(Z) ## check X and Z XZ <- check.matrix(X, Z) X <- XZ$X; Z <- XZ$Z n <- nrow(X); d <- ncol(X) if(is.null(n)) stop("nrow(X) is NULL") ## check XX XX <- check.matrix(XX)$X if(is.null(XX)) { nn <- 0; XX <- matrix(0); nnprime <- 0 } else { nn <- nrow(XX); nnprime <- nn if(ncol(XX) != d) stop("mismatched column dimension of X and XX"); } ## check that trace is true or false) if(length(trace) != 1 || !is.logical(trace)) stop("trace argument should be TRUE or FALSE") else if(trace) { if(3*(10+d)*(BTE[2]-BTE[1])*R*(nn+1)/BTE[3] > 1e+7) warning(paste("for memory/storage reasons, ", "trace not recommended when\n", "\t 3*(10+d)*(BTE[2]-BTE[1])*R*(nn+1)/BTE[3]=", 3*(10+d)*(BTE[2]-BTE[1])*R*(nn+1)/BTE[3], " > 1e+7.\n", "\t Try reducing nrow(XX)", sep=""), immediate.=TRUE) } ## check that pred.n, krige, and Ds2x is true or false if(length(pred.n) != 1 || !is.logical(pred.n)) stop("pred.n should be TRUE or FALSE") if(length(krige) != 1 || !is.logical(krige)) stop("krige should be TRUE or FALSE") if(length(zcov) != 1 || !is.logical(zcov)) stop("zcov should be TRUE or FALSE") if(length(Ds2x) != 1 || !is.logical(Ds2x)) stop("Ds2x should be TRUE or FALSE") ## check the form of the improv-power argument if(length(improv) == 2) { numirank <- improv[2]; improv <- improv[1] } else { numirank <- NULL } if(length(improv) != 1 || !(is.logical(improv) || is.numeric(improv)) || (is.numeric(improv) && improv <= 0)) stop(paste("improv [", improv, "] should be TRUE, FALSE, or a positive integer (power)", sep="")) g <- as.numeric(improv) ## check numirank, which is improv[2] in input if(is.null(numirank) && improv) numirank <- nn ## max(min(10, nn), 0.1*nn) else if(!is.null(numirank) && numirank > nn) stop("improv[2] must be <= nrow(XX)") else if(is.null(numirank)) numirank <- 0 ## check for inconsistent XX and Ds2x/improv if(nn == 0 && (Ds2x || improv)) warning("need to specify XX locations for Ds2x and improv") ## check the sanity of input arguments if(nn > 0 && sum(dim(XX)) > 0 && ncol(XX) != d) stop("XX has bad dimensions") if(length(Z) != n) stop("Z does not have length == nrow(Z)") if(BTE[1] < 0 || BTE[2] <= 0 || BTE[1] > BTE[2]) stop("bad B and T: must have 0<=B<=T") if(BTE[3] <= 0 || ((BTE[2]-BTE[1] != 0) && (BTE[2]-BTE[1] < BTE[3]))) stop("bad E arg: if T-B>0, then must have T-B>=E") if((BTE[2] - BTE[1]) %% BTE[3] != 0) stop("E must divide T-B") if(R < 0) stop("R must be positive") ## deal with params if(is.null(params)) params <- tgp.default.params(d) ## check if X is of full rank if(params$meanfn == "linear" && class(try(solve(t(X[,1:params$tree[5]]) %*% X[,1:params$tree[5]]), silent=TRUE))[1] == "try-error") { stop("X[,1:", params$tree[5], "]-matrix is not of full rank", sep="") } ## convert params into a double-vector for passing to C dparams <- tgp.check.params(params, d); if(is.null(dparams)) stop("Bad Parameter List") ## check starting importance-tempering inv-temp itemps <- check.itemps(itemps, params) ## might scale Z to mean of 0 range of 1 if(m0r1) { Zm0r1 <- mean0.range1(Z); Z <- Zm0r1$X } else Zm0r1 <- NULL ## if performining a sensitivity analysis, set up XX ## if(!is.null(sens.p)) { if(nn > 0) warning("XX generated online in sensitivity analyses") nnprime <- 0 sens.par <- check.sens(sens.p, d) nn <- sens.par$nn; nn.lhs <- sens.par$nn.lhs; XX <- sens.par$XX ngrid <- sens.par$ngrid; span <- sens.par$span MEgrid <- as.double(sens.par$MEgrid) if(verb >= 2) cat(paste("Predict at", nn, "LHS XX locs for sensitivity analysis\n")) } else{ nn.lhs <- ngrid <- 0; MEgrid <- span <- double(0) } ## construct the set of candidate split locations Xsplit <- X if(is.null(sens.p) && nn > 0) Xsplit <- rbind(Xsplit, XX) ## for sens S = R*(BTE[2]-BTE[1])/BTE[3] # RNG seed state <- sample(seq(0,999), 3) ## run the C code ll <- .C("tgp", ## begin inputs state = as.integer(state), X = as.double(t(X)), n = as.integer(n), d = as.integer(d), Z = as.double(Z), XX = as.double(t(XX)), nn = as.integer(nn), Xsplit = as.double(t(Xsplit)), nsplit = as.integer(nrow(Xsplit)), trace = as.integer(trace), BTE = as.integer(BTE), R = as.integer(R), linburn = as.integer(linburn), zcov = as.integer(zcov), g = as.integer(c(g, numirank)), dparams = as.double(dparams), itemps = as.double(itemps), verb = as.integer(verb), tree = as.double(-1), hier = as.double(-1), MAP = as.integer(0), sens.ngrid = as.integer(ngrid), sens.span = as.double(span), sens.Xgrid = as.double(MEgrid), ## output dimensions for checking NULL pred.n = as.integer(pred.n), nnprime = as.integer(nnprime), krige = as.integer(krige), bDs2x = as.integer(Ds2x), bimprov = as.integer(as.logical(improv) * nnprime), ## begin outputs Zp.mean = double(pred.n * n), ZZ.mean = double(nnprime), Zp.km = double(krige * pred.n * n), ZZ.km = double(krige * nnprime), Zp.vark = double(krige * pred.n * n), ZZ.vark = double(krige * nnprime), Zp.q = double(pred.n * n), ZZ.q = double(nnprime), Zp.s2 = double(pred.n * (zcov*n^2 + (!zcov)*n)), ZZ.s2 = double(zcov*nnprime^2 + (!zcov)*nnprime), ZpZZ.s2 = double(pred.n * n * nnprime * zcov), Zp.ks2 = double(krige * pred.n * n), ZZ.ks2 = double(krige * nnprime), Zp.q1 = double(pred.n * n), Zp.med = double(pred.n * n), Zp.q2 = double(pred.n * n), ZZ.q1 = double(nnprime), ZZ.med = double(nnprime), ZZ.q2 = double(nnprime), Ds2x = double(Ds2x * nnprime), improv = double(as.logical(improv) * nnprime), irank = integer(as.logical(improv) * nnprime), ess = double(1 + itemps[1]*2), gpcs = double(4), sens.ZZ.mean = double(ngrid*d), sens.ZZ.q1 = double(ngrid*d), sens.ZZ.q2 = double(ngrid*d), sens.S = double(d*S*!is.null(sens.p)), sens.T = double(d*S*!is.null(sens.p)), ## end outputs PACKAGE = "tgp") ## all post-processing is moved into a new function so it ## can be shared by predict.tgp() ll <- tgp.postprocess(ll, Xnames, response, pred.n, zcov, Ds2x, improv, sens.p, Zm0r1, params, rmfiles) return(ll) } tgp/R/mrtgp.R0000644000176200001440000001401413531032535012521 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## mr.plot: ## ## plotting function for multiresolution tgp-class objects ## (i.e., those with corr=="mrexpsep") -- called by plot.tgp "mr.plot" <- function(x, pparts=TRUE, proj=NULL, center="mean", layout="both", main=NULL, xlab=NULL, ylab=NULL, zlab=NULL, legendloc="topright", gridlen=c(40,40), span=0.1, ...) { ## 1-d plot of 1-d data described by two columns (resolutions) if( x$d==2 ){ ## create plot window par(mfrow=c(1,1)) ## construct axis x&y labels if(is.null(xlab)){xlab <- names(x$X)[2]} if(is.null(ylab)){ylab <- x$response} ## collect the input and predictive data and pred outputs center <- tgp.choose.center(x, center) o <- order(center$X[,2]) X <- center$X[o,] Z <- center$Z[o] smain <- paste(main, ylab, center$name) ## collect quantiles Z.q1 <- c(x$Zp.q1, x$ZZ.q1)[o] Z.q2 <- c(x$Zp.q2, x$ZZ.q2)[o] ## plot the coarse and fine input data plot(x$X[x$X[,1]==0,2],x$Z[x$X[,1]==0], ylim=range(c(Z,x$Z)), xlab=xlab, ylab=ylab, main=smain, col=4) lines(x$X[x$X[,1]==1,2],x$Z[x$X[,1]==1], type="p", pch=20, col=2) ## add a legend if(! is.null(legendloc)) legend(legendloc, lty=c(1,2,1,2), col=c("blue", "blue", "red", "red"), c(paste("coarse", center$name), "coarse 90% CI", paste("fine", center$name), "fine 90% CI")) ## extract the coarse and fine resolutions f<-X[,1]==1 c<-X[,1]==0 ## add the coarse and fine mean and quantiles lines(X[c,2], Z[c], col=4) lines(X[f,2], Z[f], col=2) lines(X[f,2], Z.q1[f], col=2, lty=3) lines(X[f,2], Z.q2[f], col=2, lty=3) lines(X[c,2], Z.q1[c], col=4, lty=3) lines(X[c,2], Z.q2[c], col=4, lty=3) if(pparts) tgp.plot.parts.1d(x$parts[,2]) } else { ## make a projection for data is >= 2-d ## create plot window par(mfrow=c(1,2)) if(is.null(proj)) proj <- c(1,2) ## create axis lables -- augment proj argument by one column proj <- proj+1 if(is.null(xlab)){xlab <- names(x$X)[proj[1]]} if(is.null(ylab)){ylab <- names(x$X)[proj[2]]} ## collect the input and predictive data and pred outputs ## this plot only plots the mean or median, no errors center <- tgp.choose.center(x, center) X <- center$X; Z <- center$Z ## separate X and Z into coarse and fine c<-X[,1]==0; f<-X[,1]==1 Xc <- as.data.frame(X[c,proj]) Xf <- as.data.frame(X[f,proj]) Zc <- Z[c]; Zf <- Z[f] ## initialize the projection vectors p* nXc <- nrow(Xc); pc <- seq(1,nXc) nXf <- nrow(Xf); pf <- seq(1,nXf) dX <- nrow(X) ## plot the coarse predictive (mean or median) surface smain <- paste(main, x$response, "coarse", center$name) slice.image(Xc[,1], Xc[,2], p=pc, z=Zc, xlab=xlab, ylab=ylab, main=smain, gridlen=gridlen,span=span, xlim=range(X[,proj[1]]), ylim=range(X[,proj[2]]), ...) ## add inputs and predictive locations points(x$X[x$X[,1]==0,proj], pch=20, ...) points(x$XX[x$XX[,1]==0,proj], pch=21, ...) # plot parts if(pparts & !is.null(x$parts)) { tgp.plot.parts.2d(x$parts, dx=proj)} ## plot the fine predictive (mean or median) surface smain <- paste(main, x$response, "fine", center$name) slice.image(Xf[,1], Xf[,2], p=pf, z=Zf, xlab=xlab, ylab=ylab, main=smain, gridlen=gridlen, span=span, xlim=range(X[,proj[1]]), ylim=range(X[,proj[2]]), ...) ## add inputs and predictive locations points(x$X[x$X[,1]==1,proj], pch=20, ...) points(x$XX[x$XX[,1]==1,proj],pch=21, ...) # plot parts if(pparts & !is.null(x$parts)) { tgp.plot.parts.2d(x$parts, dx=proj)} } } ## mr.checkrez: ## ## used for extreacting the predictive surface information for ## one of the two resolutions so that the surface for that ## resolution can be plotted using the regualr tgp plotting ## machinery in plot.tgp "mr.checkrez" <- function(b, res) { ## select input data at the desired resolution b$d <- b$d-1 rdata <- b$X[,1]==res b$n <- sum(rdata) cnames=names(b$X)[-1] b$X <- as.data.frame(b$X[rdata,-1]) colnames(b$X) <- cnames b$Z <- b$Z[rdata] ## predictive data at input locations for the desired resolution b$Zp.mean <- b$Zp.mean[rdata] b$Zp.km <- b$Zp.km[rdata] b$Zp.q <- b$Zp.q[rdata] b$Zp.s2 <- b$Zp.s2[rdata] b$Zp.ks2 <- b$Zp.ks2[rdata] b$Zp.q1 <- b$Zp.q1[rdata] b$Zp.q2<- b$Zp.q2[rdata] b$Zp.med <- b$Zp.med[rdata] ## predictive data at the predictive locations for the desired resolution rpred <- b$XX[,1]==res b$nn <- sum(rpred) b$XX <- as.data.frame(b$XX[rpred,-1]) colnames(b$XX) <- cnames b$ZZ <- b$ZZ[rpred] b$ZZ.mean <- b$ZZ.mean[rpred] b$ZZ.km <- b$ZZ.km[rpred] b$ZZ.q <- b$ZZ.q[rpred] b$ZZ.s2 <- b$ZZ.s2[rpred] b$ZZ.ks2 <- b$ZZ.ks2[rpred] b$ZZ.q1 <- b$ZZ.q1[rpred] b$ZZ.q2<- b$ZZ.q2[rpred] b$ZZ.med <- b$ZZ.med[rpred] b$improv <- b$improv[rpred,] b$parts <- b$parts[,-1] return(b) } tgp/R/predict.tgp.R0000644000176200001440000002054713531032535013623 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## predict.tgp: ## ## generic the master tgp R function which takes most of its inputs ## from a tgp-object. Most of the changeable outputs have to do with ## sampling from the posterior predictive distribution (hence a predict ## method). It checks for valid inputs and then calls the C-side via .C ## on those inputs -- and then calls the post-processing code accordingly "predict.tgp" <- function(object, XX=NULL, BTE=c(0,1,1), R=1, MAP=TRUE, pred.n=TRUE, krige=TRUE, zcov=FALSE, Ds2x=FALSE, improv=FALSE, sens.p=NULL, trace=FALSE, verb=0, ...) { ## (quitely) double-check that tgp is clean before-hand tgp.cleanup(message="NOTICE", verb=verb, rmfiles=TRUE); ## what to do if fatally interrupted? on.exit(tgp.cleanup(verb=verb, rmfiles=TRUE)) if(object$params$corr == "mrexpsep" && !is.null(sens.p)) stop("Sorry, sensitivity analysis is not yet available for corr=\"mrexpsep\"") ## get names Xnames <- names(object$X) response <- names(object$Z) ## check XX XX <- check.matrix(XX)$X if(is.null(XX)) { nn <- 0; XX<- matrix(0); nnprime <- 0 } else { nn <- nrow(XX); nnprime <- nn if(ncol(XX) != object$d) stop("mismatched column dimension of object$X and XX"); } ## check that pred.n, krige, MAP, and Ds2x is true or false if(length(pred.n) != 1 || !is.logical(pred.n)) stop("pred.n should be TRUE or FALSE") if(length(krige) != 1 || !is.logical(krige)) stop("krige should be TRUE or FALSE") if(length(zcov) != 1 || !is.logical(zcov)) stop("zcov should be TRUE or FALSE") if(length(MAP) != 1 || !is.logical(MAP)) stop("MAP should be TRUE or FALSE") if(length(Ds2x) != 1 || !is.logical(Ds2x)) stop("Ds2x should be TRUE or FALSE") ## check the form of the improv-power argument if(length(improv) == 2) { numirank <- improv[2]; improv <- improv[1] } else { numirank <- NULL } if(length(improv) != 1 || !(is.logical(improv) || is.numeric(improv)) || (is.numeric(improv) && improv <= 0)) stop(paste("improv [", improv, "] should be TRUE, FALSE, or a positive integer (power)", sep="")) g <- as.numeric(improv) ## check numirank, which is improv[2] in input if(is.null(numirank) && improv) numirank <- max(min(10, nn), 0.1*nn) else if(!is.null(numirank) && numirank > nn) stop("improv[2] must be <= nrow(XX)") else if(is.null(numirank)) numirank <- 0 ## check for inconsistent XX and Ds2x/improv if(nn == 0 && (Ds2x || improv)) warning("need to specify XX locations for Ds2x and improv") ## check the sanity of input arguments if(nn > 0 && sum(dim(XX)) > 0 && ncol(XX) != object$d) stop("XX has bad dimensions") if(BTE[1] < 0 || BTE[2] <= 0 || BTE[1] >= BTE[2]) stop("bad B and T: must have 0<=B=E") ## might scale Z to mean of 0 range of 1 if(object$m0r1) { Zm0r1 <- mean0.range1(object$Z); Z <- Zm0r1$X } else { Z <- object$Z; Zm0r1 <- NULL } ## get infor about the tree m <- which.max(object$posts$lpost) t2c <- tree2c(object$trees[[object$posts$height[m]]]) # RNG seed state <- sample(seq(0,999), 3) ## get itemps from object, but set c0n0 <- c(0,0) ## so no stochastic approx happens object$itemps$c0n0 <- c(0,0) itemps <- check.itemps(object$itemps, object$params) ## if performing a sensitivity analysis, set up XX if(!is.null(sens.p)){ nnprime <- 0 if(nn > 0) warning("XX generated online in sensitivity analyses") sens.par <- check.sens(sens.p, object$d) nn <- sens.par$nn; nn.lhs <- sens.par$nn.lhs; XX <- sens.par$XX ngrid <- sens.par$ngrid; span <- sens.par$span MEgrid <- as.double(sens.par$MEgrid) if(verb >= 1) cat(paste("Predict at", nn, "LHS XX locs for sensitivity analysis\n")) } else{ nn.lhs <- ngrid <- 0; MEgrid <- span <- double(0) } ## calculate the number of sampling rounds S = R*(BTE[2]-BTE[1])/BTE[3] ## run the C code ll <- .C("tgp", ## begin inputs state = as.integer(state), X = as.double(t(object$X)), n = as.integer(object$n), d = as.integer(object$d), Z = as.double(Z), XX = as.double(t(XX)), nn = as.integer(nn), Xsplit = as.double(t(object$Xsplit)), nsplit = as.integer(nrow(object$Xsplit)), trace = as.integer(trace), BTE = as.integer(BTE), R = as.integer(R), linburn = as.integer(FALSE), zcov = as.integer(zcov), g = as.integer(c(g, numirank)), dparams = as.double(object$dparams), itemps = as.double(itemps), verb = as.integer(verb), tree = as.double(c(ncol(t2c),t(t2c))), hier = as.double(object$posts[m,3:ncol(object$posts)]), MAP = as.integer(MAP), sens.ngrid = as.integer(ngrid), sens.span = as.double(span), sens.Xgrid = MEgrid, ## output dimensions for checking NULL pred.n = as.integer(pred.n), nnprime = as.integer(nnprime), krige = as.integer(krige), bDs2x = as.integer(Ds2x), improv = as.integer(as.logical(improv) * nnprime), ## begin outputs Zp.mean = double(pred.n * object$n), ZZ.mean = double(nnprime), Zp.km = double(krige * pred.n * object$n), ZZ.km = double(krige * nnprime), Zp.vark = double(krige * pred.n * object$n), ZZ.vark = double(krige * nnprime), Zp.q = double(pred.n * object$n), ZZ.q = double(nnprime), Zp.s2 = double(pred.n * (zcov*object$n^2) + (!zcov)*object$n), ZZ.s2 = double(zcov*nnprime^2 + (!zcov)*nnprime^2), ZpZZ.s2 = double(pred.n * object$n * nnprime * zcov), Zp.ks2 = double(krige * pred.n * object$n), ZZ.ks2 = double(krige * nnprime), Zp.q1 = double(pred.n * object$n), Zp.med = double(pred.n * object$n), Zp.q2 = double(pred.n * object$n), ZZ.q1 = double(nnprime), ZZ.med = double(nnprime), ZZ.q2 = double(nnprime), Ds2x = double(Ds2x * nnprime), improv = double(as.logical(improv) * nnprime), irank = integer(as.logical(improv) * nnprime), ess = double(1 + itemps[1]*2), gpcs = double(4), sens.ZZ.mean = double(ngrid*object$d), sens.ZZ.q1 = double(ngrid*object$d), sens.ZZ.q2 = double(ngrid*object$d), sens.S = double(object$d*S*!is.null(sens.p)), sens.T = double(object$d*S*!is.null(sens.p)), ## end outputs PACKAGE = "tgp") ## post-process before returning ll <- tgp.postprocess(ll, Xnames, response, pred.n, zcov, Ds2x, improv, sens.p, Zm0r1, object$params, TRUE) return(ll) } ## tree2c ## ## converts the list-and-data.frame style tree contained in ## the tgp-class object into a C-style double-vector so that ## the C-side can start from the MAP tree contained in the object "tree2c" <- function(t) { ## change var into a numeric vector var <- as.character(t$var) var[var == ""] <- -1 var <- as.numeric(var) ## to return tr <- data.frame(rows=t$rows, var=var) tr <- cbind(tr, t[,8:ncol(t)]) ## order the rows by the row column o <- order(tr[,1]) tr <- tr[o,] return(as.matrix(tr)) } tgp/R/sens.R0000644000176200001440000001761013531032535012345 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## check.sens: ## ## function to check the sens.p argument provided as input ## to the sens or b* functions, depending on the imput dimension ## d "check.sens" <- function(sens.p, d) { ## sanity checks if(d==1) stop("You don't need sensitivity analysis for a single variable.") if(length(sens.p)!=(4*d+3)) stop("bad sens length.") ## nn.lhs is 'nm' in the .cc code. nn.lhs <- sens.p[1] nn <-nn.lhs*(d+2) ## The XX matrix is of the correct size for within the .cc code. ## This may or may not be necessary. ## The first 3 rows contain the LHS parameters to begin with. XX <- matrix(rep(0,nn*d),nrow=nn, ncol=d) XX[1:2,] <- matrix(sens.p[2:(2*d+1)], nrow=2) ## this is rect ## check shape for validity, and copy to XX shape <- XX[3,] <- sens.p[(2*d+2):(3*d+1)] if(length(shape) != d || !all(shape >= 0)) { print(shape) stop(paste("shape should be a non-negative ", d, "-vector", sep="")) } ## check mode for validity, and copy to XX mode <- XX[4,] <- sens.p[(3*d+2):(4*d+1)] if(length(mode) != d) { print(mode) stop(paste("mode should be a ", d, "-vector", sep="")) } ## check each coordinate of the mode argument for(i in 1:d){ if(mode[i] < XX[1,i] || mode[i] > XX[2,i]){ stop(paste("mode ", i, " should be within bounds [", XX[1,i],", ", XX[2,i],"]", sep="")) } } ## Create the Main Effect Grid ngrid <- sens.p[4*d+2] span <- sens.p[4*d+3] if((span > 1) || (span < 0)) stop("Bad smoothing span -- must be in (0,1).") MEgrid <- matrix(ncol=d, nrow=ngrid) for(i in 1:d){ MEgrid[,i] <- seq(XX[1,i], XX[2,i], length=ngrid) } ## return list(nn=nn, nn.lhs=nn.lhs, ngrid=ngrid, span=span, XX=XX, MEgrid=MEgrid) } ## sens: ## ## code for performaing a sensitivity analysis using the specified ## model and nn.lhs LHS re-sampled predictive grid for each of the T ## rounds under a beta prior specified by shape and mode "sens" <- function(X, Z, nn.lhs, model=btgp, ngrid=100, span=0.3, BTE=c(3000,8000,10), rect=NULL, shape=NULL, mode=NULL, ...) { ## the format for rect is the same as rect in LHS (ncol=2, nrow=d). Xnames <- names(X) XZ <- check.matrix(X, Z) X <- data.frame(XZ$X); names(X) <- Xnames; Z <- XZ$Z; ## process the rect, shape and mode arguments d <- ncol(as.matrix(X)) if(is.null(rect)) rect <- t(apply(as.matrix(X),2,range)) else if(nrow(rect) != d || ncol(rect) != 2) stop(paste("rect should be a ", d, "x2-vector", sep="")) ## check the shape LHS parameter vector if(is.null(shape)) shape <- rep(1,d) else if(length(shape) != d || !all(shape >= 0)) { print(shape) stop(paste("shape should be a non-negative ", d, "-vector", sep="")) } ## check the mode LHS parameter vector if(is.null(mode)) mode <- apply(as.matrix(X),2,mean) else if(length(mode) != d) { print(mode) stop(paste("mode should be a ", d, "-vector", sep="")) } ## check the LHS rectangle in the categorical variable context for(i in 1:d){ if(shape[i]==0){ if(rect[i,1] != 0 || rect[i,2] != 1){ print(rect[i,]) stop(paste("rect must be [0,1] for categorical variables (i=", i,", shape[i]=",shape[i],").", sep="")) } } } ## build the sens parameter sens.p <- c(nn.lhs,t(rect),shape,mode,ngrid,span) ## run the b* function (model) with the sens parameter, or otherwise ## just return the parameter vector and do nothing if(!is.null(model)){ return(model(X,Z,sens.p=sens.p,BTE=BTE,...)) } else{ return(sens.p) } } ## sens.plot: ## ## function for plotting the results of a sensitivity analysis -- ## intended to be used instead of plot.tgp. The type of plot retulting ## depends on whether main effects are to be plotted or not "sens.plot" <- function(s, maineff=TRUE, legendloc="topright", ...) { ## colors used for each effect (col of X) cols = rainbow(s$d) ## extract some useful things from the tgp-object 's' nom <- names(s$X) sens <- s$sens Zmean <- sens$ZZ.mean Zq1 <- sens$ZZ.q1 Zq2 <- sens$ZZ.q2 ## if maineff is logical then the S & T stats will get plotted if(is.logical(maineff)){ ## put X on a mean 0 range 1 scale X <- mean0.range1(sens$Xgrid)$X ## plot the main effects or not? if(maineff){ par(mfrow=c(1,3), ...) X <- mean0.range1(sens$Xgrid)$X ## plot each of the main effects in the same window -- start with the 1st plot(X[,1], Zmean[,1], main="Main Effects", ylab="response", xlab="scaled input", col=cols[1], typ="l", lwd=2, ylim=range(as.vector(Zmean)), ...) ## and then proceed with the rest for(i in 2:s$d){ if(nlevels(factor(Zmean[,i]))==3){ ## discrete response ... Taddy is this right? segments(-.5, Zmean[1,i], 0, Zmean[1,i], lwd=2, col=cols[i]) segments(0, Zmean[nrow(Zmean),i], .5, Zmean[nrow(Zmean),i], lwd=2, col=cols[i]) } else{ lines(X[,i], Zmean[,i], lwd=2, col=cols[i]) } ## continuous response } ## add a legend to the plot so we can see which colours are for which effects legend(x=legendloc, legend = names(s$X), col=cols, fill=cols) } else{ par(mfrow=c(1,2), ...) } ## plot the S and T statistics ## S stats first boxplot(data.frame(sens$S), names=names(s$X), main="1st order Sensitivity Indices", xlab="input variables", ylab="", ...) ## then T stats T0 <- sens$T T0[sens$T<0] <- 0 boxplot(data.frame(T0), names=names(s$X), main="Total Effect Sensitivity Indices", xlab="input variables", ylab="", ...) } else { ## only make a main effects plots ## set up the plot X <- sens$Xgrid ME <- c(maineff) pdim <- dim(as.matrix(maineff)) par(mfrow=pdim, ...) ## for each Main Effect for(i in ME){ ## discrete response ... Taddy is this right? if(nlevels(factor(Zmean[,i]))==3){ plot(c(0,1) ,c(Zmean[1,i],Zmean[nrow(Zmean),i]), main="", ylab="response", xlab=nom[i], col=cols[i], pch=20, cex=2, xlim=c(-.5,1.5), xaxt="n", ylim=c(min(Zq1[,i]), max(Zq2[,i]))) axis(1, at=c(0,1)) segments(-.1, Zq1[1,i], .1, Zq1[1,i], lwd=2, col=cols[i], lty=2) segments(.9, Zq1[nrow(Zq1),i], 1.1, Zq1[nrow(Zq1),i], lwd=2, col=cols[i], lty=2) segments(-.1, Zq2[1,i], .1, Zq2[1,i], lwd=2, col=cols[i], lty=2) segments(.9, Zq2[nrow(Zq2),i], 1.1, Zq2[nrow(Zq2),i], lwd=2, col=cols[i], lty=2) } else{ ## continuous response plot(X[,i], Zmean[,i], main="", ylab="response", xlab=nom[i], col=cols[i], typ="l", lwd=2, ylim=c(min(Zq1[,i]), max(Zq2[,i])), ...) lines(X[,i], Zq1[,i], col=cols[i], lty=2) lines(X[,i], Zq2[,i], col=cols[i], lty=2) } } ## add a title to the plot mtext(text="Main effects: mean and 90 percent interval", line=-2, outer=TRUE, font=2) } } tgp/R/tgp.postprocess.R0000644000176200001440000002133513531032535014551 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* "tgp.postprocess" <- function(ll, Xnames, response, pred.n, zcov, Ds2x, improv, sens.p, Zm0r1, params, rmfiles=TRUE) { ## deal with X, and names of X, as well as Xsplit ll$X <- framify.X(ll$X, Xnames, ll$d) ll$Xsplit <- framify.X(ll$Xsplit, Xnames, ll$d) ll$nsplit <- NULL ## deal with Z, and names of Z if(is.null(response)) ll$response <- "z" else ll$response <- response ## remove from the list if not requested if(Ds2x == FALSE) { ll$Ds2x <- NULL; } if(improv == FALSE || is.null(improv)) { ll$improv <- NULL; } ## deal with predictive data locations (ZZ) if(ll$nn == 0 || (ll$BTE[2]-ll$BTE[1])==0 || !is.null(sens.p)) { ll$XX <- ll$ZZ.mean <- ll$ZZ.s2 <- ll$ZZ.q <- ll$ZZ.km <- ll$ZZ.ks2 <- ll$ZZ.vark <- NULL ll$ZZ.q1 <- ll$ZZ.med <- ll$ZZ.q2 <- ll$ZpZZ.s2 <- ll$Ds2x <- ll$improv <- NULL } else { ## do predictive input/output processing ## replace NaN's in improv with zeros ## shouldn't happen because check have been moved to C code if((!is.null(ll$improv)) && sum(is.nan(ll$improv) > 0)) { warning(paste("encountered", sum(is.nan(ll$improv)), "NaN in Improv, replaced with zeros"), call.=FALSE) ll$improv[is.nan(ll$improv)] <- 0 } ## make sure XX has the correct output format ll$XX <- framify.X(ll$XX, Xnames, ll$d) } ## turn improv into a data.frame where the second column is the rankings if(!is.null(improv)){ ll$irank[ll$irank == 0] <- ll$nn ll$improv <- data.frame(improv=ll$improv, rank=ll$irank) } ll$irank <- NULL ## NULL-out data-predictive output if unused if(pred.n == FALSE || ll$BTE[2]-ll$BTE[1] == 0) { ll$Zp.mean <- ll$Zp.q <- ll$Zp.q1 <- ll$Zp.q2 <- NULL; ll$Zp.s2 <- ll$ZpZZ.s2 <- ll$Zp.km <- ll$Zp.vark <- ll$Zp.ks2 <- ll$Zp.med <- NULL } ## gather information about partitions if(file.exists(paste("./", "best_parts_1.out", sep=""))) { ll$parts <- as.matrix(read.table("best_parts_1.out")) if(rmfiles) unlink("best_parts_1.out") } else { ll$parts <- NULL } ## gather information about MAP trees as a function of height ll$trees <- tgp.get.trees(ll$Xsplit, rmfiles) ll$posts <- read.table("tree_m0_posts.out", header=TRUE) if(ll$BTE[2] - ll$BTE[1] == 0) ll$posts <- NULL if(rmfiles) unlink("tree_m0_posts.out") ## read the trace in the output files, and then delete them if(ll$trace) ll$trace <- tgp.read.traces(ll$n, ll$nn, ll$d, params$corr, ll$verb, rmfiles) else ll$trace <- NULL ## store params ll$params <- params ## clear the verb, state, tree and MAP fields for output ll$verb <- NULL; ll$state <- NULL; ll$tree <- NULL; ll$MAP <- NULL; ll$nt <- NULL ll$ncol <- NULL; ll$hier <- NULL; ## clear output dimensions ll$pred.n <- ll$nnprime <- ll$krige <- ll$bDs2x <- NULL ## consolidate itemps nt <- as.integer(ll$itemps[1]) lambda <- ll$itemps[length(ll$itemps)] if(lambda == 1) lambda <- "opt" else if(lambda == 2) lambda <- "naive" else if(lambda == 3) lambda <- "st" else stop(paste("bad lambda = ", lambda, sep="")) ll$itemps <- list(c0n0=as.integer(ll$itemps[2:3]), k=ll$itemps[4:(nt+3)], pk=ll$itemps[(nt+4):(2*nt+3)], counts=as.integer(ll$itemps[(2*nt+4):(3*nt+3)]), lambda=lambda) ## consolidate ess if(nt == 1) ll$ess <- ll$ess[1] else { ll$ess=list(combined=ll$ess[1], each=data.frame(k=ll$itemps$k, count=ll$ess[2:(nt+1)], ess=ll$ess[(nt+2):(2*nt+1)])) } ## change {0,1} to {TRUE,FALSE} if(ll$linburn) ll$linburn <- TRUE else ll$linburn <- FALSE ## pretty-up the grow, prune, change and swap stats ll$gpcs[is.nan(ll$gpcs)] <- NA ll$gpcs <- data.frame(t(ll$gpcs)) names(ll$gpcs) <- c("grow", "prune", "change", "swap") ## deal with sensitivity analysis outputs if(!is.null(sens.p)){ names(sens.p) <- NULL sens.par <- list(nn.lhs=sens.p[1], rect=matrix(sens.p[2:(ll$d*2+1)], nrow=2), shape=sens.p[(ll$d*2+2):(ll$d*3+1)], mode=sens.p[(ll$d*3+2):(ll$d*4+1)], ngrid=ll$sens.ngrid, span=ll$sens.span) sens <- list() sens$par <- sens.par sens$ngrid <- NULL sens$span <- NULL sens$Xgrid <- matrix(ll$sens.Xgrid, ncol=ll$d) sens$ZZ.mean <- matrix(ll$sens.ZZ.mean, ncol=ll$d) sens$ZZ.q1 <- matrix(ll$sens.ZZ.q1, ncol=ll$d) sens$ZZ.q2 <- matrix(ll$sens.ZZ.q2, ncol=ll$d) sens$S <- matrix(ll$sens.S, ncol=ll$d, byrow=TRUE) sens$T <- matrix(ll$sens.T, ncol=ll$d, byrow=TRUE) } else{ sens <- NULL } ## clear ll$sens.* and replace with single list ll$sens.Xgrid <- ll$sens.ZZ.mean <- ll$sens.ZZ.q1 <- ll$sens.ZZ.q2 <- NULL ll$sens.ngrid <- ll$sens.span <- ll$sens.S <- ll$sens.T <- NULL ll$sens <- sens ## undo mean0.range1 if(!is.null(Zm0r1)) { ll$Z <- undo.mean0.range1(ll$Z,Zm0r1$undo) ll$Zp.mean <- undo.mean0.range1(ll$Zp.mean,Zm0r1$undo) ll$ZZ.mean <- undo.mean0.range1(ll$ZZ.mean,Zm0r1$undo) ll$Zp.km <- undo.mean0.range1(ll$Zp.km,Zm0r1$undo) ll$ZZ.km <- undo.mean0.range1(ll$ZZ.km,Zm0r1$undo) ll$Zp.vark <- undo.mean0.range1(ll$Zp.vark,Zm0r1$undo, nomean=TRUE, s2=TRUE) ll$ZZ.vark <- undo.mean0.range1(ll$ZZ.vark,Zm0r1$undo, nomean=TRUE, s2=TRUE) ll$Zp.ks2 <- undo.mean0.range1(ll$Zp.ks2,Zm0r1$undo, nomean=TRUE, s2=TRUE) ll$ZZ.ks2 <- undo.mean0.range1(ll$ZZ.ks2,Zm0r1$undo, nomean=TRUE, s2=TRUE) ll$ZpZZ.ks2 <- undo.mean0.range1(ll$ZpZZ.ks2,Zm0r1$undo, nomean=TRUE, s2=TRUE) ll$Zp.q <- undo.mean0.range1(ll$Zp.q,Zm0r1$undo, nomean=TRUE) ll$ZZ.q <- undo.mean0.range1(ll$ZZ.q,Zm0r1$undo, nomean=TRUE) ll$Zp.s2 <- undo.mean0.range1(ll$Zp.s2,Zm0r1$undo, nomean=TRUE, s2=TRUE) ll$ZZ.s2 <- undo.mean0.range1(ll$ZZ.s2,Zm0r1$undo, nomean=TRUE, s2=TRUE) ll$Zp.q1 <- undo.mean0.range1(ll$Zp.q1,Zm0r1$undo) ll$Zp.med <- undo.mean0.range1(ll$Zp.med,Zm0r1$undo) ll$Zp.q2 <- undo.mean0.range1(ll$Zp.q2,Zm0r1$undo) ll$ZZ.q1 <- undo.mean0.range1(ll$ZZ.q1,Zm0r1$undo) ll$ZZ.med <- undo.mean0.range1(ll$ZZ.med,Zm0r1$undo) ll$ZZ.q2 <- undo.mean0.range1(ll$ZZ.q2,Zm0r1$undo) for(j in 1:ll$d){ ll$sens.ZZ.mean[,j] <- undo.mean0.range1(ll$sens.ZZ.mean[,j],Zm0r1$undo) ll$sens.ZZ.q1[,j] <- undo.mean0.range1(ll$sens.ZZ.q1[,j],Zm0r1$undo) ll$sens.ZZ.q2[,j] <- undo.mean0.range1(ll$sens.ZZ.q2[,j],Zm0r1$undo) } ll$m0r1 <- TRUE } else { ll$m0r1 <- FALSE } ## turn Z*.s2 into a matrix (covariance matrix) if(!is.null(ll$Zp.s2) && ll$zcov) ll$Zp.s2 <- matrix(ll$Zp.s2, ncol=ll$n) if(!is.null(ll$ZZ.s2) && ll$zcov) ll$ZZ.s2 <- matrix(ll$ZZ.s2, ncol=ll$nn) if(!is.null(ll$ZpZZ.s2) && ll$zcov) ll$ZpZZ.s2 <- t(matrix(ll$ZpZZ.s2, ncol=ll$n)) else ll$ZpZZ.s2 <- NULL ll$zcov <- NULL ## set class information and return class(ll) <- "tgp" return(ll) } "tgp.get.trees" <- function(X, rmfiles=TRUE) { trees <- list() ## get all of the names of the tree files tree.files <- list.files(pattern="tree_m0_[0-9]+.out") ## return no trees if the run was only burn-in if(length(tree.files) == 0) return(NULL) ## for each tree file for(i in 1:length(tree.files)) { ## grab the height from the filename h <- as.numeric(strsplit(tree.files[i], "[_.]")[[1]][3]) ## read it in, then remove it trees[[h]] <- read.table(tree.files[i], header=TRUE) if(rmfiles) unlink(tree.files[i]) ## correct the precision of the val (split) locations ## by replacing them with the closest X[,var] location if(nrow(trees[[h]]) == 1) next; nodes <- (1:length(trees[[h]]$var))[trees[[h]]$var != ""] for(j in 1:length(nodes)) { col <- as.numeric(as.character(trees[[h]]$var[nodes[j]])) + 1 m <- which.min(abs(X[,col] - trees[[h]]$val[nodes[j]])) trees[[h]]$val[nodes[j]] <- X[m,col] } } return(trees) } tgp/R/mean0.range1.R0000644000176200001440000000566013531032535013553 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## mean0.range1: ## ## translate the input columns (X.m) to each (independently) ## have a mean of zero and a range of one -- as used by Chipman ## et al. Also save the necessary mean and range information ## so that the transformation can be undone later "mean0.range1" <- function(X.m) { ## checks and coersion into a matrix if(is.null(X.m)) return(NULL) else if(is.null(dim(X.m))) X <- matrix(X.m, ncol=1) else X <- X.m ## initialize the information necesary for undoing undo <- list() undo$min <- rep(0, ncol(X)) undo$max <- rep(0, ncol(X)) undo$amean <- rep(0, ncol(X)) ## make the transformation in each dimension for(i in 1:ncol(X)) { undo$min[i] <- min(X[,i]) undo$max[i] <- max(X[,i]) X[,i] <- X[,i] / (max(X[,i]) - min(X[,i])) undo$amean[i] <- mean(X[,i]) X[,i] <- X[,i] - mean(X[,i]) } ## convert input vectors back into vectors if(is.null(dim(X.m))) X.m <- as.vector(X) else X.m <- X ## return both the transformed data and the info to undo return(list(X=X,undo=undo)) } ## undo.mean0.range1: ## ## using the info saved by mean0.range1, undo the transformation ## on X -- usually the undo is performed on new data that is curently ## on the scale of the transformed X, but should be reported on the ## scale of the original (unransformed) X "undo.mean0.range1" <- function(X.m, undo, nomean=FALSE, s2=FALSE) { ## checks and coerse into a matrix if(is.null(X.m)) return(NULL) else if(is.null(dim(X.m))) X <- matrix(X.m, ncol=1) else X <- X.m ## undo in each column of X for(i in 1:(dim(X)[2])) { if(!nomean) X[,i] <- X[,i] + undo$amean[i] if(s2) X[,i] <- X[,i]*(undo$max[i] - undo$min[i])^2 else X[,i] <- X[,i]*(undo$max[i] - undo$min[i]) } ## convert input vectors back into vectors if(is.null(dim(X.m))) X.m <- as.vector(X) else X.m <- X ## return the undone transformation return(X.m) } tgp/R/friedman.1.data.R0000644000176200001440000000553113531032535014230 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## friedman.1.data: ## ## generate a random sample of size n from Friedman's 10-d ## first data set used to validate the MARS method -- the ## response depends linearly and non-linearly on the first ## five inputs only "friedman.1.data" <- function(n=100) { X <- matrix(runif(n*10), nrow=n) Ytrue <- 10*sin(pi*X[,1]*X[,2]) + 20*(X[,3]-0.5)^2 + 10*X[,4] + 5*X[,5] Y <- Ytrue + rnorm(n, 0, 1) return(data.frame(X,Y,Ytrue)) } ## fried.bool: ## ## generate a random sample of size n from a boolean segmented ## version of Friedman's 10-d first data set used to validate the ## MARS method -- the response depends linearly and non-linearly ## on the first five inputs only, but now which part of the function ## is on depends on an indicator 1:4 "fried.bool" <- function(n=100) { ## a function that is a sum of parts f1 <- function(X) { 10*sin(pi*X[,1]*X[,2]) } f2 <- function(X) { 20*(X[,3]-0.5)^2 } f3 <- function(X) { 10*X[,4] + 5*X[,5] } f4 <- function(X) { 10*sin(pi*X[,5]*X[,4]) + 20*(X[,3]-0.5)^2 + 10*X[,2] + 5*X[,1] } fs <- list(f1, f2, f3, f4) ## boolean codings of 1:4 BoolI <- rbind(c(0,0,0), c(0,0,1), c(0,1,0), c(1,0,0)) ## sample n indicators in 1:4 and record their boolean coding I <- sample(c(1,2,3,4), n, replace=TRUE) Imat <-matrix(BoolI[I,], nrow=n) ## n random inputs U(0,1) in 10 dimensions X <- matrix(runif(n*10), nrow=n) ## allocate space for the true response Ytrue <- rep(0, n) ## calculate responses for each of the four groups for(i in 1:4) { indx <- I == i if(sum(indx) == 0) next; indx <- (1:n)[indx] XX <- matrix(X[indx,], ncol=10) Ytrue[indx] <- fs[[i]](XX) } ## add some noise Y <- Ytrue + rnorm(n, 0, 1) ## return the inputs, bookean coding and outputs return(data.frame(X=X, I=Imat, Y, Ytrue)) } tgp/R/mapT.R0000644000176200001440000000732313531032535012276 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## mapT: ## ## plot the Maximum a Posteriori tree in a tgp-class object, ## or add it to an existing plot -- The proj argument allows ## only some dimensions to be plotted "mapT" <- function(out, proj=NULL, slice=NULL, add=FALSE, lwd=2, ...) { ## simple for 1-d data, projection plot if(out$d == 1) { proj <- 1; slice <- NULL } ## otherwise, many options for >= 2-d data if(out$d > 2 && !is.null(slice)) { # slice plot ## will call stop() if something is wrong with the slice d <- check.slice(slice, out$d, getlocs(out$X)) ## plot the parts tgp.plot.parts.2d(out$parts, d, slice); } else { # projection plot ## will call stop() if something is wrong with the proj proj <- check.proj(proj) ## 1-d projection if(length(proj) == 1) { if(add == FALSE) plot(out$X[,proj], out$Z, ...) tgp.plot.parts.1d(out$parts[,proj], lwd=lwd) } else { ## 2-d projection if(add == FALSE) plot(out$X[,proj], ...) tgp.plot.parts.2d(out$parts[,proj], lwd=lwd) } } } ## tgp.plot.parts.1d: ## ## plot the partitings of 1-d tgp$parts output -- used ## by mapT and plot.tgp "tgp.plot.parts.1d" <- function(parts, lwd=2) { j <- 3 if(is.null(dim(parts))) dp <- length(parts) else { dp <- nrow(parts) parts <- parts[,1] } is <- seq(2, dp, by=4) m <- max(parts[is]) for(i in is) { if(parts[i] == m) next; abline(v=parts[i], col=j, lty=j, lwd=lwd); j <- j + 1 } } ## tgp.plot.parts.2d: ## ## plot the partitings of 2-d tgp$parts output -- used ## by mapT and plot.tgp via tgp.plot.slide and tgp.plot.proj ## the what argument specifies the slice, and trans can make ## rotations "tgp.plot.parts.2d" <- function(parts, dx=c(1,2), what=NULL, trans=matrix(c(1,0,0,1), nrow=2), col=NULL, lwd=3) { if(length(what) > 0) { indices <- c() for(i in seq(1,nrow(parts),4)) { opl <- i+2; opr <- i+3; if(parts[opl,what$x] == 104 && parts[opr,what$x] == 102 && what$z >= parts[i,what$x] && what$z <= parts[i+1,what$x]) { indices <- c(i, indices) } else if(parts[opl,what$x] == 105 && parts[opr,what$x] == 102 && what$z > parts[i,what$x] && what$z <= parts[i+1,what$x]) { indices <- c(i, indices) } } } else { indices <- seq(1,dim(parts)[1],4); } j <- 1 for(i in indices) { a <- parts[i,dx[1]]; b <- parts[i+1,dx[1]]; c <- parts[i,dx[2]]; d <- parts[i+1,dx[2]]; x <- c(a, b, b, a, a); y <- c(c, c, d, d, c); xy <- as.matrix(cbind(x,y)) %*% trans if(is.null(col)) { lines(xy, col=j, lty=j, lwd=lwd); } else { lines(xy, col=col, lty=1, lwd=lwd); } j <- j+1 } } tgp/R/tgp.default.params.R0000644000176200001440000003314513531032535015075 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## tgp.default.params: ## ## create a default parameter vector for tgp-class models with ## the specified dimension, mean function, correllation model ## and other augmentations specified in ... ## ## Note that the choice of bprior can negate the usefulness of ## (or override) some of the parameters, particularly the hierarchical ## parameters tau2.p and tau2.lam "tgp.default.params" <- function(d, meanfn=c("linear", "constant") , corr=c("expsep", "exp", "mrexpsep", "matern", "sim", "twovar"), splitmin=1, basemax=d, ...) { ## check the d argument, other check in tgp.check.params if(length(d) != 1) stop("d should be an integer scalar >= 1") ## check the splitmin argument, other check in tgp.check.params if(length(splitmin) != 1) stop("splitmin should be an integer scalar >= 1") ## check the basemax argument, other check in tgp.check.params if(length(basemax) != 1) stop("basemax should be an integer scalar >= 1") ## setting of col, the dim of (1,X) based on the mean function meanfn <- match.arg(meanfn) if(meanfn == "linear") { col <- d+1 } else if(meanfn == "constant"){ col <- 1 ## not sure why I ever had this code here ## if(basemax != d) { ## warning("must have basemax = d for constant mean function") ## basemax <- d ## } } ## adjust the starting beta and Wi values on basemax beta <- rep(0, min(col, basemax+1)) Wi <- diag(1, length(beta)) ## check the corr argument, and augment splitmin ## if fitting a multi-resolution model corr <- match.arg(corr) ## PERHAPS THIS SHOULD BE DONE IN THE C CODE SO THAT WHEN WE PRINT WITHIN C IT MAKES MORE SENSE if(corr=="mrexpsep") splitmin <- splitmin + 1 ## parameters shared by all models params <- list( tree=c(0.5,2,max(c(10,basemax+2)), # tree prior params ,, splitmin, basemax), # (continued) col=col, # defined above, based on meanfn meanfn=meanfn, # one of "linear" or "constant" bprior="bflat", # linear prior (b0, bmle, bflat, b0not, or bmzt) beta=beta, # start/prior vals for beta Wi=Wi, # start/prior vals for Wi s2tau2=c(1,1), # start vals for s2, and tau2 s2.p=c(5,10), # s2 prior params (initial values) and s2.lam=c(0.2,10), # s2 hierarc inv-gamma prior params (or "fixed") tau2.p=c(5,10), # tau2 prior params (initial values) and tau2.lam=c(0.2,0.1), # tau2 hierarch inv-gamma prior params (or "fixed") corr=corr, # correlation model (exp, expsep, matern, sim) gd=c(0.1, 0.5), # start vals for nug and d nug.p=c(1,1,1,1), # nug gamma-mix prior params (initial values) nug.lam="fixed", # nug hierarch gamma-mix prior params (or "fixed") gamma=c(10,0.2,0.7), # gamma linear pdf parameter d.p=c(1.0,20.0,10.0,10.0), # d gamma-mix prior params (initial values) delta.p=c(), # delta parameter for high fidelity variance nugf.p=c(), # residual process nugget gamma-mix prior params d.lam="fixed", # d lambda hierarch gamma-mix prior params (or "fixed") dp.sim=diag(0.2,basemax), # d-proposal covariance for sim correlaton nu=c() # matern correlation smoothing parameter ) ## parameters specific to multi-resolution corr model if(corr == "mrexpsep"){ mrd.p <- c(1,10,1,10) # gamma-mix params for the discr process (this for 'wigl') params$d.p <- c(params$d.p, mrd.p) params$delta.p <- c(1,1,1,1) params$nugf.p <- c(1,1,1,1) } ## Replace the parameters with ellipsis arguments, ## these should match the entries of params, or be "minpart" plist <- list( ... ) args <- names(plist) if(length(plist)>0) { pmatch <- match(args, c(names(params), "minpart")) for(i in 1:length(plist)){ if(args[i] == "minpart") params$tree[3] <- plist[[i]] else if(!is.na(pmatch[[i]])) params[[pmatch[i]]]<- plist[[i]] else stop(paste("your argument \"", args[i], "\" is not recognized", sep="")) } } return(params) } ## tgp.check.params: ## ## check that the parameter list describes a proper hierarchical parameter ## vector (of dimension d) -- and simultabiously convert the list into ## a double-vector to be passed to the C-side of tgp via .C "tgp.check.params" <- function(params, d) { ## check the number of parameters if(is.null(params)) return(matrix(-1)); if(length(params) != 22) { stop(paste("Number of params should be 22, you have", length(params), "\n")); } ## tree prior parameters if(length(params$tree) != 5) { stop(paste("length of params$tree should be 5, you have", length(params$tree), "\n")); } ## check tree minpart is bigger than input dimension basemax <- params$tree[5] if(params$tree[3] <= basemax) { stop(paste("tree minpart", params$tree[3], "should be > basemax =", basemax, "\n")); } ## check tree splitmin is <= than input dimension if(params$tree[4] < 1 || params$tree[4] > d) { stop(paste("tree splitmin", params$tree[4], "should be >= 1 and <= d =", d, "\n")); } ## check tree basemax is > splitmin and <= than input dimension if(basemax < 1 || params$tree[5] > d) { stop(paste("tree basemax", basemax, "should be >= 1 and <= d =", d, "\n")); } ## tree alpha and beta parameters p <- c(as.numeric(params$tree)) ## assign the mean function if(params$meanfn == "linear") { meanfn <- 0; if(params$col != d+1) stop(paste("col=", params$col, " should be d+1=", d+1, "with linear mean function", sep="")) } else if(params$meanfn == "constant"){ meanfn <- 1; if(params$col != 1) stop(paste("col=", params$col, " should be 1 with constant mean function", sep="")) } else { cat(paste("params$meanfn =", params$meanfn, "not valid\n")); meanfn <- 0; } p <- c(p, meanfn) ## beta linear prior model ## check the type of beta prior, and possibly augment by p0 if(params$bprior == "b0") { p <- c(p,0); } else if(params$bprior == "bmle") { p <- c(p, 1); } else if(params$bprior == "bflat") { p <- c(p, 2); } else if(params$bprior == "b0not") { p <- c(p, 3); } else if(params$bprior == "bmzt") { p <- c(p, 4); } else if(params$bprior == "bmznot") { p <- c(p, 5); } else { stop(paste("params$bprior =", params$bprior, "not valid\n")); } ## initial settings of beta linear prior mean parameters if(length(params$beta) != min(params$col, basemax+1)) { stop(paste("length of params$beta should be", min(params$col, basemax+1), "you have", length(params$beta), "\n")); } ## finally, set the params$beta p <- c(p, as.numeric(params$beta)) ## initial settings of the beta linear prior correlation parameters if(nrow(params$Wi) != length(params$beta) && ncol(params$Wi) != nrow(params$Wi)) { stop(paste("params$Wi should be", length(params$beta), "x", length(params$beta), "you have", nrow(params$Wi), "x", ncol(params$Wi), "\n")); } ## finally, set the params$Wi p <- c(p, as.numeric(params$Wi)) ## initial settings of variance parameters if(length(params$s2tau2) != 2) { stop(paste("length of params$s2tau2 should be 2 you have", length(params$s2tau2), "\n")); } p <- c(p, as.numeric(params$s2tau2)) ## sigma^2 prior parameters if(length(params$s2.p) != 2) { stop(paste("length of params$s2.p should be 2 you have", length(params$s2.p), "\n")); } p <- c(p, as.numeric(params$s2.p)) ## hierarchical prior parameters for sigma^2 (exponentials) or "fixed" if(length(params$s2.lam) != 2 && params$s2.lam[1] != "fixed") { stop(paste("length of params$s2.lam should be 2 or fixed, you have", params$s2.lam, "\n")); } if(params$s2.lam[1] == "fixed") p <- c(p, rep(-1, 2)) else p <- c(p, as.numeric(params$s2.lam)) ## tau^2 prior parameters if(length(params$tau2.p) != 2) { stop(paste("length of params$tau2.p should be 2 you have", length(params$tau2.p),"\n")); } p <- c(p, as.numeric(params$tau2.p)) ## hierarchical prior parameters for tau^2 (exponentials) or "fixed" if(length(params$tau2.lam) != 2 && params$tau2.lam[1] != "fixed") { stop(paste("length of params$s2.lam should be 2 or fixed, you have", params$tau2.lam, "\n")); } if(params$tau2.lam[1] == "fixed") p <- c(p, rep(-1, 2)) else p <- c(p, as.numeric(params$tau2.lam)) ## correllation model if(params$corr == "exp") { p <- c(p, 0); } else if(params$corr == "expsep") { p <- c(p, 1); } else if(params$corr == "matern") { p <- c(p, 2); } else if(params$corr == "mrexpsep") { p <- c(p,3) } else if(params$corr == "sim") { p <- c(p,4) } else if(params$corr == "twovar") { p <- c(p,5) } else { stop(paste("params$corr =", params$corr, "not valid\n")); } ## initial settings of variance parameters if(length(params$gd) != 2) { stop(paste("length of params$gd should be 2 you have", length(params$gd), "\n")); } p <- c(p, as.numeric(params$gd)) ## mixture of gamma (initial) prior parameters for nug if(length(params$nug.p) == 1 && params$nug.p[1] == 0) params$nug.p <- rep(0,4) if(length(params$nug.p) != 4) { stop(paste("length of params$nug.p should be 4 you have", length(params$nug.p),"\n")); } if(params$nug.p[1] == 0) params$nug.p[2] <- params$gd[1] p <- c(p, as.numeric(params$nug.p)) ## hierarchical prior params for nugget g (exponentials) or "fixed" if(length(params$nug.lam) != 4 && params$nug.lam[1] != "fixed") { stop(paste("length of params$nug.lam should be 4 or fixed, you have", params$nug.lam, "\n")); } if(params$nug.lam[1] == "fixed") p <- c(p, rep(-1, 4)) else p <- c(p, as.numeric(params$nug.lam)) ## gamma theta1 theta2 LLM prior params if(length(params$gamma) != 3) { stop(paste("length of params$gamma should be 3, you have", length(params$gamma),"\n")); } if(params$gamma[1] > 0 && params$corr == "sim") stop("cannot have sim corr with LLM") if(!prod(params$gamma[2:3] > 0)) stop("all params$gamma[2:3] must be positive\n") if(sum(params$gamma[2:3]) >= 1.0) stop("sum(gamma[2:3]) > 1 not allowed\n") p <- c(p, as.numeric(params$gamma)) ## mixture of gamma (initial) prior parameters for range parameter d ## if(length(params$d.p) == 1 && params$d.p[1] == 0) params$d.p <- rep(0,4) if(length(params$d.p) != 8 && params$corr == "mrexpsep") { stop(paste("length of params$d.p should be 8 you have", length(params$d.p),"\n")); } else if( length(params$d.p) != 4 && params$corr != "mrexpsep" ) { stop(paste("length of params$d.p should be 4 you have", length(params$d.p),"\n")); } if(params$d.p[1] == 0) params$d.p[2] <- params$gd[2] if(length(params$d.p) == 8 && params$d.p[5] == 0) params$d.p[6] <- params$gd[2] ## finally, set the params$d.p p <- c(p, as.numeric(params$d.p)) ## delta.p -- only do this if we are using mrexpsep if(length(params$delta.p) != 4 && params$corr == "mrexpsep") { stop(paste("length of params$delta.p should be 4 you have", length(params$delta.p),"\n")); } if(params$corr == "mrexpsep") p<- c(p, as.numeric(params$delta.p)) ## nugf.p -- only do this if we are using mrexpsep if(length(params$nugf.p) != 4 && params$corr == "mrexpsep") { stop(paste("length of params$delta.p should be 4 you have", length(params$nug.p),"\n")); } if(params$corr == "mrexpsep") p<- c(p, as.numeric(params$nugf.p)) ## hierarchical prior params for range d (exponentials) or "fixed" if(length(params$d.lam) != 4 && params$d.lam[1] != "fixed") { stop(paste("length of params$d.lam should be 4 or fixed, you have", length(params$d.lam),"\n")); } if(params$d.lam[1] == "fixed") p <- c(p, rep(-1, 4)) else p <- c(p, as.numeric(params$d.lam)) ## add sd for proposals for sim-d parameters if(params$corr == "sim") { if(nrow(params$dp.sim) != basemax || ncol(params$dp.sim) != basemax) stop("dp.sim should be ", basemax, "x", basemax, "\n"); p <- c(p,as.numeric(params$dp.sim)) } ## nu smoothness parameter for Matern correlation function if(params$corr == "matern") { if(params$nu < 0) stop(paste("nu should be greater than zero, you have", params$nu, "\n")) } p <- c(p, as.numeric(params$nu)) ## return the constructed double-vector of parameters for C return(p) } tgp/R/tgp.cleanup.R0000644000176200001440000001141413531032535013611 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## tgp.cleanup ## ## gets called when the C-side is aborted by the R-side and enables ## the R-side to clean up the memory still allocaed to the C-side, ## as well as whatever files were left open on the C-side "tgp.cleanup" <- function(message="INTERRUPT", verb, rmfiles=TRUE) { .C("tgp_cleanup", PACKAGE = "tgp") ## remove the trace (and other) files? if(rmfiles) { if(file.exists(paste("./", "best_parts_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed best_parts_1.out\n", sep="")) unlink("best_parts_1.out") } if(file.exists(paste("./", "tree_m0_posts.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed tree_m0_posts.out\n", sep="")) unlink("tree_m0_posts.out") } if(file.exists(paste("./", "trace_parts_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_parts_1.out\n", sep="")) unlink("trace_parts_1.out") } if(file.exists(paste("./", "trace_post_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_post_1.out\n", sep="")) unlink("trace_post_1.out") } if(file.exists(paste("./", "trace_wlambda_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_wlambda_1.out\n", sep="")) unlink("trace_wlambda_1.out") } if(file.exists(paste("./", "trace_hier_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_hier_1.out\n", sep="")) unlink("trace_hier_1.out") } if(file.exists(paste("./", "trace_linarea_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_linarea_1.out\n", sep="")) unlink("trace_linarea_1.out") } if(file.exists(paste("./", "trace_XX_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_XX_1.out\n", sep="")) unlink("trace_XX_1.out") } if(file.exists(paste("./", "trace_Zp_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_Zp_1.out\n", sep="")) unlink("trace_Zp_1.out") } if(file.exists(paste("./", "trace_Zpkm_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_Zpkm_1.out\n", sep="")) unlink("trace_Zpkm_1.out") } if(file.exists(paste("./", "trace_Zpks2_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_Zpks2_1.out\n", sep="")) unlink("trace_Zpks2_1.out") } if(file.exists(paste("./", "trace_ZZ_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_ZZ_1.out\n", sep="")) unlink("trace_ZZ_1.out") } if(file.exists(paste("./", "trace_ZZkm_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_ZZkm_1.out\n", sep="")) unlink("trace_ZZkm_1.out") } if(file.exists(paste("./", "trace_ZZks2_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_ZZks2_1.out\n", sep="")) unlink("trace_ZZks2_1.out") } if(file.exists(paste("./", "trace_improv_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_improv_1.out\n", sep="")) unlink("trace_improv_1.out") } if(file.exists(paste("./", "trace_Ds2x_1.out", sep=""))) { if(verb >= 1) cat(paste(message, ": removed trace_Ds2x_1.out\n", sep="")) unlink("trace_Ds2x_1.out") } ## get all of the names of the tree files tree.files <- list.files(pattern="tree_m0_[0-9]+.out") ## for each tree file if(length(tree.files > 0)) { for(i in 1:length(tree.files)) { if(verb >= 1) cat(paste(message, ": removed ", tree.files[i], "\n", sep="")) if(rmfiles) unlink(tree.files[i]) } } } if(verb >= 1 && message == "INTERRUPT") cat("\n") } tgp/R/exp2d.R0000644000176200001440000001112713531032535012414 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## for R CMD CHECK if(getRversion() >= "2.15.1") utils::globalVariables("exp2d", package="tgp") ## exp2d.Z: ## ## sample from he 2-d exponential data at locations X with ## normal mean-zero random deviates with sd specified "exp2d.Z" <- function(X, sd=0.001) { if(is.null(X)) return(NULL); if(is.null(ncol(X))) X <- matrix(X, ncol=length(X)) ## check the number of columns if(ncol(X) != 2) stop(paste("X should be a matrix (or data frame) with 2 columns, you have", ncol(X))) ## calculate the Z data Ztrue <- X[,1] * exp(- X[,1]^2 - X[,2]^2) ## add randomness for random sample Z <- Ztrue + rnorm(nrow(X),mean=0,sd=sd) ## return a data frame object return(data.frame(Z=Z,Ztrue=Ztrue)) } ## exp2d.rand: ## ## samplig from the 2-d exponential data using the data file ## or a d-optimal (and/or) LH design and random evaluations from ## the exp2d.Z function. n1 samples are taken from the interesting ## region, and n2 from outside. "exp2d.rand" <- function(n1=50, n2=30, lh=NULL, dopt=1) { ## check the sanity of the inputs if(n1 < 0 || n2 < 0) { stop("n1 and n2 must be >= 0") } ## use Latin Hybpercube sampling if(!is.null(lh)) { ## start with the interesting region Xcand <- lhs(n1*dopt, rbind(c(-2,2), c(-2,2))) if(dopt > 2) { X <- dopt.gp(n1, NULL, Xcand)$XX } else { X <- Xcand } ## check if n2 is a 1-vector or a 3-vector if(length(n2) == 1) n2 <- rep(ceiling(n2/3), 3) else if(length(n2 != 3)) stop(paste("length of n2 should be 1 or 3, you have", length(n2))) ## check validity of dopt if(length(dopt) != 1 || dopt < 1) stop(paste("dopt should be a scalar >= 1, you have", dopt)) ## do the remaining three (uninteresting) quadtants Xcand <- lhs(n2[1]*dopt, rbind(c(2,6), c(-2,2))) Xcand <- rbind(Xcand, lhs(n2[2]*dopt, rbind(c(2,6), c(2,6)))) Xcand <- rbind(Xcand, lhs(n2[3]*dopt, rbind(c(-2,2), c(2,6)))) ## see if we need d-optimal subsample if(dopt > 2) { X <- rbind(X, dopt.gp(sum(n2), NULL, Xcand)$XX) } else { X <- rbind(X, Xcand) } ## calculate the Z data Zdata <- exp2d.Z(X); Ztrue <- Zdata$Ztrue; Z <- Zdata$Z ## now get the size of the XX vector (for each quadtant) if(length(lh) == 1) lh <- rep(ceiling(lh/4), 4) else if(length(lh) != 4) stop(paste("length of lh should be 0 (for grid), 1 or 4, you have", length(lh))) ## fill the XX vector XX <- lhs(lh[1]*dopt, rbind(c(-2,2), c(-2,2))) XX <- rbind(XX, lhs(lh[2]*dopt, rbind(c(2,6), c(-2,2)))) XX <- rbind(XX, lhs(lh[3]*dopt, rbind(c(2,6), c(2,6)))) XX <- rbind(XX, lhs(lh[4]*dopt, rbind(c(-2,2), c(2,6)))) ## see if we need d-optimal subsample if(length(X) > 0 && dopt > 2) { XX <- dopt.gp(sum(lh), X, XX)$XX } ## calculate the ZZ data ZZdata <- exp2d.Z(XX); ZZtrue <- ZZdata$Ztrue; ZZ <- Zdata$Z } else { ## make sure we have enough data to fulfill the request if(n1 + n2 >= 441) { stop("n1 + n2 must be <= 441") } ## dopt = TRUE doesn't make sense here if(dopt != 1) { warning("argument dopt != 1 only makes sens when !is.null(lh)") } ## load the data data(exp2d, envir=environment()); n <- dim(exp2d)[1] ## get the X columns si <- (1:n)[1==apply(exp2d[,1:2] <= 2, 1, prod)] s <- c(sample(si, size=n1, replace=FALSE), sample(setdiff(1:n, si), n2, replace=FALSE)) X <- as.matrix(exp2d[s,1:2]); ## get the XX predictive columns ss <- setdiff(1:n, s) XX <- exp2d[ss, 1:2]; ## read the Z response columns Z <- as.vector(exp2d[s,3]); Ztrue <- as.vector(exp2d[s,4]); ## read the ZZ response columns ZZ <- as.vector(exp2d[ss,3]); ZZtrue <- as.vector(exp2d[ss,4]); } return(list(X=X, Z=Z, Ztrue=Ztrue, XX=XX, ZZ=ZZ, ZZtrue=ZZtrue)) } tgp/R/optim.tgp.R0000644000176200001440000001301413531032535013310 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## optim.ptgpf: ## ## find the minima of the MAP predictive (kriging) surface ## encoded in the tgp object, starting at the specified spot ## restrected to the provided rectangle with the specified ## method -- eventually we should be calclating and using GP ## derivative information optim.ptgpf <- function(start, rect, tgp.obj, method=c("L-BFGS-B", "Nelder-Mead", "BFGS", "CG", "SANN", "optimize")) { ## check the method argument method <- match.arg(method) ## ptgpf: ## ## predict at x for the MAP tgp object, to be used by optim ## for finding the minimum of the MAP kriging surface ptgpf <- function(x, tgp.obj, rect=NULL) { ## only need to check rectangle when 2-d or more if(!is.null(rect)) for(i in nrow(rect)) if(x[i] < rect[i,1] || x[i] > rect[i,2]) return(Inf) ## necessary b/c check.matrix doesn't know correct ncol if(!is.null(rect)) x <- matrix(x, ncol=nrow(rect)) ## run predict out <- predict(tgp.obj, XX=x, pred.n=FALSE) return(as.vector(out$ZZ.km)) } ## optimize is for 1-d data only if(method == "optimize") { if(nrow(rect) != 1) ## check if optimize method is appropriate stop("method=\"optimize\" only valid for 1-d functions") opt <- optimize(ptgpf, interval=rect[1,], tgp.obj=tgp.obj) return(list(par=opt$minimum, value=opt$objective, convergence=1)) } ## otherwise use optim in some way if(method == "L-BFGS-B") { ## use the boundary informatoin in rect opt <- optim(par=start, ptgpf, method=method, tgp.obj=tgp.obj, rect=rect, lower=rect[,1], upper=rect[,2]) } else { ## otheriwise, apply a method without boundaries opt <- optim(par=start, ptgpf, method=method, tgp.obj=tgp.obj, rect=rect) } ## return return(opt) } ## tgp.cands: ## ## create NN candidate locations (XX) either via Latin Hypercube ## sample (LHS), or sequential treed D-optimal design (based on an ## initial LHS tgp.cands <- function(tgp.obj, NN, cands=c("lhs", "tdopt"), rect, X, verb=0) { ## check the cands argument cands <- match.arg(cands) ## return a latin hypercibe sample if(cands == "lhs") return(lhs(NN, rect)) ## return a sequential treed D-optimal sample from initial LHS cands Xcand <- lhs(10*NN, rect) if(is.null(tgp.obj)) XX <- dopt.gp(NN, X=X, Xcand, verb=verb)$XX else XX <- tgp.design(NN, Xcand, tgp.obj, verb=verb) XX <- matrix(XX, ncol=ncol(X)) return(XX) } ## optim.tgp: ## execute one step in a search for the global optimum (minimum) of a ## noisy function (f) bounded in rect with starting (X,Z) data provided: ## fit a tgp model and predict creating NN+{1,2} candidates and ## select the one (or two) which give have the highest expected improv ## statistic. NN of the candidates come from cands (lhs or tdopt), ## plus one which is the location of the minima found (e.g.,) via calling ## optim (with particular method) on the MAP btgpm predictive surface ## (passed in with prev). When as != "none" an additional candidate ## is also selected, which has the highest expected alc or alm statistic ## The new X (which may be 1-3 rows) are returned optim.step.tgp <- function(f, rect, model=btgp, prev=NULL, X=NULL, Z=NULL, NN=20*length(rect), improv=c(1,5), cands=c("lhs", "tdopt"), method=c("L-BFGS-B", "Nelder-Mead", "BFGS", "CG", "SANN", "optimize"), ...) { ## lhs should verify that the rect makes sense rect <- matrix(rect, ncol=2) ## XX a predictive grid XX <- tgp.cands(prev$obj, NN, cands, rect, X) ## add optim results in as a predictive location XX <- rbind(XX, as.numeric(prev$progress[1,1:nrow(rect)])) Xboth <- rbind(X,XX) ## fit a tgp model out <- model(X=X, Z=Z, XX=XX, improv=improv, ...) ## find the predicted minimum m <- which.min(c(out$Zp.mean, out$ZZ.mean)) Xm <- Xboth[m,] ## find the optimum with kriging, and record in opt opt <- optim.ptgpf(Xm, rect, out, method) opt <- data.frame(matrix(c(opt$par, opt$value), nrow=1)) names(opt) <- c(paste("x", 1:nrow(rect), sep=""), "z") ## X & from tgp-improv ir <- out$improv[,2] Ximprov <- matrix(XX[ir <= improv[2],], nrow=sum(ir <= improv[2])) ## assemble the info about the current minimum, and return as <- data.frame(improv=max(out$improv[,1])) r <- list(X=Ximprov, progress=cbind(opt, as), obj=out) return(r) } tgp/R/lhs.R0000644000176200001440000000554213531032535012164 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## lhs: ## ## generate a Latin Hypercube Sample of size n within the rectangle ## provided. The default "prior" for the sample is uniform, but the ## shape and mode arguments can be used to describe a beta distribution ## in each dimension. The actual sample is generated C-side "lhs" <- function(n, rect, shape=NULL, mode=NULL) { ## sanity checks if(length(n) != 1) stop(paste("length(n) should be 1, you have", length(n))) if(n < 0) stop(paste("n should be positive, you have", n)) if(n == 0) return(NULL) ## get and check the rectangle dimensions if(is.null(dim(rect))) { ncol <- length(rect); d <- 1 } else { ncol <- ncol(rect); d <- dim(rect)[1] } if(ncol != 2) stop("ncol(rect) must be 2") ## check the shape argument should be positive and of length if(!is.null(shape) && length(shape) != d && all(shape > 0)) stop(paste("For beta sampling, length(shape) should be ", d, ", you have ", length(shape), ", and all positive", sep="")) if(is.null(shape)) shape <- -1 ## check the mode argument is positive and of length 1 if(!is.null(mode) && length(mode) != d && all(mode > 0)) stop(paste("To specify sampling modes, length(mode) should be ", d, ", you have ", length(mode), ", and all positive", sep="")) if(is.null(mode)) mode <- -1 ## choose a random state for the C code state <- sample(seq(0,999), 3) ## run the C code ll <- .C("lh_sample", state = as.integer(state), n = as.integer(n), d = as.integer(d), rect = as.double(rect), # no need to transpose shape = as.double(shape), mode = as.double(mode), s = double(n*d), PACKAGE="tgp" ) ## just return the samples return(t(matrix(ll$s, nrow=d))) } tgp/R/btgp.R0000644000176200001440000001514713531032535012334 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## btgp: ## ## tgp implementation of the Bayesian treed Gaussian process model "btgp" <- function(X, Z, XX=NULL, meanfn="linear", bprior="bflat", corr="expsep", tree=c(0.5,2), BTE=c(2000,7000,2), R=1, m0r1=TRUE, linburn=FALSE, itemps=NULL, pred.n=TRUE, krige=TRUE, zcov=FALSE, Ds2x=FALSE, improv=FALSE, sens.p=NULL, nu=1.5, trace=FALSE, verb=1, ...) { n <- nrow(X) if(is.null(n)) { n <- length(X); X <- matrix(X, nrow=n); d <- 1 } else { d <- ncol(X) } params <- tgp.default.params(d, meanfn=meanfn, corr=corr, ...) params$bprior <- bprior params$tree[1:length(tree)] <- tree params$gamma <- c(0,0.2,0.7) # no llm if(corr == "matern") params$nu<-nu if(linburn && corr == "sim") stop("cannot do linburn for SIM model") return(tgp(X,Z,XX,BTE,R,m0r1,linburn,params,itemps,pred.n,krige,zcov, Ds2x,improv,sens.p,trace,verb)) } ## bcart: ## ## tgp implementation of the Bayesian CART model of Chipman et al "bcart" <- function(X, Z, XX=NULL, bprior="bflat", tree=c(0.5,2), BTE=c(2000,7000,2), R=1, m0r1=TRUE, itemps=NULL, pred.n=TRUE, krige=TRUE, zcov=FALSE, Ds2x=FALSE, improv=FALSE, sens.p=NULL, trace=FALSE, verb=1, ...) { return(btlm(X,Z,XX,meanfn="constant", bprior,tree,BTE,R,m0r1,itemps,pred.n,krige, zcov,Ds2x,improv,sens.p,trace,verb,...)) } ## bgp: ## ## tgp implementation of a Bayesian Gaussian process model "bgp" <- function(X, Z, XX=NULL, meanfn="linear", bprior="bflat", corr="expsep", BTE=c(1000,4000,2), R=1, m0r1=TRUE, itemps=NULL, pred.n=TRUE, krige=TRUE, zcov=FALSE, Ds2x=FALSE, improv=FALSE, sens.p=NULL, nu=1.5, trace=FALSE, verb=1, ... ) { n <- dim(X)[1] if(is.null(n)) { n <- length(X); X <- matrix(X, nrow=n); d <- 1 } else { d <- dim(X)[2] } params <- tgp.default.params(d, meanfn=meanfn, corr=corr,...) params$bprior <- bprior params$tree[1:2] <- c(0,0) # no tree params$gamma <- c(0,0.2,0.7) # no llm if(corr == "matern") params$nu <- nu return(tgp(X,Z,XX,BTE,R,m0r1,FALSE,params,itemps,pred.n,krige,zcov,Ds2x, improv,sens.p,trace,verb)) } ## bgpllm: ## ## tgp implementation of a Bayesian Gaussian Process with ## jumps to the Limiting Linear Model "bgpllm" <- function(X, Z, XX=NULL, meanfn="linear", bprior="bflat", corr="expsep", gamma=c(10,0.2,0.7), BTE=c(1000,4000,2), R=1, m0r1=TRUE, itemps=NULL, pred.n=TRUE, krige=TRUE, zcov=FALSE, Ds2x=FALSE, improv=FALSE, sens.p=NULL, nu=1.5, trace=FALSE, verb=1, ...) { n <- dim(X)[1] if(is.null(n)) { n <- length(X); X <- matrix(X, nrow=n); d <- 1 } else { d <- dim(X)[2] } params <- tgp.default.params(d, meanfn=meanfn, corr=corr, ...) params$bprior <- bprior params$gamma <- gamma params$tree[1:2] <- c(0,0) # no tree if(corr == "matern"){ params$nu <- nu; } if(corr == "mrexpsep"){ stop("Sorry, the LLM is not yet available for corr=\"mrexpsep\"")} if(corr == "sim"){ stop("Sorry, the LLM is not available for corr=\"sim\"")} return(tgp(X,Z,XX,BTE,R,m0r1,FALSE,params,itemps,pred.n,krige,zcov,Ds2x, improv,sens.p,trace, verb)) } ## blm: ## ## tgp implementation of a Bayesian hierarchical Linear Model "blm" <- function(X, Z, XX=NULL, meanfn="linear", bprior="bflat", BTE=c(1000,4000,3), R=1, m0r1=TRUE, itemps=NULL, pred.n=TRUE, krige=TRUE, zcov=FALSE, Ds2x=FALSE, improv=FALSE, sens.p=NULL, trace=FALSE, verb=1, ...) { n <- dim(X)[1] if(is.null(n)) { n <- length(X); X <- matrix(X, nrow=n); d <- 1 } else { d <- dim(X)[2] } params <- tgp.default.params(d, meanfn=meanfn, ...) params$bprior <- bprior params$tree[1:2] <- c(0,0) # no tree params$gamma <- c(-1,0.2,0.7) # force llm params$nug.p <- 0 ## force a fixed nugget params$gd[1] <- 0 ## fix the nugget at zero return(tgp(X,Z,XX,BTE,R,m0r1,FALSE,params,itemps,pred.n, krige,zcov,Ds2x,improv,sens.p,trace,verb)) } ## btgpllm: ## ## tgp implementation of a Bayesian treed Gaussian Process model ## with jumps to the Limiting Linear Model "btgpllm" <- function(X, Z, XX=NULL, meanfn="linear", bprior="bflat", corr="expsep", tree=c(0.5,2), gamma=c(10,0.2,0.7), BTE=c(2000,7000,2), R=1, m0r1=TRUE, linburn=FALSE, itemps=NULL, pred.n=TRUE, krige=TRUE, zcov=FALSE, Ds2x=FALSE, improv=FALSE, sens.p=NULL, nu=1.5, trace=FALSE, verb=1, ...) { n <- nrow(X) if(is.null(n)) { n <- length(X); X <- matrix(X, nrow=n); d <- 1 } else { d <- ncol(X) } params <- tgp.default.params(d, meanfn=meanfn, corr=corr,...) params$bprior <- bprior params$tree[1:length(tree)] <- tree params$gamma <- gamma if(corr == "matern"){ params$nu <- nu } if(corr == "mrexpsep"){ stop("Sorry, the LLM is not yet available for corr=\"mrexpsep\"")} if(corr == "sim"){ stop("Sorry, the LLM is not available for corr=\"sim\"")} return(tgp(X,Z,XX,BTE,R,m0r1,linburn,params,itemps,pred.n,krige,zcov, Ds2x,improv,sens.p,trace,verb)) } "btlm" <- function(X, Z, XX=NULL, meanfn="linear", bprior="bflat", tree=c(0.5,2), BTE=c(2000,7000,2), R=1, m0r1=TRUE, itemps=NULL, pred.n=TRUE, krige=TRUE, zcov=FALSE, Ds2x=FALSE, improv=FALSE, sens.p=NULL, trace=FALSE, verb=1, ...) { n <- nrow(X) if(is.null(n)) { n <- length(X); X <- matrix(X, nrow=n); d <- 1 } else { d <- ncol(X) } params <- tgp.default.params(d, meanfn=meanfn, ...) params$bprior <- bprior params$tree[1:length(tree)] <- tree params$gamma <- c(-1,0.2,0.7) # no llm params$nug.p <- 0 ## force a nugget params$gd[1] <- 0 ## fix the nugget at zero return(tgp(X,Z,XX,BTE,R,m0r1,FALSE,params,itemps,pred.n,krige,zcov, Ds2x,improv,sens.p, trace,verb)) } tgp/R/tgp.choose.R0000644000176200001440000000754113531032535013450 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## tgp.choose.as: ## ## pick which type of "errors" to be returned, either for ## plotting purposes or for adaprive sampling purposes "tgp.choose.as" <- function(out, as) { ## choose AS stats to plot ## default quantile diffs (as=NULL), or predictive variance (as="s2") if(is.null(as) || as == "s2" || as == "ks2") { ## use fulle data, XX & X X <- out$XX ## choose quantile diffs or s2 if(is.null(as)) { criteria <- c(out$Zp.q, out$ZZ.q) name <- "quantile diff (error)" if(!is.null(out$Zp.q)) X <- rbind(out$X, X) } else if(as == "ks2") { criteria = c(out$Zp.ks2, out$ZZ.ks2) name <- "kriging var" if(!is.null(out$Zp.ks2)) X <- rbind(out$X, X) } else { if(is.matrix(out$Zp.s2)) criteria <- c(diag(out$Zp.s2), diag(out$ZZ.s2)) else criteria <- c(out$Zp.s2, out$ZZ.s2) name <- "pred var" if(!is.null(out$Zp.s2)) X <- rbind(out$X, X) } } else { ## only use predictive data X <- out$XX ## default choice is ALM stats (quantile diffs) criteria <- out$ZZ.q name <- "ALM stats" ## choose ALC or EGO stats if(as == "alc") { if(is.null(out$Ds2x)) cat("NOTICE: out$Ds2x is NULL, using ALM\n") else { criteria <- out$Ds2x; name <- "ALC stats" } } else if(as == "improv") { if(is.null(out$improv)) cat("NOTICE: out$improv is NULL, using ALM\n") else { criteria <- out$improv[,1]; name <- paste("Improv stats (g=", out$g[1], ")", sep="") } } else if(as != "alm") warning(paste("as criteria \"", as, "\" not recognized; defaulting to \"alm\"", sep="")) } ## there might be nothing to plot if(is.null(criteria)) stop("no predictive data, so nothing to plot") ## return return(list(X=X, criteria=criteria, name=name)) } ## tgp.choose.center: ## ## pick which type of center (mean, median, kriging mean, etc) ## to be returned, mostly for plotting purposes "tgp.choose.center" <- function(out, center) { X <- out$XX ## check center description if(center != "mean" && center != "med" && center != "km") { warning(paste("center = \"", center, "\" invalid, defaulting to \"mean\"\n", sep="")) center <- "mean" } ## choose center as median or mean if(center == "med") { name <- "median"; Z <- c(out$Zp.med, out$ZZ.med) if(!is.null(out$Zp.med)) X <- rbind(out$X, X) } else if(center == "km") { name <- "kriging mean"; Z <- c(out$Zp.km, out$ZZ.km) if(!is.null(out$Zp.km)) X <- rbind(out$X, X) } else { name <- "mean"; Z <- c(out$Zp.mean, out$ZZ.mean) if(!is.null(out$Zp.mean)) X <- rbind(out$X, X) } ## there might be nothing to plot if(is.null(Z)) stop("no predictive data, so nothing to plot") ## return return(list(X=X, Z=Z, name=name)) } tgp/R/tgp.plot.slice.R0000644000176200001440000002451213531032535014241 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## tgp.plot.slice: ## ## plot the 2-d slice of the tgp-class object out specified by the slice ## argument, and other usual plotting arguments and specified center ## and as (error) specifications "tgp.plot.slice" <- function(out, pparts=TRUE, slice=NULL, map=NULL, as=NULL, center="mean", layout="both", main=NULL, xlab=NULL, ylab=NULL, zlab=NULL, pc="pc", gridlen=40, span=0.1, pXX=TRUE, ...) { ## choose center as median or mean (i.e., X & Z data) ## (this hasn't been tested since the addition of the tgp.choose.center() function center <- tgp.choose.center(out, center); Z.mean <- center$Z cname <- center$name; X <- center$X ## get X locations for calculating slice locs <- getlocs(X) ## will call stop() if something is wrong with the slice d <- check.slice(slice, out$d, locs) ## deal with axis labels if(is.null(xlab)) xlab <- names(out$X)[d[1]] if(is.null(ylab)) ylab <- names(out$X)[d[2]] if(is.null(zlab)) zlab <- out$response fixed <- names(out$X)[slice$x]; to <- slice$z slice.str <- paste("(", fixed, ") fixed to (", to, ")", sep="") smain <- paste(main, " ", zlab, " ", cname, ", with ", slice.str, sep="") ## for ALC and EGO plotting as <- tgp.choose.as(out, as); XX <- as$X ZZ.q <- as$criteria emain <- paste(main, " ", zlab, " ", as$name, ", with ", slice.str, sep="") ##emain <- paste(main, zlab, as$name) ## depict the slice in terms of index variables p* if(length(slice$x) > 1) { p <- seq(1,nrow(X))[apply(X[,slice$x] == slice$z, 1, prod) == 1] pp <- seq(1,nrow(XX))[apply(XX[,slice$x] == slice$z, 1, prod) == 1] pn <- seq(1,out$n)[apply(out$X[,slice$x] == slice$z, 1, prod) == 1] ppn <- seq(1,out$nn)[apply(out$XX[,slice$x] == slice$z, 1, prod) == 1] } else { ppn <- seq(1,out$nn)[(out$XX[,slice$x] == slice$z)] pn <- seq(1,out$n)[out$X[,slice$x] == slice$z] p <- seq(1,nrow(X))[X[,slice$x] == slice$z] pp <- seq(1,nrow(XX))[XX[,slice$x] == slice$z] } ## check to makes sure there is actually some data in the slice if(length(p) == 0) { print(slice) stop("no points in the specified slice\n") } ## prepare for plotting if(layout == "both") par(mfrow=c(1,2), bty="n") ## else par(mfrow=c(1,1), bty="n") Xd.1 <- X[,d[1]]; Xd.2 <- X[,d[2]] XXd.1 <- XX[,d[1]]; XXd.2 <- XX[,d[2]] if(pc == "c") { # double-image plot if(layout == "both" || layout == "surf") { slice.image(Xd.1,Xd.2,p,Z.mean,main=smain,xlab=xlab,ylab=ylab, gridlen=gridlen,span=span,...) if(pparts & !is.null(out$parts)) { tgp.plot.parts.2d(out$parts, d, slice); } if(length(pn) > 0) points(out$X[pn,d[1]], out$X[pn,d[2]], pch=20) if(pXX && length(ppn) > 0) points(out$XX[ppn,d[1]], out$XX[ppn,d[2]], pch=21) } if(layout == "both" || layout == "as") { slice.image(XXd.1,XXd.2,pp,ZZ.q,main=emain,xlab=xlab,ylab=ylab, gridlen=gridlen,span=span,...) if(pparts & !is.null(out$parts)) { tgp.plot.parts.2d(out$parts, d, slice); } if(length(pn) > 0) points(out$X[pn,d[1]], out$X[pn,d[2]], pch=20) if(pXX && length(ppn) > 0) points(out$XX[ppn,d[1]], out$XX[ppn,d[2]], pch=21) if(substr(as$name,1,1) == "I") text(out$XX[ppn,d[1]], out$XX[ppn,d[2]], labels=out$improv[ppn,2], ...) } } else if(pc == "pc") { # perspective and image plot if(layout == "both" || layout == "surf") slice.persp(Xd.1,Xd.2,p,Z.mean,main=smain,xlab=xlab,ylab=ylab,zlab=zlab, gridlen=gridlen,span=span,...) if(layout == "both" || layout == "as") { slice.image(XXd.1,XXd.2,pp,ZZ.q,main=emain,xlab=xlab,ylab=ylab, gridlen=gridlen,span=span,...) if(length(pn) > 0) points(out$X[pn,d[1]], out$X[pn,d[2]], pch=20) if(pXX && length(ppn) > 0) points(out$XX[ppn,d[1]], out$XX[ppn,d[2]], pch=21) if(pparts & !is.null(out$parts)) { tgp.plot.parts.2d(out$parts, d, slice); } if(substr(as$name,1,1) == "I") text(out$XX[,proj[1]], out$XX[,proj[2]], labels=out$improv[ppn,2], ...) } } } ## slice.contour: ## ## contour plot of the slice or projection -- not currently ## used in any tgp plotting function "slice.contour" <- function(x,y,p,z,levels=NULL,xlab="x",ylab="y",main="",xlim=NULL,ylim=NULL, ...) { g <- slice.interp(x,y,p,z,xlim,ylim) if(missing(ylim)) ylim <- range(y) if(missing(xlim)) xlim <- range(x) if(is.null(levels)) { contour(g,xlab=xlab,ylab=ylab,main=main,xlim=xlim,ylim=ylim,...) } else { contour(g,levels=levels,xlab=xlab,ylab=ylab,main=main,xlim=xlim,ylim=ylim,...) } } ## slice.image: ## ## image plot of the slice or projection -- used in pc="c" "slice.image" <- function(x,y,p,z,xlim=NULL, ylim=NULL, gridlen=c(40,40), span=0.05, col=terrain.colors(128), ...) { g <- slice.interp(x,y,p,z,xlim,ylim,gridlen=gridlen,span=span) if(missing(ylim)) ylim <- range(y) if(missing(xlim)) xlim <- range(x) image(g, col=col,xlim=xlim,ylim=ylim,...) } ## slice.image.contour: ## ## double image and contour plot of the slice or projection -- not ## currently used in any tgp plotting function "slice.image.contour" <- function(x,y,p,z, xlim=NULL, ylim=NULL, gridlen=c(40,40), span=0.05, ...) { g <- slice.interp(x,y,p,z,xlim,ylim,gridlen=gridlen,span=span) if(missing(ylim)) ylim <- range(y) if(missing(xlim)) xlim <- range(x) image(g, col=terrain.colors(128),xlim=xlim,ylim=ylim,...) contour(g, add=TRUE,...) } ## slice.persp: ## ## perspective plot of the slice or projections -- used when ## pc="p" "slice.persp" <- function(x,y,p,z,theta=-30,phi=20,xlim=NULL, ylim=NULL, gridlen=c(40,40), span=0.05, ...) { g <- slice.interp(x,y,p,z,xlim,ylim,gridlen=gridlen,span=span) if(missing(ylim)) ylim <- range(y) if(missing(xlim)) xlim <- range(x) persp(g, theta=theta, phi=phi, axes=TRUE, box=TRUE, xlim=xlim, ylim=ylim, ...) } ## slice.interp: ## ## interpolate the x, y, z data specified onto a regular 2-d ## grid, perhaps making a slice specified by the p-vector indicating ## which entries of x, y, and z should be used. This is necessary ## in order to plot using persp, contour, image, etc. ## loess is used for interpolation "slice.interp" <- function(x, y, p=NULL, z, xlim=NULL, ylim=NULL, gridlen=c(40,40), span=0.05, ...) { ## check gridlen if(length(gridlen) != 2) stop("length(gridlen) should be 2") # check and/or default the projection parameter p if(is.null(p)) p <- 1:length(x) else p <- as.integer(p) if(any(p <= 0) || any(p > length(x))) stop("invalid p (third arg: value unknown)") # make projection x <- x[p]; y <- y[p]; z <- z[p] if(!is.null(xlim)) { # crop (zoom in) x p <- x>=xlim[1] & x<=xlim[2] x <- x[p]; y <- y[p]; z <- z[p] } if(!is.null(ylim)) { # crop (zoom in) y p <- y>=ylim[1] & y<=ylim[2] x <- x[p]; y <- y[p]; z <- z[p] } # use loess return(interp.loess(x,y,z, duplicate="mean", gridlen=gridlen, span=span, ...)) } ## check.slice: ## ## checks to make sure the slice argument to plot.tgp is of a ## format that make sens for the input dimension and data locations ## provided from the getlocs function "check.slice" <- function(slice, dim, locs) { ## check to make sure the slice requested is valid numfix <- dim-2; if(length(slice$x) != numfix && length(slice$x) == length(slice$z)) { print(locs) stop(paste("must fix", numfix, "variables, each at one of the above locations\n")) } ## check to make sure enough dimensions have been fixed d <- setdiff(seq(1:dim), slice$x) if(length(d) != 2) stop(paste(length(d)-2, "more dimensions need to be fixed\n", sep="")) ## will stop if the slice is not ok, ## otherwise returns the remaining (unfixed) dimensions return(d) } ## getlocs: ## ## get the grid of locations for the data -- these are the locations ## used in the locs argument of check.slice "getlocs" <- function(X) { db <- dim(X); Xsort <- apply(X, 2, sort) unique <- (Xsort[1:(db[1]-1),] != Xsort[2:db[1],]) locs.list <- list() for(i in 1:db[2]) { locs <- c(Xsort[unique[,i],i], Xsort[db[1],i]) count <- rep(0,length(locs)) for(j in 1:length(locs)) { count[j] = sum(Xsort[,i] == locs[j]) } ll.i <- list(locs=locs,count=count) locs.list[[i]] <- ll.i } return(locs.list) } ## interp.loess: ## ## interolate x,y,z onto a regular 2-d grid of size gridlen. ## this function is meant to mimic the interp function in the ## akima library which can be buggy. It luse a loess smoother ## instead, with the span provided "interp.loess" <- function(x, y, z, gridlen = c(40,40), span=0.1, ...) { ## check the gridlen argument if(length(gridlen) == 1) gridlen <- rep(gridlen, 2) if(length(gridlen) != 2) stop("length(gridlen) should be 2") if(length(x) != length(y) && length(y) != length(z)) stop("length of x, y and z must be equal") if(length(x) < 30 && span < 0.5) { warning("with less than 30 points, suggest span >> 0.5 or use akima", immediate. = TRUE) cat(paste("currently trying span =", span, "for", length(x), "points\n")) } xo <- seq(min(x), max(x), length=gridlen[1]) yo <- seq(min(y), max(y), length=gridlen[2]) xyz.loess <- suppressWarnings(loess(z ~ x + y, data.frame(x=x, y=y), span=span, ...)) g <- expand.grid(x=xo, y=yo) g.pred <- predict(xyz.loess, g) return(list(x=xo, y=yo, z=matrix(g.pred, nrow=gridlen))) } tgp/R/check.matrix.R0000644000176200001440000000655413531032535013762 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## check.matrix: ## ## check/enfore that the X matrix has the proper dimensions ## (and the same number or rows as length(Z)) removing invalid rows ## (of Z too), i.e., NA, NaN, Inf "check.matrix" <- function(X, Z=NULL) { ## format X if(is.null(X)) return(NULL) n <- nrow(X) if(is.null(n)) { n <- length(X); X <- matrix(X, nrow=n) } X <- as.matrix(X) ## if a Z is provided to go along with X if(!is.null(Z)) { ## format Z ## Z <- as.vector(matrix(Z, ncol=1)[,1]) Z <- as.vector(as.matrix(Z)) if(length(Z) != n) stop("mismatched row dimension in X and Z") ## calculate locations of NAs NaNs and Infs in Z nna <- (1:n)[!is.na(Z) == 1] nnan <- (1:n)[!is.nan(Z) == 1] ninf <- (1:n)[!is.infinite(Z) == 1] if(length(nna) < n) warning(paste(n-length(nna), "NAs removed from input vector")) if(length(nnan) < n) warning(paste(n-length(nnan), "NaNs removed from input vector")) if(length(ninf) < n) warning(paste(n-length(ninf), "Infs removed from input vector")) neitherZ <- intersect(nna, intersect(nnan, ninf)) } else neitherZ <- (1:n) ## calculate row locations of NAs NaNs and Infs in X nna <- (1:n)[apply(!is.na(X), 1, prod) == 1] nnan <- (1:n)[apply(!is.nan(X), 1, prod) == 1] ninf <- (1:n)[apply(!is.infinite(X), 1, prod) == 1] if(length(nna) < n) warning(paste(n-length(nna), "NAs removed from input matrix")) if(length(nnan) < n) warning(paste(n-length(nnan), "NaNs removed from input matrix")) if(length(ninf) < n) warning(paste(n-length(ninf), "Infs removed from input matrix")) neitherX <- intersect(nna, intersect(nnan, ninf)) ## oops, no data: if(length(neitherX) == 0) stop("no valid (non-NA NaN or Inf) data found") ## combine good X and Z rows neither <- intersect(neitherZ, neitherX) X <- matrix(X[neither,], nrow=length(neither)) Z <- Z[neither] return(list(X=X, Z=Z)) } ## famify.X ## ## change an X matrix into a data frame with the names specified ## used by tgp.postprocess to convert a matrix enforced by check.matrix ## back into the data frame it started as "framify.X" <- function(X, Xnames, d) { X <- data.frame(t(matrix(X, nrow=d))) if(is.null(Xnames)) { nms <- c(); for(i in 1:d) { nms <- c(nms, paste("x", i, sep="")) } names(X) <- nms } else { names(X) <- Xnames } return(X) } tgp/R/tgp.plot.proj.R0000644000176200001440000001244113531032535014112 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* "tgp.plot.proj" <- function(out, pparts=TRUE, proj=NULL, map=NULL, as=as, center="mean", layout=layout, main=NULL, xlab=NULL, ylab=NULL, zlab=NULL, pc="pc", gridlen=40, span=0.1, pXX=TRUE, rankmax=20,...) { ## will call stop() if something is wrong with the proj proj <- check.proj(proj) ## deal with axis labels if(is.null(xlab)) xlab <- names(out$X)[proj[1]] if(is.null(ylab)) ylab <- names(out$X)[proj[2]] if(is.null(zlab)) zlab <- out$response ## choose center as median or mean (i.e., X & Z data) center <- tgp.choose.center(out, center); Z.mean <- center$Z smain <- paste(main, zlab, center$name); X <- center$X[,proj] if(is.null(dim(X))) { nX <- length(X); dX <- 1 } else { nX <- dim(X)[1]; dX <- dim(X)[2] } p <- seq(1,nX) ## for ALC and EGO plotting as <- tgp.choose.as(out, as); XX <- as$X[,proj] ZZ.q <- as$criteria emain <- paste(main, zlab, as$name) if(is.null(dim(XX))) { nXX <- length(XX); dXX <- 1 } else { nXX <- dim(XX)[1]; dXX <- dim(XX)[2] } pp <- seq(1,nXX); # if no data then do nothing if(length(Z.mean) == 0) { cat("NOTICE: no predictive data; nothing to plot\n") return() } # prepare for plotting if(layout == "both") par(mfrow=c(1,2), bty="n") # else par(mfrow=c(1,1), bty="n") if(dX == 1) { # 1-d projections if(layout == "both" || layout == "surf") { plot(out$X[,proj], out$Z, xlab=xlab, ylab=zlab, main=smain, ...) if(pXX) points(out$XX[,proj], out$ZZ.mean, pch=20, cex=0.5, ...) Zb.q1 <- c(out$Zp.q1, out$ZZ.q1) Zb.q2 <- c(out$Zp.q2, out$ZZ.q2) r <- range(X) segments(x0=X, y0=Zb.q1, x1=X, y1=Zb.q2, col=2) # plot partitions if(pparts & !is.null(out$parts) ) { tgp.plot.parts.1d(out$parts[,proj]) } } if(layout == "both" || layout == "as") { # error/as plot plot(XX, ZZ.q, ylab=as$name, xlab=xlab, main=emain, ...) if(pparts & !is.null(out$parts) ) { tgp.plot.parts.1d(out$parts[,proj]) } } } else if(pc == "pc") { # perspective and image plots if(layout == "both" || layout == "surf") slice.persp(X[,1],X[,2],p,Z.mean,xlab=xlab,ylab=ylab,zlab=zlab,main=smain, gridlen=gridlen,span=span,...) if(layout == "both" || layout == "as") { # error/as plot slice.image(XX[,1],XX[,2],pp,ZZ.q,xlab=xlab,ylab=ylab,main=emain, gridlen=gridlen,span=span,...) if(pXX && !is.null(out$XX)) points(out$XX[,proj], pch=21, ...) if(!is.null(map)) { lines(map, col="black", ...) } points(out$X[,proj],pch=20, ...) if(pparts & !is.null(out$parts)) { tgp.plot.parts.2d(out$parts, dx=proj) } if(substr(as$name,1,1) == "I"){ ranks <- out$improv[,2] <= rankmax text(out$XX[ranks,proj[1]], out$XX[ranks,proj[2]], labels=out$improv[ranks,2], pos=3, font=2,...) } } } else if(pc == "c") { # double-image plot if(layout == "both" || layout == "surf") { slice.image(X[,1],X[,2],p,Z.mean,xlab=xlab,ylab=ylab,main=smain, gridlen=gridlen,span=span,...) if(!is.null(map)) { lines(map, col="black", ...) } points(out$X[,proj],pch=20, ...) if(pXX && !is.null(out$XX)) points(out$XX[,proj], pch=21, ...) if(pparts & !is.null(out$parts)) { tgp.plot.parts.2d(out$parts, dx=proj) } } if(layout == "both" || layout == "as") { slice.image(XX[,1],XX[,2],pp,ZZ.q,xlab=xlab,ylab=ylab,main=emain, gridlen=gridlen,span=span,...) if(!is.null(map)) { lines(map, col="black", ...) } points(out$X[,proj],pch=20, ...) if(pXX && !is.null(out$XX)) points(out$XX[,proj], pch=21, ...) if(pparts & !is.null(out$parts)) { tgp.plot.parts.2d(out$parts, dx=proj) } if(substr(as$name,1,1) == "I"){ ranks <- out$improv[,2] <= rankmax text(out$XX[ranks,proj[1]], out$XX[ranks,proj[2]], labels=out$improv[ranks,2], pos=3, font=2,...) } } } else { stop(paste(pc, "not a valid plot option\n")) } } "check.proj" <- function(proj) { if(is.null(proj)) proj <- c(1,2) if(length(proj) > 2) { stop(paste("length(proj) = ", length(proj), "should be <= 2\n")) } ## will stop if the proj is not ok, ## otherwise returns the (possibly modified) proj return(proj) } tgp/R/tgp.read.traces.R0000644000176200001440000001640713531032535014364 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## tgp.read.traces: ## ## read the traces contained in the files written by the tgp C-side, ## process them as appropriate, and then delete the trace files ## returning a tgptraces-class object "tgp.read.traces" <- function(n, nn, d, corr, verb, rmfiles=TRUE) { trace <- list() if(verb >= 1) cat("\nGathering traces\n") ## read the parameter traces for each XX location trace$XX <- tgp.read.XX.traces(nn, d, corr, verb, rmfiles) ## read trace of hierarchical parameters if(file.exists(paste("./", "trace_hier_1.out", sep=""))) { trace$hier <- read.table("trace_hier_1.out", header=TRUE) if(rmfiles) unlink("trace_hier_1.out") if(verb >= 1) cat(" hier-params done\n") } ## read trace of linear area calulations if(file.exists(paste("./", "trace_linarea_1.out", sep=""))) { trace$linarea <- read.table("trace_linarea_1.out", header=TRUE) if(rmfiles) unlink("trace_linarea_1.out") if(verb >= 1) cat(" linarea done\n") } ## read full trace of partitions if(file.exists(paste("./", "trace_parts_1.out", sep=""))) { trace$parts <- read.table("trace_parts_1.out") if(rmfiles) unlink("trace_parts_1.out") if(verb >= 1) cat(" parts done\n") } ## read the posteriors and weights as a function of height if(file.exists(paste("./", "trace_post_1.out", sep=""))) { trace$post <- read.table("trace_post_1.out", header=TRUE) if(rmfiles) unlink("trace_post_1.out") if(verb >= 1) cat(" posts done\n") } ## read the weights adjusted for ess if(file.exists(paste("./", "trace_wlambda_1.out", sep=""))) { trace$post$wlambda <- scan("trace_wlambda_1.out", quiet=TRUE) if(rmfiles) unlink("trace_wlambda_1.out") if(verb >= 1) cat(" lambda done\n") } ## predictions at data (X) locations if(file.exists(paste("./", "trace_Zp_1.out", sep=""))) { trace$preds$Zp <- read.table("trace_Zp_1.out", header=FALSE) names(trace$preds$Zp) <- paste("X", 1:n, sep="") if(rmfiles) unlink("trace_Zp_1.out") if(verb >= 1) cat(" Zp done\n") } ## kriging means at data (X) locations if(file.exists(paste("./", "trace_Zpkm_1.out", sep=""))) { trace$preds$Zp.km <- read.table("trace_Zpkm_1.out", header=FALSE) names(trace$preds$Zp.km) <- paste("X", 1:n, sep="") if(rmfiles) unlink("trace_Zpkm_1.out") if(verb >= 1) cat(" Zp.km done\n") } ## kriging vars at data (X) locations if(file.exists(paste("./", "trace_Zpks2_1.out", sep=""))) { trace$preds$Zp.ks2 <- read.table("trace_Zpks2_1.out", header=FALSE) names(trace$preds$Zp.ks2) <- paste("XX", 1:n, sep="") if(rmfiles) unlink("trace_Zpks2_1.out") if(verb >= 1) cat(" Zp.ks2 done\n") } ## predictions at XX locations if(file.exists(paste("./", "trace_ZZ_1.out", sep="")) && nn>0) { trace$preds$ZZ <- read.table("trace_ZZ_1.out", header=FALSE) names(trace$preds$ZZ) <- paste("XX", 1:nn, sep="") if(rmfiles) unlink("trace_ZZ_1.out") if(verb >= 1) cat(" ZZ done\n") } ## kriging means at XX locations if(file.exists(paste("./", "trace_ZZkm_1.out", sep="")) && nn>0) { trace$preds$ZZ.km <- read.table("trace_ZZkm_1.out", header=FALSE) names(trace$preds$ZZ.km) <- paste("XX", 1:nn, sep="") if(rmfiles) unlink("trace_ZZkm_1.out") if(verb >= 1) cat(" ZZ.km done\n") } ## kriging vars at XX locations if(file.exists(paste("./", "trace_ZZks2_1.out", sep="")) && nn>0) { trace$preds$ZZ.ks2 <- read.table("trace_ZZks2_1.out", header=FALSE) names(trace$preds$ZZ.ks2) <- paste("XX", 1:nn, sep="") if(rmfiles) unlink("trace_ZZks2_1.out") if(verb >= 1) cat(" ZZ.ks2 done\n") } ## Ds2x samples at the XX locations if(file.exists(paste("./", "trace_Ds2x_1.out", sep="")) && nn>0) { trace$preds$Ds2x <- read.table("trace_Ds2x_1.out", header=FALSE) names(trace$preds$Ds2x) <- paste("XX", 1:nn, sep="") if(rmfiles) unlink("trace_Ds2x_1.out") if(verb >= 1) cat(" Ds2x done\n") } ## improv samples at the XX locations if(file.exists(paste("./", "trace_improv_1.out", sep="")) && nn>0) { trace$preds$improv <- read.table("trace_improv_1.out", header=FALSE) names(trace$preds$improv) <- paste("XX", 1:nn, sep="") if(rmfiles) unlink("trace_improv_1.out") if(verb >= 1) cat(" improv done\n") } ## assign class tgptraces to the returned object class(trace) <- "tgptraces" return(trace) } ## tgp.read.XX.traces ## ## particular function for reading the trace_XX_1.out file ## which contains traces of all GP (Base Model) parameters ## according to each XX location -- and then removes the file. "tgp.read.XX.traces" <- function(nn, dim, corr, verb=1, rmfiles=TRUE) { ## do nothing if there is no XX trace file file <- paste("./", "trace_XX_1.out", sep="") if(! file.exists(file)) return(NULL) ## calculate and count the names to the traces nam <- names(read.table(file, nrows=0, header=TRUE)) count <- length(nam) nam <- nam[2:length(nam)] ## read the rest of the trace file tr <- t(matrix(scan(file, quiet=TRUE, skip=1), nrow=count)) if(rmfiles) unlink(file) if(nn > 0) { traces <- list() for(i in 1:nn) { ## make tr into a matrix if it has only one entry (vector) if(is.null(dim(tr))) tr <- matrix(tr, nrow=1) ## find those rows which correspond to XX[i,] o <- tr[,1] == i ## print(c(sum(o), nrow(tr))) ## progress meter, overstimate % done, because things speed up if(verb >= 1) { if(i==nn) cat(" XX 100% done \r") else cat(paste(" XX ", round(100*log2(sum(o))/log2(nrow(tr))), "% done \r", sep="")) } ## save the ones for X[i,] traces[[i]] <- data.frame(tr[o,2:count]) ## remove the XX[i,] ones from t if(i!=nn) tr <- tr[!o,] ## reorder the trace file, and get rid of first column ## they could be out of order if using pthreads ## indx <- c(traces[[i+1]][,1] + 1) ## traces[[i+1]] <- traces[[i+1]][indx,2:(ncol-1)] ## assign the names if(sum(o) == 1) traces[[i]] <- t(traces[[i]]) names(traces[[i]]) <- nam } if(verb >= 1) cat("\n") } else { if(verb >= 1) { cat(paste(" no XX ", "traces\n", sep="")) } traces <- NULL; } return(traces) } tgp/R/plot.tgp.R0000644000176200001440000001425613531032535013147 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; withx even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## plot.tgp: ## ## generic plot method for tgp-class objects -- handles sensitivity and ## multi-resolution plots through other interfaces after some pre-processing. ## Standard tgp 1-d plots are handled directly, and 2-d projections and slices ## are also handled through other interfaces after a small amount of ## pre-processing "plot.tgp" <- function(x, pparts=TRUE, proj=NULL, slice=NULL, map=NULL, as=NULL, center="mean", layout="both", main=NULL, xlab=NULL, ylab=NULL, zlab=NULL, pc="pc", gridlen=c(40,40), span=0.1, pXX=TRUE, legendloc="topright", maineff=TRUE, mrlayout="both", rankmax=20, ...) { ## check for valid layout if(layout != "both" && layout != "surf" && layout != "as" && layout != "sens") stop("layout argument must be \"both\", \"surf\", \"as\", or \"sens\""); ## check if 'as' plots can be made if(x$nn == 0 && (!is.null(as) && (as != "s2" && as != "ks2"))) { if(layout == "both") { cat("cannot make \"as\" plot since x$nn=0, default to layout = \"surf\"\n") layout <- "surf" } else if(layout == "as") stop("cannot make \"as\" plot since x$nn=0\n") } ## sensitivity plots if(layout == "sens"){ if(x$sens$par$ngrid==0){ ## make sure that a sens can be plotted cat("Cannot make sensitivity plots without sens.* matrices.\n") layout = "both" } else { ## plot the sens sens.plot(x, legendloc=legendloc, maineff=maineff, ...) return(invisible()); } } ## plots for multi-resolution tgp if(x$params$corr == "mrexpsep"){ ## the "both" method uses the mr.plot function if(mrlayout == "both"){ mr.plot(x,pparts=pparts, proj=proj, center=center, layout="both", main=main, xlab=xlab, ylab=ylab, zlab=zlab, legendloc=legendloc, gridlen=gridlen, span=span, ...) return(invisible()) ## whereas the "coarse" and "fine" methods use the regular ## tgp plotting methods with some minor changes depending on the res } else if(mrlayout == "coarse") { xTemp <- x; x <- mr.checkrez(x, res=0) if((length(x$Zp.mean)+length(x$ZZ.mean)) < 5) stop("Cannot plot 'coarse' with less than 5 predictive locations.\n") } else { ## same thing for the fine resolution xTemp <- x; x <- mr.checkrez(x, res=1) if((length(x$Zp.mean)+length(x$ZZ.mean)) < 5) stop("Cannot plot 'fine' with less than 5 predictive locations.\n") } } ## standard tgp plotting if(x$d == 1) { # plotting 1d data if(layout=="both") par(mfrow=c(1,2), bty="n") # else par(mfrow=c(1,1), bty="n") # construct/get graph labels if(is.null(xlab)) xlab <- names(x$X)[1] if(is.null(ylab)) ylab <- x$response # plot means and errors if(layout == "both" || layout == "surf") { ## choose mean or median for center center <- tgp.choose.center(x, center) Z.mean <- center$Z; smain <- paste(main, ylab, center$name) X <- center$X[,1] o <- order(X) ## plot the data plot(x$X[,1],x$Z, xlab=xlab, ylab=ylab, main=smain,...) # plot the center (mean) lines(X[o], Z.mean[o], ...) ## and 0.5 and 0.95 quantiles if(center$name == "kriging mean") { Zb.q1 <- Z.mean + 1.96*sqrt(c(x$Zp.ks2, x$ZZ.ks2)) Zb.q2 <- Z.mean - 1.96*sqrt(c(x$Zp.ks2, x$ZZ.ks2)) } else { Zb.q1 <- c(x$Zp.q1, x$ZZ.q1) Zb.q2 <- c(x$Zp.q2, x$ZZ.q2) } ## add the predictive 90% error-bars lines(X[o], Zb.q1[o], col=2, ...) lines(X[o], Zb.q2[o], col=2, ...) # plot parts if(pparts & !is.null(x$parts) ) { tgp.plot.parts.1d(x$parts) } } # adaptive sampling plotting # first, figure out which stats to plot if(layout != "surf") { # && !is.null(as)) { ## collect the error statistics that the user has requested as <- tgp.choose.as(x, as) Z.q <- as$criteria X <- as$X # then plot them o <- order(X[,1]); plot(X[o,1], Z.q[o], type="l", ylab=as$name, xlab=xlab, main=paste(main, as$name), ...) ## plot parts if(pparts & !is.null(x$parts)) { tgp.plot.parts.1d(x$parts) } ## if improv, then add order too if(substr(as$name,1,1) == "I") { ranks <- x$improv[,2] <= rankmax text(X[ranks,1], Z.q[ranks], labels=x$improv[ranks,2], pos=3, ...) } } } else if(x$d >= 2) { # 2-d plotting if(x$d == 2 || is.null(slice)) { # 2-d slice projection plot tgp.plot.proj(x, pparts=pparts, proj=proj, map=map, as=as, center=center, layout=layout, main=main, xlab=xlab, ylab=ylab, zlab=zlab, pc=pc, gridlen=gridlen, span=span, pXX=pXX, rankmax=rankmax, ...) } else { # 2-d slice plot tgp.plot.slice(x, pparts=pparts, slice=slice, map=map, as=as, center=center, layout=layout, main=main, xlab=xlab, ylab=ylab, zlab=zlab, pc=pc, gridlen=gridlen, span=span, pXX=pXX, ...) } } else { ## ERROR cat(paste("Sorry: no plot defind for ", x$d, "-d tgp data\n", sep="")) } ## reset the original tgp object for mr.tgp if(x$params$corr == "mrexpsep"){ x <- xTemp } } tgp/R/print.tgp.R0000644000176200001440000001076413531032535013325 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## print.tgp ## ## generic print method for tgp-class objects ## (doesn't do much now except list the fields of the tgp-class list "print.tgp" <- function(x, ...) { cat("\nThis is a 'tgp' class object. ", "It is basically a list with the following entries:\n", fill=TRUE) print(names(x), quote=FALSE) cat("\nSee ?btgp for an explanation of the individual entries. ", "See plot.tgp and tgp.trees for help with visualization.\n", fill=TRUE) cat("The $trace field, if it exists, is of class 'tgptraces'", "and has its own print statement\n", fill=TRUE) } ## print.tgptraces ## ## generic print method for tgptraces-class objects ## describes the contents of each field in the list, as well as ## sub-fields where appropriate. Some fields may be empty, or have ## sub-fields which depend on the type of analysis, and this ## is indicated "print.tgptraces" <- function(x, ...) { cat("\nThis 'tgptraces'-class object contains traces of the parameters\n") cat("to a tgp model. Access is as a list:\n\n") ## info about XX cat(paste("1.) $XX contains the traces of GP parameters for ", length(x$XX), " predictive\n", sep="")) cat(" locations\n\n") if(length(x$XX) > 0) { if(length(x$XX) == 1) { cat(paste("\n$XX[[1]]" , sep="")) } else { cat(paste(" Each of $XX[[1]] ... $XX[[", length(x$XX), "]]", sep="")) } cat(paste(" is a data frame with the\n columns representing GP parameters:\n\n", sep="")) print(names(x$XX[[1]]), quote=FALSE) } else cat(" ** The $XX list is empty because XX=NULL, or T-B=0\n") ## info about hierarchial params cat("\n2.) $hier has a trace of the hierarchical params:\n", sep="", fill=TRUE) if(!is.null(names(x$hier))) print(names(x$hier), quote=FALSE) else cat(" ** $hier is empty because T-B=0\n") ## info about linarea cat("\n3.) $linarea has a trace of areas under the LLM. It is a \n") cat(" data frame with columns:\n\n") cat(" count: number of booleans b=0, indicating LLM\n") cat(" la: area of domain under LLM\n") cat(" ba: area of domain under LLM weighed by dim\n") if(length(x$linarea) <= 0) { cat("\n ** $linarea is empty since you fit a model which \n") cat(" ** either forced the LLM (btlm, blm), or disallowed\n") cat(" ** it (bgp, btgp)\n") } ## info about parts cat("\n4.) $parts contains all of the partitions visited. Use the\n") cat(" tgp.plot.parts.[1d,2d] functions for visuals\n") if(length(x$parts) <= 0) { cat("\n ** $parts is empty since you fit a non-treed model\n") } ## info about posts cat("\n5.) $post is a data frame with columns showing the following:\n") cat(" log posterior ($lpost), tree height ($height) and leaves\n") cat(" ($leaves), IS weights ($w), tempered log posterior ($tlpost),\n") cat(" inv-temp ($itemp), and weights adjusted for ESS ($wlambda)\n") if(is.null(x$post)) cat("\n ** $posts is empty since T-B=0\n") ## info about ZZ cat("\n6.) $preds is a list containing data.frames for samples from\n") cat(" the posterior predictive distributions data (X) locations\n") cat(" (if pred.n=TRUE: $Zp, $Zp.km, $Zp.ks2) and (XX) locations\n") cat(" (if XX != NULL: $ZZ, $ZZ.km, $ZZ.ks2), with $Ds2x when\n") cat(" input argument ds2x=TRUE, and $improv when improv=TRUE\n\n") if(length(x$preds) <= 0) { cat(" ** $preds is empty because pred.n=FALSE and XX=NULL, or T-B=0\n\n") } } tgp/R/tgp.design.R0000644000176200001440000001264413723731015013443 0ustar liggesusers#******************************************************************************* # # Bayesian Regression and Adaptive Sampling with Gaussian Process Trees # Copyright (C) 2005, University of California # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) # #******************************************************************************* ## tgp.design: ## ## choose howmany of Xcand candidate locations according to a treed ## D-optimal design using the MAP tree contained in the tgp-class ## object. iter specifies the number of iterations in the stochastic ## ascent method "tgp.design" <- function(howmany, Xcand, out, iter=5000, verb=0) { ## get partitioned candidates and dat locaitons Xcand.parts <- partition(Xcand, out) X.parts <- partition(out$X, out) ## initialize selected candidates to none XX <- NULL ## subsample some from each partition cat(paste("\nsequential treed D-Optimal design in ", length(Xcand.parts), " partitions\n", sep="")) for(i in 1:length(Xcand.parts)) { nn <- ceiling(howmany*(nrow(Xcand.parts[[i]]))/(nrow(Xcand))) if(verb > 0) cat(paste("dopt.gp (", i, ") choosing ", nn, " new inputs from ", nrow(Xcand.parts[[i]]), " candidates\n", sep="")) dout <- dopt.gp(nn, X.parts[[i]], Xcand.parts[[i]], iter, max(verb-1,0)); XX <- rbind(XX, dout$XX) } return(XX) } ## tgp.partition: ## ## group X into a list containg each region as partitioned ## by the tree -- i is used to index root of the tree structure ## when applied recursively. This functio is used exclusively ## by the partition function below "tgp.partition" <- function(X, tree, i) { ## error or leaf node if(length(X) == 0) { stop("no X's found in partition\n") } if(tree$var[i] == "") return(list(X)); ## make sure X is a matrix if(is.null(nrow(X))) X <- matrix(X, ncol=1) ## gather the appropriate operations from the ith tree node var <- as.integer(as.character(tree$var[i]))+1 gt <- (1:nrow(X))[X[,var] > tree$val[i]] leq <- setdiff(1:nrow(X), gt) ## calculate the left and right tree node rows l <- (1:nrow(tree))[tree$rows == 2*tree$rows[i]] r <- (1:nrow(tree))[tree$rows == 2*tree$rows[i]+1] ## recurse on left and right subtrees if(length(leq) > 0) Xl <- tgp.partition(as.matrix(X[leq,,drop=FALSE]), tree, l) else Xl <- NULL if(length(gt) > 0) Xr <- tgp.partition(as.matrix(X[gt,,drop=FALSE]), tree, r) else Xr <- NULL return(c(Xl,Xr)) } ## partition: ## ## return a list of X location in each region of the MAP ## treed partition contained in the tgp-class object in out "partition" <- function(X, out) { m <- which.max(out$posts$lpost) tree <- out$trees[[out$posts$height[m]]] return(tgp.partition(X, tree, 1)) } ## dopt.gp: ## ## create a sequential D-optimal design of size under a GP model ## from candidates Xcand assuming that X locations are already in ## the design. The stochastic ascent algorithm uses iter rounds. ## Uses a C-side routine via .C "dopt.gp" <- function(nn, X=NULL, Xcand, iter=5000, verb=0) { if(nn == 0) return(NULL); ## check iterations if(length(iter) != 1 && iter <= 0) stop("iter must be a positive integer") ## check Kverbiterations if(length(verb) != 1 && iter < 0) stop("verb must be a non-negative integer") ## check X inputs Xnames <- names(X) X <- check.matrix(X)$X ## check the Xcand inputs if(is.null(Xcand)) stop("XX cannot be NULL") Xcand <- check.matrix(Xcand)$X ## check if X is NULL if(!is.null(X)) { n <- nrow(X); m <- ncol(X) X <- t(X) ## for row-major in .C } else { n <- 0; m <- ncol(Xcand) } ## check that cols of Xcand match X if(ncol(Xcand) != m) stop("mismatched column dimension of X and Xcand"); ncand <- nrow(Xcand) ## reduce nn if it is too big if(nn > nrow(Xcand)) { warning("nn greater than dim(Xcand)[1]"); nn <- nrow(Xcand); } ## choose a random state for the C code state <- sample(seq(0,999), 3) ## run the C code ll <- .C("dopt_gp", state = as.integer(state), nn = as.integer(nn), ## transpose of X is taken above X = as.double(X), n = as.integer(n), m = as.integer(m), Xcand = as.double(t(Xcand)), ncand = as.integer(ncand), iter = as.integer(iter), verb = as.integer(verb), fi = integer(nn), PACKAGE="tgp" ) ## deal with X, and names of X ll$X <- framify.X(ll$X, Xnames, m) ll$Xcand <- framify.X(ll$Xcand, Xnames, m) ll$XX <- ll$Xcand[ll$fi,] if(is.matrix(Xcand)) ll$XX <- matrix(as.matrix(ll$XX), ncol=ncol(Xcand)) ## dont return some of the things used by C ll$n <- NULL; ll$m <- NULL; ll$state <- NULL return(ll) } tgp/demo/0000755000176200001440000000000013531032535011770 5ustar liggesuserstgp/demo/as.R0000644000176200001440000000435313531032535012523 0ustar liggesusers################################################### ### chunk number 1: ################################################### library(tgp) library(maptree) #options(width=65) seed <- 0; set.seed(seed) ################################################### ### chunk number 2: ################################################### exp2d.data <- exp2d.rand(lh=0, dopt=10) X <- exp2d.data$X Z <- exp2d.data$Z Xcand <- lhs(1000, rbind(c(-2,6),c(-2,6))) ################################################### ### chunk number 3: ################################################### exp1 <- btgpllm(X=X, Z=Z, pred.n=FALSE, corr="exp", verb=0) ################################################### ### chunk number 4: mapt ################################################### tgp.trees(exp1) ################################################### ### chunk number 5: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 6: ################################################### XX <- tgp.design(200, Xcand, exp1) XX <- rbind(XX, c(-sqrt(1/2),0)) ################################################### ### chunk number 7: cands ################################################### plot(exp1$X, pch=19, cex=0.5) points(XX) mapT(exp1, add=TRUE) ################################################### ### chunk number 8: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 9: ################################################### exp.as <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", improv=TRUE, Ds2x=TRUE, verb=0) ################################################### ### chunk number 10: expas ################################################### par(mfrow=c(1,3), bty="n") plot(exp.as, main="tgpllm,", layout="as", as="alm") plot(exp.as, main="tgpllm,", layout='as', as='alc') plot(exp.as, main="tgpllm,", layout='as', as='improv') ################################################### ### chunk number 11: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() tgp/demo/it.R0000644000176200001440000002171713531032535012537 0ustar liggesusers################################################### ### chunk number 1: ################################################### library(tgp) library(maptree) #options(width=65) seed <- 0; set.seed(seed) ################################################### ### chunk number 2: ################################################### geo <- default.itemps(type="geometric") har <- default.itemps(type="harmonic") sig <- default.itemps(type="sigmoidal") ################################################### ### chunk number 3: it-itemps ################################################### par(mfrow=c(2,1)) all <- cbind(geo$k, har$k, sig$k) matplot(all, pch=21:23, main="inv-temp ladders", xlab="indx", ylab="itemp") legend("topright", pch=21:23, c("geometric","harmonic","sigmoidal"), col=1:3) matplot(log(all), pch=21:23, main="log(inv-temp) ladders", xlab="indx", ylab="itemp") ################################################### ### chunk number 4: ################################################### graphics.off() ################################################### ### chunk number 5: ################################################### ESS <- function(w) { mw <- mean(w) cv2 <- sum((w-mw)^2)/((length(w)-1)*mw^2) ess <- length(w)/(1+cv2) return(ess) } ################################################### ### chunk number 6: ################################################### exp2d.data<-exp2d.rand() X<-exp2d.data$X Z<-exp2d.data$Z ################################################### ### chunk number 7: ################################################### its <- default.itemps(m=10) exp.btlm <- btlm(X=X,Z=Z, bprior="b0", R=2, itemps=its, pred.n=FALSE, BTE=c(1000,3000,2)) ################################################### ### chunk number 8: ################################################### exp.btlm$ess ################################################### ### chunk number 9: ################################################### library(MASS) moto.it <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10), bprior="b0", R=3, itemps=geo, trace=TRUE, pred.n=FALSE, verb=0) ################################################### ### chunk number 10: ################################################### moto.it$ess$combined ################################################### ### chunk number 11: ################################################### p <- moto.it$trace$post ESS(p$wlambda) ################################################### ### chunk number 12: ################################################### ESS(p$w) ################################################### ### chunk number 13: ################################################### as.numeric(c(sum(p$itemp == 1), moto.it$ess$each[1,2:3])) ################################################### ### chunk number 14: ################################################### moto.reg <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10), R=3, bprior="b0", trace=TRUE, pred.n=FALSE, verb=0) ################################################### ### chunk number 15: ################################################### L <- length(p$height) hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE)) b <- hist2bar(cbind(moto.reg$trace$post$height, p$height, hw)) ################################################### ### chunk number 16: it-moto-height ################################################### barplot(b, beside=TRUE, col=1:3, xlab="tree height", ylab="counts", main="tree heights encountered") legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3) ################################################### ### chunk number 17: ################################################### graphics.off() ################################################### ### chunk number 18: it-moto-ktrace ################################################### plot(log(moto.it$trace$post$itemp), type="l", ylab="log(k)", xlab="samples", main="trace of log(k)") ################################################### ### chunk number 19: ################################################### graphics.off() ################################################### ### chunk number 20: it-moto-khist ################################################### b <- itemps.barplot(moto.it, plot.it=FALSE) barplot(t(cbind(moto.it$itemps$counts, b)), col=1:2, beside=TRUE, ylab="counts", xlab="itemps", main="inv-temp observation counts") legend("topleft", c("observation counts", "posterior samples"), fill=1:2) ################################################### ### chunk number 21: ################################################### graphics.off() ################################################### ### chunk number 22: ################################################### moto.it.sig <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10), R=3, bprior="b0", krige=FALSE, itemps=sig, verb=0) ################################################### ### chunk number 23: ################################################### moto.it.sig$ess$combined ################################################### ### chunk number 24: it-moto-pred ################################################### plot(moto.it.sig) ################################################### ### chunk number 25: ################################################### graphics.off() ################################################### ### chunk number 26: ################################################### Xcand <- lhs(10000, rbind(c(-6,6),c(-6,6))) X <- dopt.gp(400, X=NULL, Xcand)$XX Z <- exp2d.Z(X)$Z ################################################### ### chunk number 27: ################################################### exp.reg <- btgpllm(X=X, Z=Z, BTE=c(2000,52000,10), bprior="b0", trace=TRUE, krige=FALSE, R=10, verb=0) ################################################### ### chunk number 28: it-exp-pred ################################################### plot(exp.reg) ################################################### ### chunk number 29: ################################################### graphics.off() ################################################### ### chunk number 30: ################################################### h <- exp.reg$post$height[which.max(exp.reg$posts$lpost)] h ################################################### ### chunk number 31: it-exp-mapt ################################################### tgp.trees(exp.reg, "map") ################################################### ### chunk number 32: ################################################### graphics.off() ################################################### ### chunk number 33: ################################################### its <- default.itemps(k.min=0.02) exp.it <- btgpllm(X=X, Z=Z, BTE=c(2000,52000,10), bprior="b0", trace=TRUE, krige=FALSE, itemps=its, R=10, verb=0) ################################################### ### chunk number 34: ################################################### exp.it$gpcs exp.reg$gpcs ################################################### ### chunk number 35: ################################################### p <- exp.it$trace$post data.frame(ST=sum(p$itemp == 1), nIT=ESS(p$w), oIT=exp.it$ess$combined) ################################################### ### chunk number 36: ################################################### L <- length(p$height) hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE)) b <- hist2bar(cbind(exp.reg$trace$post$height, p$height, hw)) ################################################### ### chunk number 37: it-exp-height ################################################### barplot(b, beside=TRUE, col=1:3, xlab="tree height", ylab="counts", main="tree heights encountered") legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3) ################################################### ### chunk number 38: ################################################### graphics.off() ################################################### ### chunk number 39: it-exp-trace-height ################################################### ylim <- range(p$height, exp.reg$trace$post$height) plot(p$height, type="l", main="trace of tree heights", xlab="t", ylab="height", ylim=ylim) lines(exp.reg$trace$post$height, col=2) legend("topright", c("tempered", "reg MCMC"), lty=c(1,1), col=1:2) ################################################### ### chunk number 40: ################################################### graphics.off() ################################################### ### chunk number 41: it-expit-pred ################################################### plot(exp.it) ################################################### ### chunk number 42: it-expit-trees ################################################### tgp.trees(exp.it, "map") ################################################### ### chunk number 43: ################################################### graphics.off() tgp/demo/fried.R0000644000176200001440000000346613531032535013215 0ustar liggesusers################################################### ### chunk number 1: ################################################### library(tgp) ##options(width=65) seed <- 0; set.seed(seed) ################################################### ### chunk number 2: ################################################### f <- friedman.1.data(200) ff <- friedman.1.data(1000) X <- f[,1:10]; Z <- f$Y XX <- ff[,1:10] ################################################### ### chunk number 3: ################################################### fr.btlm <- btlm(X=X, Z=Z, XX=XX, tree=c(0.95,2), pred.n=FALSE, verb=0) fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue)^2)) fr.btlm.mse ################################################### ### chunk number 4: ################################################### fr.bgpllm <- bgpllm(X=X, Z=Z, XX=XX, pred.n=FALSE, verb=0) fr.bgpllm.mse <- sqrt(mean((fr.bgpllm$ZZ.mean - ff$Ytrue)^2)) fr.bgpllm.mse ################################################### ### chunk number 5: ################################################### XX1 <- matrix(rep(0,10), nrow=1) fr.bgpllm.tr <- bgpllm(X=X, Z=Z, XX=XX1, pred.n=FALSE, trace=TRUE, m0r1=FALSE, verb=0) ################################################### ### chunk number 6: ################################################### trace <- fr.bgpllm.tr$trace$XX[[1]] apply(trace[,27:36], 2, mean) ################################################### ### chunk number 7: ################################################### mean(fr.bgpllm.tr$trace$linarea$ba) ################################################### ### chunk number 8: ################################################### summary(trace[,9:10]) ################################################### ### chunk number 9: ################################################### apply(trace[,11:15], 2, mean) tgp/demo/pred.R0000644000176200001440000000431013531032535013043 0ustar liggesusers################################################### ### chunk number 1: ################################################### library(tgp) library(maptree) ##options(width=65) seed <- 0; set.seed(seed) ################################################### ### chunk number 2: ################################################### library(MASS) out <- btgpllm(X=mcycle[,1], Z=mcycle[,2], bprior="b0", pred.n=FALSE, verb=0) save(out, file="out.Rsave") out <- NULL ################################################### ### chunk number 3: ################################################### load("out.Rsave") XX <- seq(2.4, 56.7, length=200) out.kp <- predict(out, XX=XX, pred.n=FALSE) ################################################### ### chunk number 4: ################################################### out.p <- predict(out, XX=XX, pred.n=FALSE, BTE=c(0,1000,1)) ################################################### ### chunk number 5: ################################################### out2 <- predict(out, XX, pred.n=FALSE, BTE=c(0,2000,2), krige=FALSE) ################################################### ### chunk number 6: kp ################################################### plot(out.kp, center="km", as="ks2") ################################################### ### chunk number 7: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 8: p ################################################### plot(out.p) ################################################### ### chunk number 9: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 10: 2 ################################################### plot(out2) ################################################### ### chunk number 11: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 12: ################################################### unlink("out.Rsave") tgp/demo/cat.R0000644000176200001440000000644713531032535012675 0ustar liggesusers################################################### ### chunk number 1: ################################################### library(tgp) library(maptree) #options(width=65) seed <- 0; set.seed(seed) ################################################### ### chunk number 2: ################################################### fb.train <- fried.bool(500) X <- fb.train[,1:13]; Z <- fb.train$Y fb.test <- fried.bool(1000) XX <- fb.test[,1:13]; ZZ <- fb.test$Ytrue ################################################### ### chunk number 3: ################################################### names(X) ################################################### ### chunk number 4: ################################################### fit1 <- bcart(X=X, Z=Z, XX=XX, verb=0) rmse1 <- sqrt(mean((fit1$ZZ.mean - ZZ)^2)) rmse1 ################################################### ### chunk number 5: cat-fbcart-mapt ################################################### tgp.trees(fit1, "map") ################################################### ### chunk number 6: ################################################### graphics.off() ################################################### ### chunk number 7: ################################################### fit2 <- btlm(X=X, Z=Z, XX=XX, verb=0) rmse2 <- sqrt(mean((fit2$ZZ.mean - ZZ)^2)) rmse2 ################################################### ### chunk number 8: cat-fbtlm-trees ################################################### tgp.trees(fit2, "map") ################################################### ### chunk number 9: ################################################### graphics.off() ################################################### ### chunk number 10: ################################################### fit3 <- btlm(X=X, Z=Z, XX=XX, basemax=10, verb=0) rmse3 <- sqrt(mean((fit3$ZZ.mean - ZZ)^2)) rmse3 ################################################### ### chunk number 11: cat-fbtlm-mapt ################################################### tgp.trees(fit3, "map") ################################################### ### chunk number 12: ################################################### graphics.off() ################################################### ### chunk number 13: ################################################### fit4 <- btgpllm(X=X, Z=Z, XX=XX, verb=0) rmse4 <- sqrt(mean((fit4$ZZ.mean - ZZ)^2)) rmse4 ################################################### ### chunk number 14: ################################################### fit4$gpcs ################################################### ### chunk number 15: ################################################### fit5 <- btgpllm(X=X, Z=Z, XX=XX, basemax=10, verb=0) rmse5 <- sqrt(mean((fit5$ZZ.mean - ZZ)^2)) rmse5 ################################################### ### chunk number 16: cat-fb-mapt ################################################### h <- fit1$post$height[which.max(fit1$posts$lpost)] tgp.trees(fit5, "map") ################################################### ### chunk number 17: ################################################### graphics.off() ################################################### ### chunk number 18: ################################################### fit6 <- btgpllm(X=X, Z=Z, XX=XX, basemax=10, splitmin=11, verb=0) rmse6 <- sqrt(mean((fit6$ZZ.mean - ZZ)^2)) rmse6 tgp/demo/traces.R0000644000176200001440000000605113531032535013376 0ustar liggesusers################################################### ### chunk number 1: ################################################### library(tgp) ##options(width=65) seed <- 0; set.seed(seed) ################################################### ### chunk number 2: ################################################### exp2d.data <- exp2d.rand(n2=150, lh=0, dopt=10) X <- exp2d.data$X Z <- exp2d.data$Z XX <- rbind(c(0,0),c(2,2),c(4,4)) ################################################### ### chunk number 3: ################################################### out <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", bprior="b0", pred.n=FALSE, Ds2x=TRUE, R=10, #BTE=c(2000,5000,10), trace=TRUE, verb=0) ################################################### ### chunk number 4: ################################################### out$trace ################################################### ### chunk number 5: XXd ################################################### trXX <- out$trace$XX; ltrXX <- length(trXX) y <- trXX[[1]]$d for(i in 2:ltrXX) y <- c(y, trXX[[i]]$d) plot(log(trXX[[1]]$d), type="l", ylim=range(log(y)), ylab="log(d)", main="range (d) parameter traces") names <- "XX[1,]" for(i in 2:ltrXX) { lines(log(trXX[[i]]$d), col=i, lty=i) names <- c(names, paste("XX[", i, ",]", sep="")) } legend("bottomleft", names, col=1:ltrXX, lty=1:ltrXX) ################################################### ### chunk number 6: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 7: ################################################### linarea <- mean(out$trace$linarea$la) linarea ################################################### ### chunk number 8: la ################################################### hist(out$trace$linarea$la) ################################################### ### chunk number 9: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 10: ################################################### m <- matrix(0, nrow=length(trXX), ncol=3)#ncol=5) for(i in 1:length(trXX)) m[i,] <- as.double(c(out$XX[i,], mean(trXX[[i]]$b))) m <- data.frame(cbind(m, 1-m[,3])) names(m)=c("XX1","XX2","b","pllm") m ################################################### ### chunk number 11: alc ################################################### trALC <- out$trace$preds$Ds2x y <- trALC[,1] for(i in 2:ncol(trALC)) y <- c(y, trALC[,i]) plot(log(trALC[,1]), type="l", ylim=range(log(y)), ylab="Ds2x", main="ALC: samples from Ds2x") names <- "XX[1,]" for(i in 2:ncol(trALC)) { lines(log(trALC[,i]), col=i, lty=i) names <- c(names, paste("XX[", i, ",]", sep="")) } legend("bottomright", names, col=1:ltrXX, lty=1:ltrXX) ################################################### ### chunk number 12: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() tgp/demo/linear.R0000644000176200001440000000377313531032535013377 0ustar liggesusers################################################### ### chunk number 1: ################################################### library(tgp) ##options(width=65) seed <- 0; set.seed(seed) ################################################### ### chunk number 2: ################################################### # 1-d linear data input and predictive data X <- seq(0,1,length=50) # inputs XX <- seq(0,1,length=99) # predictive locations Z <- 1 + 2*X + rnorm(length(X),sd=0.25) # responses ################################################### ### chunk number 3: ################################################### lin.blm <- blm(X=X, XX=XX, Z=Z) ################################################### ### chunk number 4: blm ################################################### plot(lin.blm, main='Linear Model,', layout='surf') abline(1,2,lty=3,col='blue') ################################################### ### chunk number 5: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 6: ################################################### lin.gpllm <- bgpllm(X=X, XX=XX, Z=Z) ################################################### ### chunk number 7: gplm ################################################### plot(lin.gpllm, main='GP LLM,', layout='surf') abline(1,2,lty=4,col='blue') ################################################### ### chunk number 8: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 9: ################################################### lin.gpllm.tr <- bgpllm(X=X, XX=0.5, Z=Z, pred.n=FALSE, trace=TRUE, verb=0) mla <- mean(lin.gpllm.tr$trace$linarea$la) mla ################################################### ### chunk number 10: ################################################### 1-mean(lin.gpllm.tr$trace$XX[[1]]$b1) tgp/demo/sens.R0000644000176200001440000001060513531032535013065 0ustar liggesusers################################################### ### chunk number 1: ################################################### library(tgp) seed <- 0; set.seed(seed) ################################################### ### chunk number 2: ################################################### f <- friedman.1.data(250) ################################################### ### chunk number 3: ################################################### Xf <- f[, 1:6] Zf <- f$Y sf <- sens(X=Xf, Z=Zf, nn.lhs=600, model=bgpllm, verb=0) ################################################### ### chunk number 4: ################################################### names(sf$sens) ################################################### ### chunk number 5: sens-full ################################################### plot(sf, layout="sens", legendloc="topleft") ################################################### ### chunk number 6: ################################################### graphics.off() ################################################### ### chunk number 7: sens-mains ################################################### par(mar=c(4,2,4,2), mfrow=c(2,3)) plot(sf, layout="sens", maineff=t(1:6)) ################################################### ### chunk number 8: ################################################### graphics.off() ################################################### ### chunk number 9: sens-indices ################################################### plot(sf, layout="sens", maineff=FALSE) ################################################### ### chunk number 10: ################################################### graphics.off() ################################################### ### chunk number 11: ################################################### X <- airquality[,2:4] Z <- airquality$Ozone rect <- t(apply(X, 2, range, na.rm=TRUE)) mode <- apply(X , 2, mean, na.rm=TRUE) shape <- rep(2,3) ################################################### ### chunk number 12: sens-udraw ################################################### Udraw <- lhs(300, rect=rect, mode=mode, shape=shape) par(mfrow=c(1,3), mar=c(4,2,4,2)) for(i in 1:3){ hist(Udraw[,i], breaks=10,xlab=names(X)[i], main="",ylab="", border=grey(.9), col=8) } ################################################### ### chunk number 13: ################################################### graphics.off() ################################################### ### chunk number 14: ################################################### s.air <- suppressWarnings(sens(X=X, Z=Z, nn.lhs=300, rect=rect, shape=shape, mode=mode, verb=0)) ################################################### ### chunk number 15: sens-air1 ################################################### plot(s.air, layout="sens") ################################################### ### chunk number 16: ################################################### graphics.off() ################################################### ### chunk number 17: ################################################### rect[2,] <- c(0,5) mode[2] <- 2 shape[2] <- 2 ################################################### ### chunk number 18: ################################################### sens.p <- suppressWarnings(sens(X=X,Z=Z,nn.lhs=300, model=NULL, rect=rect, shape=shape, mode=mode)) ################################################### ### chunk number 19: sens-air2 ################################################### s.air2 <- predict(s.air, BTE=c(1,1000,1), sens.p=sens.p, verb=0) plot(s.air2, layout="sens") ################################################### ### chunk number 20: ################################################### graphics.off() ################################################### ### chunk number 21: ################################################### X$Temp[X$Temp >70] <- 1 X$Temp[X$Temp >1] <- 0 rect <- t(apply(X, 2, range, na.rm=TRUE)) mode <- apply(X , 2, mean, na.rm=TRUE) shape <- c(2,2,0) s.air <- suppressWarnings(sens(X=X, Z=Z, nn.lhs=300, rect=rect, shape=shape, mode=mode, verb=0, basemax=2)) ################################################### ### chunk number 22: sens-air3 ################################################### plot(s.air, layout="sens") ################################################### ### chunk number 23: ################################################### graphics.off() tgp/demo/00Index0000644000176200001440000000161113531032535013121 0ustar liggesuserslinear Bayesian LM and GP LLM on linear data from vignette 1 sin Bayesian linear CART, GP, treed GP on sinusoidal data from vignette 1 exp Bayesian GP, treed GP, and treed GP LLM on exponential data from vignette 1 moto Bayesian GP, treed GP, and treed GP LLM on motorcycle accident data from vignette 1 fried Bayesian linear CART and GP LLM on first Friedman data from vignette 1 as adaptive sampling on exponential data from vignette 1 traces demonstration, visualization and interpretation of parameter traces from vignette 1 pred example of a collaborative tgp with predict.tgp from vignette 1 cat using tgp with categorical (i.e., non-real-valued) inputs from vignette 2 sens sensitivity analysis for inputs/covariates from vignette 2 optim sequential optimization of black-box functions from vignette 2 it importance tempering improved mixing in the RJ-MCMC for tgp from vignette 2 tgp/demo/sin.R0000644000176200001440000000457413531032535012716 0ustar liggesusers################################################### ### chunk number 1: ################################################### library(tgp) ##options(width=65) seed <- 0; set.seed(seed) ################################################### ### chunk number 2: ################################################### X <- seq(0,20,length=100) XX <- seq(0,20,length=99) Z <- (sin(pi*X/5) + 0.2*cos(4*pi*X/5)) * (X <= 9.6) lin <- X>9.6; Z[lin] <- -1 + X[lin]/10 Z <- Z + rnorm(length(Z), sd=0.1) ################################################### ### chunk number 3: ################################################### sin.bgp <- bgp(X=X, Z=Z, XX=XX, verb=0) ################################################### ### chunk number 4: bgp ################################################### plot(sin.bgp, main='GP,', layout='surf') ################################################### ### chunk number 5: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 6: ################################################### sin.btlm <- btlm(X=X, Z=Z, XX=XX) ################################################### ### chunk number 7: btlm ################################################### plot(sin.btlm, main='Linear CART,', layout='surf') ################################################### ### chunk number 8: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 9: btlmtrees ################################################### tgp.trees(sin.btlm) ################################################### ### chunk number 10: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 11: ################################################### sin.btgp <- btgp(X=X, Z=Z, XX=XX, verb=0) ################################################### ### chunk number 12: btgp ################################################### plot(sin.btgp, main='treed GP,', layout='surf') ################################################### ### chunk number 13: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() tgp/demo/exp.R0000644000176200001440000000605613531032535012716 0ustar liggesusers################################################### ### chunk number 1: ################################################### library(tgp) library(maptree) ##options(width=65) seed <- 0; set.seed(seed) ################################################### ### chunk number 2: ################################################### exp2d.data <- exp2d.rand() X <- exp2d.data$X; Z <- exp2d.data$Z XX <- exp2d.data$XX ################################################### ### chunk number 3: ################################################### exp.bgp <- bgp(X=X, Z=Z, XX=XX, corr="exp", verb=0) ################################################### ### chunk number 4: bgp ################################################### plot(exp.bgp, main='GP,') ################################################### ### chunk number 5: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 6: ################################################### exp.btgp <- btgp(X=X, Z=Z, XX=XX, corr="exp", verb=0) ################################################### ### chunk number 7: btgp ################################################### plot(exp.btgp, main='treed GP,') ################################################### ### chunk number 8: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 9: btgptrees ################################################### tgp.trees(exp.btgp) ################################################### ### chunk number 10: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 11: ################################################### exp.btgpllm <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", R=2) ################################################### ### chunk number 12: btgpllm ################################################### plot(exp.btgpllm, main='treed GP LLM,') ################################################### ### chunk number 13: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 14: 1dbtgpllm1 ################################################### plot(exp.btgpllm, main='treed GP LLM,', proj=c(1)) ################################################### ### chunk number 15: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 16: 1dbtgpllm2 ################################################### plot(exp.btgpllm, main='treed GP LLM,', proj=c(2)) ################################################### ### chunk number 17: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() tgp/demo/optim.R0000644000176200001440000000677413531032535013261 0ustar liggesusers################################################### ### chunk number 1: ################################################### library(tgp) seed <- 0; set.seed(seed) ################################################### ### chunk number 2: ################################################### rosenbrock <- function(x){ x <- matrix(x, ncol=2) 100*(x[,1]^2 - x[,2])^2 + (x[,1] - 1)^2 } ################################################### ### chunk number 3: ################################################### rosenbrock(c(1,1)) ################################################### ### chunk number 4: ################################################### rect <- cbind(c(-1,-1),c(5,5)) X <- lhs(40, rect) Z <- rosenbrock(X) ################################################### ### chunk number 5: ################################################### XX <- lhs(200, rect) rfit <- bgp(X,Z,XX,improv=c(1,10), verb=0) ################################################### ### chunk number 6: ################################################### cbind(rfit$improv,XX)[rfit$improv$rank <= 10,] ################################################### ### chunk number 7: optim-fit1 ################################################### plot(rfit, as="improv") ################################################### ### chunk number 8: ################################################### graphics.off() ################################################### ### chunk number 9: optim-fit2 ################################################### rfit2 <- predict(rfit, XX=XX, BTE=c(1,1000,1), improv=c(5,20), verb=0) plot(rfit2, layout="as", as="improv") ################################################### ### chunk number 10: ################################################### graphics.off() ################################################### ### chunk number 11: ################################################### f <- function(x) { exp2d.Z(x)$Z } ################################################### ### chunk number 12: ################################################### rect <- rbind(c(-2,6), c(-2,6)) X <- lhs(20, rect) Z <- f(X) ################################################### ### chunk number 13: ################################################### out <- progress <- NULL for(i in 1:20) { ## get recommendations for the next point to sample out <- optim.step.tgp(f, X=X, Z=Z, rect=rect, prev=out, verb=0) ## add in the inputs, and newly sampled outputs X <- rbind(X, out$X) Z <- c(Z, f(out$X)) ## keep track of progress and best optimum progress <- rbind(progress, out$progress) } ################################################### ### chunk number 14: optim-progress ################################################### par(mfrow=c(1,2)) matplot(progress[,1:2], main="x progress", xlab="rounds", ylab="x[,1:2]", type="l", lwd=2) plot(log(progress$improv), type="l", main="max log improv", xlab="rounds", ylab="max log(improv)") ################################################### ### chunk number 15: ################################################### graphics.off() ################################################### ### chunk number 16: ################################################### out$progress[1:2] ################################################### ### chunk number 17: ################################################### formals(optim)$method ################################################### ### chunk number 18: ################################################### formals(optim.ptgpf)$method tgp/demo/moto.R0000644000176200001440000000500513531032535013071 0ustar liggesusers################################################### ### chunk number 1: ################################################### library(tgp) ##options(width=65) seed <- 0; set.seed(seed) ################################################### ### chunk number 2: ################################################### library(MASS) X <- data.frame(times=mcycle[,1]) Z <- data.frame(accel=mcycle[,2]) ################################################### ### chunk number 3: ################################################### moto.bgp <- bgp(X=X, Z=Z, verb=0) ################################################### ### chunk number 4: bgp ################################################### plot(moto.bgp, main='GP,', layout='surf') ################################################### ### chunk number 5: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 6: ################################################### moto.btlm <- btlm(X=X, Z=Z, verb=0) ################################################### ### chunk number 7: btlm ################################################### plot(moto.btlm, main='Bayesian CART,', layout='surf') ################################################### ### chunk number 8: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 9: ################################################### moto.btgpllm <- btgpllm(X=X, Z=Z, bprior="b0", verb=0) moto.btgpllm.p <- predict(moto.btgpllm) ## using MAP ################################################### ### chunk number 10: btgp ################################################### par(mfrow=c(1,2)) plot(moto.btgpllm, main='treed GP LLM,', layout='surf') plot(moto.btgpllm.p, center='km', layout='surf') ################################################### ### chunk number 11: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() ################################################### ### chunk number 12: btgpq ################################################### par(mfrow=c(1,2)) plot(moto.btgpllm, main='treed GP LLM,', layout='as') plot(moto.btgpllm.p, as='ks2', layout='as') ################################################### ### chunk number 13: ################################################### rl <- readline("press RETURN to continue: ") graphics.off() tgp/vignettes/0000755000176200001440000000000014661702175013065 5ustar liggesuserstgp/vignettes/motovate_btgp.pdf0000644000176200001440000013470313531032535016431 0ustar liggesusers%PDF-1.4 1 0 obj << /Pages 2 0 R /Type /Catalog >> endobj 2 0 obj << /Type /Pages /Kids [ 3 0 R ] /Count 1 >> endobj 3 0 obj << /Type /Page /Parent 2 0 R /Resources << /XObject << /Im0 8 0 R >> /ProcSet 6 0 R >> /MediaBox [0 0 504 360] /CropBox [0 0 504 360] /Contents 4 0 R /Thumb 11 0 R >> endobj 4 0 obj << /Length 5 0 R >> stream q 504 0 0 360 0 0 cm /Im0 Do Q endstream endobj 5 0 obj 31 endobj 6 0 obj [ /PDF /Text /ImageC ] endobj 7 0 obj << >> endobj 8 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [ /RunLengthDecode ] /Width 504 /Height 360 /ColorSpace 10 0 R /BitsPerComponent 8 /SMask 15 0 R /Length 9 0 R >> stream ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿðÿû­ÿûìÿìøÿìïÿûìÿûïÿõûÿõ‰ÿû‚ÿ´ÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿíÿû­ÿûïÿæûÿìïÿûìÿûïÿõûÿõ‰ÿû‚ÿ´ÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿóÿòþÿòþÿòøÿòøÿïòÿõûÿõûÿûûÿøïÿûìÿûïÿõûÿõæÿïøÿòûÿïûÿòûÿûïÿàûÿòûÿïûÿìïÿïþÿìûÿìïÿòûÿòþÿõûÿòøÿõ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿãÿòþÿÝþÿìþÿìòÿøæÿûûÿøïÿûìÿûïÿõûÿõæÿïûÿ×þÿìþÿûïÿàþÿìþÿïûÿìòÿìþÿìþÿéòÿìþÿòþÿõþÿìûÿõ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÝÿûûÿøþÿõþÿøþÿøþÿøþÿøþÿøòÿûøÿòûÿìïÿûìÿûïÿãæÿûûÿûûÿøþÿïþÿìþÿøþÿûïÿìþÿøþÿøþÿøþÿûûÿûûÿøþÿøòÿøþÿøþÿøþÿøþÿøûÿøòÿøþÿøþÿøþÿþþÿõþÿøþÿøûÿõ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÝÿûûÿûøÿÔþÿûøÿûòÿûøÿòûÿìïÿûìÿûïÿããÿòûÿûûÿòøÿãþÿûïÿûûÿûøÿûþÿìûÿòûÿûøÿûïÿïþÿûøÿûþÿøûÿøõÿéþÿûõÿûøÿûøÿûûÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ×ÿûûÿûøÿÔþÿûøÿûòÿøõÿøûÿûàÿûìÿûïÿûþÿõþÿûæÿïûÿûòÿûïÿìþÿûïÿûûÿûøÿûþÿìþÿïûÿûøÿûòÿìþÿûøÿûþÿøûÿøõÿéþÿûõÿûøÿûøÿûûÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ×ÿûûÿûøÿøûÿûþÿûûÿøþÿøþÿøòÿõûÿõûÿûàÿûìÿûïÿûþÿõþÿûæÿûþÿøûÿøþÿïûÿïûÿûþÿûïÿûûÿûøÿûþÿøûÿûþÿûþÿøûÿûøÿûòÿøþÿøþÿûøÿûþÿøûÿøòÿûûÿøþÿûõÿûøÿøþÿøûÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ×ÿøþÿûøÿìþÿìþÿìïÿæûÿûàÿìûÿìþÿûþÿõþÿûþÿøòÿïûÿ×þÿìþÿûïÿûûÿûøÿûþÿìþÿïûÿûøÿûòÿìþÿûøÿûþÿéòÿìþÿûõÿûøÿìûÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ×ÿøþÿûõÿïûÿòøÿïìÿéûÿûàÿìûÿìþÿûþÿõþÿûþÿøòÿìûÿòûÿïûÿïþÿûïÿûûÿûøÿûûÿïþÿìþÿûøÿûòÿìþÿûøÿûûÿìïÿòûÿûõÿûõÿòøÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ×ÿø‚ÿ‚ÿ÷ÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ—ÿø‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ—ÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¦ÿ‚‚‚‚‚‚‚‚‚•‚ÿ‚ÿúÿ‚‚‚‚‚‚‡½‚‚‘‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿçÿÿ‚ÿ®ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿ™ÿÿÿÿÿÿÿÿÿÿÿ‚ÿ´ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÿÿÿÿÿÿÿôÿ ÿÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿÏÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ†ÿëâüåÿ ÿÿÿãÿõ‚ÿ‚ÿ‚ÿ‚ÿüÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‰ÿø‘óâÿ ÿÿÿìÿï‚ÿ‚ÿ‚ÿ‚ÿÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿ¨ÿÿ‡üøÿûßÿÿÿòÿûøÿû‚ÿíÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿÿÿÿùøÿûÜÿ ÿÿÿøÿûõÿþ‚ÿ‚ÿ‚ÿ‚ÿÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ’ÿÿÿþÿûøÿûÖÿÿÿûÿûøÿû‚ÿ‚ÿ‚ÿ‚ÿÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ’ÿÿûÿïÐÿÿÿûÿé‚ÿ‚ÿ‚ÿ†ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿ±ÿÿõÿõÊÿÿÿûÿæ‚ÿùÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ˜ÿÿÿ¯ÿ ÿÿÿøÿûûÿû‚ÿùÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ˜ÿÿ¦ÿÿÿþÿûõÿþ‚ÿùÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ›ÿÿÿ£ÿÿþÿûõÿþ‚ÿùÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿ·ÿÿÿÿþÿûûÿû‚ÿ‚ÿ‚ÿŒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿžÿÿ—ÿÿí‚ÿ‚ÿ‚ÿŒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ¡ÿÿÿ—ÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿüÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ¡ÿÿŽÿÿ‚ÿíÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿ½ÿÿ‹ÿÿÿ‚ÿ‚ÿ‚ÿ†ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ¤ÿÿˆÿ ÿÿÿ‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ¤ÿÿ‚ÿÿ‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ§ÿÿ‚ÿûÿÿ‚ÿùÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿÃÿÿ‚ÿûÿÿÿ‚ÿüÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿªÿÿ‚ÿõÿÿÿ‚ÿÿÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿªÿÿÈÿøµÿ ÿÿÿ†ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ­ÿÿËÿï²ÿ ÿÿÿ‚ÿ‚ÿ‚ÿžÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿÉÿÿËÿûûÿø¯ÿÿÿ‚ÿ‚ÿ‚ÿ¡ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿ‚ÿ‚ÿ°ÿÿÈÿûøÿû¬ÿ ÿÿÿ‚ÿ‚ÿ‚ÿ§ÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿ‚ÿ‚ÿ°ÿÿÈÿûøÿû¦ÿÿÿ˜ÿ‚ÿ‚ÿ–ÿû‚ÿÃÿþïÿþÑÿû‚ÿ‚ÿ‚ÿ‚ÿ³ÿÿÿÈÿì£ÿ ÿÿÿ‚ÿ‚ÿ‚ÿ°ÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿÏÿÿÂÿòšÿÿÿ‚ÿ‚ÿ‚ÿ³ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿ‚ÿ‚ÿ¶ÿÿÿÂÿõ”ÿ ÿÿÿ‚ÿ‚ÿ‚ÿ¹ÿû‚ÿÿæ‚ÿ‚ÿ‚ÿ‚ÿ¶ÿûùÈÿïþÿøžÿíõ”ü­ÿ‚ÿ‚ÿ–ÿû‚ÿÃÿþþÿïÑÿû‚ÿ‚ÿ‚ÿ‚ÿ·ÿï&óÎÿûøÿì§ÿû ZèŒC°ÿ‚ÿ‚ÿ–ÿû‚ÿÃÿþþÿïÑÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿÖÿ³üûÿûÎÿûøÿøûÿûþÿò¹ÿûýÿ Úñÿÿ¸ÿ)Ö‚ÿ‚ÿ—ÿû‚ÿÃÿþþÿþõÿþÑÿû‚ÿ‚ÿ‚ÿ‚ÿºÿ½ŽøÿûÎÿûøÿûõÿþþÿûþÿø¼ÿþõÿ ,âÿÿÁÿ ÿÿbÿ‚ÿ‚ÿšÿû‚ÿÃÿþþÿûûÿûÑÿû‚ÿ‚ÿ‚ÿ‚ÿºÿùøÿûÎÿìøÿõøÿû¼ÿûøÿû ÿÿÿÿÍÿÿÿÿÿÿÿ‚ÿ‚ÿšÿû‚ÿÃÿõþÿøÑÿû‚ÿ‚ÿ‚ÿ‚ÿ¼ÿøùþÿøËÿõþÿéõÿþ¼ÿï÷ÿÿÿÿÿÿÿåÿ ÿÿÿÿ÷ÿÿ‚ÿ‚ÿšÿû‚ÿ½ÿûþÿûÎÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿØÿÿð¹ÿòþÿøûÿû¹ÿòñÿÿÿÿÿÿÿÿúÿÿÿÿÿÿÿñÿÿ‚ÿ‚ÿšÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ¼ÿÿ•ÿïˆÿÿÿÿÿÿÿæÿóÿ‚ÿ‚ÿšÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ¿ÿÿŒÿû‚ÿûÿÿÙÿ‚ÿ‚ÿšÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ¿ÿÿ‚ÿ‚ÿÒÿÿ‚ÿ‚ÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿÛÿÿð‚ÿ‚ÿáÿÿ‚ÿ‚ÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿÂÿÿíéÿõ‚ÿŠÿÿÿÿ‚ÿ‚ÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿÂÿÿùøÿûïÿïìÿõ¼ÿþ‚ÿöÿÿÿÿ‚ÿ‚ÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿÂÿÿùøÿûòÿøûÿûûÿàÈÿò‚ÿüÿÿÿÿ‚ÿ‚ÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿáÿÿþÿûûÿøòÿûõÿþþÿïøÿïÔÿøþÿø‚ÿÿÿüÿ‚ÿ‚ÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿÅÿÿþÿïïÿûøÿòãÿõ×ÿì‚ÿøÿÿ‚ÿ‚ÿ ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿÅÿÿøÿøéÿì×ÿõÝÿì‚ÿøÿÿ‚ÿ‚ÿ ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿÈÿÿÑÿòÑÿõàÿøþÿø˜ÿïôÿÿ‚ÿ‚ÿ ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿäÿÿÎÿøÈÿøãÿì˜ÿûûÿóœþËÿ‚ÿ‚ÿ ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿÈÿÿÑÿøÂÿõéÿûþÿþþÿû˜ÿþõÿò9ù‚ÿ‚ÿ ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿËÿÿÎÿû¹ÿøìÿì˜ÿþõÿûøÿþõÿ‚ÿ‚ÿ£ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿËÿÿÑÿø¶ÿøìÿò•ÿûûÿøøÿþœÿ‚ÿ‚ÿ£ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ‚ÿ‚ÿçÿÿÑÿû°ÿø‚ÿóÿìþÿýÿþtÿ‚ÿ‚ÿ£ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿØÿÿ‚ÿ‚ÿüÿÿÑÿûªÿø‚ÿðÿûûÿùÛû‡ÿ‚ÿ‚ÿ£ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿØÿÿ‚ÿ‚ÿüÿÿÔÿø§ÿø‚ÿäÿüÖûýÿÿ‚ÿ‚ÿ¦ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿØÿÿÿ‚ÿ‚ÿÿÿÿÔÿû¡ÿøìÿò‰ÿöÿÿÿ‚ÿ‚ÿ©ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ÷ÿ ÿÿÿ‚ÿ‚ÿÿÿÿ×ÿû›ÿøòÿøþÿø‚ÿûÿÿÿ‚ÿ‚ÿ¬ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÛÿ ÿÿÿ‚ÿƒÿÿÔÿû˜ÿøõÿûøÿû‚ÿøÿÿÿ‚ÿ‚ÿ¯ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÞÿÿúÿÿ‚ÿ†ÿÿ×ÿû’ÿøøÿûøÿû‚ÿõÿÿÿ‚ÿ‚ÿ²ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÞÿÿúÿÿ‚ÿ†ÿÿ×ÿûÿøûÿøþÿøŒÿêÿÿÿ‚ÿ‚ÿµÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍúÿÿúÿÿ‚ÿ‰ÿÿ×ÿû‰ÿøûÿò‚ÿìÿÿÿ‚ÿ‚ÿ¸ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿáÿÿôÿÿ‚ÿŒÿÿ×ÿû°ÿûÝÿøøÿû‚ÿæÿÿÿ‚ÿ‚ÿ»ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿáÿÿôÿÿ‚ÿŒÿÿÚÿû³ÿïàÿø‚ÿ×ÿÿÿ‚ÿ•ÿ+ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿáÿÿôÿÿ‚ÿÿÿ×ÿû³ÿûûÿûÝÿø‚ÿüÿýÿòñÿ ÿÿÿÿ‚ÿªÿ(ÿÿÿÿÿÿÿÿÿÿÿÿÿÈÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍÿÿîÿÿ‚ÿ’ÿÿÚÿû°ÿþõÿûÝÿø‚ÿÿÿýÿïîÿÿÿÿÿÿÿÿÿ‚ÿÎÿÿÿÿÿÿÿÿÿ§ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿäÿÿîÿÿ‚ÿ’ÿÿéÿûøÿû°ÿþõÿûÚÿøƒÿÿûøÿûßÿÿÿÿÿÿÿÿÿÿ‚ÿøÿ+ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¡ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿçÿÿëÿÿ‚ÿ•ÿÿìÿæ°ÿûûÿûÔÿõ‰ÿÿûõÿþÐÿ(ÿÿÿÿÿÿÿÿÿÿÿÿÿ¬ÿ+ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‰ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿçÿÿèÿÿ‚ÿ˜ÿÿìÿûûÿõ­ÿïÎÿøìÿõªÿøûÿûéÿòïÿõ}YÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿïÎʱæÿÿÿÚÿòÚÿòÝÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿd}ÿèÿÿ‚ÿ˜ÿÿþÿõþÿûõÿø‚ÿäÿõõÿïªÿïéÿïòÿïîÿ:ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòÿì×ÿìàÿìàÿû‚ÿ‚ÿúÿû‚ÿ‚ÿçÿåÿÿÿ‚ÿžÿÿþÿéõÿûÑÿû’ÿõûÿûøÿûªÿõéÿûøÿûõÿûøÿû¤ÿûøÿû×ÿûøÿûàÿûøÿûàÿû‚ÿ‚ÿúÿû‚ÿ‚ÿçÿâÿÿ‚ÿžÿÿöûÿûþÿûûÿø×ÿï•ÿõþÿþõÿû³ÿÖÿûøÿûõÿûõÿþ¤ÿûøÿû×ÿûøÿûàÿûøÿûàÿû‚ÿ‚ÿúÿû‚ÿ‚ÿçÿâÿÿ‚ÿžÿÿùõÿþþÿï×ÿøûÿûÿòûÿûƒÿøûÿûòÿûûÿû¤ÿûøÿû×ÿûûÿøàÿûøÿûàÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿd}ßÿ‚ÿžÿûÿûûÿûòÿû×ÿûøÿû‰ÿìõÿø•ÿïòÿï¡ÿòÔÿïÝÿïÝÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿÿßÿÿ‚ÿ¤ÿÿûÿïõÿûÔÿûøÿû†ÿòøÿï•ÿøéÿõ›ÿøËÿøÔÿøÚÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿÿßÿÿ‚ÿ¤ÿÿøÿìûÿûÔÿøþÿø‚ÿÿÿøøÿûøÿûËÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿÿÜÿÿ‚ÿ§ÿÿõÿøþÿøþÿûÑÿò‚ÿùÿìøÿûÑÿùÃþ‚ÿ‚ÿšÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿ0§Üÿÿ‚ÿªÿÿòÿûøÿõ‰ÿõ¶ÿòøÿûãÿçßþ‚ÿ‚ÿšÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿÿÜÿÿ‚ÿªÿÿòÿûøÿõŒÿï³ÿéìÿæûÿÿû‚ÿ‚ÿÿû‚ÿÃÿéÑÿûÝÿòøÿò‚ÿíÿïàÿþÃùßÿ‚ÿªÿÿòÿøþÿòŒÿûûÿû­ÿÑæÿòïÿòÿò‚ÿÉÿû‚ÿÃÿøûÿøÑÿûàÿìþÿøþÿøÎÿõãÿõÚÿûûÿûãÿûûþÿøâÿÿ‚ÿ°ÿÿìÿìŒÿûõÿûªÿãÝÿìøÿõþÿø•ÿøþÿø‚ÿÌÿû‚ÿÃÿþïÿþæÿæàÿàûÿøÝÿæûÿÝþÿïþÿòõÿûìÿõûþ¹þÿûûÿøñÿÿ‚ÿ°ÿÿæÿþûÿû‰ÿûûÿûªÿïÎÿÔþÿû•ÿûøÿû³ÿï­ÿû‚ÿÃÿøûÿøæÿæàÿø~ÿÿÖʽÈÃÃïÖÁÀÃÒÿÿÿÿÿÿÿÿÿÿßÃÒ‘ˆ¦–œóŒÿÚŒ¡–‰¡–Šk¨¡Œ¨‘¥‹Ž¨Œš‘®‘¬‘ÿÿÿÿ‘óÿÿÿÿÿÿ®‘¥ŠœÖóþÿï÷ÿÿ‚ÿ°ÿÿÝÿû‰ÿï­ÿûøÿûÎÿ¨þûÿ¿­ÿûøÿûÚÿž×ÿû‚ÿÃÿéÑÿûàÿõ~*IIF€IdIOW[”Oe””””””””ŠIxxLHS”S`OxIq€G“’·ERh”ÿzETÿ\[t¥dE€”Š‚‘¬Ðÿ¾–ÿÿÿÿÿÿÆœÿ©TE1êûÿûôÿÿ‚ÿ³ÿÿàÿûƒÿõªÿûõÿþÎÿøþÿøþÿûþÿ‚‡°ÿû‚ÿ‚ÿúÿûÝÿ‚„þÿõþÿûôÿÿó‚ÿÃÿYâùãÿû‚ÿŸÿøûÿûËÿòûÿøþÿòÑÿ•Ñÿûþÿþþÿûþÿû³ÿû‚ÿ‚ÿúÿûÚÿþ~ãÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿïÆÿÛÖá¼ÖͽåúÃÿéÎú¿ôÁk½ÖÖ½ÛÿÊéÃÄÍÁ¾çÃÇÍÊÏôÿÿÿÿÿÿÿÿÖÖÿÊåß®þ’âôÿÒð‚ÿÉÿþ˜Ðöéÿû‚ÿ™ÿïÅÿþòÿïƒÿû³ÿûþÿõþÿû³ÿû‚ÿ‚ÿúÿû×ÿàþÿøæÿæûÿÎN4½cE]K`K½ÿK¥ÿÿÿÿÿÿÿÿ½K”…LGôêþÿøõÿþâÿûÿû‚ÿÌÿûÿÿþÿûéÿû‚ÿ–ÿõËÿåÿõ‚ÿ«ÿæ°ÿû‚ÿ‚ÿúÿûÎÿòþÿòãÿéøÿÝþÿÝûÿûæÿòÿóþÿòòÿþ˜ÿøÿþ‚ÿÌÿþ&ÿûÿûéÿû²ÿÿÿ‚ÿ«ÿ‚ÿ‚ÿÿÿé°ÿû‚ÿ‚ÿúÿû‚ÿ½ÿûøÿøøÿûÖÿþÿæòÿþ&ÿûÿû‚ÿÌÿþtÿûÿûìÿûÁÿ"ÿÿÿÿÿÿÿÿÿÿÿ‚ÿ´ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿºÿàÓÿ&°þÿììÿþæmö‚ÿÉÿ§‡óìÿûÄÿÿÿÿÿÿÿ÷ÿ ÿÿÿÿ‚ÿÌÿûõÿýÿø‚ÿ‚ÿ£ÿû‚ÿ‚ÿúÿû‚ÿ·ÿõþÿõÐÿÿþÿéìÿ°·ù‚ÿÆÿý!öéÿûÇÿÿÿßÿ ÿÿÿÿ‚ÿÛÿïøÿò‚ÿ‚ÿ¦ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿÿþÿøøÿûëÿÿÿ‚ÿÅÿÿàÿûÊÿ ÿÿÿÖÿ ÿÿÿÿ‚ÿáÿûûÿûûÿûûÿø‚ÿ‚ÿ©ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿÿûÿìèÿÿ‚ÿÅÿÿàÿûÍÿÿÿÇÿÿÿ‚ÿùÿõøÿþõÿûþÿûøÿû•ÿõ‚ÿ¢ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿQŒûÿïåÿÿ‚ÿÅÿÿàÿûÐÿÿÿÁÿÿÿ‚ÿÿÿïûÿûøÿûþÿ¨þøÿû§ÿûøÿï°ÿû‚ÿüÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿÿûÿìèÿÿ‚ÿÈÿÿàÿûÍÿÿ»ÿÿÿ†ÿûøÿûûÿøþÿûûÿøþÿø­ÿïþÿûøÿû¹ÿïƒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿÿûÿìåÿ‚ÿÈÿÿìÿïÐÿÿÿ¸ÿÿÿòÿò§ÿûõÿþøÿòøÿòªÿûûÿõõÿû¼ÿøûÿûƒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿçÿûÿøþÿøåÿÿ‚ÿËÿÿïÿøþÿøàÿõýÿÿ²ÿÿÿøÿøþÿøªÿûøÿû‚ÿùÿûøÿõûÿø¼ÿûøÿûƒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿwmûÿìåÿÿ‚ÿËÿìÿûøÿûãÿò9ÿÿ¯ÿÿÿûÿûøÿû§ÿïãÿšÿûøÿé¹ÿûøÿûÊÿÿÿÿÿÿÿÿÿÿ×ÿûžÿæ‚ÿùÿû‚ÿ‚ÿçÿÿþÿìåÿÿ‚ÿËÿìÿûûÿøãÿûûÿþ¢Ú©ÿÿÿþÿûøÿû¤ÿõàÿÛÿÿÿÿÿÿÑÿøþÿøþÿõ³ÿûþÿø÷ÿIÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿçÿÿþÿûþÿõâÿÿ‚ÿÑÿÿìÿøþÿøãÿþ÷ÿì6¦ÿÿÿöûÿû‚ÿöÿáÿ+ÿÿÿÿÿÿÿÿÿÿÿÿÿÿãÿò¡ÿ;½¡»¿ìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­ÿûÿþ‚ÿðÿû‚ÿ‚ÿçÿÿþÿïøÿìýÿÿ‚ÿÑÿÿøÿõþÿòïÿøûÿûúÿtü£ÿÿÿðªÿõ×ÿíÿÿÿÿÿÿèÿ%ÿÿÿÿÿÿÿÿÿÿÿÿ—ÿÿÿÿÿÿÿ‚ÿùÿû•ÿøþÿû‚ÿùÿû‚ÿ‚ÿèÿQŒÿøÿøûÿãýÿÿ‚ÿ×ÿÿÿûÿïþÿøòÿïþÿø”èüÿÿÿöªÿïÍÿÿÿÿÿÿÿÍÿÿÿÿÿÿÿÿÿÿÿÇÿ(ÿÿÿÿÿÿÿÿÿÿÿÿÿ‚ÿíÿû•ÿøþÿû‚ÿùÿû‚ÿ‚ÿçÿÿûÿ×þÿûÿÿ‚ÿ×ÿÿøÿûûÿûûÿûòÿûûÿøþÿûÊ–—ÿ ÿÿÿ§ÿûûÿûÍÿÿÿ©ÿ^ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‚ÿáÿû•ÿþþÿþûÿþ‚ÿùÿû‚ÿ‚ÿçÿÿþÿøþÿàþÿûÿÿ‚ÿ×ÿÿûÿûõÿþûÿõøÿûøÿûúÿÿ‘ÿ ÿÿÿ­ÿûõÿþÐÿÿ ÿÿÿÿÿÿÿÿÿÿ‚ÿ¢ÿû•ÿøþÿû‚ÿùÿû‚ÿ‚ÿäÿþÿûûÿàþÿûýÿÿ‚ÿÝÿÿõÿþøÿûþÿïûÿûøÿûúÿÿŽÿÿÿªÿþøÿûÚÿùÿÿ‚ÿ‚ÿ£ÿû•ÿï‚ÿùÿû‚ÿ‚ÿèÿÍÿþÿûøÿÚýÿÿ‚ÿÝÿÿõÿæûÿûûÿïúÿÿˆÿÿÿ­ÿïÐÿÿ‚ÿ‚ÿ£ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿäÿÿùûÿÚúÿÿ‚ÿÝÿÿäþÿøøÿþøÿòúÿÿ…ÿÿÿ­ÿõÍÿ¡ÿò‚ÿÿû’ÿþþÿø‚ÿùÿû‚ÿ‚ÿäÿÿþÿàûÿûôÿÿ‚ÿãÿÿöþÿøõÿøûÿûåÿÿ‚ÿûÿÿ‚ÿòÿÿ¤ÿøþÿø‚ÿ“ÿû•ÿûþÿø‚ÿùÿû‚ÿ‚ÿäÿÿûÿûûÿòõÿû÷ÿÿ‚ÿãÿÿùøÿûõÿìåÿÿ‚ÿûÿÿÿ‚ÿüÿüÿÿ¤ÿûøÿû‚ÿ“ÿû•ÿûûÿû‚ÿùÿû‚ÿ‚ÿèÿÍÿÿïÿûþÿûõÿû÷ÿÿ‚ÿãÿÿùøÿûõÿïåÿÿ‚ÿõÿÿÿ‚ÿÿÿüÿÿ¤ÿûøÿû‚ÿ“ÿû•ÿûûÿû‚ÿùÿû‚ÿ‚ÿäÿÿïÿûûÿûûÿûñÿÿ‚ÿæÿÿöûÿûõÿûÙÿÿ‚ÿòÿ ÿÿÿ†ÿÿÿÿ¡ÿûûÿø‚ÿ“ÿû•ÿï‚ÿùÿû‚ÿ‚ÿäÿÿìÿæñÿÿ‚ÿéÿÿûÿïøÿûÙÿÿ‚ÿìÿ ÿÿÿÿŒÿÿÿÿ¡ÿï‚ÿÿû•ÿï‚ÿùÿû‚ÿ‚ÿáÿïÿéëÿÿ‚ÿéÿÿõÿûòÿûÙÿÿ‚ÿãÿ ÿÿÿŽÿÿ›ÿû‚ÿŠÿû’ÿþþÿø‚ÿùÿû‚ÿ‚ÿèÿÍýÿòÿõþÿûâÿÿ‚ÿìÿÿàÿûÜÿÿ‚ÿÝÿ ÿÿÿ‘ÿ‚ÿ‚ÿšÿû•ÿûþÿø‚ÿùÿû‚ÿ‚ÿáÿÿõÿûþÿûþÿþâÿÿ‚ÿïÿÿàÿûÙÿÿ‚ÿ×ÿ ÿÿÿšÿÿ‚ÿ‚ÿšÿû•ÿûûÿû‚ÿùÿû‚ÿ‚ÿáÿÿõÿìâÿÿ‚ÿïÿÿàÿûÜÿÿ‚ÿÎÿ ÿÿÿ¡ÿQ®ÿ‚ÿ‚ÿšÿû•ÿûûÿû‚ÿùÿû‚ÿ‚ÿáÿÿòÿïàÿè§‚ÿòÿÿàÿûÜÿÿ‚ÿçÿøëÿ ÿÿÿ©ÿÿÿ‚ÿ‚ÿšÿû•ÿï‚ÿùÿû‚ÿ‚ÿèÿÍýÿÿïÿõãÿûtœù‚ÿûÿÿàÿûÙÿÿ‚ÿêÿòëÿ ÿÿÿ²ÿ ÿÿÿ‚ÿ‚ÿ—ÿû•ÿï‚ÿùÿû‚ÿ‚ÿáÿÿéÿûãÿûÿÿù‚ÿûÿÿàÿûÜÿÿ‚ÿêÿøþÿøèÿÿ»ÿ ÿÿÿÿ‚ÿ‚ÿ‘ÿû†ÿþ‚ÿùÿû‚ÿ‚ÿáÿÿìÿõæÿþúÿÿù‚ÿþÿÿàÿûÜÿÿ‚ÿêÿûøÿûèÿ ÿÿÿÿÙÿÿÿÿÿÿÿÿÿÿøÿ‚ÿ‚ÿ–ÿû•ÿï‚ÿùÿû‚ÿ‚ÿÞÿïÿïéÿûýÿÿù‚ÿÿàÿûÙÿÿ‚ÿêÿûøÿûâÿÿÿÿÿÿÿýÿÿÿúÿÿÿÿÿÿÿÿÿìÿ‚ÿ‚ÿ–ÿû•ÿøþÿû‚ÿùÿû‚ÿ‚ÿèÿÍúÿïÿûþÿõìÿøÿÿ)‚ÿþÿÿàÿûÜÿÿ‚ÿçÿøþÿøÙÿ%ÿÿÿÿÿÿÿÿÿÿÿÿÚÿ‚ÿ‚ÿ–ÿû•ÿþþÿûþÿþ‚ÿùÿû‚ÿ‚ÿÞÿÿòÿþûÿòìÿøÎó‚ÿÿÝÿûÜÿÿ‚ÿäÿò‰ÿ‚ÿ‚ÿ–ÿû•ÿïÂÿéÑÿû‚ÿ‚ÿÞÿÿòÿûþÿïåÿÿ‚ÿÿïÿøøÿûßÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿîÿû•ÿûþÿøÂÿøûÿøÑÿû‚ÿ‚ÿÞÿÿòÿïþÿûâÿÿ…ÿÿõÿïþÿûÜÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿëÿû’ÿþ¶ÿþïÿþÑÿû‚ÿ‚ÿèÿÍúÿÿïÿòûÿûåÿÿˆÿÿòÿûøÿõõÿïúÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿëÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿÞÿÿéÿïßÿÿ‹ÿÿòÿûøÿõõÿûûÿûýÿÿ‚ÿ‚ÿÖÿ‚ÿ‚ÿ–ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿÞÿÿéÿïßÿÿ‹ÿÿòÿûøÿøõÿûõÿþýÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿèÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÛÿæÿõÜÿÿŽÿÿïÿéõÿûõÿþýÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿèÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ÷ÿãÿøÙÿÿ‘ÿÿìÿìòÿûûÿûÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿåÿû‚ÿÃÿþþÿïÑÿû‚ÿ‚ÿÛÿÿïÿéßÿÃóÿÿÝÿûòÿïÿÿ‚ÿ‚ÿÓÿ‚ÿ‚ÿ–ÿû‚ÿÃÿþþÿïÑÿû‚ÿ‚ÿÛÿÿòÿããÿþòCö ÿÿÝÿûéÿûýÿÿÿ‚ÿ‚ÿÓÿ‚ÿ‚ÿ–ÿû‚ÿÃÿþþÿþõÿþæÿæ‚ÿ‚ÿÛÿÿòÿûþÿìãÿþöÿûÿû£ÿÿõÿþìÿûßÿÿ‚ÿ‚ÿÐÿ‚ÿ‚ÿ–ÿû‚ÿÃÿþþÿûûÿûÑÿû‚ÿ‚ÿèÿÍ÷ÿÿøÿÝãÿþÿÿûÿû¦ÿÿøÿïõÿûßÿÿ‚ÿ‚ÿÐÿ‚ÿ‚ÿ–ÿû‚ÿÃÿõþÿøÑÿû‚ÿ‚ÿÛÿÿøÿÝãÿûÿÿù£ÿÿøÿûûÿûøÿûßÿÿ‚ÿêÿò‚ÿ‚ÿ‚ÿ†ÿû‚ÿ½ÿûþÿûÎÿû‚ÿ‚ÿÛÿÿûÿÝàÿû‡®ù¦ÿÿÿûÿûøÿûøÿûßÿÿ‚ÿíÿì‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿØÿûÿûøÿìÝÿþQñü£ÿÿøÿûøÿûøÿûßÿÿ‚ÿíÿûøÿû‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿèÿÍôÿûÿøûÿûøÿûÖÿÿ£ÿÿõÿûþÿòþÿûßÿÿ‚ÿíÿûøÿû‚ÿöÿ‚ÿ‚ÿ–ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿØÿÿþÿìøÿõÜÿÿ¦ÿÿòÿãßÿÿ‚ÿêÿûøÿû‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿØÿÿûÿïûÿïÜÿÿ©ÿÿìÿûøÿøßÿÿ‚ÿçÿï‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿØÿÿøÿõøÿìßÿÿ¬ÿÿéÿûøÿøßÿÿ‚ÿäÿø‚ÿ‚ÿ‚ÿƒÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿèÿÍôÿÿéÿïþÿûÜÿÿ¯ÿÿéÿøûÿûßÿÿ‚ÿ‚ÿÇÿ‚ÿ‚ÿ–ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿØÿÿìÿãÜÿÿ²ÿÿãÿïßÿÿ‚ÿ‚ÿÇÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÕÿÿïÿûþÿïÖÿÿ¸ÿÿÿàÿòßÿÿ‚ÿ‚ÿÇÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÕÿÿïÿûûÿõÓÿÿ¸ÿÿàÿïâÿÿ‚ÿ‚ÿÄÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍñÿÿÿòÿûøÿõÓÿÿ¾ÿÿàÿøþÿøõÿòýÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÖÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÒÿÿïÿòþÿûÓÿÿÿÄÿÿÿàÿûûÿøøÿøþÿøÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÖÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÒÿÿìÿøûÿûÐÿÿÄÿÿÝÿûûÿøøÿûøÿûÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÖÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÏÿÿÝÿûÐÿÿÊÿÿÚÿìøÿûøÿþRÿ‚ÿ‚ÿÁÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍëÿÿÝÿûÐÿÿÍÿÿÿ×ÿòõÿûûÿûÐÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÓÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÏÿÿãÿõÍÿÿÐÿÿÎÿûïÿòÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÓÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÌÿæÿï×ÿûÿÿÿÖÿÿÎÿûþÿûòÿøÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÐÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÌÿÿìÿûøÿûÝÿòÿÿÿÜÿÿÿÎÿìîÿÿ‚ÿ‚ÿ¾ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍèÿÿìÿûøÿøãÿøþÿøÿÿÜÿÿËÿõþÿøñÿÿ‚ÿ‚ÿ¾ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÉÿìÿûøÿøãÿûøÿûýÿ ÿÿÿÿëÿÿËÿõøÿûñÿ‚ÿ‚ÿ»ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÉÿÿïÿéãÿûøÿûýÿÿÿÿÿÿÿÿúÿ ÿÿÿËÿõøÿûôÿÿ‚ÿ‚ÿ»ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÉÿÿìÿòþÿûæÿøþÿøîÿÿÿÿÿÿÿÿÈÿòþÿøôÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÍÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍåÿÿÿïÿòþÿûãÿòßÿÂÿûûÿòñÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÍÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÆÿÿòÿæ‚ÿðÿûßÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÆÿÿòÿûøÿûþÿû‚ÿóÿûßÿÿ‚ÿ‚ÿ¸ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÃÿøÿòûÿûþÿû‚ÿöÿûÜÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍßÿÿûÿïþÿûþÿû‚ÿÿÿòßÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÇÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÃÿÿþÿûûÿïþÿûƒÿïßÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÇÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÃÿÿÿùøÿøõÿû†ÿûþÿøâÿÿ‚ÿ‚ÿ²ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÀÿÿöûÿûòÿû†ÿþûÿõåÿÿ‚ÿ‚ÿ²ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍÜÿÿþÿïøÿòìÿò­ÿûþÿøâÿÿ‚ÿ‚ÿ²ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ½ÿÿûÿûõÿïìÿï°ÿïâÿÿ‚ÿ‚ÿ²ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ½ÿÿéÿûûÿøòÿûøÿû­ÿõßÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÄÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ½ÿÿéÿþõÿûòÿûøÿûªÿûßÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÁÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍÖÿéÿûûÿøòÿûøÿû­ÿûÜÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÁÿû‚ÿÃÿéÑÿû‚ÿ‚ÿºÿÿøÿøþÿéòÿï­ÿûÜÿÿ‚ÿ‚ÿ¯ÿ‚ÿ‚ÿ–ÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿºÿÿûÿòþÿõþÿûïÿõªÿûßÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¾ÿû‚ÿÃÿþïÿþÑÿû‚ÿ‚ÿºÿÿÿöþÿøòÿûÿûÜÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¾ÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿèÿÍÓÿÿùøÿûïÿû’ÿûÜÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¾ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿ´ÿùøÿûïÿû•ÿòâÿÿ‚ÿ‚ÿ¬ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ´ÿZùþÿøïÿû•ÿìëÿÿ‚ÿ‚ÿ©ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ´ÿÿðéÿû˜ÿøûÿûëÿÿ‚ÿ‚ÿ©ÿ‚ÿ‚ÿ–ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿèÿÍÐÿÿÚÿû›ÿøõÿûîÿÿ‚ÿ‚ÿ©ÿ‚ÿ‚ÿ–ÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿ±ÿÿéÿþõÿûžÿøõÿûîÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¸ÿû‚ÿÃÿþïÿþÑÿû‚ÿ‚ÿ±ÿÿïÿòûÿû¡ÿûþÿûûÿûîÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¸ÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿ±ÿÿòÿøþÿøûÿû¤ÿûþÿïîÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¸ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿèÿÍÍÿÿòÿõþÿûûÿûÑÿøÝÿûÙÿÿ‚ÿ‚ÿ¦ÿ‚ÿ‚ÿ–ÿû‚ÿÿæ‚ÿ‚ÿ®ÿÿøÿéøÿû×ÿòãÿûÙÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿµÿû‚ÿÿæ‚ÿ‚ÿ®ÿÿøÿéøÿûÚÿøûÿûæÿûÙÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿµÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ®ÿÿøÿþþÿòòÿûÝÿûøÿûéÿûÖÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿµÿû‚ÿÃÿéÑÿû‚ÿ‚ÿèÿÍÇÿÿûÿéõÿûÝÿûøÿûìÿøÖÿ‚ÿ‚ÿ ÿ‚ÿ‚ÿ–ÿû‚ÿÀÿûÂÿû‚ÿ‚ÿ«ÿÿûÿéõÿøàÿøþÿøìÿûÖÿÿ‚ÿ‚ÿ ÿ‚ÿ‚ÿ–ÿû‚ÿÀÿûÂÿû‚ÿ‚ÿ¨ÿøÿìòÿûÝÿòìÿûÓÿÿûÿï‚ÿ‚ÿ¸ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ¨ÿÿûÿûøÿûòÿø×ÿòøÿøÓÿÿûÿûûÿû‚ÿ‚ÿ¸ÿ‚ÿ‚ÿ–ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿèÿÍÄÿÿøÿòìÿûÚÿìûÿûÓÿÿûÿûõÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿ¨ÿÿõÿøæÿûÝÿûøÿûþÿøÓÿÿûÿûõÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿ¥ÿÿÔÿûÝÿûøÿòÓÿÿõÿûûÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿ¥ÿÿéÿõõÿûàÿûøÿõéÿõôÿÿõÿï‚ÿ‚ÿ¸ÿ‚ÿ‚ÿ–ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿèÿÍÁÿÿìÿïøÿøãÿæìÿï÷ÿÿïÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÄÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿ¢ÿÿïÿûûÿøøÿøàÿïìÿûøÿû÷ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ©ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿ¢ÿÿïÿþõÿûõÿøÚÿûéÿûøÿûúÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ©ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ¢ÿÿïÿûûÿøòÿøàÿøéÿûøÿûúÿÿ‚ÿ‚ÿ—ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ»ÿÿòÿïìÿõéÿøãÿïúÿÿ‚ÿ‚ÿ—ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿŸÿÿïÿõéÿòïÿøÝÿõúÿÿ‚ÿ‚ÿ”ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿœÿÿÑÿøþÿòþÿõÇÿÿ‚ÿ‚ÿ”ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿœÿÿÑÿûøÿìÁÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¦ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿ͸ÿÿÑÿûøÿûûÿþ¾ÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ£ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ™ÿÿÔÿøþÿøµÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ£ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÿþ‘|ùïÿòûÿïïÿòõÿòîÿÿ‚ÿ‚ÿ‘ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ ÿûÙÿùòÿøþÿïþÿøòÿøþÿøûÿøþÿûñÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿͼÿûÿÿþÿûõÿûøÿõøÿûòÿûøÿûûÿûøÿûôÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ ÿþúÿÿùõÿûøÿõøÿûòÿûøÿûûÿþõÿûôÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ ÿûýÿÅüòÿûûÿòûÿøòÿøûÿûûÿûûÿûôÿÿ‚ÿ‚ÿ‹ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ ÿømÿ6òÿÚìÿïûÿïôÿÿ‚ÿ‚ÿ‹ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿͶÿþ6ÿÿìÿøøÿõæÿøòÿï÷ÿÿ‚ÿ‚ÿ‹ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ“ÿÿéÿþõÿûÈÿûøÿûýÿÿ‚ÿ‚ÿˆÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÿÿìÿûûÿûÅÿûøÿûýÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿšÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÿÿìÿïÅÿûøÿûýÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿšÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿͬÿÿéÿõÂÿìÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ—ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÿÿËÿòãÿòýÿÿ‚ÿ‚ÿ…ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÿÿÎÿøþÿûÐÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ—ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÿÿÎÿûøÿûÖÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ”ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿͦÿÿÑÿþõÿûÖÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ”ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿŠÿÿÑÿûûÿøÖÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿŠÿÿÑÿïÖÿÿ‚ÿ‚ÿ‚ÿþÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‡ÿÿÎÿûÐÿÿ‚ÿ‚ÿ‚ÿþÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿÍ£ÿÿšÿÿ‚ÿ‚ÿ‚ÿûÿ‚ÿ‚ÿ–ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ„ÿÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿŽÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ„ÿÿÿ£ÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‹ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ„ÿÿÿ£ÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‹ÿû‚ÿ‚ÿúÿ‚‚áqšà$¨ð$‚‚‚ô‚‚‘‚ÿ‚ÿ‚ÿªÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿþ‚ÿ±ÿþ‚ÿ´ÿþ‚ÿ±ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÒÿûøÿò‚ÿÒÿòûÿõ‚ÿÒÿïûÿõ‚ÿÌÿûøÿò‚ÿÒÿòûÿõ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿúÿõøÿûþÿû‚ÿÒÿûþÿûþÿï‚ÿÕÿûûÿûþÿï‚ÿÒÿøøÿûþÿû‚ÿÕÿûòÿï‚ÿ‚ÿ‚ÿ‚ÿ‚ÿýÿõøÿûþÿû‚ÿÕÿûøÿþþÿûûÿû‚ÿÕÿþøÿûþÿûûÿû‚ÿÒÿøøÿûþÿû‚ÿÕÿïþÿûûÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿôÿþøÿþøÿþ‚ÿÉÿûþÿþõÿþ‚ÿÏÿõþÿþõÿþ‚ÿÕÿûþÿþøÿþøÿþ‚ÿÕÿïþÿþõÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿôÿþøÿþøÿþ‚ÿÏÿõþÿþõÿþ‚ÿÉÿûþÿþõÿþ‚ÿØÿûûÿþøÿþøÿþ‚ÿÉÿûþÿþõÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿôÿþøÿûþÿû‚ÿÒÿøøÿûûÿû‚ÿÕÿûøÿþþÿûûÿû‚ÿØÿìþÿûþÿû‚ÿÉÿûþÿûûÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿôÿþøÿûþÿû‚ÿÕÿøõÿï‚ÿÕÿøþÿûþÿï‚ÿÌÿþøÿûþÿû‚ÿÕÿïþÿï‚ÿ‚ÿ‚ÿ‚ÿ‚ÿôÿþøÿò‚ÿÕÿïþÿï‚ÿÕÿïþÿï‚ÿÌÿþøÿò‚ÿÕÿïþÿï‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÎÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿšÿþûÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿšÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ”ÿøþÿþûÿéûÿò‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÍÿþûÿþûÿòþÿûûÿûþÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÍÿþûÿþûÿþûÿþøÿþûÿï‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÐÿþûÿþûÿþûÿþøÿþûÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÁÿþûÿþûÿþûÿþøÿþûÿûþÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÍÿûþÿþûÿþûÿþøÿþûÿò‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¹ÿ€ endstream endobj 9 0 obj 24004 endobj 10 0 obj /DeviceRGB endobj 11 0 obj << /Filter [ /RunLengthDecode ] /Width 106 /Height 76 /ColorSpace 10 0 R /BitsPerComponent 8 /Length 12 0 R >> stream ‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚ » <_TÙ0D‚Å`Ÿ»ÀªÎûøÙÜÈÙ‚È ÍÍÍÍÄ ÿÿ³ùÿö<â ÿÿÿÿ‚Ë ÍÍÍÍÇ ÿÿÿæù ÿÿÖAå ÿÿÿÿ‚Ë ÍÍÍÍÇ ÿÿÿÿÿöÿÿÕ¼Éÿî ÿÿÿÿ‚Ë ÍÍÍÍÊ ÿÿÿÿòðÿÿÿÿÿÿñ ÿÿÿÿ‚Ë ÍÍÍÍÊ þþÿþêÿÿÿÿýÿ«÷ ÿÿÿÿ‚Ë ÍÍÍÍÍ ÁÿªGªç#ÿÿ·Œºÿÿÿÿ™fX§S¬‚Ë ÍÍÍÍÍùø~ü Þ‚ÿÿÿÿãË4±N‚Ë ÍÍÍÍÍÕÝgÒÿÿÿÿ•kÐ/ÿ‚Ë ÍÍÍÍÐ ÿÿÌ!Æ #\½8ÿÿ‚Ì ÍÍËÿÿÒ ÿÿýÄ {ñë‚ÌÍÿ LÿÿÿÕ ÿÿÿùÄ 4d6þ·ÿ‚ÏÏÿÍ(ÿÿÿÕ ÿÿÿfÇøÿƒpþÿÿÿÛÿÿÿÿÿÿÿºÕßÿÿÿÿÛ ÿÿÿiÄFóì@íîì÷ÎûÿÿÿÿÿòåþÿþæùÿûÏŠÊ+Ð&ÞÿÿÿÿÛýüÁêÙ&þ3+$G|VÂÿÿÿÿÿjÉÿ¤)ü‡ìéáöÿÿÿÛàý0¾P‘é ÿÿÿ™4 %%‚ÿØ90u56ia"6ÿoýâÿÿÞ ÿÿÿ¾&&‚ö47fl‚£…W^gYYafu˜«q*ýÊ,ÞÕ‘–ð ÿÿÿÿÙS‚ù7ÿ_ZQb±`3V=59,1F§ªs9ú“HÞÙ~?öÿÿÿÿÿÿ÷ÜGM‚Éî ÿc úøÚÿä ÿÿëró¼ÿÿÿÿÿÿ¥ß Ë ÿÿÿÿÿÚÿ(hú Qêÿÿçÿÿüðtß×ü ÿÿÿ  âFNXyÿÿÿÿü) ÿÿÿÛThúÿÿÿÿÿÿ ®Aÿ>“ùmÿÿçûÿó ?¢ngùÿü Ñ£z‚ëI3ÿÄ;ÿÿÿÿÿÿÇÃèúÿÿÿÿÚÖÿÿÿÿÿÿÿ Ç̓­ùLÿÿç¼"ö Èÿúóÿÿÿÿÿÿð gíÊ5ÿÿóºÿÿÿÿÿÿ‚óÎÐéOù =ÿÿÿí ÿÿÈ ö ÿÿÿÿðÿÿÿÿÿÿÿö Q®m’À?ÿÿ‚ÌÍÿá‡ù ÿŽg“í ÿÿÿ÷ù eÿÿÿêü 4÷ÿÿÿÿÿÿêÔ+Ä;‚ËÍÿØ!ÚöSŠ«íÿÿ±ö  ÿÿÿÞÿÿÿÿÿÿ­Réã‚ËÍÿÕ"ûö ¨ùõÿó ÿÿÿ öWúÿÛÿÿÿÿÿïÿÿÿ‚ËÍÿÅ0øö]œkðÿÿÙóƒüÿÊ ÿÿÿÿ‚ËÍÿ½Iœö $.u1 ù ÿÿÿ6ö ïúÿÿÊ ÿÿÿÿ‚Ë ÍøfÌö €ôýýùÿÿÿö ÿûÿÿÇ ÿÿÿÿ‚Ë ÍϾÿÏöeÿÿÿÿÿÿÿÿóƒÿÿÇ ÿÿÿÿ‚Ë ÍÍÿÿÿö¹äËÿÿÿ»ö ‚ÿÿÇ ÿÿÿÿ‚ËÍÍæÿÿ=ó¦ÿÿÿÿYö ‡í´ÿÇ ÿÿÿÿ‚ËÍÍÎÿÿlð LÿÿÿžóôÿÿÄ ÿÿÿÿ‚ËÍÍÍñ ÿvØ ÿÿÿÿÄ ÿÿÿÿ‚ËÍÍͲ>ÿÔÛÿÿÿÁ ÿÿÿÿ‚ËÍÍÍÍ…Ê0ÛÿÿÿÁ ÿÿÿÿ‚ËÍÍÍÍéé’ÛÿÿÿÁ ÿÿÿÿ‚ËÍÍÍÍÿÿîášÿ¤¾ ÿÿÿÿ‚ËÍÍÍÍÿÿòä¤ÿ©» ÿÿÿÿ‚Ë ÍÍÍÍýÿÿÀáÞ}» ÿÿÿÿ‚Ë ÍÍÍÍý ÿÿÿç Ôÿ» ÿÿÿÿ‚Ë ÍÍÍÍý 'L¶zçÓÿÿ» ÿÿÿÿ‚Ë ÍÍÍÍ÷^rçÕÿÿ» ÿÿÿÿ‚Ë ÍÍÍÍú ÿ‹éí «ÿÿ» ÿÿÿÿ‚Ë ÍÍÍÍú ÿÿÿÿí `ç}ÿ» ÿÿÿÿ‚ÈAˆñêóíûî²ÍÝ‚Åñ|óy²‚Åî?ó 2¯ ‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚€ endstream endobj 12 0 obj 3380 endobj 13 0 obj endobj 14 0 obj 3380 endobj 15 0 obj << /Type /XObject /Subtype /Image /Name /Ma0 /Filter [ /RunLengthDecode ] /Width 504 /Height 360 /ColorSpace /DeviceGray /BitsPerComponent 8 /Length 16 0 R >> stream ‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚шˆåÿÿúfÌÿÿÝ™þüÿªûÿÿúÿÿûþÿDUþÿÙÿÿ½ÿÿ‚‚Ðÿÿåÿÿû™ÿÿ»»ÿÿîÿÿ»»Ýÿ»ûÿÿúÿÿûþÿˆˆþÿÙÿÿ½ÿÿ‚‚ÒDÿÿ3ÿÿ3݈UÝÿÝfþˆîÿÌ3þˆîîfÿÿüfÿÌ"»ÿˆÿÿÿÿûÿÿúÿÿû ÿÿÝ»»Ýÿÿø™ÿÿÌ3þˆÝÿÌDUÌÿî™UÝÿÝfÿÿû"ÿÿUîÿˆ»ÿÝ3UÝÿÝf™ÿÿÌ3ÿÿ3ÝÿÌ3ûwÝÿÿª3ÿÿ3ÝÿÌ3DÌÿÝDÿÿûˆîÿÌ3ÿÿ3݈ÿÿUîwÝÿÝwþÿÿUî‚‚÷Dþÿ»ÿÿÌÿˆDÿîˆÝÿUˆÿ̈îî"Uÿÿ»îÿÿüÌÿUøÿÿÿÿûÿÿúÿÿû ÿÿ™ÿÿªÿÿø ™ÿÌÌÿÝfÿî»ÿî"Uÿÿ»Ýÿ»DÿîˆÝÿUÿÿû"ÿÿÌÝÿÿÝ»ÝÿÝDÿîˆÝÿU™ÿÌÌÿÝÿÿî»îÿ»üUÿÿ»ÝÿÝÿÿî»îÿ»DÿÿÌÌîÿÿüˆÿ̈îî"ÿÿÌÿˆÿÿÝÿUÿÿ»ÿÿUÿÿÝÿ‚‚õÿÿÿÿˆªÿUDÿÌîÿˆÿˆÌÿffÿÿüÿÿþˆþ» ˆÿÿ»»Ýÿ™ûÿÿúÿÿû ÿÿwÿ33ÿwÿÿø îÌÿÿÌÿUwÿwÌÿfîÿ3ªÿUDÿÌÿÿû"ÿÿ"ÿÿ3ÿÿªÿUDÿÌîÌÿÿÿÿD"ÿÿü™ÿfÿÿÿÿD"ÿÿªÿwwÿÿüîÿˆÿˆÿÿˆÿÿwÌÿffÿÌÿÿw‚‚õÿÿÿÿþîÿUDDÿÿ3ÿÝDDwÿ»ÿÿþÿÿüÿÿþ»þÿ»üÿ»ûÿÿúÿÿû ÿÿ3ÿwwÿ3ÿÿ÷f™ÝÿÿÿÿD"ÿÿþ 3DîÿUDDÿÿÿÿûÿÿÿÿþÿÿîÿUDDÿÿf™ÝÿÿÿÿþÿÿûUˆ»Ýÿÿÿÿþ ÿÿÿÿÿÿý 3ÿÝDDwÿ»ÿÿýÿÿþÿÿþÿÿÿÿ‚‚óÿÿÿÿþúÿDûÿ»ÿÿþÿÿüÌÿUýUÿ»ÿÿöÿÿúÿÿû ÿÿîÿÿø ªÿ݈ÿÿÿÿüÿÿûúÿÿÿûÿÿÿÿþÿÿúÿ ªÿ݈ÿÿÿÿþÿÿü ˆÿÝ»ˆÿÿÿÿþ ÿÿÿÿÿÿýDûÿ»ÿÿýÿÿþÿÿþÿÿÿÿ‚‚óÿÿÿÿþ»ÿDDÿÌD3Ìÿffÿÿü fÿî3"Ìÿ»ÿÿöÿÿúÿÿû ÿÿªîݪÿÿø ÿÿ"ÿÿÌÿU3ˆDÌÿwwˆ"»ÿDDÿÿûÿÿÿÿþÿÿ»ÿDDÿÿ"ÿÿÿÿþÿÿü ÿÿ3ÿÿÿÿþ ÿÿªÿwwÿÿü ÿÌD3ÿÿýÿÿþ ÌÿffÿÌÿÿ‚‚óÿÿ3ÿÿþUÿ̈ªÿªˆÿªˆÌÿwfÿÿ»þÿû ™ÿÿÌ»ÿÿî»ÿÿöÿÿý»ˆÿÿý»fÿÿwÿÿˆÿÿˆÿˆü îÿÌÝÿÿfÿÿ»îÿDUÿÿ»ÝÿÝUÿ̈ªÿªÿÿûÿÿÿÿþÿÿUÿ̈ªÿªîÿÌÝÿÿÿÿþÿÿüÝÿÝ»þÿÿÿþÿÿDÿÿÌÌþÿü ˆÿªˆÌÿwÿÿýÿÿþ Uÿÿ»ÿÿUÿÿ‚‚óÌÿ»ÿÿý fÝÿ݈ˆîÿÌfþˆîÿˆÿÿú fÌÿÿÌD»»ÿÿöûÿ»ûÿˆÿÿ3ÿÿDÿÿˆÿˆü fîîˆîÿfˆÝÿÝUUÌÿÿª"fÝÿ݈ÿÿûÿÿÿÿþÿÿfÝÿ݈fîîˆîÿfÿÿþÿÿü 3Ìÿ݈ÿÿÿÿþ ÿÿUÌÿîˆÿÿûˆîÿÌfÿÿýÿÿýwÝÿÝfþÿÿ‚‚óD3©ˆˆ‚‚‚‰DÝ"‚‚‚‰3"‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚Ž‚D‚D‚DàDUªU»‚ˆ‚ˆÛˆÏ‰ˆ»DªDˆ‚‚Û»‰ˆDªDˆ‚¤U»»‰ˆDªDˆ¤ˆŠ wˆ»»îî»î™U½™‰ˆDªDˆ‚¬wîˆUD"ýUªî™3‚ƈDªDˆ‚®¦ç¯wøfîw÷f™ˆ3‚ÕˆDªDˆ‚¯"ÒïˆD™Ì÷»»"ú™»DfîD‚ÖˆDªDˆ¤ˆDÝÁwþªUöwÝUü3ÝþD»Ðˆ‰ˆDªDˆ‚±fÝ3»Dþˆˆõ3Ì™þD™ýÿ‚ÖˆDªDˆ‚²"î™wþ»UóˆÌ33ÝþDª‚ÖˆDªDˆ‚² »f"îˆUª»ñ UÝUˆ»fˆÝþ3‚؈DªDˆ¤ˆ’U»ýˆˆfï 3̈UˆˆNÌ»ÌÌ"Ô™‰ˆDªDˆ‚´Ý3滪þÌff»Ô»‰ˆDªDˆ‚´ˆˆã™Ì"ÌýÝÔ»‰ˆDªDˆ‚µ"î♪ÝýîÔ™‰ˆDªDˆ¤ˆ”»fà™™»ˆ™ª‚ÚˆDªDˆ‚¶U»Þ»™™ÿÿ™‚ÚˆDªDˆ‚·Ý3Þª™‚ÕˆDªDˆ‚·ˆ™Û™™Ðˆ‰ˆDªDˆ¤ˆ–Ý"ÚÌD"‚؈DªDˆ‚¸f™Ùª»î3‚ÙˆDªDˆ‚¸Ý3×f»‚ÙˆDªDˆ‚¹f»Õî3Ô™‰ˆDªDˆ¤ˆ˜»DÕUÝUÕ»‰ˆDªDˆ‚ºD»Ó3ÝwÖ»‰ˆDªDˆ‚º»UîDw3è»ÌUØ™‰ˆDªDˆ‚»3ÝïÌ»ˆÝˆçU̪‚àˆDªDˆ¤ˆš™fÝ3æˆîU‚áˆDˆÝÿÿÝ™ñDˆ‚¼"Ýî»"þˆwå3̪‚ãˆD»ˆ""ˆ»ñDˆ‚¼™wî»Uþ™UãˆîUÞˆ‰ˆDÂÿûÿñDˆ‚½ÝîDÝUwÝâ3̪‚æˆD»ˆ""ˆ»ñDˆ¤ˆœf™ìD»»™ßwÝU‚çˆDˆÝÿÿÝ™ñDˆ‚¾3î3ì"ˆªwÝ"»ª‚éˆD±fû»ÓÄ‚¾ˆáDDî 3݈Dª»DDà€æu噉ˆDˆªÿÿ™ñuÇ‚¾ìáˆÌ»ðªfþ»‚Ý™ªÝ"ã3ÝÀó÷@滉ˆDÂÿ»™™™ñuǤˆž[ó™ˆð»"þ ˆ÷3fª"»ÿîˆéÌfŸüˆé"߉ˆDÂÿÿýÿñuÇ‚¿Ï·þD»ðªwþÍÍýÿÌfªˆêÝýÄ­îwì"™îøDŠˆDÂÿÌ""îñuÇ‚¿ôþUªð"݈UªµÌþîD»þÝêÿþÝ"™ÝfðD™ÝfˆfŠˆD»ÿîª"݈ñuÇ‚ÀU¯ÝwDÌDï ˆˆf»ˆ"»ˆDªýîꈪ™ªþ"™ÝªˆD"øUˆÌÝfþfˆŠˆDÀ3"fðuǤˆŸ™f"ªî»Ué ™Ý̈î3ˆ™éˆÌ݈üDˆ™Ìî™D3w»îªf"üD»ŠˆDªuÇ‚ÀîÝDî»Ì»Ùf»ÝÝ̈DøÝŠˆDªuÇ‚ÁUªÚD"Õ3ôDªuÇ‚Á™f»3‹ˆDªuǤˆ îU»»™¢ˆU‹ˆDªuÇ‚ÂUªUÌDˆÌùDˆw¯™ˆˆ‹ˆDªuǂ™f»Dþ»DûˆÌwˆÝ3ú"ffê3Ó»Dª‹ˆDªuÇ‚Âî»þˆfü3Ýfª3DwªÝ̈™Ý™Dîˆî»îUÕ»"»‹ˆDªuǤˆ¢ Uª™ˆÝ"üDˆýî™Ý»ˆDþf»Ýˆòf»3Ý"Ö™ÿ‹ˆDªuǂÙfÌ»ˆÝfû3ÝþD¿™™÷"ˆîUó»DDw3ˆwÔ»"ŒˆDªuÇ‚ÃîþDf"ùªªDUïÙ™ó3̈õ¿Ù»ˆÝÇwÔªDŒˆDªuÇ‚ÄUªñwª­ÖwñˆÌ3ö·ç3øNÞªîÝÌ3ýˆˆŒˆDªuǤˆ£™fð3îfîUîˆ÷»§ÿÌî¯ˆÞ ™™fÌw߈kˆŒˆDªuÇ‚ÄîñÝ3쪻"ùªU™fÞÿýÌÖˆDwã㌈DªuÇ‚ÅUªðˆˆéfî3ú3îUwÝÞÿýÑ»þfø"ˆDªuǂřfñ3Ýèfî3úDª»™Ý™ˆfçˆþ3ßfˆDªuǤˆ¤îñ»Uæ3Ý3Ò »ÝÌÌi»™w»™ˆDªuÇŸ"ˆ«fªñw»ä3îfÑ "ª»ÚˆÝ îˆDªuÇŸˆî«ˆfòÝ"ã3Ý3ÍfßwÌ3ŽˆDªuÇŸîÌ3¬™Dò™ˆá3î"úUÝîÝUÙ™þÜDªuǤˆþUªwˆ¬îóDÝßfÌü3î3"ÝDÕfî3ˆDªuÇ ªU"Ì­UªòÝDÞfÌýˆwþfˆÔfî3‘ˆDªuÇ¡îÝ"®ˆfófªÜˆÌþˆfþU™Ófî3’ˆDªuÇ¡wˆˆw®Ý"óÝ3Û ™ÌDÌÌUÚˆúfî3“ˆDªuǤˆÌ33̯3ÌóU»Ù wî3wî»ÝˆÐfî3”ˆDªuÇ¢3ÌýÌ3°ˆwó»Dæ""õfî3þDÎfî3•ˆDªuÇ¢ˆwýwˆ°Ì"ôDÌç»þÌ3öfÝÉUÝf³"þDþˆ™þ»ÿÿ̈óˆDªuÇ¢îý"ݱ"Ìóªfç»wfÌõˆÌÕ™ˆÝ»wü"̪D3ºwÝÌ»»ªþˆUDD3îˆDªuǤˆUªûÌ3²wˆô"ÝæîýÌ"õfÌÖ»»ˆ3Ìwûw™»îÝ»ˆfDÆDUˆˆ»îˆ"ãˆDªuÇ£ªUûwˆ²Ì3ù"þ™fæîýÌ"ôfÌD×»3Ìþ"Ýö Dfˆ»îÝ»ˆU3ÔDUˆˆ»ÌÿÌ»ˆˆUDáˆDªuǤîúî³"Ýú3ÌÌݪ"îæª™ˆ»òfÿª"Ù™D»ýÿñ Dwˆ»îÌ»ªˆˆDDå"DDˆˆ»»ÿÌ»ˆˆUDÙˆDªuǤwˆùªU´fˆúÝUˆ™ˆˆå™îî»ðwÝwúw»»ˆäÝ"wªù™»»Uû ˆ»»’Dfˆˆ»ÌÝü»ýˆõ»ÝþÿÌÈèìÝ—UDôD»»™ôDª»ª"õˆDªuǤß3ùf™´ ªUUˆˆD3»ýÿÝÍ"ªÌDýˆ»3"ªˆäf݈ªÝ"ù̈"UÌUüª™"3Ìwû3ïDü3îfwîóDîUˆÝö3îUwîöˆDªuÇ¤Ýøî3¶ îˆÌUfÝU3»ý÷™ñD"ÜD݈ÿþÝä"fDùD»þD»ý"ÌþÝâˆfþˆˆó»Uþ™Uö™fþˆwöˆDªuǤÿ÷ªf¶f™î3ÝÌf™ï"óUݻ̪݈îUÝý»3çˆófˆþÝýD»ýÿâªDþfˆó»"þˆwö»DþˆˆöˆDªuǤÌ÷Uª¶ªUD»ýî3ÌÝîÆ¯ó"Ý3™ˆÛ3»»áD3î×"Ýw™üÝ"U»âwªþ»fó™ˆÝ3öw™þÌDöˆDªuÇ¥Dßöî¶îî3ÝüªUóU™þ"ÌÙwã÷™ˆÝUýfˆUÝf݈™Ìüf݈™Ý3á»»ˆÝ™òÌ»ˆÝˆõ»»ˆÝ™õˆDªuÇ¥D™öªw¸ DªˆÌffÝUý"ÝòD™þ"»Ø¯Ýz"þÌ™ˆ»ªÝ"wUù"fUßDw3ïDw3òDw3ôˆDªuÇ¥wˆöfݸˆwþ UˆŸãÌÿˆwˆòÝfÌwÖfÝfþwˆþ»UˆDªuÇ¥ˆˆõÌ3¹»3ý ÝD»wÌ3ñ3»ÿîˆÔ"™îˆ»DþwˆñD™õDŠˆDªuÇ¥ˆ§õˆwºîüfˆþ3»3ÌÙUUè"ˆÝljþ™f÷ UˆwˆÝ»fÖ»ŠˆDªuÇ¥»DõDªºˆªüfˆþ3»ˆwÚ3î™™î3ç—üÁiˆÝú DˆÌÝw"™»U‹ˆDˆÝÿÿÝ™ñuÇõwîîÝUþ3ÌÝÿˆÐªîîªö3õßîˆöîºÌUü"Ý3ªˆÝÚÝDDÝå"Áñ￈ˆwwˆˆ»îªw3øŽüÝÝUûUÝÝîfÛ3ÝÝîˆÄˆD»ˆ""ˆ»ñuÇöUÌ"wÈñ\îDªˆðUªªf÷f»ªUô»ˆˆ»÷îòÌw÷»"¼"ÝúUî»îˆUªÚ"ÌýÌ"äwÄ´uýˆw3õD̵f3î"þwÄøi"ÌDÝîDÌwňDÂÿûÿø"ûD™ÊöªU»ªD¯ï`‚´NÙ3õ#"DD—ÙiD̈DD0DDˆ¿u‚Ïw3D3DD"3D3ÝýÝú 3D„§ò—3»"DDüwˆ¼f™ø3™fÙîî仪DUÝUð™U"¿D3»ª§¯ÝUU™Ýfˆþ3»çDD0DDåˆD»ˆ""ˆ»øDûˆ¾ÒöªiÌ»»ßìýïõõÈß÷ùõã÷»$ÖõãðÿÑçß÷ˆŸ÷×çýØèüñÏ×ñøÏïÒúõÏ÷âïÇïÊïýˆïûˆÇïÒüûßîf3»w݈̻þî¼™fõîÙˆª""ªˆå3ÌþD»ðÏU3¶ÇªÈøÿßÚÍì»§×þˆUýDåfˆþ3»ô"ûDfþˆßçÒýñãõÍþ»îûÿÌ»ˆóˆDˆÝÿÿÝ™ñuÇöfÍ3fìî÷‡ì®ìÚȾuÚ¬ùu*~ì‘‘äðÐuеڑ왇õ±í¾üÒuDŽüÍD½¾á¸­û‡u~êïʧˆ·çûˆ¯ßˆÎÎù°@Ý»ˆ3Ý™ˆýªf½ÝöUª×ˆÌ̈äDˆýîðUÌÝDDˆPæ\òPÍ‚wýˆý»Ìþÿû»ýˆfúDwýˆ—ˆ×Ljªú»ÿÿîü»™ûˆÇ»DÖ–æi[îæˆDªuÇõ—úáïÀëè»Ñ÷üõ׿»Ñãù»&Íè»ßßúû»§å÷—߈·ß»õÈü÷»»ÍþÑ»ìÄÑðôóØ»ÄëóöþñÈû»ßÖ»ìÄàýõô¿¥äÖ£D»ýUˆf™ˆ"Â’çˆ÷™f¶"Ýfªïˆî»Ýf"Ýfêè݈ñ3ýDðˆ¯÷Öæ§ùDñ »"ÿˆw»DçˆDªuÇôùñÿû»(Èñ»ÚßÔþßéýÑ¿õ»Íè¿úÄøýßßöýÚ»ìÍõôé÷ûÏõðéìçÄù»ßß»ìÑÖÇ¿ßU[üäìÖUªýDã»UwÝ3ÄÌȧˆîùÝ´ˆÌˆˆî3íDüˆÌˆˆîi×3ç »Uî™UÌ"çˆDªuÇó3ˆw¯™™—ÝDDî3ø'»ˆ ðà‰›ì\ª™ÏȈ"îɵŸîDUåø\¯üºæ´æ\DæiùD\æu‚ãôÖwü â©ÝwûÞDý3ú"DªÅfª»3ˆˆùf™³3ˆwï™ø3ˆwºUÌ3ˆÚá ˆ»æˆDªuÇð ˆÝ݈3ªÿ»D÷™ÝÖÑî»UþˆÝá×îÌ€ˆÝ̈D»ÿäëîª\Íþª3ˆDø3ªÿÑÍÿª—wì"ªîðÁüDȈþÿňpîD»ùªUç"wˆº»¬U»î×Ò݈æˆDªuÇÀUªþwÝUþÝ3ó Ý3Ýⵈªwô[ü3áÌD»Åw»™ˆˆúîì 3ˆ"DˆÝ̈™îˆ"½»‰ˆDªuÇ¿ »ªDˆÝNÝwU»™ò »ŸÌ•þÝ«õôú™õwwÝDÄêÁDˆîúf™íU݈ݪw"þwÝ»fÅDDý™"D"ˆDªuǾw™ˆ"ˆ™fñ ªDfÝÇÖ£»Dú­Öˆ3Ã߀™ˆùªDîˆÌ3öD™îˆ"Ê"Ì̪î3þˆÝ»ÝˆŽˆDªuÇ¥ˆfúþˆwúîÃ3Ìöîï"Ì™óˆÝª3Ì»w3îf»ÌDˆDªuÇ¥ ˆˆÝ¯ˆªwÝ3ùªDÃwˆöf™ðUÝfîUîfÔfªˆ"þîý»DªDþwˆÝ3ˆ™f·ˆDªuÇ¥ Uljþ·ŽèãøˆwÃÌ3öªUñî3ì3ÝfÖ ™ªDfÝ3îþÌ"ÏUþˆˆã"DþDîfU»ˆæD"ÕˆDªuÇ¥ D»ªë—ˆf»DùDªÄ"ÝöîðˆˆêÌfØ3ÌþUªˆ™ˆ»DÝ3DÝ"å»Ì»ÝU»DþÝ3éUî»Ì»×ˆDªuÇ¥ "»»¿çføÿÄfˆúD»ÿ»Ž™ñÝéÌfü3ªÿ»DãfˆýÝþˆîî™þUÌÿÌD䈙3Ý"ÿý™DêÝ3ˆ™×ˆDªuǤ ÝÆäáwú@øªDŪDû"ÝDDùwöwˆDˆˆç"îfþ"ÝU3Ý3ä3ÝþfªÔÝþ™D»DÝ"êD™þÝ׈DªuǤ ÿÈãß‚»ÖUøwˆÅîúˆˆþêˆ÷3̗îæ3Ý3ˆˆþU™ã™»fˆÝ3÷™ßÌ"þªDDÝwf̈éDªþ"ÌïþDfþˆªˆóˆDàøÿÔuǤ »»?·ßfˆfø"ÝÅ»úˆfU»™÷ªfñŸä3Ý3ˆwþDªâfˆˆ"ö»õ"ˆˆUDDñ w»fÝ"ˆˆUçÝf»ˆþ3þDUþˆþ»ÌÿÿÌþ»þˆwDD"óˆDªuǤ »Dˆˆî î"÷™fÇUªúUÌ™Öf÷îþ"ïPã DÝ3D̪fÓ»÷U™Ýþˆª»Ýî»™ˆUD÷ˆîÿª"á\×ÿúïÿÿÝý»þˆfþD"åˆDÛ3ÑuǤˆU»ÌÖôfþ D„‰DDw3DÝÇ™fþ "UUˆÝ™üŸû Df"»DªàDâ3Ý3ˆÝ™Ý™ä"UUó™ûf™îªfù 3Dˆˆ»Ýî»™ˆfD3ÞDˆ»îªwDÔˆDÝUîÿÝ3ÔuǤLjþDiÒÌ×ï÷ôì݈Ì3ÉÝDÝ™™î33iÈü Ì»ˆÝfDîUuó»à3Ý3"D3äDÝ™™î3ðw»î™Uð 3Dˆˆª»Ýÿ»»fî"þDwþˆ»»îªw3ЈDÝÝU»DÝÔuǤDˆˆÿÝúN3êñÿˆø¦wÌD™ˆÉf™þ î3D݈wü ™ˆÝ"3™ì­Þ3Ý3ãî3DÝð̈3äwªýˆªû»ÝüÿÌþ»ªþˆfDD3̈DÝÿ»ÿÔuǤD»wª§õßê™ß§u»ˆˆ"ÝɪU3»ýÌݦˆDþ»þˆfDÌÜfîÌDå3»ýÌñ"Ýá"þˆfýD"·ˆDÝ»"»ˆ»Ôuǣ̻33ðÑ»ŽˆñÖ‚™ˆwÌ3Ë"ÝýÝþ ÿ—øUfÝU»Dþ»D»DÛfÿ»äÝþÿôˆˆwˆD݈Ýÿª"ÔuǤˆÿ»"þóÍUÏò€øüó@wîwˆËwˆýˆª""ªˆì"ÝUÌDˆÌDÌÙ3ÝD刪""ªˆñîˆDªuÇ£»ˆª3ð÷DUÄùûÿûê¯""ÝË»33»îÌ̈Dè3þîþU»Ý™»fØ3݈åˆÌ̈ðÌáˆîî»3±ˆDÜf3ˆÔuÇ£»D™Ý»îwÖÝ»Ý∻ý»3ÍîÝfªˆýý3ÝøDÝÕÝ3ÒDªâˆªfݲˆD݈ˆ"ª™ÔuÇ£ ˆf3Ý"3ÝýÝþfˆÍU™Dªþ"ÌýfÈÝfwîUø»fÕ3Ý3Õ™ˆwâÌ"þªD²ˆDÝÿÿÔuǤþˆûˆwÝýÌþîÍ™fD™þÝý™UDˆˆ3øDÝÓfî3Ö»Ì"âÝþ™D²ˆDÝÿÿÔuÇ£D™û 3ÌÌffÌüªUÎîî3™ˆýîô»fÒfîˆ3Ø»"Ýሙ3ݲˆDÝ™™™™ÔuÇ£D»úêµ™iýÌ3üf™Ï DªDî»ÌªþDªôDÝÐfîÝ™"Ú™fˆáªÝ»îD±ˆDÝ™ÿÿªÔuÇ¢Ýû™×›UÝU"3úîψwý3"üˆwô»f͈݈۪Uß"3¯ˆDÜf3ˆÔuǤˆîü3Ý3Ì3Ì÷ªUÐÝ"öÝ"õ3ÝË™ÝfÜD݈ˆ"ª™ÔuÇ¢»"ýDªÝUÿ÷f™Ñ3Ìö"Ìô™fÉ3»»DßDªŠˆDÝÿÿÔuÇ¢ªDý"Ýw™Dª÷îÑwwöwˆõîÆUÝ™"áÇwŠˆDÝÿÿÔuÇ¢ˆfüwÌ€ïÝ3ö»‚ÒÝ"ö»3õwˆÎ"D"úˆÝˆäwî"ŠˆDÝ™™™™ÔuǤˆwˆûDˆßN÷ÌàßîDÕ3ÌöîôÌ3ψݻ݈ú™Ý3çUÝ™"‰ˆDÝ™ÿÿªÔuÇ¢D™ùwª÷ªw3Ì3îÕˆwöf™õ3ÌÏUÌ»fùUˆê"D»»D‡ˆDØwÔuÇ¢3»ú€÷DøÿÝ"»DÖîöªDõˆwψfþU™ù3îªw3ô "Dwˆ»Ìÿ»Ýfþ™‰ˆDÝwýÿîÔuÇ¡îû3îˆ×݈ùÌ3×Uªö"ÝôÝ"ψwþfˆ÷Dˆ»îªf"DD""ˆî»ªˆfDú»‰ˆDÝî3ˆw™ÔuǤˆîûªffÝ3úˆ»3ÿÒÖªUöwˆõD»Î"îD3Ý3ô UˆÌÿª»»îî݈"ô»‰ˆDÝÿDDîÔuÇ¡»3üî"ìßÍwúˆÝÿè×"îõˆUõ™fÍDÌÿÌUÙ™‰ˆDÝî3w3ÿìˆÝÿÿÝ™ñuÇ¡ªDü»DˆîÞ[ªˆø"Ý׈ˆûDw3þÌ"öˆD݈ˆ™ÿˆì»ˆ""ˆ»ñuÇ¡ˆwüDîUòÔßî÷ªUØÝ"ý»»ˆÝ™"Ýõf™‚¥ˆDÜ"èÿûÿñuǤˆfˆû3¦ñ’ÌÌ"øUªÙ"Ìüw™þÌDwˆý "»ÝU‚¥ˆD»ˆ""ˆ»ñuÇ¡DªùÝ3Ý"3îöÝ"Úwˆü»DþˆˆªDýÌf™™"Ýžˆ‰ˆDˆÝÿÿÝ™ñuÇ¡"»ùDÝÇ¿ÝUöˆwÚªDü™fþˆwîý"Ìýÿˆˆ‚¤ˆDªuÇ îø"™Á"õ"ÝÛ"Ýû3îUwî`ªý3»ýîÝ"‚¤ˆDªuǤˆþÝ÷îô»D܈ˆúDª»ª"ˆfüÌfˆ™DÌ‚£ˆDˆªÿÿ™ñuÇ »3û"ª»ÍëÖª"öfÈ»»ˆàî"õÝ"ü3ÌÌÝ»™f™‰ˆDÂÿ»™™™ñuÇ ™Dü Ýw@óöÌwî÷ˆû@"™ªáf™õ3Ìù"ˆDÂÿÿýÿøfû»ÚÕ ˆˆü zˆ™fUñˆw÷îŸwÝ"â»Dý"úwˆöf™œ»‰ˆDÂÿÌ""îñuǤˆþfˆþ 3Ýç謹DDãfˆˆ÷ÿ3Ì»Dã"Ýþ3ÝÌݪý»3öªUœ™‰ˆD»ÿîª"݈ñuÇ D»þ ݤÍê´¿™™›»ÌD÷»UÌ33Ýâ™wþÝU™ˆþîöîψ»ˆ"‚؈DÀ3"fðuÇ "»DâªD¯úùììú¦ö3îÁÇÝUãÝDªþîþU™öU™Ð݈DwÝ"‚ÙˆD¾fîuÇŸÿiõþfûDDw­fõkê"âf™þD»þÝþ™fö™fÐw™þwˆ‚ÙˆD¾»îuǤˆý ÌDóU™ÿþUªóªfâÌ3ý ÝU3êÿÝfîöîЈwþD»Óˆ‰ˆD¾»îuÇŸ »D"ãÏÌîÆ¯þ"÷ˆUõDÝãDÌü 3ÌÒüÀ"Ìw»ö3»Ïfªþˆw‚ÙˆD¾»îuÇŸˆDẅÝ3DÝי̈õ»Uä™fú€ˆþU×wöˆwΪªˆ™Ì‚ÙˆD¾»îuÇŸˆˆþDˆw"þ»DfˆÝ"öD»å"îùˆˆþDñ3öÌ"Ífˆf‚׈D¾»îuǤˆýU»ùD»ÿª0ݪDõ»D檈ù3ݪìö"Ý™™‰ˆD¾fîuÇŸDÝú 3îU¿’î¯UÝ3õD»çUÌ÷fî»Ý»ªöwˆ™»‰ˆDªuÇžîDû™fDî·Ãã™óÝDéÝ3öi"™fö»3™»‰ˆDªuÇžf™û»D3ÇÒôòf»é»wöUî»î÷÷‰ˆDªuǤˆüîüw™þÌD»3òÝDëw»ö"î"`îfýUÌÿª3Uª‚žˆDªuÇ™fû»»ˆÝˆfˆòfÌ"í"Ý"öˆˆ™ŽªþDÝ3Uîˆf‚žˆDªuÇUªúDw3îñ»™í»fõwˆîPªþªUþˆfÝ"‚žˆDªuÇœîõªUñÝ3ô"Ý3U¯ÌUþ»DþˆŸÌ—ˆ‰ˆDªuǤˆú™fõf™ñUÌð3îóUîêÿˆýw™Ý’ˆ‚ˆDªuÇœUª÷Uˆpîð™ˆñÌUðÌûªÌªîwÌ3‚ˆDªuÇ›îøª»ˆªê`ó3ÌUóˆ™ð"ÝDü3D"Ý‚œˆDªuÇ›™Uúf»þ¯Ñõfݻ݈3Ý"õDÝðwˆˆÝ»Ýfûf™–™‰ˆDªuǤˆùU™úˆwþDú÷"î"ªffÌõÝDïÌ„»"Ý"üªU–»‰ˆDªuÇšîúwˆþwÏf÷wˆþD»™ªˆfúˆ™ï"ݪDþˆˆüî•»‰ˆDªuÇšªUû݈DwÝkª÷fˆþD»DU™Ý̈3"wÝïfˆªUþˆˆýUª•™‰ˆDªuÇšf™úˆ»™"Ýø"ÝDÌfû3w»ÿÌ݈"îª3UÌ"3Ý"ý™f‚›ˆDªuǤˆøîûˆ»™"ˆw÷DÝÝîˆö"ìÝwîîÝUüÝ‚›ˆDªuÇ™ªwü݈DwÝ"3ÌÑfˆö3Ì‚šˆDªuÇ™fªüw™þwˆÝ"ÒªUöˆw”ˆ‰ˆDªuǘîþ "»ÿõˆD»ˆwÓîõÌ3‚šˆDªuǤˆö»fÝff¯»ˆˆwD™Ö3ˆˆŽ™ö"Ý‚™ˆDªuǘˆÝDªªÄçªÌî×UÝwfó™ö™f‚™ˆDªuǘ3î3D™þ`ïfýªUØî"ïî÷"Ý’™‰ˆDªuÇ—ˆwÝ3ˆˆüf™ØÝf™»Døˆf’»‰ˆDªuǤˆõ3»Dî»Ì»þUª¿ÿ"úˆ»ª3åî"™`î÷ˆD’»‰ˆDªuÇ–î3D"ýfÌU3×Ñú̈Dfî3æfÝfó̈÷ˆU’™‰ˆDªuÇ–ˆwùÝ""ú"üU™þfªåDÇ×UöÌ3‚˜ˆDªuÇ–D»ùÿýìuüˆˆþ3»äÌ3ö"Ì‚—ˆDªuǤˆóîùªUôŸü3Ìþˆˆå"Ýõˆw‚—ˆDˆÝÿÿÝ™ñuÇ•ªDþ D3Ýpîü™Ìˆ™ÌåwˆõÝ"‘ˆ‰ˆD»ˆ""ˆ»ñuÇ•fˆwî»Ýˆfw"™fû3ˆfäÌ3ö"Ì‚–ˆDÂÿûÿñuÇ• "Ý3DÝ»fü3ÌÛ3Ýõfˆ‚–ˆD»ˆ""ˆ»ñuǤˆòUªˆwþDªûÝ3Ü™fõ™U‚–ˆDˆÝÿÿÝ™ñuÇ“»ˆˆþU™ûwˆÝÝ"3÷ˆDªuÇ“î0ÝD"ÝDûîÝw¦ÌÌ»Ì3ú3Ì»‰ˆDªuÇ“™fDÌÿÝUù™fÞÝÄwUÌúwˆ»‰ˆDˆÝÿÿÝ™ñuǤˆñD»ôU»ßD»îýÌ"ûªD™‰ˆD»ˆ""ˆ»ñuÇ’Ý"ùDýÝ"àªfîýÌ"ûî‚”ˆDÂÿûÿñuÇ’ˆDûfݻ»á"ˆ»û3»‚”ˆD»ˆ""ˆ»ñuÇ’ˆfü DÝÌUÌD∈™ÿîªûˆˆ‚”ˆDˆÝÿÿÝ™ñuǤˆðD»ü ˆŽD"U™f»ñ3D3õÝ"ôÌ3Žˆ‰ˆD±Dûˆ¾Ò‘Ý3þ"ïÑ™ÝffˆþÝ3óˆÝˆÌª÷f™ô3Ì‚“ˆD±"ûD~ž‘f™þª’Ý"3áßDþf™ôD̪wøÝ3ôˆw‚“ˆDªDˆ‘îþÿkùõý¤üÝ"õˆfþDªùf»óî‚“ˆDÂÌúÿñDˆ¤ˆî ªUÝ Ýw"àã"ýf™õˆˆþfˆúî3󻌙‰ˆDÁ»DìDˆ f™ˆß—ˆ»ˆˆýî"ö"ÝfDî3úªˆóUªŒ»‰ˆDÁf3ìDˆîþ¿ÝÝ™Dªüˆ™õ3ªî»DúDÌò ™f»ÝÝ»”»‰ˆDªDˆ»f»þªwüî"ó3ª»™þÝ3ò î»wˆ»”™‰ˆD¾fîDˆ¤ˆí™fþ™»ˆ»»úfªô 3îU3ˆÝˆˆòUªÌýˆD¾»îDˆUªý3ˆDøÌDõ™fþ™fDÝòªU"ÌýÝ‚šˆD¾»îDˆŽÝ"òDÌõ»DþˆˆÝDòîýÌfˆ»‚šˆD¾»îDˆŽˆwùDˆ™Uý»wöˆˆþÌ3ˆˆùwªˆ"ýf™ý3ÌÌÝ»”ˆ‰ˆD¾»îDˆ¤ˆì"ÝúUÝfU»ˆþ"îD÷̪ˆÌ™DÝú»ªDˆÝ"þªDû‚˜ˆD¾»îDˆÌ3ûÝ3Ýþ3Ý3öUˆ3ÝDúUªþf™þÝ‚ˆD¾fîDˆwˆûÿý»DýDî3ôˆˆùˆˆþD»3Ì‚ˆDªDˆîûÝ3îüfÌöDÝùU»þw™ˆw‰™‰ˆDªDˆ¤ˆêªUüUîwfÌwúfÝuù3îD÷ ªªUˆî"Ý"‰»‰ˆDªDˆŒf™û3ˆˆDùfæìø·ûDîfõfˆˆ3̈»‰ˆDªDˆ‹îñ "ÝPÝôˆ"3»»Dîˆwˆ™‰ˆDªDˆ‹™fñˆˆþDĈîÝÌfìÌ"‚ŽˆDªDˆ¤ˆé3ÌñwˆþUª"ë"Ì‚ˆDªDˆŠÝ"ò"ÝD"ÌUèwˆ‚ˆDªDˆ‹ˆïõ™û wÝÿª"wæÿùáwû"ªÿÝwýˆîî™ûÌ3‡ˆ‰ˆDªDˆŒˆ»PˆwÌü wÌ"fÝwÌwÝüÝfÌwˆ™ˆ»ü"Ý‚ŒˆDªDˆ¤ˆêÝ3ÌÌ3ý»3þ™UÌ"þªDüDªþ3»îþÌ"ýwˆ‚ŒˆDªDˆŒÿî»Dý»"þˆfÝþ™DüUˆþÌîý»3ý»3‚ŒˆDªDˆŒªw™„îü ˆ™‰úÄψ3Ý"ü"Ý3™ˆ»w3îýî…™‰ˆDªDˆŒÌÌÆÿPü »Ìßõ„"¯ßÌ»Ýfúfݻ̻"þÌ÷„ýf™…»‰ˆDªDˆ¤ˆè3Pÿwú3ÿ þÝ@DøD3üÖÀˆªÌþªU…»‰ˆDªDˆˆUÌùÝý»3îw™þªwDî„™‰ˆDªDˆ‡Ý"úÝD3îí™DþDˆ™ª‚ŠˆDªDˆ‡ˆˆú3ÝU툈þˆˆÝ"‚ŠˆDªDˆ¤ˆå"ÝùUf"ìîwDˆî"Ì‚‰ˆDªDˆ†Ì3ïˆîÿª"÷ˆ»ˆwˆƒˆ‰ˆDªDˆ†wˆðˆ»wÌñªU‚‰ˆDªDˆ†ÝðÝþÌDóˆDªDˆ¤ˆãªUñîýªD󈈂ˆˆDªDˆ…f™ñ™ˆ3ÝóÝ"‚™‰ˆDªDˆ…îñ»Ì»îDóf™‚»‰ˆDªDˆ„™fð3DñÌD‚»‰ˆDªDˆ¤ˆâUªßDÌ‚™‰ˆDªDˆƒîˆà™f‚†ˆDªDˆƒ™ÿ"â"î‚…ˆDªDˆƒ™™âˆˆ‚…ˆDªUÝ¿»¿÷èìößìüîûìõðììíýîÕì÷½ìõðòìöÍìô¾»Ý3‚份ˆD½»½ˆD½»‚Ÿ»½ˆD½»½ˆD½»‚Ÿ»½ˆD½»½ˆD½»‚Ÿ»½ˆD½»½ˆD½»‚Ÿ»½ˆD½»½ˆD½»‚Ÿ»½ˆD½»½ˆD½»‚Ÿ»½ˆD½»½ˆD½»‚Ÿ½¼½¼‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚Çîþ»ÿ»Ç fÝÿÌ3ˆîîˆÇ 3ÌÿÿÌ3ˆîîˆÅ3îþ»ÿ»Çýÿˆˆîª"ˆÝÿþˆˆˆˆÇ îDˆÝˆªªˆÈ ÝwU݈ªªˆÇ™ÿþˆˆˆˆÈ3Ýüˆªªˆ‚«DDÿþÝ""ÝÈ"fþÿÌ33ÌÈDþDîÌ33ÌLj3ÿþÝ""ÝÈ DÌÌÿªÌ33Ì‚¨ÿþÿþÿÄw™ÿýÿƈÿÝ3ÿýÿÈUˆÿþÿþÿȈÌ"™ªÿýÿ‚¨ÿþÿþÿÆ3»™ÿýÿÄw™ÿýÿÉ"»ÿþÿþÿÄÿÿýÿ‚¨ÿþÝ""ÝÇfÌDþÝ33ÝÈf"þÿÝ33ÝɈüÿˆÝ""ÝÄîÝ33Ý‚¨ÿþ™ˆˆ™ÈÝýˆªªˆÈ ™ªˆ»ˆªªˆÅÿþ™ˆˆ™È ™™™™ˆªªˆ‚¨ÿþ»ÿ»ÈDüÿ™ÿÿ™È ªÿÿª3™ÿÿ™Åÿþ»ÿ»È ªÿÿ™™ÿÿ™‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚ðÿ‚‚‚Šÿˆ‚‚‚Šÿ‚‚‚ˆˆÿ»ÿÿ»ÿîªîÿˆ»ÿÝU‚‚‚›ÿÿÿU3ÿˆDÿˆ"Uî‚‚‚› ÿÿÿÿþÿÝþ»ÿ3‚‚‚œ ÿÿÿÿþÿÿ‚‚‚— ÿÿÿÿþÿªˆDÝ‚‚‚› Ìÿÿÿÿþÿ"»ÿÝ3‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚é€ endstream endobj 16 0 obj 18421 endobj 17 0 obj << /Title (motovate_btgp.pdf) /CreationDate (D:20110401184121) /ModDate (D:20110401184121) /Producer (ImageMagick 6.5.8-4 2009-12-15 Q16 http://www.imagemagick.org) >> endobj xref 0 18 0000000000 65535 f 0000000010 00000 n 0000000059 00000 n 0000000118 00000 n 0000000300 00000 n 0000000383 00000 n 0000000401 00000 n 0000000439 00000 n 0000000460 00000 n 0000024664 00000 n 0000024685 00000 n 0000024712 00000 n 0000028237 00000 n 0000028258 00000 n 0000028274 00000 n 0000028295 00000 n 0000046909 00000 n 0000046931 00000 n trailer << /Size 18 /Info 17 0 R /Root 1 0 R >> startxref 47115 %%EOF tgp/vignettes/tree.pdf0000644000176200001440000026704213531032535014521 0ustar liggesusers%PDF-1.3 %Äåòåë§ó ÐÄÆ 4 0 obj << /Length 5 0 R /Filter /FlateDecode >> stream xåÉ’$Çq†ïõ¥Åd=&t±r©$¸%j!Ñf¤ Àb¨Ab ‚”L©«ƒg}¿G„GdUdNgv6.²1›®%3=Âý÷5<¢~¿ýéö÷Û®ÝíÛþ|Üö§ý®kNÛÏóGM{Ø}¿}Üv‡Ó®ÝŸúmå³MºõqûÙöçÛßnÛŽËöÛÓáÂ}‡í—ŸØ§ýî°ýzû­wß4ÛwßÛîíß{ïn¿õ#>øõ†²ßµýþ¬»ìKwßµ—í}Ót§ÍÇŸoÛþrܧf×3ÖöÜu»v{ÜõçqûžMê‰Ojgn:œ/íî̳šsÛlݹãÉÏ{’qÙ“†³ #ÌNB«38s²ÝŒô7C>~ïa{Ø]N§ÃÙØ^7ýy×ÁøÙ·Ÿo¿õðq³Ûo›íçۻ_¼Ú>üfûƒã²?Xâò77TúÝåÜðH]•^7‡~×w— t»ã‰R»k"¥¿X@i¿Û7ûnûðq}fá=".çÖùÜÞÿ¶Hnž8¹-P„…û]sîàÍÉc³;$fnÂ{'øÎÌ™c$˜88àæñdÖì.ÇHæàdÚTD%½nN‚Äþj:™. ƒÉéÛËfŒ}§Ó®?;ň‘ÌÀ¿3‡¤Œ«2ð|ÞŽ@ç€À0/AR Yé$¶ XxÜï.­ ˆe=\.ç›)}­‰R¿CÑ¥<§f¥êœNm¢4˜SÆwÖ¢tÞïNîêÿµ%œò¹–Ó ÂË~w4ˆ·/-§ sByÇ÷ÎZ¼»œwÍ Ì¹[@§¦³íÞÌ:ûÒœ#îÙí÷·Z›q÷ß æTÓ¥¶=Gƒ7&¥µìCÛá€'q7ËmLØõãÈ[ÍB ¥v¯è2œ³”V³G’£@‰©å=GÝZVÞÕæ´~Ñž›ÝÙ0>äÞ Xˆó!Æ*CJã«Yˆ sy¸÷—•9O"o5ûp¹ìÚŠ”2ïֲݳ`Öõ¥¹×í“oâ!#o5 Ñ]Èþ¯ÓÜÌ»Õp×cÅ• ìÐ |?–MË¿\|c ¼}p FòåRø–Ì0JíE“øöˆ­ÅZ”ÓÉvöÃ9=$ªq,¾#äO%Ó²âÎÓq×YžVÒɾpV}`¢ÀÒž.fc­:ðb––‹E•ÇŽD·¹œ#¥…ºçcE±~¬Ä¢™‘­%б‘Šb3+~”_÷üFª:”l*]‘ÌB e±™u¸j†ˆgìgÛËîù™#˜Y5)bÔ‰`ŸT”\æãjš…o4;‘Ø)­¯[Y/B¼¢“Å´–nuÍ^q¼{q)õh’âŠ#Ö«AÝÑÊÛÙÏʧðЃÇ:™wk~Ygˆ'- Ê—fô<„£¾m×ZŒ+-&¯ÈÅ›æ;³ 1Q–•S4‡ŒÓ»)ÌÎRà©"nQfp8¥ ŒÕ‚3)•ÕЦ¢l¦3 €Sóiš $K…œ’PÃ4lGt¢“á·¤8à7ê= àYámÉÁ<³¾5¼G{T•B™¶¦mÅ©MÙ œ}ˆülB76iô" {û¦±%·ôZK‰–û‰i/Ùž½zþ° úcì§°€“èh½#½n”˜­ˆ4£_Í÷·wßþÕ+ÖžÛ»×ü=ž6wéýi{÷ëø÷K}~Øú矿Ú~¸}ø‡™1I-LmX$)\\ÜÂpkBK–Hlµó¨ÅêîrŠ”ž—,UgÄŠ.î¶#¥üå!OX˜†G£Ð;«pï-+¸t¬çkš9Ì"\Ý<}:jËt¸Ú –ÌóäD£†&g5wÎ’)õËBÉ %ÙÅ)e>. WYËeä£aÉÌi¢ñ’Ù¸ÚjnÛbàd¹##©l»‹°vŠÍ~œÉú¾ÛÛý‘^ôQÑîr:«Ç¦ˆÚgéÖÍtÌ…˜÷·Ý ¶ßþêùÍ0½ÐÉD»sË ã»C×ô»ãÌuˆÃ) ÈÛÏ ïC;Lèày?Œý©ý:éÁaPÍ~Ø6û# ûê R»ÎŠ -µ,°ëEë¨ØŸÊRègÁÌÄ6“Yª;aâ»CË …äïH}NÜ’8¨: ØØwä¤Yõµ•õÿwåÈ+û›Ü¢-`ÔQ=Z=ñ)Nü&*´ˆ–$tÃ{·üÍ“(õD@]£Õö³š"ÒÂ$¤rJÏ#D Û¸‡óÒêçÍ”f-iL0¯'Þa)24z(ºÔ,äM’"ˆ ¤Èa0{7“ZKN™ 'j*dK·SZKNÝ{lQÌ­ªÉi–>M1¯±x }bɸ.§YÉì©–µH[ÆÕõË ÉÌfs·§ìwmðÖšN‡»ÀÖûsÎb•Õ夿ò¬fcñiæô¦ìå>öœ«d]C¾ÁÊ-–•‡Šrâ^9“2Âû˜nmï°JíöŽ”ëž±~ŸîÄ{ÌbO¦ÆÛCÃçßÕç›»ßÚ×|Áuäg|µíÂü¶wäh÷|3¸›)Š€=íÌ‹¯^maP¦qØè»99ÝZÚŽ…×Ê”Ÿ Øl±m ¡-Ka¸þ“³¹˜¯Åf¸ÄäaÁg¯6pvñ¶ƒ£_óg¿½ûB‹ÐÒ{8'0þqçàñ–\ï;%Íâfà1¬_"Ë|w ŸäøñæO5¨Q DÈXŸòœ<<¦À›@à ³d6HÔ4.©†ÍµãʯŠ`Åp†¤0<ôõFü£:Àÿ$£X€Ó[©É²§&€¢ŒËòî#Àýô3ÆŒ5RÒN*ß§mOËmR)ltí¼ûà® õÔ`Îæg]Ðu¢4³õä8‰hr^ö &ó(A§Où·ÁÎ>Ç)SjÖ]‹¹¸öÞÇQÑ™^}ôjCRð$Ë¢]éõÈô{¾–qeÃÚ· Úm„¨4]Œ´'£«ûÒ_Œ¯+v/˜h0£o›cnâxœ) q páø—‚7J d$¨z<“ïÑ*ÚpŽ%â5ÆSÚß¶«á8êͯvŒãxBö¼À¾0 K¸èÙ}`¶Ÿ÷f°(Z©Ñ%nx?G·ð³:êË‘êåõ˜ZÖž±3AÎó8ŠP5‡` .×DQw «M !Ó˜ÇVŸ43Ѥž¹6³hÛ@§ìö±eQŸ`¤•'¸° téFÑ×µ¤Ìëúš<¿Eu ‰’°kó=¨ˆòpMÕg* üäÕFÐÅç6˜Þnõ_ŠÄ7rkéeøåf{vLÉ'ñ‚›ÂÅøÝf¿¹ûexÐàh´îŒÐŒÕ½¦ù-´Ð–¢ÌöölHââîAuYÐ@Þc ãû<Ìð@ž¤,S>1²µeÑeÁȰcâÆeÁÈÏ1Ú0EsÅ›àÜá&1⃀EÛ°e£Þ†^ üE»áHžid<µÝlH ÛÎhÇÅk ©–@úåŸdʱ+j}&³7„»¹ïp;’¡Þã¶ì/¬ºo¹NÖSß#¹{…ƒ‚Dw"³à„O ýÊ,㩨q)ŒÆwfûF è-5ûRb9óãO.jÐÆ<|#:µ®FËP*cRçÿÝgž®[SAÕK–$4·FDÒOe£ÔÄŽà«=˜ì„èò”jü5a€Oøô\qœ£¾SÓ†pðsWÓ~ôÐñÌ6±±–úVõáÌŒÌðôî;s 3aúb×(e³VÜÓí9›£2§Âq.F»âÕûçÇ”²“yfŒPËVÔÁ:šA.÷g9[™eÝ=éb~ (’Zþ¾Õø ýEÑHÍrvÚhlõæž*<ÔÒó”n¢Ö¿Y û=×5J/ŒHLa}:8 F$••þD¶sX鈜Š;6 ndñݺòõ©šqDΚ܄ìè1‰Fàá²\†“M³|,jëð!äh®¼ôªïàO;ýQ5½SËžõÞÓé}A÷«ã›ä€•Uã»>¼µû äh°‚©ÅÚ_¼Út®£"a·¥ï=Þã͉íªâi zÈÆ‚‹˜#ÀâæÔ”^òà e5*´Ìç  ì%þŸØb“ o¬0 5²ñÊ4To”V„õWž?Óz’Í2d"g¾Q&b,åõ¢Ld*”éèÐ2Dó-·%Ûek¶¼íImÎË¡²µ4»%¾Ê2‘ÃhÉ9ìq¡HPÌ­”e(ªY7‚j@ðÁaÚ$)ê ¡ j©uz@.²²§ {k~µ½ÐeÑR{/ÇZø…2yj]¡&‡Ž¶(|*Éfó›’ƒ œ¬Šh]©>y¤î-n šŸ` ²HPÿÀüX%}Y‰í;’°z8bdÏ„ÿžžïñeìæ-Å”»Ÿ“´\(ñbIv‚É–8XJÀ<Š'Ð_Þ§ïA$î}pVÉ„ÔÈ¥9mA5p²@22ãRªU°Ä‰¾èh·¿˜ãÔ'j½:é8Óid9pþÍ2õéhP4 i6Ù}™šªõ˜VWµÛÙ``žžƒO =–5’A¹nb×µò¶ž.e–F¢¦D29 Y+iëôÐ\“)òkqíz7\+ìí’êck´8RjŒñD[.óÍò¯S(`ø ,ž%ñ¢9×Ñx±”b öm1õ#¬¸|)Ñ,Ñ ‹& ­œà,¢²¿S߉£ë«oÎ|¤F‹ÅVOg$•íÑZ«Á·“ÊvÖÖ« ˜4rsÚGñ ð¢Õ œþÿÖ²ç£)÷t3)÷ª«¯˜´y¿,©¿Z` ä]OÔæGêéZ”6FFÌW–->%2RüDj´’¦µô˜aï).jÚZøoi&Ú›?cê_/`jÍPZ(-;€kSÊfj-ð·ì€Ù÷–8 ¸—çDr>;и€8Î{±]Àéu¶øÈ«ègwnFÔJ Ýýr`)y+ìlª#s²œIGÑñ¡"zÖÝu¡½Ü‘R¿&ös|û¨Œ*”îÙKMvly1wÓfeì÷ö%‘ð}£g‘t;êþ_â/ü+¥è‘ÑòØ“ ­©o* O É9~†íÖâÉ‘>Û»3_Úè>x¥g0;HûÄ_wÛeÌ·ÈRžºö‘¸­^üôºƒÅtD\q>ïþÿÇ•„ܵì÷mi½&åB^dLÓL³ê´ˆ>9«/˜UX´Eà*UvóÏ Î"ò2• }‚jb½£qßvÈõo_m )¾5õ޾·J™“í\·¬ÅúÅDŠ®­Ùªú¶ù’ç`ŒO7tì>l,&Õf¨À2ä{6RäÏÀ@<ÀØh 6¦ÅRµV%j7–ºš ¹H: ‡ ‚‚}¹Wu Ôßô9›–ð#,Ášjo,sâAO23BÛ¤‘÷od+;1MÉFÝØ  ’îñÇ©¸¦À83½°-?€ÒQ¼úð‰ÿ] -kHwd˜ÕÇ8xUDÌQ–4vÂØiw&aˆ®9ý9¡fjŠ}§‰©¨“Æl&.>Ϙߒ …2˜«ÅæÉ[8 «ae·†í„& ŽèI¡}©˜Ÿ‰‡ !äBµ-ÕpM’>(uÿ–PSH¶ýͶ»° jɉU…e9Îfƒ‘|ND_Ula"?á*›*^übÖéq°Ù@^2²^[ ž²Q&û}zQJ+ùBGÈÛ†tðGrÂðò_©MãæCmŸcW·wÿ’ÐǓђ¢Ð†jsu*‰+îp£/ôŒÜÚæ‡£–³¤5ÅCþ=&%+&Ÿ)z-ÝJhE ¸ID -Jº| ï¯ö]/á¶ð33O­"™H…uŸ”M¶ãr" I˜R5´M¯ËXeê',5nfO|öŒ::@?±^l™ZzÖÈ µÌéA®È9)l×§Ÿ‘èö7³z üPK¥á[ÓÚ§çáçm4•ÕÕ-Œ mMŶ"¨ÔrÀ](;J¯£-f²à†ík¡ºª…˜²”vGg;¬Y;ãdVm¸»¤ÊÞa™±¤|þ7zÄFáRù ´sy¼Ë«šlðàr£{¿6è½ ¯± sœÍÛC,&H¿¢ŽØ¼á+Süg `¸…Yù¿áî"9’kÿãÁTHê­p ¢‚ŽÁ‰¤Œ¸¼€öÉ$ÏëþèQ$[~ó*‡eÅ“ti³2÷#Dé6Ö4"¢{ø¯ò‘'1îRr ¡µ8¦°.mÎý˜ßæ/$ß–ÔÝ$ò*§æ·¥qx…â–E>2yÊ–sT޶óuÈû‚˜_Ÿü¢È©ò""fÎ2dÍ”³o—âµô?"¦ŸøˆÒ ­X¡_­à¥ãÆ‚Ìbš>rç`b÷¬~rPÛÿô{*§Là¯C’yÉÄ—jùÉÐ'†°5ÌÂ.ö)†(Ò§6¬Îé°¹¢èæ<Êq“ƒû·×—€Wb ÛL€—XVÞÁQ–ï| _ò(SÇtÓ@wàèåKôÞÀ¼Ûñõ?³{a”)™(ÈÆòá$Ù LTutHÉ,–Ø(ÒùC=N÷Î1rî9虤zÒ††£ÊØ¢ÐSS„4ßÇ\3)…aYì™3¤'YsØ  Ó¦­4Ø–qç_ Ùüî)œ!fÏ{]AŸ'\§lÄ/q}äKA ,[î;Kw“­†ð˜ù”E¶aV$39H{Ú ¯œwšýI—•¢ÐjGB§%ÇLi:ÒÛx•ÃIÊÖ+67D&åù&Oéºk'3:ÓqKË9öÚe‘x’o,f®q¨' l1ƒ¢ì·Õ‚T-=ËØG@Õ0þ™ÆŠU‡«sFð·«1;¯Üž:“.•µô¦šK+×%)˜µvæ;׎r“-ñvioü2]Õ1K¿}’?ûÑ$jÀº+£LДd£‰s½²ÏˆŠ}Nânf8ƒô<Ù†&§K°Ã‰É“ȺtŠŠÕŸHMùÌïr’©<;á&öƒ–R©U°ƒÚ4:p«eBCVNÚmBN °î’fû¤²â–…`¨Þ‘¯ BòËÄÈOxÏ4Zv5òª©Ui‹¸¬\ÃÈ!Ôgšýê¯5råÑÉPúí>ñ“º4Y^K+†¦f…©Ñ¾ÓëIyñŸ®G+¥6Fu¶øËáæ$.8˜¦¦T=îäx1Tªç-TI±]%å̸û&6›ï¶L0º¼•ƒwÎsÚ 90Èš™£>+a»É´ n9]|`¸2´1R³çà\B;´/ Ú 6_Ú {ŽéNëofåâ¼Æ¶J´Žq7/)\tp{O²Ž²c±4j)jO_æ-»?f¶)?d:ÝÊY°ÃœÓ¹’P[Nì>kÇÛ¸T— ¹&U% ‡ÖH­)U)›TGÒ•–Š8¿ézôùÕâ*m` IA†¸4*]øJÄ€6)wcú(Õ"5ÚÔ «Ø2¦‡›-Ô£˜Õ8Î]û©Àñ4ùì"ÚBeŸÕ»ª)whþŸè¿?¤³B¾ =êñ@@úâR½uü¥TŸÓÌÐs°:ÛU ©*²›mókj=¤´¾y¹°#)L_è'h¨¥â¯Y@ðî9¦pª–@žËacyI[²b–±ÛSµ¥¦˜–:Îôk?ƒêµ¸¬˜kÅnƒM„c|]tWU„ ¥JªÎÀ§³ÊÀðK;’Õ—è@\¬s&ÍgÄ0šRbô3º8ü†€¹B—!gF⣉†®$¸~pÛ²5²F©œŸ¢Û´©Ã“Ê"Ý eT»HÁŒ…=ªØ1¡Ð­ðéÉaTlåK±ñüÓ,kpÕÁAû [3Z׊guX.ÿ›Pwí!¡<‹s¸K)°DZ4Gâϸk'q=È·H¾×‹@;‚ÀyÅÕˆ³ÓlS³gó®-Ì9Ýn$åx^í²òéÕlÆ;ªŒÇª'Ãq¾:Ô>§7kŽ—›Êå)ôôCyÅms¦Ë·ù+oF³Wò ¶óÒº–ˆÖxð‰r©˜ý€bkþ>•É`ñ’šÏ|>TÃp­©·:›ûzLv¥·«³šÃÕ'0€]š~ÝÛ?5°¨Ù4ÜÐK3EYm¶6½¥y2o(–šÛÞÒ K«£3•õcòì À´àÈ€Óç‹R¬ê•Îà¾hËYNŠ%³l×2ívO˜IãõHnI R“­ýž¦ IäqšTÉãAîÉ.6–A“±—Ën ubзr1ƽº /Ôs1]±ë!¹z„ë…w¯¶ú ]eUZé{«_´½^Y+Êζб'ß¹ª¹Øñ{Emøj™Ákê{h9òJ0‹»½°$óMHfúÙ)í¹»HFÙzŽ‹–Hó‘/޲Žf;ŠBT°'`FÒ— ì¾TAD0,R=j3/m‚,#P_)î‰÷uøïÍð2Óg™íè)kÑBO+iäĘjw “šj÷ìV=©ÓoŠéݶbXþöhìÇ:‚±×`ù‘¿±L½0ê¬ bI¤íqa?.CôžoˆÜ;ß~j+ˆ({qûJÊJç¹b›A¿@ůÂÔ(•vºL¢ˆñBkÕ<Ã4QÉÐÏÛ’ $QBÑyÏ 8tìñÛ&;°øÖìUry…¸/‹fàT¬ØùòNˆ‹*-…SpÏdNHG†.†ˆžçö¤R2¸[ô¬ou´ò½?+bõ€bIihºJÎï™p"—£!`pyJ®’¯dËÕ6I˜F~eH^€«j:ãê’0 ®²Ud4óS“KšZPüKðªß#øë«F2–D§Úè¨õ›e‚t«#â a5‰£õ-ϱöB;.8_,Ã;4 ¢Œ—Ÿj/ªN•¥dê«Â»êTéÑ.\£«ÄôÀ§>#^ž#ˆ‰ä<ºV¨³¨ÒoÀÔP®Ò¼¿u‡…NÅ—hHÒqNìLò±$LÔæS1QTÃÚÉ€T-³ 34È…úUèõ¼B†9©‹%1 ÈmDþ®Ç½¤¤'U0=u ¸¢Ñˆ_N.¼Œ¶°¨#çâÏšJ=¨ )uI4†©ÇsXÖr`kY:‰eYc1³ÓüšÆê$w8 }§èWª/ÞZ'™@¿ ²æ…¦ào©U¬äB$™ÄÞ·b£.Eëî-Pi¾3C¯%¼Û¬`W›Ã #šl|Fnô‰uuû'Î ŸX2ñ®œ›Ü$dŽšŸPX©gQP¸‘¬ŠµíÇêÛaî¿œŠ„ Àó!¤¼)À?ÓΤø€¢e=ÝåW; á_1Èä Û«šr-±©¤¼Ëf™óoÎ;ñú£eóíGŽ¡DfŽ4¿*¦ßÏÖÛ|IËŒ~¼>a§¦Î!Gó-ó|ºþâ%úN=päØ&!½6Ú‡±´…Û ƒ ã>ÌÍ ó»ÊÐ g~ƃ¬l˃˜m‹eÎéy¿å j\?D‘ù5xÛ­Ÿ±¹«>£ãd n¸ ÁŠÑ «Ì„wWËɆÀ¤]’KÜ$wãÏSsr« 4–¿%;wØójE«Ã/=ÁkýïÚýQê&4Í/Ct7ì’÷gŸÚø‡O ÛA Ú+ÙÊž¶´öÜmùéáQ[éx·j …À܇h;/$ûlàèJ£s|³½vÌ’«¨”Ë¡…­“`-3H²÷|BÉàøÐÓeµ8LÍå ÖܯX¢3Õââ;_ Ñn‚ Æ|Ù¦¶”óŒDÈ< ÁÒ›aò]hâOû–‚Ûˆ‘#ëË`NcÑEÜïÖÈžÛU£·±ÍüM¶òÜ9¤‹Y°¯ßFŸ4©œ¡x[ Üï×Dðœw8›) Àz<@å6j§7”I|ïì˜Mž)ä¬Ð<ÓÓO‘‰UÈ©YFfåÍdÌ>ð¼î¬ f¶’r†Ou«35íó­"ÔüR$¢ÈË )» i«H;)ôC3*'‘½ › s®þˆ¼áDE¦âÒ/¸1òÓèâx‚Rü±rÌÚ¢eÛ û{í,4äzŠvlë÷݌޵X/zÖ~ >€“ )<]´Ä )ttS&ojšW<ÇæH|YŒµðc ÃfŽ K"#Ý$Z”Ú÷˜é ì|EtÖëe€l¯º!|axÀ£×¹A;}»`xÕU(:9ÑЮQH»X/¶B›’× f²3œvœ )]ÙBXª Ü}73 k(é…ÛÀôÄä1µ"ÜïùqŽ;‹,Ь©­I…u‰Áwl¾Éj”ämðÓ–¬bÖk’æ`RüÛ«ø@ç`Ž=L'—æò•ë•Ïß_ì rd9šYUí«íÔzÒ“$'Û|psjvðkqÂ>·95ëì“D¶¥IòÏMÃþ5ù°ê9K>¡r0¦s $}làèn«²wM—Ë?ý?d7D endstream endobj 5 0 obj 9464 endobj 2 0 obj << /Type /Page /Parent 3 0 R /Resources 6 0 R /Contents 4 0 R /MediaBox [0 0 841.89 595.29] /CropBox [24.44898 120.2857 780.0816 475.551] /BleedBox [0 0 841.89 595.29] /TrimBox [0 0 841.89 595.29] /ArtBox [0 0 841.89 595.29] >> endobj 6 0 obj << /ProcSet [ /PDF /Text ] /ColorSpace << /Cs1 7 0 R >> /ExtGState << /Gs1 34 0 R >> /Font << /Tc12.0 21 0 R /Tc8.0 17 0 R /Tc3.0 11 0 R /Tc6.0 14 0 R /Tc14.1 24 0 R /Tc9.0 18 0 R /Tc11.0 20 0 R /Tc1.0 8 0 R /Tc7.1 16 0 R /Tc13.0 22 0 R /Tc17.0 27 0 R /Tc21.1 33 0 R /Tc15.0 25 0 R /Tc16.0 26 0 R /Tc4.0 12 0 R /Tc18.1 29 0 R /Tc19.0 30 0 R /Tc10.0 19 0 R /Tc2.1 10 0 R /Tc20.0 31 0 R /Tc5.0 13 0 R >> >> endobj 34 0 obj << /Type /ExtGState /OPM 1 >> endobj 35 0 obj << /Length 36 0 R /N 3 /Alternate /DeviceRGB /Filter /FlateDecode >> stream x–wTSهϽ7½Ð" %ôz Ò;HQ‰I€P†„&vDF)VdTÀG‡"cE ƒ‚b× òPÆÁQDEåÝŒk ï­5óÞšýÇYßÙç·×Ùgï}׺Pü‚ÂtX€4¡XîëÁ\ËÄ÷XÀáffGøDÔü½=™™¨HƳöî.€d»Û,¿P&sÖÿ‘"7C$ EÕ6<~&å”S³Å2ÿÊô•)2†12¡ ¢¬"ãįlö§æ+»É˜—&ä¡Yμ4žŒ»PÞš%ᣌ¡\˜%àg£|e½TIšå÷(ÓÓøœL0™_Ìç&¡l‰2Eî‰ò”Ä9¼r‹ù9hžx¦g䊉Ib¦טiåèÈfúñ³Sùb1+”ÃMáˆxLÏô´ Ž0€¯o–E%Ym™h‘í­ííYÖæhù¿Ùß~Sý=ÈzûUñ&ìÏžAŒžYßlì¬/½ö$Z›³¾•U´m@åá¬Oï ò´Þœó†l^’Äâ ' ‹ììlsŸk.+è7ûŸ‚oÊ¿†9÷™ËîûV;¦?#I3eE妧¦KDÌÌ —Ïdý÷ÿãÀ9iÍÉÃ,œŸÀñ…èUQè” „‰h»…Ø A1ØvƒjpÔzÐN‚6p\WÀ p €G@ †ÁK0Þi‚ð¢Aª¤™BÖZyCAP8ÅC‰’@ùÐ&¨*ƒª¡CP=ô#tº]ƒú Ð 4ý}„˜Óa ض€Ù°;GÂËàDxœÀÛáJ¸>·Âáð,…_“@ÈÑFXñDBX$!k‘"¤©Eš¤¹H‘q䇡a˜Æã‡YŒábVaÖbJ0Õ˜c˜VLæ6f3ù‚¥bÕ±¦X'¬?v 6›-ÄV``[°—±Øaì;ÇÀâp~¸\2n5®·׌»€ëà á&ñx¼*Þï‚Ásðb|!¾ ߯¿' Zk‚!– $l$Tçý„Â4Q¨Ot"†yÄ\b)±ŽØA¼I&N“I†$R$)™´TIj"]&=&½!“É:dGrY@^O®$Ÿ _%’?P”(&OJEBÙN9J¹@y@yC¥R ¨nÔXª˜ºZO½D}J}/G“3—ó—ãÉ­“«‘k•ë—{%O”×—w—_.Ÿ'_!Jþ¦ü¸QÁ@ÁS£°V¡Fá´Â=…IEš¢•bˆbšb‰bƒâ5ÅQ%¼’’·O©@é°Ò%¥!BÓ¥yÒ¸´M´:ÚeÚ0G7¤ûÓ“éÅôè½ô e%e[å(ååå³ÊRÂ0`ø3R¥Œ“Œ»Œó4æ¹ÏãÏÛ6¯i^ÿ¼)•ù*n*|•"•f••ªLUoÕÕªmªOÔ0j&jajÙjûÕ.«Ï§ÏwžÏ_4ÿäü‡ê°º‰z¸újõÃê=ꓚ¾U—4Æ5šnšÉšåšç4Ç´hZ µZåZçµ^0•™îÌTf%³‹9¡­®í§-Ñ>¤Ý«=­c¨³Xg£N³Î]’.[7A·\·SwBOK/X/_¯Qï¡>QŸ­Ÿ¤¿G¿[ÊÀÐ Ú`‹A›Á¨¡Š¡¿aža£ác#ª‘«Ñ*£Z£;Æ8c¶qŠñ>ã[&°‰I’IÉMSØÔÞT`ºÏ´Ï kæh&4«5»Ç¢°ÜYY¬FÖ 9Ã<È|£y›ù+ =‹X‹Ý_,í,S-ë,Y)YXm´ê°úÃÚÄšk]c}džjãc³Î¦Ýæµ­©-ßv¿í};š]°Ý»N»Ïöö"û&û1=‡x‡½÷Øtv(»„}Õëèá¸ÎñŒã'{'±ÓI§ßYÎ)ΠΣ ðÔ-rÑqá¸r‘.d.Œ_xp¡ÔUÛ•ãZëúÌM×çvÄmÄÝØ=Ùý¸û+K‘G‹Ç”§“çÏ ^ˆ—¯W‘W¯·’÷bïjï§>:>‰>>¾v¾«}/øaýývúÝó×ðçú×ûO8¬ è ¤FV> 2 uÃÁÁ»‚/Ò_$\ÔBüCv…< 5 ]ús.,4¬&ìy¸Ux~xw-bEDCÄ»HÈÒÈG‹KwFÉGÅEÕGME{E—EK—X,Y³äFŒZŒ ¦={$vr©÷ÒÝK‡ãìâ ãî.3\–³ìÚrµå©ËÏ®_ÁYq*ßÿ‰©åL®ô_¹wåד»‡û’çÆ+çñ]øeü‘—„²„ÑD—Ä]‰cI®IIãOAµàu²_òä©””£)3©Ñ©Íi„´ø´ÓB%aа+]3='½/Ã4£0CºÊiÕîU¢@Ñ‘L(sYf»˜ŽþLõHŒ$›%ƒY ³j²ÞgGeŸÊQÌæôäšänËÉóÉû~5f5wug¾vþ†üÁ5îk­…Ö®\Û¹Nw]Áºáõ¾ëm mHÙðËFËeßnŠÞÔQ Q°¾`h³ïæÆB¹BQá½-Î[lÅllíÝf³­jÛ—"^ÑõbËâŠâO%Ü’ëßY}WùÝÌö„í½¥ö¥ûwàvwÜÝéºóX™bY^ÙЮà]­åÌò¢ò·»Wì¾Va[q`id´2¨²½J¯jGÕ§ê¤êšæ½ê{·íÚÇÛ׿ßmÓÅ>¼È÷Pk­AmÅaÜá¬ÃÏë¢êº¿g_DíHñ‘ÏG…G¥ÇÂuÕ;Ô×7¨7”6’ƱãqÇoýàõC{«éP3£¹ø8!9ñâÇøïž <ÙyŠ}ªé'ýŸö¶ÐZŠZ¡ÖÜÖ‰¶¤6i{L{ßé€ÓÎ-?›ÿ|ôŒö™š³ÊgKϑΜ›9Ÿw~òBÆ…ñ‹‰‡:Wt>º´äÒ®°®ÞË—¯^ñ¹r©Û½ûüU—«g®9];}}½í†ýÖ»ž–_ì~iéµïm½ép³ý–ã­Ž¾}çú]û/Þöº}åŽÿ‹úî.¾{ÿ^Ü=é}ÞýÑ©^?Ìz8ýhýcìã¢' O*žª?­ýÕø×f©½ôì ×`ϳˆg†¸C/ÿ•ù¯OÃÏ©Ï+F´FêG­GÏŒùŒÝz±ôÅðËŒ—Óã…¿)þ¶÷•Ñ«Ÿ~wû½gbÉÄðkÑë™?JÞ¨¾9úÖömçdèäÓwi獵ŠÞ«¾?öý¡ûcôÇ‘éìOøO•Ÿ?w| üòx&mfæß÷„óû endstream endobj 36 0 obj 2612 endobj 7 0 obj [ /ICCBased 35 0 R ] endobj 3 0 obj << /Type /Pages /MediaBox [0 0 612 792] /Count 1 /Kids [ 2 0 R ] >> endobj 37 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 20 0 obj << /Type /Font /Subtype /Type1 /BaseFont /VQFJAY+CMTI8 /FontDescriptor 38 0 R /Encoding /MacRomanEncoding /FirstChar 101 /LastChar 116 /Widths [ 493 329 493 548 329 0 0 274 0 0 0 0 0 452 0 356 ] >> endobj 38 0 obj << /Type /FontDescriptor /FontName /VQFJAY+CMTI8 /Flags 32 /FontBBox [-57 -236 936 736] /ItalicAngle 0 /Ascent 704 /Descent -204 /CapHeight 625 /StemV 73 /XHeight 469 /StemH 33 /MaxWidth 991 /FontFile3 39 0 R >> endobj 39 0 obj << /Length 40 0 R /Subtype /Type1C /Filter /FlateDecode >> stream x­— tSUÇ_ O¬qâPÀ÷"ˆ€ì:ŠÛ8 ¥({¡éÞ¦MB–&i›´I“|Ùš6m“&MÒ–Ú”®PjA¤RE¨¸ ã:£uŽÛ}õ1çÌmʸŒÎ9'{Î;ɽß÷ÿ~ÿÿå'‡·r]âšGÆÞÝÇÌà03'0wsÅlÊ÷3G£ š Ñ̼}÷TÔr*ºm™Bp9œ‰n¥¨P)ÎÎÌ’ æ¥Ï,{ôÑå ,]ú¨àé|¡8;=µ@°.Uš%ÌO•ây‚M¢ôl¡T)˜÷D–TZøØ’%r¹|qj¾d±Hœùäü…y¶4K°Q(ŠeÂ=‚U¢© >5_(ˆ,nqäy¥(¿p¯T(¬íŠ ‚ˆ-X!*K¤òÔ´ç•é{„™YÙ‰¹yù-"ˆõÄl"Ø@l"‰ÍÄ6b±’XDì ž!âˆUÄjâYb ±–xˆxžXGÄ3ˆb:.1‘8ÊÙÀ MHŸp•»‹{qbcÔ¨C¼§xNZ=é 2üÇ-êÉó'¼µ(ú™è®ÛZn»scŒa¾Ô†:Äažuç¢Fà;Ú†Úö·µ¶»ÙS'nHeyŠít…R¯%¹+œñ⧇í®×€Ae®,6PÊçr¶¤©0º}MÕ§Ÿö¿Ô‡8E¾—L|8i£TAé2:v@6Hò,e¶z=È’z¨j°Øš«(Ïïx!ÈÒiLªJ ½‚=bÒ™`ŒUÕ—zÛ«š»k(g‹«ÏáwÀZ{ˆŒ5@¡Ž0g4úC.Zÿ_—­×Ź· š:h Ñç<4ÝŽx_½òAý•ÿ_—áŸä»+‡Ø û6¯¸4r¡·5j=˜ðßzX#ÿ42×tBÄ¢™öðýl Í&±òu ÕR 6[ý¨}ÚÀCÇ\õ¼%‹Ø‰t sd¼˜hÒeºÌeºP ÿë¸sËX>;“ÁÎe'\N¸†bñB÷R¬uò…Iûþz$ðIû úð¥¡&\„Áî̸\õýi«éÜÄÍ;Ä¿Ên £ãmÊá~ÁÞÎ/ÏÑ„@–•€¢Òª­£kÀa»Ák¬†cѳnht—@©Hn‡³ÕÞ@w¢9Aa»²o+ Ýh"Ö_“¸3]TD—¦ù3o¢9jS…Ù@¿º›o÷Z¬nÿ‘¡>_Èm’Õ[ òT:wMRVkµ8mV‡Å+²M`îÃòZñw.  V¾Íýºã#¨¹Q[j*‚rRÔ×7¶¹ûN­¬ÍÞš›!¢tÝ9m;obA¿¦–«©ÁNÅ0kµ¡cWЂK}!z`Ý=Ìeæ0“øY:È©t—zí½pb(¡u#;#—å‹jEb*¨¨5 •+_*ƒmd~ÑSìY‚m@F©†n°‘·¬P,OÝt"í´¬MüðA_Ž“J®ÉvBj9õN{GY^ƒ¬…)a´ÂÏASñd53³øó¼u¸1¥ ¢—ó:ѽvXÁÛ$wèrËóu&j»$jO9&ÌzðÐ×xqlØ =hcúsŽ~s Üu¨T›%*yN’<Hqe0è—­ŽŽÝuC€Gø¾ö.3=ͯÙ,1j5J‰¢L dZfàüñÐ[Ígéú°­ü䉴Pê‚4VPrc,}vÊ7>ѤÏ^¢”–ËtR:™¬Í€’å~¬:êª:ÙM…6—·Á ìºÚ~á ¢àeòL¾K-ÉEgE•žòËœ"(„=ysŠÓ÷nËMßä3ðzC«Íí¢«;jÂÕî“Óìîª}‘úºT¹åy¸?SÔ—©fná[¶Zp %uÅš½:‘’,¤ÉNfocç±³¼òÜå¡£ýͺ&#œ7Ðô¶zëO•ƒU1ÅzJñ¤,§H´×Wmý!~y֚ǀLR¿ØûÂ~4¹e€îé÷cmŸ©}XK5Q1Œ6RY$<ÂAÑÃH5ÂEgGñ-v«ìàQ™Ë̳uÓ4ø#ãÇ=zÁXfÖSó¯O7u»øøs—‰‘4 ÍŒß.a¡DDU]'ùIŠcƒ=µ‡÷}N;ÛÍMÁ:Wø@ׯÌVÌèŸ Ìü;Ìaf1_òkºª\W€¬æùj¡ÑUa×Ñ)°Ë˜ sAe+^ó¿Œc§_ï'eì¤dyM`±8½o#á4G=Þ…¬×Zu³QVNe?ÂòØå@.äý”L>6%Ô}u B&ôÈkxÌxÂ-°ãIùo'W³!ƒ<õÏÏBlœöžl¹Ðþ>]í·»nRt¢'E+ ‘\z®à•þŽ ÇKéö”ln/Êæ'CˆkËö…Þ&’¾T•U¶}ÛáÌWÑÄO¿ù¨ «÷ ¸Ú‰!€¡\ø>—ÙÎÜÆOÑAIUmqKË>ﱤÎ8ö.LhÌè9çŸý Ý{å3wuI}…ÞlÒê¨Íkž'¹%«ûõ£Maq \öw@6ù²Çøü£4Æ´zå&u±‘UŒ+8ö·+¸ jñÜß´‚QF-Ã¥¸õMäìç"/Rð{Ñz@S%w­f vá"6nÉñ¿ýyèX¥ºp¤ÉyØy€®ñÃhÊûaL‡ƒaEú|v1dÐ1è*ÖCýFŠÝêJ}ˆ#~½óÂä{Ÿç­ÇäÓ€š~”çy×Xî}Ç5èìÀS¢Ò+‹AB4j÷›Ûúw7íž%a§ +(ˉŠ·ê1"žã­fÿ]úœI[¼>V/UoÊÂ~¯®º±Úãà Ø/q”ì•äí”õ|Ó‡žF·Ç$€—…ž 1ü1ü&òbµÜ@•ùE[1LH “{ØYsOo¸ÔÕå wÓ²åe©zIAnljr2(A5WXÝä¶îÃTñkÜ{ÅbYÎÖsúatçÅ‘s ”¥óu™kŸÄ8IQôôïû68@·y¡³ÈáúÇK+Í&“áÉw‘èu³8aç\Ë\iª€ÊXKhðÔº”ÍÑò•ï¢#XÀæ—Ñ]8~‘}®\ì§l”bÛoÊn냛ŸNNK°—]Wøô¿qÐŒ³]g¸è£Q.¿Eé*Þ[(I¼e¾`«?DmgßàWì…?wÏñ¶sƒ7ܤBQ’EDZñ•Ú %(c#‘²ÝS÷“H¹6g+f{$RVyao«Áàû®—ÃŒ0_ó«ÛœV§ÅimƒF ?ï1¬Ôš+Ì:º|m”a˜-F³—Y/à‹Ü!´jšÅ…‘šº~ˆ·Œ WƳ«¦JÀ„Ã€Æ {Øì”Í ÖšÖѽÐtðC xLf +Õ쯧iÓõeK,‰X4^žîôÐ#¼^8dìÒ9–»Æì½„W *K±Eb«°ι6Fê8ŒŽ_« EÚ~þÂ0žŽßØv_Cm«“:Švô.*!!g„J#Îg¦R(#7u¥œìß×á«£šºNAUÄýT&ƒº’Òl”Ç'©ÒÔt5ØíÚÞU8Ž]\Õ¼ª®³¹¯ßé=N¹˜ï9ãéfô/‘‹“x ÑhÝnqZ9(ÊóéçY»/þÏÙ¡áÜ4[MëpÏö÷ýS·U¸UH•_ÚàK‚‡`çF…ô÷:íàú^ÄEBÄå ](Š‹^cîâz¤y™"a~PÝÜ~põ8;òË/c˜? u§9 &.ºŒÖñÁv·ÕYåÇ‚ˆŒ›ÆS`Ý5&½^†djx©Y€YéBR‹7ÀcS\““Gn¥&O\î¾%䈎&ˆÿË›F endstream endobj 40 0 obj 2979 endobj 25 0 obj << /Type /Font /Subtype /Type1 /BaseFont /VOFAGL+CMR10 /FontDescriptor 41 0 R /Encoding /MacRomanEncoding /FirstChar 40 /LastChar 246 /Widths [ 388 388 0 777 277 333 277 0 500 500 500 500 0 0 0 0 500 0 0 277 0 777 0 0 0 750 708 722 0 680 652 784 0 361 0 0 625 916 750 777 680 0 736 555 722 0 0 0 0 0 0 277 0 277 0 0 0 500 555 444 555 444 305 500 555 277 0 527 277 833 555 500 555 527 391 394 388 555 527 722 527 527 444 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 277 0 0 0 0 0 0 0 0 555 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 ] >> endobj 41 0 obj << /Type /FontDescriptor /FontName /VOFAGL+CMR10 /Flags 32 /FontBBox [-72 -282 1041 782] /ItalicAngle 0 /Ascent 750 /Descent -250 /CapHeight 666 /StemV 69 /XHeight 500 /StemH 31 /MaxWidth 1111 /FontFile3 42 0 R >> endobj 42 0 obj << /Length 43 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xµz XçÚöÄHfêB+éTP;Á}ßµ¨ÕZ—ºïˆ+‚ì(ûÙ!,$Oö} °q¡ î¶ZOÕº/X­UOkkkkßÁ—öûß°=ß×szþóÿåuå2$“™g½ïç~^Õ»%D‹Vo˜:Åô¿Qü`?¤ÿ®Ð k_É;, ŸúõÞ;d¢9zy¾E‰ÿ„UꢀÀˆà]^Þ¡¶cÜÆÚN=Ûn‚í´)SfÛ.ðóÞåæâo»Ú%ÔÛÃÏ%”¼ñµµpÛåa;f®whhàœÉ“ÃÂÂ&¹ø…L öú`ìÛ°]¡Þ¶CÀP}-)jµ–šM §ÖQs¨Ôzê}j$µEÙS£©ÔÊKm¢ÆQ›©ñÔj!5ÚJ-¢&RÛ¨ÅÔ$j;õ5™ZBM¡–RS©eÔrj:µ‚šA­¤fR«¨÷¨Õ”µ†šE½C…Q)kʆD ¦†P"*†¢©XŠ£*ŽÚE½Aõ¡æRý¨DÊêOùSP–Tõ&õ5€²¢””˜z›b*Ô‚>‚¾”# 2Õ›R  žöòîõ™p›ðFï]½OYŒ·¨ eÓ"º™ÙÌ¿±ðò7~éã×çb_e¿1ýÚûë,ÇZ&¼ió¦ì­Áo…è5@3€·ZiÕ,övÿ·3Ùõlí;îïœøþÀ{ÖÛ¬smÞ´¹9(gðÒÁ—†ìræÝµï>âq’…_Û¹¶N¶¥¶ß 1´u˜Í°aéÃî·~tDïe#ޏ6⛑ÌÈ#bF½;*côôÑšÑ×ÇD¹<6w\6¯°ìH#Újä—ëµ „ü°ŽUlrž2# ¢@!OŽÁnßXGlq‹vP1¾t™ú ¦ŒÐ¦¬Uë7ÜHo 6ThÕÙjäh@tOT§häbãgœ/Ý ½ ûà Q5+M—DÐk!&CVÇ`=ŸÍ" |ËKE–|y‹f©Þ õº„<. F½Ð3—ÒN2XF~¨^ݪ©„ rï½]÷^&ƒÃ´ŠþéÊ© çs6p8æŸ~w3ƒª†Aö4<£oCLÑnÝzXŽ;V3â›?Óx¨Ì—¾œ™´MböJ‡À((ïØ äGñï°è]´C_»·ö‘ÚÆH»«•ÁàÛÁMKLò¥›Tz)„B¼R™$Ã"<ϳÈA©M΄TÈÕT3FÚ[±<ÀV«=5¦«Jè“P’T€Va£5ž…“cÂüvŒâ2u³¦á$4(Ì^Þ¡Ž¬„bÈÒ¦fä aÈÓMÉšm (l N¹Ó›zíUâèæ×ާ7Þ´=FƲc ‰ñE=Úo´B’vtæÙÂçÅ< æ{±HE×i2Z8ô–èYý{›Vn³ÃBÉãöYÉ¥ py8ù~‡ëìå[.º©‘yI:ËiñÏ^JÙ\ˆ/?D„l¾~ô÷‡³¯ca®d5¾Íâ"GeFU uô÷Í“–-Þ<{„Ä’WÈ ü½ ªÕ´ y´›Eo~‰ûãã°ÀìOãѨÿß!1‡ƒ°#»œK‚O öÉòC•GZJ›à”Vì¬Ø ë‰+½ÀAê,uröß ÄF’Ǧˆ¡û„ü/ü}¶ñ“³©µ@üî«tS¿¯×©ÍÑ:P&“ǦÈ%x6.ÅËÑÇIÙ 4›RCêaÎH{‘@¹ƒ ìP»˜UL™²Â 䉿±Æ›énûE Ú+äÙöÕî0…Ò(²÷KmÙá)5vL4ZzÁûÔŠŸžBß°Ø ½‡§¢5Èî;$AL6dÄÊ@¯âñpÛÙX̼e/j•ˆ@mhóÞOàѸ.k&Ì, _ëµ-,pÃúQ$½øònŸŽ3„é¬ö¶£BÒ¡îòo}Ââ¥ÿÚ‡üi)í1ÅBü¬*Öõüûƒ13l~x6 1$—áÀA}5£E¾,JƒOD€4$6Æ'И…k!õ½Ü~íNóŒM¤'Í%U|Έêö ÐGh›7h B4äÛcç5Q3Ê!. Æ“B≋lº R÷5ý,Çç=‰‹fÊ|ÇqSQ’¨«ôYš• ±„1ˆÔ¢ó\O½[òƒ{ÚòË‹/ ßDï£/YÔ‹ÆS™»¥øðïMz¿ºESMÐMæÖµ‡^ Ìi I¤<º‘¡•†S¨Ââ ˆ (Örkk}«wrâ› ÁkYÌNRȶÄÌ#:ÒeæFNRævÇ\¶óHÏcu–¾.Âzí-R‚àqwî¦'@^½©Ðßf÷l¿{<7¥wÜO„ÆÁ¾sÄ`Kž“éù÷J¬ê Á£CèÇÅ;ÚÄêSîEÁ"f‹·Û<;¯Ó_†sŠ'[O@ºä\ò`©=Wtù!6©½ºüp r¹>È ÿb£M4ùA“ž–ÿj°þ7¦ÊL²Ém—o2}¤ùè+¾žúäˆÞªùæö'ÈîÒUBüŽ£7ØT·J—`J?É¿+9lO¯–Ëv§Nã#M(ß~¯F÷ý[ ·3{‰ãr?]dEU±®"7¹n‡ZRY4‡ð £§Ý§I¥Ñêµ_UcˆšÐjbi.$§‡ë‘gs‹&4®?‹.wó83þv>5Ðjuf~e #>ZмõÚà²6ö{,"yìtŒŠ d­E®4”€:§pÿ©“™åp‚Ê=*\µÀ<•kýöøzìv'ð*i$üM Ås,&»éx®«id”Ëd#c}_Lò®‹gð5ô^Èÿ†«3мSÈOº&õ ú÷ÖËì-Ç.úâû¼”´£ûB~:)ÛŠó­êBoïêF਑vÅǨ*Œ$c\¼J™7 «¬±éS²•©¤ +¡„Ôm Pä»ÑÇÄÖ|o4®S`³[+ݰd%$“a-¼Ø˜š©‡B¦"¼04LëçÔìuìüÓ§Ë9K~A°º'ÓÛü$†Ô!OÙÝk>žu^åUϹ*ä~ˇUUèŠj>Ÿ¿ÿ<`2¦ð[œøgüö÷cHºªEý²³ãAA:¨\ÉùOZç Œ˜ß4ý š)±|5¦»®l«øò»B$ïË&èäá<ï5×QÐà8Â<%caíáè# ¥RÂ7¨i$ÿµWZlÉW›Ðf¦æ UGkuçQÌ5j?7Ï*ƒÆ?Â_ÞS™xž(@•:ÏY€[/h6 OI´ñ#Ù¬SÃcò!‚ÃW cŸI{ú%¨!="®íìŸ %$ÛÄdp vBØ×6š€ûìqÆ 1ªiÎ7#¦9©»yt4ÿÖIv9FÿŽ™GùŸþ˜âØ—öoØYá`úac1‹ÅßA¦Ì¾‡÷jTÚ»ÐJY¤ßv'éNSW„ì : 8MÈa£æ\õáR㾺¤Q4Gr"ÉsFüajRÅÏ®¢èŽilB®JNnôoµ¨tªU™B­‚p¦³ä/"QD§%«U©r~Bç3ë¬8µ*˜|È(‘ðGéJhyA2Ô[µM¹vÃ6wWR¿Ç@Iç|º+çüJÑB½™“.š¦Fže›ŽÆÞ7ìæE6ì.Á {XT+Òk¡ô{‡g¤ú˜É#ð ɹA?#ƒåa$,ÉNÔ$'(å‰JÎ{ÄTˆ‡­àVÚè÷1\„bu±´¢Ã®B@¦SçÂô„E;ñx2œ®ÀKñD<»Z7 OAKÐ 4MGNþŎǃ¾Bù(ú¼ý!¾gábü®Ýd‰%:cn¶hÆýL½õ¾øä¡-ⱈ¡¿úøãCÚH*àâR"b!˜ - «¬.Е7zÖmúè½MC9LÏõ½oöÌQÿl†¸ŽDF2Z›Æ }è<éEÜ#ÔòBˆÂÐ%Í¡~ˆºûü»1_áw%øåëúùK®§@E,*ë‰ÐtºÍH!O7)ص m8s¿ A™UU[Øu´ðz}›ó™â_d(}È΀çe•êÚƒ$3·¬ª ˜‡0:4På,IŒ p#‰Ä¸³ eEºý%À<½téfcTcp™¤aoCZ1©ª4Ъd)É2ˆc"óâ ³K2ÊŠâjÝÜå®.œK‹V ̤%K>pÖ{öHb£#vƒ7#î À7Ïö6Òg'¸1‹¾ßˆ,QŸŸZoÕÇ´n©â6U­‡5¤_î„$µOê#2/±£–´?²¯ñVrVôõ†™‹·Ž5©$‚æ²t)pBÔëûÿO{³絑 zñÇ:·ì•êI|ëQ«¸H…,æ¿ø¶b ø E/Y”KC‘Ô´ÙšjÐó5ê‚G. ™ƒÇHžÇ²ÏÊo}·˜o±è>Íá¿ýIüwÕ¦‡ð§#šÿZHØTý®}^D/Z+Àí€Ç¯“ò`nÝ«J‡"Ø$$©$òÅÞÁ° [cžÆÞ±Ž¸°­nc aë5æiõiuýåG‰ìƒ>â×°ØÖDþ?Ë’o“`}O–תOhÊI;ªï‘3—§¤í'ÊO*¿­ . ð•ꃌU†ÒZ‚HmDPšReuª"èúüÂ&â«èGÞšÅoW¸Ÿ€36—O|r ½¯Ç³œÒ9µäd4—h‡y¾LR©â’8ï ~Õ®¦‘ùMh7}è¬ã oJrRZã.G2â§•I5IUž¥AÙ¤C1‹·.²óŸŸvt·þ„₪A•Šžá×Ñ<üf¨59¨µÚºãÆ]¼xãÎw¨—D|ž/¿gG¤t† |áW|H³É+nOÚ~^Aüò yšü2Áä—›YDqí´¥f®L…¼ ® U—•LE„. ",hó©€Ó×?½ð˜àjǤÞÕ!åþþ!!þþå!ÕÕååÕ„žz¯Ï.E  ”ùe„“:f³HnÖ•òÑÌ‚:4žH¨­,M„2„‰ì‚˜aœ›¯è€öG8Bþ½€ftt£‡Aþ^ AG’cùÅ©9Dx.ò»óñL³hÐE.QP³àåEáË×…RGôj¨&US™3‹Ô/è 'om¶‡›ðÈ”p‚åU곚R«UÕ]ßó)xÇb´ÔZ¥IN'¼+õʹìÌó­ÍšR÷ôWÄBaÙ«51]ÀQ¢Ê–A,„ÅÄ–=[Zó¡ÿXI $cv¶£‰°E±xظ÷'8â>´ãô@ÿ?›¥;ûU1˜Ì߈þú)qZdAƒ®ÒupØ„g^ªíÊ]à Û5^À3s!tšHxQˆ>êXÁvÉŽ]tµ¨§êÔÇ50BÓøÑ‘LþÒÒŽ¡„vlvø{l~ceõç&'˜¤\e-å¶©Jƒ]JTÈ•r¼²s5¶ç5ò|ÒR56Õ§Á`zBÅ2(o‡=Oø™‰z èÎWÖáiŠ<(MZZ>Åkæê}½‚0o!Žþon!þß7]]3æá‚§×Û‹»¯·G»¶¯r»Xü*Døj(q`ñéƒÙûMœÚOé«"c-¬ìÑÂÿ¦Òí&¾\‘H8®ÓÕÏàcU©Êt2 ל ³—zºv…ø4”B®—þ#k,é\€gò2•–0í?ýþuHMÎõDŽÖÚm|ød¤æ¡Ù|š5šÓ™ÞõG›®¿’±G!­B½¾C«ôh`»Õ±ï·Qø#‚·¼ÚÁ¢¾³ŸcjûÎ(o/m¦uòº$2Ü¢7/?ÎKW¤%©” H–„%l [F¯Ž¥‰Z%¡zL<$FIðQ:ó34ÚôT.§°ñÄ]hÎ̈BO;leįH&¯ q q÷ ÚAÜ»áxäY-1ŽtÒº"Cyy¤awŒwÒŽ™—Æ!"ÿ‚˜¿EbIà%¥{PÛЗVu¨ŸTÍô2PüšÈ?`Ï…ÞéTØ ËÏN'½Y£V«Ñ@LŠOÒ¢U«%qqä LRZJZNû Ô‡C›ÞùO.3{ŽVÖþ¸É`Õü5r²âëâNdî²å4JGo5´–7Ëwé¹h7pò-ÖÖdí?çüñ,ü6LHuDü ë³ø)~ówrxÚ·Xȉ;—‚ç–°íd€¯³«À ¢îÉðVíó¯ Àj#Wì [ n‡­‘^~kwFnŽd)ÿÙMÁ)Ã7O„| ÿ’Í2‰&¥ NaKP楔0Á¢ÝØ• Ú¬óy¹é·ˆP 7‘,j.HwOŃwc Œ$t:rgs­4œÔžÌ<‘Z–ÿàQÈÌéò·Ó¨ˆØ|,ôª8zÌ´î°ãw°;jRöBóÉgÍW®^ؼhƒûöµÞœ>šý¢ñh\džL;=eôœ“"4NÍŽ\N\c°Àà‹õþ3íÇ ú㲟‘Å7í¿4È{4sá¥QÙ+›˜Ñ.,zs^Ux‹¬±YðáæÙ3}Ú~¦ö—-£Iâ6<¹_Æ0¹ÅäNÜÿ /DWXÇß±>ÒA³7;”Y]d )Fù%¸/;áú%ÙªX’ëC¼ô˜þ|ÚÆmN;9W§PøÁ¾‹zsâ_>ÍegüÖlìßóp ŽÂ h)m¬<¶/¯ž XÝ®"§\ŸÔU°ƒ™µkÜtÎÔ‰_¢€—‚/…h#oÉþøÄ·þRQ v(Eš®´zð2œdó~µøix§%È4o傤Äßóø‹;ˆ©V^sèIý4 ¨Õ\†:G“™aê´öz„õ GZýC½àÔ§hƒÍ1½ ;t8²éY-¤39 Y²øä¤$9·ué²À…ð¬6ll /ÚSàÌüÅvø Üÿ‹9ׯž~„zçCËž6ÉgžÇ’à´ÓSÕ*ëN‡_§&Ä’q_i#ËNÈÎÖ¤ædr~¶<ÍAï–Wz¼uÁ0Lm^´Y¯íý§ø,e½îáâÿvOSÈù ´N€\Ñ!ß·£›•‘™¹LqDqD´L&Oáp?<±(ÂÂ4sùÁFTHfêö}çÑ`:W%ìX…ú³Š¹+w;lnõÙwäxÓçGnï¿XZÿÈxžJ•œ°»Åéˆ!<˜¸D¥lç´tç¦ØÏï:#úĹÏo”>Õ¾xõ‚C]ÒÕO㦌sÚ63î­úþ˳ë¹KkÏF}L‰–tþ]ÝõI>*k^7Ö]=•G®ÿaO5…ê‹§N‡­ÚYc}ÉÏèÊFX¨<Cƒ ²#¹ÀˆŒHsáÒ-ö…ÑÖê}-‡Ê ÑñE\eTqR‘Kô­§Lí†ç^Emd HV¬RÔïšéÅÔí ¼=[Yé/—s*¥J¥F ù©µ_œÿT’kj}Z_Y6k>î³¶Üé`}qe…©Ûÿ'—‘5 Ö–¾²× ¾?#D÷qK8£&²@V>h=Z¸-Do¢yÝ÷NÑÊã§.ÅâuÜÜ+ Áæåàþ'±Å9üæƒÙÀ¤§j3Hp{~E‘ßnFZnÉPÿÈb-zsægd&OI‘+@Y!ùnÌi<°àùžx1~ [Åvá™<5%=ûëÏ‘ø,׊zå"!Ü7MHXÛôjB“õi¢L¬e›Æ½šð¬ ¿û[4™í‹g•¢ÃMèˆNÀ[4 ù‰(Ò¤utgGŒ×¢:Q>”„…Ax ‡ëpÝGùDÞ‰b \§ƒ’|se^|.xñüés!ræÿ‹-«ð JôÒª]E9‡Þ©’êü‚BBtA5Uz}•iÌ2Q@£ïAD?jÐ[½¼ˆV=1Í+ÇP;Ù_Ɉu•à²M_y!­¢HôUd-ß®R*!f0îƒ,Dß?hú´¦!>Tǹ*åÅ쮈-)++¬9»±yÁ$Üw pXôRÈŸ3dt“69ÒÁL:J­ 7L|ƒGÎjöBÈ·žž[˜›ž™Mv“jµ*feÀgG‰\Nž*ÅL5roßFôk‹QŠNf¶×‹XûŒkdþü)øßh/¹…øn ¨È‰Ÿ|WÒ§˜aX`?\òïZ¼Œ,ÞM\óôÆ‘kY•PÅ%¤DÅCDdFÉÿ˜.}IºLïH`ñ»nÏ~›0Î ½+²DÐÚ3‚T,DÕh-{¯':š ø!Ÿ‚2Y}gŠÔä-è†ÀãÿÉ%Ý•tŠ(äWJ#›И(&%>^Áá¿ÿ¶09– ÀI²ròS³³µ¦$“ê;¬õ‚ýí(“lÙ‰®²p'ùŽ÷µßÎ.tµ°0Èu’Ï’äyð>|˜:õÀüƒs®†™ûFé¡oj/¥Ý‚Û öÂWYwXgˆøVvžÀY¸3O” ¾×³ Dí½Q2&ÛæÃ*²ë\*[=aƒŸ“™\‘Tm4Ò Pà5!jéx›-M(·zåt ðèKëÈOµU0d‹©ˆ›Êù˜6‚Éj¾ vo}詊œF¢CG›]ö*Jø*Êä²ß¢ˆËxÜD?ÿüƒÑêØÏÈùq—)¾É¾|¦ îÜ xnƒDSï`Kl±`ò4ûc -ªÏ=PQᨕ‚+ûìDã`œ3ûý­s7®–àx·Ì¤‡ØˆæiQZHÄád¿$çøè¤Äådþí"sW¤Œ(C}~ø”Ð(Ôû½ÑûOæ¿(Æ:ˆ~fïUž¹LÜvoú©ñ£æ¯¿[^mÔé«9B4g~ü#Gn ÷VÝ^jz@¢N 2ò.Äí-7‰ÛÑlv†iM¼€ÛcÒÚˆ~Ô Ç»u„îÓŸGóÛI@Ò£¦c;ø\ç.¢| I…)ø7\^ƒ”NÐÒ±GȯéXÃ&å)Ó"ÕÉI±øñ¯s¬“ˆóTLb:r+D…é©MrOø§,Òw6Zt6#1Dù©Œï]öÂ(8õÍhGsž ùáh0‹&“.ü~€Ÿ°è1žËœúöf2Ùָ¤îCuô7¦­ª='FÛN†10 §¡±ÑŒ½I4™Àíö%ÇŸžiý<ýÇ“³È1°a%?§ЖMôëq:¦]Í".ªj2IâµÑ¶x¼Ix'%þ·®#í•B¾Õt¾£øµ\÷—ç;øÊ.½ö… ‡Òu…x°Y•¹cnß(MOTäyñéC!¿‘´2DIfD>n9ü§Rtƒ÷^ûuÎ)Éœ£}Z 00³Sÿn##'ÃþJ½&ÐEÔK úÙ½æÏŽV…ƒšSÑ‘Ê0“¨#WW&y'È¿˜&(hÖ!Ì ô¤®»)wãP«ŒÿéÿˆÜÛRa{Šø>õïÑô nÑ\h½‹Ž«›ˆß ¨ôo»Áëw7ü9fäZÞÝòŸ?ܶ¼>9 ’sW&„@Hs£Š“K©ž_T„üsÒõ"ìšKû\êËõém§ë÷†>«_¿Kº~ý)êÿÕŠH³ endstream endobj 43 0 obj 8897 endobj 18 0 obj << /Type /Font /Subtype /Type1 /BaseFont /QUCZTJ+CMR8 /FontDescriptor 44 0 R /Encoding /MacRomanEncoding /FirstChar 38 /LastChar 121 /Widths [ 826 0 413 413 0 0 295 0 295 0 0 0 0 531 0 0 0 0 0 0 295 0 0 826 0 0 0 795 0 0 0 0 693 0 0 0 0 0 0 0 0 0 0 0 0 0 767 0 0 1091 0 0 0 295 0 295 0 0 0 531 590 472 590 472 324 531 590 295 0 0 295 885 590 531 590 0 414 419 413 590 560 767 560 560 ] >> endobj 44 0 obj << /Type /FontDescriptor /FontName /QUCZTJ+CMR8 /Flags 32 /FontBBox [-68 -282 1102 782] /ItalicAngle 0 /Ascent 750 /Descent -250 /CapHeight 666 /StemV 76 /XHeight 500 /StemH 33 /MaxWidth 1168 /FontFile3 45 0 R >> endobj 45 0 obj << /Length 46 0 R /Subtype /Type1C /Filter /FlateDecode >> stream x­yXT×ÖöGæœXPÌ= ÆœAc=ÑXˆØ»FEA‘"HïaèÌ̆‡Þëˆ{ Qãµ$‰‰1æcŠe²É½ßžA“|¹Éï÷<ÿ³Ÿg(³÷9{­ý®w½km Ó»#‘H,®^?ÓôËhñ‰8¬—øªt;Ñþ|º+ÕúI¡_ï–a#îg[aýÜ<é-‘…%g, ÷Ûîi;vÛ8Û©³f½5ÁvÚ”)³lçy‡ûmó¶]íéëäIÿ´uÙæçg;ÖÎ722töäÉ111“<‚"&…„oŸ;n‚mŒ_¤¯ízïïðho/Û%!Á‘¶k<‚¼mM››dúXén»:ÄË;ùäè¹s%[W $îÿ=ײ+š΀-F Ž»ƒŸ?”é²çý«Ù›ÙÉ>òîrÖG•{‹XËQRsáïp™»7æ2T ŽäélKv^‡€rÙ£Cs×.}g.‘ɉ„Üã]Uy-r¬DwöáÙ·íf/[A¡ô =Î1÷Äi?H;þü8ÊpŽÂñ¸7’Ñ8™,•“¿=g%îz~”¬ìc¸ppóûö` ΰ Æ­šïë¹ÒkšÉ¹>9gØ´[‚£î£O³´kñ²02>z.Y'ë9úÒ‡ì£â 7åÍX({31h¬0“e=h!ÃÙPõN9Ê5Ë‚1Æ¢û®µ¬}%¿¢ï"Ó¨]ÌAêÖk(¥n]…±<|Ԍ̷ÙY)iÉÖ&VÖV•6¶ÜW¸;;D ê'22âOg¯ö4ÔB'dÃEsàİ T»å–]Ë©Mx Ç&÷f©ø¯.;¾ûÃß’ÌÙ—à0\ƒCæg°¡¸UŽ™_³ßNï1v†"`œ0 ³Ÿk#÷ bUBµßJ1ˆcê$­§0ý”Eq¦ž™JHHTêÔT%¨A9 ÁnÔŸ¶ö[6·k•ò}A5Y—‡So&ÂRÎ+ÌuòèàO& YEjJ?\¤ÅÊÉ@6RŠr5šŠrA§+(ÒéyVÕ›ÐwðÚß_%}«åiÙùY˜çRû¸¦êöo°·nVH¶ IËSæWjFu×õh#&E¹9”6ß—vmBg~_Žîª`d7)C`=l…Ù॥´èßÊ~£UøÈW²žŽÁ›C€niYv«°W¾{ÿ{콀̪“kR4/"ìïCskÇòö©44]ÈÛæÐÜ‚3ÉLôºùEMç>yyH‹>p…PPB#n*%’þFœY)Á^7pX³׈#xg$ãpU L=ÅsÂ$%ò©gÉK_Åu\Ú÷ÞG™Àì’@ïeðE©Ð“:ØL£†Bù:5PñmÙ7…j£l†RïС‚f Ÿ“#‰'×1žý³~£P3bÞƒ÷(êî˜ÅÎU´É±¯“‚Pÿ«Y”Z(ZPü÷¤¼+.à_d„ìt§Uó¦g8&àg,™`‚ü PN““ñìB˜„o>Øý¡^'hfËp\¾…‘]š–wTŽOXKqÐs²u_Š)Ôæ=Úü[B­Q6‡Ú¼˜Ì1Û\ËÞÒ¦x›‚·2ÅNˆð—}Bñ•ŽløÄlMk§ÌßCälJ•8Ä(ßÁOùÚ3-EmÎÈúÒçyB*¸@ ùyl«Jñ¢ÊÌJ¥|¯³&}°6£r!Û¦n7”QdmUº@,DÃèYst%~8ž<²ÎÛ‘KY·òvê MDßóή±ø¯¯);Øiz§?}çV€Ðëª ÂhjW(3TéH¶õH¬Ï,-äØÔïÒÔÒ7z)!¢èNƒ^¼1;³Âq2ë±X¨ÎÉ* sö@¹ywntwq”ƒ{æƒü¬‚JžXçîЦ–Bä芞b‹õSÒ¢KÊI.›RÈÉÏ)àLùÏ€á ÆûõÉÁÛ|ãåš™xœÿn±)3ç,ªŠ«7TT6Ôî(‹Ò mu§¨ÎàΜñš%d×)—)¿á¿ü¹é?„]¹vhÿ¾jAç]ï}¸ü;9ÿŸÜÀzîHˆöŽÁþ8?~VØ6'÷Ö#?§èzJôà%ïç0‰7´6¶4­­õL~ó¢~sƒLXûâ¬*T9 H‚¤L…"qÕ|k» êxzN—[RgZ±MéÉf_<÷ÛeШO¬ù‰XYO± ññ´WÙø³mÚ<*U²áì2#†MÊNΣʨ¼°X««kjhªo¼=κ2’‚.ÒÒ#ÔTuЂ :é84õ,Z )º°fêAS<È èÝ“ZL)¡kß“EÍB©ûÍìîóµ~‡½/ƒÍ‹”;hä#biç¼5.^®]ÉÓGg—”7¶®:DuÄÞÀÊ ²Ðb_X‘°h»Ëv7—$ ¿mua{ÏÓëë¿EŒø/sÂS¼¶ƒ +›Ô“ïÄZ¶Š»Œ27å ùe¤ŽßHA<@óÀY²Õ ~`”T}!¥Qó_w¶-ßø"j<¨œt|±FUqÝ[†:=SaK2­ ‡%é%Ô§96µÍšj K7åV àßÍ (V•yã4ò³µÛð Å‹ O(y^vM4r†è’¨˜È¤@÷>§îy–ŸC¡˜ÒŒ{¾ªh–´ÞCßR±·8œIÍŠZc¨¯*o:¿´i"‘O$RÒ—¼üx,Âá­Ø§°0 ”é™ê¥b7¸ÕÓŽàXyýÔ5ýIˆk•[þ¼õ¹ûÆ·ˆ'oK1¯k,ŸV©Ö†Ðôf÷k–McÃ`ËhªpiC=‡Ÿ'Yv4©—‹V£A]7É¥AU 6E +ÔâÎ.©µFmÑ}þW.½E9êÙpë÷Œ+–¿`mò¶,TÊô8²£û}kj:4‹U¥âp©ø†hËçé³³a'Wª€|-S9ͲÜÇÕ­Ø›æQ™ŒèªRAªM|%-|,+Ç²Âź’Ôª¾ô€ƒ*uiË5)Þ6©²çr~;ë»Ç¥Ò‰Nµ"Òñ„'¾…ƒ:ZòU,Nø•°ÅYûîK<³¬1!Û\#\À¶ÕF´…îÍOß¾7³¸G×®|¼'~WD½¼¸ÐXuT“¥ÌÌ„.®(©¼¸Œ&Ĥ÷ø-Y®Bx¹W™ pc,yÛ¥Þ·*FžàYXï”èé®ÜŸÐ­°×ñ[§ÚýË„µÍÎ0¸¼gü$ø¶ºMW_R)/«16÷5¼å“¶ƒ>($ =¸Ãd߀C`ÎÆ¹®cÇØwœª*í¼M•õ%âøøJ3ZDJ,?à,^üA*ÞÉßoÅÈ.ãЕ¼A…ž#ÙL¦’YTü¹á›d:îjÑé›…ªQå3¾îq=þí¬ŠêätµV©07‹ÑE{è²ç¨ð€¸œí‡){š fÚ£ fP¿{çó;Oý¯wZþü]ü¼q|ƒêXiW5í]}ê{–H&»® Nâ>\_¹ƃ뒤PîÿÞɺuôÂÅ‚Mþc'ËÔõúoçZþ|#ºªK0J~voñÅí uæz!@éæ±±'…j ÍUf’œ¼ÑíIìÄxZ.dƒÖ¦ù4Òœg* 77eŸç9ï$”ª ôIåkiå®ÎJ5׽Ț®L0¯Ì¶i>i^9ý+ߥÀ)òFŸîgÖºÄZ<C®>§‰;­qQw^NrŽ¢Ô\>èuŦò!ºéÉ#\b@þNa¥ä™U´€³;ù¢¬})í¦xºñeIAº6“j“ÌT¹×WÅF*èK St*º;. ’ã䤃¥õPéNmÎNPX²çøÚ«lpÕÇ–mÏv/ðQo q Úè+`åþÈ‹Zu.ÕÁœ¡º¼¹-¸(&. eëÔ§P’µzúÐDãoýDúlvIðó6%0Ñæ0Ž1˜—¤h#>äaÜvWwš” âRõºâ;·°OgÄQÿ¨ð  ª°Ö}An®€Ûÿ·SÍÞm ŸÞßW/9øsHQÀÏyø,ïÚîsMÇŽï¿@Qß¡¬ñuSeùA2T_[ÞX°ç=·£S‰œJkHjqв‡GN8$ìÛÛÒw92ö>‘.Üêê) O>âÁ¿m‡!òê2ìáº~óXS˜o…PåC%Ê&:Üc¶‡¹úš[ô€ªÄÎÛôlp•ÐZñ)¯/ Ø©æHž,5áÙN9j½²” ”ù‘í”~²K ®ï,Ð}D¹›C_ÙH"™A¦M ¸¦¸P8ÂެÅ>G/ö€ «5ù,¾{LŠwðþLÃåcð1÷ÍøS“†O_0ѧȯ.X(‹ÎQ÷"7„.ŽôBé*”à€GŸ=½àמP&Ä—ª5ÓOqdò>¸,¢Z¹ Wö}ðñûދ׹9¯ ìWó9*”-.K.M=ïpsgo™5ÍþÜíÎt^ÙE  Ææ‡·iÓ“îå꾕ŠÃðO”„óXí¤mæhÏ5E–EÄ'{/=ãy_ÅÁ8 ý±ˆ°7F’>Ã'“!„8->8pèx­@†.å]!¸*ª-²êÙã´]×Þ°¿n÷.Úò½˵™UΚ·!†³Û:aš`b1šì½)Úî£TŠîb_¾%´:Ä/*4Ä”0ZªM ãZïû]H«pþóÅ4¤þbqx·”‡ÑëÜ7g¤©ÔioÑõO±¯1ëà þQaÁ&ð–åjuy¥E~“ Ÿ$—Ñ©—˜>¥]]޼¾¶9´\Q Õ¹™éé‚»ÃJÏÉ”Hfëí.Å•FUx7{þ ‘¾7fÞºõÞW(=’Ü–V)¿áq içòlÎÑÚºÛëÛäDZ\fØ$å§éss v Õâ›|Ü"=ÎÄYWõ'N-9|ÃÒMrñ)‰ç‘]}wîž,WÉü?[A5[´QlD=mQÜÛ{‡7ã‡FiWöçUöËý]À\6ž=ó~cûUìÕp ¡ý®©h TºÓ–‹$š=Z­Ø•/÷\å±ÜÑaGÅ ï‚2‚6еܑèÏç/µ[o»¶xAÃ2ᵑ>ÛCBaƒÍÔ/W?¹}yok»P{uø œÌ¾Çu§b;ù~z'mYþãxMÉ‚y!NÞž f .oò“®üjÒú­â67+äÞÙ#¥Æ‚2y^¾FsöŒ)fDc¾DÃr¶I±Ü”îF¡•hù-ÇVÖXP³±Îîtv9I»B𠾤jj"`‡ü——d;" 2²Jä]ý‰/_RK¿‰1}c%ÛC¿©¥ßPH‰6fHIp=…Óúÿí™6xå‘ä>‘гºÞà=Ýig%¢ó#ŠB‹âô‘””c¢7®­ŒµÞ¨ ¨ð¨J©MjH*O­½PYuªÓl¤ ÅójåŒæ]/ÆððÝí:mxesúÔÜÌÄv¤ÏÚZçÃÆêº¦¦èzßÐÔäŒ 3óþåÔæÚc}\£wÏTÚ}%ÚªŸ*%?]”âDËï,„µ&©HN^EÞ×NÜ}ñ•ãÅE è8]V^JÂæM©i4Ɖm½* ý€D> ËpØët÷/ž‰JúÐó¨åá›”­Æ>Î÷§|JKŒÚc Wl… 9Ú›]´óB&ÙG[Ã6¹&%©MÁ™©MÏ/=v\¿SÀ¡hkÀe€ýLR‡h;~¶íàÀ)ÖÒývŒþÙö‡2æŸ;Lê˜j‰-Ò¦œéš!Œ ¢ïÅ%|²šª5ӌ٣¯ÛÎ75¥ÇÖ *¯4Ï€ú„êâýþ“NGfŒ#ƒM_½þPRþ™zÂk8mÏSxÈIÅïÅ»IÛýo%JØßˆJ‚ïPT½SÂC̲_¤TR1‘ÑCGŸ}ŒýNÇœØò‚Žª‹ µZ9þÞî¹]©<ãúÃ?mG»â™%>Õ%…Ø*Åø’¿HZWPgPg€Ø PǺBL[ $ûœ`Oÿ;¿ÒEÏáÐ)N‘Š>]›y]!äP¸™¨.!K¡ÈùçœÌž+Rg•æšÚ‘†hCWƒdÿ=¬¡×‰ø!Ï’/ú¿ïþåìê @ëÄÄí TcÁ –kG™Ó1ÿzìIš¾(9ö¨íCí=¸È‘Hr‘÷ƒ%¥ÑO’ÏÂ*¯ÀÕ‚ÓU?~œ_-p%¾rJá˜K©šªpˆ±$ÑŸ^d‰z컌i´(nIñR—ß Ò„ žÛ#&˜.~èa¼ÛÀuç³>JÅÁ×_¶_û¢ã.ì7 p_v‚²°Í$yà6~ÿä;£ääŒüFŠ­¸•/-i7–Ÿ?ÛyþÁaß17iŸ§ŸÝ”iÎ{Ó‹«šKöœØ ¡ñÚ¥º£´œ>b÷Ök ìIÒ_N‘ÁŠdÊîá6¢\ÖˆKi[I“¶Y›‘f ‰Khk‰æ^z†{~z·^rýGô¤M‰\¼Ëß:¶n±Zäã¸a^åI_ùîºã®Èš€Ðøm~\M©×æëûß¶üƨjù-Cçeø„ûdêÙ×lg¯³÷©K¨o®¬nl (ŽÒí§ojË«¿‘6rq°Gb‚<(0Rµ&+V¦¦”D=íy™ˆCŒ¢õà‡IE¡ë¾vFÓHLLȇÝÛ,ü±u&õ½JŽô77CÎÂYª†zîA"Ù¹JzòÙSãpvžhÁw[<ÖTYÜ ½•¤\© =átz“”Cžý2Õ:Ýä—²J…®pYYägCvz¼{ºø%{º[,º/Q÷ü«'¤M!s@?üJ*†›šCýd ö–}uìÀAm!dÿYsÈgkR°¿à¿w­6¸1äåÍÄâ¿ì°ÿØO"Çð1öáݽ—õ{ ¡QKQFÑû‡´ì¨š¥‚öù29Ò›µ¤Jra †ä﬒ÖØçF_¡Oï·*û½dÐõëw£´_†ù‡ôMÍ endstream endobj 46 0 obj 7103 endobj 17 0 obj << /Type /Font /Subtype /Type1 /BaseFont /DYMHCT+CMSY8 /FontDescriptor 47 0 R /Encoding /MacRomanEncoding /FirstChar 84 /LastChar 125 /Widths [ 586 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 531 0 531 ] >> endobj 47 0 obj << /Type /FontDescriptor /FontName /DYMHCT+CMSY8 /Flags 32 /FontBBox [-32 -282 915 803] /ItalicAngle 0 /Ascent 771 /Descent -250 /CapHeight 685 /StemV 46 /XHeight 514 /StemH 46 /MaxWidth 945 /FontFile3 48 0 R >> endobj 48 0 obj << /Length 49 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xE’mL[eÇ塞½N`/¦™Æy¹fjX‚l.A†càF0ŒŒ%€/1 ƒ -Ð^ÖÞ i/¥-”žR …Þv¡t@y³]ˆ˜ jTÂP3£ƒ,KÜWûböå¹åbæcÈ“çä<''ÿÿï998–š‚á8./.¯ª9»›½)¼Š ÇS„×d z¶Iþ¤É -urûÉQÄAÎCˆ;Œ)p\gèuùC³ÅL‡I¯iQ³TVãIêüü¼lêÌéÓùÔ-­×4ªtT¹ŠUÓZ+=Ú©*¦QC³&*«@Ͳï:ÕÙÙ™£Òr}KáÉlªSê©JÚ@ëoÒMÔŒŽ¥®¨´4µÇ—³‹m‡‘¥õT9ÓDëu´¶ƒ5hV£“jº‘Õ0:£N :ºE2et†v•Aa˜âÃæ–sµWßŰ\¬«Ã]8àn|#¤ `©˜ ?†/¦T§ÄerY¡àÌÆðíFpF“˜UÈ‘ò›Í×ýl›ÑjÎt8 ˆ‹éVñØëPHØ=£i~ì9718:È{n{ïD·‚w5Ê»8§tÄÔª—­×Ù’Ö‹}=0.Â> ÃáåÈÄ8鬠áÇD†=Q¡nFh˜Áѧ[2ôðL S0›÷ÏNÝâÝ>€´‚YIJkŠ\¤èS |Rs5¿sÙ,`Ÿë/ÇBµ—ñp’O3!6(  êlþBÏ"8Á@/ØÜ™9#­+öyç BŒ@Í ˜_D"¶‰ÆÇîzxðÂüL»@B]ô¦¿•0 ËÇUÑKþz ,=`Þ³Íüë÷5ZÁfB”ë¡ ꪮÆ\íä¤r;!–* z[5ÎFWÒgqÙ%lÂì‡Âž~õÐM¢k ¸‘¹èâlÜ÷™'àöJ_†=bQæÕ߇¹]¨Âp,š,ˆÆ'ð/·Ð]iT?Rrc=Û~|„ú¢nOȾÀÅa~çWŸ-=ò<…-ø PéÛÆ¿‡a‚·ú-]NÎä &'××}# óê ÎëNhKlÅð”Xüçy"´ªÔ¬:OàüʯG¾Z„˜1{ˆ¸J¹X'à-(s\+¾Pbj50ãV‘‘¬¾VøZBp$dÉãÂa%Ê ÖÄ—Ä ñýJ1Ÿ+ºÁ‰ÀdˆD; ˜†~[Y_Úô~‹ð ÿ禇×à2è qg¿oW6!|=±/»¦ Á$Ë‚±›”áT×^iº`¿­pqèÒRa6`Š öûž+ÄÞKfî$‹Âr‘䉃‰ãiiÒMǰ©4U endstream endobj 49 0 obj 1054 endobj 19 0 obj << /Type /Font /Subtype /Type1 /BaseFont /LJTSIL+CMMI5 /FontDescriptor 50 0 R /Encoding /MacRomanEncoding /FirstChar 68 /LastChar 117 /Widths [ 1109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 670 0 846 ] >> endobj 50 0 obj << /Type /FontDescriptor /FontName /LJTSIL+CMMI5 /Flags 32 /FontBBox [-32 -43 1121 715] /ItalicAngle 0 /Ascent 683 /Descent -11 /CapHeight 607 /StemV 90 /XHeight 455 /StemH 36 /MaxWidth 1151 /FontFile3 51 0 R >> endobj 51 0 obj << /Length 52 0 R /Subtype /Type1C /Filter /FlateDecode >> stream x]“klSeÇO×1¸T§VÖˆ=' â²! !CÄÁÐDÜ L@åRFÝ:èNiO/§k·®—µ=Ïi×®—­ô´=Ý»da0†D@òa‰~¼…Ĩ˜÷¬gì¶øÅ/ož7oòžçÿÿ½2¬´“Édeõïm]¬Ö‹/Ëĵ%â+rp~˜{”Ë¡¼tlíŠúçQ{:ú,j~“Ëd&w=e`ŒºÖ6šÜز‰|£¶v[¹eóæZr—^kÔµh:ÈF ݦÕkèâå y€jÑii†Ü¸£¦ Ûkj¬VkµFoª¦Œ­;7U‘VÝF6iMZ£E{Š|—ê É}½–\š­z鬧ô3­5’Ô)­±ð²Ã{Læ}: «ÅÖc±°l/¶²¸V*Û!›-Ù]ò§|¶ô#1 (PuRwêLU€aY#qWÜ×ÏgÃÀ«yÈp<äA`…Å‘räO%ú…´ƒóTÈ?QH¦Ò¡p$‚šQÝå)DJŽÊ¿ÏAðÛ»Zƒ¸ÏÎ\1_bh$ CÄ sC @þ?É¡EI¾ Í;€ÙëK¦Ü„¢ðÛ²o…š§rÄ>Pzô¬g'àÆN ìià qCêFÔ„Œ¨VªüGª#ªË¬ŽâóœOL‚O  ‚þGP›€ÐUÀÑ–²ûp¹úÉ%]þ$¼ &é…ºmuÛ$yÛÀ¥íepBOˆ‹C(Ô+æ·¸&'ÿFª‡““2tüKd»-ûD…²­§W=¸Qpñ3ñÙ{;„:é­ÓëZ[KÆ©µŽûgÝ_õÜwÁaœ…uRƒ¶1j4ëô†c›ÐfCš‹hõÌc©„?WïI~ƒœƒhÝÈlQ+æ¹&Å5Åî-‘þ¡\¼…¦•g¤ W¯…õ©Ø@sÕVÀµÇSß1òÍØ·Db$:<~óãéÆWH/œiˆð\ä\D»wýÆg€g“.ƒÕïêê š%À€K¥¿›¿¾sktæ²zèý{3pFùáK¦Sw ЧìàgX_g¯Ú¶ól«pª;?!L òiTCDxAÏ3ƒ¶O›Á«Væ–CC« 'ä…ýâ]eÿhâòÏa<–á.ôŒ% Á€µlœu‘),afó" â.Ûg;xƒ½¬OÂvWJ³â@¨¤šåŒa8|üç iÍBÖkpk«ƒ*O‘2wÌÏaÈYÈrYÈA–Í-6É€È>˜ìŠ”¹ˆ#œ­¨ý¡h(*D¶=Yx”`Š(ƒ*\$"à q|É}¤øK†vý4ô@.’ó¥Êa&{–j7´Sy‡096>®¾¾@+²³~›Om?x¬éà´7"ÉX–ˆåb¹Hª/>ýkj*–[ èÆÑ+ ÿ (ÿÝkŸ.ä‡.Ÿð2ÇH§®ø÷ƒ]¯Óç;~èfëÜÓ;è¥ój…9/Ö'“IDåË$MjåÔêÇϨW—î/_5+/ǰ†tÁ endstream endobj 52 0 obj 1276 endobj 24 0 obj << /Type /Font /Subtype /Type1 /BaseFont /VCZUZX+CMSY8 /FontDescriptor 53 0 R /Encoding << /Type /Encoding /Differences [ 33 /union /intersection /emptyset /negationslash ] >> /ToUnicode 54 0 R /FirstChar 33 /LastChar 36 /Widths [ 708 708 531 0 ] >> endobj 54 0 obj << /Length 55 0 R /Filter /FlateDecode >> stream x]ÁjÃ0DïúŠ=¦‡ §gc()’–:ýEA¼kù࿯¤”zÐA³z3³ÒÇþ½gŸHJ°ž` «XÐ “gux%çmú½UÍÎ&*áa[æžÇ@m«ˆôWF–$íÞ\¸á¥hâ ž'Ú}‡ª kŒwÌàDê:r³ÝÙÄ‹™Aº¢ûÞå¹OÛ>S/®[åF™8<*Ùà°Dc!†'¨¶iºötêØý¥4&ÙU$‡Ôõj~ñõŒçÄ‹O=?ÿºcÇ endstream endobj 55 0 obj 207 endobj 53 0 obj << /Type /FontDescriptor /FontName /VCZUZX+CMSY8 /Flags 4 /FontBBox [-32 -282 915 803] /ItalicAngle 0 /Ascent 771 /Descent -250 /CapHeight 685 /StemV 46 /XHeight 514 /StemH 46 /MaxWidth 945 /FontFile3 56 0 R >> endobj 56 0 obj << /Length 57 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xE’mL[eÇ塞½N`/¦™Æy¹fjX‚l.A†càF0ŒŒ%€/1 ƒ -Ð^ÖÞ i/¥-”žR …Þv¡t@y³]ˆ˜ jTÂP3£ƒ,KÜWûböå¹åbæcÈ“çä<''ÿÿï998–š‚á8./.¯ª9»›½)¼Š ÇS„×d z¶Iþ¤É -urûÉQÄAÎCˆ;Œ)p\gèuùC³ÅL‡I¯iQ³TVãIêüü¼lêÌéÓùÔ-­×4ªtT¹ŠUÓZ+=Ú©*¦QC³&*«@Ͳï:ÕÙÙ™£Òr}KáÉlªSê©JÚ@ëoÒMÔŒŽ¥®¨´4µÇ—³‹m‡‘¥õT9ÓDëu´¶ƒ5hV£“jº‘Õ0:£N :ºE2et†v•Aa˜âÃæ–sµWßŰ\¬«Ã]8àn|#¤ `©˜ ?†/¦T§ÄerY¡àÌÆðíFpF“˜UÈ‘ò›Í×ýl›ÑjÎt8 ˆ‹éVñØëPHØ=£i~ì9718:È{n{ïD·‚w5Ê»8§tÄÔª—­×Ù’Ö‹}=0.Â> ÃáåÈÄ8鬠áÇD†=Q¡nFh˜Áѧ[2ôðL S0›÷ÏNÝâÝ>€´‚YIJkŠ\¤èS |Rs5¿sÙ,`Ÿë/ÇBµ—ñp’O3!6(  êlþBÏ"8Á@/ØÜ™9#­+öyç BŒ@Í ˜_D"¶‰ÆÇîzxðÂüL»@B]ô¦¿•0 ËÇUÑKþz ,=`Þ³Íüë÷5ZÁfB”ë¡ ꪮÆ\íä¤r;!–* z[5ÎFWÒgqÙ%lÂì‡Âž~õÐM¢k ¸‘¹èâlÜ÷™'àöJ_†=bQæÕ߇¹]¨Âp,š,ˆÆ'ð/·Ð]iT?Rrc=Û~|„ú¢nOȾÀÅa~çWŸ-=ò<…-ø PéÛÆ¿‡a‚·ú-]NÎä &'××}# óê ÎëNhKlÅð”Xüçy"´ªÔ¬:OàüʯG¾Z„˜1{ˆ¸J¹X'à-(s\+¾Pbj50ãV‘‘¬¾VøZBp$dÉãÂa%Ê ÖÄ—Ä ñýJ1Ÿ+ºÁ‰ÀdˆD; ˜†~[Y_Úô~‹ð ÿ禇×à2è qg¿oW6!|=±/»¦ Á$Ë‚±›”áT×^iº`¿­pqèÒRa6`Š öûž+ÄÞKfî$‹Âr‘䉃‰ãiiÒMǰ©4U endstream endobj 57 0 obj 1054 endobj 21 0 obj << /Type /Font /Subtype /Type1 /BaseFont /TJKKWN+CMBX8 /FontDescriptor 58 0 R /Encoding /MacRomanEncoding /FirstChar 88 /LastChar 90 /Widths [ 922 0 748 ] >> endobj 58 0 obj << /Type /FontDescriptor /FontName /TJKKWN+CMBX8 /Flags 32 /FontBBox [-32 -32 914 718] /ItalicAngle 0 /Ascent 686 /Descent 0 /CapHeight 609 /StemV 122 /XHeight 457 /StemH 52 /MaxWidth 944 /FontFile3 59 0 R >> endobj 59 0 obj << /Length 60 0 R /Subtype /Type1C /Filter /FlateDecode >> stream x=ßKSaÇÏq;ï9Ùéô É•é-'ÈÔ¤lYAµÀ…f0õÂóäfml§¦•æ$õ¸G—1¦Î4½ˆB(©(HÎEu¡7åEý]EÝôžùzÑšáÍÃóÀ‡/ÏçKSÆ Š¦id³W5ü·è‡h='C?lØ@É*xðÆ¥$¿·íÅÍ»ñå=”¦½Á~›Ïßðt¸Ñì*ˬ֊bñXi©U<'KËéíNÅ-ÉN%u\}.¤t‹æÓnEñŸ*) …B§´øg‹ŠÅGq‹—¤ ¸)µ‹5>¯"^tÊ’˜~Í’ž6Ÿì¿¡HÑîk—^Š¢ M-]e¥*©æ´ e¤^Ñ=§«Â†4ý»Fë =' ŸÇÁøÄÈȳ¨éqtæ[ÔP­: 6B-ÔE—ù|;‹°04‰ ÇTR@j²I!®g¾ièªzÚ@Ú&²øY&äQøn$Ò©š©(¸k´–Šÿ«0 ëj*TcûÁ1.ÊâìÇÈm挽ˆþ‚7ðÖ`5M™Y!ÙõuN–%3³Æ0 ÜÓån¾E½dˆù€ÆqùïElç ÍÊͯá^†“wærõ4‹—˜F&ùÎã¤8Rˆ„äAÐðTV³ð~|àáô> endobj 61 0 obj << /Type /FontDescriptor /FontName /TNMOXN+CMMI8 /Flags 32 /FontBBox [-56 -236 878 726] /ItalicAngle 0 /Ascent 694 /Descent -204 /CapHeight 616 /StemV 78 /XHeight 462 /StemH 32 /MaxWidth 932 /FontFile3 62 0 R >> endobj 62 0 obj << /Length 63 0 R /Subtype /Type1C /Filter /FlateDecode >> stream x• PSwÇ_ Æ'"nÛM¶ö½XÛ®t]{l»­ÚÙY¤ÛZ]ÀzÄJB’—IÌA~$!9$!„#¤ "Zµ=¬U{Ø=:=;Öݶ»;ûì³³û„N·ÙÙy3oÞ1ïÿ¾ÿïïóýý8XÊŒÃáðrrs_|æÎÕÃô}zùú~®‚)ýdvÓBHãBZJÿòTÛÝ(t¢–¡Òa 9‰ÂhmΑÖjäUâJJ°ª›aHÐd‚Cßs©õ £gøÎ°Ô½ -ñdrzêèEÀGbªâíB†§.$uÕÐ:|ë”tüÏG è79Íz»Ù`#k…"ÀLþxÜÛéï&ãGÑ"8¿W0’³® P$!̧Jw‚äTÃ~E±aØq£Çê ¶¸zK+é—ó]¸1›ާ­t…!Ò‚¾Ü>Oär?ZL©ñ«€£eèÇèôÐ_6¿¹>¿¨¬FBª.o÷z©=v‚í{zƒ3‘3GïöP ƒUa7‘Wø­íàGF'Æã#€îÙ«Ôl!e;ŠJŠ¡ášÇáhkq’é³ $éo’œYÛu.Zÿ!ß(²›²W³¢µAh'Ñ-£½hR _<ôw&‹dþÊÓèØ·hOöAƒµ¹Ù¦#?±ñ}C-NVZÊC‹?ÜȤWk™§ŸdRÈ’mOmfRg²xF‡ À^‡×áf=ÓGo ?MpÐòóè—¸ôÏè4>eUi@ŽkºÎð@ÛÄ…MݹÌO…«w²’qM»í„aØ|Æ SWKÕ{…Í  €\òÃ3Ïàýµ}C™~û– ¢ÏцChÙØõ¬è^Qä«ðÀiëÖè+da"fæ¹C©W¸ôÄá[ÔÅ9/¬™8;|½ó4éïvú ‚Ÿ*éß½ªŒY¡ŸÅíw=ŸMö(ÊHé*Iá c)ˆñ¬wegß›<×ê"OhF` â‡=᎑ÐkàÂÝV^o·ÈšÝ.ÍÖ2À)c4Ñîrw“îîð9W¤ãý wo` Üxw[¯UfVfé|™è úk¾oØáðx¢-ÍÁ†Æýöæ’!xÚ±C ¸µa®:¯C“Þ+û.óv¯Ql3dC¦â¨-.c ”t´„IDòBÍ#öàîK£TMà¨'ë¦hƒÖp†ØBÝ4$Â×Qîõp‚3øúýM.m§WòKØ+Ø0(Û;;‡ÚÇÏüîàÞbQuE(ODÙ1œ<æ.黎ր“Œ_=wìà¯D¥â:ýnÓ>Ò,Q>aQkwˆ…{À 2P…&Û` Zð¸&¤¬•P¢ÝÓ²™“‡FˆÎÂIê çº+ñ]Ôɺ[w¼xµ¢s¬Ã&=ýŸ¶FC'†Ç' z ¦eåΕ‰&8Óo#û5.²Í®æ·8œAöW­VŸÞºßf§ˆmV¥ÝÐ šLmÇ ÉØd(o¢ˆ'™¯LUÐõ™¾¾åƒïGs[©X­$B·Søbqâj¯«;pŒôôyÞ¾Ö8ᡱ‰¶üWúÒéN¦4‘¼qd®[\ø"y‰K‡é¥|Wà™«º…j–é»Å(¶¨òsF³­t݆y(_ú,þÚÿ‚ò“ña6ów T™(³†,[Q¿Šç œŠÅ»í6C…¨¨º¬\¶êAä¬ë?érM°¼ui‚*ee}añxùå¯Ñ¢?¢¥ý,yãß¹7~KÿÖ™ª-uD!S`l—ŒçA&³„ù C2«V^ÌÿàS32òüÛöLB|ÔÛþƒd4É›ívuAÅ|2¢Î6güͽ»ž/Pí|75vbª÷GɾóÓc“€¿Ý ·Ê³šd¤®ì†R¶ÜÖ]ô\‚æ'8ﳊÍôB>ÛkÝw¸R{u”F£²¦pÍx>‹èæ^&“y˜Á.ïxwòHw_’T>~@h–TTg Å"³‡¢EÑÚðÇ }Î ùþºò­×¬çЗß?&d¨ˆo–*ëTj£YTÃR_.IžëFœÞrðÌTò0à#ÙFÒ¦]˜Ž¾™·’ƒóé¥ä;\43›Âïl8HÉ$ŠåÁ†xO_W?Á<|›ËßÁ–F‹ž¥®pT|òÖµ¾¬Œ,z}ko—' ý½þÞ¶Þ?døâVçñòáî?½*qs²·ðß"54k 5d:ÍúDœ@¬œÆ›ˆbûß㬞hcTQ#“ÊÔauWO¢‡`DßüŠß˜W¸) Ñeo»zÁ7g†¤V^-:$?s-EiýÄuôOgÀá…pæ©’W^Z‘û­vÒ„=Dÿ¥™™ã€ÇÚj­=ØásqsŒþ¨ƒóÙì}ÜÙR:ȸ}nâAƒ_g³ƒYGÜþˆÖ³Q]&è|M&š}4;À xÐïn½›¼=¢¬¿Ç˜—c(q9(?ÁEùa>lÒnÍ͵ÚìlÄMÞ&OàO¢Åo(Ž–TÖIk¥Qé¡®p¨…`¿ö«ˆËE%§øCÒÎÚ} ™¤*¡ììêécCð7C}ùçÈ;hø*—ž¤9ü;ÈÞ6›ZžC=Á4ó˜5L*ó³4ëÍŸ£»Ñýh)ÊzU=x J2Ì—ü]%É«,Eè©[­zð9&‹Ie ±OCô[t‘]½À;Èv^¿7ÀrÏfr~åS<ˆ °H,–î3;ûm^¿ÃéuÓWÎBðyO1ýfJW–L*f r‡Dº*FçøÛÚPmŒÇ”ú ¦^[B¤¦<Ý‘¶8áJKð?h.D endstream endobj 63 0 obj 2418 endobj 13 0 obj << /Type /Font /Subtype /Type1 /BaseFont /CLRLCH+CMR5 /FontDescriptor 64 0 R /Encoding /MacRomanEncoding /FirstChar 49 /LastChar 116 /Widths [ 680 680 680 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 750 0 0 0 0 0 0 0 0 0 0 0 541 ] >> endobj 64 0 obj << /Type /FontDescriptor /FontName /CLRLCH+CMR5 /Flags 32 /FontBBox [-32 -54 1063 726] /ItalicAngle 0 /Ascent 694 /Descent -22 /CapHeight 616 /StemV 89 /XHeight 462 /StemH 44 /MaxWidth 1093 /FontFile3 65 0 R >> endobj 65 0 obj << /Length 66 0 R /Subtype /Type1C /Filter /FlateDecode >> stream x“L”uÇŸ‡‡»çÀã‡äÍ5í¹GÇ9E 9~Ha "C´E'¿ä88$ŒòDÍÛ}Œ†éÙMÁS$'—…`²i+jÕ¥n—®©™+û<ðe­çÚ¬µþ0Ûwûîóýî³ï÷óy½ßšòõ¡hšV¤dæ¬ðáÒZZè#=Å@íÌáét¨PûžZ¨Ø‚5sñ• Ì ¦š6V[RLUõæ²’R(ÔñÑññ±Kù˜¨¨x>Ùh0—ê+ùL½Pj0êùPÁo0–„z>"±Tª–/¯««‹Ôk"Mæ’Uº¥|]™PÊçj æm†"þS¥À¯Ó ¼·´Hï–b2VÕ 3Ÿi*2˜+)Šò¯ŠJËŒQÑ1ÏPT•K¥R/RéÔ:j.B=AÍ£æÈÝQ¾T#u‘^Iâ£ñgV0»˜_}ß’¬Ó J´“Æxô0ÒtiÐ'©;’ß°¾Hàî²$΢(`'ìÞ¤%ÀV@c:W_ lØ70h°~¬ëÙt8УÅÕ,*~é›lÑgpÄô¨ô@©ÏÒ‹¿‹×Jc´£´Ió5˜*’T\«WÚ–åë­ªòÄÁåÂØÔ°Ë͹ôylRAeé*ø¶“;°8¥ùNÌwÑWïá댔0ýœæaÉylíÑÜÓq "KHðbBPŠ:÷HoG—6‹Å$»Bd“÷Ÿ×J7Ù˜Y·fsrò›Eù­åâÖ~ëô@çÛWÏî:zNÀøžÒT±y?ý9Âæ¥ ÞfIâ_ìf÷> Æc³[ "Þv¡iL¸Î`³4«qVu•UkŠKºÍ=§:»œI ™2Œñwÿ©_¿¬_?ôh;ó§~ìš]pV‹3làŒûoCØ=h÷03k¼žZÖ’¤ËÙT`âÌ·Â÷ÃÓý’ùUÕÿ0sÿìå‰#[ÒÿƒA¼L#=p:±Ö9í㤿¹‡S÷é.Nh®vqéLY ¤èlŸàäË1M1ľgþùOmãà†IøâðÈñk_· ÊáCkªc#ÄÁzHƒ„†¬ê%+ AV>QæcEÙ±o1Rèt°¦Û åÜó„:Pm/hQƒËM£ÇU³VYsË".¿@ézÇ£òò€k¯w^òÙE`ïÑz_»7ÐJ¤o¢vþÆH70W£WZ_Û™ùúÎ]{b¡AöîFå•ó“ßýaìÚ(> endobj 67 0 obj << /Type /FontDescriptor /FontName /FBHFUC+CMBX10 /Flags 32 /FontBBox [-32 -233 1196 736] /ItalicAngle 0 /Ascent 704 /Descent -201 /CapHeight 625 /StemV 114 /XHeight 469 /StemH 47 /MaxWidth 1226 /FontFile3 68 0 R >> endobj 68 0 obj << /Length 69 0 R /Subtype /Type1C /Filter /FlateDecode >> stream x¥Xy\W¶®¶éªR•¶¨éÆ}_£ãhÜLTÜÔYJØwDhA »Ow#«"(‹€A¡Ä—hÔIt}ÉK⒙̈́qtN‘Û¾™Û šä½Ì{¼_ý ›îKݺç|çû¾sdŒ]?F&“q+<–{Íši};A!“Fö“^—ñigìÙ¢{9ØÛéÔáˆÝCÑ4w aä2YDÜ‘IÑ»ƒCb]'Lr5þ¼©®³gΜïº,,(zw€_¸«‡_lHP˜_,ýã]×Í»ƒb“\'. ‰\0cFBBÂt¿°˜éÑÁ‹'MuMØâº)(&(:>(ÐÕ="<Öu_XkïãMï}YíêÎ0̬eá^Ë#¶¯ˆÜåí÷v|‚ßšDÿµIÉAïlÙ½yKè»ÛÂ<•©ÓgÍ~cÃŒfÖ3ó™1Ìf3–ÙȼÉlbÆ3›™ Ìf+³™Ìx2^Ìrf*³YÁLcv0+™éÌNÆqgV1³˜·˜·™ÕÌf.³–ñ`æ1ë˜ß3û˜4f0ãÈ(™aŒÀ̦¡eì˜æGÙ‰~£û¥ô#òdù ;/»ëŠq P È02Vå ÝÊl‘”M²z†y8L.Æp‡Ïè&óÈïgŽ#.dȃ ø&.¼ßƒU$Ÿ¬ˆ¹ßï—6¨½×VÞmж·"¤|7lü Qª^%Cê‡#å=qÒ?…‚â|¨0—šŽK/Ùƒ·>‚†i3¼Ó›ˆJ¨êýúl © ëÉ g² Ï)¾±&b²-³~N„É"Sz`®Éü}‚vx ͶÐ&И~ª¥ŸDÙ œ&éºä=y=³„cP”®×ÈP½½ÁãÜ[GW 1‘idñ#~H_Ñ„ëQƒ‘+;`LNM‡dƒúN­‹`ÞqÏ4—Ó>ƒoá’™ëüÃï§Á€ï—T¥9Ѩ¯¾Úhª¦Pt$ÛDÕ$É.´8>§¸?ˆÃœ”_b$þ§ÇŒÆââ–Öó¹Àß¼´Ž8’Qnž«÷ià‚Z{ŒpŒ_d×rf+ð8ùoߢ]f>"c—n{7)V­|ÒÅ7+ð)ìƒÔãoÕ À&x_úF”}!J¡¢¼g@ÏP!ÿ½w_¥…x•¥ˆM£ˆÙ|t¹ùºÒ^c-c-_g¤´.Q…P¡’N°Gñ=…†Í ò}ÄøO\Yéiß醴$”96Sì´–÷i!Ž t)ñ¼´aÀ{¬ÿ]pôŸÄ«ŸŸ]¸]]ü­Òµùäzz›ñcg5Õ=Õ]Å-jå—Äó·N"=ò§‡É¦%Ò(bá2Z"£q.=Q0Ö6ލ"fzÇ©Øx‘}\è»L-bƒ†]–î;Yµ q*‹s¡zy ċ컘©x!³ÌW<=Žô0aôÖ‡qÌ–‹4OÌst°òÔ.üV@Gô…9Pmc­Fc‡©šáF_™ÏÁœòÎ'Uèð£Ê`HÚ á¼}Bmm}yË[k=UÊ7Ø»–wè ¦»TŠXÑw€"¾NÏàܳP°üíåãPRí†3Ð(ƒ3½`•ç¸Ç¯•Aµ+ÐÕz¨ÊÅGHz(i{f“4¢Þ±¹ÍïSL£¿œ(=£(¼“·ºDþÚwpì³æð-UÆcV9ðÇá`¥ú ÎZÙzH TEÉ >ŒLâPY–¬n iμ³W>lÊü,uÃð¥3 nTÔíö4UVqì>2cÕDÆ%BúÑ<)W¡âˆÙÔzÊ€¯Ãé€ãÛCN¨•wkCsæ¤Í™-øO—”ÉžÒª ÊŸR¢&5œëý¸O?ï¸|[õÆ‹[±nTª°–j›5œaÂŽ‰u|0ƒcfSðT\~!-‰Òê[Â"Ýr"çqN«•ˆ5?'p37ßkÛòźª *|ô«oöq®_ÆýU¥L¬†[Ðy—>å[ Z•ÄŠ59¶õ(©®YihxÓkøÛ YËCÂj¸VÊ@ôúZ{“Ær´D²Ë¥!¢¬Zz_.™%{!·8'ïð"­7DC4ø˜â6ý9V«Ë0ôÙéjÂ3Qbµâ‚ÈîÑÏ2¨Fû˜ümËnp¸Âb(ú0—R(4–ST}Ú»KUO¹•cí…ƒ‡sò¯Xw‰Õ‡b 4¦¸Þ] º Z.Ó S&„ÅSŠK"jðÔ‡ø™öÚV]áÊ·ƒ m]¹lqEÖ…þzƒ?¼ »L»ûâ4Ë€¼äœýUàR9…y¥ÏñósrèWŸÑH^Êl qýIœÖäXýãPœc%‹xiÀá]ðþ»ê,[vŽW¦Bªz‘ž®’ÇPîáÊ?I›ˆCö»kêêËÛN&–êLª¹õÆCÀÖè·D½›SŠ+u$/Œ>‡$}¬RÆbkEŸŒ³„©Ü”©Ñ^gÁÙÅçÌ*‡Ÿ\~‘W)Iš/àÔTmƒ“4¨T’t› ‚`ÅKop˜"¹*«$;ÍX ³°äš3ÞFFä‚(|é5 ‚z‘@õתEÍ íôúá¥1ø÷ãWèOŽÌ½9Ó%)#B€·‚æ[›ø¸Ïh…sÛ@—“VBCö”RÅSQV!]•ã_Ñ `|ípqnÞWà"r!zOC…ÏvSDob‹áþÐlzûììyÓœ'!§hÙ(ÃZ}(„Røì±-û”Ùd-q"’ƒa'¸h¸FÓyãA¨‚õe6 Æ%%Ì5‚1/_ýeؼ¦Ô°ÕÆL§ :ô§l«VöÖ_X¹ôzn´rfŸ¶¥àiœ€?kS ÚòDäº.)”]ù][ŽÀIOmZ6í§V¦,‡íá1 |.¹(`WÓx¶ö"U! ƒÜ4°%*Pîï­ 7¼°ÿûªŸ“‡W)y:Ù Ã=™Ì&«€+=Ä"»KGd°vÁø_'GúÄZ•DÓ$}Hc‹\oYæ›{Ë2†̯ÊÒÔi†ìýƒšpÄ@˲òß”åz˨Øq;CW­—} 7f˜ r*‹¡‘?s|wDxb —èõ·×.×P¿•OýÖà™U3—ãP9Z¤)BÒ^}<¤ó/~ð¹ɪet[ž¸<šŠÓñw'‘Ï+Þû“ úÔ,UÔÚ‰^TñÔ€:/¾†Bc©NwXíðÓç}1šøô‚Þ_jGgªµTôã¨ß‰¶jÍUâ †]ŒNO†¶ºùËÔ½¶Áù> ‹æ’ Ù˜d 7(©ó’hä°ÊòCA¡¬"p)ƒü#9X/g£ øl“ù;h¥×£>a$ M#’(.´ ¦¨Î‡ÉŽ:Mi¹\ÚJ‘’_d2A_¾’T95#+¨É}Z×ôøoXRoaÒµ”‹Ò]âÃ1•4„:êDÒÇï]GœŸkm1¬Ü"Ém8|åBR¤ßµ ;8\óJ ¤g¿Ä$ñä”]§·{æîAÆ~ƒŒ"ΙŠ)?‚³Çëªx¼nGÌ\j’ÿÚÀAŸœ… Õ§Õµmba\†–Њpz ãTÉ֞½î9ã{¹äOÍsE!ÔÔeÞÞ~NýNÓ¶£îôsæŒ%CÉð'ã\œÝþ¼ôh"d%ë³öfªãwn ]MWŒ2 ËûêSv¦ÓƶòSÕ--‡jûƒ‰8Cxü»0²IF™€yˆƒåØ_Ú ,Õ|FžºkØÿiJž"'’AÝöû¼ êàAÐç©R´‰Èû6&VŸ¬/om îX4‰0~DAz ½~+võêÖã4ªyH‹Ò¥Î“¿Ewí7ñ²@m™kë4(ÓQÀüw¦ã(¤»2»p‹“aÉŠ•°˜LQÓƒx7áÔÇŸ6al«cý#7”ãJ”÷{NÊh17 oÀÍŽ¸ùà¼åão½¡&û…Θ÷õU”Æ^¼û‰}*¥D}²¤ÜTdÔgéÓ!“.Mª®.=v¼2¹Ñ;E£ Ù¥J:äW¾ŒÆsì–EnþeþõÔ+÷0!™{â‡CJÎŽ–ÐTÝòxXË{]\Št»{å““×ßjPm>±¦@•ö,ã®íx–xQ9Sáëôuš“’0ø Ÿ —ß¾ ÷ø;K®Ñ}.Zó¦o]dsGUý{n-Ê6ªOœÉ¯þ+óš=©â4&Sí¯×² û úýTƒ”mR!UaiË>ÉKãÆDyæœÜ©>UPU­|GhÝ.¿H¯YOÖ£€«nÿøgÝ.†ß£4kE­&™(¹Ñß¶Úµ8Sx"N–æ³5úƒñCJšŠüÍò¶Bƒ­DFì¬-ÆŸiáÿ> endobj 70 0 obj << /Type /FontDescriptor /FontName /MPDPFJ+CMMI10 /Flags 32 /FontBBox [-64 -282 1080 782] /ItalicAngle 0 /Ascent 750 /Descent -250 /CapHeight 666 /StemV 72 /XHeight 500 /StemH 31 /MaxWidth 1142 /FontFile3 71 0 R >> endobj 71 0 obj << /Length 72 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xYy|Te–­¢ x ±-Lß‹¶ ؈ÐþZD"² „Eö![e­$U©Te«}½õjß²V*{*!Eˆ°°¢È¢­NcÓÚ.½ØÓ=ã|/~¯Úng왞þ£~©%ï½ûî=÷œsïãóÆãñùü‰I›6­_¼(öv.7‹ÏÍÇ=,ÈÅö¯»‡µ`ЦŒïœý°ønõttwŠÞÏûŸ/)Ñ[l.¯¦¾©5í|ýJ’¤PYœ%–%ÎK›Ÿ¸xéÒ% ºhÑÒÄUùÅÙi©‰›ReâŒüTù—¸]’–!S&Î[.–É —=õTiiéÂÔ|éBIqÖŠù K³eâÄmÒŒbyFzâ‹’YâæÔüŒÄ±hŽýI’ä–È2Š7IÒ3Š ²RóóS3d©¹©……©%…ääS±X"ÍÎ"×M-‘ägd¥¦æŠS‘Ò3òd©…Òìðm|–oç;øN¾‹ïæ{ø^¾ïçøA~5o1)o<¯‰¿kÜôqA¼ w¼cBü„€0uâô‰vjÕ9éÔä¼É_Þ×2eÃTþÔÔ©ßÆÕN›âýÃÓ×M÷Mÿpúð?}àîö?(xð”ˆõ̘1ƒñåC+ºŸ•ðl‰™{g~5kgŽÖB¥D¸5!>Z‹&ŠÒÖ¥W0«¬Zep=tDìíÐ =æ.83åÇ® 4øµ6=#c¥h€Ëï©~=BV^gƒ†Êße.­Ô@©:,ý*³¿Jþñйeôø„ü¨Úî3³yx‚%Ž2H(“Þ ¡°bd½íAwºð qÜïÕaîÉ0}}©æªàã‹"s…AFJY­­ Ô{BnÚÆNºZ¿‰w…]ag“£ÎÓasÔDÎ~ú[ ¼™9›öâË2Z™UjjøäGÐ\O f ˜+ŒtéÚœí{*ÓûšZ¼ÍÞ0Óp¶ƒ!ê­ƒ}I‹÷n”•ÑÆó‡")Št²<»2L”ƬÏf »èº¡SQ Bþª¹Y]µ‹‰ã£sÏÜ à8‘.Û¢?”J ÓäaÚ c4©‡Ç’ê Ž&¥r¸½~´ÄÝ Úů…(4ÍE±íÚÊ=û²Òs͹ƒ™£Ñh•Êìª-`þŸÑÔUë2dfµ©Œ¹ª¹ÛÚÚëkz"î: úšÅÉÉ9x¢2ƒÉ^³/'¨õUw\,°ö7¼sßDøÃéËlÖ .Êk„Rzd™P V«A±¯‹·­z°PVм¬ÛÎÒ½hòà5´ˆ»D8rþ?'€ÕT æ­êin­°l6Wà TosØÝà œ&—Vk5Éõô<{_^^)Œ~"Ã|rõƒ¿ §ßiÒ-ºå¤2$g*/40è#!J'ÐÈBôÈ3h<~‚ÁŸc?‡‚õVk€©µ¸Ì “ÕlVQ¿´Š¼=¬ýPÿ!üÃ8~o)þù3xS¹|%žF®:AX 0Ø46³ <`ÖYOÅqÛþZÀ¾n7—$r˜]zuZZA]r.½6—;OÃóðœù7Ý:v´9e´â<ˬÕIt¦íVªŠàŸ¤(ÈtA½CÔÜÃÿ½R—ï#¥v³.ÖË`Ím1ý¢îTâ×õ3‘Ûƒý¯õfõ2½a–˜ML…dûÆí@Å ËI³^Š îÃüáݨRÄ:I>YÊ>•Öb0Xè x^æ:¼’D7÷îìmÔÿ¥ðW /ÖƒJŸÏBš zŒƒ×cwÖ8è!T5ÁetêÉÉTfZ¾R){ ¨'…—ÁÛcs‡ôˆÅu,•‚ÅTÈ€ÁHíz¯ŸT˜¥Ch•½ÍÅ0 Kc@êv¤”&°• Ži+jÂwEåj…MîZ’ö]êFtù“ i÷ß}þƒÍÎ:£ÙŽzOwý;®6G°ýdsØãîh=­P£²A¾±D ET¹_AßíÉíܽáÀ^‰‚Ö duíÿZæ/ ,V‡Ï~ŒæÝ:IBIBó‡Ü,n²Hb--ªÒ[7×8øêJŸ9çÀs·+: ô fP ;¨"Ù<¥rœ•ѽƖNh§šÊò¢|ù+Û†Òî¢gŽ¢©QE‹*@¶8x³/òê):=ÐÔTÛU ^&è¥bÂfºr»bm*PrM°;8ééaÚÏ^ãëuÔ$8›|½„ŒêIîEÖl­X}'©vZMiÏ®j—fàÈùöZ¯3Ng54P¹Gö,ÈÄs´cDÍÖ:é–_÷éÊ[kÍ•ª Læ<ù&ØK-¸^|îZt \GâÝ8Æ@ÜdîÏ"oÔîû¨f4£0°Ê\ù°ÚžK”¾j Þým 0‚Å¢e𬑨6Ó¬Y 2í¨øÙ™¸eï€N¸mîŒä “é Di¶”‘³&øÁÃzX7¿â^²øW}—ÐC_81G‰ÎÕ*‹¥E%UNƒ_M7–‹ ‹JÝŒ•xÒnYÏàù¶[‘;´»î»›~2ã{7Ýñ¯Çš:€òÔAn±¦P¯d`ª*R˜÷qù ´|}4Hî»eìÒ1²›Äʼn”G Ú^!$2 ßÇsŸ|}ýû¡3Ž—OjOΩ¿W¾² ÊäC@š[CaÖã?ÎøûYŸ·7ŠãÝíÀâ¯Sùʤ%%fBT‘Q –в;•K€ÚSùúÑ3]hZÓ &rqàH_Œÿ–J3XD—~s¯..nžÈj7ŘÚV_í÷ $4+þ‹ëGvÍgƒzÊavëè(6K! ÒíY£¥"˜Ö;Ín+¶9«e¾Ì`™‰Ïƈn{£¬ï$´x!äÕ±FIf À ö‚{uŽÉÏè ž9r8þoE*öövhg!l%/[rÇ´] ŠL Ô»]a{ S=<Dó(Æ4(!ÿ U«V↥û ßÞGÎpÎŽ1*jÐ2‡lUÞŠ–·Õáà'(5Æ–Ÿ¡·> _£×E®Ö¦ÏÞ'4Cc•ÄXZ ÒQ6 wÕ÷ &Wgoèâk/û €úñ6,*޵‡ÇÎzYæðW×ZÕУݚW¶.'2å›Ä©À2[œáFBem%žŠüâ¢Ü”3¥Ç¯EßqÙé@f4ýPB¢–X'k-&½…ÉI\+%™^Þu˜Ø2…8nÕ(ÄPf?ÿä%¤¾)@ºá•"¢\U²Õ:K­³ª­ ¤H¦kN±z^›m”ÓKñª=¦r',8»é6šŒ¦‘¤=öéÎëϦ*È˧KWˆ\a`½þÓoÔ´mËßxÏÜä¬KÉJ*;§ív4Ô^!d¨ßò„Q ìy‹°úѹ -ÑØÞ8þöóð)‚Or½Ù¢5ÒùûäåR‚ª¦¢NÑTÊêù”…r£Ýàõ²NË4œ¸`ó@#4è›t}~¢@Y—$)Ê/‰_»N¼ ô£¦Ìò~ÝÔÓÙÖMàÓ¶ÔÉëËIC~yý¨ÍirêˆÔêÍŒlÃFE”‚Ò%wg+r‚ˆrКI¡ë¾Ë[¬;ƒ÷’V±@k)#I3¡ê»¤ÑæÒ-X3Ö¼ ÿ|ó6³nG³±úÿÓ ÇïY73÷®È×WùÐN9¶†X}™›s Äöœ– 1…ñ‡²úåPfK…ÕŒÇlÇE\ƒ®Þj“q›),q(ñÎ+÷±^Ó¤•å.3'ÔV…>æ¡ÀXù´65³•Õ…!n›ÓîGñ\K¼Ã§±#wãÝev‹—p.ØcFoØ^Ò:üóþ™Ï9Ç'‚a·N„~öâáù8âR\‰—¡ñsÑcHŒ¤Äuêè‘U#/ˆæ­ù¼ÍýšÄ\ÿ·? ™øåo¶ãùI…xÑ<<Ù·yiòâ׸Jœnø˜+Œ 9ŸÔ‡ùg?Co&àÜc¢»ÂoÔó—1?6"¡£±ú†+àm¨«iSƒò€I#† JV¯jhí÷žHi:”ý’r^>m›5Rüõâ_ÌosMøü£|¢lÑ.H0¦¨?a÷F¡†jRE%¯—¾úzßÅÞzºëJšj‹ N!‰.ð«»aîÑ0ÿÖM—ËMÙ\Äõ»G™šèE–‰V·¦--HÄÍ»œ|óâÉ“~c³Êª:–“6{Þ# €›ÄÛéõ·BU«n(,ÉU¦:Rú;4ýæû—jhÚ%2ÉŠKrež’ðÏžŠÁ>âx'·½Æ´>Ö×ÔµêeF#a|‡Æ?4ãþ‡—Žïpdx‚(TY++,,*TT—57u6uÒ+G¦ˆdkó„þž¶}Ñ×Ix-¦€r½Ü¤atE¯`ªü ¦¨*äÔþÃâSd"œãýëD¨|)góî{¡«ºé2÷õ¸1}žöÏŽ¡Åz‰.Ÿ‘`ªt¥©T› Æ„Øqµtyèêód"õµÏ¢)ˆÔ1vÖ¶T,,ÝÉh¥&¢?4¶VìÌ}aÇ÷ÆÖÁ~$ cë›iýÏ?¿ûÀÎLÚ4–47æ:‹a1ìÝX&3¥v¾ò,®Jþ¡Ñ±¶F—qÏýBIãð#>w_Ï箊ZŽ7G¯8½6‹å0¥•‚Ä\Lz;ó^oWBíµº˜fkŽx%µQ§«ÄM#¹ñ™œÞ²´Þ²%ÔÜûÔ6“©æ4¢.ÉvÙ(/Ä •ª» –q­À®‘MœÐôž-Áç'Ý¢ËèQ‡@ YöìØQFrE"µglZ Ë Œ ›Ò¦«†¢Å.o :ɹ㌰¬œ5 !.ŸÓKú¾>½‘;âßá`x g\n'ø)¿Ö«6[@_E¼†«IðFP%€Êcô9òE|PÏçAù½^¿_ïT¹˜‘0²Møo§C ‘ßéq’¸:§Ú9òªŽ¯r[À ”Z«Uk†j=Ã…±m„¼*õFhÔ^­ß΂;HÇ¡Nür#zþ+>Z 6ѵâ£é9¥Å’ÂPQw èðúh;k³Ù€²Ù¬•«Ä[rrbÈù)ŠNÿ‡„”bg¯øw¿ gEÒæ‚©´  YÚÑÑÜÜAüžÛ¿ÞâŸçp‡÷‹ˆÁp€m4z½Ù`¦ñ¿ÙDrkëhpA»»ÎEüç5¢—ÂÜSd]TŽþMäl$¾Ü9Jf‰U¬¥ñc#ï™I/TøUuz² pxƒƒ½haWá€)ïÀÑævï+G$Çÿ'ù ûñÕuªY“`5î[´ŒðŠ´û\‡»ÝÝN$¿ç6r—oòÑ7-‚W‘[tMD|›Ÿl*~âÇIË7Ëô¥LÉê|L‘¹QíÔ{‚žp¯ŸnúÈ7䈰A6èv}yÍïûÀ„cA³ôfzׂ´ÇÓæZ#Ö÷Ò/½œvúE‘Ó×ày/øÈ¥õ$Só¹® ¸ Ô)rÖÛƒÐ6ÚŸËwíKéïuãÿ²ÈëÆ­¸|lù5Ê?¸üb]žn›Ëîœ?Ü®4ÅGŒKŒ Ô¤1X8rðo qwøí¤ ·ÔaôÑ'|ôåÛžÏŠÈæ†4Àè‚­ÓÕLØÉ5(Ž¡å™]€Ìû©Üª•Ü—6ØÕZ8D·ô.|o’S¼(ÛA¹:ØSãh&n‚õ’›÷Øvog»ë»ÚÚšNíhIPFJå–EºÂ-^SkÖæä=™èµ[¥Y*»?pÆYçj œüe¥%qk ÌÅõó‘Œìfþ¾‹Tí×Ò›±ÅT¡—Dª}V]-|'€øGÿü;¦µ¡Ùà…¯Nf*Ðщè/Àã±0“èã[dñí>úä´Õs“Dh‚0ÏÓ„uP…žlß¿¡†¬þÈÀíÖPÍÜ„7¡κÏù)$£p¸Y ,, 8°_œ^”Bn× Ú€‡ux\ôé_\ ^…æâ©/ã©©‹t£PÔꂞö#ºú°Á3$œlRª[]èV˜ß ¾&àöqfÑ5%bæ`/Ä=Xùd|ŠA P’Ñø~XTw5ôaß¶ÓGÎuÚµqÛ^ÝnéŽãòt?έ)ÿÐëp†ìA2Ê÷EÃ}Çn G€:ÒUðâŽ<¾p/“óҾ܌˜W" úæ¿÷ ÔN:¦†äû^úÈâH!Ä?Á¼ß÷ôÅ5Ÿ’A ME ëàTÞqKð7¢½iÑ›_ö\dú¯_ª&zÿ‘g}ÞþÒ¥Ù»™ôä—‹È$Ç­W5ra¦í¶Æ*´×è±uz³œy¶v«ôyIzúËë²¶µ2ã Ô8˜«È¾{=¦@Â…ž¼-äž’UááÅ]üþ7þØöÇëTÇ­áéùOà€§R?¹šôšt-Fô§ig²è¬äwá85÷t†ª*é*TE¨£¥¦¹6\nÏò0»ü•d⣞Ë:¸ååŽí‘ÍL DÔ’Òù2$Që3ð³ wêïÊ”ŒfE ûe–œ@[cÙœ}‚ßÖÚÒ" ÍW*ê®ì “?Õú:DšÅö ¹ØR–ÉÈe Dv.ÿ!ú›Ú(Húh¿Žµ¸ V«6÷®Å1oÝʃÑb‡™IÎÉÝ)Ô†¡Í_¡øó׸ÈjØh6™-t¥Lš‰§µù™š‡ÛÏ^îdºƒ¢&O£­Ž<ÙqXëz‹5ƒLs*P8I¯}†SÑê÷T#ªñO¿ÉÑo ¸õÃ?‘ ~&xU«¹ÌD]ÃOÉš)ðìXðÎr§×åésuyªýšŒ˜Eu[N;Ͳ®f{u/š~æDsÐ,@3ჟaÆG‘íÛÑ{RüД»(ÍR­3Þ3 ¥ÀÓ€'ÿŒ€ÿ  m>á™Üúq„ò]z ÉEµõPW­‚2?#lþÕù ŸÖÕ’/«È—b!žg>ŽŸÄãÞ]þÕ›oöùíV¿ÖBV6Z&¯4³Œ> /ToUnicode 74 0 R /FirstChar 33 /LastChar 33 /Widths [ 571 ] >> endobj 74 0 obj << /Length 75 0 R /Filter /FlateDecode >> stream x]ÁjÃ0DïúŠ=¦‡ §gc()’–:ýEA¼kù࿯¤”zÐA³z3³ÒÇþ½gŸHJ°ž` «XÐ “gux%çmú½UÍÎ&*áa[æžÇ@m«ˆôWF–$íÞ\¸á¥hâ ž'Ú}‡ª kŒwÌàDê:r³ÝÙÄ‹™Aº¢ûÞå¹OÛ>S/®[åF™8<*Ùà°Dc!†'¨¶iºötêØý¥4&ÙU$‡Ôõj~ñõŒçÄ‹O=?ÿºcÇ endstream endobj 75 0 obj 207 endobj 73 0 obj << /Type /FontDescriptor /FontName /AMMHAX+CMMI10 /Flags 4 /FontBBox [-64 -282 1080 782] /ItalicAngle 0 /Ascent 750 /Descent -250 /CapHeight 666 /StemV 72 /XHeight 500 /StemH 31 /MaxWidth 1142 /FontFile3 76 0 R >> endobj 76 0 obj << /Length 77 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xYy|Te–­¢ x ±-Lß‹¶ ؈ÐþZD"² „Eö![e­$U©Te«}½õjß²V*{*!Eˆ°°¢È¢­NcÓÚ.½ØÓ=ã|/~¯Úng왞þ£~©%ï½ûî=÷œsïãóÆãñùü‰I›6­_¼(öv.7‹ÏÍÇ=,ÈÅö¯»‡µ`ЦŒïœý°ønõttwŠÞÏûŸ/)Ñ[l.¯¦¾©5í|ýJ’¤PYœ%–%ÎK›Ÿ¸xéÒ% ºhÑÒÄUùÅÙi©‰›ReâŒüTù—¸]’–!S&Î[.–É —=õTiiéÂÔ|éBIqÖŠù K³eâÄmÒŒbyFzâ‹’YâæÔüŒÄ±hŽýI’ä–È2Š7IÒ3Š ²RóóS3d©¹©……©%…ääS±X"ÍÎ"×M-‘ägd¥¦æŠS‘Ò3òd©…Òìðm|–oç;øN¾‹ïæ{ø^¾ïçøA~5o1)o<¯‰¿kÜôqA¼ w¼cBü„€0uâô‰vjÕ9éÔä¼É_Þ×2eÃTþÔÔ©ßÆÕN›âýÃÓ×M÷Mÿpúð?}àîö?(xð”ˆõ̘1ƒñåC+ºŸ•ðl‰™{g~5kgŽÖB¥D¸5!>Z‹&ŠÒÖ¥W0«¬Zep=tDìíÐ =æ.83åÇ® 4øµ6=#c¥h€Ëï©~=BV^gƒ†Êße.­Ô@©:,ý*³¿Jþñйeôø„ü¨Úî3³yx‚%Ž2H(“Þ ¡°bd½íAwºð qÜïÕaîÉ0}}©æªàã‹"s…AFJY­­ Ô{BnÚÆNºZ¿‰w…]ag“£ÎÓasÔDÎ~ú[ ¼™9›öâË2Z™UjjøäGÐ\O f ˜+ŒtéÚœí{*ÓûšZ¼ÍÞ0Óp¶ƒ!ê­ƒ}I‹÷n”•ÑÆó‡")Št²<»2L”ƬÏf »èº¡SQ Bþª¹Y]µ‹‰ã£sÏÜ à8‘.Û¢?”J ÓäaÚ c4©‡Ç’ê Ž&¥r¸½~´ÄÝ Úů…(4ÍE±íÚÊ=û²Òs͹ƒ™£Ñh•Êìª-`þŸÑÔUë2dfµ©Œ¹ª¹ÛÚÚëkz"î: úšÅÉÉ9x¢2ƒÉ^³/'¨õUw\,°ö7¼sßDøÃéËlÖ .Êk„Rzd™P V«A±¯‹·­z°PVм¬ÛÎÒ½hòà5´ˆ»D8rþ?'€ÕT æ­êin­°l6Wà TosØÝà œ&—Vk5Éõô<{_^^)Œ~"Ã|rõƒ¿ §ßiÒ-ºå¤2$g*/40è#!J'ÐÈBôÈ3h<~‚ÁŸc?‡‚õVk€©µ¸Ì “ÕlVQ¿´Š¼=¬ýPÿ!üÃ8~o)þù3xS¹|%žF®:AX 0Ø46³ <`ÖYOÅqÛþZÀ¾n7—$r˜]zuZZA]r.½6—;OÃóðœù7Ý:v´9e´â<ˬÕIt¦íVªŠàŸ¤(ÈtA½CÔÜÃÿ½R—ï#¥v³.ÖË`Ím1ý¢îTâ×õ3‘Ûƒý¯õfõ2½a–˜ML…dûÆí@Å ËI³^Š îÃüáݨRÄ:I>YÊ>•Öb0Xè x^æ:¼’D7÷îìmÔÿ¥ðW /ÖƒJŸÏBš zŒƒ×cwÖ8è!T5ÁetêÉÉTfZ¾R){ ¨'…—ÁÛcs‡ôˆÅu,•‚ÅTÈ€ÁHíz¯ŸT˜¥Ch•½ÍÅ0 Kc@êv¤”&°• Ži+jÂwEåj…MîZ’ö]êFtù“ i÷ß}þƒÍÎ:£ÙŽzOwý;®6G°ýdsØãîh=­P£²A¾±D ET¹_AßíÉíܽáÀ^‰‚Ö duíÿZæ/ ,V‡Ï~ŒæÝ:IBIBó‡Ü,n²Hb--ªÒ[7×8øêJŸ9çÀs·+: ô fP ;¨"Ù<¥rœ•ѽƖNh§šÊò¢|ù+Û†Òî¢gŽ¢©QE‹*@¶8x³/òê):=ÐÔTÛU ^&è¥bÂfºr»bm*PrM°;8ééaÚÏ^ãëuÔ$8›|½„ŒêIîEÖl­X}'©vZMiÏ®j—fàÈùöZ¯3Ng54P¹Gö,ÈÄs´cDÍÖ:é–_÷éÊ[kÍ•ª Læ<ù&ØK-¸^|îZt \GâÝ8Æ@ÜdîÏ"oÔîû¨f4£0°Ê\ù°ÚžK”¾j Þým 0‚Å¢e𬑨6Ó¬Y 2í¨øÙ™¸eï€N¸mîŒä “é Di¶”‘³&øÁÃzX7¿â^²øW}—ÐC_81G‰ÎÕ*‹¥E%UNƒ_M7–‹ ‹JÝŒ•xÒnYÏàù¶[‘;´»î»›~2ã{7Ýñ¯Çš:€òÔAn±¦P¯d`ª*R˜÷qù ´|}4Hî»eìÒ1²›Äʼn”G Ú^!$2 ßÇsŸ|}ýû¡3Ž—OjOΩ¿W¾² ÊäC@š[CaÖã?ÎøûYŸ·7ŠãÝíÀâ¯Sùʤ%%fBT‘Q –в;•K€ÚSùúÑ3]hZÓ &rqàH_Œÿ–J3XD—~s¯..nžÈj7ŘÚV_í÷ $4+þ‹ëGvÍgƒzÊavëè(6K! ÒíY£¥"˜Ö;Ín+¶9«e¾Ì`™‰Ïƈn{£¬ï$´x!äÕ±FIf À ö‚{uŽÉÏè ž9r8þoE*öövhg!l%/[rÇ´] ŠL Ô»]a{ S=<Dó(Æ4(!ÿ U«V↥û ßÞGÎpÎŽ1*jÐ2‡lUÞŠ–·Õáà'(5Æ–Ÿ¡·> _£×E®Ö¦ÏÞ'4Cc•ÄXZ ÒQ6 wÕ÷ &Wgoèâk/û €úñ6,*޵‡ÇÎzYæðW×ZÕУݚW¶.'2å›Ä©À2[œáFBem%žŠüâ¢Ü”3¥Ç¯EßqÙé@f4ýPB¢–X'k-&½…ÉI\+%™^Þu˜Ø2…8nÕ(ÄPf?ÿä%¤¾)@ºá•"¢\U²Õ:K­³ª­ ¤H¦kN±z^›m”ÓKñª=¦r',8»é6šŒ¦‘¤=öéÎëϦ*È˧KWˆ\a`½þÓoÔ´mËßxÏÜä¬KÉJ*;§ív4Ô^!d¨ßò„Q ìy‹°úѹ -ÑØÞ8þöóð)‚Or½Ù¢5ÒùûäåR‚ª¦¢NÑTÊêù”…r£Ýàõ²NË4œ¸`ó@#4è›t}~¢@Y—$)Ê/‰_»N¼ ô£¦Ìò~ÝÔÓÙÖMàÓ¶ÔÉëËIC~yý¨ÍirêˆÔêÍŒlÃFE”‚Ò%wg+r‚ˆrКI¡ë¾Ë[¬;ƒ÷’V±@k)#I3¡ê»¤ÑæÒ-X3Ö¼ ÿ|ó6³nG³±úÿÓ ÇïY73÷®È×WùÐN9¶†X}™›s Äöœ– 1…ñ‡²úåPfK…ÕŒÇlÇE\ƒ®Þj“q›),q(ñÎ+÷±^Ó¤•å.3'ÔV…>æ¡ÀXù´65³•Õ…!n›ÓîGñ\K¼Ã§±#wãÝev‹—p.ØcFoØ^Ò:üóþ™Ï9Ç'‚a·N„~öâáù8âR\‰—¡ñsÑcHŒ¤Äuêè‘U#/ˆæ­ù¼ÍýšÄ\ÿ·? ™øåo¶ãùI…xÑ<<Ù·yiòâ׸Jœnø˜+Œ 9ŸÔ‡ùg?Co&àÜc¢»ÂoÔó—1?6"¡£±ú†+àm¨«iSƒò€I#† JV¯jhí÷žHi:”ý’r^>m›5Rüõâ_ÌosMøü£|¢lÑ.H0¦¨?a÷F¡†jRE%¯—¾úzßÅÞzºëJšj‹ N!‰.ð«»aîÑ0ÿÖM—ËMÙ\Äõ»G™šèE–‰V·¦--HÄÍ»œ|óâÉ“~c³Êª:–“6{Þ# €›ÄÛéõ·BU«n(,ÉU¦:Rú;4ýæû—jhÚ%2ÉŠKrež’ðÏžŠÁ>âx'·½Æ´>Ö×ÔµêeF#a|‡Æ?4ãþ‡—Žïpdx‚(TY++,,*TT—57u6uÒ+G¦ˆdkó„þž¶}Ñ×Ix-¦€r½Ü¤atE¯`ªü ¦¨*äÔþÃâSd"œãýëD¨|)góî{¡«ºé2÷õ¸1}žöÏŽ¡Åz‰.Ÿ‘`ªt¥©T› Æ„Øqµtyèêód"õµÏ¢)ˆÔ1vÖ¶T,,ÝÉh¥&¢?4¶VìÌ}aÇ÷ÆÖÁ~$ cë›iýÏ?¿ûÀÎLÚ4–47æ:‹a1ìÝX&3¥v¾ò,®Jþ¡Ñ±¶F—qÏýBIãð#>w_Ï箊ZŽ7G¯8½6‹å0¥•‚Ä\Lz;ó^oWBíµº˜fkŽx%µQ§«ÄM#¹ñ™œÞ²´Þ²%ÔÜûÔ6“©æ4¢.ÉvÙ(/Ä •ª» –q­À®‘MœÐôž-Áç'Ý¢ËèQ‡@ YöìØQFrE"µglZ Ë Œ ›Ò¦«†¢Å.o :ɹ㌰¬œ5 !.ŸÓKú¾>½‘;âßá`x g\n'ø)¿Ö«6[@_E¼†«IðFP%€Êcô9òE|PÏçAù½^¿_ïT¹˜‘0²Møo§C ‘ßéq’¸:§Ú9òªŽ¯r[À ”Z«Uk†j=Ã…±m„¼*õFhÔ^­ß΂;HÇ¡Nür#zþ+>Z 6ѵâ£é9¥Å’ÂPQw èðúh;k³Ù€²Ù¬•«Ä[rrbÈù)ŠNÿ‡„”bg¯øw¿ gEÒæ‚©´  YÚÑÑÜÜAüžÛ¿ÞâŸçp‡÷‹ˆÁp€m4z½Ù`¦ñ¿ÙDrkëhpA»»ÎEüç5¢—ÂÜSd]TŽþMäl$¾Ü9Jf‰U¬¥ñc#ï™I/TøUuz² pxƒƒ½haWá€)ïÀÑævï+G$Çÿ'ù ûñÕuªY“`5î[´ŒðŠ´û\‡»ÝÝN$¿ç6r—oòÑ7-‚W‘[tMD|›Ÿl*~âÇIË7Ëô¥LÉê|L‘¹QíÔ{‚žp¯ŸnúÈ7䈰A6èv}yÍïûÀ„cA³ôfzׂ´ÇÓæZ#Ö÷Ò/½œvúE‘Ó×ày/øÈ¥õ$Só¹® ¸ Ô)rÖÛƒÐ6ÚŸËwíKéïuãÿ²ÈëÆ­¸|lù5Ê?¸üb]žn›Ëîœ?Ü®4ÅGŒKŒ Ô¤1X8rðo qwøí¤ ·ÔaôÑ'|ôåÛžÏŠÈæ†4Àè‚­ÓÕLØÉ5(Ž¡å™]€Ìû©Üª•Ü—6ØÕZ8D·ô.|o’S¼(ÛA¹:ØSãh&n‚õ’›÷Øvog»ë»ÚÚšNíhIPFJå–EºÂ-^SkÖæä=™èµ[¥Y*»?pÆYçj œüe¥%qk ÌÅõó‘Œìfþ¾‹Tí×Ò›±ÅT¡—Dª}V]-|'€øGÿü;¦µ¡Ùà…¯Nf*Ðщè/Àã±0“èã[dñí>úä´Õs“Dh‚0ÏÓ„uP…žlß¿¡†¬þÈÀíÖPÍÜ„7¡κÏù)$£p¸Y ,, 8°_œ^”Bn× Ú€‡ux\ôé_\ ^…æâ©/ã©©‹t£PÔꂞö#ºú°Á3$œlRª[]èV˜ß ¾&àöqfÑ5%bæ`/Ä=Xùd|ŠA P’Ñø~XTw5ôaß¶ÓGÎuÚµqÛ^ÝnéŽãòt?έ)ÿÐëp†ìA2Ê÷EÃ}Çn G€:ÒUðâŽ<¾p/“óҾ܌˜W" úæ¿÷ ÔN:¦†äû^úÈâH!Ä?Á¼ß÷ôÅ5Ÿ’A ME ëàTÞqKð7¢½iÑ›_ö\dú¯_ª&zÿ‘g}ÞþÒ¥Ù»™ôä—‹È$Ç­W5ra¦í¶Æ*´×è±uz³œy¶v«ôyIzúËë²¶µ2ã Ô8˜«È¾{=¦@Â…ž¼-äž’UááÅ]üþ7þØöÇëTÇ­áéùOà€§R?¹šôšt-Fô§ig²è¬äwá85÷t†ª*é*TE¨£¥¦¹6\nÏò0»ü•d⣞Ë:¸ååŽí‘ÍL DÔ’Òù2$Që3ð³ wêïÊ”ŒfE ûe–œ@[cÙœ}‚ßÖÚÒ" ÍW*ê®ì “?Õú:DšÅö ¹ØR–ÉÈe Dv.ÿ!ú›Ú(Húh¿Žµ¸ V«6÷®Å1oÝʃÑb‡™IÎÉÝ)Ô†¡Í_¡øó׸ÈjØh6™-t¥Lš‰§µù™š‡ÛÏ^îdºƒ¢&O£­Ž<ÙqXëz‹5ƒLs*P8I¯}†SÑê÷T#ªñO¿ÉÑo ¸õÃ?‘ ~&xU«¹ÌD]ÃOÉš)ðìXðÎr§×åésuyªýšŒ˜Eu[N;Ͳ®f{u/š~æDsÐ,@3ჟaÆG‘íÛÑ{RüД»(ÍR­3Þ3 ¥ÀÓ€'ÿŒ€ÿ  m>á™Üúq„ò]z ÉEµõPW­‚2?#lþÕù ŸÖÕ’/«È—b!žg>ŽŸÄãÞ]þÕ›oöùíV¿ÖBV6Z&¯4³Œ> endobj 78 0 obj << /Type /FontDescriptor /FontName /QABTAG+CMR7 /Flags 32 /FontBBox [-32 -52 838 706] /ItalicAngle 0 /Ascent 674 /Descent -20 /CapHeight 599 /StemV 79 /XHeight 449 /StemH 36 /MaxWidth 868 /FontFile3 79 0 R >> endobj 79 0 obj << /Length 80 0 R /Subtype /Type1C /Filter /FlateDecode >> stream x’}LwÇïzОZ‘..ÛÚ3[&EA‡ éâÞ"lè&!Xð,e-íÕ›XÊ›bËC ãMR`-¯åE9È nŒŒ%è d2ÇȈ†m„02_ö»z˜ŒîŸ'Ïó×÷ûùäÁ± †ãx°&=+>°¼%¼† ¯K„7àü>ÿ‘` ºù† »QÎ.”Š8n,­Ô0%Mz]!KEDR1 ñ©Cju•l¤Múm1•®e i£–Ý: ÔGLžf/Rï²lIbt4ÇqQZ£9Š1éŽG¤8=[HeÑfÚt>G`ŠY*Ck¤©@³¨ÀÐ0Æ K›¨tæm*Æ0ŒŒK²©cŽÅ°W0%VíÆÂ°=X8¦À¶maaAX/¶ŠÀ[ðI†ä!qT°ïæ¸á6Ðû^´gG;xÔ´N haJñmÚD{ÿrµ^¾Vëp€ýªÊ\}ŠKN9Sz«P¤ */©ÄoeePÑÞ\ï¼Þ¢Ÿº×4w¡?§¡¦³è 2Á'y&ÝYóHyÓܘýË^è'ÇÏ7Ù9³ƒä(­£0÷T Í;]Iç)w¾Ày½wŸ÷³„¿ý©puColª—¤63˜MÝàRù#ÅE[ôô²`U½ŒZY0™{ MµE(ÌoàB!|ìSŠ­ ”‚ÑUÓ ë¸Ðl|°^JKus{†\^èƒAkS-_æ©î‚[àjŸ™%–¼~Ò‹O®¢‘UBhC€$¶¥ÜyÃ7é_R´‚اрèFVdä~ ­â¬"2ú¹åòiX†ø~sMy–f=·à{˜,êÌlÏ®×@,$C²-S`)€@ðB/Û£Æß ô‡?TÑï¨g”©iêº| u²˜ƒ)/¹Ù(+Û~%­“vÖ£]×FaP˜½«nBþ&OËöCÛ;6ú“ñÚ–ž¾óòÈiåÐÏ?uù€Ü˜LJŒM?ñ™N%^««ªÁÌ«‚Zp4<´Ï‹dO¦ðGOó/úЊbñ‡lJ ÕœÏ,8Ü:­Uùœ­7ÀC›» S–ÿÎÓ ‚T¯m,¦.Š’nå³±±_Ṥž ‘8’}Lßõùà»Û;Ày NåÈíû­£@~=c‰Õ–ç–TE4ãøÔnÚúÐÚ:ÒQã¨,o†ŽÿáyÎ g¶T®-B:ªàEBÈ’y ÑRqÊ«”âÃͳÁ:äKé¡"QY¢“N8g<ŒÂ¬cÂPY"K„ë7U˲$ámŦDìíä܂ƅŠ[šÝRQÛ*ã·/íPnŠwË·y›äò¥vy†ý‹Ä endstream endobj 80 0 obj 1073 endobj 31 0 obj << /Type /Font /Subtype /Type1 /BaseFont /HDZZKV+CMBX12 /FontDescriptor 81 0 R /Encoding /MacRomanEncoding /FirstChar 46 /LastChar 116 /Widths [ 312 0 0 0 562 562 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 782 0 0 0 0 0 0 0 0 0 0 0 0 546 0 0 625 513 0 562 0 312 0 0 0 0 625 562 625 0 459 0 437 ] >> endobj 81 0 obj << /Type /FontDescriptor /FontName /HDZZKV+CMBX12 /Flags 32 /FontBBox [-32 -283 1171 782] /ItalicAngle 0 /Ascent 750 /Descent -251 /CapHeight 666 /StemV 109 /XHeight 500 /StemH 43 /MaxWidth 1201 /FontFile3 82 0 R >> endobj 82 0 obj << /Length 83 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xX\TWÖãÀ¼"Ö§˜ì]±D%ÑE±b°¢b™¡H“Þ¤eæ0ô"EºHEFEƒ¨ &jÔ$ê®Q£kYw#ÑDWÏÃËî÷ݘd³»ß·¿;”aïÜ{Êÿÿ?WÂõc$ kk¿dËÌY⯄w%ÂÈ~Â{R é#»âÁL fFÇFZ,‚]ƒ1c nÄH%¿`µ­ßÞðOw «‰.“¬fÚØÌ›j5ËÚÚÆj±[€§‹Ê×Ê^äáæ£ ¢o¼­6ø¹xº…[M\à´÷ƒ3BCC§«|§û¸4iªU¨g‡Õz·@·€7W+;?ß «µ*7«ÞíMïýaëç³78È-ÀÊÞÏÕ-À—a˜9‹}—øÙî]ê¿,À.pyPðÊPU˜óšpûW·Ýîë=7lôòöq|îÄE“̦MŸ9kö†Í|ÂŒa˜±Ì:f³žÏl`&0™‰Ì&f33™qd¶0K˜­Œ-3ÙÆ,e¦3NÌ2ÆŽYÎÌdV0+™ÙÌ*fó>³†±gÖ2ó™áÌÆ„±bLÆœÈ a†2ÞyŸÆ˜1bb™§’u’ú~Sú•ô{)u’6™¹sÆUÆOd e1²?±Iœ„+212YbrÁtªé¹þÃû'÷nfoV=ÀgÀmó(ó/ú<5hë Ý੃;†ìòýÐC[‡Y +Ö0ì*Ïó)ÃåÃ}…ó®Ç`@kƒ°ªT"ìì²áÕ4š$u8Ií~m¡Ž_J@J2®”Ô]€¨†ëP¡ùÔlŒ 7ðËKË.½‡[`™ì"±6ž¦”Õë:¡êág¨ê1Ê’B$i6&Q2ó.c0¦z JQ‚;Q"aÿƒóiÒÏÖÞãcO¹ûÉÈÂc%ûe¸*È×vJ¶B÷-¢ë­;ôd‘¹Ý~éhYà"9©þw&¬yW=æ§z¬0HpÄ?áHé±®%¼òUwç(¥°…E›;žþ0ÿ£À±Õ‡îB+÷dÞm2GN6‘¯x¬À•싲…[—¹Ú™D¾çñStbѤ˜0;×x~@X…¹Ð‘Ø ¼£—Ô¡棙T¨F?ßñŒÌ$óæŒ!ÃɈ'Óp&Î{ð ‡È‰Ž¬ãÉp@“»­ðiIƒ¢¼éÄ| {‹ýJÝÁœ¸ù@8ÂËÍ»Úc èXŠ«ÊÐÙ ùG ©-Ò®¸®9|¤Ë?¶ÝpjEåb°$ d:GvgœD&¡íEs4-NLݱZE<™JxÇ™° fØpÑ£Ñë ~,¼ÞzþÒÍç¹§à&àU-Yª‹Ï|à*@W© ©"› 8N/Œh¼¤Ùʤ§Ã#d o‡eUÁÇ.‡ï½þÇ£|ú#ò®Ã–P/Å–,þ%{ÝÙÿš;¡™?zª½èp—;ˆg»eµRYÞêM]¾ ÕÑIó5‡ #i¾Í— ‹q"Íã !Sq qP‡¿à…NœÌ>€¯=:Ö8—lÂ1Ùçè±ÝcÇŠ=33ÿzŽFš¥L±êŠ…ÍünÙæùmÛêWÒÊǼOF“1Ïç¢Ec[öé3 ²ó_·n°cÇ`¯Zླྀ՟tà»8þ­·N|°ƒn>„Ö[‹‹N‰û·@š­Í¢¹,„LÚ½,ŽXcK‡ìi®ó"E ÖªdÇ©¦È°­e8 ô« ϵÈ|1θûo´LŸŒRvËÌ…]½=óòå ä¤èŠÁ¼> g£‰<*Vᜳ>¢ªJ_ÜÜæxÈi§*Šv‘TFæÿ’‡¾.ºI{¨î@eOkΡ-âH·\C_}[žM·lÚµï~Ôë]V£C…vx§{þ‰XbÍ9öiö®%½'X’°kŠ|#ÖàΆª%d=¹ðI¢^°ª•4^ÅÈ«Ra€°ˆ/¬}‰ˆß'ON‰U'¥øíÎt·L2|4 ®KRT'éÓ¡)¾)TÜGÖ²eMQ§Ÿ<±T›\¤)ˆº0KE¥òƒ%'<ΰ<‡ƒóÑò”¿>ô€Âù°gæ¦ÜÕyŸäÁ)îò#(Ciæ²<5:[,î2H«P˜¿áhs9„!½5 -hkaË ÔX¬…•°VGÑN‰£Æ±~.¡ÑÞq*X 쯻žüÐ ^}¢ý?wú²ÿw·^ù®°½YqØë³À4àò!·ˆBÊJ )¬•J~¦}7 EŠîÂ8ÇÈXÜ ’i':Mœ˜Âí¹CêØQwƒ¾½qüü y»Ê‘]éãëý \© ØaLãϵý ³øJXË¿ÅÔ-ì¢k~œ\uNŽOYb÷kı®ø¾®¼w òÔd¸8ÓØÀÚ«á˜B0bÍ…¹}í9†† uàÑÈ s×L]À½7^FÝÄHÉ6èžC ]Ï¡¡·tÄ'¶öXu°i Ñéñi‰¹šµ6eYgA,íƒ4Ë©½8OŸ=N뜞®.Ë‘'×çTB pW›Ýl.,™Efï"RkäB¯ýñtËñRÅnPþ$o“•eCyY›oX´&ë)ÉMˆ‰R«çƒ¥’½ ÓA…™8Ô“v6,$#+R³²ÏÑ¥ä]c•RV©»BÁ¨–"K¯Õ2 Fb;£ÇMm’—/1Od×®Uüoéä§¶¸¤¸¤¨´mó¹Ø&J?òW÷(·¿7í1yÏa{˜—³"É?rêÌúÙ CWî„õ»ÞNÛã¼`9ì>UNKdÞ/,C»žëhµ]$ ë à¬(ŸXdÛ4³`3ì"ßžhôІÏÅ&ÛõÂeƒ¤\ÌZ‚0Ï,HϾ$V™§&ùŸë8µ¢SRµ)bgaX+Öq -?h‡¾:¾Ä¢}÷¸¤˜(ߤË^vË b 6S—Z›œ>°ÌÇ;0ÄsûqÕ…»go/¥YL¡AyYä³åh*<Єυ¸H­6&I®Û»b¥›Q€SOt¤â‘Õ¡IÒjµ­"%%zpªÃUeû[ï6s±[FEKFþ0'àÌ:ä²äæoÎôÅiB«ðRtR‹Cy¢ŽÄÓ" ¡¤éIY⊠‚µZÿäpM¨6¸ ¥¬Bw«G­}×§ƒX±³Ó|Óµ©PÎ çRY¬ê~›W –Å™›‘‡µ]ý,RE]&«Ö½„Ãt½„êžú%t¾2O6â!>„öN 4ý©àl¤Âa2Ÿ“:ÈäJâ LNþ!‹%·È2(?ŽRàËH]7Kw ¶ ÍR¹Ð_VŒÛŒU²„QÁÈà¬EUúKé½Uø\”}"t'\²«ÆŽFtôøÙÄŠŒy6-ϵ–è)Y´û$–Hºóªµ[¢)·‘A€C¿¢B¯¼QQw¾#³šáx¸~=Dnbn¨Áz…cü©°ýùŠL¨ªUßÜѪPµlØ¿N sÇ‘!Äê…5NÁ)'^îƒÄHmJt¢ÂÕÊ'j1N‹ïžWÔéšS•5”Ô)7ÀkÈ!f©[9s|ÚÓíH·ñËG¢|ð©Df ý_È^~U¤ÏÓi5™ò}qñ¹ԇ,o(<ÞìÞ²ÔšHÝ'·Xyƒ¼éÑBÿ*rèÓ ±½W±a+Ž’R)ð9ÉðÿÜÌÔûÄFÑ=µWsS9ñèz 5½¹eñ¡“Ç`³|%Ì#3DíT>tõ8ëÉÍzŒ>,©»‹¯2ïJq8®âOùŸ‡B±óÏýñë6߆˜\EMQez±.%‰Ž+Ñ\HAØÁƒ%e•áõ*¥sHxˆÜ¹Ò5g “|ãG˼s[<aá” ”»Ë"íƒ`=çpy®Áî½ùp]M@¾Ü©r5̦#Ñ.HJUfÅ4RôÍN-ÌÛÏaÿL~\;y®=xv;v€ÝÅyâÄ_ÿ:ÚÑÃcÕ³îç/]„BQA÷7Ñþͼ3~ÛRQ©ý(û-Ä}þïdç7ï܎чð¨ CD8jÄÐ}ÂAü HôßÂYîùè{Ä^ÞmüKB^ö$äoo‚GÙ¡§±¿¬ êcÊýk=鸂.ç6Ï3wµåÀýœÿ¸ 8!-:L«ŽÖ*’¶z‡øÁjP_Ix ݗخ¾A=žRž˜`}ÎK³qبC>T˜ãeZ/BÛO8V¬F)vIùæ=u®ÎÞžnnužÍÇôuÍr²”¬¤×ñ›éï=Á¥>Ýj/LÉ"ÆÐÅ6I¾|Œ×K1KXÃO,Où ¸6}GgçƒídD™<-´”6{:°¢U§hãâåÊme[M¦6fÑL"YѰ½ JqÆñPâË çÁùšòýÑ5~°…S†, F³‰¢Ç'ȵ -ô­ uèU¡©©9¹ò¼¼œýUUŸï¸-NDÖ_½zõWûÇDRE  ‚ÀÃ3¼%êKW:kÿ}‚,”ÄQ€ÊAIö} Üî‡dŠRv[÷‚‚Þð¸Ý«–¦o³Ô {^é×£©{™D~”â}Ôó8äçüܼœk"}ûkB)_ùÃê¥ïüÊ”„äÄdJßdo,(ÿi2ë­31²Õp­©íð¶(¿pù@¬-²(jj¹¸Pˆ’+ÙJÝWÔ´  ¥—×#!bS£Ò’Ób (ÒÐÜ ´ÐÅÄúüŽ·{}Óãì›·ÎXó7 {ú£·9vQ©K¿¤]÷é…À×3Ähüöå^‘òÈûË WÃp´qâþëÛÉ3–/ü·bCý?&¬ùH#m|YWƒäMð?|Ö]æ=‘å·R´žÒ÷ì ôCˆÒ‚&9^At¯'Ëoã 2/ÍtzKâ “ûÌî±Í„!ïu3ÄŽüÕ óÕL¢(äS! ç9÷XŒÿ;—‘&ªGª³2‹p‰ ²@ÛnUfdÏ_K #=«„ÒGGLÓ78§éBãüR 2'ÑOÔäÓ…"þpB5EÈJz©p¥¹®äÌ *3 ?F«¤8ùŽÈm±èöò¶«u)ºàb .BAŽÓ‚Ž-ÍÕ¥æfËó Žßî L[` cÈÀÝk >óT´ïo*oð¯Þí³'|ûœïæaœÞù¡ùüä=§/¥xÓ„DM5HZ‘Gw*Å%ø¾HûòÐÙò–¶c—)˜6¤T¸%GúÁ^ν:¨þ ¾øø—/F“ÁdáBR°H!ơŷР­&ß ýCWÃ\9JÈ~5œMÎŽÒÃmÈáp`û™Žgðᄉðá*‹V’ô²7Å€PF5% <¤ƒ.ì1B#%.ñµõ4ÎE#¶üÔTHçòc )^!þr2–°ËÉ *¬¹F–ãh ÖA.pùOwpìõ2<ˆ&ÇôôBÆôTË-Q¥V`9?»tóDÙþÕp‰Ãád)¸“á«íW8׆ÕÔW—-VëUÙò棟é(†þ5ÍeëÆ˜èðÅÌé0Ü8/V—Ù"Te”)ÚÈ"¾É«ÞÅÅËËÅ¥Þ«©©¾¾é·g‹}"Å;¨ãרár29ÿr Ä—1É ) W 12ÐMˆ¯­ÛÈ\bDŒcb´ZHæbò!#Geå”#Ø«¸pÕÄ”ªðÍ™ëhV¦å·+íâçÂF>™Œ}ÎRÙnšÛ”סµrï¸è@ðçvWÖªh<·óóñDF¦z’òñ¿J…ßµ:¾ÁelU¦ÖCAnöðÛï>¦S]Ý—>‘äc»/ãRþ iŸÁЍBÉ⎕bØ·=\áºÇÛÙYï}¬‡+h½QI3§Bc)>ëbù xɯ&Rñö2LY";í™Mû¹îr¢P²-º¿A+]¯ú`Œ¼G]wšâ%´l3HΣ%:à0© C/zu“¢vØ— ^û¨†˜!k¬ÿó óPúýÕ6xÊ¡©Õ7”ñ'¯žºÙ°¯¢®¡ìd‹w™wº¼éd{zí ãÛ.Ülë¬TOñ4Ü2B˜/ºŒi:†rräkiÜÂ~h/ʧ¼G§jã´F&deÚa'…!§°j¹fßg•¯¯jÆóMôÌæ»???ð™Q-XýÅ—ðwÓö"Q#‡¶‹> /ToUnicode 85 0 R /FirstChar 33 /LastChar 33 /Widths [ 583 ] >> endobj 85 0 obj << /Length 86 0 R /Filter /FlateDecode >> stream x]ÁjÃ0DïúŠ=¦‡ §gc()’–:ýEA¼kù࿯¤”zÐA³z3³ÒÇþ½gŸHJ°ž` «XÐ “gux%çmú½UÍÎ&*áa[æžÇ@m«ˆôWF–$íÞ\¸á¥hâ ž'Ú}‡ª kŒwÌàDê:r³ÝÙÄ‹™Aº¢ûÞå¹OÛ>S/®[åF™8<*Ùà°Dc!†'¨¶iºötêØý¥4&ÙU$‡Ôõj~ñõŒçÄ‹O=?ÿºcÇ endstream endobj 86 0 obj 207 endobj 84 0 obj << /Type /FontDescriptor /FontName /BJRKNI+CMR10 /Flags 4 /FontBBox [-72 -282 1041 782] /ItalicAngle 0 /Ascent 750 /Descent -250 /CapHeight 666 /StemV 69 /XHeight 500 /StemH 31 /MaxWidth 1111 /FontFile3 87 0 R >> endobj 87 0 obj << /Length 88 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xµz XçÚöÄHfêB+éTP;Á}ßµ¨ÕZ—ºïˆ+‚ì(ûÙ!,$Oö} °q¡ î¶ZOÕº/X­UOkkkkßÁ—öûß°=ß×szþóÿåuå2$“™g½ïç~^Õ»%D‹Vo˜:Åô¿Qü`?¤ÿ®Ð k_É;, ŸúõÞ;d¢9zy¾E‰ÿ„UꢀÀˆà]^Þ¡¶cÜÆÚN=Ûn‚í´)SfÛ.ðóÞåæâo»Ú%ÔÛÃÏ%”¼ñµµpÛåa;f®whhàœÉ“ÃÂÂ&¹ø…L öú`ìÛ°]¡Þ¶CÀP}-)jµ–šM §ÖQs¨Ôzê}j$µEÙS£©ÔÊKm¢ÆQ›©ñÔj!5ÚJ-¢&RÛ¨ÅÔ$j;õ5™ZBM¡–RS©eÔrj:µ‚šA­¤fR«¨÷¨Õ”µ†šE½C…Q)kʆD ¦†P"*†¢©XŠ£*ŽÚE½Aõ¡æRý¨DÊêOùSP–Tõ&õ5€²¢””˜z›b*Ô‚>‚¾”# 2Õ›R  žöòîõ™p›ðFï]½OYŒ·¨ eÓ"º™ÙÌ¿±ðò7~éã×çb_e¿1ýÚûë,ÇZ&¼ió¦ì­Áo…è5@3€·ZiÕ,övÿ·3Ùõlí;îïœøþÀ{ÖÛ¬smÞ´¹9(gðÒÁ—†ìræÝµï>âq’…_Û¹¶N¶¥¶ß 1´u˜Í°aéÃî·~tDïe#ޏ6⛑ÌÈ#bF½;*côôÑšÑ×ÇD¹<6w\6¯°ìH#Újä—ëµ „ü°ŽUlrž2# ¢@!OŽÁnßXGlq‹vP1¾t™ú ¦ŒÐ¦¬Uë7ÜHo 6ThÕÙjäh@tOT§häbãgœ/Ý ½ ûà Q5+M—DÐk!&CVÇ`=ŸÍ" |ËKE–|y‹f©Þ õº„<. F½Ð3—ÒN2XF~¨^ݪ©„ rï½]÷^&ƒÃ´ŠþéÊ© çs6p8æŸ~w3ƒª†Aö4<£oCLÑnÝzXŽ;V3â›?Óx¨Ì—¾œ™´MböJ‡À((ïØ äGñï°è]´C_»·ö‘ÚÆH»«•ÁàÛÁMKLò¥›Tz)„B¼R™$Ã"<ϳÈA©M΄TÈÕT3FÚ[±<ÀV«=5¦«Jè“P’T€Va£5ž…“cÂüvŒâ2u³¦á$4(Ì^Þ¡Ž¬„bÈÒ¦fä aÈÓMÉšm (l N¹Ó›zíUâèæ×ާ7Þ´=FƲc ‰ñE=Úo´B’vtæÙÂçÅ< æ{±HE×i2Z8ô–èYý{›Vn³ÃBÉãöYÉ¥ py8ù~‡ëìå[.º©‘yI:ËiñÏ^JÙ\ˆ/?D„l¾~ô÷‡³¯ca®d5¾Íâ"GeFU uô÷Í“–-Þ<{„Ä’WÈ ü½ ªÕ´ y´›Eo~‰ûãã°ÀìOãѨÿß!1‡ƒ°#»œK‚O öÉòC•GZJ›à”Vì¬Ø ë‰+½ÀAê,uröß ÄF’Ǧˆ¡û„ü/ü}¶ñ“³©µ@üî«tS¿¯×©ÍÑ:P&“ǦÈ%x6.ÅËÑÇIÙ 4›RCêaÎH{‘@¹ƒ ìP»˜UL™²Â 䉿±Æ›énûE Ú+äÙöÕî0…Ò(²÷KmÙá)5vL4ZzÁûÔŠŸžBß°Ø ½‡§¢5Èî;$AL6dÄÊ@¯âñpÛÙX̼e/j•ˆ@mhóÞOàѸ.k&Ì, _ëµ-,pÃúQ$½øònŸŽ3„é¬ö¶£BÒ¡îòo}Ââ¥ÿÚ‡üi)í1ÅBü¬*Öõüûƒ13l~x6 1$—áÀA}5£E¾,JƒOD€4$6Æ'И…k!õ½Ü~íNóŒM¤'Í%U|Έêö ÐGh›7h B4äÛcç5Q3Ê!. Æ“B≋lº R÷5ý,Çç=‰‹fÊ|ÇqSQ’¨«ôYš• ±„1ˆÔ¢ó\O½[òƒ{ÚòË‹/ ßDï£/YÔ‹ÆS™»¥øðïMz¿ºESMÐMæÖµ‡^ Ìi I¤<º‘¡•†S¨Ââ ˆ (Örkk}«wrâ› ÁkYÌNRȶÄÌ#:ÒeæFNRævÇ\¶óHÏcu–¾.Âzí-R‚àqwî¦'@^½©Ðßf÷l¿{<7¥wÜO„ÆÁ¾sÄ`Kž“éù÷J¬ê Á£CèÇÅ;ÚÄêSîEÁ"f‹·Û<;¯Ó_†sŠ'[O@ºä\ò`©=Wtù!6©½ºüp r¹>È ÿb£M4ùA“ž–ÿj°þ7¦ÊL²Ém—o2}¤ùè+¾žúäˆÞªùæö'ÈîÒUBüŽ£7ØT·J—`J?É¿+9lO¯–Ëv§Nã#M(ß~¯F÷ý[ ·3{‰ãr?]dEU±®"7¹n‡ZRY4‡ð £§Ý§I¥Ñêµ_UcˆšÐjbi.$§‡ë‘gs‹&4®?‹.wó83þv>5Ðjuf~e #>ZмõÚà²6ö{,"yìtŒŠ d­E®4”€:§pÿ©“™åp‚Ê=*\µÀ<•kýöøzìv'ð*i$üM Ås,&»éx®«id”Ëd#c}_Lò®‹gð5ô^Èÿ†«3мSÈOº&õ ú÷ÖËì-Ç.úâû¼”´£ûB~:)ÛŠó­êBoïêF਑vÅǨ*Œ$c\¼J™7 «¬±éS²•©¤ +¡„Ôm Pä»ÑÇÄÖ|o4®S`³[+ݰd%$“a-¼Ø˜š©‡B¦"¼04LëçÔìuìüÓ§Ë9K~A°º'ÓÛü$†Ô!OÙÝk>žu^åUϹ*ä~ˇUUèŠj>Ÿ¿ÿ<`2¦ð[œøgüö÷cHºªEý²³ãAA:¨\ÉùOZç Œ˜ß4ý š)±|5¦»®l«øò»B$ïË&èäá<ï5×QÐà8Â<%caíáè# ¥RÂ7¨i$ÿµWZlÉW›Ðf¦æ UGkuçQÌ5j?7Ï*ƒÆ?Â_ÞS™xž(@•:ÏY€[/h6 OI´ñ#Ù¬SÃcò!‚ÃW cŸI{ú%¨!="®íìŸ %$ÛÄdp vBØ×6š€ûìqÆ 1ªiÎ7#¦9©»yt4ÿÖIv9FÿŽ™GùŸþ˜âØ—öoØYá`úac1‹ÅßA¦Ì¾‡÷jTÚ»ÐJY¤ßv'éNSW„ì : 8MÈa£æ\õáR㾺¤Q4Gr"ÉsFüajRÅÏ®¢èŽilB®JNnôoµ¨tªU™B­‚p¦³ä/"QD§%«U©r~Bç3ë¬8µ*˜|È(‘ðGéJhyA2Ô[µM¹vÃ6wWR¿Ç@Iç|º+çüJÑB½™“.š¦Fže›ŽÆÞ7ìæE6ì.Á {XT+Òk¡ô{‡g¤ú˜É#ð ɹA?#ƒåa$,ÉNÔ$'(å‰JÎ{ÄTˆ‡­àVÚè÷1\„bu±´¢Ã®B@¦SçÂô„E;ñx2œ®ÀKñD<»Z7 OAKÐ 4MGNþŎǃ¾Bù(ú¼ý!¾gábü®Ýd‰%:cn¶hÆýL½õ¾øä¡-ⱈ¡¿úøãCÚH*àâR"b!˜ - «¬.Е7zÖmúè½MC9LÏõ½oöÌQÿl†¸ŽDF2Z›Æ }è<éEÜ#ÔòBˆÂÐ%Í¡~ˆºûü»1_áw%øåëúùK®§@E,*ë‰ÐtºÍH!O7)ص m8s¿ A™UU[Øu´ðz}›ó™â_d(}È΀çe•êÚƒ$3·¬ª ˜‡0:4På,IŒ p#‰Ä¸³ eEºý%À<½téfcTcp™¤aoCZ1©ª4Ъd)É2ˆc"óâ ³K2ÊŠâjÝÜå®.œK‹V ̤%K>pÖ{öHb£#vƒ7#î À7Ïö6Òg'¸1‹¾ßˆ,QŸŸZoÕÇ´n©â6U­‡5¤_î„$µOê#2/±£–´?²¯ñVrVôõ†™‹·Ž5©$‚æ²t)pBÔëûÿO{³絑 zñÇ:·ì•êI|ëQ«¸H…,æ¿ø¶b ø E/Y”KC‘Ô´ÙšjÐó5ê‚G. ™ƒÇHžÇ²ÏÊo}·˜o±è>Íá¿ýIüwÕ¦‡ð§#šÿZHØTý®}^D/Z+Àí€Ç¯“ò`nÝ«J‡"Ø$$©$òÅÞÁ° [cžÆÞ±Ž¸°­nc aë5æiõiuýåG‰ìƒ>â×°ØÖDþ?Ë’o“`}O–תOhÊI;ªï‘3—§¤í'ÊO*¿­ . ð•ꃌU†ÒZ‚HmDPšReuª"èúüÂ&â«èGÞšÅoW¸Ÿ€36—O|r ½¯Ç³œÒ9µäd4—h‡y¾LR©â’8ï ~Õ®¦‘ùMh7}è¬ã oJrRZã.G2â§•I5IUž¥AÙ¤C1‹·.²óŸŸvt·þ„₪A•Šžá×Ñ<üf¨59¨µÚºãÆ]¼xãÎw¨—D|ž/¿gG¤t† |áW|H³É+nOÚ~^Aüò yšü2Áä—›YDqí´¥f®L…¼ ® U—•LE„. ",hó©€Ó×?½ð˜àjǤÞÕ!åþþ!!þþå!ÕÕååÕ„žz¯Ï.E  ”ùe„“:f³HnÖ•òÑÌ‚:4žH¨­,M„2„‰ì‚˜aœ›¯è€öG8Bþ½€ftt£‡Aþ^ AG’cùÅ©9Dx.ò»óñL³hÐE.QP³àåEáË×…RGôj¨&US™3‹Ô/è 'om¶‡›ðÈ”p‚åU곚R«UÕ]ßó)xÇb´ÔZ¥IN'¼+õʹìÌó­ÍšR÷ôWÄBaÙ«51]ÀQ¢Ê–A,„ÅÄ–=[Zó¡ÿXI $cv¶£‰°E±xظ÷'8â>´ãô@ÿ?›¥;ûU1˜Ì߈þú)qZdAƒ®ÒupØ„g^ªíÊ]à Û5^À3s!tšHxQˆ>êXÁvÉŽ]tµ¨§êÔÇ50BÓøÑ‘LþÒÒŽ¡„vlvø{l~ceõç&'˜¤\e-å¶©Jƒ]JTÈ•r¼²s5¶ç5ò|ÒR56Õ§Á`zBÅ2(o‡=Oø™‰z èÎWÖáiŠ<(MZZ>Åkæê}½‚0o!Žþon!þß7]]3æá‚§×Û‹»¯·G»¶¯r»Xü*Døj(q`ñéƒÙûMœÚOé«"c-¬ìÑÂÿ¦Òí&¾\‘H8®ÓÕÏàcU©Êt2 ל ³—zºv…ø4”B®—þ#k,é\€gò2•–0í?ýþuHMÎõDŽÖÚm|ød¤æ¡Ù|š5šÓ™ÞõG›®¿’±G!­B½¾C«ôh`»Õ±ï·Qø#‚·¼ÚÁ¢¾³ŸcjûÎ(o/m¦uòº$2Ü¢7/?ÎKW¤%©” H–„%l [F¯Ž¥‰Z%¡zL<$FIðQ:ó34ÚôT.§°ñÄ]hÎ̈BO;leįH&¯ q q÷ ÚAÜ»áxäY-1ŽtÒº"Cyy¤awŒwÒŽ™—Æ!"ÿ‚˜¿EbIà%¥{PÛЗVu¨ŸTÍô2PüšÈ?`Ï…ÞéTØ ËÏN'½Y£V«Ñ@LŠOÒ¢U«%qqä LRZJZNû Ô‡C›ÞùO.3{ŽVÖþ¸É`Õü5r²âëâNdî²å4JGo5´–7Ëwé¹h7pò-ÖÖdí?çüñ,ü6LHuDü ë³ø)~ówrxÚ·Xȉ;—‚ç–°íd€¯³«À ¢îÉðVíó¯ Àj#Wì [ n‡­‘^~kwFnŽd)ÿÙMÁ)Ã7O„| ÿ’Í2‰&¥ NaKP楔0Á¢ÝØ• Ú¬óy¹é·ˆP 7‘,j.HwOŃwc Œ$t:rgs­4œÔžÌ<‘Z–ÿàQÈÌéò·Ó¨ˆØ|,ôª8zÌ´î°ãw°;jRöBóÉgÍW®^ؼhƒûöµÞœ>šý¢ñh\džL;=eôœ“"4NÍŽ\N\c°Àà‹õþ3íÇ ú㲟‘Å7í¿4È{4sá¥QÙ+›˜Ñ.,zs^Ux‹¬±YðáæÙ3}Ú~¦ö—-£Iâ6<¹_Æ0¹ÅäNÜÿ /DWXÇß±>ÒA³7;”Y]d )Fù%¸/;áú%ÙªX’ëC¼ô˜þ|ÚÆmN;9W§PøÁ¾‹zsâ_>ÍegüÖlìßóp ŽÂ h)m¬<¶/¯ž XÝ®"§\ŸÔU°ƒ™µkÜtÎÔ‰_¢€—‚/…h#oÉþøÄ·þRQ v(Eš®´zð2œdó~µøix§%È4o傤Äßóø‹;ˆ©V^sèIý4 ¨Õ\†:G“™aê´öz„õ GZýC½àÔ§hƒÍ1½ ;t8²éY-¤39 Y²øä¤$9·ué²À…ð¬6ll /ÚSàÌüÅvø Üÿ‹9ׯž~„zçCËž6ÉgžÇ’à´ÓSÕ*ëN‡_§&Ä’q_i#ËNÈÎÖ¤ædr~¶<ÍAï–Wz¼uÁ0Lm^´Y¯íý§ø,e½îáâÿvOSÈù ´N€\Ñ!ß·£›•‘™¹LqDqD´L&Oáp?<±(ÂÂ4sùÁFTHfêö}çÑ`:W%ìX…ú³Š¹+w;lnõÙwäxÓçGnï¿XZÿÈxžJ•œ°»Åéˆ!<˜¸D¥lç´tç¦ØÏï:#úĹÏo”>Õ¾xõ‚C]ÒÕO㦌sÚ63î­úþ˳ë¹KkÏF}L‰–tþ]ÝõI>*k^7Ö]=•G®ÿaO5…ê‹§N‡­ÚYc}ÉÏèÊFX¨<Cƒ ²#¹ÀˆŒHsáÒ-ö…ÑÖê}-‡Ê ÑñE\eTqR‘Kô­§Lí†ç^Emd HV¬RÔïšéÅÔí ¼=[Yé/—s*¥J¥F ù©µ_œÿT’kj}Z_Y6k>î³¶Üé`}qe…©Ûÿ'—‘5 Ö–¾²× ¾?#D÷qK8£&²@V>h=Z¸-Do¢yÝ÷NÑÊã§.ÅâuÜÜ+ Áæåàþ'±Å9üæƒÙÀ¤§j3Hp{~E‘ßnFZnÉPÿÈb-zsægd&OI‘+@Y!ùnÌi<°àùžx1~ [Åvá™<5%=ûëÏ‘ø,׊zå"!Ü7MHXÛôjB“õi¢L¬e›Æ½šð¬ ¿û[4™í‹g•¢ÃMèˆNÀ[4 ù‰(Ò¤utgGŒ×¢:Q>”„…Ax ‡ëpÝGùDÞ‰b \§ƒ’|se^|.xñüés!ræÿ‹-«ð JôÒª]E9‡Þ©’êü‚BBtA5Uz}•iÌ2Q@£ïAD?jÐ[½¼ˆV=1Í+ÇP;Ù_Ɉu•à²M_y!­¢HôUd-ß®R*!f0îƒ,Dß?hú´¦!>Tǹ*åÅ쮈-)++¬9»±yÁ$Üw pXôRÈŸ3dt“69ÒÁL:J­ 7L|ƒGÎjöBÈ·žž[˜›ž™Mv“jµ*feÀgG‰\Nž*ÅL5roßFôk‹QŠNf¶×‹XûŒkdþü)øßh/¹…øn ¨È‰Ÿ|WÒ§˜aX`?\òïZ¼Œ,ÞM\óôÆ‘kY•PÅ%¤DÅCDdFÉÿ˜.}IºLïH`ñ»nÏ~›0Î ½+²DÐÚ3‚T,DÕh-{¯':š ø!Ÿ‚2Y}gŠÔä-è†ÀãÿÉ%Ý•tŠ(äWJ#›И(&%>^Áá¿ÿ¶09– ÀI²ròS³³µ¦$“ê;¬õ‚ýí(“lÙ‰®²p'ùŽ÷µßÎ.tµ°0Èu’Ï’äyð>|˜:õÀüƒs®†™ûFé¡oj/¥Ý‚Û öÂWYwXgˆøVvžÀY¸3O” ¾×³ Dí½Q2&ÛæÃ*²ë\*[=aƒŸ“™\‘Tm4Ò Pà5!jéx›-M(·zåt ðèKëÈOµU0d‹©ˆ›Êù˜6‚Éj¾ vo}詊œF¢CG›]ö*Jø*Êä²ß¢ˆËxÜD?ÿüƒÑêØÏÈùq—)¾É¾|¦ îÜ xnƒDSï`Kl±`ò4ûc -ªÏ=PQᨕ‚+ûìDã`œ3ûý­s7®–àx·Ì¤‡ØˆæiQZHÄád¿$çøè¤Äådþí"sW¤Œ(C}~ø”Ð(Ôû½ÑûOæ¿(Æ:ˆ~fïUž¹LÜvoú©ñ£æ¯¿[^mÔé«9B4g~ü#Gn ÷VÝ^jz@¢N 2ò.Äí-7‰ÛÑlv†iM¼€ÛcÒÚˆ~Ô Ç»u„îÓŸGóÛI@Ò£¦c;ø\ç.¢| I…)ø7\^ƒ”NÐÒ±GȯéXÃ&å)Ó"ÕÉI±øñ¯s¬“ˆóTLb:r+D…é©MrOø§,Òw6Zt6#1Dù©Œï]öÂ(8õÍhGsž ùáh0‹&“.ü~€Ÿ°è1žËœúöf2Ùָ¤îCuô7¦­ª='FÛN†10 §¡±ÑŒ½I4™Àíö%ÇŸžiý<ýÇ“³È1°a%?§ЖMôëq:¦]Í".ªj2IâµÑ¶x¼Ix'%þ·®#í•B¾Õt¾£øµ\÷—ç;øÊ.½ö… ‡Òu…x°Y•¹cnß(MOTäyñéC!¿‘´2DIfD>n9ü§Rtƒ÷^ûuÎ)Éœ£}Z 00³Sÿn##'ÃþJ½&ÐEÔK úÙ½æÏŽV…ƒšSÑ‘Ê0“¨#WW&y'È¿˜&(hÖ!Ì ô¤®»)wãP«ŒÿéÿˆÜÛRa{Šø>õïÑô nÑ\h½‹Ž«›ˆß ¨ôo»Áëw7ü9fäZÞÝòŸ?ܶ¼>9 ’sW&„@Hs£Š“K©ž_T„üsÒõ"ìšKû\êËõém§ë÷†>«_¿Kº~ý)êÿÕŠH³ endstream endobj 88 0 obj 8897 endobj 11 0 obj << /Type /Font /Subtype /Type1 /BaseFont /ILDUPH+CMR6 /FontDescriptor 89 0 R /Encoding /MacRomanEncoding /FirstChar 49 /LastChar 93 /Widths [ 611 611 0 0 0 0 0 0 0 351 0 0 935 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 351 0 351 ] >> endobj 89 0 obj << /Type /FontDescriptor /FontName /ILDUPH+CMR6 /Flags 32 /FontBBox [-32 -282 887 782] /ItalicAngle 0 /Ascent 750 /Descent -250 /CapHeight 666 /StemV 83 /XHeight 500 /StemH 39 /MaxWidth 917 /FontFile3 90 0 R >> endobj 90 0 obj << /Length 91 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xeleÇßëu½;†ƒÞˆÞ]⦛Â`“ÐmüHdŠ.d#é4ðÃ5ë±­Ùµ·îØ2ì¶vqaë«[D6enélìaá±1.!q% B¬&FùC .˜ d˜€ ˜çn/ Wÿ21OòäyžOò<ßçK!§QUPßèÝ’/ÊÌu”ù”Ã|šÆdÌúÃ*À9眵´”8° ¼O 𢔮h}Hí w´µkRyk…TU[ëY/UoÚT+½¤ÈáŽV_Pjôií²âÓì¦SjµvÈZŸT¾­]ÓÔº{{{+}Jwe(ܶ£b½ÔÛ¡µK^¹[÷È~iW(¨IM>E–òÒ*ó©>¤¨G49,5†ür8ˆbë¶ï?XUýâf„Ö!mC;Ðj´¹ í¿ÓDÑ,º@QŽ•ŽÃæH1ÜÇÀA3p°ÀÑ5ÞPõ@@U]5 ]7’sþoV¼¼¨,ìÊR×­iÚúnó'“8•RqD|ôš+¢â®®$>)Zä(?¥ÛDÃýâ#¯«_³‰Ž§Dû6Ë.»³TdiøÎjâ³Äó8ž,¡—ÝÌøó6?d ñijèÇnBï«Øœ1™ù©_i Ö*>} +BÃî2܆Y?“Âßã˧؇ï2C Í&&‰‡ûFG‡rïáÁ?ä¶Ú~z„ ß•xgilÏ㥑D<ïgñà ñSc>Ë“¿É)¦¸gÖ¬Ÿ‚ÐÄû³.â›d2+‹„NO‚+> endobj 92 0 obj << /Type /FontDescriptor /FontName /KUCCWS+CMBX6 /Flags 32 /FontBBox [-32 -32 1003 718] /ItalicAngle 0 /Ascent 686 /Descent 0 /CapHeight 609 /StemV 130 /XHeight 457 /StemH 60 /MaxWidth 1033 /FontFile3 93 0 R >> endobj 93 0 obj << /Length 94 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xcd`ab`dddsöuŠ0±T~H3þaú!ËÜÝý+þ§k7s7˦éBßc¿Gð``fdÌ+nrÎ/¨,ÊLÏ(QÐHÖT0´´4×Q020°TpÌM-ÊLNÌSðM,ÉHÍM,rr‚ó“3SK*4l2JJ ¬ôõËËËõs‹õò‹Òí4uÊ3K2‚R‹S‹ÊRSÜòóJüsSÀNÓ“Îù¹¥%©E ¾ù)©Ey LQ – Ö Ì@0°0¬adøÑÁ÷kF÷ñ§Ž3þ¸öCDô{â÷Ê)S{»—ôJÎè™ß=£›cÏq¶Š.·Žàî°nþҞ½<Êþì;ºtLéúmøÛIâ·ñw7Ö³ÇÙÂÛ­ºC»Ã»Íû²Áj¾°ïû½îwûïE]]Å’u]åÝuÝ‘þlóz®öíï>Òý¨cAиãìqÝe}M=ßþçJ|ü]ÈêéÏv¨ÿz÷áîý@5+Àj”Øù~Þï>óãèqÆŸõ?YD§ÍèîïžÁ±º¦»LîÏG¶Úß嬗ئ·þnß½³›ã»1ÛŸŒ?Çë»;º«%³§w-–ûɶðû\V¶êßöjy¿ù»9~;±ñÕÎü0í{üÌ™3Ù~ÇMf?Îõ]Œ[Ž‹Å|>ç¾)<<ßÅñðöðð10¥ñÎ' endstream endobj 94 0 obj 512 endobj 16 0 obj << /Type /Font /Subtype /Type1 /BaseFont /EQDKJN+CMSY6 /FontDescriptor 95 0 R /Encoding << /Type /Encoding /Differences [ 33 /greaterequal /equivalence ] >> /ToUnicode 96 0 R /FirstChar 33 /LastChar 34 /Widths [ 962 962 ] >> endobj 96 0 obj << /Length 97 0 R /Filter /FlateDecode >> stream x]ÁjÃ0DïúŠ=¦‡ §gc()’–:ýEA¼kù࿯¤”zÐA³z3³ÒÇþ½gŸHJ°ž` «XÐ “gux%çmú½UÍÎ&*áa[æžÇ@m«ˆôWF–$íÞ\¸á¥hâ ž'Ú}‡ª kŒwÌàDê:r³ÝÙÄ‹™Aº¢ûÞå¹OÛ>S/®[åF™8<*Ùà°Dc!†'¨¶iºötêØý¥4&ÙU$‡Ôõj~ñõŒçÄ‹O=?ÿºcÇ endstream endobj 97 0 obj 207 endobj 95 0 obj << /Type /FontDescriptor /FontName /EQDKJN+CMSY6 /Flags 4 /FontBBox [-32 -282 901 782] /ItalicAngle 0 /Ascent 750 /Descent -250 /CapHeight 666 /StemV 52 /XHeight 500 /StemH 52 /MaxWidth 931 /FontFile3 98 0 R >> endobj 98 0 obj << /Length 99 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xeO_H¿ss;l™J#CÛ]Q  þé¡°¢(ÉleR!ˆzÌs·r»ívn쟛[iÛ7·ÔtÎ3ü;J˨ÀŸfRPÐzè¥è-èõvžB·åC|ù¾ß÷û}(¢ÌCPU54·¶ÈVÇ2eh¦h QΉ†ÁW,pûK’¢{0–l`¬.Öd¤9¢ÂPIÔÕן¬"Ž×ÖÖçÍk2¢™ähÊLrrÓK´2ŹˆŠ34ÇYOÕÔ8ÎjÒl¯fXãÙÊ*Âiâh¢…²S¬ƒê& G\#Í‘SW‹ ŒÙÚÇQ,ÑÌtS¬ÅÈR¤ÜQ¶>²W&‡œ, AeQ[Œ íHAÉ—ÿD”H=€ö£_3÷ Å)6»Õ´Œ O¿)„íÌ'-¼……WŸÍ­Ž.'£ãSØt<Ò‘Ó×#:é®p§‡éº}+ÜØ?ìõLD’ø»ð&3Ù2<!èǤ :záÇ ¡ 0~¦c‘„/ŠKGG> MjxkáñÐzçJó#[°†å¤,o]žÙ•"*´‘/ui©0wÜ÷bÁDJçõ`Ų2¬pIPÓ’š†+ÐŽI=jpmdÍ:ÐöF¼˜[fÊ¿o|ŒêR ïa~)µúüõƒI˜É¾Æc| êÓ]nZòo„Ça &±Â­›RWZ¸8+Í âºðSË=ŒÃð¡¸{lg¿ð¦Ô7:aÀ|~¿/0œá™ßÒ‹í_ÒKW(4žƒ¾„?‹ÃHB'ª$¿–_„TÊ^|§@åµÍ¶<.Ó Ê,YCÅÍLÛß-<øŽ^åaå­Lá¢~»ãüî$‹õ‚ëLî²}A<·¨’'Ôé‚ôžô¬F#û^ùÐÎL endstream endobj 99 0 obj 684 endobj 14 0 obj << /Type /Font /Subtype /Type1 /BaseFont /QTDCDD+CMSY6 /FontDescriptor 100 0 R /Encoding /MacRomanEncoding /FirstChar 123 /LastChar 125 /Widths [ 638 0 638 ] >> endobj 100 0 obj << /Type /FontDescriptor /FontName /QTDCDD+CMSY6 /Flags 32 /FontBBox [-32 -282 901 782] /ItalicAngle 0 /Ascent 750 /Descent -250 /CapHeight 666 /StemV 52 /XHeight 500 /StemH 52 /MaxWidth 931 /FontFile3 101 0 R >> endobj 101 0 obj << /Length 102 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xeO_H¿ss;l™J#CÛ]Q  þé¡°¢(ÉleR!ˆzÌs·r»ívn쟛[iÛ7·ÔtÎ3ü;J˨ÀŸfRPÐzè¥è-èõvžB·åC|ù¾ß÷û}(¢ÌCPU54·¶ÈVÇ2eh¦h QΉ†ÁW,pûK’¢{0–l`¬.Öd¤9¢ÂPIÔÕן¬"Ž×ÖÖçÍk2¢™ähÊLrrÓK´2ŹˆŠ34ÇYOÕÔ8ÎjÒl¯fXãÙÊ*Âiâh¢…²S¬ƒê& G\#Í‘SW‹ ŒÙÚÇQ,ÑÌtS¬ÅÈR¤ÜQ¶>²W&‡œ, AeQ[Œ íHAÉ—ÿD”H=€ö£_3÷ Å)6»Õ´Œ O¿)„íÌ'-¼……WŸÍ­Ž.'£ãSØt<Ò‘Ó×#:é®p§‡éº}+ÜØ?ìõLD’ø»ð&3Ù2<!èǤ :záÇ ¡ 0~¦c‘„/ŠKGG> MjxkáñÐzçJó#[°†å¤,o]žÙ•"*´‘/ui©0wÜ÷bÁDJçõ`Ų2¬pIPÓ’š†+ÐŽI=jpmdÍ:ÐöF¼˜[fÊ¿o|ŒêR ïa~)µúüõƒI˜É¾Æc| êÓ]nZòo„Ça &±Â­›RWZ¸8+Í âºðSË=ŒÃð¡¸{lg¿ð¦Ô7:aÀ|~¿/0œá™ßÒ‹í_ÒKW(4žƒ¾„?‹ÃHB'ª$¿–_„TÊ^|§@åµÍ¶<.Ó Ê,YCÅÍLÛß-<øŽ^åaå­Lá¢~»ãüî$‹õ‚ëLî²}A<·¨’'Ôé‚ôžô¬F#û^ùÐÎL endstream endobj 102 0 obj 684 endobj 10 0 obj << /Type /Font /Subtype /Type1 /BaseFont /XMJSUQ+CMSY5 /FontDescriptor 103 0 R /Encoding << /Type /Encoding /Differences [ 33 /prime ] >> /ToUnicode 104 0 R /FirstChar 33 /LastChar 33 /Widths [ 440 ] >> endobj 104 0 obj << /Length 105 0 R /Filter /FlateDecode >> stream x]ÁjÃ0DïúŠ=¦‡ §gc()’–:ýEA¼kù࿯¤”zÐA³z3³ÒÇþ½gŸHJ°ž` «XÐ “gux%çmú½UÍÎ&*áa[æžÇ@m«ˆôWF–$íÞ\¸á¥hâ ž'Ú}‡ª kŒwÌàDê:r³ÝÙÄ‹™Aº¢ûÞå¹OÛ>S/®[åF™8<*Ùà°Dc!†'¨¶iºötêØý¥4&ÙU$‡Ôõj~ñõŒçÄ‹O=?ÿºcÇ endstream endobj 105 0 obj 207 endobj 103 0 obj << /Type /FontDescriptor /FontName /XMJSUQ+CMSY5 /Flags 4 /FontBBox [-23 -32 393 591] /ItalicAngle 0 /Ascent 559 /Descent 0 /CapHeight 496 /StemV 56 /XHeight 372 /StemH 56 /MaxWidth 414 /FontFile3 106 0 R >> endobj 106 0 obj << /Length 107 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xcd`ab`dddsö Ž4±T~H3þaú!ËÜÝýƒíÇaÖnæn–…ß }OüËÿ=J€…‘1¯¸©Ý9¿ ²(3=£DA#YSÁÐÒÒ\GÁÈÀÀRÁ17µ(391OÁ7±$#57±ÈÉQÎOÎL-©TаÉ())°Ò×///×KÌ-ÖË/J·ÓÔQ(Ï,ÉPJ-N-*KMQpËÏ+QðKÌMU»ML:çç”–¤)øæ§¤åeæ¦200000v1012²Øüèàûá³qÁ’ùŒ/¾¯dþþçGªhOÏ”yݳ8Ög/ÊMjÈ©i“û­÷ǵ½¾»£»K²zkcÏ”Þ Ó'Êñ/þi¿í·òtöÃ\‡¹/äáb^ʽhö endstream endobj 107 0 obj 295 endobj 12 0 obj << /Type /Font /Subtype /Type1 /BaseFont /LKMCOT+CMMI6 /FontDescriptor 108 0 R /Encoding /MacRomanEncoding /FirstChar 44 /LastChar 117 /Widths [ 379 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 962 0 0 0 0 0 0 0 998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 445 511 0 0 0 0 0 0 0 0 584 0 737 ] >> endobj 108 0 obj << /Type /FontDescriptor /FontName /LKMCOT+CMMI6 /Flags 32 /FontBBox [-32 -236 976 715] /ItalicAngle 0 /Ascent 683 /Descent -204 /CapHeight 607 /StemV 85 /XHeight 455 /StemH 35 /MaxWidth 1006 /FontFile3 109 0 R >> endobj 109 0 obj << /Length 110 0 R /Subtype /Type1C /Filter /FlateDecode >> stream xMÐklSuð{×mü‡µ¡º¹½|˜88‡„G†&‚y¸'˜Í­´eëcw·íÖ®íZÚµÝécëcõîAËÖ1Jq²‡ ‰dÎ(!˜øA%,F?,FBûâÿv |ñËÉ9ÉÉ9¿sH"7‡ I2¿²ªêÃwžf%üz’-‡ß ¡qefOˆE ÎM­,¿ŒÕkðg…øÓ—Ij:•Z]£R(YzSófz{EÅŽRúÍmÛ*è}j9£jnÒÐUM¬R®nb³E}TÛ¬’³]ô¦]J–ÕíܺÕh4–5©;Ê´Œb÷æRÚ¨b•ôy‡œ1È[è´–þ¸I-§ŸÙÊžÅJ­Z§gå ]¥m‘3‚ VíïЫNíz JˆcD5q€8Hl ^$Pö."—p‘bò‡œúœ%ÑÛ"˜`†_ž!3=aùR‡ÂëÜ zð‚ÛÓëv[Á°D ˆçcfqÖárý+¼+{¼6ßh¦{FG“àLÈÀ.·Ýï—†Óà¿ Óù¸`ù¨@² o½±QVsx[PHؔߙ]a ¿hOÏüƒ7.¦Ó$Þý>ò£ˆ?Á‹¥gÝÈ3ÅÏs—ïìI¶œ|½qçßæ 7õ«u¡êÁ`R(Œ-†F¯”PÔ\œ9ã(aѵ·Ž»Ù„ ð¡YŒ®^´Œ±qªuòä@C¸>Ò†äƒE¼6yÍ­£$½=Í¿š%TÜñ]øŒ´MXãÔºÍÍòâ{k{# }p{ôJì›+8G6˜ôÀ(š¯½P_R/zƒŽ DÔäýëÉó€â!+k°ªzt2e¹í(Pé/Ê»?ÏÍMLP#u7L—` &ΜIM|Í-@?ò÷źº½N³›2d¨o¤ò|• )‹Nƒ?rio) ÄúãÙÞ˜#¡3™z,NÊít¶õvfxø™¯K|'qÑïç~áG™\éx×0«Ó´k˜Ñî³éd*I–¥Áhd< D‚QAóuê²þ"ýÿünŒM>÷]Y“¬FXgӀת*¶ª{­`BµW7]ÃEgŸª-}½.Ê\ûù¡Z@]ŽØx|`è‹ 2 ÓüÝôsTìvÜñ-YTª#jneÚ: ÃɉT2E ª'Û¥{?©= È£õ}?ødC±Ð0 ¡t{È¢SëOVß²ÍÝÁâi,NQKxÅ D€+ž¯›=(ä½/¬ïtOsœ/È…¨ó·ç¯ß” 1ŒÕkéóÈ$+Õå‰Laö3k2ÇE™|Z:ŠöÃ0âl1‹Ç .õäa¡Ûiïs1ØNœÎH…ï‹8g|€¸XŒtELaÙã‡x:OÂ Õ ¼‹IlN‹°‰“BiÝ1Fo·{¼àBŽˆ#Ì-ÝÃ…·Ú¿mh1´iÔ‰¶Ù!.¤$†_ĺD¾Ð]5µúϨչ;ââ‚© XLÿø\Å endstream endobj 110 0 obj 1115 endobj 111 0 obj (tgp) endobj 112 0 obj (Mac OS X 10.7.2 Quartz PDFContext) endobj 113 0 obj (Robert B. Gramacy) endobj 114 0 obj (Preview) endobj 115 0 obj (D:20120127173531Z00'00') endobj 1 0 obj << /Title 111 0 R /Author 113 0 R /Producer 112 0 R /Creator 114 0 R /CreationDate 115 0 R /ModDate 115 0 R >> endobj xref 0 116 0000000000 65535 f 0000091124 00000 n 0000009580 00000 n 0000013061 00000 n 0000000022 00000 n 0000009560 00000 n 0000009823 00000 n 0000013025 00000 n 0000084188 00000 n 0000000000 00000 n 0000087989 00000 n 0000082720 00000 n 0000089150 00000 n 0000044266 00000 n 0000086782 00000 n 0000000000 00000 n 0000085214 00000 n 0000034516 00000 n 0000026665 00000 n 0000036167 00000 n 0000013194 00000 n 0000040021 00000 n 0000041169 00000 n 0000000000 00000 n 0000038057 00000 n 0000016729 00000 n 0000046069 00000 n 0000051636 00000 n 0000000000 00000 n 0000058505 00000 n 0000065608 00000 n 0000067195 00000 n 0000000000 00000 n 0000072963 00000 n 0000010243 00000 n 0000010289 00000 n 0000013004 00000 n 0000013144 00000 n 0000013408 00000 n 0000013636 00000 n 0000016708 00000 n 0000017424 00000 n 0000017654 00000 n 0000026644 00000 n 0000027070 00000 n 0000027299 00000 n 0000034495 00000 n 0000034771 00000 n 0000034999 00000 n 0000036146 00000 n 0000036439 00000 n 0000036667 00000 n 0000038036 00000 n 0000038626 00000 n 0000038323 00000 n 0000038606 00000 n 0000038853 00000 n 0000040000 00000 n 0000040195 00000 n 0000040420 00000 n 0000041149 00000 n 0000041506 00000 n 0000041734 00000 n 0000044245 00000 n 0000044576 00000 n 0000044803 00000 n 0000046048 00000 n 0000046337 00000 n 0000046569 00000 n 0000051615 00000 n 0000051922 00000 n 0000052153 00000 n 0000058484 00000 n 0000059026 00000 n 0000058723 00000 n 0000059006 00000 n 0000059256 00000 n 0000065587 00000 n 0000065783 00000 n 0000066008 00000 n 0000067174 00000 n 0000067531 00000 n 0000067763 00000 n 0000072942 00000 n 0000073480 00000 n 0000073177 00000 n 0000073460 00000 n 0000073709 00000 n 0000082699 00000 n 0000082985 00000 n 0000083212 00000 n 0000084168 00000 n 0000084362 00000 n 0000084589 00000 n 0000085194 00000 n 0000085758 00000 n 0000085455 00000 n 0000085738 00000 n 0000085985 00000 n 0000086762 00000 n 0000086959 00000 n 0000087189 00000 n 0000087968 00000 n 0000088514 00000 n 0000088208 00000 n 0000088493 00000 n 0000088739 00000 n 0000089129 00000 n 0000089478 00000 n 0000089709 00000 n 0000090919 00000 n 0000090941 00000 n 0000090964 00000 n 0000091017 00000 n 0000091054 00000 n 0000091081 00000 n trailer << /Size 116 /Root 37 0 R /Info 1 0 R /ID [ <57a2f7b827228b14bcb7e8a21cb2c914> <57a2f7b827228b14bcb7e8a21cb2c914> ] >> startxref 91250 %%EOF tgp/vignettes/tgp.bib0000644000176200001440000004754113531032535014337 0ustar liggesusers@unpublished{GinsLe-RCarr2009, Author = {{G}insbourger, David and {L}e Riche, Rodolphe and Carraro, Laurent}, Note = {HAL: hal-00260579}, Title = {A Multi-points Criterion for Deterministic Parallel Global Optimization based on {G}aussian Processes}, Year = {2009}} @article{VeigWahlGamb2009, Author = {S. {D}a Veiga and F. Wahl and F. Gamboa}, Journal = {Technometrics}, Pages = {452--463}, Title = {Local Polynomial Estimation for Sensitivity Analysis on Models With Correlated Inputs}, Volume = {51}, Year = {2009}} @article{MarrIoosLaurRous2009, Author = {A. Marrel and B. Iooss and B. Laurent and O. Roustant}, Journal = {Reliability Engineering \& System Safety}, Pages = {742--751}, Title = {Calculations of Sobol Indices for the Gaussian Process Metamodel}, Volume = {94}, Year = {2009}} @article{StorSwilHeltSall2009, Author = {Curtis B. Storlie and Laura P. Swiler and Jon C. Helton and Cedric J. Sallaberry}, Journal = {Reliability Engineering \& System Safety}, Pages = {1735--1763}, Title = {Implementation and Evaluation of Nonparametric Regression Procedures for Sensitivity Analysis of Computationally Demanding Models}, Volume = {94}, Year = {2009}} @article{StorHelt2008, Author = {Curtis B. Storlie and Jon C. Helton}, Journal = {Reliability Engineering \& System Safety}, Pages = {28--54}, Title = {Multiple Predictor Smoothing Methods for Sensitivity Analysis: Description of Techniques}, Volume = {93}, Year = {2008}} @incollection{SchoWelcJone1998, author={M. Schonlau and Jones, D.R. and Welch, W.J.}, title = {Global versus local search in constrained optimization of computer models}, year={1998}, booktitle={New Developments and applications in experimental design}, pages={11--25}, series={IMS Lecture Notes - Monograph Series}, number={34}, publisher={IMS} } @article{RommShoe2007, author = {Rommel G. Regis and Christine A. Shoemaker}, title = {Improved Strategies for Radial basis Function Methods for Global Optimization}, journal = {J. of Global Optimization}, volume = {37}, number = {1}, year = {2007}, issn = {0925-5001}, pages = {113--135}, doi = {http://dx.doi.org/10.1007/s10898-006-9040-1}, publisher = {Kluwer Academic Publishers}, address = {Hingham, MA, USA}, } @article{JoneSchoWelc1998, author={Jones, D.R. and Schonlau, M. and Welch, W.J}, title={Efficient Global Optimization of Expensive Black-Box Functions}, journal={Journal of Global Optimization}, volume={13}, year={1998}, pages={455--492} } @article{SaltTara2002, author={A. Saltelli and S. Tarantola}, title={On the relative importance of input factors in mathematical models: safety assessment for nuclear waste disposal}, year={2002}, journal={Journal of the American Statistical Association}, volume={97}, pages={702--709} } @article{WelcBuckSackWynnMitcMorr1992, Author = {W. J. Welch and R. J. Buck and J. Sacks and H. P. Wynn and T.J Mitchell and M. D. Morris}, Journal = {Technometrics}, Pages = {15--25}, Title = {Screening, predicting, and computer experiment}, Volume = {34}, Year= {1992} } @article{OaklOhag2004, author = {Oakley, J.E. and O'Hagan, A.}, title = {Probabilistic sensitivity analysis of complex models: a {B}ayesian approach}, journal = {Journal of the Royal Statistical Society Series B}, year = {2004}, volume = {66}, pages = {751--769} } @article{Sobo1993, author={I. M. Sobol'}, year={1993}, title={ Sensitivity Analysis for nonlinear mathematical models}, journal={Mathematical Modeling and Computational Experiment}, volume={1}, pages={407--414} } @article{HommSalt1996, author={T. Homma and A. Saltelli}, title={Importance measures in global sensitivity analysis of nonlinear models}, journal={Reliability engineering and system safety}, year={1996}, volume={52}, pages={1--17} } @book{SaltChanScot2000, editor={Saltelli, A. and Chan, K. and Scott, E.M.}, title={Sensitivity {A}nalysis}, year={2000}, publisher={John Wiley and Sons} } @article{MorrKottTaddFurfGana2008, author={R. D. Morris and A. Kottas and M. Taddy and R. Furfaro and B. Ganapol}, title={A statistical framework for the sensitivity analysis of radiative transfer models}, year={To appear}, journal={IEEE Transactions on Geoscience and Remote Sensing} } @article{TaddLeeGrayGrif2009, Author = {Matthew A. Taddy and Herbert K. H. Lee and Genetha A. Gray and Joshua D. Griffin}, Journal = {Technometrics}, Pages = {389--401}, Title = {Bayesian Guided Pattern Search for Robust Local Optimization}, Volume = 51, Year = 2009} @Book{SaltEtAl2008, author = {A. Saltelli and M. Ratto and T. Andres and F. Campolongo and J. Cariboni and D. Gatelli and M. Saisana and S. Tarantola}, title = {Global Sensitivity Analysis: The Primer}, publisher = {John Wiley \& Sons}, year = 2008} @article{Salt2002, author={Andrea Saltelli}, title={Making best use of model evaluations to compute sensitivity indices}, journal={Computer Physics Communications}, year={2002}, volume={145}, pages={280--297} } @INPROCEEDINGS{cohn:1996, Author = {D. A. Cohn}, Booktitle = {Advances in Neural Information Processing Systems}, Editor = {Jack D. Cowan and Gerald Tesauro and Joshua Alspector}, Journal = {Neural Network}, Pages = {679--686}, Publisher = {Morgan Kaufmann Publishers}, Title = {Neural Network Exploration Using Optimal Experimental Design}, Volume = {6(9)}, Year = {1996} } @ARTICLE{math:1963, Author = {G. Matheron}, Journal = {Economic Geology}, Pages = {1246-1266}, Title = {Principles of geostatistics}, Volume = {58}, Year = {1963} } @ARTICLE{chip:geor:mccu:1998, Author = {Chipman, H. A. and George, E. I. and McCulloch, R. E.}, Journal = {Journal of the American Statistical Association}, Pages = {935--960}, Title = {{B}ayesian {CART} Model Search (with discussion)}, Volume = {93}, Year = {1998} } @BOOK{cressie:1991, Author = {N.A. Cressie}, Publisher = {John Wiley and Sons, Inc.}, Title = {Statistics for Spatial Data}, Year = {1991} } @TECHREPORT{neal:1997, author = {R. Neal}, title = {Monte Carlo implementation of {G}aussian process models for {B}ayesian regression and classification"}, Institution = {Dept. of Computer Science, University of Toronto.}, year = "1997", number = "CRG--TR--97--2" } @BOOK{brei:1984, Address = {Belmont, CA}, Author = {Breiman, L. and Friedman, J. H. and Olshen, R. and Stone, C.}, Publisher = {Wadsworth}, Title = {Classification and Regression Trees}, Year = {1984} } @BOOK{sant:will:notz:2003, Address = {New York, NY}, Author = {Santner, T. J. and Williams, B. J. and Notz, William I.}, Publisher = {Springer-Verlag}, Title = {The Design and Analysis of Computer Experiments}, Year = {2003} } @ARTICLE{chaloner:1995, Author = {K. Chaloner and I. Verdinelli}, Journal = {Statistical Science}, Pages = {273-1304}, Title = {Bayesian Experimental Design, A Review}, Volume = {10 No. 3}, Year = {1995} } @Misc{fields:2004, author = {{Fields Development Team}}, title = {fields: {T}ools for Spatial Data}, howpublished = {National {C}enter for {A}tmospheric {R}esearch, {B}oulder CO}, year = 2004, note = {URL: http://www.cgd.ucar.edu/Software/Fields} } @ARTICLE{mackay:1992, Author = {D. J. C. MacKay}, Journal = {Neural Computation}, Number = {4}, Pages = {589--603}, Title = {Information--based Objective Functions for Active Data Selection}, Volume = {4}, Year = {1992} } @INPROCEEDINGS{seo00, Author = {S. Seo and M. Wallat and T. Graepel and K. Obermayer}, Booktitle = {Proceedings of the International Joint Conference on Neural Networks}, Month = {July}, Pages = {241--246}, Publisher = {IEEE}, Title = {Gaussian Process Regression: Active Data Selection and Test Point Rejection}, Volume = {III}, Year = {2000} } @ARTICLE{chip:geor:mccu:2002, Author = {Chipman, H. A. and George, E. I. and McCulloch, R. E.}, Journal = {Machine Learning}, Pages = {303--324}, Title = {Bayesian Treed Models}, Volume = {48}, Year = {2002} } @Manual{cran:R, title = {R: A Language and Environment for Statistical Computing}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = 2004, note = {ISBN 3-900051-00-3}, url = {http://www.R-project.org} } @book{dey:1998, author = {Dipak Dey and Peter M\"{u}eller and Debajyoti Sinha}, title = {Practical Nonparametric and Semiparametric {B}ayesian Statistics}, year = {1998}, isbn = {0387985174}, publisher = {Springer-Verlag New York, Inc.}, address = {New York, NY, USA}, } @INPROCEEDINGS{rasm:ghah:nips:2002, Author = {Rasmussen, C.E. and Ghahramani, Z.}, Booktitle = {Advances in Neural Information Processing Systems}, Publisher = {MIT Press}, Title = {Infinite Mixtures of {G}aussian Process Experts}, Volume = {14}, Pages = {881--888}, Year = {2002} } @ARTICLE{silv:1985, Author = {Silverman, B. W.}, Journal = {Journal of the Royal Statistical Society Series B}, Pages = {1--52}, Title = {Some Aspects of the Spline Smoothing Approach to Non-Parametric Curve Fitting}, Volume = {47}, Year = {1985} } @ARTICLE{freid:1991, Author = {J. H. Friedman}, Journal = {Annals of Statistics}, Pages = {1--67}, Title = {Multivariate Adaptive Regression Splines}, Volume = {19, No. 1}, Month = {March}, Year = {1991} } @INPROCEEDINGS{glm:04, author = {R. B. Gramacy and Herbert K. H. Lee and William Macready}, title = {Parameter Space Exploration With {G}aussian Process Trees}, booktitle = {ICML}, pages = {353-360}, year = {2004}, publisher = {Omnipress \& ACM Digital Library}, url = {http://whisper.cse.ucsc.edu/~rbgramacy/papers/gra2004-02.pdf} } @article{harrison:78, author = {Harrison, D. and Rubinfeld, D. L.}, title = {{Hedonic Housing Prices and the Demand for Clean Air}}, journal = {Journal of Environmental Economics and Management}, year = {1978}, volume = {5}, pages = {81-102} } @UNPUBLISHED{atlas-hp, TITLE = "{\tt ATLAS} ({A}utomatically {T}uned {L}inear {A}lgebra {S}oftware)", AUTHOR = "R. Clint Whaley and Antoine Petitet", PUBLISHER = "{See homepage for details}", NOTE = "http://math-atlas.sourceforge.net/", YEAR = 2004 } @ARTICLE{jones:schonlau:welch:1998, Author = {Jones, D.R. and M. Schonlau and W. J. Welch}, Journal = {Journal of Global Optimization}, Pages = {455--492}, Title = {Efficient Global Optimization of Expensive Black Box Functions}, Volume = {13}, Year = {1998} } @Article{gra:lee:2008, Author = {Robert B. Gramacy and Herbert K. H. Lee}, Title = {Bayesian treed {G}aussian process models with an application to computer modeling}, Year = 2008, journal = {Journal of the American Statistical Association}, volume = 103, Pages = {1119--1130}, url={http://arxiv.org/abs/0710.4536} } @TECHREPORT{gra:lee:2009, Author = {Robert B. Gramacy and Herbert K H. Lee}, Institution = {ArXiV}, Title = {Adaptive Design and Analysis of Supercomputer Experiments}, Year = 2009, number = {0805.4359}, url = {http://arxiv.org/abs/0805.4359}, note = {to appear in Technometrics} } @PhDThesis{Paci:2003, Author={Paciorek, C.J.}, Title={Nonstationary {G}aussian Processes for Regression and Spatial Modelling}, Year=2003, Department={Department of Statistics}, School={Carnegie Mellon University}, Address={Pittsburgh, Pennsylvania} } @BOOK{stein:1999, Address = {New York, NY}, Author = {Michail L. Stein}, Publisher = {Springer}, Title = {Interpolation of Spatial Data}, Year = {1999} } @BOOK{abramowitz:stegun:1964, author = "Milton Abramowitz and Irene A. Stegun", title = "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables", publisher = "Dover", year = 1964, address = "New York", edition = "9th Dover printing, 10th GPO printing--", isbn = "0-486-61272-4" } @ARTICLE{dam:samp:gutt:2001, Author = {Doris Damian and Paul D. Sampson and Peter Guttorp}, Journal = {Environmetrics}, Pages = {161-178}, Title = {Bayesian Estimation of Semiparametric Nonstationary Spatial Covariance Structure}, Volume = {12}, Year = {2001} } @ARTICLE{schmidt:2003, Author = {Alexandra Mello Schmidt and Anthony O'Hagan}, Journal = {Journal of the Royal Statistical Society, Series B}, Title = {Bayesian Inference for Nonstationary Spatial Covariance Structure via Spatial Deformations}, Volume = {65}, Pages = {745--758}, Year = {2003} } @INCOLLECTION{higd:swal:kern:1999, Author = {Higdon, Dave and Swall, Jenise and Kern, John}, Booktitle = {Bayesian Statistics 6}, Editor = {Bernardo, J. M and Berger, J. O. and Dawid, A. P. and Smith, A. F. M.}, Pages = {761--768}, Publisher = {Oxford University Press}, Title = {Non-Stationary Spatial Modeling}, Year = {1999} } @TechReport{fuentes:smith:2001, author = {Montserrat Fuentes and Richard L. Smith}, title = {A New Class of Nonstationary Spatial Models}, institution = {North Carolina State University, Raleigh, NC}, year = 2001 } @article{Gramacy:2007, author = "Robert B. Gramacy", title = "{\tt tgp}: An {{\sf R}} Package for {B}ayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models", journal = "Journal of Statistical Software", volume = "19", number = "9", day = "13", month = "6", year = "2007", CODEN = "JSSOBK", ISSN = "1548-7660", bibdate = "2007-06-13", URL = "http://www.jstatsoft.org/v19/i09", accepted = "2007-06-13", submitted = "2006-07-12", } @Article{gra:lee:2008b, author = {Robert B. Gramacy and Herbert K. H. Lee}, title = {Gaussian Processes and Limiting Linear Models}, journal = {Computational Statistics and Data Analysis}, volume = 53, pages = {123--136}, year = 2008 } @Book{liu:2001, author = {Liu, J. S.}, title = {Monte {C}arlo Strategies in Scientific Computing}, publisher = {Springer}, year = 2001, address = {New York} } @Article{geyer:1995, author = {Geyer, C.J. and Thompson, E.A.}, title = {Annealing {M}arkov chain {M}onte {C}arlo with applications to ancenstral inference}, journal = {Journal of the American Statistical Association}, year = 1995, volume = 90, pages = {909--920} } @InProceedings{geyer:1991, author = {Geyer, C.J.}, title = {Markov chain {M}onte {C}arlo Maximum Likelihood}, booktitle = {Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface}, pages = {156--163}, year = 1991 } @ARTICLE{hast:1970, Author = {Hastings, W.K.}, Journal = {Biometrika}, Pages = {97--109}, Title = {Monte {C}arlo Sampling Methods using {M}arkov Chains and their Applications}, Volume = {57}, Year = {1970} } @ARTICLE{met:1953, Author = {Metropolis, N. and Rosenbluth, A.W. and Rosenbluth, M.N. and Teller, A.H. and Teller, R.}, Journal = {Journal of Chemical Physics}, Pages = {1087--1091}, Title = {Equations of State Calculations by Fast Computing Machine}, Volume = {21}, Year = {1953} } @ARTICLE{geman:1984, Author = {Geman, S. and Geman, D.}, Journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, Pages = {721--741}, Title = {Stochastic Relaxation, {G}ibbs Distributions and the {B}ayesian Restoration of Images}, Volume = {6}, Year = {1984} } @Article{neal:2001, author = {Radford M. Neal}, title = {Annealed Importance Sampling}, journal = {Statistics and Computing}, year = 2001, volume = 11, pages = {125--129} } @Article{neal:1996, author = {Radford M. Neal}, title = {Sampling from multimodal distributions using tempered transition}, journal = {Statistics and Computing}, year = 1996, volume = 6, pages = {353--366} } @InProceedings{veach:1995, author = {Veach, Eric and Guibas, Leonidas J.}, title = {Optimally combining sampling techniques for Monte Carlo rendering}, booktitle = {SIGGRAPH '95 Conference Proceedings}, pages = {419--428}, year = 1995, address = {Reading, MA}, publisher = {Addison--Wesley} } @TechReport{douc:etal:2007, author = {R. Douc and A. Guillin and J.-M. Marin and C.P. Robert}, title = {Minimum Variance Importance Sampling via Population Monte Carlo}, institution = {CEREMADE, Universit\'{e} Paris Dauphine, and CREST, INSEE, Paris}, year = 2007, url = {http://www.ceremade.dauphine.fr/~xian/dgmr05.pdf} } @Article{owen:2000, author = {Owen, Art and Zhou, Yi}, title = {Safe and Effective Importance Sampling}, journal = {Journal of the American Statstical Association}, year = 2000, volume = 95, number = 449, pages = {135--143}, month = {March}} @Article{kass:1998, author = {Robert E. Kass and Bradley P. Carlin and Andrew Gelman and Radford M. Neal}, title = {Markov Chain Monte Carlo in Practice: A Roundtable Discussion}, journal = {The American Statistician}, year = 1998, volume = 52, number = 2, pages = {93--100}, month = {May} } @Article{jennison:1993, author = {Jennison, C.}, title = {Discussion on the meeting on the Gibbs sampler and other {M}arkov chain {M}onte {C}arlo methods}, journal = {Journal of the Royal Statistical Society, Series B}, year = 1993, volume = 55, pages = {54--56} } @TechReport{gra:samw:king:2009, author = {Robert B. Gramacy and Richard J. Samworth and Ruth King}, title = {Importance tempering}, institution = {ArXiv}, year = 2009, number = {0707.4242}, url = {http://arxiv.org/abs/0707.4242}, note = {to appear in Statistics and Computing} } @Manual{coda:R, title = {coda: Output analysis and diagnostics for MCMC}, author = {Martyn Plummer and Nicky Best and Kate Cowles and Karen Vines}, year = {2008}, note = {R package version 0.13-3}, } @Article{qian:wu:wu:2009, author = {Z.G. Qian and H. Wu and C.F.J. Wu}, title = {Gaussian process models for computer experiments with qualitative and quantitative factors}, journal = {Technometrics}, year = 2009, volume = 50, pages = {383--396}} @Article{gra:taddy:2010, title = {Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with {\tt tgp} Version 2, an {\sf R} Package for Treed {G}aussian Process Models}, author = {Robert B. Gramacy and Matthew Taddy}, journal = {Journal of Statistical Software}, year = {2010}, volume = {33}, number = {6}, pages = {1--48}, url = {http://www.jstatsoft.org/v33/i06/} } tgp/vignettes/tgp.Rnw0000644000176200001440000030570313724171531014352 0ustar liggesusers\documentclass{article} \usepackage{Sweave} %\SweaveOpts{eps=TRUE} %\documentclass[12pt]{article} %\usepackage{fullpage} %\usepackage{setspace} \usepackage[footnotesize]{caption} \usepackage{amsmath} \usepackage{amscd} \usepackage{epsfig} \newcommand{\bm}[1]{\mbox{\boldmath $#1$}} \newcommand{\mb}[1]{\mathbf{#1}} %\VignetteIndexEntry{a guide to the tgp package} %\VignetteKeywords{tgp} %\VignetteDepends{tgp,maptree,MASS} %\VignettePackage{tgp} \begin{document} %\doublespacing \setkeys{Gin}{width=0.85\textwidth} <>= library(tgp) options(width=65) @ \title{{\tt tgp}: an {\sf R} package for Bayesian nonstationary,\\ semiparametric nonlinear regression and design by treed Gaussian process models} \author{Robert B. Gramacy\\ Department of Statistics\\ Virginia Tech\\ rbg@vt.edu} \maketitle \begin{abstract} The {\tt tgp} package for {\sf R} \cite{cran:R} is a tool for fully Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes with jumps to the limiting linear model. Special cases also implemented include Bayesian linear models, linear CART, stationary separable and isotropic Gaussian processes. In addition to inference and posterior prediction, the package supports the (sequential) design of experiments under these models paired with several objective criteria. 1-d and 2-d plotting, with higher dimension projection and slice capabilities, and tree drawing functions (requiring {\tt maptree} and {\tt combinat} libraries), are also provided for visualization of {\tt tgp}-class output. \end{abstract} \subsection*{Intended audience} \label{sec:discaimer} This document is intended to familiarize a (potential) user of {\tt tgp} with the models and analyses available in the package. After a brief overview, the bulk of this document consists of examples on mainly synthetic and randomly generated data which illustrate the various functions and methodologies implemented by the package. This document has been authored in {\tt Sweave} (try {\tt help(Sweave)}). This means that the code quoted throughout is certified by {\tt R}, and the {\tt Stangle} command can be used to extract it. Note that this tutorial was not meant to serve as an instruction manual. For more detailed documentation of the functions contained in the package, see the package help-manuals. At an {\sf R} prompt, type {\tt help(package=tgp)}. PDF documentation is also available on the world-wide-web. \begin{center} \tt http://www.cran.r-project.org/doc/packages/tgp.pdf \end{center} The outline is as follows. Section \ref{sec:implement} introduces the functions and associated regression models implemented by the {\tt tgp} package, including plotting and visualization methods. The Bayesian mathematical specification of these models is contained in Section \ref{sec:model}. In Section \ref{sec:examples} the functions and methods implemented in the package are illustrated by example. The appendix covers miscellaneous topics such as how to link with the {\tt ATLAS} libraries for fast linear algebra routines, compile--time support for {\tt Pthreads} parallelization, the gathering of parameter traces, the verbosity of screen output, and some miscellaneous details of implementation. \subsection*{Motivation} Consider as motivation the Motorcycle Accident Dataset \cite{silv:1985}. It is a classic data set used in recent literature \cite{rasm:ghah:nips:2002} to demonstrate the success of nonstationary regression models. The data consists of measurements of the acceleration of the head of a motorcycle rider as a function of time in the first moments after an impact. Many authors have commented on the existence of two---perhaps three---regimes in the data over time where the characteristics of the mean process and noise level change (i.e., a nonstationarity and heteroskedasticity, respectively). It can be interesting to see how various candidate models handle this nuance. \begin{figure}[ht!] \centering \includegraphics[trim=0 25 0 0]{motovate_bgp} \includegraphics[trim=0 25 0 0]{motovate_btgp} \caption{Fit of the Motorcycle Accident Dataset using a GP ({\em top}) and treed GP model ({\em bottom}). The $x$-axis is time in milliseconds after an impact; the $y$--axis is acceleration of the helmet of a motorcycle rider measured in ``$g$'s'' in a simulated impact.} \label{f:motivate} \end{figure} Figure \ref{f:motivate} shows a fit of this data using a standard (stationary) Gaussian process (GP; {\em left}), and the treed GP model ({\em right}).\footnote{Note that these plots are {\em static}, i.e., they were not generated in--line with {\tt R} code. See Section \ref{sec:moto} for {\em dynamic} versions.} Notice how stationary GP model is unable to capture the smoothness in the linear section(s), nor the decreased noise level. We say that the standard GP model is stationary because it has a single fixed parameterization throughout the input space. An additive model would be inappropriate for similar reasons. In contrast, the treed GP model is able to model the first linear part, the noisy ``whiplash'' middle section, and the smooth (possibly linear) final part with higher noise level, thus exhibiting nonstationary modeling behavior and demonstrating an ability to cope with heteroskedasticity. The remainder of this paper describes the treed GP model in detail, and provides illustrations though example. There are many special cases of the treed GP model, e.g., the linear model (LM), treed LM, stationary GP, etc.. These are outlined and demonstrated as well. \section{What is implemented?} \label{sec:implement} The {\tt tgp} package contains implementations of seven Bayesian multivariate regression models and functions for visualizing posterior predictive surfaces. These models, and the functions which implement them, are outlined in Section \ref{sec:breg}. Also implemented in the package are functions which aid in the sequential design of experiments for {\tt tgp}-class models, which is what I call {\em adaptive sampling}. These functions are introduced at the end of Section \ref{sec:model} and a demonstration is given in Section \ref{sec:as}. \subsection{Bayesian regression models} \label{sec:breg} The seven regression models implemented in the package are summarized in Table \ref{t:reg}. They include combinations of treed partition models, (limiting) linear models, and Gaussian process models as indicated by T, LM/LLM, \& GP in the center column of the table. The details of model specification and inference are contained in Section \ref{sec:model}. Each is a fully Bayesian regression model, and in the table they are ordered by some notion of ``flexibility''. These {\tt b*} functions, as I call them, are wrappers around the master {\tt tgp} function which is an interface to the core {\tt C} code. \begin{table} \centering \begin{tabular}{l|l|l} {\sf R} function & Ingredients & Description \\ \hline blm & LM & Linear Model \\ btlm & T, LM & Treed Linear Model \\ bcart & T & Treed Constant Model \\ bgp & GP & GP Regression \\ bgpllm & GP, LLM & GP with jumps to the LLM \\ btgp & T, GP & treed GP Regression \\ btgpllm & T, GP, LLM & treed GP with jumps to the LLM \\ \hline tgp & & Master interface for the above methods \end{tabular} \caption{Bayesian regression models implemented by the {\tt tgp} package} \label{t:reg} \end{table} The {\tt b*} functions are intended as the main interface, so little further attention to the {\tt tgp} master function will be included here. The easiest way to see how the master {\tt tgp} function implements one of the {\tt b*} methods is to simply type the name of the function of interest into {\sf R}. For example, to see the implementation of {\tt bgp}, type: <>= bgp @ The output (return-value) of {\tt tgp} and the {\tt b*} functions is a {\tt list} object of class ``{\tt tgp}''. This is what is meant by a ``{\tt tgp}-class'' object. This object retains all of the relevant information necessary to summarize posterior predictive inference, maximum {\em a' posteriori} (MAP) trees, and statistics for adaptive sampling. Information about its actual contents is contained in the help files for the {\tt b*} functions. Generic {\tt print}, {\tt plot}, and {\tt predict} methods are defined for {\tt tgp}-class objects. The {\tt plot} and {\tt predict} functions are discussed below. The {\tt print} function simply provides a list of the names of the fields comprising a {\tt tgp}-class object. \subsubsection{Plotting and visualization} \label{sec:plot} The two main functions provided by the {\tt tgp} package for visualization are {\tt plot.tgp}, inheriting from the generic {\tt plot} method, and a function called {\tt tgp.trees} for graphical visualization of MAP trees. The {\tt plot.tgp} function can make plots in 1-d or 2-d. Of course, if the data are 1-d, the plot is in 1-d. If the data are 2-d, or higher, they are 2-d image or perspective plots unless a 1-d projection argument is supplied. Data which are 3-d, or higher, require projection down to 2-d or 1-d, or specification of a 2-d slice. The {\tt plot.tgp} default is to make a projection onto the first two input variables. Alternate projections are specified as an argument ({\tt proj}) to the function. Likewise, there is also an argument ({\tt slice}) which allows one to specify which slice of the posterior predictive data is desired. For models that use treed partitioning (those with a T in the center column of Table \ref{t:reg}), the {\tt plot.tgp} function will overlay the region boundaries of the MAP tree ($\hat{\mathcal{T}}$) found during MCMC. A few notes on 2-d plotting of {\tt tgp}-class objects: \begin{itemize} \item 2-d plotting requires interpolation of the data onto a uniform grid. This is supported by the {\tt tgp} package in two ways: (1) {\tt loess} smoothing, and (2) the {\tt akima} package, available from CRAN. The default is {\tt loess} because it is more stable and does not require installing any further packages. When {\tt akima} works it makes (in my opinion) smarter interpolations. However there are two bugs in the {\tt akima} package, one malign and the other benign, which preclude it from the default position in {\tt tgp}. The malign bug can cause a segmentation fault, and bring down the entire R session. The benign bug produces {\tt NA}'s when plotting data from a grid. For beautiful 2-d plots of gridded data I suggest exporting the {\tt tgp} predictive output to a text file and using {\tt gnuplot}'s 2-d plotting features. \item The current version of this package contains no examples---nor does this document---which demonstrate plotting of data with dimension larger than two. The example provided in Section \ref{sec:fried} uses 10-d data, however no plotting is required. {\tt tgp} methods have been used on data with input dimension as large as 15 \cite{gra:lee:2008}, and were used in a sequential design and detailed analysis of some proprietary 3-d input and 6-d output data sampled using a NASA supercomputer \cite{gra:lee:2009}. \item The {\tt plot.tgp} function has many more options than are illustrated in [Section \ref{sec:examples} of] this document. Please refer to the help files for more details. \end{itemize} The {\tt tgp.trees} function provides a diagrammatic representation of the MAP trees of each height encountered by the Markov chain during sampling. The function will not plot trees of height one, i.e., trees with no branching or partitioning. Plotting of trees requires the {\tt maptree} package, which in turn requires the {\tt combinat} package, both available from CRAN. \subsubsection{Prediction} \label{sec:predintro} Prediction, naturally, depends on fitted model parameters $\hat{\bm{\theta}}|\mbox{data}$, or Monte Carlo samples from the posterior distribution of $\bm{\theta}$ in a Bayesian analysis. Rather than saving samples from $\pi(\bm{\theta}|\mbox{data})$ for later prediction, usually requiring enormous amounts of storage, {\tt tgp} samples the posterior predictive distribution in-line, as samples of $\bm{\theta}$ become available. [Section \ref{sec:pred} and \ref{sec:llmpred} outlines the prediction equations.] A {\tt predict.tgp} function is provided should it be necessary to obtain predictions {\em after} the MCMC has finished. The {\tt b*} functions save the MAP parameterization $\hat{\bm{\theta}}$ maximizing $\pi(\bm{\theta}|\mbox{data})$. More specifically, the ``{\tt tgp}''--class object stores the MAP tree $\hat{{\mathcal T}}$ and corresponding GP (or LLM) parameters $\hat{\bm{\theta}}|\hat{\mathcal{T}}$ found while sampling from the joint posterior $\pi(\bm{\theta},\mathcal{T}|\mbox{data})$. These may be accessed and used, via {\tt predict.tgp}, to obtain posterior--predictive inference through the MAP parameterization. In this way {\tt predict.tgp} is similar to {\tt predict.lm}, for example. Samples can also be obtained from the MAP--parameterized predictive distributions via {\tt predict.tgp}, or a re--initialization of the joint sampling of the posterior and posterior predictive distribution can commence starting from the $(\hat{\bm{\theta}},\hat{\mathcal{T}})$. The output of {\tt predict.tgp} is also a {\tt tgp} class object. Appendix \ref{sec:apred} illustrates how this feature can be useful in the context of passing {\tt tgp} model fits between collaborators. There are other miscellaneous demonstrations in Section~\ref{sec:examples}. \subsubsection{Speed} \label{sec:speed} Fully Bayesian analyses with MCMC are not the super-speediest of all statistical models. Nor is inference for GP models, classical or Bayesian. When the underlying relationship between inputs and responses is non-linear, GPs represent a state of the art phenomenological model with high predictive power. The addition of axis--aligned treed partitioning provides a divide--and--conquer mechanism that can not only reduce the computational burden relative to the base GP model, but can also facilitate the efficient modeling of nonstationarity and heteroskedasticity in the data. This is in stark contrast to other recent approaches to nonstationary spatial models (e.g., via deformations \cite{dam:samp:gutt:2001,schmidt:2003}, or process convolutions \cite{higd:swal:kern:1999,fuentes:smith:2001,Paci:2003}) which can require orders of magnitude more effort relative to stationary GPs. Great care has been taken to make the implementation of Bayesian inference for GP models as efficient as possible [see Appendix \ref{sec:howimplement}]. However, inference for non-treed GPs can be computationally intense. Several features are implemented by the package which can help speed things up a bit. Direct support for {\tt ATLAS} \cite{atlas-hp} is provided for fast linear algebra. Details on linking this package with {\tt ATLAS} is contained in Appendix \ref{sec:atlas}. Parallelization of prediction and inference is supported by a producer/consumer model implemented with {\tt Pthreads}. Appendix \ref{sec:pthreads} shows how to activate this feature, as it is not turned on by default. An argument called {\tt linburn} is made available in tree class (T) {\tt b*} functions in Table \ref{t:reg}. When {\tt linburn = TRUE}, the Markov chain is initialized with a run of the Bayesian treed linear model \cite{chip:geor:mccu:2002} before burn-in in order to pre-partition the input space using linear models. Finally, thinning of the posterior predictive samples obtained by the Markov chain can also help speed things up. This is facilitated by the {\tt E}-part of the {\tt BTE} argument to {\tt b*} functions. \subsection{Sequential design of experiments} \label{sec:design} Sequential design of experiments, a.k.a. {\em adaptive sampling}, is not implemented by any {\em single} function in the {\tt tgp} package. Nevertheless, options and functions are provided in order to facilitate the automation of adaptive sampling with {\tt tgp}-class models. A detailed example is included in Section \ref{sec:as}. Arguments to {\tt b*} functions, and {\tt tgp}, which aid in adaptive sampling include {\tt Ds2x} and {\tt improv}. Both are booleans, i.e., should be set to {\tt TRUE} or {\tt FALSE} (the default for both is {\tt FALSE}). {\tt TRUE} booleans cause the {\tt tgp}-class output list to contain vectors of similar names with statistics that can be used toward adaptive sampling. When {\tt Ds2x = TRUE} then $\Delta \sigma^2(\mb{\tilde{x}})$ statistic is computed at each $\tilde{\mb{x}} \in \mbox{\tt XX}$, in accordance with the ALC (Active Learning--Cohn) algorithm \cite{cohn:1996}. Likewise, when {\tt improv = TRUE}, statistics are computed in order to asses the expected improvement (EI) for each $\tilde{\mb{x}} \in \mbox{\tt XX}$ about the global minimum \cite{jones:schonlau:welch:1998}. The ALM (Active Learning--Mackay) algorithm \cite{mackay:1992} is implemented by default in terms of difference in predictive quantiles for the inputs {\tt XX}, which can be accessed via the {\tt ZZ.q} output field. Details on the ALM, ALC, and EI algorithms are provided in Section \ref{sec:model}. Calculation of EI statistics was considered ``beta'' functionality while this document was being prepared. At that time it had not been adequately tested, and its implementation changed substantially in future versions of the package. For updates see the follow-on vignette \cite{gra:taddy:2010}, or \verb!vignette("tgp2")!. That document also discusses sensitivity analysis, handling of categorical inputs, and importance tempring. The functions included in the package which explicitly aid in the sequential design of experiments are {\tt tgp.design} and {\tt dopt.gp}. They are both intended to produce sequential $D$--optimal candidate designs {\tt XX} at which one or more of the adaptive sampling methods (ALM, ALC, EI) can gather statistics. The {\tt dopt.gp} function generates $D$--optimal candidates for a stationary GP. The {\tt tgp.design} function extracts the MAP tree from a {\tt tgp}-class object and uses {\tt dopt.gp} on each region of the MAP partition in order to get treed sequential $D$--optimal candidates. \section{Methods and Models} \label{sec:model} This section provides a quick overview of the statistical models and methods implemented by the {\tt tgp} package. Stationary Gaussian processes (GPs), GPs with jumps to the limiting linear model (LLM; a.k.a.~GP LLM), treed partitioning for nonstationary models, and sequential design of experiments (a.k.a.~{\em adaptive sampling}) concepts for these models are all briefly discussed. Appropriate references are provided for the details, including the original paper on Bayesian treed Gaussian process models \cite{gra:lee:2008}, and an application paper on adaptively designing supercomputer experiments \cite{gra:lee:2009}. As a first pass on this document, it might make sense to skip this section and go straight on to the examples in Section \ref{sec:examples}. \subsection{Stationary Gaussian processes} \label{sec:gp} Below is a hierarchical generative model for a stationary GP with linear tend for data $D=\{\mb{X}, \mb{Z}\}$ consisting of $n$ pairs of $m_X$ covariates and a single response variable $\{(x_{i1},\dots, x_{im_X}), z_i\}_{i=1}^n$. \begin{align} \mb{Z} | \bm{\beta}, \sigma^2, \mb{K} &\sim N_{n}(\mb{\mb{F}} \bm{\beta}, \sigma^2 \mb{K}) & \sigma^2 &\sim IG(\alpha_\sigma/2, q_\sigma/2) \nonumber \\ \bm{\beta} | \sigma^2, \tau^2, \mb{W}, \bm{\beta}_0 &\sim N_{m}(\bm{\beta}_0, \sigma^2 \tau^2 \mb{W}) & \tau^2 &\sim IG(\alpha_\tau/2, q_\tau/2) \label{eq:model} \\ \bm{\beta}_0 &\sim N_{m}(\bm{\mu}, \mb{B}) & \mb{W}^{-1} &\sim W((\rho \mb{V})^{-1}, \rho), \nonumber \end{align} $\mb{X}$ is a design matrix with $m_X$ columns. An intercept term is added with $\mb{F} = (\mb{1}, \mb{X})$ which has $m\equiv m_X+1$ columns, and $\mb{W}$ is a $m \times m$ matrix. $N$, $IG$, and $W$ are the (Multivariate) Normal, Inverse-Gamma, and Wishart distributions, respectively. Constants $\bm{\mu}, \mb{B},\mb{V},\rho, \alpha_\sigma, q_\sigma, \alpha_\tau, q_\tau.$ are treated as known. The GP correlation structure $\mb{K}$ is chosen either from the isotropic power family, or separable power family, with a fixed power $p_0$ (see below), but unknown (random) range and nugget parameters. Correlation functions used in the {\tt tgp} package take the form $K(\mb{x}_j, \mb{x}_k) = K^*(\mb{x}_j, \mb{x}_k) + {g} \delta_{j,k}$, where $\delta_{\cdot,\cdot}$ is the Kronecker delta function, $g$ is the {\em nugget}, and $K^*$ is a {\em true} correlation representative from a parametric family. The isotropic Mat\'{e}rn family is also implemented in the current version as ``beta'' functionality. All parameters in (\ref{eq:model}) can be sampled using Gibbs steps, except for the covariance structure and nugget parameters, and their hyperparameters, which can be sampled via Metropolis-Hastings \cite{gra:lee:2008}. \subsubsection{The nugget} \label{sec:intro:nug} The $g$ term in the correlation function $K(\cdot,\cdot)$ is referred to as the {\em nugget} in the geostatistics literature \cite{math:1963,cressie:1991} and sometimes as {\em jitter} in the Machine Learning literature \cite{neal:1997}. It must always be positive $(g>0)$, and serves two purposes. Primarily, it provides a mechanism for introducing measurement error into the stochastic process. It arises when considering a model of the form: \begin{equation} Z(\mb{X}) = m(\mb{X}, \bm{\beta}) + \varepsilon(\mb{X}) + \eta(\mb{X}), \label{eq:noisemodel} \end{equation} where $m(\cdot,\cdot)$ is underlying (usually linear) mean process, $\varepsilon(\cdot)$ is a process covariance whose underlying correlation is governed by $K^*$, and $\eta(\cdot)$ represents i.i.d.~Gaussian noise. Secondarily, though perhaps of equal practical importance, the nugget (or jitter) prevents $\mb{K}$ from becoming numerically singular. Notational convenience and conceptual congruence motivates referral to $\mb{K}$ as a correlation matrix, even though the nugget term ($g$) forces $K(\mb{x}_i,\mb{x}_i)>1$. \subsubsection{Exponential Power family} \label{sec:pow} Correlation functions in the {\em isotropic power} family are {\em stationary} which means that correlations are measured identically throughout the input domain, and {\em isotropic} in that correlations $K^*(\mb{x}_j, \mb{x}_k)$ depend only on a function of the Euclidean distance between $\mb{x}_j$ and $\mb{x}_k$: $||\mb{x}_j - \mb{x}_k||$. \begin{equation} K^*(\mb{x}_j, \mb{x}_k|d) = \exp\left\{-\frac{||\mb{x}_j - \mb{x}_k||^{p_0}}{d} \right\}, \label{eq:pow} \end{equation} where $d>0$ is referred to as the {\em width} or {\em range} parameter. The power $0>= hist(c(rgamma(100000,1,20), rgamma(100000,10,10)), breaks=50, xlim=c(0,2), freq=FALSE, ylim=c(0,3), main = "p(d) = G(1,20) + G(10,10)", xlab="d") d <- seq(0,2,length=1000) lines(d,0.2+0.7/(1+exp(-10*(d-0.5)))) abline(h=1, lty=2) legend(x=1.25, y=2.5, c("p(b) = 1", "p(b|d)"), lty=c(1,2)) @ <>= graphics.off() @ \includegraphics[trim=0 25 0 10]{tgp-gpllm} %\vspace{-0.5cm} \caption{\footnotesize Prior distribution for the boolean ($b$) superimposed on $p(d)$. There is truncation in the left--most bin, which rises to about 6.3. } \label{f:boolprior} \end{center} \end{figure} Probability mass functions which increase as a function of $d_i$, e.g., \begin{equation} p_{\gamma, \theta_1, \theta_2}(b_i=0|d_i) = \theta_1 + (\theta_2-\theta_1)/(1 + \exp\{-\gamma(d_i-0.5)\}) \label{eq:boolp} \end{equation} with $0<\gamma$ and $0\leq \theta_1 \leq \theta_2 < 1$, can encode such a preference by calling for the exclusion of dimensions $i$ with large $d_i$ when constructing $\mb{K}^*$. Thus $b_i$ determines whether the GP or the LLM is in charge of the marginal process in the $i^{\mbox{\tiny th}}$ dimension. Accordingly, $\theta_1$ and $\theta_2$ represent minimum and maximum probabilities of jumping to the LLM, while $\gamma$ governs the rate at which $p(b_i=0|d_i)$ grows to $\theta_2$ as $d_i$ increases. Figure \ref{f:boolprior} plots $p(b_i=0|d_i)$ %as in (\ref{eq:boolp}) for $(\gamma,\theta_1,\theta_2) =(10, 0.2, 0.95)$ superimposed on a convenient $p(d_i)$ which is taken to be a mixture of Gamma distributions, \begin{equation} p(d) = [G(d|\alpha=1,\beta=20) + G(d|\alpha=10,\beta=10)]/2, \label{eq:dprior} \end{equation} representing a population of GP parameterizations for wavy surfaces (small $d$) and a separate population of those which are quite smooth or approximately linear. The $\theta_2$ parameter is taken to be strictly less than one so as not to preclude a GP which models a genuinely nonlinear surface using an uncommonly large range setting. The implied prior probability of the full $m_X$-dimensional LLM is \begin{equation} p(\mbox{linear model}) = \prod_{i=1}^{m_X} p(b_i=0|d_i) = \prod_{i=1}^{m_X} \left[ \theta_1 + \frac{\theta_2-\theta_1} {1 + \exp\{-\gamma (d_i-0.5)\}}\right]. \label{e:linp} \end{equation} Notice that the resulting process is still a GP if any of the booleans $b_i$ are one. The primary computational advantage associated with the LLM is foregone unless all of the $b_i$'s are zero. However, the intermediate result offers increased numerical stability and represents a unique transitionary model lying somewhere between the GP and the LLM. It allows for the implementation of a semiparametric stochastic processes like $Z(\mb{x}) = \bm{\beta} f(\mb{x}) + \varepsilon(\tilde{\mb{x}})$ representing a piecemeal spatial extension of a simple linear model. The first part ($\bm{\beta}f(\mb{x})$) of the process is linear in some known function of the full set of covariates $\mb{x} = \{x_i\}_{i=1}^{m_X}$, and $\varepsilon(\cdot)$ is a spatial random process (e.g. a GP) which acts on a subset of the covariates $\mb{x}'$. Such models are commonplace in the statistics community~\cite{dey:1998}. Traditionally, $\mb{x}'$ is determined and fixed {\em a' priori}. The separable boolean prior (\ref{eq:boolp}) implements an adaptively semiparametric process where the subset $\mb{x}' = \{ x_i : b_i = 1, i=1,\dots,m_X \}$ is given a prior distribution, instead of being fixed. \subsubsection{Prediction and Adaptive Sampling under LLM} \label{sec:llmpred} Prediction under the limiting GP model is a simplification of (\ref{eq:pred}) when it is known that $\mb{K} = (1+g)\mb{I}$. It can be shown \cite{gra:lee:2008b} that the predicted value of $z$ at $\mb{x}$ is normally distributed with mean $\hat{z}(\mb{x}) = \mb{f}^\top(\mb{x}) \tilde{\bm{\beta}}$ and variance $\hat{\sigma}(\mb{x})^2 = \sigma^2 [1 + \mb{f}^\top(\mb{x})\mb{V}_{\tilde{\beta}} \mb{f}(\mb{x})]$, where $ \mb{V}_{\tilde{\beta}} = (\tau^{-2} + \mb{F}^\top \mb{F}(1+g))^{-1}$. This is preferred over (\ref{eq:pred}) with $\mb{K}=\mb{I}(1+g)$ because an $m \times m$ inversion is faster than an $n\times n$ one. Applying the ALC algorithm under the LLM also offers computational savings. Starting with the predictive variance given in (\ref{eq:pred}), the expected reduction in variance under the LM is \cite{gra:lee:2009} \begin{equation} \Delta \hat{\sigma}^2_\mb{y} (\mb{x}) = \frac{ \sigma^2 [\mb{f}^\top(\mb{y}) \mb{V}_{\tilde{\beta}_N} \mb{f}(\mb{x})]^2} {1+g + \mb{f}^\top(\mb{x}) \mb{V}_{\tilde{\beta}_N} \mb{f}(\mb{x})} \label{e:llmalc} \end{equation} which is similarly preferred over (\ref{e:gpalc}) with $\mb{K} = \mb{I}(1+g)$. The statistic for expected improvement (EI; about the minimum) is the same under the LLM as (\ref{eq:ego}) for the GP. Of course, it helps to use the linear predictive equations instead of the kriging ones for $\hat{z}(\mb{x})$ and $\hat{\sigma}^2(\mb{x})$. \subsection{Treed partitioning} \label{sec:treed} Nonstationary models are obtained by treed partitioning and inferring a separate model within each region of the partition. Treed partitioning is accomplished by making (recursive) binary splits on the value of a single variable so that region boundaries are parallel to coordinate axes. Partitioning is recursive, so each new partition is a sub-partition of a previous one. Since variables may be revisited, there is no loss of generality by using binary splits as multiple splits on the same variable are equivalent to a non-binary split. \begin{figure}%[ht!] \centering \includegraphics{tree} \caption{\footnotesize An example tree $\mathcal{T}$ with two splits, resulting in three regions, shown in a diagram ({\em left}) and pictorially ({\em right}). The notation $\mb{X}[:,u] < s$ represents a subsetting of the design matrix $\mb{X}$ by selecting the rows which have $u^{\mbox{\tiny th}}$ column less than $s$, i.e. columns $\{i: x_{iu} < s\}$, so that $\mb{X}_1$ has the rows $I_1$ of $\mb{X}$ where $I_1 = \{x_{iu_1} < s_1 \;\&\; x_{iu_2} < s_2\}$, etc. The responses are subsetted similarly so that $\mb{Z}_1$ contains the $I_1$ elements of $\mb{Z}$. We have that $\cup_j D_i = \{\mb{X},\mb{Z}\}$ and $D_i \cap D_j = \emptyset$ for $i\ne j$. } \label{f:tree} \end{figure} Figure \ref{f:tree} shows an example tree. In this example, region $D_1$ contains $\mb{x}$'s whose $u_1$ coordinate is less than $s_1$ and whose $u_2$ coordinate is less than $s_2$. Like $D_1$, $D_2$ has $\mb{x}$'s whose coordinate $u_1$ is less than $s_1$, but differs from $D_1$ in that the $u_2$ coordinate must be bigger than or equal to $s_2$. Finally, $D_3$ contains the rest of the $\mb{x}$'s differing from those in $D_1$ and $D_2$ because the $u_1$ coordinate of its $\mb{x}$'s is greater than or equal to $s_1$. The corresponding response values ($z$) accompany the $\mb{x}$'s of each region. These sorts of models are often referred to as Classification and Regression Trees (CART) \cite{brei:1984}. CART has become popular because of its ease of use, clear interpretation, and ability to provide a good fit in many cases. The Bayesian approach is straightforward to apply to tree models, provided that one can specify a meaningful prior for the size of the tree. The trees implemented in the {\tt tgp} package follow Chipman et al.~\cite{chip:geor:mccu:1998} who specify the prior through a tree-generating process. Starting with a null tree (all data in a single partition), the tree, ${\mathcal T}$, is probabilistically split recursively with each partition, $\eta$, being split with probability $p_{\mbox{\sc split}}(\eta, {\mathcal T}) = a (1 + q_\eta)^{-b}$ where $q_\eta$ is the depth of $\eta$ in $\mathcal{T}$ and $a$ and $b$ are parameters chosen to give an appropriate size and spread to the distribution of trees. Extending the work of Chipman et al.~\cite{chip:geor:mccu:2002}, the {\tt tgp} package implements a stationary GP with linear trend, or GP LLM, independently within each of the regions depicted by a tree $\mathcal{T}$ \cite{gra:lee:2008}. Integrating out dependence on $\mathcal{T}$ is accomplished by reversible-jump MCMC (RJ-MCMC) via tree operations {\em grow, prune, change}, and {\em swap}~\cite{chip:geor:mccu:1998}. %(2002)\nocite{chip:geor:mccu:2002}. %, however %Tree proposals can change the size of the parameter space ($\bm{\theta}$). To keep things simple, proposals for new parameters---via an increase in the number of partitions (through a {\em grow})---are drawn from their priors\footnote{Proposed {\em grows} are the {\em only} place where the priors (for $d$, $g$ and $\tau^2$ parameters; the others can be integrated out) are used for MH--style proposals. All other MH proposals are ``random--walk'' as described in Appendix \ref{sec:howimplement}.}, thus eliminating the Jacobian term usually present in RJ-MCMC. New splits are chosen uniformly from the set of marginalized input locations $\mb{X}$. The {\em swap} operation is augmented with a {\em rotate} option to improve mixing of the Markov chain \cite{gra:lee:2008}. There are many advantages to partitioning the input space into regions, and fitting separate GPs (or GP LLMs) within \index{each}each region. Partitioning allows for the modeling of non-stationary behavior, and can ameliorate some of the computational demands by fitting models to less data. Finally, fully Bayesian model averaging yields a uniquely efficient nonstationary, nonparametric, or semiparametric (in the case of the GP LLM) regression tool. The most general Bayesian treed GP LLM model can facilitate a model comparison between its special cases (LM, CART, treed LM, GP, treed GP, treed GP LLM) through the samples obtained from the posterior distribution. \subsection{(Treed) sequential D-optimal design} \label{sec:treedopt} In the statistics community, sequential data solicitation goes under the general heading of {\em design of experiments}. Depending on a choice of utility, different algorithms for obtaining optimal designs can be derived. Choose the Kullback-Leibler distance between the posterior and prior distributions as a utility leads to what are called $D$--optimal designs. For GPs with correlation matrix $\mb{K}$, this is equivalent to maximizing det$(\mb{K})$. Choosing quadratic loss leads to what are called $A-$optimal designs. An excellent review of Bayesian approaches to the design of experiments is provided by Chaloner \& Verdinelli~\cite{chaloner:1995}. Other approaches used by the statistics community include space-filling designs: e.g. max-min distance and Latin Hypercube (LH) designs \cite{sant:will:notz:2003}. The {\tt FIELDS} package \cite{fields:2004} implements space-filling designs along side kriging and thin plate spline models. A hybrid approach to designing experiments employs active learning techniques. The idea is to choose a set of candidate input configurations $\tilde{\mb{X}}$ (say, a $D-$optimal or LH design) and a rule for determining which $\tilde{\mb{x}}\in \tilde{\mb{X}}$ to add into the design next. The ALM algorithm has been shown to approximate maximum expected information designs by choosing $\tilde{\mathbf{x}}$ with the the largest predictive variance \cite{mackay:1992}. The ALC algorithm selects $\tilde{\mathbf{x}}$ minimizing the reduction in squared error averaged over the input space \cite{cohn:1996}. Seo et al.~\cite{seo00} provide a comparison between ALC and ALM using standard GPs. The EI \cite{jones:schonlau:welch:1998} algorithm can be used to find global minima. Choosing candidate configurations $\tilde{\mb{X}}$ ({\tt XX} in the {\tt tgp} package), at which to gather ALM, ALC, or EI statistics, is a significant component in the hybrid approach to experimental design. Candidates which are are well-spaced relative to themselves, and relative to already sampled configurations, are clearly preferred. Towards this end, a sequential $D$--optimal design is a good first choice, but has a number of drawbacks. $D$--optimal designs are based require a {\em known} parameterization, and are thus not well-suited to MCMC inference. They may not choose candidates in the ``interesting'' part of the input space, because sampling is high there already. They are ill-suited partition models wherein ``closeness'' may not measured homogeneously across the input space. Finally, they are computationally costly, requiring many repeated determinant calculations for (possibly) large covariance matrices. One possible solution to both computational and nonstationary modeling issues is to use treed sequential $D$--optimal design \cite{gra:lee:2009}, where separate sequential $D$--optimal designs are computed in each of the partitions depicted by the maximum {\em a posteriori} (MAP) tree $\hat{\mathcal{T}}$. The number of candidates selected from each region can be proportional to the volume of---or to the number of grid locations in---the region. MAP parameters $\hat{\bm{\theta}}_\nu|\hat{\mathcal{T}}$, or ``neutral'' or ``exploration encouraging'' ones, can be used to create the candidate design---a common practice \cite{sant:will:notz:2003}. Small range parameters, for learning about the wiggliness of the response, and a modest nugget parameter, for numerical stability, tend to work well together. Finding a local maxima is generally sufficient to get well-spaced candidates. The {\tt dopt.gp} function uses a stochastic ascent algorithm to find local maxima without calculating too many determinants. This works work well with ALM and ALC. However, it is less than ideal for EI as will be illustrated in Section \ref{sec:as}. Adaptive sampling from EI (with {\tt tgp}) is still an open area of research. \section{Examples using {\tt tgp}} \label{sec:examples} The following subsections take the reader through a series of examples based, mostly, on synthetic data. At least two different {\tt b*} models are fit for each set of data, offering comparisons and contrasts. Duplicating these examples in your own {\sf R} session is highly recommended. The {\tt Stangle} function can help extract executable {\sf R} code from this document. For example, the code for the exponential data of Section \ref{sec:exp} can be extracted with one command. \begin{verbatim} > Stangle(vignette("exp", package="tgp")$file) \end{verbatim} \noindent This will write a file called ``exp.R''. Additionally, each of the subsections that follow is available as an {\sf R} demo. Try {\tt demo(package="tgp")} for a listing of available demos. To invoke the demo for the exponential data of Section \ref{sec:exp} try {\tt demo(exp, package="tgp")}. This is equivalent to {\tt source("exp.R")} because the demos were created using {\tt Stangle} on the source files of this document. \footnote{Note that this vignette functionality is only supported in {\tt tgp} version $<2.x$. In 2.x and later the vignettes were coalesced in order to reduce clutter. The demos in 2.x, however, still correspond to their respective sections.} Each subsection (or subsection of the appendix) starts by seeding the random number generator with \verb!set.seed(0)!. This is done to make the results and analyses reproducible within this document, and in demo form. I recommend you try these examples with different seeds and see what happens. Usually the results will be similar, but sometimes (especially when the data ({\tt X, Z}) is generated randomly) they may be quite different. Other successful uses of the methods in this package include applications to the Boston housing data \cite{harrison:78, gra:lee:2008}, and designing an experiment for a reusable NASA launch vehicle \cite{glm:04,gra:lee:2009} called the Langely glide-back booster (LGBB). <>= seed <- 0; set.seed(seed) @ \subsection{1-d Linear data} \label{sec:ex:1dlinear} Consider data sampled from a linear model. \begin{equation} z_i = 1 + 2x_i + \epsilon_, \;\;\;\;\; \mbox{where} \;\;\; \epsilon_i \stackrel{\mbox{\tiny iid}}{\sim} N(0,0.25^2) \label{eq:linear:sim} \end{equation} The following {\sf R} code takes a sample $\{\mb{X}, \mb{Z}\}$ of size $N=50$ from (\ref{eq:linear:sim}). It also chooses $N'=99$ evenly spaced predictive locations $\tilde{\mb{X}} = \mbox{\tt XX}$. <<>>= # 1-d linear data input and predictive data X <- seq(0,1,length=50) # inputs XX <- seq(0,1,length=99) # predictive locations Z <- 1 + 2*X + rnorm(length(X),sd=0.25) # responses @ Using {\tt tgp} on this data with a Bayesian hierarchical linear model goes as follows: <<>>= lin.blm <- blm(X=X, XX=XX, Z=Z) @ \begin{figure}[ht!] \centering <>= plot(lin.blm, main='Linear Model,', layout='surf') abline(1,2,lty=3,col='blue') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-linear-blm} %\vspace{-0.5cm} \caption{Posterior predictive distribution using {\tt blm} on synthetic linear data: mean and 90\% credible interval. The actual generating lines are shown as blue-dotted.} \label{f:lin:blm} \end{figure} MCMC progress indicators are echoed every 1,000 rounds. The linear model is indicated by {\tt d=[0]}. For {\tt btlm} the MCMC progress indicators are boring, but we will see more interesting ones later. In terminal versions, e.g. {\tt Unix}, the progress indicators can give a sense of when the code will finish. GUI versions of {\tt R}---{\tt Windows} or {\tt MacOS X}---can buffer {\tt stdout}, rendering this feature essentially useless as a real--time indicator of progress. Progress indicators can be turned off by providing the argument {\tt verb=0}. Further explanation on the verbosity of screen output and interpretations is provided in Appendix \ref{sec:progress}. The generic {\tt plot} method can be used to visualize the fitted posterior predictive surface (with option {\tt layout = 'surf'}) in terms of means and credible intervals. Figure \ref{f:lin:blm} shows how to do it, and what you get. The default option {\tt layout = 'both'} shows both a predictive surface and error (or uncertainty) plot, side by side. The error plot can be obtained alone via {\tt layout = 'as'}. Examples of these layouts appear later. If, say, you were unsure about the dubious ``linearness'' of this data, you might try a GP LLM (using {\tt bgpllm}) and let a more flexible model speak as to the linearity of the process. <<>>= lin.gpllm <- bgpllm(X=X, XX=XX, Z=Z) @ \begin{figure}[ht!] \centering <>= plot(lin.gpllm, main='GP LLM,', layout='surf') abline(1,2,lty=4,col='blue') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-linear-gplm} %\vspace{-0.5cm} \caption{Posterior predictive distribution using {\tt bgpllm} on synthetic linear data: mean and 90\% credible interval. The actual generating lines are shown as blue-dotted.} \label{f:lin:gpllm} \end{figure} Whenever the progress indicators show {\tt d=[0]} the process is under the LLM in that round, and the GP otherwise. A plot of the resulting surface is shown in Figure \ref{f:lin:gpllm} for comparison. Since the data is linear, the resulting predictive surfaces should look strikingly similar to one another. On occasion, the GP LLM may find some ``bendyness'' in the surface. This happens rarely with samples as large as $N=50$, but is quite a bit more common for $N<20$. To see the proportion of time the Markov chain spent in the LLM requires the gathering of traces (Appendix \ref{sec:traces}). For example <<>>= lin.gpllm.tr <- bgpllm(X=X, XX=0.5, Z=Z, pred.n=FALSE, trace=TRUE, verb=0) mla <- mean(lin.gpllm.tr$trace$linarea$la) mla @ shows that the average area under the LLM is \Sexpr{signif(mla,3)}. Progress indicators are suppressed with \verb!verb=0!. Alternatively, the probability that input location {\tt xx} = \Sexpr{lin.gpllm.tr$XX[1,]} is under the LLM is given by <<>>= 1-mean(lin.gpllm.tr$trace$XX[[1]]$b1) @ This is the same value as the area under the LLM since the process is stationary (i.e., there is no treed partitioning). \subsection{1-d Synthetic Sine Data} \label{sec:sin} <>= seed <- 0; set.seed(seed) @ Consider 1-dimensional simulated data which is partly a mixture of sines and cosines, and partly linear. \begin{equation} z(x) = \left\{ \begin{array}{cl} \sin\left(\frac{\pi x}{5}\right) + \frac{1}{5}\cos\left(\frac{4\pi x}{5}\right) & x < 9.6 \\ x/10-1 & \mbox{otherwise} \end{array} \right. \label{e:sindata} \end{equation} The {\sf R} code below obtains $N=100$ evenly spaced samples from this data in the domain $[0,20]$, with noise added to keep things interesting. Some evenly spaced predictive locations {\tt XX} are also created. <<>>= X <- seq(0,20,length=100) XX <- seq(0,20,length=99) Ztrue <- (sin(pi*X/5) + 0.2*cos(4*pi*X/5)) * (X <= 9.6) lin <- X>9.6; Ztrue[lin] <- -1 + X[lin]/10 Z <- Ztrue + rnorm(length(Ztrue), sd=0.1) @ By design, the data is clearly nonstationary in its mean. Perhaps not knowing this, a good first model choice for this data might be a GP. <<>>= sin.bgp <- bgp(X=X, Z=Z, XX=XX, verb=0) @ \begin{figure}[ht!] \centering <>= plot(sin.bgp, main='GP,', layout='surf') lines(X, Ztrue, col=4, lty=2, lwd=2) @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-sin-bgp} %\vspace{-0.25cm} \caption{Posterior predictive distribution using {\tt bgp} on synthetic sinusoidal data: mean and 90\% pointwise credible interval. The true mean is overlayed with a dashed line.} \label{f:sin:bgp} \end{figure} Figure \ref{f:sin:bgp} shows the resulting posterior predictive surface under the GP. Notice how the (stationary) GP gets the wiggliness of the sinusoidal region, but fails to capture the smoothness of the linear region. The true mean (\ref{e:sindata}) is overlayed with a dashed line. So one might consider a Bayesian treed linear model (LM) instead. <<>>= sin.btlm <- btlm(X=X, Z=Z, XX=XX) @ MCMC progress indicators show successful {\em grow} and {\em prune} operations as they happen, and region sizes $n$ every 1,000 rounds. Specifying {\tt verb=3}, or higher will show echo more successful tree operations, i.e., {\em change}, {\em swap}, and {\em rotate}. \begin{figure}[ht!] \centering <>= plot(sin.btlm, main='treed LM,', layout='surf') lines(X, Ztrue, col=4, lty=2, lwd=2) @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-sin-btlm} %\vspace{-0.25cm} <>= tgp.trees(sin.btlm) @ <>= graphics.off() @ \vspace{-1cm} \caption{{\em Top:} Posterior predictive distribution using {\tt btlm} on synthetic sinusoidal data: mean and 90\% pointwise credible interval, and MAP partition ($\hat{\mathcal{T}}$). The true mean is overlayed with a dashed line. {\em Bottom:} MAP trees for each height encountered in the Markov chain showing $\hat{\sigma}^2$ and the number of observation $n$, at each leaf.} \label{f:sin:btlm} \end{figure} Figure \ref{f:sin:btlm} shows the resulting posterior predictive surface ({\em top}) and trees ({\em bottom}). The MAP partition ($\hat{\mathcal{T}}$) is also drawn onto the surface plot ({\em top}) in the form of vertical lines. The treed LM captures the smoothness of the linear region just fine, but comes up short in the sinusoidal region---doing the best it can with piecewise linear models. The ideal model for this data is the Bayesian treed GP because it can be both smooth and wiggly. <<>>= sin.btgp <- btgp(X=X, Z=Z, XX=XX, verb=0) @ \begin{figure}[ht!] \centering <>= plot(sin.btgp, main='treed GP,', layout='surf') lines(X, Ztrue, col=4, lty=2, lwd=2) @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-sin-btgp} %\vspace{-1cm} \caption{Posterior predictive distribution using {\tt btgp} on synthetic sinusoidal data: mean and 90\% pointwise credible interval, and MAP partition ($\hat{\mathcal{T}}$) \label{f:sin:btgp}. The true mean is overlayed with a dashed line.} \end{figure} Figure \ref{f:sin:btgp} shows the resulting posterior predictive surface ({\em top}) and MAP $\hat{\mathcal{T}}$ with height=2. Finally, speedups can be obtained if the GP is allowed to jump to the LLM \cite{gra:lee:2008}, since half of the response surface is {\em very} smooth, or linear. This is not shown here since the results are very similar to those above, replacing {\tt btgp} with {\tt btgpllm}. Each of the models fit in this section is a special case of the treed GP LLM, so a model comparison is facilitated by fitting this more general model. The example in the next subsection offers such a comparison for 2-d data. A followup in Appendix \ref{sec:traces} shows how to use parameter traces to extract the posterior probability of linearity in regions of the input space. \subsection{Synthetic 2-d Exponential Data} \label{sec:exp} <>= seed <- 0; set.seed(seed) @ The next example involves a two-dimensional input space in $[-2,6] \times [-2,6]$. The true response is given by \begin{equation} z(\mb{x}) = x_1 \exp(-x_1^2 - x_2^2). \label{e:2dtoy} \end{equation} A small amount of Gaussian noise (with sd $=0.001$) is added. Besides its dimensionality, a key difference between this data set and the last one is that it is not defined using step functions; this smooth function does not have any artificial breaks between regions. The {\tt tgp} package provides a function for data subsampled from a grid of inputs and outputs described by (\ref{e:2dtoy}) which concentrates inputs ({\tt X}) more heavily in the first quadrant where the response is more interesting. Predictive locations ({\tt XX}) are the remaining grid locations. <<>>= exp2d.data <- exp2d.rand() X <- exp2d.data$X; Z <- exp2d.data$Z XX <- exp2d.data$XX @ The treed LM is clearly just as inappropriate for this data as it was for the sinusoidal data in the previous section. However, a stationary GP fits this data just fine. After all, the process is quite well behaved. In two dimensions one has a choice between the isotropic and separable correlation functions. Separable is the default in the {\tt tgp} package. For illustrative purposes here, I shall use the isotropic power family. <>= exp.bgp <- bgp(X=X, Z=Z, XX=XX, corr="exp", verb=0) @ \begin{figure}[ht!] \centering <>= plot(exp.bgp, main='GP,') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-exp-bgp} %\vspace{-0.5cm} \caption{{\em Left:} posterior predictive mean using {\tt bgp} on synthetic exponential data; {\em right} image plot of posterior predictive variance with data locations {\tt X} (dots) and predictive locations {\tt XX} (circles).} \label{f:exp:bgp} \end{figure} Progress indicators are suppressed. Figure \ref{f:exp:bgp} shows the resulting posterior predictive surface under the GP in terms of means ({\em left}) and variances ({\em right}) in the default layout. The sampled locations ({\tt X}) are shown as dots on the {\em right} image plot. Predictive locations ({\tt XX}) are circles. Predictive uncertainty for the stationary GP model is highest where sampling is lowest, despite that the process is very uninteresting there. A treed GP seems more appropriate for this data. It can separate out the large uninteresting part of the input space from the interesting part. The result is speedier inference and region-specific estimates of predictive uncertainty. <>= exp.btgp <- btgp(X=X, Z=Z, XX=XX, corr="exp", verb=0) @ \begin{figure}[ht!] \centering <>= plot(exp.btgp, main='treed GP,') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-exp-btgp} %\vspace{-0.25cm} <>= tgp.trees(exp.btgp) @ <>= graphics.off() @ \includegraphics[trim=50 65 50 10]{tgp-exp-btgptrees} \vspace{-0.5cm} \caption{{\em Top-Left:} posterior predictive mean using {\tt btgp} on synthetic exponential data; {\em top-right} image plot of posterior predictive variance with data locations {\tt X} (dots) and predictive locations {\tt XX} (circles). {\tt Bottom:} MAP trees of each height encountered in the Markov chain with $\hat{\sigma}^2$ and the number of observations $n$ at the leaves.} \label{f:exp:btgp} \end{figure} Figure \ref{f:exp:btgp} shows the resulting posterior predictive surface ({\em top}) and trees ({\em bottom}). Typical runs of the treed GP on this data find two, and if lucky three, partitions. As might be expected, jumping to the LLM for the uninteresting, zero-response, part of the input space can yield even further speedups \cite{gra:lee:2008}. Also, Chipman et al.~recommend restarting the Markov chain a few times in order to better explore the marginal posterior for $\mathcal{T}$ \cite{chip:geor:mccu:2002}. This can be important for higher dimensional inputs requiring deeper trees. The {\tt tgp} default is {\tt R = 1}, i.e., one chain with no restarts. Here two chains---one restart---are obtained using {\tt R = 2}. <<>>= exp.btgpllm <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", R=2) @ \begin{figure}[ht!] \centering <>= plot(exp.btgpllm, main='treed GP LLM,') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-exp-btgpllm} %\vspace{-0.5cm} \caption{{\em Left:} posterior predictive mean using {\tt btgpllm} on synthetic exponential data; {\em right} image plot of posterior predictive variance with data locations {\tt X} (dots) and predictive locations {\tt XX} (circles).} \label{f:exp:btgpllm} \end{figure} Progress indicators show where the LLM ({\tt corr=0($d$)}) or the GP is active. Figure \ref{f:exp:btgpllm} shows how similar the resulting posterior predictive surfaces are compared to the treed GP (without LLM). Appendix \ref{sec:traces} shows how parameter traces can be used to calculate the posterior probabilities of regional and location--specific linearity in this example. \begin{figure}[ht!] \centering <>= plot(exp.btgpllm, main='treed GP LLM,', proj=c(1)) @ <>= graphics.off() @ \vspace{-0.65cm} <>= plot(exp.btgpllm, main='treed GP LLM,', proj=c(2)) @ <>= graphics.off() @ \includegraphics[trim=0 10 0 25]{tgp-exp-1dbtgpllm1} \includegraphics[trim=0 25 0 10]{tgp-exp-1dbtgpllm2} %\vspace{-0.5cm} \caption{1-d projections of the posterior predictive surface ({\em left}) and normed predictive intervals ({\em right}) of the 1-d tree GP LLM analysis of the synthetic exponential data. The {\em top} plots show projection onto the first input, and the {\em bottom} ones show the second.} \label{f:exp:1dbtgpllm} \end{figure} Finally, viewing 1-d projections of {\tt tgp}-class output is possible by supplying a scalar {\tt proj} argument to the {\tt plot.tgp}. Figure \ref{f:exp:1dbtgpllm} shows the two projections for {\tt exp.btgpllm}. In the {\em left} surface plots the open circles indicate the mean of posterior predictive distribution. Red lines show the 90\% intervals, the norm of which are shown on the {\em right}. \subsection{Motorcycle Accident Data} \label{sec:moto} <>= seed <- 0; set.seed(seed) @ %\iffalse The Motorcycle Accident Dataset \cite{silv:1985} is a classic nonstationary data set used in recent literature \cite{rasm:ghah:nips:2002} to demonstrate the success of nonstationary models. The data consists of measurements of the acceleration of the head of a motorcycle rider as a function of time in the first moments after an impact. In addition to being nonstationary, the data has input--dependent noise (heteroskedasticity) which makes it useful for illustrating how the treed GP model handles this nuance. There are at least two---perhaps three---three regions where the response exhibits different behavior both in terms of the correlation structure and noise level. The data is %\else %In this section we return to the motivating Motorcycle Accident %Dataset~\cite{silv:1985}, which is %\fi included as part of the {\tt MASS} library in {\sf R}. <<>>= library(MASS) X <- data.frame(times=mcycle[,1]) Z <- data.frame(accel=mcycle[,2]) @ Figure \ref{f:moto:bgp} shows how a stationary GP is able to capture the nonlinearity in the response but fails to capture the input dependent noise and increased smoothness (perhaps linearity) in parts of the input space. <>= moto.bgp <- bgp(X=X, Z=Z, verb=0) @ Progress indicators are suppressed. \begin{figure}[ht!] \centering <>= plot(moto.bgp, main='GP,', layout='surf') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-moto-bgp} %\vspace{-0.5cm} \caption{Posterior predictive distribution using {\tt bgp} on the motorcycle accident data: mean and 90\% credible interval} \label{f:moto:bgp} \end{figure} A Bayesian Linear CART model is able to capture the input dependent noise but fails to capture the waviness of the ``whiplash''---center--- segment of the response. <>= moto.btlm <- btlm(X=X, Z=Z, verb=0) @ Figure \ref{f:moto:btlm} shows the resulting piecewise linear predictive surface and MAP partition ($\hat{\mathcal{T}}$). \begin{figure}[ht!] \centering <>= plot(moto.btlm, main='Bayesian CART,', layout='surf') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-moto-btlm} %\vspace{-0.5cm} \caption{Posterior predictive distribution using {\tt btlm} on the motorcycle accident data: mean and 90\% credible interval} \label{f:moto:btlm} \end{figure} A treed GP model seems appropriate because it can model input dependent smoothness {\em and} noise. A treed GP LLM is probably most appropriate since the left-hand part of the input space is likely linear. One might further hypothesize that the right--hand region is also linear, perhaps with the same mean as the left--hand region, only with higher noise. The {\tt b*} functions can force an i.i.d.~hierarchical linear model by setting \verb!bprior="b0"!. <>= moto.btgpllm <- btgpllm(X=X, Z=Z, bprior="b0", verb=0) moto.btgpllm.p <- predict(moto.btgpllm) ## using MAP @ The {\tt predict.tgp} function obtains posterior predictive estimates from the MAP parameterization (a.k.a., {\em kriging}). \begin{figure}[ht!] \centering <>= par(mfrow=c(1,2)) plot(moto.btgpllm, main='treed GP LLM,', layout='surf') plot(moto.btgpllm.p, center='km', layout='surf') @ <>= graphics.off() @ \includegraphics[trim=50 25 50 20]{tgp-moto-btgp} <>= par(mfrow=c(1,2)) plot(moto.btgpllm, main='treed GP LLM,', layout='as') plot(moto.btgpllm.p, as='ks2', layout='as') @ <>= graphics.off() @ \includegraphics[trim=50 25 50 20]{tgp-moto-btgpq} %\vspace{-0.5cm} \caption{{\em Top}: Posterior predictive distribution using treed GP LLM on the motorcycle accident data. The {\em left}--hand panes how mean and 90\% credible interval; {\em bottom}: Quantile-norm (90\%-5\%) showing input-dependent noise. The {\em right}--hand panes show similar {\em kriging} surfaces for the MAP parameterization.} \label{f:moto:tgp} \end{figure} The resulting posterior predictive surface is shown in the {\em top--left} of Figure \ref{f:moto:tgp}. The {\em bottom--left} of the figure shows the norm (difference) in predictive quantiles, clearly illustrating the treed GP's ability to capture input-specific noise in the posterior predictive distribution. The {\em right}--hand side of the figure shows the MAP surfaces obtained from the output of the {\tt predict.tgp} function. The {\tt tgp}--default \verb!bprior="bflat"! implies an improper prior on the regression coefficients $\bm{\beta}$. It essentially forces $\mb{W}=\mb{\infty}$, thus eliminating the need to specify priors on $\bm{\beta}_0$ and $\mb{W}^{-1}$ in (\ref{eq:model}). This was chosen as the default because it works well in many examples, and leads to a simpler overall model and a faster implementation. However, the Motorcycle data is an exception. Moreover, when the response data is very noisy (i.e., low signal--to--noise ratio), {\tt tgp} can be expected to partition heavily under the \verb!bprior="bflat"! prior. In such cases, one of the other proper priors like the full hierarchical \verb!bprior="b0"! or \verb!bprior="bmzt"! might be preferred. An anonymous reviewer pointed out a shortcoming of the treed GP model on this data. The sharp spike in predictive variance near the first regime shift suggests that the symmetric Gaussian noise model may be inappropriate. A log Gaussian process might offer an improvement, at least locally. Running the treed GP MCMC for longer will eventually result in the finding of a partition near time=17, just after the first regime change. The variance is still poorly modeled in this region. Since it is isolated by the tree it could potentially be fit with a different noise model. \subsection{Friedman data} \label{sec:fried} <>= seed <- 0; set.seed(seed) @ This Friedman data set is the first one of a suite that was used to illustrate MARS (Multivariate Adaptive Regression Splines) \cite{freid:1991}. There are 10 covariates in the data ($\mb{x} = \{x_1,x_2,\dots,x_{10}\}$). The function that describes the responses ($Z$), observed with standard Normal noise, has mean \begin{equation} E(Z|\mb{x}) = \mu = 10 \sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5 x_5, \label{eq:f1} \end{equation} but depends only on $\{x_1,\dots,x_5\}$, thus combining nonlinear, linear, and irrelevant effects. Comparisons are made on this data to results provided for several other models in recent literature. Chipman et al.~\cite{chip:geor:mccu:2002} used this data to compare their treed LM algorithm to four other methods of varying parameterization: linear regression, greedy tree, MARS, and neural networks. The statistic they use for comparison is root mean-square error (RMSE) \begin{align*} \mbox{MSE} &= \textstyle \sum_{i=1}^n (\mu_i - \hat{z}_i)^2/n & \mbox{RMSE} &= \sqrt{\mbox{MSE}} \end{align*} where $\hat{z}_i$ is the model--predicted response for input $\mb{x}_i$. The $\mb{x}$'s are randomly distributed on the unit interval. Input data, responses, and predictive locations of size $N=200$ and $N'=1000$, respectively, can be obtained by a function included in the {\tt tgp} package. <<>>= f <- friedman.1.data(200) ff <- friedman.1.data(1000) X <- f[,1:10]; Z <- f$Y XX <- ff[,1:10] @ This example compares Bayesian treed LMs with Bayesian GP LLM (not treed), following the RMSE experiments of Chipman et al. It helps to scale the responses so that they have a mean of zero and a range of one. First, fit the Bayesian treed LM, and obtain the RMSE. <<>>= fr.btlm <- btlm(X=X, Z=Z, XX=XX, tree=c(0.95,2), pred.n=FALSE, verb=0) fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue)^2)) fr.btlm.mse @ Next, fit the GP LLM, and obtain its RMSE. <<>>= fr.bgpllm <- bgpllm(X=X, Z=Z, XX=XX, pred.n=FALSE, verb=0) fr.bgpllm.mse <- sqrt(mean((fr.bgpllm$ZZ.mean - ff$Ytrue)^2)) fr.bgpllm.mse @ So, the GP LLM is \Sexpr{signif(fr.btlm.mse/fr.bgpllm.mse,4)} times better than Bayesian treed LM on this data, in terms of RMSE (in terms of MSE the GP LLM is \Sexpr{signif(sqrt(fr.btlm.mse)/sqrt(fr.bgpllm.mse),4)} times better). Parameter traces need to be gathered in order to judge the ability of the GP LLM model to identify linear and irrelevant effects. <<>>= XX1 <- matrix(rep(0,10), nrow=1) fr.bgpllm.tr <- bgpllm(X=X, Z=Z, XX=XX1, pred.n=FALSE, trace=TRUE, m0r1=FALSE, verb=0) @ Here, \verb!m0r1 = FALSE! has been specified instead so that the $\bm{\beta}$ estimates provided below will be on the original scale.\footnote{The default setting of {\tt m0r1 = TRUE} causes the {\tt Z}--values to undergo pre-processing so that they have a mean of zero and a range of one. The default prior specification has been tuned so as to work well this range.} A summary of the parameter traces show that the Markov chain had the following (average) configuration for the booleans. <<>>= trace <- fr.bgpllm.tr$trace$XX[[1]] apply(trace[,27:36], 2, mean) @ Therefore the GP LLM model correctly identified that only the first three input variables interact only linearly with the response. This agrees with dimension--wise estimate of the total area of the input domain under the LLM (out of a total of 10 input variables). <<>>= mean(fr.bgpllm.tr$trace$linarea$ba) @ A similar summary of the parameter traces for $\bm{\beta}$ shows that the GP LLM correctly identified the linear regression coefficients associated with the fourth and fifth input covariates (from (\ref{eq:f1})) <<>>= summary(trace[,9:10]) @ and that the rest are much closer to zero. <<>>= apply(trace[,11:15], 2, mean) @ \subsection{Adaptive Sampling} \label{sec:as} <>= seed <- 0; set.seed(seed) @ In this section, sequential design of experiments, a.k.a.~{\em adaptive sampling}, is demonstrated on the exponential data of Section \ref{sec:exp}. Gathering, again, the data: <<>>= exp2d.data <- exp2d.rand(lh=0, dopt=10) X <- exp2d.data$X Z <- exp2d.data$Z Xcand <- lhs(1000, rbind(c(-2,6),c(-2,6))) @ In contrast with the data from Section \ref{sec:exp}, which was based on a grid, the above code generates a randomly subsampled $D$--optimal design $\mb{X}$ from LH candidates, and random responses $\mb{Z}$. As before, design configurations are more densely packed in the interesting region. Candidates $\tilde{\mb{X}}$ are from a large LH--sample. Given some data $\{\mb{X},\mb{Z}\}$, the first step in sequential design using {\tt tgp} is to fit a treed GP LLM model to the data, without prediction, in order to infer the MAP tree $\hat{\mathcal{T}}$. <>= exp1 <- btgpllm(X=X, Z=Z, pred.n=FALSE, corr="exp", R=5, verb=0) @ \begin{figure}[ht!] \centering <>= tgp.trees(exp1) @ <>= graphics.off() @ \includegraphics[trim=50 50 50 20]{tgp-as-mapt} \vspace{-1cm} \caption{MAP trees of each height encountered in the Markov chain for the exponential data, showing $\hat{\sigma}^2$ and the number of observations $n$ at the leaves. $\hat{\mathcal{T}}$ is the one with the maximum $\log(p)$ above.} \label{f:mapt} \end{figure} The trees are shown in Figure \ref{f:mapt}. Then, use the {\tt tgp.design} function to create $D$--optimal candidate designs in each region of $\hat{\mathcal{T}}$. For the purposes of illustrating the {\tt improv} statistic, I have manually added the known (from calculus) global minimum to {\tt XX}. <<>>= XX <- tgp.design(200, Xcand, exp1) XX <- rbind(XX, c(-sqrt(1/2),0)) @ Figure \ref{f:cands} shows the sampled {\tt XX} locations (circles) amongst the input locations {\tt X} (dots) and MAP partition $(\hat{\mathcal{T}})$. Notice how the candidates {\tt XX} are spaced out relative to themselves, and relative to the inputs {\tt X}, unless they are near partition boundaries. The placing of configurations near region boundaries is a symptom particular to $D$--optimal designs. This is desirable for experiments with {\tt tgp} models, as model uncertainty is usually high there \cite{chaloner:1995}. \begin{figure}[ht!] \centering <>= plot(exp1$X, pch=19, cex=0.5) points(XX) mapT(exp1, add=TRUE) @ <>= graphics.off() @ \includegraphics[trim=0 0 0 45]{tgp-as-cands} \vspace{-0.5cm} \caption{Treed $D$--optimal candidate locations {\tt XX} (circles), input locations {\tt X} (dots), and MAP tree $\hat{\mathcal{T}}$} \label{f:cands} \end{figure} Now, the idea is to fit the treed GP LLM model, again, in order to assess uncertainty in the predictive surface at those new candidate design points. The following code gathers all three adaptive sampling statistics: ALM, ALC, \& EI. <>= exp.as <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", improv=TRUE, Ds2x=TRUE, R=5, verb=0) @ Figure \ref{f:as} shows the posterior predictive estimates of the adaptive sampling statistics. The error surface, on the {\em left}, summarizes posterior predictive uncertainty by a norm of quantiles. %%Since the combined data and predictive locations are not densely %%packed in the input space, the {\tt loess} smoother may have trouble %%with the interpolation. One option is increase the {\tt tgp}-default %%kernel span supplied to {\tt loess}, e.g., {\tt span = 0.5}. \begin{figure}[ht!] \centering <>= par(mfrow=c(1,3), bty="n") plot(exp.as, main="tgpllm,", layout="as", as="alm") plot(exp.as, main="tgpllm,", layout='as', as='alc') plot(exp.as, main="tgpllm,", layout='as', as='improv') @ <>= graphics.off() @ % do the including over here instead \includegraphics[trim=75 0 75 20]{tgp-as-expas} \vspace{-0.5cm} \caption{{\em Left}: Image plots of adaptive sampling statistics and MAP trees $\hat{\mathcal{T}}$; {\em Left}; ALM adaptive sampling image for (only) candidate locations {\tt XX} (circles); {\em center}: ALC; and {\em right:} EI.} \label{f:as} \end{figure} In accordance with the ALM algorithm, candidate locations {\tt XX} with largest predictive error would be sampled (added into the design) next. These are most likely to be in the interesting region, i.e., the first quadrant. However, these results depend heavily on the clumping of the original design in the un-interesting areas, and on the estimate of $\hat{\mathcal{T}}$. Adaptive sampling via the ALC, or EI (or both) algorithms proceeds similarly, following the surfaces shown in {\em center} and {\em right} panels of Figure \ref{f:as}. \subsection*{Acknowledgments} This work was partially supported by research subaward 08008-002-011-000 from the Universities Space Research Association and NASA, NASA/University Affiliated Research Center grant SC 2003028 NAS2-03144, Sandia National Laboratories grant 496420, and National Science Foundation grants DMS 0233710 and 0504851. I would like to thank Matt Taddy for his contributions to recent releases of the package. I am especially grateful to my thesis advisor, Herbie Lee, whose contributions and guidance in this project have been invaluable throughout. Finally, I would like to thank an anonymous referee whose many helpful comments improved the paper. \appendix \section{Implementation notes} \label{sec:howimplement} The treed GP model is coded in a mixture of {\tt C} and {\tt C++}: {\tt C++} for the tree data structure ($\mathcal{T}$) and {\tt C} for the GP at each leaf of $\mathcal{T}$. The code has been tested on Unix ({\tt Solaris, Linux, FreeBSD, OSX}) and Windows (2000, XP) platforms. It is useful to first translate and re-scale the input data ($\mb{X}$) so that it lies in an $\Re^{m_X}$ dimensional unit cube. This makes it easier to construct prior distributions for the width parameters to the correlation function $K(\cdot,\cdot)$. Proposals for all parameters which require MH sampling are taken from a uniform ``sliding window'' centered around the location of the last accepted setting. For example, a proposed a new nugget parameter $g_\nu$ to the correlation function $K(\cdot, \cdot)$ in region $r_\nu$ would go as \[ g_\nu^* \sim \mbox{Unif}\left(\frac{3}{4}g_\nu, \frac{4}{3}g_\nu \right). \] Calculating the corresponding forward and backwards proposal probabilities for the MH acceptance ratio is straightforward. For more details about the MCMC algorithm and proposals, etc., please see the original technical report on {\em Bayesian treed Gaussian process models} \cite{gra:lee:2008}. \section{Interfaces and features} The following subsections describe some of the ancillary features of the {\tt tgp} package such as the gathering and summarizing of MCMC parameter traces, the progress meter, and an example of how to use the {\tt predict.tgp} function in a collaborative setting. \subsection{Parameter traces} \label{sec:traces} <>= seed <- 0; set.seed(seed) @ Traces of (almost) all parameters to the {\tt tgp} model can be collected by supplying {\tt trace=TRUE} to the {\tt b*} functions. In the current version, traces for the linear prior correlation matrix ($\mb{W}$) are not provided. I shall illustrate the gathering and analyzing of traces through example. But first, a few notes and cautions. Models which involve treed partitioning may have more than one base model (GP or LM). The process governing a particular input $\mb{x}$ depends on the coordinates of $\mb{x}$. As such, {\tt tgp} records region--specific traces of parameters to GP (and linear) models at the locations enumerated in the {\tt XX} argument. Even traces of single--parameter Markov chains can require hefty amounts of storage, so recording traces at each of the {\tt XX} locations can be an enormous memory hog. A related warning will be given if the product of $|${\tt XX}$|$, \verb!(BTE[2]-BTE[1])/BTE[3]! and {\sf R} is beyond a threshold. The easiest way to keep the storage requirements for traces down is to control the size of {\tt XX} and the thinning level {\tt BTE[3]}. Finally, traces for most of the parameters are stored in output files. The contents of the trace files are read into {\sf R} and stored as {\tt data.frame} objects, and the files are removed. The existence of partially written trace files in the current working directory (CWD)---while the {\tt C} code is executing---means that not more than one {\tt tgp} run (with \verb!trace = TRUE!) should be active in the CWD at one time. Consider again the exponential data. For illustrative purposes I chose {\tt XX} locations (where traces are gathered) to be (1) in the interior of the interesting region, (2) on/near the plausible intersection of partition boundaries, and (3) in the interior of the flat region. The hierarchical prior \verb!bprior = "b0"! is used to leverage a (prior) belief the most of the input domain is uninteresting. <<>>= exp2d.data <- exp2d.rand(n2=150, lh=0, dopt=10) X <- exp2d.data$X Z <- exp2d.data$Z XX <- rbind(c(0,0),c(2,2),c(4,4)) @ We now fit a treed GP LLM and gather traces, and also gather EI and ALC statistics for the purposes of illustration. Prediction at the input locations {\tt X} is turned off to be thrifty. <<>>= out <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", bprior="b0", pred.n=FALSE, Ds2x=TRUE, R=10, trace=TRUE, verb=0) @ \begin{figure}[hp] \centering <<>>= out$trace @ \caption{Listing the contents of {\tt "tgptraces"}--class objects.} \label{f:tgptraces} \end{figure} Figure \ref{f:tgptraces} shows a dump of \verb!out$trace! which is a \verb!"tgptraces"!--class object. It depicts the full set of parameter traces broken down into the elements of a \verb!list!: \verb!$XX! with GP/LLM parameter traces for each {\tt XX} location (the parameters are listed); \verb!$hier! with traces for (non--input--dependent) hierarchical parameters (listed); \verb!$linarea! recording proportions of the input space under the LLM; \verb!$parts! with the boundaries of all partitions visited; \verb!$post! containing (log) posterior probabilities; \verb!preds! containing traces of samples from the posterior predictive distribution and adaptive sampling statistics. \begin{figure}[ht!] \centering <>= trXX <- out$trace$XX; ltrXX <- length(trXX) y <- trXX[[1]]$d for(i in 2:ltrXX) y <- c(y, trXX[[i]]$d) plot(log(trXX[[1]]$d), type="l", ylim=range(log(y)), ylab="log(d)", main="range (d) parameter traces") names <- "XX[1,]" for(i in 2:ltrXX) { lines(log(trXX[[i]]$d), col=i, lty=i) names <- c(names, paste("XX[", i, ",]", sep="")) } legend("bottomleft", names, col=1:ltrXX, lty=1:ltrXX) @ <>= graphics.off() @ \includegraphics[trim=55 25 65 20]{tgp-traces-XXd} \caption{Traces of the (log of the) first range parameter for each of the three {\tt XX} locations} \label{f:XXd} \end{figure} Plots of traces are useful for assessing the mixing of the Markov chain. For example, Figure \ref{f:XXd} plots traces of the range parameter ($d$) %in the first input dimension ($d_1$) for each of the \Sexpr{length(out$trace$XX)} predictive locations {\tt XX}. It is easy to see which of the locations is in the same partition with others, and which have smaller range parameters than others. The mean area under the LLM can be calculated as <<>>= linarea <- mean(out$trace$linarea$la) linarea @ \begin{figure}[ht!] \centering <>= hist(out$trace$linarea$la) @ <>= graphics.off() @ \includegraphics[trim=0 0 0 20]{tgp-traces-la} \vspace{-0.5cm} \caption{Histogram of proportions of the area of the input domain under the LLM} \label{f:la} \end{figure} This means that the expected proportion of the input domain under the full LLM is \Sexpr{signif(linarea[1], 3)}. Figure \ref{f:la} shows a histogram of areas under the LLM. The clumps near 0, 0.25, 0.5, and 0.75 can be thought of as representing quadrants (none, one, two, and tree) under the LLM. Similarly, we can calculate the probability that each of the {\tt XX} locations is governed by the LLM. % (in total, and by dimension) <<>>= m <- matrix(0, nrow=length(trXX), ncol=3)#ncol=5) for(i in 1:length(trXX)) m[i,] <- as.double(c(out$XX[i,], mean(trXX[[i]]$b))) m <- data.frame(cbind(m, 1-m[,3])) names(m)=c("XX1","XX2","b","pllm") m @ The final column above represents the probability that the corresponding {\tt XX} location is under the LLM (which is equal to {\tt 1-b}). \begin{figure}[ht!] \centering <>= trALC <- out$trace$preds$Ds2x y <- trALC[,1] for(i in 2:ncol(trALC)) y <- c(y, trALC[,i]) plot(log(trALC[,1]), type="l", ylim=range(log(y)), ylab="Ds2x", main="ALC: samples from Ds2x") names <- "XX[1,]" for(i in 2:ncol(trALC)) { lines(log(trALC[,i]), col=i, lty=i) names <- c(names, paste("XX[", i, ",]", sep="")) } legend("bottomright", names, col=1:ltrXX, lty=1:ltrXX) @ <>= graphics.off() @ \includegraphics[trim=55 25 65 20]{tgp-traces-alc} \caption{Traces of the (log of the) samples for the ALC statistic $\Delta \sigma^2(\tilde{\mb{x}})$ at for each of the three {\tt XX} locations} \label{f:preds} \end{figure} Traces of posterior predictive and adaptive sampling statistics are contained in the \verb!$preds! field. For example, Figure \ref{f:preds} shows samples of the ALC statistic $\Delta \sigma^2(\tilde{\mb{x}})$. We can see from the trace that statistic is generally lowest for {\tt XX[3,]} which is in the uninteresting region, and that there is some competition between {\tt XX[2,]} which lies on the boundary between the regions, and {\tt XX[1,]} which is in the interior of the interesting region. Similar plots can be made for the other adaptive sampling statistics (i.e., ALM \& EI). \subsection{Explaining the progress meter} \label{sec:progress} The progress meter shows the state of the MCMC as it iterates through the desired number of rounds of burn--in ({\tt BTE[1]}), and sampling ({\tt BTE[2]-BTE[1]}), for the requested number of repeats ({\sf R-1}). The verbosity of progress meter print statements is controlled by the {\tt verb} arguments to the {\tt b*} functions. Providing {\tt verb=0} silences all non--warning (or error) statements. To suppress warnings, try enclosing commands within {\tt suppressWarnings(...)}, or globally set {\tt options(warn=0)}. See the help file ({\tt ?options}) for more global warning settings. The default verbosity setting ({\tt verb=1}) shows all {\em grows} and {\em prunes}, and a summary of $d$--(range) parameters for each partition every 1000 rounds. Higher verbosity arguments will show more tree operations, e.g., {\em change} and {\em swap}, etc. Setting {\tt verb=2} will cause an echo of the {\tt tgp} model parameters and their starting values; but is otherwise the same as {\tt verb=1}. The max is {\tt verb=4} shows all successful tree operations. Here is an example {\em grow} statement. \begin{verbatim} **GROW** @depth 2: [0,0.05], n=(10,29) \end{verbatim} The {\tt *GROW*} statements indicate the depth of the split leaf node; the splitting dimension $u$ and location $v$ is shown between square brackets {\tt [u,v]}, followed by the size of the two new children {\tt n=(n1,n2)}. {\tt *PRUNE*} is about the same, without printing {\tt n=(n1,n2)}. Every 1000 rounds a progress indicator is printed. Its format depends on a number of things: (1) whether parallelization is turned on or not, (2) the correlation model [isotropic or separable], (3) whether jumps to the LLM are allowed. Here is an example with the 2-d exp data with parallel prediction under the separable correlation function: \begin{verbatim} (r,l)=(5000,104) d=[0.0144 0.0236] [1.047 0/0.626]; mh=2 n=(59,21) \end{verbatim} The first part {\tt (r,l)=(5000,104)} is indicating the MCMC round number r=5000 and the number of leaves waiting to be "consumed" for prediction by the parallel prediction thread. When parallelization is turned off (default), the print will simply be {\tt "r=5000"}. The second part is a printing of the $d$--(range) parameter to a separable correlation function. For 2 partitions there are two sets of square brackets. Inside the square brackets is the $m_X$ (2 in this case) range parameters for the separable correlation function. Whenever the LLM governs one of the input dimensions a zero will appear. I.e., the placement of {\tt 0/0.626} indicates the LLM is active in the 2nd dimension of the 2nd partition. 0.626 is the $d$--(range) parameter that would have been used if the LLM were inactive. Whenever all dimensions are under the LLM, the d-parameter print is simply {\tt [0]}. This also happens when forcing the LLM (i.e., for {\tt blm} and {\tt btlm}), where {\tt [0]} appears for each partition. These prints will look slightly different if the isotropic instead of separable correlation is used, since there are not as many range parameters. \subsection{Collaboration with {\tt predict.tgp}} \label{sec:apred} <>= seed <- 0; set.seed(seed) @ In this section I revisit the motorcycle accident data in order to demonstrate how the {\tt predict.tgp} function can be helpful in collaborative uses of {\tt tgp}. Consider a fit of the motorcycle data, and suppose that infer the model parameters only (obtaining no samples from the posterior predictive distribution). The \verb!"tgp"!-class output object can be saved to a file using the {\tt R}--internal {\tt save} function. <<>>= library(MASS) out <- btgpllm(X=mcycle[,1], Z=mcycle[,2], bprior="b0", pred.n=FALSE, verb=0) save(out, file="out.Rsave") out <- NULL @ Note that there is nothing to plot here because there is no predictive data. (\verb!out <- NULL! is set for illustrative purposes.) Now imagine e--mailing the ``out.Rsave'' file to a collaborator who wishes to use your fitted {\tt tgp} model. S/he could first load in the \verb!"tgp"!--class object we just saved, design a new set of predictive locations {\tt XX} and obtain kriging estimates from the MAP model. <<>>= load("out.Rsave") XX <- seq(2.4, 56.7, length=200) out.kp <- predict(out, XX=XX, pred.n=FALSE) @ Another option would be to sample from the posterior predictive distribution of the MAP model. <<>>= out.p <- predict(out, XX=XX, pred.n=FALSE, BTE=c(0,1000,1)) @ This holds the parameterization of the {\tt tgp} model {\em fixed} at the MAP, and samples from the GP or LM posterior predictive distributions at the leaves of the tree. Finally, the MAP parameterization can be used as a jumping-off point for more sampling from the joint posterior and posterior predictive distribution. <<>>= out2 <- predict(out, XX, pred.n=FALSE, BTE=c(0,2000,2), MAP=FALSE) @ Since the return--value of a {\tt predict.tgp} call is also a \verb!"tgp"!--class object the process can be applied iteratively. That is, {\tt out2} can also be passed to {\tt predict.tgp}. \begin{figure}[hp] \centering <>= plot(out.kp, center="km", as="ks2") @ <>= graphics.off() @ \vspace{-0.1cm} \includegraphics[trim=50 30 50 25]{tgp-pred-kp} <>= plot(out.p) @ <>= graphics.off() @ \vspace{-0.1cm} \includegraphics[trim=50 30 50 25]{tgp-pred-p} <>= plot(out2) @ <>= graphics.off() @ \includegraphics[trim=50 30 50 25]{tgp-pred-2} \caption{Predictive surfaces ({\em left}) and error/variance plots ({\em right}) resulting from three different uses of the {\tt predict.tgp} function: MAP kriging ({\em top}), sampling from the MAP ({\em middle}), sampling from the joint posterior and posterior predictive starting from the MAP ({\em bottom}).} \label{f:pred} \end{figure} Figure \ref{f:pred} plots the posterior predictive surfaces for each of the three calls to {\tt predict.tgp} above. The kriging surfaces are smooth within regions of the partition, but the process is discontinuous across partition boundaries. The middle surface is simply a Monte Carlo--sample summarization of the kriging one above it. The final surface summarizes samples from the posterior predictive distribution when obtained jointly with samples from $\mathcal{T}|\bm{\theta}$ and $\bm{\theta}|\mathcal{T}$. Though these summaries are still ``noisy'' they depict a process with smoother transitions across partition boundaries than ones conditioned only on the MAP parameterization. <>= unlink("out.Rsave") @ Finally, the {\tt predict.tgp} function can also sample from the ALC statistic and calculate expected improvements (EI) at the {\tt XX} locations. While the function was designed with prediction in mind, it is actually far more general. It allows a continuation of MCMC sampling where the {\tt b*} function left off (when {\tt MAP=FALSE}) with a possibly new set of predictive locations {\tt XX}. The intended use of this function is to obtain quick kriging--style predictions for a previously-fit MAP estimate (contained in a \verb!"tgp"!-class object) on a new set of predictive locations {\tt XX}. However, it can also be used simply to extend the search for an MAP model when {\tt MAP=FALSE}, {\tt pred.n=FALSE}, and {\tt XX=NULL}. \section{Configuration and performance optimization} In what follows I describe customizations and enhancements that can be made to {\tt tgp} at compile time in order to take advantage of custom computing architectures. The compilation of {\tt tgp} with a linear algebra library different from the one used to compile {\sf R} (e.g., ATLAS), and the configuration and compilation of {\tt tgp} with parallelization is described in detail. \subsection{Linking to ATLAS} \label{sec:atlas} {\tt ATLAS} \cite{atlas-hp} is supported as an alternative to standard {\tt BLAS} and {\tt LAPACK} for fast, automatically tuned, linear algebra routines. %Compared to standard {\tt BLAS} and {\tt Lapack}, %those automatically tuned by {\tt ATLAS} are significantly faster. If you know that {\sf R} has already been linked to tuned linear algebra libraries (e.g., on {\tt OSX}), then compiling with {\tt ATLAS} as described below, is unnecessary---just install {\tt tgp} as usual. As an alternative to linking {\tt tgp} to {\tt ATLAS} directly, one could re-compile all of {\sf R} linking it to {\tt ATLAS}, or some other platform--specific {\tt BLAS}/{\tt Lapack}, i.e., {\tt Intel}'s Math Kernel Library, or {\tt AMD}'s Core Math Library, as described in: \begin{center} \verb!http://cran.r-project.org/doc/manuals/R-admin.html! \end{center} Look for the section titled ``Linear Algebra''. While this is arguably best solution since all of {\sf R} benefits, the task can prove challenging to accomplish and may require administrator (root) privileges. Linking {\tt tgp} with {\tt ATLAS} directly is described here. GP models implemented in {\tt tgp} can get a huge benefit from tuned linear algebra libraries, since the MCMC requires many large matrix multiplications and inversions (particularly of $\mb{K}$). In some cases the improvement can be as large as tenfold with {\tt ATLAS} as compared to the default {\sf R} linear algebra routines. Comparisons between {\tt ATLAS} and architecture specific libraries like {\tt MKL} for {\tt Intel} or {\tt veclib} for {\tt OSX} usually show the latter favorably, though the difference is less impressive. For example, see \begin{center} \verb!http://www.intel.com/cd/software/products/asmo-na/eng/266858.htm! \end{center} for a comparison to {\tt MKL} on several typical benchmarks. Three easy steps (assuming, of course, you have already compiled and installed {\tt ATLAS} -- {\tt http://math-atlas.sourceforge.net}) need to be performed before you install the {\tt tgp} package from source. \begin{enumerate} \item Edit src/Makevars. Comment out the existing \verb!PKG_LIBS! line, and replace it with: \begin{verbatim} PKG_LIBS = -L/path/to/ATLAS/lib -llapack -lcblas -latlas \end{verbatim} You may need replace \verb!-llapack -lcblas -latlas! with whatever {\tt ATLAS} recommends for your OS. (See {\tt ATLAS} README.) For example, if your {\tt ATLAS} compilation included {\tt F77} support, you may need to add \verb!"-lF77blas"!, if you compiled with {\tt Pthreads}, you would might use \begin{verbatim} -llapack -lptcblas -lptf77blas -latlas \end{verbatim} \item Continue editing src/Makevars. Add: \begin{verbatim} PKG_CFLAGS = -I/path/to/ATLAS/include \end{verbatim} \item Edit src/linalg.h and comment out lines 40 \& 41: \begin{verbatim} /*#define FORTPACK #define FORTBLAS*/ \end{verbatim} \end{enumerate} Now simply install the {\tt tgp} package as usual. Reverse the above instructions to disable {\tt ATLAS}. Don't forget to re-install the package when you're done. Similar steps can be taken for platform specific libraries like {\tt MKL}, leaving off step 3. \subsection{Parallelization with {\tt Pthreads}} \label{sec:pthreads} After conditioning on the tree and parameters ($\{\mathcal{T}, \bm{\theta}\}$), prediction can be parallelized by using a producer/consumer model. This allows the use of {\tt PThreads} in order to take advantage of multiple processors, and get speed-ups of at least a factor of two. This is particularly relevant since dual processor workstations and multi-processor servers are becoming commonplace in modern research labs. However, multi--processors are not yet ubiquitous, so parallel--{\tt tgp} is not yet the default. Using the parallel version will be slower than the non--parallel (serial) version on a single processor machine. Enabling parallelization requires two simple steps, and then a re--install. \begin{enumerate} \item Add \verb!-DPARALLEL! to \verb!PKG_CXXFLAGS! of src/Makevars \item You may need to add \verb!-pthread! to \verb!PKG_LIBS! of src/Makevars, or whatever is needed by your compiler in order to correctly link code with {\tt PThreads}. \end{enumerate} The biggest improvement in the parallel version, over the serial, is observed when calculating ALC statistics, which require $O(n_2^2)$ time for $n_2$ predictive locations, or when calculating ALM (default) or EI statistics on predictive locations whose number ($n_2$) is at least an order of magnitude larger ($n_2\gg n_1)$ than the number of input locations ($n_1$). Parallel sampling of the posterior of $\bm{\theta}|\mathcal{T}$ for each of the $\{\theta_\nu\}_{\nu=1}^R$ is also possible. However, the speed-up in this second case is less impressive, and so is not supported by the current version of the {\tt tgp} package. \bibliography{tgp} \bibliographystyle{plain} \end{document} tgp/vignettes/motovate_bgp.pdf0000644000176200001440000013156313531032535016246 0ustar liggesusers%PDF-1.4 1 0 obj << /Pages 2 0 R /Type /Catalog >> endobj 2 0 obj << /Type /Pages /Kids [ 3 0 R ] /Count 1 >> endobj 3 0 obj << /Type /Page /Parent 2 0 R /Resources << /XObject << /Im0 8 0 R >> /ProcSet 6 0 R >> /MediaBox [0 0 504 360] /CropBox [0 0 504 360] /Contents 4 0 R /Thumb 11 0 R >> endobj 4 0 obj << /Length 5 0 R >> stream q 504 0 0 360 0 0 cm /Im0 Do Q endstream endobj 5 0 obj 31 endobj 6 0 obj [ /PDF /Text /ImageC ] endobj 7 0 obj << >> endobj 8 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [ /RunLengthDecode ] /Width 504 /Height 360 /ColorSpace 10 0 R /BitsPerComponent 8 /SMask 15 0 R /Length 9 0 R >> stream ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÿïøÿé‰ÿû‚ÿ·ÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ”ÿéûÿé‰ÿû‚ÿ·ÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ—ÿõûÿøûÿûøÿøæÿïûÿòøÿòûÿïûÿûïÿàþÿïûÿïûÿìòÿïûÿìûÿïïÿïûÿãþÿïûÿò‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿŠÿøéÿûøÿøéÿìþÿìþÿìþÿïûÿûïÿàþÿïûÿïûÿìòÿïûÿìþÿìïÿïûÿËþÿò‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿŠÿûøÿõûÿééÿøþÿøþÿøþÿøþÿøþÿïûÿøþÿûïÿìþÿïûÿïûÿûûÿøþÿøõÿøûÿûûÿøþÿøþÿøþÿøòÿøûÿøþÿøþÿõþÿõûÿøþÿøþÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿŠÿûøÿõûÿéæÿïþÿûøÿûþÿûøÿãþÿûïÿûûÿûøÿãûÿòûÿûøÿûïÿòûÿûøÿûþÿûøÿûòÿéþÿûøÿûøÿøûÿøþÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÿøõÿûûÿû×ÿìþÿûïÿûòÿéþÿûïÿûûÿûøÿãþÿïûÿûøÿûòÿïûÿûøÿûþÿûøÿûòÿéþÿûøÿûøÿøûÿøþÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÿõûÿøûÿû×ÿøþÿøþÿøþÿøþÿøþÿïûÿøþÿûïÿûûÿûøÿòûÿøþÿûþÿøûÿûøÿûòÿûþÿøûÿûøÿûþÿøþÿøòÿøûÿøþÿûøÿûøÿøûÿøþÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿýÿéûÿûìÿøõÿìþÿìþÿìþÿìþÿûïÿûûÿûøÿûþÿìþÿïûÿûøÿûòÿïûÿûøÿûþÿìïÿìþÿûøÿûøÿéþÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿúÿìûÿûìÿøõÿéþÿïûÿòûÿïûÿûïÿûûÿûøÿûþÿïûÿìþÿûøÿûòÿìþÿûøÿûûÿïïÿïûÿûøÿûõÿïûÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÁÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ—ÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ”ÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¼ÿ‚‚‚‚‚‚‚‚‚•‚ÿ‚ÿúÿ‚‚‚‚‚‚‚‚‚•‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¡ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¡ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¡ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¡ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ„ÿõ¼ÿõ‚ÿ‚ÿ‚ÿ‚ÿüÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‡ÿïúÿ ÿÿÿÿ×ÿï‚ÿ‚ÿ‚ÿ‚ÿÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‡ÿûýÿ"ÿÀìÿÿÿÿÿÿÿÿàÿûøÿû‚ÿ‚ÿ‚ÿ‚ÿÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‡ÿþ6ÿÿÿh9ñÿ ÿÿÿÿæÿûõÿþ‚ÿ‚ÿ‚ÿ‚ÿÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‡ÿ`øÿûÿûèÿ ÿÿÿìÿûøÿû‚ÿ‚ÿ‚ÿ‚ÿÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ‰ÿû6óâÿ ÿÿÿìÿé‚ÿ‚ÿ‚ÿ†ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿÿÿÿÿóÙÿÿÿìÿæ‚ÿ‚ÿ‚ÿŒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿÿÿÄÿÿÿæÿûûÿû‚ÿ‚ÿ‚ÿŒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ’ÿÿ¾ÿÿÿìÿûõÿþ‚ÿ‚ÿ‚ÿŒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ•ÿÿÿ»ÿÿìÿûõÿþ‚ÿ‚ÿ‚ÿŒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ•ÿÿµÿÿìÿûûÿû‚ÿ‚ÿ‚ÿŒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ˜ÿÿ²ÿ ÿÿÿòÿï‚ÿ‚ÿ‚ÿŒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ˜ÿÿ¬ÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿíÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ›ÿÿ¦ÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿðÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿžÿÿÿ£ÿÿ‚ÿ‚ÿ‚ÿ‚ÿðÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿžÿÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿóÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ¡ÿÿšÿÿ‚ÿ‚ÿ‚ÿ‚ÿóÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ¡ÿÿ—ÿÿúÿÿÿ‚ÿ‚ÿ‚ÿ†ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ¤ÿÿ”ÿÿÿÿÿÿÿ‚ÿ‚ÿ‚ÿ†ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ¤ÿÿ‘ÿ ÿÿÿýÿ‚ÿ‚ÿ‚ÿ†ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ§ÿÿËÿø¾ÿÿ‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿ§ÿÿÑÿïÁÿÿ‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ‚ÿªÿÿÎÿûûÿøÄÿÿ‚ÿ‚ÿ‚ÿ‰ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿ‚ÿ‚ÿªÿÿÎÿûøÿûÁÿÿ‚ÿ‚ÿ‚ÿŒÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿ‚ÿ‚ÿ­ÿÿËÿûøÿûÁÿÿÿ‚ÿ‚ÿ‚ÿÿû‚ÿÃÿþïÿþÑÿû‚ÿ‚ÿ‚ÿ‚ÿ­ÿÿËÿì»ÿ ÿÿÿ‚ÿ‚ÿ‚ÿ˜ÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿ‚ÿ‚ÿ°ÿÿÅÿòµÿ ÿÿÿ‚ÿ‚ÿ‚ÿ›ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿ‚ÿ‚ÿ°ÿÿÅÿõ¬ÿÿÿ‚ÿ‚ÿ‚ÿžÿû‚ÿÿæ‚ÿ‚ÿ‚ÿ‚ÿ´ÿZõüÈÿïþÿø¸ÿÿÿïÿõ‚ÿ‚ÿ‚ÿ¿ÿû‚ÿÃÿþþÿïÑÿû‚ÿ‚ÿ‚ÿ‚ÿ·ÿþKÊöÎÿûøÿì¸ÿÿÿøÿï‚ÿ‚ÿ‚ÿÂÿû‚ÿÃÿþþÿïÑÿû‚ÿ‚ÿ‚ÿ‚ÿºÿûóÿþÿûÎÿûøÿøûÿûþÿòÇÿÿÿûÿûûÿû‚ÿ‚ÿ‚ÿÂÿû‚ÿÃÿþþÿþõÿþÑÿû‚ÿ‚ÿ‚ÿ‚ÿºÿûÿÿþÿûÎÿûøÿûõÿþþÿûþÿøÇÿÿÿþÿþõÿû‚ÿ‚ÿ‚ÿÅÿû‚ÿÃÿþþÿûûÿûÑÿû‚ÿ‚ÿ‚ÿ‚ÿºÿþÿûÿûÎÿìøÿõøÿûÄÿÿÿùøÿû‚ÿ‚ÿ‚ÿôÿÿ×ÿû‚ÿÃÿõþÿøÑÿû‚ÿ‚ÿ‚ÿ‚ÿºÿþ‘ÛþÿøËÿõþÿéõÿþÁÿÿŽüËý‡ü¾ÿ‚ÿ‚ÿÃÿÿÿÿÿÿ×ÿû‚ÿ½ÿûþÿûÎÿû‚ÿ‚ÿ‚ÿ‚ÿ¹ÿýö¹ÿòþÿøûÿû¾ÿÿŽP¢½ýÿÿÊÿ ÿÿÿÿ‚ÿ‚ÿÕÿÿÿÿÿÿÿÿÑÿû‚ÿ‚ÿúÿû‚ÿ›ÿÿ‚ÿ‚ÿ¥ÿÿ˜ÿï»ÿ ÿÿÿýÿ ÿÿÿÿÖÿÿÿÿÿÿÿÿÿ÷ÿ‚ÿ‚ÿöÿÿÿÿÿÿÿÿÂÿû‚ÿ‚ÿúÿû‚ÿ³ÿ"ÿÿÿÿÿÿÿÿÿÿÿ‚ÿ‚ÿ«ÿÿ’ÿû²ÿÿÿ÷ÿÿÿÿÿÿÿÿÿîÿ ÿÿÿÿôÿÿÿÿÿÿÿ÷ÿÿÿÿÿÿ‚ÿ›ÿÿÿÿÿÿ¶ÿû‚ÿ‚ÿúÿû‚ÿ¶ÿÿÿÿÿÿÿÿÿúÿÿÿ‚ÿ‚ÿ±ÿÿ‚ÿ¡ÿÿÿÿÿÿÿÿÿÿýÿ ÿÿÿåÿúÿ"ÿÿÿÿÿÿÿÿÿÿÿ‚ÿ¡ÿÿÿªÿû‚ÿ‚ÿúÿû‚ÿ¶ÿÿâÿ ÿÿÿ‚ÿ‚ÿ·ÿªó‚ÿ˜ÿÿÿÿÿÿÓÿÿÿîÿ ÿÿÿ‚ÿ°ÿ ÿÿÿÿ§ÿû‚ÿ‚ÿúÿû‚ÿ¼ÿÿÿÙÿ ÿÿÿ‚ÿ‚ÿ¾ÿó)óéÿõ‚ÿ‚ÿÛÿ ÿÿÿÿ‚ÿÂÿÿÿÿÿÿÿ¤ÿû‚ÿ‚ÿúÿû‚ÿÂÿ ÿÿÿÐÿÿÿ‚ÿ‚ÿÃÿØüøÿûïÿïòÿï¼ÿþ‚ÿÂÿÿÿÿÿÿÿÿÿÿÿ‚ÿãÿÿÿÿÿÿúÿÿ¤ÿû‚ÿ‚ÿúÿû‚ÿÈÿ ÿÿÿÿÊÿ ÿÿÿ‚ÿ‚ÿÉÿ‹üøÿûòÿøûÿûþÿÝÈÿò‚ÿ¹ÿÿÿÿÿÿÿÿÿÿ‚ÿøÿÿÿÿÿÿñÿ¡ÿû‚ÿ‚ÿúÿûÖÿôÿ ÿÿÿÿ¦ÿÿúÿ ÿÿÿÿ»ÿ ÿÿÿ‚ÿ‚ÿÏÿ4üûÿøòÿûõÿïïÿõÑÿøþÿø‚ÿ¤ÿ ÿÿÿˆÿÿÿÿÿÿ†ÿû‚ÿ‚ÿúÿûÖÿÿýÿÿÿÿÿÿÿÿÍÿÿÿëÿÿÿÿÿÿÿÿÿ¯ÿÿÿ‚ÿ‚ÿÕÿÿíïÿûøÿõàÿõ×ÿì‚ÿžÿ ÿÿÿ—ÿÿÿÿÿÿ‚ÿüÿû‚ÿ‚ÿúÿûÖÿ ÿÿÿÿôÿ%ÿÿÿÿÿÿÿÿÿÿÿÿñÿ ÿÿÿôÿÿÿÿÿÿšÿÿÿ‚ÿ‚ÿØÿÿûÿøéÿì×ÿøÚÿì‚ÿ˜ÿ ÿÿÿ¦ÿÿÿÿÿÿ‚ÿóÿû‚ÿ‚ÿúÿûÓÿÿèÿ4ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýÿÿÿÿÿÿÿÿÿ‘ÿÿÿ‚ÿ‚ÿÛÿÿ×ÿòÑÿõàÿøþÿø˜ÿïŽÿÿÿ²ÿÿÿÿÿÿ‚ÿêÿû‚ÿ‚ÿúÿû‚ÿûÿ ÿÿÿ‚ÿþÿÿÿ‚ÿ‚ÿáÿÿÑÿûÈÿõãÿì˜ÿûûÿìšÿ%ÿÿÿÿÿÿÿÿÿÿÿÿÜÿÿÿÿÿÿ‚ÿáÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿÿ‚ÿ‚ÿáÿÿÔÿû¿ÿøæÿûþÿþþÿû˜ÿþõÿì‚ÿÿÿÿÿÿÿÿÿôÿÿÿÿÿÿ‚ÿØÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿÿ‚ÿ‚ÿáÿÿ×ÿø¼ÿõìÿì˜ÿþõÿûøÿû‚ÿòÿÿÿÿÿÿÿÿÿÿÿ‚ÿÏÿû‚ÿ‚ÿúÿû‚ÿ‚ÿçÿÿ‚ÿ‚ÿçÿÿÔÿû³ÿøìÿò•ÿûûÿøøÿû‚ÿãÿÿÿ‚ÿÆÿû‚ÿ‚ÿúÿû‚ÿ‚ÿçÿÿ‚ÿ‚ÿçÿÿ×ÿû­ÿø‚ÿóÿìøÿû‚ÿ‚ÿ ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿäÿÿ‚ÿ‚ÿêÿÿ×ÿûªÿø‚ÿðÿûûÿï‚ÿ‚ÿ ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿäÿÿ‚ÿ‚ÿêÿÿÚÿû¡ÿû‚ÿäÿõ‚ÿ‚ÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿáÿÿ‚ÿ‚ÿðÿÿÚÿø¡ÿøìÿò‚ÿ‚ÿ‚ÿ›ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿáÿÿ‚ÿ‚ÿðÿÿÚÿû›ÿøòÿøþÿø‚ÿ‚ÿ‚ÿžÿû‚ÿ‚ÿúÿû‚ÿ‚ÿáÿÿ‚ÿ‚ÿðÿÿÝÿû•ÿøõÿûøÿû‚ÿ‚ÿ‚ÿžÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÞÿÿ‚ÿ‚ÿöÿÿÚÿû’ÿøøÿûøÿû‚ÿ‚ÿ‚ÿžÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÞÿÿ‚ÿ‚ÿöÿÿÝÿûŒÿøûÿøþÿø‚ÿ‚ÿ‚ÿžÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÛÿÿÿ‚ÿ‚ÿüÿÿÝÿû‰ÿøûÿò‚ÿ‚ÿ‚ÿ›ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÛÿÿÿ‚ÿ‚ÿÿÿÿÝÿû­ÿûÝÿøøÿû‚ÿ‚ÿ‚ÿ˜ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿØÿÿÿ‚ÿƒÿÿÝÿû³ÿïàÿû‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿØÿÿÿ‚ÿƒÿÿàÿû°ÿûûÿûÝÿû‚ÿóÿò‚ÿ‚ÿ©ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿØÿÿÿ‚ÿƒÿÿàÿû°ÿþõÿûàÿõ‚ÿùÿï‚ÿ‚ÿ¬ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÒÿ‚ÿ†ÿÿìÿûûÿû­ÿþõÿûÚÿø‚ÿÿÿûøÿû‚ÿ‚ÿ¬ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÒÿÿ‚ÿ‰ÿÿòÿé­ÿûûÿûÔÿøƒÿûõÿþ‚ÿ‚ÿ¬ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÒÿÿ‚ÿ‰ÿÿòÿûûÿøªÿïÑÿøéÿõªÿøûÿûéÿòïÿòžÿòÑÿòÚÿòÝÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÏÿÿ‚ÿÿÿóþÿûõÿû‚ÿäÿõòÿïªÿïéÿïòÿï¤ÿì×ÿìàÿìàÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÏÿÿ‚ÿÿ®êøÿûÎÿû•ÿøõÿûøÿûªÿõéÿûøÿûõÿûøÿû¤ÿûøÿû×ÿûøÿûàÿûøÿûàÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÌÿÿ‚ÿ“ÿü6üûÿûþÿûûÿûÔÿï˜ÿøøÿþõÿû†ÿûøÿûõÿûõÿþ¤ÿûøÿû×ÿûøÿûàÿûøÿûàÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÌÿÿ‚ÿ•ÿðüõÿþþÿï×ÿøûÿû•ÿõþÿûûÿûƒÿøûÿûòÿûûÿû¤ÿûøÿû×ÿûûÿøàÿûøÿûàÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÉÿÿ‚ÿ˜ÿÿùûÿûõÿø×ÿûøÿûÿæõÿø•ÿïòÿï¡ÿòÔÿïÝÿïÝÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÉÿÿ‚ÿ˜ÿÿíõÿûÔÿûøÿûŒÿìøÿï•ÿøéÿõ›ÿøËÿøÔÿøÚÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÆÿÿ‚ÿžÿÿûÿìþÿøÔÿøþÿø‰ÿïøÿûøÿû‚ÿ‚ÿšÿï×ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÆÿÿ‚ÿžÿÿøÿøþÿòÎÿò‚ÿÿÿæøÿûÝÿû‚ÿ‚ÿÍÿìÑÿû‚ÿ‚ÿúÿû‚ÿŸÿø²ÿÿ‚ÿžÿÿøÿûøÿõ‰ÿõ¿ÿûþÿìþÿûøÿ‚ÿ‚ÿ÷ÿìÅÿû‚ÿ‚ÿúÿû‚ÿ®ÿã¸ÿÿ‚ÿ¡ÿÿõÿûøÿø‰ÿï°ÿÎòÿ΂ÿ™ÿï¹ÿû‚ÿÃÿéÑÿûÝÿòøÿòƒÿ×ãÿòèÿÿ‚ÿ¡ÿÿõÿøþÿõ‰ÿûûÿû­ÿòÅÿòûÿæÿòªÿò°ÿû‚ÿÃÿøûÿøÑÿûàÿìþÿøþÿøÎÿõãÿõõÿõòÿûûÿòìÿøþÿøëÿÿÿ‚ÿ¤ÿÿòÿì²ÿÝÿûõÿûªÿõËÿøþÿøøÿõþÿõ˜ÿøþÿø¹ÿï§ÿû‚ÿÃÿþïÿþæÿæàÿàûÿøÝÿæûÿÝþÿïþÿòõÿòõÿïþÿûûÿø÷ÿÿ‚ÿ§ÿÿéÿþþÿûÄÿîÿÿÿàÿûûÿûªÿïÎÿûøÿûûÿïþÿï¡ÿûøÿûÂÿà­ÿû‚ÿÃÿøûÿøæÿæàÿøûÿÝãÿãþÿ³õÿûþÿõþÿãþÿïýÿÿÿ‚ÿªÿÿãÿûÇÿ"ÿÿÿÿÿÿÿÿÿÿÿãÿï­ÿûøÿûÎÿûøÿûþÿûþÿõþÿûþÿïªÿûøÿûÈÿ×°ÿû‚ÿÃÿéÑÿûàÿøþÿàþÿûéÿìþÿ³þÿõûÿûõÿõþÿàûÿûýÿÿÿ‚ÿªÿÿãÿûÊÿÿÿÿÿÿÿÿ÷ÿÿÿãÿõªÿûõÿþÎÿøþÿøþÿûþÿìõÿï³ÿøûÿûÑÿòøÿûþÿï°ÿû‚ÿ‚ÿúÿûÝÿ×þÿûéÿûþÿõþÿËþÿìþÿéòÿàþÿõþÿû÷ÿûÿõ‚ÿÃÿûì‡æÿûÊÿÿÿâÿÿÿƒÿøûÿûËÿòûÿøþÿòéÿï¹ÿòÚÿìòÿûþÿþþÿûþÿû³ÿû‚ÿ‚ÿúÿûÚÿìþÿÝõÿûþÿ¼þÿ×éÿË÷ÿÿí‚ÿÉÿû6ìùéÿûÍÿÿÿÜÿÿÿƒÿïÅÿþòÿïÚÿï¼ÿûéÿãéÿûþÿõþÿû³ÿû‚ÿ‚ÿúÿû×ÿàþÿ‚íþÿûéÿ×þÿø÷ÿôoøÿû‚ÿÌÿûýÿÿùéÿûÐÿÿÿÖÿ ÿÿÿ†ÿõ­ÿõÎÿï°ÿéÚÿæ°ÿû‚ÿ‚ÿúÿûÎÿòþÿòìÿàøÿÝþÿÝûÿûæÿéþÿþþÿòòÿ”¨õÿþ‚ÿÌÿûýÿÿùìÿûÐÿÿÿÍÿÿÿ‚ÿ‚ÿßÿò¿ÿïÈÿé°ÿû‚ÿ‚ÿúÿû‚ÿ½ÿûøÿøøÿûÚÿûøÿìòÿ¥‘øÿû‚ÿÌÿûýÿÿùìÿûÐÿÿÇÿÿÿÿÿÿÿÿÿ‚ÿ‚ÿëÿËøÿï‚ÿÕÿû‚ÿ‚ÿúÿû‚ÿºÿàÔÿûûÿïîÿ¨ð‚ÿÉÿþûöìÿûÓÿÿ¾ÿúÿ ÿÿÿÿ‚ÿðÿûïÿø¡ÿ¹‚ÿÌÿû‚ÿ‚ÿúÿû‚ÿ·ÿõþÿõÑÿûûÿìñÿÿó‚ÿÆÿþ–·ùéÿþÐÿÿ¬ÿÿÿ‚ÿùÿïøÿò‚ÿ‚ÿ¦ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿûþÿûøÿûîÿÿ‚ÿ¹ÿÿæÿûÓÿÿ¦ÿÿ‚ÿùÿûûÿûûÿûûÿø‚ÿ‚ÿ©ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿèÿûþÿìîÿÿ‚ÿ¼ÿÿãÿûÖÿÿÿ¦ÿÿÿ’ÿõøÿþõÿûþÿûøÿû•ÿõ‚ÿ¢ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿåÿéëÿÿ‚ÿ¼ÿÿãÿûÖÿÿ ÿÿ•ÿïûÿûøÿûþÿûøÿû§ÿûøÿï°ÿû‚ÿüÿû‚ÿ‚ÿúÿû‚ÿ‚ÿåÿæîÿÿÿ‚ÿ¿ÿÿæÿûÖÿÿšÿÿ›ÿûøÿûûÿøþÿûûÿøþÿø­ÿïþÿûøÿû¹ÿïƒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿâÿéëÿÿ‚ÿÂÿÿïÿïÖÿÿšÿâó§ÿûõÿþøÿòøÿòªÿûûÿõõÿû¼ÿøûÿûƒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿâÿõþÿøëÿÿ‚ÿÂÿÿòÿøþÿøàÿû®â˜ÿþñQþÿøªÿûøÿû‚ÿùÿûøÿõûÿø¼ÿûøÿûƒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿßÿìëÿ ÿÿÿ‚ÿÈÿïÿûûÿøãÿû9ì)ü›ÿþ®ÿûÿû§ÿï‚ÿùÿûøÿé¹ÿûøÿûƒÿûžÿæ‚ÿùÿû‚ÿ‚ÿßÿìèÿÿÿ‚ÿËÿÿïÿûûÿøãÿûÿÿöžÿþ?ÿûÿû¤ÿõ‚ÿöÿøþÿøþÿõ³ÿûþÿøƒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿßÿøþÿøèÿÿÿ‚ÿËÿÿïÿøþÿøãÿþÿÿûÿûžÿû öÿÿmü‚ÿŠÿò¡ÿò‚ÿÿÿûÿþ‚ÿðÿû‚ÿ‚ÿßÿïøÿïCýÿÿ‚ÿÎÿÿûÿõþÿòïÿøûÿõÿûÿû›ÿþKÿÒßÿ­ÿõ‚ÿ‚ÿ‚ÿéÿû•ÿøþÿû‚ÿùÿû‚ÿ‚ÿÙÿøûÿãÿÿ‚ÿÎÿûÿïþÿøòÿïþÿÐŒó•ÿþ·üýÿ°ÿï‚ÿ‚ÿ‚ÿìÿû•ÿøþÿû‚ÿùÿû‚ÿ‚ÿÜÿ×þÿþÐÿ‚ÿÑÿÿûÿûûÿûûÿûòÿûûÿû§ÿCö…ÿÿ³ÿûûÿû‚ÿ‚ÿ‚ÿìÿû•ÿþþÿþûÿþ‚ÿùÿû‚ÿ‚ÿßÿÔþÿþhÿ‚ÿÑÿÿþÿûõÿþþÿòøÿûøÿþéÿ‚ÿøÿÿÿ¹ÿûõÿþ‚ÿ‚ÿ‚ÿìÿû•ÿøþÿû‚ÿùÿû‚ÿ‚ÿßÿûûÿàþÿþ?ÿ‚ÿÑÿÿûÿþøÿûþÿïûÿûøÿ‹â‚ÿòÿÿÿ¹ÿþøÿû‚ÿ‚ÿ‚ÿìÿû•ÿï‚ÿùÿû‚ÿ‚ÿßÿûûÿ×ÿ‚ÿÑÿøÿæûÿûûÿõ9äÿ‚ÿïÿÿÿ¼ÿï‚ÿ‚ÿ‚ÿìÿû‚ÿ‚ÿúÿû‚ÿ‚ÿßÿûûÿÚýÿÿ‚ÿ×ÿïçþÿûõÿþøÿø·í‚ÿæÿÿ¼ÿõ‚ÿêÿò‚ÿÿû’ÿþþÿø‚ÿùÿû‚ÿ‚ÿÜÿàûÿûúÿÿ‚ÿØÿí‘üþÿøõÿøûÿûîÿ‚ÿãÿ ÿÿÿ‚ÿ¢ÿøþÿø‚ÿ“ÿû•ÿûþÿø‚ÿùÿû‚ÿ‚ÿÙÿûþÿûþÿøõÿûúÿÿ‚ÿÛÿâmøÿûõÿìñÿÿ‚ÿÝÿÿÿ‚ÿ¥ÿûøÿû‚ÿ“ÿû•ÿûûÿû‚ÿùÿû‚ÿ‚ÿÍÿûþÿûõÿûúÿÿ‚ÿÛÿûøÿûõÿïñÿÿÿ‚ÿÚÿ ÿÿÿ‚ÿ«ÿûøÿû‚ÿ“ÿû•ÿûûÿû‚ÿùÿû‚ÿ‚ÿÍÿûûÿûûÿû÷ÿÿ‚ÿÝÿüùûÿûøÿûâÿÿÿ‚ÿ×ÿ ÿÿÿ‚ÿ®ÿûûÿø‚ÿ“ÿû•ÿï‚ÿùÿû‚ÿ‚ÿÍÿãôÿÿ‚ÿàÿÿíøÿûâÿÿÿ‚ÿÑÿÿÿ‚ÿ±ÿï‚ÿÿû•ÿï‚ÿùÿû‚ÿ‚ÿÍÿéîÿÿ‚ÿàÿÿûÿûòÿûâÿÿ‚ÿËÿ ÿÿÿ‚ÿ±ÿû‚ÿŠÿû’ÿþþÿø‚ÿùÿû‚ÿ‚ÿÐÿìèÿÿ‚ÿãÿÿÿæÿþâÿÿÿ‚ÿÅÿÿÿ¸ÿÿÿ‚ÿ‚ÿÃÿÿÿÿÿÿ×ÿû•ÿûþÿø‚ÿùÿû‚ÿ‚ÿÐÿòþÿþåÿÿ‚ÿæÿÿæÿûâÿÿÿ‚ÿÂÿÿÿÿÿÿÍÿÿÿÿÿÿôÿ‚ÿ‚ÿäÿÿÿÿÿÿÿÿÿÿÿÔÿû•ÿûûÿû‚ÿùÿû‚ÿ‚ÿÐÿìåÿÿ‚ÿæÿÿæÿûâÿÿ‚ÿ¹ÿÿÿÿÿÿÿÿâÿÿÿÿÿÿýÿÿÿÿÿÿÿÿúÿÿÿ‚ÿ†ÿÿÿÿÿÿÿÿÿÿÂÿû•ÿûûÿû‚ÿùÿû‚ÿ¤ÿÿÿÿÿÿ¼ÿïâÿoü‚ÿìÿÿæÿûâÿÿ‚ÿáÿøÖÿÿÿÿÿÿÿÿÿ÷ÿ ÿÿÿÿôÿ ÿÿÿÿýÿÿÿÿÿÿÿÿÿÿ‚ÿÿ ÿÿÿ°ÿû•ÿï‚ÿùÿû‚ÿ¹ÿÿÿ÷ÿÿÿúÿÿÿ¼ÿõãÿþ––ö‚ÿõÿÿæÿûâÿÿ‚ÿáÿòÊÿÿÿÿÿÿÿÿÿÖÿ ÿÿÿúÿÿÿÿÿÿÿÿÿÿ‚ÿ§ÿÿ§ÿû•ÿï‚ÿùÿû‚ÿ¼ÿÿÿÿÿÿÿÿÿôÿ ÿÿÿ¼ÿûãÿþ?ÿþÿû‚ÿõÿÿæÿûâÿÿ‚ÿäÿøþÿøÁÿÿÿÍÿÿñÿÿÿÿÿÿÿÿÿÿÿ‚ÿ¶ÿ ÿÿÿ§ÿû†ÿþ‚ÿùÿû‚ÿÂÿ ÿÿÿ÷ÿÿèÿÿÿÂÿõæÿþýÿÿþÿû‚ÿøÿÿæÿûåÿÿ‚ÿáÿûøÿû‚ÿÔÿ ÿÿÿÿ‚ÿÈÿÿÿÿÿÿ¤ÿû•ÿï‚ÿùÿû‚ÿÑÿÿÿÿÿÿÿÿÓÿ ÿÿÿËÿïéÿûÿÿþÿû‚ÿøÿÿéÿûâÿÿ‚ÿáÿûøÿû‚ÿÎÿ ÿÿÿÿ‚ÿÚÿÿÿÿÿÿÿýÿÿ¤ÿû•ÿøþÿû‚ÿùÿû‚ÿàÿÿÿÿÿÿÿÿÿÁÿÿÿÎÿûþÿõìÿûÙÿù‚ÿøÿÿæÿûâÿÿ‚ÿáÿøþÿø‚ÿÈÿ ÿÿÿÿ‚ÿéÿÿÿÿÿÿñÿ¡ÿû•ÿþþÿûþÿþ‚ÿùÿûÖÿÿÿÿÿÿÿÿ¬ÿÿÿÿÿÿÿÿÿÿ¸ÿ ÿÿÿÔÿþøÿõìÿþîù‚ÿøÿÿæÿûåÿÿ‚ÿÛÿò‚ÿ¿ÿ ÿÿÿÿ‚ÿøÿÿÿÿÿÿ†ÿû•ÿïÂÿéÑÿûÖÿ%ÿÿÿÿÿÿÿÿÿÿÿÿÓÿ"ÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿ×ÿûþÿïèÿÿ‚ÿõÿÿøÿøøÿûåÿÿ‚ÿ‚ÿ‚ÿ ÿÿÿÿ…ÿ ÿÿÿÿ‚ÿüÿû•ÿûþÿøÂÿøûÿøÑÿû¾ÿ%ÿÿÿÿÿÿÿÿÿÿÿÿîÿÿÿÿÿÿÿÿŽÿÿÿÚÿïþÿûèÿÿ‚ÿøÿÿûÿïþÿûâÿÿ‚ÿ‚ÿ‚ÿúÿ ÿÿÿÿ—ÿ ÿÿÿÿ‚ÿóÿû’ÿþ¶ÿþïÿþÑÿû©ÿ(ÿÿÿÿÿÿÿÿÿÿÿÿÿ‚ÿøÿ ÿÿÿÝÿòûÿûëÿÿ‚ÿøÿÿûÿûøÿõõÿòÙÿ‚ÿ‚ÿ‚ÿñÿ ÿÿÿÿ£ÿ ÿÿÿÿ‚ÿíÿû‚ÿÃÿøûÿøÑÿû‘ÿ ÿÿÿÿ‚ÿïÿÿÿÚÿïèÿÿÿ‚ÿûÿÿûÿûøÿõõÿûûÿþ·ÿ‚ÿ‚ÿ‚ÿëÿ ÿÿÿÿµÿÿÿÿÿÿÿ‚ÿçÿû‚ÿÃÿéÑÿû‚ÿ‚ÿíÿÿÿÝÿïåÿÿ‚ÿþÿÿøÿûøÿõøÿûõÿîÿ‚ÿ‚ÿ‚ÿâÿ ÿÿÿÄÿÿÿÿÿÿÿ‚ÿÞÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿÿÚÿõâÿÿÿ…ÿÿÿøÿéõÿû÷ÿ®‚ÿ‚ÿ‚ÿÜÿLÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‚ÿÒÿû‚ÿ‚ÿúÿû‚ÿ‚ÿêÿÿÿ×ÿûßÿÿ…ÿÿÿõÿìòÿûûÿ½‡‚ÿ‚ÿ‚ÿÐÿ4ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‚ÿÆÿû‚ÿÃÿþþÿïÑÿû‚ÿ‚ÿçÿÿãÿéåÿÿÿðšÿÿÿãÿûòÿõó‡‚ÿ‚ÿ‚ÿ‚ÿ‚ÿßÿû‚ÿÃÿþþÿïÑÿû‚ÿ‚ÿçÿÿÿéÿãåÿ®ðšÿÿÿæÿûéÿþâÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÜÿû‚ÿÃÿþþÿþõÿþæÿæ‚ÿ‚ÿäÿÿéÿûþÿìåÿð‡øÿûÿÿûÿþìÿûåÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÜÿû‚ÿÃÿþþÿûûÿûÑÿû‚ÿ‚ÿáÿÿòÿÝãÿ™ÿøÿû ÿÿþÿïõÿûåÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÜÿû‚ÿÃÿõþÿøÑÿû‚ÿ‚ÿáÿÿÿõÿÝãÿ,úÿþÿûÿÿþÿûûÿûøÿûåÿÿ‚ÿäÿò‚ÿ‚ÿ‚ÿ†ÿû‚ÿ½ÿûþÿûÎÿû‚ÿ‚ÿÞÿÿøÿÝàÿþ¨öÿÿùøÿûøÿûåÿÿ‚ÿçÿì‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿÛÿÿûÿûøÿìÝÿµú&üÿÿþÿûøÿûøÿûåÿÿ‚ÿçÿûøÿû‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿÛÿÿÿþÿøûÿûõÿûÜÿÿšÿÿûÿûþÿòþÿþâÿÿ‚ÿçÿûøÿû‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿØÿÿþÿìøÿõßÿÿÿÿÿûÿãåÿÿ‚ÿäÿûøÿû‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿÕÿûÿïûÿïâÿÿÿÿòÿûøÿøåÿÿ‚ÿáÿï‚ÿ‚ÿ‚ÿ‰ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿÕÿÿûÿõøÿûþÿõåÿÿÿ ÿÿòÿûøÿøåÿÿ‚ÿÞÿø‚ÿ‚ÿ‚ÿƒÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿÕÿÿÿïÿæâÿÿ£ÿÿïÿøûÿûåÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÓÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿÒÿÿòÿãâÿÿÿ¦ÿÿìÿïåÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÓÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÒÿÿòÿûþÿïÜÿÿ¦ÿÿéÿòåÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÓÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÏÿÿõÿûûÿòÙÿÿ¬ÿÿéÿòâÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÐÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÏÿÿõÿûøÿõÙÿÿ¬ÿÿìÿøþÿøõÿõ¥ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÐÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÏÿÿòÿòþÿøÙÿÿ²ÿÿéÿûûÿøøÿøþÿþŒí‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÐÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÌÿÿòÿøøÿûÙÿÿµÿÿÿéÿûûÿøøÿûøÿâG‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÐÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÌÿÿàÿûÖÿÿ¸ÿÿæÿøþÿøøÿûúÿìü‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÐÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÌÿÿÝÿûÙÿÿ»ÿÿÿãÿòõÿûûÿé¢ü‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÐÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÉÿÿéÿòÖÿ¾ÿÿÿÚÿûïÿø„‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÍÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÉÿÿÿïÿï×ÿïüÁÿÿÚÿòòÿûýÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÍÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÉÿÿÿòÿûøÿøàÿû¬oüÇÿÿÿÚÿìôÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÆÿÿòÿûøÿøãÿøÿøùÍÿÿÿ×ÿõþÿø÷ÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÆÿÿòÿûøÿøãÿûúÿ6üÍÿÿÔÿøøÿû÷ÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÆÿÿòÿææÿûúÿÐüÐÿÿÿ×ÿõøÿûúÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÇÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÆÿÿÿòÿòþÿûæÿøþÿ‡Ö ÓÿÿÿÔÿòþÿøúÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÇÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÃÿÿòÿòþÿûãÿõÿÿÖÿÿÑÿûþÿò÷ÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÇÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÀÿÿøÿìþÿûÖÿÿÿÜÿÿÿÔÿûâÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÇÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÀÿÿøÿûøÿûþÿûÓÿ ÿÿÿåÿÿÿÑÿûåÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÄÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ½ÿÿðûÿûþÿûÐÿ ÿÿÿÿëÿÿÎÿûåÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÄÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ½ÿÿíþÿûûÿûÊÿÿÿñÿÿÿÚÿòâÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÄÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ½ÿûüûÿïûÿûÇÿ ÿÿÿýÿ ÿÿÿÚÿïåÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÁÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ»ÿâtøÿøòÿþÁÿ ÿÿÿÿÔÿûûÿûåÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÁÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ»ÿâ‘üûÿûïÿûÁÿÿÎÿþûÿõèÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÁÿû‚ÿ‚ÿúÿû‚ÿ‚ÿºÿÐðøÿòìÿò­ÿûþÿøåÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÁÿû‚ÿ‚ÿúÿû‚ÿ‚ÿºÿÿþÿûõÿìïÿï°ÿïèÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¾ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ·ÿÿïÿûøÿûòÿûøÿû­ÿõåÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¾ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ·ÿÿïÿþõÿûòÿûøÿûªÿûâÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¾ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ·ÿÿïÿûûÿõõÿûøÿûªÿûâÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ»ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿ·ÿÿÿþÿøþÿéòÿï­ÿûâÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ»ÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿ´ÿÿ!óþÿõûÿûòÿõªÿûâÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ»ÿû‚ÿÃÿþïÿþÑÿû‚ÿ‚ÿ´ÿÿoüþÿøïÿûÿûâÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ»ÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿ²ÿìÐøÿûïÿû’ÿûâÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¸ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿ²ÿhöøÿûìÿû•ÿõèÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¸ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ²ÿþÒ|þÿøìÿû˜ÿìîÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¸ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ¯ÿІöæÿû›ÿøûÿûîÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¸ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿ®ÿÿÝÿû›ÿûõÿû÷ÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿµÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿ«ÿìÿþõÿûžÿøõÿû÷ÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿµÿû‚ÿÃÿþïÿþÑÿû‚ÿ‚ÿ«ÿÿõÿòøÿû¡ÿõûÿûôÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿµÿû‚ÿÃÿøûÿøÑÿû‚ÿ‚ÿ«ÿÿøÿøþÿøûÿû¤ÿûþÿïôÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ²ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿ«ÿÿÿûÿõþÿûøÿûÔÿøÝÿûßÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ²ÿû‚ÿÿæ‚ÿ‚ÿ¨ÿÿþÿéøÿû×ÿòàÿûßÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¯ÿû‚ÿÿæ‚ÿ‚ÿ¨ÿÿþÿéøÿøÝÿøûÿûæÿûßÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¯ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ¥ÿÿüþÿòòÿûÝÿûøÿûæÿûßÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¯ÿû‚ÿÃÿéÑÿû‚ÿ‚ÿ¥ÿÿçõÿøàÿûøÿûéÿøßÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¯ÿû‚ÿÀÿûÂÿû‚ÿ‚ÿ¥ÿÿçòÿûàÿøþÿøéÿûÜÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¯ÿû‚ÿÀÿûÂÿû‚ÿ‚ÿ¢ÿÿêòÿûÝÿòéÿøÜÿõÿï‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ¢ÿÿùøÿûïÿû×ÿòòÿûÜÿÿõÿûûÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿ¢ÿÿþÿòìÿûÚÿìøÿûÙÿÿøÿûõÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿŸÿÿþÿøæÿûÝÿûøÿûûÿøÙÿÿøÿûõÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿŸÿÿÚÿûÝÿûøÿûûÿûÖÿÿõÿûûÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿŸÿÿïÿõõÿûàÿûøÿûþÿûìÿõ÷ÿÿÿõÿï‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÊÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿœÿÿõÿïøÿøãÿïþÿøïÿïúÿÿìÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÄÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿœÿÿõÿûûÿøøÿûÝÿøûÿûïÿûøÿûúÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ©ÿû‚ÿ·ÿþÈÿû‚ÿ‚ÿœÿÿõÿþõÿûõÿûÔÿûìÿûøÿûýÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¦ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ™ÿÿøÿûûÿøõÿøÚÿøìÿûøÿûýÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¦ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ™ÿÿøÿïïÿòãÿûæÿïýÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¦ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ™ÿÿõÿõéÿòìÿøàÿõúÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ£ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ™ÿÿÿ×ÿìòÿõÐÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ£ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ–ÿÿ×ÿûøÿøøÿøÊÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ£ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ“ÿ×ÿûøÿéÊÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ£ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ“ÿÿÚÿøþÿøþÿøÄÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÿø¨íïÿòûÿïïÿòõÿòôÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ ÿøþÿYÖòÿøþÿïþÿøòÿøþÿøûÿøþÿû÷ÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ ÿûøÿäoõÿûøÿõøÿûòÿûøÿûûÿûøÿûúÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿšÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ ÿþõÿœÄõÿûøÿõøÿûòÿûøÿûûÿþõÿûúÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿšÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ ÿûûÿþ$ÿõÿûûÿòûÿøòÿøûÿûûÿûûÿû÷ÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿšÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ ÿïÿÿøÿÚìÿïûÿïúÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ—ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿšÿûúÿÿòÿøøÿõæÿøòÿïýÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ—ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿÿÿïÿþõÿûÈÿûøÿûÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ—ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿŠÿÿòÿûûÿûÅÿûøÿþÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ—ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿŠÿÿòÿïÅÿûøÿþŽÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ”ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿŠÿÿïÿõÂÿïüÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ”ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‡ÿÿÑÿòãÿõËÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‘ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‡ÿÿÔÿøþÿûÖÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‘ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ„ÿÿ×ÿûøÿûÜÿÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‘ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ„ÿÿ×ÿþõÿûÜÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿŽÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ„ÿÿ×ÿûûÿøÜÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿŽÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿÿÿÚÿïÜÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‹ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿÿÿÿ×ÿûÖÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‹ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿýÿÿ¦ÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‹ÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿúÿÿ¬ÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿˆÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿúÿÿÿ¯ÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿˆÿû‚ÿ‚ÿúÿû‚ÿ‚ÿ‚ÿ÷ÿÿ¯ÿÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿˆÿû‚ÿ‚ÿúÿ‚‚‚ïð±6Ђ‚‚‚‚‚ü‚ÿ‚ÿ‚ÿªÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ´ÿû‚ÿ´ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÙÿþ‚ÿ´ÿþ‚ÿ±ÿþ‚ÿ´ÿþ‚ÿ±ÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÒÿûøÿò‚ÿÒÿòûÿõ‚ÿÒÿïûÿõ‚ÿÌÿûøÿò‚ÿÒÿòûÿõ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿúÿõøÿûþÿû‚ÿÒÿûþÿûþÿï‚ÿÕÿûûÿûþÿï‚ÿÒÿøøÿûþÿû‚ÿÕÿûòÿï‚ÿ‚ÿ‚ÿ‚ÿ‚ÿýÿõøÿûþÿû‚ÿÕÿûøÿþþÿûûÿû‚ÿÕÿþøÿûþÿûûÿû‚ÿÒÿøøÿûþÿû‚ÿÕÿïþÿûûÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿôÿþøÿþøÿþ‚ÿÉÿûþÿþõÿþ‚ÿÏÿõþÿþõÿþ‚ÿÕÿûþÿþøÿþøÿþ‚ÿÕÿïþÿþõÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿôÿþøÿþøÿþ‚ÿÏÿõþÿþõÿþ‚ÿÉÿûþÿþõÿþ‚ÿØÿûûÿþøÿþøÿþ‚ÿÉÿûþÿþõÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿôÿþøÿûþÿû‚ÿÒÿøøÿûûÿû‚ÿÕÿûøÿþþÿûûÿû‚ÿØÿìþÿûþÿû‚ÿÉÿûþÿûûÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿôÿþøÿûþÿû‚ÿÕÿøõÿï‚ÿÕÿøþÿûþÿï‚ÿÌÿþøÿûþÿû‚ÿÕÿïþÿï‚ÿ‚ÿ‚ÿ‚ÿ‚ÿôÿþøÿò‚ÿÕÿïþÿï‚ÿÕÿïþÿï‚ÿÌÿþøÿò‚ÿÕÿïþÿï‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÎÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿšÿþûÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿšÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ”ÿøþÿþûÿéûÿò‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÍÿþûÿþûÿòþÿûûÿûþÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÍÿþûÿþûÿþûÿþøÿþûÿï‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÐÿþûÿþûÿþûÿþøÿþûÿþ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÁÿþûÿþûÿþûÿþøÿþûÿûþÿû‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿÍÿûþÿþûÿþûÿþøÿþûÿò‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ¹ÿ€ endstream endobj 9 0 obj 23310 endobj 10 0 obj /DeviceRGB endobj 11 0 obj << /Filter [ /RunLengthDecode ] /Width 106 /Height 76 /ColorSpace 10 0 R /BitsPerComponent 8 /Length 12 0 R >> stream ‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚’ AÇô΂‚Ôÿÿ£k¨ÿÿã‚‚× ÿÿö&ü Ûÿÿ‚‚Ý ÿÿÿÿÿüÿÿÿÿ‚:m‚‚é ÿÿÿÿüó ýÿÿÿÿ‚‚é ÿÿÿÿWó‡ÿÿÿÿö‚‚ì ÿ‡väê ŽÿÿÄüº ÿÿÿÿÿœÿÿÿÿÿÿà šˆ*àç*ÿÿ¿†¡ÿÿÿÿÿÿÿÿÿÿÛÿÿÿÿÿÿÿº ÿÿÿÿöÿÿÿÿÿÿÿÿÿÿÿÉÛàŒÞ3ÿÿîùÿÿÿÿÿÿÿÿÿÿÿÿÿÿðÿÿÿÿÿÿÿÿÿÿ½9ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÌÄÑKØÿÿÿÿÿü«2´ÿÿÿÿÿÿÿÿÿÿÿ‚ñÿÿ›öpœyðÿÿvöøø÷‚… ÿÿÏö ÿõøùù ÿÿÿcù Øýÿÿ‚‚ÿÿèö yÿÿÿùÿÿÿö ¦ÿÿ‚‚ ÿÿÿ%ù%ÂÊm4ÿÿÿÿö\¨ë‚‚þ ÿÿÿ®ód}^ÿÿÿÝöÀñð‚‚ûÿÿ–óPéÿÿÿÿö /ôÿÿ‚‚û ÿÿŽó ÿÿÿRöÿÿÿ‚‚õ¹×\íÿÿóÿÿÿ‚‚õÙß{Þ ÿÿÿ‚‚õ µÝ¾!á \ÿÿÿ‚‚òÛí'áÜÿÿ‚‚ïÝâFä™ÿŒ‚‚ì ÿÿÑçæc‚‚éÿÿMç Óÿ‚‚éÿ‹Ïççþþ‚‚æ¤í âÿÿ‚‚ãݸí&§%‚‚ã ÿÿÿð³ßÛ‚‚àKóèóÑû£‚‚Ú;]ó:\‚‚× ó‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚Æ€ endstream endobj 12 0 obj 2782 endobj 13 0 obj endobj 14 0 obj 2782 endobj 15 0 obj << /Type /XObject /Subtype /Image /Name /Ma0 /Filter [ /RunLengthDecode ] /Width 504 /Height 360 /ColorSpace /DeviceGray /BitsPerComponent 8 /Length 16 0 R >> stream ‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚¬ˆÝÿÿªDþüÿî™Ùÿÿ¾ÿÿ‚‚ˆ Ìÿî»ÌÿÿUÿÿþ»îÿªÙÿÿ¾ÿÿ‚‚‰ wÿÌUÿÌÿÿþ"ÿÿø UÌÿÿª3UÝÿîˆþwÝÿÝf™ÿÿªÿÿû"ÿÿUîÿˆ»ÿÝ3™ÿÿª3»ÿÿ»3ÿÿ3ÝÿÌ3ü3»ÿÿ»3ÿÿ3ÝÿÌ3ˆîîfÿÿû™ÿÿªÿÿ3îDÿÿ3݈UÌÿÿÌUÿÿ3݈‚‚¯ÌÿDùÿÿþ"ÿîù!"ÿÿ»ÝÿÝUÿÿ»îÿˆUÿÿ»îÿU»ÿª™ÿÌÿÿû"ÿÿÌÝÿÿÝ»ÝÿÝ»ÿª™ÿÌÝÿÌÌÿÝÿÿî»îÿ»üÝÿÌÌÿÝÿÿî»îÿ»Uÿÿ»îÿÿû»ÿª™ÿÌÿÿÝÿDÿÿÌÿˆUÿÿÌÌÿÿUÿÿÌÿˆ‚‚¯ÿÿþý»ÿÿþ»îÿˆù!fÿˆÿÿÌÿf"ÿîÌÿUUÿª3ÿÌ»ÿUÿÿû"ÿÿ"ÿÿ3ÿÿ3ÿÌ»ÿU3ÿªÿÿÿÿD"ÿÿý3ÿªÿÿÿÿD"ÿÿÌÿffÿÿü 3ÿÌ»ÿUÿÿwÿÿˆÌÿwwÿÌÿÿˆ‚‚¯ÿÿþýÿüÿîˆøUˆ»ÝÿÿÿÿþDDÿÿþ D3wÿªDD™ÿˆÿÿûÿÿÿÿþÿÿwÿªDD™ÿˆf™Ýÿÿÿÿþÿÿûf™Ýÿÿÿÿþÿÿÿÿþÿÿü wÿªDD™ÿˆÿÿþÿÿþ ÿÿÿÿÿÿ‚‚¬ÌÿUýÌÿÿÿó ˆÿÝ»ˆÿÿÿÿûÿÿüˆûÿˆÿÿûÿÿÿÿþÿÿˆûÿ ˆªÿ݈ÿÿÿÿþÿÿü ªÿ݈ÿÿÿÿþÿÿÿÿþÿÿüˆûÿˆÿÿþÿÿþ ÿÿÿÿÿÿ‚‚¬ wÿÌ"wÿÿÿÿó!ÿÿ3ÿÿÌÿwˆˆÌÿf"ˆfDÿˆ"D"ÿÿûÿÿÿÿþÿÿDÿˆ"D"ÿÿ"ÿÿÿÿþÿÿü ÿÿ"ÿÿÿÿþ ÿÿÌÿffÿÿü Dÿˆ"D"ÿÿþÿÿþ ÌÿwwÿÌÿÿ‚‚« Ìÿÿ»Ýÿîÿÿÿú»ÿDýÝÿÝ»þÿUÿÿ»Ýÿ™fÿÿ»îÿˆÌÿˆˆîÿ3ÿÿûÿÿÿÿþÿÿÌÿˆˆîÿ3îÿÌÝÿÿÿÿþÿÿü îÿÌÝÿÿÿÿþÿÿfÿÿ»þÿû Ìÿˆˆîÿ3ÿÿþÿÿþ UÿÿÌÌÿÿUÿÿ‚‚ª ˆÝÿîˆUÿÿÿú»ÿDý!3Ìÿ݈îÿ"fÝÿî™wÝÿ݈ªÿÿªDÿÿûÿÿÿÿþÿÿªÿÿªDfîîˆîÿUÿÿþÿÿü fîîˆîÿUÿÿþ ÿÿˆîÿˆÿÿû ªÿÿªDÿÿþÿÿý UÌÿÿÌDÿÿ‚‚—»D‚‚‚‰wÌ‚‚‚ˆD‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚ê‚D‚D‚DàDUªU»‚ˆ‚ˆ‚ˆáˆ»DªDˆ‚‚‚áˆDªDˆ‚‚‚áˆDªDˆ‚‚‚áˆDªDˆ‚‚‚áˆDªDˆ‚­"ˆªwêf™ˆ3‚ÕˆDªDˆ‚® "݈D™Ì3UÌwó™»DfîD‚ÖˆDªDˆ‚®™wDˆâÝf™Ý™"ö3ÝþD»‚ÖˆDªDˆ‚®»P»»ˆ§—üwÝ»3øD™ýÿ‚ÖˆDªDˆ‚®´õw»UùU݈ú3ÝþDª‚ÖˆDªDˆ‚¯ˆáñˆUª»÷ˆÝDúˆ»fˆÝþ3‚؈DªDˆ‚±"Ì™ˆˆfôDÝfúUˆˆNÌ»ÌÌ"‚ÚˆDªDˆ‚±ÝfíÝDøÌff»‚ÚˆDªDˆ‚²ˆ™ëDÝú"Ìý݂ڈDªDˆ‚³"ÝꈪúÝýî‚ÚˆDªDˆ‚³ªwè̈ú»ˆ™ª‚ÚˆDªDˆ‚´DÌ窪ü™ÿÿ™‚ÚˆDªDˆ‚´ÝDåˆÌ3‚ЈDªDˆ‚µwªãUÝ3‚шDªDˆ‚¶Ý"âD݂шDªDˆ‚¶™ˆà»f‚ÒˆDªDˆ‚·DÝß"݂҈DªDˆ‚·»fÞ™ffˆ3‚؈DªDˆ‚¸DÌÝ"îfˆîwª‚؈DªDˆ‚¸»DÜwˆU3݂؈DªDˆ‚¹D»ïDw3ëªU‚ÙˆDªDˆ‚¹»DñÌ»ˆÝˆìf™‚ÙˆDªDˆ‚ºf»ð™ˆÝ3í»‚ÙˆDˆÝÿÿÝ™ñDˆ‚ºÝDð»"þˆwìÝw‚ÚˆD»ˆ""ˆ»ñDˆ‚»f»ï»Uþ™UìÌ™‚ÛˆDÂÿûÿñDˆ‚»ÝDïDÝUwÝê™»ªU‚ÞˆD»ˆ""ˆ»ñDˆ‚¼f™íD»»™èˆÿîf‚߈DˆÝÿÿÝ™ñDˆ‚¼Ì"í"ˆªwå̈‚àˆD±fû»ÓÄ‚½0æDî 3݈Dª»DDéÌ™ûDD‚ëˆDˆªÿÿ™ñuÇ‚¾wæ×Ì»ðªfþ»‚Ý™ªÝ"é™»þ3ݪªî3‚ìˆDÂÿ»™™™ñuÇ‚¿3Ýw™ˆð»"þ ˆ÷3fª"»ÿîˆî ˆÌÌf3Ý‚ìˆDÂÿÿýÿñuÇ‚¿ˆˆ»DD»ðªwþÍÍýÿÌfªˆîfÝ3Ýý»3‚íˆDÂÿÌ""îñuÇ‚¿fîUªð"݈UªµÌþîD»þÝífÝ3ÿþÝ‚ý"3óˆD»ÿîª"݈ñuÇ‚¿ïÚDÌDï ˆˆf»ˆ"»ˆDªýîì3Ý·ª@ßÁªë"˜3wªîÌwóˆDÀ3"fðuÇ‚¿"ð¯î»Ué ™Ý̈î3ˆ™ë3Ý·ÙñÏ߈ïˆÿ»DžDˆ»î»ˆDñˆDªuǵDDŽ™wÞDî»Ì»ê Ì̈"™îˆó"™ÝˆU»Ìfþˆ©Uˆ»îªˆDìˆDªuǽ "fˆ»ˆUfݻ̪"îÜD"窈þ"ˆÝˆDˆˆDû"™îˆýDªÝ»»ÿˆþDw™»ˆµDÌݪw3èˆDªuǾ "݈fDwˆ™3w݈’Dª·ˆ»wwªÝÝ™UDªÝfø"Ý™ÌU3ˆÝf·î3äˆDªuǾÌU÷™ÝD”ˆ™»»™´fªÿÝfòDU"û3»Ýf¼3ˆˆªˆãˆDªuÇÀ3̈ôD̪"–èÒDˆÌùDˆw D»ÝfÂ"ˆÝÌwîÌâˆDªuLjîUñw݈˜3ñDþ»DûˆÌwˆÝ3üDˆ»ª"ê3 3™»ÿÝ»ªˆwDDÍ "wÌÝw"ÿ3âˆDªuÇÄU™îˆï™ÝDšˆÚþˆfü3Ýfªw™ÝݪwDˆî™3îˆî»îU¿ 3Dwˆ™»Ìÿ™"ÔfÌ݈3ü3áˆDªuÇó3ý"þDãDˆÝ»fêDÌ»"œݦˆÝ"üDˆýî3̈D"ûfÝ»Dñf»3Ý"¸fݪDÙfªîˆ3؈DªuÇóÌUD»ÝþˆîDðD»"úˆîý»ˆ"æwÝfž3ÌÌ»ˆÝfû3ÝþDÍÝföU»»ó»DDw3ˆw¶fÝ»DÞfªî™UÕˆDªuÇó3îÝ»Uý3Ì™ˆˆUûD3üˆÝˆ™ý3fˆÝˆß3îfŸwˆDf"ùªªDUõæ3ówîUô¿Ù»ˆÝÇw´fÝ»Dãfªî™UÒˆDªuÇòDDùfüˆªû»ÝÿÿˆÝwˆ»ÿ»ˆfÜ3îf Ì3ówªÖÖñ3̈ö·ç3øNÞªîÝÌ3ÛU»wçfªî™UψDªuÇÕDˆf3ÖÝ¢"Ýñ»™îˆÌ3÷»§ÿÌî¯ˆÞ ™™fÌw»ˆ"ßDÝ»þÿî»îÌ™wDõ"wªî™ÜDªuÇ¥™w¢wˆòU»ëDîˆøªU™fÞÿýÌÖˆDwÝ3×"Uˆ»îÌ™wDý"wÌ݈DɈDªuÇ¥"Ý¢»3óî3ꪻú3îUwÝÞÿýÑ»þf™Ò "Uˆ»î̪Ì̈3ƈDªuǤªf¤îòˆˆçwîDúDª»™Ý™ˆfçˆþ3»Í"D"ÈDªuǤD»¤U™óDÝå3݈Ò»ÝÌÌi»þw™ŒˆDªuÇ£Ý3¥ˆfóÝDäª™Ñ "ª»wˆÝŒˆDªuÇ£f™¥Ý"ôˆ™áªˆÍfˆw‹ˆDªuÇ¢î§"Ìô3îáÌfúUÝîÝU‚߈DªuÇ¢ˆˆ§wˆô»UßîUü3î3"ÝD‚àˆDªuÇ¢"Uõf»Ý3Ý3ýˆwþfˆ‚àˆDªuÇ¡™f©ˆÿôÝDÜ3Ý3þˆfþU™‚àˆDªuÇ¡DÌ©»ªõf»Ú UîDÌÌU‚àˆDªuÇ ÌU™«ÿwõÝDÙ ˆÝˆwî»Ýˆ‚߈DªuÇ f™ÿ¬3»õf»å""õî"þD‚ÞˆDªuÇŸÝÿ3­fˆõÝDç»þÌ3öw™‚ÙˆDªuÇŸˆÿw­ˆföf»æ»wfÌõîw҈ݻwˆDªuÇŸݪ­»"öÌDæîýÌ"ö̙Իˆ3ÌwˆDªuÇî®îú"D»åîýÌ"ô™Ì"Ö3Ìþ"݈DªuÇÌD¯fˆü3ÌÌݪ»D媙ˆ»òfî3×D»ýÿˆDªuÇf»¯Ì3üÝUˆ´»ä™îî»ñDîwùw»»ˆäÝ"wªù™»»Uûˆ»»wà3ª»ª"ñD»»™ôDª»ª"õˆDªuÇœÝD±"ÝUˆˆD3»ýÿDÍ»ªüˆ»3"ªˆäf݈ªÝ"ù̈"UÌUüª™"3Ìwâ3îfwîóDîUˆÝö3îUwîöˆDªuÇœf»±wÇÌUfÝU3»þýðD"݈îDýÿþÝä"fDùD»þD»ý"ÌþÝâˆfþˆˆó»Uþ™Uö™fþˆwöˆDªuÇ›»D² Ïñ3ÝÌf»×òUݻ̪Þ3݈þÝý»3ØfˆþÝýD»ýÿâªDþfˆó»"þˆwö»DþˆˆöˆDªuÇ›D»³"Ù»ýî3ÌÝîÝ€ó"Ý3™ˆÝ ª»"ÝD3î×"Ýw™üÝ"U»âwªþ»fó™ˆÝ3öw™þÌDöˆDªuÇš»D´ˆwî3Ýýfÿ3óU™þ"ÌÛwÝU3ÝUýfˆUÝf݈™Ìüf݈™Ý3á»»ˆÝ™òÌ»ˆÝˆõ»»ˆÝ™õˆDªuÇšD»´Ý"ˆÌffÝUýªîòD™þ"»Ú3̈Uf"þÌ™ˆ»ªÝ"wUù"fUßDw3ïDw3ò\’3ôˆDªuÇ™»3¶3ÌUˆŸãÌÿˆîfòÝfÌwÙ™ÌUw3þwˆþ»UŠUˆÝÌwóˆDªuÇ™ˆD¶ˆwþÝD»wfˆð3»ÿîˆÖUî»Ì݈U»Dþwˆõ"›3ˆ»î™f"ñˆDªuǶ3f3çˆD¶îþfˆþ3»»3ÙUUë ""fª÷Ñf"™fþ "Dwˆ™»»ÿÝ»ÿÌ»ªýˆf3D©"fªî»w3íˆDªuÇ» Dˆª»ÿ»ˆÝˆéˆf·3»ýfˆþ3¿ÝÙ3î™™î3æ"è·ÍßúÿÿÝÿ»™ˆwDDüDDfþˆ ÿÌ»Ýî»™ˆUDD´U™Ý̈UéˆDˆÝÿÿÝ™ñuÇõwîîÝUþ3ÌÝÿˆ× 3ªÿªwD"ªîï×ïU÷3ÝÝîˆùU™·ˆwý"Ý3ª·ˆÙÝDDÝå"™»ˆífîÝÝU3DˆˆÑõúøzÛ3ÝÝîˆä̪f"æˆD»ˆ""ˆ»ñuÇöUÌ"wÈñ\îDªˆðUªªf÷f»ªUýˆÝfü»ˆˆÈ»»"úîDÌwúîD¸Ì3üUî»îˆªDçwõ"ÌýÌ"äw»™DïDÌ"3î"þwÄøizø´"ÞîDÌwéfªªÌ™ãˆDÂÿûÿø"ûD™ÊöªU»ªD¯ï`‚´NÙ3õ#"DD—ÙiD̈DD0DDˆ¿u‚Ïw3‚ñ§P"3D3ÝýÝw݈ý 3D„§D"3»"DDþªÝ¹Ýù3îí"ûÿÌöîî仪DUÝUð™Uþwˆ»ª§¯ÝUUÁݪfáfˆþ3»ì fªî™‚ÿ¬DDåˆD»ˆ""ˆ»øDûˆ¾Òöªï¸úÆÝÝ3ˆáêÝ™÷$fÝ™ßÿÌ»î3îªÌü­ÏùᙪáòÏúå÷ê™îÁ݈ÝÝýݪÌ3ˆÝŸùõˆîf3»w݈̻wÿfºf™÷f™î ˆÿwDw™Ì݈wÌ3÷ˆª""ªˆå3ÌþD»ð™Uþwˆ3̈wD»DªU™îªfäfˆþ3»î U™î™U»ÌËüÌ™ÝDæˆDˆÝÿÿÝ™ñuÇöfÍ"Ýáò"ÝiÝ»™ˆ»fù*Ý33Ï媪w»3ÝD"îPÌDü­fÖþß"™ˆ»f€ù"ÌÑffÌýUݯ¿ˆ¦õ„Ý»ˆ3Ý™ˆˆ»º™U÷ªUïfÌ"ªªˆDþfÝD÷ˆÌ̈äDˆýîðUÌÝDDˆDÝ"î»UýU™îªfç"Ý3ªˆñU™î™Uþˆ™»pÝ33îæˆDªuÇõ—úéïÀëè»ÑúýõÆU™ù&DªˆˆîñDÈî"»"ާDß[ùñ»ªuýU»"UÈ×Õp"·ÕàþÌ3üÇêU»"ø»ï¿¥äÖ£D»þÝf™ˆ"Âwˆï øîï3î"÷3îf×"Ýfªïˆî»Ýf"Ýfêè݈ùU™îªféUî»ÝˆôDw™îªfü »"ÿˆw»DçˆDªuÇôÞ¿Êüiø»ªîÌÖψfD3ý(3Ìwˆ`ü§Éû»¿ÿ»´×¿úÄóü§ˆßøw»DÚׯâòNÝǯ»¦"ùˆŸÌè`fˆ3ŸU[üäìÖUªþ»f™»UwÝ3ÄÌ™Pïîùf™ð3Ý3ṏ׈̈ˆî3íDüˆÌˆˆîiôU™îªfê3ù Dˆ™ÌݪˆDù »Uî™UÌ"çˆDªuÇó?3ˆw¯™™—ÝDDòiˆˆª»Ýÿ»»ˆß¯[÷øçä÷²D"ª™ÏȈ"îɵŸîDUå÷"’ü¡Ý™Ý"Ý3ù"ÝD¯÷ñ3wÝâ©ÝwûÞDþÖêþDªÅfªU™ˆˆùªUñÌfó™Ì"Ø3ˆwå3ˆwðU™îªfæ"wÌݪˆDôUÌ3ˆÚá ˆ»æˆDªuÇð ˆÝ݈3ªÿ»Dú "DUÏõëÚî»UþˆÝá×îÌ€ˆÝ̈D»ÿäëîª\Íþª3ˆDø3ªÿãõñª"ì"ªîðÁüuÏýÿňfˆwD»úîñÌwðfÝU¡U™îªDë3ˆÝ̈3îU»î×Ò݈æˆDªuÇÀUªþwÝUþÝ3ôfÝþⵈªwô[üiïþD»Åw™»3ˆˆúf™ñˆ™î3Ì»îÿÝ™U¥wªUøˆûDþU™Ý»w"ȈDªuÇ¿ »ªDˆÝNÝwU»™ò »f{þÝ«õôûfÏ»UwÝDÄÌŸòˆîúªUòDÝë"f™ÝˆÑDDû"D"á"úˆwüˆªü»ݪfňDªuǾw™ˆ"ˆ™fñ D»ªÇÖ£»Dü3Ìf™ˆ3íֈùîñÌDåÝ"Ô"Ì̪î3þˆÝ»ÝˆŽˆDªuǤ»D»þˆwûÝ¿Ì3øUªòwªãˆ™Ô»w3îf»ÌDˆDªuǤ D»ªzˆªwÝ3û™ˆÀ3Ý÷ˆfóÝ"ãî"Üfªˆ"þîý»DªDþwˆÝ3ˆ™f·ˆDªuÇ£»UNü·ŽèãúUÿÀˆw÷Ý"óªˆáf™Ý ™ªDfÝ3îþÌ"™Uþˆˆã"DþDîfU»ˆæD"ÕˆDªuÇ£Dݪpˆˆf»DûÝ3Áîø3ÌóDÝßÝ3ß3ÌþUªˆ™ˆ»DÝ3DÝ"å»Ì»ÝU»DþÝ3éUî»Ì»×ˆDªuÇ¢»ÖwÌfúˆfÂUªûD»ÿ»›ˆóÝDßf­ªÿ»DãfˆýÝþˆîî™þUÌÿÌD䈙3Ý"ÿý™DêÝ3ˆ™×ˆDªuÇ¢3÷à"wú@úfˆÂªUü"ÝDDû[öwÇÀÞ"ük3Ý3ä3ÝþfªÔÝþ™D»DÝ"êD™þÝ׈DªuÇ¡éîˆU»ÖUú"îˆ3Äîûˆˆ3êˆ÷3î—ï҈߈LjU™ã™»fˆÝ3ÔÌ"þªDDÝwf̈éDªþ"Ì׈DàøÿÔuÇ¡Ä刈fˆfùÅ3»ûˆfª»™÷ªfªwÝ3àˆ‰îDªâfˆˆ"Ó w»fÝ"ˆˆUçÝf»ˆ×ˆDªuÇ¡ˆÏˆî"ù»DîÅwˆûUÌîÄf÷îÜDàDÌŸffÆf¯ˆîÿª"á"ªÿîˆÖˆDÛ3ÑuÇ¡ÄûŸîfþ D„‰DDw@ÌÆ ªD"UUˆÝ»ó™û Df"¿æ3ÌD߈æÿøêˆå"UU‚ùˆDÝUîÿÝ3ÔuÇŸ´§"Ì×ï÷ôì݈ªDÆ îDÝ™™î33§„ü Ì»ˆÝf§÷UDª»Ý"Ž3»æDÝ™™î3‚úˆDÝÝU»DÝÔuÇ ˆÿüß33êñÿˆø¦w̧ˆÇ DÌî3DÝÝ"ü ™ˆÝNÝ@™»wØÝçî3DÝ‚úˆDÝÿ»ÿÔuÇ¡wªwÙîßê™ß§u»ˆ§ªÇwˆ3»ýÌ"Ý™ˆDþ»þˆàUÔwîUé3»ýÌ‚úˆDÝ»"»ˆ»ÔuÇ¡»3»ÍÑ»ŽˆñÖ‚™ˆ‰ÌǪDÝþ ÿ¿çUfÝU»DþÚÀÒ3̈éÝþÿ‚úˆD݈Ýÿª"ÔuÇ¡»"fÛÆUÏò€øüó@wîîÇîþˆª""ªˆó`"ÝUÌD—ø"Ñ™»êˆª""ªˆ‚úˆDªuÇ¡ˆª3üñDUÄùûÿûê¯"ªDÉ 3È»îÌ̈DúýîþU»ÝրλwêˆÌ̈ψîî»3±ˆDÜf3ˆÔuÇ ™Ý»î»„Ý»Ý∻f™É€ïfªˆýDù3ÝûîÍ»»·ˆªfݲˆD݈ˆ"ª™ÔuÇŸ3Dª3ÝýÝîÊÀÆþ"Ìýˆ¶ÝfwîUü"ÌËwîU¸Ì"þªD²ˆDÝÿÿÔuÇ›Ý"ÝýÌ™fÊòŸþÝýÌ"Dˆˆ3ü"»™Ê3̈ºÝþ™D²ˆDÝÿÿÔuÇ› ˆwÌffÌþ3ÌË"Ïî3™ˆþ"Ý÷wÿwɈÌ3»ˆ™3ݲˆDÝ™™™™ÔuÇ›3ઙiýÌ3ýÌ3ÌfˆDî»Ìªþfˆ÷ªÿDÇUîw¼ªÝ»îD±ˆDÝ™ÿÿªÔuÇ›™îiUÝU"3ûwˆÌ™U3"üªU÷ÝÿŪ»"¼"3¯ˆDÜf3ˆÔuÇœ3Ýwª3ÌùîÍîøî÷"ÝÌÃwÝUéUªf˜3UˆªÌ™óˆD݈ˆ"ª™ÔuÇœDª"ÿDÿø™fÎUªøD»÷fˆDÂ3̪ˆDðD™îªˆˆýD£ 3UˆªÌÿ»™ˆD"òˆDÝÿÿÔuÇœ"ݪDDªøUªÎˆføˆw÷™f¿ˆ™ªÝÌ™f"÷3ˆÝªfD™fˆÌîÌ™ˆ™3® ˆªÌwDìˆDÝÿÿÔuǸD»ÝîÌ3êw̶ÇÝ3÷ÝNDÐÌ"øÌ3÷îÌ"D"ó"fˆÌî»»ˆ3þDÝÌw"ý3»ˆf"Ì™3ÝfÌÌf±»ˆDæˆDÝ™™™™ÔuÇ¿3ˆ3þˆÝUDîˆêDï0÷çç»îDÓÝøÝ÷f™ÌˆÝ»ÝˆïDDwÌ݈»»DóÌîf3™Ý™3Dwˆw3¹U»ãˆDÝ™ÿÿªÔuÇÀD݈Ìÿ»ÝªýªÌ"Ꙉ÷ª‰Ý3îÓf™øfˆ÷ªUÍUÌ»fì"wfðˆü f»»ˆUˆ»îªf¾3fÝ3ãˆDØwÔuÇÂwî3þ33ùfÝwì’ßDøÿ»D»DÔ™føªUøî̈fþU™ÈUªÝfÄU™îªÿ™âˆDÝwýÿîÔuÇÇfˆ»Ýݪò"»ªï3îˆçÙˆùîfˆÌ3ÔÝùî÷wˆÌˆwþfˆÆ"™îˆÊ fªî™fîâˆDÝî3ˆw™ÔuÇÌ"ýˆ™™wDìˆîUðªffŸÝ3úˆ»PªwÌÔ"Ìøf™÷Ì3Ì"îD3Ý3Ä"ˆî™"Ï"wÌÝ™UüáˆDÝÿDDîÔuÇóÌwDUˆªˆ"åD™îˆUþˆ"é3̈òîþìßÍwúˆßÿªÔfˆø™fø"ÝÊDÌÿÌUÁwݪDÔ"ˆÝ̈3؈DÝî3w3ÿìˆÝÿÿÝ™ñuÇó "ª»ˆwDwÝ̈fDò 3îªfˆª»ÿ»»fáˆÝ3ó»DˆèÖ[ªˆùÌ"ÓªUþDw3þÝ"øˆw‚fÌ»fØDªÝˆ"ÕˆD݈ˆ™ÿˆì»ˆ""ˆ»ñuÇë 3wˆ»»ÿÝ»™ˆwD3ûDÝ3fˆfDÛD݈ôDîUòäÖîù™UÔ î»»ˆÝ™"Ý÷Ý"‚D»ÝwÞfÝ»fÒˆDÜ"èÿûÿñuÇä 3Dwˆª»Ýÿ»»ˆˆî3ÔªÌ3õ3¦ñ›»Ì"úwˆÔf™w™þÌDf™ý"»ÝîªP»‚ü"™îˆ"â"ˆî™3ЈD»ˆ""ˆ»ñuÇÜ"DUˆ3ÑUîfôÝ3»D3îùDÝÕ»D»Dþˆˆ™fýÌf™Öf‚úˆÝ™DèUˆÌÝwΈDˆÝÿÿÝ™ñuǦî"õDÝ·ÇÝUøÿˆÖ3Ýþ™fþˆwÝ"þ"Ìýÿ‚÷f̈3íDˆ»îªf"ˈDªuÇ¥ˆˆô"„à"÷DîØˆîˆþ3îUwî@Ìý3»þUù‚õˆ»îÌ™ˆ÷Dwþˆªî»w3LjDªuÇ¥îóÌ3ö™ˆØÌÿ3ýDª»ª"ˆwüÌfÏÁ‚ñ"Dˆªü»™úˆDÈDˆªÿÿ™ñuǤˆˆ÷"ª»Íáãª"ø"îw»»ˆß"ÿÌ÷Ý"ü3ÌÌÝú ‚¡ˆDÂÿ»™™™ñuǤÝ3ù Ýw@óóåwîø™ÇÌ3"™ªßwªUø"Ìù"`ª‚ ˆDÂÿÿýÿøfû»ÚÕ£UÌù zˆ™fUê"ˆwø"ý þÝ"àÌ3"úwwø™f‚ ˆDÂÿÌ""îñuÇ¢ªˆü 3Ýç謹DDßwˆˆ÷ÿˆþ»Dá"Ý3ÝÌݪýÌ"øî‚ ˆD»ÿîª"݈ñuÇ¢Ý"ý ݤÍê´¿™™’ÌÌD÷Äó3ÝàˆˆÝU™ˆþ"ÝøUªÍˆ»ˆ"‚؈DÀ3"fðuÇ¡w»þ DâªD¯úùììúÁö3øÏˆÝUàÝ"DªþîþwˆøˆfÎ݈DwÝ"‚ÙˆD¾fîuÇ »fiõþfûDDw„Ìõ0óp"àD»D»þÝþ»3øˆDÎw™þwˆ‚ÙˆD¾»îuÇ  "î»DóU™ÿýÌDõ™wß ™fÝU3êÿÝfî÷Ì3ΈwþD»‚ÙˆD¾»îuÇŸ ˆ»"ãÏÌîÆ¯þ"·ÏUöDˆàÝ3ÌÒüÀ"Ì‚ªø"ÝÍfªþˆw‚ÙˆD¾»îuÇžÌẅÝ3DÝô̈÷Dˆàf™ü€ˆþU×wøwˆÌªªˆ™Ì‚ÙˆD¾»îuÇžÝwDˆw"þ»Dª`Ý"ø"ÝáÌ3üˆˆþDñ3øÝ"Ëfˆf‚׈D¾»îuÇžî"ûD»ÿª"f™ªD÷ˆ™â"Ýû3ÝÀõø"Ì‚ˆD¾fîuLjwü 3îU¿’î îÝ3÷Ý"ãˆwúfî»ÝȈøwˆ‚ˆDªuÇ3Ìü™fDî·›ì™õf»ãÝ"ùi"ªDøªD‚ˆDªuÇœÝ"ý»D3ÇÏÌUôÌDåf™ùUî»î÷÷ˆDªuÇœˆwýw™þÌDf™ôDÝåÌDú"î"@ñfýUÌÿªiª‚œˆDªuÇœ3Ìü»»ˆÝˆÝôªfçD»ùˆˆw§ªþDÝ3U÷€‚œˆDªuÇ›Ý"üDw3þ™fô"ÝèÝDùwˆª‚ªþªUþçz‚œˆDªuÇ›ˆwöUªóªU鈈ø"Ý3ßÏUþ»D"œˆDªuÇ›3ÌõÝ"ôUªêDÝ÷UîÒÿˆýw™pñ3‚œˆDªuÇšÝ"ùUˆfˆwóÝëÝDô™ˆûªÌªø¤‚›ˆDªuÇšˆ»"ûª»ˆªÖÏóÈ숈ô"ÿUDü3Dð‚›ˆDªuÇš"ÿDüf»þˆã"öfÝãêˆîDÝôfî—Ý»Ýfý3»‚šˆDªuÇ™ÌDüˆwþDÚˆ÷"î"U¯ªfðÝD󪙻"Ý"þˆw‚šˆDªuÇ™ˆDüwˆþw—Ý÷wˆîP»ðˆˆòîªDþˆˆþÌ3‚šˆDªuÇ™w™ü݈DwÝ"»Døfˆˆ§»ñDÝóDªªUþˆˆî‚™ˆDªuÇ™î"üˆ»™"f™ø"ÝD ô£òÝDò ˆwUÌ"3Ý"U™‚™ˆDªuǘˆÌüˆ»™"î÷DÝÝîÌfóˆˆñÌ"wîîÝUþ™f‚™ˆDªuÇ—™ˆþ ݈DwÝ"™fóÌfõDÝò"Ý÷Ý"‚™ˆDªuÇ—Ýþw™þwˆUˆò3îwDøÝDñfˆø3Ì‚˜ˆDªuÇ– »""»ÿõˆD»D»ñ3ˆ»»"úˆˆðªUø™ˆ‚˜ˆDªuÇ–wˆÝff¯»ˆˆwÝDïUîˆüwÝô3ˆˆPî÷Ý‚˜ˆDªuÇ–"òªªÄçªÌU»îªÌ3»»ôUÝwfêÁø"Ý‚—ˆDªuÇ•À»þ`ïfüÌìUî»îwòî"¿òøf™‚—ˆDªuÇ•`ï3ˆˆûÌ3ìDðÝ"Ý»Dùˆf‚—ˆDªuÇ•U§î»Ì»þUª»¶™úˆ»ª3åî"wîøÌ"‚—ˆDªuÇ•UªD"ýfÌU3¯óû̈Dfî3æfÝfÝÖˆù"Ý‚–ˆDªuÇ”îûÝ"þñzüU™þfªåDŸçUøfˆ‚–ˆDªuÇ”™UûÿýÈæüˆˆþ3»äˆf÷ªU‚–ˆDªuÇ”UªûªUî¿Dý3ÌþˆˆäÝ÷î‚•ˆDˆÝÿÿÝ™ñuÇ”î"D3Ýff™ü™Ìˆ™Ìå3Ì÷3»‚•ˆD»ˆ""ˆ»ñuÇ“ˆ™€î»Ýˆfw"î"ü3ˆfäˆw÷ˆw‚•ˆDÂÿûÿñuÇ“3ÿê»fûˆˆÛÝ"÷Ì3‚•ˆD»ˆ""ˆ»ñuÇ’ïÑþDªû"ÝÜD»÷Ý‚”ˆDˆÝÿÿÝ™ñuÇ’§÷þU™úªUÝ™f"3ùf™‚”ˆDªuÇ’"øi"ÝDúU»Þ"ðÌÌ»Ì3û™U‚”ˆDªuÇ‘§ãÿÝUøÝ"߈ßwUÌûÝ‚”ˆDˆÝÿÿÝ™ñuÇ‘DªõwˆßÝðýÌ"þÌÌ‚“ˆD»ˆ""ˆ»ñuÇîúDýD™àUªîýÌ"þDÿˆ‚“ˆDÂÿûÿñuǪfýfÝ»îˆþÝ"áªUª™ˆ»ýwÿD‚“ˆD»ˆ""ˆ»ñuÇfÿþ DÝÌUf™â"Ý™ÿîªý™î‚’ˆDˆÝÿÿÝ™ñuÇ "ÿUˆŽD"U™þÝ"ò3D3õˆˆö»3‚’ˆD±Dûˆ¾Ò ˆ™"ïÑ™Ýffˆþf™óˆÝˆÌªöÝ"öÿ‚‘ˆD±"ûD~ž ݪ’Ý"3áßDþî"õD̪wøUªö3»‚‘ˆDªDˆŽª3ÿkùõý¤üˆ™õˆfþDªø™föUˆ‚‘ˆDÂÌúÿñDˆŽ fˆÝ Ýw"àã"ýî"öˆˆþfˆùÝöˆw‚‘ˆDÁ»DìDˆŽ ݈ߗˆ»ˆˆüˆˆö"ÝfDî3ùw™õ»D‚‘ˆDÁf3ìDˆª3¿ÝÝ™Dªüîõ3ªî»Dù"Ý"õÝý»ÝÝ»‚šˆDªDˆfˆf»þªwû™fó3ª»™ü»wõÝý»wˆ»‚šˆD¾fîDˆÝ™»ˆ»»úU»ô3îU3ˆÝþw»ôDªþÌýˆD¾»îDˆŒª33ˆDøÝDõ™fþ™f"Ý"ôˆˆþ"ÌýÝ‚šˆD¾»îDˆŒfˆôD»õ»Dþˆˆ»UóÿUýÌfˆ»‚šˆD¾»îDˆŒ"ÝûDˆ™Uý»DöˆˆþÌ3wªúwªˆ"þUÿ"ý3ÌÌÝ»‚šˆD¾»îDˆ‹Ì3ýUÝfU»ˆþDÝ÷ ̪ˆÌ™"Ýû »ªDˆÝ"ˆwú‚˜ˆD¾»îDˆ‹wˆýÝ3Ýþˆ»õUˆ3ÌUûUªþf™Ý"‚ˆD¾fîDˆ‹"Ýýÿý»DýªˆòˆªúˆˆþD»"Ì‚ŽˆDªDˆŠÌfþÝ3îýÝDô3îúU»þw™wˆ‚ŽˆDªDˆŠwˆþUîwfÌwû3îD÷ÌUøªªUˆî"ªU‚ŽˆDªDˆŠDˆý3ˆˆDù£ÿñìˆúˆªöfˆˆî‚ˆDªDˆŠDÌó"Ý"¿èzüfÝ™ñDª‚ˆDªDˆ‰wÌóˆˆþ›õwþwÌ3ïˆw‚ˆDªDˆˆ»ówˆþUµ»ªDªÌï3DªDˆˆ»ô "ÝD"ÌUw»wíÌU‚ŒˆDªDˆ‹ˆÝîÏ€û wÝÿª"wæÿùáwû"ªÿÝwýˆîî™ýˆ™‚‹ˆDªDˆŒˆ»’ôü wÌ"fÝwÌwÝüÝfÌwˆ™ˆ»þ3Ý‚‹ˆDªDˆŒÝþøNý»3þ™UÌ"þªDüDªþ3»îþÌ"Uˆ‚ŠˆDªDˆŒÿýß›ý»"þˆfÝþ™DüUˆþÌîý»3ˆf‚ŠˆDªDˆŒªw3ðÝý ˆ™‰úÄψ3Ý"ü"Ý3™ˆ»w3îþÝ"‚ŠˆDªDˆŒÌ̪îDÌ3þ »Ìßõ„"¯ßÌ»Ýfúfݻ̻"þÌ÷„"Ý‚‰ˆDªDˆŠ3Dwˆü3ÿ þÝ@DøD3üÖÀˆªÌfˆ‚‰ˆDªDˆ†"ÝûÝý»3îw™þªw™U‚‰ˆDªDˆ…ªDüÝD3îí™DþDˆDªDˆ…f™ü3ÝU툈þˆ·™‚ˆˆDªDˆ…îûUf"ìîwDˆîÏD‚ˆˆDªDˆ„ªUñˆîÿª"÷ˆ»ˆ@Ý‚‡ˆDªDˆ„U™òˆ»wÌó™w‚‡ˆDªDˆƒîóÝþÌDõˆDªDˆƒ™fóîýªDõf™‚†ˆDªDˆƒU»ó™ˆ3ÝõÌD‚†ˆDªDˆ‚ªwô»Ì»îDõ3Ý‚…ˆDªDˆ‚î3ó3Dó™w‚…ˆDªDˆ‚UÌãî‚…ˆDªDˆ‚ªˆåUª‚„ˆDªDˆ‚î3æ™f‚„ˆDªDˆ‚þDªæÝ‚„ˆDªUÝ¿»¿÷ÂìýýìõðíìïûÓì÷½ìõð½ìô¾»Ý3‚份ˆD½»½ˆD½»‚Ÿ»½ˆD½»½ˆD½»‚Ÿ»½ˆD½»½ˆD½»‚Ÿ»½ˆD½»½ˆD½»‚Ÿ»½ˆD½»½ˆD½»‚Ÿ»½ˆD½»½ˆD½»‚Ÿ»½ˆD½»½ˆD½»‚Ÿ½¼½¼‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚Çîþ»ÿ»Ç fÝÿÌ3ˆîîˆÇ 3ÌÿÿÌ3ˆîîˆÅ3îþ»ÿ»Çýÿˆˆîª"ˆÝÿþˆˆˆˆÇ îDˆÝˆªªˆÈ ÝwU݈ªªˆÇ™ÿþˆˆˆˆÈ3Ýüˆªªˆ‚«DDÿþÝ""ÝÈ"fþÿÌ33ÌÈDþDîÌ33ÌLj3ÿþÝ""ÝÈ DÌÌÿªÌ33Ì‚¨ÿþÿþÿÄw™ÿýÿƈÿÝ3ÿýÿÈUˆÿþÿþÿȈÌ"™ªÿýÿ‚¨ÿþÿþÿÆ3»™ÿýÿÄw™ÿýÿÉ"»ÿþÿþÿÄÿÿýÿ‚¨ÿþÝ""ÝÇfÌDþÝ33ÝÈf"þÿÝ33ÝɈüÿˆÝ""ÝÄîÝ33Ý‚¨ÿþ™ˆˆ™ÈÝýˆªªˆÈ ™ªˆ»ˆªªˆÅÿþ™ˆˆ™È ™™™™ˆªªˆ‚¨ÿþ»ÿ»ÈDüÿ™ÿÿ™È ªÿÿª3™ÿÿ™Åÿþ»ÿ»È ªÿÿ™™ÿÿ™‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚ðÿ‚‚‚Šÿˆ‚‚‚Šÿ‚‚‚ˆˆÿ»ÿÿ»ÿîªîÿˆ»ÿÝU‚‚‚›ÿÿÿU3ÿˆDÿˆ"Uî‚‚‚› ÿÿÿÿþÿÝþ»ÿ3‚‚‚œ ÿÿÿÿþÿÿ‚‚‚— ÿÿÿÿþÿªˆDÝ‚‚‚› Ìÿÿÿÿþÿ"»ÿÝ3‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚é€ endstream endobj 16 0 obj 18098 endobj 17 0 obj << /Title (motovate_bgp.pdf) /CreationDate (D:20110401184102) /ModDate (D:20110401184102) /Producer (ImageMagick 6.5.8-4 2009-12-15 Q16 http://www.imagemagick.org) >> endobj xref 0 18 0000000000 65535 f 0000000010 00000 n 0000000059 00000 n 0000000118 00000 n 0000000300 00000 n 0000000383 00000 n 0000000401 00000 n 0000000439 00000 n 0000000460 00000 n 0000023970 00000 n 0000023991 00000 n 0000024018 00000 n 0000026945 00000 n 0000026966 00000 n 0000026982 00000 n 0000027003 00000 n 0000045294 00000 n 0000045316 00000 n trailer << /Size 18 /Info 17 0 R /Root 1 0 R >> startxref 45499 %%EOF tgp/vignettes/tgp2.Rnw0000644000176200001440000032706413724172614014443 0ustar liggesusers\documentclass[12pt]{article} \usepackage{Sweave} %\SweaveOpts{eps=TRUE} %\usepackage[footnotesize]{caption} \usepackage{caption} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amscd} \usepackage{epsfig} \usepackage{fullpage} %\renewcommand{\baselinestretch}{1.5} \newcommand{\bm}[1]{\mbox{\boldmath $#1$}} \newcommand{\mb}[1]{\mathbf{#1}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mr}[1]{\mathrm{#1}} \newcommand{\mbb}[1]{\mathbb{#1}} %\VignetteIndexEntry{new features in tgp version 2.x} %\VignetteKeywords{tgp2} %\VignetteDepends{tgp,maptree,MASS} %\VignettePackage{tgp} \begin{document} \setkeys{Gin}{width=0.85\textwidth} <>= library(tgp) options(width=65) @ \title{Categorical inputs, sensitivity analysis,\\ optimization and importance tempering\\ with {\tt tgp} version 2, an {\sf R} package for\\ treed Gaussian process models} \author{ Robert B. Gramacy\\ Department of Statistics\\ Virginia Tech\\ rbg@vt.edu \and Matt Taddy\\ Amazon\\ mataddy@amazon.com } \maketitle \begin{abstract} This document describes the new features in version 2.x of the {\tt tgp} package for {\sf R}, implementing treed Gaussian process (GP) models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; %multiresolution (treed) Gaussian process modeling; sequential optimization of black-box functions; and a new Monte Carlo method for inference in multi-modal posterior distributions that combines simulated tempering and importance sampling. These additions extend the functionality of {\tt tgp} across all models in the hierarchy: from Bayesian linear models, to CART, to treed Gaussian processes with jumps to the limiting linear model. %, except in the case of multiresolution models which apply only %to the (treed) GP. It is assumed that the reader is familiar with the baseline functionality of the package, outlined in the first vignette \cite{gramacy:2007}. \end{abstract} \subsection*{Intended audience} \label{sec:discaimer} The {\tt tgp} package contains implementations of seven related Bayesian regression frameworks which combine treed partition models, linear models (LM), and stationary Gaussian process (GP) models. GPs are flexible (phenomenological) priors over functions which, when used for regression, are usually relegated to smaller applications for reasons of computational expense. Trees, by contrast, are a crude but efficient divide-and-conquer approach to non-stationary regression. When combined they are quite powerful, and provide a highly flexible nonparametric and non-stationary family of regression tools. These treed GP models have been successfully used in a variety of contexts, in particular in the sequential design and analysis of computer experiments. The models, and the (base) features of the package, are described the vignette for version 1.x of the package \cite{gramacy:2007}. This document is intended as a follow-on, describing four new features that have been added to the package in version 2.x. As such, it is divided into four essentially disjoint sections: on categorical inputs (Section \ref{sec:cat}), sensitivity analysis (Section \ref{sec:sens}), statistical optimization (Section \ref{sec:optim}), and importance tempering (Section \ref{sec:it}). The ability to deal with categorical inputs greatly expands the sorts of regression problems which {\tt tgp} can handle. It also enables the partition component of the model to more parsimoniously describe relationships that were previously left to the GP part of the model, at a great computational expense and interpretational disadvantage. The analysis of sensitivity to inputs via the predictive variance enables the user to inspect, and understand, the first-order and total effects of each of the inputs on the response. The section on statistical optimization expands the sequential design feature set described in the first vignette. We now provide a skeleton which automates the optimization of black-box functions by expected improvement, along with tools and suggestions for assessing convergence. Finally, the addition of tempering-based MCMC methods leads to more reliable inference via a more thorough exploration of the highly multi-modal posterior distributions that typically result from tree based models, which previously could only be addressed by random restarts. Taken all together, these four features have greatly expanded the capabilities of the package, and thus the variety of statistical problems which can be addressed with the {\tt tgp} family of methods. Each of the four sections to follow will begin with a short mathematical introduction to the new feature or methodology and commence with extensive examples in {\sf R} on synthetic and real data. This document has been authored in {\tt Sweave} (try {\tt help(Sweave)}). This means that the code quoted throughout is certified by {\sf R}, and the {\tt Stangle} command can be used to extract it. As with the first vignette, the {\sf R} code in each of the sections to follow is also available as a demo in the package. Note that this tutorial was not meant to serve as an instruction manual. For more detailed documentation of the functions contained in the package, see the package help--manuals. At an {\sf R} prompt, type {\tt help(package=tgp)}. PDF documentation is also available on the world-wide-web. \begin{center} \tt http://www.cran.r-project.org/doc/packages/tgp.pdf \end{center} Each section starts by seeding the random number generator with \verb!set.seed(0)!. This is done to make the results and analyses reproducible within this document (assuming identical architecture [64-bit Linux] and version of {\sf R} [2.10.1]), and in demo form. We recommend you try these examples with different seeds and see what happens. Usually the results will be similar, but sometimes (especially when the data ({\tt X},{\tt Z}) is generated randomly) they may be quite different. \section{Non--real--valued, categorical and other inputs} \label{sec:cat} <>= seed <- 1; set.seed(seed) ## seed zero problematic with null btlm map tree below @ Early versions of {\tt tgp} worked best with real--valued inputs $\mb{X}$. While it was possible to specify ordinal, integer--valued, or even binary inputs, {\tt tgp} would treat them the same as any other real--valued input. Two new arguments to {\tt tgp.default.params}, and thus the ellipses ({\tt ...}) argument to the {\tt b*} functions, provide a more natural way to model with non--real valued inputs. In this section we shall introduce these extensions, and thereby illustrate how the current version of the package can more gracefully handle categorical inputs. We argue that the careful application of this new feature can lead to reductions in computational demands, improved exploration of the posterior, increased predictive accuracy, and more transparent interpretation of the effects of categorical inputs. Classical treed methods, such as CART \cite{brei:1984}, can cope quite naturally with categorical, binary, and ordinal, inputs. Categorical inputs can be encoded in binary, and splits can be proposed with rules such as $x_i < 1$. Once a split is made on a binary input, no further process is needed, marginally, in that dimension. Ordinal inputs can also be coded in binary, and thus treated as categorical, or treated as real--valued and handled in a default way. GP regression, however, handles such non--real--valued inputs less naturally, unless (perhaps) a custom and non--standard form of the covariance function is used \cite{qian:wu:wu:2009}. When inputs are scaled to lie in $[0,1]$, binary--valued inputs $x_i$ are always a constant distance apart---at the largest possible distance in the range. A separable correlation function width parameter $d_i$ will tend to infinity (in the posterior) if the output does not vary with $x_i$, and will tend to zero if it does. Clearly, this functionality is more parsimoniously achieved by partitioning, e.g., using a tree. However, trees with fancy regression models at the leaves pose other problems, as discussed below. Consider as motivation, the following modification of the Friedman data \cite{freid:1991} (see also Section 3.5 of \cite{gramacy:2007}). Augment 10 real--valued covariates in the data ($\mb{x} = \{x_1,x_2,\dots,x_{10}\}$) with one categorical indicator $I\in\{1,2,3,4\}$ that can be encoded in binary as \begin{align*} 1& \equiv (0,0,0) & 2 &\equiv (0,0,1) & 3 &\equiv (0,1,0) & 4 &\equiv (1,0,0). \end{align*} Now let the function that describes the responses ($Z$), observed with standard Normal noise, have a mean \begin{equation} E(Z|\mb{x}, I) = \left\{ \begin{array}{cl} 10 \sin(\pi x_1 x_2) & \mbox{if } I = 1 \\ 20(x_3 - 0.5)^2 &\mbox{if } I = 2 \\ 10x_4 + 5 x_5 &\mbox{if } I = 3 \\ 5 x_1 + 10 x_2 + 20(x_3 - 0.5)^2 + 10 \sin(\pi x_4 x_5) &\mbox{if } I = 4 \label{eq:f1b} \end{array} \right. \end{equation} that depends on the indicator $I$. Notice that when $I=4$ the original Friedman data is recovered, but with the first five inputs in reverse order. Irrespective of $I$, the response depends only on $\{x_1,\dots,x_5\}$, thus combining nonlinear, linear, and irrelevant effects. When $I=3$ the response is linear $\mb{x}$. A new function has been included in the {\tt tgp} package which facilitates generating random realizations from (\ref{eq:f1b}). Below we obtain 500 such random realizations for training purposes, and a further 1000 for testing. <<>>= fb.train <- fried.bool(500) X <- fb.train[,1:13]; Z <- fb.train$Y fb.test <- fried.bool(1000) XX <- fb.test[,1:13]; ZZ <- fb.test$Ytrue @ A separation into training and testing sets will be useful for later comparisons by RMSE. The names of the data frame show that the first ten columns encode $\mb{x}$ and columns 11--13 encode the boolean representation of $I$. <<>>= names(X) @ One, na\"ive approach to fitting this data would be to fit a treed GP LLM model ignoring the categorical inputs. But this model can only account for the noise, giving high RMSE, and so is not illustrated here. Clearly, the indicators must be included. One simple way to do so would be to posit a Bayesian CART model. <<>>= fit1 <- bcart(X=X, Z=Z, XX=XX, verb=0) rmse1 <- sqrt(mean((fit1$ZZ.mean - ZZ)^2)) rmse1 @ In this case the indicators are treated appropriately (as indicators), but in some sense so are the real--valued inputs as only constant models are fit at the leaves of the tree. \begin{figure}[ht!] <>= tgp.trees(fit1, "map") @ <>= graphics.off() @ \centering \includegraphics[trim=0 100 0 25]{tgp2-cat-fbcart-mapt} \caption{Diagrammatic depiction of the maximum {\em a' posteriori} (MAP) tree for the boolean indicator version of the Friedman data in Eq.~(\ref{eq:f1b}) using Bayesian CART.} \label{f:fb:cart} \end{figure} Figure \ref{f:fb:cart} shows that the tree does indeed partition on the indicators, and the other inputs, as expected. One might expect a much better fit from a treed linear model to this data, since the response is linear in some of its inputs. <<>>= fit2 <- btlm(X=X, Z=Z, XX=XX, verb=0) rmse2 <- sqrt(mean((fit2$ZZ.mean - ZZ)^2)) rmse2 @ Unfortunately, this is not the case---the RMSE obtained is similar to the one for the CART model. \begin{figure}[ht!] <>= tgp.trees(fit2, "map") @ <>= graphics.off() @ \centering \includegraphics[trim=0 100 0 25]{tgp2-cat-fbtlm-mapt} \caption{Diagrammatic depiction of the maximum {\em a' posteriori} (MAP) tree for the boolean indicator version of the Friedman data in Eq.~(\ref{eq:f1b}) using a Bayesian treed linear model.} \label{f:fb:btlm:trees} \end{figure} Figure \ref{f:fb:btlm:trees} shows that the tree does indeed partition, but not on the indicator variables. When a linear model is used at the leaves of the tree the boolean indicators cannot be partitioned upon because doing so would cause the design matrix to become rank--deficient at the leaves of the tree (there would be a column of all zeros or all ones). A treed GP would have the same problem. A new feature in {\tt tgp} makes dealing with indicators such as these more natural, by including them as candidates for treed partitioning, but ignoring them when it comes to fitting the models at the leaves of the tree. The argument {\tt basemax} to {\tt tgp.default.params}, and thus the ellipses ({\tt ...}) argument to the {\tt b*} functions, allows for the specification of the last columns of {\tt X} to be considered under the base (LM or GP) model. In the context of our example, specifying {\tt basemax = 10} ensures that only the first 10 inputs, i.e., $\mb{X}$ only (excluding $I$), are used to predict the response under the GPs at the leaves. Both the columns of $\mb{X}$ and the columns of the boolean representation of the (categorical) indicators $I$ are (still) candidates for partitioning. This way, whenever the boolean indicators are partitioned upon, the design matrix (for the GP or LM) will not contain the corresponding column of zeros or ones, and therefore will be of full rank. Let us revisit the treed LM model with {\tt basemax = 10}. <<>>= fit3 <- btlm(X=X, Z=Z, XX=XX, basemax=10, verb=0) rmse3 <- sqrt(mean((fit3$ZZ.mean - ZZ)^2)) rmse3 @ \begin{figure}[ht!] <>= tgp.trees(fit3, "map") @ <>= graphics.off() @ \centering \includegraphics[trim=0 90 0 25,scale=0.75]{tgp2-cat-fbtlm-mapt} \caption{Diagrammatic depiction of the maximum {\em a' posteriori} (MAP) tree for the boolean indicator version of the Friedman data in Eq.~(\ref{eq:f1b}) using a Bayesian treed linear model with the setting {\tt basemax = 10}.} \label{f:fb:btlm:mapt} \end{figure} Figure \ref{f:fb:btlm:mapt} shows that the MAP tree does indeed partition on the indicators in an appropriate way---as well as on some other real--valued inputs---and the result is the lower RMSE we would expect. A more high--powered approach would clearly be to treat all inputs as real--valued by fitting a GP at the leaves of the tree. Binary partitions are allowed on all inputs, $\mb{X}$ and $I$, but treating the boolean indicators as real--valued in the GP is clearly inappropriate since it is known that the process does not vary smoothly over the $0$ and $1$ settings of the three boolean indicators representing the categorical input $I$. <<>>= fit4 <- btgpllm(X=X, Z=Z, XX=XX, verb=0) rmse4 <- sqrt(mean((fit4$ZZ.mean - ZZ)^2)) rmse4 @ Since the design matrices would become rank--deficient if the boolean indicators are partitioned upon, there was no partitioning in this example. <<>>= fit4$gpcs @ Since there are large covariance matrices to invert, the MCMC inference is {\em very} slow. Still, the resulting fit (obtained with much patience) is better that the Bayesian CART and treed LM (with {\tt basemax = 10}) ones, as indicated by the RMSE. We would expect to get the best of both worlds if the setting {\tt basemax = 10} were used when fitting the treed GP model, thus allowing partitioning on the indicators by guarding against rank deficient design matrices. <<>>= fit5 <- btgpllm(X=X, Z=Z, XX=XX, basemax=10, verb=0) rmse5 <- sqrt(mean((fit5$ZZ.mean - ZZ)^2)) rmse5 @ And indeed this is the case. The benefits go beyond producing full rank design matrices at the leaves of the tree. Loosely speaking, removing the boolean indicators from the GP part of the treed GP gives a more parsimonious model, without sacrificing any flexibility. The tree is able to capture all of the dependence in the response as a function of the indicator input, and the GP is the appropriate non--linear model for accounting for the remaining relationship between the real--valued inputs and outputs. \begin{figure}[ht!] <>= h <- fit1$post$height[which.max(fit1$posts$lpost)] tgp.trees(fit5, "map") @ <>= graphics.off() @ \centering \includegraphics[trim=0 100 0 25]{tgp2-cat-fb-mapt} \caption{Diagrammatic depiction of the maximum {\em a' posteriori} (MAP) tree for the boolean indicator version of the Friedman data in Eq.~(\ref{eq:f1b}) using {\tt basemax=10}.} \label{f:fb:mapt} \end{figure} We can look at the maximum {\em a' posteriori} (MAP) tree, to see that only (and all of) the indicators were partitioned upon in Figure \ref{f:fb:mapt}. Further advantages to this approach include speed (a partitioned model gives smaller covariance matrices to invert) and improved mixing in the Markov chain when a separable covariance function is used. Note that using a non--separable covariance function in the presence of indicators would result in a poor fit. Good range ($d$) settings for the indicators would not necessarily coincide with good range settings for the real--valued inputs. A complimentary setting, {\tt splitmin}, allows the user to specify the first column of the inputs {\tt X} upon which treed partitioning is allowed. From Section 3.5 of the first {\tt tgp} vignette \cite{gramacy:2007}, it was concluded that the original formulation of Friedman data was stationary, and thus treed partitioning is not required to obtain a good fit. The same would be true of the response in (\ref{eq:f1b}) after conditioning on the indicators. Therefore, the most parsimonious model would use {\tt splitmin = 11}, in addition to {\tt basemax = 10}, so that only $\mb{X}$ are under the GP, and only $I$ under the tree. Fewer viable candidate inputs for treed partitioning should yield improved mixing in the Markov chain, and thus lower RMSE. <<>>= fit6 <- btgpllm(X=X, Z=Z, XX=XX, basemax=10, splitmin=11, verb=0) rmse6 <- sqrt(mean((fit6$ZZ.mean - ZZ)^2)) rmse6 @ Needless to say, it is important that the input {\tt X} have columns which are ordered appropriately before the {\tt basemax} and {\tt splitmin} arguments can be properly applied. Future versions of {\tt tgp} will have a formula--based interface to handle categorical ({\tt factors}) and other inputs more like other {\sf R} regression routines, e.g., {\tt lm} and {\tt glm}. The tree and binary encodings represent a particularly thrifty way to handle categorical inputs in a GP regression framework, however it is by no means the only or best approach to doing so. A disadvantage to the binary coding is that it causes the introduction of several new variables for each categorical input. Although they only enter the tree part of the model, and not the GP (where the introduction of many new variables could cause serious problems), this may still be prohibitive if the number of categories is large. Another approach that may be worth considering in this case involves designing a GP correlation function which can explicitly handle a mixture of qualitative (categorical) and quantitative (real-valued) factors \cite{qian:wu:wu:2009}. An advantage of our treed approach is that it is straightforward to inspect the effect of the categorical inputs by, e.g., counting the number of trees (in the posterior) which contain a particular binary encoding. It is also easy to see how the categorical inputs interact with the real-valued ones by inspecting the (posterior) parameterizations of the correlation parameters in each partition on a binary encoding. Both of these are naturally facilitated by gathering traces ({\tt trace = TRUE}), as described in the 1.x vignette \cite{gramacy:2007}. In Section \ref{sec:sens} we discuss a third way of determining the sensitivity of the response to categorical and other inputs. \section{Analysis of sensitivity to inputs} \label{sec:sens} <>= seed <- 0; set.seed(seed) @ Methods for understanding how inputs, or explanatory variables, contribute to the outputs, or response, of simple statistical models are by now classic in the literature and frequently used in practical application. For example, in linear regression one can perform $F$--tests to ascertain the relevance of a predictor, or inspect the leverage of a particular input setting, or use Cooks' distance, to name a few. Unfortunately, such convenient statistics/methods are not available for more complicated models, such as those in the {\tt tgp} family of nonparametric models. A more advanced tool is needed. Sensitivity Analysis (SA) is a resolving of the sources of output variability by apportioning elements of this variation to different sets of input variables. It is applicable in wide generality. The edited volume by Saltelli et al.~\cite{SaltChanScot2000} provides an overview of the field. Valuable recent work on smoothing methods is found in \cite{StorHelt2008,VeigWahlGamb2009}, and Storlie, et al.~\cite{StorSwilHeltSall2009}, provide a nice overview of nonparametric regression methods for inference about sensitivity. The analysis of response variability is useful in a variety of different settings. For example, when there is a large number of input variables over which an objective function is to be optimized, typically only a small subset will be influential within the confines of their uncertainty distribution. SA can be used to reduce the input space of such optimizations \cite{TaddLeeGrayGrif2009}. Other authors have used SA to assess the risk associated with dynamic factors affecting the storage of nuclear waste \cite{HommSalt1996}, and to investigate the uncertainty characteristics of a remote sensing model for the reflection of light by surface vegetation \cite{MorrKottTaddFurfGana2008}. The {\tt sens} function adds to {\tt tgp} a suite of tools for global sensitivity analysis, and enables ``out-of-the-box'' estimation of valuable sensitivity indices for any regression relationship that may be modeled by a member of the {\tt tgp} family. The type of sensitivity analysis provided by {\tt tgp} falls within the paradigm of global sensitivity analysis, wherein the variability of the response is investigated with respect to a probability distribution over the entire input space. The recent book by Saltelli et al. \cite{SaltEtAl2008} serves as a primer on this field. Global SA is inherently a problem of statistical inference, as evidenced by the interpolation and estimation required in a study of the full range of inputs. This is in contrast with the analytical nature of local SA, which involves derivative--based investigation of the stability of the response over a small region of inputs. We will ignore local SA for the remainder of this document. The sensitivity of a response $z$ to a changing input $\mb{x}$ is always considered in relation to a specified {\it uncertainty distribution}, defined by the density $u(\mb{x})$, and the appropriate marginal densities $u_i(x_i)$. What is represented by the uncertainty distribution changes depending upon the context. The canonical setup has that $z$ is the response from a complicated physics or engineering simulation model, with tuning parameters $\mb{x}$, that is used to predict physical phenomena. In this situation, $u(\mb{x})$ represents the experimentalist's uncertainty about real--world values of $\mb{x}$. In optimization problems, the uncertainty distribution can be used to express prior information from experimentalists or modelers on where to look for solutions. Finally, in the case of observational systems (such as air-quality or smog levels), $u(\mb{x})$ may be an estimate of the density governing the natural occurrence of the $\mb{x}$ factors (e.g., air-pressure, temperature, wind, and cloud cover). In this setup, SA attempts to resolve the natural variability of $z$. The most common notion of sensitivity is tied to the relationship between conditional and marginal variance for $z$. Specifically, variance--based methods decompose the variance of the objective function, with respect to the uncertainty distribution on the inputs, into variances of conditional expectations. These are a natural measure of the output association with specific sets of variables and provide a basis upon which the importance of individual inputs may be judged. The other common component of global SA is an accounting of the main effects for each input variable, $\mathbb{E}_{u_j}[z|x_j]$, which can be obtained as a by-product of the variance analysis. Our variance--based approach to SA is a version of the method of Sobol', wherein a deterministic objective function is decomposed into summands of functions on lower dimensional subsets of the input space. Consider the function decomposition $ f(x_1, \ldots ,x_d) = f_0 + \sum_{j=1}^df_j(x_j) +\sum_{1 \leq i < j \leq d} f_{ij}(x_j,x_i) + \ldots + f_{1,\ldots,d}(x_1, \ldots ,x_d). $ When the response $f$ is modeled as a stochastic process $z$ conditional on inputs $\mb{x}$, we can develop a similar decomposition into the response distributions which arise when $z$ has been marginalized over one subset of covariates and the complement of this subset is allowed to vary according to a marginalized uncertainty distribution. In particular, we can obtain the marginal conditional expectation $\mbb{E}[z|\mb{x}_J=\{x_j:j\in J\}]$ $=$ $\int_{\mathbb{R}^{d-d_J}} \mbb{E}[z|\mb{x}]u(\mb{x}) d\mb{x}_{-J}$, where $J=\{j_1, \ldots, j_{d_J}\}$ indicates a subset of input variables, $\mb{x}_{-j} =\{x_j:j\notin J\}$, and the marginal uncertainty density is given by $u_J(\mb{x}_J) = \int_{\mathbb{R}^{d-d_J}} u(\mb{x}) d\{x_i:i \notin J \}$. SA concerns the variability of $\mbb{E}[z|\mb{x}_J]$ with respect to changes in $\mb{x}_J$ according to $u_J(\mb{x}_J)$ and, if $u$ is such that the inputs are uncorrelated, the variance decomposition is available as \begin{equation} \label{eqn:var_decomp} \mr{var}(\mbb{E}[z|\mb{x}]) = \sum_{j=1}^dV_j + \sum_{1 \leq i < j \leq d} V_{ij} + \ldots + V_{1,\ldots,d}, \end{equation} where $V_j = \mr{var}(\mbb{E}[z|x_j])$, $V_{ij}=\mr{var}(\mbb{E}[z|x_i, x_j]) - V_i - V_j$, and so on. Clearly, when the inputs are correlated this identity no longer holds (although a ``less-than-or-equal-to'' inequality is always true). But it is useful to retain an intuitive interpretation of the $V_J$'s as a portion of the overall marginal variance. Our global SA will focus on the related sensitivity indices $S_J = V_J/\mr{var}(z)$ which, as can be seen in the above equation, will sum to one over all possible $J$ and are bounded to $[0,1]$. These $S_J$'s provide a natural measure of the {\it importance} of a set $J$ of inputs and serve as the basis for an elegant analysis of sensitivity. The {\tt sens} function allows for easy calculation of two very important sensitivity indices associated with each input: the 1$^{\rm st}$ order for the $j$th input variable, \begin{equation} S_j = \frac{\mr{var}\left(\mbb{E}\left[z|x_j\right]\right)}{\mr{var}(z)}, \label{eq:S} \end{equation} and the total sensitivity for input $j$, \begin{equation} T_j = \label{eq:T} \frac{\mbb{E}\left[\mr{var}\left(z|\mb{x}_{-j}\right)\right]}{\mr{var}(z)}. \end{equation} The 1$^{\rm st}$ order indices measure the portion of variability that is due to variation in the main effects for each input variable, while the total effect indices measure the portion of variability that is due to total variation in each input. From the identity $\mbb{E}\left[\mr{var}\left(z|\mb{x}_{-j}\right)\right] = \mr{var}(z) - \mr{var}\left(\mbb{E}\left[z|\mb{x}_{-j}\right]\right)$, it can be seen that $T_j$ measures the {\it residual} variability remaining after variability in all other inputs has been apportioned and that, for a deterministic response and uncorrelated input variables, $T_j = \sum_{J:j \in J} S_J$. This implies that the difference between $T_j$ and $S_j$ provides a measure of the variability in $z$ due to interaction between input $j$ and the other input variables. A large difference may lead the investigator to consider other sensitivity indices to determine where this interaction is most influential, and this is often a key aspect of the dimension--reduction that SA provides for optimization problems. \subsection{Monte Carlo integration for sensitivity indices} Due to the many integrals involved, estimation of the sensitivity indices is not straightforward. The influential paper by Oakley \& O'Hagan \cite{OaklOhag2004} describes an empirical Bayes estimation procedure for the sensitivity indices, however some variability in the indices is lost due to plug-in estimation of GP model parameters and, more worryingly, the variance ratios are only possible in the form of a ratio of expected values. Marrel, et al.~\cite{MarrIoosLaurRous2009}, provide a more complete analysis of the GP approach to this problem, but their methods remain restricted to estimation of the first order Sobol indices. Likelihood based approaches have also been proposed \cite{WelcBuckSackWynnMitcMorr1992,MorrKottTaddFurfGana2008}. The technique implemented in {\tt tgp} is, in contrast, fully Bayesian and provides a complete accounting of the uncertainty involved. Briefly, at each iteration of an MCMC chain sampling from the treed GP posterior, output is predicted over a large (carefully chosen) set of input locations. Conditional on this predicted output, the sensitivity indices can be calculated via Monte Carlo integration. By conditioning on the predicted response (and working as though it were the observed response), we obtain a posterior sample of the indices, incorporating variability from both the integral estimation and uncertainty about the function output. In particular, the {\tt sens} function includes a {\tt model} argument which allows for SA based on any of the prediction models (the {\tt b*} functions) in {\tt tgp}. Our Monte Carlo integration is based upon Saltelli's \cite{Salt2002} efficient Latin hypercube sampling (LHS) scheme for estimation of both 1$^{\rm st}$ order and total effect indices. We note that the estimation is only valid for uncorrelated inputs, such that $u(\mb{x}) = \prod_{j=1}^d u_j(x_j)$. The {\tt sens} function only allows for uncertainty distributions of this type (in fact, the marginal distributions also need to be bounded), but this is a feature of nearly every ``out-of-the-box'' approach to SA. Studies which concern correlated inputs will inevitably require modeling for this correlation, whereas most regression models (including those in {\tt tgp}) condition on the inputs and ignore the joint density for $\mb{x}$. Refer to the work of Saltelli \& Tarantola \cite{SaltTara2002} for an example of SA with correlated inputs. We now briefly describe the integration scheme. The 2nd moment is a useful intermediate quantity in variance estimation, and we define \[ D_J = \mbb{E}\left[\mbb{E}^2\left[z|\mb{x}_{J}\right]\right] = \int_{\mbb{R}^{d_J}} \mbb{E}^2\left[z| {\mb{x}_J}\right]u_J(\mb{x}_J)d(\mb{x}_J). \] Making use of an auxiliary variable, \begin{eqnarray*} D_J &=& \int_{\mbb{R}^{d_J}} \left[\int_{\mbb{R}^{d_{-J}}} \!\!\!\mbb{E}\left[ z | \mb{x}_J, \mb{x}_{-J} \right]u_{-J}(\mb{x}_{-J})d\mb{x}_{-J} \int_{\mbb{R}^{d_{-J}}} \!\!\!\mbb{E}\left[ z | \mb{x}_J, \mb{x}'_{-J} \right] u_{-J}(\mb{x}'_{-J})d\mb{x}'_{-J}\right]u_J(\mb{x}_J)\mb{x}_{J}\\ &=& \int_{\mbb{R}^{d + d_{-J}}} \!\!\mbb{E}\left[ z | \mb{x}_J, \mb{x}_{-J} \right]\mbb{E}\left[ z | \mb{x}_J, \mb{x}'_{-J} \right] u_{-J}(\mb{x}_{-J})u_{-J}(\mb{x}'_{-J})u_{J}(\mb{x}_{J})d\mb{x}d\mb{x}'_{J}. \end{eqnarray*} Thus, in the case of independent inputs, \[ D_J = \int_{\mbb{R}^{d+d_{-J}}} \mbb{E}\left[ z |\mb{x} \right]\mbb{E}\left[ z | \mb{x}_J, \mb{x}'_{-J} \right] u_{-J}(\mb{x}'_{-J})u({\bf x})d\mb{x}'_{-J}d\mb{x}. \] Note that at this point, if the inputs had been correlated, the integral would have been instead with respect to the joint density $u(\mb{x})u(\mb{x}_{-J}' | \mb{x}_J)$, leading to a more difficult integral estimation problem. Recognizing that $S_j = (D_j-\mbb{E}^2[z])/\mr{var}(z)$ and $T_j = 1- \left( \left(D_{-j} - \mbb{E}^2[z]\right)\right)/\mr{var}(z)$, we need estimates of $\mr{var}(z)$, $\mbb{E}^2[z]$, and $\{ (D_j, D_{-j}) : j=1,\ldots,d \}$ to calculate the sensitivity indices. Given a LHS $M$ proportional to $u(\mb{x})$, \begin{equation*} M = \left[ \begin{array}{c} s_{1_1} ~ \cdots ~ s_{1_d}\\ \vdots \\ s_{m_1} ~ \cdots ~ s_{m_d}\\ \end{array} \right], \end{equation*} it is possible to estimate $\widehat{\mbb{E}[z]} = \frac{1}{m} \sum_{k=1}^m\mbb{E}[z|{\bf s}_k]$ and $\widehat{\mr{var}[z]} = \frac{1}{m} \mbb{E}^T[z|M]\mbb{E}[z|M] - \widehat{\mbb{E}[z]}\widehat{\mbb{E}[z]}$, where the convenient notation $\mbb{E}[z|M]$ is taken to mean $\left[\mbb{E}[z|\mb{s}_1] \cdots \mbb{E}[z|\mb{s}_m]\right]^T$. All that remains is to estimate the $D$'s. Define a second LHS $M'$ proportional to $u$ of the same size as $M$ and say that $N_J$ is $M'$ with the $J$ columns replaced by the corresponding columns of $M$. Hence, \begin{equation*} N_j = \left[ \begin{array}{c} s'_{1_1} \cdots s_{1_j} \cdots s'_{1_d}\\ \vdots \\ s'_{m_1} \cdots s_{m_j} \cdots s'_{m_d} \end{array}\right]~~~\mr{and}~~~ N_{-j} = \left[ \begin{array}{c} s_{1_1} \cdots s'_{1_j} \cdots s_{1_d}\\ \vdots \\ s_{m_1} \cdots s'_{m_j} \cdots s_{m_d} \end{array}\right]. \end{equation*} The estimates are then $\hat D_j = \mbb{E}^T[z|M]\mbb{E}[z|N_{j}]/(m-1)$ and $\hat D_{-j}$ $=$ $\mbb{E}^T[z|M']\mbb{E}[z|N_{j}]/(m-1)$ $\approx$ $ \mbb{E}^T[z|M]\mbb{E}[z|N_{-j}]/(m-1)$. Along with the variance and expectation estimates, these can be plugged into equations for $S_j$ and $T_j$ in (\ref{eq:S}--\ref{eq:T}) to obtain $\hat S_j$ and $\hat T_j$. Note that Saltelli recommends the use of the alternative estimate $\widehat{\mbb{E}^2[z]} = \frac{1}{n-1}\mbb{E}^T[z|M]\mbb{E}[z|M']$ in calculating 1$^{\rm st}$ order indices, as this brings the index closer to zero for non-influential variables. However, it has been our experience that these biased estimates can be unstable, and so {\tt tgp} uses the standard $\widehat{\mbb{E}^2[z]} = \widehat{\mbb{E}[z]}\widehat{\mbb{E}[z]}$ throughout. As a final point, we note that identical MCMC sampling-based integration schemes can be used to estimate other Sobol indices (e.g., second order, etc) for particular combinations of inputs, but that this would require customization of the {\tt tgp} software. The set of input locations which need to be evaluated for each calculation of the indices is $\{ M, M', N_1,\ldots,N_d \}$, and if $m$ is the sample size for the Monte Carlo estimate this scheme requires $m(d+2)$ function evaluations. Hence, at each MCMC iteration of the model fitting, the $m(d+2)$ locations are drawn randomly according the LHS scheme, creating a random prediction matrix, {\tt XX}. By allowing random draws of the input locations, the Monte Carlo error of the integral estimates will be included in the posterior variability of the indices and the posterior moments will not be dependent upon any single estimation input set. Using predicted output over this input set, a single realization of the sensitivity indices is calculated through Saltelli's scheme. At the conclusion of the MCMC, we have a representative sample from the posterior for ${\bf S}$ and ${\bf T}$. The averages for these samples are unbiased estimates of the posterior mean, and the variability of the sample is representative of the complete uncertainty about model sensitivity. Since a subset of the predictive locations ($M$ and $M'$) are actually a LHS proportional to the uncertainty distribution, we can also estimate the main effects at little extra computational cost. At each MCMC iteration, a one--dimensional nonparametric regression is fit through the scatterplot of $[s_{1_j}, \ldots, s_{m_j},s'_{1_j}, \ldots, s'_{m_j}]$ vs. $[\mbb{E}[z|M],\mbb{E}[z|M']]$ for each of the $j=1,\ldots,d$ input variables. The resultant regression estimate provides a realization of $\mbb{E}[z|x_j]$ over a grid of $x_j$ values, and therefore a posterior draw of the main effect curve. Thus, at the end of the MCMC, we have not only unbiased estimates of the main effects through posterior expectation, but also a full accounting of our uncertainty about the main effect curve. This technique is not very sensitive to the method of non-parametric regression, since $2m$ will typically represent a very large sample in one--dimension. The estimation in {\tt tgp} uses a moving average with squared distance weights and a window containing the {\tt span}$*2m$ nearest points (the {\tt span} argument defaults to 0.3). \subsection{Examples} We illustrate the capabilities of the {\tt sens} function by looking at the Friedman function considered earlier in this vignette. The function that describes the responses ($Z$), observed with standard Normal noise, has mean \begin{equation} E(Z|\mb{x}) = 10 \sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5 x_5. \label{eq:f1} \end{equation} A sensitivity analysis can be based upon any of the available regression models (e.g., {\tt btlm}, {\tt bgp}, or {\tt btgp}); we choose to specify {\tt model=btgpllm} for this example. The size of each LHS used in the integration scheme is specified through {\tt nn.lhs}, such that this is equivalent to $m$ in the above algorithm description. Thus the number of locations used for prediction---the size of the random {\tt XX} prediction matrix---is {\tt nn.lhs*(ncol(X)+2)}. In addition, the window for moving average estimation of the main effects is {\tt span*2*nn.lhs} (independent of this, an {\tt ngrid} argument with a default setting of {\tt ngrid=100} dictates the number of grid points in each input dimension upon which main effects will be estimated). <<>>= f <- friedman.1.data(250) @ This function actually generates 10 covariates, the last five of which are completely un-influential. We'll include one of these ($x_6$) to show what the sensitivity analysis looks like for unrelated variables. <<>>= Xf <- f[, 1:6] Zf <- f$Y sf <- sens(X=Xf, Z=Zf, nn.lhs=600, model=bgpllm, verb=0) @ The progress indicators printed to the screen (for {\tt verb > 0}) are the same as would be obtained under the specified regression {\tt model}---{\tt bgpllm} in this case---so we suppress them here. All of the same options (e.g., {\tt BTE}, {\tt R}, etc.) apply, although if using the {\tt trace} capabilities one should be aware that the {\tt XX} matrix is changing throughout the MCMC. The {\tt sens} function returns a \verb!"tgp"!-class object, and all of the SA related material is included in the {\tt sens} list within this object. <<>>= names(sf$sens) @ The object provides the SA parameters ({\tt par}), the grid of locations for main effect prediction ({\tt Xgrid}), the mean and interval estimates for these main effects ({\tt ZZ.mean}, {\tt ZZ.q1}, and {\tt ZZ.q2}), and full posterior via samples of the sensitivity indices ({\tt S} and {\tt T}). The plot function for \verb!"tgp"!-class objects now provides a variety of ways to visualize the results of a sensitivity analysis. This capability is accessed by specifying {\tt layout="sens"} in the standard {\tt plot} command. By default, the mean posterior main effects are plotted next to boxplot summaries of the posterior sample for each $S_j$ and $T_j$ index, as in Figure \ref{full}. \begin{figure}[ht!] <>= plot(sf, layout="sens", legendloc="topleft") @ <>= graphics.off() @ \includegraphics[width=6.5in,trim=0 10 0 10]{tgp2-sens-full} \caption{Full sensitivity analysis results for the Friedman function.} \label{full} \end{figure} A further note on the role played by {\tt nn.lhs}: As always, the quality of the regression model estimate depends on the length of the MCMC. But now, the quality of sensitivity analysis is directly influenced by the size of the LHS used for integral approximation; as with any Monte Carlo integration scheme, the sample size (i.e., {\tt nn.lhs}) must increase with the dimensionality of the problem. In particular, it can be seen in the estimation procedure described above that the total sensitivity indices (the $T_j$'s) are not forced to be non-negative. If negative values occur it is necessary to increase {\tt nn.lhs}. In any case, the {\tt plot.tgp} function changes any of the negative values to zero for purposes of illustration. The {\tt maineff} argument can be used to plot either selected main effects (Figure \ref{mains}), \begin{figure}[ht!] <>= par(mar=c(4,2,4,2), mfrow=c(2,3)) plot(sf, layout="sens", maineff=t(1:6)) @ <>= graphics.off() @ \centering \includegraphics[width=6.6in]{tgp2-sens-mains} \caption{Friedman function main effects, with posterior 90\% intervals.} \label{mains} \end{figure} or just the sensitivity indices (Figure \ref{indices}). \begin{figure}[ht!] <>= plot(sf, layout="sens", maineff=FALSE) @ <>= graphics.off() @ \centering \includegraphics[width=6.5in,trim=0 15 0 15]{tgp2-sens-indices} \caption{Sensitivity indices for the Friedman function.} \label{indices} \end{figure} Note that the posterior intervals shown in these plots represent uncertainty about both the function response and the integration estimates; this full quantification of uncertainty is not presently available in any alternative SA procedures. These plots may be compared to what we know about the Friedman function (refer to Eq.~(\ref{eq:f1})) to evaluate the analysis. The main effects correspond to what we would expect: sine waves for $x_1$ and $x_2$, a parabola for $x_3$, and linear effects for $x_4$ and $x_5$. The sensitivity indices show $x_1$ and $x_2$ contributing roughly equivalent amounts of variation, while $x_4$ is relatively more influential than $x_5$. Full effect sensitivity indices for $x_3$, $x_4$, and $x_5$ are roughly the same as the first order indices, but (due to the interaction in the Friedman function) the sensitivity indices for the total effect of $x_1$ and $x_2$ are significantly larger than the corresponding first order indices. Finally, our SA is able to determine that $x_6$ is unrelated to the response. This analysis assumes the default uncertainty distribution, which is uniform over the range of input data. In other scenarios, it is useful to specify an informative $u(\mb{x})$. In the {\tt sens} function, properties of $u$ are defined through the {\tt rect}, {\tt shape}, and {\tt mode} arguments. To guarantee integrability of our indices, we have restricted ourselves to bounded uncertainty distributions. Hence, {\tt rect} defines these bounds. In particular, this defines the domain from which the LHSs are to be taken. We then use independent scaled beta distributions, parameterized by the {\tt shape} parameter and distribution {\tt mode}, to define an informative uncertainty distribution over this domain. As an example of sensitivity analysis under an informative uncertainty distribution, consider the {\tt airquality} data available with the base distribution of {\sf R}. This data set contains daily readings of mean ozone in parts per billion ({\it Ozone}), solar radiation ({\it Solar.R}), wind speed ({\it Wind}), and maximum temperature ({\it Temp}) for New York City, between May 1 and September 30, 1973. Suppose that we are interested in the sensitivity of air quality to natural changes in {\it Solar.R},{\it Wind}, and {\it Temp}. For convenience, we will build our uncertainty distribution while assuming independence between these inputs. Hence, for each variable, the input uncertainty distribution will be a scaled beta with {\tt shape=2}, and {\tt mode} equal to the data mean. <<>>= X <- airquality[,2:4] Z <- airquality$Ozone rect <- t(apply(X, 2, range, na.rm=TRUE)) mode <- apply(X , 2, mean, na.rm=TRUE) shape <- rep(2,3) @ LHS samples from the uncertainty distribution are shown in Figure (\ref{udraw}) \begin{figure}[ht!] <>= Udraw <- lhs(300, rect=rect, mode=mode, shape=shape) par(mfrow=c(1,3), mar=c(4,2,4,2)) for(i in 1:3){ hist(Udraw[,i], breaks=10,xlab=names(X)[i], main="",ylab="", border=grey(.9), col=8) } @ <>= graphics.off() @ \centering \includegraphics[width=6in,trim=0 0 0 30]{tgp2-sens-udraw} \caption{A sample from the marginal uncertainty distribution for the airquality data.} \label{udraw} \end{figure} Due to missing data (discarded in the current version of {\tt tgp}), we suppress warnings for the sensitivity analysis. We shall use the default {\tt model=btgp}. <<>>= s.air <- suppressWarnings(sens(X=X, Z=Z, nn.lhs=300, rect=rect, shape=shape, mode=mode, verb=0)) @ Figure (\ref{air1}) shows the results from this analysis. \begin{figure}[ht!] <>= plot(s.air, layout="sens") @ <>= graphics.off() @ \centering \includegraphics[width=6.5in,trim=0 15 0 15]{tgp2-sens-air1} \caption{Sensitivity of NYC airquality to natural variation in wind, sun, and temperature.} \label{air1} \end{figure} Through use of {\tt predict.tgp}, it is possible to quickly re-analyze with respect to a new uncertainty distribution without running new MCMC. We can, for example, look at sensitivity for air quality on only low--wind days. We thus alter the uncertainty distribution (assuming that things remain the same for the other variables) <<>>= rect[2,] <- c(0,5) mode[2] <- 2 shape[2] <- 2 @ and build a set of parameters {\tt sens.p} with the {\tt sens} function by setting {\tt model=NULL}. <<>>= sens.p <- suppressWarnings(sens(X=X,Z=Z,nn.lhs=300, model=NULL, rect=rect, shape=shape, mode=mode)) @ \begin{figure}[ht!] <>= s.air2 <- predict(s.air, BTE=c(1,1000,1), sens.p=sens.p, verb=0) plot(s.air2, layout="sens") @ <>= graphics.off() @ \includegraphics[width=6.5in,trim=0 15 0 15]{tgp2-sens-air2} \caption{Air quality sensitivity on low-wind days.} \label{air2} \end{figure} Figures (\ref{air1}) and (\ref{air2}) both show total effect indices which are much larger than the respective first order sensitivities. As one would expect, the effect on airquality is manifest largely through an interaction between variables. Finally, it is also possible to perform SA with binary covariates, included in the regression model as described in Section 1. In this case, the uncertainty distribution is naturally characterized by a Bernoulli density. Setting {\tt shape[i]=0} informs {\tt sens} that the relevant variable is binary (perhaps encoding a categorical input as in Section \ref{sec:cat}), and that the Bernoulli uncertainty distribution should be used. In this case, the {\tt mode[i]} parameter dictates the probability parameter for the Bernoulli, and we must have {\tt rect[i,] = c(0,1)}. As an example, we re-analyze the original air quality data with temperature included as an indicator variable (set to one if temperature > 79, the median, and zero otherwise). <<>>= X$Temp[X$Temp >70] <- 1 X$Temp[X$Temp >1] <- 0 rect <- t(apply(X, 2, range, na.rm=TRUE)) mode <- apply(X , 2, mean, na.rm=TRUE) shape <- c(2,2,0) s.air <- suppressWarnings(sens(X=X, Z=Z, nn.lhs=300, rect=rect, shape=shape, mode=mode, verb=0, basemax=2)) @ \begin{figure}[ht!] <>= plot(s.air, layout="sens") @ <>= graphics.off() @ \centering \includegraphics[width=6.5in,trim=0 15 0 15]{tgp2-sens-air3} \caption{Sensitivity of NYC airquality to natural variation in wind, sun, and a binary temperature variable (for a threshold of 79 degrees).} \label{air3} \end{figure} Figure (\ref{air3}) shows the results from this analysis. \section{Statistical search for optimization} \label{sec:optim} <>= seed <- 0; set.seed(seed) @ There has been considerable recent interest in the use of statistically generated search patterns (i.e., locations of relatively likely optima) for optimization. A popular approach is to estimate a statistical (surrogate) model, and use it to design a set of well-chosen candidates for further evaluation by a direct optimization routine. Such statistically designed search patterns can be used either to direct the optimization completely (e.g., \cite{JoneSchoWelc1998} or \cite{RommShoe2007}) or to work in hybrid with local pattern search optimization (as in \cite{TaddLeeGrayGrif2009}). An bonus feature of the statistical surrogate approach is that it may be used to tackle problems of optimization under uncertainty, wherein the function being optimized is observed with noise. In this case the search is for input configurations which optimize the response with high probability. Direct-search methods would not apply in this scenario without modification. However, a sensible hybrid could involve inverting the relationship between the two approaches so that direct-search is used on deterministic predictive surfaces from the statistical surrogate model. This search can be used to find promising candidates to compliment space-filling ones at which some statistical improvement criterion is evaluated. Towards situating {\tt tgp} as a promising statistical surrogate model for optimization (in both contexts) the approach developed by Taddy, et al.~\cite{TaddLeeGrayGrif2009}, has been implemented to produce a list of input locations that is ordered by a measure of the potential for new optima. The procedure uses samples from the posterior predictive distribution of treed GP regression models to estimate improvement statistics and build an ordered list of search locations which maximize expected improvement. The single location improvement is defined $I(\mb{x}) = \mathrm{max}\{f_{min}-f(\mb{x}),0\}$, where $f_{min}$ is the minimum evaluated response in the search (refer to \cite{SchoWelcJone1998} for extensive discussion on general improvement statistics and initial vignette~\cite{gramacy:2007} for details of a base implementation in {\tt tgp}). Thus, a high improvement corresponds to an input location that is expected to be much lower than the current minimum. The criterion is easily changed to a search for maximum values through negation of the response. The improvement is always non-negative, as points which do not turn out to be new minimum points still provide valuable information about the output surface. Thus, in the expectation, candidate locations will be rewarded for high response uncertainty (indicating a poorly explored region of the input space), as well as for low mean predicted response. Our {\tt tgp} generated search pattern will consist of $m$ locations that recursively maximize (over a discrete candidate set) a sequential version of the expected multi-location improvement developed by Schonlau, et al.~\cite{SchoWelcJone1998}, defined as $\mbb{E}\left[I^g(\mb{x}_1, \ldots, \mb{x}_m)\right]$ where \begin{equation} \label{eqn:imult} I^g(\mb{x}_1, \ldots, \mb{x}_m) = \left(\mathrm{max}\{(f_{min}-f(\mb{x}_1)), \ldots, (f_{min}-f(\mb{x}_m)), 0 \}\right)^g. \end{equation} Increasing $g \in \{0,1,2,3,\ldots\}$ increases the global scope of the criteria by rewarding in the expectation extra variability at $\mb{x}$. For example, $g=0$ leads to $\mbb{E}[I^0(\mb{x})] = \Pr(I(\mb{x})>0)$ (assuming the convention $0^0=0$), $g=1$ yields the standard statistic, and $g=2$ explicitly rewards the improvement variance since $\mbb{E}[I^2(\mb{x})] = \mr{var}[I(\mb{x})] + \mbb{E}[I(\mb{x})]^2$. For further discussion on the role of $g$, see \cite{SchoWelcJone1998} . Finding the maximum expectation of (\ref{eqn:imult}) is practically impossible for the full posterior distribution of $I^g(\mb{x}_1, \ldots, \mb{x}_m)$, and would require conditioning on a single fit for the model parameters (for example, static imputation of predictive GP means can be used to recursively build the improvement set \cite{GinsLe-RCarr2009}). However, {\tt tgp} just seeks to maximize over a discrete list of predictive locations. In fact, the default is to return an ordering for the entire {\tt XX} matrix, thus defining a ranking of predictive locations by order of decreasing expected improvement. There is no restriction on the form for {\tt XX}.\footnote{A full optimization routine would require that the search pattern is placed within an algorithm iterating towards convergence, as in \cite{TaddLeeGrayGrif2009}. However, we concentrate here on the statistical problem of choosing the next samples optimally. We shall touch on issues of convergence in Section \ref{sec:optimskel} where we describe a skeleton scheme for optimization extending {\sf R}'s internal {\tt optim} functionality.} The structure of this scheme will dictate the form for {\tt XX}. If it is the case that we seek simply to explore the input space and map a list of potential locations for improvement, using LHS to choose {\tt XX} will suffice. The discretization of decision space allows for a fast iterative solution to the optimization of $\mbb{E}\left[I^g(\mb{x}_1, \ldots, \mb{x}_m)\right]$. This begins with evaluation of the simple improvement $I^g(\tilde{\mb{x}}_i)$ over $\tilde{\mb{x}}_i \in {\bf \tilde X}$ at each of $T=$ {\tt BTE[2]-BTE[1]} MCMC iterations (each corresponding to a single posterior realization of {\tt tgp} parameters and predicted response after burn-in) to obtain the posterior sample \begin{equation*} \mathcal{I} = \left\{ \begin{array}{rcl} I^g( \tilde{\mb{x}}_1)_1& \ldots& I^g(\tilde{\mb{x}}_m)_1\\ &\vdots& \\ I^g( \tilde{\mb{x}}_1)_T& \ldots& I^g(\tilde{\mb{x}}_m)_T \end{array}\right\}. \end{equation*} Recall that in {\tt tgp} parlance, and as input to the {\tt b*} functions: $\tilde{\mb{X}}\equiv $ {\tt XX}. We then proceed iteratively to build an {\it ordered} collection of $m$ locations according to an iteratively refined improvement: Designate $\mb{x}_1 = \mathrm{argmax}_{\tilde{\mb{x}} \in {\bf \tilde X}} \mbb{E}\left[I^g( \tilde{\mb{x}})\right]$, and for $j=2,\ldots,m$, given that $\mb{x}_1, \ldots, \mb{x}_{j-1}$ are already included in the collection, the next member is \begin{eqnarray*} \mb{x}_j &=& \mathrm{argmax}_{\tilde{\mb{x}} \in {\bf \tilde X}} \mbb{E}\left[ \mathrm{max}\{I^g( \mb{x}_1, \ldots, \mb{x}_{j-1}), I^g(\tilde{\mb{x}}) \} \right]\\ &=& \mathrm{argmax}_{\tilde{\mb{x}} \in {\bf \tilde X}} \mbb{E}[\left(\mathrm{max}\{(f_{min}-f(\mb{x}_1)), \ldots, (f_{min}-f(\mb{x}_{j-1})), (f_{min}-f(\tilde{\mb{x}})), 0\}\right)^g ] \\ &=& \mathrm{argmax}_{\tilde{\mb{x}} \in {\bf \tilde X}} \mbb{E}\left[I^g(\mb{x}_1, \ldots, \mb{x}_{j-1},\tilde{\mb{x}})\right]. \end{eqnarray*} Thus, after each $j^{\rm th}$ additional point is added to the set, we have the maximum expected $j$--location improvement conditional on the first $j-1$ locations. This is not necessarily the unconditionally maximal expected $j$--location improvement; instead, point $\mb{x}_j$ is the location which will cause the greatest increase in expected improvement over the given $(j-1)$--location expected improvement. The posterior sample $\mathcal{I}$ acts as a discrete approximation to the true posterior distribution for improvement at locations within the candidate set {\tt XX}. Based upon this approximation, iterative selection of the point set is possible without any re-fitting of the {\tt tgp} model. Conditional on the inclusion of $\tilde{\mb{x}}_{i_1},\ldots,\tilde{\mb{x}}_{i_{l-1}}$ in the collection, a posterior sample of the $l$--location improvement statistics is calculated as \begin{equation*} \mathcal{I}_l = \left\{ \begin{array}{rcl} I^g( \tilde{\mb{x}}_{i_1},\ldots,\tilde{\mb{x}}_{i_{l-1}}, \tilde{\mb{x}}_1)_1 & \ldots& I^g( \tilde{\mb{x}}_{i_1},\ldots,\tilde{\mb{x}}_{i_{l-1}}, \tilde{\mb{x}}_m)_1\\ &\vdots& \\ I^g(\tilde{\mb{x}}_{i_1},\ldots,\tilde{\mb{x}}_{i_{l-1}}, {\tilde x}_1)_T& \ldots& I^g(\tilde{\mb{x}}_{i_1},\ldots,\tilde{\mb{x}}_{i_{l-1}},\tilde{\mb{x}}_m)_T \end{array}\right\}, \end{equation*} where the element in the $t^{\rm th}$ row and $j^{\rm th}$ column of this matrix is calculated as max$\{I^g(\tilde{\mb{x}}_{i_1}$, $\ldots,$ $\tilde{\mb{x}}_{i_{l-1}})_t$, $I^g(\tilde{\mb{x}}_j)_t\}$ and the $l^{\rm th}$ location included in the collection corresponds to the column of this matrix with maximum average. Since the multi-location improvement is always at least as high as the improvement at any subset of those locations, the same points will not be chosen twice for inclusion. In practice, very few iterations (about 10\% of the total candidate size under the default inference and regression model(s)) through this ordering process can be performed before the iteratively updated improvement statistics become essentially zero. Increasing the number of MCMC iterations ({\tt BTE[2]-BTE[1]}) can mitigate this to a large extent.\footnote{Once a zero (maximal) iterative improvement is attained the rest of the ranking is essentially arbitrary, at which point {\tt tgp} cuts off the process prematurely.} We refer the reader to \cite{TaddLeeGrayGrif2009} for further details on this approach to multi-location improvement search. \subsection{A simple example} We shall use the Rosenbrock function to illustrate the production of an ordered collection of (possible) adaptive samples to maximize the expected improvement within {\tt tgp}. Specifically, the two dimensional Rosenbrock function is defined as <<>>= rosenbrock <- function(x){ x <- matrix(x, ncol=2) 100*(x[,1]^2 - x[,2])^2 + (x[,1] - 1)^2 } @ and we shall bound the search space for adaptive samples to the rectangle: $-1\le x_i \le 5$ for $i=1,2$. The single global minimum of the Rosenbrock function is at $(1,1)$. <<>>= rosenbrock(c(1,1)) @ This function involves a long steep valley with a gradually sloping floor, and is considered to be a difficult problem for local optimization routines. We begin by drawing an LHS of 40 input locations within the bounding rectangle, and evaluating the function at these locations. <<>>= rect <- cbind(c(-1,-1),c(5,5)) X <- lhs(40, rect) Z <- rosenbrock(X) @ We will fit a {\tt bgp} model to this data to predict the Rosenbrock response at unobserved (candidate) input locations in {\tt XX}. The {\tt improv} argument may be used to obtain an ordered list of places where we should be looking for new minima. In particular, specifying {\tt improv=c(1,10)} will return the 10 locations which maximize the iterative multi-location expected improvement function, with $g=1$ (i.e., Eq.~(\ref{eqn:imult})). Note that {\tt improv=TRUE} is also possible, in which case {\tt g} defaults to one and the entire list of locations is ranked. Our candidate set is just a space filling LHS design. In other situations, it may be useful to build an informative LHS design (i.e., to specify {\tt shape} and {\tt mode} arguments for the {\tt lhs} function) to reflect what is already known about the location of optima. <<>>= XX <- lhs(200, rect) rfit <- bgp(X,Z,XX,improv=c(1,10), verb=0) @ Upon return, the \verb!"tgp"!-class object {\tt rfit} includes the matrix {\tt improv}, which is a list of the expected single location improvement for the 200 {\tt XX} locations, and the top 10 ranks. Note that the {\tt rank}s for those points which are not included in the top 10 are set to {\tt nrow(XX)=}\Sexpr{nrow(XX)}. Here are the top 10: <<>>= cbind(rfit$improv,XX)[rfit$improv$rank <= 10,] @ This iterative algorithm may produce ranks that differ significantly from a straightforward ordering of expected improvement. This leads to a list that better explores the input space, since the expected improvement is naturally balanced against a desire to search the domain. We plot the results with the usual function, by setting {\tt as="improv"}, in Figure \ref{optim-fit1}. \begin{figure}[htb!] <>= plot(rfit, as="improv") @ <>= graphics.off() @ \centering \includegraphics[width=6.5in,trim=0 25 0 25]{tgp2-optim-fit1} \caption{The {\em left} panel shows the mean predicted Rosenbrock function response, and on the {\em right} we have expected single location improvement with the top 10 points (labelled by rank) plotted on top.} \label{optim-fit1} \end{figure} The banana--shaped region of higher expected improvement corresponds to the true valley floor for the Rosenbrock function, indicating the that {\tt bgp} model is doing a good job of prediction. Also, we note that the ordered input points are well dispersed throughout the valley---a very desirable property for adaptive sampling candidates. It is straightforward, with {\tt predict.tgp}, to obtain a new ordering for the more global {\tt g=5} (or any new {\tt g}). Figure \ref{optim-fit2} shows a more diffuse expected improvement surface and a substantially different point ordering. In practice, we have found that {\tt g=2} provides a good compromise between local and global search. \begin{figure}[htb!] <>= rfit2 <- predict(rfit, XX=XX, BTE=c(1,1000,1), improv=c(5,20), verb=0) plot(rfit2, layout="as", as="improv") @ <>= graphics.off() @ \centering \includegraphics[width=3.25in,trim=0 25 0 25]{tgp2-optim-fit2} \caption{The expected improvement surface and top 20 ordered locations, for {\tt g=5}.} \label{optim-fit2} \end{figure} \subsection{A skeleton optimization scheme} \label{sec:optimskel} %% The nature of global optimization demands that a fine balance be %% struck between global and local search. Therefore, designing a %% one--size--fits--all approach would be a daunting task. For one %% thing, assessing convergence in any formal sense would be quite %% difficult, although in practice it would be straightforward to %% ``force'' convergence by (eventually) focusing the method on finding a %% local solution. In the case where the function evaluations are %% deterministic, final convergence to a the local solution is always %% possible through the use of {\tt R}'s {\tt optim} function, for %% example. A method using {\tt tgp} based on a similar, but more %% formalized approach, using a direct/pattern search (in place of {\tt %% optim}) has been recently demonstrated in the context of %% sequentially designing computer experiments to solve an optimization %% problem \cite{TaddLeeGrayGrif2009}. Generally speaking, the result is %% a sensible compromise between local and global search. When the %% function evaluations are noisy one can always create a deterministic %% approximation, i.e., via the MAP predictive distribution (i.e., a %% kriging surrogate), for use with {\tt optim} in order to obtain %% convergence to a local optima. %% %% It may be possible to base assessments of convergence on the %% improvement statistic, which would naturally tend to zero as more %% points are added into the design. But any such assessments would hinge %% upon being able to drive the (Monte Carlo) method used to infer the %% model parameters---on which the improvement statistic is based---to a %% fixed point. In the context of MCMC this is only guaranteed as the %% number of samples gathered tends to infinity. Even if obtaining %% asymptotic convergence in this way is clearly a pipe dream, the %% practical application of this idea, and those based on local %% optimization mentioned above, can still bear fruit. Insight into %% convergence in practice is still a very tangible concept. Moreover, %% for many applications the considerations of convergence may even take %% a back seat to other budgetary constraints where the efficient %% allocation of an available resource (say computer cycles) is more %% important than a bottom--line based upon convergence which may only be %% achieved at all costs in the best of scenarios. The capabilities outlined above are useful in their own right, as a search list or candidate set ranked by expected improvement gain provides concrete information about potential optima. However, a full optimization framework requires that the production of these sets of search locations are nested within an iterative search scheme. The approach taken by Taddy, et al.~\cite{TaddLeeGrayGrif2009}, achieves this by taking the {\tt tgp} generated sets of locations and using them to augment a local optimization search algorithm. In this way, the authors are able to achieve robust solutions which balance the convergence properties of the local methods with the global scope provided by {\tt tgp}. Indeed, any optimization routine capable of evaluating points provided by an outside source could benefit from a {\tt tgp} generated list of search locations. In the absence of this sort of formal hybrid search algorithm, it is still possible to devise robust optimization algorithms based around {\tt tgp}. A basic algorithm is as follows: first, use a LHS to explore the input space (see the {\tt lhs} function included in {\tt tgp}). Repeatedly fit one of the {\tt b*} models with {\tt improv!=FALSE} to the evaluated iterates to produce a search set, then evaluate the objective function over this search set, as described earlier. Then evaluate the objective function over the highest ranked locations in the search set. Continue until you are confident that the search has narrowed to a neighborhood around the true optimum (a good indicator of this is when all of the top-ranked points are in the same area). At this point, the optimization may be completed by {\tt optim}, {\sf R}'s general purpose local optimization algorithm in order to guarentee convergence. The {\tt optim} routine may be initialized to the best input location (i.e. corresponding the most optimal function evaluation) found thus far by {\tt tgp}. Note that this approach is actually an extreme version of a template proposed by Taddy, et al.~\cite{TaddLeeGrayGrif2009}, where the influence of global (i.e. {\tt tgp}) search is downweighted over time rather than cut off. In either case, a drawback to such approaches is that they do not apply when the function being optimized is deterministic. An alternative scheme is to employ both {\tt tgp} search and a local optimization at each iteration. The idea is that a mix of local and global information is provided throughout the entire optimization, but with an added twist. Rather than apply {\tt optim} on the stochastic function directly, which would not converge due to the noise, it can be applied on a deterministic (MAP) kriging surface provided by {\tt tgp}. The local optima obtained can be used to augment the candidate set of locations where the improvement statistic is gathered---which would otherwise be simple LHS. That way the search pattern produced on output is likely to have a candidate with high improvement. To fix ideas, and for the sake of demonstration, the {\tt tgp} package includes a skeleton function for performing a single iteration in the derivative--free optimization of noisy black--box functions. The function is called {\tt optim.step.tgp}, and the name is intended to emphasize that it performs a single step in an optimization by trading off local {\tt optim}--based search of {\tt tgp} predictive (kriging surrogate) surfaces, with the expected posterior improvement. In other words, it is loosely based on some the techniques alluded to above, but is designed to be augmented/adjusted as needed. Given $N$ pairs of inputs and responses $(\mb{X}, \mb{Z})$, {\tt optim.step.tgp} suggests new points at which the function being optimized should be evaluated. It also returns information that can be used to assess convergence. An outline follows. The {\tt optim.step.tgp} function begins by constructing a set of candidate locations, either as a space filling LHS over the input space (the default) or from a treed $D$--optimal design, based on a previously obtained \verb!"tgp"!-class model. {\sf R}'s {\tt optim} command is used on the MAP predictive surface contained within the object to obtain an estimate of the current best guess $\mb{x}$-location of the optimal solution. A standalone subroutine called {\tt optim.ptgpf} is provided for this specific task, to be used within {\tt optim.step.tgp} or otherwise. Within {\tt optim.step.tgp}, {\tt optim.ptgpf} is initialized with the data location currently predicted to be the best guess of the minimum. The optimal $x$-location found is then added into the set of candidates as it is likely that the expected improvement would be high there. Then, a new \verb!"tgp"!-class object is obtained by applying a {\tt b*} function to $(\mb{X}, \mb{Z})$ whilst sampling from the posterior distribution of the improvement statistic. The best one, two, or several locations with highest improvement ranks are suggested for addition into the design. The values of the maximum improvement statistic are also returned in order to track progress in future iterations. The \verb!"tgp"!-class object returned is used to construct candidates and initialize the {\tt optim.ptgpf} function in future rounds. To illustrate, consider the 2-d exponential data from the initial vignette \cite{gramacy:2007} as our noisy function $f$. <<>>= f <- function(x) { exp2d.Z(x)$Z } @ Recall that this data is characterized by a mean value of \[ f(\mb{x}) = x_1 \exp(-x_1^2 - x_2^2) \] which is observed with a small amount of Gaussian noise (with sd $=0.001$). Elementary calculus gives that the minimum of $f$ is obtained at $\mb{x} = (-\sqrt{1/2},0)$. The {\tt optim.step.tgp} function requires that the search domain be defined by a bounding rectangle, and we require an initial design to start things off. Here we shall use $[-2,6]^2$ with an LHS design therein. <<>>= rect <- rbind(c(-2,6), c(-2,6)) X <- lhs(20, rect) Z <- f(X) @ The following code proceeds with several rounds of sequential design towards finding the minimum of {\tt f}. <>= out <- progress <- NULL for(i in 1:20) { ## get recommendations for the next point to sample out <- optim.step.tgp(f, X=X, Z=Z, rect=rect, prev=out, verb=0) ## add in the inputs, and newly sampled outputs X <- rbind(X, out$X) Z <- c(Z, f(out$X)) ## keep track of progress and best optimum progress <- rbind(progress, out$progress) } @ The {\tt progress} can be tracked through the rows of a {\tt data.frame}, as constructed above, containing a listing of the input location of the current best guess of the minimum for each round, together with the value of the objective at that point, as well as the maximum of the improvement statistic. \begin{figure}[ht!] \centering <>= par(mfrow=c(1,2)) matplot(progress[,1:2], main="x progress", xlab="rounds", ylab="x[,1:2]", type="l", lwd=2) legend("topright", c("x1", "x2"), lwd=2, col=1:2, lty=1:2) plot(log(progress$improv), type="l", main="max log improv", xlab="rounds", ylab="max log(improv)") @ <>= graphics.off() @ \includegraphics[trim=40 20 0 0]{tgp2-optim-progress} %\vspace{-0.5cm} \caption{Progress in iterations of {\tt optim.step.tgp} shown by tracking the $\mb{x}$--locations of the best guess of the minimum ({\em left}) and the logarithm of the maximum of the improvement statistics at the candidate locations ({\em right})} \label{f:optim:progress} \end{figure} In addition to printing this data to the screen, plots such as the ones in Figure \ref{f:optim:progress} can be valuable for assessing convergence. As can be seen in the figure, the final iteration gives an $\mb{x}$-value that is very close to the correct result, and is (in some loose sense) close to convergence. <<>>= out$progress[1:2] @ As mentioned above, if it is known that the function evaluations are deterministic then, at any time, {\sf R}'s {\tt optim} routine can be invoked---perhaps initialized by the $\bm{x}$-location in \verb!out$progress!---and convergence to a local optimum thus guaranteed. Otherwise, the quantities in \verb!out$progress! will converge, in some sense, as long as the number of MCMC rounds used in each round, above, ($T=$ {\tt BTE[2]-BTE[1]}) tends to infinity. Such arguments to the {\tt b*} functions can be set via the ellipses ({\tt ...}) arguments to {\tt optim.step.tgp}.\footnote{This runs contrary to how the ellipses are used by {\tt optim} in order to specify static arguments to {\tt f}. If setting static arguments to {\tt f} is required within {\tt optim.step.tgp}, then they must be set in advance by adjusting the default arguments via {\tt formals}.} A heuristic stopping criterion can be based on the maximum improvement statistic obtained in each round as long as the candidate locations become dense in the region as $T\rightarrow \infty$. This can be adjusted by increasing the {\tt NN} argument to {\tt optim.step.tgp}. The internal use of {\tt optim} within {\tt optim.step.tgp} on the posterior predictive (kriging surrogate) surface via {\tt optim.ptgpf} may proceed with any of the usual method arguments. I.e., <<>>= formals(optim)$method @ however the default ordering is switched in {\tt optim.ptgpf} and includes one extra method. <<>>= formals(optim.ptgpf)$method @ Placing \verb!"L-BFGS-B"! in the default position is sensible since this method enforces a rectangle of constraints as specified by {\tt rect}. This guarentees that the additional candidate found by {\tt optim.ptfpf} will be valid. However, the other {\tt optim} methods generally work well despite that they do not enforce this constraint. The final method, \verb!"optimize"!, applies only when the inputs to {\tt f} are 1-d. In this case, the documentation for {\tt optim} suggests using the {\tt optimize} function instead. \section{Importance tempering} \label{sec:it} <>= seed <- 0; set.seed(seed) @ It is well--known that MCMC inference in Bayesian treed methods suffers from poor mixing. For example, Chipman et al.~\cite{chip:geor:mccu:1998,chip:geor:mccu:2002} recommend periodically restarting the MCMC to avoid chains becoming stuck in local modes of the posterior distribution (particularly in tree space). The treed GP models are or no exception, although it is worth remarking that using flexible GP models at the leaves of the tree typically results in shallower trees, and thus less pathalogical mixing in tree space. Version 1.x provided some crude tools to help mitigate the effects of poor mixing in tree space. For example, the {\tt R} argument to the {\tt b*} functions facilitates the restarts suggested by Chipman et al. A modern Monte Carlo technique for dealing with poor mixing in Markov chain methods is to employ {\em tempering} to flatten the peaks and raise the troughs in the posterior distribution so that movements between modes is more fluid. One such method, called {\em simulated tempering} (ST) \cite{geyer:1995}, is essentially the MCMC analogue of the popular simulated annealing algorithm for optimization. The ST algorithm helps obtain samples from a multimodal density $\pi(\theta)$ where standard methods, such as Metropolis--Hastings (MH) \cite{met:1953,hast:1970} and Gibbs Sampling (GS) \cite{geman:1984}, fail. As will be shown in our examples, ST can guard against becoming stuck in local modes of the {\tt tgp} posterior by encouraging better mixing {\em between modes} via in increase in the acceptance rate of tree modification proposals, particularly {\em prunes}. However, as we will see, ST suffers from inefficiency because it discards the lions share of the samples it collects. The discarded samples can be recycled if they are given appropriate importance sampling (IS) \cite{liu:2001} weights. These weights, if combined carefully, can be used to construct meta-estimators of expectations under the {\tt tgp} posterior that have much lower variance compared to ST alone. This combined application of ST and IT is dubbed {\em importance tempering} \cite{gra:samw:king:2009}. \subsection{Simulated Tempering and related methods} \label{sec:st} ST is an application of the MH algorithm on the product space of parameters and inverse temperatures $k\in [0,1]$. That is, ST uses MH to sample from the joint chain $\pi(\theta,k) \propto \pi(\theta)^k p(k)$. The inverse temperature is allowed to take on a discrete set of values $k \in \{k_1,\dots,k_m: k_1 = 1, \; k_i > k_{i+1} \geq 0\}$, called the {\em temperature ladder}. Typically, ST calls for sampling $(\theta,k)^{(t+1)}$ by first updating $\theta^{(t+1)}$ conditional on $k^{(t)}$ and (possibly) on $\theta^{(t)}$, using MH or GS. Then, for a proposed $k' \sim q(k^{(t)} \rightarrow k')$, usually giving equal probability to the nearest inverse temperatures greater and less than $k^{(t)}$, an acceptance ratio is calculated: \[ A^{(t+1)} = \frac{\pi(\theta^{(t+1)})^{k'} p(k') q(k' \rightarrow k^{(t)})}{\pi(\theta^{(t+1)})^{k^{(t)}} p(k^{(t)}) q(k^{(t)}\rightarrow k')}. \] Finally, $k^{(t+1)}$ is determined according to the MH accept/reject rule: set $k^{(t+1)} = k'$ with probability $\alpha^{(t+1)} = \min\{1,A^{(t+1)}\}$, or $k^{(t+1)} = k^{(t)}$ otherwise. Standard theory for MH and GS gives that samples from the marginals $\pi_{k_i}$ can be obtained by collecting samples $\theta^{(t)}$ where $k^{(t)} = k_i$. Samples from $\pi(\theta)$ are obtained when $k^{(t)} = 1$. The success of ST depends crucially on the ability of the Markov chain frequently to: (a) visit high temperatures (low $k$) where the probability of escaping local modes is increased; (b) visit $k=1$ to obtain samples from $\pi$. The algorithm can be tuned by: (i.)~adjusting the number and location of the rungs of the temperature ladder; or (ii.)~setting the pseudo-prior $p(k)$ for the inverse temperature. Geyer \& Thompson \cite{geyer:1995} give ways of adjusting the spacing of the rungs of the ladder so that the ST algorithm achieves between--temperature acceptance rates of 20--40\%. More recently, authors have preferred to rely on defaults, e.g., \begin{equation} \;\;\;\;\; k_i = \left\{ \begin{array}{cl} (1+\Delta_k)^{1-i} & \mbox{geometric spacing}\\ \{1+\Delta_k (i-1)\}^{-1} & \mbox{harmonic spacing} \end{array} \right. \;\;\;\;\ i=1,\dots,m. \label{eq:ladder} \end{equation} Motivation for such default spacings is outlined by Liu \cite{liu:2001}. Geometric spacing, or uniform spacing of $\log(k_i)$, is also advocated by Neal \cite{neal:1996,neal:2001} to encourage the Markov chain to rapidly traverse the breadth of the temperature ladder. Harmonic spacing is more often used by a related method called Metropolis coupled Markov chain Monte Carlo (MC$^3$) \cite{geyer:1991}. Both defaults are implemented in the {\tt tgp} package, through the provided {\tt default.itemps} function. A new ``sigmoidal'' option is also implemented, as discussed below. The rate parameter $\Delta_k>0$ can be problem specific. Rather than work with $\Delta_k$ the {\tt default.itemps} function allows the ladder to be specified via $m$ and the hottest temperature $k_m$, thus fixing $\Delta_k$ implicitly. I.e., for the geometric ladder $\Delta_k = (k_m)^{1/(1-m)}-1$, and for the harmonic ladder $\Delta_k = \frac{(k_m)^{-1}-1}{m-1}$. A sigmoidal ladder can provide a higher concentration of temperatures near $k=1$ without sacrificing the other nice properties of the geometric and harmonic ladders. It is specified by first situating $m$ indices $j_i\in \mathbb{R}$ so that $k_1 = k(j_1) = 1$ and $k_m = k(j_m) = k_{\mbox{\tiny m}}$ under \[ k(j_i) = 1.01 - \frac{1}{1+e^{j_i}}. \] The remaining $j_i, i=2,\dots,(m-1)$ are spaced evenly between $j_1$ and $j_m$ to fill out the ladder $k_i = k(j_i), i=1,\dots,(m-1)$. By way of comparison, consider generating the three different types of ladder with identical minimum inverse temperature $k_{\mbox{\tiny m}} = 0.1$, the default setting in {\tt tgp}. <<>>= geo <- default.itemps(type="geometric") har <- default.itemps(type="harmonic") sig <- default.itemps(type="sigmoidal") @ The plots in Figure \ref{f:itemps} show the resulting inverse temperature ladders, and their logarithms. \begin{figure}[ht!] <>= par(mfrow=c(2,1)) all <- cbind(geo$k, har$k, sig$k) matplot(all, pch=21:23, main="inv-temp ladders", xlab="indx", ylab="itemp") legend("topright", pch=21:23, c("geometric","harmonic","sigmoidal"), col=1:3) matplot(log(all), pch=21:23, main="log(inv-temp) ladders", xlab="indx", ylab="itemp") @ <>= graphics.off() @ \centering \includegraphics[height=5.9in,width=4.5in,trim=0 20 0 20]{tgp2-it-itemps} \caption{Three different inverse temperature ladders, each with $m=40$ temperatures starting at $k_1=1$ and ending at $k_m=0.1$} \label{f:itemps} \end{figure} Observe how, relative to the geometric ladder, the harmonic ladder has a higher concentration of inverse temperatures near zero, whereas the sigmoidal ladder has a higher concentration near one. Once a suitable ladder has been chosen, the {\tt tgp} package implementation of ST follows the suggestions of Geyer \& Thompson \cite{geyer:1995} in setting the pseudo--prior, starting from a uniform $p_0$. First, $p_0$ is adjusted by {\em stochastic approximation}: add $c_0/[m(t+n_0)]$ to $\log p_0(k)$ for each $k_i \ne k^{(t)}$ and subtract $c_0/(t+n_0)$ from $\log p_0(k^{(t)})$ over $t=1,\dots,B$ {\em burn--in} MCMC rounds sampling from the joint posterior of $(\theta, k)$. Then, $p_0$ is normalized to obtain $p_1$. Before subsequent runs, specified via an {\tt R >= 2} argument, {\em occupation numbers} $o(k_i) = \sum_{t=1}^B 1_{\{k^{(t)} = k_i\}}$, are used update $p(k_i) \propto p_1(k_i)/o(k_i)$. Note that, in this setting, the {\tt R} argument is used to update the pseudo--prior only, not to restart the Markov chain. \subsection{Importance sampling from tempered distributions} \label{sec:temp} ST provides us with $\{(\theta^{(t)},k^{(t)}): t = 1,\ldots,T\}$, where $\theta^{(t)}$ is an observation from $\pi_{k^{(t)}}$. It is convenient to write $\mathcal{T}_i = \{t: k^{(t)} = k_i\}$ for the index set of observations at the $i^{\mbox{\tiny th}}$ temperature, and let $T_i = |\mathcal{T}_i|$. Let the vector of observations at the $i^{\mbox{\tiny th}}$ temperature collect in $\bm{\theta}_i = (\theta_{i1},\dots,\theta_{iT_i})$, so that $\{\theta_{ij}\}_{j=1}^{T_i}\sim \pi_{k_i}$. Each vector $\bm{\theta}_i$ can be used to construct an IS estimator of $E_{\pi}\{h(\theta)\}$ by setting \[ \hat{h}_i = \frac{\sum_{j=1}^{T_i} w_i(\theta_{ij}) h(\theta_{ij})} {\sum_{j=1}^{T_i} w_i(\theta_{ij})} \equiv \frac{\sum_{j=1}^{T_i} w_{ij}h(\theta_{ij})}{W_i}, \] say. That is, rather than obtain one estimator from ST (at the cold temperature), we can obtain $m$ estimators (one at each temperature) via IS. The efficiency of each estimator, $i=1,\dots,m$ can be measured through its variance, but unfortunately this can be difficult to calculate in general. As a result, the notion of {\em effective sample size} \cite{liu:2001} (ESS) plays an important role in the study of IS estimators. Denote the vector of IS weights at the $i^{\mbox{\tiny th}}$ temperature as $\mathbf{w}_i = \mathbf{w}_i(\bm{\theta}_i) = (w_i(\theta_{i1}),\ldots,w_i(\theta_{iT_i}))$, where $w_i(\theta) = \pi(\theta)/\pi_{k_i}(\theta)$. The ESS of $\hat{h}_i$ is defined by \begin{equation} \mathrm{ESS}(\mb{w}_i) = \frac{T}{1 + \mathrm{cv^2}(\mathbf{w}_i)}, \label{eq:essw} \end{equation} where $\mathrm{cv}(\mathbf{w}_i)$ is the \emph{coefficient of variation} of the weights (in the $i^{\mbox{\tiny th}}$ temperature), given by \begin{align*} \mathrm{cv^2}(\mathbf{w}_i) &= \frac{\sum_{t=1}^T(w(\theta^{(t)}) - \bar{w})^2}{(T-1) \bar{w}^2}, &\mbox{where} && \bar{w} &= T^{-1} \sum_{t=1}^T w(\theta^{(t)}). \end{align*} In {\sf R}: <<>>= ESS <- function(w) { mw <- mean(w) cv2 <- sum((w-mw)^2)/((length(w)-1)*mw^2) ess <- length(w)/(1+cv2) return(ess) } @ This should not be confused with the concept of \emph{effective sample size due to autocorrelation} \cite{kass:1998} (due to serially correlated samples coming from a Markov chain as in MCMC) as implemented by the {\tt effectiveSize} function in the {\tt coda} package \cite{coda:R} for {\sf R}. Before attempting to combine $m$ IS estimators it is fruitful backtrack briefly to obtain some perspective on the topic of applying IS with a {\em single} tempered proposal distribution. Jennison \cite{jennison:1993} put this idea forward more than a decade ago, although the question of how to choose the best temperature was neither posed or resolved. It is clear that larger $k$ leads to lower variance estimators (and larger ESS), but at the expense of poorer mixing in the Markov chain. It can be shown that the optimal inverse temperature $k^*$ for IS, in the sense of constructing a minimum variance estimator, may be significantly lower than one \cite{gra:samw:king:2009}. However, the variance of such an estimator will indeed become unbounded as $k\rightarrow 0$, just as ESS~$\rightarrow 0$. Needless to say, the choice of how to best pick the best temperatures (for ST or IS) is still an open problem. But in the context of the family of tempered distributions used by ST for mixing considerations, this means that the discarded samples obtained when $k^{(t)} < 1$ may actually lead to more efficient estimators than the ones saved from the cold distribution. So ST is wastefull indeed. However, when combining IS estimators from the multiple temperatures used in ST, the deleterious effect of the high variance ones obtained at high temperature must be mitigated. The possible strategies involved in developing such a meta-estimator comprise the {\em importance tempering} (IT) family of methods. The idea is that small ESS will indicate high variance IS estimators which should be relegated to having only a small influence on the overall estimator. \subsection{An optimal way to combine IS estimators} \label{sec:lambdas} It is natural to consider an overall meta-estimator of $E_{\pi}\{h(\theta)\}$ defined by a convex combination: \begin{align} \label{eq:hhatlambda} \hat{h}_{\lambda} &= \sum_{i=1}^m \lambda_i \hat{h}_i,& \mbox{where} && 0 \leq \lambda_i \leq \sum_{i=1}^m \lambda_i = 1. \end{align} Unfortunately, if $\lambda_1,\dots,\lambda_m$ are not chosen carefully, $\mbox{Var}(\hat{h}_\lambda)$, can be nearly as large as the largest $\mbox{Var}(\hat{h}_i)$ \cite{owen:2000}, due to the considerations alluded to in Section \ref{sec:temp}. Notice that ST is recovered as a special case when $\lambda_1=1$ and $\lambda_2,\dots,\lambda_m = 0$. It may be tempting to choose $\lambda_i = W_i/W$, where $W = \sum_{i=1}^m W_i$. The resulting estimator is equivalent to \begin{align} \label{Eq:hath} \hat{h} &= W^{-1} \sum_{t=1}^T w(\theta^{(t)},k^{(t)})h(\theta^{(t)}), & \mbox{where} && W = \sum_{t=1}^T w(\theta^{(t)},k^{(t)}), \end{align} and $w(\theta,k) = \pi(\theta)/\pi(\theta)^k = \pi(\theta)^{1-k}$. It can lead to a very poor estimator, even compared to ST, as will be demonstrated empirically in the examples to follow shortly. Observe that we can equivalently write \begin{align} \hat{h}_{\lambda} &= \sum_{i=1}^m \sum_{j=1}^{T_i} w_{ij}^{\lambda}h(\theta_{ij}), && \mbox{where} & w_{ij}^{\lambda} &= \lambda_iw_{ij}/W_i. \label{eq:wlambda} \end{align} Let $\mathbf{w}^{\lambda} = (w_{11}^\lambda,\ldots,w_{1T_1}^\lambda,w_{21}^\lambda,\ldots,w_{2T_2}^\lambda, \ldots,w_{m1}^\lambda,\ldots,w_{mT_m}^\lambda)$. Attempting to choose $\lambda_1,\dots,\lambda_m$ to minimize $\mbox{Var}(\hat{h}_\lambda)$ directly can be difficult. Moreover, for the applications that we have in mind, it is important that our estimator can be constructed without knowledge of the normalizing constants of $\pi_{k_1},\ldots,\pi_{k_m}$, and without evaluating the MH transition kernels $\mathcal{K}_{\pi_{k_i}}(\cdot,\cdot)$. It is for this reason that methods like the \emph{balance heuristic} \cite{veach:1995}, MCV \cite{owen:2000}, or population Monte Carlo (PMC) \cite{douc:etal:2007} cannot be applied. Instead, we seek maximize the effective sample size of $\hat{h}_\lambda$ in (\ref{eq:hhatlambda}), and look for an $O(T)$ operation to determine the optimal $\lambda^*$. %\begin{thm} %\label{thm:lambdastar} Among estimators of the form~(\ref{eq:hhatlambda}), it can be shown \cite{gra:samw:king:2009} that $\mathrm{ESS}(\mathbf{w}^{\lambda})$ is maximized by $\lambda = \lambda^*$, where, for $i=1,\ldots,m$, \begin{align*} \lambda_i^* &= \frac{\ell_i}{\sum_{i=1}^m \ell_i}, & \mbox{and} && \ell_i &= \frac{W_i^2}{\sum_{j=1}^{T_i} w_{ij}^2}. \end{align*} The efficiency of each IS estimator $\hat{h}_i$ can be measured through $\mathrm{ESS}(\mathbf{w}_i)$. Intuitively, we hope that with a good choice of $\lambda$, the ESS (\ref{eq:essw}) of $\hat{h}_{\lambda}$, would be close to the sum over $i$ of the effective sample sizes each of $\hat{h}_i$. This is indeed the case for $\hat{h}_{\lambda^*}$, because it can be shown \cite{gra:samw:king:2009} that \[ \mathrm{ESS}(\mathbf{w}^{\lambda^*}) \geq \sum_{i=1}^m \mathrm{ESS}(\mathbf{w}_i) - \frac{1}{4} - \frac{1}{T}. \] In practice we have found that this bound is conservative and that in fact $\mathrm{ESS}(\mathbf{w}^{\lambda^*}) \geq \sum_{i=1}^m \mathrm{ESS}(\mathbf{w}_i)$, as will be shown empirically in the examples that follow. Thus our optimally--combined IS estimator has a highly desirable and intuitive property in terms of its effective sample size: that the whole is greater than the sum of its parts. $\mathrm{ESS}(\mathbf{w}^{\lambda^*})$ depends on $\mathrm{ESS}(\mathbf{w}_i)$ which in turn depend on the $k_i$. Smaller $k_i$ will lead to better mixing in the Markov chain, but lower $\mathrm{ESS}(\mathbf{w}_i)$. Therefore, we can expect that the geometric and sigmoidal ladders will fare better than the harmonic ones, so long as the desired improvements in mixing are achieved. In the examples to follow, we shall see that the sigmoidal ladder does indeed leader to higher $\mathrm{ESS}(\mathbf{w}^{\lambda^*})$. \subsection{Examples} \label{sec:examples} Here the IT method is shown in action for {\tt tgp} models. IT is controlled in {\tt b*} functions via the {\tt itemps} argument: a {\tt data.frame} coinciding with the output of the {\tt default.itemps} function. The {\tt lambda} argument to {\tt default.itemps} can be used to base posterior predictive inference the other IT heuristics: ST and the na\"ive approach (\ref{Eq:hath}). Whenever the argument {\tt m = 1} is used with {\tt k.min != 1} the resulting estimator is constructed via tempered importance sampling at the single inverse temperature {\tt k.min}, in the style of Jennison~\cite{jennison:1993} as outlined in Section \ref{sec:temp}. The parameters $c_0$ and $n_0$ for stochastic approximation of the pseudo--prior can be specified as a 2--vector {\tt c0n0} argument to {\tt default.itemps}. In the examples which follow we simply use the default configuration of the IT method, adjusting only the minimum inverse temperature via the {\tt k.min} argument. Before delving into more involved examples, we illustrate the stages involved in a small run of importance tempering (IT) on the exponential data from Section 3.3 of \cite{gramacy:2007}. The data can be obtained as: <<>>= exp2d.data<-exp2d.rand() X<-exp2d.data$X Z<-exp2d.data$Z @ Now, consider applying IT to the Bayesian treed LM with a small geometric ladder. A warning will be given if the default setting of \verb!bprior="bflat"! is used, as this (numerically) improper prior can lead to improper posterior inference at high temperatures. <<>>= its <- default.itemps(m=10) exp.btlm <- btlm(X=X,Z=Z, bprior="b0", R=2, itemps=its, pred.n=FALSE, BTE=c(1000,3000,2)) @ Notice how the MCMC inference procedure starts with $B+T=\Sexpr{exp.btlm$BTE[1] + exp.btlm$BTE[2]}$ rounds of stochastic approximation (initial adjustment of the pseudo--prior) in place of typical (default) the $B=\Sexpr{exp.btlm$BTE[1]}$ burn--in rounds. Then, the first round of sampling from the posterior commences, over $T=\Sexpr{exp.btlm$BTE[2]-exp.btlm$BTE[1]}$ rounds, during which the observation counts in each temperature are tallied. The progress meter shows the current temperature the chain is in, say {\tt k=0.629961}, after each of 1000 sampling rounds. The first repeat starts with a pseudo--prior that has been adjusted by the observation counts, which continue to be accumulated throughout the entire procedure (i.e., they are never reset). Any subsequent repeats begin after a similar (re-)adjustment. Before finishing, the routine summarizes the sample size and effective sample sizes in each rung of the temperature ladder. The number of samples is given by {\tt len}, and the ESS by {\tt ess}. These quantities can also be recovered via {\tt traces}, as shown later. The ESS of the optimal combined IT sample is the last quantity printed. This, along with the ESS and total numbers of samples in each temperature, can also be obtained via the {\tt tgp}-class output object. <<>>= exp.btlm$ess @ \subsubsection{Motorcycle accident data} \label{sec:moto} Recall the motorcycle accident data of Section 3.4 of the first {\tt tgp} vignette \cite{gramacy:2007}. Consider using IT to sample from the posterior distribution of the treed GP LLM model using the geometric temperature ladder. <<>>= library(MASS) moto.it <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10), bprior="b0", R=3, itemps=geo, trace=TRUE, pred.n=FALSE, verb=0) @ Out of a total of $\Sexpr{moto.it$R*moto.it$BTE[2]/moto.it$BTE[3]}$ samples from the joint chain, the resulting (optimally combined) ESS was: <<>>= moto.it$ess$combined @ Alternatively, $\mb{w}^{\lambda^*}$ can be extracted from the traces, and used to make the ESS calculation directly. <<>>= p <- moto.it$trace$post ESS(p$wlambda) @ The unadjusted weights $\mb{w}$ are also available from {\tt trace}. We can see that the na\"{i}ve choice of $\lambda_i = W_i/W$, leading to the estimator in (\ref{Eq:hath}), has a clearly inferior effective sample size. <<>>= ESS(p$w) @ To see the benefit of IT over ST we can simply count the number of samples obtained when $k^{(t)} = 1$. This can be accomplished in several ways: either via the traces or through the output object. <<>>= as.numeric(c(sum(p$itemp == 1), moto.it$ess$each[1,2:3])) @ That is, (optimal) IT gives effectively $\Sexpr{signif(moto.it$ess$combined/sum(p$itemp==1), 3)}$ times more samples. The na\"{i}ve combination, leading to the estimator in (\ref{Eq:hath}), yields an estimator with an effective sample size that is $\Sexpr{round(100*ESS(p$w)/sum(p$itemp==1))}$\% of the number of samples obtained under ST. Now, we should like to compare to the MCMC samples obtained under the same model, without IT. <<>>= moto.reg <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10), R=3, bprior="b0", trace=TRUE, pred.n=FALSE, verb=0) @ The easiest comparison to make is to look at the heights explored under the three chains: the regular one, the chain of heights visited at all temperatures (combined), and those obtained after applying IT via re-weighting under the optimal combination $\lambda^*$. <<>>= L <- length(p$height) hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE)) b <- hist2bar(cbind(moto.reg$trace$post$height, p$height, hw)) @ \begin{figure}[ht!] <>= barplot(b, beside=TRUE, col=1:3, xlab="tree height", ylab="counts", main="tree heights encountered") legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3) @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-moto-height} \caption{Barplots indicating the counts of the number of times the Markov chains (for regular MCMC, combining all temperatures in the inverse temperature ladder, and those re-weighted via IT) were in trees of various heights for the motorcycle data.} \label{f:moto:it:heights} \end{figure} Figure \ref{f:moto:it:heights} shows barplots indicating the count of the number of times the Markov chains were in trees of various heights after burn--in. Notice how the tempered chain (denoted ``All Temps'' in the figure) frequently visits trees of height one, whereas the non--tempered chain (denoted ``reg MCMC'') never does. The result is that the non--tempered chain underestimates the probability of height two trees and produces a corresponding overestimate of height four trees---which are clearly not supported by the data---even visiting trees of height five. The IT estimator appropriately down--weights height one trees and provides correspondingly more realistic estimates of the probability of height two and four trees. Whenever introducing another parameter into the model, like the inverse temperature $k$, it is important to check that the marginal posterior chain for that parameter is mixing well. For ST it is crucial that the chain makes rapid excursions between the cold temperature, the hottest temperatures, and visits each temperature roughly the same number of times. \begin{figure}[ht!] <>= plot(log(moto.it$trace$post$itemp), type="l", ylab="log(k)", xlab="samples", main="trace of log(k)") @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-moto-ktrace} \caption{A trace of the MCMC samples from the marginal posterior distribution of the inverse temperature parameter, $k$, in the motorcycle experiment} \label{f:ktrace} \end{figure} Figure \ref{f:ktrace} shows a trace of the posterior samples for $k$ in the motorcycle experiment. Arguably, the mixing in $k$--space leaves something to be desired. Since it can be very difficult to tune the pseudo--prior and MH proposal mechanism to get good mixing in $k$--space, it is fortunate that the IT methodology does not rely on the same mixing properties as ST does. Since samples can be obtained from the posterior distribution of the parameters of interest by re-weighting samples obtained when $k < 1$ it is only important that the chain frequently visit low temperatures to obtain good sampling, and high temperatures to obtain good mixing. The actual time spent in specific temperatures, i.e., $k=1$ is less important. %%ylim <- c(0, 1.25*max(c(b[,1], moto.it$itemps$counts))) %, ylim=ylim) \begin{figure}[ht!] <>= b <- itemps.barplot(moto.it, plot.it=FALSE) barplot(t(cbind(moto.it$itemps$counts, b)), col=1:2, beside=TRUE, ylab="counts", xlab="itemps", main="inv-temp observation counts") legend("topleft", c("observation counts", "posterior samples"), fill=1:2) @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-moto-khist} \caption{Comparing (thinned) samples from the posterior distribution for the inverse temperature parameter, $k$, (posterior samples), to the observation counts used to update the pseudo--prior, in the motorcycle experiment} \label{f:khist} \end{figure} Figure \ref{f:khist} shows the histogram of the inverse temperatures visited in the Markov chain for the motorcycle experiment. Also plotted is a histogram of the {\em observation counts} in each temperature. The two histograms should have similar shape but different totals. Observation counts are tallied during every MCMC sample after burn--in, whereas the posterior samples of $k$ are thinned (at a rate specified in {\tt BTE[3]}). When the default {\tt trace=FALSE} argument is used only the observation counts will be available in the {\tt tgp}--class object, and these can be used as a surrogate for a trace of $k$. The compromise IT approach obtained using the sigmoidal ladder can yield an increase in ESS. <<>>= moto.it.sig <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10), R=3, bprior="b0", krige=FALSE, itemps=sig, verb=0) @ Compare the resulting ESS to the one given for the geometric ladder above. <<>>= moto.it.sig$ess$combined @ \begin{figure}[ht!] <>= plot(moto.it.sig) @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-moto-pred} \caption{Posterior predictive surface for the motorcycle data, with 90\% quantile errorbars, obtained under IT with the sigmoidal ladder.} \label{f:moto:pred} \end{figure} Plots of the resulting predictive surface is shown in Figure \ref{f:moto:pred} for comparison with those in Section 1.1 of the first {\tt tgp} vignette \cite{gramacy:2007}. In particular, observe that the transition from the middle region to the right one is much less stark in this tempered version than than in the original---which very likely spent a disproportionate amount of time stuck in a posterior mode with trees of depth three or greater. \subsubsection{Synthetic 2--d Exponential Data} \label{sec:exp} Recall the synthetic 2--d exponential data of Section 3.4 of the tgp vignette \cite{gramacy:2007}, where the true response is given by \[ z(\mb{x}) = x_1 \exp(-x_1^2 - x_2^2). \] Here, we will take $\mb{x} \in [-6,6]\times [-6,6]$ with a $D$--optimal design <<>>= Xcand <- lhs(10000, rbind(c(-6,6),c(-6,6))) X <- dopt.gp(400, X=NULL, Xcand)$XX Z <- exp2d.Z(X)$Z @ Consider a treed GP LLM model fit to this data using the standard MCMC. <<>>= exp.reg <- btgpllm(X=X, Z=Z, BTE=c(2000,52000,10), bprior="b0", trace=TRUE, krige=FALSE, R=10, verb=0) @ \begin{figure}[ht!] <>= plot(exp.reg) @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-exp-pred} \caption{Posterior predictive surface for the 2--d exponential data: mean surface {\em (left)} and 90\% quantile difference {\em (right)}} \label{f:exp:pred} \end{figure} Figure \ref{f:exp:pred} shows the resulting posterior predictive surface. The maximum {\em a' posteriori} (MAP) tree is drawn over the error surface in the {\em right--hand} plot. The height of this tree can be obtained from the {\tt tgp}-class object. <<>>= h <- exp.reg$post$height[which.max(exp.reg$posts$lpost)] h @ It is easy to see that many fewer partitions are actually necessary to separate the interesting, central, region from the surrounding flat region. \begin{figure}[ht!] <>= tgp.trees(exp.reg, "map") @ <>= graphics.off() @ \centering \includegraphics[trim=0 100 0 25]{tgp2-it-exp-mapt} \caption{Diagrammatic depiction of the maximum {\em a' posteriori} (MAP) tree for the 2--d exponential data under standard MCMC sampling } \label{f:exp:mapt} \end{figure} Figure \ref{f:exp:mapt} shows a diagrammatic representation of the MAP tree. Given the apparent over--partitioning in this height \Sexpr{h} tree it would be surprising to find much posterior support for trees of greater height. One might indeed suspect that there are trees with fewer partitions which would have higher posterior probability, and thus guess that the Markov chain for the trees plotted in these figures possibly became stuck in a local mode of tree space while on an excursion into deeper trees. Now consider using IT. It will be important in this case to have a $k_{\mbox{\tiny m}}$ small enough to ensure that the tree occasionally prunes back to the root. We shall therefore use a smaller $k_{\mbox{\tiny m}}$. % with an extra 10 rungs. Generally speaking, some pilot tuning may be necessary to choose an appropriate $k_{\mbox{\tiny m}}$ and number of rungs $m$, although the defaults should give adequate performance in most cases. <<>>= its <- default.itemps(k.min=0.02) exp.it <- btgpllm(X=X, Z=Z, BTE=c(2000,52000,10), bprior="b0", trace=TRUE, krige=FALSE, itemps=its, R=10, verb=0) @ As expected, the tempered chain moves more rapidly throughout tree space by accepting more tree proposals. The acceptance rates of tree operations can be accessed from the {\tt tgp}--class object. <<>>= exp.it$gpcs exp.reg$gpcs @ The increased rate of {\em prune} operations explains how the tempered distributions helped the chain escape the local modes of deep trees. We can quickly compare the effective sample sizes of the three possible estimators: ST, na\"{i}ve IT, and optimal IT. <<>>= p <- exp.it$trace$post data.frame(ST=sum(p$itemp == 1), nIT=ESS(p$w), oIT=exp.it$ess$combined) @ Due to the thinning in the Markov chain ({\tt BTE[3] = 10}) and the traversal between $m=10$ temperatures in the ladder, we can be reasonably certain that the \Sexpr{round(exp.it$ess$combined)} samples obtained via IT from the total of \Sexpr{round(exp.it$R*(exp.it$BTE[2]-exp.it$BTE[1])/exp.it$BTE[3])} samples obtained from the posterior are far less correlated than the ones obtained via standard MCMC. As with the motorcycle data, we can compare the tree heights visited by the two chains. <<>>= L <- length(p$height) hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE)) b <- hist2bar(cbind(exp.reg$trace$post$height, p$height, hw)) @ \begin{figure}[ht!] <>= barplot(b, beside=TRUE, col=1:3, xlab="tree height", ylab="counts", main="tree heights encountered") legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3) @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-exp-height} \caption{Barplots indicating the counts of the number of times the Markov chains (for regular MCMC, combining all temperatures in the inverse temperature ladder, and those re-weighted via IT) were in trees of various heights for the 2--d exponential data.} \label{f:exp:it:heights} \end{figure} Figure \ref{f:exp:it:heights} shows a barplot of {\tt b}, which illustrates that the tempered chain frequently visited shallow trees. IT with the optimal weights shows that the standard MCMC chain missed many trees of height three and four with considerable posterior support. \begin{figure}[ht!] <>= ylim <- range(p$height, exp.reg$trace$post$height) plot(p$height, type="l", main="trace of tree heights", xlab="t", ylab="height", ylim=ylim) lines(exp.reg$trace$post$height, col=2) legend("topright", c("tempered", "reg MCMC"), lty=c(1,1), col=1:2) @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-exp-trace-height} \caption{Traces of the tree heights obtained under the two Markov chains (for regular MCMC, combining all temperatures in the inverse temperature ladder) on the 2--d exponential data.} \label{f:exp:trace:height} \end{figure} To more directly compare the mixing in tree space between the ST and tempered chains, consider the trace plots of the heights of the trees explored by the chains shown in Figure \ref{f:exp:trace:height}. Despite being restarted \Sexpr{exp.reg$R} times, the regular MCMC chain (almost) never visits trees of height less than five after burn--in and instead makes rather lengthy excursions into deeper trees, exploring a local mode in the posterior. In contrast, the tempered chain frequently prunes back to the tree root, and consequently discovers posterior modes in tree heights three and four. \begin{figure}[ht!] <>= plot(exp.it) @ \vspace{-0.7cm} <>= tgp.trees(exp.it, "map") @ <>= graphics.off() @ \centering \includegraphics[trim=0 15 0 0]{tgp2-it-expit-pred} \includegraphics[trim=0 100 0 0]{tgp2-it-expit-trees} \caption{2--d exponential data fit with IT. {\em Top:} Posterior predictive mean surface for the 2d--exponential, with the MAP tree overlayed. {\em Bottom:} diagrammatic representation of the MAP tree. } \label{f:exp-it:pred} \end{figure} To conclude, a plot of the posterior predictive surface is given in Figure \ref{f:exp-it:pred}, where the MAP tree is shown both graphically and diagrammatically. %\iffalse \subsection*{Acknowledgments} This work was partially supported by research subaward 08008-002-011-000 from the Universities Space Research Association and NASA, NASA/University Affiliated Research Center grant SC 2003028 NAS2-03144, Sandia National Laboratories grant 496420, National Science Foundation grants DMS 0233710 and 0504851, and Engineering and Physical Sciences Research Council Grant EP/D065704/1. The authors would like to thank their Ph.D.~advisor, Herbie Lee, whose contributions and guidance in this project have been invaluable throughout. Finally, we would like to thank two anonymous referees whose many helpful comments improved the paper. %\fi \bibliography{tgp} \bibliographystyle{plain} \end{document} tgp/data/0000755000176200001440000000000013531032535011755 5ustar liggesuserstgp/data/exp2d.rda0000644000176200001440000001646214661702203013501 0ustar liggesusers‹Õ›yfýk~ÿÔš©2åÀ Ÿôžüù1ëÉÔ?1ãwÃÒvf,m×èú;ºÅÔÕ»Ú‘”¯ÔUÊHÇIûÉw+ùÃ|RŽ4iéx)G:¿4o6_éuÊÿíõHó`¯›ÉSº>Òë`ׇY—n›s_þr~ÿKëö/Ëïë÷ïÊï?¼ïþ×ÖïÏòü'óëvçâß½~Ý=¿tÿb~ÿgîowÏïÖÿ‘üþÙuüç÷/Ëë?¼~Ý=¿¿[Çîžß?»ŽÝ-¿îº~ÿìýýOÝ×ÿ.¿ÿô¾û“üd¤ïs·þ¶?û¾%‡áýq°ïa _z½RûžÈðþÎGÒ¼˜ëb×CzÝÒëSÿÛõì®%»>ݵ”îÃîZ2û¥Û–·ºw)ÓÍ?¬çºkù[7/¥Þí®å'&ÏnZš1û°Û–ò]ëØmKésGw-•˜ûÜ]KésZw-Õ™}Ø]Kéóhw-5˜sÒ]Kéóvw-¥ï'ݵdÞcºk)#}Ÿküº°Í¡âv8FlÒîì‹÷™^6è«Y€ \ÎìdÌÇ“/r/%Ou›tïí9þå¨èêN+Ú„œ…®!›“ÁÜ×Uȡ׊ äË 4@3öŠ`÷´K±í‘µ¦¢¼/»Ö~Æ®Þ?›þi=Zfv•2h9rJòÁ雜¶Ú`ê7÷¨Š‰>È6+GN¶Yˆ¼³ædŒºî†ML‡Ô´,¦qLÁr­c{6áôÞŽIêé"œ£J¤+-¯Ã}Û{)|?Šs#ö}·±CNª{”žœF¹oŽ(\Zu¨&çZ] E©[o A±C^½ª\㋬}Ö_öb‹³=_ÝíŒB‚výE†ågÑ”—ÎÞ^—s°£[漢գQ_j›µ Ws}ëb”ö&¢™nŠöíOA:•¾.ƒ_a•3µßU†+âøHõÔÅòU8ûPí¯RæàRûéKw6âš9¿Ùæ›LÂå7NÿftƨJvKTŽÊ?µffœÊF5û©äk‰a¨ÔÒQÞ`=rd¶ö}º«…ŽRO9]&‡Ì”.¸_¾¹?ÓCq©9vžûêÝ–½x¦¯ëÉ«ä<ääyÂvP„.2ÉïLH»¨ aG3BÖ KßXÿi˜£÷âÙØGCqzõ‘ý­õ ¸ |êä}7qa†ZÊ•(\`Ì»³œ1I>B7ï-ª?PÛyèÞÔÔ§@ûšB ºòiW¿!»o ‚ÜÜCË¿¡t×Õzó…}P¸Á—þ®jˆÈjvÔ9‰­“ ëgm(Cîj 2Úyôs2N%Ʋ›Í©w0ð5F *êᆦëÆßîÇ?ŠGs•Ç-î³[˽¹âß⃔÷±ö~œƒqôÁÉNa»pýÀ5OÛÖãÛCï®/͘‰JjŽëÝDÃ8ÑŸ8ŽJâzL~Y‰n÷±Ó<À3@õ†O—­^jp’rû…|: RqÓÈ2­ŠY:÷ôšÈ%~EŽán4Ñò#µã™xñ¶O›>žXç ÉíuÛŠzžZu$Ù™]Š0Žò)Î}¨â8Bö(¶îUëšüœñ/»ûe®~$ônû/¸ñÃðÒŽ×pý.¾–\A8²¶Ö¢•/Aõiß6t˜AM½´Ôn67 :ã)/®k¢‚VýÔ¨ÀV”>)ýòÖ­Á(fËÆ9[œç#wƒO;\ó¶#³aUçŸT=ÅÎV—†Ž VÆDÊ…ê ™µÄ[Û9 yñ =|û.D½FM]éq[¡ÔœÝ΋jnªðuÕ^Ÿ5`wÎÞ-ïÛo.uàŒ\0²×lþ$ — •ùøù ²voÝtUï5z0?Õ¤#A‚îT:®úlK‡Êž|>ñžÅn?rÚ‡Ž7hÉ„1½’'Ycóƒ•Fx7"Ï•Så7+ÐT}®«ôÀ#ž.4ó‹L?o쓳ÛeCsL–"W¯é;×Ä!»û³’Ç ¼ZÿÚˆ‡k›pJæõ¢1/pŽpJJÀk |®4ÃØÅP çnR=ÜŠ;†Œ™í¬¤Œr÷•¬Ù‘¸‹/t«8~弜q°±H¥EVµmI„¢^_o¶õ+š¯ûX£/ÀžV…³ä¹ý±·çÊܾ4š¹á›ÿuÈVñšbÕß°yÖÇH×HYlû¬fÝ{™ l¹~Å¢±­˜+““½^â‹íóöÅ¿y‡WW\ú´DcNŒªÛU4E§ï~MÂ)‘ÑϹÁ(¹·JG\†7J¨Øîb÷Ã{ï,kj¢U>» ÆoGónlù|Æð ´ðÆa®™=v0ú8aAú)dÖsµLÄÂEÈ&I࣪®ŠE-º§¬¢`×¹Ï׸çMA¦ N‹î­ŒÁÇGN½]Z§\²ßgñtìÛ¯1A_ˆ Œ?¦ÅoþŽ}ƒ²š“÷ˆñâWG‚M÷&àU˯žzÚ¦…cRw›MûŽ=Ï~hhÓ*EgÞ/vôˆ–¯\S¨4 ù÷iJšÑf‰&Rt%Ïæ öôÓ,ñ«YŒøþK"ƒêìеNûK™‹Åϯí9÷"4§o®“¨o­g\Ç·‘˜l3¬“·A†û šÎÎ{€ûx mîT@Î/Rƒâ”‘þˆ9{‡ââ/u=ã°Ë x¡ÙÉÏÈêîó£Œ8x†Ã‘DíS9ôG¿ä–`îìß’»s¯{–•©/^]øáý·&ì@š8C ¹¾XMÆœï‹lz鯻¶¸åÁ ;7Æc®UÝü Ñ²Èq™fõ‰͘Sr×wòN<žç÷aSH.r‹ÜYœå€lÏW„ˆ¾!—‡ÏÅ˯þŠ\ª¾d†LB õÛïÑd™tû˜«í{úÛ»ÕÚO"Þ#½ãsËR“¸?žOªž+óC!Ï¿N]Dc¡j‡Òí -xŒìñGŠ´‘®ç¡wí¿l¡¿½tvïŽ<špq¾€§âƒœv¸qk…wd¸q=‘÷¶l‡³Y±Hk¸íá°…Ni^V‹î‘aí‘P†DMÉ^f–Ø6ǯv€Ä Ϙ†ÈMa*é•{±¿s¸MÖ¡2ä·Åv×ÿäþîé«ÊÏ/…Âýš­ÈvEßàþ£°±1~×Wgp©$"Qÿž^­P¿,ÑË–é…%ãŸÚi4 Û¥|’HÕ Í6TPL3Eä,µ—ÁéØëâôûß½îŽl&z›> Ÿ†f¼©Ñ7Éû¬O©é«z»f; âÝÃæ±}â¼0ñÊíÐ a 2h4×u’†”v¨¥ž‹ù)Ù+^^Ôy7Û§Þ)ë‰ÝCoy„ ”Á.&99|¹(©M„mÔG½<ÿž9I>l´À{ÞÂÞ—ËÕÛØ/GÞCcÎÖi™W]Æv¯¢ú‰Â&b³\ÍWG½' ±«–;MRħ§}ºñÌ 7ŸGªÝþ±Ž󌌓ž±ïsM²‹®Q'÷ŠÑåÓG^]ÇûÚ›Ûs25E=àŒÄž´ÑÁ¢ýÜ ‰’^³Skí8e(‡NSÍp ¥Ê~1í¡GÇÇõ;1Þz¤8ÊßgAðÃÂo%™Ôôû(¾bŽèìøþ…1š´'+÷”Ü­·qÄ>(|ç„2ï×¶âq_缲ʹWXܘ#w m³ÉR;·Aú²Yü[œkè¤ §èÞ´Z‡¥lýe¤‚ú˜lÍ¯ÇæÇÔÑÏöÊ/ˆé˜ñˆ™Yê‹Ö‰~™‰zÌVß·‹~°îcÚØ‹—éÃmòz—Ð3O$(NQ¢6%>ŒúÕJrIû^ÓíCÅ’ÙÃãªòµÄûä»÷s¹€W•Ûf.çá4¹Q%ÜñS0sñ¹ÝoZ7ÚÿxŸËJL¬R±eócêˆiGÌ8Ä̃¦ùÌè #egèÚ¯AÔúK€ùkYwº¤AïÝ8•(:2ý«Éxõdš³ZkÖ }éý—¬Ùq—Ã/#ùÆÿîæöâü‹›ý„¹y˜Ù/8›Y¯R“%9³ò¿ášå»Šd£·àŠŸûô›SGL;bú#f< qî¸ZCºOQŸ=O¾óT’èúóƒN«‹¦·Ý^±¶º´m^þQ7À@òVOÑ*j™¬dwyƒ•ñ3G Ùns|ìÎ×âêˆW§åKÏ.øyß(\'÷èñ¸íŸp}ÂÃÖô6¯®º=bÎêê×€˜qˆ™EÆ)§lC“+üæ Lm@š?÷ûú®µèžª÷:©èÕsÊ›C;†û«½Jò—|>“6§ÒÕG²?1Ë pæ,‰ÙH‡Þw‰ƒâ†iÆ*Üž“ñ îgGŠ;1þå«+ò»ë “%±†!¸ù»k…Gn n¸š¢¼zS$›'SGL;bú#fVmþê¥ôý‹OsÝOÛÒi\Ÿ‚Wk/Ò.aù&§B·Ñ2WfôßsRr(c‚èú뛋—e"Éöâ[ýtãj®nùú5H½ó'ë'ø®ßÅ¿¸~Ú]ûoÜGfÿÉÿÅý'˜ù˜}Øë/ï¿ÿúüþáüšýÉùÝÏxÛð<ÇæþÝ9þ³óûúïßå=é÷ë¿ÿé÷Ç¿é{Cú½‰‡Y¸:+w~ÂÂŠŽ›#ñ¤ßï ñ3ߨ9I!Ñdócêˆé‡˜qˆ™‡þøUñê·ãtíhekq¢8ödeñ5/zê‘F­EFÉôàé~Q—Ï|Ô^ÞülÍg¡$B¬“l+’Œ8:µpzŸMââ ü£߉݄sÃÅï‹_Ñ2†Ë‚³°ÒÏsv2¾ñ£×%¬{I÷sî‡xdBÌUÕÖ…l~L1íˆé˜ñ43]ùiYlTÿ³tê°cí;tðÑæCÕ*’gÞïZ\q”¤VØVfÌ‘Ø rFPâ7‡?›ÉŸÜ!Þº6£þs‘‘X‡•»N¶8ï]ޘÞÅõ]û¤ø±g±Ù×’â×?ÏÝi^´ô¹‚ù;Íô£™q43½s„|ã¶¡òtà(7-u“jš·HýP‹ŒäCeûÕt¬$'ëõg»÷j’À”­üú¾r^½îO=->;–Gm0?&öÐËøø‰^z”ŽÚº8lÔàØhßœbæy©8cÑ‹'çÞgg8Ê}ë]Y|ìW üوͳ«Î£»Úké®þÏhfÚuÈÖÂö¡…´žM˜ÊÞ9’wáÅo›XJòžÙ„½ë' Ýo5Öj‰§D¯Âþô,ÇÅâj±óÞº"_NEÞèò|ê—˜)huÚŸõ‘WÌù¹_çOzdPûµ<¸Øo\À™ÕJíų#g^[([°ç[û‰-l~LfÚi¦?ÍŒ§™ù$÷Uçç/Ý)ɲ}2ýNþ[IÈ%wMÜp‰Ql@‡_@°øþžm3Ÿˆ·žŽ ÏËü,&£]œùé—E×î.ÿÔ‹ø"šuìšÖz¹Æ¢‡'zmÖFˤÔLðÙ°§XcÐõ’+>·‹µÝ”GêZ<ðáó÷ æýÙü˜:Í´ÓLš/aæ“”˜­˜µåÊmÉÎ÷ÆÛ‚g¿ø.ô^YdÒS2ê ÚÎʇOÅ÷N%ÚUKÇϨhÍØ¯-6WïÑè“&ZsçHSꔥ¢!“7Ý’ìºY´íRÑ㇉¨èص±KunÇÿ|Þ±.*ÿu†ó»#EÞö{NÒU·•tµŸ‘0ý%Ìx 3ŸdÎÏsé(¡÷ŒÐ©í¼.QòäÛ¤ç%¾2 ü@[yºxÃîxÓ‹}D/6FîI;%Ú5 øñª!"EÙ1OÖX˜–‰²Ã2‡Yiɱ½EŽ?¯o\ÑLõh·«á&EsjÝÍLÛãŠò¼KµÙüºêz’®öí¦¿„/a擨ý|ÞOßy=Fþ£¦øxQͶùÍ¥âEä6ù$zàëÔfxQ´]''emÿS"*Fù[ï¸i}u~ÑÍá„iðóÎöÒ+¬û¹Îs Ÿ_¸ù<åòø¢žWÊž®™_$·CÍ=Âî;IW}—„i3ïbfœ˜™G|lœ¾qž{¾8ú§'´ÄvNuZ)b5…=”ÇÎg¢ªumíÊÞ‰VòŒ\êOô®XxjèâÙ¦×vkþ8Ûtáל¼Ñ{û™ö0ÞþJÇ»ÐÏN»½Ct ã唞úM›^˜BžqºkÞT˜Pu¹"»çi~â®z¸¸«ýž˜é/fÞƒÄÌ(ôáÝ•B†ÿÿȲç¤)X–å’Ò€’\iÀ“|i BépL؈½(ÁF$QlÄe#ñÙHÀF,ƒ`Ë XÁ2–A° ‚e,ƒ`Ë YÉ2H–A² ’e,ƒd$Ë YÉ2(–A± ŠeP,ƒbË XÅ2(–A± .Ëಠ.Ëಠ.Ëಠ.Ëಠ.ËಠËà± Ëà± Ëà± Ëà± Ëà± >Ëà³ >Ëà³ >Ëà³ >Ëà³ >Ëೠ˰ ˰ ˰ ˰ ˰ !˲ !˲ !˲ !˲ !ËJò9’Rr!äAȇP!Ð8@ã4Ð8@ã4Ð8@ã4hР@#€F4h$ÐH ‘@#F 4h$Ð( Q@£€F4 hÐ( Q@ã 4.и@ã 4.и@ã 4Ðx@ã4Ðx@ã4Ðx@ã4>Ðø@ã4>Ðø@ã4Ð@M4Ð@M4Ð@M4!Є@M4!Є@ \B€Kp .!À%¸„—à\B€Kp .!À%¸„—à\B€Kp .!À%¸„—à\B€Kp .!À%¸„—à\B€Kp .!À%¸„—à\B€Kp .!À%¸„—à\B€Kp .!À%¸„—à\B€Kp .!À%¸„—à\B€Kp .!À%¸„—à\B€Kp .!À%¸„—à\B€Kp .!À%¸„—à\B€Kp .!À%¸„—à\B€Kp .!À%$¸„—à\B‚KHp .!Á%$¸„—à\B‚KHp .!Á%$¸„—à\B‚KHp .!Á%$¸„—à\B‚KHp .!Á%$¸„—à\B‚KHp .!Á%$¸„—à\B‚KHp .!Á%$¸„—à\B‚KHp .!Á%$¸„—à\B‚KHp .!Á%$¸„—à\B‚KHp .!Á%$¸„—à\B‚KHp .!Á%$¸„—à\B‚KHp .!Á%$¸„—à\B‚KHp .!Á%$¸„—à\BK(p .¡À%¸„—Pà \BK(p .¡À%¸„—Pà \BK(p .¡À%¸„—Pà \BK(p .¡À%¸„—Pà \BK(p .¡À%¸„—Pà \BK¨.‘‘ùöûÏÿi¿· –Jtgp/src/0000755000176200001440000000000014661702202011633 5ustar liggesuserstgp/src/gp.h0000644000176200001440000001627613531032535012426 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __GP_H__ #define __GP_H__ #include #include "corr.h" #include "base.h" /* not including tree.h */ class Tree; #define BUFFMAX 256 typedef enum BETA_PRIOR {B0=801, BMLE=802, BFLAT=803, B0NOT=804, BMZT=805, BMZNOT=806} BETA_PRIOR; typedef enum MEAN_FN {LINEAR=901, CONSTANT=902, TWOLEVEL=903} MEAN_FN; class Gp : public Base { private: double **F; /* col x n, matrix */ double **FF; /* col x nn, matrix */ double **xxKx; /* nn x n, cross covariance between XX and X */ double **xxKxx; /* nn x nn, cross covariance between XX and XX */ double *b; /* dimension=col, beta: linear coefficients */ double s2; /* sigma^2: process variance */ double tau2; /* tau^2: linear variance */ Corr_Prior *corr_prior; /* prior model for the correlation function */ Corr *corr; /* unspecified correllation family */ double **Vb; /* variance of Gibbs beta step */ double *bmu; /* mean of gibbs beta step */ double *bmle; /* linear coefficients mle w/o Gp */ double lambda; /* parameter in marginalized beta */ public: Gp(unsigned int d, Base_Prior *prior, Model *model); Gp(double **X, double *Z, Base *gp_old, bool economy); virtual ~Gp(void); virtual Base* Dup(double **X, double *Z, bool economy); virtual void Clear(void); virtual void ClearPred(void); virtual void Update(double **X, unsigned int n, unsigned int d, double *Z); virtual void UpdatePred(double **XX, unsigned int nn, unsigned int d, bool Ds2xy); virtual bool Draw(void *state); virtual void Predict(unsigned int n, double *zp, double *zpm, double *zpvm, double *zps2, unsigned int nn, double *zz, double *zzm, double *zzvm, double *zzs2, double **ds2xy, double *improv, double Zmin, bool err, void *state); virtual void Match(Base* gp_old); virtual void Combine(Base *l_gp, Base *r_gp,void *state); virtual void Split(Base *l_gp, Base *r_gp, void *state); virtual double Posterior(void); virtual double MarginalLikelihood(double itemp); virtual double Likelihood(double itemp); virtual double FullPosterior(double itemp); virtual double MarginalPosterior(double itemp); virtual void Compute(void); virtual void ForceLinear(void); virtual void ForceNonlinear(void); virtual bool Linear(void); virtual bool Constant(void); virtual void printFullNode(void); virtual double Var(void); virtual char* State(unsigned int which); virtual unsigned int sum_b(void); virtual void Init(double *dgp); virtual void X_to_F(unsigned int n, double **X, double **F); virtual double* Trace(unsigned int* len, bool full); virtual char** TraceNames(unsigned int* len, bool full); virtual double NewInvTemp(double itemp, bool isleaf); double* get_b(void); double *Bmle(void); double* all_params(double *s2, double *tau2, Corr** corr); void split_tau2(double *tau2_new, void *state); Corr *get_Corr(void); }; double combine_tau2(double l_tau2, double r_tau2, void *state); class Gp_Prior : public Base_Prior { private: BETA_PRIOR beta_prior; /* indicator for type of Beta Prior */ MEAN_FN mean_fn; Corr_Prior *corr_prior; double *b; /* starting: col, GP linear regression coefficients */ double s2; /* starting: GP variance parameter */ double tau2; /* starting: GP linear variance parameter */ double *b0; /* hierarchical non-tree parameter b0 */ /* (the T matrix is called W in the paper) */ double **Ti; /* hierearical non-tree parameter Ti */ double **T; /* inverse of Ti */ double **Tchol; /* for help in T=inv(Ti) */ double *mu; /* mean prior for b0 */ double **Ci; /* prior covariance for b0 */ unsigned int rho; /* prior df for T */ double **V; /* prior covariance for T */ double **rhoVi; /* (rho*V)^(-1) for Ti pdf calculation */ double s2_a0; /* s2 prior alpha parameter */ double s2_g0; /* s2 prior beta parameter */ double s2_a0_lambda; /* hierarchical s2 inv-gamma alpha parameter */ double s2_g0_lambda; /* hierarchical s2 inv-gamma beta parameter */ bool fix_s2; /* estimate hierarchical s2 parameters or not */ double tau2_a0; /* tau2 prior alpha parameter */ double tau2_g0; /* tau2 prior beta parameter */ double tau2_a0_lambda; /* hierarchical tau2 inv-gamma alpha parameter */ double tau2_g0_lambda; /* hierarchical tau2 inv-gamma beta parameter */ bool fix_tau2; /* estimate hierarchical tau2 parameters or not */ void initT(void); public: /* start public functions */ Gp_Prior(unsigned int d, MEAN_FN mean_fn); Gp_Prior(Base_Prior* prior); virtual ~Gp_Prior(void); virtual void read_ctrlfile(std::ifstream* ctrlfile); virtual void read_double(double *dparams); virtual void Init(double *dhier); virtual void Draw(Tree** leaves, unsigned int numLeaves, void *state); virtual bool LLM(void); virtual double ForceLinear(void); virtual void ResetLinear(double gamb); virtual void Print(FILE* outfile); virtual Base* newBase(Model *model); virtual Base_Prior* Dup(void); virtual double log_HierPrior(void); virtual double* Trace(unsigned int* len, bool full); virtual char** TraceNames(unsigned int* len, bool full); virtual double GamLin(unsigned int which); void InitT(void); void read_beta(char *line); void default_s2_priors(void); void default_s2_lambdas(void); void default_tau2_priors(void); void default_tau2_lambdas(void); double s2Alpha(void); double s2Beta(void); double tau2Alpha(void); double tau2Beta(void); double *B(void); double S2(void); double Tau2(void); double** get_T(void); double** get_Ti(void); double* get_b0(void); Corr_Prior* CorrPrior(void); BETA_PRIOR BetaPrior(void); MEAN_FN MeanFn(void); }; void allocate_leaf_params(unsigned int col, double ***b, double **s2, double **tau2, unsigned int **n, Corr ***corr, Tree **leaves, unsigned int numLeaves); void deallocate_leaf_params(double **b, double *s2, double *tau2, unsigned int *n, Corr **corr); #endif tgp/src/lik_post.h0000644000176200001440000000315613531032535013635 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __LIK_POST_H__ #define __LIK_POST_H__ double post_margin_rj(unsigned int n, unsigned int col, double lambda, double **Vb, double log_detK, double **T, double tau2, double a0, double g0, double temp); double post_margin(unsigned int n, unsigned int col, double lambda, double **Vb, double log_detK, double a0, double g0, double temp); double gp_lhood(double *Z, unsigned int n, unsigned int col, double **F, double *beta, double s2, double **Ki, double log_det_K, double *Kdiag, double temp); #endif tgp/src/predict.c0000644000176200001440000005541614323551707013453 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include #include #include #include #include "rand_draws.h" #include "rand_pdf.h" #include "matrix.h" #include "predict.h" #include "linalg.h" #include "rhelp.h" #include "lh.h" #include /* #define DEBUG */ /* * predictive_mean: * * compute the predictive mean of a single observation * used by predict_data and predict * * FFrow[col], KKrow[n1], KiZmFb[n1], b[col] */ double predictive_mean(unsigned int n1, unsigned int col, double *FFrow, double *KKrow, double *b, double *KiZmFb) { double zzm; /* Note that KKrow has been passed without any jitter. */ /* f(x)' * beta */ zzm = linalg_ddot(col, FFrow, 1, b, 1); /* E[Z(x)] = f(x)' * beta + k'*Ki*(Zdat - F*beta) */ zzm += linalg_ddot(n1, KKrow, 1, KiZmFb, 1); #ifdef DEBUG /* check to make sure the prediction is not too big; an old error */ if(abs(zzm) > 10e10) warning("(predict) abs(zz)=%g > 10e10", zzm); #endif return zzm; } /* * predict_data: * * used by the predict_full funtion below to fill * zmean and zs [n1] with predicted mean and var values * at the data locations, X * * b[col], KiZmFb[n1], z[n1], FFrow[n1][col], K[n1][n1]; */ void predict_data(double *zpm, double *zps2, unsigned int n1, unsigned int col, double **FFrow, double ** K, double *b, double ss2, double *zpjitter, double *KiZmFb) { int i; /* Note that now K is passed with jitter included. This was previously removed in the predict_full fn. */ /* printf("zp: "); printVector(zpjitter,5,MYstdout, HUMAN); */ /* for each point at which we want a prediction */ for(i=0; i 0);*/ Qy = new_vector(n1); for(i=0; i= 0); } /* clean up */ free(Qy); } /* * predictive_var: * * computes the predictive variance for a single location * used by predict. Also returns Q, rhs, Wf, and s2corr * which are useful for computing Delta-sigma * * Q[n1], rhs[n1], Wf[col], KKrow[n1], FFrow[n1], FW[col][n1], * KpFWFi[n1][n1], W[col][col]; */ double predictive_var(unsigned int n1, unsigned int col, double *Q, double *rhs, double *Wf, double *s2cor, double ss2, double *k, double *f, double **FW, double **W, double tau2, double **KpFWFi, double corr_diag) { double s2, kappa, fWf, last; /* Var[Z(x)] = s2*[KKii + jitter + fWf - Q (K + FWF)^{-1} Q] */ /* where Q = k + FWf */ /* Q = k + tau2*FW*f(x); */ dupv(Q, k, n1); linalg_dgemv(CblasNoTrans,n1,col,tau2,FW,n1,f,1,1.0,Q,1); /* rhs = KpFWFi * Q */ linalg_dgemv(CblasNoTrans,n1,n1,1.0,KpFWFi,n1,Q,1,0.0,rhs,1); /* Q (K + tau2*FWF)^{-1} Q */ /* last = Q*rhs = Q*KpFWFi*Q */ last = linalg_ddot(n1, Q, 1, rhs, 1); /* W*f(x) */ linalg_dsymv(col,1.0,W,col,f,1,0.0,Wf,1); /* f(x)*Wf */ fWf = linalg_ddot(col, f, 1, Wf, 1); /* finish off the variance */ /* Var[Z(x)] = s2*[KKii + jitter + fWf - Q (K + FWF)^{-1} Q] */ /* Var[Z(x)] = s2*[kappa - Q C^{-1} Q] */ /* of course corr_diag = 1.0 + nug, for non-mr_tgp & non calibration */ kappa = corr_diag + tau2*fWf; *s2cor = kappa - last; s2 = ss2*(*s2cor); /* this is to catch bad s2 calculations; note that jitter = nug for non-mr_tgp */ if(s2 <= 0) { s2 = 0; *s2cor = corr_diag-1.0; } return s2; } /* * predict_delta: * * used by the predict_full funtion below to fill * zmean and zs [n2] with predicted mean and var * values based on the input coded in terms of * FF,FW,W,xxKx,KpFWF,KpFWFi,b,ss2,nug,KiZmFb * * Also calls delta_sigma2 at each predictive location, * because it uses many of the same computed quantaties * as needed to compute the predictive variance. * * b[col], KiZmFb[n1], z[n2] FFrow[n2][col], KKrow[n2][n1], * xxKxx[n2][n2], KpFWFi[n1][n1], FW[col][n1], W[col][col], * Ds2xy[n2][n2]; */ void predict_delta(double *zzm, double *zzs2, double **Ds2xy, unsigned int n1, unsigned int n2, unsigned int col, double **FFrow, double **FW, double **W, double tau2, double **KKrow, double **xxKxx, double **KpFWFi, double *b, double ss2, double *zzjitter, double *KiZmFb) { int i; double s2cor; /*double Q[n1], rhs[n1], Wf[col];*/ double *Q, *rhs, *Wf; /* zero stuff out before starting the for-loop */ rhs = new_zero_vector(n1); Wf = new_zero_vector(col); Q = new_vector(n1); /* for each point at which we want a prediction */ for(i=0; i 0) improv[i] = diff; */ if(improv[i] < 0) improv[i] = 0.0; } } /* * predicted_improv: * * compute the improvement statistic for * posterior predictive data z * * This more raw statistic allows * a full summary of the Improvement I(X) distribution, * rather than the expected improvement provided by * expected_improv. * * Samples z(X) are (strongly) preferred over the data * Z(X), and likewise for zz(XX) rather than zz-hat(XX) * * Note that there is no predictive-variance argument. */ void predicted_improv(unsigned int n, unsigned int nn, double *improv, double Zmin, double *zp, double *zz) { unsigned int which, i; double fmin, diff; /* shouldn't be called if improv is NULL */ assert(improv); /* calculate best minimum so far */ fmin = min(zp, n, &which); if(Zmin < fmin) fmin = Zmin; for(i=0; i 0) improv[i] = diff; else improv[i] = 0.0; } } /* * GetImprovRank: * * implements Matt Taddy's algorithm for determining the order * in which the nn points -- whose improv samples are recorded * in the cols of Imat_in over R rounds -- should be added into * the design in order to get the largest expected improvement. * w are R importance tempering (IT) weights */ unsigned int* GetImprovRank(int R, int nn, double **Imat_in, int g, int numirank, double *w) { /* duplicate Imat, since it will be modified by this method */ unsigned int j, i, k, /* m,*/ maxj; double *colmean, *maxcol; double **Imat; /* double maxmean; */ unsigned int *pntind; /* allocate the ranking vector */ pntind = new_zero_uivector(nn); assert(numirank >= 0 && numirank <= nn); if(numirank == 0) return pntind; /* duplicate the Improv matrix so we can modify it */ Imat = new_dup_matrix(Imat_in, R, nn); /* first, raise improv to the appropriate power */ for (j=0; j 0.0) Imat[i][j] = 1.0; else for(k=1; k MYfmax(fabs(XX[i]-Xo[l]), fabs(XX[i]-Xo[u]))) search = 0; else{ l++; u++; } } /*printf("l=%d, u=%d, Xo[l]=%g, Xo[u]=%g, XX[i]=%g \n", l, u, Xo[l],Xo[u],XX[i]);*/ /* width of the window in X-space */ range = MYfmax(fabs(XX[i]-Xo[l]), fabs(XX[i]-Xo[u])); /* calculate the weights in the window; * every weight outside the window will be zero */ zerov(w,n); for(j=l; j<=u; j++){ dist = fabs(XX[i]-Xo[j])/range; w[j] = (1.0-dist)*(1.0-dist); } /* record the (normalized) weighted average in the window */ sumW = sumv(&(w[l]), q); YY[i] = vmult(&(w[l]), &(Yo[l]), q)/sumW; /*printf("YY = "); printVector(YY, nn, MYstdout, HUMAN);*/ } /* clean up */ free(w); free(o); free(Xo); free(Yo); } /* * sobol_indices: * * calculate the Sobol S and T indices using samples of the * posterior predictive distribution (ZZm and ZZvar) at * nn*(d+2) locations */ void sobol_indices(double *ZZ, unsigned int nn, unsigned int m, double *S, double *T) { /* pointers to responses for the original two LHSs */ unsigned int j, k; double dnn, sqEZ, lVZ, ponent, U, Uminus; double *fN; double *fM1 = ZZ; double *fM2 = ZZ + nn; /* accumilate means and variances */ double EZ, EZ2, Evar; Evar = EZ = EZ2 = 0.0; for(j=0; j void sens_sample(double **XX, int nn, int d, double **bnds, double *shape, double *mode, void *state); double** rect_sample(int dim, int n, void *state); double** rect_sample_lh(int dim, int n, double** rect, int er, void *state); double** beta_sample_lh(int dim, int n, double** rect, double* shape, double* mode, void *state); void rect_scale(double** z, int n, int d, double** rect); double** readRect(char* rect, unsigned int *d); void errorBadRect(void); void printRect(FILE* outfile, int d, double** rect); void errorBadRect(void); int* order(double *s, unsigned int n); void sortDouble(double *s, unsigned int n); #endif tgp/src/rand_pdf.c0000644000176200001440000002677614323551707013605 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include #include #include #include #include #include "rand_pdf.h" #include "matrix.h" #include "linalg.h" #include "rhelp.h" /* #define DEBUG */ /* * copyCovUpper: * * copy the upper trianglar part of (n x n) Sigma into cov * so that cov can be an argument to LAPACK (like Choleski * decomposition) routines which modify their argument */ void copyCovUpper(double **cov, double **Sigma, unsigned int n, double scale) { int i,j; for(i=0; i=0 && b>0); /* evaluate the pdf for each x */ for(i=0; i 0); if(a == 0) p[i] = 0; else p[i] = a*log(b) - lgammafn(a) + (a-1)*log(x[i]) - b*x[i]; } } /* * invgampdf_log_gelman: * * GELMAN PARAMATERIZATION * logarithm of the density of n x values distributed * as Gamma(a,b). * p must be pre-alloc'd n-array */ void invgampdf_log_gelman(double *p, double *x, double a, double b, unsigned int n) { int i; /* sanity checks */ assert(a>0 && b>0); /* evaluate the pdf for each x */ for(i=0; i= 0); p[i] = a*log(b) - lgammafn(a) - (a+1)*log(x[i]) - b/x[i]; } } /* * gampdf_log: * * logarithm of the density of n x values distributed * as Gamma(a,b). * p must be pre-alloc'd n-array; not using Gelman parameterization */ void gampdf_log(double *p, double *x, double a, double b, unsigned int n) { int i; /* sanity checks */ assert(a>0 && b>0); /* evaluate the pdf for each x */ for(i=0; i 0); p[i] = 0.0 - a*log(b) - lgammafn(a) + (a-1)*log(x[i]) - x[i]/b; } } /* * betapdf_log: * * logarithm of the density of n x values distributed * as Beta(a,b). * p must be pre-alloc'd n-array */ void betapdf_log(double *p, double *x, double a, double b, unsigned int n) { int i; for(i=0; i 0); assert(nu > n); /* denominator */ /* gammapart <- 1 */ lgampart = 0.0; /* for(i in 1:k) gammapart <- gammapart * gamma((v + 1 - i)/2) */ for(i=1; i<=n; i++) lgampart += lgammafn((nu+1.0-(double)i)/2.0 ); /* denom <- gammapart * 2^(v * k / 2) * pi^(k*(k-1)/4) */ denom = lgampart + (nu*n/2.0)*M_LN2 + (n*(n-1.0)/2.0)*M_LN_SQRT_PI; /* numerator */ /* detW <- det(W) */ ldetW = log_determinant_dup(x, n); /* hold <- solve(S) %*% W */ hold = new_dup_matrix(x, n, n); Sdup = new_dup_matrix(S, n, n); linalg_dposv(n, Sdup, hold); /* detS <- det(S) */ /* dposv should have left us with chol(S) inside Sdup */ ldetS = log_determinant_chol(Sdup, n); /* tracehold <- sum(hold[row(hold) == col(hold)]) */ tracehold = 0.0; for(i=0; i 0); assert(*nu_in > *n_in); /* copy W_in vector to W matrix */ /* Bobby: this is wasteful; should write a function which allocates * the "skeleton" of a new matrix, and points W[0] to a vector */ W = new_matrix(*n_in, *n_in); dupv(W[0], W_in, *n_in * *n_in); /* copy S_in vector to S matrix */ S = new_matrix(*n_in, *n_in); dupv(S[0], S_in, *n_in * *n_in); /* evaluate the lpdf */ *lpdf_out = wishpdf_log(W, S, *n_in, *nu_in); /* clean up */ delete_matrix(W); delete_matrix(S); } /* * temper: * * apply temperature temp to pdf density p; i.e., * take p^temp when uselog = 0, and temp*k, when * uselog = 1, assuming that p is in log space */ double temper(double p, double temp, int uselog) { double tp; /* remove this later */ /* if(temp != 1.0) warning("temper(): temp = %g is not 1.0", temp); */ if(uselog) tp = temp * p; else { if(temp == 1.0) tp = p; else if(temp == 0.0) tp = 1.0; else tp = pow(p, temp); } return tp; } /* * temper_invgam: * * apply temperature t to the alpha (a) and beta (b) parameters * to the inverse gamma distribution */ void temper_invgam(double *a, double *b, double temp) { /* remove this later */ /* if(temp != 1.0) warning("temper_invgam(): temp = %g is not 1.0", temp); */ *a = temp*(*a+1.0) - 1.0; *b = temp * (*b); /* sanity check */ assert(*a > 0 && *b > 0); } /* * temper_gamma: * * apply temperature t to the alpha (a) and beta (b) parameters * to the inverse gamma distribution */ void temper_gamma(double *a, double *b, double temp) { /* remove this later */ /* if(temp != 1.0) warning("temper_gamma(): temp = %g is not 1.0", temp); */ *a = temp*(*a-1.0) + 1.0; *b = temp * (*b); /* sanity check */ assert(*a > 0 && *b > 0); } /* * temper_wish: * * apply temperature t to the rho and V (col x col) * parameters to a wishart distribution */ void temper_wish(int *rho, double **V, unsigned int col, double temp) { double drho; /* remove this later */ /* if(temp != 1.0) warning("temper_wish(): temp = %g is not 1.0", temp); */ /* adjust rho for temperature */ drho = temp * (*rho) + (col + 1.0)*(1.0 - temp); drho = ceil(drho); assert(drho > col); *rho = (int) drho; /* adjust V for temperature */ assert(V); scalev(V[0], col, 1.0/temp); } tgp/src/model.cc0000644000176200001440000014104514661637575013273 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include #include extern "C" { #include "lh.h" #include "matrix.h" #include "all_draws.h" #include "rand_draws.h" #include "rand_pdf.h" #include "gen_covar.h" #include "rhelp.h" } #include "model.h" #include #include // #include #include #include #define DNORM true #define MEDBUFF 256 #define DBETAA 2.0 #define DBETAB 1.0 /* * Model: * * the usual constructor function */ Model::Model(Params* params, unsigned int d, double** rect, int Id, bool trace, void *state) { this->params = new Params(params); base_prior = this->params->BasePrior(); this->d=d; this->Id = Id; this->iface_rect = new_dup_matrix(rect, 2, d); /* parallel prediction implementation ? */ #ifdef PARALLEL parallel = true; if(RNG == CRAN && NUMTHREADS > 1) Rf_warning("using thread unsafe unif_rand() with pthreads"); #else parallel = false; #endif PP = NULL; this->state_to_init_consumer = newRNGstate_rand(state); if(parallel) { init_parallel_preds(); consumer_start(); } /* stuff to do with printing */ OUTFILE = MYstdout; verb = 2; this->trace = trace; /* for keeping track of the average number of partitions */ partitions = 0; /* null initializations for trace files and data structures*/ PARTSFILE = XXTRACEFILE = HIERTRACEFILE = POSTTRACEFILE = NULL; lin_area = NULL; /* asynchronous writing to files by multiple threads is problematic */ if(trace && parallel) Rf_warning("traces in parallel version of tgp not recommended\n"); /* initialize tree operation statistics */ swap = prune = change = grow = swap_try = change_try = grow_try = prune_try = 0; /* init best tree posteriors */ posteriors = new_posteriors(); /* initialize Zmin to zero -- nothing better */ Zmin = 0; /* make null tree, and then call Model::Init() to make a new * one so that when we pass "this" model to tree, it won't be * only partially allocated */ t = NULL; Xsplit = NULL; nsplit = 0; /* default inv-temperature is 1.0 */ its = NULL; Tprior = true; } /* * Init: * * this function exists because we need to create the new tree * "t" by passing it a pointer to "this" model. But we can't pass * it the "this" pointer until its done constructing, i.e., after * Model::Model() finishes. So this function has all of the stuff * that used to be at the end of Model::Model. It should always be * called immediately after Model::Model() * * the last three arguments (dtree, ncol, dhier) describe a place to * initialize the model at; i.e., what tree (and base model params) and * what base (hierarchal) prior. */ void Model::Init(double **X, unsigned int n, unsigned int d, double *Z, Temper *its, double *dtree, unsigned int ncol, double *dhier) { assert(d == this->d); /* copy input and predictive data; and NORMALIZE */ double **Xc = new_normd_matrix(X,n,d,iface_rect,NORMSCALE); /* read hierarchical parameters from a double-vector */ if(dhier) base_prior->Init(dhier); /* make sure the first col still indicates the coarse or fine process */ if(base_prior->BaseModel() == GP){ if( ((Gp_Prior*) base_prior)->CorrPrior()->CorrModel() == MREXPSEP ){ for(unsigned int i=0; iboundary[0][i] = 0.0; newRect->boundary[1][i] = NORMSCALE; newRect->opl[i] = GEQ; newRect->opr[i] = LEQ; } /* set the starting inv-temperature */ /* it is important that this happens before new Tree() */ this->its = new Temper(its); /* initialization of the (main) tree part of the model */ int *p = iseq(0,n-1); t = new Tree(Xc, p, n, d, Zc, newRect, NULL, this); /* initialize the tree mode: i.e., Update() & Compute() */ t->Init(dtree, ncol, iface_rect); /* initialize the posteriors with the current tree only if that tree was read-in from R; don't record a trace */ if(ncol > 0) Posterior(false); } /* * ~Model: * * the usual class deletion function */ Model::~Model(void) { /* close down parallel prediction */ if(parallel) { consumer_finish(); close_parallel_preds(); } /* delete the tree model & params */ if(iface_rect) delete_matrix(iface_rect); if(t) delete t; if(Xsplit) delete_matrix(Xsplit); if(params) delete params; /* delete the inv-temperature structure */ if(its) delete its; /* delete linarea and posterior */ if(posteriors) delete_posteriors(posteriors); if(trace && lin_area) { delete_linarea(lin_area); lin_area = NULL; } /* clean up partsfile */ if(PARTSFILE) fclose(PARTSFILE); PARTSFILE = NULL; /* clean up post trace file */ if(POSTTRACEFILE) fclose(POSTTRACEFILE); POSTTRACEFILE = NULL; /* clean up XX trace file */ if(XXTRACEFILE) fclose(XXTRACEFILE); XXTRACEFILE = NULL; /* clean up trace file for hierarchical params */ if(HIERTRACEFILE) fclose(HIERTRACEFILE); HIERTRACEFILE = NULL; deleteRNGstate(state_to_init_consumer); } /* * rounds: * * MCMC rounds master function * ZZ and ZZp are the predictions for rounds B:T * must be pre-allocated. */ void Model::rounds(Preds *preds, unsigned int B, unsigned int T, void *state) { /* check for well-allocated preds module */ if(T>B) { assert(preds); assert(T-B >= preds->mult); assert(((int)ceil(((double)(T-B))/preds->R)) == (int)preds->mult); } /* TESTING TREE DISTANCE */ /* double **td1, **td2; int *tdp; double *th, *tad; if(preds) { td1 = new_zero_matrix(preds->nn, preds->nn); td2 = new_zero_matrix(preds->nn, preds->nn); th = new_zero_vector(preds->nn); tad = new_zero_vector(preds->nn); tdp = iseq(0, preds->nn); } */ /* for the leavesList function in the for loop below */ unsigned int numLeaves = 1; /* for helping with periodic interrupts */ time_t itime = time(NULL); /* every round, do ... */ for(int r=0; r<(int)T; r++) { /* draw a new temperature */ if((r+1)%4 == 0) DrawInvTemp(state, r < (int)B); /* propose tree changes */ /* bool treemod = false; */ if((r+1)%4 == 0) /* treemod = */ modify_tree(state); /* get leaves of the tree */ Tree **leaves = t->leavesList(&numLeaves); /* for each leaf: draw params first compute marginal params as necessary */ int index = (int)r-B; bool success = false; for(unsigned int i=0; iCompute(); /* draws for the parameters at the leaves of the tree */ if(!(success = leaves[i]->Draw(state))) break; /* note that Compute still needs to be called on each leaf, below */ } /* check to see if draws from leaves was successful */ if(!success) { if(parallel) { if(PP) produce(); wrap_up_predictions(); } cut_root(); partitions = 0; r = -1; free(leaves); continue; } /* produce leaves for parallel prediction */ /* MAYBE this should be moved after/into the preds if-statement below */ if(parallel && PP && PP->Len() > PPMAX) produce(); /* draw hierarchical parameters */ base_prior->Draw(leaves, numLeaves, state); /* make sure to Compute on leaves now that hier-priors have changed */ for(unsigned int i=0; iCompute(); /* print progress meter */ if((r+1) % 1000 == 0 && r>0 && verb >= 1) PrintState(r+1, numLeaves, leaves); /* process full posterior, and calculate linear area */ if(T>B && (index % preds->mult == 0)) { /* keep track of MAP, and calculate importance sampling weight */ double w = Posterior(true); /* must call Posterior for mapt */ if(its->IT_ST_or_IS()) { preds->w[index/preds->mult] = w; preds->itemp[index/preds->mult] = its->Itemp(); } /* For random XX (eg sensitivity analysis), draw the predictive locations */ if(preds->nm > 0){ sens_sample(preds->XX, preds->nn, preds->d, preds->bnds, preds->shape, preds->mode, state); dupv(preds->M[index/preds->mult], preds->XX[0], preds->d * preds->nm); normalize(preds->XX, preds->rect, preds->nn, preds->d, 1.0); } /* TESTING TREE DISTANCE */ // t->Distance(preds->XX, tdp, preds->nn, td1, th, td2, tad); /* predict for each leaf */ /* make sure to do this after calculation of preds->w[r], above */ for(unsigned int i=0; imult; partitions = (m*partitions + numLeaves)/(m+1); /* these do nothing when traces=FALSE */ ProcessLinarea(leaves, numLeaves); /* calc area under the LLM */ PrintPartitions(); /* print leaves of the tree */ PrintHiertrace(); /* print hierarchical params */ } /* clean up the garbage */ free(leaves); /* periodically check R for interrupts and flush console every second */ itime = MY_r_process_events(itime); } /* send a full set of leaves out for prediction */ if(parallel && PP) produce(); /* wait for final predictions to finish */ if(parallel) wrap_up_predictions(); /* normalize Ds2x, i.e., divide by the total (not within-partition) XX locs */ if(preds && preds->Ds2x) scalev(preds->Ds2x[0], preds->R * preds->nn, 1.0/preds->nn); /* TESTING TREE DISTANCE */ /* if(preds) { scalev(*td1, preds->nn * preds->nn, 1.0/preds->R); matrix_to_file("node_dist.txt", td1, preds->nn, preds->nn); scalev(*td2, preds->nn * preds->nn, 1.0/preds->R); matrix_to_file("nodeabs_dist.txt", td2, preds->nn, preds->nn); delete_matrix(td1); delete_matrix(td2); free(tdp); free(th); free(tad); } */ } /* * predict_master: * * chooses parallel prediction; * first determines whether or not to do a prediction * based on the prediction index (>0) and the preds module * indication of how many predictions it wants. */ void Model::predict_master(Tree *leaf, Preds *preds, int index, void* state) { /* only predict every E = preds->mult */ if(index < 0) return; if(index % preds->mult != 0) return; /* calculate r index into preds matrices */ unsigned int r = index/preds->mult; assert(r < preds->R); /* if-statement should never be true: if(r >= preds->R) return; */ /* choose parallel or serial prediction */ if(parallel) predict_producer(leaf, preds, r, DNORM); else predict_xx(leaf, preds, r, DNORM, state); } /* * predict: * * predict at one of the leaves of the tree. * this was made into a function in order to help simplify * the rounds() function. Also, now fascilitates parameter * traces for the GPs which govern the XX locations. */ void Model::Predict(Tree* leaf, Preds* preds, unsigned int index, bool dnorm, void *state) { /* these declarations just make for shorter function arguments below */ double *Zp, *Zpm, *Zpvm, *Zps2, *ZZ, *ZZm, *ZZvm, *ZZs2, *improv, *Ds2x; if(preds->Zp) Zp = preds->Zp[index]; else Zp = NULL; if(preds->Zpm) Zpm = preds->Zpm[index]; else Zpm = NULL; if(preds->Zpvm) Zpvm = preds->Zpvm[index]; else Zpvm = NULL; if(preds->Zps2) Zps2 = preds->Zps2[index]; else Zps2 = NULL; if(preds->ZZ) ZZ = preds->ZZ[index]; else ZZ = NULL; if(preds->ZZm) ZZm = preds->ZZm[index]; else ZZm = NULL; if(preds->ZZvm) ZZvm = preds->ZZvm[index]; else ZZvm = NULL; if(preds->ZZs2) ZZs2 = preds->ZZs2[index]; else ZZs2 = NULL; if(preds->Ds2x) Ds2x = preds->Ds2x[index]; else Ds2x = NULL; if(preds->improv) improv = preds->improv[index]; else improv = NULL; /* this is probably the best place for gathering traces about XX */ if(preds->ZZ) Trace(leaf, index); /* checks if trace=TRUE inside Trace */ /* here is where the actual prediction happens */ leaf->Predict(Zp, Zpm, Zpvm, Zps2, ZZ, ZZm, ZZvm, ZZs2, Ds2x, improv, Zmin, wZmin, dnorm, state); } /* * modify_tree: * * Propose structural changes to the tree via * GROW, PRUNE, CHANGE, and SWAP operations * chosen randomly */ bool Model::modify_tree(void *state) { /* since we may modify the tree we need to * update the marginal parameters now! */ unsigned int numLeaves; Tree **leaves = t->leavesList(&numLeaves); assert(numLeaves >= 1); for(unsigned int i=0; iCompute(); free(leaves); /* end marginal parameter computations */ /* probability distribution for each tree operation ("action") */ double probs[4] = {1.0/5, 1.0/5, 2.0/5, 1.0/5}; int actions[4] = {1,2,3,4}; /* sample an action */ int action; unsigned int indx; isample(&action, &indx, 1, 4, actions, probs, state); /* do the chosen action */ switch(action) { case 1: /* grow */ return grow_tree(state); case 2: /* prune */ return prune_tree(state); case 3: /* change */ return change_tree(state); case 4: /* swap */ return swap_tree(state); default: Rf_error("action %d not supported", action); } /* should not reach here */ return 0; } /* * swap_tree: * * Choose which INTERNAL node should have its split-point * moved. */ bool Model::swap_tree(void *state) { unsigned int len; Tree** nodes = t->swapableList(&len); if(len == 0) return false; unsigned int k = (unsigned int) sample_seq(0,len-1, state); bool success = nodes[k]->swap(state); free(nodes); swap_try++; if(success) swap++; return success; } /* * change_tree: * * Choose which INTERNAL node should have its split-point * moved. */ bool Model::change_tree(void *state) { unsigned int len; Tree** nodes = t->internalsList(&len); if(len == 0) return false; unsigned int k = (unsigned int) sample_seq(0,len-1, state); bool success = nodes[k]->change(state); free(nodes); change_try++; if(success) change++; return success; } /* * prune_tree: * * Choose which part of the tree to attempt to prune */ bool Model::prune_tree(void *state) { /* get the list of possible prunable nodes */ unsigned int len; Tree** nodes = t->prunableList(&len); if(len == 0) return false; /* update the forward and backward proposal probabilities */ double q_fwd = 1.0/len; double q_bak = 1.0/(t->numLeaves()-1); /* get the prior tree parameters */ unsigned int t_minpart, t_splitmin, t_basemax; double t_alpha, t_beta; params->get_T_params(&t_alpha, &t_beta, &t_minpart, &t_splitmin, &t_basemax); /* calculate the tree prior */ unsigned int k = (unsigned int) sample_seq(0,len-1, state); unsigned int depth = nodes[k]->getDepth() + 1; double pEtaT = t_alpha * pow(1+depth,0.0-(t_beta)); double pEtaPT = t_alpha * pow(1+depth-1,0.0-(t_beta)); double diff = 1-pEtaT; double pTreeRatio = (1-pEtaPT) / ((diff*diff) * pEtaPT); /* temper the tree probabilities in non-log space ==> uselog=0 */ if(Tprior) pTreeRatio = temper(pTreeRatio, its->Itemp(), 0); /* attempt a prune */ bool success = nodes[k]->prune((q_bak/q_fwd)*pTreeRatio, state); free(nodes); /* update the prune success rates */ prune_try++; if(success) prune++; return success; } /* * grow_tree: * * Choose which part of the tree to attempt to grow on */ bool Model::grow_tree(void *state) { /* get the tree prior params */ unsigned int len, t_minpart, t_splitmin, t_basemax; double t_alpha, t_beta; params->get_T_params(&t_alpha, &t_beta, &t_minpart, &t_splitmin, &t_basemax); if(t_alpha == 0 || t_beta == 0) return false; /* get the list of growable nodes */ Tree** nodes = t->leavesList(&len); /* forward (grow) probability */ double q_fwd = 1.0/len; /* choose which leaf to grow on */ unsigned int k = (unsigned int) sample_seq(0,len-1, state); /* calculate the reverse (prune) probability */ double q_bak; double num_prune = t->numPrunable(); /* if the parent is prunable, then we don't change the number of prunable nodes with a grow; otherwise we add one */ Tree* parent_k = nodes[k]->Parent(); if(parent_k == NULL) { assert(nodes[k]->getDepth() == 0); q_bak = 1.0/(num_prune+1); } else if(parent_k->isPrunable()) { q_bak = 1.0/(num_prune+1); } else { q_bak = 1.0/num_prune; } unsigned int depth = nodes[k]->getDepth(); double pEtaT = t_alpha * pow(1+depth,0.0-(t_beta)); double pEtaCT = t_alpha * pow(1+depth+1,0.0-(t_beta)); double diff = 1-pEtaCT; double pTreeRatio = pEtaT * (diff*diff) / (1-pEtaT); /* temper the tree probabilities in non-log space ==> uselog=0 */ if(Tprior) pTreeRatio = temper(pTreeRatio, its->Itemp(), 0); /* attempt a grow */ bool success = nodes[k]->grow((q_bak/q_fwd)*pTreeRatio, state); free(nodes); grow_try++; if(success) grow++; return success; } /* * cut_branch: * * randomly cut a branch (swath) of the tree off * an internal node is selected, and its children * are cut (removed) from the tree */ void Model::cut_branch(void *state) { unsigned int len; Tree** nodes = t->internalsList(&len); if(len == 0) return; unsigned int k = (unsigned int) sample_seq(0,len,state); if(k == len) { if(verb >= 1) MYprintf(OUTFILE, "tree unchanged (no branches removed)\n"); } else { if(verb >= 1) MYprintf(OUTFILE, "removed %d leaves from the tree\n", nodes[k]->numLeaves()); nodes[k]->cut_branch(); } free(nodes); } /* * cut_root: * * cut_branch, but from the root of the tree * */ void Model::cut_root(void) { if(t->isLeaf()) { if(verb >= 1) MYprintf(OUTFILE, "removed 0 leaves from the tree\n"); } else { if(verb >= 1) MYprintf(OUTFILE, "removed %d leaves from the tree\n", t->numLeaves()); } t->cut_branch(); } /* * update_tprobs: * * re-create the prior distribution of the temperature * ladder by dividing by the normalization constant -- returns * a pointer to the new probabilities */ double *Model::update_tprobs(void) { /* for debugging */ // its->AppendLadder("ladder.txt"); return its->UpdatePrior(); } /* * new_data: * * adding new data to the model * (and thus also to the tree) */ void Model::new_data(double **X, unsigned int n, unsigned int d, double* Z, double **rect) { /* copy input and predictive data; and NORMALIZE */ double **Xc = new_normd_matrix(X,n,d,rect,NORMSCALE); /* make sure the first col still indicates the coarse or fine process */ if(base_prior->BaseModel() == GP){ if( ((Gp_Prior*) base_prior)->CorrPrior()->CorrModel() == MREXPSEP ){ for(unsigned int i=0; inew_data(Xc, n, d, Zc, p); /* reset the MAP per height bookeeping */ delete_posteriors(posteriors); posteriors = new_posteriors(); } /* * PrintTreeStats: * * printing out tree operation stats */ void Model::PrintTreeStats(FILE* outfile) { if(grow_try > 0) MYprintf(outfile, "Grow: %.4g%c, ", 100* (double)grow/grow_try, '%'); if(prune_try > 0) MYprintf(outfile, "Prune: %.4g%c, ", 100* (double)prune/prune_try, '%'); if(change_try > 0) MYprintf(outfile, "Change: %.4g%c, ", 100* (double)change/change_try, '%'); if(swap_try > 0) MYprintf(outfile, "Swap: %.4g%c", 100* (double)swap/swap_try, '%'); if(grow_try > 0) MYprintf(outfile, "\n"); } /* * TreeStats: * * write the tree operation stats to the double arg */ void Model::TreeStats(double *gpcs) { gpcs[0] = (double)grow/grow_try; gpcs[1] = (double)prune/prune_try; gpcs[2] = (double)change/change_try; gpcs[3] = (double)swap/swap_try; } /* * get_TreeRoot: * * return the root of the tree in this model */ Tree* Model::get_TreeRoot(void) { return t; } /* * get_Xsplit: * * return the locations at which the tree can make splits; * either Xsplit, or t->X if Xsplit is NULL -- pass back the * number of locations (nsplit) */ double** Model::get_Xsplit(unsigned int *nsplit) { /* calling this function only makes sense if treed partitioning is allowed */ assert(params->isTree()); if(Xsplit) { *nsplit = this->nsplit; return Xsplit; } else { assert(t); *nsplit = t->getN(); return t->get_X(); } } /* * set_Xsplit: * * set the locations at which the tree can make splits; * NULL indicates that the locations should be t->X */ void Model::set_Xsplit(double **X, unsigned int n, unsigned int d) { /* calling this function only makes sense if treed partitioning is allowed */ assert(params->isTree()); /* make sure X dims match up */ assert(d == this->d); if(Xsplit) delete_matrix(Xsplit); if(! X) { assert(nsplit == 0); Xsplit = NULL; nsplit = 0; } else { Xsplit = new_normd_matrix(X,n,d,iface_rect,NORMSCALE); nsplit = n; } } /* * set_TreeRoot: * * return the root of the tree in this model */ void Model::set_TreeRoot(Tree *t) { this->t = t; } /* * PrintState: * * Print the state for the current round */ void Model::PrintState(unsigned int r, unsigned int numLeaves, Tree** leaves) { /* print round information */ #ifdef PARALLEL if(num_produced - num_consumed > 0) MYprintf(OUTFILE, "(r,l)=(%d,%d) ", r, num_produced - num_consumed); else MYprintf(OUTFILE, "r=%d ", r); #else MYprintf(OUTFILE, "r=%d ", r); #endif /* this is here so that the progress meter in SampleMap doesn't need to print the same tree information each time */ if(numLeaves > 0) { // MYprintf(OUTFILE, " d="); /* print the (correllation) state (d-values and maybe nugget values) */ for(unsigned int i=0; iState(i); MYprintf(OUTFILE, "%s", state); if(i != numLeaves-1) MYprintf(OUTFILE, " "); free(state); } /* a delimeter */ MYprintf(OUTFILE, "; "); /* print maximum posterior prob tree height */ Tree *maxt = maxPosteriors(); if(maxt) MYprintf(OUTFILE, "mh=%d ", maxt->Height()); /* print partition sizes */ if(numLeaves > 1) MYprintf(OUTFILE, "n=("); else MYprintf(OUTFILE, "n="); for(unsigned int i=0; igetN()); if(numLeaves > 1) MYprintf(OUTFILE, "%d)", leaves[numLeaves-1]->getN()); else MYprintf(OUTFILE, "%d", leaves[numLeaves-1]->getN()); } /* cap off the printing */ if(its->Numit() > 1) MYprintf(OUTFILE, " k=%g", its->Itemp()); MYprintf(OUTFILE, "\n"); MYflush(OUTFILE); } /* * get_params: * * return a pointer to the fixed input parameters */ Params* Model::get_params() { return params; } /* * close_parallel_preds: * * close down and destroy producer & consumer * data, queues and pthreads */ void Model::close_parallel_preds(void) { #ifdef PARALLEL /* close and free the consumers */ for(unsigned int i=0; iDeQueue())) { delete l->leaf; free(l); } delete tlist; tlist = NULL; /* empty then free the PP list */ while((l = (LArgs*) PP->DeQueue())) { delete l->leaf; free(l); } delete PP; PP = NULL; #else Rf_error("close_parallel_preds: not compiled for pthreads"); #endif } /* * init_parallel_preds: * * initialize producer & consumer parallel prediction * data, queues and pthreads */ void Model::init_parallel_preds(void) { #ifdef PARALLEL /* initialize everything for parallel prediction */ l_mut = (pthread_mutex_t*) malloc(sizeof(pthread_mutex_t)); l_cond_nonempty = (pthread_cond_t*) malloc(sizeof(pthread_cond_t)); l_cond_notfull = (pthread_cond_t*) malloc(sizeof(pthread_cond_t)); pthread_mutex_init(l_mut, NULL); pthread_cond_init(l_cond_nonempty, NULL); pthread_cond_init(l_cond_notfull, NULL); tlist = new List(); assert(tlist); PP = new List(); assert(PP); /* initialize lock for synchronizing printing of XX traces */ l_trace_mut = (pthread_mutex_t*) malloc(sizeof(pthread_mutex_t)); pthread_mutex_init(l_trace_mut, NULL); /* allocate consumers */ consumer = (pthread_t**) malloc(sizeof(pthread_t*) * NUMTHREADS); for(unsigned int i=0; iadd_XX(preds->XX, preds->nn, d); LArgs *largs = (LArgs*) malloc(sizeof(struct largs)); fill_larg(largs, newleaf, preds, index, dnorm); num_produced++; PP->EnQueue((void*) largs); #else Rf_error("predict_producer: not compiled for pthreads"); #endif } /* * produce: * * collect tree leaves for prediction in a list before * putting the into another list (tlist) for consumption */ void Model::produce(void) { #ifdef PARALLEL assert(PP); if(PP->isEmpty()) return; pthread_mutex_lock(l_mut); while (tlist->Len() >= QUEUEMAX) pthread_cond_wait(l_cond_notfull, l_mut); assert(tlist->Len() < QUEUEMAX); unsigned int pp_len = PP->Len(); for(unsigned int i=0; iEnQueue(PP->DeQueue()); assert(PP->isEmpty()); pthread_mutex_unlock(l_mut); pthread_cond_signal(l_cond_nonempty); #else Rf_error("produce: not compiled for pthreads"); #endif } /* * predict_consumer: * * is awakened when there is a leaf node (and ooutput pointers) * in the list (queue) and calls the predict routine on it; * list produced by predict_producer in main thread. */ void Model::predict_consumer(void) { #ifdef PARALLEL unsigned int nc = 0; /* each consumer needs its on random state variable */ void *state = newRNGstate_rand(state_to_init_consumer); while(1) { pthread_mutex_lock (l_mut); /* increment num_consumed from the previous iteration */ num_consumed += nc; assert(num_consumed <= num_produced); nc = 0; /* wait for the tlist to get populated with leaves */ while (tlist->isEmpty()) pthread_cond_wait (l_cond_nonempty, l_mut); /* dequeue half of the waiting leaves into LL */ unsigned int len = tlist->Len(); List* LL = new List(); void *entry = NULL; unsigned int i; /* dequeue a calculated portion of the remaing leaves */ for(i=0; iisEmpty()); entry = tlist->DeQueue(); if(entry == NULL) break; assert(entry); LL->EnQueue(entry); } /* release lock and signal */ pthread_mutex_unlock(l_mut); if(len - i < QUEUEMAX) pthread_cond_signal(l_cond_notfull); if(len - i > 0) pthread_cond_signal(l_cond_nonempty); /* take care of each leaf */ while(!(LL->isEmpty())) { LArgs* l = (LArgs*) LL->DeQueue(); Predict(l->leaf, l->preds, l->index, l->dnorm, state); nc++; delete l->leaf; free(l); } /* this list should be empty */ delete LL; /* if the final list entry was NULL, then this thread is done */ if(entry == NULL) { /* make sure to update the num consumed */ pthread_mutex_lock(l_mut); num_consumed += nc; pthread_mutex_unlock(l_mut); /* delete random number generator state for this thread */ deleteRNGstate(state); return; } } #else Rf_error("predict_consumer: not compiled for pthreads"); #endif } /* * predict_consumer_c: * * a dumMY c-style function that calls the * consumer function from the Model class */ void* predict_consumer_c(void* m) { Model* model = (Model*) m; model->predict_consumer(); return NULL; } /* * consumer_finish: * * wait for the consumer to finish predicting */ void Model::consumer_finish(void) { #ifdef PARALLEL /* send a null terminating entry into the queue */ pthread_mutex_lock(l_mut); for(unsigned int i=0; iEnQueue(NULL); pthread_mutex_unlock(l_mut); pthread_cond_signal(l_cond_nonempty); for(unsigned int i=0; iLen() != tlen || diff != (int)num_produced-(int)num_consumed) { tlen = tlist->Len(); diff = num_produced - num_consumed; if(verb >= 1) { MYprintf(OUTFILE, "waiting for (%d, %d) predictions\n", tlen, diff); MYflush(OUTFILE); } } pthread_mutex_unlock(l_mut); usleep(500000); } pthread_mutex_unlock(l_mut); num_consumed = num_produced = 0; #else Rf_error("wrap_up_predictions: not compiled for pthreads"); #endif } /* * CopyPartitions: * * return COPIES of the leaves of the tree * (i.e. the partitions) */ Tree** Model::CopyPartitions(unsigned int *numLeaves) { Tree* maxt = maxPosteriors(); Tree** leaves = maxt->leavesList(numLeaves); Tree** copies = (Tree**) malloc(sizeof(Tree*) * *numLeaves); for(unsigned int i=0; i<*numLeaves; i++) { copies[i] = new Tree(leaves[i], true); copies[i]->Clear(); } free(leaves); return copies; } /* * MAPreplace: * * set the current model tree to be the MAP one that * is stored */ void Model::MAPreplace(void) { Tree* maxt = maxPosteriors(); if(maxt) { if(t) delete t; t = new Tree(maxt, true); } else maxt = t; /* get leaves ready for use */ unsigned int len; Tree** leaves = t->leavesList(&len); for(unsigned int i=0; iUpdate(); leaves[i]->Compute(); } free(leaves); } /* * PrintBestPartitions: * * print rectangles covered by leaves of the tree * with the highest posterior probability * (i.e. the partitions) */ void Model::PrintBestPartitions() { FILE *BESTPARTS; Tree *maxt = maxPosteriors(); if(!maxt) { Rf_warning("not enough MCMC rounds for MAP tree, using current"); maxt = t; } assert(maxt); BESTPARTS = OpenFile("best", "parts"); print_parts(BESTPARTS, maxt, iface_rect); fclose(BESTPARTS); } /* * print_parts * * print the partitions of the leaves of the tree * specified PARTSFILE */ void print_parts(FILE *PARTSFILE, Tree *t, double** iface_rect) { assert(PARTSFILE); assert(t); unsigned int numLeaves; Tree** leaves = t->leavesList(&numLeaves); for(unsigned int i=0; iGetRect()); rect_unnorm(rect, iface_rect, NORMSCALE); print_rect(rect, PARTSFILE); delete_rect(rect); } free(leaves); } /* * PrintPartitions: * * print rectangles covered by leaves of the tree * (i.e. the partitions) -- do nothing if traces are not * enabled */ void Model::PrintPartitions(void) { if(!trace) return; if(!PARTSFILE) { /* stuff for printing partitions and other to files */ if(params->isTree()) PARTSFILE = OpenFile("trace", "parts"); else return; } print_parts(PARTSFILE, t, iface_rect); } /* * predict_xx: * * usual non-parallel predict function that copies the leaf * before adding XX to it, and then predicts */ void Model::predict_xx(Tree* leaf, Preds* preds, int index, bool dnorm, void *state) { leaf->add_XX(preds->XX, preds->nn, d); if(index >= 0) Predict(leaf, preds, index, dnorm, state); leaf->delete_XX(); } /* * Outfile: * * return file handle to model outfile */ FILE* Model::Outfile(int *verb) { *verb = this->verb; return OUTFILE; } /* * Outfile: * * set outfile handle */ void Model::Outfile(FILE *file, int verb) { OUTFILE = file; this->verb = verb; t->Outfile(file, verb); } /* * Partitions: * * return the current number of partitions */ double Model::Partitions(void) { return partitions; } /* * OpenFile: * * open a the file named prefix_trace_Id+1.out */ FILE* Model::OpenFile(const char *prefix, const char *type) { char outfile_str[BUFFMAX]; snprintf(outfile_str, BUFFMAX, "%s_%s_%d.out", prefix, type, Id+1); FILE* OFILE = fopen(outfile_str, "w"); assert(OFILE); return OFILE; } /* * PrintTree: * * print the tree in the R CART tree structure format */ void Model::PrintTree(FILE* outfile) { assert(outfile); MYprintf(outfile, "rows var n dev yval splits.cutleft splits.cutright "); /* the following are for printing a higher precision val, and base model parameters for reconstructing trees later */ MYprintf(outfile, "val "); TraceNames(outfile, true); this->t->PrintTree(outfile, iface_rect, NORMSCALE, 1); } /* * DrawInvTemp: * * propose and accept/reject a new annealed importance sampling * inv-temperature, the burnin argument indicates if we are doing * burn-in rounds in the Markov chain */ void Model::DrawInvTemp(void* state, bool burnin) { /* don't do anything if there is only one temperature */ if(its->Numit() == 1) return; /* propose a new inv-temperature */ double q_fwd, q_bak; double itemp_new = its->Propose(&q_fwd, &q_bak, state); /* calculate the posterior probability under both temperatures */ //double p = t->FullPosterior(itemp, Tprior); //double pnew = t->FullPosterior(itemp_new, Tprior); /* calculate the log likelihood under both temperatures */ double ll = t->Likelihood(its->Itemp()); double llnew = t->Likelihood(itemp_new); /* add in a tempered version of the tree prior, or not */ if(Tprior) { ll += t->Prior(its->Itemp()); llnew += t->Prior(itemp_new); } /* sanity check that the priors don't matter */ //double diff_post = pnew - p; double diff_lik = llnew - ll; //MYprintf(MYstderr, "diff=%g\n", diff_post-diff_lik); //assert(diff_post == diff_lik); /* add in the priors for the itemp (weights) */ double diff_p_itemp = log(its->ProposedProb()) - log(its->Prob()); /* Calcculate the MH acceptance ratio */ //double alpha = exp(diff_post + diff_p_itemp)*q_bak/q_fwd; double alpha = exp(diff_lik + diff_p_itemp)*q_bak/q_fwd; double ru = runi(state); if(ru < alpha) { its->Keep(itemp_new, burnin); t->NewInvTemp(itemp_new); } else { its->Reject(itemp_new, burnin); } /* stochastic approximation update of psuedo-prior, only actually does something if its->resetSA() has been called first, see the Model::StochApprox() function */ its->StochApprox(); } /* * Posterior: * * Compute full posterior of the model, tempered and untempered. * Record best posterior as a function of tree height. * * The importance sampling weight is returned, the argument indicates * whether or not a trace should be recorded for the current posterior * probability */ double Model::Posterior(bool record) { /* tempered and untemepered posteriors, from tree on down */ double full_post_temp = t->FullPosterior(its->Itemp(), Tprior); double full_post = t->FullPosterior(1.0, Tprior); /* include priors hierarchical (linear) params W, B0, etc. and the hierarchical corr prior priors in the Base module */ double hier_full_post = base_prior->log_HierPrior(); full_post_temp += hier_full_post; full_post += hier_full_post; /* importance sampling weight */ double w = exp(full_post - full_post_temp); /* if(get_curr_itemp(itemps) == 1.0) assert(w==1.0); */ /* see if this is (untempered) the MAP model; if so then record */ register_posterior(posteriors, t, full_post); // register_posterior(posteriors, t, t->MarginalPosterior(1.0)); /* record the (log) posterior as a function of height */ if(trace && record) { /* allocate the trace files for printing posteriors*/ if(!POSTTRACEFILE) { POSTTRACEFILE = OpenFile("trace", "post"); MYprintf(POSTTRACEFILE, "height leaves lpost itemp tlpost w\n"); } /* write a line to the file recording the trace of the posteriors */ MYprintf(POSTTRACEFILE, "%d %d %15f %15f %15f %15f\n", t->Height(), t->numLeaves(), full_post, its->Itemp(), full_post_temp, w); MYflush(POSTTRACEFILE); } return w; } /* * PrintPosteriors: * * print the highest posterior trees for each height * in the R CART tree structure format * doesn't do anything if no posteriors were recorded */ void Model::PrintPosteriors(void) { char filestr[MEDBUFF]; /* open a file to write the posterior information to */ snprintf(filestr, BUFFMAX, "tree_m%d_posts.out", Id); FILE *postsfile = fopen(filestr, "w"); MYprintf(postsfile, "height lpost "); PriorTraceNames(postsfile, true); /* unsigned int t_minpart, t_splitmin; double t_alpha, t_beta; params->get_T_params(&t_alpha, &t_beta, &t_minpart, &t_splitmin); */ for(unsigned int i=0; imaxd; i++) { if(posteriors->trees[i] == NULL) continue; /* open a file to write the tree to */ snprintf(filestr, BUFFMAX, "tree_m%d_%d.out", Id, i+1); FILE *treefile = fopen(filestr, "w"); /* add maptree-relevant headers */ MYprintf(treefile, "rows var n dev yval splits.cutleft splits.cutright "); /* the following are for printing a higher precision val, and base model parameters for reconstructing trees later */ MYprintf(treefile, "val "); /* add parameter trace relevant headers */ TraceNames(treefile, true); /* write the tree and trace parameters */ posteriors->trees[i]->PrintTree(treefile, iface_rect, NORMSCALE, 1); fclose(treefile); /* add information about height and posteriors to file */ assert(i+1 == posteriors->trees[i]->Height()); MYprintf(postsfile, "%d %g ", posteriors->trees[i]->Height(), posteriors->posts[i]); /* add prior parameter trace information to the posts file */ unsigned int tlen; double *trace = (posteriors->trees[i]->GetBasePrior())->Trace(&tlen, true); printVector(trace, tlen, postsfile, MACHINE); free(trace); } fclose(postsfile); } /* * maxPosteriors: * * return a pointer to the maximum posterior tree */ Tree* Model::maxPosteriors(void) { Tree *maxt = NULL; double maxp = R_NegInf; for(unsigned int i=0; imaxd; i++) { if(posteriors->trees[i] == NULL) continue; if(posteriors->posts[i] > maxp) { maxt = posteriors->trees[i]; maxp = posteriors->posts[i]; } } return maxt; } /* * Linear: * * change prior to prefer all linear models force leaves (partitions) * to use the linear model; if gamlin[0] == 0, then do nothing and * return 0, because the linear is model not allowed */ double Model::Linear(void) { //if(! base_prior->LLM()) return 0; double gam = base_prior->ForceLinear(); /* toggle linear in each of the leaves */ unsigned int numLeaves = 1; Tree **leaves = t->leavesList(&numLeaves); for(unsigned int i=0; iForceLinear(); free(leaves); return gam; } /* * ResetLinear: (unlinearize) * * does not change all leaves to full GP models; * instead simply changes the prior gamma (from gamlin) * to allow for non-linear models */ void Model::ResetLinear(double gam) { base_prior->ResetLinear(gam); /* if LLM not allowed, then toggle GP in each of the leaves */ if(gam == 0) { unsigned int numLeaves = 1; Tree **leaves = t->leavesList(&numLeaves); for(unsigned int i=0; iForceNonlinear(); } } /* * Linburn: * * forced initialization of the Markov Chain using * the Bayesian Linear CART model. Must undo linear * settings before returning. Does nothing if Linear() * determines that the original gamlin[0] was 0 */ void Model::Linburn(unsigned int B, void *state) { double gam = Linear(); //if(gam) { if(verb > 0) MYprintf(OUTFILE, "\nlinear model init:\n"); rounds(NULL, B, B, state); ResetLinear(gam); //} } /* * Burnin: * * B rounds of burn in (with NULL preds) */ void Model::Burnin(unsigned int B, void *state) { if(verb >= 1 && B>0) MYprintf(OUTFILE, "\nburn in:\n"); rounds(NULL, B, B, state); } /* * StochApprox: * * B rounds of "burn-in" (with NULL preds), and stochastic * approximation turned on for jump-starting the pseudo-prior * for Simulated Tempering */ void Model::StochApprox(unsigned int B, void *state) { if(!its->DoStochApprox()) return; if(verb >= 1 && B>0) MYprintf(OUTFILE, "\nburn in: [with stoch approx (c0,n0)=(%g,%g)]\n", its->C0(), its->N0()); /* do the rounds of stochastic approximation */ its->ResetSA(); rounds(NULL, B, B, state); /* stop stochastic approximation and normalize the weights */ its->StopSA(); its->Normalize(); } /* * Sample: * * Gather R samples from the Markov Chain, for predictive data * provided by the preds variable. */ void Model::Sample(Preds *preds, unsigned int R, void *state) { if(R == 0) return; if(verb >= 1 && R>0) { MYprintf(OUTFILE, "\nSampling @ nn=%d pred locs:", preds->nn); if(trace) MYprintf(OUTFILE, " [with traces]"); MYprintf(OUTFILE, "\n"); } rounds(preds, 0, R, state); } /* * Predict: * * simply predict in rounds conditional on the (MAP) parameters theta; * i.e., don't draw base (GP) parameters or modify tree */ void Model::Predict(Preds *preds, unsigned int R, void *state) { if(R == 0) return; assert(preds); if(verb >=1) MYprintf(OUTFILE, "\nKriging @ nn=%d predictive locs:\n", preds->nn); /* get leaves of the tree */ unsigned int numLeaves; Tree **leaves = t->leavesList(&numLeaves); assert(numLeaves > 0); /* for helping with periodic interrupts */ time_t itime = time(NULL); for(unsigned int r=0; r0 && verb >= 1) PrintState(r+1, 0, NULL); /* produce leaves for parallel prediction */ if(parallel && PP && PP->Len() > PPMAX) produce(); /* process full posterior, and calculate linear area */ if(r % preds->mult == 0) { /* For random XX (eg sensitivity analysis), draw the predictive locations */ if(preds->nm > 0){ sens_sample(preds->XX, preds->nn, preds->d, preds->bnds, preds->shape, preds->mode, state); dupv(preds->M[r/preds->mult], preds->XX[0], preds->d * preds->nm); //printf("xx: \n"); printMatrix(preds->XX, preds->nn, preds->d, MYstdout); normalize(preds->XX, preds->rect, preds->nn, preds->d, 1.0); } /* keep track of MAP, and calculate importance sampling weight */ if(its->IT_ST_or_IS()) { preds->w[r/preds->mult] = 1.0; //Posterior(false); preds->itemp[r/preds->mult] = its->Itemp(); } /* predict for each leaf */ /* make sure to do this after calculation of preds->w[r], above */ for(unsigned int i=0; iDs2x) scalev(preds->Ds2x[0], preds->R * preds->nn, 1.0/preds->nn); } /* * Print: * * Prints to OUTFILE, the current (prior) parameter settings for the * model. */ void Model::Print(void) { params->Print(OUTFILE); base_prior->Print(OUTFILE); } /* * TraceNames * * write the names of the tree (or base) model traces * to the specified outfile. This function does not check * that trace = TRUE since it is also used by PrintTree() */ void Model::TraceNames(FILE * outfile, bool full) { assert(outfile); unsigned int len; char **trace_names = t->TraceNames(&len, full); for(unsigned int i=0; iTraceNames(&len, full); for(unsigned int i=0; iTrace(index, XXTRACEFILE); MYflush(XXTRACEFILE); /* unlock */ #ifdef PARALLEL pthread_mutex_unlock(l_trace_mut); #endif } /* * Temp: * * Return the importance annealing temperature * known by the model */ double Model::iTemp(void) { return its->Itemp(); } /* * DupItemps: * * duplicate the importance temperature * structure known by the model to one provided * in the argument */ void Model::DupItemps(Temper *new_its) { *new_its = *its; } /* * PrintLinarea: * * if traces were recorded, output the trace of the linareas * to an optfile opened just for the occasion */ void Model::PrintLinarea(void) { if(!trace || !lin_area) return; FILE *outfile = OpenFile("trace", "linarea"); print_linarea(lin_area, outfile); } /* * PrintHiertrace: * * collect the traces of the hiererchical base paameters * and append them to the trace file -- if unopened, then * open the file first -- do nothing if trace=FALSE */ void Model::PrintHiertrace(void) { if(!trace) return; /* append to traces of hierarchical parameters */ /* trace of GP parameters for each XX input location */ if(!HIERTRACEFILE) { HIERTRACEFILE = OpenFile("trace", "hier"); PriorTraceNames(HIERTRACEFILE, false); } unsigned int tlen; double *trace = base_prior->Trace(&tlen, false); printVector(trace, tlen, HIERTRACEFILE, MACHINE); free(trace); } /* * ProcessLinarea: * * collect the linarea statistics over time -- if * not allocated already, allocate lin_area; should only * be doing this if trace=TRUE and we are not forcing the * LLM */ void Model::ProcessLinarea(Tree **leaves, unsigned int numLeaves) { if(!trace) return; /* traces of aread under the LLM */ if(lin_area == NULL && base_prior->GamLin(0) > 0) { lin_area = new_linarea(); } if(lin_area) process_linarea(lin_area, numLeaves, leaves); else return; } tgp/src/gen_covar.h0000644000176200001440000000506213531032535013752 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __GEN_COVAR_H__ #define __GEN_COVAR_H__ void dist(double **DIST, unsigned int m, double **X1, unsigned int n1, double **X2, unsigned int n2, double pwr); void exp_corr_sep(double **K, unsigned int m, double **X1, unsigned int n1, double **X2, unsigned int n2, double *d, double pwr); void sim_corr(double **K, unsigned int m, double **X1, unsigned int n1, double **X2, unsigned int n2, double *d, double pwr); void dist_symm(double **DIST, unsigned int m, double **X, unsigned int n, double pwr); void exp_corr_sep_symm(double **K, unsigned int m, double **X, unsigned int n, double *d, double nug, double pwr); void sim_corr_symm(double **K, unsigned int m, double **X, unsigned int n, double *d, double nug, double pwr); void dist_to_K(double **K, double **DIST, double d, double nug, unsigned int m, unsigned int n); void dist_to_K_symm(double **K, double **DIST, double d, double nug, unsigned int n); void matern_dist_to_K(double **K, double **DIST, double d, double nu, double *bk, double nug, unsigned int m, unsigned int n); void matern_dist_to_K_symm(double **K, double **DIST, double d, double nu, double *bk, double nug, unsigned int n); void inverse_chol(double **M, double **Mi, double **Mutil, unsigned int n); void inverse_lu(double **M, double **Mi, double **Mutil, unsigned int n); void solve_chol(double *x, double **A, double *b, unsigned int n); double log_bessel_k(double x, double nu, double exp0, double *bk, long bn); #endif tgp/src/matrix.h0000644000176200001440000002424113531032535013313 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __MATRIX_H__ #define __MATRIX_H__ #include typedef enum FIND_OP {LT=101, LEQ=102, EQ=103, GEQ=104, GT=105, NE=106} FIND_OP; typedef enum PRINT_PREC {HUMAN=1001, MACHINE=1002} PRINT_PREC; typedef struct rect { unsigned int d; double **boundary; FIND_OP *opl; FIND_OP *opr; } Rect; Rect* new_rect(unsigned int d); Rect* new_dup_rect(Rect* oldR); Rect* new_drect(double **drect, int d); void delete_rect(Rect* rect); unsigned int matrix_constrained(int *p, double **X, unsigned int n1, unsigned int n2, Rect *rect); void print_rect(Rect *r, FILE* outfile); double rect_area(Rect* rect); double rect_area_maxd(Rect* rect, unsigned int maxd); void rect_unnorm(Rect* r, double **rect, double normscale); double **get_data_rect(double **X, unsigned int N, unsigned int d); void normalize(double **Xall, double **rect, int N, int d, double normscale); void zero(double **M, unsigned int n1, unsigned int n2); int isZero(double **M, unsigned int m, int sym); void id(double **M, unsigned int n); double ** new_id_matrix(unsigned int n); double ** new_zero_matrix(unsigned int n1, unsigned int n2); int ** new_zero_imatrix(unsigned int n1, unsigned int n2); double ** new_matrix(unsigned int m, unsigned int n); double ** new_matrix_bones(double *v, unsigned int n1, unsigned int n2); int ** new_imatrix_bones(int *v, unsigned int n1, unsigned int n2); int ** new_t_imatrix(int** M, unsigned int n1, unsigned int n2); int ** new_imatrix(unsigned int n1, unsigned int n2); double ** new_t_matrix(double** M, unsigned int n1_old, unsigned int n2_old); double ** new_dup_matrix(double** M, unsigned int n1, unsigned int n2); int ** new_dup_imatrix(int** M, unsigned int n1, unsigned int n2); double ** new_shift_matrix(double** M, unsigned int n1, unsigned int n2); void dup_matrix(double** M1, double **M2, unsigned int n1, unsigned int n2); void dup_imatrix(int** M1, int **M2, unsigned int n1, unsigned int n2); void swap_matrix(double **M1, double **M2, unsigned int n1, unsigned int n2); double ** new_bigger_matrix(double** M, unsigned int n1, unsigned int n2, unsigned int n1_new, unsigned int n2_new); int ** new_bigger_imatrix(int** M, unsigned int n1, unsigned int n2, unsigned int n1_new, unsigned int n2_new); double ** new_normd_matrix(double** M, unsigned int n1, unsigned int n2, double **rect, double normscale); void delete_matrix(double** m); void delete_imatrix(int** m); void check_means(double *mean, double *q1, double *median, double *q2, unsigned int n); void center_columns(double **M, double *center, unsigned int n1, unsigned int n2); void center_rows(double **M, double *center, unsigned int n1, unsigned int n2); void norm_columns(double **M, double *norm, unsigned int n1, unsigned int n2); void sum_of_columns_f(double *s, double **M, unsigned int n1, unsigned int n2, double(*f)(double)); void sum_of_columns(double *s, double **M, unsigned int n1, unsigned int n2); void sum_of_each_column_f(double *s, double **M, unsigned int *n1, unsigned int n2, double(*f)(double)); void wmean_of_columns(double *mean, double **M, unsigned int n1, unsigned int n2, double *weight); void wvar_of_columns(double *var, double **M, unsigned int n1, unsigned int n2, double *weight); void wmean_of_columns_f(double *mean, double **M, unsigned int n1, unsigned int n2, double *weight, double(*f)(double)); void wmean_of_rows(double *mean, double **M, unsigned int n1, unsigned int n2, double *weight); void wmean_of_rows_f(double *mean, double **M, unsigned int n1, unsigned int n2, double *weight, double(*f)(double)); void wcov_of_columns(double **cov, double **M, double *mean, unsigned int n1, unsigned int n2, double *weight); void wcovx_of_columns(double **cov, double **M1, double **M2, double *mean1, double *mean2, unsigned int T, unsigned int n1, unsigned int n2, double *weight); void add_matrix(double a, double **M1, double b, double **M2, unsigned int n1, unsigned int n2); double **new_p_submatrix(int *p, double **v, unsigned int nrows, unsigned int ncols, unsigned int col_offset); void sub_p_matrix(double **V, int *p, double **v, unsigned int nrows, unsigned int lenp, unsigned int col_offset); double **new_p_submatrix_rows(int *p, double **v, unsigned int nrows, unsigned int ncols, unsigned int row_offset); void sub_p_matrix_rows(double **V, int *p, double **v, unsigned int ncols, unsigned int lenp, unsigned int row_offset); void copy_p_matrix(double **V, int *p1, int *p2, double **v, unsigned int n1, unsigned int n2); void add_p_matrix(double a, double **V, int *p1, int *p2, double b, double **v, unsigned int n1, unsigned int n2); double* ones(unsigned int n, double scale); double* dseq(double from, double to, double by); int* iseq(double from, double to); int* find(double *V, unsigned int n, FIND_OP op, double val, unsigned int* len); int* find_col(double **V, int *p, unsigned int n, unsigned int var, FIND_OP op, double val, unsigned int* len); double kth_smallest(double a[], int n, int k); double quick_select(double arr[], int n, int k); void quantiles_of_columns(double **Q, double *q, unsigned int m, double **M, unsigned int n1, unsigned int n2, double *w); void quantiles(double *qs, double *q, unsigned int m, double *v, double *w, unsigned int n); void printMatrix(double **M, unsigned int n, unsigned int col, FILE *outfile); void printIMatrix(int **matrix, unsigned int n, unsigned int col, FILE *outfile); void printMatrixT(double **M, unsigned int n, unsigned int col, FILE *outfile); void mean_to_file(const char *file_str, double **M, unsigned int T, unsigned int n); void vector_to_file(const char* file_str, double *quantiles, unsigned int n); void matrix_to_file(const char* file_str, double** matrix, unsigned int n1, unsigned int n2); void intmatrix_to_file(const char* file_str, int** matrix, unsigned int n1, unsigned int n2); void matrix_t_to_file(const char* file_str, double** matrix, unsigned int n1, unsigned int n2); void printVector(double *v, unsigned int n, FILE *outfile, PRINT_PREC type); void printSymmMatrixVector(double **m, unsigned int n, FILE *outfile, PRINT_PREC type); void ivector_to_file(const char* file_str, int *vector, unsigned int n); void uivector_to_file(const char *file_str, unsigned int *iv, unsigned int n); double* new_dup_vector(double* vold, unsigned int n); double* new_zero_vector(unsigned int n); double* new_vector(unsigned int n); void dupv(double *v, double* vold, unsigned int n); void dup_col(double **M, unsigned int col, double *v, unsigned int n); void swap_vector(double **v1, double **v2); void zerov(double*v, unsigned int n); void add_vector(double a, double *v1, double b, double *v2, unsigned int n); void add_p_vector(double a, double *V, int *p, double b, double *v, unsigned int n); void copy_p_vector(double *V, int *p, double *v, unsigned int n); void copy_sub_vector(double *V, int *p, double *v, unsigned int n); double* new_sub_vector(int *p, double *v, unsigned int n); void scalev(double *v, unsigned int n, double scale); void scalev2(double *v, unsigned int n, double *scale); void centerv(double *v, unsigned int n, double scale); void normv(double *v, unsigned int n, double* norm); double sum_fv(double *v, unsigned int n, double(*f)(double)); double sumv(double *v, unsigned int n); double meanv(double *v, unsigned int n); int equalv(double *v1, double *v2, int n); int* new_ivector(unsigned int n); int* new_dup_ivector(int *iv, unsigned int n); void dupiv(int *iv_new, int *iv, unsigned int n); void zeroiv(int*v, unsigned int n); void swap_ivector(int **v1, int **v2); int *new_ones_ivector(unsigned int n, int scale); int *new_zero_ivector(unsigned int n); void iones(int *iv, unsigned int n, int scale); void printIVector(int *iv, unsigned int n, FILE *outfile); void copy_p_ivector(int *V, int *p, int *v, unsigned int n); void copy_sub_ivector(int *V, int *p, int *v, unsigned int n); int* new_sub_ivector(int *p, int *v, unsigned int n); int sumiv(int *v, unsigned int n); int meaniv(int *iv, unsigned int n); void add_ivector(int *v1, int *v2, unsigned int n); unsigned int* new_uivector(unsigned int n); unsigned int* new_dup_uivector(unsigned int *iv, unsigned int n); void dupuiv(unsigned int *iv_new, unsigned int *iv, unsigned int n); void zerouiv(unsigned int *v, unsigned int n); unsigned int *new_ones_uivector(unsigned int n, unsigned int scale); unsigned int *new_zero_uivector(unsigned int n); void uiones(unsigned int *iv, unsigned int n, unsigned int scale); void printUIVector(unsigned int *iv, unsigned int n, FILE *outfile); void copy_p_uivector(unsigned int *V, int *p, unsigned int *v, unsigned int n); void copy_sub_uivector(unsigned int *V, int *p, unsigned int *v, unsigned int n); unsigned int* new_sub_uivector(int *p, unsigned int *v, unsigned int n); unsigned int sumuiv(unsigned int *v, unsigned int n); unsigned int meanuiv(unsigned int *iv, unsigned int n); double max(double *v, unsigned int n, unsigned int *which); double min(double *v, unsigned int n, unsigned int *which); double sq(double x); double MYfmax(double a, double b); double MYfmin(double a, double b); double vmult(double *v1, double *v2, int n); #endif tgp/src/matern.cc0000644000176200001440000005262314661664517013460 0ustar liggesusers /******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ extern "C" { #include "matrix.h" #include "lh.h" #include "rand_draws.h" #include "rand_pdf.h" #include "all_draws.h" #include "gen_covar.h" #include "rhelp.h" } #include "corr.h" #include "params.h" #include "model.h" #include "matern.h" #include #include #include #include #include #include #include using namespace std; #define BUFFMAX 256 #define PWR 1.0 /* * Matern: * * constructor function */ Matern::Matern(unsigned int dim, Base_Prior *base_prior) : Corr(dim, base_prior) { /* sanity checks */ assert(base_prior->BaseModel() == GP); assert( ((Gp_Prior*) base_prior)->CorrPrior()->CorrModel() == MATERN); /* set the prior */ prior = ((Gp_Prior*) base_prior)->CorrPrior(); assert(prior); /* check if we should really be starting in the LLM */ if(!prior->Linear() && !prior->LLM()) linear = false; /* get default nugget for starters */ nug = prior->Nug(); /* get defualt nu for starters, and assert that it is positive */ nu = ((Matern_Prior*) prior)->NU(); assert(nu > 0); /* allocate vector for K_bessel */ nb = (long) floor(nu)+1; bk = new_vector((unsigned) nb); /* set up stuff for the range parameter */ d = ((Matern_Prior*) prior)->D(); xDISTx = NULL; nd = 0; dreject = 0; } /* * Matern (assignment operator): * * used to assign the parameters of one correlation * function to anothers. Both correlation functions * must already have been allocated. */ Corr& Matern::operator=(const Corr &c) { Matern *e = (Matern*) &c; /* copy nu parameter */ nu = e->nu; /* allocate a new bk if nb has changed */ if(((long) floor(nu) + 1) != nb) { free(bk); nb = (long) floor(nu)+1; bk = new_vector((unsigned) nb); } /* copy "global" correllation stuff */ log_det_K = e->log_det_K; linear = e->linear; /* copy stuff for range parameter; don't copy nd */ d = e->d; dreject = e->dreject; /* copy nugget */ nug = e->nug; /* sanity checks */ assert(prior->CorrModel() == MATERN); assert(prior == ((Gp_Prior*) base_prior)->CorrPrior()); /* copy the covariance matrices -- no longer performed due the new economy argument in Gp/Base */ // Cov(e); return *this; } /* * ~Matern: * * destructor */ Matern::~Matern(void) { if(bk) free(bk); if(xDISTx) delete_matrix(xDISTx); xDISTx = NULL; } /* * Init: * * initialise this corr function with the parameters provided * from R via the vector of doubles */ void Matern::Init(double *dmat) { d = dmat[1]; NugInit(dmat[0], ! (bool) dmat[2]); } /* * Jitter: * * fill jitter[ ] with the variance inflation factor. That is, * the variance for an observation with covariates in the i'th * row of X will be s2*(1.0 + jitter[i]). In standard tgp, the * jitter is simply the nugget. But for calibration and mr tgp, * the jitter value depends upon X (eg real or simulated data). * */ double* Matern::Jitter(unsigned int n1, double **X) { double *jitter = new_vector(n1); for(unsigned int i=0; in); if(runi(state) > 0.5) return false; /* make the draw */ double nug_new = nug_draw_margin(n, col, nug, F, Z, K, log_det_K, *lambda, Vb, K_new, Ki_new, Kchol_new, &log_det_K_new, &lambda_new, Vb_new, bmu_new, gp_prior->get_b0(), gp_prior->get_Ti(), gp_prior->get_T(), tau2, prior->NugAlpha(), prior->NugBeta(), gp_prior->s2Alpha(), gp_prior->s2Beta(), (int) linear, itemp, state); /* did we accept the draw? */ if(nug_new != nug) { nug = nug_new; success = true; swap_new(Vb, bmu, lambda); } return success; } /* * Update: (symmetric) * * compute correlation matrix K */ void Matern::Update(unsigned int n, double **X) { if(linear) return; assert(this->n == n); if(!xDISTx || nd != n) { if(xDISTx) delete_matrix(xDISTx); xDISTx = new_matrix(n, n); nd = n; } dist_symm(xDISTx, dim, X, n, PWR); matern_dist_to_K_symm(K, xDISTx, d, nu, bk, nug, n); //delete_matrix(xDISTx); } /* * Update: (symmetric) * * takes in a (symmetric) distance matrix and * returns a correlation matrix */ void Matern::Update(unsigned int n, double **K, double **X) { double ** xDISTx = new_matrix(n, n); dist_symm(xDISTx, dim, X, n, PWR); matern_dist_to_K_symm(K, xDISTx, d, nu, bk, nug, n); delete_matrix(xDISTx); } /* * Update: (non-symmetric) * * takes in a distance matrix and * returns a correlation matrix */ void Matern::Update(unsigned int n1, unsigned int n2, double **K, double **X, double **XX) { double **xxDISTx = new_matrix(n2, n1); dist(xxDISTx, dim, XX, n1, X, n2, PWR); matern_dist_to_K(K, xxDISTx, d, nu, bk, nug, n1, n2); delete_matrix(xxDISTx); } /* * Draw: * * draw parameters for a new correlation matrix; * returns true if the correlation matrix (passed in) * has changed; otherwise returns false */ int Matern::Draw(unsigned int n, double **F, double **X, double *Z, double *lambda, double **bmu, double **Vb, double tau2, double itemp, void *state) { int success = 0; bool lin_new; double q_fwd , q_bak, d_new; /* sometimes skip this Draw for linear models for speed */ if(linear && runi(state) > 0.5) return DrawNugs(n, X, F, Z, lambda, bmu, Vb, tau2, itemp, state); /* proppose linear or not */ if(prior->Linear()) lin_new = true; else { q_fwd = q_bak = 1.0; d_proposal(1, NULL, &d_new, &d, &q_fwd, &q_bak, state); if(prior->LLM()) lin_new = linear_rand(&d_new, 1, prior->GamLin(), state); else lin_new = false; } /* if not linear than compute new distances */ /* allocate K_new, Ki_new, Kchol_new */ if(! lin_new) { if(!xDISTx || nd != n) { if(xDISTx) delete_matrix(xDISTx); xDISTx = new_matrix(n, n); nd = n; } dist_symm(xDISTx, dim, X, n, PWR); allocate_new(n); assert(n == this->n); } /* d; rebuilding K, Ki, and marginal params, if necessary */ if(prior->Linear()) d_new = d; else { Gp_Prior *gp_prior = (Gp_Prior*) base_prior; Matern_Prior* ep = (Matern_Prior*) prior; success = matern_d_draw_margin(n, col, d_new, d, F, Z, xDISTx, log_det_K, *lambda, Vb, K_new, Ki_new, Kchol_new, &log_det_K_new, &lambda_new, Vb_new, bmu_new, gp_prior->get_b0(), gp_prior->get_Ti(), gp_prior->get_T(), tau2, nug, nu, bk, q_bak/q_fwd, ep->DAlpha(), ep->DBeta(), gp_prior->s2Alpha(), gp_prior->s2Beta(), (int) lin_new, itemp, state); } /* did we accept the new draw? */ if(success == 1) { d = d_new; linear = (bool) lin_new; swap_new(Vb, bmu, lambda); dreject = 0; } else if(success == -1) return success; else if(success == 0) dreject++; /* abort if we have had too many rejections */ if(dreject >= REJECTMAX) return -2; /* draw nugget */ bool changed = DrawNugs(n, X, F, Z, lambda, bmu, Vb, tau2, itemp, state); success = success || changed; /* return true if anything has changed about the corr matrix */ return success; } /* * Combine: * * used in tree-prune steps, chooses one of two * sets of parameters to correlation functions, * and choose one for "this" correlation function */ void Matern::Combine(Corr *c1, Corr *c2, void *state) { get_delta_d((Matern*)c1, (Matern*)c2, state); CombineNug(c1, c2, state); } /* * Split: * * used in tree-grow steps, splits the parameters * of "this" correlation function into a parameterization * for two (new) correlation functions */ void Matern::Split(Corr *c1, Corr *c2, void *state) { propose_new_d((Matern*) c1, (Matern*) c2, state); SplitNug(c1, c2, state); } /* * get_delta_d: * * compute d from two ds (used in prune) */ void Matern::get_delta_d(Matern* c1, Matern* c2, void *state) { double dch[2]; int ii[2]; dch[0] = c1->d; dch[1] = c2->d; propose_indices(ii, 0.5, state); d = dch[ii[0]]; linear = linear_rand(&d, 1, prior->GamLin(), state); } /* * propose_new_d: * * propose new D parameters for possible * new children partitions. */ void Matern::propose_new_d(Matern* c1, Matern* c2, void *state) { int i[2]; double dnew[2]; Matern_Prior *ep = (Matern_Prior*) prior; propose_indices(i, 0.5, state); dnew[i[0]] = d; if(prior->Linear()) dnew[i[1]] = d; else dnew[i[1]] = d_prior_rand(ep->DAlpha(), ep->DBeta(), state); c1->d = dnew[0]; c2->d = dnew[1]; c1->linear = (bool) linear_rand(&(dnew[0]), 1, prior->GamLin(), state); c2->linear = (bool) linear_rand(&(dnew[1]), 1, prior->GamLin(), state); } /* * State: * * return a string depecting the state * of the (parameters of) correlation function */ char* Matern::State(unsigned int which) { char buffer[BUFFMAX]; #ifdef PRINTNUG string s = "(d="; #else string s = ""; #endif if(linear) snprintf(buffer, BUFFMAX, "0(%g)", d); else snprintf(buffer, BUFFMAX, "%g", d); s.append(buffer); #ifdef PRINTNUG snprintf(buffer, BUFFMAX, ", g=%g)", nug); s.append(buffer); #endif char* ret_str = (char*) malloc(sizeof(char) * (s.length()+1)); strncpy(ret_str, s.c_str(), s.length()); ret_str[s.length()] = '\0'; return ret_str; } /* * sum_b: * * return 1 if linear, 0 otherwise */ unsigned int Matern::sum_b(void) { if(linear) return 1; else return 0; } /* * ToggleLinear: * * make linear if not linear, otherwise * make not linear */ void Matern::ToggleLinear(void) { if(linear) { linear = false; } else { linear = true; } } /* * D: * * return the range parameter */ double Matern::D(void) { return d; } /* * NU: * * return the nu parameter */ double Matern::NU(void) { return nu; } /* * log_Prior: * * compute the (log) prior for the parameters to * the correlation function (e.g. d and nug). Does not * include hierarchical prior params; see log_HierPrior * below */ double Matern::log_Prior(void) { double prob = ((Corr*)this)->log_NugPrior(); prob += ((Matern_Prior*) prior)->log_Prior(d, linear); return prob; } /* * TraceNames: * * return the names of the parameters recorded by Matern::Trace() */ char** Matern::TraceNames(unsigned int* len) { *len = 4; char **trace = (char**) malloc(sizeof(char*) * (*len)); trace[0] = strdup("nug"); trace[1] = strdup("d"); trace[2] = strdup("b"); /* determinant of K */ trace[3] = strdup("ldetK"); return trace; } /* * Trace: * * return the current values of the parameters * to this correlation function */ double* Matern::Trace(unsigned int* len) { *len = 4; double *trace = new_vector(*len); trace[0] = nug; trace[1] = d; trace[2] = (double) !linear; /* determinant of K */ trace[3] = log_det_K; return trace; } void Matern::Invert(unsigned int n) { if(! linear) { assert(n == this->n); inverse_chol(K, Ki, Kchol, n); log_det_K = log_determinant_chol(Kchol, n); } else { assert(n > 0); log_det_K = n * log(1.0 + nug); } } /* * newCorr: * * construct and return a new isotropic exponential correlation * function with this module governing its prior parameterization */ Corr* Matern_Prior::newCorr(void) { return new Matern(dim, base_prior); } /* * Matern_Prior: * * constructor for the prior distribution for * the exponential correlation function */ Matern_Prior::Matern_Prior(unsigned int dim) : Corr_Prior(dim) { corr_model = MATERN; /* defaults */ d = 0.5; nu = 1.0; default_d_priors(); default_d_lambdas(); } /* * Init: * * read hiererchial prior parameters from a double-vector * */ void Matern_Prior::Init(double *dhier) { d_alpha[0] = dhier[0]; d_beta[0] = dhier[1]; d_alpha[1] = dhier[2]; d_beta[1] = dhier[3]; NugInit(&(dhier[4])); } /* * Dup: * * duplicate this prior for the isotropic exponential * power family */ Corr_Prior* Matern_Prior::Dup(void) { return new Matern_Prior(this); } /* * Matern_Prior (new duplicate) * * duplicating constructor for the prior distribution for * the exponential correlation function */ Matern_Prior::Matern_Prior(Corr_Prior *c) : Corr_Prior(c) { Matern_Prior *e = (Matern_Prior*) c; assert(e->corr_model == MATERN); corr_model = e->corr_model; dupv(gamlin, e->gamlin, 3); d = e->d; nu = e->nu; fix_d = e->fix_d; dupv(d_alpha, e->d_alpha, 2); dupv(d_beta, e->d_beta, 2); dupv(d_alpha_lambda, e->d_alpha_lambda, 2); dupv(d_beta_lambda, e->d_beta_lambda, 2); } /* * ~Matern_Prior: * * destructor the the prior distribution for * the exponential correlation function */ Matern_Prior::~Matern_Prior(void) { } /* * read_double: * * read prior parameterization from a vector of doubles * passed in from R */ void Matern_Prior::read_double(double *dparams) { /* read the parameters that have to to with the * nugget first */ read_double_nug(dparams); /* starting value for the range parameter */ d = dparams[1]; // MYprintf(MYstdout, "starting range=%g\n", d); /* reset dparams to start after the nugget gamlin params */ dparams += 13; /* initial parameter settings for alpha and beta */ get_mix_prior_params_double(d_alpha, d_beta, &(dparams[0]), "d"); dparams += 4; /* reset */ /* d hierarchical lambda prior parameters */ if((int) dparams[0] == -1) { fix_d = true; /*MYprintf(MYstdout, "fixing d prior\n");*/ } else { fix_d = false; get_mix_prior_params_double(d_alpha_lambda, d_beta_lambda, &(dparams[0]), "d lambda"); } dparams += 4; /* reset */ /* read the fixed nu parameter */ nu = dparams[0]; // MYprintf(MYstdout, "fixed nu=%g\n", nu); dparams += 1; /* reset */ } /* * read_ctrlfile: * * read prior parameterization from a control file */ void Matern_Prior::read_ctrlfile(ifstream *ctrlfile) { char line[BUFFMAX], line_copy[BUFFMAX]; /* read the parameters that have to do with the * nugget first */ read_ctrlfile_nug(ctrlfile); /* read the d parameter from the control file */ ctrlfile->getline(line, BUFFMAX); d = atof(strtok(line, " \t\n#")); MYprintf(MYstdout, "starting d=%g\n", d); /* read d and nug-hierarchical parameters (mix of gammas) */ ctrlfile->getline(line, BUFFMAX); get_mix_prior_params(d_alpha, d_beta, line, "d"); /* d hierarchical lambda prior parameters */ ctrlfile->getline(line, BUFFMAX); strcpy(line_copy, line); if(!strcmp("fixed", strtok(line_copy, " \t\n#"))) { fix_d = true; MYprintf(MYstdout, "fixing d prior\n"); } else { fix_d = false; get_mix_prior_params(d_alpha_lambda, d_beta_lambda, line, "d lambda"); } /* read the (fixed) nu parameter */ ctrlfile->getline(line, BUFFMAX); nu = atof(strtok(line, " \t\n#")); MYprintf(MYstdout, "fixed nu=%g\n", nu); } /* * default_d_priors: * * set d prior parameters * to default values */ void Matern_Prior::default_d_priors(void) { d_alpha[0] = 1.0; d_beta[0] = 20.0; d_alpha[1] = 10.0; d_beta[1] = 10.0; } /* * default_d_lambdas: * * set d (lambda) hierarchical prior parameters * to default values */ void Matern_Prior::default_d_lambdas(void) { d_alpha_lambda[0] = 1.0; d_beta_lambda[0] = 10.0; d_alpha_lambda[1] = 1.0; d_beta_lambda[1] = 10.0; fix_d = false; //fix_d = true; } /* * D: * * return the default nu parameter setting * for the exponential correllation function */ double Matern_Prior::D(void) { return d; } /* * NU: * * return the nu parameter */ double Matern_Prior::NU(void) { return nu; } /* * DAlpha: * * return the alpha prior parameter setting to the gamma * distribution prior for the nu parameter */ double* Matern_Prior::DAlpha(void) { return d_alpha; } /* * DBeta: * * return the beta prior parameter setting to the gamma * distribution prior for the nu parameter */ double* Matern_Prior::DBeta(void) { return d_beta; } /* * Draw: * * draws for the hierarchical priors for the Matern * correlation function which are * contained in the params module */ void Matern_Prior::Draw(Corr **corr, unsigned int howmany, void *state) { if(!fix_d) { double *d = new_vector(howmany); for(unsigned int i=0; iD(); mixture_priors_draw(d_alpha, d_beta, d, howmany, d_alpha_lambda, d_beta_lambda, state); free(d); } /* hierarchical prior draws for the nugget */ DrawNugHier(corr, howmany, state); } /* * log_Prior: * * compute the (log) prior for the parameters to * the correlation function (e.g. d and nug) */ double Matern_Prior::log_Prior(double d, bool linear) { double prob = 0; /* force linear model */ if(gamlin[0] < 0) return prob; prob += log_d_prior_pdf(d, d_alpha, d_beta); /* force GP model */ if(gamlin[0] <= 0) return prob; /* using 1.0, because of 1.0 - lin_pdf, and will adjust later */ double lin_pdf = linear_pdf(&d, 1, gamlin); if(linear) prob += log(lin_pdf); else prob += log(1.0-lin_pdf); /* return the log pdf */ return prob; } /* * BasePrior: * * return the prior for the Base (eg Gp) model */ Base_Prior* Matern_Prior::BasePrior(void) { return base_prior; } /* * SetBasePrior: * * set the base_prior field */ void Matern_Prior::SetBasePrior(Base_Prior *base_prior) { this->base_prior = base_prior; } /* * Print: * * pretty print the correllation function parameters out * to a file */ void Matern_Prior::Print(FILE *outfile) { MYprintf(MYstdout, "corr prior: matern\n"); /* print nugget stuff first */ PrintNug(outfile); /* range parameter */ // MYprintf(outfile, "starting d=%g\n", d); /* nu, smoothness parameter */ MYprintf(MYstdout, "fixed nu=%g\n", nu); /* range gamma prior */ MYprintf(outfile, "d[a,b][0,1]=[%g,%g],[%g,%g]\n", d_alpha[0], d_beta[0], d_alpha[1], d_beta[1]); /* range gamma hyperprior */ if(fix_d) MYprintf(outfile, "d prior fixed\n"); else { MYprintf(MYstdout, "d lambda[a,b][0,1]=[%g,%g],[%g,%g]\n", d_alpha_lambda[0], d_beta_lambda[0], d_alpha_lambda[1], d_beta_lambda[1]); } } /* * log_HierPrior: * * return the log prior of the hierarchial parameters * to the correllation parameters (i.e., range and nugget) */ double Matern_Prior::log_HierPrior(void) { double lpdf; lpdf = 0.0; /* mixture prior for the range parameter, d */ if(!fix_d) { lpdf += mixture_hier_prior_log(d_alpha, d_beta, d_alpha_lambda, d_beta_lambda); } /* mixture prior for the nugget */ lpdf += log_NugHierPrior(); return lpdf; } /* * Trace: * * return the current values of the hierarchical * parameters to this correlation function: * nug(alpha,beta), d(alpha,beta), then linear */ double* Matern_Prior::Trace(unsigned int* len) { /* first get the hierarchical nug parameters */ unsigned int clen; double *c = NugTrace(&clen); /* calculate and allocate the new trace, which will include the nug trace */ *len = 4; double* trace = new_vector(clen + *len); trace[0] = d_alpha[0]; trace[1] = d_beta[0]; trace[2] = d_alpha[1]; trace[3] = d_beta[1]; /* then copy in the nug trace */ dupv(&(trace[*len]), c, clen); /* new combined length, and free c */ *len += clen; if(c) free(c); else assert(clen == 0); return trace; } /* * TraceNames: * * return the names of the traces recorded in Matern_Prior::Trace() */ char** Matern_Prior::TraceNames(unsigned int* len) { /* first get the hierarchical nug parameters */ unsigned int clen; char **c = NugTraceNames(&clen); /* calculate and allocate the new trace, which will include the nug trace */ *len = 4; char** trace = (char**) malloc(sizeof(char*) * (clen + *len)); trace[0] = strdup("d.a0"); trace[1] = strdup("d.g0"); trace[2] = strdup("d.a1"); trace[3] = strdup("d.g1"); /* then copy in the nug trace */ for(unsigned int i=0; i #include #include "model.h" #include "params.h" #include "temper.h" class Tgp { private: time_t itime; /* time stamp for periodic R interaction */ void *state; /* RNG (random number generator) state */ unsigned int n; /* n inputs (number of rows in X) */ unsigned int d; /* d covariates (number of cols in X) */ unsigned int nn; /* number of predictive locations (rows in XX) */ unsigned int nsplit; /* number of rows in Xsplit, nsplit likely n+nn */ bool trace; /* indicates whether traces for XX should be sent to files */ unsigned int B; /* number of burn-in rounds */ unsigned int T; /* total number of MCMC rounds (including burn-in) */ unsigned int E; /* sample from posterior (E)very somany rounds */ unsigned int R; /* number of times to (Re-) start over (>=1) */ int verb; /* indicates the verbosity of print statements */ double *tree; /* double-vector tree representation */ unsigned int treecol; /* number of cols in double-vector tree representation */ double *hier; /* double-vector hierarchical prior representation */ double *dparams; /* double-vector of user-specified parameterization */ Temper *its; /* set of inv-temperatures for importance tempering */ bool linburn; /* initialize with treed LM before burn in? */ bool pred_n; /* sample from posterior predictive at data locs? */ bool krige; /* gather kriging statistics? */ bool delta_s2; /* gather ALC statistics? */ int improv; /* gather IMPROV statistics -- at what power? */ bool sens; /* is this a Sensitivity Analysis? */ double **X; /* n-by-d input (design matrix) data */ double *Z; /* response vector of length n */ double **XX; /* nn-by-d (design matrix) of predictive locations */ double **Xsplit; /* (nsplit)-by-d rbind(X,XX) matrix for rect & tree splits */ Params *params; /* prior-parameters module */ double **rect; /* bounding rectangle of the (design matrix) data X */ Model *model; /* pointer to the (treed GP) model */ Preds *cump; /* data structure for gathering posterior pred samples */ Preds *preds; /* inv-temporary for posteior pred samples */ public: /* constructor and destructor */ Tgp(void *state, int n, int d, int nn, int B, int T, int E, int R, int linburn, bool pred_n, bool krige, bool delta_s2, int improv, bool sens, double *X, double *Z, double *XX, double *Xsplit, int nsplit, double *dparams, double *ditemps, bool trace, int verb, double *dtree, double *hier); ~Tgp(void); /* a function that should only be called just after constructor */ void Init(void); /* functions that do all the TGP modelling work */ void Rounds(void); void Predict(void); /* posterior predictive summary statistics */ void GetStats(bool report, double *Zp_mean, double *ZZ_mean, double *Zp_km, double *ZZ_km, double *Zp_kvm, double *ZZ_kvm, double *Zp_q, double *ZZ_q, bool zcov, double *Zp_s2, double *ZZ_s2, double *ZpZZ_s2, double *Zp_ks2, double *ZZ_ks2, double *Zp_q1, double *Zp_median, double *Zp_q2, double *ZZ_q1, double *ZZ_median, double *ZZ_q2, double *Ds2x, double *improvec, int numirank, int* irank, double *ess); /* Importance Tempering */ void GetPseudoPrior(double *ditemps); /* Sensitivity Analysis */ void Sens(int *ngrid_in, double *span_in, double *sens_XX, double *sens_ZZ_mean, double *sens_ZZ_q1,double *sens_ZZ_q2, double *sens_S, double *sens_T); /* printing */ void Print(FILE *outfile); int Verb(void); /* tree statistics */ void GetTreeStats(double *gpcs); }; /* input and output data processing */ double ** getXdataRect(double **X, unsigned int n, unsigned int d, double **XX, unsigned int nn); #endif tgp/src/list.cc0000644000176200001440000001052714661637017013135 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include extern "C" { #include "rhelp.h" } #include "list.h" #include #include #include /* * the usual constructor function * for NODE */ LNode::LNode(void* entry) { this->entry = entry; prev = next = NULL; list = NULL; } /* * the usual destructor function * for NODE */ LNode::~LNode(void) { } /* * return the next node in the list */ LNode* LNode::Next(void) { return next; } /* * return the previous node in the list */ LNode* LNode::Prev(void) { return prev; } /* * return the data entry for the node */ void* LNode::Entry(void) { return entry; } /* ************************ * BEGIN List FUNCTIONS * ************************ */ /* * the usual constructor function * for LIST */ List::List(void) { first = last = curr = NULL; len = 0; } /* * the usual destructor function * for LIST */ List::~List(void) { curr = first; if(curr) Rf_warning("nonempty list deleted"); while(curr) { LNode* temp = curr; curr = curr->next; delete temp; } } /* * insert a new node at the beginning * of the list */ LNode* List::EnQueue(void* entry) { if(first == NULL) { assert(last == NULL); assert(len == 0); first = new LNode(entry); last = first; } else { assert(last != NULL); assert(len > 0); LNode* newnode = new LNode(entry); newnode->next = first; assert(first->prev == NULL); first->prev = newnode; first = newnode; } len++; first->list = this; return first; } /* * remove a node from the end * of the list */ void * List::DeQueue(void) { if(last == NULL) { assert(first == NULL); assert(len == 0); return NULL; } else { LNode* temp = last; if(first == last) { first = NULL; } else { assert(last->prev != NULL); last->prev->next = NULL; } last = last->prev; len--; assert(len >= 0); void* entry = temp->Entry(); temp->list = NULL; delete temp; return entry; } } /* * check if the list is empty */ bool List::isEmpty(void) { if(first == NULL) { assert(last == NULL); assert(len == 0); return true; } else { assert(last != NULL); assert(len > 0); return false; } } /* * return the length of the list */ unsigned int List::Len(void) { return len; } /* * detach and delete the node from the list */ void* List::detach_and_delete(LNode* node) { assert(node); if(node->list == NULL) { void* entry = node->Entry(); delete node; return entry; } assert(node->list == this); if(node == first) { assert(node->prev == NULL); if(node == last) { /* first and last (one node list) */ assert(node->next == NULL); first = last = NULL; } else { /* first but not last */ assert(node->next != NULL); first = node->next; node->next = NULL; first->prev = NULL; } } else if(node == last) { /* last but not first */ assert(node->next == NULL); assert(node->prev != NULL); last = node->prev; node->prev = NULL; last->next = NULL; } else { /* not last or first */ node->prev->next = node->next; node->next->prev = node->prev; node->next = NULL; node->prev = NULL; } void* entry = node->Entry(); node->list = NULL; delete node; node = NULL; len--; assert(len >= 0); return entry; } /* * return the first node in the list */ LNode* List::First(void) { return first; } tgp/src/exp_sep.h0000644000176200001440000001076413531032535013457 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __EXP_SEP_H__ #define __EXP_SEP_H__ #include "corr.h" class ExpSep_Prior; /* * CLASS for the implementation of the separable exponentia * power family of correlation functions */ class ExpSep : public Corr { private: double *d; /* kernel correlation width parameter */ int *b; /* dimension-wize linearization */ double *d_eff; /* dimension-wize linearization */ double *pb; /* prob of dimension-wize linearization */ unsigned int dreject; /* d rejection counter */ public: ExpSep(unsigned int dim, Base_Prior *base_prior); virtual Corr& operator=(const Corr &c); virtual ~ExpSep(void); virtual void Update(unsigned int n1, unsigned int n2, double **K, double **X, double **XX); virtual void Update(unsigned int n1, double **X); virtual void Update(unsigned int n1, double **K, double **X); virtual int Draw(unsigned int n, double **F, double **X, double *Z, double *lambda, double **bmu, double **Vb, double tau2, double itemp, void *state); virtual void Combine(Corr *c1, Corr *c2, void *state); virtual void Split(Corr *c1, Corr *c2, void *state); virtual char* State(unsigned int which); virtual unsigned int sum_b(void); virtual void ToggleLinear(void); virtual bool DrawNugs(unsigned int n, double **X, double **F, double *Z, double *lambda, double **bmu, double **Vb, double tau2, double itemp, void *state); virtual double* Trace(unsigned int* len); virtual char** TraceNames(unsigned int* len); virtual void Init(double *dexpsep); virtual double* Jitter(unsigned int n1, double **X); virtual double* CorrDiag(unsigned int n1, double **X); virtual void Invert(unsigned int n); void get_delta_d(ExpSep* c1, ExpSep* c2, void *state); void propose_new_d(ExpSep* c1, ExpSep* c2, void *state); bool propose_new_d(double* d_new, int * b_new, double *pb_new, double *q_fwd, double *q_bak, void *state); virtual double log_Prior(void); void draw_d_from_prior(double *d_new, void *state); double *D(void); }; /* * CLASS for the prior parameterization of the separable * exponential power family of correlation functions */ class ExpSep_Prior : public Corr_Prior { private: double *d; double **d_alpha; /* d gamma-mixture prior alphas */ double **d_beta; /* d gamma-mixture prior beta */ bool fix_d; /* estimate d-mixture parameters or not */ double d_alpha_lambda[2]; /* d prior alpha lambda parameter */ double d_beta_lambda[2]; /* d prior beta lambda parameter */ public: ExpSep_Prior(unsigned int dim); ExpSep_Prior(Corr_Prior *c); virtual ~ExpSep_Prior(void); virtual void read_double(double *dprior); virtual void read_ctrlfile(std::ifstream* ctrlfile); virtual Corr_Prior* Dup(void); virtual void Draw(Corr **corr, unsigned int howmany, void *state); virtual Corr* newCorr(void); virtual void Print(FILE *outfile); virtual Base_Prior* BasePrior(void); virtual void SetBasePrior(Base_Prior *base_prior); virtual double log_HierPrior(void); virtual double* Trace(unsigned int* len); virtual char** TraceNames(unsigned int* len); virtual void Init(double *dhier); void draw_d_from_prior(double *d_new, void *state); double* D(void); double** DAlpha(void); double** DBeta(void); void default_d_priors(void); void default_d_lambdas(void); double log_Prior(double *d, int *b, double *pb, bool linear); double log_DPrior_pdf(double *d); void DPrior_rand(double *d_new, void *state); }; #endif tgp/src/predict_linear.h0000644000176200001440000000713513531032535014776 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __PREDICT_LINEAR_H__ #define __PREDICT_LINEAR_H__ int predict_full_linear(unsigned int n, double *zp, double *zpm, double *zpvm, double *zps2, double *Kdiag, unsigned int nn, double *zz, double *zzm, double *zzvm, double *zzs2, double *KKdiag, double **Ds2xy, double *improv, double *Z, unsigned int col, double **F, double **FF, double *bmu, double s2, double **Vb, double Zmin, int err, void *state); int predict_full_noK(unsigned int n1, double *zp, double *zpm, double *zps2, double *Kdiag, unsigned int n2, double * zz, double *zzm, double *zzs2, double *KKdiag, double **Ds2xy, unsigned int col, double **F, double **T, double tau2, double **FF, double *b, double ss2, int err, void *state); void predict_noK(unsigned int n1, unsigned int col, double *zzm, double *zzs2, double **F, double *b, double s2, double **Vb); void delta_sigma2_noK(double *Ds2xy, unsigned int n1, unsigned int n2, unsigned int col, double ss2, double denom, double **FT, double tau2, double *fT, double *IDpFTFiQx, double **FFrow, unsigned int which_i, double corr_diag); double predictive_mean_noK(unsigned int n1, unsigned int col, double *FFrow, int i, double * b); void predict_data_noK(double *zpm, double *zps2, unsigned int n1, unsigned int col, double **FFrow, double *b, double ss2, double *Kdiag); double predictive_var_noK(unsigned int n1, unsigned int col, double *Q, double *rhs, double *Wf, double *s2cor, double ss2, double *f, double **FW, double **W, double tau2, double **IDpFWFi, double corr_diag); void predict_delta_noK(double *zmean, double *zs, double **Ds2xy, unsigned int n1, unsigned int n2, unsigned int col, double **FFrow, double **FW, double **W, double tau2, double **IDpFWFi, double *b, double ss2, double* KKdiag); void predict_no_delta_noK(double *zmean, double *zs, unsigned int n1, unsigned int n2, unsigned int col, double **FFrow, double **FW, double **W, double tau2, double **IDpFWFi, double *b, double ss2, double *KKdiag); void predict_help_noK(unsigned int n1,unsigned int col,double *b, double **F, double **W, double tau2, double **FW, double **IDpFWFi, double *Kdiag); void delta_sigma2_linear(double *ds2xy, unsigned int n, unsigned int col, double s2, double *Vbf, double fVbf, double **F, double corr_diag); void predict_linear(unsigned int n, unsigned int col, double *zm, double *zs2, double **F, double *b, double s2, double **Vb, double **Ds2xy, double *Kdiag); #endif tgp/src/corr.h0000644000176200001440000001542513531032535012760 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __CORR_H__ #define __CORR_H__ extern "C" { #include "rhelp.h" } #include #define BUFFMAX 256 //#define PRINTNUG #define REJECTMAX 1000 typedef enum CORR_MODEL {EXP=701, EXPSEP=702, MATERN=703, MREXPSEP=704, SIM=705} CORR_MODEL; class Model; /* not including model.h */ class Corr_Prior; class Base_Prior; /* * CLASS for the generic implementation of a correlation * function with nugget */ class Corr { private: protected: Base_Prior *base_prior;/* Base prior module */ Corr_Prior *prior; /* generic prior parameterization for nugget */ unsigned int dim; /* # of columns in the matrix X */ unsigned int col; /* # of columns in the design matrix F */ unsigned int n; /* number of input data points-- rows in the design matrix */ /* actual current covariance matrices */ double **K; /* n x n, covariance matrix */ double **Ki; /* n x n, utility inverse covariance matrix */ double **Kchol; /* n x n, covatiance matrix cholesy decomp */ double log_det_K; /* log determinant of the K matrix */ bool linear; /* is this the linear model? (d ?= 0) */ /* new utility matrices */ double **Vb_new; /* Utility: variance of Gibbs beta step */ double *bmu_new; /* Utility: mean of gibbs beta step */ double lambda_new; /* Utility: parameter in marginalized beta */ double **K_new; /* n x n, new (proposed) covariance matrix */ double **Ki_new; /* n x n, new (proposed) utility inverse covariance matrix */ double **Kchol_new; /* n x n, new (proposed) covatiance matrix cholesy decomp */ double log_det_K_new; /* log determinant of the K matrix */ double nug; /* the nugget parameter */ public: Corr(unsigned int dim, Base_Prior* base_prior); virtual ~Corr(void); virtual Corr& operator=(const Corr &c)=0; virtual int Draw(unsigned int n, double **F, double **X, double *Z,double *lambda, double **bmu, double **Vb, double tau2, double temp, void *state)=0; virtual void Update(unsigned int n1, unsigned int n2, double **K, double **X, double **XX)=0; virtual void Update(unsigned int n1, double **X)=0; virtual void Update(unsigned int n1, double **K, double **X)=0; virtual void Combine(Corr *c1, Corr *c2, void *state)=0; virtual void Split(Corr *c1, Corr *c2, void *state)=0; virtual char* State(unsigned int which)=0; virtual double log_Prior(void)=0; virtual unsigned int sum_b(void)=0; virtual void ToggleLinear(void)=0; virtual bool DrawNugs(unsigned int n, double **X, double **F, double *Z, double *lambda, double **bmu, double **Vb, double tau2, double temp, void *state)=0; virtual double* Trace(unsigned int *len)=0; virtual char** TraceNames(unsigned int *len)=0; virtual void Init(double *dcorr)=0; virtual double* Jitter(unsigned int n1, double **X)=0; virtual double* CorrDiag(unsigned int n1, double **X)=0; virtual void Invert(unsigned int n)=0; unsigned int N(); double** get_Ki(void); double** get_K(void); double get_log_det_K(void); bool Linear(void); void Cov(Corr *cc); void printCorr(unsigned int n); // Move all this to the member classes double get_delta_nug(Corr* c1, Corr* c2, void *state); void propose_new_nug(Corr* c1, Corr* c2, void *state); void CombineNug(Corr *c1, Corr *c2, void *state); void SplitNug(Corr *c1, Corr *c2, void *state); void swap_new(double **Vb, double **bmu, double *lambda); void allocate_new(unsigned int n); //void Invert(unsigned int n); void deallocate_new(void); double Nug(void); double log_NugPrior(void); void NugInit(double nug, bool linear); }; /* * generic CLASS for the prior to the correlation function * including a nugget parameter */ class Corr_Prior { private: /* starting nugget value */ double nug; /* mixture prior parameters */ double nug_alpha[2]; /* nug gamma-mixture prior alphas */ double nug_beta[2]; /* nug gamma-mixture prior beta */ bool fix_nug; /* estimate nug-mixture parameters or not */ double nug_alpha_lambda[2]; /* nug prior alpha lambda parameter */ double nug_beta_lambda[2]; /* nug prior beta lambda parameter */ protected: CORR_MODEL corr_model; /* indicator for type of correllation model */ Base_Prior *base_prior; /* prior for the base model */ unsigned int dim; double gamlin[3]; /* gamma for the linear pdf */ public: Corr_Prior(const unsigned int dim); Corr_Prior(Corr_Prior *c); virtual ~Corr_Prior(void); CORR_MODEL CorrModel(void); virtual void read_double(double *dprior)=0; virtual void read_ctrlfile(std::ifstream* ctrlfile)=0; virtual void Draw(Corr **corr, unsigned int howmany, void *state)=0; virtual Corr* newCorr(void)=0; virtual void Print(FILE *outfile)=0; virtual Corr_Prior* Dup(void)=0; virtual Base_Prior* BasePrior(void)=0; virtual void SetBasePrior(Base_Prior *base_prior)=0; virtual double log_HierPrior(void)=0; virtual double* Trace(unsigned int* len)=0; virtual char** TraceNames(unsigned int* len)=0; virtual void Init(double *dhier)=0; void read_double_nug(double *dprior); void read_ctrlfile_nug(std::ifstream* ctrlfile); double log_NugPrior(double nug); double log_NugHierPrior(void); double Nug(void); void DrawNugHier(Corr **corr, unsigned int howmany, void *state); void default_nug_priors(void); void default_nug_lambdas(void); void fix_nug_prior(void); double *NugAlpha(void); double *NugBeta(void); double NugDraw(void *state); double* GamLin(void); bool Linear(void); bool LLM(void); double ForceLinear(void); void ResetLinear(double gam); double* NugTrace(unsigned int* len); char** NugTraceNames(unsigned int* len); void NugInit(double *dhier); bool FixNug(void); void PrintNug(FILE *outfile); }; #endif tgp/src/rhelp.h0000644000176200001440000000143314660141451013121 0ustar liggesusers#ifndef __RHELP_H__ #define __RHELP_H__ #include #include /* this is now covered by -D RPRINT flags in Makevars */ /*#define RPRINT*/ #ifndef RPRINT void warning(const char *str, ...); void error(const char *str, ...); /* #define DOUBLE_EPS 2.220446e-16 */ #define M_LN_SQRT_2PI 0.918938533204672741780329736406 #include #define MYstdout stdout #define MYstderr stderr #else // #include // #include // #include // #include // #include extern FILE *MYstdout, *MYstderr; #endif // void R_FlushConsole(void); /* R < 2.3 does not have this in R.h (in Rinterface.h) */ void MYprintf(FILE *outfile, const char *str, ...); void MYflush(FILE *outfile); time_t MY_r_process_events(time_t itime); #endif tgp/src/randomkit.h0000644000176200001440000001116513531032535014000 0ustar liggesusers/* Random kit 1.3 */ /* * Copyright (c) 2003-2005, Jean-Sebastien Roy (js@jeannot.org) * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* @(#) $Jeannot: randomkit.h,v 1.24 2005/07/21 22:14:09 js Exp $ */ /* * Typical use: * * { * rk_state state; * unsigned long seed = 1, random_value; * * rk_seed(seed, &state); // Initialize the RNG * ... * random_value = rk_random(&state); // Generate random values in [0..RK_MAX] * } * * Instead of rk_seed, you can use rk_randomseed which will get a random seed * from /dev/urandom (or the clock, if /dev/urandom is unavailable): * * { * rk_state state; * unsigned long random_value; * * rk_randomseed(&state); // Initialize the RNG with a random seed * ... * random_value = rk_random(&state); // Generate random values in [0..RK_MAX] * } */ /* * Useful macro: * RK_DEV_RANDOM: the device used for random seeding. * defaults to "/dev/urandom" */ #include #ifndef _RANDOMKIT_ #define _RANDOMKIT_ #define RK_STATE_LEN 624 typedef struct rk_state_ { unsigned long key[RK_STATE_LEN]; int pos; int has_gauss; /* !=0: gauss contains a gaussian deviate */ double gauss; } rk_state; typedef enum { RK_NOERR = 0, /* no error */ RK_ENODEV = 1, /* no RK_DEV_RANDOM device */ RK_ERR_MAX = 2 } rk_error; /* error strings */ extern char *rk_strerror[RK_ERR_MAX]; /* Maximum generated random value */ #define RK_MAX 0xFFFFFFFFUL #ifdef __cplusplus extern "C" { #endif /* * Initialize the RNG state using the given seed. */ extern void rk_seed(unsigned long seed, rk_state *state); /* * Initialize the RNG state using a random seed. * Uses /dev/random or, when unavailable, the clock (see randomkit.c). * Returns RK_NOERR when no errors occurs. * Returns RK_ENODEV when the use of RK_DEV_RANDOM failed (for example because * there is no such device). In this case, the RNG was initialized using the * clock. */ extern rk_error rk_randomseed(rk_state *state); /* * Returns a random unsigned long between 0 and RK_MAX inclusive */ extern unsigned long rk_random(rk_state *state); /* * Returns a random long between 0 and LONG_MAX inclusive */ extern long rk_long(rk_state *state); /* * Returns a random unsigned long between 0 and ULONG_MAX inclusive */ extern unsigned long rk_ulong(rk_state *state); /* * Returns a random unsigned long between 0 and max inclusive. */ extern unsigned long rk_interval(unsigned long max, rk_state *state); /* * Returns a random double between 0.0 and 1.0, 1.0 excluded. */ extern double rk_double(rk_state *state); /* * fill the buffer with size random bytes */ extern void rk_fill(void *buffer, size_t size, rk_state *state); /* * fill the buffer with randombytes from the random device * Returns RK_ENODEV if the device is unavailable, or RK_NOERR if it is * On Unix, if strong is defined, RK_DEV_RANDOM is used. If not, RK_DEV_URANDOM * is used instead. This parameter has no effect on Windows. * Warning: on most unixes RK_DEV_RANDOM will wait for enough entropy to answer * which can take a very long time on quiet systems. */ extern rk_error rk_devfill(void *buffer, size_t size, int strong); /* * fill the buffer using rk_devfill if the random device is available and using * rk_fill if is is not * parameters have the same meaning as rk_fill and rk_devfill * Returns RK_ENODEV if the device is unavailable, or RK_NOERR if it is */ extern rk_error rk_altfill(void *buffer, size_t size, int strong, rk_state *state); /* * return a random gaussian deviate with variance unity and zero mean. */ extern double rk_gauss(rk_state *state); #ifdef __cplusplus } #endif #endif /* _RANDOMKIT_ */ tgp/src/matrix.c0000644000176200001440000014604714661665154013335 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include "rhelp.h" #include #include "matrix.h" #include #include #include /* #define DEBUG */ /* * get_data_rect: * * compute and return the rectangle implied by the X data */ double **get_data_rect(double **X, unsigned int N, unsigned int d) { unsigned int i,j; double ** rect = new_matrix(2, d); for(i=0; i rect[1][i]) rect[1][i] = X[j][i]; } } return(rect); } /* * replace matrix with zeros */ void zero(double **M, unsigned int n1, unsigned int n2) { unsigned int i, j; for(i=0; i= n1); assert(n2_new >= n2); if(n1_new <= 0 || n2_new <= 0) { assert(M == NULL); return NULL; } if(M == NULL) { assert(n1 == 0 || n2 == 0); return new_zero_matrix(n1_new, n2_new); } if(n2 == n2_new) { m = (double**) malloc(sizeof(double*) * n1_new); assert(m); m[0] = realloc(M[0], sizeof(double) * n1_new * n2_new); free(M); assert(m[0]); for(i=1; i= n1); assert(n2_new >= n2); if(n1_new <= 0 || n2_new <= 0) { assert(M == NULL); return NULL; } if(M == NULL) { assert(n1 == 0 || n2 == 0); return new_zero_imatrix(n1_new, n2_new); } if(n2 == n2_new) { m = (int**) malloc(sizeof(int*) * n1_new); assert(m); m[0] = realloc(M[0], sizeof(int) * n1_new * n2_new); free(M); assert(m[0]); for(i=1; i 0 && col > 0) assert(M); for(i=0; i 0 && col > 0) assert(M); for(i=0; i 0 && col > 0) assert(M); for(i=0; i 0 && n2 > 0); assert(M1 && M2); for(i=0; i 0 && n2 > 0); for(i=0; i 0) s[i] = f(M[0][i]); else s[i] = 0; for(j=1; jx < bb->x) return -1; else return 1; } /* * calculate the quantiles of v[1:n] specified in q[1:m], and store them * in qs[1:m]; If non-null weights, then use the sorting method; assume * that the weights are NORMALIZED, it is also assumed that the q[1:m] * is specified in increasing order */ void quantiles(double *qs, double *q, unsigned int m, double *v, double *w, unsigned int n) { unsigned int i, k, j; double wsum; Wsamp **wsamp; /* create and fill pointers to weighted sample structures */ if(w != NULL) { wsamp = (Wsamp**) malloc(sizeof(struct wsamp*) * n); for(i=0; iw = w[i]; wsamp[i]->x = v[i]; } /* sort by v; and implicity report the associated weights w */ qsort((void*)wsamp, n, sizeof(Wsamp*), compareWsamp); } else wsamp = NULL; /* for each quantile in q */ wsum = 0.0; for(i=0, j=0; j 0 && q[j] <1); /* find the (non-weighted) quantile using select */ if(w == NULL) { /* calculate the index-position of the quantile */ k = (unsigned int) floor(n*q[j]); qs[j] = quick_select(v, n, k); } else { /* else using sorting method */ /* check to make sure the qs are ordered */ assert(wsamp); if(j > 0) assert(q[j] > q[j-1]); /* find the next quantile in the q-array */ for(; i 0 && wsum >= q[j]) { qs[j] = wsamp[i-1]->x; break; } /* increment with the next weight */ wsum += wsamp[i]->w; /* see if we've found the next quantile */ if(wsum >= q[j]) { qs[j] = wsamp[i]->x; break; } } /* check to make sure we actually had founda quantile */ if(i == n) warning("unable to find quanile q[%d]=%g", j, q[j]); } } /* clean up */ if(w) { assert(wsamp); for(i=0; i to); n = (unsigned int) (from - to) + 1; by = -1; } if(n == 0) return NULL; s = new_ivector(n); s[0] = (int) from; for(i=1; i) EQ(==) LEQ(<=) GEQ(>=) NE(!=) */ int* find(double *V, unsigned int n, FIND_OP op, double val, unsigned int* len) { unsigned int i,j; int *tf; int *found; tf = new_ivector(n); (*len) = 0; switch (op) { case GT: for(i=0; i val) tf[i] = 1; else tf[i] = 0; if(tf[i] == 1) (*len)++; } break; case GEQ: for(i=0; i= val) tf[i] = 1; else tf[i] = 0; if(tf[i] == 1) (*len)++; } break; case EQ: for(i=0; i) * EQ(==) LEQ(<=) GEQ(>=) NE(!=) */ int* find_col(double **V, int *pv, unsigned int n, unsigned int var, FIND_OP op, double val, unsigned int* len) { unsigned int i,j; int *tf, *p; int *found; tf = new_ivector(n); if(pv) p = pv; else p = iseq(0,n-1); (*len) = 0; switch (op) { case GT: for(i=0; i val) tf[i] = 1; else tf[i] = 0; if(tf[i] == 1) (*len)++; } break; case GEQ: for(i=0; i= val) tf[i] = 1; else tf[i] = 0; if(tf[i] == 1) (*len)++; } break; case EQ: for(i=0; i= low && k <= high); for (;;) { if (high <= low) /* One element only */ return arr[k] ; if (high == low + 1) { /* Two elements only */ if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]) ; return arr[k] ; } /* Find kth of low, middle and high items; swap into position low */ middle = (low + high) / 2; if (arr[middle] > arr[high]) ELEM_SWAP(arr[middle], arr[high]) ; if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]) ; if (arr[middle] > arr[low]) ELEM_SWAP(arr[middle], arr[low]) ; /* Swap low item (now in position middle) into position (low+1) */ ELEM_SWAP(arr[middle], arr[low+1]) ; /* Nibble from each end towards middle, swapping items when stuck */ ll = low + 1; hh = high; for (;;) { do ll++; while (arr[low] > arr[ll]) ; do hh--; while (arr[hh] > arr[low]) ; if (hh < ll) break; ELEM_SWAP(arr[ll], arr[hh]) ; } /* Swap middle item (in position low) back into correct position */ ELEM_SWAP(arr[low], arr[hh]) ; /* Re-set active partition */ if (hh <= k) low = ll; if (hh >= k) high = hh - 1; } } /* * same as the quick_select algorithm above, but less * efficient. Not currently used in tgp */ double kth_smallest(double a[], int n, int k) { int i,j,l,m ; double x ; l=0 ; m=n-1 ; while (l= lenp * and ncol(v) >= max(p) */ void sub_p_matrix(double **V, int *p, double **v, unsigned int nrows, unsigned int lenp, unsigned int col_offset) { int i,j; assert(V); assert(p); assert(v); assert(nrows > 0 && lenp > 0); for(i=0; i= ncols * and ncol(v) >= max(p) */ double **new_p_submatrix(int *p, double **v, unsigned int nrows, unsigned int ncols, unsigned int col_offset) { double **V; if(nrows == 0 || ncols+col_offset == 0) return NULL; V = new_matrix(nrows, ncols + col_offset); if(ncols > 0) sub_p_matrix(V, p, v, nrows, ncols, col_offset); return(V); } /* * sub_p_matrix_rows: * * copy the rows v[1:n1][p[n2]] to V. * must have ncol(v) == ncol(V) and nrow(V) >= lenp * and nrow(v) >= max(p) */ void sub_p_matrix_rows(double **V, int *p, double **v, unsigned int ncols, unsigned int lenp, unsigned int row_offset) { int i; assert(V); assert(p); assert(v); assert(ncols > 0 && lenp > 0); for(i=0; i= nrows * and nrow(v) >= max(p) */ double **new_p_submatrix_rows(int *p, double **v, unsigned int nrows, unsigned int ncols, unsigned int row_offset) { double **V; if(nrows+row_offset == 0 || ncols == 0) return NULL; V = new_matrix(nrows + row_offset, ncols); if(nrows > 0) sub_p_matrix_rows(V, p, v, ncols, nrows, row_offset); return(V); } /* * copy_p_matrix: * * copy v[n1][n2] to V into the positions specified by p1[n1] and p2[n2] */ void copy_p_matrix(double **V, int *p1, int *p2, double **v, unsigned int n1, unsigned int n2) { int i,j; assert(V); assert(p1); assert(p2); assert(n1 > 0 && n2 > 0); for(i=0; i q2[i] || mean[i] < q1[i]) { MYprintf(MYstdout, "replacing %g with (%g,%g,%g)\n", mean[i], q1[i], median[i], q2[i]); mean[i] = median[i]; replace++; } } /* let us know what happened */ if(replace > 0) MYprintf(MYstdout, "NOTICE: %d predictive means replaced with medians\n", replace); } /* * pass back the indices (through p) into the matrix X which lie * within the boundaries described by rect; return the number of true * indices. X is treated as n1 x n2, and p is an n1 (preallocated) * array */ unsigned int matrix_constrained(int *p, double **X, unsigned int n1, unsigned int n2, Rect *rect) { unsigned int i,j, count; count = 0; /* printRect(MYstderr, rect->d, rect->boundary); */ for(i=0; iopl[j] == GT) { assert(rect->opr[j] == LEQ); p[i] = (int) (X[i][j] > rect->boundary[0][j] && X[i][j] <= rect->boundary[1][j]); } else if(rect->opl[j] == GEQ) { if(rect->opr[j] == LEQ) p[i] = (int) (X[i][j] >= rect->boundary[0][j] && X[i][j] <= rect->boundary[1][j]); else if(rect->opr[j] == LT) p[i] = (int) (X[i][j] >= rect->boundary[0][j] && X[i][j] < rect->boundary[1][j]); else assert(0); } else assert(0); if(p[i] == 0) break; } if(p[i] == 1) count++; } return count; } /* * create a new rectangle structure without any of the fields filled * in */ Rect* new_rect(unsigned int d) { Rect* rect = (Rect*) malloc(sizeof(struct rect)); rect->d = d; rect->boundary = new_matrix(2, d); rect->opl = (FIND_OP *) malloc(sizeof(FIND_OP) * d); rect->opr = (FIND_OP *) malloc(sizeof(FIND_OP) * d); return rect; } /* * create a new rectangle structure with the boundary populated * by the contents of a double array */ Rect* new_drect(double **drect, int d) { unsigned int i; Rect *rect = new_rect(d); for(i=0; iboundary[0][i] = drect[0][i]; rect->boundary[1][i] = drect[1][i]; rect->opl[i] = GEQ; rect->opr[i] = LEQ; } return rect; } /* * return a pointer to a duplicated rectangle structure */ Rect* new_dup_rect(Rect* oldR) { unsigned int i; Rect* rect = (Rect*) malloc(sizeof(struct rect)); rect->d = oldR->d; rect->boundary = new_dup_matrix(oldR->boundary, 2, oldR->d); rect->opl = (FIND_OP *) malloc(sizeof(FIND_OP) * rect->d); rect->opr = (FIND_OP *) malloc(sizeof(FIND_OP) * rect->d); for(i=0; id; i++) { rect->opl[i] = oldR->opl[i]; rect->opr[i] = oldR->opr[i]; } return rect; } /* * calculate and return the area depicted by * the rectangle boundaries */ double rect_area(Rect* rect) { unsigned int i; double area; area = 1.0; for(i=0; id; i++) area *= rect->boundary[1][i] - rect->boundary[0][i]; return area; } /* * calculate and return the area depicted by * the rectangle boundaries, using only dimensions 0,...,maxd-1 */ double rect_area_maxd(Rect* rect, unsigned int maxd) { unsigned int i; double area; assert(maxd <= rect->d); area = 1.0; for(i=0; iboundary[1][i] - rect->boundary[0][i]; return area; } /* * print a rectangle structure out to * the file denoted by "outfile" */ void print_rect(Rect *r, FILE* outfile) { unsigned int i; MYprintf(outfile, "# %d dim rect (area=%g) with boundary:\n", r->d, rect_area(r)); printMatrix(r->boundary, 2, r->d, outfile); MYprintf(outfile, "# opl and opr\n"); for(i=0; id; i++) MYprintf(outfile, "%d ", r->opl[i]); MYprintf(outfile, "\n"); for(i=0; id; i++) MYprintf(outfile, "%d ", r->opr[i]); MYprintf(outfile, "\n"); } /* * free the memory associated with a * rectangle structure */ void delete_rect(Rect *rect) { delete_matrix(rect->boundary); free(rect->opl); free(rect->opr); free(rect); } /* * make it so that the data lives in * [0,1]^d. */ void normalize(double **X, double **rect, int N, int d, double normscale) { int i, j; double norm; if(N == 0) return; assert(d != 0); for(i=0; i=0 && X[j][i] <= normscale)) MYprintf(MYstdout, "X[%d][%d] = %g, normscale = %g\n", j, i, X[j][i], normscale); assert(X[j][i] >=0 && X[j][i] <= normscale); */ } } } /* * put Rect r on the scale of double rect * r should be form 0 to NORMSCALE */ void rect_unnorm(Rect* r, double **rect, double normscale) { int i; double norm; for(i=0; id; i++) { assert(r->boundary[0][i] >= 0 && r->boundary[1][i] <= normscale); norm = fabs(rect[1][i] - rect[0][i]); if(norm == 0) norm = fabs(rect[0][i]); r->boundary[1][i] = normscale * r->boundary[1][i]; r->boundary[0][i] = rect[0][i] + norm * r->boundary[0][i]; r->boundary[1][i] = rect[1][i] - norm * (1.0 - r->boundary[1][i]); } } /* * allocates a new double array of size n1 */ double* new_vector(unsigned int n) { double *v; if(n == 0) return NULL; v = (double*) malloc(sizeof(double) * n); return v; } /* * allocates a new double array of size n1 * and fills it with zeros */ double* new_zero_vector(unsigned int n) { double *v; v = new_vector(n); zerov(v, n); return v; } /* * allocates a new double array of size n1 * and fills it with the contents of vold */ double* new_dup_vector(double* vold, unsigned int n) { double *v; v = new_vector(n); dupv(v, vold, n); return v; } /* * copies vold to v * (assumes v has already been allcocated) */ void dupv(double *v, double* vold, unsigned int n) { unsigned int i; for(i=0; i 0); for(i=0; i 0); for(i=0; i 0); assert(v1 && v2); add_matrix(a, &v1, b, &v2, 1, n); } /* * add two integer vectors of the same size * v1 = v1 + v2 */ void add_ivector(int *v1, int *v2, unsigned int n) { unsigned int i; if(n == 0) return; assert(n > 0); assert(v1 && v2); for(i=0; i max) { max = v[i]; *which = i; } } return max; } /* * new vector of integers of length n */ int *new_ivector(unsigned int n) { int *iv; if(n == 0) return NULL; iv = (int*) malloc(sizeof(int) * n); assert(iv); return iv; } /* * duplicate the integer contents of iv of length n into the already * allocated vector iv_new, also of length n */ void dupiv(int *iv_new, int *iv, unsigned int n) { unsigned int i; if(n > 0) assert(iv && iv_new); for(i=0; i 0) assert(iv); for(i=0; i 0); for(i=0; i 0); for(i=0; i= b) return a; else return b; } /* * MYfmin: * * seems like some systems are missing the prototype * for the fmin function which should be in math.h -- * so I wrote my own */ double MYfmin(double a, double b) { if(a <= b) return a; else return b; } /* * vmult: * * returns the product of its arguments */ double vmult(double *v1, double *v2, int n) { double v = 0.0; int i; for(i=0; i #include #include #include #include #include "matrix.h" #include "linalg.h" #include "gen_covar.h" #include "rhelp.h" /* #define THRESH 0.5 */ /* * dist_symm: * * compute distance matrix all matices must be alloc'd * pwr is 1 (abs) or 2, anything else defaults to 1 (abs) * SYMMETRIC * * X[n][m], DIST[n][n] */ void dist_symm(double **DIST, unsigned int m, double **X, unsigned int n, double pwr) { int i,j,k; double diff; /* sanity check and initialize */ assert(DIST); i = k = j = 0; for(i=0; i 0) id(K, n); else zero(K, n, m); } else { /* complete the K calcluation as a function of DIST */ for(i=0; i 0 && m == n) for(i=0; i= 0); /* d=0 always results in Id matrix; nugget gets added in below */ if(d == 0.0) id(K, n); for(i=0; i 0) id(K, n); else zero(K, n, m); } else { for(i=0; i 0 && m == n) for(i=0; i= 0); /* d=0 should result in Id + nug on diagonal; nug is added in below */ if(d == 0.0) id(K, n); for(i=0; i extern "C" { #include "matrix.h" #include "rand_draws.h" #include "rhelp.h" #include "predict.h" } #include "tgp.h" #include "model.h" #include "params.h" #include "mstructs.h" #include #include #include #include #include #include extern "C" { Tgp* tgpm = NULL; void *tgp_state = NULL; void tgp(int* state_in, /* inputs from R */ double *X_in, int *n_in, int *d_in, double *Z_in, double *XX_in, int *nn_in, double *Xsplit_in, int *nsplit_in, int *trace_in, int *BTE_in, int* R_in, int* linburn_in, int *zcov_in, int *g_in, double *params_in, double *ditemps_in, int *verb_in, double *dtree_in, double* hier_in, int *MAP_in, int *sens_ngrid, double *sens_span, double *sens_Xgrid_in, /* output dimensions for checking NULL */ int* predn_in, int* nnprime_in, int *krige_in, int* Ds2x_in, int *improv_in, /* outputs to R */ double *Zp_mean_out, double *ZZ_mean_out, double *Zp_km_out, double *ZZ_km_out, double *Zp_kvm_out, double *ZZ_kvm_out, double *Zp_q_out, double *ZZ_q_out, double *Zp_s2_out, double *ZZ_s2_out, double *ZpZZ_s2_out, double *Zp_ks2_out, double *ZZ_ks2_out, double *Zp_q1_out, double *Zp_median_out, double *Zp_q2_out, double *ZZ_q1_out, double *ZZ_median_out, double *ZZ_q2_out, double *Ds2x_out, double *improv_out, int *irank_out, double *ess_out, double *gpcs_rates_out, double *sens_ZZ_mean_out, double *sens_ZZ_q1_out, double *sens_ZZ_q2_out, double *sens_S_out, double *sens_T_out) { /* create the RNG state */ unsigned long lstate = three2lstate(state_in); tgp_state = newRNGstate(lstate); /* possibly create NULL pointers that couldn't be passed by .C -- not sure if all are needed */ if(dtree_in[0] < 0) dtree_in = NULL; if(hier_in[0] < 0) hier_in = NULL; if((*predn_in * *n_in) == 0) Zp_q1_out = Zp_q_out = Zp_q2_out = Zp_median_out = Zp_mean_out = NULL; if(*nnprime_in == 0) ZZ_q1_out = ZZ_q_out = ZZ_q2_out = ZZ_median_out = ZZ_mean_out = NULL; if((*krige_in * *predn_in * *n_in) == 0) Zp_km_out = Zp_kvm_out = Zp_ks2_out = NULL; if((*krige_in * *nnprime_in) == 0) ZZ_km_out = ZZ_kvm_out = ZZ_ks2_out = NULL; if((*Ds2x_in * *nnprime_in) == 0) Ds2x_out = NULL; if((*improv_in * *nnprime_in) == 0) { improv_out = NULL; irank_out = NULL; } /* copy the input parameters to the tgp class object where all the MCMC work gets done */ tgpm = new Tgp(tgp_state, *n_in, *d_in, *nn_in, BTE_in[0], BTE_in[1], BTE_in[2], *R_in, *linburn_in, (bool) (Zp_mean_out!=NULL), (bool) ((Zp_ks2_out!=NULL) || (ZZ_ks2_out!=NULL)), (bool) (Ds2x_out!=NULL), g_in[0], (bool) (*sens_ngrid > 0), X_in, Z_in, XX_in, Xsplit_in, *nsplit_in, params_in, ditemps_in, (bool) *trace_in, *verb_in, dtree_in, hier_in); /* post constructor initialization */ tgpm->Init(); /* tgp MCMC rounds are done here */ if(*MAP_in) tgpm->Predict(); else tgpm->Rounds(); /* gather the posterior predictive statistics from the MCMC rounds */ tgpm->GetStats(!((bool)*MAP_in), Zp_mean_out, ZZ_mean_out, Zp_km_out, ZZ_km_out, Zp_kvm_out, ZZ_kvm_out, Zp_q_out, ZZ_q_out, (bool) (*zcov_in), Zp_s2_out, ZZ_s2_out, ZpZZ_s2_out, Zp_ks2_out, ZZ_ks2_out, Zp_q1_out, Zp_median_out, Zp_q2_out, ZZ_q1_out, ZZ_median_out, ZZ_q2_out, Ds2x_out, improv_out, g_in[1], irank_out, ess_out); /* sensitivity analysis? */ if((bool) (*sens_ngrid > 0)) tgpm->Sens(sens_ngrid, sens_span, sens_Xgrid_in, sens_ZZ_mean_out, sens_ZZ_q1_out, sens_ZZ_q2_out, sens_S_out, sens_T_out); /* get (possibly unchanged) pseudo--prior used by Importance Tempering (only) */ tgpm->GetPseudoPrior(ditemps_in); /* get the (tree) acceptance rates */ tgpm->GetTreeStats(gpcs_rates_out); /* delete the tgp model */ delete tgpm; tgpm = NULL; /* destroy the RNG */ deleteRNGstate(tgp_state); tgp_state = NULL; } /* * Tgp: (constructor) * * copies the input passed to the tgp function from R via * .C("tgp", ..., PACKAGE="tgp"). Then, it calls the init * function in order to get everything ready for MCMC rounds. */ Tgp::Tgp(void *state, int n, int d, int nn, int B, int T, int E, int R, int linburn, bool pred_n, bool krige, bool delta_s2, int improv, bool sens, double *X, double *Z, double *XX, double *Xsplit, int nsplit, double *dparams, double *ditemps, bool trace, int verb, double *dtree, double *hier) { itime = time(NULL); /* a bunch of NULL entries to be filled in later */ this->state = NULL; this->X = this->XX = NULL; this->rect = NULL; this->Z = NULL; params = NULL; model = NULL; cump = preds = NULL; /* RNG state */ this->state = state; /* integral dimension parameters */ this->n = (unsigned int) n; this->d = (unsigned int) d; this->nn = (unsigned int) nn; /* MCMC round information */ this->B = B; this->T = T; this->E = E; this->R = R; this->linburn = linburn; /* types of predictive data to gather */ this->pred_n = pred_n; this->krige = krige; this->delta_s2 = delta_s2; this->improv = improv; /* is this a sensitivity analysis? */ this->sens = sens; /* importance tempring */ this->its = new Temper(ditemps); /* saving output and printing progress */ this->trace = trace; this->verb = verb; /* PROBABLY DON'T NEED TO ACTUALLY DUPLICATE THESE MATRICES -- COULD USE new_matrix_bones INSTEAD */ /* copy X from input */ assert(X); this->X = new_matrix(n, d); dupv(this->X[0], X, n*d); /* copy Z from input */ this->Z = new_dup_vector(Z, n); /* copy XX from input */ this->XX = new_matrix(nn, d); if(this->XX) dupv(this->XX[0], XX, nn*d); /* copy Xsplit from input -- this determines the bounding rectangle AND the tree split locations */ assert(nsplit > 0); this->Xsplit = new_matrix(nsplit, d); dupv(this->Xsplit[0], Xsplit, nsplit*d); this->nsplit = nsplit; /* to be filled in by Init() */ params = NULL; rect = NULL; model = NULL; cump = NULL; /* former parameters to Init() */ this->dparams = dparams; if(dtree) { treecol = (unsigned int) dtree[0]; tree = dtree+1; } else { treecol = 0; tree = NULL; } this->hier = hier; } /* * ~Tgp: (destructor) * * typical destructor function. Checks to see if the class objects * are NULL first because this might be called from within * tgp_cleanup if tgp was interrupted during computation */ Tgp::~Tgp(void) { /* clean up */ if(model) { delete model; model = NULL; } if(params) { delete params; params = NULL; } if(XX) { delete_matrix(XX); XX = NULL; } if(Xsplit) { delete_matrix(Xsplit); Xsplit = NULL; } if(Z) { free(Z); Z = NULL; } if(rect) { delete_matrix(rect); rect = NULL; } if(X) { delete_matrix(X); X = NULL; } if(cump) { delete_preds(cump); } if(preds) { delete_preds(preds); } if(its) { delete its; } } /* * Init: * * get everything ready for MCMC rounds -- should only be called just * after the Tgp constructor function, in order to separate the copying * of the input parameters from the initialization of the model * and predictive data, but in case there are any errors in Initialization * the tgp_cleanup function still has a properly built Tgp module to * destroy. */ void Tgp::Init(void) { /* use default parameters */ params = new Params(d); if((int) dparams[0] != -1) params->read_double(dparams); else MYprintf(MYstdout, "Using default params.\n"); /* get the rectangle */ /* rect = getXdataRect(X, n, d, XX, nn); */ /* now Xsplit governs the rectangle */ rect = get_data_rect(Xsplit, nsplit, d); /* construct the new model */ model = new Model(params, d, rect, 0, trace, state); model->Init(X, n, d, Z, its, tree, treecol, hier); model->Outfile(MYstdout, verb); /* if treed partitioning is allowed, then set the splitting locations (Xsplit) */ if(params->isTree()) model->set_Xsplit(Xsplit, nsplit, d); /* structure for accumulating predictive information */ cump = new_preds(XX, nn, pred_n*n, d, rect, R*(T-B), pred_n, krige, its->IT_ST_or_IS(), delta_s2, improv, sens, E); /* make sure the first col still indicates the coarse or fine process */ if(params->BasePrior()->BaseModel() == GP){ if( ((Gp_Prior*) params->BasePrior())->CorrPrior()->CorrModel() == MREXPSEP ){ for(unsigned int i=0; iXX[i][0] == XX[i][0]); } } /* print the parameters of this module */ if(verb >= 2) Print(MYstdout); } /* * Rounds: * * Actually do the MCMC for sampling from the posterior of the tgp model * based on the parameterization given to the Tgp constructor. */ void Tgp::Rounds(void) { for(unsigned int i=0; iLinburn(B, state); /* Stochastic Approximation burn-in rounds to jump-start the psuedo-prior for ST */ if(i == 0 && its->DoStochApprox()) { model->StochApprox(T, state); } else { /* do model rounds 1 thru B (burn in) */ model->Burnin(B, state); } /* do the MCMC rounds B,...,T */ preds = new_preds(XX, nn, pred_n*n, d, rect, T-B, pred_n, krige, its->IT_ST_or_IS(), delta_s2, improv, sens, E); model->Sample(preds, T-B, state); /* print tree statistics */ if(verb >= 1) model->PrintTreeStats(MYstdout); /* accumulate predictive information */ import_preds(cump, preds->R * i, preds); delete_preds(preds); preds = NULL; /* done with this repetition */ /* prune the tree all the way back unless importance tempering */ if(R > 1) { if(verb >= 1) MYprintf(MYstdout, "finished repetition %d of %d\n", i+1, R); if(its->Numit() == 1) model->cut_root(); } /* if importance tempering, then update the pseudo-prior based on the observation counts */ if(its->Numit() > 1) its->UpdatePrior(model->update_tprobs(), its->Numit()); } /* cap off the printing */ if(verb >= 1) MYflush(MYstdout); /* print the rectangle of the MAP partition */ model->PrintBestPartitions(); /* print the splits of the best tree for each height */ model->PrintPosteriors(); /* this should only happen if trace==TRUE */ model->PrintLinarea(); /*******/ model->MAPreplace(); /* write the preds out to files */ if(trace && T-B>0) { if(nn > 0) { /* at predictive locations */ matrix_to_file("trace_ZZ_1.out", cump->ZZ, cump->R, nn); if(cump->ZZm) matrix_to_file("trace_ZZkm_1.out", cump->ZZm, cump->R, nn); if(cump->ZZs2) matrix_to_file("trace_ZZks2_1.out", cump->ZZs2, cump->R, nn); } if(pred_n) { /* at the data locations */ matrix_to_file("trace_Zp_1.out", cump->Zp, cump->R, n); if(cump->Zpm) matrix_to_file("trace_Zpkm_1.out", cump->Zpm, cump->R, n); if(cump->Zps2) matrix_to_file("trace_Zpks2_1.out", cump->Zps2, cump->R, n); } /* write improv */ if(improv) matrix_to_file("trace_improv_1.out", cump->improv, cump->R, nn); /* Ds2x is un-normalized, it needs to be divited by nn everywhere */ if(delta_s2) matrix_to_file("trace_Ds2x_1.out", cump->Ds2x, cump->R, nn); } /* copy back the itemps */ model->DupItemps(its); } /* * SampleMAP: * * Only do sampling from the posterior predictive distribution; * that is, don't update GP or Tree */ void Tgp::Predict(void) { /* don't need multiple rounds R when just kriging */ if(R > 1) Rf_warning("R=%d (>0) not necessary for Kriging", R); for(unsigned int i=0; iIT_ST_or_IS(), delta_s2, improv, sens, E); model->Predict(preds, T-B, state); /* accumulate predictive information */ import_preds(cump, preds->R * i, preds); delete_preds(preds); preds = NULL; /* done with this repetition; prune the tree all the way back */ if(R > 1) { MYprintf(MYstdout, "finished repetition %d of %d\n", i+1, R); // model->cut_root(); } } /* cap of the printing */ if(verb >= 1) MYflush(MYstdout); /* these is here to maintain compatibility with tgp::Rounds() */ /* print the rectangle of the MAP partition */ model->PrintBestPartitions(); /* print the splits of the best tree for each height */ model->PrintPosteriors(); /* this should only happen if trace==TRUE */ model->PrintLinarea(); /* write the preds out to files */ if(trace && T-B>0) { if(nn > 0) { matrix_to_file("trace_ZZ_1.out", cump->ZZ, cump->R, nn); if(cump->ZZm) matrix_to_file("trace_ZZkm_1.out", cump->ZZm, cump->R, nn); if(cump->ZZs2) matrix_to_file("trace_ZZks2_1.out", cump->ZZs2, cump->R, nn); } if(pred_n) { matrix_to_file("trace_Zp_1.out", cump->Zp, cump->R, n); if(cump->Zpm) matrix_to_file("trace_Zpkm_1.out", cump->Zpm, cump->R, n); if(cump->Zps2) matrix_to_file("trace_Zpks2_1.out", cump->Zps2, cump->R, n); } if(improv) matrix_to_file("trace_improv_1.out", cump->improv, cump->R, nn); } } /* * Sens: * * function for post-procesing a sensitivity analysis * performed on a tgp model -- this is the sensitivity version of the * GetStats function */ void Tgp::Sens(int *ngrid_in, double *span_in, double *sens_XX, double *sens_ZZ_mean, double *sens_ZZ_q1,double *sens_ZZ_q2, double *sens_S, double *sens_T) { /* Calculate the main effects sample: based on M1 only for now. */ // unsigned int bmax = model->get_params()->T_bmax(); int colj; int ngrid = *ngrid_in; double span = *span_in; double **ZZsample = new_zero_matrix(cump->R, ngrid*cump->d); unsigned int nm = cump->nm; double *XXdraw = new_vector(nm); for(unsigned int i=0; iR; i++) { /* real-valued predictors */ for(unsigned int j=0; jshape[j] == 0) continue; /* categorical; do later */ for(unsigned int k=0; kM[i][k*cump->d + j]; colj = j*ngrid; move_avg(ngrid, &sens_XX[j*ngrid], &ZZsample[i][colj], nm, XXdraw, cump->ZZ[i], span); } /* categorical predictors */ for(unsigned int j=0; jshape[j] != 0) continue; /* continuous; did earlier */ unsigned int n0 = 0; for(unsigned int k=0; kM[i][k*cump->d + j] == 0){ n0++; colj = j*ngrid; ZZsample[i][colj] += cump->ZZ[i][k]; } else{ colj = (j+1)*(ngrid)-1; ZZsample[i][colj] += cump->ZZ[i][k]; } } /* assign for each of {0,1} */ ZZsample[i][j*ngrid] = ZZsample[i][j*ngrid]/((double) n0); ZZsample[i][(j+1)*(ngrid)-1] = ZZsample[i][(j+1)*(ngrid)-1]/((double) (nm-n0) ); } } /* calculate the average of the columns of ZZsample */ wmean_of_columns(sens_ZZ_mean, ZZsample, cump->R, ngrid*cump->d, NULL); /* allocate pointers for holding q1 and q2 */ double q[2] = {0.05, 0.95}; double **Q = (double**) malloc(sizeof(double*) * 2); Q[0] = sens_ZZ_q1; Q[1] = sens_ZZ_q2; quantiles_of_columns(Q, q, 2, ZZsample, cump->R, ngrid*cump->d, NULL); free(XXdraw); delete_matrix(ZZsample); free(Q); /* variability indices S and total variability indices T are calculated here */ for(unsigned int i=0; iR; i++) sobol_indices(cump->ZZ[i], cump->nm, cump->d, &(sens_S[i*(cump->d)]), &(sens_T[i*(cump->d)])); } /* * GetStats: * * Coalate the statistics from the samples of the posterior predictive * distribution gathered during the MCMC Tgp::Rounds() function * * argument indicates whether to report traces (e.g., for wlambda); i.e., * if Kriging (rather than Rounds) then parameters are fixed, so there * is no need for traces of weights because they should be constant */ void Tgp::GetStats(bool report, double *Zp_mean, double *ZZ_mean, double *Zp_km, double *ZZ_km, double *Zp_kvm, double *ZZ_kvm, double *Zp_q, double *ZZ_q, bool zcov, double *Zp_s2, double *ZZ_s2, double *ZpZZ_s2, double *Zp_ks2, double *ZZ_ks2, double *Zp_q1, double *Zp_median, double *Zp_q2, double *ZZ_q1, double *ZZ_median, double *ZZ_q2, double *Ds2x, double *improvec, int numirank, int* irank, double *ess) { itime = MY_r_process_events(itime); /* possibly adjust weights by the chosen lambda method, and possibly write the trace out to a file*/ double *w = NULL; if(its->IT_ST_or_IS()) { ess[0] = its->LambdaIT(cump->w, cump->itemp, cump->R, ess+1, verb); if(trace && report) vector_to_file("trace_wlambda_1.out", cump->w, cump->R); w = cump->w; } else { ess[0] = ess[1] = ess[2] = cump->R; } /* allocate pointers for holding q1 median and q3 */ /* TADDY's IQR settings double q[3] = {0.25, 0.5, 0.75};*/ double q[3] = {0.05, 0.5, 0.95}; double **Q = (double**) malloc(sizeof(double*) * 3); /* calculate means and quantiles */ if(T-B>0 && pred_n) { assert(n == cump->n); /* mean */ wmean_of_columns(Zp_mean, cump->Zp, cump->R, n, w); /* kriging mean */ if(Zp_km) wmean_of_columns(Zp_km, cump->Zpm, cump->R, n, w); if(Zp_km) wvar_of_columns(Zp_kvm, cump->Zpvm, cump->R, n, w); /* variance (computed from samples Zp) */ if(zcov) { double **Zp_s2_M = (double**) malloc(sizeof(double*) * n); Zp_s2_M[0] = Zp_s2; for(unsigned int i=1; iZp, Zp_mean, cump->R, n, w); free(Zp_s2_M); } else { wmean_of_columns_f(Zp_s2, cump->Zp, cump->R, n, w, sq); for(unsigned int i=0; iZps2, cump->R, n, w); /* quantiles and medians */ Q[0] = Zp_q1; Q[1] = Zp_median; Q[2] = Zp_q2; quantiles_of_columns(Q, q, 3, cump->Zp, cump->R, n, w); for(unsigned int i=0; i0 && nn>0 && !sens) { /* mean */ wmean_of_columns(ZZ_mean, cump->ZZ, cump->R, nn, w); /* kriging mean */ if(ZZ_km) wmean_of_columns(ZZ_km, cump->ZZm, cump->R, nn, w); if(ZZ_km) wvar_of_columns(ZZ_kvm, cump->ZZvm, cump->R, nn, w); /* variance (computed from samples ZZ) */ if(zcov) { /* calculate the covarince between all predictive locations */ double **ZZ_s2_M = (double **) malloc(sizeof(double*) * nn); ZZ_s2_M[0] = ZZ_s2; for(unsigned int i=1; iZZ, ZZ_mean, cump->R, nn, w); free(ZZ_s2_M); } else { /* just the variance */ wmean_of_columns_f(ZZ_s2, cump->ZZ, cump->R, nn, w, sq); for(unsigned int i=0; iZp, cump->ZZ, Zp_mean, ZZ_mean, cump->R, n, nn, w); free(ZpZZ_s2_M); } /* kriging variance */ if(ZZ_ks2) wmean_of_columns(ZZ_ks2, cump->ZZs2, cump->R, nn, w); /* quantiles and medians */ Q[0] = ZZ_q1; Q[1] = ZZ_median; Q[2] = ZZ_q2; quantiles_of_columns(Q, q, 3, cump->ZZ, cump->R, cump->nn, w); for(unsigned int i=0; iDs2x) { assert(delta_s2); wmean_of_columns(Ds2x, cump->Ds2x, cump->R, cump->nn, w); } /* improv (minima) */ if(improv) { assert(cump->improv); wmean_of_columns(improvec, cump->improv, cump->R, cump->nn, w); int *ir = (int*) GetImprovRank(cump->R, cump->nn, cump->improv, improv, numirank, w); dupiv(irank, ir, nn); free(ir); } } /* clean up */ free(Q); } /* * tgp_cleanup * * function for freeing memory when tgp is interrupted * by R, so that there won't be a (big) memory leak. It frees * the major chunks of memory, but does not guarentee to * free up everything */ void tgp_cleanup(void) { /* free the RNG state */ if(tgp_state) { deleteRNGstate(tgp_state); tgp_state = NULL; if(tgpm->Verb() >= 1) MYprintf(MYstderr, "INTERRUPT: tgp RNG leaked, is now destroyed\n"); } /* free tgp model */ if(tgpm) { if(tgpm->Verb() >= 1) MYprintf(MYstderr, "INTERRUPT: tgp model leaked, is now destroyed\n"); delete tgpm; tgpm = NULL; } } } /* extern "C" */ /* * getXdataRect: * * given the data Xall (Nxd), infer the rectancle * from IFace class */ double ** getXdataRect(double **X, unsigned int n, unsigned int d, double **XX, unsigned int nn) { unsigned int N = nn+n; double **Xall = new_matrix(N, d); dupv(Xall[0], X[0], n*d); if(nn > 0) dupv(Xall[n], XX[0], nn*d); double **rect = get_data_rect(Xall, N, d); delete_matrix(Xall); return rect; } /* * Print: * * print the settings of the parameters used by this module: * which basically summarize the data and MCMC-related inputs * followed by a call to the model Print function */ void Tgp::Print(FILE *outfile) { MYprintf(MYstdout, "\n"); /* DEBUG: print the input parameters */ MYprintf(MYstdout, "n=%d, d=%d, nn=%d\nBTE=(%d,%d,%d), R=%d, linburn=%d\n", n, d, nn, B, T, E, R, linburn); /* print the importance tempring information */ its->Print(MYstdout); /* print the random number generator state */ printRNGstate(state, MYstdout); /* print predictive statistic types */ if(pred_n || (delta_s2 || improv)) MYprintf(MYstdout, "preds:"); if(pred_n) MYprintf(MYstdout, " data"); if(krige && (pred_n || nn)) MYprintf(MYstdout, " krige"); if(delta_s2) MYprintf(MYstdout, " ALC"); if(improv) MYprintf(MYstdout, " improv"); if(pred_n || (((krige && (pred_n || nn)) || delta_s2) || improv)) MYprintf(MYstdout, "\n"); MYflush(MYstdout); /* print the model, uses the internal model printing variable OUTFILE */ model->Print(); } /* * Verb: * * returns the verbosity level */ int Tgp::Verb(void) { return verb; } /* * GetPseudoPrior: * * write the iTemps->tprobs to the last n entries * of the ditemps vector */ void Tgp::GetPseudoPrior(double *ditemps) { its->CopyPrior(ditemps); } /* * GetTreeStats: * * get the (Tree) acceptance rates for (G)row, (P)rune, * (C)hange and (S)wap tree operations in the model module */ void Tgp::GetTreeStats(double *gpcs) { model->TreeStats(gpcs); } tgp/src/rand_draws.h0000644000176200001440000000603413531032535014133 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __RAND_DRAWS_H__ #define __RAND_DRAWS_H__ #include #define CRAN 901 #define RK 902 #define ERAND 903 #define RNG RK void gamma_mult(double *x, double alpha, double beta, unsigned int cases, void *state); void gamma_mult_gelman(double *x, double alpha, double beta, unsigned int cases, void *state); void inv_gamma_mult_gelman(double *x, double alpha, double beta, unsigned int cases, void *state); void beta_mult(double *x, double alpha, double beta, unsigned int cases, void *state); void wishrnd(double **x, double **S, unsigned int n, unsigned int nu, void *state); void mvnrnd(double *x, double *mu, double **cov, unsigned int n, void *state); void mvnrnd_mult(double *x, double *mu, double **Sigma, unsigned int n, unsigned int cases, void *state); void rnor(double *x, void *state); void rnorm_mult(double *x, unsigned int n, void *state); double runi(void *state); void runif_mult(double* r, double a, double b, unsigned int n, void *state); void dsample(double *x_out, unsigned int *x_indx, unsigned int n, unsigned int num_probs, double *X, double *probs, void *state); void isample(int *x_out, unsigned int *x_indx, unsigned int n, unsigned int num_probs, int *X, double *probs, void *state); void isample_norep(int *x_out, unsigned int *x_indx, unsigned int n, unsigned int num_probs, int *X, double *probs, void *state); int sample_seq(int from, int to, void *state); double rgamma1(double aa, void *state); double rbet(double aa, double bb, void *state); unsigned int rpoiso(float xm, void *state); double* compute_probs(double* criteria, unsigned int nn, double alpha); void propose_indices(int *di, double prob, void *state); void get_indices(int *i, double *parameter); unsigned int* rand_indices(unsigned int N, void* state); void* newRNGstate(unsigned long s); void* newRNGstate_rand(void *s); void deleteRNGstate(void *seed); void printRNGstate(void *state, FILE* outfile); unsigned long three2lstate(int *state); #endif tgp/src/mstructs.cc0000644000176200001440000003037314661637215014047 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include extern "C" { #include "rand_draws.h" #include "matrix.h" } #include "mstructs.h" #include "temper.h" #include #include #include #define MEDBUFF 256 /* * new_preds: * * new preds structure makes it easier to pass around * the storage for the predictions and the delta * statistics */ Preds* new_preds(double **XX, unsigned int nn, unsigned int n, unsigned int d, double **rect, unsigned int R, bool pred_n, bool krige, bool it, bool delta_s2, bool improv, bool sens, unsigned int every) { /* allocate structure */ Preds* preds = (Preds*) malloc(sizeof(struct preds)); /* copy data size variables */ preds->nn = nn; preds->n = n; preds->d = d; preds->R = (int) ceil(((double)R)/every); preds->mult = every; /* allocations needed for sensitivity analysis */ if(sens){ /* sanity check */ assert(XX); /* XX initialized to zero is used for sens -- the XX * argument holds other information here, see below */ preds->XX=new_zero_matrix(nn,d); if(rect) preds->rect=new_dup_matrix(rect,2,d); else preds->rect = NULL; /* don't know why this is here */ /* copy information passed through the XX argument */ preds->bnds = new_dup_matrix(XX, 2, d); preds->shape = new_dup_vector(XX[2],d); preds->mode = new_dup_vector(XX[3],d); /* allocate M */ preds->nm = nn/(d+2); preds->M = new_zero_matrix(preds->R, d*preds->nm); } else { /* sens FALSE */ /* otherwise null when not used */ preds->mode = preds->shape = NULL; preds->bnds = preds->M = NULL; preds->nm = 0; /* special handling of rect when not doing sens */ assert(rect); preds->rect = new_dup_matrix(rect,2,d); preds->XX = new_normd_matrix(XX,nn,d,rect,NORMSCALE); } /* continue with allocations and assignment regardless * of whether sensitivity analysis is being performed */ /* keep track of importance tempering (IT) weights and inv-temps */ if(it) { preds->w = ones(preds->R, 1.0); preds->itemp = ones(preds->R, 1.0); } else { preds->w = preds->itemp = NULL; } /* samples from the posterior predictive distribution */ preds->ZZ = new_zero_matrix(preds->R, nn); preds->Zp = new_zero_matrix(preds->R, n*pred_n); /* allocations only necessary when saving kriging data */ if(krige) { preds->ZZm = new_zero_matrix(preds->R, nn); preds->ZZvm = new_zero_matrix(preds->R, nn); preds->ZZs2 = new_zero_matrix(preds->R, nn); preds->Zpm = new_zero_matrix(preds->R, n*pred_n); preds->Zpvm = new_zero_matrix(preds->R, n*pred_n); preds->Zps2 = new_zero_matrix(preds->R, n * pred_n); } else { preds->ZZm = preds->ZZvm = preds->ZZs2 = preds->Zpm = preds->Zpvm = preds->Zps2 = NULL; } /* allocations only necessary when calculating ALC and Improv * statistics */ if(delta_s2) preds->Ds2x = new_zero_matrix(preds->R, nn); else preds->Ds2x = NULL; if(improv) preds->improv = new_zero_matrix(preds->R, nn); else preds->improv = NULL; return preds; } /* * import_preds: * * Copy preds data from from to to. * "es not copy the sens information in the current implementation * (not sure whether this will be necessary at a later juncture). */ void import_preds(Preds* to, unsigned int where, Preds *from) { assert(where >= 0); assert(where <= to->R); assert(where + from->R <= to->R); assert(to->nn == from->nn); assert(to->n == from->n); assert(to->nm == from->nm); assert(to->d == to->d); if(from->w) dupv(&(to->w[where]), from->w, from->R); if(from->itemp) dupv(&(to->itemp[where]), from->itemp, from->R); if(from->ZZ) dupv(to->ZZ[where], from->ZZ[0], from->R * from->nn); if(from->ZZm) dupv(to->ZZm[where], from->ZZm[0], from->R * from->nn); if(from->ZZvm) dupv(to->ZZvm[where], from->ZZvm[0], from->R * from->nn); if(from->ZZs2) dupv(to->ZZs2[where], from->ZZs2[0], from->R * from->nn); if(from->Zp) dupv(to->Zp[where], from->Zp[0], from->R * from->n); if(from->Zpm) dupv(to->Zpm[where], from->Zpm[0], from->R * from->n); if(from->Zpvm) dupv(to->Zpvm[where], from->Zpvm[0], from->R * from->n); if(from->Zps2) dupv(to->Zps2[where], from->Zps2[0], from->R * from->n); if(from->Ds2x) dupv(to->Ds2x[where], from->Ds2x[0], from->R * from->nn); if(from->improv) dupv(to->improv[where], from->improv[0], from->R * from->nn); if(from->M) dupv(to->M[where], from->M[0], from->R * from->nm * from->d); } /* * combine_preds: * * create and return a new preds structure with the * combined contents of preds to and preds from. * (to and from must be of same dimenstion, but may * be of different size) */ Preds *combine_preds(Preds *to, Preds *from) { assert(from); if(to == NULL) return from; if(to->nn != from->nn) MYprintf(MYstderr, "to->nn=%d, from->nn=%d\n", to->nn, from->nn); assert(to->nn == from->nn); assert(to->d == from->d); assert(to->mult == from->mult); Preds *preds = new_preds(to->XX, to->nn, to->n, to->d, NULL, (to->R + from->R)*to->mult, (bool) ((to->Zp!=NULL)), (bool) ((to->Zps2!=NULL) || (to->ZZs2!=NULL)), (bool) (to->w != NULL), (bool) to->Ds2x, (bool) to->improv, ((bool) (to->nm>0)), to->mult); import_preds(preds, 0, to); import_preds(preds, to->R, from); delete_preds(to); delete_preds(from); return preds; } /* * delete_preds: * * destructor for preds structure */ void delete_preds(Preds* preds) { if(preds->w) free(preds->w); if(preds->itemp) free(preds->itemp); if(preds->XX) delete_matrix(preds->XX); if(preds->ZZ) delete_matrix(preds->ZZ); if(preds->ZZm) delete_matrix(preds->ZZm); if(preds->ZZvm) delete_matrix(preds->ZZvm); if(preds->ZZs2) delete_matrix(preds->ZZs2); if(preds->Zp) delete_matrix(preds->Zp); if(preds->Zpm) delete_matrix(preds->Zpm); if(preds->Zpvm) delete_matrix(preds->Zpvm); if(preds->Zps2) delete_matrix(preds->Zps2); if(preds->Ds2x) delete_matrix(preds->Ds2x); if(preds->improv) delete_matrix(preds->improv); if(preds->rect) delete_matrix(preds->rect); if(preds->bnds) delete_matrix(preds->bnds); if(preds->shape) free(preds->shape); if(preds->mode) free(preds->mode); if(preds->M) delete_matrix(preds->M); free(preds); } /* * fill_larg: * * full an LArg structure with the parameters to * the each_leaf function that will be forked using * pthreads */ void fill_larg(LArgs* larg, Tree *leaf, Preds* preds, int index, bool dnorm) { larg->leaf = leaf; larg->preds = preds; larg->index = index; larg->dnorm = dnorm; } /* * new_posteriors: * * creade a new Posteriors data structure for * recording the posteriors of different tree depths * and initialize */ Posteriors* new_posteriors(void) { Posteriors* posteriors = (Posteriors*) malloc(sizeof(struct posteriors)); posteriors->maxd = 1; posteriors->posts = (double *) malloc(sizeof(double) * posteriors->maxd); posteriors->trees = (Tree **) malloc(sizeof(Tree*) * posteriors->maxd); posteriors->posts[0] = R_NegInf; posteriors->trees[0] = NULL; return posteriors; } /* * delete_posteriors: * * free the memory used by the posteriors * data structure, and delete the trees saved therein */ void delete_posteriors(Posteriors* posteriors) { free(posteriors->posts); for(unsigned int i=0; imaxd; i++) { if(posteriors->trees[i]) { delete posteriors->trees[i]; } } free(posteriors->trees); free(posteriors); } /* * register_posterior: * * if the posterior for the tree *t is the current largest * seen (for its height), then save it in the Posteriors * data structure. */ void register_posterior(Posteriors* posteriors, Tree* t, double post) { unsigned int height = t->Height(); /* reallocate necessary memory */ if(height > posteriors->maxd) { posteriors->posts = (double*) realloc(posteriors->posts, sizeof(double) * height); posteriors->trees = (Tree**) realloc(posteriors->trees, sizeof(Tree*) * height); for(unsigned int i=posteriors->maxd; iposts[i] = R_NegInf; posteriors->trees[i] = NULL; } posteriors->maxd = height; } /* if this posterior is better, record it */ if(posteriors->posts[height-1] < post) { posteriors->posts[height-1] = post; if(posteriors->trees[height-1]) delete posteriors->trees[height-1]; posteriors->trees[height-1] = new Tree(t, true); } } /* * new_linarea: * * allocate memory for the linarea structure * that keep tabs on how much of the input domain * is under the linear model */ Linarea* new_linarea(void) { Linarea *lin_area = (Linarea*) malloc(sizeof(struct linarea)); lin_area->total = 1000; lin_area->ba = new_zero_vector(lin_area->total); lin_area->la = new_zero_vector(lin_area->total); lin_area->counts = (unsigned int *) malloc(sizeof(unsigned int) * lin_area->total); reset_linarea(lin_area); return lin_area; } /* * new_linarea: * * reallocate memory for the linarea structure * that keep tabs on how much of the input domain * is under the linear model */ Linarea* realloc_linarea(Linarea* lin_area) { assert(lin_area); lin_area->total *= 2; lin_area->ba = (double*) realloc(lin_area->ba, sizeof(double) * lin_area->total); lin_area->la = (double*) realloc(lin_area->la, sizeof(double) * lin_area->total); lin_area->counts = (unsigned int *) realloc(lin_area->counts,sizeof(unsigned int)*lin_area->total); for(unsigned int i=lin_area->size; itotal; i++) { lin_area->ba[i] = 0; lin_area->la[i] = 0; lin_area->counts[i] = 0; } return lin_area; } /* * delete_linarea: * * free the linarea data structure and * all of its fields */ void delete_linarea(Linarea* lin_area) { assert(lin_area); free(lin_area->ba); free(lin_area->la); free(lin_area->counts); free(lin_area); lin_area = NULL; } /* * reset_linearea: * * re-initialize the lineara data structure */ void reset_linarea(Linarea *lin_area) { assert(lin_area); for(unsigned int i=0; itotal; i++) lin_area->counts[i] = 0; zerov(lin_area->ba, lin_area->total); zerov(lin_area->la, lin_area->total); lin_area->size = 0; } /* * process_linarea: * * tabulate the area of the leaves which are under the * linear model (and the gp model) as well as the count of linear * boolean for each dimension */ void process_linarea(Linarea* lin_area, unsigned int numLeaves, Tree** leaves) { if(!lin_area) return; if(lin_area->size + 1 > lin_area->total) realloc_linarea(lin_area); double ba = 0.0; double la = 0.0; unsigned int sumi = 0; for(unsigned int i=0; iLinarea(&sum_b, &area); la += area * linear; ba += sum_b * area; sumi += sum_b; } lin_area->ba[lin_area->size] = ba; lin_area->la[lin_area->size] = la; lin_area->counts[lin_area->size] = sumi; (lin_area->size)++; } /* * print_linarea: * * print linarea stats to the outfile * doesn't do anything if linarea is false */ void print_linarea(Linarea *lin_area, FILE *outfile) { if(!lin_area) return; // FILE *outfile = OpenFile("trace", "linarea"); MYprintf(outfile, "count\t la ba\n"); for(unsigned int i=0; isize; i++) { MYprintf(outfile, "%d\t %g %g\n", lin_area->counts[i], lin_area->la[i], lin_area->ba[i]); } fclose(outfile); } tgp/src/all_draws.c0000644000176200001440000012475714323551707013776 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include #include #include "rand_pdf.h" #include "rand_draws.h" #include "matrix.h" #include "linalg.h" #include "gen_covar.h" #include "lik_post.h" #include "all_draws.h" #include "rhelp.h" #include #include /* constants used below */ #define GA 1.0 /* 5.0 */ #define PWR 2.0 /* calculate the prior probability of the LLM */ #define LINEAR(gamma, min, max, d) min + max / (1.0 + exp(0.0-gamma*(d-0.5))); /* minimum values for the nugget and s2_g0 */ #define S2G0MIN 1e-10 /* * mle_beta: * * compute the maximum likelihood estimate for the regression * coefficnents, beta; for use in the emperical Bayes BMLE * model */ void mle_beta(double *mle, unsigned int n, unsigned int col, double **F, double *Z) { double **aux1, **Vb; double *by; /* int info; */ /* zero out by and b */ by = new_zero_vector(col); zerov(mle, col); /* aux1 = F'F*/ aux1 = new_zero_matrix(col, col); linalg_dgemm(CblasTrans,CblasNoTrans,col,col,n, 1.0,F,n,F,n,0.0,aux1,col); /* Vb = inv(F'*F) */ Vb = new_id_matrix(col); /* info = */ linalg_dgesv(col, aux1, Vb); delete_matrix(aux1); /* by = Z*F */ linalg_dgemv(CblasTrans,n,col,1.0,F,n,Z,1,0.0,by,1); /* mle = by*Vb */ linalg_dsymv(col,1.0,Vb,col,by,1,0.0,mle,1); delete_matrix(Vb); free(by); } /* * compute_b_and_Vb_noK: * * b and Vb are needed by compute_lambda and beta_draw * and others: b and Vb must be pre-allocated. * These are two of the three "margin" variables. * DOES NOT INVOLVE THE COVARIANCE MATRIX (K) * * Z[n], b0[col], b[col], TiB0[col], by[col], F[col][n], Ki[n][n], * Ti[col][col], Vb[col][col]; */ void compute_b_and_Vb_noK(double **Vb, double *b, double *by, double *TiB0, unsigned int n, unsigned int col, double **F, double *Z, double **Ti, double tau2, double *b0, double *Kdiag, double itemp) { double **Vbi, **Fgi; /* int info; */ unsigned int i, j; /* sanity check for inv-temperature */ assert(itemp >= 0); /* zero out by and b */ zerov(by, col); zerov(b, col); /* Vbi = F'*diag(1+g)*F + Ti/tau2; with tempering Vbi = itemp * F'*diag(1+g)*F + Ti/tau2 */ Vbi = new_dup_matrix(Ti, col, col); /* This is equivilant to multiplying F by a diagonal matrix with Kdiag., the covariance matrix for the llm. Used again below for b */ Fgi = new_dup_matrix(F, col, n); for(i=0; i= 0); /* itemp = pow(itemp, 2.0/n); */ /* init alloc */ TiB0 = new_vector(col); by = new_vector(col); compute_b_and_Vb_noK(Vb, b, by, TiB0, n, col, F, Z, Ti, tau2, b0, Kdiag, itemp); /* lambda = Z*Z' + b0'*Ti*b0 - B'*VBi*B; */ /* as performed in many steps below */ /* adjust for beta[0]=mu in prior */ /* ZZ = Z'Z/(Kdiag) */ Zgi = new_dup_vector(Z, n); for(i=0; i tempered K is Kdiag/itemp */ ZZ = itemp * ZZ; /* clean up */ free(Zgi); /* Tib0 = by ... we already did this above */ /* b0Tib0 = b0 * by / tau2 */ b0Tib0 = linalg_ddot(col, b0, 1, TiB0, 1) / tau2; free(TiB0); /* B' * Vbi * B = b * by */ BVBiB = linalg_ddot(col,b,1,by,1); free(by); /* now for lambda */ lambda = ZZ + b0Tib0 - BVBiB; /* MYprintf(MYstderr, "noK: n=%d, itemp=%g, ZZ=%g, tau2=%g, b0Tib0/tau2=%g, BVBiB=%g, lambda=%g\n", n, itemp, ZZ, tau2, b0Tib0, BVBiB, lambda); */ /* this is here because when itemp=0 lambda should be 0, but sometimes there are numerical issues where we get e^-17 */ if(itemp == 0.0) lambda = 0.0; return lambda; } /* * compute_b_and_Vb: * * b and Vb are needed by compute_lambda and beta_draw * and others: b and Vb must be pre-allocated. * These are two of the three "margin" variables. * * Z[n], b0[col], b[col], TiB0[col], by[col], F[col][n], * Ki[n][n], Ti[col][col], Vb[col][col] */ void compute_b_and_Vb(double **Vb, double *b, double *by, double *TiB0, unsigned int n, unsigned int col, double **F, double *Z, double **Ki, double **Ti, double tau2, double *b0, double itemp) { double **KiF, **Vbi; /* int info; */ /* sanity check for temperature */ assert(itemp >= 0); /* KiF = Ki * F; when tempered KiF = itemp * Ki * F */ KiF = new_zero_matrix(col, n); linalg_dsymm(CblasLeft,n,col,itemp,Ki,n,F,n,0.0,KiF,n); /* aux1 = F'*KiF + Ti/tau2 */ Vbi = new_dup_matrix(Ti, col, col); linalg_dgemm(CblasTrans,CblasNoTrans,col,col,n, 1.0,F,n,KiF,n,1.0/tau2,Vbi,col); /* Vb = inv(F'*KiF + Ti/tau2) */ id(Vb, col); // printMatrix(Vb, col, col, MYstdout); // printMatrix(Vbi, col, col, MYstdout); if(col==1) Vb[0][0] = 1.0/Vbi[0][0]; else /* info = */ linalg_dgesv(col, Vbi, Vb); delete_matrix(Vbi); /* by = Z*KiF + b0'*Ti/tau2 */ /* first set: by = b0'*Ti */ zerov(by, col); linalg_dsymv(col,1.0,Ti,col,b0,1,0.0,by,1); /* save the result for later */ dupv(TiB0, by, col); /* use vector stuff for the last part */ linalg_dgemv(CblasTrans,n,col,1.0,KiF,n,Z,1,1.0/tau2,by,1); delete_matrix(KiF); /* b = by*Vb */ zerov(b, col); if(col==1) b[0] = by[0]*Vb[0][0]; else linalg_dsymv(col,1.0,Vb,col,by,1,0.0,b,1); } /* * compute_lambda: * * code for computing the lambda intermediate variable * required by functions which use a marginalized posterior: * (margin_lik, sigma_no_beta, etc...) * * Z[n], b0[col], b[col]; F[col][n], Ki[n][n], Ti[col][col], Vb[col][col] */ double compute_lambda(double **Vb, double *b, unsigned int n, unsigned int col, double **F, double *Z, double **Ki, double **Ti, double tau2, double* b0, double itemp) { /*double TiB0[col], KiZ[n], by[col];*/ double *TiB0, *KiZ, *by; double lambda, ZKiZ, BVBiB, b0Tib0; /* sanity check for inv-temperature */ assert(itemp >= 0); /* itemp = pow(itemp, 1.0/n); */ /* init alloc */ TiB0 = new_vector(col); KiZ = new_vector(n); by = new_vector(col); compute_b_and_Vb(Vb, b, by, TiB0, n, col, F, Z, Ki, Ti, tau2, b0, itemp); /* lambda = Z*Ki*Z' + b0'*Ti*b0 - B'*VBi*B; */ /* as performed in many steps below */ /* KiZ = Ki * Z; when tempered KiZ = itemp * Ki * Z */ zerov(KiZ, n); linalg_dsymv(n,itemp,Ki,n,Z,1,0.0,KiZ,1); /* ZKiZ = Z * KiZ */ ZKiZ = linalg_ddot(n,Z,1,KiZ,1); free(KiZ); /* Tib0 = by ... we already did this above */ /* b0Tib0 = b0 * Tib0 */ b0Tib0 = linalg_ddot(col, b0, 1, TiB0, 1); free(TiB0); /* B' * Vbi * B = b * by */ BVBiB = linalg_ddot(col,b,1,by,1); free(by); /* now for lambda */ lambda = ZKiZ + b0Tib0/tau2 - BVBiB; /* MYprintf(MYstderr, "n=%d, itemp=%g, ZKiZ=%g, tau2=%g, b0Tib0/tau2=%g, BVBiB=%g, lambda=%g\n", n, itemp, ZKiZ, tau2, b0Tib0/tau2, BVBiB, lambda); */ /* this is here because when itemp=0 lambda should be 0, but sometimes there are numerical issues where we get e^-17 */ if(itemp == 0.0) lambda = 0.0; return lambda; } /* * beta_draw_margin: * * Gibbs draw for Beta given bmu and Vb marginalzed parameters * * b[col], bmu[col], Vb[col][col] */ unsigned int beta_draw_margin(double *b, unsigned int col, double **Vb, double *bmu, double s2, void *state) { unsigned int i,j; /*double V[col][col];*/ double **V; int info; /* compute s2*Vb */ V = new_matrix(col, col); /*for(i=0; i 1) info = linalg_dpotrf(col, V); else info = 0; /* now get the draw using the choleski decomposition */ if(info != 0) zerov(b, col); else if(col > 1) mvnrnd(b, bmu, V, col, state); else { /* when beta[0]=mu then we only need one draw */ rnorm_mult(b, 1, state); b[0] *= sqrt(V[0][0]); b[0] += bmu[0]; } delete_matrix(V); return info; } /* * sigma2_draw_no_b_margin: * * draw sigma^2 without dependence on beta */ double sigma2_draw_no_b_margin(unsigned int n, unsigned int col, double lambda, double alpha0, double beta0, void *state) { double alpha, g, x; /* alpha = (alpha0 + length(Z) + length(b))/2; */ alpha = (alpha0 + n)/2; /* just in case */ if(lambda < 0) lambda = 0; /* g = (gamma0 + BLAH)/2; */ g = (beta0 + lambda)/2; /* s2 = 1/gamrnd(alpha, 1/g, 1) */ /* return 1.0 / (1.0/g * rgamma(alpha)); */ inv_gamma_mult_gelman(&x, alpha, g, 1, state); /* MYprintf(MYstderr, "alpha = %g, beta = %g => x = %g\n", alpha, g, x); */ return x; } /* * tau2_draw: * * draws from tau^2 given the rest of the parameters * NOTE: this code was not augmented to use Fb or ZmFb as arguments * because it was not in general use in the code when these * more global changes were made. * * b0[col], b[col], Ti[col][col]; */ double tau2_draw(unsigned int col, double **Ti, double s2, double *b, double *b0, double alpha0, double beta0, void *state) { /*double bmb0[col], Tibmb0[col];*/ double *bmb0, *Tibmb0; double right, alpha, g, x; /* bmb0 = b-b0 */ bmb0 = new_dup_vector(b, col); linalg_daxpy(col,-1.0,b0,1,bmb0,1); /* right = (bmb0)' * Ti * (bmb0) */ Tibmb0 = new_zero_vector(col); linalg_dsymv(col,1.0,Ti,col,bmb0,1,0.0,Tibmb0,1); right = linalg_ddot(col,bmb0,1,Tibmb0,1) / s2; free(bmb0); free(Tibmb0); /* alpha of gamma distribution */ alpha = (alpha0 + col)/2; /* beta of a gamma distribution */ g = (beta0 + right)/2; /* tau2 = 1/gamrnd(alpha, 1/g, 1) */ /* return 1.0 / (1.0/g * rgamma(alpha)); */ inv_gamma_mult_gelman(&x, alpha, g, 1, state); return x; } /* * gamma_mixture_pdf: * * PDF: mixture prior for d and nug, * works in log space -- returns the log density value */ double gamma_mixture_pdf(double d, double *alpha, double *beta) { double p1, p2, lp; gampdf_log_gelman(&p1, &d, alpha[0], beta[0], 1); gampdf_log_gelman(&p2, &d, alpha[1], beta[1], 1); lp = log(0.5*(exp(p1)+exp(p2))); return(lp); } /* * log_d_prior_pdf: * * PDF: mixture prior for d * returns the log pdf */ double log_d_prior_pdf(double d, double *alpha, double *beta) { return(gamma_mixture_pdf(d, alpha, beta)); } /* * d_prior_rand: * * rand draws from mixture prior for d */ double d_prior_rand(double *alpha, double *beta, void *state) { return(gamma_mixture_rand(alpha, beta, state)); } /* * linear_rand: * * rand draws for the linearization boolean for d */ int linear_rand(double *d, unsigned int n, double *gamlin, void *state) { double p; if(gamlin[0] == 0) return 0; if(gamlin[0] < 0) return 1; p = linear_pdf(d, n, gamlin); if(runi(state) < p) return 1; else return 0; } /* * linear_rand_sep: * * rand draws for the linearization boolean for d * draws are returned via b (pre-allocated) * b has indicators OPPOSITE of the return value * (e.g. b[i]=0 -> linear d[i], b[i]=1 -> GP) */ int linear_rand_sep(int *b, double *pb, double *d, unsigned int n, double *gamlin, void *state) { int bb; unsigned int i; assert(b); assert(d); /* force the GP model */ if(gamlin[0] == 0) { for(i=0; i 0 && gamlin[1] >= 0 && gamlin[1] <= 1 && gamlin[2] >= 0 && gamlin[2] <= 1); /* product of LLM prob in each dimension */ for(i=0; i 0 && gamlin[1] >= 0 && gamlin[1] <= 1 && gamlin[2] >= 0 && gamlin[2] <= 1); /* calculate each dimension separately, save it, and then accumulate the product */ for(i=0; i0); for(i=0; i 0); /* && draw > 2e-20); */ return draw; } /* * unif_propose_pos: * * propose a new positive "ret" based on an old value "last" * by proposing uniformly in [3last/4, 4last/3], and return * the forward and backward probabilities; */ #define PNUM 3.0 #define PDENOM 4.0 double unif_propose_pos(double last, double *q_fwd, double *q_bak, void *state) { double left, right, ret; /* propose new d, and compute proposal probability */ left = PNUM*last/(PDENOM); right = PDENOM*last/(PNUM); assert(left > 0 && left < right); runif_mult(&ret, left, right, 1, state); *q_fwd = 1.0/(right - left); /* compute backwards probability */ left = PNUM*ret/(PDENOM); right = PDENOM*ret/(PNUM); assert(left >= 0 && left < right); *q_bak = 1.0/(right - left); assert(*q_bak > 0); /* make sure this is reversible */ assert(last >= left && last <= right); if(ret > 10e10) { warning("unif_propose_pos (%g) is bigger than max", ret); ret = 10; } assert(ret > 0); return ret; } /* * nug_draw: * * unif_propose_pos with adjustment for NUGMIN */ double nug_draw(double last, double *q_fwd, double *q_bak, void *state) { return unif_propose_pos(last-NUGMIN, q_fwd, q_bak, state) + NUGMIN; } /* * mixture_priors_ratio: * * evaluationg the posterior for proposed alpha and beta * values: parameters for the hierarchical d prior * * works in log space -- but returns in real (exponentiated) * probabilities */ double mixture_priors_ratio(double *alpha_new, double *alpha, double *beta_new, double *beta, double *d, unsigned int n, double *alpha_lambda, double *beta_lambda) { int i; double log_p, p, p_new; log_p = 0; /* ratio of p(d) under prior */ for(i=0; i alpha_new[0]) { a = mixture_priors_ratio(alpha_new, alpha, beta_new, beta, d, n, alpha_lambda, beta_lambda); a = a*(q_bak/q_fwd); /* accept or reject */ if(runi(state) >= a) { alpha_new[0] = alpha[0]; beta_new[0] = beta[0]; } } /* draws for alpha_new[1] and beta_new[1] conditional on alpha_new[1] and beta_new[1] */ alpha_new[1] = unif_propose_pos(alpha[1], &q_fwd, &q_bak, state); beta_new[1] = unif_propose_pos(beta[1], &q_fwd, &q_bak, state); if(beta_new[1] > alpha_new[1]) { a = mixture_priors_ratio(alpha_new, alpha, beta_new, beta, d, n, alpha_lambda, beta_lambda); a = a*(q_bak/q_fwd); /* accept or reject */ if(runi(state) >= a) { alpha_new[1] = alpha[1]; beta_new[1] = beta[1]; } } } /* * d_draw_margin: * * draws for d given the rest of the parameters * except b and s2 marginalized out * * F[col][n], DIST[n][n], Kchol[n][n], K_new[n][n], Ti[col][col], T[col][col] * Vb[col][col], Vb_new[col][col], Ki_new[n][n], Kchol_new[n][n] b0[col], Z[n] * * return 1 if draw accepted, 0 if rejected, -1 if error */ int d_draw_margin(unsigned int n, unsigned int col, double d, double dlast, double **F, double *Z, double **DIST, double log_det_K, double lambda, double **Vb, double **K_new, double **Ki_new, double **Kchol_new, double *log_det_K_new, double *lambda_new, double **Vb_new, double *bmu_new, double *b0, double **Ti, double **T, double tau2, double nug, double qRatio, double *d_alpha, double *d_beta, double a0, double g0, int lin, double itemp, void *state) { double pd, pdlast, alpha; double *Kdiag; unsigned int m = 0; /* check if we are sticking with linear model */ assert(dlast != 0.0); /* Knew = dist_to_K(dist, d, nugget); compute lambda, Vb, and bmu, for the NEW d */ if(! lin) { /* regular */ dist_to_K_symm(K_new, DIST, d, nug, n); inverse_chol(K_new, Ki_new, Kchol_new, n); *log_det_K_new = log_determinant_chol(Kchol_new, n); *lambda_new = compute_lambda(Vb_new, bmu_new, n, col, F, Z, Ki_new, Ti, tau2, b0, itemp); } else { /* linear */ *log_det_K_new = n*log(1.0 + nug); Kdiag = ones(n,1.0+nug); *lambda_new = compute_lambda_noK(Vb_new, bmu_new, n, col, F, Z, Ti, tau2, b0, Kdiag, itemp); free(Kdiag); } if(T[0][0] == 0) m = col; /* start computation of posterior distribution */ pd = post_margin(n,col,*lambda_new,Vb_new,*log_det_K_new,a0-m,g0,itemp); pd += log_d_prior_pdf(d, d_alpha, d_beta); pdlast = post_margin(n,col,lambda,Vb,log_det_K,a0-m,g0,itemp); pdlast += log_d_prior_pdf(dlast, d_alpha, d_beta); /* if(lin && pd > pdlast) MYprintf(MYstderr, "pd=%g, pdlast=%g, qRatio=%g\n", pd, pdlast, qRatio); */ /* compute acceptance prob */ /*alpha = exp(pd - pdlast + plin)*(q_bak/q_fwd);*/ alpha = exp(pd - pdlast)*qRatio; if(ISNAN(alpha)) return -1; if(runi(state) < alpha) return 1; else return 0; } /* * d_sep_draw_margin: * * draws for d given the rest of the parameters except b and s2 marginalized out * * F[col][n], Kchol[n][n], K_new[n][n], Ti[col][col], T[col][col] Vb[col][col], * Vb_new[col][col], Ki_new[n][n], Kchol_new[n][n], b0[col], Z[n], dlast[dim], * d_alpha[dim][2], d_beta[dim][2] * * if input d=NULL and lin_new=0, then the MH ratio is just a prior ratio * (plus proposal probabilities) * * return 1 if draw accepted, 0 if rejected, -1 if error */ int d_sim_draw_margin(double *d, unsigned int n, unsigned int dim, unsigned int col, double **F, double **X, double *Z, double log_det_K, double lambda, double **Vb, double **K_new, double **Ki_new, double **Kchol_new, double *log_det_K_new, double *lambda_new, double **Vb_new, double *bmu_new, double *b0, double **Ti, double **T, double tau2, double nug, double qRatio, double pRatio_log, double a0, double g0, double itemp, void *state) { double pd, pdlast, alpha; unsigned int m = 0; /* d could be null if d_new == d_new_eff, and in this case the acceptance ratio would be based solely on the prior (& qRatio) */ /* Knew = dist_to_K(dist, d, nugget) compute lambda, Vb, and bmu, for the NEW d */ sim_corr_symm(K_new, dim, X, n, d, nug, PWR); inverse_chol(K_new, Ki_new, Kchol_new, n); *log_det_K_new = log_determinant_chol(Kchol_new, n); *lambda_new = compute_lambda(Vb_new, bmu_new, n, col, F, Z, Ki_new, Ti, tau2, b0, itemp); if(d) { /* adjustment for BFLAT */ if(T[0][0] == 0) m = col; /* posteriors */ pd = post_margin(n,col,*lambda_new,Vb_new,*log_det_K_new,a0-m,g0,itemp); pdlast = post_margin(n,col,lambda,Vb,log_det_K,a0-m,g0,itemp); /* or, no posterior contribution */ } else { pd = 0.0; pdlast = 0.0; } /* compute acceptance prob; and accept or reject */ alpha = exp(pd - pdlast + pRatio_log)*qRatio; if(ISNAN(alpha)) return -1; if(runi(state) < alpha) return 1; else return 0; } /* * d_sep_draw_margin: * * draws for d given the rest of the parameters except b and s2 marginalized out * * F[col][n], Kchol[n][n], K_new[n][n], Ti[col][col], T[col][col] Vb[col][col], * Vb_new[col][col], Ki_new[n][n], Kchol_new[n][n], b0[col], Z[n], dlast[dim], * d_alpha[dim][2], d_beta[dim][2] * * if input d=NULL and lin_new=0, then the MH ratio is just a prior ratio * (plus proposal probabilities) * * return 1 if draw accepted, 0 if rejected, -1 if error */ int d_sep_draw_margin(double *d, unsigned int n, unsigned int dim, unsigned int col, double **F, double **X, double *Z, double log_det_K, double lambda, double **Vb, double **K_new, double **Ki_new, double **Kchol_new, double *log_det_K_new, double *lambda_new, double **Vb_new, double *bmu_new, double *b0, double **Ti, double **T, double tau2, double nug, double qRatio, double pRatio_log, double a0, double g0, int lin, double itemp, void *state) { double pd, pdlast, alpha; double *Kdiag; unsigned int m = 0; /* d could be null if d_new == d_new_eff, and in this case the acceptance ratio would be based solely on the prior (& qRatio) */ /* Knew = dist_to_K(dist, d, nugget) compute lambda, Vb, and bmu, for the NEW d */ if(!lin && d) { /* regular */ exp_corr_sep_symm(K_new, dim, X, n, d, nug, PWR); inverse_chol(K_new, Ki_new, Kchol_new, n); *log_det_K_new = log_determinant_chol(Kchol_new, n); *lambda_new = compute_lambda(Vb_new, bmu_new, n, col, F, Z, Ki_new, Ti, tau2, b0, itemp); } else if(lin) { /* linear */ *log_det_K_new = n*log(1.0 + nug); Kdiag = ones(n, 1.0 + nug); *lambda_new = compute_lambda_noK(Vb_new, bmu_new, n, col, F, Z, Ti, tau2, b0, Kdiag, itemp); free(Kdiag); } if(d || lin) { /* adjustment for BFLAT */ if(T[0][0] == 0) m = col; /* posteriors */ pd = post_margin(n,col,*lambda_new,Vb_new,*log_det_K_new,a0-m,g0,itemp); pdlast = post_margin(n,col,lambda,Vb,log_det_K,a0-m,g0,itemp); /* or, no posterior contribution */ } else { pd = 0.0; pdlast = 0.0; } /* compute acceptance prob; and accept or reject */ alpha = exp(pd - pdlast + pRatio_log)*qRatio; if(ISNAN(alpha)) return -1; if(runi(state) < alpha) return 1; else return 0; } /* * matern d_draw_margin: * * draws for d given the rest of the parameters * except b and s2 marginalized out * * F[col][n], DIST[n][n], Kchol[n][n], K_new[n][n], Ti[col][col], T[col][col] * Vb[col][col], Vb_new[col][col], Ki_new[n][n], Kchol_new[n][n] b0[col], Z[n] * * return 1 if draw accepted, 0 if rejected, -1 if error */ int matern_d_draw_margin(unsigned int n, unsigned int col, double d, double dlast, double **F, double* Z, double **DIST, double log_det_K, double lambda, double **Vb, double **K_new, double **Ki_new, double ** Kchol_new, double *log_det_K_new, double *lambda_new, double **Vb_new, double *bmu_new, double *b0, double **Ti, double **T, double tau2, double nug, double nu, double *bk, double qRatio, double *d_alpha, double *d_beta, double a0, double g0, int lin, double itemp, void *state) { double pd, pdlast, alpha; double *Kdiag; unsigned int m = 0; /* check if we are sticking with linear model */ assert(dlast != 0.0); /* Knew = dist_to_K(dist, d, nugget); compute lambda, Vb, and bmu, for the NEW d */ if(! lin) { /* regular */ matern_dist_to_K_symm(K_new, DIST, d, nu, bk, nug, n); inverse_chol(K_new, Ki_new, Kchol_new, n); *log_det_K_new = log_determinant_chol(Kchol_new, n); *lambda_new = compute_lambda(Vb_new, bmu_new, n, col, F, Z, Ki_new, Ti, tau2, b0, itemp); } else { /* linear */ *log_det_K_new = n*log(1.0 + nug); Kdiag = ones(n, 1.0 + nug); *lambda_new = compute_lambda_noK(Vb_new, bmu_new, n, col, F, Z, Ti, tau2, b0, Kdiag, itemp); free(Kdiag); } if(T[0][0] == 0) m = col; /* start computation of posterior distribution */ pd = post_margin(n,col,*lambda_new,Vb_new,*log_det_K_new,a0-m,g0,itemp); pd += log_d_prior_pdf(d, d_alpha, d_beta); pdlast = post_margin(n,col,lambda,Vb,log_det_K,a0-m,g0,itemp); pdlast += log_d_prior_pdf(dlast, d_alpha, d_beta); /* compute acceptance prob */ /*alpha = exp(pd - pdlast + plin)*(q_bak/q_fwd);*/ alpha = exp(pd - pdlast)*qRatio; if(ISNAN(alpha)) return -1; if(runi(state) < alpha) return 1; else return 0; } /* * nug_draw_margin: * * draws for nug given the rest of the parameters * except b and s2 marginalized out * * F[col][n], K[n][n], Kchol[n][n], K_new[n][n], Ti[col][col], T[col][col], * Vb[col][col], Vb_new[col][col], Ki_new[n][n], Kchol_new[n][n] b0[col], Z[n] */ double nug_draw_margin(unsigned int n, unsigned int col, double nuglast, double **F, double *Z, double **K, double log_det_K, double lambda, double **Vb, double **K_new, double **Ki_new, double **Kchol_new, double *log_det_K_new, double *lambda_new, double **Vb_new, double *bmu_new, double *b0, double **Ti, double **T, double tau2, double *nug_alpha, double *nug_beta, double a0, double g0, int linear, double itemp, void *state) { double q_fwd, q_bak, nug, pnug, pnuglast, alpha; double *Kdiag; unsigned int i; unsigned int m = 0; /* do nothing if the prior says to fix the nug */ if(nug_alpha[0] == 0) return nuglast; /* propose new d, and compute proposal probability */ nug = nug_draw(nuglast, &q_fwd, &q_bak, state); /* new covariace matrix based on new nug */ if(linear) { *log_det_K_new = n * log(1.0 + nug); Kdiag = ones(n, 1.0 + nug); *lambda_new = compute_lambda_noK(Vb_new, bmu_new, n, col, F, Z, Ti, tau2, b0, Kdiag, itemp); free(Kdiag); } else { dup_matrix(K_new, K, n, n); for(i=0; i nug=%g : alpha=%g\n", nuglast, nug, alpha); */ if(runi(state) > alpha) { /* MYprintf(MYstderr, " -- rejected\n");*/ return nuglast; } else { /*MYprintf(MYstderr, " -- accepted\n");*/ return nug; } } /* * nug_draw_twovar: * * draws for nug given the rest of the parameters * except b and s2 marginalized out * * F[col][n], K[n][n], Kchol[n][n], K_new[n][n], Ti[col][col], T[col][col], * Vb[col][col], Vb_new[col][col], Ki_new[n][n], Kchol_new[n][n] b0[col], Z[n] */ double nug_draw_twovar(unsigned int n, unsigned int col, double nuglast, double **F, double *Z, double **K, double log_det_K, double lambda, double **Vb, double **K_new, double **Ki_new, double **Kchol_new, double *log_det_K_new, double *lambda_new, double **Vb_new, double *bmu_new, double *b0, double **Ti, double **T, double tau2, double *nug_alpha, double *nug_beta, double a0, double g0, int linear, double itemp, void *state) { double q_fwd, q_bak, nug, pnug, pnuglast, alpha; double *Kdiag; unsigned int i; unsigned int m = 0; /* do nothing if the prior says to fix the nug */ if(nug_alpha[0] == 0) return nuglast; /* propose new d, and compute proposal probability */ /* nug = nug_draw(nuglast, &q_fwd, &q_bak, state); */ /* MODIFIED */ nug = unif_propose_pos(nuglast+1.0, &q_fwd, &q_bak, state) - 1.0; /* new covariace matrix based on new nug */ if(linear) { /* MODIFIED */ // *log_det_K_new = n * log(1.0 + nug); *log_det_K_new = (n/2) * log(1.0) + (n/2) * log(1.0 + nug); // Kdiag = ones(n, 1.0 + nug); Kdiag = ones(n, 1.0); for(i=n/2; i nug=%g : alpha=%g\n", nuglast, nug, alpha); */ if(runi(state) > alpha) { /* MYprintf(MYstderr, " -- rejected\n");*/ return nuglast; } else { /*MYprintf(MYstderr, " -- accepted\n");*/ return nug; } } /* * mr_nug_draw_margin: * * draws for nug given the rest of the parameters * except b and s2 marginalized out * * F[col][n], K[n][n], Kchol[n][n], K_new[n][n], Ti[col][col], T[col][col], * Vb[col][col], Vb_new[col][col], Ki_new[n][n], Kchol_new[n][n] b0[col], Z[n] */ double* mr_nug_draw_margin(unsigned int n, unsigned int col, double nug, double nugfine, double **X, double **F, double *Z, double **K, double log_det_K, double lambda, double **Vb, double **K_new, double **Ki_new, double **Kchol_new, double *log_det_K_new, double *lambda_new, double **Vb_new, double *bmu_new, double *b0, double **Ti, double **T, double tau2, double *nug_alpha, double *nug_beta, double *nugf_alpha, double *nugf_beta, double delta, double a0, double g0, int linear, double itemp, void *state) { double q_fwd, q_bak, q_fwdf, q_bakf, pnug, pnuglast, alpha; unsigned int i; unsigned int m = 0; double* newnugs = new_vector(2); /* propose new d, and compute proposal probability */ newnugs[0] = nug_draw(nug, &q_fwd, &q_bak, state); newnugs[1] = nug_draw(nugfine, &q_fwdf, &q_bakf, state); /* new covariace matrix based on new nug */ if(linear) { double *Kdiag = new_vector(n); *log_det_K_new = 0.0; for(i=0; i alpha){ /* printf("nugs %g %g\n",nug, nugfine); */ /*printVector(newnugs, 2, MYstdout, HUMAN); */ newnugs[0] = nug; newnugs[1] = nugfine; } return newnugs; } /* * Ti_draw: * * draws for Ti given the rest of the parameters * * b0[col], s2[ch] b[ch][col], V[col][col], Ti[col][col] */ void Ti_draw(double **Ti, unsigned int col, unsigned int ch, double **b, double **bmle, double *b0, unsigned int rho, double **V, double *s2, double *tau2, void *state) { double **sbb0, **S; double *bmb0; int i, nu /* , info*/; /* sbb0 = zeros(length(b0)); */ sbb0 = new_zero_matrix(col, col); S = new_id_matrix(col); /* for i=1:length(s2) sbb0 = sbb0 + (b(:,i)-b0) * (b(:,i)-b0)'/s2(i); end */ bmb0 = new_vector(col); for(i=0; i #include "rand_draws.h" #include "rand_pdf.h" #include "lh.h" #include "matrix.h" #include "dopt.h" #include "rhelp.h" #include "gen_covar.h" #include #include #define PWR 2.0 double DOPT_D(unsigned int m) { return 0.001*sq(m); } double DOPT_NUG(void) { return 0.01; } /* * dopt_gp: * * R wrapper function for the dopt function below for a sequential * doptimal design. The chosen design, of nn_in points are taken * to from the candidates to be Xcand[fi,:] */ void dopt_gp(int *state_in, unsigned int *nn_in, double *X_in, unsigned int *n_in, unsigned int *m_in, double *Xcand_in, unsigned int *ncand_in, unsigned int *iter_in, unsigned int *verb_in, int *fi_out) { unsigned int nn, n, m, ncand, iter, verb; double **Xall, **X, **Xcand, **fixed, **rect; unsigned long lstate; void *state; lstate = three2lstate(state_in); state = newRNGstate(lstate); /* integral dimension parameters */ n = (unsigned int) *n_in; m = (unsigned int) *m_in; nn = (unsigned int) *nn_in; ncand = (unsigned int) *ncand_in; iter = (unsigned int) *iter_in; verb = (unsigned int) *verb_in; Xall = new_matrix(n+ncand, m); dupv(Xall[0], X_in, n*m); dupv(Xall[n], Xcand_in, ncand*m); rect = get_data_rect(Xall, n+ncand, m); delete_matrix(Xall); /* copy X from input */ X = new_zero_matrix(n+nn, m); fixed = new_matrix(n, m); if(fixed) dupv(fixed[0], X_in, n*m); normalize(fixed, rect, n, m, 1.0); Xcand = new_zero_matrix(ncand, m); dupv(Xcand[0], Xcand_in, ncand*m); normalize(Xcand, rect, ncand, m, 1.0); delete_matrix(rect); /* call dopt */ dopt(X, fi_out, fixed, Xcand, m, n, ncand, nn, DOPT_D((unsigned)m), DOPT_NUG(), iter, verb, state); delete_matrix(X); if(fixed) delete_matrix(fixed); delete_matrix(Xcand); deleteRNGstate(state); } /* * dopt: * * produces a sequential D-optimal design where the fixed * configurations are automatically included in the design, * and n1 of the candidates Xcand are chosen by maximizing * the determinant of joint covariance matrix based on * X = cbind(fixed, Xcand[fi,:]) using stochastic search. * The chosen design is provided by the indices fi, and * the last n1 rows of X */ void dopt(double **X, int *fi, double **fixed, double **Xcand, unsigned int m, unsigned int n1, unsigned int n2, unsigned int n, double d, double nug, unsigned int iter, unsigned int verb, void *state) /* remember, column major! */ { unsigned int i,j, ai, fii, changes; double *aprobs, *fprobs; unsigned int *o, *avail; double **DIST, **K; double log_det, log_det_new; int a, f; assert(n2 >= n); /* MYprintf(MYstderr, "d=%g, nug=%g\n", d, nug); */ /* set fixed into X */ dup_matrix(X, fixed, n1, m); DIST = new_matrix(n+n1, n+n1); K = new_matrix(n+n1, n+n1); avail = new_uivector(n2-n); /* get indices to randomly permuted the Xcand matrix with */ o = rand_indices(n2, state); /* free = I(1:n); */ /* X = [fixed, Xcand(:,free)]; */ for(i=0; i n) { /* no need to do iterations if ncand == n */ changes = 0; for(i=0; i #include #include #include #include using namespace std; /* * Corr: * * the usual constructor function */ Corr::Corr(unsigned int dim, Base_Prior *base_prior) { this->dim = dim; col = base_prior->Col(); n = 0; linear = true; Vb_new = new_matrix(col, col); bmu_new = new_vector(col); K = Ki = Kchol = K_new = Kchol_new = Ki_new = NULL; log_det_K = log_det_K_new = 0.0; /* set priors */ assert(base_prior); this->base_prior = base_prior; } /* * ~Corr: * * the usual destructor function */ Corr::~Corr(void) { deallocate_new(); delete_matrix(Vb_new); free(bmu_new); } /* * NugInit: * * reset nug and linear (as passed via one of the inheretid corr * corr functions) eventually coming via a vector of doubles from * passt by R */ void Corr::NugInit(double nug, bool linear) { this->nug = nug; this->linear = linear; } /* Cov: * * copy just the covariance part from the * passed cc Corr module instace */ void Corr::Cov(Corr *cc) { /* there is no covarance matrix to copy */ if(cc->n == 0 || linear) return; allocate_new(cc->n); dup_matrix(K, cc->K, n, n); dup_matrix(Ki, cc->Ki, n, n); } /* * swap_new: * * swapping the real and utility quantities */ void Corr::swap_new(double **Vb, double **bmu, double *lambda) { if(! linear) { swap_matrix(K, K_new, n, n); swap_matrix(Ki, Ki_new, n, n); } swap_matrix(Vb, Vb_new, col, col); assert(*bmu != bmu_new); swap_vector(bmu, &bmu_new); assert(*bmu != bmu_new); *lambda = lambda_new; log_det_K = log_det_K_new; } /* * allocate_new: * * create new memory for auxillary covariance matrices */ void Corr::allocate_new(unsigned int n) { if(this->n == n) return; else { deallocate_new(); this->n = n; /* auxilliary matrices */ assert(!K_new); K_new = new_matrix(n, n); assert(!Ki_new); Ki_new = new_matrix(n, n); assert(!Kchol_new); Kchol_new = new_matrix(n, n); /* real matrices */ assert(!K); K = new_matrix(n, n); assert(!Ki); Ki = new_matrix(n, n); assert(!Kchol); Kchol = new_matrix(n, n); } } /* * invert: * * invert the covariance matrix K, * put the inverse in Ki, and use Kchol * as the work matrix */ // void Corr::Invert(unsigned int n) // { // if(! linear) { // assert(n == this->n); // inverse_chol(K, Ki, Kchol, n); // log_det_K = log_determinant_chol(Kchol, n); // } // else { // assert(n > 0); // log_det_K = n * log(1.0 + nug); // } // } /* * deallocate_new: * * free the memory used for auxilliaty covariance matrices */ void Corr::deallocate_new(void) { if(this->n == 0) return; if(K_new) { delete_matrix(K_new); K_new = NULL; assert(Ki_new); delete_matrix(Ki_new); Ki_new = NULL; assert(Kchol_new); delete_matrix(Kchol_new); Kchol_new = NULL; } assert(K_new == NULL && Ki_new == NULL && Kchol_new == NULL); if(K) { delete_matrix(K); K = NULL; assert(Ki); delete_matrix(Ki); Ki = NULL; assert(Kchol); delete_matrix(Kchol); Kchol = NULL; } assert(K == NULL && Ki == NULL && Kchol == NULL); n = 0; } /* * Nug: * * return the current value of the nugget parameter */ double Corr::Nug(void) { return nug; } /* * get_delta_nug: * * compute nug for two nugs (used in prune) */ double Corr::get_delta_nug(Corr* c1, Corr* c2, void *state) { double nugch[2]; int ii[2]; nugch[0] = c1->nug; nugch[1] = c2->nug; propose_indices(ii,0.5, state); return nugch[ii[0]]; } /* * propose_new_nug: * * propose new NUGGET parameters for possible * new children partitions */ void Corr::propose_new_nug(Corr* c1, Corr* c2, void *state) { if(prior->FixNug()) c1->nug = c2->nug = nug; else { int i[2]; double nugnew[2]; propose_indices(i, 0.5, state); nugnew[i[0]] = nug; nugnew[i[1]] = prior->NugDraw(state); c1->nug = nugnew[0]; c2->nug = nugnew[1]; } } /* * CombineNug: * * used in tree-prune steps, chooses one of two * sets of parameters to correlation functions, * and choose one for "this" correlation function */ void Corr::CombineNug(Corr *c1, Corr *c2, void *state) { nug = get_delta_nug(c1, c2, state); } /* * SplitNug: * * used in tree-grow steps, splits the parameters * of "this" correlation function into a parameterization * for two (new) correlation functions */ void Corr::SplitNug(Corr *c1, Corr *c2, void *state) { propose_new_nug(c1, c2, state); } /* * get_K: * * return the covariance matrix (K) */ double** Corr::get_K(void) { assert(K != NULL); return K; } /* * get_Ki: * * return the inverse covariance matrix (Ki) */ double** Corr::get_Ki(void) { assert(Ki != NULL); return Ki; } /* * getlog_det_K: * * return the log determinant of the covariance * matrix (K) */ double Corr::get_log_det_K(void) { return log_det_K; } /* * Linear: * * return the linear boolean indicator */ bool Corr::Linear(void) { return linear; } /* * log_NugPrior: * * compute the (log) prior for the nugget */ double Corr::log_NugPrior(void) { return prior->log_NugPrior(nug); } /* * printCorr * * prints only covariance matrix K */ void Corr::printCorr(unsigned int n) { if(K && !linear) { assert(this->n == n); matrix_to_file("K_debug.out", K, n, n); assert(Ki); matrix_to_file("Ki_debug.out", Ki, n, n); } else { assert(linear); double **Klin = new_id_matrix(n); for(unsigned int i=0; idim = dim; base_prior = NULL; gamlin[0] = 10; /* gamma for the linear pdf */ gamlin[1] = 0.2; /* min prob for the linear pdf */ gamlin[2] = 0.75; /* max-min prob for the linear pdf */ nug = 0.1; /* starting correlation nugget parameter */ default_nug_priors(); /* set nug_alpha and nug_beta */ default_nug_lambdas(); /* set nug_alpha_lambda and nug_beta_lambda */ } /* * Corr_Prior: (new duplicate) * * duplicate constructor function for the correllation function * module parameterized with a nugget */ Corr_Prior::Corr_Prior(Corr_Prior *c) { dim = c->dim; nug = c->nug; fix_nug = c->fix_nug; dupv(nug_alpha, c->nug_alpha, 2); dupv(nug_beta, c->nug_beta, 2); dupv(nug_alpha_lambda, c->nug_alpha_lambda, 2); dupv(nug_beta_lambda, c->nug_beta_lambda, 2); base_prior = NULL; } /* * ~Corr_Prior: * * destructor function for the correllation function module * parameterized with a nugget */ Corr_Prior::~Corr_Prior(void) { } /* * NugInit: * * read hiererchial prior parameters from a double-vector * */ void Corr_Prior::NugInit(double *dhier) { nug_alpha[0] = dhier[0]; nug_beta[0] = dhier[1]; nug_alpha[1] = dhier[2]; nug_beta[1] = dhier[3]; } /* * default_nug_priors: * * set nug prior parameters * to default values */ void Corr_Prior::default_nug_priors(void) { nug_alpha[0] = 1.0; nug_beta[0] = 1.0; nug_alpha[1] = 1.0; nug_beta[1] = 1.0; } /* * default_nug_lambdas: * * set nug (lambda) hierarchical prior parameters * to default values */ void Corr_Prior::default_nug_lambdas(void) { nug_alpha_lambda[0] = 0.5; nug_beta_lambda[0] = 10.0; nug_alpha_lambda[1] = 0.5; nug_beta_lambda[1] = 10.0; fix_nug = false; //fix_nug = true; } /* * fix_nug_prior: * * fix the nug priors (alpha, beta) so that * they are not estimated */ void Corr_Prior::fix_nug_prior(void) { fix_nug = true; } /* * read_double_nug: * * read the a prior parameter vector of doubles for * items pertaining to the nugget, coming from R */ void Corr_Prior::read_double_nug(double *dparams) { /* read the starting nugget value */ nug = dparams[0]; // MYprintf(MYstdout, "starting nug=%g\n", nug); /* the d parameter is at dparams[1], should change this later */ /* read nug gamma mixture prior parrameters */ get_mix_prior_params_double(nug_alpha, nug_beta, &(dparams[2]), "nug"); /* nug hierarchical lambda prior parameters */ if((int) dparams[6] == -1) { fix_nug = true; /* MYprintf(MYstdout, "fixing nug prior\n"); */} else { fix_nug = false; get_mix_prior_params_double(nug_alpha_lambda, nug_beta_lambda, &(dparams[6]), "nug lambda"); } /* reset dparams */ dparams += 10; /* read gamma linear pdf prior parameter */ dupv(gamlin, dparams, 3); /* print and sanity check the gamma linear pdf parameters */ // MYprintf(MYstdout, "gamlin=[%g,%g,%g]\n", gamlin[0], gamlin[1], gamlin[2]); assert(gamlin[0] == -1 || gamlin[0] >= 0); assert(gamlin[1] >= 0.0 && gamlin[1] <= 1); assert(gamlin[2] >= 0.0 && gamlin[2] <= 1); assert(gamlin[2] + gamlin[1] <= 1); } /* * read_ctrlfile_nug: * * read the a prior parameter the control file * items pertaining to the nugget */ void Corr_Prior::read_ctrlfile_nug(ifstream* ctrlfile) { char line[BUFFMAX], line_copy[BUFFMAX]; /* Read the starting nugget value */ ctrlfile->getline(line, BUFFMAX); nug = atof(strtok(line, " \t\n#")); MYprintf(MYstdout, "starting nug=%g\n", nug); /* read the nug gamma mixture prior parameters */ ctrlfile->getline(line, BUFFMAX); get_mix_prior_params(nug_alpha, nug_beta, line, "nug"); /* nug hierarchical lambda prior parameters */ ctrlfile->getline(line, BUFFMAX); strcpy(line_copy, line); if(!strcmp("fixed", strtok(line_copy, " \t\n#"))) { fix_nug = true; MYprintf(MYstdout, "fixing nug prior\n"); } else { fix_nug = false; get_mix_prior_params(nug_alpha_lambda, nug_beta_lambda, line, "nug lambda"); } /* read gamma linear pdf parameter */ ctrlfile->getline(line, BUFFMAX); gamlin[0] = atof(strtok(line, " \t\n#")); gamlin[1] = atof(strtok(NULL, " \t\n#")); gamlin[2] = atof(strtok(NULL, " \t\n#")); /* print and sanity check the gamma linear pdf parameters */ MYprintf(MYstdout, "lin[gam,min,max]=[%g,%g,%g]\n", gamlin[0], gamlin[1], gamlin[2]); assert(gamlin[0] == -1 || gamlin[0] >= 0); assert(gamlin[1] >= 0.0 && gamlin[1] <= 1); assert(gamlin[2] >= 0.0 && gamlin[2] <= 1); assert(gamlin[2] + gamlin[1] <= 1); } /* * Nug: * * return the starting nugget value */ double Corr_Prior::Nug(void) { return(nug); } /* * NugAlpha: * * return the starting nugget alpha parameter * vector for the mixture gamma prior */ double *Corr_Prior::NugAlpha(void) { return nug_alpha; } /* * NugBeta: * * return the starting nugget beta parameter * vector for the mixture gamma prior */ double *Corr_Prior::NugBeta(void) { return nug_beta; } /* * NugDraw * * sample a nugget value from the prior */ double Corr_Prior::NugDraw(void *state) { return nug_prior_rand(nug_alpha, nug_beta, state); } /* * DrawNugHeir: * * draws for the hierarchical priors for the nugget * contained in the params module */ void Corr_Prior::DrawNugHier(Corr **corr, unsigned int howmany, void *state) { if(!fix_nug) { double *nug = new_vector(howmany); for(unsigned int i=0; iNug(); mixture_priors_draw(nug_alpha, nug_beta, nug, howmany, nug_alpha_lambda, nug_beta_lambda, state); free(nug); } } /* * log_NugPrior: * * compute the (log) prior for the nugget */ double Corr_Prior::log_NugPrior(double nug) { return log_nug_prior_pdf(nug, nug_alpha, nug_beta); } /* * CorrModel: * * return an indicator of what type of correlation * model this is a generaic module for: e.g., exp, expsep */ CORR_MODEL Corr_Prior::CorrModel(void) { return corr_model; } /* * Linear: * * returns true if the prior is "forcing" a linear model */ bool Corr_Prior::Linear(void) { if(gamlin[0] == -1) return true; else return false; } /* * LLM: * * returns true if the prior is allwoing the LLM */ bool Corr_Prior::LLM(void) { if(gamlin[0] > 0) return true; else return false; } /* * ForceLinear: * * make the prior force the linear model by setting the * gamma (gamlin[0]) parameter to -1; return the new * gamma parameter */ double Corr_Prior::ForceLinear(void) { double gam = gamlin[0]; gamlin[0] = -1; return gam; } /* * ResetLinear: * * (re)-set the gamma linear parameter (gamlin[0]) * to the passed in gam value */ void Corr_Prior::ResetLinear(double gam) { gamlin[0] = gam; } /* * GamLin * * return the (three) vector of "gamma" prior parameters * governing the LLM booleans b */ double* Corr_Prior::GamLin(void) { return gamlin; } /* * Print: * * pretty print the correllation function (nugget) parameters out * to a file */ void Corr_Prior::PrintNug(FILE *outfile) { /* range parameter */ //MYprintf(outfile, "starting nug=%g\n", nug); /* range gamma prior */ MYprintf(outfile, "nug[a,b][0,1]=[%g,%g],[%g,%g]\n", nug_alpha[0], nug_beta[0], nug_alpha[1], nug_beta[1]); /* range gamma hyperprior */ if(fix_nug) MYprintf(outfile, "nug prior fixed\n"); else { MYprintf(MYstdout, "nug lambda[a,b][0,1]=[%g,%g],[%g,%g]\n", nug_alpha_lambda[0], nug_beta_lambda[0], nug_alpha_lambda[1], nug_beta_lambda[1]); } /* gamma linear parameters */ MYprintf(outfile, "gamlin=[%g,%g,%g]\n", gamlin[0], gamlin[1], gamlin[2]); } /* * log_NugHierPrior: * * return the log prior of the hierarchial parameters * to the correllation parameters (i.e., nugget) */ double Corr_Prior::log_NugHierPrior(void) { double lpdf; lpdf = 0.0; if(!fix_nug) { lpdf += mixture_hier_prior_log(nug_alpha, nug_beta, nug_alpha_lambda, nug_beta_lambda); } return lpdf; } /* * NugTrace: * * return the current values of the hierarchical * parameters to nugget of this correlation function: */ double* Corr_Prior::NugTrace(unsigned int* len) { *len = 4; double* trace = new_vector(*len); trace[0] = nug_alpha[0]; trace[1] = nug_beta[0]; trace[2] = nug_alpha[1]; trace[3] = nug_beta[1]; return trace; } /* * NugTraceNames: * * return the names of the traces recorded by Corr_Prior::NugTrace() */ char** Corr_Prior::NugTraceNames(unsigned int* len) { *len = 4; char** trace = (char**) malloc(sizeof(char*) * (*len)); trace[0] = strdup("nug.a0"); trace[1] = strdup("nug.g0"); trace[2] = strdup("nug.a1"); trace[3] = strdup("nug.g1"); return trace; } /* * FixNug: * * returns the fix_nug variable (not the prior) */ bool Corr_Prior::FixNug(void) { return nug_alpha[0] == 0; } tgp/src/twovar.h0000644000176200001440000001045013531032535013326 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2016, The University of Chicago * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@chicagbooth.edu) * ********************************************************************************/ #ifndef __TWOVAR_H__ #define __TWOVAR_H__ #include "corr.h" #include class Twovar_Prior; /* * CLASS for the implementation of the exponential * power family of correlation functions */ class Twovar : public Corr { private: double d; /* kernel correlation width parameter */ double **xDISTx; /* n x n, matrix of euclidean distances to the x spatial locations */ unsigned int nd; /* for keeping track of the current size of xDISTx (nd x nd) */ unsigned int dreject; /* d rejection counter */ public: Twovar(unsigned int dim, Base_Prior *base_prior); virtual Corr& operator=(const Corr &c); virtual ~Twovar(void); virtual void Update(unsigned int n1, unsigned int n2, double **K, double **X, double **XX); virtual void Update(unsigned int n1, double **X); virtual void Update(unsigned int n1, double **K, double **X); virtual int Draw(unsigned int n, double **F, double **X, double *Z, double *lambda, double **bmu, double **Vb, double tau2, double itemp, void *state); virtual void Combine(Corr *c1, Corr *c2, void *state); virtual void Split(Corr *c1, Corr *c2, void *state); virtual char* State(unsigned int which); virtual double log_Prior(void); virtual unsigned int sum_b(void); virtual void ToggleLinear(void); virtual bool DrawNugs(unsigned int n, double **X, double **F, double *Z, double *lambda, double **bmu, double **Vb, double tau2, double itemp, void *state); virtual double* Trace(unsigned int* len); virtual char** TraceNames(unsigned int* len); virtual void Init(double *dexp); virtual double* Jitter(unsigned int n1, double **X); virtual double* CorrDiag(unsigned int n1, double **X); virtual void Invert(unsigned int n); void get_delta_d(Twovar* c1, Twovar* c2, void *state); void propose_new_d(Twovar* c1, Twovar* c2, void *state); double D(void); }; /* * CLASS for the prior parameterization of exponential * power family of correlation functions */ class Twovar_Prior : public Corr_Prior { private: double d; double d_alpha[2]; /* d gamma-mixture prior alphas */ double d_beta[2]; /* d gamma-mixture prior beta */ bool fix_d; /* estimate d-mixture parameters or not */ double d_alpha_lambda[2]; /* d prior alpha lambda parameter */ double d_beta_lambda[2]; /* d prior beta lambda parameter */ public: Twovar_Prior(unsigned int dim); Twovar_Prior(Corr_Prior *c); virtual ~Twovar_Prior(void); virtual void read_double(double *dprior); virtual void read_ctrlfile(std::ifstream* ctrlfile); virtual void Draw(Corr **corr, unsigned int howmany, void *state); virtual Corr_Prior* Dup(void); virtual Corr* newCorr(void); virtual void Print(FILE *outfile); virtual Base_Prior* BasePrior(void); virtual void SetBasePrior(Base_Prior *base_prior); virtual double log_HierPrior(void); virtual double* Trace(unsigned int* len); virtual char** TraceNames(unsigned int* len); virtual void Init(double *dhier); double D(void); double* DAlpha(void); double* DBeta(void); void default_d_priors(void); void default_d_lambdas(void); double log_Prior(double d, bool linear); double log_NugPrior(double nug); bool LinearRand(double d, void *state); }; #endif tgp/src/predict.h0000644000176200001440000000765513531032535013453 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __PREDICT_H__ #define __PREDICT_H__ int predict_full(unsigned int n1, double *zp, double *zpm, double *zpvm, double *zps2, double *zpjitter, unsigned int n2, double *zz, double *zzm, double *zzvm, double *zzs2, double *zzjitter, double **Ds2xy, double *improv, double *Z, unsigned int col, double **F, double **K, double **Ki, double **W, double tau2, double **FF, double **xxKx, double ** xxKxx, double *KKdiag, double *b, double ss2, double Zmin, int err, void *state); void delta_sigma2(double *Ds2xy, unsigned int n1, unsigned int n2, unsigned int col, double ss2, double denom, double **FW, double tau2, double *fW, double *KpFWFiQx, double **FFrow, double **KKrow, double **xxKxx, unsigned int which_i); int predict_draw(unsigned int n, double *z, double *mean, double *s, int err, void *state); void expected_improv(unsigned int n, unsigned int nn, double *improv, double Zmin, double *zzmean, double *s); void predicted_improv(unsigned int n, unsigned int nn, double *improv, double Zmin, double *z, double *zz); double predictive_var(unsigned int n1, unsigned int col, double *Q, double *rhs, double *Wf, double *s2cor, double ss2, double *k, double *f, double **FW, double **W, double tau2, double **KpFWFi, double corr_diag); double predictive_mean(unsigned int n1, unsigned int col, double *FFrow, double *KKrow, double *b, double *KiZmFb); void predict_data(double *zmean, double *zs, unsigned int n1, unsigned int col, double **FFrow, double **K, double *b, double ss2, double *zpjitter, double *KiZmFb); void delta_sigma2(double *Ds2xy, unsigned int n1, unsigned int n2, unsigned int col, double ss2, double denom, double **FW, double tau2, double *fW, double *KpFWFiQx, double **FFrow, double ** KKrow, double **xxKxx, unsigned int which_i); void predict_delta(double *zzm, double *zzs2, double **Ds2xy, unsigned int n1, unsigned int n2, unsigned int col, double **FFrow, double **FW, double **W, double tau2, double ** KKrow, double **xxKxx, double **KpFWFi, double *b, double ss2, double *zzjitter, double *KiZmFb); void predict_no_delta(double *zzm, double *zzs2, unsigned int n1, unsigned int n2, unsigned int col, double **FFrow, double **FW, double **W, double tau2, double **KKrow, double **KpFWFi, double *b, double ss2, double *KKdiag, double *KiZmFb); void predict_help(unsigned int n1, unsigned int col, double *b, double **F, double *Z, double **W, double tau2, double **K, double **Ki, double **FW, double **KpFWFi, double *KiZmFb); unsigned int* GetImprovRank(int R, int nn, double **Imat_in, int g, int numirank, double *w); void move_avg(int nn, double* XX, double *YY, int n, double* X, double *Y, double frac); void sobol_indices(double *ZZ, unsigned int nn, unsigned int m, double *S, double *T); #endif tgp/src/list.h0000644000176200001440000000317213531032535012762 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __LIST_H__ #define __LIST_H__ class List; class LNode { private: void* entry; public: List* list; LNode* next; LNode* prev; LNode(void* entry); ~LNode(void); LNode* Next(void); LNode* Prev(void); void* Entry(void); }; class List { private: LNode* first; LNode* last; LNode* curr; unsigned int len; public: List(void); ~List(void); LNode* EnQueue(void *entry); void* DeQueue(void); bool isEmpty(void); unsigned int Len(void); void* detach_and_delete(LNode* node); LNode* First(void); }; #endif tgp/src/init.c0000644000176200001440000000247413726653664012773 0ustar liggesusers#include // for NULL #include /* .C calls */ extern void tgp(int*, double *, int *, int *, double *, double *, int *, double *, int *, int *, int *, int *, int *, int *, int *, double *, double *, int *, double *, double *, int *, int *, double *, double *, int *, int *, int *, int *, int *, double *, double *, double *, double *, double *, double *, double *, double *, double *, double *, double *, double *, double *, double *, double *, double *, double *, double *, double *, double *, double *, int *, double *, double *, double *, double *, double *, double *, double *); extern void lh_sample(int *, int *, int *, double *, double *, double *, double *); extern void tgp_cleanup(void); extern void dopt_gp(int *, unsigned int *, double *, unsigned int *, unsigned int *, double *, unsigned int *, unsigned int *, unsigned int *, int *); static const R_CMethodDef CEntries[] = { {"tgp", (DL_FUNC) &tgp, 58}, {"lh_sample", (DL_FUNC) &lh_sample, 7}, {"tgp_cleanup", (DL_FUNC) &tgp_cleanup, 0}, {"dopt_gp", (DL_FUNC) &dopt_gp, 10}, {NULL, NULL, 0} }; void R_init_tgp(DllInfo *dll) { R_registerRoutines(dll, CEntries, NULL, NULL, NULL); R_useDynamicSymbols(dll, FALSE); } tgp/src/tree.h0000644000176200001440000001616013531032535012747 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __TREE_H__ #define __TREE_H__ #include #include "exp.h" #include "corr.h" #include "params.h" extern "C" { #include "matrix.h" } #include "base.h" typedef enum TREE_OP {GROW=201, PRUNE=202, CHANGE=203, CPRUNE=204, SWAP=205, ROTATE=206} TREE_OP; /* dummy prototype */ class Model; class Tree { private: /*variables */ Rect *rect; unsigned int n; /* number of input data locations */ unsigned int nn; /* number of predictive input data locations */ unsigned int d; /* dimension of the input data */ double **X; /* n x (col-1), data: spatial locations */ int *p; /* n, indices into original data */ double *Z; /* n, f(X) */ double **XX; /* nn x (col-1), predictive spatial locations */ int *pp; /* nn, indices into original XX */ Model* model; /* point to the model this (sub-)tree is in */ Base *base; /* point to the base (e.g., Gp) model */ unsigned int var; /* split point dimension */ double val; /* split point value */ Tree* parent; /* parent partition */ Tree* leftChild; /* partition LEQ (<=) split point */ Tree* rightChild; /* partition GT (>) split point */ Tree* next; /* used for making lists of tree nodes */ unsigned int depth; /* depth of partition in tree */ FILE* OUTFILE; /* where to print tree-specific info */ int verb; /* printing level (0=none, ... , 3+=verbose); */ private: /* functions */ /* auxiliaty swap functions */ bool rotate(void *state); void rotate_right(void); void rotate_left(void); double pT_rotate(Tree* low, Tree* high); void swapData(Tree* t); void adjustDepth(int a); /* change point probability calculations & proposals */ void val_order_probs(double **Xo, double **probs, unsigned int var, double **rX, unsigned int rn); double split_prob(void); double propose_split(double *p, void *state); double propose_val(void *state); /* create lists of tree nodes, * and traverse them from first to next ... to last */ unsigned int leaves(Tree** first, Tree** last); unsigned int prunable(Tree** first, Tree** last); unsigned int internals(Tree **first, Tree **last); unsigned int swapable(Tree **first, Tree **last); /* creating new leaves, and removing them */ unsigned int grow_child(Tree** child, FIND_OP op); int part_child(FIND_OP op, double ***Xc, int **pnew, unsigned int *plen, double **Zc, Rect **newRect); bool grow_children(void); bool try_revert(bool success, Tree* oldLC, Tree* oldRC, int old_var, double old_val); bool match(Tree* oldT, void *state); /* compute lost of the posterior * (likelihood + plus some prior stuff) * of a particular lef, or all leaves */ double leavesPosterior(void); double Posterior(void); unsigned int leavesN(void); public: /* constructor, destructor and misc partition initialization */ Tree(double **X, int *p, unsigned int n, unsigned int d, double *Z, Rect* rect, Tree* parent, Model* model); Tree(const Tree *oldt, bool economy); void Init(double *dtree, unsigned int nrow, double **iface_rect); ~Tree(void); void delete_XX(void); /* things that model (module) will initiate * on ONLY leaf nodes */ void Predict(double *Zp, double *Zpm, double *Zpvm, double *Zps2,double *ZZ, double *ZZm, double *ZZvm, double *ZZs2, double *Ds2x, double *improv, double Zmin, unsigned int wZmin, bool err, void *state); /* propose tree operations */ bool grow(double ratio, void *state); bool prune(double ratio, void *state); bool change(void *state); bool swap(void *state); void cut_branch(void); void new_data(double **X_new, unsigned int n_new, unsigned int d_new, double *Z_new, int *p_new); /* access functions: * return current values of the parameters */ unsigned int getDepth(void) const; unsigned int getN(void) const; unsigned int getNN(void) const; Rect* GetRect(void) const; int* get_pp(void) const; double** get_XX(void) const; double** get_X(void) const; double* get_Z(void) const; Base* GetBase(void) const; Base_Prior* GetBasePrior(void) const; /* global computation functions */ void Update(void); void Compute(void); void ForceLinear(void); void ForceNonlinear(void); bool Linarea(unsigned int *sum_b, double *area) const; void NewInvTemp(double itemp); /* access function: info about nodes */ bool isLeaf(void) const; bool isRoot(void) const; char* State(unsigned int which); bool Draw(void* state); void Clear(void); /* create an arraw of typed tree nodes, * passing back the length of the array */ Tree** swapableList(unsigned int* len); Tree** leavesList(unsigned int* len); Tree** prunableList(unsigned int* len); Tree** internalsList(unsigned int* len); Tree** buildTreeList(unsigned int len); unsigned int numPrunable(void); bool isPrunable(void) const; unsigned int numLeaves(void); Tree* Parent(void) const; /* size checks */ double Area(void) const; bool wellSized(void) const; unsigned int Height(void) const; bool Singular(void) const; /* printing */ void PrintTree(FILE* outfile, double** rect, double scale, int root) const; void Outfile(FILE *file, int verb); /* seperating prediction from estimation */ unsigned int add_XX(double **X_pred, unsigned int n_pred, unsigned int d_new); void new_XZ(double **X_new, double *Z_new, unsigned int n_new, unsigned int d_new); unsigned int* dopt_from_XX(unsigned int N, unsigned int iter, void *state); /* computing the full posterior or likelihood of the tree */ double Prior(double itemp); double FullPosterior(double itemp, bool tprior); double MarginalPosterior(double itemp); double Likelihood(double itemp); /* gathering traces of parameters */ void Trace(unsigned int index, FILE* XXTRACEFILE); char** TraceNames(unsigned int *len, bool full); void Distance(double **XX, int *p, const unsigned int plen, double **d1, double *h, double **d2, double *ad); }; #endif tgp/src/linalg.h0000644000176200001440000000534714221605274013266 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __LINALG_H__ #define __LINALG_H__ #define USE_FC_LEN_T #include "matrix.h" #include "rhelp.h" #ifndef CBLAS_ENUM_DEFINED_H #define CBLAS_ENUM_DEFINED_H enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102 }; enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113, AtlasConj=114}; enum CBLAS_UPLO {CblasUpper=121, CblasLower=122}; enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132}; enum CBLAS_SIDE {CblasLeft=141, CblasRight=142}; #endif #define FORTPACK #define FORTBLAS void linalg_dtrsv(const enum CBLAS_TRANSPOSE TA, int n, double **A, int lda, double *Y, int ldy); void linalg_daxpy(int n, double alpha, double *X, int ldx, double *Y, int ldy); double linalg_ddot(int n, double *X, int ldx, double *Y, int ldy); void linalg_dgemm(const enum CBLAS_TRANSPOSE TA, const enum CBLAS_TRANSPOSE TB, int m, int n, int k, double alpha, double **A, int lda, double **B, int ldb, double beta, double **C, int ldc); void linalg_dsymm(const enum CBLAS_SIDE side, int m, int n, double alpha, double **A, int lda, double **B, int ldb, double beta, double **C, int ldc); void linalg_dgemv(const enum CBLAS_TRANSPOSE TA, int m, int n, double alpha, double **A, int lda, double *X, int ldx, double beta, double *Y, int ldy); void linalg_dsymv(int n, double alpha, double **A, int lda, double *X, int ldx, double beta, double *Y, int ldy); int linalg_dposv(int n, double **Mutil, double **Mi); int linalg_dgesv(int n, double **Mutil, double **Mi); int linalg_dpotrf(int n, double **var); /* iterative */ int solve_cg_symm(double *x, double *x_star, double **A, double *b, double theta, unsigned int n); #endif tgp/src/params.h0000644000176200001440000000462713531032535013300 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __PARAMS_H__ #define __PARAMS_H__ #include #include "gp.h" #include "base.h" //#define BUFFMAX 256 class Params { private: unsigned int d; /* dimenstion of the data */ unsigned int col; /* dimenstion of the design matrix */ double t_alpha; /* tree prior parameter alpha */ double t_beta; /* tree prior parameter beta */ unsigned int t_minpart; /* tree prior parameter minpart, smallest partition */ unsigned int t_splitmin; /* data col to start partitioning */ unsigned int t_basemax; /* data col to stop using the Base (then only use tree) */ Base_Prior *prior; public: /* start public functions */ Params(unsigned int d); Params(Params* params); ~Params(void); void read_ctrlfile(std::ifstream* ctrlfile); void read_double(double *dparams); void get_T_params(double *alpha, double *beta, unsigned int* minpart, unsigned int* splitmin, unsigned int *basemax); bool isTree(void); unsigned int T_minp(void); unsigned int T_smin(void); unsigned int T_bmax(void); Base_Prior* BasePrior(void); void Print(FILE *outfile); }; void get_mix_prior_params(double *alpha, double *beta, char *line, const char* which); void get_mix_prior_params_double(double *alpha, double *beta, double *alpha_beta, const char* which); #endif tgp/src/Makevars0000644000176200001440000000134714424255105013336 0ustar liggesusers# un-comment the -DPARALLEL in order to get the pthreads parallel # implementation (you may also have to appropriate pthreads flags # to PKG_LIBS for your operating system) # comment out the (3) lines below in order to enable ATLAS (step 1) PKG_CFLAGS = -DRPRINT # -UNDEBUG PKG_CXXFLAGS = -DRPRINT ## -DDO_NOT_USE_CXX_HEADERS -UNDEBUG -DPARALLEL PKG_LIBS = ${LAPACK_LIBS} ${BLAS_LIBS} ${FLIBS} ## -pthread LDFLAGS = -L/usr/lib -L/usr/lib/R/lib -L/usr/local/lib # Uncomment and modify the (3) lines below to enable ATLAS (steps 1 & 2) #PKG_CXXFLAGS = -DRPRINT #-DPARALLEL #PKG_CFLAGS = -DRPRINT -I/cse/grads/rbgramacy/atlas/OSX_PPCG5AltiVec_2/include #PKG_LIBS = -L/cse/grads/rbgramacy/atlas/OSX_PPCG5AltiVec_2/lib -llapack -lcblas -latlas tgp/src/base.h0000644000176200001440000001243613531032535012724 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #ifndef __BASE_H__ #define __BASE_H__ extern "C" { #include "rhelp.h" } #include using namespace std; typedef enum BASE_MODEL {GP=901} BASE_MODEL; class Model; class Tree; class Base_Prior; /* * CLASS for the generic implementation of a base model * e.g., a Gaussian Process (GP) */ class Base { private: protected: bool pcopy; /* is this a private copy of the prior? */ Base_Prior *prior; /* Base (Gaussian Process) prior module */ unsigned int d; /* dim for X of input variables */ unsigned int col; /* dim for design */ unsigned int n; /* number of input data points-- rows in the design matrix */ unsigned int nn; /* number of predictive input data locations */ double **X; /* pointer to inputs X from tree module */ double **XX; /* pointer to inputs XX from tree module */ double *Z; /* pointer to responses Z from tree module */ double mean; /* mean of the Zs */ double itemp; /* importance annealing inv-temperature */ FILE* OUTFILE; /* where to print tree-specific info */ int verb; /* printing level (0=none, ... , 3+=verbose) */ public: Base(unsigned int d, Base_Prior *prior, Model *model); Base(double **X, double *Z, Base *gp_old, bool economy); virtual ~Base(void); BASE_MODEL BaseModel(void); Base_Prior* Prior(void); virtual Base* Dup(double **X, double *Z, bool economy)=0; virtual void Clear(void)=0; virtual void ClearPred(void)=0; virtual void Update(double **X, unsigned int n, unsigned int d, double *Z)=0; virtual void UpdatePred(double **XX, unsigned int nn, unsigned int d, bool Ds2xy)=0; virtual bool Draw(void *state)=0; virtual void Predict(unsigned int n, double *zp, double *zpm, double *zpvm, double *zps2, unsigned int nn, double *zz, double *zzm, double *zzvm, double *zzs2, double **ds2xy, double *improv, double Zmin, bool err, void *state)=0; virtual void Match(Base* gp_old)=0; virtual void Combine(Base *l_gp, Base *r_gp, void *state)=0; virtual void Split(Base *l_gp, Base *r_gp, void *state)=0; virtual void Compute(void)=0; virtual void ForceLinear(void)=0; virtual void ForceNonlinear(void)=0; virtual bool Linear(void)=0; virtual bool Constant(void)=0; virtual void printFullNode(void)=0; virtual double Var(void)=0; virtual double Posterior(void)=0; virtual double MarginalLikelihood(double itemp)=0; virtual double FullPosterior(double itemp)=0; virtual double MarginalPosterior(double itemp)=0; virtual double Likelihood(double itemp)=0; virtual char* State(unsigned int which)=0; virtual unsigned int sum_b(void)=0; virtual void Init(double *dbase)=0; virtual void X_to_F(unsigned int n, double **X, double **F)=0; virtual double* Trace(unsigned int* len, bool full)=0; virtual char** TraceNames(unsigned int* len, bool full)=0; virtual double NewInvTemp(double itemp, bool isleaf)=0; unsigned int N(void); }; /* * generic CLASS for the prior to the correlation function * including a nugget parameter */ class Base_Prior { private: protected: unsigned int d; /* col dimension of the data */ unsigned int col; /* col dimension of the design (eg F for GP) */ BASE_MODEL base_model; /* indicator for type of model (e.g., GP) */ public: /* start public functions */ Base_Prior(unsigned int d); Base_Prior(Base_Prior* prior); virtual ~Base_Prior(void); BASE_MODEL BaseModel(void); unsigned int Col(void); virtual void read_ctrlfile(std::ifstream* ctrlfile)=0; virtual void read_double(double *dparams)=0; virtual void Init(double *dhier)=0; virtual void Draw(Tree** leaves, unsigned int numLeaves, void *state)=0; virtual bool LLM(void)=0; virtual double ForceLinear(void)=0; virtual void ResetLinear(double gamb)=0; virtual void Print(FILE* outfile)=0; virtual Base* newBase(Model *model)=0; virtual Base_Prior* Dup(void)=0; virtual double log_HierPrior(void)=0; virtual double* Trace(unsigned int* len, bool full)=0; virtual char** TraceNames(unsigned int* len, bool full)=0; virtual double GamLin(unsigned int which)=0; }; #endif tgp/src/rand_draws.c0000644000176200001440000004457714661665551014163 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include #include "rand_pdf.h" #include "rand_draws.h" #include "matrix.h" #include "linalg.h" #include "lh.h" #include "rhelp.h" #include #include #include #include #include "randomkit.h" /* for Windows and other OS's without drand support, * so the compiler won't warn */ double erand48(unsigned short xseed[3]); int getrngstate = 1; /* * newRNGstate: * * seeding the random number generator, * from jenise */ void* newRNGstate(unsigned long s) { switch (RNG) { case CRAN: #ifdef RPRINT if(getrngstate) GetRNGstate(); else warning("cannot generate multiple CRAN RNG states"); getrngstate = 0; return NULL; # else error("cannot use R RNG when not compiling from within R"); #endif case RK: { rk_state* state = (rk_state*) malloc(sizeof(rk_state)); rk_seed(s, state); return (void*) state; } case ERAND: { unsigned short *state = (unsigned short*) new_uivector(3); state[0] = (unsigned short) (s / 1000000); s = s % 1000000; state[1] = (unsigned short) (s / 1000); state[2] = (unsigned short) (s % 1000); return (void*) state; } default: error("RNG type not found"); } } /* * newRNGstate_rand: * * randomly generate a new RNG state based on a random draw from the * current state */ void* newRNGstate_rand(void *s) { unsigned long lstate; int state[3]; state[0] = (unsigned short) (100*runi(s)); state[1] = (unsigned short) (100*runi(s)); state[2] = (unsigned short) (100*runi(s)); lstate = three2lstate(state); return(newRNGstate(lstate)); } /* * three2lstate: * * given three integers (positive) , turning it into * a long-state for the RNG seed */ unsigned long three2lstate(int *state) { unsigned long lstate; assert(state[0] >= 0); assert(state[1] >= 0); assert(state[2] >= 0); lstate = state[0] * 1000000 + state[1] * 1000 + state[2]; return(lstate); } /* * deleteRNGstate: * * free memory for RNG seed */ void deleteRNGstate(void *state) { switch (RNG) { case CRAN: #ifdef RPRINT if(!getrngstate) PutRNGstate(); getrngstate = 1; break; #else error("cannot use R RNG when not compiling from within R"); #endif case RK: free((rk_state*) state); break; case ERAND: assert(state); free((unsigned short*) state); break; default: error("RNG type not found"); } } /* * printRNGstate: * * printRNGstate info out to the outfile */ void printRNGstate(void *state, FILE* outfile) { switch (RNG) { case CRAN: assert(!state); MYprintf(outfile, "RNG state CRAN comes from R\n"); break; case RK: assert(state); MYprintf(outfile, "RNG state RK using rk_seed\n"); break; case ERAND: { unsigned short *s = (unsigned short *) state; assert(s); MYprintf(outfile, "RNG state = %d %d %d\n", s[0], s[1], s[2]); } break; default: error("RNG type not found"); } } /* * runi: * * one from a uniform(0,1) * from jenise */ double runi(void *state) { switch (RNG) { case CRAN: assert(!state); return unif_rand(); case RK: { unsigned long rv; assert(state); rv = rk_random((rk_state*) state); /* MYprintf(MYstderr, "(%d)", ((int)(10000000 * (((double) rv)/RK_MAX)))); if(((int)(10000000 * (((double) rv)/RK_MAX))) == 7294478) assert(0); */ return ((double) rv) / RK_MAX; } case ERAND: assert(state); return erand48(state); default: error("RNG type not found"); } } /* * runif: * * n draws from a uniform(a,b) */ void runif_mult(double* r, double a, double b, unsigned int n, void *state) { double scale; int i; scale = b - a; for(i=0; i1.); e=sqrt((-2.*log(w))/w); x[0] = v2*e; x[1] = v1*e; } /* * rnorm_mult: * * multiple draws from the standard normal */ void rnorm_mult(double *x, unsigned int n, void *state) { unsigned int j; double aux[2]; if(n == 0) return; for(j=0;j 0); /* int done = 0; */ uniform0 = runi(state); uniform1 = runi(state); if (uniform0 > M_E/(alpha + M_E)) { random = 0.0 -log((alpha + M_E)*(1-uniform0)/(alpha*M_E)); if ( uniform1 > pow(random,alpha - 1)) return -1; else return random; } else { x = (alpha + M_E) * uniform0 / M_E; random = pow(x,1/alpha); if ( uniform1 > exp(-random)) return -1; else return random; } } /* * rgamma2: * * Generates a draw from a gamma distribution with alpha > 1 * * from William Brown */ double rgamma2(double alpha, void *state) { double uniform1,uniform2; double c1,c2,c3,c4,c5,w; double random; int done = 1; /* sanity check */ assert(alpha > 0); c1 = alpha - 1; c2 = (alpha - 1/(6 * alpha))/c1; c3 = 2 / c1; c4 = c3 + 2; c5 = 1 / sqrt(alpha); do { uniform1 = runi(state); uniform2 = runi(state); if (alpha > 2.5) { uniform1 = uniform2 + c5 * (1 - 1.86 * uniform1); } } while ((uniform1 >= 1) || (uniform1 <= 0)); w = c2 * uniform2 / uniform1; if ((c3 * uniform1 + w + 1/w) > c4) { if ((c3 * log(uniform1) - log(w) + w) >= 1) { done = 0; } } if (done == 0) return -1; random = c1 * w; return random; } /* * rgamma_wb: * * Generates from a general gamma(alpha,beta) distribution * from Willia Brown (via Milovan / Draper, UCSC) * Parametrization as in the Gelman's book ( E(x) = alpha/beta ) */ double rgamma_wb(double alpha, double beta, void *state) { double random = 0; /* sanity checks */ assert(alpha>0 && beta>0); if (alpha < 1) do { random = rgamma1(alpha, state)/beta; } while (random < 0 ); if (alpha == 1) random = rexpo(1.0, state)/beta; if (alpha > 1) do { random = rgamma2(alpha, state)/beta; } while (random < 0); return random; } /* * inv_gamma_mult_gelman: * * GELMAN PARAMATERIZATION; cases draws from a inv-gamma * distribution with parameters alpha and beta * x must be an alloc'd cases-array */ void inv_gamma_mult_gelman(double *x, double alpha, double beta, unsigned int cases, void *state) { int i; /* sanity checks */ assert(alpha>0 && beta >0); /* get CASES draws from a gamma */ for(i=0; i< cases; i++) x[i] = 1.0 / rgamma_wb(alpha, beta, state); } /* * gamma_mult_gelman: * * GELMAN PARAMATERIZATION; cases draws from a gamma * distribution with parameters alpha and beta * x must be an alloc'd cases-array */ void gamma_mult_gelman(double *x, double alpha, double beta, unsigned int cases, void *state) { int i; /* get CASES draws from a gamma */ for(i=0; i< cases; i++) x[i] = rgamma_wb(alpha, beta, state); } /* * rbeta: * * one random draw from the beta distribution * with parameters alpha and beta. */ double rbet(double alpha, double beta, void *state) { double g1,g2; g1 = rgamma_wb(alpha, 1.0, state); g2 = rgamma_wb(beta, 1.0, state); return g1/(g1+g2); } /* * beta_mult: * * cases draws from a beta distribtion with * parameters alpha and beta. * x must be an alloc'd cases-array */ void beta_mult(double *x, double alpha, double beta, unsigned int cases, void *state) { int i; /* get CASES draws from a beta */ for(i=0; i< cases; i++) { x[i] = rbet(alpha,beta,state); } return; } /* * wishrnd: * * single n x n draw from a Wishart distribtion with * positive definite mean S, and degrees of freedom nu. * uses method from Gelman appendix (nu > n) * * x[n][n], S[n][n]; */ void wishrnd(double **x, double **S, unsigned int n, unsigned int nu, void *state) { /*double alphaT[n][nu], alpha[nu][n], cov[n][n]; double mu[n];*/ double **alphaT, **alpha, **cov; double *mu; int i; /* sanity checks */ assert(n > 0); assert(nu > n); zero(x, n, n); /* draw from the multivariate normal */ cov = new_matrix(n,n); alphaT = new_matrix(n,nu); copyCovLower(cov, S, n, 1.0); mu = (double*) malloc(sizeof(double) * n); for(i=0; i 0); assert(n > 0); assert(probs[0] >= 0); cumprob[0] = probs[0]; for(i=1; i= 0); cumprob[i] = cumprob[i-1] + probs[i]; } if(cumprob[num_probs-1] < 1.0) cumprob[num_probs-1] = 1.0; for(i=0; i 0); assert(n > 0); assert(probs[0] >= 0); cumprob[0] = probs[0]; for(i=1; i= 0); cumprob[i] = cumprob[i-1] + probs[i]; } if(cumprob[num_probs-1] < 1.0) cumprob[num_probs-1] = 1.0; for(i=0; i indx) k = j-1; p[k] = p_old[j] / p_not; x[k] = x_old[j]; xi[k] = xi_old[j]; } free(x_old); free(p_old); free(xi_old); /* draw the ith sample */ isample(&out, &indx, 1, num_probs-i, x, p, state); x_out[i] = out; x_indx[i] = xi[indx]; assert(X[xi[indx]] == x_out[i]); } /* clean up */ free(p); free(x); free(xi); } /* * sample_seq: * * returns a single uniform sample from * the integral range [from...to]. */ int sample_seq(int from, int to, void *state) { unsigned int len, indx; int k_d; int *one2len; double *probs; if(from == to) return from; len = abs(from-to)+1; assert(from <= to); one2len = iseq(from,to); probs = ones(len, 1.0/len); isample(&k_d, &indx, 1, len, one2len, probs, state); free(one2len); free(probs); return (int) k_d; } /* * rpoiso: * * Draws frrom Pois(xm); * From NUMERICAL RECIPIES with a few minor modifications * * Returns as a floating-point number an integer value that is a * random deviate drawn from a Poisson distribution of mean xm * * NOT THREAD SAFE */ unsigned int rpoiso(float xm, void *state) { /* NOT THREAD SAFE */ static double sq,alxm,g,oldm=(-1.0); /*oldm is a flag for whether xm has changed since last call.*/ double em,t,y; if (xm < 12.0) { /*Use direct method.*/ if (xm != oldm) { oldm=xm; g=exp(-xm); /* If xm is new, compute the exponential. */ } em = 0.0-1.0; t=1.0; do { /* Instead of adding exponential deviates it is equivalent to multiply uniform deviates. We never actually have to take the log, merely compare to the pre-computed exponential. */ ++em; t *= runi(state); } while (t > g); } else { /* Use rejection method. */ if (xm != oldm) { /*If xm has changed since the last call, then precompute some functions that occur below.*/ oldm=xm; sq=sqrt(2.0*xm); alxm=log(xm); g=xm*alxm-lgammafn(xm+1.0); } do { do { /* y is a deviate from a Lorentzian comparison function. */ y=tan(M_PI*runi(state)); em=sq*y+xm; /* em is y, shifted and scaled. */ } while (em < 0.0); /* Reject if in regime of zero probability. */ em=floor(em); /* The trick for integer-valued distributions. */ t=0.9*(1.0+y*y)*exp(em*alxm-lgammafn(em+1.0)-g); /* The ratio of the desired distribution to the comparison function; * accept or reject by comparing to another uniform deviate. * The factor 0.9 is chosen so that t never exceeds 1. */ } while (runi(state) > t); } return (unsigned int) em; } /* * compute_probs: * * get probablity distribution based on the * some criteria; alpha is a power to be applied to the prob. */ double* compute_probs(double* criteria, unsigned int nn, double alpha) { double *probs; double sum; unsigned int i; probs = (double*) malloc(sizeof(double) * nn); sum = 0; for(i=0; i parameter[1]) { i[1] = 0; i[0] = 1; } else { i[1] = 1; i[0] = 0; } } /* * rand_indices: * * return a random permutation of the * indices 1...N */ unsigned int* rand_indices(unsigned int N, void *state) { int *o; double *nall = new_vector(N); runif_mult(nall, 0.0, 1.0, N, state); o = order(nall, N); free(nall); return (unsigned int *) o; } tgp/src/twovar.cc0000644000176200001440000005266014661637367013520 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2016, The University of Chicago * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@chicagobooth.edu) * ********************************************************************************/ extern "C" { #include "matrix.h" #include "lh.h" #include "rand_draws.h" #include "rand_pdf.h" #include "all_draws.h" #include "gen_covar.h" #include "rhelp.h" } #include "corr.h" #include "params.h" #include "model.h" #include "twovar.h" #include #include #include #include #include #include using namespace std; #define BUFFMAX 256 #define PWR 2.0 /* * Twovar: * * constructor function */ Twovar::Twovar(unsigned int dim, Base_Prior *base_prior) : Corr(dim, base_prior) { assert(base_prior->BaseModel() == GP); prior = ((Gp_Prior*) base_prior)->CorrPrior(); assert(prior); nug = prior->Nug(); /* check if we should really be starting in the LLM */ if(!prior->Linear() && !prior->LLM()) linear = false; assert( ((Gp_Prior*) base_prior)->CorrPrior()->CorrModel() == EXP); d = ((Twovar_Prior*) prior)->D(); xDISTx = NULL; nd = 0; dreject = 0; } /* * Twovar (assignment operator): * * used to assign the parameters of one correlation * function to anothers. Both correlation functions * must already have been allocated. */ Corr& Twovar::operator=(const Corr &c) { Twovar *e = (Twovar*) &c; log_det_K = e->log_det_K; linear = e->linear; d = e->d; nug = e->nug; dreject = e->dreject; assert(prior->CorrModel() == EXP); assert(prior == ((Gp_Prior*) base_prior)->CorrPrior()); /* copy the covariance matrices -- no longer performed due to the economy argument in Gp/Base */ // Cov(e); return *this; } /* * ~Twovar: * * destructor */ Twovar::~Twovar(void) { if(xDISTx) delete_matrix(xDISTx); xDISTx = NULL; } /* * Init: * * initialise this corr function with the parameters provided * from R via the vector of doubles */ void Twovar::Init(double *dexp) { d = dexp[1]; NugInit(dexp[0], ! (bool) dexp[2]); } /* * Jitter: * * fill jitter[ ] with the variance inflation factor. That is, * the variance for an observation with covariates in the i'th * row of X will be s2*(1.0 + jitter[i]). In standard tgp, the * jitter is simply the nugget. But for calibration and mr tgp, * the jitter value depends upon X (eg real or simulated data). * */ double* Twovar::Jitter(unsigned int n1, double **X) { double *jitter = new_vector(n1); // for(unsigned int i=0; in); /* randomly reject 1/2 the time, to avoid having to do lots of matrix inversions -- as the nug mixes better than d already */ if(runi(state) > 0.5) return false; /* make the draw */ double nug_new = /* MODIFIED */ nug_draw_twovar(n, col, nug, F, Z, K, log_det_K, *lambda, Vb, K_new, Ki_new, Kchol_new, &log_det_K_new, &lambda_new, Vb_new, bmu_new, gp_prior->get_b0(), gp_prior->get_Ti(), gp_prior->get_T(), tau2, prior->NugAlpha(), prior->NugBeta(), gp_prior->s2Alpha(), gp_prior->s2Beta(), (int) linear, itemp, state); /* did we accept the draw? */ if(nug_new != nug) { nug = nug_new; success = true; swap_new(Vb, bmu, lambda); } return success; } /* * Update: (symmetric) * * compute correlation matrix K */ void Twovar::Update(unsigned int n, double **X) { if(linear) return; assert(this->n == n); /* if(!xDISTx || nd != n) { if(xDISTx) delete_matrix(xDISTx); xDISTx = new_matrix(n, n); nd = n; } dist_symm(xDISTx, dim, X, n, PWR); dist_to_K_symm(K, xDISTx, d, nug, n); */ id(K, n); for(unsigned int i=n/2; in); // inverse_chol(K, Ki, Kchol, n); id(Ki, n); for(unsigned i=n/2; i 0); // log_det_K = n * log(1.0 + nug); log_det_K = (n/2) * log(1.0) + (n/2) * log(1.0 + nug); } } /* * Draw: * * draw parameters for a new correlation matrix; * returns true if the correlation matrix (passed in) * has changed; otherwise returns false */ int Twovar::Draw(unsigned int n, double **F, double **X, double *Z, double *lambda, double **bmu, double **Vb, double tau2, double itemp, void *state) { int success = 0; /* double q_fwd , q_bak, d_new; */ #ifdef MODIFIED bool lin_new; /* sometimes skip this Draw for linear models for speed, and only draw the nugget */ if(linear && runi(state) > 0.5) return DrawNugs(n, X, F, Z, lambda, bmu, Vb, tau2, itemp, state); /* proppose linear or not */ if(prior->Linear()) lin_new = true; else { q_fwd = q_bak = 1.0; d_proposal(1, NULL, &d_new, &d, &q_fwd, &q_bak, state); if(prior->LLM()) lin_new = linear_rand(&d_new, 1, prior->GamLin(), state); else lin_new = false; } /* if not linear then compute new distances */ /* allocate K_new, Ki_new, Kchol_new */ if(! lin_new) { if(!xDISTx || nd != n) { if(xDISTx) delete_matrix(xDISTx); xDISTx = new_matrix(n, n); nd = n; } dist_symm(xDISTx, dim, X, n, PWR); allocate_new(n); assert(n == this->n); } /* d; rebuilding K, Ki, and marginal params, if necessary */ if(prior->Linear()) { d_new = d; success = 1; } else { Twovar_Prior* ep = (Twovar_Prior*) prior; Gp_Prior *gp_prior = (Gp_Prior*) base_prior; success = d_draw_margin(n, col, d_new, d, F, Z, xDISTx, log_det_K, *lambda, Vb, K_new, Ki_new, Kchol_new, &log_det_K_new, &lambda_new, Vb_new, bmu_new, gp_prior->get_b0(), gp_prior->get_Ti(), gp_prior->get_T(), tau2, nug, q_bak/q_fwd, ep->DAlpha(), ep->DBeta(), gp_prior->s2Alpha(), gp_prior->s2Beta(), (int) lin_new, itemp, state); } /* did we accept the new draw? */ if(success == 1) { d = d_new; linear = (bool) lin_new; swap_new(Vb, bmu, lambda); dreject = 0; } else if(success == -1) return success; else if(success == 0) dreject++; /* abort if we have had too many rejections */ if(dreject >= REJECTMAX) return -2; #endif /* draw nugget */ bool changed = DrawNugs(n, X, F, Z, lambda, bmu, Vb, tau2, itemp, state); success = success || changed; return success; } /* * Combine: * * used in tree-prune steps, chooses one of two * sets of parameters to correlation functions, * and choose one for "this" correlation function */ void Twovar::Combine(Corr *c1, Corr *c2, void *state) { get_delta_d((Twovar*)c1, (Twovar*)c2, state); CombineNug(c1, c2, state); } /* * Split: * * used in tree-grow steps, splits the parameters * of "this" correlation function into a parameterization * for two (new) correlation functions */ void Twovar::Split(Corr *c1, Corr *c2, void *state) { propose_new_d((Twovar*) c1, (Twovar*) c2, state); SplitNug(c1, c2, state); } /* * get_delta_d: * * compute d from two ds (used in prune) */ void Twovar::get_delta_d(Twovar* c1, Twovar* c2, void *state) { double dch[2]; int ii[2]; dch[0] = c1->d; dch[1] = c2->d; propose_indices(ii, 0.5, state); d = dch[ii[0]]; linear = linear_rand(&d, 1, prior->GamLin(), state); } /* * propose_new_d: * * propose new D parameters for possible * new children partitions. */ void Twovar::propose_new_d(Twovar* c1, Twovar* c2, void *state) { int i[2]; double dnew[2]; Twovar_Prior *ep = (Twovar_Prior*) prior; propose_indices(i, 0.5, state); dnew[i[0]] = d; if(prior->Linear()) dnew[i[1]] = d; else dnew[i[1]] = d_prior_rand(ep->DAlpha(), ep->DBeta(), state); c1->d = dnew[0]; c2->d = dnew[1]; c1->linear = (bool) linear_rand(&(dnew[0]), 1, prior->GamLin(), state); c2->linear = (bool) linear_rand(&(dnew[1]), 1, prior->GamLin(), state); } /* * State: * * return a string depecting the state * of the (parameters of) correlation function */ char* Twovar::State(unsigned int which) { char buffer[BUFFMAX]; #ifdef PRINTNUG string s = "(d="; #else string s = ""; if(which == 0) s.append("d="); #endif if(linear) snprintf(buffer, BUFFMAX, "0(%g)", d); else snprintf(buffer, BUFFMAX, "%g", d); s.append(buffer); #ifdef PRINTNUG snprintf(buffer, BUFFMAX, ", g=%g)", nug); s.append(buffer); #endif char* ret_str = (char*) malloc(sizeof(char) * (s.length()+1)); strncpy(ret_str, s.c_str(), s.length()); ret_str[s.length()] = '\0'; return ret_str; } /* * sum_b: * * return 1 if linear, 0 otherwise */ unsigned int Twovar::sum_b(void) { if(linear) return 1; else return 0; } /* * ToggleLinear: * * make linear if not linear, otherwise * make not linear */ void Twovar::ToggleLinear(void) { if(linear) { linear = false; } else { linear = true; } } /* * D: * * return the range parameter */ double Twovar::D(void) { return d; } /* * log_Prior: * * compute the (log) prior for the parameters to * the correlation function (e.g. d and nug) */ double Twovar::log_Prior(void) { /* double prob = ((Corr*)this)->log_NugPrior(); MODIFIED */ double prob = ((Twovar_Prior*) prior)->log_NugPrior(nug); prob += ((Twovar_Prior*) prior)->log_Prior(d, linear); return prob; } /* * TraceNames: * * return the names of the parameters recorded in Twovar::Trace() */ char** Twovar::TraceNames(unsigned int* len) { *len = 4; char **trace = (char**) malloc(sizeof(char*) * (*len)); trace[0] = strdup("nug"); trace[1] = strdup("d"); trace[2] = strdup("b"); /* determinant of K */ trace[3] = strdup("ldetK"); return trace; } /* * Trace: * * return the current values of the parameters * to this correlation function: nug, d, then linear */ double* Twovar::Trace(unsigned int* len) { *len = 4; double *trace = new_vector(*len); trace[0] = nug; trace[1] = d; trace[2] = (double) !linear; /* determinant of K */ trace[3] = log_det_K; return trace; } /* * newCorr: * * construct and return a new isotropic exponential correlation * function with this module governing its prior parameterization */ Corr* Twovar_Prior::newCorr(void) { return new Twovar(dim, base_prior); } /* * Twovar_Prior: * * constructor for the prior distribution for * the exponential correlation function */ Twovar_Prior::Twovar_Prior(unsigned int dim) : Corr_Prior(dim) { corr_model = EXP; /* defaults */ d = 0.5; default_d_priors(); default_d_lambdas(); } /* * Init: * * read hiererchial prior parameters from a double-vector * */ void Twovar_Prior::Init(double *dhier) { d_alpha[0] = dhier[0]; d_beta[0] = dhier[1]; d_alpha[1] = dhier[2]; d_beta[1] = dhier[3]; NugInit(&(dhier[4])); } /* * Dup: * * duplicate this prior for the isotropic exponential * power family */ Corr_Prior* Twovar_Prior::Dup(void) { return new Twovar_Prior(this); } /* * Twovar_Prior (new duplicate) * * duplicating constructor for the prior distribution for * the exponential correlation function */ Twovar_Prior::Twovar_Prior(Corr_Prior *c) : Corr_Prior(c) { Twovar_Prior *e = (Twovar_Prior*) c; assert(e->corr_model == EXP); corr_model = e->corr_model; dupv(gamlin, e->gamlin, 3); d = e->d; fix_d = e->fix_d; dupv(d_alpha, e->d_alpha, 2); dupv(d_beta, e->d_beta, 2); dupv(d_alpha_lambda, e->d_alpha_lambda, 2); dupv(d_beta_lambda, e->d_beta_lambda, 2); } /* * ~Twovar_Prior: * * destructor the the prior distribution for * the exponential correlation function */ Twovar_Prior::~Twovar_Prior(void) { } /* * read_double: * * read prior parameterization from a vector of doubles * passed in from R */ void Twovar_Prior::read_double(double *dparams) { /* read the parameters that have to do with the * nugget first */ read_double_nug(dparams); /* starting value for the range parameter */ d = dparams[1]; //MYprintf(MYstdout, "starting d=%g\n", d); /* reset dparams to start after the nugget gamlin params */ dparams += 13; /* initial parameter settings for alpha and beta */ get_mix_prior_params_double(d_alpha, d_beta, &(dparams[0]), "d"); dparams += 4; /* reset */ /* d hierarchical lambda prior parameters */ if((int) dparams[0] == -1) { fix_d = true; /*MYprintf(MYstdout, "fixing d prior\n");*/ } else { fix_d = false; get_mix_prior_params_double(d_alpha_lambda, d_beta_lambda, &(dparams[0]), "d lambda"); } dparams += 4; /* reset */ } /* * read_ctrlfile: * * read prior parameterization from a control file */ void Twovar_Prior::read_ctrlfile(ifstream *ctrlfile) { char line[BUFFMAX], line_copy[BUFFMAX]; /* read the parameters that have to do with the * nugget first */ read_ctrlfile_nug(ctrlfile); /* read the d parameter from the control file */ ctrlfile->getline(line, BUFFMAX); d = atof(strtok(line, " \t\n#")); MYprintf(MYstdout, "starting d=%g\n", d); /* read d and nug-hierarchical parameters (mix of gammas) */ ctrlfile->getline(line, BUFFMAX); get_mix_prior_params(d_alpha, d_beta, line, "d"); /* d hierarchical lambda prior parameters */ ctrlfile->getline(line, BUFFMAX); strcpy(line_copy, line); if(!strcmp("fixed", strtok(line_copy, " \t\n#"))) { fix_d = true; MYprintf(MYstdout, "fixing d prior\n"); } else { fix_d = false; get_mix_prior_params(d_alpha_lambda, d_beta_lambda, line, "d lambda"); } } /* * default_d_priors: * * set d prior parameters * to default values */ void Twovar_Prior::default_d_priors(void) { d_alpha[0] = 1.0; d_beta[0] = 20.0; d_alpha[1] = 10.0; d_beta[1] = 10.0; } /* * default_d_lambdas: * * set d (lambda) hierarchical prior parameters * to default values */ void Twovar_Prior::default_d_lambdas(void) { d_alpha_lambda[0] = 1.0; d_beta_lambda[0] = 10.0; d_alpha_lambda[1] = 1.0; d_beta_lambda[1] = 10.0; fix_d = false; //fix_d = true; } /* * D: * * return the default range parameter setting * for the exponential correllation function */ double Twovar_Prior::D(void) { return d; } /* * DAlpha: * * return the alpha prior parameter setting to the gamma * distribution prior for the range parameter */ double* Twovar_Prior::DAlpha(void) { return d_alpha; } /* * DBeta: * * return the beta prior parameter setting to the gamma * distribution prior for the range parameter */ double* Twovar_Prior::DBeta(void) { return d_beta; } /* * Draw: * * draws for the hierarchical priors for the Twovar * correlation function which are * contained in the params module */ void Twovar_Prior::Draw(Corr **corr, unsigned int howmany, void *state) { if(!fix_d) { double *d = new_vector(howmany); for(unsigned int i=0; iD(); mixture_priors_draw(d_alpha, d_beta, d, howmany, d_alpha_lambda, d_beta_lambda, state); free(d); } /* hierarchical prior draws for the nugget */ DrawNugHier(corr, howmany, state); } /* * log_Prior: * * compute the (log) prior for the parameters to * the correlation function (e.g. d and nug) : does * not include priors of hierarchical params. See * log_HierPrior, below */ double Twovar_Prior::log_Prior(double d, bool linear) { double prob = 0; /* force linear model */ if(gamlin[0] < 0) return prob; /* force gp model */ prob += log_d_prior_pdf(d, d_alpha, d_beta); if(gamlin[0] <= 0) return prob; /* using 1.0, because of 1.0 - lin_pdf, and will adjust later */ double lin_pdf = linear_pdf(&d, 1, gamlin); if(linear) prob += log(lin_pdf); else prob += log(1.0-lin_pdf); /* return the log pdf */ return prob; } /* * log_Prior: * * compute the (log) prior for the parameters to * the correlation function (nug) : does * not include priors of hierarchical params. See * log_HierPrior, below */ double Twovar_Prior::log_NugPrior(double nug) { return ((Corr_Prior*)this)->log_NugPrior(nug + 1.0 + NUGMIN); } /* * BasePrior: * * return the prior for the Base (eg Gp) model */ Base_Prior* Twovar_Prior::BasePrior(void) { return base_prior; } /* * SetBasePrior: * * set the base_prior field */ void Twovar_Prior::SetBasePrior(Base_Prior *base_prior) { this->base_prior = base_prior; } /* * Print: * * pretty print the correllation function parameters out * to a file */ void Twovar_Prior::Print(FILE *outfile) { MYprintf(MYstdout, "corr prior: isotropic power\n"); /* print nugget stuff first */ PrintNug(outfile); /* range parameter */ // MYprintf(outfile, "starting d=%g\n", d); /* range gamma prior */ MYprintf(outfile, "d[a,b][0,1]=[%g,%g],[%g,%g]\n", d_alpha[0], d_beta[0], d_alpha[1], d_beta[1]); /* range gamma hyperprior */ if(fix_d) MYprintf(outfile, "d prior fixed\n"); else { MYprintf(MYstdout, "d lambda[a,b][0,1]=[%g,%g],[%g,%g]\n", d_alpha_lambda[0], d_beta_lambda[0], d_alpha_lambda[1], d_beta_lambda[1]); } } /* * log_HierPrior: * * return the log prior of the hierarchial parameters * to the correllation parameters (i.e., range and nugget) */ double Twovar_Prior::log_HierPrior(void) { double lpdf; lpdf = 0.0; /* mixture prior for the range parameter, d */ if(!fix_d) { lpdf += mixture_hier_prior_log(d_alpha, d_beta, d_alpha_lambda, d_beta_lambda); } /* mixture prior for the nugget */ lpdf += log_NugHierPrior(); return lpdf; } /* * Trace: * * return the current values of the hierarchical * parameters to this correlation function: * nug(alpha,beta), d(alpha,beta), then linear */ double* Twovar_Prior::Trace(unsigned int* len) { /* first get the hierarchical nug parameters */ unsigned int clen; double *c = NugTrace(&clen); /* calculate and allocate the new trace, which will include the nug trace */ *len = 4; double* trace = new_vector(clen + *len); trace[0] = d_alpha[0]; trace[1] = d_beta[0]; trace[2] = d_alpha[1]; trace[3] = d_beta[1]; /* then copy in the nug trace */ dupv(&(trace[*len]), c, clen); /* new combined length, and free c */ *len += clen; if(c) free(c); else assert(clen == 0); return trace; } /* * TraceNames: * * return the names of the traces recorded in Twovar_Prior::Trace() */ char** Twovar_Prior::TraceNames(unsigned int* len) { /* first get the hierarchical nug parameters */ unsigned int clen; char **c = NugTraceNames(&clen); /* calculate and allocate the new trace, which will include the nug trace */ *len = 4; char** trace = (char**) malloc(sizeof(char*) * (clen + *len)); trace[0] = strdup("d.a0"); trace[1] = strdup("d.g0"); trace[2] = strdup("d.a1"); trace[3] = strdup("d.g1"); /* then copy in the nug trace */ for(unsigned int i=0; i #include #include #include #include #include using namespace std; #define BUFFMAX 256 #define PWR 2.0 /* * Exp: * * constructor function */ Exp::Exp(unsigned int dim, Base_Prior *base_prior) : Corr(dim, base_prior) { assert(base_prior->BaseModel() == GP); prior = ((Gp_Prior*) base_prior)->CorrPrior(); assert(prior); nug = prior->Nug(); /* check if we should really be starting in the LLM */ if(!prior->Linear() && !prior->LLM()) linear = false; assert( ((Gp_Prior*) base_prior)->CorrPrior()->CorrModel() == EXP); d = ((Exp_Prior*) prior)->D(); xDISTx = NULL; nd = 0; dreject = 0; } /* * Exp (assignment operator): * * used to assign the parameters of one correlation * function to anothers. Both correlation functions * must already have been allocated. */ Corr& Exp::operator=(const Corr &c) { Exp *e = (Exp*) &c; log_det_K = e->log_det_K; linear = e->linear; d = e->d; nug = e->nug; dreject = e->dreject; assert(prior->CorrModel() == EXP); assert(prior == ((Gp_Prior*) base_prior)->CorrPrior()); /* copy the covariance matrices -- no longer performed due to the economy argument in Gp/Base */ // Cov(e); return *this; } /* * ~Exp: * * destructor */ Exp::~Exp(void) { if(xDISTx) delete_matrix(xDISTx); xDISTx = NULL; } /* * Init: * * initialise this corr function with the parameters provided * from R via the vector of doubles */ void Exp::Init(double *dexp) { d = dexp[1]; NugInit(dexp[0], ! (bool) dexp[2]); } /* * Jitter: * * fill jitter[ ] with the variance inflation factor. That is, * the variance for an observation with covariates in the i'th * row of X will be s2*(1.0 + jitter[i]). In standard tgp, the * jitter is simply the nugget. But for calibration and mr tgp, * the jitter value depends upon X (eg real or simulated data). * */ double* Exp::Jitter(unsigned int n1, double **X) { double *jitter = new_vector(n1); for(unsigned int i=0; in); /* randomly reject 1/2 the time, to avoid having to do lots of matrix inversions -- as the nug mixes better than d already */ if(runi(state) > 0.5) return false; /* make the draw */ double nug_new = nug_draw_margin(n, col, nug, F, Z, K, log_det_K, *lambda, Vb, K_new, Ki_new, Kchol_new, &log_det_K_new, &lambda_new, Vb_new, bmu_new, gp_prior->get_b0(), gp_prior->get_Ti(), gp_prior->get_T(), tau2, prior->NugAlpha(), prior->NugBeta(), gp_prior->s2Alpha(), gp_prior->s2Beta(), (int) linear, itemp, state); /* did we accept the draw? */ if(nug_new != nug) { nug = nug_new; success = true; swap_new(Vb, bmu, lambda); } return success; } /* * Update: (symmetric) * * compute correlation matrix K */ void Exp::Update(unsigned int n, double **X) { if(linear) return; assert(this->n == n); if(!xDISTx || nd != n) { if(xDISTx) delete_matrix(xDISTx); xDISTx = new_matrix(n, n); nd = n; } dist_symm(xDISTx, dim, X, n, PWR); dist_to_K_symm(K, xDISTx, d, nug, n); //delete_matrix(xDISTx); } /* * Update: (symmetric) * * takes in a (symmetric) distance matrix and * returns a correlation matrix */ void Exp::Update(unsigned int n, double **K, double **X) { double ** xDISTx = new_matrix(n, n); dist_symm(xDISTx, dim, X, n, PWR); dist_to_K_symm(K, xDISTx, d, nug, n); delete_matrix(xDISTx); } /* * Update: (non-symmetric) * * takes in a distance matrix and * returns a correlation matrix */ void Exp::Update(unsigned int n1, unsigned int n2, double **K, double **X, double **XX) { double **xxDISTx = new_matrix(n2, n1); dist(xxDISTx, dim, XX, n1, X, n2, PWR); dist_to_K(K, xxDISTx, d, 0.0, n1, n2); delete_matrix(xxDISTx); } /* * Draw: * * draw parameters for a new correlation matrix; * returns true if the correlation matrix (passed in) * has changed; otherwise returns false */ int Exp::Draw(unsigned int n, double **F, double **X, double *Z, double *lambda, double **bmu, double **Vb, double tau2, double itemp, void *state) { int success = 0; bool lin_new; double q_fwd , q_bak, d_new; /* sometimes skip this Draw for linear models for speed, and only draw the nugget */ if(linear && runi(state) > 0.5) return DrawNugs(n, X, F, Z, lambda, bmu, Vb, tau2, itemp, state); /* proppose linear or not */ if(prior->Linear()) lin_new = true; else { q_fwd = q_bak = 1.0; d_proposal(1, NULL, &d_new, &d, &q_fwd, &q_bak, state); if(prior->LLM()) lin_new = linear_rand(&d_new, 1, prior->GamLin(), state); else lin_new = false; } /* if not linear then compute new distances */ /* allocate K_new, Ki_new, Kchol_new */ if(! lin_new) { if(!xDISTx || nd != n) { if(xDISTx) delete_matrix(xDISTx); xDISTx = new_matrix(n, n); nd = n; } dist_symm(xDISTx, dim, X, n, PWR); allocate_new(n); assert(n == this->n); } /* d; rebuilding K, Ki, and marginal params, if necessary */ if(prior->Linear()) { d_new = d; success = 1; } else { Exp_Prior* ep = (Exp_Prior*) prior; Gp_Prior *gp_prior = (Gp_Prior*) base_prior; success = d_draw_margin(n, col, d_new, d, F, Z, xDISTx, log_det_K, *lambda, Vb, K_new, Ki_new, Kchol_new, &log_det_K_new, &lambda_new, Vb_new, bmu_new, gp_prior->get_b0(), gp_prior->get_Ti(), gp_prior->get_T(), tau2, nug, q_bak/q_fwd, ep->DAlpha(), ep->DBeta(), gp_prior->s2Alpha(), gp_prior->s2Beta(), (int) lin_new, itemp, state); } /* did we accept the new draw? */ if(success == 1) { d = d_new; linear = (bool) lin_new; swap_new(Vb, bmu, lambda); dreject = 0; } else if(success == -1) return success; else if(success == 0) dreject++; /* abort if we have had too many rejections */ if(dreject >= REJECTMAX) return -2; /* draw nugget */ bool changed = DrawNugs(n, X, F, Z, lambda, bmu, Vb, tau2, itemp, state); success = success || changed; return success; } /* * Combine: * * used in tree-prune steps, chooses one of two * sets of parameters to correlation functions, * and choose one for "this" correlation function */ void Exp::Combine(Corr *c1, Corr *c2, void *state) { get_delta_d((Exp*)c1, (Exp*)c2, state); CombineNug(c1, c2, state); } /* * Split: * * used in tree-grow steps, splits the parameters * of "this" correlation function into a parameterization * for two (new) correlation functions */ void Exp::Split(Corr *c1, Corr *c2, void *state) { propose_new_d((Exp*) c1, (Exp*) c2, state); SplitNug(c1, c2, state); } /* * get_delta_d: * * compute d from two ds (used in prune) */ void Exp::get_delta_d(Exp* c1, Exp* c2, void *state) { double dch[2]; int ii[2]; dch[0] = c1->d; dch[1] = c2->d; propose_indices(ii, 0.5, state); d = dch[ii[0]]; linear = linear_rand(&d, 1, prior->GamLin(), state); } /* * propose_new_d: * * propose new D parameters for possible * new children partitions. */ void Exp::propose_new_d(Exp* c1, Exp* c2, void *state) { int i[2]; double dnew[2]; Exp_Prior *ep = (Exp_Prior*) prior; propose_indices(i, 0.5, state); dnew[i[0]] = d; if(prior->Linear()) dnew[i[1]] = d; else dnew[i[1]] = d_prior_rand(ep->DAlpha(), ep->DBeta(), state); c1->d = dnew[0]; c2->d = dnew[1]; c1->linear = (bool) linear_rand(&(dnew[0]), 1, prior->GamLin(), state); c2->linear = (bool) linear_rand(&(dnew[1]), 1, prior->GamLin(), state); } /* * State: * * return a string depecting the state * of the (parameters of) correlation function */ char* Exp::State(unsigned int which) { char buffer[BUFFMAX]; #ifdef PRINTNUG string s = "(d="; #else string s = ""; if(which == 0) s.append("d="); #endif if(linear) snprintf(buffer, BUFFMAX, "0(%g)", d); else snprintf(buffer, BUFFMAX, "%g", d); s.append(buffer); #ifdef PRINTNUG snprintf(buffer, BUFFMAX, ", g=%g)", nug); s.append(buffer); #endif char* ret_str = (char*) malloc(sizeof(char) * (s.length()+1)); strncpy(ret_str, s.c_str(), s.length()); ret_str[s.length()] = '\0'; return ret_str; } /* * sum_b: * * return 1 if linear, 0 otherwise */ unsigned int Exp::sum_b(void) { if(linear) return 1; else return 0; } /* * ToggleLinear: * * make linear if not linear, otherwise * make not linear */ void Exp::ToggleLinear(void) { if(linear) { linear = false; } else { linear = true; } } /* * D: * * return the range parameter */ double Exp::D(void) { return d; } /* * log_Prior: * * compute the (log) prior for the parameters to * the correlation function (e.g. d and nug) */ double Exp::log_Prior(void) { double prob = ((Corr*)this)->log_NugPrior(); prob += ((Exp_Prior*) prior)->log_Prior(d, linear); return prob; } /* * TraceNames: * * return the names of the parameters recorded in Exp::Trace() */ char** Exp::TraceNames(unsigned int* len) { *len = 4; char **trace = (char**) malloc(sizeof(char*) * (*len)); trace[0] = strdup("nug"); trace[1] = strdup("d"); trace[2] = strdup("b"); /* determinant of K */ trace[3] = strdup("ldetK"); return trace; } /* * Trace: * * return the current values of the parameters * to this correlation function: nug, d, then linear */ double* Exp::Trace(unsigned int* len) { *len = 4; double *trace = new_vector(*len); trace[0] = nug; trace[1] = d; trace[2] = (double) !linear; /* determinant of K */ trace[3] = log_det_K; return trace; } void Exp::Invert(unsigned int n) { if(! linear) { assert(n == this->n); inverse_chol(K, Ki, Kchol, n); log_det_K = log_determinant_chol(Kchol, n); } else { assert(n > 0); log_det_K = n * log(1.0 + nug); } } /* * newCorr: * * construct and return a new isotropic exponential correlation * function with this module governing its prior parameterization */ Corr* Exp_Prior::newCorr(void) { return new Exp(dim, base_prior); } /* * Exp_Prior: * * constructor for the prior distribution for * the exponential correlation function */ Exp_Prior::Exp_Prior(unsigned int dim) : Corr_Prior(dim) { corr_model = EXP; /* defaults */ d = 0.5; default_d_priors(); default_d_lambdas(); } /* * Init: * * read hiererchial prior parameters from a double-vector * */ void Exp_Prior::Init(double *dhier) { d_alpha[0] = dhier[0]; d_beta[0] = dhier[1]; d_alpha[1] = dhier[2]; d_beta[1] = dhier[3]; NugInit(&(dhier[4])); } /* * Dup: * * duplicate this prior for the isotropic exponential * power family */ Corr_Prior* Exp_Prior::Dup(void) { return new Exp_Prior(this); } /* * Exp_Prior (new duplicate) * * duplicating constructor for the prior distribution for * the exponential correlation function */ Exp_Prior::Exp_Prior(Corr_Prior *c) : Corr_Prior(c) { Exp_Prior *e = (Exp_Prior*) c; assert(e->corr_model == EXP); corr_model = e->corr_model; dupv(gamlin, e->gamlin, 3); d = e->d; fix_d = e->fix_d; dupv(d_alpha, e->d_alpha, 2); dupv(d_beta, e->d_beta, 2); dupv(d_alpha_lambda, e->d_alpha_lambda, 2); dupv(d_beta_lambda, e->d_beta_lambda, 2); } /* * ~Exp_Prior: * * destructor the the prior distribution for * the exponential correlation function */ Exp_Prior::~Exp_Prior(void) { } /* * read_double: * * read prior parameterization from a vector of doubles * passed in from R */ void Exp_Prior::read_double(double *dparams) { /* read the parameters that have to do with the * nugget first */ read_double_nug(dparams); /* starting value for the range parameter */ d = dparams[1]; //MYprintf(MYstdout, "starting d=%g\n", d); /* reset dparams to start after the nugget gamlin params */ dparams += 13; /* initial parameter settings for alpha and beta */ get_mix_prior_params_double(d_alpha, d_beta, &(dparams[0]), "d"); dparams += 4; /* reset */ /* d hierarchical lambda prior parameters */ if((int) dparams[0] == -1) { fix_d = true; /*MYprintf(MYstdout, "fixing d prior\n");*/ } else { fix_d = false; get_mix_prior_params_double(d_alpha_lambda, d_beta_lambda, &(dparams[0]), "d lambda"); } dparams += 4; /* reset */ } /* * read_ctrlfile: * * read prior parameterization from a control file */ void Exp_Prior::read_ctrlfile(ifstream *ctrlfile) { char line[BUFFMAX], line_copy[BUFFMAX]; /* read the parameters that have to do with the * nugget first */ read_ctrlfile_nug(ctrlfile); /* read the d parameter from the control file */ ctrlfile->getline(line, BUFFMAX); d = atof(strtok(line, " \t\n#")); MYprintf(MYstdout, "starting d=%g\n", d); /* read d and nug-hierarchical parameters (mix of gammas) */ ctrlfile->getline(line, BUFFMAX); get_mix_prior_params(d_alpha, d_beta, line, "d"); /* d hierarchical lambda prior parameters */ ctrlfile->getline(line, BUFFMAX); strcpy(line_copy, line); if(!strcmp("fixed", strtok(line_copy, " \t\n#"))) { fix_d = true; MYprintf(MYstdout, "fixing d prior\n"); } else { fix_d = false; get_mix_prior_params(d_alpha_lambda, d_beta_lambda, line, "d lambda"); } } /* * default_d_priors: * * set d prior parameters * to default values */ void Exp_Prior::default_d_priors(void) { d_alpha[0] = 1.0; d_beta[0] = 20.0; d_alpha[1] = 10.0; d_beta[1] = 10.0; } /* * default_d_lambdas: * * set d (lambda) hierarchical prior parameters * to default values */ void Exp_Prior::default_d_lambdas(void) { d_alpha_lambda[0] = 1.0; d_beta_lambda[0] = 10.0; d_alpha_lambda[1] = 1.0; d_beta_lambda[1] = 10.0; fix_d = false; //fix_d = true; } /* * D: * * return the default range parameter setting * for the exponential correllation function */ double Exp_Prior::D(void) { return d; } /* * DAlpha: * * return the alpha prior parameter setting to the gamma * distribution prior for the range parameter */ double* Exp_Prior::DAlpha(void) { return d_alpha; } /* * DBeta: * * return the beta prior parameter setting to the gamma * distribution prior for the range parameter */ double* Exp_Prior::DBeta(void) { return d_beta; } /* * Draw: * * draws for the hierarchical priors for the Exp * correlation function which are * contained in the params module */ void Exp_Prior::Draw(Corr **corr, unsigned int howmany, void *state) { if(!fix_d) { double *d = new_vector(howmany); for(unsigned int i=0; iD(); mixture_priors_draw(d_alpha, d_beta, d, howmany, d_alpha_lambda, d_beta_lambda, state); free(d); } /* hierarchical prior draws for the nugget */ DrawNugHier(corr, howmany, state); } /* * log_Prior: * * compute the (log) prior for the parameters to * the correlation function (e.g. d and nug) : does * not include priors of hierarchical params. See * log_HierPrior, below */ double Exp_Prior::log_Prior(double d, bool linear) { double prob = 0; /* force linear model */ if(gamlin[0] < 0) return prob; /* force gp model */ prob += log_d_prior_pdf(d, d_alpha, d_beta); if(gamlin[0] <= 0) return prob; /* using 1.0, because of 1.0 - lin_pdf, and will adjust later */ double lin_pdf = linear_pdf(&d, 1, gamlin); if(linear) prob += log(lin_pdf); else prob += log(1.0-lin_pdf); /* return the log pdf */ return prob; } /* * BasePrior: * * return the prior for the Base (eg Gp) model */ Base_Prior* Exp_Prior::BasePrior(void) { return base_prior; } /* * SetBasePrior: * * set the base_prior field */ void Exp_Prior::SetBasePrior(Base_Prior *base_prior) { this->base_prior = base_prior; } /* * Print: * * pretty print the correllation function parameters out * to a file */ void Exp_Prior::Print(FILE *outfile) { MYprintf(MYstdout, "corr prior: isotropic power\n"); /* print nugget stuff first */ PrintNug(outfile); /* range parameter */ // MYprintf(outfile, "starting d=%g\n", d); /* range gamma prior */ MYprintf(outfile, "d[a,b][0,1]=[%g,%g],[%g,%g]\n", d_alpha[0], d_beta[0], d_alpha[1], d_beta[1]); /* range gamma hyperprior */ if(fix_d) MYprintf(outfile, "d prior fixed\n"); else { MYprintf(MYstdout, "d lambda[a,b][0,1]=[%g,%g],[%g,%g]\n", d_alpha_lambda[0], d_beta_lambda[0], d_alpha_lambda[1], d_beta_lambda[1]); } } /* * log_HierPrior: * * return the log prior of the hierarchial parameters * to the correllation parameters (i.e., range and nugget) */ double Exp_Prior::log_HierPrior(void) { double lpdf; lpdf = 0.0; /* mixture prior for the range parameter, d */ if(!fix_d) { lpdf += mixture_hier_prior_log(d_alpha, d_beta, d_alpha_lambda, d_beta_lambda); } /* mixture prior for the nugget */ lpdf += log_NugHierPrior(); return lpdf; } /* * Trace: * * return the current values of the hierarchical * parameters to this correlation function: * nug(alpha,beta), d(alpha,beta), then linear */ double* Exp_Prior::Trace(unsigned int* len) { /* first get the hierarchical nug parameters */ unsigned int clen; double *c = NugTrace(&clen); /* calculate and allocate the new trace, which will include the nug trace */ *len = 4; double* trace = new_vector(clen + *len); trace[0] = d_alpha[0]; trace[1] = d_beta[0]; trace[2] = d_alpha[1]; trace[3] = d_beta[1]; /* then copy in the nug trace */ dupv(&(trace[*len]), c, clen); /* new combined length, and free c */ *len += clen; if(c) free(c); else assert(clen == 0); return trace; } /* * TraceNames: * * return the names of the traces recorded in Exp_Prior::Trace() */ char** Exp_Prior::TraceNames(unsigned int* len) { /* first get the hierarchical nug parameters */ unsigned int clen; char **c = NugTraceNames(&clen); /* calculate and allocate the new trace, which will include the nug trace */ *len = 4; char** trace = (char**) malloc(sizeof(char*) * (clen + *len)); trace[0] = strdup("d.a0"); trace[1] = strdup("d.g0"); trace[2] = strdup("d.a1"); trace[3] = strdup("d.g1"); /* then copy in the nug trace */ for(unsigned int i=0; i #include #include #include #include #include using namespace std; #define BUFFMAX 256 #define PWR 2.0 /* * Sim: * * constructor function */ Sim::Sim(unsigned int dim, Base_Prior *base_prior) : Corr(dim, base_prior) { /* Sanity Checks */ assert(base_prior->BaseModel() == GP); assert( ((Gp_Prior*) base_prior)->CorrPrior()->CorrModel() == SIM); /* set pointer to correllation prior from the base prior */ prior = ((Gp_Prior*) base_prior)->CorrPrior(); assert(prior); /* no LLM for sim covariance */ assert(!prior->Linear() && !prior->LLM()); linear = false; /* let the prior choose the starting nugget value */ nug = prior->Nug(); /* allocate and initialize (from prior) the range params */ d = new_dup_vector(((Sim_Prior*)prior)->D(), dim); /* counter of the number of d-rejections in a row */ dreject = 0; } /* * Sim (assignment operator): * * used to assign the parameters of one correlation * function to anothers. Both correlation functions * must already have been allocated */ Corr& Sim::operator=(const Corr &c) { Sim *e = (Sim*) &c; /* sanity check */ assert(prior == ((Gp_Prior*) base_prior)->CorrPrior()); /* copy everything */ log_det_K = e->log_det_K; linear = e->linear; dupv(d, e->d, dim); nug = e->nug; dreject = e->dreject; return *this; } /* * ~Sim: * * destructor */ Sim::~Sim(void) { free(d); } /* * Init: * * initialise this corr function with the parameters provided * from R via the vector of doubles */ void Sim::Init(double *dsim) { dupv(d, &(dsim[1]), dim); NugInit(dsim[0], false); } /* * Jitter: * * fill jitter[ ] with the variance inflation factor. That is, * the variance for an observation with covariates in the i'th * row of X will be s2*(1.0 + jitter[i]). In standard tgp, the * jitter is simply the nugget. But for calibration and mr tgp, * the jitter value depends upon X (eg real or simulated data). * */ double* Sim::Jitter(unsigned int n1, double **X) { double *jitter = new_vector(n1); for(unsigned int i=0; in); /* with probability 0.5, skip drawing the nugget */ double ru = runi(state); if(ru > 0.5) return false; /* make the draw */ double nug_new = nug_draw_margin(n, col, nug, F, Z, K, log_det_K, *lambda, Vb, K_new, Ki_new, Kchol_new, &log_det_K_new, &lambda_new, Vb_new, bmu_new, gp_prior->get_b0(), gp_prior->get_Ti(), gp_prior->get_T(), tau2, prior->NugAlpha(), prior->NugBeta(), gp_prior->s2Alpha(), gp_prior->s2Beta(), (int) linear, itemp, state); /* did we accept the draw? */ if(nug_new != nug) { nug = nug_new; success = true; swap_new(Vb, bmu, lambda); } return success; } /* * Update: (symmetric) * * takes in a (symmetric) distance matrix and * returns a correlation matrix (INCLUDES NUGGET) */ void Sim::Update(unsigned int n, double **K, double **X) { sim_corr_symm(K, dim, X, n, d, nug, PWR); } /* * Update: (symmetric) * * computes the internal correlation matrix K * (INCLUDES NUGGET) */ void Sim::Update(unsigned int n, double **X) { /* sanity checks */ assert(!linear); assert(this->n == n); /* compute K */ sim_corr_symm(K, dim, X, n, d, nug, PWR); } /* * Update: (non-symmetric) * * takes in a distance matrix and returns a * correlation matrix (DOES NOT INCLUDE NUGGET) */ void Sim::Update(unsigned int n1, unsigned int n2, double **K, double **X, double **XX) { sim_corr(K, dim, XX, n1, X, n2, d, PWR); } /* * propose_new_d: * * propose new d values. */ /* extern "C" { double orthant_miwa(int m, double *mu, double **Rho, int log2G, int conesonly, int *nconep); #define _orthant_miwa orthant_miwa } */ /* use code from Peter Craig: gridcalc.c orschm.c, orthant.c/h with minor modifications to get to compile */ void Sim::propose_new_d(double* d_new, double *q_fwd, double *q_bak, void *state) { /* pointer to sim prior */ Sim_Prior* sp = (Sim_Prior*) prior; /* calculate old signs */ /* double *signs = new_zero_vector(dim); for(unsigned int i=0; i 0) signs[i] = 1.0; else signs[i] = -1.0; } */ /* calculate probability of old signs */ /* double **P = new_zero_matrix(dim, dim); linalg_dgemm(CblasNoTrans,CblasNoTrans,dim,dim,1, 1.0,&signs,dim,&signs,1,0.0,P,dim); double **RhoP = new_dup_matrix(sp->DpRho(), dim, dim); for(unsigned int i=0; iDpCov_chol(), dim, state); *q_fwd = *q_bak = 1.0; /* random signs from same MVN */ /* mvnrnd(signs, NULL, sp->DpCov_chol(), dim, state); for(unsigned int i=0; i 0) signs[i] = 1.0; else signs[i] = -1.0; d_new[i] = signs[i] * fabs(d_new[i]); } */ /* calculate probability of proposed signs */ /* linalg_dgemm(CblasNoTrans,CblasNoTrans,dim,dim,1, 1.0,&signs,dim,&signs,1,0.0,P,dim); dup_matrix(RhoP, sp->DpRho(), dim, dim); for(unsigned int i=0; ilog_DPrior_pdf(d_new); pRatio_log -= ep->log_DPrior_pdf(d); /* MH acceptance ratio for the draw */ success = d_sim_draw_margin(d_new, n, dim, col, F, X, Z, log_det_K,*lambda, Vb, K_new, Ki_new, Kchol_new, &log_det_K_new, &lambda_new, Vb_new, bmu_new, gp_prior->get_b0(), gp_prior->get_Ti(), gp_prior->get_T(), tau2, nug, qRatio, pRatio_log, gp_prior->s2Alpha(), gp_prior->s2Beta(), itemp, state); /* see if the draw was accepted; if so, we need to copy (or swap) the contents of the new into the old */ if(success == 1) { swap_vector(&d, &d_new); swap_new(Vb, bmu, lambda); } /* iclean up */ free(d_new); /* something went wrong, abort; otherwise keep track of the number of d-rejections in a row */ if(success == -1) return success; else if(success == 0) dreject++; else dreject = 0; /* abort if we have had too many rejections */ if(dreject >= REJECTMAX) return -2; /* draw nugget */ bool changed = DrawNugs(n, X, F, Z, lambda, bmu, Vb, tau2, itemp, state); success = success || changed; return success; } /* * Combine: * * used in tree-prune steps, chooses one of two * sets of parameters to correlation functions, * and choose one for "this" correlation function */ void Sim::Combine(Corr *c1, Corr *c2, void *state) { get_delta_d((Sim*)c1, (Sim*)c2, state); CombineNug(c1, c2, state); } /* * Split: * * used in tree-grow steps, splits the parameters * of "this" correlation function into a parameterization * for two (new) correlation functions */ void Sim::Split(Corr *c1, Corr *c2, void *state) { propose_new_d((Sim*) c1, (Sim*) c2, state); SplitNug(c1, c2, state); } /* * get_delta_d: * * compute d from two ds residing in c1 and c2 * and sample b conditional on the chosen d * * (used in prune) */ void Sim::get_delta_d(Sim* c1, Sim* c2, void *state) { /* create pointers to the two ds */ double **dch = (double**) malloc(sizeof(double*) * 2); dch[0] = c1->d; dch[1] = c2->d; /* randomly choose one of the d's */ int ii[2]; propose_indices(ii, 0.5, state); /* and copy the chosen one */ dupv(d, dch[ii[0]], dim); /* clean up */ free(dch); } /* * propose_new_d: * * propose new D parameters using this->d for possible * new children partitions c1 and c2 * * (used in grow) */ void Sim::propose_new_d(Sim* c1, Sim* c2, void *state) { int i[2]; double **dnew = new_matrix(2, dim); /* randomply choose which of c1 and c2 will get a copy of this->d, and which will get a random d from the prior */ propose_indices(i, 0.5, state); /* from this->d */ dupv(dnew[i[0]], d, dim); /* from the prior */ draw_d_from_prior(dnew[i[1]], state); /* copy into c1 and c2 */ dupv(c1->d, dnew[0], dim); dupv(c2->d, dnew[1], dim); /* clean up */ delete_matrix(dnew); } /* * draw_d_from_prior: * * get draws of separable d parameter from * the prior distribution */ void Sim::draw_d_from_prior(double *d_new, void *state) { ((Sim_Prior*)prior)->DPrior_rand(d_new, state); } /* * State: * * return a string depecting the state * of the (parameters of) correlation function */ char* Sim::State(unsigned int which) { char buffer[BUFFMAX]; /* slightly different format if the nugget is going to get printed also */ #ifdef PRINTNUG string s = "(d"; snprintf(buffer, BUFFMAX, "%d=[", which); s.append(buffer); #else string s = ""; if(which == 0) s.append("d=["); else s.append("["); #endif for(unsigned int i=0; ilog_Prior(d); return prob; } /* * D: * * return the vector of range parameters for the * separable exponential family of correlation function */ double* Sim::D(void) { return d; } /* * Trace: * * return the current values of the parameters * to this correlation function */ double* Sim::Trace(unsigned int* len) { /* calculate the length of the trace vector, and allocate */ *len = 1 + dim + 1; double *trace = new_vector(*len); /* copy the nugget */ trace[0] = nug; /* copy the d-vector of range parameters */ dupv(&(trace[1]), d, dim); /* determinant of K */ trace[1+dim] = log_det_K; return(trace); } /* * TraceNames: * * return the names of the parameters recorded in Sim::Trace() */ char** Sim::TraceNames(unsigned int* len) { /* calculate the length of the trace vector, and allocate */ *len = 1 + dim + 1; char **trace = (char**) malloc(sizeof(char*) * (*len)); /* copy the nugget */ trace[0] = strdup("nug"); /* copy the d-vector of range parameters */ for(unsigned int i=0; in); inverse_chol(K, Ki, Kchol, n); log_det_K = log_determinant_chol(Kchol, n); } else { assert(n > 0); log_det_K = n * log(1.0 + nug); } } /* * Sim_Prior: * * constructor for the prior parameterization of the separable * exponential power distribution function */ Sim_Prior::Sim_Prior(unsigned int dim) : Corr_Prior(dim) { corr_model = SIM; /* default starting values and initial parameterization */ d = ones(dim, 0.5); dp_cov_chol = new_id_matrix(dim); // dp_Rho = new_id_matrix(dim); d_alpha = new_zero_matrix(dim, 2); d_beta = new_zero_matrix(dim, 2); default_d_priors(); /* set d_alpha and d_beta */ default_d_lambdas(); /* set d_alpha_lambda and d_beta_lambda */ } /* * Init: * * read hiererchial prior parameters from a double-vector * */ void Sim_Prior::Init(double *dhier) { for(unsigned int i=0; icorr_model == SIM); /* copy all parameters of the prior */ corr_model = e->corr_model; dupv(gamlin, e->gamlin, 3); d = new_dup_vector(e->d, dim); dp_cov_chol = new_dup_matrix(e->dp_cov_chol, dim, dim); // dp_Rho = new_dup_matrix(e->dp_Rho, dim, dim); fix_d = e->fix_d; d_alpha = new_dup_matrix(e->d_alpha, dim, 2); d_beta = new_dup_matrix(e->d_beta, dim, 2); dupv(d_alpha_lambda, e->d_alpha_lambda, 2); dupv(d_beta_lambda, e->d_beta_lambda, 2); } /* * ~Sim_Prior: * * destructor for the prior parameterization of the separable * exponential power distribution function */ Sim_Prior::~Sim_Prior(void) { free(d); delete_matrix(dp_cov_chol); // delete_matrix(dp_Rho); delete_matrix(d_alpha); delete_matrix(d_beta); } /* * read_double: * * read the double parameter vector giving the user-secified * prior parameterization specified in R */ void Sim_Prior::read_double(double *dparams) { /* read the parameters that have to to with the nugget */ read_double_nug(dparams); /* read the starting value(s) for the range parameter(s) */ for(unsigned int i=0; igetline(line, BUFFMAX); d[0] = atof(strtok(line, " \t\n#")); for(unsigned int i=1; igetline(line, BUFFMAX); strcpy(line_copy, line); if(!strcmp("fixed", strtok(line_copy, " \t\n#"))) { fix_d = true; MYprintf(MYstdout, "fixing d prior\n"); } else { fix_d = false; get_mix_prior_params(d_alpha_lambda, d_beta_lambda, line, "d lambda"); } } /* * default_d_priors: * * set d prior parameters * to default values */ void Sim_Prior::default_d_priors(void) { for(unsigned int i=0; iparameters for the jth dimension from each of the "howmany" corr modules */ for(unsigned int i=0; iD())[j]); /* use those gathered d values to make a draw for the parameters for the prior of the jth d */ mixture_priors_draw(d_alpha[j], d_beta[j], d, howmany, d_alpha_lambda, d_beta_lambda, state); } /* clean up */ free(d); } /* hierarchical prior draws for the nugget */ DrawNugHier(corr, howmany, state); } /* * newCorr: * * construct and return a new separable exponential correlation * function with this module governing its prior parameterization */ Corr* Sim_Prior::newCorr(void) { return new Sim(dim, base_prior); } /* * log_Prior: * * compute the (log) prior for the parameters to * the correlation function (e.g. d and nug) */ double Sim_Prior::log_Prior(double *d) { double prob = 0; /* if forcing the LLM, just return zero (i.e. prior=1, log_prior=0) */ assert(gamlin[0] <= 0); /* sum the log priors for each of the d-parameters */ for(unsigned int i=0; ibase_prior = base_prior; } /* * Print: * * pretty print the correllation function parameters out * to a file */ void Sim_Prior::Print(FILE *outfile) { MYprintf(MYstdout, "corr prior: separable power\n"); /* print nugget stuff first */ PrintNug(outfile); /* range parameter */ /* MYprintf(outfile, "starting d=\n"); printVector(d, dim, outfile, HUMAN); */ /* range gamma prior, just print once */ MYprintf(outfile, "d[a,b][0,1]=[%g,%g],[%g,%g]\n", d_alpha[0][0], d_beta[0][0], d_alpha[0][1], d_beta[0][1]); /* print many times, one for each dimension instead? */ /* for(unsigned int i=1; i #include #include "rand_pdf.h" #include "linalg.h" #include "gen_covar.h" #include "lik_post.h" #include "matrix.h" #include "rhelp.h" #include #include #include /* #define DEBUG */ /* * post_margin_rj: * * uses marginalized parameters (lambda) to calculate the posterior * probability of the GP (d and nug params). * Uses full (unnormalized) * distribution as needed for RJMCMC. return value is logarithm * * T[col][col], Vb[col][col] */ double post_margin_rj(unsigned int n, unsigned int col, double lambda, double **Vb, double log_detK, double **T, double tau2, double a0, double g0, double itemp) { double log_detVB, log_detT, one, two, p; unsigned int m = 0; /* sanity check for temperature */ assert(itemp >= 0); if(itemp == 0) return 0.0; /* itemp = pow(itemp, 1.0/n); */ /* log det Vb */ log_detVB = log_determinant_dup(Vb, col); /* determine if design matrix is collinear */ if(log_detVB == R_NegInf || lambda < 0 || log_detK == R_NegInf) { /* warning("degenerate design matrix in post_margin_rj"); */ /* assert(0); */ return R_NegInf; } /* determinant of T depends on Beta Prior Model */ if(T[0][0] == 0.0) { assert(tau2 == 1.0); log_detT = 0.0 /*- col*LOG_2_PI*/; m = col; } else log_detT = log_determinant_dup(T, col); /* one = log(det(VB)) - n*log(2*pi) - log(det(K)) - log(det(T)) - col*log(tau2) */ one = log_detVB - (itemp*n)*2*M_LN_SQRT_2PI - itemp*log_detK - log_detT - col*log(tau2); /* two = (a0/2)*log(g0/2) - ((a0+n)/2)*log((g0+lambda)/2) * + log(gamma((a0+n)/2)) - log(gamma(a0/2)); */ two = 0.5*a0*log(0.5*g0) - 0.5*(a0 + itemp*(n-m))*log(0.5*(g0+lambda)); two += lgammafn(0.5*(a0 + itemp*(n-m))) - lgammafn(0.5*a0); /* posterior probability */ p = 0.5*one + two; /* MYprintf(MYstderr, "n=%d, one=%g, two=%g, ldVB=%g, Vb00=%g, ldK=%g, ldT=%g, T00=%g, col_ltau2=%g\n", n, one, two, log_detVB, Vb[0][0], log_detK, log_detT, T[0][0], col*log(tau2)); MYflush(MYstderr); */ /* make sure we got a good p */ if(ISNAN(p)) { p = R_NegInf; /* warning("post_margin_rj, p is NAN"); */ #ifdef DEBUG assert(!ISNAN(p)); #endif } return p; } /* * post_margin: * * uses marginalized parameters (lambda) to calculate the posterior * probability of the GP (d and nug params). Cancels common factors * in ratio of posteriors for MH-MCMC. return value is logarithm * * Vb[col][col] */ double post_margin(unsigned int n, unsigned int col, double lambda, double **Vb, double log_detK, double a0, double g0, double itemp) { double log_detVB, one, two, p; /* sanity check for temperature */ assert(itemp >= 0); if(itemp == 0) return 0.0; /* itemp = pow(itemp, 1.0/n); */ /* log determinant of Vb */ log_detVB = log_determinant_dup(Vb, col); /* determine if design matrix is collinear */ if(log_detVB == R_NegInf || lambda < 0 || log_detK == R_NegInf) { /* warning("degenerate design matrix in post_margin"); */ return R_NegInf; } /* one = log(det(VB)) - log(det(K)) */ one = log_detVB - itemp*log_detK; /* two = - ((a0+n)/2)*log((g0+lambda)/2) */ two = 0.0 - 0.5*(a0 + itemp*n)*log(0.5*(g0+lambda)); /* posterior probability */ p = 0.5*one + two; /* make sure we got a good p */ if(ISNAN(p)) { p = R_NegInf; /* warning("post_margin, p is NAN"); */ #ifdef DEBUG assert(!ISNAN(p)); #endif } return p; } /* * gp_lhood: * * compute the GP likelihood MVN; some of these calculations are * the same as in predict_help(). Should consider moving them to * a more accessible place so predict_help and gp_lhood can share. * * BOBBY: Now when we have Ki == NULL, the Kdiag vec is used. * Thus we now allocate KiFbmZ regardless. * * uses annealing inv-temperature; returns the log pdf */ double gp_lhood(double *Z, unsigned int n, unsigned int col, double **F, double *b, double s2, double **Ki, double log_det_K, double *Kdiag, double itemp) { double *ZmFb, *KiZmFb; double ZmFbKiZmFb, eponent, front, llik; unsigned int i; /* sanity check for temperature */ assert(itemp >= 0); if(itemp == 0.0) return 0.0; /* itemp = pow(itemp, 1.0/n); */ /* ZmFb = Zdat - F * b; first, copy Z (copied code from predict_help()) */ ZmFb = new_dup_vector(Z, n); linalg_dgemv(CblasNoTrans,n,col,-1.0,F,n,b,1,1.0,ZmFb,1); /* KiZmFb = Ki * (Z - F * b); first, zero-out KiZmFb */ KiZmFb = new_zero_vector(n); if(Ki) { linalg_dsymv(n,1.0,Ki,n,ZmFb,1,0.0,KiZmFb,1); } else { for(i=0; i #include #include /* * Temper: (constructor) * * create a new temperature structure from the temperature * array provided, of length n (duplicating the array) */ Temper::Temper(double *itemps, double *tprobs, unsigned int numit, double c0, double n0, IT_LAMBDA it_lambda) { /* copy the inv-temperature vector */ this->itemps = new_dup_vector(itemps, numit); this->numit = numit; /* stochastic approximation parameters */ this->c0 = c0; this->n0 = n0; this->doSA = false; /* must turn on in Model:: */ /* combination method */ this->it_lambda = it_lambda; /* either assign uniform probs if tprobs is NULL */ if(tprobs == NULL) { this->tprobs = ones(numit, 1.0/numit); } else { /* or copy them and make sure they're positive and normalized */ this->tprobs = new_dup_vector(tprobs, numit); Normalize(); } /* init itemp-location pointer -- find closest to 1.0 */ this->k = 0; double mindist = fabs(this->itemps[0] - 1.0); for(unsigned int i=1; inumit; i++) { double dist = fabs(this->itemps[i] - 1.0); if(dist < mindist) { mindist = dist; this->k = i; } } /* set new (proposed) temperature to "null" */ this->knew = -1; /* set iteration number for stoch_approx to zero */ this->cnt = 1; /* zero-out a new counter for each temperature */ this->tcounts = new_ones_uivector(this->numit, 0); this->cum_tcounts = new_ones_uivector(this->numit, 0); } /* * Temper: (constructor) * * create a new temperature structure from the temperature * array provided, the first entry of the array is n. If n * is not zero, then c0 and n0 follow, and then n inverse * temperatures and n (possibly unnormalized) probabilities. */ Temper::Temper(double *ditemps) { /* read the number of inverse temperatures */ assert(ditemps[0] >= 0); numit = (unsigned int) ditemps[0]; /* copy c0 and n0 */ c0 = ditemps[1]; n0 = ditemps[2]; assert(c0 >= 0 && n0 >= 0); doSA = false; /* must turn on in Model:: */ /* copy the inv-temperature vector and probs */ itemps = new_dup_vector(&(ditemps[3]), numit); tprobs = new_dup_vector(&(ditemps[3+numit]), numit); /* normalize the probs and then check that they're positive */ Normalize(); /* combination method */ int dlambda = (unsigned int) ditemps[3+3*numit]; switch((unsigned int) dlambda) { case 1: it_lambda = OPT; break; case 2: it_lambda = NAIVE; break; case 3: it_lambda = ST; break; default: Rf_error("IT lambda = %d unknown\n", dlambda); } /* init itemp-location pointer -- find closest to 1.0 */ k = 0; double mindist = fabs(itemps[0] - 1.0); for(unsigned int i=1; iitemps, temp->numit); tprobs = new_dup_vector(temp->tprobs, temp->numit); tcounts = new_dup_uivector(temp->tcounts, temp->numit); cum_tcounts = new_dup_uivector(temp->cum_tcounts, temp->numit); numit = temp->numit; k = temp->k; knew = temp->knew; c0 = temp->c0; n0 = temp->n0; doSA = false; cnt = temp->cnt; } /* * Temper: (assignment operator) * * copy new temperature structure from the temperature * array provided, of length n (duplicating the array) */ Temper& Temper::operator=(const Temper &t) { Temper *temp = (Temper*) &t; assert(numit == temp->numit); dupv(itemps, temp->itemps, numit); dupv(tprobs, temp->tprobs, numit); dupuiv(tcounts, temp->tcounts, numit); dupuiv(cum_tcounts, temp->cum_tcounts, numit); numit = temp->numit; k = temp->k; knew = temp->knew; c0 = temp->c0; n0 = temp->n0; cnt = temp->cnt; doSA = temp->doSA; return *this; } /* * ~Temper: (destructor) * * free the memory and contents of an itemp * structure */ Temper::~Temper(void) { free(itemps); free(tprobs); free(tcounts); free(cum_tcounts); } /* * Itemp: * * return the actual inv-temperature currently * being used */ double Temper::Itemp(void) { return itemps[k]; } /* * Prob: * * return the probability inv-temperature currently * being used */ double Temper::Prob(void) { return tprobs[k]; } /* * ProposedProb: * * return the probability inv-temperature proposed */ double Temper::ProposedProb(void) { return tprobs[knew]; } /* * Propose: * * Uniform Random-walk proposal for annealed importance sampling * temperature in the continuous interval (0,1) with bandwidth * of 2*0.1. Returns proposal, and passes back forward and * backward probs */ double Temper::Propose(double *q_fwd, double *q_bak, void *state) { /* sanity check */ if(knew != -1) Rf_warning("did not accept or reject last proposed itemp"); if(k == 0) { if(numit == 1) { /* only one temp avail */ knew = k; *q_fwd = *q_bak = 1.0; } else { /* knew should be k+1 */ knew = k + 1; *q_fwd = 1.0; if(knew == (int) (numit - 1)) *q_bak = 1.0; else *q_bak = 0.5; } } else { /* k > 0 */ /* k == numit; means k_new = k-1 */ if(k == (int) (numit - 1)) { assert(numit > 1); knew = k - 1; *q_fwd = 1.0; if(knew == 0) *q_bak = 1.0; else *q_bak = 0.5; } else { /* most general case */ if(runi(state) < 0.5) { knew = k - 1; *q_fwd = 0.5; if(knew == (int) (numit - 1)) *q_bak = 1.0; else *q_bak = 0.5; } else { knew = k + 1; *q_fwd = 0.5; if(knew == 0) *q_bak = 1.0; else *q_bak = 0.5; } } } return itemps[knew]; } /* * Keep: * * keep a proposed itemp, double-checking that the itemp_new * argument actually was the last proposed inv-temperature */ void Temper::Keep(double itemp_new, bool burnin) { assert(knew >= 0); assert(itemp_new == itemps[knew]); k = knew; knew = -1; /* update the observation counts only whilest not doing SA and not doing burn in rounds */ if(!(doSA || burnin)) { (tcounts[k])++; (cum_tcounts[k])++; } } /* * Reject: * * reject a proposed itemp, double-checking that the itemp_new * argument actually was the last proposed inv-temperature -- * this actually amounts to simply updating the count of the * kept (old) temperature */ void Temper::Reject(double itemp_new, bool burnin) { assert(itemp_new == itemps[knew]); /* do not update itemps->k, but do update the counter for the old (kept) temperature */ knew = -1; /* update the observation counts only whilest not doing SA and not doing burn in rounds */ if(!(doSA || burnin)) { (tcounts[k])++; (cum_tcounts[k])++; } } /* * UpdatePrior: * * re-create the prior distribution of the temperature * ladder by dividing by the normalization constant, i.e., * adjust by the "observation counts" -- returns a pointer * to the probabilities */ double* Temper::UpdatePrior(void) { /* do nothing if there is only one temperature */ if(numit == 1) return tprobs; /* first find the min (non-zero) tcounts */ unsigned int min = tcounts[0]; for(unsigned int i=1; inumit == numit); dupv(this->tprobs, tprobs, numit); } /* * CopyPrior: * * write the tprior into the double vector provided, in the * same format as the double-input vector to the * Temper::Temper(double*) constructor */ void Temper::CopyPrior(double *dparams) { assert(this->numit == (unsigned int) dparams[0]); /* copy the pseudoprior */ dupv(&(dparams[3+numit]), tprobs, numit); /* copy the integer counts in each temperature */ for(unsigned int i=0; i= 1); for(unsigned int i=0; i= 1) MYprintf(MYstdout, "\neffective sample sizes:\n"); /* for each temperature */ for(unsigned int i=0; i 0 && w2sum[i] > 0) { /* compute ess and max weight for this temp */ lambda[i] = sq(W[i]) / w2sum[i]; /* check for numerical problems and (if none) calculate the within temperature ESS */ if(!R_FINITE(lambda[i])) { lambda[i] = 0; ei = 0; } else ei = calc_ess(wi, len); /* sum up the within temperature ESS's */ // eisum += ei*len; } else { W[i] = 1; } /* doesn't matter since ei=0 */ /* keep track of sum of lengths and ess so far */ tlen += len; tess += len * ei; /* save individual ess to the (double) output essd vector */ essd[i] = len; essd[numit + i] = ei*len; /* print individual ess */ if(verb >= 1) MYprintf(MYstdout, "%d: itemp=%g, len=%d, ess=%g\n", //, sw=%g\n", i, itemps[i], len, ei*len); //, sumv(wi, len)); /* clean up */ free(wi); free(p); } /* normalize the lambdas */ double gamma_sum = sumv(lambda, numit); scalev(lambda, numit, 1.0/gamma_sum); /* for each temperature, calculate the adjusted weights */ for(unsigned int i=0; i= 1) { MYprintf(MYstdout, "total: len=%d, ess.sum=%g, ess(w)=%g\n", tlen, tess, ((double)wlen)*calc_ess(w,wlen)); double lce = wlen*(wlen-1.0)*gamma_sum/(sq(wlen)-gamma_sum); if(ISNAN(lce)) lce = 1; MYprintf(MYstdout, "lambda-combined ess=%g\n", lce); } /* clean up */ free(lambda); free(W); free(w2sum); /* return the overall effective sample size */ return(((double)wlen)*calc_ess(w, wlen)); } /* * EachESS: * * calculate the effective sample size at each temperature */ void Temper::EachESS(double *w, double *itemp, unsigned int wlen, double *essd) { /* for each temperature */ for(unsigned int i=0; i= 1) MYprintf(MYstdout, "\nST sample size=%d\n", len); /* return the overall effective sample size */ return((double) len); } /* * LambdaNaive: * * adjust the weight distribution w[n] via Naive Importance Tempering; * that is, disregard demperature, and just normalize the weight vector */ double Temper::LambdaNaive(double *w, unsigned int wlen, unsigned int verb) { /* calculate Wi=sum(wi) */ double W = sumv(w, wlen); if(W == 0) return 0.0; /* multiply by numerator of lambda-star */ scalev(w, wlen, 1.0/W); /* calculate ESS */ double ess = ((double)wlen)*calc_ess(w, wlen); /* print totals */ if(verb >= 1) MYprintf(MYstdout, "\nnaive IT ess=%g\n", ess); /* return the overall effective sample size */ return(ess); } /* * N: * * get number of temperatures n: */ unsigned int Temper::Numit(void) { return numit; } /* * DoStochApprox: * * true if both c0 and n0 are non-zero, then we * are doing StochApprox */ bool Temper::DoStochApprox(void) { if(c0 > 0 && n0 > 0 && numit > 1) return true; else return false; } /* * IS_ST_or_IS: * * return true importance tempering, simulated tempering, * or importance sampling is supported by the current * Tempering distribution */ bool Temper::IT_ST_or_IS(void) { if(numit > 1 || itemps[0] != 1.0) return true; else return false; } /* * IT_or_ST: * * return true importance tempering or simulated tempering, * is supported by the current Tempering distribution */ bool Temper::IT_or_ST(void) { if(numit > 1) return true; else return false; } /* * IS: * * return true if importance sampling (only) is supported * by the current Tempering distribution */ bool Temper::IS(void) { if(numit == 1 && itemps[0] != 1.0) return true; else return false; } /* * Itemps: * * return the temperature ladder */ double* Temper::Itemps(void) { return itemps; } /* * C0: * * return the c0 (SA) paramete */ double Temper::C0(void) { return c0; } /* * N0: * * return the n0 (SA) paramete */ double Temper::N0(void) { return n0; } /* * ResetSA: * * reset the stochastic approximation by setting * the counter to 1, and turn SA on */ void Temper::ResetSA(void) { doSA = true; cnt = 1; } /* * StopSA: * * turn off stochastic approximation */ void Temper::StopSA(void) { doSA = false; } /* * ITLambda: * * choose a method for importance tempering based on the it_lambda * variable, call that method, passing back the lambda-adjusted * weights w, and returning a calculation of ESSw */ double Temper::LambdaIT(double *w, double *itemp, unsigned int R, double *essd, unsigned int verb) { /* sanity check that it makes sense to adjust weights */ assert(IT_ST_or_IS()); double ess = 0; switch(it_lambda) { case OPT: ess = LambdaOpt(w, itemp, R, essd, verb); break; case NAIVE: ess = LambdaNaive(w, R, verb); EachESS(w, itemp, R, essd); break; case ST: ess = LambdaST(w, itemp, R, verb); EachESS(w, itemp, R, essd); break; default: Rf_error("bad it_lambda\n"); } return ess; } /* * Print: * * write information about the IT configuration * out to the supplied file */ void Temper::Print(FILE *outfile) { /* print the importance tempring information */ if(IS()) MYprintf(outfile, "IS with inv-temp %g\n", itemps[0]); else if(IT_or_ST()) { switch(it_lambda) { case OPT: MYprintf(outfile, "IT: optimal"); break; case NAIVE: MYprintf(outfile, "IT: naive"); break; case ST: MYprintf(outfile, "IT: implementing ST"); break; } MYprintf(outfile, " on %d-rung ladder\n", numit); if(DoStochApprox()) MYprintf(outfile, " with stoch approx\n"); else MYprintf(outfile, "\n"); } } /* * AppendLadder: * * append tprobs and tcounts to a file with the name * provided */ void Temper::AppendLadder(const char* file_str) { FILE *LOUT = fopen(file_str, "a"); printVector(tprobs, numit, LOUT, MACHINE); printUIVector(tcounts, numit, LOUT); fclose(LOUT); } /* * Normalize: * * normalize the pseudo-prior (tprobs) and * check that all probs are positive */ void Temper::Normalize(void) { scalev(tprobs, numit, 1.0/sumv(tprobs, numit)); for(unsigned int i=0; i 0); } /* * ess: * * effective sample size calculation for imporancnce * sampling -- per unit sample. To get the full sample * size, just multiply by n */ double calc_ess(double *w, unsigned int n) { if(n == 0) return 0; else { double cv2 = calc_cv2(w,n); if(ISNAN(cv2) || !R_FINITE(cv2)) { // Rf_warning("nan or inf found in cv2, probably due to zero weights"); return 0.0; } else return(1.0/(1.0+cv2)); } } /* * cv2: * * calculate the coefficient of variation, used here * to find the variance of a sample of unnormalized * importance sampling weights */ double calc_cv2(double *w, unsigned int n) { double mw; wmean_of_rows(&mw, &w, 1, n, NULL); double sum = 0; if(n == 1) return 0.0; for(unsigned int i=0; i #include #include #include #include #include using namespace std; #define BUFFMAX 256 #define PWR 2.0 /* * MrExpSep: * * constructor function; should be the same as ExpSep, * but for delta and nugaux */ MrExpSep::MrExpSep(unsigned int dim, Base_Prior *base_prior) : Corr(dim, base_prior) { K= new_id_matrix(n); /* Sanity Checks */ assert(base_prior->BaseModel() == GP); assert( ((Gp_Prior*) base_prior)->CorrPrior()->CorrModel() == MREXPSEP); /* set pointer to correllation priot from the base prior */ prior = ((Gp_Prior*) base_prior)->CorrPrior(); assert(prior); /* let the prior choose the starting nugget value */ nug = prior->Nug(); /* allocate and initialize (from prior) the range params */ d = new_dup_vector(((MrExpSep_Prior*)prior)->D(), 2*dim); /* start fully in the GP model, not the LLM */ b = new_ones_ivector(2*dim, 1); pb = new_zero_vector(2*dim); /* memory allocated for effective range parameter -- deff = d*b */ d_eff = new_dup_vector(d, 2*dim); /* counter of the number of d-rejections in a row */ dreject = 0; /* get the fine variance discount factor, and observation nugget for thefine level proc -- both fro prior */ delta = ((MrExpSep_Prior*)prior)->Delta(); nugaux = ((MrExpSep_Prior*)prior)->Nugaux(); } /* * MrExpSep (assignment operator): * * used to assign the parameters of one correlation * function to anothers. Both correlation functions * must already have been allocated */ Corr& MrExpSep::operator=(const Corr &c) { MrExpSep *e = (MrExpSep*) &c; /* sanity check */ assert(prior == ((Gp_Prior*) base_prior)->CorrPrior()); /* copy everything */ log_det_K = e->log_det_K; linear = e->linear; dim = e->dim; dupv(d, e->d, 2*dim); dupv(pb, e->pb, 2*dim); dupv(d_eff, e->d_eff, 2*dim); dupiv(b, e->b, 2*dim); nug = e->nug; dreject = e->dreject; /* copy the covariance matrices -- no longer performed due to the new economy argument in Gp/Base */ // Cov(e); return *this; } /* * ~MrExpSep: * * destructor */ MrExpSep::~MrExpSep(void) { free(d); free(b); free(pb); free(d_eff); } /* * Init: * * initialise this corr function with the parameters provided * from R via the vector of doubles */ void MrExpSep::Init(double *dmrexpsep) { dupv(d, &(dmrexpsep[3]), dim*2); if(!prior->Linear() && prior->LLM()) linear_pdf_sep(pb, d, dim, prior->GamLin()); bool lin = true; for(unsigned int i=0; i<2*dim; i++) { b[i] = (int) dmrexpsep[2*dim+1+i]; lin = lin && !b[i]; d_eff[i] = d[i] * b[i]; } if(prior->Linear()) assert(lin); NugInit(dmrexpsep[0], lin); nugaux = dmrexpsep[1]; delta = dmrexpsep[2]; } /* * Jitter: * * fill jitter[ ] with the observation variance factor. That is, * the variance for an observation at the same location as * data point 'i' will be s2*(jitter[i]). In standard tgp, the * jitter is simply the nugget. But for calibration and mr tgp, * the jitter value depends upon X (eg real or simulated data). * */ double* MrExpSep::Jitter(unsigned int n1, double **X) { double *jitter = new_vector(n1); for(unsigned int i=0; in); /* with probability 0.5, skip drawing the nugget */ if(runi(state) > 0.5) return false; /* make the draw */ if(!K) Update(n, K, X); double* new_nugs = mr_nug_draw_margin(n, col, nug, nugaux, X, F, Z, K, log_det_K, *lambda, Vb, K_new, Ki_new, Kchol_new, &log_det_K_new, &lambda_new, Vb_new, bmu_new, gp_prior->get_b0(), gp_prior->get_Ti(), gp_prior->get_T(), tau2, prior->NugAlpha(), prior->NugBeta(), ((MrExpSep_Prior*) prior)->Nugaux_alpha(), ((MrExpSep_Prior*) prior)->Nugaux_beta(), delta, gp_prior->s2Alpha(), gp_prior->s2Beta(), (int) linear, itemp, state); /* did we accept the draw? */ if(new_nugs[0] != nug) { nug = new_nugs[0]; nugaux = new_nugs[1]; success = true; swap_new(Vb, bmu, lambda); } /* clean up */ free(new_nugs); return success; } /* * Update: (symmetric) * * computes the internal correlation matrix K, * (INCLUDES NUGGET) */ void MrExpSep::Update(unsigned int n, double **K, double **X) { corr_symm(K, dim+1, X, n, d_eff, nug, nugaux, delta, PWR); } /* * Update: (symmetric) * * takes in a (symmetric) distance matrix and * returns a correlation matrix (INCLUDES NUGGET) */ void MrExpSep::Update(unsigned int n, double **X) { /* no need to update internal K if we're at LLM */ if(linear) return; /* sanity check */ assert(this->n == n); /* compute K */ corr_symm(K, dim+1, X, n, d_eff, nug, nugaux, delta, PWR); } /* * Update: (non-symmetric) * * takes in a distance matrix and returns a * correlation matrix (DOES NOT INCLUDE NUGGET) */ void MrExpSep::Update(unsigned int n1, unsigned int n2, double **K, double **X, double **XX) { corr_unsymm(K, dim+1, XX, n1, X, n2, d_eff, delta, PWR); } /* * propose_new_d: * * propose new d and b values. Sometimes propose d's and b's for all * dimensions jointly, sometimes do just the d's with b==1, and * other times do only those with b==0. I have found that this improves * mixing */ bool MrExpSep::propose_new_d(double* d_new, int * b_new, double *pb_new, double *q_fwd, double *q_bak, void *state) { *q_bak = *q_fwd = 1.0; /* copy old values */ dupv(d_new, d, 2*dim); dupv(pb_new, pb, 2*dim); dupiv(b_new, b, 2*dim); /* RW proposal for all d-values */ d_proposal(2*dim, NULL, d_new, d, q_fwd, q_bak, state); /* if we are allowing the LLM, then we need to draw the b_new conditional on d_new; otherwise just return */ /* only drawing the first dim booleans (i.e. coarse model only) */ if(prior->LLM()) return linear_rand_sep(b_new,pb_new,d_new,dim,prior->GamLin(),state); else return false; } /* * Draw: * * draw parameters for a new correlation matrix; * returns true if the correlation matrix (passed in) * has changed; otherwise returns false */ int MrExpSep::Draw(unsigned int n, double **F, double **X, double *Z, double *lambda, double **bmu, double **Vb, double tau2, double itemp, void *state) { int success = 0; bool lin_new; double q_fwd, q_bak; /* get more accessible pointers to the priors */ MrExpSep_Prior* ep = (MrExpSep_Prior*) prior; Gp_Prior *gp_prior = (Gp_Prior*) base_prior; /* pointers to proposed settings of parameters */ double *d_new = NULL; int *b_new = NULL; double *pb_new = NULL; /* proposals happen when we're not forcing the LLM */ if(prior->Linear()) lin_new = true; else { /* allocate new d, b, and pb */ d_new = new_zero_vector((2*dim)); b_new = new_ivector((2*dim)); pb_new = new_vector((2*dim)); /* make the RW proposal for d, and then b */ lin_new = propose_new_d(d_new, b_new, pb_new, &q_fwd, &q_bak, state); } /* calculate the effective model (d_eff = d*b), and allocate memory -- when we're not proposing the LLM */ double *d_new_eff = NULL; if(! lin_new) { d_new_eff = new_zero_vector((2*dim)); for(unsigned int i=0; i<(2*dim); i++) d_new_eff[i] = d_new[i]*b_new[i]; /* allocate K_new, Ki_new, Kchol_new */ allocate_new(n); /* sanity check */ assert(n == this->n); } /* compute the acceptance ratio, unless we're forcing the LLM in which case we do nothing just return a successful "draw" */ if(prior->Linear()) success = 1; else { /* compute prior ratio and proposal ratio */ double pRatio_log = 0.0; double qRatio = q_bak/q_fwd; pRatio_log += ep->log_DPrior_pdf(d_new); pRatio_log -= ep->log_DPrior_pdf(d); /* MH acceptance ratio for the draw */ success = d_draw(d_new_eff, n, col, F, X, Z, log_det_K,*lambda, Vb, K_new, Ki_new, Kchol_new, &log_det_K_new, &lambda_new, Vb_new, bmu_new, gp_prior->get_b0(), gp_prior->get_Ti(), gp_prior->get_T(), tau2, nug, nugaux, qRatio, pRatio_log, gp_prior->s2Alpha(), gp_prior->s2Beta(), (int) lin_new, itemp, state); /* see if the draw was acceptedl; if so, we need to copy (or swap) the contents of the new into the old */ if(success == 1) { swap_vector(&d, &d_new); /* d_eff is zero if we're in the LLM */ if(!lin_new) swap_vector(&d_eff, &d_new_eff); else zerov(d_eff, (2*dim)); linear = (bool) lin_new; /* copy b and pb */ swap_ivector(&b, &b_new); swap_vector(&pb, &pb_new); swap_new(Vb, bmu, lambda); } } /* if we're not forcing the LLM, then we have some cleadimg up to do */ if(! prior->Linear()) { free(d_new); free(pb_new); free(b_new); } /* if we didn't happen to jump to the LLM, then we have more cleaning up to do */ if(!lin_new) free(d_new_eff); /* something went wrong, abort; otherwise keep track of the number of d-rejections in a row */ if(success == -1) return success; else if(success == 0) dreject++; else dreject = 0; /* abort if we have had too many rejections */ if(dreject >= REJECTMAX) return -2; /* draw nuggets */ bool changed = DrawNugs(n, X, F, Z, lambda, bmu, Vb, tau2, itemp, state); bool deltasuccess = DrawDelta(n, X, F, Z, lambda, bmu, Vb, tau2, itemp, state); success = success || changed || deltasuccess; return success; } /* * Combine*: * * used in tree-prune steps, chooses one of two * sets of parameters to correlation functions, * and choose one for "this" correlation function */ double MrExpSep::CombineNugaux(MrExpSep *c1, MrExpSep *c2, void *state) { double nugch[2]; int ii[2]; nugch[0] = c1->Nugaux(); nugch[1] = c2->Nugaux(); propose_indices(ii,0.5, state); return nugch[ii[0]]; } double MrExpSep::CombineDelta(MrExpSep *c1, MrExpSep *c2, void *state) { double deltach[2]; int ii[2]; deltach[0] = c1->Delta(); deltach[1] = c2->Delta(); propose_indices(ii,0.5, state); return deltach[ii[0]]; } /* * Combine: * * used in tree-prune steps, chooses one of two * sets of parameters to correlation functions, * and choose one for "this" correlation function */ void MrExpSep::Combine(Corr *c1, Corr *c2, void *state) { get_delta_d((MrExpSep*)c1, (MrExpSep*)c2, state); CombineNug(c1, c2, state); nugaux = CombineNugaux((MrExpSep*)c1, (MrExpSep*)c2, state); delta = CombineDelta((MrExpSep*)c1, (MrExpSep*)c2, state); } /* * Split*: * * used in tree-grow steps, splits the parameters * of "this" correlation function into a parameterization * for two (new) correlation functions */ void MrExpSep::SplitNugaux(MrExpSep *c1, MrExpSep *c2, void *state) { int i[2]; double nugnew[2]; propose_indices(i, 0.5, state); nugnew[i[0]] = nugaux; nugnew[i[1]] = ((MrExpSep_Prior*)prior)->NugauxDraw(state); c1->SetNugaux(nugnew[0]); c2->SetNugaux(nugnew[1]); } void MrExpSep::SplitDelta(MrExpSep *c1, MrExpSep *c2, void *state) { int i[2]; double deltanew[2]; propose_indices(i, 0.5, state); deltanew[i[0]] = delta; deltanew[i[1]] = ((MrExpSep_Prior*)prior)->DeltaDraw(state); c1->SetDelta(deltanew[0]); c2->SetDelta(deltanew[1]); } /* * Split: * * used in tree-grow steps, splits the parameters * of "this" correlation function into a parameterization * for two (new) correlation functions */ void MrExpSep::Split(Corr *c1, Corr *c2, void *state) { propose_new_d((MrExpSep*) c1, (MrExpSep*) c2, state); SplitNug(c1, c2, state); SplitNugaux((MrExpSep*)c1, (MrExpSep*)c2, state); SplitDelta((MrExpSep*)c1, (MrExpSep*)c2, state); } void MrExpSep::SetNugaux(double nugauxnew){ nugaux = nugauxnew; } void MrExpSep::SetDelta(double deltanew){ delta = deltanew; } /* * get_delta_d: * * compute d from two ds residing in c1 and c2 * and sample b conditional on the chosen d * * (used in prune) */ void MrExpSep::get_delta_d(MrExpSep* c1, MrExpSep* c2, void *state) { /* ceate pointers to the two ds */ double **dch = (double**) malloc(sizeof(double*) * 2); dch[0] = c1->d; dch[1] = c2->d; /* randomly choose one of the ds */ int ii[2]; propose_indices(ii, 0.5, state); /* and copy the chosen one */ dupv(d, dch[ii[0]], (2*dim)); /* clean up */ free(dch); /* propose b conditional on the chosen d */ /* propose linear model only in coarse dimensions */ linear = linear_rand_sep(b, pb, d, dim, prior->GamLin(), state); /* compute d_eff = d * b for the chosen d and b */ for(unsigned int i=0; i<(2*dim); i++) d_eff[i] = d[i] * b[i]; } /* * propose_new_d: * * propose new D parameters for possible * new children partitions. */ void MrExpSep::propose_new_d(MrExpSep* c1, MrExpSep* c2, void *state) { int i[2]; double **dnew = new_matrix(2, (2*dim)); /* randomply choose which of c1 and c2 will get a copy of this->d, and which will get a random d from the prior */ propose_indices(i, 0.5, state); /* =from this->d */ dupv(dnew[i[0]], d, (2*dim)); /* from the prior */ draw_d_from_prior(dnew[i[1]], state); /* copy into c1 and c2 */ dupv(c1->d, dnew[0], (2*dim)); dupv(c2->d, dnew[1], (2*dim)); /* clean up */ delete_matrix(dnew); /* propose new b for c1 and c2, conditional on the two new d parameters */ c1->linear = (bool) linear_rand_sep(c1->b, c1->pb, c1->d, (2*dim), prior->GamLin(), state); c2->linear = (bool) linear_rand_sep(c2->b, c2->pb, c2->d, (2*dim), prior->GamLin(), state); /* compute d_eff = b*d for the two new b and d pairs */ for(unsigned int i=0; i<(2*dim); i++) { c1->d_eff[i] = c1->d[i] * c1->b[i]; c2->d_eff[i] = c2->d[i] * c2->b[i]; } } /* * d_draw: * * draws for d given the rest of the parameters except b and s2 marginalized out * * F[col][n], Kchol[n][n], K_new[n][n], Ti[col][col], T[col][col] Vb[col][col], * Vb_new[col][col], Ki_new[n][n], Kchol_new[n][n], b0[col], Z[n], dlast[dim*2], * d_alpha[dim*2][2], d_beta[dim*2][2] * * return 1 if draw accepted, 0 if rejected, -1 if error */ int MrExpSep::d_draw(double *d, unsigned int n, unsigned int col, double **F, double **X, double *Z, double log_det_K, double lambda, double **Vb, double **K_new, double **Ki_new, double **Kchol_new, double *log_det_K_new, double *lambda_new, double **VB_new, double *bmu_new, double *b0, double **Ti, double **T, double tau2, double nug, double nugaux, double qRatio, double pRatio_log, double a0, double g0, int lin, double itemp, void *state) { double pd, pdlast, alpha; unsigned int m = 0; /* Knew = dist_to_K(dist, d, nugget) compute lambda, Vb, and bmu, for the NEW d */ if(! lin) { /* regular */ corr_symm(K_new, dim+1, X, n, d, nug, nugaux, delta, PWR); inverse_chol(K_new, Ki_new, Kchol_new, n); *log_det_K_new = log_determinant_chol(Kchol_new, n); *lambda_new = compute_lambda(Vb_new, bmu_new, n, col, F, Z, Ki_new, Ti, tau2, b0, itemp); } else { /* linear */ *log_det_K_new = 0.0; double *Kdiag = new_vector(n); for(unsigned int i=0; iget_b0(); double a0 = gp_prior->s2Alpha(); double g0 = gp_prior->s2Beta(); /* allocate K_new, Ki_new, Kchol_new */ if(! linear) assert(n == this->n); if(runi(state) > 0.5) return false; double q_fwd; double q_bak; double pdelta; double pnewdelta; /* make the draw */ double newdelta = unif_propose_pos(delta, &q_fwd, &q_bak, state); // printf("%g %g\n", delta, newdelta); /* new covariace matrix based on new nug */ if(linear) { log_det_K_new = 0.0; double *Kdiag = new_vector(n); for(unsigned int i=0; iget_Ti(), tau2, b0, Kdiag, itemp); free(Kdiag); } else{ corr_symm(K_new, dim+1, X, n, d, nug, nugaux, newdelta, PWR); inverse_chol(K_new, Ki_new, Kchol_new, n); log_det_K_new = log_determinant_chol(Kchol_new, n); lambda_new = compute_lambda(Vb_new, bmu_new, n, col, F, Z, Ki_new, gp_prior->get_Ti(), tau2, b0, itemp); } if((gp_prior->get_T())[0][0] == 0) m = col; pnewdelta = gamma_mixture_pdf(newdelta, ep->Delta_alpha(), ep->Delta_beta()); pnewdelta += post_margin(n,col,lambda_new,Vb_new,log_det_K_new,a0-m,g0,itemp); pdelta = gamma_mixture_pdf(delta, ep->Delta_alpha(), ep->Delta_beta()); pdelta += post_margin(n,col,*lambda,Vb,log_det_K,a0-m,g0,itemp); /* accept or reject */ double alpha = exp(pnewdelta - pdelta)*(q_bak/q_fwd); if(runi(state) < alpha) { success = true; delta = newdelta; swap_new(Vb, bmu, lambda); } return success; } /* * draw_d_from_prior: * * get draws of separable d parameter from * the prior distribution */ void MrExpSep::draw_d_from_prior(double *d_new, void *state) { if(prior->Linear()) dupv(d_new, d, (2*dim)); else ((MrExpSep_Prior*)prior)->DPrior_rand(d_new, state); } /* * corr_symm: * * compute a (symmetric) correllation matrix from a seperable * exponential correllation function * * X[n][m], K[n][n] */ void MrExpSep::corr_symm(double **K, unsigned int m, double **X, unsigned int n, double *d, double nug, double nugaux, double delta, double pwr) { unsigned int i,j,k; double diff, fine; i = k = j = 0; for(i=0; ilog_Prior(d, b, pb, linear); return prob; } /* * sum_b: * * return the count of the number of linearizing * booleans set to one (the number of linear dimensions) */ unsigned int MrExpSep::sum_b(void) { unsigned int bs = 0; for(unsigned int i=0; i<(2*dim); i++) if(!b[i]) bs ++; /* sanity check */ if(bs == (2*dim)) assert(linear); return bs; } /* * ToggleLinear: * * make linear if not linear, otherwise * make not linear */ void MrExpSep::ToggleLinear(void) { if(linear) { /* force a full GP model */ linear = false; for(unsigned int i=0; i<(2*dim); i++) b[i] = 1; } else { /* force a full LLM */ linear = true; for(unsigned int i=0; i<(2*dim); i++) b[i] = 0; } /* set d_Eff = d * b */ for(unsigned int i=0; i<(2*dim); i++) d_eff[i] = d[i] * b[i]; } /* * D: * * return the vector of range parameters for the * separable exponential family of correlation function */ double* MrExpSep::D(void) { return d; } /* * Delta: * * return the fine fidelity discount factor, delta. */ double MrExpSep::Delta(void) { return delta; } /* * Nugaux: * * * return the fine fidelity observational error */ double MrExpSep::Nugaux(void) { return nugaux; } /* * TraceNames: * * return the names of the parameters recorded in MrExpSep::Trace() */ char** MrExpSep::TraceNames(unsigned int* len) { /* calculate the length of the trace vector, and allocate */ *len = 3 + 3*(dim) + 1; char **trace = (char**) malloc(sizeof(char*) * (*len)); /* copy the nugget */ trace[0] = strdup("nugc"); trace[1] = strdup("nugf"); trace[2] = strdup("delta"); /* copy the d-vector of range parameters */ for(unsigned int i=0; i<2*dim; i++) { trace[3+i] = (char*) malloc(sizeof(char) * (3 + (dim)/10 + 1)); snprintf(trace[3+i], (3 + (dim)/10 + 1), "d%d", i+1); } /* copy the booleans */ for(unsigned int i=0; in); inverse_chol(K, Ki, Kchol, n); log_det_K = log_determinant_chol(Kchol, n); } else { assert(n > 0); log_det_K = n * log(1.0 + nug); } } /* * MrExpSep_Prior: * * constructor for the prior parameterization of the separable * exponential power distribution function */ MrExpSep_Prior::MrExpSep_Prior(const unsigned int dim) : Corr_Prior(dim) { corr_model = MREXPSEP; /* default starting values and initial parameterization */ d = ones((2*dim), 0.5); d_alpha = new_zero_matrix((2*dim), 2); d_beta = new_zero_matrix((2*dim), 2); default_d_priors(); /* set d_alpha and d_beta */ default_d_lambdas(); /* set d_alpha_lambda and d_beta_lambda */ /* defauly starting values for mr-specific parameters; these should probably be moved into a default_* function like the others */ delta = 1.0; nugaux = 0.01; delta_alpha = ones(2, 1.0); delta_beta = ones(2, 20.0); nugaux_alpha = ones(2, 1.0); nugaux_beta = ones(2, 1.0); } /* * Dup: * * duplicate this prior for the isotropic exponential * power family */ Corr_Prior* MrExpSep_Prior::Dup(void) { return new MrExpSep_Prior(this); } /* * MrExpSep_Prior (new duplicate) * * duplicating constructor for the prior distribution for * the separable exponential correlation function */ MrExpSep_Prior::MrExpSep_Prior(Corr_Prior *c) : Corr_Prior(c) { MrExpSep_Prior *e = (MrExpSep_Prior*) c; /* sanity check */ assert(e->corr_model == MREXPSEP); /* copy all parameters of the prior */ corr_model = e->corr_model; dupv(gamlin, e->gamlin, 3); dim = e->dim; d = new_dup_vector(e->d, (2*dim)); fix_d = e->fix_d; d_alpha = new_dup_matrix(e->d_alpha, (2*dim), 2); d_beta = new_dup_matrix(e->d_beta, (2*dim), 2); dupv(d_alpha_lambda, e->d_alpha_lambda, 2); dupv(d_beta_lambda, e->d_beta_lambda, 2); delta = e->delta; nugaux = e->nugaux; delta_alpha = new_dup_vector(e->delta_alpha, 2); delta_beta = new_dup_vector(e->delta_beta, 2); nugaux_alpha = new_dup_vector(e->nugaux_alpha, 2); nugaux_beta = new_dup_vector(e->nugaux_beta, 2); } /* * ~MrExpSep_Prior: * * destructor for the prior parameterization of the separable * exponential power distribution function */ MrExpSep_Prior::~MrExpSep_Prior(void) { free(d); delete_matrix(d_alpha); delete_matrix(d_beta); free(delta_alpha); free(delta_beta); free(nugaux_alpha); free(nugaux_beta); } /* * read_double: * * read the double parameter vector giving the user-secified * prior parameterization specified in R */ void MrExpSep_Prior::read_double(double *dparams) { /* read the parameters that have to to with the nugget */ read_double_nug(dparams); /* read the starting value(s) for the range parameter(s) */ for(unsigned int i=0; i<(2*dim); i++) d[i] = dparams[1]; /*MYprintf(MYstdout, "starting d="); printVector(d, (2*dim), MYstdout, HUMAN); */ /* reset the d parameter to after nugget and gamlin params */ dparams += 13; /* read d gamma mixture prior parameters */ double alpha[2], beta[2]; get_mix_prior_params_double(alpha, beta, dparams, "d"); for(unsigned int i=0; igetline(line, BUFFMAX); d[0] = atof(strtok(line, " \t\n#")); for(unsigned int i=1; i<(2*dim); i++) d[i] = d[0]; MYprintf(MYstdout, "starting d=", d); printVector(d, (2*dim), MYstdout, HUMAN); /* read d and nug-hierarchical parameters (mix of gammas) */ double alpha[2], beta[2]; ctrlfile->getline(line, BUFFMAX); get_mix_prior_params(alpha, beta, line, "d"); for(unsigned int i=0; i<(2*dim); i++) { dupv(d_alpha[i], alpha, 2); dupv(d_beta[i], beta, 2); } /* get the d prior mixture */ ctrlfile->getline(line, BUFFMAX); get_mix_prior_params(alpha, beta, line, "d"); dupv(delta_alpha, alpha, 2); dupv(delta_beta, beta, 2); /* get the nugget prior mixture */ ctrlfile->getline(line, BUFFMAX); get_mix_prior_params(alpha, beta, line, "nug"); dupv(nugaux_alpha, alpha, 2); dupv(nugaux_beta, beta, 2); /* d hierarchical lambda prior parameters */ ctrlfile->getline(line, BUFFMAX); strcpy(line_copy, line); if(!strcmp("fixed", strtok(line_copy, " \t\n#"))) { fix_d = true; MYprintf(MYstdout, "fixing d prior\n"); } else { fix_d = false; get_mix_prior_params(d_alpha_lambda, d_beta_lambda, line, "d lambda"); } } /* * default_d_priors: * * set d prior parameters * to default values */ void MrExpSep_Prior::default_d_priors(void) { for(unsigned int i=0; i<(2*dim); i++) { d_alpha[i][0] = 1.0; d_beta[i][0] = 20.0; d_alpha[i][1] = 10.0; d_beta[i][1] = 10.0; } } /* * default_d_lambdas: * * set d (lambda) hierarchical prior parameters * to default values */ void MrExpSep_Prior::default_d_lambdas(void) { d_alpha_lambda[0] = 1.0; d_beta_lambda[0] = 10.0; d_alpha_lambda[1] = 1.0; d_beta_lambda[1] = 10.0; fix_d = false; } /* * D: * * return the default range parameter vector */ double* MrExpSep_Prior::D(void) { return d; } /* * Delta: * * return the fine fidelity discount factor, delta. */ double MrExpSep_Prior::Delta(void) { return delta; } /* * Nugaux: * * return the fine fidelity observation error. */ double MrExpSep_Prior::Nugaux(void) { return nugaux; } /* * DAlpha: * * return the default/starting alpha matrix for the range * parameter mixture gamma prior */ double** MrExpSep_Prior::DAlpha(void) { return d_alpha; } /* * DBeta: * * return the default/starting beta matrix for the range * parameter mixture gamma prior */ double** MrExpSep_Prior::DBeta(void) { return d_beta; } /* * DeltaAlpha: * * return the default/starting alpha matrix for the scaled variance * parameter mixture gamma prior */ double* MrExpSep_Prior::Delta_alpha(void) { return delta_alpha; } /* * DeltaBeta: * * return the default/starting beta matrix for the scaled variance * parameter mixture gamma prior */ double* MrExpSep_Prior::Delta_beta(void) { return delta_beta; } /* * Nugaux_Alpha: * * return the default/starting alpha for the fine nugget * parameter mixture gamma prior */ double* MrExpSep_Prior::Nugaux_alpha(void) { return nugaux_alpha; } /* * Nugaux_Beta: * * return the default/starting beta matrix for the fine nugget * parameter mixture gamma prior */ double* MrExpSep_Prior::Nugaux_beta(void) { return nugaux_beta; } /* * DeltaDraw: * * sample a delta value from the prior */ double MrExpSep_Prior::DeltaDraw(void *state) { return gamma_mixture_rand(delta_alpha, delta_beta, state); } /* * NugauxDraw: * * sample a nugaux value from the prior */ double MrExpSep_Prior::NugauxDraw(void *state) { return nug_prior_rand(nugaux_alpha, nugaux_beta, state); } /* * Draw: * * draws for the hierarchical priors for the MrExpSep * correlation function which are contained in the params module * * inputs are howmany number of corr modules */ void MrExpSep_Prior::Draw(Corr **corr, unsigned int howmany, void *state) { /* don't do anything if we're fixing the prior for d */ if(!fix_d) { /* for gathering the d-s of each of the corr models; repeatedly used for each dimension */ double *d = new_vector(howmany); /* for each dimension */ for(unsigned int j=0; j<(2*dim); j++) { /* gather all of the d->parameters for the jth dimension from each of the "howmany" corr modules */ for(unsigned int i=0; iD())[j]; /* use those gathered d values to make a draw for the parameters for the prior of the jth d */ mixture_priors_draw(d_alpha[j], d_beta[j], d, howmany, d_alpha_lambda, d_beta_lambda, state); } /* clean up */ free(d); } /* hierarchical prior draws for the nugget */ DrawNugHier(corr, howmany, state); } /* * newCorr: * * construct and return a new separable MrExponential correlation * function with this module governing its prior parameterization */ Corr* MrExpSep_Prior::newCorr(void) { return new MrExpSep(dim, base_prior); } /* * log_Prior: * * compute the (log) prior for the parameters to * the correlation function (e.g. d and nug) */ double MrExpSep_Prior::log_Prior(double *d, int *b, double *pb, bool linear) { double prob = 0; /* if forcing the LLM, just return zero (i.e. prior=1, log_prior=0) */ if(gamlin[0] < 0) return prob; /* sum the log priors for each of the d-parameters */ for(unsigned int i=0; i<(2*dim); i++) prob += log_d_prior_pdf(d[i], d_alpha[i], d_beta[i]); /* if not allowing the LLM, then we're done */ if(gamlin[0] <= 0) return prob; /* otherwise, get the prob of each of the booleans */ double lin_pdf = linear_pdf_sep(pb, d, (2*dim), gamlin); /* either use the calculated lin_pdf value */ double lprob = 0.0; if(linear) lprob = log(lin_pdf); else { /* or the sum of the individual pbs */ for(unsigned int i=0; i<(2*dim); i++) { /* probability of linear, or not linear */ if(b[i] == 0) lprob += log(pb[i]); else lprob += log(1.0 - pb[i]); } } prob += lprob; return prob; } /* * log_Dprior_pdf: * * return the log prior pdf value for the vector * of range parameters d */ double MrExpSep_Prior::log_DPrior_pdf(double *d) { double p = 0; for(unsigned int i=0; i<(2*dim); i++) { p += log_d_prior_pdf(d[i], d_alpha[i], d_beta[i]); } return p; } /* * DPrior_rand: * * draw from the joint prior distribution for the * range parameter vector d */ void MrExpSep_Prior::DPrior_rand(double *d_new, void *state) { for(unsigned int j=0; j<(2*dim); j++) d_new[j] = d_prior_rand(d_alpha[j], d_beta[j], state); } /* * BasePrior: * * return the prior for the Base (eg Gp) model */ Base_Prior* MrExpSep_Prior::BasePrior(void) { return base_prior; } /* * SetBasePrior: * * set the base_prior field */ void MrExpSep_Prior::SetBasePrior(Base_Prior *base_prior) { this->base_prior = base_prior; } /* * Print: * * pretty print the correllation function parameters out * to a file */ void MrExpSep_Prior::Print(FILE *outfile) { MYprintf(MYstdout, "corr prior: separable power\n"); /* print nugget stuff first */ PrintNug(outfile); /* range parameter */ /* MYprintf(outfile, "starting d=\n"); printVector(d, (2*dim), outfile, HUMAN); */ /* range gamma prior, just print once */ MYprintf(outfile, "d[a,b][0,1]=[%g,%g],[%g,%g]\n", d_alpha[0][0], d_beta[0][0], d_alpha[0][1], d_beta[0][1]); /* print many times, one for each dimension instead? */ /*for(unsigned int i=0; i<(2*dim); i++) { MYprintf(outfile, "d[a,b][%d][0,1]=[%g,%g],[%g,%g]\n", i, d_alpha[i][0], d_beta[i][0], d_alpha[i][1], d_beta[i][0]); }*/ /* range gamma hyperprior */ if(fix_d) MYprintf(outfile, "d prior fixed\n"); else { MYprintf(MYstdout, "d lambda[a,b][0,1]=[%g,%g],[%g,%g]\n", d_alpha_lambda[0], d_beta_lambda[0], d_alpha_lambda[1], d_beta_lambda[1]); } } /* * log_HierPrior: * * return the log prior of the hierarchial parameters * to the correllation parameters (i.e., range and nugget) */ double MrExpSep_Prior::log_HierPrior(void) { double lpdf; lpdf = 0.0; /* mixture prior for the range parameter, d */ if(!fix_d) { for(unsigned int i=0; i #include #include #include #include #include using namespace std; #define BUFFMAX 256 #define PWR 2.0 /* * ExpSep: * * constructor function */ ExpSep::ExpSep(unsigned int dim, Base_Prior *base_prior) : Corr(dim, base_prior) { /* Sanity Checks */ assert(base_prior->BaseModel() == GP); assert( ((Gp_Prior*) base_prior)->CorrPrior()->CorrModel() == EXPSEP); /* set pointer to correllation prior from the base prior */ prior = ((Gp_Prior*) base_prior)->CorrPrior(); assert(prior); /* check if we should really be starting in the LLM */ if(!prior->Linear() && !prior->LLM()) linear = false; /* let the prior choose the starting nugget value */ nug = prior->Nug(); /* allocate and initialize (from prior) the range params */ d = new_dup_vector(((ExpSep_Prior*)prior)->D(), dim); /* start fully in the GP model, not LLM */ b = new_ones_ivector(dim, 1); pb = new_zero_vector(dim); /* memory allocated for effective range parameter -- deff = d*b */ d_eff = new_dup_vector(d, dim); /* counter of the number of d-rejections in a row */ dreject = 0; } /* * ExpSep (assignment operator): * * used to assign the parameters of one correlation * function to anothers. Both correlation functions * must already have been allocated */ Corr& ExpSep::operator=(const Corr &c) { ExpSep *e = (ExpSep*) &c; /* sanity check */ assert(prior == ((Gp_Prior*) base_prior)->CorrPrior()); /* copy everything */ log_det_K = e->log_det_K; linear = e->linear; dupv(d, e->d, dim); dupv(pb, e->pb, dim); dupv(d_eff, e->d_eff, dim); dupiv(b, e->b, dim); nug = e->nug; dreject = e->dreject; /* copy the covariance matrices -- no longer performed due to the new economy argument in Gp/Base */ // Cov(e); return *this; } /* * ~ExpSep: * * destructor */ ExpSep::~ExpSep(void) { free(d); free(b); free(pb); free(d_eff); } /* * Init: * * initialise this corr function with the parameters provided * from R via the vector of doubles */ void ExpSep::Init(double *dexpsep) { dupv(d, &(dexpsep[1]), dim); if(!prior->Linear() && prior->LLM()) linear_pdf_sep(pb, d, dim, prior->GamLin()); bool lin = true; for(unsigned int i=0; iLinear()) assert(lin); NugInit(dexpsep[0], lin); } /* * Jitter: * * fill jitter[ ] with the variance inflation factor. That is, * the variance for an observation with covariates in the i'th * row of X will be s2*(1.0 + jitter[i]). In standard tgp, the * jitter is simply the nugget. But for calibration and mr tgp, * the jitter value depends upon X (eg real or simulated data). * */ double* ExpSep::Jitter(unsigned int n1, double **X) { double *jitter = new_vector(n1); for(unsigned int i=0; in); /* with probability 0.5, skip drawing the nugget */ double ru = runi(state); if(ru > 0.5) return false; /* make the draw */ double nug_new = nug_draw_margin(n, col, nug, F, Z, K, log_det_K, *lambda, Vb, K_new, Ki_new, Kchol_new, &log_det_K_new, &lambda_new, Vb_new, bmu_new, gp_prior->get_b0(), gp_prior->get_Ti(), gp_prior->get_T(), tau2, prior->NugAlpha(), prior->NugBeta(), gp_prior->s2Alpha(), gp_prior->s2Beta(), (int) linear, itemp, state); /* did we accept the draw? */ if(nug_new != nug) { nug = nug_new; success = true; swap_new(Vb, bmu, lambda); } return success; } /* * Update: (symmetric) * * computes the internal correlation matrix K, * (INCLUDES NUGGET) */ void ExpSep::Update(unsigned int n, double **K, double **X) { exp_corr_sep_symm(K, dim, X, n, d_eff, nug, PWR); } /* * Update: (symmetric) * * takes in a (symmetric) distance matrix and * returns a correlation matrix (INCLUDES NUGGET) */ void ExpSep::Update(unsigned int n, double **X) { /* no need to update internal K if we're at LLM */ if(linear) return; /* sanity check */ assert(this->n == n); /* compute K */ exp_corr_sep_symm(K, dim, X, n, d_eff, nug, PWR); } /* * Update: (non-symmetric) * * takes in a distance matrix and returns a * correlation matrix (DOES NOT INCLUDE NUGGET) */ void ExpSep::Update(unsigned int n1, unsigned int n2, double **K, double **X, double **XX) { exp_corr_sep(K, dim, XX, n1, X, n2, d_eff, PWR); } /* * propose_new_d: * * propose new d and b values. Sometimes propose d's and b's for all * dimensions jointly, sometimes do just the d's with b==1, and * other times do only those with b==0. I have found that this improves * mixing */ bool ExpSep::propose_new_d(double* d_new, int * b_new, double *pb_new, double *q_fwd, double *q_bak, void *state) { *q_bak = *q_fwd = 1.0; /* copy old values into the new ones */ dupv(d_new, d, dim); dupv(pb_new, pb, dim); dupiv(b_new, b, dim); /* 1/3 of the time (or for 1-d data) -- just draw all the ds jointly */ if(dim==1 || runi(state) < 0.3333333333) { /* RW proposal for all d-values */ d_proposal(dim, NULL, d_new, d, q_fwd, q_bak, state); /* if we are allowing the LLM, then we need to draw the b_new conditional on d_new; otherwise just return */ if(prior->LLM()) { if(dim==1 || runi(state) < 0.5) /* sometimes skip drawing the bs (unless 1-d) */ return linear_rand_sep(b_new,pb_new,d_new,dim,prior->GamLin(), state); else return linear; } else return false; /* just draw the ds with bs == 1 or bs == 0, choosing one of those randomly */ } else { /* choose bs == 1 or bs == 0 */ FIND_OP find_op = NE; if(runi(state) < 0.5) find_op = EQ; /* find those ds which coincide with find_op */ unsigned int len = 0; int* zero = find(d_eff, dim, find_op, 0.0, &len); /* if there are no d's which coincide with find_op, then there is nothing to propose, so just return with the current LLM setting */ if(len == 0) { free(zero); return linear; } /* otherwise, draw length(zero) new d values, only at the indices of d_new indicated by zero */ d_proposal(len, zero, d_new, d, q_fwd, q_bak, state); /* done if forcing Gp model (not allowing the LLM) */ if(! prior->LLM()) { free(zero); return false; } /* otherwise, need to draw bs (booleans) conditional on the proposed d_new -- only do this 1/2 the time */ /* sometimes skip drawing the bs */ if(runi(state) < 0.5) { /* gather the ds, bs, and pbs into the "short" vectors, as indexed by the zero-vector */ double *d_short = new_vector(len); double *pb_short = new_zero_vector(len); int *b_short = new_ones_ivector(len, 0); /* make ones give zeros */ copy_sub_vector(d_short, zero, d_new, len); /* draw new bs conditional on the new ds */ linear_rand_sep(b_short,pb_short,d_short,len,prior->GamLin(), state); /* copy the new bs and pbs into the big "new" proposals */ copy_p_vector(pb_new, zero, pb_short, len); copy_p_ivector(b_new, zero, b_short, len); /* clean up */ free(d_short); free(pb_short); free(b_short); free(zero); /* only return true if we have actiually jumpted to the LLM; i.e., only when all the b_new's are 0 */ for(unsigned int i=0; i 0.5) return DrawNugs(n, X, F, Z, lambda, bmu, Vb, tau2, itemp, state); /* proposals happen when we're not forcing the LLM */ if(prior->Linear()) lin_new = true; else { /* allocate new d, b, and pb */ d_new = new_zero_vector(dim); b_new = new_ivector(dim); pb_new = new_vector(dim); /* make the RW proposal for d, and then b */ lin_new = propose_new_d(d_new, b_new, pb_new, &q_fwd, &q_bak, state); } /* calculate the effective model (d_eff = d*b), and allocate memory -- when we're not proposing the LLM */ double *d_new_eff = NULL; if(! lin_new) { /* calculate effective new d-vector, and determine if it is the same as the old one */ d_new_eff = new_zero_vector(dim); bool equal = true; for(unsigned int i=0; in); } } /* compute the acceptance ratio, unless we're forcing the LLM in which case we do nothing just return a successful "draw" */ if(prior->Linear()) success = 1; else { /* compute prior ratio and proposal ratio */ double pRatio_log = 0.0; double qRatio = q_bak/q_fwd; pRatio_log += ep->log_DPrior_pdf(d_new); pRatio_log -= ep->log_DPrior_pdf(d); /* MH acceptance ratio for the draw */ success = d_sep_draw_margin(d_new_eff, n, dim, col, F, X, Z, log_det_K,*lambda, Vb, K_new, Ki_new, Kchol_new, &log_det_K_new, &lambda_new, Vb_new, bmu_new, gp_prior->get_b0(), gp_prior->get_Ti(), gp_prior->get_T(), tau2, nug, qRatio, pRatio_log, gp_prior->s2Alpha(), gp_prior->s2Beta(), (int) lin_new, itemp, state); /* see if the draw was accepted; if so, we need to copy (or swap) the contents of the new into the old */ if(success == 1) { swap_vector(&d, &d_new); /* d_eff is zero if we're in the LLM */ if(!lin_new && d_new_eff) swap_vector(&d_eff, &d_new_eff); else if(lin_new) zerov(d_eff, dim); linear = (bool) lin_new; /* copy b and pb */ swap_ivector(&b, &b_new); swap_vector(&pb, &pb_new); /* only copy if linear or a new d_eff */ if(linear || d_new_eff) swap_new(Vb, bmu, lambda); } } /* if we're not forcing the LLM, then clean up */ if(! prior->Linear()) { free(d_new); free(pb_new); free(b_new); } /* if we didn't happen to jump to the LLM, then we have more cleaning up to do */ if(!lin_new && d_new_eff) free(d_new_eff); /* something went wrong, abort; otherwise keep track of the number of d-rejections in a row */ if(success == -1) return success; else if(success == 0) dreject++; else dreject = 0; /* abort if we have had too many rejections */ if(dreject >= REJECTMAX) return -2; /* draw nugget */ bool changed = DrawNugs(n, X, F, Z, lambda, bmu, Vb, tau2, itemp, state); success = success || changed; return success; } /* * Combine: * * used in tree-prune steps, chooses one of two * sets of parameters to correlation functions, * and choose one for "this" correlation function */ void ExpSep::Combine(Corr *c1, Corr *c2, void *state) { get_delta_d((ExpSep*)c1, (ExpSep*)c2, state); CombineNug(c1, c2, state); } /* * Split: * * used in tree-grow steps, splits the parameters * of "this" correlation function into a parameterization * for two (new) correlation functions */ void ExpSep::Split(Corr *c1, Corr *c2, void *state) { propose_new_d((ExpSep*) c1, (ExpSep*) c2, state); SplitNug(c1, c2, state); } /* * get_delta_d: * * compute d from two ds residing in c1 and c2 * and sample b conditional on the chosen d * * (used in prune) */ void ExpSep::get_delta_d(ExpSep* c1, ExpSep* c2, void *state) { /* create pointers to the two ds */ double **dch = (double**) malloc(sizeof(double*) * 2); dch[0] = c1->d; dch[1] = c2->d; /* randomly choose one of the d's */ int ii[2]; propose_indices(ii, 0.5, state); /* and copy the chosen one */ dupv(d, dch[ii[0]], dim); /* clean up */ free(dch); /* propose b conditional on the chosen d */ linear = linear_rand_sep(b, pb, d, dim, prior->GamLin(), state); /* compute d_eff = d * b for the chosen d and b */ for(unsigned int i=0; id for possible * new children partitions c1 and c2 * * (used in grow) */ void ExpSep::propose_new_d(ExpSep* c1, ExpSep* c2, void *state) { int i[2]; double **dnew = new_matrix(2, dim); /* randomply choose which of c1 and c2 will get a copy of this->d, and which will get a random d from the prior */ propose_indices(i, 0.5, state); /* from this->d */ dupv(dnew[i[0]], d, dim); /* from the prior */ draw_d_from_prior(dnew[i[1]], state); /* copy into c1 and c2 */ dupv(c1->d, dnew[0], dim); dupv(c2->d, dnew[1], dim); /* clean up */ delete_matrix(dnew); /* propose new b for c1 and c2, conditional on the two new d parameters */ c1->linear = (bool) linear_rand_sep(c1->b, c1->pb, c1->d, dim, prior->GamLin(), state); c2->linear = (bool) linear_rand_sep(c2->b, c2->pb, c2->d, dim, prior->GamLin(), state); /* compute d_eff = b*d for the two new b and d pairs */ for(unsigned int i=0; id_eff[i] = c1->d[i] * c1->b[i]; c2->d_eff[i] = c2->d[i] * c2->b[i]; } } /* * draw_d_from_prior: * * get draws of separable d parameter from * the prior distribution */ void ExpSep::draw_d_from_prior(double *d_new, void *state) { /* if forcing the linear, then there's nothing to draw; just copy d_new from this->d */ if(prior->Linear()) dupv(d_new, d, dim); /* otherwise draw from the prior */ else ((ExpSep_Prior*)prior)->DPrior_rand(d_new, state); } /* * State: * * return a string depecting the state * of the (parameters of) correlation function */ char* ExpSep::State(unsigned int which) { char buffer[BUFFMAX]; /* slightly different format if the nugget is going to get printed also */ #ifdef PRINTNUG string s = "(d"; snprintf(buffer, BUFFMAX, "%d=[", which); s.append(buffer); #else string s = ""; if(which == 0) s.append("d=["); else s.append("["); #endif /* if linear, then just put a zero and be done; otherwise, print the col d-values */ if(linear) snprintf(buffer, BUFFMAX, "0]"); else { for(unsigned int i=0; ilog_Prior(d, b, pb, linear); return prob; } /* * sum_b: * * return the count of the number of linearizing * booleans set to one (the number of linear dimensions) */ unsigned int ExpSep::sum_b(void) { unsigned int bs = 0; for(unsigned int i=0; in); inverse_chol(K, Ki, Kchol, n); log_det_K = log_determinant_chol(Kchol, n); } else { assert(n > 0); log_det_K = n * log(1.0 + nug); } } /* * ExpSep_Prior: * * constructor for the prior parameterization of the separable * exponential power distribution function */ ExpSep_Prior::ExpSep_Prior(unsigned int dim) : Corr_Prior(dim) { corr_model = EXPSEP; /* default starting values and initial parameterization */ d = ones(dim, 0.5); d_alpha = new_zero_matrix(dim, 2); d_beta = new_zero_matrix(dim, 2); default_d_priors(); /* set d_alpha and d_beta */ default_d_lambdas(); /* set d_alpha_lambda and d_beta_lambda */ } /* * Init: * * read hiererchial prior parameters from a double-vector * */ void ExpSep_Prior::Init(double *dhier) { for(unsigned int i=0; icorr_model == EXPSEP); /* copy all parameters of the prior */ corr_model = e->corr_model; dupv(gamlin, e->gamlin, 3); d = new_dup_vector(e->d, dim); fix_d = e->fix_d; d_alpha = new_dup_matrix(e->d_alpha, dim, 2); d_beta = new_dup_matrix(e->d_beta, dim, 2); dupv(d_alpha_lambda, e->d_alpha_lambda, 2); dupv(d_beta_lambda, e->d_beta_lambda, 2); } /* * ~ExpSep_Prior: * * destructor for the prior parameterization of the separable * exponential power distribution function */ ExpSep_Prior::~ExpSep_Prior(void) { free(d); delete_matrix(d_alpha); delete_matrix(d_beta); } /* * read_double: * * read the double parameter vector giving the user-secified * prior parameterization specified in R */ void ExpSep_Prior::read_double(double *dparams) { /* read the parameters that have to to with the nugget */ read_double_nug(dparams); /* read the starting value(s) for the range parameter(s) */ for(unsigned int i=0; igetline(line, BUFFMAX); d[0] = atof(strtok(line, " \t\n#")); for(unsigned int i=1; igetline(line, BUFFMAX); strcpy(line_copy, line); if(!strcmp("fixed", strtok(line_copy, " \t\n#"))) { fix_d = true; MYprintf(MYstdout, "fixing d prior\n"); } else { fix_d = false; get_mix_prior_params(d_alpha_lambda, d_beta_lambda, line, "d lambda"); } } /* * default_d_priors: * * set d prior parameters * to default values */ void ExpSep_Prior::default_d_priors(void) { for(unsigned int i=0; iparameters for the jth dimension from each of the "howmany" corr modules */ for(unsigned int i=0; iD())[j]; /* use those gathered d values to make a draw for the parameters for the prior of the jth d */ mixture_priors_draw(d_alpha[j], d_beta[j], d, howmany, d_alpha_lambda, d_beta_lambda, state); } /* clean up */ free(d); } /* hierarchical prior draws for the nugget */ DrawNugHier(corr, howmany, state); } /* * newCorr: * * construct and return a new separable exponential correlation * function with this module governing its prior parameterization */ Corr* ExpSep_Prior::newCorr(void) { return new ExpSep(dim, base_prior); } /* * log_Prior: * * compute the (log) prior for the parameters to * the correlation function (e.g. d and nug) */ double ExpSep_Prior::log_Prior(double *d, int *b, double *pb, bool linear) { double prob = 0; /* if forcing the LLM, just return zero (i.e. prior=1, log_prior=0) */ if(gamlin[0] < 0) return prob; /* sum the log priors for each of the d-parameters */ for(unsigned int i=0; ibase_prior = base_prior; } /* * Print: * * pretty print the correllation function parameters out * to a file */ void ExpSep_Prior::Print(FILE *outfile) { MYprintf(MYstdout, "corr prior: separable power\n"); /* print nugget stuff first */ PrintNug(outfile); /* range parameter */ /* MYprintf(outfile, "starting d=\n"); printVector(d, dim, outfile, HUMAN); */ /* range gamma prior, just print once */ MYprintf(outfile, "d[a,b][0,1]=[%g,%g],[%g,%g]\n", d_alpha[0][0], d_beta[0][0], d_alpha[0][1], d_beta[0][1]); /* print many times, one for each dimension instead? */ /* for(unsigned int i=1; i #include #include "linalg.h" #include "matrix.h" #include "rhelp.h" #ifdef FORTPACK char uplo = 'U'; #endif /* #define DEBUG */ /* moved from header file */ #ifdef FORTPACK #include #define dpotrf dpotrf_ #define dtrsv dtrsv_ #define dposv dposv_ #define dgesv dgesv_ #endif #ifdef FORTBLAS #include #define dgemm dgemm_ #define dsymm dsymm_ #define dgemv dgemv_ #define dsymv dsymv_ #define ddot ddot_ #define daxpy daxpy_ #define dtrsv dtrsv_ #endif /* * linalg_dtrsv: * * analog of dtrsv in cblas nad blas * assumed row-major lower-tri and non-unit */ void linalg_dtrsv(const enum CBLAS_TRANSPOSE TA, int n, double **A, int lda, double *Y, int ldy) { #ifdef FORTBLAS char ta; char diag = 'N'; if(TA == CblasTrans) ta = 'T'; else ta = 'N'; dtrsv(&uplo, &ta, &diag, &n, *A, &lda, Y, &ldy FCONE FCONE FCONE); #else cblas_dtrsv(CblasRowMajor,CblasLower,TA,CblasNonUnit, /*cblas_dtrsv(CblasColMajor,CblasUpper,CblasNoTrans,CblasNonUnit,*/ n,*A,lda,Y,ldy); #endif } /* * linalg_ddot: * * analog of ddot in cblas nad blas */ double linalg_ddot(int n, double *X, int ldx, double *Y, int ldy) { double result; #ifdef FORTBLAS result = ddot(&n,X,&ldx,Y,&ldy); #else result = cblas_ddot(n, X, ldx, Y, ldy); #endif return result; } /* * linalg_daxpy: * * analog of daxpy in cblas nad blas */ void linalg_daxpy(int n, double alpha, double *X, int ldx, double *Y, int ldy) { #ifdef FORTBLAS daxpy(&n,&alpha,X,&ldx,Y,&ldy); #else cblas_daxpy(n, alpha, X, ldx, Y, ldy); #endif } /* * linalg_dgemm: * * analog of dgemm in cblas nad blas * assumed column major representation */ void linalg_dgemm(const enum CBLAS_TRANSPOSE TA, const enum CBLAS_TRANSPOSE TB, int m, int n, int k, double alpha, double **A, int lda, double **B, int ldb, double beta, double **C, int ldc) { #ifdef FORTBLAS char ta, tb; if(TA == CblasTrans) ta = 'T'; else ta = 'N'; if(TB == CblasTrans) tb = 'T'; else tb = 'N'; dgemm(&ta,&tb,&m,&n,&k,&alpha,*A,&lda,*B,&ldb,&beta,*C,&ldc FCONE FCONE); #else cblas_dgemm(CblasColMajor,TA,TB,m,n,k,alpha,*A,lda,*B,ldb,beta,*C,ldc); #endif } /* * linalg_dgemv: * * analog of dgemv in cblas nad blas * assumed column major representation */ void linalg_dgemv(const enum CBLAS_TRANSPOSE TA, int m, int n, double alpha, double **A, int lda, double *X, int ldx, double beta, double *Y, int ldy) { #ifdef FORTBLAS char ta; if(TA == CblasTrans) ta = 'T'; else ta = 'N'; dgemv(&ta,&m,&n,&alpha,*A,&lda,X,&ldx,&beta,Y,&ldy FCONE); #else cblas_dgemv(CblasColMajor,TA,m,n,alpha,*A,lda,X,ldx,beta,Y,ldy); #endif } /* * linalg_dsymm: * * analog of dsymm in cblas nad blas * assumed column major and upper-triangluar representation */ void linalg_dsymm(const enum CBLAS_SIDE SIDE, int m, int n, double alpha, double **A, int lda, double **B, int ldb, double beta, double **C, int ldc) { #ifdef FORTBLAS char side; if(SIDE == CblasRight) side = 'R'; else side = 'L'; dsymm(&side,&uplo,&m,&n,&alpha,*A,&lda,*B,&ldb,&beta,*C,&ldc FCONE FCONE); #else cblas_dsymm(CblasColMajor,SIDE,CblasUpper,m,n,alpha,*A,lda,*B,ldb,beta,*C,ldc); #endif } /* * linalg_dsymv: * * analog of dsymv in cblas and blas * assumed column major representation */ void linalg_dsymv(int n, double alpha, double **A, int lda, double *X, int ldx, double beta, double *Y, int ldy) { #ifdef FORTBLAS dsymv(&uplo,&n,&alpha,*A,&lda,X,&ldx,&beta,Y,&ldy FCONE); #else cblas_dsymv(CblasColMajor,CblasUpper,n,alpha,*A,lda,X,ldx,beta,Y,ldy); #endif } /* * linalg_dposv: * * analog of dposv in clapack and lapack where * Mutil is with colmajor and uppertri or rowmajor * and lowertri */ int linalg_dposv(int n, double **Mutil, double **Mi) { int info; /* then use LAPACK */ #ifdef FORTPACK dposv(&uplo,&n,&n,*Mutil,&n,*Mi,&n,&info FCONE); #else /*info = clapack_dposv(CblasColMajor,CblasUpper,n,n,*Mutil,n,*Mi,n);*/ info = clapack_dposv(CblasRowMajor,CblasLower,n,n,*Mutil,n,*Mi,n); #endif #ifdef DEBUG if(info != 0) { matrix_to_file("M.dump", Mutil, n, n); error("offending matrix dumped into matrix.dump"); } #endif return (int) info; } /* * linalg_dgesv: * * analog of dgesv in clapack and lapack; * row or col major doesn't matter because it is * assumed that Mutil is symmetric * * inverse_lu used this with RowMajor, other with ColMajor */ int linalg_dgesv(int n, double **Mutil, double **Mi) { int info; int *p; p = new_ivector(n); #ifdef FORTPACK dgesv(&n,&n,*Mutil,&n,p,*Mi,&n,&info); #else info = clapack_dgesv(CblasColMajor,n,n,*Mutil,n,p,*Mi,n); /*info = clapack_dgesv(CblasRowMajor,n,n,*Mutil,n,p,*Mi,n);*/ #endif free(p); #ifdef DEBUG assert(info == 0); #endif return info; } /* * * analog of dpotrf in clapack and lapack where * var is with colmajor and uppertri or rowmajor * and lowertri */ int linalg_dpotrf(int n, double **var) { int info; #ifdef FORTPACK dpotrf(&uplo,&n,*var,&n,&info FCONE); #else info = clapack_dpotrf(CblasRowMajor,CblasLower,n,*var,n); /*info = clapack_dpotrf(CblasColMajor,CblasUpper,n,*var,n);*/ #endif #ifdef DEBUG assert(info == 0); #endif return (int) info; } #ifndef FORTPACK /* * solve_cg_symm: * * solve Ax=b by inverting A and computing using the conjugate * gradient method from Skilling (also takes advantage of symmetry in C) * C[n][n] double u[n], y[n], y_star[n] */ int solve_cg_symm(double *y, double *y_star, double **C, double *u, double theta, unsigned int n) { double g[n], g_star[n], h[n], h_star[n], Ch[n], Ch_star[n]; double Cy[n], Cy_star[n], Ag_star[n], ACh_star[n], Ay_star[n], CAy_star[n]; double **A; double gamma, gamma_star, lambda, lambda_star, g_old_norm, g_old_norm_star, Q, Q_star, u_norm, upper; unsigned int k, i, j;/*, iter;*/ A = new_matrix(n, n); u_norm = linalg_ddot(n, u, 1, u, 1); /* initialize */ for(i=0; i #include #include #include #include #include #include "lh.h" #include "matrix.h" #include "rhelp.h" #include "rand_draws.h" int compareRank(const void* a, const void* b); int compareDouble(const void* a, const void* b); /* * structure for ranking */ typedef struct rank { double s; int r; } Rank; /* * rect_sample_lh: * * returns a unidorm sample of (n) points * within a regular (dim)-dimensional cube. * (n*dim matrix returned) */ double** rect_sample(int dim, int n, void *state) { int i,j; double **s = new_matrix(dim, n); for(i=0; i= 0); if(n == 0) return NULL; z = e = s = NULL; /* We could just draw random permutations of (1..n) here, which is effectively what we are doing. This ranking scheme could be valuable, though, in drawing lhs for correlated variables. In that case, s would instead be a sample from the correct joint distribution, and the quantile functions at the end would have to correspond to the marginal distributions for each variable. See Stein, 1987 (Technometrics). This would have to be coded on a case to case basis though. */ /* get initial sample */ s = rect_sample(dim, n, state); /* get ranks */ r = (int**) malloc(sizeof(int*) * dim); for(i=0; is = s[i][j]; sr[j]->r = j; } qsort((void*)sr, n, sizeof(Rank*), compareRank); /* assign ranks */ for(j=0; jr] = j+1; free(sr[j]); } free(sr); } /* Draw random variates */ e = rect_sample(dim, n, state); /* Obtain latin hypercube sample on the unit cube: The alpha parameters for each beta quantile function are calculated from the (re-scaled) mode and the shape parameter. */ z = new_matrix(dim,n); for(i=0; i 1.0 || mode[i] < 0) mscaled=0.5; else mscaled = mode[i]; for(j=0; j mscaled || 1 < mscaled ) mscaled=0.5; if(shape[i] < 1) shape[i] = 1; /* only concave betas, else uniform */ alpha = (1 + mscaled*(shape[i]-2))/(1-mscaled); assert( alpha > 0 ); for(j=0; j= 0); if(n == 0) return NULL; z = e = s = NULL; /* get initial sample */ s = rect_sample(dim, n, state); /* get ranks */ r = (int**) malloc(sizeof(int*) * dim); for(i=0; is = s[i][j]; sr[j]->r = j; } qsort((void*)sr, n, sizeof(Rank*), compareRank); /* assign ranks */ for(j=0; jr] = j+1; free(sr[j]); } free(sr); } /* Draw random variates */ if(er) e = rect_sample(dim, n, state); /* Obtain latin hypercube sample */ z = new_matrix(dim,n); for(i=0; is < bb->s) return -1; else return 1; } /* * compareDouble: * * comparison function double sorting ranking */ int compareDouble(const void* a, const void* b) { double aa = (double)(*(double *)a); double bb = (double)(*(double *)b); if(aa < bb) return -1; else return 1; } /* * rect_scale: * * shift/scale a draws from a unit cube into * the specified rectangle */ void rect_scale(double** z, int d, int n, double** rect) { int i,j; double scale, shift; for(i=0; is = s[j]; sr[j]->r = j; } qsort((void*)sr, n, sizeof(Rank*), compareRank); /* assign ranks */ for(j=0; jr +1; free(sr[j]); } free(sr); return r; } /* * rank: * * obtain the integer rank of the elemts of s */ int* rank(double *s, unsigned int n) { int j; int *r; Rank ** sr; r = new_ivector(n); sr = (Rank**) malloc(sizeof(Rank*) * n); for(j=0; js = s[j]; sr[j]->r = j; } qsort((void*)sr, n, sizeof(Rank*), compareRank); /* assign ranks */ for(j=0; jr] = j+1; free(sr[j]); } free(sr); return r; } tgp/src/base.cc0000644000176200001440000000701314661636664013077 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include "base.h" #include "model.h" #include #include #include //class GP_Prior; class Base_Prior; /* * Base: * * constructor for the base (e.g., GP) model; * most things are set to null values */ Base::Base(unsigned int d, Base_Prior *prior, Model *model) { /* data size */ this->n = 0; this->d = d; nn = 0; col = prior->Col(); /* null everything */ X = XX = NULL; Z = NULL; mean = 0; /* model references */ this->prior = prior; pcopy = false; OUTFILE = model->Outfile(&verb); /* annleaing temper comes from model */ itemp = model->iTemp(); } /* * Base: * * duplication constructor; params any "new" variables are also * set to NULL values; the economy argument is not used here */ Base::Base(double **X, double *Z, Base *old, bool economy) { /* simple non-pointer copies */ d = old->d; col = old->col; n = old->n; /* pointers to data */ this->X = X; this->Z = Z; mean = old->mean; /* prior parameters; forces a copy to be made */ prior = old->prior->Dup(); pcopy = true; /* copy the importance annealing temperature */ itemp = old->itemp; /* things that must be NULL */ XX = NULL; nn = 0; OUTFILE = old->OUTFILE; } /* * ~Base: * * destructor function for the base (e.g., GP) model */ Base::~Base(void) { if(pcopy) delete prior; } /* * N: * * sanity check, and return n, the size of the data * under this GP */ unsigned int Base::N(void) { if(n == 0) { assert(X == NULL); return 0; } else { assert(X != NULL); return n; } } /* * BaseModel: * * return s the "prior" base model */ BASE_MODEL Base::BaseModel(void) { return prior->BaseModel(); } /* * BasePrior: * * return the prior used by this base * */ Base_Prior* Base::Prior(void) { return prior; } /* * Base_Prior: * * the usual constructor function */ Base_Prior::Base_Prior(unsigned int d) { this->d = d; } /* * Base_Prior: * * duplication constructor function */ Base_Prior::Base_Prior(Base_Prior *p) { assert(p); base_model = p->base_model; /* generic and tree parameters */ d = p->d; col = p->col; } /* * BaseModel: * * return the base model indicator */ BASE_MODEL Base_Prior::BaseModel(void) { return base_model; } /* * Col * */ unsigned int Base_Prior::Col(void) { return col; } /* * ~Base_Prior: * * the usual destructor, nothing to do */ Base_Prior::~Base_Prior(void) { } tgp/src/gp.cc0000644000176200001440000014123314661637467012600 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include extern "C" { #include "matrix.h" #include "rhelp.h" #include "all_draws.h" #include "gen_covar.h" #include "predict.h" #include "predict_linear.h" #include "rand_draws.h" #include "rand_pdf.h" #include "lik_post.h" } #include "params.h" #include "exp.h" #include "exp_sep.h" #include "matern.h" #include "mr_exp_sep.h" #include "sim.h" #include "twovar.h" #include "tree.h" #include "model.h" #include "gp.h" #include "base.h" #include #include #include using namespace std; #include class Gp_Prior; /* * Gp: * * constructor for the base Gp model; * most things are set to null values */ Gp::Gp(unsigned int d, Base_Prior *prior, Model *model) : Base(d, prior, model) { /* data size; alread done in Base */ /* this->n = 0; this->d = d; nn = 0; */ /* null everything */ F = FF = xxKx = xxKxx = NULL; Z = NULL; corr = NULL; b = new_zero_vector(this->col); Vb = new_id_matrix(this->col); bmu = new_zero_vector(this->col); bmle = new_zero_vector(this->col); lambda = 0; } /* * Gp: * * duplication constructor; params and "new" variables are also set to * NULL values; the economy argument allows a memory efficient * duplication which does not copy the covariance matrices, as these * can be recreated as necessary. */ Gp::Gp(double **X, double *Z, Base *old, bool economy) : Base(X, Z, old, economy) { assert(old->BaseModel() == GP); Gp* gp_old = (Gp*) old; /* F; copied from tree -- this should prolly be regenerated from scratch */ if(gp_old->F) F = new_dup_matrix(gp_old->F, col, n); else F = NULL; /* gp/linear parameters */ lambda = gp_old->lambda; s2 = gp_old->s2; tau2 = gp_old->tau2; /* beta parameters */ assert(gp_old->Vb); Vb = new_dup_matrix(gp_old->Vb, col, col); assert(gp_old->bmu); bmu = new_dup_vector(gp_old->bmu, col); assert(gp_old->bmle); bmle = new_dup_vector(gp_old->bmle, col); assert(gp_old->b); b = new_dup_vector(gp_old->b, col); /* correllation prior parameters are duplicated above in Base(X, Z, old) */ corr_prior = ((Gp_Prior*)prior)->CorrPrior(); /* correlation function; not using a corr->Dup() function * so as not to re-duplicate the correlation function * prior -- so generate a new one from the copied * prior and then use the copy constructor */ corr = corr_prior->newCorr(); *corr = *(gp_old->corr); /* if we're not being economical about memory, then copy the covariance matrices, etc., from the old correlation module */ if(!economy) corr->Cov(gp_old->corr); /* things that must be NULL */ FF = xxKx = xxKxx = NULL; } /* * Dup: * * create a new Gp base model from an old one; cannot use old->X * and old->Z because they are pointers to the old copy of the * treed partition from which this function is likely to have been * called. The economy argument allows a memory efficient * duplication which does not copy the covariance matrices, as these * can be recreated as necessary. * * This function basically allows tree to duplicate the base model * without knowing what it is. */ Base* Gp::Dup(double **X, double *Z, bool economy) { return new Gp(X, Z, this, economy); } /* * ~Gp: * * destructor function for the base Gp model */ Gp::~Gp(void) { Clear(); ClearPred(); if(b) free(b); if(corr) delete corr; if(Vb) delete_matrix(Vb); if(bmu) free(bmu); if(bmle) free(bmle); if(FF) delete_matrix(FF); } /* * init: * * initialize all of the parameters to this * tree partion */ void Gp::Init(double *dgp) { /* set base and corr priors */ Gp_Prior *p = (Gp_Prior*) prior; corr_prior = p->CorrPrior(); assert(corr_prior->BasePrior() == prior); /* re-init partition */ /* not sure if this is necessary when dgp != NULL */ Clear(); ClearPred(); /* see if we should read the parameterization from dgp */ if(dgp) { /* dgp[0] is lambda (which we're just recomputing for now) */ s2 = dgp[1]; tau2 = dgp[2]; dupv(b, &(dgp[3]), col); /* dgp[3+col + col + col*col] is bmu and Vb (which we're also just recomputing for now) */ if(!corr) corr = corr_prior->newCorr(); corr->Init(&(dgp[3+col + col + col*col])); /* could probably put id-Vb and zero-bmu/bmle, but don't need to because the gp is always init-ed with these in place anyways (base->Init(NULL) in tree constructor) */ } else { /* or instead init params from the prior */ /* partition parameters */ dupv(b, p->B(), col); s2 = p->S2(); tau2 = p->Tau2(); /* marginalized parameters */ id(Vb, this->col); zerov(bmu, this->col); zerov(bmle, this->col); lambda = 0; /* correlation function and variance parameters */ if(corr) delete corr; corr = corr_prior->newCorr(); } } /* * Clear: * * delete the current partition */ void Gp::Clear(void) { if(F) delete_matrix(F); X = F = NULL; Z = NULL; n = 0; if(corr) corr->deallocate_new(); } /* * ClearPred: * * destroys the predictive matrices for the * partition (usually used after a prune) */ void Gp::ClearPred(void) { if(xxKx) delete_matrix(xxKx); if(xxKxx) delete_matrix(xxKxx); if(FF) delete_matrix(FF); XX = FF = xxKx = xxKxx = NULL; nn = 0; } /* * Update: * * initializes a new partition at this (leaf) node based on * the current parameter settings */ void Gp::Update(double **X, unsigned int n, unsigned int d, double *Z) { /*checks */ assert(X && Z); if(F == NULL) assert(this->n == 0 && this->X == NULL && this->Z == NULL); else assert(this->n == n && this->X == X && this->Z == Z); /* data assignments */ this->X = X; this->n = n; this->Z = Z; if(! Linear()) corr->allocate_new(n); if(F == NULL) { F = new_matrix(this->col,n); X_to_F(n, X, F); } corr->Update(n, X); corr->Invert(n); if(((Gp_Prior*)prior)->BetaPrior() == BMLE) mle_beta(bmle, n, col, F, Z); wmean_of_rows(&mean, &Z, 1, n, NULL); } /* * UpdatePred: * * initializes the partition's predictive variables at this * (leaf) node based on the current parameter settings */ void Gp::UpdatePred(double **XX, unsigned int nn, unsigned int d, bool Ds2xy) { assert(this->XX == NULL); if(XX == NULL) { assert(nn == 0); return; } this->XX = XX; this->nn = nn; assert(!FF && !xxKx); FF = new_matrix(this->col,nn); X_to_F(nn, XX, FF); if(! Linear()) { xxKx = new_matrix(n,nn); corr->Update(nn, n, xxKx, X, XX); } if(Ds2xy && ! Linear()) { assert(!xxKxx); xxKxx = new_matrix(nn,nn); corr->Update(nn, xxKxx, XX); } } /* * Draw: * * draw new values for the parameters using a mixture of Gibbs and MH steps * (covariance matrices are recomputed, and old predictive ones invalidated * where appropriate) */ bool Gp::Draw(void *state) { Gp_Prior *p = (Gp_Prior*) prior; /* * start with draws from the marginal posterior of the corr function */ /* correlation function */ int success, i; for(i=0; i<5; i++) { success = corr->Draw(n, F, X, Z, &lambda, &bmu, Vb, tau2, itemp, state); if(success != -1) break; } /* handle possible errors in corr->Draw() */ if(success == -1) MYprintf(MYstderr, "NOTICE: max tree warnings (%d), ", i); else if(success == -2) MYprintf(MYstderr, "NOTICE: mixing problem, "); if(success < 0) { MYprintf(MYstderr, "backup to model\n"); return false; } /* check the updated-ness of xxKx and xxKxx */ if(success && xxKx) { delete_matrix(xxKx); if(xxKxx) { delete_matrix(xxKxx); } xxKx = xxKxx = NULL; } /* * then go to the others */ /* s2 */ if(p->BetaPrior() == BFLAT) s2 = sigma2_draw_no_b_margin(n, col, lambda, p->s2Alpha()-col,p->s2Beta(), state); else s2 = sigma2_draw_no_b_margin(n, col, lambda, p->s2Alpha(), p->s2Beta(), state); /* if beta draw is bad, just use mean, then zeros */ unsigned int info = beta_draw_margin(b, col, Vb, bmu, s2, state); if(info != 0) b[0] = mean; /* tau2: last because of Vb and lambda */ if(p->BetaPrior() != BFLAT && p->BetaPrior() != B0NOT && p->BetaPrior() != BMZNOT) tau2 = tau2_draw(col, p->get_Ti(), s2, b, p->get_b0(), p->tau2Alpha(), p->tau2Beta(), state); /* NOTE: that Compute() still needs to be called here, but we are delaying it until after the draws for the hierarchical params */ return true; } /* * predict: * * predict with the gaussian process model. It is assumed that, * if the argments are not null, then they are allocated with the * correct sizes */ void Gp::Predict(unsigned int n, double *zp, double *zpm, double *zpvm, double *zps2, unsigned int nn, double *zz, double *zzm, double *zzvm, double *zzs2, double **ds2xy, double *improv, double Zmin, bool err, void *state) { assert(this->n == n); assert(this->nn == nn); unsigned int warn = 0; /* try to make some predictions, but first: choose LLM or Gp */ if(Linear()) { /* under the limiting linear */ double *Kdiag = corr->CorrDiag(n,X); double *KKdiag = corr->CorrDiag(nn,XX); // MYprintf(MYstdout, "%g %g\n", KKdiag[0], KKdiag[nn/2]); predict_full_linear(n, zp, zpm, zpvm, zps2, Kdiag, nn, zz, zzm, zzvm, zzs2, KKdiag, ds2xy, improv, Z, col, F, FF, bmu, s2, Vb, Zmin, err, state); if(Kdiag) free(Kdiag); if(KKdiag) free(KKdiag); } else { /* full Gp prediction */ double *zpjitter = corr->Jitter(n, X); double *zzjitter = corr->Jitter(nn, XX); double *KKdiag; if(!xxKxx) KKdiag = corr->CorrDiag(nn,XX); else KKdiag = NULL; // printVector(KKdiag, nn, MYstdout, HUMAN); warn = predict_full(n, zp, zpm, zpvm, zps2, zpjitter, nn, zz, zzm, zzvm, zzs2, zzjitter, ds2xy, improv, Z, col, F, corr->get_K(), corr->get_Ki(), ((Gp_Prior*)prior)->get_T(), tau2, FF, xxKx, xxKxx, KKdiag, bmu, s2, Zmin, err, state); if(zpjitter) free(zpjitter); if(zzjitter) free(zzjitter); if(KKdiag) free(KKdiag); } /* print warnings if there were any */ if(warn) Rf_warning("(%d) from predict_full: n=%d, nn=%d", warn, n, nn); } /* * match: * * match the high-level linear parameters */ void Gp::Match(Base* old) { assert(old->BaseModel() == GP); Gp* gp_old = (Gp*) old; *corr = *(gp_old->corr); dupv(b, gp_old->b, col); s2 = gp_old->s2; tau2 = gp_old->tau2; } /* * Combine: * * used by the tree prune operation. Combine the relevant parameters * of two child Gps into this (the parent) Gp */ void Gp::Combine(Base *l, Base *r, void *state) { assert(l->BaseModel() == GP); assert(r->BaseModel() == GP); Gp* l_gp = (Gp*) l; Gp* r_gp = (Gp*) r; corr->Combine(l_gp->corr, r_gp->corr, state); tau2 = combine_tau2(l_gp->tau2, r_gp->tau2, state); } /* * Split: * * used by the tree grow operation. Split the relevant parameters * of parent Gp into two (left & right) children Gps */ void Gp::Split(Base *l, Base *r, void *state) { double tau2_new[2]; assert(l->BaseModel() == GP); assert(r->BaseModel() == GP); Gp *l_gp = (Gp*) l; Gp *r_gp = (Gp*) r; corr->Split(l_gp->corr, r_gp->corr, state); /* new tau2 parameters for the leaves */ split_tau2(tau2_new, state); l_gp->tau2 = tau2_new[0]; r_gp->tau2 = tau2_new[1]; } /* * split_tau2: * * propose new tau2 parameters for possible new children partitions. */ void Gp::split_tau2(double *tau2_new, void *state) { int i[2]; Gp_Prior *p = (Gp_Prior*) prior; /* make the larger partition more likely to get the smaller d */ propose_indices(i, 0.5, state); tau2_new[i[0]] = tau2; if(p->BetaPrior() == BFLAT || p->BetaPrior() == B0NOT) tau2_new[i[1]] = tau2; else tau2_new[i[1]] = tau2_prior_rand(p->tau2Alpha()/2, p->tau2Beta()/2, state); } /* * combine_tau2: * * combine left and right childs tau2 into a single tau2 */ double combine_tau2(double l_tau2, double r_tau2, void *state) { double tau2ch[2]; int ii[2]; tau2ch[0] = l_tau2; tau2ch[1] = r_tau2; propose_indices(ii, 0.5, state); return tau2ch[ii[0]]; } /* * Posterior: * * called by tree: for these Gps, the Posterior is the same as * the marginal Likelihood due to the proposals coming from priors */ double Gp::Posterior(void) { return MarginalLikelihood(itemp); } /* * MarginalLikelihood: * * computes the marginalized likelihood/posterior for this (leaf) node */ double Gp::MarginalLikelihood(double itemp) { assert(F != NULL); Gp_Prior *p = (Gp_Prior*) prior; /* the main posterior for the correlation function */ double post = post_margin_rj(n, col, lambda, Vb, corr->get_log_det_K(), p->get_T(), tau2, p->s2Alpha(), p->s2Beta(), itemp); #ifdef DEBUG if(ISNAN(post)) Rf_warning("nan in posterior"); if(!R_FINITE(post)) Rf_warning("inf in posterior"); #endif return post; } /* * Likelihood: * * computes the MVN (log) likelihood for this (leaf) node */ double Gp::Likelihood(double itemp) { /* sanity check */ assert(F != NULL); /* getting the covariance matrix and its determinant */ double **Ki; double *Kdiag; if(Linear()){ Ki = NULL; Kdiag = corr->CorrDiag(n, X); } else { Ki = corr->get_Ki(); Kdiag = NULL; } double log_det_K = corr->get_log_det_K(); /* the main posterior for the correlation function */ double llik = gp_lhood(Z, n, col, F, b, s2, Ki, log_det_K, Kdiag, itemp); if(Kdiag) free(Kdiag); #ifdef DEBUG if(ISNAN(llik)) Rf_warning("nan in likelihood"); if(!R_FINITE(llik)) Rf_warning("inf in likelihood"); #endif return llik; } /* * FullPosterior: * * return the full posterior (pdf) probability of * this Gaussian Process model */ double Gp::FullPosterior(double itemp) { /* calculate the likelihood of the data */ double post = Likelihood(itemp); /* for adding in priors */ Gp_Prior *p = (Gp_Prior*) prior; /* calculate the prior on the beta regression coeffs */ if(p->BetaPrior() == B0 || p->BetaPrior() == BMLE) { double **V = new_dup_matrix(p->get_T(), col, col); scalev(V[0], col*col, s2*tau2); post += mvnpdf_log(b, p->get_b0(), V, col); delete_matrix(V); } /* add in the correllation prior */ post += corr->log_Prior(); /* add in prior for s2 */ post += log_tau2_prior_pdf(s2, p->s2Alpha()/2.0, p->s2Beta()/2.0); /* add in prior for tau2 */ if(p->BetaPrior() != BFLAT && p->BetaPrior() != B0NOT) { post += log_tau2_prior_pdf(tau2, p->tau2Alpha()/2.0, p->tau2Beta()/2.0); } return post; } /* * MarginalPosterior: * * return the full marginal posterior (pdf) probability of * this Gaussian Process model -- i.e., with beta and s2 integrated out */ double Gp::MarginalPosterior(double itemp) { /* for adding in priors */ Gp_Prior *p = (Gp_Prior*) prior; double post = post_margin_rj(n, col, lambda, Vb, corr->get_log_det_K(), p->get_T(), tau2, p->s2Alpha(), p->s2Beta(), itemp); //assert(R_FINITE(post)); /* don't need to include prior for beta or s2, because its alread included in the above calculation */ /* add in the correllation prior */ post += corr->log_Prior(); /* don't need to include prior for beta, because its alread included in the above calculation */ /* add in prior for tau2 */ if(p->BetaPrior() != BFLAT && p->BetaPrior() != B0NOT) { post += log_tau2_prior_pdf(tau2, p->tau2Alpha()/2, p->tau2Beta()/2); } return post; } /* * Compute: * * compute marginal parameters: Vb, b, and lambda * how this is done depents on whether or not this is a * linear model or a Gp, and then also depends on the beta * prior model. */ void Gp::Compute(void) { Gp_Prior *p = (Gp_Prior*) prior; double *b0 = ((Gp_Prior*)p)->get_b0();; double** Ti = ((Gp_Prior*)p)->get_Ti(); /* sanity check for a valid partition */ assert(F); /* get the right b0 depending on the beta prior */ switch(p->BetaPrior()) { case BMLE: dupv(b0, bmle, col); break; case BFLAT: assert(b0[0] == 0.0 && Ti[0][0] == 0.0 && tau2 == 1.0); break; case B0NOT: assert(b0[0] == 0.0 && Ti[0][0] == 1.0 && tau2 == p->Tau2()); break; case BMZNOT: case BMZT: /*assert(b0[0] == 0.0 && Ti[0][0] == 1.0);*/ break; case B0: break; } /* compute the marginal parameters */ if(Linear()){ double *Kdiag = corr->CorrDiag(n, X); lambda = compute_lambda_noK(Vb, bmu, n, col, F, Z, Ti, tau2, b0, Kdiag, itemp); free(Kdiag); } else lambda = compute_lambda(Vb, bmu, n, col, F, Z, corr->get_Ki(), Ti, tau2, b0, itemp); } /* * all_params: * * copy this node's parameters (s2, tau2, d, nug) to * be return by reference, and return a pointer to b */ double* Gp::all_params(double *s2, double *tau2, Corr **corr) { *s2 = this->s2; *tau2 = this->tau2; *corr = this->corr; return b; } /* * get_b: * * returns the beta vector parameter */ double* Gp::get_b(void) { return b; } /* * get_Corr: * * return a pointer to the correlleation structure */ Corr* Gp::get_Corr(void) { return corr; } /* * printFullNode: * * print everything intertesting about the current tree node to a file */ void Gp::printFullNode(void) { Gp_Prior *p = (Gp_Prior*) prior; assert(X); matrix_to_file("X_debug.out", X, n, col-1); assert(F); matrix_to_file("F_debug.out", F, col, n); assert(Z); vector_to_file("Z_debug.out", Z, n); if(XX) matrix_to_file("XX_debug.out", XX, nn, col-1); if(FF) matrix_to_file("FF_debug.out", FF, col, n); if(xxKx) matrix_to_file("xxKx_debug.out", xxKx, n, nn); if(xxKxx) matrix_to_file("xxKxx_debug.out", xxKxx, nn, nn); assert(p->get_T()); matrix_to_file("T_debug.out", p->get_T(), col, col); assert(p->get_Ti()); matrix_to_file("Ti_debug.out", p->get_Ti(), col, col); corr->printCorr(n); assert(p->get_b0()); vector_to_file("b0_debug.out", p->get_b0(), col); assert(bmu); vector_to_file("bmu_debug.out", bmu, col); assert(Vb); matrix_to_file("Vb_debug.out", Vb, col, col); } /* * Var: * * return some notion of variance for this gaussian process */ double Gp::Var(void) { return s2; } /* * X_to_F: * * F is just a column of ones and then the X (design matrix) * * X[n][col], F[col][n] */ void Gp::X_to_F(unsigned int n, double **X, double **F) { unsigned int i,j; switch( ((Gp_Prior*) prior)->MeanFn() ){ case LINEAR: for(i=0; iTrace(&clen); /* calculate and allocate the new trace, which will include the corr trace */ *len = col + 3; /* add in bmu and Vb when full=TRUE */ if(full) *len += col + col*col; /* allocate the trace vector */ double* trace = new_vector(clen + *len); /* lambda (or phi in the paper) */ trace[0] = lambda; /* copy sigma^2 and tau^2 */ trace[1] = s2; trace[2] = tau2; /* then copy beta */ dupv(&(trace[3]), b, col); /* add in bmu and Vb when full=TRUE */ if(full) { dupv(&(trace[3+col]), bmu, col); dupv(&(trace[3+2*col]), Vb[0], col*col); } /* then copy in the corr trace */ dupv(&(trace[*len]), c, clen); /* new combined length, and free c */ *len += clen; if(c) free(c); else assert(clen == 0); return trace; } /* * TraceNames: * * returns the names of the traces recorded by Gp:Trace() */ char** Gp::TraceNames(unsigned int* len, bool full) { /* first get the correllation function parameters */ unsigned int clen; char **c = corr->TraceNames(&clen); /* calculate and allocate the new trace, which will include the corr trace */ *len = col + 3; /* add in bmu and Vb when full=TRUE */ if(full) *len += col + col*col; /* allocate the trace vector */ char** trace = (char**) malloc(sizeof(char*) * (clen + *len)); /* lambda (or phi in the paper) */ trace[0] = strdup("lambda"); /* copy sigma^2 and tau^2 */ trace[1] = strdup("s2"); trace[2] = strdup("tau2"); /* then copy beta */ for(unsigned int i=0; iitemp; if(this->itemp != itemp) { this->itemp = itemp; if(isleaf) Compute(); } return olditemp; } /* * Constant: * * return true of the model being fit is actually the * constant model */ bool Gp::Constant(void) { if(col == 1 && Linear()) return true; else return false; } /* * Gp_Prior: * * the usual constructor function */ Gp_Prior::Gp_Prior(unsigned int d, MEAN_FN mean_fn) : Base_Prior(d) { /* set the name & dim of the base model */ base_model = GP; /* * the rest of the parameters will be read in * from the control file (Gp_Prior::read_ctrlfile), or * from a double vector passed from R (Gp_Prior::read_double) */ corr_prior = NULL; beta_prior = BFLAT; /* B0, BMLE (Emperical Bayes), BFLAT, or B0NOT, BMZT, BMZNOT */ /* LINEAR, CONSTANT, or 2LEVEL, which determines col */ this->mean_fn = mean_fn; switch(mean_fn) { case CONSTANT: col = 1; break; case LINEAR: col = d+1; break; default: Rf_error("unrecognized mean function: %d", mean_fn); } /* regression coefficients */ b = new_zero_vector(col); s2 = 1.0; /* variance parammer */ tau2 = 1.0; /* linear variance parammer */ default_s2_priors(); /* set s2_a0 and s2_g0 */ default_s2_lambdas(); /* set s2_a0_lambda and s2_g0_lambda */ default_tau2_priors(); /* set tau2_a0 and tau2_g0 */ default_tau2_lambdas(); /* set tau2_a0_lambda and tau2_g0_lambda */ /* * other computed hierarchical priors */ /* mu = zeros(1,col)'; */ /* TREE.b0 = zeros(col,1); */ b0 = new_zero_vector(col); mu = new_zero_vector(col); rho = col+1; /* Ci = diag(ones(1,col)); */ /* Note: do not change this from an ID matrix, because there is code below (particularly log_Prior) which assumes it is */ Ci = new_id_matrix(col); /* V = diag(2*ones(1,col)); */ V = new_id_matrix(col); for(unsigned int i=0; iInit(&(hier[4+col+col*col])); } /* * InitT: * * (re-) initialize the T matrix based on the choice of beta * prior (assume memory has already been allocated). This is * required for the asserts in the Compute function. Might * consider getting rid of this later. */ void Gp_Prior::InitT(void) { assert(Ti && T && Tchol); if(beta_prior == BFLAT) { zero(Ti, col, col); zero(T, col, col); zero(Tchol, col, col); } else { id(Ti, col); id(T, col); id(Tchol, col); } } /* * Dup: * * duplicate the Gp_Prior, and set the corr prior properly */ Base_Prior* Gp_Prior::Dup(void) { Gp_Prior *prior = new Gp_Prior(this); prior->CorrPrior()->SetBasePrior(prior); return prior; } /* * Gp_Prior: * * duplication constructor function */ Gp_Prior::Gp_Prior(Base_Prior *prior) : Base_Prior(prior) { assert(prior); assert(prior->BaseModel() == GP); Gp_Prior *p = (Gp_Prior*) prior; /* linear parameters */ mean_fn = p->mean_fn; beta_prior = p->beta_prior; s2 = p->s2; tau2 = p->tau2; b = new_dup_vector(p->b, col); b0 = new_dup_vector(p->b0, col); mu = new_dup_vector(p->mu, col); rho = p->rho; /* linear prior matrices */ Ci = new_dup_matrix(p->Ci, col, col); V = new_dup_matrix(p->V, col, col); rhoVi = new_dup_matrix(p->rhoVi, col, col); T = new_dup_matrix(p->T, col, col); Ti = new_dup_matrix(p->Ti, col, col); Tchol = new_dup_matrix(p->Tchol, col, col); /* variance parameters */ s2_a0 = p->s2_a0; s2_g0 = p->s2_g0; s2_a0_lambda = p->s2_a0_lambda; s2_g0_lambda = p->s2_g0_lambda; fix_s2 = p->fix_s2; /* linear variance parameters */ tau2_a0 = p->tau2_a0; tau2_g0 = p->tau2_g0; tau2_a0_lambda = p->tau2_a0_lambda; tau2_g0_lambda = p->tau2_g0_lambda; fix_tau2 = p->fix_tau2; /* corr prior */ assert(p->corr_prior); corr_prior = p->corr_prior->Dup(); } /* * ~Gp_Prior: * * the usual destructor, nothing fancy */ Gp_Prior::~Gp_Prior(void) { free(b); free(mu); free(b0); delete_matrix(Ci); delete_matrix(V); delete_matrix(rhoVi); delete_matrix(T); delete_matrix(Ti); delete_matrix(Tchol); delete corr_prior; } /* * read_double * * takes params from a double array, * for use with communication with R */ void Gp_Prior::read_double(double * dparams) { int bp = (int) dparams[0]; /* read the beta linear prior model */ switch (bp) { case 0: beta_prior=B0; /* MYprintf(MYstdout, "linear prior: b0 hierarchical\n"); */ break; case 1: beta_prior=BMLE; /* MYprintf(MYstdout, "linear prior: emperical bayes\n"); */ break; case 2: beta_prior=BFLAT; /* MYprintf(MYstdout, "linear prior: flat\n"); */ break; case 3: beta_prior=B0NOT; /* MYprintf(MYstdout, "linear prior: cart\n"); */ break; case 4: beta_prior=BMZT; /* MYprintf(MYstdout, "linear prior: b0 fixed with free tau2\n"); */ break; case 5: beta_prior=BMZNOT; /* MYprintf(MYstdout, "linear prior: b0 fixed with fixed tau2\n"); */ break; default: Rf_error("bad linear prior model %d", (int)dparams[0]); break; } /* must properly initialize T, based on beta_prior */ InitT(); /* reset dparams to after the above parameters */ dparams += 1; /* read starting/prior beta linear regression parameter (mean) vector */ dupv(b, dparams, col); if(beta_prior != BFLAT) dupv(b0, dparams, col); /* MYprintf(MYstdout, "starting beta="); printVector(b, col, MYstdout, HUMAN); */ dparams += col; /* reset */ /* reading the starting/prior beta linear regression parameter (inv-cov) matrix */ if(beta_prior != BFLAT) { dupv(Ti[0], dparams, col*col); inverse_chol(Ti, T, Tchol, col); } dparams += col*col; /* read starting (initial values) parameter */ s2 = dparams[0]; if(beta_prior != BFLAT) tau2 = dparams[1]; // MYprintf(MYstdout, "starting s2=%g tau2=%g\n", s2, tau2); /* read s2 hierarchical prior parameters */ s2_a0 = dparams[2]; s2_g0 = dparams[3]; // MYprintf(MYstdout, "s2[a0,g0]=[%g,%g]\n", s2_a0, s2_g0); dparams += 4; /* reset */ /* s2 hierarchical lambda prior parameters */ if((int) dparams[0] == -1) { fix_s2 = true; /* MYprintf(MYstdout, "fixing s2 prior\n"); */ } else { s2_a0_lambda = dparams[0]; s2_g0_lambda = dparams[1]; // MYprintf(MYstdout, "s2 lambda[a0,g0]=[%g,%g]\n", s2_a0_lambda, s2_g0_lambda); } /* read tau2 hierarchical prior parameters */ if(beta_prior != BFLAT && beta_prior != B0NOT) { tau2_a0 = dparams[2]; tau2_g0 = dparams[3]; // MYprintf(MYstdout, "tau2[a0,g0]=[%g,%g]\n", tau2_a0, tau2_g0); } dparams += 4; /* reset */ /* tau2 hierarchical lambda prior parameters */ if(beta_prior != BFLAT && beta_prior != B0NOT) { if((int) dparams[0] == -1) { fix_tau2 = true; /* MYprintf(MYstdout, "fixing tau2 prior\n"); */ } else { tau2_a0_lambda = dparams[0]; tau2_g0_lambda = dparams[1]; // MYprintf(MYstdout, "tau2 lambda[a0,g0]=[%g,%g]\n", // tau2_a0_lambda, tau2_g0_lambda); } } dparams += 2; /* reset */ /* read the corr model */ switch ((int) dparams[0]) { case 0: corr_prior = new Exp_Prior(d); //MYprintf(MYstdout, "correlation: isotropic power exponential\n"); break; case 1: corr_prior = new ExpSep_Prior(d); //MYprintf(MYstdout, "correlation: separable power exponential\n"); break; case 2: corr_prior = new Matern_Prior(d); //MYprintf(MYstdout, "correlation: isotropic matern\n"); break; case 3: corr_prior = new MrExpSep_Prior(d-1); //MYprintf(MYstdout, "correlation: two-level seperable power mixture\n"); break; case 4: corr_prior = new Sim_Prior(d); //MYprintf(MYstdout, "correlation: sim power exponential\n"); break; case 5: corr_prior = new Twovar_Prior(d); //MYprintf(MYstdout, "correlation: sim power exponential\n"); break; default: Rf_error("bad corr model %d", (int)dparams[0]); } /* set the gp_prior for this corr_prior */ corr_prior->SetBasePrior(this); /* read the rest of the parameters into the corr prior module */ corr_prior->read_double(&(dparams[1])); } /* * read_ctrlfile: * * takes params from a control file */ void Gp_Prior::read_ctrlfile(ifstream *ctrlfile) { char line[BUFFMAX], line_copy[BUFFMAX]; /* check that col is valid for the mean function */ /* later we will just enforce this inside the C code, rather than reading col through the control file */ if(mean_fn == LINEAR && col != d+1) Rf_error("col should be d+1 for linear mean function"); else if(mean_fn == CONSTANT && col != 1) Rf_error("col should be 1 for constant mean function"); /* read the beta prior model */ /* B0, BMLE (Emperical Bayes), BFLAT, or B0NOT, BMZT, BMZNOT */ ctrlfile->getline(line, BUFFMAX); if(!strncmp(line, "bmznot", 7)) { beta_prior = BMZNOT; MYprintf(MYstdout, "beta prior: b0 fixed with fixed tau2 \n"); } else if(!strncmp(line, "bmzt", 5)) { beta_prior = BMZT; MYprintf(MYstdout, "beta prior: b0 fixed with free tau2 \n"); } else if(!strncmp(line, "bmle", 4)) { beta_prior = BMLE; MYprintf(MYstdout, "beta prior: emperical bayes\n"); } else if(!strncmp(line, "bflat", 5)) { beta_prior = BFLAT; MYprintf(MYstdout, "beta prior: flat \n"); } else if(!strncmp(line, "b0not", 5)) { beta_prior = B0NOT; MYprintf(MYstdout, "beta prior: cart \n"); } else if(!strncmp(line, "b0", 2)) { beta_prior = B0; MYprintf(MYstdout, "beta prior: b0 hierarchical \n"); } else { Rf_error("%s is not a valid beta prior", strtok(line, "\t\n#")); } /* must properly initialize T, based on beta_prior */ InitT(); /* read the beta regression coefficients from the control file */ ctrlfile->getline(line, BUFFMAX); read_beta(line); MYprintf(MYstdout, "starting beta="); printVector(b, col, MYstdout, HUMAN); /* read the s2 and tau2 initial parameter from the control file */ ctrlfile->getline(line, BUFFMAX); s2 = atof(strtok(line, " \t\n#")); if(beta_prior != BFLAT) tau2 = atof(strtok(NULL, " \t\n#")); MYprintf(MYstdout, "starting s2=%g tau2=%g\n", s2, tau2); /* read the s2-prior parameters (s2_a0, s2_g0) from the control file */ ctrlfile->getline(line, BUFFMAX); s2_a0 = atof(strtok(line, " \t\n#")); s2_g0 = atof(strtok(NULL, " \t\n#")); MYprintf(MYstdout, "s2[a0,g0]=[%g,%g]\n", s2_a0, s2_g0); /* read the tau2-prior parameters (tau2_a0, tau2_g0) from the ctrl file */ ctrlfile->getline(line, BUFFMAX); if(beta_prior != BFLAT && beta_prior != B0NOT) { tau2_a0 = atof(strtok(line, " \t\n#")); tau2_g0 = atof(strtok(NULL, " \t\n#")); MYprintf(MYstdout, "tau2[a0,g0]=[%g,%g]\n", tau2_a0, tau2_g0); } /* read the s2-prior hierarchical parameters * (s2_a0_lambda, s2_g0_lambda) from the control file */ fix_s2 = false; ctrlfile->getline(line, BUFFMAX); strcpy(line_copy, line); if(!strcmp("fixed", strtok(line_copy, " \t\n#"))) { fix_s2 = true; MYprintf(MYstdout, "fixing s2 prior\n"); } else { s2_a0_lambda = atof(strtok(line, " \t\n#")); s2_g0_lambda = atof(strtok(NULL, " \t\n#")); MYprintf(MYstdout, "s2 lambda[a0,g0]=[%g,%g]\n", s2_a0_lambda, s2_g0_lambda); } /* read the s2-prior hierarchical parameters * (tau2_a0_lambda, tau2_g0_lambda) from the control file */ fix_tau2 = false; ctrlfile->getline(line, BUFFMAX); strcpy(line_copy, line); if(beta_prior != BFLAT && beta_prior != B0NOT) { if(!strcmp("fixed", strtok(line_copy, " \t\n#"))) { fix_tau2 = true; MYprintf(MYstdout, "fixing tau2 prior\n"); } else { tau2_a0_lambda = atof(strtok(line, " \t\n#")); tau2_g0_lambda = atof(strtok(NULL, " \t\n#")); MYprintf(MYstdout, "tau2 lambda[a0,g0]=[%g,%g]\n", tau2_a0_lambda, tau2_g0_lambda); } } /* read the correlation model type */ /* EXP, EXPSEP, MATERN or MREXPSEP */ ctrlfile->getline(line, BUFFMAX); if(!strncmp(line, "expsep", 6)) { corr_prior = new ExpSep_Prior(d); // MYprintf(MYstdout, "correlation: separable power exponential\n"); } else if(!strncmp(line, "exp", 3)) { corr_prior = new Exp_Prior(d); // MYprintf(MYstdout, "correlation: isotropic power exponential\n"); } else if(!strncmp(line, "matern", 6)) { corr_prior = new Matern_Prior(d); // MYprintf(MYstdout, "correlation: isotropic matern\n"); } else if(!strncmp(line, "mrexpsep", 8)) { corr_prior = new MrExpSep_Prior(d-1); // MYprintf(MYstdout, "correlation: multi-res seperable power\n"); } else if(!strncmp(line, "sim", 3)) { corr_prior = new Sim_Prior(d); // MYprintf(MYstdout, "correlation: sim power exponential\n"); } else if(!strncmp(line, "twovar", 3)) { corr_prior = new Twovar_Prior(d); // MYprintf(MYstdout, "correlation: twovar linear\n"); } else { Rf_error("%s is not a valid correlation model", strtok(line, "\t\n#")); } /* set the gp_prior for this corr_prior */ corr_prior->SetBasePrior(this); /* read the rest of the parameters into the corr prior module */ corr_prior->read_ctrlfile(ctrlfile); } /* * default_s2_priors: * * set s2 prior parameters * to default values */ void Gp_Prior::default_s2_priors(void) { s2_a0 = 5; s2_g0 = 10; } /* * default_tau2_priors: * * set tau2 prior parameters * to default values */ void Gp_Prior::default_tau2_priors(void) { tau2_a0 = 5; tau2_g0 = 10; } /* * default_tau2_priors: * * set tau2 (lambda) hierarchical prior parameters * to default values */ void Gp_Prior::default_tau2_lambdas(void) { tau2_a0_lambda = 0.2; tau2_g0_lambda = 10; fix_tau2 = false; } /* * default_s2_lambdas: * * set s2 (lambda) hierarchical prior parameters * to default values */ void Gp_Prior::default_s2_lambdas(void) { s2_a0_lambda = 0.2; s2_g0_lambda = 10; fix_s2 = false; } /* * read_beta: * * read starting beta from the control file and * save it for later use */ void Gp_Prior::read_beta(char *line) { b[0] = atof(strtok(line, " \t\n#")); for(unsigned int i=1; iPrint(outfile); } /* * Draws: * * draws for the parameters to the hierarchical priors * depends on the top level-leaf parameters. * Also prints the state based on round r */ void Gp_Prior::Draw(Tree** leaves, unsigned int numLeaves, void *state) { double **b, **bmle, *s2, *tau2; unsigned int *n; Corr **corr; /* allocate temporary parameters for each leaf node */ allocate_leaf_params(col, &b, &s2, &tau2, &n, &corr, leaves, numLeaves); if(beta_prior == BMLE) bmle = new_matrix(numLeaves, col); else bmle = NULL; /* for use in b0 and Ti draws */ /* collect bmle parameters from the leaves */ if(beta_prior == BMLE) for(unsigned int i=0; iGetBase()))->Bmle(), col); /* draw hierarchical parameters */ if(beta_prior == B0 || beta_prior == BMLE) { b0_draw(b0, col, numLeaves, b, s2, Ti, tau2, mu, Ci, state); Ti_draw(Ti, col, numLeaves, b, bmle, b0, rho, V, s2, tau2, state); if(mean_fn == CONSTANT) this->T[0][0] = 1.0/Ti[0][0]; else inverse_chol(Ti, (this->T), Tchol, col); } /* update the corr and sigma^2 prior params */ /* tau2 prior first */ if(!fix_tau2 && beta_prior != BFLAT && beta_prior != B0NOT && beta_prior != BMZNOT) { unsigned int *colv = new_ones_uivector(numLeaves, col); sigma2_prior_draw(&tau2_a0,&tau2_g0,tau2,numLeaves,tau2_a0_lambda, tau2_g0_lambda,colv,state); free(colv); } /* subtract col from n for sigma2_prior_draw when using flat BETA prior */ if(beta_prior == BFLAT) for(unsigned int i=0; i= col); n[i] -= col; } /* then sigma2 prior */ if(!fix_s2) sigma2_prior_draw(&s2_a0,&s2_g0,s2,numLeaves,s2_a0_lambda, s2_g0_lambda,n,state); /* then corr prior */ corr_prior->Draw(corr, numLeaves, state); /* clean up the garbage */ deallocate_leaf_params(b, s2, tau2, n, corr); if(beta_prior == BMLE) delete_matrix(bmle); } /* * get_Ti: * * return Ti: inverse of the covariance matrix * for Beta prior */ double** Gp_Prior::get_Ti(void) { return Ti; } /* * get_T: * * return T: covariance matrix for the Beta prior */ double** Gp_Prior::get_T(void) { return T; } /* * get_b0: * * return b0: prior mean for Beta */ double* Gp_Prior::get_b0(void) { return b0; } /* * ForceLinear: * * Toggle the entire partition into Linear Model mode */ void Gp::ForceLinear(void) { if(! Linear()) { corr->ToggleLinear(); Update(X, n, d, Z); Compute(); } } /* * ForceNonlinear: * * Toggle the entire partition into GP mode */ void Gp::ForceNonlinear(void) { if(Linear()) { corr->ToggleLinear(); Update(X, n, d, Z); Compute(); } } /* * Linear: * * return true if this leav is under a linear model * false otherwise */ bool Gp::Linear(void) { return corr->Linear(); } /* * sum_b: * * return the count of the dimensions under the LLM */ unsigned int Gp::sum_b(void) { return corr->sum_b(); } /* * Bmle * * return ML estimate for beta */ double* Gp::Bmle(void) { return bmle; } /* * State: * * return some Gp state information (corr state information * in particular, for printing in the main meta model */ char* Gp::State(unsigned int which) { assert(corr); return(corr->State(which)); } /* * allocate_leaf_params: * * allocate arrays to hold the current parameter * values at each leaf (of numLeaves) of the tree */ void allocate_leaf_params(unsigned int col, double ***b, double **s2, double **tau2, unsigned int **n, Corr ***corr, Tree **leaves, unsigned int numLeaves) { *b = new_matrix(numLeaves, col); *s2 = new_vector(numLeaves); *tau2 = new_vector(numLeaves); *corr = (Corr **) malloc(sizeof(Corr *) * numLeaves); *n = new_uivector(numLeaves); /* collect parameters from the leaves */ for(unsigned int i=0; iGetBase()); dupv((*b)[i], gp->all_params(&((*s2)[i]), &((*tau2)[i]), &((*corr)[i])), col); (*n)[i] = gp->N(); } } /* * deallocate_leaf_params: * * deallocate arrays used to hold the current parameter * values at each leaf of numLeaves */ void deallocate_leaf_params(double **b, double *s2, double *tau2, unsigned int *n, Corr **corr) { delete_matrix(b); free(s2); free(tau2); free(corr); free(n); } /* * newBase: * * generate a new Gp base model whose * parameters have priors from the from this class */ Base* Gp_Prior::newBase(Model *model) { return new Gp(d, (Base_Prior*) this, model); } /* * log_HierPrior: * * return the (log) prior density of the Gp base * hierarchical prior parameters, e.g., B0, W (or T), * etc., and additionaly add in the prior of the parameters * to the correllation model prior */ double Gp_Prior::log_HierPrior(void) { double lpdf = 0.0; /* start with the b0 prior, if this part of the model is on */ if(beta_prior == B0 || beta_prior == BMLE) { /* this is probably overkill because Ci is an ID matrix */ lpdf += mvnpdf_log_dup(b0, mu, Ci, col); /* then do the wishart prior for T (which is called W in the paper) */ lpdf += wishpdf_log(Ti, rhoVi, col, rho); } /* hierarchical GP variance */ if(!fix_s2) lpdf += hier_prior_log(s2_a0, s2_g0, s2_a0_lambda, s2_g0_lambda); /* hierarchical Linear varaince */ if(!fix_tau2 && beta_prior != BFLAT && beta_prior != B0NOT) lpdf += hier_prior_log(tau2_a0, tau2_g0, tau2_a0_lambda, tau2_g0_lambda); /* then add the hierarchical part for the correllation function */ lpdf += corr_prior->log_HierPrior(); /* return the resulting log pdf*/ return lpdf; } /* * TraceNames: * * returns the names of the traces of the hierarchal parameters * recorded in Gp_Prior::Trace() */ char** Gp_Prior::TraceNames(unsigned int* len, bool full) { /* first get the correllation function parameters */ unsigned int clen; char **c = corr_prior->TraceNames(&clen); /* calculate and allocate the new trace, which will include the corr trace */ *len = 4 + col; /* if full=TRUE then add in Ti */ if(full) *len += col*col; /* allocate trace vector */ char** trace = (char**) malloc(sizeof(char*) * (clen + *len)); /* copy sigma^2 and tau^2 */ trace[0] = strdup("s2.a0"); trace[1] = strdup("s2.g0"); trace[2] = strdup("tau2.a0"); trace[3] = strdup("tau2.g0"); /* then copy beta */ for(unsigned int i=0; iTrace(&clen); /* calculate and allocate the new trace, which will include the corr trace */ *len = 4 + col; /* if full=TRUE, add in Ti */ if(full) *len += col*col; /* allocate the trace vector */ double* trace = new_vector(clen + *len); /* copy sigma^2 and tau^2 */ trace[0] = s2_a0; trace[1] = s2_g0; trace[2] = tau2_a0; trace[3] = tau2_g0; /* then copy beta */ dupv(&(trace[4]), b0, col); /* if full=TRUE, then add in Ti */ if(full) { dupv(&(trace[4+col]), Ti[0], col*col); } /* then copy in the corr trace */ dupv(&(trace[*len]), c, clen); /* new combined length, and free c */ *len += clen; if(c) free(c); else assert(clen == 0); return trace; } /* * GamLin: * * return gamlin[which] from corr_prior; must have * 0 <= which <= 2 */ double Gp_Prior::GamLin(unsigned int which) { assert(which < 3); double *gamlin = corr_prior->GamLin(); return gamlin[which]; } tgp/src/rhelp.c0000644000176200001440000000633213531032535013115 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include "rhelp.h" #ifdef RPRINT #include #include FILE *MYstdout = (FILE*) 0; FILE *MYstderr = (FILE*) 1; #endif #include #include #include /* * MYprintf: * * a function many different types of printing-- in particular, using * the Rprintf if the code happens to be compiled with RPRINT, * othersie fprintf (takes the same arguments as fprintf) */ void MYprintf(FILE *outfile, const char *str, ...) { va_list argp; va_start(argp, str); #ifdef RPRINT if(outfile == MYstdout) Rvprintf(str, argp); else if(outfile == MYstderr) REvprintf(str, argp); else vfprintf(outfile, str, argp); #else vfprintf(outfile, str, argp); #endif va_end(argp); } #ifndef RPRINT /* * error: * * printf style function that reports errors to stderr */ void error(const char *str, ...) { va_list argp; va_start(argp, str); MYprintf(stderr, "ERROR: "); vfprintf(stderr, str, argp); va_end(argp); MYflush(stderr); /* add a final newline */ MYprintf(stderr, "\n"); /* kill the code */ assert(0); } /* * warning: * * printf style function that reports warnings to stderr */ void warning(const char *str, ...) { va_list argp; va_start(argp, str); MYprintf(stderr, "WARNING: "); vfprintf(stderr, str, argp); va_end(argp); MYflush(stderr); /* add a final newline */ MYprintf(stderr, "\n"); } #endif /* * MYflush: * * a function for many different types of flushing-- in particular, * using * the R_FlushConsole the code happens to be compiled with * RPRINT, otherwise fflush */ void MYflush(FILE *outfile) { #ifdef RPRINT R_FlushConsole(); #else fflush(outfile); #endif } /* * MY_r_process_events: * * at least every 1 second(s) pass control back to * R so that it can check for interrupts and/or * process other R-gui events */ time_t MY_r_process_events(time_t itime) { #ifdef RPRINT time_t ntime = time(NULL); if(ntime - itime > 1) { R_FlushConsole(); R_CheckUserInterrupt(); #if (defined(HAVE_AQUA) || defined(Win32) || defined(Win64)) R_ProcessEvents(); #endif itime = ntime; } #endif return itime; } tgp/src/randomkit.c0000644000176200001440000001624014661666006014005 0ustar liggesusers/* Random kit 1.3 */ /* * Copyright (c) 2003-2005, Jean-Sebastien Roy (js@jeannot.org) * * The rk_random and rk_seed functions algorithms and the original design of * the Mersenne Twister RNG: * * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, * All rights reserved. * * Original algorithm for the implementation of rk_interval function from * Richard J. Wagner's implementation of the Mersenne Twister RNG, optimised by * Magnus Jonsson. * * Constants used in the rk_double implementation by Isaku Wada. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* static char const rcsid[] = "@(#) $Jeannot: randomkit.c,v 3.28 2005/07/21 22:14:09 js Exp $"; */ #include #include #include #include #include #include #include #ifdef _WIN32 /* Windows */ #include #ifndef RK_NO_WINCRYPT /* Windows crypto */ #ifndef _WIN32_WINNT #define _WIN32_WINNT 0x0400 #endif #include #include #endif #else /* Unix */ #include #include #endif #include "randomkit.h" #ifndef RK_DEV_URANDOM #define RK_DEV_URANDOM "/dev/urandom" #endif #ifndef RK_DEV_RANDOM #define RK_DEV_RANDOM "/dev/random" #endif char *rk_strerror[RK_ERR_MAX] = { "no error", "random device unvavailable" }; /* static functions */ static unsigned long rk_hash(unsigned long key); void rk_seed(unsigned long seed, rk_state *state) { int pos; seed &= 0xffffffffUL; /* Knuth's PRNG as used in the Mersenne Twister reference implementation */ for (pos=0; poskey[pos] = seed; seed = (1812433253UL * (seed ^ (seed >> 30)) + pos + 1) & 0xffffffffUL; } state->pos = RK_STATE_LEN; state->has_gauss = 0; } /* Thomas Wang 32 bits integer hash function */ unsigned long rk_hash(unsigned long key) { key += ~(key << 15); key ^= (key >> 10); key += (key << 3); key ^= (key >> 6); key += ~(key << 11); key ^= (key >> 16); return key; } rk_error rk_randomseed(rk_state *state) { #ifndef _WIN32 struct timeval tv; #else struct _timeb tv; #endif if(rk_devfill(state->key, sizeof(state->key), 0) == RK_NOERR) { state->key[0] |= 0x80000000UL; /* ensures non-zero key */ state->pos = RK_STATE_LEN; state->has_gauss = 0; return RK_NOERR; } #ifndef _WIN32 gettimeofday(&tv, NULL); rk_seed(rk_hash(getpid()) ^ rk_hash(tv.tv_sec) ^ rk_hash(tv.tv_usec) ^ rk_hash(clock()), state); #else _ftime(&tv); rk_seed(rk_hash(tv.time) ^ rk_hash(tv.millitm) ^ rk_hash(clock()), state); #endif return RK_ENODEV; } /* Magic Mersenne Twister constants */ #define N 624 #define M 397 #define MATRIX_A 0x9908b0dfUL #define UPPER_MASK 0x80000000UL #define LOWER_MASK 0x7fffffffUL /* Slightly optimised reference implementation of the Mersenne Twister */ unsigned long rk_random(rk_state *state) { unsigned long y; if (state->pos == RK_STATE_LEN) { int i; for (i=0;ikey[i] & UPPER_MASK) | (state->key[i+1] & LOWER_MASK); state->key[i] = state->key[i+M] ^ (y>>1) ^ (-(y & 1) & MATRIX_A); } for (;ikey[i] & UPPER_MASK) | (state->key[i+1] & LOWER_MASK); state->key[i] = state->key[i+(M-N)] ^ (y>>1) ^ (-(y & 1) & MATRIX_A); } y = (state->key[N-1] & UPPER_MASK) | (state->key[0] & LOWER_MASK); state->key[N-1] = state->key[M-1] ^ (y>>1) ^ (-(y & 1) & MATRIX_A); state->pos = 0; } y = state->key[state->pos++]; /* Tempering */ y ^= (y >> 11); y ^= (y << 7) & 0x9d2c5680UL; y ^= (y << 15) & 0xefc60000UL; y ^= (y >> 18); return y; } long rk_long(rk_state *state) { return rk_ulong(state) >> 1; } unsigned long rk_ulong(rk_state *state) { #if ULONG_MAX <= 0xffffffffUL return rk_random(state); #else return (rk_random(state) << 32) | (rk_random(state)); #endif } unsigned long rk_interval(unsigned long max, rk_state *state) { unsigned long mask = max, value; if (max == 0) return 0; /* Smallest bit mask >= max */ mask |= mask >> 1; mask |= mask >> 2; mask |= mask >> 4; mask |= mask >> 8; mask |= mask >> 16; #if ULONG_MAX > 0xffffffffUL mask |= mask >> 32; #endif /* Search a random value in [0..mask] <= max */ while ((value = (rk_ulong(state) & mask)) > max); return value; } double rk_double(rk_state *state) { /* shifts : 67108864 = 0x4000000, 9007199254740992 = 0x20000000000000 */ long a = rk_random(state) >> 5, b = rk_random(state) >> 6; return (((double) a) * 67108864.0 + ((double) b)) / 9007199254740992.0; } void rk_fill(void *buffer, size_t size, rk_state *state) { unsigned long r; unsigned char *buf = buffer; for (; size >= 4; size -= 4) { r = rk_random(state); *(buf++) = r & 0xFF; *(buf++) = (r >> 8) & 0xFF; *(buf++) = (r >> 16) & 0xFF; *(buf++) = (r >> 24) & 0xFF; } if (!size) return; r = rk_random(state); for (; size; r >>= 8, size --) *(buf++) = (unsigned char)(r & 0xFF); } rk_error rk_devfill(void *buffer, size_t size, int strong) { #ifndef _WIN32 FILE *rfile; long unsigned int done; if (strong) rfile = fopen(RK_DEV_RANDOM, "rb"); else rfile = fopen(RK_DEV_URANDOM, "rb"); if (rfile == NULL) return RK_ENODEV; done = fread(buffer, size, 1, rfile); fclose(rfile); if (done) return RK_NOERR; #else #ifndef RK_NO_WINCRYPT HCRYPTPROV hCryptProv; BOOL done; if (!CryptAcquireContext(&hCryptProv, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT) || !hCryptProv) return RK_ENODEV; done = CryptGenRandom(hCryptProv, size, (unsigned char *)buffer); CryptReleaseContext(hCryptProv, 0); if (done) return RK_NOERR; #endif #endif return RK_ENODEV; } rk_error rk_altfill(void *buffer, size_t size, int strong, rk_state *state) { rk_error err; err = rk_devfill(buffer, size, strong); if (err) rk_fill(buffer, size, state); return err; } double rk_gauss(rk_state *state) { if (state->has_gauss) { state->has_gauss = 0; return state->gauss; } else { double f, x1, x2, r2; do { x1 = 2.0*rk_double(state) - 1.0; x2 = 2.0*rk_double(state) - 1.0; r2 = x1*x1 + x2*x2; } while (r2 >= 1.0 || r2 == 0.0); f = sqrt(-2.0*log(r2)/r2); /* Box-Muller transform */ state->has_gauss = 1; state->gauss = f*x1; /* Keep for next call */ return f*x2; } } tgp/src/tree.cc0000644000176200001440000015374014661666140013125 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include "R.h" extern "C" { #include "matrix.h" #include "gen_covar.h" #include "all_draws.h" #include "rand_pdf.h" #include "rand_draws.h" #include "lh.h" #include "dopt.h" #include "rhelp.h" } #include "tree.h" #include "base.h" #include "model.h" #include "params.h" #include #include #include // #define DEBUG #define CPRUNEOP TREE_OP tree_op; /* * Tree: * * the usual class constructor function */ Tree::Tree(double **X, int* p, unsigned int n, unsigned int d, double *Z, Rect *rect, Tree* parent, Model* model) { this->rect = rect; this->model = model; /* data size */ this->n = n; this->d = d; /* data storage */ this->X = X; this->p = p; XX = NULL; pp = NULL; nn = 0; this->Z = Z; /* tree pointers */ leftChild = NULL; rightChild = NULL; if(parent != NULL) depth = parent->depth+1; else depth = 0; this->parent = parent; /* changepoint (split) variables */ var = 0; val = 0; /* output file for progress printing, and printing level */ OUTFILE = model->Outfile(&verb); /* create the GP model */ Base_Prior *prior = model->get_params()->BasePrior(); base = prior->newBase(model); base->Init(NULL); } /* * Tree: * * duplication constructor function only copies information about X (not XX) * then generates XX stuff from rect, and params. Any "new" variables are * also set to NULL values -- the economy argument is passed to the base model * duplicator and meant to indicate a memory efficient copy (i.e., don't * copy the GP covariance matrices as these can be re-generated) */ Tree::Tree(const Tree *told, bool economy) { /* simple non-pointer copies */ d = told->d; n = told->n; /* tree parameters */ var = told->var; val = told->val; depth = told->depth; parent = leftChild = rightChild = next = NULL; /* things that must be NULL * because they point to other tree nodes */ XX = NULL; pp = NULL; nn = 0; /* data */ assert(told->rect); rect = new_dup_rect(told->rect); assert(told->X); X = new_dup_matrix(told->X, n, d); assert(told->Z); Z = new_dup_vector(told->Z, n); assert(told->p); p = new_dup_ivector(told->p, n); /* copy the core GP model: * must pass in the new X and Z values because they * are stored as pointers in the GP module */ /* there should be a switch statement here, or maybe I should use a copy constructor */ model = told->model; base = told->base->Dup(X, Z, economy); OUTFILE = told->OUTFILE; /* recurse down the leaves */ if(! told->isLeaf()) { leftChild = new Tree(told->leftChild, economy); rightChild = new Tree(told->rightChild, economy); } } /* * ~Tree: * * the usual class destructor function */ Tree::~Tree(void) { delete base; delete_matrix(X); if(Z) free(Z); if(XX) delete_matrix(XX); if(p) free(p); if(pp) free(pp); if(leftChild) delete leftChild; if(rightChild) delete rightChild; if(rect) delete_rect(rect); } /* * Init: * * update and compute for the base model in the tree; * the arguments represent a tree encoded as a matrix * (where the number of rows is specified as nrow) * flattened into a double vector */ void Tree::Init(double *dtree, unsigned int ncol, double **rect) { /* when no tree information is provided */ if(ncol == 0) { /* sanity checks */ assert(!dtree); assert(isLeaf()); /* prepare this leaf for the big time */ Update(); Compute(); } else { /* read the tree information */ unsigned int row = (unsigned int) dtree[0]; /* check if this should be a leaf */ if(dtree[1] < 0.0) { /* yes */ /* cut off rows, var, and val before passing to base */ base->Init(&(dtree[3])); /* make sure base model is ready to go @ this leaf */ Update(); Compute(); } else { /* not a leaf */ /* read split dim (var) */ var = (unsigned int) dtree[1]; /* calculate normd location (val) -- should made a function */ double norm = fabs(rect[1][var] - rect[0][var]); if(norm == 0) norm = fabs(rect[0][var]); if(rect[0][var] < 0) val = (dtree[2] + fabs(rect[0][var])) / norm; else val = (dtree[2] - rect[0][var]) / norm; /* create children split at (var,val) */ bool success = grow_children(); assert(success); if(success == false) MYprintf(MYstdout, "bad grow_children\n"); /* recursively read the left and right children from dtree */ unsigned int left = 1; while(((unsigned int)dtree[ncol*left]) != 2*row) left++; leftChild->Init(&(dtree[ncol*left]), ncol, rect); rightChild->Init(&(dtree[ncol*(left+1)]), ncol, rect); /* no need to Update() or Compute() on an internal node */ } } } /* * Add_XX: * * deal with the new predictive data; figuring out which XX locations * (and pp) belong in this partition, return the count of XX determined * via matrix_constrained */ unsigned int Tree::add_XX(double **X_pred, unsigned int n_pred, unsigned int d_pred) { // fprintf(MYstderr, "d_pred = %d, d = %d\n", d_pred, d); assert(d_pred == d); assert(isLeaf()); /* do not recompute XX if it has already been computed */ if(XX) { assert(pp); Rf_warning("failed add_XX in leaf"); return 0; } int *p_pred = new_ivector(n_pred); nn = matrix_constrained(p_pred, X_pred, n_pred, d, rect); XX = new_matrix(nn, d); pp = new_ivector(nn); unsigned int k=0; for(unsigned int i=0; iClear(); int *p_new = new_ivector(n_new); n = matrix_constrained(p_new, X_new, n_new, d, rect); assert(n > 0); X = new_matrix(n, d); Z = new_vector(n); p = new_ivector(n); unsigned int k=0; for(unsigned int i=0; inew_data(Xc, plen, d_new, Zc, pnew); success = part_child(GT, &Xc, &pnew, &plen, &Zc, &newRect); assert(success); /* rectangles must be equal */ if(success == false) MYprintf(MYstdout, "bad part_child\n"); delete_rect(newRect); rightChild->new_data(Xc, plen, d_new, Zc, pnew); } /* * delete_XX: * * free everything having to do with predictive locations */ void Tree::delete_XX(void) { if(XX) delete_matrix(XX); if(pp) free(pp); pp = NULL; XX = NULL; base->ClearPred(); nn = 0; } /* * predict: * * prediction based on the current parameter settings: (predictive variables * recomputed and/or initialised when appropriate) */ void Tree::Predict(double *Zp, double *Zpm, double *Zpvm, double *Zps2, double *ZZ, double *ZZm, double *ZZvm, double *ZZs2, double *Ds2x, double *Improv, double Zmin, unsigned int wZmin, bool err, void *state) { if(!n) Rf_warning("n = %d\n", n); assert(isLeaf() && n); if(Zp == NULL && nn == 0) return; /* set the partition */ if(nn > 0) base->UpdatePred(XX, nn, d, (bool) Ds2x); /* ready the storage for predictions */ double *zp, *zpm, *zpvm, *zps2, *zz, *zzm, *zzvm, *zzs2, *improv; double **ds2xy; /* allocate necessary space for predictions */ zp = zpm = zpvm = zps2 = zz = zzm = zzvm = zzs2 = NULL; if(Zp) { zp = new_vector(n); zpm = new_vector(n); zpvm = new_vector(n); zps2 = new_vector(n); } if(nn > 0) { zz = new_vector(nn); zzm = new_vector(nn); zzvm = new_vector(nn); zzs2 = new_vector(nn); } assert(zp != NULL || zz != NULL); /* allocate space for Delta-sigma */ ds2xy = NULL; if(Ds2x) ds2xy = new_matrix(nn, nn); /* allocate space for IMPROV */ improv = NULL; if(Improv) improv = new_vector(nn); /* check if the wZmin index is in p */ if(zp) { bool inp = false; for(unsigned int i=0; iPredict(n, zp, zpm, zpvm, zps2, nn, zz, zzm, zzvm, zzs2, ds2xy, improv, Zmin, err, state); /* copy data-pred stats to the right place in their respective full matrices */ if(zp) { copy_p_vector(Zp, p, zp, n); if(Zpm) copy_p_vector(Zpm, p, zpm, n); if(Zpvm) copy_p_vector(Zpvm, p, zpvm, n); if(Zps2) copy_p_vector(Zps2, p, zps2, n); free(zp); free(zpm); free(zpvm); free(zps2); } /* similarly, copy new predictive location stats */ if(zz) { copy_p_vector(ZZ, pp, zz, nn); if(ZZm) copy_p_vector(ZZm, pp, zzm, nn); if(ZZvm) copy_p_vector(ZZvm, pp, zzvm, nn); if(ZZs2) copy_p_vector(ZZs2, pp, zzs2, nn); free(zz); free(zzm); free(zzvm); free(zzs2); } /* similarly, copy ds2x predictive stats */ if(ds2xy) { for(unsigned int i=0; iClearPred(); } /* * getDepth: * * return the node's depth */ unsigned int Tree::getDepth(void) const { return depth; } /* * isLeaf: * * TRUE if the node is a leaf, * FALSE otherwise */ bool Tree::isLeaf(void) const { assert(!(leftChild != NULL && rightChild == NULL)); assert(!(leftChild == NULL && rightChild != NULL)); if(leftChild == NULL && rightChild == NULL) return true; else return false; } /* * isRoot: * * TRUE if the node is the root (parent == NULL), * FALSE otherwise */ bool Tree::isRoot(void) const { if(parent == NULL) return true; else return false; } /* * internals: * * get a list of internal (non-leaf) nodes, where the first in * list is pointed to by the first pointer, and the last by the * last pointer. The length of the list is returned. */ unsigned int Tree::internals(Tree **first, Tree **last) { if(isLeaf()) { *first = *last = NULL; return 0; } Tree *leftFirst, *leftLast, *rightFirst, *rightLast; leftFirst = leftLast = rightFirst = rightLast = NULL; int left_len = leftChild->internals(&leftFirst, &leftLast); int right_len = rightChild->internals(&rightFirst, &rightLast); if(left_len == 0) { this->next = rightFirst; *first = this; if(right_len > 0) { *last = rightLast; (*last)->next = NULL; } else { *last = this; (*last)->next = NULL; } return right_len + 1; } else { leftLast->next = rightFirst; this->next = leftFirst; *first = this; if(right_len == 0) *last = leftLast; else *last = rightLast; (*last)->next = NULL; return left_len + right_len + 1; } } /* * leaves: * * get a list of leaf nodes, where the first in list is pointed to by the * first pointer, and the last by the last pointer. The length of the list * is returned. */ unsigned int Tree::leaves(Tree **first, Tree **last) { if(isLeaf()) { *first = this; *last = this; (*last)->next = NULL; return 1; } Tree *leftFirst, *leftLast, *rightFirst, *rightLast; leftFirst = leftLast = rightFirst = rightLast = NULL; int left_len = leftChild->leaves(&leftFirst, &leftLast); int right_len = rightChild->leaves(&rightFirst, &rightLast); leftLast->next = rightFirst; *first = leftFirst; *last = rightLast; return left_len + right_len; } /* * swapable: * * get a list of swapable children , where the first in list is pointed to * by the first pointer, and the last by the last pointer. The length of * the list is returned. */ unsigned int Tree::swapable(Tree **first, Tree **last) { if(isLeaf()) return 0; int len; Tree *leftFirst, *leftLast, *rightFirst, *rightLast; leftFirst = leftLast = rightFirst = rightLast = NULL; int left_len = leftChild->swapable(&leftFirst, &leftLast); int right_len = rightChild->swapable(&rightFirst, &rightLast); if(left_len == 0) { if(right_len != 0) { *first = rightFirst; *last = rightLast; } } else if(right_len == 0) { *first = leftFirst; *last = leftLast; } else { assert(leftLast); leftLast->next = rightFirst; *first = leftFirst; *last = rightLast; } len = left_len + right_len; if(*last) (*last)->next = NULL; if(parent != NULL) { this->next = *first; *first = this; if(!(*last)) *last = this; len++; } return len; } /* * isPrunable: * * returns true if this node is prunable: * i.e., both children are leaves */ bool Tree::isPrunable(void) const { if(isLeaf()) return false; if(leftChild->isLeaf() && rightChild->isLeaf()) return true; else return false; } /* * prunable: * * get a list of prunable nodes, where the first in list is pointed to by the * first pointer, and the last by the last pointer. The length of the list is returned. */ unsigned int Tree::prunable(Tree **first, Tree **last) { if(isLeaf()) return 0; /* if this node is prunable, then add it to the list, and return */ if(isPrunable()) { *first = this; *last = this; (*last)->next = NULL; return 1; } Tree *leftFirst, *leftLast, *rightFirst, *rightLast; leftFirst = leftLast = rightFirst = rightLast = NULL; /* gather lists of prunables from leftchild and rightchild */ int left_len = leftChild->prunable(&leftFirst, &leftLast); int right_len = rightChild->prunable(&rightFirst, &rightLast); /* combine the two lists */ if(left_len == 0) { if(right_len == 0) return 0; *first = rightFirst; *last = rightLast; return right_len; } else if(right_len == 0) { *first = leftFirst; *last = leftLast; return left_len; } /* set the pointers to beginning and end of new combined list */ leftLast->next = rightFirst; *first = leftFirst; *last = rightLast; return left_len + right_len; } /* * swapData: * * swap all data between partition */ void Tree::swapData(Tree* t) { /* grab the data from the old parent */ assert(t); delete_matrix(X); X = t->X; free(p); p = t->p; delete_XX(); /*if(XX) delete_matrix(XX);*/ XX = t->XX; /*free(pp);*/ pp = t->pp; free(Z); Z = t->Z; delete_rect(rect); rect = t->rect; n = t->n; nn = t->nn; /* create the new child data */ unsigned int plen; double **Xc; Rect *newRect; double *Zc; int *pnew; FIND_OP op; if(t == rightChild) op = GT; else { assert(t == leftChild); op = LEQ; } /* create the partition */ bool success = part_child(op, &Xc, &pnew, &plen, &Zc, &newRect); assert(success); if(success == false) MYprintf(MYstdout, "bad part_child in swapData\n"); /* copy */ t->X = Xc; t->p = pnew; t->Z = Zc; t->rect = newRect; t->n = plen; /* sanity checks */ assert(n == leftChild->n + rightChild->n); assert(nn == leftChild->nn + rightChild->nn); assert(t->n == t->leftChild->n + t->rightChild->n); assert(t->nn == t->leftChild->nn + t->rightChild->nn); } /* * rotate_right: * * rotate this child to the right */ void Tree::rotate_right(void) { Tree *pt = this->parent; /* set the parent of the parent, and the root of the model */ if(pt->parent != NULL) { if(pt->parent->leftChild == pt) pt->parent->leftChild = this; else pt->parent->rightChild = this; } else { assert(model->get_TreeRoot() == pt); model->set_TreeRoot(this); } this->parent = pt->parent; /* set the children */ pt->leftChild = this->rightChild; pt->leftChild->parent = pt; this->rightChild = pt; pt->parent = this; /* take care of DEPTHS */ (pt->depth)++; (this->depth)--; (this->leftChild)->adjustDepth(-1); (pt->rightChild)->adjustDepth(1); assert(pt->depth == this->depth + 1 && pt->depth >= 0); if(this->parent) assert(this->depth == this->parent->depth + 1 && this->depth >= 0); else assert(this->depth == 0); /* take care of the DATA */ this->swapData(pt); this->Clear(); pt->Clear(); } /* * rotate_left: * * rotate this child to the left */ void Tree::rotate_left(void) { Tree *pt = this->parent; /* set the parent of the parent, and the root of the model */ if(pt->parent != NULL) { if(pt->parent->rightChild == pt) pt->parent->rightChild = this; else pt->parent->leftChild = this; } else { /* this node is the root */ assert(model->get_TreeRoot() == pt); model->set_TreeRoot(this); } this->parent = pt->parent; /* set the children */ pt->rightChild = this->leftChild; pt->rightChild->parent = pt; this->leftChild = pt; pt->parent = this; /* take care of DEPTHS */ (pt->depth)++; (this->depth)--; (this->rightChild)->adjustDepth(-1); (pt->leftChild)->adjustDepth(1); assert(pt->depth == this->depth + 1 && pt->depth >= 0); if(this->parent) assert(this->depth == this->parent->depth + 1 && this->depth >= 0); else assert(this->depth == 0); /* take care of the DATA */ this->swapData(pt); this->Clear(); pt->Clear(); } /* * rotate: * * attempt to rotate the split point of this INTERNAL node and its parent. */ bool Tree::rotate(void *state) { tree_op = ROTATE; assert(!isLeaf()); assert(parent); /* do the rotation (child becomes root, etc) */ if(parent->rightChild == this) { /* this node is a rightChild */ double alpha = pT_rotate(rightChild, parent->leftChild); if(runi(state) < alpha) rotate_left(); else return(false); } else { /* this node is a leftChild */ assert(parent->leftChild == this); double alpha = pT_rotate(leftChild, parent->rightChild); if(runi(state) < alpha) rotate_right(); else return(false); } return(true); } /* * pT_rotate: * * calculate the prior probablilty ratio for a rotate * when low and high are swapped */ double Tree::pT_rotate(Tree* low, Tree* high) { unsigned int low_ni, low_nl, high_ni, high_nl; Tree** low_i = low->internalsList(&low_ni); Tree** low_l = low->leavesList(&low_nl); Tree** high_i = high->internalsList(&high_ni); Tree** high_l = high->leavesList(&high_nl); unsigned int t_minpart, splitmin, basemax; double t_alpha, t_beta; model->get_params()->get_T_params(&t_alpha, &t_beta, &t_minpart, &splitmin, &basemax); unsigned int i; double pT_log = 0; for(i=0; idepth); for(i=0; idepth,0.0-t_beta)); for(i=0; idepth); for(i=0; idepth,0.0-t_beta)); double pTstar_log = 0; for(i=0; idepth); for(i=0; idepth,0.0-t_beta)); for(i=0; idepth); for(i=0; idepth,0.0-t_beta)); free(low_i); free(low_l); free(high_i); free(high_l); double a = exp(pTstar_log - pT_log); if(a >= 1.0) return 1.0; else return a; } /* * swap: * * attempt to swap the split point of this INTERNAL node and its parent, * while keeping parameters in the lower partitions the same. */ bool Tree::swap(void *state) { tree_op = SWAP; assert(!isLeaf()); assert(parent); if(parent->var == var) { bool success = rotate(state); if(success && verb >= 3) MYprintf(OUTFILE, "**ROTATE** @depth %d, var=%d, val=%g\n", depth, var+1, val); return success; } /* save old stuff */ double parent_val = parent->val; int parent_var = parent->var; double old_val = val; int old_var = var; Tree* oldPLC = parent->leftChild; Tree* oldPRC = parent->rightChild; /* swapped tree */ parent->val = old_val; val = parent_val; parent->var = old_var; var = parent_var; /* re-build the current child */ parent->leftChild = parent->rightChild = NULL; bool success = parent->grow_children(); assert(success); /* continue with new left and right children */ success = parent->leftChild->match(oldPLC, state); if(parent->try_revert(success, oldPLC, oldPRC, parent_var, parent_val)) { val = old_val; var = old_var; return false; } success = parent->rightChild->match(oldPRC, state); if(parent->try_revert(success, oldPLC, oldPRC, parent_var, parent_val)) { val = old_val; var = old_var; return false; } /* posterior probabilities and acceptance ratio */ assert(oldPRC->leavesN() + oldPLC->leavesN() == parent->leavesN()); double pklast = oldPRC->leavesPosterior() + oldPLC->leavesPosterior(); assert(R_FINITE(pklast)); double pk = parent->leavesPosterior(); /* alpha = min(1,exp(A)) */ double alpha = exp(pk-pklast); /* accept or reject? */ if(runi(state) < alpha) { if(verb >= 3) MYprintf(OUTFILE, "**SWAP** @depth %d: [%d,%g] <-> [%d,%g]\n", depth, var+1, val, (parent->var)+1, parent->val); if(oldPRC) delete oldPRC; if(oldPRC) delete oldPLC; return true; } else { parent->try_revert(false, oldPLC, oldPRC, parent_var, parent_val); val = old_val; var = old_var; return false; } } /* * change: * * attempt to move the split point of an INTERNAL node. * keeping parameters in the lower partitions the same. */ bool Tree::change(void *state) { tree_op = CHANGE; assert(!isLeaf()); /* Bobby: maybe add code here to prevent 0->1 proposals when there the marginal X is only binary */ /* save old tree */ double old_val = val; val = propose_val(state); Tree* oldLC = leftChild; Tree* oldRC = rightChild; leftChild = rightChild = NULL; /* new left child */ unsigned int success = grow_child(&leftChild, LEQ); if(try_revert((bool)success && leftChild->wellSized(), oldLC, oldRC, var, old_val)) return false; /* new right child */ success = grow_child(&rightChild, GT); if(try_revert((bool)success && rightChild->wellSized(), oldLC, oldRC, var, old_val)) return false; /* continue with new left and right children */ success = leftChild->match(oldLC, state); if(try_revert(success, oldLC, oldRC, var, old_val)) return false; success = rightChild->match(oldRC, state); if(try_revert(success, oldLC, oldRC, var, old_val)) return false; /* posterior probabilities and acceptance ratio */ assert(oldLC->leavesN() + oldRC->leavesN() == this->leavesN()); double pklast = oldLC->leavesPosterior() + oldRC->leavesPosterior(); #ifdef DEBUG assert(R_FINITE(pklast)); #endif double pk = leavesPosterior(); /* alpha = min(1,exp(A)) */ double alpha = exp(pk-pklast); /* accept or reject? */ if(runi(state) < alpha) { /* accept */ if(oldLC) delete oldLC; if(oldRC) delete oldRC; if(tree_op == CHANGE && verb >= 4) MYprintf(OUTFILE, "**CHANGE** @depth %d: var=%d, val=%g->%g, n=(%d,%d)\n", depth, var+1, old_val, val, leftChild->n, rightChild->n); else if(tree_op == CPRUNE && verb >= 1) MYprintf(OUTFILE, "**CPRUNE** @depth %d: var=%d, val=%g->%g, n=(%d,%d)\n", depth, var+1, old_val, val, leftChild->n, rightChild->n); return true; } else { /* reject */ try_revert(false, oldLC, oldRC, var, old_val); return false; } } /* * match: * * match the parameters of oldT with new partition * induced by THIS tree */ bool Tree::match(Tree* oldT, void *state) { assert(oldT); if(oldT->isLeaf()) { base->Match(oldT->base); return true; } else { var = oldT->var; val = oldT->val; Clear(); bool success = grow_children(); if(success) { success = leftChild->match(oldT->leftChild, state); if(!success) return false; success = rightChild->match(oldT->rightChild, state); if(!success) return false; } else { if(tree_op != CHANGE) return false; #ifdef CPRUNEOP /* growing failed because of <= MINPART, try CPRUNE */ tree_op = CPRUNE; if(!oldT->rightChild->isLeaf()) return match(oldT->rightChild, state); else if(!oldT->leftChild->isLeaf()) return match(oldT->leftChild, state); else { bool success = false; if(runi(state) > 0.5) success = match(oldT->leftChild, state); else success = match(oldT->rightChild, state); assert(success); return success; } #endif } } return true; } /* * try_revert: * * revert children and changepoint back to the way they were */ bool Tree::try_revert(bool success, Tree* oldLC, Tree* oldRC, int old_var, double old_val) { if(!success) { val = old_val; var = old_var; if(leftChild) delete leftChild; if(rightChild) delete rightChild; leftChild = oldLC; rightChild = oldRC; assert(leftChild && rightChild); return true; } else { return false; } } /* * propose_val: * * given the old var/val pair, propose a new one */ double Tree::propose_val(void *state) { double min, max; unsigned int N; double **locs = model->get_Xsplit(&N); min = R_PosInf; max = R_NegInf; for(unsigned int i=0; i val && Xivar < min) min = Xivar; else if(Xivar < val && Xivar > max) max = Xivar; } assert(val != min && val != max); if(runi(state) < 0.5) return min; else return max; } /* * leavesPosterior: * * get the posterior probability of all * leaf children of this node */ double Tree::leavesPosterior(void) { Tree *first, *last; /* int numLeaves = */ leaves(&first, &last); // assert(numLeaves > 0); double p = 0; while(first) { p += first->Posterior(); if(!R_FINITE(p)) break; first = first->next; // numLeaves--; } // assert(numLeaves == 0); return p; } /* * MarginalLikelihood: * * check to make sure the model (e.g., GP) is up to date * -- has correct data size --, if not then Update it, * and then copute the posterior pdf */ double Tree::Posterior(void) { unsigned int basen = base->N(); if(basen == 0) { Update(); Compute(); } else assert(basen == n); return base->Posterior(); } /* * leavesN: * * get the partition sizes (n) at all * leaf children of this node */ unsigned int Tree::leavesN(void) { Tree *first, *last; /* int numLeaves = */ leaves(&first, &last); // assert(numLeaves > 0); unsigned int N = 0; while(first) { N += first->n; first = first->next; // numLeaves--; } // assert(numLeaves == 0); return N; } /* * prune: * * attempt to remove both children of this PRUNABLE node by * randomly choosing one of its children, and then randomly * choosing the D and NUGGET parameters a single child. */ bool Tree::prune(double ratio, void *state) { tree_op = PRUNE; double logq_bak, pk, pklast, logp_split, alpha; /* sane prune ? */ assert(leftChild && leftChild->isLeaf()); assert(rightChild && rightChild->isLeaf()); /* get the marginalized posterior of the current * leaves of this PRUNABLE node*/ pklast = leavesPosterior(); #ifdef DEBUG assert(R_FINITE(pklast)); #endif /* compute the backwards split proposal probability */ logq_bak = split_prob(); /* calculate the prior probability of this split (just 1/n) */ unsigned int nsplit; model->get_Xsplit(&nsplit); logp_split = 0.0 - log((double) nsplit); /* compute corr and p(Delta_corr) for corr1 and corr2 */ base->Combine(leftChild->base, rightChild->base, state); /* update data, create covariance matrix, and compute marginal parameters */ Update(); Compute(); assert(n == leftChild->n + rightChild->n); assert(nn == leftChild->nn + rightChild->nn); /* compute posterior of new tree */ pk = this->Posterior(); /* prior ratio and acceptance ratio */ alpha = ratio*exp(logq_bak+pk-pklast-logp_split); /* accept or reject? */ if(runi(state) < alpha) { if(verb >= 1) MYprintf(OUTFILE, "**PRUNE** @depth %d: [%d,%g]\n", depth, var+1, val); delete leftChild; delete rightChild; leftChild = rightChild = NULL; base->ClearPred(); return true; } else { Clear(); return false; } } /* * grow: * * attempt to add two children to this LEAF node by randomly choosing * splitting criterion, along new d and nugget parameters */ bool Tree::grow(double ratio, void *state) { tree_op = GROW; bool success; double q_fwd, pk, pklast, logp_split, alpha; /* sane grow ? */ assert(isLeaf()); /* propose the next tree, by choosing the split point */ /* We only partition on variables > splitmin */ unsigned int mn = model->get_params()->T_smin(); var = sample_seq(mn, d-1, state); /* can't grow if this dimension does not have varying x-values */ if(rect->boundary[0][var] == rect->boundary[1][var]) return false; /* propose the split location */ val = propose_split(&q_fwd, state); /* Compute the prior for this split location (just 1/n) */ unsigned int nsplit; model->get_Xsplit(&nsplit); logp_split = 0.0 - log((double) nsplit); /* grow the children; stop if partition too small */ success = grow_children(); if(!success) return false; /* propose new correlation paramers for the new leaves */ base->Split(leftChild->base, rightChild->base, state); /* marginalized posteriors and acceptance ratio */ pk = leftChild->Posterior() + rightChild->Posterior(); pklast = this->Posterior(); alpha = ratio*exp(pk-pklast+logp_split)/q_fwd; /* MYprintf(MYstderr, "%d:%g : alpha=%g, ratio=%g, pk=%g, pklast=%g, logp_s=%g, q_fwd=%g\n", var, val, alpha, ratio, pk, pklast, logp_split, q_fwd); MYflush(MYstderr); */ /* accept or reject? */ bool ret_val = true; if(runi(state) > alpha) { delete leftChild; delete rightChild; leftChild = rightChild = NULL; ret_val = false; } else { Clear(); if(verb >= 1) MYprintf(OUTFILE, "**GROW** @depth %d: [%d,%g], n=(%d,%d)\n", depth, var+1, val, leftChild->n, rightChild->n); } return ret_val; } /* * grow_children: * * grow both left and right children based on splitpoint */ bool Tree::grow_children(void) { unsigned int suc1 = grow_child(&leftChild, LEQ); if(!suc1 || !(leftChild->wellSized())) { if(leftChild) delete leftChild; leftChild = NULL; assert(rightChild == NULL); return false; } unsigned int suc2 = grow_child(&rightChild, GT); if(!suc2 || !(rightChild->wellSized())) { delete leftChild; if(rightChild) delete rightChild; leftChild = rightChild = NULL; return false; } assert(suc1 + suc2 == n); assert(leftChild->nn + rightChild->nn == nn); return true; } /* * part_child: * * creates the data according to the current partition * the current var and val parameters, and the operation "op" */ int Tree::part_child(FIND_OP op, double ***Xc, int **pnew, unsigned int *plen, double **Zc, Rect **newRect) { unsigned int i,j; int *pchild = find_col(X, NULL, n, var, op, val, plen); if(*plen == 0) return 0; /* partition the data and predictive locations */ *Xc = new_matrix(*plen,d); *Zc = new_vector(*plen); *pnew = new_ivector(*plen); for(i=0; iboundary[0][i] = rect->boundary[0][i]; (*newRect)->boundary[1][i] = rect->boundary[1][i]; (*newRect)->opl[i] = rect->opl[i]; (*newRect)->opr[i] = rect->opr[i]; } if(op == LEQ) { (*newRect)->opr[var] = op; (*newRect)->boundary[1][var] = val; } else { (*newRect)->opl[var] = op; assert(op == GT); (*newRect)->boundary[0][var] = val; } return (*plen); } /* * grow_child: * * based on current val and var variables, create the corresponding * leftChild partition returns the number of points in the grown region */ unsigned int Tree::grow_child(Tree** child, FIND_OP op) { assert(!(*child)); /* find partition indices */ unsigned int plen; double **Xc = NULL; Rect *newRect = NULL; double *Zc = NULL; int *pnew = NULL; unsigned int success = part_child(op, &Xc, &pnew, &plen, &Zc, &newRect); if(success == 0) return success; /* grow the Child */ (*child) = new Tree(Xc, pnew, plen, d, Zc, newRect, this, model); return plen; } #ifdef DONTDOTHIS /* * val_order_probs: * * compute the discrete probability distribution over valid * changepoint locations (UNIFORM) */ void Tree::val_order_probs(double **Xo, double **probs, unsigned int var, double **rX, unsigned int rn) { unsigned int i; *Xo = new_vector(rn); *probs = new_vector(rn); for(i=0; iboundary[1][var] + rect->boundary[0][var]) / 2; /* calculate the squared distance of each rX[][var] point from the midpoint */ double *XmMid = new_vector(rn); for(unsigned int i=0; iboundary[0][var] || (*Xo)[i] >= rect->boundary[1][var]) (*probs)[i] = 0.0; else (*probs)[i] = 1.0/one2n[i]; /* calculate the cumulative probability to the left and right of midpoint */ if((*Xo)[i] < mid) sum_left += (*probs)[i]; else sum_right += (*probs)[i]; } /* normalise the probability distribution with sim_left and sum_right */ double mult; if(sum_left > 0 && sum_right > 0) mult = 0.5; else mult = 1.0; for(unsigned int i=0; iget_Xsplit(&N); val_order_probs(&Xo, &probs, var, locs, N); dsample(&val, &indx, 1, N, Xo, probs, state); *p = probs[indx]; free(Xo); free(probs); return val; } /* * split_prob: * * compute the probability of the current split point * returns the log probability */ double Tree::split_prob() { double *Xo, *probs; double p; unsigned int find_len, N; double **locs = model->get_Xsplit(&N); val_order_probs(&Xo, &probs, var, locs, N); int *indx = find(Xo, N, EQ, val, &find_len); assert(find_len >= 1 && indx[0] >= 0); p = log(probs[indx[0]]); free(Xo); free(probs); free(indx); return p; } /* * getN: * * return the number of input locations, N */ unsigned int Tree::getN(void) const { return n; } /* * getNN: * * return the number of predictive locations locations, NN */ unsigned int Tree::getNN(void) const { return nn; } /* * adjustDepth: * * auto increment or decrement the depth of * a node (and its children) by int "a" */ void Tree::adjustDepth(int a) { if(leftChild) leftChild->adjustDepth(a); if(rightChild) rightChild->adjustDepth(a); depth += a; assert(depth >= 0); } /* * swapableList: * * get an array containing the internal nodes of the tree t */ Tree** Tree::swapableList(unsigned int* len) { Tree *first, *last; first = last = NULL; *len = swapable(&first, &last); if(*len == 0) return NULL; return first->buildTreeList(*len); } /* * internalsList: * * get an array containing the internal nodes of the tree t */ Tree** Tree::internalsList(unsigned int* len) { Tree *first, *last; first = last = NULL; *len = internals(&first, &last); if(*len == 0) return NULL; return first->buildTreeList(*len); } /* * leavesList: * * get an array containing the leaves of the tree t */ Tree** Tree::leavesList(unsigned int* len) { Tree *first, *last; first = last = NULL; *len = leaves(&first, &last); if(*len == 0) return NULL; return first->buildTreeList(*len); } /* * prunableList: * * get an array containing the prunable nodes of the tree t */ Tree** Tree::prunableList(unsigned int* len) { Tree *first, *last; first = last = NULL; *len = prunable(&first, &last); if(*len == 0) return NULL; return first->buildTreeList(*len); } /* * numLeaves: * * get a count of the number of leaves in the tree t */ unsigned int Tree::numLeaves(void) { Tree *first, *last; first = last = NULL; int len = leaves(&first, &last); return len; } /* * numPrunable: * * get a count of the number of prunable nodes of the tree t */ unsigned int Tree::numPrunable(void) { Tree *first, *last; first = last = NULL; int len = prunable(&first, &last); return len; } /* * buildTreeList: * * takes a pointer to the first element of a Tree list and a * length parameter and builds an array style list */ Tree** Tree::buildTreeList(unsigned int len) { unsigned int i; Tree* first = this; Tree** list = (Tree**) malloc(sizeof(Tree*) * (len)); for(i=0; inext; } return list; } /* * PrintTree: * * print the tree out to the file in depth first order * -- the R CART tree structure format * rect and scale are for unnnormalization of split point */ void Tree::PrintTree(FILE* outfile, double** rect, double scale, int root) const { /* print the node number, followinf by or the splitting dimension */ if(isLeaf()) MYprintf(outfile, "%d \t", root); else MYprintf(outfile, "%d %d ", root, var); /* print the defiance (which is just zero since this is unused) and the variance (s2) in the partition */ MYprintf(outfile, "%d 0 %.4f ", n, base->Var()); /* don't print split information if this is a leaf, but do print the params */ if(isLeaf()) { /* skipping the split locations */ MYprintf(outfile, "\"\" \"\" 0 "); } else { /* unnormalize the val */ double vn = val / scale; vn = (rect[1][var] - rect[0][var])*vn + rect[0][var]; /* print the split locations */ MYprintf(outfile, "\"<%-5g\" \">%-5g\" ", vn, vn); /* print val again, this time in higher precision */ MYprintf(outfile, "%15f ", vn); } /* not skipping the printing of leaf (GP) paramerters */ unsigned int len; double *trace = base->Trace(&len, true); printVector(trace, len, outfile, MACHINE); if(trace) free(trace); /* process children */ if(!isLeaf()) { leftChild->PrintTree(outfile, rect, scale, 2*root); rightChild->PrintTree(outfile, rect, scale, 2*root+1); } } /* * dopt_from_XX: * * return the indices of N d-optimal draws from XX (of size nn); */ unsigned int* Tree::dopt_from_XX(unsigned int N, unsigned int iter, void *state) { assert(N <= nn); assert(XX); int *fi = new_ivector(N); double ** Xboth = new_matrix(N+n, d); // dopt(Xboth, fi, X, XX, d, n, nn, N, d, nug, iter, 0, state); dopt(Xboth, fi, X, XX, d, n, nn, N, DOPT_D(d), DOPT_NUG(), iter, 0, state); unsigned int *fi_ret = new_uivector(N); for(unsigned int i=0; i t_minp points in the partition) */ bool Tree::wellSized(void) const { /* partition must have enough data in it */ if(n <= model->get_params()->T_minp()) return false; /* don't care about the rest of the checks if the base model is constant */ if(base->Constant()) return true; /* checks to do with well defined linear and GP models */ return ((Area() > 0) /* non-zero Area or Volume */ && (!Singular())); /* non-singular design matrix */ } /* * Singular: * * return true return true iff X has a column with all * the same value or if Z has all of the same value */ bool Tree::Singular(void) const { /* first check each column of X for >=1 unique value */ assert(X); unsigned int bm = model->get_params()->T_bmax(); for(unsigned int i=0; i= d+1 unique vectors */ unsigned int UN = d+2; double **U = new_matrix(UN, bm); dupv(U[0], X[0], bm); unsigned int un = 1; /* for each row */ for(unsigned int i=1; i= UN) { if(2*UN > n) UN = n; else UN = 2*UN; U = new_bigger_matrix(U, un, bm, UN, bm); } dupv(U[un], X[i], bm); un++; } /* have we found enough unique X's */ if(un >= d+1) break; } delete_matrix(U); if(un <= d) return true; /* then check Z for >=1 unique value */ assert(Z); double f = Z[0]; unsigned int j = 0; for(j=1; jget_params()->T_bmax(); return rect_area_maxd(rect, bm); /* return rect_area(rect); */ } /* * GetRect: * * return a pointer to the rectangle associated with this partition */ Rect* Tree::GetRect(void) const { return rect; } /* * get_pp: * * return indices into the XX array */ int* Tree::get_pp(void) const { return pp; } /* * get_XX: * * return the predictive data locations: XX */ double** Tree::get_XX(void) const { return XX; } /* * get_X: * * return the data locations: X */ double** Tree::get_X(void) const { return X; } /* * get_Z: * * return the data responses: Z */ double* Tree::get_Z(void) const { return Z; } /* * cut_branch: * * cut the children (recursively) from the tree */ void Tree::cut_branch(void) { if(!isLeaf()) { assert(leftChild != NULL && rightChild != NULL); delete leftChild; delete rightChild; leftChild = rightChild = NULL; } // base->ClearPred(); base->Init(NULL); /* calls ClearPred() already */ Update(); Compute(); } /* * Outfile: * * set outfile handle */ void Tree::Outfile(FILE *file, int verb) { OUTFILE = file; this->verb = verb; if(leftChild) leftChild->Outfile(file, verb); if(rightChild) rightChild->Outfile(file, verb); } /* * Height: * * compute the height of the the tree */ unsigned int Tree::Height(void) const { if(isLeaf()) return 1; unsigned int lh = leftChild->Height(); unsigned int rh = rightChild->Height(); if(lh > rh) return 1 + lh; else return 1 + rh; } /* * Prior: * * Calculate the tree process prior, possibly * tempered. * * returns a log probability */ double Tree::Prior(double itemp) { double prior; /* get the tree process prior parameters */ double alpha, beta; unsigned int minpart, splitmin, basemax; model->get_params()->get_T_params(&alpha, &beta, &minpart, &splitmin, &basemax); if(isLeaf()) { /* probability of not growing this branch */ prior = log(1.0 - alpha*pow(1.0+depth,0.0-beta)); /* temper, in log space uselog=1 */ prior = temper(prior, itemp, 1); } else { /* probability of growing here */ prior = log(alpha) - beta*log(1.0 + depth); /* temper, in log space uselog=1 */ prior = temper(prior, itemp, 1); /* probability of the children */ prior += leftChild->Prior(itemp); prior += rightChild->Prior(itemp); } return prior; } /* * FullPosterior: * * Calculate the full posterior of (the leaves of) * the tree using the base models and the probability * of growing (or not) at internal (leaf) nodes with * process prior determined by alpha and beta * * returns a log posterior probability */ double Tree::FullPosterior(double itemp, bool tprior) { double post; /* get the tree process prior parameters */ double alpha, beta; unsigned int minpart, splitmin, basemax; model->get_params()->get_T_params(&alpha, &beta, &minpart, &splitmin, &basemax); if(isLeaf()) { /* probability of not growing this branch */ post = log(1.0 - alpha*pow(1.0+depth,0.0-beta)); /* temper, in log space uselog=1 */ if(tprior) post = temper(post, itemp, 1); /* base posterior */ post += base->FullPosterior(itemp); } else { /* probability of growing here */ post = log(alpha) - beta*log(1.0 + depth); /* temper, in log space uselog=1 */ if(tprior) post = temper(post, itemp, 1); /* probability of the children */ post += leftChild->FullPosterior(itemp, tprior); post += rightChild->FullPosterior(itemp, tprior); } return post; } /* * MarginalPosterior: * * Calculate the full (marginal) posterior of (the leaves of) * the tree using the base models and the probability * of growing (or not) at internal (leaf) nodes with * process prior determined by alpha and beta * * returns a log posterior probability * * SHOULD ADD tprior ARGUMENT! */ double Tree::MarginalPosterior(double itemp) { double post; /* get the tree process prior parameters */ double alpha, beta; unsigned int minpart, splitmin, basemax; model->get_params()->get_T_params(&alpha, &beta, &minpart, &splitmin, &basemax); if(isLeaf()) { /* probability of not growing this branch */ post = log(1.0 - alpha*pow(1.0+depth,0.0-beta)); /* probability of the base model at this leaf */ post += base->MarginalPosterior(itemp); } else { /* probability of growing here */ post = log(alpha) - beta*log(1.0 + depth); /* probability of the children */ post += leftChild->MarginalPosterior(itemp); post += rightChild->MarginalPosterior(itemp); } return post; } /* * Likelihood: * * Calculate the likelihood of (all of the leaves of) * the tree using the base models; returns the log likelihood */ double Tree::Likelihood(double itemp) { double llik; if(isLeaf()) { /* likelihood of the base model at this leaf */ //double olditemp = base->NewInvTemp(itemp, true); llik = base->Likelihood(itemp); //base->NewInvTemp(olditemp, true); } else { /* add in likelihoods of the children */ llik = leftChild->Likelihood(itemp); llik += rightChild->Likelihood(itemp); } return llik; } /* * Update: * * calls the GP function of the same name with * the data for this tree in this partition */ void Tree::Update(void) { base->Update(X, n, d, Z); } /* * Compute: * * do necessary computations the (GP) model at this * node in the tree */ void Tree::Compute(void) { assert(base); base->Compute(); } /* * State: * * return string state information from the (GP) model * at this node in the tree */ char* Tree::State(unsigned int which) { assert(base); return base->State(which); } /* * Draw: * * draw from all of the conditional posteriors of the model(s) * (e.g. GP) attached to this leaf node */ bool Tree::Draw(void *state) { assert(base); assert(isLeaf()); return base->Draw(state); } /* * Clear: * * call the model (e.g. GP) clear function */ void Tree::Clear(void) { base->Clear(); } /* * ForceLinear: * * make adjustments to toggle to the (limiting) linear * model (right now, this only makes sense for the * GP LLM) */ void Tree::ForceLinear(void) { base->ForceLinear(); } /* * ForceNonlinear: * * make adjustments to toggle to the (limiting) linear * model (right now, this only makes sense for the * GP LLM) */ void Tree::ForceNonlinear(void) { base->ForceNonlinear(); } /* * Linarea: * * get statistics from the model (e.g. GP) for calculating * the area of the domain under the LLM */ bool Tree::Linarea(unsigned int *sum_b, double *area) const { *sum_b = base->sum_b(); *area = Area(); return base->Linear(); } /* * GetBase: * * return the base model (e.g. gp) */ Base* Tree::GetBase(void) const { return base; } /* * BasePrior: * * return the prior to base model (e.g. gp) */ Base_Prior* Tree::GetBasePrior(void) const { return base->Prior(); } /* * TraceNames: * * prints the names of the traces recorded in Tree::Trace() * without "index" (i.e., basically return base->TraceNames()) */ char** Tree::TraceNames(unsigned int *len, bool full) { return base->TraceNames(len, full); } /* * Trace: * * gathers trace statistics from the Base model * and writes them out to the specified file */ void Tree::Trace(unsigned int index, FILE* XXTRACEFILE) { double *trace; unsigned int len; /* sanity checks */ assert(XXTRACEFILE); if(!pp) return; /* get the trace */ trace = base->Trace(&len, false); /* write to the XX trace file */ for(unsigned int i=0; iNewInvTemp(itemp, true); else { base->NewInvTemp(itemp, false); rightChild->NewInvTemp(itemp); leftChild->NewInvTemp(itemp); } } /* * Distance: * * returns, via d1 and d2, two distance measures between pairs * of XX locations: d1 gives the number of nodes in the tree * along the shortest path; d2 sums the distances to the partition * boundary along that path, with any nodes in the same region * having distance zero */ void Tree::Distance(double **XX, int *p, const unsigned int plen, double **d1, double *h, double **d2, double *ad) { if(isLeaf()) { for(unsigned int i=0; iDistance(XX, pl, pllen, d1, h, d2, ad); rightChild->Distance(XX, pr, prlen, d1, h, d2, ad); /* accumulate distance to boundary as we recurse back up */ for(unsigned int i=0; i class Exp_Prior; /* * CLASS for the implementation of the exponential * power family of correlation functions */ class Exp : public Corr { private: double d; /* kernel correlation width parameter */ double **xDISTx; /* n x n, matrix of euclidean distances to the x spatial locations */ unsigned int nd; /* for keeping track of the current size of xDISTx (nd x nd) */ unsigned int dreject; /* d rejection counter */ public: Exp(unsigned int dim, Base_Prior *base_prior); virtual Corr& operator=(const Corr &c); virtual ~Exp(void); virtual void Update(unsigned int n1, unsigned int n2, double **K, double **X, double **XX); virtual void Update(unsigned int n1, double **X); virtual void Update(unsigned int n1, double **K, double **X); virtual int Draw(unsigned int n, double **F, double **X, double *Z, double *lambda, double **bmu, double **Vb, double tau2, double itemp, void *state); virtual void Combine(Corr *c1, Corr *c2, void *state); virtual void Split(Corr *c1, Corr *c2, void *state); virtual char* State(unsigned int which); virtual double log_Prior(void); virtual unsigned int sum_b(void); virtual void ToggleLinear(void); virtual bool DrawNugs(unsigned int n, double **X, double **F, double *Z, double *lambda, double **bmu, double **Vb, double tau2, double itemp, void *state); virtual double* Trace(unsigned int* len); virtual char** TraceNames(unsigned int* len); virtual void Init(double *dexp); virtual double* Jitter(unsigned int n1, double **X); virtual double* CorrDiag(unsigned int n1, double **X); virtual void Invert(unsigned int n); void get_delta_d(Exp* c1, Exp* c2, void *state); void propose_new_d(Exp* c1, Exp* c2, void *state); double D(void); }; /* * CLASS for the prior parameterization of exponential * power family of correlation functions */ class Exp_Prior : public Corr_Prior { private: double d; double d_alpha[2]; /* d gamma-mixture prior alphas */ double d_beta[2]; /* d gamma-mixture prior beta */ bool fix_d; /* estimate d-mixture parameters or not */ double d_alpha_lambda[2]; /* d prior alpha lambda parameter */ double d_beta_lambda[2]; /* d prior beta lambda parameter */ public: Exp_Prior(unsigned int dim); Exp_Prior(Corr_Prior *c); virtual ~Exp_Prior(void); virtual void read_double(double *dprior); virtual void read_ctrlfile(std::ifstream* ctrlfile); virtual void Draw(Corr **corr, unsigned int howmany, void *state); virtual Corr_Prior* Dup(void); virtual Corr* newCorr(void); virtual void Print(FILE *outfile); virtual Base_Prior* BasePrior(void); virtual void SetBasePrior(Base_Prior *base_prior); virtual double log_HierPrior(void); virtual double* Trace(unsigned int* len); virtual char** TraceNames(unsigned int* len); virtual void Init(double *dhier); double D(void); double* DAlpha(void); double* DBeta(void); void default_d_priors(void); void default_d_lambdas(void); double log_Prior(double d, bool linear); bool LinearRand(double d, void *state); }; #endif tgp/src/predict_linear.c0000644000176200001440000003543114323551707015000 0ustar liggesusers/******************************************************************************** * * Bayesian Regression and Adaptive Sampling with Gaussian Process Trees * Copyright (C) 2005, University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Questions? Contact Robert B. Gramacy (rbgramacy@ams.ucsc.edu) * ********************************************************************************/ #include #include #include #include "rhelp.h" #include "rand_draws.h" #include "matrix.h" #include "predict_linear.h" #include "predict.h" #include "linalg.h" /* #define DEBUG */ /* * predictive_mean_noK: * * compute the predictive mean of a single observation * used by predict_data and predict * * FFrow[col], b[col] */ double predictive_mean_noK(unsigned int n1, unsigned int col, double *FFrow, int i, double *b) { double zm; /* f(x)' * beta */ zm = linalg_ddot(col, FFrow, 1, b, 1); return zm; } /* * predict_data_noK: * * used by the predict_full funtion below to fill * z[n1] with predicted values based on the input coded in * terms of Frow,FW,W,xxKx,IDpFWF,IDpFWFi,b,ss2,Kdiag * returns the number of warnings * * b[col], z[n1], FFrow[n1][col]; */ void predict_data_noK(double *zpm, double *zps2, unsigned int n1, unsigned int col, double **FFrow, double *b, double ss2, double *Kdiag) { int i; /* for each point at which we want a prediction */ for(i=0; i 0);*/ Qy = new_vector(n1); for(i=0; i= 0); } /* clean up */ free(Qy); } /* * predictive_var_noK: * * computes the predictive variance for a single location * used by predict. Also returns Q, rhs, Wf, and s2corr * which are useful for computeing Delta-sigma * * Q[n1], rhs[n1], Wf[col], FFrow[n1], FW[col][n1], * IDpFWFi[n1][n1], W[col][col]; */ double predictive_var_noK(unsigned int n1, unsigned int col, double *Q, double *rhs, double *Wf, double *s2cor, double ss2, double *f, double **FW, double **W, double tau2, double **IDpFWFi, double corr_diag) { double s2, kappa, fWf, last; /* Var[Z(x)] = s2*[corr_diag + fWf - Q (K + FWF)^{-1} Q] */ /* where Q = k + FWf */ /* Q = tau2*FW*f(x); */ zerov(Q, n1); linalg_dgemv(CblasNoTrans,n1,col,tau2,FW,n1,f,1,0.0,Q,1); /* rhs = IDpFWFi * Q */ linalg_dgemv(CblasNoTrans,n1,n1,1.0,IDpFWFi,n1,Q,1,0.0,rhs,1); /* Q (tau2*FWF)^{-1} Q */ /* last = Q*rhs = Q*KpFWFi*Q */ last = linalg_ddot(n1, Q, 1, rhs, 1); /* W*f(x) */ linalg_dsymv(col,1.0,W,col,f,1,0.0,Wf,1); /* f(x)*Wf */ fWf = linalg_ddot(col, f, 1, Wf, 1); /* finish off the variance */ /* Var[Z(x)] = s2*[corr_diag + fWf - Q (Id + FWF)^{-1} Q] */ /* Var[Z(x)] = s2*[kappa - Q C^{-1} Q] */ kappa = corr_diag + tau2*fWf; *s2cor = kappa - last; s2 = ss2*(*s2cor); /* this is to catch bad s2 calculations; */ if(s2 <= 0) { s2 = 0; *s2cor = corr_diag-1.0; } return s2; } /* * predict_delta_noK: * * used by the predict_full funtion below to fill * zmean and zs [n2] with predicted mean and var * values based on the input coded in * terms of FF,FW,W,xxKx,IDpFWF,IDpFWFi,b,ss2,Kdiag * * Also calls delta_sigma2 at each predictive location, * because it uses many of the same computed quantaties * as needed to compute the predictive variance. * * b[col], z[n2] FFrow[n2][col] IDpFWFi[n1][n1], * FW[col][n1], W[col][col], Ds2xy[n2][n2]; */ void predict_delta_noK(double *zzm, double *zzs2, double **Ds2xy, unsigned int n1, unsigned int n2, unsigned int col, double **FFrow, double **FW, double **W, double tau2, double **IDpFWFi, double *b, double ss2, double *KKdiag) { int i; double s2cor; /*double Q[n1], rhs[n1], Wf[col];*/ double *Q, *rhs, *Wf; /* zero stuff out before starting the for-loop */ rhs = new_zero_vector(n1); Wf = new_zero_vector(col); Q = new_vector(n1); /* for each point at which we want a prediction */ for(i=0; i extern "C" { #include "matrix.h" #include "rhelp.h" } #include "params.h" #include "gp.h" #include #include #include using namespace std; #include /* * Params: * * the usual constructor function */ Params::Params(unsigned int dim) { d = dim; /* * the rest of the parameters will be read in * from the control file (Params::read_ctrlfile), or * from a double vector passed from R (Params::read_double) */ col = dim+1; t_alpha = 0.95; /* alpha: tree priors */ t_beta = 2; /* beta: tree priors */ t_minpart = 5; /* minpart: tree priors, smallest partition */ t_splitmin = 0; /* data column where we start partitioning */ t_basemax = dim; /* last data column before we stop using the base model */ prior = NULL; } /* * Params: * * duplication constructor function */ Params::Params(Params *params) { /* generic and tree parameters */ d = params->d; col = params->col; /* copy the tree parameters */ t_alpha = params->t_alpha; t_beta = params->t_beta; t_minpart = params->t_minpart; t_splitmin = params->t_splitmin; t_basemax = params->t_basemax; /* copy the Gp prior */ assert(params->prior); prior = new Gp_Prior(params->prior); ((Gp_Prior*)prior)->CorrPrior()->SetBasePrior(prior); } /* * ~Params: * * the usual destructor, nothing fancy */ Params::~Params(void) { delete prior; } /* * read_double: * * takes params from a double array, * for use with communication with R */ void Params::read_double(double *dparams) { /* read tree prior values alpha, beta and minpart */ // printVector(dparams, 5, MYstdout, HUMAN); t_alpha = dparams[0]; t_beta = dparams[1]; t_minpart = (unsigned int) dparams[2]; /* read tree prior values splitmin and basemax */ t_splitmin = ((unsigned int) dparams[3]) - 1; assert(t_splitmin >= 0 && t_splitmin < d); t_basemax = ((unsigned int) dparams[4]); assert(t_basemax > 0 && t_basemax <= d); /* read the mean function form */ int mf = (int) dparams[5]; MEAN_FN mean_fn = LINEAR; switch (mf) { case 0: mean_fn=LINEAR; /* MYprintf(MYstdout, "linear mean\n"); */ break; case 1: mean_fn=CONSTANT;/* MYprintf(MYstdout, "constant mean\n");*/ break; default: Rf_error("bad mean function %d", (int)dparams[5]); break; } prior = new Gp_Prior(/*d*/ t_basemax, mean_fn); /* read the rest of the parameters into the corr prior module */ prior->read_double(&(dparams[6])); } /* * read_ctrlfile: * * read all of the parameters from the control file */ void Params::read_ctrlfile(ifstream* ctrlfile) { char line[BUFFMAX]; /* read the tree-parameters (alpha, beta and minpart) from the control file */ ctrlfile->getline(line, BUFFMAX); t_alpha = atof(strtok(line, " \t\n#")); t_beta = atof(strtok(NULL, " \t\n#")); t_minpart = atoi(strtok(NULL, " \t\n#")); assert(t_minpart > 1); /* read in splitmin and basemax */ t_splitmin = atoi(strtok(NULL, " \t\n#")) - 1; assert(t_splitmin >= 0 && t_splitmin < d); t_basemax = atoi(strtok(NULL, " \t\n#")); assert(t_basemax > 0 && t_basemax <= d); /* read the mean function form */ /* LINEAR, CONSTANT, or TWOLEVEL */ MEAN_FN mean_fn = LINEAR; ctrlfile->getline(line, BUFFMAX); if(!strncmp(line, "linear", 6)) { mean_fn = LINEAR; MYprintf(MYstdout, "mean function: linear\n"); } else if(!strncmp(line, "constant", 8)) { mean_fn = CONSTANT; MYprintf(MYstdout, "mean function: constant\n"); } else { Rf_error("%s is not a valid mean function", strtok(line, "\t\n#")); } /* This will be needed for MrTgp */ prior = new Gp_Prior(/*d*/ t_basemax, mean_fn); /* prints the tree prior parameter settings */ Print(MYstdout); /* read the rest of the parameters into the corr prior module */ prior->read_ctrlfile(ctrlfile); } /* * get_T_params: * * pass back the tree prior parameters * t_alpha nad t_beta */ void Params::get_T_params(double *alpha, double *beta, unsigned int *minpart, unsigned int *splitmin, unsigned int *basemax) { *alpha = t_alpha; *beta = t_beta; *minpart = t_minpart; *splitmin = t_splitmin; *basemax = t_basemax; } /* * isTree: * * return true if the tree-prior allows tree growth, * and false otherwise */ bool Params::isTree(void) { if(t_alpha > 0 && t_beta > 0) return true; else return false; } /* * T_minp: * * return minimim partition data number */ unsigned int Params::T_minp(void) { return t_minpart; } /* * T_smin: * * return minimim partition column number */ unsigned int Params::T_smin(void) { return t_splitmin; } /* * T_bmax: * * return maximum Base model column number */ unsigned int Params::T_bmax(void) { return t_basemax; } /* * get_mix_prior_params: * * reading the mixture hierarchical priors from a string */ void get_mix_prior_params(double *alpha, double *beta, char *line, const char* which) { alpha[0] = atof(strtok(line, " \t\n#")); assert(alpha[0] > 0); beta[0] = atof(strtok(NULL, " \t\n#")); assert(beta[0] > 0); alpha[1] = atof(strtok(NULL, " \t\n#")); assert(alpha[1] > 0); beta[1] = atof(strtok(NULL, " \t\n#")); assert(beta[1] > 0); /* MYprintf(MYstdout, "%s[a,b][0,1]=[%g,%g],[%g,%g]\n", which, alpha[0], beta[0], alpha[1], beta[1]); */ } /* * get_mix_prior_params_double: * * reading the mixture hierarchical priors from a string * zero-values in alpha[0] indicate that the prior fixes * the parameter to beta[0] in the prior */ void get_mix_prior_params_double(double *alpha, double *beta, double *alpha_beta, const char* which) { alpha[0] = alpha_beta[0]; assert(alpha[0] >= 0); beta[0] = alpha_beta[1]; assert(beta[0] >= 0); alpha[1] = alpha_beta[2]; assert(alpha[1] >= 0); beta[1] = alpha_beta[3]; assert(beta[1] >= 0); /* MYprintf(MYstdout, "%s[a,b][0,1]=[%g,%g],[%g,%g]\n", which, alpha[0], beta[0], alpha[1], beta[1]); */ } /* * BasePrior: * * return the Base (e.g., Gp) prior module */ Base_Prior* Params::BasePrior(void) { return prior; } /* * Print: * * print the settings of the tree parameters -- these * are currently the only parameters governed by the * module */ void Params::Print(FILE *outfile) { MYprintf(outfile, "T[alpha,beta,nmin,smin,bmax]=[%g,%g,%d,%d,%d]\n", t_alpha, t_beta, t_minpart, t_splitmin+1, t_basemax); } tgp/ChangeLog0000644000176200001440000003747614661642251012646 0ustar liggesusers2.4-23 (22 Aug 2024) ------ extern and clang++ issues for Brian 2.4-22 (27 Nov 2023) ------ fixed double from int in printf for Kurt, and updated citation format 2.4-21 (06 Jan 2023) ------ sprintf -> snprintf 2.4-20 (19 Oct 2022) ------ providing missing headers 2.4-19 (17 Aug 2022) ------ removed & and other latex Rd fixes 2.4-18 (02 Apr 2022) ------ updated JSS DOI and now USE_FC_LEN for BLAS 2.4-17 (11 Sep 2020) ------ Fixed clang-11 issue with linalg.h and CXX headers pointed out by Brian 2.4-16 (05 Sep 2020) ------ put all btgp and tgp.design examples in donttest 2.4-15 (02 Sep 2020) ------ updated for modern R requirements implemented drop=FALSE in tgp.partition for Jan simplified BLAS and Lapack headers in linalg.c/.h for monomvn now using R_PosInf and R_NegInf 2.4-14 (06 Feb 2016) ------ forgot to do compact vignettes 2.4-13 (06 Feb 2016) ------ removed Rinterface.h; not sure where it came from 2.4-12 (05 Feb 2016) ------ new web page on bobby.gramacy.com, and title case moved R.h and Rmath.h outside of rhelp.h to be compatible with new C++ headers inside of newest R removed beta functionality comment from old vignette 2.4-11 (28 November 2014) ------ removed akima from package 2.4-10 (27 November 2014) ------ added mean0.range1 to NAMESPACE for use in the plgp package cleaned up some warnings in new pedantic gcc compile moved akima and maptree to Imports 2.4-9 (01 April 2013) ----- Changed printed tables to 15 digits to comply with new read.table checks removed zzz.R and moved LICENSE to License global exp2d and data call made fancy to pass checks 2.4-8 (13 Oct 2012) ----- fixed bimprov/improv bug overlooked in NULL issue updates removeed bessel_k.c and assocated functions; now using built-in bessel_k_ex function which didn't exist before 2.4-7 (18 April 2012) ----- fixed NULL issue in lh_sample 2.4-6 (14 April 2012) ----- Added check that E divides T-B Corrected bug in slice grid causing overflow Corrected NULL problems pointed out by BR 2.4-5 (30 January 2012) ----- fixes to vigneetes after NAMESPACE change, and removing direct references to stdout and stderr 2.4-4 (23 January 2012) ----- Added NAMESPACE file 2.4-3 (18 December 2011) ----- Checked for assert problems with NDEBUG and updated R version (2.14) and email addresses 2.4-2 (30 March 2011) ----- added dp.sim to tgp.default.params so that MVN proposal covariance matrix can be specified by the user in GP-SIM models 2.4-1 (23 Feb 2011) ----- Changed my_r_process_events to always ProcessEvents and check for interrupts (every second) Made new sobol_indices function to clean up tgp::Sens, and using shape to drive categorical calculations rather than bmax minor edit to tgp2 doc to correct fried.bool description, and edit to fried.bool to fix fried.bool(1) problem 2.4 (20 Sept 2010) --- added sim (single index model) rank 1 correlation structure overlooked fixing nugget in treed split proposals; now fixed 2.3-4 (19 July 2010) ----- allowed the entire $tree component from tgp.default.params to be written over by the tree argument to b* functions fixed a bug in the linear initialization of correlation functions (for non-LLM models) 2.3-3 (23 April 2010) ----- fixed another bug pointed out by Ripley 2.3-2 (21 April 2010) ----- replace isinf by R_FINITE as suggested by Brian Ripley 2.3-1 (8 Feb 2010) ----- Added reference to second JSS paper 2.3 (23 Dec 2009) --- final version of the tgp2 vignette, accepted at JSS removed mrtgp documentation 2.2-4 (20 Nov 2009) ----- added a check for a full rank design matrix in the pre-processing of inputs corrected some syntax errors in .Rd files caught by new checks on CRAN changed sens warning to check for nn > 0 instead of null XX which was causing a warning to be printed every time regardless of whether or not there was a violation 2.2-3 (22 Jul 2009) ----- added nug.p=0 option to cause the nugget to stay fixed at the params$gd[1] value. bcart, btlm, and blm now automatically use nug.p=0 since the nugget is not identified in these models 2.2-2 (27 May 2009) ----- caught a signifigant typo/bug in Xsplit pre-processing in R which was causing the bounding rectangle to be computed improperly removed combinat dependency 2.2-1 (20 Feb 2009) ----- added Tree::Clear() to rejected prunes in Tree::Prune() tgp.default.params and tgp.check.params now allow the min partition size to depend on basemax rather than d the bounding rectangle and the valid tree-split locations are now governed by an Xsplit automatically generated in the tgp R function, and gathered from the tgp object in predict.tgp 2.2 (16 Jan 2009) --- added lower bound for s2_g0, and added DEFAULT CPP macros to help prevent assertions which would have backed out of bad parameterizations anyways. This more liberal approach essentially prevents assertions in the no-noise regression case now allow basemax != d for constant mean functions added categorical LHS for sensitivity analyses finished draft of second vignette, to be submitted to JSS 2.1-6 (25 Nov 2008) ----- caught important bug in b0-prior pre-processing in R that was causing the emperical Bayes prior to be used when the b0 hierarchical one is requested 2.1-5 (24 Oct 2008) ----- added check for >= d+1 unique rows of X in Tree::Singular changed how d an nug are printed in the progress meter for mrtgp added par(mfrow=c(1,1)) to default 1-d mrtgp plots 2.1-4 (17 Oct 2008) ----- made it possible to cap the number of input locations which are ranked by the expected improvement statistic by allowing the improv argument to b* functions to take a 2-vector input. Also no longer ranks points with an improvement statistic of zero 2.1-3 (7 Oct 2008) ----- added check for >1 unique Z in Tree::Singular allow (undocumented) specification of minpart through the ellipses (...) argument to the b* functions m0r1=TRUE is now the default for all b* functions, the Rnw documentation has been updated (but the pdfs have not been regenerated in the current version) 2.1-2 (17 April 2008) ----- introduced params$Wi and made it so that params${b,Wi} set both the starting an prior values for the corresponding parameters. added bprior="bmznot" so that tau2 can be fixed at its starting value 2.1-1 (4 April 2008) ----- separaing tcounts and cum_tcounts and resetting tcounts to the average of cum_tcounts at beginning of each round fixed bug in returning of tcounts back to R by encuring that its->UpdateProbs() is always called after the last of R rounds whenever its->Numit() > 1 return ess information at each inverse temperature back to R for storage in the tgp-class object 2.1 (22 March 2008) --- moved CHANGES to ChangeLog for the new CRAN packages page cleaned up tgp vignette into one .Rnw file including several .iRnw files added linear=FALSE to akima interp commands stopped printing both separate ess and essN in IT method added new itemps.barplot function for visualizing the number of visits to each inverse temperature in the ST-MCMC chain now tcounts (observation counts) for IT are accumulated across repeats (R>=2) -- not sure if this is a good idea now recording tree acceptance rates (Grow, Prune Change and Swap accepts over total) propogated splitmin to up to the R interface, and added a basemax paramter also specifiable in the R inferface -- the parameters allow control of which X colums can be partitioned upon (by the tree) and which appear in the base (GP) model added heights="map" argument to tgp.trees for plotting only the tree corresponding to the maximum a' posteriori tree wrote two sections in the new vignette (tgp2): one on splitmin and basemax (i.e., categorical inputs) and one on importance tempering 2.0-4 (23 Jan 2008) ----- made a change suggested by Andrea Spano to make the partition function more robust when new X values (on a different range from the original data) are provided 2.0-3 (27 Dec 2007) ----- commented the moving average code (for sens) and made it more efficient 2.0-2 (12 Dec 2007) ----- allow mode in the sens function to be be within the bounds of rect -- i.e., stop checking for positive mode fixed dyslexic error in man page for sens describing total effect indices fixed missing braces in some .Rd files shortened to LGPL in DESCRIPTION 2.0-1 (1 Oct 2007) ----- Memory savings: preds->ZZ and preds->Zp only allocated when pred.n=TRUE, preds->w and preds->itemp only allocated when ST or IT or IS corrected default.itemps() example barplot and changed k.min to 0.1 to agree with IT paper fixed zcov bug in tgp.postprocess 2.0 (21 Sept 2007) --- consolidated R functions from individual files into those grouped by task made gridlen argument a 2-vector so the grid size can be specified in both x and y new economy argument to tree and Base duplicators so that the entire set of covariance matrices is not copied unless necessary Matt Taddy officially joins the list of authors, adding multi-resolution tgp and sensitivity analysis importance tempering, with importance sampling and simulated tempering support Latin hypercube sampling with respect to a Beta distribution moved most of the reading of parameters out of the Tgp constructor and into Tgp::Init so that tgp_cleanup() can safely delete the Tgp module even it it wasn't successfully initialized ordered multiple improv statistics predictive covariances now calculated instead of variances 1.2-7 (19 Aug 2007) ----- tgp.partition 1-d data handling made more robust removed assertion on w that tends to fail for unknown reasons 1.2-6 (17 June 2007) ----- added number of leaves to traces fixed CART bug in Gp::predict that was already handled in v1.3, thanks to Taddy, but was bad in the CRAN version 1.2-5 (29 May 2007) ----- allowing btgp to do a linburn $parts is a now a matrix, and $linburn now {TRUE,FALSE} $tree and $hier removed from tgp-class output, and $trace correctly removed when input trace=FALSE got rid of some hanging code fragments in documentation of btgp and dopt.gp 1.2-4 (07 May 2007) ----- fixed a leak when krige=FALSE appearing in Tree::Predict fixed sub-vignette cutting for preds and traces corrected documentation of nug.p in tgp.default.params() added verbosity and iter arguments to dopt and thus dopt.gp and tgp.design 1.2-3 (09 Apr 2007) ----- updates to the vignette for the JSS publication check.matrix modified to allow one-column matrix Z arguments which have column-name information tgp.trees calculation of rows and columns corrected for situations when there is a height 1 tree 1.2-2 (19 Dec 2006) ----- slice.interp bugs fixed (is.null(NULL) and plotting of axis labels) and tick marks added added R argument to predict.tgp and changed the krige argument to be called MAP added new krige argument to b* and predict.tgp to allow the user to control whether Z*k* kriging samples are to be obtained (possibly saving on memory) bug involving the order of trees read from files in the tgp.get.trees function is fixed; as a result the $trees output field in "tgp"-class objects is listed by height and so may contain NULL entries documented plot.tgp and predict.tgp with the method markup 1.2-1 (03 Dec 2006) ----- Added "cart-" option to bprior in order to allow a CART style mean rather than a LM mean 1.2 (21 Nov 2006) --- Now allowing BTE[2]-BTE[1] % BTE[3] != 0 Added predict.tgp and necessary functionality to save and load in MAP tgp model for later prediction Corrected par calculation in tgp.trees for non-default which argument when there is an unprinted height 1 tree Traces not recorded for linarea, parts, and ego, when they are off or fixed to unchanging settings Fixed EGO calculations; now calling them "improv", made them thread-safe, and added improv samples to traces Also now renamed ds2x to Ds2x, and made Ds2x (i.e., ALC) calculations thread-safe Ellipses to b* function allow other params arguments to be passed to replace defaults in tgp.default.params() Added traces of hierarchical parameters, and all predictive summaries (including kriging means and vars) Initial implementation of Importance Tempering idea Calculating variances of predictive distribution, and saving kriging means and variances Fixed numPrunable (P+1) calculation in grow attempts EGO calculations made thread-safe 1.1-11 (20 Sept 2006) ------ Bad compilation flags caused bad bug in log_HierPrior to go unnoticed until assertion failure on Windows 1.1-10 (19 Sept 2006) ------ Fixed big compute_ego() bug Tweaks to RNG seeds so that they give same sequence across platforms (tested on OSX/PB & Linux/Xeons) Allow X=NULL in dopt.gp() Removal of constants LOG_2_PI covered by R internal M_LOG_SQRT_2PI Added mvnpdf_log_dup and wishpdf_log functions Corrected full log-pdf function for tree prior, and added log-pdf of W and B0 1.1-9 (03 Sept 2006) ----- Many comments added in predict[_linear].c and exp_sep.cc Fixed ds2x (predict_linear) memory leak Fixed Matern bug -- now using correct pwr=1 distance computation; added comments to gen_covar.c Compilation warnings addressed in update of compat- ibility with C/C++ adaptive sampling (as) code Now getting BestPartitions from Tgp instead of at the end of Model::Rounds 1.1-8 (29 Aug 2006) ----- Added trace capability for Matern corr family Fixed bug that num_consumed is not updated on final NULL read from tlist Using new log_bessel_k() function to bypass allocs of floor(nu)+1 double each time bessel_k() was called 1.1-7 (23 Aug 2006) ----- Added the ability to get traces of all parameters, except the hierarchical ones Fixed bug to undo.m0r1 so that quantile differences don't have the mean subtracted out twice Changes to allow "..." arguments to mapT, and plotting of 2-d slices of input locations Minor fix to do params->Print() within model->Print(). Begin addition of mr_tgp, by Matt Taddy. When these changes are complete, we should be moving to version 2.0 1.1-6 (26 Jun 2006) ----- Added Latin Hypercube design function Added "mapT" function for stand-alone plotting of MAP partitions via projection and slice. Fixed bug in "tgp.plot.slice" in the process Also now calling "tgp.get.partitions" by the shorter name "partition" 1.1-5 (27 May 2006) ----- Fixed memory leak with RNG state in predict_consumer Solved -DPARALLEL adaptive sampling mystery exp2d.rand now returns more information about responses including ZZ, Ztrue, and ZZtrue 1.1-4 (22 May 2006) ----- Instructions for compiling with Pthreads. Got rid of duplicate printing of d[a,b] in tgp header. Added verb arguments to specify how verbose the R-console printing should be be. 1.1-3: (16 Apr 2006) ------ Necessary changes in order to get read_ctrlfile to work for the command-line (non-R) interface to tgp, and other minor changes. Noticed bug for bcart and b0tau options due to bad T- matrix initialization -- fixed. 1.1-2: (04 Mar 2006) ------ 1. Beta version of Matern correlation function working (abiet a bit shakily) 2. Tgp class and cleanup function now implemented in order to let tgp be interrupted, and then clean up to avoid memory leaks "on.exit()" 1.1-1: (26 Feb 2006) ------ Minor edits to documentation. 1.1: (22 Feb 2006) ---- 1. Modularization overhall of C/C++ code for passing to Matt Taddy, who will be responsible for such future additions as Matern correlation functions, and multi- resolution GP implementations. 2. Plotting enhancements, including 1-d projections and (now default) loess interpolation for 2-d surfaces and projections, plotting of ALC & EGO statistics, and ability to control plot layout to show mean surface, error surface, or both. 3. URL/Email now to UCSC/AMS address. 1.0-2: (Dec 2005) ------ 1. Wrote generic random deviate function which can use unif_rand(), randomkit, and erand48. 2. Fixed up some documentation bugs and typos. 3. system command in model.cc no longer calls "rm" which doesn't work on Windows. 1.0-1: (Dec 2005) ------ 1. No longer using erand48; using unif_rand() from R for Windows compatibility. tgp/NAMESPACE0000644000176200001440000000171313531032535012265 0ustar liggesusers# Load the shared object useDynLib(tgp) # Exports export(blm, btlm, bcart, bgp, bgpllm, btgp, btgpllm, default.itemps, dopt.gp, exp2d.Z, exp2d.rand, friedman.1.data, fried.bool, interp.loess, itemps.barplot, hist2bar, lhs, mapT, optim.step.tgp, optim.ptgpf, partition, sens, tgp.default.params, tgp.design, tgp.trees, mean0.range1) # Import all packages listed as Imports or Depends importFrom(maptree, draw.tree) ## required for new CRAN checks importFrom("grDevices", "rainbow", "terrain.colors") importFrom("graphics", "abline", "axis", "barplot", "boxplot", "contour", "image", "legend", "lines", "mtext", "par", "persp", "plot", "points", "segments", "text", "title") importFrom("stats", "loess", "optim", "optimize", "predict", "proj", "rnorm", "runif") importFrom("utils", "data", "read.table") # S3 S3method(print, tgp) S3method(plot, tgp) S3method(predict, tgp) S3method(print, tgptraces) tgp/inst/0000755000176200001440000000000014661702175012032 5ustar liggesuserstgp/inst/CITATION0000644000176200001440000000331414531146532013163 0ustar liggesusersbibentry(bibtype = "Article", title = "{tgp}: An {R} Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models", author = c(person(given="Robert B.", family="Gramacy")), journal = "Journal of Statistical Software", year = "2007", volume = "19", number = "9", pages = "1--46", url = "https://www.jstatsoft.org/v19/i09/", doi = "10.18637/jss.v019.i09", textVersion = paste("Robert B. Gramacy (2007).", "tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models.", "Journal of Statistical Software, 19(9), 1-46.", "URL https://www.jstatsoft.org/v19/i09/.") ) bibentry(bibtype = "Article", title = "Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with {tgp} Version 2, an {R} Package for Treed Gaussian Process Models", author = c(person(given="Robert B.", family="Gramacy"), person(given="Matthew", family="Taddy")), journal = "Journal of Statistical Software", year = "2010", volume = "33", number = "6", pages = "1--48", url = "https://www.jstatsoft.org/v33/i06/", doi = "10.18637/jss.v033.i06", textVersion = paste("Robert B. Gramacy, Matthew Taddy (2010).", "Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models.", "Journal of Statistical Software, 33(6), 1-48.", "URL https://www.jstatsoft.org/v33/i06/.") ) tgp/inst/doc/0000755000176200001440000000000014661702175012577 5ustar liggesuserstgp/inst/doc/tgp.R0000644000176200001440000005130114661666674013531 0ustar liggesusers### R code from vignette source 'tgp.Rnw' ################################################### ### code chunk number 1: tgp.Rnw:26-28 ################################################### library(tgp) options(width=65) ################################################### ### code chunk number 2: tgp.Rnw:185-186 ################################################### bgp ################################################### ### code chunk number 3: gpllm ################################################### hist(c(rgamma(100000,1,20), rgamma(100000,10,10)), breaks=50, xlim=c(0,2), freq=FALSE, ylim=c(0,3), main = "p(d) = G(1,20) + G(10,10)", xlab="d") d <- seq(0,2,length=1000) lines(d,0.2+0.7/(1+exp(-10*(d-0.5)))) abline(h=1, lty=2) legend(x=1.25, y=2.5, c("p(b) = 1", "p(b|d)"), lty=c(1,2)) ################################################### ### code chunk number 4: tgp.Rnw:668-669 ################################################### graphics.off() ################################################### ### code chunk number 5: tgp.Rnw:967-968 ################################################### seed <- 0; set.seed(seed) ################################################### ### code chunk number 6: tgp.Rnw:984-988 ################################################### # 1-d linear data input and predictive data X <- seq(0,1,length=50) # inputs XX <- seq(0,1,length=99) # predictive locations Z <- 1 + 2*X + rnorm(length(X),sd=0.25) # responses ################################################### ### code chunk number 7: tgp.Rnw:993-994 ################################################### lin.blm <- blm(X=X, XX=XX, Z=Z) ################################################### ### code chunk number 8: linear-blm ################################################### plot(lin.blm, main='Linear Model,', layout='surf') abline(1,2,lty=3,col='blue') ################################################### ### code chunk number 9: tgp.Rnw:1002-1003 ################################################### graphics.off() ################################################### ### code chunk number 10: tgp.Rnw:1036-1037 ################################################### lin.gpllm <- bgpllm(X=X, XX=XX, Z=Z) ################################################### ### code chunk number 11: linear-gplm ################################################### plot(lin.gpllm, main='GP LLM,', layout='surf') abline(1,2,lty=4,col='blue') ################################################### ### code chunk number 12: tgp.Rnw:1045-1046 ################################################### graphics.off() ################################################### ### code chunk number 13: tgp.Rnw:1066-1070 ################################################### lin.gpllm.tr <- bgpllm(X=X, XX=0.5, Z=Z, pred.n=FALSE, trace=TRUE, verb=0) mla <- mean(lin.gpllm.tr$trace$linarea$la) mla ################################################### ### code chunk number 14: tgp.Rnw:1076-1077 ################################################### 1-mean(lin.gpllm.tr$trace$XX[[1]]$b1) ################################################### ### code chunk number 15: tgp.Rnw:1085-1086 ################################################### seed <- 0; set.seed(seed) ################################################### ### code chunk number 16: tgp.Rnw:1104-1110 ################################################### X <- seq(0,20,length=100) XX <- seq(0,20,length=99) Ztrue <- (sin(pi*X/5) + 0.2*cos(4*pi*X/5)) * (X <= 9.6) lin <- X>9.6; Ztrue[lin] <- -1 + X[lin]/10 Z <- Ztrue + rnorm(length(Ztrue), sd=0.1) ################################################### ### code chunk number 17: tgp.Rnw:1115-1116 ################################################### sin.bgp <- bgp(X=X, Z=Z, XX=XX, verb=0) ################################################### ### code chunk number 18: sin-bgp ################################################### plot(sin.bgp, main='GP,', layout='surf') lines(X, Ztrue, col=4, lty=2, lwd=2) ################################################### ### code chunk number 19: tgp.Rnw:1124-1125 ################################################### graphics.off() ################################################### ### code chunk number 20: tgp.Rnw:1141-1142 ################################################### sin.btlm <- btlm(X=X, Z=Z, XX=XX) ################################################### ### code chunk number 21: sin-btlm ################################################### plot(sin.btlm, main='treed LM,', layout='surf') lines(X, Ztrue, col=4, lty=2, lwd=2) ################################################### ### code chunk number 22: tgp.Rnw:1155-1156 ################################################### graphics.off() ################################################### ### code chunk number 23: sin-btlmtrees ################################################### tgp.trees(sin.btlm) ################################################### ### code chunk number 24: tgp.Rnw:1163-1164 ################################################### graphics.off() ################################################### ### code chunk number 25: tgp.Rnw:1185-1186 ################################################### sin.btgp <- btgp(X=X, Z=Z, XX=XX, verb=0) ################################################### ### code chunk number 26: sin-btgp ################################################### plot(sin.btgp, main='treed GP,', layout='surf') lines(X, Ztrue, col=4, lty=2, lwd=2) ################################################### ### code chunk number 27: tgp.Rnw:1194-1195 ################################################### graphics.off() ################################################### ### code chunk number 28: tgp.Rnw:1221-1222 ################################################### seed <- 0; set.seed(seed) ################################################### ### code chunk number 29: tgp.Rnw:1240-1243 ################################################### exp2d.data <- exp2d.rand() X <- exp2d.data$X; Z <- exp2d.data$Z XX <- exp2d.data$XX ################################################### ### code chunk number 30: tgp.Rnw:1253-1254 ################################################### exp.bgp <- bgp(X=X, Z=Z, XX=XX, corr="exp", verb=0) ################################################### ### code chunk number 31: exp-bgp ################################################### plot(exp.bgp, main='GP,') ################################################### ### code chunk number 32: tgp.Rnw:1261-1262 ################################################### graphics.off() ################################################### ### code chunk number 33: tgp.Rnw:1285-1286 ################################################### exp.btgp <- btgp(X=X, Z=Z, XX=XX, corr="exp", verb=0) ################################################### ### code chunk number 34: exp-btgp ################################################### plot(exp.btgp, main='treed GP,') ################################################### ### code chunk number 35: tgp.Rnw:1293-1294 ################################################### graphics.off() ################################################### ### code chunk number 36: exp-btgptrees ################################################### tgp.trees(exp.btgp) ################################################### ### code chunk number 37: tgp.Rnw:1301-1302 ################################################### graphics.off() ################################################### ### code chunk number 38: tgp.Rnw:1326-1327 ################################################### exp.btgpllm <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", R=2) ################################################### ### code chunk number 39: exp-btgpllm ################################################### plot(exp.btgpllm, main='treed GP LLM,') ################################################### ### code chunk number 40: tgp.Rnw:1334-1335 ################################################### graphics.off() ################################################### ### code chunk number 41: exp-1dbtgpllm1 ################################################### plot(exp.btgpllm, main='treed GP LLM,', proj=c(1)) ################################################### ### code chunk number 42: tgp.Rnw:1357-1358 ################################################### graphics.off() ################################################### ### code chunk number 43: exp-1dbtgpllm2 ################################################### plot(exp.btgpllm, main='treed GP LLM,', proj=c(2)) ################################################### ### code chunk number 44: tgp.Rnw:1364-1365 ################################################### graphics.off() ################################################### ### code chunk number 45: tgp.Rnw:1389-1390 ################################################### seed <- 0; set.seed(seed) ################################################### ### code chunk number 46: tgp.Rnw:1413-1416 ################################################### library(MASS) X <- data.frame(times=mcycle[,1]) Z <- data.frame(accel=mcycle[,2]) ################################################### ### code chunk number 47: tgp.Rnw:1422-1423 ################################################### moto.bgp <- bgp(X=X, Z=Z, verb=0) ################################################### ### code chunk number 48: moto-bgp ################################################### plot(moto.bgp, main='GP,', layout='surf') ################################################### ### code chunk number 49: tgp.Rnw:1431-1432 ################################################### graphics.off() ################################################### ### code chunk number 50: tgp.Rnw:1445-1446 ################################################### moto.btlm <- btlm(X=X, Z=Z, verb=0) ################################################### ### code chunk number 51: moto-btlm ################################################### plot(moto.btlm, main='Bayesian CART,', layout='surf') ################################################### ### code chunk number 52: tgp.Rnw:1455-1456 ################################################### graphics.off() ################################################### ### code chunk number 53: tgp.Rnw:1473-1475 ################################################### moto.btgpllm <- btgpllm(X=X, Z=Z, bprior="b0", verb=0) moto.btgpllm.p <- predict(moto.btgpllm) ## using MAP ################################################### ### code chunk number 54: moto-btgp ################################################### par(mfrow=c(1,2)) plot(moto.btgpllm, main='treed GP LLM,', layout='surf') plot(moto.btgpllm.p, center='km', layout='surf') ################################################### ### code chunk number 55: tgp.Rnw:1486-1487 ################################################### graphics.off() ################################################### ### code chunk number 56: moto-btgpq ################################################### par(mfrow=c(1,2)) plot(moto.btgpllm, main='treed GP LLM,', layout='as') plot(moto.btgpllm.p, as='ks2', layout='as') ################################################### ### code chunk number 57: tgp.Rnw:1497-1498 ################################################### graphics.off() ################################################### ### code chunk number 58: tgp.Rnw:1545-1546 ################################################### seed <- 0; set.seed(seed) ################################################### ### code chunk number 59: tgp.Rnw:1577-1581 ################################################### f <- friedman.1.data(200) ff <- friedman.1.data(1000) X <- f[,1:10]; Z <- f$Y XX <- ff[,1:10] ################################################### ### code chunk number 60: tgp.Rnw:1588-1591 ################################################### fr.btlm <- btlm(X=X, Z=Z, XX=XX, tree=c(0.95,2), pred.n=FALSE, verb=0) fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue)^2)) fr.btlm.mse ################################################### ### code chunk number 61: tgp.Rnw:1594-1597 ################################################### fr.bgpllm <- bgpllm(X=X, Z=Z, XX=XX, pred.n=FALSE, verb=0) fr.bgpllm.mse <- sqrt(mean((fr.bgpllm$ZZ.mean - ff$Ytrue)^2)) fr.bgpllm.mse ################################################### ### code chunk number 62: tgp.Rnw:1606-1609 ################################################### XX1 <- matrix(rep(0,10), nrow=1) fr.bgpllm.tr <- bgpllm(X=X, Z=Z, XX=XX1, pred.n=FALSE, trace=TRUE, m0r1=FALSE, verb=0) ################################################### ### code chunk number 63: tgp.Rnw:1619-1621 ################################################### trace <- fr.bgpllm.tr$trace$XX[[1]] apply(trace[,27:36], 2, mean) ################################################### ### code chunk number 64: tgp.Rnw:1627-1628 ################################################### mean(fr.bgpllm.tr$trace$linarea$ba) ################################################### ### code chunk number 65: tgp.Rnw:1634-1635 ################################################### summary(trace[,9:10]) ################################################### ### code chunk number 66: tgp.Rnw:1638-1639 ################################################### apply(trace[,11:15], 2, mean) ################################################### ### code chunk number 67: tgp.Rnw:1645-1646 ################################################### seed <- 0; set.seed(seed) ################################################### ### code chunk number 68: tgp.Rnw:1652-1656 ################################################### exp2d.data <- exp2d.rand(lh=0, dopt=10) X <- exp2d.data$X Z <- exp2d.data$Z Xcand <- lhs(1000, rbind(c(-2,6),c(-2,6))) ################################################### ### code chunk number 69: tgp.Rnw:1669-1670 ################################################### exp1 <- btgpllm(X=X, Z=Z, pred.n=FALSE, corr="exp", R=5, verb=0) ################################################### ### code chunk number 70: as-mapt ################################################### tgp.trees(exp1) ################################################### ### code chunk number 71: tgp.Rnw:1677-1678 ################################################### graphics.off() ################################################### ### code chunk number 72: tgp.Rnw:1693-1695 ################################################### XX <- tgp.design(200, Xcand, exp1) XX <- rbind(XX, c(-sqrt(1/2),0)) ################################################### ### code chunk number 73: as-cands ################################################### plot(exp1$X, pch=19, cex=0.5) points(XX) mapT(exp1, add=TRUE) ################################################### ### code chunk number 74: tgp.Rnw:1712-1713 ################################################### graphics.off() ################################################### ### code chunk number 75: tgp.Rnw:1727-1729 ################################################### exp.as <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", improv=TRUE, Ds2x=TRUE, R=5, verb=0) ################################################### ### code chunk number 76: as-expas ################################################### par(mfrow=c(1,3), bty="n") plot(exp.as, main="tgpllm,", layout="as", as="alm") plot(exp.as, main="tgpllm,", layout='as', as='alc') plot(exp.as, main="tgpllm,", layout='as', as='improv') ################################################### ### code chunk number 77: tgp.Rnw:1747-1748 ################################################### graphics.off() ################################################### ### code chunk number 78: tgp.Rnw:1822-1823 ################################################### seed <- 0; set.seed(seed) ################################################### ### code chunk number 79: tgp.Rnw:1859-1863 ################################################### exp2d.data <- exp2d.rand(n2=150, lh=0, dopt=10) X <- exp2d.data$X Z <- exp2d.data$Z XX <- rbind(c(0,0),c(2,2),c(4,4)) ################################################### ### code chunk number 80: tgp.Rnw:1868-1871 ################################################### out <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", bprior="b0", pred.n=FALSE, Ds2x=TRUE, R=10, trace=TRUE, verb=0) ################################################### ### code chunk number 81: tgp.Rnw:1875-1876 ################################################### out$trace ################################################### ### code chunk number 82: traces-XXd ################################################### trXX <- out$trace$XX; ltrXX <- length(trXX) y <- trXX[[1]]$d for(i in 2:ltrXX) y <- c(y, trXX[[i]]$d) plot(log(trXX[[1]]$d), type="l", ylim=range(log(y)), ylab="log(d)", main="range (d) parameter traces") names <- "XX[1,]" for(i in 2:ltrXX) { lines(log(trXX[[i]]$d), col=i, lty=i) names <- c(names, paste("XX[", i, ",]", sep="")) } legend("bottomleft", names, col=1:ltrXX, lty=1:ltrXX) ################################################### ### code chunk number 83: tgp.Rnw:1908-1909 ################################################### graphics.off() ################################################### ### code chunk number 84: tgp.Rnw:1926-1928 ################################################### linarea <- mean(out$trace$linarea$la) linarea ################################################### ### code chunk number 85: traces-la ################################################### hist(out$trace$linarea$la) ################################################### ### code chunk number 86: tgp.Rnw:1935-1936 ################################################### graphics.off() ################################################### ### code chunk number 87: tgp.Rnw:1951-1957 ################################################### m <- matrix(0, nrow=length(trXX), ncol=3)#ncol=5) for(i in 1:length(trXX)) m[i,] <- as.double(c(out$XX[i,], mean(trXX[[i]]$b))) m <- data.frame(cbind(m, 1-m[,3])) names(m)=c("XX1","XX2","b","pllm") m ################################################### ### code chunk number 88: traces-alc ################################################### trALC <- out$trace$preds$Ds2x y <- trALC[,1] for(i in 2:ncol(trALC)) y <- c(y, trALC[,i]) plot(log(trALC[,1]), type="l", ylim=range(log(y)), ylab="Ds2x", main="ALC: samples from Ds2x") names <- "XX[1,]" for(i in 2:ncol(trALC)) { lines(log(trALC[,i]), col=i, lty=i) names <- c(names, paste("XX[", i, ",]", sep="")) } legend("bottomright", names, col=1:ltrXX, lty=1:ltrXX) ################################################### ### code chunk number 89: tgp.Rnw:1978-1979 ################################################### graphics.off() ################################################### ### code chunk number 90: tgp.Rnw:2065-2066 ################################################### seed <- 0; set.seed(seed) ################################################### ### code chunk number 91: tgp.Rnw:2076-2081 ################################################### library(MASS) out <- btgpllm(X=mcycle[,1], Z=mcycle[,2], bprior="b0", pred.n=FALSE, verb=0) save(out, file="out.Rsave") out <- NULL ################################################### ### code chunk number 92: tgp.Rnw:2090-2093 ################################################### load("out.Rsave") XX <- seq(2.4, 56.7, length=200) out.kp <- predict(out, XX=XX, pred.n=FALSE) ################################################### ### code chunk number 93: tgp.Rnw:2098-2099 ################################################### out.p <- predict(out, XX=XX, pred.n=FALSE, BTE=c(0,1000,1)) ################################################### ### code chunk number 94: tgp.Rnw:2108-2109 ################################################### out2 <- predict(out, XX, pred.n=FALSE, BTE=c(0,2000,2), MAP=FALSE) ################################################### ### code chunk number 95: pred-kp ################################################### plot(out.kp, center="km", as="ks2") ################################################### ### code chunk number 96: tgp.Rnw:2120-2121 ################################################### graphics.off() ################################################### ### code chunk number 97: pred-p ################################################### plot(out.p) ################################################### ### code chunk number 98: tgp.Rnw:2128-2129 ################################################### graphics.off() ################################################### ### code chunk number 99: pred-2 ################################################### plot(out2) ################################################### ### code chunk number 100: tgp.Rnw:2136-2137 ################################################### graphics.off() ################################################### ### code chunk number 101: tgp.Rnw:2160-2161 ################################################### unlink("out.Rsave") tgp/inst/doc/tgp.pdf0000644000176200001440000614206114661702200014063 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 5270 /Filter /FlateDecode /N 80 /First 669 >> stream xœÝ\YsÛ8¶~¿¿oÓSS‚Ø95ÕUÞc'N/±©~%Úæ´·$w'÷×ßs°p%QJznÕ„¡¹@à,ßY(F(áD¦DÔ0"‰4†(¢SC4É('†¤)OIFRa8I)Iµ‚?)I³ža„¥Œ‘”&2 •3®%áTC%E8§Ð†&\C%hVPõ2"8¥„Q"¤ÐК¦šÍƒ1q†©Œ"L%´$ †Ftª‰–ð‡bhõ2bxÆ Sb܇­9áŒ| ÎIÆ…!\Lãµ$™Qá ^‰fP á߀Ã`©Æ;ðÊ4S ¯›B'Þ'U0 0€”¥8iðFLREN…Îðm`.REÐ2 *CË\xah™k,ÂɄ爄–7ç?_–á ´/¡e!a†¤À¥ˆÄÙUœ@Ë2Õð´,5L¹„–ÇhY)˜l\"¥a–®´¬qÊaH°„PAá’S“-Ã^R#3A´l …v e“i¸“á‚g8ýp¢à®n¦Z4´ “) Ì7£)Ì”2Ê¡}\1* 5 KH% †Í¨Â§ œ@¯DÃjÓ fÉ9¤W è …WüŸþ“$çùr0,¨“’K’\ žò«½¸þö’“äÊdz'òóÏö‘ƒy>X³éá`™“ŸÿÁ(¢c æþ½¡â/”þ対ÞlN~ºÎïàò|6ÚôÄÅ|6zæðÈÉÅ{rò<[,Ãyñ²$Ùߥü;ýk9„Ùët‰KŸ¼+F ò/`,/%à>¤{ X <WŸ²Ì]¥4ÝmàEwd©?úkå˵¿¯ýsÚß7þ¾ñõ}o© å™;f¾^æë…qd¾^æêÁ:û#÷GéÚ}½Ô×óã®ñG_/õõü{0æË™/g¾œûrî˹/ç¾\ø~„«÷K G-åªL—ùt¹€j® ®Q1ØŸ}…ÂUP Ï4ˆ‘_ðÁyŽKèê]æ‹Ùë|Ma;ÇЊGóÙð*_B ÉÅá1ô›]B?ÿ\BÁþ`‘Û§“§w_>þíêøú:Õ Æ’£ép6*¦O$¹-¦{ÓEQÝ8.æ‹åÁó`tÀ]÷‡¹#< _7ÉûA¨B7¹z}XÚÞq iŠëú¶-Ÿ-QRf_»¾U÷ðì—0ð½Å§C‚v{y›OÏá:Å ø)yJ^’%° k¿aøbÇãÁÓ%±í~?̶-(ü ‘_\áq1ÎQè+÷JxëÃ`’wÌÖ)p|1Ü›>s¨›œ‹L•}38¼ðÕ2Ÿ|F‘T{õÚ¤%wþPL´8§gÇ{Ÿ »Ëó-„Y»›¬½6,í¹6L¥ÑÚT[\ª”,ϵåŽm7PÀ @ƒ’Gëƒ÷C4ži#¶Ž@ô*ÞÝêë·iõo†4è¤ í''É yH†Ép6žMáïd2HFIž<}ɯÉ8™$Ód´6OÉ2yM¾5h޲54…ÕŒ¡EsºMs¬£9ÎÓ\ Bd#Ñé˜èŽ÷ή««-ˆÎ°¨/s+ªÃ:½ˆNÑx¹=Ô—Ë]–ËuY›zæ]Im­©:MO·æÝ´ç=š‡žó0±{Ú£™¾;ûøùÓ½[Y†ä·+{{­¶kä÷WXí[ÿÛµ!tÔ¡öªíÄá]Ó]›!vxe52>×ÉóÐÖ WÑeYyß7ZÅÖð%Àñ€)8L:ñŽLÔÁcÄóiCo¸Ë’ˆö€ëï/“«ä:ù ü?XzP1ÿ#(`Ï ÿ¿äób6òb`ùÇ DÁïÉ·äóù¬)Ä:‰€”Û!µ(3kSfD7k)“©J"˜D§{×çoßAûw4ëM§ €#:•m:팥¶ïÙ$`Q¶Šdj½þ«m€8ÖiSg¤MúqÃB}åUXw°ÉR*Úk¯ˆ±º m­¼¤í•VbíʃVpìÆ•—ñÊ_žßÞ[JÛbåW>B‡¬¯2Ð/îVûƒ½À)1#= »‡óK£[O”R„" pc f-³µºUÏ´ì×÷ õR”?r?¼¶#ÅsôÀ¹ñí†r¼/(îÒ¾]¸‡ýJ¿c›Ê&ÂĶ$ØH°S/Ãæƒá¯ùrœ?.ÃùŸm˵â÷Üʵço/ÏùÄÛ¿k g6ÍQС1b²g®/ý~kÉ¿?’¯(P–ª™7™à ØO¶Ø€…¯Øb„´Ía®eÁJF =D`¿?=?Ù¿¶À Fk5b„Š÷7“ÐUãwÚñ—ú³Uõ"D•6°»,Iɉ²Ü‚Ý è¶Ì*½B¡½Ñ®TÂ}l·µœ¬½œÑô®µ«X)×Êm„¸ íÃûÛýûÚm±š—íqUÄÍèÄ]îqWöéÖ´óö´GóГ‹p`ý îçÏoÏÞ½µ kˆ+CÜÞ ÌPQš¢\£`vÂ]*Ö¹w)Tц"eèÛ(k,¨5ÕŽH\V=¹Êu0±æÓ¦»Y; 0Ôõúº8†#’…nðÚ ¢x–q_Û—â}!+[ܬË{8P<Úv`¹Ë &9LŽ’c«OÞ'çÉE©S†u¥Q"âRsl¯7ÅWÔÏó<ßMƒPW˜RœëXˆ6éG„¹–ôu…¤ÐüÚ¤@:¬ê7¾¼s˜6A‹¿ò®©˜üÛÈ…h?òçœÛÝÓÅI¢5âC `?ÜM£š¥zÔÇè#‡ƒÉŽYh¯¡ 6<Ðsg¾-j[ vŠ|à*†¥6a¥´e\9Ø„O qg0?ö¼6¶®ìøm Òµ”`Ê •¦¾[Vvk‡!ß„#§²¼o_¯™2N…(_Ž÷m¬ù­QGÜ…X…Iÿ;¶¾ïç|«ëå\#Þ‚:KÞY)ô!ù’ÈáÛ°Òo“»ä>ù‚ÖúdÊb0mB½M‡^>¾.á`‹óÉh°xNò©;üö:£œÃÿEbÿ£Äw½ .O z›dÎA%{-óÑø<±O„ ÷½r§Vd擽Ê"ÿF€"t1ÆQ7éë¨Èçù¢XT"5vM€rórµÌu¥žì¬^.Õ\ämA·V°òÊ])Ó¾ âòâãíí½ó·dið•”²”Ç ¶»-چ׸þÿÞë@»gºÎvií{ö «fb6©Ë…O¥d@¹`¥Â¹fñ«sæõ– £Ùx<˜'¥\°’ ÿ:&-àó„ñÛ|Ë‚q¾XTaú:yñTüíàüü´žÝ®ƒŒ©lÉ8}Kìþ%…BGPGÆaÿ-€8e°šZ»Bmß²°àTzW³´#†ÝE©Ô”]yéó·…Å{Ê»ÆdfVDqš)ûYC¥öz(Ö“ÅM6b2­˜ÝKOP¾¼Z›p•6iáà[j„²½¶X5rG7)bý7=´ QlHô¿†>NG0Ôbù-Ô¬(=0°ÌˆÏó-ïà/"ÖWY¸À¬„À™RÁEÚxr•0XÅÐ Ä µfßÃÐŽ}³nöíé þ|u³þªåÝRㆨTgåN)—–ÖHœ¶»d}ë´c«â´]mÑÞ=ý1éï‰ð -DvË|Ű(†Å|ø:©¢¼.Ä›—^o2í÷ ¹j¨·â­!“­Í»Ç”Æ]Ö á‚Æ²Å*íŠáêȸ‹±. ߤk¢¸=Âu]XûÝáÑÕý­óÑmÄ]6!ÊVeÍÙPb/SÏ'tâW#õ}•5*hJmÑê_«(˜‡ÒE¢S²Š»|Ò•àÛŠOŒaMü‘àÈ~Ä‚¸Í¼¦­ãËÐÑ"¬JÇïûðBt;ã÷vî¿mÃÙÚöÓ5õ$×a=7¬ñÙW+·µññׯÖM~lj“!ÛÙ¿ôµå*?v "zD¸ëE\”Bré~+Ÿâ“b ñýŸÀH´#иº½Ø?¸ôw™Öeñ­V&ÎJnì´èkÌc&k•oë¶*´ëƱ;fÇVq£u¹¡œùúõç¶ß\+ø·ÞvH­ÒEYÙK;­Ö¾EVùÙ$«§;‘6¾¹óñrœ P»_<è,X,˜xç_=*(a@ оŽ]Tê><î¤B19Ùð5ÖÖrXÀÏ¢Rnß«%¢t«&)÷6dzg^~9~²wí_Ý7x%X kyE´y%튟Ìn¦|F¹'‘ËìƒdŠ56‘«ŽÈºþD#~ýf«*ÕÝĶºã7äÆÌiû=‡ Fe·EÖÙŽÞ%—@ñK ãëä`n'VæÅ¸@ªy,Ï]Ôœ`°x¢ø}0ΧÃ<@âÉëtãô±˜‚µká°cœI1>˜¼Ž—ÅËø›×–8Ò|žƒÖŒŠ!ÔZ“Pw%2µš%°,ÃÊc–ˆ>ão‘l_ž½yâôæàjÿ¾óËŽà¬ÂŠ<©*2OyÿN‰¥!ôkà.KxxóåŠ/ÉÂgWµ„>LÁ&Z³eçD“Ð3¡Oõþ±„³wGg{ÖG³ßÔÓQH¨§"K wô\Öã:²deüök»ôˆ‡ÑäÔœ4ƒèéjé€îÊm(ñI•"Õš¢¾´N{ÓúáùÑþÉí¡)ÿy´qÊ ‰@ç"T ¬l÷º Åƒ?ò’j'*­ÓèEXSLZí¨ðkûÓR»Ÿ„°kÛ” éãá sð:ûºÕNf©h|úÁ߆³.ugñ k™á¨ÉPÌ5l«Ì+ÕúXÐ~Jd]±Ò&¥bjްïÇK5âb¶6u<+ð—á,áKÐÏÂN¿´C¡j™^aƒ À'—ø3li8W$Dƒ/m‚¥?ÇO¸B}ƒ‰¤þ‘žÖ˜ô‡Åã#h‡)büÙ„®Ç¢ú%­²Þ.ÍZ…DZŠˆ” © ®ß0 ¸Rg8QAYaŠx]ûÙ¤ IЕø³j¥ÒEAêê•4ô+©Ô1©écü ” ¶vˆÉëÌ4#ȧƒñËó€Xùo„H™$#„Íð/‹ppê¦ïXéegå×ÁËËÀ ÒÉ+I¦¯ø‘bòRÀŸgÄ9î zîñ'Ê’—çÂ~‹3›äOU»è¡ñKAœIË9º~Ð b§6–¸Ã4¨´výQ-BƒõtÒ̱IÙ.žãã£å2µL‘ÿüPütõ!%c<ÿ“ÆVŸóçMÁŸÒ(ðʼnc7k¥?˜¨ãd•%ê| ÖzüQËÉ<³ãïy~v\ÜÙþÿ €øendstream endobj 82 0 obj << /Subtype /XML /Type /Metadata /Length 1167 >> stream 2024-08-22T14:33:33-04:00 2024-08-22T14:33:33-04:00 TeX Untitled endstream endobj 83 0 obj << /Type /ObjStm /Length 3999 /Filter /FlateDecode /N 80 /First 736 >> stream xœÝYoã6ú}wQ$ÅCP {2“ÓÉL2)ú IG;¾j;ÓLý~%J¢(ÛÌÑX8rH‰âñÝéDFED"H¢‰âð/&:ŠI’XÁ¿”p¦S’2ÂIÊ ×*"iDxŠuA"s_’H¥ŠÀ_ ARM¢DK’ÆD°X“4!"‚—Ò”#qÆ`P‰½s"#øâ,"R è— "cˆI¢‡‘™"*bøæ( {Îb¢T¤ ¥v˜•Ä1áð‚Æçœs¢…)DD+ ay:VÐ3—D' tÈéÂ\“8–Ð3,&á1€ €s\>ŒÌ#ë…ÎxÄa¡`EZAã–œH+‚5§)pr,ÂÎŽ'XŠqu#%¸*…÷±†Îp,-!“–Jfޏ>a¦„€礱„=™žNOHèU˜±c,%8"ÎC¤8ö"Mï+.ñ}!¡¼„Nà ®_2lcË(Å7^Ø‹45…%C&¸.Q1\/âR nêp)ìA­b WXK––®XÓÂ<>µÄâEØô©SDŸ‚¶1Ã:ÞË'0F!Ô±YÖb ˜€^¡¤bõ¯_~!tkq›O–@ÍŒÐlö>/†¶úÍ/ò%ù7Ý¢»tÐCú‘žÐSzEohF³Ñì!£_é×|™ÑÛéxœÑ;z— –ÏÅh:±ÿ9Å&÷tH‡6Îól™ÏiA¿e³YFGùbAÇtüH'tòH§ã|˜ÑåóbzGgôw:§ó‡)]ÐE1„N£lñ@—Ù#]>`÷ô;}¢þ‡Ðݼ\ÔÏ.c” DBa:YnoOŸÈ¯äg ó¸(1«ý­|¾_Œr`Z ~Få­“lœCŸÇ{ÛŸ~Ú9>>¢‡ËlTÜnM†£ZÒãb±(&ëânù\ w.–ùø³Á½ü1ËË®pbób¶œÎÉ»wü;p¦º€!E9äq~Wdå,AfH ¢æw–ÍqU²l7ÈÓÇùm¾ ØöŽ2Ê<:›Ooq¿Bqw&?-¡ƒwïì\βang0’ˆªå€#Û?°cTu8V¶™Wå$·e ¥*»hÛ` "Ëþšå«×œÊ¬y;[äæmºwx~}ph¢ö&·Ó;@£a›ÿÅ|±D> @&]&åªèQVµAYF/¿.Í€8,ocŸPC ˜£ˆô]Ìù Àfÿðgõ›…[%,4 ½%,Êj-,òß³½/¾çô°E§“8tžÃw1ºƒï?¦ôÏ|>uµæS ²‘9¼ÊÌãT ÔáSÕåS¡¡\ŠÃ¯ãÒ†^®?}<þÝo_£h(FIbR¯»”¿œbbµW *eQ–ãH˜ÿR §Œ÷¿Ø½™˜^1‹:M4(Jû-TÓfºÝÊ©•õö=œ~—Œbæè z²EFÛt‡îóôÍ5ý:ç+(˜{úÍÔï9=Ñ.%­ù¬|¦Œ4#wIw ©ƒéPRB^è%%z]­S‚¶ñèjëxëÓ‘Q/Ž ²’¶!+Y ¬X Yi0V4«±” ¤la ©AkC`@¨ÈÅòs?B¤f”ͤœ2;‹D;÷Eß T‡j%¼-aîš!øÀ¼€r]-°CÞ0×C'täè˜=X*-›‚þès\Ú134[ú•§03…—ÁŠî3R,mÔ4ëRQ(ÉÊU$ûR °,ìý•BmШzƒS–èMUežT¿åPµ…åÀÙëL‡›³«­‹Ò"T-–ÞšlMEs£áÝØ7"Ҹ˻àÎ…ñ.8F}ŒÄÑ£ÛÄ_à'újLж<6ÕÙ_Ó¢Mµà@VD >³#m9ú¨`#a?ÂM»„ëÂ2”p˜ÕöÍǽ«ýÏÐÿÅW¼Z±_£ˆùêšy }M?M è5'‘%ß^œ%@œáRðÅr6ÂbÏ ´ŸÄ°Hû©kÔ¥ŽQkglñmœ-h>ÊÇð eËeq›/§3:.&‹ÊaÃîòyŽÛ¼çm’°J7ã„k3¬K,Öfj‹ƒÌ`/ %–{GŸ/‘÷º6žµ6×P g]¨=ŒŸ%¸òæ8àµÃ1X¼È`¼êûª¼V}.x½%µa¨¦{Kbˆ$Š}Ý*Õ*ÍúužÝmÝ/·‹á°©}­ks|iÛ­ÖO¿å˪u§Z×mûn}Hg¨,ìÛíJU«ßtjPOïo—wÅb6Ê~ÐÅ#ØËb:ñn,A§8*?Uéj;rú]vu~ê&:ÔÈKBÙáãàüzç=ªP5×ã+cØÒe l¢b0¡º<¡¥µ#´Lµ¦'ãyöy›QËÛÔ‰~4¹é¬|Ѿ›@ЧœÍÆzSk?¡bM“ºRƆm-1qá¿#tó"#-}}x‡³Å´þ@¨^B½„ ÿ^mŸ\îG8‰úÀ¨z×Iå Õ¯‹ƒiDBÒcò$®ôHéñeMh¡ßâÅè bGÉá…\¨»j«dG]Åë¡ðòËÉÞñÖOûƒcfº Â"g=æ ÷BX<4„ÕØ%X’LÔö8A®Ñ‚ùß@U®ªÚغ£à|£ãíèY¾e&&¸é­ƒ2Ï»ö ¸k~¨“›cB°ÞgË.Ì&±úYÄLr¯’^ÏôØÿIö{Ä^%ÉNÏON.~zŸ¾çà¸d?oOGwÌ ü°¦G»"­Ï5ìã…(¶(¥¬¥©[¼Ð7”U‹òÛ„\åÛåû§ÁŒÚ—¹}bÙÎAO'Õ›Ú »l©yи™5~c+;6–ñjf¥ƒÕ{ ¸×~«éÏ\Ì7õbíD'bÉÝ %Æ‹wé}Oé=¦gt@/iFoéíS‘u‚r:esšSÓÍV´òC#I¾ÑQÆ+ÀˆœSrÖx-? ÎRŽÀÆå‚.òïù„.Š'º˜›B—6ÿ¶h™¥üAÿô­R^{ÂW-ð06F(tä”LYAæë¤¢©–VuŒ’i_&íèdç°ÕI§U|»¼P,ø-Ø©d£†©BÙɲ’½òw¤}…ýQÙ/m–fÄ%w[635cGf |†%dÐ>v7Ï«w”Ñ ¦·ê‚gº‡•b7¾;^ø®I»\S“ÚNi9ÓŽãl8+˜§Z)à,›ð7Q£g0Ùëø+YíqÃ3Üe‚ pØKXuÛÎ0v =”³ø†@{ÃL§ŸN¯¯ÏѯLœ”åõÆFëa£—§¥“7ŒI&ÆÐ\˜ËÓ¢«[JWǾ÷ÒOÙ ~û#¸£ÚñúÚußy^‚h×lÉÆ@³‹lr·†Šùíãø~”?U:ªdœ!0È´Ÿ ê zPúˆ•ÏPtxÙ#Á¼¸ªCtÁaÕMÉ£uælÛùv X³-ŒËº–?£ª™i¶—¶y+FÌÊ2xéÒ¶ùk’PÂÎýU&íKœó·ñZ€ûç"‚½jßÓÞÓòàb šÅl¢« Úl¤{>\OÏŽI-›®=ñ<8>ú|rbœwÝö޳ÛÁtœMzc"=AQë‹Õ¢: Š œÙ—Æ[Õ¸¦7-ÙÑÞvãBIcî3„Í›6’Ã…Gp0Cﺹìž}4娕6 ÛØ•¢ÊIÊØhuO°Ê­ëOÒHßžRËo ^Vkˆw³`+…5˜¬13owàíïMqào îÏG;ÛÛ›S·ê¡nÁºÔÝ÷> Û}F©x=Rö‚ßÏÓß«õuKIW¹…z¸?¯€ºXõìäÌ‹59(ÖÅÁ9Ãó‹³ó+“oF±”=(Ž:(F'.Çñªì´ý¤º»!M×;ZÏùH?ª'ÂQ:z±ðS—ë÷GìVÞî2îÍ‚>ºÑc¹)z SJ¿„° ¼=vð,pùæ8$÷‰åêbïhû³—\K+= !;´¢Bãÿk3€k·-<”|Úø‡ýiÀ‰ .¼- ‚y!D¡è`Á;>]~Ú½¼1ò>˜]ñÐ…ƒ®Á1‘Pï}¾4ÍkYZæìŸ+5U”öHMkÉ6hpáˆC¡^ùÕáûƒ x#À žÝBAˆ—¿6roªí}ØÅ÷l”Ons}1ªk…Pê•GvKpð¾ëè@&”Dð¶ëýóýeÿI°ÁÝ£¯¬wØlÎ Å2fðzÂçÎæË7!ý$ésÞ¹· Ä…P0‚EÐÑåÞåÙi7"õl›PzCpØÅicêÔ25Ÿ¸ŠÀr–ZßDŠš8ÿ wö¿ÙÞ·-ñ?ÆÉðž}†q. Wjb]æ‰.Åÿª/Û%éf3ö|®¨EZˆm§8ò:[æ2ÊLÆtCl#«VSbõ/ÿÝ« ß»´ÊYÌúˆÕÛ6ãSðnÏ͹où„{s±u¶õÁߦ»ŽruåvÍ—pS——›þºŽ cH_Dm²Y;FjО^p3|•{AðÁæž“+Çx ˆ×¼ß;Ý;>óÔ×VŒ62«Oiø[´×øºBËÓØyîû¨ÄŽÇàĬÏ+2²©/vs7ùÃ7+-šgË‹|I ÜÚ»ÈoqO#äC³¹±<Üð8â³âÒ¨ÚbÞ%$/ÚábïíUÛéÇÝ/7g&z•„npê~Þ%4š—š(p,_ãÝê^îß tΡ¬ß*ƒøŠz¢Ü‹]¸ð|5¾Öom:¿9,=¯N$cí¾&åcOùûšBÅûªH‚áϾ8‚v]Víè~ŒÁ”½³¿Óƒ×…ßÇì& ãæ‚sø€tÎZ8›ù èî÷'oE³S‚tØ0CÚsÌÆ{“n0»ë«c:æ¼RsTçæ„ÇPñ$)>”–¦jÎ7 >M F—fJ/ÏA<I0?b|¤çòhäÍ ã.íXiGAÞjå¤ÌðãO´RøoÏ<˜+ñþV({ã ¢±ìØ€³ÖVÄÓî¥QH³± |ÖìÖfµ7¤‚’ zûû„qo³endstream endobj 164 0 obj << /Type /ObjStm /Length 1863 /Filter /FlateDecode /N 80 /First 725 >> stream xœÍZ]oÛ6}߯àã†byù!( $n²®[×4I³eE¼DH ¤qf;X÷ïw®dÙ²Ûú`ÛÁ°EIÅ{î¹ç^ÑRÎ )”sBY‹m*´ã­&à˜ Ây-T*EP)¶J(¥ |Éñ|Å©áË=¸Þk>‚‚Ãi*ˆ$ñ‚´æ#Añ8怒TâR¯y…Q= FóB+›z#4aFÊ[¡MÞÇ mó><_LRy/´ç[ø tà¹)Œ’˜KPÂEç@Âhϧ´0–0`0Â8‹ËƒÆ+n8Îæ„TX¸³–ˆÇ Âj­[b3h(aÁI¦H-l0|Ê'aŽa#é„ÓèH2ÎX>å…³0…$Pv°€”ܘ)%RI€ Ö¦Êò)-R­02¾©1¸\Y‘:ƒ‘•i ‡<”òäIyá%#б¼Ò–ážàe"%¼Á ï4îEZø”oJFxÏ—ÃZ€‘ƒÛqž0•ÀP Œ!QÁ‚ O&ü‚ç<$I;ö5ZÚ`H $¥a0¸$ãJºÀýàe™2^‘L5ÂÔ.Æx¸^)Å€¦Á³dp•ÛÁ4P†¡îè&ÝwÏŸ‹äp<ÏŽ§÷ ‘üzôêòõųћS'’£û«éõäþF$¿Oîîç“õãÉl¾ÝŽg`öpíËl~5›<,¦³Ðñ‹3Ç“»Œ(ÓæC¿?e58~^Œï&W÷7wÿf2Ÿ‹|ê0-\dŸ.@¦ªmX–pSœ#Neq¿7Ùõd¼žœcƒQ˜ÜÉxÆÖ˜¢ßi6Ÿ>ή²¹àqräXlòs'³éƒñ͗ǘAöy‘£XNæd|“•SXûûâýŸG£wÏÎŽG#%Ù†V>g©h:=Ôœ~µô:‡zî®,ZcÞlmhòÁ"¤*|(vW|˜$wÉC2OFüˆ±—œPÁbj¤àóJÃCmÒS£Eµ]ÔÐPô’z 5’?*†,-=å9¿t=g•çŸ|/-òN±—‹NÙæØ.ÛP†e$žBItÙ ¢Ë>P ]Žu0²lCäËþ6…à/ÛÈN•mVée™¨$À)2A(Çb…bœ&ý)ýÍ ú^žýrð޶‚féæšÌu=˜[Óâd_ÎWq©ºh‚m4:Pö©jÒ½µû¯¢ŒjÊwDÜGÜK•oFo/Áý³ó©R?Q¥õLÉÚ)Ùfi?WK£|w¥?NÇä]Ö¾<28§&®. HvÊ8¸”·§D³ª+žû\M—{AåG»¹½·k®69–Fàõ‹j®îWÜÞøA¾ˆA»#P}û$õœ©êaWØÖP5!  é•-º†q„¼€ŽðœSÞ'"'6ò¥rxH6«s›ÕvwÅ©TÏû³f05°Ð'Ûõ¬DU®õhá!ôèÁÚ²Õô-LÙÅUø5!Ñ ‰/·5¦|Û`ŠP¬‡~Åú7eÍŽŒ¤#TÓ!¾ ·ªm¶Á°‹n°¹$ãËi皤›|nKáMx†×½${Ö½O³_,Zº–½•Õ¶%Îð²—ÿùjëEÃËXþ_g0M6ž•ÚT¸_ay ¯pIöÔ­±Ðq=g#s¬øß4txeJêëV¦ÕG×'¢*\ƒ–¼¶K‡^Õò?Ÿ½ m b×Å…þP5á^á’Š¯¬íŸ…0®ÕÃA»$_^;ÆžêM"¬°&åƒÖü»¯ó›áu2©¨²Þ²À7*^ê£)ëåò×——ïO/‹¿Š-—Sùÿëÿv¹\ó[*år³,!×Ëå HZ.—Û»—Ë·†Kªó·YÚ¦þ&"”µ]|c-u÷XÊ4Š`о˜0D:« µT¡Ú¥øËµ”l’Ÿ^‚ŠSÍ4a‰Pëa¢ûî§W—g…ÂPkÑe}©‹®®‹n‡×r ý´¥èÿ巾·«o#3àX53¨Ìp’Œ“«ä:É’›ä6™$ÉC6›L¯“YýE£½o[ðkN.Ÿ@5_Xªç‹†7wæ µÊé¶|ñäÛíÄCå//6åãiÉØYUÙ½þ¢I¥[ Þ40B­­{%‰Î‰ Z7?¹Ö4.BM¬ûÕÄÛ$m·×šfG¨¨KNEZá‰õÎS»?öm„UbÓk™¢[EÓœx„Öô’›ýžCÏÿk«Vendstream endobj 245 0 obj << /Filter /FlateDecode /Length 2889 >> stream xœ…YM“Û¸½ÏoÈAG(eÑÄlUªbg³[ÙJ¥{*Ï8G¢-‘2EyÖûëóºˆÔXÞ”#îF¼~ ?/ÊB.Jú—þ®wåb{÷ùNòÛEú³>,ÞÞß½~çÒJZ³¸º‹;äBY”2,*i Üâþp÷AŒË²(µqÆ8±¿Km8Nï½ÿ*Ã\¥²E*@íýJ~X® Vƒ³¢^®°ÑH¯­Ý2î•r¾Y›®Ä½âÝòþãKíðÏ+—•“Je©Äz©*ñiiUQ–ÕÅ\\ÛΚåJK )/žø½•¥ÕVôs¡! )ñ¶^Ò©¬ âëR9¼“Prj9ª’î…±.m•¢»RÙÆ+¹1j2sm¼»’¾.‡ÕàÄ«iÅo…÷Ö¹ÅJIDÝǨœšI¯¤Sbîåñ*ÃÕÓ|O3ómk:*BÐ/´Ÿ•Åü0]SK(ðA ÍU*†ætú~²ÝêE|797Al(X Öâ\§Á"?*U˜AíU•OªRˆQ*´½BB“ )Æ¡i6SÖæ€èP)wmþ|º•ú(xqÙ‹ã€ÃíX㜓êy¬IÈ‘n‡³ÌãyÊ¢RÒù5@…„{…ãøÂ{âqÞõl*ØJŠfa‰ K#Þrl‚2p´H¯K-~êC½þ=¯B¸˜ÈŒÓ‹¼ &EêdžۅD=Œ‡¦ã°ˆp¶ƒ>ꟲMñ~’ë±=í:.£ÏäµþÿNÒí°m»ÙcM*ÑwÞŠû¥§c8ѬٺÔZì–sçma•QêZùð8©ÛþõËt\1Hõåé¼¼Žƒ*´7ˆ±.´3*êzsK\lg¿Ocv8¥^Å€PñªR™œL»ðT*e!â¡j(%½7§q¨×cÄ>¼œÄ‘U_Á*6»¸ß5I2Ì$eŒ^ptÜoh¨ê '$E`• C(üöÈj½%¨¬,íS?¤C(9Óc|á‚÷ט}e)ÈL¸€öeÍZ§ô[Iê¤ll¤¶äÀ„=¿g¢€Ôâé¼ßä ¢ÑéšÎ!=!tÝM;ºžðwlû® zC…¥¨1å¥G8bKø.@Úk´ á!@ÐXäZ*Ò´oq½¢Á) ÖÊz4& Ð-„S´‡ ‚pjÛ%¥!¤Ã˯iCÈøUñsM@Sg…^¢¬ØÝìä?ïîÿü±¥á0"^ŠçvÜÑ…A|<޼FÖ*Ž+ýf¼Û5i¡´bßÚ±í¶I  Q—"“ß9/”Ú ­€(˜›œ€÷Çi¥Y·õ>Ùñ^¬ëäžç<ÔûSŸÜƒÝöpÜ7ñTt†rK#ECª ø±ÞŸ7 =¬ZN8'›ã%ÙÊh¶™ó“Ÿ¹ž4;~zEx5½ýÛ›wKo£ÖûWÉ"\˜O”uÀè†êãqßLi8§¼pþ5Z…:ïÇ¡?Ri¯˦G!•F¹‰ôÄ´Rˆ=q 'þ‘%Q+õfÓŽ\môyæÄÒ" ¯ížš¡éÖMÖì³/š}9NFúÓØ mêìë²:ͦ]“‘WT”ÑC®£5çî@Ãhfaât>ÆÂÞiÑã)­Iª?T5~É”ÌhŒoÄ¢úùLu@eJGC5=,“Y9uRRC£‡~¯EóÛ‘Ç)P,fhÓ´B§k1ž.Uvî6 5oUrEâP'rÀ’AõM­$AÔ±n‡Ø¢~ÖiQ‡Û_.>7u€±[‰Æ3‡'ˆ Bå|¤¢Qôuh)52Ž0rÉÉÕ&­ûŒ&±kòaŽû~¤ÎåùEBY1gÛµÛ]ÃÌóðßPX"TiéѸðÈC‡S±‹qÕsáÅâ!m¨€Ó¾åÂ"RˆJÂ3$·>Ö-g´t†Újl›;%9XI‹ã$눩…ÊÚ šËY6C+ ”éd€È‹w%:}KqvŒ[OçŽäÄFÓðçs;€¥A{5UI74£õ‘ öƤÒn>7Éᛳd/M3±îmWß׸Ry+U{ûöq¨„äaIýÒŒšt 5FFGJò›ëqDIÊÁùÒn"³³’À’ ®?b£˜3Åqi¨I ƒôë}û;!ïñÚ0gM{ÐK·Â‡Ô—ùJ÷=:››ôù°«õ¾f›õr²¥D³£ßœøñx‹L*®h.8 Ø s º™Ðˆ?*¨éA/­‘Ì)HbüPðªBל¿2Aa¡MÛãÓºÉ^ØS©ŠÏNà½Î€x¿#²b<ÇMlò(¤ w¾'Ve¬ˆò%CSÛʼntÁõ É•q(³šõ©>´û…ò{3Ùªóz…Jχ²ïÇ“€„L²Ak cÛÐSfq{žN¨0èÔ·Dñ* èãüåBŸ0/¡yÀ«K[8¢ßœCeñrÜS I•+92 üPÒC½w«ƒD3_ˆ¢Ä ™F£Y¾,Q¡"Ñîyê&!yY]ˆ3*>TqFriE3*ïß6€YCp‰ð¾y)TyK=Ù~DÃ>Ñ£dÍ}L¡3p…ÎUx _æ®·Í3qxæJçý§ô¤}NÇ˸\c#ט²zª1žfª1À«£"Sà‰ŒÀ@Bܲxu›ã‰W1K_8 &bMdk.ØÅß4uÛQØ6úët•‘XÝÁò°‰Åð¾2g’âr‡þµ`ÕI±m:ŒBbrˆ¯é#ˆ¶‘>ï ‹+X±KïQæí~¦‹ÐH£Æ†Äf³Z9ŸòJ5üªLL<ï›ßåÞ¥Kw¿ï·m3“fJzH%MˆD4ngâÎÓÏ=äá-cå%#¨<à‘¹H31Àˆ(ºŒÀ‘E~ƒ'QŠ]ÅQM 0›¦Ë2°pÆñ˜¥°#Dáov>&L(«ÔùúKs£ùµ)Œ¹Ü0·_žû…^RëÒ±köLJ¤Ðô­úJÎ\.Ë‚dVsÅ“Á$¿,þ„âÅš3L"žª²óW·*åE½ŽÃÆùŠÔKÀØM“¿G)ñy^åç>¦ZÆÞwCÞîúó˜å#¤G3ÐÞ cû§i‡Åè¦ô¤PMSó¥ù*2ÀeåƒÌ‘5yx”ä ÊøûB½¡¨äÝâýXwÛý­ôrÕàîû·ÁjÑ 3}+U˜Ž¦Xy%¬á·4jfÂ|ÑÁ®à'~Øà5âqmšý’ZÃÈ>ü«ùRàØf̯Ñ>=ñdÕ_gÆóØ|ãŒëâù’…:‹ú{Ñà¹|ÒÍÀòÄf]Ñw²I„õDÐN2:ˆì Žu²!¾œã–ÐvÀªsbͼv¨§Ù ÒU¤ 7ûÓ’ê‘I·2j¼šü„¢1õb_»XÆßÁ‹:±÷$ÆŸæ8d€ºÉ20ËǹàLu“)Ëã5âšžƒœN —ñMòí/×j ûñÄíãÕ±´ÓÕqG‚reÓÕ‘E4ƒÇêPO“A¤ëpeã‹7—,SþJ“>·C˜ƒ C­þ ÝÀ³q»PíÃq$žN—q¼ÙØ"ôp•¸Ù‡À75ý‡F„Cýú°­›˜è=Á\\áÇÌþûÇŸÙÙ2³­JGÉï3Ò\:~3g ÓñkGú“Z·žœKF3×Ò:~¿¨’>ƒŽ°û¿Í:ðýa¿Y=·›f5õbóX|ª¤òÔx‡@ðQvãxüáõëçççb RQ «ãÀM›=]P‹~ؾÞôë×)œ§×ˆgqÜ<Ý$ò8•Ò@9°…zçlHŠýßïïþƒÿ·…šêendstream endobj 246 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 678 >> stream xœ]N]HSaýî¦÷^m˜9††º»^Š "£Ð"°´¤ r˲²„M›ø3M½»[ìÿÇömÓ©ÛÝÜœÒB“‘‰DÅÐfp#,¬¨žzH¨(ì[ܨÔzŠÎ9pÎÁ@š`–Q])——ì.][Rù‚TòÚ”>•L‡"!¥Å~ìÈAÄ&6~Ë Ë/ªhkÑtuª:dÇÛ”ªŽV™œÑ¨èõªó_j:8 àèú" À(V Èû­Ì€¬uæÛ“¨4‰“’9£hó)yåŠ?¢)‘$FŒXÝÒƒ¸Þ`eô~s„˜ùy¿¿Ñ›Ìz†µF)´û£a“_OÕ"7L·ÏBá¯Q:|>²xRq±Su™B^¾\b;T»¿VAõ¼aŽœ'`Ђ!òÉcn~éÞöÃNèp9¤9ÖN¡lCEÚÇ QQªBRŽÛ¡Õmƒ¤Ö`f˜-L}âãxåƒÆg|ùöÖ{ŸÛ}Ôˆ1À0f“NÊŠ:ºþRc” ¸ýÐ/E]èŽx¯³6Öà¡øcËø°5DkMFÚ¶Zkÿ·ÍkHžXH ¶Äù¹œRp¹â/+w$utS vL7aŒCréù«Å¸9®£nbãЫcMaHF†‚ÃS l‹ºÙ¨ÓPΧӭˀ¹g´}ZiÆK*·ú›ÃW(O×évB›¡Ûi¼fqY ¶jÂÝd+Ÿ'qya/ôÂÛã“ñ`¸?âŽ@rŠ0ûž¾ðª²j[lÁJÍ _’AbnšãN;í“ZX£¬®v…õwí™ebSå~TÆâ<í#¾fÎnf e¢ þH­8Úendstream endobj 247 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2786 >> stream xœV{PSW¿!sQ|Ô4jÕ¹—Úٮݵ®uÆQkUDëDy¨Xy¨‚q8œð„5ñ±ï,Z°8ø0;03$0‹ ™ÔѲф0Á…¡¾Ys§ ¯ É“~šŒ…p8S·*?¯ ¤8³026?#³PŸŸ·Kø?‹†MFç­-.Ùµ[¶'#3+;'wÞ»s1,{ÛŒmÁ°Dl–„mÅ¢±UØl5ö>¶[‹­Ã6`1X,¶ ›‰MÀ¦³7Å–Çy—s(dAH w÷Z(Z¶:ì/‰w,~|R8¾-ü§qä¸Þñ¼ñ±Ï9K^Á&h_`¾„ó´íéçv¢"7ð7”ï&™N£®H$D(Î'E…•‡H”®µ>~xÙ·…`ô 'ß”G”÷jýùîÐñŽsÞ!šG¬‰™ŠëÌ5Õ–JìÀBYuå¹ës•ÄÎObº–Cœ‰gf0ï3ë™hÄg6¢ÔOG‡Ncà°¥›ïC±Îã~."Ï›å̬7Å}F ŠRB¾¬#öîϽKÄ vII+¡O/[²9Au¥Ÿ@m(ÒÇD¢XÀrÎ)Ì;T%™ò¦ñïüb ]nM²‚R@%É,0›ÞÓ’ïöhŽÂx¾ÛuŽ~{:g ó)A®ÄvŒäŸDÏ¡ ãßÕÃMÉl+³. «›DiÕ›qöo÷Á˜®*ZïJ¦|t¥÷oEs§ñýˆ ܽ½þS¿Þñþz2̇ G²c©F¦+‚b\ ª6Ü À~x±Õ3ˆÓûxÌö†Æ¾ƒ{:3†X â_=E8â.G¡ Ëy“ò‹wSè.«ÀgP _”1ç-V€±ýgI´dL€üÂõ¾Aê™Y«Y;¤´A>ü cÖ‰}œºÀª`´³°:§e}ǼãóÌ3WT—Ár(WäkeÒíùÑ1På6¥³Áì¶ÃF¼Aå–JU*IÚÉ£7ü7Ï7í·ŽÿÜû¯n„½ÖxÌÝ=q3K¼™T¡•éT¤0zÿêü•z^cÔàÏd×Û 5’ÓÓ ® ¯\3ØôXƒ›ÙÛJ×±‡ƒ6~pë‹ôD` õ´âb•\"ö(=î–[ïZÇLYÅLˆdÂïÍF“‡.ô]ª'Í•´ZðJ`1ÐÆR¨,7%ÛÒ2Ø$ÄVYí†.Ùð:þ™½ŠBN÷ Së‰_ëßu¹ÎrÑ™ u Ý«Í$)F/:±£%¾ÆLZƆy‹ Cá}­'}$ÍÚ2KRÈ–;:ÉQ 0CÏh|ÑŒf ˆ?Ÿß®¦X¹Ì"°mubüê”ëWË£ºMnü·9ú‡Pé ÷ÒŸWc1Ûlû‘ cÆE±?œÙ7ØF¡#m¼axõdã º’®dó³+ ¥†µŽ(IOÍI†B˜ë(iŒ?¥¿‡qºN`þìè_›°myUœYM•šÕÁÄ“ óNô¡¶UŸá>eÁOô9óÞ^µ—Ð7Ÿ—'²tèïˆçcp4XN¸qÞì‚u»—j¤*¹CÞH‘¾Z·÷XZCNüŽ=Û¥dY>{á/MY/Fy'Ó%S|ÝúORšÐÎ ½Ç¦ñÑ”( €XªÍù0ǙӮÀ)°£<=îÀç£W÷ݽ‡ø‡\J;–à!²ìY4kºq¼ä¶n¯Ýe«'Û%ÕG þååáÏü꣢f’­: Z©*S…¾B5¸Ú¡q4ÏMW9ØæsPT+ÉÉQ‰ £Ñh0À («SUIm‹âü–®Y’íNk-!ù(“iØÀùÓç‰oyý_+—-=/vãÛG4$ÿ‡sèßø¸ñÚµž¨„„’uë7÷÷ë‚Z ½ÉÖttœÄ˚ܙiüážÀ ý~X_¾‹dŽü·£­aiR\Ì7  %µÊqi]ÉO£—àwÖ+š‹þ°ÑH™fŽIt *OÐÆ\¡ø[Œ;Èg SbÜɾ5ƧE•‡É'zj­v{Ëí®s9$n©SÚ¼¯9§)§ª¼FŶ …B§b,òdXÒ¶ïLn_Ö©ý}F«¶šm44€¶Öf—£§»·÷ÍÊ÷O"à²kÔ9±é{÷“…ÅÅE"1P_³ÿ‚>Ý/ß)[®OfCÄúÄ ¨„F#ØÜIob¿Ž†ÁïËÓaÈR™/M‡‰`¸ýуKžÍq£ÙE¦ôÿg[Ša±ÙЂ#-€~ʯh+éJqî‚qpÓ.U> stream xœcd`ab`ddä v 647²q”H3ýaîîþqý§kc7s7Ëòï¥Bß™¿3ð``bd”ÖrÎÏ-(-I-RðÍOI-ÊSNÌ+VN-ÊLC“a``` b`0icÏýÏh™ÌÀ÷Ÿ)ΓaaÙ÷‹{¿/ØÍøîÄ÷{§˜ßýtýkâûÅï:ì3;¾;ÿÞ6»”õ$ÛïÈï×L\0qþTÉã«öî¾ÈÑËÞýå·ðq퉿í~_ý¾à» ûÕ¶×éÝzÝAq±!•iu)Ý)Ý|5³8Mÿ^Õ3iÞìn¶ß±“Ùßsíå–ãbžfÏÃÉÀéyeendstream endobj 249 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4214 >> stream xœ¥WyT“×¾ýB ßq®¤¹bÑï+í³^[ëØÁ±*âÐ*hQÔ" Š 2„)$ÂÈ|2 aLB@‚ ‚(*Õ*ZµR«8B­zm{¯·£úzo× ëðVß Ø»î½¼õÞzë¬ÅZ YgøíýÛ{ÿ8”¿ÅápÆlY>Á¼y¾¯xƒý¼Ó¸Ç µ ÅÀñ\8Þ¿qZàã@´k2ziÒ“(?ç3V§¥¦g‹2_OÛ—)|92-uðß¾¤(*d•04-=,3k([¼g¯4~_Bâþ‘·lÝ–:oÁ[+gÏ¡¨W¨MÔ«ÔfêCjµ…ÚJý‘Š¢¶QÛ©Pj5M…Qk¨µÔ:j=õ>µú€z‹z›z—Š &S|J@…P¨IÔ+äMUsÆqúü6ø r ¹OýÕ+jy<#=‡nË€g̬1¶±œqãÆåŽŸ=^=aÙ„†‰‹&Þž´sÒ£ÖNŽšÜ0ùÎoœµ›¨‰¿ù=ø’Ò{PœÇ»CÂ9Ü,¢h_Ùf³ØLvÖRWJVYƒ©£$ãÙ¡¾ÈXìÜdY³¬"£ÂT K€p§."‹GD‹ H_`/´«ªš0õÚ¶E©j5õbX• mQIvP8ŽX#ÞDz]’½ï‘}·¢|èøQ¹뻓7ØÁAÔU•Ûâ ëhO“z‹[èÄU$9.•'Ì2u°hÝßþóÏŸÙ7ofp!}@¨IerGþÏKÏÐw²HBÃÝá¼&Q×ÎÊ8 ÷HÆ* Õùº_‚ÈyÇ—Rú¦1zâ@Ç=zI bЕo7<žÂïîZ)¶Ò­ÍêD…N •ìp-Ÿ¢NbR„è<Ÿ]çÐ9‚¿( ­ Q&›¡ÚÁ³wç3U–jC•ðÛû\zû_‚77}ºÑP¹×ÿxNŽ.'x~,@Óx•°J_ ÁOŸ._üúŠˆ?Êòõ0Ÿ}—^T~ˆEgý‘…n¬(odÐ ¼Ï`¸)ð»K¥f‰ä¥ÙïF-`&þÆù^L»¼ó\:I g5NáŸD¹ÞHÁËò7ç@̘÷'ÌEAhü÷¿¢1 ù/BðT†R­Ò©ƒñ Ø"ÐY¡oõ—><øƒÖš:Smp'ìÈmHmßkÚ·Ã-º 1™)‰Ò¸ÆÝ-¹£-‡ºr0ŠŽò ¹ïlçoWQÕ ·ÉY-ÝܤÙÃÇÑP©W@HHÕ&1ù>h²yi¦#¬­kØs>ûœŠ&WÂù[ßh±ªéæfMÌ?ñ»ÀCÁB]!ÉifÂòi4´!¿n«¡To…fhÒ™!ÐÑ2e± æQ]ž£±Òáè8à<¸m_Bl£.VÉurâŽsŠC¨b‡w$°õ$’:ŧ¦ð¿CÞ…‚´ú$ëV/J{ƒ-¦;ð2$ÿâ™ |KÚ¶™™÷ûs­EcV@P¬U(X<—VÖšÊnXÁèy¥Zs‰EuHÒRÒÁO/ÅœÛZÃFÕàqjx|zÙÑs±/åb½¢‚á?³,¥,šL›5¥Ê‚¼,…..5•’xÈ[½3›9½ßy—Þçzï_Ø2ÛâíX  ‹VÐТ#ÅØÅx°[HWÃZ} ­Ê=l ÷GoÉÊ’•)p\p>>y?¼r=¼ÑÝy±þSˆ&Ã[˜ªÇ¬AeÖX (7Y¬,²ÑEQ¢*Rª™´ÝJ¹’”lêG"Ú‰,ámøU¼oœqôµ5ìg‘>„·áúcŸ?Ç4ÝT¹|¸$ð—«Ù.4Ý9…½æ|3 Í¿÷‹y0_—óÁüSÛÖ~}…éΦ¡L/ƒ2W²$"²¨ÿ4ƒÜ(„æ÷xp §G;JNvo³ hàþàˆ ÚéãNõ&ÇÐ0EŸ\Þ{¾ öÂKíUçõ ‚[àÉ¡…i¦,QßhRÀÚè¶fíNGÓª5û–ÃD¸¿L~N[°^ñêßDÙÄÞ¹N­wµOoÛaU¡=Ù±#¨óõÎ×»Þ0™d•°šªLGŸ}Òõ³«×ÝÞ ÏÒn]}Ì€ùŠU¡d›h›8J²=H-WʵEÊRm¹Æšs*(½?½?íº¦TS ­ÀD[\r>ðУ&wÊ<ÞŽÀî[hÏÕ×þé¿{ýîÎŽ|zêíé×pXžÎÊé²u3.Á³ðjKÕy çñe1ƶƒ]ÁÇaëÓ1p;;šªâ’’Ý ú ÂUÄÒ°Boƒàû·Î-Þ°$a¹°.Ïí®©«oÈ©ÎbP<æ fÓüÓa»7„%ìhþäÛ¯N>´1•†J]¥ñ¹Ä‘öyÓ‰J}‹jˆÂùœáyÓ?£[ûT[ÜÑäKDÌÆþô š„ÀBDaðÑÆ¬8«CwPõ°N Þ©Š&f$íÇý0ÁÕ®°•TÀj€–øDÍNDíòS—ŸO\¤€%:3Š ŽuxüœóÐ’XÙ1·ãÍ£sM%–¢®jZ™›,—äìnŽ„bXT&-zr³êJèNYMvv®LôQOú±'ˆùœX …j®T Ü×OÁ°^çÊ×gBI‘T‘“š¾*%4þ›”ïö}«-UùklÓ;™´º^ô‘®‹Ó>ÈEÿå Ôê5ˆ¤9¢Ìº\W½£úЃù-ð„·q˜þšÐ ×.é÷°‹©l~ImPC„2hD|äßÕ#=èfÿ­ò탨¦‹ÎùJo£»ÜZÒ ÉtòÑ8÷Ò¯ç„àñ!x,úCogýÉcì:…~È£SS=¬Óø«a(¨¢áí²þS›Ëâ‚àÌÍøºXÀâÅtä²ÝÑ«bnÜ*f´­üã±óÏ—HÞÇýÕVŽòÊͦò_¶þˆÇâñï` {|³Ÿ­—7( 0ònÛ'œwôFƒ š€YiVªÒ Læî˜ä(˜:³šâ?V÷ÁË@_'8þóÃoÝÿæ3ó7¦û|xÐ! qÈc9ïåÂ/ñ7¼ßƒM'…ŸeìfÑ=àÁô4l…-öÃö憖v½Ú46Už"_³Avµ´þPeëÄ.WÂû‘±F)ÑI Œ¶Žs¢¨ó\Hï¬^¾±µ ]9=…ÿ+ºã%ÐñÒâ+ˆ7¬\´}N’-É•É5f$K©ÔªÿÇB‰"KôL®Lðä#ÚU¸{ŒóДýî£éž'hžX»˜y›TßÍšh}Mi¥µÊ“×XЪVÞ=xí´ý¨ a[¡[êÑ5FR,=]êºPíòù4ëŠUŠbXdö¢Êêr[5c¦Õõ’š,¸îÎËJX;œ/°’ Ü­-öJsµ¾ ‚ë¼/à_T+€‚^"Ü´~Ρ[r†ÿk/ØéKÞûܽ1<¶dÙòÍ¢ÓçG"ÃïyÓG1Dõ¡9}«¥[Iä>L'f¨Ó˜ìÑLùÈœ-¹$sÆØca O”nÖ¡‘¸ÙŸBI$t_p óšvÿŽ{ìš.ø¾Lc‹ìˆC_€Ç¥žØê }‚4Ü\¶M/e¼Ë­½ç,°\.3djYeŠèàA¸*ÕG‹èï.ëÉ+“Z¥¦«NÄmƒ¿B4‡œÍ ðËøOTK7–W42·y~È‚%;w¾—Çf¨3‰¢û¨2é'_f¡©?JœÄ‘8}$=tŒ†–·j÷?…–xO>-Ì4´±Þqtʤ«ó³ ÝÄÕi‡×¹Ý$}:óšRþwNv8iti+ lfqiî‘7‚.ã—ð‚Ïð|kv©È¬°;5º-Uý(ü.Úø ¯îª=~×gÐQBÚ ëU2Kq©Ž’4q¢@]´ócð‹á@eQ Ùûè´4-–7i} Ó Œ´¹±6Ž:5wîÅÎþóÙÿº—ÌoÇb*w“^Ú˜ ÝtI“8†^r®k• øÈ”74G€#¥:,‡o<½ G£0ÆÆC‘µ$ƒ?ûÒÏ4!ŠÅ¡„›*µNŒyó|óq)x~n¾bì2Ÿ¨os¶´»:Ȱ:­ǿɮ¢á*õ²ôíÒý‰©{ Pòðør+z«øñseÕßô^!½í}È}àuWNŸ%lþsÏ»Ëf„.Þ¸š]½D,g‰³¦Š2”%%jX0ªô*¨^Š×ˆ–dóJbŒ;ã iqm±¶%¼³gÏ|Ò{úFßðï¾NÂ쬅K_K+Q2­5õ õùuifV•P¡ýýÄx¼YDÔz®q¡eT=›·7M»ž Sé¡ ÉtQARºù(ûÃSÏLo"]¦2•ˆB÷‹˜ÕØæ†aÿI²X­ “‹ÒÇÐà •w|Àðx_fŠ'îŒÆ9¼/ûþrz]ˆsÙ¯"N=×kA±‹LŸo+¬•4z øk9÷ š¹ÍÃsΰie©¥©äm›ñL<ïÂë‰]¬CIO§áØ_X³Áj4ø¸Í$&è—3¥¢’°Œ•²•òðZ;æ¡·!ZÐ|€Ö¡ÉƒCñ"FDG@– û¤Þ7[W1èšô>2W) EL2¯ª«ÖäŽ= Ñä `9öæ±súòáãNÛ@PAFüggOÇ&Ô1&%éÀÒpWxlJQ‘¦PCʧὠ¥¸ó\(ñ 1ê&%_íä¢ÐZ^ÉÒlÉÞ¯V+‰²-mP™´F¥ÝíuõG«>†= SþùŽTiffš+§±Ú^Z^ÎŒnçh.ÿzñ'X-‘ÂLá56Ö;š¾³1»>ƒáŸÓh}j*qzC«‘ÐPåæá(H?{f3–[±büŠúoendstream endobj 250 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1104 >> stream xœ]“}LSgÆßÒöÞˇö¦+„åIŒ85!ưéTœ¨›‚ZuÔm0>ʘPÀR(C ­½”Kß–µ§•–¯á„ÚÙ¡[™ãæG ŒiœÙ–lË–ÅéÜ’sñ5aåßýyrNžç÷$Ï‘ Y ’H$±Ú=;ó36gd,©bJŒø’·.þ¾x@ޤ8A6üì%¨VõÂB"Š‘H¸ ÙÕ†š:“Þ˜š[]ª7V¥î¬®,MÝÝ`ÒW•êKÿ·DѯkMEÅ%¥!-:„£(íBLÔÑH@O$_Ä(cÂÒléÔ’Ä©CŠ%iÓ8rE -"˜%ái•Žþ¾Cû®PlÀUÞP'uËÁNùÚûôáÕò :xÙDµ`§Gè¶'m†#¯À¡mpÄÚoóÔb†§ª1o²›·’¼ídÿ’g3%ÙÍ‚7ãf— 3à€C*ˆ…Qˆ#£r…Øuï‚ô’2[×<]25;óT:?Í~;4 4ä&Íξ¡ƒ³ŠÊ„dê§X rÎfiµàF†ý`¸f"x~04£*èàNR¹8OgÉu‚,é  ßA)–$ß £ÖÏêÅ×&\fåÅ{ÀßS³cP,Uµ:ÊkªêËp.õFê¦Ê¯·]³]àç­XËìÝÆ—8˜;Îñ§]}õ˜9I5¶f ‰§ÙJlsÙz¦‹Ä}çÎ`ÆE}ììníngر¦±ÑÖÉ”ßþÙÜÁ«{|š½>¢ðmæúîA®“ºŒ¯ZNé:Oð #8*p{{5Ò½¯¥ÁÒˆ›9>ámv3¬¯³ÞÔQ—ÂŽñ¼“O‰&¹£D­ax*‰€Ö¬\€¸üiˆŸV³÷aÇb¢*³€0i\ Í>ü™x)\á®ì«)¾i¹Œ™Ûw/<ÕLåÑå|Îá÷Z¦¦8À:š½!ë@K+–b²ÔÈ‚£AXRŽÁŠ-ð"¼ qjvÞ׫:‡Üƒ˜ùêVcšÆHÑFV0ëW>™y¸1Àu\õÁæþ“CÎèÝ5êŒÇs¶ÿ„Û¢i£ê:Ž x„ݰû­¾¢[™¾]˜qPìã²²}cágÆñ‰s#“~ûé–O4C²Uô›GJöqìBaþ§ÓÁªþy·&ÊØeB ˜•€@Fd=¥ -fGëëÅ—3ý~‡Aóüï™-š3‰“gñý¾éHøRàþ†uú#²ömmÓ±b¦È*ZLÞ¥J}uEmµÞR†öñ»Ûƒ_kà8Ý5þC0m.ò­ÝŽíØî´3Q˜w# ^Øô~Xyq™aV”Š/«¬¾Ä|8\uirè|ðWByr‰‚¤å‘,²Ô»!qþÁÀÝ ®Ëë9…{7-ôZ—_£2aÜÄ[j ët˜!ñÆÔ°“= ¥?àlós k¯¸ß …î‘Sy§›~‰çâ¤=Y ±ý`výÂendstream endobj 251 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5081 >> stream xœX XSgº>1rÎÁ %¦ÐڞغÔQìµ­ãÔV;­{QÜÁECIX³ïBHHX²ÈfEDd©ÕjQ;*Ö–Ö¶ãr뵩µÖ?öxÛûGœ™:wžÞû<ÿÉ·üï÷¾ïwØèQƒÁˆÜ´bc¼…óæ…ÿx.4eTèif]zÿÊ}UÇãF7?³"J'ÁQw&b£Œ'f,åg Dyé© ü´t!oêF~ö^Þ¿üð¸7yKøK9ÂÜ•y¢·Ä’½ù)©…iéû2öoÌÜ”µù7ûÅ—~?ëwÛãvÎ}ÞÃÖaÓ°õØtl¶Û„mÆfa[°­Øl,Û†-Á’°¥X2¶ ÛŽ-ÇV`+±UØ[ØËX<6[ý[ƒ%`k±hŒ…=Ebc°EØxìul…ÍE…bVƘÌèõò¨s̭̯F¯‹ˆˆèÃ)¼ÿŠH%O^‰´‰Ó8ö©±Úq‘ãJÆ}7þÞeÔkQ–‰Ë&öOznÒpttô%ÖÓ¬úÉ©“ßg¿ÄÞÀ®e÷±/²þ…±U‰Mø…9ª3ar0´CÂh=Èæƒ¥0·óö¸:\V—µ‚SÝã>[ H¨Äk@Å&‡ \P—òÉìÍ@@qasOˆ@®YV!uéj5UKá–UpÛ2¸Eå‰Õ9uåE@ t¹š¢µôëké7èÅÛbÅkR$›Ñ'î†l8^…cè«~õê'˜Å§‡æ{£áè +¯À}WbXm¡¥lnêwph?‘’cÜF±ò¸«e¥ú¢/ç -¸Šî¾ñõ‰ª¤Š–fènèg6¿gaG¼…”ãôvzý ½SH¸èDø7¢;æÀÈ€39e„Ñ®¶¨©Ô©•5¡˜±„C?ƒÅ‡·ŸM:/½ †ÁïÿtôЙÆÓ²Á'tDÍ4K ùÕ€¬4—•s e¦2PN:Œ.Y¡`=/—Á ½®ö†¦ù¢ï]u7cX½0pj‰€OŸÊy $R²ÁŠUŒðÐ;‚!.ZþH´fÎ@ÉŽ…£þ Ùަ'oJÎMÛÇ9KÀZÃÖ-Ú9õy@&Æ÷åÀWà2"8'/{ï«n:òu P5áT¨µ¥ÒzÖ}„R Åža›èøˆ ‘nóc9ˆq®°ômNè4‘k‰«N[á|’ßšZ³aeܳÏÓéÈÿ¢™Õw¦é¨—C×ÁgÙøüÄïZI ~ô%8Ö‘ô’ êÝÆJƒÝÃvûSuï|üP «#ðï&J€’ò_BI-ñeâ™|Ë!\DØ/ÖþxF¢D­)ŤÀSØè­ñ4v¦xö¯MÞ¶©„buï¡Ùe80…7ôõÑ­ý°ÈÇ?ú}«•}ð@§¬ Ÿvä¯'¡;¹»+©VXηäX÷–½UÞ#ßûÐÝuöؾe6JeRTP¬»v`·˜ì$OØõåÊb¹È(®6«mšR±#Ç’ ÈesòfÌ„‘…—K8GUÇs,ÉäÒuâ­”_bI}·ð¢Þ ªŠ)׫”šMx %f…³¼¬Âf£¬6›Ýf³ÚŸDì7ó-„h(õ…žêUÿÉ ÁsìŠœŽ 7 ËMev\L›eEvLí”-ˆ/ÕGÐÙ|¼T›.´kv«ŒJ æ¹Iää†Ôåôĸ—þ¼‹Êz_q\—*>l?Ó}åZÿu'€/¦ÖÓcÌRcAÕo€:õôÿrtÿ›éùôbz §Ó«`öðžs}ˆ– Ì)½àa‚$úÇ+|œÒÃúÆ…°—dÒcfQB‚Õsƒ®Æל]%hÜÛWt •„ìr}N“|”˜ÂWº[ñÇõ[dg{)Øgé0)tìv›Qñ?$âr¢ùmc–*–ÞA€l¯RàKz_þ8 Þi©0-ˆ…³œÁB";»´›ƒ¸ég‚ž#` sÝDð ~'‡N&4ñiKƒTáPjA ¨%ÑÁA›!ü3î3 8õKfËCîuw˜{Ûƒaîõ©û5û¥R#:$¤ Ä(d׆&ÉOn³µ¹\FंÄÈH†{dÔ…ó¯$úAiqÛ¢#qí³ŽÄY¥Ö’jÐ<—*ù‡—üCöj[µ£²¶Ùç>È ‘Œ.çã FO‰IHj ¥ËÂuüu¢yƒ²QÙ°NUÕ¨kT5»ÖÊȦV“g$2âË_Ev')Óß×w0Î*/•º ¤é€Õi­hþ(¶v öºkeYeiiÂK‹ÊŠ­ÅŽœrayNàÕXô+·\h•YåH4̸Û\ê²:Û¾{û»Žokûü=&2H¿Æ%šŒÁpäHö+x¢µ¹ëÄ ûÿ3óËì[z»® aØ÷6¨¡‚t"×E´€*meJ©Æ¢jÒ@¥F¡W!q–l-Ø"NÜÿgÞìkžjn7ÕT¯ð0¬s…ÞèÎ/`ú•˾Ö.8!Ënöv:ÚA;æ×e×òM\p€, *‚‰Yœ4B¾ú ÿƒÁcÁ?U–Ò¸áñLsÿ»œn~Áפs³ Gë)˜HüðâÀK /ä,¢Xm‚*q;å5U5€Ð,vçYI˜A?ÏžE¬L^¿‚Rá;¬m ›üâǾ~D¿¦`htQ;Âý} JÜÀ«ËñërÚwÅZ´ej ÊlnQÁŽõ;×¾H.Ñ8íÃ%VT‚†êêʪšO}u#º„¦}÷7gX5e* Åb•ÔHraj0ŸHž¼`ÆÑÌz«ñpø|îªãïø$ œD6b Ga‰¤D*/áJòÅÅ"Ò€çJk‘´JP Üuåntuÿ¹MÐ&aÜ‚7˜0ö+‰?âéwŸ¹ãt{ÒqÑ ð$œt÷G8þÞ䜞ؼ+ϼ€„ê­Û¡ÝËËH¥€= Å›×®r¢Â\$Ì%ÊŽ½Ýd.ÒCG¿¡F’¥æ<’¬=^!œÊ F³<ž¬v€…;Ó³-ַʿڷªeql©ªLŽºP"•h¤2~lþ.î†M†Pd-q6Z+*‡díi,ªÍÈr%ÉÇt>s%@u}ßu·û»š®ú£ï£¾Ðàáa2 /MÆnÈÙ˜·!íZæÍô럟–GóÃx¿Ù؟燕4†uþ¢Ø"U ÈÜj‘¿ÉSZà]kFäO“ô¨¹ôÓô„¿< '_:×1äã˜mÖrß2ä; 9%**w×n2ž4#Næ°:>÷!ûÑì×ɽ”]oÓÚõäHX“/4ÞË8Z!§_‰ðáæ6sg½Ï{ðXi'êçî¤ñÒãÿÿ‡5 ´j B)wèË(ø^ 7Fðq}Š.9÷o_’~7ŠÇÄ¿‚ãoÃñ·`”ÕfHõj‹‚ú—KGf¡qˆ /„oÝIn2¬çÐéDÖÛ;ê’ÐgLœ6Ž¢ñÛÈ Lê9×Ðéå˜VÃ9ˆf‹‰,^i'tŸ ¿~`d»‰ÏêàdÝ9=Aj”)E#¿"Õ*Õ AÚ.þ2êrƒ¼]·¶;\îàÄp—÷7ÂÅ^†ï&Ô]dB²a/^aµ9á¤×?~–ž‡~訿N…Ï ]î»XÇ1•š,ÀBÚµ6U1»DAåîMæ%R'šw¶‰zòºAijd›>ð _n(3‡%޼~ð¥×ÂúµŽx’iAø2$•ÀdL:aêøkÜ«ôø¯ýûC£ÿ¦/ ÏXº8ð D8{‹8_õÕǧAWN©Å €du kó½Ê:o϶ƽËv½%¢´ùÆ´­Œp½·& ^õA…Ï)‰öŸÌý®n9ÃúF1¸•m$$y&àƒ,÷>ÁÎü]|°•œ _\¾Ÿ Ü…ãè‰ 3©yx¦EI—͇l3îÖ»än´ûÔéëùé“7Û¤‡ù ÑÒÐì:T„9Yè.©ò8ªÝ-¼êÄ\\W!ëõ:­ù+\ D•Åhcø›¼,_\*ž²ðåMóöU§ò8¬åy´Ÿm'Þð÷8œFà úñÓà¶Ö±”Tóé™RÁê9M—zö|Àvïº.}<èK\¶1gãj¡Ðá)¤Šêô^½—|lÅ‚¥}f"iïm c®šúuÛ9LP›Ô@Eîå÷ Cùk¿úÛËÖ¯>¶lŠ›snsï›ÀŠykðá¶õÃLìÕa¿¢ás7`ßÝVñáߨ¶àÑ .aX“ûy¶N´B&VvùBr)â+–|ŸG²zu•U†ª)'z;/—ëìŠ|ó6‘”#+(ŠÀv <¥éÐúõ_×hðÊêóºÓk·×]ñÜ9¾p"=·o¦¤§ÓŸ³¡›ht¸š¨ð/¾Ï§Ÿ¤ÇÎУÃè}†‹Tæ~´$úÓ–!Ø^<<â§zµ»8t€H“1É‚œÒƒœÐXbÌg³®åèÄbþS¼ÆÜeÇ›,ð‘þÜÆìGD€v«y>Æ©óðê9&ÛË®–V•ÔÊ»òz•=€üÛpÜðîO—¶pDŽ\k®mMelŽM`És§4 »À1òÓ‹ý~û§7gÔQ¥EzZØ]¦rd.¹D™Î®”Êù2¥Qh”ZùŽ#»|È[Κ¶”ŽšsåÍ/ó9Ç¥'µÝâž¼ƒÛÜ_߸âš9û]ølå%%@®¢è„Ê¢.w9}e”Ía+·:É‘1¦÷4Þ¿…4 b{1îE=²y:´[\ €Ø$"r‹&neAÝZD™Åéu¤?¯*+O_˜òÙpAÔsuðÂM*$%ÖþŸíBÖÊý7òˆŸ~É\Û8÷G£'™Û–ÿËë—Œðw «ëß¾£bÛ'…„mèøåë€<úbxB}ŽzcX×`|5¬Ê_”¤Ó©5@CªíZkuc{mÕÔéî½d—âÜúl O˜Ý€HŽu± ¸­Nçã±î 1ëQ,ᵟã἟ŠÃ±¶*1ddNØ °yðQøz1Ä$Œ›c§ ÆêÅ"À'sêø½Ášöfqs–ÞŒzj‚¸>´¤òL®&œÞˆoÇô¥Æ0Õ{w‹Ä°ÿY 6endstream endobj 252 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1643 >> stream xœ•Tlç>Ûá» ¤iëÓ6£;Ƙ6±¶¤%ÛZ”PB(P* -AQ›j!+ vâ³}ŽãرÄñg;NìÄvœøg‚R ¢l¥€€ÅÙ¯Öñchk;QÁD5Â>O_¥íRÒVšÔ?*Nº»÷¾çyÞç} ‘#%$Iî®Íåå…/Î?¬Ì*¤Ùå2ÖeSÙÿ,‚y2˜—“XNVÉÑŸD‹ð!•H«Ë”õ* _ݸb»ò@uãáåzUµ®±F|ó_‚È;¬T5òo½½¿úšz‚ØI¼J¼Fì"v‰2b±™ØJl#v‰l’ð$ižTåË\9’œÚEÚEwÁñÿJónù_Ýi4ñ'¹•fЫ™ú*Î.e|ä{¼SÇ–­ÞÚ¨ ™Ã}힨ô©YÏXâZ¡ÞØ ©_ÃU ç<æ'FއOBêÄpÓëjÈFC+ÿ¨¼$ú¿)¯³ YYY¥?ôûˆHGͤ%“£HF†œÙWœÓ²~MÇ ª•IJ[XŠä¬ E½×îv= ¼$’#€—²¸ ìrx`5;5{u‚Yxæ%ïñ¿ÒªÂµÅ{oýÁ¶Òèç3èâ×zál='êU0=äïØr`ƒ6§RÁ² ûÞ¹/âì¹ï]FêÇ„SBK>ý7Êýçf´Ó•û ‡«9ñN¦­¬bS1¤¶î»6åwúa÷!Ù3~ùýsº~¶dSlw´q_±W›%/ytò#èRщâfFÉáÖ ’Åù@×ÔªÑö›=tOú ßbôÁæG§º=ÎnŠAgo†(‘ÊjuÀ6v ¢ÀíÉ9”Ǫ¢Mñxt ÉÒóÛ{¾¼»nÏžoz¿ • =iô¸NŽV‹ØZ-cŠ@cK‹N4ŸO1Þõ“{nB*sóì_#ÖPý¾p]­ÀÑ¿i0ªŒ‡;[ÆÆ8¤F›ÉÛ×û©¤¶«‰Å/ü ¤š¼:­Á¢üÖgÊß––Od&SŠ6ÐchC–d"Έ+©3é7pàíjüijÿ¨º~j¦7•â’‡NtŠc¡¸{D<ÚÀ}MÍÇž#aÀ€xkË…’ Î-@¤v?g/SÆ„¡Ñàp’C[ñÓÌzrÇV¡üÀ+ƒçÏ}ëaG=£îQH=bÕ>ƒ®Ì YZòùüXÈ>Ïžf¾t‘µ!k,áÆÙnò»m~™<©we-hêl1A=%Œ16Ká»ßÃüyV¡–ùGÐ*”œiË3k!~ŒZq´*ýÇá+I¶Ëçî…>*ªïѳô‰ŠHñϿܒ¹5>4þÛ.>Úõ.¤Â 4à0s¤§qЇÔp4:”ù©»Š3‰ÓÝmŽÉÓhé4ÊKK²Ë®ÊÐRô:ƒ>I`hn×Cü#¼ä©•˜Â ´¸å^þ}üü1®§·'”‹ìŒ½X‚Ù ««6„¥ðÅ)s†rN3ÁôääŸáE8ùVWÉÖM£u—LJ~uÿ¥iyêJÃ|ÒŒ^) šïŸbÞÖ×ï‚•&Ъýÿ-?ö¯>ÖG"ÿ`°ˆ]Úa‡«R6@?0«ÃQŸËçörÉæQëQH]ýlê!ç#íG, c"àð‰ü «FlB,2˜8^©qq6 †|»Æ¢6-ëèìho‡vØé²»LÝËè»æ>uCwƒ¢hÝ–5ªeçÜíž6±G³Þnê´8Z¡ª|𠆲b†ù:ÜÐåþáÔ…¡3ìUpù¾uãóxS§»ü'á‹fN<îôPŒÎñÓ§Ï~xre7k!+öí{ãÍïŸic¿Û4¼ñ….*nš%3Ÿ?–¬”ÁøIRe2é ½Íƒšq 1æ·ØÆýÝ#/Ïâ§ÚhÒêýƇXä`”òV¦Þ&ްô½¸¬gé9»ÝaW,€Î  i¹ åòç¯ú’fW1)µK` ½•Cv޾yO±N¤è{ƒY#ôÜ :à‹ÇšüÚ6›˜*b˜“Sþ;™÷œ•u,ÖZI¾ù«”rŸh m h¾o¡–¼dº½îÀ^mÀêN4ô×ÀC°¶™×Rù­}Ù^TÚ°ÖCÞ_|v »XÖ÷b^.Aü@~endstream endobj 253 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 255 >> stream xœcd`ab`ddä v 6°40q”H3ýaîîþ)ðÓ›µ‡‡±›‡¹›‡eù÷R¡ïÌ‚ßø¿0012Jk9çç”–¤)øæ§¤å)'æ+§e¦¡É000010ƒ´±çþg kbàûÏ4s7òïçÏ|Ÿ|ŒñÍ‹ï÷1¿ùé-ú×ëÅ÷óßÕÙgt~ú}zj'ëC¶ßqßoÍí›3iödɳ+Žï¾ÎÑÏþ]ò·Ónu¹ß*¿Ï‰~Ÿüƒýj÷wÑöé¿9º½“C+Sê’»“»9øÊþ˜û=«gæ’)Ýl¿C»Ùßsíå–ãbžfÏÃÉÀßfhendstream endobj 254 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5597 >> stream xœX TSgÚ¾!pïUÔZbJÐ6qßêV—ֱ㮨uEP#‹ Ê{Ⱦ|Ù@öE!‚¨D«¸UëRm«­µÚ©­­ÖvZgÚŽ­oðó?óÛÎÌ™ÿœÿœÀ9psî÷.Ïû¼Ïóq(?ŠÃá ]ùÚÌ3|ŒñŽðó¾ÌEØüÔÕ« @ƒ¸hóË!“ƒÀñ"Ì|¨¡”‡#œº4=5#G’˜5rmzBbVÚÈ%é{F.Ï“$¦%$&üÇCŠ¢f,N[’¾4cYæò¬Ðì’œU¹Òyqkòã×$$îÜ”¼+hvP{Ð]ž‚wyØâaOø/ x©;xx°2¸,øÝrr¿£†ü“A=0Ãã•rºŽñÅ ò0{Â&£Ùh9›Êš]ûÊšCõ&‡ÅêD!` ë‘{t]$;M Ÿy^¥5MmòýËaÑrX¸u 4{Õ®´Ç€”9›b1W†Ç®Åc7ᱥƂZ‰N‚$ˆ)Dó…#Àâ#Cþé—q›Dâèê†ù~œˆN0ïA·w=_\Çðn67êREøS†÷ T ÈCó®…•ÊQûÙÙû/˜VobWßÓP°0¨Cߙߖñv˜# ­@‹vä¬dy À Àþ4I]d÷¥~Ê ž /ÀE/ó~9Ü»”/þõÙ£Qbï\æ|×1d­4W«X`G]$¼R{£¼õ&Ëó:ªÍ55ÃÑõ­çÖíÛR¿ÉXü§ÿ æÃ)ØÀ4¡&Cc)ËûåLfÃúˆáhk^LLú$ò­7à >4Â|¦í34ÉÈ»ºsê¶Å GQ9ÛÄYɹñ(±¤.3·QšNïp7§ ƒ^àB¥7Š¿H¹,g[hVBÉ6Âj7ë‰ú(ï:ú}RÛsêèÑšwÑt)÷r¼'êìÂêåä¼!¸†‘A'ç;;;Ê¢O‘g«}™Ij”¢<6•A1ºˆô$IZbñN”€*%mÙntTÛE‚àNYK•zzý=FiÐÌ»î]Þ»ž?G¹°pYÔôÕ1˜ƒÈgvëì‹oÝž )@!xÁäÏ0µ1N½£D¨ KÔÚ‘ŠÉǃ&-ÃÐ44ñH샌wÔ×ÑEtÅöaë…ã_ýýð_ø£sêGšóæR³¦±.z¯ÕZ&âãÒ»d…©IR©°´ToÐëu(D‹JëæŽ õ«Ë»®BJ¤2°ýˆÂ›<0Îí î ê€PÌ! ²Á`Òá¨Þ£} ºÝ¢gå ï—ç°‰ ;Rœ$ ‚AŸÂ4|ó ž±%?E,:Íà—ÕÞW°†¯YS¼jUr¡²PW€Ø öˆ „±¶Ôu ±¿Öã¡¡j„ZDJ;„ÀL’Û+8fÁXàyGÀ+Á¼ê.2ž»fð5ÃÛÓÐ`h+`Õ·`€uØæb“ˆW-É6HFL&â¹½à æ¾æ~\ûŒªXó6ã6vc˜'›³ds\ZdáÖ>¸„Uþ–ôK‡8‡dlÀáz§Ÿæã˜þ ½cõ[ÞÜճŽ…„¢¥9Ñ[vÆåoDá,æÝϬï8)Ä6˜Â¯`n7‘Wpß>”ß t”8 ME,^È ¬ÝIÙ…9…éò 4eþ¤üÄwô× |Õí*‡$*àvõ.ðÍÑ·£Ä½ŒÄté:Õ²èØè˜UÚ·&GC÷;ô1tR³7Ü’ò =p@,§Q¶![–+MŽ×íDlTÁúú@ݽ¼.ɺÃÏzè4Òà\?'˜;åû)ƒy÷:žóÅõßùâI¼‚ðÅåÙ0’þÆJB ˜b…ªå³ÉÍÙíBÝf©o@mì™--Û¶ŠwÇæ Õ¥j™žLå=øcŽ&`Hï’\«ïÓ—ÌòüK~^ƃC õ4s ½­ÙaÉû—d¦F—¬FB+ &IÜBÇ×í$IÄý‘ÄÉ}”º£$×»ø¯CBñᄃymIæ|¡jnš‚ð(H¨~wgmIUÊB‘ùq:¶€Cë$w´ƺ\ÄÊé­²TmT#­h2ƒ´5Ò°¼=HaR8õ¬…v"»Õn­Ù+°˜­Vbä?5E•ä;mЦ&í¾wjúÖú3¡U¢˜1¡+ì{·-—IV– ‹­Ú2¡ƒæ¹«ÌörÑ™deyÕ.­³4¿0• •(ßUb–ZsÌ$ž[¥6¨FüK u@´ÇäáîðÎ$Àè•C!ÿŽÿC #'Ó(ß//Lß,ߎ–¡õ[N­¾TüÝc÷3¦k·Ïõ\¿ß~Á@ôýŒ*hT™”=[C—9L•" «"CŠJ„zZeRÛ5–ÈÎuo!LôBàžùo¬[•>ÍBs̼´æÎŸ`ànðCWÐÕòGÍf«Ýbì+Å¥È&Â4&§Ì,§;ÁǹŒ;ÅáÒ Ÿ€#öÀàcÁ¼[ðfïPþ›ñxð(a Ãûì/¸–~ýH8°·^ý¸ÊP…*…b1¨Z±Uqö¸šaÃ;áÁã œé'$ÛËžæ·½qû–[#S‡juö\+”fJ­Ì8ù±ú :‡>¨o¼dœ'€Å=9t¶ÄÜ*òâ‘L¢2@\Ï47èÒD8Q­Þ¶%£D¤¹`¨Gu¨ž… ä[$Ư|Óñˆv )z»o«÷Ù#ÌÃæ:áz˜~ΨÎõNöpš¼a|ñUƤ²¨ÌªÊ]‚ƒKÝKÚ—îÝS™Z±Ç•g–´¢Vd«qÔ»êœõκ`§ÀYë¬sÖV´X\ï!փ牙JÔb°ÊY=ƒÔ¥^›%È•nÏ•ç($¥¹x¸ïxèþR•Ûà;7ˆWßè;ù"c–ÙdVÙQÌžÁÇ1c+¶–4 ƒÈÜYÖÔ|­åƒ}ï[œV§ÉE:f.rÛŠ›—ï=°‚å‰s¶’}#‘µÒVå ±9êI[®§óœ/°ùb¦u,rVGÓ©ôÚÜHAÆÊ´•Y+0 ‡ç=x—ø]eÉŸ£05|Qú>åëÙ+î 7ø/0Ç'J¾ƒyÞ|#Ódm6ïCì¥S©“E»²b#Ó0o&øçÜ•ÑgÌ—Û«{ÌÅÚb{qmÊ1]b/ÓWy…ÆQ(RÑ9¦]&} Y ºœõvxëŽúk ™œÛa˜ÑÍΨÉpkDvº­µáP­²¶Ð%‚µ8”?Y³ZÈûnû¶=_?n½æ•+P¹é9÷ŽzêáôUóC&”L© YÕVU]¶ 3öPL×v‹Æ¡BjÖ@Ê Tkµ“°¿ 0_U´K+Õå")bŰÉäYäö}íŸ ~xD@œò=Ûh-ÒÈ®E:»ÊžÛ,ˆ;™Ðߣµ*ìÈŽ\m-•5g/ šö—•}î«w„˜iÕ:Uù¬‰“`P@w_-ûñ?ü h¥œÇ¡ †p;| dœÈat"¶±N“*zö+Ómì96¾EòÑ›D#~ãá•1ñ°ˆmy»cDpâù~fäëât é)Ùi‰EdQl_ÔÑããëÁ›‡Èºlä"Q&ƒHiPúêÓôÎóyèúCà½Ë´ö-&ÅÈD<ÏDì2!}áúVi´;ÆzcAô&…¨²¼¹Tº]*–n÷,ó¨Ïù¢ã<¾çã¨à¾%Ï…§%%Ê”‹v×ç¶«Y}p_³ûkü¢9nÝúâQ¢ð™¡(…Õ¬ëÞq"ú†ô}ôú¤¥ý}³ÝQŽœlÙB%-EƵ,k{|æf²ŸKùòfù¯ÿp<7¡fC“†ÔÑò¿ñÊ„“ÞŸ!{´¿žw˜‚xý.ánߺ§SRLÕ"£÷}“ÒÇ&!•»>À£¯àñïá1!=ØÏQ`-hB!uF[­½ê4Ђðë.ù}â£ÆUk«5>ûA@´ÑžQÞG¿zp]€”JuQ©D° ÏXŒ§®ÂÓU…ŠBM!«§Kº3OHE@ÐÚ¼ÒFºRé(ðI"_¥ŒÞ@7ç]Ò¾R¼(ÀC›º,ž–––ýGÌ]ˆýšVÊä2…,zµ jUÔ[[WE† Ô*•ÉÙâr­SèFWCÁˆv›fkJÊž´XÝÄΡ[ÜMÍ=×z®ž¼væºÀj³:H!Ë•6™ð°»A'íÓae¹ðcÚýhoh hÇqLâ˜j¢Ýp\€§àÁwGÁ¸s§ª:<¢Hà3=¶ãC°±©µMä}ÖœûÌÌ?Å  –Nw6V·8ZP7êÎkN±h-£šÅ¥‘H­UgÄE¦G¡¥(î]õûz*3¸|£À™NÐá`~Ÿ±àÂÈâÃz¯ÍQñ$ò1ž½1¬09V´yGæ ´’ÅcÀŒÿô‹ŽÛ„&ßê·°.…­$Ç É— Óã¶æF]—åÉéÒŸ@ö€ÿg­ß|û±{õ»ÐXŒŠMžFliëç' atŠ;þ6éñ`ƒy!€´f±øü´O«Í†§@{p mŸU*«†Ÿ­øüžÝn0Ø…EÅŠb”Ëò&íÏikÛßxðBxKäŠWs¦ åÙDeúì ±âä Ê.8Û'Öxð6Œâþ1ôðÈ3 *AÀüŠ@è:@ O“ƒòÍyûðxØ ÐØ5vµ FC€`¿­ÇàÁÅL‹Ö¡*•áåxL€w;óo'Ç{~ì±ÿz¬ÆÚ+ÂŒOZXþŸwIÛûÕüvŸtëwøðù}Ò¡0ŸF† Ë»¾¼²,j“7=‡å|æÿ|äd[0¿5ýäûV‚Ø¥ ’õ¬–ßZÑŠÂQdNòŽÒY¡¶€Ð–üúïŸ|ÜA‚ì•r ¸_{¿!><¶3ì³,{C<øï YŒ6dc+´e…B-C*¹B³!n¡rùo d„^¥‡sB`=ð¹Àó^â··wÔž@ìÇïmš*’3¹xÄÈ7fNKIY†RÙï\"zv“…¦"w¢l]&Ê& èuúôáÇOþäü—ø±¤{>ăfàÁ±˜ÙÑžuðÈþ¶ÎÎÌ–$“°ÿ`ÙQïƒN2‡£`á5.Œæý“½·‰2vÙœŽ2[sE›ýñZMñÆ{®Ï·²(Y½Ý…ÒÙ»¾\x„æ}w]–Zƣߞ`C%KgÇD”7ï²Öµ£vöpz[‚xOº€ ©·ÿú½ûÁ¡³ÞÚˆÑW«Ï/j,1[Š,ï§O[nžýj8PxhûŒy“’&• 5ÌÎæÔ®®ýû»:³›S~ š,ÚwÝÂ@ì~$è6˜É‡C˜Æ1ÜöLú‘g²w]©² Ki RæÊŠ¢× VÌ ½r֪ײW‘’=áà+ ‡øÓÿöÒ#ð³û'h—½¼E' Á¼§0àG~gkS—;«-19-#~Â÷«ï«E{ib(F\‚i2îfE¼'Ûж҄4&1d Ñ}t§íÝíN¢,\¬•ÑÛ´5ѳ •B[£Ü†¢P¤#¦FmR›ÕFÒÏÍâ÷™R‹¬ªÖU_^!<°ïhùaâ š‹jÒö¦›v¢6šy3÷Ïc·lÚ,Sø{ÐÏÚÏÁ[I¾fƒM0p „ó>‡eðO0Ïô÷Î…4×u”w Ô¢¬—¦j$Dh²¼G© ©­-uíf¡“ùËŠ£KfOOZºYµ²`.š‡f¹&^\Ö½õZîUÂÉßC pOùŽË/ñp~'c¹Ú~ï¡À®dK¤9ßè»9™Ë d}¢43?{,•h­œ»ß=÷å8?÷i1™ê;.üÜ«àkò d¥8³kðr„— ¼á&Þ30mÓ8td8lGEfÂ% CSa‚™fµÃ*O Ý^é¿…Y©Ó!ƒ^øï‡È¾ãÞ ghôz Ò¢’Æ"gé<Ôç!< á¹)x%ЇªÕrR° —Þ!´Ð{Muuåe0è«°Áá‹a ž ŒÊª²*éÎw?黇åßrÊ¡?Î~ËôS]C.Œ•r¾„±\˜ãø¾}…’Øÿ¶°J˽œ°ÝÔRAãhóãÀSÂܲ…ƒPÔÿÏr"endstream endobj 255 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9832 >> stream xœ½ztTÕÚö !s‚‚ŒcÐsEEªR”"B=ô$™L’If&e2½ïé-“žÉLÚF ½#H¯** (*6¬Ü=qóÝûï“Ävï]×ï®ÿ_ÿ:Y“•É>söÛžçyß=QDÏDTTT¯E³&¼8fÌö!‘A="OD'#ë/ºM è úô¬{bÌŠþðÁ£0±ï½~D¨¨Ç‡ÎÈÌÈ禈'dnL /ÌÌX/ü§7 ‚X:M¸lzæòY+ff¿!š•—û¦x¶dŽt}|Þ†¹ùÉ ç¥$nš¿yËÂÔEi‹Ó—–f$yññ—ÆŽÿèË&™4ù•¡ÏNy®ßóì|bÄ“«GòF}9zMCˆDbñ41Ÿ˜Lèeëu‡¾éýJïÆ>÷¹÷°ë‘ä¾Ãû¶ôëÛïУ“½Û?¡ÿ»ÜDîñÇ>¶‹÷Æã‹?«Œý€o3 u`ï²íƒâ}õÄWO=yîÉé5L4“;xâàËO­yêêóžÖ?}ý™„¡¹Ï‚g#ÏÍ{î‹ç=`Xþ0ÿ #^0|âðøá«‡ÛFŒQ,ää‚«¢XYl(ו.ƒÃ–Á–Âaù‡sŽÉü:gƒD']„¦$ W¢W%‰|]¾.¿¨(7g‹.?b5ÌãÁžð}ƒÞÁžŽ7áúÃgã/à —c¹w·Ffð¥dS£qƒÈ ™æµ4~¾$œÍá^Ï̱·10ž¼Úö޳ÎYëh¤!S…FÏ®q²²íÍ Ì$A“¹¹°1w÷²âÕ`˜»^šHqùÕ)QᨶŽ×y‚ ¹Ôè‚[àtTÊ·mF`Z…Ò ^—°!aÝÜ‚œ"‘¨@ IÖn”ªÃdVjÉÖR¯×]Ìì=×~~÷yn™¸TÚX›R»1¼Šo×¹4@k”&«Åì á,r5{r¶%Þ}óó_i=zŸÆMYH§Ëáv¸‚­üP[¨5ÔV^[VWW®ÞîlTidm«LŸ#”I™ü̼¬¼LU‘F¦”gN>”vHY–[ŠmU;<¼šÄFFXUøm5ܶHûCæcøÖ7Ó¿å¶·²f’~à·ªµAŸÌ<“)iºT¹Â”´^$¹âê*sõ ¿AþA8økse2c%¹-ïº??sk ‹Ô@ñö?(î.©Ôœ7è)ôÆq¾92mâKñqC - ™Ê‘8kx¼'´’ ±Ä°RËy ì–Ôϧ¸í®|‡D:Ðk9Ù^ù–‡0‡0¬NeŒ2B£%ó…«„+…«2×ðõj­Ú ¢ÌƒWçÖy2ò×]Yu)ùªÁ¥ue#UÍ–  œaÞê•Þ„$Ü12uìÇèÈí‚§ð*ý ïú楕K…£—Ð$´-†#Ðkp{þi?cq;pP>£KçØ(5Ð’g_œ„¢ÀL0»iÕ‘…ç î€[à¢ëJøíÞ>õ9€ýÀ ô6¥.¿P%V§—.Òeö(e«^Õé®rEKÂpD 2,õóeXr+ºŽ­ÖJ²±Áˆó*‡ÜœmÒ¹l-æp2rì­ŒN«Ùp\ÚÀ~÷îÇaŸQ?£^‹WælØÌœ#a92ðôÓ7£¦tœu`c0§UãÓyA _%ߌӖ:rñàÉï[PìL=Йõì>6ü°4I:†4âTç®ûP‰Ä1!Ží°ûx[[ûî3ηA%¨0Wê§(O!QHg!‚? žÁ¯Z¥F䔡/¡¹§ÓbYÎ)‡U1"Ž9^3uÕêÕkÞ0ÏÃþ}†óÿœð#|ù*äð]^SÅ:‡œæVëu8ñ~Ð\}ÑQðÉۑǾnþ«’ûŽ„<{Ÿ>Ÿ-Ýéj»3 ¾Šâ…–Pˆ‘Rü€âIIõàTMËP Pã9¹ùްËâN&¢"ÇìÅ ³½ÔYïv›“>Ϲ .ÉÎ;:§x˜Há‹Ì6ãûÖý!tM7aé•èHßÓ< JˆÙ$2-¥;CFffcxœ"%&¹(+^t<©e€úÆ›è…z~†z‡÷Ÿ í 2¨>Éó‘àÆ¯?«w[=8öÎñ. Ð8$Î]µQ©4*ÌJo]{EvÆXn»†d–’N…a.¾'îÀ¡è¦Ž)ÿì­ú?z+rÜ}82²1ŠçPT¦@›nÆd‚ãHÅÖFÖA¶€íÆJA±Ä’D”*+DØö%Šuó5y¦<¨7 ‰Ó\m©¦aÎIp l_Ú˜ìXê\I…8™PŒi!Êàꢢ¨Ÿ/t%õ¿R>ÌQ€"³PéYLCÈ[U÷­ÝÌvÚLÊtšB»ÜÒÂÕPYÚ‘Ø<éÒ%*Æü7–y,•8Màþ0ÜÛeû’¿¶^ “E À\¨åö½ 4Ý$›ÁNS¥°DlÉÙ¿›¤Z3O“ÍÔ›ÐËi®²bc{qƒ3¦m·%Ûç¹’~7Ö¼œP"oJ«¥ý›Àü`ÎXî58ï&ÃF­P”#)Jé#Jø€^ æ-Î\üÚ²£·‹h“ÇìÁÐtZ½DZô6£ÃLY9e ¬­ØFY8nP'ªÖ–ë*L¸ø>þ`÷çW]Î$”àÅÝóö…ÒÝ.fW[4>¯Ýíu˜1RÑ?bwÝšB•›mæh@¡_aÇËùR[Þ îuެåÝÏ€áÊ‘gYDŒL¸ùü,Ï/jKñcÄ´9Ý œÊ² ¸¨–Zën:ŒZY—Yʵ«q “Mfõò”¯ŽwìÆ::í´ø¶êÇÛ[OÔ°xwLŠrJu›1ûì®BÃB¿¼´Ð¿.¼¢d)NÅ$4 ½éBsá h"\Š“ìbõ¾³,Éiϲ$Ç ˆÃ0AÚÿ§Ë¢Œå¾ ‡Eðf Ñ£Ci1Éýà6òq@š5­LHÞW°P•}q†i‘@fa©h­jêü…êK{h„CHî¾0Èn6k„g°¥±3¯ßÁyõ´?œJ®Ï²îb`<Œ*ÈäTÃf:}縜Íñ-Çv&&·ou6ûýfàîÜ/h&wÕ™Ö3H…C¹£ÙÞJ7uòæe0ÛêÄâ£G—”»Þ)åJÈzÐ`rf`Ÿ«€’B+IfTëÖPì{ÀΪP›ËëòÚŠ-cùp¨/&,#Ó2l{,þN¢ç•1Üë¿ãlrZʤ‰‹„%÷±€§±õQ©1¿‚ïw¢ºí.±`EÛÖob4“)éº4™ÌØîãaRŽkXŽíKwnc"Íd[³£Ù_bÅt§’Â@é“DF…£*»˜í °KïÝ@«ùe)U¯A ¨¼ZÚv&óC§[³jm¼€ „ räº"½œÎÌ|Cø†Q­W›XŽ×Ö(kÔ5“à¾Ñmp7eÇô¶Tu붨ã„$ †‹"Òpÿ0¾p›U@SX+Þ"·µ62âÉ9"Ƭ]_ÓšCÛÌ6`Ã÷ƒa†›×˜[›.‰SÇÝ^ùÞÍ[G?)¡­ØtL™‘ds¹ãT—EXAtYTÑk‡UššU;+8«qß®´•°%%üMG*Tq”8Kl%¸œmEÎ"GQÃd~ERÕ²Š$»Ò®(P~¥¸õ˯9Srã=Ö“°Ü1×Ù2AfAº:»p _‰J¬c/èƒòFU(÷\ÎYñy£ËØí‡@`ý€– *ÈíÀ#ó§Zµ5ИÕz•Q³åë ôÚBE­¦AU'k/l—µç⛜¶ºkÛ,N;Ed@ÜÓªëàXq ÿÎ÷qú] År3aÏÈ£¼Pxw VÕï4½9?"Ñ”Í(–Ñî©ßHO€Cà\³ÿ¶Ô¹®nÎFÐÚäØC]-#³ôéúíu4|…ì,$?õ͘#ç¾$x…æîVçÕÖ—‚ ¹åY4LEƒyÏ’`ÖÊÅs ”³j}Û~ÆAº¾‡1-·m¢{ùØ,íÑ üÿ›êÄY*c³4MèÜΰ(­,-ö–•–•••ûJ|^?Þr©¨"§,§=~ÏÜ]³]*Â"§Ìdn¦6V  7̃ õæ{äвõgøó?]ðɼOÌ6#Î!Ü‚÷ÁÝÁêKçù‡ÚsPÖ0Ú"àTÔi²óó åJF©Ô z½aÀ˜±cÆGÁ+äžË)ÚÝYï¸N0_öÄ-‚c¢ËÙԪ©U"©~‰úòí·†•kÑ8k혧Ùn(.Læ©*JªJKŠK™âÒâ2©Ûëñ8}¡¬êô€°RÄ·ë]Z ¥ Åê"ì†õá|²äYdî|¢RQš¶{Ëî´Ýêb¾Éjb+ÁérÚìámüŠ@Y°º*\¿½l›O³d•Þ­Â\,LÏ.ÈÕªe,AQÚ'®ßÒ ÊAiÀí·tU Æ-L…#Ð)ÅÔ+nF×±Ñ)'Ã,à<¸G­þòà®+'¸òdÎA,Íú} Ø’caôXÒjÑÆ- ¼Œ¥ìÀ3¬Ô¯ÏØ$JO‘$¬fC¹¬šõ€Rª3…:Õì©k{C¢õµS›±r6ëúì¯r#RAÖwª!Íd9¢)j„·èÓ8R«Ìê¨ÈrG«£Éç5Ýðk¬Ðº@äƒnP+È0–§ìE=v£è}¨‡MãR50›MÀ¬•¨¤j©t…0.È€Ô©(®´Uù@=² ±•æ‹–ïìa,œ«`Û;¡“Wù-·[ñ<Á/ßWÛv¢kj Er\¯`„qÙ³2â:!Q݉Õê@ö9Áù ¸–Y0p@7(FX‚ù6Á‘¢Pÿ¦›&a*(ËË6I A&•U™W×X¨§¤êÚËÁ˜€>õC1Ÿ"ä?×z¹Ž±:Œ.½C+S§ÈµtÎÆ 9k̃AÚßôPÅ$wø°ö=¼”›Ó¶+Dlz²ÙΰŽÅàúHà£è¶ ‡œ“¨[‡ÓS&×Ìw^òX° g,C╺¥.£„«hîUoW:Ä¥€­S«½ÆQ|&¾ \ó]åîrG…åÁ;üät]z‘¼‹™v„ÉÿÀ¼ÓÉ<£ªe<8…„‘Sª²<[L—§,¡7uÇU‰ÆãÈÚbݨnÝgÛs5š3=ü"zl4ê«×é0¶R*—ÑKÃ/p³“ˆ“H§Ÿ4\•kƒ\@ã\ûîïÞ¹hhßÊ)Ʀ¡ÿ©BpçP~1ž`½RF¶Ô0f´)gÇÂêÕ¸Qè;ì)ôðàÐCx_hG3‡„ÏcB/ ¶}L¤ƒD·Xx¥$xÇóUÅ5®@¸œæAŒcµ^OÈJ]ãÜøJ‚C ê¡ËàÔáíb}õ<|ìg¶Å~ï‡7/Ärï´u5 µ†Õ j$·äëñVÓÃR2;Ƕ•‰ô&B){]d”г C9õuµpƒ(˜IsïMfã ®(HÂc꣎…—ÎFCêïÌŠ’ëë{¿û·>^uý•&f^è5ÓÒ­É¡Üv°›úà¡+÷.½ú\m“³pSî³x< Ì ]&—F¦Ì”kh†\ƒjÃÎU ojØÐ8Ä}ú½¸o%Lµ¾JW­?.?^œáÙ Œz}ÙŒ Ͻp’RÚì1{ÍÊEzõʤÑÒ(‹ÔZµîR_½ßM;=.¯ÝÛ¬üø{·;~ºß鎷ºÜѼՈÝq“ù–|O-ÒŽ“eÛ| ºÆV\ ª©qYmà俉sÎÙwýìé»LDAÎûkWá¾ÇÒùœ5—îDë˜ÌËëœÚÛ®„››[NØö*Ä©«©l“˜œ¬Û,ÇT¬Â]p¤o8޳1ž“íÊÛèg/8alÞNµÍ´³ƒ”¼ÎAÊo*–K;G]Òqkÿ-ˆ¬p.'Cd߯Ü%AõŽú`…§À/óÓ‚é4§Ú- *_já¬Xf…/(tçú ƒEÕ¢QkvËæC|Ì"`§ðG»%¾½;ï9Ëê­9²Ô¯,ÊX•‘%f2²…Ù"*’Ó=À Û5qêw‘f Ù2l`ô }= 'ØÛ?ÜÇRªAo’—ºèP% wŸÔÏdÐäs‹q†ž±àè)­l3oÛ(ø%އك܎–_]¹ß1\ÚIMÿ!r0sìÛ™¢{«@Òñ2V©ì]5d šKäÅ {ž³ð$zæ0zþz ½Äw(:Üæ‡ÓQìð¯À¹—aÂ%_¶«jÇû¬;6 ÈÆö¢ÍŒ‰4k “VžÊ—¥m”¥L@"¾|‹b³,µ°M¾½hÛr» Æ®€|“Ýìvø^»4t ÑèiOýéx*™ýÁŒôŸN¨nüŠx×v|þõY×ìÕ4R“›3Li´ìψøïÿ/áddÙZ(!A›©)§9»i'ÌKS²ä]YšâÁ¼dIÅý¦ó4«g´¾Ûg¬ÏªÉ3À.ô¥œA N¡§ÑBG‘M„©ÆÊ©°Ù¶ÚÝáÈýpÔ!8Âæ±¹­,M9¾\gîDïFÌ^D{²ø6­]ë6aýRlAGɘp&ž† Å;«·]f»I@¶€rÛF 3iM:µˆ_°0oQÞÂD”ÀWgª²4™EͪmÊ–dØg|xìcôiY9ÐxÔã”*Ô‘{€GU3 wû* ¦LXô©ò Ei£…#3F¨ÒäiêTLr¦b½ÏPŒx›/Û¥Ü)ÛifCdÇ!rÕîÿ5D,I‹k:ø¬¶ ]7ÙVAÙ1š‡– £Ü(êÌ´­)Çpïvœ?¾^wÉö¸¾TAμKwÏöÔ%Áeƒ¸×õV.Å<ÁcSx¨ý$Øö9öÛ¶ÙwU7šZj¶c˜íåFÏ>Ϭ"A–E2(ôX¢Q4ЗžÕÑ][Âí\?\YïFùSU;ØïØ^M=¨$7¦è6XÛÞ¾Ïy¹PÉ[ØYÔ5Òct)‹ ò4Jz­p‰¦S†Dq”€,ºÂ=Å¿ºm¶|9²5êàÏpíçÑw"a^ðPÛ!ܹkü”Ñ ¯-œÍ,|s^ü‚ÙjµAÇžsDHÜ4Î`›ÆÕŽåøc“9B3¾ÀF‚uÊ¥óüúººº†Ð;翼 `4c†„b†œ>XäMßÕXSÝX'­`9 ôÝJê#8÷g»`ô„ïá+w_ÃRm'ŒŠ\ç5ï;ZzP'ë—Ï•LzSÊäêæ»°ä3’­ËìT1ÇŠYææ^ù¶vÔ FFšã3ÇŽ‹Á›µÂC¬²jkM(\ŸW“igtœäüLÁ³ìSHÜÿ’w_½òRÃ=w­öâÛŸ ütÌá‘SŸ_?"=˜WWWSÕW ~B GÄXKî{ÆÕXî÷õp2VŽál˜’è" …9ò®–+= àó{áç#‹I`·8:ÎÜŠ“V©¥G¢!#ÑÓ£ÐE¾B ΢:ª>ÌãÞ…Æó€ìŽŠ´.òDÆ~fiîཕa˜wkÅ`žÃÄR ÕÕ õ¹UÙY¹yéÏ|4ù{øðW?‡˜…ÕE†ûõJ°&K“È .¨ ™±¯.ƒóûŽÙN'îf­¤Ùa°ëäåë…jAÖ€dߺ,õV½Mo¡L=À2QO¡wHµMë-öº¾©½r7Û•|bò£žà5gxyjJ¡&ßX€á%þ`Á–©^'"ã%pÉýþnØGøŒ}Áõsäo< ²¨Ê˜(Z¼nÁ Õ-ލÞe´•Ö¶VÓ¡eûqµìP¾½ÂEq龜¥i‚€8\Qâ*)fà¦Çÿ«ÛïþùößRnH¦‡¢v}ŸEÃð&ÏÌwì?œ½ÔÐØZÝšA“¼*Ëh1# ²ó¤ÙÙUÒںʊækqáDôÊ´ GO6 Íp.|äCÈ=ž{¡Þ  æä3ôÏK^ BÎ=eAæÑùä›:Ôã²¾þÀ@/ð™½ÝDn½Û‚K|ÆÝèO;&ñÒP2–î]¦#퀪åA5ˆ±b.géŒEÓ׿ºbÔž¢2*Å ´•Sk)¯ T«*-pÈùŸýU%•%•_B>ßís9pï]LN Æ!`>˜ï46P¿z £/®¸â=0Ô.>ˆ5œ?ã™ÈéÙ3_“(%é|þ§¹_êkȹºžrlÚnFáVzäNÜõÚvjÇoOx{äK£¿~lÙé-8³—ñ¸wìf»} ¸|ðر»Õaw`Ks+äÛs¾[ Þ &¼¾ü•S÷~ªÄÍe 2€ç!/\o=vþí”׊i`°°_˜X°fí:¡Ñd0èdWy’šâ´ouo;#ÿÀ®Õ GÁïyŽïmû9çig»g/ØEÕŠ+D™8'ßžgÍ£½ãŠÇ¹ÆQpÊãŽû^ù=÷w'{ÞIeHœŸ-³É¬E´+Î牳æXs칿yn D†Öößu'þ ¸ñ3LÔ‘ð2ÏÂãÍý‘™–𻤂dwn=U*i ÔdæJ sŒŒš|íŠà"œö>\ ÇÀG„pš5öÕ9“…4÷gu¶13k "ÞCÜXß~²”6C.o3i˜)>POk ÿÊûóÛ˜Rw¹½P?{ÑEÝ]@@™Æ‚Áíû±ÜK062‡%k.Q¢*a¸®¾:LsÛj¥õé4÷’шe+ºÞóŸ°ÿÅÿì<û‰è5IG®TUÇr`\%Ϫg Ä¥/X»Ò„㌔Á¡s”Ôm øéàNÿ>°Ú#?™„Ÿ’!ÎÍH­Í«+-sø=ÌÊÈè¿ØP— Z\©1×@kà“@ÿc§áÂ:8 ¿ÖÆr+áÙŽá¼=™GeGÁÐîßU³`TüØÄ1ɉ“-櫊 $²Ônµ×ÔyTè®vûàDhƺÓÀþ¶;íìDß§t«‹tEj-½~É›é³À,°¨záQMnÕfðX…z§R*òňóíWm°ïõší²V¾.òÆ(V? ÆQö¡ÞßÑ^Î'ÞfØ|Hqo*?Øûޤñ>lÆÙLž>!ëù€zÙ ‡73xÉÛ~Øó½Òb­º˜>R2,ß4 Ì<ÇÃw&èñúAË_Êüii÷À&ˆ[@Ô®›­gá Zx&ݱ >Âq“’i-'ɾ䈸ÁlìåòyìŽ]ÇZN¶ž*­+m UÕU7»›Y‰•) ëw©Òi’ˆ3å’ÔE[Ö­6¸µ.½+«•¿á­µogŸ7:uಸ½n‡£}ÿé à*uTt%aÊ’™3t´œ³Jãs,F\¡& HË*,X‘4o5˜Jº—tã­cÕ-{èÒb›Õf³.àUxt;Óäbæ>ýQûwÌ'ÜÈse7Wƒ)µ›ê·””ä•ËÖ¦$e'jfúGç¯ÖïZ­\…{=½Cï¤-œbkUuq1ìû„Sû37Æ£ga?,Z:`ÆWg ;H†ýlé:K~îþ*Üv}õwšÜ}–üïN’áiÒ 3xÂDÌidœœZ{U)îúÜZLßtŽà’ÇE©dSxUCC°¦‘Æ rB¿-èhkà—ù¨Ÿ.DÿÔ¡áý]‡&ü2ÿf€üm†Ö3,hƒ€ý¦ Üt!úç?R;c9áNf¶­™7áx²> _¢2«€ŠAªßzM¶sÎÙ[¬ìÑpE âýÀAKÀ:¹õ8Ø Âªš\*[œŸ•S™[WS]²2NòÒŒðü×_LŸ¾…VIÌbKýÆ)]5ÓKRÍfÑE)·þL)°ÖKÿW6nB7Éßßÿ}$ 4+ J@8‹Ú¡±8 ¬ùª3 ‘ËÉÀFÅC©rpù€\;ôÖ'^ÊÇ €j}À(S¨T@ Ž"¯Æa´›,ZêOñ¹!:€ã#¾ù÷ùÄpø/2²«ÒἓQ>hâ͇•'»eý¯íWÄÐÙ~uÒzç$‹{ÆÞÿW­î"Ð#ÝúÇã˜$ýÿs‚€ÖB/ä •K7ò˽u¢*ó+óh§À¤”)•™™SgcVÖz4vïãn) &Q‘i¸ºU:]¦¶p ÊŸŽ’¦¡¥øuær³Þ¨zܳël'mãø¬î&WÅ8…ÿLº—]ƒIgà+|«ÍbïœS9qÖ°ÇŠfvÂ7¦;1ÆARèß™±ÜÿûìÐÿ›#2ŒúЧýŸ\õ”°‡¬º\$÷›ìŠ¼ÚÆ’@ÍÁ¥UR3äÙ´Á¨×±ò¢R¥SìËqæX(%gê³õc`S;ϨX(¬úS&¹7¾¸xüF}F¢%ÚBÈùÞü õÛh¨ó<„µcóÿ%;Öüå?³ùO©þÿªÌ¹ØBò™°ÓS Ôå æ%åm^N˶Í+߯Ôk½âY †Ÿ‡Ò~ä|~öäÇ[”â-Ê-9‹|jÓCg™H‘éPhñ×rÐ@~÷ÐÁÞôCÑÚõkûô"ˆÿVQsendstream endobj 256 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9794 >> stream xœ­zxÕºö„™¡ÑŒ[ÑD•jA) R¤C@¤„N mg÷Þ³³×î½—4’$R¤7ÙA@"`¡(è±bÁ#º¶ÿpïÿ¯Ùâ½ÿ¹çþåIJ23k­ï{¿÷{ßovÖ¹–““Ó¥hÒ¼yO6ŒûOßLa§Ìù&V’yó÷éy {.èÞ¹îá¡ñ|øëpv_îÇ:åä>5¡¼´B(XÍï3£|Õj~YŸyÒŠÕbþzô“ÿð Ãæ¾\¶p|ù„ŠE¯TNäOªš,¾*O“¬˜.]9C¶jæêYkf¯³nîú¢’yæo,]0ìégž}nøó/<:¢ïÈÇFõ{±ÿè1Æ>1îÉ—žZ[íó¨§ïS}O>¶¼ß¤~Žþ’þ×?3`쀦7ŸXôÄþ'ç<Ù†‚8z`pàÍA£ÜiðÓƒ=ÿ³S÷ϰû²ZÛ‹EpT:ó¨8Ÿjû¼gz«B…Z" ¨ë™ë8Uár[Ü…µ`œ¡ÚâʀР·#]÷K|¯{Ì Vè%Tª% U! ¨jiªÍí¶º ¯ãõ@<®õèS3Æ«cÂï „ßŠ¾~«Ýmº´ÊE–âë€Al¬\ÃÞÀ]Í®–%5RæÀ‘¼·áœZ˜ŸgÃkÙü·Ù9y·7†éô¼t¾Øçuô¤ÎÃQÏO$táJú9\ªÐˆEÚð©ýlzNí«T2QX›bà¼6âI%”~ ³¾ˆ²çìåƒÁUËhV¾˜irAÌ`ÐÉRa_2ª ŠÑUåøûÒ/ØÎ‹IJÖÑw¶°B”Ù›¶¢°%á¨vÞWpÞì¼<.Ôªdâ=ÇýxƒÐ!g¸˜CÕÞåçÖ|¼ê‚Ùeri#€Ëé²9¿…³ ì»?È$žô‡¢ "tË@œrVc¡D®1TRÒÆé >‘í7öËóâuèÙ åL(üšJcáS¸BX]U–¨Ž1a<¢‹BüÄêÄšÄêpEÍl«Õd Qc0Ì6‡--¨Ö™*”k\¤QI+Ræ0—íå.—ÅUøhј:(¼{`(JÃ¥éü¯: ¬cŠùͯ2{y·”¥„Hf¨’4u Ôà›À&k£¿½þíSà487÷ì?Ie×Þr±÷ÏB³B\¨QʲAþé–’EGÄ@ÌÓ“ÔÍÒÆ%Ëzƒ¯Ï5‘ì£p;.…#(éÊÉëDë7Š™RI XÈ?6eJÃÒ9ÇκŽ\hÍLç±Ý4ú€>¤–p°9W‡]Àa7ßù›àWÒOTÃÜá?³]ɰRpXœÀA^8|ù³÷NxÅC눗Þø,]¿äZ|Véö"ÚtÆ“ÎÙÞ‘›šù€·®yI| 58;P;š ؾ€}ä2;4’üûßÞ‡SjÕjWi•‰ÑÍ-.¤gÿæ^‡‚ïÈßNÀ8shúL7íØ4&ÙìˆÅø$‘ÔED|Õ™évÄÙÊ4š†gþDºãƒžÔwé½x¢Ud•Ò£q±L/‡µ _¸Õˆ~ñŸ ½ß²a›t !ñ÷_!ñÛËgï_ºTZºžvÏðò—GròÒ‹ÇÖ0ÀoA‘'ßÛÿîÕÝOO6j‹é.2ÊtΉ¸…ý!„èÁ+——®,/Ívy‘%Ʋ] jÈH‘WÑHC%­­ÌM¢Iî’Hd† „kÄ 3Ùz¢agóöMo_„].AâcØÕðû@”LêÂ4{—Š«Ë˜çA@ЇÜQû_‹/ÿrŒ" b%!‘ê… %‘UIšÚív!‚CpJâGG)„Ã:àhØR³à4v8îÁE ­XD¸¥v_GPÌ(¿$`þ^¶¿a+Y†í¬aþ’‡óíqþö³°­x9Óã0-)"$JXîWÆø*Þà÷Çãꀈ)ÊÛn±X¡/§¥õý–õË“‹ Ùnƒú²]ÙœËl.ìqxwíÖ­ ›‚9: ¯œùøÊé½Óf¸éÙÄøÉ3fŽYðþeí=†ÛÓpY:ÿz|胋Ñ.\Ïž»„Êuˆ"Tâˆ{?â^wa†Æc6O D"oà&/)M@ •˜ÊV0¡ØÇ¡ö$€Ñ¢²4fŒÅ¢®Mô5DJVî†&‰K&•K ¨i¶'\†S y6^5Åkýzú"‘ªŽn oÝó•:a¶¢ïÙíÕ_'§ç§ó[`ÑD´U/äÃßy[‰zm°’fÿ†K:‘(¨E¡wƦ‡ãÔ*Z-•I†ªwº¬ÎBø:úa8b‰6Ç ei|š% ¹v‚÷ÑT}Ȳô­ÂT"Ú°wnxõ”9%‹—ÞÝ,á¾=ÿÜ{£xõ¤~ü9­u„EKT¡œÆë¸¥ö‹˜Ù°âÿÝh¢«­„"¤èï êÓXµÂ-/¤~DÝÑPÈþ§>5}£¾(f¨…}-}‡´fÂI° |jF{þ¹4Œ¥{RQÈ´òÚÊwkQ}^ý­ùìÉÎSÂL¹»8šÁîóž›x­>ÐÜ+IªµÒm‘·69âqæ"‘Ðuj½>Tê^ È‘lžð)öyxñCЇ1ÓúU ­-‹“¢#$µ±A Â¥…¥ÕR)ª.thÔÃIa@¯s%bnúíÁgÒpw:§­ÖžËÍôx›g$ÄEC4îl áÄ ‘ âµR·˜aspTÏHµR*õ«“Ì~Ü4·rð8Éâ‹àS?’øêÝ#L*Ñn'ÁۓܳÃ5qD~ö8"¿'²ä'ÐT‰ ô†ºuÉå€4ãìcϳÃÙaláYöeØ_Ïøð=`{bóæ?¹ÿLöçÀAðiDDƒ2xÃð*µZ"Ž Büš âîñÇŠ?ä…Ë{®0¢Qê Õjm –,®-oÙCCIÄRöFT¹B†÷žå(¹¡ìn¶æqjƒ«;Nh쾞Áyl ʬÂhY㊃º=`ØåßÒ@R1j‚ô§x"âM%> ³^ÅSÆp =— kÊ¥~UŠ9ÈãÔîÑsKg¯YåLÓ°–Hšbeô ˆÉuB¤Yb̽ Åè`â,pÙ<‚´…«ŒÔ0°OùBј:P…˜*£„yx½/ ëBrö#¢”IêºÛ‹‰2]²ZåP†àö±çòjpƒçòšq”òÚ„ÊÏgàTÒ ·  ³‡DQ]œ®ÇCÀª´kbó G6Žh~ÑSé4Ò…Ç@Ô {¼¶€Ã¿ùFÛO­?Ù}ÖPõx<êE…œL(š:”­ˆ8_¥ßÃÙ=åœAÛ±—¹ËeÍì¸ÿ,KÑ>°8ý­°ÀqD¬QÒŠƒ% 3K=%qcØ @Úw¤Ž+p6¹7Ù›È0ž {S)™ÁðA¥éVM’9Ž/d‚ˆ)b ÷R1~>¬ÕëôªbU±vùx°à8ž d [È݈ú¨PÖ%™»5z~p"ÿH”¢¬Kà˜L7^Ìž°!Ⱦ{V0ša»³“ËØ¿ ùfå…½ïxk·16«Íf¤ w‚"hÚ¤mM€¬ó…cŒ°D•^@RW"¶ÅVD÷ œJ€ïƧŸt‘kñ×F§”¥dµõñDµ;g°Oóž'¨ÝS_V¿^<=~èØ×±ínz³³Õ¾ùŽøùS‚Öél·c=©ú/n7Bª‰;„À—8µ.+àS!NÀ7q‘¢+aþ ì eíy†¬Zf¨uâ°&ŽHÕŵÍ<ô%’rŸœÑá2P3ø+ß)X}fõ™5gÌNƒÉW+as¹]vç ˜_ŒÄZc€ôâ1ÄÕU693—ÈPwEdÜ8»–çÁx=ÚW"êIÅ9Ô>SADD*dê…Q}âÞöŽßÖÖ/·ó®Ág{äɳÙ…‘¬‡"¸âb‡„³FÆ€«@µÛà5ˆD¢mPVûÑ&ý>oÈØ´eïÇ nƒ.Ô=€Œ%qm€Ï¥žëEH±'™>~ÀØŸòÂxÊŒ!m’yÅ4WH[ArÕ†¾°J¡U¦L(”I×h=xxÅ~Õ{/x4Q9"R¤±uR©N-,• Ë¥‚ƒÎ\­ä\¨ÔŠø S„¹Éél7ÒÙ‰¨/[(J¿à.ßÀóiˆ§s®sz/7Ûâ½Ä†ˆ1Qï ÖÑnâŸË¸Ä™CDÅ•f(HIP§3]ÙŸþÅÝâ bÐÀ1IJ¨ZBˆ´ 9’WˆÆê¼Êž>Óí_É CFÙN ½Ëfˆ‹tJ¹Ü§¸Si¬8iýƒ›~@\`Ó:um˨ÖÑ-/6N.ph=J j½Ê¬‘¾.õ °»mÜBâhU™R \¼£d×í°Û¥úMˆmû­í7WÔqFþšp”3Tñ¸½%%vʘ¾ˆÝ²€¨URÄnˆ¬ëéü ö ‹ÃƒyMx*äK¤^Ó‡»Ò˜½R™½2¤ý³ws†ã<ò!³Å ÌdY<•ˆœôÇ#³GLâOXDóר–‚edßËløÈÙ÷N·Ðv·Ý ¼úùɾO&kjîÆÚž‘·çt…uÇr;² ŒÈj‘aCÈö’o9‹«‚BäÿPX3çºàº@I¯èkÑù±×Üâ·Ðµ¡´×fwÊ(¨?_w!uÞr†laë-AÁ¿zbFIpãd*ŒÅ4A3/Šù2iQp’`²h²YkÖZ´d nnÐlÒ×+JÊJÈw)le€œ ½”T)—Û \*4#|pfš+ñn(ïà/¼ðܘá#×®[Y*H‘GÙ@gòðxÂÞœ'ê‰Di™éylœ¸~ýçïn|‹D| žD€«¢‘ÞªRêÊ™j[NiS}À߈J×gñy{ßÓÇÏp•…°¶õ,t!hï„ÿ–}†ØP¿:¾¹ÂÏöc»±9ö‡tHoì»o¾I*ªLèW×ÒŸáñ˜'•TøÄÌ뙞Іø4µ3ë½§àR’•U’aß`ä'õNòã—.Ó.ü€yïR÷äBh¬j &'Ìš2m̲Kg ÿišðÍQ(:Ú“jý&›ñ2‚¯áÀºñS-MµfÇ*ßâµ@,‹Ô2¥<¸ vaìõ^o³ÄÛ,¹“%^Å6€Ìh³=c2Þ&‚ëH*+SÑl ð³ÈnEÈNÑM·¸1`VŠ!‰¾—C²äËÕÓfäsçqwdÇÙ&Ñ*âî¸[ Ÿ€T:'óð¹\HÁy&a.ö[è÷ê)÷NŽn𔀠hƒßêÊC=«Í]Ø v;wÙ›c©ÚÆí¶-€ â­`;h¨j)³OsH¶føk…ë›W£Ù”× m¶­Õmä=ã)˜ÔÛ4´ËiH–¾ˆßž«U©TbaÌc~aÓ/àÜèŒû¡FyGÖíÃþ`4¡ ônd6¦Q«Žƒ±CΰÅ÷ïLìHtjíQ†õa@6D’õ‡&;Ë_ynåsV×ô44g›ˆ¹#÷^ŸˆZr’ Î5b„dS§Ã>ø¯¾÷¯€¯ÁõqŸp“¬™kUbaD—bþÁšyÐ »ïšN-¯€Å–-Wh*@ùÂJNÀñGœ€oœp‰ó›Ž‹9¥ÜönOê ü43gÁ©ž€ñÂôAåîÒpc«vš¬&Ò‚êA²A™_¬$©4+Å% ö~ ö^öÝÞ½®Ä.zwrïVÇaÒCÀØ‚D?z&n²V[MVR‡ôdCÒgóÙ}L½ªAÛTƒ€uõò©ï õêZ¦Æfvð¶¹cv‡$¨H‚8ˆí)ÒIl[[¿æ ¹XL³¦[Z°[lÀN9Þ´Çï·}OƒoMî—I#ÖW•jJTk«×5`k]¸Ò¿>nn!ÑÙöAÈówî=DÛñ½æ·V»’zbÁòůÑf|±}Õ6ã;ê*ú}N:çh¬û 7Sèäkppíw·¿ŒÇŒûuGæ×®¯°®d ^^²”.•™ÖšKLË-ËP'Arq>(ò¾æ]]Ò.S·lä6ÉE$'# nj´4Èwhw2vÄ™š &d*U›ä äº÷x†: ‹1hŠIKÕr³LëÑ:ôL°*Tåç“Uø° T¦ª¦-æ&ã.€¾¸rƒ°5LÖ®OôŸÁÁ[ÀK½xG‰i´m‘u%ºi%)%À”šñ+×ÿ‰ÿ,ÑÞ3Ÿýþ"z¾ùÿo çüïÏ=,Á·¸@þµ8¥c"œÉ>‹6²ïÚ=ÄʱªÛÃ5¥kYaèFm.Œ#ï&dÊ`É·øãörTòK J6×=ôë½oí9Þ sI¥2S)mQÖ𑦧ö Ì;˜O‰šüæ›HjÏþÔæö}¤›Î}obrƒw#(A43 qÖ4¨­e~dKx°„{Zcà øHœh3Øô@OV`)ê€ò*ßÂ÷ò ¸ò£8)ÎÏJ²›ÐÀ¹¸4{?L•DéUpÜq.kh²Ü‘·‡ÈÌJš}—‰ª+„a}RÎÐÄ«¨– €ÆÊ›ZRu 4õ}Jº©”¦nš‘ )ü“i¹‰×3pÇéžÔǰÛVÞÁuG5ïòÇÏ?ºq~ñûꙩµì~#OžÚzôäµÓ¢´»Â\ÙÆÍ4ãH¥÷A&¥ ‰ùºJ±™¦>Þ´tM|^á§^ðê;sU1Ûd»ŒÛuµ¦ºê¤f«¤~5‚ÒÄi+fLÒü÷fäÕ7Ôˆ¥4Û‡ú”Hü6$îŒÿþŒwr0ƒ\@~ €Â*G@˜£~n°Xb³IhÑ(Ið"iÙø¯kÞF­ø о¯öcO=¨ df±Yê@D0—‰M|Y@‰7ð¿!äÐ8I˜†Ø“ûFèâ`{ÞRÎÎ&[â×40p&âôP$ óÙÈ©÷œ…S—Ëb¦X*௧?%š è[ð2“T¼@TFôñxĽé¯^vçÄAö/Bâà-Ø) â"‚ÚÁ-“5úp4¿³LÑ%ü⇰;;ÔøÇ»‘œóóaL— ©Yq §nÅSØ $P_o9¤´—E‹*R²kí®’Ýf»É‰$Œ•žo®ÄÂN§ÓœS òÛ¾dJ╲ ‘í‹‹:avºg‡³óà5¸­ÔOT¤Þ2Bš…+”*¹8¤¾3@CêBÔtä^àtØ&H, Oîg{@žžô㟀ÓÇ6 ¾ißÚ@ÜqÆ[‰TÄ›L(ü"†ep>Š‚v-ÓÊ~ˆ˜„ê׊çγAñ1õ!S Ô‚Z~øOîúgÓ† Q̹RþŒGìž‘QM•SŸŒÏ;— ÍHõÝ}¶ÃÓG‹¸º1Á¼¢£0ŸûîI½‡<Ôc¼Mb§X§C¥I«q©Ô Pø¸žOhaÓwægÔ{b©N˜u£?àɈ7•’zÅ>M€ãžKí§Íeur;(ÚȰb!âük@S‹Ä{2äOü?Ý¤îæ£Ú/F¬\Æ/•ÒTd³ŒŸZ]XJäám6 ‰2G80ÂáÜžÔÙ}(\Ž×} ܯFøFF8×;KëåÖ²m`'[½[Âé@:˜¶G1%m89¥vYpf`fx¦w=X»lÖ&Ç&Çg«sKàSß•À§îý¾ƒŽýd2ê©e¨¶¤Ô'¡©³YMÆEÈDsº•iÆKXS«3}Ê¿,»Ô˰MÙø@£Òo4VÈ^3›‘4g]Ré1“qª-«%R­ˆ¡Î ¢úäÝqgæ¬8g_| aÀŽ”%Û_^ÄNl’}ð=vD{pØ'ÔÇØÀûŠàdöѰΪ:Äî=ÙK¼Îú/ì:–ÜÔR‡š³¿©ÞÂöcÀxÍK«gˆ7l,YaA6iX»¨®Ô„A¤&|Ï,ç÷\Tb‘6hʈy·F&øj ÷R•3´ÐT[µâB¸OqCk¥¿Š’©Å“º¨Ê$éhÉÚ²’Ú*C¥¬·« \ª 9H7¾ÍÙn©½»Wt™þHˆ<ÞÎcµøÉ§œ8ròØ‘SàKÞÏï?ú4›SÄæ”Ç„u‰d]XíE¢„kë#þºhƒ»®,öø¯LœÃl¨ÜX±¡òõâ…R¬²à'mDƒ$Î/Qó«–Õ—Geô®â”ÇÁWb»“°+7½G_‹ONE½ùê¾Ö7¾Ûûú€½Ã&°„pˆ0TÙ\Ÿˆ5zÍ^£ûÞw-cÓ™GP6ÎãæàX‹M!¸WY‡w§$­›-› ðÆzû&†Ú”´ˆ~bgp'pqv9ÌÚe!ó<ü Õ$Ké5x ÐKä|v)ÛQ •iu€Oˆ qs‚nIó`%¼‘ÇÞ îÎÞ[Òpx:çóXƒðø4ü7œ K‘÷pã«T…×Vùåz[ð µ¾Œaë ©S¸©Ö †éæºm·yeß”‰Ï¼¸`Üê•¡&>cr¸Ñ "tŸÏ ‚d½$QU)–”öƒ}ú+ìô>ìî¥CÄ/#¾e;¯Ð‰×üù& ­ŽlÏ?xnÂ%Xû×oï‡ßðÜ?»ÃÎÈ!m¯Vê z a*j婺D¼éÜ„–™ìó}ØçÙÁ,o ;Nùí§Ï!ùëˆXrîÉê7PGõ°Ðßv†à†½“ÀrüœÉcÇ-=û®†ŽÀUã´¸nãÖ/ÊOGPJÆ èœ…8×gÃ8ËcycØbÀN'5„MQƸ lŠŒe’Œ¶”µÖžŠÃáÂÁ€„ßö ×«hÔ,¨6¡#RY(Pꪘ76ˆs/}þX0%ú½Zn)¼í|ƒ[Òƒ8¡¬š/°”­U´ö1¶W\Á+(‹¥H©ÒmxÔî !Ž ÔUç÷ÖëÎëV¤*‹l«hZKnyôB(!×6Tì¤7#ÿZÉ­•ËÿŒ³- —¤ówuuÀ$ú£'õ8 ~ƛη "Y’ÿA{ñí0§ Ð_{eçäF’úþDüÔŽs½ÁõÇO qZ|(Ûyn¿W/;#d¨LbGð¼ÄG÷ž=ý᪱nZGŒµøÕ‰S·¤DYÁí( g.¶=qªd–‡6SF¯/š;¹õ„þö¶àÏ"ø ï“1_Œ;}ã£qׯ!Ax þô{'ž¨Fª¨¡0YöŶ¶Ž6¾qÍv@6Y·ÇA}î8j;â8ŠÂÁ) 7aNJ¢"Ý©e DædûÒꔽØVl/¶V™î½ÿ¼ãˆí¨ãHöeœ Y¸Û÷ß#„¦ó"ƒuqÂ9ÏL?ØÀ3 ›Åvï£Aá/u†½.ð1 U_"®s‰ŽúŽƒýa¯5p:;Å g»ôýp$M´?vÄl#µpT[¸NP«Î®Õõ6Oœ°b: _šsòcÆM8:Žž¹ >Ûf‡æÚŒ6#0‘wðG¥á°4|Qœ‡gæðžÅE2XV%\.+p2§p1;,o^¥QÉ*kMIf®)6¼ 6Úä!M4¡¦hy?,°…í!dÁ`×ÿò×_ੈ?ôI3OÀayíx*è× \"fîÚdmrn²Åq«‰(ý P,ef©i•~EÍJ’íú¯®€O±¥¢=¼’›Í-^ #gf <ö5b±wF3xœ8S¿ÓgÐE”9ªé Ôkï‡sÌò¦ƒg*VT*dÚ Pä!EÄBžúàêGûÊÍ·2«+Ë×—¤ø­&Æ»¹°‘™q‰5u• ikï¿F4ʤ7̃~zRç3ÌïSy"³Qb=Ï–?Ë–¾À–™”z¥YAšID§íx­ÍtÇ®ÁÊ/`ù5Xá ¸CÖ Š3µ#. v¾¦ÆRSHµ²­VÞ½p˜OίýW2žÔ9p˜<\uq ëoyx³õ¢—Ár~ý˜“è×ïz’ÀAò0ÿ“é4{2Ó™Gí°[ŽÞ Áßw#Ú®wÏV tÅ"cA>D³½&EÂÍè1~ÔûÞNÚãÀ·Ê.DDøÚb‘Y´o™S·£zY”Ñ >ólDØô…<—\ÙwyØ›ô€Q…eJµÖ ¦Y';T¨(…ª^*½Zä@Ðõ)U­2¥„è—C@$j£‘”È£ð2#÷Ú7ê€Ò£ò)ܷ׃op*aP:ŸZÞƒ<¹Y§BxSäµ4•t9¹žÜBéK„5!™¹U€›ú²p`g…YË]Œ²œBW ÿ¯õ#am˜»´'º´š»ôöJEðó,^†ÎhçTÓžŒŽf•Μ¿Qmé””G”¸¢ïß×ÈÕç^]æ®tÍ~à³û‰Ræ>x‚WC( *­R?jáÈE£^G~@ì®<¨ˆ†~w€¾yæ×S¿ z¨¶@DíUyúœ|ôtßÓj·Q)S)ä¤>¬c®¼~yÑå…!}P6Ü^e†è÷8ÊÅøŽÜL_„7U\¥Ñ³]Ÿy•-ìc¤Œp±}?dûÁû_öš¼&éP8*s«}Ì£ççÀ|÷.¤`î¿+àa2ª HÍ5Àb¾Ûœ3‡][y)J2ÿÎ{Õ0@†‘Â@E+õ4bŸÑzMpk0âˆ:â¶Ø ÎT§–ÙL6Ô¨ÀÚ×|éÔeKç¡»”º13ÅSQg ó&á:¶m÷Þ¦íu;ëÀ1ò7¶0þm¾þ3n `6[À=Ý>v+’kб•5:5PI\Öþ2æÛ °ù€¥æ°°Ø8¥N¥rouä­3ïïz“n¿Øò#øÀ>Sá#l—kJ¿,,A€©ù¦Ó°9} ³ëè—Gᤣ¹™þ)OyÊÁã*´À8rø>¶ó÷çß9Û¡Ý-Öf°©`ìÍvyKéPØPâØáOpíÿ5; ¾tìXjÛ.Æãvù€¬:ä½ZVEW)Ê´åèÚÇÀ‡!qã0̹ÑÊ„{E±©"µ”d‡²syÇk¿>s>Ìvæ/›<«ê³ÕwCÞ]AŽx\oñJ㣥qŸb•D. j"¦QQ§ª“7h{Õ•Ú*y•ªBQ 7¨4@†#I„>ÄæxK´9P%„E…bª"µ„0¤Š×{’Q:L€­5m`k³¤EÖ,¹]»‰`<EêØÍT„«‚U‘J_/d|u‘º`c¸ âú‘L‹¨ââ?8¡T²QV*[mè9d˜@¦/Qª„´–àV³ªÐÂ@aåvðÇGrn­8k‚+‘Fk‚»D¼ßƒÏhÓq† Ö ]2šjʾ8fGà"©y#óo+ »Î­ Z‚ ‰Së²Ó—XÂUÏPMqU@t;xHl-HÃ×PøiÔá—<ö\jQªÔ®*ðÈ#–0 á`öy\æ—ÇcÁPŒ†/ÀAr“VOÄ,1e@j%Ùçáp<ª‰H¤*¥”¾Û{`=ù øxîÿM×ùO§WfO¯üý>Þ¿=Æ>KˆÔÜ«üuü”)‚Žïöp48yA{ óûJÂì5U6èÅŽâÞýs4‘ŠŒ|t|I@}džÙÙwÁ˜-<¥Y¯DÙ–Ô)¾ÉùÞXHæ>áÅ©—²¯ã‘à²-j®îª˜ÿ/äöàŽœ«|žÔ¬E-€D5õ4¼„7„CHEE%hk¸À݇ßé§Ô¡ÌxTßR³AbP d‹žedç*Ë¥ÊR£J£D(‘•QÚ†§¬®¤7ºç«]ßîúº>ô|è$|Èô£QɈ2$§©CÙvzŸÖŸï…/ùqVì"~꺿Ý5×?®{ û_@ÄÉ-endstream endobj 257 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 403 >> stream xœcd`ab`ddä v 6400q~H3ýaîîþñ÷§7k7s7Ëò¬Bß9¿3ð``bd”ÖrÎÏ-(-I-RðÍOI-ÊSNÌ+VN-ÊLC“a```) 2Ôe`f0fbàc`edd·\òðËF_¾ÿŒ¡S–ýˆ.g¼{ù»î÷?¢Ï\þ„]ûÃÞ}}鹇kçNšß7¿›ã<»W·YRqߦÖ5@ß/žø>ã0ãë‡ßoÝa~ýÓ[ô¯×Ãï¿«²Ïèüîø{ûìRÖÇl¿£¿ß|0ïáÅîç’“Ù[¾3üf?®>¥¶§¶»¶›ã·òï ¢ßg|gc¿Òýº}ƒQ}o}w}wPBbhEZ]JwJ7Ð*ÆÏzŽýøWÎø½àóÓ{EwLÚÖ¾u!ÇŸY¿¾ß=ö[ðÇ¿Föêîò’ªÆÔÒèÆ„nŽV¶¦ÎŽ&y>°ÿ¾‡cœö}¢hÀ÷yÇØùÊþ˜ó=»wÆ’ =l¿¦±¿çÚË-ÇÅ<Íž‡“Ÿ®æendstream endobj 258 0 obj << /Filter /FlateDecode /Length 3879 >> stream xœ}ZKÜÆ¾ï)98'æN eØo9ÊKp`v¼@R\w‡1çá!Çòú×竪n’3;hIvwuu=¿ªžŸVE®Vý‹›Ý]±z¾ûéNñ×UüÓìVy¸û㿵[Uyåµ_=<ÝÉ µR¶ÌƒÒ+ïB®[=ìî>dÛv}o¬É«Êf‡óØw{þ óª Y7ÄA<×ñ¹(BötèûÃZ 8—}ˆÂwL–¯ïm° ²Úfìû™šJ;UY·_ë2/TUfãé°¾'RUa³Í¹i‡´"—Ì=÷L/±¡TVï7i\ƒ¿jáTÖtõØnÖÿ}øçݽ?ÖªÕ½RyåœZ=lpòSû|j‡9ÔÁƒ ÏvÂJQTÙ¦í‡4à²nwìÛ]¹Ö.#â2Z¸ì‘EQ…2{‰½fæi{h#,µá}FÀE6>×ÿ{¥±2·F˔ٱnxÛB‡ìǵ£Ã¨2«ŸÛ·t\âVAžMÞtûgÚßE“ûÃ8Æ/ž¿°¸4i§´ÙÏëû"/œ©”öÐóù~ñ.R+A§*¯¤V÷ݯuT«Ç¥Îví¸M’‡¨6Ù€·x3Ѽhb岿Ôb2FANôä]•µCWOIJ] ±á¿®©{RmAÒΆ£'si›îMsÅÁá)Í $ö¡¯…ž4ªð,*M#°m:çtºoîþð!kûIØc g Ã’_G[ª‚Å77}€ùi:µñTÙ×û¸Û¼šhí›_.Ì›÷ Ѽù¥º2xÛ 3ÅÙ8=É9§ÐÕÄ5“Çûé’|Ë‹Y¿F“Y9²>Gf•¦àåÄ/¤Ê2ëúþ<Œ§Z,Ÿgè+Ë/á–Veí/bKÊ jbŽdܱ¡i³úHš%& µv¿é~‰cÎ@PÌt2”ÓÀ[d;ŠJðð¶ïë}{8qg{<ïZ­’V»†ÄeH e6œ›5› KŸ»Ç7~Ù–ƒ[A!áÓçùVå¦,£ç¿{øæÝ7|_W¹µ^%çï»ÇS}êÚafãép¢=ÕØŽe‰£¶>%=<õ¹ÅÚ4¡ÊNï˜3rÀf oc€ E^{åêÍawìúö«±ÛAeÖivâá|LÞh« ¬°•ùPecœT ‹·$ |ønÜžÚ†üZÖçðírŽ€§ºïÛz÷l©X—lщµg 'yÖѸáÈ`a••]{ìu^VîêÈc{š[G2âÍ KtÚŒ^~fç±ÞÁ0cŒA†nœüð%Nú‚‘¡9µðVyG„^ŽçQ6§Ÿ„}˜D†`øK£—Ia ªŸ>”´×Èv™Â …7fžeV²@³†¼,m™Ö~{»Ÿ×žØ…!Õœî¡~˜:…6ø:¼»´!RºJe°y“ý®Û”µ£¤Ä^‡GÄiÚ¢ÂFã;Ï)lŒ[üR/‡Só²L_MŸÆ¡˜wSHjlÃ9 ÁHs{èßê±Ú1õÙSü—‚Ø%xòõbnÇZwuÚá§àèš8cМånC:2ïc5©Feç¢'¿Áz)¡X­8ÖžÚ&FðÁ6.!ÖúVYgŠÅBì"GóÇ$«ÅŽ6íâ妚h´¼‰Ê"P 0ÂsãâH²2_&ÛÖA}z¹Ât¤%t² Ë”hh$ÑBš!ȇ|k5'5“¬‚¢²‡adœLžùàQÊyõ€s'£-|pH[VSÇå5Î֓кäS"4N€åAˆÞ,Ù#C ~´¤m™È•ÐÞ UTšÎ(P;öû¡VDÐÈx‘FáÝ’Ï\PÞ*ü«ˆ&o8 ƒ:²é÷ßý)"³„1`Á»X‘ÃUžÆ[U»Éá”SÙþq͈NsÿàÕ-p$^‹cᅨ൚mHaÃ.ÉßKpy‹E˜‚<žºçí-&uA½Ÿ*Î"çà9&¬àmÁ”|ØÜÛxÐä^yˆfª[Ö¹uau¿˜÷!û€‡kfVÍ^‘¸ÿ,²¸×ÖåÚVWvÊ ’ý®@Fˆ$b÷õ#%gy‡ågÂõ1"© ]-Ñêl`ú¼Æíe±4Ì«8UD’‘‚f{™ARázŒÖ0ñ¹I&-Ø3Ûˆ+*†oûX4MѧD±P j4â(xó¨ž7d¢±}ÛìâæY•ýgM•´ˆaž„3Hꦰò¿RÃ`[Bq®sˆ<ȹ¼­D!FJ™W&J$¨5$ êó §ƒ.ƒoçe¨ã˜nœŸ·©"œrœÄ(tôíüþæ—eTh#¦ÃRøQdMqЫ֍¥_%NyL„’Šº…"çøÆ¨ÌÇ>êéç-j·™ƒˆÔë»Û§1$ûP‹ú NŒ‘ÞÍY»Þlº)Q‹Kìi!ߨ¤ï’È>MEÎáÜoä;Ä~™Ê„Yk}DÐ;ž:© B!pôpš_†n×õb®²ˆ¬Y#ó”¯÷óþÒ&£yÙ„ÝEçƒØOU_Šq¥ñèŠãµG—±Ù6ÄT‹?óriÃÐ3Ízeqµ˜p\ ˜oS$À2˜}UÎu¦7{‰}È~³4®OÛîˆúoûÛ+‹¾š»n³aÎcchǧ¼à‚4iéE Cs¶$¥6 eÓ4ícvœ±Áé£>žSbôæ7ûºO,>ñìÊÒ·J3·ÈŒdã\ 4ÉJSœ1صíß ”£Â$` çÙHsJ<âÔo»ÇN°áºÐ´ÊsñR«ó u Ö¨ ‰íÐËn6¶Š%;KXÅ}ªlTÙA×]ká9F2´ ©ûg8‡5‡ãÄ!7¸¥šÚ€†mpFµ`µ@[BÝÞN­ðo¿„Ö¤†6…”›í®îö\rR[•|Šë#m„Ååa¨®\Dò_(Ա/=·C(ΕŽåòK¶#êù¬žûI)8Ø î&Ø×Ji47ÈÛ‰ß"ö"ñéFqž$¬*Ž{"âBš—’ä»mþœ/^E]JjÚ)àék¯ÊÄ×Çì›o¬j©5'=+Œ¼‰]¸ª–“ƒE2ß ^ô6~…jÛ±Éó[¥÷C¼‰ò5fºyܤ¡Å•ü²³¿ò”©ð) ±íûÔÓ4Õ ¶e`:W‰°USOõŽR8ûÏ–ÌÀI½#po¼ã<ǵ•÷ñš…;•qàè(+\0 Ør¨]Ï#û55ß=5ê–Ÿ7²:X¬ìÏë}S²TË}ÿ÷×½tLPÀè_¼F¬P´$¬óÑÈ}©ø&÷Õ循8D¾¾M~gª’s/«’Kž!æ O·:‰Høò -…‘RµpîS3XûŠŠgÆ-Â¥Aô{uWi©ô)¯+‡Åý®–†Óu“’F;ÜjÏ~q'Ÿâ¥‹æðX½º;¥KQ¹iÕÒ—:ÎYê0P_'­¦`y<µ›nîXPÿb&=œOOtí@M‹¢ä8÷°¨¤Û¡½åV×ç‚+šÒ3æ? n®vL@ù4ÁÚEîž/!ùn»$¨3›Í6~'|¶›¹Z˜÷hçYt›ËÌÎâïÁ-~m07AÚÄh%½¸ô<ß ‚6¬>Ÿ’õ»ž®üQÎrR¾¼…mK°pÕL‘ŸmÂéUÄ€Ÿ¹^Ÿ§Ûüâ/.jé*-‘Q¼K%y ¤5õxäå³ *üiiOçV 5§ã% nâ½_(tÏÓO$«ð•?…Ý%ÚZ ”S—Ú±ôsqú]CùÙ‹:ÄE¤É/G—û2LÑåž/DÒÏP¹,*çTU›dœü³ÈäZp²X®\XûdÓ¯¾N ÙµïoöAlȽµ‰¯zƒ’¿û™ä]8võ¯,µå`1ä·7â/|D!¿E p—äïwßßQæY}º+Vïï”1Ø©DŠQ&7~µ»ÓAéÜMú»>û À#„«_èØÕÖJË¿ÔyØMkVP_(_æÊ­î52„ÑåÔv™Šöe=Ï™’tù ’~2¤Ž@ÅÆ-°n±Â1pLjqêon°È €§’´ÞIFNÝáØö/‰ÁÀízB :¬ÅyÞ¡ç—çv߯ŒÏŸ´…}%?P’9qGîÂ-…ü­§fØ¿o0Nª›cÓP!8(€R¥1hE:õy(!ö*·Þ–VÖͱÉIóÉä6]Ï,œëB²ÎçZé$ÙÍ˾ÞÝ-õÙC9ýéYT¾mHm Io b©fÌoš2–0N"óçÆLOýýÝÿuÜwUendstream endobj 259 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8319 >> stream xœzwtå¹÷Ê‚ÑÐì͆UăÁôbJ€cŠ Ø¸wá"K²z×®´½ïÎ̳mf¶h‹¤ÝU_57l \Á‚mÀ¦™àRHr’û®3>—ï ’{srÏùÎ{ô‡¤‘Î;Où•çÙ<ÅÓyyyW­\°ê…î¿ÿ~ù›Y¹¢i¹ó+¥-7]*¹®Í‡k¯è»qö‡3?Ýý£o¯WLËË»á¶gê5­åÍ7½ÔPVÞ\Ó ­%µU¥ÿòS…Bñàüú§ži|ö¹æ- [Ÿ×¼ }±­¤}ëb]éKú²%åK·-«¨\Qµ²zUMmÝ#ß~ãÝ÷¨ŠYŠ¥Š[Ë·*–+f+nS¬TÜ®X¥˜£X­¸C±Fq§b­â.Å:ÅÓŠõŠg÷(6(žUÜ«(V<§¸O±@q¿b¡âÅóŠs/*R,R<¬X¬xI±Dqƒ¢HA*ê×)¦+sñ»+ ÌËNc¦¡üè‰+›‰ß\&¯Ú|µòšæk¹öÝë§_3ýóõ]_?ã¦çgºgþýÇóüwÕÅŸH7ØÔÓÕÇ Í?]^Txão<ð,õ8}ý盚næfÝ3Ë=ë—·ì¿5ïÖ‡nmù.¯|D1ý»iÿy›Â›µkQ{6÷rÛÌœïƒy—~xƒr,Gz¿6¸ ÖAe•§…#í„ÍÂì‚G •í 7P'º½ø©Û û`/C†"þÏN/ÝN¬¹ß#•»]ß8ëú†Tîw Òs’A?5ñ…Œ—ê¡ü¡–-RìòfuËÖ†âå.3«óCé º„T·R”²}¹AŽì ”û.PøŽô =ì¦}¾d$!Æc½ñ^üÕ¯ˆÁ`ä@º²*´}”–>º¿æƒ*…-»;—Ûx2õ ïT¶!ë¡•ð$è6¯á<¬ܤƒw‡†-èx‹J¯ó™HGT[«5¥Ejg“¥ZHsÈœâ{ÒñªQû£_”ôXÁ¡/[ÖÔDM…CZ%g{‘”™¹%§oPîGª¼D¸r´uèöQñN×|>·¢²­¥‰¶;œ6»Ó=^>XóA7Û^Æ1¸œ=¸œ=b—·«ÃO…Ç“gÇ€ì´úRãV{9ý€ôwÆÈè]ÆB§^Çê9ÒA˜X§\~Ï‘" i_ú úX2AÈ?Ù|B$¦ÍzÐׂOô Y4CH“þ‰<¨SÅT9ªìÕ¦eºå% º–ö& 7jNeio8ö…‡Ñ-jqg8“ÅÔÉDo²Ƚ¶9ÁÉ9åýå Æ¤KyÙ¼K /æ#Ë¥y*Ãàß’6ž‰àJNõr‡Çιh©èò¨­´Ê ÐAXœn#íµ‰œˆƒô)6GÑ#H hüu ºZº&iôÀˆ;ãB–#s/KÕ*«ôàBI”¶j ¬3>^üÐ:Âéuxñ¿Š ¸|‘2'¨ÅŒ;»ȯˆØéÙ¥ÙW׽η—ð´þ;ñ}­ZôŸY´#ëm›yé…C¸AÑG9B{3y*ñfÇkê@W°3ƒ›`qòmçÝ. 4Ñî»Àˆa>¡üiáhèXðh!ø¼~ð“Ê»ßN)w»ÝSt¹‚°Ø=&WÀ%pô ÑÝËéµÖ&·†– .o¶n⟀B~Äm±áœÓ9-¡l ò\°(Á‘p:s,}¢ç¸?èç'qHtøí®jƒÒ¬oYµ¹CtùÚç`IÑÂjó†Å@È+Òo¢ _d#q(üˆØ>Æ”¶ZÛ vˆn±Ã ùeðóú½ú WÀÙXX_Miuulýd[÷mîi ¸Ksw¨4nc;hH}Äêîï{uq´fMuÓ¦2ʱ§v°ž†¶;ì%…Ý2 ,ßÍÅã*:?76…ç ïRó¯l uã³@T³¸Àƨ-Î A0#ö@uâíWο-’"Ñ iOÌ*çÇÛ¥HkÑ…!t`2;ONÜ üÇðè2|æ´X-ô@ü\6$qò-ǽM®æÉôx#@ ˜A_B<"âü+Z¨ËK åy‡Ãk/2[­üÚbC”Hôí½Õme­2ÄòŒ…5»­…VM-ט>qOzÝ2Ö:-ö GòÃ=ÜcD‚‹s £á`l@RÔÂ0 ‚_ðòÇ‘^í™xÈ ÄÐ([J; XKÏèH¶À&0!*HtüCĺOˆbþ8ÑÅÛùg¶áœTs8'¢Ú½í“Éé8õæÞs<M;­êëMõw;Ú«ôµuÏœk:öÁ¹ŸÑ|"Ø ¤XàÞÓ²³4±©sNí} vÀNC¨ZÃêôÐJ£–ä@¢¿ïäò¾õÿb郒-: 7QO?W¶|ÛúØ+¶ü+k1ð"c6wÛöæ>?¥ j2å1/î#»1(„vˆ;ƒþ”;S^üÊ"Ñ ‡iŽ÷\Þ-PÂlJ¨òWiv;-N¿;Lï †Øv½Sï1Ðö2Wu]MŶµmëpŸç¿ðÊðûèô“Ã̉dxžò/c÷>¡Çð¬—áÙñÿ Ï-'ö/‡Y0gÙÂ…sç.“¦O2…òc‰B½qªkì…PH”C¼øV9Äê,Z×–‡ÖænU¹ëíõΆ­Òcj—Ö¥eµ¤»`ÓÀÆã^ùìp†ò|Âdor¼Ëç‚ °H³æÙêîꢅo¦ÐηQLíC²Èw ¹)‚@F>qÌN'Nz1!ŽFFC£¡j/®Èn«hªrÕ4¹¨Zé:Öáµ™ Ð .,¾ÈE„Ùæ1ÑžŸCä¹,d-è“©çë,Ú™åÚf*GÐ9ô[ê'<-ŽWËËÒ µ­Êm~ GŸ°8XÁ¹§•©ˆÃg£ZM³7Ñêã»itmN;šôAa‰ú’‚;€ÍÅ:XǬƒZ µ S9ÃÉ-÷Öo~ˆïý8¾«±ŒÔ²-m¸†ÚãvÑiç[qL5nKÛúh™tÃ}@¾l<0|&{6ó-¦¬x`WÛÈË<é$ž‚Ò»Íëp‹:|®h7ח੎ñ“û€Lž[=í2¸ô.ƒvÚÕên‚fråÀK¿§Bº&<–ô¢ét ²Ï¹»ZVñ×^ThÑK9S7Öa4óU€óãÚ'·÷lÙ{ê6¶o­|þxÉ›Ÿ|tü½´Øìv£üÜrµ8–Áñ"""ò4ú)·²«Hy˜Ñj8M‘2µ|e`E‘<,c&]ÊÃvoˆ‹vý°õêÁÉâsÿe…Zû°Qºòþ-6µA9”ö¹ÇåÂìx^ÜÓm©¶™èþSèÞ“XræfQùˆØ–Wµ{° ©{¿ŒNž€cdŸc´¦µEÓÂQ YCrd[pd Î&í“5ÒµÖ“›Ó0Œ`_âïwM M긵ÃÐèÔ¶:)ËݳóÜÏÚ  ¥zÁ&7¹¢}ÏžsÙs½ïÐ|—‡©úóªÄ–Tã>8éßD&¼¿Œ¸¢Ãç4²6;KY7ë¾H³;N‡ ͧ‚©7 £H â]Ö°¡Õ¬kc(MV;P‚YàYéZcf‹q¬‡—R/ži 3a.ûáèŽôy %UœÕcel•ÒMjÆÌ\§Þd°˜ŒFµ^ߨÖd¹nß!Ú7 Ç_OœÜóJ²+ÓÕçÅ–e_fI-VÂy§_ÿ¾¤ÿЧJñIè!;Mq UÏ顉Ü|H7r oh¤ŠnÝÝ´Þ‡Ãï¥Oùd¡Ç“²ÌÓ2•F'¥ÛZ¶n=5ÆíYÌ#þ9Øq0z0v<þé©$ôDml°¿5D“í• Ém%åõå:ÊÐß>¾k´uÏ7/f]Xs9°FcÄ$‰©ÄÁ±wßÀEÜÙP¥óè0>[7˜‹-Ŧպ»ŸÇbÛÀ[ÄÿÙ›ˆÇtXp5œÉG¦\¡ÊßÉcr{™ÔXøzÁG nÞᰳ࠘z¶5±F/hýÍgû¡ Öè1zLOIGÔæõ¦õ°–\°kÞE4ãOh>šqºâ×nÝÖR_O¡橘JGµ½Jÿ‚æ©å%»ÑiÀÄr|œŽøFÂÃrÄÕ¡íñLºÿÿ0!-3¦Lˆw²]ÍéÜŒG6!Xë…± éÄÈï3A«µÑ­‘®»¬Q[ŠÛÝU@6Ö)¢s«ˆà8o’“‚ñH b¤à 8ÛØ&“‹ªòΓ”@>LØmÞHTHø¢4š‘sùãþ$+Œfvú{€Ü9‰|˜9ÇîÌ»–3+  pøHeÊë‘©QÆÀ)ü²Q!mIçþˆaðR¿ªý‘béú;¡;ì;ÈÑ›N÷ÆqŸve¦ÚºåëþþÂÅ‹;éØˆ0{½ªö‰Xf„H™^šì­ ÓK¿e}ùæ5ŽÂbóÈè[½o¥Þ Ã±È’cÚÝ«ž®|pí?zë1ÍôÇy*¶»çƒ0ƒFs½¹ÆÖD·.®[ É…ûŠOïÜÏôPÿ¨‹§Ûd÷ŸŸ[˜»NÕØÚÖÐ3w ¥û·_=´FºYºBš+ýøÁ£ó~ûé{{_§ƒA!„µ¯€œ‚¬`l´Z·l]Y·0t¯L‡adÅàP×ýÎìK†»…nÌ7ƒ¦h=ŽP¾µYá´iÓÚK4f±eèÏ—®ÃîÚ¿F\\—fG¥Ù i¶×Ä´¦ b§EsÕ‘®Ž®p7é%L‹õ/ßwù µ2Xns™–µNÖíÄm¡\f‘e¤2èuxcE¨PÞσØQ§å² Ö9E¡P0ÖÿHìÄ õã‹aŸ‘cÔüŽ”€Ù·‡|A𑉎”n#ÁÙbn“Ž^µÓê°¸-,vœÀ ©èaú™=Âô«;œ+%ÝAØlŒñß ™+/¯W[JŒeK=¤EvŠfgÐ)ÐÊ`GÔ×Qô6¾§LiŽŒá{bJö‰a¼ÿÉ8ލ?Ĺj,÷Å~0oERhÿ[r‹œÉèªÆ†¦º†Æ§æ?üÜê{=.‡ N ñ÷áUjô¬J›Cî0áЇ©SÞ€;H„”‹°2Žz»QÛPÝR[ jûF ÄïPšþ› èúÖÖ–³Ä]€]€wÞË@2„ò³­Aû;ü8õË¡d™±{lî§ âa\ˆ©þx/ìáê}ÿkâ4‰E˜råT*7Ï^×ÛÔQk ¸²®nÙÒò¹ð(,ýWhŸbòÑvÀ޲˜t ¼H霩Î~,^úhôÓÜÔÔˆ/ôˆN¿ÃåbÁCÕa\«c-\»ÚI{À¥bD²o2Wà`쬣TzHíÖbìÖ’†¥ÿ ‘›ÕŽ2‹¶¥Ó‡ÁРÅôQÓ²ãuÚ‹É#4Üýán4ãCÿ$s,«¡§´|zªÄåìlAï\*RY6Yñ¹ÿržÚð’kóv#ËùízRö¹<ÇÙKd|½XÒF!*«Ù^B™â¢.Zƒa{ÀJ› ­_b20>Gߪ1y†GºŠãÅŇ¥[_“f¿*ÍZ}š‹K7°]¤ÌÕ²… &c»·wì ÊZ†"´,uÝÒHQåL9´`½ßâ%åaGÃ…í°ŒƒSϘT³V Ç"È ,oïSoE×nB×lAWÛmCÖA[ŸZ¹¬ƒq‹†"å—›sIÓ1¨2&K˜‰ð¼‚t:Ù„ç2Ê †4z<ƒ]"Î ÷È ÊÑŸåÉã¦9²±»™œ7<M{ÿ‹ñ·Ç)¿<éð“¼3l·»¬NµiýŠÒç€\ÞvâÐDøÍÎÏŸþÍ¡«håïlÈ®£”{Üœ§HºEZ¦Rþþýäñ¯>.ï©«½Eº‹[(gè¿õ Mÿ¥ŸõÉW¸ãË\Éç²ê¿´F%µµHOH6Já–½‰n¨Nzº˜Nø¾8ðöß~õK¤ôX ¡«¡[¥Ç(å~·üÆè‰U™¤ÛWIJä}• %-YÜÒ´ t姈:úѪ×iåy¾«Ëß]ô×1iÚ6°q6Yh<d³ˆÇÄÑ{Fõ¸ jÜÀVCÚ»‹]«G«•òÕíst··Üa/³>³3¼I´…3ÁTÈnCTW£«o*kÿb©/tQƒˆL¢«{鋳ƒ) Oýà\;„P”æÂv¯ÈGˆð!ñPä 8òÓPw¨|ÿÆø7YTpÐðÍœƒs¤4úÏ" º»YƒÞ®•ôõ—ŽZ¿f¾l¤å/Ö!ú ÿ|yfWd‡?±ûì´ŽÐ4z¼Oôéƒh%ß#özåMLül÷™äÙØu0íañqìcëc«5‹*+éÒÒe橪Ä(0•ÂjÙ *?C1"¾`¯þ…qÝÔ¼[0˜eÐ-ð1 ÙÚ[m öVZ·AW¬Û`©ÖWC%Yš*=J Äi~ǧñ‰ÉÝW`j÷å¬0AþŒ2:c}á¾PÝ9Ñu¨s"’Mn‡äîÖñUÔT­jeÚÛ°ÑÅŒ]½=é^Jy¦Ëo§”Ÿ±¸ÔЦvyÚ¡K ä¡ÛbšY{QùÝøg4 ]s\sdymæ~S`Q—úåXy N`úùGŸ}v~ϲÇ1rpŠ©ã<nöÂÉ&ÇŠ* ú#Ð\§“~ÏWÀ»nsÝËÚvªíµE y£vý,éz©`]÷ºÃMtÜ‘`îS:õ }¶‘÷>6gîæ ‰áª­Ï¹v@&”‚ '8}N ’œµ¯•ÊÕ¶è²Hz]#Ç£"õOèýã÷QG±7nP~‘æ«R¡DúÈNK\Ó mn,Ù§~ï£ï P|ÜÄ?Bï«ù´(붃 #ëx\lOÁº'4ËX#ÏÑ¢[èöƪk÷®@¦D¶Ä°ÅVJ?#í6¯«ƒ+Š!¬^[À Ñë—ÎâзµA+Ùž0vQA"ãïNaé<ßeŒáøãÏM­Ð¼Ùœ”ÍCþK©lw“ǼERª=f{;X§\º0šÀ.}WlwÿŽí‡‚ûäŠ EÁj“ÅŒ<,Ýú{ °•°86¬èDŽ> §ü''Éøyž B¸Ãâ³¹\¸é6¬„+}l’ôcäã½Aô“\§ZìçÆ€¥Dù$Däk N¿Ú'g”¶ Ý ˜5-±ÌÞäÈ]“kòñØEŠ…y‡W¶]„~XÁ'ÐßTÁ.^¤‡X/Ö6»ºØNSܘl kà9Ð>l]Çyçä>È ‚¼Ší‹þ挭~.Àò.µðÏ}PÛ)ûý>ˆ4ÄlñÁ`o€é¢¹çW¯ýú×P8"V4–˜Ël[ébiÍÔs…^`O<ô =ûÑu°ÛŸ»2Ç~pN^=ì`ÄJh m¶Û—j_²Õ›ê –tʲuãð6ŒŸM¾á ðk’¢ÛïÐz[uNÊRÚ´¤X&N³×µ3†À Èwví>?&ôòý¸§ßÞ2ºlù³ÛÖ¶|?§Òäfe~‹fç¡kÞAÞ÷ò‘ý‡(õ§ÃHý—WS!µ¼Œˆa¸°‰u8dM­­Íú¨1³£sûŽëÓëŸ_\¶éeú¶»6H…zéF¦Õ€†|xäÁo¿øôWçÆ©ž½‰cpˆ|oÃ'®\]¶±™BÊTL¥½ÊQÕöó ©`6åµ;Ób€ò¢eèz _í,Ùêçú^¦µ¹ù“¬prO«j<ÍõPC¶¤ ©Ù¡T°@™Ê0º¸FKÊ@ý¸tþß<Ädð#“ËWæÆÉ=¬E¯áÖë@Wæc þW•öñêµ Wx< #£ÏâC;;“ÔÞ‰Ñ3ðKr—¡¿ºª®®ª6eíîì#QjŠd9õÔäÆEV°õÿSÁÚDFV°ö2W©£´UºªMº¦A"íÛló7a°0ö°qÈ’]ºˆ±¶­±¡d´eüìèÅS]ÔRv!u/úI0Ãg|ž&{“«yƒ´V͘> stream xœ]oHaÆß»sw¯&–»N‡å&a`ŸZ¦‰håŸÀ4´D2¨$Çœ¸›Ør›ÓM[ºw%™¹ZVN36-§A„‰™P © ˆ>, •ì½7N0#?õñy><¿"H@Däñ¼’Be†Rù7(„m¤°BFa0œ!AÑŠŽ C)¦b¿o^ÜH‚ˆÛyX§­½ WÕ%ê*Uu|R‰N[ÁÿW"ö¤îM@ X°p@²N 8ˆ¯Ís fÌ,®±0m p×' “Â2§f&Ñx×ĸzAêÚ}ß¡E<‚j\Ìô_–,Ò“í’cB§Á³ª+£ !ȸí]scƒÍ*/¯)¶• ¸±ýY ¯~aÛ2… a˜ó¿˜ Ì" æ)“3÷çQ”–(-+3e6›Ã¬Èîr ”´H4´C{ñTƒµÍavšÔÐUÎ*¤A0™ž}ùúùÛéÙ©¹ ú ±\dg’RD"_¤4Þú!¿·ß7¢ë­‘ÿ“0‡)Ÿt“~àò¥¬ßñìN>pFŸÞšF08^‘Ÿ£Ê+0+ø¶£W‘Z<Îy'íF×]n=4;?ÿ8;õ`UvF«¢….B9·+§àˆ÷îÐýº¾µ‰çE ËÎ|ù‰fpÂrjp_¯‚}ÿÆ÷nb1aI„ÒrÅX~Gõ€áž¯ßëÒßÔunˆ¹F0xƒ‡Bé¸T<ö1ž]yˆ39ü$VU;Ô‹ Yåjf]øY€nBfg‚슆_?=„É€H 'w{wÃùf½É*Oãv‹‰»DYc½ÌÞÚnGÍpì:ÇÎc$«€‰1ô ‡<˜¿tc€Ow3ߢ&7É£¨ž¬èHþ>o~endstream endobj 261 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3876 >> stream xœmW TS׺>1pα"b*ÕÞ.ím­Š¥Õ×Zµ28G,`“ÌcÀ0„LHH ˆL!B˜ ˆˆ¶`kk[k­µ¶Vk½­Zïm_«<Ú?ÜÍ]};j}ýÉZ{­ììµ÷þÿÿû¾ÿÛ<ÊeÅãñ¦ï Z·Û×Ïo™óÇ|ǼiŽgøGþãçÉ®ÈÜ\Úžñ˜é bð™Ô“Ô4{Ñ?-%='[’éœ+ÉLõ^—–ë(Í–¤ÆJbÿߟEy¿‘º.Í?=03+;gcŒT\+‰‹OØ‘˜œæ»ü¥5ÏP”µ•šOm£PÛ©EÔN*„ ¥vQÏSë¨=Tµ„Š © j=µÚH½Dm¢‚©-ÔJÊ“P³)o*…ú3‰†b(u‹WÊû}Úþ³üƒüºsõt-rµÒ+é‹Ls›ÝÊ~7=rúà½3M‚›Ùã nÌV»'̇éðxü„sý“þBñÄÔ¸Øñ"sU=öÃA‹ÑŠŽ²¿-¸ø'pÜhú¾ïç¹èÂÞÑ­ÖÝ-!(TÇâÿœ+„1f,¨UÛRÌ &F3š¶…ÌE{ò÷ìMOÌ‹ÓJ‹—ÃM!XáU²ªMÛJV9Žç4FD’U¹{£3rö!1bIÞ ÔÝQÏ4T˳#\ˆÝŠ|6"¼m°l83œðAáY’Á™à~üΜ…¿·¶ÑŸœ3 7Gô¶îýcý--]5è2‰0­©ÈÓå!)›Å ðò)’¬”¸Â8$A±‡²m]hPsŒΟûU<0ù„wžæOΞt†X×#L8Áî_½rÛæ´—zÙêûÁ¦/^6á7r‹gà…»ð¼ÈÀ”›:b5t©R[$R0ò¢ø„øè¨-Y[Ð+hYÇîÏßúHý ¹Ïã}gO}u§û‚éèÛ%˜ª(*—A¬™®«¬ªœ1—UÉ ¥é……\ ùȋهÁ¡vxÎæ˜×íÙ þ> †®Ó  #ø©¹¥ŠBÑ–Ìcš*D¾,(Cçgý§û[#ž½A…”Z•ˆ\ä³'„NÚ¡ÉÎoðà÷L®q"çg‚œ0Ðè*¡K‚•ë##÷„¿¡ÝDÊò4œ×áÔ³ï<ä÷KÎÏÜïv¦GìoÆE5ŒúlÔñ°ÆŒê4}ºAlô¯F£ìØÇµ'ÞÍ0q¥Hqˆ3ÒµÃA‘à^•¶Ê0÷cÖJóe9HΡ¼CÒÊ‚Ê]b×=+ÅÌBp“~^$:®xÿÚÆ¾ñeû¸µÕÉÝéß–U+P)b‹ÔšBvgP™VÔli¥²º¶®ÎhâŒU&C•‘`‚×Ùíä‹›-Ù;ó<™ôÓ}sWàµÉ'…¯‹±»7—̾¾†[h”R‘r8£=ê]ùIÄ^í;Ud—0¨PWˆd¬X¾1t|t˜ƒ˜ÏNÚñ|ØÉ<ÄœÚæx=”S‘øý¡vµ–Wä°XÅ]“ëÓÛw_ÒœB sÖÆ÷u/{Ášá :;·Â&rÌÄ,³Má*nfÚšËRE8ƒQ½¹oË:ÄÆÆ /éêQÎ’5$óN„©§Á´©qbøÒî㟰ãZ†TJUaI–×¼,/]—*(¨ ØrZuDÞ hØK‚`1KZ½TUF™³Å8“¢ë&–÷)V ^íÚOë:+û­Öc'õCˆýŽöÅO.ÃËð,µRUŠJÙâjM5çp£ëa7Q¶²MtF|R\¸&±+覮6[Kç'w>¹sáŽÁh4#3[«Ð˹ÇäálP–Çë#ýÌ|·Ù°0­MN¹Šg$‘‡Ã‰@>‰]^ÃÏ…Õ…uF‹v}šv¢ÑÃÇúØPðfH®%z“k Œú(6.›2 ßf®>Ì8Þ›ŸØÁé5zµNÅb%ãšF•¾/<-¢˜÷J/i«‘Y[í ~b:Aì¶ÂšN^¹RÑ>,€!œ£ëôÆZ vãÅ¡!²¤hQHLz b‰ð–wå†íºÓé+*‘ž5—J¤êŒB—±owN C»[3G¤ýÚ!4ÈZ]ÐaÄÚÛdí®ï"ÊÙòÂZ‚ Þ6ö!G`ü‰ÐVp¦‘ü¯_ž¢(¶Ÿƒ;f¿§O~øÎdÒjÍ\Aqé‚VÁÍý–l[‡¥µs,Ô´,k]:'ÏB™(ã‘eÀ‘í°âû«íPÜ‘ÒëùîýW ù¾éêÁ%@A¸0;³8 %!I}ÊÑ´HelŠa1« ®}‹úmå üB— bm1bßJhé]¡¦ªÆ^Ð-' ¸9nÿõ˜¬=Ã&j­n­iÓi”å ¤`s65Õn´¥µ¦$$ÈòÒ¹òò²òrRR“²’üZr()Î7ï/Ëw-–4ìíÎép—Uj+P%:zÄzÔT[Y‡j{—>ó Zë#ݱqIýe¹è`a'óŽùÜÕOG®ãÌ.Yh@f†¹AÆhÐ6—µ°ÿË2|׸fÑ=ˆžøÃÇ!v Í‚âDSŸüøw†ÑÌ Þò¾<[ú`(1Œ›Ñꨂ`-Œ{aW§[ôÝH•ؤv°øEobºúáé9YÏc³ßÚ}`xÌ'_0‚S­« àä˜õ3#g`ªË̲ø&_Ľ‚LðbY›f$(¼]f.0TÖê*ê ·œ?…®¢+;Gß´n´úW Ö_‚ý>3†¾(ëŠlL¯ ý(J“.Î /ë‘}ð'ççyÁkØ ¼Ý›#¸9älPŒ™t&Ä Î57iÒDøÛ 1Úßt,Á|Fp³Ê…‚‹IÊŒŒÄ¹ Ö¤AÒ³»Œmm¨›íIïŠáïì“ç9«ì:àŒ–!Ü֙ɮ[ލSESŸ‘½ÈÆ {ФÏÃl™³þÅÃ?°ñwþ°ñWÛ”;lü…_•(æ_çjXûüöŒá¦´íË fµ´âÆ›;ý;¾KZU“;¹ÐÎkrÞþÓ„Z|"Ïâåïa¿sx¹)eE¤o®jÏð8žæÖ‹ÑÂêhcfM¦9ëö<=†°gU¾>ÇB£†Ëe»ád4·Xõm¨UkÍÎ$3=!™RU\V*Š}6~¡daò /Õuòtd{ýÍŽ?KÃ.xÞ”+rä¸þÍÙ§œ&y›".#xü¿:n“d SúáCìÔQü'±ÃÃŽç9¾`^G {Pm’Ió²å¹\hæVÕ¶?:pu ;ï x@¸óq¼#´i!vçæéu«EÅŒêŵ¯oÙ±}çî­ E¹•°¹ŽeŒ∮«öévÅ¢¬²,”Ey=:zendstream endobj 262 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 677 >> stream xœ]‘kHSa†¿³y.[ËËŽË(Ù¬ˆ ¶’JÐ ³²‹Še2¯i»z›ÊŽJºMÝ7o‹hø#WKkËëH—U*b&(FD!A†é~„ß'±…ýêçûþyÞ!<€a˜ ãDzªü \þ7ìd·óØh>Ô³o‡q«ƒ">…ô¤bDDü [< Û²û˜V­«(/(IÕæ”jbÒµêÍ% D±ÿ@b@ƒH xp@ V°žps´ƒÐu^î*hóèõØJ1êþE¢Íì²$|}¶—êw oh`y³ªY U¢uyßHzðE+Ž2Zçk½d%,³è!•]Ø> c'ÈN£­¦ºÖPÏH³”iÆóÚX±~gÝ^ltÇÏGál¿¤w|Ì5©ÙÅË;8Lžx4E–q)ýbfÃT5À h²¡™bOnt/$Lš¦kÕ³¹ÚR©""Ùr&ÙñÙ‘¹‘™×óð'…vqÑc\ÈNx†#‹œ.÷§»·¤K-Ý Ð±\¿x á¨ÞŸ€øQ´íc?J\žûsHNjŽœÊOJadW.Ø¡Újl3Ùš©y‚^ZOÛ›R PœN°¿Ê•õuÜs@õ¤Ì©Ì¯Ö¨Ò<ª®©¯xš™€CpÈ6`Ÿí™~?Áéë£éî »înI+Eû'ÝŸûÛ.lXžÈEª9pÓYùØípö<¬z¤ùGhõ /« ª,Z>Cñô.ž(,6+¬•æ!œt´á«Ä‡Æàõu±0ÊU·<•}A/'`3ÿ `¤&¢Þ*¯3\9»UÁ 㸰XŽ4›°¾-¡—P7Zù52TŸMêDÚ{7ÁeBrEèÛ$ò9Ù"Ÿ1*×endstream endobj 263 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8263 >> stream xœ•z XS×Ööäœã\I#¨í9Õ*Z§ÚÑ¡VëXç*ŠàXAæÈ”@€$„Ì;d sC "**Ž«V­¶¶¶¶÷ÖÖ:´Úkowü¶ÿ×o‡`ÛÛ{Ÿ{ïÿ$‘ì³÷:k½ë]ïZÑàOøùù \¿4lõŒY3fxÿ1Î3Æßó\ÀTð?'ç‚!`È€Úç&‚'GÀ¹Ã|†ð÷ó9a/ioFztê «y»£S“_ã%íLþÓ/ ‚X´ y!oÑÞÅKR—¦½›¾,c9_°3sת¬¨ÕÂÝk¢cÖîY·>~CBbRÄŒW^}íõ7F¼9sÖì9oM˜øÌ¤—ž›:;ýå11Žxx‘XKŒ'ÖˆPb=1‘Ø@L"‰—ˆÄd"‚ˆ$›ˆEÄ4b3±˜˜Nl!–/K‰w‰WˆeÄ«Ärbñ:±’xƒXE¬&Ö³ˆDÁ!ž%¸ÄHB@!Ä(b41†xŽ šˆ#ƒˆ$b(1ŒàÉgü‹±·Š(÷›á÷Ø?ÊÿN@΀‰Ž¾ØM&R¨<š¡+èæ Ú3è‡ø Ére¨iè¯ÃÐðØá÷Ÿ)Á¡Æa9wŸ•=û3·eäË#uÁ˃m! £âFÁÑ GŸ“<æÓçÔÏþ03—õgíì½¢ÆÚÆÞ§÷˛ǿc|Úxùø® £CÉ_ýv=K û5`L5¡uÃH·'Rà×Òħzt÷ÉUn*9ÊÞb3Øõ6¶ù;½X‹Á(¨#m@+ÑK«Ö„˜ùf™_ 3äƒ|:9BÃcâa;J©Ú»È®¨—,‚áïÀõ‹a¸¬LY•2€2].\æ®Bo¯DogF„¤-Ê×Ð0fqápø9Ž>ö«ÿšq„Þ%æ{f8ƒ }yÉu˜t=˜Ó¾ß³_NÕ;•ÛXTMíJÑlb8éñ§ý¬.ðg’“~NÈq»ùTbšn WQ׺oÜ;U¼é=eS±{UÉŒ€ô­?ç[¯ow ¨ä½ºÆQÀ­iÊnH팰okÀüøŒUš{!1*¯E¾ÃŽñá]'lrkApÒ×ð/÷?ætzüvœ ص6@7×+v³OꨨxEœX¢ì–ë'£²RS9æ8jêª<í:z \@~ǧÛ/;¾®)½Ksšµ`4Œ†Áè­¶×ÎŒ MÆäîra(Y J´%À 56Í'’“‹ÁðöòÕ ¤9êh4ŠÌÈ,hfá±PM¹JŒU M^Ÿ¥½Ds:Z¥btèÄío2øA8 !mð¼àô«ÿ¾už0.¢Äcg4ŽF£á33!i8ð[ ¹cF! š€ \`ÖX€3\êh««iµ·ú§Î7_Ü ^½Ý›•…mZwLò¹ºØÕE4>éש„Àýx¢ÛïÌ#µ!à1éùÜ÷ŽniP8@sÐt)ÚHçRh7\ˆ^†‘ð98î'8µHa’H”2 #£$hàô‰h ˜æ´o>¿­Wx\ç-Ît|uçÌ]G/¢ Dja ‹tf+ ”Yc•¶¼¡Ö0>(¡0Œ%¸ÊéÓý¯C×·Áœî&/˜J¨†zŽW2ÅÓla89Ý>0åxÁÔœ¦oaµp^eô9þ!œCaà}ø, x’ˆ.ص‹=KA7’s•s"&Nô¦EÝ],|6 }òZçº5Wä6)`òBÛ(æ?~¡1†Þò¼ö0˜ÓÕõŸ@tâdbUóá"¢T8‘pZ^Î µY@h¨~2’«Ú£ŠÇ¥.\·a?6oØè¤ £ É¤5#ëÉ¡€Ecº­ÄXÏT’U Z[n‚{Ù§^r‡Y—‚t*pNkò½1¼²Û˧ÜÐåöƒnÃ膀ÎÇoÿÙÒê?ZêyHuB{`")Y—¿¼g¦Ôé ­ j>% ‰§ƒ9ßßiâ6&·åvúó{õpk¢g7w„—­+CÏÊÁuúô§ög$-61ùZI‘]_XÈp5Fãèo)³Â$Í’¦akÕdŽ!ך¥ÏÑå`ƒçee”nOUª“ÿYœì¶…ÒKVó׿³ñø%£²‚b¼*G“'eÑp (5   óty…K¡ÑÀF“Ñh0Âx_°º#~nÚW}¯÷U_;UÔ^ä 6Q I›\¼×¹ùCQ78:Jê›ÍúBíœ8ÙèΤ’yúN–Ó…¦I9×ãmT“K½…Eó©·vÌ{#v›å¨‚Qã@ƒ2/;‹½ã'Ø;ž_û\ÐÖç—"l±Ð-^‹ŸÔP»äñ¹9Z Æ9å¦DØ!"@ïIÂñTSû›ŒÍv»b$áç™á l|Ï—NÄqTzq9=ñÅÔ `Hq½{`êþ©¦s ¹e íÆ¢¶{?vÜ«:Z³ï 97Åé‰R. 9ŽH] ¾“rh*Dº ZIôì)?}?2c“,K–%ÆÜÚýÍîoT&¥˜i¥«piËŸn²Zøé+Œ^kÜ~lI|uèj—5Oo™Ú2]/Ñç©iY •ÆRÇñÊ“'+Ob!Vd´7,¯\Pû®#<Ä(4dT¼Ì^€?)lý©íAÛâ¶Ê¶@»ÑÜxªVS›SÀ©Â$iZÆúŒ0A˜*_™¯–ÒRQ-ªÎ¯J½€_çÕ&…×к}  {j­*ðr›.‡¹)Köèdzœs*¾(UÊÏ݃_²Li¦"ï"¯Ì«Ìw¤ŸKÿ0¥WeRywÑSÆÊFÚM­RN'ûÕ†“×£jágPç—0ùúÇ Áíyž«¥‹¬$>ꊜǦSè´8 ˜ùpïù“½5'kY-¹³9®ýè}=Ì™ÄÍTŠ"&1AÙŠË& ƒ~0þðëá¡ÙoeØ÷ºËµâŠTcÐTîKçè’áK·om8¤dô€~pLíMíÃC_ùÛ‡C"—e BS"+“Ú…¶œsóCŠ3›FzbRvVdØŽÕoâHîÀÅÑ© ü’äì8 ެP/+và(+³Ù‹møÉb1­–|SžYŠ÷1æ[òq¾ˆ„R‘¦,2îáŽôí ¡2@+4gZD墒¨ƒ±Çvth Ô@Gk)`®w•;ÛÑ}oÀ@r¼¯ œEr 0ñT‰ÚŒé$Å$ ùùRq–(Ê Ö­»’oɵcËŠJÍvmÿ½„ÓúSׯ M?è 6Ý hòæY}rŸri[?Ø·£“w‹ža¼¹pà¬Z¹ë7ñwïfáE¬zž¨¸ª²¼Øä¸ü€~NÛ©~íã Ïéëgà€DÏÆ¦‘yõ˜mç2»ëŒ×äêW= Š8‰Ø§%Ú©ú>-!}Mô"ÊK’%‚D@Ï#ùBC=ëi¡ö·êÝÌÉ>ÎÂ1Eï;=—ÿ”äM LV²§*2dÿŒöûgX2C TZPÒ*J#WÊTòœØôȤ¥Ë°Î5ŠŒ%¦b+¨¥k¥é©Y‚ôð^ÇçWÏ;™ºÞC:ÿÞý·Q¥û‡Ï?Íé]ªÀ…¿C}_)Δ ÙÅèµ|¡L˜/%­WKªgÃÕ!*³ÒäcG_šøvÀ…n*¶ßïú\là>È&65ß æ\òxÆqù’l  y™Î¢:ÇÕ7ŠÖè1‰FŽ E#ÑðŸC!çò¥–KN¶Àd´àÍ-8c3uü,1“úþv^$ ÇGþðå´Þh„$¤mê§W‚žoêK€Ç,– “›<Çnb ÚÝŒBŸšijTÄàˆ9û$‹Z¾N¾ƒádbÜv]ÐþBr2½â¸ËMm3_´h±œdµ­Q`˜£®£eŸ ÕWÐ2š“iøeš2`píÕŸzß+Ì{µÁ¡}ÒdZ)î£ãäñ §K,Òæñr +¶×¬c (!(BIJÈr4k š¹Í–gK³•Ù‚®¬C™Ãáèõp4¾æÕ„Èí2+n•|ŽÖ6x]~GjàµÊ€“)bôV`©ÿ°ðÂ7¦Ê‚*€©õ&9 šŠž™††(d²| ¥%V…•ÿK–ÂpŒHÅÙÜñ’tu:Hô8;†à÷8Ä`2™±¼¶‹ ¤ÌŸÒ¬ùlº¿ôú¹j«U¯eÑ.jOË6GV"ÃQàÄEÃÿ6ëé©loaWQp® ÙTR’îë‚OÔÜ" \¶}½¹ÂZip€.p8­f—N¡Sjå4J¤"goX°ñÌ1£.Ö«‹iŸÔè 6ãM 8¡É³¼)˜SêUw<.èÕ F]¦ 1© Ô8OÔâõŠí 'GÂí‹w¢¯³¦Þ_gúȬÅ8c=ª=²eþ0] ©‹®‹©‹¦9‰y&“¨hŒŽ´éµ^¨{NRN;N)Fº…HNérœ+øÜŽÓòåì“w¨'´§HTÈ)Í,ôE'Ï wÕÁ7~pw.pš´M¶#9§÷´²{Z6•bP£ˆx=‡ÈïÐ@8þ“‡®9X­N«Ã„i–™ò3U b)“ºsSÊf°D:SºùûU] “ÖÖq­§¬½gêK-e†rpt†[iÅ@\ ö"c±©¿,¸á 8ˆ‡{‹¸³h‡1Dfljn±Iê&·ŠÐßW¤_ésN"µ+]ßÎÂá7~›ºPþÍ'«Zearòó… ›æ´§• jëK«ª»7Vîš¾`Ù¦¿Ãj„nìmôŽBoë°Æüýà!¯æ{5m,ÃMÔC¤O[!A[(Îp$šøÄpîóÁ˜Pt‡ 멺2ƒƒùšü(Ð<™?“õ•i´Ã—^¸î‚"—MT&ísøÞgÁœàÐJîûÒ-»Àzœ~å&œVó3F•ObÞ £RZX¥µÊ-z`•U5"— è·{¾¯ÏseU±*½Ü tÑG##—)½©$,Î--³ÛËܼФ=QY™ŒJ­T(ÖJ 5Éô4ç‘=™gN3ç利 ¶„ªTV§4(q‹¡ÁÝi¶@‘£«Å@¢‹2k脹œ¿ë4ºÑ'NWd®“Ÿ€¿Ê ߥåˆÚ’È“ÆçîQÆ‚• ´6ÿÞú8DÜBêTÙ…OÎ5l\¶6yÊ””BG#¬PU©j¼)3gÂ]rAÒé)oð;óή‡> ð˜äÜòùVð pCò"n¶,ªBÌÑ ““hi´¹ÌmNgÍg—Ú‚Ÿ\‹&Â9(ÜBKH´½…^A»ÑRÈ 0ÞíÖ[ÝlU7ëXt÷=OnŽŠÙš£Ï1‰X4ªg ` C/Ã0¸ü§¯–LÚÏ8ÂMa  €D五NryyÉyI€ŽM©v·48zÊ6o/fÿa–†9Ëùkp/–óÝû½+£k•ÛØ'Ø©2ÜfäÓ;5QŒœüƒ?Uë[åœí[ŸIñ’uÍ,L¢@ƒ¦!×™~hcñf°,JN]«wCpºMá³l ä@CàK7w—¯‘o¬–ï`QM#ßGFØ ‡˜ŒNöír©äÔ‚&ÖCQ1ªÀt˜ËMRf¥€Tzo%¯±©ª®žá¸ë2œ §]¥Ò¨Æøúü4´˜é¤E¸ƒ.V c)“Úš—+NÍÍgäy²<¹d{׆š€ž„—£ ¹G–]MbdÊïÈ«VÔ(«$3š7Hzöª3'!¢ 0j °h,4†’Â$ÉÕH¤ ÚCÉ ò íu5…Œ™¼âæÔï©éØSß_özÊA¹]Ê­,ê¥_›øôFåÔÅÂlƒ>›ÑRe&‹·­rf”¥¦f“Ö]Ì8|ñ\×¥"—Ž à =±Ô*(üg×]÷¹îû§®Ã-‹ÖíXµ}{;àôãÙ\àŠi8ª»ânq7ÖuzYãÔijOê©]QÊhfe<îœW’Qј=õTC•®‰ÙOö‚«ùŽ™–8]¬.Žn }ãœ?èqXÎ?\WÓ¿hŸL8£ ü ÿx¶OŒ¨¤ Ð[(±¬–[±½ÄfåØr\QgÖ€d:7W.ì—1ê¿Åwôɘ5€ïÞ~:º{gwìÑRKqq±­»íd÷o#§ |\["ÊV('F&ñ2ØÄÔ¤Ô„4Úã~ñãýðmm÷ÚmÇAÑD²OÔOíŽJPÇ2yäo©GøÇ^|z«;â¥êZØÇþÞ©@Æk|'{ßÁœŽ9ûæãÍ:|YÊ÷fióoYº’ºvè‹N•lYàœß²´o½/Kù^§uü¯RIÉÞYy<5îWZgD±wVþNRÚjLÞÒK‹«Ö‚Õ`alÆš§£ó Û -ÿñkn¿ ¯g*(¨VÛD6‘.˘}…Cë/¢uÆì‚t‡·¡­(Ð׊AödBÖRcª±V[SÍ)–”ÃhlHÃŒ–Wë^6äèSËÕ´™,Õ醢ýp`;¤ñµüx鉊ãåÇMn{ƒ·E8…\ê žëvÓ89ùÙŠÜhÂ6&ä´Š÷‰[wÂÁ»àà(8XeÍ·ƒBº¡8±¼,‰¯¤Nsº-Ú˜R ,P¥*W&”ç$„Æ„ÆN”$HD‰Yí’®œ;àÐh8|;¢Ñ«õ@O»z@½oô€K«ÀùxP½_û7°Ú;o<‹ÂR2Ñ2€&шmFá0ìÎ¥Ó_»™š ƒËà;1 XóQLûúš @î}ih4äÉ$®÷ØøÕ z gõ'Í'O¶–Û*XªÂgMhr(‹(€üehÀ¬˜\yŽ* ¤Á@%¬Þ¡/í³Fë~<·|â÷=?bq4uVÐO )\䨨xø£›ôN-…€ŽˆÓd=½”Ei òròr™­Ië¥ÀÓ­¾òt¹ýzÁŒ»÷< ÜŠεõú»#³ç²"*?tÁ;Ë–.z'$11)>1Q*•)° yXÜÓ-ó*èdåÖì\™¢ï¤2Nâ=‘ì=Ù{ú|ÏG§>>~¤! :?6tê╌ŒJtd448ªœ-{Kâú¿Ì¸#a&< { ’IUr Æ´‚‘A·¸¹¸ˆ™<O¨ßTŸýºAà÷‹ªo܆4Wô ••ΚÌêd^º áÅÛoÿÀï!÷—·á4bó–¬ø†Su²Z…SM‘ƒê»{¼ƒ\ÜÑP£B/´Šª²ò² Òxe<Ø vY¶—* ä:,ßÔ¤ (å܉\¥ò Rk¡¥Ølb\-Jêh#ù£ ™??ù#zéúÎÞìï÷ž|‚¬0ˆç¼ç½x+3áù V –mÚ¦PHå˜BÕ”6ߨ4‚RPÛl/w(> ŽÒÂs5›¹79©*ÕÍr®– nái˜:ò¿¾›óýï÷ßê¿ÿ7gŽr¸Z¿Î;Ðt'²ð¯\ îXÿþé…úš–â} 4çUðè½™¼´òtg•£¤F‡òÉR÷ ôòCKЈ.F“áÕŒ3·AÞˆóuȽ‡p(¤gA?ôÌ֙юîZ_æmO'LB#PÀWhvú|ëé2V GsAžV òT‹b'MÃòÿè+v?¥ûØyûG@ÿ­ \ÍúäD%ß³À«ñnÀ`Î%ø®üÿ¤ÏZ}úìRŸ>CøÓï§ø#àÅ‹wK4ŸÿØ¿Ïìú`N=|¯„ VðWmÞ¬PÊå@F«(­Ì—5­¶²Úý¥GA7}Ptn >+A‘•‘<:¡6|¶ -ôVÏ«\N«÷ØÔÑ<õ©M>-³Á ÔkœPâ¼é :s F4ÀÅøÚÌ9&ß<ÇíäõæA§­½\&öfÁƹkç…Ï{ { Åï~ˆR&Ç H,y65­%KµÜbÿ ú…@?8pJßßᬃÙhÂLe“XÅÙ²œ¼|f˺¥iK”¸![ –¸6·§T¦–íôøD¿ùò)äÿÃÝ.øM«Ì-ÆÊt†;E²ix…~í8ðc%¿³¶AðÍùJòÕv8x*ƒÍV)ñÓÁ(™«X“4e1 ç‹aà©m«­™Åëܶº–Ö1ŸºÐ€Õ}ß÷²O<¹ø¾5 ¼zÌÛÜx% ÿ°Ô+/žòFŠ“Œ#õ5 óòà þ’È …ìCUÛb+«Û_vÁLv!üxðÒo<ÖG±£a )œ<tÏ{ æ\¯òdrÁ‡4,F`öR¼YŽ)^RbE™¼9‘¸QÙQºª³Esy]½+½&žå|Ÿ¤Ø»} ûßÞ͹õÏ÷û¾`C™üÿÉø=ºÿòXÊ+3³$Œ×£ÍhÝE´NAC J£Òh“Á`²ï-˳±ÈŽ…ó|ÀÙûá|81™l&•ÖQf™^¦Öšù‡c âBÀGø…Z¥˜ª³Ìù¸ö Û‡Þè €ÞŠB Ñp4\&çƒr¸ÔO>ÌÁUçýl°€»6Ÿï×&ÐèôƒMxž:'õ”ì| -§¾þ™è>RéyÚˆz'Uþÿ}÷x6õAFÆ“g£¡è¢ÑI4UæI1Æ´2ƒÜäm)Š ÌnSéCh¸MøZÑ]~¸¼[g1+Íq˜4r£l §G£Öh¼'$TÿyˆC˜‚Øñ/Ø×!ù‚Âïíë~` ºAýyw^È¿ÒתýÛya¶w^ر·2«¦Á^UytcåŽøÝ’ÌTF©RøÆdX‹ é¶CŠ–“/¢ mèíàªDÀû_ÒÿFqšï~zøc&kÔåòj™0O$@h–Èèa‡ga1äU“(PÌ (œ?d Aü® ½°endstream endobj 264 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4040 >> stream xœ˜ytS×Çe O—5€Ž@ÄÉS𦙴9iÈÊ’“$„@ †°0xßð®}ßÞÓûiß-É’¼ÊÆ26ñÂN I@NJ“Lz:I'‡vfz®è£“¹švÚùcÎ;úC¶Ž|÷~¾Ëuž`ò$A^^ÞÔÂUW/\¼paî̓قIÙûò›øâ?ßwsÓ˜‘3&÷Ü7wê\¼jÝsc¶`R^Þü‡WÔ×5´¶”5=°¶¾´¬iï«[v×V•üÃOÁ‚½Ëëšš[ä»÷¼®,)-+¯¨¬ÚXS[·ô1à ÁOë…‚‚M‚-‚å‚‚ÇÛ/ V V ^¼*X-xMðŒàuÁZÁ:A`–à^²`Pp1¯oÒ½“nå['O<:%@½Jý·piÑ7SOO{vÚNï›Q3ó³D÷L¿Ç8›ýÕéyú‚Y?LÚ^(0¥­²ì’ôܬìãù¢a<„ÿ"¶ÅÙ˜¾M•ª7À2?¡-â»lȰûz™TÜK†âç@;øN52 AaSØ”¯ò»™5Ù©j3F!Þ´·ã8.—$®}ø›ß U×®©[ѺVjjÔ7B5l©ûìíÏÎ'i‡Ûé7 šfÚH9»Én¶*%¢áR]ýÚ*K[t0ž í“vœMÿ ΢k…}ëß\Y]ÔD“AþcPàÈèdø»4Ì̽9ã›Ú¯æ‹F³ñŸÅÿÖóOž×—yÖƒø?PF#£µ¸-Nš¦â=œZjWÛÔŒfÿ[‰n«~›n«±Ô[ÿ< ¥3[õº°=$ÅJ¤H$¸DÁeø´ãÌÄøÐ3p>~ëÔ£1ÄÂ_CØEž÷1#q…¹h~‰:ùQËcRÑ(<ò賿´ ^J©Aj'ú-nû0ñAìƒà¨ýà8ùìSÔ8{¼VÃSKW.U*(‘¹R‘Ê.•çaáÜóY~vRv­˜¿_ÃSü<àïCÏ.Ä3é…ïa„  Ë%ßñ3é/ùÅÖçêù¼•o¶(j4u€¶V<' ½Ÿ÷ãÉWNwÄú"i@.ꤥwl0œíî_ä7eð£é,ÎË–_ÎÇå‡Ä=±úcd™Òïñ2<ýBí·ÿ²¥¸¦²Rj©èÝ Ë¡e¡~a„| 28í¦:ÀÞá‰L.”ðËd2«œ‘K¾õ3›œ­Õ˜-:0rÈL™´vÁo fÝ‘¦¡›éx">ÆkvJå”ÀF.!xäÙ‡gKÜ1OÌC8€ÛÄÌî ÞÎÏ"GãivÝAg ƒ%ÿð±?^䥯lmÛ¡¬`å¬d¼3:AX–]J¦+É>(VšThA­q]r ½¯çäšXÉöÂÆâFZ=¾·g™­ùI2›Ìö¿øŽŸû?øï¸Ã¿É¡Šc€œT¿Ó›öuŸÄµ’èû×/ùŸJBÜÚnÊ-dü}r¸õøiMÏÅOžÃ÷Ÿ›/Rà‰»\)èA uT^¥¬®{ñ_e§¯ýzè‹^ÚÛæŽC NTŒnm+‰¬±™Ž"ðì©þ#ýƒú½ZaUk¡iBšT:Ö“>·¶û­g–>^‘ªPÓǾ‹ÃKHtè•åo”(ˆpòJM9ÀîÉàÍ„±"²-K”‹e‹•UÉ*‘A¸­Çù+ï^y·‹vy\>ð"§0ht˜›¡Ee¢e{Ê ·j¶v$îvOBzœÁý .Sðp@¡ 76y´f3éj*8ä ù3WÀé‡JhÚ kUƒ•®ã§ÙÍ`6À‚eÙm‡(ÐhÕ¥úíRBæ¹)¹¥Òi‡|.^òqö‰o7œ/ºš}ì„ØIEw½«<Æðcÿ ÃJÛ&ö4·Èš9Z4Z5¢Ø~/4Yš¬Mòçjø™ÏAo«W? ðï Ž‡rÏ!‰Óï 8¨]V5˜ fÚ°Kµ¢u¥qÙ£°n÷êo¨'Æé°Ðó~ïùŽw½q_h´éàú—‹jè»*0ù?í¡àêvÇ‘èêH¬ûÔDAÌ£ÖWijôµRùææ Pˆž:[üëÑC#íôåû,92çâ)—ˆg§ûJFëG}¶ÏkláT Fj*W®)$³vÅ¥!txÉsË%NB¿#ˆ: aE“Q¡²Ðê¡’D þ_ð+xJªŠy޽v­àôŽeÐ1sÆÀkøyÃUcE «{•5{ÞÛOÎ+#¾—¼01uE»rTäÒoAYáï;îœ ö|¦ŸÇjâ¶ì½bO·¯ËÛ}o–8½.?øPØä2UTXì´Þ®p€‚hÉ"Æí”r›†Õ¾Ä—è‹4E° é…®W¼ð5qâmáoñS€§kûêQÚJ•²å²†„_X,fk,µæÕË;ùYKmÔ½?"uŽDŽJ|ûbÝ]Ýû·o+½í9’R$-²éwÉçŠNàÐPμC®0ž›Iø¨)ý‚- ;RQŠóYÝhjd› D©uë\ë LV«&i QíqN+µ Y™Ef“ÕóS$Õü¼Z~^?ÏTSÃU2Rz£Mg2Ai¶ŒjWĉŽH'’§’'œ§Çq[Tf©d­FZµS¶³ªrçÎuÚ7UQZÐräZ‡Î™óç©3ük2¼©/çÏxÑÇùÙ9i±fUí²u%*}‹¹š¡)¤ëéò¤bЇRºH]mÕ6@=Z|ï1ÚIáÙð%žÔ‹ó¾ÄßJÜmž6Gr ÛHà×lôë¼S¿}×Úõ° H7ºÿlÇ»ÉSÒP_lWh›¨Lï†ðæÓæµÀqvà)Àú~D=6B8”½Z[«¯“ÊÞl|Ö£Žï¼øv¬#Mÿ4¹PËÏnÍÎ7Ûå­Ðˆ”mšÔ¾DWÚIû…¬Nmãägóñ÷/>ö ž|íjÿ™“´Ç ×ðÂFƒUk±ÐÅÛWU¿¨¸¨ówWÏàøþÞ.cS»ô¯Ùi–eŸKc¯<%¿#ªLv]vžøŸdáYDDwE!ª-ñÕü(:)C)ÀÞÊj(SaT­)+P˜;Ýþ.o§K²irŠ^ð.àÂ&§hÔÆpLASe¯bõ¬ÑNN¯îr/I1¥±É&¯ãgIl2¦Å,CªUÿ$>…š(ÐÿWz¸<’œ~ûæã¬§©x¡OgÇð«üÏHQ˜Ïÿä©Oüñóké³§¤^o ·N!0L Y­Z»»ª°e# ÕòóÇž©?-N\:}ý@™ýòÒ…ü ë dGóVÏ˱—ý>øQ|Q|kv…ø9Ê`²Ýué/(;ÉAV!ÿ‰Dñˆò‘ÖŸ÷è^)µ"–`¬÷ê½È!Lù£1èFª ¢FQ×X<Þ<þûa<ÿË$Ý‹'ǰ° OqƸþ$äòà è ºcR.lp½}’ ñ õ ú.†D­~³Ü¦•sr¤ò+z½½Gv¤Šh õNÉÏÖ,a”ŒÂ®¼»_|q:ûÙ­[ÇÄÍ‹,üOù ZÜ­îH8Üí(¥Œ(h†ªaˆ^ê¼[¯²ƒ9#ø.õ<ÓÞåïñõÝÈ>$q†é‡8!¶ëY«¯ågKX#g°› ×ìÞ %^õA"z ~•ÄÓ¯œ‹ERá@jŒIo*°s,ØÿÖÿîøköÅò±9;M ~—Ïé¿€C§Ï? ™<ÆÊ2+SIë9%1W¨¹¼jAf ¸ñsnqFkÓpZÄÕ}¼/ØÕç¥âå©/ŽbêO°`4TYûFýŠÖ Rcƒ®ö¢Mcõ£—F¯¾— o“íA³[¯² vZ»«aÅ[€ÔÖ¶¶ÁØiã±±¶ñÐAOÒ„T®“o(/ÓËêhQc4kÑh²›ZöîúŠ©l¹z£Ýf·’>eqN{OŒô©®Pw< J‚¾H4§¨_£m6;“*¶*¶(¶jJ$ÖÜ dn~»ö IŽ}£ŸEO:Ý )‡\ÈfÛÀ¨ue{ wåJBW‡/éO¶O´OÄ'Âûâû`/ËìdXú·¸NÜÂÊdÐŒä1m’öR¹òÕ‰’¤|åRù‡ëw¿^vs~†ôQ*ËÜœ'†Ó^K3?åÖf‰n‹¿îA¢WÊÄYÉʼnŠI°ùiQª·Ï•.ÀQ¢âž>¶§ òDHš´éfº–ªƒ '%Ý Üàv¸ñ½Ù~‰;áìêô)uê´uU­–©“r,—+º  v:I¸÷â—%ÏÝ¡Ež°] &K&3g*¸ÕCÉ€ÕZ[[T[U[ì&·$Fè0û?tƒsŸ7Œ w¦LœwœÔCEˆˆ"ö¿ùÉ;xN}޶¹øìÕ•ŸÌ]Â;°\<Ì\VÂÒAeUq*r[·Ÿ£}ÔEúëÈp9\àB>›×LâY-k0¼“„‘µƒk' C_(MòÈ+´~ôLg‘‡Á`tp´³;38vè„ ÄøŒÍ¬"w¢«Ê°ªs ‘î¯éªà'­ç¨\Jûƒæ >I¦wæ¼!drš *-•vG*… }L˜RÑôJ¡´(%ß­·%·ë»)c†¶þ`w—O„G/ sÏ}žÔ®›‹ Ÿ‡o®W3Õl5ù±†ÚKiâÚ*³Ì¦ZÄÿŽ\[Ö‘jR8^qôRê»Creuóû>%°­ŒÂX©^GºIˆdÔwµI1=B..¤-ŸÝkÊÅx~çnfåâR’â‡ñ‰­lêz ^ƒíÕ{ŠØÃ»wÀó y\½pÀ‹ô~{ ‡íŒyèàPüÜ0 ¤¯IÕj•ÛdÒÕ|üÎÍcÁÝ«‡›ê÷¹SÞθB’üüÃ/®çnßUu¥ºRc™´ˆßðŸð¸ú|=ãøEIêú ,¸‘+^û-Áb#ËK~Ù²ÎJ ¨ KîUGàsù:þ8pæÜÁLÛ( °&»^»«1g*[[ŒhÏÙêtÅÞ†G|Ýþ~H£c{O>ùÊÖ’m%ôsèe—ÝŽç™xÊ|ÑE¼Oרêë¡5´+÷ÓûÜ}iÈ ~Y¬†þ*®ar¿³ ]Í u' ÁÁþýRÑp¯,ÑD‹.²Ä: fÝþÿ^{.ïO˜kmL9Ù=Vh °~·Rmàñ9CNÿ_»iÈìÖÒ|#Åy84KžÌ®uàˆvS|±CxcÚ;Óéiù¡gLþbÀž+endstream endobj 265 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3290 >> stream xœW tSež¿iËwoy:½fÊæÞÑõ,Œ"Š¢. ´ò˜(B·H…ÒR(}'÷æÕ4Iól¾$MiÒ&mMŸ`)¡ÚZy¬‚@*» (2®³8Šº®¢_ÜË™Ù/Ðñœ9³»'É='¹ßý¿¿ß?""%‰‰D©Y+7n\¸dáÂÄ—{ã’¤øÜd“ ïû>y œž §§tÌ•—†Öýýìoî"’D"É?f”•”s²‚Ê_¯-Ë/¨,ýõFey¼r7þågw‚d¯(+Ïy®R*Ûž·#¿ pÃî/—,|äÞ§–>DO¿!Ö뉧‰û‰,b#ñ"±‚È 2‰çˆ•ÄjâQâwÄbâqb-ññ "H&$CÌ"æâÐ ’¸,*½•”Ÿô~²:ùÛ{Ê·Sl TÉd1¥K]žúêÔ{¦ŽM›=m|úºé§fÈfœž¹hfÑ_’h†˜9yµGãÒ¨eŒŠÿ€V_VO1¹ZÇIÛj‚,J~w¸WêT°z †µ­¦æí ' Ƭ.K=¬§¤½¾®Þéú´z¶«ÉÞì…T+´»ÃÝR—ŠR¯¬‘Ê|ú ÛžÒW¢ô)Á`c$¬rs¬0¨¤ærµ»Êoe#Àë4.]Gî쎗"[#¹«Ã -T-iRéU5j~«ìeY®4g¶¥ÆªÑ@ª H5Õ|q—ÍÏ¢$ô7‡ÂJ·œ½*‹¢MÑ´?ÆP奱túÆãGÄ7¥e¤L­—)›«:XdݰÛÞÕ|6rä …³.¬h¦èøñŽcãs¾xô­Œ Z-/õÕt°ßÜ”ŠQ¢É6Øfó)úÆ!eçËÛæÀùžbe©r,‚Ôè€mBÓI:~èEæ¦m¹L·B2¢³Qщ ˆ%£ºøïÅUýôƒPH¡î½"èn4ãï¿«g<$¢}+Ìb„tA!†u6¬£Þ;9»xlí3ML ¹|ë¢G–æ^52?Ø*¢h~>ýÂhš-^Cœîghy|®x€wpL0B£Ý)^¡—V¶‚,}íèM /Ë´çÕu±èIÆmn×¶ÈØ”úŠ_UJýÓ7ˆºñ ¢ú¥EE>‹ìÂz±!cóÊåZ•;þ¶ÇîÍ,l¶5ÃfêÔ¹×O^y:Ó M63óÓá:C8í_á (È.ÚT¸yå¼çX5¯¦J«‡<Å7*{ô0`Ø/ÈH•‡Sð–=ÌrÁGvíŒøM½Œ¦]A© ^wl£*í<#|äRkûYŽG,Ø^ß{Ç-*‰¢ì¨]žöi ¥Åúc‰!øâÓÉ!(%y¹±ò‡±‹/¸¡®º …RÈpu‹TÁ™ÊÌv43ë/*AiJ²Ô_ $lDÂz{=l úäõr^USÊ(…4”MÒ_¢š  (hiïð¶D˜÷ɹ}7sSèM&»Q"Ukx–þR4îÄ·•ƒDÏzQö2ZâÑ‹ûÈ1°‡R\n¨ä[´–޼/Œ,ô.YµF¡h© ±´×UowI´Ù›ýÐGÔ^©Áhƒ&æQ4\B¢™ò€¼3 tž\ëÙ¹&«hëÖ[ž-Ñ5hš\M{/ŠÜ£é´Ý×#>XyÔ0©q”F¢·ÿåðf?›æáÛÔÑKM‡÷ž´42ô>®¡–ìu‚ìy²CÛÂUëLZSäËsì„Ôã/–¡‰O @²kçÕòŒl¹müE‡tö@¡d·•“³ H™G xZÛ\? k)z)ŠfÉÓÐ|\šÏ? *««å|«6Ì~,ð ã`æ·W†>©›¥¹­;+ªz°BS¡)•ü³öðaU •¤ßÙÔ‚‹Ò#­S2ÂãU#/WJn;C6”†“3†øØ2”‘NFq n·H _”gbÞ²dÂ]|œóñðPKä0ë/¶@*Z;Ý}r—’Õ:&å`;‹6‘ðÓå#K=J‡*!õâBKFy@ÖÓ v:1€,Z-,/'×,×l)ø}û±cŸø40{]{{!u;{tz‰¢¢OðMžS7Y4µïuƒÌ߆ã*r¿ÒÅ1¿j«N •”—•‰O®ÿŸ@й©n²&c¸ðçÑŸq5J[Êú»¡®‰í[û§Ò§^bä»õù°€Dbß>x£Ÿiô¸}¸Ö®^YdçUZFY¶K‹yðÉÌ‹²ôÀÕ3? ´×ÚwšŒN¢¤*÷M 'vö9p®Â|²¨+¯e;¤„Ô‡æ Ó„)WïASÛ^y…Õ“»ÂµA&‚í‘NEÇn‹7úƒ€¶UÊП›Œ6“äyÀsæ2ÌêaVØ"|v›6ÇߺôþЉ]/61[H¨·ë¡žZµ9#séöKgo³§åºûšÅ%—“Ñl´^ŒF@_“/ôݺ¯„_>|¯@ sÑŒÅhêéÑà±~¶ÑÝèƒ^,{µ!U9ß.שùÒš]ð˜q¼jœ²ŸûÏŽœxKÊ`¶kÕ­ òshÉ™7Ρ¬ i=gÊ'ІÛ{&¾:"ÞΗl†[paÑ=;®_C÷ btÛÑõ&Ç— ³!U ôP‡ã§Œ€F•šî0[‡E×™¨§ª»f¤þtéµC¯ª“õ¹Züv'¨Æ“ikï|¹¥¨x¾ªŒµXÍ3Ô;ôMz§²QQ§°S:°.]k\HIXÚPæ“:,u»⃵ƒÊª† XÑXÙÊQán1-ØÐé˜sü_;‡˜Kà¯Lϼ Lá²²~ç>´ƒ56›lÍÔ0º!¦‘ÓV眇vPN0rtkvζm9µ¬äÀüC¦×©Û$¸‘Gû£(/šv5†žÅ`Ü$<‡bøê$MW’œR/“·j:ì°ýw€[¤:üÞ` Ú[ÎV¢c`è¸2“ÝF άwŠ)Zeöxk½’ã#Çz ^iÜÃÚ´V™Rô0W;aÇIøš¢¿°—¢_{#²÷ôksùÀ©ûa bŠ•ùõaö¿„<1Ê#}Ðo÷CêÍ/4l/*̯b¥5R[¼>‰ÂñïäALYùˆHÐø×ȉ…aY®ÕÊÕnu[-‹Îƒ¯7Àêb0Ø ‘}]½¼KÎ÷9g)ÅÜÍ"A1ýy…•——Î)í¨èéî õõH;Kú†µÖf•ÜT1z cµóšÃo\¯¯ºz×MiHˆfËN­mM*/ÏfÅ¥hÖzŒ™’vS èoêf®’íæ@1só>ÀÉÅ쓤¬IÕÝíubèáV[Këœ|ÕDãšX/ÆPö»˜Àj˜„ ›ÆÂ‡¯ï ‚Ö¼ ß=Öó^ë~ÇAxBïö’aS˜¥Ãji ‹“Qò0 »AR÷6“'Þª˜^á€äÍœvsÞÆõp=Ì;¡}Ó‚A¢Ð…ÿ½¡¿Zeåx×OÎp7Y^­ãÔMU‰>|B^o{XÓ\Î tÜð#,*™µ³GèÇíñd4Í„¦®}ÍL¼<•Ÿ'î.w¨˜€Ç+$תÃÚüOQúsN­ãù–ê0û%·z‚!•GnJ2‹æ“'›¯O¼bßRÌ2É㉞\¬¯°§¥ýÿsPFF5—ŸÊÏåK ·k+„xõ¬ª”ßšJýhÜü®Mžöz õãž ¢úï“ÄÂoªž–A!®o^ÞÔ—1úìU¬' ÞE/ ô·t§dÇpÇö¬_"¡Í›Y"ˆ…Ëâž÷Œ9Iѱî`_ð ";…ç²çힸÏÌÖA+ÑRÃêÇ¥æû$ v<€LñRñÍù‘2•ŽSz« ðºÜå²ÕKžÖv,A­§‚ùm\`ƒ½6RÕ-|…ÿe`…Å»òôºZ­Cg®6Yªa5e!íêRnÐïè÷u…n¹E_ñhh„ôÕ'®/û _Óé1ôNœ·ª”6Ž2‘sJEw9w8vàg)€¯BÃ#DÑ}®ãÎuÇíX4°lôpÁr†³Bü²Qhõ/¹I#˜uv½sûì[ÖŠ€¾É:»Î†‚ýC¸®Ÿ¢`SÇëNüÌÔð òñŒÉXs$¡µn¼ä”KåpUØ[tà@Ͼ~†Ø_²¯€¡ÏO>' ¥üì@â.¾­·¦åà£Ñ4zÛ¹ø"±ÊZ£U”Ê£ŠÔ»ì°žAÆüãóût­J{s6°ü™0?å'G:ˆO×KþÆáÛÑ£¹=šûw¢ŸY㎯hDϺÀ»ÈÿœúÆ4fjróòé©ñ?*DØendstream endobj 266 0 obj << /Filter /FlateDecode /Length 1168 >> stream xœVKoäD¾Ï Ü}‚6Z÷öû'V +¡Dâa‰Ã†ƒcwf ¶'±=« ¿žªîöÌd™ÊaÚ]絛¾ÎSÁ(/þåßvÜ=í¸öš*S(í4å²^pª}!˜3ÔébÅÅ´{: Ðr~n _ÿ¦Uñö°ûþÎÞ…‘’ õÿ¼oÆÉ»Ù¼³bbEEþiÇâM ZJ–zËxQ?ìRµ¼ààÆþ8Âõ¸{O~ê÷Ç9”•rž2.ÿ®¬¬bÔ; ²5 '‡<ƒW/Éúa³†ÜÖÃÜ>·CØÈ¥@oÊ’¶í»0•ÂÁµCTqÑßÛfm–°`–—~ÚŸ?›s¸w¿l׊ܑòÏúg,Q_”(”¡ ZʺۑõðXÖý§ Ð`§EÒyOîÊÍ)'ÍÔåhÎ’u¡Kyzï^eµ•Ò…!fR m©Q¼¨< K1S€4S—Y½ðvËà¾Ô CHrX×øÕ%_ÔE=·9SHÆò8©†L´½41Ô:ë7“OeÅ(ó^k%®P€€DV®šOýRVRsPpätÆ‘÷cÈ_N‘~:KÆ~ú%´‡©‹úZ¥Ió°†y3ÀŸÏýøØ´ë÷I×{át¥î85ìÔ®g¬„{Ï™»Zˆ²Bœ”¿Ú*IÙ\VÒ´mÂܬýaÊÜEx§í)ŸJ(MRi´ZÈäûCF®„ñ1®³©DX jÓQXÎ{U™!3lÜU,¨„fíëðFƒ¯ÜWÔ•ä‹«=ÑŽ:n¶2÷ØÚÎ_í‰ä†ÐóÍò% GI$I_âŽKá<É1½»HߥKÉp9Íš²” q‚4'(tá©7Â`ÌŠ T(ŠJ ja 14`u É›ýpœZlÿ’¯˜#Í|’[l¬ã°~ëŒ;‡<û×Û”â†4ëf¡#¥AÂÔ?ÒtDÉï¡=ONœc6—FÍù¾ #$º^âÅÇÕÀâS`³ Ù7»ú[Gÿ±Ä\¡í(˼*}ù‹ø½x"©9uQÉ›ˆ[l©sÊmŽ9åeŹÐäMSJD©ö°2ò4¼ôqÁ,LQI2‡ý–%EÂ;ã"uI$éH³gJy÷aX®‘;*‘Erü:~îâR•FˆX¥Š+ä_„Uq¬:1&òªCÂ\PÀ#ÒBCñi0‰_"çFO:öLåÅ\/Cì"2˜°äïHŸ Tš}³XG]™Ð=²DZ™ûR€ŒþéÚøêÒE0ÂüïãÖÆWLC÷qoD$/èÄs–(n;»¨ê"•µÀã±^ÉÉ}?5Ê£§ôˆÂy{cÒµ²æµÏÈÀ+`ŠÏ÷*I{ïÈР=íñ ‹ávè§Ð̱*,åd9e{—® y×abÈ"ðe,,Uɱ½Â!-(æb—KØÂŒQä¯ —ùØÞfI¶i–]ß&úˆî`Ö÷Ø"Ø-œõ©_esÍÍíë››Ûí‚“¯·LLzÑIV‚äAO¥1@: 2žÇ7Xâüc ÿ*‰úb¿Àé_`«b6endstream endobj 267 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2412 >> stream xœ• PwÇ7㊀×öÒƒ«ÝµíIϳk¯U;7GéµV°>Š b%!É&$@óNø‘„„„<$!„Gx*ˆhÕúèÃZµ{NŽë]Û»›û/·væ¶Ðécæææfgvö1ûßïÿûû|?–²ãp8¼Ü¼¼žúæêAú½b}/WÁ”Í}<·i1¤q!-e`EªýNºQËQÙO°ÅŽDa´4çJë4òjq%X]‘-xtݺ'×{ä‘u‚œZ‘¼ºB(ä ©*Q­boö ¶I+ªE”F°úé*Šª[ÿðÃõõõk…µŠµR¹ø·ÙkõÕT•`«H!’«D•‚ç¤J/¬ æå­?çJkë””H.È“VŠäJ¨TT‹k…†Ý)©{V¡|A]®©W×<½aýŠ{0¬{{ÛŽ½„=„íÂr±"ì÷ØFl¶»KÇ–sš9€ÝÅz€¥`§9M´¨‰»ŠK)Mùrq„—Ïûl‰jɾ7âqüöÒ]´=c.Ӡɇ¾ëRë.*AOñ]aÿ˜+zZâÉäÌôÑ‹€ÆT%Û… O]DêjÀ:|ë´tâ¯G è7¹Ìz‡Ù`'ë„•"ÀMþx¼­ËßC†ÇŽ¢%p·p4w}a‘HB˜O•í1È©ÆýŠÃ.pàF¯­-Øâîõ™ÈÙqÀ{=r¥Æª6ÕSÓ›v/óP¦­É"NEMÁH8ð.OÛpk Ï ™—’è— [È¿Æ=Á¤óMû¦ ÀµzP}ÖVÒn×;pbv/O[åC4¤}1x|ÞÈå´” RƒâWGËÑOÑ}è¿m~cCAqy­„T]Þ†oõR{ìûôg#gŽÞ㥛Âa"¯4ò[;ÀŽŒMNÄG?-Ú³W)¨ÝBÊv—–þ|ã5¯ÓÙÞâ"3æHÒ_'9söë\´á¾Qä0å®fEkƒÐA¢[<$F{Ѥ@¿zàŸL6Éü§Ñ±oБì‡F[s³]G~lçû†[\¬ ”ÎCK?ØÈdÔh™'gRÈÒmOlfRg²yF§À mÎ6§‡õLoH½î,ÁA+Σ__àÒ¿ Óø”M¥9® èºÂƒí“6õä1?®ÙÉpHJÄ5ö†ó‚L]#UïU57‚žwËÏ:½G €Ôyõåúí[.ˆ>CÏBËǯgG÷z‰b_¥ÆñHÇ›·Æ^> 4³ÀJ½Â¥—!ߪ.ÉÝxQÃèäÙ‘ë]§IËüTéÀîÕåÌJý‚ñ¿‹èýôhrð°Ï@QFJWE WË@Œg¿#;ûîÔ¹V7q°dR3 Ó?ì wކ^7î±yõz‡Uf!t»4[˧ŒÑD‡oØÓCzzÂçÜ‘Î÷2=}iðà=õ½ViT˜Y™e e¢3靸¾§ÿ]À㈶4›ö;šI†ài[ÄN-à¶Æùêt¾½¬6ö]Öí>£ØnÈ,ÅP[ÝÆ@(él “ˆä…šG!À=!–F=¨š,àl œ¦h‡Öp…ØBÝ4$Â×QÞõp‚3ô9úãM.í WñK8*Ù0(;šºº†;&ÎüáàÞQM%E(OFÙ1œ|æé7vœ­¿zîØ À_ŽJÅõúݦ}¤Y¢|̪Öî ÷€ d  MµÃ8´àqMHY'¡D»gd³'Š]ESÔ1.Î9tG⻨“õ·îxðE×x§':Mzº>i†NŒLLB+ôBLËÊ/š/1MrfÞBŽk\dŸ[Ãoqº‚ì¯Zm>½m¿ÝAÛlJ‡¡4YÚŽÅh1TX(âqæKS54ACÖý¯myÿ‡ÑÜV&V+‰Ðí¾Xœ¸Úçî #½ýÞD[kœððøäàøI_ÝÅ”%’7ŽÌƒwáóä%.¦Óùî8Á;_u+Õ,Ó«QlU0æÌf{Ùúg |uøÓø«ÿ Ê'FF T™(³†,_Ù°J桜ŽÅ» í6C¥¨¸¦¼B¶@äª8évO²¼uk‚*eUCQÉDÅå¯Ð’?£ô–¼‰ïÜ›¸Æ¥Gþ?ëL5Öz¢ˆ)4vH&ò!‹YÆüŒ!™Õ«.¼ÿú©ÙÎyî-G¦ >ÖÖñ£dXäB»]]X¹Œ¨«Ý$w÷®ç UûßMŸ˜îûW×Q²ÿüÌøàoDŸÑÛäÙ©+‡¡Œu×ɺ‹žMÐüç=V±™^Ìg{­ç®Ôm:J£QÙS¸v¢€Ets7“Å<È`—w¼3u¤§?I*= 4K*k²„bÈÙCÑ¢hí øcÐ1o|}ÅÖk¶sè¾Ëï2TÌ7K•õ*µÑ,ªe©¯$Ï÷ Nß,9tf:yð‹‘#i×.Î@_/XÉ¿ÁùäRòm.šKáw5¤dE­ò`c¼·¿{€`¼Íåï`k“UÏRW4&>yëÇŽÚP^ν¾µ¯Û ’þ>_{ßàŸ2}ñÀ «óxÅÈ·„Œ@÷=‰›S}€‡üV©¡Yk¨%3èÖ'ú£y9M7Åö¿GY=Ѧ¨¢V&•©ÃêîÞD/Áˆ¾þ ¿)¿hS>4B“ÛÑ2v÷oÞ I¼FtH~æÈ šà<è÷ƒFÞCÞžAQÖßcÌK1”ƒ¸Tࢂ06i·æåÙì¶â¦6‹7ð—ÐÒ×GK«ê¥uÒ¨ôPw8ÔB°_ûÕ Äå¢ÒSüaiWÝ>…LRPö u÷ö³!ا!úMºHsøèyÞA¶9úÛ,šllrh ˜S<ˆ ¨X,–î3;žím~§«ÍCÌ\9 qÀ?â=Á ˜)]9X³¨˜)pÈ3v±+ÿÃ@_¼É9ò6¹Ê¥§Øõ#ìˆ ´µûØ~àývñf³–IecÒ³ßÞüºÝ‹ÒQö+ê¡Q’ib¾àï*M^e©+FOÜ‚ÕýÏ2ÙL*™¡ŠÑ¹þövTã1eþ%C©×–©)Ov¦-M¸ÓÒ0ì?Ÿ`.?endstream endobj 268 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceGray /DecodeParms << /Columns 504 /Predictor 15 >> /Filter /FlateDecode /Height 360 /Subtype /Image /Width 504 /Length 11505 >> stream xœí} ´4E}g]y‹ê_€u÷¨¨Q°nÔÖ †ƒ(¦FET‚kÍšOEÖxºW1¢QO÷Y ]Ôn…h”»EWb@Nw£ºÓ !QwZ@³òòv€£ë'âݪꞙžžç~üÎ÷Ý{çÕSÝ¿®ýÿÿú?6@ƒZbc·Ð`wÐ_S4Ä× ñ5EC|MÑ_S4Ä× ñ5EC|MÑ_S4Ä× ñ5EC|MÑ_S4Ä× ñ5EC|MÑ_S4Ä× ñ5EC|MÑ_S4Ä× ñ5Ey‰×(¶é°#¶üàÎ"Nz!ÙM”vø]xƒ¶Í9àìch· ~²!^ ¬ÃW4¯jy[!¨7<ª``ë  L•¿—!_7Ô°;Á€³Ð6 ®[Äo{ý×°F€«züµ- yO¼oä9þ^Õˆ2<è–Óvø;lU|½§Ûòý¶º§ÊJ|·Üèψø`Oô˜ß.Bþ&µ€‹¡®†¿Û¶Cì€õoù9"àûâ½ý×zÈØß䯆nK¼/ý\x¼è Ãú¨åëžøû¹(Úâ ÉžÃÿhõEýà3CWá6ØèâŽ)î‡.nÛÔ²õ.çÇ!‚>ñ›Á6Øòø{·¢×ü._0Äë; åFB§ŸÇeÑŒÇê:?ÿf«ºH[;âQQÅcå(5ñB­Ûˆ”;S\cŠ1B`C¾…Kéðw@4Û”éêøþaÔþk€a‚†Ï‡oL=MI4ú±'âÆ[o5`Ç–1å¯=KS|ßS†>ú­)òQ&ñzÿ5‹ú¶’">ý\üµäAâ—.KÛ>ÿ F‰Ww…HæÒWªùÌ÷>¡ùzîgߊ½&%|œÜôsqQO•?ºCQ¿ÎwÇ–‹.*\cÄ;D*|=Îág&”0„Ì'I*y]¬·¼ â7ú¯mC¡ð%‰O?'ŽGúW.qPùƒ•»u¾¸ë<¶|h”kž5J<6°o3¸é3I¿Ž0ç¸] *=>YÄ÷_c0ŒH‹Þ8òœÆ ®ô͹øAÃHsNuG$ÑzaÇ65Ýü¦U"^¡[»=„ò JÄom­æõC•ˆo0âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦˜ƒxˆ7Œ tsCOç ž2oö7X6p~’ÁIJ¶Éß Ð܆øZ¢!¾¦hˆ¯)â§bÈÓ³_b8°K¤Î6ÄOäØ.Å[#Å6“æt¤µË“ŽÛ? _'䬠çù˜¸º?|[›ü”•ÖîmJ4ÄOçâ½À;æ?Þ(þ†Œùê@¶Úá?wÊãélˆŸ_=ù½:pL;zH5»_L+œñ¬hùÌÝGCüÐ^uØÇ= ‡ò*´]? ÛˆrÞË¢ß5IJ<(À7ãOCS ¾ý—m?ëÃk‡†øÂèéfƳ°Û\Á®iFË¡à5Ä…;™Ïc+Zç‘%Šìô6W7¦9Ð_ÈÙ³©¡H¥ƒ]Áùöžì·­â Âç±ãÞÎÔáJ€Ë¡Ù7ÄÑÆ×JƒèHi ªÓ›…[aì.â‹¡×É»Né”ÅŒë£!¾œ/À©Ö.ó ñE»­ Ö91Ê¡ÌÐ_F0ñ\;ËÊ__4Ä@‘錜rMù†ø(4› Ï •&£!~2òL¹!PWELŸ ®â'£`{z¾W‡mC|dÅÕìfËt˶3Ÿ_;4ÄOÄ脇NàÑì.‘ goå¬â'!cŸUXw°›é²V9ve@Š, 0­ñY»3ÄP]ÆÆíÏ((†×Ìø|d+kDþøíWM Ôµ÷ß6k|>º™±“9™TÐq×ýä— Õ3*uïógÐzáø+_›q}°e» ¶ ã.Þ`¥çïYÏ®g󯩢æhàÉÛÏüƒ9ƵPλ÷—A{„8Ëå’ܹþÕ.Äc·k $>‡-Ö:úï¡Ü9¾ 4^ +@<¶®¸CÏØ’ ͹óžïFÚÈ ™!Ø5Ò dÀµL²Y;,‚x©Ðhõ ^•b2<¶2ðRô„§Í¹…†ŸÁôÕ•§¡noZœ‰?~d¡Þ‡µ]~ïFónp'†}@tUlð#äe†ÙA4(fú¸—לx®;ø>†Ðô€Â²wÀ—‡EÖ9€ vÆÀumÎö0ï–/ô°ëbäyžOif>îŒ_ØËw¬9ñ]}¸Âò557eáÐ ÊsÉÏH õÓôè…"kh1ÔcÊï¨üi²ÖÄc#éò&ÚJåýwýWO!ý@KBséfQnÏù-|] lÅŸ ºÆÄC…uÒõ*å=þúËÝaà•FlHàÈÍ£`܈çtÖ`†¸Îø7“:‹(…¦íƒ­ ãX[â¹LL«Â+”÷Ú™Ïá߯…¥O°µ-ä¼¾ f›—Vc¹[§†\¯A›úTRí0²âý·:âåP“v« ׂ BýqI D :+‘÷½ïÜ®²æÂMæí–ẑÏÄg´`kRž]q0Å3‹Þæ\} fñ|ŽÕÏõ4¾‚ñÙÀFë?¥Ï%—ïbì"¸c,¶@íw,°ÑÁ´ÑW…åÌôÃâßLHÙK³ƒñfCÖí•Áº 6+œñNàK/6øœ¦} ïPÚÒõ…1¢vc;+ˆpQ  rû7 Løé{OOÎ(EIÊõk{»GïúŸ ·œLýô¬ƒ•®ñCçCâ'‚ò—þºôL®2¹ž_L¥]óÝT­?üaztÜîˆß¨WÿÔ_×¾bòÑ¡A‚ `5ÊÜñ·ÒL¬ƒõQîñ½)ôaØ]öŽ×hö«ãg8ä¡/†áÜóJ}ã0< ÐŒµÉ]Ô"Ã'B:bßó½8_ˆâ™XëCü´(äFŸBÒ'@Yvª±†a–mÃ@¤ÍN„ _è>ô ³)ji ÌÑg_Xnv>}9(+ñKOGOGOŒwBöu<ìtrâ®ãÄßtWk†¤«}wžœì²ƽ-°—Úa×Àx®(}C…0XÌÉ+ºØ{>£ ?í,IWåì Ai‰_rmxJ’ó0¿(¶¦u(B à’3ù9(hW2oJK<è-µÎ”–¬U<¡Ü÷Á´ôAè ºîN`Vy‰_nBr/é~b3„5a7, ­`ç'å%¾h˜ÄL뀉߳_¿\ƒºöÉs%&>OÝš)cÎx7ì…^<ì´<ä¬6r`”˜øÑˆîÅ!YѤX zlI­CæÍ3TÃܹ˲-ä)™ š’8ñ š]!óR-Lë‡2_¬ Ù,p‚x´]á¦ÔàªÑZtôu_äËL<èêKšX;jÜ!\p¹ͨEñЪãB§G©‰g˜-¥Ñ[Ò™–?áˆÛ}°·Å’õÌŒN ÔăšZ6’ªYÞ„‡ ¾»ºK~¸éQnâ5E]Æ&]Âm—;áWŒÅUm}ʉ0³œýöe¡ÜÄڱN<¨¯›‘49€L–L”KŽ7](¾ãéȰWÎ|¹‰_NϧÁÎ ‚ ›A£Äs+OÓs[»Ró¼ìÄçÎÇ-ñØÐëX¹oVÐZºàÓ¦(~ÞX«ïF\vâ—ÑØ1жë©6О~Pîñ¡F7’*K¬ÁB¯àåšv2~{ØòjDþa¨`0yñÇ Mî-ÇFXême'~ #»(£ŠäÆÐ¦ÛiÍrxÈ%¼îV-ߎ)6ÖPêº&VBïèpââÕfJj ‰XWIl÷ÊРÄÛJOüâ§¼òÒt¨¨¾ Þ³_ú弤è!´0{`§@)DüÝ/(ýåav•ø÷$½]5ZrUz·ÕwKO|Ñ6Åñ}tl (DÅ*çñÇ%_¤šýNµ= Ê™¶ø‘T/B¶‹-þ–È´Io Y–)q”ŸøEÇ`¡«nÜÞƒ ƒÏ^˜|Ñi{EzRƒÙñÅB„â–‡ì`9D,ȸÐÞ¤vî™3ZV]2¡—ŸøEOy-kaXœŽ)Ï ÜuKEiŒ…ÂTß±*£2òŠìÛðâVÐÿ“LŒ/s€GÝ”·p´‘´Òo«ñ žò½#&P$[IMVBñFÁ/y6Š,,èxŠ8›õû7";yQÉì’2úäÙÏþLâ™ ¿Ø‚¡Bñ‘äN¬«°—ÎÔ‚]Ý„Na?Ô°Ž2¢§HÏR ¦ÁÊecuÄO8‡)&t"Øí¸ÐrƒÑ8¬e0jxÚËQ2žK¸WL1¶=7mŠ”„xQ«mì‹ %^†pJ5s-¸¨(Œ‘Êø’Óo¹Øõ¥M…¨y ŒBâ Ã÷à²ô!Äs3K_­?ñ„ H\/':?B·MHü.êAÇŽ hžŸ}ûûGìyÜÀG®^”%Nd¡Å ôü€?·Ð€®#ŒÕ(—ר I¼¢sÌm$¤•X¡¶Ç/ŠA6î8Š O[$î"ÜBëWXmÐxøME*¬¶ü\¤Œ)cǴ𠃹Ìxñ:àwïý@¡/Lœ& ã»#ò=†åµ&IO•6}Ùq{?{m7«Ö3¥ – 'Ê6 ’ù=V p<h'Ýu3Äa:–x4yœÅùéùÒŒM”S†D‰«J¡}—ÝÌbø âÛím´¶¶£œ¾uþÇßñ—î[ 8“ç?ú2å²dBO¤%4#B²ì '<{ø&Ëf¹÷¤óѳ^€—ü÷³âR‘¿ÿå§|øÇš«Š~÷Ès®|øé¯ã3λò ÿâcøÒ•ÕÛbaÍ+ OÚ¼Ä÷…TæŸåã·ð¢v5‡.RìäM†£ yÙñZ±ù+ƒì·à&ÔFó,¤cUh}NðàÁÏPmú¦Ç{îÄê‘’iUÊJ w¾ëòOäZÂŒ'DþzöáϾɺæõ[@;þ”î‘ M_uÈý1_SÜS½ô™A»·;.:þ+è©w| >öžv÷žû¿Lo~¼M¯xIH| Ôñ4úÏgýö£Lõ´–Âl´Eë,h•çeeæhiŠêa®ŸÙE\iœˆü½¹ížáqèÏ_×OiÖ¦„º¸O<ÿ°íºÜ9áF/·>ØŠÖxÖùçó‘³?<Þùà_ø~ Œ°ÛŸ:⺶åÕêøÝs/P¿ö•ÿLßú”Û^ Ø~ì;·Î›Q„Õþå°“µ£Ï¸èC]ß³E 2#P¡2²Ð̈øÎFV›XÆÚ?Y1—˜»®×ês—ܨjÖˆP J+Æ#­î¦%mýIÜKÏñh¶ždÝ–™~Î?¾¹ ò|Å«Òê?þúàÀ›žöàÍG·ß¯o:-êcD\J¶ß#Éûž´etÞô˜K>yÁ¥¿þnð¿´WÚN¿í‘¿ûä‡ÑÅGzO?¦^¹¹—uöîýæÖ'_vâ}Þkä4êmò ¨*’ vN¸µÿ Kt‡«ñàÁ…x¤ž‘Q߯ñ î°s}ï¡—‡žzÃ÷NmiÇì7{ †x”ê]w 9n .K¸ðÊ·OµãžnECÿø3q‘(H¼Ó1Z#E~ò±|âE²¤³gÿ»nþ~ë¿ñÈŽ¶ñ‚Ù/ªXâ…cno\ó”·@`!}e·üß“¦;Pºv Ññgã"QxJ;Y³L`Äw|ÀÞ~÷EïØükuÿÿwús”ÍüÐö\+>Œ’Öoó§e2ª¨Þþì©ÓÆ:@ ™!“£°W‡R›s¨Íuù_¾ž÷ûÙÿ·Áuoó­™µ;|ñý˜":B%WÂ2´Ïºpúƒ9ãT‚‰QØÙŸâü"3ÁÃ$ž™˜èúà ”;ƒøØûΫ|tÀåçËrs³÷©¹ð<ÅŒr»È? ¶hg* ­t·áy ¡Žtà,ì€áQ‹¯iÓ5ZZIISäÖÆý«`ö>5×ø¼¾ËS{Æ“u©hÓ8AãÈQñ¦Fä²]p¬FQ­~O0­Z²ªÂÜö 7'„ûfæ¦÷]þgýMŽnºý‘‘ÕO¶R݆çA´IÓŸ‚Ÿ•ÉdŠUz½(ÐåÇ´¢rVñº²Š6suìd·áynËî’¨7×GÁÚ‰z|ùwƒ_¢«tóï‚`ȵ¼°€]|{×¢3¶ Ai+˜gØÇ‹KPÔœqEêú ±*â úÎ{4Õƒ!áÅÂ×FâÚËÂ$‰¸êšÇè–•îæøü.ÞÍ[j­^[&î „Ÿ¥>°7T cz¹/2ê©9a‰W4þ#˜êBÌC<¤\^ZÄ #È:Ø1_wß—ûu{“"uJ7Î0j&NöŒ.ù»I#…š³ú{e±3Ï&ª'‰ßnQuÊ&Š3/sÁ!ð½ÌqiltóÃrMöÜ—l¾ø,Ne~ÇvbâËúŒN@Ôm»“ò*&ƒ1[ŸÞ÷#ꢸaÝ.8éÆ)zE€;Ýešø®íAŒüÜ rÈMÓÃ`|èyÆæ‡Ö=÷o[Ñ2 ½âØ)µ‘ØôŒ ý™{Á {s7“†ŒyÓmÈ!6¦.J6ŠÎøMDÜn¦9W¬–­ü†Ü¨ÄLøÒvv\‰ZÅÀž¸¼iéD¾ kçl¿ÿŒAh˄ڢ#ëzXÚ?–$›èé²`,ÈV³@¶§JÔ(î¹3XvñáBµlcŹDJ¯¨â„£ÍeÁÈí0\×OVx³:—ÜwßS‡Ës¢ÿÒdˆF­;â³<(½ 2s+eE€Tñ‹ß#!ŠjõhìU©ea¹Õ<Sÿm,daÓø¡Þvšulk8ѧÔÊĺ5ëAr‰G‚îßí]|'Ãé!ô¼IY(Ó»þVT½z<¸„ÇS';R#YT²×Öô``¼cªÍkaûEí¹Â’bwßø£¯l%|%uÇa@Âh!©ÆªêÕ/©Â#ĸå°#†a;STģ뢆|Lˆ÷PÉ—­×Œe+m„wO^Qú”5Ê6U={ö)à @¬âNv WpØ‚óÌ ÊeÞýÜA‹ì¼€ Æ\2…¡ØÓt¤ÊJ||]"auOQ ©‹ek9Ùt—…мõß¿ïÄÅ tQ@ˆ„îú5lçÜ1žŸxM…æjE}rÊsKqÏá¹~˜ðº›Œ€ì^ I ž7töDмèþ„'ݺÈѮѡÂñ³¶î–L|¬ØìšßùpßGbÝ’gÐ 8yk^ÁCçüЃ‡þøOæ)‡\,‚xiÉ Í9Få¯cxÚ|C›ªôizÇ#Tà .~.º\Ð7o-dŠ‹¢oª*`ðùE„`¬7A¼0 Q7íÏ]zNTz[=ØyôûÁ'?cÒ_*ö“7鳉­†ÛA1ß̉¥Áìx¸m䌄,ø¨TïúãžðÝCoûžbU+¾õÌ£ƒx¥Ê1àšB›é€ú™â·„òíÍÛ$ceX„V‘‡Èˆh\A~<áv¹ôsïi;÷ƒÏî½>¦ˆãë~x5\K¾×B"\Oº{c¿™jæÁ®íb¶ûŽÞbXŒ9Ç2®Ó ‚-Eíò7~ðPþý¿à‡¿(¾{ü7ßuÅDˆÒ’Qµ2à*Ö›x¦¦¥Òí;ã&þê±â³ ¿¬€xÔõZäËçrQÍÄ@“Š òîšÐḨÇW=Ú×ÍØ®óL[ñr;oÁ=Í—‡R/R£Ñ7îyýèΗñÛàâ£>“íaï\ÀîVÀ­öŸú­—Aëʧ ÖõÙ¶âeÁÊ]ßÌ-Šr/ Ê(ô›ûÄ=1®xÃbe ÅÛ\x0'}ï§”Í(¯-àCëVÉE¿—< %:|åÕÚPV,¼ìÈ:¢ìÄGì ç,þ?˜ŒnÍ/@; ¥Ýâ9dðÂLʆÒÊëDÌÜùåC·ênù'}åíb¹¢ ¶¯9¹ê;s¥'>’õð¨­JÃ<+'mèjZ½r¼(‡*:ÄпÕ/\Úh×¥'¾¿R‡qñ©íÔOŒhÚý)”9ëGÂ##ìþÑ,q¸ë‚òŸð•¥·ÕÆ'¼Æ"xÓö~òÂë'Tä5Pê+@|²ÂYÊ÷2v5‚MŸýž ̪Â[ßsÊ¢rÔ×å'>Æ5Å>JùÊ{Ù²>&è%úÑ™ò_òų?ÆõCˆ×pTTÌ‚zú¾/Þðâì 0©èì^ÛÅasbøÅ'–ÄÛ>*@<ê…U¥¿F{õ‰1YÏ”Êj“εaÚNõ‘.Ã~3ªª£Ä÷ òp?üc_Š…]w·ðYŒštiA¬µäˆ5£4ûªs¢ ÄGç ]ìʱ§ÆJÑòg¶ÏÍ~iâ»íšnôôŒåJ‡*•êˆbÞŒah­¨x sx𸑤J€5už±ðMùPâû{³PÁ¾îǪ™ˆ6±Çþë—_“z{ZÐsñî+m[\ÔÏQµ¨\¨ñ@#Ò”‰ÏYbø™?2“‹üh·önÛWˆ ÜêgRD¨ñ¡ÞoNsó£ÙókVc5¨ñ2<ºÞLqjFcGÖÐôñâG³6:(ªAÚºßHìzã…Aƒ?‹‡lRhûÒ@Â1ççÀÜÔ%øFbåÎ⿆X5ñ¸{÷“‡íŸ&øâ»qu ¾‘¨ÎŒÁíÏÁ4áR_Ð2‹oèÄ[ÎU•YãøüK‰õý*¦¡ž;èÔ\#-¨VÏ'ùÎÿ¸¶ Mê´~ä{ÿ0’ðSv4)9*D<øüóïk‰¥Ñ^ñ }P·>[²õƒõ=D‘‚&½G"=t@]‚o$*¤Ü 0²);¡—lJ‰ø„$ž8Óô3)?ªcÎ~¦øX„ÛL–õ–MƒŽ¨’DÕV *ß Q©ÏŒ0Š:º=YKç&ÔXàÊšå­‘¿TkI¯6мÒ÷¥U72å1 â.š„“'V¸X‚VOˆüõìß1Ë€æ‚;È»ý¢±Ášžòµ‰Óÿ7ÆÈRUq,x„ä¯ç{î,š °»iÝqZ ~éw¢¡|º9Ö €å üñ‰jµÚ Xž_ ˆðâaéݽýÛƒ?/«Z$‹šÊ÷˜É—ȸɨ:æ'¾‹³ßº+Ä3D_ðO¦ýõýdy„ä”—Kú0È&Y­V;s ˜ñcZþì ñ°k¿âkïP°êm õ 9ºI¬A^”\arߢŠaÄ3/SÞ⹬ÿàÑÀUq(Ñ“ÙîX!ހ߰þŲH´¸}Ò®‡ã¶bk¼(/Jáôu¸tæ,V žŽ—íá–¬xNqHTË+[¾;Äs äa±—Ú£ÃNǧT¬í²ƒÕR烎ðÖ×$ðny v‡x.ë=L‡'•L ”@üH úPŒ©ŒW5TŽøTl|2gZªp‚dÇLî½ï´ÅcÑFºõå#¾sE” u½_×JÁ‘5¯`_ô†¤Ö¦¢t£ÜI”ø(d’jzÀ<5Uù:¾O¼Î O‘˜„r¡?°â!¨íU$> Àèµ½ÈE“”ÝÛèF,¤ÓVxôkSùfˆªiõ}Y/÷\B1uBC‘ ûŽ)­Z´J¡jv<U´pÆ÷d"eºÜvú=Â¥±§ N-ÚN¥PAâ%Ôàk¼®Üœiì ×îî°c‘l̶ü:%KöQAâÃ/Æ Ní³gß÷À§¢Ñ@ÅvczPŸMU$^K¥Ir%^rÜGdÊPÎ{ÌoîøXÈ9Ò¨oŠ?5l¹ÚOl:]MTŽx ·ƒœû0ñ§BÛ>S¶mýJ¦°«›ÐáfžÕ@úôdñ¢rÄËÔÇ_·¯Q¨¼á*"C*ê-xQ+‹d‰Ü©ÚEYF¨ñÒWû÷ @”´Í…|EÜ †-ÏSÒ,.¤é.L rÄ‹ +üO¿þz±zëç÷ЫU ÛŽ€°›¨¬M.¢¬°³§F R¨ñÐ>ikÂ\‡|Ô]ú¡ã„=å€Ì¨”•O‘ÀÓ>tA­ŠY&P9âE†œÛOŽÇÝ'ÞÊ'õë÷ºê!óçàuwÝ€ÐVŠY&PAâúYÐeæCʰzËCµªCE‰ïkñ"ÖR.å#Ú9íuuôÚ T•ø(S;v@Õ¬I-øÚ3o¯¥÷T—ø~ $ÐÍTÛaO÷»íí5Ëœ ªÄgÔ¹ÓÜ> ‚½¯]RS¾ÂÄô ¾Üô†­á×pC6De‰t.èCúr£Žã¢ ¼Z¢ºÄ§ó%¥“6Rö#Ô«ˆiÕ%>]ÓT8jS[qÉù_/T—øx¹hÁ·ãg‹­Úªv•&öRý§„/7Ž«v•&~PxÒê_­PeâG“§H”;«*Müˆ°O ­ö× •&>?U¢^õéÓXñT›?´eÿçþr¾@Áí!ü6ã¥ývïT‡:tΡHdeZ|ýüÇ@íÜÚ½»]à5+ñ~jL¸¹ ¢jCÉGCüUJ>â¨ÚPòÑ?@Õ†’†øª6”|4ÄPµ¡ä£!~€ª %»M<\„e!©ÜPò±ÛÄ7Ø%4Ä× ñ5EC|MÑ_S4Ä× ñ5EC|MÑ_Sì&ñ2áZÄ£YS×ñDQ;sö@0l`0ÿQ@˜¨?ç íðÿº:÷P&b÷ˆGŒ¢ ™Æžh9%¶Û®F75ÔFnÄm.z¦¨6ïQÔØÜ'å€Ì;”ÉØ=â!Ά,J5G}"DLQM´©ÁÆÌ](ˆ¨aí™ó(@³»sŸѶ;Á¼C™Œ]]ãEɺþÿÙ¡ Ž<Àë‡8âç”ÖÏÌG¶îÍy°ˆCác˜(“Ð8pjІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)â—¿¾®¨ã9'ÀY×v¿îþêÑ_Ó+PÓÓ@SÜç~Ç%K ®Š°x?³;uÅPwâÅŒÿÚ~WW‰Ãå¾éS#«}Åп1ü'þ÷|ÈVnWJ !>E|]Öüšœæx¤‰·|•5èLZ{â»x#A<2ˆŸß¿©¨=ñuEC|MÑ_S4Ä× ñ5EC|MÑ_S4Ä× ñ5EC|MÑ_S4Ä× ñ5EC|MÑ_S4Ä× ñ5EC|MÑ_Sü%Úx³endstream endobj 269 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /DecodeParms << /Colors 3 /Columns 504 /Predictor 15 >> /Filter /FlateDecode /Height 360 /SMask 268 0 R /Subtype /Image /Width 504 /Length 8629 >> stream xœí]È}K]€Ë’2 ô(u!,$ %ì„I”Pyz‘bPyQdjQ`ItÑM¤˜Zi(Þõmt. -°è‚ŽºóÂì} ¥XApìíý¿ûÝ{Ö^ó±ffÍÌšù­ç¹8çÝû¿Ö|­YÏšõ[³fO777z™=€n=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=Ä2MÓâ›Kç±ÿi±AcNåQÓ·•UÚƒè!аÊ}U”UÚƒèa¹ÇfŸ´øÞå»?X|ï»ið]`œå djïY°À÷vÖûîŸò’o“Úø0:ˆÖYwªè}‚Ûþ½ÑǤ™šì*v¾ÈA ˆÖñy\Ö̲*ú¹\Rÿö•á²M¤è³åîËw‘uàî'µîκD&åüÞ9¨c ë½s[З83 ‹>n T$>²Ë®oxߘ4mÞ}õ ôèaÀ@5*YMpN¤ Ã‰Ä§“wñX|éK')tƒè¡6ˆÖI}Ÿà.¡›ÑÒ ×= åø}‹„n=\@ôE88D8l½Hªì÷¢OÊ«öˆÞ¹K8YIýꎠD±ìSDô7`|¹Zž<ÑžCl ³„÷õ#œläµ'µÝ`t=T}ì ¢‡º`y€ÝAôPD°;ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ˆ@9ƒ‰þôKÓ*©$dDÐ ˆþ'ÑUf€UªÊ Ñì¢7 zP ¢7 zP ¢7 zØ‘ù\€"°x‚0.ˆÞ€èa/ì_÷ýpñ}tçô&‡Ñ=ì…é{wü™È EžåÛz­‹.z2½óöâ¶ï="òWç¯y\ä/]1zto÷äÛoèØGÑ=ìÅë¦éWE¾Dîõ½ÒçÆwmÈ zçìÃ4=)ò2‘Çfß­ôÃ8×Ûн ¢7 zhÍLÇs1ÇvÂËî)®OH´€è ˆZsrñ–.týyÓ±éäÇÑ8 )Û-?OÇ“fAýD툉'§†èÁ¢7 zhG©á|D‚„nÑ8 Å-/"þy8¼% ˆÞ€è¡5D?O¹Râ0,ˆÞ€è¡õ,?O¿j0ˆÞ€è¡:m,\ûZ£è ˆªÓLÁ¸f z¢‡º´”/¢‡ˆÞ€è¡.å;ÏŽÀý±AôDi?Äv®uC÷>$ˆÞ€è¡"»ÄR“ëo?Ò½ ¢7 z¨ÅË_^w*Ð3 ÜDo@ôP‹,Ö£ÑDo@ôP…\½ÚkÔÈÆþ‰èŠÑ—ú1DU(!zûcãÂÀШýƱ¢‡òlŽÎW}n‘`P”ˆÞÎ(cÑmDå)ñvN™þ¹ö“³  %¢?ýÁˆúbsœdáú’× U¢_€èagŠŠ¾JÏ$’s 4ˆ>ßµA=âû¦é}"OßУœÓ+KN«?gsI=P΋¡Ñ úS8~û¤cFôPŠÛ¾ô ‘ŸyäüMF¿r>Œ]PO÷ü.•&ýU:{,8u¤Ï‹|¹<èOÙýÊ'úů¿‹ã_»ž_šÕ„*Ñoü©{z3á¾#>”½ÝÉmãq½}BmJvE•èeÛ„® E¸íH‹|RCãÔtì/‘œ’síÏÉNÅS†‚$>çW"úËß[Æ5te(ÂmGz§Èw‹<ó(Û×·l¼—µs½ýÏ/Šü¸ÈGD¾AäD~ªÔªjœ_ÙØGÿP¢¿Ïìúvû2@&Óô"Ïù×ó¥:•Ž÷î·ç$w®ÿs‘WÝÕåÛDžrÎ);AgY$¾ù=bû^éä@¢gÁ“ª´mÞZÓcìµì¯óÈIgÁ%Fú ™ÝJÑŸQ(úÀ9vAS};aëh•ÞkO±±¶½»½3@.Gè¥5kè ÚD¿zNòVd Žp·@,†ÿ¦¸ ä‘T>½A§èÃÕaÁ“âLÓD¾wö…žfã€4`:Ž´Õ£ DoÐ#úÔÑâ©9ÿ5Mˆ|tö¯G±À@šç†#WU2Dôg4ˆ~‹²‰älgš>&ò‚ˆéç«OP+=b-0ùr_Vƒ<=×ÎwÓS?܇è c‹¾Èx‡¡ýF¦ém"?¹&úÈÅ œ”Z"mÔ~¾`õiA¬µêO:Bô†ä¶Xžf·–óëLÑ}6Óô"}mpñˆÞ^``Nø& ïe@)µRBÿôЇ{š;„è 9¢×ã ÕÇO’&·m„HN*w-f!Ÿ²Ã‹ø3ÉÑ}Ý•/»eÝ÷ä÷ ˆÞ)ú «Ó„mì;¸ÈÔÚ4,®Obv§µ:jÞhÞÔQùAE¢î»ôûDoÈi‹ðS”HÝ/Ü"òª®'ñ‘ÚÆ yÞ}À.¡›.–¶¯Ô“ûöûDoèèalÆ ¸>†¬‰»\¼ë÷ÑÛ+ËîS’¼ûìȤú>;½¡#Ñ÷ÆÞöÜHz•êo1#ôùÄž- ÿe—0üä¹eaÜDÞCæ÷ ˆÞ€è½ úUrã6¥fÇ_þv&¸ûˆ>ð&=žwCÏÖwè =v¸~ÀõöÎÛiú’Ýq½3tӵ茽Dô†:ÜŽ úYÃù=­Ï9ò1?•ÕUõè t¸p½nD/½º^ÖÉöVZe z¢_ÑûHi™6ݬÿÎÌšn-Aô†þÏýÁõ6é–—V¢÷e¤sÝðƒè ˆ~DoÓßp~ž—ÝáÖ½D?ѯƒèm¢Û¤}sz|€ÙPDo ÇGëçô:œ_d*~³Óí¢7Ðã£@ôs:Î/²¾äNèæ€ z¢eü÷GŠ1‚èÅïúù— Do@ô± úX>>å!_I…B zý>\/;‹>ã#zøaAôNƒ½ÄоR¿²_4×wÕɉ#5Ñ:<úÑËþ¢Lš æD']å€è ˆ>™©ú¯×÷‹ßòycíôüsD?߸RÁ’`®g½N–Ì‘§Zºêî\¦Qê?†Í躸Þ.ùâE@ôDŸ ¢w‰Þ·ðzéü·FÜ¿1Ǽ݋ìUD Žçú/LÓ7‹X»iöÂÔ¦nïtzôE´Íˆ^ I*0'¦'çeZª„Ó Pï&lxÑŸþˆ7lÑ')8&Aß¾p ã|Ô¶š£÷”Ó=¨¸Œm=btb_j`ìZûÒ wË–Æ/+úRÑÔ쬕ˆ~AíÐMŒ‚WGy« "8ï|}wúñeX¦ƒè·œN¾Ö^Ü0Å•á¼a ýÉÚ t8ñD>}=põ¾3µ‘%”Üã~¤×溥Aô¥È~ Rô©cêÕì"¿· éZ|¼ àX÷:cõ„§Š|Zä}"o^»MÜjùðî}\J‹èo‘” ¬éd—'²„©{9÷Ÿûöå­Æ Ñ? ©-¶ŒÄWƒ'Ù$¥“t“‘ÚÝîvcu† §ÖxDäƒ"Ͼûfõš‘Çý1ûvæú [ޝ}C~%ãgÜ—¯`5B•]Ú@^Ó4‰un§¶Eêà·ò¢Iá¤äZôÿ-ò‘w}„µ ‹¨Ô©ª…EŸ!îùÚ¯Ukß±mL¿Y<ÄfË`1)…x½aã3¥ ‘÷›ñß#ïâo&VkèÁ“k=ÞER¿2M·ƒßWoŽáîN¼èÛY¾È¾G"/öŸà–4K=_ŒÌÑ?`ÜççTû›¤qGøª³Hê7¦éÓ"o8Òˆ~“èkÌÒ°µk³1&ÙlªO ½a\ÙÄß.ħ¶xPJjš~[ä5rì‡Ûú>GäEžzþ¦˜è7Z~žÎ)‘Å¡é¬Á}MäˆþÕ,ÀvFìɈޠIôœ+™7?Ì'zG‚ÖóØq[õ¶¾ïùj‘ïºûзί¦\)ñtƒƒâqp‚è ÊD_ßÜ/o£Õ³X{Öê²çp~¯ôS° ¾¿…°ˆÞ€è„§j}DE’{Nƒ÷NƒzçãäùñØACÛÒªÑ}˜´ˆ~[šh~|!ŸÐ‹~uZÁXs]ú) ¢WEÚ´ßÎÂÄùÛ´ôoüÖž‡eÂßKÐéôª—™Þ¦è z¢_åpƒzO6ÆmEÿ„Èó/š—å:bã{èÚæa¬o63 T*»EŽˆ¾z8ã›És(ÑçCO[þžÈKDžÛªMn3ýœÈÞæ[ÿÇw¸mj< î°)½¡‡ãÑ?±cåzZ÷ ­:9V‡Ï˜+rÚì¥"¿/ò-"mÕÍnó½½´¼RîÛ¿M|N'gSÌKR®´‡}Z„wz8ý“ zo' {Ú)£ÿyÚÝÇ7ˆüÒQ{xã7³z{l7Ñç¼IXDCü[Ž·|»È‡on|ÆìY±¯‹«Ï,._5MŸù2i-úS^¯ù‘¿ù ‘çI•Ñç@.ì zß\«Ýéª0ãœWàc>˜‰Éñ *'cyçÆOÓ‡E~âúËÒÅõr[¤Ý-ápsºèÖ™->‡“¨7½¡«ÂôLXësN‡øoE^$£‰ÞÎÛSåœÆÞà7ïÖwû‘?>o³g«pwµÚ&°;ûˆþ漬ùåcìS¡Æoy9‹þGDÞ#£ŠÞ7=<<1|þñßD¾Rº©~é§&áéóÐ Œè ]¦[|ïž89âùÄa¸ÑÛ÷Å+½èmÓôê†磨àú®¦‚Íž¢¿ÐI· Æ$ú 72 èצ]‹?žsâ¥"yŽôW÷¢®ïöŒ† L¯4 ú2D3ÜÄ›iú¬È3=ÿè¼µGµ·|èîWÅê¶ÖåJÿ³nz›ïؘ}D¿ˆrvÒèˆ>’˜ˆ,Ús(ÑÿÇ4ýšÈý³kœ“Ž=§Â—’(xu9ŽŒW”±[è¦ÃGôñ,bXˆÃ¹þ‰iz«È»üqç¨×ƒG©ïÐ/µÅa?!—ƒé{оvö©tU˜°¥oÿÓéƒÈ6yršž'ò©Ñ»-/cÔWýÐÑ#zCW…ˆØi棈~š¾ òÅw:+ÕOƽ(w½óÁÒ¡ÎtfÝ}+¯ÅÎÛs×ßÒ®’rÑŸ´Øktëœf z¢ÏÃ'z÷ÃIé^"žwbgÿ-úÎkêDïÐþÈ'8³n GîÙD=–œm}úçš%ÚFÄvýÍOãââUPÐ&»cŸkÑɬ¢ÏÀžž¼âÁÎ]¿V<Íq›´›HçÓO÷eõ%•”¦ãa¬¡«ÂŒBÚˆ^Ž$ún똄O7‘—ºùöá¤t\·6û¶fAô†® S…"c4Gª‰]¦éM"ï쳩#úœû选s«ìïÿTSmãQóéc ªDoß@Å¿»å»ïþøÑ¸í›r<ËŸÈ<1ÞOJdÑ37¦<•» ¢7è}äXzÓ€óÅ,»kðcˆ¾Êz[Æ Î+¡îš&Óœö_Ôl}C+ºóNÎNVO¡¡}ä þþpŸ‹ÔW›o}÷–«}‚Ñ¡¨GõçÆˆþÌx=^rŸ•ɪ~ü1½oäóF}µyPÓ:†ó¢@ô'FÔ½ól½i±¶ëž¢w®Ž²#]ÆK‘Àh8åôtì)³âiÉÓùZ¹û´—?FÜF*…nöbݯÞëO3ÝGô7׫vÒÉ’Û¢Èhzc^esÌÚO®ÕØÅïúg‰|\ä!ÿ6;pŒ¸Í‰2cû¡OÝ· ΄ÑºIx?"2³Í®Ë‘TˆÂ f>´wŽèÏiŸ trNʲ<öPW“èÕÒäÁfZ1¤‹.¡áÍØE:ÙÉk‹ì @Ë[„0‰®wú}¥=»Òâ¬09u±=Ù˳ýùýžkÝËÆ•ZFucô‘ö—núGâàÈ 5iWZ´D¿‰ZÔ÷ôÔ¡—ꀴÕnÇŠ?±ÿôÊÙô6¢OÌõêco]¤ÄоHÊuÉý¥Ë}Hä;¥ºÀœzç—o M—¨ý‚1Dß?)FN{ÓÉ Þ‹Þî*ÿ9MÏ”ê>J…ï‡òû ¢/¢÷’bäøåºÔ[eˆ7,»Ê4=*òJzNçćOcêp#z¢÷²aNTÊ=‰^<®_Ôe^Á?™¦ÇDÞLψ<é{ˆ5ˆ~ºþ“ „nJaäœÚy—ÅžŽBÜÌÙ1æ•ý¼È/#zèD•NÆ^Ga͉>ËŸw ¹þQ‘WÅo_ч{Åí¿þ“Èsƒ)ìŽ*Ñ/¢¨á¥µ|ÿ„è½õw¦dMôŸyÏlDÜîŠ{=Ù&üÚGL"}¢Jô3};˜NÆ^ÇÂ%µðXþD¸Uß;M?QÞ¿%( EïÓUf…Zô’q@#ˆþj_á4ˆÇŠ~œ°Ç±ãúfKßIôYP ¢¿ÚW8âñ{9ÿ}´êôd±ú°!2€AôWû ¢O"ýý©(Ñ[i–Ä/è!×Xˆ@›è·€è“ Æ@2£Ãµ±ÃD:@ôDŸƒå;ûEÓ ±m[Ï¡¥,/æY4@ÿ z¢Ï!(z¹¶gÏ¢ŸÇèO/çùu‘×V*!@½Ñç¦ÏY€¨†ë#†ó‹ç$œÛ¿ß&ò:‘‡è*0ˆÞ€è3 º>ómâ¢_{Ì#úËÇ'¦é‡Dþ®ƒ€è ˆ>“8)'7oYׯ¥Ý\~š>#òlº Œ¢7 úL¢¼Û >nÖfàaì¼äÿ>M$òýtDo@ôùœÍ²HvûáHœ›ïë—Z¼_ä_DÞB?q@ôDŸOÊ[²ñ-üÙizæö#’rg¾&þõ "O‰N ½Ñçã}Î2³-Wä/DÞ¹å d ç\åÎ{R0 ˆÞ€è7Qj¥°ùf"ÿ+ò¥»„Šd•*&kñÍ Eô0 ˆÞ€è7QZô—).ß$òØѧì¸>+ÑÀ z¢ßDâgv^ˆþq‘g—ÍÃyga’èDo@ô›†é/ÜDüzû|XýóÓô=w#úH:.Y«`®¿Ð‹èaL½Ño%e9„È0ý-‹|ò¼ó–’Dì4ɵßÏÙ·±AôD_€kú&±d¾%+q’Ý0œßÿwQ*€è ˆ¾.ÑÛñž_3;fYÞ.ª7eº ¢7 ú2Ü5ãb$?_,,Sôrízñ87WLjƒè ˆ¾ .Ñ‹å÷M­í¶o{=Џ hÑ}¦éI‘§^ }NÑ‹ɉ ì\%²6–‡‘AôD_Š'¦é]"o]{OjË/¹_’¸ú˜ûô•¸ èÑ})nEÿ¨È×4Z¦Á7åí{oa=Œ ¢7 úbœ_gc/„°øþ:”èyö¬yFô Do@ôÅ8kÑnÒõå!=›?. Y`yDo@ô%ñÈÑ7³>u›BeŒÚ¢‡áAôD_¿èíþ^¢MÑÃà z¢/IĈÞ7 îQôô  ¢÷­…›š;¢/ÉìÝ¥ùÓÎÈƒÕ F/ çá0¨ýbœˆèwæ®=¿Fä³ï®Ì¿Œ  o* ¢‡C DôÎiˆ~gîÚóMç} \€÷jyDA‰èO0¢ïÏLÓ§D^´mߥå±<U¢_€èwçõÓôv‘§E]]Æ °Yê‚hWO¬A:AôDß×,Ƶ=Bï¾ÚÛ$G†ó Do@ôMI«3°þ¦jyÑ}kRB%>Ñ/ØdyAô Do@ô­I_A¬7¡¶äÓK0ˆÞ€èÛpQóo‰¼\䡸 6gæ„äbyТ7 úÌ௦Ÿù:ÏÕ×/‰†ða¾ýOáÅm”è ˆ¾‹Fþçiz«È;ü/Á:'Ò8Tü–¬yGÑ}«¼š^ ò²ú¢÷.¨€èá z¢oÀ¿Ïù¸¬/pv"°F‚ý½oDïÝpÐA5ˆÞ€èà»ßÿoeÞär¯àk±‹Í2%Т7 úf¬OïCIð­Ž÷¯Aôp ½ÑïƒÇ¶«k'fâŠàŸ>pÄA;ˆÞ€èwÃ?¨wÖsrXŠþa‘Ož>pÄA;ˆÞ€èw#½¹PVôoù1+S• z¢ß ôæò÷Æãb_6žù"W¦ú@ôD¿'YÏE3~äÄGD^’žÀ  z¢ß“tч6¨À¸ z¢ß™+ÔG>Ö·ƒè ˆ~gÒEŸ9ÿ’á< Do@ô;³aDŸ¶*=¢‡ƒè ˆ~²~Šä–p‚è ˆ~Ò£ç<†XÑ}Ô1¢‡ãè ˆ¾ê¹ËÃ!AôDß õ¦?"z8$ˆÞ€è;¢’‘=DoˆüÉ hÃgEžQ4ÁGDÞ+òâ¢i ¢WÈâ}¢ÑÑw¿Åêe¨4Óž(ë¦x¤s8@‡…fÚeÝtè°ÐL{¢¬›â‘ÎášiO”uS<Ò9 ÃB3퉲nŠG:‡tXh¦=QÖMñHçp€ Í´'ʺ©²êˆº)«Žh¬Q%h&å zå zå zå zå zå zå zå zå úÖ,^C_üfÖX‡ÃYøù—CWGÆ¯Ñ º úv8»ãå$q»ð>WÁü訑Ìz‚.ç,ðè¨ ˆ¾ÊDoµ±Fáã2\D£èç(8@m@ô;°Šóﱘ»c^…k´¸]#çq·ËùD?îj²:κš´8GÁ¥k1ÔUÓåN(8@-¡Qv`5D0 °Àâï!PŒ²Ç¿âz 2Ju¨‰­µÑï€ÑÛ–ÏÍu»2mc^#5cO(ërÔ Ú ú°Ïº }g¾] ËD D D D D D D D D D D D D D D D D D D D Dð€ùÏg(ƒÎ ‡æâwDŠ¡sáÁïpèåp\n-úãö,˜í;ÿ•Ó†Ñá±C7¶ÊOßÌÿuñ%@ç z84NÑÛQûÀxŸ3úÑáÉ=§ ½MÞˆžÐ Œ¢‡C3wFè†Ó†Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(Ñ(çÿ>endstream endobj 270 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceGray /DecodeParms << /Columns 504 /Predictor 15 >> /Filter /FlateDecode /Height 360 /Subtype /Image /Width 504 /Length 11514 >> stream xœí} ¸ìT}ïÚrxÖ9VÊõ}´EpÍÅÇõ Ú5^Ñ‚¢ÍhQ¯EjÆ×'¢Ÿ&Õ+Ú¢6s«@µŠI}!P5EZ¥6Qª€NT<¶ t"ù GÜQ²ïZ+Ék2ÉÓ¹$ÿû‚‹çwäÒ‹Ñ\ï>lv"úמk›˜øöÌ:. ‚¿ïtV˜X ùä?L¤ƒ§ÜY‘Ê]«OçøV?r·"&ÈÿˆÎ†öÀû¾•ˆð¾Ó¿–•è¡áW³™$øl¬º±‹ž|)ØÜÄox·Mþ#N¼/ê¿?:ö cª«‘½tÁ1¤áƒ¨ ™ÄÛb‡nÒÜql)›x»ø†ø<„Ä$ô`mP©±kGE=žÛt"ÕqâuâÚÈ^ôW.¦ÙÛƒKÁL4CM ¾/ƒxs¸—>«.úàâ#ÄGD}C|\«_aÃÙ¶`tÉp%‡’N•¢¡9g»Ôœ³SÄ[ œù©y¯Ñ­”6É®°¹–í³™ÖFŶʴÅ6ô•³àû²ˆ¶‡F‰ Ç!`Hî‰'oyáS§¸®Í»ïý4q;)ât‹šxæµ/µ °ÅúíxÛÉWޡž»Ó‘’ÊA˜3ñ‹˜ã_ú‘#]n´'à™sg=Ý"é •¸Ú¨‹ék<ïåïëô諚Ýå–Â,ˆç }J«ß#þ{wžœé«×ÙÏûAÓÛfܪÎæy®õ7îzf/S#@’pÀŸ.ií,ˆïw¨ZßOfoâýg³©´Yd¶°}G‹j¶ƒ{/¼Äê l¬Ò±>hA‰ôR@"ž!e,ÌYf`Î×êÐG‘|ç«O¼pú±Z(rú ñ•T¦Ýƒªmñ…’£’éÔ K¸F±k˜˜%`Ù» ¢%Ù>³Ðê!²I½¸ÕŸã)« ±³‚sP¡¯¼ Ôâ©hx3<¤TcdÀ„`˲øK0Á’úÙ`~Ašêøõq«g8ˆnà ÍD×>ôóO-µâjvhˆ‰ŒÉ=¤Tj-vb/I¹W³CCüHddgS^NZne‰Ÿÿ¿¾FÄB.ù© ØËqçW–ø¹C I¶%Ô¸"ÄÕfÿ¨î˜õ×óBCü(¨¶ÀÒkƒ[…P’nƈ——“ÜfoIusâGa}MgººâyX°Þr™ƒ`ˆ1v-H,#ãÉ)¢K%]™]u9ö\e‰Ÿ÷Ouz/µÎ ÃxAæõU•8¶e»¬¬¥€Œ¤^:.Ö‹®´cP»K*‘VYâç ªÓódZßÕê•3{ûADÙCb2»Êìl ¹Éx)˜Ý¥¬³lˆî½!È XѵÝWÅ=tXµbƒþë¼Ív_^Šx][J˜¦!>iï„÷:æ¢$¥PbÕ C\yÜã]üÍÎãÏUâºüÐqe•æ„Ê?ç9>Ã{ƒM9ã#¨‘`¼y÷Kltõ \«¡ ŠmñÕŸ½ýˆ†øM„´Ÿ~Ô ¨Âp–Ö º…<~\¥ëp……_Ž˜êJ'DC|&2üô£E²¨)™ØìÈ»fàÄß°›šrâ¿ í®!>éQË ù2ODXÌÉËLEñ¯/¢ïþÜß.#£²ÄÏwŽOKúÌE³°^¢hÔ‘ >ö¶ڕˆ³ŒLÛÊÏÄùÐÏ\tqH$×Á–­øåBèð¨Ï òÝeDf«M¼"Îç™)ÉL¸À7åÇ<‡øWÑÜ~w ‘Ùj¿îÌ癩I?|FŽuØlù¯† @·ðÒ)¶ BÚ‹_nSYâÙ/6œ‹¬ONñDŸ E­r~[v…¨v_âë†ÊáâPYâtÃÖ[ãw+”17(£Ï<_7_2yv ÌW™x8X-^t² ’S|Z×Ë>Œ´ƒ8®@Êiê‹g¾ÊÄKTÎç×¥˜É·©h…CÖ­¥íB³hù£À*]8ó•%ž>1¦ cuö²>yÎBEË9$‰Ò'I6Ê©Œ4‹f¾²ÄüÌÁJJ‘Ü ‡D¥ƒG±'ÐÒÌ|…‰÷ø‘f¯×÷㤈2Z¨@}õD©ˆ§>‚’^_7¢Ï:±¶N&Þ³¹2ËRM”°øjø0­Õæ£û{^a¨]( ŽÕó¾ØÑÜz(Š® \úSé“uÒʯؾÍ5sYŸ!¹o_—=_ fÛ´{H5¼ÉEB»Ží8S$å@ÌÜcMË7w*K|ØÛwæ²~ø&!:hòÔdO™ÏX_; ¦Ì4•ØËE(ûŒ~Û)õF{„ClÓñMÿ÷òU–xfÄÇ™B°  Ý…¹Çt· ”dÁ/Q5ä¢ÞÕàËeS©¶³ñvÑ÷ ›r¼ ð½¯úægŽ ]*„°õׂf8@Ey 5æˆù5*ˆ/I€çS õJGU JGTÔzÆ×ì>8*qg¥×÷=§³Ú êE½v,3?}⸿=p˜ªYCEë¼7Ü üdlA°àº ¬XnÆIb~­IbÄ RG8í˜×]+«Ö³ €ˆFܸeÚr,ÛÓ±fTV"ÔâÕÆš]Ô?àÙw‰ ]Ò)¿¸úaô§Ó®‰r×mž’/Ò:ûB¤ŠìñÇXJÇLa͈Xì€B8þ„áNº!ºÚëN:=éå.8õïNÞ;ÝÿEϺàfÅ’ÄàîCyò—:å3= ]‡þp¸++ô|bxÒÚó.} s¦ÓcùõÏ(6qûc»D…Cfù‰š®3ÚΪ–Ý··÷¸ŠûûýŽ•bé¹þT4Z= ì9æFêæ0â á?N8ôØáNú×ÏtÁ£‚¿ÚìÚñˆ‡<°~S¸éð£Ö:ø‡ýîòWÿýŽ—ÜrÈa7rè½Î~Ü÷Æ£oß¹çÇ;vÐM;o~ŒJwì~ò>~À‰;oüÆO–m¥-‰†×AbF±Ù8ÕÅjÙ2(”ˆüX ǪXü½÷Ÿ o?ò¸}oÙsÏQß»û¸/úñ—<^²ˆ÷Çû±ï öûÙ~ý«Õ›ÖÃðŽíÚ³N½*4Ç‹Ýk.Áï}Èþ¼êšg¬¯ÿæÊWýàzËþo¸¼èÀ[.}é¹ò¥—­¿Ázú ÏøÏ‹¿÷Ü7Ü ýÕÊÚ÷žú¾õý_¿÷̓[ŸxÜEü€Ç÷Ùgƒ'\yÁÇÛ`K—=êlüõ±pJO°Bu\™TÍJ~ΖO1ã‘nÁ‡ßúáÿóŽ/ݢbÑW*þ|ö™| BCœÈƒ_rù]àù¿¸ùA;âgWùerOüuïW½àÜ_}0g4,J«¿ðÌÿ~è Oøý®Ã»÷}·ÝùÀa«Á_=|×£Áá+WÝýŒÕO>ç³OÜù_OÛÕÚó °zü®ÝÇßtÐQÛ6î¸}ÿÇí·×n¼‡ðèßÞqüMxÄï6¾óÌKOü•ýro ØÁî˜l£±ø€pQ¤–ÑLkÙr'|Ö E´QOãÛÅw?xo*/›M’G=î9?9äêù¤D:Õx6V¨‰›—¼0sîü×î“ØÁû⃎ùöQ{ßûø[8ô‡ë'|kõðÿç·[{ßvì;¸õø[wnÜûÐm?|ìžûöÚ3ø­Ø£ÁÇÞ¿üÝÑoÝç¢;?ûŠÝïä“|â& ‰­X Ñà'·Š¡x-…X@Ì´øˆnû……Ï—(‚ƒ©ëkŠeä©›‹³ã±à>e7 |6lúð˜öG¾ÿ‹Ï®žöÆK€îÊ_»ï*­ÿýûÿh÷ó;ð‚‡ýå‹NùÚ}÷Io½óSçÞìïÿˆÿwþAgÀÛ.zÏ£¯¹¶¥õöÜ.²;À×ît¦4çE©ÞzgœßÁî?£îÐe›½}"RWxá¾'¾:eiE°PU€!cI°"2*ä¾=GðFtû¶ßìpþe?Áµd"‘;öÝ˺âìã?׳£×IÿÁO2~~Ë[E yÈ '²É»¯’ÇG¯s¡ÜyÎjDÿÊËèB¬2<çÓ~Lñ]{¶§ oF±©=w\½òút&—¯ Ö°¾÷®]È~G÷Rö7þüÏZSöùà5IÂ?ÂNÀ‚†}/¡0.¹*Üwnfá²¥Æ/Î>_sÄdó§gô¯ÍO¾ûܽԗý µ¦Šxì¾ñ\ÎñÙ’^P Á¶ ‡¯XpŒi´?•µ‹P©³Âæ&HÈí¹H„)[×,QúÔs¶Ì—s…1]Œî'ýJÇÌJ£J¬Ž%&öHaŠŽ"8,±œ›œø‘P ÞµÃæà °¿%±E²Y’évÂ[A•»7ÑÛÆÖ^±œ,Qhh–X1+T–x:~ð#dM¸i«Çs;Ò’>{Q£ –«w%‡I îÊ¡v6¿èbg,¤ßä¨*ñ›ž zoùÊ§ï ‚N”e]¤uúQYÜX/³ÈU…’è»ÊÝÁÔÎf.Û±uŒ²X²¼ìŠy‹3Ê5ê*ñLןù¹_:BhN”å×eHú‘ì@S+Ì<ŸN˜±¢@ÙeñF¢vl¢æÖs:t‘lp7ÜèÚ‚Z¦ý]u‰g æ¶ûZ?ÿ^øÔ§ëõ&§‰X»¶'%=ì ÎÌ'£¿„eÛ+"0˜Æ HØÎŸâYK¬·ìîRu؆—×Ékx™qÖŠÏÞ·ŽüýQҹϾ*øhºI>8š•*#_:'2m@ZVž8F}6Ï#S6ÆÕ9äYÛk)à‘#Õè;5ºÎ"Oÿ-ãe®,ñtx_wø?õðw†“ñtAù rÆÞýñá©°©òçÙ œo~à¸xºŠ $D^ŽY¶Üã®k@Õ\qdÏsY ÿ,ÆÇBµÈ)–݈ýUs&Þì¸æ»å‹†¥É¦+ŽøÐØj4!ê0b_xËçÏÈ;˜1Ï•Ë±Š†ˆ@ÔöyîÈ"mIB$ÒqY…¶u´yÐÓ Ît?ÎclcþƒEîèkæÚ ¡úUvÄS]‡±õ'}·5¼¡i©aôEÈÕÿuÁðLL ûŒËs§JTÚné¼€ñ!”W´×v‡¼("¿àþeoß¹çÞCÕ'_XÁ•v¢Z,KŸðЧðϼöcDï}Îucƒ)”yåÓäŸ?õÝ"Á†•ÎËgüS@ø¬ ›¸™XÇ –µ[‰Èb»äxš3ñ,—I‘œ#þìŽ+÷}è÷½ñó7ôú²PpkÜS·NIaw黂‚†ƒX|ÑÕ/ Ê|NrCpþúV~Š|­¶ŸgååÖ±¹ÛõÄùd…² ¿±B'£rvò¼‰—Ú>u÷öKÁϾî»Ïn+@›X½cž:/{±ßƒëocÅ ZŒæUº‹@Tœ\‹<<ãuRªÖyö ãx‰g-PSE~ò1ïªWý[熿zëî]÷÷n¹ãs;ºt N*뽇Ï+p}åÂ3^ÙjY3h*œ[Ú2Qµr‘þèGÊœÊñŽEAâY*mñRNóVŠâž+o[;OÞöÛSž,­¹“šòÞq^–tïæ‹Ïæo‚à·/8à“ö¹ÙYØÅ³¸g‰ÊšsTK¨CGü¾§À³þÇC¶=à~óÍÎĦ¼ÉVêeGÈä’çÙž'ˆˆ¥' Näë¹±õÌ,ì”ìOE øœj*“¡(ñ¢†…¼®4æN|ÏR‰ƒ{¯Ø×A{_v¶¿Ä*¯ÞÌhÀÁ[øî­í‚wVÄ`(§Ô–´} ¸|Ôu§(‘;ê¬ÅˆW€Œ·TÚ鼉gZD6´ad‰UÉÖ>b ]žâ+ÞƒÒ°Ot‰Jw%R»c§xße;ã\¢Zýª›TKÆaÞs<ð£&ôÁyÁ‰~{âµTªí ƒªå04°Êz…Ê•7ÛcÖZ†Aš†xAâf•Éü"ÒÕ¹\_,ÍÂ[•P¶Ê xÀ˜×Š'ÿ™Ý±Z‰–]’¨WéðRÀ¦õa.õîïüôûg‚ lü$ë Ø4KtÛ+`—˜s'p‹Škõ Z@ª=vn‚*vpgÖYyEÍ9–7P¨®_ˆ¹×«÷k[ªÏøÆ¿)² ýA6‰¬÷¦Yì:Ã?B”ðÞ…ÜÕ ‘PÎZ§¯°V¯È^*Sj+š ;¬5Šw"Šh÷¥R,o–5úÊ ºZ½_ƒJælD¼Éåe},¯:‘Ì0y¤+ €ÃofÕ{Ê¢ºÊoá ³%"#òøÊËz D„{Ü÷7UÁA?Õ_{ù2üµ ÒÄûm%á_ÎZÚÎæµç”;QL¸Ç=@¹€‡‹¢ÆNõ’ÔZÆú)Pa­^‘RyñYW„ŸCóЃKéÀy+h& úDEÑ©>ÇŸSD$Ì Öê‡ål‡ X][Kí–¨PããÂ$í yq=´™Olm&½éEýú"V?Óœ+VËvðçc–a/þâϦ¶”IÇ–Fy…üc¡²©WÜof÷Ü©bvñáBµlç_õ"z÷c·mTÔ+á¶õ¦q¿uGü™uÝ«M…¢Z=©å¤jÙú˜ÿhPøÍÏ»èi­èh-^”Ò÷ÐúÍz0Ÿâ‘Š «•ÕQbË`AÕ«ç‚¡Ÿ{ÐÑÛ0j¼VÇ}mÎoÏ…øäÁûŽîìûTg@™t!ÀÔ_¼ zõóÀ°)QwÿîÈhi踯'ø ù$öîxB`ce\Šj£ºY¶ ÒDÒÎ3¢c¼èh öóZp¾é¹L„xŽ¡õÕIŒøê ²Ä39l3šÒÀ ®G5oº+za&êhΦ¯$¦'^‘¡*m ¢>Œ¤!®ù³F|ˆ¯¼Øã3GÖcÁ1Œ³þáNG™eñê‘Øìv|6VL'+t·âýÔSØ×®ÿç½þÓˆvKVÞܾM‚ãtûQ!äº 2â7»ç.+Ü’šs¢Àµç Ó]Úxø‚úm•UÛýèÑRD£[ÿâM½ñº½7!¦ê¸Bwó@¥‰gtÜóɰ€9ÞëС°Ÿùð÷€Oœ‹"jøF‹ßq=Wí°îB›Gœc9¥i—G…E½I\«ƒÌÔš±ˆzD\{ÌßÞþcð£ad‘²©I]0.QRuzlé¿á%ÔÇr0&ɹ‚¶gRÒz˜…V‘HJZñÌ'¿N{Ýó6î¿îs§7as×>‡¥›>ÅàUÁ`^ Ns¬`U±nP‰Ó«bÎÆœ3àϋ׼o;ýþ ð _‰^<ýOßƹÔàk§b±¸ sÜí;£>hóÇlˆÏRQ0dzÆä ¯¤¢Z\I;èÇ òꨨÇW>Üéi±Lœ ­{åÎJ†ð+ì²eXñÞ÷ö,tõÝ¿G7Ýuüÿñ÷±hú¸ÅO~½¬îóøoœuƒDn"¯™ß(ð‚•Ë)o1ªM<»zIø÷ûX­H¢Þ Ž•] ¥ù»öc%)ÿæ“Ê&âOÄ튄ð+N<3àqY¯³‡P/Vë5_ì Pï,—=+bÌ]»œ 1Rfs³£²ÄóÉQÃøœDŒ÷^¶O’͵ãõ0c‡¯AÖŸuèpÛB"²¶ã–¥Õ‡Ó86»¯Ýõ²«ÿI‰%9æ yAÆ`DÅFŽQ §›WØs7 ‹ ¬ûkfè|Môë<úËñ4Y„Š×wþõ’¯HQûm²J:“ !~2u&Ôñ?lG&6 £ž+k‚u‹ßÿ‘C­lF½©‹ â¢> ‹˜ãÃ0¼Ÿ3'%Gê¨!/Em7Ôo9qï)$HØèÙeúHW•%ÞG`“™À 9UóJ3ÕsdFµ¦Õ«÷þa‡·uMªŽr>1ªN|88y^|ZF›É•Þ§±ú&L•[åé?$§8RUîS êÄ'|«é`jVÁAÅD92;èô#Øâ/ÙvÇ/.éªâ.Û,,dŽOFSÒéQ³Í6ŽxA}àá|µS`ÿK¿©H eT–øQELÀ¬xjª†}?½²­ï{Zuäž0q»ƒ ¡òÄGr¬uh£“ÞúÉØVÌZ‹ÄyÎèΆÌ5ˆùƒÀÐqK4ñª.ªO¼jù¼r£ý 艑m¢ä ÃÐcºQÓE"%ùõɺd®±ãË"ÔŠÂ\/þåCZ™U ˆÑi>Ë´ïÿë“;n`ã-(ÛÎCã¹›¬çvé%•=þ ‘Ú*tòÚp"ÓÖ¬0iw¡%â'G0B½œ·óN*{ÜŸC‰‡â²–?H3ª‹aSçźíQ?9Â9JØé9ƒ!³¬MlØëBlhd¥Áê=$uìéÓt-¬*KüÐó®yñˆ&Ï@-bÍe¯òg©–’\/)w0ëᛕ%>ÝæTûéͰtmº˜‡’ÒvUÄV Þoˤ7—^ÞSãœ-Ù¸l§oû«’ß|Pfª\Yêâ‘É»”V •%>:TX°mÐ'hË”õa©ÓÀØg{dÿÅeÛ-•%> EXc+¡ôG®ý;j»eògEsßÿOâk¢Óoâ±Ù†l˜ÿÅù£­„ëm½å@gcø¢,|À7vüTP\%Oú®·ÎöÁÝ ³°•EçÞ4ž»²ˆ©ÃXi³.R.kÿ,?iÍ×ë©eïöò”5:âÕkÏŽø1cöhˆŸ¼3;ï !Š=ç’ûý]ß²Pnÿ?Qê½ÿG‘uWñZ¶ @#ê§ÃЄcV<ºi'òáò c©L¥‡·g°ß¹û5¿@e\¯Ì"çéQå’¦QðÕ’Û.65 |ð/n£bkÌÂåø*¹Å³¬°ËvyEŒ£`I²‘!CNà‡ÁB˜‘ºJú™”;‹þb±Ä#³ÕVØþ©hŒ-ÞAt²æóÕDeG|RF ‚ÃsîüRæYë(2÷Іy›5ÀV™ãÙ È´¸ õ²Ø wØoÁH§æ *M‹ÆŽŸëϺ¬k±d+þW±HôÄÇÓü2r0ÏÝÔPmGÁNXÓ°P˜mðßÿÜ.²ZFº ¿$QŸ²ƒuO†åqFƒH˜É… ÒQ¼€ÎbPaQ¿9Ì95‰ Ù亥D‰_hBý²±UÌ90¼Qr°&%õ*&ú«ºÛ wœ¤¨au±…F¼Kgkã [(Ù—ÇHnÈP]Ëï’½µ›%±uæø`’Wöù²ã0«.]ùC7jÝ'&ƒ¥Dæ*ì²Mþã„CKtö ¸ÓÙ·]Gz€ùà’NE0ˆY`OÔ©KB½9ÿñ´£_9ÉMΤ~çóÚðó¾ÊJ1K”¶,¾`H¼5ŠÌ1ÌÏŽ'dÑRŒ;m6V^wÞû}úe샸,ç:À°;er&X‚Ûn™˜žø>ÎÞuÎÄgMŽ,?ø“¯jÆ×ö:‘§aņû‰…iò‚ÒsE[f!¸Îð¡é8Ä6BAoº˜BñÔÅ‹SYâG ˆ´0,o! °Uàl8¡ ç*ì5™Ø#¨¬V?AúOð\KC§‡¡Fïõ“Úu Ð0l-;~˜dÉG¼_M£‹i"=OÏb5“– ©¸Ÿ…¥Ìña9 A¥s¼áÓ)Jùh@66#s¾ ,¶œ%, Ðxîf… 0ƒÞšø®}üúÉÞUér¬±=w™’¾!~fH‡W‘Ùr_ðþÿ 9˜Úð÷»ÄP|#êg†tB½§Ã½ë¢ëj™Éö“u’­6*KüHÏGZnsMŸ™nÙ¥lkµH6De‰”¦ÆÖU!=݈&À2VÐ,[x¥»Ï%~ʯ$"Cv€tÖÜ燽i)‚£±_þnË,|Sq—m–D¼‚?ôWà²[:Ž(µD¡íJ~ØïiФfže×ÇÔ¦Ši •%~ÔP´ÚòÆ0ï ­ZRgèŒç¹–lÉ ×ý=¥®–’¾ºÄÂÆ %UçF›ÙuxÃP6ØUƒß§€eÀ.xº…×-|q=Ã7¶ñºÝSöZî·ew½³¿½ý+2ðÛŽ°Š)6oAÈ¢µØd»-°gx;~V€&¸ÿ©§]ÎÕáÃ;ÿãï?îçnÐSŽ­¨ä•O‘ÀÞÿÁ‚ÛÌ¥ÐxîÊb´:Œø‚ì{âpÿQ·ÐiÿÌmvè̓Ø[?¿¹û:„Z n3—BCü,1l$Ìã왓8odBç¢/5¹²õ3EèÃam%½©< ®íÑkTáRR,[“ø0×›†+ÈY²œïBÿY^Dv¹¨,ñ¹.¯¡Ohe7›ôl"®Á:úé*K|>²¼°Š™7”°Ýs—í½i\¶³EŸ ßËÕé—ˆ-J<ëšo𬋳\ïÍ2QYâÇÈÈôHæNÚd)»z<Š¢²ÄAÚǵXO¬™[ºNߨñ3FZ†Cº¸¿ÛåºkÏݬ‘QËÃ低-…7w4Ä—Å8;¨Hi“TYŒÅ£õ3Ǻ6öûkÓH6[—xU\£¸¡~]m9°•‰‡ #FëkËy/(Ó[JÛžrï¨MüfìчüêAþsÿ=dm^9ä—–¸–í#/¥R—Rà6ÒØïÚé¯å7홂ø™`&Jïl:oµKÉGC|ˆ­v)ùhˆ±Õ.% ñ!¶Ú¥ä£!>ÄV»”|4ćØj—’†ø[íRò±lâá,ÊÎÍä$[îRò±lâ, ñ5EC|MÑ_S4Ä× ñ5EC|MÑ_S4Ä×Ë$ž§ÆCXS4 %dwmVÔn|êåH`ƒéϼ…úSÞÐý¿'O})c±<â‘( ž7MjÜzÇR„5uêL|–Ö‚2íYTÄ©oë|Mà´—2Ë#b`®ð5NS DDcÐØ¢é)J“V;C_ò,@1úSßQ6ºî´—2KãY{‘àÿÉ!¡.?Á4gQ$§cOyËÓßB:®;SßÐXTžx¬8²;ƒç4õëƒÔöŒÞd¸¾Râ§“Œ@Ùê8Ö ÆŸ': +¦²±2ÝY‰ýÛ“§¼!À•Þ)o¨–N¼êÊñ–Ð¥à5 ›VRa—<ž^£šþ†Tª* »••;à=§é¬b²W ·~&> T`ôì)ÏfqCìRè5L)ãÐ8pjІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)â眿¾YQÇ{޲¾´fËDC|MŸ@Mo;„"YmÊý†E\‹ÀžÌÒâÌîÔ[ u'žxö_Çé÷dbR¹¯9‚ZƒV6 ñ+ÃÿØÿÒÊíê±%П ¾.s~Mns4’ÄëŽLÔy.SÝ$¨=ñ}¼#©ÄÉïß´5P{â늆øš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦hˆ¯)âkІøš¢!¾¦øÿt®³endstream endobj 271 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /DecodeParms << /Colors 3 /Columns 504 /Predictor 15 >> /Filter /FlateDecode /Height 360 /SMask 270 0 R /Subtype /Image /Width 504 /Length 9192 >> stream xœí[ÌõJY€ßF@S¢¢‚‚1aƒì€¨ ˆÈ…‡˜h4ÊŽ‰ˆñF †xŠ‚ Äè…šá n½Ñƒ§ê…Æ(h¢BE‰f#‡(âY·ÊAü\û}kºÚ™éÌtf:}û<ÙÙÿúÖj§ÓéôYoßNguWWWzé=€n=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€r=€rýŽéºîôÿGÐSòðÑ„ó’þOÃËw­2.pþN}Ê‚­Ð·G ˆ~×Ô½ÕãsùN> )?pÓˆ¾úöÑOO1ä׺Ö÷ev¶‡¨v¬‰ó§ÛŠÞ³_Ö¦p-ïY8ê1°Ì÷7=ï ë‹uÕߘÄÑøX¨4ˆ~—,jÝŠç„9Û=âž,³ ч´Øyy»¥‰>üX„9öøºê™Vì\ô_0X¨4ˆ~Ǹ¬ê:Ù^»6'ÁÑ輜yQ!ùÕõÝão1Ï›âh«ÀÚFµ`…=_Æ Çze±á}O}]ýŽqAbÂU± ËꯊÞ_Õðô‚u£þÚzMT:Å_Žg­õœ×Á#zOÔ?¯ƒ¿’žf¢ ú³‰èÅa¨³7Yô®˜19uãÿ2óâßúÑVØŒüõDôGÑï˜ÑO> I,^¿ÏKpU#¤æ­½_j~·ºÞÏ%zW™þ/ÑÅ/cOŠ)JôÖÝqí¾§¦ÅD¿cÏä QQ¤¸ýe%Aôž\5ôˆ>äûiqCVÛMADoÝbl±®J†ìÑï˜ØjŒUpžsÒqÏÙ‘è]Û ‰â]µ²îࢠ=e.n+‹è=«X÷h²À¢è]+ºê…@ô;Æ¥¶Ã‚;¬ zP_{.=(pÀ¢P¢P¢P¢P¢P¢P¢P¢P¢P¢P¢P¢P¢P¢P¢P¢P¢P¢P¢P¢PÎÎD?ü4€J Ñ€‡×‹|ÕÖu8ˆþƒè÷Ug€ýr:á8ÛêPTnˆ õ¦ºž‰è«è ˆÞC÷Öîê‹i™ò,æõOD_ Do@ô°1sË{ãäS:*ƒè ˆ6£ëÞ/ò‘'ˆü‹¿Žuïí«ãÁôêƒƒè ˆ¶¡ë>*òr‘キЗt?BFÇ>2ˆÞ€è=£/Eßë^(òüQß íŠg›_.9Y½ÙŽM޾ˆÞÐìùj¹1õðOŠšm¡ý|õÓ;tì#ƒè ˆª2ŠÇ×Æà—¡ý^"z¨¢7p>@UF£ã3¤Ôm®ŸC÷>&ˆÞ€è=£ÏÌì¨ ƒdÂ\Ÿ^~nÈÑWÑ=TÂq5gÉbOÙ7ÕÉ}5½¡©s4SzJwö_Zº1‹è«è ˆjP.œŸoÑC¢7 zäè³Qm†2›ëéäÇÑ8 8•ç¡ì77¿'K'?ˆÞ€è¡,u’6ÛnšÑ=”e«iå[Ξ}5½Ñ{ GŸ …Khl½ÑCA¶ «ƒ'7• z¢‡‚´?i¡°ˆÞ€è¡í¶š£¯¢7 zäèWÑŽ^[JÖ#új z¢‡"´cùf\è«è ˆаNôçI(söÌ6îÍ"új z¢‡ü¬°|ñß}mC÷PDo@ôÈÑ'²Zôã9j¤Dÿl&“åÐ ú\?¦ƒè!39’65~Ð^;ªD¿2öAô™½ˆþf×/jäè«¡Dôó %Lºè!'«½i½T-Û? í•¢Dôà "úr£&Ǩʉë+uN²öêP%ú ˆ6#“+3übxê†ÍkΈý£Aô ¸¾ÑCºîã"÷ì_&÷(ëðÊ‚Ãof| ëî-òs"ß]fsäè«¡AôC:~ý c"zÈÅÝ]÷D‘wŽÞIèWÖ›±Êu×asOy™È/Šü¶ÈïåÞ¢¯¢¿('a­ƒ@Ž>œŸìº‡‹|ÃêŸiu‰~Rl¡<¾Ùz×½Kä3Ep³,埊½]îºëêQyJ/ªD¿ò§î=dá ]÷6‘ï_=,rqxå8ÄÉžÕ™œAéºßyèÍV=üû yÕ«NÿãŒ+*Ñ˺ ÑC>Öu·‰ü]&ÑO°frJŒµ·Í\V%¡PË›œqåQ"úóë5q ¢‡ tÝGEîÝ¿\e»úö„•ײ‹›žn%Öדå'åpÆ•Gƒè¯7vy»þJÆ£¥ïEæÍ›‹u%î mnò±}µa±/D_ =¢_¢‡ T—WñI.ÉŒôØ}ð?åþˆ¾ˆÞ€èa-Û…¨ õÞ¨F`ˆe½¡¡Sv ¹ˆXh±* z¢÷@Ž>ˆ’ z ú* z¢‡UØ,/îµÙ<6Íp+m#ˆ¾ˆÞ€èa#Ñ/l¼ƒšýË ×àË, új z¢‡U‹Þ3&Ò3ÝÞx•¤Úm1ã±D_ Do@ôÈÑ/p“kù¡Wÿdc<3šEuÔqMjÎéçzÄ oÊƒè ˆÒ¹ýWÞÆ%qLKælðcUáp?¶<ˆÞ€è!K[-FÍ+Í«{Dp½ÑC"IªZ™4rý¶©›…«D_Do@ôÈÑûHUÕzç–°mDï¾ÛüJ‘g¾Eäñ‚èË‚è ˆYѯìr!¡ýxÊ¿5ÿ%×prçyüé“Dþ@ä^œw%AôD)¬ ç³Ï4¹8ÿ̶¢ß‹þȧA}A½ÑC ›†óáen8ŽÞ?äôôÎ+oýÚ¢/¢7 zäè¬}öÎÖÎù1®ë‰aýéÓ犼X}A½ÑGÀH‰–,?.¼\ùÉØâúw‰Üvúç"ϺSA½ÑG€èâÛ¡‚ˆ›uý˜¾’w‰Ü.C=éQ%AôDÁùbüàÍ•*úÒݬÙ|ýe5F-G* ¢7 z9ú±&Þ\‘¢¯ÙÇü3íHcóÞÜ×Ñ}(ˆ~ Õp~²¹É­3í´Òíq}½¡­ß,c»<¯Úp8?Ù¨¸ÍÞ\·Çõ@ô†æz|› ú3{½Ì\ßNêÆ9?1®Ï ¢7 z&GèvbùñÖeæúñ›më³‚è ˆ~™¹Ýëú6D^ìb§9p}>½¡õ~߈þLÌŽ—èZ ¿9ÕÖ›èzÛSÄN¶Ž3® ßMêAôË úÂùùƒ¦iqý†œ§@¿9­ØD| T;?árOÝ}Do@ônåè׿š·Ï]¿u8?ë4¹XŸUŠÅ*z±Ṿ­÷"š-öÑý.»!úé‡5Æ/&‹^šq}_‹¤¶ò‡ÀtÅ2I˜4½Ñûð¨íh¢wï¯u捐aºnÔ/b.z™}…D‰=mIè.½ÑûðÛüP®_ý|c‰N•p3ÖSÈâ”8uæÚôŸƒ‹£BÇ |«È«3VÔÁÝ"+òq‘ù‘*²zÚ8ׄµ½Ñ{xÖt¯ø1Dßs³³ÎûO#?.›gù"‰­€C‹K®M÷/²´9û¤­¾f-D DïÃùãͧê[Ïfù1Éyó•k­d®ûš3%„\:,Ö§þÔ+·˜¶z–µò‚èá½&¨?ç•{&N´¦nÖ„x5{ãüeý—ÖÒ#úK¬è%-Ý¢¿.|_ÒDô>ýÀHôs§¬1uT¶ºÖüo §FHû¬¼AV¥,¢ ýZZèÍÒuÏúayÅ zSßz7û¸è”:ñ]!Á›Ü~È“£/Y¥äO᫯Y ÑßÑ; ŒÖÕõ£ôŸoÉ㽸ÖH~)ä†mŠ­üÎK[=v-DoØüÔjD?p¹ƒž°wÍÀö«­g3¯IÆ/¤#\6¢7 z'á×íúÙÞ¹ì¼f¼Í™Fº¢?³nOÿPä)ì¦n½Ñ;éº/ú%ùó§[ô¶]³†·-¤×3ÖÁŸÉñoÈ5µØèó8ã*€è ˆÞ ½ìCô¥è!O,.|^þ<‚‰“®4DÕùËI¸ñíºOÕ`÷MÁi•Óö7‰ü{Øòj3¯nÑËeêæüN­šMëSz|¡ÇàV¿ÿ&x“È×÷ß·‰¼¬_à+E¾Kä‡DÞÒ/ðk"ßÞ/ð`‘/ê ù;‘'÷Ê>mèúeN5|x¿ÅÓ§-òìY•N[¹Kä"¿ÚøŸ"ïùs[å‘£>ׇíQ ÷ó+ܶæˆÖDô®Á©\Ù&ÙœÑç"ùf졸 ˜ž× §-V«‚ùyz×½¨¿Ò’°[»ÞÙ¬×Ði{mÍ+f¼Å]óTMŽ,»ÑDI…2TˆÞ{]ö÷}¶d%w÷ÉŸSàÿî>ósß>Qó>ßrwÈ?¨¿Pør‘ë¯-òÇýOüYþ?tðþ~݇õ¡ú[ú‹Œwöž½OŸáùDYðîþ ã^ýŸ÷ì¯ îë¨ÒÛûÿ?ª/êþ¬çï¸ó2é3c"ú¿ùÏûát VäKE¾ðæ׎ÄòysDó ‚:9¨pŠÊw9rÊ·­ŒešÂ÷ÕécÛ"ä®l– QÉãE^ÔÿÂÎ{û<þú/Œ÷‰ü@ŸíùúS”Úÿgå }^èkû¤Í›ú¯×ØòøâÞÁÓ›ïío H÷'×p]óá¥3p¿»™Æú‘ n…Ô¶¬¹S˜¶-D‹÷”¦W—Q×›‹÷’‡Ü¸Ê\ÜÓiýgyÿQðwŠIj§åp7çTíGˆ¼C‚¾±ŠœKçvÞaë-âýÈu1pCˆþj"2ëPù;{ÚŸ‘áH”[æTó犼X–w$Ï>†\ºí°] új zÃ~}4'p°xqüuyÇ7Ú]ïß?‰¼@ä§Ó¶Ø ¿ÜuïyþèR¢·²É ÕùûûÁ6VçÖ~D=qi zƒ&ÑË,Ź*ãy3¸0êJó7ºî“û\Ê›áÿºîáýä[¥ò6á)šßsguå Ñ”‰>'3Ñeä—+ Ÿ›.*™6¦ív=¯;-œ€e@ôDïdä»ðìÍdÅ]RZôë¿ û6µ^8vŽßÏõ„mÞڪѽ“®»ã%òÚçØEïk1D¿Xx@ù•ÊY«o¸„>ža¾X¡êy³ík¬K;5AôZ8fD_'œÏÒ8 ¸Þž[§7°¾/eN@«Ó‹^Oá/Sø¾¤‰è$‹^ö<†Î-â §qv5; ¬v·Ó6¨¦s…Ï•oÆZ¿]æµÍUÉ—V bAô†ŽG»Üø:: ÛoPï¨yZ:õK‰f™¹¾ZÈ,³Ó§©³É“´)q+¸Á¦@ô†ŽG³<ï{»Þ™ÑËnE0d>¤ÛLíI"o^eo–K×W6Nì…Nµ‹½Åìü@Þ¼MžfwTõšà2ë‰>ü¹Ê­@ô>f#,ÇVô‘àd•_ègI»­P›Œ\_?´ŒÇ*úy—‹ÜוM¹Q7“‘EåûÝEƒ¢oDïãRôq'É] χ\Œ/ìºù:‘7—k›ZP;Éâ1Ë¢rbÌEUéFxC×ýC? í=úßú´¨•‹ÝŽÞ@ô]{³\µv´…;¢÷_—ÊG—æ²ÎžÇŒÅÖg|·ãºîE^Rº§Í\ïªj¦­¥„ÆvчÇï_Õ:žµ>mtû Dïkµ9MU¦5îxi÷ÚçÚïò‰Cñgöçz[¦{Œ'–÷/ü3"ßÜO]£›9âúÛÉ1”0—%íŸÜá—íõsDohª2Í12µ_ëcÌ!¾ù»Hݲc çç±¹µÃøÇ‰ÿ‰ÈŸŠ<{“³ÊÀʵOH±zfÌŒ[i»oo#ú«›_Ï:ÿYbó± z³ÔÍ<ƒ1Gè=Ãíù ßýÏM.k »Þ?|>¼‘ò-“iË!¢74U™é̬ô!™â½dofõœ?øcý’³†´Û‹^ŠËÖö ¬×õ‚{é»eKÑŸiÄ­ˆÞC÷ÖîêqÎ{‹ì]ô®e]ùœù2ï~I×g8£÷Ò7v Ã+ ˆ~¾}†s:0¢—Ñ»9™G»iÅz'vÕŽ—?»åî×r}b‚¾pËT^ÙÛˆþœ¦þl¤Ñýî–œ÷å6—Ý"—–wõRßèIw±Mìx;59S¾J >(c³ÔMƒ-ŽèpÜ¢ôÄJÓ&mÐ2fW-â¸ß8_uO¢—&*sÇ×}Úl)úÒ›¥©Ê´ÆuŽ^,'ää›û˜¢ß‡åšq=¢¯¢74U™qœQÃÌ›³Þ„YêFÜ¢í* îrá1—ᵸ’ãz¸¡èF›‚Q7D¿€[X‹ãRB ÙžYnjLb<ØìþNvp‹Vý˜£æˆÞ€è—±ŽpYÞÞ’ÍŠOœ+=Ͼ&”ÙÛF÷ÛçÈ'8£n Gî‹ÜÊÑñÕ\ô“quAmجûÂ*ÑOšÝÓ º¾üÀJFÝŒAô˸cÞñ‹]Š>»åƒËl…úºßWûìnÆšªL£8D?чØuG÷º×Êûk¢‚è MU¦QlòJ¸éò¯]÷û"Okª©&ú…ëé ºof”çàf¬Ñ{09zqްð7à°äsE>_ä™ËWâ`y› ùʹ¾Á‡Ñý2^y…4àõ2Ãk‘Åå+q¤p>n>€Œ;ÒÀ€Îòý¤fË÷îjè— JïiCs¸G&mßæÇ}ècivv?W1.„7Õ ¢7 ú †Ò{FÖ^ÚŽè™·‰{þË*xýÚµØxY©M¶B¶}è°ëZ4U™Ö¸ÎÑ‹OôW—[.ýþÿ·‹Üµyƒ)œ—ØÔÍlå ÅÂJCôÕØFôqîkèƒp ¼™L$2àwý[En¹ßÂyQ$z ¼[£-7’*4¤nâÁ_*Ñ/àayåþ½ð¢j³4Ž(zŠF B{hx2vRNr±ˆ>ˆà¡ôû˜!à°¸ãæ{0c˹n²mÆVZÂ&½‡‹½, ¥—ðâ¶Õ¢÷êdüçÀÕÒ÷«L€mÙ~xe†ÍÑ×$`(ý˜Ð\Ç&;ZôÓï3,9új¨ýD_„£ŠÞeùó;ˆšEƒèsèCñFbáÓ!˜Òd 9†å Î zØ/ˆÞ€è=˜½,_r'ŽÎ®Üòî†LÉiIÝÜ,—¹ž«Ñ úîògLκ)ÅŠXØUà‰<%j•õ¬Aoéo×ÿÐB!G_ DQNÂZG$l„å˜Å™ÎþKä©"¯[>™ž“šÞ† +}5T‰Þ’3u¯âúÑ/ùÌ”ˆþÃ"÷¹)³Æ7®mø¼ÿ±ØaD_ U¢—ðáÛŽrÖ:Ó½©ùcùEÑóÅÄRýý÷]CÊ„}5”ˆþüzÍ·ˆ>”¢©8I½­þÖAå™Ö¶Eƒè¯7v™:HØ4¢eäµõ–?ò‘GŠÜ¶J:—Ét¿Ù÷.ú„4¨Dè¯7¹brDÁÍU·ç9Ò3!MzZñ©"?/òÀíÂùÅ?Ël‡ÄÝu ú‹u…ÓÀÁEŽ^¦¢—•©q±Rؘ¶Û°b»quˆè“ G_ D±®´t4ÍÚü!|sOÉæê*³=TÑ_¬+œxÓôWÞ÷ÃKÎÏÒÓ°þ)nbËlõÏ—€ýźÂiˆ{àÍÚ|}9ozKÖ*z‰ÚP ¢¿XW8Xrô² Í1q£¡ ©3¬Îqb4où–!G_ D±® ú@–r .6}@™)YD¿D_ m¢_¢Ãá8Ï\› ¿¹;ï]0òñ"D¿D_ Do@ôq,‰^.½×°%DiyY¬3–_¢¯¢7 zÓ½8ÃdÏ#TÛ¸>Òò®Y4,Á>¢‡€è ˆ>oP&q^Šà|K–B¬"ÖA8æõúêTÑ}4·d×Ì'š!d.!DôÓ?oJ¯@½ѧdÒå¯\7äßñŸwˆ¼&¹bÐC޾ˆÞ€è=Xrô×´*úøÌgÈÍ<Þÿ ‘ǦU  :ˆÞ€èSˆŸžÒ¼i®Oý†puƒé×Àõ?ô؈ހèñ^¯M‘ —«®¶¼µ3pv ¢7 úD"g œž~ügœëW × Ÿ‡•9 G_ Do@ôœ9z‰½,5òÚ±Œ+,<É29+Œès€è«è ˆ>Ç)»Fô–ë€I¸m-$Ÿå­•1[¡Ÿ¬†V¬¢7 útžœ:“Gô£âLÆïD*zÂùL új z¢O'àÉ©§dg#¸ØèœÔ#èªêtëˆö¢7 z¾½øî¦M‡2‹äº皋ͲuD{Ñý*lúóÌMßZ;óK# Do@ô«p‹~žïn°©}}ÈÑWÑ´ÏθÖìG³¢ßþgJ‚è ­Ù§)rô×  ú6¶‘¦æ÷¤à zC#öÙ17ôÜØ”fDŸ27¢‡}‚è -ØgßܨsøÇÿœÔæ­=¹¼X® –Ï 9új zÃæêÑ@߆çPÙó«#›·ö©ók_}}n}5½asõ´LPŽ^¦Ù›1óòþe1‘Ùóxˆè7ÑWÑ}f·dç›1!¢w-¶†èM úÜ új z¢ÏƒWˆþŸf/3ÿ3kMÃ’67KËe¯@i½ÑçaIô‹·d«‰>¢p,{ѽ‡ÐýõÒÎkò#zž“õh}Ú\¸®r}.µhr‚Õõž²€è·…}5T‰Þ'–ƒè3à~DvâzÏÃSq ôÄj’·C DôVM ú͸|rJ¼£·jvÂy8JD?¼ ¢/G\Ž^.žœZ̶oÒòˆŽƒ*ÑO@ôss`}ÜYˆ¾ äè«¡Aô¹@ô™éºoyuÿÒÿêæ¢°WËÑWÑ}f.ç½p5o寷¦û}e}54ˆžÔM¢sô§Èš7›&¢/¢¯†*Ñs3¶9V?%[¦R‘¢§KÀÎQ"z†W6ŠCôþ,\£‹I+6M8*P"úá}sØDi}P¶šë糟Aô U¢Ÿ€è3’’£—ÑKxd½°‘ˆ¯ö¸M ú’«†Ñ'àúnDŸǼ7’§0‹åᘠú)ÍÖy¯”}læÑÃ19¨è­º)ÂLôóüxòì7QG_DZÐ zrôHÌÑ_¯ìœÌòLÚ8Ëpѧܢ'…\¸D/™vÑ—"Iôp,<x¬KÎ7¢¯¢Ï\ØÓ!óÌÄõ®rbK¯37ßDtQàÑWC‰è³€è 2ó¦?ß’iq?ñ¹ G…é$AôÕÐ&ú„bÇë ç°ƒU9zY{³> ÷\%d ç'™%: ì D±® úBÌRÞ!öú»²yÃùsát؈þb]Aô刿½¹Rôg’-?/œN{Ñ_¬+œÃåðŠ~2/ÂäýÀá7VÑû‡Õ[–q_|,– Q£¯¢¿XW8‡¬ÍÑ‹Oô“æ^buö¹ÛQOºìD±®p&%À¡s³' «?r›wz܉3Aˆþb]AôEq‹ÞŸ®‰½§5ÂÅŸ<'Ñ&ú5 úâ$EôãeæïÛ6²°$¢o®ªè ˆÞC†ýuA“F¥\< Hð÷s‹ˆ¾"ˆ¾ˆÞ€èkà êBÆÉX‹ÊðX¶ˆåë‚è«è ˆ¾I>µÎ_f}'ý"úº új z¢¯Ä Ñ»‰X{ì=(ѽ‡l9zÉ)úóýÛ G ˃^½Ñ×#u:Y3ƒMî*ìDo@ôu8µóO‰¼OäÇû?=÷Te´@ÈÈÏÝÚåÙo}uÈÑWÑ}†F~‡È#N¯ûw<ãå­rh?YfþÑô(cyP ¢7 z¹rô×<üaÓnÈôdÖ#åOâ/¬ŽèA5ˆÞ€è+`nœö­=ê ‰~aFLDªAôD_ÓÈ]÷F‘'{}íOÖûçHpEôX¾ÈÑWÑ}Î:þ‘;Ež(òæ¥é¬DM>¼p#Ño¢¯¢7 z9ÇÑ÷Mý„“â‡?¼ÊöçpBVœ¯>]Ño¢¯¢7 úÚx »œXÛ”#ƒå·ÑWÑý¸=»XÞ¢‡ã‚è ˆ~–D?Ñ¤è ˆÞCÞý¨Ü…ìÍùõÊãbŸí¦è5%´¢7 úmXS/Olà_˜p~SÈÑWÑý6¤Úvybƒb›ØˆÞ€è·aèýË–Ø.Àî@ôDï¡TŽþºôÄêW¿Dôp½ÑoFªèei^„ì…Œ£¯¢7 úÍX!ú1X~_ új z¢ß’L™úÒ›ƒŒ új z¢÷P6G/uÍ‹åÛÑWÑýÆTó/¢‡ƒè ˆ~cÎ9÷¢‡ËÃñ@ôD¿1ˆ  ˆÞø“åûE~¢ÆvÞ#òÕ"ï.Sø§ŠüÈã‹•‘¼Tä9[×á@ z…Lž'Ú;ú®·8@£ì•ƒfÚeÝ4è°ÐL[¢¬›â‘ÆášiK”uS<Ò8 ÃB3m‰²nŠG‡tXh¦-QÖMñHãp€ Í´%ʺ)iÐa¡™¶DY7U¶;¢n”íŽhÜ£BÐLÊAôÊAôÊAôÊAôÊAôÊAôÊAôÊAôÊAôµ™<†>ùͬ}kåÇoîzwdÿ{4@—D_kw<Ÿ„{œ‡d^y—+wÁøèØ#õ:]ÎZá½ : úz(ý> stream xœZK“Û6¾Ï)¹{«æ(1Ä‹rت¼Ö•-»6qtï–83tôŠHyÖùõÛ€‰;*,’xtÝýu70Þæ™¼Íñ_ü¹¹Éonþ¼‘ôö6þ·ÜÜþ°¸ùö ·! …*n÷7ªU]mgÊe!äF´Íì¿‹³@ÊÙY5”"½¹Z óFBˆŸªfy¨÷#(¤•0 ÀóÌØÙØ ³BvoþöΑL‘WÐÖïÖ›nË`£`ë0„ÜÕ–äƒ-_½îwL`ö;v€_»c„·ßðN¼ª·Uy˜ÍµV`b-^ïfsØ0Ï]!VÕšÌ=—ÊdyQÜÎ%,`­$}×Ná£ói3Ä'Ê=>Ú€Ö’Å]|ƒ¢ê,—Á:wÆ~ÿü®Fk´ýÌÃÞ¹WâPU«(EÐ P¼ï`$F— bYÚJ @éF.•¼R¥2[Xr¹Å¹Çõž z5†ý~—1üq·mÚ’¹Æ[+Zþ¼d8 ø ¿/Ài;åÃþÜ's—gjä“QÃë”9Ò â÷ò×sû O ½Àn¿;Ü0úY!ÞTÀÐMƒäøL >ìסjpeᇰÜúzXlðPp''Zj)¾‰ƒù^MEí@”„׈€JÒ!öT·Ñ± Nß7û¦wÁv7øýX¥‡B¼šÍ%þ!±Î%Nœð?ëµÌä0M'}¯Ú™;gDPôÛ~÷´¯Æ¶ß¼†p\¤ýL×l/ø¦ƒQvè›Ië!s&sÆN‚öÙ~Ú‹u‚îÕX¥zÍÞmAÐçÝ–]ÕX#ª ê¤úÉ: uõSzsuýd •éÀÌ8 ÖCZr1léÒ–ªý¨ù~ÔU8÷r݉×eÓV”­µ¨1áx¼/—UŸÀïw‡ˆ©3AùŽ3»»ýïŒø0Ãäd Û#nĦj© +.š¿}E2ä6—Kp.sƒ‰îv® »pÚs9ÙÑ£Åp§5.gaT°B~7›§Èü?”3š:Øð#þÊ•¢jjHž4>—˜[»ð‹ï¼ØpUúiL£èAxÐYQoöëjƒ…>~FÉÁ‡ÞÑÒyØŠ^ Q7PGIISÄî%šþDeˆD¨¤$¹ûrI‹ç¾Ì,nc(Òú#{B‘$3Uïðu`U^ƒm“c©%Å’È1`ØÀ9Õb¹[góT“Êb³¥9bwŸ†èn!Ñ"-yÂ"}XUmYh´M'hñ§§¥{ß죻/ªeýbY¶l’œ—ÛU|€õö¾:TÛ%Ðñä«›Å×w¢< ÁÁÖP)ÂTi0U Å'®à$¨z›Æ9ñ{Åj›—qkú¦„% ‹8ñ3šµ‚XxLK‰• ä䢌%t¦ëõÇø¤ 9#é*ÑSDgäuF¾PW—Ë%Hˆó©ÉX I²æì…”‡È ¶>æDoðícü"Tô)ˆÝa˜®ÒL…MCÓËBŠf·¡)’ÐÝî)â ÍßœøâÕÿÓÜ‚·ƒ|ïêuÝò’Vã’ø ˜FâKô"6>zQÓùµøµr”Š)nÞ}=q0¸¨Úá6éd Ìp(èT2À@–y•ÄÐÆœÈàŽËrΩsâ2@móMüžÎ¦sñt(÷ûèÏPˆW‡&Í‘0hw$-È7´넚<ÁHJc={œ>U3n 6z¬Ç^J$Ý” ‚¼Ž¤¡@H¡—øQÂ\0¬Dî¦k?´þrw˜´QÚ«¨Ñúø ШÍ2ò¢¬€^Hƒï¸$B¾áµÆøeFçòY7^ÔÆŸ¹ lL¬.c\&~ŒÎvE!ÂlŒîÄs|£ŽFË•H.i¹s|Ñ#§(nvý!-E+!€ 2`¥Ã,:Ñà „±lÛÄé†uŤq™ìüʂނTÊ ’ÔEp$-zÞ 1„TBq“JZW ½’Þ8¨Ì(¤¨§uÃn¾êgÕÛåúHó› ”€lÀrÃÄ$רʦ®š–^ˆ'Ð^ ÅRþEº2f¨iSUƒUw8ð)b2/ÏÝœìé Ñþåx+: OÅ+ÐÛ/Ååúª¢ ‚i›ô rï–ä°ÙD°ôÛ_2„tì;\æÉÎn©úb¶X v®›¸Y¬œ /s0rÔ~Õ÷|@ì*–º“ȥȤò'¨oË Ux— ‡0ª;ÈÝÞ…oÂhä8ÜØApAð˜á§]Bot Õ•“ÉœS§Ï@Ï«ªˆ_–„²â_Ýy ÕÄ´%$…a,ÑИI(…;öO™S¾eeuÊFç °÷¬:”}¤Ëð„iÄ‘ËEÊLÓQä´ËZh| —´ìú½hmˆg,©A$«rãÄ~ÍßE\¡…U¥PqÁKØŠ–ý'¶²T#¢Õ¬—CYã´Tû3 "ÍݱÝÑÆ!'W} eT{ç:šür° †™—ŠhiñXÓ®×½ÝoàóDzO²ÿBü]ÏKáý¸¾¥INbõN?è3å"¦€îýÕÙ8tæ(c5W#Ô«eÛ©fNT;˜TsààóÓ2æ iqJ§Øò‹«PM‹å~ŸJ˜cÇÀÕº‚Уډ„¶< Fhû7eJb´ø¶ZBëR>Æ•L“†ç¤qÜlÊCýWžÞÇÆrÅÓk´IsÁz{¼Pƒ(ø@ÛÛ½358]ûGLZª›2ò¬‚°™¥¦é¸‰–Ô£KDŒuÓ9[ù2*[Ï,–X t«ž¢&@È{Ù•áoÅëï%’!c*:¤jHBÏÅ"q…ä¤AênÚzÙ¤ &¥ ñËU¹OÚ“ò< |¹)7gÖG¿´®8±þ~]o°yõš0úeh6—œÓ ‹bsIq…5ˆ‘|FR.Ûc¹Ž¥á®:V m¼õľ–çh:‡!O&Íìx|ìÂymJÉqSË~˜«õ>‰)^¬«nmªküñzèÕ Mýê,\Tú]6¿H½ØžR/ÂF†Sâeµ/XNñ‡Z ;$Þ`¨·“´‹™9ùäÒó” ¬’w-Ò~½›\œR~’Mnc/·šì˜‹Ìõ‰'ÔÄÂ&‡B>÷ÏT„ "g>Z‘äÏ«êEL1íh¨¸:†4’²¡N!Ï-¦³±‡l´ùÔKNAðN6šÞ›Ï×¥&S;V>ñ4Vu³<6 w@ü=uJð³Zï:6~êtÕbÑeOk=—zhSFÕá%…:Hy}&3ÆŸ%>  ¿éù¿XKâi¯ø0lêU¹„ø†ãOªRºE1!ñ Ž,UœØ4ý·‹ã^TëU×££¿ (ئ=Âté4OúŽÀ¹Þ15ugΙ¥ºØ œCìC¼ê–ü|¥¡tû+xiKz`_ÛŸ†ÆÆúCÝ;×õÍÀyÿ©½ëH©z¶Úô圀¸­gðêí#d6-  pØm’ ñÀ')òp9I €”Ÿ 5'sx4ÔY¶ Íûtå±jK’k¶xè0úó!5Ëú—\Á‚ç„É£[*ôÎôVØ”Pìhà.hí†Òõ…æã9_õÓ7Kçýj¾ÂÃuË÷aÿ¹_¨&;ª i( tŸ–pé\×B«²eÞœCm^(¨(ÆÇæ”ÀL.‰™ä|pܱ¢Û ßó(VŸTßÃåd..i”C­° 3AürŸÞ†~!LŽ$[·Ð@’ªwõËh¢Ããƒx¬ O…DA”ñ’òîSÈáÊACtÔ›twrEf ‹H;:9tW]DÕ·8Ðl!èø¡74=qÜR,EÅ¡ÿÌöw¬RòÜ"@³ ™gpbÜ$ªÀË€A€ìº°Ùò2¸fyx8n†Ò˜Ô‰§ô§‹P ÷ÐgTh)èÒèóOdíôÉm„•â±kâQx¥Ï<†QÏ–²Œro)ºÈòÐ¥þ9Œÿc—c¸OˆÕ‹å©«¾r鯦Ÿ¶i:v㺽D!Ÿ”U^¼ÊäïÝéS—=âµ%Þqt¨"ø>6ëz‰‡áøÇñ®lŠxÔýE®>ƒ ØuèR骺/ë6Êe%Å¥â{~„äÓ§¼Dâw 4¸`€¸Önp¦0X–›ÓâÅjCÅÄÕ1Ó1ÿ.ý¥ŒÊNO<êm< "b(ìPã5h3ˆ"¾Åü~ ]þ¶l+¾ÄErLò}ø$¼ã¥›WîƒM?57÷D|N]¦IÁñ[à—©Ø |úðVL_È€­BßËíÞ_컉Y¿h›³Ðþ pí2¨.9§™îO~»ù?°:£Õendstream endobj 273 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9096 >> stream xœÅzxTUÞ÷`È™KqdBô^¬`±ÐEz$”4Rg2½÷™3½÷–I„@h"R\a`EŠˆbe]vWWWÝ=ÃwÙïýÎ$è¾»ïû½û<ßó|Ï$¡Ì½sÎý—_ùŸôcõ¿Õ¯_¿Kg-]öØÄ‰™ŒÎ—Þ–¿»HHKòÿûƼb8¸îßz÷ÃŽ~Z4c݆/{|zC]c‹`có¨ù ›ëG-“4n5W3ÿ³tóëõ‚ÿé ‹õÊÔú•Ó^›Þ¸jFÓÌæYü—-BÑëâõó$æW,ظiQeÕ’ê¥5Ëj—o®›({ìqÅO>õô3÷MýܘÉÏ¿ðâø,{èá5¬}t‹uk!kk4kë9ÖÖbÖdÖý¬%¬±¬¥¬q¬e¬ñ¬å¬WY+X+YÓX¯±¦³a­bÍ`=ʚɚÀšÅz™õk6ëÖ¬9¬'YsYO±æ±žfÍg-`ÝÁZÍÎâ°Ö²îdqYw±F°x¬"ÖHVV)«˜u7ëÉ¢XXYƒXϳ³ng½ÈÂz‰5”5Œ5G“Åfåú o“ßv³heÿ1ýß(^\| Ì—Ùqâ!âíò|wPÝ zpû틆Lreè¢aìaMwL½ã»áAΜØ\îýÜKw1Ä ^°äÞ’¿ŽÜS î.¾»þžþ÷èÈÛÉ 5›útTݽ#ïuÜ7ð¾m£¹}Ì×÷Ï»ÿØÑccÿ:nýø'Æ' (à̃4<¸û!öÜ6øKÖÂO[n½=—Ëß+Ž~>[vvçzáwç5·?d/F÷Ïèâf ”j„¢ˆ&Mý pÄnÕSš …qU¨…âìÕë­†Rã^¸Ï¼—àÐoü^÷½¥Ó¼ÍÚiMZ2µh•P+ÖòËèké«éâÕÂ2i™Q2h‚&› †•YJ4% 1²wwi*LQœ)©WDF“¸CÅt;toqß ÷sý,_µ¹l.è²Ä•>1$=ÔÙtÊ4‚æ”)Fí+é\ñR R¨Äâ:C¡)  ţ갈*Îno·»Ûw„¾üÎÅ+p€-IeÈ$4‰¨ºÔÄ7ð-ü’@¬PJ$AU+…žé¨/W%Ôj`O¹RŽT ä¹:Ü[áVÂͶü¶lǸ®¯¯'~ wþPÎ&ÎI¡Wó‡¸N‰Wâ‘ÆW&WÄWÚ4f¶E¯×› ôXºgÐJH€H¦6§MQê[À)w¹qlQ&6©„Ü/&u EËÎÐËŠ@(S‰)N¹$¬L‘œ”Çcs—þdƒÁDBP|`ñšñK¾—'C¶Oö†ämžÙeöB7agÛ<·Ãý#z”Mû;âpÄkA" ¥²‡‚zp\ƒÍP*–ª…xyQT'=àzÌ 4¦8 Ò¡`‚⸘ÚÀ«jãaЬÂ!âßÊ™0‡Öæ†çœ_waç4‡â¹›Šâ* «EÒ€2I¡ø“ïê§ðG˜{ýè¼0Á¹~®íô‘OG^Zòîƒ$-B¥J$Œê’Tô¦‚Û„Åè.Àùá7«æ??õµ©ÔT´‡»­-FCçú®c²¹/M^3»w}c}”ë÷Í´å|ú0?Ks•÷ÓC }'ñäÑ‡Ñ 27ø#—¸òÚ÷ôPòGzW?iѨñx©úÃS¿?÷ço)7ø­nÏr¸š¬FhúW>yŠëˆØ£ŽH à9Ó^Ÿ/ŠHTÍ‹fc{8¨ –rtRæ¤Ü-ƒÄ¸[‘•©DLd#šŽ,}'½^^§ß½½V©ˆ'Ý•”Ä8¼ƒÕXú¶›pxÓT$ k£[Ô:=9½uºCãRÛÔ¸ž Ú¤²¨EôžEk“« Ñ„r½˜.F¡"\O…^KÆüi¼lJî‘=Ï¢Éå½Ì“üîüι¼-»©½.½Ò/AЫ´ô$B̦YGèÑhü¾;ýûvÒéw†`€p°Íq•Gk ¯—,(› ‰ åùŠŠ°_lýüØé®=Gv‡Ä™ó­(AÊé²µ§dñz:¹„Ó“äYTÛ»#º)‡&äÐÅ\¿üê EHž¿‡ 6;t1M¨™œ2Ÿ0$q·?q³ý¿îö.T±½r‡ô,A#ÿŠF ÎÕÅ×iÖª×%M)$ âêŸýàFO½E¹ØöŒ;ãH;B0ê fŽœxã78·c^ïÖûŸW` jÆ•Œ¼€I?C“ôt)ý´V­UB)!ŒšÂdþ6°b¬Ø¼À³yì>è%ÚÄN©X©k6“Æz³Ô$µJKè,غk{÷¶îŸÐ°ŸÑÐÑ0¿ß°‡ ;®p)Iú'PJÃfõ<žÕ`ÕCÑœ4E;m­i'éˆ:¢ö(ñë]åk>(BSz{¬´È4-8ù ­hÞ¨ =}u*¡‡(ZQxW×$<^tSÜ]ŸåŸN®j²£àl8~]ô̼ƖZM5$þsZ.^(Êßõ·šÞX¼j‘8ÌÄ~H#±¸* ¢VÜ1Gô˼gs3y&2B§¼Ö"¨6’5»*e ï¦‹é;èžzõ?òfºsÕ…Ê¹Æ seKuÝêUëCbJõû'þðÙ÷ß¿·mÑ234[ÍÔ¯mO­Ë çt£…½½ˆ•J Åi”•­$§»‹ùQ Í;œ©À{86ô¸ú%õFe4 -!AÇA7jaÀŪ5k –`‚ê´¥â2ø=ˆË=XbMH}ØurSEg±`Ö¡ã[WŒLÀ,Ô·À–Âm[©”“ô³ùè/IÈ}Bòæ=@fÑÈ¡œÄ òW rËN1 ²ýk ¸"0D´b® éÛóqƒ>-pÚ〯(`¾,(g0ß…ÃZŠsË)D­ÑÒŽ”»=. b®véuŸŽ-î-®-®­Îm-Û?ùøÔï!QŸ§²ÉT–t°¿âiš3§víÚ[»A5ÌW?´¼7š«H¥b˜Æ%ôh ˜EÔ«`ª)F#™P©q¨øISd'los’®­ž­Ž­˜aŠ@K•©†OÒ#{.†ÿM€RRÐ}·3$É>_€f¡èÁ¹áèŽRžÁ‰¡q]Ü®ºÚýø#°çÇ´6©ŠS•x_õÖ¸y•î¥^ØE¼‹Š=Û¶1¯3YÍÐDr¶kœÂެ/Ðê"½Gí= 'U‰Ø,*Ò d™OêÚ¥6)$¦Ñ9ÏÔ"ÖeTtÝýã *HyR0S‹Üe„‰ VFFUýº~Ì k‹|³LKr®o­Û-/¥gŽ¥ÕôtÑ[ô=hµß±3¾½ø%æ/¡òй­UçW9]=M5Ý¢2«¬*BÍžz|ÓùO¾}û:®!sBê’Áu0ºQÒLpºë$ÕÒªÒºÚ@wÔ·G¨àáü ô"ˆ§í e@HÑÏWÚ‘qfl^‡úˆV‘&Œo&UÓÌ:«E Kž-¸Î%aUú‘/Ë¡\/Ù>†7¤zE3[=ÛÔ¬o„MĤKòc‡v„“»HIT'9‹ }q$cXµ)±j+ëm¬xvŸÃýDB1ÄÊè–¹@*44ËBŠu¨ëk*L5õõõM•Ê–ÁnƒÔAÔÞÔ”Ä#!Ÿ)4h†zöævy4?ï’~о¸],Þ2˜Î“J3…É?¥×Ùô¥¹ ˪£‚¤!B&Aš•vmøÉØ‘'Ü«ÌÞÇaèDbçÞ/~±çŠ7Êsy Ó ?pC,˱¤ˆ ¢P䓜£¸Ýõ¥ã_^Àû¾ÝÄ…ù¸™ï<Q¿"t'ÞåGRöæ¸)ѷ튑¡-‰=­û½{Kl2¸ÖµÊ[^⪠é3ð-èÞÓþiûåìå-;}Ö@^‡A»7C¸ØIe@@Òwbµªm‘†”)ê(KôŒJL­öŽ ¸êù+d•-›4•Vt„w$ðž#ª°”¢G±J.F´‰_”ÚÇ'û]Â2M–ÈMÛ“Î ÜßÐ$רŒ6#4BEcUôz]]:õÜšËÇ„ZPñºƒÖ.F`¥£þdX–;¨: °)íJ;&ß4#ÔóqWÆá>þÞªÔÆ¶rç:H,{Äô"åà')Hl‹lÉRè z"WSá|•ß°¹j¡~$–†¼óyöH€ÚéÙåìî£@Û©×Èî)Åy§°Sr–ÒÓ³%L϶Äôq gZ:Õ&tJ¨& …êuTž•µÊ³Ú°>¢6vÐç ú]]¹ÏZ!±ÄpÐ0pã„2zZÇ$t –øa “P/˜8ná÷î‚F/IFƒI|iJŠ §kCCé½@,Öó[bÚd›{€ºÌNmHÈ‹5Eñ+"àÙÍN,_¡V V«j*g>Õ‰ á›$!e×’×kó”þ1.ULà·2s1‡@¯chÖP®{]_>÷æ0VEŒ .HG6m'{¤ñÏRËó¦ï÷MWW/&Á°:¤°™ÐÐB™Ø2lHtž>õ‹˽E¹ÿgr¬ Ã™l”õ²Ök@ÒC“Ò "Ógò·ÿ“H˽’:“¼®W´´0è=’)…¯…¢gPÕöA-Âð8<_Û[Oà®rWù«½U;é‰<7ßÕŒ¿[x6®Z“E&iÖˆšV×/šouûœ¬˜9åQ@R)ßÜ\ÞÙ¸çç£hÐå½äoѰ“讳hˆÓïãFkÃhéØš¹åÔ(Æ,àÚ*mQ(ñ#¥„am†lºQÿr´°x{Á2VLù‹……¿Û&mò¬Ð_Ïå_Êæö&Ž—´vFÚ·‘ÆOÙË!Q…MˆšîOHßEÐEWžG¬óç·žÜIº¼N†ê¤Ø#­SmóÉiƒ®//<|ù§kW¿K¦,Ö¾•l§ò²SýÐS=É0`sŽ£Y¥Hϯá¾$“ ¿ˆR‚Oó|Xã©rÕ–xWúVxWz6òbWó˜†á8îç-¼Ý—÷}Üõ©+à ØqÏ€ço6ÿ·ˆ³ç†^Œ%)Œ5qÖB+A”kjçðø«kZV+åMڋdž¯3àéŽijiNðLûeîzHÌbYAÍþ¹eÇ{Z`ø9LâòŒ8j¤ŸªÛZ[ KèaîG2ÐC -Nk{ùÒ¦¤6cJÃ#pOj×Vk/›Ø±Ô1DJ¯`Zòf0鉩õ ‡ÿ?ʯáÙ %iIÊ=HLB±¡¹ »œtŠ«a3Î÷]˜S{þø7—~þng·¨"D9´N¬S¡Åj⟚a^o3ÔbVP‹ "òZô”¦ã˜”û…$ŸÉB=yýþ*q6{eë‚`tÆÙò«yXÄÇì1¢¤bžVLb¸+ˆBy‰°äÇ =ÎK±˜*i Ð@>ÄGMisº«–^k¦jí¹öV=Þ}qrý¾>¶ž+BO e\Ô <=ìÖíܶ÷“ÍßasÅ£áW ]|u2*:{¦ýØ>Êãób1Ž5¦%)sK`#4K”ò¦Ú Òõ˜>çðï(´å$—Æúì¥ ñ›=stVŒ§¿ %r9´PÔ™qï2²úɾ’@©+¼Š˜…Bo‚t K¨ÍÔxð6Ê1Æ –rg±oàSô àÊÀ¬/ã@x¾/&jÝË´yÙÞ´ð•†åu¤R`æ›ÌBžYkÁІx´¨”¸`•Y›Áç[[™—CfŒ­¢^lýÅÂàŒa?5 d0áBæSõ`+šWŒnX÷û#x´éèkíTu¢Ò¶ ÛÀW+%¢°&M¤ÍÜ=È\üxž°v¼âRÙ•P_|ié }Ÿ“äÐÔß?‰VŸt‰†çŸ?1‚ó-*:È]!Z;.!ôlÿƒˆ[w þ "ò ± D燧’Ï#ƒl6B ¤šH"æ yÔ dÄ;õ[±¿öÅ·1sÜ¥¬³ {uÛéßáKÙ¢˜2‰L"•Þ½1TWµI#m L³Ù ¾Ê¯uœŸ¥^‰Sl#Ôà¡GŸ/v‰¼• #·Ù,j±4fvsJ˜mϦÚ¤‹Í9×&L5“œ+f‹Õ\ú«AY?ÄyÞ/Bœnî›5‡'°àa¡¢+ˆ}zû‹ÒÔ¤­4G¿ÇÕï;w~ïixÜìžNˆÙMqc|»-‹ÍY ïõ1¹_ÎW7ˆudeçêH$¤‰YtÿÉGÖ|!¤.‰¿3§ ÛüâÔeÓ!1ojë‡^f–DeÅ.i5lšHéýVIU%¢:ÖlOºûFh¢“ù®_‚wOH)ÍÓlÕt};=w“Ä!µÙ™éŒ›Èˆâ-BÁfÒÈ.[™—ûlòØÉäûÎCgó™ÂtB‘mqÈIúY ›d~EŠBsþHÚry MXP ªEÌ(í.ÀTí|fþ-E1Œ¡ù Å{…ÑÔ]Ì A…ç(£9;œ‰Œ+ï»ßî³ùKì¨k ›ã@=4ÈÌ"õLžUoÁÚ¼÷†6o´ÕŽopÄq{üjl0£çPøvéhMo -* ¶D!f3O‚L¬ÐÄb¬(Ÿ^½tžPÌgLZø)cŒBÃ@[Ër;-p*I@e§>ܸ¿~óA ‡Nfîît;ŽÖ¯5™M¶&’1žÇårâ¦Ü1"ÊˆÜØa÷+W …Q]šê²Ò è"_„¾ QúØt0c('³Ü++å\×3ê>(Rì—ûì®S3ó@?3]4 ?q³±Ö°¹ŽžÃ3Tê6ÂJ8mçÜ‹u1CÔƒ?ÁO¿ê¸îŠ;Žø¤å9;<[Ä~ †c§;!c<ɹÂL‰¡~™N€ehšê¦zC±¾~‘§™o|aõj~CE#6Ì ê{”ò±mIWÒ‘ìBxîÞÎÿ÷Oü‡ ë…Þ4ÐczÚÝ£Œš)ô3H1`¬Á`LìPç×÷âeoYNrµNêÇÆôWÂhðñe…z›žÇÝÒ eä& ‘h…¢ùpaÀÖTÐ5…ûçŒXbŽ_R‘P£ 3©/X­ž%ßó‚ç“hÀUH$\b¹È,ÆøÏ§ï75š,Í%¿šáHƒX¥þ¡0ÐÇ<. dàÿÁ'¤]g:…8<×÷ØAp\…‡¯«ÔדÊ]õáͰ 6ÈÅįqëúèmì°ÿv£ˆKO?IË!=†˜°‡‹8¤ i±¯‘¢±Ä7Ñ8zùgÚÃÕÓÄrú±1´XÇ`3©õÿÝq½‚81Ê ¾h£ûÏ1BƒÕØçgOÝS÷z—{2å?æ7…†ñ‚g?weƉP8^˜ kÁLø¨ªr¾Rhn6ñôÝ<Õ+/©VBB¤|kÝÚcí¿åS1cR …ب­Æfz,Ï¢0Ë¡‚‡F¤RîŽl³]NÁÛt'Ü]L´¢qù83ÈÆ¯KùU}Ó£˜*$êÄr-Y·®¢j¹–hV)E”™m“‡4QHÀÇŽH{ú—Ù<£ñ°ùšxŠK+Àñ=Çöß}í}tÛgqˆÏç_¡y|íá:Ò‚ 5DcJ‘jK§Ú|z/ô‘vvôàÙÎ#È­B¤K'Ïx•š³zîê9«4:ªIHý󠆼ެkkßÀ=-õH6…M–^N˜”»1{³¯QŽ» E³L³DDå©g?k\ÁœÌŠÔr™4¤d¦ çá×ݹpÚÞêʦÑ=¼/Lg0©ÅÕA©³\p/V(8ìY4–g;"0LüD?`ß$êšš²–é»­Mp“B&‰ã˜$* nJŠZE·ŠÙO¡Õ¹áùùçÊ.0cÒÉè ÷p÷ÉðKâÊ#{^š=N1¥–4iÌj¨&òL6™ÈÚIl—°¤íŸyøq™¿Ý9Ù*™A¦WPU3¨^0ˆ­MVXGˆê y p~8~²bÞ¤Çæ<·i•§­ž2º´^豇Bn˜$²¢¨ R]Ó4±k¿Al4ì÷hБšÓËû&ÑÖÓˆ•Ë߃mÃ_Ћ\ Í*žÂŒ$­¦ìÞ}v¸—: 2ÌWŒéœœží®NÂëtxÉqëD| 5¸âö¤#±%yöˆ+#DRŽù¢l„Z¡ qõ"^Ù²…«ð7Ö`%Ñ”µFÉ9.êDß/¥¯šôRKñ­Àm;…žÄ¥5·u}žÅ݆£f¬ô|Xéá.pxBákè4GT>9v »ê”&Q=™gØd¨4lÂz_êQdÛ#í¡4¹5Öí݉3;–/Ÿøøó*g&w£>˜Ä’#*ؤ®­~ø‡ ¢aˆwÝóÉŠkôÀ ëUòM·Ñ®“H,êwýÊbK3}ËíºòÆå¯v¥ý­žVY«[EXÙP«VA©Mbp‘ŽöS¯nŸIÏ¡‡ÐKéÇe”khȇKÂÓ®ß^¿Oùü ~õî®ÃížmŽmD˜ ¯Íùpœ‹P‚åp•h]-<4—«vÖsc•´îèEÊæ²»lnè²âoÏG_¾ý+Îz±* Ì¿›‹2ÃZ´žQ @¥Kéô¢º0R—eI+a]жÝݶ½†¸h6º ˜ \lsTîabú––Уsœ”S¯‡úÒ×M ªù c”âí„ÎŒ½µ·ÖÑ_„èM\Cé·qW]sMå¦ Æõ¦ V…9@øäY²ÃáØíL‡Û½v¯Í‹•CFk!Ñ”»V]‹ñ-ëLåÆuø&æôEâS07Ùw¹2þ}þ7|û|»yv¾ÏÓwß­äL:…ºOY±Ð„…ÁÇùE(Í­|`=˜Œ5w£]Àw@§Ãew8ñ²ÐGdaq­¬±aúÁûßßyäùÕW;ÑPˆn‡ªù‰Â×6c)}'MŒ¢GL¼ðü÷'ö&·£bè®Yf—eâÙS+^IJ»Ï~{åÓ¯ßÙR¾ÆOÙ5FòãlXͽ±I3¿ ‚&æÐd e~1whÁb9ëraÓì¢r`-=±xªåraLÓFíê E…fƒÅ€EžÁ&‰ªpA,þSÞ¬§Õ›õv`Àv2sóÿ«+“þ±Ï±7ýë;ܣРz D{†€‰V¡G@mö +ä ºSî´'帙ñC\Tˆôr¡TWÄ‘Q\bR±w"hö¿w=t« fUÄÕô€â¾€ä§áP„Ñð"t)?[cj¨ƒUDm¿“ô€NW[›£agS¶–\L¿Ë­5Õ×Ãjü~ÓvÒ ¶9Ûڜ۰¿ìll«í-Âqü‰¼÷ò½"´½Á­ åëí³úý%0œ À ád›“⨈1æ:mÖŸ+»¬3ãDB)!ö«³ä>§èLÔërx¡Ûv-öõÇðÏðÒ²“%v ¼Ýš.sx¹R§“A9ÁOH3»ÝW§˜â"1f o ©JÛRØ1W¤0˜õ6ƒõqùÄð¸àÀòZüæ€Õo&2´”»ÕÒ﯂e%pÎì• Ô„ å®÷½š†‡á™‹]ÇB|z ¯×ê æÏàªÞ„†Àng»«®Y_U­Q¥&,"äAyÄB\¸ú‡ßíâ\C™ÁÆÍuõ©ÆN— :©}ù©\Î9&¾U#ÿex{ÖùL˜Wãð­D¿áƼQÔ‡’hüð\z$¤ï†ô€C4øóT¿G Ç)‰Ä•zá½êop±¡G‡Æ£á_µFxAOÀ‹94ª JÍh5÷&j>SçØ÷¢o ¨ /¡°hUP å!m@wyn÷D8ÒÏ4îÚßÐdˆfq¶¯Aì‡OœnFëV•rÎYÌVK¯•EÅ=}ºÝä6ÅšcM1µWTØ+‰Ä"A«>¦¦²òVi› [ù&mƒ´I¹YΫe:[|e$ô¸ýäÎdw|GÊ\­©4T[˜ƒuÌ!Mx—c×V'éÚæìtmk“f¥mÒ€.¬ [ H&É ß# PÍ~¬‰™‰¶ù¶ÄÚBÛ"¼D êÅ팯”«Tzƒ†¬m’T ]þî.,cXÆÆ•~ÅFóÆ:iÜlª5n&úT"–˯÷pìrQ¿£‹Ñ±ûÁÂqe….sÒP°ocûN(øP©5UÑàïÓx½U‡]7¿k@4©oìK{²XTð6$wô®õ£½šCËqøö¢o¸ôD n65*üŠˆ…BÏ‹Ì,7ËÏð¬=âOPÆÛí‰-n2Žncܰ-X‚­y¤ÕÑžå{ø*•ª¨ÑÀqF Ëîwa€H¨BÒ&CK³™Ó·YT•UUr 9P /Ž‘£è߬«7†pé~]LOr‹†Á@N9?eŒ2§P^¦Çö# ½ïNnÌèý­|ìg°ûÇádˆEB}3-…ûÞ>TXPXHÆ"+WÞ ìI´¤ƒÁxX‘Ù): 8SôZ›®ÔÀüZ@_›ç 1ÅŽ.lô‡üi®Îª3éL¤¼&U£ªIÝ¢©×C>!õ5§‚aŸËOîŽïw'v§Ýq[8±„tXR*^FÙªÌ(ðƒ¸ž~d,ýþ9ë>ž¸NT'®ÓÈ¥ÌF² ,žöe¢Ý…V`QZÆüyàÏŽÆa ÃBXJÑòÓ|h –w"7ûû‡‘‹/ ÀbýÁ[Žendstream endobj 274 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4088 >> stream xœ½WyXSgº?9縕˜ÖNb«Õ«-¨·:m­Z—ºTë ¸ÙdUvBÂHÈBÞ@Â.È"De *P´jÕ.jmëÒÚŽíXmkïLDZóÆù|¦ólgyîý÷rž'ž¼ßûþ–÷wDÌèQŒH$°jùöysçÎu˜æš2Êõ¬ùß:mö„ñ0~t˳޵ޘ4 gL@f"3J$’ú­HJHNWD¥N]Ÿ•š8uyR|äÔ•ЍÄȨÈÿ¸É0Ìôe‰IÉ+SW¥)Ò•ªðŒ·3w¯ÏŠŒŠÞŸ0ï¿_žïÿÃ<Ïld61›™L3“ d‚˜­Ì6f;³œÙÁø1;™7&˜YɬbV3ó˜5Ì[ÌZf>³€YÏl`¼13™‘0˜ËÌ ´3†cŠ™¿‰”¢Gí5à1ÉãƒÑ/Ž.íòld—³'8ž«á'òCcfŒûòØúqÆO¯ÿåSg½¼¼–{Ýœ ™P9ñ͉û&žŸ”ö³H½˜ñúÙ#êuÆ,à Á¢õHäX,p ›¡ºÆqªªMf¯·ØL¶Jxm€ú¥ÕqVµMmÉãýäxOXÀ@‘ÕPª9à»×-ÅËp}~³±3 øB6ŒišŒedãkäíådS^Š5;Ò 0¦xÌà ²ØŠ,iõôúyTÞ=…ËÃé݇K§?˜No…!ë#¾ÓçÚ(‘×sâOZšŒ 2r™ßY%G«ÀŠ?X… ¶ôú…KŸßW±k«Œ4 ßY…ÀAgQWÆáDaSévX CUëxñ2dŠÎ]lÉ-FßãšÜ)jÃÉhÇÉØàÚ) Òì6„'¿÷,mµÎÈ¡€ëÊOéaÇáoßÇßáKÄë™*#O‘:ÉôŸjokjê¬ì'8óšRÛc` ìâ8) LŠU$EåFC$DÖ¤Nk5÷ºø‘FI€Ï9]{D?Ñ>-(ñèrwÙÀµ4ÒÛž´±ëLèËé£õ'£øSœƒ^¯<$36çÄí” çšJ@bXž0s&„Bhsj·Áôâ1‹³¶}âþa¿J:“NF+ÿ%Ô t§€å‚gâó¸@ðè~´˜"Î<þ’0òG“¸~txÊÙü šÁ¡Û‚W­žˆ±ó${q@KD2;äìK;Ô¥Û±%ìUøúW6E[Clá¼ÀÆ£{¼¢›ùîBU8-ÆéíÄ…³˜ŒøŠó ”~…ò í´–BÙ<eìí2œ†¼TW˜Y¼øJœ#¥£Ãáèxg‹#xã&ù[¹Rz’Qz7€'¹+4 Øø¤ÿoÅ%Èlêã. èÉèásç³³¶k7KC°ÇÐs_ƒãË꣭ᶈžû\>£wº¦´™UÞG®¢úªøÊ)1ÂôaúØÄ”ôœXˆ2Ã>ˆlȯI‡4~íbmô¦ ÇÕT©¾Ú\§^Ãfå«ed<æüŠ"Þ€úÃ5ndtVãá¬nC'ð·ï;~±vpy­, ŠŒ6ÁEþý{p@ʪ’Zr U-À[ÙýÅe•²ï¸JCY^Fn&äI »<§„÷Y2”ÅÊ)â…@/e•hèYF׋?;c PyÿY¹€ã|Ä×pñ£‰’…áä©ç¤1œø³[¤œ…=Å{÷'Ü}.Wþ£³wkL5P#“‡³Ñºu;´CG¥tH39± ™À–NFôŽˆòuX™úläöC³©$'FŽxýQ}óóµZ¥æÅž¸òT:›¦(9$sqd:©õ¡w¢ŒlãVï^ùºTÃî…èbýiS=P_áñ ý7Z)ä}¦NézAµ¸6Kä'¹FØ·µ2é˜ÿ±9Çý+”%Êv8¶ú²ú!dQtE•Ì—€È9·E-oä _W LHLÛbÐêµE2›}O ,5¼%;™Z¥k† jv—àê`_@Eâ}’ç[c—wA3Ø÷•6ÔúV8*Z*‡¯ù–Ö”ÖXjx3kÉ)¥—cÍ¡Õ-«Ë”Ö,8ÀVWZÛq·çλÎûVµ˜*.ºO³TÎ5µ©ÕY{5*YÊšÔUñk ‹m¾g²G.°Õ…­E]‘ jÈSgèÕÊm©Û2·òEì4,ó<ã>è(ÿ;î©û8½Ûp FQ§dQî#þ—»æHØZÌ€?7”4S–ƽ ~oF‡§ÇDB0? 'f]9}íÀùziI®1¯4·.æ´©ø£¬øÛêrë~™øGè{=Zw„ÇTÇM=ê'Ma×LÕÿ.¶1¡OvÄZßmP¯­É­æñmò¦ÄŸ[½-l]ØÇÐïÿrø²]Zi®‚Êb~,*ÂÈ12I XÍ(s3½p¿Â÷Hhgè‘0‹¡L :ÐÄÅgg(ªt•"9A£y x9n¸d‹Æv õó;("¿ñŒ”c–°’%‹1øî=½mçK<²MÎ9 e:½fÁ‹/"çÙ=<›·Ç¸î/Qy» ÀGÜÕýh…D|ÅíwÜp…k635E†L-à ﺃSXq—@ž¡Þ“nô$¯°#]`g ÎvÞ-èA¿k˜|C\ ”fZò[|ûýûýz_²hK @ËqP¨×uIoÇ/yàM±¦˜7s öŠFhäÅÉ)M{£U‰‰[Þ‰=‰Ü1}Ý+íýº÷½_íïÞß]×c¯o.n~¿›²l§¡R§Ë$žDGÚè9ÌPÑß»÷Ó„Ñ÷nzìò“äåfB&çHî<ÚÐÞú5™d —°oÀ"…|ýÞ°ì`‚ÀÚ-]ƒAŸ¤_…«p½¹ã’Ån¯€r¾Z]\ 5°J0åèòÒBÂÒvPW“öð‹väpBC£±¨žî‡Ñ+¢‡G*x÷à‚­§\½}ÄßöЩÊ9j„ÌãØ¬ÝE±Rñ·{äÔwÙ<È1å··¤Afv²e–gÙ3ŸþŒ¬þЬ¼AV—f—fÔùšì5¥µ—qÖ%œE¿‡S}KJ-¥Å¥æÇßøR¤ð;0F ™l<èR4Êÿò ÷Ÿî¹ÀW—«É1ä,ÁÅKqÑ\”ßhpì~dHæ×h§è<KMVx ¬¹ÍÚ¶ïãè K?ðŸ³s‰—?çOÆë´: Ÿ]­¯’º~ÃÖa%†a—ag\ÜÞ„c8ð¯±wñ©oqÜ=g+µ–A¿/×’/ýÕú&;ÑH·ÝÄVªCƽÏ"ÏÆvsðzjn»¸ÖÝÕ;é€}ÉøEd6™ú×ùøŒLì‚þºÞV~'®;Åi@kÒ¯PY[e.ÝäDõØ.änì{ˆcŽvgÄ”ZôV½YÇ“ŽJGgÐ'EìHÚ ó@q]{í<¯‡”!øv;.t‡í÷8“$x‘­µ—ÖþŒ£Èëë×eí–Ëv†§®…µ°¡!àXØÐökWá#¸Ù|ä=[¹½*M•j[>¤C‘² +9,PI¹ Áõ©Ç”΢>èáÛG_®ûŸ÷Zæ,£Ã…®ü_qÝíÈÿùd¾Á >â»ÈS–É?%èNß',ÀH«ø3âÕÏBµ©ªù¡ÊÏïYm&°Js)¦ äÅw£¥µw¶jwãÁ åsK÷H R!’i‹“î»kÙ{qPpKüYò,Ýómèç#þÁ-õ_„Ž£ô¡!.€COœ| ½>ˆ>»¹C|0ÐDwåC²Ü—à NàNÃUCK@yš9 Rø4B Q‰1éa¦7ŸÜ¡ÈøÒý«NT8cŽzŸA|=Š¿òÿ Ü)Q&©“hˆ«Š8œÁ›¸Ý†]ÑJ¥„[ Î~‡‹«pìéä~y³4ðàØü46¾$Ùm|1•–rk…Su\× ü]uã(gv{Z‹Œn²²FsQa‘ ù´ýYšêk[:â›ãöÄçå¦IõF½NgâM¬ômëvGÙÂ§ä° Œ³C`&ÄìßÑžÁ—“Ã×ß]Ó/ý‰€oLe¼›GüMª~û®HÑ%iãÊÎ}~¡%öõDØ£L—fg¥hS!’Úô§ùIàn¢÷áJ7ÉéëIÐçy#'þ¾¹Ñ¸Göø'~ð$‡ßý?s¸•ƒÖ¢¶œƒ‰'7—m…·`eLÂz^üÀ„ß{™ÛçÞØå.™s½Oàr2ç’±neÝ>áTXef;ðâ õni]¦ßªÖ»fŽßîB#uû(cBlä3‘‡#zŽ´÷u't `2>Ñmàúû1Ñû?à•h´A  ʉˆˆÉÜÛá•3K¾L<–Ó¯?ž6ÿ÷ð¿ð­ØusÈ„VôÌ”šì¦2“·qU…Ô4l¶AKSÝVš,  Ò@S]%ØéOS“¯Åb³ÛÌîp5výPòÅ‚wá|X{¬¿«gÿi8 ÷oÍo¨µ…—¥Ú’KÒ*¢kã;á(åÅk-gÿx{3[+-ɶª€·±5ÖÒ îâÊMåYyz­V+MK3ôZ¼|eXÀ? £àþ×?ó¨5ב<´¾<ˆòhMLüFª íõEõë`5¼©XE½äßïè±~R‰Pã> stream xœµZßã8r~ï§$@°ý¶ôa­ˆ¿É¼Í-.É;‹É^y˜Ùj[mkǶ¼’¼ssAþìÔR’=êé>A3²H‘ÅbÕW_ùë}YÈûÿÒÿ›ã]y¿»ûõNÒÛûôßæxÿ‡‡»þIÙûXD§ÜýÃÓ!ï¥Ö…wáÞY_(mïŽwïŰ¯WkãÊ¢”V<]N›¡iOÅj”.ÊRŠš+动¢õ§¦¯¿ƒî±,b4øm7~mDÓó E ^T‡¾M-¥Õ)÷r¢êv—c}Z)c”05‰bõóàè~&º‘M þÃöNô‡fS¯~¹] È'“Üë½ø°â!?í›ÍJÀJ±GÙà“ˆ²Úñý§>5€Ðí©&!Ö ^8cî×RÑZÉã¸"-iEýyµÆ!dp¢Þ4OŸ± èBšTŒ¥iñ=,”¥O#ÀdO܃J› P £jTm?Ô]Óvù##Î]½m`‹~#õYœ|jÜVC•†UÒnàøQ‰mÝ7ð%l«×úFñ¯«û+QŽ.‹èűM“ãhõ¡'mŒ:øáîá÷h0nY)IòK”Š `èêz›Ûœ8WÝР95§]êT:ØèaßòW’´þ©öÓ€U~Œâ!Esâ×($+‹ú±AKB]—A€²¦/6íárL_¡:HÝeI3>Œ‹¯õ4·ü°úŽ–Ls|{kŒÜF…˜Œñ|h‡bØìÑXèè³9f§Z­µÁù-¬øpÀ_’´Æ¶(½¼«ÎFQw‡ ^‹Ï©›—¼ìüMWïÒˆø[‰GÚ7xr¢½œ¶U×Ô}š/ZZ;?ûù0^¼}ó.·€v+‰æDÿàK´óÑ-½™;œ—…M¨ÂJ=éã¿YÞÍú­%Ž àH³žïqcËÂFuL>?×¶ɛљaֱܵ:Üxä.„Õ V ÅöÒ‘©i@ \ÑÛïß~_° ›"#óç‘?C]ÅSý  ©äÔ¤:2HAJÖh-A¨õ8—£íÒl† ´¼€`Z}´i5Ëö"má‚ñk½9T}Ÿæ»naw­C¸2â—z3ôÿ’÷$\éÚ–…A …ÂGKÿ³0>•ÑäÙÔw Ð8 D5ö¬i*¨dt¿rWÑÐ.)=·FòP2ãH~xžp¤=Tlý4p²Fž$Y#nÁøÅM 5CÐ,/ ›£¸œš§¶;â M{·ëÄ8C€ Åþéó´ ñµ†Ö_ξ5à€¨¥ÉHjÏŽ'aëHÆ…õ¾Ñįol€½ŸÓ¹JñHyñqeÑ&Á¬ª]ͳ#ÈѤàwÃ(ɧñ©Í͆_Â’­¨Fôø<ß°@uM8úmÑ6eY¸2Ûæ¡­Áê¢k,z\ZDOAç4¡†=˜Èw(¨”éI•Œ¹„J¯oÁÊ+ÿ%Íò|WR¹Â«,Tõ±9VËB•ÚÇ5 ¢)°Îj†±ÖÂ(R‹ª90ü«˜ØO×¢1E 3Z|ÿÓ›‹©ñaŸ{BÛ¶~ª.‡_ $ãºe/oÌËê-µ£Åãä9õ¦¢ðʳÂ$CÒ¥·…77XF¦ÙÃŽmGŸi¶ò29,Ó©¨ÈG¶¸™ç*ѧ`¹ƒÜ GXpüiøæŒ$@@¾—}÷s‚ÚÓGâµÝŠâ‘(@Ü.};Ä»zµ¡+Š ÐFª/wïù¯=P…MH&ôí­Þá3]úõ>s³îã ‘EÉ@¶Ý €ëX}¤ ’’Þ¸“'ªB½Œ8Ž˜ø9uÑ0þ¹9 K•žF†ˆÛÀ„aôqŠ©¯6vG¬õÌ“QfQ#.²¼ÿÞb·O¨Âš©…q ¸Ž­(¯ÿ†ã2¥WÎtT$ °Áo-Ç3àDAšðxÙ¡%9M¿PÜò’Ê2!ûòóXÊ—±=Þ{2näó,G@ÅšÝ)-B%/pf¢”IÈU›ì•?ž`&ˆkµíM‡ŽHýu(Ù»zs¸lç}d¯Ò3´2îhHN&h>Òh¸U^gM¢•4f@M/‚¢…{ÑlÈö䇹4Y…ð79ÏlŦ:%hR²0ú6qJ8f,Ó{«púz—Ó@Šñ‰%P+,†Ö¹f˜¡–± ·Ìó¨/Øã¶‡ùDž$lä)õ‰;çÞ5{˜ ð§Ü@¦¾OéoÉ)îC2Y¤ “îÉpý–˜KR†'ÉÏ];¹åö²©cC4E9ŸøñÍÒ®Ÿ³B}Ûç !k½‚L’ı¥M´»‚˜Ua;ª1Ûš#Q«ÜÍdîd=ÓàëüGwWÎP]†æérHîF¦Mûîô2µ¼!q!%ËC©IéÉ'P„-Q1lŒ™ò¯ þ”{Z p»]Ý£[”u¢þËl¢Š¥'jǺHC<@JêB*ó"•›ÕnqÇI- °ð2œ/CBð×D‚$ÝsTS²1\­cÈɆß`üæ %$ŠE9 Äâ¸d_aåTìNÔû²´¨ã•¥´#¥;†œfžî(¶¤º.ËÉÖ¢‚µF¬5½:a¼qh“bsé:tÖ@ªpŽ™çÈ=ÃõlJ) DýùÿUÞ¦jOc¡J“[ ñ3z×ÕþTÇó¡îw"I3m37&R@C„$MF‘Ü¥CÙŒ•0þßáC*ªYíIÕÛúØž˜#H‰Ï@,H9€á®B’`5ÅœÙ.Ñà¨&ׇ¸%¤² µò¶ HÂúÌU·Kdaô걄àÏ%6PË@‰m)wŽ Lm2pÂfÿ6çš m˜[Qo%þ\§ªŠ žæÑ…æ€Óç&/d¹žJ#:jA@”±ˆJìgd½TüÊ< ¶ I‚Ž, ÙHäÍšy ¾ "S„ž˜-Pém±HЍŒ§¾ŽI8ÈTh:ÖÃ>Øñ¶Ï"x±¯Æ…ÍÛ#©kV?ªëSÔjÜNË$o‹l­ ›#MÆÆÄ‘À`é4G“*>͉ÑrF:³6m™‚U}n¶lyé'dîó&iÓ'ÀµßKó3¦ž–×À¸˜¾™L‘ø,¿Æõ0ÓFv]Ý-§Þé¹âGtç/¿Ù·ì¶ØpSò×TiÝFgg™=Jlh9дÄI!=U‡ë´½é3ÚØÐyúöXgx³è)ç®áºÏ©‹5B^S9*<‘ßI)\îGµ¥ªHFÍÛ:ÖIÈAo¢ ñŽ9Ac4ó(öã›?¿™jrý%—Z ù®»M{„ùÈw¨:á`Ý*+ùg&5”.Ç•.8®xùº¸Bôe¥ÈjÐæõ\W`É/ ºÆEÚÇ=š¨ñ\2=V§ñtászíbJÊé P홲µéEÂT‡0!*êê¹òЗ~@ ß旙ꯡ»6áÆÙÞЈ‰î›ÆGŒPdS”)‰ÚNo9\ro= b×ñ‰Jk–Ø»C]QiÂ3ãéê'JšÒpíÔ©ñMˆiõáœæ_ÀjúüOm7}•*ÄvCrœÄ4Ȱ Ï…N¯¿²Á`$f"Ù°¹Q,UaµôXÍ›o±ÒìªÏ'\€¶X™LEämSíºêx„œf“ßB_kìóÑ—Õc΃ܨ2ª…Xo‰}ažÖ¤⾺©ýð¢¨î™¶˜Ákd>¨m0‚}~ûÐìö€M õiÃ4à´—´÷©iGæ§pG®ë¤ô­Îç2xÞV]*ŽÀ¬óÓ±ëf|¹¯(¦s5s,àóJ<¼Áƒ+¥øìf–ÍNVs‘t²¢˜ÔP‹pâ‘:¦£ª>5>â¦ø¥r¸†?,.h,ØÁš¢.f?odvÅsæ`=]uJÛ¿g–$"©˜©«n,t Íz\p:L+Ð,ßMlÃ(–ò‰ŸçBIöµ\ÀçŸ-Î8Öærì±:ã˜KDU¸Wdµ1ÄM§ƒR­¨ZBRóa‰ŒÇU—nökqœZaªå®‘ð¹ú²/¤Í)0ÿãcsª–r#c±ã«*N9Q›•Z2€8¯êÏùË\æÀsnž˜¸þÌ;â®b SX¹»_ƒ/Z<] éd! ¾‹ü "È»”Ÿ¶+,,œ²xj,ù$b;ö?!.9&0ë@Qw¢‡ÄFIh[§¸^zàŒ§-@CÑxægßLµ˜a˜nÇO™Y>z&¸?ä÷ä [Hö"±Ö{U`HóƒÈPÎuVÆÃx9v}/þ… ô´O£Ï/ë¤U:À/ØÙƒ„Á-(TÞ¹±X“ó ÉtÈêyÛÎxc=•óñ¸øº,ð}ÕÚ\d¢b}Ž*VP³š¢nÛâ nÄD¸DóxÉ‘ÇæË¼¤+­QéPŽ>ý…²®Ö e}9*«ÉqužþÕR>Ï‘Ñ$ú¦b¹É1"ŸäCôŸ**Ô² % lÝm-‡Ò¥¦™{ž9‚ÿ6ËAS}ˆpÔ2¿¬å¤uur¦ 2*þS:úž[&:;Õ5>Z#äÕrAÑÕ½}VÍ_Ø$ž¨¿Ú&Ç dnÿ¥¤@’ôÌrñ\âJÒ«¶ÈénE­’Àû’ Þ“óOÀ¢ËHæzé/+ü©U À>ÛÀŒSÛÍ3xÎ4mÀk?7›~l/”.¦ƒ¨c&1tÕˆZÊ©ð˜*ÂýÐv„ã‹g¤€²å ç÷oCL'¤£¡ù€ P…vÉ;¹ÑÏËŠ iX«¨§Æk×Í ið ì´ÎǦpñöl(]ÛòŒ%”¬&Ú£¬øà2ˆ™Ú¼À?!»µ1¯šo(‹¥©PZdôñËCY$|3ù)›a™£PêÌl:À6ˆšª€Ö܆vÀÅOI?­ÔÒ0™ð¬£§;f×vt"s³‘p\ÒyÛÏ9$ñæ¹CvéóùKö™DÓ˜véâP€ªÖ¦«`ÏU˸ Ù~Zw;*^&‚ÈñòÞ0=çj&ùm§z–Ô}¶8¼Cëíõ\™@öcùþF¾DÓ>Dù9ý3=ç¯í­ûd­zB„Y8Ô…Ek/ÇC̉zá% TÇ.gê\ávâ›SÓïsým-•¾wsEá™Â`îX¿_Â*Ößn%íßÀ›Õ–ª¥`©§t><ßi¢+[–«—#9jþÊ©äE’Áˆòž¨¿Î^ÑZO=_ruH¯§¸u¬æµÝæØüu:š¸ žVn¼»ñÿ<çñðÅà ! K‹{}ðôêuÁs&©(øZÞ½û¢Zú6U?ø¶âÍUÓo6·Œ<ÝÀJ•þèïÏ„|á\ù•%< #ûûL—Ñh`XºŒFåŠH—ÑfrB傎¤›Ã£<èjd¶c ¦K¦Jñ2üŸ®:<{_ŽJœÖÅÇÿ$¹°Éóe ‹·þ¶ëLÎÍ9O×âˆÿíÝôü˜>ÿ â‡Þ2b–°uhÜ_Hj°ô¡øuIÍä²CRó5y%ŠðÕêu‚™Òß¶!~<à¯r*¼»oè¾Rà —Š@³óî]nÌ9sVºNhÈi›Ó¼ŒCät…ï&f†ò)‰Gب̈Gó|diqµ|¸ûOøû_'7c»endstream endobj 276 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3217 >> stream xœ­VyTS׺?!sD!ž=á^½­Z‘¶Šu¶uªˆŠZ†„0†9É—„y’H˜ ˆR(µz{ë«mmÕ«ÒÚ[Á«ÖÙÛõNðÙwïzëýõîÚke圳÷þ¾ï·ßï·y„µÁãñë½vº/¶ü{“Åcg[±oðëÆDzlÀŽvÖGgÛG:¢!”7…L#<^t|V®º`}L¬\&s™4ßÅÝÓs©«Ë’Å‹=]ÖJÄÒð Àh¯@Y˜X(ã¢\|b‚ÂÅ2¹Ë¼a2Yìr7·ÄÄÄE’øE1ÒÐUó]]Ãea.;Åñbéaq°Ë†˜h™Ë¶@‰Øe"¿E¿ëc$± 2±ÔÅ+&X,Þþ8J¸1P" $‚‰Ž‰L ‡K»/ñxçÝ÷<—û¯LŸ7ß÷m?ŠÇMð&¶;ˆ]Ä:bñ±ØBl#GBHL'hâ?'b&1‹H'"ƒ˜DL&VvÄ*žš< !âÐ"¬‰bâWžÒj©Õ÷ü þoÖáÖC6%ð\$ÃÉ!J6ÉzRÕ¤¯&=™ì19yòw¶n¶^¶•¶'ì|íLv/Y¥={̬Mo‚ÑY]FâËNÂ“È = ±ôWÀ&&ŠìМÑ6A#œUUŸ¶›c&7)à¤m%Ÿ}3ô—/ÊwïdpÚÿ9÷c‚º•B>$ÜsTgZm„~¬ƒc¼(áµç$þƒÂ&Šžüº$g¿ÈžU*Lìb#¯yµóÙHA£éo½ÀS°ÃÌØ~ö6š„¦<þ ‡Ð!À{JÚ¡ŽÃ`C_Ó©~C7ôÁ‰„ƃaˆ!v'$øDï1#W#;£Wjr|qÕ ;  5¬}‰Äs-é|Sœ Þ{]×QÍYm#4ÁUÇ?c°‚,% Szw_ Ù>ûÑH¸à!¶ ¬„À€ÄJ‡«iO¶œh9Ô•‹ØOùpéÚ ±¾'V”f 蹌…‘}¯Þ±Ý$ýÉM²Oœ„?£`´‡6æßJõÔÞ° •KC?û1‰QVª 2J‡¹;“ÉS^¨ÑÔ×3Z-hëêûOª \.ä©ÿüöœ¤5£BÑ\XÂ!íS¾©òüÌŽÆžÛȪÐ=JËh²JA T%Ö‹“µP¬ÈSAF:£ÌÏÌÊWŠ›A*PØ^¼É'¬&¦)A$ü¹-®9÷Û4ÊrHÆd3Š46Þq=etì½æ;Š–^¾brJΡÛWé‚ ¦À~  «nІ¤>äi®""ÿd!ƒÐ ÇC»‚ï«ñÊsÃÍ}rcs¾±"¯ÝO#jê(ojà³à%¢RxâÜ^å‡Ê­’5áÒ!€Zþ@úù§ºëû©´Œ~‹t]î¿ÿPÇéO{‡‘gcÏ6XmæU°>êFtë±c æÎžê~ e&ãTuH`6]ÃeiP•¤C ¤d¦çåz­t^ù8«ŒC¦hTW—ê'V¨7«Rà0ÐÄj'V| u¿÷CL;/;;¶«ÃŒ(²QkÖ4B ôª^‘$A—S Õ`li¿øíÕ·œK•) YY©±j*ŠlÕ i§Ž«[UÓwƒ\+káðÝ®0¡öÑ.“ãÑaôñh‡+Ë‘>šFKoõž+ýBÚÁRæJ Š«KlnÔ×¶~µúø*ìà† <>ÇÓÎCšÙ†ìÊÊ2A™¥ÊÏU1Ñ‹¶d„%d÷xœ@ïŠ^…‘Ð:£#×nY—¤q¬Q!]„æÿ`: ÔÓ2<+X„³Ó¨M`Ôááî\Rns±ƒˆ 3óùD"û“ˆ__–­ÍËRåf«˜°¹î û ¨UÖ%ù.A'eZ'DMyáøý‹/9 ï¢Ùm4v±4Û—¥¹ûEØøºÕÚ4ƒÚ耎ײ9¿ð¸Hø¸€=F·I 1Q ±q±Æ8s³ÉÐÆØ}÷¯ò5¡`ÿNûÿ«ÝRðN§ý´¶Üÿwå»ù»ò ¼V¾㘳‘w|•pÊw]¡áFÞ°ïüî{Ö‚7¬‹;´(rCÞJxÖ¸÷¬>±üJâ ÂUCß½¶Ë…×á¯ÅWè`Øn’ßW\€Qøþ—Jë‘í÷¥&h‡Kòúye>°¶Âبø(Õu§ÄߢˆJÄ.sŸž‡b¿ã£þ±étheŒ×G UõÜVg©ñj2T™áÎDF :t?A77~‚¥¥ôHÒ]YÞe)®¡çÏ›O?G#¯8%¼F¿xŠ#æÂ <šî7°=¶Yë¶Äç4èj;*zåaÙ*P+™#_vjäÄrÏ÷÷­Øå%»p„B*ˆŸ!|Î’‚f´ÎF*È“äd¦ædo†„‰üš¿á?÷šüøÏ&Ç^dýÞôþèê§NBL è9}«éü×B·<†Þ~sµ÷êcR‹Yol9}RóÀ¥ÊN z>MpÏPíˆ I|ÕRu¶:^•Ùê5dRÂq…¢j™>Á­®óñì Ñ×Ô~&êÈ3áÕ«ŽL X|w3â!û‘‘' nm½>Çð `4ÓÌr÷_ãFžô;d¨J±–9%èÑåT±ÎAÏ–‡ÉµªòNÑOÌo±¾öE)YJÈÈfð…ñpŽ1Èd¦±R€”ì$›‰Ò‘Õ/h«9 ;ž~èkFI?; ew#?Ùz>„ïÁ”°P}LêsÛs8mES¿©,Ræ¨U Ì%fíOÜAàW|À­SqHS™"¤²«Šµº¢¦¼¦kð&œ“_‰¼&D û(áKïøÀøà8?Ž×;Ï%®SëÔå@µ×š’Mia9~ï^^€8CüQOî#áÏ›Ù?éæÎé ÝrÇI8ŽœÑMºDEhZ癆ÞÜp#“þQ ©ÆšÖÒã>Y†§ãY˜Æq"áK¬GÔwÿÞß¹uÂ%÷1ŸŽo„½‰¾œãïé­ ¹[-ï‡PG]o{t§æx™™ºØ ûÁö%‡J¼ýòdÿÍÎÑްs-ùlEÁw,ðñÑ7t$‰ÓçøíHÞ­=Ëô•´Ôšã«R$YÁ›ýÈy½=š"¹t“_-Ùµ_î9ä/ „5vøÛ|dͽ=½GÎSxÚ*:ü ê yœKßöºšN«ì€SÐ^ë_Y°ü¨eá <‹^¾@1/x·_ðÑ.Öžn‰oˆŽŽŽnˆoiihhaðuëÿõŽ+…í2Ü<Ëã:AÏGº±-4ž‰g×É9èù§º:û±:4£-êæ -ä­G7èêzÐë“ M4~_–‰‰õP-bïá=tÕ«/©¢ñ¿ R_}©²ûí]ÿ“ŽÃè¶“ðGö±?Ð)Õ6jñ™´º,™‰­‘'s7®¤„½>5©Îšcý}GL©™µLSJ]N-ƒzã™!ug¬3¼ôÑóžç£p :Ð&×bä‰vZhÝ1´ME•œë¨â|]n¦ûF,ÜÎìÅV˜ÏÉêÊr<åSlsO½½¥ ¨¢]±è¶F)ÜÞ½HGÃuš² Ùx£©ï~ÉÝžróós• ª—‹~™÷ö,¼:€§aÇô ®”TnA~QÙ¯ðsæ ²ª@|øÁâbX×ýÒµ›‡&wóQ ÖÑÝ ^º>èÆoü–JrØ.3 “Ý蔞ÇÚtóÙ…(Ùb›U¯Æm¨]Põ‰‰”ÆàvÜN¦½†qO‚4HÒ롾Šù§@¶\ ±,¿ôà7×Aè ýX˜Ÿa­<5ó†¡w†ÑòG|všE#7.Ó»ðžaÁv­ †È£Pui7 B•npˆ‹ Tg¹Â´“÷ =LäCâ…©.n0æ"þ4?•ò!Ã!Í•‰ˆtêF¡‡w¡sB–"HW¨ì-û+ÿX/†³eÜuažÖЈIivãœÅ;Õ¿-§,¾|uŒÐóúÇóÙmcÛèœJUa2$ƒ*/'üc¹s^‡´šÊ.‚fl‹ ¦J4 Í+»°widï²ï䪵á¼é·£<4ûg4ÜÄgÏŒ­ Çë¢×´ŠPѸÁ¢¢«˜x‹#]çîÿ=0ò¯é²Md»¶¸Ÿy*@sÀ°½Ï¢Lû#»¾E—øPiž|Ù–™l½To7ÉXjgwYo7… þ Pn­endstream endobj 277 0 obj << /Filter /FlateDecode /Length 270 >> stream xœ]‘1nÃ0 EwŸB7°D;– \Ò%C‹¢íd‰?較‘ÑÉ37ñ^ å]7¥›,™~—¹­›¤ Ó|ÊŸŠùendstream endobj 278 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2129 >> stream xœ”{PSWÀs $—Ö²Ö5Z½7ÎÎÖºë*>º]­[ªøX«Öt« ÖlL †@s!›äËÍû$ˆªÁWAÝÓju´ÝªëluÝG§nwgÚé¸çÆC½ë¸ÿîÜ{æœ3ßw¾óûç#D™"‚ ¤…ë‹¶ÎÏ_¾Ì¿DðÓ3øbxTüpEª% &‰aRæ‘éÙö)=>ÿ:7YôAT×Ù|Ñ®Ã'Î^¼ö×Âê³^S^a¿¢œ-Ÿ¿xñksä òóË—U©ô¥B'_¯0T¨ªa£•U+5*ƒYþÊÒ ƒ¡fɼy&“i®¢ªvnµ¾üÙsä&¡B¾YU«ÒU;嫪uùÛŠ*•<Í97=VWÕÔTzùúê*½Nµ»NcThU:¥J¥UU©tN­Ñi f­ª¶V*´zÅÎñëk5U­B¿Y­W( uúr½J!˜©ªSV(U­FW®U© —N‰D¢)k‹ õ®ò Ñó æO­É]:c§J$š#zU¤m•‰¶‹zE‡7„‡à/á#üD€!Ñ…‹2E—‰BBIü'ƒÊ8&ž'.Ï”e¾Ÿ5#«%ë¶tª4$ýXÊóΜWw2%;I ûž¼ F[RSd ÖåãŽ8ßa¸I[¸ÎÁ®®}”?ˆ¦¡[GPПä†ÀGÆÀÇ0UMÍ&ªÌ ª3i‚/ÌAÏ0Å É<²87³‡²X]NGcMÁlÁ"ù3<]ýjŸ720H߸ŽV~û‰öÆÝ6—XÚîu„¹aïÈïÕ«1õzÑRJH`¬‡W¿ÁÚkË4‰½GàÏp{èØðÁ~ßð’9ü|Â~Ò'z¿ó )B†–HPîÙ›­~–s0»›ÍzÚjwA=ck$x2¦å‹í`õ\:ÚÃÑž®+~0 …N‰J% ÛäjÆ’±­¹–ã:Ý[öñ@¸H»ÏíJ´SÈ©owÈtm}@üý#¯¬·¶G§«­Õézj{{{zz©Þ‰½ ^ÝÃkâÒ^£Aþ{$^FDÐïñù @F­ÀÌÊß²ÌMáz)ì„Jå® ÊUçv¸YìЀˆû ;\-ñ2F9‰K¤ €ÊaÕñª+Ìq £!ˆFE½ÎWÒ¿÷œ3  ’H-…3ÖŽÊ~cB©ýeÿàøhY@zX$ð<›£…©í²Nè4™Àl¦-’šÁCgçè ^“H£kq¶ ”»×b–F#™(„ÿõõÈM…ôãП<:Ð{Œëö¤]ƒ ¨5¾ÒAfÄM3 è' ¿ô˜²oUDd Ì„ƒô%v¤²u‹·%í¡€^jè¯L{›[ÊË`™“ê 'øõù,Þ$æóPŸ oC¥–˜‹³B^ss cã\Q†FÛpø\`Ëc"-‘ÇÅb*>%Vrî #y±P8ÊÏé§Ý^ˆæo=‡Ö¢µ¹þ@{«?àá‚BvÂ+Ë2 %ÜŽ’ĉS³Pƒ¬£âq34ÐcÇ$ f0™:¡ƒ”“hîøOŒ¦~!N-ç—Ê:º~м—ÖŒÃ>šÿz,7m£~\òOI£é± þúíSÖï=m}®2)@Lp ‰ùÓÿƒ±TC/"é}4S(â|É^ Áx:ž†áEH˜Q<%Ï—à™€¥÷-èE2çaÓÏçõ£Ýü Ÿñ/t‹y?ꑽó©¥]{ ètQç qvÎÀÙXz‹‘Iïܽ5B¸:ÖÔ§Ý>j>'\Ÿ}e l$]†ÄXŠ¥¿Ê½„>¨‘ ]»ñ ÊòÁ‡?™?û7KnÚ~"a¤õ‡ }oA®Ú!û]á²—± ŸùÎw_ýûêí/?:­0&è5ûµ—ާÏ"›àâé4¼Æß•Eý!?Ä&òäha],5v·5X6°æAKÀÖfçÏâÖÜV^á©„ÃÑ0hÑcqäÎâc¦tÐD JšŒOB}ãQñÄ3¹žJµöý}^ÁçÙö9À ynpcS˜»·YØ:I‡× t´…¢TÀ߆ÐÖ±•¹ÁF?„¡¼`_òðÍÜ`ø€##ÖˆÅjs4Z'J*o匦kEþ!ë¶G¬«­ÞM±?_S¼ÖAéÉ’“[μ{fµxb#ÎȯlOÔ÷Ò>”ñ§Sá ïÙq®ì|Ù§Bä‰QÆ]_]רî[}èB71zäfÿ•;hò1ÿÇÔ&™µÍíÙ«çT¿û˦ޒë@®~oÝfÕ~ýa=Z &7Ú7ì¨q¼ßé¦BîÅ ko¹ hêþ#®c«/QÕ˜vè&Oöþáüùä¯q6…‡¥-€×½¥V÷]2RÞx0°úì^‡‹¥ÝGÔ¤Ýfu°œsÒvw“¬¤#`÷{c>ÎKõ/:gòó/î¢÷èëH*mÅÕ`cmPŸ·a¤øj+m]ÔµÑXÄã_^¨1àt”ëÔÛ)M·å(‚.Ÿ¢Ðë8ïîsÅÙ[î¶ÑND\æ<^/Ç8{Ìí!ߨ%›·Å:!’?‘Àg-Ç™¾ûHÖéšS Ùã/ÿ5 þË8‘¡zY,ôB b6¯%8Öƒ†rYÎæ³w-û&ÄÆl4ïÆ‡Æ„a±YY`òL]¤RCüŸGsøã͹ I åI1?-U"kO<®N¼BRɲ•´Ð¤›À˜nÒó¥O1 ý¼[èçGÞJ ¯LsÚiôæ£|É“C9µ=©‚n ~)*M>“|–z&sšÚ2);¹oÒ$a<'ý‹¶„endstream endobj 279 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 196 >> stream xœcd`ab`ddä v ò5400qä~H3ýaîîþáÿ#ˆµ›‡¹›‡eÙw¡‚où_ 0012Š©:çç”–¤)øæ§¤å)åç&æ¡ 2000v00”€t°;ýgôu`àûÏøùò’å Ê…„|¯û(ÖYš•ŸQßÏ¡òÐà;çg¿Ê /xkÿö7·œð¶ö®6i¾²…?œæ~Ïë™±”íwh7û{®½Ür\Ì-‰ñ<œ äFäendstream endobj 280 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 762 >> stream xœ-ILq…gl‘JQ’jˆ0D‰HwŠK4Öâ5ÆhiÆ–¥?°”Ê&Kbe´U05Q‚ÈŽ¨‰MŒÆ+þÓü=†Ó{ïô½$”k’$©\½þÔÑÌŒ•ž"o&å¤5r²°1²7r> T P)Ç"e ˆÛ€ŠãÑíõDIÚ„†fw®Õfç &žIÍOc2³²ömgvfdd1G,,W˜o(aôÞÄZ üò03¬ù…,ogRsLh=ôýÞT×Òúüø×’o@¡ëH‰ÒѦOæ§E´R ô>R?ôát¼§bN1Òhö†¦ÔÁAP®›àí}Ýý]P7 ˜Ôy­p¨âl¸hX€É¾˜Ñz+ï àãgÎ3_½Zt(ÝÁ¹_¾6±µCûðÝÚÔ5=†H·ˆbš´˜K·–hÕòü= …Ã(,‘/—PpI!OËÕtl‹t6g[N:L_N7ã$ȦpÊ—S¿>ü|¶ø‘þŽâýh|¦ð"ŽÕôÌü¼ …Þ„zÞóÜ™²Ý5­óšFÅ}6Ó²F¹»ê‰ÓÏ Þþé|A©}ò9/ªð­Å7¼ÑÁKÇ(íVÕ:É­Rµ¨ÔñBË]Oendstream endobj 281 0 obj << /Filter /FlateDecode /Length 463 >> stream xœ]“1nÜ0E{B7XR¤fÖ€1Ó¸H$¹€DQ† ky]äöù˜M‘â xËåðqH^^^¿¼îÛ½¿|?oåg½÷ë¶/gý¸}ž¥ös}Ûö.ý²•û_òoyŸŽîòòu:~ý>j?Ôµñ·é½^~¤kðŸb›TnKý8¦RÏi«Ýsö¼®ÖÕ}ùo(_ÛŒy}üu¶–4GkIó@\¬%͉X­%Í™¸ZKZG`ŒæÁ¨ó¯ÄlàDó„0û\5Fâ“yB*8™HÉßèÎ…V¾Ñ ­"£K.¬<Àhp«òD„ÑЬ8šP• a¨DTe€…ˆªLÀd":Á`t%b£œ›±B¦dÆ^ ­òh ×ÍØ+d¯2öÊ)™¡]_ ɾPö…ÐrHeF/5²ÔˆÝŒ¾£‘}‰[ ­[g€<_ ¸¤PRp ⇂/UÅ+ + Å%…’‚NˆwCxdAqI¡¤â 2!(OP¡ ®¡ÔP(¨k(54™ÈUôI½WÊ^)ŒÔ­”Vz5÷J±WõýâËÿ¸Ú¼ü|FWÓ—Ïó¬ûÝßš¿%>¡m¯ÿžãq;8«Gº?ßñ'endstream endobj 282 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6204 >> stream xœyy|Suº~B Š8[Àsª#"ŒŸ‘„Šle‘¡tK×´Mš&ݲ''ys²o]ÓtoJ[J-”M@Ê"ˆ"‹Žz‡Ñq¹3ãÜ™{½ßS¿½úû¦e˜ñw»ý‘OÛ´ç{Þó¼Ïû<ÏÛcÇ„Báø¤ Ö.\ûv6?CÈÏÃ?*ÊÁŽo éÇÁ$LÛ1óQéCüÊ©èîÔó à'B¡¬Øhå84µ}*z襇lµ?t÷'ò‡W?|A’1mò4ö‘y7>;þ„´„§Ï›ÎMÿfÆ6žÒCí‹ò«ÂB´—¤®I«ØÏjlzer™½t+DmpºÙN8=é§îÔôv#£àä^h† ;à­ú=œbNY…g‚ŽÊÛÁ–Tè DŽ~Ž:^'x…m¹>á€*7€§e6³†ÁY e`1štV ¯• ]èN'¾3.Žÿƒ6Â?¢o/U_}zQ–›`¦ÔUúê`7ì¡í\ð„»9ò»xwÄq5:k½ívguôìçÿ Ô€/#{ÃnüpÙF¯°i@Kíí–žøê0šíõëÕ[n¦KVgoÝ T©ÑߨìkòE˜ú³ýh RïèKZ¸{½¢”6Ÿ?Ýû@•¦S—eU$ƒ…ÒùóÛí7]{#|²¨p 2[Éj+w0q<àíQ4o¤pþ¹›¢'1dYûÒhAepY¼L+´€Ú5 ª+4JÅ.ðø‚ýh‘§™ å·Iß Qh*šžüj˵å»öd¦e3ºs2FªÑ«ÕY•›€ýÏÕÔVÒ¬ÖRÊ\ÕJ<­­muÕÝÑvO-P}MÒääl<^Îd­Ú“ÔÚÊ;n8G‰Z]üwQáPÚГ»“s›ò™¡„^"–ƒÍfRmÃkâ­f›¬” tAçqpt/šxæZ@Š]$>ÿãÀf©6Aï:š_-n»Ý]ÆÛ8)—Å­×Û,J#½ÏÜ“„—…—‹ã†Þ…èÜýÀoEèÙ%º4«a)é ÁLãƒz}"Fi„™H†{ÅO1ø3±jô×áPÍdj¬n´`±±¬†úµMâëæGúwñïlÇñ»Kð/ŸÃc˜üŒ¥Ëñr×qâ °‚É®³³vð‚8WÇoù[ûnˆø|’ÄɺÚÔÔüRºø\ZM¹v"ž‚çàYs/n¸uôHSO£—fã¬Þ 3X¶Ú¨JÂQˆé„ni4ô°‡þ®Õe{H«=œ›ó1˜A3%›,¿ª=ÙŽ„µýLôö™þ×z»j‰Ñ´ ËX S.Ûº~+PqCJ2¬—¢èP—ph'ªp.‚'GÙÁ¯Ñ[M&+½ÏÉXƒ—“êfÿÈ“½‹Zâ¿ÿ”EFÐóÒH–°Çì4ù¼Wµ“D•ãÜf—‘¦aiårµâ ž_B&_·Ýy Ðcbב¿XVK&B3ev}ÒaŽ£ŽV3AÂ0'.‰ éÛá6P[ÀjV38~¸e´© ÷›Ê׈ ?<5öÚtù³÷ßù£ÃÎ9»ÐLg÷PÝ{îVg¨íDSÄëio9 -P­±Cž¹X…TY@EߨÓÓ±sÝþÝ2mÈìÜû?™¿°T9û)šsë)%aÍñ3ø‰™­¤Š© _y$ÒT{dàÀëËq|Ƭý/Ü.o7Ñgtg´°*T,“*–ÁYÝknî€6ª±,¨,ÌS¾¶e0õ.zîš<УjÖé‚¶|×~_¦7ÕT{ÓåO›OӪ鸡Öâ(ªˆò³¢Â7> Ù‡ÖKVžµÙ´ZzÕ2}Õ¾÷±°ãB\ŽŸE"<=wlÀWÝÜ×7Ô…}E-~ \œÃÎpœ¿×ÕPÿ«xg­«ÖY°sƒvʰ×{ÌN£€dV¹ð‚#7FO½†tÍ {;X™ÖÅB%赯é2dx ž¦•õ³ÇÑÓQ?ZüohsîÝ?\þ¨?_\†©T–žÑÀ®ÎEÇñ×ïÉ·àjà’ýå¼$p°»ð(tCccMgmOè2aïˆÅ`銭ªÕ)@)u¡C‘à o7Ó†Žj¯³:ÁÕèï%bTG°7Ú² ´jå~œ¤Ùn³¤>¿¨ºÃçÛ>j¹Î;\UPO äÞ5/ÏÒö™«qÑÍ¿í=Ü ”¯Æ–#׿›Ê™Œ9Ê °›šw½èܵžH-©wý¨ñù¿H|=ÿG@5y¡>H…ɇl>äÁJG^ (cå(½û[Ae«UÏàÃ=ú VGè­Ð˜Ÿƒi‡[Žvè€ÛlGì"of€bµ¸FÉYœ/çå<„þª{` ¯ú/¡G¾ñRž’œ+¬QÉ ‹+]¦€–n( B&•²«ñ„Šî3ç[oEïОÚûýtúºý_Ž6¶å­…œ"]QÍìÇTå>8@aÁ§eÇÑÒAôÉòÜÍÚûb7“¨ç·¾FDd~?‰g?ýæÚç7.1Þ”îì“ÿ¨}¥ëÔÉ*`[ÂÎ8Æú9¿¯·%Æ{Ú€#Â_«ñ—ÊË‹‹Y"TA‰Y ÖòÒýÛ–É€ÚUñæ‘ÓhJãq&zqàp_LÿI3ÙÌÄ—~w¯/n~ŽÄæ°ÄôÌ^Wð¢$4#þ«ëGœ¯Ýo‡:ÊÉz t1±rÈ„4GæH«§.Öcc"Vbg ÎS˜ÌÃÓñÙøÑm_ç¿ ÍÄC|ÎÄÈ ‰•A>¼äÈ¿×çà/xúpWüß›ixÛ ´1 ±‘D¬ @yb‚¯U† ê<š©:::ƒæ"*Q8,ˆ)uBÞ›^«½šú ßÑGN8ÇFôÌA{¥¯¼›å]m$ôJ‰©eûè/Dè·èM‰»¥ñ‹÷ÀMÐP)3—|D #u}g’«²6K·+4tѵWýù@ýt –Řâup>ŽéúæZsPõÝú͹¥k2p"S¶Aš²L e¨Ùi RÖZì-Ï+*ÌÙwºäصž÷Ü:˜Ñ“v ¨¿ "IsŒ z«Åhe²WˉG¦•uv‘XF¨ǯ¡Ê螸„´7EÈ0´\Bœ«R±Ò`-¤ 6­ ÔAºú$gÔõYf%½¤Ùe)i¼³n£‰h í‰Ï·_~ßÁüÜ<ºd™ÄÎ8õö@u P=­yëï…›ì5û2Ó€ÊÊn½]õ5WHéÚw¼Œxß!ª~GrîB{sOìoíéùç/#' ?ÉX¬Uo¦óö(Ëä Muy­ª±4œ Ô‹ûæ+Í“ÏǹÜSü‚Ý Pol4ô•ˆeX”¤*[¸(~õé0Ž8Œ—ãnº±»£µÁ¯oίUÖ•‘üúúI«Ëâ2«5²ŒbÝzU6”€Ú­ôd…ÊJˆ2г¤Ñµ÷q‹MgèhåóôÖRšÉ •÷A£Ù’MX7:¼ ÿ÷ámâ<ÎZf}Õÿf@Ý‹n,ÿ¾ÄßWýØA¹‚öúX©L6HÙlÈ©#;ÆeSÌaüàem%k-·±xìðæx\È×êlv©~º¸D?*°®+„÷±YÓ¥–æ,aLZ›ÊËÐ?¬üz»–ÙÌ"Ýå x¾9Þi«K‡¸á»ñžR‡ÕG4± 7ä(núe³ðô—¼ó3ÑŠ_#A¿x ð\œ‹ p ®ÀKÐØÙè $Er’: ôðŠá—$sVýŠ?V…fÿ M`®ÿëÏ›øõï¶â¹IxÁ<…Ù³qqò"’×ø œ©ÿ”/ˆ¢YŸÕE„g¿@ï~!âEü’»â°$–2¿7 ±³¡ê†;˜à«¯­n'¡S½z¿E'…rJQ§©oiôß×x0ëõœ<Ú¤durüõò_Ão=sMüâ0£~ªtÁH°¦ª;îðõ@5Õ¨ª ó‹Ó_;&ý;‹½utç•F4Ù3œR]ð7w#üãá­›">‡Ÿ,±»Iê÷Œ(5ñ‹L ­>,mI%^ &tJÄO̹œ|óâ‰?c·)®9Ö‹>kÎc ‚l»Ì×á ´@-U£­/(ÎQ§<\ò{4õ懗ªiÚ!1*ŠŠUJu®šèÏ®ò3}$ñNl}ƒi=u´¯¨kUKÌfB( ‡F?4í3áÇ—Ž’ìpxhœ$\Q£(((,PU•65v4vÐˇ'I‚íÄëZ½á䀭_õut: Ò¨´èCák˜*; +¬Ì%µ·Kz’l„³|ÛÕ¯doÜyo#tW5^fâ¾3êCSþ¯kh‘QfÈcd˜*Yn)Ñg9!vmÔÝÜ饫ΓÔwÄ:‹&!!PGY™[R°¸d;£—[ˆ#üØÚZ¾=ç¥m?X[Ïô#Y[ßNíñÅû·gжÛ%k*jÈqÁBؽ¾TaLéxí¯9XZ™üc9¸¦ú~þö¥â†¡ÇˆíÂ]Ñ·sù«’æcM=W\>»ÖN qZ9ÈØ"2Û÷f›˜¥Ögs3M¶nÉJZ³ÁP‡sâ3x£-lm¹eO¨%¼÷kí&RØTâ.ÉŽkcºPuÌcRqŒ{voHç„Æì þ™ XG®:RÈtdÅ®2ÚsÍi»^Æ1ÃÈ®¶ª x±ÛWNðžøÃçäÌAHÛïòæsÐ+þ™°•¡•¸H¼t°ž•Ù¤z?1üKnGè]ÐÔ6ëÈžëô…Îô¢ù–0¼GšÚ|¯–ûŸ¢ÿ.ÏîÅ›4»´)¬.ÁfÞ³` ù¡síž6OQ׺´¾+,¼Ã#ÑÐ"Þ, º=.P½OËZÁXI¿«ÖfÐ$€Æk˜yòF|ÈÈ‘ D|¾@ÀèÒ¸™á²ûÿŽC*IÀåu˜ƒ—Ö5üªŠ¯ôXJ«×kõ.S•‘á#Ø>L^F³ ô ZŸ>ààÀ¢ãP~µ½ø­ˆÐ~»äZÑ‘´ì’"YA¸ðP0äôùig·Û²Ûm+¤›²³’rÈùqWàc¢¡±SàáÝoDhÛYI»¼)?_.ÏÏo’··75µ“xÊbG÷[ÃÂóü#"~ýÐ^ Ñz'ØG0YKã?}·PÁ¶‘âBO­›lR?Û×o£ïˆøB¤• …óO­ÀâxüSüØüKËÿ|åfãåèÐöC¹@¾Yã19ˆ%³Ä•Õ»3I¡T.|ØÔ@¦$È|…&6 ŠÜ˜³yµdÕ#b±|o2µæEɳ˖i‰Pnʸzª :ß`NÜ:WßM¼ð#/dÀf®”„·ðöô‹ú>RA®ˆðû1S¾³ì{Mòþ¶·–l–•Jém©ÛžR-ÇÏþÇ”x›ÅeòÆ–xÎîxµÇ×o:–q nÁûÝÇNï¼ ·áfÆ™Ìæ ‡ß‚›^ƒ—H*ÍZ«œDÝ›ÎÅù{¬’U|2SèA´Y«Ò“väøK¸<²omµg36ÙG†j{G°7Ó•kßÇm–¿(KK{uMæ –§_¸á‡jW=s¹#wo¢gÑ$H¸Ð»‰£"á¦îŽpeEÖ„+«j®nª‰”92½ÌŽ@I?Ô ™6½Ú¾5º‘ Kš÷u¼ IÔÚtüüümû?¸r%£=„ÅÇÑæš3 [[š›Eè1T"9TÑNR0Õò&D›¤Žt¥ÔZšÁ(‚¥õÐJ]þcÏïjz@ÖG œÕT¨*TU¿±w5k–è)r²LrvÎVØG­Üø Š?ÿiµÛì4™Y k¥+ò < ¨ÏUßèj;{¹ƒ9’4zìµÐ N[¹Ühµ¥“d£•‹ˆ‘ˆ #Bþ¥«"¾uH\uŽ)#¦ÔKwìÊéèòûÿ‰Í¸lÔþ¡ÿpnï!»ÛዞïjÔD뎺ŠÔºT‹‡ü¶E=íÁ± ç4ð—o Ñw͢בGrGB{(ô³NZºÑ\j,aŠWæa )­Ëè y#½ºñÿ 3Ê…¸3ÔùõU4·ï#O0‰¥iXYYzǼÔ'SgÛ¢¶Òþ ¿œzêe’'¦®Âóru>ðÝÒFÐ'Ÿ Ñ×ïz¿]<"±Äþwe±×w±HIu-ý„ým)¬#˜­:K™M *¹/õLgK]W˜nî^øüª^Vl#[¬Rê®v6‘HËùîø Óž­Ü¡ºÎÖÖÆãGÚ›új­f‚‡™ÒxÑÎH{³ÏÒ’¹1yWÆ~zõfyy¦ÆžvÕº[‚'î{dê dïhÐ÷„è³S"TÇO qâlRŠ ôA/çôºéS¿º@Â,5(ÎÁ“_Å“SÊGÀQÕBÞ¶ÃAºê8p¡Ó„h_à”´2Ì?Ó€ÊÃÂSoóôÛ"~íÐÏ%À9DµìàÓèll©…&ÂÏšÉzxfÌ{o)Š3r9†\Í^]zŒ›ËEôÆAsœ»ÉQÕ‹æÆ£_¸Ð,4Ðtøhû˜ñSxÆð*É&GR7ü Ф»(Í Q-Ó>° îƒgOüQÙ§4¤4Dø¸~!RðIÿÅÒ§Ùk, 7b«¥Ü(#ìÔúmnºJü^ üå÷(MiE3Á7҃’o ×“Œ>Åâ æÇho¢ïÂÂP'*ºŽ^úRÄÿ™§$êæâ¹BçÒúõtmy]¤@ªjKî¾¼Y{a äöèÏZ¯’õ6höW´Ör­-ѬƒÌ콩¯½ÔZåÅóhêŸÿ BLÀàÕV+õ&zçŠtü, ^n\ñë'N¿ÙCû6Ùû|'/÷¼ßtª—”ú«Ñ¨û0`åMÑ!¼B2:|Ôß‚…Ë׉¦·"A8µ³à¸ HBDlî7kW>õø“8.Aâtɪ²}NWØ"Ab¬¿'ÒwôÖéH¨Ãù/oËÇc v3Ù¯ìÉImk5 ¼€PóDŒ–KÿŽh‡Ä%Fˆ–)Û¦mxuG<ß¶hLJ°$h=e‘C®¶ê˜<¼Kfô» ÂÞ·P‘±jrì½3Õ V‰ñϰ/Æ<{qÕçdOO@“ÑüZ8™{ŒÁ2üdwjÏ͎௻/2ý×/U‘8þ‰wmîÞ’ÅY;™´äW Óbg‘ÜêD·"Âþk¨ëšˆßó’kjÄÌ ž»±úév,úœ3õ!/áG%µWÃ÷Ýh=uø> stream xœZYܸ~÷c? ‚y {áÖŠ7‰ ö^I°^8ë òàuM·fZë¾,©½v~}ê u´5Ùµa¸E‹d_õþ¦,äM‰Óÿ›Ã“òæáÉû'’FoÒ›ÃÍ‹Û'_þÔM,¢Sîæöþ Ï7Rë»pã¬/”¶7·‡'â÷«ÛŸÞ› ½+Jí%κÝ>y#~«uY„µ{{ûd^Nˆu¼:ÿŽhËRJ•ˆ§;±E”V Ĺ&önBl £¼ˆoWkeMá¤?_ÏSvzܲðÊ)ž'¶U_-œQÆB;E>ãêêŒ3ŽxF£T&.VkBQ–7%‹RºÅ®îêÕÚ_Ä`Ä¡Z)$Q^|ÂQøí•¸ƒ3Àû¨¢h•¨6›ºëêmñ¢:nÓ$éÄ^=ƒGï`fVem”MµJ»õÓ£]ŸÔ'Îm½m6}Ñ?œY ³“%XUú|²É2ý)ï ˆÓ]_5GZk­¢-”Ô7k)aVòÄóx°S××msjŸ¦•›+|å´Å3kc‰}s¼¯Û…“L⸡·ŽŽÜïÚÓåa—ÈÐ[oµxùüU"-ƒ8Wmu¨qÉÿV}s:‚r  † þ~œrlºÌNŠ_pK%Hž”$c@%•Eiu”Ê-É4öû¹Dÿ|-P'‹©ïТ Ð®94ûªÅ<¿Bñ.,c]ae¯T·?,iN*ʉât„—QÜŸ&«ÔùXÒ88ìἯA<®4pf/^ÓoDéŦBЈ¢Úw'~*¥ ·4¤DboÀ.ÖWb[KÊ_›šÚ·– ™¨Å}‹F¤±Àä€ãÕÁZ–ŠtZ~:Q.™Jð6f¤Èuæ6fÁRêÄ vºmº¾mî.h]žþ3nùRèAÊüvÊ =˜ìÕØ+!bJM¢®ð§"Ónë§Í±é›jŸ,_¡†¬8Ýç:ɦdÙü|wÄkEŸ‰œèP¥Íñ!³³XðØqO®)A¢×”1 gMRäÓFt’Û/@éY+±qaZQ3­à¨B«eÓ£ßNlN‡CÍñ@£'kÑõUÛó¹`Ïuߒݤx²”A¦A^IXÝ,‘E˜.‘ØÚÈp£ §!úþà ž%8˜bœóÑ߬'¤C¦ƒ¤êÉt&˜Y¦ó”‚[ا+$èÁÃV¬„iÓ­Ì2"äïëzBI™±,h8.ðFø ç‰nÁÿKtçИ•ŠEiä•1ßîjÎ(þÓ¥?_úô FF·àU¶¢üor*ˆ¢&ü4ŠfÞ—øÉˆE÷5 &«³K.¯  L95ˆe³¯:ZÎ*%¶ÕÚb~øôs Û„ŒEÍçgöx§E}Ü6b-)1½ ¨fáLBg AºÛ¯Sú,]áÕ0÷p‰ªÇXl4§µÝ‰R¦®_ò¨NYŒŸœ¸¯«þ‚I”`Uò"£=y‡ì£\F€‰ûË~äØÐ ΊðE„0¹ï̦Ÿå‘>Í@ÅßÓHÂ]‡î¹K£/t4¿¦ŒR¾r8g[ïYn\Ù¨kÁý±Gq aA˜‚«ž{pœêcô7êc"†Ôµ9í÷ÎHG<üOmz d-œdë=VãPƒ¨ÚñÝ¡é65ð;Ö§K—‡aïÈ;¨XÎ?4 ˜1!):ˆñ9Z¾3#"º.’8¥NDe¥‚¬Ò,YÞ[“†’ÿë3¦9œŽÇ]ÁVK9ò‡8ýí*`~€lzÙï?!@uxñ¢â£% #‚p^Šºk(T# ÄõêXí§ÐIt (p7³tÜô»4G{ùÕ˯2UdÉæ)ÇSŸé2êKÝåÌê’@H»îr^"Õn›ºëÇ(íáÁ•ªý~|™¤oºkØ2wœ¹6ÎqÈ QA¢‘@CâÊ…ŽÝŸÀž˜ßrƒ!rW¢Å÷à9ß½Êódæ¸ÀÆÄ&j%öâ:ÇžJ!*m̲ä˜!Ç๶À‡³¬-Ú.çõïÐò¹rÖÄ#_ŽÛºÍª$7§tkÀÞP†m½g3Þ5gÑ.yÞµÇ)CîÙϸ!ÏEî2U;ÊÂ*]Ö1ðÕ("â|XŒ"ŸrdvÇÓq 8§®ÚgcÉõÝ«nºáóz8ð­/áV1~•Mz*Ð0êñ‘"[éF3ä†ùVœAž'À*§ýéUCo0$Lu:ºA½ÏlANäÌWŠ]ó@OáÓ:)òòqƦa·Åp`ÊÎdw`^ÕvÛ¤ÐâJö ²ÈžgX¸{ ô:ÍYµu~¤Õ†!/Æb‰Í¹Å­\ë-²pGp—8:€¦F¶­Ÿ‚úŸB¶y?~ðšs¨7ƒiïªcÓ!ðs† ¡ßUèõŽXB‘NM" ¾|~¤À†¸·òËDÈQ† z’!SçÀ¸úîÒnëÌ;dwøÀ Ò’‚ó&ÖÍÌLvŒï*ìhòIË‘@1¸¸Š4èýä"Í_Ñ”˜Ï™æ¤B Xä}µiö Û2QÀ"–õŸ6Mr8HŸgªqí€K³‚i Å6£4º]—„Ó6ÉáMü¬v¾Š¦©™Á%Í«¹S÷Žmj¹ªƒh›˜¡(?%Zm›˜T·0Oý„cÞ¿[FD†+>þMEšŒVï‘usdÓV]Ï„$©S^(9žØalB›A?Æ¢9€ð²‰VgðŠÍ]sGKò?b*9FM%ø‰‡±l;WXÿe²k]t‰xý$êâ¡À §m뺚XlkÈ7‡{HG®ú&<7£Â[â¹Ø=šÃ {S ~Ïž@ÂÃøééÀ Nû¡ÈNtodDëõ†2TÏò«(”y‹UH¦üe×l–¼b„FFž´õ<<4„<#¥8g›×–)ùãDÌ­Õ×—m&(ÜvÌ{õNй¬4£c£uš8­[ɱSõ9Õ!A(ƒôÃXB¾2ŸLßµ5†*ƒ%Æ“’ k]zˆsK 4õÕ;’“† ð¸6ý>TìYPÙRÖ aŸ<ˆ cÛçÀý¬UêãHúÔ€à­p"/Ÿ†µژ᠑(ô|ÞšË#²<)¨áIØH1nÆ€¨\¤i4^##"U—hAíŸE6~!Q˜·<ºæn_“ßt5=rŠÅÛ«rY<¿ýþùëÏûÊÀÃh3ÜW¼ÑêíŠZ3Ñ0í)]ßGÀØ6S„äkø€}4ÊÄ@(cêü4½¨ïZÌ·0K|]÷UCÞGkká‚ÉN7[ADÞ÷.à)©5 jr¸ iV³M,^Ì:‹`=TÎÛ,®…–B,ÔxÑD•YÉgé?÷¥KÎ 5_ùöB 2ÅWPuç®K¯ð0øÌ¾ž¶p™ ÷_#e ì‡÷ ¾Ôi„mæabÎÀçuzrjØ„©yila›ÑËxåf÷ 誢Ÿ“=@Ãí— –îr@ÄC´˜Kf $ã.)ÔŒà³UÓžò¡€© ôªßA:Üv Š3² &wmÆrûúùù³Ô¢±'åÌ$f—Qƒâ0GPœâ4öŽ{làÐ`t]n™ëÔz‹¡¤Ö[n­SúG ØIEÕZ/x5CíÄ3]3•\¤Ðù,«ÛR*"Z[Ó ÷f2Î…Kj¾Ãüd¡©ŸÌïðRF±rñÅÞÁ}uÙ÷cøœÊC5CÕ>\¹ ­÷\[`”Ú én—´Ýî&­{C!t\P@È`æÞ¦8*‚^TÅ`»–lÆã-æàü;¢TÌ;e¤žåA|p¹?Ë$ `ð-@È¥{: 1løî‹…½J]¸èbÞìýå¸ÉØ5ír¼êT…µêºó=´ËÒ¶­¦2R®^)P ¦Õ’ÔpYê…ÇÂM¬dþð{¡ý1vdÈT9¬Ï%€¤—“[ÌY¬ð¾ðÆä¾YºƒœÆÈür±š ˆæÎÑ#KX¼ï>™yq»´ˆ¤Š,¯±”NtÊ}Úà“¿™=üI$C`.©¾aÉ*Fƒ˜¼4ÄØA&]ÊJLðR*+^ƒ.K£c‰_ ¼¿LŸŽ+ º îºhÏ–ˆLÄZ"ÍCê?D«Ç–~ñ1ݲx°Mðˆ·ÔØê½p z¼êy?i^¦Räý$,µÍ›HÀ‹É¿ëh«¿ašáÞN¾ŸìéAó74Uñn²lQåû%=Ûªwó†+ój[ÁãëÕÐÊ>1XÊD¾pvú1bÍ)`ehCÇÓ™ê£>úÎKIuëæ€ÖXÊYU*øåð žná` ¡àeö" ±¼ê°&7ºR6B\Ф‹ü=æ×¥ä ©†¥–¯<Á›¤×y´âEüë©#,~˜•è°6DYÒoºÿ83Ž1ÜûâÚ#ÎI©˜Ú„W©˜›RØ„h8¯$s»~˽DŽ“â”á÷£ ¤Ÿ¶¢™Ìæ+fþ¬¬ºô§Cî8Q?3Ý»“dxœù¹—•XŒß¸äÎåc5Çô£­Åµ¤-^„æ¸9íÁdÄ©Ê/ܲ+žŒbeÌAžç|þõUNàÜKÀO'E—ã3vÐ6ûËvÌuðݱK=Gˆà¿+0Ø ,©Ç&ÚÝ7·Oþ ÿ’•Qdendstream endobj 284 0 obj << /Filter /FlateDecode /Length 4223 >> stream xœ¥ZKoäÈ‘Æ^uZ|²|Ù,£‹Ë|'aøÐóð` 5`{dì`¤>PUl‰Óõ’5í¾ø·;™I²Duw¡ƒHæ+22â‹/"ë§ë²×%þÅÿ›ýUyýxõÓ•¤¯×ñßfýÅíÕÿüMÙ모œr×·ï®x„¼–&^ªkg}¡´½¾Ý_݉×ÝãyßV*¥”Z ýj­‚'†ãêííŸq:?™Î©Bz3Þn¯ÄÃïW·?>[P*XÅ]îÄ»óa3´ÇCÿ ¦®pj/êÃvqnSÈ`Bœ|x<-Ín ¼L³§IK/><µÚH©¼xÂ}è¢ •¨Û-¿”¥í!nÔÛú4´?¯”‡Ù¥hRK%úzÚµ‡Ç4‰‚q›ÝyÛ,I½–¾,”×k)‹ÊZIÒÕ«,ˆ¯@|§ª¸EÔ÷™N¨ÊÂW&nQ´ûSwüya*- íMÖs±ZÏ;þâ8Àþw°'ê®á—ªrâ¶äá ”GÜ>ZqÜ55•¨¦ Ú¢)èUÁ«ýÓñ¼ÛÆ)¥‰³T•ªÄdî¾ÒªòëQeYãâÖnÿö÷¯_Ò‘Ô±Ó±[PˆéT6Ã?½¾ùni¢µ–¾°ÎÍNæNÜ‹á ÄÖ| Vl›wõy7ð‡Rñ–äÖjºSR*õ¥¶ýÒödéÀ‚ÃgÄRÐÉØ´¿ûU±´Á²°F†Ï(ÊAúlSY/Ï6IĦ>÷´{….OªXØIp…•îóžè|Z}½ÙÕ}Ÿ&âxNgÒj 2±kûVZ+W¡²§³6¡„±ZlŽI`TA+1Ôè³ÆWxÑY=xëf8v=ÁéïR'-úvßîê.5:q¨÷M?¶hÉ?°1Ñõ²µšwxª‡(©,K ³–LšqyÐé6õ ¸ì`¦øT*ðB†¼¼ç›«ÛßßÍ1H)Ñ$3T„À±è”!þ÷ °zÉîd@ÌMGAس¶`Uâøha#ší(ŽŸ¥“…‘eB¥W¡óöfjm€ëÖ‡´È¬Ö{7ž' jj>….•6©ïo°¯®*c4w® •×V/J{ -­ÒÜ_a !÷Ÿ b ãÀʯ׳1÷U`z2®1SjrØøçÊ’Yzñ‹Q³•lBPyË÷«‹Î3%úÂ;ëtêœÍ*¹€AРgtÍqîFÃç­EÜCW°AÜ£âéšzÃ6cŸV ²Âñ8DÄBÂŽ”Û¤cœi5‹ª€¦}ïXüÃÅÙÝJm«´9: 8§Ã" Ngsúþû%ð€8`ƒš„qC6ê(B›Òs„ÞlŽÝ¶>lšøM&ß…Fqî©Åë›/ñÅ‘Åß‹×@Ä&9–6“ûqÓÔÝë×_Ÿx¦Ô.º{‡Í fö¹7“sy¿¦ vÅÇëøÈ& •× Ä@ãWš¬±#½cô€Mæ¯Ñu£@¶ ߦ7âk,vI·khGeåŒHùZÛe\ñ74•†A;3F£$©š0Kq†14ÝSŠÀ†x šahÒrAÜIÿh ž5H²T'QqÄ­Ÿã$÷âwŠ«ßAX|Žb°5çL˜”ƒhÛ§oŸRj¡±nÄü—»†ª*Æ«]½˜>nÛ~s&&˜ÛûœC×tëÃ4ªCª-àZà̳ ß·XyÒ¥¥Fµ¥·jÑÞ3„œCÌ”ðç™twKFÁ¾>–:Ó'“ê†èÏ*IKÏÑœâH¶b.]NXÑã¤Ëey“¾ƒëÏIö®Ý´y>vµŽ«Ÿô"ÝåÚ€Ú°ÑdŸ]ÂÒ¶M‰FSfÐ Oç·ÀùQ¹M×fÃB<¢:3 …±l‘«B§ò– Š¸ìsÓ·À].˜.U%bY%н=ž†b±ª¥0”ºš¸‘Ql{pÔãžmL§h Ò&5!ªÂwÔ5ÔÐèôÓfcY”h7ó…5a4癀ÿlÏZ‚K?ù¤H±tPˆºåä´.k0ò–±RþÕ§j¡°crñkPN»' ŽäÄ–8=^ºDrãEö ( §dŽÿ/aÊ­)"Šï&¸N—ÿ°§oÆp9Fèóø±ï[Šœ4G¢…IE“rCˆzQ¢¿_QB!iÓð›+¾€ @ ùµº Ç?ž÷'4o*J®žÓs„÷ø«„]»¡zB,²…hðÒ’{øt¼T1ßN¡dÇ}ðŽð^ÜÜð&xÉ›?¤Qï'SÔìh#ôŸ`èææ o2þÄk›…Í(ˆ2¦t:FZN+èÌ"l…^|!önLÀ(CSd¹-$Wñ?‡¹_Ê:`!p«tÆïX <¥_žzÐ$^e=±/¢¢Øµ½ KA僉bQ•›f¨š?²_„p;ß ·ƒ”Ý!ýKä_¨é‡v'ÍÛW±ÎöÍ­`´Ãh,õ sýX›ãna´ÀuÊyn oivÇFŠué4ÚÇ|0“BÊús\P©6]¼Wìb @æßðÉX’¾“xÃúrÅåuŸn-‘}.Iý¶ë‰r–}ŠL6ˆÄ½™^ó<6sÕK^Ô¼ò ®çš,Ï¿oŸFqÓ,b_óý¯6RŒ×«“t±9ôù»š]¥öïÛSÊ Ô…lq¬`E†ò‰j ƒ)Õ¬Œx5¾½‹Õè Ä’x½úïg º¯·¿ºüíÈì¦(x(3Åû#õ›”jùÞ\æúD÷ç÷ñHÒT™gó=Ng ¼¹°øC$ç&?‘ûÃåÚ3ƒùŒ±ùº³_ K¿ˆ¡{m™ŠK¡ÖFZ‘¦£{¯>r>úÅ‚Bº¿ 4¢ròWŠtðšÊ-Xj«@P tÛQvU½0¹v…ñUJ½÷QÁnò{¬Pxãé'…øª&z®€6H½ä/²PÆÉëÙM ü™Æ­ éå_ ]¨‹²"0'µU%áåžv|Ó5}Š3„é},äÐY,˜À\DxÜÑ×·W…¿B*ÏÑendstream endobj 285 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1072 >> stream xœ}LwÇïz¥=µ("]\¶µg¶LX.¤‹.¼EØÐMB°àYÊÚ^é‹XÊ›"塆ñ&)° P9Ø ÎFÆt2™c ddÆm†02Åý®&kýçÉóüó}>ߎ ŽãaʬܤÐò÷ν.àÞ Àð†„‰ðÆs$ÒîDù;PNFฮ¬JÉÎ5ê3]CÅ'''í£ö+ÉTšŽ6jŠUz*Ke.¡u*sðÐR1ÅÚ|žŠ~¯Äl6¤ÄÅY­ÖX•ÎËÕGböQV¹„Ê¥M´ñ}†:ÊèÍT¶JGS!²ØÐP2:ƒÅL©,æ mÔcF*â÷HHLµcØN,Û…EaRìL†Ub[‚µ0!Æ`x4~[)øJ°Aâê·sóV_€ôáSÐÈ#‚ë@÷¥€öå‚íí¬¯ÉÛ€ïW*w#²rß—ó6~NZÙÖ•ŠXEø~sM{–ç<7á{˜*íÎéÌkTB¤Aš=Óª8f)2ø X®½åÆQóïú3!p42²ŒLECj±æaÚGn6‹KÁ¾WF«EÝhÇ•QYßÓ0)y“¥Å{¡ãº<ö=~¶Êâ³ÏPíc‚s¢t©FTo©>n¯®½t*‚虢Õßÿâ̽aDá{ù(>")!î“ñº6ï`Û}qä¤løçŸzü@®O¥¦$dýL-ç/ñ5Õ5àæUN! 9º¶€´Ç‡ÄO¦ñOóúÑCéÒy¡<›S| }F%÷;Û¯ƒ‡¼fêÕ2LyÑ»O³Q8’ÿ³º¾”±Ä zecc¿Â]rY1Ãè‡![K[î©é›àêœ#·[ݜ҅ôm­n¯j³[—·É¶ “Ü’-¾‰d¹SŽaÿë1endstream endobj 286 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2255 >> stream xœuU{XSç?!䜣"¶Ä(™Hâ¥*֎ꨭRµ©N: ”[dˆhÀ©DAÉÉ›„[ŒF@î­‚7ØN«¢µõÙº^|Ö=Ö9}œU7çtï‰_|¶/‰ví{¾?ÎIÎïyßïý½¿÷÷ʘà F&“qqñ WEÏò½N–ÆÈ¤ˆ i¬ˆ."ØæY®€9„‰úrº^DÃ\ý#—É ë+â …¥ÆÜìœbí”Ì(môܹ1Ó´¯Ìš5W» _oÌÍL/ÐÆ§çèóÓ‹éßh ™¹úâRí”ØœââÂy3gšL¦éùëfŒÙó£¦iM¹Å9Úúuzã}–v±¡ Xû^z¾^¸ÞŒÀ#Î_¸¾XoÔÆ²ôƆa”«&Å­.Züö»%¥YkòV&Foa˜¹Ìf3‘ù%³‚™ÌLe¦1IL³šYÄ,a–21Ì«LSÆŒ¤0ÁÌ€,Fv’®‹²oE)O”{†z^TÕí¸øv3lˆôºØ2Ú4‘­Cõ•‹¨G±Þ‰ÞïÊËÀfuÑNh‰”ºØF<¤Ð±åD¾™„’tà‰– •’•"Žë•^8jj ;Œ#±ÙÑÊ{R,ŽWA)X6mÈ\¾Êœ|ü²ó¨Æñ_‰ƒßœŠMÒ¸o©rö-£a&M|…hȸ³Q3Ðï>zR£ü3I\¬ãºlƒöÃTl„.«ËÅÒ Êe6UQ«ˆ-¿“QÇ™"Ž¥E…{bUÞúrö=ìx'`P'ƒ­§¹»Î´êØåiS#“°µ,ÎÖù{È^¤õ¼Š/´û„~á€õ&írØöÞüfil/þêlØcd©¬FŽVnµÒK*<É‘Eå w©²4Þ{"7ð‰B9P^7ðë›c0êá-Ô zúò’F¹i!$¬3ñ5ä¬ «¸ÎžSÝg©¼C _¤ƒ÷‹²4)æ9oÉ› Þ ‚­Üá¬juC`][®¡ $k•˜1xõü¥s‘ºEIî¯û‡qÚ$ýâ¸j5‡ïÖ(D.¾Žh¤G?æ€$rÊ#I‰5kÇIãNÆ‘ðÛÓp ­ÿ"œjÛßÎã§ÁÄÁm)Íxÿu:p¡€Ãÿp ÎtÑt÷‰;÷Ã98š×RÀ‡â¿ü²ÀÂ^sGÈqˆ´\õ†îkòp±Ží±õÛOÂa¸üÌþgãCäD2ü‡Aß8Û««A¨Üd./>­§¤c߇ÍÇú²û_‹"L:QD>—&ž•=FFŽkq«JJùI7OÓÁ?dí½pN ½ÁG%×ÝZWÓä~@ÂÂeõ&°ðÛJaK¤ŽÛg¿AÖ ­v#—F5¾¥ž¼†Ùá8êÛ嬽âu¡ÅEPïØ‹mÏ Þa©+çén(oö°¢¬ÃsNî)‘žªjvW9¿~¯Èê­ÉB!µúDÈ ÌªóOPViÙaµhHª7™äJëw(Ìò²ÕÆ<Û·9ì~*«+­*ïu=ìWÜÈÓ\,rF"ªš›}¿£ÉÞ õ>…Zs„Tê ñÏ¡NA·™¼áM'‹¤TÅ]_ªéþT±ÏRý…;6ŽDGÿÿ;V<•Õü¶jk;¨Û¡jgM=.”VÒ5í]ù“©öÿHk»x¢I†e8LŽÿöÈU-°³È,@ŶÈù+&ÂàMº&¶ÎÚ.ìå½n¢Ñq'©ÍÀãç>«åh$é2 ¾ »+…V^—Œtݵççæ€Ô&ØèHs§ì)±o¦û¡°²°Ðl.Ì7›;Œáûö€‹ºaƒåøæ“›ö nh„ΪÎN—«sŸËŇš]Òr'¦6ït±$¥–‡";,rhpLSÈ£µ!!Èv… ·…„2ÌÕá÷Ùendstream endobj 287 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3089 >> stream xœV pSç•–0j Qjr¯û€…I Ý,IK^%Ý:æe06áaÙ?õ°¬·l½-éê\=­·dYòK¶15Ï@Ì« ØÐ6´¤“4IÓ!´M»K™ëlö—éÎfwgv2™«ÑH3÷?çüçû¾ó.§h‡Ëåòו—ÿóšÂ¯eùÅÜü’YùGxnÖ{¯zÊ:ŠyP\4²D [„Î,DÁo Üù\®´Ýê ½þ`8Ñ»N&×)š•¥ËëV”®~úé5+KŸXµêéÒ$õЦ:±´´\¬l¬—ˆ•øOki…¬®©^©+]¾¶Q©”ÿðñÇ5ÍcbIûc2Eó+V–jš”¥[ëÛëêú}¥dReéF±¤¾t¦ÈÇf¾×É$r•²^QZ.ÛW¯ÖÖ+ÅøÓ –HÄò&©J)Vµ75H I•b‡#”Vɵµ·65·H~ôLñ¢o.Y¼ˆÃÙÄyš³…SÍYÇyœóÎO9eœ—89 8pÝ\à2\×ËõqýÜçaÜ'Nç<÷ãYiÞfÞïŠB³#ü¥üs:†¸4—3÷Â<õ¼¿Ígæ^¼±øð‚‡ó.ÁT¥%—§rÜüšëžwxHpYè4v)ÀE¨z,Éžd,ä'ý¡îþŒ?y50Ȳþ¾È1O÷ð±Üщs7€˜dª´›jXžAL™eN+è‰ÊÍgÿ|‘‰˜\î.³“Tþ¨¦¶µ3žéóÇzNRÑÑcwáÈm·x7XÐ.£m c'¨Í!§Ÿ„1ß„ÃαB‡Bo:Þ &•¢þà /AE-r<ªÝw $@‹ñ³Íýá™ å•b™œÒ_¨ˆI`´·äš&Ã&èú2x“é3ÏLÝ]Ô £pòÝ3‰@9(}±VµT²…RìÜùrëuï†}ž ã£S‹-¹ãWPÙ'ñ÷ÔtûSòÜZšš·W $ Ž‹yÇ!@dõ ¥LÚ¾¿ú¼òô«Ç†ý•¯ëŽâBç¼æî“ÐarRê ›vTQ§:<ØÿûâQ½ïžŒB¦³Åj’ŽP¥:úúÆÒÇÏ—¥êªëšëU¤îØî|Œ-*c¿!)\+Æøb~jàæåWN16¤{Ycª¶6áV»g´„jOq¯þoñPjj¥ñxcÀ~gȤyÊF+H›»ÓAìŒCôØmvK]—’T>nmÚÆÊh£ÈÑF0Ë®”ý-D"´-Ÿéô޽Ò6 ™ž.rñPè`ͦi𤳇OœÌ޹›í;« ÝÜ[r_S7òׄáÃɱßx‚Éݪö;›0“·øÚ ¨;:@eŒ¹CÔ„;Õ °¹.3ËþI ̧l)¿*bák˜ïQÈd²ng†b¿5}ÀZ¯—<ãÙ;Ýs·3HÁ!ßALÉIg!p8ìOb~›©—<0q¬,¿/‰ʇJÐÉéÛÝŸ; ¢$€×ßC¦>Óälãèd_”¿z÷è_¿ù`G~u~JÌy¼Y/q…ÿ4¾W«}iWUÛRnØ€¡òm¢ù¹»×á#⃥¿`—’ì¥ÿ*µ—IÝCeh  Ááì`EÓ¹[m{½Ô– #”îóB/•†a¦z¡Ï)ŸWæ¾FPœàÑQ*/æLø—Q äÁÓh ÿƒC5»ŒÖ&‡’2ívvà1¸öW­ï|rô=^:Òa¤íÙ¹w­ˆ6mäµÀ9ß…UÆOÈF´yLÕMòËï³Hø.*º6z‡Þš-Lš²2¹´Mª©‡†‡rC$[3ídzÚa™v­ýÿ ܽµû€Ð8bÙ¾`:”¥ÂC‘¡È`¨ü÷¾¨7ìB˜˜¨;¼mùnv‰þ¾Vý/9øÁ‰ñC@$C6¹²«CQŽIÝÊÖäæm3Á§Hƒ—/Ã¥Œ¹T.“¢ªÜÐðà0É6~þOBý†Ê-› ö˜}ƒÑî~HýÚ˜¦µMÞRDqéš;Ž£äÇèž7â ABôú®#›X^Kuªˆ2ÞD˜<÷æ$!}‹™ÆÚÅUü›%‡ŽãQPzÿæ¥;<ôÖWÝE[IöÛÓ—:Œ<-êˆê³C±Þl€ôø^Aë}ñkö JØpÐ ›ÌÄúÉ–SwFÐJæï£Cë M5òõ;Û†Rà RŒ×—‚|ÄÇÅÞážCc©ÄÙSg&Îc,c®nKÝÚ3Ãdh${|¬ýPåÖµ»ªHq]sk­+“¾ï»SÍßÍo¸%thðÇÿﻯ€§wôÀé3nqÞ»»ýëú.$áøþa}Lß«aÛæ±íýõÉ*x *ª$u_¶bâ«zq ûPÉ×Y.cg%@Ÿ°•ôšÃE 9jH a›¥ìÅ2§ÓåÂéíÝö@üýß ùo¶OìnnokmékûY2 )È¿Çz3÷*z¹7óÏóòôT¥0ÃúôIcȬw˜Œrzî¬é2b8E†˜5’òGc~;L!ç“9ôY.’CtŽûŬÎp®ó¾˜¥ý‚“¿,üð¹³?`YÆ®Z¦ ÙÕŸÏ£íaGD!èf<«¨·$³ûTÍ-ì3¥è‰ÏУ嗪ƨӣÿrnìNv­°ÃewJÁíŒÝäÌwȺãN• B¨l{¦¼Qб»4VÓ ŠQçÙƒ#þÐ(5¢NÖÂ^‚]ºœå°‚g·Mü:Ì„=!ò-”î¿ý!ú"@tñXËÆ{oÎäÿŠ½ÝŒuy à9Éø ïË‹¡ÜüÓµö/&Z¿‚GPÿ7/å´Õ¡¥ØÙÓÛg$åN‡ƽ®;…ŠÏýš›¯@¥BÇdr²k`3TµÈÚ6n3•á\¦XÁd= ?™¹øÎøUÜá'3ì“K«]f§™R>/ay !Ì>c,sI2z$ýN÷ußÏΣřSñÑÌÄÄï¼~3 Š…à²‚ÃEšÔϱßÝà °Ã¬²dÐÝ«Üü#xè úÛ¿c“j¬…:¿< JVÇœxêëÏôwÓ¾®0¥=¤»ïAŽÆ¯h!¿º!Ò{“à'†Û@ON/àׂ̺Gܦܷ¬…ú}Æ gù&dxƒßÊÎÚÎΓlê2ZÔ.§ÛI;ÁN¢†¾£‘“÷㮼íÉäçLp‘/¿JÈø˜ŽÍ@ÌàÞê;©¥un-mp›þ{¶uY»§‘¬f÷(þÁ¡ÁÌîL€Lò?Š£'þvï zÑÃà!z:ãšF»Lf%ëØï°ßbeŸ­Æ6ÓgÊ t•‹>-´`#?rŽæðe(ö|)´Ð;^–¶í¯Ûÿ¸Ì˜XÄGüåì¯ðÖë†.‘|ÀÑ}88^ÀuêûxDÿé*÷âu4'Ú{8l B¸S±ˆ7A¢œdC|öÙbö ¶ø±·ü´}ñÑ£I8)9I±6öÂí{Ưô }èù³ç´Ï鬫wþ„o«ÐÔãu& §¸2ޮ䏗o ³˜ðÝyƒðßëPÑ öû8n†Õ±ó_]ñ Z‰ž@ƒHI²âm÷,jýàöE ®ËÓî³mQ¯¡¬ BËUn—ìlÝQ·k/Û¬ÿúÚ[é›áC”@Ó›_G‘¼—ÏÖ„ç˜wk>9¯hMoñܾâbç?yû=endstream endobj 288 0 obj << /Filter /FlateDecode /Length 5611 >> stream xœÝ\[Çu¶“·M`D/A èaà—ô$œN×½J„ ؆Â(² 9&l!¢š³Íݡ沚‹–Ê?οÈ9§ª»«ª»gv‰¥|àLO]Ïõ;—ÞfUÉfþ ÿ/7WÕìæê‡+FOgá¿åfö›—WÿúŸ\Í\é4׳—o®ü 6cB”FÛ™V¦äBÍ^n®¾-~œ+…#UQïWõëu3ÿîåÀ FG+S c¬òòúªx3ùGÈh„,e°+ø¶xUÌUiÚ/gy¼\iM7ôŽ”Î9füP§gºtFXªJí¸3³ƒ1’I?g…s˜sJ¶sx4‡—–E0¬ªJ3;rYJS N¼þóù‚iSk‹Oñ£.m>FOýÇçý€óWᦴ‚OߤØàg8ŒÖh¬â3"¬Àù®´Öj"EU1§üßxBkW¹À¸˜-°;çÜÌ8ì©Làͧ¸ŠY6ÁaEK¼ˆÿÓ*g+ÎÝÈõ\YéÊI?aÔ§R¹*3ÌÍ¢)Å—®dm$BeõL”šiÉüÒÛti]òÊ:þ»«—ÿüqÀƒpËÏ2’*üf¥**F¸‚ƒ‹J¥Ã¼H©’»&ï߈k¸ïƒMâ˜Ã¦ÙF•û0ι‚Æ3™ϱ¨µUw—óvGÙ’sÕ >]V uæü25—‡æ)™óIúb¾0,€ÓÅ œÆucòÁx çv©+›ðÚhW½_ç#+á^ ÜcÅ9ï3Å"{ðA ¬ÊR¬D nTÉ úZ]2Ó2{`.Ae„4m‡yf‡3—Ö'±¦­vì“á|d;¬Â#wDw8b¿cœ³ß>ø@%ÐÞER”i]•-¬š4m½“[ÂØGsª‹¦ÀÀœdÊò)JÀ]Å´±¦T$OÉ”¡å¨¦|Êe"4;O¤Q‘H¦<ÎØKzˆ§2DÝJ§G¶Wlù{8²¨çÒ›ôXzÏû1©KÉx7øòùÿâÆ¢¨á²C•*È'ÞÚ0mݨt8ƒqP4eÒQtþjÒ£E®ä}Ö[bܳ3 1Ddp„^´Ÿ#F†pˆ“¥cŒø¨uÿ”³=[6†6Qÿq(nAèu!¦ó"¦=,ã'­œ¬·=YZñÜ&çïÂ(Í+uˆOÝtñ±×zL<ÜMù4·‰r°*‚eÊ­¼¶÷ ¨0ª*µCƒUFiDáÕô ¶ª\f¿÷æ“IÍ‹íÎ;ZÅŠû­7¥ V—’e“^’%©™­_Ãgæ½Är·ßÏ;À×D‰b]ƒ’ãO` ßc 0§åñ´oƼ²ì“׃jE¶FÞ ö@°à3âð¾ÅîÐlÃ5଀К}˜Q‰âÍ~·é¿yÓÉ}YvÇýî`I .Ð\¼›,vR¼G‹ kõÄ|Õ€oêÍ*43Ð2wx– }Eqhîê=öá ̶²Û»v?¸Ú=Z@ø„ÆÙOì6¹…ö Æ ¬_l§Õ]ñIâSI¨ð$€1ü¾>Þ‘+pÀfÚ>u—͘D?ÛñåŽj$𣠵Рn385HadˆS•"…S¯€nM¸“ÅëpòŠƒ ³›âþÕ¼#ü~:¶×4Åi»ˆ(àµG ¤MàŸ4´°œÓ$Þ¯Š=¸Åݽ«p†ÄžÜ4~ ¹Mú ¼ô¶£æéæ¦9Ò À¦HÃÖ‰¿ekH¯¶ýÒoNÛ%¹ÓvE^œÍuØŒq eH±ñZ`±¤ûŸ¨&Ö& Ö¦ ¼Ž7w#p |ÈuçTïê©?GÄØo*%FGº8Öß{O¡ÇŽdÏ«Wó Çh$œt=ýò\êÓ•,.Ê]®íFqò»|lšù¬ú`³ë‘x›ç³2KÏœÑz–Ly@⩇Í„ñLz¤ï=yŒ#ÄÅœJODðqÈÛggƒ"ŽvP¹)N¤‰”–ÔùQåük‘YeØèñ•ÉœGè/ÒK=žƒ¶Rå`ßþb仌4F“çÂZˆ)\SÜ€y@ó!tñ‹AU(mRTxˉ'JnQëŸ÷|õçy<èÈÖ¤@{lЛóoÜŒ™8(„ ÝÑ‘C‚TúZ6¤þy~´ öÔ=qžçƒÓ²Ñƒ¥s'0Û¥§€e]â€ÎŒ·ŒiR|¹ßm›`aµ,¼%Õ@ir÷–¼Fqݬu˜0¢uÏF-ªÀ k$cGÆOQ£•Ï ‘§Ãù"ž!@l¥n3M[ïÆFœG+Ž®ÐNÆÀàXížÂâd—”ÂU:³8ñ]ë±›‚!],üԌݓÃQU›BZFNÙ ÇU.Ü7w7 ( 5Ášœ6¹N.<ƒ=Nå\<ˆ£T öSñYÁLÂðÙ¾¡ €ž§Ø¾~åÑ2E}üŸý6ì82¬å—ÖÆÓŠ~—¿>ìzw }›»u³iB.‚ùcˆ4S ¹`„„@|‚ÿ#„öÒï¿èbyÊm‰تyôÃ}f@+‡ „'Œ\ü\a‡ðá*ÀÞæX„¸¯WŽz½:"V™Ш(øyÞè×ë5&v‰¢=. à`«(êÙ¶#E(ôÁWN{Yoû)¯{8ß„!N‡éuÝÏ9VÛü*iūׯý‡csGù@áo“ ø6gíÁþ /hÖ©ñ"½ok‚–;ŸùiñÜ~Uo—ÈÊóð(~ól h¹"‹4´˜Øï>4tên*2x²Õ¾ÿzÛ8?ÅW»ó¼µ-a»( .…¿û9ƒ¸ûJ{iÂü>µŒS.žÁb”Xâ Ó”K^̸ç’We|´ÔŠïñ)Wu/Ê_5¨d>Å…ns·^Q(ñïõá¬ö\|Ëäwmbl`dY˜-Ù5Ìò’• NÂ$E´¤Ó „(§Û¹ÀhôÔó`Ì!ÞÇb/C@Ú`°Ÿ¢oáœpŒ]Å;0í‹#ƒ,æ¼nóªsá›XEÿ´¢UÏQ×%+ê„h0áûŽÌš“`àçç0žAèÉ„^²rVL¬œœ™ÚÓØtÇJ†**¥ª$ñá ~äM”%•ªŠã°ÞSôƒ&Ü8 Àž—¼¸`ØÐ”8¶èì >.·£7Íî€n D}‰‡ ‰,°Å;öD)rrßrþ¬Á ó]ûYs¡¼A9ì@óW›¦[Í]‘(óÛ ®mÓäÛÕvsܰªŒê›Ûv'„7lûUöBä»Ú6íîÅïšz¿E“í3B—¬K·Ö5¾®DÕóð-ß¡s®0b/¾8†_Àwm0qq:}ÞÂ9àãú¾‹¹ë.%“ØÇC»2Ë K³W˜M:¬Úl;ùÔ±"4shKÞ¯=Ý—öàWç€AHÑǘÕy °¥Uªo ¢’ë]‘¿hç ÃTUtËŽB´:ÈåÓi¼ØµóeqwÚ·… ÌÊÀYô'¢Åp:´Ú}½_mÀY¦¹7!+:ÉŠà‹7~wûàacoA¥sv³n»bÓô,ÊjÖÛÕ ­°¤äßavR¸†mº,åõiIXÂ/ «Ö‡>1zB—'o[̆Þiû}؇¾Æ{íڥщ÷'nz'‹ àýÖáØLëöNàoÑ .½ ¼ëÎ .›¦Á¤ôºøE@‚@ëCsh¬À2@IĤËÝöD݇[s¯<­ „ ,BÕ±Åî ~–ĨŽbšêÓñ<²Ñ޽B2UÒÇ ·Ó5éø&×u÷èõÊ@|í*w!Ãà (Qy×E¶´‘˜yŸ ÛàÐY-Këô­— ­Æ‘S´ÇåïRÅ âD Y@­.¤K°¼w°¿<‡6d©ÁÂ=‚—ç3àfD˜G¿ÏE}”¾³—c5?ÿdñ¼×˜®“¦¡;•[»nJî»)AMÑЪD CRiXmäÿË ÒŽiß„(q·ñ%ùÐ÷M7%+ ¤ÎÞÝ™jü0¥í9‚t„%ŠÓ¬æú§(:ñ&Ôù2ã+€#Þ«rða§zC©Öæ~ h¨Þw•ðàh¶ý·Ö¬SYÍúxš G÷’sQû°ô`¬¯bžÅã91§áø$1ë@8k#—îïÞ“e¹[`aHs³®‰ô…_ŠÅ%óòý-Àü*ØMðŽFƒH¢.I© ʦ’\ëÍ.oúØR>‚ùÔë.²ñæ˜`}œôäé»ñ‚¢@¡º Ûxk Ç>¬'1ŒD+®ê¿·hÐïëBÃ4a¨õ‹ K¬6‹¸V媼Fä¤-R/êÓá°¢D=±Åv Ûj(… Š?6€›®{+¤¡l-Õ–yívóÎôHò¦{ˆ•fían4ûÛúîÐÿ„hKjºLÑüÉ-–0ªBÕ©— ý#K –«MX€v¾[pм‹€óˆJb.ÃtU•½ò5y neˆ)£G‘˜ƒS5>¤à@Ú&ÂÂ‡ÑÆ¼KÿÊÀÅÎÖÇBmÊ·êŠÚX¥_î6A¹}`Ýc°wé-3]艙ÄÓºÞ‡†Y첕y‡ÜîXûü(ئŠÞŠBíSf‚·¹W¬@lWO V&ŠË+¼#NÁìã©_Fá³›ý©Z‚wmOšÂDà‘À|eÉZúD†_ÁwËwcd`¹´KóBqCxÞŠWõ•$ʈÐñÛnGJrói® £ Ì£VDØgmh‘¶ÁDAg—çÆÀbwº¹ígt¦‡ùSšÅÚÜZXìÑh©p—Ãï1³¢JƪþrØQAˆŽi´§JÎÜdøQé· ŒÒïó«³þ%~[§íûμgüqø³I¢y!  ß?Ä”s D0áÌû„óçïî0ψ‰p°Áó®°³ä¿!‡à´Ä”´ZW¤×Ö'Í¿ž ÌÜÀó%­ù÷þ™tTêè‰0ÉáKPS¹lãÚCÚ(#CƒWÔ(#ùCÊð‘O0SIQÆÁ¾ôÂ@å²¹Â) ¾n&´¤ îæ /Ækwß5F%ÇÀxU´%5:¡²Ôß7r|cÀµ·8½ÿiŒ³{Î:kØ·Òc¦2$£•"(ïšÁÖ™¼ãmŽPøbadÑu‡|ˆïF¤z›¤|Ò‰òÎ2˜§ÕuÓ;ŽcçŽðW­É{´€;j kx¯Li¬Ü¢#\ï6õj‹.\Ù¬ù=eWV€ìØUaÿ²k Mb ¡‡ï(Id ƒÐÞ_%tKd¥…yD› ZID°ø>ýcÛdº9OÙ&3´dï“I­ëÓ÷Étë?¸OfÚ¸fᛊCÈë¦-Ôau` IC±Û’²¢0(üÖþ (Ê#@+ûVøÑC\¸÷óaÖç§AÓ!3®T9*[®A—ê{8ê¢DëQ·,®NÆ ÿcÜ™Úvl6ÛQtJ­®ìÁ\¾5”œÆ¬{ÅÓO!¾áhVDáÑ{œ$—Ü÷åòQ|:ò Ú\îÒ¿ñãeºý;@ù1ô JA“yJJfôBÒ_H¦üì¬Êѧ>Ûü$Í’Tt%Ã3g –aQ%z¼RŽdë@l©*Fh¤‹ö–TÀ·-±½øaæÕÌóohvs>ˆyý?Õ†˜ózІø6?Ñ0áÙc×ë 9ˆJMòÎnTÀÀÆJ`ùÄs€ç$\¾Ó\9ãÚ¢ «’ ¾Z€o|HrrŸíKÆ™îKÃè ¿~à@ÇàPÿDŒ²j}ñãÌ„p7sC7xÙL`íà‘f"zióC˜‰g>O°ôÏ z3Ø_¢éw!Çݽ9°þïïþTZƒ?¥Ð­¦¯-ûÒ·’®öùË«?\!Ý_U³W‚ƒ 7§ÌK¸ãæJ-J Lûd}õÇÉ¿ã˜f²ýˆx„_äa .„l3¦ ™´)p¸¡õŽjìÅ)L´2¼# «}H;nQtÛŠ%¦ñ9Ä—pìúÅŸ-þD$úÃÕÿ³#sÿendstream endobj 289 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 871 >> stream xœ5OlÛ‡í&o‹(kÄã°‰ªH*LÀ¨„ÄD7©Û=ljh­6e‰³ÄMb/Y7ŽŸ“8qâ&‹8éVV©R5&Q‰4Ä¡§^8‰?‡ž’ݸœV\žÞ“ž¾÷{Š8E'§¦>9ßïÞ0_AÍWÌ×êý²ÿÁsàr€Ëù¨wò¤1;d̼`\{q h0’ž¤BLØ¿°HgæÎoML¼3J¼}îÜq1@†ýs¾ 1å£É€¶‡[ÄUjÎOÒ qæÂ"M‡ÞÅbc¾@dŒ /¼v”ˆùéEbšŒá(9O|Liâ²/@‡ÑÆë$-Ód˜˜¢æÉpAÇç—ý2Œ#—_Aœè…ë&ïîíÁ¶ù×6º×»îØÇÍ¡acɘÞùñ™²Sð4IJ 5¬š‘Ówb<°^…eˆŠQøÁu:t1X–*©ð2Þ´$ ™Î|´Þ³Þ±ÜÆl³Þ.i¢§¬Šë«÷¤ }›§!"Ð…å#Ýc€±Ù¯î°÷AÛ-§UÜ8ou¬‹âù4—Ë{¾ðÏßåACKU¹ŠÚ*‚êUAUè€.è}R:|°F­¢7b§ ¹U(ƒÒhŠ’d\7>|¼eVb¤+q‡{w!q¬JÉ\­û°]¼ kbtèüìö‘jeµ©&€¹Ä)4îîíy3Žõf½+æîpåëÚã?‹˜¬‰ë%¾žd¢<08q!1ˆ‹±>‹h‘92f?ZÃw…RXÈæWÎB>±ž™«÷Ô#ÆmT åBÍ2…cïà÷c[ODIÒ1·¹‘Ú4OmîPãâ¯Ýß&±ï^cZ·©¥ÐÕIè›66¼ßÐà ֶ&ä✗½vsz0:Ûìè’"·p¹-·¥F©úÍß-¹]®ƒŠ=½ñäÓׯZ/…’MTQº/y;??Ýþ°–’ åà.dzÌM"é·¥äþ•$—ûìû…2^~àu/wÌIEQ ª3hùÏoÿã„÷¸óŠëØ–ìr!ÈáÝ©‡endstream endobj 290 0 obj << /Filter /FlateDecode /Length 196 >> stream xœ]1Â0 E÷œ"7hêVСÊR– \ M*I”¶·'N)B ÏÒ¿eÿ]ê]xq^ßqáÆº1âìר‘8YÇJà£ÕËG媟*°¢;«ðxäÉ€fÓõÄâV5u~*·!íGœƒÒ•›µBÈÖÉЭÃ60˜'P‚L²”b8’¬d&uIVÉH€¨ÈœJ@4$QfTWïKè ʳŸÏõ#º%‡Î¡(‹uøý—àMñ{¸=cendstream endobj 291 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 688 >> stream xœUPKLaþ¶l-MšPÁv@$PI  i4ÆPXÛB·­Û-¥i(„Òþ”J))ÔByTˆÆ‹õ&ÎKÖ5¥Ébx&Eq£Üb.B[f-Uáˆ!>1Ld¹ù)S&’³e¹ù¸ijqn!A4áÉX$T˜Í'Mp½ßâ|òŒ&¦I2¡‰¬ÄÖr’/¡å8*߬®O¥Í|r7½lL•f>¥¶@{»éeH™"šµ•b©žÈštÒ²µ ‹µP } $üŸŸaºW¡˜‰¬ôF¶Ñò€Ü!_“ÈýÐ)_†~Øþá­´l&²²ƒ«½ÝŸ–ñ{ÈRðNôè—JóK$§Ùóm{ظ':k”›Nî¥SÉI’6Ä÷¦–ró™b®öi²!©ªXì­Râ˜dÐÃÁ_Ÿ­tŒÿým88ùFG‰PQÈ¢QØ–¬Z6ÔÕ3Õ³Õ²V«dB¿òGoendstream endobj 292 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1797 >> stream xœmT}PçÞ去E¨xÌr\‰Dè ¢Ö(µÂÔP£€E’@=¸ˆ| xòý!w·¿»ãëø¬šÖ|Ø[£&:0PcÊPM3Ruš05Mmà~ ïáôE%#iÿØÙ}öýíó<¿ç÷îË2r†eYeÔÞŸØ2ÿ¸Vz•xÉWüw¼ëáWp—»üÏíX!•/—RŸ“ö.cVЙ<¦ˆ©cš˜^æ=æ÷±‡´¬ŒE #Í M×gë ‘Ï‚ïW×E.B k‡õÂÓÒÅh.ÿ>ÑZûìsF¾!OW”.è² ó³µÆÂ¢œùHòrˆýa˜çX¯ÀÕA/¸¬”©˜ÉâVdµ²6ÖÎ6°lÛ̶°¶•mcÛÙfÙü¸äLs—µ¸lv—UÈúdò¯åKå¹ò ×H×O›$³§”Êc/¯ïe±êš GœÃ*@¦UQݾû #põu–Z“ÍÜ`ö»˜4v–l>âXëᥚ€‚ =ÑÄm?°¿¦,`áj›-]CŸv¶«§Ðc£ 9ÏŸ¾ÚÇ»½ÜËJqweÒ¯yrD’ïFICšñrÉqýÙ´3•í(®²ªM &›Å±è1ÂàÒv“ܧ H™$¡äR8ñß¶M«µ˜-f0sÕhï´AW—'pä;)¤P*zžnç>~©v6ýo™”ÄKwhk.;0‚DN 3‚*tkÇXk“÷Ì/”pzZ>ìùÛÅoÑë¯-V+ôpý¢µÈhÒ|5ˆW‰Lnîu%DAXÒ†”ÐÄ´ƒ¹å5¢GÁh[êÿ¾ÿÞ¦~²Õ^Dƒ¨äæJû„„cbÀñ t×oµö÷ˆV“Íïà)²j<#M'ÁÔjÍ÷ùà—4ŸŸð³Tp>ßs[÷Iüù]§1é›÷p sÒM%\\‰¿¼ßÒ@?îâúÀZTN Ô¯…Os Ô@4çLSB6$‰U5þ1!D±§tÞi)µŠµc‡îGõ’å uZÅ9ï)L㲸þ*J \Ÿú»Ekm£_Z/QãK'´Á•ÿ §ùé@„‚±VoÜþzñÚQ[OuŒœ`…ãoѶO©Q@¯Œ¸šÝ ¸}ùës·.ýá⻎ù”¡Mö7~Kž¿[€Éæ~ÚT;7CûŒá$qJè°@p‚B)˜›M~O\;ÈvÐqs-Ô¸Ë$#7fQ·J+óþî ³_re Wßhn ºÝð–h­j"Ñ÷«q-ü†“h°ö_dÙŸŠÚ+‹bqXõ~,Æ•»{É‹¶r¨‚XÎIͽ;? û}òpʵl’´îM²â9'MìÛ™ºÿµ‚ƒÅu&0AWlûèæl?©þöãÿŒ÷¡§½0ÆyRSÄ80ûp€ÅÔÎÿ‡*L Á³1x€$(<é2}uˆç¦†X´ÉÐN¡ »‡ˆŽ¾CÝéV<ËIYÞœgáågHB:?zH‚Ó•‹h ”ÆÀ#£"ºìæÝ~EºP§Xt _“IyR«‚‹ÍbOùø•ÛZÜ*Ü«yÿìþ ÷ ;>ïpÐIÙ¸ÖZ0•%Æ–U¨ˆÇn ¤ˆÿ ’‚«HDkåèŽàZ ÕïÙCuwe3qüô§‡~= Ù‚m‘x $:ªþ38‰¡xiýïÜ9wÎn§jv®µÊéf/+S“ 2âïLg(8}ÿáÔ`3¹Ü+|˜v6£½ÒÀu6Ï‹òò9~Ö<È»º²˜ë¤wpŒ—ЗªA%ñÉ>ÿg¿Ùaå軡·z'…‰Jô9òªß£aåîéÄ[(-òò·¥wx’¶°¢ôä]OP¦¯xùÔE–—?˜gE¼éjPè^üÑ+D™S\T@€sN*¤&雿›}æ{©kušYî-}¤ÀÕp¯Üa¬ýêèxò‰Ò¿¤¾ÆP|ß•Š)Eó1Ñ G J:9—éíìr>¬®„z}ªУöœxT64ë;ÀJ¡ÎÓ*‚ÎWk«E ˜ž,Ï\W|‰6jÉð³è˜—sKëw’µÔQ„'¥Íê¨ÁDë1¹%Å{K*Ö]'±ÔǬp»®ÈÅl?Ï’^Ý'½Ê K.,U/‘óÜÝšÝÝéåÁ0ÿ ì2endstream endobj 293 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 554 >> stream xœàýCMR5$øøø‹uøíù.‹ ‹ ­ø÷]÷V÷Qmq€Copyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR5.CMR5Computer Modern012gµ&øˆùJûˆûc‚ЋЄmøeu¡øCœ÷n–‘¡ûb—· ä  7Ÿ ¬– äœ VsëXendstream endobj 294 0 obj << /Filter /FlateDecode /Length 5153 >> stream xœÍ\[#Çu·± †7ý”¦%vê~ñZdÁrÅ€m û ÀåpvZâeDr4Z?äÿú_äœSUÝUÝMr¸Z)Á>L“ìª>u®ß¹ô~3a5Ÿ0üÿ.ÖWlòúê›+NßNâŸÅzòûë«ÿ«Ð_{#Ìäúö*¬à.em›mk!õäz}U=Þ-wËéõW°Æ‰l°µÕW^ß\½¨n¦3a]­¼ª~7±Ú1ƹøòú?aUù³à&x-«Xظ ­¹×iãf; W3fªÝòv¹Û-oâ7ÜT‡mw=Ïî<Ü-§áá2ßÛÉZ0íãÓ››ÃÝB×JªxÓvî(öá¼æZÈDãnªYí½QÕ|ó:=¸¿¥ãÊ¥÷óÝ|½<,wõt¦˜òeu $dzÈêÙ [ _m§ôwÕã¾c¢Zî¦#Œõ®6Üû’³…È@bÊ ‘ˆøm™uzÄ*ììÅÄÔÞJG§ÕµÖNfåËUXÎpò–s©1¥%ü4)–ü,h†„GŽi«57‘~1"—™”@®:xíµæQóëf³ñKÃU$ý™Ô°ÒËj¿Æ§z'ŒEf΄¡¯·‡;X’ÖÀ¢í-^£U¾¯67ËÝê îÂ4WFTÍæuz–«îwÛ(,¦ªl 2ÕðÔÇiGPÈ)Ýb]7’ž SÝ7‹ù*>Ê)8ËíüauˆËà‹E¾òÕݶYÕjOÿ_W׿"Áps‘nøOªþ8Øï›ù&*K¡ .µmÕ1ˆŸ)+Gį¢¿[ãnD–(~cE)þ’Â)€kp¼µ‘Ç»&œž [ÝÅc9^½n¾%^J0ùevv8h¸™4›g›æ°D¡I©jиê¦ù%8²MØÑ‚@šù«qK”GĈ$ÎHÒzÛS:”¬3´pØÍ›×wAP6¾ÝîÈR½Óºšïnâ­ÎWËÍÝ|³X®#Ü‚¦¥ù2é4\G9:‹¤‚€·‡Ý4%þìµç`«à¸Õè hWPœêv¾nˆ¸›•A]è7ŸˆOÚÖ÷«°(y¡¤Ä®j¯ï±aë•%–?lšo2yÀ(¤Ü6yEøÎÙ:¿1ÅäœÖda ð9z o Íä]FÐLPÚ1H›½×ÊŽ(™Ágõ¤\²Iš/‚ô$'µS†ÎwCÛ‚sðRT Á}³ÝÄ#‚ÃxY¤%3‡ÛôS˜Œ©ÝÞ Æ"cáe”®mg,ϧ3nÀ¿;Wý/ ¸Ùx™}.Ÿw7¬§#\•à£å=®þŽÏ¤àr„«¶ÖV²W_N1¼9…þ#„·ÄãÝrnÝèHÕKoݼ›í—÷eC£ — þdÄ#)Qs@‰?‹-à†Õü„FÃT·›EúFÑ7¹/ÝšÕ*}„0r ÕóÝ›©¡Œ¯>ŒÞDôêá\‰©6Ûä„]µÚ‚îï’g’1×cB…ø&ñä @‘þ2^€ûˆJÙʄåkWr¢j€[.òê_p‰dœY>¢hªÖ€ÎÜdV¬ &s×ø|¬U&׿7×°@x®§?_á Ö葃)(ÙRžÓïœ3#$©Z ÓáÄ· éëÀY«ÇŒÂÍ|¢¯NR$ÀµXî ß•QÔ³viÀ4Ò½/§!6zðÄY˜\’ ÁÁ(è@‡dÄkÚ[/}RŠœv yÀX›Ô…€ è²9.ø}a8†¹|Í{ƒóšB÷œ6FM¸¨5øÔ°dÝ—3ÀJÐN0³L’saÜ\æ\œ7pü±óÌÀ½p Â`Õt²nÕÑàT¨¸ˆ×‚§EƒèP`ÄóV,ñÊÉéâ²6P=§ÄÇÑ‘2mBñ¶ÐÚñÍz:ß’UIcÌ}PZz±| Ó‚>ºrþ]Ñ÷õÀ•I‚¥wÆÆL! À?àá­B}‰åVʧŸ¾ Ñú@*îÐÖè¡›}Zí»Úþ* x¥e\æK£EŒ›onÒ¾¾º›‡:èr¦;´{ 0¤®3ý·AØ“µ"8%!—b<Ó/Ëû1ÑO c1¯ËDÇÒõüÞ£¹±´úÒt½]ò¼ß÷¤ëŽ?$m{N%0]RM†‡È):•Šý|:s}^M{¿Û"!?!, :—ªa…¬@öHrÇ)[ƒ‹çÀ «XÈnª_„NH‘¦,isNYê=f«–x®8ó.+¹Yì ˆ­…ˆ¢¿sO”ÁœyVPó~yPÊ®z]e&ŸùS*I–í7§Rª²YS*ز°¥ –Z–±wTí—93ßZ+[‘SIŸ¶ì Š5J»÷¾×Ï2{"y9jX8Pc,+Èyo`Ô¥ÏÀMgA@üXa ÔÖdeä°§ˆ¬UGð7ÖõeTUÐ â\Vp»¢=˜ydV×*KÞ€KuW¿ØIg NÔÊ@ÙjÌr›-ØKE@» Ý–¨Ì©s–ØÒqÍÜû+æmKLV¸Hž‹u#¾P×Z¶­ÎKJ—ÇÝsŸ0ŽeŽbɰ–W†o¤p߃¤³ÕT¬öâÃì † T°§"ØßÁâ¶b昞ôˆÓ–ÉPo×|ÖÚW±;äˆKšåáO+bz@±ä¼"fáþ¬"’½•"*k{A¹+ÃÄnE?,¿­&æcMìW /¤éT@š†È.fÕ.–ÞÖ²7yY颜¦Áÿ+„.Œ£t“6½p¯Á`Ïž®—m¡ðçá(Þý0¢@ *»ôµàa¤/¡Ý<kžaŽL71^ý~¹ßcRFwú¼­¾Q”ŒnCv6…¼t¹ ü²ùíæ&ü‚¥”2Ûd{Áòsp'˜§^ßuôrô³P€Ps¯þ@`ŸJ*Ì{Œ=⠼Ȓ°ô9+%¡"«í«Ã¼Ù 'Â7pòÝvÝ•[¨ô“ËåräU¼“²ØÍ¾ ‰M*¤z4ƒ˜”ê-˜BŒ·Ê‹ÒÂmè ùÎK­í°Éi˜Üg¼õWgj}ëEsDz[€—G‘7ZE¦Ñï÷oîS.³råÄG§ -!‰ø è]tà£_Û M²bͧÏÊ(>ÊÐMšç4!”Ä3—4 ¼R‰lÌ)Ö ñ­9ŽoLèüýòÁÚ(:àd920ÊI,+EáófCe éi¢!­B÷ ›h˜IÅB!¬?QÔ-]„Š)Fø8·ä©ª¶¿ÛNS‰ç±«xnB«T\‰ÅÃWÝö©î\Áhƒ²+ñj<‹Ëóó,»0eðËá=M,šÂá0¨—é65|´ðS‡û ÕUÍÚÉrˆË¨8Äõáèìï|Lwžâ©ŽR„öÔT!§‡1ײdç4ŒH8ÜmpÚ kÀ8h ¿ÄACtàÐ0ŠŠ—Ô‹JK÷!ÖYÞVßáƒí&Eš(̧C1lB Ó¡4LÛÇ:ô±a-¬4 %"/UìÌ“ê0¬¢É.6D\.š[,‚᪰E´Å©ÃnJ’¦TC™%ž§ítµo^ošg‹¬àwˆ÷1]Ý.ç±ôL u¨O²Ðª FDÛT«ñþ™5î¨I7»¶)±ðFMÉC”^†ÓáÁæ«U{4êb¤böb»67{ ø,Œ°!ƒ 3k!ãllwЪ„´DSÔÅï[È´Ý,3Þ4èIÝ€=ÌØÁÜ#í [ ëÃSà„M¨ +jIœ8J¥ÈÇ»eΰ)¯ÒAx2ŸÙX1;ZHô'#Ûٶ¢%¯µJ}É´±:3nzbÚøh jtÚø·'aÅÙiãT1ÊÐ 5›Â0U•[6gÓ¦ÀåÙaÓñqAÙ€“müÿ2•«qÊ[¦&¶CÇ6r`Þµn„Sä¸ZgÖü# ÐvfßM ·yk/õ»Ð3ºà5ào;Þ ¥ ©EA?fU}ú¬\5_í·áÓÀ@›ýü†ˆ œ†øzmÔÅÃŽÄiH'Ú&çèLlh3BÆ~!‰r—úN‘¿6×3zÑÕáõýˆ*â`t´÷÷÷™‹ÞQÓ‹; ZÛ ©!~R1ْ܇¡èlŽ˜[êîd¡ä‡Ú9¬ˆ»ÊêÙw±Ù/¡ãÀ¢ ½ƒ4`T“!4|ŠîÁ[õ@!‚Ø*ÁYáΰ5ö«0[z ƒšô Tk•æ˜Á>ŽBØ÷,Ñ`­%†Ž “ž!pcZºLßÊÔ.]ÞeˆÔ,!¦däÒí¢ µ¢ã’\^‚åÛé¬G>ä9NÈv_Í:×ÃT]óÏ»åMƒ90DjeJêCJ\h<Å8‡›ùý¡ùv:玸ƒ÷€˜?Ÿ¯ï;{^M[7ÐM¡¶ H×ywø>ЂÀuW݇œ ¬²ÞqçSnG.€dѦ䣹c…<# ]òq~föèxj/¯¤~ד*J¶æ>{ï*ŸXÞlwëx°ŽahØ5àÖÂHC˜p(çÖËôÞ}lü)2‡"v ¾·0fˆ@ñÀÃiVÿ=BiBð‹íÜÓ}b8yÀjãŠêÝÑÖ\ñð˜<óÁTm “¹ãù¯¦«¢¢ü»~<(.è^ ú]*˜Éô¶Ô0D8Ü'Àíú Ãÿ‰2d¥ =Î,SÛ*Ýù¢úi,;3Ö õuÖ;úàl "+ü~}‰Hý8SGIÓ÷ÇÅìωù³~f^>Ñ£‰ÖlÍѼP÷²þÄß%óÞ27¬ÀùN”è÷O©ˆ—M­«"Hs’ìS4WãxÀš Ìä§Ûž=v Þ\èÏÚzã»®€ ]¾g€ 5GˆmBFtʹJÍu‹°~ÙwNýá]¾/r¾Âˆåwø¾È[»ä~9wÉïþÔT ,Ö¼8IPo¢„^wŒùÑ1_g<žìÂ2ýêó³|·³äçù·húc9oE?æ<3O·yn[*¾9étSϯÌ“cë |‚áÅŒS–ñIèÚäoò”®_ØžÚžwüÚº£Ž¿/üð2Nñ€>÷OAÕwˆO¬CÀÕ—'-ÎÔFñ.²œö»¸¼kÝX`,ÖGúÝØb¶Ë£‘‡ãÂKEO‰9.½ôÓ~Sªß‘]jzôÕîû. Ýî1Å U)•ÁyDð)+M…'Ù• Z¹2µë¤:ˆ‹½h‹¸˜MRcö0¢¿€gôn™ËFç?éöcŠ âáöiˆ'Õ KÄ“UÂNWrùi×Ýú¬xÊB#‡ŒMµüºwà§ú¢%h‰JÎáð!¨3˜´gECLúÑ3*?B^àÍ»AQ$åSž€#†0ó-ö÷l'>ÊRõ­¤é¬ü±R·JMÏ&N?ŠÿÆ©CÏýP߯ÿ´8­qºVô†ÚiëÇ·¹¶kÆjЗ^_B éâÌåØ!Ÿ`º<”HŸS)YÇœÀñ'MJï ™Iý" ùæ´: ¦ËÖË-ó©úÌ4ÿÙ’9«‹Ùòt+ëxÿÃØÙÀ³?¡D†@j§òÿeâ—ÈNâ‰ìæø¾_thõ¶_ÉéOA¨lÚà"•{s†øj/!ϸ²`pÒEB Ãø¡GKcú¹ú_9‡endstream endobj 295 0 obj << /Filter /FlateDecode /Length 5589 >> stream xœí¾tÀiðûÞÂ[ØEèyI¶bðÙÌ.¬l/ë}I´Ý›ó!oŽM"WÄÚqã[êÝâj"x2ÃØb°i‚ç¼ýö_ôI]}P¥}ljߟò‚ÜΦ›å Ð bBˆ¢5€£ËMØ…ë`{œ‚œ<Zè8åÎǦqÎãW*.¸ì6çšü Þ˜«V+&^ÁB§’dN ”¹µ”\‚·ùo,ƒnà#¡¥8•õ|°‡z,MHõ\9ïvˆºrçÊ[D´ÔÜO)ŒÊMR…½@Lö†sÉÞF–4lrs3ÄcÅð£EŒÃúõA›²•Ôp'“«)§Ø¬ò ` íuÞÔÿâ`͹µ~P#X+…ȃØ´Õ •ÿír3ŸÎÎÇJyóÀ6ï&›ó!Æ ‹ÄÁì÷:¾o” H?ïƾH˜ãYõ‚V/, JE¨¬áÜÅ]ãªgi®–çcé›l¶FDÂxïØírp¡ÙÕ|úïæ#<ѼÕÙÕì.ÎâβØvìò6-Pc–¶¼\ÏV…B½êÆ­fë´¬°H†ØYÐüFõØùw4:pm0%ïhÐá^³‹w³5Á§I˜fßá:ØÒJv?ÙÌ|+DÁ–o73Ú™ ›‚ÄͲµU•C†Ëeãõ~5¿žß^Gv«…–¶È`íÿø+)ß4ô±±@Ñ7²‡‚ D4pÀ¦Ø_ƒ?MÜ\/W`¬ôVoòKÅæë4‹6_ÜÝ̰G"ƒ4lƒÊk’½K¿Ø7_~óeZÄ[v‰$åÂö1>ä:°érqwOÌë Lß âKA\÷¢.ÑÛËírÀ*‡*΃l¡Žm Kã áÀe½ç–$¾S@¡ü·`w«ÙÕ|º™GvWÍÒ’LBµ BZÀ5ìØâzØü†D€±À°›Éü–ø”fš¸U`X[UVÑš­'ˆ¹vžgoWËEúŽ2@ €¶Z-&QSÇ-‡ÑÅ×gÿB8_oVóË{$*ûôK&DÓ€|áùÕd“yÉnPÏ!‚¬OI† …pÔªÀXLn‰ñŸ¢¨h/$mTŽPð¶²d€pÙÚr™Ìª·C6¢AiÈÆ³€X£—5.F&“ZÚ¯:n” |µ £PDD96¹º"¦×¨R3kæÍ2cØÕèLOÒ `‰×à´#½PB ¶\M®“ÊK.ÐîIþ3ƒß;[E¥¼b“¤=rÝÛÙj¹„”¤bëÙ å÷$Ìá,—xÑÃâo÷bÖÖ>; ~vµ£@ÒÇÒ4fÓ² ^¾ß^ipFœVïdrnù"•#@¾8–Bú°Ãèù ÚpÓÆÕœžƒ¸îFæ&¼ì!=ÆÓ)ÍsN@ýBªF€a„ý:”2‚C Ï/Î~u†œ1úpÆG/` ,q®16¦G‹3i`2LÍOnÎ~³3«R‰iΪÀ’Ç%Ai}.­+\¸=Ü:#„;ŽÝÀÝ<Än}íѱÛ$‚÷¼rл#á[(Ül<‘‚:FBŸ_¸!)à;'}ìûþý ‘o+•æa°ƒ¬ ètþ8º“¦ü©Ï­[P GŠ¿¬¥¤Ò›À FÝ\j“r·Ànâ‘§¤ß!p½-ÀbÆ‘ŒØÆ8+v¡¶Ú‡i¢4I×'S/ÔébZ$ûÄTS®'¦ØPÛB6•²²ê1­ßbÿ0Á符ìñ?çK:Ý¿'_rŠîwµ˜pï|SnÙãžÜ‹–3 þ{*MqôPmÊ$ 0œð? Ç䌶 XEÅû¤ZõA™ÁŒÄ.äÖJ(—¡*ò×[ZHVÚZuB}ê€a e§ç¢]ˆÆÔ ŒXS pt”1­ÐÕSï@:4S `èhMŸŠÌO“9X§Üc÷Œ=ÖåêXî—«×dñp±ëÕýù‘üX‹{)´9uvØ"yô玵HHÑJ>ŠêOŽé}}2?†Ý¨àx»…£O¶[Vœj·ÚrtÇÚ-ÔkÕ”OOÖ}v«ÖXT(Ä ®±|ÙBþË>…*ÌK¯°¬ ‡È)ŠïæSJ¢sػ󱲖 W”Þ·†²è³ üXò”žÍ©¨ oÀ±)‰˜W,Ö|®Ò’ݯ©„G‹“J€ôŽ+¶˜mÞ¥*2—Ž]­»W¯„}Ó`îMPÉæåmJ¶u@Øš«Ú•°G$çÔ7×wÕS¬«VOßMpÓì}Wjºž=â0lWo½ÓXÙ¯:ì(%¤ªƒ¸Ã²/÷l3y+Š~.‡\¡Ò°g—Tf A6ë ©ŽC,– ã/6YçùzHYÀ¢#TEAõYz.Ù¼™5φ*Ò¡ˆÊãÒ]ZíHE[@ÈpmÊuqØç5³ ZØõeOÉÂÁÊU÷åÝÍ ¬ÁeÇ2€l’–تŠn‰ žÿPTØsó‚ØØ…lŽÃ°)àÅÍòrr“¦5y·™/æŒõBxjhÔköüÅ/Q¨ó°¢ÌNc‚f¯$ƒ¿°AÅ7]NÖù“X`‹ ÛX•ÝW_oŒõD|¬¡þ—¾ÀÇçÈ>w›ûÖl5H‚CÜïö‘áˆ.h3_Ü­bMKÑÚÛpŠ1lÓ}°ò’zÃðw¬n{DQÑ@T!ê ‹UQË®f7y±ªÆ}¿éJæº 6çR3€³ËùÍ|á´šJóKó&Š¥ ¤mRK>ðTæŒâ†oÔõ éž¤j1À¥sµ8ÍLÖUç4é:1þÆ’ób~;_œç6™û*BðsW/ßw¥†FêV¬ÞnxÉGHð‹c2Äa³ÙF]rüæÂÄ4ÈW12}ml%k•¤Ý ŒšX/(ÓûÕ*õ† =A4OÁï¡9ÐcPß/P;Q‡›5×­vªo¦·U‹l¼k§?”Ñk·ÓZ1aŠH×1+¨'Ü– .²µ ²yç¨ÆÒâó•ƒ |`²µ@·3·(ï’$ክƒQ‘U”‹«`Üò¶z_ˆ%Ûj ¸‚ï’û üÓ‚ NO㟟uÀ+=.FçD?SzlQ0d êT©«1“g¨ë‰(ÚEœÄ&Ššm€ÿPÂL¤(U†Ì((•Ìm 6ù¹.é¬ÄP\—Ô±À» æl$úe ÕË–Ðjƒà`“û;Ј“yR 7€Ó$SÚeÇc²^ÞN.ÉC[®å ó€®ÆtÙY¬Ø¡"Þ&ë!á 4{@Ï*|óç{ƒ_Œ–‹Ö×W{³'²qTÁIƒ_öÅ§ŽªEŒUÿL ˜i0{k™Xf3¨ŽÐ1íX b‹¥ê™ü×J¹í³5¦}X€9ZOb\µCOV5àád­Q§ÌŠØýwûˆ*Séµ?¯ŠQµ«*Ç|(뢥íšx›ö±€ÈCíüJíàz¿+a…X‘§Cê‚TOŠgì­²†˜-?þp›aEÌ|h;—«÷é1¸\è’µ*hgð3ÄÍ }tl%â’»‡Š”7$Çþ[Š©;ëò2:PaWiS”må=9,“ÃïÉ£yì瘶x4Xj“AÅ$#µU)é#êx5Ñ:Ž)C²OMX_çRVºÙîªtƒÿ¡Ýn©G(îÄÎSI¥2y¡`AJ¢ýMŸ‡ëì¹°@¸ÆåR û·äTAxè†*‹+Ùœ CŠ8ñTGùÊ&p eù¡†§¥ì "ØfÜO¡l݃X Îu <6Rš{üq¦$iØöÉÞ"…¼\—À\¸NJ Ð…Njþ¸R~R4n Bì†æ}Nøü]_zÝB†Æ•ìü+jFU¼nèë9+Ÿ yO§]v¸*EþÿŸµdÄ&¥ÓT™ÚSåœnKŽÐ8¾s5Ñ8~Ÿcú$F¿‹O wl•ߦÁƒ]­ÊÑÈè!<\娠±ç8•£ÝÝo÷‰UÎ~<ž¨sü€Ò©ø¤> Å1–ª”lRðìŒKLÞ¢3ŽkǦpÆg«Ù@N ›;w2—bÚK«.ú¦cßy°@ð?ÙGðG‹Cä[s-çxì׎€Yf’b‘¦~;ã*°•X¸6ØA'½Æ¢~rºqRkìaâþŒqÝîØ’Ék¾h›öœ´tÖĺF1g²¢è‹Sôµ]JA¥Óc8*äÓcôÊî<$ÈéÌÆœ‹zÞ]”-×›ÙjžGb)£wTΊ¸üÔ¼Ò°>¨¦„¥Ýkf_Ÿ7C 7ªÁù6}±å%×Yj v[|ÝOÆàõ;m`/Ç=žá%InB‘p„õõ¾6Y]¥×ð$ÕK#›Þ§L¾tìþfR#,"Âëôà¨|1 R6V·ç±³h¬–—E´ Ë)A'ØUL¯Û!õí:Ñ¡#ÙÛû[:ƒ·~Ö­ÕÎ"‰-f€án>žcÙ©6Tp¢úYÌáVõYÞè.=±£> r]¤c6⮪Ò´ ‘Ñ»C†‘kU¢Oz½»`•k38‹[ª9ÅI!¥NÚ5¾KÄsŸóI'©˜M¢èØSF8¶ç8h^·lï;òšN¼îïf/Úr7ûþó®WHDdÿ¹ŒÂ(Ëlçì{,!ÍV OeÝ¡ç„Ø¶á…å­/~©o&`÷xÁ€7ˆ­]>“¤[Ñ%±$s›±âVæ.«*å“à;xŸˆÈÍڷѺ Ð8†gšêåý ^åဣ"Š<øçTŽÔÀ·ùBŽ-Ï›x*$?9FÛôE¼n½Çêdê-âÿd¥¢—HaÓ_4k¾¯ž«/¨xúŒ»ÕÊz¼x…ú?D‚Ìl<þc‹Pò߀irïQ áŸVkL›‡èÚ-WWt¸™Fú²¹ƒ‰Ôg€£}(òU±³sèB´›àÐ#SbÔÈÝ–7íû.Rù.2öBQÅUR§Q²È˜éw`hÁ^^Ó!´‚µÖëQÊ¡×; phõðIŽ‘ÔÔ¾1Ï»DÞL¦xEÉ`S†¡CVî!&³Ÿ ©$ÐøVìN÷“Pwû‚àTàûLgwQ|êç#B`Ìy›uj0ãU;—±ñ}.¬¯®ïsórÏf¨ÏbÛv284·ŸõÅ׿y>°‹ÕtÞ"™îÁO!’ïÓsº¨t2»áÕ·×CPŽM‰ûÛÁ•…&¥;kâê±÷'þí[Í¿;7N ʸARºÛÀÑBÃÑ“ö;.¡Y¾/LÚRH¢µ§žÌâ#*JSþ)º%M×($Èh>ÞÑñò¶„*^áRqM”¦h’ؾ¹Õ›¶¤›n(`¢vÅÀ¦7ËuìTЛ.ºr$5tÐß>¾)âª\†49ÙÒ6e–}˜`Y¯r¸ ~@„DJè²»lódEàm6/α%Lz¯ûº¬ÛÌ 2£ç ~m9õŒmØ×Ķiü|1.-^§°—›êÅl²Ê¯<[`]”t2.] ºÉÄìÇL oI ‘îX*´q²Ø”ÚÔè0çM„ /×ÑŽ,’,OÕÄpôF$'Zöbr¿^ϱH' ØŽéfëu¬i')âŠ=ziÅyã{«wátªOˆœ¶¯»ú¦]ñ¾»&æfþ.¯k ËW\#\u<å ª®=o/xê5ã¾›ÏV“Uþ›O#§k²¸‹q„Ÿ¼<°0|mHpé~º’¿uUÿŠ5rŽÊÓ˜UœïîÎùY¬â&¶Þ¹p‚ºöœ¢©lN 4ƒ©£#È:ÞË1ÛîbƒEÆÕœÏú{Ùw ‰®Ô@¡ ‡üR¼ üû{2b–2ý6:¼ÝiÕ^ Їâ"Ãç‹ð«žÃP‘ héÓü¬ïm‘ªPáOLª>ÚéìlMªmì×)⪻ïÀ­†².÷V㑈ÎÀŸ."ñ‰È^¼ÿx"ÒÛ„TÖõEä'däâœìW1"íÚ‘Ÿœ“ÁõùyŸÅ¶1êÜF»…œÜÞvÔÎy¹¿J¨…Öú¡d»ÏíPpd]<·ƒ"÷ ÞÞ*ð«³ÿ.‡Ø7endstream endobj 296 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 646 >> stream xœ%ßKSqƿdzí,;-K“j~! sÚib¨äÝú5¤4Ëæ<ºžÍæ±µDËíì¼g›Ls%¥ÙP »Ð iÑŹ $¢›è/ðî{æé¢mñÂËûð<ð|^ éJEQ†N{ÇݦÂU­ž¦Ô3%êY´¾ÃÖ\‡XXÝÇ\ÙIâ[MÓiõæé“N´û)F)%åG­¥º¦öHöË’ò {LfMýí„]endstream endobj 297 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 892 >> stream xœ’_L[UÇÏmiÏe6¹Vˆè½‹Ž'd&6IÇêRÙ`$nhqS:¸·¥-°áøSÖÒK]G™ÉØ3a@é`”.ËLØ0Æ'õÅèGÆA4QsîvHê­†mY²ä<œsrN¾¿ßïóaP–1 “]½«ÊZôzQQú (å-xï½»G-²Æî]È%ÙÏüùô¤a˜ç Ë¢³ÅsصÕê8tØ%m­rˆõÒC—!½ä9Ô`ªD5ÈŒ,èmôÂj&Âè<£c"š×4#Z9ÅüP€Œ)Íúw¨Îݪ¼Ë]"¥e?—­’3«yÜì’Rn²ÅÜäô¤\+Ð~lå&ž›mÑs.æf×NéþP·‹7–±ÃžH¾óËÂm>¬ÿiÀú®@›°äìuz½!èáÓ¿Ã:rPÏÍ&$ìh ¤ÃŒuM¹¼ÿ“Z0C‰³Á\ËWËzQFÞBcö$±¶å’í«õ Ûó¸ïI²a*®¥Ú—x;ænýMõÐì€Nö…½ë7¾úñ raˆ½Z¡3t:X[G…¥ºõÚ"OˆsóIj&VœéÞSž‘H£œ\Ö*eww˜lçðôx F 5Ø6³od/°”£ÛJéË4‡°…¤ðë/ÎÏÝ*1Ù1¨K~Œ?Ã×åW\/ë6 =¦A W"É 3S×¾ýØ…ßDKW°ºú*†n¿Ï¢Á¶ÏU ;¡üjûJßpðÓ¾aö>‰¸'MB­F…ñfñ2VQÌ/ejâ®LEå÷…ãü!øØFg¯ƒçÚÕùö¨Hæ3HÚU$ÂÍoBÒ~I©—œiG0\–'\—>JXûÀ(±»ª‚d-_m͘bbèTBU¥‚ˆ±-w…”R1/çqÉ•´-#ªÓ£*öflQ]9ª–¼©†T&šõÍžðEAaðnÒeâæì£’ãù¦QéÒôçÑÉæñ¹‚2oLeíþë)Ó+‹ÿçeôA/ãj–[ÍŠg†àN{yqónÿ;†[§­*nöÒý¿—ñľ %žÄÝÐôëp÷GBˆDÄþo>¸IsÀ •-uïsç÷,SÃéF°€ÅS·¿×ðɾàz¾±õ3å­sD éi àß·\Šß¢u–¤ ÙýçåÓçendstream endobj 298 0 obj << /Filter /FlateDecode /Length 10681 >> stream xœ­}]d¹‘í}ë§ÝÅÚ/–zs–wêú’ ~É+?ö »Z«˜ÑCvUvOŽê£U•µãüã'"È{y+«§´ƒ®]¼ÿøNs¸ ”S¹H1O>Ä‹÷wïv?|wx<\¾ÿžóTZåñe¢2#çû›wßìþáòŠŸ<Ï”ÃïÞÿãöy äkn‰O—WavÓìÂîôÝáRs¿.>MÑ'ßrÜKñµfï5qNCñ1¶”ÿ)s-¥¤3ÅÖ)¸’ã¦ØB5©u™j..ôZßî/¹Ùóìóît<]ò??¢!ó4Dz»CYµR ~·?]rëлÇãÿÁs Õù´û òTKØ}:þ31ÕàÒî°ê‘½–YKÞ}Þ?îï§ÃãñûÓñá¾%*»‡ö÷LKÚÝïûGûœëîîáò Ϩœìæp;IW_•ÂNîâʹ©Æè´}Y—Wüîñã+q‘¥ëŸe÷ù»ÃýÃÿûðéx½¿Å7‘«ãwŸí1¾îOøÄýÄ»;\Ÿ¬™1äÝAš§¤Ý¯~cÙg~àáÓãáéIZ(«^Œß×¹lƒ=õ8 ]züpÛ¾tÄö´¿oŸêîé´¿¿Z%Fó{£¿~÷þ?}³»Ù?Þ\^~RéH„Z¤¡f’†Gå(G<ê¤)ñàã©¥ð»ë½&á/ø|zFýõ~wÿp¯9žŽxI8W+%Ȭ°’‡Å÷×bhjþaÕé'±LWÒîém¶ÜÝá€×à¿Ýýóeä6Øãq’‡Ä»ow6‡^ç)jÖ/]^ù îÌLáb(•ÒÒ~{¹”½¿¿±lµÜ•b)»‡û§^·ªÀ0YsžR þ(ãXËì}=SîÃìæºÔaº¼ÊÑKÏnL›‚˜5ÿ#“¦M¶pž#ÇûOöU f׳c«ãq»ÇK·ãz·É½þZ =a>1tJNÆ¿1Ü•Ëur%n¦æAÈ 5û{=¸QV›–DM]¾šóîûç§SûŠ;Xí!ÓN+E)òÌüý0ono{QÛCV$"%Wž!§=wfŒYæúo``ÜâýãÓñî”(4ˆÄ)éx·:Y-*Œ­Iü°ž»ŸNèñebÖ61¯ÙH˜s…ù`,3O‡Ùñs17fÌ“j­¦ÙËÌÒi#_1?·YøRRñßCªãõáƒÒÕœ™‡?qKSTÛý‡V4?èØjÀ#º¿}zhŸÜîùþþpÍÁÓêöÇVMLº»ÏÏW—gç$-ÚßJjô%›c£4G©³)Ûã»@»Ž‚‚Œn`ï‹Üâh<Á“º\QÆX`β—$I9¨'ysv‰­àŽÍõª^DÜ8¦P&XL&dåîûíçŧ®?Ó…»)xoõ’îFD9ÂðXúó‘© ™ HðQøxߩ̌&;8u>‰Ë÷çeOÒºÛýã§^L9g$Hïþú`é¹îö§î›¥×ÿÝ^°{@ÑM3 ¢9^)׳zx:,O•Q>¹ÝîSƒe«l­ûôø í(\ÜâçIæÑÇÓwòÉÚ/vþãym OæñÍ´-Ãîi÷ù¶' »§ã1T.í~Ít¡sÛ808â"¾u÷³ûãé9V'Ÿ;¹Þ Û¨ÖêòYÝä]ðÝtÓÛ^„é„=“^b"”4³úp«¸gª:𨯑¥Šcù(|Ü,Žt¿4ZìŸù1îžÍê[¦·‹+xŽC}¯÷ÏO¢sœjçû[&‡ó'¿x,6Ÿs¾Z-7jç*¶¨<$Õf²•q”«té~Çç01+müOÀç[áÞ«Pg)áŒNÐ)#ß»>eäsæ¯äË´³‚*º5ϬØEò¤ÌæzÿéùV|”RnÜ[înçÕÉWÿ¾‹êÁƒÜ÷Ÿ@§ զШöp{¸;h˜MOè»@ZÚÇsšzí«uöÿÀs‹z:Õ8?õà@œRàiÇ3ÞSZ‰<Ûî‹…š§:‘ec÷¿ÜkUƒc—ڹÔÍ÷¬âÒya‹Óþ÷jNФá‘Üßð(FìûûN?§ý§ƒååé >Ñy™êQPéñ!H ‹,–ò}“Lü¨ Í´”óíîë¯-úOrbj¨>‡²c¯¾äW0X¢m<òtz|¾¶jÔ$ƒ¶·?yf~¯Þ-€ n*Ì=§?ÜþhÉbRo$Yâî/¿¾ûüWSyžR¾3fI2÷™’¿R†B¼µú*¶øEŸ‹ñÜd´Uþ·z¤ãÛüq )«?^²Ð©ÄÍ<Òûž.Ëz ˆ»8!Hã@Al½*ЇI.—ÚÈI:,±w*?7›%æ}uÙi芈Åuž“JW°ðq©¬{‚9ò¥ªÌ\¢¶¢µ}Ù™Gnà~r½Ò/¸mô¸ãTü³ öæÛ )º”Y}”ŸèÒjbó'84YTÀ00=¼³F=Æ}sÙt5OGústu|5:{Mãn[ýJîC6û‰Pe:zò›;}VLXîJ•?DùÀ3Ýïœ}câ’Œå•ø7é{æNâÙá Çy\Á»Ž0WÔ);©ê¹T”°NÒ!GÇe«T†¬SG<ïâ*UC†TaÆrÍ:•!C*JlDeÊ!Ub9EëD i¬Õ«D«~xã-Æ_àÚ`ŒQVž–1ãQÄ[ ¦öÁë¼É¡]X“pAë^³*Ï,òëÝT\gbFøò¬²aãÐhbõsÁ=ï&ÏE¼ûå;V:²óe¢ê1…-ä"sØ6–â`[*¼³f‚xQ›ùÌREn?wÝ6U`§ÕKÕæì&^÷:r-7z¢—e¹À4÷Ú¬/ä—©8æ@|d©*×À½¬½wžuk°T½À^–åePSKedò¢Oy¼b«Vðبq¦ò‘{¢õi@ø^¦ñ¯["b“K/SUÇqžÑyéEª”zªFq›TÄŽ*×ReŽ-âË²Ø ²O=U Fû¢ö<©5[£M©xŽ9÷Ü:žœcïU_¤Â2Š¥jÔ»IäݸúÄàñA‰˜»  .ˆ-m28F¬HU]ô8)Bš«†)ŽUV$*•m€M) Ųšæ:"¤ó‘‘DФ‰¼"–¤Lq¸C“U7âu&®ÌUEŠ–‹yhHuŠàü€à ŒÕ¸j9>Li¢Lì‡ÒrÙTJRÄi)©ÐRaè#Âí6ÄGE܈ ÁÊ)> »š\ Ñrˆ+FŠ–#ëkŠD¯Hž¬:Ñ2Uú Âdƒ"I‹á‰Ÿ ÉZLä–[•ù_A²ÎCFŠæ‚›·gUÍųÒ[#ªæJ„Ê3±­åJS$EÄßzè¯ì Ñ\™g‘>) C"HÐLL.b™òdY¦*ÂHÔLÅéügD“hƒ0$êäg$[¦‚ª ¢ýW!o¨š„ÝNhÙ ’ÔN‘‹Ä©%U¼ßSÄK—Œ R ¨~a„œ"QYŽ‘hi@NŠ$KcŒÃH–ê°í£q‚ˆòX(¾a¤Z¬¬I0gAŠ1GBk°RÓé›&¯i<Ÿ"!)B˜ì‚¥IF }/H™JPD[¬Œ¬ß‡ ÌÊHU ÂÀö/E²ñFFÌ!H5rÌÊ|žœq#x[±\A”<ô“S$kïQ1vÌF%ìù±-@¯ìXŒ|$åbÓÛǤ®›‘`yŠÑc±‰*~´*¢¦çS0â(%á ¼;0Ä+?2¼"¤üXñ"z,†èƒØão0( ö8Þ+â JŒè„ÆÎ¹h¹ŠS$+wT ©øN‡œò#ü´V‡}޳\¥*’”<ªü+H™H-…=ŽÐcMÖÅ=N–<Ùl=)u0bJXáVDG`—#)/›a—$W1# 1(GÖfþ]NIJd%HeåÃÀSÄM‹ÂþFb·y6Ö ìoÀ@È$ Dùâ YÙZ´MìnRR@;"«®P- I¼QYÔxK£Ê ˆ5€ý—\xç$HQe„ l)ÚÅE¥T§×V)÷¢sˆ%)>F›.æ­@Òάâ(I&T!E¢¶€;:VE”ÇhÆ›O Ùj‡P¨DEÔ³?c–v CÐ@±b**ÎH5kÄn&"EÔö° ê¦òÔÒ Nìp@‘@´‹ ±¢ ÎÔ ùY¨£Êî(E<&oåù¨Øß€!« 6ÉH~ £ˆzDb“!ó[TZQ›Wªh9WKU16µ;§ˆUŽ$Ùœ§ ÚªBnj}Øë€"dí0’ ª²;U'Ž0ȳ«Ù,‘*+ úhv9Ð6•Û¯Z°ŒU±Á‹¢{dµMÍØé€98b° CQ…UõÁ8X² $íÑ$Ú«–md’hF¢ÍyJ¢¬(Cû’¥¾ÔÆ}N’4Ù¨ØçdAJkgViÄzÎŒ–3¡©G&v: ÈÊ#¤LKˆSq­‹Ê+ År%(Y­cÊ Ц‡ SšªØÔú´ª¼ªh}Ö Ðr눊¥|2&¦*Õd$[ïÅY¥Ue& ¨²BX®ôç(ôX™\UÌFž: Çʶ¢b0:UV•éVû*:UV@ªær$ôX¡b,W†¬D¦Ñ#™0EóóQ –Z½Bäq—5ZÊæV#ªÐ# %Šˆ'Aš|ˆ^µUe»Ô'ciÍfZW–!(?²¡jïEüZE2µð%ÕV¦«¹H„#MóFÒŘ›¢ŒÜº$¹²ÍÌHª®jlê*råUöZLtÂlî¤)¸75ÅǨҪ&ßÚÍ@XTyFDíN¬i  ìT¬;9{‘\±Y@RiUSó™1©´ªj[sFä%˜2$êÇdMXÕ¦d. wÔ¶¼ŒðHfomËË  ‰J’µÅ‡é¢q’Ä5N9 c¨ÚæXp¤c¢v†$E‚xË%Ê €º˜ÊœŽ¢+R ¡,‰¼ xeê(SÖÏ2ÉD®—¤ˆ>ÇÉ€dIä˜ â?DxûªH²4UˆÌLÕÑá1ÑÐÙ)R-M‚t³-ˆ‹žI§i‚¼%Äkš â €Lp¶”!K¢â H´4bœŠho‘Š+ I{‹T\É–& C)–F–§©Úa¤úÊÍÚQÕÞIÏš…5[qŠh]ð›Ðl€v({œÙ ¥&•W@´Ü„€S?kö71)-‰h(A’wRu%ˆæ’“&Éš‹Ž‹ŠÍMb¹ŠBVu¤Z. k„N–FÕ&⪫3DËQS³w•Í â5 ÞC4KE(6ª®€íªê Y1EØQÉ%²Œˆ” 2åµDk,kl˜ˆÖ¡fþKåÕ a‡S,WÖr\0ê°÷¢Œ¤É€ª+A´v8FÄsD›ÎŽN’¦›a$ C®YþUDË Î˜cADÅ â´dö8J‘ ’Eà‘˜Ÿ‘jÙ,ˆdÙ¼ÓÏZ,{%ÈŽÄÙfoRÝðc°äG„löê%’ñcªG2’rÉq,H0~\hü˜Œf±#;…«@ódgÙ2~ì@2z´¥;FŠˆ›Rf£ÇñF‚3BF "ïX¤JlDǶº) Ÿc È™úäš7¤76[0giuV¥Àˆ¼d¼± Ÿ±#Nb/A$ôØQ¦ô¸ d¼± Ùø1›[ðXסÁ*΄)Ž€Êª5’%þ¢þÐûjüØ‘ ²v@ȘcA’ñcÖ—ŒãÇŽÐlnA¼1Ç‚Äñc6~´w¢ŒTãÇŽDg¼± ÁrA¢n;]!Ù²#i6ÞÈæD}RiµFH"À5’Œ ¤ot$7mµ ²ß¨Ñ« qr#'?MYu¤Èv£ Æ MÞ,HSVY#Ý€j:?"ÞøqAh¢M®&­Ä´Uðëþ²A‚ñã‚4qµ M\eØG‹Pì¼ñ#"ޤ‰«)¦o:⛸ZoúfAÈdA’Iœ)“e’P#p$$tiH4‰³ ÙhrAªÑdG°”¸A‚‰œ‰F“ RŒ&;åè€ø>‰BF•ÙTmˆMb-H™ê¤¹3HCBgʆÄΔ É®‘ÚÄìLç,HèLÙÔ™²!¥“ˆ!e6³ ~ Ö}k’:U6¤˜ÌéHu*Uó‡:U6$ÊjÙɦs¤vªT{´U6„$\#Ét΂‹:âæÎ– ñSš6yRç†ÔΕ†°óquDBçʆÄÎ! É+R-ìvàŒ-dRgAÒ4V'”N–†` ÎØpò¦t¤©¬I,e'&#µ“¥!ÑuiHèÒØÉ²!ÙÔ΂ÔΖ†$gqÒ‚Pgˆ¤i”N–†äÙ¥ñ,B&x$w²lHµ@©#؆36¢„.x;Y6$wiHƇWßgqC¨“eCR'ˆ”Î!ŠÄyQ[ ñ,B,’-VZEm‚Í4nDB'ˆD‹•dÑ[†øyüè;U6„,RZÔ¤!¥+CÂÜ©²!¾SeCbg†ä®xR;U‚8#¦±~»ÞiHîLiHœ;S6ÄwiõIÜÔ™²!¥3¥!iî ÒEméºKL±3eCrgʆÔΔ†äEo5$Lc¦¼È­†”N•†”En5ÄwÅÓEn5$uªlHYD]ÇЩ²!q. ¨°¨-E’. HèLÙØOCµeˆ›m5iAµÕê‚§!‹ÚjHé“!ؾ•G$tÁÓEn5d‘[ © U*‚9cÃ"·²È­†”…*¡En5Ä/TiÈ"·’lMiAºÜ2 º…* YäVCbš²È­†Ô®x I‹ÜjHèQSCÒB•†”®x ÉóB•†ø55„ª4$uÅÓ±ÂÅMc%,LiHÜÌá„-ê›b­e^ìŒ-¨´™Ä‰Ûä*ÉólkJ ÒµVh¡JCÒB•†Ô3â±Õ°P¥!q¡JCr™²ˆ-C°-'Žm¨°ú Rl]©#a^ôŽ!~Ú$¡i|vHÉ¡.jGv>#Sf ¦Ì7 ’)o˜2³Š™RÎhkià 9¦‘*3{[•æ UæäµcÈJk’7T™±5g¬ìzÈÔ°!œã†*3öæŒMÇÞ³±ÎÅo$ÚPeÆÞœ(¦ÌuÞH®~ÔYNU‘¼aÊ\ë†@Êì6RæÐcÃ†Ä S–9o¤¸yüè{`ØÚðdÁæœ()~î‹K ñš,øæ&WÞHñ+©¥Hpš,!lȪ„¸a‚í9c#h™²°ë™²m¤PÚH¡ÒW— Áþœ±{°?gÌ·Z«ÄÜW—R7LY°GgÌ•6Z«¤¸ÄK†” SlÒ­Ô*™6r§ä´!Ê’ËF•Zò[Ʊ/JÜ¥ü†j“«nˆ?ºDø2[­…{ŒL‰_eŒ‚ßSŒj¿ƒ™¿a™R~Ž0"N÷'­‘­Ö’Ýþ#§MŠºÑ:r¼Å˜‰5ÜH”Ø?§)±c;Üd«´°Y=-i#v°õ¼Ž-§­Ôžq?¶‹âfË–ðØ*-l÷.cÓãViaãöH!ئ=¥lËsaÛØôD Áë‘(ë8ÍeëôØî6b;£G©…ÐqSNÝ0%¶=— ²•ZØÀ<2%6,‡±áØ¥3ŽUõ‘#Æ:c›ÎØplÏX4ËÙ°QZŒÄ1,$lz°M8ˆÛ(-†_7>Ë¥‘( û{ÈøÒ"ìÝÍc#Xà LI³œ«?"­EØdëÇ:‡0R%amëò/vÇ–±Îت3¶{uÆ:Sã%¶U[½:c+°WghÛ€Í:cbÅahsa³ÎXãG!ì×,cËS™’°Ò5Ö=’’FµC¶qq`»ÎXçâG ad¬öêŒ Ç^±ÂÕüA²÷ll‚îö<%a?Ð’lÀÉ#B#Q’¾Ë€2%áЂ¼Aü¨vH-¨#’G¢”Ó#ˆx7Ê’C ÆF`»ÎXe¹c@Â<ʱ~l:öëŒuÆ~(Ó˜‡æ‘)ÙH-¡nl9åÍÆ©4¶ã¦œ&êwOrÐ(é-MýDÔ¡8F%S?Gð³žØË¾PæUj¼ÀyqD!›6û·3e㇅«[ oôúÂ>ë|Ù!æysâîºìM—øõ ¢8ò:éQÜïå‚EtžÁ*—¾íNÏ÷×í½îØÎ¨N»vy~¯ÃáûÞà-=ŠZ†<Ú}v‡§{÷ Wƒ*lÇû¯Z‚¸ûá»ãõ¥ìÜ›Ë÷E½nèñ(7´I²åˆ[ù GÀšeÜmò|jyꎅãtö4óv¿ðÃlgûþæñáÃþÃñöhw×QݵKS2îšÁyÞ»§vPìrÄl;€Ö«{Ð1.=ׄŸ:eúÏ3ëÒP—(¿eø²Ýln9â¿Ú!Ù¯^š³º¹èç/îA¢Wy%¾°¡ºø%aò›‹Ž^ØÇêž/ŸØŒß´¹öpçôŒäv/¤ºCRŠ×Ë^>?Aí—œœí¼œ Ïþ‹5l‘¯g e¬žG·Ù •›PÏ<¸´›ÛÓ‡>Û<ýo~Ê’côÿNègd¿ä„±2øQ|Õ~C•æ?Ù_Öéwn†çLþî‹s`ÝMí¢§aè6fˆ[Lqn`¿n/êEÔ‡ûk»P jâ œQ4;6×—ív‰ï–Ûêð­o7bÈ=RT)ËÅxH‚W#¶›p¯p4%ÌøÌ>8E U1™Ÿå…áúØëÛg»-߽軅ќ›ãÝêºL¹çìå”XãÞ}õ* ñ~÷–Ìî4µçêÍ¢g Ç‹™˜ßÎ’¯ÿê E˜uÈbWKZÝp»p¿`ðÌ ,8Õ,—íM‰;ûÜ/åpÂïpÁÑ‹›p6%Ëx)îbqzQÊûï`!ÏgGï6×Ï|ñ2ƒWox%.¹ÂÁyA~#5Û-G7¸§ãîx/ww³Zÿá;»’ØS‘[q÷¢×«èõEN$÷' èäò*ý;- ¾þz¹*æ×Krã2þ®A¯F÷z­ðu¿Úú;½¹_ Ö•·O¿ã4GÜÚËúüø°\`|ÝîfÅGɨðÒ¤è©úÎõóòÿéÝÿ‹²õ8endstream endobj 299 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3850 >> stream xœWwXT×ö½s ÒãAņ Q M,ØP‘^QAbAbb9–¢@DPQŠR¤ˆ]‚ÁhоÄSl‰yFÑ}y›¼ï ¾$¿ß|œ{î)묽×:û*¥£P(,ýcÓbRuQc½ô‰Ñr—£d§†IÃŒ ê{Ú{ö²’ÚŒ!fÆÄLyl¨U‘µ4Ø NXBê[ŒR¡põ[ã°hÁ’ÑNNcÞÓ¯ÎX«‹‹OÕN?ÁE™¡}óFë“¢‹KÖÚÓFZL¢~uRLrj.)r]Š68"9E+ïý·ç¿úÿ-Í0Ì”™É^ú÷V{¯Y›â—ê¿nVZDúœŒ¨ÀÌè˜Øyqñ t W%&Ÿ0q’Ëä)ZW7÷©#=F;qf˜Ì\æmf3’™Ï¼Ã,`‚™…Œ³ˆÍ,f™%ŒÂŒe–1ÞŒ3³œña|?fãÏÌb&1ÌdfÈ1VŒ5£b2"3ˆ±aŒ-3˜ÂØ1,£fL˜ŒcÎX2®4Œ’ñd²˜WŠwûÝFï•ý`eÜ¥4Uú(·)‹”Ÿ³óØØ£ì#Î[Çxc>’?Ä/D 5&ãL™¤›Tš\0n@õ€›¦£MËL˜yš]0»löÒ<Ëü……­E¹E›%k9Ãr•eŽe”[ôĨÀJšePH;`”xG±àÌá?z’XœÊaÞI,ŒåÎíÞV".àžB k!1HÎ`šl°n-„ÖFÕØ*U‹½Õôñ6¯ºÝvº¾ëjYÂl5> =ÿáÁ, ¯ek‚¢Ô*·òòÞ`óéϬ¬ï‚#ÃH´„‘6ªî»ƒàwŸ4œ®>]}ü ÒB¾Œ¹âvNPI_ž9^m¹¸öRdUxõÒO"à?9pD+\¹UúE ãô>tåÐJ ~œªû«šUscVyiУ¸S…߀UTRT9 5†&錈îö¨@ô}Ž L÷ß/˜íð=5»o_ðn¿ÄgÆô¥]/_^캥¡èSÁZÊŠÓàhÜó®”&~Ôº©6±.øë u¨ ¨"q ŽÂ,Ü *´§ €Y7LÛ§A{n‹óüÅÎtˆà÷&Á䛿À€ÎGL4h(¾0G`B‰ýœ"Ìê#–QfQûÇNÚSÉœ{NßIô X€Û­u·â.hTK/ÆùŸ °ó#Ë“usÕm ožõ{Ûa¹Ÿ÷ŠÎç¿Ÿí¼©éç\J+ÅmÊ÷Šüö ¨áÀ˜Ü(¹Ðr¥³üŽ›ølAWH‹ïQTR”ô½cïs‘N³ãmöÀÉèììÿE{ühÝ$ŠvM–„2;ä„è>½xzÕ2MÕÒ]é$JO´HcÀ«ÜzvÒ±˜‹Œøå¿£)`ŸåÏŸŸëºAwLólhúóÌFUýgŽÕòªywëêîØ¿s{¡FðìÚN>$³ÉˆD/A5þo!]N#è#Å9:a! ¶´[2w7© ß¡'6Åãr Ó4…é³/e´%¶•YyYd½> Vÿq~†zC–ÒÑÜ^4ý!ÜÈ7äJAmEmÅ‘ ä2¹ßè]„>m£ó¶|BŠ…² ÃùŽ)Ëv©-z Sa L¡)¾†&J½œ(Ë¥¡"6¢Lå¶EnY»nM\Xðš‹ÅäW4$n=…—NoH>¡)ÊÈÍÌ`8—”Á'èMGÅâÛ8×ã*•ÉòìzåÝfÍ!'ögΤ¾‚W÷ú“ºDô„wP‹ïø:wá÷ܔƈG‡÷|R¢~Æoܱugb³sÏiàl¿ ÐFa~l°î¤(ê膎àh£úIÚ ÷E¼Ï«$pìIB',Á:(AÇ?’è°ûýz2u2HÛûÓµÏÒ¥šAR5Ýú!¯jœá;7©¢] ÿBm¯fíþ |u¾ä‹ZµjélÞʉ¡ÇÇ h¥ì€®'Iì_œ.}™Èë*àÅ ’ªYtàPÑ«AI#·a~o5Ûbv‚Ar¶/çÂ0ª©è ˜røƒrL€Ë<ÍhF{´ŸˆVÙj°ãršê"BÓ±Œ¸Œì ²5é[ñÍ Þb«ÍX²8 Ží¿]m:zé…Hô{¶ä¿/ÀN•ž$N õ^‘|´¶¾Øðyžúܾêœw|2ø/¼GEð†"=8t®r ¼±ýñ( Ü#ðxˆrK6RªÈ;Åwòù3ßœ_ÚVø»Ìê_ô¼EÍY-;€²wšJÃXtæ ´·… ŽY’•½{o¦z_´=oçAREjsŽî?Up°øp;¬íQÙö3Ôçx'eÂCq غ|‹Ci:MqŽsÐ÷ñÛà6¯Á!\¦~u0¼#Z_]Úö`…¦ ¬¼ –\!ÇVx =_÷Gì:8Ò+€¢N”ÚE°émgiØ@”ÚÙÞö¾lIãq`ïm´•n³˜ú&¨Û©»@E#…ÉJvCvshÀY)X<ÆÃ!è`û2Ëd¬AOÆÅ`]ú?{Ù Zººó¸ø¦Ð£~ôâh| ]½ŠgV-Ѩv-®¾žpÝ®“œ9RÙ$¨q€dÞç…Õ‰~wéúMvµÌÍkñ,_+¤"Hwå‘ÒôÁ…M5qÏ\Zú||ÜTâ,œùd8Œóg¯Ë5¨æ2ã×.%QdÕÁõe› ÙqQØýXÜw¯²öi#5á9ÓªHš.Ÿv+~–5yjÒí2w<ïÓ’üü;>UwóI»“w¥ÁyeØxMÀtç[½þ •üïQEŽ£ŠÜJ©§^}‹jm¿Ltä‹0—ƒ!ž‚Ø»}‡c4øM³’¨¤cµüwÕñ3gÄÆO“Í“î¦ì=ìóç:J Û¨†J#)ón¼ê×ÖèðÒvËÉâ”ØèEÁzO2FÀ©?"áç•…-çÕ^|@èÊY!‰ÅuYjÉíŠ8\Ôß’y‹Þ>ãŸ|VºÚg<¥x'uïëç½F^áïÞñì÷†›­š?«@EÝ1¥¡ƒ¦8E, ×O·–ÎZW ÎÏØ³è¼×W*ŽŒs±å‰%+¬$¾$duô\ o\ª˜r²€rBåµ}’zfpíÇ×ÌÕ$ñ;ÓIÉ"¾{ÓÅ 0ù—šŸ}€TlƒUÛö;×Þ­¨k!?‘Ï×_ޝJ8ZH„^»~ú&*é²³ørp[á†Cö­%:Ÿ­Ïع1ý£p"ôù•7uIù(ÆÕw%ËWד¤¤ÙhE[ý'¾CÇÀf N¥ç"èÀª÷}½¦÷ùß| < Šy¡åpO”Þ¦·»LŠßüˆ˜Í‚‡!ðÌp'qÚdÿÞ²MôMà,þmþg%v4¨¡‹ÌèÿÙ¨*¯þ­"ëè¨:uõléêp5ööõ\¯ªýëY²æ»g_CÆwEJp„zÍÅE¥þ„Þ¢$j}h°ÐÑ™šI¹T¹²£e%=ñât°*|^äÂô Õ­ &\Tï×{Ü&­å§[j?3<$0˜À ÷Ô}Ñé[íF5Å*«Héúƒ±Ÿ&}ò.M¦mõÌJ~?")5ŠÄ}afÕÆ²¾&OÉýœïrK4”©¥yS@¶¼q¶´QìÝH] Ä™_çêŽTC2DÙK3€Sœ;•ínŸ\³6q…5ÅE/¿ËŸ«.“_6æGtÀQ“]ÐQ½ìóßVŸi»Vîí‘’ŒQ©F3÷ØÀÑVÒ¸¿Nn ¯@‹&2³]7Ä&²‡ÝzvSY$Y"Ì šWóÕ65åváˆGÁžêÄéן@}/®iÚ)êûöºãíC`À¤opØH•ï&ª7é¶¥’y´˜ãvÕì)Ì9”_^QXG„æ ݼ÷"ãÝ4›û† €/ú¼Dœ)ù£;­Î{}YÕ8†dÂ×<&€ b ÐÜ7šÁ0î¦ù(™Ës7ö„ˆ½–Üœ^ ÖÜÊŠÂ"ÜlX:Ù-|©w®üÊvÙÛvã[O\AMÁyù’šžý„ßÐfEüæÄHÍap`áÌN Œa$͈ PC" 6–öJâÖ3Ù‡3Jb/”½K&‘÷¢Ã½#|3=Š-L¯ZP7ëëèûtíá¿tÃ8êú-æGg††ivØ}}OÑþcƒ /,9OÉ‘ŒC+\(^¯ñ˜º0pvØ¥[·O7µi¨úuô…|´£ò©¶Q…½âÂC§ ¨\6r­s::ÉÅS>¤~EÕàaÂÔŸB f1¥–æô?é¯ÒXix$?7'w鱃 äŒÆNwÐm¦¢Òïxx›N­zá¾R·Øuyá £ÁáÅcr_wÙ½Q­ú‡À:ñZCÌÂEaÑAsÂkš›jZ5ª;ð¤ØÕ:Ó/l¥Ÿ_xã/ÎtRs¼œBÁØ‚…4cSújÀ]܃ŠGÓÀ‚<$]5õ_V·¿–+ò—ï—дò–Oí*žŽïÐìµ0 ¬«Nî/(ÖäïûdßáZ Æx„$«ß®þYš/vÖ/qõ _0;êÂÝ»§.Q;¦÷ØC:Ø+èL­³ìiµA?N¨ÿT¾iõëìXÞé¼¶ÆÒ§ÒG´b¶òü­s„&¿E<Š›gxúe€Æ]Þ`—( ŽÞŸX·ý†€6Ùñ*›×Y³ºzÓÕ…Ýüg×z¢¨©²¢Ü"`4·Ç7Ê_ÜZ±#H@{o1øÐÚcä4¹TRúY®Ð‰ßŠÍ™Çud9 Ñ'o¤a»s‰Þ!æ`ªÊ¥qbo:-‚Ò94W¾iуõ„µ`i a²5ò赜Ö7èLpÜ9 ôYø§…Èú¥Fö„ ofÒNµÀ"ðàu†p&0n9 Eú,Œâ^cä 4&è@p”Ùá.£Úb MôÃØÔX*ƒÓ"@šbý3¥­Ššöô™7%½rÞ&Snÿ€ßí§ž›%ó¯ Î^ÙFÔ“ø¿ ƒ„¿Bc‘zXªÞþy«pðÖИ›kfš<3s†ù/_¹Vendstream endobj 300 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3265 >> stream xœWiXWÖ®¶éª•²D»;`" *ÊYšMvEÈ&ˆcpܸ¨'.CH@\P\XaÅ€ ˆDDvd‹¨L4FçsÛ™ï6äK&çyúé¾·ºï9ïyÏyϹ-¢Ô&Q"‘HÝ52.52%&»jpJfýË7 'P©NõÕsÍKÖjBqJ«`Ü,zÖ+†Ã$†%0Ï ÏsrùA)§ýKO|{à/EÒæOûvfg 6êË#¥2ÀýŒŠÖÖZ½p¨we›6—&¤Î ¬p ÃUÉW+,ÝB/ß— Œ•Òˆ±l\ý³”sjGÕgª± ñ;Q¯¯_ˆaíX<¿ðCü Uàã´Š l ’…46RÚb¹`K–à¡,ŒûÌÚEp¼W,œ¯æ³öïE{›ðEîiÜeF\j0oçµ5"Jšœøeüþul}øAÙÙÄ>½²9@¶•ÉŽJßá’…Õ·§ïÝáµ%.¹°&MÞï›j oÕK¿ò?r }‹Ž(:ÌbCpáÑæ]I)1qa_"Ö=²¸övIÑðqÙб¼CEÇÙßAWÁIœà+l-쇵ÀObBƒ#>‚=q¾ä% : Ú8X2:.»Ž5ù‚gØÑôÂM"™ [„‰ñm®ÚërmB«.H‡I¡;€ÝÒwXæ¸>Ñ'Bg0ÄüÈ„V<ÿ¨aNè›IÁl’Mü±ÒÏL$æ4(”…±V™›Ò3£‘N&úÓôCìJ&/+oï týúÄ7§¿Ë=ñMdŽiÎþ­‹IùÅÂ~ﶪö8ë@jPß «µØËAft¶ÁÌ#²et没Nˆ5]ÓÓAûVÇ-•aGTP« Ù*¼UÑu€*7)5$+»VÜÁÀaªätü*Ôjaáà Ÿ¤£kW)ˆc=s,ÂÖXÑE ÿ¸æLc•ŒÛîü„ÁB(?L”ª%ã.à©ÿ-Ö¥ã\›Á²]$<êÚ}}{yL¿õÍùĦáB,ÆöØ~XŒ@£·èLŠsP”+Z‹BNn®ÜvîÏç²o²šùãõ÷ûû¬Þm¡l¼„bV·U4HÔs”DgÙC_úîÛòÃQöwÒGLÚ¡9D4vÁŸ­”™+\Z”A½BЀJ;8¡f¨&méÒ\j׿ô#báS†½\䦋9 ¬Žm, VU­••×$ÝB÷QUQe›È`yÄ:§ME »¤Ké¿·{ÚуS+.Wç6"˜Æsî ‡“=ùÁ{¬ƒ¹õö–KÚ€‡™5Oû ú¤ñª}ýN«©ÏŠ=ÆÄ½•² —æÞŒÅ«-ÓïûMà™/úž„ø‘*â{a#ÝÝ \*yKãÏḃ›DNã$œ$7¬RvsŸLÈe≥±'˜o‰ª—6wéÿG\Ã=|zûnó½K‘®RüAõ@µ½[á¦Ú s™þ7ç+BS}¥qu¡']Ë™)PЖÏ<Ø'ÍHxÞ!º: ¥Ãb(‹âÝwü¦ÀàU) žÃâ}]˜0î!d|ë‹ &馟³®ˆµU{yͯÇaÁ æ/ z `õї²ñ‘,‚cƒb8&ã•ÇÇ¢|™8,Þ¶륳«H;>@:Xƒø5 óßö ÿ²W!ÉéêH¡- xådúë†óeµ¯ëfÿtûÆ4„’ëBËCËÖ}ëŠ#W2“"w†ì'Sœ>XýÕÙc' +ÿ~¦±] ¾¶¾ŸxDÉLý±ÑÒ.»°¹Ž7Ñ9„Áv-A6ì<¬Í=‚-ÐÏ¥KéW7B,ÍÖ¬13ª~¿[Ff€ï‘ȼØRÅ£èQ2 _ ÂÜçÑ5KÏɸgMg.Ô´Îé+Ú°.6øÔ/Ü'¤s*:z"ÿJåÉÛˆí¸d»>=."C–üeì^¯lvœ0íAᤠyì8Žï:õ…w·)7H1p³“ÇI4$Áã QÃ@˜ˆkÂGâX¯œD¯UÎ’tÓWª/æÕ!öe½»þÇ>ž ì‚Ê»R èc¾G6l¹ìÿ8®‹€6xý ƒ|Ñ+¬¾#>LV¸>A4uÀ’ô—PFŒïÎó þi ¦-RD†º‡8¥Y ¬°fžÝÕUe>÷âÈ ÝÑ7ðè,~9Åš-k#e9àR÷Ót] ÿ›‚%=ÕšVë½ÀÌÛmÅrÏGχî ¨Ä>qEû‰„’§ #ÁRàhl‹w;c£µ8“}A—ö!X–ÃNÀ+Z¥ÃîÃMÞ´¹Qr;›Á?©*,AÍ,ЖdL̰°ÁçÂèÖ`)÷vEX¸õ<{Ô”@”ÿã9Ìî ¯_~EÊbòø¶ë!Ž.!ö+7Tµ´\¯j“qoñµÁße–>~fK¼ëûúëï M\y ˆðÓ.*†²WâZXÎçaõ§  P'j)«h¬ü!6ÍôöÐõžÅ¶¤êb9Ö^3Öœ¼]%ËÆ®« ‘'Úx9³……™ÂV¾çžó"soOË¥k^ýXßÔ£rWÛ l=ÌéùÓÁû3xæÎ „iäq2ðï1gÒŠv>ÞÊâSLÈW‘ù)ÅÛ ÷æíndmè?cÙS+ø(‹Wÿ–¹u¨ôè…üïK.6ˆ?$Öø^Ø’»ã/¦E,`î»¶>Çí¤ÐOðÔ¯Ù[ŒRÄÛl*GwQSÅÕ'GØz<Äÿ>¹¡ˆíщ[’S’²6î!¹èÎÊUA /dâpI'£”‚• …%ª¥ê ùˆ[~n ÅðžW¦)„4úcµ‰Ï‰ÃB äóÊL—Ø0‚[)¥x‰j©zB®‚ª.ÐÚ-†¤ |‚µ=°;‹6¿Ý_cmö6m`ƒÀE5Ø‚¾ —WT–sBý«!pìàhþ5hßw‹˜{€û' Í®¡±A5¶AØa‹@lk‰!(ÆÑÇÊ‹ôªèç±×¿íÁëñ¼±²·´jHý"ø…7hHgóŽmAûÙH¦iùuôŒ æ÷Ó Õ+.$~Áë_öØËñ퇲y¿ÃjbÁàZ3¥P(È¿c±£»ÕG¦tÔÐè=¢1•¢þŽÕ2‚endstream endobj 301 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1447 >> stream xœeRklSe>g§k϶n0ôà¸Ø„°-˜qQƒÃ  Nça›0X7»­²ŽŽSÛ³•Álw©[Ç;*î~)ié\7F‡0P¹‰#APŒB$ŠN¼E$м§|ÃxúÏh¾äË÷~Oò¼Ïó¾M)¢(š¦£3s6<y,”æÐÒÜ(éQˆ;üE¸!Ô ¨£s£¿M‰hœ†Ó)MW¾^÷f¦`®±·–‹|Ji*¿4=}ùãü²%KÒùÕ•‹±T¿ÏÑ‹å†J½(&>W(5Ä>%£\Í+/¶ÙliúJkš`Ùº2õqÞfËù «ÁRm(ã× ÛE~¾ÒÀGÄ¥E®L¡Ò\%,|ŽPf°lÞ`õE%[MËV,,zÖž’ºEGSÔz*‹Ê¡¢æP*ÊNi(CÅRÔJz75M6L)(#½œé[QÚ¨?™™Ì&ÆÃÜQd+ŒŠfÅEÉ• ÕHó†è“xb’‘\hä0qR$‰$- I$‰÷Rñaäþú 5ÄAò¸|ÐV²u‚Óp>96xhÜû>œ…cy@ßš¥ kÉôæÒ¢šb`å&D?ŒY¯ cÝ0}`¯N0¸ú2gr[ð. ¼ÝÑÖ1nkööÕË׎ìðÂ9sVϪ²pB+nàïw ÒÜEñá«\ßx°¿÷ã Â-ã’¿’Ç®ÎX²ló˜³×7Òwäl84ÃW/½sJVy2cùü5«H,‰×’d¦£ZÀ2KÒ*‡ñ…h“Òek,pìx³qì–¬UFä"ƒdè‘a°XŠãFÍûc•Y0ª†F÷†4äªâ áKÕAif;†èã“cWpÞ~dÂVŒçZV½XQÅ  ä_8ÿÉðøŒ  Œ×ÊU&W1˜¡Þ€unÙx…ê”§ºÚQ[U¿S[ò²þÅWrk=$ ¹BTâ#8 B0Àž¬þfõ øõ½kYšù ^Û*˜!oÖÒïsîÞøtìиƿãJÞÏð|öÁžIvªÇ9ñç¼ÇÞ:ãœízNØh(Y³BSø$J;žýCÚ†Wój €M&/œìvy´m­­ÎG’(}ã¥qfp_d{‘Ù^+&ÜÆ„¯?Z¶ñ!\¢'™°€7¹>/øýV¨Õ>ˆQÖZA½Ð§ Ç“r®o@Fl$QYk“‘‰4¹|›žÄ»Œ”~‚+)2AˆPÝií1÷ÔtˆP¶êüõÞIGOŒ@øÁW?`Ø÷5øa ¼¾s²Ð¥Äí»Ÿë¥ÿ¸ÈàMâæÚ»¡û­Ý­ö-y9#®\ xãpΙPoOk+ìe÷6·Õï*ØÔШ!³ /, j âÏ$ ç.ú'ºdÒÑÍÁ/»P™ƒ±›\òµøz—³©ZºZäɬƒ$H÷H™»Ig·ïÞ Ml“ÛÙÙúLG»g#?„Y€jVq‡îó!§‡õ†Þçï„Hòßµªÿ +à IÖÝù›_¨ÃdeÂý¸./-™ämÔyà”êläÞƒ¥IÎH¾[Øúvèׄ-JOtî=Î.íÔSÒ÷™žº¤L¨öI™}(t¶û”Dߥ Æ~§‰U,÷ªc†öªÕ_ö«ã)ê×ÊÛ¥endstream endobj 302 0 obj << /Filter /FlateDecode /Length 5831 >> stream xœÝ\K“$·q–tëä°Oâ¡ÃÖH;å ƒŽ -{¥ Ì ‡í%QÛS3Sd?†ýàryÐowf¨ÐÕ=ÝËvìa{ªT"‘¯/3ÑßΚšÍüþŸ/¯šÙÃÕ·WŒžÎÂóåìo¯þþß¹š¹Úi®g·÷W~›1!j£íL+Ss¡f·Ë«WU¿º¾œ×MêÝcwýÕí¿Â|Ë“ùÜÖJÁ“fv{‡3®ošZ:ç˜ñƒof²v– -j)x#f¢ÖL7çÀÂ×·_{‘ÌÎn’‘¯ª»~Ù­¶ýzU_ßHÙÔΉêÓknàƒ±Õ|¾ÞÜõ«‡ÅÛkËk„W/¦Hf©­‘ä¿F’…sR ?Øñ™®ËZíÔì†Á¶$“~Ã9ªi4³~NF¼©µeð$™Rµ«;¿ÍœWseì!…_JÊ«jÓ=mºm·òœS¢Úá1 8f^-ûU¿¼†Sm£«ý2|Ãið™áŒjÙ~¯m”pŒë gàRÄHÆ sˆp@,ÌPŠù7?mÖ¯Û×ý¢ßõÝ–S Þ#«õ=~–´ô×ûåbx`yµ[ãgA_¢úYŒW/_þþE\ÃUoûŤ„2ˆÇ_nrÓ4  ƒ‘ºqqôÃxQ}GÛÓÊUÝfµ¤älÚÝð—¬ÚÝøH›{–*V=NÒÈTÍŒŒo}BY×~0|5ÆE™TîË G»†Y6±²¨­QqèkZ×éFê _:“/nJéêË%º–’;“K×'8Å6ÂX27B(˜ 2I¨¯ F'«Ñq7ƒ^~í×½ò)»ÖJ‡zWšlcÀ[«˜žÞšSÒLlMÔ‚æò­}yM4ÙÑ“ºæ¤µý›5‰mtõ„F6ޤäyb?’L^b ŒY°ÓåYUívÊ&q<‡÷ËÚ‚O`5À¤çSVóM×n»-˜vm@R¬­~Û?ì7r΢Á ÊÆÐWO‹õn;­I²fÚšÔH#Žhgì]5‰ƒÝ‘S\9¡IGÄ x"xò îW¢.¾„I©Â0]T¨Ta pÇê¿ÂÀúú’0ô@_v¬º_o‚MHW»èœ}‡B3¯€?æÕÇ×7Lë$ˆÔJÂ|''Ô DÇìšyN9•«m-5¾5›Bï3pϽÐhªÆNéqúÆŒ#øFCM¢ªq`ÑóhYxbÏJ2ek&5 ø)Ì ]—æ¸¤ŠƒI gÙL˜ ùp>\…Õ€±òËñ#Ë ?Ÿ:xù3Ô%Ë]@ݫʩ(ç²jBÐAOI¹Ãøí¬ x|(ú%þéÍÚzÛfr…_êj½ŠŸYÕúàª9<§h‚›42Yõ!¢³ "“ée²]b­;_õ$çX½—ã—Z—8ã´uÁØÄðáÆ ¸öˆÌDo,ª~xŒ§ý†¨ šëÞcê™ÏÐðÃ޳êâSO/û,4Þ¡#=ä`^¤±…Rè+8Z¹ê³v¹lñO äh@;Ûݦ½ßàÙN"0pÒ*>»Á°ÐÒ»kÑ«#šƒc-VöN£O‡`ÄæŸøÆÊêÕI'xÈ#㟑—uÖM»L Œ;_>OnD—qò|·ŠqbüW8X;+ÙóÁÞ‚kÿÙÂ&õU‘61qäUÀLü’ÞÒ4ÂM¼ì67ñÞС ÇCùÍÉ} ]+îÄÙ'öõ¼ô1JÔ1åw>ˆI_ÈT]÷þŽ‚5‰õª¾:½3S³Á"‡QR†œ.p—1F(L'`%e Ž“q Ö„PB#^ÏíÍa6à»Ø M£t !ŸàçwÕúi¿hѰ…Ì'¤uø}õÙçqW=µ›ë½XëvÙ×Ûvà< U¶aª5GÒÑU¾’Cíuô¸ß¥æùm N2pËpª5ÙÍjsͪûvÞù'NËjx†l—íb1>‚iyuûë ñÎØ\Øð¢ˆlÁ?˜CŠFÓómÜðy)Žð4®CÞ%ŒÜ=Bt1.å"xeÐ]tˆÃ«¯qËœÛj3¼ÆVߦLÛ÷ hZ®C8#†]\ŠWx¢QØ´OOÃ+DU$`C‹·É#r—c”€<•Æ3iѯºvS˜ðv:-©@)Ũy$Ö”`çÀi€mS6gÙX¢•Õ$Ž_PÜ¡ã ÑÅÜÇ|¯ÇóìâWa 0ß!“8òÐT‹nÆå±–¾¯:?5`»iiZVëÝ8c·‰ež/öw!hÑt£ŒYP ­Oz¡¢ ‹e’K8’(|cH> éò]·ØúÉ ”é:ÝÓz=ï*8mÜ4HôÊ @œh@k7^QãÛö[Ÿ= #cüûªýj¾^.a‰aEW-Ú̓ß*íP‹¨º›võÐÅÐ o‡f­öCÁšJa Ѽ¥d tŒÔ/zo«Àªc0Gßw{R‹ñùPož¸B‹D‹bC™ ©Æ°úýþˆù1à*T°(ÕÒû,öµ@œÿé]‘àl*%jjEÁS6åfÈÅ·‹@ؘ—/I¦Ðz‚ƈñ€ÙÜ”•Qu.OÔËÃÁÞ 1Ä<ÅbŽòx=õ:&ArÊæ®:c/CþÃv¯ȯŸ¾ g¦8D,8ÖD@3`(Ÿ‘«a`†Æ#±NÃ;ã¤44ºÑ5#xÃk‚Hô_'©C k-Ç÷¢çÌÚ#Ø+3¼¶,‰¬>9(~”éá è†sþ+ &ÄJs˜ÐŽaÛtÃt#ÎS/Jù2ÍûŽyë Øüÿ“_̘•ßœ4`6ã ä@Ößœ³†ÌúçÛ«?‚ðo®šÙgWB‚r3@m¶³%ð¢n W_­ç.ÔÇa=š®¼4”ÇFMŒB™ßx\m âêÆÍø@ׂ3ÆÛ@匠bÊD„1ôýiþŒÑŒó ¦YØWs™}=•*y' •£z%€Ò\VҮçè/È.Y®H¨ƒDbF¯­­Â$½ùƒyn2tH'px© 6ãoO FüLÎ)±TçYd°xMÊE Ê`LÃÐZXïz ‹%ÕÒ4B„þ…¸Ø“þ³˜·Ý/fÇÁ!V»‰ý9A0³§ÜƒÑ]a¨ÿÆã|c0YøÏý¢ˆûûøÙ`TK£oÂÚú @HäÄ'I׈5«õ¢kW“¦`¶fìò¢÷`ZŠÞE!ÕgP“)U X™ÎB`µG”9ÞU‡UM¥ ÎN€AÔùx`ÙnÞúê Bc€(OûÁx ¬eà ¶wß]cÓ7,eÞ®}‹ab¢Ýn{FÍ{ÀÕwáUðÞ7=bó8v÷8L4>l§WÁ7tÄH õ¦»)ùzýÄÖ®&«/ l|”ÿûTjÛÔŠ mŽÆN1ERü¾t·“ÚÚ{K¡Á¯ŠCèb›W˜ucÚߪË@àœö²”#80X4¨DÎ÷eý)äŒÒe0lu¥cÃþRŒ÷ÜA¯ÖZ\x Q§k ¾Œ Bj”žHIjß_õÔwsP<²€ôÈVÛ'Ð=ÿ€´©û>1Z;ŸÆÂ/-© ¥Ýð3èIç€f’FïòJø7ؤ!¯dѰQÒ‘Yõ‰Á0êƒÍvÿâ˜0Þù—¡„škÁDÙì|ÁNzï0G!ÙcÎå’ý~N>ÃUŒi…«­˜ª•KãóÚ!>ÔdæG³±eŒW-$ýðy<1?ü²ÿŽ r2qu]}“ú¢ÕzhÞ|³)¸ß¯æ¡‚…O,è£.?OŸÏÏS¾vøkÛí Vf{š‡fS ô$ˆm»Á@!ƸÙi ×ø¾H‚‰ƒÑ¤æ“ƒ†–,åÇÉ@h¦ñUÒ›ùý3¨P²{®ÁC‘YÞà¡Vòù:&/,þŸŸòÔæ§æå‰¦aŽ6Úcx>Ë$Áè©òÈ53bH”€#MycCÊTòPeyéaü¸ŸþŸ—è>[¡ÏSo“6†½"uÊxlà;¤1Ž¿£fêÕݛϕ/]M R¿Œƒuõš[&(Ìiã*B>*ªÒ®lÃöÏAíÚ9E·Ê7\ù¹H¹g`·nèc)Ñíþ5i1·¾ÿµ˜[v¾_2¨4ö@cû¸J3cc¿R;0@ø£°¡…Åæ¦ìvDOMì5Ì‚’S˜¦Íæ`%•;:Ž/öó!<Æí”nm÷ þfÖWÖžTŠtL.ÚW? ãŠFD²ë1rÝŽ,„nèað;/Œ¿¿”À`6€Ž€e$#,ƒ•?É«Wî+„Ù]«Ûk‹a¶EQºó0dC@F„î…ä †Kwþ  z]p:hd~¤ áwX7^‚‡ºK ¤„S¬¡òêYÕ¼‹Bä×fLéÛ°…öCß1MÈ _oúë)ŒÁõØçI,ôz¸X¯f¾õàõ"v³QK©Šh‚Ëb¢†+ŸªÁË#¡ $Ô@95`*‹‘šrºpaèˆmIOi˜¯ë⠣ݵO»>tB²ÊWŒñ+ÃàΦþñM‚Cƒ=á>ó¡¦_<æ)¢ÊxQÖÍ‘ÑàWŽë­Œù©)“·äµn²9Ïús=ôýtþ<9ŠÆqÊGÏÔQô»TöΧGåÔ`]ÏYq¬ýNç бéëà–[^2hè&]ócßòQh[oÂÇä©ÿøñ8`y=Á%éhm >û3Ñ¡b£¦±°‰´y‰¬˜dä«‚.B@Gm.ô<´{HFéªh$'?vºb$}Z²_mw]{7Ž )“fð®˜)¸1)Æ]ì»qNPðö€r >¸ØNoÔÞÖÅ}¼Žy˜Ø‚ã¶Çüvq)Ôa»kjëœ&­_­7K ,ýØ2Ú«S¤ ¾öÿZúVé˜#`þ”$`0±_·úŸ N‰ áÄq¶”M6¦ùiòµÂcA°[M²-âU[9V¼KÍÌ#'Y+‹ BŒ‚…‡f&¯éèÚð7 3žßwƒ/Ýw–\µÂ5>‡Yn5Kîá QöTC'²|åíx;掽"ÙR©f]ÝÌ}»š{¿&wÈýçÛÁØ)ÊøQÒèøÿŠ¢ än[Éu¾´½§Ìb–‘‰§™ ÀéËu¶æ{r¡)nÔ•|™ºà¸s´§¹ƒ×}i;Úÿ/þå´½:&†¥±†âƒ\õ,vyÙ?¯ê¡™R¾4éöœLç6'¥àÔ²‰Nÿ‡Z°ÔvâX\m°}T<¼ m*%Ï‚Z9‚õ¬¶tÍ/Q`€1óž%µ¢ÉŽAqôþ~ ã}ôNÊA.côˆ/ãØÐÞmº©8 ›‚]~ Gµã½ƒevJ¥,þÈ Ž!iõ<Ý%ÅdŠxèi¥›Dýª–ع—éÂÏJý)ÌOä´aäR(ÚAXš„ƒHÀŽÄÿ¶(~æ´L€;ûŒò»ç•¿|MQMæY œGÛøÛ4_>S…x\éóÑ6kØTòúÐŽ”œ0Ò‚O»ð“kf§5&^%ÏÙ´èÚoé2 &W±©døLw6î»Í†î[/f=´n¤?^rwT „Ï¢ Á(K!딃zyg*†L;Z„*òßurÙÍÑŽñØd—Ù±Ó÷–N¿ô#ÁYQëÈî+¦PjÞî·þ:I5ü–†Æðxuã H—Øõ_œÜœÃ±ÃúåÔ/,qAF“ô(¥³¥T—¿|·n†­üeB(.pÜ·[º÷$( "•$ŸGöŒ w1úüU™ò+Ú0Ù8ô'#²lóë–?øãëÏÔªGhÝFeŸOŸžb›¥"|Ú†Kʶx¼Ë}êüÓ—ÿ¾q 0îÃzêD?¦¤(Ùs<\Œ sý•&‰†æ˜‹=}´,¶&PkذJÑ,èÕ¶~Ž)»ìë+$+Ôö²¥ŸÕò}M_ìÚÍ.dÑÿKâ1rÃnûs7â LCyRÂP[ªç•íÝÚ¾Eî gÈ}ï„ÿ2˜nœ7P/üœ±Û*µtÄTP 4Ïñ@6º÷Y2d¦–úAL]$P¤ôqjˆç%xòjỾü'ÿ…W ªÚ÷÷gÞ¸Ÿ·‚S©ý×·‚D!ÿE¦Nñ“Ñ,äÕiœòžáÚÏ9µB¾µäÌqºAà Z'3cBªÚÌ–W€ʩáÁÅ÷f`A8 ¼QJ)'/ΜnvdɯK ÒL þqÌ6=‡~\Z¯=S 9œ’·ÔÎJ;f3~ª´ã_D UíxÅì -Ô¶èÇ:_ 1möçPÂwmÛ=ÑÔŠ9|Ú©Æ3»dhrdÊÕà¡gðRù‹Ð£_ï ]üãÕÿ˜#endstream endobj 303 0 obj << /Filter /FlateDecode /Length 5526 >> stream xœÕ\K“#Çq¾Ï_V½hw½«Hé ‘’‚6mËÔDˆ¡ÙuD/¦g¦I 00\®þïþ2«ªÑ4æ±»<8ö0ýȪÊÊç—YýaÖÔbÖпôwqwö/ßÝÌn¶g?œ +uíÌÌ(ê`fBWË0J‰Ú…Ù¦›ýu¶:Óµ ^¿;kf:“ƨZÛ™5 V³»3é­«˜ÙÆëÙòì/gR*_{73AšZ ˆ€…¼œmšÚ‡Tyæ‚êhµ4lXí¿h#ì<­E×Öºoµ¾¸fšåÙíí R ±,ŸYú³¸›ýþ‚e$f¦6jg×gQzb&¬¨‰X_ËÆÌ.îΪoÏ/¾ãj¦k«^c„©mVÌd­´¿WgÕ¯ˆ²©ã”nðhÁÃÌx!Y‡Wóñ°ËÏhA©<ÊGi0¥ÀNÃô¯xLÆlA¿Vcɹ¨…pÆó™wP°¢ÀŠ5v6¦|9 úœüf{šÑÔ¦1§8)&ÃB‚ôb6Wªö–„Ú/3m(ån¼ƒñÓŠÉ fÒ1åo¥)ÔŸ¥wõ?y6q$.áÍ·'˜s's‡Sç Æ^XTéTZôo“‹â2h¡§6“{Sþï$‹fÜ‘~*¦mí%ª£Œ*¢>ÃüTm˜;¥©éÑSêPÊN/<¡ŽœVÇ\ˆZ… 'aªN¾T+êShEéŸG+ê¤V¼|ž“@+|Z+ÎL/ü­”s‹p¨H窩‘&U¹óä œþ‘/‚Ç›,Auzù_Mª· ¹ÛI¥eÅN3w ŠZYvV‰Ùkâqùfµ4…d…òã%«ØŒž‘¨¦òÁ´dU@"Ÿ¬ùá $;3ÈȃvF˜QSF€É¼W~8áˆB™CX ¢Ø¥†Ü'Å>e{¯¶6Çîþœ87`oæâ2õøÎ÷2?½sí2@noÍOîꜬ>(êhýܨ#N¡Ðçá‰ÕdÞisDRêyøßR¨:æä(ꨬƒ\5§(ëøUྫྷ]3M.ë.g¨€íì Ø¸:óµòx«WèRÖ­ò XÅÄù‰QÞRJ5¥2xFæì4ª5¦JOˆê2-°¯‡qi®@ƒü,(Ó¦ûùêUS 7Õ«Z ·`ÚsR¹:|²Þ  Å‘¿ ©tðuL:÷Ø+åºÇ°¦`<gÕ¢ ³eôƒX­Ÿ¡¸MðOÍSÓžS59§-åü¹Aáe}$øæÄYÌ:Íéµ å`fʉ—òzRª0I@E×Ô>'“SÉYÈ žË*våfšú9þ¹s&EÉÉX/áþ¾ˆPíœ/õrˆô)–7j2–ßÇ< «Û|±Ï <òõˆÜUËôÒŒ®Þs:HÜ –Þlu ´ƒƒ7¢h÷ ’8X¥”áÉ}.«?ö7›î|Ž$Zø*õÙù܈¸›ß­è¹åçÝOíÝý2zQí6]Çl?r¼Z‘Â:“t.Îç ²(лŽÔk¡vûbæ²z×ïnyÍjw.Cõ։¯ªíý²ßm_á`MW›nû°Üõ«›ÄœóUŸ8ošPín‰SÜ’|A|Ó¯WÃpªíí:.£Tõn• U1G»_þªoo6mLШSEí)ÿ„ÝÇTüºŠ–¦Íh£x!'Íew½KD…¢JT…ñúü|®¡ ²€vu•n‚­îûÅn½éÛåò==„5žVMò/k]LKqÙMs;¹.åQ·_·>ÒlŽ·]ZCèjµÞµ;ˆoл/…-Š ò,ß’Þ¯DãµjFÔXÑdÒK&m@i«Ïö×q{^¥k×h;`¬ÏÏç‚´?<¾œ¯‘‡Ä0ðÍ£«¨‰ø7lZK ƒ]&l™¼F ÚÛt÷0ÌnEv¼Û²òÈŒ¢ºLµ}x»ívÑj£^Uµ¾Þ¿ß rÇÍU·ío¢Ôú,õF’É51 ܵ»MÿS p…V(ST?¥•o Þ‰ø-xcñgN=tòŠm·ìÉÙà5˜Õü~“œ aîÝ6Ó˜êÝm¿ Ùµ|u›ÉCuÛ¾÷c|¯B•ãJ¡H¤Ê¼ë[6ȈL*J`ŒŒšFHXH-Ǧìn9 ”—Õb½|¸[e6-üu»o¸]M±—ÑZFö¸µPжûÈGIÿ¡êë¨m¼‹¬l'C-J6Ey.Íq}j|GrA–ˆ{"¶Ák!¦Æ€Úˆ!г[É #>Ã/:¢ÖÎ(4»ð{#ò³¤NÛ˜£Fkµ«0\™‰Õ`”°jVŒ†—Ê`ÇBüX JFH’˜½y4A‘ÔTÈE>wäæÀ5µ<ɇõ·”¢¥ K²›Œ‘ÒÃBüéIÉy‡Hª'kÐKà¢A°r‚YBéäŘÛv›9|•êRqà«SjõpŠÁ¾¢ÅñF;=Å®B1*¼ÿhŽ) N2;÷¼8†b¬‘9×¾»ípxÆbsRÃyõ‰wWz‘­MC™¤ô[¤D›)ëG¹å^àÓÊ~7NkÇng}ôºV¯k°ht;ÔhÂä˜ÐøQP¥LK~G20¨/F2@$C$™Š‰¨Ô¨éŽHemD÷Ǿ:’¥Ø³¯²ØI^.öaÐ?ˆ½`ó@êÏä¿>$å“’ È÷#I$)%YX£MìÕî=1G6ɉ-pµÓíœØ,÷½.b("¡XÂð÷çó Ð;Z†z»éö1Ô1ò*›Ä– T„Œú‘Ô¶¿ë—í†ð1?r.Æç ÏT»(9$å¿ÑFMpJš)‘â*ù“h\£žð\-=EbÌb½bðÓ¿¶_ÑÞƒ`ÁP=ĨC»ÀAZ7û¾ã3âÊØOÀ4€àÝÞ’˜ ª"xO VëÚ»=ø8l±ÉuÖa3ƶ™¿žÓªËªËÊv„!‘W ÉC’ 5¸½/´=6nÛ’»<† ¶Ð¶Õ¶9-ß  eB5*¡ÐbÄ—QAÚ(?µ ªLm½?‰¦ã]¾}¹§@)ÜÔæáBÆ4þdž9Ðߥô+L-'¶=®í>Ÿ€‚º‘cOÇÐ0 xÉãö ùñ@ÄqG»¨q%} „‰0á—‡ Õ“:šŠÿÓ¼C}BÏŠ1¯_?šß]m¤ æ£ØúÛ‘lŘd;Áé“…RÑXÇHvÖªÉàÑ—qVu½ÞL‰žª÷öÇ1¬”ä¨6©lB‹Å®š<Õ!Ø:Êú£}|w¸ìAÁæý¾¨ãªÒÌÛ¬Œg‡Áւ޼”¬©M[Z\ùRÊ–+_Åý³~¯©w3NWôȺê~Ó]w› '5z„"t}.©‡<€R|YƒŒ°É³¨êuå©e”ɹ—÷ôˆKáEíô°éKòÙ]AÌ´¡¦C.϶TÎŒ˜~P.DÏ3}£V\ùuÅy|ÊF’û²²úçÃéb˜C¢:Wãh &2µ’Ø"¥…"q¡B(Ù)¯ÆJ/ªÖ’޶uÊEêk|‘H¾¡— ´$<Ò÷9]j§ª]Ï,Àj»ÑÞyAlª.–ËF U@A¤[BK †4ÒPFsUwz Ɉ±pæ.!ÀC\‚f}]ýá«ÏÛ·¸äNóúa7<åjÕ]¿êïÎ#ÍÃIiXy›x5!«m{—€™ŠÓÊ%édú«+²Oú “:i,¯ðõ×ÿNלÌ+*Pù9^¼®DwŒ¢¤xͧùÓŸÏ=Yº„2É^ï)ë‡Í¶{EU\ðö»=ám·¼OëROu·Î¯°ým—¡\sÙ¯º63 /½ê»þGvMä±ÑKùúì⟕~iø[¨ìý„O*À½]×^E,L ‡Ú€ñÏõzôèïã,€†ÒR/7uá$Kw½ŠYs, ±M¹³ãÝ&óþïà —b\æa¿Ù_þþ¸›TÉ»ñD€ ï2E5¢,¦¢ÑÆ=Ïg]-‚QùxyÈïåÆqÙd´srãq†î/RÔ9ÙÒç6È(m"ƒf0½Ï™\JX…ð“áa”>[,Æ|JqQæÿÐ  T6ÚxÒ&Ø¥¥¶¨CÚ3©ÚDq„H'$Š·ó@i ñgÓqŽrˆN |5s‚´eÛ®çÓ‚ý£~|ss>Áœ óm²çü<%ž9´›÷” ¹Qu·ÂäU·Ü¦ˆ²T*ÒMµ~K…P~%©›Mí¸'ÚEö¥Ô|”tŸyf×b"ø¾d’~Ey9½×Ünó%ªÌS´»É(00!àšN ,»î;NÂR0ØÝò¹¿ÑU×.blG#ìàc€Š‡Xt#Fš,F ~áöû¡į ™šÎjó14—ûæeš! fi‹õÝ}Ìe¡sÙoo1z¿ÅA]…ŒáÀquצ¸;:V£6_ƒ‚t?Êg|ìeéToû¨wžÊ泿ü¾"dÒx`Â7éÑPFB>n—£ç|ÂbâAk7rœ¾ÁݲË4’æ¡’{n7}ûvüŠú q£ ó@マœbº·Ñjæ5’#æä˜ítŒˆt1¥À]cØ$¿âa Cpßæ;?1 ,HëØGK¡cªèjÞ=1‚£_¸7|ФU[ûnŸFºÎ¡"ûÚr½^ á¥OÍÉ)¨‚K%˃lhÂÄ Z©~½‡jì¥&ë)¤³›õ¶›kŠz&è|ˆûðÝ„ L>—ä ‰ñ­ÈÀQÛ´1sQÆo<·ûëe—2 Uü<šÂèܸØhP «á$j{Td·£kË_~¿x;,÷?)‘œ£œ'X3Ô:R%é#\ü4k/uÄNÚ XeQsú˜¨õLjZ>ê=熤6‚ÒðS­Ñ×ý÷m 63©D«BÙ™ôHS ³»û—™úï&\Žìd¨žÃÇvžg†@mš1ttÍœ”m&WÛ}™vXŽ4—jæŠËL·ñ`|Òä&Ôh<þlãi‡ _w½Dr¸Œ"1~]TªBN™¼¡ßR‰Ÿ/¸LP<õ#ð0ù–N*ÕGWý/ºMÚ ×›õÝÓÎÕ’Ž_žä ¦Oº)K9”VÂ+&"Sk!ü”!þ\qRm™ ®XùùB%HkŸ*#Ÿ í2ç0ÇH—6on¸“ܸ„íìäÍ®óPt²–ybCèl*ÞÂ_Âþ”éƒãíãÖòÕÊ0äú#$BßI"'¼šbPS«¾QÏ64gíê C3ü ª¥ )–/Êß#£#%în:Ö¡°Œ0¹PàCÅÈ‹IŸ¢9wdž`ýdŒäEôÖXVÐÇBD%–…ïR åÏù‹ÙÉ” >ù.ðê#naùhr4dß,9 µâCt9yÊA8¹,Œåu"ŠÅ?q~A âEŸù”‡ÿDþ›Ëàù”¥4M¶AÝp¸È%â Ò„àÔaMðˆî=!5è‹;êÜl:ðµÉKË©è5îÖ|ö"áZ‰„RÌDÈÒ©JŸY¨†å‡AÄçlþ©U1dø0Æçcâ1Îb½‰ßưr }s•úþQ<émªàéË™¼õ¢ã±|è™ÊýÇâåÎ-%žzÜù/¶Qtþ©å“g¨ý¾ÚNŸÓÆb»Š¨!—êNð.ÁO‡2OsñÁxOº+Ü…ðGmU¥R½[sTØ\ÿøEá:þty»ÞpGEÇÈÂòaÒQ{š_x]µ{3aØ®[¥Yz<œúò¼ñ`*_·y½ÆV_,Ûí¶ÿå¢M-³ÄWuù曪ÔHˆÇtúÚpS‹SßÄÄ^úëê‹ß}sîùw°J>[¦¶*¬òR¾¡¦b"+D&yç™Æ¥ïNâz¬ˆ‚knñ*.xrOôþaI§k4ÃVÉ‘“ …x‰}-›ü]›ÈúÝŸRï‹´¿XÒ^îiõÉ*é[«ns¿éâqµbÁ=«ÕÐ(wUû¶ç¦œ_!½OÍr­¢žr;Oj«²Qy•úò|L‘hÛoÆ79²4ÕUêèƒâ—»QK~µ_å.9c¼Os[U-Úm®¨£Íÿh>û£Pý¾Nßï›ïÛ>$šöI®BìÁU4„ØÆÕ>ž5nw›¶¿¹%¨¹»^oÞ ó¶›«<"ʇG Ncbþé Ý[¼âŸ wŽ¥)šœñUf+5击õЧ5<íb´É!zºEÍ?©t\®!bW¸k©]~ý°¤g1±Üoz‚Æùö:ÞDúôóØ-Üöç»øICü•GSÅ­ÓÇ~:(ÉŠsŽÃõE&ãÖFôRžrí©qÈßp s²xN“!Ù蘆×ü5NW„~^6óÝÍýÄç-@-~8޼oÓW-Ðú÷ñ´Yæ¦ËPÑCËåz°…w²êê‹ÛþþŽÓ¶ˆA¯ÛE”Û.ërl/õ›ý ŠõŒJ}5ÎwIc<“ÍMéD—ôW¡D³Y?ÜÜî±lW%yΣ”èרÉ%ŒN¿àU£Ÿðþ_[§åendstream endobj 304 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 511 >> stream xœcd`ab`dddsöuŠ0±T~H3þaú!ËÜÝý+þ§k7s7˦éBßc¿Gð``fdÌ+nrÎ/¨,ÊLÏ(QÐHÖT0´´4×Q020°TpÌM-ÊLNÌSðM,ÉHÍM,rr‚ó“3SK*4l2JJ ¬ôõËËËõs‹õò‹Òí4uÊ3K2‚R‹S‹ÊRSÜòóJüsSÀNÓ“Îù¹¥%©E ¾ù)©Ey LQ – Ö Ì@0°0¬adøÑÁ÷kF÷ñ§Ž3þ¸öCDô{â÷Ê)S{»—ôJÎè™ß=£›cÏq¶Š.·Žàî°nþҞ½<Êþì;ºtLéúmøÛIâ·ñw7Ö³ÇÙÂÛ­ºC»Ã»Íû²Áj¾°ïû½îwûïE]]Å’u]åÝuÝ‘þlóz®öíï>Òý¨cAPéqö¸î²¾¦žïaßs%¾Gþ.dõôg;Ô½ûp÷~ š`5Jì|?ïwŸùqô8ãÏúŸ,¢Óft÷wÏàX]Ó]&÷ç#[íïrÖKlÓ¿[·ïÞÙÍñݘíOÆŸcõÝÝÕ’ÙÓ»Ëýda[ø}.« [õo{µ¼ßüÝ¿Øøjgþ˜ö=~æÌ™l¿ã&³çú.Æ-ÇÅb>Ÿ‡sßžïb‹xx{xø¥ñÎ'endstream endobj 305 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O»ƒ0 Üóþƒð˜ ]Z¡¶?eÀ‰Bú÷%:t8K结ϲnÛr _ÁXÖV·$˜h¶,Ê ´Åx²> stream xœcd`ab`dddsö Ž4±T~H3þaú!ËÜÝýƒíÇaÖnæn–…ß }OüËÿ=J€…‘1¯¸©Ý9¿ ²(3=£DA#YSÁÐÒÒ\GÁÈÀÀRÁ17µ(391OÁ7±$#57±ÈÉQÎOÎL-©TаÉ())°Ò×///×KÌ-ÖË/J·ÓÔQ(Ï,ÉPJ-N-*KMQpËÏ+QðKÌMU»ML:çç”–¤)øæ§¤åeæ¦2000*20v1012²Øüèàûá³qÁ’ùŒ/¾¯dþþçGªhOÏ”yݳ8Ög/ÊMjÈ©i“û­÷ǵ½¾»£»K²zkcÏ”Þ Ó'Êñ/þi¿í·òtöÃ\‡¹/äáb^ÅJhçendstream endobj 307 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 627 >> stream xœe]HSaÇß×3Ï–fÚÎ…YÛ4̯ ‡K…ZY"S˜Fæp§}àÜqžÆ&NË— %ÅФ­–³hD]å@¡ ¢º± !0¼è&0xÎñUi» âÏÿùÁó<Œ4YcœmµÙk2M±Rˆ•#YÊQ†Ðqõ—:œM8†pšEòÁ•sÁ~1ûz‡¬~i àq¹e¡¤«T¨ª­5— Õ••µÂ)Ÿðt9z›Cv‹>‡œ6ÝB›¿Ë#ÊBI[–%KEE0,wøúÊýWCi™ôÈnÁ.ö‰~Ñ)4ú{d¡Åá…Ìkå™bõû¤ë²l~§èA±UÕ–úKWÊG‡P!2¢:Ô€´éDHƒZÑ2ÚÁ ¸*·ô ¤2›|3‹!úƒªæòñQâ365Ñ9µQò‰¼¢Û¹£õ’Á"c§“]¾»FVÒZ#Ë£o¹cÉNmy0eVý„M@IüLüf”çÐÊ_co‡#M¡¡›#&:ÚÊ‚ak1¶±ú,^¿Z"_tG³¿ÑÔ¯ª9qáõÈäã§_<\¸jœ_úðò3ÑýY©·œ¹|úl³‰F¨/#ÝÊ9V[8hƒ8†-Ÿb^¯$y½1)‘ˆÅFºªùo¦ß> 8)ü]aÔw°ÉOÍ“hT"!Óîy6$‘ÞÞy2eRmô?K™„M»v6,§IŒL›Ò·éxjÛÂPšbà£Ú§¨y/æe¶ Úøñ4ïP‡yjnfÏ@™v0³úþ9Å: þ‰ûs,uLj“9ëû9ó,·oáÇ­Ïpú úIþendstream endobj 308 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1114 >> stream xœMÐkLSwð{)âו1íqÞ^?¸h†ˆc›ÃÁ-™Êêx© J[¡.·-´´¥µ¥­Zèƒîòj…"Ô:&éLfd0–Í—ìÃ6¢Y¶d™1F¾ìËÕdÕíþœœ“œœó;‡$23’$³JËÊ>xçY¶ßLò¯eð[D Ô®NXbˆ3k«/cu.þ$ü!"IM«£T«kgT %Ko¯ßAï.)ÙS@¿YTTBRËU}†.«c•ru›.šé“Úz•œm§·ïS²¬nï®]F£±°NÝZ¨eûwÐF«¤OÈ[åŒAÞ@¿¯Õ°ô‡uj9ýÜVø<–jÕ:=+gè2mƒœÑ±þp«^un_Al#NÄâ(±…x‘@黈LÂEŠÉï2j2VDo‹t¼G²f‚~u†LýñH„å¿I ¯ó èÁ nO—Ûm—Ï‚( ^œ… ˜ÅÕX‡‹ô·ð®ìÉÆ,£˜ŽŽƒ3&;¸Üfô WLBÏ5@˜ÎÂÙ«'êœUxë­²Êò¢J!°=«-½ÂæCþ¾=9óÞz?™$ñþð‰ïEüY^,Õ8;è@æˆi4:É]»{ vDØÙøzíÞ?ÍãnêgëR'Ô€Á¤P µ^ (¡Ì¯¹2Õ7t ÆPÌ2¤ki2œ9µP‡³ññYŒn\±Œ²Qªi¢±ït°&t:3¨îãñ›ní(%IéíIþÕ4¡dYÄ·ãi³ëÔºÍõòüN{SK- Cpgøzä«ë8CÖïéƒa´Xu¹f[oèò;8Î×òQnÅ'EVÖ`UuêdÊbÛYP ‚Ÿ”Ë?ÎÍSCÕó¦«0ã##‰ñ/¹%èE="í^§ÙM™j©<_¤ç…ƒŸËÂÓк:ƒwæù"½ÑtoÄÓ™L'åv:›»ÚÒ,.Ç›bßDIœ÷ë¥_Døq*S:Ö>Èê4-f¸ãb2žˆSÇ…U©?ó‡|!†Ðbõåê´?Oÿ?ÿÃùщýFWÚ$«6Ù4൪ò­ê.+˜PÕ ÅÂã›8ïâ3µåBW›‹2W}z¼ P»#2íøì²LÂ…Ú$¿ü*ò;î‰ø†4*Ñ671Í­†Á¶øx"ž ÕÓÝÒ¶ƒU•òh»ýݾè– Dƒ0€’-‹N­o¬¸m›»‹ÅÓXœ VðZOØ.±zö¨°î=as›Ëžãºý\€š¼³xkP"À0V¯å‚G&Y«(Ž¥rÒŸÉM¥æù¤t î…AÄÙ"\6êé+ÂR‡ÓÞæ|°õ:Ÿ’ ßæqÎtâ"®ß2eOáéu>G¨ˆáCXLbsR„Mœ ªO1z»Ýãr„AnåιÝòõéC³Fkžàüá~Jbˆñ¥áþ~¬‹e µáõS~Ú¹'*Ξò‹ÅñÀжendstream endobj 309 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 769 >> stream xœ…ÿKqÇ?ç¹»Ó¦™5"²Û• ”©f˜Yf–f !jãZ—ÓÜN×Ù²„¦Žû„b˜XZ–¦f©WP+é i?”I°ŠH‚ˆzn|"šôÄž7<¼ž÷›Báaˆ¢(CV~ẹe¥¾”ÒãÂôe4® n æ°‘ÆÆðÁ–X°/€’ùPƒhŠrV{³äªZwy™C,v«œ––ºJHIJJ6;%w¹]t ù¢âœ¢2•ÂnÙ^.)µ‚%Ý¡(UÖ¬ñx<‰¢óp¢ì.˰®<åŠC(”Kî#Òa›ìR„]¢Sæ’%Î,ÙYU£Hn!_> ¹]!ƒâHNY‹PÚbÑB´1¡6(mGO©%”§û¢õ!ï üÑ`}'ÉH¡AÕ› [#Ù°SdÔÕ¥ÖWñ“œg óE™˜óOó~±˜Í´¹ømlÀšN]‡R?i8 õYð› ,³/‘°Å9J_Y’î5ØØÉ¶Æ=æßMl%nÈåkmÌhóÈéQ<‚GÕß}c¼VËæâ¶~3laÁðchb²CÌã‰ü¿óè`z(B»¦…Z<úLë+‚1¦>®à·æ{0wÌÖÁ\ÆÏšÇ¯p¿}!šw9_jcü-<Rû›æh¥ìrÜþö>@ä”F}‚èùEë È$2¾£õùÇëOžJÅu˜#%Ìó{“coœ˜Ç?9XD¢^‘x²Ô²ÑZ¬5œï¸0> stream xœcd`ab`dddsö Ž4±TH3þaú!ËÜý»ïÇÒŸM¬Ý<ÌÝ<, Ô }üÉÿ=T€™‘1¯¸É9¿ ²(3=£DA#YSÁÐÒÒ\GÁÈÀÀRÁ17µ(391OÁ7±$#57±ÈÉQÎOÎL-©TаÉ())°Ò×///×KÌ-ÖË/J·ÓÔQ(Ï,ÉPJ-N-*KMQpËÏ+QðKÌMU»ML:çç”–¤)øæ§¤å1000U×20Ä0Ä10=ÂÀÂÐÏ(þ£ƒï§Ð﾿Èk³9f7ôÔÊùôz¬¬?Ô9µ{r÷ ¾âÅ?í—°ýVœÎ¾Ÿk?÷þ<<@ÌËÀðVØ+endstream endobj 311 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 412 >> stream xœcd`ab`dddsö Ž4±TH3þaú!ËÜý;áçÏŸA¬Ý<ÌÝ<, 8 }/ü^Äÿ=O€•‘1¯¸©o¦s~AeQfzF‰‚F²¦‚¡¥¥¹Ž‚‘¥‚cnjQfrbž‚obIFjnb “£œŸœ™ZR© a“QRR`¥¯_^^®—˜[¬—_”n§©£PžY’¡”ZœZT–š¢à–ŸW¢à—˜›ªv˜tÎÏ-(-I-RðÍOI-ÊK/JMòR Ks€DfÊKNe```RTb`ìbìf`fddÉ>ú£ƒïWØï„ýß]ü˜ÏøóÀ÷'¢³'OéïžÕ=»¹¿jò_‘ïG$j'µuwvsÔÖ××6LlšÓ,ÿãÝï ^ÿÞXÙÜÜÞ]-Y;½~f_÷Äér?Ù~׋Î^Ò½tiawü_.¶šÂîÂÂ%ݳåÖ´m!ÆŸ~DBTuWËÿõb«.ªZÚ=Kþ§×Ÿ8$ýPþŸ^ß+1õ€M.^üÓ~ ÛoÅéìû¹ösï_ÀÃļ ¥¼dendstream endobj 312 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 648 >> stream xœ5KLqÆÿKKû|$ µ¬HHA£5¢ƒ&˜h}€J-[Z ]²]¬`ÚÒ§m§­ØmQB-bႠăÆxÀ‹ÄW½/»¸\jÌd&ßÌa¾ßG i"BÖܦí8¿§NñÇþxBBì|ÇS (¤¯wŽæô‡¸{¸Û‘„ ¬6O3=0Ę{L,Yc¨%Ok4çêÈ3 ò’…b̽•lÓ³&Ê¢gÅ¥ŸÔÒ3Å‘5M,;p¡¾Þn·«õ›šfzkëH»™5‘7)Å<¦ºÉ+´•%¯ë-YbS—f3md)†l£»)ÆŠ’Üzê@è,z€:KYy‰*b‘VòÛ°ÁÜÈN|r)¹2Nùáë˸ž±}ƒnGu0ä‡à] n¡ê$4b_,”Ì̤SãªùÉh2šŽ½ŠOåsãÙeHæ ²aWP,Aº«=â~Ķô^Œ@ÂØ7 £¹•üä„j,³Æ•ç¶q%_b¾s–ïš%¸'[îÿ[ Ó0S\ˆÎM¯?OGœuƒC@uMa•‡îvÜ×\a/€œIH„øß´Çé˜Kô1b¡K} ûl|Ǭ{‹€³)Èf<àT«_ô®ù‚)ˆBsF9Ì·ò…¥Ôr, qXøÇ´Äwþ3ýR¬ÜYÒ®Žé;GÀQ²­þî/êƨ|àÀ‚øP×8lÒwÑŽö K<÷c¡U­àé5C´µ%à ûDlìƒ ‡~¾ÿQqå° ùùÂâÜRâm,‰‹‘¡D,HâÌ&ÌãJÛÔNSN&¨ÒòÕ}«ûW' ±+ú J)‡endstream endobj 313 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3639 >> stream xœ­W T“WÚþb4ß§"H;ß_h/qkqéØŠcÅ}ÅTY‚, a û’¼IˆÈ¾o!¢±V[G»0ƒÕêT­u<]Çzƒ—ÎÌ Ô©§óÿÿœ9ç?ÉÉvï»Ü÷}îó>áQ'P<oÒºí{–[?̳¼Æ³Ì˜`ù-°îÙ…‘¬I`Û‰m3ìÅ/¡ ö(ÑyL§ø<ž4:c,*1&ìp¨\ää,ZâêúöBÑÒÅ‹]Ek¤â˜° €HÑöy¨X '_$"YP˜Xž(rZ*—G­X´(!!Á%@ë"‹9¼Êy¡(!L*Ú#ŽÇÄ‹ƒEe‘rÑŽ©XdÍÍÅú²N&Š“‹cDÛeÁâ˜HŠ¢æ¬‰”EÅlŒ•ÇÅ' L ‡ ó”H½Þ\1ï'çƒ }](jµ“ÚEí¦<¨ù”'µ—ÚGyQÞÔZj?µŽ:@­§6P©MÔfj µ•ZFm§vPË©ßP¯Q4ÅQ“©)ÔJjµŠ²£æ’bQ)5Ï å=ž°sB??„oâÿ}b줹“ ‚Â;´”þ€YÏ4Mž6ùÖï)íSgLÝocgóÑ4ÏiZÛÛ[d·Ç.Ê®ÕîŠÝ#‹Òvä8˜‘·Ù²¾†gùýÈfVQª,L‚DPf+Rqìè]‡Ì¨øC®À„Ó­ºóP­Ð}Ê~›ÙfÚ_]ÍPZ}ÉdØIŸy r”zŒ §¿Ðiá Ã÷ÆŒ’hwÈ,Loep§¥„EvøÖ$ [Ë=0[¦yhò0’ó-Ihý³x`–“ߺØtNýX€çfL §¯Ë9 Ä´_:l#λtÝÐD2è„®ñŒ¶¥Ãi!ÚB?¹Õwùrù!w'þß{m-ÆL“e¦‘×r¾Ï·(Q‹ìç ;`‡9˜ÂöØþ©3ú büÙs8{²{!À×ó®²úá¼oê2´wÖœsÐSÚ Ù Aà«ò”Dù%úCN‡÷™ÑëFË ñ‡‘é>Uàeìxº®ôï³Ù­À —Ñ„¯I,ûyßâiÁ»3½¼…Whìl=ø'úÜá¨ø9Œ›¥­?Õßñ07®¾…y˜^·|E¨oy„0½4PMRXJ Lu“ðCˆO»£#,üÉ„¨ÇÚܼÌl3’†Ôš†ÚŠæö£ÿVÿñœú‰ÏúÊ~RwàháêX)赪âãBÛ‘-JÝfÔuœ‡æ>Dþ&¾åï#+ÙÑOÃë7´!ÂÑr:D•±Š‹ Xqq ÎÀœóA¿eíB¤øŠþºD²LhB5Á[éΜ Ò Ú´=r ·¡Ú½¿Â˜dÞÎ4Zæ7òÚPÎY,ËÙ (JS(!9™S©³²” äæ'GûƒE·ƒû;"uJá)i}Þµô3Y7Raí»h^ägçÓ¸¼R5/“ ÙG„x: ™¥G5šê*N¯/.ÕëOžQ¬]êúCoäÇxj0[ëQ”’ŸZ8Å´ÔuþMԻʴœ&»@YLTˆ-!›fFËkxhÂ0ša⣖Y,r6cgä.¨.tQ2²Ø@ãÉ{®zÿOÜ d/½Q"Þ w+8‚ rX»îç÷ݳ¬eŸ÷e-½ÌË}õ²¼®~Ý¡ñBkdžA¹TˆÐëÀýîÑñO õœf…9M2Ó›² ú„è mk¹˜YkyÅ̳ìDŸ³ ƒm¥ÆL‡*UYàéL8Ý®*Œƒ$ÈT)ò²ÈÐ;à)¨!·ނֱñ8TrfúÒŽ@<„ˆq›Ë Ï-C ð7)GsÊ  ŽéKÛ‘cã1GœÐ¶°¾²û’5f8‰y" ê¹}·ª8šPº2W•³kæ ƒ¢tïhhÕ4ˆÁÊ} q$SéóˆZEõ¾EœP‰:?¯˜ìm:UcÙù‘ìÁ"Ç÷öCQ^± ½ŠŸ8MÑeU@%äëKDm?â6}Z~F%8V@~Q~1ce#Ši2?4yÝ·QäðÁõrt–ýzaÿâåk"¶Hk Æê𦆔Ê8=×Ñ8@‘ vJèÝÊÍÊ ‘oŠ“vC8³ì»è†N¿{ªŽÓ‹ ân`оÈÿRxAâI¦$LJ@O1çv–]àäåßÞû‡+×Ñb=iýErsyfºŒÒXc{s[‹ÙÜÞnøÀZ·`R7?PÀ®ç½ªVå§C¤)ÒÓSÝ×8¬|”^fågG(8ZÞhµRz@ÆX-~®ÛuШÏíøÛ;,ÅÈBÝTŽát‡®€p‹.Cë8Y¦i3 ‡W•”éô-M-†æÛÎ5rr¿r ;'5VÍXIé4T“Mg¡eÜh;dê£MÌ8x…F$§Ÿ6+ýŒleÇ™m ã_šèãWÂΈ¯ƒãs|iÎ7ØvåC‰IBÝ6–¸Ö–W5wœ©=M˜ö¤¤FZU kAëûöóI 'ð jŒ>™^ý3å]ćŒ–O̼ڻ|ñ;lãÅŽ"ósˆ)µï9 šUeÉÄQ®:G‘. Ì òœrR€|Ç“¦Ž`ÈOyˆ í„Ÿƒ2U¥-ÅÏüfJ7l&&¹„ÚúbhfŒñåq ò4‰WÈÀýÞ§Eù¤’L:ñ ÚÄk¿Bñ--3YYVžÒ™¨ê£¡¶ªåʦ–7°ð ÌÇSñËuB/¡™íhJII(sêL%—/[9˜íK{‘šóÇ¡ÂóØ.|±ÄÄ{ÛÝqû'C¦COøÔx´Çü˜ÅvßÎE/]ê3¶›…î4ZøOV°|O»^c >òRdA¾±>à A ±Q'}„­ß+|·¾½¡ã´ñ,ôBol‹3~¬ Z>6C ®ó-KÈh©; õ÷üˆgâé æàé˜EÔ|rš—ûŸÖç+‹Ò2T9¹*ááË”‰¿¾µÒi|-ŒÆÀ"Ñ €&C>ž©‘3¶èÆØ@*"¦ =~ÀGVú´1c;4Ip¯ïtwEaž:ŸKÌR$A]}ÄÐTUmè hÞ·zé^‡'º†ßÆCÿnzYŒ8 m¾úY3Êhæµ\BÙ7Û.ñÑšX‰.¦ ŽCÃÑ‚ÂΘ“Š`¾úè³I­±aY‰¹¶O“§T( ™I,M«*«$´–ÖæŸt0/À—‹© ®ôÆiíÆw| ¡µ ¸˜ìˆ…ÀI]’Wj`0ø2ë~ð@ÈM8{s ¢3¼’Ûe:ÎÀÔep´0¿­·s@ëG ò3òÓ+ÆFu¡¾Ì:ªã[ˆ¼E'~xÏÀûã÷(ð¯|tÝcoöïž…íׇìó\]s>Tx¼±ÞÜ*¯ˆ’%-ü~; ǯ~{gËðÜ:áMã¥ëp‹¹µäâlÑŠÝn!ÉSM]sGDYœ†ë¼pCWŒa8{ΆȀÔd¡T"WíÈ;¢ÎVâI-$ZÈŠ’˜ ÿ!âó‘¿e*ÛU' ‹‹’…5ÅÛꚌšø/¿ÙŽ\‹7[þËŒ ‰Ì¸òc4Ó„>5óGbÑ4Vå¶%ÜüÁ·iïÅÁ›;?Fšºš:ïYÛ#QúÙä©°c¼f}•ññé)q™IÂ@÷€-û9¯½ÏŒf¡NVþaÎ%"q¿<[ßt®xµÌK¸vçó;¶Ç¥{Û—=‡<÷ã*»±·Â\\),(Òh.µw MëA+zx—F¼ø#2t—-¯úúXHþ4Y ry ” G¦áP¶¼¬$XWì) d¥¬ñŒuµÏE†ò oß´4µŒB—STѶð‡^E"#Ú È†Ìª^¬ëy&êá¡é=|Ô@òí™÷Lô]žÿ·Úºº¯­±²âN#í,gA ®në•Jü\&«0W_zç3ds!áÜÁð¸èHimt{]Y‰NÇýÊñª‘,Ï÷ýîo¢y¾h¾`t?î¿âÍ6¾Ö²®ÉŠŽÕ p@1mž2<•›2ñí›ÉF½Íp…Í4Šú:õ€—endstream endobj 314 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 692 >> stream xœoHqÆïÜZ—•Õ(©nG¨(È4AdbfhAä üÓ?"[óÚ†ÞîºÝ6§©§Kûºš©sæ¬-3M†š(b…Y¾‹°$è¥B QozQñ;½^d¾yx>/žçÁ1e†ã¸ªØh<›ûߥH‡qéH‚tTâfxãäP+@­ÛH݇n$¡+{PÅ^LãvGk1Ëyx›Å*Péæ ê¸Á—Iådg¨S ÍÛÌ&;e4 Vš1 [¡–*gÍ6ZðPéVAàò³²Ün·ÞÄ8ô,o)ÌȤÜ6ÁJ•ÑšwÑÕÔÖ.PçM MmOÓok1ËpNæ)#[Móv Ã%'†¥bØÅí+˜óá‰ø¼äÓl~‡9éÛ¾™õ[ü«Z/ã÷Á7[?”¦BÍÈ‹Ê ò¡?r‘î¯^å¾³…ûái_Ú¢:h†NŸHüìÔöŒC`”£ZeÏì­)[ì&œ†R‡¼¿(¯(OVXÓ€óU^h„–@W/ÍFŽÿBÉkñ8ŽªÞ¡º· 龤ÑZ[Úh!ø¨éŸé]\.ˆÉ'jR,–¨k¨‘u?ïXl}ß²"ÂeÂ)r)m¼7^CNö ŽÁ01ê ;m w=eÃ2M Ä™u9!r©—, ]í¢ VQÊÈb';Bj6¾ŠqéàV»y 1k iMkk夎¦v—¿-Ùï«ÌÌ‚®øüfäãØ']ßHw"ÄëkÓÆcåò®q‚‘®àà ùxùå«y …DÎÝ!6Ùu•r2pÀ²ò‡óÃÒÂèÌ òɹ/íC0£‘á©gÓKÐM ÔC‡ÇßÖÐNÖÞ¶Ø€`›cãÑq¤žFYº`$bžpÙkåî’gL*…Bˆ©dÓÀÎÉÄõÝd¢ò‚z×dZaÿŸ-2endstream endobj 315 0 obj << /Filter /FlateDecode /Length 205 >> stream xœ]M …÷œ‚€­m51lêÆ…Æ¨ 0‚¸ðöSuáâMò1?Ì1ö‡à çÍ w>Ø øÌøwتáÖ›ò!ŠfÖ‰‰ñ¨Óí•€c¸…Ozqi·==­–&-<’6u¸ÛI©vÎ)Áþ¥†¥arŸÊ¶W$Ù¶…8)RÓȱ[+’”1ÓQ¶Ñ"!n{S%å0U ÑÒ&ß?ëRÕÞ× 7Ïœ!ºy¬Ö|€ß™RLµ‹£Ørgnendstream endobj 316 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1051 >> stream xœEmL[UÇ樓^'°Ó¨q^®™– ›Ká¸5˜ŒÀÈÐAK ´eíí°öRÚBéSJiÛ®kZÊKy³%DLÊ jTÂP3£ƒ,KÜ'“9÷Åì˹åbæ…Ä“óä¼üŸÿÿwŽ¥§a8ŽgH+ªkÏì®Þâ^ùciÜë"àÝÛâ{2E™>¾ýä(b Ç!ÄÆÄ8®Ñ÷±3Rm‡Q§jQÒTnÓ êÝ¢¢Â<êô©SEÔyµ\§j’i¨ ­”«e´°i§ªµM*9m¤r‹•4ÝñþÉ“ù2µ>_«k)9‘Guªh%U%×Ëu7åÍÔ‡Z M]‘©åÔ_þ^•jÕZ®£*´ÍrF#o¼µ}»L/ätÐF½œVi^Þ´{aÐÃ0ñÇï)ZÎÖ]Ű܉Õaõ8à.|#„ÀÒ1+vÿÿ3Í“öXTÂ9²¹G°Á}·ãÜH “ Ê $ùv3èµC?Ýf°˜rvèb2ø, ÿòPBØÜ#þ)vô9dÝ·½ÑÈ­À"°@ ¦Œ.Æ! >}§úËuº¬õB_ €“°yÀYކC䘈<"²ù¶ÈvVG¹Ü”(u:U ñùa†ˆ±^ÖÄØ­ŒÜÑþËYÍBÿ«=#L€ö±^2›‹ñîW?Í5Nãèó-úž{&I˜ŠÏy=3“w‡X—ÀO,`â±¼ÚR'ÉûÄŸÕ^-êcœV3˜GÀçüÛ>_ãÕºÁ_Aðbhƒ†Ÿ_éîZã@F!àï«+'¸uÅ6çØâRˆa~剸V4–]t³à…9biˆ«ýÏôf`ùÓ„,vi¬s˜öbsÛã >Å l`"xÁ°Ê¡¬îjÔšjŒpÜNðÅpz[UŽ­¦¬Ïì´ Ø„i ü{úõ‰®‰áDgc 3 ßn¿Ë+<öˆy‘Wwfw¡J"ñXª8–ãw¶Ð¢€uð 3Úã¿ífCä'à‹¹ÜAÛ<“€eøƒ]}¶ôÐý¶àg@ßyúa8‚µŒ™»ŒÑNÚ¦¯û†_ãÕ@ œ1ÔW—Y¥ð&”/ýë\•¨Ö'p~c×£ß .À›ÿ Š/$ùçân0D£0$ÑŽ¦àÇßWÖ—6½_ÂÜïÿ¥ùÁ5¸ :‚ßÙ×íÚ&¹oÂû¶k’ ŒÓ4ºIA7 RZw¥ù¼í:´Â…¡KK%IØ€IBØ×=ó…¨´ BGѹ5T@fë'R¥‘ ždÅɃÉ“¡ÌLafaØ7Sõendstream endobj 317 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 636 >> stream xœ=ßKSaÇÏq;ï9Ùéô É•é-'ÈÔ¤lYAµÀ…f0õÂóäfml§¦•æ$õ¸G—1¦Î4½ˆB(©(HÎEu¡7åEý]EÝôžùzÑšáÍÃóÀ‡/ÏçKSÆ Š¦id³W5ü·è‡h='C?lØ@É*xðÆ¥$¿·íÅÍ»ñå=”¦½Á~›Ïßðt¸Ñì*ˬ֊bñXi©U<'KËéíNÅ-ÉN%u\}.¤t‹æÓnEñŸ*) …B§´øg‹ŠÅGq‹—¤ ¸)µ‹5>¯"^tÊ’˜~Í’ž6Ÿì¿¡HÑîk—^Š¢ M-]e¥*©æ´ e¤^Ñ=§«Â†4ý»Fë =' ŸÇÁøÄÈȳ¨éqtæ[ÔP­: 6B-ÔE—ù|;‹°04‰ ÇTR@j²I!®g¾ièªzÚ@Ú&²øY&äQøn$Ò©š©(¸k´–Šÿ«0 ëj ÕØ~pAGŒ‹²¸ûñr›9ã@/¢¿à ¼„5XMSfVHöÁG}]£“eÉ̬ñŒÂ÷´B¹›oQ/b> q\þ{€Ã9h³rók¸†¡Ç䄹\}Íâ%¦…I¾ó8©Ž"!y4ü#Õ‡Õ,¼x8=˜4VV[!ýÐî-÷ø´:  D"y'Ê͘y 5¨½ÐÝPÿùÌâ RMòÈ‘¾¾ð=;˜n9ÐBôÌÀXç[¶]086xS˜ÉÆF"0²}ŠNÂ{˜ÚfªY¡'¡×ã+3ñ"­1VËÄÂÎÜLcÅ,¿ãuœç±ð„ß5 õp”endstream endobj 318 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 716 >> stream xœMÏ[HSqðsܬ“•áhÃ:;/‚ÂòR‰¤-ÓÈ6!Øš§í¤»xvvwSל—ÿ.:7×¼mæ–ΑiÖCiJ/!½”DÐK/áƒ=³AÓzèåÇ÷ ?~|~0Ä̓`>P'•^9»—J˜b˜9‘ÇœäV‘­ÎJòxÜt¶þ­,¤[Ð7BÖÝuzƒ$Ô +U•aU55Õìtee V«ÅIB¥ÔaR%¥ÁµJ*W:°zS6¬ô¼†¢ ç**,K¹Rk,דê eÌBP¬7â¤oÃ.ëuvM©Å±}[ùþ¬Ók & '1©¾ 'uqLÄ=jꡆý_ .ôn†¿2ü¬©7ÃÏÀtÍ6‡±ÑÓ‚¶Ð£ïw¨pQOo{§ µ`kj5úb•Î%ý#` Ù”-´–´²"³7èŽÅ#á:÷c-9xÈE™]DA¬9Ó}¨ÉGÍö‡••T ”¯Û—À"HMO§SÏcoÁ0âŠÚº=Ž~ÔqÕÜÚbàIî^dô±8² üᥧô)a :ÏíFÝ ƒÝÞãô ýO‡×Šð™¦}9]”x‡iáçGŸ8ôn–+˜µMP]§ŽœêšÉ$ÓI´‘ý)F³Áp Œ€IdS¾ Ïù…¦ÿü;ëçþú-}9“ø[Ô­ƒ.BäÒz]ÀŽÈ^ª7v_Ñ™=µsÈkíC²;2€ØÜÑÙøÈøƒ1Ÿefû*ºC»¿p˜¶*mŒ8ÚÉ£yšL¥“i”%~W ¬¯Ëš2 ÷}?ð‰Ç£¡ 0Žd:CNƒÖt·å]÷Ê{š·LóÒèwú—?ƒ˜hSþ¬Í¿Ä[û‚÷c1_0Bç·6×6’‘¤kÐ94 æ›L]dlŒ6$°ŠÈÁÅ‚o‡Ñnuœwh1ÈãAÐç«Aendstream endobj 319 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 443 >> stream xœcd`ab`ddduö 21T~H3þaú!ËÜÝýcÝO]Önæn–µ?”„¾G ~åÿ(ÀÀÌȘ[Øàœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*€\¦"œós JKR‹|óSR‹ò˜ „„Abñ?ô£ƒïÇ÷îM?æoÚ>ŸñûÒ‡Ìßÿä]ÙÞ+çé­ÚÞ͑¾´ûl÷ñåzÙ³ºëTäRØõßì> „7»µïåQÞ”À®Ò=c<Ȩ§ßŸgx²‰ñòw†ïS?0ÿX÷Ý_4­³¶Ñ³¦¡¥Õª»¶›ã·?Ûw‘Ïk—=9½j¥äÊ•[öu_âø.ø›õÊo©ß¢†fºÛZ§-Y1wýºÕñr‹öØx¡›ãËa[+—'Woùß¿s»ººs$¸³ñ•-øá<ë{þÔÉ Ø~'NcßÄu[Ž‹Å|>çêI<<÷æðð20Fh®Òendstream endobj 320 0 obj << /Filter /FlateDecode /Length 5135 >> stream xœ­[K“ÜFröyNÞƒöb…£OvµÍ†Qï*oì+ê¹C[+M81ÔÓéÁª_º9äüÛ*½ bSSï½hy$ÁŠæÞúŸªvYâ #7çæxx³|Ÿ¥Á•ˆóS½üéî»)‹h­\ÜÝÞ/–ÿ ón¤1¥ -½­Ým@Gw¸~³Gì¥]X‰õAæ¶8aÔ ¶ èM‰ê|¨š]Ó›5,ñ¾VEéŒèN»æL­@D+ÚzͪöÖsi»æ*.؇šûAC'³¢á QWkj`žÒà°'ÜTË%ËÔxÖÊú,÷ïpbc”~f‘¶Ð°ú_.R‹‡d)¥5ÛBŠ—†c­T,‹ ÝbÕ«á5|@Øå uàb´‹18°V}*mtFThjÁ‰(piA*åf–çm!a²Ä'l-ËÒxÍÁ'ë……Núè±SZÁÝ_Ñ:ÌXs¦pJ‡Å¨í=/íˆ&g¤ÑEðF©‘²µm‡ þ€Ý<ü iCŒ…תÔ3ĉXW†øf‰ÊÅ/þx=ÉD8 ³sÇêS“ØB9Wö ­ZH´CÈ𯟜Oy“‡xK†#DÃm£[¸=ÛšÂnŒA7+ˆ!š‘ÑÁj©“.¨ŽÉþÈÒŒæÁ ² ;jBêñwØ!€/J5#˜+”‚íÏ«xÀÆ02¯bâ>L/z¿X&ÏOu[³yMÕ ÿ¿èçJø%åT?VF*‚!DJxÐàtJlêû)~‹âø8&.‚ &ôi0‰…!g£Æîìbc»‡ÉL¦l£³¼Ò¼Õ|Õa3§\À 1ð#¶~%§ N'çûm㑨¬`ná¡PÑ•ƒ£µ¨æÕÆøW-î” ¢­ö5¿WeçºíRéÄš‘Ðñtìꈚó¨Nl1€€µX ù5ÌÐ7‡(}‚øtj›êL …®®ù=qäÄ¥§¾P±­«Íð¦#Ráå5Æ“%i­‰l ¶ÍÃC¾5$ üÆi…ã®à( HbŒÌãEïË÷ŒúÒ8ú8l(ä ~&Ù-=ˆgŠˆÑC iÆ· ,mh6ú –ýÅSsÚ“*èEõ9wž±+†‡{û„áš8oOl.S*?í”*ÞÄRyñóÒâŠeÕ¶N"ΚýiWïa{éÙÀîvI,Ø¥*…Wã½®4ß+ÔsÕ"kßœ_Ïl33üÆ´k5°§ôq#âNž–|ÌßJ3åööõ‹a”æ`A|ÐxdÁaÃÄy—%±šf'VGã¨Ä`D–ÌìHNáZ<¦f`«Yówÿr\i ëCŠå™4U³>×YØäoü2[ÇôÒ8¢’^Ó÷s»”è =÷Ê;¾ÙõËÉ{«eÞ[Ü–Žø“eJvëšrãH®JÂ&û€9ø!0§˜Xdz%»XîñX­ Cäf4"ï,ÿÔcLïz”»âø4§ÁUw¤(Ï.ŸA̹>÷øþŒ¸V×ýZò´~§s²Y¯òØ)xà–Ri­„}ç’}Qâ‹—?aÁ”wýkß«0F2‚QÂð€`ªÙ#kùª7‚øªs£8i“ - Mx›l'BÚœzÌÀó¤äÖU˜¬uü‚Ìõá ÑfÁø2åhï†Þøp2£c¬»¡lN›I%¯ÈH/XEÈcAXe¡Ta` ‘|½ä“ò:îA`}ÒE('ÈŒà•o/ôÅDå`KKHìKíð`o µ¯5R«ÂáéÜìû–X×5ÛÃð<—„ |¾×é·Ä‡—ÆXCÌ2 ~ðX¯c"E¦}Üï9ÿ ‘í<òHÂ(φ¡‘/La™J^!Í`óI(M)Áq׬›s•K¨ª¶Ç‘7t©/xÜå°¡Œ6uî%Ǩ²­Ž3@ÈU€{ª«TaÕÌ¥úêÿ„!#¶C©aÃê]«¹Èò˜kQ¿?Qú[¢¶ °òs7G¡ÔZÐJ Ð[†ôWõPlèë¿:ÐQ'ô[QpÑɹG…ò‰!-‹šÔ\€ïx—J¬MrµÎQ%"õ¦ù ¸£Jf¦„¨VsE «ÝöØSÛã>ÐĹ ¢Bò>û´Eé*½ðI}¹wéÜ29Ÿ+r Ìm*ôkL7:°À} ˆÇ®ï`r´ âÏÀ RK@£p½ê‘ó¶Æº]›a…ý¿:¬Ù‚´¦Ò)㉚з 2' ÄðŒIr›¬2ÜPÏ1Üà°é ¢o9úƒá¨à«J¿ÑEªÔèÊ/¶›Óعñ‚ÎQœ¡¡žŸªs~Jç6ôwg·«s™nr4é‡ôCâøêêüñ*w¶ª/Ú~ÖÛYÛ²wS}Eñ¥Dãi© ©’³ èÎÕ]F£¶­w 0è%¸Þ¾}óÊ™Ü_j(× õç_Éý±Ú“Š\à7Ëý1»fèAª gòUm‰³%O»âlý(Ía½»lꡚVŸïR}ƒd1Ùÿ8‹b–XÛbH¨3RóôZ¤…–·^ì)çÄò2V²uzúâ˜n±Ž\Çüf’jçʨŜ|}y#æ $¦:ßç¦!̈yP'î•§S#<‚ï>rîl¡L>ŽúêÛ/o_ý8S»Þ £§gßsŒx @«—W%x:Wt®„EÉò'|bÃ’+¶plŠˆ0Ý$:˜‹zX+ˆå °ámî…§\›zø8‘²m¶ÍÐ4UŸ²`\¢ƒ'qÚQNL2*:38Ô«ªÌÞyÈÇ7/3^ˆ§±m÷~þÐ6›ŒOæ—x“{KŽ—‘/¯ŸÃ£ž¿Ç`ÁmÕ˜• 8BÌéœNQ_õþ4œÔR qZûéˆÊ¢ã"À9_uD¼Jr‚æ!TµYLžé\¯ûÓ¥§Õ\u6[ÌuQ £ OºàªŠñd °×Õè e5‘Ê+¤2ÃéÂ8è«4DªÍp5•Ú‚ùà =.ÓSHyÌoš WK賤:ÓPõ  †ó™õñðùö2=™žð ž©´_¨ÂˇÌÿî7a.°1À!A_ í4ˆƒÔåp›Ptì"gH£<ÖªþÜdùé*žkO£Ú«t­NÏÝwœðàÿ#0\™¦ÁXÀ8ü× ±ÕæCg§ ©Øø'²éöB7‹éƒK \ú´ÁSë}Nãpd%-5Ã]ž§¹½R°©Ök¼Á­}ˆòã»Ù4^ús·½ï¯XäÕMQ0MÙ'áŠî¦D Ÿçx¯, î š^ø”áèˆÔoÔò·Xè, »¹>Ý7ã–´îê¨&ÝÆšõ,5‚š ‹\pP\?LXЙ®q1¼Ë½0š½¼Dx¯=åv9}Ï÷cÉÓÉúÐwQr‡|¢õœ…*Óq–ã{f„Ñ=ŒNÏ÷ö5\ˆBþÒSÕ ÷ywó—d"‹ç›rñõ dâ¾pa! Dd«ûåa3lÿbwóãGÿbÐöÈûé_ ¼Këá_P¾”øùF€Ñ X¥„ Ò¢º×I;ô=Ý Ñ©|Øgu(äpÍïF¼7¬ö9Þd"e f7½A™.¦ ×ò¦Sàèþ¶Ìñ°û0³ Óg)x·‰N FxïÓM]žHúÄ&#]¤ÛýÇ7,hn4Eé £ú{ vÐ`¤œY§)ôp—›óé«álh]+ÉwÑBœ.@”Òóþ&ëT>_X;¸íçts iiÂi –5Xˆ) ыɖ+¾cïdœ[RÀ?x`(õ®ý2ªÐ gÙ- œ¶ÇX-C=& ]ª“«|9š¢ƒ"Å“‘iÇclŒfB7î¸ÎŽ¥Bƒ—‡ë<œI‰Eþ”®3±¿þ泎 \ @ž°ë{ùt% _á¡'Þ‰êyt/é¯\"‚cÊ|°°¦öú›<"!8õ7«|®A¡ŠH1x¡œ ¶ßÂæ÷Ÿ=“\ÿg÷óï¨È'38‚åz Àæºm’¾„-Z©Õ=)ÑÖ¯yy:¥F©æú>}ƒ_så[éðFª[ ð¡4Dd…4huZ¹ù_Æu“2endstream endobj 321 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 656 >> stream xœm‘]HSaÆß³ãÎûNÅ4XÉ9+¢›H¡ÔEF ‚"£²•.·òcº·å0·6gl¾Ûtók¢³¦;fáÒV¹2dÕ‚ò*ÈË®¤® Š®ÞG°³®"º|àùó{øý)P E)êk4Ôju>ìvÊ„ »„¬ÀËq1‹ ’¿*·“e¤h)(2ŠÚsPcê0Ûm«ªÎ¤7X;U¹K¥ëÔ«ê;tFãŸøO 7wÙZœçÁpÔF pPT?••¡-ʹJ¶dû“ È“æYÒÃSD±NnmÐÏ…q¥e>àýn³ L#ë²#ocÌöÁg©&»á§è· þ‚†¡÷»(OÆHTˆ£JÒÉ‘È4F9fm‹´·wÛ9k›¶ß€Qɵö¸xÁ3C’¥.*ƒÌÂ÷®Œ>|Íúµé•vŽëœj‹´G›FË&Œ1×;‰‘˦ssWkâlÈíïžÂh,8åHŒø£>—ãºÛǶ,4Oj±ŸÒÛ<ìÅuéËol/o¾ ezfZÃäƒg.5ž;v$õ¹‡õODNŒ<>'VÁ;AïHìÞÒx”•¤œ&’A+‰­Ó«BDÙ+ÖÊ“LøIxuv.ɧƒ)Œ^0wýCnìD›6´ø›Ø. ™ç¾=àÆèŠm8à âøÐøÝ°T^ÁÙ@üDIJ„¬(Éô’Z¹¤£rotMÁu:÷> çïç½—B½1ÐÂz,ÄÆ;“yp‰JáÓ¼ÌòPšHUÿu¹üß UÌ4¹(·2Þï!QQ=cëKpB9|œ §ØÏ”8ÂpÜ9Höc<ó£pµˆ-¤}ºÆb¿P–$–endstream endobj 322 0 obj << /Filter /FlateDecode /Length 4383 >> stream xœ¥ZÍäÆu¿ÏI `åE0r`Û4듬C (²œÄ°[šƒ€Ù ÀéæôÐËn¶H¶FãCþö¼¯"«{z×r‚9L“õªêÕûü½Wüñ¶ÈÕmò³¿)nw7?Þ(z{+ÿ6ûÛ»»ùÍwÚ݆k~^­‹¼pÊzWk]桪²f35[x <ª¬=<öþžÚþ_VÙ¶ÛÝa”Ád+œÊ*{Á—*/l¶Yé*/Ti³§^âï¬ÛÃnõþîÀiiSN+û¢ÄSšÊ—úön{“ýÏêî/@RB`Ù])s»Niï3:M(T¥xù3ATy°VgÒçvzZN8=5ñÁœ?tõ°kÆINTTÙqh¶ífj¢ã:¯²HTöÓÊYØFUY=´k:äZáD}»V ÈâíëæÙå­³{­Þ竵÷ÀcðÙÝÓTÄgÝíú8ßó+æØt ­ñªÏžØ4(Xkð½X=x0@ŽÕH#߯›FÖ!>³ã¤õ°eöïñüh]E4VYè›ÿŒdŽ\¼_&¥–‹Ä•Ë6õa¡æ“ vlè¤x¼Óˆ*4Æ(¦ž£„Þh@“¿ìºþ¡î"aŦXç,0ôG«¢6 ¯c8*¼•€´6%ŠÏ [Ûv[O ¾ò´Á¦?¼ÙŠ€×]ÍùÜþVçÎúªú¸§©¼² £AByŸý€–`0j®9šÎ-¼ ?ËÞe¼¬. “W¥)"É?ÉÙ"6×*ÌÞŠgÊ’‚š¾l›.ªCN"kN»ãµECnmÐqQp²ÁB—Ù‡%îšw«·°]…C6«§eëç§V¦8•=E ¦Éûµ y¹êÜûw5p ®kŠ‚L ¬÷-†à°X9úNÕÒ{ e†ið7š)Ñ;`ßS;Nífäi%¬Ü¹ÊÚQ¦‹nWÃÜ×¾A ֹ̦¸¤'Ÿó‚cõpÂø0-L ðÀ„¤œŠbź/øÁK†vI²ú¸NÆ¢·@X‰ 0¥©IÊä7-3ûGþÐî‘K|r.›Ð›p6J€=Æ2í(dŒ[T‰"A÷²5(9þ®’ßž¿„¨®[S€ÝÊj”*ºš2¬Hmžh¢iàyAh{H’ˆM™5#êÛ{² pÚâ aY0RòPŽ¥cÙõënhê틼º±Þ»f©Ïmæ`¢“³ÉŠ›®©‡.®ÂáRV³ÍgÞïVÅ*$¦E&nA¶’ÉP¦§–ž©£9lßÊXÀÔ'd¨›ÝžÈ販U²sW:õ\ãr`>zîï> œœ6•‰´¿ê„×.îlÅBøcùÂnHÜõKŒhPƒ}Eb•½i2ÃÁ#êìñ©o7Í[¡ƒõp"20òzœi¤¬Â%Ê*çHP‡Y¸§=ù&Á4}b@qžøïão8Û€è"{~¨—@õ!uÌ1¿*ߢ§ÿÅâuW„ëü‚±‘!ÙY<ÒCÍéQ‡¨æëÔ2-& “æ,|{“ÛR›}8ôχ+AÞ(t…°ù¡Þ_†Ÿµ$åƒùGüØLXþJÞÚ³Æ~bè¡#ÚpWI 9Èú4Ê0„ÜC?ÅáWAãÔR•bk ™WµÙ·œ” ÄßDC8±ìh;B`^dÒd{R÷‹L1q½VÊp¯?@ðìG Þ–àà& ŽðT{q=é-±óY{˜ƒ&ˆ ê @"ŸKzI¬)a8¢F³ÔÀô«e®‚¢)¥0MRM­|SŸfnaŠo±Ã’ëVìÆOíîiIÛ˜sÑ *Î1TB d2hÁÞÉ¥yNB#Î*ëŽõâ!–vë‚fq7I½¢T(êH‘Ç…¾^!í SËÕCämßÏ™lÛt£p >ñŒL· åg©‹l:PÝ¡ÇÏçóï¹–À˜Ž6àAÀ¾+ôšLrß,UÌÂSz„ÌÒ3Ð~ê÷ývéOc7/ {3ôã(ÏE,•d‹XàH ®Œ£óûöPw˾‚qô­à)MlÌ8ѲìgÛPršÈi2¤sЉU00N²˜óžƒ÷:špU yŸ}‚|^äµÁtLŒ­fÿ¤(^‚fÀÄš×lóʆl’Q*ºÍ©„-stö¨-à]Ä+¡@Ì>¶ÝK’ðÞ­–JŠvyTˆÇ˜×k.Œ–sýÐrÎU„‚#M¤™ñSuÃÐyª"Úf<*³CcŠ*†±ïNÒ/©¤«@CSȉŶ§6½·ç:âÅÐÊÍ$$ËÐX?» |€”EcÆØŠ8?”dÉñ„Á #8+ú­HüTq©‚RÅ Ȧ¡!'U7êP€:Ôÿ+-*áŒ9Ÿñ^ù÷ó(oxvüÈ!¦¬)rŸ"%±íO3½V&¶ˆ¹Í– ó@Rÿw0Op?$yJÉ‚ø@¸‡¬€,ôi©Ð !˜LS¬&³j©&˜^QiÅ­x;ÜÿØn–Q-5½rUº ½úçTd¯ò?øÜ®Ú=eóý5軹ÒÏ•#¡DCaâ¸rÔÁ¼Šð" rs»º"j•t1/ô.ûö«?a(ÐñšêµŠ€…‚+vUÒiöߌ~J^±—ÞV–*öH‰øà±ÐºÂU¨"OX:E!ãŽÓ6ƒ‚¤àrN )©ô’bNAR¿‹m“aplå. ÷l™êqè÷ñIlÌE¢€¬f/´54;éïZîÌ0Ô0i°š1GÀbs)ûaYy¤ª ú5VYºo!÷q@¡Á%:?~t×@Œì•Ô ušÀ´“úÙRÕ%¥È&ië:|Á¦_:ô– èÐy*XÐÀpÐr@4Œ‰í#m¡"·…#óº *5²ª8oÀZïÑ¸Ö é}öc 25%¯^šŠL8Š,Så6`†æü£Ìñ•˜æ™9×®,ÌíÙ”¿à”Yù+‡°¹ƒùËÅKkëÿæ(Ô$r$d4”1ºðg‡æ4 u÷9"êPÌÖ>;ïitý 7<_Ażé¡fß½ ZªTp6w‘ã‚[Œ¥Nc÷f¤Ê“C+y†QÔh=³:y àCš–Š!<§Ð*Û ä ’›˜âîIÚr”yœ"¾¨#u‚÷t,¡8õfj7qg8è½.ß/-†ï!å`α–ÜC} Ld- x1\<åvÜ#ÉÕb |ÞÔÃ;£´`Ö‡ù‡ p"ŒéÆ:j¡<·» ±-Í“èÅûú”؃oÒ(SØ¢?ŒT¶Xº¨ç°Xðöv> ƧèŸëR.Ð¥ Â|Ÿ„ÚÝ®‰*ñ_ÒqAPœ¥ ØÁÓpÓ,E倵 :"f¥õü{ÃÅ2̘ꇶk§9JlTn05ÔÊÜÂæâ/ÊÝ~ø ¯¡ zƬÚj…p‚˳kÈ5¨¶¬LeH×5c)ô¦.bGˆ»›²ðsÖ'× Çâ’a¢![Âò†…ö¥CM…†€–uIÁ÷"3 ÀãÓ?oÚØp4Ô%¾Pý²¿¨Êh¹Þ2äQŸdÅüãX—òïëö9è½´…²- µüj·Û¹Z‚Õãé wXÆóå8þŸ¸ñåéè`1Ý€JW«¤æø¯Ì)&7N#™OoRð"’mfäfD˜è’ª€5+TxUKRÃyÖ_VxYÊ._ÊÎsµFEŶ– ‡ÂC¤T\(Jß,v¬‘bpiÔÏe!5Éñ~É+>ÛÝSìI Œ.|b¶Í™Ä¿rÚQ¼ o—Ès¨‹ä˜x á5ØrÉâ%[ÍE·ÁÛ…EŠÿèÙ‚ÍÄ:âXj«££—Š‹úI&*¾U ñ†™c%=!ê¦ #Oí¶a­YzäÈDœxºÄ0Ô!€b6Yï¹¥ÒNàmÞ¾ëNã4p}>ï÷…\ó}ö}åÊÑä>çk;dâ+¬Øx©±Ãn8vâ¹Ç$•¶lj CE:TßI#Wn£ÏäÖTŸ¾Žr¹¯–FµtX؆ ×Í7… ·C쀵ÄT”5É[¨Ìê…?ÊdÄw…É 2äfnf<ÅF° ·| ˜%ã¢Êæ ÿÛ5®aµ`.¶¯¨øÊ¾ù¹ÞCÄ,lå°²=’YW~ãX-¤d¾–:¥D#ªnyŒW@]2¢Œ”Y~R‚ëH´¼f-÷“T¶4þû®»÷`÷¤Ÿxz`Ÿ¦(ÆF4Ê0”)Sý¯`”ÎâŠðsJ—Ƕ"5ã+NÝÓÓП¸é(¨Ê¤jCŠ·DgY5´Ï|Éű®pBj›¿]:~Òþ"åp+MS—>Oðšlt”N“öòuGŸŠP':ÄõDÉ!¶ìèÆböˆÿÔ×ã¾ ¬qŠ“1 Æ’„°È8XûOØ»æ(YT¸zi ÉÅh+J~øõu/)Äï6.{§ÄÞÓMÜÜgof¶=G¡80·#<Å[[•ã…ÁE—‰r¹ãÅ7, ïQf&_žöpJ¶)¢-“/ Fy Êá˜Loå–6ú2Åüáðû ?¿;AôÙÄT%{‚Þ¨ò#ÆBKcLŒvò2ZÅ@Ÿ^Ý¢2B \^ª"^¡wMPª•vî^€ù³ëIººèwÁíxêÛâ³ÅKR¬=â½âº¬øs»ë—ù>Ml“dßOP tÍ5ŒCÝÄðäXË7+òÑ(»éŽ¢oÈ*ÁØ ÀyV•MX«¬ä^CŸ5›容&AÄËZ©OK0e›³.èjþÎ@2NYI¯R]K;|1îoNó%8¡ •õ÷Üj‡ãsáÉ·Åg§ Ãy»i!ðö!ò+ü9k¼äù§ë9C…Kö‘Ûûó/ ÚùS0 H’²Äí$•Å/y:@b7Ë<®s%C_€c¯(·‰ßãà÷GŒªh)ƒÜ-K¡É‚ïæWm~jÌU 4~ ò׎ҴØë»ì'¨‰›iZEد¾l~>~ùi-‰ê‚õ®ù×/!Ã}ùnõ/-L\]ëÒ~.nw7H† üÅ3ÀíYc”ƒÈ.kwM4„Äô¥Ïm‰ü»ÏóÅæ¾šüvÛÎW2˜ƒœ/¹è4ÝÞhz¤HbU%–†øæô¤]dÓk=]Cr‰»”EgŠ:¦âÃ.ŸÍÑ͉†ØÛvä¯@èÃŽ„üjTŠz)#.MÜm³ï1¤yþnùV"©º_.š9¶äðf»Š|wiWÙ0y©gɉÎÊ­! ŸuíÈ©߃8¢ »ˆ€g²ÃjÔ,¢ãÆ­'ÎÆ¹A¬Ï¾ a"þR(öH’ö釥ÌXHç‰0àâøTR{äöêŽÒL)K‰+ñû¦–û»<…ã ,-MÖ’ ÃSøxŽc Ïä3\*Mš­J„Æ WÅŸÍ)‡ŠùæîæÏð÷¿TªíDendstream endobj 323 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 669 >> stream xœ]oHqÇ·ÙÝ©#Í1;%(Ë Œ–`á"$ìΙF¡åjŠ©›kÿLwk›Õ~kº¹Í¡S¶V:’‚@bg9EWbЋ Œ^YP„PÐïâŒZÖ«Þ<ð<_ø~>RðÔʃry‘TºóÏ’Ïå ¸BÈ8 ÷h ¡(%ò#' Èøš –»MÖz¡í¢V©É;ÜÚ Ô´äÉmJ½¦1yù/Û´ç8ª@ùà–/ ~a|7X¿6yuIgÐR¼6ž5„è# äz’-þ„Џ t;=ÐC†ŸŽ*ÅMVƒÑk ÓâWï×à&³¹C?`¦Ñv<ä÷Zü&úRã·U÷Ô1H¢´—(õ;-^Z©@é|zuV¥¢‹? ±•,)†Ç`Ýœe–œ'`À€217óô5»Kf‡v‡úk×Oš¡L=† hwBˆ 9™D†Û Õiƒ¤Îl1èìƒôg~ï+›nZ„äó·ãËn§zèP—ß`43FÊDÈOwœUh¢“>§z)ÔŽöÁ!W$` t^§ùòxØì3è³Îž¬íþÇæ ,:Ê.°¨‰­™Íb¨*19•-þÆ ÜV‰o+}ÍÜSzhG£_yCC;ˆK&[+ÔBu_{PKŠ¿0õFUµ"gÊ©_~‡²ï®x)D¼èf U€7éFÆû{ý=~:Ò1b‰^#}ø›W‹ïïX¢Æ(=Üò…à ¼Ú2ÉP œhh>wʨ3м}Õ*.Gt‘sóc,õ _@àŠ´˜ßÜÕ\±%²`¥“’1ôSâ%?˜ŽSN|NÔôÖ’— ÅE¥B‹%¿dú¹2/Úßóz7±’ƦSiBÿ>Q*¿Y—.wendstream endobj 324 0 obj << /Filter /FlateDecode /Length 3787 >> stream xœZKsìÄÞ{“U¨T‘ÅY¤lEÝê'àT€")k*®‹YÈ3²­ ùJš{E~{Σ[_Aå…¥V÷éÓç|çÙób“gr“ã_ü¿;œå›û³g’F7ñßî°ùðêìo_+· Y°Ên®îÎx…ÜȢȜõk\¦ ³¹:œ}+öÕ¡½ÕçÛ £t¼åîûò¾ÚæYJ{).ßîߺÙn¿»úR7sêÊd:Øájô2 㬸z¨ûíEá,°‚Ÿ¨^l/ò,7R[%NõË­1Y€7Q6Õq«\–çÊ‹!-,àxðʺ Ú´ùâh¹Ê´w¼¹èÛS·«nÄ[pœìkä÷ê¿OÙõ*“¡HÜÞn/`×r-ª]yê+Úä¢ g6RFòäá¡Î@ˆ¹t$7~ J€œ¢”¬ÎŒ|j€å±l~œ©©'H{CºíªÇ®ÌyÚÕ· €·Ä5ʨ>NïöYÑ {|Ìí|8 8Æ"x Äoè`b¸99ƒôÁˆ»¶;€ðl^ˆ>{‚›ëª]{â|J>[Ø\}vvõö·'äÝ:)ÚˆÄæ ¤îG|‘3’^_Ñ+xì™ ÊÃ#™7/â³ò[.%`ûMrJÏ`õ lC$-Á‰‚'e¿Å‰ ØWå0íôÀ&…`0hR=¢†,L|ÓŸÊ&é«ãéÐ2š}V`Iuq¼Í="f|Ž )è`M3ÍŸH{­uSv 5ègw{h5½ôí¡êCÅI>þúLjS@ ¨™o"h`Ótpr¤3Ž½Ø—C åú¨#,rŸÒ%³ºNœÓ󵀪ààÒ¦é芘Ñ Ó À‹'ÖýG>,;ž…˜ F-`ÎòcŒڀŲ3VN¤Q§Æ©‚˜¶s’§z¨¦Çp;2-HbäX:>ˆÄô—À8²B²GèO»]Õ÷w'Ô29ŸB&CW;ÐMŸÆ%Ç0I¾2*%z+PðCŒbx–}ŸèK¶Y|ö29¢`1çOÿýÖ ³@ ³ ‘n}Ü5§}5Qì7õ®Äà“ö¡í/yzv€9ȈÛ~ þƒïCËùLÈÉ•0¾øM‰o%Å@BñçiØ ©¿Ã7Ú^EËÍÙX÷U_ßg$ñ{ÚÏ-H4)L=z@S—Èsrðwuˆ¸åD¨«N}‰îOŽvýÅÏ>H)†hÊÓqÇä¬Á@P/GwW=Ô»fPÇ,¶´ÈüœÀ*¤ý.å9àŸÁùðÛmÊ€T±a•*2W—9¯“?+2 hE"òYt8âg$g@”-,‚_”÷TPâNTMƒ:(ðó¨õµT‰wcÀø`gKœbRÊîˆrRö“àî:ÈB¢R¬à™¢©ÌCœthGì«&Ù«ŽìÌæB)à’:öOtÄàs¥¯ v–)êÌÂÆ` P,À!yMkd@wÀKœžm1Ó½,–\"wE.@ÒJIòïà£ÊDrµÆ1٢ωN•`EKn…U“Y0~ý›x…¬ü¼]òú.q IoWx§BùÄÓp²üÛUéåº@‘/过KŠ\‚¥¬¡Åf`0g CY«Š¥| 2ô¿—_!©ò –“ˆÖ¥¨æ2 V@¼Ôõž9qv^)äèÐ%ؾß\€&´³–wøÓ/J*63EÍ/ž*x¡,HæTŽcˆ”l€‹—"_CÏ ò#ñ÷ž2² ®3°l‰½×…RÉ'rïþ"95øÈX^ e˜H}RMö¤-eac`UHՀÕ~IP‡‹5˜DA¬àÉ#'7B®" ðav î@f™DwpÅi’¡8w×6MË¥$x·Wu¬¼ Qd¬†Ãr/gótê¯WŠÐwaGÀîæ™ÿ¸1$¸±1à9åÓTó–qŠd'I †ÔF‹*r³À$¤_€ôX‰»¨ýD¥P³Œ9&ÔºX…“µ³:ë58…§p²Á¤ÉÏ_ËœQJ†ÒdìJûrKFGH9ʼ}_ÿT­úN°smŠ_gZReÖF½\bí#Á·8aòÕd×ñ‘v PÄP!†•”âôèÓ3+…VQ¿|>Ýc,4•²ÞîöÔçVýîd,OÝ¥Ìó<]~›÷^©ÇËõð]Ê‘ø3L:¨*g6•øÇtºãq2g0©…ûØO,ýô¿‹©ÃÃ¥œÈŒ,òRõû—¿géÏÙiÆËç}þVçŠÚ0]{Ú§ìÄî± Óvi €YbÇ“_Bê&Bø¦Ä€ÔZ<ŒW(Wžë1{¯4n¥çt>x]{:î±Ó©Ù|8ÙM’í$N³k†Y—Íh¥OdcDâ&»%Šñ|È%éå-DjᬠÚål†”º’RV<ð$1`Ï;ÿJüsëQwàlÛnÕbàqL Åí¹B– ÏDà¾$­­,ö,ϵÙýØÌÖtTä°ERÿ7Çú‡5-ÎÔqã ÊŠ gpãÊ>ñâ3C´ai„ÖS$ÚaȤßû˜ƒ’rPšƒw>üH «x%Ç·|=OâÛ<Ë0ÜŠOäù’^Ük% ‡¨AÚ˜øóqªõêþl˜ïù>ùfúò). najSbífèºå>£ØÇuÄôŠ6 ’ýëk·n¤ƒ£ŠÞXÉ!𠪊8ã? èöU¿¢G Éo^$J`³¯“‚òÌú|´ÆÏËݗϦdõzÍ%6³ùT¢½A:-|Næq{z³Zõ Æe.×ãÅü°oÁÔVn³ÁÍ»é6û|¼ÅÁ „Ñ쫎­ÉçQï|uÇ7dwU9œÈ½¤ÏÉùÅu½r ¹¸6ðxKDŸúª!@Ö08Ó³' â#]èVeóG¼EÂ!;AŸ_©¨¶ì›’àÏ"´¤öö¿ahìowÕ¬t£Í4]"Ì­‰ðlM‰ðü— ‰1p=µÌnúøžñ㫳¯ÎГo^å›OÎdQ8€ÁFj~?lgÊ0Ì8М=ûÙ_–@ nœ[þ²Dë̃4¥&•à/KÒÏ9À¦Ë%73$¶3ˆ.)¶ÑÒÝÞp)ÌwË!ݧ¿LÀ‹7@ÁËúþX <›GîNGºù/›zØrÆÌWWtUWˆq5þâëeºIC=ѵ%&ÞPV´ßš…”NDD~'ÞÞû4“_œOp“£©¼DžrU ëØ&Ç^<’7 òïàÆü>WÍ^ˆ"ŸÍ†ÔüÖhÇŠÁ}ô i—…aìɼ;5ê-w¡@”:6íçq™”PèÍÛƒwÜàœ)d‘Ò þÊ~˜„7^á«€ð › àÕŽ }0[Ï<8½ÌŒZÓ<Ò«-ÕAÇŸÕÐ0¸ú̔۸־ØÃ¯@·_Šh—îãFzAŸvÕ´lל†‹m pß’(ÙñG>¼í|83:+“P!“äÐ.ç“þƒÃà=JmXöçL«ÑƒŠ„•Û”ËïÚ®£Ëi$ª £ N©é`†ïz@u?.`)¹%ž*îÿ ç±ÿc¸ˆŽ¿œé³Õ\endstream endobj 325 0 obj << /Filter /FlateDecode /Length 8872 >> stream xœ¥}YoeÉqæ{=yžíîË@—ƒæÜÏÔ`lÀÆha½<~+v9Áº§Ñüi9=jƒo.Ðâ2”r*-.½?õœª˜¾LÂÕ{š€›oŽþ«ðÕÝóo/<±{IÇøÕõÃÝŸ™²%ÔŸkÉû»—›?ëP.?-&:×6þîÝ›ÿ0챞ê!»D1!9ú7¼÷dÚáñæðO‡û7éS-‡ï)"ÿþû/¿$µ4®rèíÔçɈ®žR;ÝNÞíÓ)g¢C9Õ4èkêó)†¥E §¸JPZT Ã`ðÈ ¡ÅSXT(jÄh1¬V ›×o~C]r9eâS>¥Âž''ZÇÁ•s³/²ƒ«áäû ¡µ¹S­K‹VOm`¤hàʉåÔ๠X©‹ ¡ÑÃŒ°f£Iؽ`ϼ£è4¾ÉSdÁ³É!)"1úÔ³ÑÐx_O¹ štzÞà—”™ÂÒ{,ŒDM´jòªBhô` ìg³Îºïö‹O”"[N%±OÆ)Ü*`ÐSÝN¡M#ç ¡´ú­˜Ù¢6Zí‹£E÷PNJ‡Ù†¾¯ „Fs3ÁZ˜‰Ü}÷@¼êáÔØ•â‚cppÍ+uê†òÃ)ÓôSÄœ(-M:É,,åÙ‚¶‡€AŠt0Né´Ï¦€0iS…ÐpËŒÐÃF•ðÊ ö,ÄÆ!àZ>yŽÁÁ!C+,£ˆ¥ÞÙ;^!äˆÞFÃRÒ——¤.¯ŒÜA9•… pĦµ14(jÃha6š€Ý ñŒR €vŒÓyáÿHH:•FØ7i¢û)úA“^d¾žg dƾH´è@ãdš ­!!óØOBÃ7³ÂZ˜•*á•ì[¤,ƒ,JqØ5cÐ@Ò¶Ø^g¾“L lL…Ѱ“Æ8Æ¥¡™´J0ZT ‡qh. ÆÂ$ÐØ—U‡ÐèaVX 5ÒlNˆ_•&ï8A6±Á }ý‹µMû¶¨HƒçÓ ¡”vŽÚf‹äò©.Í*¨ƒ1BOؼ†€@{@XT( jÄh¡F ›ìXò4Ì$$׎I>/œÖ‹B ´¼i8rç "$ÚKs4 ¥Fö-2¥ÃU‚Ñ¢=Ç£ç”P(œWB£‡Ya-†Ý*a÷C|+™Q@"èC[ßyåt±Œ¶Kê”(Øp?7i¨m2[tÂw«€A;ÝoÇ1Ì$ÐlúU‡Ðè¡FX³Ñì^°g”ÒxÛÕé:›œ†TKtÅr¡PȼŒhýœR4©¥}„òÒ‚0“k‹„A;]hƒCÛÖÉ@ ¥øE‡ÐèaVX ³Ò$ì~ˆogvÚóÊ!ì)´o„5L§í1ÐÚ ¡—`QöK Zy•0hÖÁ=”C¦oJˆ øÔ!4z˜Ö¬4 »ì[!`R*ƒÃÜžWNcxVœ†šžA†¾B“ÞB §/ óôUÀ Y:‡-ª!€Ö\^5n€ia6š€Ý ñŒÏ]0« ٞťcš ‘6ûC)¡W?hè¥1ŽyiA‘W F‹î¡ržú”<½¨`íÍýÝL´î»âXg­FvKiJ¾X%…¶MF¦¡ rÃ*6štV_$¯[‹1QC Y:£F^$C-±q BÃ-3B[˜*`sªQ6ÿT9ŸWçÏP“À…D(›}¥Mu’°’ÆÖ·¥°Ü*`Ь‚{(‡z" ™“ýP!$:˜ ÖÀl4»â’ˆ}—V>ÅðyáÐæ0þ]à6KDUʼn®šô6‚F%ΠSY$ Zt ‡qrErŸhí»U‡Ððͬ°f¥JxåûÖBã@@žuìÛàP¢@'D– Òæè`Jƒ†¥4È®.-h »U‚Ñ¢=Œƒ3Øa  ÔVB£ƒa-ÌH°{!žUÙÿ#«Œ¯§Ê.Øh.Ç4Ñ B†ZãTf‹NûiNS EõŠ/5†J=-:„†³ÂZ˜•&a÷ƒ}ë„L •¸6²Ñv#h<ÈÜNÃ& ;SÄ®5[PÌôUÀ dÁ soM@ªR?1J£‡Ø0˜‰&`óAÜ¢Àä8 áÍ ®‡:yA-Ba €MG­" Zi€‘¾G ÂNq•`´è@ãÐwLªI@¥aÕ!4z˜Ö¬4 »ð-:Š\€´aP<9Àjù@4År¸IgŸˆ‚’¯ƒ¾¦QN£-¸¶J0Zt ‡q(˜(M ‰GgêH:~Ó kaVš„Ýñ~C,”Ìu¡óÂ)\;ŠŽþ%ÐD4-$"«*„„Ö† ?㬱ö6Zäs{å c$´?²÷"žI47õú»Yg½wûÙ'Ô{"uC=ð¼pïèD7†¦¹3 3Wéô‰¿ÇÏ™JYº- ÐÃ8…KSŽ©Chnúíg³ÏºïˆW‰"Žàÿód Ÿ'Š(…#Ëhh¥±¥Íe¶ é~ ¤(àö ìF7»'‡jéT 4:˜ ÖB-4›âadÐJª\Ø+ã ”B}ËÐ&›kæZQ ¨S ’t‚C4D³A§ö¤(@ãÐ’k àŠøÔ $¼2´Á°P¼òý¢³õ˜ÿÎËjpàP›x‡å)¦B- Ç!af‘¢¥ýN˜´¯ÝÜA9j)'N¨. ˜D{3@7û¬ûîxE('¾LCV"{eœÀ[HD‘2i9X‰E4iE).-P‡Š} ´¨@ãКqEC‚s2¦Chx¦FX³Q¼ò‚=#&§ÎR+J"ç…C€ÖÁ°(è ôˆ $â4¸ª4 ¥¬eiÂØ*ÁhÑÁ=”ƒÃZ9L 4umÕ!4z˜Ö¬4 »âáþd3žú7 ¥`àÑBÿÂ%º£n4ôv)\Z T'Â"aÐEÏÓC«ÉfHHYdê:Ì kaVš„Ýö už¨R/œÆ݈C‡¶(H¥ÁKeÐÐKìÒÒ‚°’_%-:ÐÃ8¨µ¦lRmQ!4:˜ÖÂŒT»ìYö²ÛÓÄ(ƒ0툧‚À¡G}ˆ Œq•$•8˜¤>'”—ÞJŠt4WY‚Íaô¦é ‹t&ÑÜ´ëïj›õÞlw~’Тï''É0#4Ô 5‰AB'NÈmi@颯ŒŽZWŸœÀ’)!pe~¨ZºŸ6X³Ñì^°g¨êàœ×éßÊž Žç³jD]áÒiÐI-žË$F“^”–PK-"—6‡%EÚ £!’YÖ½5®ÏJ£ƒš0Z¨‰CÂî„8–d¿ïŽë ç…ƒò#•bI6茱l4ôV)TŽ”nk_$-:¸‡p`­…!–ç0u(jÅh¡V »â[—=¿–‚ä¼pj>¡*À*kj±:y’ª4©Ey å¤Ñ"ȳX0HÑ€ÆÉ vL™bOYsO#´Å°Q%¼ò‚=CqY´ãìǃVc„Ú$0¡W.ÅG”€V•†¡¨2û¥E‘ºæ`4«àÊÈ\ŠŸp¾J‹ ¡ÑÃŒ°f¤IؼÇhœ9|ÃÙâ¼phã(ÒäqiÃ… (êaФõ%—g ÔŸÜ"aТ=Œã:'Î!Á鬛7⬰f¥Jxåû†Ú%Îâ(µI¶€ËPzˆDW>𯖸‘ªÑ°4ó)c¶ ÌDÿN F‹î¡Z ¾™„Ø9B£‡Ya-ÌJ“°û!¾Uy܉bJæü888‰P'Ú.%zTh“'ªJC-JÀ}¶èN œ*`¢: mc@¶CN"« ¡¡ÂŒ°f£Iؽ`ÏPÝáX 3cáÁ)ü8¢<„¦­T>çAZ$ MR® ðÐc`´¨@ã$¾v0%àIÛ¢BHt0¬Ùhv/Ä3ÚÈyÛkØöÏ“ùâPì8\a;Á“"ið|6:›5ì÷žqž½•éhn ~š5{ûÈÓkÒ™DsÓ®¿›±Ú{³î$GKq€ì§ç•ÃÎ'G¹¸I´(“ ò Uékêåˆ1Z$)i ƒv’&Ç1ø*á̺èP=ԊѬ4 »â[æ‡< IZcߌC¸(Á²Â‰ˆqS†”ÊÇ=£¡·Ê³ÖÑ¢q:œŒè18³){\Xtf…µv«„Ýö/ 4I¥\Oœï±‰V´à%ïåQªÒ¤&ç—QÆ F;ƒƒY€e&¡â<°èP=ÔŠÑB­v?Ä7I™ÅS{ñÍ80uB"lØ/îºÑÀ µ•ϳE岿`¤hàÊ¡ôH qp”Ó¢BiôP#F ³Ñ$ì^ˆgwꓱŒÏ“ƒ^RhÓ,½Û. w¾œŠ2B¤uÌ÷Ï)(/.3'üBDAYßy"ÒJ”•h³çøR4_D¶kÈ|s«Œâ(Sæ‚á?nÓ(ä2sÖF„bù¡Üh#Œµ A'¬Ý¥rÖF W&üÚH9K#3r6ZÍþ™cq¾Ä€û†KŒ¸¸‹üßd´1X—” ɾ@D6¢ƒþ‚ÛSDäÙ,~i€ÿÜ=ïŸ4´p8ÏnKP:lu¨%ÐÎêÙN}Mà oþt8ß\Ýë•õÝ[œž íÏ—>7òuúã=ÚÎ(8É ^LÚ)ÃAÁŸÆÕõÿìåu]ÖGȾ.t<+É4sÁ%¾ú™}ã§àØ%lZ½mœ^°ý€C[*c@"0ìŠ3žNä¸qPÿæN>9Ôy°'Ð̃¡7ˆCŒƒûr"¸e½þHç'0Æý\:³¶°s<088ÑŸøîŸõÀЫ¯xÁÁ¥ÃwÀÁ¥W½—¥bôRiÀ©ä5d¤íÎéeãÊŠÆmM”ëÎÉjL, Às”+ràŒë–ü{ã8Y¬êÖ<ìÊe× #yëûÆ ¬ +Œ;£™GËnðÅu&‡KÜÄÉ.raªpôr.Må¶qhSH,9£"Ì—Šìàèµ³Äã7«´¡PâG è‰a7ºgª.:ua ‡Bi¹†Ž^–JRtÛ8EpOA&X‚,qì2îgJ0 N4]• 1LNÐÉ’ÇU¾—°2¸\ Å`t¢áòÒDïФbŽNåýý÷a¼XŒ{ÌÐÛ) ×iÊkNàÙÙ• ¦í«K½øYŒ;#a­ßaæ;HÄé¦ãÞ†ÏjÍà ÈÙœžùÑYUÍã¶çyçDI&Ñ‘ ‰o$ˆyõ™``eó³E':ž²ƒÓóÆ)QVCDJÂ]vT—á‘>Ãnä褰ªX‡]žÂQ³ŽñxØñƒÇãVD$#~Àå­—>}-´–× ˜Aá#7¸„Ž>Ú,Q-Œ,7"9~¸íM®>6D©?¶Sd ļ>ñˆHàØ9ÔMüÎÉ¢·îø¡BÕáOºh@yM,Ï×¢ôá˽8i9®xƒ£Ï‘ª+’ N“åSæê ¥€.yo<¢©+—‡ÜQ 8Y±GƒÔ$AlœÂñ;%0¹f§NèS†J£•òÊŽg¯‰ØbZQlŒðkµ©›¾u M"ÔµvY[£4^å¹êÊiUrS,+s³ 'Ž•ñÖƒk0<€ÈD|ª.:™VÑŃÞ@N±N<Ñ\õáuÖJiˆ8a,Ú¦ŠLÄå}Jé¼X27 ß^q˜,²}¶ÒeÅYu¯áQBÝ9Iet¼h[“oÎhðÊÎèº;…²8ª‹|VšêŽß;Ú8|Çì¥&Ù>{¢{~zÔä:9¡I¨%¤¢ÀõǂĎ–T:¹{Û9]B-ñ:\:õ’G±¢ãænÜ9ÕÚDÙ>{’¤¬á OøÂ 86ƒC‘Ý)5‰v=dg\6ãÝhá$íE@#E™ÍY;"Óø”¸q|—¥H§*Â|À…ð@ÿK!óëõÌé¢"N; ¤T †l%)\<Ú8•©dºtË4Lé²W¼58I—¨¡L‡W—XŒaJ‡±o‡"Xp€¡L´á ÒÑH (œÂ¯"N˜é(xE÷xêGŒƒS‘ÌDEC4Ù«K> g R&Úh3Xé”ûΉ‚ gz¼NºáLÔ‹jß81)–1œ‰÷õʆ3}n:êƒS qÎGð¡¡JT·\Ú9Y 4˜éåU­Tâ4"`f¼•á öÌÄiDN ãí Á fR|Èú7˜‰ÛT‚U T¢ Éer°q'ƒ™8|ˆ`•¼e·C£,“e0'”´ÁLÔŒ®N¦3 â)VTI°Pp0º,Ñ3 ᡵ€Jœ6ê<#®ß”)2PIˆGpÃÂɶ3£x=.Ó2sÈT€±€Ìyö0HS8m3f-7ÆÄ«M(¢D,ç´s²n†1qá½ ^TH‰—ò†:cS ?Pfr^‘†aJpLNR`f(“ò®œqX&ÁzòwpÚØ@&®Ìðd H™è·sø­½c¦¤ E”?¢å¥¤aâU+a(žÄ¢”Íyp(wñÂ3á°Æ­áIÀBÝ8=+þ1„‰“/ü'³«êÑàÐ5Xƒ˜h“DŽ"JŠ\9SMHœÀE™9E…2)qàÈ68Iw¶2õñ)ùòjß9z: UAI)õbõÆÉê…L &G0%*¸1oŒ¦£l ³ÐAŠ)‹÷ ‹4S*Ê,ž_†Z0å”xÕN*öz´sZŽ2NjMj/Of¬à­nIPõžD´`€Rok/ð›ˆT­VÎ(i~3|DJáãà-* Ì|wAØ0üV¶¤ì¯èÌð$.ÉKÅÖÐcîÞŠ“sXÀ$¶”ºAG”®$fŒƒB•T: LâÂ![§Ð±àvFØ^&Å d‰MK¾Kô§WŒ¢«É ä¨m àˆ¢TØ9tæŸ J⸶Q숋¸r˜œš_•,qXŽ_ àIÞ9Qv “xnT7ð8ŠRƒƒ.R^28Yq S@Ÿ‚GNòœÄ8K™ÂàdüZë¼Þ´rÂà(œÄUB)à0„Ä»¥™=¢¬U1?êë©+‡öâ¶•-kÓ'/㥑QâS¶Ù0 TÎz”aHl|Z[8Z…¨·€ƒ†Ä5ÁQ“u5T‰K(R¿1 ‰MAvçÉqŠ\ U¢ =ð°U.[Õv ÊfU–!Q§*ƒ–vÝ@ekQöº![·Áb¸—ÊŽ¬Ä„ìøÍÎqE¢z€J<ö—©P Ù½lûƒ¦eX¶Âeº?Í»Í(šn(u+·aÊ^œ$¹yq8ëQc0ŠŽAJpü QÚ’6ƒSm‚RvlRƒ´«¨xêwNÔHYœ·J È‚]Éáà %nPH*¦ä2–´×'sÜ —%"ÞÕ S§è"RYxY§#àP%‰­Z¡üXŒQ£¨) ( ®iIÐ(|,øÀN,;Gç ,®ëùÅàcÁkw¬jád«n  ,3E*  êCiçàýX‘#ˆ’{ÕµrI½’‚×ÁIúÄeA¡)­² däËÎÉê—BJnS.Ú¤$pN?IqS —¾Ê¶;ª”~ŒÎä4 ¿yó;<=ß<Þ><¢ŽRíøùñæÃíõóíwìz;åøáöéùñöýËóíýöpþøòt{ÿQ?ÅGàr±—¬è˜l_Ú;Ë­…ÝÀÔì³…"7²•O?Ü_`lþøüéæùöÚ éø,#9‘ ;ôû‡«ç«áß‘/HŒß®î?HÇÞñ»ÿÆ–^zÚÄ3MÏ%P=#«¿†óïïàrFŽ ÇÛ{Œƒ#à|¤‘úîŸD¡Lq¼º;‘>¼)J¿¼ûd=h®®Ÿ_®î”¦ýxsóxõŒ1R©‰í2’L|¼™ÄÓ§q;ùã÷ð}k;^=éß=òW /?<›uý #ÉÒ6)sÿÝÍãû·N¦7Ãâ˜~ŒiÂ7Ãñï/ð¢káøòHê1Ù|#³oþ¸ØùùîêþJã‘¿ÐYú·-¾csK¦îï/.Íö‡§ÛgŒ¶ó©Ï!þ·&€Û”³ä •(ØÌ'Š“hÁ·bZ>>¼<~yM#Ôš†\ŒüÁÐÛ{QÐ9‚hy=³½˜MÀX¼}ÒÆ®½š Êú|¸â<ĉ’÷7Ÿ?‹+¤óæþÃíµYÉÇ¿=‰ \8¤1}åD,ÞCë ´º¾0‹¯>7[Áø$ê憌¶Ú1‡ç›gŠàKøìB=Ât¼zÛóñš—%êó(“úQM¡9 \¾VNOÇç32¼’'Zb·ºQÙ­êd‹C…u¡ý$cä<Õ’î¸iEº»”©&P“a ¨.ÞX.¬|ÍŠM’“ð)Ô«keìoŽß_\zxAñsûü ?Tž¦‡Ï _Z%Ø}´¡“/µÎ¾_Bý©_?ýö_Zôx>ÖñØo.`A×€KÈû3G[ç5FQ.ÖÓX#i>©wXäÂ•Ó §Åé$_ÇʯBËâ½͘ÀŒŒùDË›o]ФŒí‰S(mOø“HÔÐøþÉš„£² Ì÷#½'‰îŽôoÄËíóWDð;³êLåá;~ÿéêÙ¨JkÞòÂÃËìüñæÙlí–Þõ§7ß^½Ü=«”ž~bvmX$ ï³[·Ù}O+Ëf÷ÓgïC'÷õ¥è9;,«ê!˜x£§Ð&”ò– AMÓDÞq%‡2Ùjt¤-H†Î¤Ü<>b툤J/”ãéy¹¿¾y|¾º½¿°Õö,&Òóúx)09zÔ£=zc¾‚Pì;åøDÉ($¾ï]ÌË•[Ð\á…×Þ¢ÌÿF˜½LvÉ_DááŠ$#ù;¼JF´"9FÞÃ| ¹ =àûÕÝÃý°¬¾ÊNW_оÚYÊ¿»ÖËñWO_ ù´eãB9Òù”–׫O(ÿݺE^?ß1ÚÀnÕ½®z'”6Ÿnl##\r…Ýg]ÏO¶­Åão7¸‡@éOðWDZæ?µ×üßo1¡- ¨»’ ðXz —]I-ÿ.®º«çõˆ‡Nà~/*£Q,i ñøx1þÄTPŽy¹⬂o`É÷£e#‚´g—e³0âÃËûÛ‡—'a8Ÿ!è’ç §ÿBÓÃÙ±Á%ßÅCBýt«=1@€¡æKãq¤ÁJAáÄ>@ºÇœo?~’ÔVH"FÕ ê}üA¦ñÆùÊ!`ñõ×3%ÿÊØVå È_m7¸´aŸ¬~ÿñóaòƒ²¼ï#~ÁÒ hRînž§Vµïüðx3-ü¯TS`Í¢úñ,™:õz°ê8bÜÜM¡OŸuúp ¹úƒþ « ÚdlñR:é÷à\Àة걈Oƒøý­Úª:«£SaH6ðâõÍÓ“!îý³òøþj¶T¿|Â_—æOÈ#Éþ/Äm«¹/g;™oŽ¿}û[ûv»?þ–¨AÒèüóÛÖìù:¹Ï¸..êß¿<Þ›: Æ¿–Õ¹oGo½snnGÞþÎýþ‚–ìwÿ6ËUwДέßoOøpÀ hKü?Ó‹ûû‹1«o{7#äX9Mº{¸~Zê?רó§·~Š&þȵð‘"]ã¤ëkH¼MÇ?}"„­JœØ‘ðmPg‰)œP ÚÇGŠ/=aâ>àЋ_iliõQ¨[ä<>©äÔ |qÝW’íÿ™€]úÒ²ÇõW?püb[ýñ"0í‰/ÒŒÒïñÎs"U ±Ã×_ÿÊ@#Þ/O?F—øC:AhøÔ‰HìW À­Hâ¦Þ`¿œñµ&lr83~ûlñfëoäg˜&P€SpòÚç_â.‘¦ƒ°žœ„Uð„ýÚoEvH ÒÀg÷šiœÅágâ\ŸN²¹³ý”ß2nÑv×çÏ”¶žîÉ™Ê+ü$ÿÒð¯MŠæ.ýûÑÏÅé4h&Ä^•ýt[»-^'9Æ)h$ŒúÌH ˆ´w=^¥¤#¥ñŒTMÃór•(/>,Dz?hœÐ°¡Âô‡ MݼûAO„ňJÛÃíùöîJã·õ‡n‚Îøf80zUÜý÷óW=¬Òæx¼¾¾z"0qá3«…pDlñlâ!@-‡K~Fßx=ùº¼?óoS¼(endstream endobj 326 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 211 >> stream xœcd`ab`ddä v 1400qH3ýaîîþ¡þ“‰µ›‡¹›‡eñ÷p¡ïœ‚ßÙø¿3 0012*9çç”–¤)øæ§¤å)„T¤–e‚D‚sóJRSÐT0000ª30d€´³{þgâ¹ÏÀ&¿,û¾«œñû¯ŸL¢ý¾í íIm‰íI]M ÝU“«—È­êëX=eù²ï<N^Ü;Ÿ£}QÕ¼9¾Æi?œ¦|w˜Æö»|"û{®½Ür\ÌÓìy8TMïendstream endobj 327 0 obj << /Filter /FlateDecode /Length 8990 >> stream xœµ}K]É‘ÞxËÕxiË»áSÖu¾Ñ€Æ# ´ DÃijQ$KdëVQUE5[¿ÞñÅ#3ÏU5g,ÛZdÄŒGžÌÈ/#óþáàŽþàð?ýóÝé…;|xñ‡ž¹ýãÝéðw¯_ü—ß”rèÇ^B9¼þý iá>Æc-íPŠ;†æ¯O/¾ÛþëÅeùè\Ü>ÝÞ?½ÙnoîŽ>ÝÞž^â—´®nî^]üîõ?Zßýª7žJª_¿±ý§‹×ÿ|n8CèQ¾Û~ùkVxì½lß|ó«—ÏêŒåX\ìÿ‚ÒÖ½i}9ý¿½úáþóÓó¾¦zt%ø­ÞíñóÃïEh¯‡Bî¾|]Mt®©Ä› ˆ\†”©çûáÒûcÏ©ŠëK×_½¥n¿~³ù—áåíÓ¯.<±{I[zùîþöÿA÷ooo?_ÿ¥…^ú. Ÿ¿~ñ{=Öc=d—ÒÑ…CHŽþÌï=yvx¸>üÏÃÝ‹tŒ©–Ã÷4 ÿþûg·¿$«Ô®rèíØ§Éˆ®S;ÝŽÞíÓ1g¢C9Ö4èwÔ"æc ‹D ǸjPZL Á`pÇ ¡ÅcXL(êÄ^«†]ï^ü–šär̤ÄÓ#O…#3NN4yƒ+îf_zƒƒCŽVxF#–Zgïx„#Z OÉ^^È\^-&¸r*O SàˆMscXP Ô‡!a>š‚}¥ _¸ŸN ‡âG@Ò©ÔþqOÝÑšì"óõ<%û¢aÐb-Œ“éYÐÐ2÷ý´!4b3/L¼T gqpl‘² ²(ãÀ¡ƒ:²Q—c`{}òtÒÀÆ£0~RǸH„I«£ÅZ‡žEA_˜êû²Ú-Ì “P'MÁ.‰«ÒÄä'È"6´.àAÇFbnÓ:‚%*Rçù4h¥•£¶)‘!…EàÙ50Fè ‹×Ph ‹ ¥aBêäа‹‚Kžº™”äÚñO §5ä¢MoêŽÜy‰ÖÒÜ G©ƒ‘½‡D¦t¸j0Zl Åàx´œ çÕ†Ðha^˜Äð[5ìãØJfùÐÒwZ9]<£å’%ì8õŸ›4̶Ž2%:¡ÖUÁ ®·ƒãƒ8fèiúÕ†Ðh¡N˜€ùh öQpd”ÒxÙÕé<›œ†TKtÅt¡¡yÑü9¦8h2KëåE‚0“k‹†A;hƒCËæÉÐ@¥øÅ†Ðha^˜„yiöqHl&gv´§•CØ ZhÝ ÖÔ3–ŒÖ »‹²_$hBäUàÙ·PAz|SCLXÀ§ ¡Ñ¼0 óÒ4ìãàØ “Ržíiå4†gÅ)`¨™áY¡dè+4Ù-zú"@˜§¯ Í&ÐÀ84éhR 4çòjAh4p´ˆ„ùh öQHd¼í‚[Éö´ph|Q:¦G!°!ÒbŸà(%ôê »ÔÇ1/4ãªÁh±Á-”CÁSBŸ€§LBÞ|ÐßÍEk¾Bë b£ÙÈa)Mɳ¤Ð²ÉÈ´3t¡Ü0‹&›ÕÉë&"ÔÐ0h¶€ƨ‘'ÉPP /ÄÐËœP óQìBà j”Å?UÎç•Ãù3Ô$p! Äb_iQ$¼¤¾õm–[ šMp åPK$ƒ¡!s²&„DóÁÌGS°B"#P±îÒ̧1|Z8´øô¸€Å£ªbG×MvA£§D#èT ƒhaœ\‘ܧšûnµ!4b3/L¼T gqpl-4ȳŽcÊA4Ð ‘e¨´xº…F=˜Ò á)u²«‹Ía·j0Zl …q°;L”ºÓjBh40'LœTû($²*ëÄf•ñÕàTY=‹ÀcšÑ B†YêãT¦D§õ4§©aÐbƒZ /5†J=-6„† óÂ$ÌKÓ°ƒcë„L0* m2d¡í(FP7¸º/L~¦ˆUkJИ髂A;É ƒAîßš‚T¥~b&”F ña˜‹¦`ƒ„E“Çuofp58ÔÈC j l:jaаJŒô=$;ÅUƒÑb-ŒCÜñPM* « ¡Ñ¼0 óÒ4ìã@lÑÑÈ€ ƒâÉVË¢i,G›´÷‰((ù:èwÔ"Ê®cHЄk«£ÅZ‡¥³©!qïLIûozaæ¥iØÇ!±Ño %s]è´p ׎¢£? 4M‰È*› !aµaŒŸ±×X[-úY^9Hçè m콨gâf^7ï¬õÞŽ õžÈ}ÝP<-œÆ+:Ñ¡iî hÏUA6=A"äïñ3A¦R–æF‹´0NáÒÆÔ€mê0 Ä;ýlþYó}U¢‹@ ðÿi2Šô„Ï‚ (…G–ѰJ}K‹Ë” í~Q ¤`yaPv£7›'‡jé4 4˜ &¡š‚]adÐJª\8*ã ”BmËÐ"›kæZQ ¨S ’l‚CÔES HSÛR  qh Ik*à‚ø´ $¢2T`x¨ Îbà¸ho=žçi58à0›x…åGLC µ$l„„›EŠ–ö;aÒ¾67Z p娥œ8 N¸`òæ€þnþYó}¡ìø2uY‰•q/!E"è¤éà%jqÐdu¦¸H ûT0h1Æ¡9ãh ÎÉó3B#2uÂÌGUpGFLN¥V”DN ‡­ƒcQÐAé HÄnpUi8J#°–E…±UƒÑbƒ[(›µr˜èѵՆÐha^˜„yiöqHl„û{yÎxrèÏ€V”‚G ýI—èŽBºÑ°Û¥pi¨N„Eà‹î‡'‡f;’ÍÐ:²È´!4l˜&a^š†}ê97$SCàÊü0´t?}0óÑì£àÈPÕÁ>¯ÓŸ•#Ï{Õˆº†K§NK¤µx.“MvQZB-iHD.mJŠÈ £!’[Ö¼5®ÏJ£º0$ÔÅ¡a„–d½ïŽë §…ƒò# *Å’ì6ÐcÙ4hØ­R¨”nk_4-6¸…pàÍ…¡žç0m(êÅP/‡†}[—5¿–‚…ä´pj>¢*À*kj±:9IUšÌ¢¼„rÒr« )ÐÀ8¹Á© ó!ö4‘õ˜{:¡ÃGÕpG†â²hÇÞ ÍÆ³I`B¯\Š(­* GQeö‹D‘ºæÐ`4›àÊÈ\ŠŸ °¿J‹ ¡Ñœ0 sÒ4ì¢À¨Ÿy ø†½ÅiáÐÂQ ¤ÉqiÃ-t(êaÐdõ%—§êOnÑ0h±ÆqçÐàô©› 7Æ…yaæ¥j8‹ƒcCm‡gq”Ú$Ûu@‚g(=D¢+oMcK|¤j4<ͼ˘„™èÏ©Áh±Á-”C$ 6Ó;§ñaCh´0/L¼4 û8$¶*Ç(¦d΃ƒ5¢åRF*mr¢ª4Ì¢ܧDwRàTƒ Ô`ph² °YM æ„I˜¦aG†êrÃ1œÂGÀå!˜¶RyŸmup4I¹ràÐcU`´˜@ ã$¾v05à¤m1!$˜&`>š‚}-ä¼ì5,û§Éˆ|q(vl®°œà¤ƒHê<Ÿ„Í&[ û½gìgGk%E;ÄÁ§Y³µüxM;“7ëú»9«­w¾#œähê1õô´r8øä(÷"‰€&erAR•~G-¢l1†D’’æÐ0h'‰`rƒ¿¡¡ά‹ ¥ÑB½æ¥iØÇ!±e>äaHÒÇfÂE žNDŒ›2´TÞî »UÎZ‡Dãt85-6Ðbp*fSÖ¸°Ø-Ì “~«†}_@i’J¹ž89Þb­hÁ3 KÞËQªÒd&ç‰(‡±CƒÑNAààà)À3ÓP±Xl(êÅP/‡†}›¤Ìâi{‰Í805B"lX/îºQÇ ³•÷S¢rYs(0R,påPz¤‰88Ji1¡4Z¨CÂ|4 û($²Î«?µÉ˜Æ§ÉA«-´h–ŽV«|B%‰¦®Ñd7xœµNÂã´£ ŒVh`<²ª5S·XP‘©&1¼VgQpd(õàœ³ãÎG¦œâP ƒc‰ ¡§yÙH!óIªÑp´pÅrJ>Š„6ÜÂ8Œ™MCî¸G4mâÅ”~«†}ˆ/«êE”Th® ÄøÜÚ·Êeò¯ßVÕ›¡zÑ]£n)ç–¯~žKMŽã2Ka·ÜwRƒ³HaK §ÔàL©H{#Þ ©ÉY¤€êòNjp¦ÔyDkŒSêkwÎi¢°#¥ýÙîÖyçË©(#DšÇ|éœåÅeæ„_ˆ (ë;ODZ‰²m¶¡ý߉æ‹Èv ™oNbà*£8ÊÆ”¹àøŸË4rŽ9«¡X>”2ÂXE:aî.2ÊY…®LøUH9‹99…V·ÿ•}~¾D‡û†KŒ¸¸‹üߤ·ÑY—” É¿@D6¢nAÁí)"ò‹ÏuðÝóþª£å€Íy¦á¶ Š@Û„(AZY=û¹ýò×¼pøÓát}u§wÕ÷q|-…Ó¥ÏÄ|~ûâ!;» `ƒJ1Ù¥ÜÕ—Öÿo¯­ë„öÍKé{á8ä±[\3ç[ŸÄÉP ŽÝ¿¦©@höŒS:sh5Å –— !ıëÍ0X ;ŽcNr¨ñà0ób»=¨cãŸq„A~›œq77q±öŒ#Þ„è|o©`‘C¯½â ¦ªœŠE\xÅm¨Êh½PŠóŽC²‘9‘V;l¨ƒ\G/kFÇw‹Nè|{œÂø›dpCŒqÙÒztrø’Í-®5ÜEÏ185n— qkÜ·=‡q*84´àrL£•ÞßÃ^NÑ@³‹\ÖÇ5£ÈÏÜ®Æé •ƒ«oÌ@9Xo8Èð²;g¸¸Ã©dáí œXòu#B í6apl1wœŠ#W»ºg¥ÐFÚsø> 84˜à0-’³ÆE¤Ã‰± ab¸›ä‚£w|(ÖîWþ-0ƒ=2¶Ë3¸ÙËžÃØãa¼¸KÃ/±%»—¢Oglj:ذ[e[×β+8J'‡ž)ÝóÓàÛ‘û|ÜØðE§øätlÀÉ|hÆw@Ú=…ØgŒ †ip(™úS:b¹P¹Ñdd®À“šx+•+pô|]ÏW6˜"|ÿp2Ï2r|"k_H Ék>£¾©"`GüÀì9MædD6âÃ-BŒ<»ìä#”ì`ÓhÉí}8z¬‰ûmLj•'RDzqzc ˆˆž¢ÂöŒ ãr€×³.Aƒcgq¤.Ô=‡ÏÀÀ¡éÜô8BÙ!W×5bÇÉ_ìÅ.‹°ÄdgHÕ›âÁA±{8e®¬LFkpôx¦¢XU÷'c>bÔJ¢)ší¤âæ×{Yî“ÀgT7Uœ0Ôl}1¼Ã£'ñ˜ºD"·ê}89ú¨JäùAάceñÚù=¬'IšŽ„ xõ©”ô2ë±’3j“­ï9I°ZD2âu’Ù?ª¹ØÉ{¿çèêQç*TÒG5ê¤\:cp‰ÈE\ÙOMr½ i>I Ç!'SdmxE8ZÜÃ¥3^iŽÓAÚñš!Ÿ8&µhÖ‹>íÁÖ€†²xw投¥:ŽÝóžãd¨%ì °xvìN#s´èÓ¿”°ãtÉ É(pí±cKŽ–SP.mÏ¡TÎŒe˜£ª±:jè~ÏHj ‰=Æ]?fH€vŽ^žöäTsïÎ@÷Ve|Úîšö“MŸœ"[‡pÕ±ßvM†ÚùÞxå¸.è¶SÔù€ÇèÿiÀüfÝlú :'Ç+n1ŒéP©à¥Â%6²NŽfÉ1Ô3D‰j^Ý¡N¼É«–BL‡ª´Q@镸ãП c:zi‡(¬+o' \Œ‰"ÅQº¦;ÐÉ¡±+˜Ä0¦ÇR,¦ì¥%B‚¥í9Üm ÆôHœ‡PzÄw¼D²ƒ˜¯ UDé)K ü™œŒUxÁ˜žSö€“xaÊí¦§i/1ÀÄ^&Š…“(jµ|ÎÉ‚ú`úÖ>ŒW/h¢ªˆrpYID_—ÚŒw¨÷jÜq|ÓþT|I}¯£Ïà$VfŸwœÀ÷t€‰ú@Yƒ“à œLcö°àK}íj”ä–$è…ÓÔcƒ˜xƒD@©JŒjÆw¢„ Ž<ÓxåQ¡­qºC˜«öa“úþÖÊÁp8©3ÒØ“É1îãä.í8Á6‘†0q÷§ zT<‰×Òž“A˜ØqˆZ”¸r$°ppOŒ×cƒ˜±jQêU÷•ƒÞ’VŠ1c‹º.¢Ä•÷[f c&ï$i ¨L”4y.Yd. ŒI ×äQ¦XebLŽà•c&ÔsQ¦d à`Xƒ˜XS Q&(Ë;N)2dÈLµÈ>u`J€°ògZ†2qºýǽ?@=ƒ›C”Ÿù!NkLrËá7>?\_\âÐÓ¹¶å¿½¸é­n¿¾ ë½Ñßnî ‡ßÚöéáúýÍ»§›?^p_´Mu Ýû›Ç§‡›·ŸŸnîïTsÛçÇ›»úI>‹ÔC-Ù·ÿÞòWåÃ.ŒÀ'úý¡ØÇíñ‡;qÔoO¯ŸnÞÙOø(ãõ;ÕÀoﯞ®4>çòÆ&ÆWwïٻˀ f4"/ì¥ ¶ØÝ$Y´ i{‡èßÞ^'l7wèGPz£®úã>ŽRûvu{¼¸ÄGiÈ›×MÞ•íêÝÓç«[¥}Û>\ß]?\=¡‹†¸ÿh$9øp=‰Ç÷tòÛ÷ˆ‚2eºíêQÿÞ#¼ðòýýÓÓõû£v<åòå#†„lj ‡×ß¼xýŸ¿Ã×%ÉW‚rÎÕítuP ÛÊLqûÔE*ѶÇûÓµP°õ×o/.Ñ Sl×äÞFK=†íýô÷L+r؈O¹Â—Þ·ëÇÇKOÆîÑ{—xßñ#Äß 2|OòêÝ5õa篸êÄ›GõÁçíãÕ§Od·áqz²k?…ízëöóoûþæé#wJ’f”ÆüxuútËL“ù$ýGÇ8¾½zøp­?ù‚Ÿ¤i 9;ï'úfãò¿#òÔ)¦*²4õ—oORö!¸a¯ÈõŠ…0mÙ=û€H펗vâ~:M.‰{áføß¶?À—ieeû|ó4ü§ñ³4¿yÒ0iæžîy`á'êàw÷§Ï.VX¶ßÓ¬&ll4cªKÜ(jÒ¶iû)\Ÿ=í‡k¢—8=KÉŸu—èäÑP·WD>H¾‰’“¸ x[4ïmĤíÍö³OÖy9Sïo¾¨²’·¿;ú7ÈtØõ°ý†z9m¼fĸ]Wiå O:Uûoî¢.žmr._zŸ×=>=€Ù©Ÿ^ÎoãʺñfûöÕ·öq[¿}ûí+Ú=¼4©¶ýÓ«‹‘™þéålåìx÷ê?ûæ·?_ØÜ ¯^ÿæüüå’=¼9ø7ô\h^·?^?¼}åÞ\°Ð™ë§Û+UH£Î<Æ@ÅòófÙOØÞOˆEÙëê'·W?®Q³E];¯ãâÜwþwÓ.¾ažK1Ü(Î|ˆeË ²)À¥˜§W¨½ó’ 9?Ñ*zµL4-™²ûÃÕ‡!’°r]rL}¾{ý $¥UYÒ5H9ÓCŠz˜ VaŒž·_?Ü áþ¨Nñì!@rõtÿ`nÓ*€%ó™çöøùÓ'4¾~´¹SÇ qÖ«xÇ‹¤d#yÐÏ$-‚³±xBŽ¢°Ž!ô³[ÂwWŒ”Ð;‘&-L ‡ÿôóËVdv6Yz(U½½z{sKyš{7d¬ÃìkIö4ØsJÿwŸ>/äí½LSB•õ’Ü3a\tqÖ—/τij›¶Ö–EúXµ0¡î½ÚÒx# ~+À–D¼=i[Z–üƒoYKRK9m¿šyg]Ë>hŸ!Õ^ßÍë­ QB;?,ùïÇÒI Ï也}ãËÑË4üöÛïhýî'o½NÃÿóMàL¨™AÔü{“Îâ2¡1‚)LU^È ]âö­hWø<µJeÆ.Ï4Ï:ÿø§Vì©9$Aðü³_°¿»žÞíTÒ]†ODùiÅãÀ«‡ó'u†ÃÞl7ÇëãK¼þ=\Û#¯»aqw?W±§‡kžÄQ&Û§+ZÕaÖ5,HúâA̽ ª-â½Çó—ЄCõÛo/P¤­Y¦Qvw×rFðH¯Ïáú‚f­ }ÚÏÓúŽÛkÛÔ¡Á¸/xD¿ÿ=÷… ЖäÇÆI«£þÛýÝãL¦&øÅ_. ê{,œOiT(uù­ÉÒð¹94òùöêIò!*'{"PSî÷iûÄx:Ôí£ð ?ªŒïÜÉ·?(3ãJ¢uÿtóeE$O²µdаØNÇÐbtÁ¦±÷:ËÓïîYnàÞ‚ú´ótƒ!eÝ«ü¦&¾È_ñG*û;Ûmàú3Xe"|[“ú›»˜Ð¾ÆB”KI"úå«Û€|,}Y,(»ð> S¿¼BÃJÏ·i>óî,¡yl ðrÂ-}ÊÝÿ^R÷~£Êk¤p¶¤QÃ}„rZ.mån¦¡‡h¡©ÛŸµI‘uÚáà\v¨ú+VE5H¼€AÓ"6‰Lša—éèiï«ßíÿw®$Cê‹÷­·%°î¾—÷pw3Öƒ¤NúÁ48_{Éo| WÆ›'oùÀE¦ªoxd¸‘ ùúö\àx=8ù„Ü‘ýëÿæ,ð]·£Ä†ÅÝN›Ü Mþæü™î=ÄçÙú_g‰.K ¿wŒû'à"uÑì”è"Ÿàýå‚O‰CåW;å, íÃp¦œªöÉ»e\Ýó #üE}÷ìhbΣiöП¦ðc£©4µ™ÎÝÜ@ÔB–™û/ =ŒŽVÖ®MŽ?øw-¿ÑûÿÑxÃýFŒž¯Ž·ý&<ñ©ù³ñöEÒI¦Uú§çCoŸ%P£ªöoatÉ#;3´hX?þíWÕáóKÅÊxåm—¸lH[ä³mé’,7û7;ö~º‚{…ߵ잯y”aþ꫎î þè‹[=¡Ú?r0òýÍ#ÿK ˆÁã5gš°Ô7òÏ{l¾è¿Y‚û‰xýê…} [6Ñ–7©þ7+Îendstream endobj 328 0 obj << /Filter /FlateDecode /Length 13845 >> stream xœ¥}]f¹qÞýü†\ôM·7Ó¯yHÛcâÈÒhG½3½3íôǨ»W›õ¯O=õTyZkY@ @;UMÖ?ê!‹|ÿx±œÓÅ‚ÿÙ?Þ¿Y.>¿ùã›¤Ü ûÏÇû‹üöÍßüv-ýÜëZ/¾ýá k¤‹´µóžÖ‹ZöóšËÅ·÷oNß~¹¹üö_Q£O5ÖtNyéRëÛOoN¿µ™ËyKËÊß>>^^­û¹÷e;}º¹¼Ê½Ÿ—¥¾7öÚO7w—øw[êé'”hÂ?=~ÿr}ûð|ù‡oÿ§¨h뤢µó²g×ðO—W¢²÷žv–Ý·ÙœõÜKî^øÈ—êm)§´,&ü`^Î%¯Í+ÜüImÛZ;Ý<Üý|yµ-ËyÉõôüõúãÍ'3·í§çëû¯w7ÏnÿzúáéñÞŠ/ëéåËíô·O×/תü*íâÌV.®RCK¢ÖÛ)›Q M–óyIûéÓã½´Èå/8Y·s*»›ü¤-KJëiù¥öÛÏ»ø øw(¿÷ÖZýÙÛy[[Šï¹.x]üøù×óž—äÅßÒŸn_¾¸#ùôðxû¬~‰Ë-®?}̫҆ü5^íOÒ þÏåZ¥ñk9ÝÜ|õ" ùðùy“VY÷ÓËå"òÖºK—‚½ï¹åÓÓÍó‹?˷ضÓïï]ußâëÖl_W>–ô–´ªkWMújÝÒ«_^¬é½¾>Ý|ºýxy•Ķ¥ÕÓË-¥iÿ+&nÞM#áãõËíctîuŸ0É¿³õ¿Óû÷¿4Äòyß[´ñõ“w’õt}÷üH¢‹ëŸn®_n>MO­“«$…öTŹ~ÞÄg û‡Ë«²é²ùô~üóï¯ðïMŒ—ŽóÇË„>½¶Ó‡Óòv]ÞÞÝ<|~ùòNFÔ‡KÕíõë7ß~sú~H:JÅ×ë[—ÞòÇ£ØÞMê+Q¿yúñÆÈ´…´%U±ëùöáÃéëí7ïÿ¦Hí¨ó_Ç?—óúÍÇÇç§í” ŸPU6ýnߌ*N³õïÆ¿û¹þ²wÉ”Ôþ¾×κ—vú©üw£Õjþ…VSW¿a/£k¤]¥ñïÉÅ÷ZåoÒò|”ßÿò—­Ñ*lé?ÓðôðøtÿáÄ/õv~¸|ë>çÓsøùé,QÖJ¯;´”ÝtœÍ]ñe<æ¥ÊˆL²t<ß~~Àl’tÛÌ(+†N¥,'3ƒN²K3¥÷ßÝ\?ÝýLÆR»Ì;Ï/:ò®ŸBvçd‹‹?·/! îo®0mä¢ÓÖo.¥nž¾\õ2òM_¼B“éjL ò)/BÅúŸ®l²?ñ)¶Ý'ûÏ>™T]'tÒÜÔžë1|¶ù£ÉúVuò“ötúOOÏ/6H»Ü{qiù›»1[}T«Ò¾¾<Þ~¼1UâÞO1Øj¥¢²7± ȧûÛÏ_0¿‰gùD…‡Õ|X<ÿ«ß\6üÓég£øðÖ7e Ÿ¿ÿüU‡1.LïÞ{g“öûw¿;î{ù#ÿZ´Eþt3ºó÷ï|ª’ÖÈk]Aó׻Ǘ®ÿíPŒUø9‘Äæ9öéçX+Oÿ…S÷ÁÏríݦni•·,óJL9×¶§¿VŒ®²1á\ÿüøãË/›·ÉG«ë_-÷ôüãÓ¿dß*C0ÕöÈé`œ¤¡¥ÄÕ*½?÷íÕbzœ+od:t•ùd¬ 2³L÷ããÝ»mú¸w/?¿[gú§OïVûÄÿýÛ7ÿŒ€¸g‰|.V™>$‚»X·E¾g¹>)a¿xº¹ø—‹‰wò¶×‹Ÿ$8–)óâ_%šþ•x,FKØ›w=/î'N¯²Œ^ÝÎ)]ä¶È²º -T)§?J ™Gò:•ØViI‚ÓÔÎÙexô‹°ï«DeC‡Ñ¨aVD ·Ò%ýøøæw°+ŸK^‘9pUßœ#eA­m9WI纃삆Z-M%¤bë“§©5œ#R¢!ATå:é ­A#¼€ÛèŽ^Ð3ü{—ïé˜3šôTªY›£u±¦-ö ²pZ›¨› 4Õ68­´¼3GÀL«/ŠÊ¬€´6„™à%Âfpðn f(ê…„]ýrŽà‹œ¡µhctY˜ò&´˜¿®A‹Zhç©€Î\“€ ©B+8'¡‡¹€¶Ë š4­-A¢DXM¯¼PÏÒ"ÝS>r+˜bàÙà°K„Íæ¨U›'%•%(Ï‚V¨án‹ 2ÜÖYim ³ÂK¸•.áè}“¸mÓ1Ð1ýÜOœºŸ+š4ë'—Q´ÉºŸÓ4ônÚíF‰² ›$8M¨œSɰe6¡ƒ´¶†Yá%Ân“pôƒ¾mˆ†Ä_YM“öÈàdi;´Hɘl¥…ò¹¡ÃU™)rÐÐ+~ݧûn_Á$8MZÃ8=`è„¡eÖAZ[ìðn¥K8úAßj;K¨–ûŠ õ-8@óÐ[P;÷¬CuMMðxz»Àâ:•è]¿BHZuh ãÈ„‰&$È¢µ×Iim ³ÂK¸•.áè}ëÒ?ëŶH{¬ì“ΑR =ªcôŽùz•ùê,Ñ’Ó¢Wõ,Ñü(±ê ASj8GB1Ôd 1a¸ §µ1Ôˆ(FRÀ+/Ô3éÆçMx« ý¦spdÙ ìZÐBïø¯Ðó’Ó°Sâ™™F‰M[vHpš:PÃ92FVé_!Af4ë ­maVx ·Ò%ý o2ëô‚2é¼jœ®ËÔ*óP×ZõÜÐÄEFBP[Œµ©€L ë, hU¡5Œ#,ƒjH¤L*Hj[˜ ^ÀmtG/èY‘>*½-ɇÞÔ1cÈê)Z š^…,°‹Kj%º«ûTB–—}–`4Uhc`I‡& ÉʽO*ŒÖ¦ Q­v /蘕€X¬hhïû‰“ö³š¹[kHÄ„Qîî´hÈLu”Èìí. Hj@…àÈ´(ž»‰ƒÑà¡Âhm %ÂjJxå…z–e f´wÑö¾Ÿ8ÒC°H²ë7¬~g™k%@3vÊÄQËø»àÑ:Wwºø'ެ—! £½‡‚l_8 °¿»}^ýè½’ ¡±eòL:} N׬Èm±ryÊ[ÂgqjeÁLÛTBBÜ4KZuh ã,\ž\Bê…–š£µ)hE”p+]ÂÑú¶IŒ‡¯,ÍQuÒŽ,øî¹ ‡-I‹È+í¶¥.&ŽÐ]Û?ª;MZÃ8Ú½:pdsé$´L¹ÿÙ[gÂEÃYö–(YV[ƒ#Ë+îˆÂ¶„mØ×*"§¡Sš/åQB/mx0ÈÅÀàH0«Ô,Ì&FkЈ(á6º„£ôLÆaÆ"/S)‡–3d²õ+N2–N™qRÝ4~1†bv¨S ™=ê,ÁiU ÎÀ®’ È ½¸Í*Hk[˜V"Œ4 G/Ô1é:XÍ„µ¡ûÞO‰Ðˆ+š#w™€ 7Yÿ¶4Ôn‹ÆrQBViˆ\‚ÓÔ¡5öˆË!C‚,zè\¡ƒ´6†Yá%ÜJ—pôƒ¾åf0±XxpšN›Œ“¬qiÑHw‹{ z몱\”¨]C¢ôb±°söž4’u »Ä‰eÒa´¶­ˆfeH8úAߤ­5<Ö}‡ûÁÀÆÚG¦p´GãÆ…NÑ‹ÓÐ*¨¡\”¸6¥I‚ÓTÎÁÖÚÜ%p+cè ­maVx 3Òœ _M£-±ª"2½Ÿ8…À“a™g&‹®›FN‹Ö²È@É£DIÚ®!!hê@ ç J”/ÕYim ³ÂK¸•&á•ê[‘9M·$¢¬:=¸†É ̰[â±@lN“ ÒÚ´Á ¸….àèýì¤;2ö$½Ÿ8².5µ³èÞ‹U ¢`Ù‚†V)XÒTBþ«À8MZÃ8"³xHÕeÖAZÛ‚Fx·Ñ½ g²ìc¿açŽÅýÄ©ºï ôNT/˜³x©!ŒÓP»—éÏØñ\§êNSŠgQ<Àê†ÄCz`õÐï%Âb«~ô€^íTÊê¿c%ºŸ8Y¿®±h[ì:ƒe ­}G篋ÂQ=h* Á‘‘9ÈÄP&Jj+˜öw·Ï«= W²ðKÓTiÙ¬PÌ2+I(-&¬Úµéü»VÅÒh©¾S‰u®¾á(«¤4ªúë¥ÖY4iõß”[ ·ÍmWwjÒ¼•Šû~âTôc±@b<¡$†ÃTP³v§¡sÓçQbÓ.õ¤­` í0ÖC€»Ë¬‚´¶mðn¡ 8ú@¿69/ SêýÄI À…úr×Õ¯Je¬ŽFCkÝÀ{Ò@(8M¨aœp È$¬Û»£µ-Ôˆ(`6†€£ô¬f]—¸t NÓ`¶îº€ J*è/Bká4Ô îÛ¦}Ó/‚^lå ŽD‘pÝêˆU)Ö–0¼„›hõ>Я¦dFnspŠŽb1bÕÖH•€x—V‘VrZÔîØ³îS‰Tõ¸„ 7Ç̃£3Á‰ˆCGvÌVX‰a7%¼òC}Ûe™Ö"óªzæ´´ÿªfìåE&åUzÚ.«æc£afæÁP”•y›©òµ8iÁ0Q»Ó³|ÒÚ f—0]Àl?=Ê„gœX)\V‚;¦ ¬ç<¸iw:'µ©DÕN>$8­*PÁ8ù‘Ñ$°+³ ÒÚf„—p#]ÂÁ :†c•?q✮ã~—N»h%*£±ŠÑP+Ðëg”ˆ;Ï‚^lævJa˜KHö]im ³ÂK¸•.áè}ÃŽñŽ®» ÝÏ鬖­Ú º/.¤@¬$¡µw„möç¶Tý^{ЋõÛàHˆèÇëK \'ñJj3˜zû»[çµöӧΓ™ÔŠmG&Q5²hC`O “[C6U F®kGÁ~yªïdóààÈš $oõÙ¤Àhmšà%ÂBðÊõ«­‹â¹uÉ8YºŸ8²ì#öo• 5ÖÔô8ç&ˆVŒ†ÞgAQBf_Ä?!Áiê@ ã$Î÷!;Û¤Ãhm Z%ÌÊpôƒ¾m<•Iˆ‰VgÓSÅçh8OKbvœšLD{P‹Ýé6Ø7…B€ÓTÎÁy]TGH5É'© ax7Pkí§OØ#F7“¾ºéGp†Ä"tœ lÑsÑ4”bgzŸJ Q Oœ¦ÔpŽÂ©!ðiVAZ[ÁŒðn¤ 8zAϰI¬“òî'ŽË։Г`›*B;ŽirТ¶§•˨—Hío‚¦­a é·‹°tžþ» £µ)h„—#)à•êYG$§½½ kÜz+"£ŽØoÓ#„¬"i% ó¦«(ÿ&±)[Þ*m¢QÜ9Ù^=í]“TL8Imªö¿»­^ýh;ýÉz“qT¿)BNÒói1ÉÌ ›Å.AŠ+¤¡¶è±Ï(!¡Ô:Kpš:PÃ8‹Ì—XÇ]Â"–¶$2@{”çIÿw J»ýÄŸ%„Msm§×]ÁÑýŠ!@»®I×Ùv¨Ö?…¥Vïh9½Á†°”­YÙï'".›n%Fjšª´èÔà:O%V]@Ùö)ȽCb£Yim3ÂJ„&á•êYB"R Õut§s;Rc1©„ãÛÎX±ŠÑ0Tâ&¬¡QbcÎLpš*PÃ92±'…ù”P$LÒˆÝt­­§FD·Ñ½ g–Å ï˪ž9Gþ«c‡#ú 8'Àð=h¨-š°4JÔÊoàœ¦ÔpNÚm60 iaˆï:Hkc˜^­t G?蛥qÖ%¡ÌýÄ):/aø›ŠívMpqz±½M%$ŠÕÏ蜦­ANÁI£E”P°6é0Z[c³ïb%ÌÊpôƒ¾1•sß5ûç~btQHýÄî1V%FbÐî!ÀiÕ€ ÎØ ñ• 5À0TÖv  ^ÀMt趆!³áêšúå™=1²WKõ¬}çºY5ÓihÅ,•¦»fÊ NS‡Ö0F.ï&GB³ÒÚf…—p+]ÂÑú†ÄM=hÉLÖœ•[•«¥zî²ö) k…G7¤¡·oXH½¶Èñ \@ÐT!‚ƒ´(ÝdWµë)qh0ZÛ‚6D ·Ñ½ gÝt#õ~ætÝVKô¬›©bUÓ>GfbGº¿ë%”Q}жw;88€Ñ  0CAµx& àßÃ>«þÊõ*'=€)Ò »1g ë6­Ú˜LñÉ3öKа;Ÿy*ÑQß(ŠGqcÈxDCGíÊÌ€OZÛÀ,ðfŸ 8ØO—˜©© ª&E â"´#ö¾@6¢%àãêHJyð?JÔ6B­}¢©Bk'ëM”!Áâ¢ÐAZ[‚Fx·Ñ½ gLÔÌû¦;p÷'Ù[_X%Ýs¦.ŒFC¥¾-M%:³dXÛ GqçdÝQÕW …ÒÚ ´À ¸u.àh?}bަ–Yøµœ³eýoæ­=‘Ö#³nÙ-¤Eí¶ÔóT`“QÛ'AS*8G‹” 0ÏHkË™ ^Âm4¯¼PÏ6L&:Eoe8g_xQd“RÛCÂ!ð·uѵÖhŠ é>•@Þã,ÁhÓÎÁ¤‡Æ0 8ÉkCIm Úàw£½úÑ :†$M4w²pÞUïóˆ £òÍ&ßÛFFCiIv©ÈJ”¦í-OÆÆMƒ¨Îü¡À³ô‡ ^Â,tèTá©ËŽ9WÇVpdW£4£3ãN{•L²zc‹4”î<ꉲ.æI€“Ô€ ÎI…Íà0±Ï*HkC˜^Âmt G/è6†!÷ztŽwNCÈ˘Ó)4Ó¶Fl4ôÊ’¥W†¬DY,9Æ$8m:¤Fpšî¤‡„]úYt­ÍG+¢„ÛíŽ~Ð7l C*oÜOœ5H0½Sç$œ[Iû4,MŒ £„Œiý .Ái¿{28ؾX×Û¤Âhm á%ÂH xå…zV,YyR»öÇà0àÄõÉâÉ]ˆ£yjí4´b_ºO%pn½N®v­qp˜«5Ø©P±Ø•Ãa„—p]ÂÑ zf¹šÈ£â*œŽèÍÎ;Y²N¨ÔRxk‹4ôbgºO%öÄ{_.Áiê@ ç$MðÌŬƒ´¶†Yá%ÜJ—pôƒ¾y¶'c×û‰“õ q‹6ÈÆyµHg_ƒ„ÖFø¸sõŒhypˆLBb×IIm;3Á „Í&àèýòLÍÜl18Ï©ã´5J6¸½èŠi´è’Ô;]^"V¸„ ³‡éÁKŠY•°®߻ЕÙÈÃþ=L´ê¯œPÇꢂr««-fÁA‡Ñ]Kí”vÔ…TºrZƒ†™Ø¢®S‰Ìð'$8MZÃ8‚°0‡t¹6é ­Má)§V­t G?èv‹mðmôÍ9x}E-óôϮ൦ ¡{Ôe*Q‡§©5œ#+êr ¯+†ÒÚf…—p+]ÂÑú†ýbH•aLל!«„tOï”U‡HÓÜcÒP»Ûµn/Ѳ}F“à´ª@gÈTQ5†28›UÖÖó¬S+áFº„ƒtl硌ž’jÔÜÊÓìB&x☱'ƒüABkç…k/°Kt»N‚¦ ©18šŒ<$譼Р”6„Y`“­öѺeùš]zƒny£f‚ŒEÌÜwfz£Ã #W½‘>JeÌœVZÁL¡rg¸è*òh3ÂJ„‘&áè…:¶[ê&ޱwƒƒÔè߯1vÏv£›4ÔnÄQ0s–à4u †sîr»„&¦I‡ÑÚ´"J¸•.áè}³ü;øjœÄkœûFüÞWC6…q€ÑЋÍê2•Ø5œ^|AœEsÿ]BÃB7TÔÖ£ þ÷0Úª c–¾ÙöÊ‹ÀƒÓ4Õã3‘ÈIno¼Gm4t6ÞµŽÙ3¬î¥£¸sª]ÙöêxöYim3ÁK¸}.áè½Â¦±Î.zóÿ~âHêþ²%{¶=órô’ƒ¥ÙCãωӖWš ´†qä완©”T@BÛÁôÛŸÃ>«þÊõ C/îð}ƒû‰“ÜLfzâ:t×x h²Ñ03Ûk/±é•©!ÁiT!8š†£+&%Ø¡#ž<+¢„YŽ~Ð7Dâ¸k†Cw…fƒcLó=7äê­‰ ï µÅnq{‰ªé3C@ÐÉúnp$JÚôV‹IHÅ>Žé ­ÍG#¼€ÛèŽ^Ð3\ ¡÷ÐTûº‚x¯¥¯dàúôdèÎ+ÖQ§-y’àô0Ô9HN´¥“NïÝ"²…çIkcp+!J¸•.áè}C '¤2¾»Ÿ8mY/ÉIgÖ«29/F‹ÒŽýêm”肞ôš<ªAéZÜ8ˆí`«WwÈâ Hk;˜ ^Âí3 ¯< WLàÔÄ]¡ƒÑ5jèh5²Úè+º=o4ì\7Þí÷9±õ]BÐÉ wpÄ®ª#Ø$ˆÝeÖAZÛ¬°n¤ 8:¡~uæpâ© ]ýrFO¶tu¶Eo\ÛóÎåš4tbÏ:O%І=!ÀH*@ycH„I?ªËÔf¤µáÌ/aº€ƒtŠÙ›Û²[æÞàðªÞ Å nšþˆ›•Ûæ$TVÞ¬ö¿Ë2²ÌµÞ-§npdáÑOâÊ® '4Öf ^À tGèöu´e›ëƒ#¡Îñ»Âv¡¹ßŽFi{ÐPÛy³:JÈW+³§©CkgÑy ÿÝÙTá´¶÷¢„iŽ^Ð3äoâârÒ ºû™£ cú"ÚOÖì:‡iÆ‹Ó߈¼mú3SI¼úD/„nƒ#ÓÞ8XxïyC§ éFk+P¿q†}¬þÚxÅg:Ðkv» œg늡©ž"C“æø°H Ff¿Àm%¶Ì¯çœ¦ Ôp®¦@WöûÙIísFk»ÑŠ(aFº€ƒô œ¸šŽçÕ/càDMÉŒÏ ™Úøeá]vÒÐYônõ(ÿ‹êJP8Ê*‰“|¯ÈMÅ!:õhSî%Ì6p°î`×XÄàêŽ3rFÖ1©1„¾‚!-³òûfïdè¼°Í%dÚØfN«­`Œ¤Wz‡Dá³ ÒÚ ´Á ¸‰.ààÝbÎæ¦ÏSÑ/çHæþª¶ §Ê^•sТý®§Q"飔CBÐÔÎÁ½¾|ãÖ&Fk[Њ(áVš„W~¨o‰y››æb¾œ¢§n^ñJúíØ’)íŒTHÃRôˆ©@Î °\€ÓT ÎɚײÆCim=³ÁK¸.àè=cç†[UmWÏ‚ÓÏú „®A’1-£`NACí¦·©G‰¢é3! HÕ€ ÎÉúÌŰê3Cim 3ÂK¸.áè=ƒ—¬¢ |ÁÈÖ—°W§³H¢LDc%hhÝõ6õ(!SÔ6 0rµÜº`$ëŠ^}éìÔ®`±ô½a‚—0 ]ÀÁ:U5;aCj n"3¡·ÄdÏ wwhozoÉihíz%p§M‚N¶ Ž,Sö®MÓQÙ€~C…ÑÚ4"J¸‘&àè=ë+­YWæŽ||õ€éžBëµZ±JSÿœ†©òÁ/±jMHzµ‹¼ƒ“6>mãDö2ë ­­gVX‰°Ò$¼òC}Ãß ¾3ß7ºŸ8x©ñ­&}­¥%>»”õ’£Ó°47.Ö^b+üŠ.Áiê@ ç”ʧj\àý¬ƒ´¶†Yá%ÜJ—pôƒ¾a»Øß):5gm|t‡¹ŸÞ¥Ò¯P4ñÅiè­zÁz”¨šJ3$8MZÃ9 _wr ¼2tÖÖ0+¼DØmŽ~À7}Ûw¹7½y_y™AÚH_Þlú(Ë_~Ü”/aøÃ¨hÚåœ;}uòu©ÁÁU×ÎR/Pä¹TpF©ŒW÷¹ÔàL¥pð‰Ë[£TpF©×¶ÎÖRé'ð°¶9k:ü(f“]oe™ývü(Âw§åòjßp|XNEþ‰¤Úm?%aW½QÔO©è¿‘×wZ—ñþ¬½>«·0V0clH× Vþy™f9žÆ™ áÕ«”æBÆ™ U}ãz.dœ¹ö§ §?»£Älò_Ù¨hÐ+´lÂqHÑ«#øU¶*žÎ¿¼Z”·|ºZÎÒ†|Õ«žý“fŽ÷ÿb*½nÞÿqß¿hk½À!L‘°`îÈ1Eè‚Døf¦þê7—¼˜Oo/þíO„û[˯º‘˜“Dà^©lb žBþ¿ O!ƨ8xÖãÁ³rú»ÿ†êÒÿ÷›Åþ:pÏöÈÒàèaÕÝ›xfGïisÎfçh;9þfmÒDA嬚ô€#ÓJŽ?ÿÊcnãèÎæº¾'žQÅeB2xMŒ¢bü5Rl¤f–Ùø~.Ðþ¦'4VNæŽÞÏ "s«ÈÈRNÑ­â¾a§Gó3–¬„7íÆj8öX#bwú¤ 4"dnÛ£‡ ¸…tæÚÕ‹5pcp‡ŽìÌ5«¢ñ¢ÑrvNåé.ãÕž¤ÏS(‡wvZZìS'vð3¸×¤‡*°œxO&*õMÏ:›^¹{3Þh`Mä0ioϰCǃ'¼mxÇ·Jà3µ:Ëøó$¥š*$§ctåUßÐÇŸáÀõIrDŸy+•ß`¼gÑÒîì- ½¹¢IŠàøó»&Þñq}i¡fób<ç ßëŽÏ$è»ÅFr¼Y€çÿÔ‰}§xÅ‚K¼°è“‰w¼½ß;¯!%5'îÓ}Sœ5Ù ûœ¸—®7èïx÷Û°…rxÇ{ÅN+U¦É£AOÜ—Ö«ÿÓì=¦Gx‰ËÍÒœ´Ú‹Š.Àñ˼I|!¤ÞFÖ® Ž_‹Å¾79¼BüþjåÖư÷é;njÖJNƹz«±:7aŠÎGúF² ƒ‰eì !&IY4ü€Û^2¢ŠËxXˆ–ûp‰ç7jçݶ ýOi,È7”ùY8®Šé#Yä¤ÙGÚiÆ¥.š}¢fì¬â7—Jãd©Aï© «)Ã/í•Óˆö Í`Å­Vòiï\2°Sgf‚Îjãþ˾rÕЫø¥ò¶CUkÆu’„ |p ïYÖºØg‰[eç¨ËX4i_>ÂNŽß?(›yµv ”YU{äòo¯ŒµµR»Î‘ô~~ð̧ÆÔ 6Fä™ï;Çs–â¬Õ²5†çmמ8ÝizsÙy¢S²§@/죚'¬×6ÒÎÅcd+ãeEe`Ëu²º)1·pÝÕV[Uw$¹nÍ|Ø/À㤿³Œ'‹VS…eA³xR Žçuâj‡*ÇïGèq¼L¾:iFþ"¨ÂZ›½\¿Xø3ò—ÊÉ—™ƒŒ‡tøFFüÖ‡µ¯êU.#5 ][]ÐkUz´¬ÃE’öãô׬K‰ž·ïäx²Ô¾Ø¨Çâ qUcè5²ŽðL‡:^ó¦ã³—Zì’ûbñ>¸ÊdX®•°4XUòÄ•EšÁÁS4v6Hƒ#d)\ñôå:eìÖ|žì€„ ~)¬ Ì*ÉÖù5oï$è ¤a%Ævkà8ãÏ‹õ}lÞÏ•ÈØÜà11Š©¯e¼kÀ"~\Ý8¬ <ÉõÏ?Žo‹u<î;À<QNá&õ’mšíÜ…_¢ÓØ©Ÿš³NÙm¿^ÃApüM‚?vX, I7ëø8ï*Vkà åÔNkÆÙΞ„ê¦yÑ3ìï)ÃI*‚pð¤€mN7 ¶“TRø ÿòÍðÌ%slã#“=+§g²à>ãØ†x[8ä¢f;r!Ãv–¹Næ¦v5ð{´Òꕜš¸Ý„µ¸‘cžkvŸDÕ;%ûö¤¯éº±¶îÜÈÔù96á°ÕeeV}-F7ÛtÙ›YÝPø´’ƒ£gKº}!«\ˆ+RwA¯ÿíŒïñ8ûÚLøø•µYüïðngkNðnÏ›1àÞ9ÔÈÈÑÝÎ|Î ÝíHÿ%03t‡ËõbBw¸UÀÐ=~k¢z0oèn/«…{ï0¸‰$ÞáI,ÆEï/Mðy:ÇŒßÀZr1à>BÜø Þ-|ÛwÀ»%¯;¼[¬ |·$ÎÐãuø²{Ãw8·+|‡(ÄÌ3|wd;¾Kh›¾Ã.'QKà;̆øˆïp~1@g‰? ßaè®TD€§XnÂËØ.c4ïO³’ˆÕ ááA bGxÀ÷ëáñzÇ„ð€™vÃ|DxHÏ[ˆç ááÒr> <>ó9<,ö±—îçáÃy% `KëÌ>{“h¬pמ&¯j¨íOóW¹ÓÙ†Ø8Sc/ãE6cð-,=Išñp²!xšÕ×Y†O“ŽWB¾b¿öч†<-³Ï/cA2ž”i.™o*cOµ7ãÂ[‡j <üŽ¥Õ2„·¤Ý¬#<}å÷bxÍÐÑÞRlAÉ!ÕVÕx±;¦W‚7xˆ@/à¥|>à;ÝÀ>à;mâ»ñk¡mazÂàôÎN`®/«íð;˜Ã¾I"ÇÀz¥¡;b9tÊvsºE‡w~•9”±35Cs¸Ã°ÉÑœÞÑ!x#šëüá Í!xa0íh½§wsšx›íô®ðkmËì°NÓ"ƲÃ:K_œÐ\ŠèÕÐܺxDé¿P¶ûi££¹•Ï Nho¨ðÜÍÑ~sÊNô ÍáQ’t8­ÃÏ5×:šÃÏ/i8šÃo*sÃ?~0ªÙfr 9 @ ‰+šC²JGsxŠhÏÉ(Ûös×Y Ús_ƒXn[ŠíJŒÓºÖH–ضs7Ãrú+>†îˆåzñÓdÇrOÐLX;nìæ0)²³9˜ÃE¶r8°ëX.&,××lƒŽå0ŽX{‘ù€åpÀÈêXή MX/Q³ß–Ã0!ĸɆî§oæê^l?ÄÁœ½039\ø&dp0‡è‡ ßÁ܆¶ ÇÀŽU:µ˜Ã¯”±K:˜$$p0·êŒ_ 0Ç#±Ìé»o„›~f‡wÞúæ²î8Ì`Nφ˜ àgvx†6ÏìÐUx„h`¿]Èmˆxd Ð&CNÆ{Õ{œÐšÓŸ¥S]~f×,gv˜’gvën'çYxðèpnåkÑœC`ÏŽ¯ûÊüÑŽgvݶÅâµÜª¯6šËøR;ä‘]Š™ÂÏìðL5÷üÌ¿LºÎìAÇHÓÑÜÊÏ<¡9<4Vgv­[øäh?æô÷ºï ÌáÇ£|Æs”¶Ü˜8b,Ï;â ^8–Ã!ÙJTfXÏb1òt,§Ïë“cX]¦c9¼VÇXÙ±œþ†ÌáÌ}p9œÙí|ll`9ûAÜ ËíźgÀ9}PÍà~KšªÎí¥Ø©…Ã9˜LØàpnœAÅ«dwÎÙïâLp;W<ãq8UùçpGu9À9eÐ\œm9˜ÃIÝŒ‡–vÛ× 0·ÇOصn!¶ƒ¹–ü˜Ïñœ‚m.Çsˆ¶©ËŽ»ØûÐ!Mƒq·:ýí*"Et‘ú2›­8 kx‹Omv@‡m"–pD‡§ˆ8ãÍ@2‚3?³ã¯›MˆÎ®ZDד¢UŽèÇS®#:½™LTeˆ®{S :üj\?œÙa–#Ú!]Q› î Õ¦CâÕ2L‡eÚÎíÖý¾ÛptL×WxÚæ‡vHl$Çíºû‡vüÕá Óu;øó»V­ÓÐi¨nŠýÄNZœ`Ç”±XO^€b72@§`Ù ^±!–Úè€N‚ù=ÎðìêiNª ÐmH>1¨è÷D±] @§'W3žS4Ã.'vÝ7ÑâÄ®¯††íÄ[‡VÉNìð á<§ô#;\ bö#;d¶sŒù‘–bî ù‘bê>#º-•ÆZã²W±´’8²ÃÔÆs4¿viÈñì;ßÜÉvu·C¡8si~‰tk–xÚœþ Ùˆ·õK0÷³’²ÚiÝáÇ=‘3º ÷)Fn[2ÐàÉl5{²›ç®v1\õLµÍ’¸"ÄÍÉ–HBà »á+BtL0²%'ž _,óe¼|mi½#] /ã“ãÉay³i=rÁdá.Ç̯bÉ‹Óë¸ÍœŠ¬®Ý¥ñàëby^þ-Év#ÚK–ü;½¢¹ÙáB„r8ªa˜æ©VdGfU±¡7ò¨j·-²¦Úb^D’T·8=é–Í‹ñÚ«Ø ‹KðÈnò¥|¶euÿ²”yÑÆUù6/ÑK³S—±¿Ú=¡gäËì–Ù1¼q0çÂdƒ„#óe³t†± Zìk샎»#ÿüïÞȉŸç‘/5ÝÇÀEÓ¿…xsõ>Æÿ¸ýüãÓÍå~>—2êß^^áwt¥ÁN¿¹ÄmþÖöÓãóËÍÓíãÊá~{>}}ºùtûñåöO—ºä·“Ê@?}º}~yºýþÇ—ÛÇ«°ÔÓÏ·Ÿíª‡|óɼ†Õ Fâ†Ç÷Ÿ¿âÇk°aÜY仓‹• ýôüóÃ%.8&Qüòåæåö£û²D#¬s»¨¼ýt}爕×/×áëvÒ‹(”Úëéúᓚz…ÀJàùF·ô êïË–¢Pf;}½¼ÒHýôxk¶líô¢m×÷vúéöùÆŠ‹žh·ïïn†«´¤“´ñŸ.‘~¹÷ÓõÝùòjÓ×ÂOß~ õôòô£RY ³/¯+TáœF±Ûgÿw>=RÁ¾žþíqótw­Ÿ®•ýôó`2Ù-‰á/_\S>]¥Ÿ®Ÿ¿° ä÷ÓÝíÃÍÙ>­Œ&¤”¬z‡gÅ‹ ùâÛ_¿ùö›©«iE?Uü·+ëéùËã%’¥ó~zö"_Ô ­§§›çï^Ћø÷¾jã£ÚÚç.jB§.Š£ÕÓͤñǧ®?º5}?ýøðéæiHž4o¸´„sà.¾žÛOÿô(½íFýÒ)5<5o$¦<ý$å‡EbCWä|8=¿\c„\?ýŒ/(3ÑV×Ó‡K/ß Uÿ-pïôùæåÙ*§2KBÿúü_àùy¨züÁÿme§¶Æ¡­Y§a‚žn>‹=o……Jú áóÃõíÝóðUF°ùúòˆ€yB:·öEéŒ"íúë‹~mlî/Ò´cYTòó=j¡¥K9=¾|ëYuëy==›Dù*pD%ÈÐAo„ÿ[ÙN7®t×Þwý䲓¹ÑƒcMùz:|Xzµá‘0˜£ž&⛤ª’„¾}ö¿m2†pNä³HwÃeá·1Ô0|äkË…áƒ&B»Øè10zò6F޲Û4rtçyý64¯Dó:ÓüîÑËJS<ܨí÷·Ÿ¿°UÌ5(túøøð|ËNŒbªiýÇkÍi6õùVg<©øòtãFaxGƒªb™c9ʤÿ|º¹Ò?œ~ý¿´¹”Î2‘ñ#¶’DæÍõ'Ÿd!sÂÕð'Ý<ý™Š%`ÐÎqûpþþåîœMãß_ñß°ùpzÿîý[û»L¿÷û Òé½üñ½fÒ>OHù.ƒXßýþǧ‡QïöáoGÇ`¡o¾ùÕoÿ÷¿|óÍ0ç¿}ºùŠ[VL”õ´ü­ÿ­ž¾Ko%èøßÞöû§my[—a×> stream xœÍZÝÛÆ/úx@_š½XËý^:½¢vê(âÖUÔˆí<‰wÇD"’ÊÙùë;3»Ë}u‹4-îÁ"wwfv>3ô÷‹4á‹ÿ¿ÛÃEº¸¹øþ‚ÓÛEøg{X<Ý\üækaY’a›ë ‚/¸”‰5na´M„Ô‹Íáâ {ôèù×ùû£G˵*É2Á~¿+ŽÝ->Ë$s†ñÇqͰ7|dø÷n5¼®.ß2‘®»\¾Ûüé‚ó$Óš/6_]lýG<àt*< ¤©$\­”,>®<§+2ü;—Ë#ÂÍ%OÓ42·lwù&}¨fš…8ïÜÃ_Ä'îù˜_¦(©‚7bÅõŠó•2Öâ¿ÃZYÃ}3b-k$ÏÓ,ZìU~8îËêf¤Ù‘)*"¤2)Øe– \M±¸îëmûxÞ^~ý·??ëíæô=»‰{þ`àϾûI,4ÒÌáöRéI¬ðvNsIæÊVZþDæy˜¯ñU3|åÏp_»ânàKf32š­¹T?ƒnRLEPvAÿO¬þ¼©ï¶\1žpñù*z«e/›SUÄõÔ0H3NñÏû$ÃÙ—·yuSôNí˜1É’Ãf!S¶ß ⼺Ë=/É03Ÿ“$Öõ(­ ÈÄZö!ûâË_.×RáØÔ7MѶñbeµ+·yW7ôNƒ¬½­—ÂaØ]ØÉ-kOÛ-½>í[9f ¹l"¡¢lvP?n𥆋pÎY}7+¦L´pÜïgyµ[n¾½O3Ñ™taÏÕéwM)¹DÅ#çú¸\딳¢É»²®âeÁBy¼$ä–î¶ø°\§I Ê‚›¢ˆkad¢@wëÞÇ‘âm~ 4S™±¢«(©à‰“ÜkÅ%™¨)n€>Ã"=–?m¸»ã{Á`%®P ž9•™EqXKe¿¹øm“)ðÞ¢ù˜X 1RŽÏÖuäI3v[ÞÜÍÒk93‰‚ë¾àÁ»r¿ëÀYr¶èƒpµ;z R/!*à=mÊ2ËÀ£EYXÅ×jì¤g]SñóþaP¦÷U\6¬LŠd5çàqîɶ¹sÞ>+ŒÛV3^ ®è,žßB\Ï‘IØ”´*¥­*r¹9ñt¢0ìÃ?,ÆF±ºË»b6!“ô,X‚B¬%wà‰"˜3,ûcysj@…*³dX‹?Q…2Ú  Ø©Å÷&ƒ+ì?…„sÚw<€ÁáTÝvES’¯šˆÊmWzO×À°„¹7×ù6ƒ™ð-›U‡Q‰s1utõœŽ! U–Ѝ2Hì¨q,SMþÓF×…Èbâº(Á}+K°Ÿ=ñ+²‡³à]Wfí‘kãq zµF£ ¶A}J“Q,½xòlJùû˜7}‰êÊŽnÄ׫ƪIB±ˆ›"ÑÜfdbökFûÖÚúYv¾aLSáÌÈ^™«TGU¸l£`‚åû¶Ž+P®›#û® ·+Ã-Ðöb´«ÃÍyp+"’ ŽàÉvÜ×]Ô‹ýˆ[pc“Áç?Ù-¢¤eåÝ@‚pN»³ æ¥S–JÍuÝð ]‚ðÚÿ3pkx©¬…ôÓAíÝÇ%ÀÆeU`ÒVN¿Í@Q’î†Ç¯^ ä·ù±ƒmãªËAz¨CMTo=À@d5ZiÅ* ‚Q\Lˆ#J†Ì›9ô‹ŸTšH|{jÑQÀÚÆf £ðNû¬*0›)G¢]F›¶õÁ߉9v:ꃌÓÄk—ß6Õ#¤¶¬zsjërçí½´¿ÚÕ”•¢Ìýy$v5ª—m6?–Ýèú=ÌÚæUHÑpô®DÕúŠ¢Ù±,¶Å]Ù±"õj쟤*ß:Õ¡DÄW1"O{°>gè¢ñ<:(`ºË»| WzÇŠLŸæ>L%gè—Ñ ܬthÔ 1ÌxôàxúùËÈBõÚ†‚PlóSÛ3!…‘­W³?3µËy=h×Ñ0äI“°¯PúwåÍÍþÃÒmÄZòŠçJ(›¥\ô†ß ]1¸arÕ݇–ù·kÿiãÊ[öúòuô%ûæò›î ‹¯û¦Âx–†&äÐø\éÓ™Ífku'z\G9€ ’Õ™OÞˆ}ð¾K1èYÄ_U¾.¨!"0‚ߢ³´±ÛAm»Ó±¥µhÅL‚+¼ŒV_u9ä¡]|½ ¦}’)–Z:fÙsŸ¤ dæ—q‹/èÂć"ºðº?Š'îk8üûíé@”R¦ÇžR\<û ŠÛý†+Õ)ÆLO€Px¸y›ï¯ÃÈ[‡ßiJABðì¨7ìªÖ¿'à0L:ÀeœÏfA´XFÚ¡Oú0èàóè³ç™/£2šxÊà& Ÿ¤ÃEûßTªº 5uØ_œ!øI¼c Õ¾‚ž oŠ(ž¢" tÊ .ZÓ!´ñ(ËýAÉ~?õ£°œjÀéå¡ÜcÃ=h`¨ðÔÙu·uŽæW±U÷Îí“C­8Ix¼)Žû|û‘>yb³Ø™Q²½¯ÿuÜ5î1JÏ(Š'Šûýa®õ5€„‡Þ-%™ñY¾íãá[bÖÉé·˜À/r7Ú?^¹Ûp€ðgÝ@?,b—·ÅÖ7qyêÊþ5›ÜÇqQlK‚ÄÓ@J!»ÚÓ›„úkÒDàØä û²ï+¦²ï¶Â@_Åð™:¬` JGк<@¢xØ H„î§lñ†´ܲlÆå¾Äöw7»ò Ðj@,~§mÆ*!ï@¡ÔPD »)ª¢É÷s¸—âo`DæòHͪ±ÅûÑèê´&Ã4.î‹H+ª&§Ðú†Sà·§+0³‡Ú¾$ƒ‡Õú×öˆ „Y{ÚöÝúmà ð:|ÜD§D²ŽÇ‰A*±žƒ¿ˆê´ÆÎ‘#Þ<ÅŽ= ïòuM5"T¼;„ô~Iû[k?}r<öÖ.ª]ù>lSŠ=Mx<#î´Ÿý†×Ø9ÞõBÅüƒ <¶ÔþÜ5?dâ+(B dÿž å®[OÍGº¡?÷e,̨fNªŽM}•_¡ƒúÜ'È#‰†¾“>-û2€û(ïóñ>j¤7£ojZ?-ó-ô¡ËêxŠÂbñ<Âu#¦Äãï)( ÚD»áãL$$,”óÕ®®d–jÇ>TKtrEà‘ÞþRÐÛBk‹Ý¸$=‹5" ¶ìÙh×{ó½ÂžT& šžÈJÚ¥,$­¦ùN; w Êô(ó(X:ן˜tI÷Ã(´8³A™úfɇêTïýo *-úΉòVßRõ8è®O:õzWŠªCùvÍo FñÜ% —űØ …é'~oðüÃ…)òÑ œåôs™_à^—Jëì a›X0Ba _÷&l+u&’ûâAr*có~žbÞÝÛm¦(ZIÛßê—’¦ÍC+ðæAÊÿÏ*8¢Y…<Ì*p{¥Ï`ÝfØ]s*†˜A\Å÷CŸj€òýD" `>ü¾)G®] “ó«ÞŸÏ?œÜû¾a‡~úaÀt´&D6×›á4:í í!Ö4žûÍÙx3NW¥ë¿6½?Û;! (^Ya'ý¢…î 2õåyÌL¯aAzë&L€ Œ–‰$dËo\c›{ðáÔ1nànV2.¸ïäA> ° 2Ü{ï'\J*$±ù¼¯œiAé…9ñô^’œ-ÕŸ~IüÖ£ÎUjü1½£I´5€³Cú½¯3Ñ€qR,0‘&>E^úå²Ï(É‹BŠÍÑkÐ'R¢ML0‘R’ÿŸ_èll-ãÄã-ãHûÁ}¡ Q$ß'X ýÀ»=Œ&¬9}=³þ A~¨O~‚ŽÃ1¬öηʄ è8gÏóSëçsx ŽUí§”´¿¬„A&.Ciw³Ÿ2@Ó/{é¿°Z`Î~û4‰0Z|T7Ó7JÙ ãÜ0(LÆÓú ?å4’³|·+vøAJÀ†O‹¶Üq~žèüÛ•ëÐICK8㬙é‹wÄm U?™‘NÑ×OëQ%©¯ùÎOüføÉY)…@8/|ÇM³ål2¨ézÐ1 ‡Ó1œÇeÔ¶U&âàVùÿ‘Ðç‡0ÞÓRþË‚o.ÂÃ>ï?!µ~>ƒ_TÃQj[«($÷-–§‰P7ãpƒ)߀³føÝMúº™¢Ážm.þ ÿ=±û“endstream endobj 330 0 obj << /Filter /FlateDecode /Length 15058 >> stream xœ­}[¯]I’Ö»ÿ<ìÄ6jV®¼ôH š‘€) DH.—»ÊŒ]Ø®iš_O|ñEDæ:>]ÓSƒZ]Ç;2.yÈŒÌõ¿oÇCºøŸý}óøâ¸ýðâ¿HŠ½ÙŸ7·ûÍ‹ù_Z»Í‡ÙÎvûæ÷/X"ÝRν[kÇÃ9Òí›Ç¿»ÿåËWõ¬Ç‘ï?½ÿøåÛûçw¾ûòþñ7ø¡Èãþøú݇߾üßüGáœfÚY')Z à›ï_ÜÿùËoþ×Sáõá<Ç4ŠßÝ¿|zûö{™òý¯þú7Ïò-ýáhç?€ïo–ï_ÿñãÏ_ž×÷È÷þùçO¿'Ñ•Ïy<ÌÔÏ?›Ï·/Aòê¬RnŽÛ«”f-ºoMðþ݇·Ÿ¿½ÿ7«ü9Ïûÿòée’…Ýýç·þÃ÷7ßÿ¶„ÝíþþË{îð¾ÿí)‚Qÿî›ÿeæþÐoeäúóí,‡4p•Ž‘ÆÃ˜·OooÿõöáEyÈ¥·Û¤ãüGùÿÿ’žöÄbÑù˜·ÚJzÈýö¸aĪ#Ý)–Z>>ÛC/¿‘{nå|È;‡)%“χ>o‹ƒÙw„Qµp ×Ò9\íxóâo W~¨CpÇ÷Ç “:jFô8˜JÝw€óáÌC¬˜4ÒFÑ .SJFX[p¨3?HW ke¨AZƒ«´¬¶‡£ßjë«æ1ÿ@¡–µ:z‘j«÷ôÐsÀ:އ¼ŒþÇÆÀa• ô†8óÀšV>µ‡± ¬a*8…«è .6Ь>ªZqÊ Q»SÓCËZµ2z­<‹ŒÈ€El:· I­AÀ¡ “˃ÌyÁà{w „µ&L§pÁ+Ô²tHµJ#wš2Q=n˜ÄœŽÁêHS«'Iµõ0•®ÎB*.ï¦ ”0L›‡6DÃM†ÁZÔ"(LËàpµƒ¶Iƒ'¦ŸÇ £*4;ÀMà.sàùJÀ+SxE-°iqp˜2PÂ1‡,·`PgÓQã" ÖÊ AáJƒ«´¬Th#µ‘ðÛ㆙êI´È˜jîw¦¦ÝÌaˆí²,÷¢w¶sp˜2´„aú©'8´ú0v„µ.L §p-ÃÕÚÖÆCAë}àqÃŒòE®´y<Ñ‹Î4ÊCÊC×6Š9µ‚ƒÃ”¡% #šbš 2\]a­ ÓÂ)\Kçpµƒ¶IÝNá:„¦µÍ1½`X¸I÷R#I4•Ùê¡‹\©Ô‡³n穭ঠ”pŒLl(à dÂcAX+Ô0ŠP’ žX¡–I/~(íÖ0%]Ò#ËG¯Ðë@}´$ËGï€'ôuzŠ·ÐæFQ Ú`qp˜2PÂ1½A“àp´ Ù!Ã`­ j®¥s¸ÚAÛÄ ˜4å¡j ÌȺH˜QUSq˜Á“z€+>pAëhƒÅÀaŠÐ†‘Jžù¶8Hw›‚Z¦ƒ¸ŽÎàj-ÚR' ­>V ä!…‹1ÉÐS 3`ˆ•!ÕúF!C®ïVZÀ:c/YÃ%‚°V…)ᡵq¸XAÃÄ £E«õý¸adÒRµºÕ†zAÒQÖN‡Ej>*ŠE–ù÷\ ¤pLU¿h1( ¾DÖª0%œÂu4O¬P˲¬ Y‡‘Ö÷㆑®;U³C«#ªõ„ë«t”e¬UÿMê³í>¼qsˆê‘^ü@.æµ (Ú7Í¢øUwÚ#Kÿ@-‰{ZtâŒLœhÞ,΂ÖÂà”¥Ùk bÅŸOe£×6í¦ -a˜Ê…)8ˆ×Ùw„µ*L §p-ÃÕÚ&´bgRSÀÈ ‹ÏRº ¥FªL­¹• TÖÉ #ðDý¯âS€–pŒ„7gP§ *ŒÆ¼Z *~ý ³ôUÚ„î&%ÃkyÜ0Uú?DvxFÎíe£©ÿb0¤ŠÏ†µÔ)Š8¶i1¤@`raGu§ŠZ"k5˜Ná::‡«´L–™Œ%^¸5ÌC|JéբơÕ1$¤“ùHà¡Þ‹ÁPT¢/¸rA!ÑYÛ9L(à™ NØn ºôä´‰0Xë‚J8Ehm®V¨aEüHAzÍ©ÝÐ1C–~ 1DS«cÈL€è±dÑ ± u£·6åƒÁ&CKôðÊ>:ø`˜Ü\†ÁZÔ"(\oçpµƒ¶åa!~6O802iª™n>¬Ž÷Y„Þ‹Á+”µnò·í¦ -añ?àÇñ?Æ.ƒ°Ö†iᮥs¸ÚAÛVqŽxcbh PÄE@} jhñaJ RGUG.(Ä«Miã°Š@ ÇHØ ÿ(8È´–w„µ.L §0%ÁÅÚ%NÏ©ZMÄn ÓýEܤ¬1få°˜ºaä°H­‡ ”¼(j*ðß‚ƒÃ&%£‹jph"{n2 Öº Az“Ã;Ô¶*35¶šÔÓÔé10R“ Šiߤžô>“î^ =%<ÎBzŒ¶€•w´€a$à@ ÇDý%‚°Vup×Ð\m ]çÐÝD‹EgGÇt™’êY¹ï’uU™YÇRez¯i£é_›Ðl"´„a¤»bwÇ&Ã`­ U"\kgpµ‚–ÉÒ¯{ Ü­xÜ0¬8»ÅüCgu©(¸1Cl¯ÛÏ2}iý{q‡)䎑eÑ€¯‡;÷‘ºË ×Ï‹_- UâúœØÝ“qWÔM\qÚÐÿåÔ¶P5CÃ!uTâw«[ñV ‘‘‡9`ãq  Ö‚)`¿»~^üj­’y U#5Û4s„ty –D…SkC┚×VKƒ¡dRWfQœ{ñs1­‚Ò[Õ^/(ƒcî¬ «ý&Ü(\7cpÕ]ÍiØ;–†ÍÇÄ&î㆑¿ µŽ1åæ‚–³®C¨D}e§¨ì ¦-ᘤ£Ý9œ³` k=¨AZƒ«´¬èqME7DËê>7l‹ ? 5_›.C¨ô xpA!Ýbî V (àSh g§Fö!‚°ÖupWÑ\l Y"«#"&®\Á ê[ÔEe¤SwÓÖpÁaHG­lSã…ÅÀaŠ@Ç öµÒ‡Œ-,IÎÞ`­*® –¾êO›°®î8Pªž¨ŠT™MÅ)?RÀ‹Mé²QÈPh;‡; ß0VÆîc“a°ÖµŠÐÛ8\í mØ –ËÆÙÂL'XŒ°‰19Œài:¡“Ç?þ³¸³i/íðˆQæ˜n£Ì4Œ¢àß8È–xûÙµóÒWýiáX¸©õ¸aà AdGÎU­ÜË8òœ3`‘š~‚C‹A€Ãø7 òioÁ p£,D¬õ@%œbiMO¬PËö†Á‡ëp:6ÌÄa°ÀˆFkß²M(:Ôs1ŠJô‡Õ4( sg‚AÀ‰g “u_¤+ç±É ¬µG%œÀutW+h™år¥§Z昡;·¢ÆimX‘$’òg{À‹éºQˆS£mঠ”LÂÌ¿84ݼ]2ke˜Nz‡«´Í’9 öªØjŽiºG.zÖöÓÐ(]]†\ìJ—B|Zmçà0eh ÃGì¨í2km˜NáZ:‡«´ ›' ‘5!NÀΣ3Ý|ÉiV;{(2ÏÃ~øû™t6ŠLþ(à˜Ä‰4ènÌ  Vƒ)`¿›zVúª¾Zt2“³ÈÒRt!sDÓ|'kAZB–MQH{—ÃPQÀ#oâͦzCÈô,SÙ*žuûp È–î°Tp ÓÐ\, Q\Îd>ëj’ƒR Õž5^¯²ø50àì0$ÊìPÏ¢jFÖbàðA ı]9oQ\< Dœ!À`­Õ LÁ`°éOƒLWœ)SmrŒ„¡]ÇR=q3¡¢T?NÚ †Ln,Š®3‹ƒÃ”¡% sj ìâ&«ÁeÖš0-œÂµtW;hR7Áµu¦ë-LÇ1…€ÌõÄQ•¶ÿ¨<½! ±³`uœhó±|€ ô©:—GùªçÄKa­ SÁ)\CgpµvM?ÒýÔÇ #³*fµÓ=¥Ýe­†:,¡&6¦çúwR¶âgÛÂ]œÀÀrgÔ[ ɼ™P€¿‡~Vü‰jUNzƒŒ ®@L­kè$ŠÏYL†Ž˜úòF#ŽUÞ¡Ä|ª@_Tt”©eçOXëÀ4p ÓÏ\ô§IÌÔÔ…TS££þjUx|–Ô‹Î5ëªh0„Šw ·-(ÚX.V_°‰Ð†Á„]oÁÁý!—a°Ö„*®µ3¸ZA˘¨©§µ]‡–cÚÑà_ÂÍÔã`È¢ê’h0„Í×_“™2^Þ@€Žº· ôœ¹/kM¨Aà:;ƒ« ´‹yš縙-æ˜ÙàÂ<µ6¸>UoËi!,bËâ (H<ÜL(à™eõtµëYPH0XëŽ:…ëh žX¡–•CWjãÝ<ŒÀ`ÿtB±“õ!“/úw9Í7Šb{zn¹± œƒÃ”ŽÁ…T†sej¡ V…é`¿»Š^üj Cº&ª»bµ\ˆ¤7zDMïÔË ¨¬"«ÒY†Ðš˜ã2÷ΠôŠ@ƒÂöâèWy`°ÖB±ö0 j .ШªG0Ò¢—§F–T5s;…ÇÉ^ÕªÞÙ2B{áê#±êƒ”€ŽiƒÕà pãaAX+”p ×Ñ9\­ eýä…ªÒyº¼0Ò‹ ËîÄ9®ø*a‡Þ # ¹Sóñ‚¢–"c¦ )˜¬{ꋃÌÖs—AX«Ï´p ×Ò9\í mØ$F;ó&Èã†éz¼-z0H¯¼ ’+ÎŽÏ€¡iš\JBmçà°ß?YìŒÞƒªgäKa­ SÂ(BI2xb…ZV-e³u½dø¸a4c+ãeõ/iúš™Øb0¤bozne° ŒƒÝ.6. 3¶ƒ¦— —ˆf——Ná::‡«´Ì26‘MÅ•,0Ø8PÍ:oeÍN®Ø7NC.ö¨çF!A,o~‡)%Ó5Mlqhz-oÉ ¬µaZ8…ké®vÐ6ÏØzÏçqÃ`1…ØÉ Ax èÐU› ¤b‹zlØÛÊ;H(à\ÔA+;ø¯›‚Zw¦‚¸†Îàj튌Ïd‰Žé‡Î8“žæáäª×9gÀ":‘úIOn‚ƒÃ&%#š`«À948KA­ŠÓZH¥­ø#Ô°† ãÎ[›Ü— Ì©Kˆ(a) 2-aÛ 7v' †šØ¦nƒÛÅÁaÊІ¬v[…=6„µ*<Õ(\Kçpµƒ¶aǸ1áR0Fj"«f–ã)§\ “] †ÜZ¸v;… ô³o¦ ”pLÓ”ÙÅ¡éMÛ%ƒ°Ö†gš…ké®vÐ6죻%¬ägn`âi Y}ƒ¬ÌRÀÛyé:(Ff#8‡U 8Ùó¨sgpàü&‚°Öžç¢…+é.Vа®G3²€ŸÌëXþæfiž+(ÆÑÔûÔBêä•k'@&ì¹1˜"¤D`š¦$/z3/$(¤aØÏ® —¾š@³,ksCóp"é‰wÆ [TÅàuéŒt^x2CÉS}žEq­þàà°ŠÐDt&Rƒ>U¯a°Ö•p WÒ9\­Pú%pv¬Ú#Õ€ô'o?DÉ=Û}jÂ[tKvQˆ{î¦ ”pŒ8MêÄÁ(» ÂZ¦…S¸–Îájm³ÎÞ|5 VShVÃ÷ÎÕJo­ö€!Õu£À½ÕƒÃÍ´ÀÈÄ!“àâP¸n„Œâ+Khᮥs¸ÚAÛ,³Ëä¢÷w& Xb…Ît¸£whCìàë ˜L¨qR †]0ÉýØEÖº0%œ"´6W+hw¤ŒÞ›~Ü0§Þ¬=˜ú‰ýØØ´5@„âšN„âç4ØV<` І94‘&8à‚Èth=P¾ÿúYñ'¨U;Çåæø~ÔÂdB}m“AXëÍ´p SÒ\Œ ]Yhœ“Úeˆ©^t9˜öÙŽ#³ò«^Ÿv2«^±^ȈŠâ 9h›5³6 |j²›±vX+€9§Aaº9ƒ‹î4ÛÆè­pÂÕGÈJ) ò]Ña§>…Qd®·§=–QlŽîÈLÙ8¬´€!š¦0/ðÁw„µ¨ƒ¸ŠÎàbÍbú¦4äМą(L<†¦ iFç1y]Ú`šÐ=ãHÒ‡)%£ÏQ-‡n´-„µ6L §½ÃÕÚ†íb}†Gsg7ÌÐýr2ï³a ÒV¨šüâ0ä¶ÄõÚ)š¦Ó,S†–0LÓíìÅWC– ÂZ¦…S¸–ÎájlÓ×Mq£:ÈRÂk RG¸…udÔ¿çyS>$êO£¢n¨—cÞ뻓O©ÓyS@©êгÞÊ1UÆ5ç¾Sf§jØù:w*ÇlTOuݴߨ~éÁà$^<¬–.Oc>é貸^)á½>|¼|ÕK7s¯òO$Ô–~O‚nz·hÞSÕœÇzÖߟEð]ø¢áž²ÌKÐòkšÁüNÇlD¹œ%mDŽÙ‰ŠLeú2Wf'âÖãFCÄFâJ.š]í?³bQ©¯P» G"U»ÒÃÙkö•„/_ðËG¹¿:¤ùÆW»ú“¾z0ïüÅúªŠÿä¿¿¨k»á ¦ÊºwÚ‡ß8MjIUå;η¿úëßÜþïíñíëöHòÕXܨ/⿼ÂC•C´ÀSÈÿ'vÕƒÌÅGÕ,yíi`þA¡Öü£-¶ç‘åÁ—wL;¥éÖ[¾Ìî2Œ¾©“BU`ìÑZÉUÜêTã} –cï¿â´žŽ™v(˜ÐÝÖ[­xŒ8ÓyÞ5]{‡@­+¦ðÝ®‰@ØÃžC&ùA$ëö–Zà¯cb«²6bªú4دkªK<3‰U’ˆaŽ-®cÁ×+®êeårŠ{§ŸÞB_=¬ós!"3†zù?ðÔ5N1zñFŸj›äëOññN³b&½W¾.ðþÅzÜNª¡i5 ËñÈ\’ÊZÏÄé=\Åh ®ë`QÎ|r ç‹„ôå™j÷Ñ€ñÇËð²–¶cžŸ;CP®ñÒ< ÕÙ`ºÑÑ’IŽ7»NM™SŒ:Ál6ÒØ»T8¿:Nb_Zꇂö¼“^Ч ‘˜>pžÖ(롤f #…¨7ç³+Æ›CYÓ>Óôè£úPÎþzò"ØȹMšF §tα§¾ £9pÞJñªÌ¡·á‘Q€9wªkúþE¼ÔRx¾­&ì#ù,i7ЇUøüÕ{>X»Oi(VU< rê+ƒÀ4æêsXCÅ{­›•8×Sù0šx>㘇žâR5{•=QqŽ¢ÑÞ`UųSíÏ÷‡Úä¯`/£MW ÊäDL¼5PL©9²ŠaÝØÕz}h£s&b†Æ•ÀðŠºÒ$•…Ö¢ ê•j`ì²÷L6¡7§ÆÛÜìZvmÚß6xÏ›Ù|ÄÇ÷ºã\¹¨êe¾’Ì»Ï[p}’¦ã³³çظ;šÍ%³a¿ñk¬X1š-¶ öû ãÔ)-Ã;Ö[ãä\7±1©¨¦W¸»°ß $†…÷â^½‚¼†§­ßÉDTÃù#niU1¼Ó&¡!tb꓎y¤ä÷ÃDíV9!ÆÄ È$ð[Vy²=ÜCÔ¼q:ëºÎ_ŠbS#0“ª]\ûi…ÓvÆj€ \WI,宑M â)M­Öe ¿”2&—³|ÚKم١Àø5’Cü¦fÞ88ãn&p1ì'^4ÉŠð«g3»¥­Õn< ¥ýp¥ñçj6‰~j%n4b,/¾–ÆU[ÓÇ5gW¼c¥+½ZŸÏ¹5–j•SÆJ×–Ú2ÎCÓ4[´±”g>#Ak+olh20žB¼z,˜Ô)ݳDÏA@óJS¶kWÄXº%^œ:T\zД8<ªª5™‹µXÍ#×±ö›¿VLdvëýš3ÈĸÊB–KÇc °ª/Áiêùû+)mLߚĦï¸Mm`,»Kø# ŒI–Í¥K’Â[÷,Ó˜AŠ3xšÙFgá æÏCS}=q'WÎà¯nšt u÷VLÑI˜L7­"%Iáõ õÛ²¾F£©"ÓFüJûÈÖp]ïëø››@xnƒÔ¼ U‘  óž¥!ðå}€'ÏÞñÊ©ÎìqÚŽ¿¬‚ñrÇhôEtYÇÖçá4­Ñ_Á0WÑqþ›OXôØ >¢"â¬öäZ”á6)ãzÒÁ^G’Òq8çNn½ãÕ Žƒ8àCU‘„ù6/ °×û¡6¶ÕðÉ7X+”Ò¸l?ÁûMÑÍNõrO‚vš#èJÌI/m¦Âf[ç"©pä,g‹Ó7`ü°îußïn\bç×öOÒL¾’ƒMóJαў8ŸÄ °/*¨+´¶¬[â\4fУŽÊ.½mÍžìjAwõº»blŸ ¨"¸ùÆçŒ;1¶a8;}KÝf;m£éŽÑ·tXe p˜êò,äûWçIçcíú ÷¡_1Ù#x´Y½¡;žò_éóÿe‹éòœönÎÂTsˆ<¦++:³˜Î<î-¦Ã «ùÓdÙ0´˜—¿èyL‡÷ ‹–ò˜N/ÚY”ÇÉ·yªê³¾c¡®æŠéð”Œ5à¹øó¶Åtx8¯]Â:{Hca]G7¶(ŽaR»è7y\‡™J>»Ž…–4 ì°[DŸ×»ä·|Û»ÁܦØiIÑÝæ‹qZ;X\W‘“PȆqžá(‰…u:”èZX§GÝt-¬ÆÕšÁÂ:0,ÐkšÑ8uŽŒ°9 l\ë0Ó2œñ°³q¿„uÈÌ Ç,¬ÃZÁnãaVc"¬Ã*BO?ž.Ùº„‡u-»»ë‘Ì<ˆP¶È›…ŒÚ<²CdF×#;\ç%²ƒÇÅMìà¹éÒ‘])ƒkUDvp-b,¸+8–S+<¸Sg‡4ÜåšÌv î2nšX(Çà-ϘÌb»³'Ò,¶KÝ{¨Åv}Ævâjf“d±]ÁLÎ:µØN±£UÛ$Q¶9Zê {xW°ö0t÷W‘šÂ ï¼ÄŒ'õjáÌèá Q’¿MWûÙZp‡DÆÛiæã?‹í°22Þ²Ðbƒ4 íô!.ä¡h{h6 ¨-´ÛH,´ÅÃ6í4!çÚá+# ö<´ÃZN=´ƒ(Ö°‡vê>¨Ú 8‘Z{Ú ¾Õâ¡êMAö|PöÑê±H(Ø_⑞–…Yl‡ä::vÛ c!îFîìÔÜœ¸Gp7˜Å°ÅwÈYœ Þß<6÷ø.ó‰ô-¾“è…žFÄwøhÃÉð ñ&³Æ¸Ìâ»,Õ2ˆ±ø.W›Ö"¾Ã„ÆÆã»ÜªYàñHaiá}|` ïtdÅðk&e{xŒ®¿+¼;׺u‰ß÷J#¼+ÉÖÞˆïÖVb,À³Ç@¶¯änªGx¥œ¦ Gxx·Þ¢7‹ðô.ß%³éu‹ðð :]À¸DÜÍ[Нð%ã-Â+ã´˜Ù#<»óááΙNá+Â÷®‡y„wt§±¯ÓÒ¸s™<ˆñ¯b§Ÿ1Ÿß_̶‘á^eZíàÈÊâ;DcÇ%¾¦\â;½Ã¥²=¾C´Ë6öøNÖE‹‘=¾«£pxz|'K´ F‹ï*o‘mñ]Ób‡ˆïŽÃúmxÇ´M’ðRvŒxíô5®Á ¶¬Yˆ×²E|ö@êêÁbZ“Ëà×!ÉÀ£;ø^œ&<ºÃµÍL £;<çË2Ýá#Ýb9FwxZŸ]Æ£;ì̦=ºÃµq‰î€™dìáN1oÝ®½Gw'»$ð\j©£t‰îÝÎþìÑ]l$Gt‡|kŽ/îð©¿~‰îôÖ9[x×±w¯ïp‰…ýÅÃ;¼Sk‘Ã;œ`pzx‡ïAŒ…wX%$Zt‡+%Ü3ˆðîp;#¼;2ÉïFêœú"ƒ+È Æ#¼Á¸n‹ð3‹¶KŸa,ÂÃ’¤úD„§>€Å|–›åK_DxpI5´kôàîÂ#c¨ÛAAxcZ |âÊ@ѼgéIc0|<ÂKɱˆðü¸Ã#ÿ:R—Nç_ÕL¶‹p®w;ÜpÎnJmáºB²á6=®Gt 50S·/¼”‡sbxHãá·éz87}«ÄÃ98CôÛ<œÓŒÖËR‰–æÜ+·hNʔĂ¹¦¯ðî‡tš a_|·Ív-˜kH°+v(§ß&K5™ÓfÁœbÚ!†šÛñî,Í¢O?¤ÓV¼­X®á©ú¦~FwæfξŸÑ§mÆÝ™lF3:˜Ï˜™-P¿îgt Ïȱº-˜kxþŽ!„s /ì^‚¹†— éÖ[0'˜¡ƒ9ËëÚ‚9ͪeXfÁf5£±`{Ft¯=˜uúYŸs÷çå˜%÷K0‡J܃9ûFáÌavå`ˆyäƒósdØxñE K·-–Õk†Ëáƒ7ì6Ë!<»ÆrX±IâÁ\Øz0‡ ú Íý þ—`އ!Ú~P‡ÏBÔáiý~Pwòs+˜«È×s Ïêt¢Ûƒ¹šŠír{0W=ÃÌUøÖv4ÇÛøüeߣ9ñÚü$ÑÂ9ý:A#cÆsãYLÈxN0źœ?ƒQÆôÐUÍ”dÐgÏIƒ†…Ï) û ½üŒoðhÌâ9Át«RáŸreç¶xNߟ¤l‹çªfaòˆñœ–âÌêOïâuCj‹ç*ÂîYéÖø«™šdw[Ñ\Å- ÞÍé‡vXÆ¢¹zØÜ¼ŒLÃDk4‡C+êæÑ¼øÁØÍ¢9lÖ‹æÂi÷`®rÜ#9¼RÀÐ"¹Š¯6‘…ErH`!Æ"9¼º‘¥Y$‡Ó)‹Ûü“¶cú±œÔ ?ÃôH'O™1™ErxG¯_"9¼¥w^Îê°³I7Ø#9̕ѕErú¥ñH×÷y$‡ùÄJY$‡ 1n³HÛjtÜ=’[§SñzS­v®ä‘\ót½ƒÔ,a""9¼¶açpÉÁ™·¸ÍÏêÄc¯‰³ºƒâ¬nú©¤GrߨB9<8Ð,¸c(דåE,‡mG;/³X®ó¶×Ë£êx(‡^èm„r½Ø ¡\çØW(‡P¥Zl§¡.ÈÒpå0'6PþDE÷(å:v”ùK 8?f)?«›ÉznÖÍn[Êáèê°àŽÑ®áq/úpè= ÃÊÊ‘çúójUÜŠÏÉb~ èàù9‚Ý(Í YD7¶Ÿrø ûåË& <ǯZ‚ÛÊè;ý<ÝSø’íP­Œ½l¡ýJЃŸ{Û<|Ü ¢OíÛcÆÀïÕ7Rëâ4a½ŠîûðûCßóš''½…TdÅn»¦‘‡þCŒ{ÒÉc’Èp 72Úòéžk¼s›í¸(²Õª/ð‘›Ö,atËD붨®¼³aÎDx®‡%¸.?5¹·dçÉåq{U°˜+;Ìúß– Ö,mÏü²³Oô𿦯¶ÿ´½»í.‹€/I[ôžÉÑZYõIV³}ð=áê¸lÀãˆ?_¼3ý»'O¹OºR¥˜Õ°ò¢R1" Éuw¡0Žæe;Áçî a‹ˆþæJ_²íý:þîèàüšˆ„uëæÃ¨Ç7vE¿´}ÙoÆ-Ù\6gDoŠs<²…š%i¯Ü ~2…g¿žHÏ#v…gq¯"®©Ù)óJêY7eþóŸ¼"‡mçå vE:>5ƒÆ=í¢Ì_¾|…ðç8òýË?=à6ÊçoïŸß}xøî¥Ì Çlåþåýã·/×ÅÚñ–B¹%Ø$Jé#Q¸Q"ˤ_#ùûîHáºCŒ½Ü‘Âf/ÀISo°üŸtû×yC“HsÇm¬F²ú}uI…_†Ôg9ÚÔûEãäÇm'ÿÍW¸*¶›ýË·žQ—2°@ö¤tÎ¥ú©7wBó¥þ«Þ¥BÜ“f`TÇ'¸Euê›èvJ…‹ß“:³ýN¼~oäŽAX¾%KÍ9qãOúåbGø”q,3ê¢ú)úÅÁaÊÐŽA†èb sî⟆’ºxý-´e¹«òo~Eí£ÿá`X ­öe 9¤-õŠ”¬AâAÎÛ+Y3&î]}ÿâ.½çãwŸñ³x}‚-7ÜÒ_¢±Ð©ži°i/|î ö·¨ö“‰Rܶd6yÁnk´ÀX•kÆþXM,£Ñ°¶Õh'¢´ÕfzÍ.„Ö|”F«s¶XÈÖßBU–»jþkZLŸ!«_µ˜Lô_µ˜4€5Ù¸4™¸x£¼þz^šíë¹@¼f]-÷¹à)n£úõs>·0ñ†ØWs‚î½­iÌ…E¯‘A·˜÷¾õ·¨.} µªA\­:¶~µ0Ö-pUêè5ÁÎû•´zÚ~æ ¼Š;ÝjaÐ?¬tgíTK0~[zj¡'jÿŠNRBÀ¯;•ö©WˆÊ¦x­×i ݧIJ—¯}êëæ*özøÞ\Op‹êë©à°&+ö5áÕd±:/<3‹6 –ÑdÈJm£È>Ÿ‡£ÕF  q‚?.Äëo¡-Ë]•ÿ5 ‡}Ö2¾j8™ |6®\giª­åšÔæ>”ëÍ×Ê%’>Ô•nøçÀz¤´?Ïg‘Ù]Æoz²îãQ}éâ¡^º½ýøöÝ?~ùmþÍíýǾ½ÿôíËßâȬ·vQêÄökMO¼¨þõ¢ô“gyÆ‹újúyÖ‹ÊØµÀ‹1'fìôù2s>ÅmTøfƒ†ÿð~0ñI|ZDSbvÿ¯àÃI¡ù’•ù–ë©OBÇáµhNÜ#=‚øZFÕO ?ðxyÒ-ϱªÖe©ã£Ÿ.šlUðŠÚhžóñô ÜéÜçˆÀØïE·bv1Gà5ÒºÍ"äV\˜ Ô!å0üƒ-§†ª¿…’,wÕù×L ؔǵŸL 2D~ÁQ¨¿ä(\ý»¯[J?>š/-uEm4ʹ;ñ˜Ó9÷Ö ŒU÷¬úžH´E°ŒÖb~Ë"èútÎbàp4ÙÂhí{y4Lpg£…pý-te±«ê¿¦ÑûòÌB|Ö_j´üç{w_ÿŒx¼ö¿ÆÿÔ¢ÙÇxMÏótÙ©g 3ý–Žnj駉ÝDZìëçÒôE¢¼q0ØdØwæˆÑ况xzl ~ó"TŠP:ÝžZð+Ú-뱩Îâ¦g½òÒžÄQóÏw žYZ2šj×¥å n£Ú––‹¥ßjø<· 7L×Ôd=¼>ô£Dz¶XÖOø¨sx£.R‚Ò¡ ¬Òµò¯ó'lðQ œÂ5$ƒ'&üšæË˜ÉôË\2a¬æKåk7Ê›ïOxQÇ|Æ‹:±5/³ÝÕ‹ªÿx/êÄ ~}<ëE•‹…g¸¯Je=Çÿ¿÷¢ JNé/*áÁñ÷yQEç¾²uâr4~apëêOq¶ˆõÈàÜ î/u|lW¼Ï‹xÌc®õ/„!“‚_šLhrÌ{¾Y{ÁmT¿>HOTú[z&HÆfÐY×ÄÂ"žÂF3¶Í÷¨ë)nQ8ÅKÿÛBÏ)©_Žo{Ö«¿×j>V'XÂNÿÂÎÌfŒ*ù·Q=çòeÝÅ߈…¡ñÕ†²\¼ÅÎýAE>mOÉ88ì«ý†;°àƒÁ?ñu¯¿…¶,wUþ×ÌgXÐzþz[ï7"–£òÌrôŒÛ÷Lƒé3Õ×öº¢ÍÅíîôed™ç¶·W`¬¶qÁz¬–àÍ5˜E¶p \6Gs-ŒV{0Hc±Oöй ןBW»ªþkZkèÑÓW›/¿ç_ŒáŸø|_Íßänר§¸EµÏÐw ¥Ñ ÒO::BÕxÜ1¸[ðÒ ‰â·ÅNA}fWùÆï•õà¥TöJo˜¢WWVù¢ÇbKa}m×4p WÐ9\Mø‡5£c$CiaCíŒÖ+YŠp¨‰_»~l=õc>ãú}½Ôè©>G°-5OqÕ¶ÔÚvêø•4;·ä˜]ø¸cxcñ<?NcÏ~ †ë šz»|QH±UœÀáï‚*Ø+ŸOô‚]_ÄX¬ ë3¢&Ü(B9ãðDý_Ór8‚Ä·hŽS'Ko¹VžñÙ vUÐré¹Xk¶ôÄëûž ¾6Z®ûAOqÕæÉ`²4—½ä:ø­;|‹Ké‘ôÁ)ÏïFàn¸ÓüKíf†C‹B&8~Î88¬"´€#&ÿ`€/ÓãR¯‹0%L‰ ­ÃÅŠ_Ó~HÐ/jÊjøìã9ŸÝ^yfÚìH…¡Kõqï¡¥ÿÿ[ŸˆWÄù~Öi¯›ÓŽ©H?¿îÇ>+§ Î~¤çN­ñÄ,î!ê©õ¿÷ÃÏŸÞ¾|…,ê9æ½ÿ…O ‹º±@²øY$JµüîþÍKdØŒÖï ú]$ÞØŸþ?½”8ê üþñó—·ŸÞ}üx–sÜúôöûwo¾¼û»—šì7î¡L¿ÿîó—Oï¾ûùË»¬ÄÈ÷Ÿ?¿ûðƒKí»¡×LËûw_Þ?ò Èkm ýì SÈWÊýó?¼Ä}‚‘î_~|ûåÝÿ §øPOz×ñß}ÿú=õ‘Þuÿþõ—×ñòUÁ•Þïúô$´{…×€Û!S=®}È´M‰¯?|/e‘#ÆÎãŸ0Úý'ù'^–Iíþñ©RÛý‹ÖL­þðî3jÑoª÷7¨¹ïÞ¿] ¤PÖ.—Zþ»—¸9*uþúýo^¾Â—µÑ¾éýoþ4D¿ÿôúÓ—wVÓ*áþíÝj9åco\‰Û†,)¸*VýÏ—¯dѳX™vne^!®<·Rß<-ui*| #ÖšêÛ—RËH_õþÍQýþåÓÏÖ„Îû»Ïnáý£Öh—ù;¯¦·ŸÞ¿Ö†•5êþÇÀFU©ò/?zkJscþÐÖ”°5¥jñá4QéûןDQ…¥Bß¿ûðöá¹Ñ—7‰CÏ~úo?~ùòññ/žéª˜í[®ª­•‘$}ìô³©Ü!EEÚýíë74¥¤û®O½ëŒòÒ{Ø—Uøí‡7f×IHRyû‰fðWéTÆâİp1óþׯ?ý­vÍ1Æ¥rƒœjHãÞ|M6ÈðÏ÷Ï?’|ôéÌ×nöJZ eYS®ÃG;Ú)f¶ÌRuŸ^!} Ÿ^iÿäRÙéÞ/‡Æ¢©fôÈJ d8upwëwâ-¿ÂG,Ç!>ü³ÝRfþC=¸­,dÇaâ²zÊ:Ê8u¤>î??²]dP§c]ôšÒ ½`¹ü½—“9à»Ï:ŠQøì÷×:6Ÿ±Y3»{r‹?@{ù©ôçÆòL31féŽâäûw:µi{–ÉD’÷o_ÿÞ{´ø\+1ê•®-Ǹ½Â#²çHäþ,±T̤1Ëìýá£#¥×|ÿöŸ~šBzúj¯ˆœä­´ôu™n¿¼ýi1øýÏÞ ^>ÿ+™ÎÇ_~¤¬S{ýçÇx–ÿ®÷_~T-tžð².EÔéÀÔ÷ökmeÉ\%HjBV+aYZÅrÅâUº@üþGíBUºïÙP_¸¼€ûTßüÕ‹oþ…t™jÿé›wXE2.’ÍûwŸÞ¾þ[J¥08ã¢Laè*˜ÀNé*_^ª~¢ëT–, ÷·o?±t¦Oo@uèL™t–´æê{.Åô凟8ù\š4Iókb8›ò'öѧßÿö%Þ )RÕ¯xëÈò £ã?L¿¿û^kR›¯—Q[åc#Dj—SØYt=å” 2¶%ðÄâ´P6mþÏÿ…Ÿ|endstream endobj 331 0 obj << /Filter /FlateDecode /Length 14382 >> stream xœ¥}me¹qÞ÷ù úpa$Èí`ûæðð=ÉP€X‘aki,¤u€Þ™ÞVº§GÝ=Z¯}ê©§ŠäiÍJ6ÃÚ©ºd½\¾{ùáãø!Éíüps÷áË«þúïErèa¤j‚‚¯ß½9ÿ§«¯ÿðZy¾ì{ëVâ÷ç—§ÛÛw¦2Äó¯¾úâ³rS½leÿwÈýbºqóÓã§—ÏÛûï”{~þôô= åìÛ¥‡ºÿ›å|{…"×{–z½®C¸ôœ*m_ºàþîÃíó·ço¬ñ{ßÏ¿{yº ò£ˆ;ºõZ;¿}¼ÿ2 ¿Ëùþå§/÷•þñÝ—»(F;üϯßüKõRO©Å|‰ñ´§M:8ËÀíÒúééöô¿OÞ¤KLµœ~”ó÷òÿ‘ö+ñXlÞú)—.±žŽxµ…“Ðíhiå]è½\jô[©½ûR"í—¸Jpš:PÃ9q¿Ô~šÄɺê n…—p+]ÂÑ·o~ »â%7ámÒN¨h±c»•¶¯ ûeƒ†Zq©…¥DI¨88M¨18"º†„ÜãE†ÒÐa´6†1 «MÀÑ z–Ëe«§\Åû¬Ž9CÜßP©DmŽš¤Ù²Ð5\j4´¶í—­^b[8­´¼1öxi0Óê‡ri«ÒÚf‚—p]ÀÁºUÛ%«»|$ê—sr¸”­Y£æv)Ièžä‹´¨ Û~Y iµ¶4UhãÄt‘9oØÅßUim ³ÁK¸&à•êYؤY¥“«|š2Q=,œÀ¶Ææ]›'H³Õ0h*CïK i¸¸Jpš:PÃ8¥gX4$”&.:ŒÖÆ £„Y9$ý oÒ¡I¿‰ÓÏÃÂÑ –m&t•9t¿„4hè•)¼¶¥DNðiJpš:PÃ9›,§! ÷¢_«0ZƒFŒn¤ 8zAÏR†5Ò¿=,œ¾¡ÄŠˆ©Vè u{(:Ìœ†Ú*Ër]JÔÊ>p NS‡Ö0NÝõÃJ¾´Uim ³ÂK¸•.áè}+í’0ÞjÄxX8m‡~Ñ+}žAwŒ¢=´t qÐÐÛeä•¥DïÚ C‚ÓÔ¡5Œ#–bšäsÝV¤µ5Ì /áVº„£ôMÚ¶‹Ô&erRßœS–¡Eš &-ÄR™­.e´è•F½ìy)±ïÚ .aÐÔΑ‰ \€Lø­-*Hkc˜VbI¯¼PÏd_R9ÌAA—´Á‘å£fص¡=Jå£VÐö: ;%Z(})‘ú`Jpš:PÃ9µÀ’!a+º‡£µ-hÅ(áVº„£ôM‚€žQ&]²ŽÈÁiQ©3ªZ*3¤bR$ÔJ ÚR TôÁà4Uh ãH#÷xšd¸µEIm ³Á ¸.àè=“²) O:Zc¬ÁÿîR9™;¥òÖ µòI•º”O®®œVZÁ:cOQƒÃ©‚´6…á%†Õ&áà“ @œ«v´÷ÑIKͪÖÉ@)X;­q˨:JD™÷)`Ô€ ÎÉM© Á§ ÒÚf„—pMÂ+/Ô³(«BÔÏHÛûaáÈÐíjÙ¦Ívµº#ôU6Ê2V²ÿ&íYÖŠNoÞ¹ÎÙÄt|‘^}CNá$µ ¨Ú7ËFõ£íôG–þ†V’ð4éÄ182q¢{£ Ú S”nÏaÐP+ñ|HK mÃ*ÁiêÐÆÉ\˜†‰:몃´6…Yá%ÜJ—pôƒ¾IYñ3wiŽ®ÈàÈ ‹R;¡¥E²L­±¤A@©¬“ GèŽöŸÕ¦­á'»|TøãBh3¨úùó0˜µöÓ' IQËÃÂÉ2þ¡²"2²_t”µ¢ñ‹ÑÐ*1ÖR/‘$° SÀ ©A* NL¨.`WUSim3ÂK¸.áè=“e&b‰éM3F“˜RFµ˜±is4t2 Ý4z1† úB(7J:+«£©œ!3ÁßM@•‘Fk[Ð/1¬6 G/Ô±$ ~RQ³ë0tN“¥_ †˜±ks4™ €SûÛ ¡V°à–—Ö†¸H0Úth:¢2ÀG—€ “›ë0ZƒVŒn·K8úAßb3ˆ-™47µL7„ÖÀ{ORÑ‹ÑÐ+%s^JÈË*ÁiêÐÆ‘øqì ñG[uÖÖ0+¼„[éŽ~з‚•F‚ã ÑØÃÂh ’„h` ‚>‘&•ACkËÈÕ†°H´ª@ çlF|4$È´W¤µ-Ì /aFº€ƒôK‚ž]­êÀn“S7‚þ$aRTŒ™ùYtÝ0rZ´æM>”8Kä¿ N›Ô]T‡„"ºû¢Ãhm Z1J »)á•ê[–™Û EÚ©ëô88Ò’†)Š/ÒÎvïAw/Œ†·})!#F{Àê;IZÁ88ÐC€À11ª ­MA¼€[èŽ>Я½énÐbÒÙÑ9Uf€ vfî»Dýˆ²Ì¬­ ZezÏa)!Ó¿v¡ 0ÚTh ãÈpÅ,îÛ¢Ãhm 5bp«]ÀÑ z&K¿î5p·âaá°á„®†ù›ÎêÒPcœ†Úš—ŸeúÒö÷êNSŠ;G– ­ž ‡»ô<ºë%Ü>¯~ô€^Iè³cwO¾»¤aâäHІñ/¿ -°í€¦i Œ„V´Q¿CY^ªOz³Fùò0Øx\(©­`ØïnŸW?z@¯dCÓHËbÎ!/`ILص%ðIìÒ2Úêbi4Œ ÊÌûZ}ŸÂQVI­ê¯W”£¯¢I«ÿ¦ÜJ¸m&àh»ºS°w,·ŽM܇…#ÿ-hulŒ )ÿÁ\PbÔÒh(Ô—Ö‚Ò*ÀiªÐÎ úµ»„½'¬@C‡ÑÚjÄ(0¬6G/èYÒ=â2ª>,Œ5|.ØqZ>]†RˆàF }à´j@gL¡ƒ\@ìŠì‡ ÒÚ´Á ¸‰.ààÝåX˜¸r öXÐÞb.#캛.´Â§¡Uµ´èЦ§©œìkµ7ù¶°$¹x£µhÀ(ájí£ýô ëŠð¶Í¡òàš«h¬D 4‘p•Ž—oÇiQZ±UÝ—¡hÛ»„Ao–“º„«y?¹Y„ …M‡ÓÚ jÅ(aV ¯üPß4"øvá™Ó2Sg5KpD:êVÞŽ™Š†™Qσf +i`¤Ê×âFýRFmlJ¯òIk3˜^ 6«ýô›Å"²aß[]2$`Û±b ¬P¡*£yOƒ†Îœ°jδU‚ÑT ΖÇÎ’ h‚5Û¢Âhm1J¸Õ.áàÃV1„¶Äc0°[aÖ†}!¡M¦D+¥8 ­úb]Jˆ¨¸JpZU ‚3°• ³\@±îu¤µ)Ì/áFº„ƒt¬ê …ŒÛˆ!ô°pkGص³ ÅntzX„Rø3~VÄÕfíAS¾”œª3à¨/z_Ä+©­`êíw·Îkí§O§1[l¶ 082§ª‘º .K¡Çì€X†‘2ßÅ¥€L‡q©ïdô Á‘ÿÁ{}ùO_ÖV0¬Ä°Ð¼òAýjû¦8G€Qý¬& j«ž¡mu×#ä‹F)FCoâùÏ(‘ƒÆ=C‚ÓÔÎÁzç]BÒ¸nê ­aVx ·Ò%ý oIÏb¤ìxX8²T`m8‡ä:è†õÑH¨Åžt[ ȉ«§©5‡².@ÆVÔsjpR›BM˜†Ñ¬ô~awF‰ªª»ƒ##6ªYDçØ|GÀ¢''qÐP‹ýʺ”À†e_$8M¨áœ¢Ññ ˆe[UÖ–0#¼„iŽ^Ð3l£y€Øcαoóç†É]ÔuÚ·ˆí$§EmǦtYJÈR²/sà©Ck¨ã4džú¤µ)Ì+1Œ¤€W^¨gûÄ:âv+ŽTBXÔ±–øÕ€Ü# +cÂR:~OÁÚߪ;M¨08Ìýâ*žG¸C¹þ6lµŠGÛéOÔ³q9†ØW`Ð ít'°§Æè…4”f=ð™%¤æ¾Jpš:PÃ9Øi“õnH]!.:Hk#˜^­t G?è[ÖÓYEƒíh8§o›.‚½ìh¡«bx µØ”nK ê*ÀhSαÐ%´ZtËÂT©mAF·Ú½ gØ$NŒ:G¡qºDŸí#ËxWCö^4ÔìN¾}5֬β3ÖbõA›­`Dá44DSIm࿻ŬþÚx%"e|¢ã¦ÛØ £c` ]Ù}¶ÉÆYŒ†•Ø•.K‰¨94S 7…ò“³Ÿ¦„·« ÒÚf„—p#]ÂÁ :†…)àhTϜȊÖÄÒžø©Jui¯ƒ†ZôYáG\$8M¨áqAºfJžÌ«ÒÚzf…—p+]ÂÑú†íᔦÇÒ GÐõ†ZyGƒd¤ÊX*Aù ½Ø”NK ùÊ*ÁéÍÃ޵†IÀ{[t­­A+F‰a·I8úAß°A,-›}f“Óí;Áb„MŒÎÏ‘¦SPÚyüã?K8ÖÚN·ñ•9§ÚWæ ¾¢!¿ð#›êíg·Îkí§ODbâ¦ÖÃÂA,•9W9sS,âȳ÷A‹Öxô3J`ch d³þ…ƒ|ÚÓ¸Q6T­í@#¼Ä´š^y¡žì C*×t,œŽÃ`¡Fs’زtÚ4r1† úÃj:J$æÎ ƒ<˜œ¨³ø” C9¶Eim=áÜFpô‚žY.g(ÝÕ3ç4ݹ3vëÃŒ$‘?[ µØ‘ÎK j´\‚ÓÔƒ0óO E7o§ÒÚf…—v›„£ôÍ’9öªØkÎ)ºG.v$¶öÓÐ)U]œ†^ìJ§¥„Ä´Ú .ÁiêÐÆI:L ØQ[uÖÖ0+¼„[éŽ~Ð7&tnžœ ¢¥;L¼„YèÐ).g2ŸUuÉIi†‚fŠ×³,~¸; 2;ä})‘5#k pz£FâØ.í§Q]" ΡÀhmµ`0‡€Å~:D0q¦´wõÉ9C;†Ž¥zâ¦ÃDi~œ´ ܘ%ªfÌL NS‡Ö0ή)°SBèl×AZ[¬ðn¥K8úAߺ ©¥2]or*Ž)„d®'Žª´ÿ[æé i¨í «¨Ài€vë’ ¤üàdËGý¬çÄSim 3ÁK¸….àèýê~¤û© GfUÌj»%zJ¿Ë"V5 XHÂLlL÷ù;î¤,Õm wrpÏ]@Ðhe(Í øû°Ïª¿ò@½ŠA`1Ák0º¶5tE‡Ç¨G&NÃFL}q)#ŽYß©À|ªÁ¹hèQ[´¦U>im³ÀK˜}.à`?]b¦¦.¤š58©U‰ÇgA£è˜£®ŠFC©D§ÛF‰ÒfˆU'm*´†q0açÓàñë0Z[BÜjpô‚ž1QSOk«~ZÎ)[A|‰0SƒõCY—D£¡´i¾þ,Ñ™)ãõ4¨àœ¦{KC€ž3שÂhm µap›]ÀÑúÅ<ÍŒsÜÈsN/a„îÚH\ïj·å´µiCñ(x¸4U ‚sdV”ÕÓäªgACƒÑÚv´a”pMÀ+/Ô³´éJ-ßxµcp°ÚaØÎöÉã;í›f‡ C±=Ý—±° \‚ÓÔÎÁ…4†KejU¡¤6…Ù`¿»‰^ýèCº&š;cµ˜Œ 7zÄMïÔË h¬$«Òž ¥90)ÆKÈÜÛFR–W:á°WÇ¸Š‹£µ’õ‡• …CÀÁ:•õFz´òòÔäÈ‚¦fn§ÈØ9ªJÖ;[FCiM\C½D lzà$5 ‚sJc3¸ÜxXUÖ†0#¼„ÛèŽ^гºóBUª<]žE€ɲ;qŽ+±JìÐ{a¤¡·k>Þ(‘7K‘1 ƒ¦©18Q÷Ô§™­ûªƒ´6ŸYá%ÜJ—pôƒ¾a“ýÌ›  §êñ¶ØAžy$fœ¥¡s)õàh/¸§ýþÉä`gô4d=#Ÿ*Hkc˜VbI¯¼Pϲ¥l–ª— ŽflE\ Ìžâ%]Ÿ#[Œ†VìM÷¥Djìàdµ‹“ÃŒ­) è%風¥Ãi„—p]ÂÑ zf›È¦âJ68Ø8PË*oeõJ©Ø7ƒ†^ìQ÷¥„€XÞü2 NSj8§jšØ”PôZÞÔAZ[ìðn¥K8úAß«þÊõªaç8ü¡ƒ‡…SÜLfƒâ«‘ÈN yÖŒd£af´ÛÖ^BâÛ°JpÚ_WX8š@4%𭃩Ãß>˜Vx‰a·I8úAßxfOà…Æ!CFfƒ4¥˜¥Ï8 µ™·­G‰yEÌ8M¨áœª sH@¢|~C‡ÑÚ|jÄ(à6º€£ô 9SèÃÂBE{0 ÔkÅVõ&õjhÕÛÖ³„¸zGÌ%8= ½~9% ².:Hkc˜^bØmŽ~Ð7è‡T†y G" ô †"¬ï¼àNZÔjFGš%4ácI ZÁ8óúi Øt{ª ­maFx ·Ñ$¼ò‚žif§²ôòÛ`ˆYAí*lÄÖA¶E*ƒ†Ø½NK pCX$8M¨á‘%ßÏ” ·Uim ³ÂJ¸‘&àè„úՙ܉ÄÇMýr¶cÑüØ+ÓqtDã!¬™FC'¶°ãRBÆKYI(o $VÂ)¯¾ë…æ©€´6œ™à%ÌBpð€NYZ'’Í4orx+UŒh‰ŽÍŒ^T®PWx,ÄߪJõœÞ-Ånr$^Åę́‰M餵¨Û ¸i.àh<*zåT¾µb3ýàÈLƒ€¶sþ–Aß݈¯j»^´ž%p³y•à4uh ã`ÏTÇùZ[Ö–0¼„›˜W¥ë¦+tî8hãàsNÕÜ1QÊÜO$¥!ñ·³±caôÛ7iÓÛÊþ3B€}TŸ4 ¸s²æ$ZuläÆE:imÓOδÕ_{¯D$îVg$þˆ“Á„´YŸ"CóçĤªÇqFÃÈè÷¸­®N‡E 7¾59QQÈ” ¯±-:Hk»™^ÂŒt'èWÔ$Ç ~£k6¦}–m‹lü¬×§†Î¬W¬g dDêJP8ÊëfíVz×d7í´6sNG ³Íl§;Ø6ÆhE®î8CVJQ–ïŠÛõ)Œ„$s½¸Ýí±Œ´ast-Ì”U€ÓªA+£h ó€|UAZ[6x7Ñ| [Lß”Žlš“8‰i€[ÓT!ÂHãÜ:¯K-Jº'Ì!ll}“0hU ƒ±MزYUÖ–0#¼Ä°šŽ^¨cù›Íé ¼p:ЄL¸ kÁ+fñº´Ñ0T¦Ô´•7­½q}Íe•¯Ä €h‹£µíhÃ(a6G/èS8åKH¼朲iî‡XÐiŽ¢.…¤·¥†Ú¤7ªg‰œùB éPÁ9MŸ»pòÁè”ï*œÖ¦ì/áV»„£ô à“U3FÓ=ƒ„¼´5 ™çNCkåêQBGú`dµ¬ºÉ°‘èÕ‹îÒOÅ÷¦ ^ÂM6èTÑ„ªŒM·'‡Ñ¢µXÓè©r MS¬œ†ÖΓ /±o›5?% ºØJ49¼Ô0%ä]ó}‡ÒÚf…—p+]ÂÑúÖµlÙjfúä4ÝlM Ÿeëš¹%vim§ai(ö•ØÕÇ!aÐÕ®óNNѺ)¡lÖ¦ƒ´¶ŸYa%†•&á•êÛ4Y¡àI={žœ½²˜ö©¯á2áõÚ´Ó°46>=ã%¤Õ NSj Ž>G5%lºÑ6uÖÖ0+¼Ä°Û$ý oØ.Ögx4wæaá4ÝØO;ó> Ö í…¬É/NCo \¯½DÑtš)ÁiêÐÆ)º=%ðjÈÔAZ[ìðn¥K8úßôuSÜè† ²”ðZƒ´®Eaiù¯©²¸^)ð^Ÿ Þ®®kJˆfÎYþ‰„ÚTÏAØEïõsÈúï†"û6_ õ÷g¾€¿1 î)˼+ÿ¼Lc~§s–B¹œ),…œ³J2•éË\£qÖBÜz\ʱq#g™ÕìcâQ¯ÑºG"Y‡Òe¯-{-°ãêzG\ÞÒùz»H;ò¯rÞô'}õ Ÿù‹¨ôgMü³OüþE[Ë 1YÖÐu4äõË\³ã³2Sõ!çÓ¯¾º ‚·ñHô§==ÜÞ|ðw—~ã@¡Èl}7+›„W‘ÿ%àUäÙ$2-oYæuЉžó¿¢„:öÿý~±¿œô鑇•£›É÷oæ³¾äêœd'j¹(ÇÞ¯-8-&c×ðošl]9ölÁ3]Ù9=ðµh™ñ¢jÅÖ 2*D4åøã§U·íÁIL]F`{á³õ;žcЦ Ï2€3^ãÔ¤3ådoð$Õ¦öÍW- âå4‹iõh¾Ý˜õ¾?ËH°·3êêjÎx1#îRF´GØôb8þš fŠBŽ^Ã)¸BûÆÃ|½pîÚ‘£©±l×™ÿþÍòÔ]Ä\ξcW9;Ëø£q9Zëhú >ð§Ç‡àèl]Ó •Ô‡hb©“ã-3$ÿ)£ëΜ´Œ}üóÝ1åHÈ ÓmäJ«àñº–´MìähH¬‡ U­óWªê¦wO•ÓøâQ·Q2ž{âÉ<8-ØY}°Á6NÒ|Ü{5Û˜@ n°w¹²ª/ïÈPí»rðZŒ¾Ï‹w0Æ33ݺE ¢¦”¥lªýéÍÚ23øSŒöÙ—V¢exŽ#yS‹ýEÜèê&^ ÃW†5Š£m<Ð8“eäkÐ+T©[­ñÖ…ôtä4ª:cpüéˆ]¯\Üóá>ã 58þÔ/Þó ½†§'ö¢¶ñ8PjU'ô…‹HÎx Ù°ÀUùŽ{µ[™qÝ[»Ê؃ݿכ¥àø­õ¨‰÷¼Ÿôz^âÐö 橚¸ K˜¿H‹<™{k$ZÛd½_×ÕmøË§@²}¾vÁ×Ùð•M̉k^—ÕËàd´/²Ü”²k­éVªiš>–ð©rÞDeˆ(/ë=Goðy)fA9{á-RlÚîÊñK…AóÌÀ1(Œ¶ÒÏn¹œ§'"à`‘ÖÃÕˆV•Ûn‰‰Ä`t}èQúÆ/sÞ‹Ö1y"à¢ãîU²ùÇãÆŒù#ª½ãSîl‰L›ìÓ/a^²SžØ…àš›5H·Ö>du» ¦´_Té GÀ±×³qmNgŸyµd³ŽŠXô&ÁfÉr‹ÂÆxIJÀ{ŒÃæ…„=qäEépõÏEéèœÉýQ³+ÁÙ—è} -áÙò3Ø+X4“f)ÃsÛñf®ªŠ¥°R)\Èfwiœ~4Õ9WÞ¸Ðåf¦C·ÍÌÁÂÀkÍZgäã+W±0ð5²Í†èÈÖÏ@sY5p ÁÆ„ç»âŽS¡Æ[ñHˆ2±ž7Ê?ŒpÏLÓ ™¤ ‡ÐàX&Ò¬4ÔŽ¸¡Ir‰_÷LeÄîª2¿’-*Y2m‘b!–’͆£çÖ1+ lî\ØTìÈQkþÉ!©MßuÃ!¸çÙ^È.áG¨wÊÂÈîDz¦p$žÕm˜ÅäQËóÐÔŽ9Eg¬‘Êwën¨ÐL‘Í´˜¤'‚àDþ탼Û÷>ÓKŠ|}¡FÓG’}˜#MƒY\à螌çp’º0ò¤µ9¼5%1Ýfn27 š‹AüŠFOàŸû'i´&QK²ÆGÙ¡Ú׃“™¬ÙE™+á<Þ#±ˆ§¹³Ä<¿ &o©àÍcJbçv|+ÉÆë8ôÓýn0˜‚“ñÈ€Æã ¶o绬FqìÍC¯ÆþOºjû­*gòl‰AJÂíðlq êy\2ƒÉ„Ea·”BŽŸAì•Ã&á¹j߯ÙííÛŽ&}`]÷Ö?eÿ=às¼Çv:ã5lI:Çv²¥‹ô“OŠ ôÏ:±lØîQ9%Øc×a17?…‘Èá–œnëZíۈ lSÝ|Û#G'u/.Ø\€:¢|dS©“cOk·èhî%C 'ÐÞß¾‘É[Ìéÿ.ÿ+Cþ7 ¸Cnr>€»œlÂ^þžJ²°ÄÁòÕ‘›;ÝI:-àÎî?¬ànÛù1p—;gÄíôHì§Üi"-ñßø³¯À®1ľ‘¹Á½h/Yn(p·eÃ+Üar7(gànËÄ p·Ù÷8Àv6‡¸Ã»:´˜àN÷¼ ÜeDlíî¶È™k‚»m@w<^YÁ¾Â#¸Ûôñ‰ îx6G\Fp§gyn9¸Óo„¸‡àNœÍ†õîp¶}Àvš5BÍî¶Âxf¾øŒ··‰¸ ÜU¾€µ€;,gPÎÀ]‘Ù¬h›'ˆqrwüC"+ºÛŠÅÀŽîdB£ÉÜmÓ Û!~hD\Ží6 D¶Ó¿Ä2îæÇàà[•ô|<|š+nÇvʸëą‘à ^¸‹-ÛÇààNórzw ïÛ²Œ» ñÇ#{€¨„wm÷ý‘ñ\]²…f€»–²!wXž6bMwà„Ü)fáç`è.aYáD`èNyÚÉ!ºKÈh ¼Ówå¬á>/ Ì)¼KXUØ^ï…i‘ñàTL6´ ÞéÛ1<àŸ0\à]kº-ð™amÂ;˜ÍÆò7…ÒfCÀñf&±†¿ÏchÊÀ]‹º.à®Õ×àŽ/Nl§þÔÛ%ä éŽÀÄv›#,ÇvxYg[±þM…Óíb²ý‰í"‚?â4@»ˆxOíwhLJOd'j3d‡õAš!»ˆ®; »Èk ´‹Íq°C»(¡s9@»MoÁ¬ØnëŒ0&¶ ÖGóVÿ,rvl‡—@h²c;læÄ¶Ãë  p‡ Ñ:§pg/,àP»ƒ;À\¢Ïq D§Ûá{w\*®¯Á]Âî'1¢;¼8^(ÇÀ]êɱ¦;¾³b;ƒÛ›0¶ÃÍØ~\ÁÜ}ø9¼ÃãØºã:#þ‚#! Á»œ’EËïÆ¶Ú€w9Ûfçr¿®ZO8¼Ë…X.Ž7ŸO ´Ã¥H†öírK.“ÐÁ·+ Úá©ÁLƒv¹wû¶ÛŠÏí‚7ïÀv8c9-Ðù‹¸}\ˆ‰¶]? -]ph‡?÷GÚNàÚá€#ß¡ž,&JwhWxScB;@ÚͰ^¶ übÖ¡Ý„°íðj0[Ü .­8´ÓklìÐÎcƒvØD"Þ2hWñ°”q,»ZÕN´gØø•@Π]•…Ã`›A;Úp€vXë:k´~eË8¶Ã£´üTÛU̹Äi†í>®Ö´«-2âÐ/ÀnDi†íìFÉ‚íª‡¤Ûyˆ7±Ýf›êÛ5‰)³qˆíðbi"Ú3l×¢M¡Ûá¤i'&3l§ë˶CKjü6°> zZ ]Ë݆ìôáMZcÈ®aA9-À+åFŒ¶$ég;€]붬 d‡ä]2ØyÔ?‘]Ø ÷²Ëxb²²Œ'ˆø†©#;Íù ƒƒ™Y7bU—;E°‰àN8¶MàP.÷bÀäd $滌¸ÍœâÇœý¥ÆÈÕÜ-e²F‹ÉáªÐ~@r(ÃínGr¸^Â2ã+ÛP£{?@9\·i„{„rø¶÷Ã9]ó †å°×² â! ‡rب¨eåzɦʡ€‘žùßX“&à¶9¡\ADµc9=§ƒá‘Rìœ.H—˜\ƒrÈÿi„‘å`ç~€rxfŠ°Ç¡òŽØãï]•b ÇÏé„U ¸ñœi•Ã9]°*šéR·qf§8NVf‘á8¤ë6´C»0u §^€\ßl"˜g'VCåä$ÂäÄ<¥ƒdãÈ!–gäï@nlê ‡1Èñ¿¡Âimr¸»ÄqãP›‘¿C9û+† ”Sò€rXm8¶Êáö¶c9Üê,cX®d÷°n™òËc!íÖ<ŽåòídDZþrÒÎ2~Pg‡óœ®íÖßåð—ã¯Æ;ýÅ6{Ç9F­¯ù»÷|’iB¹Œx(HNÏÅöõ˜NCy?Žcºn1¬!9}¹þ€äTŒqˆä2RÅ#±‘\F–õfØŽÏÛ ßÌÎÓü˜®ù´äçta[a\ül&ŒËȬ\aÜ„ý”.0¸œ0NÿˆÏFý”N-$vòcºí$oÓñomN§"óÖpœ>ì[Y‹8NZbÜåÆƒGŽ?§Ík8އ•”J·â+B9mßxŠP.o»µ¦C9m_;qósºží8ÍÏéð—M îüÎf»¶Ê!¦ÎĈ„rx|‚›çŽåpŠå2o\/X.ïÕp0‡Ç!:˜Ë¼,·€9¼wÁ°ÒÁbñ ÑÀž²¡½æð¸ 嘓˜ÑvéÌážípP—kñc9?¨c¶Úæ°qÔu|"hsØn"ðp0‡-ÒýpR7¶º˜CàŸ'ucƒl€9=±"ÇÐâ{ž,9š+Ñ6hšC¢qüE§T¹E6Ð\ñ€a¾$@Tàp¯=ð4Äáœý)­Î!i‚dÕù9Ö8¬ë¶K5뺻îh®nöá 4‡{Õĉ޿pjE„ìhnžc9šÃ•åípZ‡i;¦CÜo’ Ó!î_Oëpñ’MaNsWÈ0H‡‹ëZe¦ÎÌAÏ.Ì» \­!Fê`ö²™)8rþ7Ð-äŸy@aêzÕ}ZçqÝ ðZí1w'Ø ÔÌÔÙëå°y;“yFNê–4rnÊæk²oÄb_i½è—Ž{¬=Ñþå Xæ†ÍLŽ™·PþégïvÈ—Š?û#Ÿör³W+þŒ‹^7˼Ùñww?|zº½ºŽ8~ çö_¯®q¾¶íñüÕÒáBíçÇç—Û§»Ç'ÕŸpþøtûîîíËÝŸ®vœd×vV@‰ýüîîùåéî»O/wL²ˆûô|÷á»/"}¾Ø‡¼féÐM¯‰|÷òÃG\yíþJ¤LZè÷ç!8¤óóOhé¶Ÿ_Þ߾ܽõßÂYtª…{ìbÀãÝ»›{wâüîæåf¸»Ÿõ: ké|óáÚzº>«y=ç$ß‚ªïÛ”¢¸DòùãÕµ6B(çG¨Ã²šËùŠ{máüãÝ3Z'ão@åó[4Ýw÷·SÀí—æ—fþÓ.¶K+ÞÜ"Ýk(@Zúù̹åüñæéåÎZœ¿=û¥œ¸P?\hnüŸ«k­¢¸'«"“Ѭrp KáëC­¯_×:t0é ï¨o¯¦Ÿilf½œ¿~?ZDZêé“S­z? ŽtèÝ3mçGm[”ç?yƒÝ>Ýßho­œÜw&`OÒø/ï]¸4$;Uÿ¦€øª½še¶V[ßÝ<¿gU™¹·z¾¿ûp{±Æ”Y{=;ï7akîþÛ¯ÿóïÏÏŸ¾{¾yøx¯u#¬ç*¢–ÿlûù‡§;-—Úùñ{/Ôe|üôò¿•LÆFúžé´‰ýîJ‡¸ –ŸŒYw¡jw¨i™÷ò¥ ö–ÃùýÔûöñÃÛÛ×ê8°`–°Â<}yºy¹}¦H™¾“ãw7fSÉäW$~³û~Ù‡ÆÄ‘[ëá0`"{ëáQ§&$áJ¼¿•®Æ3 q—pWEeqØËùîþ'+Uôcb}ñäEGYä(ûÅÓó‹‹.ç?®>ݼ{’Aá=ž_¦?¾¿}ZDä=Ý>´ÖïÒ‘žÝÔMÚåêZæ§Ñ‘‡å]¦øk6l Ïœ5¤ã f€Ûç™)ñ±àðQÆÒWs²ÅÊ'¥LL¼#ÐÙ[:¿½ÁLÀþÐ&û|Ÿ`w´Éf}ò¹NÁ 3éöCŸÄó gYÞÑÚâáæîæwþ¼•1ΣÈÏXé_–.SïuÀ¹†„Á׸N"ã‚üíÕ5v»Ð´·ÿòqwÁÜ ^Ôúï×øwRSø»tç»oa÷Äãs]„}3ÿùJÆUÀô³·³)ûßü7++Þüîg«yé+|ìR¿KY˜ðZï7³ÖQ•~›]†ø%…?3á$'¥` Õm 㼊ó,™oõÖ¦“åüÿˆ]„tZ_¦¹·÷·7Oü„pß.ÿð‰_JU[o–¢wn>~|züøt'ó€±÷ó÷ðß/ï§èxf7Qé+I®!Ôó2ú?Nò+Wâá1úSBõXWxŒ¬}]áцîú KëêÔ€7¾J ˜9Î'ŸžUÆùùö-Æ*¾ERö=ª¶̶IVªïìY°j£OD¸Š|~~ÑQóôy[*ç_}e–J»ýB§Q-\½õ§J'|±ofÂãó/°@]'i¾_~/3~ º›{D»ÌF:ë?Iÿ-ßâíó3~Jc±…h4ûq‚¼{Q iuúþÞkÖów&R:áöý W•½ž9c•,Üw4Tõüúƒ¹_‡À)úÑ#–|¸ýðÌYÍ•=~¸5;…x/Çí­»eq6/Ràñîí­ýЖ¾ŒiWu‹Û²ŒÞb”à¸1É…MZæñEƽ†–ªÁVgùéùVb°túxœ, OO·÷7•mzmûûOÞÚ´wsŒÇß.5yƒö€;Cݸ»aµÿþæÓ=¾àhQ¯cYìã y5Íc?aO‰GX}œE·ÄR}¢ÿxóvôÝÿ½Bæ •óÍeŠgÅ»¿»Òž“± _)6¤%v¹¿—)Ñ/R±ê"¥Öž?~ºÂewYwÒùIg¸eX~œ]ñø¬a…:´Ÿ±êÊðÅ™Œ'ç_»ù ßß`ØDs}ÒEW[' \T(>Qd[CÖ.Œã« 5­CáÉ—³xþþæa¾¡]šÿ³‹—¬Ï­3²2\¾“cLø˜“…ùíù›/¿ùÂ×€pþÝ—¿sJ–÷oäGþšu ÈØKÓÓ—#‚ÿf©û§Û§ï¾ÜlÙ{ÝÕ¾ Òº¯žxÒ¯o¢ï>H”qóòø¤¼¬ø‰+~ÊN=’É_ªð[ÆÞ¨ÔR¤F÷ÊM:ë‘m)3È*4Ùô6„&„Q2°:$®‚çü´ OµR‘çõçVõ5B*ƒo/ŒsŸ?=}óV„‚D?¼Ó¹¤gœQ¸5“w='ä7F!ŠÌž]DÖ¸ÿV¼2~™W<œG¥fŸâýí÷/Ÿû#àV[ƒ.·X'7Q"öÒÀ–uXbõçiæçÕ#ÃDð©ºûáýçôãÙÚx úÜÝCKøg†Õ*oýU,;gª@€¢+A @2:ö.®EÃÂF…ö3¸µ&¸EªKˆpz=´³ŠÄ‚­#†oч¯N?~ðB‘Jà>ȻǧdÑù>´eB>tƒî…¿Ú 2 ¶èˆéîAf_”R³öÜ^…?ïÑœx=Ÿ çZ)çå“à|œ6ÝNø,fÐß„ñ3ÍŠ½Ðÿ*fhäŸ6ÄíJ‚/YØp÷$Ñç³:µäg±NÚø£¬¡·O/7ñ‰±=ä « £GV±¹†š ‚°k["$·ùQ,zž64ÝZ*áØfM®w·÷þCc(­Õ¾ŸßKŸÞ2xf­¡Þ"%l]ûn玀ŽzÃN›îh­"ï±2­a׳ lY¾ÿ—/¬Žôé;£w/.àwb÷sù½ÑÕ#ÕsÑåœõ°øÝí¬ú°ÿ¥”­\æÈT&´Wð‹(¾½} …"A·þ}ëÀŠQ‹JµqB™ÉCnû !· Ê\õsùõ‹ÿåsù°jG7eêäf2[ù9äâ3åýÍÓXyËHSÿ\ƒíúú÷®;}“ÒHÿm31˜ª'†ü´TyþÈUPIß¡ò_Ëð}Ÿ1DgpnË|=kf[Í?;NÆn ¾iùÈ=º"2û^ô|xëÛ Á·> stream xœ¬½Ë®6»r8ßOñÏzÀZ®ûeÐ=0`ÐÈ— x`yà¶.mAK¶7løé›df°Šñ±V ÝFûÿ§ò[UdfD03Iþã¯ákü5äÿãÿù_¾~ýíoÿøÛXþõ—ÿÇùþõ¯þøí_þ»mûu~Û´ýúão~3‹ñ×8Ï_ûvüÚ¶ák:Æ_|ÿöÿ¿þôgë´~ Ãüûÿûÿö?þò÷¿þ_ÿýëÿþÛÿþ/ò¿/_øýþýŸÿë?üŸúOüEúáñï¿<œ_Ç8¥_ÿã¯~ûýÿøÓÿöú5MÇ9úþoþ…=~fýÚŽ}üñÏüåŸò#ÿúßþm€ýØ¿Ò;¬Ã¼íó¯q܇¯sO_;M_ÇùëŸþú×øõ¿M_˼lë¯ÿ™†ã/Òÿÿwiüþü·ñÖüкGúc¿¾›–áøZ÷_ë>n_çùëïû÷ôoù©iü:ÒPNszµÕŸjÿíû·ñ˜‡¯%ÿ˸|öTü·oz‡ò[Ç?ù׺¬Ë×<æ¿x¦çÓméñ¯Åÿbø·OïEo~½<5.Ó×9ÿZÇmþ>=%Æ+Øå§Ê´¬çúµl¿–ý<¿æé׸$¯ÛÏ_㾦çWLKωÇéø5§¿¶Sö4«Ã9ìGŠeܲcüYýoõ›Öäãix×)ýç±eÿýÕ]´Lãš<0Ô~q/ß>žÙ™Ö%ÅÀ¾`N†¯5Ç8æ/SOMû™œqÌÏ_Ç\ì?o9íóÒéßÒWÇžþñúOÿ_ÆsþZÓG­ó‘^s´›®K®ÿµù3ÒïÅókM³µ%ƒ:ƒidÒW¤?ûu¬ê¡ñ8·¯uÌlùc~òsšÒòã”\cÌqžÓœòö_üôoy Sà.Ó^>ãׯ¿CzŸí,®–_0Ô¸ýÚ†ôÊã‚0š¾†=ýÛ´}‹|*ýK°)?“~éòÌŸƘ<óƒ»,ã§{=—9S »ékÊÿ°}åIOO,_kyâLÐVþ% ûxØ#VþŸßþÕo¿MsŠŽ©X¦w˜ÊOµ?®L“Õøµù_Ãû±ìtÉ}ËÙoMBí·†­ü½høkþZiˆ²]v´#ÿRxOõÉ(³Sú‡É€À_jØ2"¥ßÚ1XÍkª—à?篵¯ÙgÓomyD¾ã‹Š—˜æìÖÅ&sÕõZÉoæÉ~Ê?½à9Úƒ§ <_xuLâZ5aî`_Ø~³ú zsÿ©„¢åOÎKvïoúfõE ì·‚_§yôåË×¶ÛM³9DóÕâ‹øÝáó×\þyÊ¿ù¿Z|¿ºÿÔ:f?.?U0~µú¢i^ ו¿wÜ|>™ÌÙw’¸9lð—Õl3–3ƾ:åÙIÿ<æ¿þMC¨Æ‡¾šX¢|AbÍ|µB5@<þcöæåÇfývÕ%«ék§ßÊ`C;ftü¦1TãÃ×O?’MS¨L®Ÿš1ãÿ8äß:2}Óªñáð¯L°œfzØW&S`4e!kå)a$ü݆ͦ6¿ÙRÞ¬1ØÉ¨¼ty±ùÒ ìû­ùyÜ&D 6*œìÌÈ”~lG(µ¢F›‡ÕlÙ³fL¦i8ÌÇš QƒÍ°|ÄvÀk;!j°y$üÅÒaÞýÅÊ… Q£=ÍIöNþ×;ãe–LÓä•q¯Q£Íà ¸Þ²˜-?6:\73¢F›ÇÕÇlMï±7c¶MEqfÓ³ü˜râ0®@Œ%^y3'’fzÕÔñ°^ºb?í· ÛÙU3Ç£êvô÷²PjgWÍÜ4™,?¶ß˜äØüÅfqvÕÌñ~?ÓMæeí쪙£Q…ûæ@ÙÒX©\5q<¬@ŸÉÄdz±Ù˜¤\5s<¬—³i™|ÈÚÙU3Ç£j¿5¥eçì#6dz«f.-äËg؋ݾr_ÊâåÌ+Xû±vvÕÌñ!”Òd/þÏö•{qÌò& Up…9.H)o¶:ù6®"Ü€§è’çnÃ?ú´®¢Ü€¦°8ø'¾j ž¢¼€§°¸ä•JúçákÛ bož¢Ü€§Ècßsà–73\E¹A²ÊjúL˶óF¾ižŠiZlÆK­«(7à)‚,Ø¿æÙ>j²ŒIë*Ê xŽ˜§IÁÑ—ÒÑU”ð$]býôßš Õo®"Ü€§q¹ÛЦßZ'ÃØÆU”ðcLå×M|u‰Ñ¸Šrž"³m±)Nof|\E¹Á4­»ÏnzçkÀ¶=ÿ1›JR 6Tú8ÛqÌä$k½NyÏ6À5úJ¦‹½XëuÊ£xºä,#DAð:åQ<ß×ú¦ Ðx­Åï^§\Š§Û§òX¾ÖÙk±oÜN¹O7ÀÈÑ‘L7ÿ±àvÊ¥xŽüÍ’HÝ}ÈlÜN¸Ô”<ÃG¬‘QËšèk7ËÙ5Yãvʧx¾¡Évó—ô•þÁï”Oñ|ƒIæü×ÊžÀhüNùÍ7DærÍ£òMn§\ŠçL2dÙP~lÆŠðæuÊ¥xºA$£Íù¸zÊ5¸r)žn±}ó;‘9“i|F1‚8Ý‹{É©ç üfb±uaåž<Ýþ• 6û­½üVð`åžÉhÊËéò[ÛÍa—\ä¹GRpaåžì: ¸ôu«½Ùb°Øº°rOökák.uáÛ¸°pOö0ܘenúç9sÄ7¹°rOö€Ï^*ùÇŒ-VÞɳ è9ü/Ìž ¬¼“§‡×ݼÔGΕdÈÏ.énn‰&AÁ!›¼Ô—>qBªô¢*üØ£ù>®éý,[BT…y4dÓ`ˆ2lÈûµJáÇî|Õˆ‹ÀÊîe ¬6DUø±;_ËÈñ´Y7,#o!ªâýëÈÍÖˆyìó›UñÇþ á4[®7}¦WOÛUñÇ á4š„ óÛUñÇþ|ep—͆ÌTEˆQì†À|k_Ì?溢‰Qì…þ‘ëf½CÚmˆŠøK6ƒZþk7o=GÓÝÃê)ï£*Ù£Á ‡ÿØäm­mªdŸ¾Ö·Ò7… È.õín²;Y®^½h‚TÅ »ôUì·9©Ê6NU ²K_ëÛ\—>ÎÓ+!NU ’K_IêÝß˸M”ªd†LÊ èè Qª"<ü±—çŽóðüaRìÒÎ c™üò ›sG½Gói"(%¸4ä´Ìxî5Fòüð*˜É£±ð¶¡ÎóhB  wËìÐ>^K©•ñ²Ümï*˜§qÞ¬ô·>Gàîð*˜9:°Ž_KÛOþH¯\´¯¢™££]Çç¯tÊm#^…3Gâj\3\ ù&äU8s|@!Ž¥‡+&ñMÈ«pæøí¥WçHÿ9MXÈßB^„3ÇÇ•Ô?³ôÞ×&äU8³Oc%_0³ ¿dò"œÙ©ý·¹Ine7ž !¯Â™œ ž ¯Â™i#çIÞæryÎìÒWV`;íOO ÜC^…3{´×TäUù-[~‡Wñœ¬¦â`ùïÝs·é5ðÏÇŠÊü-æU4p¤]Yã|ï 8Ú®LÊ´ÚWÎȤÜÐC!ÛU걨¬™”=2p| ‘²¸ó£_àŽ 8:À’ÖÎzœ“ç>z(dàð€ ¾| MRðPÈÀáqÕŸ†Ý½å§x`àà¸ò(Çl³ˆÚ‰k +ZôPȬæ:®û½»eô‰Z¼{¼E… iÈñ”÷,¯á]’-z(d¡A=¸Ýè%•:,p¤y¥—]Gû«Ç¯‹¥MŠWXСvÚ¶Õüu_Ph»áŽ5ÈóÁýuòÉD g8Ø.B€cRÀ"…3mHí_ç[(R0ñy>º£ã#[(R8áv¥‹Îò'†Zoh°H ‡(·mù±Ù G-) áPƒ@ÏõÆì,R8C‘†ÔÓ^Â-O¤qQ‹D e8РÎËFÜ5oH^xº‘ 5G£øBú©Ã“E‡ÆLC‚ÛÙ'ÿæ^iX3ô2[‹B b8Рó§†b8ÊÂZó—•Á½’ØÀÂŽ2èüÁ[L)Œ¡0ƒÎŸ‹$-žZË’7RCa†Öžwó‡ðöÏ„Àp”AçÛ±ücÆ„Àp”]-XÓa¦Ž¬ )„á(w6KGÍaµ(¤ †ã :ßj{‡m•¤ð…£ÌÇËòž%„¬:0Há ‡DþP «ÙÔ7D5$ð…à 6”;N´Þ6¤ð…£ ̽•n´# àÿŽA_8Ì<„2ÊþáFÜyÀ[„**aæð•´xʱykE4VÉhùòq¹åOrúmvÃݱÁ3…U±Gý­¹nøj1G‰‚³X|ŒekR{ûÆi ®8f‘£Û}:Ò\QÈbí1”îh gª8\±ò˜sƒo™DïùlàLA,òsY`ͶòhàLA,VS)—°ü\ g «(`‘ž[ý#¯ô\g ª(bÁÿ»ÏÿêÚîh¦ŠÂkŽÁdûôP3TbHóíîôðÓf ª(È@ÿÖa]ðÆw27h¦ Šƒ ™¾©~¥!N€3VdP¶ø°Æáo4Vd>þ ùŠ[gýQ>3š@«)ŸÛ²z¸ÜØ1§Kþ!ýót â}C4WµÈ:8¥!s=Ñ šB+ŠZȉ­‚.g €¦ÀŠ£+˜Å'e‡þjM -Ò†¶2¿˜çÀnˆ¦àŠCZâ´(=pI€4…W!f±zÛ쇀¦ÀŠƒZâüÚîÁðL`‡,V/£ûÜZ ç ž ¬âEºp¶;fìmlñLÀG¬GcZ.>ζ<^S¸>îJ^„ˆõhÜ­©-¿˜o>*ìãˆÅbh1§;ÐDðQ`G,™[õ/?Õ¤ÅG…}²i°í# ¿<*èãE*s78Ï0a=a-<*èãõáŸ]]¨¡xTØ—¬÷é徇mÎósš©å:>*ì €¥ÕàZpÀÇá´èhpÌ5-Ú€£>F¬¬ðcžú ب€+«Ù"½ØÒéàਰ!YQÌÚè‡b|$ìc€<Ù,KV‡>à£Â>Z¤D7G#o2¸ƒ£B>XäCkùÁ-8*ä々49M¨£ïÍ訠#)ÑÓ2”¿<*èãˆÅÊj(}´%K0¶è¨K+;ZäÀ†ýîq´ba5Y¤¥÷óhT°GñŠÌêìÎ5æÞwDF…z¯XUá/Lþ[êqÀúÈçá)§þí¾ ȨPoF;8-νã-ÍÚâæýZd$ÔãÐG–ÖŽºÊ/áÉûîqèCçìöNVèhqQaG>2´‡ À¦ÅE…yûÐ8§eróú6äqð_)Ú² ßOrêqð»{m“­tŽÁÈë¾ZÊÿÀzXéžüÈøEÞ8@V(Ç>V|³ÇÇ€CBn «”cë=O1çS ½gñ޲ A9ö‘ð]Êv‚<ôv \@Y… üXíÙØü^žîm0Vá'Ǿü²”¿÷2-¶Ö»C¬‚OŽ|¤Ž½J¶£Íí± >9ì¯Äq‰Ÿýȹýï±>9î¡nóÉýtÉ Vá'Ç>z¶Óñ°æ”oÂX…Ÿû>ðÑûŽaz&£³uƒsb„ò'wôÀUøÉ8RÐ;³c~2Ž ]R=w¯¿0Vá'>V«ÿPÙÄôM+4Ä=òÏŽá{mSlV¡'Å=òÏkiÌCå; Z€UàÉqEã`ÉøôbFÖ-¾*ìäÀ‡LZí®¨¾ã«ÂNŠ{,{Ù|L‡i ¯ =CÜC$®àUa'Å=TÒi¹Ò*¶diáU@'Ç=V‹‹…ʾû–«^trØC$)ù°›ò-¼*ìä¸ÇZq±±Ø·z:^ƒ¯ >9ð¯dv)Tç5ô†dö b€rà#›=ÛÚ9{ªåÎZUÚ>2Ù^ñÞýÈÊ€¯;9ìËOgΕ=ÃÞâ«ÀÎñL£Wæyo˜z^wyTo¾*ìd¹’âæ] UhñUa'È»ê>î«÷`®ÍGŸ +I pŠkË!eñèYö¬GÁ"v*;K‹wÙ2¶Ak‚b,bÇìžå‡#²®3Œ`딑Î;i¸VPÌ8‚EìnóÌйkÅ„#È®׫'Z ,&¹„VwàÃÏäiàš ˜1™õÕ¹¼×ŠBZ_¬«ÞÐZA1#–°£5Ÿ¤÷òÝ Z+(fñ½Ÿ!Â2y-\+,&ÁÖNÏÈÿ<ú‰g \+(f¹õ†C3Ve-\+(fâ²#…²©õ%¸ŽPÌa5ìj‹‘‡4µp­°˜ßÑyßÍŸ“ÇõñZ¡q²²ƒñò•÷S‚æ¥øaz/ë* €­À˜qYÇÆ½¦Q[ÀV`Ì@‚ñàã3¡‡¶lÆ$Èú–8ß‘¨xÍXÌ8 g»Hò€ù&Ÿ¯3 ç¿;ßLHɶ­ð˜±9ÿÍÚˆväwf+é§_e˜@ “dþX[8´”¢èbÌ7Nø#·Zy><´ºÒs^ujE‘ct«)›'ÒÏ­kE‘Cò£áIv;S-¡(²`ŒCÝÉ5߯¶¢9ç¸{…P²ãPw:ÊYõ׋BQdÁ‡ºÓb}pÛRÛsBQdÁ8‡„…¯¢6Ô"¡(¶`pBÆb±iÙfo1Œ¢è‚Á Âu«Àã £–R]0:!iá5ñ­ž^×RŠ  §«úTpr›ý$Ï;£(¶ hB¾br¬; [BlAÈ„º“Ÿ,‘‡Ù÷v6„¢È‚‘ •§Ã–)Ž„¢È‚¡ ºµ;`g·Õw EŒL¨dÍ>ΣoÒ „¢è‚± ²õôxX°Ýº¥Å„MHW¬eßÙ†C£(º`hBïÐjêcñR]4![12ݾm E‘“Ïãè.°zÿw$A£ŸÝX¹w"åíâ˜G¿'çN(Š,ãP›ÊÍÅù“|ÇOK(Š-ãP;,D¶ò:ßÄ(Š-ã €½ço¼¼EÑc>^8°±áÅ pWa¬,ŸÒ-~#AÃ'Š+ÄÙ/mi½c8 ¿ÛxÔ—·ž/!ˆġ¶Tåáe-1)ÒaCú¤^ysû–—ç0Æ¡Ê6|9| æö--)Ê!ˆCÍ;âV¤û+ Êa„Cúdô/ë.݆–ë0À¡ÄvZAb«E[f´Ãùë”’,½Gªa&Å: pHŸØe¨ù½ï9m˜I±AœOcÞ§WÈ«ú‘˜ë0ÄAþž–˜ZOlÒi™I±aêu‹ãè'¦b¤Ã‡ì‰c¡q÷‰I‘#ÜÕuUhh=k×UCL‚tàP®Û3–•ßò¤yCLŠuâl"Ë^¿2ö³5 DfR´3æNüòbkƒ:“MWy1[`jR¼Ãx %½)§òÀZnR¼Ã0‡LŒ]n•?Áˆ¨¥&E; s(þ#ëæ—HjR´Ã8!}š­ûuõd¥&E;ŒrWí¯ÑZû‘[j"ÚaŒCƳ»+N6 Ô¤x‡ARú°³l6T]7)Þa˜Cåo·‚Wz3?ã¡á&Å;Œr>ÉãËP§ÿ<-Üp“à9äa&Ç5äù7)âaCáo³IÞ5æ›rRÌÃ(‡TÌf3¼î^줨‡`îj ;šènÙI1£21ƒMÛº£ ¿e'Á<„rPÒ¾™=‹=—ylÉI£Jˆ‹ÏÛæK¢@N‚xä ¥ršM¶´ì\ 'Å< r(!îù›'Ì;)êa”C qv4Äñçž÷0Ê!ãÅ.ë䤘'@œ‘ß±x¬¾S'R“¢±¤[W{æ¾"ZØÒƒ¦5)Úa¼t]ž/Kó ·eß6ËXå)¥ uÍÁvAgÜ7§hyNqC&òC~iý˜ë;Í) #À„,÷cÖº¼e9Å`˜(j–ÓZsôyDËqŠÂ0¯²æÔxj 9Åb ˜H _þ[ÞÿÓ"1ÆK6 ìR¤o":Eb˜H-5g¿1ºá9Eb ˜PævŽì±úâ6¢1†L6=ë¼"5¨NÑC&2D£ÜŠžõ@uŠÆ3‘"2 _,0`1FLÔ5ÇéÅ7L¦S4ƈ‰ÂæfR&¿˜7´4T'xŒ1Úü(÷‹ïäŠ\§xŒaÚÜ·¯ Î%i¨Nñ£&j¤Þ]UEà:Åc tHÙ4åÝ ¦PZªS4F@eîUnÈø&¢S$Æ@‡éadš~ËäôèˆÄänÕÑуÏ/îk¸Iñƒ2Dž Os¸x†¨á&Å;Œr(‘.–Œ]7߸Iñ£J¤»í´O£å†6Ü$ˆ‡AºÜùªØÍtyCN‚xã"ü‘ÖiÉIC*¤³ÿV=|¥%'E< qÈíF€ùpN[6䤈‡!º|³–—ôMžmÉICrDÞk·ÖwKNŠxâ Ìý¸å°.øHNŠxã$š\\±×2“`†7Tm'³L¿e'fR¬ÃøInUA¨¯HLŠtÞ|sGIþçÅ‘˜é0Â!94š]6–Ñ“"†8Ôm}Õ²ãpÅ–˜é0Æ!94øgnõ8·;1 Òa„CÝv6´]VûZbR¤ ™!Wj R™•ã0ÆA“¯†1‹ßíÙ°’bœ(㯼Ðd¢oÙ!ÈVŒÃpéP¸x“d2´ój·uñÆäíÇB¡G¸Dùwö÷:œ²Å)úb¸DŽÉø\Ðù(NУ%¹#Ý‚½Ý⃴D†iöášÑ¿ÒRœb0BË«ø[ܤ¢j 9E` —H3Í–_pd} 9E` —¨ÿ.Vï_v®@rŠÀ/‘fšýÇV_·’S Æ€ M¾x/“ANd9Eb ˜(ûQ¹ `è1`¢¼:`-¨NÑ&RM^©_pG :Åc˜å›ÐŒTyKuŠÆ1Q^-õS¿²¥:EcŒ™ÐäžßZ¼•5R¢±€™¨o† K-y´<§8Œ0`‡Ðm¤9EaŒsH3mV*NcïÍø-Í)cœƒ*ß/F?œ*‘£Ê¿»ƒÅ„[¦[¢S$ÆHwÕm—ù>øžù0Ô!=äù¤á±ÎÌ@PŠ|ê Ì÷ê¬G=²äFPŠ|êP·=|â&_À‚RìÃPi~ &oM ´ EôÃ8‡ÂíaÍ’ R¢ý0ÌA›圻\BÙöFPŠ|äP¶=M^-³X (E> ræ‡-ÅœcJ‘£ ·§-ÎÓWZ2”"B9Hóð(Ñdž–Ÿ÷0ÊAš;„¤™ÄU ?)îa ƒ4÷šìâç@zRÔÃ@‡ÑXDÖ‚Sˆ; æa˜ƒ2?í(¸í5ó0Ì!A4ºéˆ-~-;)êa¤ƒ8wP™-­Ù‰˜'Êù+?d‡ç$3ë€ ä$ˆ‡ÓÁ0êZÃ/Çжy°#’•Xx‰\“ok[F\ÛÔ"1ÆKäš&n‡¯HtŠÄ/Q¬‡s®{”[¢S<Æx‰„“ø={Ïh :EcŒ˜¡ œ¾ÒNÅ T§hŒA)§ÅVèK­{´T§hŒAe`ÌqM¶T§hŒA)'ágϪS4Æ ‰B°'ºæåÖê“1j"íäçÊÏ816°¢2FM”‚'ÓÞó“èît§¨ŒAi§ÍqÈpùMl§˜ŒA…`_[_Þß²b2FM¤VË ÎØAØN0ƒ& Á£•?óLšDiÙN1£& Á‹ÍÒŒD]`;ÅdŒœ(ÏÖ>3×&¶SLÆhçS9{/çì‡y´d§˜Œ±eàɲ7óæØN1c*Á›±Tz¿ÍÏZhØN1ƒê·p‹ÃÅXKRŠë/ò{#–ÉS-K)b¨CùÖté¼c¿SKRŠ€éP½õÒFv K5¥ø‡Î]?zÿÙr„ßÄQŠèPÃ…‡­î-G)þaœ»Š¸å}sº·-âG)þ‰8‡|ÑèØ %J±j¸K96-½Ew (E>Œs(ážöõA)òaœó™L R: f?l!”":”p£ÅÓÊ ù0С„»Ù'Ì5ÍД¢:d‹&ö<þ–,º”"Â9ŸÈ䤓¿Õä܆Ÿ÷0Î!Wä·Zͨ5~RäÃ8çú¼Ü³iQdy¿–Ÿ÷Q)tü+Ž ô¤¨‡ ÓÃh󃌗ÑOþÙì4ÏKÝHÕÞB&$ºꓼÊ6Ý´D§XŒ!‰§Ù]xÅáq Ó)cÈ„@÷l׌³9Õ)cÈDêiôø›qµZKuŠÆ2¯š°£ëó–è‹1b"ñ´žÏØ7˜NÑc&ô¹WÐæÅ—ò-Õ)cÌDÞiñ±^ éªS4Æ u¾úoMØ8ØR¢1†Ldž\cÍn†j©NñC&ROƒµ¾äêЊ²ðë˜Ç0‘zòsJçÍÝ5pâ1‚L¨óÃNR˜¡vZªS4ƉēŸ¯8/8³¥:Ec ™PçküÕ7P5T§hŒ1™'_ÍH‰ªS4Æ ‰Ì¼;–Õ c¤CMø°G±­e:AcsÐæ‡Cþà9¬ÀtŠÅæPÞÙ&ßþ˜N±ÃJ¹³¾1Г Æ9ä‹&O~vÌÃ(‡Jî`M9ÖŠùÙI1긧åŒgœXÈI1”¹Ÿå=yOX$'E< r¨ånŽh ä$ˆ‡1µÜÙÇ `Ø’“"†8¤Šæ‚s3¶<nR¼Ã‡JîhŸmŸ›ñÈ!Qä‰ÙyôvÀMŠxä Ì›F?H¥e&Å:Œp¨âîæÁÓ‰“AZfR¬Ã‡*îbÎ3Õ¥rËLŠwá'ò;â3Pø††›ïÄ¡ˆ;š L‡¯•5)ÞaCšp…›ï0ÈA˜ï>´ƒýXä&Å;AÎ_u\?´ rG &E; ˜FûaEœwùl§{¹¹€Vê ^¢$ìÇüfÅl`Ø’œb0L$œ|x–ä…1^¢<˜3Mè 4§(Œ §ÑªÐÎ4§(Œó* îv*N 9Åa„˜>y£ÕR?þ;Òœâ0FL„}Ì„DEà9Ab ˜H8­6½vl"[¢$Æ€‰rð`ÿ•ÏR -Ï)cC¶ÉïOͧn«µ<'HŒ@å`¼C9òœâ0F9”ƒ·¸e 4§(ŒA)"ÿ%ßþÙò’âF8$ˆ.?±ŒZà%E;qå»;êìÁ˜I°#DƒmI–~§LËLŠwâÜë¿‹Ðæó›¸IñcJ¸›Ý3­.37)ÞaŒ 5Ü Ø›ï0Ä!E´–eXúI»)2P“â‚8ÈòÝ"wBR'P“â†8dˆFnž7)âaó©ôëÉÝ5r“âr(ÞnþØTˆI‘ƒŠ·£e²ƒÙ4¶Ä¤H‡A ¢­låOÿºø¦;/)Òaˆƒ,߬“cBï[ &Å: rH–sžâmw…˜é0Æù,`§4Ĥx'*ù«v»ù”ÔVËMŠw2=†ÒDzÜ‚íÃjã5o@èÒ\¢<ÚëOhÎ$§Œñy¦Í÷­HN0ã%Tù–§9Y"XN1ã%RMvä`®‚úöƒ;É)c´Dد@Í'4y¢é"9E` •Wšilr ä1V¢<ú[ hKjIN1ƒ%2M›AZ¥¡ÀrŠÁ,¡ÉWÛs:¾ƒ:°œb0FK¤šFG…ÉÛ’Z’SÆx‰"ðZ±ÐYZ’S Æx‰\Ód=/Ó᫘–åƒ\¢\ç(ãeÉŽ@rŠÀ.Ýï7ÇìÇ#’SFx I¾Ô‰ôÓ—Ž#þ"¬Dži°Þ »àÅ)úb¬DùwµëçÆ7µ§è‹!y¦É…é–â1ÂA’ŸÊi´¬¹&pœâ/†8T€ýrÉ4dÞÅÒpœ"0‚8¤†Ç{´¬^Rœ îÊ ­>GVlIIq#J¶‹=8úñÈKŠsâš|vG?õ:ð’"†8Hr£«Ä4ÞhÛò’âF8ÔlýxšiÀ]Ý /)Òa„CjÈw‡LPјï0Â!7t”jF÷šïÀ¡d»˜J±è Ô¤h‡!¹!s¨L\~’DÃLŠuá È}08µ·e&Å:q(Ù®æ+ uLF·Ä¤H‡Q’Ü@J¿…ŠmCLŠtåòvɺXÄ$h‡@%ÛÉþæxzù$0“b9¤†FC”|΀iò–™ëÆA’ou¼¼ƒ¥%&Ay#eCMŠvášmWß~¨Iñ#œÏäèÙÅ4ú‹ŸBÐp“"ž¨æ¯ª­oˆÑ`ÈI¦ ó|>¹‡5°ìOpfЩ~L”€7;Ÿ|êAÎ Ó)cÄD ø4ž©²"0¢1FL(ó݇»žÖÓR¢1FLdœ|OyžMë–n©Nñ£&ªÀ³}‚m"þŽ\§xŒaóÊ:Möí¾—·¥:Åc„š(;E N¸é‹l¢ |ñ1ÖÛ–ç‡1jBš¯–N²–£oâ9Áa ›È8 >£;Øç‰1f^à’0qAKtŠÄ4‘nÚíÚ̌ߞojˆN°a& Àsq‡ ±Fk Ï)cÄDù×ïÀ‘ D'HŒÓçp^LÂŒŽdiˆN‘ã%d9þyÂ=é Ï)c¸D² þ€ŒZKtŠÄàkò+ªÓèX?r :Åb p(9j¸e:Åb p(ïæ™ÞxNqÃж‡dGl‚Ô¤h‡àíJ™S^Œ ̤X‡ñ ªÜOÈÎBË/Xi˜I±#2D¾Aîrý–™ë0ÆA•û9<ãä§ífR¬Ã‡Âíæ¾ŽÃ„3)Ö wÕm÷å¦O"-)Î!CŠÈKUž´´$(‡!º|·=Ö -- Ê!ŒC~/…­-+)Æaˆƒ,ß­ 7ïVñ N +)Ê!ŒCÍv±3äE+)Òa»Š¶>ÆË«–˜ëÈ!=4û€YWsËJ‚rà¼6¯A õ4–†–ç0¾!94["6¼Wl^R¤ÃMîwx ^Œ‰Ä¤X'*ù«n;›§ŽóW=äí"&E: –Ž„¹Wf¬À”‘01˜9ŽfнAK”€†ò¶U?Ĺa9EaŒ–È4MÖQR×Éæ…1Z¢<ÛÑ!y€¬„ÒÒœ¢0FK¤š|WB†?“âFsŠÂ+‘i-åœÏïÌmhNP£å•iÚ<´LÛšSFp‰*ðh3LHR´,§Œð‰¦Áf€Æ $§Œ5àÑ|19Nñ#&Mƒõo›¯FÇ1^^%àчÂ~)pœà/†KdšÈÙË'ãƒ1dB”ŸvÊЀN·Àr‚Ã2Q>m«Ä€ÚB 9Åa ™På6»ƒ¯¶#Í cÀDø´¿Yg1М¢0BLˆòÃò5Ã/[– Æçó8œ¦Es2Ï”Éå…1ÀA‘ïF)ÃY[2šSƇúïaC‘‡Ë3M Ï)‹‡šínÿ‡üx·;1)Öa|Cfè¼C} %E9Œn(Øne¹š6³rmCJŠpÜÚKd ¨ÂNR|Ãàæ“8Ø5’ùöæÚCy£$E7 n(Ön.Ë5|¤Ø†‘ µÚÕ~ÄV¤ÀHŠnÜòk(ª" ”$è†Á åÚÅÆb@ƒN $A7ŒmH möÉalÄ% ºapsàÚ•l<¿‰’Ý0º¡\»Ø€ XJRŒÃðvÕkgÇ„µÖko¬¤(‡ñ y¡­BŽ÷hIQN8ÔkÝŸ’ÿ[A'p’ Æ7ä… íÅ;;')¾axC¹ÖSóP8“áDå…ÜQlg``$Á6”‚ âM{Þ¥µ›áPâEËó+QöõcêóåiÞÙ°›¢.FKd˜‹øôÏÖKèM±Ã%Äøiå­ìÀÞÙ0œb/ÆKd˜&ëˆ —Ã1{1`"Ã4Ø‘¾yMne߆à{1^^¦¹Y#ÜN±ƒ%¤øY>gÏÚ‹¾7†SìÅX‰äÒäÿ<{Ã|Ëpн+¡Ä½š[³%-Ã)öb¬Dj bÆ‚êÆpн(¯’ï ·±^Ì–á{1P"·4;Pí~øDKpн'ÝçóQüKžElé §è‹¡ù%ß|>Œ¸X¢¥8Å_ –>‘iéU fð£R"Ç)þ"°DÝ÷p°ÇÁìâ}1^¢ðëÍÃæ=â}1È!Ä_=%(Žè‹ußÙ:Só7z7fCqŠ¿áP÷=ýG¿–¨å8Å_ p¨Ôn¾`ÚqæÍ—é0¾!'䫸ìu³å„bR¤ð %Zó­ìõ–B ¬¤'âÒA£Ãäë–ÀIŠoßPŸrS±} 5µ”¤è†ð åYÏæX´\PCHŠn¼¡4»x§ìèõ–×0º]© ÅGÙ€>𑢆7gÇ2A»åU¾‰’á0¼ù4Îv×å”ã0¼AŒïÖÝ:LvÂYd%E9 o(Ðúñ—R„–ë0¾]5Z¨v?3»e&Å:Œo>›åPmû¾9íNLŠtÝ Æí-òÌYWz &E: pÈ•SZoÊ$“"8Èq+Òìç]º-/ ΉþÊM^u|ÃOà%Å9, 7ßO2à| }÷ %4Œ)‰Ð‚g’†SìÅ€‰ìÒn£x%—‚SüňéN1;‰èm §ø‹!ù¥¹Àß~î^s §ŒA¦¡6ÖŸõn¯É)#ܬ&{.ÏåiI¦†çˆÃ4QðµûW÷söJhà9æ0†Ld˜ÊmOù_ëõË7– Æx‰ZïdUÎa¬GZ6,'Œáù¥ÑVöCi#ùŽ,G ÆP‰J¯__8áHØÀrŠÂ*¯ô’¹`í6ºqœâ/JzçRâÜO U 8E_ ”H.M¥ ²Ÿµ³¥8E_ ”Ðâg¯<¾É½¥8E_Œ”¨öo_UŠSôÅP‰jïb‡aÿªÅÞÃ)öb|Cri-Ò*Ðè7âÜNÑã ¾ƒÿÖŽÂ^Kqоß_¾6›J[#†ìÅè†íV;?ý"®–•ˆqÚÚKÿnTë™lYI1c*´cI`í'šh+)ÆaxCRhr¨ß|/lËJŠqá Éý ®œXI1C ´‡ƒ-.^ ¬¤‡0ÚÙ C%4’ F¹[Rho¦²%%Å9 tåG©<ìG=ù«å%Å:ŒtÈ Å‹³©ßÎvg&E;ŒsŽa»•?r°N‡–šï0ΡDë‡i祕h[nRÜÃ8Q~úFÐz;aËOŠ{è®äÐà>f§ËÝùIp*´kFÞô;ƒ•gnR¼Ãçs8Ø^ñljÞ¸IñCô¸ÝR—b²Yl¹IñNTñWZÈÏBë­„-7)ÞaÀô ÚËì¶¶ïý0¡[ÞÌr¬Ò#f¢à»Õ6Øi‰N‘C&RLE*”³5_ :Åb™(ùŽþ[[½C¥!:Eb ™H2aV&ßéÓb1FL(ò³¼n½$â1FÌ+Ï´>“‡-×)cÈDÙwÉ‹Ãý@“I :EcŒ˜I»Q0¿ã°¥:Åc1!Ë‹OC»c/0b1FL䚦’ ÌóæI´L'XŒóªü–èªW/¦S4Æ€yå›¦ÑÆñМ¢0M$›ì*Ë<'–M¾Óœ¢0FLGÃuuRÛ½á-бÃ%jÀGYî6¼ß‘é‹1\¢|Ú ø¼U40b1‚K$›f[9í8º("1ÆKÈòÓájð¾¦@tŠÄ0‘l*›êÊHûþí–è‰1bB—Ÿ_§ý‰¡vfÞxNpã%’M‹æ½µç‡`^Uàrà…Õ7Ñœ"1Ì+×tøLzÙ£å9Åa ˜¨o†‹ç~[žS$Æx‰\Ó`@·×;Z¢S$FxéX¸­Ž…#ºÊ[žÆx‰dÓ襖Å,ðœ"1FL¨ò£Ì‰ÌõM<§HŒ1îÊ5MŽ:¾Kª%:EbãPm…²íVn,§Œ1é¦ÍÀ<ÍÞæ-I Ë) #˜Cév·cc¶êø 5)Úa”C‚(Ÿô–^·ÎEfR¬Ã(‡ÂíZ÷¼øæ€–™ë0Ê!A4YÌçÓÂ,?Ô“â9ŸI»T |¥_Ôr“¢F9¤ˆ&Ãà»F=)îa˜CŽhÌ—o.ô^Ê–žõ0Ê!Gd8×TzRÔÃ0‡Êíd ³Í;è;)æ!”sÏ?ó°e-7)ÞaCåv°Î÷bÙá9 7)âaCáö°×qúMœñ0È]…Û\ý,gƒÔÂíœñ0ÈÝ2D‹Á]jwrRÄà ]îËý­œó0Î!C´u»ïã—Éò–œñ0ÊA–§ù5_õ“WZnRÄ´| ¡4½~˜¹÷6·Ô¤h‡ÓU¹w‚ì)Ä-ÍšÏó_wûB¥Ób¢<ØžªeÇÞ‘†æ…1`"ÓdgKäóí-Í…1\¢þëOÙ±¡ßDsŠÂ.‘oJû@~-ËšÆh‰|ÓPžËPèÛÔZšSÆp‰|Óa¥¼Ýa-Í) c´D Ø—ù;®® 4§(ŒáÙ¦Ý]eð[šSÆxé39–+}wëþ&–S FpéP¸nŽ¸Ì œ"0†K”€íäÓ$îw$9Å` —W²iw¿=ÙÔ°œb0ÆK”€ÃîôÞž£hXN0£%’MerÒ?cyÕ²œb0FK”€ÿF/¡D–SÆx‰dÓdÉŠù-Í)cÄD ¸lÑηCxZ¡¥9ÅarW²isB©Ç ÝXN1ct¹GÈ:Õ[ –S Æ0ç3™¯ÓXl&g¿(ùÎrŠÂåP¹=¬öYÎÓøŽÔ$h‡1é¡r.Q~)“™ëÆ¡h;[ïò¸¸þ ĤX‡1É¡­Üï”ÛÞfRÄC‡¢­—mïñ7q“â9dˆßu¹I£RDSùÊ|¥µrRÄC(‡QŽ2•¾ë³á&E< rÈ Öµl ¢–œñÈ!ATN¿.cméòÀMŠxå Êm§CŽ˜Ã´¼s“àÆ8䇼P u¸IñcÜ­n›<7ï’ Ô¤x‡1Îç1û¾›çoÈݨIуʶ›eÕó½Vµm˜Iñcœã—ý?×ìD–‚ ܤˆ‡0U[»%Ò\›¿q“â 寪­Ý7‘/ó= 3)Ö!¼t0œSW (ÇZB­ Pq !Ó#`B”Ÿ¦¸·Í•NKr‚À/‘h²sgòk MÉ)c¸„*?-ÒrêÓÈlHNã%RMV•-¡í÷S6$§Œñ¹¦2Ïë™´\SÃrŠÃ.‘kZÜW9-Ï #´D ØÎåÎe°@sŠÂ-‘i*ï4ù†¼Àq‚¿*Qþ-ÕŸcÑ6´§ø‹°å_wúµ~®RKqо,QþKb1ƒ®' [ŠôÅ`铸:˜lPÑâ1Z¢þ;›vOj'Z¶'è‹Ái&×CéßøÖPœ /ÆJHrë2Ê‘ì×µ§ŒÁy¦ÙtmmW$§Œáò*çÆ¿ Õ&šZ’SFòLÛäPØrœâ/‚8w|¿ÒyÏ'˜îVý½Sœ¢/F8$™Fks±Ë¿‰â}1À¡b{ZJVïè¿Ó’ ‚7d†ÊÓì„Ö,HI1¡ªµ£ÑI=Þ?’¢Æ7$†­õt´¤8‡!ÛÁþy9]myIqcœ»}i»z Ð’¢Æ8ŸÇ¹¬Ç×óÄÉw–ç0ƹßû&¡<—vhMà%Á:ŒqWÍ6N§ ß@LŠtã²S¾r„ø…±7bR¬Ã‡zíìâÙÂÀL‚uá­@_‹ø™ë0¡b»dPÛʦaß·Û0“¢B8¤†Vû£Ri™ëÄ¡`[šõ·sÇÞ€†—éÂ!1䬆Äס-/)Òa„ƒß|Ö+JGbR¤UüU°Ýí˜Ärè7ñ’â‚K”k÷²¹÷ÏÊZœÃ w%†fsú½9ÉiIpCœ»ýnp;Þ5hIq#ÒB«I¾¤xI‘CòBå†Á¼tòkT[^¬Ãç<4Ú¡Bû ˆn™I°Ãªµ‹1ò†Ó3)Öa€CbhµLóZC-3)Ö ‡Zí`ËœÜfd$ÔÒ’¢8¤…œa¶7ƒ7´¤(‡¥ÚÛ°¬®È-)Êa€CZÈ{o²ß›øjiIq#Ü­X›æm³+6¿#/)Î!ˆs¿OŸrX|ø5 ))Îa„sô*Ÿò=^soiIqœÏã¼úîÒÑ:ð’âF¸«X›LRÏ|jyIp#Ü•*x²ú©©–å0¡TkG`nv½üw¤%Á9ŒpH ->k“-«-)Êa€C"g´c!ò®8kôi˜D°ãÛU-gæ×·*yË$Š&•®ôËиjÃ$Š&“ {mY8M¸Ÿ¤aÅ J¨ˆž +Îä L¢X‚@ Ñ¢^¶a®g5D¢X‚1 ©—ÍPuÅ9IO0&]%ÑÒù1Î_^m¨DÑA’Ïb¾„n±uÞh™„X‚! ¢·dÏo¿˜D±c²/‹=hqóML¢h‚1 Ñ%ûá– ™½ ÚP‰¢ Æ$¤_FkM^gœ´ÑR‰¢ F¥«"šÑ6¯ý~¸–JO*!ý2[‘,ߨá7ÃܨDÑ£’Gz›m³Y*'*Q4µòU=ë;ûÂ@%Š&áP-Ç®ùÂhÏ·L¢h‚!îʾä)Êb}FòåbE„p(‡îen·|~_ò×0‰â ‚8ŸÅù°=„Ùƒü$Ð;•(š`„Cò¥\&´æ¹ÂåŠ •(¢ ˆ»Š˜‹{´w¸DñÃ’cNBÿ ´WË%Š(– V½k0ß(ï…w2QLÁÀ„ŒÉdf;›¦`\B suÌ V[6QTÁ¸„ŒI‘g欞1ièDQãR&æ?Û VkéDP£2&³¥V–µ¸ÙЉb‹ˆK«§ý“us2QDA „æî]k“/h—(ž`Pº ˜é··a_½Ó!p‰â F%$L6sòìu¶¯åÅKW3F>ãÖ·á·T"x‚aÉ1gÛ9иD1á’e+}“͗Ǹ3,ÝJ…£o0µÚ€wÆ¥+Íaƒ_ t'TB©p·aÿþ l'LBŽc²*ÍràØçþ¶3&¡N¸}eOµ%{À~ëŒGWe/oÜ´¤Ï7A¿‚uBä$æòSû‚P ȯ`!ćÝ.XóÖFÐú®3ޏ›¦a™× –ß„ý ØHPÜ3¨Ï iÊ+€¿vä%¼-rÙ|mÀ_;ÉUÝ˽þ[¡º»ó†ý ÙH˜Ø-å³@0ôgdg¾ÜËYhÓf«îÝÐ_ {T¤WVbÄ9~éS þ Øn…½œp8ptaìŒHWVâÌs¶ÀYø `'@BiÏN:ÌçK­µ´wÃ~ìŒIÈKø8& ‰-ðÀΠänŸ~:g´Î¼ ócðWÈÎÀ„šÜT¾=gɶZ’»À_;#æÀÙS­Ã:€¿€vF&ý4¿¥Ð98¶è/ a ‰‰µøôr¸æ è¯Q 帬Û8Îh'¸Ð_A;# cùšmÇ-ú dgAá°¶¤¹júý²3„8@œ«ÕTfUú+d ‚êÙéÅ¿ ]-ô+XgAõ¬Á6N»Žô+XgAarŸqR ý ÖFnõ³<)ã캅~ëŒ#H$8FÌXQèWÀÎ8‚åÿj§§…­A[ÌVxÌ8‚ª×QûHÔVˆL8‚ÒRIÿm%Ñl•ñ´ 3\ öÑÐ:¡h+@f ¹ªKmGt0ÐVˆÌH‚%»n8ã4ŸÚ IP_*{ÖÜFlÐVˆÌH‚5{¹öºÄˆßÜ ¶Bd÷ÖÃOçKyÖãQn ­™Ñ&û¤m]1ÔˆL`âc?¶µ8½…m¥  ­™Ð¦r`Q 8ã©ÁìˆÇŒ$Xµ—‹P×5ßxl(Ñb¶d¬Ú'ë¢O‹i«ÌVxÌH‚¢Ðd!4!0[2# VíùªÊ’ž¼&tÇlÈ %( •O`‹NèÚ KPű:§·ùh DæèÇ2{µ½þ9Jl•Ý€¶dŽ~¯ÉÎv9–Íñ>@­€Q~Ô^üø‡Ü®i ß-Ô*¥àÇêx´=Êùâ],Žo@«@”ƒÅkçλ6±­Z¢ü>ø‹7¥³ö¸hˆrôcy\nEÛ†·Í U ÊáòËZҜیÊÐ e¸–ǦˆT|[¤U(Ê€òËTþ¹Ü›gçæµH+`”!+äÑÊò9ê­tßB­€Q‚T_ÊÉýÛ¸ "Ò*$e@ÁÄšó– _\µh+ ”ËäÍRwÚÜ*(e @Íd°Ü°io‚[¥Q¸]+e»s¯ÕÂn–2ž lR¾2yñàKÈ€· KP®RG.î+# x«À”QÀ}l·ãªóy{h¸ L °´²NXÏü7Ëxµp«°”1K[Û‰UúõfÄÞ ,e¸–¶e–ÒÀZV´Å[…¥ ¨u”½áNÀ[…¥ XÛúy%É¿íµ€· L°¶Í—TÑøeôÝ­‚RƬnÇœÁËÙ7K´UPÊp-oKÛMòa×n”2 ä1عxêCn–2`}»¸jX|{NÀ[¦(xù'¶cƹo–2 Fa὜.ßjñV)CV¸“Ùã]»¶€«À” Å…£Hr«¹b ‘ ÿP]°^¥ãÄ¦š€‘ ÿ®’@ƶ¼Ä³EVÀH…¹XJZ­%­Xì´Á‘ÿ8n±’œLÎXNé;b¤Â?\Öâ¹}ÀÄ~ÀH€¹×Ròp·¸nb¹¤B@Ž\”lè–GÅšZ”TÈ‘‹Å¤Gå„ãÎJ*äÈÅj²LÇæ×’~”TÈ‘‹Â€ÝG^.%5ÒmPR! .”£…×xzN& ¤B@\hžÝ’õÓæU§€’ £Rª!¾Ùݘ¹àb5Í€’P8rÀoù:QS‰&2 Ÿ_ܲ€âlǵ0© QKʹ´,åSG¬Ö¢¤@@¬(Ëu¾Iƒžf(©P+Ê5Kæ7©Ð! x;C`­Wf„TèÇQ‹5 k£:\-B*øã õ€Ì·Ôç:ÜP¶ }D*ü‹A‹`Y`äžW»§7¤?ŠY,­ÕuÏW’XÞðQaÇ,4ÊQâqËÒÁÖ ->*ìã˜u÷:w»ÕoB1à£Â>ŽY¬K9oìnÆoÂG…~´ÈÂoÅÍ—*„B*øã Å"pµàJ7y­´HµX·yåQ°uH‹j ²8l‘>?íNÞÄ[¦¬)Èâн2ÞY´Ø¤PM!G.Öm›iæ!®^TSEëf_’ÐhÁ–¤ÕbqÜ"Ý]`WpÝ!MÁ-²ÓƒýóŒ‹Ë¤)¸â@ó¡šüˆÉ¼ËÁïn MášÑZ΋)Aä­ó-¦1^q˜!Em+•¥œDó!MÀÇY¾7iÛÉo~h MÁÇz ¼”§ÄY-¤)¸Š2äZdyÛrÒøÒ\qÀb™e§-–kŠlì[HSpÅ‹µÕÞ–›~={ i ®8b}ëyI5{±A4…V°XeÍ~òî+ €¦ÀŠ#«¬Ñ®-œ±<š«µH+/ea—CgFVù3T³è¹:­m8< ÀL ‡,’Êvêþ9ã°´€f ª8d±Ä²6ó¥Ï‹7]]p¦ÐŠBexÛE˜À½¿4VfX ¦EÆÑi;š+34JM…øn;[@SpÅa†<°ÕÏæã¨yà;¤)Àâ(Úhp§Øp(o j °8̰Œ™­q§¥RÃa†eŒŸˆ:¯¾•5À‚3¤n÷²ÁaYQ4 0¤ †B «»8oOÔ»úÃv5%egÉh?m³E!…0iHÝ.¥-1ÿq°€B„0!Ì Îr&A¹«Ëîjh Há ‡–0~bO^›h1H ‡­‹uØç‹µ,ÓÚ`ÂŽ2dZí¤Ð²ëÈZ¸Z CA†Â²Ý¶Ymï›PH!L$ûkÝ1Ûî†d`}ø-)€á Cóã4@› RøÂ1†ÜhÙŠ°æã“?ž©Á 0cXuØÍع ‡ƒ¶RCA†–µDZ½-«… /cXrؼ9óサ¤à…c ™Ñ嫘ºƒ»E .gXp,åð²-…©uÅRðÂq†Äèf÷ oe«Ð7A‚4ж]A²¤iö^é‚a8ÊP¼µ­Y>¬ " ‚Ž3,;¬m<Øáç¸60¤ † ™ÌÅÖ_ÉÔJE- )ˆá@C*Óöìç>¿<»…!1gè@ñ•'X  (6Ð2šäîkýiC¡‡Æ•.Ìãš_ß8( ‡BŽ ˆûrãdšÈÕ« 9*pp _¸Û蜸©E ÈÚ½ëk½Æ+@‡‚Ž 6­=ýž‚i¡Càô½m…ÞÎÅ,`‡Âd -¸ŽµÞ=Ûb‡Â ¤ Ë¢b®£90pl€nËñ±yí Š;.D޾ú<¼Û§RdÀ… hHòÙÂ?ûÊjkä:.P¤]9¾Ü°:oƒß/ CáGÒržÈÕgË´Ø!€‚ÝV(û…¾ 9,ph %·”·Z²{MÈÉÝ CÁ…†Oc¾w={y.œN´È¡`cI9ëiÏg…šÒ СpcY9Ó}Ë:ùŠ;`‡ÂŽ”û–r²í6 žyØ¡Ã-‡oÔ:½rÐC!‡rs%5œfÝOWà!€£ãÊÍe–Ï÷‰úVÛ<0pt vXo¨•X¿)àE0sp 6û•øÄ6ÞE,sx f‡_å÷?$Ànñ®b™ÃY«³äkLG‡XÌÞŒ„–tç—&z‹uÇìʨ%%²NØb]Ä1{2´ïXÎÚÛòÎvóÒ6ÖU³'#ee'9vlÕ7źŠcvå+e•œÏ\µ±®â˜|ùª\eZÈÇå£rÕ„º ã@„—øŠã”í=~¹Xé*Š9.´ò¥ù‰›ÊÚHWaÌœUÙVbY“ê*Ž92 ~ý’m}!ÖU st Ñ4Ûé=y,ÏtuÈ1:dšJ½y©‡Z…PWaÌÑÁjË|(ÓâwÅÖPWqÌÞŒ´ÝË‘—¶ñ°uÉìÌÈ Í9n×½î|oƒ]E2;3ÔªÝú½í‡«Âí*’Ù›‘:üÎÏWy¶Ñ®"™¼¹¡rvš´zÙIì"Ù™¡0§"·sâÇäjP|ìÌHè,Ö”pÂZFC€ªè#oFBÇP3gÌ|Ãm *øØŸ!1½‘m\L†øT±×º320懹dcûÛØäÀ#_FÑÄ69æ½„ÔÆ¦Š;vf(B¿’nE¿bˆM{ìà {p™Pý ñ©‚ð*w”v†iõºo *ø"Û\‚ÐÖr™O|ñب >öfdMv[e®¸y3¨>vfdM&#…Žç„°[€ªèco†$\Êu¾ek•_ÓD¨Š>vg$N[gžõÊÆ6BEô‘G#ob«Ì%Q³EÛUÁÇN Mèg¢ŽÈ´ƒýy޲L]׺©5¨ˆ?vg¤9¬„TÎt°Î¨6FUü‘;CÈù@ îš !ªÂ=h–QÍgùG¶!ªÂ]%CCÌ|¨Ãäçè4a¥B†]û±\¸ö-ymX©˜aDJa,Ž_Ò~aPW*fØ Qæ[­Ñ>ïC¶NŸ6®TÌ"§°””Þ–¾Ò†¿*2ì†È¹¯6•iMgYäV*dØQšó"ÜÃÂJÅ ;"ò¶¬Xòé¶&)ÚØRÃŽˆdùR„mN}úf›6¸DàDª¸Vî~QQ ¹Å/*k‚Kû!ú,Þ’ bmp©Àa?D%ì°N•­!¸Tà°bõn ‹-wfù>&¸Tà°'^9ns¡woµÁ¥‡]ñª_³Qª/Ú—öD¬áÍÿ×eó¯lƒKE;â--}ÿ©\*pØQtò.èaðCBp©ÀaGD.y³q´rÐ7— vD,pKÇx9™]M@(ggßÄæ?9nÞË¢Ay:;–·eð·côšSåèì7XÝ®F7Éï¬jÞÆ‚òsòäl§ÒþŸOžÜjå-”›³ã`}kÇoÎG¡ üœkÜÒË“œxôÃþB,(GgÇAžÕÚ–j*¬å瓯"J¹\ ‡…"J ÊÏÙ‘-÷t,îõm(gÄ:ò°ŒÙ†£C(g¿A6Ó: r’Þ’·8P>Î^ƒU¤mêÌRÉW‘÷0P.Î>ƒ…äjIˆmGΣ áâì1Hgn¥_)ÿóæ xM('—ÁJ²ÜÙºæžöɯdm¢@y8» V’å/â‰ʽÙg J·kÞ"„3·U.É.s¥ùò'fÎr¼ÜV¹dp¬¬¬ò³ÕåPðYå4Ç@­ÒÄ›hj÷•GpYå‘<ÉWº½,§óäÞ$z÷Zå’<É×ò*§²ó4n«œ’ç eÇ'¯‰)|û{ë¸Â)Ò]Ë«5§X¶mFWzë¶Ê%ÙejŸUV´JwŸUþØ: 8ÚvLmùô[5þª|‘ÝY/ÛQ½5/Ôú+ù#; –-v”Àº×+SZŸþÈó‹lÕR:üÖuò&¦à³Êy~±n± ÷òÉ=¾õ±õYå<ÅX·X+Ð:î¾Ð N«2Ì2´Ki\ßìÀãïèfÊ…h¢¯„Pù ùßÓÛhª—E'âÆ’à,wqäÉ™<™Ú8šò"žddþ·óù´K\OSŽÄ³|ÉøR^ô&¶Î¦<‰'û­¬éó]-»Üx›ò¤ˆ&—?l†f\¾¼MyMô­'d3·qph)L32s9e?¿nÆhm}MùÏ1rå ¨4ÑØG|MùÏ1dr¹»)ùH-Z¶¾¦üˆçÚvwgÐ÷SÏ“i;ØRr\êÉ{Ðìó!ifs33~Ø}ã jöy~°Ð_Œóñ'ž”uQ³Ï31ºÙîuÇ}ë!jöyf°./¯˜âyu ¢f?¢À%!ˬ¹ÒÙZQ³ÏSs5”gñDÍ>Ï–Ò»ýÑ õƒà!Êî³yZB9‘¦%WZ÷PSÏ“ƒ@´ª@žE[´Þ¡æŸçÊo)gäò¦w·>¢æŸç±c]y'qÓN«š2Oˆ­¥œ”!êýפª £!ŲÐn6Ê;”O’5sú÷!šâhBfí¶Ò>êá 휪 ãÑÄRnÊ—Iä5º¥ÀÛ9UóãíFåÉòyCmìºÍ©š/ž¬™6‹×W …9UóÅã‰Å½Ý;—/8öÍÆ÷9ÆCŠ…S98eÍ 6X85“ª¦Æô¦i ¾M¸¾¢Y5k<¦WÉ&‹Ž5W0}»X3j¨yL¯%AVÇk½·-L‡j P¹¼&}ö΄éP£ÍCemŠØbfDŒvðñ‹ø'Sù|ÖÊû×|¨±æA…ü.w•­¹;''̇k èÓ"bÖ|;ž¡E;ˆj€x$@gƒMù†k堪⑀[œ†åIBÚ2aÕEgº3ÑXXæÄií ª¢‘Ù1ù·l—pC5@<Ð^够¼±Å)Œ¡€µ}ûºÖqíg‹OâwV~ÖI…‹ö³Õ'ñË_šâðÖ_?Ë¡ùlõIqþ/P,‹Þœ’Þý\Ææ«Õ'ñ»ƒ¼×’ÈåC÷×ö³Õ'Ñ».Æz°‚·ƒ6oªÞ‚ÿ©lÅ[óýq~Cû¦â-â _¸¿Ú0n¨}Sõü÷cg©Ðå 9}ýßü¼2Ÿã?ö ¿CÌIü§ô_ÿ*ÿÖTtå¸Á;ý8QºÏí¿§KOå \ù|ŒñôôÚ¿ÿmÌ7s&dÞ¦‡‰ßú·¿ýãoc>‰'Ѳ§M´<.[™ð1Ÿ<}®¿þé¯ý‡_ÿðÛðëoóÃïüü?þË÷¯õÇoÿòß `ó9àËvüúão~í™_SÞÚw¤¿˜»“þñýÛüýÏÿÍŸò žÛôû¿øõ¿}ÿõþ‡?ý§?þâ·ýGzõ>Ó™eÌßgJ µlë¯ÿ™þÜ_¤ÿÿïÒþùos¾ƒ:·Ÿ³_.½,£¹…ÿKþl~êú—|kÎfOe„Î-v×Sõ_nO嶦ìÔ×Sõ_®§–1ª2ßß«þËí©ð®÷·¿žêÏÄñ+ßl˜æâ>ùŽâ„ Ë™3x§MÄŸMú³-'¼¶ñ÷!ý×s=Ÿü?ÿÏíššÏc¶å¶ÁYzd§rD¼ÿÜqPª\õ)ÿ—æ©Ü¾\Âõ)ÿ—ûSå2´’]ÇSø—æ)×ÛS··ÿá¨æý³<´sräñ(^“ØwºÆuÏé·<¬û™w+#‹ÿº”ÿšB¢ßìús^¾'ùÿ(Ή †që†â?þ¿ÿùþÇýû¿þõWÿõoþæ×_þþ×ÿôOÊ;ä–ù÷ÿöOù§òª4y5½¥Oÿ³1÷}¦%çõÛïÿküÓw¦|oJüùDs¿ßÿ×”¹¾<øÍ8&›–acöÜ4‡øò¯„b¿òÁSúÝúÛd—·™d»Ül•Þ,—Í“}éÄ?Éî·4_ÉW¶l•än°Êwî­RÈ$«a‹VGóOV‰RòµYño9§Ö*ÁZµšŠU4J‘úßòùÚŽ8™XH«úPöÿéÃW\­e‹÷§OËŸã“;#ÛÇñ‘_šëÐÃúÑhËTÄ/ÍåÊóó´˜À9ïÉÿh”_-Óik“Ûðé­ƒ-¹àóWÅ™“@ VgÙvöÁêS¬ù®£§Y_·r¢æËÏÈôãû|š›²ƒå­äÃZ¦Ïö!¶œ^~ÕnBèÓ0ÏŦø†»Ub>XÍå³öìxÕ1 91ûÉÊÞ0ýÁj.÷†|°Z¶âÞgø|€Èþñ»–ÇG#oìÙGO×C¹wñÁÅÎ}  »þü:ÚŸ>_NvY>N|Z­ý*ýFÁ(ïGþ8ïÛ¼f£ü·V¹=ëãø”À*<ÕZÖ†ðÁêHK較/¾a>æoü8ïç0á Ó’al-÷r­Ñ'Ënö55fÓ°wñÄjbˆöNùBù˜œ¡—f7üÍ´f=>Fz’=å]g窻e–Ÿññ,Èr¬åÿNáØXæk>N=ad^=ª„€ünÓ×üÜèA"´Øg6}@\ïF}°—IÛ×`ÔÕöLOä‹;fõÃ}¹ðámzrÏôÕÁ‡±yA¼¸MWÈy{PÚA„A.nÔÑx¦§>¹øƒ(Ð/ÓÑx¤§ê3}ÂÔíF]¾ŸÖò‘óÜõé~.ø´oÁ9ûl¿¬Ù£÷ãhúd¿ªa<û\¿­«ƒ`kÔ¥z¢23ê1}·<ÝÇF¯Ãü ¢cÛƒMW ”aû:<âY7ê £ÙsˆF] ¹Ù ûRàŠÏ“ÆôRwþ(Ò¨(΢>ï†b@°º>È h¹ëünö L8Ÿ–ÆðA ìIínwÃ'%°þÂÈæ‰¹¾§¥Xß)õ¥@\œÀª«ˆ»ÜêA D*…U_DÖ†UGäóìoÅÑxPeù´]«ŽD¸êf>½ÐƒHøðñ}•ði »:a8JXíG0zP AÀ¨¯‚$QW)øCRáƒ;÷ÄÂõP7a…=$ tLöõçð%&÷%Nz_A,Ö‚UWB¬E1¾a_CÐÒV]Q ‰qãöUD‘‰rãwõe„Óg‰„œyn,{Z ˢ/GzcØFÇ”'oÀBÓ,T…SvΤ$¿_[˾´‘¸)Úöå…‘}!Ä ê–úÂØ¾ØÏCû™ÃÁ¢Xáoö ·{'âïkÛw}Ж50ý?…¿Ù*kà–Ï*ãþp_YL ²äBEÞö ,ôU«¾²h™¡õ…E`.X=‹À­Õª/,ÙW«¾°˜öb5«w¢Zõ„E}è•°€Õ;aQ­^ ‹jõYXÔgú:"ªjÕ×C=ဇúÂ!*ÚjÕÏ2hUy€Ñƒ9…jÕWÅYËš§µê*‰yDê³1zóŠdkÕmŠF:¢xaYT·V]a{‡õu„{ù‹ƒ3,Ÿ´{µìk ^ŠWþ–‘ Êýc7»'%!ÖðÕòAIËBîSû‘R‚—ÿ°|7ZŸöÖðÇJb¶ÖòAI°"€åƒ–0E°!æË-±Wÿ9âß|Мw€å´D}øAKpÉýÇk1«WbF}19έÄD$xXõÅDqš´¬F½¢zÞç¡lU¬úZâÈ=h‰¨ `ÕÑ×C=éàÏA÷°ì A÷nø3ÐÐ=,„ÂY?s=ÛÏ| ¢m–OB« Õ²/,8J_Íá¹§jù¡PÆé„btËŸ <üN(ØÆþ·BV]¡@ë8Xõ•BdK·zR -çè/F³Šƒñ”uê¥r€Õ;å«wÊÁ­^*Xu•êV3>¼Ïƒ”øðíýr%w`ÕÕþP_[ࡾ¶øð­}mµÛèÖ6YºZ¢$aòNºÆèGm­t©–?h‹¸mO¨f?¯d,ccùóJÆÙÚ½VÕòµŠ€åûüDµüQ!ã¦?ªáO/› ,´âµdµì«ˆÐ†½ä…ö×*VïT¬ú*"…[½T°ê%+ŠÅ-^I 7z))`õjgFµêKŠ ‚ÕÃVÎvµ\úÝŸþTWs|øªÍñaŸ4‡œ¬®ä>ñÐ[ñÁ÷ˆ~¹¾þˆÒËúúãÓ<= ©V}r!°zØÖr!Õª¿­³tì[¾!Ý«®‰;$«UW¬¦%¦ø·ú dµ=lÕS Û`F1Bú $–ÜêA‚ÄM"Õê>Ú½Õò'm™Mÿ,_ôR´v ¤8Iù»+Ô,_WH`ù£VЦ¹²Zþ¤-³U=°ìHúPOm\½{ ø'aAV}a9Vï„…[½°ú¹°€Å+aáFÂ"ò¬úÂ"ê2XõˆÁú© <ôNGÀꕎp£—:V}ñÁ^ ·è'.ðP_7|x™¾pøàûÂ!æ‡`ÕÚQŽƒé7zwDµêˆ¶­F‡AD­«þam3H5êŸö¯Âª/â¹Õª'K@D“þY¡WÅ­$ Xu%CÜåR­äBåQ”h`ø£Mm¦–¯[/«åëÖKXþlGA4¨"X¾Þ*Z-û) Ñ9˾ˆÀC¯:)Öa.ç/>ˆˆ°)®Z½Õꕈ€Õ;Q­z5ŽúЫý°z'ªÕ«ŒDµz#`Ôõ¡W¡Z½0z'ªÕ+áP­~,`Ñõ¡W¡Z½0zÜ«/>Mçƒr¹IX=H‡¶!´u•CLSÀêA:„òJµêJ‡(8ªUW;ÄöX=h‡°I¶Zu–ªÏtÅBÔ2nõî`©jÔÕ ñˆŒjõ“%ŠÎœDaù$~ùväôÐÔ>œ(Á­¢ÕòÇ>Óß ß)Qí„Âe·¯­a/¯€‡ªßêÕ&Ï5ýÏù|ø'‘Ða«Q_#„Pµz§Üê¥F€UW#à¡wÁ­Þ'U­^%ªÕ+àFE =¥¯N˜ªF¯$ƒ½” °zS³¨F?W nÑW xèb€Õ+ÅàFïR ÕêMª¡½ nõ$ÂÒV}Å­€ÕƒbÇ^U«¾bçUV«~¶!r¿[õé Xõžé+†6eâFO‚!t•T«þQ”!'Q­ºŠ!æ$`õ“󧬽`ô&Îjùúªjù“¨î}£0|q ¥çAªe_0(mË®bð‡~¦îgeTËWGNeàŸ7s†Q_4ÄŬމ·zµE£u5zuÀ¬4CdX½9²º=Y²>nõîÌêjÕ Ú^7£wÍ•Õê•h€Q¿·2²»[õ…zÓÛPºº!Ê%7zÐ QšÁê•n€Ñ›Œ^ÊX½)QÀè]‰¢ZõK‘ÿaõªF«îyÕõ¡nI"Ô1ªQ_5„ .nõ$ö¶=£Zõeƒµý¯c´êˆÐ! «'ÙÀ\ªåÃ)ÖBpÀò§XßOـݓjà„ D–ýr„k£ò7׳±|Pâ¼®jÙUñ~€r³Ñ£€ã6ït„½“fÔSõ™W§IÁ¨/"":›Q_Cè±zPQ ¸Q_AÄ… =ˆÀnÓ—Qt¸Q÷Xk9 ïNŠ€Ñ«0z³/ÃmÞµIÂè•’p›WBÂl^ê7z¸ù¢•…nóJE˜ÍKáFïRfôRC¸Q_B„ŽJ½ºñÂ:#CïŒz‚"vS¦ß6œ˜ÑSCnô®láFýë0B¦½» F?¸ ã¢Q_A(Õb†B´ˆÂ°/!Ä!#0|PP¿µWÄížôƒÐ,nØ—á »mšËŸ}ýK£Õê•‚¨V¯¶qª«!êC¯Îº®V}ñáãdDÕª/$‚&¨V}%ñaR¤DP’ÕêÕýYÕêÅ%°y«Õ«Ó"ªÕA£n.¢>ô  Z}S­Þl´€Ñ;Q­Þ$#ªÑ«"¬„DÈ‚V«‡¶‡X×X½+bT«¾–‰…jÕßgòÿ°ê«‰x¾EµêÞªaL³ÆÏz¸V#ŠáVOû,öv+jµê(Šë¡Ž‚¨õÃõPG!\uA,°êËxTYµzÐtN=ä¼ZöÅ€ØZ Ë'9ðk'ŽWÃwr`ýgÉX½“°êÈúÐC";¬^Ý„U­ºr rÙú#5ñV}5ðavÔ@äõõY \õÉ¿]=V£7Ü¿þ³¸Vï¸V¯¸ý ÷ã¡wÜ«WÜ¿þ³¸V¯¸F}îé$Xõ¹ÿ“/?pØb«w-Õê÷êÏým³ Œ¨?¬ï«U—úÃyÕèÕZnÕ¥þë¡~î êXõ“Q‹¬ÏZàãÇ?ˆ<Ôõ¡¾øô­}-sÕêApS(,t€8Û¼Z¾jPØŽ9ãÆ»ºB5zÕÕX­º:ÀzwVµzuevµzÐaïVB  ¬úB R:¬Þ¥ÜêU…¡=t(èÁè·(|÷wU†jõªÌP­^õ(Àª¯ ðЛÊB5zSZ€Ñ»ÞÆjõj7Dµêkƒ öÜèADq «¾4˜$`=(ƒ¶³¡½°z% Üè¥0€U÷ì…ø¯F}aÕ¬„ê ƒ˜¤€UW|øŒ‡$êê<ÔO|aõ¬ú tqV«÷ÂÀ-ÿ–¯öDîc²úAçbËÕêÕ‰MÕêÕ¥V°z þV_*ÁSúJ!,˜`õN)T«WJ¡Zõ•BËù0z×ËX­Þô2V£7½Œ0z×ËX­Þô2V£W:V]Pê]žYz³çFïvIV«¾.ømº@Ç̓.øà`º ¬d`Õ±]¡Z½RÕª¯ B¬Þ• ªUW„=Õ¨ß~˜Ø­úÒ >ôjÓCµê• ðPW Ô‡º Ÿ>íA„. X=ÔBÏeµêKƒöTÎjôeÐt.Àòué ö…Aؼ§§ççk'"«ÁêÍýTÕ¨¯ "k¸U·‘ >ô*cP­^e `õ®tP­^•ªÕ+àF/u¬^é½ÒnôRÀê•€Ñ;àVÝÎÄ_÷í“ÕâÕÎÈjÕW ò‹DB”°ê‹„r¨V¯D‚½KT«‡äAXÕ¸Õ»ºBµê‹„攣jóêäFX½ËT«7ÙƒjÔ‘xèå©KÕª/VûŠ3Zu%‚?Ô¯"|z¡¾fˆéŒjÕ× ¡Î«Í*Õê'=Mb Zþ ç M ÀòG-ˆÍÆÐjÙU±Ë7©¯ùñ* YXõ•C$'Xu¥CD"7z™Q€Uo7d}¨¯ôû<‡Ÿþ ‚€QG7Ô‡^êX½Ò 0z¥Üè¥N€Õ+£w:Á­úù<Ô“­˜€EW|x——ºVït¬Þ`ô  b" V¯v-ÀêáLç°‰±ZõÏtŽiXu•¥ÜêAD’‡Õ›†ƒjÔUöÐ˽ Õê2€UWøCýäz'`Õ{Û:«ŸìE8#Zþl#B³í²Zþh/cCçnù£½Œå/ÏÓÚZv…@LŸÜIðI„­V}!ð Zõ…@X²ÃêA „ô@µê'kU«7ÒFï6'T«W›ªÕ›œŒ´Â‡?õJ+T£7ZFի&„jõ¦?Fïv;V«^±¡>ô"›wr¡Z½ª5T«Wý‰°zw˜sµzu¬ôB“¨6ý;¨Â ÕªU`,X=ÜA–®Õª«ÍU£~BȬ»ÕKùP­^ɇjÕoKIX=d>ü­w£Z½ÚÝ«mvlvIVˇ¨dP 4ŸzË÷'/Uˮƈ™´#ýïóãÅñ€±jÕÕq§RµêkŒª‡U_cÊÁªß¿F¯ê°zW·¨V¯êÕêÕ–X½êt¬F¯S¨V/NS€Í»=Õª¯1B£Z=hŒÀÏnÕMHÔ‡ºš½il„Ñ»ÆÆjõfÏC5êkŠö )âJVý›-Û#aôp±eH&T«¾¨ˆ,«¾¨ˆòÀ­DEd)XuÎl¬Ï¼ÚÝèVO»#×ÂꆀÕ; áVÝœD}èUCCµz•“€Õ$C³µ±Zþ /Ñ–ªåòùoNÞÙËŸå%î‡AVË®fˆ‰¯#Üã!KqpµêjZAÀª«Hi¸U_3ÄÖ¨jÕ× ‘’aÕ õ¡žF¸zÕÒX­z% <ôNÀè€Õà6 æ&`ÕW‘aÕW‘‚ݪ¯ðP¿[!JXu%Á‡oºë:HUXõ%Á{¸k24@Áêá¶ëpLrµêk‚p\¬ú¢€r°êŠ"FX½nõRÀª' ðÌ;Q`VoE¬Þ‰XõEA¨äÀê!± çôI%D«¾Jø0ïŽM¨V?iah:«åÎPº »Ÿ504Ê–]}k3GBþåq³dl>©V]}@‘«®> UáVú ®W`ÕÕ”9…U7©¶oÁ¨ŸS «Ž€¸z—Bp«wFï¬^£›—Vï¬ú"²¼[õê ˆŸÑ$ܨ/ >yX_@€UW@P’Ñ­úâ ôD<†Vâd=ˆ¸|‚Õ;áVÝ3ëC=½€g^m‡t«·…XõõBdcXuõ‡)|Ð ”ÿ†UoÃd}¨+HÀ¸ÕÆÉýnÃdµz½-–?Úq?˜±>h> òœ’åþ¤bN¦ZuõAôŠjÕÕñ˜sXõõA\»T«®>{®«Q_„¬ôA"Õª›`ˆ¥Õª+"SÀêA0„dJµzuèbµê+†–aÔ— !QQúŠ!tµê+†Pà€UW1Ô‡ºŠáÃWôÇ©y ú«UW0|Ф¾`hû`Ó— Ÿð¡/"ñê/"´W«¾\-Õª#êC]uPzÓåX^m‘t«'¹Õª/Â’¿ZõåB{þŒÔÂhâòˆV=µPꪅX¡‚U_-|úö¾Zø0§j!î½€ÕÓÑ \©–? mQä\ç¯ÇL½¨u……´uuMšõeBlë„Q_%DDt£®Jˆ²ÜèA$„,Œúa-Êb¯÷ ¢°0£¾B ]áF}¹Ëºú Š ³ym6}uÚaaÔQR˜Q_ø3}ie‘õ¤Á‡‰ì+ƒÎÙb§¯ "Ô›M_Ä5(Œº² &„ÝèAD~w£Ž(¨Ïô3åÍèÝN½9E6¯îp0£§+¡¢Zs£®>Ð ý bÉúò€–nÔ­=h—~P AêšI_*Äú;ŒºJ!æ0`Ô Ú‡tBÌoÁ¨/8 qÉîñˆæX¢¨V]@«®H æV}•@Ó«®L „UW'Ä Z°ê …x„|µê*…˜î€Q_)Ät‡[=H…HK°êj°êŠ…¶Ð›'±¨V]¹×î0z'ܪ¯ðP_0„rMµê*†¨ÝèA2D «®f E¬º¢Ï­ú²¬úº!J·z1aõ.«þ¶ÊHñnõîL¦jÕ½*dä«QWNɛՓžÐ®ñ (ù¦¯'"˻Ճ h{]«Q7Ý€‡z§:㡾døÀ&šáÓ öEÇiP <ìgEˆû6Ðe“åsj¡­³\V}ÝÐÆÜeÕ× m6¬Z=è†V"_V]ÝÂç²êë†V$W«¾n^uYuuC —QW7„rµêë† l.«®n˜­ecÝ£UO7aSúÂ!›Ëª/Ú$ÈeÕUÞ«UO9\õ•CÛSrYu•C›žªF}å.A¼¬úÊ¡I\F}áÐReµz âA8ìMM´Z½—Õ›¶…˪/>€Øƒph—L—UW8èÙzÐ í2 Vºáð=é |OÊA»î“rh—t—U7ñ/Ÿ’þÖƒ¸€þ -> ჶhIµêk‹œø£æÇ¦Þ± ËO´3¬úu‹6ÙrYõµE©å'Ú‚‚V]mññou´E}¨'%®‡:Êáz¨«B:²Zõ•ᬺJ!ŒzBgù‰Pˆ1£®N ù«®N…þjÕ?‡!t¤\V]áðñoõ„Cèù­FÂá¾Ö»lº²á“WôuCHT«Ýð4úº!½[­tÇ¿õ°‰ò@=è†ñøR7ÀêEÂá2ê ÄOù†H)°ê0"}Áª¯”ç>©†¨5`Õ¯`Dþ‡UG5Ô‡Þ‰õE‡¯è‹’ËOD‚å‡ý“QïÉêñÎ"_XõåA› ¹¬ÞÉ·êËZ!ü½[¯$Y’÷^?€Oz( 5èNÅåDœ8Cµ RF †9l@ÎÌCMUvw’•Uͪ¬Q¿^î¾×÷Ù¶È“D£Q¹ÍÍl¯uÂ/¶lû…¨›åÁ'ç"¢n¶®pŒºÝzHq¶ž‹¶ò[äÍöÃ+·ÊVäÍÊâ•—y»ºxµ”$òf…ñI›Š¨[%ÆÕÃfÝ.1>9½u³Æø¤KEÔÍ㪉jÔíã“ ?Q7kŒ«µ†ŠºUc|ræIÐíã JÔí*ã3Gö*ã3Çè*ã3»Æ*£?éfÔƒUQ¼ª¡¢nW×õB¢nWŸÛyoß$ñ¹©nß%ñú|ï>Ê×çºWf\×ADݾòº¤IÔB£_6‰yäF‰ŠºÝœ¸ª t«ì(§eF9Ý®*^?#Ü«*>Cõv]q½³ìw‹÷ÝON\²Ý(+Êé¡*‚¨;UÄչƨ›UÄ+¯ëªÈÛ•Ä'÷x§˜È²ë”ëzv‹¼]L|ú¢¯Š¼]LŒ9·øÃ¥GÞ)&n ½]LŒ?ÐV³^Mx«šÈÝ»[Cq?^{jàíŠâµ‚ÉÈ›UÅõǨ›UÅõÙ’¨ÛUÅuCƨ›UE?ïs³¦øÌDwjŠ×ê;%Å•è6ê¡’‚¨ÇJ £j\õØ‚‡Q·KŠÏœNú4…Q·JŠrºYA|Ï âª0JÔÍ ¢œn?xñ: {Ãë {O^\ÕÈFÝ.^;Üî W×^¢jTt«‚ÐéF¡Ó­‚¡œn¿ëñªTÛ/ÛÏwo•üä/OÔíç.¯Î?Ý,®[ DÝ.úÁ*èN½ðÉs¨y§^øä½FÞ)|8àíÓ®Oy§^˜ïx£\ÐéNe0e?<·ìw ƒù­£Ï×íÚàµ*&wjƒë—™TÜÍÊàµÆ‘7«ƒO®n‰º]\KD£nVŸ;ÔnÔúÑ„ݮ^»R&ò^Íp2rqí‘wІ/²§—«È›UCœîU Û.¾þ=Nç—–ý˪†µÜ¸Š»Y3|úŠsïÕ ¯lDÞ©^éay»jøÌ~y»jøäìLÔíªáúšCÔC]…Ý*#Êé‘»& zäq £î<¥y]kuû®Éë’.Q½ì©¢n—××7¢+#u§Œ¸¾*õù:¢|yº‚¨;eN7ʆrºQ%èô`Q@Ôí¢àõá‘ç/y°( êfQðÉå¨ÛEÁÕš'Q·‹œnúrÎ>ßý^Ä'ûQ·ï]¸nGu³$¸^û&ê^IðÉË&*òNIðJ3ŸÈ/ª Ö+áó©Þ+ ^ìåŸYì òvQPÝo÷ô·ÈÛ+#r»7ð|é‘÷*…ñ¬ßö Vˆ¼S*œüÓ.çôù%ÅÂÜ0IܽZáBUsÜ÷?ìRᓾTàíJẞ¨;•µØ"êöêÃõ¹Ž¨Gîi èÎ}“WýP‚n¿Ýáê,£n¿Þá3'—;¥ÃuÁAÔí?]‰z°t ê‘OZUÔcë‰z°t êV âõ+ÁíJâ3?ñ½ç-^›éÞÓ¯ïì÷ú×â5Q–DÝ,=>;×íÒã3¼î×} ¢+>ˆº]|\Ý@NÔíâ§ŠÃá¸îÓ÷Š«#¨ÛÏl^u ºY|¼¶vMäd¨Ôí*yÈ5ÝÈÛÈ+ÊØÈ;ȶSlLO§c‹¼S¼RGy§ñ°í"-òV[§;ÅÆ6nÞ;ôà^±á£Kåyù¥‰ÓîÜ¿¨ÚŸ`yÚ÷ÈGË jLug9ã3‡ÐrãêœcÔ#iôÐˤ*ê‘×LVÔ—¿fÒ˜‡^3YQ¼fÒ¨ÇÖ;Œº]m|n®‡ï$êNµñ™ÝévµquÝ3èv½ñú>x¯Þ¸ªRŒz¨â0ꡊƒ¨Ç*£nTåôPAÔc†QF=T`uû¦ÊÏœY«8NKÌÓÝG5®*w£nW×§f¢îTgŽ¥í-?säUmÞÈ/ª8Vyýtìw ŽqÝÂ÷}Ê/*8úuÈ/(8rkàõœ7 Ž8Ý+8ž9|7xsú;Ç ´©×sú?FÞ.8>]"ð à òႃÀÛÇÕÂ>Qw Ž+MoÔí‚ãjÕ¨›G{!™1½Öº¢n×W¯1êv½qÕ€!êNÅq}%ê‘7XõØ#Fݨ8ÊéF¡ÓÏd}õC·St{%äõ?ë½ç>û’˜A·VFtzèñ ¢¬ˆz¨_aÔír⺖JÔC÷St»š¸®ç‰zh­„¨;ÕÄgæz¨š¸,1w?|ñÉŽJÔíj⪯lÔ—TíÍXDÞ«&>]1ò‹«‰4ë ü¢jb^!ò^5ñÌ)u{•P‹¼]MŒãm¬L]Ïy³šˆÓU‡1sö/*&ÚòŒ‘ ü(&ˆü’bb~äÆÀÛÅÄÕ[’ˆºSL\ŸíˆzèP£y;Awª‰þ6ÌŠº]M\.=VL$ê±Å£nŸ9Ý.&®nç6èf÷âµG¥¼ÙÁxíÁ1"oWŸz³è¸~BÉ G>ÖIÔ½u^ÝæbÔíÛ8¯û@DÝþXçµâMÔ2äª,"è¡6Œzè>N¢îT!ׂ‚¨ÇšDÝzΧ;†¾~ø>Tu÷Ç·÷ß6qõƒôPÍAЗ”íIŒ>Þ¿ ðÑöqw/øxó‚À‡{Þ¾[ã•2% Ä=\øhù‘¸/«>Ö¿é1÷fø%7u¶;}|èIÝ©=®4A·K«A´1òXƒ ÛeÇÕR A·ËŽ«“v‚z™¶A7‹Ž×*Þ®;nœ‡îÔŸ¶Æˆ»]y|ò,SÂn—7öß›¥ÇkbânV¯UH#ðNrU s³ü¸~À— ›ÕÇëGæ½/…_Ý]HÐíÈUû‡ ÛŸözõðØ»· ºýÉU•CÐC/¾JÐBäÕú^r oñ^öÄ{÷o\­õÐjŠQ¯¦ùEÕH{¿‚‘_\Žä±P¿äöù ¿¨ék"¿¤ i«FÞ¹ô•R&‘—$>^“ùè~Ùý£sÌÈ/(K^ßóîÔ%×—ÉD=¶ÂbÔí–Þ–5èferµZKÐ;:®ÖJŒº]œ\WND=ð0ƒnW'Ÿ\©ˆºSž|Ú`%òN}rãs¯@ù´Qgäíå•çÖˆ¼S¥Ü˜óv™òšª#ðv²ÕSOÛß§Ÿ`îÔ)¯´# ¼Y¬Ü8fïT,×¥Q‚nW,Ÿ¹¤Ý)Y®:FÝþxùµþOÔoŒ½z Ýû^Èëg¢{ïô~}ª;Ÿ ù «;eËÕIïy ºû6ïk|=ô¡£¾é”È{EË'„¸/yæ¥ÝD~ñ3/éã¼ù%¼ôæ ‘_R²ôb'‘·J–rzøþ#¿ôé–Îçña|øõF>Ö4IÔc÷›õÀ˵Œ¹ùpËë‡ög[®ºÂFÝ~¸åUtwžŠ½º½’¨Û•É«-"oW'¯Ü„NäêäCàíâ$÷ ¯á§ã±GÞ)N>}:ŒÈ;ÅÉ+‰À›µÉg¼;•Éü†9înaòÙÓì½Ê$‡ú:å¡_îT&¯¶—y»<¹qºS¢\}°»¢n–(׫bDÝ.Q>sBº÷ԫ羌ºY£|¢ÌõЗP+êf‘r}ËÓn‰º»ÌsÝš2ê‘o¥WÔís¯~e¢¾äÁÜÞ–5òN‘ò©`2ò‹‹”]ŸòKÞÖÑN,~I‘ÒZF~A‘Òoe!òKú*ýI#¿äQ™öD¯‘U.„=^¹ù%•K{o»‘=)CÔs¯®ØFÝ~…ÇU½cÔ­Úåú¶‚î¼ ìJmõЫÀŒºY¾\·HˆºW¾|úÖ#ï”/Ÿ^/‰¼W¾|ú$œ‘·ë—Wž„3òvýrãø»S¿Ü8æo07ÀÞ+a>]ûNä½"æ•ÏÈÛȨ/&4ðv óÊÚ0‘wj˜W `#oÖ0¯ÕMFÞ¬cnœ¢îÔ2¯U\FÞ¬g^“FÞ¬i^[ $òv]s‹ç­Úæðöéø´ÿüÕþë·üÿ¿|µûú¯¾zÚ/0_Ö÷·kóâÃlÙNËøe=p—?ÿvè?í/OoŸ~·\^Þž¦íË¥ëé<Å;Þføî«²œžß/_›à´˜÷5Á®þ À„Äwß}õŸ¾:.åúº›Òë;]?Ì–—5Ëñ°ü±vë½’Ë×£çðô¼þÔŒ¿["N‡ñ,(K¡t~ž28ÞæØ"bY®nÏ[D2–áišcŒ×PàJ2t+·eÓqýËžw/[aò¡,ûݺ#½ŒÏo_6©ñ´ÖOÇÝ~=…2^þ¦Çå>½Lû]¾l420Îk„–ýzè›awy^O"Αñw_‰Â=2\ñظí–ï²=f¹_φfËy˲[~åí†Ä§õ䲎Ÿ—+¿ãïÖ÷üÖß§<žÏË…lÊàx›c‹ˆe)õ–c¤2,EõùešcŒ×PàJ2t·ãi?>Ù7׳å²e9žN‹˜XÆûÖåxÞnIa¼þ K±?Í/ow—)ƒãmŽ-bXvK‘±Û"F†ÝR·í5GÆkDPè”fè<¶ãíy9ÅžÖ'מ×Sáz¼•åi^Ççý~=ê—ñeÛ³Ÿ÷ËßÜár(<öo÷ûÉa9$ÖCÃŽ·)¶ˆXÖªëëJ°Ô²‡SÍ0†«?pbâ;‡×ËrØž¶Þ­´•WYNë>±Œ—úw­2wëYìørÚ­%j†Ë¤/Ë_óx˜¶¿¬sW¸ãm‚-`XÖÂz9­™ài9l^žk†Œ×ˆ@Ð#ÍÐIŒì|^¯¦§—óöÄŇÙrÙ=¯†m½è°^†#Ãõ¯¹œ–ÇKÏÆöõ£á/S¸ãm‚5Ërl¬°L°Èä—çi†1Þ¦<€H†Nb;Êžö»m/ØŸÇ/V–§ÃúYóe¼ë#¡OçU@-ãËÞc¼O¼¦EWŸ¦ ŒÇ[–ú U Òó4ǯ ÐÜÉÐyl?Úq¹¾Öw™¾<­;ò‡Ùòòv½â/ó~{IÈq5×~ƒå﹞ .Çióó‚ò\Ñ·ôk–ËöS™àp9-×è‘~ü{Ë>&g#Јíà7B‹X/à^NÍ‹ú0Y–“÷ú“_–?Ïöáѧ§í'¿,UÍñÅñ2íe)“ÃòíÏSÆcŠ5@Ëx$8l2Ñ ¶áê‚lr¢;…Q},Šs½Ÿø¼j¾­øÀpÚjüõZ¹½8vùs.Ìq½–>=;^ÿ–Ë©êðúa²ÝíÆ5Ãæ‡–´.Öe¦éœ¸Œ_æfÈÚÚÜçvI<–ü2µOÛü(Ëh]˜!­ ç°ù! =À Gk Oܰ€,MY‘§m;qKcW4~ÍÀ¸¸i 22€œ9Š(ðw2t³D›¸i ²!’5Q‹Î*M…U|†Ó0PÔN /à ä$è­±23Ó¬±¶S¨·ÅŸ™Ö¶8TÛÇÚQÅ3.^Z‚+ € Špsâ;‡yfâ¥%¸²ö!LIJ~Rc}Å ŽeV–Ì AîrE< ÷ÈpÅ£­R7- c}ä¬ 7ÖôÈ7-áF¸1‡ÜD‡¸“¡óh«‚®ÀL–mýÄõ¸¬¯¸bç ŒkzzdÍÏ Ž³:¢%ë'fÈúŠs¸# =‚Ò Ç,°'j.¤-¸¿Å y¬Gä³ÃL\ ìàV`ËL ³(jˆ5M®±² \%p#¥ŠbKˆ138†™r-À”kÁ­\“™r ä:&׊[Y2„È‘RÅ ±UCŒ™Á1Ü”kA¦\ råšÜ”kx ÏÈÐyôA¹•e s9.ÈY¯“š z8°ÞGÇPSÒ˜’&À‘42SÒà€„!AgÑ$ÍÄLK€EL:VøOÜ´YJn‘§(Ÿ¸¥l×#e½ËÂdþ §ð/nþxPè“¡óhrq+Ë@F} ò°E-®ÛSÿïfVÈÁE…ØTÈò²BÆŠ˜øÎ¡­¯² \¬Ò›u¼"ÆJŸY 4ƒc˜a@ÎÅ z¥:VýOÜ´YênïÒIe>ÝÇ“Ú]ÔöÞÇãØûx¨þ¹ ‡êŸ»t¨þ‹Õ?ܨöáÖyô ÙûxÊ2nñBÎm:VÈÞÈc…Œ1s#–q#Ž rŸŽSx' ðdt­>.bž²>žú8¨­åe}Œõ0ÃKË€e‚ v y ^ÁZB[~*Ze ª,ÿˆz+‹TÜœÅ%ÃK KH‘R[þbÄôl^¢;þ¶º[œÊ2@±´ h_‹˳zŒÕ[0„†Êè€6¿´D€“ S襕´Ê2PYZ´¥•´,­âa)• 5†˜–ÌÁí2€L‚΢V2+KpQX›ÂJfVz¤"ƒc™aÀLÜN!3AàÈ$è,zY³É²áª²jல fUVáAEÇ™·,°J0p×0+zdt½¨*fZ‚‹¢ ÜUÅŒ¢ Š(28––#¸™¢˜@&AgÑz©Å¬,W:™À¦ÕYÄh†ê1z¥Æ3„†Êè`6¿¬€øß ô:±Hi (êD0§N,R©ÙN]H¼cYa ¬Ä:ù‹p`Â;ƒ^%ʪ,•UbP[%JË*ªB28†—–ÌÁí2€L‚΢׈ÅLKpQ#·5¢Ì¬ñ &L†ÃLËf‚àvŠb˜2Ì:‹~»ÌÊ\ÜÅnîb/fÜÅ®GîZ'ƒc™a 3ÀŒ)d&<™E»s¸˜•eàâž]psWo1ã¾_=r_°ÃLËf‚àv ™ B€L‚΢U‰u›­–Ü%K™Æ]´[W÷ØRä¹95 áŒ½É¶,ã6Y3Œ»hG~n±uölnb;üv7HQÒL܇fîÔ(VÜË÷zÁ±¬Ê2™aw ˆ‰í€áW$Zõ[Ä´+µ§°SNÄR¿ê1ª[dX´0„áµùa%€lqÂ;ƒÖ .VZŠN,˜Óª-RôruH¯×Œ¥U–Ì 73@KÙ,äDw ­<Ѫ4aE6íÄ+\=Òè5ãâ¥%ÈÈàL!10d» ÞI4±2ݘ…û꣼ï>Jbº1?Z¤K¬,¹·ž ¹õž)¼5 Ù.è„w­¢—XY,‹éÀ¶Ü–˜¹©×ÍÀ˜y'ˆ¬2lÀkŠ+ ltÂ;‰VÐOİ+µ´°SmOÄRë‘rÝ Œ‹˜– #C€3…ÄÀí‚Nx'Ñêù"¦%°RNƒšz»xQ‘ë1êuã3”•†ÊðÚübþlo¢;þVÎOœ°€)Õ´G¹=qå¸ÛS¬ϸHi ®$êä—óg³€Ü ´j¾Hi ( i@Sj+Šq=R«›±´Ê2™aw ˆ‰!ÛðN¢ó1,ÀJ l*í"F-®GJu28–XY23 àN!10„˜ C¬“hµ|Ó¬”ÑÂN¡=K)^£R7ã"¦%ÄÈbL11d» ÞI´R¾ˆi ,ªh`Sg1*q=R¨›±ÄÊ2™aw ˆ‰í€Nx'ÑúóÇÝöꆳåy{ƒÖøÚlÞMÍóŒ§þ¼é¾›Áña<É­em@?½Tƒ~ݧNÇš#ã©A¯GPš¡ó˜;ô5 ÍqpÓ>/f4ØõHÿÝ Ža†\d7s3PÈl€”X#Ñî`)be¸¸wÜÜ]R̸ÿDÜŸbÇ0Ã02€›9Š(ôJ3tí–âV–Œ{G@ÎÝ%ÅûOÊcÜŸbÇpÃ22€œ9Š(ôJ3tM‰·²<·§Ì@ŽR*nH)=†Ò2C˜¡ÄK%ØJ1‰©Åð@|‘¡“hb¬ˆ•eàB ;R©x!¥tˆÔ2c˜)ÆL1à¨1™)Çp@‘ ³hzlb¦%À¢…±4Q‹šÒ#jË Ž¥†z ä²â†"à F†Î£=mPÜÊ2q§?Èy ¸åaò, CÍg¥Œg¥ƒÛ‡¥eæÓÒxðx4 :‹&6'fZ,BOàQ‚³HE<’d¨1Ô› Cl‚µYÜ›x /ÉÐy´µ±âV– ˲”ȳpUÜXÚ*±òeÇr‹dd9s7Pè”fè<š––ÛdÙ©cƒ\¡+7•°QÊfpœyKKd¥¥òÓp+5­Gä3:&§'nZ‚,RVäѺ·ˆa="–ÍàXnÈi!§AŽž.nj.U–íÛPUkŒOGU±ÁÇ¥ªÚÀƒò" òá§Érh¯æÍ§£j >.U ðõ¡½šwþ¸×ê"Àe±ÔVò²ÜÀƒú" Ê«,‡öb^P;…¼/0æóάhƒ--•>º¨×6ûD*]x7§KO4Ã"¥%¤H©-1bz6‹7ákã'-ýs@Óa/ZôàõHž ¥U–ËÁí2¢N†Î¢ÝnUÌ´ `Üçnî„*fÜ+Uã^*0”YYíEÃàv ™ QÚ‹†gft¿‹™–Œö9¸i°3ZðzŒ=ñÉKÃ!Ït%: Í/-à!ädèÚM;EKË€Åý2€æŽš¢•[ntÈ9Ä3”WYy~hĵÈKxˆ9 :‡®RŠ–àB¤•R¼)ñP—Œ%V–C{¿°¸™¢˜QÚû…gf~fUfZŒOÅ‚›oÅÊÌÅꑯÃ&Ãb¦åÐÞ. n§™ ðõ¡½]xbf[¸¾û¨e|¶‘¾2_u¤ó\ß}¤7­Gz×$`èwËrhï櫎Náw¡¨íݪ¬˜a 0”%¸‘–Å m‰b2 3-‡öfaq3E1¢>´7 ÏÌÔf2Ó2€!-[m)1Å%‘“ ÏHZy"(ÑÁl~Y'A'ÐÅe‘ÂThK0G\©¨K¶#'ΰXi9Ì/Ktò)à âC{YòÌJýRŸUÅ’¯¢¢Á‚Z&-UÈ®‘À¡¼Êrh¯·SÔgUÁgUE}h¯ž™)`d¦%ÀaàF…3d˜Ñ]IÀ°˜i9´žËŒ)d&E¾Ä4 TVýAmÕ//ª~„œB¯ú‹V,ÂJÍ-êQ”O´FÑîöÔôÆSã/-Á•ªØ©ú‹U?bN|çЫ~yaõ6¸©È‹5»©éÍ@/³² dVýAnÕ/7«~<Ä G¯úå†dÔÛ §"/nÔìå1jz3PãË­,™U[õËͪq'CçÑ:ªÅ Èèf‚œ~gq£#ªG:¦fȸ¸•e #È™£¸¢<À GS4ÏË_îØn¤] €ùµ½k‰°{™ÍÏŠ 9&Eó¼ü>ók{Ÿûiº—6ãIÑè!î]{m¯sT¿x¢CpÑ©7½ÜbF·WtƒÍÀXfeÙµ×ö‚Û9d& ˜z7¿¶wæ¥.“˜p¡ÔÀ½)µ¢…Rc3JpÆEKKh‘ZÛʼnùÙ,â„wM©+-¥R l•šÄTjx ÔÈÀXbeÈÌäÎ!7Qà!îdè<šR›¸aJ ä(µâ†RÃ¥FÆÅMË®½hYäÌQÜ@‡¸wíEË37î|)nZ‚Œ{g@ÎÝ5ÅûoÊcÜŸcÆr+Ë®½häÎ!7Qà!î]{Ñrã–ÞÿÄ È²z ò¬/7V ð`…‚ ŽåV–Ì gŽâ =ÀnG{·¸i 2žy’-j(n´ôHû€ Œ‹›–]{#±Ü˜Cn¢ÀCÜ»öF♛͹i 2ÛAnû@n¶ð }@Ær+Ë®½‘äÎ!7Qèî]{#ñ+û²ÔÎíÄ—ã¹½‘ø²”ã‡CÉߌ'‰­G´ï¯ÞH|YN„çé’Ëáðö<ÉøŒ'‰ “ “h»ˆ•åÜÞH,îUmL´"Ým¸cia µMPœ˜ŸÍà#¼3h»X•åÜÞH läoC ëmÇÓdfrç›(ð%:&C‹[YÎí­½ G"7Ddy ‘iÇpÓdfrç›(ð%:&C'nZÎí­½"D,nˆH<™d¨1Ü´™@ÎÅ z%Ü:¶Ð[ÜÊrnoíyÖa'nY©Õc,䚀¡Ìb€áí@$C'ÑTh+ËÀ…þ6 ±ˆ¡!õˆÆ4ƒc¨i 23¹sÈMx€’ G{¨¸•åÜÞÛ rÑ)ny†G‡<âcÇPÓ`$ng™ð# :‹¦¯'fZÎí½½ö˜Eãz&C¡¦dd9s7PàJ2tM_·²œÛ{{Eí[ÜPÇå1Ô³Ë K™!ÈCn¢À”dè<š¾–Ûd9·îFÙ¹ÚWnªc=¢žÍàxÏ{{± d•a ¯9àV(ôJ2tMƒ·²œç÷ö‰XÔ‘z iœ¸EA–ÇP˜fp,7,p#ܘCn¢À”dè<š-ne9·÷ö‚}XÜPzDašÁ1Ü´™‚Ü9ä& =‚’ G[¾,2n¼¾ËËî°îá.¿,ûÍñRËËOKØzdÚ gŽi ûòrØž ÃårÙž`ŽŒ§%l=Ä GÓ×EmÀ…²7Ú·˜¡Žõˆz6jZfe9ä!©èëàV_ËL} 3P‡X#ÑõµÄ°ˆ+úVÜ«ŒšhE»9êÙpÔtÑÒZèkhm:­8¡¯Ù,â„w]_Ë °P¶ÀFû1Ô±QÏf@MK¬,™ú:ÈÕ×rS_ã!îdè<º¾–¡lAŽö-n¨ãòêÙ ¨i¹•e S_¹úZnêk<Ä G××Å-‘EÙŠ<Ú·¸¡Žñ@=“A5-·²òp[ô5ÈÑ×Å }­¸Ã­óèúZnXDq+òÈ߉[²C?› rº˜a1ôu`«¯%¦¾ÆCÐÉÐI´õë"†\¬;‹ËÅ‹Õg²:m‚Œ‹YY02ÔÊ2€Ñ9n;2³s€‡¨“ ³èƒb‹À¢ÙU?1‹îǃ¾ìH­,AFçätŠ<Ä GïÈ ‹È¢ÙEU_ÜÐýå1úf OPÜ´ dv‚ÜÎÜìà!îdèq˺ºYw7CÆ7-A– "Ï· ÐCÜÉÐyô®ˆÜ°€,= €Ó´(j´5ô]ãÓ‘˜†CžMW$¨íŠÈ‹®BN‚N¡w¤…XèvP£ì‹Ú_ôÌ@¯@fe9äqÓt‚ÜîÔìà!îdè2t­R¬ÊrÉíôé€ Ô4@ eÿ#›iíZZ‚ÊAÍÒ$A§ÐZE«,˜-‚Û¼hd3ý¢CKKPÐæ—–ð :…Ö˜hi¹´ €›ö€´èŒí6^cxi €Í E x‘ Dk±²ͧ71[lOg€pÇÃX&lg˜ð":‰¦ž%6Y.íëx‰ç+íœíHgÂgÒ² X•`À® Vð":‰&‹XY.óׂ[å /…s¶G7ÌVÉè@6½¤˜Б ãowLœ´\Ú×=Öú‹Ó¸€­¹QÀ`ǒ¨ă9é‹Óã<â;Ö (Re¹´¯;¶½XÙ Èv:„;†––À2A`;ƒÄ„€ÉÐI´NÀDLË¥}Ý!Àm@Ì>@¶ÓHx!¦%°LØÎPÄ€1 B¬“hm€"V–KûºÀéHŒ&ÛÓ ܱİ@Œc‰  ’¡“h=€"V–KûºC€Û€˜€l§@¸cˆi ,¶3HLz":‰¹pÞ^ú×λãÓôu‡exYD猫PCà›€á˜¡:‹å´\•`­§ŽÓc\€òu2tS`&Àõ-êèó‰W|y …o†ò*Ë@e‚ v y ^`­FanL´´Öá…zF3©!ákóøF3,RZBŠÚò#¦g³xÞñÏ=€‰“–*ú[ÐQè­høòß ¥U–ËÁí2¢N†ÎbnḬ̀Øà…{Hô™Ùñå1D¾ 3-ÁEp3E1¢N†ÎbË3-X„ª¸#e'f»zD “À¡ÌÊ2p™ ¸Bf‚ÐÔ#ËY-OÌ´Ø«…{ÈÙ™Ù¼å±éaã3*^B‹è€6¿´D€‡“¡S˜åòDKË€±*è¡f'V‘»å0ä°ñ åU–ËÍ òbN‚Îa¾]`æ…%¸Æ:}Á+ù3±±Ö_ã^0,bZ‚‹àfŠb1R¾†Ò7ž¡ÄÊ2`ÔN /!à!æ$èfÅ<ñÒ2pE­ ;zvâÅ;ylŠØ %V–ËÁí2¢N†Îb^L/feÙ€±Š nÖ¹‹+áå1VÊMÀY'ˆ« Ü5Ì „ N†ÎbnḬ̀Øâ…{Hõ™Ùóå1ľ 3-ÁEp3E1¢N†ÎbîLÌ´ `C ;r}"A_›Þ7<#ii˜ŒfóË 88 :¹0“ÂTCŽæM¯Ï¤6=_Û‡Ü7œa±ÒT‰tò)à âÄw³lžXi°"YEQ;ÑŠì-!‹IàP^e¸LÜN!3AÄ£P W,fÝ<1Ó`C³î¡jgfC÷N›.6Ãb¦%ÌH3¦™ ðu2t³pž˜iÀ"ZÅY;1‹ð-!ŒMÀPfe¸LÜN!3Aèêdè,š¾\~îÝôð÷y¿œ>/ç˜ûåt{©‡¿OSèG3 'dzÂ|ÙÏßã8ï.Ïyà< sŒg…Qï§ïqÔ ³Â”qEã‰{•€­(D7GAŽ¢,ZZöó÷8ŠÖ¦1‹“Í"ÞÏßãh¬Tg²Â,ô°Q€E ¨G4¤Д+Ë@¦Ê rU¦ÜT™xˆ;:®2‹[,"‹Ây4àÄ-*Q¨H3 *‹›– Cg‚YÜЙxˆ;:yµyâ†dYêyƒ'nY.ž<¶åäÊqq+Ë@F3Gq…âN†Î£kèâ‹È¢_E…[ÜÐÀx ‘É f–[Yöó7b 9*º¸¡¢õ÷~þFL㦕‘EÄŠ<2wâ!¬ÇÐÉ&ˆl.föó7b„­Ž–˜:AïçoÄ4bjP‰a*Ø‘¹Å ¬Ct² ÐÍ2+˦’p”´ÌTÒ8ˆ: :‹®7e†`¨=€£‹Z£Ñ“&@_ʬ,Š3¸Uœ2Sqâ!ê$è,æÅç™Y,+¿|¬ ÏÌÆê±Y]6ã¢V–ýüí›Bž9&nA¡‡¸÷ó·o7u¨Ü°ˆ,JVäѺŠ5\C-›õ\Ü´ dêé WOËM=‡¸“¡óèznZ‚L-äª]¹©‡õˆ^6ú™y'ˆ¬õ@^Šn¥¨õw2t]Q·XD5+òè݉[±QÌf@A7-A†¦9šº¸¡©ñw2t]SË È¢iŽè-jÈb=†j6>"Zböó÷˜D­ª–ª!ïçï1uZhÒ¢‹°¢jE=dïDkÈb·G5Š.^ZöÓ÷˜ vtuÑBWã æýü=¦Æ+KÔ/,àÊ"·¸³ >ËByyŒ…ôÊq1+Ë~þ“È™£¸Bqïçï15njR¹aªäèÞâ†2.¡œÍ€’–[Yöó÷˜D®¶–›Úqïçï15nªR¹aºä(ßâ†6Ö#ÚÙ hi¹•e S]¹êZnªk=À G[—Þ/§Ÿýe^—Þ/§¨]=Ö~Þ?ïæoM1ž¦õȺ³osL+Óû¥T<ÖcíËø8kŠñ´2­(ÉÐỹ‰†ËÎApÛ9™<èÁ1Ì´—‚Û9d& ˜$ĉÖ9(be .:àÞ„ZÑ¢sÀf:„;–h‘ZÛʼnùÙ >Â;ƒÖ9(Ve°ì¶‰Ù9ÀƒÎCLK™!ÈCn¢À”dè¬â¥Ôõaÿ2÷Œñ¤®õóHÐ)ÌâzbCP!kÝ+)„1Û£› g,©²ßÖûØ…ì’¤@<85üMW'- Š®ôª0ŠQ41#™e\Œ´ FÄÃhË^t˜›Í¢Ñ|“ÔEHK@!fƒµ+'ä0Û£– g,§²ßÖ[ØíÒb :…¦¦'ZXÀ ìÝ¢%ÌöeÃ--ñ€f‚¢<Ä<t MH--Á…„ l4®´ÁnÙpÆÒ*Ëñm½W^ÐN -à!æ‘ Shz¢…\Q¯À޼•ú7Û‘Ç„;–VYŽoë•òš Šôó Õ)4ù\´´€+ÚØ·E+ê—íCa‘Â08Äf—“Óã!à‘ ãoʹ8i *Tk0GÕJ ÕËæˆb£Kª,Çñlx⃙ü’r~D<â;&š'RX€¹ êèÙbÁËöèaÃ+-ñ€f‚¢<Ä<t M/--Á…V lĬ´"vÙ)l4cY•åøÖã Ùô’r~¤Ô÷!|pjø»–SY6LhQ £V‹zVän8„”–ÀRÐêaH)‡³€„w ]--U´¨ £V'Zѳz w“À¡´°€ AØèai!‡³€„w ]K«,*´( Q«E =[‘»IàZZ‚KA<`«‡¡¥ÎvÞ)t9\´´ TÑ¢‚ŽZ-ZèY<”»#A ¡¥%¸Ä–r˜í­N¡KGi•eC…rt¤]±Bûé€4L¼CXi ,Åã@v„”Ò1›Gt'Ð¥c‘Ò2@E·‰9Ênbí§Ò0 Ê ¸v”Ò1ÛHx§Ð¥£´Ê²¡B¹mW´"þt@&Þ!¬´âq€V;BJé˜íÀ#ºèÒ±Hi ¢ÛÄe7‘ŠöÃCi8ÔVZÀ…x l´£´ŽÙ@Â;….¥U–*ºMÐQvE íW‘†IàPZX‚Kñ8`«¡¥tÌvÞ)té­É²¢R·´ÊNZj?=†Ià0³–eà*ñ¸Á.íZ%Ù€„w ]:--Ut› £ì&ZÑ~z “À¡´°€ ñØhGi!³€„w m%¼h•eC•eh0³N]¬XÉÖc,tÎN‚‰è@&½”2=›ÁFtGß•£ŒÊ²AB¶aW”~z  “À!¤´—ÚqÀV:ÂJå˜í$¼Sèʱhi¨"Û°+ZH?=P†#A ¡¥%¸Ô޶ÒQZ(ÇÐ ´:…¶ô]´Ê2PeÍYÐY•žheݺ<ƺ6 J ´’Z™AZ@`; ïº –VY6T¨Q@£W‹ŠVo8„––àRØ*bh)ˆÙ€„w M¯¢óaÄëßðé4)âåo<})ñ¬ˆñˆà5ƒãmŽI¯¿Ãe_’xýÃO_Jc<‰b=@I†Î£-·² d,Ó‚|[Å-b,òº9kÀ†;†˜–À2C` dåüláAÆÅª,–Ê8°UÆSãákÇÓdfrç›(ð%:¦Ž'nZ‚ y räqqCãõkÇrÃ22€œ9Š(ð%:&‘‹[Y25r«‘å¦FÖcH`38†›– 3C;‡ÜD(ÉÐy4η2ÞjÂÝöêy=ÎË/SÆcŽ-ËÓú‹T†QÁ×c¼•‘A¡¸“¡óøî«ûÕZ[-µå2ÍqùïÓxù–ç}–EöëŸc?ïä»±o•Ðe{K»—Ýö=430slÕ–SVs’a9ËŸ÷Óc¼Íxˆ;:Aî°T>ë·Çå´û¼õG´ÐyZ¿KÚìõDã­Û±ß¾ ¢ÇiÙÏNSÇÛ[–Ãú‹U†åbpŸbÇgeG r9ƒ‡™ðctƒÚe¹Î¬ßÎ8/ûì †åyÙkÛ½vë#HËø4~Íç¥2Þ$Ûy=iM/Ûg+ÃgŽ-ËR'm«¸#Ãy©Ã޵NÌx‹(ôw2tƒÜqÑûÓ¼S–eìRÇó~ýÔ¦»ÜöÄÚ#×Óíú977/»üåi w̉…ý‰ ìoÛµ;2¿›ƒÏðΠŸ÷뢦%—$θ\²8'×E³¶9«›±µ²œroY2ä’å^ÔD¡¸“¡óè¿Y÷Ërz;ýdœÕ·¿hôùƒ»9?Ñ9ícá¬MÎê[þ:é3½›ƒÎðŽ?'ýu¯]®%§õš/IJ̾5÷Îë¿ëìG3Þº‰ÛWgõ8¯GÚÉh‡#ý€å¸jæJ° ßM_BÌxk?žçÍàáWøÛ•¬. ãàà"ÂÁÃe¦/.Då1®SfpÌᅅム?ÌQG(ô MÐHôÒc¿À¸\æÒc¿ËÓmã¿߽l?¥AÆSéQ[ma|FÇÔ¶¶ºÑèÝËV7š?ã©ôÐC€ÉÐ)ôËØù¸­Œ~˜-çq»^.!çE^êë&Œë2Vã"eÇÇ\´¬obö*v^N×ûé §OW1=€˜øÎ¡^uÎ(Ëi-;ôe*ŸžvY_É®?ÆÓáU9xÈàø)gì²ì·+·—µñXsŒñ|xáÈ$h$úå«§–'Þ 6.ÈI.-%8¹øè‘‹“+8Ë2ä¢"'CÁ) =À G?Æêg+Ëø«³ƒó«pÔï–c¤ÆdÇüleuä7q51à!Æ$è,z©XÔÊòœ×ËŽ" ä”qEB¯¤,t «FAà!êdè,Ú•­$g èE®)èI®:¥8¹.•Ǹn™!ãRœez‘ èIæ(Å =@D?‰L¿–üÉsû‹Œ#|úÉr Ð!gâÖO¦%pðƒd†úÅ€ ˜IÐ8´_¬úrÇDþVt7økVûƒ¿wyŒßà ŽÏW¿í 3¤½á6@D “ ‘èµHöËrŽHUguê„:ïSIè‘Jà Ž9ïkçmä´îžø¡G@&AgÑ+‘:ñ—eœ¶©8­S'Ô‰?…D9Œ:ÃŽwv¹b§mâsRwOûBÀˆ‰ï:±:í—å˜N×ÈÊIyë´`å0`›À1g}K¬œ³)±rJ·Äò¤o‰…% :‹.d¦î°–4w_æÎodFý`<*„ט_LËø‹›€Î/SToøen/áŽ?U“纱,ÏùÒÎqû>:UažÐ›êÆã¢£ÏSeyܶ›Á1ucYFÕg†T…ÎaÝ( =@I†Æ£÷ &M­%’8R]É1?iêÈýòغ• C%u QÄD#˜É_’x€0 :…ÎkjykáÎͬ~ÐÑf}¤ZÞ¬ è1XL¡o éWN?› ªã <„˜ D—1uŒ•e$"$Ffˆò"¥20æ0Ó2ä8r 3AàÈ$è,zï´WeÉ{¦Fó’¶ÔÖÛ¬®­O7§5J´CúVem'ЖÚòW׊éÝ,º„wüW¿—¤Ê’÷‘ä/Ôþ-åå_[ü$`¯² `$8S5@è!Ædè,®ÚÂÕBÕ’èËÜ¥i[+f´uY1£íËŠ™cWÌbq½+lfŽ©ú2÷WƒÏöigpu¶ Ö2ÊX¯Ï©r½>[s}Ö!×ãÄ3´ .˨b‰O‘ë–ÁBÀCÌIÐ9ô]±~¯²Œ?8»?;JýdìJå1vµÊÀxçÞ›Hþæv@ò›Øñ'³‚2tý2]gü²äƒ\ 9Ÿs ­3>Y=r6ƒcÎùe§l3ä”îžôE¡(ÉÐxôËÙT3jIÉ—k‰%a®6S͘ëQyl—«J¡%ã0Xð%Ü‚0L%c èˆfè$úÂ{Ë’×…oN~¬‰×é‘Us=²ªN‡œË2NnÞ¼““Ÿ7ïxzôæ=À˜ Eß#«Q€Ͼ@€½¥:ìOzd3CÆÕ)(Ëúd ÀÕ)Ey€› ÇUÃQrX€†Rz¤|qCëë^€ h/Ê­,™Ç §ã(5;Ž:€šÅÕ=ÖÄe9ç9ð¬æ§âu½ßšØ;ôÈf`|ô.„XFUk‚½NaY,<™ÅU‡§ZŽZÒ0¤¿BC1 ˜ê8Ò¡Á ÛqŒÅ~a2ØOSL Ç`(‡±4½+ç¦aüÅí‡å±cæofOMôÜÈàøh/–ñ'7A~§ð7Á˜øFáJR{~,˳Kïœú”»urDsrD/çäèГ£–œÚ’€SSÔÉqCP›A7¯ð_­PWoGKZ3,QÓºa‰ºz;,Që1Ö M¡­Ò™!šÆ ù«µ<@˜B¯/ËŽÚWÏÖG!æÕ³—ÝvǶ•]ÆU:–è Mq¦˜jÇËúè©¥ãúlÅóÔ;Êx*õôˆïú)ñù|ZÏ£ómV‹d:=M·Y=ïÛù*ãé”X¹ÍÊ ŒOÞ4…å°6+Ⳟ¦Ê1ã霨‡(“¡óä^Öîd»=®,yäéy}“uaî˜*Ç—µ%:;œ×â®8¦p,Ë(ûHªÐ¬Å€‡“ ³Ø¨=­/;^¦µê²<ñNûmÿe%šêk­z±,'¹§Ùãe}ÌlÊ1ëÈ“e[i® c%ºæ`­ºPà!îdè<æ3~}é[Ãú´½güe|Z˹úˆî×òØÎç•1Ÿáž,çqgOãÎ#æã:å—¨“ ‘hkgó'_µ¼¬;ëVçýn?/Ú1®Å³òkc•Á±ß|ÕrX›"fؽìÆ'\3GƵzV¢L†Îcì’»µÚ\ÎgK þœweư½až¶Eº—óËZ¤ó:ÆÛûKoçÉc¿• •ÁñqüΓe·•a)ô//Óc¼½ó$(ôÈ$h$Blí§ d²œó’“§õÁn ž£ªäi·\Mž_&çíýú•ÁqJ„²l%D%FMA R ôÈ$è,µùë&ZNë)˜¬Ëø2¾U·CǸ¨•Ç^ûu,§ËZ¬W†ÓöxZÍ1ÆÅmòJ2tó9?b‡á¸îì Ëø¼^‘ë On†Œ¹ŠN–í2[ÆU¸æà:](ðw2tíG«‚_KêuþfÔóù£V½Ï_½ƯR 2¶Ÿ,kÁn‚ÔóÌ`Á/=â;‡Al=Ï<Íoõ/Ëq{Æði=õl¯ }ZO¥õ 1Þo\êÅãìq΋Փ€q½|WËi­Ö+Ãá°]5ÇoD8ˆ: :‹Aíií.´ëtYÎy½Ði=xâËÊөñéÐn,^ÆOë“î•Á1§F-ãÔf‚œøœÂS£ ôÈ$è,ÚÉÑîNŽ­¶JïÆ—ÝOmzäÔgÇi½hIsÆ iÞ8‡íQ”ÇÒD޳EŒæ.ñdoá^þž/ÕæàQîj„,–EŠ&e7|¹T‡éSL–­.6A:Na#DåF24ýžË2]æ².Ô?×-<—õ T·×ŒátÛswŽáŽ÷W¬o’8<Õ <—å°™…Éxº§<‘ Dš—sÿ˜Õd9[Y— ÉöËQúB«ÆÅrʧ ñx~{™0ôC†1Œ‚¯ÂGAXP2<€H†N¢ýf“@+ËWùƒ)¿ü³-ôò?JepŒ@+ËWd@~1G 4P”(“¡óÈ{íÏYL–qv;,û÷¤[xµÝt~<îNóæç±~ðsrÔ2Îm#:ç=“{ftúxoD_áï'ý:”%ïX§[NœëÂ)[œÑIàHYÆáONLQ'@”“¡³h¿×üb-Cä¦>ñe‡*˜õ/>m~Î dFx}s–!?Ft”‰ÉÕ.Náè+ü}¡¢ÎŠe§5 rÖË"‚'EØœ5£sRÔ’Sš rÊcωÐ!MÐ(´åÎé5¶eyº¥Æ”ñõ>ª”ù,Vº}¬eV¸c_z­e«ÒM*¾¾˜D/„òb2t½‹Z 0eë't0Y_¡ÇY+0i‚–Ã葚À1 0ZÆ ñY]q×_„€ß9\5õÝË2v&;êc_³åξHKžÍé×íxï4±dO">;šùÝ€IÐ)\çYÁÕ’XO´Y õTìî8S׿çyu»Îê,®N–mù5'ú±6['zVoëDB<¯l´–?ñnùá¿þ篦G¢h~{Æ–¾šÞu²|~0êSKEý§¯þãWÿí«ýîëõùÏw¾þ·¿ÿêþ›§ã×ë›ó%ùû?|µ_ïë«+—kÓóöµßøêïÞüŸïÿøëÏï¾ùízP½\Îo^þò›øý¿[3œ¦ ëžÿ²Ô”»¯ÿýô×ßœ–¿õîéôæÝ>0OyXo0}¾ðçu‚·//û—7?ýòñÝÏï¿Ù/ñÏÏËðçÌýòôæÏ?¿ûþýwßÿÓ7‹ón„ovzóáÝ·?®£ueãðæ×_ÞÿøG&~ž¹®ïBZ~Ümâ7ÿøÇ?óûÿòÉßcÝQβùéG ìßüòßüæ¸*ðÝáÍÇ?½ûøþ;,`þ߅ƺq÷|X‚Þý¸Â\6\Þ||ÿíÁ¶{yóý·¿ýׯý÷ûUí?ÛÏïÿø§¯¡[®ë»ã>^ï?|ûÇw«×oëuûùüõo_–ï´œˆÆ_ö‡Ÿ>.¨±ý²þ5ÿ°þ{¥·Ïß|·ßŸó7_ÿÔ›ãÂóÕ?õ¹»¼ù§oN«q!öíÏï¿ýñ»±éÍ?¿ÿø§8í/ËýðÍr6¿—Ãø­/‡ç7ß}ûñýO?þòÚïtX.K/Xþí+‡õÚÕ.ô÷o¾ÿéã/ÿ s>½ùöÇïÌ„¶_h?óù!žÏ§[Ö]gw`×ùÛ×0ýöx<-§°Óøž–¢uuýû7ß½ÿù»Þ-èÞŽ ¥zZæ;/t=xo—ßëëßÿõW¿ÿ‹¿{ó¿~óÛÓú†ÄÝqÝ¡ÞþãÇe],ëÏrxó¿üvü{·ühë–¿ó·¿ûÛßdûåøæ?ÿî?;Ú/÷·cëšïüæ»íGx>]–£êçßýË%ý¿dëòýÓ»Ÿÿñw»å8¨/WЂ¸ìs—9%¬]ÃõÏ·ß­ÿÞmùÓOß,­åhÝ¿ùç_ðÙŽ•u°ß~‹Ÿßýòër<¬`çe¯ü¸«#Ų¬ûåšáð2ï—[èyÞ/ÏËÅçeüŽÙøË¯?ÿáÛï@¶þþMÈg2‡uïågüøSÎïñíÓËÞ]ë¾d§:ï7¨~÷î†OŸ™î´¾.ëd²üæ´òëúó¯?þÂ!þœsÁúïü:ÛÑð¼‘ú¾†õâvyÞ΄þƼ7ÙÉ£}Ù5w§7ÿÓ8òFÐÇÖr YNüiÙzX&ÈazÜÎâï Ô¿~·ýÈ—eû¯ƒÐò{Î+»m¢e?þø§ìoÆ_‘?Íø+.Gî8ÿ}ûóÇ÷Û!½ü¥ÖúiÝÿÍŠüå´í#–Óì†pIÿf=U¾¬‡×ò3¹¾Ãy9 ç?ìðXOüß}|÷ýÂèi¿{ó_~ýðç±;o!§åwÌ¿w—ü·ÁéÍ_ÿõ¿³­—Õ?l;ù˜eòº¼ùõÇ÷?n¶ËiÉõn9tÖ£ePvwÇåÿ÷îçŸ~;.§©óózœq0í×ï—åOõÛÃú}íýqûÃ,£µ½ßö…õŸ//Ç1ýá´^äÞ¼ÿñÏ¿~Ìhù©~ùó·Ëõn;æÖ7Ü­?üwÛqüò¼ü€o¶ ðf?² Ž_ìý»¾ÏëŸk¼‡ÅëÝLuxó‡_^¦þ oöu.'x÷ý¯þ‡ç7·ú‡·ëŸý¼$xyóo~øå§ñ‡YÿÿûŸÞÿùÊèiØ.iï>®ÿUÌ·?lqÇí4ûó»ï~úðáݺßõ÷qÝoÖßqxå 6âoþý·?ÿ×íW9®WÏÎzyý§‘a©ìÞ|§ñOß¾(Þ|K¶ç7x÷Ï™mÙé?¾ÿ°žF¶ÐõoŽÛi9O¿üE 4v¥ã¶_ÌûçÇï~fËóÕNúÃOÛ©úå°]²kä¾ýùïÜNÛ>Ê.½[²éÔ»ºï·=tœÝžÏíʰ¨ñWá߯sŸ—¿êËkW‘E=Ÿpý»Ó?l‡äÓvmúý8¬8—ýâ»õ‡ ÏŸŠÇmÿ}ÿð´þ>~;&•Ô¿=ìq9rŽ}þ´üÛ.·œÔ–‹Ñ›ï—_âÇ_–³ÅV¯­/9ƒàœÖÃê¿Í;÷¯ïÞv”mó²ó|ÿîÝtj ù²nW‹u¿ÛÎB/ åw\kŸçËÓZBœ_¸>ýñÕëÓ¢8ŽÏ^¾÷‡oýá〼žÔÞÿòZæ§ÃÛÓš¨¿©ÊàwõÏýk×ÿµ‡ütö¶žFÖ^ÜBâýÛwoÃelÉ¿{n—±µz^´ÝvD\Vp‡ëk@–ËÂR6Ž#ü¼?-‹µ‚\_ê½d?þ4œÖçˆÜþ|Çñçü¿Þm{öšew|ý*ÃæÓÕáøË¿ªçm'Iòñ- ·Ëã?~\<·+án\¨fMÑþ®Çõ]ž—è…åϺUã±õ«Ñ視;¼Zg­ïÞåw}óZ±ø[\~›šlMûJÍøÃVãq=Q5®;s¶Uá8Â^)¿ÙŠª%|rûîÓÂñÍßüîPEcÛ‘—Ã}•!ãêô¿þücÍðþÇ¿|íöñWóÿ?ñUñþoß¿ûóºSlT–“Áî/‹Ëßí³ÊȘ à÷÷oN‡ß.´å? âçßíw»|žß|ÿ»õÚór¸6¶‡e7=Ûe¯Ü/»Ìñ__åùÍa?ç_]ò^Ë~:šÿ<åÿûmŠËñ²Àý×e¿žd¥¾N&ùOß~øóÛ)Ç?ÒûãZä¿<½o~·¦õ'_KçýðÓw¿¼ú¼ú':ìÏç')<×tûE°NþBËaùáO¿;Ô4×T>ûG:<-;›3\æΧ—Ãé‹gðüãkt–*ÈÉžÓËÓ£“M»§W'{Šj3¼,×¢ÿ`§×Ò¾œör8µ?Ør‚ørë õóOÿü—ÑOË^¹üÑŽÿê7ˆÍý›ÿ°h‡wx,W‰Ý¿ò »,¥Ö·?þñæåÍ–å_mjó´\ª«(ûÃûßÿò'÷Ãe×ýùÝŸß­ú7ûM]phï‹ÏZ›b~ý¤¹Þê¼Ê§µ;ºž×sçḞ<ÿßõ—ÿýÿP´§Œendstream endobj 333 0 obj << /Filter /FlateDecode /Length 55206 >> stream xœ¬½K=IrݹÿŠÜMÀNÅû±Ð,¸’Ä´ ¹à°«)•-²ÑúôãîfÇ#ÌŽ]»Ĉ«˜å7ÂÝìüÜÍüñoÃçø1ÔÿÑþã×áãŸ~üÛ±ýõCÿñ_ùËÿôß·íãü<·iûøå?¤Æø1Îóç¾Û6|NÇøñË׿ýéÿþùwë´~ÃüÓ¿þö¿þüw?ýúïÿúùÿüùŸþõ/êXÊ8~úú‡þãþùïùëòäñïKÕ¥þÀ/¿ÿñÓÿõó/ÿâ|ýœ¦ãÔûÓŸÿô믿ןçŸþê¿þEøÜeÿ¶éÛÏýéï~®EþË/?þ[m’ýØ?ÇécæýsŸ?Æq>Ͻ|ÿ4}çÇŸ~ýøü1}.ó²­ÿ»4Ð_—ÿÿ/¥EÿêÇxk-´®ÇQ~ìãëÇ´ Ç纬û¸}žçÇo?þ†þVKMãçQwšË«­ZÊþíëÇxÌÃçRÿ2.Ÿ£”òû¢whÏ:†úÉë².ŸóXñ,å÷ñc+Å?ýE÷·WïEoïžÞJËôyÎë¸ÍŸÃ«RA{¹zµTë–õ\?—ícÙÏósž>Æ¥Øá~~ŒûZʯè–̬Çéø˜Ë¯­ÇTm ôêpûQ¼b·j¿ëÿÖÿÛ´«/Í»NåŸÇV­þ§»¹ÄV0ëú¹Õo˜Ê÷öíãYi]ŠSì údø\k{Œcý²¨Ô´ŸÅÇZæø<æVïíç-§|^i¡£ü­|Õqìå×?õ¿Œçü¹–Z磼æ(7]WLÿsëg”&ß›ççZzk+z––)_Q~öóX£BãqnŸëX‹lõc¾óséÒöãTLc¬qžÓPŒòö/ú߯£ü­(ÓZw:—öÿ§Åxlg3±­4å¼µ,ú±¯Û°,ŸÝ‹¦Ï¢ÛPœ|Ü£BåKmRdüçË0¿§c1ÌÖ²ŒÃg}ýs)ö j0}{ýË$žRÊ,Õ#Ë_ŠÌí/¥Ý‡Vk®>ûÛÿùã/ü˜æâcùÚ³ôéÑžeŸÕ,•Æúõå/£(†<«]éÁò¬½þ³½XiËZp.¿²µ‡¯ê~P_¬4SUú°aª³¯½F©T‘Õ5]¯5lÕÒJ½íe_4z ú5}«½èÏ(Ï’—²¯Éï0Í~¬üóöVÓö9µ¦YjÓÔ·ªqʳÏU‹šÏ¿9zq­ÊŸKí‚óÑÁñ«ë³Šžú¬¹5—ýè蓊ÜoMÁιýó²ˆâKýó¤qŸ}¿;,¢¼P{بÚï>;ú&zy}Ö:Vµg­­ÁÜgGß4ÍKã]{ùc½¾²üŸS{ßA$mZŠÛúÝí½¢¾u cm*О%"ïÚ0jnXëX½¿=l¯´m´7„>«ØàY˛ܚR¸6ŒÚ§Ôª PŸu3üésÝÚƒÄêMãE-ÃM«Ëx°>é¨JûE­µ 7,⬟Û6‰kÛÖ‹š†Û@¿±ª[ûƽ’¬¾YălÍ7ËG±¸–Ð+ÏhZþ)ín{·r©0H—w—›/uО3NÀz"jenN˜Õù9Ô†)UöE=µ27§>¬Œ¾ÛW—‡‰D¸žˆZ™Ûž8´È9u©·=5³k}­2טwyÒ!*hú!jçi.#Ýé”·šníu¶ÁX{ÖÆÞº"jinR¨óV¤ü¹¸˜š©é¨¥¹Iµ¹ÖAz¼N½ÛTGËíUÏö•‘áº&…@,ýÍ”¶k£n£V½F{û‰YÅÆõ,õ·©¾UiXùÅâºK{+Û³Q·MÓ)ÓŒú°ùæŠÇ&*^&êe»6ê6îèjeö)L×FÝÆM »?j•ö°Qd»6ê6nSNiØE&³:×µA·q«^c¯½Õ10±]õµªkêH¶è·U§¾¨s£žã.‚•‚íÏ}D^õ‡4áÚ^,r,×CÐé¾y{Ö)n-%²î¡k) T£Â!k)‘pAU Mœ¥DfÀ}MTØÔ)ì‰ëÍT3à.RÃØ÷úæíņö•ÎT"3(µ†6y®[n_¹MRu <êhfq7¹Èœ¦bÕ‚äI7¡^×6‚onˆ‹‹Ì‰ºã°]ßu•(œ·¸Èš¸«ýÔ¹F)ŒÅEæÄ]±XéÆYvÊPßš\dNÜÕÈ ^tPm-.²&ßÓÀÇ(Ý]cfÍî½E¶äzZ[kߤYÇñð£µ@ë ñpø®ÆqWk(Y@d,7²KîkýÆ"-–Q&$r¶™f©5éîfÚ°ÌýaƒÀØo`šl6€ÚR ´GÍ2Ú±æ™&›Í5Ãm¡ŒqB<Àšodšl7€Ú¨ÆÓÇçÖ|#ÓdËæì-IQ6jèên¾lšÜÙœC`Ò)ˆ3_2Mîi0m‘zM'HkYóL“zL[Dʳ¤­¬ñF†É=­_XFhm¤ÖßËod˜ÓTÚžç= 0J|9³Æ™&› 9ªíŒŸ“x¤5ßÈ4Ùl® À²È›­3¢7óL“Ì vh7 Š4g½‘e²áh“e´]«g5›úb5©´ÉwË80P5g:L¯úºCÍä|‘'D†ÎÆ£_YôiÖ¾TÃŒ3D¶ÎÆàNò å+gi~뭳퀸mdÕžµÉÀÉøCdël:ú‘åS†Qž%-æü!²õiÊÜm•†¸%w–¢ä5Õt‡×ùCdël‡ÄC¸¼™(µu‡ÈÔÙ1È_«”·Óƒu‡ÀÔÙt0Ê_«ø¶gm“(¢q‡ÈÔÙt@ð¹æóÊÃvž¬;D¶Î¦‚Oòñƒó3D†N†zÃ(v¢8_ˆìœ ’xJ0uØ12·¾:$±ƒ¶×ª±"ã ‘¥³åÈÃÆjíaˆ+;oˆ,½ÔšZÊ»¾ÙmàZž±ò,Ík_ˆìœÓµÍìÊ7ª®wWˆÌœmP_« I'ýDÉj®åß&5_y-V[gSÌZqë,ãU‘˰bX1µñZ–óªÈcØ1°h=¶~êDÙxTä-l€WÊéÐgi þæQ·°ñATñ³ò ù:ëP‘³°íaF¤3ò¬Q¦jÖ¡"gaëÃŒh«S&y18Y‡Šœ…ÌO½§^Zk‘tî¸Ê4îh1¾+67œò¤­Çæ.oŠ<…C“Iüµ<ë0Œñ¦ÈUØø02™Ä3†8³î9  †&²š¦¾˜DÀœCEÎâ ðš[íÚ\2y·Þy [ ¦V‡ŒøÊ'jú÷ò¦ÈSØú0±ÚÄj†>{´Þy [Ÿ~aù²S¦_h<*ò6?ŒIt–©3GëN‘«õa<2ËJ’¡'c¬7žBƧ®S—à´?OªðÖ™O™ÆméÍyøµvÜ)Û£ÖòÁmPT%]H¾3cŒ’Æ6%&°Õ:fäulÅøÒªú‰«†CgFnG† —RçГ:Ö3#¯³†|å~寓†UW’DZ_“Æi’WÚvLo^¹Y1HÛ§>J׬X§ŒœŽíã£Y¹Ã¨ñY瘑ӱ!c|4j›:ÏpŽy™òŸma¨ò¬C“Ò—cNÇÆ—5ˆõ uVf3ð:¶=ýÀµ­ÚYI!癑ߕZƒ$=Êï­7Zœ£:¦‹Î7#ÇcK-`)‚ªÆ9#Çcc¾æ±›¾Ø¤¼0Î8›3¦±{û‰Úbšy´ÎéùÊÞשN;çŒ|ã­±5t}˜°Õùgà{lËWºNEê³0Þºûgä{Ζ1Öj‹kÛƒ$Ìëœ3r<6fCÂõa›uÎ92{fék›×Ô¯ÔØ¬uöÈ“Ù;ìL½½Ù‚™úÍÛ#WfïÀ`pi”©“5ÎÝ#w&÷Àxp¬a×ö,éKçñ‘7³‡D»ú¤N®ÃGÞÌríÏQžuÎÚß<žÜ™-Óô¤nŸ¨i]>rg6iýÄmnAáã\õµœËGþÌ6AaùdùÄAÇ„Æå#wf“Æ´këçëÃ4tf]>pg¶èkÖ¿ò¬YØm]>rg¶hm±I¦qµÅD¨­ËGî\*MmíOý½{Ø~“õYšv´.¹3{ǵ¢fчéºaëò‘;³{\¡„I6ï÷X‚º|äÎìiNUÍ¥É$Je]>pgvàíhaôú, %X—Ü™=±„YMªÇîy3û‡Úþ„Ö_4о֖U«“•\I“a•‡idÂÊG¤ì ¹Î©õaš5± ©{ðvÔ]åϳÄœ‚Dê@‚8‡¤Wê³d,f$v \¯žÔå¢F?"q`ÿ¸ç$ï%ñ' ‘8°hƒÕýg­Á¦:Jú"‰Ôaë81Š„†]M¥§r6y˜l“qb Í4”¡ã|3B„³Ž–ü¼šßiQ¤3ìkóKŒ£6™îï³Zé ûBZkË•´¯ÔA¿Ñ¢@hØÕÀð6Â-ÏÚk7|‘EBî†Aÿ,T^lÞŽ¼‰Q$4ìkˆiíòMõaºØÓˆQ$4ìoô·ßoŸ©Q@+F‘а¿]뮆C¶NXwu£HiÈß@ñ£NÖÛ³$ åÄ(v7Ò:…º‹Q$4ìkÚ\ê¶Ð…£HhØ×0äÄW+'tÈoÄ(Rv6 ùgÎ×oìËPoj) ;¾©ñã3EJÃΦž´4_h“]›ëª?ý¨ëÎÛTÈŠ·žÍøWÍ’9i d«TªHCÜ@Y²Mò^«(¿U¶HµØq1ÐqÛ±é{9e‹T‹s‘Q¶j–Ì)[$[츈Ü鬥·˜“¶H¶Øq1drplýH#m‘l±çb6" Öúf‡™•¶H¶œëbD°IXâÀ–R§k‘f±ëb."» ëkéŽ3«kf±ç"p‡>)Y‹4‹‚] }ÁV «k‘l±ãb.¢óâò0Ùpæ¤-’-ö5÷æpGiYe‹T‹ ‚S-½íû"e‹T‹ A@tþyÈ€À([¤Zìlžm`}˜Ûœ²EªÅÎ¦í¿¢%gÍ/:e d«(®ªQ;öåjþaR?Zä$/m‘l±ã"¤¨"U&Öï¤-’-v\Œ.¶ë+e^c”-R-v]Ìk™2Öm…µÊ©».bŠ›ÿÀf§l‘j±óbxqªÌ5ÿEÊFªÅž‹ˆâ(ãùñ§l‘j±çbxqª‹O:‚rÊÉ».¦6íÜ‚ö£.¿K[$[ì¹(ÎjÆ“Ž†´E²Åž«^Y—´&+òÙ¬¢z ˆ„o£á†s\uÊâø©åY²ÂÈÉd$츘&-W_Ê`ØÈd$츈tnú¾¶§Z™Œ$£ 4ö¨'{8™Œ$=Ó$t:"GN&# dÏÕö/Ž´µ÷tU–“ÉHK­Eß~¹¯§š£æU7™Œ$US®A öµYV&# d@Ütj«ÛWÊèÎÈd$¬˜qÕkÒ³÷¬JF È2€×,¾òL]hU2R@’ÄMeZûFªŒ$UC•MŒe?u µ“ÉHÙs6ÝÔÅqN“ÉHÉs5ÝÑø2â· û-*§„ ÷c;+’‘²ß"jz¶i}˜ì˲" »-æ[Co|ÙâD2@vÛÛB‰]vêù=F$#d¿ÅŒk«“%V%#d¿EV£«û‰È‘UÉHÉo1áZ$öÕŸåD2@v\mÿÒ@òb‡Ž-œHF8 º¹µÄmÔ³Ëúfͽkd¤¬=š+ÝÔíÂid¤¬öì×GJ<×Hd¤,ˆçÊzéú¬U$Ñhd¤¬ôÀ‘¬(´è«ÀÎ]&y– Ò­FFúÇ" ¶ÉGÝÒ-i‘bÖçÒá·xdE‘áQºdGlÌém¤¥,˜¶~m©‡X½ ´”5ÁYR1;Î÷0zi)+â‹¶½ž‡éõ6ÒRVLÕ™÷]GÂNo#1e ÐÖ¯ºZsÀÓêm¤¥¬2ï-©³÷à«•ÛHJI0Þ9„ÍåY’tvj))+Æ;‡Jņñ¦UÛ@IY0 Ûúþú,I;µ””@Û^õ=öUÇaNl#!-µ4æ\â¾Mx8—ÓZFl#%e5Á|r”Lwy–ŒöÚFJJr‚€µ‚~GôÏŠm$¤¬˜P®ÕÞÚ{éñ{Vl#%e@¼z•¯[Qûîž›ÚFRê%Ñj9†°}ã‚hõMl#%e @´úT%]5¯îÔ6PRV žÐ`ˆØ9µ””%àZ:snú•24b))KÆN§6þÚ£ÕFm#-e ÀØé”TëÞƒ¯Vo#-e À|rÑZdPíä6’R֌ζe­>KbœVn#)e ÀlrQkYu+†•Û@JI®¨wKs÷ærj))+ß³Œ×öY£¥Nm#)% @ÜûølQªòbº”Óªm ¤¬íYãY“B³¼—ŒvœÚFJ:ž5@ Þq?‚a9$¨]‰#óR#¶‘’²š\AtùȾЪm ¤,'j«åbšÝ\ëpêBô[<.sj‚aئ6ë¡ N¹#Yf9Á$wÒ÷˜±ÒÅJw$ˬ'˜åŽª³¦ût³,³š`–;JšiŸ5Ùï¤;’eVÌru µOºÀIw¤Ë,'Çë¼gÇ™4N»#]&9¹Ö-ꓺÝÇHw$ˤ&Ưê"h0§Ü‘*³ž /‡´o”¸“UîH•YO0Ém‹¹o³Ê©2ë‰6þ!@ Ñ)w$Ë,(˜ãÊ™ÇÞ·œZé„™å ìÃÄ&ÄõoÚé2ë bu§lûFî8éd™%Sܵ­œ®ÏÚõØ##Ý‘.³¨Rï:ò.íÖŽ÷Úér©5µ-­!î'l/øÈSÏm»Kw$ˬ&HLÚ%#6vXéŽt™õfͱÒÉ2« r£þæ «œtG²Ìj‚Á)éÂòP=AßJw$Ë$'ÈìÚ²=|k•;ÒeÖädaûJÍíŽt™õ3fÍ¿ì8ÂÕiw¤Ë¤'HÈxõŠ A›“î@–YN0a–«ë{áðu#Ý.³š`Æ<¶ 3õYºèÕjw¤Ë¬'ÕbNcrÚé2 Rºàj;ušë´;fVŒëvɼo‡^xGÂÌŠ‚„ÃÖòÛû€µ$V»#a&E¹ò 0‹µ'.íŽt™EÍõ˜ÅWË7Êæ‰µ®HÕµD.‚‘žUä.&qÊú,ŸD"Ï‚‚é÷(ƒ†íÄøÜ‚ yíÈz—P3±]6bxD"_ÔuÓ¿ØP)ÙÞLâʆ‘ȳ8aˆ(Çý\ æ@‰<‹æòº`Ó¸²å@$ò,M ¶ýÿ­¹d*i9iu¬kᆴ ù³M;wЉ§#R„Ö¶+ƒ6èGî}›Í In¼º!¦Iy|£RV7 w$å?Ëz~¤6,oˆ‘,2¯\õÂv¤6,oÚó$S·õÅBHmHÞ0Ú• ’šÉë¡HmX݉“kЯÖrDŠxC ‡‰¦ʳdñ¤%R„¸ÛâªãÖ^IÄ–7¤áöî@».\5LŠxÃò&Ýxèq¸ÇºKp×3)ΨÛ5¥IoÁõªµg",‘ˆ6¬’6oÃõ&5='餈6,lˆ´¨(•gz"°!R@Ö6äòÆæåQÒ–GkXÚ0nV“\±¸Ýñ(b kÛ•ËqFÂñ(b k"-r7̱nº Òò(‚ ‹ÆÍ§ êŽM"HpXÜÍÛµÉvM×;(EÄqâ¦ý¸Î2ãªáÛMRyInXÜk‘;^ë[á2ƒ¤7¬nÈåÉ切fd-˜5¬lµ¬jôN¶<ŠXÃÚ†DÞØ"EkÐ[E¨aiC°ePmîz‹£7¬n;¯Úý«ÜÞî‘à†Å YÁE:­[½CRÄÖ7 ŸéݵÇè-“ÞÄ!'x¨Ñ¯õ—¾<’"ܰÂ!'ÏÖöòHŠˆÃ"‡€Ë$+œê7ê}ð†JqXä”A¼¾ˆJqƲo[ѨH0ª®­z;ç…¤ˆ8¬•: e×ͺèXp›å–ÊúJÒeÁ¸Ü*%²”ªÚ+N|µ|‹àÅB‰8Ш†ÔOµ€‹èÅB‰ø"†u‘[,á"z±R"QYOto¯¥i ¸^¬”WªrÂ7NHUÞÁ‹Åq AÔ K´ß"x±Z"W©`‚™zÀEðb¹DhÖ~[tw‚屋¥ãð­)I]Ð-ã7‹·ˆ]¬”HTjHy]0)¶|‹ØÅR‰@ÐÒ„Ù o¼X&šdN¿öÌ\/JíÃÒˆšKúÐð-bë$2•›èly–Ì4ß"v±Nb~È€cÕ“,<ß"x±Nb.çd7³×3I à"x9©DÚs®꥽d(nà‹ä ‘ UÌaî›| Û"p±ºa$®‡³ ±<Ü"pyuCÆóP“Ÿû•jm¶XÞn)ÏE¦×|ÜhÁ†µ A üyÒ57HmXÚî\e;ËŠÓC‘"ܰ´!ç …@Þ!) kâ:]5b鑇õ ¡ Aû{ÂíWJpXÞöœû³æžø¼A)ŽÓ7‚6 >Ñ)¢ ËFâºfEäÙ)¢ éÂ@ƒLéË=ôÆ£;"Þ°¼a ~J–aյώIoXÝ šÔ¨a÷ŽIoXÝø\enY>RO2LŠÃ‡Äç©ú<|ö³¬nT ˆÃ ‡¸\¤W%6á¨!‡Á ]sZ»Y!X,EÈaSaþ"¡gO¥ˆ8~ô~Ï¢ja³nÛ3T"â8±T!œq åÔé·epÕão[½hhnÅ#ñ]æ©ë€Ã( Þv±V"®Ô6¶GÍz©ço»X*1?Åæ—³ï(1|cv±P"®´È0¨¼–Þ=fù±‹„ùØMV3ÕÖºvþ]x‹èÅB‰°Ò(†T¾QnXs„‹øEZ‰q¸l®Vê Ñ‹¥Q¥YÀ·`±¿#\D/ÒJ$d傆£(ˆ®ÿ°€‹àEZ‰„ì&kNœáãøÁ‹µ#ñCFhË©gø8À¼H(XÒudK_éoùÁ‹•Y¥É‚ƒGàx±R")»ÊŸä[à"z±Rj?ºF´¦–%°d á‹¥YÙ]|¦´ý¤YYƒ¸_,•C)=¨È!.â‰BK«Zþ¡+Œ,â"~‘È!1«›NÐ`q¾Xä˜Ýõašsq„‹èÅ*wåe7m/]Rb©DÐaC8h“ï“h½£R@Ö7¤d5Џ `ì¨1‡iÙ]²<ýaŽKtXáÔì·Y–ÞdŽuÇX4jZÔÁgMY9ÖE cÙÄà|“Iý2ëåvÉX7‘ö]åTÏeî£ó;í"”±lbp¾‰¨Wq—Á¹Å]Ä2–M¤}7 ¨÷s¼‹Xƺ‰´ï&kÖ"ãxÁŒ¥á¦Mr‹ ÎD±À `ÆJ‡Ñ¹FÐbxÌXë÷Ýe_ÞKø–wËHê®Dí¢íµê2{ƒ¨?,uíúí†èQ~œÔa€®²²LjùŽO|Xê¯ÕEù 68@Eôa­Ã]×MW°êÂÉ;¡"ú°Ô!a{È¢Èzßœ.Ü7„ŠðÃR‡úÑÎ|¨-Ö¶7BEôa¥CÂý;êøÜ*+臬Xpð‹ƒT :$lO™¤—gééðR€Hè0B×˶–¾tß2*â †è§ QnǨˆ?,t¢ëAœ v‡8FEüa¡C¸h”ÅËp5CT„Ò9ŒÑõö–Úb’·µ„ŠèÃB‡hѨUGl1µ„ŠðÃJ‡1º\–|Ì'FQ~üÈþŠ m½Ò‚`¾#TD–M•ÄuÞ±f{ÛVõ¤I÷ÕG£v'›ˆ< ²¤´.vaq¡Œ•¡'˜-Ö§YÜE0cåD.X&ëh~Ï»ˆe$œ=MBÁndwÊX6o™àQµÈßp¡ŒuÁ'Ýõ4÷à¹Å¡ŒE¹àQBƵµdˆnh‘Œ5Á§¥¾L›í"’±h"¬øÏ‡ ^=í"”±j"ø4Ë2ÐùÔ#§î"”±j"âp¡ŒUé`Ý'V›LWfÜE,cÙDøIOUÝ[ãx°ŒUù`?Ì;Æ)–wËX5‘Ö[¨Ê‹MºÖð.bË&Â0ŒCÍßâ.B öeùºvÚŒ£»-î”±Ì!!<‰¸Öë+3o¸‹PÆ:‡„ðÖLïç´¸‹PFB‡îez·‘T:±YcKóŽ-P|XèÉÕ¡iy˜Ò- "ø°Ø!—{Ô9g{˜   "ø°Ø!™«[KæM†œP|XêÌ•£ÔÊkéÝò)¢+Ý•ÌäYrU½T:DŒ$B[>PV¡8,sÈånŠ#|¥TDÖ9„ŒôÇyÕ`–#TDÒ9íÊòŒæ!åŸÚ•P|Xè1d;¯ºêÃ*¢ ŽÐÏY¦‹s¢[BEôñãúk„~Š—Ì«ÎO¡"úlª'ÕM&‡¼˜,·Ýv æãÅÂ1»“MŒÐwuêni‘ŒUѧYöªÎX‚íh±ŒUt=<Íïy±ŒTá§QmFæp ŒeóJãE-í"”±l"ü¤áëÌî"”±pb¾kë/èI‹»e$œ@-2¬WÞÈ ÝÒ." 'é«ö›F8=í"–±r"5‰ýÌH,t ë®´zWŠÐhÀ‡uYÝM?~Âê ¨ˆ>¤sÈêβ¨iÆÊg ¨>$sˆÍj£œgéð¡‡tIÝAEáxG§€<,s ²aoÆŠ`G§ˆ<,s ËÎÎYãkNxHåÒÝ%â5ãìnǦ<¬rHé.*‡£Ùéࡇeñ¢E%ofñ±‡e]¨Ì€ž´|ŠØÃ:‡p‘ÞÇÐæø±‡…ãó]Ü»ž„%“-˧>~T¥tÕ<ËÃ$bù±‡ESýh× xÓ© S¶¯¡Š_ŒØj"=¼È –Þ—vÈX3zZDÙ&„ã`‘Œ5éáAæwh}O»ˆd¬™>é•ý#-í"’±f^ùáC_l×ü°¡]„2MŸô܉ ‡‚8ÚE$cÙD†XNÌ©À×ý¼vÈX6{ÒuÄrÆàÁ.ë&ăLWÊW.2ѵ°‹HÆÂ‰èÓ(JS?STÑÒ.  'Æç»6ÿ©'×;Ú(cÝTã?O!ׄ˜¤Å]€2RMd‡u³ûtèŽvÊX5}Ò|ay˜Üïép¡ŒUùa½²|ÚåÈF‡»e¬™>ÒßÓ®[Aî"”±hbx®{*ë=Ü@·¸‹PF:‡ØÓ .R^G/ݵ´‹PÆB‡ôðÜ–³Ööúø"ØE c™CrXìpB,Þ±.â©bEíAvhŠ°Ã ‡@‘nÏœ6M;4EØa‰ÃÐ\OÌ›úåžMxXã)D‰&œáà‡5NÍþÐóÚ§MˆNxXãÌÝ>õ+åè3Ǧ<,q.›;!èêà€‡%¡"(~Œ/‚SÒ8ŒÎµ›&ôbÙq‡E‘¢A^·¼—lf·hаç¹èa˜åY“̱,š"ìÆ!™»õöÚt'!S„9$sG5×Çà[4EÜa‘C¨hUXõ2"Ǧ€<,roýYz‚º¥SD–9ÄŠ4|0-8­ÏÒ)"ëœö¥¼„âàÑÇè¯Tî&}R¦ó, §<¤šêE'¬uÑöÚ9Ѻv|ó˜p¨n4IáQlx¹8sÂX2tÒs”ë¾HÙîm1!Œ%#óM¶ÚN*ÌEcÁDÌiÔ·À‘àsÂX/‘Þ¤ÓÜsÂæ"†±X"à¤;“¦Y£¶ŽsÃX-‘V>õÆrœ‹Fr‰xÓ&(úJj‹¹a¬—”¯’kŸ4Þç1!Œõ§Q.O¯ö%©Dƒ¹a¬—H ¯”4Öê(!Œå§QÍÁV‡¹a¬–È ëµ‘Žw˜‹Ær©†¿¡+¶œ‹Æj‰Q¹âošpT¢å\À0ÖKÄœ饺‡WRÂsÂX.‘Ö³ojãkJØ`.B‹BNzRy˜ðn11ŒUÃòSŽÒ©-ÖWmÞ81Ì«2Âzod/G¹ˆ`¤rˆ B¬:Ž ³h °ãT"ÍÂM¸ŽÐq)¢«¸–š&= Ô‘)«BD£¾;4EØa™Ã¸üŒ×4è5•MxXæÂÝ$Õ;!˜ïࡇd!¢AŽN±ÄÕÑ)‚ëbD(8`a‹TÖ9äpÛE>ÒdšÃ5€ àÃ:‡Ѩr„s€ŠàC:‡‘ù.]9JxÔã)BË2¸º™¥›…ÃSÄ:ŒÌõÀ“ e˧ˆ=¬siÁQW¹:Eìa™Chì­/»Ÿ"ø°Ða`®R—A ÎŽ7€Šèc†óW w•¤KÿF‹§=,™ò¬: oÎ\Ïh³×Í2*’2 ᡺M Ì ‡;ÒEcÑT›¨'”è{é†aKºˆb,šÈëéÊý#é˜b,™7¢èý½éбb"¼È4xÄ&rG:Âëåpj/+Œ/B]„1ÖK ÍQ£®íö¨‹0Æz©ýX¶ê›Mp2¨‹0Æ‚‰\°Þ1ê2Rºc,™8 ¢W5šªÉ`ƒºc¬˜W2¸Éæ¸ã2‹ºc¤˜8iJµPñE ‹ ÆŠ‰±ù¦¶ã6a ºˆb¬˜ÈëõÝÅ\O=ÌÔ.  &Ææz&XÝg&ÛB é"б^"â4ȉ ã{v-é"Š‘d"<}jÛË$ŽsÄXæošEƒÇëèŠ;è"ˆ±ÊiGÖäì¤Ï³ ‹ Æ*‡l°^mQ&7L9ÐEcÃàüTéÁÞ"ö°Ð]a¢Ö)#E:>Eôa­CwüÔÓËœ, "ø°Ô!P4ËâÕºÍI¦YP|XêÔøO½|µJ$" ¨?,uHánò³ž^aøÁ‡u£óÆäRU—Ò9>EøaC¬hP†,ˆš[DEøa¥CwøÔ¶_ú<7BEôa¡C¬h–·ÒõÓOzXå´WÝy2ê‚H§=$sHÞ®mÄ0b=¤ƒSDV¹+y;é{é$ËÒ) ËâDJ‚qÑ£Ñ-"òÊa`®·òÕæ’ˆ¹…SV9„‰ô(µq–ƒcS9íÇQõ¤Æ»¤-œ"òøÑü•¾…\mr鄃SÖK™—fÙÕ%p»9i‡‰Ôþöj¬nô™`=å­¶¾ˆ¡!]D1ÖKd‚O9(fļŽtÆX/14ß%R?â^‡ºc¬—:²o·7™C]„1–Ldƒgq¸ 8ÔEcͼ"O- Z&”t¨‹0Æš‰Œð"ûò™;7¨‹0Æš‰„ð©ö‰…ŸuÆX61>ßÔ@'ÄÎ-ê"Œ±l"ð4è{ ‚xG]„1VM—±(Ò¢.‹&¢NzˆJy–¤–ê"Œ‘j"<Ëô/´¤‹(ƪ‰t°\Š3ŽXr{]1–LíÃ67J ؃.€+&Fæ§„¦`tÄX1pú³Vd‚oœ‹ F"‡x“®Á¬ƒ=CÉp.€kÁ£¾–¤>,å"‚±À! ¼« 8âÙP."ëR·‡ŒÞËkÈ25 ¦ˆ:,oW„¨­˜´udЍÃò†1ù!!X—'S„’7„ˆôΟÒ`rú‚#SD–7ŒÉOiÈAס:0EÐauCöö²¯]· 0EÐqêv%o[È8õIŽJqHÝ#Ò³#ʳÆ1¢”"à°ºaH¾K”¥¾˜¬,³PŠˆCò† ¬‡ú,”"à8}Ã\ïÁœÓb‰цõ ¹ÛEº»^L +’,‘"àÀ]¹[ñA¯ßqLŠ€Ã ‡Ñ$L¨×/èæ5¥8¬p*_Û*[¶ÝaEñ¡Y>rØ5©l¡1‡4còUœ¯< ž –"æø‘ü•»å«™Ë˜Ü`)bé¥jᬗ7•÷’U,uçû¨®Þ>(¤¹Dx–Qmu!½x÷ޏ_,–ˆ4ÝTugñ‹ÕIàYÆ´ýawÆEüb­DœI¯\°¦Ï1.k%âLã§jÕ¬7~ÆEcµ¼ÂLíT˜"Ô2´w‹Ær‰<𨢃…±rÀX-fº^L7ÁYÈEc¹DX³²uªª;§î‹Æ‚‰(Ó ó‰úb’ ³#€±Z^9àvBU¯9à䀱Zj?Öã±Ú³Ö¾Î@.«%Fãºs@ ÓA.Ë%RÀª0C_jh!G#­ÄhüüÔœe¯E\„/ÖJäO9§F¸6ÉÿÄøb­ÄhüËFÊkè1éq¾Hà´{Ú7"ÆdÑ‹Ãñ]ZW²:ÂEôrú†Ôï!>U„AO4°x ØÅò†|­Úш…sInXÝÒ?ה쉠Ѕ¤7,nÈ×nün+ ¿ˆHoXÛÚe×d,“"Þ°¸i'ºf|ÀìÅ1)B‰òµ›¨Ð°êÁ^ŽJqXܰÕ5û#VPX*EÄay»"Bâ3Fq–JqXß²Upµ™£R„Ö7„„´Óœ5é°!‡N¬øHãBy³AÁ4XŠ˜Ã*‡”­®€ªm¦!!Ã¥;¬rWζA¦Þ–<"g{CSÄ–9„…Vqºë›"î°Ð!k«Û:ëâjÙWaÙ‡„q¡¥e°‡QG:MyXé³Õ[/‡Q–á9:Eäñ#ù+24‹Ý鋦ˆ;¤™*ˆõ$¥óþ{ÕwE€€(¤ßEÉ_=n@’Ïa.@‹&bL‹¤<ëY†²:Í`.Bk&F䧪ߨ£B‡9b &bL“ÌW,ðtœ‹ ÆŠ‰ “æÜªKÈx‚.Â)ædj< º/É‘.Â+&FäʨáZ™yG]„1L™ôœ‚kOê"Œ±`bD¾©²Uœ‹ÆZ‰(ÓÐÚ~?¯(“á\Ä0VKíÈEÞc/ÿY3°œ‹Fr‰Üï!‘ùaÖ¨sÂX1‘ü•]!}Þá(ŒUq&ÕÔÕÒ–rÁHæýmGkµgíº,Ó@.«’¿rÒWíIÝc ŒuùÚMóÑ`w2ÔaCdHnL¬/%"G¦€:¬qHÖÎjPiG¦;¤qjö{ÛæX_KsµLuXâ«••$û‰©»#S–8äj÷OüIcC†MwXâªÕÓIG„`›î°ÂÝbCõu+·GS„9$jÇÖŽõa’ÿrhЏÃ"§=)[Uö7û84EØaè\Žo/&úeÑq‡5‰ÚU] ÃǦˆ;,rW®vS¦lHÕÞÐa‡Eá¡CEgÓënhаǹœúÕÚ^OÕ1hŠ°Ã ‡ØÐÚRR»ìŒþ"4EØ!‰Ã¼]Sßk”¹S?Œ¿¢CSÇ•ðÑ)‚ŽSK•ÂM6äÖ”Àö¾ÏŸ{ÉoñÝ©%†äøÅ » á"z±Z"Î$7Ç]ïåЋåR-B¶ ·–×­-á"|±\"Ö4·”T}Ø ™_ƒ¸ˆ_¬—6a Áˆch-ã"†±^^ᦵ}Ô‚a¹å\1VLä~e nýL]\kA@Œñ¦µíÒj/¦'¡ÞAAŒ©ß©MQë³tlbAAŒñ¦¶aï6h² ‹ Æz‰ìïþ©+eäðLǹb¬—7‰ìçŒÛ è"ˆY¹Dâwnú\Ÿ#; ä"€±\"Ò4IŸM’|´ˆ‹ðÅZ‰¹$ëkm²jÅ".«%2¿go½•×".ÂË%R¿zBøq¾HädZCˆ 9ÂEc‘CæWnߨ[uDn(ŒUQ¦–©)ç-:ÈcC¶v9q´#Q‡¡¡6u,n˜ñÆ à¯ÚÌ8jC9$E¸aTçÙå$­«±öãhMÓ8" {¥DÚw×ù ^íð°‹¥ᥡ¿×ªË˜ ß"v±T"ï;j/ r„ªÃ[„.–JÄ—)x Veñ±‹•£ñóSÒÍQo½X)¯ÓÙL×j9ÀEðb¡DîwQ°øè¸^,”ˆ0µCû[9¼èb•Ä@ü8NM‰:¼EèbD|iÏZpâ©¥[@.VÉ+í+'á=G·ˆ\$“Wx©ùÞ5Qn¸X&‘õ~îÇÒaÞá‹•Ñ%‰0ïV¿8¸àòZ©½¸ÊÕõ uížA[„-ÖJ$|õÀ¡-‹%¾Ó§.G•„‰%[€-V·+°Ôš¦YâmºXÞ0ßU7Vnñ¡‹õ Á¥©õR&½x£[Ä.Ò6äg79i½žO!{j-“"Þ°¸! $¹ÉúRÏvLŠ€Ãê†xs¹öájôJq¼º! $“ú뽓"Þ°¾!IÛ¶‡ÉXÐ2)â ëÒ´§>ëÔåÂŽIpXà¦ÕUJõ¶­~#×¥8,pW<èl†¿ê’{ ¥8,pÈÒŠ±ì‡nèpLŠˆC‡hœ;Z…PwZß¡‡å ÃðSmB×x*EÄ!…CŠvû¼œöË3)ëÛ• • Wpr¤ƒRÒ·+$ƵèùyŽIpXࢄ&Lj ‡…RD8¤hOiS G%FŽÓ7ŒÄ×O©¯0èªIä8nü~Å‚f¹}ÜÔâ“"Þ°XªûœíÊàòXóÕBd“’DlÁà܉%R½‹ÐúÞ¸_¬•ˆ,ͪÐXXåá‹ÕcñvQ{Ø¡ÄEø"µTÚe›m}–Òa Œµ©Þ³ÍKd×ù1.âI%"KÙ¯†ºhdÉ .ÂI%’½£Z"ÙŽpL/VJ–©X^KÆ©Žp½¼Tjªí~eyã[/–JÄ•fõGÄ‚à"x‘X^©Þ6èØôŽb‡·ˆ]¬•WXéPñZUºá-b‹%Æâ‡Œ_ªºJ¦÷Ž·]¬”Ú‹uýUkz¬Åqx‹àÅJ‰D¯¬&!8³€ àÅj‰¨Ò I; Æ-à"z±Z"¨4\·ïìÈóÞà‹ô Q¥±áÀAdp¼XÞè]Ú@hß ¸^,o,ÍbMõ’wY{aGø"qCjv“n»!í‹ ‡Õ Ñ ¹Î¡¾”&g-”"à°¼!;»+2wLŒ-”"â°¾i?އ¸Ú~jÖÅQ)"+Fã§¶+ö™:*Äa‰Câì6Ã¥€9,qˆÍmãG5Ö]B†KsXâ›­°·«#¿JrHà ZÅšÊKÉèÒQ‰‰Ãú¦Úu¨î\:*EÄa}C^vÿÄàEÃAJpHÞ•Ý䘆š<‘–½˜ñ†ÕíŠIËï:T²LŠxÃú†¡øÙv¬ïû¨£gˤˆ8,oˆÉ 쵦.³TŠˆÃò†Ü¬ Ðv]Xâ¡ÇᯀÐ,LÀIJqX.åY-Q·ËGÊJ‰:îkÝq` ŒÏ½\"Í;éÁ™8 Ë!.à«%ÂKÊ“}Ãí7†q¿X,Õ*ÖU–žÔ4¯a\Ä/K¤yåæÉj®²TÕ1.@‹%ò¼ºÄ©ÞŸ.iÞ;å"‚‘T"¼4}j7ºÜÈ0.âK%Fã­Jki‹[ÆEüb¹D|iV¢­pŒ‹øÅz‰LïÐÖ&_RጦåSœK‚Kp¼X.¯4oKIVýÕà’\„/L—T¹÷aBK¸_$˜Èò®ÂãmÓucwÂô"±D†·ÙõZdXgdá‹ÅƒñUlNî€û"ÄEøbµDpiü4[¡,á|±Vb,~hoì8^Û".âË¢Krÿñ¾÷Ã,ã"€‘¾!Í;¶…žûvÆ ã"€±¾!¸´ÉluŸu4á Œõ ZéàjÀ£®Ù¿ƒ)‚ bB“L|ë’õUbB†KsXâŸ]±ØSïH¶XŠ˜Ã ‡˜Ð$Þ¯ÕF†KtXá´+ëÕK»˜…yhÁA‡A¡I…b×?˜"ê°Ê!,ÔLï,Í1èÞÜ;˜ê°Ä!*t¨Z]ëîdЍÇüìÔ¬§>aÐKN ™"ê8S»?t„¼zš¯ÃR„V9dheÑHý Ùòå°!‡UÚÓ€MoèTŠˆC wegëÿ³.?‘½A)+ÜjØ(5É”ÊB) œvaÚ×F•µÎ_¥:,pˆ -úƒZ©S8ŒÇWýó,¶åÁAÇâ»÷ÈLb½®³\ЍCZ©Ãñò£|£,z9ôFRµ¶ßâºKäzõ–Šç8ÊEcµ¼"L"UƒžÈl!ŒµÉÞvV]3ÍõÆEüb©D|I.B©¯%gr8ÆEüb©DŒihª:(–!¦£°°Å’ûã"~‘V"Û»·vÝwœthÑ‹•ñ¥¶¢½–˜ª#\D/KŒÆ7Y˜TWÈÊ‚#K¸ˆ^,–*„ëÖÅVƒ–p½¬Z"Õ;·V­—MêÂeC·ˆ]¬–ˆ.-òR}ðåøÁ‹å¹^]øV,HÓ„p/KÄ—&Ⱥº_äp¼X-‘ìÕ_‰xÀEðbµD„iÒ­ 9ZÀ#±D²·¶5+<"Ù{c\0¸+ÄÔTB¶C|ä"‚±ÂaD~´íž»câñ‹Nû±¶Í!¯%4Ǹˆ_,pHÒ2ÃÜA!Ç¥:¬oˆ í.v'²\Š˜Ã‡í,ù×~þ¥ãRÄ’8…6À†Ý3KsXᡤa7|-—"æ°À!&´È0mïk -—"æ°À!(45c9×Ûq-—èÆ!*ÔŒ~ÕhœƒRÖ7„„†vñeÝ* ×u(EÄayCDH‡ìå½Ä •"â°Âa0.7ÇUÏÚtß’¡RDV8D„yá:“Y*yâºÝò³A–.;(EÄa}»"BÍõ6¬ëqTŠˆÃú† í&_XoL”ñ¸¥R–8Ä…v al ­S–8íÈ2³l#¾í:¶Ò€)‚ŽÆ_YÚM³ßý‚ ¦;,—ª…5)¿ÈWJ†©N‚¥‰è{0H÷‚‰!¹ŒÝÚ™’ñ5˜‹ÆzyE™Vy/½‰ÒR."é%Fäí”ÙÒÁƒ s‡\0K˜¦v¼Õe¬Žq¿X,`[ì»îÞ=ô6wø`,–1µU\«(Þ—g\Ä/ÖKd|7±ˆ]åà‹äá¥QÞH;Ðâ-bk%r½rR}Ø©V¾Eðb­D²¨šzlÉ.‚k%’½s»ú<ú²p½X/]:…NÅŠå*Ÿ;á"|±X"×;K†fÄÈÞ!.â‹%ÂKrOI]¿«G0ZÆEüb±Äx|“ü䦩ϸˆ_,–/Íò°É*Ǹ€a¬•Wηž“y.‡¦ç"†±À!È´ª½r÷‘ç\Ä0V8d}w‘ßiÕýŽsÜÄ!Æ4Jøuƒ:ÈEcCžVÏú+?$;ö—"è°Æ!2´È{¬C¦:$rÈÓêÅc¿Þp)b‹âB:mZOíHË¥€9¬sHÓÊ™ÕËu½ŠåR€–95üSïníLÉ/BS„–9íÈbEM°ú&MvXæ«Ø×C—¬Z4EÜq2w¥iÛLGb{–JrXáÒõjëÑcB–"ä°¼iÊ6Êæ=¸bÐ`)BËB£Žw¬zµXŠÃò†mëØm«ú¾KsXß’Í6{=ÜJ‚BKuXÞ®m5¤­®áу“ ™"ê°¼!.4HÛ®È 92EÔa…À|S­íÇîZ2EÔñÃø+Q»ëU,ýlK¦;,—ÈÕŠ¨ç!wZ{4EØ!‰»"Cõ|Þ½aÞî¸DÌa}C\h•õÉõ¼½Æp)b âBm³À¹!yï°!‡õM!T77WÛ¬÷½N2X Cò†,í¢o‹ãÇ•"äÈ!,´Š^®«®úrTŠ˜ãT)Zݵôl»…RDV9D…òm8äÈQ)"«R´Kí­mXf5zG¥ˆ8¬rˆ ip¸.9ÓåB†J„Ö¸[޶ôövìºùŽ¥:,pjô5j*¯$Û½—"ì°¾©vÕ;fé~¹öС)Âë›vã¼Ê—Ÿ#nq·hаÃúv%j‹©nC¿Å¡)Âë›v㤻uJËá8MvXß©ÝÚÈ}««djohŠ°Ã ‡ÈТƒí«¾-š"ì°È!˜£g°•ùùªéUC“ˆ¬rWN´;$ç|MR°2]˜¡}å¤É{G“€¬Lû"ùÓ‚±¯¡I Ö&äDO5‹]—E9 D°`mBN´IÄ6̸Î%‚Kb0«L[W,Ãp@ hÁÊtKŠ6™d›'J@ §MÚ‹¥·[PqÅr‡B+†¿§ÄW–CÝÑá$B+b0È€c%€ÃI„ V&äDÛ¶µm¨a)‰¤YœD¨`eÒ^\yÔÊzm‹“ˆ¤LWN´ÊBÝœ¢§ÛZ D¼`eBF.ò¨/&Bm™ñ‚…I ²:LäØDÏ”ˆ~Ì|eEOÙRW´L‰xÁ*‡ÄèÖ¶PËxKŒÞ˜ñ‚Uî ÃÌ" š"²H‰xÁ*‡¼¨¨W{îÔi S"^ÌiW·”iù"¤D¸`™Cfi}ö5µ).Hæ®læªþ«(X¢D¸`iRéYÏOÕ Yèˆá‚Õ #WÝ;X¬eÐà R"^°@!z2©P¸UÎ2%â ò™«ˆÏq¨‘9¦DÀ`RƒÕYw¹}ñ‹ ƒ ± m]tÙ©£ !ƒå 1”YêÕëÇeôj±Qƒä ƒ×³÷Ò¡[~ X"h°, gyBìcy[ú†QË‚HçYžA¬1ˆ­ê®7(džÅ I¿ÖÓÍXôî5‹‚HæYO°ƒ’ê¥zèŠAA$ó¬(ÚøãÞìºîr”8©CA$ó,)j®»\^¿INpw(ˆdž%™?þ±æË5ógPÉ•º‘γž¨XÈ©Wåa»Žz "gAAºíÔ•TÀˆcA¤ó,*H·­µe¶qj';| "gQA¼¡ ì[›é–HË‚HçYT®|[ëÍqÖñ°cA¤ó¬*8hõ 9‹‚HçYT#XåÒ ñ×›|GÒL‚‚äØÑN¨ ¹rc—xGÂÌ‚rEšðÌ;n=·â3ë ’c’ªÝÖ]‘ëÄ;f„䲩ªbz‘ïH˜YP k‡Mmí( ɬXñŽ”™Y­vÀÚNð•Q¢ïH˜YO8DÛæMÒÌN»]f5Áê°ENÀ¨Q_#ZíŽt™Õi­C|+Ö­9íŽt™Õi­Öå[½åY—VX펄™ÕÉ(ÙèS÷>È,Ðjw¤Ëìÿ˜ÑOm¾2÷EÊVº#YfÿÇ’®E‡ß“z¼tG²ìǂ׌^ܾâ'Ù(£Ü‘*[-A&j«cÑ2QŸ4îíT;RdVLæ·¶†¬¦Ñޙř¨µ}÷&žóE¢ 2« &ó:U¬Wè’ˆ»hG‚Ìb‚D”,á«'XzÛœí@”YK0—X+ÒßF¸#Q&-QK=t»Éܳ€V·#Qf1Ajm)¾­®ì0¢îH”YM´ñG]£°hÝ w$ʬ&HDµ5îm¼ kœp¢Ìb‚ɼ…±®8 Ç w¤Ê¬&˜ÌO¢‡õ¦.9áÂ(w$ˬ&·T-L2éÀÉIw$ˬ&˜Ì‹„õƒN¹#Uf5A©$_wÕ$¬SîH•YQõ‘uü«¬ øòÊ©2‹fߺ¨yuk—UîH•I´½Êoµ+Š“èu×Fk½Ž²û#C£çD3|Ûjm¤£äÿ˜-ÚÙºíÖ*m¤¢ìþÈϬu°°•¤$œÐF"ÊÞ¯­.‰¥¦9º¼Ò m¤¢ìý˜+·Éë6ÔûQŶ¬ÒF2ÊÞÍÚ‚Ùí¢a-© t”½ÿš,·üñ„ÝëNk#%ïG~¦¹V%¯Ã.©d”½“åQB@åGu¡Ÿ•ÚHFÙý‘Ÿi³êâW§¶˜“ÚHGÙý‘RYÚé!ëØ—b[­t”Ü“e¹+ºŽHõ0<+µ‘Ž’û#©2È»âÀ2ïsRɨ¸]såU×òã´r+µ‘Œ’– ¥²Ibô"§´‘вž "gÊÔMW‹Þ€n”6’Q–µ±z“Î$Nç¤6ÐQVLn%þ|Ž=¸`µ6SVÌpu9ùŠÉŸÜ@LY®nóÞiÕµÜHMYÈoó¡ã«¸‘š²`‚;¶ñmU=ÖÀ*n¤¦,˜à«£¢ûI­àFbÊ€ îØtx°ÆÅ n¤¦¬× W¦œK¿ Ç(n ¦¬HƒhF®¼Ž¬-rŠ©)‹¦¸z¼É¢I'¸‘˜’ rT_ÜjZÎ5pzi)‹òr`×R'n‘p±ï"`Ý$e­Û¼t·µ·H¸Øwµý9oaĪ«m‘n±çbÞ%Ç$ÕÓÔu[­Õ¶H·Øu1ñeŸEý$`Xm‹t‹}Áæ¥Íöª­m6Úéû.Vfé‚îcb§m‘n±ï"Ú\%iÆ Ê [ Z춘uÉ’“e5î„--ö[$èeIFMèëR*+l‘h±«a¢¤7!Öóº­°E¢Å®†¥T“ÌB7œvë„-R-ö5D‡¥Ûæ‡<:e‹T‹} 3%= R†ÖNÖ"É"OÃÄfÖee¸Þ Q¤2ìi˜ÚÈêØzsÉ®' %ŠT†= ݽm«£=‰ß*Q¤2ìi˜ÚŒ²* ügöX%Šd†íZ­T×AÖÜ´ •¢HfÈ×Ï]Ú‚˜ú~š.³J© ;‚°r‹c½âK¨ë”(Rv6Ìlô&á¡"b•(Rv6Da—È<ËB¦©w%Št†= 1Ø¥ ŽæýÀ/«E‘ΰ§!ã,½T“ùz(¹Õ¢Hg<ö¯¹È,gÇ×0Œæ¥ŒE:ÃÞ†¥AíP¨z‚ƒn²RÉ ;§uÉZ—Üj„Æ*Q¤2ìk˜ŠÌ²´E&U_V‰•!?ÃBžUjí»n ±:i »f!zGxýlY¡mu(Òö3M—–"ª#™IWUŠ4†ý ³M¡ £æ=E"Ã~†¨éÖìë¨'ríXs¢@dœ›Þr,ñRoÀx[Š†Ý ©]¹Òv›pµŸS¡HaØÍ0Y´uÐ8Š†Ý QNiüsÀŽX§B‘ȰŸ!ÌÙ΃\ë"›£ï¸¾ Q$2ìhX›"A÷:ÒMýV;"]`Á┆üv{¼žîc´#Òv+šX¿©Îf=箑.°`¤¿56lõöÝh´#ÐvÄw9uìÜÔ)­~DÚÀÞP¢¸È*—Ñ~‘~DÚÀâ¶-kùúbN?"m`ÁH_Vvo'²xN?"m`A,±Ý:¾ÕZÄú­~8°{ ”ØîBYë2`±V' ‘8°{\™Ê¶|®§% f$Ïék%ˆžb2à' ‘8°¯!ü'GTsYõäa# ‘8¯]Ñ¿ú£s½mB÷Öýˆ´| »Cf,X¼áä#’ò,¸˜äÌ„ê$²}ÞªG$ ìˆ×É…€õõº9+‘6°hWê àíĺ§‘8° ^'C¶zá„ÞIa$RöD쎶zté+œ‚DêÀ.‚œà"#‡W8‰Ô]ë$Y&xØ«k$RvDì丣.ò“§UH ØE®]±”u–CD¿HD"`A`ì°LÅù}äÓì$ˆŒÍâǨ‹œß>ÍN‚À˜œå;×ëFÆn~ø4û‚Yb-æ«Á,ã÷O³U#–%§k¯ÅÅt·®õûȧ٪‘,;j2]ë’`´~ù4[5ÆÃõÆœ6•ÒluûÈ¥Ù¨ÊÒË¢ê!wÍ2n¹4õϪ#Ô¹À#á,ãõ‘G³M_ ®ÚMuÝ󡧯<Úƒñ·3Ú® C/-3^y4;ÂY«GV¾Rïê³^y4;ÂY"sMQogݼ>òhöŒˆ `ŽX ê¼>òhvD¡”†õ] 6X¯\š}Q(Ù̳Ì8C¹}äÓì#Ç29^qS¥óûȩٮ:’ @–½_b?rj6l¤’ä·WByÇœš Ù¹-åÝŽAøXÇœší‘£CɺöHYÇœšíÁ#9œf®—“ vtù}äÓlÕ{NâÁõPKÑ2몑²U#Ú³H `Y1Uµ®¹![5Â=K=Û¿~Èœ§F^ÈFÁç(¡Çêr¥õÔÈ Ù¨§ÑTä•ȳžy!5r,mòZûAf%ÎS#/d£Æ€qhm»÷ܧF^Ȇ–­êRWBÈÓzjä…d‰H´ðqáĤ"ë5rBO k¼¸¶ã£ëw Õ8G¼ÍÑ•]n¥^µ ç©‘²Y#º"ÇMÌûôy` Ù娑²Uc´¸èI7£¦>§F^ÈVØŠµ­CÑ?ÆS#/d«FpeháeZá˜ÆS#/d£Æpqjv\ýR6g8O¼‘69[×qÆZ!ë©‘²Q#"2¶É{=,bÑ îŒ§F^ÈV1Þ §œàÖCç©‘²!BüÏ6ªGé°Øzjà…dˆH2n²sßuìé|+ò6D”rÍùVä7lˆˆ<ŒjA˜`Zߊ‡ì™AÝ,Q硚4¾ù Û!"K ÏÕu²rÞºVä6l†ÑËé@K=qHâƳ"·a+D.OW“;ɺVä6l…lÍz–j,2"³®¹ [áX¯g¯Õ8ˆ„ûkEnãqÍîO]†=Sε"·a;„ZË©pKÝ"ˬk~CfˆœÙ!™QçZ‘Û°bn/³ZUɺVä6lˆW(¼óëíFâHÖµ¿aC¼’]§|€ä[œkEnÃvˆÉýÚšºF“÷~ÑåZ‘Û°^Ñë*k]º nkEnÃVˆìÔÔ–&Õæ$äf=+ò6BDœ·&5¨çD[ÏŠ¼†“ÞS<¢|šžƒf!2t¶ÈëÞr’õÇCåÕ8C`él8˜óžMÓ«íëõÇÖ"KgÓÁœwmB\s,«.*7ÞY:™»-ʾÖdµ íœ3D–N¦ƒoÛ¬Ò>i=¹¹œ!2t6Lx×v&À:Žº‰×9Cdél:ˆÄNíÓë€F„8oˆLÝ‹ò•l™tÀŠÖ7î™:›!b§rJom'Ýcf¼!²t¶BÌ+˜Ø¶ë ‘¥³å ܹ´~Zä|Ý/ò†ÈÔÙt0±<›ý´Õ—º‹Ô¸Cdêd;˜W®—Ø6ÝQï¼!°t6„;·¶Ô©ÞX:[f•k[$¿ëØ4 a¼!2u²L*—üZÎ>´°ÞY:›FzL èH¨ßØodœl9W°~äR†"²Öpdœl8˜nÉ*¶Úm“Þ^l 82Nîl¨˜œ$V—ëvAkÀ‘qroßÂó­Å&]è 80NîíkºU÷úÖ)îKMGÖÉÝ ;[$§®ÓXôè|cÁ‘yzñ»¦[«¶6ƒr&˜'Ûf[r”}%˜.Ó2Y'™^¤ó£Ë Ûu¬ýF¶É†ƒØXŽ–—šô†Fg¾‘m²Ý`J#¬;îösöÙ&÷5ÂY:¿^gÊbí7²MîkLjÚ®¥u[°/ÀÙodœÜטÔ,MíêîB½pÈpdœÜÛˆæ.’åø¿Èæ"ƒ¢þ¾êLªæd˜bl.°'înÌN™½Oò[›‹ Š{ ƒ­Ê@mh\ÒØ\dOÜ××XiF1 0cm.²'îDøë¸£Ù\dL^\®¡¾®ˆœ‘_twômuÉ&¦£g@Xƒ‹Œ‰z1ÉYlzÞõàgo-QOC(ÙH>ýÎgcn‘1QWcl¾·EÝ5Ù¹ëØÜØ[dLÜÕ~´¹ÁZ—ü÷¾\dMÜÙPkv¨._Ø0 ¾Y\dMÜ?ïbÓÙ;‰l€;ƒ`¹µºnÃÓÆNàB|MrOåuO ¯3 l€;Aݱ7ã¶@g' Pÿ`Ð*§aÔÃÔe ú‹›Ó*9¦¶®ÓѸ¨íӨ˸=oœ¦p#vÃÚn ºŒ[ôJïÔ1H}A·¤]=µ27ç5I¨ÚX@B¬®'¨•¹ @~9+¤¥[ÊmODíÌm€)‚l´Ø†ç½Û¾ˆÚÙÛö…~ º­[¿HÉöEÔЮE1 —“˜VYJÿE=54·è5xnlÙ±žÚuFÔÖÜ@¬Õ¹îôºþˆÚšÛãÔSþ¼nPgÛ„Ô<Ü ™$uÓæ5aÔ<Ü0 ¹o­«dW oM57¥;FÝ]¯K]mFÍÃíµ2ÚÃd®íš0j!n ¼$X7ËŒºÔÒ´bÔBÜPè¡g]œW;À}xôQüöéA(º­:=v}¿ým8Ñ–þŽºrÍ}xôQÞ.Al [ô{t͇GÅop·S°$Ó(^n?<ú(~{HÆØî}­·`J0Ó½kôüƒÒѲJÕƒåP6÷®Ñ{ø–¾¤¿Õº]–¡»wÞƒbvêŸ1}wªúïчýíÇðQ{¹0ãïË¿þ¾>kjqªqC 5Ú1ÕÃIôYC+¥ÎQî~ÏAïo~ŒÇÜöÜou¢=®/žõß~üÛQ)µì²Øh\ä®±žWÚóO¿~ü?þ>þ©>êÿè?þñëã/ùñŸþûX¦¹eà³,åã~ùÃQÊ|L-„°|Ô5KC!ë/_?þö§?ÿé×_ÿñWÿõçq~ú‹ÿóñõë?üñç¿ÿå¯ü—_ÊûDo4S h¹7šJ,¥YÿwùÁ¿.ÿÿ_Ê;þÕ¹Þ”]× eÜÚ¤`YÆ–eÆ_ê‡s©ë/õŸMJU­®w•깕ªÛ*ª]_¥ú_®RKi¤2¿Þ«ÿåVʽëýí¯Ry_õ÷Ò÷¾¨W)%]ÎÕ;¥+~7ýü»m«wOŒ? å_ÏõüiÒ.úÏíêš×m¶Í¸K1nÙº˜y‰ÛÞô8‹^jÆó·RÛÙ&o·Rú—{©m¨G˜œ·Rø‹)¥ïz+u{ûo¶jmÑßÕ¦«ÍjФMW»îu³þV›u?‹1œ­eñ¯Kû×â¦}«éÏÃÚ6ÂüÿïŒsQò£ʘ:ã¿ý¿ÿðÇ?ÿóo¿~üþŸÿð‡¿ûé×?ýéç©®€Þ·Ÿþןþîçö¶ÔUjÊ\¸4I]7:”‡ÿþÇOÿ>þüË¿ÜZªînkg…Öéd³ÀŸþ}ªE®w¦3Ž{Û%?Vã-݈¯eêjýh+”þôO¥æ,‹ƒ†šÃ.ïV^y*O¨Í]T¨Ôüñ‡Z¯¼Z= ®V L͵M|_Ô<ŠØ×VK}[K®pxQkŸä÷NWkœÚÊ S«è›ÖÚæúaGýß¶ÖÚN³yñ[…6µÖ´øZg›6¼ªµÔ¶8ÊÉÖª®1½ü®Âºö[¾R=Le|UiŽVi÷µÎ¶FàU­BGí2S«¦¸‡õeÃí·vß„5z¾3Z«ü÷ÅÖl«_Ulö¸×7-“HS¯.ý?¦×—˜ÉTnjnmñéËšõ ÷öÆóæj‘ß^ÊÙ~m;ë/χýʵîÃxi,ú›õcçÑU,#–%iØÚ4ûQrœmµDÄK·§°·¹ñÌ<·­%`_TšÏ©uâìk h^Ôšªo­òµvc½¨U¤vž÷º}kW4¼¨5­ãмÙZGÝ#ô² ‡fÎ5á1·«P^½amÁæ{¶ÒÖvV¾ª¤–å*C;8T»«P»àåƒO˜¬}²ÜZÖB¡mZàM¡ÖzÑËW¡}JDqlRÚ<òþ’í0®WªxZêÞÚÛÝ[y¡i؉{ayÛTÏÉ~÷’S™ž/¼®ªœ%[W¡eN`ÊE½_þ{|?¯.ÐJ)Ú÷¹6ɱͮRJö­r¶4Æh+å`_›ÚÃá*¥\_Úh 5†©”bÄL*åTŸÛ€j¿üW+¥TŸõø—R¨/­õv×9Ò—SϵCNtJi¥ æ4v:o@,µâŽóÐAëåoõš7O÷ZoþÚ³Þ<ô¬Þ92r¾×ÉÙ½lM N÷CoØ]ù[,×yãtOí—&×ÏÉ­•Rp{˜J7Ønæ¾®ÞPÛXë$ÐF™œÑZ梵NJèVæ  µLÊg-ó ÏR)§³–Iá¬eR6K™ ͽLâWæ÷ÌR&ç²–ù–ZÆI5eÎå×2{î¯Z)˜I?P+%ó:µZãäjåhöDB¥Í$;¨•²yj¨6ê0µr8“Z¡VJç¦mzi+¥tžæ6§™NW+çó,@ò•óùE³§|¦@‡VÊM£<ÔJé|ìm,à[â š£0‚ÖÌñüâçr4S µ26û)²ÖÉÙL£JÔJá<5’í‹·Üwt-÷!Q+dz£¦VÊù왎JøŒJ) µPF迨õšÙW™”ÑRè ¤Q(¥4 =ôÖÊ9B)¨Q(%µÊQBÏXZ)¬µPNkÊqÍ3‹G¯Ë+ßÐZæ¶]•{­œÖ.¼Ûk¥´v@¥Ö5½R kÐ^+…õ(ÓÛqqµrXÛ©R[)aõU(eóxHÖ7XÎfOô^+…ó,¼úMéü¢Cs8û,D¯•ÂÙÇ`z­”Î~T‰Z9™} ¡×JÑüê»R4û€*½a³‹öZ9›]øº×ÊÙÜ\ý‚3j=ƒs¯õΨ”Áù*ôÆ™½VFcJç˽Pß^&ƒ¯ÊáÛ eðí…øöBk™Ð½Vß^(ƒ/ ¥ðí…Á·×Êà‹B)|{¡oÀ÷ž¡®§ÜÔeœoØë^½VÊ^ÒÔJÙK’¡µrøºy¯”—lµrø:ß×J{¯B鼘|µrø:¬k¥7ìõb‰Z){I˜Q+c/[+åðõ³º^+…/Q µRøúè.jåð]Vù­Ã×Já»HÃïÞ)Rø¾ò‰¾S›·ï ÕÊáëG¤¨•—F¤Zë |_8à3øj¥¾(ô ¾¨•ÂW åðE¡ ¾(“ÂW ½/ ¥ðE¡¾Zè!|Q+…/ ¥ðÕB9|Q(K÷B kBk­¾(ô¾ "¬ÅÉ$7s[}ÿ¿¨•ã×åu{­¿>.†Z9~=ƒP)ůO&õZ)~ýÊÔÊç¾~•J¯•Ù†Óz¥œÇÞ´VdPÔÊì1ŽZ‰âZ)2ѵR üQ+r/”ñ÷*”âö•9§¸õ¹Tzƒ[Î@­·:A­·^¦´ÖCÜ¢Ö#Üj¥·(ô ·¨•âV å¸E¡ ·(“âV ½Á- ¥¸E¡·Z(+÷B ]_vöÜj¡·(”â…žáVkå¸E¡ïàÖ,b]ƹÓû ·½VŠ[?‰èµrÜ:-F­7¸µ.Ù+å¸méî>+Ãm/ôŒ®½Ö›énøoèê,µžÑµ×Jéêµ¹×JéêŒJ]¯B)L]£WJ'·¯Þ'…k/”Ã5~Ÿ„­½Ì”¾xç7(µƒÐ^)'©“IÔzCRG®^ë IQ)%i/ôˆ¤½VFRJIÚ %$íe2’j¡œ¤½PFÒ^(#) ¥$í…‘´×ÊHŠB)I{¡Œ¤½P$F¡ œ/Åó-IiƒÅROáØßÔ¯Yíµrº^¯•ƒÔ…­P+©Ÿ‚öZ9IW™‚޾VJR-ô¤¨•“Ô[(jå(õPÔZÏ"ǽÖ3”¢V†ÒW/˜OTÉÈQ+eë«&ÌáJº«µr¸¢P ×WŸ‘Î\_µX†Û«PN×ïó¯Zë!^Që^µRŽWz†WÔJñª…r¼¢P†W”Iñ*…Þà…R¼¢PŠW-”ã…²0p/”Ðô¥½Á+ ¥xE¡¯Zè!^Që;ÕÙém‹ÒðŽ¯«¬Eœª×Êùj×ÂôJoðjE_+½¡«‡jåtmq´¾êMXØ3Yk½Á­ç?j=Ã-j=Z$…Zq‹ZÏp‹Z)nÝüI뼡­—FÔÊikë½R ÛWæ”§i_uñú:– R ßf‘Ïu_´úC£Ö3k­‡0F­G0ÖJ9ŒQ(ñU(e¯ÊÙ‹BOvõJ)Œ¥Ð£P cJa¬…r£P cJ§¶ZèÍžÞØØÞÀ…Rk¡4HÜ =ÎÉ®ÃÜÜËÙëO€èµRöú}©½V_ÇÔz$¶Û+åðuÙÕ^+‡¯SfÔz³Ù¹V¯•Ã×êe¯ôˆ½¨õŒ½½Ö#ööZØ‹:ÏØÛk=ao¯”³×QµÒ‰n/ôµ½ÒÔ¢ÒÔ:jöZ k¯BЊZÏÐÚk%hí…ÞìŠ[5Ek/”¡…R´öBOÐÚ+ehÕB9Z{¡ ­½P†VJÑÚ ehí…2´¢Ð3´öZZ{¡ ­(”¢µzºÑg-Eê’oÈê65ôZ9YWY"IµR²’Vk­Gé×^éÑj§^ëÉbcTz´Ñ§WÊ7åzØ¡V¾+×…ÝQ+ëUèÑÚ¦^ëIÈ•ž…Œ{­¤qß¼‰;új¥|ûâ—ÞqÕÉ+j¥`}Ñæ°½Ò£9l¯õ ´Zë!hQ+­zZTJA‹B)hµPZzZTJA+…Þ€…RТP Z-”ƒ…RТP Z-”Æ{¡|SOl‘o@«…rТÐã0ª2Œo·õøÍ±½VNZ·¤³×zFZ­õ†´¾mQ+ß×ãíµmªE­7'`¸UŸ½V[·Â´×Êaë³¢V[Êaûâ…ò¥NþZé l_´óØzZ Ö£ü,jåÓVÊñúÂ4s¼:Pj7t}Ñ`VCõJÖ£Ö³uŽ֛qÜ7Ïp‹J)nQ(Å­zv¢E¯•äo{™·Rè nQ(Å- ¥¸ÕB9nQ(Å- ¥¸ÕB9nQènQ+Å­Êq‹BÏq[TòmÄØŸ„J)lIòµÒ³x±TzƒZ¯2Z)!m/“Ÿ,å–8k¥7§>º¨ôèÔGTÊO}t2µÒ›c¥ÜîTTÊO®ð! ­”"ÖíºÑ:o¶êx.k¥°qÿ¿á«ç…TÊñªerº:zi'kŸ´Nºô eÒ°–yN©ô›Zé6¥Ò3jjG‹žP)…¨”ɧ¬Z&#¦IÙʼᥖIq©eRZJ™–Z&e¥–IQ)erRj™g ÔJ)'¥LŽI-ó4úÛ.}{(£§d¯•cÒÉd¯õdQ*eœ¼ åÇ:¹Ya¯•ŸìZ9*ýÆ£^+e¥?¸¸×Jaé±D­g‡$÷ZONaì•Ò³&^´à»­­vòÛk=ÙÓ+åÀtB­7ñ_KÃ^)G諟J¶ç Ì› ©‹åôZù„ôÅû<+j=#k¯õ­¨õˆ­½Ò#¸öZ]Q(Åk/”ðµ—É«…rÂöBb{¡Œ±(”B¶Ê(Û e˜E¡”³½Ð#ÐöZiQ(Em/ô ÖÞ]ßÖïÖG{­GÒ^ëÑ6WÔzs¨“§:j=:ÿ¸×JÙK]¿ÃÞUv8]£ÔÊïrî^+¿sÈ,ˆZ9{Ý‘º½RŽ^9ñ××IÉëæÞ¨ô†¼/¬éyíü¶×z†Þõ?‚^Tz†^ÔJ篞ªë{_…ž¡µž¡wý¡µž¡wý •ž¡µRô®ßA/ eèE™½ëwЋB)zQ(Eïúô¢PŠ^JÑ»~½(ô ½¨•¢wýzQèñÞí˜ÛÅÛoèë|íµ­rêµò#]Ƶޜgì.Þéµò‹Ü¬ •òûþü¤_kåðõGÌ÷Z)|ý¦©^+‡ï‹îz_TÊáëÎìµM|µÒÉ/jå‘b*Ôz*F­7øõŽZöÎöZOâǨôp.ŒZÏ€ŒZÏ€¬µµžYk=2*=2j¥@ÖB9Q(2ʤ@–Bo€ŒB)Q(²ÊŒB)Q(²ÊŒBÏ€ŒZ)µPdÊ\#º¥æã3Ž{­G§>õZOî@¥7—½ø©7ðºˆm¯•ÙïnB­ÈþІ^+²¿†©×JìoÎA­È>æÑk=˜÷:O¦Ã¨ôŒÇ½Ö#÷ZxŒZÏxÜk=âq¯õ„ǨôŒÇ½Ö#÷ZxŒZÏxÜk=â1j=âq¯ôˆÇ½VÆcJyÜ %<îe2k¡œÇ½PÆã^(ã1 ¥<î…2÷BQ(åq/ôˆÇ½VÆcJyÜ ½áñÙ'Èë)ä½Ô˜ßz­³ê5ó«sW'9j=º;µr(ûPn¯•B™ðŠZ)” ¯Z+‡²ÞûÖ [Ö05S0kÍö…ƒž Ùk¦pv7Æ¡RÎf":jåwéz¢£VzJi¥7W¸€H¯•«]£×ÊOmt!nÔÊéìRÒ½Rç«P’F™g§6öZÏЋZÏЫµ¢µž¡Wk¥gYôBÙÂä^(%«ÊÉŠBYQ&%«zCVJÉŠB)YµPNVJÉŠB)YµÐ³ýµ½V¶¿¶Jɪ…r²¢PNV‘Ka¨dÝKÍ·çëyŽMÝçe´5S² “å7‡ÃýfJWO­”õ…[ËÌpòµR¸Ò|µR¸FW¥£æ;Àòíå½fXºŽ©×Kñ´fÎXýÊv\Ç0n¶fÊY6ïµ2ÎÒ˜J+åœõËÅz­ü¦·$»×J9ë  VÎYŸPéµÒY°» ²Wzr*=»Š ×ÊoþñüF­œÄ6AŽJÏnÝ뵞Xkå F¡Ä(”‚X å F¡ Ä(“‚X ½1 ¥ F¡ÄZ(1 ¥ F¡G:¢V>çE¡Ä(”‚X å F¡Ä¥wÊÃ\ñò޽·øô:ˆ÷š9{õ>ƒê“ÎãzÍ”½.P3p4ì5SG#…^ó ˆ§¨ùÄÍ¢êZ¢bÁö'ßq˜¯Šè5skÍö›«í”w$~ý™9‰#†÷š=ÂQ)§±gx¯•ÒØ§z­Gñ¡Ö›‹øÜá½VNc7^赞\ćJï.â³ïµ]Ä×kå8vñoÔzÆã^+ç±ÓpÔz“¶ïµ2@÷B Q(t/”º—É­…r@÷B {¡ Ð(”ºÊÝ e3ez6Sîµ2@÷B Q(t/ôЈD×ÿÝ^´”™ß°|öôI™”ØzßbµÁj~‡Õ Zó«â¢æwX]ïém§T™š9«y—*¾Cu0˜AÍ7¬>.üœû™«{¡7X¦)y¯÷(›ðA¯™AÙ/;@¥7Pv „^+‡²[­Þk¥P&”k­7Pv“ø^+¿×­}ëµR(»\;*½²[zÞkåPv3ë^ëÑÕô¨õÊvfÝ+=c²ÖzÈdÔJ™ŒB)“µPÎdʘŒ2)“¥Ð&£PÊdJ™¬…r&£PÊdJ™¬…Ò9r/”"…Rk¡7—Ä÷­èµÌI«Ü¶šUÞ£aVx•ÿlj¾¡2Ó ß@9w­ù­ ´«¡æ(w.”ÿ¾Øšß˜@»€ÖüÎ:l ï²íÌS&k¡oM•mü5ŸO•Q3*»›«Pé •Ý"ñ^ë•Q+§rs»6h3µr*û;¡{­gTF­GTÖJ©ŒZϨŒZϦÊZë•Q镵֣Õ[½R eJ¡¬…r(£Pe”I¡,…Þ@…R(£P e-”C…R(£P e-”C…R(£P~e®ªi­|¢ŒBß^<݃ÓE&—·»™‚iê½I(š)“I¡µVÎc ¢VÊâ&bå·F_ëÑr-ÔúÎr­óR ÔúÎR-;BAÍ”ÀZ('°ËÞ÷JyÆøE«åc?±ÕJoÀëõZ9x=BQ+¯G¨Öz8F­¼vŸ@¯ô(D­•†¨QëMˆÚNkQ)Ç®[ð…ZÏ–nõZOn!B¥7صGt÷J)vQ(Áî@gÀ£Ö›3'ã÷I¹Œ2)—¥Ð.£PÊeJ¹¬…r.£PÊeJ¹¬…r.£PÊezÃåÈÔÞ`…ßdN¥æÛ x=Lz­Ê^ƒ{­|ý´Ó`ÔÊìwþöZÙ±“½P¾‡É%.Q+篟ÃõZù¦b·¹×ÊØ‹Bo¶,­²ÂÜ?:‡¯ŸTöZ|=QéÙr­^+…¯OõöZy‚ØÍDQë |-F{¥ å¶ÐzÛ´Üö-·ý€ÖÛ> å¶hµí³Þö-·}@Ëm? õ¶h¹íZmûÁ¬·}@ËmÐrÛh½íZnû­·}@ËmÐrÛh½íZmû`–Ûþý¶h¹íZnû­·}@ËmÐrÛh½íZnû€–Û~@ëmЯÚö·OßãÉùgÛ>³~ݶϬå¶ÐzÛ´Üö-·ý€ÖÛ> å¶h¹í´Þö-·}@«m?˜õ¶h¹íZnû­·}@ËmÐjÛf½íZnû€–Û~@ëmÐrÛh½íZnû€–Û~@ëmÐjÛ³Üöè¶}@ËmÐrÛh½íZnû€–Û~@ëmÐrÛ´ÜöZoû€~aÛïWÏÛ¶ñøÅ‡;þپϬ_·ï3k¹ï´Þ÷-÷}@Ë}? õ¾h¹ïZîû­÷}@Ë}Ðjßf½ïZîû€–û~@ë}Ðrß´Ú÷ƒYïû€–û> å¾Ðzß´Ü÷Zïû€–û> å¾Ðzß´Ú÷Á,÷ýú…}Ðrß´Ü÷Zïû€–û> å¾Ðzß´Ü÷-÷ý€Öû> õ¾ÿÙ~¹\÷wïìî;ëWíûÎZíû€–û¾ Õ¾/hµïZîû‚Vû¾ Õ¾h¹ï Zíû‚û>˜å¾/hµï Zíû€–û¾ Õ¾/h±ïƒYîû‚Vû¾ Õ¾h¹ï Zíû€–û¾ Õ¾/hµïZîû‚û¾˜Õ¾Ðzß´Ú÷­ö}@Ë}_Ðjß´Ú÷-÷}A«}_Ðjß´Ü÷-öýÛå¾~áWÎ ´ØÕ ´ÜÄZo‖›8 å&Ðz´ÜÄ-7ñ€Ö›8 å&hµ‰³ÞÄ-7q@ËM< õ&h¹‰ZmâÁ¬7q@ËMÐrh½‰Znâ­7q@ËMÐrh½‰Zmâ`–›øýÂ&h¹‰Znâ­7q@ËMÐrh½‰Zn‖›x@ëMÐrm _x€Y–›8 å&Ðz´ÜÄ-7ñ€Ö›8 å&h¹‰´ÞÄ-7q@«M<˜õ&h¹‰Znâ­7q@ËMÐjf½‰Zn‖›x@ëMÐrh½‰Zn‖›x@ëMÐj³ÜÄè6q@ËMÐrh½‰Zn‖›x@ëMÐr´ÜÄZoâ€Ö˜Ï¾Ÿv=_?ýê{õ™´ÚäÁ¬öø`–[<˜ÕfµÁ³ÜßÁ¬¶w0«Ý=˜åæfµ·ƒYlí,wv0«Ìj_f¹­ƒYíê`›z Ë=ÌjK³ÚуYnè`Vûy0ËíÌj7³Ú̃Yîå`[9ÕN>0ëÌj³ÚƃYîâ`V›8˜ÕÌr ³ÚÁÁ¬6ð`–û7˜_·}oè×/üO~U¿ÜYË< õh¹‡Znâ­wq@ËmÐrh½‘Zîä€V[y0ë½Ðr3´ÜÍZo瀖û9 Õ†ÌzG´ÜÒ-÷ô€Ö›: å®Ð/|-ê_ø\®7z@ëGÐÿ ŸËõÞhµùƒYîþô Û? åþhyh}´<ZžZŸ-Ï€–§€~Ý#$œµêÎ\ŸèžQ eáh¹ï´Þ÷-÷}@Ë}? õ¾h¹ïZîûýÂó÷>ÿ`2ky"´:³>Zž-O­O€–'@«A0ë å‰ÐòDЯzkÍZžZü€–'@Ë’? õ¾hµïƒYîû´Ü÷ÿÅÀ/œ-O­O€–'@ËA@¿êYy5kyf´<3´v€V'‚ÛiýBG§@« Õ‰ÐòD hu"´:Zž­N‚V'@K hµï Zìû`–û¾ õ£|>û`:ku"´<Z-N`~ÕSTkÖêÌ huf´´‚V'@Ë Õ‰@ÐêDhy"´8ˆYZA«}_Ðjß´Ü÷­ö}A«}ÐÒZmó‚VÛ< å6/h±Í_>m¶àqÿð_¾8ø«í¿ÿù‹Ó‡÷Åí¼-þÞ¿-ö¸ì?ëøÝ9ÞÀÛø½¿ý¶¿Êñ^½_·OO‡_o^ïñPôßðê1Íw|¬ðõ¹??]_LpßÂçZ` w< Àù]Ã×_üõ×Ëõ½¿Ð÷Môþ]âïæÈ{Ïr½l¬Ó~arûw^nÏýµbüõ6ã~7‚ØNFç”Áñ±Æ1#‘m?|3’Ჽķi1ÞgÀ,ÉÐuìÚ¶C×ý/û8½sÌw9Ÿö_¾ü°ŸÞG-tÛÏ ·ëé¼ïŒ·¿éuû´Üßâ|ʳ«FÆYcŸaä¼ÎÌpz=÷§kdüõ²Q¼G†ÏtÚNÛøuÜGxÞ7ïæÈãÈrÚ^åãÒåíxrü6~~º×øëý¹!—ýõ)Äóñéz›28>Ö8f$²µ·ÏHeØj”Ç{ZcŒ÷°K2t‡¶ëý<žK8>®ß͑בåz¿ºï·Ÿ/G–ëãøÆû«°ÅÎ÷ñÞÎxSÇÇÇŒ9m§¶Ó1cd8m'öó¥ÖÈxŸ"ÂÒ ]Çñy{nÛá}¿ïmÛNÇç­"·½½>ÏçýS¿_Ç;ûyÞþæ·ÂórÞPY€í#±4LàøX☑È~jÿP ¶Bçr¯ÆpÇC3¿k8t½·ü¸³÷´ÿvÉ®«"÷ý=±·i¯\Nû.v}ßO{•“á×ûÏ-Ü?]/Óñ÷¾vMw|,pL‘½òÚ¶5ܶÍûY+d¼Ï¡h†.b¼`Ç~’»¿Ç<ßÍ‘×Áì¹ÿŽnße'þÜ_†+Ãý¯¹mËãûtãøþ\î÷4Ýñ±À>ÈöÙØi™`óïç´ÂK„(’¡‹8>e·óñœÓûéú¯XEn—ýÉáÛx;¿ï·„Þ6sñÞǯa[ÆxûܸóÄV_?nSÆcc‘Ëþ#º•á²1}LkŒñ>"à ]Çñ¢]·óËeÿ²õû¶¿‘¿›#ïOûû0Ÿo^\÷ðuÿ(Ûßsß ^×éðæŸšíðH¿O ò:^*\^÷í=Òÿd‹sjÌíäA¯Í•Ϛضæ­îþnŠl›÷þ’¿¶?ÏñtÕÛíxÉ_[Us};Þ–}m%äel¯Ñù1%`<–Ø'>‚—Ãz¸À1Üá0Èq)gv—0ªÍÅì7V<öŸ¨<Š÷£$ÞÏ•ÇWÝ·?çVÁ\÷séñ+ec¼ÿ-·­êòœçûñÇ3ƒãc‰cF"Ûv±y*ö[¿îÓc¼Ï€EL‚.bT×ã¥Û¬Üc~7EžÛ³Ò·?åþcñ÷­$ÛOO{ys©ñ^Ü^ÇGVĶøû] Žö F.ÇÙÇÛ°ÙðZbŒ÷!ëdè*ŽWlóFóïW‘çV!mgƒm|Û«Àû~–Ø=Û}C^ÎŽ·¿çcG^ ñØÿ}VÆYã˜Aä¶×fxìkŸkŒ¿þB…€÷Èð™ŽãU;ŸŸûœÇe{#_oGOd{¯Ÿ÷š};sîŸÌm«Ùëë­†9;Ü ðëQÚ{|ûû½§ÉŽì—6#a†w…yÌmIÃý ˆ96c¥Ud3Cˆ³„Êä@ÖIÐU4Ÿ9)#±˜<‰ÇNÒbEÄHšqI3fd€9k”6X€w2tͽ”6#a†w€9梴Å|ˆ71c¥Ud#Ax»‚ÊäBÖIÐUÌuȬŒÄF PÄG•0+u„ˆÔfp¬´Š„`Î¥  ä ]Gké”6#0K?Eæé¸”6z2…=30.mF33„¹k¨M ä ]ÇhŸnÁ˼ÿW$­‹ýªÌ´'nã÷Ü ùzüÍë>!¶ü5µOÛü¨Èh]˜!­ ×°ù! ðN†®£µ†'mD`–¦¬ÌÓ¶´¥±+"_30.mFÂŒ 0gÒ òN†®c¶h“6#a6L’Äã¢&iñY…8\XÍÏPa+§‡µ ¨ ¤œ]Â5®Ì̲ˆ@k\Û)ÖÇÅŸYÖqq¨ŽkG5Ÿqé2^Ií,P²`@Ιß5ÌW`&]FÂ+×>ä«#“°\?)ĸ¾bÇ*«È`f†0w µÉ"ˆâ=2|¦£]¥(mF`Æõ˜s¡´qAD®Aqi3md@k¨M ä ]G»*è˜)r\?ñz\®¯xÅÎ+0^Ó‘k~fpœ«#FrýÄ ¹¾â^‘…ˆ°4C×1ìIÁ k oÌo)ˈ}6ƒc”i°ÃKƒÞl•i°QG°&¢ÙµV‘Á £o¬T)Ãl‰ˆ3ƒc”i×BL»ÞÚ5•i×@`ÏÈÐu4»VÚ*2˜a”`Ž•*m˜­B 3fÇhÓ®…™v-̵kjÓ®Àž‘¡ëèWÕV‘ÁÌËqaÎõ:¥yA×ûHàiZšÓÒ„8–FeZXtÍÒLÊŒ„XÌ„Äc7&i1$"bXÌàXiX˜ai`Ž¥)mXX2t­ð/mÌ(¹aNQ^Ú(ÛAPÖ“¡Æh³ð3 ÿ0·ðW›…? }2t­ð/m ³”Ü2OQ^Ú(Û 1Êz38V…˜Yø‡¹…¿Ú,üAPè“¡ëh…Ý[P‘qg%7wP”×½”í"RÖ›Á1÷XøçÎ ÿÜ9`áï½þ"Rè“¡ëh…ÿ¤ÍH˜¥ä–yŠòI[Êv)ëÍàXmþ0£ð‡9…i£ðA¡O†®£UÈ¥­"ƒõ)ÌSÀ–´¸Oýë|Ç(³B/*äЦBV—2*bæw íJaéªÈàÅU:xs¯„q¥OD®šÁ1ʈÀŒ 0gÒ ai†®£Uÿ“6#a–ºÛ»tR™O÷ñ¤v‘ÚÞûx{Õ?wáPýs—Õi£úGÕ>ÚºŽ^!{OEÆm8VȹMÇ Ùy¬AP“Á17ò7☠÷鸄wòH$“ «hõq #pËõñÔÇam}¬.ëcÔÃdpŒ.#ƒ– ÂÚ%Ô% t…cd5 íòSɪHXåò¬ò±Då⑇sqÉéŽE$¢H€¨#)byC/³;ÿvu·4UdâÒ*¤¹øZ²¸<+b\½5CD¬œÒæW– @À0 º„^Z)«"ƒ•¥UH[Z)ËÒ*K©d¨1ÂŒ b&o—P™$@@2 ºŠ^X©¬"áEao +•YX‰H!EÇ*#2ˆ™ ¼]Be’É$è*zY…²)rðª²j𮲠eUV Œ"ƒã¬[‘ƒX%¼k ” !™]E/ªJ™‘𢨂7EU)£¨AEÇ*#b$€7K”2H€€dt­—ZÊ*2x¥“ mZ%Œf¨ˆÑ+u>Cd¤œÎæWÀ/ó»€^'–(#!EçÔ‰%*u"Ç© ™ïXUDB+ó!ü%  ˜é]A¯UU‘ÁÊ*1¬­•e•‚ª ŽÑed3Ax»„Ê$’IÐUô±” /jÄð¶FT™5"jÂd¨1ÊŒ b&o—(e@$£¬«èw±«¬"áÅ]ìðæ.öRÆ]ì"r×:«ŒH”‘e,¡2I€€dtíÎáRV‘Á‹{váÍ]½¥Œû~Eä¾`38F™‘AÌáí*“„ˆL‚®¢U‰u›­‘Ü%K™Æ]´GW÷ØRäy85 Ó{“mEÆm²fwÑŽüÜbëê9(ÝÌíôÛÝ %ÉH8qœ¹S£Tq/îõ ƒcUUd03à î“Ç!=¦&¢U¿%Ì´R{J;Õé$,õ«ˆQÝš Ã’E ª˜>X›UÈqgzWкÁ¥ÊHHщ…sZµ%Š^®€ôzMÀXYÄÌ0x³²dÃRÎì.¡µ‚'YD`•&¬¬Ó¦t¥‘+"^30.]FÂŒ !Î ƒCŽK:Ó»ˆfV¦ó‰p_}|‚÷ÝÇIL7æÇk€ÀŠÁ±Â*’{ëÉ[ïYÂ[óáã’Îô.¢Uô «È e1Ú–Û ³ ‘zÝ ŒYwŠÌ*ÃA¼–ˆ°âÀqHgzÑ úIh¥––vªíIXêq)×ÍÀ¸„ 32„8K( 9.éLï"Z=_ÂŒ„VÊiXSo—.*r£^w~†ª20X9}6?¢X?‡å›Ù+ç'MDà”jZʣܞ4rÜã)ÖϸD ¯$ëäWëç°„3¹ hÕ|‰2RÒ¦Ô.Uã"R«›±²*2˜™aw „É!Ç%é]D+æ'aD •:ÚTÚ%ŒZ\DJu28VXE33 â.¡08D˜¤#¬‹hµ| 3­”ÑÒN¡= K)^ˆQ©›q 3adˆ0–@˜r\Ò™ÞE´R¾„ -ªhhSg—0*q)ÔÍÀXaÌÌ0ˆ»ÂäÀqHgzÑúó×ÓñH„ïæÈóø2­ñ½Ù|ššçOýyé¾›Áñe|“ÛÈÞ€¾½«A¿¿§î×Z#ã©A/",ÍÐuÌúIÁ‹æ8¼iŸ—2ì"Ò7ƒc”àÍ¥ *$ÖD´;XJXE/î7w—”2î?‘ûSÌàeD Fx³F)ƒ…ˆ°4C×Ñî`)m̸wæÜ]RÚ¸ÿ¤ãþ38F˜‘æ¬QÚ`!",ÍÐu4'VÚ*òlß2ƒ9N©´a¥D §e†(É…–N,´µb Ó‹À|‘¡‹hf¬„Udð A;V©ta¥Äj™À1Ê4c!¦ qܘʴcð_$è*š›” ±x!‰Ç,MÒâ¦DÄm™Á±Òðc0ÃÁCVÚpd °`dè:Ú· J[E3îô‡9ß(mù²€€|—ÀŽ‘æw¥CŒïJ‡·_–V™ß–Á×£IÐU4³9)3b1zœ”Å*‚ÀJ’¡ÆHÓl ³ sÜfiÃn‚À_’¡ëhׯJ[EÂ,—¥dž W¥K[…W¾ÌàXm‰ÀŒ 0gÒ ai†®£yiµM‘ƒ™>6Ì5ºjÓ ‹ˆS6ƒã¬[^z0+/=˜—™F[¹i±Ïdè:šž´ ³XY™ÇëNÚb†EÄ,›Á±Ú°Ó0ÃNÃ?]Ú0Ô pÐdè:š£.mÌâh!Žã-iXbÃ1;Ÿ!ÂpÔa¥£k-µºðÔ0Ñ$èš©žd ­˜ZYÓ;ÉžØã±ÌÎw¬.L5¼bª¡W]²°ÕðÑÌ.]yæ ÃÓÂÓ[ÂpÅ"âšÍàeúê0ÓW‡¹ÆZm:kXi2tÍZOÚŒ„Yl-Ìñ½¥ c,"Æ™ 5F›Ö:Ì´Öa®·.m˜k´á¦ÑÖu4w]Ú*fq¶2õ´Åbxg38Vîm¸k´a¯Õ¦¿¡&C×Ñ vi«È`†¹…9î·´aEÄ>›Á1Ú4Øa¦Ás¶Ú´Ø"â©ÉÐu4úxGØüÏeú&Åu÷KçɇŽñìCAà;ÉÀx,1ùÐëãº?ç­2l'òÇkZcŒ' BÖ#AÑ®–0#ðÊu8yF­d垇sÏéŒK–‘È"²ŽJësXƙ޴G”*#¡ÅC ÍcJ‘˜±Â*2˜™!Ì]Cm²!ïdè:zç ´˜Ó9(mt@Ð) ãÒf$ÌÈsÖ(m°!ïdè:zç@mFÂÌÎA˜Û9P›é±Ú*2˜™!Ì]Cm²!ïdè:ÚÅéI˜å°Ìs帴qi—žÉàXmÌÌsÖ(m°ïhë:zWDmF`FWætEJ]iƒ ÃRF ˜Ú. 0)€t2t½+¢0#áeW$´éŠ¨Ë®º $`¬²Š bfq–P™È: ºŠÞ9P™‘³sâv”Fç0VYE1„·+¨L d]Eï”2"£sq:¥ŒÎAv ’Á±Ò*fd€9k”6X€w2t½s 6#0£ss:j³s "20.mF33„¹k¨M ä ]Gw×h«È`Vîz0/w¶r× pÓd`̺Sä`VóZmÅ„¼“¡ëèîZmF wâºk¥é®AÄN3?C…¬œÖ. .rt Ý]—,"ÐÂ]Ã:îºdÅ]s7Í|Æ¥ËHx%´³@É‚9g~×ÐݵºŒ„—î:¼u× Ó]ƒÀM“±Ê*2˜™!Ì]Cm²!ïdè:º».mD`†»sݵÚt× pÓÉàXmÌÌæ®QÚ`6yG[×ÑݵڌÀ w sÜuiÃ]‹ˆ›&ãÒf$ÚÈ€6ÖP›,@È;ºŽî®Õf$Ìt×a®»V›înš ŒÕV‘ÁÌ aîj“…x'C×Ñ\h=™½"ã¹ê¸@ž»~˜Äz,;ÒÃñ˜NwÌcÙä¡êfÈC×Ç>“Ýõ9 ?¦wÍ…–ªŠ Zø?hãKRD<¦#ÌH˜™!Ì]Cm²K2tÍÍ”¶Š¼óÒá#`ŽÓ(mxx2ÔmFÂÌ aîj“…ˆ°L†Ït47SÚ*f±2Ù˜´ÅŽˆnÅ U–˜Ú. 0)€€"ºˆæfJXE/œ´c5J^D@¼Š £ÌHˆ™!ÄYBerGtíï¤ÌHˆåêªÄsýu’–+´"r× Ž•Ffd€9k”6X€€%ºŽægJ[E3œÌñ¥ 7·B†£ÍH˜™!Ì]Cm²K2tÍÏ”¶Š„ϱ‡9OºW›Ï‘gå“Á±Úˆ„™ÂÜ5Ô& °$C×Ñ®„ªmŠ̼æ^¥T›×1Eä:§gÝŠ f•a0¯5ÐV,D„%ºŽæÕ&mFÂ,.IæñQ“¶8-qbfp¬6"0#ÌY£´Á,ÉÐu4¯VÚ*2˜Å)A+UÒ0["†s>C„+§‡µ ¨  H‚.¡yµI–‘ЊS’õ°R“¬aµ<'æ|Çê"¯$€v(Y0Cæw Í«•®Š ^¸$xã£JNKDœ˜£ÌH˜™!Ì]Cm²K2tÍ«MÚŒ„Y\ÌñQ¥ §%"NŒ 5F›‘03C˜»FiƒÚ`‰¶®£yµÒV‘0‹K’y|Ô¤-N«É™Á±Úˆ  hc µÉ,ÉÐu4¯VÚ*2˜á’`Ž*m8-qbfpŒ6#af†0w µÉBDX’¡ëhwׯßTdü| ÷ùæ×m¸Ø_¿áNaŽçFb§;æ×oü ­üv?¡•ß¶ñ'´üõB ?™E†.b¾Ä;é"0xqq5´¹úª,.Ïr{ìkhUù1hWù°*?@Pn¡‹håG «È=¿–qœüÛâ@]Tµ…“žú3_¡díÊÖŠ¢ö@­A‚οÕ“&#¡•3?¤GePšFáÀÑ”Nv|ú쯒Já祉…ó»€þÃ7ŠªÈàåÎ Úþ* ªüÙšçWm˜îYV¡eÕÚV ³êA•A†.¢U“0#a–ó}ˆS(ŒŠã)(˜^ãÓg±…–%Gh[r”0J„Qb ¬‹h%G «H˜ådñT%,å‚ÇG5átǧϞa«0ê „Qo(ÌzõºˆVo”°Š fœéCœR@aÔ O)átdzØ-‹Ð¶ØP˜Å†ˆdè"z±ÁKUäøm¨ª5ÆOGU±ÁKUµ‚ò" òÃOSäÒÍ›ŸŽª%øq©"BÖ—öhÞùÇ¥8W—°-‹°¶ÚP—åê‹$`¨®Š\Úƒyaíê’ºà|™Ì;«¢ ^²Œ„Vúè²ÞÛ쓨tá=œ.=³–(#EDùKËsX¾™Þù·6~i22XÑ?‡4ö’E^Dzô$`¨¬Š ^&o—P™$@È:ºŠv»U)32ˆqŸ¼¹ª”q¯T!ƽT$`¨²Š\Úƒ†áí*“Y_Úƒ†get¿K™‘AŒö9¼i°—2Zð"F‡žù©ËÀ%ßéÊì6¿²dBÊÉÐ%´›vJ–‘A‹ûe Í5%+·ÜÈ9Ìg¨®Š\òý¡1?¬]@]R!ç$èºK)]D “m\J馡/ *¬"—ö|ay³D)ƒY_Úó…geþ̪ʌ„? o~+VeþX¬ˆü:l0,eF.íéÂðv •I„¬/íé“2ÛÂõ»FÆÏ6ÒWæWé<×ï>Ò›‘Þ5 ú»¹´g ó«Ž.áï>JB¬/íÙÂM®¬” 1œ%¼±–¥ o 3™ K™‘K{²°¼Y¢”A„¬/íɳ2½™ÊŒ bXËÐÖ[*Ls "v2Ó3R–K¾”Ùál~UA€„“  èæ²D +¼%œc.KTÜ%DZ“™Î°T¹ÌK–tò—(ñ¥=,yV¥©ŸU%’_EŃ…µ&LYº0Ø®‘À¡º*ri†·KÔϪB‚ŸU•õ¥=NxV¦Q™‘ÄÁVʰa"â»’€a)3ri?x®2–P™$@ÈúÒ~ð|V¦ƒQ™‘ALÞÚ0•éÃ@`¼’€¡Ê*rÉf®³[©%T& °N†®bv+ëñr~7žíAÉýD1}5%ãÉ®ˆˆ1ƒãc‰É¯<¶‚â2}ýå±ó“’3žü H&AÑüJ «È³=*YÞ{q:ÉŠßðpüˆÓ+‹²È€¬cÒÄú†Ó»‚vsN©ªÈ åO‡¶?*¬0v8–8jŒ0#af†0w µÉBDX&Ãg:Ze_Ú*òl‚–yJïI[Šs£v7C•%€0¦‡¶ (L  H†.¢ÝÂRÂ*2xqó´¹½¤„qŠˆÜ bÇH3ffs×P›,@À’ ]G«ïK[Eží1×0§ú.mÔç ¨ßÉPc´ 33„¹k¨M `I†®£ÕTj›"ÏùÑÂ!nÑ£4Ë"£jr>Ã,j`°ªéƒu-€.€ º„VUM²Œ<ÛÃ…e=ÊžIÖ(‹<žªÉùŽÕE^Ií,P²`†ÌïZ×¾tUäÙ/ ošê%Œ¶»ˆ´åÍàeFÂÌ aîj“X’¡ëh•Ui«È³=†æÔ=¥Ê¨£r2ƒc´ 33„¹k¨M `I†®£u‚ó#öS'ø¹ŸgÎÕ ÞïÜ>öi3žZÁ"Òé5CÆYcê?ö3Õ­zÁýÌt®52žzÁ"ä ]G¯BÔFfT0?Š„F ááÔN§æPXE-«ÐUˆª¬B8,ãLï Zß´T=KhÓÕ,aô=E¤/j†ŒKXE32Àœ5J,DÈ;ºŽö%ÜI["2Ë×_ež/ÈNÚòZùŠ­2ž´ ³dyÖ˜´……y'C×Ñ+,µå Ì)€J%’ˆQA™ •Ê ZVX¡m…¥0+,’N†.¢WX #/jhSý”0ê#©ŸÌ@=¥´Š fVXan…¥6+,òN†®£WXj#3j˜Sý”6ê#ÔOd°žR[E3+¬0·ÂR›y'C×Ñz¨¥ˆÌÒ¿”y:œ¥h!FÔ OÚŒ fd€9k”6Xˆw2t­‹ª6#af3ÌíqªÍ.¨ˆtIͱëN‘ƒ™ÂÜ5Ô&‹BÀ;ºŽÖG´%"³ô0ež.ç¤-}P铚!ãI›‘0K™gI[Xˆw2t½êW˜¥æ†8EyI£l1ªzç§ÈW˜Áʪ?¬­úÕEÕ@ÊIÐ%ôª¿d%"­ÔܲEù$kíOMï|jüÒe$¼RõC;UÉ¢ê çÌïzÕ¯."ð¢Þ†7y £f‘šÞ Ôø*«È`fÕæVýj³ê!ïdè:zÕ¯6"0£Þ†9yi£f/ĨéÍ@¯¶Š fVýanÕ¯6«~òN†®£uTK˜ÑÍ„9ýÎÒFGTD:¦fȸ´Ud0#ÌY£´Á¢ðN†®£9šçö—»¶i÷`~lï^"œÞ“£ãÙÑ€ÀÑñXcr4Ïíõ™ÛûÜâ÷é^ÚŒ'G#BÞ§öØ^ר~ñ$-ð¢S oz¹¥Œn¯ˆtƒÍÀXe9µÇöÂÛ5T& ”Áú4?¶wÖ¥/S˜xáÔà}8µ’…Sã0NéŒK–‘È"²ŽJësXÆ™Þ4§VªŒ„–N-´uj Ó©À©‘±Â*2˜™!Ì]Cm²!ïdè:šS›´N æ8µÒ†SS#ãÒfäÔ´,sÖ(m°!ïS{Ðò¬;_J›‘0ãÞ˜swMiãþ›BŒûsÌÀXm9µ-ÃÜ5Ô& ò>µ-7méýOÚˆÀ,Wdžë ¥+ ¸BAÇj«È`f˜³Fiƒ…xG[×Ѿ‡[ÚŒ„ß…y¾$[Òø­€|ËÖŒ•V‘S{Ö2ÄYBer ëS{ÖrS†¡.eD †Å†8»¤a±A`±ÉÀ¸¤9µg-Ëœ5J,@ÈûÔžµµ'ÏÚ4Ôj3fXì×b+M‹ "›ù*ÌÀ©=‘Ö. .ò©=‘¸ÉÂP—,"ÐÂbÃ:»dÅbs‹Í|Æ¥ËÈi~"±´³@É‚9ŸÚ‰g]ju /-vxk±¦ÅÅ&c•UäÔžH s×P›,@ÈûÔžHÜ´å6¦I˜åF(˜s«Tiãf*¹ÙŠ ŽÕV‘S{"1Ì]£´Ámò>µ'ÏÚl¨ÍÌhÀœöAi£} "í20.mFNí‰Äjc µÉ„¼Oí‰Ä³6›j3f¶ÂÜöÚl€ }@Æj«È©=‘殡6Yˆ€÷©=‘øg,ök«Û‰_×G{"ñk+Ç/—²¿O[D ´Ÿ?{"ñkÛÓWH^—˧Çdã3ž,6H&AÑ,v «È£=‘XÞ»Û˜dÅ {8Ú鎕EYd@Ö±@ib}Ãé]A³Ø¥ª"öDbhcKYD ´#ÌH˜™!Ì]Cm²K2t͆–¶Š<ÚS{aŽE,m˜ÈB “iÇh3ffs×P›,@À’ ]G³¡“6#öÔ^™Ç"–6L$L&jŒ6#af˜³Fiƒ…ˆ°D[×Ñ.ô–¶Š<ÚS{ežë°“¶\©1.䚀¡Ê@ÓCÛ&P$CÑ\h «Èà…ÿƒ6±„á!EÄcšÁ1ÒŒ„™ÂÜ5Ô& °$C×ѾTÚ*òhÏí…9_Ñ)mù€|ÅÇŽ‘f$ÄHÞ® 29€€# ºŠæ¯'eFí¹½÷”ŃÀ=“¡ÆH332Àœ5J,@À’ ]Gó×¥­"öÜ^™Çû–6Üq!†{6ƒcµ 33„¹k¨M `I†®£ùkµM‘Çxênœm˜ë}Õ¦;÷lÇgžÛKd0« ƒy­¶b!",ÉÐu4ZÚ*ò˜ŸÛ q,bIÃDŠÓù F ¬œÖ. .€ º„æA'YFí¹½²q’5,¤Çã0ïX]Dà•ÐÎ% `Èü®¡yÐÒU‘G{n/¼ñ‡% )"Ó ŽQf$ÌÌ殡6Y€€%ºŽæA'mFí¹½0Ç–6¤ˆ8L2ÔmFÂÌ aî¥ hƒ%ÚºŽæAK[Eí¹½2?œ´ÅAb8L38V´‘m¬¡6Y€€%ºŽæAK[Eí¹½0Ç–6¤ˆ8L38F›‘03C˜»†Úd!",ÉÐu´KØ¯ÍÆÇ7yŸ.û;Ü‹Çïí}s}Õå匧KØ"rÚ géöë}9¾ @†×ëu|€52ž.a‹w2tÍ_—´€ÎÞxßR†;÷lÜ´Ê*rÉ—¤â¯Ã[­2ý5Ê`aMD÷× #"¯ø[yï6j’wìá¸g§ã¦K–‘ÈÂ_#ëði¥ ÍagzWÐýµªˆ@ g m¼o ˈ{6nZaÌô×a®¿V›þ„¼“¡ëèþZmD`†³…9Þ·´áŽ 1ܳpÓj«È`¦¿sýµÚô× ä ]G÷×¥-™ÅÙÊ<Þ·´áŽAàžÉ ›V[E.ùr[ü5Ìñ×¥ -ÞÑÖut­6"2‹¹•yìï¤-YÄðÏ&ˆ.e" Úúk…é¯AH:ºˆvýº„׎¡‹Ë¥‹«ÏruÚ—²Š bd€x–(ep ë$è*zç ”%"±xv‰ÇÕOÒâûE¤/`ú%ÍH˜Ñ9€9ƒÒF焼“¡ëèµ®æøúÒã/ }Ð'PZE1:ámç@ev@È: ºŠÞ9(e‰H,ž]âqõ“²ø~ôÈ`Ÿ@i 3:0§sPÚè€w2t½s 6"2‹g—y\}iÃ÷bôÌ@Ÿ ´Ì섹µÙ9!ïdè:zçmFÂLÏæºzµéûE¤/`ú¬;EfÕ9Ì«s€¶êˆ€w2tíÊü¤-™åš¸ÌsÕ|Ò–ëê"rÝÝ OÚŒ„Y2È+&¾Ã䛀a)3^$€7K”2H€u2t³Yž”ÄbTå+;)‹Ù3L‡*«Èàe‚ðv •IB¬G†ÏTÌnyRf$ĆY-ÞÃÎÎʆá-ÄᇟQé"YÌió+K ¤œ ]Âl—'YF­˜UI7;©ŠÝ-À°ÃÎg¨®Š Z&mVP—È9 º†ùvY‘ð×é‹ö¸’? ×ú 1î0Ãf$¼Ho–(e!ëdè*æNÀ¤ÌÈ .ï8õIÙ°òNßù V‘A‹ùaíê’9'A×0;æI—‘Á+nUÚñ³“®8Þ q8b0TXE/„·K¨L d ]Å|1½”Uä ÆUlxs»”q%¼ãJ¹ ²ê9xU‚Á»–@Y‘ëdè*æfÀ¬ŒHˆ #^¼‡UŸ• 3_ˆaöMÀ°” /À›%J$@È:ºŠ¹0)32ˆ 7.íØõIX }!¿ïôŒ”e`prv8›_U á$èævÀ,ŠHX ;^œ¿>‹:ü|vßé K•‘°Ê|H'‰‚g~W0ÛæI•‘A+–UÖ1µ“¬ØÞB [L‡êªÈàe‚ðv •I"ˆb=2|¦böÍ“2#!6_2˜çm»}Õ—¿OSDü£ð“c‰Ùa¾ÏóïqX@|² ðÍ*«È ¦“qœ´ÊtÒd]E÷›*#1ÜÄñƒ%-†Q@ü¤ ð—*«È †ã o§Êtœ d]Å|ñyV–ˆÄÆ•ß">® ÏÊÆÕc¹ºlÆ%­"çù·oŠyÖ˜´……yŸçß¾iÚô¡j#"³8Y™Çë–6Üp!†[6î¹´ÌôÓa®ŸV›~„¼“¡ëè~mFÂL/æº]µé‡EÄ/›ÿ̺Sä`VŽz0/G¶rÔ"à ]GwÔ¥-™ÅÍÊ<~wÒG,"ŽÙ 8èÒf$ÌðÔ0ÇS—6<5y'C×Ñ=µÚˆÀ,žâ˜Þ’†-1\³óc¢fà<ÿ“¬uÕêÂUòyþ=¦. OZ²‘V\­¬‡íd [ìñ¸fçã¢K—‘óô{LE;¾ºdá«Èù<ÿSÓ•KÔ“."ðÊEnyç2ø$,Ê 1.¤W†ŒKYEÎóï1Éœ5J,DÈû<ÿSÓ¦'U˜ájaŽï-m8ãB çlœ´Ú*ržIæzkµé­AÈû<ÿSÓ¦+U˜ákaŽó-mxcñÎfÀK«­"ƒ™î:Ìu×jÓ]‹€w2tíºôyÛ~ίùºôyÛ¢NõµöÇùyškŠñtaZD®;›Áñ±Æteú¼•Š×úZû6¾Î¿5Åxº2-–dè:æÎÁ$Ààeç ¼í¨ÌÎ:dpŒ2#áe†ðv •Ée!‰°&¢uJXE‹Î¼£V²èp˜ÎÓ+‹²È€¬cÒÄú†Ó»‚Ö9(U´ì„¶…Ù9Aç€ Žf$ÌÌ殡6Y€€%ºŽÖ9˜´ 3:0§sPÚ耠s@Çj#32Àœ5J,@À’ ]Gë”¶Š fvÂÜÎÚìˆHç€ ŽÑf$ÌÌ殡6Y€€%ºŽÖ9˜´ 3:0§s 6;AØ9H†£ÍH˜™æ¬QÚ`!",ÑÖu´ÎAi«H˜Ñ9€9ƒÒFçD:$`¨²ÆôÐv…IÉÐE´ÎA «Èàeç ´é¨ËÎ:$pŒ2#!f†g •ÉIÐU´kð“2#!–ëßÏòIZ®¡‹È5v38V˜‘æ¬QÚ`–dè:ZW¤´Ud0³+ævEÔFW]8Fš‘#Ax»‚ÊäŽ$è*Zç ”Ud³sâvTfç@D:dpŒ4#af†0w µÉ,ÉÐu´ÎÚ¦ÈÁ¬:ƒyuÐVtÈà8ëVd0« ƒy­¶b!",ÉÐu4w]Ú*2˜á®C\w­4Ý5ˆ¸kæ3D°rzX»€º`‚$èš -Y´t¡a­ U—..” ŽQf$ÌÌ殡4Y€€%ºŽvåzÒf$ÌrÕæ\W.m\y‘+Ód¨1ÚŒ„™ÂÜ5J,ÐK´uÍa—¶Š„æ8ì҆ÇMÇj#‚62 5Ô& °$C×Ñvi«È`¦Ãs¶ÚtØ pØdpŒ6#af†0w µÉBDX’¡ëhû²;‹ù«ßËvz9ßÊa_®ÏO“ùÃÉ_s<æÙéŒÇ“½¾ìæ¥Üõåüž÷Œñä®EÈy$èfs=©J ¬°µ!ïUƘãñÍNg¬¨Š\?Õóإ슒¢`<45þÍW—&#°Š¯…ôî0JQ<1c™Ë¸Š˜¢#{ÉamËvÌî䛥.AFB 3θ]5a‡9·ìtÆjªÈõS=…]Ò. ,€óHÐ%47=É"¯øXhÇè–¬8aŽÇ(;qÉ22X1Ò,P²`BÎ#A—ÐŒtÉ2^XØÐÆã* ìñá‘ÎXY¹~ªçÊKÚ”%r º„æ¡'YDà÷ íØ[eás{ÌtÇʪÈõS=R¾H³@É‚8Y]B³Ï%˼â]¡s[²â~9>¼±³3,Q†&&‡±ÙÕäò $<tþÍ9—&#a…k ç¸Z%áz9SìlÆŠªÈu|7<óÙüŠr}2ó»€fš'QD » ëøÙRÃËñøa§3.UF+æCšJ @Èy$èš_.YF ¯Ú˜YeÅìr8VØÙŒUU‘ë'Œ/eÓ+ÊõAÈxÌïÚ “("ÐÊ¥{XçÚ~‰ÊÅÿçÞ¦;VUE+æCšJ @Èy$èZ dW¼7´cΕ…{÷ø0÷Ng\²Œ\?Õãð%íÊ’9]B3ÿʪÈà¥í´õåÈÒ¸s<¾ÞéŒYtŠ\?Õ“ð!] «ˆ€óHÐ%´;&YDà•kõÐÎÅü’•«ýÏÍNg\²Œ V̇4 ”,€óHÐ%´«ê%ËHxqM;´sÍ[U¹$ÎÑ\0w2cEUäúɇà˘ìJruòÓ;ýÖÊ(IFŠ&BHÓePmާKátÆŠªÈõS=ÿ^Ò. ,€óHÐ%´.Æ$‹¼Ò?m Ê¢Áñ4(˜îXY¹~ªGßKÚJ %ç!«Kh&¿d /ìuhã¿•…Açxü»Ó+«"×OõdxI»€²d Î#A—Ðýýûx%g¿Õ™õÓæëéº;4íwÆ“ÁO‡Ç ³Á½óUð8ü×ýÓlðáìïs‚Lïš¿/UN˜k(c¿K]þ= "ÊHXéði >¢ô÷~hjü»VSENxQ(ãVK~Vv7 "ÊHhiˆiý0¢´Ã9A¦w Ý—,#ƒU¼¨¤ãV'Yñ³"°»IàPYDà…!mü°²°Ã9A¦w Ý+«"+¼(¤q«% ?[ˆØÝ$pˆ,#á¥!´õÃÈÒç8™Þ%t;\²Œ Vñ¢’Ž[-YøYÚÝ‘ †È2^âÐÆ+ ;ÌñDV—Э£²*r°Â¹A:Ö®Táý` 3ß!ªŒ„–æq°Æ;"Jë˜ÃÐcvЭc‰22HÅ·É9ÎnRï'k˜UE^˜ÇÐÆ;* ë˜ãdz—Э£²*r°Â¹AoW²bþ` 3ß!ªŒ„æqÖ;"Jë˜ãÐcvЭc‰22HÅ·É9ÎnïBk8ÔUFà…y m¼£²°Ž9A¦w Ý:*«"ƒU|›¤ãìJÞ¯±†IàPYDÂKó8hë‘¥uÌq2½KèÖYSdg¥o i²ô~"°†Ià0«Vdð*óxÐ.ïYe9‚Lïºu,YF«ø6IÇÙM²âýD` “À¡²ˆÀ óÚxGeas‚LïÚ•ð’U‘ƒU.CÙëÔ¥Š+Ù"Æ…n¦3Bpbv(“^IYžÃpcvgߣŠ*rP¶AcW’°~"p†IàQFÂKï8hkQ¥sÌq2½Kèαd¬bÛ ±+YX?8Ñ †È2^zÇA[ë¨,œcdAY]B»ô]²*2Xåš³¤sUz’•ëÖ…×µIàPYD•ÈÊ Ê‚Ç!Èô.¡beUä`……4~µdáhE`x“À!²Œ„—–xÐÖ#KCÌñdz—Ð ñþ'z\fC¼ÿ o÷Éoãé—ÒÏŽD ¯kL–x^ç²Äû~ú¥4Æ“)K2tíqi«È`ÆeZ˜WqKy=œkÀNwŒ0#¡e†Ð ¨Êõ9 ?¦wÍ—ªŠ Z:ãÐÖ+Lg "Æ× Žf$ÌÌ殡6Y€€%ºŽæŽ'mF { sìqiÈû5ƒcµ`Î¥  `I†®£YäÒV‘ÁLæzdµé‘E lÇh3ffs×P›,@À’ ]GóÉ“6#a†Q†9FYmå ðÁd¨1ÚŒ„™`Î¥ "Âm]G»v\Ú*f¹x+ó\Þ´å°ˆqyØ U–˜Ú. 0)€€"ºˆÖ(a¼l„6muÙ—oÇ(3bfq–P™À‘]EkLÊŒ„½ˆÓ (iô@Äê›Á±ÒˆÀŒ 0gÒ °$C×Ñú¥­"ƒ™ 0·! 6â÷MàiFBŒáí *“8’ «hMI™‘£+qº¥Œ®@˜~2ÔiF`F˜³FiƒX’¡ëhÒV‘0£5sZj³5 b838V‘03C˜»†Úd–dè:šVÛ9˜•‘ÌËH£­Œ4ˆød38κÌ*Ã`^k ­X€€%ºŽf¦K[E3Ütˆë¦•¦›1ì²ó"Œ@X9=¬]@]0At íòò$ËHh寬ÇàIÖ¸Bìñ\?v¾cuW@; ”,€!ó»†Ö)(]¼l„·­…Ù*‘N€£ÌH˜™!Ì]Cm²K2tÍW—¶Š fë0×X«Mc-bøf38F›‘03C˜»†Úd–dè:š¹.mÌt×a®»V›îD̳£ÍH˜™!Ì]Cm²–dè:vm§¿ß˳óþˆ´ûéºn×£†$rãëz·O÷Ë>¾Î·2>jÂÓñèyíß×”ñXã˜Aä¶¿"•aTðµÆedXˆ€w2t_ño¿Øk«­¶Ü–¹nÿÞÆÃˆ<Ϲ,rÞÿÛø6¼“ßÍø¨„^ÇSÚE¼NÇï¡™ñX㨶ˆÜs5'¶]þqžÖãc°!ïdè:†¸ËVùì¿up¹nÛîóè¡rÛ—þ~ÄëŒnÇùø÷í}vŸ28>Ö8f¹ì¯XeØN×Ë´Æý‘°Ëdè:†¸m=žž=]ö¿úwsä>î?¿=r=½Æ½Öù°ŒNÂãø­‘Bl~sšŸÑ…§ÀÞñ:‰1{o3Þ¦ß1Ëø˜0ˆA3t C×}{»n/äþå’S~—¾Ï&˜ña›¯Ç/sb[þ=ep|Ê‹ld«ÙgžÛ^9×c|øìŽ™ß$ Y|úî{ÉÚv‘íy¼Ê|~ï{[wÚE2žvÙ#ÌàøôÙ.r{?÷Üf¸m^úUOc<í"…,ÍÐu佸Õs—ÛüA«H9ÏñÛ|Œøå¶ú Ý^÷ý7b ð<~>ÅŽùœUd|JH‘+ø1“9&AW1¤½¶óÌþÛí=;¤ynïÚëñD¯Óþ¤m|_~ÍÏKe|X¶Ç¾iMˆ÷ñ³•aŒ³Æ1ƒÈV'WqG†ÇV‡]ë:1ãcÆ`!BÞÉÐu q×Ícœïó›²"ã-u}œ÷ŸÚô-wü@b½#÷ívÿ97ooù×mšî˜w$ÞOdàýv,PoGÖ÷pø9½+èû~ÔŒä”ÄŽË)‹=¹NjìÚ"²«›±'µŠÜsoY2ä”åžÔd!ÞÉÐuô׬öýŠÜ?M/»úñ­MŸ?¸‡ó‚0Û!Û>vm°«ùkÓgy‡Ó;ÿlúû»v;—Ü÷ 4?¾È¶úÑÜ{ìÿÿ²¿Èþˆ`ÆG7ñøÕYý“vw¶Ã‘þ˜@äº{æJ°±?M¿„˜ñÑ~|̇á;¦Æ¿ÉêÃe`|88‰ðáá4S/ND…ç)38æãE„Ïøü°F}Â`!b4AÑKóFãõšKó)ßn'þóé}¼”O¥G!ŽÚÂù]SÛ8êFgŸÞGÝhþŒ§ÒC„“¡Kè§±Çõ¸2úÝyŒÛõr ylðU¿n¸Nc')8¾æä`d³g±Ç¶]Ÿ§_8Íx:‹‰€bæw ýãU{FEîã{WUúÞ¯=ƒO>=™]Cö "|èIÀ¦Àµm êð`ÇôÏø·×mûç1Š·í ýš ÅÛí”ë+yëñôñ*D>µ¥&T›U£Ú@ % Z5Vd”}&HYèV’!ëdè*Ú™­,gøEÎ)øIÎ:å89/bœ·Ìq9Ί ¿Hü$k”ã„…X'AÑ7‘é5#’?y>À¾"ã>½dÙd‡`>ÃzÉŒäN^¬P¯À™MC{Ūÿa wLäoEwƒ¿fµ?ø{b¼fpüøì£}a†´7\È,@@2 šˆ^‹Ô¶_‘GLê¨ØÕ©jß§’‘Jà ŽÙ÷Œ}ÛÙÖ]Â_"B2 ºŠ^‰ÔÆ_‘±mS°­S'ÔÆŸB¢£Î0ã“]®DƶÍülê.à¶/PÌü®¡ «m¿"×tºFV6uÖ­m?Ä 0h›À1»¾%VölJ¬lé–Xnú–X (©HÐUt#3u‡¤¹ûž;¿±õ‚aD@`T˜^c^1#ã/n:¿,Q½á÷Ü:†^:Ã::»'½ÎucEžù¥ëñûèT…ù†ÞT7^7ý˜*ËëùrüH°S7VdT}fHUèÖ²K24½W0yj#±Ä±êZæ˜ùÉSÇîâèT‚ µÔ Ä3ÃLþ²Ô0Ã$躮©åm„;7sõƒŽ6×GªåÍã‹ 2´ãM ýj¦ÓÏfêxC„“¡‹è6¦>c ",F}Ì0!…&¥20æcfd|PLÏ‘Kø1“H&AWÑ{§Õ¸ªHž35š—´¥ŽÞfu­h}z8­Qf;¤oU‘Ñv"m©#u­XÞòËôÎÿ³×KQÉóHò— kÿ–êò¯-"/ ¢«"ƒ Î% "ä˜ ]Ågmáj¡Iô=·GiÚÖ3Úº\1£íË3Ç^1KÄë]É`{4kL Ô÷Ü_ ?Û§]Ág'hË`#£Œõüœ*×ó³u0çg9g>CËàŠŒ*–ù)r]À2X äœ]C+ÖëU‘ñçmÀ Â¥^2ÞJ…oµÊÀøä»7üÍí€ä5±âKf2tý4];~Eòƒœ ÙÏ9…ÖŽÏIVDNÂfpÌž_‘±e›![ºk¸éËB,ÉÐtôÓÙT3IÉ—s‰%aÎ6S͘óQ!ŽÓU%ÈÐ’q,ø2Ý‚0 L%c(ˆE3týÂ{mÉãÂÆo6?®‰×öÈUs¹ªN‡l››7ïdóóæ·GoÞÇdè*ú;²Dðù¼èðn©Nï'y¿™!ãêTd}2Ð`êÀ¢ð&CÓñYÃQqD †S‡z¬|iÃë H/À´ÕV‘ÁÌŽc˜ÓqTšG°&ASñÙ=ÖÄyä{๚ŸŠ×ëýÖÄÞ "w ˜ñÕ»U­ Rôº„e±$@@2 ºŠÏ:<Õr4’†!ýŠiÀTÇ‘ :8$plÇ1û…É`?q,15áƒc%h*zWÎÍÀø‹ÛË+bÇÌ×ÌžšˆôÜÈàøj/‘ñ'7A^—ð5“ˆpÌü&á3KíþX‘§—ÞÙú´»µ9bˆÙñËÙº9ÉÖ–l},Q›ãÁ ÃnLÿŒÿgW¨«·c$­.QÓºáuõv¸D-b\ƒ6A†¶vHg†Ù4nÈ_­€€at ½r|moÔ~õlÿ*Ä|õì}:îØ¶²Ë¸JÇŒÊÐg‰©v|í_=µtÜ¿[ñœzGO¥£Iù]Cߟû¾Î·Ym–é~›n³zžÛ~•ñ´%"·Y™ñÝ›¦ˆ\öceØ|Ömª3žöD²L†®cˆ{ïÝÉv{\EòuÛs“ua¾Ü1UŽï½%:{qW S8Vd”}$HUè Ör!Ç$è*i·ýa××t­º"7ži¼¹Í õu­z‹l›ÜmF¼÷¯™M2æ:ò9®4W†q%ºÖàZu±!ïdè:æ¿~éÛÀþ´³;þ6¾ïå\ýˆî׎?!Žý¼20æg¸§ÈcÜYD†ËmÜyÄc\[~!`MD»v6ÿä«‘÷þ&àºÕã|:Ïí×ųBŒkc•Á±¿ùjä²7EÌpzŸÆO¸fŒëêY!d™ ]ÇxKžöjsÛ϶ü™ge&p<aÞ‹tïÇ{/Òy ããù%—O—Ç„8eBep|¯ó9íDeØ ý×{ZcŒgž„…ˆL‚&"ÂöîÐuª@¦È#9¹í_ì¦Àà{TU‚ÜNÛÙäùžÏãùú•ÁqJ„Š%D%F-A R$D„dtMÚüë&FîûLÖmü¿UÂo‡ŽqI+Ä ^ûë&DX¯ ÷ãëiµÆ—¶ –dè:æ7äü;×ý-À[a?ö3r=gŒë Yˆñv« Žý†‘ííuûP 6›ùœÁ“q½'Äà˜ùMBûœMïFy+åî[-Ÿé͘O‰ˆ|ŠÌàØ7#‘¼—HÀ[%êÍ ƒcæ7 M–÷7þš17»¦·ËJDH›1·õN‘{„'ø1¸ÖàÖáb!"¬“ ‰ÂÎ{YÖžíR‘ç~ª¸_ç<Ñêt<,(ßê;FÇ·yœæ8¼mÊã9n™í؇ 9ïþß—×kùdÚ1¾9HutCÚmï.´ótEy¼Ð}ß ÜøòeÅik¼]ÚÅÛø¶Ó½28fk42¶6dãs ·FIˆÉ$è*Úæhw§×V[¥wãÆewÇ­MD¶>38NëÅHš3fHóÆ5lïÈ¢I4ùœmfü2w‰§Èx ÷ö÷|W›ƒ¯rW#d‹lVì>!¶·áûU ¦O1EŽºØét¸„IŽdh*ú-<¯m¹þm˜×~¡þY·ð¼ö¨n¯ÃéŽçî§;>öU˜ýI—[ÝÀóÚ>6óWa2žnà)D(’¡‹HÓàõè?f5EîãVÖíDrüÎå¨ } „Uã¹ç§ AkêûV¬Èx3ÙQï5[î¼iÉs8ýzf;>ûšDòNb~Þhæ÷­($A—ðÙ>Ï\#¹ëF› ´nÅ^Â;u~ÎW·kWçâê9.¿f£×fk£çêmmôAã1ý3‡¬íO|Ú^øÿå‹é+Q|Q+§"¨H^ñ?|1Ý ýyÄYýÅß|¸lóÎçý÷é~ÞÊÄ¿ûpúð»/6˶¡÷ýeûßÛåÃüw–ñ»Ÿ[µ·ul‚µêŸGjÖÎãôá²_»ƒëó±­ý:ïÿ»¹¥Ágº³_Î=hšžúÂzÎéÏþ~ýÅÿõÅÿ÷ÅùôaÿOþùú»ÿö·_üÿq;‘½·—ió¿ý‡/Îñá|Ýâ¹¥·zn+—?üö»/þæã¿ùò7÷ýÙu§ëÇŸ~ÿÇO?ýøÍ7úÛßü×?~úû/Ï[øý¸íþöË/ÿî·õÅÿöÛ±èã~Ü–pÙŸ º_;m–e[óüÚþ½¼>üøÍ‡ÿôáûã1ÿÃóÛ7ùÏDqû;Ú¯¯¼?=N¯àÇÿzþð?ÿ››ÅüðáËßþçA`{çÝo—ý}vþðWÛÿó¶Òö—¾=žû-€×÷öá¾î¯õå~yŽß‘‘ýoöylBm§þ½ÌÜQ¿Žõ~Yh+ç>\·½ó|} Þ—÷ùÓcâíJ×íõ~ìÎþüÞ>xç—‘}íÏc…º¼¶ãýñë_·Âs¿ïdo­lU쟽nï|Ün·ñÊœ~æuÛt½£W_·ã ³7Nßû§ú}\xÚ*úãqgÛ›á°gÿ]g˜m›ÙŸÂzkgÁý™Ü§½¹»_¾_Öþñ›oÿ?ýëë_~øÃ¿ÿÛÛéî_ï}ÌÇ£“úÙun×ûózOçŸ;×îÝÏã϶Ÿkÿ÷oÿO?~óåoö›þNçÛÇóé_gÕ-Ç}ʱ_Æ~læõ´ÿ]þæão¿Üÿ¯ÇóãüÍ¿ÿrÛyßÏ×íã7ÿð“³g{y°eÌþã—¿ÙŠ”÷ûüþøÃŸ~úæÇoøq'pÙB·üñ›ß}ûõOßþó—æõQr—ß}óÕ÷ûhöðÇúÓ·ßÿžÕž³ÞýVœ­¼=Vûø÷[¥°ÿÅ>ÿ£¼?m…3Œ~øžEÞÿôß¾ÿò²_¨>üé¿ùéÛ¯9tßK}°• ÏË6ç›ïޝ×ëãOß~õ‡hØF¿ûꧯþ§Ÿû3ž·÷õýže?þ´ýñŽ·æuKszg‚ÛãöoÍ÷—ÿg˜oïìÇöRBýÛï¾úýö'ºmE÷ûýþøÇ?üðÓ>zl$ïøŽ<þ¯~ÏŸý«_÷ÿüå}£wÞt}õã·_}ÿ5‡žÿåÛŸþ‘n‡ìýᇱàóýøøõW?}ûÃ÷ú¹WëøÍ:^¬ÿûgôîŸÇ7ˆ¿ùø·÷ÃOÚj¿,tþøÕ÷¿«Arºœv%ûª¿¹ì×Ú¶ süO‘M’Û«½ ¹ol§7$Žåy?Õ½òªl$¿þöǯÿ°•­_~ ø³tÛŸåð¿ýá§Ÿ~øî_ýLÒýÑ”›‡Eúø_ÿÏMèe¯ö·Êx¯Š÷áþ–»ŽWz?tÚ>†_}}¼ƒŸ·÷ÇLxûhÊñg9o¯øO5÷›ï¿þ៾ÿrcŸ÷Òú›íoXG¿ý~¤ØÿºÛ¢–ù_ýøÿúøa¬ø|oo—¬øñë‘r{/üãW[–ãe8o¼/Ã}sñû_àxòÏ×Sÿ>7ˆþÿçËßì ó×ãq¯Ñ}þ£nÇö3ÒÛwÊÿ°ÃÏíÓkÀÏû}Ï;ÉcóÝ/ =6›xÙ¼Ñvbs.ûœÓVmo•ŸÙÈö×m7©¿i“Ž7à~êz¿žãOt ¶OÑ÷ãÏý|}ü§ïŽ?Æévþø÷õAüæG&ÞŽWpÌ{|ÜÎIßü˜ÏÝåù±½1ï}¯{ïOÃŒâïwöÛ‘Ûóö3ä·ÿ÷8í60¬Ú×»kHoÚo¾:(ŸîûçÆßüéS¿<'÷›óñ§ë‡mÛvÜçÈûã7ßýðÏûhópûß+·§ÞÝÛvúùøÏû[÷¾Õpûnù?þð£¼Å8´¿É•÷÷ßþ üí¿ÿâ·ñ7ÿþŸ~ü¾¦|ûý8ëœw7ºÕ³ýÅ_ü»ÿøü§¿ø‹ß—ÿËï¾ùã¾aÝ÷t¯ÇÇí\—csþËÓ§ûßý%‘óÇïÿõß~¼¿ÿòrŽÑüïËyžs^þrÿ~§I·OÓžôöøËó5I·?é}öÅûݤÛûóx‡lÛü(RnÓ)ÿÿ3ùg~endstream endobj 334 0 obj << /Filter /FlateDecode /Length 56361 >> stream xœ¬½[Ï-Éqø~~Åyæp@nUÖ½lp0ÐÀ`È€,5àQ±yúkR-Úüë'3#VVEÄÚY_ Ãhê;µ³2#ÖZ‘—ù:¼Òסü?ýï?}|¾þîË¿|Iõ¯_õ?ÿôñõ¯¾ûò—7n_×±Žë×ï~ûE,Ò×4M¯mÝ¿®Ëö§åëw_þáÛO¿LÃ0üì˸¼†aûö›_¯a¦}ùYz iŽo;þuú6üê[ùçq>öýW?3O¯üì<ýêgÿ¹üyzGúöñû_Žåÿš_Çž¾ýøË_}›×Ÿ§éçcÊÆÿøÝý’ÒëX–ôõ»¿ùòÝÿY3’ÆLó|´Æ¬¾1ÃrÌËvHkòkù‡ñ5¬Ó¶=kMy. #Zó÷¿þøÓøñwxñøíÿ>üÇ6ä¿ÍÇ4~ûå´¦óÅúéûßœÿ×ü§ýOü[YÇǶ·oý·®Ó4l­ß“üõ·m›Ï/Ýçò¥SüÒùçã`úýè÷{JÓüÖ ŽaÆÅ·%­ã1¤O´¥çkË8œ¹9ÇKiç³){u‹1¿tÙÿskßÇï¯v: éiÆ›‘²ýÙŒÑwÉ4mÃxí’b™2¬—f”VìÛ²»ôËÎúEZ±ÐèL+Üz—.˜ŽmÛ|l㸎ӵ ~YŸ½lÿ6]\™ÿö_ÿôÇûO°ó çyIñsióÒ·¿ýéþø=žrØáËý?¿ÿõ¿“k3ÓøÚŽ¿¨_¿¤éÛÏÏßÿûûõŸÚMßÖ×6ïÑšñÛ?üø‡ý} ©…?}ÿ§ïÿü‡?ÿágéÛ<ò2üíõÏÌá¿ÿøãÿ’w.×®øáû_·ú_ßÿëù9¿ýé§ÿù÷ߟÿô矾ÿ¾þÆ_þݺ^`wÜ_û4ãÿ¯óGþôÃÿü«oßÿûŸ^ÿïŸ÷§~¨¿x¬9T~~6ûã×øñ—úÚt¤+œOÃk÷ éßýæË·ÿãgßý³ÿåå•Û$yâjsöï_ÿíù+ó7ÿíçôGÖí•‘è¸ù‘cÒ²Ûä'þËw_þ{¡¤mß^iü:ÍÃôÚ—¯)myÔ·Ì?ãøÊïüéû¯ÿãë_Æ×<Íëòõß2AåúúÏ™ÑþúKÊÀRšòp½†ýëÇ—qöײ}Íÿ™r¨ýáË߇¿•§ÆôÚ÷¯ó:ähØô)û·/iÏ7ç¿,ûðå)ÿ·Ð†ú®}(_üuÚÇüôT~ñHókKÙnYK[êSîoïÚZïÞ^ŸÊ¨–1åë´ŒÇk|÷é/gWžªÃ²Ëk^¿fðÈÿÍÃ’›”CòkÚ–üü‚aéÉŠ”Ý.é±ìcqÂǰeW|Íi-~ñ‹ö¿Ú¿ËTúë”-£TQßþ=5wá^0¦ü5kþ†yÏýxÔoOÇkËَᵯ“áµäþÈØ÷ZvúÔ¸[éãiÛçò•ÅîöóæC>/÷Оÿ–¿jß·üÇó¿ú/é˜òç>ÝJçOòqãùqÙõ_kþñ¹týQp?^K­i~-3F0÷PþŠ#-9ºØCi?r7¤òȘ¥Û§>";„|D—}Oå#2xyà/ÿCÿ-eÏ?²2œ ¥ òÿ»}EÚ×£¸ØœõÇ+#Zi`Æ’mù:Ïix­Âh|e„˜§}ÏMŸÊ™Käg¶×´œ®ù9ÄHÙ5ßøKý‰üÓ°–ÿÖ¸Ëp+Ù%Vò3sñûyÊd½¦ü%ÿÜP­òæ?üþË_}É*ð8^é(Ë„·Ël”äëóÏ s{לò¯—ÎÏ/Ò¬£8fþC奾Š4Ôýœ¶+wҲɻ5\KY3²U™3ÔwÇÙ®üî¥/2*i™–²VÄŸÓveçß“¼k¬ýåZJZ1N+~n®?§Íó¿×æ¥wJ³¦­€Tþ˨DzÐ5ød=š}ú¨Ï„f_›®/Ë®èËæ¹~£ýjòIy޵«m߯‹Oä ˜Ë»ve÷Ùä“bÛá5$ë»õ óÙì“bÛõeKVIG1ÝtÝg³o*Ó³Jy¥ñûv~e¯ü-Ùt}µÇ²~|íÚÖ­ö\×p׊õe‹ø…íDÖC±+௩˜Ô—¥UüÕô"ë¡Øú²)K¢Tþœ±NÃö"ë¡l•{OÞ5\½|-«¼kà±È:(öÜ?•>ÍÎ?.ÞoúõOì8ÆQ ½¾kÜÅûM²þ‰¡_™åÉTœ^–KžOŒòÙ³|ñ×Ú°q«=[Þ•5ÉGÒ×ÙhÐnΤsqØŒwÛ,ï(ä2¬¯c¯ÂÇò¯Õþ)Ó‰Ëëx°¾Žªïš7ýöÚqaG™/ÉËÆÆº—azh½­—ÿZî#ŒëìØ«ÚcË c>®( [sò²¡~saÛ«@‹¹5l–³ƒË.öê©-¶ò{Ñ alÙÀÅNՆ垭?º¢Aýà²Ëÿ’ñ˜dnRZ+¬——MvpÉÀÅôvŽYUávpÙÀÅ^…óï¥ëËFE;¸dàb¯zÆ"Îë»fñ1;¸làb¯žr¬(å1Sõ¾@ŽƒË.vª¼«üü”®ïrƒËn ò²éô±iÁ^^&ZÅ .¹8Dˆ¤ ÁÙtöd¿K®§$´ÜÇ2ƒ¨ï:ÄǬ§0/ˆCtÊNé µüúGðæaˆŠƒ@A~×,Èo=…yA"€¢òÍž§†°Ga^GHýb«ÔPß%½ï<…yA¶Ê„º¾ìŠeœ’¼l'³žÂ¼ A§ò×ü¯•ÆQ˜ÄBX5Ý2ªë[7a.Çç”éµcs³¦2ýâ&Äâø &7•ò.ñVë&Ìâø^ó$¸üu"/aGGÛµÎ:ºS Àà%ÌÆqÙJgÖ—]FqÝ^ë(ïJÒ_*Åæw% ïï~¤ÝÅ Ó-ëpÌ™â`õ—:Éwh1ëpÌ™âX#ºRöš3û°Çœ)Žô9¥YWyÓ´aJsq8æMa¨u³Å¢ï%²¿1_Š# Ä„˜÷&ꌿ1gŠ££íʪTÚŸÿ[ÝÞ9q¦1ûÄkXõ]÷Z–*ãó«dÒæü9Sh¨°M[›@jÖߘ/¹qHhÜ@—u6æIq ¡Áò(Nò²]œÞzs¦8Ô`ŽAÿ<€Ò¬Ãg # âHúX)AÖQ4þÆ|)´vضJ·fhX$JÈM2¢é lø¡†6Ü$Ö²d¾q^æ™q¬õ+§ŠIõ+“@¡õ^æšÙj,“·ú²ý:Çäe¹eI´¹q_âšÑs@hy´Ç&Aë¾Á5£ÛœÜ’Ó·JZÁ}™kF·£©Sl»2‡s_æšÁq9[)XÔw‰,wÞK\35 g—_Èï’$©s_æ›q¨Ai³LÑ‹{K¦Îú/óÍ0Ô ´Y``Û°îË\3޵~å¸h3ö28Á}™kŽcR©˜ûr¹Ää”j^¼´L‰Ûº/sÎè; È$¿±mBEΙ{F×9Ssí –Ô·.ÌÜ3úPl—óËfé2ëÂÄ=£ïhåø«åRÆ«4¬¤7Vùlél†kÎw ¥ioþgé1Ì×£ïèGÎð‹üS‚a&˜«G×áŽòù#gùHÄÕ£ç€qÇWZä]›æ=L80W®£Y‹ùêb.\80WÇ¡~F}ý5‡r”ÂSm˜p›‹æéÑ ‰»„oÖGH¢\£yzôBˆü¥$ßê»Ö„Ê%˜§G×Ì_Jù°¾L¦.˜«Gß…O%“—ÿ<•oûáÀ\=ú(|Ô¯ŸË8|øp`®} ®€×ºÌ†sõè:ÀÄCò©ù#%QçÂùzô`âQF£¾LÜ„sõà:òª”`Úµ«åm4OÏF£ˆÆüò T—ÙÅZ¿qÔŠ‹æéÑ 1YêÌ.¿kSt5ÁÀ<=z¡6¬äñ6y™pøRê†ú2íj¸Î !.&5µómd±¨ Nm1VɶaÆæâŠÅLðA(‹j–J í#Ä‹—è€gj×—!fbŠLô@@kn¾4Cd«‹)0Ñ17Ò9AnØ$8aƒŠLtAÌÖ’|¨/Enš "=PC(“ü _ªႊE̘6)ȖϮӬ¹$Öç’$‘9›‹*1Ñ!QÆ"êËÀLT±ˆ‰>‰2j| %9û¢ŠELôCH”ºÎ¦¾L+P&ªHÄD/<§Y›¶k‘\…‰*1Ñ 1ÉÒ¾Xí®kT±ˆ‰ˆ9Ö*®“ߤE\U,b‚ê–¥ó5¸mP±€‰u²ˆw­JO6¨XÀD„:™ê:“qÝ¡NlP± ¨1TÜ]m¨梊E̘VÜù¦e˜J"£¶JJËKþè*‘гU°bèï|¢)ÕIb~׆Äè%:YäOÔWN¯¯’¤ NyÁ•õ²|j\7¬'²ÁÉÏùòY ®έ|v‘Éâ.úò9‡LÚóÇ9ä%6Yäg†\Z%Òò'JùÊÆ& ½èËPK“äu×Vr²áIB/º2ä’V·–º²áÉb/úò™±õ#e­‹O{Ñõ‡ôõºj:ÀÅ'‰½èƒú•ËZWD•fHRÍÅgˆ½l2H… tàeu@)"íÒ*I‚¹ød±Ý¬±‹p_[%ìŸ$ö¢;ŸÓÚu¿¾ÉÅ'‰½è͘Önòk]œøâ3Ä^t泘_G#¿éhÅüK|²Ø‹Î|Njá\ËŠIí%>IìEg>³ÒubR8YË™×ød±}Âk(uŒú.],eã“_ôeÐF]‹[M•^&@YðEgVæHc™Î%›'“ZY‘/n"øÅ¸Äù3˜ãÔÌ/Û‘-¿; dïΘk¯²Jb5]¨³8Žþ¬6Rôo(áb…ò˜òho›¶ô:qßµ{&|î,”ct`â¾ÈD'¦.ú´á΢9DaÒ–ÍšÈwÏÂ9dá,D“?S—àÛg"Â0 7¬ºVÍÅ<‹ç à¢M|±Á…‹yÐ1@Î\~Ñå†IÞÄ=‹èèÔ˜»oRÖXGT”mÔ³ˆŽn­Ÿ™[4h;æQÈÈD=‹èèÖP‡9@¤a²$Ï= èèÕH¬¥OëËtÕç5æcÓ•ãWÍ(¸gáZ{kÜ%W³Nª ]ȳpÎV£†ÑfÖQ¬«Ò5¡ÐmCž…sŒŽsM•ï눕Å6äY8Çø8ó i–vÈZ ò,œc|@lŽ…³êgÊlÔ…< ç ·]«¼K´æ5âY4Çà@^aÒÞŸJué#D<‹æêø#zÍãRzö€ûþÀÙÎÇYF©eñu@µÂ¢C†­“~Ò ;nx0`ˆvÛí‘;.Äø@¾CË-ë ²õ  bl@µNúÝ(œ[à`¸CãLv£¼K×?ì`¸#C;+Í Àƒ®§wØÁpaLX³¹šؼL’XZÞbÃ…fç’«4ÉˤLç°ƒáB´3{RõGnÆÚ²'è`°í,îÔq*ëBt=½† 18>ÑÊÍ‚é²Å 18À‘‡$˲eÒô‰ 1: ƒypARÀC† gÕ©~Ò²«vràA€!ÄÇ™AÙµ¿d}¬Ã† !>´¿²÷ÌëÕÃ,t0Xˆá,%Ëìݺâ‚ bh@â†ù-]è`¸C£%c®~ꀃ¡B yÓpu’¸´)– ٨Ÿx]12'¡äü2É![Ü`˜c iE]”wIŽÕâÁ„bPÒZφ²øÔÁƒ„b>Èëf¦‘2Å’?©.‚• ør¯‹°³¢VŸ+¬5¢¢v /1Ä ÊQj²ãê#@×dH-iV‡A _B”!I´‰›/˜È8"ð⢠Š<µ/Ôu?¸Ä ;SDuûÑ‚ À¸Ä0Õê嫦ˆ1t‰qQ>é'é`‡@ `bœ!ã´‰§, ˜Ö‚˜gÐäêˆå8˜Y3NWO%ÌëÃL!§¬a«ãX;Ë"C—qØ4››}Ù™7çNæö" ? Zb|AÖkC^ä°‡KŒ-d¬ý4D´,1¶ÀÔ‡¾lÖl´†,1¸ êõWóË–„Êã}²ÄCÒjS™u¹ƒC†,1 ëuËײèüÌ¡A–açJ«ºöf©QÿÐ'@K/°õ^Z]_tÈLÏ¢ƒ–^._µ`Ç‚ƒ†-.¼´¯Ê&fm–¼É–aõƒ¬«[P½wØÃ€%4ý$z}™°ãÓbÕgàk-ŠH4:àa¸£L#(ƒ[Mie$W­»€¬g­ñ2úvQ¦°•£´.ûÈ/““3®@ÆP*›Ì/íƒë2ѴȦ¥eÔ­¶c C”¿«»ß c(ã3Œ¤-˜´ØëŒ¡TŒSdátÁ¦,üHÆP**¦ƒˆÏ2„¢-’1”ŠÁŠI†–M—sIŽA2†R1X‘‹[464¯ç€Œ¡T WÌ2táÒ¿X$#@Ù¸Ex8¿kÑý¿ÌPÅxëo:rØ ãÀ,UŒWL4YÖ² *˜ r†|^Ažú]BcŒ€”‹0þ!ˆ» ÏåPŒ!”‹0¤òtÓÀRXcè£ i¼Cª®3v(8cè£K;<ÿŸ5–_&¥8‡` 2²’ªØt-eKÜ´Ý!ÃDÅ8EJ˜4”“ >Œ1”Šq í ;×–„…%ÉJÅ@ÅDe–ÜÎŒy¢C2†R1P‘\Å»æC™Ú!C©©‡zT9$c(#Ó•$”[&Kª,’1”б qH kÆ"!‡d ¦bÀbº’êÁ#ÕauŸ•2S1h‘œ¤eé¤Ë,”1¤r«A¹ŒR®ž7ýÆeÕìä2hš†É ¸”emY’“•ÃÅz1j1ù™µY;ÖÛ` ¨b‰ÊU:ï8cÀc½°[]RüJrìÅpÅÔG‡yÞ4áì ‘Á^ WíóI3³î˜pÈH`/ÛÌ^óa¢zßÕrÓÒ§ƒF†{1ò1‹ô7väñ,62Ü‹‘œç(©æXî…ÈÇ,*É@n8RÏ"#C½ø˜HM’£›[Ï"#C½øH{ÎÒ0|£Fz1î¡GVÑsËÚX`d¨£™ÏU&ÏH'9dd¨™O £ EæÅ˜…29¤ëw]Íf@1^ˆXä<):åQ‘¯s˜Èð.F,¦QÚ åeŽ䎬kؤ³KX$°C³©QB­¼K\òÅEuj/“Q´èÈ /F,æS³¤±f¬©rðÈ /Ƭvÿ8 Í8¶ÈÂ#þq(ë'Õ½/»^Ê©W•õ業Ø3øÈ°/Æ?2²« ÓÜÖ»X|dØGa³¬ —âºÅG‚}1þ‘‘ÕEÎóŒm…öÅð‡Ä9duÀŒ•KöE83²è~ÝÜcð‘a_„õ±šã®^!y³¥,éV¯¼0S=ßMÚÕ³žÊç°–áhDÌö&IªÌ36ò[¬%8A3¾Iô^{—ÅZ†£éeÈËoÉÄ]°–@iLùʈG‡¶ I#hÏ—êZùë¨KJØ2 ñ|ñV+2Í!Ô2ᦋ+'ÏXêâ°–áh ½žhW^¦K Ô2Ñ_’ªLë0‡µ GCøkß»¤ æÓm µ G³Õ¤=6ÙM¾I¾ ÿY‹ÅkŽF,¹¤ŸçëX:¬e8° htä¨UFµ Gcücö¸ÈJµü²Q—•¬e@ã)èE{¹=¶ H -Ç9–Ómk:@úоÇF4‹´ E#@9-²faÆz=‡´ E#œ‹]jº`n› -Ò2 éthß'hV µ G#@:’Ij^á°–`iÌ#uóÁŒUo–F€t:$¼&¤t,Þ,€y䬗ZVûŠ· K#œIí*ágOãð–ai„$µ')ŽÝt…[¥ÓÞ%ù=8¡ÑÂ-Òõ]é8&Ù`)韷 JÓ±ï2}›Í²‹©t‚š.ºÇÀ-ƒÒˆ&g‚|ž®#éà–@iDõÖmOÌ?5Ö†-û"‹ê椄Át™ˆ0]\z_€ÚB7ƒå(˜ÞŽÒŒæùº,G@Áü6É8É^—Ý–#ž`~›¤Ö9#Ëç ;ÀrÌquUŽö’Ì»AnËLyWÈÈtÐÍ`9€É¹F¨®Wo>ᛡr@¤ÞÉråwIß7åˆ&H½ÏrÍÔÒȸ*8Á 7‰VÎÿ* sÀÍ@9‰ö~Y]Þµ*±9Üf¨á3\=2£!8m‘›Ár„“3‹¯nþ·&G, Óå(¹Y²˜Ãâ6åÿ˜ÞjŽ+€žÏa›¡rŒÅém“ÝÅ9ôkqÎ#7Cål¥‡àMöŒi~%ù«® µÀÍ@9b Ê£,2Ÿ-wÀÍP9‚ &Ëúà„mV¹ *Gsã8ÈÓ¢;™, 0ˆÀu¸i<.8[ÃÒƒøL˜ÉkåÂVG ã0A . ­‹®p4À >fò‹TÏš9`‘ 3y=Ñyšuu£ñš0“‡_æX`øq óx]é_}å#PÃ÷LЇûK_%[a0|¸y¨Y³©%”-0|Àt@VGUˆ–¾;dBõc– BqU![KÝ#–`¯ÛswéÒË Ý#˜(P”éþ(@¡W§Y`ðÁÓøQXfšT[ `ðÀêðåÅåÊSRN`ø¡sxE Ù+Ç ß#”@nú²<ì–¾G,A%EŽƒ˜p䚥ïIt‹Ü.7![OÞ³Ñ þÉfc†EûqÔù‡£†ï•P•AøXÇj9€á{&¤ôh‰ÌöÒc޾G`:× ÔŠvq Y*ó0|ЄâŒ.ð™°"ùÊ ß#4¡4³×óYrßË^K Þ#2¡23J£ÆC+Ë–¼G\B]f‘YõÔÖÖZ `ðpÉ•eŠ{M(Ë\  {€%õÓCO¶Ï%S˜uØTdê’¦:*Acî:>ðyG&Œ)"*!µÔ+œcÙ„1E€%hÌEàdÔù'F– 2uGãÔ–þZ2!La µ¢YöÊNX×lÙ„QED%ɲDuO•so0ªˆ¨„rhkc0ªˆ°„Ì‚–›Y:a\QI‡²ì…«_9É‚ Ï'Œ,²•ê»q5µårõÈr‘žPYDˆƒ`ÝJÇȯJÒÜ # qHQ$u×u?Ë&Œ*Æ¡î4ÉžÙ±-ä¶l˜"` O»¨«ü.Ý5gÉ„E9Tžf9²¹«#Få£ä’9œþ# ㊈NÈRÌò ÙÕôê Ã'Œ,"8A´®røÏ¸¾´ôdø„±E'$)’(¿Ü.ÝVf…°EĦ³òTa¸¼Ëž„P_hB–B˜Ìá'E}G)Œ/"4¡ð¤÷ÒÏoµœÂø"B O{ûƤ§¯N!| šõüÖ¨ÓO)Œ."2¡†5IW"Ñ{] ¥0¾ˆÈÑzÈL¿|¤n5œÂ#"Ò‹¸5¤¹'Fœ°žHWŒHÁ;Ra„Ñ y õ—kº©0ƈð¤£YfµÏ”<«0ÆHGÖEb5™•ŸeÓø|õÇ*Œ1"Ö¡.6Š ±]À±J`Œt¨Šíò“#vô;V!ŒpXjÄâJG*„0"Î!é¡7wB‰yRa„qÕu€#îes¤Â#"¼l…,-^“Üœ^BKÖ=iì %¶Y7pGPŒ|"Ô!‰’4ŽV¬¨·ÅØ'BjlC]í8êÒ0GPŒ|"ԡ¶ •[bÛm´‚bì¡I]y?¶õÓ†¡ýD CíœÙ¸è«E1ú‰@¬ÔRºGªñ–¢ýD Ce–IçØŽg°Eø'âœd¹}W l(ŠÑO„9È`½iÄ}GQŒ~"Ì¡X7ëoà#E1ú‰0‡,Šn È Aé(ŠÑODºË¬E^&3JGQŒ~"Ö¡\§G&Èu;ŠbôÁNs/W¦–?'kOQŒ~²•ªãdÏÚ¨2Îzr—ã'Æ=6¡ªW)Ÿå¡”é‘ã'F?ê“QˆÒĦå'B>æP÷K’÷/§WÈÔÔcŸ€sÔGÉ÷×îÒ•²†Ÿ÷D˜;ë~³z„žÿlù‰qO€9de4É;ŽJ“Žž÷Dœƒ¨ÞÕtÖi›ã'Æ=çPúÛ´Ç&Ýçêø‰qOÄ9ʲ5jW:2üÄÈ'Ò2z›ë8©BtÅÈ'Šzb~YÒÝO† ýD CbfQÓQ7I:ŠbôÕ¿$U‰%GQŒ~"Ð!13Ȳ»âf’—1 Åè'âDõ"È™1L4µa(Æ>åPGœuààýŽ¡ûD ƒ¤†÷£dçбO:”wõþ¤-s ÅØ'bj‰z×Óˆµ·Ž¡ûD°CnfÔG\ndбO„;å£Mõ´°¸¿g(Æ>Ùj¸K«9nn†Ž: ¿2cŸœ*Ñ“lÕ]9µNzCåˆsþ™fwÀ‰2çÐúKº!;Fd7‘0Ò›eÆ„Û{/dǘ,‚&äùRóÆI3<žì‘ÈDs©ç ßÒs<®TÇh,æYàõód⨎ÐXÄKd‹†ú#®Žé‹E¸D •¤ðꈎ‘XDKäŠ&mn«6X¢c$áÚ\OÊK+*Ֆ苼D…SÓÏã ‡‚9¢c$ñÉ¢„ÒÏ–ç‡E¸D®h”œ^ÙI/k¹,Ï1‹p‰ §^šUÓŽç‡E¸D…sU¸thyŽqXDK(ó]œ1wñ(•#ÃsŒÄ"XB˜ëqØåAÑæ–è‰9°D¥T×_Œ8±Ù±c°ˆpÈ-/íz]=m8Žñ—Ã7èr¦Ôò}–àyE€C­t·Ï­Ò•\–àyŒsµÒ„õŽ’ãDŒCšHÿœpî‚e%Æ8äP/]äÏ¿Ž•ãDC¹Tq"a±¹c%F:ä ËU©É•ž˜ëDˆC–hO(¦Xfb´!ÕÒ©.¥-]¿¢Xza&F;â%Z5°7]l`©‰ÑND8hòU?;,51Ú‰‡Ñ NÈ;jb´µR='-é‚ÏL„u¾!E¤”v½âÍ#ˆo¨”.²-mZȲÄÄH'"j¥z°\ š!2ÄÄH'bùÞ¬$ˆ,/1Ή(‡Ñ(¥Þ„°ã%F:唆ʺå›Ýö䉉±Ž—ñ×Êë>][æ˜)°NLÃQ3IiÑ¥ákY#:7úkt ˜ä›tlY,'É&ËrŒÁ`"×”d>‡q4ø+B%Š·C±™±.Ù#¯€“H3Íò%¥=²ÎÀòᮀ“(Ü®Rý”IÖG 7F](‘fJ¿òŠ0‰¢í¦1£}ïøqWDIˆñC²üí¿1òŠà†Ó"Õ·Ô6 X‚cäåá eÛ¤Q4©Rµôƨ+bʶzLCY²`éQW¹³l wÕäªe$F8æZÄ+ò§Èµ¥Ž”áD”CÙVó¦í+)‰0‡ªí¦^1µEDWRb¬aN=d«u9CŠ}f"¬1b\·L$œí˜‰ÐN„¸³b;jìI½Ö#€pêóÛ®¨:âü ËK„s"¡^«‹ƒN§7¼D8'â”øñÒÚ…Zb”á J|i<ˆ’0œÄø&bÒAIú4áÐÇIŒo"º¡T«Wø$&,'‰؆lÐoô7ÃIŒo"´¡N;)ˆcù¶ã$Æ7Ü JrjaÂÒyGIŒo"¸A…/òMCËëYNb„ãµû¥L«^7B…Rb„RAp$UÒZ²v{}$ÊÜ%ª¾“"òõŽá{E¤DrIOÈ-Ó³8-ÃEö @ 1¾# H–8‚cì倹¥I+I/ç³ìƘ+åYô­§ÜZXPô½°c®ˆ•È-úAƒ„»1êŠ`‰ª/x QäèqW@K$—&ý뀓K-½1îŠx A¾ ²e˜4´ôÆè+ &j¾³ä4èêÇpŒ¾"b¢æ«[i1ǶGè+À%RK³Dö€d¶c8F_0!Ç×—6jÔÓ@ Ã1þŠx‰rï"‡ð¥¡©ñ+Ç1þŠx 5¾INeЫ Ç1‹`‰j¯$3 àHŽXK{×—þ‚8,Å1‹ð†ÌÒ*¥ÄÒõÂi†äEtƒß„P†vPƒ%9B`ßPéÝD´·t$Ç,bÜYœ­‹â‡–·¼ÄH'bÒA›|ü°ëq3Ž˜éDŒƒW<É-ÓÓÙ-11Ò‰‡ ­®×…vÄDh'bÔø.ZíT–šíD„CVïu*­Òã¯ÔÄh'"äø®Úd;w¡^˜‰±Ž8”hY½3l*Ç/1Ή=®—£YŽ–åD„C‰V¯úÚ}3Nb|à b\ïf@—¡$B7Ü ÅaŸܺŽßðãšnÐâz>Ô°âFWËG„n"º!”dAÅ€Ï%1º è1~ÈáoŽì°ŒÄØ&‚²AIN‚/ç ËœØ2£›ˆnã‡Âóˆ-–’ãx æƒiðÐL±¬D'"¥¢à2ʤpXtUúº.¢ãÝçËÔ¹Jä–ôÐõ2EјW†cìq©%•ͽRñ² Çè+â$нƒê¬$ä(ŽñWJd—Fa¾r ˆ”e8ŽñWÀJW쌤¥8F_,‘\Ò-PÃ"G¹8†cìÑÅ^e¦¹cÇpŒ½"\"»4kg/¸üÑ2£¯™¨öê éƒ.vôÇ,`&2Lz¸ü°¨^u$Ç,â&ê½£H÷æd–å"ƒEÐDŠi•ÍÃŒ£<-Ë1‹¨‰rï¨^<)m[–cP9¦E sÀ^…+Ë‹ˆ©c˜t9ä¤ÂäY.pX„KTzõþÑr:—î‰5<Ç8,Â%*½Ê2ùeK» ôÂsŒÄÆéN›4èZmGs„Â"¡Î;ÊÍaÔÝÍ1‹‡B¯^^4̸"Þòã°ˆp¨Í.-ŽÐ±ÔÄx'BœÂפù£aRq︉OÄ8ÔguCÜ€D»#'Æ<ãP Ýåà¤æŽóDŒSßß&ud=EÕ³cžˆq(Õnê1SñÊÀN„y"ƵÚQÝLʾŽóŒCn(ÉzAÈGNŒx"È¡T«¥­al÷rbÄ@µZ=jÛ †›ï8”Óaœt“ä0`-1Ò‰(‡Bí®¸šTë8bb¤…ÚUèݠn‰‰ñN:$‡ô(³¡­ ·ÜÄx'BdÙ6;J—Mzþ á&B<êÔ5‘ÂwäÄÈ'BŠóCnºÏq' jW̆ÿ;æc¬Ñõáù5IZ6ÄÇH-¢'ÒQ²µ°|¤Þ `‰‘ZDOÔ‡ Ý9eX1Z„N䢒ÆàŒ“&-ë1F‹Ð µ.çý——é ;–õ£EèTß?¤‚R^6éJ%ÃzŒÒ"t¢F<פNÊἚì¤=Fi:‘’úáÙ2G{ŒÒ"t¢R<èGé¦zO{ŒÒ"t"'•ª,/Óë`,í1J‹Ð ɾ©³ªXí1J‹h‡œÔ Q8ÉÊzO{ŒÒ"Ú¡`,7iånhÚc”áãš¼ª°(HfY1ZD;¤‘Fé¯E÷Þ–b ±9¤¹Bå9’Ž¥E¬ƒ^ß´–[Z–b ÁY¤A¤z¡(Æ?éÔõ÷º¯&ÿ9 ÇQŒ"Ø¡À[çÕtÔ£î G1þ‰`w©ðjPêÂYÃQŒ"Ö!…àOºÛÒq㟈uë[]µXºLyYŽbü¡)¤AÛ‹ã<G1þ‰P§c™AÔ]ˬ_8ŠñOÄ9”w×Ö_ƒæ G1þ‰8‡ònÒÎT':Žbüq ¤E} é¬Ëq㟈sê« Ì~@¨[Žbüq¤TSÓ5Àeé’å(Æ?èt(KQ¬|‚l¥ûÅøÇËû³Ô»ê¸ *G1þ‰À©¡tÀc¹fêØå7eU*î6Q5®p~¤§;Fe6‘ZµdŽî•Eä„N_¶rËÖvæ…î•EäDB*i;p‡¥;Fe8Q7^k±´x¬Ìy/lǘ,€&RQ²'©¼Gó°–ì‘EÐDÉX]Bd¶LÇX, &ÒP«àÚŽCø¯DÇH,Â%Ĺ"]9·†å9Æa-‘ª¢ª6IêHŽäE´D¡x©¿êðç= 'É1‹h‰üS:_&•bËrŒÁ"Z¢T<D”þÒœ†å…E´T‡_•=ög&ZšcÑÚ\ýrßp”©¥9Æb-‘€d¤Ô-<Ñ1‹`‰rq½4±¾ '2¢c$ù'9 )I¹è##±ˆpæR_-ûŠõ„KtŒÄ"¡^,÷M––%Í?¢c$£Aè¯4LÏP6ÔÄhÇAÒER£+¯KÐ /1Ò‰‡ò®œ½Rkûz³!&F:å-JŠ…›®ßpÄÄHÇÁ”¹’Õ¾àHZËJŒq"Ρº»Êpï-'lY‰QN„:䊆Z†,-ÃyÌWZ"¬©"}n×11Ò‰8‡Úî¤1´è©æWb"¤1i¢$HTŽ`Ó4‘!&Æ;ã Êᩳ”b7Þ‰ø†š.Ìp¡¥ã&Æ;à É…h8—ã&Æ;à%ª·×—íz¤¶á&Æ;àPÔê‰øuõFÃMŒw"À!K”êšÃò2Q^–šíD|ƒ$_U§ËN¨ 51ÚñBþ¬ë."æXjb´ÁRÞUxä}ÖîßÒ¦î åFDº…K(ò]ÀwG†È±c°—êK½­çŽåƒE¸D‰X|*©ÕX–c é¦ÔzLè¶,G,&*Äss anÇrÁZžÙ¦q“F‰œ³Ç,Â%y½=ícñƒÀqŒ¿ZêʾÅÚ(- [‚ ä±Uáš «mZ%9a Ž‘WÀJä™tR¸ëå@žßwE¸<‹Â5[PPÒL†ÞyE´DžiÖ°žpÐŽ!8F^,!ÉWE¤2Á1‹`‰šð&˜¶#3çHŽXDKHò£Þ»T.ÉÓ«™ Ç1‹`‰LÓ 7¡¾oyŽqXKT„Gœ¤º×Ñ£°ˆpH4ɺðꯚh24Ç(,"œŽe)ÐŽò2]ˆniŽQXD8T„e_}™.UºÒ£°pP䇂œÌ1£ˆpgjHF%éM”ŽšïD”C 7éXbÑŸã&Æ;æ’5Õ1Å,71Þ‰H§ÞŸ…BÒ–áüKÃMŒw"Ø¡†»jI^Èð#ˆtÐä{‰–ÚªA{3ÄDx'"’Cƒhµ‡Xnb¼€ÕÛ¡Üd^N›ÕK" 3Ö‰‡ÌéqGKŒu"Àéð-cÝþ[Àg™‰°N8n—rl}’C†™ëD€; ·£öº,Z°ÌÄX'rCrKhÍ fb´ŠüPÓ¡)rCMŒv"À!7$Ǧ•.;ô^CMŒvÀéP–U|õ]õ‰ÏLŒu¼Œ?«¶@*”33Ö‰X©‚<©´Úp˜ÃV$Úa²÷‰Ktƒ•¨¯’ÆØ°ÑÑ£°–¨Ë©Ïg<:šcÁ’|“ik‰$½$ÛУ°–H3¥zmùÌUï(04Ç8,&JÀ“Ä\n™JrCsŒÂ"^ž™¦I&]æhŽqXLÔ€•ž6ä¿Í1 ‰ð!î¹µ£,Ë1‹À q'Ûd1¯g9Æ`8‘k¤\\zN¯(h,Ç,¢¦«o8ŒÖ±£°€šH4­"HËPI-ß²¡°š(O ûȯZšc41àzNi–Ã+Ó1‹x©C8Í‚ùwtŸ¼e:Fc0!Êå ÍÒ*ٶ瘎±XL¤šNwXÊ¿¦c4A©¦Õu½£:FcäPþMÚð GuŒÆ"È¡ü»I ¯¬Æ‘T“a:ÂbâP¯Ý5g¤%VGNŒy"ÄÉ¡I›5´äÐ…óDˆƒ(æ`¡šc'Æ<ãZZËF=½Â°cžrå‡tí†U²ŽóDCÁVur¦Õ]wvbÌcAî¬ÖV‰Ub_6†fb¬1é!9K¢4J6Ž9f"¬1ª\Óåd}É”[f"¬0 "ø×¢JÓ#ræ›ä®á\ž•ãDCÙv(ß°%Ú±cˆrgÙvThÕ›m,3Ö‰ ‡ ‘lÞ-_)S+KLŒu"Æ)~åiÊ’ä]*À,31Ú‰‡ Ѥ9k¶ÖRcžˆqæº2¥¬€•\Ÿe'Â<^ÍŸ%ÛÊ&ÒÕ*Ì ;1扈©h8%ñáI¯ÜæYrUdåRÝ&ê¿“xõ6ãà=ËtŒÅ"`"Û”š¿ê-+–é‹EÀDýw6ÝZ Å2c±˜È6ÉÍÉ5’¤ü{%:Æb.‘lJ/ý«ì³DÇH,æ™iÚê«F­9žcõ_å§-![nyŽqXDL¤šÎ–ÉÇsŒÃ"f¢œ$‡ õ<Ç8,Â&RMƒüj™ßIØÐœ§°ˆ˜gõ7ˆª¿šcS2÷tŸ ~9’c ¢oÂþeÇr„Â"^¢|¼´§p˜©a¹À`+¡É×µIžãE¨Dù÷5.[KPXŽcü±š\ǧ ÇqŒÀ"¾é– ÄÒ0äš®Çø+¢ùV7,–è™õÖCÃqŒ¿"º¡ø»kP zƒã8F`ÞP¯Ýê’å9Y]èx‰qNÀ7¤‡ô¯RÛ––åD|CÁv•x~—Ök +1Ɖð†äÐÖÞ5· •/¬Ä'›ŽäõÇJŒq"¼¡^»ªã X½bX‰QN„7ÔkÉT"Õáh‰pN¸35TCr=pޝå%Æ9ãP²ë×]xÖÑ£œqÈ É%¥azÈ„¥%F9äÄVÙCY:_W•[Zb”‘•[]ú´jÊÖÑ£tgáÍX[åöBMŒv"Ð!?´HÄ•óôŠ›“ší˜CÙV=sÕºŽ˜ëD”Crh.gô—6é©a†˜ïDˆCÉvØ^uë¿ã&Æ;^ÆŸÙ¡©yïG &F:, g¹T:É™Ò —CƒÇT1…nÑÅ_9kàD{GrŒÀ"\"Í4 H¬XkIŽ1XDK¨qÍm­‡&MË1‹h‰,Ó(à‘¦«1-Ë `‰,ÓÐæ&*(,É Xy&™*ø–Ó®%Çd(ŽñWÄJ¨ñ£®T*¬%Œf(ŽÑW„Jd˜FéM/’sÇè+B%´øª¾ºc뮥8F_*‘aÄUÎȶÇø+@åYù]ÔwôšKqŒÀ"TžY¦Ú·¥ûd™.$ÇÌA¥ºý±Šp_\:aޱWÄJ$™*È»D™X†cìÀRÇqž+î•£.Ç4üƸ+€%Ê¿»äæO2³ôƸ+â%Ê¿ëKÿ:î¨þ^èQW„8$™’8ÓÚr…–Þ{„CñW×Ô­›Ö`,Á1òЇÚï!ºªœ{&‚Ü£¯ˆo¨×®2oÚ±òJKŒr"¼!'4ÊädÅNbGK„r"À¡X«)š _GKŒr©ÓoõHÐÒ,MNb„ñ •Ú$E à³ã$Æ7ÞP¨Ý„÷Ö³*ËI„p"º¡N«ëxKbXB†“áDp;3BuãS)ÓZRb„± eÚ$µá5º )1Æ è¦ƒ8mµù+‡:Nb|Á B\}n]ÚõP†“ßDxC‘vž®ÊþŽ“ßDx;ë´‹‚¬LwœÄø&â2Br±N=.vGRèÂIo"¸A‰ï2½\',¶œÄ'À2B‹Œ÷*K=%º à%¾Hгl´×ýLWF"lãÕû™Oé"rËHŒmN*–eØ«|žTB·2*›:›(8"ÍNB‰Ë}ºm®á¸ñVÄIä–6û!n¹WDJõ‡I·±gäÒ­î–ÜsE¨DrI7ZæžÓr¯!7Æ\)‘\ªYÒùÜü娑WÄÊ3»TƒvÅ<Èc¯–¨÷®¯åòŽÞu¤Dj hƒ‹« »1æŠH‰J僧€%Ö–ÝsE D^Iw<­È 8vcÔÅÞ­-kÖ°ôƸ+%2K:þ+Vs:~cäÕ^9 "å¢ÚkްW„Jd–Æ:l .‘7üƸ+"%tøñR@MªÃ ½1ê P‰b/†V„ ¥6Æ[(QéU%Ýùå¸ñV€7d”f¡ô•c6F\ÝPéÕå•e7¼žtiÈWD7$•†ræÌ\j,íȉ“ÜsEpCmv­”—åÒ,GIn"²!´ 2æF‰·ŒÄØ& ³I»fÔÍûŽ‘ÝDlC&hˆXövu²¡$Æ7Ý ÂW¬c$Æ6ÝP•ÕÍ­ 6[BbdÁ eY… œ×è ‰‘M·3T[±l:%v|D¸&bdø.8»Ì8ûÊG„l"°!¤ë– ×VZBbt°Mqk›$dz²sÒ3£›n¨Éž i ÃHŒm"¾A…‹Ïíí†/KHŒm"¼! 4ÊòþçQ:Fbl•Y=ôdY4µá‰ÑM8Ê}ÕÊatz»Í…’ß|CqV÷jæo<ä:CI„n¼x?Aê;®ºR£›”?rÃo½¼Np0‡`Í,txTæ+QäÝ$ŠW,°sôF¨+B%2JƒˆÿÜ0M(]Ù1WJÔx“RõŽÜsE¤DFi–5ËŒ#-»1î P .ó·×í9vcä‘òÌ)U2Yf%FKpŒ¼"R¢Ä;Ã%dríøq—GJd”¶šÅ*÷üI:Ü’[$®ˆ“ár‡N1Ôë*-¹âŠ8‰„’3sêKnŒ¹"PžÕ]9¤xÖŠ’c7Â\(Ï”’„Þ¤…ÇnŒº"P¢¼«GàdŒÑc, »1òŠ8‰¤’æ”—s‘!8B^&uó74•”’¥7F]'QÚ=$›¿â"GËnŒ¹N¢®;VõÙ¶[fc¬‘íL&I¿èqÛ†Öe`ƒß$±œÔ‘#¬lÈ%rŽË2jÁÆ‘¡¬ˆk¨Å®¢cìýw\Ĩ&"²@Iê¶ ®±tĨ&4ø!C¿´[=-1ª‰È†$Ð"ÕÑÖa–Ž×DlC5vªWX4w|ĸ&‚бºiAªÒñášn¨ÆŽz%®¡·|ĸ&bÛ™ª3ÁrüþˆÐ…ÙDpC=V7ãÍmÏ’!¤H6ÚÒœ›h ‰ÑMD6¨ðC@i™åFOIŒo"¸¡«§¯­ƒnvœÄø& ÛYÅuÈóŒjì…’ß„;³@ã.6%d.”Äè&‚ê±£pɼâ^/CIŒn"Ê¡«Ñ]@ý[JŠ|1*\õ’pô®å$Â7^ºŸy 9p¹Nîu;®á¤@8-5‚ÊV÷C»¦:ý^½…I~à²ÜB%ªº³ÿM ±äƘ+"%òI“ 3Ä•Üq„üÞ%}…wÜÆx+`¤ÆÍ¦{®ç:´ÚoEŒDA·r¹âYO7²ÔÆh+`$’Iº®pÆ–MÇl„¶"D¢¢›d*"w¿|jc´ ¹¤AJÒ3”®c6F[$u]ö½àHÇlŒ¶"H"›4iŽÈ&Yjc¼Aò,깑¯lÃûÜÆˆ+¢ä™Oª™”;¹1âŠ0 ¾KoϪó–Üw˜Ô±œ7Áæ¹féqW„IÈðCÖ¸eƒQ·>~cÜ9¥á¥¹n JKo„º"N"¥¤7>—Ë€Vv/ôF¨+ 2JéeºË‘#.‡p¨êÎâæs;Ê2£­€qH&MâKó¢»³1ÞŠ ‡jìª'§ï/Í:blAi ¹¶¡4L¼Þᛈq¨Ænš+bÛr#œˆq:ˆI.Óªý¥i +)Ò‰~(wì:qqÄDX'B²@îóªÎ31Ö‰‡4l¸ËfpGÃL„u"À! ¤!;#á☉ÑN8Ôbg‰…éhwšj"´ñ ‰ Ev=äwjÕR¡ˆoŠ]»®Ï-È ñh©‰ÑNÄ7d7¥À„£&F;àP]忲À¦d/ÔÄh'"Ü™ ª“‰ùš ºP£r¨È’¢ž™uÔDh'Â’AI›1bç ¥&F;çP”$1IðÔÄhÇkø3!4é«N_,51Þ‰ )ïÚ=¥qÆZž= Ȫ#ç%º‡L”xGé¯Gq9–# Ù¥M}Fβ\`°—Š…eÛÖ*ï½êHŽX„KTwwmS;+É’#°ˆ—¨ïÊBþ…:÷·$Ç,À%rKc]¤“?Qú†côÁŠ\®;,–zú†¥8Æ_,‘ZÒôLn× ÜŽc ÑÞz-y#mÇqŒÀ"X"µ4WômIÇqŒ¿"VžõÝz¥`QCZß5Ç,b%rK‡UÒL¨c9Æ`+Qá]\HiYŽQXÄJy9 ypž„¥9Æa,KñpÓQ×ZžcÁù¥¤Y-”ŸÏ1 ` I¾Ë°ä^—µu–åƒE„C~Iî?.=–Ú*£ Ë1 ‡"¯ÜN˜Ê5IRã5Ç,ÂÒK«È…IorÇø+ÂJ³[-³åØM)ëYZbœ`Y¡Q G¥]BB––ë¤Cqvyéª21ÇK„t"Î!1¤‚h:°×!žs:Œ™Ê%ˆ–û[rbÌù¡Q|ZîzûìĘ'"òCÕíÆÜCŽœóDœC~hÄʱ¤+þ¯ìĨ'¢г£€p)PŠ(7ìĘ'‚œº}t¥t'r²cžr¨ÐÚŽQ·!^ɉOD8Ôg÷:ÛY’.±ÜÄx'âÛY­w.– ì‚êì…›ïD„;SC5»U.Í’Ù•å&Æ;á È7Y2Ö½M›ïDŒCnh–'ÌG71Þ‰ I¾¨ :ž›ïx!ß‚(ñ¦ÇòÊ5§Ž›ïDÀTI>&YT9­šÍÜ'=ÚxÖfP‘î5_½Ý-áKtŒÄ"dž©¦¤£"wæ9¢#$!u_`kÒÓ-Ñ1‹‰l“V-&¬?·DÇH,"&’Mƒp|C]úoˆŽXDL$›tv>-º»Þ!1˜¨úêq]3rM–æ‡EÄD®i“e;Ó¢§²8žc$Ê|ú›°HØ#1™ ‡Ë*Y éÅ“†æ…ÌDÑw’ÛY˾QÙ‚kXŽQX„L$›fõË£hiŽ‘X„L}u/x9“Ij¾Wžc¹¦Qò%Ž -Ï1‹€‰²o’Lå´ ~9žc,ñ¹¦Q×òµD Ó1‹p‰ªïVû«œæ&ÛTÕ1 wfšêÞ˜r6M¢c$ª|—Î(¢'U¢c$ N2÷NµÌa¸ë£†ç‡ˆC¥v—éfÙ÷^ýÞcˆpH é5%¹]’æsÌÄX'BêµØ¹ëe–˜ëCvh˜ÕqÄÄX'‚ª¶£ä¶&­yfb´A9¢Yr6ð0ÇLŒv"Ê!E4Ö®ŠöÆy†šï˜CŽh–ï‘Å4Ž—"éD„C†hM\e͆ÜÌe‰‰±N€8$ˆ’v<Ö8bb¤!¢\×…OºŠÖñR䜀o(Ør°oi½è8KK„r¼]ʵٰÜ{&7C8Vb”áíÌIä š¿w´Ä('ʵkr™êÑn19i‰qNÄ7$‡TngWÔJŸå%Æ9àP®´½ËK’ä––çxVkW¡ GJŒq"V*N»øeþD©6틈Üö…D {¨„Ý^5·~ ÃöŠPyf™ê üÎI¦“àyE¤„—û~SZt.êŽWJ$™FÁŽIGp„¼"P"É$»‰Ê©¼rı%8F^'‘dšÄ/GFÁ1òŠX‰âïªXµë‰ –àyE¬D–ihí’ÍÆŽàyE°Dõw’æ–=n Ž‘WDK”µÆ’eÖë&¯ÇÈ+â%ª¿õÔâyZ&ÅGp„¼"`"ͤ§Á”›–„Ñ.Çè+¢%j¿µê3—ƒ£ôÆiKq„¾X"É´ Àè¹ –ÞuE¤„™Mr0«£7B^(‘bÒÃsÛvWGp„½"TžUß²ª¸œÆ'³lÇpŒ½"¼!Ç´H +D‰e8Æ^àÔçËM§c¡³AßåޱW8¤˜t9êˆÕœŽá{E„C¡Võ— ¹Õ +1Æ ø†”ЬmX´låH‰1NÄ7jqÅøÒq )1Æ ð†ŒÎ—Æ¥­>º’cœo(Öj‚?ÍzÍ·c%F9ÞÔñUŽÎÑSú,'1 ئCXR°¥Ö w.XNb„± !=äqÄ/Ž”á8p;kµ¸ÊÝ\–‘ßDpCFh‘…£®ùöœÄø&"œãÚôXiÇIŒoÂ!%—†òr”Äø&BªµuïõtLºvßQã›qÈ -ÒŒ‚¯2–“åDˆC±v)Õ•!{ئw—V"”9¡Avgÿ–½Ò£œoâj—ƒ4Én\KKŒtœ€?Ë´›œH~àØÇKŒtT¢H+ˆVØD²³Ž•ãD|;óABìØeâX‰0NÀ7uúm¯C¸·¥Z–“ßDxC:¨ºCÙ´¦Wµ[Jbté YYmÝþ…‘áD|S JzÎИôxWGJŒp"¾¡H;Ë})øXR"„Ù EÑ%顎”ãD€C•v˜MP©Ž•ãD€C6Hgq<È••ãDtC…V¢?{“f+1Ɖð†\¦„Ë[r»e¥À8ÛÎm¡Ð²©xn5Ú +1Ɖà¦^Ÿ!÷Vé¹,–”á8pSàÚe{̸*B8B"d¡ É =o™p¥š%$F6ÛÎmiF¹>UËðãšn:„å2äòÙ 9ÇGŒk"¸¡@»–Ôß°ÌZÓ³tĸ&¢rAº€1a‡ã#F7Þ¿‘“[Ëž.½6ÃÒH ˆng ´6ëX0W·4Â("Ò™s©”—êEED@‚à­¯rRš$@-‹0†ˆp„ ¨œ×1"‰mI„„#T?—§cW\¶ Âè!‚ò-‹àÏQ£‡F—h6-]¤ {-…0‚ˆx¤ƒ8²%!3ëH„D$èÝC*ËyDd©#F”q™d=ñýæH„‘DD%AeßÚ\f`Z5DÂH"À’æ2ȳŒRçu<Âh"ÂÒY­ð‘»CvÊ9*a4p i—Yö:'ÌŒ-“–ˆ˜¤¼Q.:"zû•IMx•|V@½–aÖ,œ£FßP•#†ËAu©•@O*a<îL»s,*–—0žˆ‡hÍËÔA“¥%–KQŒÓQœv ™¥e] —0ž ‡¤Ë\ݰÌÊ%—í¨„1EÀ¹KÕrS@ÕòÂ%„'"0)è,ÇKabÞ)¹P ㉈K©»2ò¨ÕgË%Œ(",!S2*àêY„–KQDDB½r´YP©wd˜""’úé®c&óbÙ„1E„$äJRÄ!ÿY ŽMSDHB®d˜H£V›0¦˜©zfP•õãŽLQXÒa̳Þ+v$Sb¨„ÑDD¥³rYVÎ¥¢&‚ÉR ¡‰Jg¢¤jöÜ]RÜpLÂX"‚ê–µ¤<×í·+ê–&!,0IgÝD¶']Åéx„ñDÄ$¤7¦9PT49ügØAé,–-âu÷ºô½Åî–Î ‡@ êõޏG`BPn?ÊÕ‘z‡!‚î—âÐësÓ¤ùGÜ.¡BXÜmÎ4ŠcZ,ühÀ„š^½Êz.Ë=–³¦×àŸa{„d%tíbô\V‹ÿ Û#’hÇ'¹/jÈÍ•ãvþ3pP¢Î*×1TŽôÊ+0€X‚šž@~¹†5=C à#– /±Ê¢ÉY×Ûç¯S=©D¦ –ÀG4Ajb†v­³[ øá"s“M©e#Êa9€à»W¦gv"ÕxØ&]I`)€Á{¦Ki¯d é(€à{Ä¥39±ioµÜÄ…¼GXBeO®”¯õ)ì ðA ¹‰$«Døª¥ï•Ôïë5Öó4ac¨c†î—PŒeÐÆ+÷-0tÀ„äÄ,k‰ÛLÁ÷LÚõyt û ëªîåðŸ€{Ä%d'–ZaNX¼ìðŸ€{@%TãêÁ>ÙÓwÜgðŸ{%¤RæéØÚ=*–ºGAJa—T9`ðDQ¢hÝBX•à(€Á{DÔÐqü -sÀð=` Jhuÿû<—:™$¢-0xX‚”‚.i-±/âÄRƒ÷ˆ&—ZÌCcÒQƒ÷'È) eóK7ñ_€Á{@$–z”xYÊ%{¢-j3HŽh‚ÚW¶ìàÚ]µ$G09ó•Zóêåå¶$G0Aí«öçšä’YŒm†ÉL5S¥y²€ÖÂ6Ãäˆ&¨}ÉIRŸ´]·&8A¹ª|È\Ï–®·¨M9‚ ÒZFÝ(äP› rÄ,öš«š(è¤GYÔf±Õª]®-jK-lLŽH‚z•\©°Ì{«WÜf ¡U¦ºsg:æ¤ 0p3PŽÑÙû(Ç؅逛r,Óšeé[¡.½CØà6Ãd¯Ïé»ÞŒYNdÑuÇ· &,A¡i­˜3í¸<ËÁ6ƒä&˜¿¯ÂYå°lQå¶$0A¥©¢m·]Óµ"0Áü}‘e…¤} hDŽX‚B“¬Ë›¶·;Ôf°³÷$7v+BÈfp‘D5;ÎQ§ØÀä ›áq„š–ºkÈQ(‰Z‡Ù #–hϧ]6ˆ“®a² Í9@ ªM²`½ÜœÚêÞ f@ŽP‚É{=åb:F½ÕËb6ä$˜»WtYï@›!r’s9Ô "YO´¨Í9" &d]êA›ArT‡$®Ê`ÉÒ=Û ’#” ¢S̽¿êÙh¶$ÇðÇ|[R½%òu»¶…mÉ!üµÃÆU×1€U ´Ecø££§? 2ŒZ¢0GN:à+òrg †F@¦îhêö<½Àà,ÁÐÿÚós½²Xz^'ÉgІøÇ$Y&­å¿ºÉ-Ñÿ(ÃÈŠõš ×Ó>O e(Âÿœ!§ÚñØÝ뀖h TaÆêƒC9VOä—Z¢1ü1GNrÜl¹ÎUR¢h ŠÆðG)¦®š—aÅ‘ÇiŒÆðGõd.Ú<Á¿ Ô2ÑYòZ+CFYZ5XËp4F?ª' 5eŒÃZ†£^µ³äEvOã0‡µ G#– |"ûQËÉ3›Þ¾h°–áhDÔ<ê11S¹ C3™kŽFP'+÷®WgOºqÂa-Ò˜ÚJq,7+Ë$l’F ÀÜ6ɽTÿã-ARç¼väÅYÔ2€‚‡\gPôø¶XË€4bf¶r¯åéúl FÀ̶,ÕœË&jÉè8¬e@!SÛT4Ç´o³®Ÿp`K°4 À9µ­ýu :SspË 4"ŠR}¶ùG · J#`n;kb Páà–ai@=êÉ5sùWÁV‹¶ I# LQ·`gœuvåЖAiÌm‡zäß©4Ü2(€âÂ.gëdÒé¨H†~P]Øk•M®r£CH†~PP`›°@×$¿·˜DŽ"‹ö]wœ8€dèãÓÈQ´Ì8´ÉÀ/.ŠKÁË©P\Ò£ @ø‹Q{Î#+IæÉÏØæ‘ˆdðã5)jÔb£Þ0d ’Á_Œ[Ì#%& Zè]+"þŸÅLRv"”]à#þÅÀE] žé9íㄳó,FŒq‹©¤´[P÷GYdã‚G$[qW­ ŒdøçUR‹o¹ëORymkç# þE @U@â{ZMiZŒdø!yüz1UFÄEÏG±Éà/Bæ‘u ˆ,!Ô#( D2ø‹€™d’5ÓøÒ}W„dèÉAK7íàh‹ý" ù^K»Ó±Z5wÉÐ/†-¦‹øÓÞvY„dèÃVC2·lªõâvïŠAH†~!j1ýKo¦}št£ŽH†1j1¬÷ŒÔ¥ï0’á_ [¨”ZÌØ6ª‹9ŒdøãV]ìÑKª^’#þŸÅ°.d¯A9èr<ƒ‘ Cà"_OŒËÃ4ã„l‹‘ cäb(Wõ–ã´Pj0’á_ \ÌÚ=}fWeápVˆ\¤Íå6»ìƒXfkqVŒ\¤ºëå1Ù÷Öv3ðØhÅÈŤm­ÂtØ vÀÆ@+F®öX‰ø²Û«èV¼+°1Ô ‹\wÜeè™ËutØjÅÈEŠz(KU¦²5gÒµA6†Z1Ø´ÇF9c§Ì ôRl‹l µb°i ÉáyZQNqÈF`+Æ’Ô5¦rÅ€½æ ÁV 6L·4cŸÇIã3ÈÆP+VÌ‚cÛ†Ü-²1Ôr‚äœl rÜ[þ4)ó8`c ³-ÝZ}ÌvØhÅÀE’ºžalÕÞwÀÆ@+®v~þÍràGRÖX\c˜ãs-=å¨l”´¾Å5‚Y!l1ÕJrànþ E÷ Xcã™åzÄÎt¤„5ÖfŸÅú+ÙRuõ¢zƒk ³bÜ"·\Âo±+Ï‚A¬³˜hÕõ%SÙ¸ªWË[TcˆƒåøUtĸê8:Tcˆ Ó£zEÔ\Lò•ÕbÅHò©Q&žT¢C5Y1Ò®ÊoÚÊ’;ÉTcˆ# ó£º;±bŠ„·E5†X!Ò0£™^º44µSb 3š¡ö×X&ý’a³8Ä@&†2¸[IÁMå|É 8 " # Sš¤ ñdqˆL ´smÒ²K-Z·'[ "(C ùÛY}ÙÚ”Æ C™kȻ֚j~nsHÄP&Ææ4£ä#V4; b C yW9sÌQ6ëéŠ'1”‰q†¬k•0Ó6/š«sHÄP&JÌIò7å~:é/‹D e<埓Iª\$&8m‘ˆ¡LŒ5,’²Wïzõœ"21Ô+ÍÁ[Pg+i¯C cb a 2Õ5Ã릻 Œ‰†u;ràÑy}ŠÅ!†11Î0IºYnÖd‘Ã!†11Ð(­Ä*dô¨F‹C db a 2×eL¥Š)xhˆL 4äI¥"š?ëQ-1”qò>jÄïùÏ‹mm`ˆAL 4së@Nµb¨§b Y«¾ fò†ÄÄ8CjSŽ‘)r C eb !·¹ÖñÝÚù0‰Ê„HÃb9\°xšžg±ƒáB,FIF;ηÐÁ`!FÇ™B¬_”¿Uwè`¸ƒ2¤k+”,v0`±â&‡†•ËødãÅ 16B¬2•óéµ^jÁƒC ðm]n5sÒóæx0`ˆá/ç™—^ô² Bx …X3fs)uè ƒbh 8Ö”ñÖî§tØÁp!†ÆY™,9!C°pe±ƒá‚'ésÙÇ*iˆuÕ¼;0Ä@CÎO6óg‘ƒ¤x0`‘væüöòñØﱃàB4déö2ðuAîT²ÐA`!ÖVÈpÅugªA 16¤«÷ Lå#ßZè`¸cCr—;‹ÊúI;0ÄÐ@’n—”åÖ.“°àÁ€!Òt{Y©8íåò‘š<0Äø@pO_qβņ 1<°"b¯«ÉKÅP²ú;.Äè@’Nþ86,f4ØÁ !Ç™¤Ë}<•˶ôÆ  bt ¶KòôÔ,ñ,šc| 6Éé‡9Ìäe.âI4ÇA2LÛ;ã~ð$šcx uÈÝ_iDzTñ,œ£K#ƒUIU°-zÊè5äY8GFql/ù‘i?É^™xg±ýX¶¢ Ra.ÞY0GFöj—­"+vZ¸€gÁúL`åWçÄ>cï,–£CŸÕ¬: JIϨ°ñÎbÙÓá)IC,Èì¸xgÁƒù«EvÏ/ÇeÛß%àY4Çà@þªÁTV†­#X—ˆgÑÃ"x¨r°ˆ?Í:™€gÁÃY'¹í©Òƒ„· xÍ!çÌІƒ,ûj+e]x²Ð‹ö¨ì2•ÃutiÓ…^ô@”?êØLeÏ›ÞoÓDŸ§œS.²cÔí]„²è‹ÞŒ ʦç’%lG´ÊÂ/z32(õ4ø;NŒ·!ÊÂ/z4Ô¡zN\ˆ²ð .Šl[(ËL„"m€²à‹Jqf¿ÐüI‹NyÑ•! G©Nm;–Øèd¡½ Eür;ë³áÉb/z3u•Df…¡Ì¡>B|†Ø‹® )7èZòû‹l|²Ø‹î¬¯;Á3!OšésñÉb/ºê‡uå\N«• ¤ ).ÑûWXEÁì85Î… —èH,$qŸ°êBŠ…‹uAüd E9…Bæi.œH¨DDZa.H™±k‘sY\8±P‰ˆÌûR?g_Ûu—pbñÝ:]ºá€]S,^¢"PÓÓ^üD„—)/ÑÏly*á°!™ébŠ…Œgˆsò~h…wÃe&ªXÄD<×sÜr %Å U,b¢¢¶KgÆ´6ªXÄD'ÄÜ}•Ó†òXKð6ªXÄ/<3Ü%'U „ºŽÅÄ”ç€gåê†KžÖÅ –蘴/µKvX. X´Dÿ»¤£Ë»p»› (/ÑýPl’³ºËÒ1=ÃÆ‹—èÈ"×ã?³ZõPBS,^¢ÿaJ[ësm¸œNa€¹xt@j=S`ÚJÉ_™6 ˜‹G§ÁŒö¨@^œ^72Ø0`>SZ,=>4½íâ€øxô¤kÇûyЧ×líÁÍ£ß`:+[MÊçÈš] ÌÍ£Û`6[ËÄÙ….˜›G·Aru”ï.κ¶ìj ææ‰ÏÒÉX§eúªçâÙP`n\ ÑZÄÈ~Ÿô¾ÌÉ£bÖ¸k¶hÀÜØóòè4Èa΢Ñ2÷ zް‰æåÁm0s<¤È2X c9yðÌÉ:”U3R¥°qÀœ¿rPºø.óËà4`ì¡î‚M+–(XÏen}ù®<±):{‡JµžËÜ2º æ.kÝyq̸¥Â¹.sË8ÐHTé:íLoãºÄ/ã8cúrÔ¥Ç4Ue}—9fhÌ^ê…ry.Ëœï2¿´ä¬ìÿ¯Gaˆ·¾Æ)õ%T¨½ÄˆL6Œ¯_Š#ùÁQ¦•—ì™õ7æKq ‘ü_+’ä¿ê‘ÆÝ˜+Åa>•}]üœV}—s7æJql®/¸®ºÐùs$*§®— gÙ "5çlÄ‘â@_‡¬â6z§ñ5ïGq‘fœÄ•‡;®¬¯1? £ |Øë¦ï2ºÕ¸ó£0Êà[]‹}”åþ2½¶®Æü(Ž2rufš±¥^ëkÌ‘â8C;k•g€tÎÆ)ôîV÷m”ºä¢» ‹°ñÁ[wpÖ½lZ£2>Â| Rg©Þ¾h‚×y ñ€8>˜õ×´fî‹Ðl½„¸@ÔU†±¬"•L£õæqx0_Ÿõô‘„{­—00XpjÊz:Á´3Ž!¶>ÂÆ?ŒÍ¹"d¨1hžÞ¹þ8:ç;Õd0ÎrZÛ‰zÆIˆÄѬåéZ*ÕŽõæq€AG}p?Ú;¶dÜbŸBw•Õeõ4‡©Õþ/Cˆ-ô)&Œõ$øÜ~¬°v#ˆ-ö)t×&sñeP%ᆖ[ìTÌòÆZŒ?ÊÙ€gÇ– œ½S,‰+ÝW,ùº .¸8B˜Sio«Êz7¸läb¿bú?Êd¢”j¤’`F—Œ\ìUL©ê!+Ÿ-/¹Ñe#{õ"sʯ–ÙªQbF—\ìÕ³Ž3Úýº&Ç ëìØ«f¦p®ÍuãÁú:ö¤@=è#wÙ†©¶ÖÛ±'0S(¥•ü2{n@Xg{7?¥@Í·Õ#Ž–F» ëìØ«åu5Qþ3îywÂ:;vë)¥SeÁ¤ÆÙa{¬»•òkí);ºa{ªõ?—k;ô°QÓ‰¬ƒbO€ß†òVdÁÓ‰¬ƒBOÀ/™j–[7ÎÛ¸Ï>dä¼éÊI©¦;g™íCÖ?±#ÀI‹Ô£Fœ7îúõO숱¥\íS¿IK0¦ I÷Ä~Z²&"ÿ‚®3±ŸÍ>)¶h]õhî ¬twŸÍ>)6òbÕ¶lmôõ³Ù7ùñ?AqÕ=tFã¾›}Slÿ祋çO¥l[$äÿï8•E(¥î|â?„Hü—ÿùëÿü‡¾ÿú›?üö·_õíûŸ~úYþÂL>ó·?þô«ŸÕƆÞ(KÕÇÌ0¿(g¹¿¿ûÍ—oÿžJHŸ5”»wK¡ÜÂ*üûh¢Þ{NJ²F/×ÍJßž§ ã×r Û–ßûÓï²Ý4jàÖ¹yYÊU(3÷ofŸlö%Xv–¹å>µFeÅÏöÞ*k³²¬kòVKEÛwVl³Õ~k¯Ë3ßZU£Ñ-c½àQÊÈ­²¾qVÙŠ$gVçCGÝÛÕhë•cï=ì´Õ嬜âÇ>u=dw5ʰ£©ŽEŽzkUÂ÷ýPäQ*è}EWü=t–zÁòÛ|ç—{–ûú<¥. -üoík]*ÿî·ÊóÙÊwFÊ*3ÞX½ù­£Þ­ýΨöàâC ÖÞ÷à›~?Ê~±Ž_ÐÀÉ€ªÊ{ãÔ›@Ï"»Û9¾w'îõãôÞ1ø`Í)O¿†·Ž1õ·\dטÇÛžk÷¬hÕ$k@¹ÕRzüµ'߅㺗DÛ;«9U«ÕY• ÄÛÏ8*Gô¿í±e­¯öí™¶z³Ð£µbÑ>:Ÿ›+ç¼u„u«ß>{G(gD½Ç<,[‰¤½x¹µ*Åη=v ÅU÷ò]yö¿˲Ud|„Gö“BTÅ2Ïy¬å\·ù¾³L3bª:½±Üæ÷ÐyÔ¸*NûÊ=hìÊ.ý÷èyÔßÚj‹—ŒÆr–Õ¢ÜåiB TN3–eã×Û±?Äe,ó¨\-·áèP|@í<Ó>îÄÄVYoNÖæFKxþR£)a±MmºB"h1ºÚéΦ##²Í²a QGVd£:RÛà>©/3ÞüROe´gº¢"m5®Òl_Ü×^ó¨M_RxjS£®¢$%F}AñÆ9ûz"›uäžéЇ7¹ü³o´ ¯;é@éF:xA¤6]á0‹ÏlÖotÃ\;ow&]Ѱ/ÖŸoDú— ؗ䌺š¡j»ì†®ú’!ЦõC‘@;°ÝuDí‚läz¯¯ vépçB}ý œ^úá5L‡1ìJ¡ô*Ÿ^Ã1þŠHñ/p¤˜ÝH…^c– Wþ‚ B@íúúa©fåW3÷\íîôùÃk]LÞɇMUcUJW»ñPZ*ŸyØ.½Ñ ÉÝÞh73R£ñàéV]õ”¬úúÁIé®~ð´«¾‚h®eº‰ }èF1”æT`3oîç%Þ4çFBTw­~n¬º"uEDP+°ê«¯WÔêFF¼ñ¸áYV]!¡u”ÄùLG9œõ•‚'}±º“ ^ÉÀª¯|ÆV}µ°ÔÔîâöF.øI3Œº‚!LÕª¯jªàJɰêJ¡ÊÃcÄf «–}á  [•ÀƃeW=¨e œ”fkÙ•BÎ5NKŒ_ otDÂ4ôe[z£"Øô–72boÓô )µ¼QA`Ûz'$ˆ"€e_Jí#Kñâjx£%ª$ØvÌnŒe_LHFa­’bq–·râòð³ôC)v”¥°} á F7Âñ@³êk«šQ_B8N„Õ†°œÝŒºb¨î´îþ«ºõ4ÄùP_3ðFßi#4`Ô— oúôF28¡Ñ¬º’áÍ ÷ƒW'ͪ«¼FmVÝJÆ;_îIˆöL?ù0ò?J>¨ÕCIѬú’ÂUšU_R˜\ln…L¼ÇÙ[u…0JLku£(*¿ï>Ž>¥(¬6h–7ª"2<,oT…0|ùÉ&ư/*RlyœFkx£)fød>^-ïDEäøfÙ׊På—§ÝöÏ®¸¨ƒu2†w²bÁòµLÎòFX´ð{­Î úÂB \£5¼"¦E#ÄXÞ‹šm¨cRü×X~FXàáa¡µ”.eÉþTX¨Q_X‡U_X¸ŒA³ê+ G·jÔCÍ ­›o`w•D{¨+$ô¡¾ÀC]!„ ¬úJ‚÷Ç’°ê6!q>Ô× ^£¨Õpxã 7ÂÁ+XõR x¨[´BF}áà% ¬-yP«§ÊVÏ”¬úÊ¡NjéÙXÝhWˆhVÏ´ƒZ=Ô°úŒv(U× ¼fù í`‹ñ°üŒv¸¦î›Ýtˆ³üfy£vUò¯ 2G o¤°ü”t¸ Þ("ÔòN:ÄA³ìK²ä Yö¥C(6ÀîSÊÁ,Uh–ŸQ¦NÑ,?¥ôá‡Êa¯ûÇ*5ºQiaÕWže`ÕU_ÕêF:ÔqZ[¦³Yu¥êJ}¨_ÇÒV½¥í¡®tx×!}íàôlºÚu´C{èF*8风R8êfÞ9U_)x壮Rxçõ7JÁë ±z¸Â¡Yõ•‡€;¥0-H¶«¥à–6«~Ý¢–HöÉyÂRðK šÕ£ºE³úLÝÂê µüLÝÂé X~"Å`ôì>•a0úB-?—a(mæd-?-æÉ~J&\×ÂòS2Á¬,h–72!ÖšågdB]‚¬~J'˜D³üLéBVõìî7?³Âæ&ÔòF4¸Bçœê¾ºg¢FÏDC³º †9šQ_38ö…Õf¨ó‘S34«žfhuWOz9«g"¢Y=JH4«ŽªhuDÄùLO4´‡z¢õDÃùPO$´‡zÙ<Ô×ÜÑn$ͪ+ ÞDÂí~ ›rhVý n…h³êJ‚IZ¸¹´ð±Ù×Íò±h–S°{^lh–)p>ÔaýöÐ Á»äá\N Úž¼Ý¼­>7£>¿Û‰i3êó»§SµzÈï°êò;zÆïjõßaõdåB3êÒ»>Ô¥w<Ó]˜Ô¬º†w_ÚϼëÕ¾"ÀCÝ´Á»u%»o¿ÑNXÀ¨/\•D­n$‚¯è5«G{*›U_"¸\¬n$‚ÛPѬú{*­°P›¾DpË*›QW!¬2á›üGõÂ*?9?½Q>Ò¬º A–ìK°êïðjD­îöHÄÅÍò3Ëͦ…fùt ?WK¨æÉþäóZB³¼NQ¨aOœ}f[¥YåÐ,»Ê@z¨ ¶©ûÔWnÅŒž)=R0z¦ Ôê¡2€UWà¡gÊ@­n”gX=R0ê*}¨« ðÌ3e«¾2xÓ?ýÔê®4x7ª7ÊàMƒúÊÀË õ•¯eà ju§ hÞ »¦²õÏZpk`usÖ‚ÏCª¯ ¼šP«›ÃÜ6fÕ•þˆ†fÕ?l!Í PcÕ—þ`‡fÕ?}Á­ûlV]i…Z}jû¤9¡YÞHƒ¯vÃD3û”.0¹µ|¾>±Y>^ŸØ,?±>±Nÿ ’\ Ÿo¢l–}µ@ÖR4Ë®ZЇž­.X†©ž·ÚW .e £µàæ>Íê‰\hF䬞ɅfÕßñðî·úúÁ1 ¬žé‡fõD?4£ž~ÀCÝÕïšs#(Þ|ú3A«® h=Íê‘ €Õ#AÑŒº‚â]?ß) “ P£;AÁƒôNQ¸Åͪ/)\‚V7’ÂmÑjV]IágE°êKŠ©æÝÏzI³êK ·ð¢Yu$E{¨¯ ¼ÆiV]á5N³zt€¬ú ¯éhVŸ9}Áì m–7û&ãZ X~~ߤ¤Ð ?}ƒûÁ§'0ÀðN=œ")“µìÚCýe†=Û.¹”È]nՃе¹®"Û¬‰=Ze«g+›U_<¼û­¾xð| VÎ`hF½¥‹í¡®VЇz¹†öÌ£\C³zT…€Õ³*D³êU!ÚC½u x虀Ñ3%«G¹µz–[hFOr Íè&·`aÕC!«¾pK `u“[p‰fõLÀª+ô¡î¹í¡>﻽"ͪËû®Â£Úwé†fuCûv)g³úĉKæP~êÌ%³s³YÞÛxYW¹:ËÏÛxÍoÀ°[KhÝd¢†á ç_°}øè¥%ÃUºÝÇè§jôòaõˆòaôh3¬žíclVNHhVýsÝdNnßã>¬º”‡º”¯=ÙØØlú'$ðñ»QoúôF¼¿›l× °z´0V&4£'å‡fôL"ˆÕC‰£GFʰº‘>» «¾Dð³~µº‘žìaÕ—ž¢aÕ-?„ ½ZÝ”\Ñ¢YõËnCH³ê'ÜŠ XݨwŠe³êª¿ ¢Y}æôç:jÄ€ZÞɈ¨?`x£"¾îȉfØd)' o2dÁF³ì+‹¸Sµö•“Jjù0›1ÿ¶᥅ØÜ( vjôHX¨MGWà™žŠhÏ<9˜6NvV£g';è+ô™®^gúr7øF.О¹9ŽäC­ FÝd>ÓÍÈ3Ïd€ÚØìÞ 5ºY–è YºÜQå'q1ºaþÍE £>ñ»S¥aÔå}wª´ÚÜÝ÷÷oÀ°Ïød×) »ŒON£V»;‡ç¶ã°`wC÷Db¨ágèÞè±{Föë8ÕË/±=Œž%šÕ“ŠÍ¨Gøxèæ`E'?šÕ£ëšU_8t†Õ p ΛUO´‡]ñ«Gç37£mÀûùîÐ$:î7òÀQt³ê§œ¨hVýT›ßêoƒ´š§Ù<ÑÍèѵz¨"šÕÑŒéX=«64«GJVÏ®jV}-ádA³êorpÛ`us „ãøfÕ¿Âm¹lVýMŽåaÕçCq>Ô oZÝ“ çCyp>Ô“N¯ÀæFõÍòF|ì™ÍîFÄL,Ÿ-A\—Ï(ùËHÀêÑùFͪ2â›ßº‘«~zÁ`Ѭº¹…·¿ÕUo:ãNNÄ4F³ü„œ0ùˆfø=aÖjÀòÙÈuŸ*W=ÚÒ£g[šUGPœu3 úÐ\ð` «®\` «¾\ð`©V77R»5ÞÍêæFj>…Z=R°y¦(`õHQ¨ÑCE«gŠV½ZzTŒhF2 0zTŽP«gkšQW?¼q;ýÀÝôN?¸¥ ÍêѺEX=Ô°zt\B³z¦ÔêF?xƒÕ³L¬:ú¡=ÔOà¡nâuÄ@{¨Ïý!»«.÷%«~Q!nî„á ËÇüÃOñÿu_,oøßEÊ–²ÕÓ«`ôììÃfõä§fÔÏ'¼ù©àp­Yõ‚õfÕ.¯ «nB¡=Ô×N{4«®ð:V}=𦟟 ‚fõDÀè™ hVA³ê <ôH4£'‹›Ñ£EŠjõpKc³ê+îwŠ€»Ü"ààópK#¬ž)‚fõ(£Ð¬úµwœ#¬žÕšUÿ%§#šU­‚Ë^Àª+ÚCͪ_lprV7"ÂÉfõ‰Å ‡­O‰sÇ ?%"Ìš†fùTD4ÃO‰ˆëªXöEÄ\Çá†y*;n4„K ÂèÙ]Òͪ«!ÐÀª—TÀC}Íàêͨ/lV}Åà²îͪ—CÀCÏV36«gŠV}Åà2ú°ºQ vUA3úÌjF³ ²Y~b9£ÉÀð3¢ÁžÝ,.dhvÏ5ƒZÞh·8{Ákº»tÁ¯~€ÑhðÄ «¾hð$ «næ!P Zݨˆ7¿u##ôl³c³êŠ„ -`õ,­ VŸÙöp¾ç¡Y~B%˜s©aø©]×™Íð"árje3{®ÔòF#¸¥½û­Ö;à2}0ºÑŽßšU_#8eѬúÁñ6¬º[ÛC}Ið¦AÏ$¬žI‚fÕ[îØê+€7=t£,ì7£¾pé‡fÕ—¶*£gwE7«`uC³êI<Ô“í™'‹šQOèCw’€Ø$ =ÿPÀê‘"hF¬žmbhV614«¾"p:V϶D6«Ž"8êஎ€U_øìG³ê+—ýhVV*ÂêY¡¡Y=Î4˧y>Ï4˧ņfx# œ–€Ù"0— ìù_§»Ûü©ê0z¨`Õמ·`Õ×n¾ «¾ÀCRÍê™P«‡zVRÍê™@P«gFϬ 5º.±Ð¬úÁË Xu‚>ts¤ch=R 0ê*y¨«·úwâõ°º«,8¹ «~e#ÒD°EÖfÔ?1‰áåÃë`Õ=c±=Ô•x¨—ÀC}ö÷-5«.ûûÛ!šU—ý} V7û¼Ò€UŸ‚[cѬºû¼ÐP£OíS°B–}Ö'I‹fÙ§}²¬–ÖäOκ£~· F7Ôï¹V}ê÷ä«›rE5ê3?z´,±Y=Ú·«gûšU7€‡Õ`Õ'zæ0zFô°zDôjôèaõŒèaÕÝùH\­º©<óˆèaÔ_c`W/¨Ñ ñã¡>ñó½!þ7CqCüo|冸ß8ó ñ] «.óûRi³êr&jÕç~<Ôå~<Ôå~}¨Ïý!à «.÷‡Ä ¬ºÜ彩UŸûC:V]îšV=îÙ5êsHžÀªËû~H³êr¾_©«› Þ3 Ï·½W£»E…–-`Ôß—àV6&ÀªOøx¨®Á›Ý¾§Jµº!|Þc}¾ÇC¶!ÀêÑ6„fÔç{ÇÜ0zTû‡ÕÃÌ?¬žeþaÕØëC7{Ëܰy² ¡uéÞ/ƒT«¾ÇC¾?êÓ;mô»Óî¹!÷7c|CîÜ o¸ý¿ßpû€¸áv<Ôåv<Ôåv}¨Ïíoâÿ†Û9ÝP{˜!©UŸÚÃ\V]jV=jNúÔî'Ê0ê2{,°ê2»»üF}b÷ ßcÌV۱ۆͳ ‡ÍªOìá›Õ£Œ`Õ%ööУ³ ›Uÿ,C ,0êî/lõx¼=Ô?^àM£jÜŒ:<~>ôhå?¬º7"¶‡ž,ÑkF=–ÆCOú7›G—5«>M»juSÁ÷·;4«o·‡º¼í¯™„U¸Ï‡:DÝêóò»OëóùP—‡ßõu¿þþ®A]bnõˆu·ñµ‡þ¿ÎÞ¦ç²#»Ò›sHfú~ß÷µáX 7d [ªî°²R¥˜Å2ÉRuÿû>çÄzž;™Œ,B‰û¬Ø±Ö{ïÝ+Î×êNAËy÷×ô¯çÝ_ù^aÞýüOh=íþJú´ûéÂÅ^Ëy÷W&Ã/Ì»Ÿ. èõ…‰÷“õÎë}«#_˜w?EF—ßöÂ:ý–Óg=ç~òáŽ>ë7˜ßòú,¦[0ëÙ5˜åäÌêõÁ¬gÒÏþiÖóh0‹iÌzÒ fõ°0¿é‘}é´Ú·²ž!?­?é´ž ?-¿G§/ÍŸNbé´œƒYÏŽ÷Á¦ÿ.¿àjOÇîóÃÝ;:-'ËYÍ•b–3c0«wù³´£`–—¡ŸŽB÷ðZq:-'ÁYÏÁ,§À`VϺ fùH\0«'â‚YMf¿òMYÏeŸÿå}a*û|ÙÿÂLö ›0:­&²ë눹~iâú¤†§ÏzæúEe ×rêúEi ×êîr@ëÙ Ðbº*Ðr~ h=AZÎP€–öï•/½Vo½³œ¥-§©€Öó åDhiæZÎL`V÷[ Z]*ÐzUÐòŒé/н“ µ´œ\ZÏ.€–Ó  åüÐz‚´ža>J鵜bZÏ1€–û¿˜á赜vú‚Ï:Jàý“Âù…‰ЯÏDb¾0óüаå‹Û-§š_ûÌÖ¦©/¤o§óÖéK¦é“iÄN_˜|zɬ^ëɧÿ„«×bò´š| ´˜| ´˜|­&Ÿ-&Ÿ­'ŸþIÛk1ùfýÊõ_ùk¯f#A«Ù¨@‹Ù¨@‹ÙHÐb6*ÌÚ(ýÊ7r5=ú’3úür9_h1= ZMOZLO‚VÓSÓSÓ“ /l~þ»½œ¯ ´˜ž­¦§ý–é©z­÷ÛÌc§/LWçÑëþi¯Å|U _Ÿ¯Ä,ç«cèO¿Ã«¹ª@‹¹JÐzjúÅ4sû[æ¦OÓ·¿inúôçJ¯ÅÜT åTtû[¦"@Ë©Ðr*ºý-S åTè·ME·¿a*óÛ¦"z-§¢Ûß2ZNE€–SÑío˜ŠÀü¶©ˆ^Ë©èöÿk*¢×r*´œŠnËTh9Ýþ–©Ðr*´œŠn_žŠ ´œy-gžÛ—gž_ý)ýÖ©ˆ^‹©HÐoqJÕi9óZÍ<·¿aæùåÄG¯åìhå”ú¤vû›¦¢¾v;=·^_zŠô/~Óé´šŠ ´œy-Oý⇟^ë©Ðr*´œŠZOE€–S ÅT$h9ó€YÌ<ZN4}áéÌ¿ò XÏ<€–3O@Ë™Ìbæ)Ðr¢ åDS å¼h9¯´žW-ç•€Öó  å¼h9¯´žW-ç@Ë üÊ/ü Ðb^)Ðr è Óȧó½–ó Õ<Ìj)ÐrÚ´4-}a¦øä'>]ß>ÖÏ ³œ­&A+Kh9ZÍ‚Vó å< h5ZÍ€Vó€˜Õ< h5ZA«²/hUö­Ê¾˜UÙ´*û­Ë¾ UÙ´*û€–e_ЪìZ–}A«²/hUö-˾ UÙ´²€–U^ÐªÊ ZUy@«*_ UQ´(ê`–E]Ъ¨ Zu@_(êŸÌ³û7ôqýË:­«< e•´¬ò­«< e•´¬ò­«< e•´¬ò-«<˜e•´¬ò­«< e•´¬ò-«<˜e•´¬òô…*hYå-«|@ë*hYåZWy@Ë*hYåZWy@Ë*hYåZWy@Ë*hYåZWy@Ë*hUåƒYWy@Ë*hYåúU~ûi=¾ô4Î_TùtZWy@Ë*hYåZWy@Ë*hYåZWy@Ë*hYåZVy0Ë*hYåZWy@Ë*hYåZVy0Ë*hYåè UвÊZVù€ÖUвÊ´®ò€–UвÊ´®ò€–UвÊ´®ò€–UвÊ´®ò€–UЪʳ®ò€–UвÊô«üV_zÆâ/ª|:­«< e•´¬ò­«< e•´¬ò­«< e•´¬ò-«<˜e•´¬ò­«< e•´¬ò-«<˜e•´¬òô…*hYå-«|@ë*hYåZWy@Ë*hYåZWy@Ë*hYåZWy@Ë*hYåZWy@Ë*hUåƒYWy@Ë*hYåZUùÛår=Jîj×̲† ZÕpA«hYíj¸ U ´¬á‚V5\Ъ†ZÕp1«.hUÃ-k¸ U ´ªá€V5\̪† ZÕð€Ö5\Ъ† ZÕp@Ë.hUÃ-k¸ U ´ªá€–5\Ъ† ZÕp@Ë.hUíj8 e ´ªá‚5̲† ZÕpA«h]ÃïhýÂ41ëhYÃ-kx@ëhYÃ-kx@ëhYÃ-kx@ËfYÃ-kx@ëhYÃ-kx@ËfYÃ-kø}¡†ZÖp@Ëк†ZÖð€Ö5в†ZÖð€Ö5в†ZÖð€Ö5в†ZÖð€Ö5в†ZÕð`Ö5в†ZÖð€Ö5üe­Ÿ}%f]Ã-k8 e h]Ã-k8 e h]Ã-k8 e hYÃÁ,k8 e h]Ã-k8 e hYÃÁ,k8 e  /Ôp@ËhYÃZ×p@Ëк†ZÖp@Ëк†ZÖp@Ëк†ZÖp@Ëк†ZÖp@«̺†ZÖp@Ëв†_Ï×·ëKÝ,+8˜U³ªßÁ,Ë7˜Uõ³*ÞÁ,k7˜U鳪ÜÁ¬ 7Uݳ*ÛÁ,«6˜UѳªÙÁ¬J6Uų*س®×`Vå̪Z³,Ö`Vµ:˜e©³ªÔ`V…:˜e³*Ó`VU:˜e‘³ªÑ`V%:˜e…³*Ð`õ9ey³ªÎ`VÅ9˜um¾]÷ÇÓ®‹s0ëê hYž-ës@ë hY¡-Kt@ë hY¤-«t@Ë2 fY§- u@ëJ hYª-ku@Ëb fY­-Ëõ}¡^Zl@ËŠкdZÖì€ÖEвjZ–í€ÖuвpZVî€Ö¥вvZï€ÖÕв|ZÕï`Öв‚Z–ð€Ö5ü¹Ö5³®á€–5в†´®á€–5в†´®á€–5в†´¬á`–5в†´®á€–5в†´¬á`–5в†Ðj8 e ´¬á­k8 e h]Ã-k8 e h]Ã-k8 e h]Ã-k8 e h]Ã-k8 U f]Ã-k8 e hY÷ÀÛ—/l’€YÖpA«.hUÃ-k¸ U ´ªá€–5\Ъ† ZÕp@«.fUíj8 e ´ªá‚V5Ъ†‹YÕpA«к† ZÕpA«hYíj8 e ´ªá‚V5в† ZÕpA«hYíj¸ U ´¬á‚V5\Т†ƒYÖpA«.hUíjøåí¶\Ü¿þëWç¯ÿýö¿ýêôõ¿ûêvÞò¾îw3]^Þ^¿þ8öïï~‹Úóu¯ [ûøªÞÎ/[å¶ùnëðòz<ÅšãûK„SÚÇレ×ýƒ·ÿùuÜ/¶ËX–dŒ´÷1ÂB„¼“¡ë˜ cÍÑ8&Xª0u«¦h*[!Få« ¶3}Ék†LÀŽá- !I‚.bž 'a ¯1Aï=8ÉÓkÓou·­¬D”• Ê:º•¦Œïáð³{Wp¨Ú—*ûŽB©ªÈ µ/oöí"hïËŸ}?¶„Ývcþ˜×˱¬5ƒm„`Î¥ "ÂÒ ]Çжýù¦q?Α0{nßë—‰ùËåXSLÚö ñYýV}Ód°­¶Dd– 2Ï“¶°–fè:Æl¶U“ca«¶Š f÷mañRKáÃqõ/ä}3·—ñzl™Á6ÚˆÀŒ 0gŒÒ ai†®cž©gmFÂlÌ‘Å<¶¥-ó¬ˆÌÃf¨6ÚˆÀŒ 2Ï“¶°(Ä`©¶®£YêÒV‘Á ; óøÝ’†!ÃlÛH#12@NͲŽÓDu|œEªþ¶Õ•ˆ¼Fi&Ya íß5Ì'c&]¼rDÞ9Q2 Ë©”BŒS-f¨6ʈÀŒ 0gŒÒ °$Ã':ú µU$Ì8asN)”6N:ˆÈI 2ØV["jKµeŒÒ ai†®£ 'c¦æq*Åór9Õâ™;OÆxnODÎý™ÁöéëéÔ`N¥T÷qª¥àdLQE2L š¯Ž"ZƒŽ¦:t5Õ ÒTƒÀD“ÁöivÔб{è:€‚¤€ 0DOÑïælè©æ £3 ]™‚tf pbd°}šm|캠 )€€"&Ý“ IÕ„4d!¬!S’†LD lŸf7!»‡°(I  H†IA·+CR5!½JãUT¤W€7!íÓlTàc÷ð%¿‚$‚$˜øw—A6Ë_,J)¢€À’Áöiö'¢;„ $AÉ0)èKø!©šƒë÷vý®$×ïA¸^O†jŸæÅ;„ì $)€€"&}å>$U3„X¶C˜e»’\¶‹È2 ¶OóšBvaP’@@‘ “‚¾`—TsœÜwµž“ÿ®Ö½<ÀÕ:Vçd°}š—êœÜ·{Nþ;€—HAD(’aRÐ×é‘d3„X¤C˜EzIb‘‚E9lŸæº„èa(IPE2L ú:vHªæ ä"6„YĪˆE,ÇY´Òßöi^ÁB‡ÞaKvå8<èÑbßÎçEN5oídt9ÑVz8'"§êÌ`ûd3„ì $)€€"&}EI6Cˆå8Ѱ¯ËlXŽƒ`ùÍe6¶OóZÜ‹dèÎE4 P’ €$("iRЫu™‘\%Ãb‘«hXNÖu6,8EdAjÚ^gS‘q™Œrcx¡,@È;ºŽyÕ:IK ¼X5›ue)cå)"+S3ÐVYE/3„·c¨L(ƒu„5ílP 3¯œ‘÷ØRWVÎåx8çzìN»d‰,2 ë 41>‡eœî]Á|ÂuRe$´r¶SÚ9: ËÓB'T+AšÊ20hÙ=´@aR!édè"Ú©„ /Ö(ÐfSÂXç€`DÛJ«È`f†0w µÉ„¼“¡ëh‹¥ÒffY¬È<Ë™ÒÆ‚§cAdÚ¥ÍÈ`f†0w µÉ„¼“¡ëh«&µUd0sÕæ®kÔæÊGDVFf Í¸Sä`VómÅB¼“¡ëh˧I˜eù"ó,p&mY‰ÈÉ ´K›‘0#Ì£´Á„¼“¡ëhÛœ¥ÍH˜e“âìB–4ö)EŒmLû§©0ƒ•ÝÃÚÔRN‚.¡-'YD •%š¬Çn’5ÖxÏÐþ´K—‘ðJhg€’rNÿ®¡­K—‘ðboVr%Œµžˆ¬Í@[eÌÌ採6Y€w2tmÁ8i#³,Ø`Î’®´±è‘E!l«­"ƒ™ÂÜ1J,Ð&ïhë:Úni3³lžÊ<Û«“¶lÀâÕsùGÚ¥ÍH´‘mŒ¡6Y€w2tíbßÒf$̸Ìæ\ˆ[Ú¸TWD.å5mµUd03C˜;†Úd!ÞÉÐu´Õc][‘qU+«7®z=wuM,k?gmhwÛ\ëê1×´ºzÌ5¯cõè%±®9Ìj‘î]A»n£TUdÐ⊠hsME 㪠\•A†j_ú–2#Ì£´Á¢\Yùœ¯°lÚXT–¶Š„Y–¥2ÏÂuÒ–¥­ˆ±ò5M•eeŒ0VÆ¡íÊXa®ŒA°&CÑvxKXE/öX¡MØÒÅ.­€ìâšÀ6ʼÇ#ļÇ#ĹÇCeÞã€{:HÐU´­ÞI™‘ËV«Ä³;IËv­ˆlçšÁ¶Ò‘Y2ÈºŽ¶æ/m̲â†8Kò’Æ¢]ÄXÓÛŸ&ÂXó‡•kþ°vͯ.ÖüXã“ KhkþI–‘ÐÊŠ[ÖcI>ÉKvgEoÛêbͯ¬ù¡5ÉbÍ€5>ý»†¶æ/]¼XmÛõx cÅ."+z3ØF™kþ0sÍæ®ùÕæšk|2tmÍ?i3fYmÜõxicÅ."+z2Tm®ùÃÌ5˜»æ/m¬ùÑÆm]G[ó—¶Š„YVÛ2Ïz|Ò–{!ÆŠÞ ¶ÕÆšm¬ùÑÆš_m®ùA°Æ'C×ÑÖü¥­"ƒ«m˜³/m¬ØEdEoÛhsÍf®ùÃÜ5¿Ú\ó‹ÈŸ ]GÛå<ŽGL»ümi¾o¥±¿þx>»+ØO{Úå‘=|3ÐcL»üÇñžèÊp=® pŒÑžvùEÈ;ºŽy—’–@x±¿ovàK{ô"²‡oÚ*«È5w‰$Cx;†Êd2XGXÑ.R)aF‹‹DàÍe$¥Œ MDäB3ÐVYE®¹+!ÂÛ1T& òN†®£]­RÚŒ„W‹ÀœëIJWœb\‘bÚj«È5÷$C˜;†ÚdBÞÉÐut·¦6#a¦[ sÝšÚtk bÏH¦Ê \çÇ¤í “I_çÇš0}ŽÂŒ„—n-´qkêÒ­À‘€¶Ê*rÍ Éâ ¡29utÝ­•2"íA·VÒpk pgd ]ÒŒ„`Î¥  ä ]G¿ ZmFÂÌ» ÃÜ» ÕÆ]иë™´•V‘kîH ÂÛT&²N‚®¢ûÐRFbøPˆãCK>4}g2ØVZEÂŒ 0gŒÒ òN†®£W+mF`–3Z2Ï9¯ÒÆY±BŒ³ff ]ÚŒ\sÃA2„¹c¨M ä ]G÷Øh«È`V{0/¶òØ ðÔd Í¸Säš’a0¯1ÐV,DÀ;ºŽî±K˜á±aŽÇ.mxlxj2Ð.mFÂŒ 0gŒÒ òN†®£{lµ 3À9»%Ší ÙÞ0md 13 ÞŒ€,ä0éÝ%´‚’U‘Á wkü{éŠÁÿoÛÈ2b$´Y2ÈqÒ»KhÛ“,#ac.ëX÷IVÌ=Ì?ª.#0#Cˆ3„ÂàãP¤{ÑöJXEB+®\Úñí% g_ˆáüÍ`[aDÂÌ ƒ¸C L9EºwÍ<+lмÎOh…¶ÆVaZ_±Æf°}ëOh…Ye8ˆ×VrŠtï"šs.a´â[a±-]X_ÃÛŸ&ª„•Ýió#Šñsvôîü›mž4 §˜V)W;i®×ã1Åö·­("ðJ‚°N~51~CÎ]@óÌ%ª"ƒnÒøÙR…ãGlÛÈ2ffÄarÈq(Ò½‹h†yf$´bU¡™-aØ]±Ãd¨6ÂŒ„™q‡P" Šë"š[.a ­øTiÇÉNÂâu 1¼°l+ŒÂÈa 09ä8éÞE4«\Â*2haR¡-a]1Âf°0#af†AÜ!&އ"Ý»ˆf)ëùéO?ÇÔñtôÃòÕÃÓ1„Ža´»mž®¥Ì£Ïµ”y4úð”>9]SÉa\$Ý»‚æ*KUE-´±|% O("žÑ ¶¦« 3]e˜k+Õ¦¯‘$C×ÑlJi«È=Ï æxˆÒ†É !CµÑ¦M 3mJ˜ëSÔ¦Qg’ ŸèhN¥´U$Ìbd'1i‹Õ1œˆ hª,Na8•ÐÖª(L¯sB†.¢™•V‘Á «íX‰Ò…Õ+bÛ(Ó¬„˜f%Äq+*Ó®ÀŸ «hgk'eFB,çI%ž3©“´œk‘s±f°­´Dd– 2Ï“¶°–fè:ši)mÌ0 0ÇQ”6,, ª6MK˜iZÂ\×¢6m | ºŽþÜ{µU$Ìxâ<Ìy&½Ú|j½ˆ<Õž ¶Õ†o 3}K˜k\Ô¦sU!C×ÑÎiªmŠÌ<›æžoT›g$E䌥lg\#af†0w µÉ¢ƒ¥ºŽfË&mFÂ,–HæñL“¶˜*1]f°­6l̰e0Ç—•6ŒœºŽæÌJ[E³8#ˆãœJÖJÄp^ö§‰0œYXéÌÂZk¦.¼Ì º„fÎ&YFB+æHÖÃ;ÌÙ‰/mìÕ‹[ù& ‰2¡e÷Ðv…IÉÐE´ xJXE²e˜Ëg Íõ5%,×ßÈå9&°2#!F‚ðv•ÉIÐU4/3)3òlO–x|Ƥ,NN… ÕFš˜‘æŒQÚ`–dè:Úvxi«È³=jXæÙª.mlfblv›Á¶Úˆ„™ÂÜ1Ô& °$C×ѶÃë]Žy¶gó¦F¶ªë]Žlf‹Èf·ló.G#y£ò¦FÇð]޲–dè:š´y¶‡Ë<þpÒ)"Ó ¶ÕFfd€9c”6X€€%ºŽæAK[E³8@ˆcK&RÄð˜ö§‰0ae÷°vuÁIÐ%4:É2òlW–õ°ˆ“¬a!=‡iÛê"¯$€v(Y0Cúw ͧM¯L5òl$†7ª„á²DÄ…‘¡Ú(3ffsǨW¦Â‚W¦Â’W¦vͧ•¶Š<Û[Íe5i‹Ë*Äpaf°­6"h#ÚCm²K2tͧ•¶Š f8$˜ã¡J.KD\˜l£ÍH˜™!ÌCm²–dè:š—y}m]ÞJé5¯ />í—wh3Ò,'ãñ¼yØîØ–‘62ûÕ×ÉȼžÆ«ƒ02£=™ ¤<tÝȨŠNË+/¨†ö¸aMy¹5óîkûâYJ“‘hÂÅ éX — \ ‡¥›î~»¨§$ùrßÐòeÀƒµo F•¯Ç}ÛpºsýN©ªÈ-·*Œ+z Í=%Œ+z é[n‡h"ú2_a¼Wfyk.ÄóZÝ–÷îr|¼•×ÞYÒ—,QÅ?œ]ã«Ê5>'CWÐ.z)U¼¤^¼Ô>¬y뽪rÁŠÇÇõ,Õ=×·”®Š Z\ñm®x)a\ñ"BÒÉÐEô%¾Âx±/Ìxpˆó¦`…ñ*áçMÃtw5¯°ŠÜrÝÖ÷¡íú^a®ïAH:ºˆ¾–B˜¯™3ÞJ=xûÖjtùZkŽ—^Û9ë&F¬À-ˆg!5(×B Q.¤È7 :ÿ¾*M#R´Æ2FÒÇ2gÒt¬‚<:ÖHÕ™5S‰2RYEÁ9«¨ÒÄ* €„Ó¿ h;ù%*yeÚÙd/UÙ…÷øØ¤¯î¼c^Y¹å*ò¼u>´}ë¼Â|ë<I'CÑ—P KDfY¼@<«›–åOÍ‹ÓÕ’Â*rË¥ÔY?…¶ë'…¹~!édè"æ½`^CÿqŠlhÿ–gvk߯yÒ±OK»ö‚ 1vz+m^u?EƤc†-~¿NcŒvíBÞÉÐuÌKI›‘0s©æc­¡0fµAwÚ «Èi~<¯´Çªr|Ëø4?ž·©Ê^ã¤ÊHhe·RÚÙÏœ„edzcG´2ÐVXEò2d2„¹c¨M ä ]Ç|ßí¬ÌÆ=¯Å|Ü;kwÍbÜU[h—6#aF˜3Fiƒy'C×1/¦&mFÂÌÅT˜»šR›Ë)YO‘ M•8Í–¶(L $}š=Ü„¹zR˜‘ðr=Ú.¨æŠ K*2ÐVZENózeîj“yŸæô6m. Ôf$Ì\R…¹k*µ¹¨ ÂUU2ØV[ENózeîj“yŸæô6mÙmœ´Ùد,æcGsÒ–=Ï ñšë$íÒf$~ƒ aîj“y'C×1ïš–¶Š fìWœÍÒÆžg!Îì(&mÆ"§ùáÃ0¯1ÐV,DÀÙtÌ»¦³6"0û•Å|ìhÎÚÆžg!Æžhe ]ÚŒœæ‡sÆ(m°!ïÓüðá¦Íu½ÚŒ„+ýw©¯4×ú ²Ø§š 3pš>,kP Hù4?|¸Ëbi_²ˆ@‹Å>¬³Ú/YYîsœõ>ýi—.#§éáÃE;”,ói~øpÓåê^]FÂËõ~x»àW˜+~,ùÉ@[e9Í–¹c¨M ä}š>Ü´¹ÀW›‘0sÉæ®ùÕæ¢_DVýd ­¶ŠœæôÊÜ1Ô& ò>ÍèmÚ²Û8i3fÙ¯”yv4'mÙó,ÄØ­ ´ÕV‘Óü€^™;†Úd!Þ§ù½mZà œ¯çóqŽ<æônÉOÇ&n#íÉшˆ_1ƒícŒÉÑìåbz@ïÖ¾§üc´'G#–dè:¦áYÇü€^y³%\ÊØ‘Ma3ØF™‘ð2Cx;†Êd²DXÑœZ «HxÅ)Éûxv[ÉŠÏòp|˜Ým+‹²È€¬ñT<51>‡áG÷® 9µRU‘G®# Ú¸¨†ÏfÛ3ffsÇP›,@À’ ]Gsj“6#ù‘ÊÅ<.jÒŸ%">Ì ¶ÕFfd€9c”6X€€%ºŽùÊI[Eó#•ež«j&m¹îfBðt‰ÇüHåI›‘03C˜;†Úd–dè:æs³6#a–s2ÏÉŠÒÆÙ œ® CµÑf$ÌÌsÆ(m°–hë:æût'myÌOU–ù¸‰v’–»l 0î­¶‘f$ÄÌâ ¡29€# ºŠf±'eFóS•‹xìï$-YD ´l+ÌÈsÆ(m°K2tÍb—¶Š<ægËû[Ú0È 0Ðd¨6ÚŒ„™ÂÜ1Ô& °$C×Ñ,vi«Èc~öp1ý-mäB¼æ ¯ùÙó6"af†0w µÉ,ÉÐu4‹­¶)ò˜Ÿ= sí¯Ú4È"Î\Úò˜Ÿ=\ãVd0« ƒy¶b!",ÉÐu4‹=i3ò˜Ÿ=\Ìc'm1È"b Í`[mD`F˜3FiƒX’¡ëh»´Uä1={Xâ8à’†G1,´ýi"Œ@XÙ=¬@]0At ÍbO²Œ<ægëá€'YÃ!{<Úþ¶ÕE^Ií P²`†ôïšÅ.]yÌÏ–7ö·„aEÄ@›Á6ÊŒ„™ÂÜ1Ô& °$C×1_t5k3ò˜Ÿ=,ó\5iË%S…—T™¡Úh3ffsÇ(m°@,ÑÖu´íƒÒV‘Çüìábk?i‹ù/ÄØ0ƒmµAÐÆj“X’¡ëhÛ¥­"ùÙÃ2ÇÚ—6Ì¿ˆl˜Á6ÚŒ„™ÂÜ1Ô& aI†®£Yì×g{öðírºÌÏÞÚã*RìoÚ“Åm õb¶Ø¯—Ür‹ýò’›Vb±G{¶ØAÈz$è"ºÅVyÅâÊûxÌvÉŠAöp ´Ý1Ô%ËHda±‘5Ю&,6‡eœî]A·Øª"-Ì-´±¿% ƒ,"Ú j…Uä’›Rb±Ã\‹­6-6y'C×Ñm¨ÚˆÀ s,biÃD"¨#¦Smá¥å±¡/õRóþ¹iCAÈ;ºŽnCK["2‹”y,biÃD‚Àd’AÓ©¶Šä• ØP˜cCK6T¼y±bÓÑNô–6"2ËYV™ç<ì¤-gjEŒ¹&ÍIKwh3@ ƒ‚I'CÑ]¨ÂˆÀ ÿmb ÃCŠˆÇ4žSiÉ3ip¡a® U›.„¼“¡ë˜oü™´Ynº‘ynË™´ûv 0në©i—´Šä÷‘ÞŒPÊà BÖIÐUt]Ê‘Xœ­Äã}'eqÇ pÏdÐM+­"a†¿†9þº´á¯AÈ;ºŽî¯ÕFDfq¶2÷-m¸ãB ÷lÜti3’ÛBð×a®¿V›þ„¼§Û[ÎM[ùR´ 3m˜ë}Õ¦;÷lÜ4ãN‘œ¼Å_¿äd-þmå¯EÀ;ºŽîAÕFfq€Ç"–4L¤ˆá1íË©0qÌxЗrÌ繊èAH9 º„îAKV"ÒŠ”õ°ˆ“¬a!=‡igé2^ñ ÐŽ-YxPrNÿ®¡{PuîÞøÃ†ƒ‡i§Ê*2˜éAÃ\ª6=(y'C×Ñ=hiKDfq0Ç–6¤ˆ8L2è8ÕV‘Kn&Š s=hiâMÞÑÖutª6"2‹û“yüá¤-²ÃašÇYÚŒDmxPµéAAÈ;ºŽîAÕFf¸?˜ãKRD¦pœj«È%· ц¹TmzPðN†®£Â¾<®y¼cE^އxròøò¼¼®ÉÍé6ÇsvÚy¶£‘}ÇðµÎ__î·ãÒGíéüµ(’¡‹˜Íõ¤‹Àॹ´õÖÈÒZç8Κe$¤LÒŽ ,) + QÕ4g]ª*^8ëÐ><ššðÕ9ˆ­¦¯m5A Ðt¤/A ÎaÈѽÓo¶º$UdÐÒVÖºjTiªsOMwÛ¨2Z&mGP˜@@‘ ]DóÔ%¬"ƒ™žz×R#LGÍñjºÛF˜‘Ð2Ah;‚¤Šdè"š¡ž„ 3 uˆã§¦ÇuÓé^m„ -@›JD„"ºˆæ¦KXE 7â˜i…á¥s hª«"÷ùaѲvuI]p¾O‹nªðÑ%ËHhňËúxÕs‰Š÷pl>½i–(#EDùKÃsX¾éÞù·}€Òdd°ÂƒC—^²ðñ"âóI@SY¹çîå$o‡P™$@È:ºŠvýú¤ŒHˆåÂqyçÒòIY.>‘‹ÓI@³” /À›!J$@È:ºŠ¶ÅQÊŒ bl/À› ˆRÆE!òö¶$ ©²Š ^&o‡P™$@È:ºŠ¶Ç1)#bÙ_wv J{ ØÃH›*«Èàex3D)ƒ„XGYWÑ69J™‘˃¼³ 1)Ë>…ˆ±Aÿ´JÈ¢wH›_Y2!ådèÚ.GÉ22h±ÇélB”*v)dƒþ4ÕU‘AË¡Íê’9'A×ÐvJ—‘Á /mÜz ‹·OšêªÈ Eÿ°vuI„œ“ khÛ“."á+.í˜õIWì<ì~ØTXEîóÛŠ7C”2H€õ}~ÛAS†•.eFB,^\Þqë¥ ?_ˆá÷I@³”¹çÞø$o‡P™$@È:ºŠæ›UV‘ë¸Ã7ž5¼uµ*Ó÷Šˆ/&MF"÷ù-ð®!PV$@Èú>¿Å¡)Ãx–2#×\X}žª…ζ„á}E kL÷´”eà>¿ÃAÎæWHø>¿Ã¡‹ÊéõI‘°Êùy9ø“¨q‚ßã9ÿOwš¥ÊÈ}zƒC‘Nþ2¾Ïophª°Ò¥ÊÈ …‡5n½dáçEÄï“€¦º*rŸßß o‡P™$@Èú>¿¿¡+‹—ž” ±˜qxc×K†^D ØTYEîóÛäí¥ (“õ}~{CS†™.eFB,n\Þñ듲8úB ÇOš¥ÌÈ}~wC)c•I„¬ïó»š2Üt)32ˆaÇáa/eXz±ü$ ©²ŠÜç77ÈÛ!T& °¾ÏonhÓ˜nzû¼·ÏsÚ¸mÓèË¥6nÛ:õ9Ýwžö´) "žß ìŒ1æ]m*>¿L»ÛD<½¹ö¼+BÞÉÐu´]’6ð‘ÃÏ^Êpõ"âúÍÀ.€Ê*2x¹/Þî ¨Ì}”Á:šˆ¾/ 0"òŠ3—÷n•&YñõŽï·;û%ËHd±3€¬Ã‹•&v8,ãtï ú΀ªˆ@ Wm|{ ÃÙ‹ˆó7; «È`æÞ@˜»7 6÷@È;ºŽ¾7PÚ‘Y|¹ÌãÜ'mñö"âýÍÀ^@i3fìÀœÝÒÆîy'C×Ñ=´ÚˆÀ ÿ sniÃÀ#“AϬ¶Š fºè0×E«M-Þ#Ã':º‹V™ÅÄÊ<6wÒ#,bødÄ6—2†m}´ÂôÑ $ ]D÷Ñ #/\,´csK>X@|² ðÍ*«È ¦“qœ´ÊtÒd]E»``R–ˆÄr¶^â9Ÿ?I˹"À iOÒŒ„Y2ÈZeÌtÖa®³V›Î:ˆâ=2|¢£;kµ‘Y\­Ìã{'mqÆ…ÎÙ 8éÒf$ÚðÖhÃ[«Mo BÞÉÐuto­6"0Ã×Âç[ÚðÆ"âÍ€—V[E3Ýu˜ë®Õ¦»ïdè:fzÛªÏy¾õû¶Mî¯/“}ŽçÁë@G{v  p d°} 19ÐÛ¶P7‹'ÃýšÛÍ3ÆhO$“ ‹h´„U$¼p ð>hÉÂrJwÛÊ"‚,2 ë 41>‡áG÷® 9ÐRU‘AKÚ:P…é@Aà@É`aFÂÌ aîj“X’¡ëhtÒf$Ìp 0Ç–6((l«ÌÈsÆ(m°K2tíüti«È`ƹa˜sö¸´q~¹ãü³l£ÍH˜™!ÌCm²K2tÍ]OÚŒ„îæ¸kµé®ƒÐ]'CµÑf$ÌÌsÆ(m°–hë:š».m 3Ü5Ìq×¥ w "îš4U–ÂèÚ 0)€€"ºˆæ®KXE/Ýuhã®Õ¥»€»&m” 13„8C¨LàH‚®¢9ÐRV‘ALâ:P¥á@à@I`eFBŒáí*“8’ «hgª'eFB,g‰%žóÈ“²œiÁ™h2TiF`F˜3FiƒX’¡ëhU$Ìp×0Ç]«Mw-"îš ¶ÕF$ÌÌ採6Y€€%ºŽæ®Õ6Ef実¼²'îmå®Aà®É`;ãVd0« ƒy¶b!",ÉÐu4w=i3f¸k˜ã®Kîîš ¶ÕFfd€9c”6X€€%ºŽæ®K[E3Üõ“g»Å]+Mw "îšþ4F ¬ìÖ .€ º„æ®'YFB w ë¸ë’wÍqÜ5ým«‹¼’Ú dÁ éß5´óñ¥«"ƒçÂáÍÙòÆùt9ßnÛ(3ffsÇP›,@À’ ]Gs×¥­"ƒ™î:Ìu×jÓ]‹ˆ»&ƒm´ 33„¹c¨M `I†®£¹ëÒV‘ÁLwæºkµé®Aà®É`mFÂÌ aîj“…ˆ°$C×ÑÎ]ßwÇ4Ÿº¾o+‚ùES÷ëóxƒ§•ÓžN]‹È‰i3Ð>†˜Î\ß7E·é®öûùµ½g*íé̵Y'CS1o”®´C ¿i}ÉÂó‹Èž€h#«ƒ” BÚ!”% dÁ9ªf mÏ@U Ë.éÝ=Mšbø=œ »ÓV“h"šŽü%ˆá9,ßtoüÛ†’ „NÎxùR…Û‘Ý3ÐFU-„¶C(L d MEÛ-(a ›.íùIX¬¾ˆl˜¶Â „  Í%  d MEÛ*P˜Ð£C_Âðù…ûf ° Z&m‡P˜$@È:šŠ¶OPÂ@+]Ú±ð% “‚M2ØFX-@›!J$DÀ:ÂšŠ¶I 0ЊA—v,ü$,&_ÄØ0AšÊ¢Uôgó«J ¤œ MBÛ!P•œÃ9î½DaïÄþ›€6²*0X™ ¬AYR ç$hÚÉ÷’EV9ë-뜟tå̹ˆœY7mu-@›!J$@È:šŠ¶ï¡0¡Å–´Ù”(aÙµM ÐFW+ú‡´(K äœMCÛP–°Â‘ÃÏ^²põ…®ß ´ÑUAË¡í “Y'CSÑvVAK;Úv…iéEÄò›vF­J0h×+"` ME³Í 3Zñ¬°ÆÔ–.l¯ˆáŠíŸ&ªlJöeó+ $œM@ó–j2N˜:(cûJÆPDŒ£h#«ƒ– BÛ!Ô% ²N†¦¢’.a •sÁÐælq ã|²ˆœo&ƒm„U`Ð2Ah;D ƒÂdaMEsÌ 3­XUiÇÌNÂbw 1ì°h+Ì@„‘a ¡0I€u24Í.+Ì@háS¡“-ax]ñÂf ° Z&m‡P˜$DÀ:šŠî•_oél–÷UÚ£Ìòã4^o“M{2Ë"ðÂd°}Œ1»å—×Ü.·ü²Uôéîï´g· –dè:š].i/¬*¼1³¥ »+;LÛ(3^æðÖ0«LÃŒ²DXѳÂ*^ñ¬òÞ}Ä$+Ž×Ã8bºÛVdᙑu•Ò„gæ0üèÞtÓ¬ªŠ ZVhciK¦W¦˜ ¶f$Ì´Ía®mV›¶,ÉÐutß\ÚŒ„Y<«Ìãj'mñ½"ðÅd°­6"0Ã9Ãç\ÚpÎ `I†®£[gµUd0öÂc[Ú°¾…ˆ5&ƒm´ 3Ís˜kžÕ¦yK2tÝ=—6#aç*óxÛÒ†û¡;N†j£ÍH˜éŸaŽ.møga‰¶®£hµU$Ìâ_e‡;i‹‹Lš*KaXèÐÖB+L Šdè"º‡VXE/,´cqKX™¶Qf$ÄtÑ!Ž‹V™.IÐUt]ÊŒ„X,¬Äcr'i±Á"°Éd°­4"0ÃHÃ#]Ú0Ò `I†®£;iµUd0Ãǧ[Úb…à”I`iFB /Þzi•é¥AÀ‘]E»‚`Rf$Ärî^â9»?)Ëù\@†j#ÍÌ’AæcÒ"`I†®£o¨­"a“.óØøÒ†Ñ/D6È`[mDÂÌ­‚0w«@mn€€%ºŽ¾W€¶)r0Ó§‡¹N^mz}ìÁvÆ­È`V»ƒyí ­v D„%ºŽvÁ¤ÍH˜åܽÌsvÒ–óÿ"r}€l«Ì’AæcÒ"`I†®£j/mÌ8Ñ óœ /i9SîñœH·¿m” ¯$€v(]0Cúw };D]¼ØŠ€7›%Œí lwÁ6ÊŒ„™"aÚÜK2t}G¤´ ³ìFÀœýŠÒÆŽ†v<’¡Úh3f¹{"¥=´Ám]Gß;P[E3|;Ìqö¥ ï/‚½2ØF›‘0s÷ ÌÝ=P›»"Â’ ]GÛ>xl†ïþ2o<÷ý[PÛ›c<®gû`´çíÙ0ƒícŒiûà±Õýçt›øcû®¾Ì[£=mˆ€%ºŽyû`’F`ðrû ¼Ý>P™Û ²9`Û(3^foÇP™,P’k"šÑ.a¼4Úá­ÑV™FDl´l£ÌHˆ™!¼Ce²K2tÍhOÚŒ„FæíÒ†ÑmÛj#32Àœ1J,@À’ ]G3Ú¥­"ƒ™F;Ì5ÚjÓh‹6Ú ¶Ñf$ÌÌ採6Y€€%ºŽf´'mF £ sŒ¶Ú4ÚA`£ÉPm´ 33Àœ1J,D„%ÚºŽæGK[E3ýh˜ãG•¦·iÛH3bfq†P™À‘]Eó£“2#!†…8~´¤áGAÄmšÁ¶ÒˆÀŒ 0gŒÒ °$C×Ñühi«È`¦ sý¨Úð£â6M`iFBŒáí*“8’ «h~tRf$Äð£Ç–2üh¸M2TiF`F˜3FiƒX’¡ëh~´´U$Ìð£0ǪM?*b¸M3ØV‘03C˜;†Úd–dè:šUÛ9˜•ÌË¢­ü(ˆ¸M3ØÎ¸Ì*Ã`^c ­XˆK2tÍNÚŒ„~æøÑÒ†·iÛj#32Àœ1J,@À’ ]G;5_Ú*rÏ›¬ÏS½÷ÜyIã캈qòÝþ4F ¬ìÖ .€ º„fGKVE-íhXkGÕ¥³iÛ(3ffsÇPš,@À’ ]G³£“6#a† sí¨Ú´£ b6ÉPm´ 33„¹c”6X  –hë:Ú9úÒV‘0Ëùq™ç ú¤-çØ 1ÎÁ›Á¶Úˆ  hc µÉ,ÉÐu4«]Ú*2˜iµÃ\«­6­6ˆi3ØF›‘03C˜;†Úd!",ÉÐu4«ýÜ~¼ÏÛlµŸÛ‚ú>=¦ý¹-À§‡¥æd´9mwÚc€Égï‹Ç×kùìçùÙ^Õ–öä³EH:ºˆv:»„ 3N'‡øq²YUœŠæ`ÎTÛ—¶ª*28™ œGz%98‡¥›î~³Ø%ÉHhanÃ÷«*ì1ÇãžíN[U´LÚŽ 0)€t2tÍ_OˆÀ,Îâ±¾%,Þ˜ã±Îv§]ÂŒ„  Í% $ ]D3×%ÌH˜akCß«0Œ±Ç‡o¶;m…UdÐ2Ah;‚¤BÒÉÐE4g= #³xZˆÇô* Wœã˜fºÛVXE-@›JD@:ºˆvþº„YNC—0#aóÞ˜[uá~9>¼±ÓT•AÉÞ¡lzE1<ù&AçßNQOšˆ@+'ˆ!=N —¦q~™£9ûlgÚ%ÊHH¥?œ“¾41< §Ð6J”‘ðЇ6^]U˜yŽÇëÛ¶²*2h™ ´AaR!édè"šc.aF ¯â˜Y…áv=>̰Ýi+¬"ƒ– BÛ&’N†.¢Ùåf$Ì0ª!Ž“UV—ãqÂv§­°Š Z&mGP˜D@:ºˆ]Øéë?óx9ó騰ü8G¸#ðöö¾Ÿ|;½Î—Ò>–|§}Î)ÄãºûñÊ`ûãèAä´Oªf¸¾ÖC€Æ±>ãçäÒ±Ó÷Õß}µ/š^ÆS~¶oé}<@ÈÈ3'CÎã»Í<ï«ÚÇ*çeÿ{âå´›üÊ`û6^?E륬 ÛÂâyÆícŒ°!Ëdè:†¸Ë¶°÷—^Þ^^ #ÙиOáô’ÛøíÚdžÅy_â¾}»î•Àæ1ÂÑaDvKr:ö@F‚û¶ø¸ÕÕ ´Ž[.±qñ¾Ù#CW1¤mõrÿ–o߆—ýoþqŠ<Ó÷›=?“–Ûßrz¾8ícGà±Ïb³s‚Ñ#øîoÓëé=\Kåíš}5q º„¡ë¾}~ÇÝcNü8r’vûNÝk{ž--íÃ_÷‰fB2lõåuc´Û ™MÄƯïe[ò÷âñ²›„g—mÑSî/Í©tpï{:¥´+öxû8ψ×ckÏ4ïQV‘Ë>]W‚mÉ›Ì^ÚG!Çdè*†´Mø>ûOßF#ù:]·¯ÀqNt|Ûö-Ìú*^7ú—sÜú¼Ü¦¾´ý*Vd|‘L/ÚHï÷ÐÁ9,Ýtïô{µ¯©¬"ϼPdTZ&*jqMeTk©æf°ÍTV‘1™!•c8•ÉB,“¡ëèXÕ{#)×üͨæÇŸ´Š=qç±;mË}EŽrm‚Tó‘ßbïð–ðèÝù§Øo⺻ÑíK}:D"Üü²_®½­°_j‘ö±/x'ÐƒØ Æñ²±t¯ö• Gd3Íו`û‘œŸÓ£}l$>æÃ¡7z¿Í`õË"sG~;L.þ¶˜}<>&'»Óö·U‘ñã0A~<ŽàÏK  œMA_oÜž§y±±o|çNyhêýø X ¤=-6 q,&*Aš§i¥qÛ<_k©q{ÜöªÊ>ÚÓRCüÈ0Ñï³Öëö‰Ÿ¯Ó¬µ-—/o¯5mW¼N/JIÛik<Çž 2KeˆiÞz}½ïg˜·^·ïÑ¥nŸ£=Í["d]EÿYU­0’ûñ¥¦ð¯ZÁ¯?ºÛ¶VTäøµ› ÅÀ!,ƒ‡!|ôþ„ÿYí{zóÂðes3¯ÓÂðe?Å=ÿ®F{þa‰Èï† ¶O©ÔDž¯ÏÝ ›áùz«‰Œ‘öôË1Hš ‰èÓV¹ÊŠð0±1aà™RÊU2éˆÈ¤d۸ʊ sH†Ã92@\%ãçäÒ±Óï?®ú´*2þØ|±ù0øê×Ç•ßFÆOǶù´ˆðÇN> F¨ "ÂÑ]E[NÒ*rÍshOãí#až%Û$-‹º q,ú¦ ´ÑFjd€:c”8XˆK3tÙ 8Ÿö½ª©(&bM{ž¯sä\NÕÄçþ¤€Ë¸\Žóó&í©(VdÔ´d°æ!¦¢Ö$h*úFG9ËŠp%é97þžçÓ9“µd›BD¶1Ì`kY‘á ÍãèZKY€e2t]\-:ŒdÙ@Ú¬*×UÄ8Þv§íª£"cÑ`‚¬)ÁU‡@H:ºˆ®¬–ˆyä†Ô‘–5 ×*j"BÝ ¶Y%ë<dè®%’IÐUÌ3Úä. Þ0S‰Ö‘“÷e.3MˆÇx˜OØÄ\VdXCÄ::„æR  ˜MÂ'5¤>1#ù{óûåóȼ>0** lûÉß›|¡>/(Eú7 mRÛîÓçå&‹ƒÚå`ùPˆGžfwŸ>¯i›Ã©ìR¸1•] 7¦Üçpc Dv¢HÐ$ôõGÕüD,Ù™ÿ-é\¤UE?«‡BŒÕEeÈj£Š~EFÍfýAMg RUŸUH!à ]G_ˆTÕ¯HîÅag(5ݽ#«>›K²÷DÛOVù”l¤¢;‚5_ ä˜]Å'k,k¾‘m×X£¦»Ä¢æ³ÂâpTô¦mɯÈ(ØôO=7¿_ ¤œ]Bw/Ó°nÔ™·wc-êóÂ|€À›Ð½Ú|`¹dû?ØÞeŒÚ~÷‡å—íß® 8Y/׺±"×¼’ç:Þb—UaîÌ›Ö×}y?­,¯çË~ή2ØfÝH„UX2F­aQˆÁ²24}w`2Ó#R^xôòʹxp2ÓÃäOˆ}`Jpl L^š@œpötÊÙ#˜¼töDH:ºˆOÎ³Ôæ¶‘\g™“ì]s¤6·9Q"bœF¡Zîm€;ÓéíÎuòO{Ûa "ÍÐ%tS¿²ŠpóÑ0üŒ°õCÄb˜”Ê@›ZEÆ/Å ù%9†?4Y€e2t}³4›UÕäÙUçÜ9¶¢ŽÌÚ©b£ÓÃÙµ»íÓ¼MÊV“ݳ5²»Såà†Ý'îý£ŠšjòÐ’SÞ˜;èò7,Aü• 1>…Ê@û4H0²{;€š¤Šd˜ô"?í’aŸóuÚMý­Sa)М KýöTí:f$'²HÀ(#Ôéë¼…*ÝìvúŸì(ºð­ÈX·º›—u­û}®|ÙýBØfákd,\éŸe­¸ð•(¦×ðÉ–‡–‘üÁÝòŸ‡;|^nxp<ûvOÛÏ«"ãn‚| Žàç%’N†.¢OÊUÝ+2®ýÏlHíf¾¬êÎŒ*"3. lR߉PžI@ùfˆ*ð(Ä)»¸dh*úÄ5-‰°À˼Áú/K-3óxü˜—ª÷hÖê@ÖvôfíGúZ2>'CWÐO£§V“Šåœ”:/À±z.¯!ƒíÓ×óÕ7)evO©s‹¡D„"&í[8íTäeújôyfCmäKTˆñ%3Í{ÿêäM£ïnHBÉÐT´Í€IZE^ÞÎû‰!Î~¢ÊÜOÀ~búÛDYE/„7#(L `H‚¦¡×ÄZñzž= VÏËg=ë™{W¼žÛ‘sÿfE°Ö¼KVÊ"KZÊb-z)‹"ä ]Gß™¶‰°˜ý¶ ÇþJí&fÿ…ÃÙ±7íÚM4’½@°W˜j3 L‚&¡íàÔgÆþUþàîvåq?ÌÌ3ÙQ#Cvlê#«Èøƒ³‡ÃÂN}dìሀu4}9•ªXÍkE§à±Ô™JbC–Ä,–,‰¶OóZÊ‚F÷<°$Žñ=ré>sïS×´ic„ÇÇÄò°'ƒ)ªMl“ˆáªL棻Iw\èÎŽ Ôž @H1ºˆ¶Dܲ_ûy±-òÈ´4N:_¯óy1Úuҹ㤳 l_ûy±-rSl3×ËôÌÖ´kX9&AWÑ/–:_Ï{ý8Gnûm2ÄóöýžŠí© bÄÊ@ûìÅO‰\^Æz‘ —ûX/2ÆhWA,,ÉÐu q¯ûÞc»Ä­"ãžÛsª’«ÀÜ1­_÷ ÏðØoÙ°¿M–‰DXä¥?k@¨U"D„¡ º†CØöµ~¾½ÖåÆçOÀ?ÕÙ8µÌðuòy‹dßADöÌ@;gˆ§ÈX2áz¼›-Œ“ÏŽ?ŽI.;ýv^Å·|W€Í‡Qåo§s.ÍësG{ªò…UÞ ¶óî)ry;X¹¾žÆuC"íéÄŠ8ŽþMB;6¿êÕÈ}œü'¡¶öËÞÍûÑÒ®3a…ç¹*ƒmßõJä¾UWjoííëyÆí:VX’¡ëßÃÓ¾¸Ü_Ž›D>Và:îþ>m?“}˜ëõþöYÍã™"—ñD¾?ßöÊUÝiüG"ãî\Æ¥Ž0ÚÇCHBAD('ASUû^ÏuZpa½°µoÇ=ÕYOxƒ“+ŽíGt:î™ñä­žÉðÌLYL‘cÁ@ÖŒQ+XLx'C×ÑÄM/>!°ßªq.mû—ù<=_%íI›ˆh3m_|bà~ÜÌb‚mùx›î@K»¤MX'CSѾŒÓ}o^ûù&<·©þþRß•´§¯£ˆ|ÛÌ`Û;ߌ\‡[!öÌx™Òšöô},DH&A1 ›¿Žäw))ý®eÐéÛZ"BÛ £=ä»42ÔwmŒ1‹ ÖIÐD4a^ù[gtŸïYqP/ü•–ˆÐ6ƒí\”;EÎã'L†qYoÁ…¿ÅBDH&A1„Ÿ/ó“?ΑëñÕ?¿œó´©ÇxrOž<;šÇ}<3€mÆ]KÛ>ë‡È}Ügh†ûí¸!Fó"À‘]E[zÔ<=EÆ¢.S?Óp½ƒ•‰š…Ä8SÚ™H§È>Ñš Ó°C8QKB„$G‚®¢j.ó§Èx¼±¬âù“ºÊ÷o. Ÿ‰ lg >EŽUze«x‡`™_È1 ºŠ!m[ÊŒ·øèÙŠ<•ÂuKwî+¬âx»´ „·öí¸ÿÜ £=ÇŠŒÚ– –¾Œ1ǰ˜ðN†®£•G·s Œý ÓØ®±r±ciãx*ŸÝi³×2E®óêŠÝšýœ¢ "”¯ÓêªíælŽ«%NÇOÌf±½ý-_kWƒÛ¬kßc‹¼æBï ¶Büú2e°}:à4ÇÆEu5ûEAD(š¡´‹q¶ó³ßÃr»œÆ*Ž‹q.Û_d< 9?óÑž.Æ‘‹qÌvƨ‹q¶Èm¾‡ekŸç{Xh×Å8Þ·ù–ãØ"xy´W^U`¬÷¶öK^¨y»¼Q€ã¹ç]† žo_¦iúfCÚ÷q+½Çb°ò³\, ¤œ MBÿÌʘUdØ*þZØ.þžeÌø‹‹È'bÛ3#±Ufˆír ™,D„%ºŽÌÒ{]™o“ bU»¼¾Ì–ÅgÊU]¼žîóáç8MîiOE±"£¤]Oµ=Jö©"f|ÅxtÿDA/÷©Õäqé£ÊR¨ÃU;¨Ô"RÉÍ`û4z~ùvOepk‡D„"&í£šŸ–`dØ>*l U—㣪ÃÏ<Æet¯¶02LÇèCbv-‹ãQüF÷OôSHU‰PÐ8CÁËžªˆœSD&H»*bEF=#õ.CTA„C`M‚¦¢Ìœž-[‘kN'Y¼× “XÞsB²ã„ee°í3ª‰ŒÕye«÷ƒõ}±–dè:úžimIÄ“%Ù±ôd ­©Ó-cÓs{¢• {¤u¶¥"ãdIvM9•®ila×T„¬“ «èÛøõ•tK<ß(·Ðós“Ýï$»ð²IO‚´ë+Y‘ñJ¾pŒP_I8ˆut½ˆxÂvм¼Ëý8[åž3¶)÷~Ng²§fÎ¥N‘ãlkzS±•œ“µ5|Åntÿ„ÿ!jû’ž¶þë¿~5Ý:ÅÍVYù¾"ùÈ¿ÿjºùÓˆ½þé«ÿôõþøó~²õ±-F¶ïëùúôõ¾ÚJÝ6Ooe›Nûgýÿî?~nTO5ªaúËHõÚyœ¾¾ìgàîÅàú|lc¿œ÷ÿ¿y¥Á'ºI0sšêÑ)Ž÷KN¿øûýÓWÿñ«ÿï«óéëýÿòŸw¿þ»ß}õ¿þãíúõþÈ•mÿ»þê<_Ÿ¯ûÓ3·OÛÚgû¢þîãWÿéÍßøã_~|ÿÍ·×}áuys>ÿoßü—ßýû=Å}J±yó×ËöÇýúwØúüÃ7÷ |ºÝß¼ÿçŸÅÏC^öúôz¦ÃŸ¿ùvŸÚ^ϯo~øéç÷?~øáÇ}Ä}÷ÍŸ|ÿ‡ï~þðoßlÓæ…ßÀæüòæãûïþäùùæ/?}øÓî9+<ï70^Æpo~ÿóÿüý÷¿ùÝ¿~Jk›o/ç×WhýܯÏÇ›ŸþÛŸ¾¹î;¥ŸÿåýÏÞñ7¹¼yÿ_7ûÁÓó²uzÿ§êë¶„}óó‡ï¾OŽ×Û›?|÷ówÿûçþ|çͦ_2î›?üñ_~þ »o÷-îëVo¿Ý~rÛËm°üðñ»?n’}÷àõåþæÏßÿðsZ¯ç7?ü3G®ù+ŸÎçÇôW¾l‹ÎÓ§æ××ã¯|»¼ù·oî{·MÎw?~øîOï8r>¿ù뇟ÿ…y6¾ÿaíÍ»ï~þðß~ú܇rÙÔÜ7Û:Dÿ¿Ÿ¼•Å—ç‹Ç~ó‡~þé?“1žÏ7ßýé°¼N Žâ<)8Èl‹ë×ÇõÍö¹÷/çóúfãöÍöÅ}Ù>ÃíOrÄÏûçù~{Ù¾ÏWþüÛ ýàý9âû«]üzo¼ß}øñÝ÷ï7êoxû©läÇæÄ÷¼ ¿ÝË÷¡õ?üøÃ|ÿÓOû÷j+¨çë›ÚÔ}÷ó?±óñõÿihynÿü—¾¹ìøÓãÍ_ÿ¢^ßüËûãg|Úßö¯pRo¨ø‡ÿ'ËycñÛl\$Ï/›ÿòa½ûáÇÿÓ†<Ô¼\&à~Þ÷tõ—½}>[­Ýªâùù™¬› |¹o³DþNß|毳Í—©RìŸþ.îõeûÄ~,¡MÏ¿û€no>øçÚ>ïñý~ì¿“ç›÷o¿ùv´îëËåÍß¿Óí¾uøã·Ç`û¸O›MÛ>îó^X7W{8Šáeߨ¾(çóþïý ÍÛ›Ÿò ¼Þ¶ŸÅOÁl¿G>˜í3ú+è盟>|üðýwûïïz9>ÊCÀh\ßlŸ|}²ùþ罬ƒ§—ãg¼s™‹%i¦Ÿñ†¹o¥÷upNúã?÷ wû‡ôúú¼nEâýOŒtß~îv¾oŸùÇ?o?ÿ$ÿðÕïþçÿôæçã÷µwzFÈËåøˆ~þñýû?Tsÿ`./ãïòŸâñÃ_~Îá×Ëþ=Ü"{ûÍÿùçèÜÊÎûí«ÿ_3ÂýúæïÞîöí ¹×-ÿìÛŸãø³¹žŸüŽA_ßl¾ûøþç÷U~LÚóVÕüîÝûŸŠÍ»mj)­¯hý}ýù÷¯Üùø6mSÏ®óz~Žoã9oi¾÷—ï¿ûù=‡óY3çF`®Ê£ómû8øýw¿ÿðý‡Ÿ?ìÔFŸQÕG²óö]ùãVai&GªHú£ôí|O·ãÿá§cÈ7ïß}øÇ{½nr?÷Á~ÿáOï·¢ÿó7—}–ئÁÿ¶e¾n³íý¼¤ýßû×ùuStüÎöÖ6ÎûÿºçÝ0·ÇåÍwÿüýöS;’oÓà¶–ùäõ÷6ößÿ·oö?û}ûãý/û„y9äÿÛ”çÃû¿?ƒëå|üÏßî*/§ã‡¸ý¾ùöXtÜïoþõý»1éxxû{}®¦Ý÷}hªô¶(øLùÙÍÿËãIùùöÝ÷ßEy'±}ùùÏû8Íãop>2ýWúÓ‡ßÿ^Øï·¿æñ‡Ü›×û›Ÿþòç?oú©××ý‹À2æÛýÔÀËóòÉ_l›e¯÷Ô‘í뵕‘Ï¨Û ñ6:kžíô¯Ÿ‘·-Löµ=ò¾ûñù¸/_ò…Ù¥ÝÇïéøJƒÞïïgF|îÛù¯Ìû:äíçÿ¨·MÔõzaÔí?ßœ«Íûþ›|s¾@àþ‹ú¹çÇt0Û~ò‰¿îä‰3ß­ËK}CÆù¹ùì+…~›ówúÿ¼ý óþ•ÙÌÔ+ÔmÝ÷¶-&û̵¹¹Ëé9©Ü¾ûGÍú¿uåu_&ÕŸòzïÞýycœï·eôç¾›Ûrá¼¹è ðÓ^Óß½'õõø~Êêx¬ZDZý{óßѾJ‹\Ö(àï,8ìD‚›«îëñÁäÇõí~!×ëV'ûwõ³³Õ>Q¿¾<÷ƒ,O~üæø©>NÇÊÓÏ“ÙãXÒ¾íÈT¼~úùÇ¿ÿËþ™“úNìñ撼ߒ·•á½’ýDó¥›Oˈ½ËëéÊ‘íƒÚªÝñ÷Ú?³÷?nKâ}I¿­"¾ûþ§½`íçQ˜ü®ûCÑO×7úáÇ• ¦ã³ùìØ¿þËf$ŽâzÝ–h£„îcS/Õµ--Žª{)S_ý‹t>íû0_:‹^No/W¾IoŽEêm7¨÷­òìïÆØ~«ûË}?òýn3–ÿñ«ÿ½éJòendstream endobj 335 0 obj << /Filter /FlateDecode /Length 98604 >> stream xœä½MÏe9r¸Ï_qwS ¨ï~“ ÏÂÀ@€àüÑ€’v©ÇA)K‚þõCÆwoef©vÝÔYä'HÞÃCÆóD0øO¯ç^Ïù?ú÷ç¯_ž×ÿòO_Ծ蟟¿¾þí¾üŸÿ±÷×z¯žûëÿï|"½R)ïÑç«÷çgzýáë—¿þéÿúÝï[nïç)?ýãßÿù›Ÿþø¿þñýßþå¿ÿãßÿýïÒ®^½þôõ/ŽP}¯Õúú_ÿ¿ø7¿û/ø«ÝJZÉ6Sž÷Ès7õ‡¿ýòÓÿñ»?ü]ìH{畟þòßk+ÿîßý?ñ±‘>ÞkÌõFVá6þ ïŸÿÇßý›Ÿÿæ§ô7¿û›ßòßçg½So¯ß§ò®­|æÏï'Éò“üßøòάs¼S~Õõ”w¯”Ƴ[ÙS(ç÷nëŸÿøúϯø’ßµÔýûýÏ=ÇþjÿÿßíIù—_r~Ò;¿Z¯éÝÓë«©èïš_»ØÞ©ìr{Þežòé«”Þ¤úÃH¤ùÅh24OPMéïO†²;ÜLX>Op/D;É Ü ~þòŸ¾ä²uôýÄìéü8_mM;ÚsÙ©µS^çgÚåù.KʻՒ÷ºŒDÞ?t3¤ mÀTÓú»ä—jhù]ºiËç îKp/YƒÇ[š9í©újmí_£ï±™šñÞÓi—Û{¿ëÖ÷Óó.ïÉ]§”ÞO”=Ó–•XïÜŒ)CðÕÌù~à ÔÐf}?KÛ òy‚z!ÜKÖàÇc[[vÿuíß#ÁØ´¦ïëµËs/‰»¼—Ƶµ¬Upúcy·»öö7Ä5ùÙcœS4˜2´±ß‚ÔÔñ.í¥j9ïKÛÀòiƒ{ÁÜKÖàÇsòÙãç-ì_ªÍ3'µ¦Á·³×«÷H§¼Þ¥¾rÚýjUÊ»§ééG¿J¤ýÕ%Õ ehã<Á5ûm ÐIö¯¿wmËç×à^„ô’4„qÀØðìO]8%¥¢Õ3Ÿø Þåyæã\ÖuD%p•P \Æ&tÙ5íÌ'Õ°×=ß´ ,ë:b$¨×¤À ßY™ï¶×¦ŒcþjkÆ}~j~àϸ‹{)ŸŸóLj$ö4Læy.B {Y_ Žçó%m€ÊçìpY.½¼gÅW¸?⯶¦©¾Ëƒåõ~ö’[F~w)ž•kŒwMF`¦wF”¡‰ó×ìy´W Õ°çYËÚÏÜà>²? \@öï]ë{fX@¤fÁR·Êþ¶ÖÒÊy»<ß{—æòù¸÷G=’‘Ø?yFƒ”¡ x‚jö±à Ò°w¨§™6°|žà^ˆõ’5øqø…¿A?ìÂßë¶Štáo}žå@e,›…_%hYg \Æ6ì¿?Ľ¨†½áÏfÚÀ²]øYBúMü8Ü{;ÖËþ]¾ÚšzgùŶÁsÞºü¦T6ïM$è­ˆ)Cæ½mËò‹¾·´·Û½hjX6ïM%¨—¬Á¾¶Taãic>g³øjkੜlU»|¬ÜSÞKm“òYÆ÷fÖº‘Øï«e£AÊnQZ3Ú»­—jé˜Ú–ÏÜ –à^²?¿©e0’ܦVÏòl6µ ¹njPv›IÈ&†t cÓÌnjg!·›Z*~SK%nj©øMíhã°ÆÈþ6Æ{cŒ´v–ª"ÆÈ.÷ó ±¡Àe5F¸†M Ö elC‘]“Ñàa ûkyºiËjŒ¨„ô›4øq¸íô«Ø}­íU:%Ù×¶%zæ±l;T6ûšHà¾%ÏSôë¶Ööܪ]·µÓ'»oRY·5“7ûõ´7XC´fÂoÊ3|—ÛY!øà²~g*_‘jà2¶¡ßÙ®Éï\_ªá¬°É´eýÎTBúMü8.ã1]ߘµæ;[Íg«Åï $Ìwv4Xã1]ßYiþ;;àÎ~g5ÇïìHØïìhãpûZÏóì…f_À7  Ù»%îAh°lHà®%¸Œm˜}­o¶uÕÖùš´ ,›}M$¤ß¤ÁÃ}gÏž?kØí™ýX7<ÏŸõàrI•͇&ø%Éó\„ôK{ö앎»—Æ€¤²~i"Àd~Þ€ÜKOo΀ÜËÓù>ÅxÛËW5Ö­Él².cÖ€œåØDªa@§&† xî H¯I"™ý¹‚ÒúB®ÙfD;H¤öÚå fiÞ @šR>8cØk‰Ý±U.cç ©©€YECO¦âO¸}ø›t—ôÝwdÈöS-Ò7F8«Ó}íUNy ,*„ÿN<‡<.ehÀ0!ç8æ‰(Ø¿@¦,&D$¸‹¬Á lÔýþÜÀÆ6Ý«Øh0U¤]*›¡‰õ\4pÛ0cfjØ Ê4¿•ÍØDBúMü8ÂK«4µfÁ,Ò—VÉ[+  äµ‘„¼'Ò åJóPßÛ‚é¤ï­Á¡ï Ê„¼7ÒàÇŒFØd¿úí­W»™môo÷²St[þÝì\ÝÒ"Yöu©IfK°ÁªúÄ›º´OÚã@ˆÌê—qvÿf—±‘AYºlŒýe³lPÙ,"A‹‚h2´a–6†jh{'Z¦ ,›ÅC$¸—¬Á#¼®ù®Å¿®«¾®ñ¶fÝë¿ËëÂÇõå@îu„"òÆÖlæAÙ½1”ÐN£†0ˆ`xœn»ã©ÖîÊרPvvK¨ÝÄÊÀŸÂTä·³:v·ªµ: ì¬’N£7gsÔ½t>ÉÚufXphǯb‚ I@ecsTodÈóTÄÔæ¨Ç„P“£î‰œqOe59D@zŒÏû&ü މkg’ ¶Öi\‰2,›A‰Soô<Ùµ!L\#⎙8ð3&Ž=ÂÄ‘€0qÍAiÁqùwŽØÀÇr{ï­Ëàv,[n€%„ RÎdR*70À0Rn €kC¹‚óÜp$!ÜiðãÀÏël çµïo!§£5|TsÕÚj}N}šg“â™üg§2GÛPŸ—2´pàš /GìU &m‹Gž{ÀÜC~ÞáâZ¼@©ž(ž(‘°$>îHÆ–˜çó4œÀÄØp$a8ñŠCpÃÚ‹+na¦¦‘—•æ”4Ke30ª‘~“Sæ-Lj˜rªá JÛxh Ó^°÷’5øqx¼²¿ÙÔ^i€j+4xá&°hñ 0a\Æ&,^ÙËB)¯ìu Jý”,Z¡?K—éi?Çš¶½LÏfYӶׂãÈc¾²íEÙod4©lXS‘ NT4pÛ0¬iÛßú“•5mg¹^¦ ,ÖT%¸ß¤Á#ø(êY5b¡©Î?Øq™‹ö•±€ø$H”¡ ç£X°ï©¢ðaE#\$ ü³8(èi?·à¯ãU¶ëýÚÀlWZi×€ÝBÖb*›õ^$h5 \†&Ìr¿zÓµ~õt,Õe³Ö‹„t¹½Bÿƒ½1ÈöµöÆqk{Vco ékí P{žgóbðªÁùÌK‹j³•¤;ÝVVk:?l"µ¶cõÉ6Ce³•QlT¤AËØ†ÙÊÚ}ÌVVóg?ïÛ ÏZÎ?VÐ:ÏTAëI|W…í+ñn±{¿X—± ëËh‰†ŒÖ“´‘Ù¾’^°„ô›4øqÀØÚ~§uà»Ä@­Ù{à+·cÂà|Û_Ä.B—w«m›Q•¨UÆÿNäêÂâÖ¿¿ }nÏ2«ŠG˜¦?s¯øißoËÙ>éÝ-°¨¤fÏ ý²Oxx§)xÂÚþìk“òitUúIbͳt‰.b ð×4–ùÀmŠGž»Àç.Óã~×°æ5¬á‡Õðú5¬†5ü°æ5¬' +ùa¥8¬ä‡õ„a±¨o”Ãùôb¯xæa¨žÎ<æÓ™GµêõŠjyÔ™y §SCødî‘€t•ø®_ÃÁËç,-fôÄS°‹çk<ôÅR>[ãA}ªÄØn¨AÊØ<Á5 ¨Ñ|ŠÒ–÷Ò –~£†0Ž`Z<çYgZTX–Õ´@ZRM æ-Õ´ 1%Hƒ”¡ gZ´³5Ó"Á"­¦”iAbZ?ŽðÞ&ù-õ½.Ñ÷6À+©ïmßRßJè{C ú–x'КÁ%úÞ`e6ï·}o$!ýF a0¶yb#Ȇ3ZSÇÝu2äìúIq7{Έ•dÖ‰tP\Æ&à ®ÉÇîV y\n"ñ é H¯IŒl=íðpðfq=”šóéîov=¢óë(Z‡òKRÞíZ£e#‘ ÅD.cç ©À®x{´DÞíKH¿IƒGXëá›[3Ì/Yñd¢.Bui$‰ZÍÓµŠr]ñ@¢<¸Í¿¹Œj,›¥‘¤³¤Àw?±ó‰/Z>!JJjpÍgQ˜ô*ÎÜÞßiï\<“¿Nä9éïû˯Ù<Îe‰’Òôüˆ ƒ’$PJºÀÒiÒàqÅûŽåãn XÇÄÝŒ³˜¸(»¸–à¸Ò`â}Ñmlã}×2‘7V5m#Ó*§½` ï»Ö+Ž¡r‚Ø_Ø00Vj FgÔ³;ÒnÀ7CÄ2—Œ-p(S%\S \Æ6à ®I|YCÂè iËç îKH¿IƒÇ.Õú+ÄK•åã´‹=xZÈÑçâ´K~¹x)Ð`â¥øMkÀÔh>bj˜ƒ§TSý'ÒàÇ{õ‚X¨CÈ%5#ÿç“èc“óéù…_ÏLéŒ@ÃTp9óÇ£5 Vð\€´øä€ô$´×¨ Œ"¬ù€Üš¡´f͇¨³æw )×5Ÿ$dÍ' ²ÂO¢™´¦œ`]òÑèÔ%ŸÍR]òIBº ü(®wÖ–gç¼»}güÈúÎ:À–wFòÎHygp Ç½³c™w6‹gÅí;›Å¿3°èü(¼óHÐ¥uË ã;"ì¨~F—êù! ã¦(èRkO‰DÒ£Kéý]ºLû!8æiÙú0÷'\l¶ÝÇl³ `Ùú0YBr .cÖ‡™qÓ )Vi#1 +½ ê5)pƒüè8ƤãGø,”E(¤ü(”?ÊÌ’aCRï¦ÈQ—&“æÒ –n£? OÕ_KòT="F¡ê×1` UeGÕ“Sõô<¡KÕãï T=þJÕCÙRõÉw~×Ê¡våèݯ`°›•Ý|få³rôîW4jµ¦€o\VŽ.<]99ùtå@ í5*£8#ƒŒ '’k?WÏ™°–F¯tß^C¿™„·SN'r¶ \«¹æïÁˆRR¾rb¢×¨â#„ #CF„¬N#Ã5F(ôÒô[…¾•‡'íå¤lSèØõ6ÏÜhúdz8‡Ÿ¶™x~Ÿ÷ûž`áøéÙÿYŸ¦ôSÖÿ¬úŸ]³µp®–öôò†_*ö†Áo{ ÿ¨\ádrËâ-BTã¤NøliVŠjœÔÙZ8‰Õ8©y }×"ÕX©þ<ÀR\ã¤hÔFÊü?ø¢ÎKúýy[iì¼ý³·“MÞÔæï~à9ÍSÊTZPJ¿û}I'ÏõÓ6ñw¡Özþ„9…t Ùþ¥èûüôµ¥ºµ«Ómßžzûñý]Ô½½˜©w"ŽÚ¶u ÏFƒaÖ¡×_þû×É1ôú߯¯ü¯ÿ€i„Âϲ?ù>÷oüûÔ¶!¿–“qè¥#«¿ØùÑ„ïOwBÿûHèà~,¹ÐÜ/$꫊ÝF<ט‚»Ü ¤cµž(ºékÑZŒãyhkD R6<Ñ£›åA¡¬ã4¥ Žã”>ðß¹Óü¸ÄÏ_þí—ƒ2=ì7³fþjjF ¸->MT¸dJÀ2`›Lq±,QèªËØ<Á5{/UÐûÛæb€"@!êý]úŒOû!À¸ö®SÈ£ÌxAkÎBº‹•È/$âukd¦~>ƒK,ueØ"£­ÁSò¢ ÖÓ&° OP'D‚ûÈÜ(ph'¼PÈîGBöœkö¾¨A„Jv(‚&A„_YB’¦)¢zÏâ¯?½’çÙa&.›N\¬ô@$¸Ë¤Á^Yÿå•I úÿæ^ÜaÂR^Y‡@"#PRR–w&5d±~#Ô„¾2î HI-wà¤á «“ü8ónWn¼rœÇz®n’{9wˆ«1ã¬*6”äŠþúxvX‹Êðw%¸‹¬Á Gv7ÑG€+(<­n³…µ'É™"†DÑ™'8º'+Q”ʵelž(²®eÀ¤"«4¢¢‘mÍ`î3=ÃÚû)1™à/ûjk!í„áÌõË'ΔaW’ÈIb –+³—Nk0%œh8©‚¬ïËÐF—Ð}”hâËF n8¸•’ì4mÌ$Q+çM¯½góg”‹¥R8òcívK²ãg \žoz€+ HBäæz,ÃE¾D”àN²; ÜÍViƒvx?Œ7“8P¹ËƒÖ`“§gŒ«ô­Ÿ?ÕD8”ž“òÄØOSÓÏ®,O'pß©îD>mZ$¸k¤Àwž&âÞÔÀ74 Ø÷«­i[ÿÐ1ý¿“„ïwú!˨tú™šÄ¢.ŠÒѤQUÃñ’ÒÄC•Ú>’? 2=öwŠD§}µ5À[ír» ï©0Š i.hÀì F›,0ˆ1f\~8Ãל½°IÃ30ÌššxˆbÖ>ˆõQ¸Qà[òÁÜ„yhjð`ïh[ƒÖašÐ[ZØ49kö©&JAv] ¶*bK$ç!3·ÉÒ'Òà{CI[ 3:Èh p»\‰ïš.%“²xiç;Ö<»L‹+7¢O´¦B µj@ºQÛÈäbÖ^°÷’5¸qààNœ6CÄ~{®!?à9·öð–¬w*QW{mbù£D'?kèb`WµΑ‹¢z¤‰Ì¬štB$qŠæW™{¾>4U¦böAþŽgÒoZÎÆgxÊ"¹ Åž‘DÊä¹# R¦“®Z“1³£hÈw'mdŽÌ“^ˆõ’5øqÕ‘‹4óÀ{“äÇv¹U‰á×êŸâíë[­ÀvØrf"Kk¹ÀPÁÖ|¾&iËðõA$¸×¬À"¬ŠÇ1íWE|Óél'fQÄ¢]E`ˆ#nÙb¥lpZ“Oh¿QЛÅ-$ʪ]`î!+pc{sfêEköÇn·f°!Ìî¼èµlÐ$À;0=/ÅAÇ»´L}¾ºžT¶[´HpI l=̬ƒXʇÐÝ¥ô&Ð4‡© ñílù°D—àÅf‹G=ÈSåo’çÓÀœ‹ÜB¢Ðgé‚`ÿäyÓ}ü¼žZÉë‘É 5…ò;51מbùìF‚?†f0¥Ž3's¬q–¾U›Ÿ·é.hD$¬ˆ*fÉè@ˆQåñ“cצç]ïá  ÿûÇ»D$ÓÞË™AÙ]ÈLÌ],@†Wo2$!À…4H™–o­²É(À$ÚDæÓæÒ –àN²;Šhë7Jܨ5¸˜ª=!Q qò€‰¡Nf3žŸæ2û¿¬é?úËò•µ{B³zºQ$Ô°®LMDC?GC?yC¿C¿^†~ †~ †~ކ>РÖÐv~4ó•»þßVþsYù'úU­|Ìz§V>§W+Ÿ%ÔÊG jå?—•_»·òýQÐ.GAÕÊOÅ[ù¨Á#Zù“2*[+¿LoåCW•O"•ß§·ò‹ ™”QÙZùzÄÊÇSjæó1µóYB }ÐàÇq[Ãýг:Ï­5ÜBœU»â¬Zˆ³ÊÙ[Ãýгz’³ÉZ‘ÏÇDZ¡„ZÃOzÅqÜNÁQœSCÀÔ)ˆ!bê¤ 2ã$‰f·Ñ]\ÄðëœÞ9H®ÄÇÆ–i_éqß÷Û¼'#ؘ÷©{ó¾.oÞ“lÌ{”Pó5¨yOV°‰²ZÕ›÷½zûžÌ`cࣄFY­úŠãfp‚3Ö &] Ð_¾jX‘ #—5H™r˜ ÃT %$V.’X™{AÒKÒàÇáÍàvh¯fÍàÃw’·±ÚF9s_RçaÑÂ*€v®*àòƒwhÍI ÞÕ>—8=šŠÆVê£(p£ðn¦º?ÑU¬›©n;¬5õ3Õý™Os­•ÕÏ$äFRîâ˜âš†™sY\ffZ¨ì™’>°÷‘øQx—BZƒipØ™:‰Ô`w+•KW$Èa+¤Ìì«ÖtõçÎ Ÿ”6™z•.ˆw±¿â¢iʼn”¤fÿ¬è8%˦frœ’íƒec\‰À’ë:“£U9•’Ö ÈégxØÞ’Ñ$ë{†ÕHÞ°!²–$¾eX­ïV#Vã2¬Æw +¡ ÷ØFdPÝdTHt`Ôº"ƒŠÝ1^–AmÃ3¨Q¥P{õ*nÕ–BE îw”ªnÕÎÚj—Õ˜Š·k°ëe5Ö`5¦â­Æ¬ÆN¼¬Z=Xý²»³YƒÇm5Öh4BZ.c4>ÃèM°F#J4ûxcå6¢l&o3Ö`4ÖËj¬ÓG”×ùŠÌ/¿94¿x«ñŽÍÇ“p¿%65|ˆÍWFuœWbØ[µ¼0º‹„æ|:Ê ³€Æ°7WÄÿ[^¸øvK FØÓÁÅ…®“f,<ŽC™á3‡¡†©l¸a•à²;Ï ŸÌN#[rø8‹ ˆ—=Nz5WaÙÃ"Aܯh2´aØáÑ좡 {G 7,§.ÊãnÀœ#ÜÙ RƒÇ4ÀðA0,À†p9“ïEkŠ™œ1ͱÃëÈaú;wŸvCø![?ýf[?}×Öÿm¦þXúó ”8?¿³ô[°ôÛeé7oé׿-ýyJäâ-ýå ýíüåÍü\^q·™ß£•ô©±ò[öV>Î+k壄Zù9{+¿{#Ÿ¸OkäÏ`äÏËÈŸ>N5ØQÜ6~ÑÆº·ñËò6>æË³6>$›56þÓ½Y¬?à \Ç>ç&ì³Úø(¡6þ ‡p+/ÖLÎÞÈǼ#ÎÈw‡;°Œ|”höñ&Ú­•²Zù?ä&øA­|0V>hðÝ¿Í|tÂX3iX6ó1TÍ|U3Ÿ%ÔÌG jæS:9cæ×`æ;(å`æ§âÍüÌ|qÂXKy´hæ—éÍü>™ßg4óQ@Íü2½™O‘0ÆÌj\ÌüJ‡[%ºröˆ±OÆÞ~·½ά½ÿ4oïûäzÝS{¿Lo÷Ñw©5è-²ö~«ÞÞGï·µ÷Q‚{ÉÜ8âi÷Iä°žv‡qsÚ=Íi÷„‡bÌiw–àÓî¤AζO¾þÍœv/ÉwLl •Ã÷ÇĶˆ?OêWH(üÕVt:¦|z=‰¢•p§¢áôU{UÀåúž–Ò¯{„i¾Œ‚„÷Us Óæ›.°w‘Ø1øØ–çl˜Ëƶ@FmÛò ›nnŸ®|…¦ˆE®ˆ)':í#5p«Š*˜X6iË&ºE%¨“¬À"žEí.¾ùy-Á“”}’øNX‰Oa _A zòÚøÙŸE(î(‚;‡ðúÙBð'Ê+vÞ—žÎÅCÓ —]3ßSÀKOù¨"\Vðb$:Ñç©4ˆõ–І÷ÿðÓ{Å—ëDz‚#Ád n½œ<~˜—Sj*æ›eä0 m„SÙ ‘ l"¸Œmô2OÚúªèež› B¢²Á/*Áýf n!Fÿ¤æ^.FÑýÇ?NÚ0½Š?kŒ¾ P¾(àòäãñRÓßÄèØÐ},þlBôY@ºˆÏû1DdÆÇa´KEfÈX*2ãã0‚ÌX€q+à2Ÿ†±X ò °¼'E[x(»¯ö%Œ¡7ŠËµD' ÕµÔ½oé Î¥çò.=Á½Ôƒ‰@ÚÀîýK)ø—Rô/%ï_ªý†ðg»³.à ™Ë ðtq5²Ü[à9C„~Kx® xú}žï1gHÚçú8/·R €³ÀÙ/ÀÙà,p¯Æ¥ZÀ9B`þ¸óGÌOp~r*Õ oŸôÓâÍ|áÍðfð)Õ n—R Ÿê•ò©Î7ƒK‰‘ÙwÐfùmh³|mæßŒ6ówÑæÀ‹¦ڬãÍéÁæŒXsz¨YôtË”…š¹[¨YaW¨YiW¨É 5³+SjbHœ…šg«µP³55[‹Pj‚5{ PÓãÌá`æˆ(Ó)Sâà,2ËÃ#L€=aϲE˜iE„‰šo5(ÂÌ#"Ìf ³\³„ÙÂÌ6ÆfÊy9ö0ä!ôàežŒ‘°hQ˜È\~øfGª)Ç" ÃÊ^/ŠoQÑÀ0À>ª7 ï,{ös¶Î²g3©³ìÙíÁ½¤äÊ¢²:ËD€\a¢@Ê /Òšã•_Ùñ—˜ X4ž2ù;õöp貞cô˜Ÿ^k0- »z®‘z®ËŠ.U±£jr¥]\kÊù×hH`.k‰vqíKp/YƒÇ/“?ëž!ªßÂ˧xxù„£î÷ÑöáÑe 'Ýùd;ÃK¼‡Cf£YA&JhãÉ÷©Çø¥mÜP›š£“ŠpÞ€I®HpÐg XQ$JŠ*VrÒHEÆt(ò8RåÚ“éÚ–à.²7ÆÆS(ãŽÖ4º"œÑXG7£±Î~2Ac,€XKp¹Pä’Ödtt‰†/ã& \Ò>€ô‘øQ|ð”µËS6ƒ§lOÙŒž²)ýÕÔ W¦¨:0¾qÁª¦,Ã^%¨‹¢Á "øÇIM~(}/yorr—ýRÙúX‚=D¬ËITK ‰†+4‘ø<5÷ÿÎæÇÝ î#<ÉŸŽ®xXÅœàq^>ê¢çwœ…ÖÓ;)œ¦“*1‹Òf)&bÒÓ;ͦb,æ¬Ë·\,ñlô¯v±Ä³Ñ\,ë7ºXÖ÷\,ÿ9K .–9½‹ÉOëb™Ó»Xšs±L<šç\,%¸Xžàby.Ë\,ŹX¦ÿû^l_p±ü+bû‚‹åClßo íû×DöÅó;¿>²/žß håÃñ_ÙwßùVêwÁJ`¥_`¥¬\®– ¬äVòVòwÀÊ'_ º3]"èjÑ Æ¸)`á(8Å,,ÑìãM´;Ü|-p†Éâ–rá–pKðµhð›1úñ œÅ-eÜ’nInI·”éqËX·¤àn™ÁÝ2/wË î–Ü-rPÎþpìÛ%IZ̓{CDyøà/9$rZ̓º¾Ï€@q½ÔêÐK ‰HÀ —Q_q7|Ã.¾t _è³QhÁ+ø` …/=À—§FøR#|É¾ä ¾d_j€/|ÜE#âf§ìÂZ3Þ&iÕÉn´ÌE©T¶}"Q$ƒ’ó›¥'5p‡°Q0MÊ/¬ é#ið£‡õ>Ñ®5Cù üƒÖù$ýÃÚ娽ÐQ|QÀe>Ñ®5 #EX—&øD»ö¸¬À"Ú•óLš$5ÃeÕA¾KM;ÎÑ*¶ h"áÊœ£Uk0‹¹(À«,´¾ìBûÀÜGVàFñgdˆ”ïž1hÁi—%Ò¾sÆ \ÄiŒùH8Mqšqð|ü³!N‘¾rÄiˆûxŠûxJàOíéa~¼‰vk‹´h‹¬`‹¬ËYÞiÁ/ ÝÑƷ¶H¶H íŠüh!ô#[¤÷h‹<ÃÛ"£x[d„S,¡¶jpãø`‹\¦HàQsö¦H¾L‘L‘À£†Àüj¬%R¦³D0ÔßZ"xîÁX")X"—!Ò)XÇ"uxCdz;Ä0à¿«‚ëéá9£’›µBJ°tŠX:Ü–P+5¸A„¤AÏà¼:R³0-ޤëy0˜Cú<"/)X‚R±)N¬#5²k’†§ù;áŸ&wÂS/XBzIü8bÒ p »¤AíÐl&iËš4ˆxf“4ˆ8I+àrÅUáCZ!Ö€€•&Æà˜>°@LläFáÉï¶_jqäwKE™ï¶g‰ ;Á¢2ßügâµñQ)$üb´æ‹åámŠUC{SÙÐÞ*A]c¾óîRŠzÍdn¥¨ ß Qì’ri•͵*×N¨*c æbŠZ{R õøŠ´‰Šyý¤ ügê0?lû£Y€Møêã[š gɘ‘^cM_U Ñ(,¡ñ+Íųð­ñZÓ Ëšj¨p˜IÛ¨µ(¡½D a!¹SZª®É’0ߊfVÊSs/e²þ4;IHê&ÒÀåÄ?‡ÖLä­YÃ^—¹»œÊ?›üN"Áý& ~á€A-D9jM£+Å(º¿Âr*áÿ•Wp9 t|@p¹ã¨5xI‡j@ÛEš`ãFû@ÒGRàG!L&o§…å¾K )ú›¤è' YÇkº+½¬hš#¶s‘¦»â«ˆXB¯KšãGøoκnøïfùǫnïvœÿf å¿›ã¿9çºå¿Ý˜QÝ]í8ýMJÛ+LÂuËã¨ûµÏØït±ß)°ßɳß8.Ç~[ò»ù3 2.%¿YÂ߯8Š?³€qáÎë¨AÀýÂ=àÎë¨Á…;ãYƒÀ€_x8Ù~4ø:땾ê:ÚðràÅ‚ÌOGÛ¯ôU×Ñö@€·‹o¿Ž¶ß9B9}зZdq¿Èâž¾Ð.²øh#´q´ñ€ö‰,Π嚻°ø¹.,fhcy€–#@°jZö-_-€Öæ+Œáhãh%´áÚˆmx€V@@KÝ´Ú¼Ú -õWDÌÿŸOºËÿÏWˆrúýv¾ÍÏEw p‚ÿûR z··6wç(_!JwŽ. z×;Gï;F›+SÃìõ¶¸ðü¶méU ŒÙ+v6áùT6@†ª°.cÌì!Ž¢`fÐ6E eøïÜezÚ!\i¶=‡»Òl ]¡ÛÄÎïh/ÅòÏæJ3‘  ËD—eYÔÔW 8ÒÆ`·ôB$¸—¬ÁÃ[ýj±àQd¾ó,­Æä§²1ùE‚/àd RÎÖÞïûcï÷ý‹?&Ÿ+•½¯ÜEÒ`F/€¥ÔÝyL~j2)ú)ÈÉ$ñ' IòOLÒÿáïÎ>ž { ]A,mðIJíK˜Kׯ+Žã¾`„;¿ð2[{@wÁ(lnè.9-+0ŒpçzÄÌU3û«fö –0 W¦&. ëOë2\—YóÊ”‚‰U¯_/^¿†ìA)˜XíâõW0± ¹©ÍZ£‰Õ«7±V0±ÚŸ^@´1EÒøž=õxßûsùÞŸõm{*…K•>TÍT!…& |àJW6y8]êîTʘZ…ÙBVs¶Eî:—;•X‚ïT" R~(9‹¹d)÷4/5W* ¦ž¹,Ád nÞì8w¬bž|­)ç_s©.$R5×îRªU½——äÚ^R åLiòµnÜ{ͯÆî ²½ØW$¸¤ÀÂq¨'s>VÒŠ ?‡Ü«»Îïh.Þ]xTÉ\ÍË|u/+àrGϨ©©˜MT4”ã¥4môZj'X€ºÈÏÛ!ø|:§æÓ9?F^ör_<‘¯—ûò™}½Ü—$ÌÕ½ Ë‰Îìkzéõn_ôÒëݾ|f_ïöe î5k°£ÖTao ÖÀE‰jÍœ cí,[ƒŠ%äŽsÒ eöj Æ)ê­éèëÓ{ÕÙ¨7¯³÷’4øq³ª$gSN7׳L¸"×·2õ‚W’ `}:Ú¤H!Yò8.ÙÚ€ìÒ‘ .ŠA´¦þ:k CÔ’)x½Ø:…/ bcˆÌý¨6s¦`n½Ç}âE¡Lž‚ý Ü)!n¥Néï|i;?í†ð·*…ëSý­JñúÔëV¥ëúÔ_s«R¼;õS6PÌÛýÍ»S]6P‚©þîÔ ôº;5Eâ4ÞzV6œ—gNYâw§òD´×ަ+Zg¸h|#Jò;Sê”$ uê.wæîN]þîÔìïNÍž8í>>‡÷ƒ¸­úyECÎkÕÏ`ÕÏ˪ŸÁªŸÞªŸ×AÇB‡W8踮ƒŽ+tÌ!tx~ЦSœö¾¨î‹ v}»ìúìúܼ] ¾»/*Øõ#Øõã²ë‡³ãYƒÇŸpVP{®î i ~ñ!-å i)1¤%Xø5øcx¿zÆ´^Œi!-ãÆp3¦ëŠ­m!¶v†ØÚyÅÖÎ[ÛŠ'M×[[BlíbkŸ+¶ö ±µ%¿â8xÁ°)Ü[ðõº¶†aS¸¶U_Þ{jn„íÙßÛ³‡/$!ý& ~.Oˆ®»È2Â¥`ÂO¢kKጠÌçŠÀû?›e„± ËËÈDׂå¤3T´Œ°PEE€fxÀÃB3t\*,:é7ÍEUT6ÐŒx±)SfͦIØB«¸Á~”3Ç C–`$6mÎiÀ³L÷`il邉Ы ©Ð-X «D‚`—(à2ÝSej,*Ã;®´¾Kz Ô?ÉXµƒd™)S­AÂS1&lPLÆ>/Åd$!˜Œ4H™)S­ä«ÕÍêq¥­1È%¸—¬Á#†í4Îßj`†MrŠ³Û„ÔÐü7A7,¡a:Õ1AZSÞ.j'¹«MdÎß*@ í$(£¾ 9R¡5HîŠW€¢Åo G*ij äy \æ#ZƒÑ¿ªÙ]mƒTh/X‚{ÉÜ8ü=”ºßÞQ¼WƒVÌÅ¥R:ºC¸T9XK— ‹ÞA, ¨˜ä\í`œT²¹£Ó÷kr[€tA$¸‹¬Á "@iÞÐ,4¥{ºìµ[4Í·í*š& EϨÁÀgT¯ªóò :¯ªQ¢ÙÇí¹Õ#€êÚ<¨®-‚êÚ<¨TËÁ›´®ä§=$Z>Ä*ÜÂL7÷l„,BëJ~Z–¿gãq§q)lÆÝ³ñ„Ó¸e½â nº …Ó¸à’ò©„ü=õºg£†{6R¸g£]§qW º?Û¯Ó¸=œÆ]0hŸN㦋1! êc,ÿ’ Æ`„,¨éb ZóŒANž1È)2(a’ µWGÕ\L¦æ…ÁÔ¡:cêÁX^05 0†f\Æ4´¦¢œoÊ(Ht´„Z RÓt’8PW®ì`2h”棩Yçì§ÂÙú Ëo}Ø)Hˆ˜A“)Ód15 Î% $‡Ùf0;ÍGƒêY‚ûH ü(<¦ÞköÀÈ‚T­Œ©!¸Ó`j ö4˜š%º8±Rµå&(œkÀ!e4€CÊ´‘…S'X€ºÈÏÛ!DðYñdŸyÒUŒ é<œÂFú»ÀN[àÃpZ“1ÌLž¦K¢ž³0iû(¡C ¡ûu<¨¤MÑ^‡óÊŠ;hVÄÈŒ(I ý R‘ KŸÇ ~´¾HûÀÜEÖ`ÇÜ·xD׺o)½€8NÏfk]«X¶î[–`ç,kò jAk0½€j¨B¢mT¢´,1Äuü8n̉,ˆbNôYÌù$9±«s‚„`NÒ`0'vÕbκ<æLÝcÎÔ#æD Åœu½â8Âù9ì.5ø%gkÈ-ˇo䬻œÎæNËKYκk 8fEžeçø¨»t€þ,=Ƈýn$ÝjDÒ©x$]’®I×€¤SñHºùX?ÂøI÷ì‘tþi–(2ÃW@ÒJüée«5´Ü zx]<Š.E—€¢‡‡Ñå‚ÑžÁÀè`t½`t 05¸A|›W\fq™+Äe®+.s…¸Ìâ2×—YÖk†¸L–P¬Y_q7Ô¼Â2#Òìá’~]²Ñó·‘fˆÊü4GšãšãÛ@óSP&êùæ½íÁy[.çmhYâ½íÅáÌxq{ ÎÛv9o}r…·ßgy8ÐÔâLwdž;Çñ„<îr %r÷8|™¾L¾L_V‡/!â´_ø2‡lOÍãËváËðeÙžzÀ—Hʸû5ü=ŽãºÇq„{ŸòŠ£øs¸eC<¹óM:ßî´é½ÏZtzSê¦,à/yï³M¹€ê3ºòPg4,‹ÆÝ×5Îh’’?„7×óSª½@ í%jãˆð9S$ F‡ÅÏ ¯<tÛøRÁ¿,¡€yØbæKQ¤YHQ…”&§¸•NˆD–÷êÊÙ\Š"ȳ =e¡)¸Cº"XPpËpBá/Ix\\¹¼‡ÇϯëZošxÈžÒN°w’4¸Qg´lgZ3ɵÌÎhܬÔÍÛ™:£YbHzã›–ÍL*p'Rg4îTêŒæ½LÑ,Á]d n‘à0? ±g·Ä@ò ]Âü” CLWæ`?­Áh=%ð5+1Àñ~J °÷’5¸qb­#G äw¶¼DY-pJŽ ?3)@+GЦç0PI0”`cLi0DÀ²<7ÃÖŸ‰ÈìlÃÖ]ι¡MØzòÄÀpe>ÚäÂÖ]Ôzr)?ø`“[OÃ{ØÛ+Žá¢Ч|ºëâIIbIèº\”À”@ ”@”@õ”Àð”@ùD €5e(ÈÍQ=pý"ºeXƒ²µFV`V eÏ ´Y”PV`V€í)ç—Æ´ÉÖ¹¾Šw®cZ u®ãg똺Cë Á8× ¹ãÕ¹>²w®×à]¯—{½ÿúȯ8ŽHy,Ê j)¼'k\€å#°ì(–PÊ5tõ$^þõV<瑃=_þõüëÍ•—fµØºEf f fÏ Ô™”höq>!ꈉˆyÓ+wBhBcŽp)>Ú²ÌÀ;rïÀLϤ‹hÌmØ:´iØ”Pv v }d®‹lJ¸z³û‹lúu‘MÙ”xõf¸È¦¿CÆnß¼¯ßô÷o¾CþEÉ[b1u¹¨å©œ=5s¤PÂPËSåbf`Â56åºÆ¦„klú|…QDb sG €™âθ.‡Ü5¢ž“E ÅþÝ•%¢Ô8]ª2¦9”62'B”^„ô’4øqv€9Eö¹H™;v ]ì@ ìÀã“™0ïgj Ë UoŽ`jÑ„ª7ψ7ŠxŠxRún­Îrb3zç zA÷$ è¤À¦?ɱ‚b!?áœ2¦ï¶'™“yQøQ„`u í6Áàø£sø@ |§Ö|–PtRÀeZLM¡sÆÕ†m›6(°[;ÁÔE~ÞáYÇ`L­ÁÄ 6d= ²N!×&d$$ 4˜u\ǵ#SmÈz G•‹½7ÕHp/YƒLJõCÖ{ó' ¢XÓó,¡!ë½…õîùX|Ìz 1ëÕó(aùŽZ_q‘ÿ¨d9Úpðå<{§Cc%@XBCÒ×ð%­gpu©4a´ 6r´,¡ŒÇpAëU-Gå:Ýß`½ñ˜°Rcòô1è®´1 ab–+³»RkpV ø´B(A{ÁÃ~Äq‘!ËÑF»'?™r ü£*ÂpŸŠ£DÌ·­?¥@Ð:T „íG¥@X‚»Ìì>)’©z– GÔyP¢ ÕÀ¸ o9¶e ÚrLA $`™‚üŠ£¸CŠ¿‹ÜÊ6„ ø‚âxú³Òkøøâ¯Æ"—²‰p Š«Mü@í>~`´WÂE ²V¢QËô@ô‹-èŽ.@†1¨52ÓÈ0-Dâ·‰ß|$þ̯0„ zzP΀¨KÄÓ>—pú›Â,–§¿!8Àbé~aé°t8þ!|€£ð¿‰¥kÀÒõÂÒõ;X:K(}!éïi‰Â7~wÌŸfÃN"V>0«˜D®áG† 6|ÓhØøbÃlbN¾–Šº(¯ØùÔÀ¸¸^Ctz½¢Óë²Ü€No>:}UOàÕRJôɰä@}ÅîßìòÛŽ(èèAÐCP’?ŠïùÚ Úÿ+Ýíôô·=îí7zÜÛxÜCޏÜí1ÿŽÁwAø)øÚ¯ìp#d¯!;\½²ÃÕn„ƒìõSv¸?i_ûs/˜HÇ XÂ/˜žxîãá,;äc6Aê‘!HÝSµ¿â8>Pí¢f f æEÌ@Ì@´‹"èŽ#ÀcøJðA}e HÂýÇq#ërëåu.Xçu.X/¬Ë…«gÀÕ3àêyáêpõ|…Qܰz^°ºX=<¬¬V׫ç«s€ÕËÁêaõò°:X=V¯ß «×waut½ÿzX= V n£«³öOº¸§:ÄMîiº:Û¸§Ê[pYÃÝ}ŽêÑ'8Ò}r´»¢ÏZ=ú®!êë<ïÍEå/ãy§£ýìxÁñ¢òû•ßcTþx…ÎÿHôz¹Ó~uôz¹Óîèõ'äNûÕáëOÈö1~ýOFÿy„°WLNë¼½%[5ÈSO'ö ÂgõH›)Žó'˜Lb®0‰¹4A‹”é pYEä*ÞbjFU›TçÉpÏ”:ÏfKOö€;+2eçó>l“.§pÕVâ«¶¤,a¼è677áh¸ŸË‡°OKLÊžÎ4Áän M0C~uVÀe¹Ìø°»;å8Á´!w‚q'X@œèÝ©O ÊÑP·¡ žwi–&€²£ HÂÓž(ž&€+¢•&¨p¦=¤Ná8¸\󥺆ÑТˆúôÅêñyòñï§ñi)VÂ0×Mèçp/û,ù"ocwCˆhzÑéN©ÙNZMoQÓ‹M‹aeQÀØyÑO‹·3š¦´}Œ¦;MEÓ$`?(ð£ˆq|­’õÑšHã 0ßP;eçHŒ­ÿ„ëÜŸë:÷'\ç>BÀ>]Îf؂ق@\\§ j¤ ä¢z㘮k纻vcû4º€£ÿ4¼€$L|A×Î=÷]îáÚ¹äã g1á)Üå®{>x¯W¾ü§{| 7³•ëf¶nfªÀ8àkH˜ßé½:à[óxĶÖÜoÖàÆq“ à?óׇ¼x˜èÎ\w^" bRáñãꣲ$Ü`Hwéû‹ öºóüŠÝ$È ÅÃ’ çØš%Af AæE‚Ì@‚ s9ÛE‚”pöý $Ès‘ O AüYø¡+ˆ»ù+]7˜… ÌJ¸À¬D®à)ž+áþ²©‚|ð)d‘KW¹²ÈÕàƒç<ÊdgŒt15à„30½¡‹X€|c'²@}–`*€4H9óÑk©Ixˆœ ±¨Mdéáã#ÙkúÉ>éL®Cœ= Χ¿œ âìq†ËÙºO®†ÿ9Ä.gc ƒ8Û+ŽâBœ³ÄY=âqŽ qŽ€8k@œ³GÄ™‡Eœ ð"ÎFI' (â„çÝ"âät]q¶f'&ãRÄÉéºq²„"NÔ0Å _âÄå‚8Þ hÓcM|Ðu?bM~WkžßÚbÍ1=Ö3bM0X³Ú²¼-‹5ñ,yîßáYy[Š6YBá&žWwã¸}îÈWYŸû¡›¬Ï½.ïs¯äAWŸ;J¨Ï=-ïsoäAïâ¨Äð÷&`²Ûìt’–L}î,Áýf n7ÜÄËÌ,ÜìÃÁM‡5Ð4(Ÿj¢Ô¢ÌÚ=ÊLÝ£ÌÔ#Ê ƒ2kÅ^ß(s\(³”Ù§G™}F”Ù§G™% Ìq¡LtœM3æP&ï$Š2YBQ¦w½› Ìú©ëuEÛ\íÅ_ÑV®+ÚJ¸¢í ®öz]>«wµ7x»®oá ðY_q@Cú¼ ›EÐyQÊ4wדEÐ"¡º9Ýi)°º„+ÀŸì!ô“#„F …ÐÅ]Nm8ýt %051œA¯©y|›|»H@f R¦>SSÁe©Ê¤i£`(éIH/IƒGðJod]½W:aR3õ 7Ävâ4n9¬Ne\c¤@Ê™/Ø–š‡¢ÁQÁþqšÍF†eë— î#)ð£ð }YMçÈ5S¸wL§Ë1‚cšpî±Ó{&.‡£›wL§Ó"@}æçíîldxvɆQ7ëMéˆìí™<Ž& ÉÝ\¬w¡³K6]¹ƒÑÏd“‘­á4Kh¶r¤‹ž\š8鎹Íf*Ç”:6‹x —œ³„ÜÃf ‰“îhÍð·œ'L©# $Nº#] íñð·œ'“tçÛ·œ—ß|Íy¸¶íºçQöo¹ç5|ëžóS¬Ú·ÉÍ\Š5Éæd¤y4i0èb-sh¸æ(÷)ÖÊ•b­øk¬Á#’…Xa­©oè¾*% Ø™¥,K/PiPˆ6GƫͱV~ù¸xSœžZ¯®\ôj=‹®ñ¥Y–à™ž%(Ó³ÅÇy³„a žéY|iÎu=|=_áë>\L]Bøz£„lŠ©kr˜íL‹©kò˜zL]îö˜ºüfL]¾‹©óoÆÔù3¦>þÿö:®®¼ÿ·æ×üË/&\⾚š Ñÿå?};a6v#JMïçK8R‚ŽÏò†·sÅþ:Ê«koô ©f¿ hÌzÑ0µ©ºî*éá^öƒxr2ýîÏ6²õ›Rž“NúKÍÆ û×ÀÑqnœJ¡¹âb€°Wì7Áãr<4xˆ™kZ:ߺÿ¶Yß–û :xœ®´MË\¬®´­˜Á?…1:-øR3·h~¬ÆÑ·òciõÝ‹|„¯¦fÀDr¿V‰v©Ù[ój®_|%Z«¥fKµu¿Ät½Ä~/€7nÊãy¿1ׯg°¯Fjæ’wÍ/m[Ù¾ÄëN¶å÷¿8@©]ÒMö>&æŠ×š Î'5ö~‡Á³R³WÝ(ÕçCÓTjÖs¶ðcr/±6ßû£¿MÛû±ÿ­9ê’#΢«œž†žüzæ‡Ïòùg®û§ÌËþðÇ–K×GÖ(P?²ý)ÆÙ<)Ù—Îfð¶c·0ãØ¸…Ò;`E럮¹ ñyf.ç³Ò;©Ý—c©Œ‹©›3Õ͘&¿€|˜ç¨öK=FÞÈaýX烳ëdAuã_{+ÍŽí/°¥ûŸ)þà¥ûöÚ"×WlÓÜÙΫæ‡lÅ?=þD`0¹ŸÂdìB ß߈F5[ºøgsLsç[/)||èf±ßq¯ë·ÄsšòŠÀPpšÖÓéj©Ùij÷ „Gtí Ä«†P2.û^Î'»Šÿ©*dË6¿T=_ö/.„0/’#ú²‰ f‡„Ð9mÎ7š!ÏÏWSƒéºÂÏi5³?ÃZaÊ7.C 4™ž6¾–ŠiLo§ŸÁÂIÙ®mö­[hD¡›ã½-Ä_R+ ¥q aì‰Kv†BÁÞÿúÅ¡ Þ—íÏŽ_² $íóÖ…/ÇêZÔwc´b†6›C‰4©ñÇa„ët¯Îë§¢_Á¢µBwy¹{¯¯½Á10cèå(Q逮MõÇf“=™JÜài7r¾¾Fw¬1«ø5Fͳzt¿zäÚø5mÏáv“q>Éæèx[Ó·7ÝJdZu'O`@vSJtöBj¸ýFR«ä0¦šµÔ`g[ #X¢ìç=ú©°qTw;ê8NþÛ ež1s¡~0R˜ YVc;ž×užÆßÞnòmaƒÖ-6zŒw³S!¤m u¸­k/ ÝCŽ3®f_óçÝJt~¡äH›vÿNÐZ8ðŸ˜Õqî)Óãò˜Wë۩dzôoç¹ìhë oçÓ®KïÐÚÈ×À_—ýRÙ”ÑwXß÷+,÷¶tá‰ôC& Ï,ó5çh 0Ô³†-&™³ö\ ¼œàÊürÄ[;QÚ^gšXR3Áx³oº?Ì i˜ÒHÈ_ð<¤¡³QÖ‚/Àó?©‡-àÌ#ædÖÈÜrëûú ó Xåv«ÛÆ“!]öã‡Éî¹Ð/Eð‹™ HÕÚÉ0#Ê)ĺ™ÉÀ¡ µ^“!2Ì{—ù(f6@˜4J™ñ Ulƒ„QœrŠÆÇ5ioüÑë&#™VÛ™8vÂì•g‘פ^„ä“ ³Ø™,f/HÌt²É0Æ;Z ‹¾ÈŒêM@£³ g´ Ç‡y×®y×>X yÅy×>X¢¸—8KôÚK(Rà{ë]cl¢çš{pgœ{q!b gæ/¡vîåtKoן‘ì¤:«W@OÐWbÿÞ'Z]“ t™Œ'².ÒWI®ˆ4S'•L´ÝNnvê•ñµðƒÉ”㼡Vªöæ¦U©²dÛi Q3­Ì„)×BU?m\¿„\¾9_žpªÎ¸VñvêæËŠó¥FË{’/ùž/)̈»s“!•Ƈk&¤<¶0¨®´8A‘øÃÚ©±Û[Oí¡U}.âWÒu¨òÉô0kšnSIÎ+QMé²>Z4˜ü2³ŸcŽÕÎܸ>u·½]äÔ‡U¦äËÚùîæv“#•˜>G¼S¦^|ÞÛÛsM^>Ì”!òJ§Lú°Ä [æ¦LÀ7Õïm}öXȪ3 ‡!ökfhí>åìÞÝqsÕzÿàõúJÓÊð‚ŸÌK4¿ÜþÁ¦ˆëzb£Ý§ùúÑ#\¤Û~ qº.¾0“"û›Ë*<Ùz{‚rA$œÃ™X+M€VÞÖ¨ˆkœð¼á>÷V ;<¥¦Wu™Øè„8Œ€[}VRsây¢sª3±¯Þ£yY©Ï‰Ù±f/Ulìýúý¶)ʇ¯½^_;{íäË×äûdÎ~˜|LÕ|á–{Vµ˜Uãú’›7A²:boÁõâɈ•s©áR@6ç}y¿éSe :¯óOÀ5#âHJ?ѧ  |s¢Ô¬%(×¾—zùî÷"K‡Ý¼?- ¿¼ÿ¢Çœ¾‰>y¢K{ï‘¥†ù=ýÑë`+Ày”§óS#Ï"Í0¥ öïæ¹¼cÉTWŠ(Ó/5M¥¬Ó¥ù•ýø-îï´ýín‹ïq8ÄïÙþXèçùés~JÍØè‘c¤”ö®t˥̬½Ë¯ÐöG7=EY…QÚ{% yQ†2 ç!´w;•ö^2„µL[kyÌ ¹þÜ$•u ‘/ÌÏÑàHh]ÜýòšÍ”ö¸<ΟðF»,™þa’¶kѪ—%#[ηÈNæÜì$èù O¤1w 9§ò'ë1Èvæ&é~aÝúfž<ö“ô¬ÜnŽžŸ-ÖoLT3Žã?Džöš¯XX™2ýÎÅ–£ uPµAÑbd’ù Óé·Wøî˱k“7xÚÌì$ƒg(ÛdçhjqŽæè¦_ éú@æ®k!]*8ßÝìûDµ÷8ûÒ¼{-‘ëÓì»|ê?2û>Ò##ξ<ý‡škýå|3ý`7G÷L)6Phœ6ÌщÉÉ(¾Ø§òn/s´p¤¥ÌÑ28îQçè ¤OvŽo^ ±YueÚädŽnÓ=F´³D:'ªØXâ<ì´™è*ºÍÀ¶s|È…Ž3}ŒW;9‘’£lúm¬IŒ¥uÙöfû¸œ‡Ÿ\÷,fÈñíØžùÁ<¤Ø3×™K²#$ Ý4þ!wÆyÆiÜ>°6WôH$˜ŠÎ=kô$ðÓH5³øÌÏèŸZéHƒÎâTy)ú›“Q#OãVÅÜÑÀÜF1\bìùÕ‚ÇòxÁ³·Ö#ä€Nvv]Ëd¯YByj×Ù™WäɾÑÊa¾?-ÄÓBŒª²¬½Ñ6ÈSy™IúùóTž×Lþ0G×ZÆÎòo[bØšõ¸†(.5lÍLöÓXQίöš¥ËQòÁk–oGI\·²¹y|ÒÿøÕY™Åxï”9PÚµ<øÅ«ÅplÓ0‹+†àé$FW¶ŸÄçÔµÃ㤠Aï'ÍJóp÷„I…˜T]°evÎ!ˣη½}fv–Ê‘£ï„i°.žÃ³Ó¾ÌsxO-z¿~¡í¿h.¸…öZgó=‡ëµÎöOA×nÂæz0”\5ôia‚¶ž¼tOÐ`¬>%«­H°‘̽œÉ¤PC`]gÀÝç¬Õ™Õ+qÔ!ªL¿y}´“*ª8{Ḍc$QμÐò$Ý‹v +8fLõKè^zGˆD<ôcˆ+âÑTk û¨èÓÞŒ¬¯þëºaò‡IZȦ½ûùÁݯI:>MÒ‹hŸ¸ vÕË1x/´|Í—Aûa ýœâ%ôÉøKéZ»øoĵLªÔ ]¢I–d–äyÜòE —Ñqa×y|Èþ°ŠÖ‡ó.sͬđò¬­=¿Ù;SnG,mU,Íæ£Å2ÇÄÐLcåе6Ó©km•Ø\]kÝ{£k­®î²Ö<–Àó¼ˆ{—‹ŠkÕ.µ×4–ð¦oNPöV~s}rIBü-º+ñRfŠ~ò0^kh„\eq¤UÌ,!Åâ·^>nÖÅNdŸûw穜}ò>¢ós¯ Õ¯³CÂ:e6žóøÅ:³x„¸Šš]$´ê¡™ 3³”œ§»â²ü ‹XæçIÝVâüL‹©ó³³wQŠ;'¨Ï(Þ9ã¦'qfzv ÊÒµ˜Sص˜½ºv§g1/ ß6>ÝDí Ö¯±Ÿt—îµU¯¸Ÿ;¦çvÀ%9 )³¸=(¥Ó¸UæødŸC.¬zÿø-˜¡e¿ÒgúZÅòךã :Êe Ôü„ÓCg†Fn•·ƒ¥¦œ'Ô¹7 4ëܛВxòÕL,‹=tëí€ú†넜]PŠv7÷>„‘Ɖ×?xòÊ¥ø)žøC°Çí¸§ØäO£ïø‚>Äçkòå;ã üI|yxǹ™ av>*¹Ùyž9u­ƒ÷[3=Ÿñ>‡D©ËìÌÏrqVônþúõ¼N⫱7Œÿ²ÿûo¿ð6èþç—3Ïúk›…éüïžÒçÄ?ýu¼[Ö?³[¯¥Uº›ìÏX¡‘gÏÜõ:ï¹ÿw=ùÇ•ÿ‡/ÿô¥ä î.–Li@èT*xûþãë?¿þáËYA6dÛcI¯¿Úÿÿw_ž×_~)Ǿ­„ºÎAŸ3ÑLM;_D9©u¢¨ú:+9ç;÷oÁåŸ÷'ƒP·ë0AªAÊ ïКc2Ô—jhpîXÛÀòy‚{ÁÜKÖàÇñóþqÊØZêùaö|8ÃT´ vNAÇ÷‹Ýe¸è”Ë»Ùc­i$&djW R~ ë¸VœÜ ë¥ D jX>Op'D‚:ÉÜ(``y/`-Ñ`ÏÇcj¼‚ý Çô{O«’ŸqHy7›lí"QΪUUƒ–æÞÒš95TÃ~%¥™6°|Úà^°÷’5øqÀØó•¨]@6¦¦Ÿen—! ¨®óÃìâ^“aúzµAB ùûÉÔ0ÍãRNx  Öó ¼TÁI7L X>OpX‚»Èü ``‡LnÃ~iZƒßÉñÙ5ýŒŽï¢[åC;žçTÄIažç"f\A߈ײ¤¼Û'PÚTà+T—±‰ó€Ô”ë$ äŠÒ°|à>°„ôšøQÀÈÀŽ+vùÐüþË‚È.^Ê:w…šÕã©o³x쟻v³xHY®áOŸž§•ÕËÒ!Í‹už¸Ö{J35Ǫ íîõ~H—b,Ûåž$tyvµ‡ÜKfµÇÞ4«ý9çjû×h™µÿ.K==î‡p½+–}WáUA§õ]ñ//«ÿ¶ÂËÂAéËÂ^ÉË‚>Ë»¢!é«¢?ó›Â‡C÷q5|à`L=§§ðÃÒ|êœB´]q”`)àòY©2Ä©ÄÁƒÉhr¦/KjÚ@ãˆ548›§m`ù<Á½` î%kðã¸7°tm`Ím`Ǥ°v›Óo`Ío`)n`Éo`¥ù -³€ÝÀÒ+á68.{#y{£ op”-Ž2‚É‘‚É-Ž1‚ÅQƒÅQ/‹£z‹cŒ`qÄÝëÁ+€M ì–ºuì×Q—Ù\°l÷/– ‹4HùÁzÍû­ÙÀRØÀÒµ¥°¡†0Žð%À«¦¢¿ÃWv¶û•áæb¿2¯ H1AâHóõóµ›o Æg¾1(»oŒ$ä# n ×'–ƒ˯Lð«³~X¶ŸKð7EÏë'–£XƒØ‚آ؂Xƒ˜gÜ¿ˆwp¥x´’»G+p!ˆC+G¢·›‘Ý¥»°œf÷#Èl_lxéþE²‘7†ðQB'S3mÌC`H}˜ñšLc ’„|P¤AÊSš ¬#óAü–ùÀ ì>0”Ð 5„q ‘ŽÖ™\¬Å:;`$û ËÆBd±ÿH”á©¡åZ,Ä|Lrc!f‚j!’÷‘øQ +pŽ‚˜•CÊh’̯#ë %[ãeVŽiPUy4Õ eZ:¤‚,rQ@ ƒ4!K‡t‚%¨¬Àá¢: úÉqcy®c¯JŽë€<ÄŽë Ãu€Ãu U²£ŸX#Cvd˜¼JvdÌømÈ–`²ƒ4øq„±Q 6Sƒû«hDÛŲKÈXHƒ”ÞLãÆv6X;¶é‡6ãȦ<îq ¬Ö8°<üÀ²WŽÃÊ~Tð¸U­qT½øQõá‡ÕGW~` ÁÂoc㉖âqU³MAºM‚Iº‘mSü<Ÿ`)â~ vf"æƒ-Ñ„·{©©š³Ïûøu##a­pŽÙ, |Y8 ì’…‚4H™÷Z]9þø²r”c/š•£àE=få ^9HD°9Œ›q?F/άo—j/Õ<é6ª'ÝF¤Û‘°¤ÛÑàGqAœp˜¥wZŽfA Zr´€„-½{Ô2K¤Χc©§{jàé‘xº§@ƒ29ç¼;Y$,fj:í™z~Ö¥ q äòùtÚ#ï$øüTƒ”1RÓ W©j8aÛÅ´åó÷‚%¸—¬ÁãâZäJõü@ü@¾øøR=?Ð.~ÀÓ#Ðã¢F¤^a ×°fV÷£:Hߎªõ8*0£ê~P3 p¾Œªw²UÁûg̨HÂŒ 4¸1\¸BñLM?.ÃlC~9ÃlCÙ2Û$ 8…Ü‚æºâ– Np ¤¯6¸¥[Qq In!~[ Y![š“§KÓpti.MŽÅç-_Šþ Kn·áÈí^¹¾LKn£€’Ûm¼â®7qî=9 ÍæŒHsú7 ÌËéBšÓ!ÍC‡Z¤‰„©Eš a‘æ|ÅQ„ŸA™Ö ¤’µ– —¬ÆÊd½f YáIƒ””Y¢*5OT¥å‰*e–¨ CT%KPf788àöéá·éÞý6Ý{ܦ{÷Ûôð»ô\Ñyš7@RñH*Ñ9ÖyÚ+Žâš=NÇšürØ^»€ l0Ó±&?{œc¸Ùx¸^;‘ þÿÉ{·––=ì~Š÷r6dVºÎU·†`0$f ¶/Ìö8Øx9xpHð§O—ŽÔköšC®Æ ³×_õS«JowWë‘T>ÄO# :|>ÑËÄOôõ[à':}¡?èô}¦ËáûÌ.5ÿ>³Û¿Ï©ôï³Æ2ýû,ö} Q‰ô!«â3õ‘u3áSVø®Û§¬p“wø” ‡}»D‚ÑUܦþ1£Z¦ác6jü˜Q;Ÿð1#û˜‰„¨G ®K¯Œ3ZÌÎ!76d爣²s˜Ã³sH‚Ñúýóàú ¿º× ;²-¸®@® ‡×EBÔ#>KÁȸÿ…òÜÿÂItx$…CŸ8•`ô#{>µ×n&û_mŽ©Z[…rÀkC¢ÁW°ä°¬ l:Ìç(}S)ÇñL£¯@9Ô ”æ)ÐW°yLL‚$‹Ø–Nb«P]µJü]¼ÂûëÞ¿ëîÿX¯pÿ¯påóXèÞ3º…wná]³[˜8À-¼gôîð®ƒÞZ£w§žèÝ©'{wê Þ”øD”(Ý;D” f{Ýx-”zË¥ŽÞ¾ÜãIòU÷xÒÕ};'ºvNòìœL¢«ãê?VÕhÙªºß[´ªê‰VU8Z9Àª" `U„£…‡Üª*ôÅu«ªpk:°ª„ì*‘õø»$¿%°ù÷M~KHó7’ßþѹo¿ú†Þ©:«²)gÖ"[ìn-Nušµ(j ªð_ÕèÕ™’Ífæâ¾9Õ`.ÌEæ@ÿTþ*™#l‰‡?C*¦{‘ªà‚½¸åq4{Q,•JØ–xÄ–ð‘Nß9ÛSF¨¶é[¢rتE@Ô‚4;*ì)HýG™gç6’§é~ö©1v1ú÷tj†æƒ*{¹£ÛÈ=÷Q\Wùõ9˜¾Wè*”CW©¢W·NÍŒ<ÁâW!Oy¿=w5#êýKSÓ^݉^ïÀ‚œŽ^+eïúåF‹Íî#ﲞöãÞeß÷Éf`ú^¡KP]¢JˆJ¤ý^ª«B,C"̺áKB€møD‡ ?¦ èõºã/õ$ë@å×ÊvüÃLãž/ ¶dUH¡2ÝAldQ­•ñþà±2ÝAÒ©.‘ èíZ>Ó÷%Ó%(‡.‘%d%è%{ÞWµ{Bø¯8B5cúí9è9溴cÎy¿-ŸÀqàêqL8ñŠF÷;lrG,Íôe—¹•A—¦ââ? Q 0(ôî5¨Ð‹á‚B„é‚BÌqàjUh” ÐÜQ¡ûF…ÖH (Dââ?ÞÉOÞu7á“w}4øè‘Až½w$<|×üÁ‡ïÄgúºÀ³×)ùÛŸ½.ÀŸ=á°g$$->ŠÉ·ËF8_Ù5ãØžk&Ñ?ÐŒF@’4+3¿VmÄ׊¾LðZÉ· ^+â€×êFá’ÝÆg¿ «à®µïZ+ù®µïZQ·ñÙ2ø¾ºn7¶‡ºqôu#О­¨½a¥qñU>8 #Tx¹—Aõ¤y¯ë—ÞôÜ ý®ô–Šï8&•¥p FW6Õ}änfëÇ%Üo9˜¾Wè*”CW©¢›ƒ·C´9ʈ6ÇG£ƒ÷C´:ˆÌ’fïŠnv,Š#»ÙÁûž›º1ºÙ!fvˆ„¨Çç¾Ñû#ü¶ø}ã·Éo~ß„Ãî“H€ûÆïÞ·ûÔú}cû×opß„îIˆznË¡t9ó+ŽÐWü¥§=q×hµˆSIÎɼ#ŽæôvË O`´œÄñ‘έ èT…Èg`ú^ kP]£ ˆZ°f×Ó®9û4³6 ÚõÍËxÿ.m Oã§¿hÛ‡œ/Çî’á Œ§¼t‚;.¡Üñ9˜¾Wè*”CW©¢ß/ÀùÝ/ÀH_€ñùŒßùœßûôwÉ^ó.Iî pÄ9C0{ãªÖ0"ÕC…tÙtߥ‡Êé(}ß„çˆ#T8 µl0 N7ÎÁõ‘÷¯ÞI¦H¸›ÌÁôýkè*„ÃV)’)oGú0ø7X†¼NHð¼%–¾çí0‡eåˆÏÛÙbéûŸ‡ð¼Î{÷¼ÍŒ÷¼á°u‹„¨û Õ-P—ÿ¯0ÂNÿ&GÓ»†d÷¾ý¾•¼@þTϼ ‡Ú¹¹¥y ºBG8&kÞ›0·OÁä½@×  ¶jµøÜ5ún‡»6K¼k7\„wó‹ð®Q@ îÚ•€w]lx×.(ñ,ñç~•!üáï6dš Ü5’õàïö ?B— È_qD¾ˆ÷ïy–/½d’Ù+7wŽE—\‚Ñ’wé#ŽÅ»„Î9›ƒé{…®B9t•*!ꑾjoáà‚Gü\k ¿loá€8à @ŒV{Ë¿úð/Àµ¦ð Àö~ˆÃ¾"!êñ¹oô÷íîy~ßx÷û¦_¿oÂ÷$À}ã/Þ·¶ã}ë5Þ7ú„ûFpßHBÔ#†+¤Â•k ùl<\AUO!\1äMðp…pXøH$@ø¢ö®àg‹}®Xê ±p…pxÞ: J¤€çáž>²:y‹ü41U|ÓÄ[’fý4±rH8S%XÀóHê™tŠIyÈTNàYPÕÎèYØU8lÝ"!ê‘ü©ò®*ùyÀŸzw@ô§ò‰þTâ*I0ZÞð§Š£ü©÷¾£?•Ÿ ô§‡ùSEBÔ#yø¥®xø %ª¸‡Ÿ §€‡È]p¿p˜‡_$@~ȉ !œ<üµEM !ÌþB¦&†÷oô¼Ð û+qÿg¼û+qá]Â÷‘Ñó>²zÜGÖŽûáí°¬÷’õH¸­s‰8¡º;€ÛÈÉ ¸MÛŽÛ„ÃpšH0ZÛŽÛ}·Ýì{€m— ¨7Ð&—G%Ð õ‘ÖÛ02)Ž)¦À¨å¡(‹ J»Abbn˜§‹äçêH9œ³ªÊksm?v¦´$Î!«4 Qô@vªIûžŽ€ç‘±½?ăçQ8ìù F÷_J|osx©]<ƒXÀÓ(ö4²€ Cò®v®x#è+æwÜ]«rh \«ÊqôÒqL¬ûUùMw¿*‰w·êø¥¯*ÿlNU¹:®9ù ¤â8ŒzŽÝ_Àoªû ô]60˜@=Ô@²‘G\â/˜ì`0Ád4þá°5Š€¨XãáÓÄFQY"ýØ¿{îÃ'žØPÚMç`ƒÂ%]ÁÞϤN~ùl\{G'`Úí çª_~ú K9¿Tüsú 5ÁпÇÂaß_`¤¸2às|(iÚ?Ç·–3|§úǘ·o±\UÀX•ÞÅP·þö²GÔ_¥ú¡/¥=Tæs FKº 4ÊÝ´ë§£Û MÖm Æ!kA‡U&G6}Dœ¡UÅKª ùð8T"*Á Ê”·ð‹îPeE8Ô—Â!ƒ*Âaë QÌížåò@j÷;0ù 'VÏòÚ›7aœ3¯•´Ônû]·íz§‹–9‘>ùL°\ß+TÚPÒ3»A(×G 03‚>]3#èºü1}`§§r)m™ÎÀy.Àè"G¶t¤Ü.¶v„ø%Ùw:ƒÐžá²FµÀÔÅyí®yä#›Sñ9ið½ÔlDÓ •öÔEçàÄD—`t“´6雓éUBïìÑ9˜öÔEçÐUª„¨GŠRtî#ûí€(Å=é A > 1 þÝBr¹ÑK@ˆ‚z„@ˆbлç!ŠÁû„(„ÃB"!*ycô5è˜7v?´ËIÆ} S^iÏsÎ s Jóž7öŽP…Y—À6®ÏÁ´ç9‡­[$D=>á5²Cø~oÐ!|÷+ts´ÂÄá+ÂpF‡ð5Ñ!|¿Yè>;;„ÏŽá+!é.Q–@Ù¿óP3ØíéÉJ»G8ï›#?øˆ”›0|<Øf˜ P| ò».P/*D_°j÷‘ÉÇÔ+gÖÕQk‡ÚÍ“« æ Fë¡v÷OÊA4 |h]gÐ3í¶ùÙ¿ruT·ÆwÇîÜ2Feãʦ4j¥Zªºm)í[£sðÆçŒ¦9|kÔª¹ÿ¸„geis0í[£sè*UBÔ¿Ò£^ùÀgú¡ZÛú•ÝPEúŒ*iŸiû]¾Âv½Óì86Ò©(° ¸¸£úLúwd…r}Ò³Néoѱ}w«Ÿ  ¿FõÓ J{Þ©spZ©KPšçðÄÓw„î„I¸È÷»Ó9„öÌSç°u‹„¨:¦F}íKø‹Å·—ð{éÛ¡A}FBº[Ê~gŸ“_®4Oà^©q¡»@um<¯¬´;¥ŒÃ×L’ ˜æ÷Žm.6r¨ ¬$Ù½äâ³Qœ…§´§ù9¥ñùõBò–æ÷4:6b—ߣ ŸHKò³Ÿm½ru\ø@—V¹ÉŒ,öäʧ±tv ëÇShø@‡|~M‚ÑU,L©%q µ±'Wç¨gñU(‡®R%D=9_KæÀñ‚qMª­"ÈõšBË( àÙ8›£«ïБûÀ ÇÏd˜ƒiÀÏÆ!‹TA‰€5Ûû! µY¨MBó&£ßFu^›Ei›Æ!XÒ$]cm–Ñnñm¯bòÒ j³ `Ó~—%êåQ‰^n÷…ŠÇß‘ƒ2I(2h!´ƒchbŒîRåÊFîQ-Këæ>f`À‹qèU@Ô ÷Ï=Åž²‘òð‘þì¿tçÓ…d(醇3°Yá”æ)Üð {\—|m¦Üð°ŸmÉruT!9suTõ³vOŽä›'gÉÑC÷ä¤ÌôÙ³[Ý8ìwñ«’1ùCÑØ ”#znÒúS Ëâ‚ò>µ ……O{ ËàB(ÂB#ž ÂBâß#i!©RX6³žÂ²å±õáˆ)+Yäì•6>BÖÜÝÛ)TàîÞÎPp÷*Çñ‹Ç1Ñæð¬‡;|9xäß))Mæò[ªˆKOLL(yWÔuB¨Ž¿:‡¦ ‡¢+àðKŒ¡óÓ¿® Ð×üeEðE¿û’ùò¤Â'å€8I0ºÊqF¹ú"}ƒÚ-úLc¤O9d‘* (J©•»ÁÈ’Z”ŒÊí3F HÅ8‡˜£«œï°‘¥ ?A6î·{V˜ƒiÀ*Î!«T Q`Ò×Û:óJß‘Ig/Ô ®ïë»,¯TI0éA v`txi#•žB—p;ímŸ‚I0êAר¢ɪŸR"ÞÍú[ü {®5è†ýÈ•öÂa†= 0K~J‘xÌ¡zBˆöö–‚íþ%åKñïõÃ~Z™x·ˆÅúËþù%œàéŒ̰7ó× {1Ͱâ@3‚mDÌX³ë¹¶ŠÛõbƒ]/¶jº2kñ±ëëÊv=ásÃþéѰçpöÌqàjµì+¤r *Ä,ûQ¢e/'êܲ'°ì{²ìëÊ&p““˜!5wÌš%fHÍMàšN ‰£›åT¹ üôh?;šÀÏÎ&0q€ L¢ŸXuÅ‚‘C™›ë£Ìyö¢}Âaá=‘á¾ÆF3„ûú‰á¾‘Â}ãî)Ü×ÏOÖã“$ÅÐÅGx¸yÏÀÄÍ{….nÞ ‡ï"²¤º`šå`CžTÈ06è‚yRÄyR!‹Û¡‹'…½Fv vpåžgžÜÖŸ™Ðä6¦1¹M8,™M$Ís€\¹“¤Ç-ÊEñº%=ÅN8lÝÏLø`_ƒ’S›Ñ¦| €T˜#øÙÁ~v4w‘ÑÁüåmÖí_êLöï#)Ínÿ ‡-W$Ä凸ÑS´jŽpÑÚ<åür,ªÃ”GäW éÅNkÅyèïj×?\GÅ?Z0Ǧ7Yž\ŸaÙ§KG=át+ Š>ÑyДIˆÊÚïsµË®òÚÈuæ7Ê>­I(™iˆË‡.Q%D%‚1u·àYИ*·{twcª, Ô’¥#$SÆ ¦’ Pš§cªLŽ´ª€±Ñ+$ØRÆ`‹ÆH­OL©!xÅM©‡½‡fKuÊ®q[ªKжÛRÂa¶”H0Óidñ6™Ý˜â’EnM-ÁznN ‡­[$D=’=Õ%Û×G޽Vƒª±»Õ *éyUãÔN³—HÐ]+Øa¿Ã'îÍ¢¢Ü`Q ©å•pØa¿ÃϨÇ'-–€ ¦Å’×É,*ªoUÓséfQ)Ç«59–OÈZr,'ÎzrìD/lëÓc‰òcCU•|¥t#$«ÈŸÚœ¥¾}î,%:8K…Ã|¡,ÁéÎEG Y…o–{KÙ1îîRs›¿T\ç–¬"·;êñq˜Òƒ¦íD‡é}ÌÐaÚfv˜8LÛ‰S~ÑZ\#Z‹»Fkq×l-X‹küd=>Öâ<ÙZd;Ì­Åû·Dk±l-ö­Å~¢µ8O¶÷ˆÖ⵬ÐZdW$Z‹ÄÖ"Iˆz|¬Åñ±ï]@kñz2ÑZ¬'[‹ÄÖ"Ikq|¬ÅU£µ¸f´×ÌÖ"q€µ¸êOÖ#ùƒõ¾a>úHùè}Ä|t¾oÞGÌG!]o›Ÿ_§N_îæ{âþ`s ›?X8ìüºˆZ¤”à!§W|„­gO &Ô)ÁŠ´<%X8,áW$íIÄ:ÂN~O ¦„^H ¶$bK [¥HˆzÄrÏ7Cb„rÏ7CÓ^š3Uµ3“f6ÚïVÌY®7šgp»‘‹LB{¼u$ÇWêI=îb§&ÛõI‡X¾ïl jZBãk}î i˜Ï”"É’"É4¦a*‡&Yª-ÖÇsü Ê÷½ºW,ƒ¿%COË÷mí8eåû”ÃÖ-¢1UñýÖ<½øŽPr“' ÖÊåœ5“iÌU4IET F7k¿,#ï­HV¼­ì7ÌÁ4¦+*‡®R%D=Ð/\öÃ~ gÖ<²åý{=ÞÔHið ‡x}M‚Ñv AG^zs¿pYT˦Xz A× ¿Ë õê At ·#½Olä¦LWp ÷-îWqØv­ff.]åP—¯JPšç@§p£,ØàV~jtq€ŸÎËÖÏyÙ>£}Ÿò!>é)‚.*|ûñ1îg2îk2îëǸ¯É¸ŸÉ¸OÅ©ø\#÷ûDã~§âTÂÆ}ýÉz|Œ{~­Ð¸_5÷³Gã~¦ÂÆýªÑ¸ß;÷ï‹ô„B“0Õ£¤BÂÉÏþÉz|›öÏaÓû]¢q¿K2î‰›Ž˜ìÁ#¸Gyú´cõ}|nÐËNY3 ÇŒÃV,‚]¶røÄº Ôk*{ÿ+º8ð°¥1rÔë•$ù€,Û=7áAá¼M€Iex“JŠÐÌû§ƒæÊµ¥ 4{ `Í•kdH& @k,ö|VÍO‰¨YªOl~°J0KÈz|Bd}æYŒÕ#dµæs¿Xd¼陪ǬšWÂÌ+B晪ÇôÏI at¬·›):–`³p@t¬·;Ÿè؉Ðy×9‚„Ðy×;?Y„µ2b玬tœ`}ެtœ`‡ãZÇGl8zæÊ7Ÿµ6Žãgá°UŠ„¨Ç@Ÿ’4ADÐsG=Såá½jÐRóÑF"€ž\Úôdã´pØ*EBÔãsTb}ŽJŒ£¸S8*¡±.?*10«8*±>G%Núœ ÏÉš8@Ÿ¨eŽ kГ«‹Âi‰pT"@çI<=âæúÁÍ=Àf* °¹¯ ›‰`sÿÉKÿTÉyjFÍT; P3Õ–Ô,ŧ5 f’UrøÌ¢f*¨¹Žˆš¥ü æ:"j& Q„-£øH(»òVNp7ÜÇ4bKå0,Ê®è[†²+/Í0ı¥âÇ–ÂaØ2”]ñ90G¬Õ_0ÚG©JTAs´ÞoFžÄÅ$$‰Éï–&×;]Á`ŸyË+Ùø&žIÌ3†OTÄõ‡²ŸmlfEmz3«—^¿x‹a!¡¨€þ.ìr¥y¨)ð<Ý \›ãY ži((`¶âþ“—Ÿ<CŽÝ»€ /¹ cOR¥ƒ@8Ì  ï=yo#™”îàÚKu€Tw²u³„¤Gòt 8ûÈá•© q# ó4i•耭‚üz%»Ä›ÍpX/ó ÖË<CõR€0˜@DbÙŸ Èb¼Y÷X¼ùâÅ ñf¦1Þ¬oV JóPUàúBže.f0ÓPUÀ8lÝ"!êãÍO›ÞG(ñÏ#½…ëÅZ,¸hEY‹‡F“E‚ÑUúz¸ÿƒz]€„ëźE+ʺE8Ì#¢áÒ9±bBaDá®…÷áÇŠ B£ƒC9Ô}¡ôÔÑ9©bµ]±bÂØÄÏ!1ç”CW=°b‚ÍÞ€[=bt”*õÖµ"Y£Ó^³¬UÍ•¢fÊ 5ÏT€Ñ4xJჀ* ÐYŸ¡Èi_ƒrèU@Ô"œŸ’ Ü‚,XXàÙ´V!1ଠNVF—TXàÖ„Á·žjóƒNBbæ¬2hª¬ ˆZ|üue¿@‰n'Š|>…"ŸT(²D¯@Mu›¹m/zFt ŒìÑ%ÐS¡Èo¸Y‹ÿb¸ù”nÞ)ܼ?áæáæS8?±ìj]8§ÄÒœWšÒJëúÉ+ÿçõγFàL'Ï8K’(gâàqgvv ‚¾® DУF=jFУFM îÌÎL*¥ôWH*='&•²³“J‰’JOýÉzD”y[„´3_ü»&ÀÌ›oG‘˜˜)¿Š”ënÒÖç!P ^[ºŽe¦1(²äë“j¾æ W´‘×P¡Ö½ õ^æuƒL#ØTÅ’*ÁÐçXà#êY;\}¨¦ ãÙGª:à[·HˆzDó>˱li¥ÓXŽ^Ìñ`IQ¦¿(‡¡‘ 4Mð¥P"¥çÛrgÏÈÕÞ=ž³+¶htˆ‘ÙÛ3ž{ܧAdövŠ?€+˜ÆÈ¬q2Q F‹åÊÈ-¾|»Ü®h©U©$á§Ø„CW©¢±†Â#1L¥ ­Lùá¥2?´RçÂa%D‚Ñ„0­‚ÂÄò •”V>¡jÓÊ'‡–O€R "b²× Ó1&{±éušiDôbÓ1Y¡!&kr5 JÓ“}J• ®¸Á~Ë aYçÐU‹„ E<êWÄd„ŽÖZ¨œÑ®p¢ŠÅèxC¨£Åšó‘‡ƒu&áá¶Ä:Å£}‹m Ê kTQ‹b¡Î~0B¥v²Ü¦©€X¸‡*þÝŠ\€EJá`i¯Ü3Xø”$"âÈ’ ¤}›ú5É. fm1ˆYF b–ÔÔFB³¶ÄlŸŽµTK:ÖNÌ.f:1…‚˜cÿd=>É¿ë“ü;bòïHhl|ÐØ@460ùwaò¯Ô]4ö¤äß''ÿ>!ùWÄÅg@–+RT„ìß…õʦµe…ì_ ÔÔhÆÑX†b5†0k!LÇ`³öˆÄjb_ÆåBêoK¹¿'¢°çdöœˆÂJ‹(¬µŒÂ¨Í"&ÿ®”ý»2 +¢°~~²ßR–¢—%¡°òAa%¡°¼l6 › …Í › …„ÂÚo °Þ2 «éh_IGû´©›£°’ŽöÕt´¯·€Â:{ðhßLGûæçhßLGûf:Ú§ußÿÉ/ûêcÊo†^'A¯ÔV80å7A¯ý ^>5/Ÿƒ—OêG+˜ò› —úê5YöŸZ1å·ßêlÕS~û ïlÏÇR~•CzU‚ÓZ–Ûj×.nµëÕ ôÚuGËr[í:åÐZu*!ê‘jv éþæ5;*Tê5;:ÃL+ÛÑ¥¢—Wî+Þ!¬T‡fAùH‘´` ÌÞkƒÀ,Ó˜U[·HˆzñV/‹Ç¨nÓÊŽûì6…€cTB‚h bš¥y °o³]ÝF¼=!à•`#ƒ­ZD->G9Ùàx0mªÐé78ŠœÏqƒC9\­GÁ›Oø›Á‘Ê»v«o¥‡0€ÁÑÎO^üÇ\²Éq’ɱ“ɱ?&ÇN&lj&÷E gŽ¢ÑÑ’ÑÑ>FGKFGûI:|*POª²¦ê/h™êO­X~j…”©Æ‰ÿÁæ(Ñä(©úTùTŸ*©úTH˜’¢Åñé2Sb—™…U¡Ì<Ä>3ÄfJ08²µQVê2ÓS—™ž­ âk£¬`m|Mu²©1N45ƈ¦ÆHg[ª1%°æTê8{¤G­;|ŸtÐèù4zj45B *A„ó÷5;|ïÂßûŠ¢Ã— >pø8|IVˆUe%©ª\†Uvª*+PE€D->VÇlÙê …ÕÑ’ÕÑ>VGKVI«ƒMYtøÒÊÀá»gtøîdu8|×ùÉzÄŠ¹ý‘jZ>§®í{mΉ{ƒ~3SB.túÑjZ:ÒøÀµ]ÞJ8Ã$4Ê¡‹S qù±P.?5hlpf76æ–Gbl0Ɔr¨±¡”æ9ÀØ(CÊ«®žís0 ƆqغEBÔ#ú篱+…Ý ÿüó·Âq÷9“àŸ—ßÍû.×;ýˆßÌFõ71ÿ~¹g Ýÿ_øÈ!”AÈ—' R"ع5ÓB"X¿ øÅù¬{Î7ç ‚o]8À÷Þ*æ‚©Ô¹`”é`«Æt0NÁt0âðt0–õÀ¬©~Þ'™›ÜÙÈû´/ËšzÉAIjRÚ³¦œƒ²¢üz!yËšzª¤aÉå‹RØKZè ”Á–,¢ èÇ$à #”:æ°…“½Gö‘€³wÑ6é²­Œ–`0tê>RûB;ys{ïõ=´ˆuë.¢!ç¦r÷>á$PÍ~¡“lÝóc„ö cü`´6ﳑ‡s@UÀÓCŽÐcºFµˆþìúñg×äÏnÑŸÝ>þì–üÙ5ù³ëÇŸ]’?»Dvùø³Kòg—äÏ®¿éÏÎÎìœÙkEo¶´AwöZÑŸ½£?;;³ktf×ÙüíCg6q€3;±Ó£Fà®Oös¢'ûIžìçãÉ~’'ûúÑ“]?žì>¢'{$Oöøx²Gòd÷ñ“õø§,‡—²ì5"Ë6"²l)µH8YöZÔ8ôÚ+®ZÔÓ™œþ9“ÓÓ™–ôø8µŸºäŽïÐ>5€ÏèrGtÛÁkçÐþ=¢ËšÚõãÐ ßE@T!A1툉MÒGȽá~—Ø$}”Å„š¤{£1Šiu…bÜïÒ¡˜eëƒb"!êñbû“{3S͇™rofν™)÷fŽÅö'÷æ‰5žý¿é@ÿïs¢ÿ÷)?Y‹ú¹7†Rªt³‘Eæ 1¬ÂÝS0¸E9 ·ˆ£eÛ܉Ž[h ÜÒ´—¦áá0œ"¢·ÜZ·¼†XÅ Ç»ýâ}+™Ô¿$‘‹îÒ†ÄaÌ¡«¡Úà éòç°I¦lgí3`âM;\ùÝGnX¿/+&Þ‰y7ò»fÕèåvŒ@óŸ}dp‹< dd8š ùÏ~xA8lÑ"!*‘Ro©>â#ƒÛ$BêM_1õFKxêMÇ"*ÁèÇ ÛiêÍà6‰PþùtL½)R~ H‡¥Þˆ„¨GÌUéíî´˜¬Òוæy"ƒxZ& Ó˜¬¢š‹¢Œn’.o#ת‡Šn÷XƒŠnBc¶ŠqÈ*UBÔ#š÷]›aØÈ»Ò ¡­á`u£µ†–5ÞU€Òêu‚.áàº]€f0øg[r¶~·fÁ*©'[W¥EëêIÖÕ󱮞d]•­«š·7·%ëj´h]T,Œ9кêɺRSß«dëjÔh]õd^åj55P à¾_ñÄsç–ënaõÔ@M3kÝÂ꩚Hˆz|RÊJ)ÑZtàŸ–ø'äiŸ˜.PVvà·”.ü÷÷}òÞ·”+PÖײ’‚²6²¥ ítc7„ÔõH„YVÂ`v“ËJêÉ‚“û& “»EwË.î=ܵýd‚øö§ân0B®,sÄ–MGRÍU+4ø‚•C½*Ái)¾å#“ó˜„w[ßßÜÁÆ¡«T Qdz,Ét³‘]¸ š™›+…¦ÇÍäb7=´o²ÔÐ\anÊb3ÓcKš››Ê  ®±¹‚΀ÓwQÉczÈ6u_å-B„ùÌL£ÇT9Ôª”æ9ÐcºÉºu k’3Íæ`=¦Êaë Qx†öý²ña*ÙdÕÚZÉNµ3´–¿jgh•ÃúÁ‰£›öض†p›ì“ð~G9˜þ´„ïÇ’Ѳzõ2ã̇ÚÊzéÝN¶„çíâÞõò½Ê¡0E‚¿œâßõ‘"ŽV-7µ$ÉYëM-ÉHð‚S+&1«„¨G´¬® ]‚eÅÿu›æþú0 –•r¨Ý¤”æ9вº6æßnZÁz›j½™}§ºn‘õ@ËŠÃwhY½#Êõ³Úf³GI7¬œÍ&»ÞÈ.‡ºmDÊo™€1ÄSË3 =ûlKP]¡ ˆ:|.¦4`©”ë'ñÅè3MŸ€ë'¸§ àž2€û'¸§ àÜ#¹þF ðþÖ1ÚÑq:S£ù©c4s£§;Õ1’b·PǨ¤:FåSǨ„:F|‚6éñM.ŸàR€Éä„ྣãT9\=Єƒà§gDÇ)Ûˆà8%L.?yñÓþ|²€Ù% YÀ) 8ö)‡|¢`ןOpé1#‡2S #‡sW0#§ì˜‘SúOV⛓³>^Ó’rrzJÊéÙ®_=9NKJËùÔ.+yNKòœ–ç´DÏiY?Yd×·O*ðæôW0íC•!K²GÓž8 7§ë¾}’ùYuë¾§dàþIî)X$D=>>'£ë´Îè:-)‹¥ä,–’²XHøq@ÿnˆ`àÏ”Å2?Y,3e±€¨Å§ð' ®Ó³£ëô¤r¹çS.÷¤r¹  ;` ¹³7› sgï× sg{ê…!;K¢¿ÔçßGºT¦•Ns·X ö»cð‹rX7;‘àô#ŸtÃ/ïû_¡^n¹F¤³øE9¯¨„¨GJgÙ¼“€ƒ•ê1C:ËâÊ;–β´6¥³‡¹E‚9·uŠöt:d é,õ'd³„r¹ú;ä²”Û²u1\Ó®ýÒZ€QÓnÕŒœšµ³d¥¿+ðÒëîêDæÊ½¨åòªªY|õVÖ2¿3ðúäò¸þËjÑÞ%6R¹óˆ¢ÛÑpm‡LB,3]&A颽K|„¾l.¿l>ÓËŒÃÖ-¢–µ*M ±éõÍ6÷6Ýãð6ÝWŠƒ6ÝÂ}¹I‚ÑšGa#•«TyŸn)vlº5‘Â;u§bÆ"!éK]h‹/îx¢……^tñ,¨<ÄôŸ ´‘rHé"½^É.eFt@Üãvùucqc¦ÿ䥔A¨¢ !@qK™Œ (‡ÿ¸ÅLš‡˜„…þ.á»Üèªç|udSÕ/½þ:…Ä'„†ø„qè E@T!œž-°!¥ŒåðjaÏ“o-šúe`•COǪ£58a#RhÆ$<Ô‹Úçx´ýµ­B9d‘* (K?zJÂ{{ó¯,Ìg ¼ö°ž’ðêÄÂaýÅE‚Òž’ð©P¤úðÐGOI€6]·Hˆz$}O‹üL÷Ùñ³*?É–tüv½‘r<ÕáóæšÈŸ{èv<Õá³0|Aƒznô\"z本û“ŽÑ ÖýI0º}`ôH¹G#ÁèñÑ#Á蓬Ë)Âϳ2Œ^ F¯£×F¯£W‚ÑçÓC§$]Œ®]Œ. F+€ Õz†Ñ;ž¤M(ú¢Co'¼Y¹æ¡´xŒ¶¦rÀ5×uŒT@\ùCÏOòÑHÉG=…Çú'<ÖSxl¤ä£ùI>Ú)†Ç¸-†ÇÈá±Âcó“|Ô¤ë Â螎¶ô’ÂcŸæê½DÝÓé–™ê)ÐöðØÞ1<¶Óñ–Ãa*!êñÑcdÍ(‡Ñ7ÇatKu„`t›FÔQgSQ„Ñ÷ÍC½RGáM¢Ÿƒ.%'WQ×rH®ºÓarŸ´Âä*â€äª’­ä¤s©+ž¨½ÀOÔòQ+þº² D÷ÀÓ¢{€»;{àiÑ=P¢w ~Â}ïÀˆÎ‘}#ºúüÉ |\#¶ÉœE`ºº去k`È)tw ‡¹D¸Fj“YèË®=;;vô ÐåQ‰€Û(éÜiT%Ópk»Îh6#4`gãdlŒ.éÜiëšt%:w†´9zÓS¸º åÐUª„¨G€Ï¯Et·1ÀÏ/Ô!o‚â×#péb¸B:~ÖßëõJË  ûkLMëÿ9úÞX JH@ÐΠkæë“Cß¶ B߯n•‹ƒ*¼ ´q@6 JÓ€ oë( |;Ctˆ Ú8lÑ, è æmÈ‘™£d€W§ŸÑ À%ÿÆÈÑ.r¨yn•Bwvm—À¦ŠfÚ‘¥1ØJE@\y@–mÑ£ȲíBËR\wßòÈOhÀ–Æ!ÐÑ$(½ôyõ‘òKwpÙîçªN àÒ8lÙ, j"´µw9aå#’É&±Ñúþ] -IˆÏÚï|µËÖrà6rSð Pmš'30 áYãÐ%ª„¨DD—ƒ2 ]ò±8ºä2îŽ.™Ft©ŠU‚Ñ’wÍN©Œ;4C%/ ´K•œ(h¨ªÚpU$D=bÍܶ%ÅFn u¬™Ë^e¯h«~g+y« ZW(ÍSÀ‰{fCÍÜJý¨}¦áÄŽqتE@Ô"áf‚‡ 8ŸœwÎûœwÎIE¤ˆœkBÎ-"çöAÎ-!ç³L‘¡óÌйFä\RÅÜò©˜[Rº&àÕF:ÂÓwšœê@³ï4G:³>ÕN Hó$¨y>Xó$°yÒžõÕ~£†Sª¦ð¨á”ª)äN©þ‡×p ¦†Ó-O0O¬¦ðÜ:§^L¡ÇòJ½ky%+©ÀXEaü„ ‚±l„6}ðÞ¼Ó` ¦! m¶j‘µHú‚‹UI×xÓ‘ôxÿ²Š* HÚ8'›£‹¸·‘I'Ï]¤vß>Ç”†à¾ åÐUª„¨G@Òón¢!=ï6ZIÏ±ðøŽ¤õwÅÉz½Ñ< éùÞæÇ«*ÌwùÔÑV&`´3èšùú¤CDÒg HÓ‘þp3Y…±ýáø«]¡J‡ e“ È™ç@,}$þª`ú6'…h´Ð¦•ÃÖ-¢N·NÏê¯8²(}YPíu™T€½B¨6ÆÍv½’Uó}e -J]¶Ë¼ô šÄ´(ƒ.PD®~w2“éÀx en(¢eþæ`µqh6 B󀪯SæF TÀuÚ °Ú8lÕ"!h`õ­7*Âê×ZÅz\7’’…`팛M‚Ð2 ëûv@½ˆ÷I›tKt¡Y‡­ûÁz>‡Ç£o²Dë®·ËÄ£k]”  ±b¡!mm6 J-Fî#’ÏMÂC…Á}ŽG‹‘Û*”CW-‚ÁcðþãÊÁ U™î0¸¬¡b¡Áa`âPJò à/x—Kû· ˜à,h3x ä7]¬\Üw‹*¡ÓnŸÜÀ\!z_ÔÀ\1<“î$ПÅ`W]5¨¬#ïVÐÌEp·À¶@<Óà"0]Ÿ\Hz¿ƒ‡€^\p a‚ç¬èa?›C@®6ºH6™;ØëãþÓ›ƒ@?Êî sˆ€¨ÂÇAÐ?‚5uÚ­ŸN»5uÚmÑAÐ?‚™)°þ‰«§°úL‚þ[‚ñqŒä (ÉAP>‚’#9ÆÇAPbY³cYþîcY³“ƒ üd=>ÙéçÓ.hŰ:å@\}} T3¦ hvú‰í‚(Q#ë%EÖsêZbdÄÅ#ëGOÙ齤ÈzÉâÀ²)A}~<»GÇÞÑã±S‚z‘ô®•´ƒ¯ÀüxzMÑç¢Ï©­p€W ×è˜É+À·£Ï{ÄèóNíh…£Ïû'ëññ ´OEgªÌ8½Ìâ“*:?ŸŠÎOªè\Vt ´OEç‘*:äÇÀHŽ‘*:kîP9 '5©ÄŠÎ\©Ù‹:‹ Ãë:ÇRÎ*K;Çôj…^Ûc”XÛƒ·(¬í1‚#@D-¾ êãwÔKt °×)$¨—Ÿ?Ÿ >¢cà› ÞRº}âÐ-¢? ê#:.h8ãµWÖtÏÀÃ2*l<Ê¡À_%Ís€k`Ln·iØCnS ƒÚäw[´\•~U6—rò¬´¸®«»Ðà0ü Ë,Štð¬BËýò‡O„ÙfÔ%(‡­X$D ‚G`½·r‡Øúºé‡[_ïã1½^‰îÐßïëõFó àXRÎKHµ/€Ið8ƒ®™¯O:À¸å2CÇÝÑG®ë Q¨>Ø£Hž˜oýHÚFn­N÷ )åi­اͭº6’ÒK¤y«0üÕtðë‡^¸JCRºqHʹI0Zà6Ò¸@Ih•REm¦!)]9l•"!é38.xÂÇå=°ï™úWÍ àË…ò<h¬·^Ýî“ç≄´ùÙV+WÇÕïÆxŽ4µ‘Bƒ»7^»`CH_hto(‡º7T‚¹;ŽVÀ±ÚéÁAÂçÜÝ…òHn¾;Y„ÃÖ-¢ÁÁ1Æ2ð6rKü‚ƒcp `s> -lî ç`÷…IPzè.ã#7 \>Åç°r-¶ å°u‹„¨:8îCÊ·MîS½·;8ÆÃ÷DBƒƒÃ8Ä}a„–)ÀÁÑ¥:JèR@çÆ¡«A‰à˜["c0Â-ÏS¹s® v¡Ý#` øM€Ñ´ò‘Åç¤UÀâŽÀ6Óà0]£ ˆZ|œ;ûfr ÌèHYÂ^;ûNHàv¶æÐ~·îð Ì]Ÿtû:SÒ@J·/Ÿtû’ÒíI:>éö3¥ÛÏœ6ðÍH‰3¥ÛëéÌ?ßÜi–Ls'ºúokî´þ±ÍÖO^ü÷d÷úÝ“Ý=íî;ÇŸ;ܽ"vþî®!+ÝÜØã)d¥ÿÆánA*eŸlØmWŠyB¶€”û„l6b¶@ì¶kå>![ vÛ•rŸ˜•ÎÙ˜•^c¶@ì¶ëå>OïOã…¹S¶@IÙ%ûf‰~¹£_`z/<=f <;f <;ú„³úOÖãÛééÓ~¡E·7~r·€t·@lìİÏÓ§ùum¯õ ¯€t¯ÀjÑ+ú>A'áÿÒ&GWBn:õè…Üô¼Rj#䦗à àà“èÑ)0’S`|œ#9ÆOÖ"6|jTÄ>½ïkÁ†OžuoøÄ4ø”Ã<‰£yð ôÖ¹°—Jxoæ§€Ðà0[·HˆzÄt‹kB-ÓyßËážùìPËThð ‡@“ É<¦ ®Èdé¯E80%iLP[·HˆzDçÀÒF]>rÝ4ÿ2°;“àßÝ9À×;­mºÜ9p®gÕLîÁ¥LmÒe+0uðõI‡àXUÑçÀâÝ×ú5¥![€Ipèïâ°Ë•æ ÀE°.#†î3cè>#† CŽwï1ôiCs¹oÄÐÄzŸŸ¤EÄ™O“ÍÝG6‚V„÷þYððµÐ˜–®Š"U‚ÑMÑ•Œô³ù³H¸¡† 8ShÀ™Æ!«4 Q€3wÒÊF^³ì ôý¤?ž5.¤ãLý]Q¤^o4Ï8sßsÍ„Þ/âåp¦3èšéFt8s¯–‚Ð×çA轡 ßæØ«BDþMð£]htKAè=É­ê—O>^aÒ§&ÚäÊ¡‹S qùaΗç)ˆ0çªTaO±Ý¼ÉËџЀ0Cð£IPšç„9o,JVÏk•@Yl¡a*‡¯›%$=b¦ýVôl#G°¯ä¹ß"†O$æÙËï’FbÖý6ܬ›õê¥i÷"žiH³_)­^ÄõÇ4ûÙ%eÛG¸l¥¸ßrÍ€h…ÔlšF¯Œî’³m#÷;yöƒ«2ÙCë6Ù"”C)¢3½[6r¿$ 0seO†a檾ÃÌÆ!ˆX%†Ö{æ#…Üh&áaO†Íñ¨¯ÃV¡¶n‘õaè÷‹93÷&¸PÀíÃBÄLf6 2«£ñtØH\¨Þ¿ÅÁ04Ó†VY¤ JÄ´ô÷ÍçR[6²©¶‰§…o xâøš“-™åÊ yç*@iž3ÓWårg"`n*G®‰‰éò»-Y®Ž*¤ô»Ñ 11 =åh˜IŒB+ƒ…G*÷Än4d#@7š~SϬš^õ´;ä¦?'Æ¡¡!O‘à2g!\ž#Âe:õ p™c \&€Ë$à2ù|äá3Û—'÷4¸<åóïpY8l•"!êñ-ŸÞ·|zJPŸŸõ™Ô?åÓ{†Ë¹|ú³#^~R‚ºpü¹òéZ)íŸn‚ºvØÁ ;…æ7·„›Û7·d?+Bçò ²·–°s‚Î䜀sûÉJ|sIåÓSxý´^? < ‡ãçžË§p:¹<'ìüÎ 9ÏŸ¼üï1üO`}¥Àz:…ÿ9„ŸÏ২úùDÕKŠª—U/Ÿ¨zIQõp&JÝ#à¤CÏ1öœ`s)ö<lî#Åžlž'Àæ~¸kÄžkŠ=×›…bÏ;Áæ©Qu,)–asK°ùb]„Í’9°™86·›?ùè©(95‹ÇPóê5ç²h?1ðü‚³RBàùpK ùž:1 gá°°²HpúÑp®Ž¼&JÅÀó&3Øç`ÏÊ¡«T Qà¸ñÁΩ¯§K…7ÍçÏ™gŒoíi9å¡9ç*AÑ<8檖ÐõýHAU9¡Á!`¶n‘õ³9;æ#ƒ[q ¿Ô‡W|Òú»Â}½Þi­~g#ïsw¼fú-&tü ¼àpY¡\Ÿt@‡À|Ø\øG–œ'Lþ‚…"gÊ µ+ínç`ÜïŒ#ÅG^ø¸½júK·ëkô9˜vÏ€sè*UBÔ#xNá-Äjá‚æÉOŠfÐ.48ŒC`¿IPºðåp œ‡6Ÿá‘-Ä× ¾huNõ%ÜHÞG¦ÀîÅÇ8Ta»Ðà0Æýv½’Eb?:Ш£®_Þ8Ô&hšaª+P]  ˆ*¿Àõ¹œà˜‹þk|îÂçÁ´ ~ãÔoŒ®ÚÆTG^lU š>_\_6ÌÁ48ŒCW©¢Ñ3p œà\ïÑ0ùû©¨p:^hô ‡à~• 4ÏžÎM 7©ÎÁ4z”ÃÖ-¢!šþ©Ãm‘i²¿B4½Ä`z8¯¿[è\.·Àù‘’g>Â]ï=”þ§ÆCéør<”.ºd4ˆ¡ôB`1”^—ÐPz¥°J¯ÞwVBéÊ¡¡s•`´õµà:"</¥ñ-\?$Œë}åÐйHˆzÄPú{3g ¥O:1Yï\aÓóâµ§%Î ƒÊU€ÑESõuä;‡Ìû{*CéLc(]9t* j‘|ƒ+RßÀN¾]¢o`—ì ð ìà’ˆ¾š|uGßç¢o€8À7Pƒo`hQªÚ­Õ Ï{ª¨Ï”¯>S¾úüä«Ï”¯>S¾úNUÔ%¬‹ÍÈR¾zùä«—”¯þ¤|uÕ ;ÙÖˆ^‚½­D/×T@/A+ÉKв— ‚ñÎ ¿“AðLøýÜjXr®(È(5æ>E¹ÌqàjÍh|~@ès[vo½NÉðÐz bCëub€úÜ>,þsˆýŸnk5m?¡öÓ£Ïc§XûþÛwж“p{| Þ·èõ ÞbàõhŸz÷­'¯ÇOÒ!9=´H:=è¤=8=FrzŒÓc$§I0ZkE¸ÓƒBÐéñ”èõàrèö ó{ˆ„¨ÇÇM0·Yе·O¬½¥X{nA6³“àÓ,Û÷'ؾs°=EÛgð¼ð摾;>B% ºî^ÁïJ»À8Ä`œ~$õËF·Å4 ïÍ«æ`Ú}Ρ«T QôÌÛæ{coòwäPôKÐù¼ïùu ~WÚ}ÎÁ—`t—îG>Bõ ]Âû‘‚£äJ»À9l•"!êàôí¤ËŸhÙxú•º.œfá´rX6 F‹ÐGžƒ'¢çí¥‹S<ìaHÏ¿ëõò¨DÄÒ«kþ½°ÜPì]³ÜÝŠ¦ß BË…Fw-Afšz¦ÛÕsp¯1>‡!Ó¹…Ã3÷l‹OúHXÂ4Ùÿ ·€6ÜnZ8@ËõŠ—µ•“ °õ`úZ€Ð…­ ¶dUHµà‡Ô‡ðºc]åuʺô\ÓJfRéjõÐSÍ$Xí÷!ۀõ†®xÈÛ-|èï!æŽ5àV:н>ºèÞ^.¶%/©\Mǹk>Î]óqîPîÓ“\XÈKï1˜~ÿüLç„Áô½R^zOyé?9-=†Ò[JKoŸ¼ô–ÓS^úWfT¹ª\9ƒû›ÂP厨2cÊ1eM˜²~0eM˜²LùE”ûÓ?ízZQÎ¥T{D¤HD©w £'8¹œÜ8¹Cý'kð?P5´Ý2LŽÍÓFjž6>ÍÓFjžVRó´É0&àäŽrïÔ‚äÖcͰy›Øî ¹W¨&$Bdù]ñ¯^nt5Ãæí¢[ Kv´ƒpÍŸv˜>°d˜ ˆ*ˆ\ªžðÊ@1˜Z*#y²BP6AÂ&Áh=!a#E½EBÑTq™ƒiËÊa« I€–©øaèœv7„ãÓî¡Ë '®…F´¬‚–õz%‹*&7k:§Ý#—¤—NÀ´£ecЪ€¨B 7¿_mïéȺ%œ,/ɸU +4€eã(¬4´Ì3`°ù¾‚ÍŽsÏÎróo¶X¹0.>ç"äXPüœå­uǸ ¹W&óÒçZ»Ì8¤\¸J0ÚJŸkŒùö7ƒó)¡ÀšÐbV )‹€¨‚ÿÅ‹øG8v/)é®À\hÿÆ!ÐÞ$-õˆ`äùòµçaà_°¿qèùú B€þÔ æ ô'äÔúîŸa°üXÃîÆ!ÀÞ$(Ísô§1Ç¡¿4Zñ9˜èïºn‘õÐÿ¦qHÏG–Àl†Ýw'òà¯üõgAõvµÑ’›é¸ÿlý§KÅtu+(FuÇCÇ’èru\|BüÚ¨ÕFnÁ󆈟ˀâ×:!Žø…Añ¼ À³ê±±ú|Rß4 ±+â×F­Žø…Ï¢‡¾iÞ¨ÕÑò”pBþ=#äß5BþJ¹ @þФÛIs))ÿœCûú—TšqÐ/¶î’òϧ†fr9dK@nÜÜrã •ãÀÕ¹ú€cä]#FÞ3bä=F&ÀÈ$ .þ“ÇIEϤʘâä&uÊ'k¤Øq²pxÝ3®d8™en¡îHy׈”¹8"eÒrh±®s¤#Ü+Å—CAñ3:å õϤR”@c¨‚6F<ȽR|™Aä>'žäæJax”ûœx–û”Ÿ¬Ç'¾ÌÉQÿKèÖîW<S[À žSÿKáe¾Ïè )­~F_ÀÌ®€=#åÔkJvåê3÷£ãËÐ[¬†ôsË)÷Þb“ÐUô“ÂbPmÆÞb!]ËŠAù3Ì@׫£ 4©ã»æyMÌ“m1ÌÂa€™:Þ,·û°ÌIÿ–þÉ , ‡­W$Àú¯BÿûþëÊû}¦¿Ã=ø~#ê= úþ^Ö=«4~þæ¯þŸÿò‡÷ó¦ñóÿü¡üü‹÷ÿÿÓžŸþµý&ˆry[ügä™ËFökUlfã˜t˜ä‹ L:âL¾íØ¢t˜Ò:aåÎôüüŸ÷/ôüÜÿ“ÿüéןöWøŸÿU¹¡í÷}/‚ÿ«ÿðþEˆç‡Z¡ßÞwû5W_Kë¯~ýÿþ‹¿¬üË×b¹!â¿xÞö›=þ¢Ê?Ûü‹îÿœü·õ/þð¿üÕ{wZ½ìî"Û’‚>22o{Ý!Ý/S¥Å:‚\£ º—Ž®v?ØKF×x͆:KF×zïõœÈ%#È5Ÿ×~péHàbµÉÿÇuoÒ_Þ»ÕîÉE2%Þûòt§î?ÿø—m´ûP\j Uø·÷æÍK…ߪþÖîo5üÖ¿§÷k{Õw®ôwS{?éûóßûʾþîÜøø]wí5`o‰ýww&¥þÛßüõ_ÿûŸþ¿ýüËù¿þO?ÿýç¿þßÿî¿ü·ÿøŸÿúçßÿÇÿð~þÍ_üõßüÍß?Æ» õ¿ø¿þæßü‘ûùÃQƒ±×ÞøËûå{žúóWÿþñÿ–?þÕ‚¿ékìF´ßéëþ/~c6šä½Îÿ ö óÛXÊ¢Š×¥Ý|‡£}u¼IΫþüÛ÷ßÿþ×Ñô´°+½†ñüy­Ërÿ÷Ý.ÿÕ?ÿƒÙþiÐÀ¬ïËúðsˆ¢ËkW=÷v„©Þþ~?®uºßÿ=ïàï(švÙ ¯¨ÃCI0‹‚¿½Ë–ýnÉ‹ lɰƒrͽôbOõ(û½ÿ}ý§÷Š6Ø<6²Õ\‚Ñ’ýæ#׃FWˆ„Öï’}¦ïº åÐUª„¨ÇýÕçÅ.Ô‚gÒ7êWÙ?/1¯·£—ëÜo?µ<\%Tè?ýá™Ü÷F9 &ér'HúeבëîŸ?~9£VŸ`H35_‚pØúDBÒàjUÎ|è/ñ+Ž\oéKn>-ûP—»r·ÆúýcžCÅKu¤>{žYòׇ²ƒLÀ ÿ¿†¡M!ôBa¶F‘µàûõÞË—®7˜uè~Ùȹ¾…׬×aS9Kù%×ýŠ+}:è•s܃pp½’Ý6Àgýr>äéè1P[2èU@ToXÓ0¶”:aSîC­í¶/-â.¥CÊ}¬WŽÎ…$M‚Ññò‘Jn;—P©0ˆÏQ¥tˆ¯Â8d•*!êA·¬¾Æ-TÄÕo…kùÖ»%²zÐêõ}M£ß¿g-]’…£PE`d‘GÑF^ýº@tÂ(>Eã‹0^¢ *„WìvX¡Úy0BEþìñžUƳ@hxÇdÄ^!‘´x4|dŸëu0 c“wÁæ^2ãÐUª„¨ݱ¦™ø×ž¸ºÁȺ›ÌKó™ƒû¬½FRm7KÅÈw¡·Ši/Àpk-`tå3R>ò>Jï·Û%¼Ú˜>“÷]ƒ2èU@ÔžÅט”~¸60Š<|ô¼4uÔ'Ei£Hy• t—vµ0Rob…KhÔðÖçhÒ×Wa²j”ÀÏXÛ7ö9à3öŽÌåÒÏHÛ×-ZíC£´Éœƒ?U&ÁéŸO´—0Ȫð9˜ö™qØ*EBÒ#lùT£³à–OU:‹mùýE¨{ûŽ,4lùÆÁ[º]¯då0Œ ¼OX]¾å÷ëšê0Ó¾åƒ.PDøQ¼Èþf³ìÊgwa„òiêý"q>åß¼6UÉQú>(“2øœƒë丣«|›läV¾Ï’JXü™·9VÓÝWW¡ºJ•õÀ×ì4²‰~…ª møy õåo“ð’éïòÙåF«f#ï»Oû· ¨dû LÃ;æ¼B4 ßÒ_× áhá¯0²úýŽ‚îÒós¾Í~÷ÖeäµP7<¶ßOc—»^¯´F(ad\ãÄÜ€¡Ë'êrëüò³-X.Ž ðVÿþa¦¸ä©‚´ìvúÚJ£sœY”Krùp&ï6\¹©þ~ÿ€.Wš'  täüã׿«zߟ€é{®@9lÍ, ª€{Fï7l„{Fï7°TuÏxÉ…{†Ò¾g8í ~½<íï@¿ß[¿üÝMÛ€ ˜¶=ÃlÉ" ª@jݼÿsø“F)ï0²Èz½'Nå7çÜ-ø};¹'ÍÃ~âZ&×)3Ž÷$]Ù¯ç#ï#Œ¢*=œ>G•¢ÿ¾ åÐUª„¨¿^†Ö(¥Qf£ZŒ€ï6ŸŽ·˜§Ž•C1¤H0úáœ,©”Ôín‘,Óˆ2•CW©¢á¾]Ÿ*ÕÕ‡Êi´¿X;*³¿©ÐpߌCîŠI0ºóñ%Y”Ýè%ÕùKÒî|Ê¡«T QøL¾¨B02ØpЧá5kû€ç…i|&•CŸ8•`ôÃBÙƒM•°†ëÛ€º®B9t•*!êvÇ{ävãæxn¶ï· $™ ²w »£qÈæ§ŒäîÐ>0©}´_?©úŸÏ0¥< ¯A9t‰*!èÑæ–S»0BÁ"Çy‡lhG‚G²+*‡bI•`´œ¨… ¡¸„Eç|Ž%'|Æ¡« QD›7¬IÙ|`*P¤w³ÃXPh€›Æ!hÒ$-¥ï}䆷ãÍ*½ö¥ÍÑ¥¸¾¯Â8x‘* (æâ«ëäJ•>rÝÙf-Ò;3Ü’SÚ­Eç`[Ð(É3¸±È¯Ìüq‹šRúKšTú"”ÃV-¢mÖÅÇžr»n4Cz¯ý7»CA&m* KØ’¿î>ÒntÑ%úÚÚE?ï¶e°U‹€¨E4ñïÕL|ï‚q]È™çæwáh&衼J0ºrÈÚGƺc—pÄ æ`M|åÐUª„¨GðÜw°/ôœ6ømUc£&-îclÒÆÅ}ŒïH¾é¶ {rÛa˧ßt?× •®òG€‘N7Ô.¯´ —^õ`“+‡-W$Äå‡-í‡Ë9ÂG·Ív±=aÛñÒÓ»¶a‡lè&Áè‡úøÛ.Ïæúzz×Wa²J•õ@´98 éW *BîNy‡Ë‡ ÓèÔQ“&Áh©à#/:ËçØ[°9„Àé¼H”À{Öïéè…Ÿéw„þµú-15šý=•ö{æ|G\‚ÑíLym¾Ó~\š0Ášp·ô7Yœ^—ŒÅõ^Xƒ!¼Þ=àC˜ÊÆ€!,4‹Æ!¦ I0ºsG y_ˆ†ðz÷€†°Ð`,‡®R%D="”f˜ŠPú¦*n€ÒŒTê60¬†•E‚ÒŽm¤ßä €ÓÁ‡Ó¿Æ§…ÃÖ-¢ÑÛ]äK#ôr?3ç»'ºJ|÷Uóˆû²YÐú%³‘‡¾C.á¡T'Ÿƒiôv+‡®R%D=¢5Lg‹Ð„rÜ ”Ïà†*Óh +‡šº*AišmáÞïó±:k Ñ© ñåÐU‹„ EtXÝýú‡Õ­wvÀau;uw(1 +ý]ÝQz½Ò<:¬6µê3›²m&Ñe¥ ¶f¹>êô"k¯ ^7ÚЇëE'â–M+¤ëe¿Ëªíz¥yÐë:·©EÆ^wùUêkø”Á–Ì—G ¸Ücd”šì“lX… uSÇoBp1%&ÁèÂËô‘{V­;p©“ÊlûS qû*Œƒ©‚¸Ü î`“ÝÐŽ#—kWÜAa…Ѐ\ŒC€‰IPšçèr³Ä×pèr³Âw…9˜èb¶n‘õ~î9Bh³ÝÜéÕÀÏ}¼`žnåPG¶JPš§@W÷,|TÂXÜT]Ý#ú¶U@P"æpëPÌx?Ïñí~¿›7…†í^F²“UÀ®²ùóLⶨ ºB½>êðq”è`Gž{(aݽ’ÐÞa0ï€ï@‰ÎjÎ}}øîØÜäœÂ`kA‡¨Ö Çûu¡^œœî1ö#î± ƒ.[MS bJÇÂ_¦R¼ÐþtD¢bÊ`{µˆè¹-N*÷> ãö–1ªq™F ­ ’U‚Áê%~©ý7½ïv 0zË'Âa´pغEBÔ#|¤K¹,7‰6|Nr‡d¡ñ#]C¾€K0º¦lJ„?𑾙ïÍ"4~¤£X2ÿùIJ¤{V9ñ6h? Þ³ÂtB‡{&pfù wHˆ¹>Èl†{ÖÙ§f÷LêÁ=suˆ„¨GÜ߇}‡}qSiØ•&abÛ¶&kæÛšün»ž\¯4M€Ûâòí=cú€©È$î‰Ê`Ëm?iíÑ“Ã=9D ðät:Yá^¦Ñ“£ê§Q Jó•èÉitÜÂ%ܹ!ULhô䇮[$D=è1uR±¬»3“e#“œñãºé]>n¸®ý>!7÷÷AŽÞáêÞM8ñÒž<ß?­_WétK®rÚΦV]™\—Nêô÷ù}4ÜH{¼P¶U¥‚ÆÂ\ûÒ“;¥0ýÎÚ¯¼ [œ™£Ùäm¤RïC—p  ˜ƒé{…®B9t•*!ê‘ü¿tœ'ø§_âyíd¤¸o¶‹ÑâÞ[/ß.§‹8úÝÿ{ÿèàþ­ì4÷oe'<¸…ÃÜ¿, j‘ÑíF™B zßGÚCÀ7!«A˜i D‡'3“£Ÿî‡@4U‡@ô­vqèþ ›R†æß- -—G%èqœœMÊ’U#“¾ “3¥é†\›}vÊùQú½“óµƒó¹]‚ÑE¬z©|SMBåϬÍÁô½BW¡ºJ•õ`Ýöá9MÍ)akhîŸvƒ ×Zšï³C%•šÚSë©ÜüG8Ö3åcœV{ÊFîY/ºB$T6—lŽª•­B9t•"!éÁ»â~d]-`Xä¾tçúÃ÷têÝó6E.•¾{×é’^/·B F76mà}žÚ__éеÏP¥e»¯Á8d" èmŽhpLÚ_Ýà £ú`p<|ž á0C$¸Á‘­` R³ 06šä½¸±!`lûPîÓýz6M»*ù|«÷s[E¥kûÝó6Ï6ú>Pcò£­×G;@‚ÑwŠ{²ðë+g_Ù Lß t Ê¡kARëT³E‚™ƒ[žF¡>š.¡P‡!Ÿ£Hƒv_…rغEBÔ#¯ªA>2œ”äð‹­:üÚâÁuøÅ·X‚ƒ-½Ó>Ò°)ü’ÏŸÁ/û@ü[7KHz|²ÁJòRÙ.ØWÜ»š¥Úþ(¶?ŠH +É7Je8BZX ¾ÑGsG -¬ߨHˆz¤PúÃ¥`„Š”Â>BÙ5¾Î÷}D~·}D®7úaoì#”[ã±t²4=–.¦(ÄÒ…Áö ¹>ê1K%f¡2WŽýS0¨E9 ¦ˆ)‡÷Àûæ·P½)À-|à·‡­[$D=Ò)0ÓOÙæ$ Ò¶/ƒ™¶Á‡n‰"Áh™¾Cžò ’A¤o 3}ƒÛ Y@Ð!YöRr,ûJ‚[öón@nÙO9Bê–½2¨e/ÌŽ—jð0B_=°ì©ž¼[öRp,{a°U‹€¨ÅwéŸ dÇ ä”¸œ’7°a¨Ü@>y¥­§ d§ d67¸¡­7²ru,a¤èOc¹õmài,ÜxžFåЧO$]¹rUxOzï_ŸÇ³óóHð<žð@V­ŽQÛ#Ñ>RËOR‰hŸnµr-À* €i>íóêÕÇ  GBõtÑP©ƒ[µˆZäÂKõžÙ¿ºKæ–r"w{•­MFþ3}\2—PãF\æpY:‚\¢¶3Éò(Xu&A®´RX;pýJ/•{¶øþTê/åµo¡ôüVz©Íß/½d[Ú»!­ûÓ‘~ ’rQ¥ßbzoöÝ~d$pÑ%õ[¹d$pݬÚvKF!cdâä饜8ŸŽ®öH–€qÉHàb¥Éÿ ßÂKe½ûàÝî›®²Þ ïI»}Ù—ªB¢Êÿ²Ý2UkßšL/Ñ{¿?ñ/—(—¨D\³ç]Š5—Òëöÿ_É¥z7í[q’ü–<Ê—~ýë÷_n½£Ïßä¦ ì’k*ÕPSé–•YTôÖæ,4ÁÕ“þŽÅ…®n¿½¼ˆâܬðù={/JyÄŠ¤ÄS@FMqÎm›·càåä¯~)×_È©šà2—dNŸ\9tq*!.ÿOøg¸äÜ*k¯Â5a„*‚Ö[Ч@v¸f¡ MYè‹Rc¾q J;x+#÷ˆ7ƒ sß-Õç`š®U‡¬Ò$=X¹yºÓ`„2?ë-7¬Îû7r¸§.ûyŽÝRú+>ÙœôW6ZÌz©ì?3 ÷TqE¸·Ä ´U‡¬Ò$=X¹¾ö/«´×üßÙbÛ—i²N¤¨q4™E]¸ïµ°™ï8xææÌf/¬.A~–õéÅaý¤Ó ªŠ*†ól„"‚åž×ü9ΓûUn•&-pË KT€Òôt¤nÉ.Wwåâ“Óž5-G«u Æ k4A VíÍ[ïôˆ“£ 6Bù™åÚ‘·öæs+ûÉ&¥)»åšùÎÐÉpF/ö ÀÈ„0¹ƒÍÀ4eÃÈŒC×(¢ü$Ög‰ßû±t3©ršuóyËÖ8iÙü—MÓšKh!œõåŒ~,ßLFîY— )Vî¾”Ó¾ãEŠ€¨«vË yZºµ§Õx(b¼8Òp+l693M1ê"‚…ãT;õùZãu6R)ŠáÞ•ß(—‡µ—ÄÁlÆ!«T QyÛ.ø“Õ€:[n¡ï-÷©.,eàù ÕÞGæh‚$D‚Ñâÿñ‘J$\B]±(Ó”C²í”qè*UBÔƒïܾ= ÄeQ*ãt)‚·co’ž‚h& u׆F%ÜM€Ñ€)Ô³Ã% ÅL_¿0»®@~ÖêÕQÙGÎéûƒJ|:½8áýöø¡ƒÍrÑ…¦d&qîÇägË(=~‘yh’¼¤*ͳ)¤9›¯Ad…z=(À÷êÜf ôg’z÷0Òéìèálü—\~W]TL“LZf׺w Jk¢œp:™Ià¦ö>Ç£.g[…qè*UBÐCvÇYÌÇÎ~YáçèVøÓ½N§èyõ¦ObC¾(ʱôÛÉ„”¶#6PùA²Ë9#ÄäWymú»¬Ï.°ZíýèhrÏbo‘ðáÃ[gùxÚˆ'†«{ï…lÁH¥…+ Pš¦ +td^§‘K,Cslh!:[ƒ2ØE@ÔB¶Ž§Ù†ÌÑá8á~ºYñk` µ‰ëg?Kü¶Êq$sI%(­>áãÐ.A\?EUg›­Â8šyiXBÐCÌÆ‘+ÕA†‘Ψ›N)¨}0ÙSÏöôû` ÃñXc õ,¬PÍGÀÙy>ƒæïù”£Y. Zˆ¹óv$s–·|!wY¥Òtbß÷ÈòšfnO* ŒSòVU‚ÒêØ²‘ÊQ“Po HMØ¿¿¬A—%ÚåA‰ü¥¦d•ð¥¦Ì8øRŸô¥>Ÿ/õI_j‘`ô”“°>BÑ·¾·h ô¾ÔÊa« Q¤\UG ~ÐéD‰U£âñL¬•ûš$ÁŒËg·5;Ô ¡£`†Èa0C„ÃÖÍ™#*GýP¹J‘yKÇ~`b9KS]ºH0šæÊiy(•@™Ñ0‡dJÃ*„ÃV©å£‚Y¹Î¡/N0Ýž»')§ºt‘Ê–¤}µ@!ÉP «&å„”h@êñ£Ã¶á±”Ì{,ùl3–znéS},EXË=¾sœùÊm::èÊm9\èÊ <†$!ê‘•œ,6þ›¨r{3UN9|Cœ@6”ÖÆv“´•Ä}„.ŒËO:u €ûÈ Sª.s¤„øá ñ²"ã«¥»¥ØÈ’$:=ƒ¤ûÉç2}Êaë^ñêQ9Ê @帡^Kñf˜¸÷ œqèÒE‚ÑMŸ-¡„Tp[´ÁÏ/3ªÆ¿Ûåò¨Ä÷Û¶â“H§çm†åh½Jø´…Ý^%À§mÅqpÎ|ÙÖÏ"Ÿo _¶µãH‚ß—¬í¨ÚLøúzÈÂ;Öò+–ôˆ_¹!ŵqƒ àšÍN˜¡ê†cKØä"¸–9òÞXNÔ¬ÊßÇ÷Fþ ûÞ¨/ŽïÌ¡K °7–“÷Æ‘öÆ`ó0öF‽q¤½±œßP®~”ÛI¹š”«åjRn'åêG¹™”k3*×fV®Í¨ÜLÊÕßRîY¹”k|ØÞ…³³Ïçì¨ÜLÊ=Ÿ¯ZOÊ••“<(WzT®'åžïWíù|ÕjúªµôUkŸ¯ZK_µš¾jOþªÕ¿juÍ’ZQ§øU{~㫦'†â +é†%ÎG§“tš%ݰú¹aé~¥Ûõ¹[éfýd¾÷Š•ƒ^==ˆ˦üÙ¶]¯¾ã½RSÚõâ-íÏÄ¥¦4X°'=ˆaKÑ9²rÝj‹º³®ù§×uc×­¶¨ÛGµ§DÕæŽªÍU›éy|ÊOÒ"GhŠûòj1šÎÅw4BÓ9 eЈŒ ðˆÍZ!BsP”{§®±<5Bc¦©Eh”Á#2, h‘T+V¯ÇF.Tw©å0îòTâÑ‚fÆ ëÖë•´r=6ÒoX´ð·+ÍþvºeЪ€ CTìÎ6&*vsËpÍnKHn4s^¸ PzqOlû©„{Ͻ…ÕœAר‚ùqÔÔYüU´Çqcí(Ë}‚ÇQôaSJîÜ #¿M&2ü} 9ÜkP]£ Z$ո䪶&—pV±k…‚L¢jÆ 7JwûcèHc4n ã¢ØßB×  ºF´Hªõ¥NÃLÅŽ‡A¬Ì;l#×…ƒ,Ü(m¹ïÉ%ôÁ/¾õÄ0¯1èU@Ð"?ä ¤f&7ÃP NÆUKÆUMÆÕ“+N‹7í7‹âMëQµðpBžYÔ7kV’f#>ãó4Žô4–¤ÙŒŠm©úåŠÍø4ÎÏÓ8ÃÓ¨P‡ÖÃ%µ0­Ç<é’RcžtïV¦­8+Ç8iÇ(]äÈŒpu¹¾Œéö ˜ö¬àÐEóõQ‡¨Ø¾ 7*Fm`Š+F[|Z&]-ýYÖlW]Å­à#…U»^Úì™üGB¾åЊ€¨BÔkÍñOg{Ú LìCmÔ|âGÚªÙÊ”A®„–)@µ{®µù[GšiU¢cíÐd Ρ«Q‹˜bVô4‘4JP°ô®"Î MÚSÌŒAÈL€ÒzÐF¨ÿµ ¨óÈ0cÌìw]²\UHïX/ÖuPGÚ/øŠõŽõ¥•†WLô’ë,Ör°Øá̯XÛ¡T•ÐøŠ‡¬PD’bšÃ #UZ,3- ÜÕ,N_™0ØÂE€Ñ óí…å¶û‹Ùw'qAûö%¿ëî&WG¾z±“õšõjÿyk®¬kùÕŠÑ‚º_Zp"ð8VCPD€sºÏ'åõMÍ]µ`yû«æ’F~)=¿¤TêÎ?pUµÌÅŽk,äâ&ã¸Î ¡ã‚_N§=YnˆÖÆO¤ˆh¼7ÐZA´Ùmö€6;¢5_eÛ •ìÐ&¿‚"hS®AS4‘0´âÃngDŽHV*’õ‚d½²^¬T$,!43í¢=43Q /WŸ,kÁÚ`m#ØUàÀúD²u§\=Ydý!람 Å‹ÖZDK­D«# Õh) ñßm!Ô 4’0´ÐZû Z 6„vr{´<-Ï€vœÍXÑJhÑj@«Z h# Å­à·Òî­_§hzaœ ±€Cë’huZªˆ–jDKѪ7’DD›5¢Õ‚hÐ(Œh£#ºÇ›ç <š7"ìÜ ØøL:¿ü1ÀžÛqžÙ]nÓí¹…fêžÛÑ“í†=?m·-ÿvÒêgœüÊ›Åt23òõ9ºåž¿æðŸºÕÖ8_ò½Ï·giå<‹¹å‹ØôÎÕ(—³K’v}»dÊIÜL;ž<&µ˜Á[ŒYü7ŽXS÷àL¨@’+æÓþ €UÏýüŽêSÕúB•FTœ ‡”IP–õ{ ¦_Ù#Õ³‹Ú6E·s 6/—… É(ú½Ë>Ô¹Á´ú‚:+¨6¨™ÈHa_P*ÁÅ  $\¥!iL¡»OUC¢—t4$oíH&D€³(ß{À:o4M·ýž8¹#Òxœ ÷CrØa™eÚH¸ˆ¿¥1™[ kè÷옥AaÃ2Îbv­ÌðÛòÏcø}ù¼ÉGöÄ·Éå-—Œò ÛV¯¼í^H¸ñ ‹Å:›£îk. ¾sÍ2!œEùÞ# –9òÁÆ™5Š—®og©/™R‰¡'ƒ\¥ô~¼Ä7¼:,qÓõòTuä9*ä¢VBÀ’µg‡Õ`Í€5¬° ôtåÙc_Z¼®lX²`¡X" XÅ•–_vvq£¬2«wÄê=bõŽX¤À°FXwï°ð¥³)/ÖÌ€•ÚO@x°bôG^xϱ§j5R‘„QÁ‘—›@-<òRî€ê+@uwÆE¿wSY•!SA¤‰ 6¢ÀSVê@ :P4öOÈýC”"ј €ÂŒ‰4é¡iir É‘&#M?!çHS6=céiZv4«¹Üé˜D°š¾×°Š§4ZQªÁ¯n+•(Uù TLÐ ž£p`j¡ÞACº Ò i„†4bCØ&4$Ö}¤¯»j<-LçY,¦Ü÷CÏk¥3Óqôs\…Ÿ¸–ð¹áósÈÏ3j*ÑïhÍ4h8ñ›ŸÍf cÑ+2’…oœ •à\ªà@¸IWÿåc½FÆjÏ«rsXÂvp*ÁYW |0ÎbîE NÝfiT>‰d¹ É¥h„«§TW7½e$j+Í‚kÂUæÉ5k*ÁYW ®üè„ÅÜÛ[œ†ÄY•4?Ëg¹Hc€áî^¾ááx#¡ª½ íiw ;8•ଫ ':c1´£Ð4Ðôº¥AagÍofŒ×ZÞ|÷€Æœ šÂ}áû¼¼=+Oaƒ3 ʺi0¥ap_̼¨†snÓ%qƒ†f—LËçd¹å_Þ˜|õ>‘#Jó?\ªv`*ÁÙV ο¼-ù"nÿc ø)MB[ÐL¨„dR4x $K)mù˜L÷³Ö”ê=Í*érØ¡©ç\5h8ñÙw­{ÝÛ´BîIO)H…¤°¯*ÁP5Ghm³¸˜;çhj¿ ,ß(ì[›HHÖEƒ†ù̉‹i¿ªckÕë¯@ÕªC’ï óÑ~ÈYFo?föö£aÛÖ³Œf?XÂÙ«AÃr–ÑÛ׫ñQEo=J4m‡ëÑüIFˆ¼Ûmþž+®üpå¿ç¢û†ÿ†ëÜéâÁèÖOFÿ!šl¸ùïÂäßÈY#\7:ÂáFG¸:nÖ—nÞ»” nò[M'—Üü]gÝZ„K®„«#Â! kpp­!Ü]¸^®—סÁ‰àxáîPjïšW­D´‚Íë~îÈÊŠd#Á¯'ÃM # #LFœP¶»D²¶¤ Õ¯%Z}‘ppÝÛ’"—@x¸ l¨©þÄÌ¿DcD¢Ò‘¨/$ê+õ…D¥#Ñ‘(A+Üå Õà{ løNù·&e<&äÞ·óÖ̵‘­Td+5²•ŠUÏÜ( @»ëÅ€V¢ÕÑêò(¢ÁS0Ù¾÷tÕs±3ûVSïM!ioB%z{SîŽäð¹à,Ýу“¸×÷ª ö­,&ÝnO4ÜûƲ¥ÁáÃÆ¹ Ë%iw–FÊðpu52;¬öËÞw¸$a;8“ ¬‹ W~€Èbî\µÓ@·F[r¯´å‚$,—¤!p \ùÆky¸òýëØÊ÷¯C£ #Ó¿S¶ùk îà-澛徯÷MK J¯9 Ë iÈu¼tÏu¼4ã£èöî …šI4}[z6æ·ô,†Ž¢›†BÏnØÛ*S´ä‚%4—¬!p\;—å6_híÞ)—®Ý è¬)HØàœÄͺj°ðЧf$†ž;0 õNY•ÖO\.HÂrIÂ¥Ôù¦b‹™d‘XmJëLjÂvp&AY î|]ÅÜ…d§¡ÐõŠšFáëj,$a¹$ #TËÖøþ}‹4¹"‚G]öä8AZ©T‚+k°pãû÷-¦º:Ù²ÿõ$ìë$KX}íØÚîhm÷º ×ÚÚ½šÇZÛ Ck i]¤Á·¾Z°µÝ­ ®µÑEðÖÚäªxkm$a­4Ž×”¬ázAS² š’U¢)Yá  åî=€«hIöDK²g´${"[ý‰/ÚŒd5@6²Èj ›,g$› Éx¶Ç‘ÝÙG–óO xÉZhÈU+r‰sa\$¡\%æÔ,ÿÜHÕU{¨ÚBË?÷O$øM·–ÿ±[kH–ÚÓ­…†õtkÜÓ­…^íéÔþ¡O{ÈôÝ&OÖº'+XQ( d"adÍy#öp“'+ÐÌÆ}áÇІÌy)Ix8ìÀ·®KCd¯.¸Ö®õ0¬ÁÃõŠp“-¨ÁŒp#G¸á[k/=› r"\—F„# g5&ÂåáîCw®„+%•‚pôØpàõÐ÷Úî쯇n£\ÃÌ÷2·QÉOç››9ü§Ýmt÷³*`’ú$¦ïû8˜*øþ½¶E’ ðŸv9´IpUP Z9ëb€V¾Žß¡ÝL£Zºvh&A9W¤Z© Ðʹ5Æ¡qØ¡™„äzš¦áÐ>Ç’w<»z˜žÕ’kªérÐÈìï7ßîs ófd‹‹žQãng¶†¼¬¦YP ΢j$«K^¶·˜Fƙ՞‹à¯«Á sر™eÝ4HXž¶·.WVð®3"IPر™„d’¢å›’\L¡N”µæR}m‘°C3 ʸi°¼ì£1ùn+2 ™¦¤‘y[’åB%8—ª8°±ŸšV -†&Þ¤¢Ç:;CÂa×ÚL‚“i°ÜW®1t/”i¸×)Y|Ý’åAþ^ôÐðáfg]œ,ÔX ]iZiÆ’•…Ë—HH¾Eƒ„e¡FcøÖHÕ@+1š„¬ÔhäïE÷Pw uK5™Î–è@v{P%£e#“F&F6 |Ód ÁÒD²4#ZšÈÖ~"Å‹mÍÜ ‡6¢ÍÑæB´Ö ÚZ•ûY Úš„ ÚšÓ/=*æáJE¸Þ®÷×;•ŠpÒ\Ê73ÂIghp$ap)ÿDŽîÞ©æá¬"X\€QI¶&Õ8¦Ö‘©õÈÔºgZÐ}k‘)&ž¤0,€ Hh)èCcJSÈD]»1å™HÂ˜Úø‰ÙLgP"Sã!FN°äù,#{Í`óƃÒpų}ƒ6~m$ã¿X0’ë1Š×ºüõXIÀª±j‰X±ÞíX ©xŠÀaµ…\¢ÁY ɺh0¥ááÒ-1Óhž¦‘džæB%$߬9â›"wÅÞ¡•}{S„¦ÁìMy›ÔÞa }C„5hXÖ©,†n2÷¯’ÿ¨Hå÷/àe“â Èñ›S‘óàÕžëž áXÂ=˜r5øS äÄy€SZx1¥œJØ‹)Ň½ûá#ïý,WÂõp}G¸¾® „£I{—Üì7{„›áR€ѠؼªƒC²Z‘ŒzkOv%Œ ±ZF,òÏ4Q£ dû)8 *!Y J¬õhÛ=Vi?X[hÛŠFQ%¨LT{0Ší¾Ïá>¯h[VQ%$‹¢ â`×?-fЀO+#f­2ÊÌ’UF‘àÊ( 8È7^Y„ôV—GÆÚ>2©„dQ4Äû¸Ùd´cÝ?n¶€Œo\‡ÇÍ–'Úê6ñvukgË7²…-lasª¾«é7•ð?#ÐÚP @%•¨ P µ#çáw7Ýós•J8°ŸˆðrÑcÌž«ä¹ØGw\$¡\u»èÆ•‚­†`ì:°Õ,‡Ó'™}d{Ȩ£0²ÈêCV‘,m kHv¬YïHÖ{$# {3p­ŸñöÉ34.G)Ù½‘ñí@ŽL$ô)Äêê¢\ßãɼ¼—ÿ@ŸÚÿݨòOÌÿ UZt4VE¨<*•±æ­ P¥Wc¤ª±j‰\žx ÉÏáC©ÂË•™}=ëUfx¹2{oÐX½+ Àè¥AëjjL$ ,AlZ¿ñÜôåFaÏ&’sÑ a¶ãA˜:WiIÈÉKË„HH&Eƒ§dõ.«y4yÂVµž½¹.YÞ lù¢¿K¶ås Ëf`‹álEA¥¡œ¦Pe°§YP É¢hˆH&OàZ ­/˜ZzàÖ–'p-k,¡Yg –'p5†×T]cjiÈE§– •à\ªàxáFdËÙzA¶^"[/Èv58¶h‹Í‚¡…hcE´á+¤jð/YFÉý¯GK ÑhõÒ£] Ea -çÈF?—±D+‘¬ X/?"Ñ ¶=UÔ‘•³PìÈ _ýad,«_ #7ÉÈîUòmÐkŽM$$ߢ8N_¡–÷Ï-¦Q©ïX÷{‰‹>tÝù–{ [ä¥lQ a9ùj1w7›i ©š„|Õ<ˆ€æ‘ E@+í’I¯âÈèUK–¯Xuùη*pû…`å¾¶ãä»"¦)d^2³,°€f‘Càújd2)º&Ækí’íÁD@ò- 8LIx²<ÖW£Æ4ýôX" Y†À²sLÆgþ§¨PZÞt§ @U|Ó]$ Ð ŠVékrñ1—ñ7®‰Å# "61YÔ˜³›sùçêi‰OŸ«—5@{®^8ãªÀž¯X^•¶&Z#¥%>mŲhÍœ4׬)"ZåM.ÞzŒ`=6ZýX¬Ç롽„³Í—mKB; ÍCÂRHñÆ<¶=x´´-­ˆ–¢LË`ÜbîÆs0Œ×§0ÃXZ4ŒW@óÈ "¢ÉÊ‹C´Æµ‡ÑdáÅÐDÀPM–^¬õÝW²­¬(š,½ hÛbHñ¢•m´ŒhùAËm´ò €V­>h5 €V~‡ö›Rëÿn©õ,µúï–ZýÇR“‰bÖ½ñçi`E“ybCCë–™bd4ìœR€¹™b9#×õÑ×@®ñpÀE ŒkF,0ü¼ÿÒq͹æB.4üvÆÓÇÑÅ.¾\b=Të]`â‰!…º—€¢c6Šç…¼kç[”(@€èƒÜë{xŒ‰$h‹žTz{ Eã2`²ük#ØSDÝ[Ò¸ê@®4€+È•rÅ"”'•J+U7CÑq3‹¹U«•®&¯Ÿà8?R• ¿ˆ³¥Äþ|g×íc f>k¦1åŽÆôs¾+HÕ~âÓÒW‰ª[šHDªÂ‹Z̽!ÛaÑܳqÉì´‚‰€ ˆ ¶o¶vC;[ëá—K¼¹Öò †R!\ìZQIÛt|­Žh¹#Zî-‡B[ѨS²˜{œÃJíZn+4¾¹ÇÊŒÿ^uçÖ¨?!p~ ~Ž\4‹n\ü–q‰€HñáÂT¹ºûH¹Æ=Õb`ƒÏ½™HTÝ…F €"¢ñ$ªÿªÕø½føAgõd*`ùnæ9T‹ Pýž&H-™Bµ,ˆ„dQx†È5ùX6¡Èþã6‰MOžòdÝYã| Yãy #kDÅ[S0 w¶×UF¨‰X }äϬ ¦`iϯ«‚y`¤!ޝ‚$aùoë'f=ZÊÝ—ÅôÛÐ=OcH|ÞF¡øÏ‚%_› ÙX¹#×ïs¨ ù±†9XCQÿJ÷•ëÿkÿ•ë·˜³òÿÿ:°`õÓñSíÀUr`c²±­D›3ZùŒh+ ­mŠ(Š­lD+l{ Útµ6­h$`u8ÿc©hu Z jŸ*Šî‚.¼´ÐZDkÁÍhˆ&ÖÆÐfE´Ðöƒ¶mÖŸHñ¢ÑàÙ£ÍPji"š˜:EKÑf(5ñS ­c©•Šh¥F´R­‡RÓÁ³¯µû©#{4: mh²Ö¬h"`hÂrTÚ£5 ƒßNOJ{2’02߉ù“ÒØe®Zkä%p‚\oï°²÷;&±pÉàÙ¸D¸rþ /mév`HU+RÕ¨j*Dj9:‰sS LíaÂY@þ_¨T¢ÿ;Àvˆ)0ÿw£íxmÅhˆ–JDkÐ2’åœßüüôŽÓ÷ã×äêèMñŠ­÷ëè²ø0%\àQ (¯Á«µÞ£X^?1ÿ/T~ÜÃ…Li#SÚ)m,›…Hùñ;R•ŽT¥Gª~‡(;W(þ\/oÞå ‰Ö{åâ r/¸î¬Œ„OªëZ<'Q—c 4,÷ÑZL§¯h"ÒÒ©JÍ Hù{@XZ9¢å{§©hl\Á$ɦ5P2¥œiQ Z5†f; kÜ=üæ§X, yæï!`Ý}œçõ^ëîãtX²uÔ°DÂ02„eï¨/­=<­6–¼© X,`¥u¿Ä¢gKÙ¬‘·Nk’E¹i¦T‚3- 4,‡Ü,¦q¥ ÷ÑX—¿*k™`Ébƒ:) Vçó~Nh»¶u|_Z,‘0ŒíÛ¥Xõî½2 ÷ —?d™`É"kó ¦iâz¼eà·Ádd^À´*$RÅXBl^À´:OaXt Â°ÒW,<ó÷€Ú–\ ¤´ÔãªujXïVB•,V a¹ȃöúƒå*@ÑŸ ¢ûvænr%CG×SóL´¼ê-/{kÎ6Ï…L­cÑ­™îxF™èXºAÉÁu¥bÃ*.èO­;Tžˆ f‡ø®¤z,(`¨Áê€cÚËit,(ž°’Xßvÿ ù˜j¬~»S Õ¯<Õ¯„ê·bÕ§úÍPýêF¬ºVÝ€5±Ö§æ`ÚÁ¹hh×)˜À®£g‘£¾Éïv@-µÔÐþ ™€R,§MjwlR»Ç&µ;–Óf"=åÔB9e¤Ê*SÃBJ¿1´“È1Ý!’1À4¦˜ª÷žªl$òLàòšœ7+3± œ@·Èŵ°Ò,¨îz0Çc‘„a¥Ðqµ`)x‚ÌaõŽX½¬î-VÆ&E{>vTõé¨jè¨XÃÊ9bõ‚X©J€*ÀÔËOÈÿãSŒ˜ÊvL<½¢L²ß˘D˜Š/º"û½ÀGôþ:_éà}Š þº8'uþ„«Oi!U©HÅÓ[ŽªT,™¨B³¢}Ȫ.„¢kÓÔ0Gi¬ ¦~Ú4CÐæ^‹¡‹ú±Ò×î'÷þó|qt8‰u–6œ Ë»~SîÅ·¦onÐ4(|¿¨VG¯DÑϤ8"œ¼V`1TÌwçáŒïÿ24þ»Èç–ë¿,†¶üûßæXÿë‘Éð¿/IHE@D²É»ó<Ù쎌¦Ó„›\G§YS ƒ# –ëè,†ÖÞ Žœƒ7ÆàDBr)€#Â5>ü¿AöÅ6¯³„'OKXÖD•TþÁr*w÷>˜‚»áÃRà !–þ»ä¿„ÀU:{ºC÷ûY-'ÆÚ¸8ÖRDBZ’hpgw×bÈC1 ä¡XrÎÓr!’KÑ®ñ]Ü^lV7oëy'3½a)r1­ÅÐÄŽi ¹EKC.¦µ\ˆ„äR4Ç[räSù’«¡äðW]ú«ZÉŽ%W_X€£[w}É­Œ%·r,9’˜Èá¸_ó¶tmßڨ߲¶ =›5‘0‹¿ –rÏæáÇòhÔqšôl†&VÂÿAç¶bçdÜjÍ8—سìØ6R–õôkûµª|±_«ÞÚ«@ˆ\×ø MfN[ì¬Ý0 ‰„ÄaqÊ<}‚¶¶9«'N™Áí#€ã…Ë¡>VìÚξòŽp©G¸]Y ][QÆÊº¶r \É®d,)ìÚŠmLñ¿@Ë.AÉÑ Ù÷©5”œH\jXK[p·îuª¿éDÞn&vDÖºVù‰¿[.#[@{ÈX\ëáÚÈÕrõ¹ú\¡†þÆÙÊ|ñ±/Û=C¡…2{Š «ßžHV²9B‰²öµ@6ÇO„xÉòŽds!YΈ–sdËáæB¸¼#\pe"\™Ž$ ®¸¼cý{‹pàn}ÿ¯JáдpànQ¡ @wkò@ź€QbCÕÿ=ÛÊŽîï­õ. ¸[µDwK%\÷k?îÖ îֽĻ$G² }­ýøZ-:[»"YHVF$+¡îŠd5ÔIºîÝ“µŒh-G¶ޤh†[C·¼'”j {3kj¯zv÷µÏƒ„OÂ;ëu”Wb—sß4hX s÷: ìój:hÐ\ˆ„ä’5 G€ÓùG‹¡=ª–ç5aÔ¬‰„d]4hXf =þZŽ& Nf N$¬®äxáRG8Ú|bpÜe)œìŸ78–PÖààØKspg2ÛÃ]{äàØb98’0¸V"G¬–¼ûýÊjå¬X+Ù4¸Zy%žœKXlƒ«”×9T•KA’Ü–‰Šå$€â%£½˜¾êîŒh¤ÅÐØ¤;4Ê©5°MºÆ´_ÑîÆ¡ñÇ¡‘„d’ ÅkKòßšÚ­ä*¤ì޲ ÉcJò?Z(4¹[,I(´hIòo ­Æúˆ%êâS±&bYÕõ”ÕÆÂj¡°ÚSX-Öþ‰ÙLw)ñ¯`QŠ/.º,ÌŠKÖ/­¸XÂÛ‹P|5TDꀕM~|aëbM•-)@Š×4²éìþõ݇ßÔ¼Hg÷¯„³ûy *{‘öú€Î4ÿó™éL#IÌöýx‘¥»O§ .ü¨UT…“V#0¬ÁÁv´û|͵¯Ò#Ôùì¾HÌö•TÒ@8kkŒ·ú2ŒV2h+Kh¾}óQ¶–ÙmÇЊ¥£lÅ )³m FÙ>r,Z•pdìáB,úÜ“­H¶’õd}D²>lŸñ/Mmü;eFþ¶ØîÔÆ¿Ul«ü Å–{´#s!\š—f„K¡iÍ…p¹G¸J®T„+5•Šp=”\~›Zâ÷PB‹# PUÈɵ~¢ÝˆV#ÀQY\j—Z„K áªKîaËÁñïÙz‰l½ [Žÿxìðû¸"rgØÿЙíà÷ÿެ¬èö¯‰hì+X×D®²"ØzóñgðYBD‡äÎ~² ­­à/Já0 ¡uUð¶6ßåá28ƒ&TnðMP'—çOäxájt¶ÖF6hå¶`ãØJÅ‚ZÙ*¢qõrhu!Z]­B…ŒÔlƹ‹Ï§øËÇP ­ø§a¾ð½ìHž/úÙ0ï$ÆÙ0ï4HXž£±Ú^ªx7°¦Qd­Xs¡’KÑN®Å×>Ymptë½ÁÉuð'œuÕ`°t¼ÇmG7ßœÜop"a0 àÜÝøYùÄ­ÅÜQži¥Ç:,]¹Þr&’sV A¹Þbèò0S@ç- yöÆ2!’GÑ/ZÛˆFù_ìÌ–ùß´ed ɺh0¸¶#Üš×'ÂõáHÂàÖü‰Nö$øâ.žœKwiN%g"a5® jåv;4UkIÈd®eB$ eC¹¹ ÖºäÒZ‹¹wÎZs#ãkÍM̳57‘æÆ $( -†®§ñÆj½ž$ômûÖ¦€"¢=Ï@&H´J›•t'Ÿ°œ‰„ä\4H˜÷Y{´=ZÆ ©­½9ƒ ©VBK î@1wÀ¬~ V–ŸÈñŽhèD4Hïó •ï¬çŠõ\×À3Þ|&ÍÃðŒŽš(F4»"\ ©ÇÒ`äGkXp4†öl¥F¶ j‡ÑZƒµ™­.D«+¢Uð„Eƒ§`²ÝìÒ%“ñA÷Ð|ßžwÏ3‚ðIvïc¶Tb¦tzÕ áÂé-‚.ŠP…žÉÖ$Šì¤×L¨DÓÃÂö¶ÅUÞ9n1^NëÙîÓ¥ã>gGÂrN,,Ú-¦\‹§ h.Å’«7-"!™d@Ñßj1ã^„hZéL•¥+‡®,g$a' nœS[=Z¦žP“ȼ À2!ÆR"E@£«£ BòxO+$÷´BÊ}UV!IÂ*$i°°\XUØhÿޱ-Þ7bl"áj ‡“4NžÖ³˜I=“ÂÑÃy'OëI i°°Ì¥XÌ]âñ¿Nšøû%,7•L² xÑèÎ?V ¢õŽh´èÑzG´RÖ=ZÊžg¬fF6‘0¶”"Ç —Дœš‡££Î–°œ…¶¬‘„e4x¸„¦ä¬W„KáÒŽpÉÛÕo‹£5DÿÔI.~I–—-_÷ï>ÛsߨÈâYc;«J¾±Ñ ¢ol$a l¦_Aô%»{,´ m-,´µb¡­……Öµñ`O_c¡ÕPhõ)´Š…VëOäx -—h&g(µŠ-=å–šÉJ.—Xr ®`¹•XlK­ÿD„—«<\«!W\ùáÊk5ä*׿¿"X`ÁF°ýåwdõéØv +ÉØùwdG“í@VŸŽm²ÐÚÃÖÜ põwÕ±>ÅöÀ…b+O±•öpO±E¸ºC¹í§àö?Àý®äÒþǶ–C[ËO[ËßÖÒþ‡¶–'²åÙòüÛæ–Þ^[žYõhzmºPØ{ +ôÚ$áÑzÔˆ†Å\ ‰ °Ü;«>2ú!<ðrD=E?¤?„4x¢ñ"#/ç~?D%Œ ýô?D÷‡ É8]>qRt†aô¦^-fý¶»QΚž± /W}¡±JèEyxí°bíúê\„¬¸êVã 4ÇêIdçmtÙmOÛà-†vžÎž8]Úä~ÞkOKÃ'§½žÅk'Ñýç]µ_YßžîA?äŽPUKWi‰³„fŽ5`ö#Óà m=ÓYŠðL”Ic¢Ó€žÉaÈç]µ{¦³Jk²µQÕb,q–pLÂÃn²õ‘ôVŠG¿®ŸcÊ™òŒL$Ñýç]µS»ëy¦ãñy&ºåÒ3] ÍkÀì¿u:e_Nwì(jÏvÿcRØ3©D÷ŸwÕîË)T½PóžŠê]¨vÚ [äm¨‡ÆØ§ÜÞÝp ÷ÿ†#ÝÞU»áÐ‹ÑÆÃŽ¿ Þ¥kD,áë„9`:/&ºÏ̘Öé2¦Å“¦Æ$ÝÞU»2‰ƒå~ŒÝðçÚÈ$š9Ö€Ù™fD*‘Îîd4JD"‰î?ï¢Ü¥‰Døcý±ŒèJ8¢4Bæ#P夗¢Ú ZÇÝ]aéÞ0‰D÷ŸwÕnH<™ªÒ1iS-wHYâ,¡™c ˜ýÈ$‡=ýg lå´„å°§eM$ºÿ¼«vkL÷ÂKטhÊÝ“œñ´ÆÄ®ñ\ ˜ýÈ$+GžiSe&L²rdLÕ™8ý¼«vÏÔ)¤ô ¥€MÉ-Y䢃/±Ñyh¡v4«œ1•èþó.Ê­ÞÑ »ýýžf±Ÿªóyû1YBóÆ ó¿©v%Ñ Õ.5¬v©Åj—š+¢ Õ®`µ µ.Tº§Î…*÷sþâ”gµÐŠN~p²ÇYÍáÄy*òÔÈS‘gÔŸ˜÷(=@Oê¡ õ§ õß7!«¿oByräÉÓ~Üíw¾QµqÒFtêã2Tï2Èç]µÎbOxèð¥ÉñL#b çž-hAîx¦L+ºAØ„*WÓ·´¥mDÉQòˆ(y JÛ?1ׯG7]…r/ºözÞHtÿyWíž |YÚsÝ|<ºÙ)ZðñŽöé¹þÂ[™rðRóã¥f_ËÖpLÅW¹IcyÇT;2Õ™*T9Ö€Ù'¦•*í÷ÎrP]c ®Wjœ0C_éß”ðŸç‹;r÷ˆ©ÓÀá,Õ-††×ª!Ó¶YM#ËÆZÍ…JH¾Ep8:Óp¢¦iíŸ>aÌ18‘8Ñ á›†‡+÷¬„) í¹–DfÒ2!’IV/µ/vˆG;­Ç£Qûòh$ah¤ÁÐÆˆhi"ÛiFžm¶ÈFÆ–æOäˆp²YÙbÈ™Z²A–°ì—³¬‰„d]4HX¶+{¸Ó¹ùj=:V|šoóMƒ$ nCØmW¶H9²¢1|àDÕòMX¬hÖT‚³®EެX Í íx68Ùmp"QáÐKàpºX`1´Øàhœip²X`p"!p¢ÁÁ„#ß×—} µ£n„ ƒ>ì < ­¦Z “ ®££0Àu4ªÁ`Û8>²cptPÏà6/©œHT8ô8Þj¹J¬–`++ÝŒî«åì±Z’„•ÚÊÍ[j|µ,X+7VÊëäÆ*Y~"B,´Ä3š¿z[rîBñ©R¸D ©z[Bi„™››¡¹Í§¹ÍÐÜDpD¸Áƒ‹5'jnó ÅàDB`Dƒ„U|õ~žŠ¿_4ù»5šáa£üƶtõÅÔ»  Z[»7ék²öd*ÁùV Î|õÅÐ]F¶‚%^j‰…M$$—¢8Þ:Ùr¬“©b¬ñ7­±NÖŠu2U¬“-Ƕ¶ ÖÉ„¶bl ÛÛ*?‘ã…Û;ÂŒp;#ÜÎn«82Âí´·Ån†õiÆ …î,4·ý8]z¶Û£‘Å³Þ Òճݾw# C‹63÷ˆÖ+²•Šl¥F¶R‘­C‹sg»}dzàÆ å¶B¹­§ÜV(·à§¤® „{¥»ó<\†²ŸÈñVʇ-mdk¡Áµ§ÁµØà6ÖÉþ´·…íí?rÈ£ËîÚÛú /Yé±ß¦á„¡å‰hyF´<±˜ÖD´ò°Žlµ ›øhÆV ²ï,iD§d¯×®[R[òºÝÃ颬‡«áÒ@¸4"\WÇOäxá2½é=€ƒ„)àRôD*Âezó±/ïr(9ëîÍé*Pr¢8®OÚážÛ¯Mž‰ÆŒ;#¶úâ1?ûãTj žtÇmXNà6O´:Ño¯P|’Êq‘€C» " •Æ'Ö-¦ÿŽŒVH²zòBó¥œoþ^ƒ²iÊbhµÖd²¦’‚왲,°€æ C»?8€Ñ† UËÓŠ’n•'i5c* g¶R–zqÂÐîOnhZÈŠÆšGV€ínJ÷h¼Xhhª#­`u•û@¡ƒ¾Ø{†zÑ3¢±€æš ED“Gü/0½í )gC“)nC+¥ém‡ÎrûÛ›GãYAÓi Ec×dzû‰–R¡Ôîn #£«ð•L.‹72B£ï5(wÅûRÍÐÒhƒµ‚m> b`,àêU†0'`[¦Z%¦ñœ”¨m´œ'é6Ù¾¯Sθ(P-3­³hNOZ‰×O–êí×eÍ5+@Š€Öd€ÅHQ ¦Û4]EA“Ê&aYi³Zé7 Ò69 Yn³Cé¼Ðd1´aÍàhùÊàdËàDBàDƒ„;/4Y 9›¦œMKCNfY.DBr)€#±+¢íî¿5­-Ô˜f5†s¦œsÕ $ì‹X½v`hË€6°ÜTƒ§dß0¢…lëŽÂ íî+th²‘ÑÐDBÐDƒ„ÏYL¿[HLC½sl–Få)!Ë…HH.EpÄbK¡Øê}øÌýb´@f¿©,¡Ù¯.R*¢ÁÚŸJ²æF dÖÜd Íš›HXóÂbKo±±[h­ Úìˆ6{D›Ñ †RÀFrx¶‘mçÈ,ª8^¸ùÀÕ7ÜxàF€«n>p9À­·¸àr€ûm ®$/ˆy8p%u¸‡WR5\p%Õ‰qµ²‡ZÙŸZÙ±V®þ9^¸¼î^lèÙ2¢åH½m\yE®¾‘« ä*#r‘„q‘@ˆ=÷æ¥AÏÕ¡s££¾ãY ÑDÂØ:ø\›×=\­d ™jý‰Ù™êŒÞÈÞÈT62•™ÊÆÚ™j¨ˆtU–1;cjXC=O! óàçú‰¯«µW„£ÎÑ\-`ãQ¶w´Y§R†Ùž¬$KÉÒˆdi Y USÆÙŸ™üluúlXùþû™éÿú_þÈë´AÙóu::‹iw(ÿþñ?ýQrº­å.+‹3Öi G*ï]?R×¹5ýxà³ïQ«+µyjV-_—ßïï«1#!é¢K¡*o<ÿËÅÐ5CWWùF÷Ÿ_Þê§¶ƒhÌ™h˜˜¯¾Ó=”¯ƒNÎ_Uu–_rœà6S‰ f>¹z®§£ÞEcz=MÞÿXuõqÎ|þåbÆa5ýðä~}9m-4û³ÇÚ}ÏwPˆÝî!L_ÐÝ~ i+«Òöø4òo*Q÷>nßÀÎ0mW¬1epu·˜Ùå·Òúq~÷5æüî-4ú!'P5ffûÙŧJuÆb¾N%‡ü„h…CcÎFšÀw³àðNÛª¡ß§V}-¾‡´PæZ&'ÓºÚ«Œw{¯¯žíº øc¦Å³“·6?«êƒ'Ó>´˜Ï¤%_À§ÑîšÝzí›Ã1Ü´ìÙQ²³î­Ó©­½ùì„4‚. -ù®@SnÇã ôÙ z/׺ ú×>_mW•Kó³«bšÞ9d7Éu.AÿQæÇãìQ§ñ˜Î=˜˜ÂµØÀ¤ç üÁâÊRÞo쓉Óu7?)îö¤(} wÆ<ôrݳϗ_`£ÅLX„ ¿éä÷ý-dzÄúÀåoo¶í~#bå­îÀIŽ„rTÌ·öÃÀ fhîÀ=w5ž'«[¿ë˜{‡FX¥¤-ï|oåýôž¡Ê ~á0Œ«`çÜÕ±õÛóx߈íSjOÑܱE¨|õM.‡ßóÖÿ芴¢U,¶o6äêü®ÙHß¹>+N¿9e[ì:Ü5L=,!ëb·-ëMš„/˜ÖCÁpïmý~töÊyãì6x*1y¾³ñSÃ3Ï—Å™¢Ï%ªÒ䉓ÙÔ1äB=·UóÞÑòñÛV0Éùîð3“üÑu¥¦3àªÞ7Zº@·P+¨ÆÐÄÔ…OA‡ºðõñÒ[Âöó¶ã.Ò@—³>lcŸsœ¹mZ—‹ÙÜû1¹ãzÇ~ЯêÄŸ}õÍ.HE]g­û¯•ÕW©oT R-¥òJ}Õ¼ÊIF9&µÙùµç–1¯I-îå\Šû¿¬Ï/ R4HD©o0¹&HÕ"%„RA×8à©Ì£ý„ÓþWF”jó•"ÙK¥þJå›Ïzò¥Š“š¿Éý~¤Æ¿ÀØÎ)OpÊÛ†^à+k é —ïTƒÔŸÞd}3g{Ê9ô8¹Ò¤é™2aþþêÎùùü‹ òµOöÕÄÍ\§˜p¬1Oßé±lxê:ï X¾pLìàÅ{™ 2£I×*b2¥ýsRõí³wAÿz}¯Žs>Ÿ%˜QªN2‰&•–xn ZiöÁ¾;gPªå4O—⺢ÜÕ›þ,#jé¯ÎI†„´HlÂÊš’—¢Ò¤šÌE¡®¥~3C¶¡2#Uÿ©Õ©8'¢­Ò¤žî½ê„ 5žŸ‹ï‹©&e-uçóîG@ãkwkƒT;ýçÚ¾Sþ:^éo5®ÒpÜIµ|g"A*Ÿ¹ÂŠºn©ô¹xÙçëÖ¤8|³Ê%Ÿ uhƒ¼ñLêÜ«ã‚ÔoT¥…´UjàïPùâ¦Gj4”ÒQ Hµ¥Ö#Õ¥¦:©¶_©6£÷~:Izú[ºgPcöÖ1žÄÍ,ãXé[Ço÷ ª]6ûY~ñÀ$îúp^h˼œÌ~~ÉýÂéÐÑuÄ/q9%2nó™(¨î"[ÔE*Í­~½G¦ÃY*5¦E^E·å·Äô7+‰6…ê¥r}¤žòøz‹ 4r”Š ¯êA€T}æ=;Od™Ôû£ž9îÝ£”þ¨<³ÎœÎÎì¯iD¡É[©lRç7«9kp'¥ß |9HU]’˜1lýHôŸ¹Eœ3ºû3¼PËg+7¬fÚåæŸÏíjÌÈâ[[\*gþßK}•r?sYZm4_Öø½T¤Ä΃®¥òo¤j‰R%G)©‚nŠíÍüˆë³®ã% R®r©”ÜÁç¥F˜+>ë—T@¶(mÝIÉ„Í1çwyë+´æ=>ë‹— µS¦ic‹i:Ibº¾ári ÕÍ-±7ÛK1ŸŸSÌw0 º²nÇù›‡µ#[㖮ݹ·®ëJ*Õ´òR³?Rå•ê®Xˆ¼=5HµñJQã¥J,!™„sR6õR½E©7_2(ñR¢Œ6¼P 댫‹íá˜o×t'†J#Ý@ê³keE][Eê¬ÿ?R9®ï"SÒ.ÅŠË­w*5·7Åt5kh"µ´¡‰Ôœ:¨2)±Ô&UÕíµÅÍÁøuYÙoâ—@i%ß/îþJíù¯H½Ë©ýY/>³ŠA(Ï7óÑ9Ú^ª¯(5D­ƒNª>Rw‹^ ûÎLÝ­6q'MÓB‰ÿLjUõDjž AЕÓо]uYŠ ºÎÎ¥[•:wEÕ˜bã¤RŸÏ.#Õ•wÈ—w«TjH×¢@>c>¹/<Ê6]ãùMÏÂCÈÖRól;Ndç¥í8goZšøCø Úa;SÓ‡—Zë_‘Š;at«H=Bé7ˆ4Ôó›jÖŠRr†ÓKõQz)\êNƒoGކí4h:æR£p+©[SƒP—£*”»vy¶µ!ñ>tM°¬©5'íSµ½XCw·™Tïìl©Ô.:E`)î[4ÅÖÎŒGø!O5Ú‘tÒHSL“{ Ë}v’Í!]±JíaMV÷›‰u¶ýf®>«”ìz2©®Ãl·w El0ëA¦~»óÄf²¼”øf^*Õ(¥ÂŽu³àð3Œ(ÕK”ê¿"£YpÙÔqC‡ßºvçx¥ýˆÔ\2¶T©¯óŒ[ g-ÜøEêL„®°±d6Ùœ§ºh¡;äkÊD‘:çÃÆ»Ueã§å~Ú¾&IQm¸¥¸ÕXª®oôº1ů¢>¿Wá?—b‘áŠý\‹ë© í¬]žß58½*°»^j„ýšæEx©Õ¢Tü!¬ªz©ñ©öHõ'÷ã7ùÊù•JÏÎÈW—L,{©ö¤®ÔyZœch“}ØÄ6ÏÎU/t&ÁĨÐÙM5Aêt6a£â¤±ŒOpé†ËV“£*õyâù«Tilx-óC–>-Å]õáj–úL±n7U]™ï,W©ze”ú|’TcŠ1_rHöb®(£Õƽ»MZÔ»ÇPº~/5#¿8^ª>ùj¿Ñ¿,ù½)èz«  º¼” ºdæ¹A”~/Ž¹Î™ HDjöÎÓK*µ³Z8‘:/q&Е{‹›@Ç”{STèƒØ!Ás3Ê©Ï3B£…\å¼têG¥¦tê*•lû±J­Ä+TFhǃü¯…?V:âR¡2å]‘r†Þì||Á²¥ÇA`Ël}v)ïòJÍg?úüUT/Õ£ŒËà °ùJõ†Rº]·X(Uj”ƒ R$${CÏ3±´Ã“c®”=È#uFøAè+é™Ah&íXTê³§m ”n5©9ä†O•jº,#R³T®ò*ÕìƒJ-±º"•¾*²&J­RbjI;•úF¨ RLç0d )~~ÿÂß4? ÎV#â×ìÄհݼ²wÅ¿«TÛî÷üÎßH¥~§kô(Õê+•BŠæ¤ús ³E©õ©ž£TûÍ/±{”’éÙ¶ÝeJ_¶m÷¡Óš"óéE¾š%-LÕ,^ÛU™¡ûºEf6¹_dzÜE>Ká% ‘iCWYÆ: –IýžË™œØ©™óOÇ´ZûIK¸0©™d’ŒeÊ7.“¹;wÙ+߇üopçaR›Xu2u™ðó¸­ê+“¢žó#³Yî|ÎèL-A¦Ö #«FN&Ô°»¦WƒŒ átËÿYKÆ=ÿÝÎ+«ÔgCJµ­Ý¬I•_ „>;›£ªsΡ£TÓa¸J}=oLК¶HŸDÎó“Ôñxg:#¥)žz›Cæç9I7 EºY ¥Ô·T©i³ƒ*õ¹þrøµ ë,[‚®êùó@3œ²*ìšAî«í¼EU3 åüJÅHf/½TÙQJõþ¢¥öè’z.ë R¤êùI?ç·›Ÿ+ó¿~ÿÿûã8éŸ{òßþ8G«ÇÏ™Â9ÿýÆÇÿõ¿Ø"jùŠ ø5áÖ‹,cþüßÔÒ®ó ‚ùx{þäúµþŸÿýçþù¿þø*tm_ûüoäŸÿáûßÿñGúù/ßÇ«œ®…íüåcÖXþÚÜ!¯eæ3QSÏÎÞÏðŸß{\WG$jº· ¨ ß4¾/4ætäW'kø\ì3a¢iPø¤!¹ É¥h@Ž?¿§ö^Ï`ó‹+Tv.f^ýýÜU@?‡“ÏžÁ*Á/Ñ>îÒˆþýû'»%Xè~uèwžæU=…Ïœ¼HîDæÿ2µÖIéÇy{B3Owù…÷qq©4¾ì´^©zPøK¶õE›ÛDbÜWSLƒ†+ݦe1ç×>›çDC¿Þ“¥Aáó…äB$$—¢9ˆíóx¿îëÆÝsÜ.fÝÒ=ǤRf¹·cöt} ŸŸ4ßÉ$“Èwß…iа‚Äœ¾û”‚hør¾³KƒÂç ÉKh.YCà¸lu'ÒªíÌb¸•ì;h·VtüßÌÎÖnÿzˆû §|oaieÃmDp’´iT€sÈ߆Ë5F¾u¦È2³N÷ø…ûãÝÉwÌœN× á/Ýqà/±ý5 ®t¡žÅ|9§“ çâ€æÒ ðùBr!’KÑ€O[›ÛÚþtm­œ•C×Ö ]¨èÚKhÛb ®­ÝçÖ ­íêÛZ÷ ­c+ëØÄý‹´hhóe'ÑøÌÅôc¼Î4k¿ùÝ´zKS×þÒ:±Žh]X¹ó·Ö‡ºèÏub,!Ý/Áz¯P²Nlßkެ»wÕ¸Nì†}'ÆÚ‰±xìüŽfþæÉ™ù›egæÊ™ù+áÌü¬hæ7ZyΖZyζZyåR+OfåIR\°™UíF‹ Of¹Ga¿\×ÛvΔùžþ垨4‰³ßª: nôz•Åt^Ð ý¶³4(|Óà\ˆgRÄÓÀÈé°r¬e¬üêtX iP¬Á50r:|«XÝØÀÈéð ìJ¸v5 uÌçšRiØ×I´˜u]ίß<[2 'H?O·Ù“9%ßßûýáìs Wî‹4æ´ûûþ‹>f@ ðù@r ’CV€Tç}*ñúŽ÷õ_3ñžõʾíé˜æ¼·ZIøÔ“UÉá‰5ÏàIh°Ð»¼Ó'ožg÷Žèï÷7Ðäéoœ5ù3ÿ;€ÎaC«ÑÑhôh3z𠚌Y£g¸ƒc8ƒc8Çp¢c,ÆMá4­t7|Þ¸Jþ“Æú‘ïK7ÛwÍ!:¼DáSíÏNùî$hsiÐðMã~Á1_ÆÚý‚5œó¿Ý¥Aáó…äB$$—¢9.›É Ã]̤ÒwcËó˺¡e#Ëê’ô¹…o0°œ×·Õqe%£¨ãJñ¶l\É:®$ˆЬÓLšÅ§¤ú"k×õ±"kôD“+2– Zd]l›ÆÜµWdwÏ•+²†"c Í7k@ާ:Þu ÃvZÙòmìÆ–é½ÇÆšsÖàª#\u¼vÚUÇV°:Þ‹™¡:^ Wkÿ‰Á$бrÆÍ&^ a&‘-ˆYDú»Z@þ\ÃbAÌ"’Kî,â5Î(² qv‘%Ä4²„cËBÇ\\̽èÆ–³ÃØrö0¶¼‡ãt,Iß[¸Ð+µ0¶Ì8¶,Æ–÷qG[’€-3Œ-9…è×?cËÖЯ¯ýú:£_Oæ×·üúgl¹ÐëXah¹ž¡å CËõ)ÐQä]q÷:G±œ ÏÎQ,ô*œsYBCÖ áJ,;GqÝÙ&seBXÅFoÌ8G‘%ÄQd†—|'‹‹·æëðîÜ…“ÝøÂn|): d.ô ¨`R¯ Ìzg-l„Yéù.7Äd c²¤ˆ®}®}íèÚ׌®}ÍѵÇb εïkO%d®ý1nÞµŸ+ºöWÂ\{_€’ÌqÚÚó‰ghåçûÆùľã|bß8Ÿx5h¸Ð3Z0Çqç®Ü|b8Ÿx¯Ý…ùÄ+á&;®ä¿Ñ®00ø§Mzƒ¿ƒÅßÉßÁæ_ nô޳ù\®jóïmÎæwž{0›/bóYr›ßhÎÅlž­›_ÉY›_éq ³ùôw³ñ›g %ÜèÎ{gó÷YÈ1›ßï1µù®Zw6_ÄæÓ÷á±ùä3z›_£Í&ÿ±øhðk0øä3zƒæqæBƒO­Ìü¹Ðà‡iñýÔé=ÁÓ¿Ó—V¹¶GK«°7§¥E÷³¿'׈…uŒ–ÕST¡¤ÎÇ!ûÁUl´0 #—np¹Wbû‘ËÜqä2Á5d ¾i€«xïu®âÝ_í\ÅÎóæ*²„ºŠ¬9W‘j¡·u¡å¨h8j´ÍÆýܹŠ< v®â ®â5åÎUdcï\E’0WqW±ÿfùhÕ8¥}&Æý”öÀí'´ÎgßÏÝ|öªhë7LfßTÜ|6='ã§´IB ýþ‰ÙšÖ~šÖ¦5±iÍØ´fhZ ›Ö~šVƦU i•Ø´ 6­šÖïœT{æ¤ÎÔ‘Ÿ“:¯¬ûI)^bu³RWÂMK] nZª=ÓR#ã¼Ô)@?/ußt„y©±p^êj@އ&I=[ l)°¥‡-¶Øh–Ô³µÀÖ[{ØZ`kí'•˜Ÿ'=)?O:;ΓÎçI',~± ËPÌ÷_9ŒXJÁŒc¾»®Ë0d±Á˜óöw C–kmÜeâˆeÆËÄñÊýÜWvÞ/Mž›÷{Ž÷~iRÅ{¿W¼ߴÁ;Â|¼8Âlèm´gÝ膗·‡—3 /ç3¼œ?¼ü•ÿO²pi˜¶”¹˜}KÝJŠè°¢ºa(+‘Âa ¾i@amšåÔÒê4 ª¥ÕežTK‹%´´Xr“ÈÛa]Ì}KÙÄ|Í”™ÄÌ‹:fYBM kаôzfçýÕÍ$ÞŽÈ™Dé÷Ì$²„šDրόÀ½DËÅÌûÛÙŒ@>›ÁÜŒÀ ûÐVàfvÁš×šlµ™Žµ–ÐV€H¶ø8«‹¡²7²{ðߑݰ'cÉ·(ÐpâÞÁ¯¶Óô /ÆÓž[­—M#¶žÏn¹ÿ*@ŠÇû¥I`ïýÞeI·x„ãæüŒ›ó3n¾œL“ÀÞ&ÙàVЦI`ï“„9ÀuýDŽÇޤ-þÚhñßæM> ­¼Í' 3úk£I;Ú‘ÒÑŽÔŠv¤ÖhG®„³#¥ÿDŽw‚û™ßn8hiG-mÆaK›XlWƒŸâ~f¸Ã7®úpœànXh;Ìo¿æñžóØÐ:Þ[%u¬5ZÇ+á¬cCãØg4ާ`¼q\hW4 -ã?á·Ð®?niaN áÀ¥ÅK —&hÏŠŸµ_fí·Ÿ+~Ö~ü}.׹Чð<ÒÝWk1³ÑÓYû^¢ô…É]ß{ÐNS ÿùGK)1ùùÂ÷Ñ`aJã~!1N1‹†³ØU\þØ4"¡ù¦Ýoƒlþ¼ûûi¦“¶OiÌàך ¯#žç¾ø.i ƒ¼ Upø2V§S á›Äý‚cÆ 7DàIIbÈ¬ŠæA$¢)Ðe¼£Tð“sijÞœ‰ÅÙ u“ ȘØ"Ò]ׯéz^ÓOaï0Š„æ—5@þqù™g¿üÌóáºøK¾³-«·® È,aëˤÁºWCceX4|ÏÙ¥Aa¿-šKÖ€‡­¥ÝùçåËP-†V”¿ð¾cðÓ„èzdÞ8Má¯ÉäD]‰Jä»­S5h˜Ò8_hÌ=>chEÙÒ ði–’ –°|“†ÀqÙÎŒeû/3å´ß§`Ô<œc7ÃÌÅÉé™qp$C_ «±˜;Þ7 d, 1 – ‘Ð|³ä rkùšfž³ûËÇÜ_êÞËUò^üz: ŸŸôLŒÄv_÷­Ê¯ì ~ùØ|h;q=KÙ©¦ðç´E@²& 0óèsЖ+ïtÐBÖáÓ¦+s t£—: "áVPŠ÷u£—ÆÐK†¦á¼då}E {·C%8—¢9na•Ô¨Av^ôs1·ºÞ÷¯¤,ê=Sî]wÁ|1S‡ÉWâ\1Ûœ óšœÅ´ÍnXù(x»4(|¾\ˆ„äR4 Çe«ãÆ7ì/sWgZ=I™ež`×ǵû"`¶¿¯Æ[køs ³ççbÎÛ,öý1{> Ÿ$"¡9$ˆðTÇüTÇT}u,¼×Lªcá®Ìª#K¸ê˜*VÇüTǺ±:Â’_{–üZXò È[»,ùù½¶uÛ^àA+zºWwÈ’Ÿîæ Ûì{¿— ¬øID£;ýüËõ±|š…ÿ´ÍÀ" ˆ@51ÓÓíÞò­‰s/LþÂCýØ~êÁ×BÊÖð©)çb'PÓ]¶Rn´4ébÒ~Ýî+$¦žÂGZ2 šÁôóݳXEsW\Çxmžë:Ù*ºÎ•%¤óe f‹e1Ǧu×=“ͳ4Ä*Z.XBsÉú÷ÚÄ,†ˆyÖÔ€Ì÷æ&æ¼óBvŠ÷N\˜«¿ÅP1 Ü€4 mbš ‘\r dñÏÌϵ6²øs;ñvr¬K Ƕ~MBÄBÿÌx'ñÙµÕ ó¹‹iT]UC»WY>_H.DBr)#˜F~9 LãžØSïŠ=õÆUM‘p¦qû雓טD¯@¨iΰfãÜGº+õ2ñ0h_ŒÎL Ù9£S"¡“¤@g::y©.&Ý|ª‚sŽÞO¯PØÏ~ˆ„æš5 ™‘s„ûŽ>’Lh ¸¸Þ mB8¯¹®¬áÓÄÛ}Á$¾ôúr4œ˜Mc1¨†A{Ü5!»à5"!¹ ÈG~~ÍbhÚß9Žw5Ö9Ž‹VãÈâŠçHÞKp%¿/MÃÇ<‹KƒÂÞq ç(^ È£³™¸»¶˜ûT]×ÚÎ6uúntÆ::c NÜ_Û茆&6:+8¤0ŒÎXBGc¬9ïñÞª&²w4‘m¡‰äm–ÎD¶…&²wôy›¥óåá,ñarÂÁ{ܽGz58‚%a7ËÅ`¦¤ò¢“˜’ª³¢É;^ÎR° 7Ù&14„[’Ú’Ô¢-¹’KÑ€Ï`æö0˜IÃf®}w£îÜp†%Üxæjpã™k-æËY+~@sí»Ðpà4,!¹ ÈvòØ…vRi;9ï/fvròojv’%Ô.²µŠ7 °“T‹UC§^OÓ °·“"¡ùf È®ÿÙë°ÁõŸãΩç½îÝ+æ›Sعþ" ޽(ÐpæÑ²ÆœÇú;œëýà"ðþEBò( â±$ë±$#£%é-IŸÑ’ÀñÑà,Éz-ÉDg+o+=îVjÁ’ÌŸÈj$ßs5rU¬‘sc¤)j_#¯„«‘Ë÷Ü”ÔÈë®»žûv=·<¶ž›%4߬9pQWÇØsÛ(noa{9íGwûÏ›[Ä–Q¶ÆœQò²E]Dk :ÊÖ<ˆ„äQ EðI]Õæ|’tæOœOrç™OÂóÎÎ'a õIXƒz <·íbÎ.7—uwÚ»¹¬I?ž›Ëb Í6)@ ؈zNß ØˆÚy¹K¶€ž|ÕmDå°Ûˆª¼ÍT5h¸Êé*ŽiçQšbQ/™IvQU‚s©½­ÃÛÀÛ÷rbçç´_Û;Bí×_‹ÿ®Ž.aJÀ»Zý¾¿c Ú½”ÓR °wµDB3ÍȹslÈÈÔGië¥m^־娔Y–P ‘±—»IxÒÏ«°ö}»—ð[ öD$4Ó¤‚—Åׄ»ñÚ½›ÔyY¼)^½,Ý6¯^Kè€5¸µév7Ê^Oñ²n_ë¼,éßÍËb Í7k@X°®“ßÄr1´ (ËÅŸ¢·w9™B¶\Í•µhùØÂ;'9 (ºX]G§,³v ºÅjàÜÑç!ûaê`ü Ûÿ2ÃÔ™ÚRh32Áa3"!›?XƒÎŒ_a –±‰ºõÇ&¦˜8` Í5k Xg:wäÞ ì.ænŽ‘µžóXJµµ ºU&ýûvŸRÀ¤6õY³Ú"Óª÷jvSLa[dRÉ—(Àœ‡•ÜE«pÝS¾[¬d%wâ*+…a%—$ü¥TG\IE­Jc*¥¥+¹´dd+¹<®u+¹,¡ùf Èá}àv–¼ïÕ”.æ^.+þg;‹ææ rP=`ý3¹·öµ†+MŒZÌWœ£þè÷­Á‰é§°9À&!ˆû Ng¶ážªÓ¥Îm{ N—{L¬ùsØí)P Þ5 4\y`,1ç¤} í~]>IƒÃn_Jp.Urøáæ÷§NwYÌq5»7¿0½þÆCA ÛpÓ$h0i$LiØpó‹Iw©W5œn¬»4(lÃM“Ð|³ä€mÞŸ)I¶yÓqLÝc=è°«îÂrV÷i‹„îìf º¯{ð‘‹¡¥Ž?‘]ö;½EBrÍ ûÓ4¸øèôÕüúÓÑk äusØüz`¯]¾— %àÜú:šÞ™¾ÿ~‡éôß sêåïšaþÂrEçÝó)Å/WÜ¥_·\¡Ëͺ\Á²!t¹‚™ºr!m¹â¾Éî–+& m¹‚%4߬9`«U›ã>Fbë6t—ÓyÈõ^»NÛ 8èvZ©ï£R¾)¸Vn›ÐïåX0'0¦ ô$" Y¦ï lÛáí.æ+qÛvîyu·m‡O´»m;,¡›rHƒ…ù¼¹[)\·ËU t`ÝÒ#í– –°u@Ò8 “>·¦ ¸I²=J+ÖI÷ÒùÖGj®v´HH,4Li¸Nú>¶¼¬“îß`êVRIƒÂ®“V Í7k@d;îq¶~¯å5­ÇÊm—.…=KhÎYƒ… i“&DC㙤AaÏ&’KÑ€Èöým[æå}Ñz̪O—ž%¬THƒ†) ÏF×#«†3¾}§ÁaǦšoÖ€ȶ6wg³ïcEƶïC²ÆFaÏÆšsÖ aJó»ºr;=¶Kâ}©ñß5Óü9B Ø7¨iÈÕù¦¶é”¡am·ŸCT,:¦¨Áô«!W*ÃÞIK(kÀjU`,fóY ®¦•µž4Y€ÑšÄ’qÑ`aY€Ñ˜BË'ª¡ÐòЦQdFs!’KÑ€Á>6>h1›êžÚÇJ»aÕ>V>þaö‘$¬m¬›”ØÇD»!Ô>®›b[³«Ÿh@`;f v1 ÝΤt~nôÝËÌÉrØ¡‰„d\4X¸ÑAdXì-²‚qp’ÃŽL%$“¢(lò%Ñî#Úåt¦©&hh"aù¾ 4H)x°s”˵´óŠCwEÆa&šë Ý€¦áÈæ¹Å šÚÌ…+5—ٹ͗…}™±„ä\4h˜Òpl·”ڹ͗…=šHh¶«·•š\;–Cg}×~››-˜É ã¿€Ÿ'8³I^ŒÔp}4ͽ¸ ÇèüŒ]8&'lìÂ1–Ð9R€™Ó›®F‡é» ÊMÜ™X7ýAK~úcOBüÆö4Œ ôb0èÅôs„`ô:D¼nÍq ðx8 \$®„ ÂV¡Iiաç6«³xÓ“Íê°„æš5ÅÖ#X `e"X™¬L«¬G°‰\³!×l‘k6äš?!` >òè«ëÝk®\&9•«ó:±q‘„oR}ÿ@ƒš,swžl.$󋜠5Xü;Óüô%§Aa&šï‹š†g;Ó„ÐÒ΄du-­Î §p9ìÙf(%Ñ áÆG5¦s!ˆ†s£˜Kâ=ÿ]²ØCJ¾¥•Foº˜û*µµ´óàËv-¾¥‰„´#Ñ a9ºnmqS¯çÚêpUžÃM%Ô°ä¶^+=dìbhÏhí­Ð€’Óå°cS ιjÐpå+4¦Ðn#ÕP:ÜUÄaǦ’KÑ€a¥}ý £+7iYhŸð“rÚYÂ]4ý)ñ›¬³ÓAf;NËv,<ñ%òv.œ%ÜîÅ´ų… œvg—VÁØåU0qŠ Œ%üùöæÁÄ)v–c—×o ØaË÷»?DP<`5G²ÈÒD²4#YšH–YÍ­#ý˜FÖ[$ë ÉúO¤xv鯅d‰Î »múÃ';š^ oÛô‡' nŸþZH–ù·4^áV4Y74–Ð|³älƒž¶‚-yz¶Ž­`ÈS ~GK†ëXƒ’ ž òl½"Û@´É‚áN €Íg«Î5©ìUX/¬ëÁf`»#ØÞHÆ3xmodÛý'rÀVóRX…»%:½Z¦›ezT$´›†ƒ¶YGþ.{qä{ S n·Î™›ìv·Ä™š¦ÿ†Üfý³d˜>u|ËWžïòÖgVÚ2 >8Q”ü]²,ß[8óž"Ý‚ô _èJ Úƒ´i,"{(è÷ ©o:âïî«ÊrÝŽÅ,òÜEkÉwåR’¥ ÛYÅ×\ó÷–Ëv4&-Zòdg%ÐqQÐs©ç¿ ÈÕZ¨„õâÏu†xŽ‹‚Ž‹ÿ®¹æï-ÜB%<®kw\çýVÇEAÏ¥œCþ>0`=[^ ‘˜ÉwJ=œËÿœtõÿ®õŽ¿×0¥à¸oª#Ñ'@AÇe’çÆ;õ€/¤¡+•áBš‚×ÈŸi€­ÉrиäïþÚx¸FžRøÓ_HSáùSÀf58è¸L@ò\ñyI¸ï6®ÌëW§=Â%/(ýݸ2^¼£o/XLæ_‚¹&›æÒ)åÉsæ_®öp•‰\°J *U&BµjT€º%E· y¨1jÔŸð@õý…5°°F,¬ñ÷…Õ÷?VŪOaÕ¿/¬ïëþO\ g‰\=p5äj‘«®¸f‰\ ¹6rí‡k®¸æoŒFOy…âÂÆUc몡yµP ÇSZK ë)«PTã'fÿ_)ªñoÕø§¢Úåß+ª]þ©¨&¯dz®ë";.×]r¹ÖB®Ý=—Œ¤,†¦ö•‹žŸQ.ÝK¬\" yæ¥dÀ+¹¾¿ÑÕ:Óïšš^Š¥Û]ùÚ, ÿé®å ¹xK4h8‰•‘˜³KcÙÚ{û¦Û¦Ëá?ÝÕ\"!¹ Èlw™`x¶ãaºÝÁÇÁ\.Y;4•àŒ‹ &yB³wG¶ïv=ûñøñ)ûuéïþÇï?°Î$M¸iLI°ëùLÓMWdv\*!{šEƒ„) v&öoZ¢!M*dIƒÂM%4߬9m•_ps|[4›`[©3ÜíÎa&’qÑ a¾E_#æ$÷WÌJ‡«$‰)×èk&DB2)€ÁÎù¸ûînœެ'x…ÞL$$ã¢AÃ9<Òê„'Pβ…ÃM$$—¢9p~¿»ˆý6ü¾ùámø£ÂÕ{vl*!ÛîEƒ†O¬jÌ9øåØú9¯è~?;6•\ŠäWŽ_á)ƒ ò˜uxl`ôP!UBo-ÌP!) oCz† yú+_!9ì­ˆHh®3THI"ÜŸs¸Œ‘Ž*]¼odr5¿‘±„ÝÇHÜ•Œü*¸C£_ËРs¡p@óg%Tr<…VžR»“2VjPd¡¼°°î‡®°Ê[ZHÔ&µ‰Ú …õ3ÿ/ÔÂöo×Âöµ°ÿ»•°ÿCg¹3puÄj±ÚˆXÞNˆG5vÄZ¡qíŠ\»F.¸9^4 ÅC¶K$› [WZW­+CŸÍi[!Ë¢l+´®õ´®Zk@ŽÀv`¶ëÚ:¶ÕvIz¶ÕmyVJ#°•†lµ [-‘­d+P?9À¶CKã‡[”í–¶cÓ¦l,á^&›Ùvhjôf€±ñÛ/Ê&«%4߬9ˆ_†­cžm=îqÛzž_à3n´v>x—;ÝLÏá?íy[•à×kUƒ„)?ÿp1åN«†³¹\þÓ¸ Ë7iÈÖ /°[̼Ë㦕nl³t3/°[ÎXBr.4\x]c>ç¨oÇv¶o —…=Kh.YCà@¶œøê1‹¡Ý¾ª5‡ß4ëo*9 ɹhÐpbï]cR¿§bTC"—BÓ °gc Í%k­Ó]xSxA_´Ú7¢éRس‰„ä\48ÖÖíËÉðu2 =ûIlƒm±± =û),Ã×IIóíü ÑΰlhíÜÑöxJ–ÃM%$ã¢AÃù’­qgC•ìœ"kŽŒÂžŒ%4“¬)¬u}ÎQc&W|&ã%J%òœ£’‰g\5hXžsÔ˜F;¨†Ö¸pM.¥Ó\°„æ’5d+÷\g«•~RÑZï*°&[y•XóÅ—lË禖`ã™D‰àSúué÷­ª§°cÉ(Àü#Ó7‚£‡{,¦ó/CJÏæAEaO%œmù^‚‰O²JÄ7†L+±‘”(ì°D@2( ±þßòÎæé¹ïwÝãKrø¦Lfðäæ”W\v•íRU»{à’VtHQ&©}É_Ýß~Áh¥uLm­ø4~=þL €®Æó¹ªwÿTu)Uå¡%¥b `Ðå`hx¨#!RŠÓFwwe…q˜ x€#Võ„ŠTPn,+ˆËlÀ#8¬µ\†4ePæ¨óι²l°DƒÜ–ë!f<pQßXë{@[H6XPÙ€G8°o­ )u/Ѭ‹§2…ƒ5‹5à6_1ðªlDk4*¤‚•h@R°ÏE + :0àïÂRµ«Ý¸Ú6'Ĭž`'×°x X<v’Õ“¬VOv€Ý¸,ßšTìoÒ0_©X‘;à¢ÙHåÒ*.Ö.¶ ˜¯ÔšmT0šT2ÌW*kˆßlÁsÜØz=ÙšG«É£Õt¢ÕäÑš'ëGÈèð%{^ÉÓ+kˆ×éh'uÿ7éÒ®Š>1RÖîm+Ö|(L[ËDW5âccX~£'Ó¨<# _ØÆ[Sh»uX¨£ÑŽvœËoôhѿقçplit>?)ù¢ãÀ`u¾k¶$2ùÜ–ËYæ Fßa õAûÍr,0ѧق‡ð`kS´uFDQ®u„D61cÙ©;Î R–¬ò¡b0°ž&d,[2hˆ×lÁSç$þjGJ¢uŽzPRÖLcÍŠÃùH|¡‡$­¨¤\ôj%$ÕãdeiF値êOV†ïþíè§O¤Ý_Q¤WÃA½:ÎŒæßlt Ƨž¹“ŸvGÖœü”ºk‹0'?m sòÓ¶à!n±¢a8 Ö°æÃÅ+-Z;‚ÖºÚè'[8ØÖZ ËF«),ÛÖ0l!?NŽ[Ю[ÐzñlÝ£õ“¬{°^|Ю[ÐâÁuÄ,Þb˜ÅljpÃêþs^jÏ!+®0Ê[§9‡¬¸âÈ Y'X Ñă¢afBÑXàþ89nl¾QÄÚBËf[E–6Û*ŠÃæ›E¬-´a³Í"ËGØl³(<ÇÁÖnl´»·²UnËÀ&[aƒØØ‚´[Ü3)6nÇmœQs`|¹‡°§@Õ¹Ï( ô¡6Î_ª…>½Ä M,¿ÑS DƒÏx "G~âJJ¢o/ÅB¢ÃÓ$’ßè)P¢ÁN€ƒ°\™ÊÍ“Pùä)²˜×aîIódÙp‰{-DÆ·7’BËZÕm³-YlÑPáwöW; •èKµ&öä…Á5„¸°‘#ËJ4Øe± rä¡5IY}Ö¬P‰?‡“‡¦ð{!,Ç–<FºÅ hÀk¼[W¥hŽ0ì¦=ä. ;ÁЕBþÝœ_Ø­,]Dw~¡i Ñ´çÆî !4à2pªð'b*$u Ouëž+$ËUø#1M¹ö˽rÑ<¶ra¦[¹X^³qrÅ“ëjŽËADçj'Þq’ÇÉN¾áä'=ßOœœ\}˜ÒQøÒ­ô¥£øåê¹j<¹¨ÍS®~põW÷\¶IDG:½Õ©|TªŸ=ôV­îÇ‚ÕêÿýXУZµ[¼Z?¸jô\¥x®RN®R^­ŸñÝs]Ñs]ñ亢‹×èâŒWwÏâJË’”«¸ç ËŽ‹5„‹-˜xuÿ,^ Õì³8Ó÷ÊÕyñ¨r±¼fÂsa-Žpíµ4Šu´PU[(`±†`‘aÀjK5ª¥¢Õ6J…å8JÅJ5leÓÕ8m¾LÐI£»Î°)c/TjV¢®m­v÷«ÑÎø,¯\{¢Ï:¡Ñi-¬XYZ¤:­Z,P½×<´¥¢Á^‚çplk[ŠìØÒìríZÊVS/TM9_– ›h°çb2åaØö²‰¦l{cŠ`ò Ù°©üf žÃ³­·šcËÜý‡ÕB›H¾$[6hÀsX9ðªZIYû~Y¶”èÕy$,/Dƒ½„ÏáÙjä-I4¥QK«ó›/É– ðDÆ–’²6G †­Ð¿zÿpÚ„Þah°—°à9ޏ•Õ¿µÚ|{÷qc ‰[¹ µ“”‹K-âVém§éiü>$qƒ¼d žÃ·%™ÏÅÐJšöx‚ÔaÚÍAk9Æ—´` i'ÈDŒ/iíå ×gîX"‡ŒS1ÄÑ€ÏlÁ18,ÓFÊê¿V“þ-gkzÀì˜h°ãb²ö€%墉1X@ÿyh^ˆüf žãÆF'X6[Õv'#z6¸0l%z6[Õ8ƒÍVµå¹­j,l¶ª‰Ïq°­§žCãAƒ6šGíDÍ¢±©¯¢'Û»¶)X£ó,¬ñÊ2ƒœ&Žá†EGØà¹úÁÕo\½ù๸7`±y²t¥Y:Èb{œ› 'ͯsËië7Ié{KŽªÏ}o©#gÙ³<óå³îE!GÚ  7ìÌ¥)ôE Ì'Å»–H^Àhˆ×lÀS8²´îS³d3ÿýu¬¦NÊ!_–•LØo1™²0dk w}R |ç%’ ™hˆ×lÀSx²éV ŽlÄýì«£î!É—dCø BÚøñ®)qwU„Œ¶HS²ÎMŽ’±†xÍ<…'Ë…O ’”u¦’%ãå«’¯,p…cP€ß0™²°dóU Ù|KF²%ƒ†xÍ<…'{_[ÏÖkƒð«î÷©$›JT¡Ë–Ëm4%íÁo)ÈcfhI<3¥u5Ä_6àý÷LkyrvÑj‘š)õ(ÿåň¤þD×–p–l­O6Ñ*›”‡Î}7-1ݵbÀS8²=OgÁb£uk0[ÙÞ [–LØm1yç`¸pš®/ô³dP𡳸 ñ™ 8U*OõÙ‹‚i÷w‰ÙdK²á‚‚q;˜rŒ÷À…¼¿c‘ 2“*ðïâ2_í,l¡«X·5À¢ r [è +ì k±®æ°ÂÁn`á »Ú㤸‘QgÑ’Q”•¬DOFECfŸÆbÀqÃ-)×î€u• ]E%c ñš xŠ{ÌúIÖ˜µìÉZ>ÈZödýŒY?c|Ìbð1‹áŒY >fáŒY¿W²ëV{9ÈÚAÖN²v_É®[iŒì(ŒñVãQããd¸EŒÖ[.×(òšzËÅ%å Ãs¹FQÝÛ²h[E^QoË"½ÏÚ²X«/‹®U4kî--­°Í¢£¥¾¶UŒéh}ëN×›xÑdƒWõbóñjg¸šV=E,д¾Š®ƒJ{`Y©ŽŠ]¥bƒŠ„Š DG}‘”´ç3k¸W–kˆ×lÀSYÛ»)Î]DÇ^Rê~iì«‹ÙÖŽtÐFï¼ä…~ýìæ®î†(ŒJ;àÀ€È{NÉ£í2a!ÏþQ–HZêì~fåjà°Öjn7$…6g£•F¥‘)‰Kà4 ˆÐn e¿íªÞÉ 9h¹ ùzÏสœn-)|65ŒV>»šs­r¸5ÜöZ @–í5…ަ–€óÑÕ(r¶µ(ˆ×lÀSø‚¸6e)® Îb»Ö•‰ÕHÇ– ÛˆsMÄ/( àÁ€È/Ë“”@'“hQ{Ù‹”õÀëb´2°|„OáÈÖFMtJ¡¦ ªûlum<´¤°hÈDý"cᄤÄAub¡wÎ"bÝ„øøžÂ“ÍŽäJãš_Øý2Xí…z´œ-‰– ð S–Œ‡ÆÅÂ×ÒÈ¢%ƒ‚xÍ<…o?F^_ãÚöcðý@I¸ÒBQ!Ñ–F(H£‡ˆ@Îü °¤tÚáKNÛ/¢éøÒL(ÀGð>f!¢,)´]·–rBQÁR/-K¬€ˆÀ€ÈXê%)¼ÍŒX˜÷fh=cÑÆ ð<…Ù…¯#$%Ðç r¿²ˆ°W¬Üq( "0ùÂ÷šBè Ù ¯@6ðy„AA¼fžÂ‘ñ·£lÊ î:[mÏ4p®$.üÌNËÕ"gipr½2uŒ?ûò­ªäñ®÷J¾óS-ê7Ã&ćLå+?ñ â4]Q>òÓ:uM ÐG|Èßø‰ü³8ÌW{€”ïwÈ‹”PeÛï0¯+B•]¿C ,ßï)ƒµJÊÅ/,Ì>µÄ€§¸“µ“ld=;²žO²ž=Ù8Én‹Y Ž,…“,OO²[Ì ŸîgÉJñd¦ÃÃâA–»'+Å’^ˆª)`Y¥dØ}VɪkÅ€§¸‘Õ~’åqOVndÅ“åáÉj?Éz9È¢'‹7²èÉzyœ72Z2kÉÒA–+Y:êX÷u¬ßêX÷u,=N€{[6õÁ1Ñn¦­¿ÚÙÖ_®Ud¶±¿µõžªdGUòIU²§*ƒà€ê¼eŽR%zϪFóO jò@+ˆÎ»šhJzÕ-Öpm.‰‹ÄiºÞ3l®‘øëÚ’¹¥){CÌ)Wþj)înÒX«_‚È3Û±FŒ¢ÑX#FÝX9sGJR2­º ™vŒ—<2ö”/ /aÁs8¶6{_yX¶~å} ¬ö‹öïB¾,6Ñ`ÏÅËœ‡akƒÄa¡ ÚLy°lØDCüf žÃÇ-Дý´Ó;–.sC§`#¶C0p¡ÈÇ$%ÐÇWry ¯Ä:É6\Ѐs°àÝwHëÀDšc‘”µÅ •J;î _– ˜h°çbrA]S²c++Ýd±EC†ßÅéìÀ$«YÿŽXõ´‡aävͽ†i䆒l# „ S6hš­¥cw[´îØhMg ñ›-x´¼Û±A+ôÆ­7¬°¸£Ø\o9kHHØdÊÃVâ©…D«Ù$’mØ !~³ÏáØrÙ ¡>Ø”¾G?a5ó®íÈ—eÃ&ì¹X˯$…wm y/…Ò<2–_‰Ѐ—°à9<[¾¸·¨)e¿è«U`Ö|1­ž±†xÎDÆVS’’èi±èÜjɃdË x žÃ±ñ«â›2\ÜÖ+r7Ï4– ›h°çbAd¼ jÊåâÆoŒš‡¼¡ŠÐ//7Éòž_W%𣕦Ï%ÛŠùuq â8[€\x‚]h~\ dš?—,2fØÅ hˆ×lÁQ`ؾÉÞŽ-mΤdؾIÉXĤFK†A5M¡o,ÚU<ÚUN´«X¶à9nleœl9y¶T<[*'[*ž-'ÏVÆÉÖ½ (^a”5 [;ØÊø‹âV~qÜÊOÇ-ðóß7¶ð3q££g,[;ØZðl-œl-x¶v°ÑË¿e [èž-ô“-tÏ6=c«àÕN¶<[Ïž­ç“­gÏ6,«ŒñX¶Ø<[ ž-…“-Ïm£iylZ+g+I ¶’ÅÖ’VÒ>ÌÄ‚ak·¸âÙÆðl4ðmÙÆðl£H̤ÄõœWq±­9D|#..@CœŽÔSð¬¯!ùjÁÖ;yU®õ¿¶”C¶,2NÇÉ€w†¬×í§¨æÆuúŠM²ß¿ÁµêÅ´Zåb8 ±†$ ј/Bû¥–sdÙqŠ8ÌŒ|Ñ­×”Ýi¬ÅÃäA² xINÇÖ®ýÙù›RèÙÁVÛE3²È—eÃÆ)â9[0òE ZÇž’Õ‚8óʆe[¡‚GN_Ãòþ ÓÕ°Aý X]ëH‚É—d[Ç(ÅT²mÁÈüñ§©dc=ÕB¢mÙ%„?Å hH¥ôõ>n£óÄ™”Ü+íq1)æ×^ $•à¢ÅBZEv‚Ö º\ƒF°5R’‚­‘œ`r`Ù€‰†8½-œ>h£­¹(W ã¾ÖYiTJ d¥£ÄMÜ)¦n ¦ø5úDǤìYW ZïT 4’mР!~Óž‡c[k(è›NM)Ô™a«%Ž=ø‹|Y6lœ"ž³#óæåš ?ØB í£%€ ¦Å hÀK²prø¸µñʡ՞÷GŒö†•æoiq%’S4(dAå…š Y£O€Ä~ÃþCâ4Äe/6nëØZ‡Ø\Q\O SÇZ£ãé¤(’l‹"¥hQ$ FÎTi4e>)’­f…[:äQ°ÀE¼(G[HNǶÆã›c‹ñ!«±ù§4ˆSÄs¶`äD3ÀšBBj¡˜Çt,î1M¿Á9Œ$y÷=sU%:ØC,òQ­’!sU(ÅŽü—.öðj€j•,ä0Wqâ5}Cï)0ìH d´\UÉhÃ%Ó§ÈvŠ!Û ?•LÊ^žíÐl?@·$°hW´(´ÀûถX¶<[kž­µ“­5ÏÖƒÚΰ…æÙbñl±œl±ø°ÙG›]X`yë=nѳå#nù·|Æ-ú¸Õ[Üz·l4 ­l˜¦V6Ö0qëýqrÜÙÊÉ–ëÁ¶xc‹ž-׃­ÜØ¢gëóõq²õq°ÅÇÉq+“©-Iô IH¾! élHBò Iô%2µ³D–êKdõ²žå±úâXêãD8°5§Xtb¥rñä˜pñpƒáÚ)†k[0M:ÐHÙ“c¬óK.È:ÏW+Zw½ ¶prlW¢Ú'Ä=Û(žm”“mÿøº\Ð: E™”½ ݰ _äIvl¬!~ÓBöƒc±å+‡ÍÝÛ5ÁŒ¸¶¢šbÁÒñý¹žUy9Yø,Ñz1ý}‘½¯ar½ˆ†ÉÕ,ÉK󅼂㴥ÈW¼hW'“²ób‹S’ß”¿ s ¼Úb(ÔÍÇU!P{£7J”,¡`Àûì9f'go££)mï #FÛÞ*Asm¼™‚ú%Ã\½2.@´9^HÛs©éz¡Ýἡ βï¼/^ØØÓ¤´5Ý*¡¦m;µ,`cO--¢1ÌÕø|,6-fiT¯¦½[§šN¼Ÿ§ä ¸Þy”s¤AC“B¯ºd3—½#dʲáQ¡Óß<åÉbê4ÐëâÅ–ÏEJÖÉÅC x×ÍÁ° e-¿†Mž„—LeR^ÜRa®&áâþì–¦Á¦4kÖ¸™¸³¬4¢Çøzç¸/k!Ð &¥P£Ëñƒ:/($Û²&Ã\MB %ø,®ASÔÖ€-Å$›¢xÆ×{×=öú5Í`|ehh_ÓŠòN¿¦…ÆÐ‹÷ßE[-î‚¡×åN#¹°œ¥áଡ ®²ïºÇ¹nѹöǦz‹Žè\·è\6:¸š6*—Iº°ÑÎbševM xçÐè<¥¥)ã¢q2:F¦±:Εe¤Ã\½…^Ð 1PO¶Fã20Ýzœ7ÄY6àw@«KÒíCt¿sWm Ö+¹é hpä÷a.-C,ƒ&}ìì>òeZ–EàT1%O,[|Ji´Â«¤ô¡¤æˆ/)Õ'ÑzqbZA?kù:´æl8cT”3Æ“~òÕÞïƒ…ç„ ËžÑU˜=ák`xJØÀ@c˜«Ëã–æ žæ*ç*}Àˆïü-8× ¨ÔšjíjÍõ`Âsy ÐÔ×7Ã6¶E(ɷõ³I¸µ g£0§ó7 VN jhã O Òæjµâ€Fñ@cx 1 1<Ð(Óù¨ÓÔ…k×C7@æ%¨aæB€ 1ÌÕeˆqJ4a!@cMG A Ä â,ðÎÐØƒY©Íß5 ’RךS´MöÌn½È„‹éXžÙ†ÙˉÅh„´÷€•ÏLIÊÚ(<ÔBŠ{XVò y¡Á Ö/ÙÂÁáØÆµ÷Hÿ`Sê«#\ä)ç˲a öTÞy¶µŸX†|z<[.Ƀeà x ‡e›ïË| –¦¬Ž“ Mqq…l!+šjã0 bãó©LÊ> A ¬ïnMµ½²1Ãïê2]~ x¬pÑ %“’©÷ £¡¯~”æJ²å‚Üf *_Üo“”ÙC_h±p펔d±E F¿‹‹|ùáëÙÕÑÕCÊÌ<™jÚîÉI ÙV3h ‘)[Ë®´»m0PgVMs Ñ”Cþ]]¦Ë‡µÖ#´`±ê*¼Ñp]×Z`®\$[.h°Û° rà·Iéu¿^ X»å2’-kˆ—láà8š†-RB¤>©4uwXµù¨Ü¥Õæƒ5Ð\°m>wl5%í®©6cw]µùèÛJóAê7Y88[Ÿ~DÇÖw‘a5î5®š/ɆM4Ðð±•#íF¢)×>¾V-LO³e#Ù²±†xÉŽ£ªEڤѤ4_&Cpù²ìêkHUj®Lr¶LŽæËäHk6ÉÔ¶DóM¦º‘†–ÁæÊ¤äaËd¬´™¡¦¤@‹¸ç¸…ŒgjLÌöø¾ÍEì—պЋŸíé ÊÍåv忉òãtþÔn@Í—Âí§)…4ÅaK¡#a ެÝÈ’G+ž¬œ`åàJâÖn G=ªWñÁâ÷ VŽÕ£~µ[Ã1ºë¶Ã Ù¡‘†eýqrl{1ÉÁÖ‹gkݳµ~²¹Å”¤áÕ@RöcÕ±ÅâÙb9Ù¢‹Y88¶NK¿ [¢¥SÂæ Þ0”Œ~0º\1:·qš’öÊ+{š‚ ÚbÛ€‘†:Mˆ Ö·Ø<â¿?BÖ”ùJ°FbÂú:{-Cï$»5_ŸgW‘—§ë ñj4ÖsÉX€Lyì+ríXXS»ÅçeCØÆ|ñ †eÃ&Ì"<‡c‹k«ºnÙâÚÍ.*Û:ͼecÙ°‰³ˆ‘#—0Iim®‰…Ù¼ÌýcYÙT^‚çpliu$\ÜRÝ;·‰Õ´vÔ2ù²lØDƒ= "gþHRÊØïÞbau%†ÉƒdÃ&ð<‡[@C")‘Z¹cq7rK#7$rÏùw„—ChH4…>×Þ£_s¸xuâ4[ð¾²e¬Õ”¾¶ÓÊ6û¡ÅÜP–meƒ*,ˆŒ•¤’B{º«…DËE%„õ¤â4à%,x×H®a™a+ÛLû™+U¸SS+•œdÓHŠš X9óS[Sö'îja¾õÇ`ò Ù6$Ð/Ù‚çðlóáP’c›ïF)¶u†mÀH¶lЀ簙ò°l9ï÷±¯ý%‘äA²eƒ†øÍ<‡c[ ë÷×v&wˆntˆ²>Ü">{‘‡4Øs± ràïí$e>"ЉÛZý_MÜX6l¢/aÁsøw؇µÚw üáGfÜǵêC5òñ­úØ…˰9ð±&•¦«ìƒ›dûà††øÍ<‡/“ëìàÊdí|—†uJ[7å…d[&¡ "'òÑRÛ÷š&-Õyèh¹ÏxÔKÍ` ©9lÁs8¶=iãÚ’=u¤€Ýî¦-aÙ°‰{. S†-Ò©)ja¶¬É” – ›hˆßlÁsl| ša£1eËô 6>Ͱ±†°±!áCÊLJà6l耭¡û)l®ƒ¥<ÇÿGl˜–·e’zR&]X#x²p V<‚•²G£ïÂ,ZÊ-¶ÇÉqV»«¹`Q LrÝëh@®vD­Ý¢–<ÛQoÅð(…9=NˆŒ?´6`‰ûf«®EÖ­Œ5Œ->´Öî? ذ¯ú¡µAc ñxÇAlíìÞ[áƒM)ÔGªqúÅ0¨UéW–W¾-ð 8k´Â/*lAä‹×ùKÊUø5-ÌÉ݇B$¯+à4à%,xÏV3â&)^ò`µÑJQÉ·a-©x x "gÄ )k'šlØÖN5ÑäA²eƒ¼„ÏáØÖÙ½4«¦)´0V×K_Lš/ˆM4Øs± òųj’’Ëž ëkX“Å ~‡‹¸ÜCx°åHÉ×å ä|¢Ûƹ²lÀDƒÝ ÀÞÓZ !`KYÇr Aƒ†øÍ<‡g[ïú>h~ˆÕµ·),,Û AžÃdÊò­‡{4l•=E$[¶z°À‚çð•íºŽ¸­*jÛ^o¯u|a ÓJØf„r0daìLÄ@X »MÔX6d¢Á>ŠOaÉöds±d3¥ÓCƒ¬¦‘â^ˆÊùBV4Õ ÏÕ‚È ¯'H Æó`!ä½ Dò YÙT^‚çpl{î·X¶=­Mäž¡^ßÞ _– ›h°çbAd>ÝKSb[{à©…5CÝM$6Ñ€—°à9Ûz!n¶¶ÍWfú¢ V{¤ÏÍ/ˆM4Øs±™ò0lë•xh™Ü‹ØÇ0y\ø2M¼€†øÍ<‡«m×>øãƒMèÔ´rA¿Öwõæ‰Ê²©m¢Á•I,ˆœ^¹Ûô¦\¢]¦¶±lj›hÀIXp,¬í]msªíí.§íöŸÓv„5¤™` "gÚ1]Sú ê†¤Ó¦(ÒlhÀKXð®@ÆêjÚÚqÞT´}ª›>L!›Â(\Ô`@DWÉö¡mU "¿Ž¨}}‚ÐÙ‚ñß•†·QáÀd-4€L+¦ÚÅ-hˆÛèx±\0Õ®)q¯ k@ ˜M̱£L6N²áÁ†+|Ú—+é(©û™úY S÷2¹)'ŠùBn•­x°Ò=Yé'ZéGe+Ge ·Ê<ÛU<ÛUN¶«•->…t½ºª1 räÑbIi´ æq¿ ’×ðð<…#[wÓ€ª¤ÌgR+J¶_ÓÈ—e%ö[ @¦, Ù:=|OͲùÄZ‹y%’ ™hˆ×lÀSx²€ÑGI‰4v(V#-J¾£p ð  >j ÂÀE#‹’Ã…±Gñâ5ð¾46Œ=jd½Ý¢$tY”²Ò1öˆÂ)}l@ʆ5e„.Ö÷)Áä@²-Яـ§pdkàkDK¯ý> V×Ð×^Àù²¬d¢À~‹‘ùP&I £ÙÒÖ:ª9°lÈDƒ}žÂ’¥6xoNIYÓ! Ùžn¼” ²©ù­Xæ,”l/ÇÉd©uš|C,+™jˆ×lÀS8²õ) -È•”‚jÈæ»z †ŒdCÁ€4¦’BÏ"M¿Öb[!#Ù’AC¼fžÂ•ÆÐ…HJÏûEHJB§¾¶”•ŽÞ8 PÖ`2eaKcËÔz²FâJ$ÛÒ ñš xŠãy¶?>w--Ðç}å¦Ï3|ò.Ï3V„ ˆŒ/Þµ¡íÈäy–]MfÙ=ÏXCZ 6à)\iäIYSc£®JÂZ eK#ËZEËš€,3ÁšâJ#OÊj2,>@C¼ö¥Q²°de?),ÙÚ›·²Z¹!ã|«<žØ1(ˆßlr‘Ç“¤Ð‘30ixÉ!c‹ñâ5ðzúJ¶Oþ5d»'¯`ÜÓ.úY°øj@G_Sö'æBEx¥B7_©XC<¦ë=À êºAõ⡺‡êT÷P½x¨ëT< â *Pñqü%‘ê¿(Rýg#•i¨ò¿+VýŪÿl¬ò/ Vþ¹haTÇbÕ«fÏUóV³'«Ž ƒ:–ìòd®M’1K‚'»™ŽéXÚV<U+e+F»…ŒL^†Y+'Ù(Žl O6ÆI6†'åqRd}½r8²D¯WB¶O£4d|^¥’±‚%û~†,}Ù+Ï¯ë• ÙÝÓ‹~—ùj@Xó‰³Ö[æÙ á—1¤ôÄS|×ö.wúP/Í×úõÚÀòʶ_û„&ј}¨ØŒȔǾ)™* ,̼vo y¼®€Ð¿Ù‚çplëZZ»©)´&Vgï“»8”/ˆM4Øs± òÅk7%e½ueK•Ö H« Ä hÀKXð>n‰ÏUÔ”|ñbo¾c9ï=cäž’lã D 'B )´÷¼X ÅÖ’c‹ü»8Í—{¶>ÌÏ,Ò¢1šøe¹’lÁ ·aA䈧R9 Ö¬H$[2hÀÉàI‘ƒ!Û/:²Õ X²=TfÈX6d¢Á~‹‘ÓA¶GÏ”lµ –ŒeC&p’ x K¶¿ÈèìZ+v³‚­ÏBŠ©,0Ñ`·ÅÉœ…rÍ„Hm8H£þö¡Ð©Þ$+˜jˆ×lÁQ80Þ™üƒM¡m}`”7'—lu+t8&ì¸XÛ¡#e½ï®9[h#í1eäÁ²A öR,xW/òÃF-Ðæ05Þã]¢°-’D ˆ,H±-’k2lcô½»š„d6h˜²•òãä8ªZà›šRù]—Kù:hÛ´ü,Ûª ©ZlAdÌ¡U­îTZ×"¿.£®E^£u5¤®±ÏáÈ+£#")ƒ?êѶ©jU€lHh ùƒ‘eÀUR.ªœU½€†øÍ<‡g+û»sËF_Ñ«ÕZy1ç[ñµ»x ãy·¬_»kJâ…bl!^òÅylÙ !~³Ïq°U>ŽAÙ«bÑhq¡¢aù¡¢±† ‘ᨼ ‚¦„½}·’5¾› küA𒱆xÍ<Å,d¹z´4j5Q«É“•ñ8(°FÛ:ÚV„ÞT´Á› Zž12­Ht-"[^­® ‘†ýMÈZö!kù YË„-8Š£ídžQš²Ï}7dýU·`ýU÷\ô»`ñå"c·(å*¯\»ü#Ùµû¬!dÀ#,¬þêß¾ e­¾­¸><ìóŸµl¯?B+{5÷§çÇÿz|÷Õì¤\Ëã_…ÇßÏÿÿëW×ãï¾JëëãíãUxÛ\q‹RÞÏ\îZ’zX/w[«¬'«…«µN|Z§ýªRŒ–n['~!Åj¾ïÖõøÝºK×cýÿyóáñß¾þê¿üK˜/÷i¶Ö%çÇ×ßÌÛ²uÖ-~5ÖAya¾_Í¿þðÕ¯ž^Æ/kØ;`?]óÏ|­õO‘ÿLõ)ëŸõÅo¾þû¯þû×3B4´Ëïµo‰y²;{Ïtƒ•˜÷ yKt¿ç²—CNqZµò9¢Å)N«Ïò‡Õâ«5»l‰ö†RœVZ½ãdµ8Åi1±Ñ2÷à/ Ñ Ï˧Æìï࿊³§°c4ƒ3C“Ê,Q¡-©X)Ðo;@kó{û[t¿E÷[º4𫯥k-,¨q!¯/ÈÆYã~ºÜÍVj’çÙ¶å.Ïr¼žsuf»‘¾|z~~ûø»züÃ?üã_?þÏãß~xýÝ—wïŸoß}óÍã×OÏŸ>½˜·bÔ˜Ÿ>~úõ‹íêí¶­!ÙÏ[·úUó1÷õÛ¯žþ_|ý¯æŽ®³öãu RYÙ?ýHn;“yÞ)½T Ú’íf˜WOˆïǯâx•[‹ßÌ¿ß~5Î:’m’^¥‰½6RYÿå¿Ì&ª­1·n N™¥§¿¢êŸÿìÎé1kW°÷9Ìȶyëãš´DÙùï~÷çç/§ƒóå§ÿë‹—kkúëªOáåÛõËÚo¥=}ÿéã‹—«o>B|ú×ç7_Þ}üîóúy¶­<}üªõéË·°úÓ÷/^Æ1ÿ õéãç/ÏŸÞ}üÄWõ<>¿}7MýþE\o„ýI\IOŸøôÍë7Ï0›ž~ýÄaž-¢âÅ4VoìÚÁ}ÿüÍ—¦ó¬‡C&_=ÍH’#=½þˆ­>}÷ñÓ‡ç·ìA Æ»5f|…éÝràåþ¤l>Œ^®$ò4¼Í¾ûnA\ñêOó÷/Ö½jóμ~?oÓw£ý†ÔfukÌðéÝï¾ýQˆ¶ J´Ûê¼ëæ¯åŠà¾ù$4Š „U©pM}ú»Ò¿g-ƒ0ïÈë÷úüî3_ÒŸ·þùOy}-Vú—woÀYžžÿ¸â¾ïÀxúøÝ3Ý›kŽw¯ßÃv}zûúËëW³\­òäëoŸ4ÆmívÄ|úòñû¹=/SZKCGåªt›¾ÿñËbYãõ3‚Ÿ¿ýH.—úô‡ÝÜí¢õc…-ÿw˜hæÍÉSïË·/^Î:?fK0VÁ%cùé?}úüZ}‹ïøò×jl—8RmûvþïZA1kBýÛëkïQûÓÇ/_>~ÀÉÝ¡ùR<®˜wС(t X–üôùùÍÇïÞ¾b»³¾¿O(qßÖ¸>NHó¶®0â|öì æó÷ÅËfWà?~ùøéÍŸÞ¼_ÆZZ~>ýÍ‹l{zóæÝÛ«ç–ÇìB>Ír°~I×¼{K½¬2ñô·ë>Be8R»‰¯tK^¥>û‰_ÿÃW_ÿç_í‚òr G\—¸°­”ù`ŠOÛ›ýóŒÓß¼Xß’ŒÖ·7«(®Æ§´åÂZP9‹ÅßÎ\??Éôô«tý†~]õcÕ†ý÷ª0<3yýùó*ô$÷Ù~|÷ùËëUv^ú'×¼Ë8lÍfíù‹ûáójoHJ«YäûîÏWFýôüæy׳kÅrݶý‘Ezÿn¶3¯¿ìö;­§QïO¿Šõ7ÐàÒº'äfM›ñZUn̲úa9:/5RaÈc×øÏ?¼yóüù³&ì&`½*NÊ­ÒòÓ‡ djÌØ¾}~ÿyÖêÁVùœ¨µøvÝ«ýSÔ\þ‡·ÏßsF%ÍFã-â^ª¤›gžï>o«y»ùëʼnüñóÿ޾̪ÿüöõçù\z÷E.wñãŽãû÷³&o¥4ž¾]ìi?Ø>¼&ki¶»MÝé³Y_HyÕào~x¯úß|üD?¼{ÿþ‡]ÉömJËÇð´âu;.zúð5Ü”vœè)½ž+y¤¸ªíü…žÖ‰šs®iË‹YÑ>Ëð|´¼')áË·ïÄãô´náÓ/…øõwožwÛꬤ»!‰Ëöôš„H…ù ÿgëõgH×jŽÐ¶þAþúøWôìŸ=î6ûÎß¾þþ3.XÍÉ÷Wû¿°_f÷;êMBëÆ™õ¨XÕòŠqGf¹›çS‹¯_^|zþÌY†YÔ¦%ÛÞ ´7Ï4OˆoßýöÝ®-yµ½ó>¿û3K.f³ÑÞílÞ¥Õ–ùo_¿ÙïmIÚ½Ú”©Ãô[n gúÇÕI <¸B¯/æV˜Ÿ?}@ö³P»ŸòhŠË¶õæã§OÏïÑŠeêïÍrõÃ4ü…«÷[d¸büH“ûþù÷Tšguy~OOüµyŸo /×›_i}÷±b5o;ÿ>{endstream endobj 336 0 obj << /Filter /FlateDecode /Length 12574 >> stream xœå}KfÉqݾVöÂZ¾ML}¾yó> J°$<&0Á¨®þzºäz©ªšƒÑ¯Wœˆ8‘‘ÅAÁK£]_dDœ|F>ï?_ާr9âŸÿs1^þxñÏE¹—þßÍýåß½¿ø¯¿–Ëãt¬ÓzùþÓ…¥(—eÞO[™.×e;Mu¹|ñýðþóùÝU­õ4–uøxýz jjn_ü—qnnî¾|<g:û1\û¯Ç¾O×ϯþ˱Ÿø÷>¼Šú|ÿ?àÒ–]Z–S]&qëýÇ‹á7¿üÝïÞ½ÿ§·~O3Ü/ópNey07žÏ/Oï®Ò.üáfæ}øðåUÿ~>]ßÞ½_œ7-“æ$äÆÝÔ_«xñd:@–áãvV´ª2œ>žÍ±I²áÁ@l¢€6wÁxûrnäõÃǬúæù|ýrþØ|y¹4õnx|ý|õµŠûp~ya ®Ã±™LÑd`D~øaøý·¿ÿ†?—áßþ””ÂÏϾ¿Þh`é»çÇŸ[–I;¸}øx{sýúøÌœ’l¼~&°ixùòô„ç_E2§UÊÿ+Hžî_<î#ªÔýõí÷®«%gK‘¤sñÎî¿|¥³[NÒ[”øÕwߘÌ5ËiÝ·¿XÍ÷Ã7©¯¼þùñËë×Ý“z)Î_îÞË—çO_óOòì(Ûôë‘â‘ÿþþâa =êvÚ.뼈–ýršGÉÕå²Ô²Ÿöãòù|ù¿/.æ“´¢õò'O¥É\þ“ À¿»ÒxÆãržöé´O—÷‰s”Ó|)ä~’‘DÈý4oBKóÛæ o$A•ÁpJótªII³€äl󩈿¡`ÝN%›0)è%è#5ô(n.~‡4Ç©,Yæ>qözÚÍ̤~H$nÌÂ&©~ÖÓ<'Éß9¥'i€œu=ISn –ã´$ F"] =¤‚ƒá¥u7™ãP\䈔Œõês|E ˆv‰HîäãZ’„äãš56HAÎ"…\.›†¥H½J6ŒöÌP/(A/©¡ÇaØDËÜ×Fr¼2!crmDÆôµQ g«I…×Ò;Õê¢3X‘˜šú[U¤” ƒÔÐC0XÈÖÒ9ÌpÄž DÜ•vŸ‹ì¾  ”QT%AG‰‡ùí X´Ð Œ>P‚>RAB‘•Uº• Œ ºµ‰®-¹½‰KÆUöU½I’2)p²Ár†;ÉÝé0°ÂJ¸‡TÐ!0Pûˆª“Q‘C¯ö- Ùœ^O¥kaR½O ÷$Ô–XÐ+8îÐkZh¸è%ècäL‡Â‘InÕÜ'Çú4äî²´.^”®SœÊtÚÖ$!]ÔÞbp¼O Þç…‰èà —]ÊLÇÓÞõŠÁa–Ë(³§2›d¦µôe¶Te(±Žæ5n…F ¼LÂF”ZxA zI =Ã6#®ë°‘CÏ–©w{;`ëaà %6vrrÒ 9t‹è6m4`ËÔã>rò¡•eÍu18^•àC~§}Æÿ¹.ÕÆ[—¨£WySdÔÅà°.Rë"MD] '(A©¡GÑ#k啤"ÃçT ´ÛŠŒž¹DÆ ‰Yp˜çÍË$°E‘6ª{™ ½¬}©Õ±DˆcØ‚žIê5y^¶Üªàé´tƒæ[Ö@ºa#Ç= îyØlá%è%5ô8 ›hYº~?8ôLæ+KçyÍ vçrÊ2±Ý³Ò 9tÌÐoZhÈèC¾d= C6©yM3UEéWÏsK´ïæÅ´­~`¨Ä"곂 ÕR#áþº\6 ÒŠƒÍ†Ñ,æ$@© GaÈD‰Í¢ÌÈÉYžzõºl9:†YI›âã©nX KH·B#‡yN ,Úh¥F/(A/S±oó›R-GéJ-8žé¼5Šøµl]± ¦2'‰]:ò¬!è(6r˜ëÔÀR¡Vlô‚ô’z†MÂeæ¹EúÁ±H½îŲØãx¸¥M>"ý*iëó(ÓȦ Ȉõƒã¡z(ðP>LD°NP‚>RCB‘Íóú&؎קY¢„ÜÿÍëtšº xÞÆ.V™·­‹öƒŽ¯O¡Áë[؈^P‚^RCð‰–mê°‘CÏdÌØ:Ï÷<€]‰[ÇÔçCò0k ݰ‘CϨžÓFÃF/ú-kèq6ɱ­Í ïÇ+”dñ¾¤ú¶c%>×ÈY×qkË8Ʀ Ȩ‘Áñú ¼¾…‰¨‘á%è#5ô(Ù2VÓ*õ_¬Ý'N‘: ½ÀRFóc1ý[-AÃÓiÓiêlYN¤Í8h© H›“§‘À} ÷1ô(zdÑC6ŽõoÌû¿@=$‘Q€H¨ hvÁñî ¼÷ Ñ?†” TУøÿ™Ìt¤\3²ºA[Ó*³†’Ì*™pùÏtš©I›þ «8pO‰è‘ôaQ"š‹+è!t°P}ë”a•cCWÜ´Ê„÷ÈÙitFhB®€´™ÈLæúëÞÙÆfíÌèÜÈ(^»‚ELâ·¥+°"ÝiIÈʺœ¦dVɆ‹?Ói¦&mú3¬y´ŒðôØ‹Hê•Ì ü÷ð×S÷þ¦RN¥È‚ãì¤)ó‚5én[¤ÎÏi[¤ÎÏié+èÇ‚ã£PhðQ*lÄ8F'(@© GaȰ˜Þ–3˜ÛX|ßZa`Ï`Ée…‰îÑ~ÕkJíd+*2<¯™Ú‹‚Ú£¨hݧ³žºó=Ãe`ônÐe¤P÷’à”ÑÚ-QÂ=¦#Ý@C4îø/RÛYWèw:A ÷ØÓwþ'Hõ‘zjˆ„Þ1rSŸ§ FzZ$Ý5 õ¸) 9z‰:½–ÓÒÕc™‘ËM¿Ñ Q“p© ûß!’¨jì!šÔ'±Ëº'‹FgD”hÖF™ú„H"Øz$D±Ö-é7:#¢„ûGÿ [7Ò6ÇyÃàyŸ8‹n¨´æq­º2/Æ5husÓE²mËH› ¤ §X~kdb¼—öû¡çZjÒ­™‘ÃVBlE´ÐÚ™{¢:˜úŸ!ÃÊÍŒo&¦³5"3šZ™»æv¤'Ùš9l%¦ µ"3‘Û™úÐ5Dõ z =®iÂrWÆU=$r¥UךU£°&A¿©€´™ÈÈJµÆ5j¦Ú0:!£}¤‚…!C¨=w“äàøL ýXZµ†Üéò!Ûâi–¼bÛ|iÍYrp8É¥N‚i£M“é%è%5ô82¶º—‰3r¦b Ó*ôn³Kºa ÷<4m6¶ºËTg®a“)hM6œnØš½¤†‡aC·„Ú³3^t–½×Ñgaå‘Ùè´ú‰}Mb-KKn„)‡¬’Ó¡«H‘PªQͪö>TSÂ}s½ïG2EzÙºK=¬?$g[-òCk@AHb싹­N®Xin2¶ŒICÐf)È‘ŠŠ²¤‚eÒÀ/LÍ&Y›D8i Þ èmŒ-؆xmoÀ6i=eiVNÀBÂݦ†FÃDµaÔ[° £^6atF‰pÒ5ô(ú"›t[&YeWì¹5Ï:èG~‹Œ,×´ÙÈE6鱦Aú¸’mËÌ%šß¦á ŶâP¥O;t_=2ÜN0[‹Í"6­ûB§-Hø)£ä´%=îžV H@Æ‚£Ð—MÎõ& F"] ]¤‚C†U7¬·”„Kºž‚½ *Z­»U’ W0·›Òf¢«›mô4 XqY› #°&@© GÑ![ì|dd‹dx© Ù"Ræ0ëdBîw( m&²E&ùÒC&ŠÉ„‘ YÐG*èQtÈÖ}ü;![{8-¿°H7µ 52—ÜïP@ÚL$d+ÖCކlÝ 6}hÂÉ„,è#ô( b}ójÓ!Œ æªW i Bºâ°b~²­n®è&šÄZ­_£Òf)œ³‹²iX÷ œaÃiEf^„„9 :׺é!­†kÝu ++œKor.VHÐiW@Ò dT«í`…‚EÏt4FgT”p© ƒ`¨pÈ:§]õ}âT-Û e¯^Ș¡:÷ÑÊÜhX@Ô7 DÌH› ¤ GºyÌ×BÃxèÒcØ0)è%è%5ô8:lmÚ›v¸Ò˜•¸Ù4oqÇš„;N$cÞŸv§%DÖæ-Dô‘z† çüÖ®_$‡ÝN î­ÛÛ$èœJî7ÛÂiØÂÙš† £c Ž÷k¡Áû½°ÑzFzÁž‘^²gìq6é¾ci4#Ç#´Êõhƒü˜ºálÓ[I×\²Ò1œÇG£Ðà£U؈ñ,¼àxF/9žõ8:lû:¢#¾ÏœӉкoÉèný}²ßÜáHôè±Jpdî´• QYÊ5# ÿ=<óäo|W<(ñå[¹§œÙ¶E6ÞÕÁT7MàC­$Õɹ¿Ë<ðÈÉIWn«4ŽíŒ„‚I÷MÂÀäû*á€ÿ{ò¡‚Ê’[WpØ6àÄ”ÚN³®]ëÂy×9IH®MYéÖºÈa뢶.ÚˆÖ^P‚^RCðÕղ먨6÷³ŽÓ Mc®š¿èh±i³Éœˆ]³mël«4¢$°záét*ïéÀ0»òôËæmÓ 8îBHÐg*è1.ý¬³LZwh:cÁiGT,œè„eQ/w9 ›8ºÇïûˆ Q¤vÒµ‹x0 Ê,RÏ¢V«­«wúÝ~HÐ_Wйoˆ¤ÿŸZøvŸ8àÁJZ¸“õY"î2l-s“ØGëo©!èƒã50¤#Ò‹ —®á ÆüªˆŽ“•Ë®!òw†ÙuÑYÐ>ꜘ4Å2ìš$$ݲÒj ‚aG¢CA­è š £½Õ —h^›†…Cvi5Š®#8Þð5ƒ[¿/R?¡~.ºl•ã´+ =Gp¼Ý‡ïÂFôt‚ô‘ z†L@îG‡Œ:†S­Éo)˜¥G†“X©×Ü%ð-Y醌:F tœ62w‚ô‘ z† ‡0‘2Ù±018³î²î8Åé=ïª^ÔS#ÕÍIÃîÀAÑ”ž¤ÐΙô¦WS ÑlMŒDº@zH=Ã¥Síƒã9Ü@ö2pßMøZh5çücÍyN‚ŽÐ>8˜‡ÜÃF„öá%è¥kxƒÃ°£M"'n´§jåW;Èâm¶“JǸØRØÌ³LGÑÕ©&1Y­§† 'n¶§ ù4EÙ̈́рF'\"œ4oPtȰJlëoÁ)zm!”b¥ «k4ëtBî75m622¦š ízÑ¡A3:Cs‰ÀâÞàPl¨ Ó‘x4†Ð@å©k;¿·Ž9ŸðÀ¾ ·qT¢n~>Â5íg<‚ág4BáqÈ#œ ¤†…›&Í.­ìÚ9Gâ ômºHî›4èû°J^JÐ0;¯§- Hø§‹íT@ÚL sPèÛ\2~OœÖB6BÂ} =Š™(·-²àHö˜G&Ù£ZˆÌ脌DB¤ÍDB†²Ã¬› ¤èÖlÁè„,$è#ô( ™hAEhs±Æ±)Õ1/Zut¾o±-çs1œˆÙ7þ&ÑÛž͹Xp|2Ém®Ê9 Óþ;=còÞ÷ŒG÷Þ-²ŽÄØ\s¥z;)n•tCÕ$Ìí¦ôÄà>8RMëzÙ4H„ñ°atƒÖ$è%5ô8 ö¯æ|f 8¾ã¯U¦´ðc:ò™4×£&‰MwsšÒqf 8¾ãüD@؈3á%è%5ô8 ÛÊ\ܪmÛhÕ<žÚF,úº9ïÔ8öŸ®²`ujÌ ‚æNmp|Ÿ54ø>,MÄFmø@úH= C†››®F*,’«Eö¢M`9Ò|Ð =ÒêåÂõJaÔQf˜¥)h´ºØÈÙ&mL=ÛÑP?ó i8@ :HÉÿ (ïŽÐp•<¿á6ÛùóÉizÌÔæÙ‹ÆñÓLï‡7Bœî(A© ‡à°vÛ ?´½oœcÜ-ìÃÚãœ#©>KœÔQ݆#§ŽÒ¦¦!h·Á±S¶yµ9º §µ–›!nCÁ[@fJÓÉó`عqõ¡lq®¼â5 ­ÅV½>Èß1“ÈÉI·ŒšŸšŽ`ÍJÐEjèAtÀ–±Ø™ôÆA$65` î€×f×é-$ÜóÐ@Úl$lóQqHž p5qJ&œNÐB¤‚…![u3/ËŠÆqŸ8«Þ‘©úþü–"Án *;­~–S8vm¡€´™ÐÎÁù€ËH5 lÀh­èî%袧ï1.{s§`Ïj"V‘«¾ÑƒÈæXum¯áå§Åh‘± トD-V“¨!èâu18v*šäC6a4Ð — –¾‡ ¨0@%îåZGOî³ê•Ý!_ÆCƒ™‚=ü#h•\š§$±ÚSY¡Ái·äì¶îK ¸ý‹8™6œÖœ0/B‚~SCð­³jݦ¢À‚sv¬8àÍ$¼$TeΊ ø€|qZ½\uÆG‰ 'Fš‚FªI_q XqË&ŒVXî%è#5ô(™¾‘$ZW±¦³#™ÕV¾ª´­ ÷—eúMžbn?WÝ1jÉI›ˆ;g9,†Ôä‹Ì+¦ÜH»uþîÎEÚÞýÒ‚R¬Ò‚7'ÊeRª·“ÕÑîEÓ'ÿ™39i3!-‹v1–|֕ƦÝè ŠôÉ{† äZçn¤w̸ÆkZÇ=-:N=û´êl»IH¤Q“'£c'ÃúåHíÝvèŽ=< „ºç©“çEÔa&S7_*lœ}ÖRÆF0BÁC+^ÙÁš‚Ó°·/³Râ˜ôÎÜ|¯qV½×¬ºØL¬¾TØœ }¤†…!æý´÷‰#AÈŽÌÀ&èjE»»§X:rZìâY @\Ïð,ICÐfCSƒ]¤¦ ê9èf¢úIéæ%ÂmUð…"S¥)ÏÚ¯7ήSCõ¢ZdŒ£€ú Ð4üÄDhIuòר\CУ„k:ÑiRžjØ’ §™5IÐKjèq6,ºÕ°ià ^ jãSÕç„ö<^ááŒþ!1ëCS´"é£M$÷Ñ( ÄxE(@© ùo€l:-gÇ—#ªíLÇjEÕé´œQmw¼ ØîyS@:4Ç$¨ën¢-hЇ¯]A"#k÷dg³ÊoJy Ö­¶{²t« ˜Û‘ž$/²6ŽÝtm ì"lXàMÙæè!ô —³ŸW¼Ü¡]bp¤q«C»W ìqâA ¼¡é´ú¹ê®!±é:Y( i 8£®nRÁºéµî0á´×\8áµkèQ8²Ck7¦2ÅÚ92†#øÈf3›ö_F«§³ÎhCBó”56HAÎfs4jÀÛ.s²á´Ö ó"$è%5ô8zl8‘9wذƸ7l’*Ý;Tö[8ì ƒ}a-8«÷dL¾ shÊÛj¦ýwzÆä½ï†'ví¡1ìÖ‚úPÚµ‡Šçž¶9Ý{¨x OÒRBŒJ‚ö[ aך»ÖÐLðâCs‚t’:°¹è#c Ù,]+Fw*•àÙº7ëtBF :N A›MÀ[ç†qÄÿꠄ ZHÐKjèq(6}dª‹ ƒãÑž©‚xº E·ð•àX“6´²Ò Çb¼Pàñ_˜ˆ1œ t=ЦLµdd\ܤRÄh8õB³N'd!á~‡Òf#!“¥Ë¶¡£y¶at‚ô’z†ÍŸ©Â\M7•gšt¡V¶:t¶†ã<£¾¶B,.¸ðÀŸ¦UkU¤#mš!MÎèǽ,5®­©6ânØ¿<õÏ Þ‡)ùQÜÆÑwDÕH{w´êû3ùMÜŠ÷iæ,Qg{èÅÓ“ä¡c¯ˆ6öÊh3ÁwHà ÐC*è1.ìÊtë Áñ…L}g'öñ*žTó:(.í/mwüלœt¬ƒÇW1C¯r†…X (A©¡aÀf=‡ÚÞ3k{ެêãGƆƒÃD ÒôÁÂCWðƒâ‚’mÎm,8ÖFp¨vOMH¯þ¹‘a¥fLÍ+9cR@2Yp¼„oCa"Y8A úH = C†{9]_õfÏÑÂ[ÜýYk€q;hJ¸<´'¤#þ ŽG¯TàÁmXˆð7| }¤‚…!;jì—82rÜ1»8~ãÒE™30\VØ2½¶‘dÁqÇBƒ;6 2úHd= E¶c äH'ÇÎ ­·­x¾°âH¾n'òbÝWûREHlZ¡ÀIž †lÉípa3Àã‡ÍJÐEjèAôÀý(J†àk>0¼ù¹¬Í®Ó XH˜ã¡Àq˜…l·‹alׯ4`Fg`” ÓÔЃ0`v§"ÅÂÁñHÖoaD¤‹sÐ{ ëIè­Iè冤!舅Éa$K Œti£ÅÂô"$ÜKjxƒC±áTí¶æ¾18Öµá¬õžz>,ƒÎ%÷‡ Nã’$v]½$£o Ž÷l¡À{¾0}c8A úH = ›qÈcwô cÀ¬Ç”Zß8ë9¦-u!3N:!€‰y²s2Ô@ší»q¬h¬‡h6Ø…4/(A/©¡ÇaØdô[§ÔÔ‚ã-eÆ‘-ÚѬ'H¶ÔÒfœ½HmqƉ©Àéh³ûÃ#®Á›R؈ÆF'B€^SAB‘á¼@~36öâë¬ç Ú±3N$ìù]÷YÏ,I/C&Nò9×`Ø{¯-¹½Û ðÁØæ%ÜC*èdP­&’áÕˆYÍh³UDzæt(p2ª!^‡"¹×±0µ0\ „{H5û‹ð­¨ÈaV/Kþ ÄŒSãÔ•Îc'éÖ¬€t+,r˜Ù®€EA ­°èC'ß±ßã©ËºõÅ¥¯\¯¹¼‚ãù­»Ù{+ìwo%˜îˆ§Óýò¬tYp<ËCƒ—H؈2 /(A/©¡Çlú)ÃåЭí:N Ú¥^\Ò/áI¿,µâÏ~Ëп•Âï b¼˜õ 7äÜé—'ÞJ5Ψ[Æw¼A>/Y*8MJOé"iX N’òU¯$œ$õÆ×ì}“úsM.øâõ¶µtŸMžôá2l5à$ÑdŸM.㻫yÝñ*À0Ùß’ïÛPNüeÔÏ_ê'ù¹IìÍa…Êé d2†›"²‹]¿WF9¤ç^×,ãœ$Ô" ‘“…Ü~Jý…™† »BÎsÔ+á>Õk¹vUFÉ“iÂÍ}¸’L¹Â©Àÿc k]¿šQÿæw9ÿ¬_ë%î,2`çÂÜqcQZÚåœjnýê»wsÕ£ß\ê×’/ïÏ×üºô„Òž¦QB¡«‚;â>'ªmÆE~‰fF½À„óx Ù‡˜ã»£ÿÏ_åW>±‡‡Ưcb'w“Bkß”\õ®ÃÝEúãj¥ß>c(þ¢‰¤N8&?g'’ï.Ò'çôzwíCmX•Q?pfQ;8ü~^ä[{ÎìÞ´o]I¯§ ~¾ G Õ6¿z„³«ÉøÇ‚¤ÏC·wŸØ‘Ê…Ôwñi•Ñ̉º¬8ƒÃÏ èwÀà×C¦ àî.ÒËüÂ¥ŽƒÌ߈ԣçè÷NߤM±?f_f„ÎìccNe…ãA•Ž.ãß:Ùqdmí8«~Q²“­Þ%™…þX¥•Ÿ©ÈaD¯>ìE¿›Øq&ÏC¢twáØzŽwQ2m¶ž³1$»s–‡|z|Y¼þ4ÎÈüñ¸j³S%)fÚÊò&ŠÂž–•WãX‹hAÒ:îÖýC$ÖN¢¬ טdtŒ¢ð@ºåDã ×<ŠZ$•Á)ºy‘âªyѯ¦(Jº /óà`gO­3®Â¿Ñâ3«*3^¦° ;½·0¬ëž¡ «p¼Ö?†UšÊ8VéÇ2ÕA†U3–örX…ödõ–qÕ¢ÈEá¦ÀT{NE1§¸j-Å+ è³ ŽÚÛEQÛ¤ëð™#“ñ¸J ‹šìô ÞõYs%1Ýêaiã/¼¸Í?ëã-°j!»‡M2‚xGŒÕ›}cL6nD`5J){0æÕ¸û4$¨ñÐÛ_‰SÆâÁ+Üé¶­Ý7Ü­è"°Âš¤F˜XaÈ´8…†U FI òñºã¨-VØo7  ¬&œƒºLqÕ„¶¤#xÜ‘° ªdÜòœàÁ|]²ÊŒc´U„ˆªŠ®3¤(ª¬;c5r¶Ý]DQež¬lÇZMŠ¢tHÙßr,Ne\¥û3y\…ýíl"®Baêl!â*¤²ˆ“aÔxl6uiœ}õ žÕˆˆ¼ ¬À™ÖžS­ÃŽÀj ì ¬à1<°‚ˆ† Xvˆ%VD…ZÛ3¤sv«0¼Z.3°ŠX#«±ºñ¬pó{ë¨qóéKâ8ª¬tùå•Þ¶À*‚(¬¯-k ¢{¢$Q±åQ˜2ØÊƒ¨yŸ|žÆ J{@Õà ·Q­g…C¼¶Æ jÞÙÓ3ŠšwŸ»EÌ„W"‡ÓX†Â¢C'gÛ¸ÄäËPRD>,ß´ÊñÒâm³.GÊÎfñFرøLŽOkÍœrp Óa ²g#Ǧp¿u·hɦ[Úâ­:Ív 31ð Ø^"txø4Û#n)|Bí `|(c^|­¥q SñEBÊaø´VY#|Â3À›ÉðÿÔ* Ÿ¶êqmK8ˆg23Z¥ˆðiò‰Éxø´I59ºø ÛÒ ã'Œòò1„Z±lÑELëtØp ÍÛ]ºÉ«VLëèS‡ŽãËW0aFÔUxáZÅE›Å¦$éæÍâá2¨eZ<žc…‹ ¾1€Zp@ÓÂ. ðpìÔ-La´LÎ4‘ãÔ‚ó–ÊÃ%¤²%¯àØEª@-Å»¶ àéh QAAÆp1‚ÂûVÀŒ W¬ÝBÔl—´3g­6œE5/>˜F™¹ ¡æí°ÜˆÊ_¾H†Gíb§øêC„P‹ J!nqhTã»ø_ÝÒ”Š‚ËIRRiCÞì 0Ô$ÝÏü‡Û¿<ŸuOUä¡Ôÿ†h\Ò¾{‡uâ}߆Ǘ×óóíã3ä$^÷áéùüñöæõöïP€Ì¡d>Þ¾¼>ß~øòzûøàÜ£_^n~ôÒyËþíxúw±?úáÇ'ì{¾Å€8û(&óýz÷:¼~~w%­òðçÈ^Ü?¾>>ßü|sGÞq`[õöãùA–h~xuDÓðñúõšÐ§2ĦîUÁëoÒ?\¡¿Jn\?|”¤8Ä!ÙsŒÿRÎà ræƒUÎ4Üš½I²M²ñï–]³úúÎ3C\ X×ÉŽÌÒ­HºÂzÄn0ÌýR¿0×${^Î'¯;2¤¦º#}ê(ý™«øÛwWÚ•Ká¡-œ>¼Þ݃5k^üÍ;ulÙ‡«&‘†ßûûo(X‡?|û‡ ÊðÇóó‡oÇÞ}­îÂht((H)ª2ãïexùühù=—á§þî0ñ·´ùåÿ| O·ç›óOVøÒŒåî¼J“N]6#$ƒ¨rŸ‡—/ÏŸ®o˜Z*5\Mº¿ùåwÍÓ'QÊ6t•êA+œ…sË®­jÿaðì!·eÑ_𶺌èÛ¡-yø?Ö·m¹Ø®0·FÏr•$¿Gû”€DJåøJV+ÒÉ»ÌÞ ]Æ(ƒFßt~‰ƒ3À>¯Ïç3Ð*‡³,øéOZ¿m!JÞÏ÷/&Žü¹~zz~|z¾½~=Så>|Ф#šËùæú‹ˆ£é­‡õÄjHÒ«k‘²¹AïdÊW,[5ô>CÅŽwŸqðÕŽTó1<¾~ÖÖlYYsV"Ø+2ÆZ^¢~hõ½²ÄA2Ÿâð£ÝÑI:5|ÍL2VòÛJÀñªuhZµ:[nˆoò]CFiyÈwˆé¯ý¦µîVö"yýAºÜŸ³Î’YÈ]ô–xëKÄ2ÈÞ8åÍK³7Ëö¶nÜ?½zU§ºnÃgkú1 -âÕ))ÅÇw;Mû€Ž³6_‰,QjJÖáåÉž*Slöç&-øÿj[• ΀¨ ‹5mæR=¼AjfJn¯ú¶èð?’ÍûÛ?[§º,ÃkXûôåY\{¦óu¡]ÆËÔ»G•’ªq¾Ò\BÓ~¹ý¨ßw­ó¯Ÿ¯¡t?´AÚýÐÌËèÎÿ“ç~,»ýÖAxJE¯:1î¿<’š½7“VOÉ0ódMB2g8?¾~Š”ÒoÞ"ÖùŠ7Çðr}nJ5z Áë—@g#óìÅ ¥ï~+K²Éü†7›…6(ýy]ÜK?Ÿ%Çz¯Q¬²UàûThï½òI[ÚR[Â!ɵ²ïúð‹¯57iÐRÙÜ>}y¸A‡ûÒlk7"ÄðIb¼À$™ëQ›­æÕ7õýöt{úxb¿ ççëçëOê$ôÍ5º!é‘À&FÿÓ0ÉäÐ j¸-¨a*¼MÒ{¾¾¶€·Ë] ”!Àsà ¡õ·ýaüë¯d…ÎöNÖÏã, xÒÊe´kH:L[:.ø¯ìR¥ûendstream endobj 337 0 obj << /Filter /FlateDecode /Length 13598 >> stream xœå}[%ÉqžŸ~å“£AÁàcç¸*³*«Êð  ™– ½€qõÐÛ{f§¥îéQwW«_ïø"⋌ì¥iøÑ ¸Ó'2.y‰ˆ¼Ö¿^OçùzÂÿüßÛ‡«éú»«½š{íÿÜ>\ÿùWWÿõ·­]磕výÕ»++1_ϵž·¶_·6Ë>_õpõ»ÓŸ½y»–õ›°þêÛ«Ó/ß|õϯ¯çRŽj¿;ýùÍ—ç»›Êö|óé׿úíW_|–õVÏeÚöÿïý˜Éü‹nÆýÍŸ^>¯ò²§Væ?–ïéùÓÓ;#ùˆåÇÜþHÓO_¿Å_|uõwh°£nçíz9Öå¼ï×e™–ó´JãÌûy?®Ÿ.×ýáj9×ek×ßKãý•üÿŸ¥µ#Rçù<×ë¶·óV®æXÏõZÀý<Ï×ë>•sÝ.B¸|+ª–D±È¿‰A“€Älûy}É`ÛDrá0J¸AAÉa´âöê¡ÌqžWÐ(ó0;ªKň=5¤úT=ëyYÁ:—Tž  @ÀÈ¿ÇugÐäß¹K0¨ Bgg0Ú`v Óº´îCÆ絚b¬ñu,¥kÀÛ¶s›Ŷœ[æ°Ê@ bš´4%‡Uúe–a°W†jA jI£f›pYÆÞHŒw¦& çÞ¸­çy컸¤š(ŽÉZÕÊ;Ôû¢#Ø‘¼tt4矺¢kTFÌ,ᢕ՛,0^á{±êeƒóY†}n²C\A'˜§&þ¢3è0[,0¬ogÀæ „Þ`ÔÔ‘ F+Ô²¹‰[ɆÂÕ’Z’Vèj þX³]ó¾Ÿ×l˜4TK †YŽp¥¢¸+¬P®! ˜Q»Œ¾m°*0®•x€ePºça„I÷>'»‹8¨- °Ó®À¸^d@­)¡ÛEHA£f+ܲâ“O Œù4Ôîºv—-æÁ)–¹HÈOâ¢öÎ ÀpŠc>-¸Ï áC §èZ‡WV¨ebûR›uŒW¹D™=µYY·<Úl­eH!YÍœ9F ¼MBF´ZhA jI£fÛ‚äf°-0®ÙZFµÛ2Ö 3¤Ø$ìäâ‡aÄP-r Ú”Ñ [Ëh÷‘‹˜UÂrn¹/Æ»tHá·ì={¼†Ì£Z¼uŠ:y—7F_ìï‹dÀ¾HÑC R„ÖÎa´â•eÑ^‰**|I B¹½É¨™Sd[À![bMÖ99°M(£7µˆFu-S£Ïmlµ:Í‘â˜mCÍöóÒ’æó–G4•´:»ZÅ#d‡mĸfÁÁ5a[hA jI£f›pY¿ß1®™L3ÖAóšä.ó9,2œ3ƒ€Ã4b¨˜3 Þ”Ð-£Éö53­0ËP_î‡$Š<$Là ÎëÜ IR-ʰêyD‚¡«¤™aÄ, î¼s¨:j—a0›9PG2­0Ë„‰Í¢Í“ª§£Ö0QHbìfñg*ÍÒ„6K¦‹{o®V·sê f£üwjÇÒ£þfÓ<Ÿç!€uŒ…HISåkÑCüZe¿¤øµ.Å}´3˜ñ+0}‚ƒG§ñ‹J€:’Áh…Y†Eô¡±ÁÚ^Š×¾5Æ:é:Yo«õÐ…4þ.mK¥ìMåÖ5K{S{4¥ûï®KºgsÖã ûsšiC'è 瑾K48D ט tÝ¢õ˜Îk7hÝE§d‘Ãɤ  ÆV~Ð?›´HÎ8'‹[v ~‹d¡ÛÚ%:œ, Ó88¨ü»AK[1î¥×µÜùœ, W ²þƒEBp”l’¬Ù¢ÙœNX4Ó-…ENÑMHöûd‘Ì'Ê‘-Ò]Ãd‘ƒENáú‘Á ¿™´è:Ϻ®3ÆäC´IW€ £Y|)þU-¦°ª¹éâXPˆ9[æ@Ød 1"«\wµaœwkʤ ’Î`´b°¬5Ó&É¡Èì"Ë0ØjA jYú¸_³Œd[«ÂæCÆìØX ®è ÛÒå:œl ×<8¬2’m­ÌØšì$ò-Y†Áɶ  –ä0Úa¶Ië¯û0ÌÓ@KÃH\QÍ£ì˜u Œ¿z:¡—8†1%dÀQD }œ¹i ª‚Éÿ$³Ò0#Ƈ‰ñìƒÈ„¦Qæj…«Íòû0 Œg£ÈE¤qf:äh:;ƒÑ†Ñ.I.çÑ®ê ‘3]Tz—jp2,(¨76Ù²y³i9H¦¾f'ËH@É`´Â,Ã>ô2L‰áÌ~,­UC îoùÔ›áinܰY¾vÇÜ80œÚ’§¾”Ñ'ÇÔ‚Ô’F;ÛªÌ?}~BLIN\¸b­\§.×ád)¨99l2’mØ4Ñù9Èü³Ô$Ãàd[PPKrí0Ûà–¬7ÖlŽ˜¿º×è³úU´¨kÀªç¦Ûˆ¤hóÚ‹`ÌA«`­˜¦÷‚8o“Yì>T…“Âus£îfŽT ¼lݤ›?$;ït¨FÛ©W-¼8¬J6]_ŠR5!"‡€MJÓ4Ñ «Œ,Â`ÉÚ)BIcðÊŠÁ2ɶ΃a"ÝZœg‘Ñ3­]ªÃɰ pµÉ!`‘ì*ˆz­Võ²ƒ“a¤%ÃhÅØdU{on²…®ØkkÙ5èG}œ›Œlç°ÉÈMV]² 3Ž&ç6sŠÐÒ9¼²CmkøÍ'êî!ávF•×Ù&ðÁ¨QqK[€ÐS,*["¿„A « B²À†deG’` PPE2lÌ*»»Jv•cÅÙ¸`Z§‚A©&»‚ÀÕ„MD2¬`S¥vÃЛ÷.ÂÁdXPG2­,ÃIºzd˦Mwƒ+¥MKˆu0Y®w0 l"’eӪۑêÛ!ÂÀdYPG2­,›6¶lÙ|èp¯/žÒ+ÔÀdY¸ÞÁ àÙx`°rtËfD¢.ÂÁdYPG2­0ËdÀÁ ɈmºàA„ iŽ)dÚE†<¢H[6=·à°ªÙtg8(ì\Iç@ØD „c`º5²q€^6êL†Ãj™i¦d0ŒÈvÍÒoZKvÍ»n\u†¶þØE*œÌ *í š€lU³}«`€Ô<‹08[E W‘ Ì*íÏrÀU?$L•q‰ª¨§ZHÌPžwµÍ †Ô}G-u ?Ì› ”̤‡’‚Ã\uá1dŒÔ‚¡·sílëÓ–ÀØ´ƒL9+¡Ø>o¡bAናÁ˜·tŒ‡:gÀi Eôy •ŠÐÚ9ŒV˜e8Ý׿H ÝÎîÝím“rOŽqÃÃ#Qà âÖ9Ž10îׂƒû½Ñ=#µ g¤–ôŒ£fÛÑ´ÆR4#ƃÑ6U­c+èQ†p¶éMDQ6¸ÈÎp„³Àx4"F+ÊèñŒZD<£–Œg£ƒm8 RÖl[Ý Ò™nÎè&ÓÌ–ùï®v'l’auÕ“Éøþ\w &³ü÷ÐÏ‹¿²@­B»ã”„åW«³ÚÖȆƒ»RœAS%pÊÄaUSÓ›NQW$Áá…»+©v£#8Ý> Å·WBÿ*²øh„–sfá ©º,Þ³¶a˜á¸ë’(p (s ܇1fäÀaF1ÌB RPKrí0Ûj³ê:6ôœ‡ŽÁ¡x,ÁoR¨`¸\lÞlÒtÒ¶½³I˜)‰ y:A»-ÀdìЉ–3À©ú9Ip\‡  Öd0Za–á® ¤#oÖ!]½Šß¶fJˆ;à ؆CŸkÀz¨AA±Oد M€Ðb9à]`·—±[ß5„!ÀTèªag0X`F‰W)=™{ÈK÷ 7„˜n’f¨‹„qŸf]Ñ$Å>™÷%‡3a Œç{äÀ|2zÆH-‚‚Z:‡Wv˜m¨/ª³ttë‰DH÷@úÅ!ä1˜íÓ¡›ÚCQ™¶–($1Ý2Â*ˆXìXt0œ¥e{#«NJ:‡Ñ 5 Õ¥ý(üG`|ôkwç-’³P=W]D Šê1— ‡ûŒþààÎ!d„û $ Žd0Za–-‡.b&ˈ¡b8Ùšôn«öœdöH“ëÜ%ß™3ÂÝ2b¨9PqÊè–¹$ Žd0Za–á &j—4i Ì¢;®;Nrºû]U‹zî ª©¾ªà°h*OÐhÇHd*ûugP4„Q€*€’ÁhƒÙ¦%'úñ4}7Ÿiü.>Ë}=Ñ?̱ÅÇŸ8‰~ÇXš<‘臤½Ã+;̶Êm—Ž9Ô Aª¸,vfé|^Æžj:°ÍÓE±^OæÖK`J9«ñÎ`¶•1sç%”pŠPÒ¼²b° kƶÆ8òG¦X÷ÂyJŠu8Y®79l2’e¸.1gÓ]¥ë¦œMsŠ®·qxe‡Ú†¾€ó8ì?¬ÎS[?˵Ž%Ÿö8ê›:J!qÍó¼G ü¼F0ðã!"|„¤ ’ä0Xa†ÝJÓ sŽ£7@>lO¸è2§¨aww†Ø¥·D°V[z'ƒ€'ï\™l#ÊT\ûIÖF6‚‚:’ÁhÅhÙ:ù†YÇØÎkX&Õ£\h™ÁÉ2Po2xòÉ\`–YçàdPÕ†“]ü ²ôh‚™%<Ð ú´,0>¯:Äã­}Z†[䨣‹iÙÑŠNù»$p{.N8¦eñyU0°iWà´,ðß©‹ Va3Þ2üÀHÖŒÝ62Õ#{—êp²+(\íà@¸0Å̬A­s˜-ƒ3süЂÔ’F;Ì6xé%"è˜Ôæ~Dz`œöC‡LÜš(6bCÀænÙ9jˆu0Y®w0 l"’e­Úˆ$I/Z’``2,¨¢—mìÚETÉfí«žV ž˜ÐíKu0™®t0 ¬’U{­H:ƒ¢§ÝBBñ£ü]PE2l0³0 •®»Û݃‡ŒÙ½—à¥0]jU+,`: ±˜<·D!éáš9¬2´„c°\E.¾/I†Ã>&ë’(¨%9Œv˜màŠúE5=t³ÅÕ‚!’ø-O8º ¡Ûjo¯B¦*{bà ò¹ÃØ©-×½´d³sæo0«¡$ W ²þnÑ¡õ¡+a<øà$äÖc“èP"T©ŽUWœøû¡"½xÀ»ˆ±ÐÓXh꼺 ¤ Šä0‘ k“ÌV·=Ö&dc% kæ»5äî¦u Ó¼s l2’mfÄÝ´à.‚p2-(Ü2­0ËšnK·IœÙVÕ²ÀØ[®úô–&©»©Q¶€UO™é&‚cÇèè ž8"‰Y±‰å±”¬ÝU Uôò£ f—=¿Ó$œ{Ot„D9¡­³-\ëuGéhóìo (("ç²Ø0þ{­±8aãÄlº, ÐuÑÍ(Áa”pHA Áh5cÓ½¢=wLo#MÚB |X·›«:ñûúGÀ*Ãu)‰¢é£YƒÁ”Äà¾6,3ëGÊ ¬uawÚƒ‚z“Ãh‡ÙÖt´‚§åÔ4"$:(“M]i+ˤé:Ü™¶€!äk¢8ÔÃu„U 17¤ãÁ¤ÓÅ.Â`” ¤ ’ä0Xa†Á;ÃïV½Vý0F ³'¬°„Ü6Ób®«žM§~¤(ØÍé 4 R 0ò0$ƒÁ¬W·»ƒÕ0W‚Ô‘F+Ô2}3I:ÛŒuXÂ霹“.í¯,µ¹èC=µØá~ÂÐT&¹ýg;Ûß‹6 w <²H-ÿ±wæ‚Ø¥ówW.ÊŽê&MmÇ–o2 Þ Ù]0Ýu;±K5˜&ÅÏT˜Å ›€l’xçvФUW;wƒ³Q¤ ~,>Z`VÕ-{xÍ;ã­ *ˆ†.à»f÷^š:îàœ¤w'œs”vßüû‡¤Põ¼tÒÜLv˜Ëì»/&Ì~víðÊÎ~è¢`Å«;X\pòöÕòVREoÍA€¾ª×12ø1a 2Ø×,Â`¯U‚Ô‘F+̲MoɉåºGÿ0B-sÑŠ'…´3÷í0M%`‘‹óáš…8ÖÈ×Ä!`“¡%£;JAÕÒ]Dõ3Ô] RPIcðÊ µL™zº\u†L ^nØ©§¾í€8ÆÆâ0ôDò¾& !{æà°Ë@ bv}¼(8à醖d8̺¨‰‚z“Ãh‡Ù†ÍÞšÂV <è`«¤G©ª í9já$3’¡ Xt‰¡3 ̨9ÁÀcRˆˆ¨EH@É`°Á̪ÕbQƒ_•¨¢­Ö®¯Yൡ%/jT™´{—P7:æ€UK ¹bÓ•2/î€s91ûbŽÆ‹Ï›^÷{¯… AAÉa´À­:4CÆ|f²^ÍÔª?z¥S²Ø·ßVML^;ÎBfO¶5Ý1»MÔœÃzlêù(ƒ°ö {z+(¨%9ŒvŒ¶m¾Q”JÍO‚ë~˜‹£\ƒ»m"4w„·…ž€˜æµA«†.Ãàl)¨%9Œv˜mx§éè—#:Âî6¨s¿QñžãŠÛEá¹ZRècR‰CÀ~w¡#ìrCg`—º^èJ‚J’Ã`Å`Ø1v©ªcÊ®‘žLºšr±'ËHAÅÉ!`“‘L;æÙ9àl–ap2-(Boç0Ú¡¶éTCžØ1–éá «mé‰ žuª%§Šxéh‰»\™CÀLcù^0ð\0DD¶J‚J:ƒÑŠl™NŸ,˜Æ×:©ækâ„(–p·¬S˜Þa“Ñ-̤‹¸Áq}M2 î¦uŠÐÛ9Œv˜m| k«êFƒåW)¥^ÆUš¯¸l… HÅÞhí?m¹^š°ñ=1“žf‰ò“ÎEƒ½‚ §xû½¿Ùe¥_é¯6á%™ÙŸxѧJ;F_U!ýeÒª/Õì×ý¥Òª—Æ3E]ìI/O¯ˆ&Œ¾3Úؽ‰.‚/•†$ÁhƒÙ…šay´cl}S_䉽Эò)/ÂU­}yžªåâsy40¾¸ |ñ3$Äòh¨@ ªH£f˜mé÷Ï:Æ,«úÐÄšUÜxŸûgÛ¶üZÕÇ,2Â|,aôŲàà/š…Œxó,´ŠÐÛ9Œv˜mX<€³Åc(:ÀƒõWÔßÂFÔ¦¸_¸V‚"ç¹ÿŽÅŽT<`€Ä S”fÁÞfš!¿…f^ð•îƒ=¨çyËölöêk°ÄvT‚ƒ¥ƒJë F+Ô2œ!È/Ëv„žÞ]ô ÂvÍwcœRØó«ï‹žc8…d kb@ÐæÂ^…íÅíÕØ.€ÏÊvHá’Á`A6ª÷D"¼‘#»eöŽH­‚”F7 „õ¡(î},D/ HA•Á`µø{ñ½©ãU½®ù NQLeh«­œ["Øô Dgp41¬lgÀ¦ „ÞXÔ!šÓu$ƒÑ µ¬T¦ö Œ×·îmï½9°û½Í¹Át<5˜îžg„£É:ƪ<8x‹„Œh³Ð‚¡·sí€mú¡C™‚ê_‹~™F¯4­øNž4ƒôŠ?ø¥Cÿ’ ¿’ˆx±è÷oˆ¹×ïR¼¦ê˜Y7ïyÁ|Y3U`:•ž:’¤&I L¢ò¯D˜DõJ׬}§úCß{>$/¾àYp£M€Ǥêõ žóôæí‚]˶ŸŠý-õ¾jÂ/ ¿NúiLý¥Œr-SÑÇÃn“<™ CÍ‘ààÃшÈ$øôÃÚ2c2QdAä˜DDù(kôGV*ì-jnÆÉG½,. K©µövž¤NJ)R'ûé­TÊ[<á_lcmóç*ê§¿Úùõj׸¶JÀΉϑ­× ×Á6oË?¿yƒ™êQëé‡7òǶ¯ÇI¿šzýë_ýÖ~kõôÕÜî:¶rúâúæöörýp¹ùÀ/žŽÕ€;M⯤*píBtÆI_î.Ïø(i¯$¬Péå'Iê$jŠ:'eŸ.ýþx)?ŠS+zÍ’_ØDo––ퟥÜtÑëþ*}ÑQ×÷á—±mD|CpÓcÀðë{›žx½¿ê_­Ã×p”q|ëmÓ×î¯úGÒpSNüצU˜î¯ú§¬°Ce~J_f¿¿êNjºbpÕ¿7ÔôÂàýUÿJOÓÇåî¯ú×mZsÃã›0mqãK*„Õ#ö/àZ¶bò—;Ú0Ó2`vW¹“è>߀™±±1`68}`üaüf_Ÿ»¿Jϰ7Ò¤‡Ùëüš¦ýˆf¯†ñµ±‰< š{Óþœ²Ä¤:"ôÎæýUz4¸9"f}aáþ*=[hx`ô|AÂ,‡n%ß_Ń› n‚ÕטÝiü ˦‹Ü_ÅC‚Ë¢×K2¦îÞ2£Ç(ï¯â½<,öαê{B1» `ßâk]ÚUëˆY½ø:¾‘¸ ˆåp#ùÈаAÅ'|pÌÕ^Ç ¯»¿ŠÇpè™EñˆŒ´†!øö 5©¿‹²x•ó¹¼;°©6|&cÂ%Ãðy |ôYùðY†yÓÏÍcÀ?¨z| `!Q¹Ä-vÜ š̤;ð÷WqW»¶b(®K?²ªé}Ç¿~º,:2FþƯq.¸l¡ úíGÝE5„_¯LãÌÇs÷Ôd¤=¿_ò­Ô¨~MiÏЗ6ü¬ë@÷Wý‹4Én¿‚éøb<ý†ÁŽñõ ³XÓò´¾ * ‚áI÷Ãâ†'ÄÝLŒ“ÕÓª'fî¯âH2î.h8ž}]õþè:bVó;zcv?¾[ç‹ÍÝßýP„ïˆjÞ¯*sß /½Xw ^ŠÂ7°vÛ¶º¿ê›K¥yS¦êM$`¸Ñ `UQ\¡ÇNÿªu«çÒ0Mmˆ%áÉÇw¬¤b£À:\¬ìp³º¬XV“‘¤Q*-MjV¬¯ öª÷îK¸Q}J¿xÄN˜b¥Ï$MuÁpþµÕɺÌDÔz-ÖJXÕ§†›Ó©åð·˜N-z7<çSËf*õ|ŠíÞó)LP®s>…†S’ȧªîuä| W®µTäSõ°Ùó)<[2¦OÒö2b4#Ê |Ç„ªèúUΨ ÝxdTEïbçŒ Ïh_焪ói=¡šwb˜PÍÞ7"¡Òíž!Y­9éŽi^=±—%2fŸ˜4$>Ëúœ=£Zêæ‘†¹¢ûVGŒžÿʘ61W ÌlÁœùS-š•dL=¬gF…À· )U-îÄ"ƒÇÎÏ1%=Ûe¾?Ú† J¦áž‘tÌjC92¨b—ÎÌîáœ9Þ¶”$ÞÆW„Ö££sÀT|lVjy>Ä”!ô­}ø¹zÇŽçOñ~ú2b ÄRþ4æÔ³{§õŒjÁáH‹åž?É4ZßJ0«gОR-ðÓ-§T ü`É9Õ7["æOÁaWÍtöœJ0›çžS-˜„XOòœjé34Ï©™¨Â!FNµàð ©Ì¤Ê¯.¦ §þ­2#ãþ0Œ'UÓQ}²Åj^ôLiÆÔÕ3fæPðb6! ÌÁ~ìªØHô”ª4V (¼—i9`°4m4¼ú?{¯Žœª¶Ýc¾'M8¹´Á<†ì~Y:äiÕ²øÄ&Ò*ÜB·…IFuÒ*¾Ú‡´jm³Gó¸@¸062­ÂÖÓXZ¥Á¨.×)­Â‰1íü‘D5‘`™LÇÌÖ‘Vµu³þiÞý†´ —Ò3óªVš¹þÈ«ZñÉBœâc´CvÄáYó*}ÇÝr&Ï¢ÜV1³ÛÇ{Ãæúiœ FÌVGÌæÒ™Wé›ïC^Õ¦ÙºN?47yßšM¾"—Ômu̱º,fV’"µZð^Š/!3Ú‹¬žFí¥øòÓ(8¿!‹Úñ ¸ºfQûì–YÔ>mž1‹Ú§ÕÝ4³(ÐX$bµ£kƳ(`¦!gÒW GDñ¨Iz³¥LL¢ÎÞ#‰Œ/91‰ê¥˜DÁuªðÈ¢ŽæKW‘Eéy™œD¡± ÃOïÚ«”êìÛáž¼cÊ«•«½Eb4ëøì^_Ù9]gµ¯«çL‡Ð|ë i§^GšÙ殉Æë)žP=Ê€±Ã…)eÚÖÃ+#0[W¡’»U)/™!ymCÆ„<¹kW1#ï¹Á?2;£ÛCaŸÀÖ%˜á„n)#¦ú‚L`ÖæAŸ_h\×K¬°¬={<ž†yδÚµŒÁå(ÌGË÷X4KϘûš“¯K-2¢WËl| Ë1¶ø–1¾vå S¸û`9;¦ôú›jÈ•)Œ/Ë~¸2Uì!ûžEIòPÌ¿ÆÊ”\O‰¹2Uëä™>W¦–XÐô•)Œ3‹Y”öCËJ˜D5|ç›ÑÒk“~;>È-±ýÍËý6—_'¾9ÑïNÁW¿¼¿„‡Ç—ǧÛnïµnÞ¼E¶ÖŽýt{{÷ß™Ÿ$ƒ>}ûæ­ü½-óéòÁ,›_ÜŠý8}{órƒÚXä§i=Å^úÛ2aú¼_¿=pÜ¢m¦ÒÍaXñ\Û¾Žé?ÀPYN·¨«o ’aÊéîƒV[™ö“Tìïßàr¨Tóͽ×$ x‘ èV=®øë«¯þËïNöæíZVQ©ªµço^¾ûx/u&XÈ^Nÿý-þ^p&àä?~}ú‡/ÿá‹^ð¿üÇ/œhŸOß||º{#U$>r9=>}ù‹o¦_ðçc>ýþòôÍ—Ó×oT·×Z%‹øÃÊœ?ZñI Ìêx¯ùz ÎÆd^Oú§^pnÞaü§zú›_ý­×Žøú^;8ü Ñçô•t„_â÷mü½IuZçrùgl}l`Õ0 »Ø»On½#NÍ2 ¾y¹¹ûð „ÔÂq#ññ’£ D‰—<@ðØùÞt€¬EÈåùåîáæåòLúíôîéñÁ9Kÿ±>­?•°ü-ŽŸÉ4è­5Âlz~¼yºy¸@ü¿ß˜¾XÐEþútsþtò ‹cåt¾9áUX‡*ÄlF—ÕÑ¿<Ý}‡ŠÿqýàáÀnÊýæ,­ƒ•9Quo‚¥Ç<]ž?Ý¿hëaósšçÏוѷ×uÕæS0ÛOÏŸžÞÝÜ^Ȫžîž­6f˜2=òêX|>¿T.‡ŒëïÕK؈¼Ó¿1ܵv?SØ ß:¢—Ç?»¿¼{ùLE`)€õ%¾èI‘X›ü)àr’ÄPÝ)âØªÔ¯Å`ôÁÍÚÿ'ú Î&ºIñï?×ïñäi]ÝCž~Š·Uo}̯Fá{†XƒB€y¾ûöâ´»j÷sJÖzW]4ŽÅH–J±ºäºh¿€o`¥›Htæ®/Ôã(§wåJÙOælUР„”úô"m«<µ™^këCq1=F˜_~&Àì ý ãËY«qÁƒ¶m^ÚXÖ ÛØ ’ tSŸ e˜¢ïô)§Ÿ}{yw#ù3ÌÐzmÙ™|}DÏ“àÝýÍË/>ÃSÍè¿;Ý=|¼¿Cã]wøæ ?UÛY~|zô޽WO¤ÛO¬Øc*fã§ËwLÞ&/a®Ç%WѳE?=¹žnU´ÌwÊéòŸnï.6,$U™O¬cIÖúòì-ºOÙLëšÂ¹þGÝ$™iõ3žo°InMbE8b±ò/¥á3À0ñòü|1±@w7÷êÌôîÉrz'I«ë'30®”L7ºœ³Ji<—ó÷ ß¥’šÑnËØþ¨.Ò~©ˆäÄmì¿ÒÛ9¬çÏ4»þ5;øåcÖ¸þò^ܨ¤jjèér÷p÷>YÂósµT*Þ<òn)µ{Û·OmÿȇХÎpx·wï´¾° äÝ27Üí;Ð>׊X¸ØÊO¶"Þ·:ÃO²'©ï·X]mÒœZfB™ušÚ¼¦å÷s‘$Dft½ˆN´‡¶“,tëÍñºéf™vMPÞh:·yÙ+ò¼ˆÌP?«|Á· Éþ£´~;ÐФÕ9KTŸ-¹ÛŠfå_½¿{öÊø} žbË|ºÕp:o‹äèéÎlˆ¼+¬6¿r§„_%ëéƒUR ¹Ÿž/žçápñÆ<¯yËHü~‹of Åè=>å„÷Ùfoˆ-ärßKÂjþýÀôÃREËØ¼ü[âx#Oó’¥ÙHÖ8§B$âHŽòmȬèÞ6{,˜ƒšQ N¾dQsà¥M—&„§WS¦J½j¾½P÷’%KF£U…\åÝ òùG gõÐËù0»{¸¸E¢Ùçm94 ùŸžÖ\£Ë:±õòÃqloòôE… Û´;'s:Ç8JÒD ¼ý-U†€¡T^/ÿv{ù:a)A?]^{X9Ô|·ÙÔ«¸ù,µóýûìOÑëêݯZ`ºx.¼!y‹â4[S>Õ5¯ÕRú]Ç‚qÿég»Íö~ðò†ÒÝùrþ‹ ‹{¨.õkèß}¸¹ÿÙËãϘ'B–ðGjûøõ›/>—qTX_–?˜¼%Ñ$o5D£WJ‹ÓÓNM)§±·{­L›´Í­­¢¬ÈÍÕ‡ãØÒØGû)SÑ—;Ÿƒ%iÙûËMt¸ßçþq§ñz´zúôá[Í\­ŸÈ³ô»€{ù¿ÈUÖ>KSj$ÂÍVþ2ªA’÷O·Öߥ+¿÷´c“sýQå=ÛèÇ)øøÕ†Ø&ËíïÝ{Ú~¨ïy詃)+Ú-):,Eˆ¨¶ë…ŽÓýÝ¿¨ZåP§hèyäýîü¡÷wâ8žn£ÆßßÝÆšÒX•8dUÖ×U9}®e¾H‡pZIÛ~œEj§Ý똽ׇÿ|û`¹øˆðü “ó?ëŠe¸ZëëþYuYåÝåI’ì³µ>9 oca ¼~¥ñÓ/q0îòÄýý:÷ãf-›Íèž.cH”XP­‰6›g?E=s¥XdÜidª³©j®YÈÌ” ã×"rµÀöp=â/¼¶WØX.Rƒ7á ¤V^.Ò8ì*rvÝ?¢›Ì›.‚A9S©ÎMu²½ȼ÷™ÄíÇ# ›¦ËÿD»²³ìÌf›ª™îë–#Ûç,à¤Ë1–³Ü¼ôÂ’õ<»ø û¬—Ns0{n’Fžmk™ÿo?}ø`ãÀKÑåÃòÔõ¥F¢çKËÿͯÿæ×€leéN!}tÝ?~øîâ0’‰ïïÔ1úhºXjU${4K¼|â4 «?¯ROMmøYv\> stream xœÝ½ËŸÉ%ºÏý¬î]äf0©A)û‹Ç÷ˆôw€¹nÀm ¸ W/d•ÊVwf©Z¥£û¯¿A’‘•RɯMÛ@)ɃÁóÅ‹ñbüëív_n7ù¿ýûæñf»ýýÍ¿ÞåÞÚ?ooÿç«›¿ûõqÜŽûqÔãöÕ·7HQnKk÷çqÝÇv_¯rûêñæ·wÿãÅ˽î÷ÛÖî¾ýáë»Ço?¼ÿãß¿ùú®|U_”ÉG¿ûúÅ×/^üÓ«ÿ}SÊýØûyûê—7¯þëšøáýÇ™úýÇ÷÷¿ûøûï<íÃãW"ÕïÇuÝ=¾~÷Ýß«¦¿ûu%Ùö©úœ†¾úææî¿¼xõÏOaì÷µ^£@â·w?¼}ûå_ÚÝ/~e¹Œãî—¿ü‡¯žÍä8ïÇ9Ú—gòU|xýoïüø¼ñý¼ßŽZ¾TïÝ?~øB«žºÝr|±šY(Säeõþj·/µpöË¿¬hî¿ÿ*>á›·ß}|ûáų÷×ٿشy|_Ùîû~^?£…ô§}þòsuÇËýó_ÿç¬{úùÿ׫›”vxì3ù~»oí¼¿úm©eÜOe³¹Üïm¿ýðööÿ»ýî¦ß[«×íg«œÍéöŸg3þÅL|Žû}&>Ú¸¿ÆícâôkÖÙÛi×!ÿîÇ,ˆ~Lz÷¥:ý榜Û4/ÎRï œF’À9Ûý,ZWPÛ}«)Ð3Û@ · ž xsóIÓîç7œ¼~ßEFNo³6H>³>ŠòÕŒÙ=5§ÙüB¢ÌÊ H"F•òºäå¼?GÊ´£ &á&š†' lÌK´Ôë~öˆ‰3kÀ.vmM¤§³ w”Àlž¤ÅÐZî÷‘$ê¸ß®¤4òÐÆ™µ«µÛÐ ?e¡¤~:³¿»‰–ü vný¾äªH†W¤™e®h³ÝQ3ÍÈsONíI騊αªH VÓ<¯‹n%h5ër\óÛÔ#˜sø¹‹åêÅqIÇš lJŽ+IÌ{R`d—1XZLn¥Eý^Z4 JSícòPíç}+ *rhÔÑå“„Íg»¿®ÕUÑ®)1¤ŸNH.rh5˜áÌÂÑû&2ù ÀŽ]þÎÀÈ¡YçÌ4·¯iĶ/Àf».¹}ëþ¨˜Ñ ˜qh5˜áÌÂÑû&2ù € 4YïÃíœZIýÝìw˱ôˆ³Ýj{1‰k«÷g N{ŸèvŠÔÀN‘yx§èVP‚VRÊØf½ØêRhäø'?Qs¬H®í¸?r™]e—q3f/©Ôö2sŽ}t×€2a^d´ÀŠŒz‰/ Ö…Z`‡VmO¬.³Â¯¸¦•£$‰V$¿Ð@:p‘C\Ô`¸˜¹ f&:°„»Ä#[Fgç°&ÍÒ{ªiõóS]¼Ú¬9W’˜)’4ŽºHŽÕ$×`5ÍóðºèVP‚VRÊcÅæ…Röɩիšå…FË(áXLƒ#ñB#‡…æØPh…æÈ¬PÍD¯Ë «Ó½Ù`äx]šŸ¡¯f÷ºÛ§£ºüëØRr%’’4ˆ Í^jv<ÌšxÍ2¯Ã‹íÀ3§~k§áÿÌ3Ód쾸M0Ñú?¹Л9"£(ãÐ0j0»÷ìWi¹Âû™z)ï?é4®é{¸™ÀdäüEËä0g¹É9î÷§“jálßW˜CM=“Òâ$·Sz‰H>½Ý^C?HEdP€RA²€æ<«.½ sø™wËÓ‹aúk/8=ƒ-÷‚×Ì<÷‚¤£ È᧦+ fáEXAÍD&_AØü4{’"É}T騖‚ÐÙBÕUlŒ2‰ë²ùƒi mEE’_šÉYÌ ÊŠ&¤ÂT©!!¤ùYt,p/Þ9æ„_çÌT 8éòk8íjæÀøC‰9!¼jÒ@ÚÝøàÀ w æ¤{îÆ»”p»MÊC±ù–î «CC>Jê Æìb·èëf®£š³C‰YnGÖ@Úk¡s¬¹Ô2Ï‚µÐm°ßÍB¦^¨Ëf8Ê84ª<1ºš°¤ïMÍoôr¥ÑÊé€E £3›Y8¬²Â¦‰Žk`sÒr.5Ñ9VÆœÜÕTÇœüµ¥&Žv¡ Ä8RMtÚkbpP\ƒÕ3ÏÃk¢[A ·Û4¬8€mj‘†»_:è?&Ψ2“›ùGf‰O7@í:»Ó’ï쯴ÍPb6u™ ¹ÒÈCRsviô®a?N+väa´~?Xá´’V 6ë´.ÍY—çÀ¼St`”0³]itŠNZ—–¿‹tyùË¡SÌß¶'®!!øIz”}Aµû£%T³‹*9SÐ%ÜlÓà´æ‘kàœ÷TgõéÃ+ %¼™@ÁŠbm[s0,ci[s¸l©¼ö9œžGÎVé„Ì%¼-™oIšGF6Ç’ŠlþOÖ"Ð%h%5¬8Vlâ= 6q¯S¿1?É“6½±M{«7 ZN ¤‘GÆ&|î7Ä')Ð%h%5¬8€m¶ºxóÎñahö¨É}Ȥ.dûµŽàÇULj 9‰¨Á*fám°ßi¢ƒ “µ¼±9üäó_YÞËE²K¡Mw§–$qγ' ¤£ÐÈá'§ óˆB£©XÕJjXq¬ØdÙ´.ØJ“ü’Öùár¶Bfdö;ÍfrÒÈ ëC¶X¿N¯¿’ƒÑ ˜K˜‰®a±ëÓŽ}d`½ê‚Xhã|9R¾ 4— åÔ@ydlÓ’½¶6N™&zF'l.A+©aűb›ƒÃ¹@›^Úy%hµËÔ0 ÎÐ(áPLƒ9YÌ`´qY…%²"“Å„Lé™I˜‘®aAaÀ†®¡ôcÈ2òcâÌì‡Á>?S“ªpè“4ÿr9­†îºVî—ºS¡4òÎÙ¬XMÃ>”…’ Ìl°ßÝhK¾‚X€í]{§lIòÝ\étuï. 7›=9idPíâ¶ö@µ·*fä:ár šH +›ßଠ0rhÙQÄErÃÏM§á ØÐ™‡;tZÀŒNÀŒãÀLÍfŒ&P‚&Rà bÖu<ë³;-{ës*µ_‘¯Ñ šK˜å®4òHØzÑYLhØty€NØ\‚VRÊðÍ'ÝÁüÆ6 ‘3ç »`Öf¥Ù4_,î­–ÎAäJcÓ5j×@yH rf5jÒ³QƒLEGÊ´b3+(A+©aű`“Ap¯ÛÞv™£ºVKd 2!ãïf¶'' °}ºÑ½°}ºÑcO9€NÀ\‚&Rà ÀfA_×ÒÒÈñ–6Ì…µ–vévG´´K‹ÆXºô䤣¥‘ÃvBÞÒ,‡ÔÒÌïdÌDjXA,ÀRK#Ç[´FKC¾©¥™e.a–»ÒÑÒÈa;¡oi–Gjif%h%5¬8lMŸ[›3“ílmÚÓ6£6—0Ë]iä‘°5Z`k2è)Ð ›KÐJjXq¶‰{Ĥš$§Ä§mpÊ|ÙþALª§cp¤…ð1†ve®´MªIrJÌäœ23ƒ˜TÓJÐDjHHufuUÛF@jÓIÒ`9 ¹„ÙŒäF˜ö©ÎD½.K^gRGd`t‚än±iXÕ©sŽY6™ãxd 2¡ƒV[j'¡>PÕÎþÅR·KŽ<„zÐ •KÐ>jX¬e5çÝõ\ʪ²ýò[²S˜¾¦Ò¹´Àñâ€'‘C*®M`Øœ6ž —’–ýNû˜|ETS‡ŽRK1Ë$Gê©~ÍSÈôùïlj“®3Z¬,R÷B`V•c¸‚ ‘…$ G–ú­+}¿šr­ßÍl'l„‚§(du¶ËkAVqеÊçê ™ÑÌÌnS4²HÈêqÉ‚”+˜£OKÈŒNÈŒ6BÁS ²RÆ“2+ÕFvÓ*G“s™È\Àì6A#‹„¬”M›¤¥—³9%e:3N2z»¯·O1¬%¶éD7—X¹°èį5=”½¥ï :•XP4²È¸¤m%`cú#H à) CÖu5²Î†ŽUgè–Ì̦êáÈÚN´™‚}U£ÕÎM—˜]ˆ,yº§% M`Œ©êÐ"6[—3¤‘hímÌpÂHhx‚b6»q»2²ùázFVº¸,‘-茌4œŒ¶<´r ™…¸†2›ÿyFF'hÆ »¡á)Á6µlºüSf§³I3 Îâ«¶n]cZ6ûĺ¼GZòmÇ}è]&¸ÒÈB³«î ú)ó¨È´Vx³´‘ V 2Ÿ°Ó ×jÓÏ×',4ÌÌnW@šs‰à`¶á 6ö8–§+a%h#¬(€l¶f™—z×ölÓq‘myïùšNrרuвu›=#虚=#õ³g (á6CÁ Á`ÍF¦±,8Šæw¿ÒH5§þ£/CÙÞtmÌ%ŽMÏ]¸Ò1–‘ñŒ8˜1fnh#¬(dMêMÉÈÚT_wGÖvýjž«Ñ ™K˜Ý®€4²HÈZÕifh(:ÍŒ<@2 T°¢²Vt¢S¶"Õô1qf÷´iÕ³ªRt=yf{êÔÇh…vêôÊ%f#–é”k <8›Ü¬ÑBƒ†íšžm‰<ŒVh°Â%ÌJ×°â¶ùÎ¥•ÃÛHÑ¥YoBroë\Ùœ—÷ÜÈÎCr ¤£™9Í„ ØŠ˜E´3A mí4C0T§))³O«`gV-ý6³SÕÎù”6­»]N«‘M'.qáj+ ,$9­Šµ¡¡vñK"Њ FP€6RÁŠȦ)Rv—Ñsv^5Ï¢“Ùmކ:~N›dõÎhµrèáG—˜NPëIiÍA!ÃŽÔ\*ØuÞY€ÖOgFPÂl¤‚ Á@]z$ËÝÅàÐÛ;wLè ^Ø6NîâhzžRÉ[òv‘÷Mƒ;Œ–‡;Œn…K˜•®aÅl³²wó`:°‘36tr‹BflÝi5´Â“„2ôûRÓÈBSgΪ¤ÿv óÓ«‹É<@kµ€ ¦à »Ð÷¦¾ƒ6}YÌ]ƒl,ŽÜy”íÐÃ]”(¥éá-jpÚ;àhãwì˜Et4‚n6z…"+Û®ˆÌ9nW½ßdwÅ|=!“#[#IÌι¦oãt sQÙíY827‚n¶}š…!º¶Ãj#9"-b™³¦C‡2Ig¶X.3ZíìZU(Ыž¯tF[’€œKoØPÁvêˆç`´ƒ .A«©`EdUkfòñc.º|ùk„ /ß[|…ðñÅóÖ)"%dѨ$ ¤ÝÉwŽùè®Á|xÏý|·‚´’V†mÇÚëœ1°§::•fËh2‰’ï­K¹ ÕÌ¢· ]b¿t'Γ“FšÂ8Ó\M` ª•,@k­È?ÓOšÎ9í³1çØdÊ5Ød‹YødÌm m¤‚Å‚¬Ëqµ ¬ºcåJåЋV3äjdæf¶+ ­9$\BAÛQË, — ÐD*X0¬Ž30<,ìöÏ\tñÎL#6;fƒÃ“¡ë‡þ» –5%'Íüà`«?à(@äÀÃa%h"5¬ ì¨÷[³Na_u’XS±}×™å…;¼Ü™F^¸íJ‰¡nFh ] Nûª‘û®‘wfÃJ˜…Tæ=Ë5}„g‚3›º5[M™‘Õ&Ù©&V[®ÅïcØ‚¥%' 4qNêà ¤|Ú9­U&¸M¤†ÄÌu§2\+mx¶<Ôávñw3Û““æ‹ààHF(À‘ȇ:ÂJÐDjXAØüâ&ËóyÉ™U@XJ‘îU'XÒ¯6§ÕÒC}sJHÙÉÑ]jpyÌÎÙ¦`ÔÐway ›YA ZI +`»ti'¨ÇË«LëéÇÏõ›÷’¨W™­JgE‰*«²Whpš‡Çƒƒãå¡ÇÏ#P+(A+MÆíÐõ”ÞõÂÈcâì‡|»©+*ýÐ+#úÍ÷ê´ZZí¤IÔM§‡Ôàt·k*Áiº´d›üLy€Vlf…I¸•¦á ŽÛ.‡ÉKÆ6MÅÜôN†ìwx¾F'l.a–SƒÓÈ#aÛmêªÞšŽ<ªÝ«+L­ä,vű`;æ,jkÛqéQ}×*Ñ]ŽÈdBÆßÍl&z³)©sN]‚ ‡/ŽÆ9)M0 7Ñ4<`slámÅ£9rÔE+`Åè3»)4‚›ƒ ÍRm(1?¤†Ó ÒÈCS§ëä)4tå{Jjs6ð»›hÉŸ€P`²?'îå! JÚ‹gèœCvôd-ì”MT-¬•-Ù6mÉ!1³—ÕO×àôf³çÌ~FÊÌg׉0³0Z«…Ý¢4+ “-yL#ÃÆ$Y~ÔY¿õæ#˜¢R4þ{ïvUÂ’“ö!Í96 ¹°<ÒÜJ˜…T° È $–BÏ ®ùöê* ’ ~3c=¡Ñ¦9Á9åm‚sÎO~%íF'8.aÆRÁb»ÁÙuô¸dý pŒ!פ/Ô™/é­j1³a5Óh5SÏÁ„„œšJ ŒÔ T´Ä1ÒÏ`©e…­%ý µ š” …Ô°@ªVÌY:îQHdÌɃlû×YÀMæ9ô™Í{qZr•YÄH³nWÒ@Z³dÈV‘˜Emв­ÕÁŒ ¤†€M%²,rŽj‹õäHxýrË_ëãÐY]=t½ÏHÉU¼¸+ Ȫò™mYH r¦G(k/Ôpž‡®ÍXFê·ƒ .@«©`EdS‰yÔ˨‰äÈ)œRÚåèã>`¨¬ -ùÊQ©3IÈQª¤ÀÈ 1dÈV)“wm€Öog&P‚&Rà €]ºE#géfœKï˜M­â² ½’6óÝA´Úõ$9%šl"–Ðà4ò˜)œ#e£ŸÂ4ìÖÛ0Њͬ ­¤†°M-E*›Ä+@¡‘sŒD³ˆw©mÓ¿•"»dÇh±´lºÑæ³k¡€$rPy0$ B»ä³ÎI‘x õã™ &á&š†' V`]ã¾e`ûì®CCÉE¶ 3.J˜ÝHO ú¬¦Ï‘ºê–Jèa™„hž@PX¢Ej÷öΰκm˜¡³/«¶=÷öræ²&¦G;Civ÷ΰޚé­3÷ ¼»w(A©`ÁX¥¡¿ÙN[¾q63f®EwªÎ*Q᪻ÕHIµr ‹³ßû¡=S¹qÁ‡sRÐH-ÍSüWª7Z¿òw ³Ï5¬€ªtÔsD<ÔãuŽÜƒ‘f_1Õ»æR5ßËÆn¥ÕÐN%fÐÑ•H#IANEê$ðCÊBIEf6Øï4‘ÉW6«Dµh>MW#±2%Os«¢G”dT½nÐjå°îÍ$ŽSŠ,½QÐ/âÆh‡ø‘z:Pç•ôƒÖïfP‚Rà °zÕ1‚9Ç ÖÕ­ôñIVÆeÑ!F°vÀ¥s‰émȲƒk íc˜slr 6Dy>ˆ¹” •Ô°â¶ù…öX†xL[¨h»ùÖ¶!Ÿ¼Ä†Z*nḺëlIi_épŽ­SP-cx¾Ðá6P‚6RÁŠbAÆ;´ÁÀ XWj7d=[¿CK»\ÀÌv¤í~«3ì,ÓÛýXÏÀoк .a&º‚ƒÁ’³ë»„sayÑ›¡¨ºW:fR-n¸Ñj¥žµ ‰ë´jcH# MaÙ@³¨¡œ(æZ«»YA 3’ †ë—í¼N;rI†ÄªÕ¦¨ÏvɢÅÓ.§ÕJ=¹£èbƒk ,$9ç —Ã4œç¦ ïÌÃhÅ+\ÂŒ¤‚Ä‚KZóȸ.›e•öHy‚N¸\Âq˜G±³³!gê–}G×0»Ç­¦<@g\”0#©`\³Ì·+]ŒŽÝk«d2/⽩EâCÇÅÙZÓýP“è8Xíœö›α›®Á®Fx¼VP‚VRÊcÁvÊ °glõµÀvŠÓ—ò5:a£-§§‘GÂvÖÓÊÙ4 Ütä:as ZI +ÅÖ±ž¢3ÌÑ“ãÃ-­ Hï§n™{Š]6Ž$1ÇÔ-­,8MWÑæé¹ó= ÷ÝJÐHjXP,ÀqdÇœ"ÕÈNq¹#W 7«=9idp§®Ü»‚ã@÷ÍŒN¸\‚&Rà ÀZE ÈÙ§žFÎ,_Í;Œ¤»JÕš~ÀÖœ–lgûÅ* Iû}Joô‹¸1vlzꎎÔõƒÖ/gP‚Rà Á`hÍ¥ÁAxÑ™z~X#—X ›ÑI§•5G¯²ñ¬×E™œ4#‡±ECbFŒNj&ðgÚÇä+ ’E°ØŽ{L[Ý”M’ûyò­›¯…J–¹+~žÝ’®c25i_uŽ-m2½-|º~_u(A©`…X;"{8´à ˜Y•þU?‚M3tŽphÓÐj±MböòêæQi†* ‚™¹ væyx84·Â%h%5¬8€MºmÔ/(2ç ´ü ®¶DR–2p»äÌuŸ­VB¥Øï{QÜÌë#ãÐû‘z×Þ#ÔƒÖ/gùS‚ö™†'T;nî$TǦ§\«J*)_£.J˜áT`¤åÀæÀ ^“Ïï¢N30:s mž€°¡€»/z¸È9'¶t÷ÍÜ›KOZ¨Yêþ€CåR[hE;4W@YHrä<áì ¨@æÐ%åZ?Ù`n£)x‚B‘íÛ~–ñƒƒhˆUb.é.¢%N3*f³Œ§¨†êb%Ú°ù¬i ÍX‡‰³¡T©¡ÚÇ`Œ§VPÂí6 +Ž[TG—òÚdZYÙ˜oTGZF ZN F§ Ik¤i`}cQ#i…KÐn¯Ó `+¶o°8घ©Õ~Û¥ƒ¡ã‘Y¢Ñjæ®' ]¢KÜ¡P`¤Yê%v­«H+ƒìS»Ñ ù»„Ùç’ùÀÓ¶õaàØÐºËÜCï.ž_ Å’é¬éa*3õ+)0Ò‡f2lhõä6ôz>2» ” ‰Ô°‚0`Wkû˜8lýÈ¡r«,8D{S;ûÚ§ …Léh_αÖA l=–E4/Ú@·š tAdr—'û¾d˜ï*îÃÞܵ•áQŽû»ë»Ÿ‡íDã÷9aΦ%'í®¯sÌq¥:¶Ì!\_šàf!,Jv•VTäЮ9Ñ TâX´‘PI˜Ë„ú(ö¾-µÓŽÊ9fÐfæPÁE‰j… °Ží‚Gægc‡ 9K¸üb=äñ«~g¥N뎤ý.wLKJNÚÏ$:ÇNº;qè9ø™D74‘V+°ó”ͬ L¢^%\R#e :#£ 7$‘CFv ëtˆšY€ÎÈ(A©aEdr½àÈî¯sÌyÕõãέ¬'wXòÝ»ö6 ‰§—h§ÝýuŽ9¯Ô@ç–y„ûK+\‚VRÊØd²7r§èëÓäTMzªWõÓ4èå•¥×¹ÊîÇÕ“ÒÞ+šk°NÏóðnÑ­ „ÛmVÀ†j”zçX ]ƒ/ÔSvçŽÔ…ÈóD[‰ßë‰berÒÞ…8Çz*`Á¢ ¡ ÞÉÐDvB+&žNö±©9-åœíRvªØÎ¶ãð 7µ³w÷­UbvÀê‹›’ÞÔœc ÅXCò,¼©¹” Ô°¢²}_£¥!bë)‹þ-½ÊC=K´ô*§d´›¦Äœf¤héA3lp%64hÙÈ‚̆ ö;MdòÄ Ìë¢sX™L)ëšeuÑŒâï´™ÉIG]$‡u‘¨X +ê"qQ‚&Rà ÀÄuK‰‘Ãï}xs^|‰&JŒoâ™Ä°ÇT¨t”9^b¦ÁJ„Yx‰Ñû&2ù B]s$ ksŽ}rÙmÑ;\Ó÷ì¹÷-û(PyhD×͘š´˜sìs[z–õGyÑ— T°BXú¤a½´öýÒ3M\}kMܶãgž4ä *ö¢Ž·æÁyÀÓO¤Èécè‹ zÝuÇîÐeœEª¸µRÆY¤¸ÔRÆY¤žØÖg©Ï½À:?Þí9Õî³éä7X/‰9°ßJ ãkèúkÙ^¼,22íå®âo)°»–ø=ý½oú ¦¾<éïNVÄß#)ŸqVYýÈOEæìô4rù½W ˜DŒ³H¥7*MÊ8‹”埤’E_øÑ䃽”/'w[ºÞÜœÃ9Õ¯ö²ló›\CÎòïw/wù@2Ú\ínþ©‘Qöúü·ú䟨ù¬ñOjþçËÿ¸•M³YÊv¦û4á(rt¼d{û‹_ÝÊ»µ·¯ß¼yûpûøöõwöFéúMäP襯½v½É'‘~|÷øö‘Ž6Á_ýkÎÞ§)Ù¨b±ô¯ðf)ßm¶Äk¶&‡&nâ=ʦáX„×›>Z«{qr¦û)>(³spøî¢¾(Ç^"‘›šR÷ü·:d¹W| ­ê >áðõ­:PξhUu“ó!ú(éõ¼¥TõÌÚÃM¼B"|Ã'8þøNq'Ç_™Uãï­àÜÉÃMz§dÈ*ÏÃMDé?7ªIíW—@~Ê8ž&+G®ægئ„Ì n"êû¦·FNµO‰1±0ôLÛÃMŠÖ}1oçhôª‡›q|Hå_9;?…‡ ¾d¨\8‡œå|¸‰®U#afάou_9›•ƒÜ”+¸eeÁòp¡+‡^&x¸‰@…Ó†>žr®•¡'n<2ZÓ·wŸ0J_9ã©Àƒ]˜{á\2`?Üx`¨ZõºòÂ(˲4¬‚z¹0¥•88@òpñvÎÆAdfµ¹ ÙC¼4é n¤€žµ JÝpy¸ñK¶£Ü_™Æeχ¿Ö)– DìRdß‹6U¿x×eÛõ'œ 5vM¶¾€·¾º¾&øp÷‰t‡ð C;çÄâ>ÜÄ…–­ 5ÇM ¶»vp tPæœÖüÿ7~ü]4¤â±ñn_‚ç­å * O)ŸCƒÁ>Üø9Xá g—Mã‡?S*¾~A*ž÷<©¼ÊÁ9Fñ÷Õ òC€§¸ÐcGçÎ^™ÊŽfÉëÄ¥=åèWæ!§³ê™³‡›8F#'|ÇʱŽ6mÈ!ü…#+ ªØO œÅªqp†®Ørߌ­i?¼Éç÷W]vEå{°âŸé·ð=>9¸0vëÂ}/kº%Ö>|'¦«;Á±Ñ"¶&&û’ýôfºšÌ•î^16Ä"±LÔ¬|µÍêª [¿g`+ §žèŒc­M:…«G»aðeOÅå q`Єc!AV-œb}bL]mTŒIYÈkÎt0‘Ì6­×Ÿ*©?mqª&G{Ápªj5Ÿ%žÇ.6 ºSUuÅ,;UòÆ4dü1ãɹÍ>Uq÷ˆoç^æYÄ£³WzÑôBï´rà‰ù+¡'zûô¾æ‰oæ>UÑa)ûT‘ˆ>UÈЧò¬â%>÷j¼t\§JVÆÏ3û>“ãºÎu¡b&N£óãœ*Á¸œÁ)R°É«jâ®!M‘YO8í6qTñà”ëÞÁ‰’Ë‹WÕ¶n¾6}(q êÂ8‡;^p¡ô2ËX9Õeà0Õ}#Lrd<_eúàÇasqÙû©Ö¹[% ëâVi௶rUÆpÞú;Œ8+-£?å`ˆ Î §[?çAP+0s$\Ëmr¤¶}ÃçIœÞ¢»VmÓ\"s¤¶²S†œMÇäZm[¡/תó@}§kÕ¥Ìd¸V}®\«.…QÀ\«.Ï÷ Û5תËû0èZ |Õ;–@ܹ’°‡ûâ\<ü´p¶{¨1ߪàAªäIÉìž^pz[ð¥êÆÎÚi̹’‹u:è\ÕS/Å$_JãÃWvŽœ"1 Pª Ý«†ŸŽ“÷ ‰CŸÃ9cà Š;W]š„SdΕœ2EÖt¥ìlëÂ)æ—йêæµq·pgÍ1çj— 0Çœ«£l6Èû°Òì Ó•N+ç´¯EçJö¿‚ÎÕ.>| Æ ¦\î\ÉÉûÝ8v¦QN“+µKíèO9`˜s¥NÃâ\É‘ SLNßÌÅ +µãÉÖÌ)§µúRrà%œÃÊÞ•ÌcÕb:W"‚âóct½:WâA™»e¾”(º ?ñTT_ò®f»2/ÒÏ lþNp8—¤w%z.ÍÞÕ¾êw%‰P—é]É£iª…ÎUŸ5º*úRz°î ç0‹é]Ùs[É»ê§ »î]u9òv›œ+ùꨔt¥9vú;9Wb1ʊΕ|®ç*©¾#S8R²#—ˆŽ]¹p¤ºùËáH‡Ž”\‡ŽÀð¤DF?zR³ZðwèIuÌáÒëó\'ɸ~îH5›´‡#Å5ØxHÜjJ8RÍWÆükóüÜ’«lRýÑdíT³Õ7Tn÷£ÎrrñǼ9ÐÖŽ•s­KQ§ô «ÄÁµrŽmM±»»ê”Ã0Μ¡ã:é‘8çÀ´!8ò†]]9îö™Ë¤Ó¬¶r6[¤Ï¤ÛN £ŸLd.Ó¡á¹3£Òߥ$§GÌ"§n Y|MÌÜ¥}ŽÞ}¬œ‹ž9Pû,Q8þtŽöýäçsÎ*Ð5ºlòƒd9ÎÖ}œÃÙS¼`¡ÇÛ™‹©ÌWêrCdåœÍ¦Ð²Ü<ÇÄ©Ôlî“ ¸×²%WR°ÂàœÓ~è=µYý›ùJ›ÅH³¯å S­q€ã”øÙÍ8X˜j­Ò ³…©ÌÁ”\ lðŒÌ{’±=½'¹ÁÑï©÷UË}%ù`cñ§d}ˆ Qµpp)Î’D†9Û‘wÀ·4›Œ•MfÜ&ïišn ÆÑƒ¾’Ìú ¦şwïéðµ·Éy:kµA‘¾‘ô ­¯œŽ…ïàìÝNúOFYѺí'yK—Äm:VNáÊCL.cþÓ¨•Þü'y»50¢ h ÷ä? ½¾—œ%i“Xu—êÝ}ÇežÝ'yZ«/kS£Ó»¤û$˜›Æk…%y¦Ü¼çl´‡7ðfCÝoil•.–]˜ó5`:K×Å‚Îf_ǯæHñ-Œ½›5ôž®J•îÓ…É}º¶ÝJ†îÓU6óøè,]›uô‰Ó9½§ ±Ö“¯$‹„ÇÂ@$îä<Éê#V™è<É :Ý' ó$$ÐÌü„äåëN<]xØ~’ûJ§œ<ÚWNµ*IïIŽêï‹÷$©àgû¡£Ym‘Ý'É}Yš’²Ÿ+‡ wôžÄgAÉøy„áKS¿½ÝneqšzûOóïon¦Ç¶Ó´?ÞÈüá¸uòßÙɲ=ØÆ'gÈ´ýú‰Ö*ýíl»k.³™ã¨Üf½æg¥å^™Ò޽q’rÙÏl½HÌÛ?k;³Iˆ°|ê×8Ö:^±âéµ&aÍÎ|ª¾É4î:’†àÐ@šgÏGO§…œ^‹ ¬Ëó¼St(A©`EdûéÁK¬ÀÈñï͸„VgÏ] ä{5LW)1,D 5Œ™b%F¿95X‘0 /2Ú`¿ÓD/ð€8“Ÿ€‘C³Î'f_ˆe’€²ÖÕa×˜Ñ /@šeÔ`†3 v®Ài"“¯ lN´Ê2D;‡UiN64¨&«ÚÀK¯Šr»íJcø×)]Ó^cUÉ5°ªYQih#ëâŠbEEæRöÁ©Õ ¤¯‡Ûe KÌ9öÉJ„ÀX`ŽËjªÈ[!Öè¶ë°È¡U‚÷e«u#>pÕÅi²2t¤ºìtà"‡¸jv4" s÷žÇŠ„;¶ºž«Žî'f—ñ¤ï´yœ;äîa*q§9ìÊ£”gáÀÊ œ&zy×§çê›BEW TF"’yÓ㘶Í?gNM]šÃiµ±âø%d“©% ¤‹‰‰P ‘‘Î#ÆB(A©!!$Y\ºCçx²L½$ .EYu^Ù4‰n÷%©t”9üØÔ`eÁ,¼¬hËÒLdò€ÉÙ‡3ÊŠ¤éíþX âìKQõ+¶o¯‰RA\Uq’üÐL΂`QTfA*K5 ’ýÔŠ­Ó›wŽ9ãG»°`¾º¬$ðÝÍJ†(qØéj íþ|pàŽ»s×=wèÝ J¸Ý¦aÅlÇ…¶µÖ!ÄŠ:&‰ÂË•|‡ù=&!7!’³AÒë ¬CLnUŒú½ Òûö1ùЍNVGEQñÎ&Q ¸rJÏrõ Ê¢:*£,ã˜a®Áì¶-°Ÿi a­ëÚ¬óŠH«Ñu.kÇ@(Œ¨ˆçvØ­nHœÅŽ™§½"ÕÈ5°š1¨ˆ´‚n·Uİ Ü-öÛ—ÁÁÝÉ™¯ù ¸[©våË—MV¨û•êÐé+ Í‹‘ÁÁÕI×`W+™…ß½t(à6š‚'(dìIZwæ°¬»#,ïÌhW@ºœ»³üU¤»KŸ Ýaþ®=aðþ0ÙÿЦë·“¼Ø¦¢{dž'ÈŒ‰n´)pzí®T;åäpT½«y;ìNæªgÑ<4ý k›bÜÇT?u(HJuèˆ\-ìc2˼ ™oA”18ÛÖѳ`ÜǰÁÜFSðÅŠ¬7ò\vØF&¹­¿¸ðr%7Ù§Ü—OƒŸÓ1v‘ñ‹08y¼Üû&úз€09–´ç"sŽñ ¤9ëRfãLÝ®ÂSé(3rXfÔÀ2cQh´"•ªZI +ŽÛ,p½Dœ£KZå]Êv»?dö;ÍfrÒÈ ës8®&kŸ¬¾gu:s 3Ñ5¬ `þ(_pð¤^hÅ“{‘/å Ë(AË©4Ì žÔs öäžçáò¹.A+©aűb³Ø±IHC¿4„† hŒÐ(áPLƒ9­˜a±_2=¯’YôØ„Ì$ÌH×° 0`'Žnúècâœzc«x6™Ç½¦Xb1Z Õ¸A!·›CéÃ^MœÍŠÕ4È^~ÊBIf6Øïn´%_A,À<î^p9Ï•âÚŒgʸ{n7›=9iFÅ âæ…ÄÕ‹y/L M¤†€É1ÿkFŽÓ଎ëÄÛAëÄáFâ² "ŽËè„Ë8ŽË8.Ë!á‚ T°BX`õº#ÞopšÞÝ¢R‰±¹_‘«Ñ ˜K˜Ý®€4²HÈ$ 稬oz#òØì7‚´‘ V†LÃlí²ëiƒ9‡¾ÇØälÛгKöRqœP+ Îñçý E&' 4…qäAKéÒ¨A‚ÁfB»&ËŸ?Ó>&_,¨¦Í4€4 ’ý ¹Œq“Üuv}m:CZú–£ÑÈÌb¤6”'@òÐ:WH]åêN€\Âí5«ý†éÄà á/‚¡‹{M"{—ã®Ã>o«¤‰Þüwú#¹Óª_#'µÙAœƒÕ ·å`´Â‚ .aRÁ‚ d úÛt1â1q$ °väCš5‰Ë‚®oA÷¨Çiw¥ñûÙQý™œ42PXälr6#Ô†6È@+,3n´iXA,À*ŽU%`õh °*g'#[ 7³=9id€ÕÎÎÅ4=9€NÀ\‚&Rà b-1ì…æ«Ö:ýs²!>è‰çäÒ'7  5F¹Ð6]i lºåДÌÈìwšÈä+Û/3ø €3pcªé1Ëæ÷EÔ¤ó¼÷š>Cv$‰] ×@š±þƒƒ×B^ ˆ<øž@XA 3’ —“¤™Í†6FŽÜ…ц­W«¦– hÚ%g Œžù^zýÏ®ù%Ï œF’€œ]]oWÐOl„1‡~r®F(AMÁ ²4K!‡“ Óê“Ë7f)fh78í³çØ$ƒ 8a1K¡ ” œ¥¬(€lèeñÜ/’ãÝÚ…ænÝÞ…Z–:F ë·ŸI¢v=åJ N{ÇíØ\u{žEtŒ4‚£›žqEaÈvÄÛ‰‘Œˆä©Q `•|ð·ÔL ±Â™Ò>’9Ç"×`ã³ðÌmà@F9’­(drÉ«”Œ¬É£X{ ³AÌÖÈ„ÌÌnW@Y$d­ê±ÐP°ÎÃ,@&dpMÁ†lèD§àÆÌcâ îA“ë«ZU VåÒŽL}Œ¶ºu%‰®U“ÒÈBgúþ<H(^"£l m¤‚'(™|žvävæ¶ /­H/ìåvÖpÖ%º¾â ŒŒVFS³‘Q¿72·€n³µÒ‚ÁÂ"Ï'€e¬7Ïlª^°(û© òµ5˜h5³ Ø%ºÞ. ¤‘‡¦0NÓèU¡+Ö‘h­f%h%5¬8€­õk6½Èù˜r'JÉ{ ZSôò–šÕ›Ó’­³<$(jË»³c×Èv!q´ût*š$6gIÙÖª§µ­W×ž?%h5$ó ÖÆé2vðÁ9ã°¾ ‹*©ÕI—\”T<ÃÖmñûqÚÊ¥¥& ýŠÉ8§†op™FÎ50£µ*¨.@©`…°ÀŠóα¦ÔÎk0S?ÎA«ø»í©IûyçØq W`Ç5<?ÐA (@©`…`°.ìÕÜ_çœ:ùiEë°vëh'C:l&f#Câăk <$9;îi¸†™—L´<Рͬ ­¤†°Éûöù:v„|ÌY»©³#æòÁ5à¼B—=%RáHû!tçØr×`gÌ=?…îVPÂŒ¤‚„á꺜"A;¶`ÆÙu|lŸL»p½ ¢ß[Ãä¼€2d¦t$‰9^j€qj ÝyÅ9šd›üLy€ÖzaVP‚VRÊcÁ&Ô÷’±ÉÃ…:1­“!«vž¯Ñ ›K˜å®4òHØvÎD©¡âV´çQyoÚ­ ­¤†Ç‚Mn!m-c;dŠs69ŸD¶ 2þnf{r§7ÎLÉ97 HTpèòÈáà¹u74‘V&oŸ¸Úub#çØ1JH¤»[FzŸäÀ…@Ðj(VÌ\b`ÑÈF’‚œ~£†®s}ÏBImË0Á~¦L½B,9")OV”Ð8g`ÂÎû)ìäc ,–ýæ¦o›®)£KŒ^9Bc ½a6 +{ËôÇÙ1›¶ ŒÖ\‚&jú§ —›ÍC9Œ.ÜÂàX%1òý¯©AƒÑ·"!Û˜ÚI3ÎÀ8©9NQ} dÌŸ´#ÙŠ`A%[O}A%ÛS{Bu•„é* "!i¯¥#iŠk Ä÷º’j£— ­ÐðÔvà¹ôÆ~ÉȦpÈXMRe‡V •&kÕCªÔå´U%ñË3Í>4j”)ZsP\ƨº $&aKY€ÖF(@¡à À’ÊRs$úÝcЈ×%ä¦cr•û jR9#eî°'‰YGð i ­9H2vk ºµAfZ?œÑ­™›P°BP]‚q Aàt©Þ9bQÎL±¤wmz>SÚ§%ÓŽÀ.ч…§3 F[šÂ8—Þcv ò\E‘‡Ñúí`…KÐnjXq›´A r¸ëGyLœC?\×(›­PWD¦xÎhÉvG¼J—˜Ý†¬ãºÒ»­Â§k€ÕÐÐ5*väZKFP€6RÁŠÂÁ"O‰t 3ŽÔ[ý¢ AW¤š1£9¡VV\åÏsÆ,žœ42ÐÆ‘8‘ú%LÃn]fBKØòçÏ´ÉW@5çÌÚ“I¬^”9WÁ $áL¥¦]—Ç@ìFÐ’ï‰0 .qíxœH#IAŽD&’FE ûŽò` õS˜” •Ô°âX±uFš±É¿ Ú¡1›#[Ð%h¸) ‰2²ÖQTPøÞ³‘Q‚6RÊÈæë½}0ØYŸ˜™{g~a枺ûÑu ‘² "[ŽÔà4»{g°»§ôæ‘»û0‚4’&{cÐdäÌ~÷V#¯yI˜×Y‡Åˆ]’j%âÂÚï¥t¼Àc©Þl?Á9òNSÜXv¨ë9­E¬¸€HO ¬Þºi̘ÇđçÙÈÂÈÕ5 Í4ã°á[i5t×;y.!ËØWhpyH r*:R× CXÊBI­f~w-ù LAX|Š&+ˆÁ‘ûM’‰9ÖG‘yk—ƒº@Z­<­“3‰f>¨) ‰$9òÀ´Ô\*Àsv‘h­f%h#5¬(€¬l:õŽÌ96YhaJÞ÷8ö<‰¡gÈJ׎>öÌ96¹§<Èhh#¬( Ù…è÷\é*ºÆn¾Ñå uÁ¹Ô¡†êe Jìv­ŽHs!"8X© XȈ<¸ÔVP‚VRÊcÁÆË²ÁÀUWWjWa=[¿,놹ÄÎ{v¦´Ýdu†]uuvÖ³ð˲n„K˜‘®aA`µ"Э¬Ê¡ÐÈ‘:£Íî¶,¡Ð.])2Z‘]Å%öý>+09(00ª¶·H.ÏtÔ”hÅe&P‚&Rà €)øÄáËà ] ›ùà9d‰¼¼_ø¾[wZ ­ºçë»>»H#Ma<‘èäšKÑÚ˜a…KÐJjXq¬Ø(c»ô-ˆÐ:4Nrä :as ÇbÉÎn‡ Z_¶]Ÿ<@gl” •԰ⶆ@º~E"8¸áÐåÑÅ7 ´:!¢¼Ý‘è²GG@LB#¼’Ò¼Á\q ¸yðŽDXA ZI +Ž›\Ÿ«{Æ&—šÚl§8g)_£6—0Ë]iä‘°«?®ñ¥#Ð ›KÐJjXq›”á™\GgÐñ›3e9mâŽáÀÓá:ÖM_ˆt 9ªuÆRCÐtaŽŸ+0Çгp×Ñ 4 +Š˜¿¼qîJñºçÊÒÝ,ûV3¹Ó|¿<8xáÜØ 螃¿‘î&¸M4 O@(°*q¢Tk•ü˜8Rc$ÛñwO=¨Ô«8»Ãi1¯†Jv$‘ƒ$ g×]ÂPÐÑ£z õ[˜” Ô°¢0d!ì‘48(Úí®Žv¹k‘‚ˆ+´.”h'^¡§ÒŒD ˆ8y0&iXA ZI +`“Û¢ùFwpláSß•ðuRýä›ïøI®½bÙÒ~Ç‹—‘œ´/œ:ÇVN]ÖE#®œ† ” ‰Ô°‚°Š`Á-8`Öåé ¼†gÓŽ‚'}­ë‹~5Iì'œ?j ÍødÁA3×`Î<æV¸­¤†°ÉÜÊÜ€‚BsÎ@'°X5»í#fÙèAJJ®ò@Þ¿_úa#¹Ó›ù‚Î96ô!T€ç~#Ðú)ÌJÐDjXA,À4ëÈÀ$l­øÔ*¡’JÊ×èÍ%Ìr×`´å‘°Iì[ñ#¨A‚ÝŠŸÁ<ŒNØ\‚vSÊØ=89ñÛ ñÁ9u»wæ«G-õ} ­^—yD %ßQð%¦'~Œ¤4òÐÆ‘s‡Ò'PC×7~"ÐúýÌ JÐJjXqÛÙÐï2”bp±ë“1·Œ“ØåÒ¸NuI±ËµqÝé2‰&W¾K(pšQgCÁRCåǰ<IѨñ½aµ)XQ,ÈR¤”×'(euc®Q!i—I¸Ý¦€tTHç°:™¯n–Gª0Âhµ×è…!;õäʼne'ÅJ­|tã. ŒƒnÞeë¸röR+‚IÈÙÌq„§a"IÜYo=¹øœg`´‚‚ .a&RCFHãZ_÷Ž ³òN¼nÛ0,/š/¯{t¹0?Ò@ÝZɯ{íµsl˜u 6 {>P»¨i%ê‡b“:‘BÚ>&[Hi9L®Ú*¶1{¢+$pù?4Ž6æ4×`MÈóð6æVPÂíÞ¼¶/¡y[±P»î;ÇœZy€L¶ôÍçmmÇæô‰›¼˜]âwyß*¥6Ò=b2Ìejº»T1ów ÚG + ’GìOß9n×e-Vf¼ŽJ^‹Œ™€£Õ}r&'¸È¡Y¦ÀͶ03Á%h"5¬ ì<à ñÔbppì°Ë‹Ï»SìmTóqj±wÔý÷¾ lVZr§y¢088s p&1rà©Å04Ñ4<±›Ÿí, 0y½5á’)[ЙI¸áPà$rÈÈô¢®àÐèM‘茌´Ñ4Km·¿—Ï´ÝÊÿíŸ7·ÿóÕÍßýz~¼[y€z¯ýöշ󳨌¼å#×6¤“¿æðýêñæ·we{ñ²ÈéÔ½ÜUü}Ì”wü~Üõ$³o/þéÕÿ¾ù_¯f)ñ½ÉŠ+FÉmc}s÷7OÚ §[ÈüsÇ—JÆÉBñf…üÉïß<Í; %k¾ðkÉ—z)ŸLfyu×Ð÷³4ñ½^–m~kÈYŒýîå.ŸF^í½ÚÝü³ÊI¦½>û•>ù*§Õø&wêå(ÕxÖô'5þóå~ÜÊI§:]\îraëúÄÎ1ÈÝí¿ßþˇw¿÷Ýïoß¾þîÅ«þé—ÐðìóÏ—¥ëm¾WßÜÜ}|÷øö‘ŽÏ$7õ–“º~¢üßE@ÁÿåÏ’ò Ðvà´C<ÙìAÙxqrNžõÅàx¬Q"åðÃfÎÆã€Àû«z“®`ð=ºjÙÆ3nòB´ðý³zá=Y_«žx}÷§ ©*q†ë-ÊàûH®Ö_ò¬ýažzáùùô¤ß‚iöH¹¿¢ÒÊ=Ôòñ‘ÉЇ= ?mþ[1_.7œj‰‡t—÷ÁÇ_ÀI±¸GÿÇb/?ÇÑ0”²&t>KZ°VœÊýRŽÅØìEoá~‚c+qÕóá&BžöÚõ—q,ZÛ¬/ý³9lÖœíøÇ‚Béhv=ÏñèJ³ÆUý»G_L??Á°0;çe-ÐÃÇ̱¬A‹Gv±wÇ=lI™~Ú®öy´®!P…cA2ô¸¤Ò\BލBQjÑÍŠ‡gPk5ÐòÜ1—[ çó ^ÕžÐPñã–3!†Á;µc³ ü·8{ÙðŒµ_‚”J{Á:»j'/Ó–O0pc­=tðp“nzù÷á&nž ÿBŽuÛN+¿²ÊØñ QEžãà(œrÔ—ÁýໄË,ÊHÆKW޳>åh¨2v=‚~â)q?ü*œú<ÑžrŒöPOxžU:æ‡?·¨AêN娉?í †rì Ü‰7ÿ„c§°äÉmMÏrp¢IB©ŠÈÏÊ”ï9ÏeL»´<ÇáI€¡©ŸåøžzÛQµb'ºíh îÙ §‚ÃÍÕÉA"nܵŽÖòÇ6§„SôóøîJÓáOpl#A:zýð¾/ë,Zâ¾n-”Á%ßVáFÆZ)6h…cKq:øöç9¾lÆ16–ƒ$¾ƒêñu k­¹s‚CµÏrëe_ý§ N«Jg[õ@ešÓuíe ºÞêMç_g'ªë}‰ìDu«Îéep4‘𡺶»x‡ZW´²Õ7ëèAµZÔä€AjVèM%ùKr‚f<Ëp*q†ëí«åz݃ò¼ãíD2ž=¨F'0žëÓ»¾É…ê…Þ}¨^9bÃݹàäüíð¡., 'oHÀgø39æ1é¿Ç§8ð˜Î²£>ÇÑ’'ØOIøGrøòE^?ŠyûÏqº?ÿ gÎÜ#ÙoÛúsÌ’ƒ¾íüK8—]y¿¬Ê<Ãa\Ík{†¤óÔ%T\øJÇÓ<£Ÿ2àɳD.¹O'J™~‘4âÖ¾œßIÏ5š§ßilaš§$«PCžãØ1èvÒ12ßInoptà<rÇN{u:O‡ÜË;!3½§C.uaø5gir8h?Ãÿ$s|mÍ:¶¢; á?›lÁ[2ÿi` Kþ“Ü>‘ʼ%¹Ì°}’c'Âe•yKCβ¶OpÌ[{CxŽcÞÒÑúxžCÿI«‚odþ“p ‡þ“pà!ÐNƒÆWòBAý‡§{ä,!r7wI8åüÇŽzG¿3(9¡{À_2J8ÚËÆž|;0EŠýì¦g‰“¿$ä]ýy=(á´Åƒ’ÑŽ¡ïuIýQ‡Ž”p|*Û‰ÀéŒgæB §B ħ¯ÆEKzKuÇ~UxKrZÜ#ó–j·é¶»K•þ‘{L³ý™;DI–ôáÚ˜ÇT.sÃÜc*V3Âe*¾ D—©p*•«?Îgñ:zp†ë=µ›q—ÉõÆsÖ¾RE—In‚€C—©ø2]&ÄêM.Så¬2Þ¼µu(sn¤’åoÈ€ÇÔ6Ûpß§âjêŸÏ1ÿ¨Š3\?Å$ ÛøG VŽíbÜü yXD›=~Çü£rpmã9ŽE‡”ç­ÌÏ‚;T¤­|!Ã<Ÿm:b¶Ì÷gràmòRKÿR—˜åxžc^S8“ëNR—[iuÿC½¦>&([„‚×ÔGÑ UxM]œˆÀkêÙMݼ¦É˜’šÛÔ-h¸MªMnS×àVð£à6u ï—~Ó&kêpà&m³ó<öçæ7mÇeµž^’„öì×'8æ%éâý~S‘.>šùMõ sŒUõôè'8ð›êÔÜÀ1¿©mtxéIk6ð‹8pÚ±Y9Ðu’X~†tðêÝõęʜá¡Ýàô˜ç$¯¬)Ù²Ó.±e§—¹î´OüX_à2“p0=ñ•'̰¾À•§Ùý _ó•§}V^Œúôœú\‹2ÏIªkñ“ú9Ì|ŽÏ©ŸÝ< úIýÜðŸãð¶Ó>ÌG|†c~R—þª>Ï¡ç$×´¬ÜsRdÒåø.~ä^ö4°@ÄóÜ“ÓÊ'8æ9Éé‚Å(º•C;Ÿ`ÀoÖåè7 _~“T ¸Dæ6 c_žv}H1ùH¨ýyŽ¥ª)yMúò®â¦×$Ô8?ùRw[¿2'i¯Ý½Ÿ2ÌkûèÏkqóg‘L‰—zdöl/½l¾¹ùÒ’¹ÿþ«ø‚¯ø«”ÌÝ¿üPŸE7ûúëúõíõ„Àl‚zð~¿­c×ÎÒ"1äf·]e‰@k.òxú« ô:±)çêgÉÖ1̹)ú*ô)œŠ•¢Øj*sAŠ\±™U³.¸–óÒF"RMM¢kEžè8rŠ«èö¶ŠèT¨h4•žm NÇPT.ÄU=:½(Â,2ò":•,ס+³à(l 9c‰ d.usõÓè|®hàaÕsl j«æöi4ì~ÛäqN —0–úÎÌfK¥Ái\àÈ«u•ð@‚#wžÛÂ94H•rôyƒ&agÔƒ+ÛïÄcû¾pºÃÁ™E¬2U=åx…£U¬;§ÛúNÑp{¯ Y^äôËJ}Lߨñm‡²pzÅÆÂäè~:'™s4~ räròšn?íɱpöƒ6_ö‡D:„ÍO€‹žVŽì:î™#OéħJ´°Rñª‰.'NEª…£ÞWâl¨uu+:qš_~àkgœê»Ô­žxÜb6C­àΑÈ šž‚½NÛůºâ¨µnÀ¿ δ¹C³¬Fhm9°æS5Œ‘Õ„©mâú4Í@*¹]wÚc5È1à›†¨öCµ¶œ8šèeZ ögñ¶qt›_Û…–iZß_ ûWKdzˆ2õTŸÌ9ÐL¿¼J£/$´í}rôh“›èg[8G±yòU><üÕ 4Û*¡ƒO}¹éD¬rÔLUlÕr5<½Tš}ç €ƒr4½6É=cà‰û¦ „\­‹¨ §š³œ^̽⬅uYEÕ»Áöì‘—Ð!\ØqIœŠY|•[·ja·oQgûÝ ]Êhd¨' ¹b§INÌÇ«ÞOë¹ÚVвv[5N±A ÊU¡ÍÞ„Â'•7Y[C».Æá»QÖËU ÉŽw‰XXzsg h9:ImÖhŽÁ±®±Êá?­þM­! ¾ös…SO¬ùW‰;h=(CN;¬ÚJ}uئ¶s®Yéõ[ÈŒ¯³7«£sv¡Ále }A?tÎ:ç@§µá~6Ÿù'¼G¾Üã„tè#1äH6?• N©ðU~3ûW9[³.ç$©*£î’£s’”Õ²$åœ$õÄÖl}Hý'¯åe¥9žSXY7Ÿ;z]âèõäêè5}æ&±†œ‹uŽÄý©(Î礦‡zg‘’þEu)ã,RRù¯E—q)³"I%»þÔ“Øe—~e6/9Û6ì$¶~²S{u|&ÙÔi×Ý‘ø×3ŸìÓÓŒO4€¿ÞAl9\غrŽ› 8t"~û‹_ÝÊ´ûö_|ýÝÇwoo¿y÷í··_ß½ýðáÅ´sº}ýîý[FøÉ—’úÇÄòù“ÚEVNÄY›#S.§Õ~&?Í&àþ ÚçV€¼xf%ˆó‹ÔpÆ!Kãê?ÿÙ+A“r÷Q*)OÇÔÿ¬Y(÷ 9ç|ä\LBʰå®ÄÁ~Ux¼+ƉiFp°õ—s°åõ3Ýòú<§×Ï’Þ¡úÓ8ØòúN‡¯”8ž†úÓ8ØÑú+p.LB>ÇÁ®×g9¶–9ºíõyÆ/8˜ædöÁ2§Û#zÁÁFXæèFØÂ蘄G7Â2a‰ca Gö½>ËÀFXæ`Ûëól{ý çzj6Â2‡Þ~–Ó±Øl„e6¹þdb´'6ÂÎŽ©Ëg9ºî„evÂ2;a™³·…ľ×ç9Ø Ëì„%Ží„evÂ2;a™ƒ}¯Ÿá\x;8½­Õÿ9ö½>Ï6ÿÿ Çvš ðW>ƒ9Ø Ë섃+ì{}žƒ0å,G®†£{a‰c{aà`£ {a™ƒÍ°&w5°»i›aʱ³HØûçzžc»aʱý1ì†)'o†ã@Ø SNO{_ÊÈ»c™Í°ÌÁf˜rŽó¯3âéœp[x4Ï£~*œ˜¯ð¾j’rNHñ¾jÊÑ9IÊêX’rN’zbk¶þ/šGÙ Ö/˜FýI7X«¬†Ö¸ÃÚÎËV ~óS»YjŒ$ÒÊ5Ìù3r²ÐʤƒJBÆÉB½8߈%' ™‘I(™ýç^v­Cߘ×/+m—}6?¬r´Î‰¿g0'[Á¿¶ç¾ìÏL¶xëõ¯?ÙÒ§slù¥×ÿóbvŸÛVÛÝëÏÏ©ä²ì—ß~•pA³ÛF.ÿòa~ì¥zn²»æöôrìßhjsŒè Àù+L­8J¥VÎqëÉÔêùr›~¢ì'OcžÙd—xzßóÿ}÷û?¼}ñRŽ¥ŒÑïÊþ߬Ìf÷:º”ØìámôÕ‹Kv¹Žóîý÷_²œâÛIéÿöâå) Ë£Þýê…<XŽ9ãþáãÛïÞÏ┟R[¾ÿðö›wo>¾›%:¦ÌyÝ™][©wß¼ûáã‡w¿ûñã»÷ßY’íºûñ‡YÌøkpã$6Þñ·n¼“¸S Š÷ºûø‡·T×u'úÛ{óðVA½”Eÿ1ç1/Çìéfeœ×oÞ¼ûæíw°rÖ»/^N—tþ=î¾yýñõý‹—»ìŽr÷êoŸû˜2™SEÛ°}xûíGlꮟ°Ì*Ñù ÿÓ^÷ ó)wß¿þn6%ǵßýá=>ëìMþ(\ qÞéås$Ùö»×³ÝÈ—Ÿ˜¡©i#Û¦Úóî”Àï&zç¼Ì:¿õ,®ÿóB–ÉÏq÷úá¿?¬ Vg6ÿîÅ® u~ðß?>WO¤é–ãJeŸsš­ô»üñ5²Þj¿“U”—(’¶É“ E²Kß# ¿{ÿáQŒëö»¯ÕËý?ýÂx³ü˜ßHv'¯^îþ¨•F.YH¡¿ûîû?¾üæí÷“%±îwo¿“òmZ)¬|¥¬™Ï»ÞΖ›–òQ?QÀøÖZîf·ø‡gKxöˆs‚û“"–¬¢„aäb¾±ëDõîñ݃÷²‹ S¢Ì^‘'Ð7?cÅ˦çí‹¶ã„5?üøáÛ×oÔ„½iãúVÚªcG³qÝýÃÿó+!¤ÆìrTçõã[iÛÿþZë½7=§8± û|—Öy|ÿâ¥^ØŸ=Ä7o¤ Ë1b«€/5‚ã5«ÁÞý`¿lãîÃÛß«ú—úDìhw¿y÷Ý›·)åG¦œCÓÍžäÝ‹—³çœbßýðþáõGd'‚eÖY±c̾çß,E; ¬IHCª-™¼yÿãƒY._å{Å4{ˆ:ë¿t"µOmï^?> stream xœµZKoÇÎyï ć=HoÂL¿»¥0€mȆɰ%d‘2°Ü’cïK3³–¥_Ÿªêîy,‡¤h#ÐA;3]ÝÕÕ_=¾j¾›æŸæø/þ¿ÜLòéõäÝ„ÓÛiüo¹™~y6ù×K!§œg^k1=»š>åRfÖ¸©Ñ6ROÏ6“s&3=›s.4ûzæU–çB²ª,V³<Ë•pNY¶YlgsiUæ­`áƒòÂ8¶h³·gÿÅõÔgÞCë¹L:˧gÏ'gÿ8gg7e=›+ r¹…UœÌ<ÌK«ÐÔô‰K¶ÂùæJxx²¬.|p™÷¬€ ÖÜ4ˆ}VÕMš×³Ý¶H²ðpE`qJï4«e“F*ÍÍ¢]²÷3aqaÍuz+Ø¡S´Ê7»$-X¹^ê¦ZÀŒhƒ`oŸ6ýâ‹—¯fsáhJvÁ^ÖMùëLëÌKcÙ¢*QRò \´p`„=ÄGéY;ij—ÅuUÔu¹Ûvï^í×嶨/fø ¦«žsþ6ëvuvSTí$ Öm ãy³l¹› Ç@A8eÅ]T°îm­=Ï’ÐÀéÈè0ðÁ{ÏOÚœf¿`^õ°¡M¦¬8ž­|¿Íæyæ<˜$ µý¡>SÊä>=űãÒ`ÓÇϸra,»šý œè Phç|¸²ò ¶ZŠ)XÅJGZfÆK«§scWA†£ŒÎsÃ]9Z@C"OÁ·ŒÍ¬s¬ÈÁ³÷G+Š?´âüi2—ÇŸ½·áçÓnÀýÚîn{°üXÓÁé88Jž‹¾¦ì:Ò rà!åΤCº˜’µF?–ˆäˆ;ðö«ÃvÙ+$úèÌE€óª¨—Uy‰øÆ ¡@9 ‹´NÀ§öq˜wEêú9À)Ë5î9Á”P߆–ÌØ©…Ö4…ÉséGb£Í4GK¶;<U .SÔº¬‹ \ì® ¨¼ê>½/››ô$YÝ,¶«EE߸žaßíªÍbF +nwe]œÄŒi$ž¶) êŽà > ç9ìØ&Œ*>Ãí0º²#N aŠdÒ~Ø‘G?ÆPÈ ¡TÞBágš7Ï!SDyÍr?pnŸsÇG46¾Œëœ¾ˆªn…˜öÜf\ÛVð/ÇÚ«à­Í%ïÅ.\ÃBÆ ‹N‡@¬q é½R’•ÝÚlÛN ÚÛËР.‹Ó2…3†™¹y(ØðÌÊ</Þ’Èc¢h’¹Ó†]†ÎH’Áþ~Z¯˜Èï·$jç¬ÿô¡i¨¬¼7¬™Ì8áøPÙ?ÝÊSäæMëÿ5ÇU/>¹w:¾·i°FK 2أ˜ֹ›ªŒSú„óÀ-JQp Ó;Àó˜¯ÀOˆ{ÀòêAµnY¾ÕÊ0=ªÖ6Šÿž -¡ƒŒåIæay"—´ÎŽäÀ¨•:b¼;8BÅ\ Œ*cæº<`ŽSP¦s9.&®Ry±]a„W’Ën»þBhÙ¥h?¯íSˆ8D´Û#CJ+òÿ¯_Ú¥ô½ÎMÚyÑ×îΚ…wXǤ« ¦öX’`M}¨ãI@æ]î6TÙ;ÉÙe¹ÅJšê£`êpzâ¶p|PÖ/ª4¤Þ C*€$ÁYYUź˜§ÂEg2×±pQ:{(… ù#ÓÁ4h":ÃYñ·bÙÔÈ1_í6{`5”C8"P â2²ªÍbUDa€"b‘{5D÷$Q.•8M¡ˆ?¥qPx'jçl_E§’ké¹0¬\Q—¹ÚUq¸õÀc©û(*(~póÈOvPßѸÀ½6;L¾H—€¼kZ0ð"2ô›ƒ6Ëb‹Ë7Q¼h løÝ¡*È,HrØW7åžB¬‡ôÌ#5FWõŠðKœ0t%m<;×o»‡@.Ãr &¼Qm@º¡Öцa•`Ã0Á’Ωh·;/aëŠc%ª‚Ø+—tÏ_àoˆàúzWAQ¹‰¯|à¶$¨ÁЇ*ɉdÐð޾hnv1ò(µëø qp•VÐ.ù!œ)Wxóö:­ih¿€ùŠªü¸ÀzþI»•x,h,UüUKOb3t¾Æ ~ˆƒ´§ ·Ÿ9‘p|4†Dp rq¨¨`¦ož›Ö3ß·d|WýÒÓ½C+E#°šK`=Þ”uS.ã|@$Àdz@N»‚ïêðg©â1¢»¥ŠžSË# t¬ŠöHB“x€£B~ÞWð]ïáü5®ÕÇf5ë~F.ìå‹WÏ ÿ ¶ZfZ "” ‰ŸÁç‡Eˆ~àÝDç¦1—›©Í”å.§ïjio†Ôæ2p A%2÷ßPã æ¥Åðëq6ÈǼ“ô½•¥»ÃåSDµ‡ôxÎeùç3…Áî0ËK.ލõ­ R“δÄÌ<¹¿îÄ]´ÍöÓHºG€ U[L~$0Á+!ÆW™¬>¨·ØErã†jß_±¢%•S™àãŸÜqX¸ dN·Ç4vÄ‚ aš`ž—ã8—\‚b?*€R•"\¢%(" žM~˜`€¾ŸäÓo&*?&­<7pÓÍD é3)Û7ëÉ«»;¾ƒlløÂ”`jøß ІcÃ7¹ð\à£BÆúR“[±÷Ô-ÙyN(}=^tœÐÃ!¯YùxR¥| žA »yó–F$?Å=ÝöT¤æºËÖ·Öç@:;°Báí±s‹ÁÔäxyì[A0åæpú>àVætHƒáéH‡íUˆùÅ¢n‚}Š%Ã÷|O©;3ÀJ…Àç%o¯º¤’K®ÙeˆH5ŠP‹í.›”ž©· ¥òe[~ˆØ´t«„£{}h ]®«NÞšAh1*ž›ícòK~Êšëý¸ò6EA2Y,‘®üÒUÙ×Eç6ýL4—¹È c:¼ö‹¾ò¨e!x`ÝwÕýü÷+r‰«P'RØ WuÏЧ.~±L<ºêÏzÕM5˜g…íÒ`;+ž~œöh®×whxÞixŸðüíÓôÑawyTæóGWxý¶Wça‰;n<ƒeû7žB…‹ÌXz;Cm ø©DZ¶Øì;ö¿.ÒxHÍ@·Ÿ_.Zjò¡»¨KrŠTOh¼$¦×J»xw@O–ÂdÀÜÎ8­Þt4Ù7ß§ßìùsR’+­Ø‹ôV@ý»E"’&¥Õñ.cä&ôj·†˜I0¨ Ñ?É)§»\rLªºèª[Åo=.³ÞÓ/7Å6L§aÛu”šLä¥!. Mïî–>Òe² ÷?DÈ-uÊÙ·í²b7Åz_§aÝe/ÎW/xDí§NoŒAó£\xäý.˜æJå”·ë]ø*Æëhú¢#¤o–›`r½ "TÈjžÓ¾Q‡ŒD_ûXTaµìÂB–Dã,Ú¯‹8¾•ÍÃÕzšŽ®/<ûº¬ês¨ =”Ï’ú]œÃíወ³âßARi¿ŠAUØ4¡™¬Ó_lÓ“‰l!—†¼Ì‚+eH¶ÛnúìhËú:î¶ýµ:u"3ÔT†ôPnÇ0ºnZL‡vlr˜]üVn©Ã0ÄEˆ(%È›Á68](£ƒ£ö;—¬®‹ô÷]1…oŠ-.Ë5ÐXêkDFøbÈ®íd™2ÞÜŒí½g\}|›Ñ ˆ»î<ËÝe„þ|S^%Þbl×Vùt Ã5Rm,]Ñ!᭛Şl¼bGÚ"‰ºQ[ë‡ÉÿWçbËendstream endobj 340 0 obj << /Filter /FlateDecode /Length 2244 >> stream xœ•XÝoä¸ ôõÞ…¨¦Íøô-+h \ë‡ ÐÝ›Á&ypfœÄ½;g{6·÷×—¤$ۓ̶·˜‡‘h’¢(òGJ¿d<Ç_üßì<{Xü²DÍâßfŸý}½øöƒµ™Ï½•6[ß/‚„È„R¹³EfË¥2Ùz¿¸f[®Œ49çŠ]] œèÜûë*޽eû%š3+‡®þõ†uÕÓ ãg‚ß,Ï¢¼P¬éÚç q³\Þ®\‘{cD¶~·Xÿùh™û.¿{xÚíöùÐ!Un}´^ø|î.®FõìãÅdzdž[/®®–>Xï™8›„Ÿºj›7ÿøîÝOßÏÈCWnª‹õ‡íC£þ²\ i¼c{Þ‰™­÷©êP?—²`wÌÍV3Ækö]°·?ì÷e÷9¡-k¯¬{*»r_ ¨Ä]ó>xQ.‡4Nôa‘þ18È£g@΃|:nUxJÆá‘bBh£ÉKHöŠ]–ÝÏ$¬ l@ Ɔóx.¨†kÅ6K ;§!Në&ª/p¶MÚíií‚Ý·»txÆÀ©5“ü +Ãna9Y‡Ý•$&° J¢MÛ¼y8tåP·qqFPÜ%–bŒäø4 ¡6æŽ4¬ÝUeÓ§“>Õ1ó_À@B‘ ×0ÓæÈ÷–øÞ^]]_‹ÛÛÿ™åÓÓîóMP}}&“·š+{;C`9¼=˜>Ö’L˜æE¶’° d/ÅÅÀ’à†S>Iëô°;5£ëÙØÌÆc}°3¢›‹ÙØO¹œ ‹΋|G‹ŒC¤LÃ9‰GEúß_?…²`^®!GŽ|²~L‡è©0"4BøÀÄ‚ÿ ûá_86¡ïÞ]F.@²} êè¶Ú%&ñÙuÕfØ}ެF!5”4\Bö¨ì2&%®†³¶ r–äFCpñ7]?D1,u]5ZiðŸ8!ã½’ì0ŒåïÓÒt€aeW—w;Äb=î³F LWH³ ‚ƒ’dÁšiÃvuS•ÝDQ¹˜àJ‰±rĉ…¾a^™Ú¦¯r„»o×}d…-•°‰d©u[﫦‡,ÿfÜÍsÝãJž°m,/H >"õE@ÉÇÈŠ§8´¦6Î1%=d/äd߇ڊ<Ðin"Òy@½ê›Uàú ¡«ì{ä£H—lSCbnÓWR›V™› °'8tðqŒíR”Í6…5àß}¸JxsóM„"bL‹‚"+Vüý›b}Ê!Á0ÄÛ}šczŠâf9ôïË•ØÉ…{Ì.øí²ÃæÐà¾,ÎÕPBíµ¡HÐÔÄÀówòE弬›œªaçÓ ê¹ó©ú‰ ¿²s × ~ªX[R†¾?äçÓýÅç`uÔv½âÔya͈Зն.›äL žòyÁÕ¤è˜Ó²søSnfœOÆ]VÈ÷r§¨®˜í41…¾T6îTuÛ/ï2`2ð't0|¶Óò×Ñÿ€Æé™[g"yÎ1uO9wúdwr²e;JØÀS ¨TuÕHÚX¾1‹Ë.}’p±‡¦ã›vpMH"¶Ùµ=-Ô†€ØNÁoU×~]Å8n^…˜šWa¾¾y…@9ó:= •ÅÑ4uÇÓâx '©„ö)—bºJºr àAËa1›öä‘(Íøü`­’ÆOáŠ"^;Íøœ@4«”)DŒSODîœ+P-ø~½x¿@ŸgÏ žý°J¹JŸp¼È!è÷ é„ÌÍHØ-~úâÔzçŽß€ Ù*ŒË„Õé (ÝPµÊ¹ȯsNÎ ¡äÔ ƒÛÝáη­îËÃn.ëªaW6 &jHÂédOj¡–iôìñk1¨øGÀ¡!Åwš$d”\8¡(¾)=õˆ¿óWŠ£Eáê, X)öñän%¤GRû ÔŠ"Ô­Ý!èw¡4µq¿^‡úº‡6-îðÝiõÔ!ÓÊKepˆ%—õíÜÒrˆ—t¸—J©³•ϵÕÜ`'X¼-J:¸=/Q©XƤG{º9[CÙ^FÖ"´ga†ÉJ]¡ ý/&nüµ:`é7“¼f]Ù> stream xœ­Z[oÇ~×{žš‡EP ÃBÜÎý’FÜ6q[8@ ¨á¨(q%1I…¤l÷¥¿½ß93³»d6m~göÌ™s¿ld«IÿÊß›õ™lîÎ~ûV˜ÖÏæJi'žÍ Î$%–³¹l“×Ñ[±xœÉVZ“¤‹â°z“a¢Ýln‚k¥2â%ƒØ¤}‹õãhõ°ÚŒVw³ÿ\þƒ¨sM"üž‰‹­‰A5—/Î.ÿ­øûf6·ÖŠÃýjO¿t›¢ûîD¶R§@ÅvsŽoD&|ú‘È•NY¯ÅS·™i"tñÀx@_Ën¿ºÛTlb{›¯èÞ>Îæ:àkÝnµ&,´rNöõ®hÄ¢ýat¦]´…#3æH;Ë‘_.!àÅrñÁA^Ö%¦g!A2“â±õÖ«z˜ïV² عѩuÎ5ó¬Ý”–Ýz»Ùv‹C·¤[²Ì¶›ü[*Èã¾+’›â[Êp€ØöÄv¨äóN,‡­ ë›èØÄËî†ôQ>Ê(ÌŒô¤¡„–Í(ÁíF©ÅóÓD»îf`r“Ød4l…>Ù`XQóe‹»ÅjSÖ°f‹ä’¥Á6Ĥ~>ûäêýØÌð‚.Vö§ÙÜiÇ8ºwzÙf6D°øbN¿-~ûò}·Ø,¯ÄÃý…÷W³óþý›tç#9³7{ÅV³%×$za]»Åþ‚®y»:Ü i_cÅ‚(,–Ç8”¸Ým×åX²#Û£ÏÒ#–²ŽöcoïW7ý÷ öÙ·S€=íËE2ˆëÅž½Ç«ì9|¿‹JWw»Õ²¢G”œ0>byq ¢KJ¶|½ V¼á;}à¸iI#œ$Á#ïÁñÎîºMG޼¯[ŽIÀ 2Áíúῼ‚û"*þótÍAdD=HqÇÖòWö2D5¡¾ØÂ4*ä'°ïÕ:ÇŠºFÒ|0Ùqܲ-€êÉWt‡I>%3e#¦ÕÊWتSÜ ´xñ·é¤CŽŠ5Ò© KÖ»Z’x Á‚-Z§ØRZÊR*k(m×í³B…þ;ÛO‘¯³cè9Môdƒè§b4d¡RŒˆf ?+žíëÍZ\ë$ºÛí®cŠ};H‰OÁ3>½{‚ÖaÌìw±ëêŠ50dÉ(H*†p"™eÖÈ8L‚;›(ƒñÿ0Xß’ ã§xK¿)j³Ïåž>T:ð@¹*#–½`ÚsÐâ/½RŠdÃX²Úñ™F·ŽÄKüovùý©`ÊÑ€Óf>‚ì-)Y;iI€…©×L»«L¤*LÒ9qWîP“,vw]åÜÀà>ÉrÕ6µ!çÖœª»–èUàÖZu"÷ç«ìÚˆ˜¢#úÄF¹ß®é9Ts+Âg¥ZçmÌ ˆÛ ±ˆeô'Ž5ˆãÈÑQ;x­úâá§V|‚Ùê¨ôÏšü1¡• •лLè‘*ؤ.&E¶-–‹øtGq ±?t#99¬Šè(üBEW°TÊâÌ~TM…£ââ Qâp÷8A82–ñ¡—•L õ°­e„͉ê?%Nd†$û’‘ýã°ëØËddïxþO†/^|]`4œ¹¯6—ÝÀ÷4UjŒ„͇ª ç=J—Û§CUâq×-W7¥,f êÝ|ÛnÙíhxY¯¡ß«ÍmþT((I2Ù×ψt£sRWSîmck•VäÞ*¤Àrþ.KùÈ€àÞÁ£¾b÷®ßŠKÒ´¿i2Î&S5º6c=ªêæÎâ4|u^ëBz\Ý©ZΨ£rçÖð𰾯.^j­‹×çÃ’l»¹øêÙ‹—_Ψè‚FÐ7ÛÝîâ3\òY_Šo.ÜÛnw}QKDTïÈÛz¢.1-‰%‘\࿼<ûõxÙÉ£¥‹*´è ”‚Ô­‘Otlv]óïfó‹ ¡ZtaG !¢£D;a¨QB$AC(Þ©æ‹?A2 v’È™dZg!ß·8‹’§ù·=?ÓšÈO1h[T³>C©ã[êÆÃÙËÓ­Fc§5†éùæ98E!5Z£UC0Yv‚‚6*(TEëäZˆ²ÇVÖ7À¶Î:@$2˜†ºÎwЉºCù$4=aÝv¸£¬éD¡¢BôT '|Ü€ÉT‹m ´)‘¦"÷ê‚BeJ '£Ö%Ü3ÇAä¶{ËØ^ïù«¢&Ò5ˆ1Æ;Ï_U¯ËIÍ逋`#Íl 0#Í1©¤9M6ªÍHsÃN–»ö¨ïõÒcë5§Ê(F(uq{ ýºJuØÉrï1½ôwôšë©¨=•à ®9í=…ÄcÍ±Òæ ¹[S‰1V›J¿¤¶Á9 ´ "ׯ²¡Uo¨0”øï <͆Cü±½ùVÉØ˜HuXÍ}·º»?\èóæa{w%¯f*ÚVD•qH&鯟LDI7ûØødµÔ-øì-ØDkFdÁ'[ ŒPSTxø` 0FGѪ•-à&²á¶2Êìþ®àA(yñî7˜Âã­f"€óujä†ÃNv"ãàÞöNV‘õ^h<|Ia€ù!ëê!ÃNö¡Cñ±zEï„=  §± 8áâÃ,Æ¡Ç< ŸFÿ|ø´îýÃçOõfaŸiFŠ;ÝAGPV•(Ž"è°“%o% k”ëzl½î¬‚GÔÂUÇtXWÁ;Yô=†¢šþŽ^y==D¥²`8áãÕga.(cß?‚ú÷‹ “!Á:k°ãp²5ÀŒCB&•ô樬vƒ‹ºnÄÐÂý­C \«ȃØò"uˆéýg¯\KÜ×ãýšñºß@—® ?Žäcj@^Ö„¼\ßCTòêñ#ú?B] œÚéKxýlÀ§t)~ý„G"ùé„gF /VÇYxò88䤚zrA Iy›_\¾ZÝ=ѤÂÒdDÃz?ŸÍ½5¹ßÂ&÷Zûò]•ç ÉóÏnq334¯´Š'š´­S=ÓÔ+œîOÒ<‚„ÊÓ¼ñià hðyª³ìÁV›zA(³WC½¡_/v?ÐÜìÅ6_´x3@ðˆ)%¢aÁhc·ÛÝ@ô§æ¡5ãR‰­4“•ѱ† \›{}êÌÂJ_û¥Ò;Y…î3M¨6Ð÷eäH(klˆýHä;ê75Nû2?M ÀøfÉûYéo57(,È¡KGij-Á µW…m„k”‰•æá¬5v>tdø„šúàÑ!žaÚ@ŒU%Ð"%‘µ–¢xZ³°ƒMC#9ŽN]žž:öJTÃÃ?0õR©§—³®òeëÛêÇ#s4-Z l–ÇŒq½x·Z3»Ò’¾¦˜…‡ŒhxÈÆ’ªW¸XoœâžáÀI´âJð¾”ÞNéÏ"ÙöÓ«Gð(¦.ìx@x5;Á|$-4ÊËaºZ¬.xw zí¶SïAˆl@ƒÐ7';3õÉò2O·4ÏHJ¼32[Rãò7ÇN®ùiÀ‹·›$Moiž×€Êkx zs 8–Ÿ>qÅd~xÚwÉø çdj µ!ÚajØ–ãO‡‡:RƒŒnŸ6åI*Ӗʬ-Óy³ë‡nê…f޶´¥¸sÑáK·/L!öR ÍǽX=äôdOüÀ^ÓÌé,òàŽ òàQ˜q³þ«¹vendstream endobj 342 0 obj << /Filter /FlateDecode /Length 21630 >> stream xœ½];r&x_÷s7u±X¼´ÊI2™d.Ö Øk1{ÖZ¬>@~U}Z^•tZÒqÛÿ~ÏóDY}lݪˆ7¾˜™$ƒÁ`ðwÛSzÜì?ý{yØ|øÝCöQÿÜ_ÿôÝÃým®çÓyäãñÝoÈ‘S)OíèGmO¹ÔÇw/·ï¿}~ó£­íiü•×»·/?}ýòÏ"[—ú”Ž!d¿¾}ûþþûÇoß?Þõæm9ËÓ–Êí¿?û†?ûþMn·ÿ7Ôóö<~jCØYn/ï?¿ÉÇÓÙk»ýüþÓ§×ßøðüàÙ ì@zÚ¶~ûÿß¼5¢r¦|Ü>y“û@×tûýg1œ·n¿ùúåEâ¶z»¿ÿtÿùÓÏß~xã2ëíÇO_þñý§7ÿðî¿?¼­ù©åñmJOg­‰ {ùøùã ¥·ãö³‰ò<Ûíû°½z|õxjIåö÷ÿ O.mO{íþ€ŸHq ÅÛ£=¥6ÞÁÛ4ƒ–ü_o†…uØQLîø{f·ÿóíüûûkU«ýöãOOž¿}üñó·¼m¿Iï·¿¿¿ÿüáW.ê¸=ÿËOi<_hIa´äÝ_>¼û/ã?ÿîççÏß?އEÞ4žÀ×g{?5¼É?{ûÿüôýã )v¼2Ú0µ}ü<-âìûí§÷_¿üþñËço2äò8Lý ñ_£ñÿøñó‡7ûL·û··ß~÷õû·ôGù‡7¿Ú~x3[]_)û¯üù«}kƒyKõ–šÿÝoß~ûžâñQŸ·ß~|ü83?oï_~ú4Í/<Õ4>¥¾ÿîRžŽÞNïZŸ¾¼ykýæÜöñ ó)…¦n÷_ùQÖ|{ÿòåóß¾Â^Ô~5îãçŸ~þî`ýEñ¿`÷Û´ç§ýl—îqû%óÏѾÑ-Ýün¾|‡y{=ñÙŒpG†¿ú“¿Ö/Û9¿YÐöË“ŠÏsʵàï$q}:Êø”óSMgÚaÝÿ¤uíÒ·Òmô­…ò×·w&ìŸ×ù šÇÓ©ýŒ±ÎÚ²h~=0>õ¶çìÄOoÞö\ÐîÿñeŒÏ³µü’Î>úÅïýéœã]½6Ž·V÷‰oÖe?~xÿýùßL*ûPê¿ûEÏ ähÀû¯Üù­þôþ®Oõm>Ç@<z¿Øç²Û8Ìûúüi|$É뎑|·þ01Dü­±úåÛó'Ñ¥|{þö+Ó™0ñ 3ÂEZi.ÍFæWÒHo÷ŸBÞÓSIѯ~á!Ô§œûü.5Uýüyt o[ó³©ûWµxÌ(|Zhc¾}^^Îû¯zjûñT÷×Om~Ëo÷ãÈ?ª§åóöåMcàÛÏ”xŒ ëó‡÷_?>ŸÌQw ŒïÐðM£ä§÷÷ŸtyÇíËoô÷xø÷/Ÿÿóµ||0ž-¥Ûg³Rìqÿ(ƒ Î2hK£a_~þŒ¯ú} ݆!Më衟g›CòÊùÐæ½ù4ñ~ ,GÂxüí_9Eç1˜iþ§ï˜‹sñtÆllÖa´/&Ô19.ßîÐ0þç¯íÏþ½¾×ŸÆ$á”ÿé‹ÏF´¨ÛlîžvÞÆÄdº{m<ê6®¤ü›vÙ$öõý?~z–ùã™üæ‹Û=æ½çY}‘Ÿø’{­·ç¯_ž?¿qPîøLÎ1Xבô÷GÇÿCo,g› ÔúÛ÷ú¥ÞmÃI‹Þý¢½/ùÃó'ëwæ²ØÔùþ›ÿÝ'™={H…ÜÏŸïÏ_¿¿ÿH»mVøÎ¿Z¿ý«Ø[æ2OhðÿüÍ7ûñh·ß~üñ·e<ŸÑ0›~8¿æwÖÊèØ%ºÁ?<ýÒÔÿvôêãÜÏ1Zî}äô®ÐOŸ¾ŒIݼ˜ÿó½úÊý·œÎpúíþü/¼=UMú|ò§µ«¼/?éjŒ£Òô ¤/ïzGÕ®ø„ÏúÇïþöÿýsqÿù»‡¿žzÞjÌ{-O{~Ìé®<¦>Ž}üúüøÿ=~†OT?þÓÀþÅCÝéiðƒø/ bL¶eÛÆ¤Vxìöï€Û˜ä¾?”ñÍ>Ùä©7u  À ÌÞ 3 /`ü;U67‚˜0‘^5áþð§cÈÞíÙ>–¨µ+0-=)mÀƒ+<†X{€ã‹rè>Èm[~½³ ·Ã”o Ží˜)`Œ·ãsÁ p7Ð\›Àv¡òixJ£G ;ºµkbĤ:º@ðÐgbÒX6Œ¥‡ÃCq²‘f¥k‚Þ C8„K3ûÚBBžMYt6·Â)ÜJ—pmW·ã©Œ{n˜<:X{Ìut™R ®öy¸=•=à¡Ø:Ë‚pÊç"Áaê‡0[7Ì”0f£š„íp ·Ò%\ÛÆ•íÜžFƒ·r<¥<ÚˆñQćŸiýg¼…màÓøèxtƒ4:ÆÂ&E#xš¦ ãÌf£Â”m‰½è l]Í­EXM×F¨«c’]â£|gWs̾¡¿îÍ:íxãÖ[÷¾`½ é\~Îcáu˜ÒÃ1¶Ü)SÂxo½»Fåþ›[æ¼WÛÙ WÆL™1É4kÏDŒ‘Ëšü”1€{VPxè´±°¬CMêS@€¦ôB /ñ8'ÿ˜šÌüÐ@Ø8ܧp]Â¥ úëXûÛVŸzÅ(DOè½ÛpP6pú‘ûè hßFÓø1o¶ªXئ|03š‡‘ÝŒæõsÑ@Ø8ܧ….àÒ¾­ñ¥<µÂù&Y³&æÀ7<àáÙÓmÛp÷ó³ÂãiŽŽÂ§æi<Å}J˜:ÀásK§„}¼©EÀûô¿O£Éþªl™­¹uÇcD¿ DcÛPV²y{=¢˜¥®°™9†×– [Oœ‹‡¡ Žƒ $`¼ª½.*‡áaµ$\Z¡!#cOiÌ C†c†ãkCª­—2>ÂáÇŒïxßq>¶~]úŠÓeyÊû"ÁaêÀ„+Ì~fJØwÎ鮃°q¸NáVº„k;|¿<¨Z9‹ c3ùa3J±ïŸ›‰©‹+cNÓã¾PŒñ·Ÿ‹‡©Ã8Sð8BÂøàŽE@Ìa²A¿‡Ñb¿6‚-kcj 'óeÁ˜>´µá4›K{×¾kÁCo}wÁäÖ7tŒà0uG`6󇦄ÑÇ48u6·Â)ÂnI¸¶ƒ‹š§}<êÞAô²b°£“–Á6VúæÉmÛ¶€pS5íëw÷ȾÀPOX˜1.šë‹_/ߦ ÄL)áu#ôÚFçGŸ6- Ìfm*mcÖ}wÀ§ù¬Ã‘Iæ:<÷á9Ô•bxu pŒÞvûÞéô¿B¹ý6m%ã+Û5‘•¾\]?%ÌdŽir¦¬Ãfƒé*mÃ]`{öÃe®Ñ¤Ã p Sæ&Ç`’˜ª\%×QÙr+œ"ì–„k;ô¶†7wÓè™oË1ÃÌöùšŸnl£OgPàS ¶Gj½ö\(Æk2O?$8Lè2ŽÉ6F†„c¬'Í9v‚CVEØ- ×v°qcŠå@?Çëµ¶MD·5\·åÕøŒ‡cm ¾>^ŽilßU/°+(z‡ÝÎ`†Ï2£š{éü}8-æ^ºÁÆA‚À t—ÈaÞ¥½_-¨^V ÕÃß´7nAt‡»™²ƒæÎ o7/¿gØ>Ê`Ø×pA€ðq àzjjˆ5\˜àn¢K¸6B-ëcòמØ0GŒ‰Ñ¦“Žéa¬Y|ðcôå¶ÏÄ:û1)Úãjš& àÆš IÈr’]akš[á2R®Ð:z¬`Ì;9m? SY`†ß’lUlQ_[:´ÃÓøÞK kÜ‚%fPŒ·e^{Hp˜:Àá˜ËBÂJR_t6·Â)ÂnI¸¶C™»œÚa‘”—Ó3b+©#V2à†XLêÖ4½ã!ODÎc&²àŽóL æàÿ†€Ãþ ù€L¼ë×Ïa°˜¯ à¨o A‡ñ!kÕÄŒ]l9;– 2œö˜‹…)ΰ-ˆ‡‚m¥óæ¹/¦p8&Û«™R{ÚÞmÐïa´Ø¯Ð|6ÜÌÝðýCËS’­ÆL‘lÞ/öº}ÞSéc®)+fÀ®iHp˜:À!LÂxJ“g§¶ÂÆáV8…[é®íÐ2–BøB«í¢` Lã*7müÆÇâkÖá¶¡ÆØ•WÌ€ç"ÀÁÄ׈½jÙ,ö1Ø¿¡€°1¸ Ná&º„k#ÔÍÆ;´ÞkcíÉnæ˜!f|ÙR#¨ °­¼3x·/¿W.Ó‚ßajP\ ˜¡É/€-ä©€ Ñ»Nà:ÿµ š¥·Ý°’Ó¦ˆÎÄX5ôM+û±B «Ú(Ð&ÑñÇòóø.°ªwî€7Ÿt³íœÖɟƪ¹ŸS¾`ø£4 (Ü@pm‚\|ûâåÈh—0ð´>¡ñ¸ ¬¶(:+G ‚æ~áj"Æ@?&Ýcá&ìòÁ1à 9ð‰WNcü;ÎÐà°qÀ‚Ià&»€k£k£°Š¾#lµx2ºpTÚgSý0x…m?æ\ÄÉœÂÂiJ˜*ø¦Ä “s¥ÛZ8¦‚¢d¦ÍäÕ…P‡Ûl!¿TºÜüÀì|ɶÓn.Ë>— cÞ ©Î<{€†kÊ ~‡©ŽA$aJÈ ¢« h 2Á›Åmƒ/Ì2Ó>æõÂ…™eƒ§rŒÙzZ©˜€Žñúm¸l.E¤ÏIÑF«Ç04`]&Dê6CâvYh ŒeMp·Pü—(tj)•ÁAFN±c]\mÒ>Þ±æ:í E5ÃSAÐs~!ßè‘þÌE±+ h n„Åpiz×øb÷ƒû+ŒèL b#Ù¾áÝü ûT l hS'w÷ãw[F¶…=à¬pN`ª:‹ ãºkBaãpœÂMt ×F(Vul6õÙ‚w‡ˆQäv`î]sGvBk ËGÁ·ƒ1¹¥EBÀPp°0ãMìÇã”pd„ÊCaĶd…SÈHpi„6(Æ g³q7Ÿ¦ìeÁíS&ÈëpÕööÆņmPFäC‚ÃÔÇ”'ìyH€%LÔEacp#œ"̦€k+ÔÇÎÄÅ[âíeÁÈá©cénSÅfÞбeìÙ`}zë —â·ÄŬ3LÑXW9†Ñý`—sÒª„rQLs)á•ùrìÇÇÙnÞäOÌOݶ±,¼ÆìÓ2G”×ÝÒB0úÏqLö7¹¿Ù™¼ÆŒ~:54Yà¿»}ÎmOËôÂjµåÆË‚fb <˜p°z,À±—CsfǘãuÔüV­o±3úü;V¡`÷õMX ‚0P®-И²M0Å‚að'fø.©3ã"›dÛâ%22ÆþØÉpŠSXüf °;&DæGåì¶Kž„±=&œ"Œ–„k#ÇaZ &z÷Ó̰#:4žO†ïn_5G,ï~ëˆ/MŠ10že‘p’wOÙp ™!áÐA;²Â)ÜJ—pm‡Æz›*37ñ Ï wxà§- 0n*µî Öì‰ _ü½ÛбLö€© ÂŒ±€8p R55Æä œÂM”„W˜EËU²eõ¸¢!²Ež_²éÍç@ùØ+®h RAa e‘ ˜*À „mØåpäŒæP!K²®­(Üj—pi…ÖÏ­+ú“X\0ôÓm?„y"|å}H[`¬‰«bP¤8Ç¡I˜pfÐoblûÕ@—詇ÂÚÕY0ÓJ—pm‡ý|j縚º—3ÆZ3À²z81xnѽƨ|pïØ)jâ'©Ã>¶Ñ€Q^ìcf6ûCacpœÂMt ×FhÕbyŽ•¡„ÎU‹c:>›l©zÚ-5W¢ŒwßSÀ6’WÆÅ‚²3Û"ÀaªÀ*Ä1+ï0ºNo‹ÂÈ¡NVKÀµšÒÆŒbAekwa¬Ê1…!ÖlË…Ñ3е)%›Û¤3†©3\Ó y!Áaê0ŽÀpX Ão²¡'t6·Â)ÂnI¸¶Cïm0eäß`_ÿeÅ0‡pôV‹kî2M“΀í™K òm,ކ p3ÞlF†%Ø14³ÔuÆ,#‚Àmt×Vxîâ‘å´@8§6ÇŒ>këø­"B9àã©`ÈÝWé`“NŠfNÁ @D MÛ›qö~î\©H`ìé÷&†„k#ز<š}¢O'»LÃ.T¶„C$ádNv”eÂC±ùEªˆbØÊ Œ$LX»Ì“*ý>—4‘¸ƒ#¬p ·R^µƒ;6¬óö\ðŒ_VLC¸ä0Gæ°Á2 GC­m ÎøÝ¾÷¼°œ¸Ÿ&àNï9 „ÃMp 7Ñ%\¡×f_CÈÑ|$µLLöDoä ø@âuO hÔÂ}ûüýÌöqLv‡©o@˜íÄ–`Øv„ïBaãpœÂMt ×FÈéXÔ!@f ¦¡ã$‹åž°'l‡adMñ†•dP`äœ&¬ý¬À”QHPæ`èˆÜ°"(d¥KxÕ_}nØèé;¢E/+ñÿjϾW†šŽ-a—G0ÖŸmÅÀc8àž Äc*LA0*ø £O¡0 óç0ŽÜ¯¬çû²e¹}¶µÃ‡xY0ãƒÁ`>º„}Èu â6TÛ:dz´\ÿZ ;¾±Øå·LĆEA°7>úPÐäULœ"Œ–„k#вÝNfØ dÙ[Ø~™˜„ô›ÝÎrØ0f1½Ñ§·¼/à}ÐƧý÷Bï#ئ08&Ùú:`÷朇LŠ0Z®ð5(ÓX-œ—µÆÒV®j7¸ÃDÀï kʼbòÛ S8“à †„Š qꨚ2§NvKµú w&·ŸÇFÇxÁpæÝyT&Ÿ-ñûªç Û÷b‰}¡PfFHxó/Ì1£gâ s £gZmè ln…S¸•.áÚ~“i<#Ëg°-ó‚o20¶7?>*d<$ƒ‡©¶Lwý}gH*ئ0Sà%NT8 „ÃMp 7Ñ%\¡×V7¬mí³ÓR{­ðk,Ùl”8Ò ãµ5,ƒ¢eÄCBÀI®K`ìüÅã`Ç/Ê¢‚0ÞZ]1ÓH ¸¶B;ƒÃ!3ÚãÀé„—Óì|B¶ÙÅVòGkŒ#mu…á',ˆƒ"a¿ÙH `p̆X™óWf‡ÂØHÎéÚ©Ôƒi†Â° * ì8ßRU‰¬-pç `xn p˜*ŒÃ1Q‰Ú‘ÈAïaC¸.àÚ ¶¬<•òqŒˆûÉú u¼3Ë2ê›Þ£‘Ã)NO ‚¥Ã8ÓwrH‚eô×6u¾?„Aáv»„k;î˜vT7é0ó…r§Þ‘Ç–q¨ª¥§ -Y0Â;‡d‹ÂVcÇ"A0U Ü$í G㾫Œƒ4"(Üj—pi…f‰Y(8Õy8EˆÆòOèÚ÷ÄaäÆ9Œf w‚“Ëôàw˜ Ð,al+ =†€ñVx„B£U4Á d ³_€±î<¯ÝÊ®âÙn˜›3‹ªsÁÍž°u¥87f»‡©ãþ01™+ÔÅê:‡[án¥K¸¶ƒ¬ê4ˆå;`hṯÉËKe?Qi`C™ÃwSê“ ÚI¶É.PòÍJ!ÌåìÎmN³ y.^0º0ôìü×à#Üz#€Ë9fôEeµ“RÜqkŒâL°l_I¦÷6ë¶)!`ê0Çl8åìÜ‘mȺÁ¨”E+œ"¬”„WíÐx_øYl»¶“Ø¿÷\lÁŒh‹aÛÉ--`ŒX©NQ9\‚Ûç 9æ83Nz¸;QŽ©C0F|Z²2$\ÛÁyÚŽž"4¹Ñ«¸gŸg϶2­‰qürŒÈyÚ‚^8ˆ]`ÙÜWQüñÄ-²š¯ÝÙ„ï¡Ü Ü6ç_LG[Æ#C𢯂…n³ï螣¿ò4 e])õ6nàÀì®Ùªó ‹É=RÀð·(- [$–E‚ÃTQ˜š9*¸„»SaL1sV…Œt—Fpýe#´õÖó~Y0¬Æ4úmÃ’ôv£š°õç0ê#é6(,öI8ªˆf—àEÁ]Ç, îV8…[) ¯ÚAg¤U®-†û7B´SG“*‡·ÎØ¿åGõ0vhOrˆÂ|:Ë’„€¡Âa¾º\D0ßü\T¾?L#œÂ”„k+ذ’µ¤Ã2õeÁœs)¬ê|XçZŽåð•øÊB0^U^Øv?Ý숣³(¹­P1½/Øè©?Ü<ç¿6€ª‰Çû ƪ—³cKvhµãX(¿Z”luœëQ¶…àÄâ#ØR¾Îº¡<6‹®9wJê—OÏŒúÀÍsþkU°ÂŽ­3.*Dçžå¾o̲ͺĺñx!„TángP0Â7%8 ‹ q0ë.TDw5ªr»NáFº„K+è5…gæÆZtë, ÌX. "‹êâÙÒçTe[ß 6_¼š…Âr¶·cJ˜:î±t1”z•Û$Mmêl:dEPÈÊpmÛV ¶ÇQØ6ÇMEAùÁÛ±^ÔÐá\*CØþóÐe‹Ààv˜òñ$„±}´C ëóº‚âa€¸.àÚ†l98;”½,˜á8”¨Ã7VZ« žÌClóË–µ˜#…¥Âp1RÒr…)?‚?£=¡ 3Y{Z ßÝ>r¿jý©ÂÂ’VσÓú•;þ…·†qÖö '¬ã¼©.¸5n‘àp‹¸´cìâU2„›h÷EáûôÂ)ÜJ—pm½`ž&ÅlÈaÞ16_8ºs—Évì±µ{ð´0a„10âNŠÖµ›& ‚¥Ã8ÓYñÕ%l­)ãŸ:ãX-­ ·Û%\ÛÁ HcíΊ•öŽIÏ’?Xm¹ñ܉¼5‡ï,M±/8hÖ§„€Y°2@Û|O“}tžÂ÷‡i‚S¸‰’°¶€¯Ëò%qæT10v@@ HóÝ_8q`À<¡¼ü\‘Ü“Š?bãö*xmD„c"Ñ‚‘œ–tFXnœ³_Íçs+,üÅ‚ˆ/ &q,³ˆ<Ö`D¼¯;ˆx`#½~×¥#Áîðæ›·Ž±r\p$À¶Á! ‚ïaBPÈÄpmÝ^Õ§µ›Ç@ciQXNðæy²Ò醒àrí?[ÚH^ئì S±û=%ì¾¢) jƒôûÏnŸ³_[ ÐhPÈ¡è¨0WQœ¥³Îvé,t²Å¼*æˆðØï–_Ó'·ƒÉO]fÛŸT„n¼ÝoЧ|Áˆ“Ò€ pû$àÚÞNÆ ˜Hø²`2²è‘ûÜ"›µ«èùލ‡Ä8Dq”É}Ì$E#E𨉣îÎVmíqNÁ‚o£ê e.àj:gaK DS³åeÁسAõÝiû^9q<Œ:a¨í,#ã…[ä!ÁaêÀ‘xa,ûÒ(\ÂÐ×AS½¬EX) ¯ÚÁáboª¥¸Ë…Ì©¸´ÅõIgMV» R[oî*èä'“ÒB‚ÃÔ“0M‘mI°Ã5O‚CV…[é®í`ßâ9!dųúU`²ž”yË; Q¦kLy(:ûƒzým¥°D©c‘àpÒIž‰Ùxzß%˜ç„ é|+‚­t ×vÐá=á2ž¬-G¨á/вtTêJôPî¹rXÁôs¥°“by‘à0äcm(ÄŽP^ð³ñÔ@øþ0m $÷b:öWû”ýÈ:ž˜¶óø4kM–½ï¬2›X‹I0¢¬G…ÕŸB‚ÃÔýdaÆ€‡¢œ.Áê´·EaÜî$+DVJ«vh1©£V¥"s5)LaQF.ü†«&ìV² Ö†¸adt†ÝC€ÃT`™0ÛAIØÏƒ—¢P…ÀûCØn£ ¸¶‚‡}ÆvÂÃR«1n8¢1{ÉŠ Z8rﬨkAe X ¶‘9´ …bÙ÷)!`¨@ì[; ú8ùwÞûߦ Ná6RÀµ rr+BfC?éç Ó‹½udc‡… ÃæÃ!8¹'Éù³íÙáÙ‹;`Ê×¾ 0GQfˆTU…’‚÷‡i€¸ðª hVéܰ3´ÜÀ ÌÁ+Ò¬~ ÎжÂÏj㮊`e™¥•¢pÏÄ%LÆá˜‚ HS‚ÕÔYTd- ø{˜(öWàû²Z( é®­P: «šõ]uå&F©m Üh²k*-KB°Ô¶•âdâEHpxWÍ·‰É¬|6¡§ÂÚž>V ·Ò%\Û¡í/”Ò(vßJVElaNn³Ùv®`vø)) ÑF]Á×4pÅø8ö²Hp˜:®æ`„K°\qnÑS‡àûCXn¥K¸¶Cb¶Ž·ÛÆ&‡ÇØÖæÙ¹>/{·Dd8ˆp­Â?„£¿Ÿp­'»`)¸?LŒŽî!`k‰Ò X+¼– 7Ú%\A÷p<.[‚ZÌ„;Íɼ@Ájiã´|Ùe=yƒŸ`óᯠt Ë“3È%L÷‡ÀXdÆvÏ]‚å…@§tFØ•V…¬t ¯ÚÁ]›æíx¥ßÞæˆÂR–¶c§Ã¶ù܈¢ð~r Ô“À"°yàpò»Û³¡>ˆ”ód©ipX›P–áæn¢ø¯Mà =Þûèš{âµ;/ ¦â1ýí<¥vààu¶“²uÂ6&oX"…UŸÝÏ)!`ê¸?LÌXÞØ5!Á†×¼è lã©[án¥$¼jÛVpÝ=çqrnEV-ÿØ6‚m¥jU]q¤tóënìòÂs¥°°ó¹Hp¸«c¢Õ×S±#yI®B0r@hDP¸‘.áÒ Ž̰+æ0¿70•‹vÈwGý~v(ØÆ-ÁHb¨, äV¨,¦Üò"L©<âàreØ×ud°œV3­¤„×íàKÓÅ’V=wf¦sS»èС•0ÄÅ’GáÜL/+Û è•.ÁaêÀç%Œ²âB‚²«Caãp+œÂ­t ×vÐɲÍ+wt4Ý¿«…ˆ”l>þpò˜aF&‡ï¬.”W &ÂN SœMa*Ë]‡„½jOE:vÝž:­EX) ¯ÚÁåtÆuRŒ“ Ó·w©D]‡°1EiÇ]£ßyïl=ŠƒÕÈC‚`éPÅZ`ÚAIhÌv Íó!Ê p»]µœÖì°޵vÓö²`ì C„¢ ˜nfÔÍ~VN0öápöaR4¬¯B€@j¸?â8¸H%{ÁžJÈhä4 ~wûœýÚmÌâä½m=2ì^¸ÒlJõ­d›0m27›‘Þž&…Ýq}–àÒ›æÀ9Á_+î¡úùVà?Ë61_LWRÀn•Ä,ñÌÌ b‡3€T–j.Rõ bpK£ÃwžÀ=V KäÏ‹‡©i¤Æâd.aëJÈÂÊ@­+…Œt—Fp¬·M«é³íª˜tð0nâ=¢vW6ÉwøÎãÛJÁhû”à0u`Șvf|­.ÁŠìó0uF:˱bÂÊpm‡¶-Y^µs1÷²`XÀPâ«9ìZ'=ci» ¥.¹‚!ÀÁX@f0öÇàÇ^ÝT@ŽøïnŸ¸¯ ТÌnxØí Ç GØÇb+²Æ2˜ÒV³]a"–„±"K¨ûvP0ORÁýab·ò]€ÕŠ®SA,Çh‚ÿ.ûœûb¿ÜúŒÅÁðËÌyyY05é¶^.ò‘T–oÇrCð ÍEçEÙ!!ࢊ!“9\BBy©#©È´Â)ÜJIxÕ•**•å&ÑÕD˜…JquX¶Wݾ3TRW «žU ož~狽ÖK‡tFrOQµ QÈÊpmƒ¥U50JeÙ–‰Ù•kI-fY=tÓ42õV,EXâDöÿ”à0u`—E˜œÉáX(gêðÂ9Ó §p+]µ1vXLaoŠLLgEëº;|uF2¬oÛÌ.XƒG]):¯ ·ä‰¼ŽaÂý”À„û©ƒ°}¥p+]µìoã[ñ‰­î,ª<1ǡ᳙Ӈ{ÈG×@=P‡Ñyv”›rû2'»ƒ”%4;ïQtî’™êàâ‹ï6¹~„yâÕ:ˆ{çzxC.íË‚Iܱ2ÍVcÃò«« ;— c/=ãÓ Šw O oÊàuL±{ñ‹B Åî•i{èpXÅ¢sY(hå”pm·jëÎebnêh)LÿDÝ~ƒwxAv[F“Êân.žæ83/Dbòg°oL%„ÁMp 7Ñ%\A¯jßq(H¿z™ˆ]÷wWŒFÅ‚A¾“ЇEù ; G:EßÉᦠøaÂXmXäJÂÖUëN:‡[á2Ò\Á¦#"VÓŒ£~`ÊÉkª-ÍÊàýÔ¿nã¬ÃwL)y¡`ªÛ”à0uÀ£&éøK°|“¼è ln…S¸•.áÚ: ›¢ö7¶,<=õ÷Äj—çÓÆþ]~Þy-F°;LéFî˜y ¥²&=¨%¼D*Ö,&-Š-MÖÅlî±lH<+–·r²$´c°7P}+(޼šX0–ÊÕ—X¼ŒÏÀ¬¿)‹d"l–{ Nœ+p¹:vàjñ›$¶«ÅŠõ6ûêð†x>Å…÷(œªE`Ÿ‘ßpe¹ð‚ï îôI°ÊÑB„37'"1K7l,*6ß #œÂt —VèUxñi„S¸‘.áÒ Î\Û¡‹@¿ŽÍ1½3Ç*±¼¥Ý‹É"#Õa›^vÈ‚¢näp SÖÂØ™:6’;u,:ã`ª¬p ·Ò%\ÛÁpÆqj«cçÅ.s²2ÐÞx6ÜÂ)¨áqòšÁÿ£ŠGPXºˆq¸„€©ãþ01J‹t Vq:¥C0ÒËhEP¸•’ðªìi¯*>ö“Õž'†a»| ,WŽ–˜çËbÙ+6a.©S´­±*©Læ;¦4N{.!7ªt„Ñ9i„¸.àÚ eÏ#‹5°Ù0GÔÓëôTT°EÒîX;4;j–N‚ÊÜ;çwò1Ñ QXã+øsÕp@‘.& œÀ t—pÂ\ T¥çÅ€9/Ï:ˆ´Ü0µñÁÖ»s"‡Sð€|H˜:îS7Š]Bnäp„ïÓ Q„•’ðª òÚ9£1‘ÓQ øÈL’®<ûlõD}p|ç‰Ý´RØÙöU‚ÕNÜD”N;Ê]EîžrîF8…ltkt–¾Ñ£«:H/Å\3’ NQ=± 9±YA[Êc™±ü^wC¼¬Ã•#¨ƒæÓ¥Çà.‡ÎéS:A¬‚¤ž˜iù/Ö«¨Ò©!ú0ßàebìúRÛ³D5`qñ’by.Sð±àÞŠƒG=C‚`éPœ˜Î{À]B¶ðúTAé§& þîF;ûµš˜Ï§D÷@âdhئÄåœ7åF$fƼ\V ¦]æ¿H‚í{œcŽƒ’€òdSAMËçò»,tîK ´öB£4X|Y08‰T,Ox?€³N»ƒXH%’ów»×;Väâq±•0ÉÁîE"]þ®;D§NáöQÀ«èøõÆíè²Ëã ÌÎ'¡Ø”e ˜ƒiçï9n«¼v …@Á°àw˜–€›ˆKªŠƒÚüù©, Þ# ç?»yÎ|m€ª2{Î2Ãù¢Qï±²5¶Å¦± wš¦°ÒìòJq²ôFHp*t«¹“ÁØ’æ\TFA@án¤K¸´Bx:ÑÖ¥*p DíŸQ×ê'ÛÂ÷ž§;Œd} [råsJøhºïÕ•‰ !€Å7§ ºַ¬n¤$\[¡å¿äìž,Þw›‘ÛlO£ã:8)P ¯¦"¦–1Ó S–ÿÂT]ûêö™ú®ƒ0¼Yán¥K¸¶/Í* êÄÇÁ;­„Ø‘„\vsŽyð¹ÇÓ¤ÃV~ÞÆÀI`×(n ÀT` ŽÉÌr©2óØ5ÆUJ4Á d Ø¯ @›ºC,Œý`.ž[!bç¾€Y%OÇ2I'Š¥¸™®.{ã_—à0u‡cXò4$X<ÉÞ“ël²"(ÜJ—pmÚf3)JI·ÎºlsâBž2æ¾'d‰c`*;/$h÷rØ6>pýdð ¤p£â8¨ƒÌ¸¾½O႞ʃÀmsþ«õÖ¢ÝJâXãí*­‚²öB'st¹_ì Û϶;ÈnJœç  Šo•)!`ª0ÇØåZùqJ°kòò¢ƒ0JáË §‘pmÞÔWx&íÖ´LêãàeW¸š •}Çð†€·Ãv ÄŽE;"ðÁí°„ÛÕŽi<Åvk>¯ò¢tÁ&ꃖ:ëb6ç«ÎÜ'”ŽÑ½™ÂdÞT‰‚Õ[ɪÌ;.[€ðxMZd¦…»€€“ªVÆN²ƒC¶s ùö·J.]?¹iÎ÷Êxv¡†<Ûݪñ>§À]wÕ´ˆ›ò~œÍ"¶1‰g¸'…qmSBÀÔ›"…±:•¸¨@ o€ ESÆ´Ba¥$¼j?:¦(•bqN`v^^`‘,p®ŒyRÆ×±ñ)8EÛÈá¦ãpL浨!ÁŽ>ÖEaãp+œÂ­t ×vpª:7]ƒVÛƵ1• Q„åUÆT“™jâXŠÝ^WŠâ×ðJ‚ÃEùÅ“yÑ]HH‰®ƒ°fÄ}¡+%áU;8Ö—õÎê¼±ú\ mÌ:b£Ý®d°Ý}Áº­c_)N|7S‚`é0Ç4ÔÌ –çéŒû=hEP¸Ý.áÚ¼·Ê(1’.Q­lbŽ&'ˆ'Zm±±ÃI*L»lžO*ƒÛàn£ ¸¶‚ŒÇq 6ÃÐÇ‘¸µÓ¬ÎÃ-ÜÂ:Û\Z¸4 ŠÝﺇ¡Âv¿fb'ƒØò)R!øþF8…é®­àBåd”Ê6[*Žáé•bE!PC¦3,fi©l_fE« (¬Ï¦ãpÌ~2çÝ%ÆÊBaãp+DVJ«v`FÃîË©6/ &7ú-™U mé¶!äÜ•—Ñ4?aÏg¥8xmsHp˜:ŒÃ1v£|#J8ÎÂÜ8éŒû(iEP¸•.áÚz"¶]Ší‚MµÓ¦U¬ÒûV˜ÎzvÄ8lþàîñ8QTVÓ ^ '0»j ¸„¢®£x%œ°Â)ÜJ—pmßÛÁt”©NxoޱZÇ6Õo8‡:×[Öp Øé‰ÒAaÙ%¸ž¤ó*„A!ìÇàGÝë©€ É—þ»ìsîk8•IÅ&û3ûª90ov‹—㣷ñɾÍï núUù:ýnwU—…ÝᬅíÄØÎ¼x °ž¶h Œ›%e1ÓDJxÝùĬz‰[Ùù%:&)<´ñúåž¹˜Ä½U†‡[V î{lç"ÁáÍ—›ŽikF—`s–-(]‡`øÄ´Â)ÜJ—ðªöíj2;!œÌº™˜žT¶}géˆ1u&íä"&DØüžÞÉácÂÜë"Áaê0ÇT^ ìv‡²è ln…S¸•.áÚ.ª­úÜÁ“+g;&Ÿº6+×Ýr&*.y©Ì("Œˆ}[1¾F SÇ\‡ãœ3oüQÑú±Ò!øKýIáVJ«vзʯ¨¢MŒdl8:xç@cicŽZ€¸‰tÓ…'"h~)%ù¬:g:1¼,=ø Wy® ø20,p7Pü×Èc¬xÊVäNL纮5ÜzeÁlIÙNŠEǛړal§°;M,Ìí¦ø˜ÂÔÆYÈ%ŒoíÜ„ñ(d…S¸•.áÚù! ´šTË'0Ãü§NÆ[•Ï ~ £†W±‘Ã)ìÈ"@ 5€žˆÂsþÁnôÛ¢€0œ™ Š0Q^5‚¡ž¾1{ÑJúÂÍÌø´rbä“ùŒg\lŒýÓ®â|c’Ü•)мOv”Ž wgUÜ„d\1î¸[)$¼?LÕü=,û+Û¹”¶Û7U¥Þ¦pGçØ˜…nƒ‘i³Äƒó Ø=™ß4!/}œü¶PXR>nÛõÛi¦ãpÌ~êhŸ$Xò]]t¶AÆ­p ·R^µƒ«Î[…-ƒôå‰iÈB¶à’d9y­òv@ð½c??å…ƒÀ¡U`­ºMšL{%©‹Ü•°,uú9l÷+ké:µ¬2µ‡¦©À…xÌ5·©·¹±ó:´Ö}/k˜Ñ +‘Ï[t(!`êÀî—0ûŽ©-$”ý©/*Úˆâ6èw7Qì¯A¿©Ì%Í…'“'¦`z³däðìHÓG2Æá 6qtº~/«“;ÀìKÐÀ$l‚û¦t—¿ù 4 EØG¯À"esvø~™˜ºeUIÀí3À—ÂP®=Áp[™ðU÷x»ÁÒaŽi’°[U‚4uF€™V…Ûí®íà—¸ÁÆù=®N“U,Yö%ðUœÙ7RìTAüº£ÄÓäu˜ÒµôfÓi;ò']%ñï®=~wãœýj>¿ÁVYs/*?˜Ê@3o¨¢˜-ÙD8žOXÀ«ñ¼ûP˜`JȶBEö‘ÒMðßÝBñ¿j‡½Ca¡=óRø‰©ø°hÒ6ÛÔÅP„Bác¤ªä…mgá†SI˜:´Á LA4cJ°Èã±è |˜V8…[é®íà;Ë•ùô¼¤2ÀáršŸ`Ÿ¦ÈÛ‰v‚™›[÷M»z25Ó)讇Œ)9Ôè,8oÕù—.ؤ?(Ü>—°˜Ï!ƒQ¬Ñù ¦f+~3€åç+ÅaAò)@`ò{±±¨¿ØË©óRà0Vü0aR¸‰.áÚ6¬0WÝJ¯ „=1× ]»#OdS2$Óc9žÈáGC§‡©o˜;.À LJ°Ç|Iêl²"(deH¸¶ƒÌm6ØXÀœáyÇ4löÀÛ5€Á³ð` 1Q¦ÐÅÎÐCHp˜:f iµ¶¬p ·Ò%\ÛÁÕXbž™yÆ;sGc,NýrYaþ;NýÚÍ6Ïogíù ¨¸ÏeJp˜:ŒÃ1¹3Ë%$•3s„áŽÊ §p+]µœ í†8¥æîœ …±@r-ôIweâsb…Áðjî®9E9ÈáK‡q8Æ Ý…$ØÒ!{·´Â)ÂnIxÕ¶-ë|ô޵ÐË‚©*+P:#D‡—!ØC"Œ~9NÑT–Ñ%8LØ6†Õo¦V¿™:ÃÁ‘NáVº„k;øMާ#ê°Ûüñ²` Ö8;n„Ò4çÌ k¯Æ[@ÆÒ¤ØY;$8LøŠ…±ð¾AIØ 9\a|“²Â)ÜJ—pmg3Ä8{ÖÁsǘUp˜ß‚ÿ­1Uç< cZjóçÆbdÁ0…#¥Y˜†²3d7/ï¬Sº`¤.±–€À4g]Ìf;¬>Iå¢IMqŒíšUž±œ?»Í©Ì3Œ9ó\18¢²÷E‚Ã±Æ Ìx¨Ùìn²Ÿ:’V8…[é®íÐŒý¸Ž·sËË1…uœ->‹ ^vîÅ„ÍUc–ÁŽõ¤¨;9\‚ÃÔaŽI̵ O'† 2ו­t ×v(“7¦1¥á•@$n¶i1wûÙôµ€±9… 1ƒÂ&fpH‚ÃT%!:ãŽ.`k•*¥B0òHiDP¸Õ’pm…rì¹.²+¸¯˜¤«ÉO SÍwlÝïÂÛ9u”EÑÐð¦;©c›}\‚Ýíªh°lp·Ñ¼j…ºZFÕ®*8ÙÓ„Ø9‹Ú=³›ù…ÅÇ—´xça…}%h¬É†ô3!ëû„Ë=§‚èf2Á ÜDpiƒÖ,›îÜ9˜¯=1Åqs¡ßE‰[e­’Zù¼ Á)¬Üa*SBÀÔw,LáfcH`áÄ©ÃK+N+œÂ­”„WíP/+z½§*9Æ"þŒ“}1ÖÇ:ÏfEüN_Oaôç³3:,ÑèÂØ¢U-¦l×»Oé‚ѽ¨<(Ü\—p5_«[Œ8:Â\?¦úž6ê2bJçAÁJ-L}¡°Cm‘à0u(O ˜1|ƒÃ%l…qL×A‡¬p ·Ò%\Û¡ØÊÒêeb¬–%OL!ONQíÖ¯Ë0vdGÏ_2òôœ]`Ü|ˆÖuòܶçÉ š/Xe„ÁâÕ®ZFŸ=x)"óú7”Y©¼d§©TLÍ#—N AÄ Ž×.IÀ„«ÂOÄÁͬP 5ºŠªëÂ'…‡Òn×0*e;ƒº]a)!2 ZØUÍ=Ùx;¯ëq¥Û…„ iÈ ¿ÃÉSéƒ Œ‚¬ø$ÊKƒ`c  A@ƒýÒ9„(ÜÖxåÙËDØ‚CcsÃaÍÌɳóÞ<Á÷8¹–<I˜*ŒC“I8tªë¬ ¡­4Ò\¡bQõǤ†Æ64lš­¼NÆÊÛå“•µû„Elt`¢7åH‚ÃÔ8bSÞÁIIØy tÆ'A+‚BV†„k;¸Û\X¢r¿ìeÁXœûÁ'/^՜ݻuæ€mGøØÉáV³¥,κQibRÑu ’°é8œë Œ]mYán¥K¸¶C)£»ìö5‰)£Â&Ld^CÆ›*š Æ®pC‰Ó °k\E‚ÃÔq˜˜Äª0!ÁÂ0‹ €Øú” úÝMtök#ÔÑ6Ud/3è8U{‰t(J¨\Â3Œ…×>¶´öž'wÀUűWÝŸ„›ST¥Ç…U> íNËœu­sH­Å……]9„±ì©©"¸QÖFQ[$”0rMT2×)v¸çS‚ÃM•³'¦"áqJØ™r:v¤›Vˆ"¬”„Wíà^Q¢Ÿ²Ý@71ê#v`};™ܹ)“Â&Ήثÿ0YÉØ. ñI¸‚Æà8è®M ãd…´³s/ÖûI¥WÞ1ÁMc,jxÖúô½ØáUûOÜZUÑwI¸´§ˆ–Û»*wZ]Eª¾ëF8…) ×VÈkÒ6})ÜP™¦ÛáL+a¥£ú8 ¼ †Û„â,AÀ»ÔßÁ¢Õ| r"¹¸mß¡,â Ãm’¢%àU¸úß=µ{îqš>0v)ˆ¯å“6 íO{Àwž†Î+ÏrN ‚¥Ã8Óˆý±ô c8®C°âi¥p»]µô ö–Kæ!ÇTfÀãš”¿3t  CÇï<)˜–ßÇgrgw˜ àã S¸² ™éï¡0Bå2Á)ÜD—pm½1[ÛB{(¸ó`bŽƒUΓA[Ú¢¶sâ« ¬ðyß bu S°…áêwJàjwê lÞ†[!аR^µCµ8˜g‹\ܵ41*8`'wq—ÎrÞ*wº_´gíÊ¢fÝ"! ~\80µÊ/’„GECaãp+œÂ­t ×vèÐvÓñ—î+/ÇÔ+¯ƒg-,‰8•ùi-`trÕlEÖ†¥K˜: &L>¸|r éàòÊu¤Ã×_n…S¸•.áÚ…±1Š•ÄKÒ^ ¯aÃÕy•ôá\ºÅ鎀ÅæùÛ Ð5….ÀAj@[˜ Jño¼vÍÄusÇ)”c OLÔvÝøÍ­ß+³9…Ù= 8sv¨`[`ì ¼ ÌË]:«8½sÔ€•¯v¬'?¼àð!bbl›oœvÜ!5uFìQV8…[é®íàÆCå•1æyV&¹9&óþÈjÎAoÖ>¨ÚX2E0¶y´=(ì>€¶Hp˜:°aA nwÍ!Á¼MœÐ‘ÁÆ!+‚BV†„k;¸0«H¤È=ÎxÆÎityêóò'šƒw¬ÀŒYúdxópŒÎi¸€¦s®¡ÅA7!(ÜD—pmGùýdŽ¢—Óy¾ÑzêS Ì‚±°I«ß9/´•â,â‡Ã Leݦ°L«u»×ß +œÂ­t ×vha¶1'ȼv6Ǫñr¢´"Šôâ•Ûõa5`sÿ’îpŠŒêã!!`êÀRN˜ÂµqH0¿!/:£{Ê Q„•’ðª\M£zg«*F°3yÔ‡³Í“ iI<Ï! é´üÜ6ånˆÛa Ç2Z˜£¨n±WFACz-ž &õNÀR§b]ÌV ‡Þð¾í¼Šhb줦6®ç›ço"ŽC<ò®¼ð¦dµÀn¸†«·ÏÛ 3ôf_ É'p]À«V°ó~ò¤ˆ•æGõÛÀ¸>Ñî@CȨalËvÚÞÆÍz¶Ôšg!ƒø¤Ü«'LAÝsg·YoÕ¥_¿»ub¾šoM²«OÚx¢¿×Õæ # ~oÂ@D|r¢çc•÷ÉYþ1Yþîá×cþËô1† Çy´ù·Çv£>Zé²üˆswû¯å½ü¡F!ö\P~?4þb²˜ Ã%3È9ußdh †Gl¶ݯZ‹¢—|EÑÇLe`Î<³¿{ø›‡ß=¤íÑþÓ?÷—Ç?}÷ðG;¼t+'¸¥Çw¿yH¤x´¥x#=åþøîåá×·ÿúñÇŸ¿>¿yk/pKç-µÿãÍ[+ätžÇíÝ‹õm©Ü¾>?xóïþû=^ó”ñs<ìÇw†°?{óÖÎÉôá‘öb‡íàî Úÿôå§ï_Þ’ê-ßîï?øøáý›·iX2úÊí;ì²{_ŽÛ§/oÞæsÐ|ÿøåó7™²¯¦ Ç­'Ê¿ýýß¿y÷Oð$ì8Hw ~¸Ý?~½zþöÛ_ EVÊ`ë·Ÿúùû«®­ÿ½–Ô6Þ¿Ôþ‚V;¯±Wj?|ùî:íÊ~ ‡ä·ÅÎÈŽåâ[Û«RrüÕŸüõ›·gÛR½}¯Bf¤²-jöô”6«CmdY¬ÿÓÞH>­wˆgø0“ç­uò±Ø}|{áz÷škÌ@¶;’0Yˆàèíñ-b£ÿé|y“mC0õÛïGÛpmY?oß;Þ¢]އûáù½Cíöñþ¾}ÿbÿZ‚Ïí?·?퉮Œ ­þ0Á¿øk‘õvûË¿ü« ¼ØëjFÓnø%CÖó'YdÌï|ÿñ3`Kxf|vÁçíË×Ï_§ Ó°÷ß¾=ÛS9Ïm+éöŸÂ[¬ö÷4^Øèœµ&>ŠŸ?ߟ¿~ZðDΡã»ý5”ÕÛ¿‘¶ÉY*¶¿·]­üôõùÃÇû÷ÿüÆæ÷áÜžê¸}ûùëoÞß(èï¿ûeˆøòM´öÓççßS¢úÕ÷`ë·ÏßИ^Gßþøãgÿe¨Çó­Üo_Ìþ~ûþíi|©ÅHº½û-?¾hî_>¼û/¿¾ýæË§OzýÇxý?ÿh½¦cD¹™"?< ¿ÕÛïG›¿~sÄèŸ>`‡»Æ7ñ[ûÎõ[¾½ÿðþ'&c¦¾=;e»}{ÿòÓ'{”örÆ,–n?.?~÷Û÷÷ocX³)Üþä/ÿêW=þú¿õ×ÿnÿ4¨þóÿöÄ6Ú±³1š¿µÓvz··R¬‡ÿù»1øþÍÃÿe°%‘endstream endobj 343 0 obj << /Filter /FlateDecode /Length 86416 >> stream xœÌ½]69Ž%vŸ¿"Ñ7û–=R(¾·/¼^`±{áÙ6v°Ó¾¨É©éíAgwOUõ|쯷ÈÃCI‘ù0ž°1˜®—LŠŠ'B¤$Šú‡×é-½Nòöß÷—éõ·/ÿð’”ûjÿyÿxýw¿~ù·¹®¯ÇÛ±æõõ×÷DzMóü¶­ûëºloy^^ýñò×ßþ×ï~¹äåmšæo?üóŸÞ¾ÿ‰ôöíù¥ü»¼Miýö7?ÿöO¿ÿýÇo¾ýÕ¯þê/ä¿ýê¿ý„Ž=}û«úGüu®ôúíý?þø«_Tµ¿ $}ûÝÇŸ~üã?þê×ùýû¿øîÿþõ|IéíX–ôúëÿôòëÿ鯿ýÏßý2Í)çoÿûOùŸM ýÛ_þjéšûÇ~ü›_M¿ùNÕüÛ¿ÌKßç*RJzýeª¼ú—_ÿmíëÿñ»ßþùǾûåœsU·|K;þ=¥ãÛOÿýßå­þ3¯ßþé'ò¿ýüßU~®ÿÞ¾ýé»_V‘ãÈÇ·?þôó?þî?š²}þö§øÛß½ÿü»5ÇR»ÿCûã?ýü»ïþŠë£ûãߩⱅïÿöû?QÅšš†åÛOßüé÷¿ûÃoµ³¿lÝãÓ“þýôó÷?ÿ®¶ôþÓÛw¿,sS¿ýº>Pù ã›¶4­µùòí‡Të•Ü¿ýôçÿîû÷êÓÓTÌßþøþ6â!ÏÃC^Ö·yÝêËU›ÿöûþîçï~ý÷Ÿ~‰ù­ìÇ¡¿þ¦-d5á§?||ÿãïþ‡>miyðˆùÇñÛ²üùï?üXߨémZæ£þŒxPëñ¶/ÛéAýüýïþð]Þ¥oÇ·ŸUÛ±íßþ¥j«OmZÒ·¿™õ×ÙÒ·ïåŸYß½?üñÇüá8Vü–ò—úŽþCg·?oílë·Ÿ÷ûêƒç8| yzÛ§ƒ_@÷Eþéûóíãï~üã?ýêý7ßÒ_ÌßÕŸr:Öòí7ßñC8äãü—_ýâ¿°/áôAõê~ÿÇŸcŸ¹¦åÛG}¿ú>ð¿øE÷ýþûùãŸþÕ/¾ÿéø÷?UÎï?ØÜÿ;mØcIGê_cÛ¦ÕÞ¯ƒ—kxrKÈêouðR‘“–é­,{޵äýHÝ+ÊÞÔ¾~iY^ßR)Çó–ýþýKÓ–·ußÒ³¦Õ_]DêRâTøR0ûÿË!ëñÿû®ç+ëæô6oåiëìwø÷¿~ù?Åëϱ¿–\}ͼ¿Î˼¼ÍÕݦm+åõÇ^ÿëë^ê²îûòúOÕ×ôõï«ÿ/i]ç·õµŽåÛ[}>^rª#PvÆï_þËg2æúÓä 2uˆ}Û÷^ˆœNꤼµÖÉDaEʵ{Up®Ýê‹u©¿®¨)oÛ†¸búî—ÕÊô¶ìß²ý³lߊþúàRÖüZÖ\¥V±Ø8ËT‡Õ\Я/¤ä­_3HíuÔ®¿c'eœ^Šú›Tßâ“}—~ÿR@šë¯¼-ÕžTUìÞûeC—³þ3¿UWÒõþ«‡/ÌéʼnÚÅ·éHûð{T½óZ^—yz›kç«Ißì«ý¯ÿÛúϯ)ð;=ý¦kZêcýešæ Þô}ÿç$²]—§·UnuGøÁ¿ýsöOBûÆ_Ä^µcÞª¶ýu¯¾n­ÿeßÞ–ÅT÷—d€ùñ·ò‹o¥Â¦£¾jðy,¯õ—žæ4WÔK}òõ][*fÛ÷¦zÚ¡%ÕAa}ÜÒ Ð|ÕQáñXø¨¥:*¬ă>¥:*l'ój˜wÑR¶Ç-é›±/ãø¾ä:‰ß>ˆ¿Ó|2/×Ð.Õ7úO[û_òU\1éû¾­gPXœ]QadñÉ߆yKtFT[ÌGÕu\d§òÙÂ8ºxØV_äcé|…Æ£‡GÚŠCŒGÝŠbŒÇ0Œ:tä|ÆQ‡ …QÆ#kâ0ãыǟ¢m¢¢@cQß¶Ÿ{ŸFICEQ¼Ì¦±I.#,3{õ–ÖcÆau¨yÏ#ò"Î@dó*ãÓÉÖ8Î耣©q˜ÑÁ¶eÄ]„]¶Í#ò"Îø"ê#ò™@C_¶”OÖÞ4€|*Ôøòí ã&ÄM(Œ'Ìyé+xbAEÔï8²ø2¢'2/šPND5Ž)ö¢ÑËyܸ*t„­â8£â¨â<éZ7ùÁã¸âÓôŽ 8®8ÍÓ ŠÃгO$*+Ξ¨8¬@¸Ô<•¡¢°¢ QDz44™ FhBAHàBqö#øÐÛ8H:¶Àš (H…S¼(ŒL(Œ’†ìXÍï5_D~ç8ø7E>¯8Xô§é5 „Ÿ&/„Äîc”Œ4²¥:"cÿÿ•£"2öÿpŽådŽ‹DƦ¹``È h2±»7§-?Xæú‘îžó¥úQ¸'œý®ocJ㓸rö+_·ižÄ¥³W¤,O¿MG‘áâB`íÅ ƒ™—vÆQÁ£{$~©o9O' šP¸¸Xu<üd.‚/C C^煢 àÓd§~–ËULp^[6L|Zï7Pœ§®Š#‚ó˜o 0 øä"Š—’¾è:J  0>0™(<0‘0:0™p½àìÁ¹ˆÎ~Ö@q¨ ó?  0TokÝÏí„dâ8Á瀽Ú8Jøú9]ÄçµE!§`Ú0q„ ÎJã«î1îó©™8>Ø“<è"4øb´2`|åa x|^Å.^ø<ê"PxØÚaÂè wMÀ€OD §] ^ zx"|áw w |zð"@ø""ð*BØíã®?Xpa€`2ñA¡«Ñék¯<¼—ÑÁÁ €qpðõ×}œ†«%U‡tµqšú;&Nƒ©£âè`\mvPœ½£âðàä鉺ˆF¿â (>p¡hÓá줅 .Ç §¯!;2޾A‰Œ#ˆ/"ÆAÄNÝ‘qñ…WwdH|@Ÿ“á.ãˆÏK=޼ˆ$>o/9ò"–Ø9TÕG‘FdL|‘rCäE4ñyKËñÄ[L޼2>§²8ò"Êø¼9åÈg¯Þö«Hã´£á¨8Ô8msýá¯ö&ÎK ŠcÓš‚£âXã´¨à¨8Ø8‡ DÅÁÆ)l0P¸7áBa†Ã'oET°á2aBç°¨8Ø8‡ †º 6†)¾ƒnÅÝŠ5 c ºks/Ö ê^¬AÔ­Xƒ 8Ö8%7Äçý‡Ü‹5ˆŠcóÐDÔ3±Æ°qâÈ‹Xã‹(ÅÏÄcBà±ÆiÜ&ò~¬Aä3±F¿„àÀ'ba Á€ÏôۑÁƾ”È8Øø*d ò©`CB†<<رF™GàS±ÆW-Æ¡ÆWA ‘O…_ý$Ï„_¾xW¡Ò$O~à*Ò8­OØù¤0Î8¯N&3N‹†¹dè^Œa [!0«g÷c p5ÃdÂÅŒsè`˜8Þ8GŠ’%Læ^pa˜[±…an…† # ÈÜ , r/®0н°Â@aTqJ7&&*†dhƒD«§Œk"â€â”SAнµ Ý' øL41d¿ð~0a¸û±„ï‡|"’ vG|±ö ÀçâˆqéÁ€O…ºò°¦øT¡žy€=B¬s{>‚Ø–÷tqjï©ø¡_1ÜEôðys‡À8xø"ö.…áÃ9IqÙ«3¹ Îc%AqqŽˆ cˆOûDÝ "ˆºEèfATGPèV AнH‚¨0”0¡{±A·‚ ‚nE…Ç=´t'½Â1wò+çu:¢îdX8èVŠQ7r,r+ÉÂQÏdYŒƒ‘ÏcÌ@ä3û$Cò ‘O„§Ýƒx£ Ý-ˆ¼\w?ºò2¼øÂ«y?¾ òùcO‡Ç€{.ÄÐCÈÓ:"Ÿ2¶e>eŒOõ¹(ãµe‚8ð‰(ã‹Wç¹(cHrdfœ"†5%y WaÆ/8æV”á¨[Q†£nEŽºen‡¸Ð­íG݉2å^¸Ð­í¢¢(£ ]dh~ÛA£Š&­IP(<²‹¨áÁÛr6œtG…aÃ) ÚAqØpªÿBTtvãt†Ü!qØpZhpÔ3aÃpèÍ‘OdgŽ>Ü‘O¤gö#%qÑ© —¹›ŒéÀ»Ù˜¼28îvÈ`È'C†ÎE90޾X¹wäÓC9ŸN¢ ç'ò*fø\¸Ä‘OÇ Çˆ»28înÈàÀ'Bõ/c{OE Ö¡#ãˆáìÇçjÞEÀðÉ‹&\&ÎC·‚èÀenÅÀÄ¡€ÉÜ‹ t+0L˜L´¶`2÷. ŠêFQ&òù&¯|Ýñ[Ç7‰¹uz“ [‡7 Ïnêêøvú.¼ÿ©•nÜ$â™s›Ã‚ÀgŽm3e/Nmòùù¶9éq†ŸwúÛ€{ÆéI"Þtú@=åó‡E:C—ÿÉ}ËÀ~uxó“k&(tú ¼~Š×Nœ Àí»Ð½GE .tËÓºz …¾Þ„â>…BçN¡ðÌåƒGtáï¿þÉbÿà5»pøçe/¢â‚M§óÈŽ ]þ)WÑA¡Ó? *òúÈpÜÎ}zÊ탑åš>MZ‰{¦XðîÈgŠ5 «ÕD>U¯i˜´x|á.‰|¦0ä0£#ð"&øÂ+y<|>WQÁçi+qOë</¢‚/fæD>èK´l뀌ƒ&t<6ìù( ŒÏâ_ys¿€¸E$@d œ†è}–jæQ$ÐdBÇO¡ÐñS(œÞS(žßŸ”¡â>…â)þÙ‰œ}p™ÐÑS(tô&;z ÅKùžQìù¿~Aâµ}Šý9%(vô§Í}GÅŽþt*ÁQ·=A÷½¡"G*ÀâûŽžÈ'}?Û ìÂÏá:‰|º*#çS¼[–ÑqQF€ ½ λ ~šBOºäa6Jä…SþbæLä^Yc–…;^8å×#Ö4¼%N™BO8å¯{tß)xß)y×)î_±$Odì”Og«Þx;®æç§ÑÝAá.þixwP¼Jÿ¨©È»P4a§ÐÅ„ýÁó¹ðã§•oG~Üe"?îB·ê#:vºåØuñ;&žÑŸfçDÅ5˜O«ñºåéukJï¨;tkŸ¨ÈÓŸŽ:äöJ¾#ïyz‡=U~¹?²æÈ§<}ï䈼põŸg¼(ÁìïÉÛjì#ãý·Y82žÒ[›:µ<ý"Sz Õ-Çð£\ÆŸ|¹£ Ì.ôT¤ðÅóÿW„ D^-ì?~÷'õ޼»´ïÀ»ú¼{Ò€Àûñƒ#ãøáìéæ::_®ïŸýAqüpv=DEó~ ã ÅóþV_P¸âïBáŠÿ˜.ç˜0~ Ð­?¢.¶û<Ÿ›Qa@qŽ Š#ŠÓ2Q÷" ‚îEDÅÅxî×Aa@qºTÅAq@¡£š¦ú¨è4Á¾r`„<PŸ^Š»ÁaOßåÀ—À‹Xâ³Ã3à3wFé‘ÑuM½%žiyœ€q$„N #wÆDÆ‘ÄìU¶tŽ9 ãHâq7/#‰/ü.‘O­Dô[ñŽŒnxp¡Û[D>•#ðÅ»r;/Ðqw,:ð™zÃn™#Ÿ $úlTïŸ&päE 1z³e‘òfAн8‚¨x!â4‡%(N$xÔT¸0aB7㠢¸‚Bwâ b¸‚B÷â CÝŒ+ˆºs3„ƒn……aŧÁP—E}‰£ŠS‘GÝŠ*ºUt/ª0Ô¨‚{QQÏ\5dÌ9òéÀÂvxX|1{7äEd¡ñÿ 0Ž,4+™•‡èsäEh¡H5Yþw@Æ¡‚-ã¹/ãz*´X&tÈ')NäÓç|åˆÈ0´ Ð¡ÅiÅÀ÷Ï):òéØÂö*øTáÆ>ïÑ· 7:ò™jJÃÑ"ï—Dpä­ðb;ê«ww›ƒ [ÛÝ:Œà¨pÙ‚BwŽ#tsÛƒ¨{ÛDEÛ” à ÝÛö0Ô½Ë$‡~°8¾8/@t/¾0Ô­Ë(§ƒ‰ŽŠŒSÉ$G…Ʃ泃┇Sá$¢‚ã\ÏÀ!ÆçÂB޼ˆ2>ïþ:ò"ÊøbÊKäÅןï®&23ฬ)#ð™0c ˆ¼ 3zág" PîvXÁ‘÷-€üW¤O8òéœÆS‹a\A¡§«”áíˆó$\èùÚÏ{Õ?B %$ùÄ ý2a·o˜ ò¢ãé²£níqìÓüv\îqŒn×1qìprŽºU’ÑQQðàB·®œ"êÖºu¼ÑQwN=8(.§ô¨©;7Ut]œâGÅÑŃÇ_lýà5¸ˆ.ò— 8¸8ín8( .Ι‘Ž ƒ‹±´¢c¢Ðb…·(ó†ç5¢¢‹®Ïã—câØâ‹¡Ö‘qlñE2›#/b‹Ï ޼ˆ-ôcÙybµG>[ ;¼ˆ-‡iì ÈgvG†pÁ‘·wGy‘gñiCÀ€7â -qä3÷Q G8ùÌÝVÞ€#Ÿ¹Üjˆk‰|êv«!›×‘qPòEháÈgn½Öúyû^LGÞ¾“È‹{1Oç¯u+ws¯ÒÇÝz ºS)ÚA·nÆtT—P(¾û4½%*ŽK>yH¢âÀäÁ‹V5\&ŒCÚÒ Pw<øÁâ°ãÑSª1¸LtJƒBqTqÚÝpPUœFçjŠŽŠâŠó•öz"®s«ˆ c‹/0ž /Ú$Ôqσ#0Ž-Øéh´Úöˆ#ŸY·@ŒœÇ6ŸØ9%Fç5\(#¾XOqäEºæÃ‡xÿ¦!Ÿº³?4à¸gnЦюŒƒˆ/ÇùÄÚC†"Ïܡ݇ڄ]ۋ㇯¢"/⇇ßûEüp¾û…¨‹ØáT®ÍQwcîK®¾W»Ñ1·®ÍtT:œ®ÍrT:P(NkÜD]„çX†¨0tøäP‰ŠÖ46Çžs¼¦ñèa„'E\(ªõàBá’Å£ã`„â`âAÇ.‚ x¢ílÏE0qJ{pTLœÎg8è™`b8‰IäåBÅP.ÉQOÇ–{æÀ'‚‰qÜ‘÷W*ˆ|*Ù¢?žAäʼnÏç xq"ä‹"/N„|*àÀÛ5ùÌÜ£Oò"Ä8¯›;* 0εÄŸæÂD…Å# /¢Š¯fìDF7o»ÐEqZR$* >…D…ÁÃñä"x8ï§:*΋ÚÛZG£›L8(Îã8QaøpJysP=P(ŽN•ûˆºˆÎá Qqôð ïqôð¨©8zxÔ­0zxð˜/V&4G £‰]¿Øyð”/‹¯›º/N7?8ê^xAÔ­µ ‚ž /†ü*"/Ë!]ÜQqxñÕú.‘ñÅçÀ„À»©œ|º²„m¿x»€”Ÿ)(9®Õy¯¢¤ÃâÐâ«è’È0´øäêº+Ϋ:* +ʵ»O¨0¬xð]„Ÿü£¡â°âœÔì¨p­âÁ'{c|òûD…1ÆÃ¶Âã|¡ QqŒq.Aï¨[…#I*Ä_ŧ©³ƒ.bŒq0wÔÃAQŒáBÑù Ý )ÿp¡0‚89h…ăÇneP(\mp¡xëâÑ·Ý ˆ †&s+CÂQq†Ä)“ÒQaŽÄ©v”ƒÂøà\>Ѝ(6ø"¤pØ)˜ãtÕ‘7ËK:ÒÛtØJ áÏÜz9Ü_åÀ‹k/?Ô828gÃ:* ο£Â àì¨ uœƒdG…AÁƒOù"(øzкˆ Î±Ç¾Ò‹˜à¼Oé¨0&XtãjÿÔTœkÌ8* ÎΨ8$xô0î]qT¹t¹iq ºµìà¨x×â섈 c …1 ÝŒ ˆºµÌà¨;Ë ºµÌà¨0J0¡‹e…]„ úe<¸L%µñà©^œÚ8íu8*<µ1dc:$>zšåuã *‡ÄdŸVŽß}öˆD…¡Â§Hˆ¨0R8OÖˆ Äs:«ƒÂáS€GTœgÉŽ ÃóiaG…áÁƒ/ö"é¶ÿº-gT8íŸôÃ_×íŒ ý¤c]O_Ñ…§Ÿ4zûlaìêOå zúOAQ¡§ÿ´ÐNTàé](vì^„›Ž}“oè¦_7LìÖÏã¿b¯~€ :u“ }:dÂK$(;ð¯{V Hè­M&tÖ¹:™ðåOnÿS&\ÌÏ_½5a&¡É„^ÙDn] EP|ä׿Sè“?ÅY† ]ò§å€—üÉY"ðÉ.ε™zä_\ì<ÝÐ?øcwü`´Š½ñ§1×@¡3>÷"(ôÅ“>ñuA®ø“W5PìŠÏîÑ@±'ÖÅ—u9·9b¤páƒÑÈq„xZà·Ï …øÁÓ¾pÀ_þ®3íO¾  | ± {ãÓ°Zß¶|Û]ãäB·Î:*ô¿ ° ŘBá.;…Â)óƒg;a …^Ø„ntPè†)M)s«¦Q¡+¦Ì…/þZqà‹›ÐcßÛdb_ûàW}èl›D8á}ô¼bw{^š$(t·ŸF¢Bû)Ô7Tt«²Ë„ö<"(ºpÉ…¢ —\(žÌžÆL€®¨î̯m„¨Øƒž]Q± =97‚žw¡†‹¹Pì4Ï1Q±×<‡DÅnóË÷âÊm~ýš^øÍOn¨ž3O¹²n®O7Pà9›ÐÏÙPçlBçt¡Ès6¡Às6¡Çž³ÉÄ;Ídä9](òœM(ð”MèùkÃÜYZvTà9›Là9›ÐYkC=vM&p.ôÐS6‰ÐSž¦V {Ê1o¨ØUŽ£IC]¸Ê~àrP85½PÞ³ ž² ž² Ý™juÏU6ÔWÙP®rpO ¯ûŽsTGÝ™s6ÐÿÙPwügCÅþóËWêÒ~õîÞsŸ uá>O]©¯ñ½d/Ç„ÞÓdçé2¡«4™ÐSB&v”&úI“¹1ÁtLà6]&t’‰}¤É„.Òd{H "eB÷g"wnìqPì Ç¥IÝXÃuLè!øFˆ'‘§xÃ0±cgƒŠýâÙ›è–[&ðŠ.OOÜaBŸh2¡K4™{QAw¢b8î2:(v‡g'j ØŽ{§]8ï[ºp†g·f Ø~ýôî¹BÃÜò„ÀÜt„Šýày`Z÷·9^m2¡ã£Pèù(º> …¾Ï„bçG¡;eU*š6R&ô   ÅB¡ ¤Pä):AºSµµÂY!…îùA¢n9B‚BOhB+¤Ä…/üúºð†c჆ŠÝá° Û@±;<ûPCÅÓÄó„” +¬ úH …N’B—¤Ð­ì нây¼%*v‹gBTà](òƒM(ö{¬Ž_º±fÚ@§s¡;[‹ »¶ó°qdy™b×F™ÐµQèÞŠ(Q¡¯£PèëL(öuºç눊|eB_G¡Ð×™Pìë(ú: E¾Ž2¡¯3¡{¾Ž Ð×Q螯#*Z¥L¼yxvˆ† 2usáü<‹äÓô‘ Ø÷—c‰ŠßÉc(ö}g‡IÐ…ï;yL¢BçG¡ÐùQ(t~ºr~§a› Àù5¡À×5¡Ðµ™PìÚ(¸¶&z2 ž¬ …žË„"ÏÕ„bOuú4SZß.÷òNß&1‘ã¢L4%£Lxóèù'(òZ&:-ÊÜòY.‹"‘Ç¢L\Ñr¥ s+%ÕA‘?£LàÎ(y3“¹å̈‰|en¹2‚OF‘hŽf2§h¸å¤ºã£ˆ‰óKÇÜÅê44Pì¡Nk©ÄÄêäÖŠóKO^ È_Q&rW ½•ËDΉ2‘o¢LäšL&ôL”‰e"¿D™È-QæÎÊ¡aB'E™{>ªhøp6å2wÎ?6Tè¦(tÏO:*Š=…î¹*¢"_E™ÐYQè–·2ÐMwETè¯(9,ʄ˄î¹,‚BŸE¡Ài5¡piñÁ »- ü%n--:ê–ç"èÖìÊQwfWÝó]Ýs^DÝó^D…î‹B¡ÿ‚Ð…£PèÁ(º0 …>Ì„b'F¡Ð‹Q(tc ý…n92ÅžŒB÷\Y5¶\, ºÌ=WFTèÊ(- ºP\?ø<0*veºçʈŠ\eBWF¡[®Ì@7]Q¡+£PäÊ(º2Š’G\æVöˆ£BWF¡[®Œ Ð•™P´røÀ⛾¨[¾ {¾¨[¾Í@÷|A÷|Q÷|Q¡o£PèÛ táÛ(ú6 …¾B¡o3¡Ø·Q(ôm }…BßF¡[¾Í@±o£Ð…oÊÂäúž¿]ÖÎ?ûCÃÜsu =É„ŽÎdîù9€b7g2÷¼œ"'g"¡3™h3Ìd½0Ê„þËd"÷e"¡÷‚̽y˜aÂi˜É„®Ëd¢•B ýd‚— ÜsJŠ}ÒyÕÏ@÷|’n¹$`îy$ÃÜsHºç º#“ ½‘Ê\8#“ }‘É„®ÈdBO™Ø™Lè‡L&tC&z!“‰ö¯LæªÆÊè¨ sËåú..—‡ºO>ÈA·œ£"/äB‘r¡[~ˆ¨Ð¹Ð-Oä¨À¹Lä‹\(rF ½‘ EîÈ…ä2wjž:*š_¹Lä’\(òI.8%—‰¼…¢ÙÓƒßþV¾ƒn9*GÝòTŽºãªºå«tËY9ê–·rTä®\(òW&;,Š<– E.Ë…"ŸE¡Ði¹Päµ\(r[.ù-Š…ÂÙ’ ÝZ Ìsãk@šÌ=ÏDTè™(z& ÝóL†Š=…îy&¢"ÏD™Ð3Q(ôL&{& …ž‰Bá)êÏ1œ;Q(ôL” =…BÏD¡È3Q&ôL&tÇ3rË3tÏ3uÏ3u+ß‚¨{®‰ {®‰¨{®‰¨Ð5Q(tMºpMŠË`“…®ŠB¡«2¡ØUQè¢ôå—òÂwQ(ô] }— ž‹B÷|×ZŸàqá»(sÏwú. ÝJÈpT”A¡ØwQ(:ÙìBwŽ6;(ô] }— ]ìZ=xF±3£P4Í¢Lè»L(ô]” }…BßE¡ÈwQ&ô]&tÇwrËwtÏwuÏwuÏwêžï"èžï"*Jgw¡¸üäy\&*ô]ºð]ºå» }…BßeB±ï¢Ð=ßETè»(ú. …¾Ë„bßE¡[G³ò^äáľ‹2Q†» …®ŠB÷\Q¡«2¡ØUQ(tUŠfU” =…BÏdBñ¬ŠB¡#¢P8«zðûǞɄBÏD™Ð3Q(ôLŠ<eâƒW^¤ÇûR.qkcÊQw²%tÏ3uÏ3*öL§EBbbÇtvgDÅ“ª³;#êž§"*ôTºðTºå© =…⻆¾îÙ…ë¢P¸BH¡ÐSQ(ôT =• ÅžŠB·êcÌ“Ž}¡§r™ÈS¹Pä©\(Zt¡È1Q(tL.9& “ËÄUO^ÀQ‘§¢Pè©\(òT.L™\æÎ½ŽŠ<•ËDžÊ…"OåBwýMª(t#ÑÏ!·\—£î¸.Ý:卨uQ±ë:ù;Ýò]ŽŠ&U.t§¦Cݹ`‡¨Øw¹P´yåB‘¯r¡hVE¡Ð5¹Päš\(rM.¹&ŠSÿ¾þMb_åB·jÎs–8á^QC…΋B¡ó¢Pè¼(ïfG/CÅÞŒB¡7£PäÍ(M³\(Nc?{ CÅÞŒB¡7£PäÍ(sáÍÆü¢BoF™Ð›Q(>6üàE1— ½™ Ý(xá[g‰uá;þZ/ÜÙÉ_Wsö†Š½ÙÙ{³qúæ x"vvDE»[.;³óp ÔeIŒ“ $*ôn ½…BïfB±w£P¼fø ÿ±»£Pèî(ÍÄ({7 Ý)x?/«Øv¯à½ƒîÜÜÖP¡·£P¼¨x`ˆ çn&{; ݹ½¡"÷G™x2wöD…“9ŠÝ…B÷G¡pÙq¼ ¬¢eG …î2¡û£P8™£Päí(sQïéëäñ²£KÄÞîÁ+táí|SWÞîëï÷ÂÝ}=RÄ·³]$A±·;ûH¢bwwž'OæNž• Øý=+PWîïì4ˆ Ý…B÷G¡Ðý™Pìþ(Nî(tçfÓ† Ý…B÷gB±û£Pàþæ·iÝ÷åõŸ^Òë¬ÿÿ÷/Óëx©ÝÚäK­žáþ}tœ<‹OMÕ?Ê›XéõíX….¨A ú½"Ê.«I, ûEÔ@mÂ9‹ ÈMüSk´¶aVPÂí6 c?Þ_þKÅÔ‘dp>Šøêž³K…ÿJo^+¢þ.UK×GZÚ?‚ ‰>58­m(‚G\úק“ZF ¬p ·Ò4Œýо-Ë"²e)õGÖß­q–·©>¡¥~EuX©ô.AZÖù-N×v—uÓ+S)°Ée×§µ #{{uu„Û–®Ð  ” T0ö=[Õ'•Mžã¢=#§ä·M{R£(=¶Êo^Íš{Z ­†m‹¦4Ú„sê«:MƒüZ[×h}zGÏéì6 c?´o»sÛ%X;dœþhœ:2¾Íõ íG}Ÿå _ýÞ×Yèú>¯N×v*©kÜ&qÔÿÒÖ†"ÈYä+s ¥¶]‡,oÃè÷·¢IÐnh8õÃú6Ë0Z¶-Ik=§>‰CPú~WZ£àjÇôvÌN«¥5f)½DýÊRÓÐhmCÆ©¯b}ÚMƒŒ¼]JjÏÌüÝM4ø©Ú1 -q}Ôf/¤sê»UÔš'ˆÉ‹¼Æ•.=]›]k@´”N¢¾4{ê4F‚p>×ôlm€Ö6¦žÓÙmÆ~àcÛVñ⥾=™ôœ"íUº†ÃrŒiÙÄžú¡Ìé’ÖOg“¾IÔÐjJ§µ AS?OT]Cu²¹tm€ÖÚ¬ ­¤†±x!ëp¤å%}ªÿ©MWr?QéUß,oi}ž«|ÄÄJœ¦€d¢÷2Æ¢{ƒ×¤¬] ÕÝ™ ”0 ©`è~®"«)õ^k úÑèúË×€ ’‹*”/|‘ÇTô-'-r™Õ(—Xô=oHk C–¾zf};ØhЗ0“ï;€q£ú„]F#ù1n8gÅg/‹B6Ì Œ–ozÛel{’á¾)p:sÜ §FRúÙSôhììm€Ö6`h#Œ½ÀX_ãYï¸*2!øè9»<ŒõÀèÄhzÃ̽‹·¥9ª]bבx§T¿ŠCÖX^:­ú•P½’òþ±}ü½YøÉ~¸äêÈdÔ‘Ñi×W°qV™‡'ñ­ú-®zAZê7YÃZÒâ1ë¸ #[“°ÏŸœÎô±äÔ1PÝ,5ÔwM£-¶Z´‚´’Æ~à÷Ú­Òý¡sÁžS§tõìæ' TúÀó­OÔBiJHä½4Nj '!F6«D‡[kÂhA˜M‚6š†±ˆ åCÐHqí=çIO¥m:T# ñ{¶éh³ë„]b7—˜'Yøhœ^ì³lœ„i5ØÜÛÛðɹ[A ·Ò4Œý°)X’éZ}‰—7‹zSµÉô¦´kv¡õ“%­ó)ýh]âðïF4R[P9émQ€)‰ÙÖ5Z§`f„KÐFh8õßZ Uv-8“å;üè9«hÓ9DÒ·ãwBç©8­³Ž¥çTz÷eÕà´¶¡ãlz[HÓ°aäó66n%h%5ŒýÀ¨/s™ l{~tœ]£ÓJâf+m D2?ÚœÖA|“h´IÈ3\: ¤Ñ†˜“UZÓkÓ°é7ÓڭþYA ·Û4ŒýÀ¹`ÖZö:nªGkœ]àëDó\±§È·³êô´Î”õ'.±ÍúÔ]ƒÓÚ†NÆÈ‘¥Ùצ¡Z¨¯=Û­m˜”p+MÃØ âçà°rêŒ]—=·mBHS–,‹nÕ‘jÐZ|T}+4,¢Äžìã3 N[8mœI—=]CÓÏG×hmì 4C',°Z5º–ç]߀ž£+ÕIæ>y³©Ý"t‘-Ò*í:+r‰ú|—µÓàt²±Ü9òʳ †úÄËѵZÛ0+(A+©aìúVGË퀿µÍ9ϼŽá“úè ¿‰Ì÷7§ÕÒMŸ±KÈ~íÚipzâ¯FNõêxè¦a‘I~kBIí™Ù`§‰„°USÌdH É9tLkuA©ºÕ’0áß³Ó:á_ô3i‡F~®4Ú°ep²-"˜†MgßÞ„’¶â¬6ØßÝhƒÀ/–ÌÇKĦþºqÔó%™ãíò4'‹²ÅuNËóÌ:éwYƒº¦ÀédîšœE¢B™@Á"žki--³Á%ÌFW0öÂz–tú]ŸYYÐ1c:ÚR‘]^}:ÛÜúi´öËì D53õœ^l,mœ$›Mú ¿µZ{fV¸„i †NÀŸÕ8“)3uÈ©Ÿ‚Ý]žmïF¦³FèæÐ†u%þ¹¾æyoh’P/ç4]l€¹~¶]¥ÍóÏn¯ÁGûáÇêsh:xÆl³1V,î»îUú'¨+ätƒ¶•g Ì]âÀÌžœÎ˜n:£Ú‘lù\T;u-M€ ¤†¡x »QG¶«qV|Ëp8tc-íÓ¤ËxFë FÑÕÚ&±;ÚþÍ]<ÕÊYå W£x™û¸fкÔÁì H¸i¦ádD)ò勲9m{Éb§KHréÒi 64ð#Çvª^ý Æcl´­¨¨ ”p£óë¹6»DꀄœûÙ%9: HfÐ"¹„öN– Ù FëTq×m+—Øu÷ƒxRª_ÒÀØu>âè+¾®ßè÷·À%h 5Œ]À ±É›£=]ôÃ"CtÉÇXë”ðCÈJùZãç);­+о5 ÉÂî‰tÛY·œ¾h.Qk´6`&P‚&›‚¡¶ÙÇ›y²ØðÑs4‘ZcÏM­T£ÑéVœ¶oœIÈFV¯ÁimCÆYu¡¬iXu{¢µÚ"`µÂ%ÌJjû÷°Æ]â®Y Ñ_Ì9ðI’ÙÄáu•¥ùeÉý޼ a›Ä¡#²k 6Þ_:NVç ¦ÞhAÐ J¸Ý¦aì~·Is­ª‡|õÇÆñ² ulZÝ+‰ÿÃ5¯«…â…絓Hš#Ö4FŠ Ç~j¡ÀÀ’±·¿Ñ\Žæãç’¹|ÅÕ)`Ô £ʇ.ÁÏxKjü,a’,—l›ÓÚfê9jô4 Nkf$‹|çMÉ] u•ߌp Z c/FUˆLÅúuXâpަ^XÙ<™§J7ë˜'·Ñº'WPœÈ%6ÙÞÕn[xÊÙ4“¯Áëïºuú•ÔÅ}÷Ó¿»q?™o9+wAÕ] rVŒ³`ݽÈȪ§“Š=•–ƒ$ßñ ¿mõQO½ÒhBäÀg»†‚íP6Q¸_ê6¸­6c/líw½O«¾êG²² vœV!ñNiöcrÚ–bÖÜ$d“k?š§×–¥I^*×°è'ÕÚX˜¥I#(àV›‚±¦7=S¼Kç?£™¥`…åPiû¤+_¤5ÎËò4‰:ä^i4ñþÒqŠ<馡Îlt§„m€¶õ!µÂ%ÌjS0t‘a ¸$˜<êx`véäIÞ΢Cð¬)Ò’;$»Fkð6ã Ä¬;êMƒÓÚ†"ÈAŽkݘ¥k´®¦š.A+MÃØô ÑYäf™Ï}ôìùo湊LW\kPPҺ²ËÖ$$M·tœÖ6tlœŒ=×€´6@kf%h%5ŒýÀx/Áÿ\yõ3^ᜠyš%ã2ÑI×ÿe2Hª§åmøû2ë«A0ÉÙ’óɨ£„:n^ §¬k7ZÝrÆõ§&@ã ?Z夎\bjìª!ët2p碗ñî: Wr—6IK›sFC‰ú.l½ÒÚ‚È€ÏvÕ±êØÏ&@ ÂlpÚl †>X„:é"™áHÕ&£Nì$‡w¯o.Ê×MÞÜó Ú2P$Ð$d9jí4Ö&@FÖå9*ÐeîÜš0ZÓ,²UÞ5 ·Ú4 ½°ß«È³LuTZWü`ä`ól‘óЇ|“õñ&»–ê°q@~€²ô»~®ÁélنΙ0¸ ˜ö® Ðú“™” •Ô0öâ©#ïÂÜËÆ9t'Rò½_Ê2+' Ikt¤|'¡¾kh´ç^:G—qš†¢Ë8­ Ж5¡V˜D³NýÀ 9ëüi™²®è}ôݱª´fVTZƒñ´ͽ ­«˜‹Hv;ž158é™ÈIºnØ4ÈžWîÚ­/±YA ZI c?0âË2–Œ+i¶¾5Άñ»¾:ÔNX¹˜ôüiÝ„›­ˆ¾IÔWq;:NÏÖ5çT]I÷éLäˈ­ Ðï/n„ ˜T0öÂv0WCï­Yx·\bKvÚÏ48½Ø(Ò8 Ñ5l¶ÛÅ6@kf%h¤):a{Hºd¥ßÒÈ7!HZ§`Óa]…ì¤E9u‡.ª5¤µ¡Y MAÖû¼y˜ .@›MÁÐÛŽXtP’—f·íãÔ×j_°5°ë‹¸Úúdîi[ÁÜ×N"É9Û¦Ái´¡¡09E?× ©,K×è÷—f…I4»¡áÔ›˜%Y^ä> do7ΪA»$À ¶Ï¤›’µîNë<‹õL¢¶S‡û¦Áél ÜΩiÓó,ðè‘·Z§ff…K˜•Ô0öà Ɨ<ï¶jïY7Þð5g‰ëÐ,K•òµË0d´ ¹tsÑ‘Í5ž™ZÙ8–¬A 3ÒF½™Ý J¸ÝL÷úaG«0í‘g>#vŽ&ë¢f¶ªz(±LJ—@W‰ÛŸ‰Ú鉫NäȆÚkÃË~ÚÜôƒ´%YmŸ´Ïðcl›EƒÓÚÑÅ>œS&Ù½u2ãÒí]ò'mÛ%Sî$ä„ ¡öo(¶•OûÛŒQl {åJêÆÊÑþèVv´Ú‡ŒuÇRíìC8E3n·ã@Ь鶶a´Ž›­š„í‰Þè‰3|rV$œºÉÿêöLŒÖñâhvû ~êÍœgùw½ÉGøè8²ë‹” ­~¹¬®k¾ÎNÛ×±–^bÓá– H¢£}SPpÌ-Ëkqìïn²ÁÇ.Ø&º¤¨ñÏjþØ9¢Ý‚»Yâê†$ÈÜLõ@ê6ºÍ]@³UšÒhBäd¬QCýØç­5ÒÂIµnµ){a'àT¶Îqô]øhœcJ«‹¢‹œlq¢M6GAʸ»hüï‹ö¯Á¶@N2RÁ¾¨­£a&¸„mÆNX¥É‰ËtLÚS00‹¨Òðͧ$ýŽœP\BÖšK§Áé‰C;9ûŠ™ö7ÛýþÒ¬p ³’Æ~Øi–]÷â#[†@ãh Ñr’eâñ“µ§5(0“ DÒŸ®€d¶ü2öK<€Ë‚±®ô[¤ß_h‚K¸‰¦áÔ K}@&ÝŽ¸žs`M·F²äµ/š+°éŠØŽU²Ó¯óuý[÷¥:½XnFã$]¤&zÞQáÊç–çgm»mƒ‚Ñx›3¯’ÂRg1»å;8'a]u­Ï’yOâ~AÁG ZgÀ{ÏIr²Ÿ¹i 6tS…œò¦“jS0éÚÖhmÂŒ0‰f¶*8õ“-^6Û‰ªÆÙí7i }Ã4«GN5ZÒ¢@“رÂI NÏöÖ:§Žš{ ú’í­ Òæ&;N³’Æ~Ø&ú¤‹å ó›žc‹Æ«Ža•Þô¿¤b/$u ]3êýïÛ‚É+áNO–àœy‹ÄãŒ_kôûK³À%ÌBS0vÁŽçl:?H’tdÇsÈ)¶¯l r×AA×È„Ѻ¯pèÂK¤lOÓàôd¯¯sꀶk Ó GCR×hmì0 ·Ò4œúa¡h©ý]mäpΦi„©Û×óœ+¶CŒDs#èßd—ªt@ÒPýþÒq2cAÄ0‡Ž ®ôûKkÛ%h-ŒÆÛéŽÙJͯòi~t™DéÉ=+RéY?ZÉò—œM£uF/%¸:=°ÒFï/G—ë]Á¤«õ­Ðï/ÍJ¸Õ¦`ì…å€e¬ìWå+&”ÎÁiéRßá)c!A÷ ëK¬»;ËnHÒVÇÑÁzΧ‹í•4¶Ì\ƒð·® Ч˜”p+MÃØ/( ¿d.–—Ø8»fÚyþ÷éIžø'ýîšD±·œ.<ë›^SƒL¯—® Ðï/Í — •¦aì>19 ²Àïà \ã`F D¶¨z¦uÒ…/£õC(xf.¡9¸MƒÓ<çœ 'Ø\öÙ[ A+(A+©a쇭Ûo„’æc~ô=P‡Y[ëJø–ÙVÇFY…×õ2J[O£§'óMΑ…›åµi˜4C¶µZÛ0+(A+©aì†ýîk¡ µ°MKެd‰³È‡Ýú[p@v‹Ó¶îÜqêTy«®4ÚÐÉ9g¨aÅÁpocåÑq·‚n·iûaç2³<ëeÊ“eÛ7N±‹Lã*½aÿK7ÛHZúÅ’: v\Ó“'ȱu *HXie ‰K±n‚ ˜‰\'ú`™a“]÷»xj9R»$µâÐdd~m›$¬©ë8Rè»–þi œæAíÆI–fŠÖ8ò&@šÛT\€6š‚±–i_ð0¦lÙ£ÉH•Ö ™JH±‘ 5»Óú…ëJl'¡çÕš§³-–§Fy;Æ;Âv–öŠ6H V4 ;aáÆ~XZÎa×oV$Ç9‹†4iÁÖa¥eË4-ºsh”¼)ؼô?co³¡IC¿È™íü¾)˜õÄ©7R3yÌh&CÁ© ^Nf3'_XMFÚ%,KÎÓ‘°*‹³ú´Iµ×ÖIà©6 ¤µ [ÿ¹Ìp¼6¦® жþ«F¸­6 C/lzÃ…—‡& 4N–"AzN~’qUËê¤ysFê˜µËØîŸ5¯Á¶t %Ç™‚&묘-­MÀ—p£MÃØ «ÖtØÝëvjÉ84K5Éy-SVÇ.}OVÔ>0úù¬R1À%6=rÒ4Ö&Þ_:FÖã°®@j©å® Ђ ”p«MÃÐ ÷Óšç›u²þÑsó™ö3˃]áCõKm~º(öfQÓÉV2œ“tEÀÔo ÖhóÒ[/A©`ì…MÎì*Ö,¦œÎÀſt l«w>PgožÖ™–.Ä6 9±tœ–&`Œ {i®`B6±711ߨ0 7Ò4Œ½ðãÜÉ®ìȉǹ“-d+\ƒt™e9€ô;v?ËÖI¬“¹Ó°ÚG¶5 ŽÕÊQºøt´&H F4 7ÛŠå ½ðjŠ:$Í6qƆ%ÝC'š’rì((ÙÖF¿£Þ T m›V¥†FÏ6!GóùÊ«kØQD×Û0úýÅ­ „Ic'¬hŠ%ܵX&pãì±ÈâBÖr¿úþVºÈÏ@ZW'´”|?“.BcÇR lO›Ó2 l¨úå»VÏkœfFUã Ê5X­:oëٹ”p+MÃØýÝæÅr™Í0ûè9ºViË~ZõYçyÍÈR[-ç¬rV8—еü¦ÁiËkë8IkŠ»†¢O¿µZ´‚n¥iûw2'¸£M+}ô­”eÝyFR,ËÒ ’ŒvMáÏ’µªsûû¼ÂmîtÂÄ¿qVöš‚UvÝZ+våšü»ÙGøØ¼’ö­´ôGãhîÕ‚¥Û}Aå5Õe Ò9þÄM÷­“ȨP䌶6ái¦)>­ï¯µa´-Ak #J¸Ý¦aìúvh‚Kh&+3Ð8:Õ’i]ҙצW4È´.e§eðšV¬J»Ä¡Û¯Šo”Õ;uFÑ…­†.³9®´t‹€Ó „†sð"NvÔn*ÈÍé8úBdYÒO ²Y£¶ÕiySÒŽ)”ÈY*×àtÁâaÇÑ¥7× GõËÖÚ0ZÛ€.áVš†±pj¥&șО9âüâ}$ˆ”4õ%‹îß–_`Ñ]¤&±N–vcœ^Þà‘dþÑd]oM€6¨FP‚6š‚¾ QoI나±ããÊŽ ঵Ý*6÷ô;ªíï{'±NØP¡§„tG«¿4 uìÃgm€­ „[iÆ~àÛ0%—ÙÍŠ(„œú<ô“Ù­Æï¬E²+­U HË•cÇK'qèêJÓ@mÂ9Z­¯i@¡ÚÖhm#õµp;»MÃØŒ þ¿ ~ëGÏY4ô;$ÉBN»W¿+¡á$ ÒòÏ“]ªj³îü7 N'›“8'mØ\£†Tü³ Ð:šš” •Ô0öC·¼l(¸YB:N‘V¯DŸ­¨q1*]P]ÕJêUθ@u+ëÞ)pzB€Ð8غhdëbmM€|i6P€6RÁØ rtSPOV]¼ãh¥§,çŽPA CUúÀ‘êɪ‹gÙ„ì8•ÞpÉ58m•¿£‡à4„=õ¶´6Œ„YÑ$`¥kû¾%ÝÄ׺H3úFêãeIÎÖ7ÓoT}þ¼8­ù¢1k“Øñ-Qi´¡rtq¼iXµš_k´ýf%ÜnÓ0ö_›¼FV›g”‚5Yd‚eK9ÚÑò%ÔÑp9:‰-[aœfzã$¬~˜9$½´&@j ©ct&|ì>5|úe•IÖ¡Ÿ9²±Sßb9l³£¸Š\÷R‡î·ÅIù ÊÔ1²d2n{ƒ“„~•'G« :>iá4×RäiÜbÃ=@¯v;M¼o¸ ¤q¤Ècu„y·óÈHœªJìÄ2hi÷°3Í.agž©4ÚP9˜ º93Þ5±!K»Ù`w£ >v a‹žŠÑQ¿qd+Gf¬©à©œJÌBëzÒâmr¶1“/&wHO¶ÕqŠúw×0iZ}k´ h…KÐnÓ0ö‘ÈT¬žËŠªŸ³j¤^ÙªU,W¿jPƒj7FK”PÍ­Ià'q ¤Ñ†"ÈÉz1’k(zê´µQìXj³‚n·iûRvµÊ¹ÞDñÑs´ÄRýµ§7%7¾ NÙ«¢/¹ýùÐp®¶«/gÒúLMÁ¤7Òx µ…©c4óˆ;€—qA7Éù;;œS¿Ùá©ÎdçÅ"â s]Ðà&̆)±Ì–MI´ rÐsW€õ¯ÖÈš.A«MÃØ ÷r|mÆBdª;gCæÊ!+ð ê?hX#õÜW§e0^PfÔ%ÍâmH¯¬‘Ð8Zâ¬iX‘ºâm¬6SjVPÂí6 c?lRDLqú{¤Ú8;Ù$ë¡t¯No;Ú–éqÔ$ÒŠÄ`j 6AÎò¶¿6N´xϼ¸.A³¡`ìÅŠÜÎÙÇÆAH¦©h­ }Ö\´Íi VTvÂ6ÑôòJÜ4°cÍ8r¢WVó."ɺ稫{ºâmWËs'¡'tooˆl ͉ihɉéÔ+©Ú­}û»ÛkðÑ~›HcÅ2ÉÆ†DçìÅ;jJ`Ëêâ¤ÎrqX± l–@d œ.–°Ò8Æ3jÈ(£Á&@j$f6PÀm4c/,^-"<,ÄwÎ>cà] 6»žD¯±ëŒCB 5ºEG—Ø&;xdH£ A8GϘ6 8<ÞÚàñòf%ÜnÓ0ö}›ðÆÑÃþ´˜Ý^oƒ´-<çÒIÀʦaìBǼÁR9ŸŽÐÑ9»Z6Ï“U¦Ós•.Hm-aݼ÷œ<—„"{Ôàt±ì–ÆA@F ÓŽ€Œm­mÀ —p+MÃØ ‹õŠûlW“uœiZ±T¬½ŽYj\6ÚÚ•Ú.!ßöÞipÚ.kœ¼a“—²Ö¢jmd»œ¬YA ZI c?ðNâÎ7]v²wÒ9+ިÎñ.Þ¸CDÒºuŒ$WJÌ“6 ÎöN:gÞñÔ©AžFßh\Ì —0+MéöN*Fgw›½“ÆIšÕ«Ïp³[O¦‚g¼mNë¯P×á;6¨4Ú°·ícÓ€>¶6&»ñ¸YA ·Û4Œý0ÏVp0#ϸo¨ãÀÕ‹›Ñƒ”³úKuC‹“æ§ôt” ìv¢Ë8=ÛBžs·\C’ìo!áY³ÀþL‰»`ÙV8*e+7ÌÒÈIZî1'œaÐ{.'Ík:ìY«I¤î”7aªD^q-5ž¬îQÇÑúaMÄ"ocâ’[á´Û4Œý°S¸fDîÍ.;N!G®9°Æ«[¨›Þɪçt“´º\mÒ$vlÓRi´¡rÔw7 rÑDׄ’¶ª¬6ØßÝhƒ°­¥„Ø W~ô½¦´Òcÿ¦—“êNŽŽôÛÆ4î#÷ÝÚs§ÁéÉ^_ç¬+2½©Ë­ к:dV¸„YI c?,:Ö-Sº%‹ŽÉÑ z˜o1½,É–ž¶Xw-„$…æNƒÓ,¥î”h$Rܺ6@ۙĎӬ¤†±ö±É>Z)y²=jgÄ¡rl1cÛJãФ~„ô;Žcpc ‘jAÊ%58=qw”œ¤å…›†¤E¬[iæö(­p IC'ì7³Û˜¶‰Ç}œSì(®‚Ðʈö´på1/¯–ù®E6‰¤=7 NO<îCκâ°5¬³Ÿ1Ô6Ö™Ç}h…K˜•Ô0öÓ¿%ci›µŽÑGÏ9$j«oqF^2¦€ûú–Ôgú\@\ëÞ)pz±À¬qrë¨!oÈ­³&@ê—f6PÀm4c/,»ñЭÄmÑ!õ£ç¬êeõ¢èíV:¨j&b)Nk\K )1ËÎMC£}3€)­±Ši(:‰kmn¸” •¦áÔÛÌÕŽ%'žiœþT-]‰$DÝi•¥2£m3Wb&—ØP6Ç58Íó#ƒÓ®aÒ¢ä­ Ð¶«V¸­4 c?ð»áJIÝ?·Tç "ãJ½â^àòŠ£Fk–:\bÓ¼ª¦ÁéÄTr¤Ü‰®C™†)ÞhMl7+\¬¤†±!Df²x££EϳÜ`0YÚµFËr…ŒÖ•¦½çäœìX58]˜‚ïœ ó/j(šâÝÚ­m˜&Ѭ„†S?,‚ÄR´\™˜3"Hrô«¬4¯ëdIòÈzD^Ö€Eß\B²žK§ÁédsräFÍD3 ’’¯™hÖ†Ñê1`…K˜•®a쇭@" “Ëð½5¾–Œ;õš0®®Ùi[ƒ\çN"ã8×à4¿·ÆÁ×â6,©{ÝÝ J¸•¦aì‡%KK] =i¢Øœ!»q;Îúeˆ§=øÜѺ-·í4YÓmšÒhAÎA‚…ᓺ§Ö@²2öÍJÐdÀ‡xfjÒ5 ^×Þ8E*·%Yšº.=Ty*Fë†æÑs’\ÁµÍM“¼¬Ý9;ntûŒ5K6±Û~d3‚´‘Æ^ØW–mϲXþDã`7_7?äd6óuï£Ñú‘MPinC¦§ :y?®!mØËaiã^ŽA·ÑŒ½ðÃ#«¦'.èYÇÁÍ×’yè6ú=Ùm:V—$ÍŽ£«fº±G N/h·ã$ìESƒ]}ím€¶ã#j%ÜJÓ0ö¿ZÁº¤\¡;cÜwŽf¢èVUÒ"Í6Â.‹Ý¦8y>¬.Žº&PMÓ³ïü§Øù3E7Ÿ[ …»Ýn%h#Œ½°µ¬„±²àꞎƒDÊ9éÒç"YS»n¦îXcmëLrBÖ%²½¥§ 9GVš‚yÇB›­;¼f„KÐH({á sšнžž£»A•žqŸlžpÄaÕ¹&i˜Ò[é¤âàÞ)pz¶SWÎÁv’+ÀöQk´FX³ßq»Y†œÚHc/lEÜê¶È\ âÆ˜Q‚I* à|J0É€´ÍNk.,ª÷¹Äa'Y¨´6ñþÒ1PöÔ¤›l´•;P#(áV›†¡pÓEë´ëïŒÅGãȰniÚr·ÔÄiÄwÊL ƒ¥ú=当Xõº¡¦Áhkãý¥ãT©0 ’~ª[šÖ†Ñý¢;%ÜnÓ0öÃ2S5<ÑœŽa±svñší¾Áœl™•ÏŒÖLS9ñÖŠ]qHNûé.çhkW€ªA­…Énùh6PÂm4c/,(Ö‚ý y~tŒ‚“‡‡fœh Ý ?4]˜´†= ¿€IH@»¯MC£'›ü8GÒøtÖ4,‡çÙhi…KÀHS0vÂÎŒãxý1Ù…ªk r~{:°ù½Ï8ßœ|·à©°¯Ý8mw:gÇeJ®Aî Ì«7a¤æ–YQ ˜®`ì…-„ãBOY­Ôsžgµ!|GVIÒæó<ã|³Ñº¬3ÐMâP·êœÎ|ÆÑäºå rPS-µ6Œ¶L 亘„YéÆ~à;KV±Nm,‘Â9;Ò 0zûq I›Ô 5p·‚Œ.¡…½š§ )œ3᥆²"M‚m€n) M­4 c?,Ô/æò³ŒH=ÇRâVkÅåË 6¡ÞéwœrÄU¬”ص×àt¶CæÎ™qÈÜ5ÌÅNRZ3·áÜ JÐJjûaõ†“9y‚rCÆÈóºAlAóZø§,Në'¾ôœ,µ²·¹Ó@Z›P{ùT ù\¹kôûK3‚nµiza«‡æhT]8cGzA59ª§ÒwäÑ&­²JZ§žSi쓸§“-Ù“ñMÁn·˜²‰÷œº”0© ï‚Ô2·‘ìx¿I+Êè*­Ç/Ç6õ‡[qý èw:ˆ&€¡¹) =ÙI¼Ž3Ë㥂 gʽ£ß_Ü—€½†îŒ·dÛ÷½i¡ÕŽJ¬ZðA¯—E¥V-¡§-Ak*DÁ‰L—Øp£-5Þ6K§v†~çMÁ6ac…Ml§:4‚nµiza+ú«]lg÷c5NÆ!2ÙÊÒ‚DyųɳÝÚe÷cq×®IÈ~e¯tÚùð£—å5 Io¿jm$»«YA ·Û4Œý°™ ê×Ëa ôƒ|7™Fè5£³…ïñ¶yH™{ ½¤­ipšsÎIÈws i±ôVk´N]Ì JÐJjûaNL3øô(šù0cìºéïKGë®I¾´d´z$l¤¸„m´¸ÒÚ„ÈЬ¦`=P[„M€~iF¸­6 C/l»bÁú=¡RoÇYû,wÚ ©{cºs ‡òwÛ=ÓÍ…Ž£…gÖOÒêÓ:c“iFCo3Ž RÿfXÝ Ð>ÃÀð±kÎOYäD2”œ£sM'ÒÜUçDIŠ[¢8G¶;´¥¾% xPBS•š§î":GW¡š†²c‘m€¶¤&µ‚n¥iûaiÒúke]äñ4Ά㈫Þ±È*µ®ñÊï8.{¤^`Gy'*pz¶ø©þ§K¼¦A–­‘W­Mi©ÇûÑ ˜®`ì…MȲ)-–ZÐ8ºE^Éu§&¤ÿË(C³í9Ë*÷v728]lCªq& L†kkÁhý*aƒK¸¦`ì…M£ f¸oâ£çZp~JR;taI_³ï È;Ð èæDSàôĘÜ8á R†l´ÎMÍJÐF*{aÇ}pTOI¬V‘ƒP…_õ. q$Z‡09­+4®U¦„\"rt H£ E£aUÓ0k þÖhÄÁ ¸Õ¦`ì ,oZ¹Ç©p‚sPÒoÙÐŒ,óê•ûÔÓZï¾øB0$䜦€dÂTÀI7¼<é†Xk Ù–Y34‘ÆNHǦ×ßâ–iáló~tœ]ë &YÒ°ˆTox–tC#Þqo‚ž õ?ã «†6z³ôºŽ³j¢©kÀÑ}k`³’ Þ<ÿêöz´ÿýåß½Hm+|µ%«0Ñ8÷–£…^œ°êãJ8.Újwë4Û%V»¼Á48¬Â„sVÝUn$G o´Vû6+(A+©aì:'E6=O´#­ qpÖ%ɶ©.&˽ÀBnعRRïF™\h/¨oäpÒ“-ñv¼®®`šíÂkaâþ‹›à4Ú4Œ°ŸíÀ;,N—15ÎŽ·ø@Îü²Ú=D²‘Øh©<á&½&Kب¡Ñí.1r´ðLÓP‡Å©oôûK³Â$š•Ðpê:·¯Xï[±·üÑs4w—×WUzE!ñuµ(oåU×ò¾t›ʤ§mC»q½–Ý 0\kôûK³Á%ÌFW0ôÂ~7Եà=×|/»Å«i·{R‹š‘¬¾™ wý_õDz‡&=[Y}gH¦·'­ÂæªAª°µM· àÁvô‡õ¤ËªkY]Ul½/ãvªÅrûV»ÍÖ%Ó*ÖGé$6,ºÒhãý¥ã Û®aÕÀ¨µ±Î¼žV¸í¦†¡ö-o&ÃÚ¦[Î8pᮈ¯ãiª 2Œ–wdA}õ&”"* ¹Z"¤3 .g |Kvë§5°%Þ J(A MÁÐ{'¤–í IQð!ù³Ò+Þ1¹amsZoÙÌq™Dš:8ˆdGlAn»¾@ĉŸè5ƒ¶ûE*J ˜F|o¹õ&1Ÿ|µ‹:çÀ#‘Øüð¬Ö"uÔhi5cÌ%²e4PƒÓvœ±ãÈÞS®ž` õ1˜.A#¡`ì…umÙpò|ÓQõ£çàX™Vé©ÊM‹×é•:•­nS«Áu(•ëœNŒŽÈYw\hA ˆ[ ß_š” •Ô0öƒ ÷cʉ;q‡7'iBµ¾e‹”²Ÿ¡f´º£Ej“Øø"ëM]$“e&’±©ë2¬D"r%ÕqYëø»·¯gÛÑ¡-©‡ó•߯uK\‰ª”&a§ ×q’–+$’ºÝ&‘uýÉñ$mM¶cè¶Bç×˲Ðï/n‚ Ðb*è{`C –{ŠÙHaqÎ1áè´!5A•Çh Kç·¹@ÅW@M(€½ýÀìY!½Ðï/ÍJ¸Õ¦`ì…ý`ÒŠ®ß®vÖ¬q\í¼¡‘|³vÙôì¤<ÏyîÿŠÁŒ`'ù¶6Ž~ë†NZ™ØuƒÔ_×§€ÛfèÑzûµdctCm­Wo8G+´é½jú$fÜ%³—Y'´F¿ÃÇMG/±#Î5ΨêÓqpûŸkôéܵúý¥YA ·Ò4Œý°ßkš‘Ñ2»¼½qôŒ$ÇvÍÛ;ìã] #ýŽoåvþžbW@ÒrÊ#ã L‡Oòµ& › ” ‰¦aì„õÌP¹ N7Õ;Žî릭ºZ¡HŠÒ ‰ª• ¥Y)Ì?w×T¶†6Ò2&¼[D£­kg©ZoÝþîÆ|4ßCË;“÷yT£wáè¥iZ 'ívýcÁÝ4ÉÒ ô*Æcë%d¹Ò³m.4Ž^dÖ4HDÛ5¡¤Ê› öw7Ñàc'¬gîБnÃs9gŹàuãU„ÅnÂËv^´ØDR nß{‰ o¨4ÚP9ÒqÂý¥Z 5B6(áFo¯çØ\9テåΙ¼J]/-ð"Gø„DÎÈwÜ zÌÝß÷· 2óÊ$g¬zÁѹ`&nÚ•TqkÝþîæ|4ßúT0ˆnùxC—Èø@jÂjÉ+É#´Z'¥ÉeÁÀZÐ$T·Jo~É .x54² ]=“ [ûpkMÁ`½ðõ›ÓÛVêL›—0“SôJIìÍVeÓk¤¸¼°"‡D/@^S/qè©®¦t²y?9²)25È… S׆Ñï/nE“€•MÃк/ÔqØ`ÈGÏÑó«IÖõnˆ û r-¨,bm®eÚ; Y=: N»Á³qî‡6 RšdK­ £aV4 ZiÆ~p@L¨ô˜“MT§`õ¤à‚x}¥å›-«ËÆDe­žöH„¬ªì§y°sdFòÚ$­­Õš­M˜.aFRÁÐ xE²V3†ã ô|¥m¯~+¸088µ¿R¿‚KÌÅf‚¦4Ú°u3p6½ÅÍ5¬¸¸×ÛXyµ¯[á´Û4Œý0ç,ãWÂÁÜ8Ú88_9|RKÈÇŠ”ÔÀïÀ-6öw­ÅÑÐ$YušÞÐEÃý¦4ÂP´ï´†X·¬—®E ô­Œ¦_ªÌÚŠž7Mò¥jŸb'R“Œº\ä«V0Ô`œÙ¾M*˜7\»Æ&@K×h„I¸¦áÔ {k4%ìà¦éÆÑ²(º´!©£­«»“º ± ÀÿŽªÁ NzéVDÀɹ‚¬?¹7í•pð÷fà§Ø/&)×+²Êq¢3ðƒ­a[Yñ³K=ŸFk‡Òs.±M(¤k œÌp¹Î§­×±§[Z  -RÜç^bj¹óåõÔõwýúŠ,UÚ¤…Ùû•ñt?0¨nF§$*i­î¦àÌ¡K¬¸vƒH£÷—޳aÊA (äßÚ-ZA ·Û4Œý`¢ûsµÃ¼£­qvù*ÕËóPÓ®qöåŒÖÀbÖ1¼I,úQ¸§yG[ãèáÒ¦¡¨7hm€~iVP­4 c?ŒÌ¸ª5°?z΂Ûf\ðQ$åP/üDj£ßq†UN*RBýrr]ƒ\„Ö5¡¤ÈÓþ&|ìD[Ɣؗ„AêÕJT`±K¹%”_2Z \ØcE¹]Ó¶$l¤Îœñ\{æÕÞ¾K˜}Ä7ë¹%Q,qø°ú»ÎAvr¥W«Pd6¬›³“º¿»¿®;@D“†~'gE6ÈjyÊk§¤nEXë.@{ =ÚoŸÕŒÕYEYðY9gÁ>÷¼YåÿMn{”èsK$uÒ”±ø`¯ñ®v2¸Ó™ë?äÈ:­2nnö¶ë?4Á%ÌDj;Á _/}×ËqßyãèQæJ4e]â39Qí¤àZ’—}ټљW7“3Á.W r×€’Ú€À¿›}zÐü]ϸk ºžS$4%;¯Ç*=#E~¶ƒ êH%škLuH'Ë.wNn7 ’e[º6@+¬0 ·Ò4œúÁ±ÃêÄkŒöÑs4Šó,‹ e‘…ÑhËÓÀÊ%vÆ›Ò}9r|ÙrAV+¿ôm$Ë@kV˜„[iNýàŽ:îÿw€ÛÜG3±Å½Ã'É.˜noNÛù6÷r n§ÀH»%Æ–Ýåð¤7ò¶’ÝÐÛL M¤†±ÜMÊ(޽O¶YÛ8Y£ù1¦l£ÂbÛK»Ó:‘ŸpŠ’¶Žäœž8?&GF…üÚ4àƒÖè÷—f…K˜•Ô0ö£­:jùIõ[¹êˆ‚"¸EW¦K«ÑÜ9„ܶUG}ƒLBÂvtá=¼F£ ›€³¼­¯MÁ¬wDµ&@Û¢ãš{ šm †^pV -’²aÄ9«‰+Ê}IfÈb“æÔh&ã‘5 CkìvÅF’‹“ôø%½%§i 6Þ_:΂D jØf$R° кµaV¸í6 c?Ð99ºY ÜŸÝÙàÝcÓ#k7+”;0r›äÉн Ü»KÈùß¹Óà´ßÜà­Ð4Èï³wm€~iV¸­¤†¡Ú9½c G¥ŠñnœÕ.p’­`½æ[k†LZã—´œÒPhÀÝìTÐèbe¼'Þ]CÖUÑÖh-M#L Ùh7t޽°ß­è»½ÈY‹}ÅÝ(äè!Y­ý²™šÍn&™§ßqw‰Tw‰evËTƒÓ«­Š6Ny³ëWT”ú;º&@ €F¸„‚±Ö5 µ7Œv£¯sTˆœg¼K©¯³mä;.ASÙmwÉ9õIf{®V`ƆÜ| ”/èwì#©“(Ú`Ó@º0Ñ·q5Õ5-Ý×Ú­ÓO³Â%h·iûa[šý~ÂhœÝnÂ>‰Õû>5õŒ¤žÚžô¶5þÝJ˜:ÞéÅNü4.N¤‚¬§M½Ì»WÝ …†û€ŽÉõ8b–íöÛÆYPûaŸqÃØ²Ù±‹NÏ~Ç-±ZDŒÇ„ jp:{±`ã”×¢SCÙpN‹m€Ö6Ì —0+]ÃÐ{%']rÔLx#q QrÇ%9š7=éET¤m&™ÖNBŽOf¢X6†ÞûÑÐ ‡ù\?hÕ\€ÆQAo½½‡’`‘±†zw£;y²ªÓ+êhk-0½à´ Ó,þ&1ã\—kpš%\GÎ_.I›G×h}qÍ— ‰óë¹èÖ¬n‘â§p½ŠTgÖǸì¨ÐõCÒVÆBöî\BƦ€äü†?¤'-®æèÒŠ`¨þbéóÍ—È=<7Ýø…Ü+Þ¸ Ò9êͳÔ×™3 âäðضrnké$dElé48=±:¯q¦—úPƒÞá˜[Fë+š¬t c?,²¯q›”=VMÝüè9H\–Ô!½\|Ý‘ü …>§5úÎ(ÛF‰·iº§íätÇIHn †IíÞhK`R+\‚Vš†± q…,FåÖÆ9PüN ´¤@¶«Øeë—¤kçì]`E~âÞì(nãÔѤ†M¯6d ›Ý|Hì¯nžÇðàX‘ |‘‚(+2ZÈ™uÙKÏqÉM+rC^Ñ|•UGA¿ÛI°N@n±MÒhBä,òœ]Až-#ÆZȳç̘ .A«MÁØ ÆRÙr¡5ýè9+p¨¤{ꊓÞ÷Cúe™µ„&%Žm¸§gGΑ䖦WÆ´&x§L3Â%h$Œ½À»˜dóLwýžòvÎŽK‘–&Ó„Š k¶O¶Ù®· Í¥—Ðkúš§óvŽnº†åH¨_gmm5ôt{n¥iûašè·©ìj·ÒgžP¯k·ªW³– wïo´~ VÓ]%X›£Ñ†E)à‹Lƒ,vM(ùþÒl°¿»Ñ;a?[Y±C-øqÏ—s J©=ú¨g}@“킯vI„\ý½Ä‚DAjp:±Ì9æ \Cm¯ŠµZ‹¼š” •Ô0öÃ>7»XAº!Ý8‡­Ûô|§À´”‘ÔjvRœŽ|éÿŽ™°á;zµ«|§hU0*kEº@Ê·F Àé,,¸wqìßG ´µJÀ¼ã}Gª˜é@¾é)<-Wy©–“ö²è€G=ãFP*0ÚšP9z7£kÐÊ:­ #µ 2lh´ÚŒ½°rո訄’·´ÃŽx'e»Ð]rÒV."í½jÞºÒï¡nœ‚+˜¨A†º¾ Ð:ò˜”p»MÃØ[Þ4bÐ‚ÛØíl-ý]iIõÔê1ò~ÊÙÅâ¤,ÝîÅ®z¥€¦`7¼ÓÜîtN²]=jHØÌd‰»4§…Ä}àÒ’šd¡õœgAH}ðb±Í._,ctó+Èqˆÿgo³cͲ[Îë)jx.`}ÎÿŸAZ Ch¡'–à¬Q’. ÜrËÒEËðÓwp-.FdîÌJC¸:Y$ƒ‘;3d ÛDZД*<ª§S`¼)°$Ì8d¨cÌ~èPµ i) ‡y(õ£ã·Õ/І –Y1x\ef&ȶ DfLlý;îPmØ«³bFd †€¾GÅœèyçZU@—~b?ÌÀ‘¥÷Sí‰Ój0+¹ LºÁ97:‡X\º/y.kçå†.!à‰7˜ž;LIXx…KŒAc¸A!-%á0÷Ï&V1MlüÝbf, ve®eî"Óà-¿YF_D4J¬´ŸU€àAÝñÃÛd%À.YÛš}TD:º€ã,tjÆŠ Üû´ðÔÌ1ņ,^¢„Hü4òÄhYyµëäŠT„kïm~]€`EA˜åW­j²ðšmcÂ`ŠÓRHiç?Ì+Ny·;ñï5}¼†Á»Ý¸€ùSÅXq7„˜^Áó·÷i›Ÿ³Å¼–uñï?»Ïø°°ÿüiáá+ÀßüÕ˘hÿ‹ë ªÄÀÄ /j½hnZtŸpÚË³ÖøcùÜ­ðÉþy‡lüㄾ_«×-ŒÈøªs~ÅÓß~üçÿñÑÞåkÐö9¢Ä°ÿì­qRyIÿõ?ÿËçÿ°~bÛ†ßäó¯Ëÿþù£ûü«ÁÊ6º¶cü8öƒ'ÿcüRfÜQµhT£ù~ãÐʦ¥:ÉoFl¨¬SL™Z÷iÿçÿùúþüËß?þãßôÅï³C´±Lî÷*Sͧm¢{ìTkýüýûãï~ëþðË‚VÞ¿ õŸÓþþ÷¿þøO¿—Ç7,Ì©­v„™;+š8ÿW*”Ýî9PÙ¶9'A嘖Jò+U;âçnóþ {ƒmØ‘ oñô-f?[Õ´ÚìgËrX·vööú HßíãõÑksz}ò¤<õ²6”ñ¿G1$EàŒvzƒ©ôÛŸÿø/úÓ÷øü_Ÿÿçÿó}þÛŸÿÛŸÿí¿ÿó›ßÔ:à”Wý/,ê4Nå×ü‡ßþgo´uÊã¶|åïýÛÿŒ¢NM?ˆ¿jÖe±¬ÃŸ¨|.ÿÕÔÊò±ZFýZÄþëíYážMVíôiUA½u.-e+ñ¯ÿøñO ÍÀ&ä9{D¿%*×—Þ†Ïïô'sÑ;Jˆr¢¹Gÿ ó=nˆŠ'8ßѬ(h¸šíÅö2Ûùn"Ö\ÊnD̉F^ž’YàîŽfc_µ‹‰ÌfgÊÞå4Ô¯]2Ù¯\˜æ3ÓÀvù\ûd\ÅK9qM¸Ðë‚«ð¤÷ÈU,úÅË`õ4[aZË·|bÚfœË¾ç*dÆ5ž_á­»d)&Êb^8üLê‚i±g^ö,g®ò%Cí¶X×—±VÜ yÁ5 öÐ×óƒØÊ×_5Pp;?ss`ï–’ÝÖÿË7çj;«±¯¸ì—v~ß즿ñú1¿ÿmÐUòúXñæL§ïaFè‹5ãòÍá}x—cÀ"²û™kFFòÚu˜Ï\îºäÓéÛ›-Ý`¹ªÛÞs Ãåv=Ô„–NgÕÛ}]'çáî¹÷ïrÏÞÔy` âÃÇ"Éw² ¶³²”¢Ä¿šÎ`ʬr%V¹eF8ˆ2#,¢ÔQf„ƒ(1ÂA“áJ”Ù\¥67ˆ2›D‰Í šÄæQnbOv9˜r»ÎÃ\Llp=1±ÁôÈÄŠ+3±\Oæó'õÌÆWjc'.xæû¹r{2—Á•Ù+Þ>œ¸2#4©‘fêsþir#{Ú)SncOö<¸R#Ëà ב½øIS#[‰›Z‰D™É¬D‰…¬D‰E¬D‰¬D‰½{Ý>‰+7€ßÝ<Û² çÏ©4©½QjïD”Ø;ÓÑTœ÷³Š©ýs¢Üþ‰(µ"ÊìŸhRû'¢Ôþ9QnÿD”Ú?eöO4©ýs¢Üþ]¼G7öïä˜Wnÿzø¥Ë™)5\ÂúéÌ”›¿Ó¦R\OÌŸXrów^aÅ•›¿“ SnýÎÖF\¹õƒŸuæIlŸÝþnÚmÝù‘gưå¶ï½6©é{±ßâJLŸˆRKW‰Rïñ­Î7vND©«xñœo ŸˆRÃ'¢Ô|?±Ü¼x o ãû÷ýÎ.ž·!âzf—åò™]MjEt=š<1¥~¡ˆR»èD¹]QjE”ÙEѤvQD©]t¢Ü.Š(±‹åÙö|¸óéᦆR4©¡t¢Cùö—½±“gïR\©<pƒ+5” LÞËHÏì¤s=±“bÉíäÙWn'Ï«¸rCy\×Ä“›ÉóZì\©¡œ-ŠVV°óï”J¥†r¶À(…¢SY‰R§p^ ú¤ôO8Û/÷Ëî¾8q¥¦sFìâ Wx]:r­g®Ôš.°1Ûxún¬©ˆÒ@ë•B¹y½zd¹½x§î ì»Wþƾ¾Ä`Äõ̾î#k3û*šÄ¾¾.°bJýP¥öUD©}u¢Ü¾Š(µ¯"Êì«hRû*¢Ô¾:Qf_ߘNqeý™#3¶¢I­åÆöBßk{>×3k+®'ÖV<Ϭ­seÖvdHéÍ×#ûk7PtyÜ÷Å´OæïQfƒ(³¿A”Ù_¥ö7ˆ2ûD‰ý šÌþQfEôÌþ×íop$ö7h2û+¢Gö7˜rû{ñnÞØß c…µ ®ö7xŠŠ+³¿§#`ÉíïéӮܟŒip¥&ø¼øWn‚ÖTL¹>™Å`JMðÙ,Wj‚ÏËwpå&ødƒ+5ÁkGsúoLð:Ú˾_ö¼rCr~qoL0~]¦ª¹2,¢ÔQj‚¯´ÎMðyã\¹ ~ÿËß™à·ïó>…—‚ë™Vºû ,žÔ‹(µÀ"J-°ˆR ìD¹QjE”Y`ѤXD‰~c¬œ+ 9ÑÏ-°82 ,šÔ;Ñ3 ,¦Gpp=ò€ƒëÉÁl0å&xE²èxV03Á§#Ö`ÉMðéÔ0¸RübLÅ•›à“—\© >ûâJmðËê(¦ÜŸ\¨àJmðËú-®Ôãd ØÅ—iå6˜{‹õôºßØ`Xú_ÛùޱÁû™)5Á;Vpüÿ#W”&,_œyJðÕx¹¡Æv¤Œ·œ¹RCý²½Wj¨_¶MâJ õÅ[g©±©à¹±ÓG“»°(³Zi³(Ç…ÙI£|IÓØäKšÆ$_Ò4ùЦ5È—4=¾¤©æø’¤±Æ—41¾¢iMï™æms¦Æ_ ®Æ÷’¤±½W4é}£ÞÛ§5¼oxN½bjìî+Ó)J<Õê¾a9[]çiŒî+Ó¹ÖÂ™Âæ¾r¼Ø\çhLî+Óé#u–ÆÞ¾²œ·íÎÓXÛWž‡Ò™cû†élÉÔØÚWžÏySû†éì*9Sci_™6Ni==»Öоa:™1çiÌì+Ï[{ƃ¥½d´ç‡w½elŒí;ÆE{#DzZÆÆà^2¢0Ú6¨-ccs/agúþÀØšÜG#¶V÷ÑÃi ïcc䩱»bjìîÛ7ì`vß¼ÿ§cgj­î›úr¦ÆìÞ¯ž»÷êH·ƒ&õ†E”zÃ"J½a¥Þ°åÞ°ˆRoXD™7,šÔQv¢ÜùQ–‡D™¿+š¼öõ1q®Ä®4òƒë¦ïèù}T†L7îîÉò:×wW,¹»{þTÅ•º»/›qq¥îîËÆ_\©»ûâá9Wêî¾ø3bJÝÝ—eU\©»ë«8F´8Ê3uyßÚ8q¦n/9qPð«/d çë»÷zKpr`L½_2ÂIŽl¹ÿ ¶É¬ÈПÓ(´Ýx»WJåînöør—×lXÅ®˜Ògêö¾ÄÄ•»½çý§sånïÜOÚʹž8¾[?±Ë{bƒ&³ÀA”Yà Ê,peXD©¢ÌQbƒ&³ÀA”Y`ÝœŸlbpe&9ˆ®Mòk 8˜²˜´ˆÕÊSn£Oç»Áõ¨V6¸2#}®£¦GFZ\™‘>¥3Kj¤ÏŸspåFúò ®ÜHŸÌmp¥Fú(ÎÔP¿3Áxc¬êË>9sƒýjƒ1·×øèÞÃtäÌí59±Ül8ç­½Þ¸ù5vÑóÆ`“ÓûéÈxc²Áˆç;Ÿln³Etg³'íˆËÏ{œÑÙ¾~þ·fûÕàgj¶“7ûÆtŸAÄucºO'IÁõÈt¼ü95Ý¢IM·ˆRÓ-¢Ôt‹(5ÝN”›n¥¦[D™éMjºE”šn'zhºÅ•W/Ͳ¸R[~¶¸bJm¹=j-LZKWn˱±ÇBtäJmù±»Mð¤¦üÔŠHL‰%?¥JGnÈaë`JíøË:"®ÔŽŸ}Ùັã¯1PqævüìˆWnÄßÙEqÞñWë&ÆÜˆ{µ| Î܈GøÇÚ,6|w&¼å[Œ¹o§ñȘ•Q~Æ|­ÖoŸà69o ø›ÍŒ8s~ñ~ýÌz"ìÁ™[ïS:‚¸Zoq=²ÞËÀ;K3ë-šÔz‹(µÞ"J­·ˆRëíD¹õQj½E”YoѤÖ[Dy"ØÙ0;W ¢gÖ[\¬·˜òhùÙ2;WnÎO ©‚)5ç§è`Ê­ù1õ:˜Rc~ª| ¦ÜšŸ’¯Å•™óÃt0¤Öü| \©9?'Í×9=c Îܤ¿sšœóÆ¤Ó 4uÇ©?2æVýecnÔÆýÈwcÓçPµ,,GΛ>k1/‡!ó AtcÀçð¤çy<ŠÏ}ðëÝšõ9¬s±;ΟÙu{úËqÈ™u¾)Kä¼1듾o|ëÎËþ&p$ÎܲŸÎÁÅõв‹+·ì§Œ¥Í.×Ècê¯Ûñ¤¦^D©©QjêE”šz'ÊM½ˆRS/¢ÌÔ‹&5õ"Ju'z訋뙩×#S/¦g¦Þ¹rSާ‹)7õçxº¸R[ÿPWfìÏN¸xR[.™WbëÏõHÁ’Zû—eC\©µ뀈3·øï–Fqæÿ‡ëœ¹Åoçn92ÞXü=üøÅyƒ37ù,TÇŽmÙNœ¹Ñ¯%î°=άǗÝyí~*ö¥5âo­~lZ-Ç_îÖê_>ÆYýã>ÆîÌŸ~ó;«ßlºéÈø#£úˆó'FÿžgnôÏÇZÎucôOÝt‚ë‘ÑÇ5b7Ñø yÒê$˜2£D™Ñ¢Ìè‹(5úA”ý JŒ~ÐdF?ˆ2£/¢gF?¸ýàzbôƒé‘Ñ×#£L¹ÑŸ´¨ž¸r£rÖƒ+5ú§´µ`J­þùÃWbõÏYÙÁ’ZýwÉ]Á™[þ×ħ`Ì ÿ›ðjpÞþW×Oœ7†-/ÆÜðó©FK¨gnøùbg´žìá'' õ6ßSgîíS[ÆmŽ?ÊÏv|Y‡ýÈ™ïÞlp‚óG»vœ?Ú àE8þ*ÿÛà|ºÆŸlùÁùx;œévà„׳í@p=ÛŒoý˶¢y´SºQºQºp¢|; ¢t; ¢l; št; ¢t;àD·âÊòì‚èIž]0=ºJ\Ϭ¿˜rë ÔSnüOÉpÁ•ÿ³óL©ñ?פˆ+1þç|ð`Ék¾¥"olÿkè<8lücýçñc-œ37þïL¸sãÏõ)ÊZ¹ÅycüçÏ–øÆÞÛïÍùíÃif¹½·S ç­½68H:p>·÷âü‘½Ç‡î'5ÁùÔûãÏCþ'¾ûÃUœ?rþ±/žOcþÄÚŽÀ‚ó‘ó/®‡Ö^\Ϭ½Ýñ»æõãA“¿Z{1eåA”•”QVS.¢´¨<ˆ²ªò JÊʃ&«+¢¬°\DYey%J*Éßl Äu][þÆÚ‹)©6cí+¯??[{1¥ègk/¦´ýª¦¬ýxÄ,iú¹dL\I º{ìÈkè´ŠŠ-­CwRœi9ú;ßGŒiMú»âàL Óß…§Å™V§ËvóvàK+ÔÝ C×½;q¦eê²ö"NËÓßZ{qæEêï" 伫RçÝ‹3/S9g^§þÎGg^¨þ.Ìãœ7•ê¯ …Á˜Wª¿ÛЊ3/UcZ®þ®Ò.8ÓšõsꞸò¢õs‘MpåUëgs¿ ¼½ýÁðdüA”:÷"J{¥Î½åνˆRç^D™s/šÔ¹QêÜ;QšºDyhÿlîÅõȹÓ3çÞ¹ž9÷bÊûS#˜àJ½ûóåÁ•y÷/_”˜Rïþ%Nï\‰wÿî=Øn<ü×CöàÌ]üw8äâ7>—ø~äà·‡Ãâ¼qðyP¾{˜õÀø“èþa¯ ÆçÁ}qÞœê¿ Ñ‹ó&¸ÿšàœ· úz4å¥ÝOœ?ÊÐ?„kÄyãì¿$ÛãÓö»Ã{w[w÷Ɔ‹ó'uwGŸ]œëî‚ó™ûµ~%¸•Ë‹ëY?×àzâé]cÊãúgÓ_yÓ_‰nn;˜«Ê•ì*Q²¢l/P‰’½Àåô“½A¥Iö•(ÙÑ£ÀåJ6 •èÁÞ 2=Ùד½Aezø¯Lyà‹vøG®4ðüâ*Sø?V´×Ïÿ•åæÔÿeÙªœ7‘ÿ—ܦÊy“ï÷’D]9”ïW½º`¼9õñ#+ãMºß‹ïZ9o2ü_61•ó'9þMŒ»2þ¸l1þ¬ôþÝ/r[zÿr¤]9ojï_6¤•3ß¼F¯‚ó'Mtpk&w‡•ï']tÚ •ó']tÚ]å̛dzp+WÞåý˜ñ\7‰S“*׳mÁhï]zðjÅss p²TâJN*Qr"P‰’ ÊN*Qr"P‰®O*Mr"pù³‚ëç˜T¢äÈ =8!¨LON‚+?!8VûU¦ü„à˜ X¹Ò#‚S6`åÊÎ^>91¥§§ÚœàJN NŽBeIO^vâÊO^K•*g~<ðº2‹/?xgEœ3?xg¸Ä˜Ÿ¼6©œùéÀ«_Z9ó£‚LÛü¨àTN.¶Ûn¶—¿äm;Û—62•ó¦ŸíÁ®\7Íl¯Ç»ëfû~¼ü€àÔÝ®r¥‡§H}åJONù?•+=8uº ®üTàø¬\ONÆ®|åÝxÏM àÉv‰+œMޏÒXˆÒXå±ÝÄ ÞO- ˆ& ˆ( 8Q,¨Dil@DbbJbAô¤aOeº)ûk[ÝV¦¼ÂÿØë¶r¥%þçø˜òÿc#½àÊJüÏ €Xò"ÿób#®¼gÏyaWxÙ^ˆëiï½à¼é½÷RÛPÐ(÷p6[9ÿ¿ÝôÅMf”úú§¼nq=»µr=¹¤¼r=¹¤¼rå—”¿ oû—x™¸·¾åפ^LãÑ%å•+¿¤üxáxpåÞû鯍Êõ ÏØ­[±5wvûd§œ'·ÛçõÞ™³4‰‘~ã:Sj´I“ÙìK34™Åv’Ä`_>âÜ€“&·ßN“šo§yd½'5Þ¤yÒ87xžôÚ ¦ÜtŸ}|gzÐ57xž4ÍÓÏÛÇ“kÜ‚)¿Åí˜ñLù%ng3àLùnçõœLùng+å‰SjœO- ‚)µÍïß´Ó|l)žÜ0¿9Sj—&1ËA“á …S|ñ8o,ððfyxfûnø5ßÏÖ!˜òèùim ®,zDIôüÕå ®,œ.¢,œ~­u_¢$¾4y|ýdè‚+ °QO¢,žD×ñôJ“„σ(–_<ë›ÝN1öàzp¥[eJït;¶Ç­Lù¥nǯRLI¬ü¼“–4V>Öt¬#W+?/ÁÁ•ÆÉÏBp¥Qò³aW!?/ÝÁ”Fǵ•'‹Ÿ·0Á•ÆÄO«{0¥áð‹ßê&~ÞÊW °Z#™ìÈ•FÁß¿µi<ˆòx÷ùœ*¸Òx·¥ÁÙ71ž¹Òx÷Å—tï¾+w_<±<Ü} ûÓÍÍm'û;cpí>[1ånóÙ²Š+wŸ—dqeáî Ê‹è&YîâWL=ê ºv©+Í£Ü8q= ˆSîU_¼CnH¯\é•q§P<©_ý²p®Ä±>ûïÁ’zÖ/ë·¸R×úe Wê[¿¬—âJë»ä\©w}¬h¬<©w}> ®Ì½¢Ô¿¾œDê`_ü¤7ö©&¤r¥.ö9d\©ýþå¾ñ±/>£/û¼§SšÔvêwY¹ÒpøÕ³È<ñJ”ºÞ,w½/Æ;çû¼šÏ=©ïû<”˜rïû¼œŠ+ñ¾_Óšƒ+Kf ¢Ôûv¢4™-ˆgûzj©÷-šÜû>[.qåém?P(uÇE”¹ã¢IÝq'ÊÝñ‹Ù?tÇÅ•ºãW/ZîŸÖñ¤îøËzã\‰?þbêÅ’úã§äþ`JÝñË ®Ä¯D©÷}NWê}¿Ø71¥Þ÷ÙSê~¿ìsÄ•ºßWC¥î÷ÅS¾q¿/^ƒ÷ûlNÄ”zߟÃMÚÅ›úã•(u¿/¾ê÷ûj¹ûýþ³¾ñ¾_v,Ε»ß/ž´¸rÿû¼À¯S‘q矟 ˜rÿûüÅ•ûßç‡!®ô$ûüÜÅ”øã×C庈rýb~ý˜Óµ Êo­9^ΕžxQ^ú~ñF¥»hž4± ®Äc¯4ÏtqåúÅš;èïßÌý´ð:S⟿l Ä’úç/®ˆ¸ÿ¼%îx%J½ï³ä\‰÷]iRoû¼ƒSZpöb[Å•zß/›q%Þ·ˆž:Ûâzæl‹+w¶ß¾¨wÎöûéÆÙ¾ø°ó3í JëK…Òcî Kpãm_¬wîöÙqWînŸçµoönìöYA1åvûü0Ä•Úíóë#¦4l.¢4lîD¹UQn•/f–[勇xG¿ø½šiçÊÍ´ˆž™iq¥¹jWúdÉj"zr—\ezrÍ{åÊóÕÞ¿š7qõ“=Sn·Ï+¯se†ûlÅòÌp‹+ ¬_M*·ä"Ê-ù…B©%MnÉ/Ð)?Ù1å–ülnÅ•ÆÑ_ì?¹RÓ^‰rKþv·Qó·¿ò%ÿ‘Üò÷ßã!Q–DÏ춸žÙmçz&Wn·OåɬwaòÓo oSî_<Ô›ä²ÓÙvpåÉe§>çÊâ JœâJ”:ÁZß8Á/æÞ¹nrÇÞ¿ßwÉco‡¹cÁ•ºÉßú]2ÙÛeåÎK~¿‚ÝxÉ/ÓZQ–eѤÁì—©‹+µÒ"ÊÏœO 1=²ÚÎôÐj‹ë™Õד3è`ÊΠƒè™Õv®Üj‹(µÚ"JcÙ3KcÙ"zfµÅôÈj‹é™Õ×#«-¦gVÛ¹žXm±äVûj Ül_L*7Û"JͶe¡ë É­ôÅÌr3}öfÅt“~Ì~®ÜJŸúé8×Í©ô)ý=˜ÒPöåP¹?e¶WnÆÏ›çÊÍøË–A\©Ù2ˆ+·ãïߌ;;þþ¿M »fÜò÷ËÓ?íiöɈo‚ÝçI‰)v‹(vŸ·âJ+²_ž—¸Å¿é¦BûlØÅ•ÄÏöF\i@ülþÄ”Ä+ѳø·såñoåר]hÄE“÷D½xˆI„¼Òä-Pß¿ wñð÷/ݳ€¸˜Ä) ˆŸW+±< ˆ‹)ˆ_L)ˆ‹( ˆ;Qš3~¡óM€ü¼í×£œñàÊägƒ(®¼fûT{æ\7IãçJïàJBæ•(Ÿ·bJäs¿«Ù>oÄ•×l¿ÿun’Æ/Þ„»ùÛ—î&d~±`<«Ù¦ 1åVþ¼7WnæOPL¹•??@qÝXùÓÞÀ¹ž™y1=ÊI®'9éÁôè°=¸R»ïD¹ÝQj÷E”Fé/f–FéEôÌî‹)±û•èI‚y0=hÜ<7uaïßËÌÌ_|™¯DÒɃ+7ëW =ª×#;/žgv^\Ï켸Eíƒ+·ó'³J¦;3Þˆ+5ó"ʃô§Ð~pÝØù·s¿³ó§lÁucçß™¶»ýûá¡™Ó33ï\wfþí÷wgçOÏbY~íw1ú—½˜Ò¾-/P\yÐþôÅ”ÇìÏ˃¸ò˜ýù±;W´?¯Übz”Ä\O’؃éQ{pe}WE”Æìƒ(ËY¢ô³‹™¥Iì"Ê“Ø/t³¯DIŒ¾=èë<7}]Þ¾Q—ùJ‘à+Qp¯DiÏÔ—•F\y×–‹ÏëI>xòüÙ¡×Mþí¢v€?;šâÊ3ÔÏN-¹îš¦ž «¸²|å=R¯Ê#ðï'?ïÄ•GàßÛœ‡øàz¦<ÿþõ¾À¿ý”nBð/pï~íw—œßoñä¾ùùŠ+÷ÍÏ ¸rçüôØÅ”ûæçÇî\7¾ùù±‹+uÎÏ«¹˜Rßül€Ä”ûægƒ(®<¥îlê+wÖE”׋_(”FíE“:ëN”uq šG——Wâ¬W¢kç¼Ò$Îx]úÞ•"uµE”»Úï_ÄOû´­Sîh_|(’؃éI{0åŽöÙ,ˆëQ{p=Jbw®OûűWêi‹(÷´¯Ê=í÷“¿M‡{÷œï’Úß[‡ÙpÁõ(.¸ž¹ÚΕ¹Ú•è‰g=õ³]Qò̳¦Gžupåžõé1WîZ¿Ò`zäY‹ëγ>®=Á•ºÖ§e.˜RÏúd:‚)÷¬O61¸2ÏZD©gD™gDIò[ÐdŽ´ˆ²\· Éüæ Êüæ ºö›+Mâ'ѵ_™_Di"ÚÕrã(ít0å~òû8w“/>•g¥ÜÁõ¨”;¸RGùjzTÊíLw~òÉÀWæ'Ñ“»D‚)w“ß/êw•ÜïØ]%÷ûçÎM~»¨ßyÉïßž‡n²¸27¹=JL›ÆÝ>ûÌâVšÜÀžŸª¸ž„®ƒéQè:¸žXçzh`ÅõÈÀŠ)3°ç…P<¹}=¯¹âJí«åöUD©}Ñ“Èu0¥׉Rƒ+šÔàŠ(5¸"Ê ®hÒÀô9¾ ®Ä‹"M ¿zˆi¨:ˆR |õ¥¹á"º1¹o?ƒ‹{ñÅÝXÜ‹5áÆâ¾_~žõw®»~âïWÞ‹+¢GÍS‚+»¾KD7öíº3°ï‹;û~}N-l%J jåöSD¹ý<=eüÕÝ•_‡˜²Þ(A”U]Ñ£„®àÊzˆŠ(í!DyHøüA‹+‹ Ÿ—ñ¤!á³ S–­%¢4DY¶V¥ÙZçÅVLYXDY8h²ä¬ zÔµ;¸’pÐd`%ÉW/öS,i’õ•ÆiWî Êꟃ(K¡Qñ½úåo"¾ï_é›¶%ï?ž›VžŸéM+Ï÷‹Ë]—î÷Kbð ¢$à[‰’ønÝ4)¹˜ZÚª3ˆòðíûg_hDI´6ˆÒàlå¥É§·h[ímÌ]EÑä®âyöâÊ¬ñfe—Q‰(m´DÙÍÏA”úuïcZED©çD¹'¢ÔQæÆW"ñ¤^œ¥^œhõÌ ®Ô­Q–ôb;Ä”V(qëD‘VE”zq"Ê zƒ(uÚœ(ëp4©“võsÜ8iï_¡íý÷“ùh"ºsÉÞ¯C7.™ˆ—¬¥˜¥6QâqU¢¬e¥þ”ˆRʉrJDùåJ§Fs_^ßñá% Áôè’†àzrIC0eÝ(ƒèI]¬˜R‡+ˆ9\Á•4Ÿ š¬ì5ˆ2‡JD©CD™CDIMФe¯Ï:ó§‚æI‘k0eù4A”»\½­©%¢Ì¿ºøvÒŒ› ÊÜ© ÊÜ© J3jÎN ¸²þRA“ºSWÓÏý©«ãÆ¡zÿn¤—9Ñûôöuν§ ʼ§ ʼ'ÝxOï¡Ü{ ¢ì¢ƒ Êœ¥ Êœ%¥ÎRå·ôøIæxeǹx¹w†ìt!a0å†ìt­Bpå·ž¿)q¥±Ã—ïE\® ×]Âéñ­Ó3['®4¸xòìƒ)5~"JóKÏ‘ qåÖPD©5Q^¼šY^QZ zõ oìãûß4·"zpI`ð¤æÑ‰2óxñæææQDiBêÕ§”ÛKeáG¥æQ4‰y¬DϬ¡¸YC1åÑÅ·¯Ï­u|û¦Þ˜G¥æQD©yt¢Ì†¥Ÿí*vb·ù}7˜a´× ÀÛ¯Õáaùµ—Ex± –€¿ Gù׺6cÇŒIÌ1Œ#03VßàÖ*Æ lÒB¡·K8Îãëão O7üšm%Þ'³íß-¦Xûò –nŽ^<å‡*ðn‹¤`Œ;FÕ>(ÊwÐ/„€18„AbVH(⯽¯c8l®E¥–.á8Ìm'ûò§y*?2~·Š™ËzñYàbþ,ïsÚ°oX å2\Æ] å2µ›_%Œ1Àá˜"Û–ÝP–¸òëÔ1‡´…´”„ã<8·iú5Y8pÄoþÝ`&¼^ýJ½6b{{ÓÛ¸sù¨Z‚¢øÖÌ!À Ìd÷s„€±ÿ5­Í„ñ,\Q„Ö.à8 ›ÙØó!X¾Û¬¿+¦,•¿Æù³À“=û/ö$ ¼µðWáØªEQ–ih$8ìc€C˜Ùö!aÚ‡²(Ô16×¢RHo—pœ‡Ïm°_pZ×Þäw‹);„ݸf{Ï Œ]s÷†¦e[CQ¾ˆen$Œ1Àá˜eµ]H•`Kq3@ÌlnUE±'Á×±Lšw{®z…)+ìj?}Y v,‘³q[ù`÷%àò²låÇÚ׆¢·:‰*!`ŽaᇠÞ^·ƒ°½ÒÂ)ªÞþéçÁ¹•m:ÍÌmÿ[̃kß…-ge§´.ƒm‹Û¸Ëò«ßZŠÝ¶ UBÀŽ)_§-ª!¡ÙajÆ ì_'´…´”„ã<øB–%…gw¼í$®/?uY»zûnÊàã`ðÎHa{WæÑ¶‰•b^ðE‡ÁóNr_V±—¥c훇T iìšøª?ã1Ø·^¾àﳚ¨ÁV›iäK0b ð¨ƺUÔ\ZжWÆà ƾvÚJ°Õ`êcÕ§AáZ†„ãÕ½¼sOb!§½¨5Ûó,[¹yl(ÊVnk8ˆ@î0bÁK`„CÍÍx+vÄÍTÍkÀ¶A-›£yk(Š^ Á@BÀŽ)Îòh[ZIX¹äÅ«ÅÐ"(\KI8ÎÃ·Š“™†âJí6ùn0űµ_Ù6a=VdBÄ&n1cÕ”­ÏÞð æàfƳ å—§:Á¯PAÿ8¾‡#½×©¼ý‚10›ùzÅס¿kÇ\“}0Ó„ÍÃð–ð†TНH•0Æ€G&Œ}V ö[nÍ„1†k!ŠÐÒ%çÁÕÃŒÛH+ÀjÅl€îf{Ú) îf@‡€íÓ6;¶;?; pòj :D?ƒ½¸öãÞ @ؤ‚(BE—pœ„ï¨f÷â¤øn1 YïE?9†¶J–ÌÚŒ-RùÞ‡†bên½¯ÜmÙ¶ Æò §½M»)Ž-©&Gå9¡TVÿ¥3ñA«-7‹…ƒLHqÀç>à/þ´öd+ņ-Ü駦üFzÒ0/¥ Uð?KAq§àñR:öÉ÷\…ÙyÐe;‚Ie_0Ùr7ÓÓpø‹aû4*ÅŠ]HÌ1À! í°ÂÙŽ!zÜ:øßCig?N‚;ŽÝm¹ëÀ.W l\W[K ì[êB9ŽÛãìèâWŠÍV©PáÞ7ÌÂÌE6ìªK˜Ëض™Õ۞õ…´”„Ó<|n]›NtųÓé)?ÅØó ­c«ÃÐÔ5qŠÝüÀ* À™+hE”tj&² ¸V Œ‰¹ A!)á4 š0Û {FÅÈ8Ž0å6{áîú4úÑíÞ+Œã¡™¥ Ø¸¸ ÂLØW†;k‡ ŒÈÏÚb­]Âq¾™Â·1-ð×¾[,fDX—q·Ã(„ɱË&ìõµ%XéÀK@ÀÃ/† …(jôûgð0±uÂÆ D!%à0®ŠåÇÄÔ>øV1 Ö òëZ Óvévº—÷‹'\:ÏÛËæ¢Áx±÷#¨ã¼ÀÛ=‚Á¿Ä\ž‚0Â)®DP¸Ž’pœ¿±nó/f¶×ø»ÅìØƒme›‰up°íegÿôn79Âù•(ìï«€€1¢”¯ë³ °C–±‚0† "Éœƒ§È1Ãùù®ˆÞQ Ÿ¦XœhÛÆÓZ bMq ‚9„‡³ˆ±ÓåÏ*afšKŒAÑ)×"(\kp˜¯ò1.Ÿù{F¡#Ž£:X’$ #88´˜/öâW ÷Ò Œ…t?«€iòˆåÖƒAáJº€ã,¸t 8,ŸáÎàvÅŒã/[ ,Ûß%ÎEËFsð^;+W,l=»±¥(o`åwˆòAîìµ*wy;§¥‘Oؤ(Be—pœ‚¿ˆ;\DŒé8 ÓÜð•×dVÌxà‹5o{ÔsÞвð¶"— ˜cøjCÌŒ/&$t8F©ct~ÐRµEèíŽóðØc*8Öš{sLys7Ësð-NÙœ!´øÈayJ[CQ8-rs 8cÂŒŒõH‚l­Í„1†k!ŠÐÛ%çÁ¹û¸aÓ÷÷»Áôî&Ž8©)0"_Ë4þê!à§B(þ¹Œ=n ·àNwŸ“(œà€ Lº+ ‚PÙ§ÀõÃöÒ»/ÎXc‹•OV·H™¡Ú,Þµl÷\ï›EÙx÷K#A0LJ03w’° Œ8i ÂÆ!-‚Bz»„ã<ø©mðz‘ÑÀ/MˆòdmǾGhEY7{1Œ<‰ŒøÑ€/8(vž…Á B0é&”ߦš!ãÓt%‚BZ»„Ã,81‹ƒá¬ g4ß ÆÓP-ÉŽY%‹¥aîýÒ€_ ô3 …FÆÄ.˜x ž˜™—€²ôõc3aã ¢¥]Âq~þŒS™i³ƒ¶žGÐŽ±£89ÛAMG{Å®Øû€ÀÀYQC±ÃT…ÁÂàÏÎ^‘ek Œx5A¨<|žõwW“9ÛëÿÝb° CÈ’ ;ž™¬3Ó†ßÈJP, ¹H@€q4Ç”·mƒgIÛÆ•@C8¬4¥¹¡Ž’pœ׎ò¬zŸíL_S˜ò°g|×Þ]û1,F^ŽÁFìy±sˆ†bÇ÷s p3àÄ)$”Ÿq˜›1cµq-Dz»„ãÿæÊ:ßAwÚo\ŠŠaàt„(†G~àÛaƒø!À/Îè‚¢À´5c׈پò* l}¡´@!~WA¡³ 8Ì©âuÚC(¢wÆ:„@ÆÅŒµ™IËí^ʧƒæ‚„q 7bWvü ný¢ALÄŠý\å-?çÚˆü]§bâ>(ι”÷7ß•<áS Ì «=X“M°òÞÌ'ŒAÏév µs W“Zë0ùá§Æ˜âxTZ…ôv Çyxèf±¨ðŒðÈÈØcVØ~„RÐÁiÅëÄÈ #³±Ï…(6„ϪÁKMÕ/T•0#m²Ž1Gª¦´EèíŽóð!B´ÅBÒÕwƒ)Ͼ AŸ3Ec/Ÿò4Œd•ÂÎr„¯Š˜LPe/ÞK?7vŸ *…”v ÇIøÎy>{ùþvîyÃÜ ½‘"³[Z ƒ»ø® Ÿ€þÜÏp¦‚=` a˜ì fÖPõñãÏÒÏÙ3à¬lSfO¢¬2®Àð|çnîí·£¦!@DVV[É*Ayk¦­0†€ì˜çû!¡ì_mg¢!útt”€ã,¸Æ÷«š¹/®ÒŒÃËŠY™¦Y¶¼ÿ¹Ã€Rf0“º9’VŠ=àÑÓó³Ù1qð÷B:1€Ã¡ó{«Bº€ã¸.î;Îq·uýÅ*!ìó6ËÓ ¼Ù}Ã6 À‹*ØFí;n\DÑOÜèH‚` !ÜVK@1©¶|Ç„CJ8EÕš޳ð´‡îÛn˜õàˆéÝc×õ|û{¤ƒXM'æN ‰FH–àÓp¹àÁöÁ½™nC•ï0äSÇ4*CÂi | ;DjgkA bx†¶²Þ¢À»}•ÞýnºÝ—•5•¢·’Ò*@ààù…Bt\‚ÝN޶fÂøµ\… p%á8 NlERÏÜÏʵ¬˜‡‘+{YD™J¹Òº ÆžhnÿŒãðʰ2-+¦çsûÄ’ÉNØs$0¾(B?g?΀–Ù*èìI °ûß-q•Ïø&;ó­-Q¦ü(ó0B—#Ÿ–( ç¶6hŽ*¦Çî¢J(ïñ64cÆ«ëZ…k) ÇyÐïÚp¸>÷å}èéwfåZ1‹¼e¨ÃÞÅÔö9`Á!# Rì8¨¯ÝÔ¦¼u=é\‚½sí„‘çZ…k) ÇyÄÙ,Þ`+íu6K OZ7KW²gÈmõ`߬™‡a>|6A°›ó*<)C602\ÖA­@ÂU˜ëA,Uÿiž#€Œ8Tåqù¨˜Áãq£QÙqb=ìv£á0ŽüùvÅì›Ixö¤bzn$$aõÓ-Ai®…(BK—pœ‡o=¥ÂwÂ_;D@\þhWäéï RÁ¾‘h0ƒyûÐHŒ!À ÄÌ[†+º† ŒÝ+!ŠÐÚ%fáG˜_›ÛD€v@…ˆk˜¥ž)$9ìco:·„5—¾‘ ˜€C˜ LH`ô¾ŽAÁµ5vöF}OÃË<”E…yÚ 89£÷úép‚aù( üEO”Mœ¢8S#@ààYÚB ´NŸ•½ƒV ?ll1UEI8NÂW ¼­ó0nŠÐ câ•I ‹m£Cö…­=û"°l E‘oëYHXärõ¾ CD¤s²'Uÿ¾yyg¸SXI;;û¬ü=BuÂ|m0UCpœ‚ª`+Z¦:{Œ#0Sggð² 02fGO_ðã¨ÓÒRlÔì(ݜĠ¯²#߫ʈÃWÀÿê:ûQ}-Hµµ¸ì¨Ã1skWÅn¦ÅÏ-öEcZZ ž…„„€;¹ ³0Ç4$X9YsVâ°/ÐBÒRŽóp§¹·0]Ùƒ!«ó»Á”wæËŽž–3+Êícè–€ñ¹Œ¬örÌU€@ŽaP„]L,lÐÓð+r²Ø±Óÿ.•ý8?@GíDÙ-4Ë3Z?ßä™;b33v£{z„q$>µ˜ÑºôC#A0LJ0C<’P¶‡ãÚŒAXË¡¡½]Âq^ù†ÂÉÉò¯:&ý:ÆžÖîËÐd \# Ùìl” ²™,>þ<"»¾r;ìòq¸* *Å¿m;Wn—ï0 A*»€ã<}tgG¾½óµ¾b&®Ô#N ÌN-–ô9È”P¬GAÀ. U@À–za¶…K½$X´t«CÄ>Êut”€ã,¼tÆ|²óP¦T ²Ä±c¶ÝW×ÕB“y{îÍüñJ±³Ö3$Žn`ÖCƒYX?50‚^ÄD·JŠ;Ò÷u‚_U„Î.à0?g^x玤àÿJב)†.‡X‘,Î!_±Æ¾þ¹Gz¸vùX…A±PèéBkáãPÇ4*{µÑq ÞŒió[+ì}7ˆÏÝðЋ¬¸:ö XÚ©Uü;üÅÎJSC`é€[#@0F@øVüÁ¿â™×c€¾6TóöPÔÙæö ÉЛ_ðÝbf·„þ3ÛÇÝXšë<|j(«$!à^ÉŠÂXÆòY%‹Îƒ0ì³¾ §–’pœ‡{d+¶¡fégÂ_kÚ;óTwÜÙà`]†K¶µ˜âp æV ÛðÈÑ­t% y¬!ºQGÍRBRR³ðXÛD_bG!áw`àáÞŽfÛ)”½múþâ9çÞ·»/ý.aôÎ1À!ŒwÀ„—ö:„`c •"Ôö8‡YøOÖ£îÏR­æfeØÖ®f&ì³ì,vä°·L´¬ê °ÅÜHx¤oË;an%lìc8ì•ÓÜRPËpœ‡Ç=fj—‰I¾ ¦¼]ŒH/HúÅ;Œ IJŒ°RRŠo½ pRIA`:Ët«æÕÛâù„=%D:º„ã,Ü{Áæy²“€} ÷"ÌÊž[ê¾ñyr?³°W?aìx:>1QðpªJxôZïÀh³" Ú­hŒN™Ü¡Eìg\ËØîæ_ÍÎÎXâ¶³ü²bœ{Œvš6{‹\kÉiÇiópy¦v¤‡µ `FyHÌ1À! \­*¡ÇaIƒ°qH Q„Þ.á8Ìm\Ô‡bb$¤Á N³Àì<1!\9Ž+Îý—aDz:mCCQ6BÝÞx¢Ù`üZ% èQÇ l®„BGpœfÖO^m Nu éO£7Ù<â˜rÄiWpµŸÙÑ+(ìxuoìéM  PUûÐÕ1Ô©.”Aèè޳À̬Π¹KŒ”}·„ÀF+ŒB¶Ó‚o{œ§Žùh‹g—VÊ k(ø¯ö ¶Óc½ šÉÖ1‡´EhéŽóà·¶ï´I+:¹|·tÇnô,£bR d& {Súžÿ¹l`:ÅpO·¿bd‚V‹­…ü…'ouxþ9´sî“þ\õ7&æ{ é¬¿aæaØÙN ‹ú>´06¨¨HW«ö!À j–%ÀZLÛ««ö}Nƒi´vÇYðOìØI Á˜£UÀ…II–e_ІÂ(ÁöþÛ!ÖÒR¬ˆ`ë»Î|ëW|0÷ë°ïÛ>à3rs0ƒ¨x(ëA׎@vÅu ×™üÇ)ÐL—Øâm6QÔ`PÜ[ö@m&©,À„³ªY÷hùý f´¸éØp ôüòŠèÏ»µî™«|‚ßÕ?†fÎ{Ô_—¹ñÖ^Ëœ)l;S{mÍïØ+ÅÊÜíÓÝÇ€íÅ/ûí}j(†¦Vrc Òª€ËG‚0†p%DZ»„ã,8³…uÁeƒK>±c * —3j´›ÅPxLØF]½49(¼tYspCW4$Xáw3ÄÊì몃ÿ]*;÷a|ý¸KA­ —ùÀ0Ow´¼yÔ„v°}_˜öOØ^ú®ó),¼ÎUBÀ‡ž ~˜*¡C¾|ƒ°½†ÒB¡7%œæÁl½=ËÂþcgO…kÚØœÆŒ™‹igó‡íîèÒV V^m ‚9„Á!kHc„IU¦¡ƒ(Bkpœg6ó⌅·K|·xLÞ°$#Ð~yd<:è/ ^pý}÷/ÄÙö -*¦Ã}U€-;{3aXå­èŠOÈq*ðÒ¾éf}§èy=˜8±GZƒéÜUpÃÊý³†Ví°¥„ST)á4 Ùïlê9zwƒAvqVtÇœŸ]@æŠ:l£òœØtÒ)¬ÝßÞØó¬+f@&v•`±‘f€ˆðSÿ³÷q ~2¶ {ƪË$+f°&4Ü?x”8X5̰ú浡`…M¨k 2^ªËxiFˆS1WÁÿ*;ûq î/3Ù³úç»Ål\ÈF¸(hêá¥n,¨žüjªÑþµÏ Å´0¯_ž´¦ãR& ¼W¦ŽA[/×"(¤¥K8΃?Ù8±IÒºû¶>0RÔ ¼b­ÙpsCÙºö¬ô!ŒÍ,.ùj(|5“Á ®J`!xC•â¡„Bkpœ…»™|ÀTäïƒÈ$Œí åÆÎsZ.à‚$®Ja§sU€@o£S¸–¨²÷¸·@Øí]ƒiTt ÇIpbÃ~ºäVÌÐó‡·Iö€6™#Iñž¬ŒDøß§ž-åÅ-¸÷KÏÌȘŒó÷¸°¨@{z* ‚ИüÇ x´~çq;¥~·˜ Ú¨ë3ØŸÖŽDZ^u ¢€~A‡øžµ ¦ç’ææõ×^åBhßÇ÷?‡zÎ|œ©·D 퉧F³ãÐ§ïØ†ÜîˆîŸf ¨ÃˆOÏ-f´”gô]“„€g?6ª˜§>!¡GÎJƒ0BÚ®…(BK—pœ‡Bxëq«5àZ/ŒeµÛGZìå/Vaé¬^æ#sï‹Íïym‘(¬ÜÜHÌ1À!ÌÀ< I°dífˆŽ—Tôw)íìÇIøŠèm ûŽÅ} í"F[ ücÙç#WH$Æ×s=Å41HîÜL‡j•`ÉXk3a,‰®EP¸–’pœ6GGKî‰ç™!ÙÑ.¢Àh¬3ÚÅ˰}ÝÈkDÂî¡Ý—*¡Â_ܘ Mß«FAê„Ñr-‚µt §y¸9òêÖnd'ÈÃ4/ss‘i‘X;Ëgß[Á~FÐ` ¼2^ö{ƒÎ÷ãgH°Î÷ãRÇpØm^iå®eH8΃s³V -9WÇŠÁÕcÅãöZ {OL*·‚1n_"°ë‰×F@À^¡Z1ÞEG4M­# ÞDµê é(ÇYx¼uÐå•°nðß-½[ ¼3|Ü(tb¯‡¡'ûÙÅÜ3oQîñIÁB„*`ð# A3s%D!%%á0 —.¸A µð ã¥Â°»] †eºC ˜Å{×>`Ä?׃Ð;ºÍI@ÀJmL‡ëvª„ŽÉ£SèRJˆ@:JÀqüɬ0åÕú(©ˆgczjoÑdóz¸´‡¹Ï¨2ÒŸ™Üû} ¦G޳¸.¡Šý>…:¾(¤ÙÚûŠ£i‚WýÝ"Ðc‹/Ž é§cq¶¾eûØ*ï*zV ÷n˜„à9z°L¾iö!ûJˆBJJÂa&em»íFæÎ 3 ¼dŽÝÐæ—‰³3ŠÃzŽ-ÆŽ·ö} é ]Yƒ…Ö•bì{ÞW Ñ}¯ 4xPH]—pT?ÂXÀ·Z<ü»Á˜Ó` Y‡Z3üÂ=2ÂÖ#Ø^¾‹v °®õC#A0LJ0¸y J`£ß:aãºNQõ¦„Ó<<ÿaáí”lwüÝ`ØðY\æ²[aNC;ôÛì[¹ej(Ì’õUBÀÛEap+k•P¶VÃÒŒAøë£jáUoJ8̓[á¹gÚñ8°åJƒñ´«™7YR¹µ:µúÝ6M—‘ER¢XQIBÀ~S]Å ”U ’×ê„qT=·˜ª¥$çÁ¥¾_Øc¢ëÙ§´Á MñYt¥`Íâ·Ë0"º++ö ¼6ûÚ¸÷Ç hß¶*€sÞeŽ{yÙ êXgA¯¬›©§Õ›3‡*0Há*ðæÍåPž6Ú]ÑXÛî¯÷¦€¢PêV%`üè\)ìÅß‚9„¿ÂÄÀI«:Ü;\ÇèüfâP"¤µ 8΂Û*«pÄJ3úAC ?v3k#GÚ˱CwRÁn§¸:9…UQ „€GÞ¦gH+$Xñ@3DÏú°ªƒþî*Šý8 7Ù¬ù´‚­u¢ÉvL- Y§—Sv]ç1j·WvHŠšxi¬ ¸ó†E f†—:F‡4D§èQèÒšN³ðšÞ b‰ ÓÆšǬ8Ôm‹agëÈ€á´ó •0ì ¯" ŠyåQ¬æ_ %IU‚Ù²f€ÞQýY*;÷q ÚÙ±ZZë…Ž{¬ÀL曎Ã2pÕ_q›(o°ê¯~ߨõpÕÅŠ«V«„€;wc×àÈË%,lcF0ȵ…´”„ã<"ù~Ýé©y»ÙÀÌl»±“‹¹““ïc»5`nsmAÑwh *ìÝÏ+¦|‡½çŒBBùL¶µƒ0öÆ®…(¤¥$çáIêh¼8M,ún1“ïB\è3±˜¨À ŽþbÎyƒAúá8W öû§*†åFUË‹ê½nµ -D!-]Âi^è—(­Ê ­˜É x{ƒÝ£‡‹¤·å×à[ãð^c'Øy?DX ´Y˜9–Ñë9Ä¢üÙÐAÒQ޳ð¯mENÒ:bçùÝbv+­(ïyÇøÄ4’a™¸CŸ”h2,,Ñ Š¹ÇUBÀ³ïÊ*¦g$ +è4aŒáZˆ"´t Çyø>ñ‘Éê–'Aƒt;D,쉬3–Udšet»^,öŒ—FBÀZÊ3᪜*aBh¾Ž1é$ ´…´”„ã<â wC{S•„T +:½´Ö“3›fÞ\"G²ljŒ¡V «&¤bXÒ¯cöSh!ŠÐÒ%çÁßmb¢Œ›{RK`˜ó0MÌ÷·Ëè-èV /ŸŸ–³ké[‚yö“x°JYc-${¢€‘91acAá:JÀqÜe­Ø˜ÙcdíD в¼€›òðóÆqZá%.—9H@À“/ Ó1YÊ”ù \#6é ©èü‡)øÞ‘QgÛW÷ŽÂàkDZù‚|$ú ¬m A4Îk6ÞÇ,÷î!3±,)$X‚=òÌ8„ƒ_¡C¸Ž!à8‹6"pÓWV1^7µ¡Ý.ób@p0Ë)DZ J´×*!਼ ¿‘°zð\c¬]—¢-]ÂqÜ>î8©AåÈʃ\aìàm`’2³O&‹ë˜ _¶U¹Ã S¥°Ã½¾‘ ˜c BfTH@þòuˆÞ;ÐW%œ¢ª §Yxæéò Iæ~ÏzEL`±t5Å. p_‚` {£QŒ8e ú-è³áÚÆ*`ãÑb ±éð1”…«(‡)øW†xÎÍ™+Q1<¾Y¯2Y³2ú%’MÆG3´|4ÛÚHxrW²b˜èú•7£_up#-‚BZº„ã<<Çeµ2'«WãÔÁ›ªíª™gt&Ü“-ø‹E!<£sŠ¹ç©ž$<ûÌ*¦ç±³$ø]Õ1aŒáZˆBJº€Ã$ü䌱Hk 0rÁÌŠº ;•ZÐTÙ—×qôk»HveD4(¦Î¯Qt qÆç˜içŸ$L8g®cL:Ø-D!-%á8/6Ø›fÞ·Ó`˜éµNe G¥bE¸¤‚°G—ЗÞ)¼â*$Txö½fÅX.fPœ¡al† ŒÃ\WB¡$œfá{« yž¼ø»A¬ðìæ Õ@x£Gì¬P $»Ô"UŠyô k]BÀ£×Q†¹*Ák3aŒáZˆÂ•”€Ã$< îMXÌ‹cÜcÏJ*Ë&ÁÓC7¥ÑÊ>û5`„´Ù„/(,Ýen$ÆÆ6. ¶þ Í„1„+!ŠÐÚ%fÁWÑ–’‘A]†÷…±°/– p[9%+ {^ÓÍQ{8£%m¥ØÙ4Qö!À! úã‡KÌÇá¥ápeAhí޳ðünªï³yá–_ 8ôXg 3‡¿x°O Åà7JBÀQ¶ªoct~1GÕB¡¥K8Îû}°Õ¾]‡Ò1e"0èœQÖ-܆~8]ÙËal|ÐòRlh­vîò1/~8ëìeýÁ^LÆnØU…T”„ã$<›Œ•òv#ÌìµßÂ0Æ0¬­·ƒî ^m¦Ã_¾äÌ …í!!`¿Œ40v9Ĭ;ÓçdÃaŒáþ¢p-CÂqçÅ›¸ðkd\˜Å×ð•$Ì]­L·Œ€6Šš+ÁÆ.að ‡áëö°á ¬ zúÃJ¬žÕâ®c8ÎÂ󽯢‹gÔ‰ŠÙÏÆÙ-ÇØwÖsÆWà}ÂÒµ·± ¨ð¤”‰Àt\$¡âukÆ ù t¤€Ó,|§?¸½ÌX~·¦¿[£¹æÞ^®ž}C±~q*…¹óC# ÂƒÇ»32ÞÆÉ«,}ŒQoR"\Gpš…/!ò«­þ•ާ,E¡ö¶²TÜeg±"a|àÌKŠ7[U ‚1Ä×Gƒ˜x~/¬°­Cþú¨J…´v ‡Yx xcBÆÞsb1³/kù+Î7wí¬-tØÏÉǵR˜%[ î=T/ÄÆþ°ù£b‹;I¥„(¤¤$fáõú~©H‡º·ïÓ£EʤV7G¬«šxq á¯0•‚kt• ¸Sµ]Ōȗ„ÕkÆ5†Ã_¡EP„Þ.á8O¸íym›Õ03ßÖ2ʑɊ¿¬{9%ÝÆ²JÂ_ìÒKQØ-Õs#Aðêe­#¯*`íx¢!VÕµ†A!­]Âa~†6ùýt~ÇUÅ ,³-t>;Æ®Gw ÅŽVF.@`¿é‚Þ{¬ê½ßqUUpŠª4%œ&á§ðìGouž&ÏrÛ^:úN¾c‡{‡Ý#ÙÖ–‚WKB…•'˜žin!¡Ÿ=§ÕÇ 'ƵpŠÐÒ%œæá±« K+>£9b똙èa$»Ê‰GfrÖ©£uŠÉ[$!` á\ YØ]Ük3ᯪ„(BkJ8ÎÂ,FÖÊo=ð6˜™ ÏvÏîYá™ ú~Ó!š0à&ã Ø¸™—„€½ólÅØòÿY¬hžZ‡X½»jUBRÒgÁd‘?Û¥SLS ÌŽ£Ü€#6Ü\Pá/VI²E‡(Ðø®JxögQ1=#l’Àku Â_U Q„–.á8Oƶ¹Õ25½_q, O:š LÇEÁ%XIù´Ô1ÆçI-*…´t Çy¸o=Ð5áMß-f¢¦ë§,Íý†{Úa WyäÝA¢ÑuºJ¸Ó¾XÞ%Q%X–ÌØŒA>«k®¥$çáž•·Ûs`¤Ç1Üd² ah=Ä>ƒsÀ_ìDˆ»‘E1ãNè*A0Ç@¨G¶Ø #{ìÇ„¿>ª¢½]Âql¤<ãØ‰uU¼è 0¼ÉZ71HµñJ™ÝFFC{\KP)ÊwßO„€{ú Óã¬JèqHVÇèý­j®¥$çasë>ÿÈÛ¢ oÇ«»·õv̆ ºjã ý¾g\'/Øö¯Þ]+x!• ¨ðªŒ»ŠY˜{êV†b„uÒ-+Ò˜Fk8Ïâëã/?>ÐHE¢kÏþ fâUäviþëŠã‚Á:bMcÀ_¼ü^xPÌlâ( ÷~ï^`,B·|V ËÂÛ 4a´÷v-D!-%á8Nn±M:J‹6&T Ë^ YŽ(O*[mžmÄ}&›;üûÀÎFÁ.¸ópƒákºÑ¯eñºQײH… Ò’p˜„ÿl+¿[³z¸q©Ál|—W&ÑÏ ï²¾èk…q¯Æ ¿U-$\ïfä•ò’À†bu ¸×µ iéŽóÀäÆŽíñºôJÁ:Íà Îº…˜Ñ¿²[ Z;ᯪBP¸Š!á0 ÿÙæÕëGGo¤ˆ…¯ñâ›Ø~ó‹P|ÓcÕÃ>§¡@¿ÈF‚àÑ;é¢,쟕Ÿ»Ž@øë£ê ŠÐ‘sà¼Ô<ÚòX·ClË|qÃŽ÷ [Q+w,GÛa¿’gÜZ Æ«‡9Æ×GƒáÔC‚íRcñíSÕB¡·K8ÎÃ_Ç­#±¼­iUÌŽ½ ŽÌ·©q+;ó ¶·edWõ =éH^üÈ¥b&vÛ—„•ý‘cŒUyò¡EPHK—pœ‡/‘+£f‡·Ô`P ;˜†4Kkí @p{š`\²¸-ņջJÜëBea,_é³ X±ƒ®Cƒ+! )é޳ð©íJ@_üVΊٱY‡_¥Gìñ Ì„S‡q R†‚‚¸H‡p ö¢Ç3â¶F P¼U‡ Œ!\‰ ’.à0 _GÆ…eêå§6ÞÈ! 2NpÝÅè¾l?ó†Žn•UT•‚-sCBÀ½¶OÂX¶:l°KXPOQÇ üõQµ…´”„ã­çë°ÿ⬄°mÁ2øE#ìÂ`í­:Ìa\Û:rC3ïj»õ7¹ðRWçf&b•¯ÌĪ(B_—pÐßWõeã-+]¯‹—ƒ¨ÑNÞ¢NCцųNìÚãnn)Øk$îuó²cì¼d¸»Œ¡kÆpÔ"(\Ëpœ‡L[<¬Tä»Å¬¼ü£çµìb2 : ³âãˆbèxö*O¼º³Áô¼Ú%Ø>~íëc (Q ¤£fá+‡n 4Ò5©´p Î}¶Ã=³éšØ’4Î-ÅNMC‚`]‹I}V¬ù¬Cƒ+! )é޳ÐêÇŽÆ"ì̓næIÿ:ñ†àncÑÔ:ÅÂûvNa`9èúÎʾð¦Þ`Ñ]¾¡BP¸Ê.à0·Ë}ÇW|šý~ÑŠÁg;ØYª&熱ŸØk öyÞ­Og°¶² öv 5àU€]ë½4#‡«RQ“ð™­ œÚ½Õ=÷¼±¦i\Ô[&„ò†}clÖawó¾>Aá­«\@€ ŽñYVÅh[3a㢎’pœ…b Žq5—üÀl¼ŽÚ®õ†!ël»d7™Ž"ì0²Ë–þÎ;©‚=๠…3`Cüê1ÀàoE(àýœý8íwìmªÜ":̧=õܱM ôiŒ–T»oùØ”®Rl~ë4¶°g»×ÄE08\Q¸†ÐN@†ÌÛ`m»<aØk´¬K;s›÷‰.ÈÚ±tˆ0Œ ªò æ…Á¬t4$ac󲃰qH Q„Þ.á8íB‰ Ž.à8 ÿÝV!X<Ÿ\3óÚ·zX¿únà^a¿ÁÎ7l=gñ<òËn0øuª„ W±ÇýÅØÚ¿KCñæà¿Ù†~k“ݳÝÑŽÆ/Þïƒq\ŒÌüêÇ%Ky)xA¹S/©o%<úJZ1Ï‚$ÁºtÏÍ„1†kÒRóðï€DVìÆsˆÀŒ¼—W«Yì°öjK û—מ”JÁ€KH¸Ó ¯0LIªº™Gzƒp½˜¾RHKI8ÎC^ÙÄæ¿KÇmcƒAy\"Ô6ÏÖñ«€è/).Ö€^`Aa§Fc# àÎo| ª„ITuŒÙÓ¬B‰ p%à8 ŸZçežÃèç™3ó¦ÐŽ×&[{zs[;^XJÐFíè¯ýýj}‹­øiï¹½wÄÄ̉u÷*yÔ/ÀVšÁqÖA±†båê& ÷LC¯»vöÖ% À×1c‹ïZˆÂ•”€Ã$t¶zóøÎ¬Èw‹§™ëO ™S…ýT )5AG•pçV/0ýêù .¡Ÿ=ÄÇè=­j! i) Çyè8¢^øõÝb¦ö;ïfvK‡0rÞOqœý)‹båx’°®Š S½ª„ö«ŽÑëÚßÐBÒRŽóÐ RÏÖÙ[ç³3ðà©c3c, 3”ú!`¬á‹-Eá¤p'ïX˜Aï*aék Â_U‹ p-CÂa5Úˆî"–ú·(ÚÈ~#~u®Ý‰~$#o²<ÿ {´/QPlÞñEæm\¼£ËòYXSèvÂ_U Q„Úpœ…ÿn¥ m,£ Y°àMìæÚà/¶G:ó‘ÅÌG,ŽÌwm0=†`y‹[3aîŒ-…tt ÇYøÔ–ÕoíXÓ`x$`· q‡•–m'wåË^†¶[üÂOg xðýD`z\OPÙ{[åªp€F¯¡ýïÒLìGÝå½ð–7 'xòƒ0SÏÔ+µc@£‡3ƒ»»cÑ÷ …•ŽÁ΋0 3$aœ˜Ù 1ÆI¹®DHk 8ÌÂ-Úˆ[Ð@–+ް†Ù£Iu¾8P,†n[„ÍÚ0×P ÂÞHpxÓyRÅàÏξ!ò·ÉOv¤€ÿ]ú®Ÿ'ÝåE¯ž~<°¼½ÁLÈnÙ-WÀÅîÁ.¿Üç€==f™[ ¾aà è®0.t¯ôˆ¨C ÞE¢*! é( ÇYÈŒhÙÛ1!ä»Á0g¤À¶ÞÌv5Z‡t¬í6ݹÑëŠD1bM¬sp33sBìÄ¥ƒ0¬•ií޳àÔì";VÆeÙPg=HºÚ· ÷b¬~ñšÕÃß7¦¿à¸Ê!0è!̳ßê½ Jׄ†Îœ'f÷X>5yCïŠYü*'lÒp¡w¿ñ¾ª5@«´±MPó÷ ÅÊðä=½+†ñ0ì,ò½4ièüÇ9èƒ#[˜ ê}·/³&öƲN~QÉ6üÅ›L¬½xPØ…búå±€›GFU>aÈw ‚Bº€Ãü#Ã2ƒoŸàÀh¸ˆN†-KÑxÛA2IWß½,]ì/^HU1“_•èÆÞ[ïù„t‚Â5t‡ÈÍpYbGÿÝ`¸€‡°yôƒ7vs è~æ87Êz«Á“²z+f6=«&ñÅÝÏ„A ­]Àqþ"–ÅUw´xóëÀl~±®yŸö‘w6¢öi ø‹W 3®Â“€g_âÁ»ƒ}ðšS 0DUªT ©( ‡IpfkÚ&«¨ñûnƒ ìh»0Ü26¯~ÍëÄ-á/Þ »o-ÅÎ&Š!Að ÆÁÂXzº_ »{Ã4Tji Âàp-D!-%á89œ;zð[ÓHSäDöÞ)¼gŠùÆ*t‡á:²…Tø½<ä°pÏWH‰æ}U:a0øø¢å\ÀA{_ê;•ÍÞþ®bx 0Xÿég{è$Ù!P°½X¶çÛ õ£’„€ÕÙ¥b¬Sì–R°7Æ›ë*…T?Ï3à´fv&›Ìw@*zEðŽëºmnkÞ=úmFƒ &E¼o%«î;0›ß±´ñ’ª®c«‡©g]Wç'í¸ IMAYUBÀ³ê¾ƒÓÁ0ï=Üù‡k¡¥K8ÎC…)«w\uÍÒêÅ»hê5{c¬åDZp_ÂÄ0zP°ÝHÌ1|ËBÌä—`½4š!~}Tüï¡´³'á?Û€N¿“•ßN~ç—0»¬X$’§tH³‚ã0):žV +WnìÕŠÇn¡‚WÃÖ}T‚ÂU”„ã$|;ì7ƒ F­bvojÇ„!”/l™€K^g/AæMÐSC±ÁOj ÄÄ[Ån-»Ú£'ƒ«RÑ%'¡·‡õh0n|‰±í8–ñ™·"™Aü‚-´X üÅ t75fhZ û¾¹%ýïB‚íèçf ‡1†ßÍÒ[óðÒ¯¨Ú;ÜýÝ`ì8xVb)w“_Ÿ¾÷ñ‚õ¥o(f¶Å ‚;ÝK]1{¤HBٮ턿>ªA!½]Âq.ÃìÞ«›‡œƒžàƒ]Œ­®2ÿ² ÁVa„mÞþêÖ ¤o¬cÎÀô~žçzžaƽN9C‡ p%à8 ßC.Ìi²øwïWƒ 3s‡½ªtõÛÆGœ`9Œø‹ŠHE¡"SI¬#Šñ¾Â’0#Wǘu¤Zˆ"´t Çy¸f½µì,4Ó,¯bñøŠ¹ëVN> D^j@êß­B¤ávP—@cåî­Uy•Þó ¶::ÿº‘û¨»¯ ì–‹l‰…;ÇÀ¬(¡¶næ‹'t …È4yÇŸ]MF,\=·;¯« ‚'/Ä­˜ž›KIXx­KŒA®…(BK—pœ‡ûi¼Ô»HÔ2?0Ø»â]N8q­³/–„Í‹ò&Š•‚¶3$¬ÆÄÃ[eCˆê•:ᯪ…(BK—pœ‡ËX„» –9fêy|8 ŒÁO#Š&æ,8ÜÔÅܱ.As ¬Â,¿šR& ´u{3a 1ÄI)¤¶ 8ÌS+£[Ê·üï5m<‚àécûo`þT1OÜ "˜^Áó·÷i{ŸyGå“ÖÏ¿ÿì>ÿáÃbþó§2 Ÿ8.ÿ›¿zÓÞ#^{Ðh!Œ}QëUsÓ¢ûDBQyØ,~­•;Ùÿ/>Cÿ4¡ï7ƒÅ5 #Ò½êœ_1Áô·ÿùã|ô¸™£È„×7Uö¶E™¦ÏýÇÏÿòùß?¬ËضÙoÒþuùß?tŸõ1Y¡Æ´}Ö–òèüÇg Œ ó†J»k³<{P óÌsÓ ¦¥:ÉoFl¨¬_L™Z÷iÿçÿùúþüËß?þãßôvuC!,KÊçïÿT¦šOë„Ô[•´h­Ÿ¿üÝoÝþbYÐëû·Aÿ\›þð÷¿ÿõÇú½<¾Ñ¢hL%÷ž;ÂÌvHTv¦Í;ªeóÒÀ¨lWŽ|“ rLK%ù•ªñ‡s·yÿ…=€Ñš,(J)"¶˜ý¼rÊþYŸ­½½>£w Òë£×æôúä?Hù‰ËÚPÞßæ÷Q”T¦…&{UúóÿåOúþŸÿëóÿþþ—ýCr//øoÿ/þµ.ýoÿßç¿ýù¿ýùß>ÿëoü?úÿúèú2íáÿ§ìíš,Éq+Á÷ø ó‘kª§;ýKzêÑÎÌjLÛUך™4c–ŠÊ®NuEUOVö¶ôï—À9¤ßÌ‹è´6©ˆCôë ZéÇ6Êï,#Õ¼·Çïxxú·òîûžÈfîƒo½j/—¿Oÿ6¤]?_ÅÓ6·¬ó£åô·&^C®«Y”†nr?ýØÚY) ûìüÓ£*í˜íÖæg|úðð;3ÍŸ²$ëm£Ù3F÷ZkdM¯l¾Ýî5jFØZÕ/ºÚ=½×j÷¾–ý¶Õéçîµ2³ºÛÿ¿4òk ϻڟ¬ÕyÛ {K¾ñ ÚE&ë½FµùþV`妉-ÔÞíh­EûÚêôÊÍ÷Z{êÍÁ»iee°,Ÿ~G¿;ï’%í¬ÊGásʾ߾¾Õön£ϯÜ6:üh×7¾L~ïë:föK¾íݶ=LÇAtP‹|î¼^sø¡ëo×1ÝoâïÒ^oà5´\«»|Otµ/´¼)éô«JrŸZ{ cÌ[¿¡…„í—z´ûšÞ +ñ†Þëd;aï|Í´øe'o€Vß!úèð¬v²zºÛ[’ìJë{Ÿy¡vÒ DõP›†n@‡_¸žKšíÄö[Š[ºáþGzkŸ,"].SU|Ê µÚ 3Ý—n¿G5fº¯4º™³Ôh˜è¾ÒèföQ£ažûJ£é¸Ltl4Îs_iÔÜWkt3¦qšûÊÓÔºÞŒi˜å¾lSüJõ¦Í0Í}ÙèvÂR£a–ûJO—ù”MÆ)î+MfÿeoÛ Ü_ü óÛ_üÓÛW­þ2,˵Ñ0»ýÅ?ë8ÛýÅoÝ8ÛýåÚõÙï¶M@†Éï/þnbîûZ‹ëܧÃÔwO•q滋&¾»˜aÞ»‡¦½»aÖ»‹&½»˜a닦¼;˜ËŒw3Lxw1Ã|w3Lw÷0ãlw3Lvw1Ã\w3LuÂÄT'Ì0ÓÝ“3Ntw1Ã<÷#u;ÏÍW%|KLÒ˜î‹OI­ò îÖ¨UÔÝZµz#¨»1plõFTwkÕ*êî=ø4ªÛ|¾;–/ºJã:·wÏÇvûó¸nŸ<·Þö•Çu›OzÇrû#çq]=1%×ÛVi\·ùÜnã7âºÛ)€­’¸î+^¥^9¼U¹ý‰ÓH/@÷#½/²Ñ&üî|iä÷õ‡•E~÷?ô4 P ( ÊBÁÀd¡`€²P0@Y( ,$(”…‚ÊBÁe¡ @i( , P ( ”…‚¥¡`€¾-¬¸Ó+Ÿ"o’NÑèÛ¦HµÊ§ÈÛ[­’)²ƒòñÖ°U>#V˜Ë}»m•Έ›/Xu¹m•͈ç4û,ejN퇺4LgųhÖ~žË|m˜NŒhè“O3íc»|jÌTͧÇ/&pµÊ¦Ç/Â\5J§Ç›ä¤¥³ãóœå³ãêÎÖtû’ä³£@ÙìX%.õVr>=ÞÌ©l”ÍŽ·®©š|Ûì¨Véì(P:; ”ÎŽ¥³£0éì(P:; ”ÎŽ¥³#@oÌŽ¥³£@éì(P:;”ÏŽ¥³£@éì(P:; ”ÎŽå³£@ùì¸ùg|Æw³ûÌðF¦ôvvT£Á<]ÊÙÄçÌ©]—–YÎôtC·yĵ´‰àÒ0Mœž®¨ÛÕçµÙØKË4{ª–Ö°ÅkcÃ<‡zQö¸Ž2Ϥž_Ý)å¦e–Ný Q£4Ÿz»2©ViBõ‹‰SÒŒj±—ÏäÚ*M©>ÉÛF÷Sª6Óøû<ݾ™y’õÞ¨²,ë¯-K³~e&U«4ñ*Pšy(M½”æ^…I“¯¥ÙWÒô«@iþ 7°¥XÒ¬@i– < +Pš…(Mà ”æaJ±å™XòTìíLÚ~Äúf*öv&U£<μõ\Õ*3o-޵ʧÅ[s Vi¢öÖ\©Q:MZü›Fù,yïæÓäö^­þ’í£í"ݯíò)ÒW =zò_íÒ2OÑ.á5ùâæØò­íÉÝhøÆZ•pÇåÒ2›Cwúûí[ùÆzYªÕ{^¿ú&¿1…ÞäM£ÕÚ¯¿ÿùz³Š¾)E«Vß2‡ªÉ·Í¡j•Ρ¥s¨@éJP:‡ “Ρ¥s¨@é*P:‡ôÆ*P:‡ ”Ρ¥s(Aù*P:‡ ”Ρ¥s¨@éJP>‡ ”Ρ·g¬z–kÈR´_Ädj”¦ho§(5J3´ÓáóF¤Ü¢Uš¢<¸Ø¾ì+MÑN;Z­7­ÞØ,{“ŽVùfÙ›ý¡Ñê/Øäóï¤@S ߨtȨ¶Ÿ|½¶Ì´_Y\UË7´_› Õ2OÐ~e%8Zf ÚÛ½ºÑ(ß!t³Ò©Vy‚övöP£´·J¦‘Jf¥“D€òIâÎø³I"0Ù$ d’Pšj P6(™“M½‘8»ZÓh”Í Êæ„%sB`²9A û‹>Ȧ€eS@€²) @Ù P6&›”Mʦ€eSAù l P6(›J§€eS@€²) @Ù l (”N‹KȲ`“$½:(ÉquP’Òê ,…%P–Âê $cÕA÷T“$¤:(É?(K7uP–] ÐýìRÇ$ɤ%¹£ŽÉREÊREJREÉREÝMuD– P– P– P–(Ë &Ë (Ë (Ë (Ë ”g†”e†”e†”e†J3CÊ2CÊ2CÊ2CÊ2C¥™¡e™¡²M~y_âÁwLê° ”8ì”úç¥þ9A¹.PâŸwPæŽ “ºã¥î8A¹;.PêŽ ”¹ã¤î8AYF&0©÷-Pê} ”yߤÞ7A‰÷-Dê} ”zߥ޷@©÷MPê} “zߥ޷@©÷-Pê}ô†÷-Pê} ”zߥÞ7A¹÷-Pê} ”zߥ޷@©÷MPî} ”zßGÅm½™÷-Lê} ”zߥ޷@©÷MPî} ”zßeÞ·0©÷-Pê}”{ߥ޷@™÷-Lê}”zߤ޷@©÷-Pæ} “zß%Þ·©÷-Pê} ”zߥÞ7A©÷-Lê} ”zߥ޷@©÷ ÐÞ·@©÷-Pê} ”zßåÞ·@©÷-Pê} ”zߥÞ7A¹÷-Pæ}ÏÓa•ÖRó˜Ì|(3ßÊÌw€2ó-Pj¾”™ï%æ;0™ùPf¾JÍw€2ó Ä|&3ßeæ;0™ùPf¾”˜ïÀdæ[ ûæ;™ùPf¾”™ïeæ[ Ì|&3ßÊÌw€2ó Ì|”›ïeæ;@™ùPf¾JÍw€2ó Ì|(3ßÊÌ·@©ùPj¾—ùù|#y˜,y ,y ,y ,y"Pš< P–< P’< L–< P–<(Mž(Kž(Iž&Kž”%O“%O”%O”$O“%OºŸ< D–< P–< P–< P–<(Kž&Kž(Kž(Kž(Kž”'O”%O”%O”%OJ“'Ê’'Ê’'Ê’'Ê’'¥É“eÉ“yÝžÏ7’'I½oRï[ Ôû(õ¾ ʽoRï[ Ìû&õ¾J½o‚rï[ Ôû(ó¾…I½o‚Rï[˜Ôû(õ¾ʼoaRï› Äû"õ¾J½oRï[ Ôû&(õ¾…I½oRï[ Ôû(õ¾zÃû(õ¾J½oRï› Üû(õ¾J½oRï[ Ôû&(÷¾J½ï›m'_Ú÷Û='w©Ó}»Ûä"u·o÷™ÜA¤ŽöÍ“;€ÔžÝ[òuDî\ßî*¹ƒÈÜêÛý$_G¤õíN’;ˆÔ•¾ÙCr:Ñ—Ý#wþœºÏ·ûFî RÇùvÇÈשË|»Wä"u–ow‰ÜA¤nòíþ;ˆÔA¾Ýr‘ºÆ·{Bî R§øv7ÈDêßîùºŒÜ¾Ýòb™ÖçiÎ-i`2c Ìž(3©ʬª@©a Pf[”˜×Àd6@™‘(µ³ÊLm€k˜Ìà ”ÙÜÀdf7@™å Pb|“Ù_î›à@dV8@™!Pf‹”™c2‹˜Ì((³ËÊLs€2ëLPn ”Ùèef:@™¥(5ÖÊìu€2“ Ìj(3Ü¥¶;@©ùžÛ[{äIŒÀdIŒeIŒeIŒeI Ò$F€²$F€’$F`²$F€²$†@i#@Y#@I#0YC ,‰˜,‰ ,‰ $‰˜,‰!Ðý$F ²$F€²$F€²$F€²$†@Y#0Y#@Y#@Y#@Yƒ <‰ ,‰ ,‰ ,‰!PšÄP–ÄP–ÄP–ÄP–Ä(Mb(Kb,ëòüFCÔ÷&&u½‰I=obRǘÜï&&u»‰É¼nBR§›˜Ôç&w¹‰I=nb2‡›Ôß&u· I½mbRg›˜Ì×&$uµI"öçe$í}x r–ÝZv ÍôìëÐhk!-„–’pÆf³†eSš]hm^Nmh×tcqÙÍLõr.ÍÐ.A[¿K5Ó; š!*ƒÑèÃ[ˆÓ¾WoA K±E¥ÞhÔBˆÐ›®ã°±ÕÙüÏžfb_;§™A¶ó:Û‹Öèíy[ýVÀµýÒZlÓÈit›@·Aiöá-ÄYÍ‘ µ½šÓÖû m-¨E BoJ¸Žc['o³ïÅÞ×בÓfæÓúioÍÔ»{}nÆ*HW´<û tlþ*vA{Þ‚œm·É¿K0³Û{pÊÇE ôg*¨Ö×!àuÜ+«KïzÅiÖu·~ß±‰x^í%^Σ½AÚ›ÒÌ{-#à0ÕˆFÞB~7’P&¼kì¤5„ÖpFÖ>J³LÕFíæ±sª½n¯˜‘»=Ô嬓M¢­ÛZŸ·yD´ÿžƒ€ ½ oANû2Í †„6™Îuè´™PBé(×QàUl†5ONE¶ï`j²ç6-yæ{Û¼©Mšë´½'í›öäŠí›>ÖA‚èõ\dÅ{ªæk±É¿wÚZH…@HcJF@‹¿<ó#/Ÿ / ì–ö8ð,'lñ@ÓÞçˆ80åJBÐÞ…·8XhìäŒ f޹÷Ašö~àHÉpçèÓüߺ·ï'æhqŽöíúüYýž]ͽ9žXOuÚ}‰öËwÀѤۜÂöô/ÎdÿöíÍ\ËÐh:®‚¡!ÜŒÁÇu´ùÍf³ëëÀiOm1—§½éá$U£+–ÓA›¢mf^Àêæ¢ .¬Apf› BÀä—²ô@{ÔAˆÐš®£À›xú·Ý¢»f”aƒs§Ñ;g¾Å<–:Y¬¸Ý^ÿ©¹{Ç>"N̶0ÐÞ‡·§øÝó!¡4K¹ }€¶wQZ€3hénÇᆣ´'T¼F1_ìuä4T³¥ÂOØšŸiš—öȺiZÖÕòâxÞ" Ü¿`´Ïð|ì­§ê³{Èmxi „4¤€ëø“s’Û'R4‡g…CÔÆéQ{üáæÉ‹ö`9ÞXèÈ% tÁ Ó9mrhQ—Ð>“º }€~yèZ‚ZBÂí8ü'›NO{´é¡õf¿X0Ú»mï®|çŠ dµçÕÞœs Úžh{·N-ŧš.A´wa ‚aqyoßì¥ÿÄê´÷@ˆèJ»€ë`?ÚGï¯÷,ó!ƆßB-{¸ï˜qhþ©M¤íÛ^ÖñÏ͔̓že;Äi‘>}_c]Ýé  ®þ… zj}Q?T{“Q"±Z5äבsøS°_ý‡ºÑ ±\î:5¿{õöÞ>HïÀñâL^[íÛC8ùN\ èïR­¯ÀÏÔ\i3;[s˜Ù§àl‰7šßcã·I¯Ñ‡2Òö(÷6q­¢y»u$=sš N³ï6͆„º­uè´µ –’p~°å´´žîc¿ŽœÓnö™Z4…T³&Ì% Òèdf4÷ûÚéxq< Û±ûÉHZª€Ð®c€‘ß1é4çʾבӾ–&¿ì ˆÚûb“M±ÄÒ´}Ð-f7®#Úd3JzÅç8p ̶$ üî}(@ïZZRÂu 0w»D¾½Âž…x9ç³Ç\z‰g÷ÔæÖx^‚öé9-¤šñ#R@ÞƒÇ`â4¯×ERÀ‹]€ö.¨„¡#%\G9¬zVºýÒ³… ¯#g³ ÔB‰G_ÇØ<9ÜS'm“K{µq+0M­±µHïx0öÃB€Þ|‡Á‹v™Dô¦rj~UŸ>ââ?ìÚÂÝ ÆCœc±Ÿ¸ÑˆñWæ†Ì_ÛjÐîÁUá:b÷2$ˆFÞBœÕŸCHhFd©C }j B„Þ”p^Ä‚ˆµ¶×¼lþ"çpoy.ˆqmåÆÃÌí}Ûƒôi-¨špA¶Úí=x&ÎäæPv%ê¤á¥¡!Û_ÇãaÎ8'Ï–œÃ’ÞàÄ´Yʼ€bsç´}Ø-\8ödb—tE.sàLÞWH(û£ÐÖBZZRÂuÛäK1þÄ›1}9ž nôî‹tfæÚ[Ö Ý5ZíY ˆ6ÉÖABÐ…&<8fÂíiHÂh%úíÞµBZJÂu[óDl¼6Éòw NÅS7Ý'æ¿JA,Bú¿´ý%-¬Ÿ—ABГ~7qÚT®§îÚu³>û´9ý@´÷ÃÞÉtá$-ÎÚbG³x’°¶ÀÄüaõAÚZP‹Ž€–!á:Œmã⇹q«-8§>­•8þ„ö¥•´÷KM„hšNuôJsÚ9Å¿·`Îâ6ôÚû B„–”pæ´æêiùñ|NpÚ;R±ÒãÉèE+?'RF mºiÑÕÀiôƒ@"у7§š›ÙØòרh.X¹Ö”p]«bîxÝbc¾Ì¥v†ëàÉ5=)ïŽЦÛyì4§vWAˆPš®ƒ€ý°m -´ÛÆà4×,óÔÜpŶÙj²} %hû¶[d¶Ì¢Å[ë9.¼…8+ü@IhþÙ4öÚZP‰Hk ¸Ž‚3õé p¶­™íw7?¡l‹{Bûº "i‘ V¦œö¤/dbG D{Þ@Œ¤´w´ÌC ý»¤B„Ö”p~2‹Ü|íë4-^vcÖÉzfNé'Ëçí"íiž¾‚¥¿—iFJ‚̓FDŠƒ ?4«W–¡ÐÞU"”¦„ë ¸½x›cÛÌô¼œÉ KRØÄrX6ïDZcYƒæêò²„!A4úðâpíÚ›¯ÈvD ™hq„¥çÇÛ0欼Þx¶_òuä¸)ðB¶Kpò”ú~’ í™uºVû ½o@Ns÷Žã1 { ©ÍJç†p3Þ öÔožy}8;²³S{½Ž¿…Y²©ù/íéêÑ:∠G]‚hôá-Ä™}ù)$¬Ød}€vc³œAoJ¸Žƒ¾ðîo­¬X ŽoAv7tsÍOŸ4ÌQÝæ é ãÍsŽ{º]@'½zÂÆhq¢ïQó6ÎûÐhz®‚RQ®ƒÀÀl6÷*ô2ci[¶ùÝ^¶f˜|å׿÷9èl¦˜–a.È €$zà>gÌ>ÓEóʨB€¶R!Rš®ƒÀÀÚçhÉ s;mЯ–`9Ûïë«6ŸöÏö{Ïsо/hrç4­å: ‰OŸ¿šoó yäèÜÿº²áUwfðw"ónÀ'£úÞÍÖhÂûÑøæ(ÙneËÓ~ÁØÖ±a7@Hí]¸’b¬öÅt̓‚Þì´wA%„­)á2 xR«çÉêyø*éëȱµÐ•Õž°ó³Ñ»ûÕ¤}u š°íi«šáÒ¹˜çœÝ×`{óÝ]»|'}[ˆjRñïTNͯêsi·u²ÍK䬞Ž_Ž6›ã`MSÆVmiîú{·‰hjŒH¢ªé Ÿ²{óÊeQuPcáT*JSÂuÌâà¾ËÍ—4^;cǪÇÜŒ±×QÙ±ŸØvBÖ#hådÎáy´.Aô;6ƒã¯T—°úîÉÞÇ;6¥…Òš.ƒ kxøÓ)–“[à’cÈŠËaG=™ç+›çÀD»ãvZÞ¼#vÏ6u ¢ÑÇËÃÀ©_„„ 9ûè43E®…¡7%\ÇÁ\ðé¥g™ ‡û…š]Ý/n¢¦csI»ó6á¢yòû!‘ô “W•àÏeÂ97¶îôÂúÁ±slj^lEáìâI›í`ÿB@94õÆ@vwàL䫨£ÀT·ÿÚöqxü·˜»é hëɸÐüMwq$@´‹wÍÄÀ­öíÓrk­@{TAhËÖ]un~Ø<\;í4 ö>ÑàáàÉr‰ÕwV—ciîdðùEˆöaX†)$ˆö.¬A0f$À~ îÕi·+çÈ´¦„Ë(ðvÖÅÎͶÝïuälXGðs<íë[L¶¢ùä—y@œø*B@Ð3÷gò/¾K˜V¬#¨ÐþcA‰PG ¸Ž‚~à #»Æ†ËàøÆ3ߪPýÖdßÒèÓ ‘h÷ƒ3V±yF©Kš›!Nñ‡ªïUë}€æ† ×"Ò’®ãÀëh¯Fîì˜^ÆSvzž¸Ñ'âxK¦ÏA{¶rÆ#b¶'Û9s£`‹T4o/³Û1uÚß^ªhH×p§ÛiþÈjÛ1ªÎÙ¹’6³@ý„ì†í3?ƒöµ·ö¯°ûr}ôÂq‡e%ÀVºÆ@s3*é!%à: ÎÄ‹?¼­r{l0´»™ƒ²Úª§­6Ù‰<›5HûYñÅb7Q]BЕþVçL¾+OV-Ѳ Ðþ$¨„Òí/CàހЧÃÛ°˜œ™â²cþhß·­{—¹øôÒúWÜàº1ôŠïzàì“„ëYì¤ï  „Žp½ OIùÇk/†-LôÓfô[^=ë%Ú]Ï‹uÄêy³.A´wáYv1VØj ˜q¦(ºí]P !BkJ¸Œ‚î®»¤þÚL…’³ãØ•Y³_ö6( ¹ÏA3O¹/bóÅÿ.A4úðâTÿdBBsfÝ)R ¹ܵ„ô¦„ë8{ùÉùu¶ÃqXrޝ¶ÀÇóäëŒq£U{eâ’¢P^·±úQì.!è™GŽ‚Óf¢Ý·QB3uúí}P !¤¥$\ÇA²™]çåPn^Ëïøž'óÍ%=ð½›"íá°ß«#ìèÿ9H½h'eçp“†$,Ü%ª>–¢ä¼´"ôÖ6Ë8xž ¡=óeÆy*qª-zÒ²l8¥ë§OËbô„ËÀhäf¶7zRZIÏGõöÈGõ@3ïê‚RÀu\Nq´ uEv£sêdë«åS±¸êéô r¨çX|Á€­E@¸£Åñ3xÑ \!ÝI_Ea÷ú»”eë«òa;Vfà—°à Un_íA¿y[úŠiÚŽ« !!èI«íâlH¶‡;R6¬’¦íp-A-%á:.¤ø¡áÕŒnÅ%Îê™=ÛäõúV?Mî³ë$¿•µ €Ó5E{‘èÀˆ³ú¦–Pq¶Tni ôg)ÌÖ×pÙÜOO¬¶§ósp–ÉOÿ˜ šÍù±—Žºs¤}œ ÅsÖ]‚hôá-Ä™‘ב„˜™‰>@Óµ8ƒÞ”pο›§ðÙN3N߃c)aûDwÆ@çd‘ƒŸ^³?HßË´û¢©þÎ(LÍE³_SÇ3† 4Ýn³Ò~*Ñ•†„›Ap3鎒hÍ?†¥ïœê§˜6[ž^ݤÑÕg ÒÜ:pª=È2‚ž´g^ÛÕÍí§.Á6¿C ½j!„´”„ë8èàû¬^ÏsƦ€³ùÆ2;[bΘíÑÉ“ó ÚÝï}ø³åÙ÷¡yÐ3Öë;ç8°ô²9±ú:¥‹öƒÞGH?5¿Ž€[ØL¿sC€8'2¸ŒFŽÕ—÷«ç¿ìµµ}ÙýoÍüZî,½b/ÆÀ)ž“Vëå@ý _b“Ÿú"tƒ€«ò œûÎZDsp‡CpŠÒÿ›eæVÛwëÉ}‹jÐW|³8øS‚hôá-Ä©>‰KÀT0‰« Ð7S !Bm¸Ž—×ñ÷cáYªÎA ˧–Š7¬ú„tX'Ús,³»Øqò0$½ð• Ï»R‚¿dGïC4·ùq„j) ×qðä&ŒmâV€` Cl¾Éá7jî~†ö°œ¤¯fæZÇß—a¬š=q'@pV߬íÛsŸÎ¡Ð/]!JÌ¡õñF–F¨'X®àÀ¾¯àT."øi’ÕÒ…‡n, AÚOÙlž¨èˆóy r‹ŒKÅÑÜÎ…”¡оJA„Š’p ¡qõ‡¹ÁdtN³Wö}›V}¬Ό…²#þLþ¤üOË‚§¬v¢!™n$8~ŒCWÜ„¢A¿<ôž…]Ñþª:wà84Ë–¼œ»ùl¿/½ÍØügüm5iO”—‘ÓèÕ·¯…ÑèÃ[ˆ3û^È`qÔ>ôš\‹@HoJ¸Žƒ³O$ðw?îó:rp@úh­Oä<\üD‘hš`_5¢}óÐ^dÅzHgL8ƒªæíÃô3¨ê´{&Ð@€P®Cˆúþ3Z-šªúàø¾[Þ_í±Zžï`þÏ1w®:üF×`Áõ:ôºWèˆÐnFÁoËËÞùLãÞ€©ø—êþææ›Z÷‘öo à‰ a»Âë !hžJëœéÀöfI˜ð’F }ãì2rº–’p“õÖ§ø±ÓבSmFh4³]åÀ¦Éé°rhWåÉ|Y˜O“€ 'LFc‹ëc—`þîÐHÏÕS¤£\GÒ¬§× Ú}R8‡OüÕì©åjg®–xá!ÐL8ÛLÕØ–D£ o!Ό蒰ð›ÕÇvÆiT(!@hM×Q0½q"ù5OÚLœÊ3Žž€Ym¯£o¦¯.tÍÍ~G ômBBзF‡ (žgí]fb»BHIe8.£`†ƒ»ÕÖUÛ¾‚srÛNÍÙžßÔµø©9Ñ>;áì^ *Îö…„ ×Øö%Ná¦-J¨¨º}€æ|éZZRÂuÜL_ð8¦™:gÃ)¨‰ u«b`R±%Ú¿ð¿8¥Ö%=+Ïsl¾ãËm€Kh47·¢ѾU q:‡(BÂuÜw³ù‡mB¼BF{Å“ž'–Dì\¿m“ñz}$}ÍnO<þ¾û!ÊÞ\4äû¹{qžå§€öRËÐhϪR!¤2\F…cüQY…<ÕqF{†•g€m7ÁY<ýéçwýY—UÅõluëŒ[’ Ú»`îwVŠÁb+ h½”¡ Ð,ãJZSÂe\y®¸§íômÁ¯ã ü@»›1¯tèF© ¤­ÕfÏþwße×›“fÞ@ž¢€râ”z í!Î>r¥)á:–fÚXþߊ¼ŒÓ«4út›`5 í%0×Ð’ÿ¤¹YÕº ÄâµKí]¼< ¯Ðì^ï wÚ7HP !BkJ¸Œ"fi·'³—³z9+gDþÌ3m˜BÝBÖ ù1"øjIBÐEGÄ)^4«K°­þçÐhÎÓÛ6 ¤¥$\ÇÁÌËñ¬vÎQf0ðK{,ó.'ªêuÒã+/Ô»×ë탶¬ÒBœÉèaÒNbi ¿KAµ¿Œ p{$qúyÂ×àx?{išTêÎiχUs ÄNãO …}paTÃO5½ Ѿõ|j³œÎeQ8Ñ*CØF^z·Mtlj]('ÏVvòumö €å&ÎA@Ð ÷s‰c»P<K jߪ ’/¡C¨c¸Ž‚éü¼–'š‘Îa,Ÿ`¿÷¹£¨Ü<Ûï-ÒÓxã: ÄjdÕ‚à È\XwÖÇC y†ÌU 4¤€ë¾`«¶í>Q˜)8(@a.غ᳄;SQ´#ž—Xžê‚^tä[¹*’ WE}L›Ž|K‹pf¨e8;—qøØ–³ðlÛÉÓ—Á±ÓMþbÌÊáš/³ØÑ’të´NXÒ¢Z©¬³7x qe…„öõÛ¯èôËUˆ?Kc4¿Ê2¢,Eeö£smdŠªsŸ³çýI·N×öIXåÎŽ8ÝŠ„„ +ÃÇÎÑIPJ°âóÐhk!-„-)á:üb3¨hÝÀAñ®eFÍ+fb‰öeAÉ.Òö@”õêÔ¹ A«h]çø¨.E뢭ëZZRÂu>6+²å[˜VßSö:rú²:: ·o¨ä³ÌA·nw$«:ÂV¨†ö"¹‹­3à¤Gs«‰s€¶Ô R®CðaÕÝK‰­V…`õauJ,×£pwÑñìä:öÍ'÷áïçŒ S̓.ø;§MÍ~'Œl^¡9:ذôÖàߥŸš_Gs¿ñ~p~í+’e/ºejíµ¶ÊjnÎw&íž„W¾g­K Í>¼…88«, VcÚ^HõAšéæ}¡7%\Ç ÅLׂ ýuäX„ÕÈŠ-J¶3˾ [¥:ƒ¶÷ßsMúó¶a.[É’¦S‘ÎBëŠk!´ÁÕ} ¨š_õÇ[¸ñôÜT±gà¾K¾n@[ iiI ×qàG[‹¯óÎÍÁY «H²/ùµ"º'm´½ðöwÄéub%€$zpü9¢íÍQˆ¶wÚH!BiJ¸–qÇÄ_QŸõuä¬þÌ;\…:Ÿ(—r,(Ú¬Ö±óêG"N_Üï‚.ü™ƒSv¬£IBA>*úí¶”Z!-%á:›‰?yÊîGçÀY±+^¼ü抒x›¹¼GЭ_+¿0Ÿ#âpÇ5$=ÑýNû½N–€p Õsª½Ð/] !¤¥$\Ç·qFÅ¡ubñƒ »ë2³®‚W Çí#hwé&¢òfIšE¾ƒSÏ õò)¡ž êé³ÒÖ‚Z‚Z†„ë8èƒø8½Ö`‚ƒZx®x÷i¡Írû·±Ë,4_ÍÝÕ@Ø–Œ2H>¼…8¥Í%¡™…iì´ÏÔ"Ò›®ãÀlm‰Š¥1qò¨sp¼wae¶õº›ó9ÓSaýîÆñý‡â¤A Ak×yçÿî$ÁÊø¬½ †§ú{¨Èæ×Aà…<6w2·y£œeò²ù(©à5S¼Ê>«:¶wåôY*Û„]b$z°'8¨tŠo¢ï]€¶.¤„¡5%\G3RyJØÊ”¹K«M`èÊsÆÜ!µUžDmš®<«,ÄŠ£Ì@=8ž D¦ÑÜŽ€òwîþôwiÌæ×àE„ëâg``øƒck8ö«Ûë‹%{Ë—½âDh{Köƒ¹0"?]Јž”ƒêœê3CH˜°›>úí}@ Bk ¸Ž¿—Õ©¶ª+ê{cÃc»3Ó Vn8Jº±¶6i{œ;ж¢M.K$ˆFÞB# GI£ªÃ¦¡E ¨5\q¡ØÐ†Ë&^ («8‘M'| ¦C¤^’søûÁO̓æõ3ÑZH€Ùsè´µ BPC ¸Œ€Þð΃D·Îgñ²Ñæš:µÒÕ­8ÛÚ}Ûa¯¶vÞ›“‚xƒ‹QGk&»B~¤Ã¤€¡0\§ê\YPáÄžôÎÙ±?e>‘„µ"æÎ,Ó<ÒöâO(%ˆ‚L°$½±ÚÁÀñö.aC}l ‘B "ºÞp3¦ðà™©aŸœC)õÙ\±Õ–¡µoÍͤ<ޱ/¼—D£o!Îê·$`ÇÙ•èb×é–PBˆP®£À VXÈv™i;Ž˜Årç%êí^—¶ùeöÝ,1£¾YHZOpX¤>$Ìp\¢Y®Mhj) ×qÐ]äjAûe+¼E1NT]¸´Øž—ÏÎŒH»'Ç"!„„ W,vFÁ-9О}"%ÒÞ•"”¤„Ë(Âí@ÖwÅjÙÀAÚÅ^î‰úu1Ì¥v¿©M!6\;:­\Pç\1# ÍšÌc ½j!DhI ×q0³3ûl“ Ž[ç˜\Ó«QF¡ùÅ–.A#µƒb·BØú×^ŽŸ)ï6lG>6-!½)á:ØýËØ³Eo,ÀgõsVDmõzTŒŠÅŠо¿sºí™*!„””„Ë(ðí;î[¼¨ðëÈAÙá·xUÛ`ãtEÀÚ}õ‰`4!AVVMëœ Gæ¥>ÙÅÌ­Œ] !BGJ¸Ž‚‰|Ô¯¶¢e…‰|q°'Ûî®ÁölÛÝ5¸åO»ºíS÷eÆBŒ$­]ÝÁ™y‹‘$XÎdèÂIï:ðïRQͯƒàz™_‚‰+¬—‘ƒ{B–.y^aÆcõtö¬õGO–ñÏ'h¤î~8Ø;lŒÄû¿}¡Œã]Y´½Qž±óä9I«zA{œÖ¬xÀçÇœŠªÈ{’öH‡aÓï6HºÊg‚5“„#ú펵„´¤„ë8`8 öZ‘/x÷Á9¼Óeù¡ 9»¬l Ú]Ûê9°ŽØy¤h‰¯Âiôá-ÄY‘•‘ž>â$yh!DèM ×q0ÔÄó°ï ·Áé²%[ò™„MõÙn8ÒâWè_²ë‚V]ÎA=íPP?;úÍ… ×BˆÐ’®ãÀØlÿ-3‰(›œ>Âb;r=èóÏ‚K¾HúÛ²!ÊÒßOT›WsÑ…£ œÉ™-â¶y:í¡5"t†€ë˜Ëß‘BõÔבs¤°IÞM^©¼zCmí 0_îbæ]’ô*£œB«F ë£Ç.œô¨ÿ*²ùu_ŽùyÃF(,,ãt:¸áÌ.8´€}>PÅœ´M8Bˆ·µ…„ W®+uNñá„{϶¡ОQ§ ’pìÇÌšävøë¶âÌ~¨š…܉kC,"A‘ó…§ø,fñû„¨(VD£ o!jW‡„Énè]L¸‘ TàŸCe¶¾é/,ÏüuNE1ù‚j‡¶!Ý×Vìíë„EbFn"=1΄JN!aBÇè´÷%Žp²9;&«Ñë:§"[b·‡¹Ç6¥Ó…à&‡Ž°"¶ç 艷§nÌïRBEñØè´'¶ D¨£\GÁX–ËÒÓƒMq¿YÌëû$ â½uÆùHÒ\6À5‚D,¶ÆKBм¶18^ ¿‡w^ gÑiFÞÇ2" eH¸Žc3SŠ™f1~;™ïüÙ¼èŠ-ùEÙKнcwC šÍóó8’´Î¬‡ÅuBÂ<ójQö1³¦j×B*)—A0÷᩽ÕvrmH}ˆÅ­¾Üü¤júЮ&jÝtĉ-Œ’tyæó'ǺKè]€öqQ !¤¤$\FÁ¤)¾r/º!k*s• J ÙQ1Ÿ7ë<ÒžÅsë= AkÏCp&xõ!aBŽ2ú˜”Å -„–’p~´mf:^´0pθvÀ_Õ'Œu;qæÕI{ û20•¡yкe¡sŠ—ÑVûå@Ùlu°ð–…®A ¤!\‡®°»–{AùœÎX}Òì¯ûšû‰‰©œÜŸqrã“YpOÎ 1û °.!è™IŒm§ëL[¥ó}Æ8ù¡D ¨¤$\FÁ]Hθß¡ô:pf”Åö½¯þ©¯¼eüiO„zìŽ0¿»D£o!v‡„Rp—ú(E·H‹@HoJ¸Žƒk¶;Ï÷íæ¹¼»ûÄe‹Í÷?µ?˜½´¯ÀQÓ¢p«Ø´ D£—‡Ã»Ö%ÁŽ©C ½iä zSÂuÜ#QyùÁ“JÁAEdìô2w_‘À>àÒvΚqº- ¢Ñ‡·YŽÐ¼Ûyúýòе"ô¦„ë8¿,vé/3˲t÷g-Ø•`g¸läb‡LŽ -¾°º•Ç€àVÐ4ï¶ëœÙSg]ÂŒuÌè´µ –’pìãɲSaÓÎY‘m=Q’ÈÎXyÎs·AÚ3½Oô áÙîÐéÂm>äø‰~Ï“B‚/ýz}ˆfþ¹ÌA-CÂÍ80¯!ŸëE9¸·%83¾;JÑ͸ íôë¾D›¢'+âðšzj/²jc‹pÉÔ|â9u@Ú½M× ¡à4&©{¿Å:jñý¿º€¬sp}ØÆ«¶¬"Rß‹[fÒêöV+p”´. ÎŒí|!aFÝ©ècÖd¡…ÒR®ãà>îT³¬+Æœ7ÒñÐîŠÅ‚mũҾ/›[±ÑÓ“„ g½Žâ,Xë ö4Æ>@{ÔBi) ×qðuôÒUÚí|É)3.ˆ;° Í£»Šg<Ðþ+n"âÄH>¼…8(Í&”æŽ>&ÝeZBzSÂu˜ÚlÒ°Ó]¸?¨s8רÕaçÃ<’åíX¤9QÁ<q®4g”ô¢dž8 ®Pü2Þè¢lÜâ)ôwª¨æ×Ap—-΃r‹äëÀÁ&Jw^†m˜î?áŠX–rK7^âPTz ¢'–58+v†IÂ4Ó«c“I¡…¡7%\ÇÁ£¸6¤½ÿö)¿+Ñy"Ó‹½d 2ˆó1Ò>çÀ§ ÄŸ+$ˆF/gö×+$ø¡²Þ…“Ì-wÆ 4›_Á¨Ü7»‡ŽVpª;¶¾â›jq.ÙsÜðﺥԶœ¸ábµÚ½½ÈI//VÌÄóBl¾¡,ptÚ;€HA ¸¾±¯˜zèV苃Å(;¹·"¼¬îÆ¢ài:ºë<"Vݤ€ U=83®6 3®2>@¿<„HG ¸Ž‚_™ßšà¹t¬PwN¥:a«ÊN´ä ö¥+/·0Haû 'å£ÄA5µ.ÕÔ¢‹¢Ûn¤‚þ. Õþ:náÝJ»v×vNåé…‰7óÂé­òŽã¸’Ú¾Ü: ìKŸ Akwmp6l¨ Ûç úå¡k!„´”„ë8ø‘ù.‘}ñ;´_Æé«ÕêøŽÝ™‹ž(cFÚ?Þ Äê…̺„ WºcSÜ>†;œ´}€öt*µBJRÀetA¼Q3±nI_GΆ ±zÝó}=™y_|>$íÞÁ>rp+îÐ^¤Œ·¥Æ¢y]q:¨ZHA ¸K¸nWW»eÞGçà°‡-ŸzEÊ;l}Õ¼"Ò\µ,Z ¯ŠDê°H0pÒ#šÛšÃ2tš+¸®‚¡"%\Áì{ž8Øô`Wñ¶ ëfWýzúª¼œížõ7Nˆeá•÷”´Ž¶gÁ®ü°`ãCôÚZH !¤¥$\Çèl…+fÙj©è/eî‡OÿR ÷QOüö ¿ÛiíR xB‚®´3!Ö’„Ê›&Õè—‡®…¡%%\ÇA—‘{&ÿ_GΊg‡[—=ëGvìÖçN»ˆ*n±ûâJHº08§r½Ilï½8a¤}žØFNh®ã`Öqñ¿Ùù~|lsð.c¯Ää—|yΓ IÏ"Vì¬ ÀþŒë( h}mƒ%$ìÌ¢³‹=ÒìÒA€Ð‘®£€Ïئÿ™Ç©PW-83ê&Ú~eœt©¾yÁö3¯[ÐæÑ–€=ù!A4úðâ`S†T^Œ.ŠŠÔ‡B„ÚpElH<£ {Ø;§z½¾Ó¯L@ÊaÇ^Q/úûQ½ @ üîG è¤naÎÛCÀåÅèâÐd(ADèH 7£`Þñ|Þ±xÎmb` ßÞàÓ­\a<â×/‰ö¯Æ/`êˆû¬BBÐU»&‚3ñ, %zIê£ð­®…RrŠDö>ôÀs"8ųr`ƒk¬íŒÆÁ}—¾;aF $Ò/8'‚Å:"–‰/)!è•#ëœâŠ…Þc}€~yèZZRÂu\DCÒ®žB‘ÚÎÁ³y¸þ6–KĤ})ÙÐŽ8y¿"%­·+8G@BBÅ£ªåíÐBi) ×qððÁ,X]qÏÀÁîÈÍN‘ú=T3$íÞ§ ™[òêõ3ªÚJ@Ð+ÍÎ)Ïëc€RðÑHï**¢ýu t±úY´‰.–8;²Î¶WhÃK½¸GTybNŸwËÕb)ô(!è…'¬‚ƒ»»‹ü÷¡ÐÞµBZJÂu̳<‹EqH“Áz?VQÀW.QÑf©¨½GÚóÙ;.¿bõj]€hïÁÅLCëE _BBg ¸Œ¯b3°v ˜%t‘ÚÇoa]#5íE7n!*kÐö¦4g´l#Â:w ¤ÙÇËÃÀñòù!Áïq]{¤Ç»¡7%\ÇÁmßÈUØ&Ž…Û¾Å9x’‹7Î…Iu= íiw/{0 xK¡$­S\ƒP-$°8Pô1éÐBˆÐ’®ã`EŸ$üêÜêÝ9¼Ä»-¼än~÷ ¢ÝiåUvBl¾s¨KzbüœñUH°äÏ6ôÚû BHKI¸ŽƒûÊpfÁ®”ZyF\¤ö ‡ðmá{D0u’~¡á9?ù´nDÇkQÊØSo¿ŸW=a¤­µµ ×q0î…”,K‰“ÁØhÇWì')˜d·ƒ5X ¯V¬Û¹P?"N܂֕râØÚŒßñM ¶8ãÿe¤¹»\„p%CÀeÜúS–¶[(:çÀalèç4v$$HûwPFŽß·í…Õ%!èÊ-3á•„ÊcÌêtßÌ0 ¤%%\ÇA—¿pŠŸ­·×‘ƒ½ð¶mÔ¯iÆÍ,î}ËX±Ñô˜y¡*V°d$=«¦8 Ò^!a©­½… –’píˆï•hØß÷€Ûcí·Ÿ%˜qÿƒ÷ñË ýãÆþô@¬ØÅD»|o Êw…€¢€š]€~yèJbl^á¿EexããéŒE¶“+)HuÚ‰±#HÏâ”{¸"‚.Ï\²'ãÀ&þpð RöpÄ¥RA©(—1à7ZxÛÈä'á^Ž˜£»ï%öí˜æ°ôKÌ»Ü%ˆžtþ®snÿƒ„ÈÕikA-zSÂuÜj;áR7{nØjKF{°+IøM±ís°IЪ@,Az@XpS€³ârZ ½óˆkgø*W°û‰Óèa××P!Ò™.c`Ĺðî:]‚œ™Ù“}C1¿W\ÙžÜÍ¥K°¸X7 v”<’ÑE—`uîà rôQt Vh!DèM ×qpùõéyýüëÈá^·}Å•¡ |x‹5– ¹Âº”pàátl–§p«›$”•_ÑH_¨C¨£\GÁ¬U?ç†9l8·•È YçÇÑL¤}z9~Á5– Ú{àœƌ݉°ù6½ Ð/¡ƒÃI<p* ÌÕxj4Ø*€{aVÅlÑÀàZ7³……yÔ ÷"K@Ð,CÛ9»ÅÑ~GñÓè`gÕ®B ¨"Û_Ç€yÙ¶|˜f*¶%—”.~³o ô¼ZEíÒb-¬ÎAÄê ãÑ^äÊÇŒ‚¬šš·yË,_tÚƒ>h)H×!pk´—¬·Ú¹X2 Æîî¦UêñªJí›E­O{ŠvCì/UG,+*7IBЋrääXñ\,ò=rçÆÍØèƒ´µ Bûp]Ä“2+wtŽo¤hÃB½f:|;*P~Ái¿é'ï6–„ +—¢:uÔ$A7ݪÒþIB‹@„–”pÃhT.åU¯#§²ÚAÅÝQ3Vl󈻮óAñ/Aú4…[†°Õx]@Ð1Wçì>«±¹ÌéââÕ•[þLí¼éUyZÆÍÏÇG.X´] ‡kOqþÕí&ö½Óf±xeG`_} ©\pg`!Ú£0FïôËC×AiLã0&+ì…´ËÎ--Á9‘y²ýÌO›¶ÝÙS٠ݽÅE°8°ªD£o!޵îl£ÔØè—‡®E ¤7%\ÇÁìðFvW¯ÆãÄõÍ8sèŸlÁmÏåÚž'K â„9“€ 7Ý‹ÌÌ!  :qtÚ»  Š0¿Ùé©?›"Bƒƒév§š?Å/‘i/.à%í ÌUG¬Ì“CB§g–êœ $Á¶SÏC _ºDt-!áfúÈ&ìt™ªnlŽ_Xå{&Ã.m¢ßV$ìAÛ3ݸ&ï Ak¿Yç`¹¥K˜Ü#ì}Lô»BHKI¸Œƒ¿\Á $+ª¾Ž¬ö&_½š]†éUÝIÚ3¹:¡¿o¬ÎÆæAË$tî_ ¨I¨fm(À¿‡~l~3Þ‰c/-vYu|o+,êr°;·ú½?gÐ/¸‰ñXGN9„„ .:t¼÷`¾îÐ…“†—ü{¨Èæ×Apd,'`Û´±»68§eÃ5<:áŽ>Ñ/¸+o_DÅkH>¼…8ûco¾¢ÎBtÚàR!Rz¼âé58'ãirwjÍ¢/^kt±»¼|)ÝI^ z”áï5özsÑ3 ʯ1ÙÌ9;pÒðR€Ùü:ú‰–l¹*æ-X¿›Âžohu4¯pŽQ Ds.ÜÑ5.wñ^Õû»|íGìBúRÂEF,v$ÑóE×/ÇWéüb¦âïõ†Ê9«ò·˜ØíÇõÈH‡„ ‹.`&Dz ~c%Xdú ýòZ‚Z†„ë8hxØ¡ÈëÈA‰9»Ë· `½ÁRÊK>ɰŸœQµh¾Ð÷x¬,H‚,1SÈ.HzƒÂ¯„ŽpÝßóÀ* ‘¾Ž¿yµúÝåËcœ°KËT4«v:z?GÄÎjù’ š·wNñb€! `wtÚP pº’.àv²xu;‘Bí[b3s`‹{ùK\¼aóý^u©0/Q„-1D£¦×Àñå».a[qU²úØx¹o×"Ò[.ãψýÊvp†wŽgäíൟ“\=Bœl& Ò}@ÖëÓß‘ËíÍE«EçÀ£ 1côÚ[P!BEJ¸‚ÛŠÌ*«¦¼Ž¯™fwÀ{u"œL®v³ÇÑiû6Ööbcå* Ò{ðä,ü:%ÀòùÇÐhk!%A%á: e>*aóŠ«Î[®íö7ŸÏš£‡DȤ§1fÙâß7\U̓^‡D 8³9F]€/ëõf¼]ý]ú±ùurwÞ 1cGmgàyßðnU¤NwífîmÙxÚÀÊ›LÄŽåN¶rÆ~Ú`ØÃ¶ÈMí\­=€¦»8¤ \F ­rçÉð%8<œmsża­Òƒ“Ê’Ì }~Bî-+VbB‚hôá-ÄÙ¾HŠ@Ñè—‡®E ¤7%\Ç!dv{ºVÞÕ6p‹†|’×Á§ÃÝ_½#ù‚«íÏuX œm4¯Q8 î•T–.@¾@÷ëµ”„ë8 -Ü™=уì\•cçÖÝm^hů*Ÿƒôhkòï;é¹ôD28«ÿÔ]ŠTêbÕV«Ð!ÔQ®£ ¹ó´§­çû¤Ö9~#Ôrb«—¬·´,ëþƒ´ çÁ’úû‚ÂÑ\ôÂ$yçLX§—€âWXô@{ ª D¨H ×Aðl“¬o‚ãi³ÎØqy¹tÚ× +9³vÚÞ•8“CDÅÝ6 2"/1|Q¹7·ûÐùNºx* ¿S=µÕWÚÊ‹qn 3ä·;}/‚5LÛÁå¥g­rNûÆ[|„Àù.A4á$=Pì­g\ògmU „ ‚lß•×ÂDážâåx;—+ ‡b Õ‚\_"P1†éuÛy ˆ™×;I‚hôá âlØ5" ¶¼0öÚûPQg!¤·$\ơȬ°HÍŒ;¿ΊÅìsaQ$«¼´Ø]Î~“Öí‰ý4`T+(U{óž•ÇîÉð°Šv¯éÔ{Øw-dH…@PÅpýÅ6çY€jþιwN;[Á#ä£]ss¦×S$½o¯K­¿Ü­æ¢grÎäzuÍ娇œtü;œíïÒOͯ#Ðì¼âHìp|9¾kÈk”÷3 ‹g,Aû̉{o;òCBÐÛÐ;Ç®ããlìlnúM¶Ži) ×qh™leõx/úû:r|Õ86cX-„yåfNûª>ƒŽX=ê AO˜ó:ÇN7ûJ%`¿\ï£p—Z×Bi) ×qh¹G>½:n¹ ÎŒÍý.ò¨Œ4|i¼Ó\<ßʈÐE”´n ¶‚u çÌ¢¢+C !¤¥$\ÇA“¿ó6¸cÂêíÀñƒ¤Õ7ØŸ4 +œÖ }õgÇ9Ë@ •Ô%ˆžg÷£Ž]‚-Ž}€öÔBi) ×q(HÛ}Ã7iäð÷jÚm‹~ùЊO ™tôW(;‹½°½hôÀàœõy{ìšsT‡@2帕Ñü:ZÈÙeØžl° ÆæönFõ/Û3²2^ž:íòŲ±xÉjµµpom0píD´^1³…|Ð\ßYöAý$`Ô_VåT<óðKç`A T¬{UÑqA°/ÈaZö¿­¼þ“ ƒžù«‡•\£yñ3„;ixuÍ¿K35¿ê®í¸—Ï’ØœêÛaZ(P"Q<€A)xÒLlþtkb„ÒèÃ[ˆãsq—°ø‚Yïcቡ®…¡7%\ÇÁÁ¯F¹ÚwŒmÁ±Ü…MEÍÈà ¯ßÚèæŒiýÎ+ÎÀ¯œ>¸ä3püÏlny.þÀE ½{þ9ôÝo•çˆÚ\²úâgÚNõ½/ «‹—€ñ½0Ë´ožA^º#ð–I@3S»Á™ý’÷.`öõõÞÅÌÚ] !¤£$\G¡ù«x‰^ó·5‘c{vm6šª}˜Æ…6SìAúÔrâD‘Åk÷t¢Ñ…O_âà&Õ°ãÂ2uÒ» Öp†¶L;]c]áÐ9^·À+Ô ú¥mG7JeU!xÅ$­;:f#$¸…Ñè—‡®…¡%%\ÇÁYr§§*KzwÎÆÛœÜ»ó»¾=¦X=É ÚŽÛ˜ T„åTF AWVõ 3’¡Ñhk!-!-)á:ýrË®¶­õÀ50bðàì4£BÖ‚ëJíb’yú¿ô¹ ˆ2…b.!è¹ÐΩ^aQìšèsè´wA%AÙ~¿5¦[Ìààwç`CÚ¼Á9ª_êÉŠÛ$_pâQúßwøPÑ<è çSy",…•÷Øhk!!)á:ˆpÚ%ŠS=°¤Ô9kñ|«E{¨°pnCM_Ð/X<ô‹àXDÍIÔCëI«ŽœÛcoX½’h š¡¦w©+ õùÚ†Ô‘f½k1^,„•;†a[[­œ’y:¤_p±Ð¾œ‹êD¯*w\fœ:>fK -A%%`fëN8o6ëÞÛà¬(j[ýä'ïpã«J;ì<õm7¼ÖyD œq— zV±`qšKëë·’Ðøæ×^‚E{¥…ÒR®ãP°‰[–IÁ‹Œ$·÷ãøöó [™H3lôÒQØýâ ÿ½a{DÐ^×­7-~®¯ í&»"t£„‹ò| “G+÷çtòÿ‹Þ°°çA8+LÚ^’ƒ5„P*IZå\:ÇŒ§šÏ¸Ä=:íP…@HÅåñv| xÿvªõ ƒÁ[ªNÄ•¯N{Ñ2’/¨hqù;•Þ^ôÛÙÛ×^còå¡+ @(Èö—ôËo‹&ÞmÞ9œÌ›¼LμâQ[Ð/¨ò¶ŽˆÓg°. èI5…È™Nø’0k¼(‹³ÆûàJttì.£Wo×STK£ˆXÄÀÎåÃK×o~s±-m¸•Õ±ÛOêEÜ„°Ckuh4Q/)Ø%¬ÜÏ®>@c»Òøgª§Ö£ú|9ùñbToí^]j ¤:̼¿ý@ý,Ðö–¬Çí…X}‹^—ô®šZÁáy@IØq畺Øyÿaè ¿KE6¿‚ûW;]í Ð†ý+â,¾½Ñ^z¯ɫ¾;eCRÐ<6aÛšàOBBÐèÃ×\Åñk^»„yáö1kb-!½%á2­Òž~Ï@ÞF ß<}°ýÇ‚J¿65’~Aqf¯¡œØèD/á‰ã‡6C¯‰.âb™PBéˆö—!`Xkñ«F½VÏ|çàÕJ¶’L<ËVXçmâº߄džF °2Ñ%½êÐwpàÖIHG¤_B‹Ž–”p‡|,0L8Ë„â] `Ùuìµû ¤ýCÀùüŽ@EÖ }¼< œJŸƒξ6ï5ÿÙıT‚òÅo¼óêóŠuJ¯°šoK=Fĉ{BChöá-ÄYq%%”saýäÊ OÎK‹@„Þ”p_IÞIuN~1ôëÀ)(Ðl—Û7j%|·ÓŒ:R¤_P>bZÄ‚*!Aô¤ë¨;û¼BB{·ö±Ðn{¨E ¤7%\ÇÁ\°MG,н"·ëHTHÆŠ,§!ÝkPêÄ_‰°þ:HZË›Á)ZÅ£„‚+k¢¢;mB‹@PKI¸ŽƒYª ݳò Ýy×86F‘öŒ‹Î• ±¹¿‚Ö:Fç`§lHXdÂÕǪuŒÐBˆÐ’®ãÐnÏlS’ 8Øãp¶É²0¥²bóǾ‹ô­>Íö¿ë^6ZG1;g±ŒVàÞ`ï ˜“ü{èÇæ×ДXÆxÆf l§í@9mÝd;"QïçTí{KXŸ#‚7!…Ñ•ÎÁ•'!aÃ5.ÑhoA-„-)á: Îv*™ñ¬¨ ü:rp^HmV&õ½K^¾ ôËCMì|e!!hÕ#î\(,â?†>@¿Å9¿ÿiÃîSrªß…äg‡< _Q¨Ìس@z8|ÔKÿJiôá-ÄÙž‡óL–_3M£ ÐÞ ÄR#Bm¸ŽÂ‡ÖüîikóÅŸú¦ñÈ‚[u9_æç§Î±<âÙÑè F´ùíÃ?=Ú+XÜ1jmkÿ?§Ç,é¿>Ú4?úBù?þ×/ú´÷÷ Zˆ£N¿PëKÍM‹éÑwµ–êÙ·GKsÚÿ_Šõ3 ×¯t÷0,¾Í«ùKN4úíÃÿ~(Ó£ýÿyy}üOß?üÇl¿ê£m¦Xj}üþw hšwíÓi‹{Êã÷¯Oó»ïÿõÁ@S3-–„>ÚôðýOÅþðŸ¿øÚÿîõÓŒ­UYŸÊØ‹M-»eÿŠí¾<­—zú/üÓ§ï¾³«•Ïs~*Ç_¿ûŸßÿ7“±2¼ _{p¦Á?=ýý»u}ž¦º>}øÝgÁ/]Ú1åR„ÿëwß¹GrO÷úþÇèîé?ýòùW£Ú¸óé—ßáßÓ´<½ÿáý?üÿÞY»}k=ÙŸìôÇÓ¯ï_ÿøÓÇw¶¯kiÿüî»6éî{Ù–§{û_?¿ÿüñ×Ï_(*ëÓûŸP×ËÓ?üæÿæ_æòôùÓ‡¿r$e™†¡ÌVþªÅ-Ž/íóÅ€þ—õ¹LS9+Û´w¤·ùÎüå£Åß]Z}Ûêò̶çÝÎVâ™=ýýÊ7?ÂÖ&¡³yÁ×_a>³_¡´šø¿iõÕÂéxúÍßÿƒ7øÎʯÛõM0­{ ãÙ7ÓqÖÞýr,|ð?ÿèT{lËÓÇwVj™Ûo×~Wÿ!Îu­3ZØàϧßýò‰ Jyúç§_~þéßÿùþÜ~µ§—ö£|üáýçµø§_Þ}ç?û¹µ?þøËÏúiÚ$=ü2ÓÑì_ʧÿñ?øÄ.OÀî_:ˆøç§—Ÿ^~úðë?¿ûÚÓ5'{‰‡ûòÎ6XŸ[üÏŸ?|úÚãµ\zó1†—ÜÏ÷úãýÛ¿éc¶·îkŸ”•˜ù<}úøãï?ÿõW†ðÝbIæìûOÔ¬ŽÃÿóß=Û" K{·Ç€ülV°½vÍS+ÍCpÅþ®}!‹]A~ÌOï_^~ùôÃûŸ_ìq[!¯i}úóÇÏ¿'¢=ðÏ¿ÿ ï pöõüôã/Ÿöõ¯Œg Hëå×ó.6üz¶ØÙ~Éë¯×lt×ÕŒv™ˆøõ®Ã±ôw|Õó§÷Ÿ~üð+Þûö¶ØañïìõµYb‡ÿñÓ‡>¾økl»ÓšffBÌUkûð铽–"ÿì˜s?ž~ùÓOf#šƒ5MçÓ¿øPš]<{ã ßÁ‡İ·úý?|ˆvõéãÏöí´·ÿxúü‹p϶z «òôÃ|/våèÓ¯üÙ¾ üq{úùÿÙ_§ui‘VûQžß}g+ÿÍv<}߂پæŽ?}øÕÚ¶ñúô¾Ùq{ñþþáûÿ㟞^iOé;Ûzgšýôñï¬âL íŸ>üôïüÃ:COÍ·ÃfÓ6(ÿ·½GÉR.#ýð©ý nÖìû§?¶ß¿½/Õ7É=}|þðìÔæoTHùŸ ãäÓÀÿ‡þ§÷?|zÏNü9ض&Cý_¿øvL›ý|n¤Ê~ìmmŠú+öZ?ö lÙ¬=·¦Õ¯úÉæÅ~—öä~øðÇ6bû÷QÚ÷þ¡íKþý‡÷Þõ4ïMö ÖG{vŽZÚKó³„~?þ“œO/?ýéõ°˜|ÓlŠ[øÚ\ íÓúñãÏïrIM#{#:ôãÏDöfèîO?7¨¥ëWi/ýð«Ø‚ ª½(ﵟÁ*%Ò@µ?ÚÃÜ1ÿ÷Éžø“òJ;}ø ÑÆ‚{¯ãW{ØÎíúh%1ö>ËÿÂ×ݰŽk/ñ¾ÙÜøÝ€ä$¹µü¤Ñ-‚}Èû~E{6[oŸÖoÞ¹ÍÙ×'Í]¶P>iç|™¾0€ë/ú^c­}àf~Ó¿·¿ÿ[¼TßYÁÇcÝerhi}¦;ÍZÎÍBóßíÿóð—ñãúåóï1žø€e`UÓÒ¬Ø/Ä7}_>|øA+m>þøú±™Áö&Ú\Úf]ÿMáJýî—Ÿ~Ⲛ‰÷a»ÌÌõ¯úô»÷/~%§}¤¿þþ<̵<ýùç>ŠöRá'YÆŸÄ^·6YÚ—»_'ËË/g×›µÙ‹æÞÞ8#.¢,^ß¶cœ¿2+X3{â|þøþç?™öîÖñ3G±áÜ.tùš³#Ý–Gür³¿Š~ö¶E_ö¤Ã˜&ú7ïÌò•6ô—w‹›êúô‡ŸßÙm홬­¯wn›µù³Íý?¾~øÙÏÍ |þõkÄ/‰h]ÒJÿûm³¡ó‘¿Í¿|úƒ±m_õ8M½ðÚžÀ§ÏßÿdÉÍ ýú§?šE3PÍ´|¶ÉÉñíSù—¢«™Äï?½øÔÐÔïù‡b¢þå}4øôƒ0ÛÓt´÷ã»f$G[ôÔLKãMêx~úݧ_^¿6Cá}¬«Ï ÿïÏš±«ñ_?~þè/§åìÛ{ýÛ?¾º}›ÿ(½m¨{5ÅÙ^ãßüú+?£Í0/ݱ?/nÎ`ô¼Óåé¿ÿæ·¿ù+IÝœü]‘ö5»"ïäÖü;ziÏí7¿ûšùý?µÞì‘/¾¸¯©ijÏîoÛ›"%íÛ‰?üèÓžþÒù¿ýÛöïÕ=ó§¹ÙÉöŽõ?6Íç殮ÔjÃÙVÿÄkNšY·væ¿û£ð©Æ›Oÿþ_¾‹Ùò—Oï?7;äOÝ'êú¥.Îߟê¹Õyú+²‡Ž§ê“ý<öãøöë½|üßÓ íWø/ïl­ëhJýò§ŸÐOäí÷›^¥N{œÿç?üV¨§†,{™B{þ®ÅßãÉöî¬åÙœ¤É5þ;ÿãø¹Ã·Xâ¶©ÜâJ7ö[“ü‡îK 9=íÌÛÞ>)r~ÿþç?ø?Ÿ§­<ýÃûÏŸÕy›È<œ1§û‡þì©YÄC­±ñ6Gú—ŸÃÑøüéã¿ü Ž3…Á=ÿ÷ö±¾ØKÓ<®õ§?µ9Ý~²Ù?”ÕíàlïºüNÿC“Ô> èéBž[ûZTnOÉ"ˆãÿ¯ë\r„0|•.Y4RKÀÀª,z 9 c8UnßùÇc0U»C±±‡y~c)%…[U¦-®Kæ³LR‹éÛ˜s8ØZ«¹ùAæS ™y”Ö·&>eBQ1—õ"sèùyqqf|Vp1óµ7"e‚Oc^“l²eÒïÎöð18t7¬XÅ]êA±4|%L̳»ï¥1Ê›†ŸÐF¡B¯kBQf¦\ÿeÚu_¥Ó•>xß"œ]„ñê€Öf”É\ G?¸õ,(,õàõu0q_H1;ïNeQçW桜µó–2(IÄ(Þ¿Müˆ¨[åwßÿs—ð_ÔåîŽ|½Ån-ɆãNNzŒ^])Ø}7­u~‰ÛÁ¡oD© r‰ e+üÿF@ò”IŠŠ”&ø[ŒÖY+É´¡H焺X˜,®‘4 xf>ª¥ ƒÛOZê'$7sÀ†w~ã£z9áï…bèËÎEr÷‚`²endstream endobj 344 0 obj << /Filter /FlateDecode /Length 4458 >> stream xœ­ZK“äÆq‡osò#ò‡>VKÛê]ì—"iÚÜ0EŽB±»l7¦ÜîÆ@ïpôë*ÓÎ…ç)²¼0’Û¼wM;*¡µîIëãÓ®ìKZ=¨Rf°+°Øx+yœ®o/Û¨.°ˆ<—â­ˆêòn2¿q™uj˜ÿÕíò\ 6›f}Ú¾]Ãà >EZ\Ú =—êÙͰ2x;_”˜×3$3Cã†ßeŸÞ¢*·k29-ÅaèX•wc‡ÁTfk—à‘ÖùÿËÚ³õÆ RªèZ’¡GãÎ%|Ø ïƒ8”]’͈÷£TÕ9®õUדC Ô¾࿼żÈÙ¸ÅN³>£sh@ܘqwçú™Rrú‡æX¶u÷b½±Ê€J|[Ÿ/?ӳќø ¬ìåZHñ??¼^ †c¤Ù‚Öd$jý/õy׬ÓRPZÁ4H«ò<Åσxý`@ZÜË,áÔe¬i‹Ì**Àxžó´ðö<· 0øz_ºêîrLß5ü&eÄgm—zI0°¶Bн/ÛòTõUK›G“úºi_ ¢¶muLâƒÀƸ‰\bMBÀ?ÐîçÚ¿$ð%7ˆð‡ë¶óØ–¤zrà™À8°—ÅÔÙfÏŒp&0Æ‚ho¾k›{@YDÓ•Ç.ú\Ȧ¯7šöUG{Wü€x–6rMžÜN´k26 ÛÅNàí‡Â †?,l[ý4%N—™€ ž@ðÕŽ¿»òt¬Ïûô›: 0^‹4ú‰1‹uâ®mNãh娼!<~Ûû§©@ݱÞᬨœA%Ì58jDO}øgÐ®ÃøÁ&¦÷ÒB¬l)Tú‚âGÙ6BnÏN͆îÙ+ŽƹMöî¢2ú=ÐÔ§¤@ÃÃlåv[Ýsl¦¶AtUßÃG<”¯ÖÃ@ {{ ·ÕŒÀ–§Íäq\|‘¬0*æŽ@ÕY"»÷ɲ@· ,«Ú¥8TL›«‡ô €óÓª}—ý¾b„abÉË¥wˆrɺÁ2äÚ›Ì[)1ˆÛ62Âý¯ÙŤ Op(€oͺ <±Àf]gð„’cÄ~ž¤tY0;:%êþwF§ ˆüáiĽçÑ Ô`mp‘u×Ù[Y lrõÛjʤÈ?_ü̇u´Ï~·sÁ<`Ô"^ê]aç¦ð0Øks9îF:¸o"s,ÀÑ»¥­gs0?ä[>×v+s3‘Öf2šLŽüቇk÷K¶Žß¬Ï5(òïõSÖ>Û^Ÿye”Z©Ì8­"µù7ÖJ€4~™Û@÷ øýïŒÌ§ãª<3(³ÜÄaÿ‡•„Ó ¶9– HúÉAo8ºÆ¡¿¼½ùÓ ÿÕÃM¾úúFçÀQŒYY û¯Õêt£%L2¦7Ç›ž,qÌæLó“•Íæ+Â,œ„ ´‘,È_ÆžÂþöÌÆ7˜¿åznp¸ÞÙ ½§ t™7¹¢¬‹Egµa¨µzª+t1mþº‚àfqȉ®ôºBçù[u…Äút571TÌ(a¨êò¯×&6 ƒcÀÄ*ÿ¬±CZ Y¦µ{Æœö‹ò¸½ æ!ÁÀ ¡˜¢‚ 9ñ-ó †8QZŠ„§c®ä!8G†·9ï"»‘ÄÐîˆÏ(Ó>0s"ú°ç£ç³â=–s( hÊ ¬à5vÅØuÜ•¢ìH½'2˜ÄPøí}ù¾>Ö=¥h45tAB¸@‰8.bª +@öÆÈ˜xIyÞòwÑb¸L`Ën˜ŒÃª é(ëý#H1ÁfÀ…` à\ö²Qy•j·ž¥˜ÛäžÈÆ©¡ú=‰]Õ—õ‘ÒMT—eÌ·€cq–R|âÕ¯¾ˆ-Aåqß´u8¥ÁBJÃÔ÷&ÔȤ¦ŽU¿ÍèÑÃòTvÕ(AWU±~0[Tbß3­‚ûšÓGª^Áćs½å·ŠÊ!mÅ)½~ŒL)Ñ3H×}1EÒ—åcÕÕ%Pëc]omÑ^t!ªµU¨e‹¿rbÑ»ÔP‰¯ËK—º"C÷Ü5 øÔU‚SlSתëRg*ÌZªyH,Ì.V|‘÷i›Jžo¤y—1öÌK× m@9€· ®{€‡—©h+Ðø4™¹dÝR•Zk°)qWnçõçvœÎ”±Lí 8->äÚÜUe™–°y<£ ¶bžþd{^Â64&ÔÇcÃì0‰F„0X)—¢»¼ïªmLÀñ¦»ªÛ¶u2h…ÇÇjNUê(Ÿ ^œ÷Ó)ÁIëã±lc[ëyQ\©GêMΡZ*éaÈUª^÷ûû…¢ê&5šüý Ë,:ȵG!aIÝ… ©hØ|…e‹„‹ƒ ò‚ í¾„Ÿ-«MÙ,ÕÍx˜Ó©lë¿Æ†Oë¢uô}î¦&©ÈЀj[›? „’ H û–­\rOˆÁs˜PDâLl[ÜU Y™£˜ÃœbXÕË—!G¼o WTâHúP<µe xA¡bÄ®võ¶Ï–·Î噳CIzHwâ|~,â@EÃõ—©ÄŠéX[*y)8ˆ ¹¶åÈ€¹¥“À™’Ú¸ K4:9>ô Á þô2“èò¸J|·Öx.óS‰ ·uMÁ±”2bÃImï"…LãJòØ!èp²œ¯+ËAô-DŽSÓõ˜ )B½TE±\j›–ø§›ñóÛ%½ÕÚg= D•Á Òõ¹W’p‹Fg~?Æ*É`i›n0ç%hhqç1ö3<êþþø8å©rr%øF†"ƒôd¼YßÿqûýŸ¿\X‡u™ÑC ŠÊ1Ò¹øü€Œ®HQâýo–tc2wmÀ]¶Þ¸‚l"LâØ“PÈ{@YHøÏ'ëñ =›­³¤¹þÍ+bÉ„a2@£©DÓáU\q3ÉÓì\+?WeùBŽqX]¸¤:.º¹*Ÿ:K^w*û–Žeâݧ†1%KJú˳õnEÏê’,åJÍ ç¦Ó2¢ }œÙÌ®ÚaµÊjþMŒ­hº9M¢ÔÉ"ŠÐxà)Äp6Sh ‡8>Ì&”ÞjuNép‹è%­Ç sÀ`¶Ër‘X¥=d¼Âmk›Ëþ0}Šæt<ÇñëåeàhšŽ^¤‘Ã%ð,š%Î z&óÅTfàVeªÌ£åÁ¶Hñk~ÕŒ'ĺ6ŠtìbÙ–X*iT‘¢»šš{sŒˆgû©»J'ðøH eÛ×(g:¸gŒNåìã[cÄ¡"ÚÌ«ÒÐÌéIž€g `ø TÙœ«qø÷DµI„ÉÁ?꟣Ýoù(×¢º·¦t¬ïî¿}õvá#j=ž¯ZIˆ–=Ör#Å%XÙ7rLÖ²N4±cÚoË|Ÿt†¹fG€õñyÞâ©Âíäƒ??W|+ …Ÿï(_HÇNç]˜ò…(Mdм;» Ñ´×c Þ^ûd¹%nà¢ðpä=[‰q™›>~yFŸ0 ‚G`*õyÇ¥q¢¿SÚøb)dPI!Ÿ§×´R½±pݥŀ~¸Nù«.éˆ@µ­?Û¦åN@‚Äb&ͽç‡b1­ç#»‚R:0ÇZ¨ØO¬•™­Ã G ˆÁø‚¼,E~<Ù#O9Êr·!à¹O#ºÔR‹xÄúåT! §ÙÉ@Ó(O¦ h½Næ'^¿^¾·ø<(»l÷0Óy8§ïa£ƒAÕˆ/?’OY<óa7óAK±Ø:h_æ„H¤ý¼ =tàÇêW¢Ï_¼xU¶xã# ©ÝÇ8ŽÅjÎ8|(ëó0ebE`Ž"0å?ák üXzÍïM¹ä¼yñPMšŒU¢ž²Dé-‚h«<5—‰Â’\(g ïsï«ÅD¦k¸„Á€­}¨RMCž Š+$}ü º.±äœh* Ã\9ȈäË\¢¤vųæ¢35ž<,/‹f"Ý Œ¦W|—šp6¬äÜ´ É.õèSAüyŒ-<æ_ûá ˆ亾æô9³dtâbL£U ÇÓ„2Fj ºx¨9I`‰®y9ßdÛדÈ{Nï!Bߥ)£W§af‘iGø“âö‘ÊñÎß@ì~ü¤X:sëéÁÒ°OóËyf°‚þäxöz¼"¥¤/î®YH Š| òoÅËÛ/ߨwü'ß½]ÿ ‡ÃúÝRB·ËÌ@îyB2Þ¸+æ!@wMÄ÷ †ˆw€Üx(EÅM†Þ¸‡Tð­ÉVˆ»).§`ìg>„²êÍqG4‘÷’Y[ _ð ó_Ådça@r€©ÇøYÇ‚8ᇑx`Ø×Œäé_߈¨0~]8ª?¥(€ØÓ}´éÅûྒྷ²Iº‰âE¼z z8óõ2àÉ¥’›ºÓÅ•/öms\WZX|j`þW:$—OܾÄ"¢÷êY<1õa™`óèñ^ÆbJ}ŽìÍ3Ϋyózú<‡Ä*™5Z(æ§"h™éÙý kùÚÅWý¥² ®©+¤,³6ÎYA…&î7ˆ0¼1œº ,Q¤O‘˜H†»XÎÂs–‚=±dÕVcG4:õ—2U‚â7…v¾Š†ß`3?;V˜qcŒy7‰“6Zô1ä£2£•]ÝE ðQX^ A]1©à¤omø0ÚǪºù_”ž*0endstream endobj 345 0 obj << /Filter /FlateDecode /Length 3245 >> stream xœ•Y[ÛÆ~ß÷ä¥-°pý0jW çÂ!'© ¤Ž¸Øn²E±òÀ•¸J”IÊkÿûžË /2m Ø‡%5gΜ9—ï\øö:ŽäuŒþÿæp_ï®Þ^IúõÚÿÛ®ÿuwõÕO*¹v‘³Ê^ß=^ñy-µŽR›]Û$”N®ïWoĶlŠMW7K#MÛT¬Å‹_¾[/¾|Ú—U?'Q,SÑí‹ÅowÿFîé˜»Ž£TfpÂÝöJ¼XÜý~y¾‹tbá¢x#6õb©Òȹ؈-ñבËQ¶,‚sFïË8Ši¬ſܕÇÝ—‡"?zšX:'ïH:q¬»ÀFê¦ð4ÀhŽ$ôRà—šë¥”‘KIÒÖÇÂË;¹Q);£nwš¹“tÀ? WjÎÇÅRƒzQ®µx*»ýœªŒ‰2ãTØÕ5ùdMêW‹•Œµ¸ûé¿ OJeâeà4>Þª(5Y8­t¼h÷õ¹Ú²(”ñ@šŽ¥²¢À_È7]ùnêOtÊ?*P›eƒŒ,íyXôOå´@*Tòä-塈¼¦È©ÔDÓoÄ‹úØ–Û¢Û(Wù.ÇC’t kSÛŸØW2:î¸PlM$—WL½Í»“mJ|{ûbÎÊmÜpÓ20À‘ܸ*`äReœZŸ,yMõÐ…þ8d\†)Ëiú5d¦2€3’âmz\KÇgŠ®n`_êÇ$ç²0g†,<“„³ÈÆi¬=D'4Á/èÜÉš¾ªÿ0"€ÔEf¥À+î›ò±c×Iñ\K§R|:Þ ¾Õ@þØ|­ñEjUÖâ~u3е՝!â½îaqXµX‡÷!×4«gÏzrí±~¸¿öîbuëï‹e‰ µØFÇÕ÷ßÞþüòfÇïúplÕû´/G¼¨¹™óÁÀ”ü~Ø…†xÎ’òÃ*þL÷`ù}¹;SQ$Y(éð9Á>Je2ˆ3R<¡óB€Á!¹'Π79NLŽNN=×ü(hȤñ.öyÎEýÇÎ–Ä‘Šµ Yz«I^f© ç:e™ë!l¤Ò,¸õ30"CØõW~(:D,úIf}AK{¡ |hê?8çƒCõï™:ÈVLàÅOÇå¸ú«ê‘tÀ¦*űŮ?ÎM¤›Õ½kÇ*´º€åŒÒÆIˆ¾žé/—zQg’i/ú|¶QN´é½Ë¥ÎºÊ¯¿¢L¢3KêBR„@;.\Pt³–i›ºz5ãé(ó «ª˜ÙVf& µÜ|kÑ£¡E "ŒÖ$0ÔdŒñt—tð†–ïƒiûöBl¨¤ úr½ú±½ùfFÃД¦*ó2ˆçXÏHªãÈë¦Ê5ZqèÕd´$IMø‚’A=U¿ ¼ôŽ0‚ÒO£~û¸E7ì@ŽÀÚÓhNÌ}Yދߩ'æ˜Z¹J7•lN“jÚ~'=‘jlÉôÂ“ÖŸ× dÛÞ‚Ï«òjÎg´@£íP¶7Ŧn¶ØÇA¯h À_ºóÆw«¼Èý‹I†É‘_HB6çW-Ú AèËbÐF5Þ˜aÕôÍœK.Á…´Tî"œ°¿kç¬n#9Ln¼ÑSCõŸG/jÒ ž}뇫<Ã3˜ ·™¡¯ ÄP!¾ã‰†vèe[‚qf¯¢b¥‚qNõ,€ei&‡yžè ×`óСè¤U½óY’pÍÄéEYs]± ¨A’Œìû?”\¦hgÅ•±Ž¬ a†…À¬Â!ó%Sa9í ㉣¿³Ši®“ˆ6?œ*^SäM} 7o4:éo÷ïoÄS)¬ÖŒ¼T€¯Cý8( s2*¾·EMùpe*õ¾”ö_¾ÍOa·•aÈFÂÒÍB½8ÔÖ\òa‰aziB^}]Õ˜´‘<`Ã:ÚLáˆR`ÏzŒÂ.mòPN»€T_ŒzÒ¶ep5c"5âP¾Ÿ8h DÜc!âÑôÀÏÌ›!9×}â}çÙBuËÊ{°4Uÿ4Zã¡è3QÖ˜¨ŽÉ ìP“C„ÒÎà¦BÅøLˆ*N¬GÃýõàVôÎW ¤~ê˜Àw#v£ê„HŽw| dj²U£ ½E‘à ÞLu `%ΌǶ,Hâó‹âIRŸ†¡ÀÙÂÎ NôÚ¹!ï]8Õ¼‹;F1Ÿáñ³½T†Ã¥ä³M ×N²~¶ášæönŽRU·Ž'ÆEÞ~ð‚ÃMn€\ÒEØm}¡2eØî'yf¨>‰{®;ì9줃 mê9øã1Õ’>¡_6öcÌ iš“†ºLó\¶Æ>›ö07š@ÆGÒâ£7·Ç’dÔ@Bð%Æ’ UsY¼ß†×Iå£ ^:í¥›ƒ¡pÁ»ñh ?º„Í;a®¶ñÙ:¼N&g\™ú•M~^æzd‹¼Úœ«¼+Âç ðñ¼ëGhá›=zÔ&‡š˜´Éx—õÐ¥…âçy•ÏÏmgxÎ%mØ$Ó~pôFþ64éq”`{'s½*m̾»=z§Rœ{ü·.¥ÂœŽÐbÈx ¿G€·}âs ôs¨J¦R¡¨ÄÑ/LS€2|îhØ£•bCS/D‡§á83ƾaÆIûƼKðV5Þš†Æv¦ä 3RBÊ ŒÚ“˜7TB®0ŸÖÁ(J†ç¾Ÿ§Úû‰xXªóð dàzñáòˆŠPchß~£îo’ú$ÂM¤¥ÎëvÐæíÑðûÝ@”‰Mu>œÚ?}ɘñ2ÃRË#VJôÆ÷ƒû‡µ8 Ó„Š3úß Ëñ•ZÒÄE|¥Üæuûú¼Ûsš¦5RKÖ€öå/^Ÿ~Wê}H­ï”©¹, C¬x;.Îù`(ðf&Ü#7¡Åô2cpž‹¹Gªœ|“Ñ×—®r<‚:Ƴ¦(x–ϳÈCø…WšavˆÑqKöá7%~.e•7Õ¬@ 7VÿS/U8q@¬Œ˜ 6±Å”N„RÃ8rrÜP3÷_ ?xÉð«%Fqi÷9Â;$™o 3€‹ÓÏ7á:JG-Â|R /FŸ%v5§¦8'¢0ûdú‡^W|­œ¨éçRúr[Y(€>‰Ü‡ù‡|˜TBEþ~-Æ_2ŽMý´ªŠã®Û¯aùþ~½¯nꊼÉY#Vz½ø+þ²J<â_À> stream xœ­XßoÛ6~÷ûÞ½"@é!æDêw€ذlè– [ãE<Èm«ÓW¢’î¿ß)Š”Ût6äÁ¥HÞ}÷ñ»ã±ï—eKÿÆß¼^xËÃâý‚©¯Ëñ'¯—?l߾ТeJÓˆGËÍ~¡w°%ó}GÉ2òc¥ÉrS/¶ä»Õ:ä!õ<Ÿ´ƒ¼]–‹Õýæ0ÂcÇg4e°çfA6Dz_=W |wEDY¡³M± ÏW›wç6BÊy’šòpRÞz³Ò5ÄÔ‹øÛ’u^e}o‚‰H»{'r‰cŸ¦IDò¶‘YÙ¨MSFFçvÇÞÌED…x^BNY—ÕBŠ®WĬŸF@ðš%aÈ´ÙÚݙ傿' ©WüÆaBÚBTt\Å|ò}H(eïëÏ c<©Ê^^)<øÁKÕÑl¾ÙFïVÖåÅ›7v 8X1pÆàd"¦¦€Õà3ÌüüÇH ‹\bÆP²o;kÈ·Dœ:Q”¹,пÄ>Ñ2ã@ ‹ùŒMRµy&˶QÒÀø˜—šø®³üh<°4Œƒ.ÈvËîï-Á”Ò'Û­ÓÌ ½‰lŒÈ9¹"“™õ³ÇH­½ÇR: àßE¤>£š‚јó¶jMwH:\ôBmálodÙ¬mÃ0†dÖg½f!’Ä_®5+\‹‚µá•M!>`lA öH•Õ»"³‡ÙóÕšG/'2`jÉNÈÌw¥‰2=Tÿævª ¶MÇÅjí3\?þV…¿jØ&Y×Óa"l>—걡! G#|LA7£T…šØúdÖ¢9e åFɺüXæYe³_1;²:C§Ré#R{N=a¬ˆƒáÁ ÓTñ¨æµuÈ )ÓqæàYú ÏãNó²ËFª'v—]å€<ÜW(£œynƒ96›sFp\:h¡ãøp6¶<±³óšÕ¸- ï­ê•!6• 'Eýù¹Ve“u"3YÆíÑâô—-èÇê—údwvåìàon~£F­)y)mvÏÊê“ÕgûTêk×óÔ3ûʡ۬¨Ñcx1Vï4j}%¹ñíÚ¶™{=í^x—Ö$5èWÚ¢1–Œ)d]v°:D± gL³*»rèžNÂ-ŸÈNÑÖpAZ¥žq<ù˜—¶Ýÿf|²ò(ÊÃQf3£¿-QEYk‰úYUÐ`©®Ðó^ÝQSe_JQÐñbyÝ {œhåiÅA›@OU+©L·¬¸\1 'ÿ÷C“Oþð“?¿kÁùUc‹2y™ÕÛðŒœ¶—¶Þþ÷kÐe×Þwjal­bÓ³~cßV•ž7½ÁÕg¸ªZGùƒèJC"¾ƒŠƒŸïV—–*Ù a‘QaÒž=l±ÐõäĀ͚Â$¤éƒè§ÞÔ—Ñî‚^ÞZ2•œeoÍÁ–Gg5€õItÂub;ŃUâY°XCÀ–œ¢5˜Êæa6ÍNŽË@™ºÿ ÁãÉ!ÇÏdŸ 7+Þ àwÊG6×Ýõí­`hºáþ>V┦љ!x'MŸ"¶¼®ÚT;­S¢Åjî2ªÄê2ƒÝgõ©›\u[Bq‘?fç¬|¬¸©·Û•»ÁMY,_PÃMê„vGÞ¸„Øþ×ʬÜ;À!m^l^½¾VG æRreÍ]¼=9wŒè_õ¥%B}è¹ñˆG:“ qà°…3½1 À¯_سûýõÍAÅÕÛª·ç¨àÃTZž³z^i.~ìùc8$GÑ8â? NY˺ÃP‹FÚP Ø«¨sòuþEYŸºöÁÞ?ʾ½ŠÕ¬&_?”Ó4ö¾Káqë{)×v0­ŸÊÃÐ<üïþ˜°ˆ bPY“Њұj‡Jp0@‘¯8´ñ^B•hV¾‡n“çñ°Õ5;ˆŒÇÔŸÐϦÇö3ý”žA" ZÍSú«ñ)ZhæCì#¡mÃuOÍ„Î[|AãÁSh<“?f9ñcôu½Yü ÿˆJ"Žendstream endobj 347 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 212 >> stream xœcd`ab`ddä v 1400qä~H3ýaîîþ~ü'k7s7ËâïaB_?ñ¿``bd”ÖrÎÏ-(-I-RðÍOI-ÊS©,H-/ÊŠ É0000ª30d€´±ÿgâ¹ÏÀ&¿,û¾«\è{îcû³â¾OÿÉ$ZÒUUÕYÂ!|¡ÛgŠWŸwOq{Ú¦nŽå½ëÈOe~Ð{ ïЄ=“{¦vOî\X9¯¤›ƒ¯qÚ§)ߦ±ý.ŸÈþžk/·ó4{NK´Q-endstream endobj 348 0 obj << /Filter /FlateDecode /Length 355080 >> stream xœ¬½MÏ5ɱ®5ï_ñÊÚƒ6x?T~Gf€„%,Ù{àãÓÛ4j»²ÿÊŒûŽÌÈu˜!Üu½µj=«*+2"2âÎÿôíùJßžù?üÿÿüÝóíOßý§ïÒ¢ßðüó·ÿþ7ßýWÿkïßôK{îß~óïßÙ'Ò·TÊ×èò­÷ç+Kúö›?÷»ïÿ»_þkËíëyÊ÷?ÿý·¿GõK%}ÿßþ«ý÷“ú÷ý?þ—Ÿÿþ‡?þð/¿ýíƒS´ÿ?ñ~>ÿÄú§þò§_¦÷²Úë÷?ÿï¿_ÿý/ùo¿ùŸ¾KéK[ß~ó?÷›ÿ"üÿÜÿy^ìýìºVÎòýo÷»ôoÿö/ÿq]éúø¿ÿõï¿ÿþGþAõûÿ²Bþ¯Ÿ€Ë¦ÿ¯oûãï¿ÿç¯ö}¸¾üÇùåø!××ÿí§¿þüûïúëŸì×þîw~’}ˆWUùþçþí‡_ÿâ§_ø½?þ§ÿüë¿ÿá/úa^ä—Ï{^Õ’¿/÷ÏßÿŸžßÔßSÿðÞOÏoz/û^ÄokSÞÖÿò—ÿZRÕïÿü‡ÿòë_¬ëòÎ|¿>Æo–ïÿö‡¿ÿáÏ?Ìo”ö>ÇŸøûþ·õØÿñ‹óѵôŸyty¯ð}ëÏÑó‹÷^¤_ýÛ/þxdÿ·_ãýy©ù7~ÿÓùá¿ÿ~ýýEŸz>‚;o÷îýé×?Ç?ýüÏ_ÿ8ŸTêªßOöøÿqåý+Ú=ZÖ¿þjÿ‘ûÃ?~~ŸáüÙö|ßOÉûÓ~µ?õ‹÷vðoxïø?~øÛ¯ñ‹ùÏoç=úþs÷¸‡?ýð§þòß/üýùç¿þù'v?üûÏç·ì¿s߉d÷øWÇÕÖ}mŽQþ3þ®ÿá7ßý/Óäôœ¾JýVZ_¯=))ÉWËßRmãkŒoÿáÛÿöí/ßÕ/yZýö½öçýë¿ý¯Áú¿K£ô/ßjj:Ïý³-/‘òÕÇ·Ÿ&_%ߤ¶—¨~‰¼ñ"½ÞŸó»º~%ýVóS¾žlDæ½Ïû/͉N2‡!IN7)Õ>Õ êü*Ñù }™¿`Ìß9^3\ÌoÒ÷–ûu5G¢_O»Iš_5Þ{ÒIʘ§h™?¤®Þ¿ŠŸÓóMÆüªáyïlÍét*‰VûH·{^Ÿ¯Ë3Hò J±އð’õ0{ý‰¤å›ôõ³¿ü%CìW'óîÕ>ŸòïÈŸ_UÇ~ÃK’ÝòÄãœ/PÚêüšúþúJÒ“¢ý=}Üd}¨Î¿ÀµÌ/’¿ž9 zæSzI’›äugÞÁ]HÊ:§ø-Ï_ë”çË{¹ÀX_”æGAd½Oïí%Ðy‘ùWxŠØÈkÈ¿ikÄŸ Ú¸~VnÒûMÖˆoïON$šì›‹Ÿ£IýJÉnK$¹Ü¤tò¥‘T½Ik7é‚;ÓI$ÝD×/}GJ³Q_Úž—¤r“<ÿžñ>LRÖßSý¹4öã™ãdÙ°÷aª“‘lìëH½‰®ïR>ßn&LÍÜKÖÀä㜺ޖ>MH«7YC?yG›` ýH4’ñ•ðf%áЯkäKŸ ¤}€a÷oøU>€ä›¬±±ÁHª6M´J’×+ß8¹¼¤Þ`ÿ@Öødä›H»Éÿ¯éŒ@µñ/ÿ9jã?¼|M êõ:ª ÿ÷å…d ÿ@lø7N‡Õ¦ƒ´Ç.Û;mì’ûMŠÞ¤¶›4¹ÉûïŒ^3Éûïd¢6ôë|qÁ$ð“ª$ióÄD²ÆþkbZ&©é&kì²&‚Ö8_²¦ô@¤ÛÀ®þ)ü›düï#Çàoœ NRR˜ö§É¬7YÃ?®61%¿Îš †Ì" £ƒsÊtk–Ék‰$Õ`¼^²ÆÙ¿´Ø¼Þ÷/s{ÿžÁÆ›œ;ÉÈ7‘v…ʸìëuÕ›ÐÊëyž æà)À°¾¤§›ŒùEó•ôO-gõ xðǶ5§O‡è©$IÃôñ’’o2‡~N¾Á?ã&0dÍ/<>$I7_6ÔìAr¿wQn²fö1# ’åÌß¶äkä¿þ&à—FüÉ—,gV2}¸×]^Îìt"I‚ªN`Ea’^° Ùûüùl"xßùÜ–Èòe»>ÌŽ½7@lØ7÷'Y/”ú7ÉòfÕ}äNn‰dú×Þ`êÉø¯q.•dy³â®ÿKÌ›=‰¦HÔ~ Ó’å7ÜdMï]¯BbŽP¦ûô’åÒêšF@:^²^HÖØïÝŸŒÚ¼Þg( %×K1—¶Ó£yÉþï°€Kû’5ü#‘›4øwp{_b~ÐIÖøßsÁtx×mü¡“ÁkM໿íÑ›ät“5þßëÀ½Ä‚¹“¬É@Ý÷x‰ù¶þ¼dù¶sšq²^€.ôßh½>½`Mí'ÈÕ¦”D°b¹÷ ;h×ñüÓK®N–—-s217ÈxGpb£ÿ¶p_’?Àú[”ïÙKlbWÿ‰N-#ªº´ðž½„ƒ_ ÿAF$õ+Ý —›¬±Èûùy| ˜ÿ/$]n"6Ùi%XcÚA3ý‘¬i=åÓbc_¦]Ycÿ5KÅI¿Æ£MHt±;C€Mºyµï“éJ’Óù8§ÞÀ¢º“ØÈ?Éù¯ äýê˜×Åß—¯v¿/ÆþYc†J²ÿ4©dÍÛY™6¢ßÄÜ B“ü’éÖfŽãa!ÝûçuNžâyÉrkÛ¾ˆ ¤KŒ}^²Fÿ;™"ÛÑ£?¹ÉÀ;?œ,·ö}ÓªE¼ðõéÌ”$õ›˜_;è·½¤¦›,SöúõpÔ^²bºùh ýZñs ²š_»É;„ͯ=‰u'Y~­‡ª/Xní –W;sBdÄ#÷¬~Í5̈цß|BëUL¼Ã/Ym ¿º:©6Ö0MNÐoÒô&˧ dý@ÖØŸ9möùçdóigŽÍÏ)7XC&Ý*ɲe2ŽËXB#MÿÄ<¡‡ËKÌR¾0–—<mè’a^²Üb„3Ài7iø¢’IFº‰Ô›hÕ"ºæÓèKŒ/ÿ@Fõ ·V}T¤ö½ìÁ O¯ÄüÚþ…+ytz†í& YzÄ]/É/ñn̸-,üLc@X󂎰Fþ%qö ¯§Ùx'^ ˜mð½VðA¨¬ØK²=ot/XݤÂÌ ¬þ<‡ÀætŸ_Òé<ûu‡Ü„‰ ’쉌M’kÞš —ö$æÒždü@:\c6á4pÁ*ÌØüÅ%’‚xÎ}Ñ—$xv~ʚѵιÄ\Ú“4ä®àðÏ?£Ú»‰yjÆ´ã&ŸCýS Ë‹!9Ç¢Þ$'óï‡P:œ NÒð÷`ŽyÉrjgFÇÏ\$ºVÌߢI$’¶&öù÷ ½2½ªj÷gø9¶:w 'd¸&X¶w?‰f>m ËÒÁ)oš–5F ïs³õ¹ÊCËëùaŽÿZ4Lû3ÕžÍ qˆtùH ½d¤›pJ‡å˜,ïåø¢ kä¿iÉIô&¡eõO5ÄÕϱ`î$b³5B® –©óÀƒ³BD¡ë¿¯!6ìçúB!±å _¼N'Y®ì\™N$#þ-b£~¯ÂÌcLuHâ L~ +­·×BßÿÊ\4Ë$kÔ‹'³žÿawÕF} £Üdù?Õ§Þ—,wöI\xßôåβF}Jôü_çÐ –;[dN kÔ7_žkó§§ÊÕ…ûß<-¯˜Äó.š,˜{ý m…û?mžŸ³Æ>Fú{¸ÆþŽöÓÀ6¡ çÇØ/±±û'ÑfÄ×ê<1‡8}Ë~“¬7©H&Á‰Óìƒ[ª>É@´— %Œ¡–ëpEqù´±j“@$ËšÞò ±0î$¶8w$ÝOÏç]àÍnRáÍžd þ@2–O„`ÍêKh/©×_S¿lÍ”G ²B íÏh6¿.>r³XaØ(ãØlkп¦Eý”5è»gÉ'Üz¾Àh¸fðµ_‡föwÚä%Ùî=b³™Òþ Ë~C®[ü6×*IGÝ â@íX—t±^WZÞ ê)7Iý&™KC¥] ÊzºÀµ&ñé7Ñëqv“¯ñÈKJtž^báÛIæe²øèóawlô’5Þgq‹Xê"qîyGÓï‘`~âuÔ¢·@JÏN½¤a‘ Á®Òü?þš(¢·“(„Í?–çAüFK>IÂËe³ù$qYb’Òo²~c8>Éù¬¡?—ï:‰Ïa­‘$¯J²19I¾AÁÚÔHNô&íãœ^o²†ÿ\ìì$X±‰oIÆ„žæ’óMJXÀš¤ÊMªEĉEq'‘oGîdZ|Þä‚E‰1-HÂ\ÃG ¿z¼¤ÈMæ²æC‡c‚ùD2N“9ÁœÎsNðm&YNìÌ˨ÿL¥L’ÓY–Wüw×/xÝm¬Dvi~'àó²† –ÈF²b«NrÐPœt€Œ¸*wûžÎ$\ÓÜÄÖ–þLÒQÑœX ÷ ܘD‘µyp'èñŸÄ²y'YÙ¼ü|‚5öO°B¸¬‘‚åú”8‰ uÖ„„nÍ@]Òr¾\ ¦ ¬AóyŽ¡Ñfa"ÄÒ×ÉǦàAî»+X‹SLß“¬ÐUpTV›’†Â/$]o"¡Ìsm‘(œØ“˜›ü»Ô†}Íþ'ëö¹ÀÍ™ÀJ+’‹èMÂŒ柄) í/NV˜ñT Mb9Ù“|)ÐÀ—g8±§€—¤v“ŒB:Xá”QÈ0»üø•û™þ˜`”›ÈÇ9*‘` ð`q’&Y¯·ø--Ûˆ%’ÖoÒQ‹š ¼YÖjL²ÜYˆ]%UT$1ƒ4‰e.¸Š1Éû*~ß+RyûGTT$ùó’†t9ï`5Cˆ S;ü:t‚Hàü’úM¸þ’š?ˆÜ¤ãï©NF½‰ÀëàÃAÞ.ã„M²†|4Ý] ©$Ì`lÒÆMèmb©<ÖsLâkÆ? o'IÈÕV«±ÿI‰¼“TÌm¼YÊì™0Ÿ` ѯË{,±¯°w°b[ IùëE¬þÅæþO3ô|“±ê¾²`“Ê8ªÅÆ›(Š’N‚õ\J‰÷…ÞÿI¸0½‰%¹Gþ’5úÔH8ðAòƒòÊ“${Ÿ-œ —›”v[‘8Igâp2ŒXø9 œY‹Ÿ&P<î„S’ü@’ބάÌ“¬%`²)~ŒÒK:ÖbįcÅ•'‘s´E’±(Qé½¾Ä 3NRêM_áÝÉæÏÒ±`k—³fl¢Á[}=…§^ÀÜ Î¾/àã„ÁÎþìIjŒz^Â,F÷ëX±±ûÅ/.d­qT¬Ç5N¹~å€ Ž¸"–Û¸"–;IG Hé$cÍíÙ9fåšÝ$Šå˜ŒïjX“hœL_Â`Ž×i6þ=ã?IE-¬—4”¼%¿r7‘X]’ÛùÜ̯ݞOî¨KþÆvÔ%1=4IY½>ÅojÿB2ˆ¿SA aùrskÙ“5‰~õç9lô—ÆÉ,Lí{¤ ¸µ™ÿI°LÛ3ÛŸ¤÷›Œ|ˆyè%VF%# Ø)‡,xºaÃ9€@Z»ÉÿÖí’ @ã¼Úä~$ÁʿĚ­ŠóU±Š–a÷_2ù<…DhüËb8)˜ Içd½I…­³<Ù$­Þ¤c]3ÿKX£²Ï¬W?G5’d#¿,®Lbë8‡DI–Ú ¤Ö›¬¡?ý#ã.—„U‰òå_-B_\›ÄÆ=Å&ÉãtŠŠýpÜ/ÐP„¥~UÖØÃø¼DZ˜ÉŠùÿ^t*…“@òÛ[,¥^8¸É¥`5Îÿ½ákýN'õ&2"¹N¨è.AÚ}ýv¤U'1GVh.^R[pRJµTv ã°«`hÍ¢ø´\VâN Æ&åãœ:nÂ7ÇG<¤—H¿‰æH: ì=cQ:ZKNR` ¹W:¬WûòSP¦Ô^éh2<É@/úw üØú2,Œ+¦—铬W´û8æÌúâÝ$µß¤¡êØ\beaµ“!Ñ 8³ìG"ˆâNbQÜI2ÄÓIJ¿IEì> IO7˜æj&‘¬Ù¼²rPŠš7[Ù/9ÉþµÑžµá?{[7‰ñ}YVç"¶’SÓE*û$˜Ñ>U¼¬ÅAa’bv§³Kx’‚Ö¥JPQjŽŸ5í·å…Š_¥cjƒgS8³'QØw$kB*{ùá …9¹5¡ É¿šPÄú‹IÚ z¹ÉËe“H¾‰6+éÃDQWðE²¥xÿ2¢9.Ž-‚Wdìj6w¶ô/ÿPG©yóS,˜cŸ×$Š´9^К‘ÔóécfÔìulløï'ïß;'©1¢©˜ é0Àû«>€­L쿦zÏô&é㜌úV¼iµbeâ$ Ž–:¡÷#X+K3àÞÎNàeˆãìJçß3éÎm4Mµ¡²’]2‹ ¥:©ÉÁ㤕›t5û»†ÞD>ÎY3»²_j‡;Ë5ÜI,«}’‚b,qRËM,µ[Z;{<8ªë›`N$¡¿úq’ûM¬Íä$ ÕO0ø“ ò‡Ïk µGI˜×:/$<²ƒŒ¶ÌP“èMêÇ9 ?3Ôl7‘Ðo¢‰¢sú$ë¤`åˆöb ­•8$ª"³çÞgÕ¯ ù&ŠfeÄO B ©ÞÄÊÌüí›Í¿7hPn@2·=ðl•K­íA‰†û±³¸Ý„]&È(´ä½ÓÏ&1§9õT¬‘ ACwzòSºÜd°ü4‘ÞFŒÈ–¯Cwn7±\ÆàHj+q‘ŠÂfþ½Ù†¾WPObC?Ñ´ŒÖi7U-i…ö'±ˆnàõhÝ*Öã±Ø0´B»Ð §Y³5ÉÀ)æ™Yx…®¢áŸ²L†ç'g)&jBø¼+ÚGYñ8ÉònKGýÄ$+ž+ÝGRE]ÞI:jÑÑjÕr{ˆÆ'ŽpÀ›«'Ihäé9] ÜgXLçOk¾@·ÉÈ(ͯ£)’nÞm kèWõŸÐ­*ïÞGñU”…v?ǤcX¼;ÉJm²Ôc‚²3¸j ¡@ XË<.H! Amñ6ÀæoºA¨¹w× Èš´÷ T(¹ûÙ’‘Fë¹-D_ a@õb†0 y¡Èzw)2%õ*׋D€Yiº‘X’¯µ6¨)f]nœö&‚d*|ê†i úŸ33Gbæ&9±ß™EéÚ~ãK¬¿ŠÕd“4«™â!¢:ZHçaCàÒºuï ƒÞ­O‡gïzºóy³¸ß¤"±‚c6ü†ZèEÄ&-ÌlÉzÜ®õdPe]©tèU*)L’²…¿Úm˜¿˜J:t€š›ÙÙS‡ªvÞÎŒ¥9OýöŒ““H¹‰9µ›sjÇþ{ d“NRêM¬Êž½ý“´¦ðA ¶L0Ðñ‚ÑÖ DAý^Å= ¾8ÉÈ”Á˜sĸIû&Š ë36ÜÎ^Q§±Ió†!>Ïö Soî!ÉÜ·ú‡Ì9ðLé|OB!T_+ kýcÀ¤€"Q„²/M7‡V˜§éËÙ84Ð&)KV`øðïË¡ÍO¥%ëPá\×W|oçÀÿL1à™Ãg‘q¢4é$Ö_’h¬ûp,X±é7ož\$T÷N*q'Ìtpšú°_¡æ!Âoêe0}µi¿7FéEÍà®5òž]ÐaËÆŒI–ÔÔÉ÷µsªè˜ؼ4À"JìÐÚñL‡PßF@1îO‚* ̪]ïR³®Þ0ÝýC]ob]¶žOëÐò$áxÉ€Eöxß<[˜¤èMj¿ICù…€X4 ´+–^ÂÌp}?s$_ŸØ¤¢ÞÙ´ß¿%ÞŠ‘¼ò8ù§F½‰ ÜC.oäëÐsຠÌÞg6IÉ7±&Ûçø”õK'ºg³ã÷þµc`E€|z¾ìI¨³IæòT'©éƒ w½°Õp:ÿ›Díàêý½ <ÌùßU“¤Ðª9I1¼Š³å—5‰þ!3ú…>älÆPç ¬è¥å=ÀÐ"ãÓk6ø{¡e€kÊhy` Ï¥Ü¤"‚…o5»€å&ØÕ- íIÍEÙog½Ôl.7¡ RÃàfR û9¥ÝÄô3NÒñËa¡Gß‹s~e.Ulr¥¶Ç  Ìü>¡à-ãsÞ3½I»AG=&ÿºam ¢q$™èEä&•Hiˆ€RûM^´ÞH:¼ÌCØ;‰¢ÙÉA- ·€Pué±Ir¹‰uMûD9(šée õXnÆr›@=ã ¦êD *£TL 4€‚¢;À°EŠZ HÇM†…*y!‚˜h= yñ‰@ 4‚êTÆ Ä@÷²„$ŸÛ7±*“¥“ ´D @’Ü$3»%$En‚•E“1 9óú)£ß„šˆ›(%zð º+9¥xb{¦2ø°Ê×n/G¨PâaïÁ¥zÿž¹è5 ©.‚Þ.>”êJ›är“‚ &;©XÌNK\2I—›Hº‰ÖH’Ðä…hX :«¬: ÛMøK©êv^ ä2|“ŒtAHò+³êæDºKÇðþ@Té» •€P7’Vm]Ob Õ ÄB€ºù+X ˆîEh ¹Þ¤Œ›XZOý…WÓô$Eþ|a º£oèA ´ƒÏicéQ êŠ“Ô4t¿t¿Œ%ö|™@LtÚQ,%‹éF¢#ýÂìÀ{ŠÉ }ÉÙ¼òWì"ž¤!–õSº\`TÓ›ãïÖåÖDŸÙ¾ÓøÀÕÔ@ç 7j"@‘°wù#¥haâD!úhñ,gã/"›F =è¹È$V¯ÁfáI²Ü¤¦›X‰’×½% ÍÁ(7¼ó =ã¢Ð¾œ©˜\rr’Œ¾BÈËw¦wÛíU@ G¡·³x  @D"¨RA}’­Ø…\ &ð퓇ÏëmB-Pÿµ±ù{’eÈjcd£[÷†J {Ü@h‡ ! ¹n]I*šà*„€¶{ [ ´:ñr '‚ä9ŸU»-³73L 5Ðá˜R Ô“YŠ S}x³0줓Z0ë5÷W1K ×S¡Ô(é8Éü-³æI¡Ô÷ m÷j ­ÒÐ*Ô@½¬No d€¼‡vªÇ ï¼Ý$¡ “´.% -°±@Lp©ÅZý5C Èø8‡KsÍ 3{$r‘êIò X«±IE| ë°ú.Z2 Åí ë€á¡ÂÃáØƒûHBW)m üõ\¸R ”“ºšÐÌgq ™hNLy*MþäÛYç¥Ô¥§t@Igéê…² êD¾U{“´t“^o2P`®Õ$¢7Qg›xõ¡ÐI2J,¿0I©7©±Ô %î5‘tHÄU%P«ƒÄd@–õÉ^o¹IJñÊ&šóø*Mó~FP˜ C€od'Ô$’K<Ö ÚÿÙ¦ª‚,íý&U™Zðl&éõ&cÜD>Î1ï‡5.ú@È ÷'Éù&¥Ý„ßêÄ„+jâ&馲×c¹‡rþç(œ:Üa耞 · Ðÿ)…¤}€q4 %0WöABgm‘@tî…@ |”ü”ŒâŸ¢$(]é~J£6O&±XŽ‹=“ î˜‡öæ!öt°Ãá:Ð@þÇ» &YýP4qÓ?d¦s’†¼á($ Â2H$ÝDk$×G ÿH†µåX1éÏ]E?‰ø@6ÔJ2ÒMlÄï_>Ì— å$~»hýÌÉ“d½IM7iõ&ÝTpü­€P­èóD@D5éÏ@rè˜Ä¤?ORaÞ«“†)/\2¯?A†^¢4w(ÐDýOúý“ظÈHN’C ö$økú¡ÙgJ{'ÿªÁ½ôi,±4‰%³7Á0ÃãD’ÆMÊ êiÁ²$Ì.s:É€¶^‘°@qh!Ü“9(€Xž8IÁ!oMAóôIšÜd¤2¾) IæWå Jä?½o[™` ?IFö¸9á Pý:5$ñ'ÁÜÍï†ú§¯•ÒI¸@¬ì¾14ç¡îÚbµžš‹Ø{Ä#J‚ê&rBš ÄÍÊ´nY J—ªÍ‘Tƒ ‚–ÏJxµpæ"«èÞëE'±ŒíI”ºdøTûŠÓo¥((„#µBT'Š q¸@Z\¨Í÷+V¿íŸµUZ>tãlª{ü†Ctçî+ô€º›ýjz@S¹ £ EÐÁv­EÐaÁ7Õ¼ aA2)ßÚ]F†_>|»õì$¡Õ€ã ª ®þ7 µ1«V肊@ìøÐ u¸íKW*D?þ# t*%f±ÍO(7ˆíÓ“Xmu†&éðnø~AÔ7X„Ëwør¨‚’êMb¿­V½Ú§Õ<Ÿ5ˆ1oVºÿíøÔH7´jÃ…¨ݤ™Õ ;dAµAHXÒ¢ ² ´fÓ BT+!»È¨78[x7ÍVã_áü{5ø$­´XRj†> Uó´ä«ÙɰQ —¼AΞ jئNy “DuD5 s«w# ~^О½ê~“ÀNt$WÄ¿‰£™NiPVm.4.´#Ø¢^|§‡M ì=^ˆuPßS;Åâ|"éÐ dÅtޮ꠩Þu‚áÞ!äûj½çJbG pŒ/Fî u©r¶é˜f‘#púI$Š”r#½¹â=7ÔA÷rvß“Â&,ÝØ„¥›ôq ex7ŠqžXèPõbwíPõmP'Éí&eܤ—®3ð¼C(x|¢Þ¯šKí˜$ùã®z¿Iñ:&jÉ Êƒ¿pG#ßÌÅW÷:äAQ.®ã¡Cè9tÔk· !€tB´CÔ7WÔ.Ùm"éƒà&#ËÁvuEõÊM¨'ƒLR§8ÜIj»Iû8gÜÀdïO¢ñ«Æƒ¶º“$,Á—¶&¤º;Hu<¾eqóOQw“~‹ìoÖxÜ!BÌ8žKH@Å<œÉÛ.jþ¡úAZ˜tŠ nd[1(Dý35;²%º“TobY /^0QòÙ‚ÁÃU¼—#äû«LbflðÍÈ_ûC +´Í€@h ©ß$ëMj_U\'QP'q“Qo"è°C’p0éÄCTkørÿ€Hh÷ÌÞ€Hh µÝ¤!˜-A@E4B=…4( äš@{Ue4o9éN2,5ò:ª@^ß­£ybo“~öQ#»;š‹ân¢9’-º %B7)7¨¨Á46l¶;é@`Aˆuꊡ›@.Ô£òÝ1] J¹IE6­p£nub…'0=(# Ä €áFxPè$Hߤ|œC½ûMzºÉÀ àÛnÒ@;/7 $‰ÑÇ€Bh Üéa“’?ˆÜ¤¥›PI‰X]IiÑ›(²=È— bßoF…Ú@L† BOPÇŒnwÒûM†ÞÄB 8A°¦p8I†‚ç"u÷Y äÂ*Ðêl·QÁ,°×ÿ%¹àý&Šzl¼j’±LáÅ’©#p}‚;ÿ[ H¦¥$EoÒò¡—I@EdQÒ ˜)óü·ˆW]n’ ±ÀûGuГÔXô/P ¤GWC t¼ö²zV*!í ÝeeyPUú¸¥¸@j½‰¹B'¡!H‚»Œül¥8,Ó)äA›?`…HP ؉÷ ±?CWÇýÒ-j›Í©RÔ£B¥<èI™^dÊ5ùžì›$ÔàªET4b°kòFñËô˜ÉT F»Ë¤sw  ]§¢T†s÷R¡ÔÑ <÷qNšÜ„oÂM¯ÿ*ò •á“$>ÉIFhöOEÐEä&ýãœ+L3Z<žS' ¬.*BY_ªÐÝ` }Ð@*¦`ÞdÆ'éð8‹“ŒÀJ øü¥ Úoˆ6ßóa8Éé&Õ@0äÚ¼\ Ž6—•Að¨{6,YœDS$ $›d½Ié7©çôïß%ßEÅ8’bä“$½IÉ7©í&¶fQü+”Bã&fѼ8Z ø|œÃýI71÷$•©°0Ž W!çÂr“ ”ˆÐ »M º³é ©P->â¡\ä?R¡{B*t‡€&Õ»¶òA’M¡W('« ©Pnèô¾¬ :I¾Åw°‹p?³õ–,ÂýÌ6éí&Cn¢)’ä½(›|œ’ËMJ?f–E̦¤ÃÐ,KhDnò´D¹Ð@’Þ$Ÿ¢‹dîWFt‘–nbñ•Ü.0Æäã¯a1>¯R|û«M2ÂÖ4¶³BPÓÚ}kÐX[u¶kv¡È&¨EV|sõFÓGHr½I7A’2ˆçµ“t½ û7Q¬Ÿ¯eÛ—P+ô$ÔLÜ$œS°TSZ¾@o(Ï[‰õEXµ”…Ä:«±˜ø’%A†üB'¨ÖêJB©ÐMÌÚ ±K„ùwÉø‹ïC”"cÄE2~u$/üã¤Ö›4´[ ¿òø¶sÒ p¿M´G‚y „ui$Yno3W‚VnÒûMl{^T.Â}Ì6QTh&¼ª $×›,;‹U¯êiý&kº©X`gÛR¤Ç73.N()ƒ$GŸßÍl“ŠWSI“›°eA®!9ÑIB—iæë›¨zÖâ×FÂZüMZ½IGsÒþ®–«"$æÜžD5ÌŠ³C8þ€ôZâõœ=Ãé&í7JÐðÓs!ÜLÙ ßdI&z¡,;[$¢-’±^…yüyxÃr¡°.J†\h«t³²i±9Ó ‘’¬øCý±Ät(ó_¤Çù~v ËM¤ÞDG$õ+Ý Cé? ’¡­Ñ!ÉŽ;IƒÆk•!ºMA†dh Ô ÂÝZ׿å $c`aŽÎ” : Õ²†Ž|m$˜ï`Mf»p¹‰Et›t—Áß$Gï-w/ÈǬ’·^¨¨Õ ô~‘Âä—$ºh ĺ—P;ÈMdžÎàXƒH\ µÜ„j¡ÕI×›œq¢-¨…n‡/C-t<œ=3ÔBÕ¹,(AkŒµ²`ˆ@>Îá†f›p‡êMtDbr¡ œ…““¡t ZÈ…BqÿPG= ≠ñ¸Ã,¹På‰G¨W:ÀÒ }„óMy\ec¯ ¤¡¡\ î7Þ„­ÐíN—Ç+H $ƒ·¥P-ô$Ò¤"_ÛR ‡Å¦úuÌ¥N =Œb’AÓÅôX2ôïO’>ΉqkdÐŽ³K†þýcš‹Ø™Á)ÙW*ŠŸÃ• h…’êMè*A)7±r%èÉ.²*–R¶$ì"õp•KÙ•—þULì‘@6(÷v¶Ô{Ø—zûR½ránX¨¸#W ˆ ¹‚lE1¸ù»Üæ¶Ë–IÒ›„]©ÑÚ•æR¹›tôéÀs*Ô :¯l!]¡e-ÝC:Ì1‚¡ät“RoÂñ¿ ¼+CºAâÉœ‚É€Û€,¢9èQÆs‘tvâ,R>@¿IE7ÔðËXDw«]:‰Õ.Dk$âµ4_ÂÚ Š*75sÐPÀ€@¦HÜÓl‘°§Ù"B\àa* @3( ‡+9)°2˜ÍŠº¾:éìz÷OuÌ9pŸ TCO°œ Mêãò¯›ØJz+±ù 1§P”¯žäã”^n2P0ƒì|…fÐö¹*4ƒ¶u¨P e}Ø"\Ø\×qp7j¶ ë–J©Éë–6 ˜/ɱs‘‡ !gÍ^¹ϨB1È|@l쟤Ǽj…fPæU+DCÙa¶ˆÖs «Å‡¾ƒ¸>S!Z…©oK?§ÅTg-±¹z‘Ð\½ˆœ-Ï‹(dÒø ´Óóª¡DpH+Dƒiõ&=0ÕTCÐìq…jèö+dC©±HØÙx‘Â¥<'ˆ½áT ‡žd¥6ß×uójqÕPêw/’êMò¸Iµq$ •›ØÞ'‰VªvoËÂ\Q©ºÅC}îª;ØÄâ¹qPi IÃÝCÈ\‡»´›0—qô=ó:%äCm©$ÃáæCÿÏîˆElðè­ ªð݇¨”}èÊWèY= ˆ¢&auÅL0=ª Á @²Ü¤¦h• Hê¡°ÁZ…DQ2°¡Q1(ªÁ£oTM4\ ’A´~ éNö¨6"‘¤¸Gõ"Wn»Q>ô$õÛ®…1ÐoBùP<õùÐ@¤Þ„‹¸Lö]‘‰jÐ $ëMêõU‹ ¤c´cÌõÖ^ٖݵEìooyçQ+¾GûÈNP©ƒ£Q?ô$Ö…r’¥ƒˆI:øRiH5(ŠA,N]$auÑD£xèIlÁú$˧U®°¶Ê]ÍöuC5þ"l¿âí¥vÜ&ÐÝ![ƒvh å¡ <ãfÓ@ÇÆb P9´ú‡F»‰H$P=žµãN‚Ħ åÐm‚Z÷¼6BâÖ}K¿áçt¸[° Ê¡˜„dCyß¿+ùÁ -\íoT+>©ê™èFÍГpÌobáÜ@Z¢™hÜyl­Õ‰³w“¸÷Ã" -È-‘p'ïƒ »Åç&žÕƒÞÄ Ä/MÜÚD4ݱÜ&çx,ç¤Ô›Ôq“õCÑ”làƒ Hz4'ŠT>¦ùï?$azéP ¥lÔ"eÜúJ(rAÚ˜ê&´ä³ýÂKa&­ñS âÖ"‹ä0wS ½æÿLCuÄpÒÛM†Ü„ :ÿ5:"1ÁÐr¹Ii7á]!ðÂU‚>Âì&€®Ÿ]¦u(†ªçZ:„ã<ê U,{ñb >o†îTK/XŸ;ɸ <qP‡ZÐÎKöjmÕ)3ïÔM1ô"ã&ðôý*­\ #] ªWßÊOp?§MQ.B¹¹PM\+ì j>™ôæ{ùmR?ÎiXßĺVoÞU /xTÁ…ÿÔ°•ÏE­DxÕ»—jl’?Î :Y‹0”ÃJo‡rܶm½G…™Eåá~åï6½ ¶s/’0ÝÀövˆ…R‘Gã;6¼eÖào"«±Å/¬±¦C,txÕC‡X(û)r“ŠÌA­$ÔWÂU7±Pq½‹ïOÍ{ ¸í€wõ¬6²ŠA'ɱª+ÇþlAá-UŸÓs"°ò¼_Ð „š°™Þ¿øÔ ¨Y;ª øþÜæx‘ûâ—írqŸ!ñŒ\-ÈAî(ù5ZžaB¡^Á¿ÈˆëvƒÿI&`2Ù·sÝ$a¹~Ø€Ç/n„¥‚ü][1:ûuzºÉ(7±QïáëÈÃá‘Q-îÁñ½ =A­°Œ³$æßôß@V&›v/@‘PxüÜBrK^œdy>PUƒyTWJ,~NÓÓþJ„ž@. )Ž\„îtÛ @¨ú4‡_<£0š×ó‘4läê†h4läznJ ¬Ær´~bE‹±FÇŠÄI(… m@#”g‹4¹ÉåÅŽ~{±ÃDB[õW"¡pAsç HèIÊÇ9Rçf3ð Fù j¶&zV ¥‰Ôß H¨—Ç ˆ„îlù€Hh$¨Ë€Ç2„u°.c“ñqŽÈM–ñ7qÕE ÔH…¡'aYÒAà]ÂeêÄš©Ob½&'i ß„EÇ›H¾‰^×<ÐðjC@\pªà{ Ô†—.IÅð?I‡/Q2É›H½‰ŽH{M(8þ94üåm•Ð@zP¶"ÍËí7‘og&R w~b;{/ è²Æ~ EXÑ‘î½tüͦ€ Õúq¢=’á"›¤v“,7©°½>9ÈØjÇ…dàUÄ-pûÙ%º‡>f8o5¡±€P¨i\€àËý¸Þ ±˜ cY¼8‘üA$¨„z˜/pùOûlÔ{¸&œ„,P$7Ø?$õŠJ•¸“p/K¼ …нÀ£PÝË,ú`?j_æUªÄU.g+BOb#:€‹¨†  Å•ÈMJº ËáT*uB}ÚÔôõ úMD#Nh÷ÄTUr’Ñ›ìª^"q‹T6³;iHÊ#^ЌݨO"í&×bœB¨ –»Í¶àX©…)ì êií&=ßd@ÃRM&ô$pyù÷Vßða“|ƒòA( ´IcÃ’’ ¶uø96©»5WÓÝÞ‚B#´&ÚY…Fh ì·ES‚B#”;º/Ráu¨Š;o2ÊM¬¼²1¨ÔÝò@XUFæ¡© º”j¡ÙªýAÚ VIFjþ+;zLN"¨ÊFešB49TaÉé&¥Þ„{ònÂÒÊæ¤£î׈ޟš<ДãBH¨â«˜•ú ûY‰çe‘.U „ž¤êM:ÂØêW¦„Ø&’n¢ø{øp(êI#Õ/ÜTf(ävØ ˜ ­.©‘œX«‰·#)äÑpö4çô~Õ2‚*¶O42Ï)5$‚±Å‰ŒÊ‡IÌ»ÝÄôA=Œ_žvk$YoR`¶JbzJ¾Ä$¦§„m™øsªŸ³|5aI(­Áu"ªÛ—…

" )ñYªå$È)ûi&IèŽé~NFNõq²FaØ9ICAŒ&“ôŒró†‡M¢@(Ë«R¢8\ ¡ÿh’rƒúAZœöRruÜMF»‰H$Ù%ð1ƒAû‘ RP¡“(§ä€5÷Õ?3ÒMoÙðïVdô-=›C“$T_'–Ü·NÂ’ûƒ„UËI–w[ +“¬ÁÈüÜ î%hÄlŸ¨G‡n“’‘ãnd±ô$Œü²¾™Ùðs:ªsK'avûñ+³FƒR¡Û×H íû‡oµ¸’I,Á燖ÛöÃŽF‰¿†s€OÆ©E ™— àO"w8]Wõ¬` ÿL¦=us‚hdîL½‰ Ÿ}ÿ)Š~q~÷pÁûMPïY6™BPlª±ˆ þ“½IÃÚ¬b¦@(¶âXd¤›H½‰¢Œ?bpÛaB$ËMØfw:‹·™lÒÇMF¹‰ô›¨F…Ð@rµ8“’¢B¨WsMÂxn“Ž|x¡¾t»ˆß©@¨{n¢@"Ô Ÿ&±xÎýÞòPHé=ø ¡Œ|AÚþ*¶O“$llÉîÅIÒ¸IÖ›°Ú~JI^m¿I‡DÔì š“Ы%ɧŒW*9–)- (l($¨¨ô3Ú¸ìÍØ`?¢dlç4è™J±¾o©£h¶­@Ôë7')õ&Ë¥­Š å$¡en‚Á%‘~ÍVyÉ S”¥¬“p]g¶ %¶PóŽC+âVóØ¨ FhŸÄJÍØÊ0E6 IBZeø9ù]ì†r˜ ¥A}ª/ ‚XÈMô:‡Ò 'Iý&o3òYeKƒnRå&”Ýdໆ_Yèzp‡^€- Ê«@Ô»ì&)ù&•‰Y‚–.ÐaåEI¬ÙÖ'ªI ÛÛyHuÁ²É"X^ƒ5,êLÅORàNÿTEC3ÿbÓ7Å…qçW ¬!4/â&$ N’BßÓ$¹ÞÄ{¬´™¤Ý€&ˆb‹z§É&‚à/û§–äÍ Ó‡c©~h5A /Éš€&Ñ›´OY­ÆIFÌóTݳC• q›˜.¨/æ­´Úúå> UÄyp¾«P dMkŸL€åÙv× Ë1Ê|T² ,èl^!0ÙûXb/ÑUŠ‚z–±Rô$\ÕÙdÜ@Ú¿°bŒÂ–Uèy)Æ$9&ë+ ¿ò0Q±p³êWzõH¸ AOÀ-Œ°Ðïm…\ í㜎/Â{Q¡ˆÖH HBn¾êL†à»xs›¯Îù)Ü¾Ï xò 6¯´ßD #Ǿš h²t·î\$gÌÖÊÍ㯅)E²*5éè!,Näô›(f¾¶ÐõJÅI¸¡«ú9%t¹Mb…lj‡ ©ëÇ/ò)>'ê W3ê†æß".ˆ{_¡Ô°“Ñ"õ ¯ú¾°­LTs Zº‚²F~ñõÆ AÐÒéUhÂípªš h¦‡è^^… P¥Ü’%GJþZÕ«XuNæ„öØ4‚ X£(;O'±­Ë(U0 ’³<´¹ÜJo«ŸÏ­®ºA©BÿfRp0!ÐY˜€¬U3!ÐH2|,<¶ EËÂbfƒ¨ÁÛ¯ìŠ[ïk¹ «“’_øJ_4XúÒ˜ZjЛ€5Çðe@OÒÆM>A¿ lIàô’êMò¸É²ý­øÓ†¨—ÏMÒô&Œß¬,a}µÞÝÏÑIu…ou’ÆMÊ ê'A8‰äoƒè^RjÕ=>ô ±€M®šç³9 Hɧ^á2ãA;e’†œmós¸(±É7Ñ :ªßbhÕê_-н‚Þ Zƒ¯¯¿4Zݶ4€’mNÀŽÏ·Óïé~Šíßäù•6<„CR° á6)˜ëò&Ã^"qÒpáD°ÜX×j^ÊX.ÂtØ Û­H­†Å¯c@®"³âðr“Šü1'E€NÒÛM–ˆ¦H(ê+¬ÍÔàZó› Ð@J÷"@ô µˆÜAoªÔAÁ:ÂlFIZr’‚*àZÿDA&®þ`â$ ñkóëP q“1ŽÝ”© Ü“$¸ßÄ¥]…¤Ô›TÈá :í†>Iï7±ž“Â|I‡èA¨J}IRºI®7)1•ß3÷0Þ€{px­;´@јÕêPâN‹ä€°²Xç 1Z ,whR\uõž°2`rIÅÏY>mNL¼t“ €Ë9|Àõ®OêÕ«‘ê­Í‡2¥@ÑüµVŒ¿-çy_ÅN6‰µ-½yÑ=&û  ½pÓ›7œ` éPÍîüuˆ2Ì´ª_X°r‰œ}‡¨¨âކgкM‘d¹ÉòÿE-ã*¯ßŽ"€N)Pnð±\Æ{D ïðø…U"P ™BRŒ۩”è?uHÎ?‚ ëÖ¸¯•.nÇ\àŠ·ë¶#J$©¦3x8áv5_^ì0ý;iÚ´ÎI¹C(©7QñV˜é?Þ n[ !Po^Z¥¤ù&­Ý¤› ¬ðÉ(šO¢±"b6þÆäÍx0þÙí½öCK7©õ&lÞæx•”pß&ƒƒ@t.l˜n’Çë#ùæeˆ†d€ÜùÉwrÝd=Ïê2@¶¹;ˆ —OýSVšç5kƒ:@'Yžm-4Ã$A°½ûÜ& IÏ7±½~N½~HB‡òzÛ?—œyŒ­Ëxh•6~h­زØûp˜a¬N“!¤uë^9a{Žw>ŠÀyl7ªïí³IO7á~eHx ¨ÿ¢×9¦þ“sGUõ$KÓ5µȪ·äã2«Þ>hv4_Šƒû1:MX/8 HF§%Rõ »r@ÿ§ çî±õP0º;?ůÃ,ö&”AÁâÆ®k¿IÂÂ_@¿yiÁ ÐI*Õלô|Žx¸:cxŸU&`· ô?»pêpþÙ”½Jh>HEÊ e)cÏXâvHk}\SÒZC}W‡ƒ|œÃ­[‡“r½çtý3s®¿+®,2n²lU¡w1àúo"P $Aj£D`þ)ç´à¬ÉGö$ƒžv"Ì4Í¿\[$Ôÿä~9“ät“5øwü"fÿh÷Ir÷g“!ÛôIºã8ñwQ‘ù<Ò 2*\á×ä?+×êŸ'hí]. ˆóP!þIí7iz“‘n"èV†ß¤˜v!ŽÂç$õ›Pû+' íÏî- J% /=P*dÔ›°,ƒÕ2pJp¤Øé pû¹Gõ"¶’Ÿ X[‰9FËÕn8 K’°4¥Ð:Ä€IÈÛðËaø}gÉ•¨‚ Kµº‚Œ:‚ j=µz£ ªl¢X¯Äü¡ÐÿlÉÿÀæÒ·› .;¨äT_Z{}ä  ,"jsÙ[ì¹Ó€ t/5›×9B¡þ¹›Ü”ꟙöP!¤qªb°]pA ¦HþÁP Äæ¸­ãZVjy[œBÿ³7Tç P 8 Òß4Põ}"VT×o’ÔtPЩ™6Áª m›IíN0…Ð.›À°½D/ 1¤˜mÀhÛ§ñƒú§«\LÂ@ `¥ú§ø@SÔÙ{_·ü'ü&…üg šN²zJИû:IJ7ÉÁ‰\µTý&…—6ØV+TšÌ“Z„Åw‚ð=ù‡Š8 ùÏ@P`c&`~“gËüÌåÊb§(IG£²Ío“ŒqÖfج8 U½ ÎP Ö9ú`hO²†ÎFÖ¾r“5µÒáØ '¡~©YN(àN’\ò§CÔ½ÓUÜc7üSÍî©4‚ΊL?eÜ Ú/mj¤(3þb“$ý¯Í t4ê ©7hèn‰ÄD@O2Ðvùø§ŽºvnUŒ¡Ó|ø;È •¤„j›hÞÖvíìh_‹ÆrªÈOÂÊ B /á¹` làªû4Á®®ú~©×?Óò‘›Œt ‹Ö“P+ƒ ,K4ÿs¡zØ8ÿƒSø$54¦/f¨‘=~‹æØc;É(7T_ÄׇúŸ'ÉH-T'œ ²Tfxüœ6n‚r~¹¸`@óSDO;?~6«Ÿ$Õ›d»œHê86Ä?sr›ñÏRÜÆ«oÒJû¨¾›HÂ<ÀMÅ& bñSÊ *º7,„œ¤Áxœ˜Í?Érf1!û‡¿!áµ|Qòå8¼p &ßÅy–¢i˜ˆÐ’9D@=Bœ-•~]îË7ü*xŸÉ׆»“$ŒB±@f>òjßMdܤŸ xŒrA bõ)î/pÂHú8B_0NiËõFÂVéœI¬Àø$Mʼn }‡·«Ú°÷"•IÆt+$hœË~ µa§T@±FГŒôAä&z!꤈¼@o’Œ™Dýœ‚zx@ɤ€²íù²Úìã¢ùödÅ¿| ýÙwJ`šÞL tÙœBBw“Mê¨KJœSS÷Æ& 5x|É zÜvH塹³8ˆáö! .AN(õu\ ßÇ=¾úÿqÕ—I¬Cé4&¨£êŸ^Ð7IF³8)x÷i…Á&¸D—ßgí½žÄ²xÍ_.sú—7„OAûÇ¥&´ƒ‚RnÂðmŠeAgÖØ¿iÈMÖ€ß$Óåg[À$é¹Ü¤ô›PÂ~J_YܺÈYŠ1ÁúLFBnEé%nh†ü§Õ“$H‚t'k"d9°´t“5à‰%ë]]«²•n†ÇŸd{s†ÇÿT$§&™C‰œu’9ö#YS@¾'i×o‡üg küçAï3Cþ³,¸.‚LÆv†ügÛ÷òŸ”Pð¸Dô&­ß¤£*ÌZÀ&4P!@ËPÿ9Hõõ8.ê?нx'0QïäúŸ½q¢Í[ÿ3z†þg ƒýËþUÌbo¢ãœ°³Éºb÷+°°–S@ Ó–8YŽl´Õ¹aO2D3@›æÙ©á§˜+»I‡+{.ÈÁÝÉÝa^îpeO Z7ù’ƒSŸ»W–)~'f‚@R½ [EÅI½{K6é!w3 7¨äÃ.e™7Cô Ð=¨Ü9Œl êÿÎT6&Ì åŸ&þ·@ùÇÅv&a‡©8‹ïåÃŽbˆŽû åŸãÁA4ÓIò¨$Cù'nâ ~åôÇ&¡NÒ&ì‚Y :<º)oϺ Û 7©é&­Þ¤‡¢°I¬Î~p”jÿ°žkÕH êëR‹Hp T@÷,W êu‹“4$Ñ,¥7É'è7${wí&©Þ„û8ÀºÒý$KDÈî” ÖçÏ’QŽÄEìI¤ÝDS$PÿñÅI¬Áuž”ë¸~€èdª€2÷:‰µ×bo™ dÕ\ãÖ`Ï &ßœf’lïœ8(„Š1›0‰½‰-N»X¨J9ÈIB»ûtÓY”„i½´«­v’|öòMPØGM`«7î¤êž„â?ˆ:K£$þEV‘Ä›\ ýãºÆ“$¹I ý»“˜Åg1Ö$ë¦Þ½Üd@ŸÂ?#¥ÞN È8ƒW¾±I… Ù…¤Á¹G´](þÃîØIØ#º‰ÂÍD©ˆ+ðuW¾~N.§þ$¥ß¤ÂZÃä¨ÿ”ì¯6ÄÞ‘Pž0 åHMÒ'I\WÉ$%¨",‚GŽTÎìú…ÚþTGM¯ŒfÌ­î™7å2=©ËzÛêÑ$9ݤ Ê ¾B]Ï7Nèu‚Þ/°Zï²DѲ»^!þéªU“xV¶“äz“‚vÁª$˃ËV!þé‹èM–¯¦½HFYe_&É-†H4ThÿÒòMlü³g’!7‘zE|‰„E5ñO¯hŸ€b1˜2+Ä?½w~’3[ZÐ0¢Cʧn²ÛpS¾Œ'SÏ®½\Í÷$#gÕùì°ëóO¥ô'›Î&±ö‡N‚~²}aÛÇéÏÊ­®r…ôg?INDnRY‚¦$í¬‘š £3U¥ê›ú­÷¯ÜôpE ÓP…ôkÏM’Qp תnåOdgkGÇhbäXMùs­4%’t÷&ôˆdÿvm‘`:8n•?¹|:IF¡wñOxR|ñ¡þ³³ÂŽý+ÔD—0íâŸ{¡šøçNUˆÿ¨gÞªxë(_|ˆºVð$ ùMþt„Zhý+æƒ@™]>½—C»–?+In7)çÔzî˺ÉäuásU ÿøkÔ þ¹Ý‘ö¸\ p{îñßn°®þ!®Q ý[”zb–nPýélWœDÑÅ‚ÙT°šX”d‰þØ.ë %ä:„?½Êf’ÖoB¸MèÎZQé$Är˾ˆƒL^ƒìO ù…õæJb^má¨n^íIXa)\’s á¸ ÒØ]“V\ó ÎSÛ²Ÿ˜lß<±ÑÊ%ê=IO7å&ìò?G5ÈþxáÈ$¶2¡¨Ì™ÄTíÛqNEú†w‚o^9IG&­Œ~SŠa'VnPý,~ t¼é~’œ‚)ný¬¦¸AøgçÕ…ò¾ð@¶w÷ЛhÌX´îiZd@·ËÓLT…^ƒìKßMbæ'óÃ~8X¢O"Р@”Û€ö¡§¸ÛøÊ7(¤¶›¬MYS¥ ÒLôg-k}OµaJ”ù8‡I›˜ô¡¯®5вÉb“ `ëÖ"(¼?Gn 1£Ò¨ùs’$7É(ŸGÞ­Áû¯ÍíšiþxÞ(ùs€Ñ/`ýrƒ!bSÏæ!Lïþ $§›p“MP=“yÜÊz¿À€,¼úNµÔ/À Xûs;ÿ“PígÊ"ÕÓ¡úˆiPy#žîPý,Âè¹'Œ|_êðü«—×t˜{–o-ÐoR}€£Óáùâ{“9±@޲ēH îcÏ{WV¨~öΗµCõsç]:U?=­ß1 ÒJØ×éX,Ùב0avH½¥J¼Û$° xlHö ïç$¹Þ¤,û2xˆPöoXþçÓ¬h‘®>* ùˆ ýMšw–l’j¼YÐü Äü|1ˆƒCÕNby¼Ê븦7ß¾ÖìðývHOáh4?eIþ”Bw¯¯Â΋X’‡†rŸÞR0É' ‹Ñ0¾¥ø¹Cís¯&uèý4¶ØNRð.ÃCìÐ|ëÝÇ $Ž1Ø fö÷bA®8Yc¾æI:$Yl VSa‡Øgg™å$ûä[`¢o.{:Áò{‘s£ 1]‡äO$ç”og=HWïF¾¬Cê3—Ç»úÖ |Õ—$@Æ!õ)$ô}àÎ H}Rô&¨E:Eů<ÐP<༤fPãmÐkÞž÷HØŸIùlÄÚC³0 õHC5$ÿBªÿ Zç­Ïâ>Ý€Ö§7CäiÎC,âxáê€Øg %ߤ¢§oÍ€öÏ 4 PçmU½ |ÑHŠï´‹ó€Þg ¾ ,ÃØÒ?0ðzŸ»Âo¸Þ'Lß8ô>3‰ë}:Ñ õ>O’ä&Ë¢$UtîpÔØ°mê¨W=ö$ôdyg ÷éÂSyPî3Ð+: Šùøà ÷sÙê—iz“Ž,&G#ä>wš4ìdÕ˜—ÝÛE“Ûaú$¥xHŽ ÿìœà ðÏ~_¹ÏD2±òSBËÏŠ4˜þ1Pt’¤7áæ |4˜ 1½Ï“p'Tg(ÿì`p ŠÙD¯sÄKìá ~ž¤Ô›Ôq,ƒbâJöW?¥ù0†àçA¨üs’„¥qÚ~î@s@úgטÎþ_½IÏ7í&˧UuCª(2¶%‡r˜¸åa(·Aù$*6rŸÞª3‰…r…¯°P÷ç$›òž eÄüÿXøÿî õ~¸÷é$ܹDüœSÈ1 ½Ÿâ–DŸogÆ@—ºÝ$£öic…ôÛ®¸Qˆ~ÒðÇÀ°(|ÿ@@ø jSÀþÙšP˜á%ä µ¥ Ú$\Ž€+£Ðýô†áEÆM┪ÐýÜŽ½R÷ó$V$þ;1ìPW¡ûéJ“”t7b¤õ›tHñQm¹ŸM¸&Á¿§ :ã$¬Æã_èŠ?ØšDõ áO_NPè~ž`ýÝ6¦P~ ÄÊ3§k­.D¡þã/½Bü§y¥§ÖKùp’¨|8‰)ž„»6p0Ußµ¤]‡Þ'½IBî°8)9~d?‡µ ¥·@:t#øXš7J#ÌQHÿ¸ÎVVHÿ Oú)¥Þ S¯Ú½Ø¦;±Jû“Ôq“~ƒQ>š–MP/¤W²Fá¦K“X*ذlÇEMô3€Ž–âJ0`Tþ¬FSÿE:›Röç$ù¥Ü„üÑýñ¶…ä§KMºȪ’¼[áøòqJ.7¡äá&«¯$ ¦²T}à#äQJ~žDÂô¢ÐýqRžÇ·dÝ„ÛðY:n’Œç0üvJ›×ËŒÓ a‰ƒeÊRB@3‰ ³''A3¥<÷¡Ùo­øJ'±z¤“ÔàÉOÒä&#Ý„éìMØ)M 8Ý'IX³Ì•$ëMl"×1Cö¸Æ\È@ùÝðOY‘ýITIPüdÁÄb†ïs‚à§ç&©¡ðz’6n‚6bñË Ä°Ã¿Šr1€ ‚Ÿ^q0 7e²’®I2&ûáç”ÂòÊ”ÿaÂu“påî6%Qò“{jN"í&Šù5á»(ùÉb±IÖ aî’I~*ÃÉ âV“0¤Û¤£ÇIüSLêUÿrìIå:Äø÷7/Yàõï-fÿ-Ϥ¡áEÉ@¬C•¨ÿÉ¢I4Ìe úŸÂ&˜IR¿ ë’6)->)„®ð0Iæ$£ÜDúMô:ê?^ 6I’ð6¦†jû“P* 4<Íä —›PqnHŒÉ+uo1?&ÛZIVàÝg“”zÇö¬Ã_>èú ç$½Ç7 @ž'›DQ"Æg<¼8©g’Ô@&É\$öO±Pƒ¯,@½K`’šÁ'x­'ÜŸr½Î¬S¸Wš($þ®AÔ³®‹H0Ô³)kII,°«þ7Stø›n*   åÓ½=«“ OŽk‚sLbË'içôs†Þ„»MÃ%Îua¯IRh¥œ$›³ÍC«¸÷ÃŽ–ômÊ 2„ß<¿>‰ …ˆ‡”¡þé‘LÉÉ7æØ$ßÀ‚ºŠµ¤Eô&¬¸Q'ÜÈ¡v‹ê*-¤Û‡ã8„î§Ù`GåÕ¶}Õ*»tÐM]ÂD˜ó×ÐèÙd(½’ Ô: 3³¹‘9%î&irÄ‘Mê-Š_XÊYž;‰öH úéZ“äôAÐEÏ5×K½~’5°ÿ—¬3Ër$…¡èVzu’AûßX‚÷’?}+®´ B\ô£üùÄŒAlUâü u(¢FrôãüùTNJÒÓZÁ&§Àþ%ßhîï}b»tMEï›PxËÖ{‚ÿOƒ‚oãàöæxô¥ÖÏçG†õ3V™]"(Âdª£ÿ_çnrê3^Âê$‹û,ÌhÐ}th?¹€õ=ÖÒW%æ¶9Dÿ‰œ{fc69ö/qËÄó³~Ã%89,to0ÐÕ²U øO$'mòC\>y—@ü©+þ{ƾ½MŽóö%\ŹDF%H!ƒÒúûý-W,N\ÂPõ@7ŸÉÏ5#gã/„1—HòÏmBWÀŒw™Tâž ÔŸ‰´YIG*ÿ¬?or¶FZj´›Ï£™.‰û žÓIã€B;;FG8Ë}f›4äV‘@0&2±NlqÑøÌŸ‰Šð£(€n |üFO®t áÙ¤y%£½ãÓ8ï’£šé½Ä´ÖgœÍ9cÀü™È)±|IGcGè1`þLdj%'–}‰õòsÍ*ŸPl(gK܃ò;>êÏXEÿþ;J0WŠŠbWB©7’îÏ8ð~ŒãþŒ©ú)\›·Òl“ç‡ýò,QÇKEŠáe@ü“ÈÊÖOåQO›Ðúù×tøÿçplš…=Þ¤­•øÛ}ŸZËoÀfsvìzIC5ÿ{½=}Âý]™J åõ©ËàRÅ&†L~Ùy—,ÉÚO_‰Çн%—Œ™ÌP"‚º8%P-ÀV Y$|Фè%  ŒçóÛ¥;ƒ­ù‡íÒ/™ÈÛ´¸OœÞ°‚x%ÞÒÄlBú¦Ð1ó'Ò€V2 O8‚Mè‹Á`<¡ŠÒ«1¡ YÍ&¹:{Ì"{’ò«Kx„æÈÒÏDf«DFB†eö0Æx??è °ÆÛÕÌŽ"{cbdÙ{¼i`‹áKN‘ýK0Ô Pž1ãÆšÓæÒÏoYÜ2 2£íFÂdžÄ5¬Î@Vd†ñóVg\BYÀ%†­3ˆK%Ë29öŸ;ž'ñI\ÂêKÎxN¿Å&ÂXk‘(Óq§e›¬™‰–—fcD˜Š\6·9 ÷ÏœLèÞVô‡“òç—¤­,ø¨„¾hߤÅ×g'œ½Éѽù—~–N2[%g·ôKñ¬5äZ”„ѲCÓ"žåó ùOnŽ ù["£‚ùCË£˜¨pàÍLÈßF‹¯þŸ‡Àû)“¡à\5ž+Ž#Ã03¡Jd¢4’ÿC¸?ÃÑ»‰% ǘP%²àÅ&i(ƒÁ´A Šº§Mh ¸„¶€Kx8å%†GSmùÃyd43 ®§ÅK¤3"/-ަÄW*°F1ûÆC‰ÙNþŸ›³”ãÿÉà‡øÊ¤ßù\#iRI÷JXp| Ž/Ñ ,íÞÞĵ’…à&üŸ“UŒ›œH(Ä%ô?pÇô$ÀļÐQ‰qÑ2>(—™1™Ãø èû•%Œ›ô zztÈ‚à?‘sÕK¬ýldeÙ±Ë?æ•"C.°Qj4„â·Xú â%t!^“ÉÐu 䟉œm&/Y˜À#³qž“BÚzË–7”Õ9É”J¤U¢xÐ fÜŽ¹ÁÙ4Ýâ9ƒù-NÃûH2+ ±ˆlQÞ &Ââ<¬KËQfðCNɱÆ# ¨Qd;.ÐéÑ@ž­!?×̼N(Žù\L¼Åãx}p—¬™ d 7t”#µÓ2ÐLV%òó.•JÌR0±wÿžž J¹£ˆBtSgA°S¥ñžN†d”B”ˆbß>¾ =:ÐŽ;渀iØÓŒxC¡½‹± ¨ò`À¡Çt+D. D¬r›+s˜ÂúwÝWáŠ÷M°ãUøZ²Gç¥Wº‚œÍ&œkíÓH.+L qÊÁPš@_• <Œ:b©â’ O ÿ¨Á­¡Ù›Ÿ>0³ãñ"›¬¼L¨ÀMÊž†ÂšÈß&28ëpÖèõE¢Èœ4kœš{îZ ÐC rÖh….,.!%¨Ùý¾ JD­?¦\€¥jþ™‚™]D·'$+„V{¶~LÂ3½É—Ü‹ÝC©@ÏtÀfüÿ® ôÞæ¨/Á€ ‘„V‹Ãv/éVÉÏ%‚ô{cY•f\X#R¨@£èv¨…ØI·£'þ6ÍVÄÕcóá rVê¢4L=–êþâƒ(C¿»ÏK<¼Æ—8šoÅè])P(áVt)D 4¥4îz–sx0ç&Ž™4æ z ÐDšVÂýÓ—ÌöCüüBhSv@qÜÚtÚã[²¿0`ái7(@c«ö0tùáêøòˆxT Ðá ‰ˆVòý.“Çmrê“^rŽ˜æIPèâ9óÃàM„PLg  P¶ƒô\¨Dip€&âR Ï©D ÛFh ö5:@ïÏÐín ¸8ç#yÏFO†¸ìÔ[½©Ìc0MÕ5ÏCRÈ9žlpUÅ =ë$ <ÑážO†UÃ0p«N 2Ð‚ÙŒŠ &±J¿ 6ü±ñ$ÿ¿‚6ÝcÊ„e÷˜Ÿ}kï’°Aš »ºø¨Åÿn£±…š¿•Æ€Ù¿)¶Ps.cÂÝœ½)ª¼@G%ös KïÑ]ÇèÍŒF —ô Æ@У$“Û뜄‡Õ Ä7A1¯dáqDWj4‚Ò”0¾"‹ú¨d`ê‡Õ ƒ(E 3¿ ǹ>ܘ0¾ 3,ŠØh& û\#ÚŠêãKFžf| áŽÞ„™KŒ6ƒEâ«’¥‰8§/é¨À·ì4‚F ¦C—ˆ0¹ä$ŠÛ×P‡…nÇá}æ+êwj D¨EÄsíp‚&"(žÇ¿ø¨’ãöµ÷˜³y +âù–b ÿá9ÖFŠJ‡È™»ñ !¼ÁýpAcçÖpŠáâsß:%o’Ó/Ï2f¼<µöñR0¯ò 'èÇnç ü¿G97öO¡»u8Ó¼ø‘Žÿg‚ƒ¤Kú¦f´ó§6‰ÛS‡³ã2Y?îO\ss¸?íïy[9 @‰°8ã’ùİíGt;ùÓ—íÙZ¿îÏK,—­ýdߎIŸÃýâáeöH 9ÜŸ‰Œ &*ÐO8ÔŸôžÊÀ±6…D“Ã÷¤lø¿…(‘®•°ß•EnêñJ ž|T`ý¼ÕsNëç%Ž¥ ŠŒ†CûyÇö3{ Plƒ Ðóƒ;öK+»b‡(<¸ÃáJd!“ÂÇga‹I¼< ?^"‚åË™WH|Ý%Aðÿê¼çÆ€Îþ›Þm°èû|c×Ý ¨L-@ê‡XýÇn=t ²·0Õb!â’†“ÒÕþåÞzµ8{σˆTrìo/ [*Ôž9åÉÙóòkìѽ¬èÞ1õZþ$2» |X=ŽÞ»„JÐ/zß^’3Ð ¦O´£Íç}Ùóºü‚ð-‘é•(¦sH[-È~NÂíÑü¿K1ëÈ~¾ä& ÏÃó´hù|É9®aÆgAø#Ë‚ðç.Ñ-X>}²*~!²Z#ûX^èóéyurÁóéQ©¾$š|"¨íäÿG"e}‰ý\ÃãðÈ.ˆ>×b\¼ úLdäßæˆ>¿ƒWÉDy;¿0¸>a6–¨—ÆêÛ$ÌX“*¢]†ÉZ$p”?·Ln¡ŸODPm·âάDâÿçè>·ƒ‘?…ÆŸåQÇ?(wÇIJÂjŒK¦W‚Àû‚í3¯`¡æ ‘ü‚í3Ú®ø.yʼŽí3¬{ðÖo2­„G°^Â3ˆ™Wøy&»ó;>ô™òmÀÓμ Rv§ß0þ$¢ˆ‰5ncXy˜'Sõu;„qÏy¨7é(øâ}:ê빦>uýY3™P~†þzþéO \8»`‚¥ À÷¹îÊŸLO{#™Ø8%ƒDPõ4;‰¢q òg*‰£ÃÓ¸ñB®Œ­ ÊŸDÎ4í%gšö’‰åf]$‚ú‡D_Mï,I²·(ƘrM1A:w2Ø.¹˜¦0‚³—„ãÎüƒò'„³›ÐÞz Åõø #ý|_ ÿTÑ‘`@±A2á8`ÛÓŽN¢^É/°LêK´úÛkÀ÷§ÃÍ?b¶· Ë0صÐù‰âü På“àkôQ&7ÿ y{ˆGÆ% 1Ž’î•LÔòéöØTr‰¾áË<'o~²$Kµ‡`yþ¼ ^.­5‚ùCD+¡îs8‰¡æ&€#=p²€³Áö™k0zFü÷š1*9H”¡m"H£§nQ„¡Žº¤\ ‘¥»¤W0RMÉ&S*‘4{ÚDg%Üzßµ2€ë3‘¦•t¤› d¨F³1š']oÂSÈ0Ö´kû¹Ä+XX„Å]èú¡¡j“³3Èî%ë6ƒx%É—5t?q6ßl4}Þ†fE´ÉÌ%žx˜>¥±;l0}&2ÌAïÝ<6͸O^}Þä¤ï^B?Ìl$ö¿8ŽòžÜƒ§CùŠÜÙÿ¸§„/OôÃbÕMŽë“'GÍN×çKz¯ä˜nwê~ /G¼G_Ëì}²0p–Ôã ê°¼…‰|“Swô’ž;ÉðJ~.9Ÿõ$›`ƒÇ%g÷.7``èGõ¹÷Ç#ùÖ'OäI‚­ÓˆòûQ}Æ |Á¢â쎰ÿ6Ð>Bp‰£ò¾ÇG¸ÿ!E?²ŸNËÉÙRr?üÈ~29û—œ7_o†äV¸‹ÊñåHy‰`ö%]+«i?ˆ0…ëT}Žx {¤güšP}ÞIp‡êó†zºŸDºW2[%‚ÇÏ‹"…Ѱ®¾ÉÙ^õ×Jf•èí:}?ñ Ö!0Ð×ÁÄÎþà†ˆö%_Dû-7qôH&AÒ.¹ÙeÅ/á d—t¤QùÈÀø³"Ò¯ûíù¹†Ê$ ºGM=⛽ëSFŒþÖç—4­$o*ÙdöJ¾¹\Ør6QÄ[Äf%Ž:v4ÔñW^ž#øþx¤Æ&ý1m0z'¡ÇU¥M£Éˆk°¥]Ðø‹-%ÁÂ2™AÛÏKVÆÔH(àý~ÔÑ~"Äã§³];Jâ.~ï×ÏC0$Ò~®Ì"Z‰æ‰Ïè1û$î™À÷9à…Ýàkû“‡]l‚Reþ.Ð}&2µA)TÜ×°sðÞ×¼’U®Aô…<›|-?Tô›|-?‘#}æ1›|AíQ€P`±tÌØpy@ø™ÈB}iûàüL„§7·Ô˜>F‰Ò‹Kb°Hhü¼„®+Ó€ é­’1+™ØCÄÇSkë‡ë'c-`'Y=ÌbÚ& •«ㆅÀ^ÎæÂ?¬În‚GzÄ%Œis X?£Dv“3¼äÚÃÅ9¬ŸG&Ò+  &ÞÓK0›ÍÖég"æ•`¿+ˆÞÂU·É÷°F>hùY|9$ß+Žßqb’…ˆg@ñ;õ6IŒ V’âÌIágä&D‰t.^ÉðJ~.Q¬È`Èž¼%r’zæ„êç!-Ž•Æ<[ÔÒc¨-vI_‚-½ü¨SÆKYsLÃ&tŸ±al“Õ~ˆŸwa29{Lç.飒Bß'ëÇ6éRÉðJ&j>‘»˜WýÜãdúD xªîœ$œÐ‘hTÒ#z™þ̘SOHBYµÉ¬àœÝΩ±U}΄ñ3Nè.Y9螘술·÷Æ=$ `6Q¯Ä‘CæÏ‹ ÀœÑSÔ—ØCò’Ž)Í « øÂövðM¸ˆs ý0ìUaüyó¡í³é˜`!z˜0þ$rJ'_¢œbI®ÑØÄ1'£­\`È>oQþ¢D%Q¢qÉ9€¸³«“?@ü]•ê&ìLœ"£)Pþ$Â-ÒèåºÏ?G‚—Зqß%+EÝg¾É)Ã{É‚ •ôHi_Ò¬¨B0É(bÜGÖqycN*Ð}Þ…Cò'Gýbå%ö‰žvA®¨°· S*?¿]ûÜýfF$µ`%ý£ÌXžhA(.ÆÀ*î] û¹i‹Ý¡Y%ZòýÚ½ØÞð{äL¶ TŸw˜¨>ãP•M¸/Àä¾ÜEÂBšA xºîG<¾=è~«5E‘Ȉd‡( éÿØyÈÑý7²o0Rž^uôh˜þâ&š‡6æ3‘Õ2æóTÔœŠÉ—ù0ÖM†Vrêl^¢­6z ™r”?é’S™ë âhöÑ; ŸÏÏÑ[&^I™É‰Gý%f•øªä¨y2ß:>#þhž_ÚŸDfåeE ´‚(¾fd¥ä:>/Yèê0ÝS:>Y|¶I>™fA¸$Þ$åµbË.‹é…ê3‘…R|ü  íO"Ü€ÛX%Ôâ¡Rhn‡®P}&ÂM$ˆU´EV3j¥ðó’ãü<ù_-]XùP±Ú¥˜$Âó«4îó¸DDbàdz¨Ô~òXMºTrÊ’"=¢Ô~&b•ü€“Ò\|ÒuIhÅJíçä2ŒBó¶Çx%óçš3ܱTnÕJ ©úÄñcÙ@¡ý|ˆ  G¡ýLdX%§2)~×wöU ígœº·‰c";ã> ûãñ‡jœÊФ§jˆ\/¡ÆK1ª¡±¿DúñJ,wC ëçɲL,~R¶9cåñC:ÌX+Þ5±±Ç5_w‡mrò/1Ö¨tÇĺÅ5 ŸÅÇÚÙ¾¤çä­R÷’™G…û3‘à˜Daš¢gDøÌõg,¼áºÊ±d›Ì€•)äÉtÅ&Q6¯…rû˜+ÌŸ‰,OÄ(‚‹ïxWÀT€_Ï`þ|Áü!<ÃÁƒh¯ÄPÍ*ñáœÔ¡wýZäû2ÙA6*5®XO²³ºKhý¼„Öχ`/ÉŠBù ÒÑFëçK¸¹χëgÿ‹â<ƒñí2¬ŸÊ’Dë±£0ÏØ À#v,$¯ÎÃkpþ„åi“„Æ5£U2Qä.A½´?‰˜Vâ+LâlMÚ¬äÝ¿dü\3µY•ØÏgÙÏ5 ‹Ñl³ÿ¬ÁLP£}¶iÀ]s7ˆny£Áú»6ÑT¿‰I ± ó€ðl²f&Ð~&‚º$dåL£Ré’)§–EvƒLx.ë%ß¹¬Ý8 1Ø?)Ÿûg&?×ô\bÔöø’9ˆ2)3Ê÷«7ÿ{˜ <ÚŸ´nÒrBÜœ»­2ræÎœ8\À.±œË1Œwi€ÓêG tmòµÿD¾y]"ÜÏ:I†¿¸±"£Ö‚|¡­SD±Éj?ÄÙEœÍÛ XtÆîhþ ù1€ö½¶M íÔÊ¢­û_lnAÎɬW8¬?±¢¹7ûj :&¤¹Ο8,a:ð¼î}µ¨‚ãgÓÿ™&o±;ú–{Ü™ú`JäðÞ‰±Óúó’1+™?×ÈÏ5ŸÓ¾ ›¿Ãûs÷Cx=ÀC<Åa>âd²KX°)…·ÂøÑ¾e •œÝÑ”ymÂSŒà¬ì˜ásÅØã¢4ÉgÌìz±* ëOåG) ˆÛ£ã÷œÜ!D°Iúk)¨[pXnvÄÅJÏ5§Xé%lþ— >“—(ÖÀ3íZ^b]'æñåOœE³ÉðJæÏ5bïùÛ›@Æ„>Üa ¿à&K3ò'‘&•ð€V rvœ0-혼@Ëë°6Gi¢,–Ûá’*ÿü5:äŸ/˜è<Þô5{чœŒÆí(ü¡ox“S¨t 䟉´YI·Jâ; 1Î9××S€ú>+&[qÍ‚‚ Aøú‹ŠÕKXŒŒÆºêO„Ë êO×¹HŠ*8ôkë/æsŸÄ­‡XÞâ¾D3‹ÖXÒ>€b1Œà €›`[þ$rš}ŒI«ñlu‰O2­ÄÑ÷ üZð~&Ò°¥aÈ¢÷ó%SK<…«GF#ÀJÕŠ+(ººÄ%-«¬æC<kÄq£—4«äkçÂ}` ÞO‰¬õºÂŸ×h?«ü-öO뿸Ä!;-xÁû™ /h?oË£ö3’t ¾Ÿ»KmM,ÑÁn¾J†ð‘mdò¬/ÁTî% –6zZß^2`©ào{­Ÿ—œb={ÑöC%ê&è¨ï›V.WXý$Ò¼GöŸkò"ÅÒ(Ô`ËÒ(Ô¸äd1"Ͼhû¹ÄPxÿrH?¨Ë@Ù‚î'‘s„ÃKTsgëç]á\…÷$ŽÓø¨„Ü„ËsÖñýìÎiŸßO"g×IÔf/X?ãÜMÎ ëyÍëçÝ,°<¼‡|Ð`ý|º.X?o ÙÛX,Z?_"¹K\X¢[ñûÝϳ£mß[»>ðŽ&òÙÏ :>g¡òSƒL”CM™|ÚŒ³½Ä+8«:É_‹\Æ$hØÕyJV6ùŸÉB’M¾¶ŸŠ”FEÞvÄQ½zÆŸ Xz|ɉd™t—?ø>#+°É9‰ï‰ƒX%HxÊ$tÅ+È×ò9Ë™teorÌo/aRÿDÎ.ÒÆ—³™á$3mØD0àø Éó¸Mv7’• å“­Å—aÑàï×g"cU"ý‡`ãOk•œJxËJ®1ùƒê3‘oˆÃ›6é(û[$_{´î ‚½üü¨úœñŸÁ0 LlrÂü¿‚ BéEË_ñ.È޲äÌáXŒ¾ ·º’HÒàl¢oMÚÞ 8Ú€û7XHç$a•†5’,=Üdæ‡—Š·DV%GÔˆwL”ÁB~LñIÎc€¹+<Ø™½ÁéŒû¨WÂ`ö·LJÛ‚î3 M:’E@‡»ØEüq©B`µKðã ?…Ý'“#  ÉC69[%9ܤ#ƒŒÿpƒð3“¯£{É÷ ö$í/*î/¡4àÄœ›,„çÇmbôÞ„G’]2*˜?D°–—˜TâÜvmŸh³€^^,Åþ IŽ}6L«f'¡°ø!ØØé_ès¢þsHÓJXm?ƒŒw®½CÙ_${ÎU1dÌ1†5X>¯d!Æ2ü•3jŽñ\4ˆ>#yµÉè•LŒs¦$‚Úwþ"ŸÞã‡Cè/L:lâ¨AÛ£ ˆ©”Mòˆèl@‰ŒYÉÄk„-íx>ϱj_ºá&Q¡.µÁóyNFüˆâ«Ïê ý3AÍ ¿z>_"èÏ› 5}8¨üÿiœKÏvLÐK¾ÕÝ…©Qóù-Çp ñK¤W¢R‰y% \”6¨€boÖ&­‚þsÉJ&¬>ˆ4Ÿ™X%ØçwaÀÂ1|h«€žæ”› üWþœDZ%Çšôãf‚s0eãËa‚·þWJí7éÈ›z1+á´ÆÆ"bîÆ^r&p²°h‘Œµw\3i¡)«5kXßOIe“ 8@i(m‚3…c=ü&ß0¢Uh€Á Š¸zÀ§¸lâˆv1öq†ô‡LÈc^ò5üs(:È×ð™¨D*Д¾ßÄ$3cÆ1|lW“8<ó. 1âÇ”y€Ús(Œñ3È×ðÏÙ§ gÛôKTR_=$ µZ&Ѐ&® ãÂÐØmxÉø¹æì›^ñ£C”È7—Kâ¤ikdb±Ë)Õ ¨­øm¨ñ8P ÷Á–qL34 ç|i¯ù÷?”[nâØiÒãÿ³P mÐú’Þ*9"¬—L¬¿kºÙÀ”ˆ!©Òâ]«¿½ø€ô »=0yǺ'9­= \¿ÜD* Qå î%ŽÎóîè%2 DPÈ10‘!ÒÒô&’¸ùç²*!À1Zä’$&’y,  tD[ø®&- /™^ w^ÂZ{ôxóè€nBjBôZ@•?ݤÚØÏOè€^É)Iz‰ÎJ¬ÿù¨ qó‰Lx@ãÀ—M:Š‘ô€2x›#ªíùW1úTñ<> ½0ã[§^Ðã>Žw#ÞE¿Ax@Mã…4‘S÷’™³(sFEÒ%º*9­Ÿ‚7Yø–‘›Ä™W™T¾¤#ÌAÖnJìŸîqé?É4L]'e <ŸwŸ•,ËäØ@3HÇ›d…Ì&Y!³‰H%j•جÄ®YXHçWh8Êá%ôöV ¨òØ„ÕöüR¡ÕÄæq‚ÞLø„4“• œ ±Ùo“&iüž¢ËKf‚ŒµÅ9Ꮿ*Xî FÆB úôÿIÌM¬’QÁÄÃaw ô´8Èàb§é&gDx‰çkä/…ò‡©ÝKºV2°"…H(IÚ„M m†Àw—gwiö"°¬*­J¶IYÏ‘V×s¤•CÉ>’“/h”8mb£*^1m—§9ô8“éTRo’,¯ŒVÀœˆ £ÃŸ=ãƒc5¤ Ï )P"½U‚{ª+ÐiV D˜ÑxHžñ ¥ —@ ”÷šð§:^Ð1ãû„Hé~Ød®J´WBËý%ž¶·o² ága:Ç mÒ+ø¦vǧ 2Y~¤$‚µ a"QsÌ¿Z Åƒ27Y5èÞJÂ/G‘ßkÑŽ¡c7R Ïe½D[%6*AÅ=‚<Ѩ¸'(‘³PAuÚ&£ýŸkPC‡AN,¬¸ä{B`°‰£üÞ†–{ÁrÐDÎd€‡mò=óÞb › Q)j%† värЇ\9(&KrÔ@«3H‘%J— ¦± ®ã^¢ØÅ6H7èK¼U²f"J=ÐKÊ¡0PŒ‰ O_êÞÜÎ㇠‹þ…G£¥þE•Þ}—J–f?h",ÓãÿVˆD&V°j¡0„&¢V‰á{öø¬•6âdeAÐ|lwU¬ÈVí«äôWñêK1ÐP° µß˜Þ) ¡1µT B3z¥ˆ‹MŠáÖ©(ü !ÞÛd`dA_¥#,.áôîCÉ¿sènrjo¶LŽ ÔY店ê&è Û=ê@t¢^CŸw,÷KÔ+Á–~ãÂId7XE/±º¹?…(ªð7^É×ôÃ&ý«äø¨diþj „K¤Iþ²è}É©UŠ^áMDQ7æhЂБˆºêÝKºr KÎ^ê—P•`þÑJ4çtN¸§€è!Îû Þž{I·üëy¬ÖÁD5 :qÅL k•8 üŽ´ŸÃE>²â|ÊKB  EP"³W"؃Ѓ(v‘ß;3=®qKÄþÊËÓúïŸ` ˜c#g ! `„&bgèlqCaǽÍ)ÚÀ;Ú-Ùè$ …Sxœ vÐDh”ÓN솘َô.Xfq®Ë&Žâ·Yyâg´ƒ¾¤a[>¬óø¦ æ‘ ´Wb?׸g9¨ÓœúdÖÕ°ñ/·"ƒ4‘‰¡·aRãn£FŠÇ M‹ÀènöÎ`L2ñÔÙŒ¤_öúQß°wã;Ö œÕ]¢­›•¸VòÍú'¬2±c½‡ÃmrÛ— ¬›:Áœ`)9ƒ(Ä›æZ|%@%\Tmâ•ôV guü¥àºstÓX­»D‘Qdã×0Þ÷øÿœE‹¿A‰4<òAziëpÅ“Mf®0ÚA£¼Â`MÄ[%,¼Ç¯ 9èjñ‹9h%¾AV}½¼Ç›8«CÎØ ÒÈÀAîñK=h”ï!-Êc† º6aÕÆ%6(Bh#,Þ¥VÉ»Ig¿^ã=ÐÍ/:Lq‰ôŸkèHÄùñ%À£û.± X€lqß3¥£%]~P9§Ã§µ~Ä*aÆÅý<ãÞ¢lã^óå¸ÿþXàÂÝ».¤öÑq8bÿ°Øm–ÉH¾”M檄:KX±t‰c5sáYhÎŽ?–,|Dùý%û]ùˆò{¬¼ùˆC‰ù‹C*Qjí Ι¥ Œ‚4Þuô'~AHØ:Ìp¡ÎüÈxðÃM(J¼äTàÿEÛ¡"ô%þ´’µRíP„ÞÎÌ1 ¸…üCЊmÇ` ï»Ä*9aíKœ}Üç¬ØýqRêÔÅE§ãp„&Â’,}{8B/ #t]²*ù²|‰8Öq|þ—5ø@z¹§ è%³W"RÉQäþ1&p ‚bò½·ÛiüN½¼DXû’S²÷’SŒìÑJ! Mäd¸cìÇ”€£ÇCªÐ»°6”¾¤I%Ý+™˜hau¡‹3z‘6Ñ {ZÜÆµ’Åïüv‹ÃA”Ì,hB=½uô@ œ¥ñ³¬?,Øq«ÿ&§ñSW³ kqâM§-Àu„¢ºÁº¿j‚³¶ÓYG¾ޱŒö¸ MD0ÍÂÜaµ8Âë‚.*B.(B5V0A‰ôUÉLÒ”x%4]b³·L°­Ž¿ ¡‰´å¬P°kjÁôkÜ¥:Ê¢&Z÷ƒKÓžü@qLÓ&gNGûÎ&g¹‚çio2fn°„º±k[Çšê~B.L‘,¡qê–,‰¸BÀ ¸F}§P‚H' z‰a¨GIé‚(NCÜdI&{I/ÁÂçâëâP‹+xèÕ%Âêàx—J%ß„îà ²Z&×zÉÏ%'¯ý’¡•L¯Dî£øF°°~Êo–ÐÛMxTáóg ˆ>äMºÓ.JB_¢³ÓJûì;-Lâ ZY+Îþ¹¤·J¢3È´JdT¢?Ÿe?ŸµúKôÝ~" b Òg%lÿ'&Ü丱è^ÞD1Пz¤qGã4ÂMx˜ <¡Q½IÿZ =¡—ÈÏ»hɽÄ~>ʱÀpɲL J$|A†T2[%´AÔ*Á+ᜎä:Bù ÃÆíMúªdb»!ûèl",ÛäkúúmrÊ6xŽß&§"ÿ½ÏBaÉÀW Gh"<¾›ÍŽÐDNÕ·Þor’Û/ùÞ:E>x˜pð ûLt’œ¥Ší’дÁ~ ~„r}cG¹€ ÉòD A‰|Sº90MÞdT@­ šiƒ!(…ãD$›|ÑÐèlL ³€8íZ)ì—Èhð¸Mz<Ê©5’)•PëA ºª÷1lV¯"ÙQ¨  ŽÐDšVÒYI0Ðñº’œPè%_´$X’ÛÀF%Ž*¡xr€$ôÍ ­€9 ¨·Ð4ÍÝÄP8…«AÄ¿µÍÈb\P¯èå5çq&¾‘D°BŠQ¥A ç(mb˜·£i3ê”H$ê”.i¨U° }T2´*á)nÇQû"±Y Ï£¾dLm<Ø{‹0“ÈdÀß‚¶¡ÇœÝ&¬ÃŸ“„˜I\ÃðgÄ5gOÑŒþ>¸L¾k:2á›ôdÍØdÌ4J5ƒLà%zn#à˜Ï½ýR“ª K0"!‚œ„&Ò¥’á•Hû!VÉðŸbé=‰Déý%M*a™º¾)]"³žcfqÖÞ_⚺‘)±­”ÏlA‹šÐD0–ÍxÓü!¢•(û9#q ¬Aa•Û$í«Vqì«þ‹Kûª_Ò{%§ñ¿d"º3mp;@#Á´±‘Àú*ƒ^r–*n?pƒL–3.‘ ”% qcCdÁNΠ°Þl²$¥74J ô/Z?æz½¡ðõïß`­Æ%ª•”æ¯÷\öK0S[˜Ñ))µA/Z 't—pc¾/¥6ô%ÞN±‹Ç§¯™ ¼¡wj£ð­ˆñ”ÞЗœ (3¾ ΢i+½¡/áÉWŸÎ#€0 j£ÌH J¤÷òsÍl•ȬD©¶0,lëZÉÂoÌ¿ÞÐåŒÖóD]+„K×—ˆUò¼§æuè[²Ð )Í¡/éØx!W9”ÅÌû5Kõ.XX/À¥€…ÚGtªœÓ!ÈQtüB­É&Xµø‹÷œ 6–©•ÖPŸ„ÚЗ•ý~"X3Äx¬Éb¦ qh"Ëxlä+:—L©D¼k•Ä)fAf³XV˜CiRI÷Jòy®›P˜…TèöÈU`èì°ª¨;ª%ÈZ™¬P °ï¥84&àJqèKæ¨D´]•6ui|ºc‚µäÝã·JÚ¬„Î\ç\"kXn³¿{œqú².qøZ&—­ }ÁÙXÊí ›ôUÉ„tð´`ø«ÑÇ´¡+ 2 yüpFy“+ÖQ‚á¾õâÀßdb ¿¹« ºDg%ösÍ)AŽ&kÉGlƒ9ôV"dA·3Ê‚â6¨C5ðhy錸­­JVÏâÐØŽ¾IóJ8¡×2šã^"èÏ›ìçG* É5ƒ&.«¤W0F%<ÀPÅ`G¹^b^É‚ÒM €7µ¡/飒Ô.")SÌæ"â6ˆ‚n4m°Ä%â”U ƒ64‘]Š! €[›aV«5 ÚÐD”ý±ÙIÎ*ÅKxž%Û›G„®×( Šœ°Ñú’i•Hy@ Š6ÉG@l²z&˜(7ÍoÒZ% }~©ð†Í÷›HÚȪÄ®YøÑñ…ù_œæzIÿè{QÀä‡&"½E9ÖÅæÐD•áHsùì´r©êÐ Î:EôÙÞPuù’ùs ç½D­’œir¨CyÌVËè’O‡74ü•›|™F?`•üÇ\wÅ}ÏI~Q6¹7 {%)L¤o}čޅ´íj8mÿ/.‘QÉ™Ï-¾ä¦+$}`¹ú% á2ggh"ÜJt sä‹b™Ê'N3‹L•_EÛÕDHû’•Kd\ÊËpácÞæð…ÒÀ½ÁX)[é‚£O„]ºCºþ8ô;t¡!²Ü‡™=äAƒŒ:A!ÛØ¤i%ýçšÙ*¡ýø’3‘{‰Jüç³R\ø/[äÇ/ãêB1gtèBojÙ¡ MDr¼åGš€caò¾‰Ê8öÔ…Fæ‡R³Pô’ŸK¦V"«ë•8*Áq9t¡1î–Eù*§Zn2*˜?D¤–Þc8ËønÀÅ@°þÎ/…ánÁz†Mz㇜“ "¿` UJ26ùZÿŒâ Góð•MV×z m¡øÎ×µ…^rFî*ßd"Ë£A´UbÈ¥a¶´` ½¿ïB¯ÿgš]Òã`UgAš³Úüôi 4íc(µÎ˜pæÑË/x‚i³’þsÍ€^ó²QÐÔh£f¶„¡7ÿ¼ ºUkЮdF±Æ%-/—¯3 XŽÁ ‘¹*Ñ^‰ÍJ8¥»d•k;ª_ÒV%#ç®Ö1†ö)Âi\dŽ„¡·XxI¨e.ÉÆ ® LPÊg ÂÐDxHo 2­ý?„ØøìäÂ×E]èýí Ù ºµ6a 2â ýE&QÙ&RŽJìçr DAՅ눂½)xüõß›¹]%Âm(—Xéc` ÍÄ29¶Ðú¨„Çúayr­8×ï‘JõiHã¬# J`!¢:™\û»²ÐK¸FwÉIÓ2’Üäœnön«>ëk›p[õ%¥ÔÉÓnâÈ¡ŸXw“¡ÈþZlÁ=Â&½UBWè%óçA8”äqâÝ– A7YhpoZþ¶ûëÛžŽ`“>+V‰ü¤÷¼“°ZéÏH õF²$Ø‚¡/t¡`ã’±*‘^əս„¾ÐKüç³Vù¬ã å ¶_÷W_õ–‡8É안T¢^‰ŸÌ-€e"§çšødÌé?× ŒyüYž¡ ‘Hý oEà~í¨ž²EÂ-¸ „Có»›4TŠº’t¯„M9‰`“¡u’”ºÝ€gb]r,A/9-×+í²Ð?uÿû—ºõ ¸£º57'›ñFµxº<¡Ê©í&mTÒS²~“±*9û©9zlrâÚ—úÓI|V²,“…*dl}Ü i}ÀVÏv8]ƒ6ÑV‰!þ㎠X-Ú„Âã“$´ö»O’b»MÎ¶ÒøJ÷þ`Ô ’¶÷lò ´OE ÖZ4ýK¸HqIG­JB±Ì%S+aXk“ÄÐÓÜ&Ç% ñe@ôûK• %ÃÄ&_}Nç£Ùh ½ŸÝ£ÿí•pQç÷LÆ·DËÚˆúûÑIz<àéÌØ7™Øiw²m›ò8ü”j¼Ä¬’•ÁŒº¤qñº“ÄRu!•LtðB HõXî>9s–M¼‚U.#(‘Æ}ÌJ2PŽ€NµIØ/ÁmÖ P¸…FÜØ¸&ˆ£¯ÃøÒ$–ªÑ…6ÈB£B`–ß‹“Ô¦SP”Ío"©bw“3x y]F­Õ©šEÓ¿¤åñ®Y¨5.Z ÿ%Úóßn±´#q |äd¡‹•\Öh }I¯`ü&ZîCôIr‚Úl¡‰À’%kF”…Þf@YèK†T2½™)@h”…¾Ä+Xh•4û_,TœŒè&G­AÕà&Áßɰl2°|vK› ýס uÇž¤¬“íœq›³¯ô% Ëg_h"ô…Ú‚Ñ@& f¡f:}¡/9§UÓ&¾ MYälèC–eÒÿa`ÄCÓ{Ä´—Œ}ô£ŒÛˆxŒ:Œ¡ wCWtDÂÐ;±éÐ=ýÛàK*½¤c*;ƒ 殉´b•Xê+ö&áQÉ7ŸÛƒØp…F ï&_P;VÜwž 6‘ã•yÉ×öÑ4kÞ„uÈx6ûŒ2|kÆÒŽûH”á_Â2üK†U±ýƵèÎñ˜_Y™qŒö|ô$ftW:d¡‰0Ň9^‡,4ÎëÚ„üK¾‹6°VütUw6îo'ðYÀâTŸmœÏ!Ð! RJ 7é©2džÿp¯áù—pq盕¸eRÞâQ¦çAØú/¡9Ñ]Ç<@xúÏ&‚D«Wè ûlÙ¿Pw ,A7^ï… u›tì¯Ä˜×! ÍÄ*½¡x‡,Ôoç±"½}ÉòDe¡1˜Ä© ›Œ &6bèWú·9ƒ×Ý61Œ)÷qϤ…cæT lÒP‹Þãš^Á•œ*|/lÂyƦUP&žB¨ÑÊ^D=ÒÛ*\A‰° ÿ’ñsÍôJ´Ub˜na¾=z”á_²ðã Ïãž÷ää·WüÆ#¶ãâ!Pírö §pã%šJEmÀ”ÖëÎËuøH| tÿ ¢q¡˜yŽ5K—°l¹º1™ÓÐNpÌÇÁä€14,÷›ÐЧfÀN³Mè B’r|–¸£”¸d LbÅmæªD{%†'Ÿ –8™ênòŶ54¶ÏoÒÿ{½Ù`$ÕÊ&¬¿¼D0áç_Em(—Ã6aÚŒk’êÀöÖàñC’Ég“žó{³0>jÆ5ùÀ×M´ýÜç£ åŠË~½’Ôņ£;£­o“ÆG‹¤K%ãçš´®º ñ5n|Vëx‚Ì&ÜewYò^b{«°WÒ[% ðg8Ú¸eñÛÁš 3—vÆc9VlCáÈñ@"g1á Ê«Mú¨dh%õçj7^¢žâßù‡Bü—œBüKŽ34“6R|4! õè'¤¡‰HN€ÌV{³IyÏSÙÄg%+Oé'¬A‰tL§z‘'›ÌœÌ˜°Å^¼MXÝ üÄ“qÁ9…§ûØ„2T-¾.(CéR •¡xbg(C€tCóÌ8S;JD7YIeʸ¨Ú¤A¦¦ƒd·;pÅ1?gè·s&€àÁ矀Ù@¸271®žÄ‡»T²<Ì飒pâ!æbç ®o¦‰ñjÂ$ì&¤¡ X9x›P†&Ò®aÿ䄶«M(Co6ir¹ßÉyÀK¨ ŒQD·IC~ ÓôyœA·–m“Ù*,ç]¢0¶½ÄÑax{${ñJÌBè~§Ç™@|V¡ ŠƒG6ÑU‰ý\5É,ĶLhNCCDzIϙܹ"¶½dj%‚Õ<ßó(C¿,K\ã³’“è;M®0´ð€'ðiЩmÜ/'jßñ±Q\"ùt';Õë…¸¥–Å¥åx‰?–Ÿ¸ª0üŽ]h"ÂÂ÷x×/ÀB¦õÒBNÒoZ†!Lµ¥‡+ë.Z_ræt1pÈñ…ÆYN&ô…6N¤¥ÇŒó'ºý~YþN0†Þ´ŒŒØY} ÷Hw®Óa¨“ÁÚÕ X°t‰a(A¨"=ÚÐLðµ[^Á•L­DðÀóûƒ6.ŠÒ61¯dµô ˆÄ¡~—4S „ƒÀK8¥ãó ±…ŸaPXß61 ò˜ÈEqÊgÅÂãM0‡&rÚÿK˜ß~Š‘àLè XÇĆ`°x|Ò&Li\²°ë¶` U››tîí2’1+¡XàA¶ÝãÎ §P‹;[rø˜XTâ#ó%˜„!u“†Kâqh"#U£n"èø!XR¾ÄS=ú&TÌ ƒ$2f²ò™Õ ¤OÉŠJüK¸·úÞ˜g¼^bh_ü¾(ÑË@î\Ó#M J†T2QzŠÿ b<¸á³R}§þqÅŒâÐûui‹óÍ,HGÚ³1…84i•pÉîTìIÜØG%Ü]MBgP þzÅ¡ù¹fV83…74[•8æªP•âÐKF´ë:¢ý_òuh·³R äbFaMD½Ï9³mÍ[cnJ£~ò:ðK(PD2L¡ ÕÉü€B[pLa“XPjC¹WØt†hæ’¥™Ðô’ösMˆfœdb÷£ù:´DÔ*a)Î%Ž`üUÉ,5…=4‘3«»ßr··RªäïâÞÄïú'«qŸ>:ä.=4‘6+éI!bzô¡ F}Äcj°á·hÊ¡í%.•,Úð—c°f•Ñ—pû‰°ý³z˜³0Ö¨‡9ëû¹ÆË5«¼ŒS« k'aËMâ¦ð%ÂÒ% i }h"<Kã]Uη`׊Þþâˆcdu }Ú—ÌöCÒ«M´Ub˜Æ¯¸ó×öoA:5>â D¾ðö¤@δ.^wh¼<x‰¸–/™ÔF¿b˜<s€DÚ¬¤·JÆÏ5g¡‚)ë±F‡õ6ƒ1ô†1 ïDc¨1Wj†Þ•(;S€›Ñ4ŽÎ‘× ½ËãFaèK #ï_“Ȉµ)Ãð:Cc3È‚âtY3HC™˜“Xi•pxAa“Í¨ÙøS’•Û8¤¡qª¤™ø&Ç/c|n ÒÐDÎ:Et{_y_?—تdåþÔ4Š6.i^Éiô ðO%RR^ó%0)€¢,÷|áÏ\ì ª DÒ†;Ç­2ñ”aa)ÚKx®ÂÙfÂz%ŒÌMÜ @¾ üôQÉÉiSÁjæÑ!²1ì!?×ü€•‹O3,¤­J:VÉÆ ˆ%®lôFòœ‰^—t.ñQÉÒDÂÐDz«dÌJæÏ5<Ý#¼ÿEšö’؃ïŠM(— "?—ÔHÏù‡34ùZ‰bÉËãÆ4á£ÓvLî€èÐ%ÂúU„‡NkèKÎ6”ØnàÐ%’µ¡æÔE™¡÷X¥@ çð††€ÖâÐXnpšCY•Ìžÿ¬%KxÔ€D°Jñ·áé(x°yzVŸ7þ Ò‘ÉAÏêóúƒR·÷]Ü\Áà[*üÒðÈ:Õ¡‹épŸQ®G"P‹I´£ͤ³Ð.Þ5±z„ì…K”o_¢Z‰Jüçšc˺êÐ[€áP‡&2*˜´ÅmùúKtUBe®\â™X”ã_ÂM(—t­d ˜sLˆ½nqÂSwñ ˆKxÄ%Ë2¡6¨3iîUKH­:Õ¡/™X4gó¹€K¢!8EKp$õ~¸—«í4¾ùÔ;Æ„[ôå+öX_2áÎÁj¯¨Ç·¸† —¸±¡P±˜ÃzÉ‚;4žqŒƒ³üõ=¢†)É‚<4Á|¹€³¾nÙ¿„Ö üéëjƒ.iVɨ`?½ýacA 'ÛÑíÌ{¤¼­ó¹á$ÜcÞ•GqÆK·/ù¹d ÂCÿ± º[ÍΖò¯%¡']èûoîuõ8éÉâ]+ˆCmÆqh"¿ò5—œ€(nû5ü³6b+àñ]#*Ðz…*¼A·ó_ð%rš>·6n‚1×!\°Ý—§?^ò8?DµKB®ô,áð؉x u.á²í%Ô \¢?רÏ5 ;T°-ƒb0^T†FqÕ¢2ô¶U*C_2srkixZg°i%®ñdk³eèC0H¤W0`T@µ(ŽRƒÅyÀý/Û-Õè$f•¤íë¶` zA/é½6ûK&5z„aí%JÁC¼+ÏçÑ/ ƒ"c·0 $Ò1cãwy@ݹ‰T ¨ØÁÂØZ' ²ç._PÛhFÝd!²;#‡ÿÁ§½lÒÓÚýGìÄ`çëÚ„¢N i[Ì&ªç6=ˆ!ˆ<¹·MxÆå%«\ÓX†Ëð/ZÉ„Êi4’<¦û_‹¤Þ%§ù¿„§@LܧÇQí—4wâ$]+^‰´JxXû%hoÀG%K3wJ#ép*X/€§›5'9•øóhz6P$+gÜÖP«q ñ—’ðçäßkPÇ6é³’¥ã3Û„IZ ÂEŠKJ…÷q˜Ëd’ð^…\"mVòµÿ…`oƒ•YÞX0§K$ÕáobX”þ‹kXˆñM–½ƒÿ)+ñ€«é«’™ô9þ§Q‰ÏÿÌ¡1nrv™¢:dî­ž (U;+}þwÅ¡—pNÇþ£rßÑ& ±J~—肇ÜÐÜ` ŠêêMö/M‚ž6+YåšöÄ1HhO¼¤¯J&bî3.~?ù™òm¢¨‘Õø,ŠC/qËk37ÁHçnÒR|½Éq'*zÚÖ£P/€`Wã 7Q,Úª’DŸÍµ ’k—4©¤·üÿƒ3(¿›L¤Ñﻸ¥] lüUÉBxòóÞ00V6lÒÐÍkñÞâØ æ*@{ùh3o³m¶ÉJÚ2oô†rJ½Iª{Û€ÞP_$g]gq¨m^rR{/1¤Îz|øÊ@1™ã1›´ :|mÿöná´×j“¯áŸBi sù#PGÇô&^ÁÙ\z µ¡u4ƒ Á ÁðXÒÐtT«ÍI¼W²$Gý1Nmß ·Æ, Ÿg³ ­‰—èÏ5”Ë\²Z&Å)÷dlÒZ%}T2´aB¢iyò#^ ·–òw2”bï0†¾ w ÂÐDèg‚¿ ø—Љ±”ÀgÉä½!Kûj²\IÍнwˆ‚‘Y‰vd 7èñ5÷¾`%Ð#Ÿ‡1¡Ã%Ì› ¯äçAß3ãÆÜ~îÞÓß! zÈ@*ã%-¥¦7éVÉ|·=m £ÕJNyÆK<ÕCl²P€þ‡/¡"õo-A#˜è<.áé—ðô‡KØìç%¨ø/c—Bæ.±ãäý€î³_cè½fJ%â•Ìøè\¹„¢ ½n%i(Îǻêì0;DA‰Q. ÛD­’Í2O¹É9ÛIÙÿtCC(àÊÐDºTÂÊ{>®Gz y6d¯-Þ¥«G‹‹7edžwè‚¢`“†ÆÝ‚œtöKɘñZ `f/}¡Ù$þÕ0=„ºÐ—´Ÿk˜ž½döJD*ÑV‰a—'ÛÒB,]ñø+/ãp㇬q4‚Á,Z)•ˆW‚r[tmcÀŠîo]è)û@‹u‰KžÖIн€¼)?¨¡Hƒ¹ãMP`yÞ€+ÔXP³ ÏgÇ£1`‹»qà€+4‘敌 ŽI€e³›¤mJèÈŸ IPä7ñ´ãÀLjizÌAQËŒ7é ä‘\H¦bÁ"aQÞ%tÅ!–P…&ÂS€øóBÞÍMN££p“>*?×þK¥˜ðÆŒ–¯qÍ©Rz %øˆý‡„ÿ’¶*9¿339û@P}ÈÆWh",RâWPœ=àƒ†¸Dàï鬼ÀÂû¬» õu†ôÙZ$!J<àzBÑ™†ý/é¨Ëa …'ôÎ1ÿÄáoAŒûzœÄ{%«\ã!¿GVfÀ:㻤'4‘U‰`N‰œÛ€'ô†õÃ1‹kχ3ÑX°„>¯yôCVgÛ"™,…j$‚ŽqÁX!”áó ?mJ¬‘È„#4‘Ö+éisÕ&ƒa–Û‚Óè`åµc:‰,ûüCmÒ%„&B9µ‰1 ‘ùs —%VEEÿ‚Çžàמ µÆÊßv6lyÉ1„frŽ}àô`AhK6ÞHD+Q´F¤'ì@÷ßûg&#t2—0œ½¤ëÛÚ&ü ‹{Ê6á$±ëDŸoT=nBS¢Ä5<õaY–ÉÄ<®38›…–Ïü„"4ÎòÞ„?¨áAf˜áî=ÁVÉþ­ú ¥>€@~Ňӕˆ,×ÞŒ¼®IKèKÎf“—œ`ÖØŸO‰Z{¶&ù÷hÀˆ8%jÍH0DÈ& s†×tôñdV ㇬J¬WâRÉòL  ÍÄÞáb†%4^Ï‘z· =P"Цaåñ pO ¼Â6“ôœ˜Ÿb”×LÎ) ¸}zX+À¹µÄ˜´LèAiZIÿy×D9Êä ðý¹ÆÐ·Ì¸ã³øðCèžš¢) Ä@ OþÂümqÍ`6eÌY‰X%:*1­„[LH¨…e¡"ô%,иdü\3ó÷,T½Äz%<õä’Õ2¡"4rÔÒ£æi 9ÑìmÞ`¦hAÛâMG“ÈÊÑML*a&Ùð;^x‰Õ—°Ö”¯J`“ ¡Ê$œ@z3rœ@Ï`'#*’fÜxe0À µÌ8ò­V ª¹M†Tr4é,ÚÞD+°QÉ÷øRíºÁ)¶ÿcx+P„Fíä& «ÕüCÇ }äû†¹h üì£Í݆‚GQ ºA‡p ˆ±N M¤WÀ5 þ g™]ÂJ›K»:ù](J3n…!tñÔ9Bå~ÉGwçÜAh"Cï%g·ÉK´åV I\"Ç£-ÐCü iû)Ùó¸]ÃG“Z :¼ÉðJùºwÖYÉ×þ·0mâøÿ`•D }¡gçHçôÝI˜É`ÓÅ€Û¹6‘Y‰¢ð–Íf DVÿ!XëAø¢áIÄ“¾7ïϚά£BšˆàËàkţ̩þaú%Þ+¡#”¤E­Ù%ýü\2V%ß°§EBò=‰|OÀ0þ  - vãÚ"­‡Uá}AO%È›ð ¸d¦êÓMëõ’ÐcAvÁ±B 'Ó>­/qÖK:–×$^ ¡˜Àëu„^b§!Ý;b=ôÚ:0§‹GFg4þKZÎ'èŒýÓ—ÌV‰ÌJ¸ú•0Bï¥3N} ‘PßãñTHBcÿû&˜²K\’5‰›ˆV¢«‡=ŠôŒ÷s×ãͤåÀK1H„‰wM »—ȪÄZ%>sƒ£%”÷®ÅÝþr PªÑ'ƒÀYa ½»bˆbÙ Ç»ŽQfò%ÊíÏK?5êüMà /ïGÖYî[qÍè•L¬Œòi†4‘à˜Ôh€¯ê8–êuEU¦ºâH×KN2ƒqš\zmgZñüªüŠ&r/q|N€…ÇÍÅh¢x“3{ɨ`¢ú ݧýÅ&|›{cW¯Ä¤.Ê‘ ;EþÆ ’È&Z£ñ‚“™åîŸM&òÔ˜;ïH<í­Ù„¸‡X%X\ÃP¸÷£WAÜd=æs—p>wÉÀÜ¿œõ˜Ï]ÂùÜ%gm"nr&âåq"ò87ꀢFלˆÑì­¿­6ùK¤…2mÕFï}| ôVÌÙŒJ{$OlÆDîNä.árÜ%áù2vÿ‘а¥©—œ‰Ü%R¯›4«¤çòF£(*‡Lbw fK)hì„Û„5I—œRã­ RÐØaí)h"_ãoLŽ„@œ }7‘^‰b=æ/ˆ½Jº °3㎡Ÿß}Z€U@G©-›(t w$0 nEYŠ® 6Ð[¡fÇÊ­Êûõ Àô‚ætÆ•ƒdx%?—D„Gœ\!lUî³Bs o.áêÍ%?@F%ª•p‡9ŸŒ°¿q®e7âqDü‰tt.˜Y9\ ·ÊÒ 4‘J4Ép6ñVÉB€…‹·X¾T‚3àÜÖ :ö|¬xOyèq`úÚã6gGwä&ÆM}FâL¢Å5§ ‰›*Üa5e\ä0fâ•ÌV‰ÌJoC¹¸°r´á# ì= ì/áìèHœ x 7l Äö^ÔǼjÆm<×|ùˆý%$ÃÅ.´Mèú¾„UIÂ}þCyÛäÄɼý¹DV%5éÂú²¿¸÷L“È¿öXмH:ÖhÑ}» È˜‹¿.`=€)ŒâŒd.±cš­VËK¤²#Oíðÿ$2¼’‰­BÈ9ü?‰ü€£¹_ñÝÁ·V´O %"¢¿Êy^Ð]»¡åSÿ²ÉÌe9N\ä<ü¨@í6P‹„žÄ‡»V²rzÌáÿ ×âG¸JÛIзµó‡ˆV¢«Ã6ÿr‡ U /i0¤ Þu¸@WÔg:p C«CúYð€Äœ²Ú€Ö_×£•¯¿Úî×_×_2ûÁB ò„  D ÅO+ÞÅ%$­¼ }Æ%,®¿„Ç]Á”Ä àÃV¯p„ŽX+\=Nw@“^0Æil›tl(ÀòhzÉÄÀ&A´VÖ?dU²0ß9 f8ê Ãá‚ôî×[Çt»î…@;êuÿ8˜rºí5>ÉPºjAXD‚þ>ФW0FzRÖ¼»J‰¬ü„4e`²÷ÇQS¾ ŠÍ©›h”b-ÄýO×G-è‚ôÖ‹.ˆ@oævAšbS °ò wAšHË õ‹Ö·D¼Ö#!ô_Ź›dP3ˆã1s‚ÅÍ©gÜZvBZ‰9Å‚ tݦh"¥€ˆ9–…ßþúí/9ÐKzUté * DZi„p‰q?Ê‚ È¢\z9Öäbyy<H—,ãk.qD‘¨X~bÚ‡@š"§¿@+aý%‚¨ƒÅ‚ èò-º€"»8¼äœßÔ°•nýP&_yF"Ÿ«)èM&ò¥g2¼‰ÌJXžáñ.ÄÆ7æáeAqïiQjI—JXœtfœ›`jøwUò<í!ÜäµñGQú’6+É¥ö›Ì xv™Ç›T+ÉÕI›pÓô%§Ôžkÿëo„9étø›ô´}r“¡•0²x—H%Š]<ïʧ—mBi¾Áò aížÅM:&“`P_—Pƒû÷EÂüá%>+Yø†ùóJÔšñ/â à%,Íþ 2Ñ ­ ‚õ"f3\ XìƒìJ@_BmØ%<Äõ’‰/DCs –uâ5O¢¾`%ÀÀ*Ñþœ¤c}\•dþ­DV%†tBâÈLZ|øÂÔgââ%-¹i6Ì^‰H%ŠÁ‰a3Œ„†{’U^¢Ý'òsÍè•L©äÛaÒ,ºÔ£ÿ‰HíöžL± 3´ç’v Ÿ&GIZ2òlÂå84ûö¡dZ%ZJ\_õÈ& Û,Îà»  ‰´”KÛd´Jæ¨DTœeøMhø¾Ä¤Nç:îÓc:w ÷Wñ]Ç”À©»l”¾DÞ=n¢»fAÐ÷¸fá‘WüX:WÑ6á†!¾kD‰å%ÅïümÆU¡ÑV‰Í·#h°¿yüûBâœ_ÄDT;°Ý|Ù¯ £W2‘Tük$ô!^Bâ%ô!^råî÷Ð9£ŠdUÒ¡ç™#÷e*З`{~|j ‰šÄq¼3Þ³Ýüá˜@#¯·Éq¼äؽ_Bq¿d¸@_pޏ2¾4|N rV¦_²iñsèzIO#fƒ 4“U‰ü¼K¥óJVû!–Éq2C²_ÑϤWp“‘òI›pB׉ ôƒPó(µ·NòÖÈ*ÐD¨}»¤c;§^‰´JåÇm‘|mFâ‚¥ïyR«#úO„ç•åœMƬdþ\#Øïr&†›|ÿœþò5þI{ã&_ãÏ„ÃîÜPmOõÒ&OýÙµÉÀ@„Áª·S™wÿƒ "Ù»I®KÚ„&t‹kÖ̤Ç|î/H›•t}¿÷N舿ªGûÿS¶ÿK ѵĻXx| 7š`,è!Ew×G¬Q0%ƒú]è¿ÅÑ•ñJF«d– h"¿ ítÚ¹íïå€ÿÿ: ÿ‘É~x@ÿ“ÈÀ|ZƒL­$ÂY%9 sÏ}™4£Aù'wŸ­q埘[Ž+ÿ¼ ë£E  x@'“=Ö€ý3‘5v»£Å¹n ÿAl¡Eß=8DcÀþÓƒÑã8‡KxœÃ%â•è¬Ä¬”ø!°&Ò´’oˆ6a‰¦€±¿Žç]¬ÑÀÉ\â¬r å?L"oÒ°>Êjò4†.ƒöŸè ÇÑ& £ÃêLJ;jÿî5gˆÚPÆ\ÒQ®F2°K¹ ÉÔJÎ(Ÿ!°g¼ä¬R¼daÉ QÈÐhü˜5 ôùÆ“6aµ=?P£+t“™VÍ6QdV4ˆqǦ‘x«d•kàJ¤­J£‚pƒÐÞ ÜN75â.Ò]ÂUºKÖÐL(} IS†‡ßþ’i•ÈÏ5ÌÒZÜ™YÚKVÏäØß®s“†?ó–±PªáÑèž—Èé½ ˜@…ê|$ç•ÆB©R–*ÐÐ ¬ùWªí7é?/r “& —dâ&Çõ’oV·¸¯jú½gú½IŽ ôÐ*ÐDNµýK&*F-HÞu¸ÉQ!Æw: (•#‹ÙËKd÷^ò…´çäNáõA CãìaCB’6ÓnpŠ5(’Ü„‘÷9¢BÏIÃ&S‹khÑ@”3Gœðs‰ÀF‡qnÂzÎ9X²üsÖ)¡Û™Ð…^`Í[M0¬Mš@_‚dm7ÍÂs[/QTœ#À›˜Üá{bwÄšÆ!’›´T¾I·Jƪ„Í¿Å%Oü¦ÜÓx^Ù½daaŠ ¸´’¾*¡ ‘Í€"P.ÇLÌ4Ö-&„›-™Þ4ׄq¡™`ΖM:b6 ‹xè’szk$:']@“´–rÓÐH$ç/æfrwx ,¸|yšþ} ?˜+ *fÃ^‹[ºT²<“im±& ØÃ±É—­ÆÂsEV;îBým€PÚPÀ=ýhòM1˜üÝŠ³E‚'GùzŒ¦ ž‚ù‹æþ«d¥XF¦r/á²Ü%ýç]µÿh¨ûgl[܄މk 9»û.×JV¹¦G^ïZµí­À­’9+‘ tTbIýµ ë4  /iÈ— Å##N¬ä—1â8‡KΓ§2"1ƒð´²‡ü\sŽàܤLÁûºígñ4ÿÿ¨NNè}I.¸ß„[§/Y3J@#Ë(Ggno@uâ(ˆ•³uK„‡•]bxäÑçŠP€Q_4¶O÷«€Þ RÀDQz\4«$mÿÞ jîA` ÛÀ&ÄS÷.€þOÖ™eI®Â@t+½‚:fÒ°ÿ½DDþµo;•6ÁMj{I“—t Kî+ XÛcPÿó&Þ‘/B¸¥B9¸›T„Ñj|ªùKFÒ,™D·ÂD&_lVyÈ2}ú`I Ô3ý9 Dv¿I£Û!˜ùY+z³‹lUû›¬ÑŸˆA´GÑ+˜6RBGƒJ ½p4 ÿ›ì¶é›ÀÃ$ 5¢z_œ"þn=-AXt¶@ 4æ$ÁJpŠ¥„J aõIÛã¿óh2 £x²¥€2á.­‡ØÏ9ÜvvÿìúýwW"T@3ñ—ì¦Ñ› ”¹sÜlÐY²†P¶ èår ôàöV±‹ŒçC?¼NÑ4}HK²w“ÐBu’@èX[²u€0L0—qÉDNÍ}!)5%Hµ[qt’^^2Ü ÃAÃ4%ûúx\wÙ@ͯ«pÏi>^ÈÅžŸ‹àæpØ:@ ô2ä%Ü£ k¦P.¼LŸ? ‰ì¨vD=Å &\"]^2R‰ëhyÉöâ¢î@,ôc°¬ …@ÙD=É2kCNa’5üYÃ?Xóqá]}ÜyxõKÏë_Úõ»ÿ½FüÙÊo´ÁžÒ/6i=d»n7¡LÀ!ÈRÙ?İŠàñh 3 :…ú§²HNKlˇ»¡TbCõ$@ô8ÞÃ9EéHÆ7j¼&PC4AE…ÍŸH*kž ÿ˜§¼å0ùÑŸs f b§Úbóæh‹µ‘n fvŒ@¥ø'7>œdøKöì“­€RüóŠFèC¡”ÈÄÓþñ@‰°Ë$ ò`nêÖ:Ë«Búó"”þŒ³BúSoÒêV…öçºJ›?":  1¨Rh†”Þ$.™@(„¢&Ù‰‰Hq)Ô?ÛG¯I!ÿ2Гìbû°Y”  Qú¬”iÏÆ†B(ÆñWj€Rªn’mÍÞ¤û½Î$‚dÖ€ã¨+e€ C{óýî™@ô„Ã" lÅ™ ýßÅí#Èê8Ld¿gZ„ Pô…M’šÓÐL 4 £þ3|à<Ÿ±£Ý¤Ç…1ßw¹ÎHè¨)ñ–ˆA?È zkþß=îËõññ ‚Õ¶ m[%®ëbüÎ&àl…[—ˆ¾¤¿` BËØ ÿ™ˆúKÅ;Ä“v[“C*|&Ê­Fiå!Ñkd ŸÕ³ÇmMÄ{&í9Dï&,ÊàAþspCïIfºì …Äú½Â$¹qÔ Ê?‰”ŸsêÏ9 d…dô—ìmÖ!.3¢—dPÈo›Aûó¤lÄŽ|‡lï-Œaƒ\"3|‹Ols´?o@É€‹ä¦IX@˜P º?£îÏù“eþBÏ$$½h¦‚aˆðÎ ÚŸ'¾b™Ìø™P ¥µÎ`ó‡%eý9…Ú¦±Ïú! kk˜&`ù(´?9XlH܃´úêŲÕ?Ù‚7‰b¯ñ],G‚;bÐÿŒ²ƒþçÓÐ<ùL üÓ×AƒÜÛøhŸ™Gû´íaQ1ÊR\k’Ü0=‰{"þ]Y bSV‚3Kâ3kØ'2ä%ÔŒ9Dse‚!ãJRP`“‚ÅK…dáÐÏ(5jM„`¹n½Æ¯„ôç)þöJIHa:äßaŸ! ¤?=š*ò?§†Òë[Ué5j2éö^‡E6‡(Š0OÌÊNuB²E€iÛœ•Aßi:Âþ’V_²ÆSއœ@Þeé å#Ë¡tF CèXYŽ… ‘Ü8=Inœž¤#ëúAmS‹c˜ÍDQüÆ5§(÷ƒp§èMöð¿ :ôPáÐÿ´ƒtüH{ w—Æ"äÐÿL$¢xøª­ÿ3 éð–ûÖÿ åŒ Ò®°ábo±•Ë$õ†çæÐÿƒ\•ûâ›èÊ‘h´—òs M ¾z”ÿŒ2&§Ðùk ”ÉÏ9?Àaّة²7’‚ånážd‡4š|;·úg&ÒÓpƒÙƒ­CgÔ!ýyŒþPÏ^ƒ°e³¼c%ˆ÷IF ů¡øÕ!^ˆ]¤}…?oRûK"<«Ûx„äJcZ¦Ë"‚ZE‹sì.‹\„åxŠo‚P"¥¿¤¢ëãv˜²ec ß³ÈvânÂí™– ´·g:Ä5“­ü™@m?Ni$…ÐB2VS5R´‹¬É± û7x\†…Æ|2 6íMØ6ú’ˆçŒrÁMô%œ+µ—8ÆEú["ÜžÒœ„Û÷AÉ&mÌÉI-|‹){­/±ñ’´ÍôÿdäŽéEjI{AÇô»¦·E(›tˆÀ‡âk4"'÷yËDžC”× {‘ÊÚw#Ù£ÿ&,7>dབྷNBîêâ’ á +¾@‘T,õƒ€î_< wîÁ¤Øã2»ÊÞãCˆyÇEöß*èfb/ÙòG‹lËvÄP§þgåá­×´¼d‡ôú' Û)PQ‚˜ÉÚíß/²7þ­/±ñ’]•]ÚW¾´ÇÛ[¶hÔ'/‚‡€U j|Üzp7àæ”¶xLã Pà\¤<‡fC^j‘»UgöCvo ZX‰‚¤¸°ô—DARÏ꟨„_€‚I®${#nåŒ_¶øgýbN+°þÏ‚XŽõïŠXmS Óʈ {Kó{P"ôæ0–†û›ô»âxäk'ˆmYDaÖy!1>Ÿ‚õŸ‰½d‡²oÒà]¶JÒå%é)öØ¢˜àÕH(h» PVå,R«åxƒP";’} Ú['‘ú}žÍ8²1ñí»Í°ó„þç Š?`ûrÂe¡Pô&ÔóîA¤_ÊÇ‹¬®Ñ½/6ÌÕr´­“@Ômû‹Ôú’6^ÂÒÑÞH(„hF"úE¯øè$ŽÈ …@5îºÅ5‡Ôþ’†9k±¿qI,À­LLƒøKX–ë¯XlЊ'N  Ô½¦sV=ë€5’Ô3½Hê™^„2XüƒjÈy/bý%®‰Ìý’^PQfŽ÷¾~±+1V†ºåßBEb‘]]TØ"bé ®[(o™P5}‹°ÀËs-Qb| ìå%©Áj}ý|•#ŠƒU¥ÖSާ$å´­±—t49U‚Ñ@]WÏ(j1D+–ªÇ/²ƒ´ˆÇüOZ™}¤ö—4}I§B y‰d7«B4æÖJ @Øž’Ò_Rõ%Í_Xw§Ec:lð   È"~W=þO¶èñv+T€©þ’Žˆ ü !P‹¹¿ŽÍXDûK¸A+‰ä¿WbƒV$Ô¿â/ÀjÀÊòEúx 9"…Fm‰¯²öC< yïCÊxI…¡÷ÂÈD_ñ¾öý†‡ØÏ9ýüU\ vXxbi–¬PÝ¡îuÜ_0ðÎÃ÷¨)êC¸;Ù!i£éÿ‰Çæ|0Þª‡lÒ!U.åÂEfßç°0ûæ)J|—·ä½ÁÔÏÝ!ñ´’·–mÄu´@Y¬¶Hõ4•5hfb/‘’¦Í-Po»`Ó—¸g‚Õ ‘‚4)ì°F- ›t¨ÑÁ,l%ªò$®CãÖT`˜„`7(‚&R°Ø’Û‹¤Àö"/#ŒµV1™ÝDëAe&¼- îõø?iáÔ#)ú’öä%Ý_Â7à…ù¥»Qô&Þ3é¡ ÁŸµDA§!G®m5 Lv͙ÂjX n°MÛ°7´€\b$w*a@4“»êv‘Z_ÒÆKèÙaµjPÍ$Ùôm°Ü¦nÑhˆõ¶A (‘r·ò,R1Ó'¡ h‚Š=, Z@3ñIÀrû§°sî‡Iï¡AT„1=P‰ÈgÓØÙ¡Üû¬/0Úä*Æ[@1{\5mÏ÷?\"LV#Ö,"µ‡4ÄqJ~÷³,B-P>KŠU†›¡Þ¸Å„³µ@o7€š‹Ô /ÙnÝMÆÏ§˜¦(JÂ<Å!ösŽ#bïû‡öƒÿ&•Í®FÒÆK:â§¥“Œþ’5ø»ñ6÷í$à }h„5±ê[ tzh-ó:ˆw8^¯sFzXýÒSà~Áê%º¦ñ‘IZûC Æ «^C>æ»j Bá€Còr‡ê×1L{~0LûÖ’ÆGÞ!Ê.äE~@Çè‚YÓ[”kŒ8‡å‡XI¦O§,* ÿ'·TÛ<„Sw“5øÛˆБ£ó‹túèN2êú‚辌Ņ—]Û?NšZ Ç|êÐJdwM0fð²¹v*|^À–iØ`šp7XFm÷žPõÎh@‡èE(ni—ÈÑaaíŠùºKŸË ¢~qA°Þâ2[ÎãáBè"ºíÚ&ñ# šHÕdôtÈÀ%B­oD¨:õ@+mÖ9 ëwAh@6lÏ™©ÎÕà&”Eá°€P"½¾„ÒIˆ{tÈi¸‚‚ 7Ù†í` ²£>Ëd‡ h&øá0*:AY¾H/aÓô!¿à®×XÄ<‘= ‹7¾ÈÑRí% uH/ÌÚCäÚ^b?çxÍŠ RéØxÃé7Âýù⸿`<Çòž ïQ©´Ê€(+;7Ñ—Ô´ö’./þ/Q{‰?ìn=ºH‘—Ôö’ös«5ðjŽÕ‡0šqÈχ%¾ éÏ !ý ²¥?å£ñb0þO˜Ñø a8ñ"ƒñŸÈzº^W¾´sÖ±#V‹·ngÿâo«±7Y ÂÚŒCš½„Ûó]¹AÔÕX¥¦7&ZƒòçˆÔ•Ñø?â?‰¬•  ‡–Aù3‘ŽþVO Ô>"œaPþLD!R†µ°háà'ò'w¯_d—&ݤ½ ÿG$ªŒÊŸ71„ÌQÙh\ ò爄—Aè” N[öSG@È ü™Ëíá#Îl,~ºÇw)rbÐȲ¸Žk&Ђ›y.‚­se ¯˜À¤Ø˜Iè ØË°Ì€ ÁzœUâý¥P¥á4ÛY¯Ò=þÛÇx¹A¨š83AQ^²,ÚDFžï ÚŸoëÖƒ›91%`÷4Vi³ðçøBCH„>ŒA(‘ŸSvÝM†¿DëK,9†™¿39dÐÿ¹Á2gÛ·õ¸„,ƒúg"ƒ 6ñ!uíqÎŽêE‚Ä zˆ{aÂtè¾±¯x˜3ˆc9”€$ÊJ@b\û  ~JËÑ{ìù•ˆƒ:@)¨A†Qé´üoÒn]¢E¶ ) §í™Y\‡Ef‡8žBR^_WÎëëÊyZyKëëÊùV‘ ôýÓ‡(*o{|yöå¼ÅÀ?ùÏQéF8€›tÄë0z‹ ËC’tÌ"ܧø/™@ HÂsè&RÛK¸¬Òý%ü˜KNÀ衦=Þ3ï¡iO' 7V%ùvF<ûˆ’û"55N5‚%LJl‡.¬=ß bLÓ;´€.BЈ:9$@O…KlT|s8‡ 9Ó¡š¤c`;”€¨có?ÑØ¢Œ?\c‹²C¸EÙ!ì!mA8eÆ…iQþLÈ€ZeÉ¢k¨ "àà —îLC†öMê ¼GÄ|/ °àV™[lÒt7);„ûN  ø_yŽ+ü{N Ð3áxX2PSޡʯ±ò ºîÈy™ËK Ì¿}‡'©0í*ÁÖj˜G'YFm"Ë.® =HË À%ÈÞ –¤=I//‚΢/N¡Ä9&/¡¢7IÅædì8›¤ö—4m»o’Þ^2ä%â/‰z¼ Œh“@.š¼&aót%¨ú€æ¬îµ þEå‹¡¢ÇãšÉÖÿÌ@^Rñ¾ ½¾d|ng³ˆØK~â×#g<‡Î>¤þœÓì%ýçf&´’ü€]„ÝØqˆÕ <8Hó ÿ™HEx5’ŽÖVí$;Qy¸¼‹W›âŸô &1y uŒ ¾Y£Åä"è<*•¤½ 6™&°´ø÷íÏCØ?Ç{íÏ‹@û3îãve“öb3Ik/YÐç舜düÆ€Î$÷ zzÏe7GðË!$-n)䀩ˆ©A¯/Xæl‹÷Ý#”-AÊ>ÄÐÚ¸}´R¦éoqBÁ@EòE(Ÿ¡­>€–ìŸÉ•H“ÈÏ9[‘nÇ$¬ÈÀ\]JزeìR$ŒLB-ûC–1Û…Ï©@4L‰Iä M â‚U Ω±Ó4ÿ䊒 H“´€€Å.‡˜¤ûKa|Þ/Fd'IÒI‹Ð”%h"ußÞv(Í#‚íɱw’a/$Â%®«š^ñ¹ûï~}1Bgçï­NµHÚžl‘Z_ÂíÉø8!še@Ñö´,G*øUJ¤¤¨Õ$Ükú"¶çÙ°˜½üî[9`J/µ¯có—¬5½U8Ÿ¥@4b­“Tô`/[´¶NÂÖ1È€&"?ç¨oë…Oj@"ˆ½•5 D .k$;D{“&/áfü›56s¸Èê1­p˜'Yuö‰8 ¿,´Ô÷xý-%îŸ!ž}“‚kXˆÅžæÑIÒî|‹ØÏ9Üž‰„" -¦[ˆ€Î²·8§¡hÄ9”†;d ÐFY9* =ˆ½ÀQ} ¢@î %ÐDêxICΆEý¢¸R îOªB4&‡ = ©wN²†7$†fðÃŒÇË@¨õøô€úÇIº–¿žžg…(eUy‰"UߊˆY<¦ÔúˆÇL±ïAÌLC•³]“,5 ÏáòO"ö’åÍõËJåäoü[>BP¹ïIª¼¤¡b¨凨Kôçk/qä ñ÷÷ÈÍa¾©ý,íA*î°Ç§Ø^rÛKF%} whâséáÏâð|W¦å7&©PªáÓ<‹¿‹r 1#VhqWÑE¨€y ŽØmºb™È6l{˜fUBA¦a}|ó! ¼*y£ÖE²ö#ˆÖ—,y×"4†ÿ'®è¾ÁW)öõ¹I‘—leöìLÒëKX™‡Ù¶Rè&ÚÓ:X! j=î;ÊÆ'XlfrI«/éã%C_‚,ªÊµà&ŸÐ Åø„¤ÂÂç“¢4; &éúy7µ:Ä~ÎÙµÆA¡ÃnlО˜I¨ Q :^û!¸¨£]ùö/1Tøå š Céi˜÷ÏKÞ¶&PË¥ëÔzZŽkëF‡IÍójƒ&è~ ´ƒ`œ7ø¡Ž0Ia#ƒ“ìJŒLÒÐàï¡A(öŽb9kÐe9Ò2õÞ€ è ¸µ¦þ/À±Ò"kèzè kA¯œ¼€DÖÐOd›µÔ4˜kõWŠ'`ú6H%ÂBûCXhˆü€¢?_ÅB{¸Ç«ktnRûKVl/r “ @\â‚8Î!ÊÖšBB]ôC…’V-";mK‚ÎÖ 7¸?Ÿ¡Î÷!ìíqã¤I”ܺaŠ4A¢ÚcèlIP w¶Q”ñéIÚxÉNPÜd°Ê½ˆ¾MæX$A/IP£ÒÁ$»u”mÒ“Ôqmá¼HƒçÇ9ÑÎ&­A2)T`ï>p¤ç.PËZ–x ³ ¸½„m‹mw®üjÀ€DáN{Á†îGbc’Šc˜%b@‰tÉ~7Ù-ŧ&1¼ñ°íw‡æzn;Á7SÔœšiÓšE¶‚ÆMÖž‰l9Л,Á€âñb°óç@4ÇÀ PJ¤Öòs^¡Àë!’J?'± /q¤l@èÐM¤¢J‚4<,x}«Ãe2ô%?ÀêKï3²KKA§zÂ$¥§7¼SÈyØÓÑV=‡ž·!‡»()w ‡°÷¯CDΚ’´t„ö Á`O &ÝŽ ?{äó%<7¸ûªŸÜ ¡“ÖF—Ð?<$—c¬MDðÊqÔCô3fá`!uÚz¾=µõ‡Tªbôò€E !Å®±'%¼¢®Ø™‰E(Ï{ˆÃÄtß9¹W.²[Wà! E%Xn[4MÂ2$ ‚Ø9ÿbÌö‰ËWðM4ôoB5{޾_¸cʤÿ$ÜŠ ¹¥îÑX@ÑH³¹Cø3ôÔ&ae=ÌäáOWãÆ‡r lwº³7NÐëñ½!^7 ý©oà€èO´L²qÊ|WØ8DBú&á9¼†ãˆÂð%¼¶ÏI†½DúKX]ˆgñÏXŠ.°Å_ßÁŸDvq}˜b+öþm?Ä_â5“›JÃ7-¶">¤¡Å€üK]wÙ®ªÒ^2®qÝq âÏ9=ìÖCê bsú (&2êKîê PünGFOð>è/IaÐî±›è" ÎóçìLœÇ_½ŸXƈpE€$܃¢ÓDVëMŠ¿„RoXµä~95²ûº¯"²•Ó—ŒÌCÂØ!Ñ0v©È8óŽBð‡Û£,Òõ%ãçjþ¢˜ì4®ì˜^à. ˆ½Ù9Ç¢YVæ€òg"{?Ö› {ƒeÐÌOÄ÷‡„Àà€az½%œ• ùs\ÆáÜÈá?§pÝCXW†lñ€ôg"Êb€Bbý%[úóãM–-ýyrzk?‘&·pôŠà×—ŒT½öŸ[–Öà(ß_Žì ޽"å9D!RÄþr?‰4{É(?D_’ä‘–˜Â×§8üº]û¸G —‚Cª½„åHˆï"‡PàMÕ+I"/a§4f!i±•C B™˜Cž áÏDy+‰@Á“¢´ØÎJ‚8ZÂa‹¤?OhK`ê'R‘éA^´×y&èO"Š6Ÿ/®Cå[ÞÔ;£n@£—THA¯ý‚‚Þ‰½Ì ]z\v›µ7Ù{K"0koR¡9gW†/ÛˆOFޏÉЗüC¼Å…Í3ÑÐõ†!-£ "釘ÊÚlEdi=sñ¡ÁRˆ8g7\2ñ¶"–½ÂqáÏß„”íJ–ðGYô‹roåÏc— ¤?a·ô!R_¢?çä0¯÷¥9WâO"œ‚¯,üIdµE˜Mè~.—`ûê4N‚?‰ø^¢19+d?•«”ý¼IEœõ ú…î!LB¥ìgã VÈ~&B³¶1y‰?ç@ðç”È)NUªBös. ½¿dì>x¼ÖõYs…êg"käŸ1«ý4ˆ/`¨åÜ—8ÀÞŒcZ¡øsƒ5ê€k M¡÷ }sŽùDâN©÷yÔÝÁWWê}RäeýË_b1ñUŠ|ò¥J Ϥ«ü4gùƒJÖKîÎJÁÏD*Åv‚Púç5&F<(~&Ý¢A¸3¦|¥æ'SZªÑ, `ÏäcQZß š< ûØ(@ì†N>,ïj0}¢ŽK=\¹C F߈}&Ò1‚Q ýú¾‰hõ§I“|?êTë©?Ä^ÂxÞ!£¿„}¢è$Lø&ÕÝn–Aò'‘в3Œ×½üCR(vo¶•ø¬>€òõ˜r­žéJRr2ƨòy~v-™¶>Ü!ôáQÌ×a©Áí?%²e>wL€!Œ‹øKz}É@ãæek¡_È¡Aó§² À óy}¨?‡ˆd+£QFÁŸpI ‚?Ç+0Ìÿ‰Ð†…ñi=·HCš¨Ÿ­rVeˆdÍŸ$²Þƒ€%HHÄt>-–ƒÉ“ °ªÅe¶Ç–ËI²F Bt‰Pè3Š0 ó",óR‚ÞRÙ¦AèóäÛ BŸ'¾b]¢ê[òçH¯ðGÙ]·0¨l›ü™¬Ý¸k¥Ým{¨Õb^ØF­ÍƒÑoÔ?BÎïRtœ„BŸ‡¬%`'ޱØË‡²?;z ²F“qú¶».b/x”Hƒ„>G˜ ¡ÏØÖ¯°ž7Q‚t†„>¡Ð§Æ§ØOŽôAóç,×­·÷v"†rl¹Ïs› æW~ÈêØŽ!á[ëSÃ*uj}F›×Pmmñ¡¥/¬È^c_ÖC4Oó«³üjüžVí×öoÂ$é Õw7©èaä­ið¾I·—pè׸Ž"–ˆ©ï¥àÒ©Ï‹ôØŠƒ¢òÏM˜›àäj+†o韶ÞUx«ûÝyˆ!+Í!ýs‘Ñ_zopÊ}‹}fÒ ÇÓ‚p7ŽC<,ŽÈ}†÷*´ÃŒyÜ¡ý3Œ9íŸP#[éÞòÊŸ`áv‰ÝéàBÞ×!ýéQþâZ¬ŸéÏD¼géÏ“€ò-ýÙ ]w‡ \È®-):äïF|h T)IØÂ®‘ qާuÙ!ÿsÈÿœ¤Cú3‘†7¿éÐMWíÿ‰¶èIUn0Ö|K&°ebÖv(¾%Rrå™ûQ°'hH]s.ð¿ñÉÅÖîLT`T…PG‰Û^ïgîg/©å‡ '¾£±“ô  ”Iv<û&ê/áÖ¬•€Æ΀›@®„J‘v¼UW¹Ò$g%I{í¬ëH|—Q‡+ÎñžI*mY¥(Dj¬C ÐPxØx l[ÂG¹Ò6û[KZ=öú6‰¡üó&' >åOõxrÐ}§{º}Tþ¼Éè»Á¦ÙÛß„¦m‰+ô9øxô§áS”þ¼ÉNNô¸2Wƒ›t@W’5ñ—0;q4\™â?%~ňpö’¾ª$®#€Ü¯J ¢øé-.cã%®™÷%»[É•¤"GÚ: ÷%û„d ÿ]ﲆëqOË{»#°liÖï=D<ã A¿¹Å³å?×à¬$¿[âœ9sPÖÏ¿ÂoÑ„÷‘ÆÄ¡ "ŸaS>V¹L²µ’Ñ—È ´½Ä NÔâ«Ü2ñ(ÔN²Œ¡mO€´<-Aÿ'‘C»)ÉV‚»‰Ž—˜%R ÿ™H‰‡ŸU>f(`hOâCÊB0 T²I¨æ§¨=Àóþ,Pœ„µõ»úh’ê/¡jÆ6<&¡jÆ!Bůø”¢ ýk$¦/ÙBp?  á­ŽD +ôéIïg ÙŸ+K‰êK ¶ä†ÔÒBȾâ/ÙöЀÍ%Ø[sÛ¶b@Hí‹SÆï1@/BGà&î6¯L!8îü1IƒsýÅ9ãÔ­J²ýº/dßä>ÇQ:ÄÛùŸhjI ,… ìûš¤C(ÁŒd-ï‰H²Ý&Q{ 5@yOátÖiLRöŸó)ÝþÅpzGÝÜ$Û®em5s¥HÖ"¨K’JòX¨DP9ã2 ‰Ôñ’–­®BЛp+«CT^bí%þœ £Öû$“Œ ÉkÜäŒö‘—¨¿„a‹Ø¿+7=ËÎKyI…†V¹ †¬buÈÂ`‰-Ò1‡l1”ƒ2@%…cs2–$ÏÈUðnÕïÑ÷ž¤ÊK¸Më!£¦ïªÔ`%á$ŠIoħò.Å+Rˆì™àh…XÌ$¥ä;|´¢Šü]Pò°(+Ô€"F=‰¤ÞšIìd+`ö£83D…è°øéPÝe› nð:…K„Q'Ð=?Xœa)ì„àëU Qk;»“)äÂ[R!5Y“àõ³8e´—üûÚI4)„M²;çá®TÂ!T@Ýè´Uˆ¿%‚ w7‚ï³P…¥X&´O֏Е‚’x]u<‡±5“4’Ý4MUÎIvI8ƒu`_²› Äía`Õq¤c‚ ó].™@4‘;G ¸£CÊÕø ·Z/F"wjqmXc>Ê“¬1¿{h&Ižg’V^Â1ÈЗü4pcJ¯ð¢…f¸?+o–ÅfÓ‡T¨–pF°ˆosÖ€P"â%È.× dà$kÔ§ÙZ! ©µB4r¦“,¯.4›&i/Øny A"+—È2…Y–mSDIkûžC¸å/@Æa#hè „)×¾ÈÕÂøva1Œ¨&ƒ¦mP3Z& * Cx[‰¬©ö’½Á HË&°Ð(œd4(14Éî=d‹€®e‘€Fm#håyÃ^!æ–VݘIóÏ_d9hÔ üv¬ý†ù?ôàuž ÀÐþBô§AtU) ÀÊTD¢sµ—°îñªÖ£îþF§©ôòƒ4L†°‘d€BÊhÁÖâSŠº ç æX£ Ð!íÒÌûORü.rž¤a}oñ)®æp-fÿoIÆEƒèñkÚˆÈ6æÌ D¸ œÑ(Êdü$µ¼¤arÁ¤ù?隦›†•àøð:@7Q$‹k\Çk&Õó©t“šzä'i¨W{Ö–èš¹ ´â/Y†‰ø¸kek£{€'A:‚\ÍÂþ9„µ÷d °ÄW* 'HÙ : í0ÁZØ;•Ø'qÄ•`½¶-¡ð0'Ù.«J'Yá½îñÌ¡šˆØKP4úÅwï€ÆG¡Cn·ÏƒìŠÕ›Teb¸wêEÔ¹C4òú“ì¹ý/¾jÅ“;_£¾u@—CW™Ã¼F}[ÿóùòSP‹ÕEйnqNGm fë¿or‡P"køS©{V¬z\xY´P"µ¿¤!{†±Ô©$4:µ@o"HfA˜ÜKÕiÿ‚!‘µäAú¶ÿ3áÎd ”þÂp{­ A«I =½ç8Åâp›—(2XðwÈv¶°LÒQΑ 7€ºÌˆ>@±êÂØèPMÄQ§Ÿtv×—ÔT°5É®¾¿I‡wÉAP=} ‚F§çÖ~HF¬]¢oÎn‡ ht÷N²“u7éÿ® âô%0ª8J%²ßm(aøî-@ÛÚ¡ ×¹_À$m_#ÎiXŒ Áþ«±`ÀðÆüÛ*\éx‰ÁàäãLÝ!µS è&U^ÒêK:æ;,³CØþ][?L2‡þª2‡~&ËV—¸ ô@¯i z 0Ô;Ä@Ïa/;³ˆÈB‡hÔÛL"«rAé uG/u¿Î1”<®³›NŒ)¥±e€V‚ H[½Óã“´ò’=ìÇE¶\@å¡À»ÄÛ>¨ÊòšIvV§ð5PÎ5|@(Äz&©Ð¨)A»Œº<`{sØÎuAX¯Ä9¡žs*ô¯n²Æ¼ãckf€®JuˆƒáA hž×ÔPÁp¢hGÚ±ÀA-ЈՌƂ¥Ö°oáÆŠ2þ4Z¨ÆœSX{“q@(ß#&Рèw "@3€D°"zK_ `¹s-’´£Ç>­%®+%ý½XŽU2¶pÝNxÑ?Y€bï¦IÖ¸/NË}`6xNÂÒU8¿B ˜Ç»ãDcA4‘µžo¥"Çe`à !D8:öÿ‰9›º58ç”Áª…¸ ;o=>¤öGe=ßLL÷ÞÚØ @ ÔöVß× ,¿?DêA¥Ya½i›ÄŸ´þ™S~ëz²·«ä†w“4t¢Õ µþXu‡=m'“(Ú ù÷A(—Lü)Uš$—*MÒRè$LXÃÃÐMDô%?7 ÿ»¢-²ÞÅÁ±#Ú*f •ÅFÒP wZ¶hˆ .€Æ'üùÐJ]øåò…A {_ ¡Pè‰NÂfÒCØKmñ)ús‡l% £4«ís}P (òIB% ¨EšýÁÛÁÝÀÿnCY êìtXÄ·_#AV/u"ÜØ7yK^nƒT #%„£ØfÝsNx€B)PîS1 ·œæ/jpæŒqGÁJrf“„1ƒ->³PØ*<‰£*•Ï@ÇN•þÚ²Ò£X SŽ@ T#þ"=d‘üP zòÒ#´‡UR¨ ¥Pè&µ¿¤½ cjƒ•8E<­âBÐXR„2 ‡@ôÔR e@oRõ%Í_ÒÑB>ŒdøK´¼ÄúK *þt®‘¢ –xúô L’{P&ÙÁ Ö§O"å%Ë›Ûbí kð_ĶÍoT,šP`å Vƒ3÷ ÌÿD:K¨b!$pÈ/ø!æ™P è&A>+H Eƒ'iÌd8Éòåú¯È–½f)mú$ˆ!{7G°¯@¿¨Â?¤ØKÚ :ÊJ±ß|“~¨Â¿‰þœ³ÍÚð>J §üKK˜µüÔ–«†´ö’Ž’¼{ … Pð˜DÆKEZ£èVò««B!h†×Œ¤ÈKØ`¯j¦±ÆKº½DÊKý=®Œˆ8o¥@Y»\•Z 7¡¨i¨:Åä¯ :”žd”—H{‰ÂWîÓÐO3µ±—Tü5%‹5øo-PÔq‚ ‰¬8bñµ‡ª  T‚.• Ø÷s’‚Â(,O:¢³«ˆŽ0n¡q{²4®¬ã%V^âÏo‡(‹Æ'@›Lm¥N¤ðpÃbÄw*A±‡Ó$»§(ò-³Þèൂs¨[$58 „ˆú+µ@Yi¦”½ÀèÔ0‰½À¡¬‚<ŠZèºRêK*˜Ä¢2ˆðëJ€õÁhTËÛüL`˜æ•ÀG½eà„ªÇ†•¼½K u³Ü®–»B ôÄë@"OLO=Š”¸2x§òľ(;Ã"d_)µ }I…d©ÛïB$½³ÃMöÎ7I;;Tƒ [Ï tš¬ @é& ™5ØžV̈ÚRÃ2ˆ"¾…+±³ÿ–ØØ F~NƒTŒ4 €j)Ür£8ÐMtÃø3kT'Y\Ç~ª2ahd@/Òb¯âC–n‰è•AîT"DrDºÇ$kJ„Âpør¬±MÂ$¶çaÅQm[tpÏÕ [¡ D싯Qüj,kFEЛxŽ¬Ø’:›Œ,°nŒÄ‡¶õr¦6bËi¼ÿiÐSüaÐ=ygƒL\"¦™@ ‘à ڠ¼ûûKœ°¦þD:ÌKÄT Ê 'Äc¤LÇé1¡ŸN¤­¹?¶à­¶(¨ùD–)ÌØ›„Œ@ ¢/‘(TÉ8T) Ú†1EÉý!{òϤüœƒçÈ»m±7‡ Ì ˜ûÃç5Ëͤ¦R)fRÌãæáÃa±­t½kF,ÿ\#k•y4RÃ=3Hƒ6\"žÏqˆ‚†hà$E^²]¸xª B¹¸E°ÃxrhiÌÁUÐDL3awBÁ! î£’Ï 4¢Ú¡ ™“tÙç •#`ë‚æ–“¨¾„¼5úM°È9ÄàÙ÷7iˆšÂŽpƒö8!G œBpQ‚ïTº‰çlC4´g&)¹Ô·*5:HŽÙ?’q¾EAc7” ïFŸCèÔKx ÿO²Em*ò×NM ¨wñ¥ t´Ø'hí%Ü—›c¢Ÿ*ƒHêfŸDшƒØ™w¤q½ïÆåÞ¡ z¨òt:UA£.Ä© ~ªc8©ߢ@NµÖ ¶ÿvˆ„š=ÿb肆×$LMÒ$D”C4É}_‹ßì:‡»´~ñ÷P š&ÿê•àf|4[%f +«¹Û@Vr"x ¬K‡,¨D5®C4ÛO‹cÛ¢äøÚ_ÒôRÇŸ û†<€ªX5â@a‚:Ä.â!‰uºM0‡;´iþ’ñó).]µ0Žuß¡ ¤}[4Zï‰`’–\¦Iz}É@¢dßàI–%»4wàÀíðÆkìÏb˾m™]¢Øæ½Gæ¢5’ ™ª1Hv$›9¤IÜ“¸Ì6coòìÖ›€MwèÀE¯Å${U§8IMé˜Iúm„L0˜Bý€DëKŒ6JâÎ"h"±P$¸ç_!˜&ÐÚªœ``Zá &0jsÅ)kˆ¼rã¶…2Pô®NÂùAƒOÅ?­‡˜†4’|°U-»ªi±þ’“8d@Mã&%é*LBî]i¯ñ# eê“HIãhD¹ñˆËz*z|È=yÚKAŒX‚4ÔT ÁÞÆaÀÈœdèKðVj° ?Z“šüøÃ!êgC 4’Œ“T} ’(=.ÃþÑCú(›‘(Ì:þ9½†güC,RRIо$¥É&àvVü*ÊÁ1Õ6 ÷iå¤ùC(×ñ³|;”œ© DeIPÞåFÐàPZ|h þæˆBN²"ÊzèdeGjŒ$èb8­@´U>ÌÛ?‘-¢Äš¥IR´˜ õ@¹£Ù$R^¢hWÞ!öIL^â8¡@¨9oFh"+„ÝuŸ„R¸d\ë Š‚–ëSkMÿ ªE&Y‹úgÈLâ¨%Æh*Ý»H‚¬Ñ߬ÓIÖJÐ(´<ɲiÙ}&Æ·±@(e¾’Xy‰³ÎuƒŽ].PüK< ||‡J?J÷•„åöj$’šÜ&Ù»ßÄ öÅ• ­<² !K0IešLI¶7w“Ž‚rL®eé…ŸŽåsNÂŒDG6 sN,èõÊbîO¤"`>Ic»O5–üºðÿŸÁµ˜DYx!$†¢¬/È4„>°Ê[Ùº@™Ô ~Äkø»Á_dþòï‹ C¨)W´aÐhu™D4ç˧±9ßE0Øñ`ŒýÓün*ƒÞ¤¡ˆOº@!œ<Ééi¼ŒPMäxËê ¡;IIÀ·º@‰0+aN2àÕô qÄE áøfG 3WýàÌݤ–’ª3&¡”Ì!ÜïçI.ü$Šè¬îJuh&"'Yk{1¸K­B( '©ø®„µö;Æ0Io/òÉÖGÝ^ÀÒF `(oUÅrplÛ / ‘Ên‚æ©ÐyTp”N¢˜èa%Th%â(‚¸ÎÍ@^R=­å¡Jµ´IöÅágÕ†-Ýn¢)¨9‰ÁÞœƒ*X#º@üK zìçÚÛ;¤÷—캤›Lð  yÐú!Ž;‰c©Ç:P!é¢I \ê]2IMÄ“ô=éЃ !êIVžå ´¾ÄðÃÏuÑÆr\!Gaüôí9î/ˆ[a6ª”eßÑ$ •LŽUÕëñ^(:oRÚKvnÂhÙUˆC'ÒQr1vUF!DeP–Obý%(èæ30Tßdר‡]! šÈ– H›/„AQhƒ8åF§L >A È¯LRòzS=Z§±úUÖéCËO ¤=@å»Ð¾¡¸¨5 ƒ28IAÑÁ9‡ ‡´Ÿsº¼døK´þäí,¾Ý¡UîA(‘=ö©02IÛ«~;@^ÒÉÇ‚Ó ü¹›P÷³—ly8ÖÔ´v„¢aµ-š3s˜eÙ.Ý )Ú TͤVäå/ßâ ããûÐdÈK*E!Éréé¶»õøU &Áµ¶õà¦<æÚ¶ÄA¡ôà-“# ³qÐC¶\˜Ó kÁÞd¼@8 ŇôÎÕO`þFö¶2è)qœ¤ÂçS‚¨Hj$ü‡ ̾5È2Q”(óñŽº‡%Ú( Zøåé-N©í% }ãê$A%̉ º zÞ<‰ÐÞ!ŒíqDB”v­iè'¨ï±< ¡hÀ¢øzÐ:Hƒ&h"†éƒ‘Z@l@m¢ çUµ¨Ì8¤—pߦCbç¢$,Í8Ä^àˆÚaÁkvJ3ðÓ! zÂÕ Z@¡¢3IÓ— L¡Ÿ) ØSr’µ²'b©Ös‡U‡©£oYÐLB‘ ê`Õi€9 üy³Q284 A"\× Án›fB´Íý_P‘È Ð’$Ò$=•ÇM2 H3´C4Š&±ò’­ðÊ$~ëõ9DXE@“TèQð‹ ”Èî™Nš›x™ûÖ:†i¯pä"FÖ! zhÀÍw‚’R±“T{I//áÖİ“;5€n²L g ç$Ô=Ä-“­´e‡* É+I{AgÉËìˆ?ÀØ4ìAÖŸrn9ä@Cês’Õ/}=„û<ÀréÓØMº¼dxšÎûˆþ’C¬çg=Ћ\êÐFÂ]xGèš…³=ÕL²IA¤¼„&$옆«ÜßC”%%â/i5­QÖ"J£X »þý‚bž‰ÅFXü:ô@Ol¿Côž;”€ÎÈ¡èXP\ –ñ“ˆýœ³zƒ!ƒNeè›Ô†ñÞ2@'HÔ!Ú†“ ¸40;ŒÿñÅ€ ŸÁ5P£)3 zƒÒ€òu¸R ‰ty …pñÍÊogùMÄŸs tÂíJ@‰TIƒc©Aº¥h”h=DûK E‘¸ÇËÀE(¾û hÿ‹S¶z { 'é©if.‡ÊA{­‡hœ_F ¥{’a DuÕ€”‡; çñ ¶(ôŸAv}}c `´?ùˆŸÁ…-¶,>„[“@ (’ÇÓéÜ5P49Å@)y4ÉÞ…Tãùö]1ÕÏŒdµ—l=?E¢/Õ "ÜMv×4më1ÐÔ縡ƒIšeàøMR ±­ú$’³B@]ãŒ?ÿ9R< ”ȲfÛ_%È̱Æ}fæÉ}£“üés{ÁÞ¨¯ÆÛ¡Ñ6Ý‚,k¶J\R 'Ö5(C@ÿðKècÅí$©Jtƒ`Ãââ@‚è‰ è€î}åA‚æ[4ê€"S#V3 š…]=þGØœsÒÑ=„%ö¼ë<²9nI=É@º¶Õ€ Ðñ6PÔã†yl×"T€û¸& t€Ø‰;AEØÔ‚ä*ûIÖðyÓI¸sþábÀ’ÎI¶lRԌȚÑÄõ2 !Ä7 ½9L ÂÅ ÆŠ”§êx’ؼ,ˆ D£V ÷8©q  $ú*  èYÇ….@Ħ¥Æð?¤÷— Dv= +¥úIv‡ÉLj±`)Ø»òD®x» šÈ:ecóxÿüZw˜n·l ÐLÈ© ”@3AÆ ‹Œt hÐÈ€8¬Hhí Å–‚j ¯œcCyÜÍ ¸‡TI ¸¿.‚¶Ñ˜5…R QQ'”­LŠ$€ñ  šH/©ö’ž£¶²gþ#1 ÖVŽ#jRCoÃK5O ÚØ Öp{Ó!ÄMyeˆF'Å$|œ#È—Ü,ÞAŠEÀñªR@î1ùað¨Qø!‡2‰èKìܵÌâ2Žìb³± ,ÚöEÍ}#hˆ)Á¼2(Ž()1,¡°7 5tœÀà`~AÖ<Ö£¸knÿ‘ú_')ãVÈœ¤²è¯’ÀýÀÛ;s©§p’]›ߣT¢*$«D£‡7bÐiù zj÷ *@§ØöpJ * #&x«áβݹ›,wnDÆÌ° ÌJŒ Z>‚'ùÉéz¡.î±A4”´&I[c{‰–—pÔø.Ï12ƒü[T«YÑ>Ù-šI/ùîQè&B('Ùmtáíd€NoA4r”P¥ÀÔ$TÀÕ -õûLÒûKD²FÀ¨/‚*mXéFЛì*ãE Dú¶@4>Ôaazœ2ÐÖ‰õÐ$Ú¦±ê›DÛô!ž½ƒ ‡¹F}–ÛúŸ tH§” c¼DÐiÓÆ`û'bø[8‘`†àÝ„Ð5¬÷  ÷) Ù<ØýfØÔAÎUÑlnºYD´/²"(‚¨mùOñn@þ3ö1š„‰œC* ÁãC[ Qé­~jfM"p+ùÇPÿ'ìBƒþO"žÏqèÿ«Þ¿¶?¤!‹ÇïÐMd¼@ÚK&Ýùrƒj W‡áŸÉª”¢ è$T °LŸt´4 sì%Æ=ÖjÇ”ï†-Aà~¯—ØÓ¾•W´ãMpÈ€&Ò~€ì´YA½D$é¦L¢Hc>t(¿… Þ$Þ3P´ÅNR0×aÀy‹áÈn7Áfì½r:t@Qhƒi|ÊÿÝ¥zé‡LÐÊùÚ!*r“4d Ù­ÓÂCÉGº‡0¬‡òOìñ5 Ór°|DZî5ðëàââP‚;vÍlÖû]õ­ÚϤèMô眵ôÂð£Côô 8t®Wu ÿ%'hí‡øK–b)4dg#ðØE]X®]Ð8MÁÞIÕæ-®ãXmøºlÐ~îD@i+1‚'ŽŒcù§I©ZD|‹ÿ$À¦!C™=UÕ&YË@‰° CüçºÇ†ýw£Ð!jQ¡åÕ?|«ÿ„:÷†ômÂ\‰G.çjºÂ›qÁ´µ{Dô4Îý%[Ô>†$€Z£ííXjeÁƒC(6Ñî€B™k’Ú_ÒÐß*AÆ{œL"ÈÔ8‡ #Ρ¦= ußnÂvÛCêÏ9ì"=dÔ—¢ÃÛLšDËKv­«.'ÙŽœo‹±[46$š ¢Ïo¿3‹øKz}É·93‰@£fÏ铨žœµÀÌkøkÚž¸x„“† ~–Úk%ihcã£kÑsxȲfn„Çe e{ÝšÄ%“³ ²¢y‰T,¾%HOá”IFIªs@Q|*ƒd—hÜ„Ö,nçˆÝL@6¨U’T 6A©ƒ„â1‡fã¢$ܲÒ‰!ñÊß ÐØV`’5òKÃr1ÉÎ˱r’µ´¹c*¡—¸òHóü$Ê4a\‡Û™Ä—¯É¤ÇPTÛs3ŽIviQ И¥&é¨ù<çô¤1 mÚ8e™@MâåUä&¸*Nâ°ìx۹܄Õö#·k#Ù²ö-n$@C\tx9qE%o(@/ÐZâqB (‘5‘E¿Ê$ ŽnS’./þ…Ùãʆ&þrÈuä{P"E_Ò^Àñ‘3 –CvÅñÀJ9‰¢PG‚f»mªõ‚!°}Â^°„Rá$Ëx¢k9A캽£Iúxɰ—°æø‹ë°æøß/^àP¥®Ê$µP•`Ù³ãÜ«üÐÿLD ßÄ*ˈ7K|‘CJÂñEÔ¢Ï5IAД¤¡(¢ZNt‚ñï ªÇM¢ò’]™ô¡»™@ü3¢l“0Œ}Ëò$>Õå%ƒÃ\W:„íoBÀ* [GI ”Hù9§"šÔ Xr<‚tÌ@ÖHèÌù!¶I [êtšÄ{&ð:+ 'I ÈK<¬—õ%{£¦›lgN8Üö¼/gC è"Šj{Fã&ÙõIÆ«h¸r|á1í;EÃ&ÙIjfÚ'Y7$&A§-&¶ jo{þçÜE† `Z uäï6ä$nrëŸÌcÆ18‰A (â“X} »Lø‚P”ѹIXž$qNÕ—`Q⸆h$Z&è¤ôN¢öKQó¾wº¸IÝZ@ÇÄ©3<¤è-ŒÎ ! ¨ü™dÀ¶Þšñ“PkG:&±òï™ ±‹aU!ÿmÕ“T4@lo’†6ž£¼à=‰è/®ÊBûCX”Ä? âŸÍùÂU¨ÁE—Ç$ìñ©^^2ð¶×¸ŽP™ ’Pîû9g{r‡@(‘]cy“ö‚ŽXFZmÛžMDPkƒ¨Bý3Ú ±L:ìÙ/~(å?)|:IÕ—Pë|Å:zÄ“ìÒŒÊY¡ö¨3óøö¬‚5 =9Ìñu`oÍ[! J“T4‹Ã¦¬MdŒ—ˆ½DûKvmÆ!w‡C¯ÐÅò]!þ¦á'Uh€&ÒS’¡/ù†: €æ%LËB@ƒIÊxIE<¾ôÔØ·âuçÂò…B“Érãj¥±[5´\9ûPú&Å’±S¡ÄêÓ úÙqª\nB1DþpꀆƒS©NõØ–ûº§$X¥: ÎTå$;‰s“]‘Wÿœ`‹ßÀàQÀ‚ß¾è3<¤ÈK*Â)•€Æl!{Ô¾O°÷šôL@±Ôà6 z$%„wIá$ixÁ­ÄÈÇ«Ó(z“¤f»?îP|ˆùm 5h€²%t”j µ¼¤!b…ÐCƒ象T@ø!»"£0×Bt¶PLr#)úîÏÚƒ4}I÷—äù&É;òM²güÁwlvCƒ ‹së¨Ê¸ z%=kñø»!ÉÿIvUÆMØi8TÓí÷éÐväë1)ÄDä$ÛŽE>d‚eÇF¥û$,³—øP±!.LÄCìÞ2P";1Qã¹`Hd›?©ŸdìÅúaE%Qy‰å © Š2˜åéM‘‘»I-i kŠBû/®³õàØ…Æ7X˜Ÿ‘¨¿Äñ–õø*Gz³~ƒhìú=I…3€^ƒP”ÌOÒ=Ù; @‰¦»Ä)ùâÊl2áwA4Ô2&Éú“¬u?‘¼ŸÕ$ƒÙ´¸²ô—°Ü˜ošG,¶UsxrAú‡3®Ú: Q®³Âøøé2@‰l›–›O²ß€°ÓûåPîÖâË·h8½œ‚Ô‘îW‡ ™d‡ô8‹w(JDCzùû{>î9ÉNÍ9悎µàÄ;5€"ˆÛ©ĪêIÐfYã2£½dÿ›°Ôø]œ18Ÿõ[Zñ«ZliuÈ.LbOÐ$è¹áh±=1C‹îÑC˜š8Ä¶Ò (Pæ9h;áÍ‚¨²P|’*iéT½I/ø¢¸°–ìN[v Mâ¸ÃÈ;ôû³Â®ìG o}‡ Pìµ>ÉÞ¥UbÜ@ ÔiõÁ…ù¡)Ð^hhvHFl©C ô&`غÊÃŽŸ g Óô¿ r<Ü{T²t³L tât]ï-æávàâ°anG¬ Cý3Z='aøFuW4–4Î¥]#n¡Ž?’ñÏÁ°O‡ö§žWÏ"q#pô;f {³[(zsdXÖBK–ÄŸC”cܤüœ­ÒA¸o ”Nü°ûkÆvðu|(iŸô韤Äq;•"2¾h=ç°]ôyÁvànb?ç°®Fÿ€ôçIªHFÎ~’ö‚ŽH Âà£p_ÊäçEQ+\ÎQÂŒÅÄ?(ý™ˆ¾¤¾ µ—°¬ž_±·á„f,bÊŸ¡+6‰—|(&Rä%{æ¿I“4A=%‡c6DûK ð€ÉuáOŒÚÑY•ÁÃâé°Õ|ˆ¿‚#¯Gô!Ò_¢èìÂô6 ø“ˆ£È3ú€Å; ORÑ5(qNC±|ÂÝK4>E¹ ¬«c„\Æ!Û}«4—D?£|¥yŠ‘&)å%µ¿¤éK`ñöÀæ?ò!!{xˆ¡ÇYƒøÈª?‰Ôðs Wq!؉ˆ‹À€ægô@M¢(‚±8ÇÐÙ€…s@óó"[ô3Š¥& T ,§aÑZ+AvY½Ä{‹?dKú€ÅŸªZGŠˆ3fýD¸Â]Ù‘ýlFÓxxˆ`Åý,1¶ýi/œÄ%ù°ÃôMjù!?çôŒ–ækìg6N¢þÃÜ‹¬ªlÙÏ©<†ºlÙÏÙ¥ƒQ*[öól1ICذÄ9½½düœ³a½Ëÿ™ù' âÕéûnJ)X5¥Fq=–©¨Ç¸ E¯`iJÅàw4S-‚4A¢Âˆ~Æf “0~ ïV ý}o“0)}HE‰×øSb’Ñ_Âý¥5®£í%@<Ä!‘ëO¶ðçÒ™ª$LÅa*(À%ÒéIÉ@¤1@ÙÚŸ  Cîšp=0®È²¥?çpëNRðÀyOGìIvHÿw:Ä×1"õ|ÂPÿIDQÛ*AŒ+}|·#rCN$6¥Ä:#Ðþ´(ד-þiÂø™@ý3zO&Pƒi’kp„ Ð7á–Ä$h§BB þÛ’NBµ´\†"ÐþIdà5lqÍæ–h4–Äß²‚y§"Q [9 ÆÄÐXr“ÝXr“í¾%b/¡R&V±è”.AL^â©§¦ å¨|6I±<ÿQû3L ñðãaGì-þO"*/1ODá$²€nRËKØZëA:ìy<.ý°'ëM¸ƒÅ§”%ñ’ ä?O@O!ÿ™º¨ði‰xl!…ü§VN ùÏ(îí 7 CÇ0"ŽJùÏC(ÿIåèIŠ¿¤Õ—ôñ’Q^"ý%ŠDfNÝúŸ'ÖªGÿó"px×Uèwšš„Û²²ío"?ÖÖ'Ý^@È“Nà0ª0ºòŸ‰¼ü°*@Ñ{M£“ük/až µÝ ²u#jhÐM¤——„J€“È –)›wLb©ïl·L ” ÊS1+$€Î“Û@KÁ!È@ˆeH!™g˜÷= ¬Gal5ƒ è)@7¸‰T}Éü7éhöѸòð—(Þ{b°¨t6Ê€"°n¹Ç$åô­ÏÃmÚ†yn[4“ü¦lÃZ`çvA4Ó—¸ç?òo™ _Ë?"@'‡:™)’Á~#ù+I…<ÐcCt@)ã%Õ^ÒúK:ÒµqÐJD‘ŠETcª[wØÑŽÏS®b’¢/iÿ®-K'è¿Ä÷BÍ?Çc£²—¡g‡¥Ç<<;ÿžÃˆn#ç£Û4úñF‚ÙŒ‡»Å$ÉÔ€ûM£‡ H[ÕKسøy^¢ë±—³OeœÓÆKØ4}ˆp Rm/±8"è°y½¢Îì&œÇiˆ®Àt(ÁiĈ¼²Ôønçp÷s8Ä<Ìû'µæ=½ÞÞ;²Á£ ËØ[hÚ{á/‘Ÿs4»YÞ£#92 ‡} SÔ0W@‰t¿ÓÞ!@™Itä ÐD¼g2~†~¸ÈÉ9€2ñ—ŒŸsv¼ö&,PêðÐãÊÿõŸµ> ¬¡ß:m6§hø4 P§ ãBH0°MáŸÓmàúh NRQ5ƒÉÛiþß‚k®ù7yž¤ñçYS4ìG‡ûÛ,¢ù«¶hlŠ3ÁÈÖ–[4˜ÀžpªÿÜÄÐÜ׃8²—`ùVÿ‰&¨í% 9<ØV1èP˜d ʼnH£CTâ{ŒÉ븈#ʳ—ˆñ}ûE…žý6ò&ÙeŽbþIš¿d”b/Qâkk/Ù)ºC þéü‰“ÔúC0ÃïÅd’]m|“¢»‰èKÔ_ÂÈÞ!þœýŸD¨eÜ Òö#HGõ‹5’¯ÚSê$â/Ù;“±zÇ+¿ð˜Uå%%• ê¸Ótn4}€ß+Û$Z^bˆZ ‚½• ýñm½7gôayIõ—ôäqMÂ’¤CX’tˆö—dGn|ÏE þé÷I*Û¿ ­Þëå$=U+LÂí!øæb{‹õ‚ôá"ž Ôf¢Œ ŒT{@Oe׋œŠœy(éhkÅÄ!’d¸e‚©_9‘NRì%íý‡pO2!(äh|õ>1Ì)œ» ÷ÞÜ$¥ß%Y“@4Í┆Ç,„Böœô,6â;$vp° öÎyå>')ò’êy¸pî§Û:ÉZÉ ž&Y›2}ºp&áN|¼ËÞÛ®²%MözŸáƒMRü%-% &éx0¯ŠI“¨¾dxV‡ÙŸ¨Xœ¤Œ—Täq' téPȉ #/»»‘&P„4µÁSðø×Lhñ³np’Äan’ö;ø‚ ³AêO"ôÛð"—~Û!Ž{,¸0ô>û OŸ Fi!ƒi¦´è(ÇëP8û—øáÐûŒPO¢öÏ oÎëEÊ *Ta%ˆþìâ ØZ‚•²Pï34È~ñ)ûw,áyìpð8޶Üçì3‚Ý$tŠ©®4¡Ôç!Ž…™¤`!¸¥ŸoÂì!ÌHH%á~d‡Œñ±—Xy 7ãÜY ¾]¬IR~D 5·d=d aÇWÑ"wˆêK š{X.ŠÅN£$[3U!©ø.%hã“]é$M5_œ#È×i%±xû!žHý¢MúªØcò¨ü”Aƒ®†ÞÛ`û`®[ñ3îâpˆ§–ÉQ©øy“-äͺ²I*êÞ0«×ÂÚ Üó ÅÏDD^²³Ó71”)H|•ÃÆÁ]¯5”Ïw¢y’Ú^òva5õ&öAîú*+?2X×31üê~²¬b’ ®ç4 F¡Žý!Z^bý%þ|–‚DÊÝB8Aõt8…`ôÞŽWÕö’½'ÙMX–D2P–DuÉEì%BOñ©Þ_2’^Á$¿SP|ÆÇÇZ[aö'RR j/â”ÖÐåàõ–¢:“°·§(Z¤ÃI©ü4çD\·õŸ[¤aîù9‡-Ò‡ØóUö¾±‹Ià¶ò¤ægXcuk~žÑ$Ã^¢·,è?ß4p¯ øÃí¾'(ãû\ qŽ#èú¶ÈÊ}b?çxM¤Aî3‘)Ì!mký$ÐÑŨíÙ?Š'8zç/1ˤD[ –žµŸ¨š¤î\l”-Ç´ ¤/.Óå%ó5·ü8DñF|¹—L ÷™H‘—ÐúíÕ ÷yÖ°½”ŽF¹Ÿ‘ÁI´¿«¹Ç0ÿ@ ö*ù“I«?dÿrŽ’áÁñPÑÁçñ¥æ/qɤ¿Ñ»¶¥~êòv_ ³X“t”üÀSlFO8õ[‡ì!ÓŠ]±±Bâ5“-ö™IF &Û±OeíÕ$ ɹd¼@ÚK…­pJÔ>a}=¸&Q_‚°qš„2ÀEN#ר*i»TÈHd¼Dí%^~‚–Ž+o©Ï8æ+ACÒ¢áv ‡pëžC¶ÁîÞÖùIÀS¡ëhw •‡I jýa¶5ý$Òì%áÛבþ}ë0¼‘8Âõ²HXE¥>{L”ú”˜çhñßd´+Û5š?EH£AêSÏÃóï>„r‡ ý ½ÃCvÒ@¡×$  žy‡âÛ‰õïT!‘” œÄÊK¼g‚eÀ¹áÊ$¥ß?½ìÆtª\5Ùz?QF=ɲa±þŽ~X€½rô_@^Rý%=¹xz?…Á‹Ùî«/QXÔwêý°ÐuJד4ô–Ü„ „;¦üØßo’Ž’ŒÛÞb;V¼j½ýý«/qxñ“jŸÜ¡hô[J¨ð {'ÁÚçFÀ΋ -Xï³ßÖìnјå{$¼õ}+¼jŠEÐã€Å«o±Ï3Uô-†‡ 5.#èaáØ+A&öœ#Ï!t(<:IEžDâœV_² ÙÓK²Ž^§IX€„Õ­Cé3} PwH}&¡ù¯k” ñOVT×kZ:”ü¿»Q4éµu:mù9™™‘ŸDBT|ÈP÷¼~‰Åh?„< ²œ¶DX}œ_‡µŸÈöÚnRËKÚÏ9¬¾8dü|—"€‚ˆm÷^â%‘¥Ê LPµGºk|í.I\@^ÂÚ‹C¤¾DÑ>+fÀæ—ÎàÍ Ø[ç<=(õÌæ–I0¡!“9 ôãý"Ü{ }`ˆM9'‘þ’mÌÞÄó…¡ð™#HÇH|&Ò2CtÐäg–`ãÝÔøôxÛæ?žÌ€Í¨ýX¼ÿ"ŸÖPh6I+i1Pû ¶1k0`FmQÖÛ? A –šO²«î":=°D û=”©%ÿPûI¤çôØàp/Q¼û„ $”ù¼ D×ö€†Ò‡]‚=I÷—PA¹7V\Obå%žÚ´Æìý•—°¤ë ꛡEq ‰ššî$Ü~ìɪ•ÏX2Tßn°«ÎèÒІ9„óÖ_„ôg$£¿D’òËÔû±Eõ±L ÷“Hí/iW:|l•ÏØgy ¥ù×Qæó&Œ_“øé  Ö¡8 ­Ÿ°÷Ú{GÕF²¶mHDa˜rRꇞ“¸&"[æ3ú™'¨9#*ߣ0 ·¡<„Ù›C˜½9½AHÞlÙók/ò±MnÁ2BŸ§BJä"0™t~œMä“ Ìv=>µûDYx5‰¦Q õ™Åa0?KÍJàà´>cƒIª½„Âõ‡P¸þ‘4(kA"ösŽÃ=F&I õ“Hí/i/è?dÈKMˆÎlÿL–ƒÅ]ª†@ë3‘‚5˜OÖH¸ ¡Ú{m'ajú¼Õù”b†á88ZŸ\ÀRpƒ"¨þ€^ÀÚ»‚6>¬¤rT>1X›¼ H:ŽàÃÝÀÀíW1¥íݫ@ëçd2Ÿì¯µŸŒ “AѨÆ@ÄP ó=“Tä…kœÃ½Õa® „>‘(‚Íñݬ·8Åaûá(þDš@ñçL‹5Ö!Áy”£÷sˆÔ—0„}CØ$ù<ñ`¡¶[”6ˆsÊÚÏ)}¼d@æ‹ ?8ñh=$•$]±²ÍíJ²‹éo²+ï"ô´ÕÙÖ¸Á…õ‹:¤/ȶn¢pÚá×+´Ýœ}j“xK£M!ú£¶Bôç¸0»Œõ®åRh»%2^ í%ü‡p÷Uä±ênÑÁ½6ÄNRŸ~“ÖïÆˆ¡ý±ó³ û“zß®È&y\ÙË^3rц\ÜMŠÞr¹“ÔÕ5Å~ö±õJ²<ºD¨[¬™BîS©Z>‰•—„G‡_±å>3Á…‘Pˆÿœ7I¹ Üd°à7ˆô—¨¾Ä€ä—ò?Rh)?ihåã@d\¥üÏùYPüL>Ƈ¼eõŸDJ}IÍ…X àT¨p7i¾6»I¢/°ú.ÁÏ㨞½·ƒì’$¶lMÒ·)`¶?§<„RÙG‚ÕL5"q •>a(•>o²3Tû ÝŸD:ºÔvTêþDÉ©R÷ç&ì#AŒW©ôùÅ Më¿ÆsóHM²zdÖÿ)S(}_N!üsÖ[=¢Ï‡Ðüïñ÷¬Ä\¡èÚ0(}*·‰žd3±—ôò’Õ¯™Aê3ûòg5. ©Ïè¯[¾Ÿþ¦Iš¾¤ÿœC“öíÐÝÄêK|dòYg›æÊ á­ÜÌ?ýoìµ …þÙï˜Î$± ¨ÀÂFdü2¨öéNеO}‡ðxâ!–‰À¼·azÙ%Ç¡»¤ý!°‹•KPü@Z›«×cÖæÇ—05ãª×_"8&Âô1Ó‰¹ µÏ@*%aÈ*ö‚0¦ó µ’ É™0Óo£íC,’Óö%ñ+uR5“q8¬MŠ•?<Õ÷EÒ2Q„“9Ù„¯<„zÎö2A‘ ŽÚ?/è̲r2f&e0òtºâ%ŠCqœ$)„?)˜’ÅI•L"é… ¿5m K@JÚ0Fí@àxSq —wOThÚV…Rõ- y´HÿYä¤gø9—^íOøÃLjçM HùŒi1’¬æB·— Éd"”†x–”t^DCú0ªzÓ ÿé:z‹Ô’IC9 öqûÁ­ó,Xû·î ¿ƒQΞÛXž@ ;vj;Â?À¤Q'1›Íèôgˆ@”©ø;©fbôD ìÏjºfPÛ[7À2l7[Ì ýi~ iþœ”È^„>ËæºWXwíl“· TxZpm ’?tÍd–ÁñŒ9A ‡ Ö¼Mƒòg Å2iõCðs#g d¶Ldf¢–‰¡‚EÕŸ@Øõ’T‰éø2¦¨_ÂQ«Qô%b™"¬áF埤C,†É«‹ÔWµ`VèÈ’¨J2`tp‘Ðú!!ð6Ã[8A<¤[¤J&Xû3æÿ S6†a†^›$†É/”›å‹èŠ‘ ¤Í_ü*€^2F& r_"Ÿ1ŠCÎÉ| Ý«@,“V3é#“Ï=ŒDÝ} Eí§’XŠ“—,w•ÀO+ZÑq@8ü&áHli™ègŒácÿ0Õ,‰Å,Åbi%“Þ2 5Y Ъ­ƒä8t/¡C²*ˇH&œ#… µLèÐ}izt—L|òá7Í$ŠÚÏBõO ^.Rà6;q?°pr‚|tÏéšÉD1á%Ò3QÉÄZ$¶íKJ(n\¤ÕLè×a_,ÿ döL(ooúVKÍÒü°îs ¦u¹óîïeÃ.ÏŸ²y7‡Ÿ‘àûîþ¢ù!b™P÷“äê~^¢éK*ºê¤I&Ø&NTs k«8¼–€‚]ÀS·a?b¨þR3híC,“ñyÕÉ»gw³EŽO÷+e O>©s}ºs¼°UíetÍ„ª—Ìp¸¸ÈX‹D\Õ~4’Ò29Ç 'ß‹4|òêcFÉdöL°««¿9[³^b3Ê2²³5°jî/9m¬¦Ï/Èz=ó",½Dpjþó÷¢â%Ì>&ü§‡ ©=“&™Àk [(ÿIïq‘ÝóžT‹hÍÄâÊZ©øö’òS‘žæ€çtFM`ޤ$ 0ìN´b ¢{³åO—X ¶±3ÿNàx‘Îz!ás‘Ðx &÷©dbI…Aû’3ùÑŠh†tNìn«¸grr6^òG3Fxyœ9\b¸—ÌPjUèéšy–XRPdœÃ%©Í8<øµ»÷Éd§ž¹åVÚçmž·›ða¬ü D>c4ÈÌ:Ò¥gÚ_RY ^INÊ ».Bv’$¨‘’ ;ðñ=šoLjŸuÞDûBÂD{¬ôub²Sá|‘^>D3¡fÆô÷bk&,ì•ò?âß´>=iV*¿½¤h|†Åý7>|â¥Ò—DûEð4N¿ÌLÉ_/‚Ö§GV)=“ŠZR~íÔ~~IŸ™ Ë„*ö—h4´«Þ*:|© ¤H&í¿'ôµÀiFlþ\Ù[Šãš1Ndd¢Ì‘<3·-ýõ%¥ý<–}IÍ }²^24“Ù3‘Ï[YTü| m~ø?êo/iˆ A×f¨YDZ&únM­x‚6ÀÑþy‚-­B$à% ~æ@ƒqÒŽöÏl\¢Ä>•¡Øçð1Ìͻĸ·â½›÷òA`¥AìÓû,Òz&±{É"ƒ)ùF2©L§$ìJv‰•H öÈgHEšïtBÿí’n™LD`Þ5ì^ù³ˆ–L¬G @ âÔXÜ6ƒ@NÄHƒGX©Aí³ce jŸžß°ˆ¶L UØf?_RküÙ§§Üó™â[ ã3fÎL˜q†pÔªÿe.*¦Ð,RJ&ç„üÆÄLÃKoGöÓs` ‡‡X&4d‹‘JÀ k겈ù5ˆ¿°¥¢©B‹4˜9ÝoÃ$ ÄsVIðÈ„ýÉø Bh² ¡Œ½a®ÝOïu¼@m™4æe ÙâdŒL&ª{¹,Úß²ð$õ_ºD<ï%´—Œ 1„`„RÚMäM;YR÷¶Ú29=<<ß©ûù’“¡ôÞ*”Á°ˆ÷âÇ8—œ _€;€aò1BV½xÊ=6öN ö@™½zwÝKjϤeÐ?dÌLN†c’½ºˆ}s@Uˆ~âš1NªdÂÆ|—ôöÅ'  !b ëþtñCù¶]§ð3E3)3“Š€JõWõšÉqâØ$hJ˜,ôwŒJ$#]"9ùÀ‹œ3‰—PÑ_tÏ™¥°È€ ÛýE˜ù0ÃûYõo÷ºMXyýŸ@ Ü,þÇ3õoXät/)~ɬ'ÈÂzÕ)þù…³1ý}L#¹{À%å3 8rêÐÿt¤EÆ ‡Y]üHb’¨á½›³’@T™¡¾:ÓmèØ~ÈY€m‰/¡ýÐX?@ë—º7>KØ@a¾ø‹àšñcÒî_Âó¸K*¢Æü©(÷6ò¹„©IÃïCÁÛKx.Ñ ¥c@$@§/™ƒJ@/i°p~N:Nëñ| H¹k6~n×^Â2ÒK’C7Š''a÷P‚ ¤†šÂE˜ pÕ(hKæ±áQ¼ÇÏÉÑaVì"Š›1äÓð£C È[Ù/Rx4ZHjˤÍL:_ƒ* /‘òЂ»!¿Pïg:T@µpP}AûØ–l‘tLþ8‘piÏßîeüë±cýò$dø%¸A0K’^a /š•‹ýµ)šIýŒiŸ1ãÌåõ9†`ßÐEÁøê„Mƒ.a*|„ÅOïs°H-™œ‰þxYð Çt¹˜á7¦±_ª—Õïb¨]ó×°eAFjA:Ú"§¸ä% 'áüo ÷Èɱ O!&SìçesPíó>Íê§Ñ—T”Õ4U³°Ì˜úPî³û}„² …„)qà1Ô7ÈÿÜ“ÚA¹Ï@,X ò?ŒžÉ”LôàÛb‡æp4&?a3ÖKL§KNµ!+Ô8¨hN¦e¢Ès«~‘”»•;‰ZÞ‹TÉç&øN'$?…µf‹L,mÅo|ÚöWÚ ÉOŸrú?TÂáyÕ[6<a~Èÿ2ð¹q4!øù‡H${qcRïœüô^â‹Ô™ ƒQ—ô‘ÉÀsÌ‹yÄ8Þ[å¥Åì—Iå¦ /ÂÈKX.} Ë¥/¡ï†¥÷ÁºŠ´š ½Ï@ô3†"–$®›§ ÌáÉõüƒ9eô9ZB×m•#Ùz:œ6ã`ذž ±úüâß©N˜\èÇœž\Ic²¿¿ªÃÄÇF4©ùù’VV”†Ûœ^-ÝœX‰Dà¿yׄP Õ2Ù=È fo€s,ÑS¼fºøêÂ×™Wö{û~\†Ðú›P‚ ¤X\JÔ{_ÒÇÛ!m‘!o›µEfÏD˜eéï¥ ¤€)1ùgB ÈKi=“.™Dßaš÷­ºDÐ5’“cLaç)?/4„‹$°ù¡ÇÆëÎX­ßed0?CŽôÕä¿'ÿd*ð,û]ø „€GŒ@ü3>39“¿óòœFû¥™ŠE¬DBÙÏ—”™Im™´Ï˜®™ÌÏ{¹÷F éÚPGtž èç Š%À^%hlÀŠDšç``ª Ìü@o@¨ø| ~·x¥{±è%lÜ€ÅH ýÈh™·Yà‹0veWŽôg9ú)›\뻀`˜,4^„݇HÞìМ/ qü° h{îsÎ#ؘo‹G12= ƒw>ڟ׫•éÉÅÓ_Ô,“ñ U,pz7èŸlé°íeæž@üS¨ä3ú?^±åëã|)ÿãK˜ˆ÷aº$4 [@Óõi?ü{þÃäâ´UO+†¿/Ðþ „Áëé¯Úß ÛT.0!³å#pvMV(þãIºñŸ{°*«4*<3›Ö²Þ3àÔ¿dF[K üU¼/1|¡Ø™ÊŸTœúá×Uªÿ¼¤ÆPå’©™(ò?XП÷n I ÿsC5zt?W>Ö-~j3ýUSÀ_44A‚ÿ P$ l®ÿyÞúˆÿDRPt¢N*âXðþ´ºîÕ%¿/¬E…ð§øMP,ÇK—ü¬$F!ÀóË*$?©#“V2é°.DPH~^Yï†a"% Ym^]ÿGiø³Rx‘‚UÏv¯‘¾¯‚/Ý/˜™Œ¸ö(E?_¢#C “Ÿº?®Õ¶ÈŽÝÒ28Mü¼Y©úéëœÞ=à’mø{lXa÷_S÷ü¼§Ž ÑÏ{$¢“ ØÖ*Äî1BóS—S…æg Ãú©\ï_‚Ï 4?á*ìý{YcÌ_±Ò;©¨üLU“EæYn9!ûˆb…ûù[™EéÏ{t®þ „ý†/¡ôç%LŸÄ¬Xþ–Ï8QÄuø«Pû‡çsjQév¶îQ'Û€ ¤ã¿Á©‰Bøó÷ áÏH4+„?9³Þ“B Ú?7dcXÿéŸ1³dÂd—¨dÂÔ’‚TzÿN­Àƒ{I«™½ÛI§Å ç²”‹Ìž µû±â¹ô$Güg‹ì™Ëä$Ô¬BûDhN¬Â_Éd~¼˜2V½Jô«ÁÜ1ˆÞâ&ƒøg µgÒ$“„¶æmøà˜¤nÔÒšËe\b8§ÀÃoþ ºe°€ ÚŸ× 5Hÿ2B}ì"¬&AкW“\Âj’‡H$Ðþ|A _FñO?²±á¤±5ßùŒù¦Ô#ã˨ýéQh»ÚŸ*j ̶éõ—Pú³å[O£5*vÿ/¢ÑÊ4h>„¶ÿýñ¨üó’Ö3éŸ1§û°GÌ ê?â)”F —„Ó†¿Ê„ÅÙ @*r˱Eµ?_rÄ”ü çÝÉ´L4±šz’£þ³N`ø›ëØ_R?clØ™f^PçÓ “ÿ>ƒ{‰öL §çÎòûÅÉ¿@m‚ÚÙ4é ëæd_œìKà{Lo•HàŠüð>ÅÚ³/RÇù²Ž»²†é=“!™|€¶L¼ Bpäpžox‘ª™À¨5£e2ßÙ¸€ÔLX }IT²—_sÕÛæ@Àa´v‚ÓÈGÿ&Á€×S É Þ"š& t?ÒÓ¥É]R™ãXIšeÂ~º'@¾È1i_B™˜KKÝð÷Ú?ecQ~ãØ´.q»È6kÙó>cÙ¾dôL¸T'Ò2¡i[&‰¥Ï>½ ßC4“V2éÔfqrÔØJc‘/˜¯tÈ"j‘ì † y‘Ò3©’IûŒa…´ KàÌýûƒBÔm± %@+¼ìEм›ö"-ƒþ%– sŒ/ñ†¬N¢¨ü`¼tü¼P ™H¥l£v¨/†c æ;/²3‘aƒõ‹db”Ÿ§"E ²ñ—ŸGô.aGÊKºfr@Y~µEŒï˜Ï‹, )^ZrIÑLZùϘÏm¶M;N9Ù^] ´Ÿ•ÄX0v@õD$5œÛ-Â<¤K|æOŸúNæg U’N¨| ™­RškŸ ó"âOü Ðþ™¹ ‹œìâ—Ä—LœŽãù-ÇX°:ÑvñùÏAy})Ýëj»°+Ù% Ï=ïCýO{È(ai/Ðÿçš‹ˆdb0ÿ{N ¤ i_Rk&”À½Ä;:8XÁ„Ï{‚Ä‹h}ÂùOX/ƒÚ‹Tê[%i’ÉÈ`¶±L4D¡¦ý9v•BýO¡,‚q Š·d½+´úkØ`w6’‰Œ*lŒE\úêEôFýÆ%"Ã}V_ÐÓFGN‚ÒKŽúíK:*Ȧ&(]r¤b^òÖ"¡2~oÊA¿¤ŽL¡F'¡6ÀC$dÀ8.†Òžß/Ân õçÝ.)(f;B'‹TÍä˜BƒVD…þçPxH‹Ì™‰X&ús<ºK(ücA/rD^Ò$“޹Žu²Rô%œý—Ы»„^Iu…ïK¨”T *6|,µz‘4ìˆZ½Jú!põÕ_%%í™X°òk ÍLöõL Z½&0F¬*qÀÎdveÇ—ÐÓ%´Ø\| ^Òß*JÒG&<¢¸d¯øæ¿G÷VØ9*.âGY)#“ “{8á¼çÇ‚\ ¨ãø9`gÖKô3Æ`SðCpxIùŒÁRÒ&Aoa&B÷ó3‘K¥ù6ý¼ŽF…èg 5õh~F¶¬Õo<°:Z'9'sèIN¬Dr")Ì1’ŠúŠAÐ`ÈÃZ­ Aï¿ Eo²HO@±ÏÍBÂcŠBÝÏ—”Ϙ†£~nÃ1…>cXP5}Ì„)?œPÑÞüUj4è~zÿ"E¤§äb‘ŠôÓá¯j=ÖN'ç ‚…x‹HýÔs Þ"1¬' š?œ’w$wÂpiÅ›ìžÔàE:ŠÖa.¶={Vž.´¼KT3±I½ÊIÍ ͽE:·ƒš@F2{&‚ÊALÒUðACƒ²@ {rI­okEŽœ=µQáì¿Ä’Ô‰dão ÚŸé©¡Ã"E3©Ÿ1í3æ3„gØõ[G,£ã`c­™Øˆ„ÒŸ”›Y¤–LZÏaå2Îm«“93Ë„gØ@÷‚K¦ç©^R[°0ÚôSŠác:ž|þèþ „⇗h vIƒøçC þéåW‹¤Ý½ 25˜Z½m ÖHFÐQ\ä$ZRŒqF4øI%¶qéJÿP{t‘Z3¡æÖÓéŸ@R$.™’ ŒêoníCðDâ5núÔ…Àƒž}‹B2>@Â.×àPYdXp²ˆ@úÏû9\R¿€eÑ¡ýyýü~´?¯Üž¦„ß®ÿ¼Ÿ þþsí üRÚŸž„²ÈI׸¤PÒ y‡ôO pü9?·èPþñòÞE¶ô­—y-BéÛû*•HÒmknwHªà4u‘f™Ð°ÅRß)ýéþ[¯^hx‰¶L †¢6½yÃÊK LqÂvÓ—P;æF§ô'3¥™x2%ñeN(C! HPc ¾éÏH:>Öt2f&Ó2¡â%”@$.xIé™Tñ€œWÄ,Òg&ƒçØNèÑaíÃ=ºK,z8òŸ”™IµL:Lœ÷t®ÿ/™Dûù«¤g¢I¾ôž±L’kסÿyc›Z@LoXß:"#»Áé© ¢ˆïññ{´€*I™TͤõL:VWìNýH€ -ýŒa¿2J€23k&mÃ|~^÷±ÈÈ`~†ßÎx©¡–OÔ?#aà®Ô ZË„žÎãçžÌ¥¸@D3±p„9(þéFÖ€P 4…0%\@:¢Jü‹ŸU4#ØÐp˜7JlÕ´€!ŒŽ÷†ôç Š½â™‹´ú!0ൠ(“Kü¸Q³g7ª'lPÚý¤1  Í{•!-` Еr +u`3dÎLÄ2± Ü ¾@ §{ó´{x§˜ƒ ~02:M¡ f}k¸Ù“PðzŃùë‘PÔwê дö!8¿íƒÞ_%™¯‚Ê¢ ØjÌ!EGô?!=±®+Þæç„6í%]3x¨ò]‰s’É~^ŒÿÜô™={@ýÓüè`ã$>ÀÏUº„¹J—Œòjc,r::¸ù< ÷…¿-ÄÒŒP$ß¿¤òа:AIl¥wÎ`@‚Í„d2!²‘4qÚ1 w±Å?/1·ƒ°%ŠyfÀ€ ·-Òasñ)3HÚ_G víK´db=ùK—{W¤bµæÞûö)»€¾¬’°ˆ+Û¤ø'«0a))F…@jlÙêÀ4z/‚”´N;`¿iö›ªžÈOÃ7¹ž›Ê`î<ò?õ¨™‚ì&4—Jб£Á„šy?.þV¿÷á]D{Xõæ^þŸÀÇœÞÒç’ý=¬zsºVÒ%Ô à[Qÿù%ó3FàÃòa‚Õ-0ùVâf,ŸdJ€ú7!jÊÝ} tìÏosÂÚ8:÷g‚¨+5-r¬þÊ‚I ?#Ÿ ¤†ˆEZÏ„é÷— ËDê‡h&Ï É„è}L(€Ò>`fÒ-L»=}ŒDz0ûV9°db=lÅB  —°LCùy‡K:â²pÕZpL~ÍBBÐêc,‚âç—ìªXÔ¤ °mtœ@ž_¾­Y!ˆ!)îÆ=Ä2¡GR½zÆ£Ô›§TIÚ`5~ž@øÙ2‘Ï ºú]Žýãâ?/¨éšâWúL€yǰ VèÈ„  —P”„ªo쉽j„;(€ÒfX]j@Ìò!H/þV¬¶r`øÜðüdøÿãát—Ô‘IÃOgK HlfµˆH&Ì=Vÿ˜{L2½Ï%µdÒz&ý3f|ÆÌÏ{1ç Q™Þ™ï! @…;¸Pÿó,¡†)+Gþ3‚S\†âšEf¨_Dk|€®éOBùÏ—P ú’úÓ,“Q3™Aì`)™°˜ô §—rä?Ç]haùGb™tÈ‚aGȺhè"Sãò|$îa¯Pú³¢¿sØ/JùO_mz@.¾HÓLŒ q°WxFèïÉp~Ûͦ(Î"§êv2Œ¯0ü•5b‹”‘IÕLhá°Z©ä´Rÿó%òÃZÒK Ç’ø‚µúÌ¿$Vœ,ÒÞ~ì ô¡â%Ó2Ñò!HCC¡OÌb¥$ÐK˜â¤ã¬ïI ﱈ”L´gbØè±k‡a;ý ëèPü’j™l™@FÏd–L¤‡ X»ûr—З#îË=¡S¬U«¬¶dÒ{&^yb$(z~cAF^õ!ìNF!Ð[¸¡Ðº{˜B(Öó«:Žãô¨Ó;;\ÂÖ—(²2ù L×B$.P Ou…&D;b ÃOR"qœdÚn -Щ<PhºD«'ÏÏUÈ`•‹êÉUz®L;!8¥ˆ*Z“¹‰­Tõ²ªë£\ä?DÍ…í/)ˆUcQWófVð}2 ®N°ˆÇ³ý>®ÍðW j˜Í_EY×K,ޱŸ7iB"’ý¼IÓ%Á$#9…'ž5l?ZµÙD¨£¶€ÌØiÅFP·ïŒ" /9©þ]¤Å|ƒ&LþžV<×ò’‰5±;9Q½Ÿ9W”Ê@÷Þ :+Dƒ2ÐõHŒÊ@~Ðe dÖLØÕäE¾–ƒèCàxÏÕEj Y»d=…a)ƒ/Èñé:¤89>ÝKðø}™ Ð=ýØA ²*‹0ñ‹ºuO¼¿dôL&ŽíaÖX§Ž¿=:ž3`Ð äÄ´©×³H™mÄ—|†0óÞXØ Ê ÊÒßElDePõH©Mh<„f—’ô R ¢M÷ë8ù§ûu—Я{H¬ëXM«ÏƒåÍr2/i3“n™Pñ’‰ ÎBŒÚ /¡¦1Îë ‚pB ´EJˤ"Z‰åÖ(ô’I â à±Nò]  z³ Ú óç+)"" ÑS3×R‚}nU·{ŒAwî@ èÆ)ÛÁK¶qÛœeýA (mÜÂùÖíEzËdàdRüUÓ2Ñš‰H ç™g‹¸¾½“]ˆX ÜŠEÖrÉZÎÙcæCNç]¦<-r¢¶/1‰ò <Ü5f »~‘cÛV^(-Ü{PÝþ陨DÒÒ%Ôí_RG&׸¤ãY”F2 VŒäžTW'´4Ë!Wôªƒ^BuÐK|ò«Édf ÈÌä?ØoáI#9…'xÑtá<½~¬¿ÕHÚÙk' 6–83ÊÂM!ñ£ 'ª‘uÐeØöJR0K#©’IÃ8ô™ÉÀñu-$R2a‡¾ª$V" ì+¹H™™TË„rÑLfÉD>ï¥Iº vƒ@ ­!a“«KŽÂ½þññTïÐÇy¡žµZ:‰@ ï¾—";¢cŒyQõœ$¡tþÄæ‰Èœæ‰È—tÉ1=¿ ›N«9±LŒªçç,?¯Ã-NŠd‚%åˆo€ü‰Kºe2k&‚RÿSc¸ˆj&†oàÍ¡HÍ µLúÈdÀäÔA2G&¡$™$A…¨@ Ÿ1•ÒtNX…rì†EسkgHh$’ÉçEÖ"VP ìðp$Ki!d¼Is/22˜-¡dŽßøLtD[`ïí]‘­«L1–*$ýT’Ö3ÙËÙ`‹ÃEês0Ô‡%¸\¥ÐK,Ø“Z†'Ÿsm†ú°:ˆ¹¼ß"mfÒñ¬M'³~²tŽß¶Hôí1ä¢c+P ¤~À|SÙÆÐ¯#”±È¨™œí%èñà_w„—°° c¹Z¡—°°úúwct$Éòë/¬¾dJ&š¡<îÞØ,È…>O€ºÆÌpÒ6ÀUoË% ™¼U™ëZñ“Ãl.Ô >Ý!ëì.©ð±±sÙD^Ÿ4|ó_Î+šÓ•š’0] ¤ÂäˆÁy_ _÷ N2Õ"S3ÑàÞl"‘¤Ð lŲHEÄö]-Þãꄨ‰Øš‰”L̘ © É3G­Õe²`'V8:Ä‹T|pØ R¡ÖŸûŒžÉ”Lxv} S/1‹‚¡ÔžI+™ôÏæà«“‰ ',AµyºÒC4’¿î~ݳ7Z#a>œzC#€JãÏoLíÄKh u+¬d¼K…bh Šª¸âU<ý˜ŸJ=ýø’]2sÒÂvT¡¤f\=rq0¾ÇE2A(JíàHTƒG7|Ù‚bÜ2+jº¦={_Òg&™ZÍÉD\Ö~¥\(£æ‹X \´Ÿ7ë;‡¨‹°Yß%l\sIƒŸß†¢÷€e¥¤' (3Ö€PèõÍ[ñ’õ1­fÂŽx¸„B=—w‘Ù3ÉD-ŠÃòSKx:ZM­‰­™ð!b™XÆ¿18ºå0)…B_Ò$“qæöÃFãÿ%ò£5ÊjÀ kÝï/Aò û¡ÐH:ÆFÛ ê:½‹LÔM'[RàǤÄEŒ§ß‡EX$ }A J.‹S–jéšÉqæB$(ÍÀp„0=²W£FÐK*-IÓLFÉdbß­þ^’¶LX€‹E½‰;sØí”BÝlØ ^À41Ç“CÆÈad8W*¡nö7I9‹°g+"UM=¸vTB×™¦Ù A/è-¬ÔN@ÑKM]+ÑœXļƒÙ%¬(½¤ÎL8óÛ qómæêX÷U´kaLJK¼…Ç!ýÇž}©,ã-ND«ªC#È5´aEé%GOà%úøèþNfP'ôu$ÐàÌ 'ù`J@9%X"¡/К‰HªŸX_Âó‰Kªdò2Ú‡X&òy+ýü;¦áIíÍ›À éP‹ oŽ]²7ïV|É©¥žÜzó# L¿Þü¼Ú:‰j$0ü`ÛöŽT &Ü-Rãn×!…B»“£ç½»°Ì%Ä6± ûþ\R?¯êåC4“ Ó¯$lêG$(’5ó_rD‚"Ù¥Ôur­ë ½OUB0¢…µ¤C%È‹a¬ ÍïËæ?$4ÿ©—´H é`‹T¸… 1YŽ #A ‘ß™ ¯z_D 74ü6”ÐFb%ª„¾¤@;ªU’–Á9Ëdyÿ&ûß¡ÖÅ";žˆ„”Ex<‹»[ºôhö%Ï|’V3aã1.™=‘3ýŽè ¥ø•È„‚ì{^V ˜ I™ðl†ß*΀I—å’6/¼<-œpY¼é¾ÙuPf Šƒ29uÉddÀü¤á„m§/aÛéKXx§s@Ôü!G(€–¾Úšz>,²wsOˆ_dŽ|ù¼‹NHŽ:èú¥±,­Am™PÛû€8P yÏ8/ÜÞ7×óhÿ\é†Ût¯9)N J–±µ н„ú%GôÇ•p@”Y} ÊH7Š ÄàWbÁG´Š/²>”ÁMu :Æ6 7‡ÿ Ð ä³IG¨Ï Gô%\ò_RèO ÉQmþ^T}ÉÈ`"¢‚Ýx@t­0ˆíod#(½ æë< Y´cq|3  ˆ ã›O‡d;vR3†QÊ™gþ%¬:q1Ô³î/aÖ=‚ò†ÿ¤ªë"1ª4¨ z‰¥KýÌÀ^„šXœ‹†“ˆtAµ¾.;gÕÑ @aÖð™£.¨“I]З”‘ ›ÿà@qÂæ7?Ù?¯8©Ô:¹J‹HËDaôÁÍ›?ê#žKh‚ÞËÚÃe W”ùÆÏ5‹÷w˜•„ý.Q¤€Ÿ¾M¸Ú⟂h ¥gR竪¶H³LúgÌÑbÊè"'©ÓĘÕûµV¥@áNhÂŒŒKد[ì¤èKÆÈd–Lv¯±óÆ"Ûä dûnéî¼ñ“bµwýÉEZɤ÷LNRÒK>à48 Ä",¨Ë¼-RF&U2éñ3`ù¿IR@HÍDG&ôßH ¤µ.‹ɤ$ N݉Ѕ›Ës^mc'³frì–ç,¢XvaíLI—H1{IÌ<™ $edLÁô÷L… ]ÐH$ä,ã(jYÐH¨…[¨…ë Å ÙT8oê_ƒz·+ìG:@Þ£o&WNŠÂ@è& Ló—°ÅÃ%½g²í¡6 õÓ;Ö4È"¾„=û°(ÊÏÛ›*kö%³g"PåþV™¨—™\Rë‡h&½d2p>Ïår 7CY ˆÎLNý4~J(ÝË“Šá—G2À/¢_ž ¿œöJZ.¢5ÃcŽ­^©çÑ…¨+6,B­$œz+ä\ j‘ü3»Ä2¡ªå%Ú31Ĥ±é‘ €Ê°êhq…oØ=J ЗìÙÎØ L˜ØÒ´ü}â$5]b®{Z Búgt:„JÑ7_µºÙs ³0:Aˆ•*å?Yu²ˆ!鋦BøçFòŸ7è¢ÿ äLõ—ŒžÉÌ@Z&в$‰(´ñŸH4dj?ê‡l!³ë¥¯Sªú!®RýÓ³ûô(­X Îà@úç=ºT¨R_‘Ž~á²ê€W² JáÌGpY‡ÏüK¢z†*-þ—Pè–”ðëøç0Æb:@7åC¡ˆÀÆê~gEÂn“®‡ñ¦aàÜ÷ô–yÎMõÚûœ³þ|I:…>‰4[éá)´)»D‘Qÿ’22©4©„ùG #bÂõèÀŠ’‡X&V#ÉïmJ)HïÂñµBøó…Ó|:Œ±k¤r¨yBý%ƒ5j®kÞÚ°æÊùAÍ'ÞÙ ý9 cIFéOß$ß™<p"šÉ©ü>Wæ«/ÜFÝÏ—ÔšI™óÕ÷k£îçKöœïÊoÜÎÓ°¦„?Ùæ«ë/²·Ñù6@pj…DH«IÄuÁgÛ ü),S]„}wIÌW/Õ°æê‡—´ž_Õg&>4NãŒÂŸ‹\DFÁNfÐzHÖZFOõ "@7ÛÈ®N3Wí¯eÂÀ¬ûAŒëÈ)~‰ÅÌj£òçKêlß¶úåOo=½È¨™œ4Œ—œµ¬rÙ·GŽÀfØê @Ôš «I.é%ÊfÀú³#ÿ‰f`íCb¸Å ÿy3L¼¾ŒÁæD€ ³®g¬Ø1a ¯ùiÍĘ݆ÛPýó%µ|ˆdÒ3-“tjcê)Hƒ@G(³cï¿Ä {ûF\Ò˜‰c$L¨çÏ õÔ £»õfÞÒFYšýöû¥ËcÒzòEØÏá’ŽåíwÍÿ‡„Ÿa)™ÄŒúElFBýÏ—”ÏfbÈ a&Æ%…-gy]dJ&’yajñ™p‹ìÙ?–EûýÏëT-RG&-¤$,Ò±,N¿Ï)%i°}™ˆso‘˜Oi?jA_ @˜Œq<¦E*ꇪé03¡Gw‰PÓ‰ŽLŽGÇ­Ï~Ý«E§’ü;wL… ß«»]{ ›Ow#aµè%o¶û{yŠ1î3Ò%œº@,“M"k$§këK¨ô+$_ð!Áôèì%̬¿„^ÝK‹9 ±ºE(wé/¢nÌ%úc Ä@=¶ÈIËxÉ1êxÕãå€{)“d¶LX&z‰†ýÄ~Ð $vsX–ãì­eBKè’a™HùÈq1¡ è%”}I¡LE%©— ì.¿H×LØ|úé™°–êL€”£º¼É³m/R,V•UGb3žçI¸@f8·[D$“x(g2@‘|Æpw¿„…ÒÖIú[]±ÀÌ×È{ñ{œ„ŒX}z+Wt:)š »µ^„¤KÆY׎żÀ !E{=…ê’Ã_EÉ ’æyeÍ Êb¬´ö!–Éø¼Š¢1—HÈZÄÛ_až·±rÄ@•ƒ*üW\¤ÍLº¾vÏ"³|ÈgÌð`«h¨§5.r*ªÔ§15€^B]ûKËnƒäøðwÚK…b /±ÉôönœP „•%—ôÏÖIWf׫¿•pÿ%0hü.ÑcUü4⎶ñ-ÐYP7¸5c.q™¶}ÞB 4#ˆXýËÈÚ_rÄ@#)-“s8ñ’†`òÏɨ™LxØjŠ&ÝŒE´gb T€¡gרÙ4øæP „"XJ0%ôSA(³@VÝ/ü“Å·H™°¥É%½g2`q­”E>`/gÞ@~CåæIåfðîï—õû”?„kºÀhb™HÍ„—0Cƒäè®3vÆ I8{IË S¡¦‘P«V’©™ÈgŒ¦1L:ÀA —Ô™ Ïuð4Tˆa¯ªP½—‚ÜK½2 ³"Ka›‘tÄø˜—¶HL®_$&×/ÒãnQ¡ý¦LÐ[„;Á%Ò2QÒNwCäC ýæµ›„j®EZÉä¤&!š¼À°‹ß–b1'2·¥á¸V:/)=“*™4Ÿ*AŸ °ƒ¶spÀv¬@Ýw5+Õ?_Ò2è_b™œ¸öK¡dñ7W™—ƒ—HÌx RûZ!hÂædü*¯è%³g"ˆ%ôFªÏ­B462ù5’تr‘62ñ’’J‚Cf¸ žÑµˆf`5lÕ ¢?ž×·È lÓh?¤ãñœm 7n?–‰VÑDäê¾Hf&tæà6,ÿ¨ÔF.R3h¬’>3–É„nçŒÂWöùOí ß4ÈzïÇEŠdƒêKBóûtXú´êkØ%±?Ù"Z2±IÃAÅKŠežhXHVÙ/ -Øñ òŸ7–Õ ÿ—1¿Í ÿé囋Ԓ Ïç.¡>À%ã3f"hHGëÞyÚ& ;O“@tühÒ5jþTn8«î?:‚I  P!¦°©ÉC,ö*¾ädj0•ÓÚ„5û’úŸ! ÑA¸ø’?Ì\dŽLN™ôK4z î-5a¯Vþâ½Z/ixòÍÉÉ8~É™LÍä¬E’¨K ƒhÿ¼qŒùOaëEFùXt°ØÛÑû±‚òÂN¶ñKlFÃß; .²£zÝèA7È4ÝZ SF ŒžÉ„%…Í Qðí% ‹¬ú yh š?È@Y tuX I<¢p0pp˯CúÓslÑš‰H ý‰E´_«{v/ÍV O(.á ÅC>c¶9{Ö cÎv^.bÑwéG÷3‚Wc&Ú;`ž½ƒ˜n%`vÒô!ÒÃÔ«§'!ÐÐ[ºô{¬„ºŸ~V½HC£’Þ3ѨëG÷Ó5úP1‰¿èè¾UzºŸ”‘IÅA9ftïì6]ýzWnRGl/îKž¢øJÙ«ÃÌo‹ªoƒñ©Uó+çŸAŒ¨ÕO/ ] £Îr^crÉ õÚ‹Öž“÷¹;´’Ìt ¹Ÿ—à‡k¼f£]õl5}ÉÐLÊF€­OM]blÙêÿ ô>=“u‘Šcb8H]’HÆ"Q$c‘dýtêýÜi ½ŸÙüÆòÿ½9öFâ9öN<ÇÞ‰çØ;a/“K¶=»¾VHà iÃÜ÷(o‡Â[ 5ÜuH~Òg&ß3ÂA"o£ãÔwX~ˆ(wˆþ\2 úHäo JÙÐü ÄõìÄõìœèŽþPMÀ‰;t˜?÷Ÿ)8ËáU‹—}„Ëÿzê¢ý3ž—ö\Uf$ùeük­á²pÙ‘PûaPѳñlbPÑ“oÁDÅ4î/i>½/)Ai`‘:2iŸ1Ÿ!3T+.‚,$^*¢ðø}.žg µdÂÅ%0'‚‰9º—sZ5/m{+â—ú\¤^øåÉ»ðË“3ï—'aÞàÏÇ[dj&ŠâñûX„â/¡ujNê̤Aý®Æ „ïƒ>/ÉD‘ÁÊY:½ô™DÜ<½¤B{¦ÑÀj~÷Â!¡ó1@ç`J!óÞ•Û£ûj@º3ŠÏõvY101Žt›‹°m€£¥âdZ&Q¼sÖ‹˜×‹\Rz&,~¾$T.0j&¬~ö×0,í@{·«U¼› ×^‚ý}•øÔLÆÈ„Aióû|~¸ŽpÀsé¥Ï0°NçŒÛ¢ÇæUðAÎô¥ý!´O»ßæØq VÄ„x§ ÁÛ„„Ïôè÷¬°O_Ri—’^2aÁÿ%350ïgu]zLê Ÿ2ÁwÑ<»âl—†‹=[l¶´@G…¢¿æ¨W=`OûÐ<…“;››§$ÝK a¨Íî%З¿ :Y 0{kÆ„ng ŒK÷J"%V@_ÂB“æüäÊ7)áîE8ó/áÌ¿„3ÿ’Y2qß̉"“+ÒŒ‰%?ˤEŸuRÀó%C2ù‚¡$=\è Ÿ@¼xDI¼xÄI,]¤#*0ý>,É2i™°x¹ÛÀC4õ^¤h&¨<ãg€„Ïp§i*3èaÞL˜ó÷aj>i˜šO¦y =ŸˆøëÁé)vÌižlq û²©ßæ”Ì_•ÌO^"š‰Ås8ˆO {ö·I]°¸ž– u|øÀ $<_À »ê÷e?†K4‹N²PųРªx¾¤•ÑL¨bˆCšÏu«–áO/T0š¬8”Ͻ¤î4¬m©Þiì’–h¶õú‚9Ã*•zG\$¤ÞÖga;Í%)Ÿ1µeÒà"#â¸êy×{Õ÷ŽõˆB0Ï¡P¿³¡ãË"4g»¿Š ÄXåú.#·HÍ Õ°*ô;Ÿ1,~‘LBå×3’$ ¶+Y„V8T“áV—œj{›@Ç'×äö;kl5F2ẹ$ð ¤b™ÇI»@Às4rd|Œ¦Ÿ@ÅÇÌÄ™ùKNÒ˜=ÿŒ!kN…ùÎHNíóeâHùDÒQ»uÍ$ ¬†"~*£NÄ2Ñ‘ ÓMI(àùv»„Q e •œYÂj¢.Hük¡ˆ'åbÑ’É™ý—Xº<Ûú³DAÁ3†W!b#×ö34)™l+èsj>—è/‰/r¢Ó,[„å³°”j>ÂV²¦TóyÉÄô*~g;ß1Šÿ‘O…†çC âƒÔ—4DÆ`Ïkñæ<— ÅáÁWèx2È®”ñ|€!q?RÅÓ3•*ž/©@ãQÔ£âyÙ”kÿ¤5ªPñœÅ¿c¨xöÊE[¡âyD¥Šç%íG@÷Z°Ð’–A¯™ ˆOà‰Ñæ¥#—Hÿïi(e§È94€ž/9Ùu¾˜h÷ÄùK:BY?'™Uذ•ÀK¨D|‰E@ Ï—”x´¤ÃKÿáêðzh8ºJE·wEpÕ°¹ê€;×ý“¯üG ]š _2]Ðð’¢ñÍ¡áȱi;.dø¤˜^Iå@˜°ëïÄ¢PCg>M á‚@¨À¡{IÖ–BÄ3ýsv&–(TÝ^°í êßžFáfSJú¸ƒ§ÔôyIC¸{¿BÔ'Y2*“ú{ñ¨í‹¼ò‡_R‚æÌ" ÇwL©¤ e7×ì_ääy¦‹š»tÕ‰Æâƒ®k“n‚ƒØ›ç;‘ÖÃveò d[óÂ~·Í^s‚ŒÝûïl—Î{£šQÐJ! ”ë±òÇâCu€ówõá&Å_C [,Ç]ŸÁþÌft Ä`ûb%0èúÜà®]ŸAq‚¢JÕ‡ð|Û…A×çFÔ zž7’kÐóôêÛE˜>OBGà%Ÿ!µež —tõw‚Y2È#òõ™úèßl)Ï»ŠZ÷T£JPGMHÿQ'{Ú·Ê…×`ÿw·oŒû€ç›€‡Ðx ›ç^Òz&)®gà qBfPô DPÀ…ÕÙÄÑH¦§]Rah"–aòôàŸMÞ<`f2±"Ââ7øXD|æ_R>cx@£žçKËudŽLb7õE …¸¼!¢A¦-Q‚ŠÜ‚âC*,.!è5jú`»0uUúæD3`ãô‡X$‡î%Ç¡£¶Ì"œÿpñÌÅ ™|€¶Lì½Mÿý~8ŸxIÁAüž'›œb9¿Ë&=¶d¸d“ð»0ïbÿ,›èÈÄà_þðß@ÒsüNáÁ&õU]ØÉÃÕ…é/994/a‡±î7¦DRÓ¥§Í_´ùKx47•„F­ÉÐLN¶‘ýu‚ d»É^Ë:þÈ»R>cNíìýw òÈÀûl$³d"8Kp@iÃ2H ëüßd=iÔ¢™4ôt”ì©ßg¸öÕ¾LW8Pù5µH(èù’‚2¬1I*¬‰ÖI¿#éH/Úa»M†e"5ÖA¿3Û, |Š•16)’IË ·g?ÄÎ[ýŒdB¿b8Ö66bS Ù>-ÒÍÖ%ö6©4„“´’0yþ’ˆ˜ß—íô‡Û$Á áSoÇÀÆ¿¡9õ&Ë0¿ñ«èyÉ3§üÆ&ÓØöå aø¥¦ßžjΗ@ÚçjANýóÏ¿L¨yÂbÚ€‰F:HF“¹fþNœõÍǨ…÷.Ðö‰äÍfßdô~p'6i-ªZ]Báê¡$ÄÀ·Y îøå&† ~?¿e)Ð¥G Ô&'Ïè%4äå¶bï¥çÌNøKÖ²ú«N(AòMŽácœxâ>l¹I=§¤Õaö’߇yÃxH ´<‘7<» –•æ7¶ ´<9‰HÕØ¤½¥Ö›tÉd|ÆðǼd—@ÿ¦O†ÐKŽ˜g$'Çæ%µgÒ$“÷po6eøU'öè`o¢pp‡“sŒsÉÕöQ'¬c5a¨BÒ,“Q3™x«â$8q›XšÍÅ.™”7”JP_’M\•ä8q/¯òÌ&žŸÑHðÿlÊÀ‡ªn”ϘוÛàuå6Uâ+Puc:Î&Èz«ƒ€jž>ÂÞHÒ?¢>ûG#©åC(UIú[Á²Éˆ›|¶Õ7aÊä%ìGUý½L#žg ¬¹äT@n]â>ÓwßmÏ@(ïÉ¥õÊ{^rNs ñÚ•Rop#7)=“4ÿë/ÏÿúsO®:°GÌKía²U({bªGÖKz…¦ÏIN 0›˜MÆÈdbƒ÷·|\G£q­Ø9~ŠKOÌpP™ß($­fBÃFx…¤g p2ñ±Hš=ó炨'•#7©š åšI`¦kAì~øûèÈÄPaÉ÷–óT.‚•J>n£Ô£è©?.äµÃ‚}ɘ™œ$ýÏ[KbÙ®l÷)s=·H9}·ê„¾Û% EzØ2ê€ï¦4V!/N `Öá)I—P˪9±&r2*mÇ:½î¹( ëž/éõCô¥Nè»]Â.¹—(—öFr2+ݹÊå_é˜Uqç¿°$[vUïö³…©ßf ï‹¿'}ahw¢00;ü/)=®ØP¤ºAƒW[°ª^2à°W#‘ú!Ÿ1V"1¯½„U —ìO^¸AÏçlös2ñÐÛ ‘‘‰j&ÖiÐõ iU˜ j>P™~sÃâÏô§MØ*÷Á!¿?&–æeOfèb™TÞc…iÅu ±Á7({2ˇș£Ñ´£ì)î˜4({>z>lyâRO{ÁMvzj w懨Ô5¼`2ã¶‘’T¨%À£iÈz¾ "p #ºÁð‚€Rƒ„ÛX4=Ù´}“cö¿D,+‘@Á-Ä>à Z>´ –Ö‘cÿþÃ8jÐòa#ñM´db=ØýL Ü~Öù†½ f™ŒÏ«f³Z>>Þ„<# ) p”|jýùãIOk4×$=é%>¬9IkG›HËx‰f`õCÞÃÃ’ž0'é’† X ’ž|†LËD™ø¥$6"¨çôàdSϱçÚ¦žcÉgÈxE–6 ½õ6ü;p^š¢»êKLÂ^ºÊw3`r%²F%Ÿ—t¤¾4',~V&%ÁþkÔô4ZÖ Ên<=ê¿þK—0i ÍÊ!žnB!sÒG&C2a%K!àyLãþóó8’³î{CˆM¶Mknk®’^Í„Æ.(Ø„MØ‹'™á‘éÅ5 /ÑÏ‹žr¯ždvI활H¡ôÊö ¡§ÓК5Ï”ž@ÅÏß2>œ 2`Ð!æÈóy «þÕïÃêgÃOwåa tˆù܃¢N1™uˆy2F&¡Ìê÷‘ž‰J$#]º À)K1Ï—´šIU6a(Õ1Ÿ>D-~7:õîBu¨yÎÂøJ‡šçç÷éÙÆ0gúQó\ÿàoÌ ¤e¢Ìš$†Ýq·.èŸçô”¡›.ìÑPtœRüœ ž§“`"/’ %=:}IOópY§¦[óIz4}˜^±ƒÙ>‚±l'Ï7ÀŽmàn ‚ž•a¸óŸ¯ÿ˜ÿê>L‡¤O ÌN…KÕÍ{¬v¿{¬^²»D"È˹D%kŒŸçÙ_Â<ûKè\Ò{&ì6‰s¨àÉŒzU.Ðã zâ™WÐó!Ñ~WÐ ‚žfÜýGq3_³~²ò~þFÌH"ªÏ=\5ûs£Þ€ž“ Q¹I·LfÍ„’¶—(Œqb<ÅÀçj˜ÿÈ{݉x FCŠ¥›4£¡ñäKe7œÌ‘ sÌðL¬JߨC”ÛÁ€¬O '3ÃxÙF¸do’ád¼™½›œ4û—hgæ_=Ÿ@¶IHýŒiš ü0„oÇpqb¤4ŒÁ6«êC´fÂnÑ$Óçý%µ|È+¸IÏ` ´^à˜Qf†²ÍÇè›ü¾‰1õ¯‚˜g õ•Û„é•Ø9¶‚@b„ü¡çˆ"^Yü½¬GB57Ë húB—Ž —ºKwÉàáx#™=é u@Í3›‘˜7Úƒï: çÆÒ„Cß«þ*Æj/=“)™èÌL˜—„@ÎüA©~pŸðÌÝ‹ùsLŸIAÏ—PÐó’ Pýœ$wñ€‰Í Ò3á#tAOVálÀdû‡Ø1ðOzÞ³¹ AÏ@ atØï³zPvפ §[ó¸÷t}Vï:| uê‹ß˜éö˜¹³Æ–«›h|øi@/c©É&¡Ôd“½·³lhzú€¦çu'<æQo¢=‹ {º}Ÿ$Ûb™Ý&Ÿöæì^iò +È„¾'•Lˆz¢xðýÌèžÞ}ŠD÷"ÇóHzбÜv‚h?5vƒ@ä3&…jW/_D,ÕI‰ÇóÈûÐZ&}f2Þ²ºMθ„KÙ%V"°g 5UF@aâæCØtfÚ„¾ÏV`éôÂÒéKF_¸[ø¥'ÚcU]3 <Žu¦ÂzÉñé^†—Ìž‰|ÆœL3ñç’Ú>/)#“Êì/#á9Å%ý•ÙÚ¢JâC¤}È[ݸ •êáÂÉ/;uòCã½—´€Yƒ@§üؾ`" +¯eŸzúÁ€¨†@°ÌáoUPAú’šAk™ô™IJÒH{е ´=ÙxCÒý¦¥µ¿‘AèÀº‰ŒLN§žé¿UóÊi Ð jºnˆ\q&QÈ7ë¦Å6dýèÔwQWQ‘fb,föû˜D2þ° aS´L¥Îˆ œ¼„Ën"1¨óà r@·ÎÍ&‚î©Å@w›~NKئŸS\2âc „¿Ë$ЖÉ)9¹„Z /©åC4“þä{øÃFI Á%^¢Ÿ1†x EߥAsÞŽh$ ²f ’@·HÁ È´LÎôÿùHAPnÖm¸[IcæÁ½KØ€øzuØŸ ¢@‘|Ægí ¶üã²—ßQ  BeáÆjW*J¨éƒ.Òz&AÚx““~ÿ’ÜcÁÃ"ba….²êäHÕÓ¤à„KiîѵIÒ Æ× :(sÂyÿÍDa?#dæjœå¦ÀxAÍ×3†=§ 6]jÛóGè®m‰~ÆØŒdxÕÉ%µfÒF&Vx˜Ëp{ö’‰PÚ¬$zL­9 ‘žáCÌ"¨±$q‘˜¥±HÓL>C†¼Gq‹È#½·†ØÕ"gîW†Á &/,RÁÄ’_gw’È_Ï`` ºVŽõÿ,˜E¼‰4?8A_biŒRàþ Ü_Òf&:ÕÉñßQ¯%½ä¶»rM…'¥ C®ðm{^Rq¨Ë/Ýܪýù˜Ýt¯"cuM@Òõ6i_@G¿výyÚ½ƒ2¨!ž£öEú«· Óó.™3i™œ§¯sB )P`@v‘ŠZ|yÛ@ =~Á«*…0£jñ¾BÀ¶ É™ßVEåôKJϤbãÅó]¡HŸ™ »@…Ðýwª¯cŒ•xïG®°íØ%'ECý›€h Çp²7õ1üs-ЭÐB ¬Ýù*µ#5)Ë„­Wá§ÕŽ ÷:+E€üÁ­Ð Å/~_ÖPcû®P ¤ ü¥;9}Ç^Bͤ‡HØRë­ý7ØI÷ègÌQÀ8¿-B º_¤h&°šî‹( „å&—Læ¢h›*ÁHªTU¿x±?„ðœš7†h 'Aƒ…¤‹°÷*?Õ€˜ä¶‰fbi µ@_RðÌÃ~¨Ôí¾š¨k!^Ò5Xr@œ¹Ï¬ÿEäæïní=*õhFR,“V3é#“Ó}õ%'Eé%<ÔùUµ@´@#ùŒ©%“†bØ´Z <È]$delð!‚gmƒèCàr”ü'måÖ` 5‹¿ª[&³f"#…ûó÷¢(" å@ô¼Û‘õôZû|Ë£“„6?›Pôæj\b ‘5Pæ­ëŠGtúˆ† Üâ¤k&Ì»¹dJ&X›`æ¶æu'$ÝëN.)šI™4ÔÜ‹ 'Ál™jœï/a@ã Ü_Ò>cN͉;lú@£qIP… „ÕÞ…À`iÂ: „YJ—4T~™Ôò|TÏÔÕÄòkN$Æ9‚Øõè4ÌHš "î6 Hë™Ð§Ã”Tuks4o¼‹xÄ€LP GLà’î N.)%“Ú3i†ìþÖõ7 ËDk&–î3ü â˜ióɤEwvP%è%o…Åa@4…;[&‰I$G4Ê \Òf&½f2F&T½ 8På“/gùƒË< $÷âÚXXiÇädÞ³ÖpÉä´eBa\­‡€Ù¨’è/é%¦Þó'‚,¨ J²a§‘†z!é%†ŸšË‚yãVØ!² 4ɤ·LÆÌdZ&úy/‹ï5®«q Ï)<ž?Xµá„,h LQª4àc©æ®D"6ÒBæQ} •áüœÅ•/©Ÿ1®zé÷aúý%¬¤¾DàÆÃ2ŸÅeî/1‹¤Â®}I™´’ eî±dOÈ„²×7&4‚"±H ý9˜óꙤ¥ý.˜™ xˆ¹­â`$fÂl˜ÍOé.á) d‚aç2¬½ó(…²òýCع¬úmfÍäCì'±È1†.YzazB%èZŸsPUã‚–¾áá©gæ·8•N8ýLê9(”ˆk¨„^bB%4j™´‘I×L¼ÿ¶¿—«c9qu,'–ƶõ—P%¾Ï„Jh ½g2$žWh'‘hßMÈ„>n@ 9†Í¿“0Æ9S›NŽàÛ²@"È×6Á^ÀÖC›èù™` $‚lòD\ HÑLjϤI&øþ¸‘£ú$Hõd¥K´fÂd%…Þ,B9 A4¦ÏL¢Dú"<™»„'s—XY @˜v7R©êM…>èÑ*-ÿ—Ì’‰ôLT"‰ …(\$ÈMçO3rPO! t³q”ú /ù‚™‰Z$ÓÏå.)ÑPPꃾ¤áwà:Qzø¾¹¿ˆÍúÒQªÂñLM¹Üߺ@æCUÔÀSÅçC6¶É:`½D°Òaý©òæ#Õ×s^º*Ð%4i/¡MËé@}ÐAEØæá)"™`õƆS¡êy¬‹œbêÉͤRÎ}¦ }ÐùC8‘׺„Ѝ%s‰~ÆÔaRT¨ƒrRîN1ixâáöUŠÁqѯêzßþš‰rëî÷•‘ 1x:ÕÜ¥{ˆd‚¼™f±ÑÃ"±ÑÃ"ì¿~ÉÁ¨u¥·EXmÒ~ÿ3ö7=×<9š¶¯OQËêEÿŒrkÀ0¤4 x!i1дÜc«-Àúø~¼.ÆËXF¡«+Ož<çÎŒŒ äŧуNc5I•—ÈÏ9¬$Ýd\ÊPNèÒõ$p¶…ÇÌ5Ã-õºàñ’rmš9avÒAô%˪m£HiÐ>ùΤAJt ··&%sîy»jÖQÃ[h•‚}('ԌhðVÔ¬<„¹,кȼ”ÙœX½‰dß+¬Bm E‡¶0ÛDn‡C„N]åñÀB_ó3ãʃw¢HÄ“üï1ßIË]ºMëÌ—ˆ½¤ÃµÆœ-!z“ym„9Qˆñaªȃ¦fB•½@½Wzé9ü7áfE‚Þ¯©_褡)ý¯>Ý&TÕüé}’Š<Ž7¨]¤cû Á0¡:hÚÆê ƒ2Ï[˜=/s«ƒVÙ–¡:èEysTàhÎ^} >:Hƒz`à®¶r²ƒnÇ5¨ Š›(LÚŒï‰"5‹@4³Rœ4õy‡) º¿œÂ '¡Hú&” Ájp‘òsN/¤øk!‰mº‹à‰ó­‚2hÖŠ:¡¨LÏO±1HûØÆø°>AÅ|‡!о'Wà ón2ƒ‚¡Ô°\„eÔ±ùã„eÔ$m©©)é„eÔˆz4j„eÔ›ôùü@X| A7AÖ5¾›¡(Èø’ܵ¤NÚ@Æu9¡NÊ&L;ÞD‘ÿØó« µý°±5‚ÒVk‚RÒ“„DÚ®ùñÃðåòp x¯S£>tzî Ê )>YŸ¢Ö¶Îk’:^ÂR„Ï[KGNòœ®gÕˆ“h`Üò&a¾¿‚#p;dA·Û z¶ºÚ$'°Mô%ãçœ)/Ñq­» zpYE'I Ê)±7È‚fBŠ“Ö^ÒçKV6˜@m „šò¢N¥ìü=½Hi/©XEKAÈ ±µ} T•pÒí%óÞ2l3ë7aºŸŽfºÆ&e^³aƒ.(s/aÒñ&9œ¨ úåSæ)ñ-\ãÐ2¦gFR_ ?¤õ—°ðŠ_KUГ„.Pz¨-tA³B½vƒ¦´ä"ö’Š$0ü ýËf›P}“Q~È|Éχ"?›9ûµCè"e-@t®'aë²M8{Aä) ‡~/ˆiç–]ßÒ ˆô’­Ë`ÕuHƒ“QÔò4¢]¢pé˜G~j`aƒ/Þ) t+79dá&ÉUˆã ž•&äŸw*ƒæ6Z§2èEô%¬<ÄÒÖ%cÚ$[h6¤Þ¤þœ-œØmÁIcõ§ ÂX'¡4Ü&*/±qèƒ^¤Ö—°{Ç&”’Ù¤#U«Z‡¹C;jö¢†;:jæ)mbÐJÁÚ5°ؾ_’ \7a—ìõIWaÏ WÚïƒò lŠìd¶—è½e6Úsˆ(ÆEì%‚w_ '`ïÀ–R÷_#¡\WßY#£¥’ B/Rî·}ô¬:ÙDÚKÚ|Ɉ·…÷³gžRK¢0îö—GKa.ÓOW'e¾D^Ð~ÉmËeý$³¿äIÒóMÒPˆ»H½§„^¤õkõÐڎ͘ÙÁU’Pîr»b¢!Ö ¥d0Cê1}Ò‰ÀÏBTePô$£¼$5”’°yÇ&ìa†›c)£” Ð˜*$R^ÒÚKú ¶1s«ö$wŸ‡:¿§ÏÃ"·?!šsø¤6há>Ëüй£ò0z<äá¸ÿuÞÿjå8,¸ø: Õ0uNhem PN$QiBý<'£¾dÂ}èyæc*š%îIj*ÇlR_À²!•$ö’þsÎh/‰„ûʘŠ5Дe]k9Þ¤)™uü%©õ%±)—[e“z é'MÉPü¤I=PŠÕ)©“À0óðÑ´œÀ6)˜äJ’Ú_œ{…3”€æGGxB è"óZ5&„€vVϤ(ªêìYobIXorù’ö‚./ã%·¸g÷ÖM –%œ¸ “ÿ"U^"HákL‰èÂü9PD*ØïŸÐÚÁî AЋؽk’ ^¹H;\N(œdI Q…†GÁ• ×ßFÿv8œÔù‰HÎá…J ’[Ä^2ËK´½ÄæMì¯ò.‰0' èµ<§¡¨±ôç/§ÐI©]òC¡s³ëC^\_RûKäv*Ä€.B'n¸¼•ÇëèÊ—¯~Ùž&\r©X.R~Ωó²i*´€NÐå%ã³¾D¹9ILo ¸›ÄÎå”tÐHê™Q_~†Ie±sádÂÎlyŽêMM…ŹB¨kþ=‚”Jî8¡¯ {–D8é0ë*ð0ÿ.)'RCþó&åŠ:‰ý›yHN¢5GáâV¡—™×NƵCë„úW–×ÑqM×^ý '¶Dí©² ò]HèÅmÒÚK¸ÇW¥ç¾É/a+’‘­6)í%•…DJ"HyN/éö’‰pfùŠ•à"Vn2s_b“2_"?Y1_#iö’Q_2ûK”…¦øÓßC„±s`‡ñË Z@×0)#Á|¿KO…þ§Q°ÍIa½ƒ‘ÔúAÂ%\Œ »Ÿ —Ö¸?A û0 µ “‰@øç"Fì[ -²~ Ý åŸlþæ` 4]’0|½ÉòC8xsÿdé¡@G‡ª•“ m˜“ÿ"í’ürÒå%ã眉ícFÚ?ÙR„ LüwR^°¦á>hGô?›b‹ÔÉòصâ u„M¬^íyà  ‹H¶hå ƒøOn2;©ØµàŸNëŸrNzyÉ@qå•ç¼^J‘”öÞ„ölǧZÚ³›d^½‘HIæÕ'a¡ô&±{,ÄùŸíCzoý!°y±ŠJÈÿxV:¼S/ýEáöÁÑód6UK0.+ÅK‘ûWzVJó±Ct‡ðdËÿ`Í–A†@4«=œˆÝ?gdf=¦/ýí/™ˆO•D.ßçD¥ô¾ïó/†°'A…ÅS;Iøs' köË› Ћ„?‡½]¨”Îc ñ«‘CÀ‡BГÔþ’ßO…ôÕEæ9·Šþõ+Œ/­$ `ó-³¬‘Þ¤`œo«Á“; »´nÒO$þI)'1SŽjh€^Änû±Q”…çNj{ jÓ5]¿¼LÇZvN†½D/±†Eô&i=´’álKr§ãI+œ±“6^éõi¤NØÒáËshÔF6››7ázp’‚ïêµOÐêØÂ$MÚ³=@áèñžc˜óÇÃôì±&>šþ'iý%}¾äü}¾ Â?–žFPì®;¨ú¡±5I¨–ç¿-ýÏíO¶0ý/ ·—Ñ þ™EéÒ`ù‰;'¿¥+‰¼ a©ã Æ|ŸuµNîždNf¿ïÔ?1ý·ñÅ8¡î-bX-´?;5t¬pÞEÖˆ¿HçíÍ S`ù¼ê[œØ f6šæ‡fúq›Td[ciý9n¥?sVkþÜÌÒŸKÖ7Ï ?. +@:ßÒŸ¬grRì%r[m^ãÛ^ÒÎYFmÖ·8 Mû“¨ÝâŸ#Ãó pÛ nÿ¼H¤ÕŸ¤!‚ÆÉÐrc¢ç•¹+=’L{ kEqåíŸ,+vU%B[¯Y,Û³ÙqW’„âI¸+ºS”YÅN´¼ÄÚMJ¶&Ã.C‡è‡L òKX!^Hz}Éh/™ó½Žý€q“š‰Æ›ÔúéכݡzÜ÷šÝ™6H{Ià“Ö¼pxu›@ûç"¡}E 'YhðT;%@3Nµà¡GÜVŠYýhgôP}»IT‹ÚÊâ?9r{ËÞd›Pþ¶& ·î$íþ« )b c¼d^Ú!N S,ìÌÎ%*“Ò{J%%¨ˆØ•$” Ø„2›paß9f<ÔrvÉpbí4qûÀЧµ“‚5vRñÏ›ˆ½„Yöð=úÈ,ûMBü3£±âŸ'1„Ò`ÄvHÿ\„%&˜Ü;Õ?OÒ`ãðiά-yÁôc%ÑË3ë±"ÜÄ|Š}Ö®™Ÿ™¼kJ%mB©¤MZ{IG.v' ´}ͯÒ+šÚ!/ßh®- ÄF^òŸ'h± ò]…úçMì%wƒV'wƒV'v‡Í”Ò_&hl"/h[ˆœ ˆ^„íM&ܘ‘ß­ó&å9ÌrQx££dO‡/‰`óïÔ€øçEº¾äÊ.s òŠ^Ávõµj½ú·¿¤êKØ”o“Ž8tvæòxÊôÞ»õéÏ!Cžþ‹üœ³LšFÓh@ùç"÷H2ì%´k7a|–£¤Á´=Ii/É@F!yIضfáhéÍm2/ñ1' )¸HëÀ`™»Œ-ºIvu ȦÙÓ!6ªo‹ÊćL¼ñ3¿ˆ¹I$ã9ÌTãM˜j¼ ᎑¥µ›ôy Õ84³•dÂÜ‚Ù?ÆÝªIÆÌ}Ø÷3K¥7©Ø-õ7(þs6(Ãü=&۳‹ÐÿÜ~à˜lPyC™1~Ÿfobl±È^D~À¼^È^€õ%›ÌŸsT_bÏ9–»j¡ÿ“âWD^ÂÆVXõNÂ$™Ÿb’Æ&LÒ™_Ƶ7)ã%Ϧޤ p õ$œÄ7Ἷ 2Ôð²Ne…Lè¦Lœ“rÑ:¹ mÑS¡ÛIèÅäÄ0á ¡#?·þ'Öì Å·ì]æd-pÚ´›¬ñ/“óï„èÛP: 3€¶~“O [2³>âWN¬ÞDR.l“R^RÛK(ƒ¸Iƒ.ÂI  ‹üœÃ^e˜Ú'4€ ЋÔËñµÙҲݤח0×~“©/QÌõ=¿‹ [I:›ü †>¡Ä‚.±Ow€¶«,eBügfníì)µ/ª/0lšb½˜ƒÛ RsÀ¦=I½Á&ä?/‚ªßVÌ—Ì+Þ”mëJdÿ…úFñDDããò?¡þóå6FtX1Ja}û]^’úŸƒdÖ—0GcæhP4=± õŸì’áäP Z: É`ºOhÿ\„‰öû»­ÝÄžCXµ'©ã%òó©þŒËNeȺšÿLí)'Ú^Â} FJí7*z9)ã%õçœÕ«ì›œ¥”@Tfp2îL(ýÒ°ÝDY^“Ÿ¢¤=É–ÿ¬TÿL 0²±|)Ä?/Òï­-w¯VQhí´rÅRpš¦Ð&LÔ€/¦Ô: ÌQ H¥PFê”òŸéhiM—nºt›°»ÌB…ÐEÊ|‰¼ ýˆ€r.S.¬¦w2ïF©ÊÒÑK¼D´¥hÀ&H|áЂÐE2$?DɘMfù!ÏðkTB„‡©”¥„“Q¥ èI¸ lÒ—DéPƒØÉ”—pì#.¦{- hjq9)˜}\QÈ€f9'LÎÛi÷–xâ’žã%lé€ð¶Îôê6¡W·Iý9Gä%m¼¤ã»0Õ åÄì@°,Û®œ&U³|” ãˉ€ºopVŠ€ž¤ýœ3*i³=@‘ÿX®MoG-…½7aÖ}MÂ=ÎT~+ùc [Ö'‰|“LƯòÊvû2éþ v½EöeÏÖMb³b êe¼º/šÏjW Ó¨t’‰é®å‡¬Þ: sòõ4ꀞ„É÷›3â“`ú€ub~•Ä ´Ë߬ä–u%`¿bª¥¹g•íw7ù!ö’΀¥°©&Iƒhv…tBḔ¶åà`–[ˆ€^ ÊKd\Å€8¬M²ú*ÁÐkÈšüõ¸ID3ƒhFS‚ÐX‹zÏ„£þ§ðM°Ðÿ,2ò)µ´GŒÐ ”aƒüçElÜòŸ¡–1ÌrƒòÛŽ•å?3‚dð–¼/@˜´3GZÏ}›lî™—±ÛÂ6JQ£ÏIE2Ö£úçIú@¼k¸ (!žDëK¬ßd>é–FàË¿jfªFËqèoÒ¹[J0øŽ ¶(›ya&) Í „øç¶ý æÿMî]bƒøçEú]ùešC^ƒé_¿`ÞÄžÃL·ß„›s¼½Pÿ̺T£ \åaÇV‰ÌØ…« V£Ö‹B„D?ÃÉ]AêDô%½üùRù.L$jœÄÆM z‘Ò_²ìÚf9™A4óõtÄT8B5Î6¡²÷&úsŽéM t‘J.%‘´K1ÀI/—[ãDëAN!,” 1PcOl'¯"ÖŒúe£ÖMb2cLÂI/é?çP1âIN”E•FÂñ9ºŽÿ\]Nª½„‰J›0Qi&*mBMÄMtÞä¹,ý€“ÔþùùTƒÎ€L’Ž <«Zÿú Q®//£vÙ Ê&Ié/©ú’†t@XÚURØ.F =Ð DP›%'Š@&”*[B‹AvuvRô%×N‘ƒ†\ Lz }ÿ -ƒÚZI¨ ´‰êMz6èã …+`ÜäqR﯂èõ!ækÀÛª=Õp-É,?¢%¯lœìñ¡ I_ Šp–ë@[‡“HI$+QÂɸRÑÌöjlb¨ÂÝ(è Š=@êØ/A/ˆL¥–c Â@£ÐO®ÐÝ~SÕÅ:*¾0ÙV‚FˆiŸ¤a-êJÂ]¬ŸÓóaB4úp€6³~”.RæK䌗4¾öF2`€¶<‡AíMT_bíú;…Š ¬vR_°žföq .,P½HÄjO2çKìþ*ÁÝäçœZï¿¡À·ËXJƵ7áŽÎAæßÝ#'(RCèH  š©ÍM t‘ò|—ƒ“ÈÏ9p០‚lÒ舂^DëK¬ß¢ ¡Þ,¡(èI0ÂȈ‚^dŒ—Ì+]ljÁ´ÀÄ)”‡Þª Û5H]DÆKš½$¬[$g:úÚ¶ ˜­ÐS7Aa½c!©xí{#X]˜ùŽÀE,*DL¤§˜Ì&ús;O“P è$µþŸsòòLHXVº s•6m„­ŒlrRòÂf7$èžbÎÀE‘?ø*IÐ Ì—ü¶lÂl+”ÝD³§É&LרaÙN¶ë(‚Ûy™ºy8ëu¨ý:4=ͬxXå:¼ÍŸBÒáù"B#PýD4U¨ù¹ç>l®ö93@ƒÚçEêxÉÕ]‘zà¤õ3…ÁIÇzµÁ¾¿ˆÊÙ²Õ‰a?¥Qí3çÐVr'b¦ÖoÂÔúMXQµÉ•_ìàV?t¢?ç°1 Tn‚¥gÍ2Ö„U£%?ÕÇKƧi˜åSVÁ {1‘HîElÂÂÑM¨’ÿ¢A.Ûi;iØžDH£AûsÇ뚤Ôí&ôØ6±rhŽŒ7JeܶAè"­þ}ɸj·Ìö—íØ& c©A.Û¯8)öÁÄŠ ±…úçÞUsBÑ+ÌJ ýEîÖ)N{À¸[ÿÙ/Æ:Že²Aö-{Ô;‰Uû;S16¹´Ly _€YI(ÿIBùÏœÚÜì$÷nX›OÕ´“þ‚Ñ*Þ-ˆÿt¡»Ø þsh¾Ýä˜Ä›†fuý8F> ³œÄÈ?IÇhDd®iJØo2‘bùMÆùþE8òá77Ë|ÔMäçŽüM̾ãÔþ<‰¾€Ùõ ÚŸ)(ø@ìºY\r} E7¡â&´ð¹éÔþÌ ÑŽåà %‹ ñBwe‹j'Ò^ÒæKz; # dòã]ìÌ¿vbõ&°ñw”´sAÈ Z§ èIØx“þ‚Q¼›^S¯H§ è&-o¼ü…aìкHðNÉõ…“v°Oì“h{É­Øz»5T²°T÷†xÅǵcîOu^'ÞŒù}ÁsÁ"שz’rÇÊ{Ï d@/Ò©Ö’ŸbfÂ2 ЫŽÙ »r`{Ðë€õ%µœÅ-‹Ì—´kÁ÷2`L{X:U@©{焪I›h‰¡Ê ÞjŸÐŽ9IÈD.ìBÒ‹)­SˆúN†žŠN´œb°N¢nzÖ<á1@ È7Ÿ *žøWIäö»¦îAô%·˜½E:$﵀دuh™wKÂEêÏ9­¼„Ý¥{'‰ájÚo¢˜_a\tK=D̯" QñrK'9asÊžç4äüc¦ÍÒ 'ž#æ8 d¹Á4°$ì¨è  (´ü”ö¶—.,›yF»ª‰œt{ɬ/a ”A М&GMÛv“r%Û:‘4²”¤ã«Á@>®%a;«M¨›„«!Ï!2쩵â$ÆþI¤†yÌ_GPzŃ2 ˜¬Wm/A‚ÿęʫl' }€Ô2ÞàNôN2å% UlÂPŸZÏ¢¹M˜’´‰”Ë{E/lã¦C0ÇR Ãwd2^Uùž¤^•œNØÌg“6^ÂÂ’Mfý!úêfð-¥èI8ê5‰ü€ñ’f/á°ß„Ý&zë81(†`›dhö×…4 ´×ç¡Ù^z¶&ۤäç#‡èEæ|‰ÝÒ}Ï–9üÉ–9›°_MHE#;@0¨}’‰Wq䇬^dBô"E_RÛK„#•®¡å)l逹x~Ù› eóËZ«//Cá’§î$5ÖÚÎcæ×kžÑû'`Bè"ã¬s0“NÀìz ·‰9ÿ"Ü“‚zÕfÍ’éMš¾dГ(Iô%x;±;:©´‰dÉ4ï$à.KúI"Ñø$skª&mB)ÐMBÙ;͇)ÙœÖé„èNNœºˆ´—4ÜøCR Ù^Ý sÌz ambKìœÐ:„€RÆIeuS!¡j¯Üÿ‚KÂH)Г°b:¿I17Àƒ›ð¶!<¡z‘s æèãëIÄ^ÒëKF «ç6Ñö{¾ R '¨Ì†™I®¢#'­¾¤÷— } r’KãÇpàês˜â1›ÔþùùTû9§¿_ôfþPÀsùNbxïá%LËœŒM˜“± s26áàߤc>îÔI0å~*[ˆÉàÏQa­é—ùðºê—ù6‘0%Ã’ôñfãmÂl¼ƒ¬?­{IÓ‘Õ†PÍP¦¸u%oúÀŽÝIØŸc’Š@¹©¡¡TB;Ä.J¡ z‘2^RowV¡ zØC<„1ÄÃyçèüK_À\$þVM³ÛÖªiÖn"å%Ù©LHú Œœü¦‰¡ÈAS/v™bâ?Þx{síÕR: Ž´Bto½«¥Êý&Ý^2~ÎaBÿˆP:öp-Ô€nRT‚;aPºHh|S®ÕIŒû A/2ûK~æ&ŸÓ‚•ksÇ ØG‚/Áí4,é?çШmù%eÃ0-¤@g¾£Vr£‚¤f½ô&ÓF€A t¯AVS7i“uÌÌ)Ћè Ln"©°IÙ 5~ˆT ʼï /ŽÝY767jL°7‘)p&Ì?ŠCjæ+b4úÓZ2Ìúi/è¨sÁth {sš´¡½ôI9Ø¢´–v±úT沞%Ò-ÏÛ˜3ªÀ¤÷— }‰B­1ë¨*ÉrH‹8¡ë}’Š,Dwº?'¡–1&IƒøçEæ T^‚Qjž¤"É{Nô%¬’Þ¤cáß×ã%lI³‰þœC=K(ÿ\¤¶—Dã$”þá[¬È¬?ɰ—°#ñ&ìHLb™Z¼ ;o‚ü£|Èÿ¹Û«¥D_ÿ¹ˆ"bÇ7Ø @W ¡š¢n 3"¢hN¢VšrèNZ} »“¼Î¸^G'³½$¢z›”X~$@u|Nj‰Ô—4H „Eã$…í“ü•répõâ?')ý%¾kT;iå‡Ì—Œ°°$f*'ŠW?¶qœ¬ñß™kÕ?ÊÀQVÈIÈÅ ×ÊìUií‡Dƒ²“ 8•’ß4ûK”S=ž5@ORÚKêi|:9w“0I© I·sru²3lä,BU ‚P‹)ؾí@óÞ@ýçõ+¢$­þ} {´‚Ù ð'd<‡ÈÑàö¸“‚Ÿ2ó¡©QHZ{IŸ/aVÞq˜û¡×  ˆLaé@³Y““Ò_RËK¤½¤Í—Œ0€qdùKþ«a¬)þˆ°úoRæKä O¡w’[øÇɨ/™×4MÖÒÞ&6Túg™¢Á¡ LA­‘°EÇ&TöÞdôÓ¦q2çKà!G ½—/Óê£lr‘kÖI­/¡ªý&ìì°É@Q˜9‹`,ÊÇÀþUS) €Ê?(ú€Š™®&‘û!èþœ`ÈKæ•våDëKØs”¤¦U»I¨6ìÃ:‘ë/Ѐc€ÆA¿jœœ TónÖ dJb几¾#´HÖnÂÈì&2^Â’ŒÙ"ÙÒä ¸Éª$Z®ù¤@ûó -å6Áîö—•íäŽd;aG‡&$£½„{›(6­‘ظ õNr/œ¬ÁŸƒNEOÒ‘\þ’1_‚,¢Éc“p×ÊÛ¤ö—ŒaŽ/è2'wù’«¾Úb›„â?Y÷Ô õ?iÐ;)í%µ/JÒ^Ò·Ü{r2.5 'ÔÎøŒDûK˜œD¢™œ´I•ûI…þç2Q9p¨ÿ£ù†@ÿç"” h› ÀÌûe×ÄEýÏTܰâ ì÷z ZcZ’eõ™o¬ÿ‹A° T,™«ê„æÿ& Y’Ÿ ñÏ_'ŒbÏ$ãÉçXq*´?™íÀà÷ð»!ýy}‰”—´vÊÚ:éã%Ñlºà1Ô‚N&LôX ×ü3!tV“H¦åadÕ5ñ?`¼„™IXP*Ä?sW‰b9kùUË›kl}Û+Ä?/²by½"UÎIµkî­‚-¹“DZk> (ÔÀCñÚßö7yNhÙ ï HÊÁU[fh`š­-346 ý+ ¾8Á–Þ¡Šu £WN˜sÃû  ÉÔ='Ü”ûÉrç:emr®[~ªÍˬð&À×];ܹ“(6ì÷—[½fã õÏ‹°§Ã&ò‚û™¸mhÖ‘ J…`ö¨^ÊŸ)ɾÈ|É•há@ä%wz†“Ž,dÍËDÎ1³ÓœDÎñI o" ¤?{Æ-ª¢HzßaEŽêIdœºuNš¾d FˆØF…öçEôlV90Ô!þy‘b/¤mÃǯ”¹wÂô¤M,œš×™ó%ŠïŠQ±l"p.RËKy0LùÏ‹\E‹ `Qù’L{ {µÂ’=º7)W*¦êf|yŽÌ—ô y Û:l’‘m!at¦¯@è"¨›Á2#ë“nŠ@è"ýž~ Ûž €ž„o&8Árp½ëN0OŠde9fzзÈ^ 68gæ•™Hd|8tZ¾›Sø©–ºö›P×~“μè$¡™T°wãd¾@/³KZ*¡#Ì J‰'µüŸs°ÈqöÜ«ø’ ø6ˆIÏž&›h ¥1¡ÉxÝ:¨MΠ‹4yIGbþÈ++ÿÓ [# À¼ Â}/'u¼Dì%½þ} +J{!Ñö›7Ñ,!BÌH  7÷°h–¹9iH hƒ$væ(˜ïd°Ö†@ßcxÖ¿ˆ†a;:=}±Ì·ß¤"œ/õßA¨€ž £º ˆØ_—6—Å¢\: µ¯à:6ê@CÍÕAAMC'¨ØŽK'íñØßê'´i7ÑþfÛÇ]hTÍqƒ h7ì):a-QžÒ~HÇ7‚ò¹cѰ\DŸs0]Á|hÝù¸iì$z˜œDêKZIdePÜÆÉ,/aÕí&vJ€ž¤ j6’j/¡8ÀA`Á«i=û“L¸Ž|.”þa‹A'fGƒÞÞ(7é4Š€²²Ú s’6aNÒ&,»ÍË VÉ„D&¹ÀI(ʬ 'µl¼…WB—ªQ4§üF韓t»,Ö‘t‘ŸsØ­•2 3_M¨€R Â¼Ç¨w eH^t †Œ­„6ÐÉ!Þ6PA}k7¡‹aƒîOÖ“;Y£¿T®kmf© éÌZ“MF{I¤g¤£Ø– è BÔ ìΦ)“Äá2 «hNI¤¿$FÿIðx%÷(J^X_À*R¡T@/Â^›Hù!3v[¨€fÓaã62T@ç`™_¶‰õ‹ô/[o‚€ëL@N’Уۄ ÷›Œþ’©/±kÓ¬ä% ÿξTànÀ>Å‘´â„:1x⽤¤¥%å‡@ko‡ðÏ ì~â^<^Â-:„%:„ržêu+Ÿ0ß>CÚ &ʈa÷-§ƒÄÆM ÿ¹7;Uö-—Ü¢Ø$Js…ë’"ˆˆštÈþì ž.pæNbWÂÕ"ȇÓ[–PoÂêM%xX=@o€D´HMsBI{ËË(äÛz~j þƒ@ùç"åÒ«r†•›ö 5%P¿§Û!ù–’¥NôÔ¤q`ˆg žùV­U^"L¾V¦oB$Þ-˜þYGå °x;ôÞR뤳“‡9ÿ“T$úaϯÏìΫ­Ïôã8Ý@ôç"jÚüfTO§‰ÓgFµaÏvÝå¶IBM#=§Ћ´òŽýM(º ó46ÑŸsž ºn¯'×!º7á{(] !å1¯Ћ {‰Ö¢Ý¡ÑÀPVà "ä ›alýÏM¨ÿ¹Iÿ9‡v-†ä€þç8±y“‚¥uºN ²a°Í2JPcZ½#›Ävu¥Q8 zå6™ØKö `Tôð÷`5èš‚öÞŠ£ÒQþ Ћ¬)07Å‚úÌXßL¥!O½‰“»ÞÄI/‘ö’ösΓ{3 týù.Nÿ$Ú»ß^Œ—ýËs–]ÃôGMÎ|v'œþáˆz4ø-/3ûK¸IÇgÓŸCìÒ1‘Û L!>—žé7°ºFÇFÅIÍØdÞÎÖ€<ÐEnm@ô"ѧlò)z<¼U: ²=lˆåÏ[h/±çœ™gü ) ĺ:'R^;tõ ý̶ç,EùOvw¢vÈŽÜ¡P€»H¥Òè ‰q’°j)2é¤ÛKØ®ræ•#[ƒ]äD¶Æ&J 'I™Xõ䨅ê€fí¾LÃkX’PKf“ÉÒD%QÆ·VT/Á„úç êsÌþdXëç—}}6aXA§Ie “Ìù Ó|Rh“ò¨:©HXèyN$)M.@«œ5&„âvÂݤöçIW=òCiáË¡ t‘gÃzÖ,º…I=áìH߬ìÓ„8ä„öçE&"eº@³ñ•™5åatMhδާd’Þ&LÒÛäty ɯ íÏJ«vnQ8øbsKAó^À ¸Èû=íå íÏ‹D—â Oj¦É7)þyEé‹$a>â§“Ê@MvRXä¨$u¼Dì%jØV™Ð…ˆ3N&²MèØmbø=º½HÅ66æ¡ ©¸í>Ì‘ª›tdccýÍz<'LÂßDaq"ä3©JÔ>gö*³$µ½DæKb›¢ò0*IópÙµÙ ÎIøt'±~“­· ea¦MÍšC,i“Ê@'ɾ›üœ3ËK²QY’eØöùÿ.û »ê|i t‘j/‰ú¡90-ݺM¨}»ÉÄViO¢ó"ú=‡9öñ+T²Á ·¬£’ÊI»’7•¢@œÕnüh¥HháT¯1ùï–‘]! ÔÓ§T¨„fÛZ'ìW¶I+/éðë1Gk¡H"¦7-i mB‘ÄJ`z­ºÁ{†<Çí}< †}n)RFȉ»Äë¯PÝ)h uЋÔùv*ÃË¢Pݹ%*©‘8ò»&²¯àž(dúÇsÅBº£]aüÏtAÂ@ÙlÏIµ—pÿ[¶Ú²ñî¾57™È<ÜŸ¢˜ þ¬~¡Wå˜Ã‡ÅNaû_¤¡È‹ºö7õ^{A›ÌŸs²ç.”öԭнHÅî‚1Ž•MCÔs_¾ ËƸÒˬÀ˜=ɪ›.ì"Ñ­bâãÌgyÇ'¡#W’ÜBöNèÉÁ7·šÖk~׸³"<„|LŠri|3wo6)ã%lC³‰üœÃfÓ›ŒŸïší¾íP»ˆ=†j L-tRì%”Ø„=Šç$é%† (É@ÌÜ Éœ/‰\3ŒìP:Qõ¢JRËKû’$„@O»•ï²¥%» 3UH¢vš P£|™•‹·få…%뤶Ãìr óëýaLÖAý'™?ç°=å&†sÂs¥<…&Nê »ð¸}"@afFøcNFÉ„:ïìþO±h.2ƒ®\ÿ*/ˆ:““07ËMÐE:¶Ò¤‘ dIñB ô3 ÓBh†Ôp3óËsX>º‰ XÅŸ#»!_*…µ¼ò|ÊK"Ž· íþ“ÔòCXïPHvÒÚ$é¨0J2ÆK¦½ÄêÑ›Pô$µ½DæK–#×f¾XPõÄ5#a»ŸžçD¡ S œX» ¥@OR~Îaº}o$L·ß„ûr›Œk .TepƉ¼„ÙI$3³íù¶Ah0 ¸Èº=…_%Ð(tÒÛK²óºxkøŽÌG ÑÉ-…8¼ {–˜9‹>ùœÈUY礵—ôù’@e×QIìy­¡ —¹N¸-±I/ù9¥sgª$PƒÁ¨Ý“=Õ@Obz‘J5Ð‹Ìø®ò8Á¼3ó”ÈÍ`c?'ýªXuBù€MæÏ9ìvqÉÁ•1áÏ$ÆþI"é>ïM…(S1tTã®Te©»m/¹DîF­)qi²B4Ã_NªÝw¯¦(–ZDõ¾¼£z›L”Á_«5eî#²áä–¹p™q°ˆ¾$z;œ¤a†éyfçaU«áÌAÏ¡R”•ÍN¢ÝÏÌq?à"ýUH8ú7‘óœÿð·ÿîoÿëßJmkµ“Ï– [c®Jºÿþ¯ÿ¿ýý¿üíÏMþþ<®ÿÏßÊßÿÛ?ÿ÷¿üíûûÿõoFÂêu++ÕDÿþoù-$þ-¿gmR‘½÷þV¥¬ÝŠ}Ö&ÇY"ƒÇYIöY²4àËqÖ&û¬öEÛ®ã×'9Îzþ¢óoÜg}ÿÏ~/¿¿ûðÿþçûûÿù_þöúïËŸeØ?ªVþù¿ÿ¹y뜿¯ò¿Œ— ý¥ÿòoûþñýÓ?ÿ±G<Üúþ}Žþü·Ï¸ÿ(ß:lÓ+/Û?J?í5ÿÕ7ÿQ׿þOÿòßþíÿò/rYïòŸoÒº¶£þ-IÓj±ý‡ÿÚY=rÀIγØÔpŸµÛg-eB;Ϲί8Î:~×ÿŸ·Õoé?û½uSáûc5‹ofû¿ù}ýçñOÿ,u©üãŸþw¯ÿøçú绚I±ü×²ÂYÅûæülÿþ¯ÿ?Øø»ïRŸžÏ»z.å;”4Fü®ÿÿå?ÿÓ?ûê1þñ¯ÿÿñŸþÇúûÿë?þûü·ýßþõßÿþ¿ýûüŸÿõÿ½~ÖÏßëU!òçÏüçÕ¦æÏ¿ýËús½ÿæ¿ü§ý'/B®Õþñ¿¯Oî#”Eþ³¾ªÿ?þÿÏÿ¼¾óŸþå‰?|Íÿ‡üšþ‡¿/{òϤ¾¦£ù÷ÿéÏwü§ÿÊDñÇÑì÷-îú÷%z÷ßcâpÿó‹m@L n†ZÃ%ùC¢'öWK8^‹¸ÿù5lF-â«Ô'v|ÊW©o¢Îj7ÿŠ<àEÜ ÿi>‹ø$bÚ#f¿ˆò»,HdÆ}£ÆŽ`?§#¸ˆß¯@øwã_‡ÎÌ"î…ÞÄÿІ|™ú&¤4‚¬ŸE ¸þ…A°HTÇ|‚\“E–ÍñÐLXD~€ÿû"‘`7Âoâ´/6ú@–ÍQ4ßEJzüÅHŒÛ¤±/vçl苈öË ­åøÐzžŠœ£E– ^-lE– .=¢‹,7ô›¼;måÆ}ZøÈÑ2õ›(2]ãä«n‚s†ý°ˆ¬_caC.âVÇMü=û"ˉdÆWÍFâ?o™€8^£ß$–ý?Å1¥qP°aêþ㾆Ê"¢/ñSêˆ|±¾Éb³g79>‘ãCËÿFXI‹8Þ³†Ä¸Ö"ʰH¬û#1ކû"ØT… £ìP Ø»æ)‘zV:ÕünÓ#Æô‡D^\•i ‹TxÖ‘W«æ/޼8ïOÊ!yqµhþ ‘W]‡€`¥Åš7ÒâþÌÂ9¶¢8Æ¿œçô”¦µA²Œð0[AÄbpJÂ^ÖIVL¡|±-¸ÈDÒÖÌs–^{„¹Y[+uD|êAZ£‹¬áÏ/Šé¯ï‡9qßìqÿÓ°åe—ÿÙÊñEþÂØŒèÊ1ø/²f»š/ýjŠ-æ;Ä¿ØÜ#;êc¾Ò÷)~F$Oø,o{žXÕ1ßWsH¬¤¸?§È_ùó«ŒÁ9¾E>ô×rõh‘÷}=ç€È‰ûÆÈ°ºb‘:°Fþ§ùü‘]-2Á™k ÙªÜ÷ül䌥1ŸU®‰-Jc>+9sD6ô×-oðZì¹ïù êÍéë«4.2â¾Á…E´Ms£øÏÜþÅpÅ*Ú¿l+²I…fhk$¡ð1ø6wdÄ]¤ëKÖ°¯z\'†ýIÖ°oÊ×§£sög¼[…1Y#~œ;râʕڋ¬ÈK™|ÁY%)»—‹,ï³§EÓ‘'#jæYCß”DGFt™œ±;Vùò¢0æÎÆ= c¾‰z€E–÷)ƒ ;[¥¶‚‹,÷ó"ŠiaàSHŽ«oDGr\/4:’ãzåPéHŽk“/@gëìÆÙ·KJ2o‚Ê*Šâ,ÉŠ.×£´#3®CYe‘‚¢ÃIÀ„Ð9HV$­a /Ⱥ7_Þu$Æ]Ä÷UüÝãhŠÄ¸“¬ºrþfãTÊ-R,òb¬ÈKÓ«,²¶/²„Ë䟴2"|à8ŠÄ8_ÉZ!Q»ÉÈÖ °x:ãZÉë Ê‘óiqŸI+ðŽÑ$UÂýqSÈ'8Éëêš-‚õÀ¿žÑŒÄߪù’¬á?CŒ½²er}˜Hë0™‘w“5ü­å³‹Œè›ø{å3ŽDz¶ý¢“T$¦«’,1fûþÚÀŒ ߘ¦ÿMâV—‡)rUG¤*,²’CG§/<#E®šqeŸ‘"'-òý²}”ð–F¿l ‹¤¯08ÿÎH’ÉÅiFËl‰µ$ÿ&áü¹2Ëú¢B«vb-héÎp$:󂬡?Óf‘#w“5ôkÍŸÇå çøÚ.=ÃÌ3rä¤*ã|3fK+œºæò0bž‚s<£aöMÆú»[¾âp¬åÛ7À?‚Xjˆôü!ðf͇·¼€jivÏHÙïT$ÈI„‘@|5¸ÉX7Ù8ÓÏHóYœÓÔ*Ž9AÇø]‡_>±ˆÑ6ŸQshKIÃb† Å5™+KN¾Œ9ÎX ªÎ|xË ¸Áré6ÑH’sÛm“åÓiî– gªß@¼Yr5z‚À5Äœ¤‘&çÓRËË,éºQè¢CêÚ÷#ˆ¤’ÆXŒ¢4†]£©áë´áÓ5>öGý&-,¹oä-ÖÈ’ûT¸á£‘%÷ÍÜÔÐÈ’óí/Ì0мè2òæD¿ìžÖ°¢8¦E–\ù‰QÇHá›Çö¨¥p¸)²ävÔGQ#ƒ•"MnÇœ4Òä¾ÖòœHþ$}A49ß!ƒu©·®Ð´U¤É}é+ªcªq$+“£sŸO‘'W”&‹"Oî È““ÆUE‘'w‘• =WJõ@<ÓŒ`ÙBßàø×H“sRóCk:•‹6Ä4*ç49·áy3"M®Žþ«v¼ÊD#MNŠÐ¬Ñ•!-Rò«"KnYõFæí`‘%çéNQ!S£‰ø"‘%ç&0 V„‹,ßnîQYrÒrÕÈ’i9"KNJº½ir7YæmhX,ó¶fœNWÃl / ®u¯rµÔÈ’«–›Äir>ÍÀ}Ñ(“ña`yÎ@ª:ÿ¬•'çæw~ÓÒsƉ2–‡ã0\‹,Çî"˱Sã§±8áÝ‹9QU‚ÎÂÈ3ÖØ¯-‡„f­7œ5䈦k Ñ/Û£X¼U†rÉ9*_ÎáÔ’K%›¤¶€¢Ræ"˺>;tJÇ>ûd þñqLØÊ‘;›EŽœ|ù,íËÁoyÎêL¡ÆÁopêùU˲­JÌ¢cöay[8nó»Â¨¶¯YÒ>ð'ÇŠà£íËO­ÞYÆ-¨E’œÇK*Í GS”!AN&½!C‚œ´¼ Q"óÍÁiÂÂøºr Y,ž±ÏY!í‘!C‰LQÚµk³n¶üƒ#;îØ4yÃ{†ßì"XÉq_á”e‘÷Eq3ÈÄT^eíN”NwÉ÷uŽi‹ä8ÏÁ hkŸBlôƒø¸ÿ>ãíEà«°U%#¦FSØV•Ì¢ksî«4Ð.õ«BÇ̲4Jþ¾h™çmXílõÈ^»’XYmUɸ-ÌP%Å$c /3 œS &Òf5¿{%iHÍ€Óˆ!MúëùÍ«DƘÆã§-^³èíMÌɲÀ–‰ö©ba邬„TXl¡ÂW²híé60Ð 2_¦D°{jmù”Ð »£ †¦ô.2 É¿2:æyàI’(,ÈšW6‰i¡(CŸìn´í }²gZ ¦Yê· Ký6é± Óxeܯ2¶É>€rrÇíC}Lïô-ºdû’€øƒ±K6ʱÄíO-{¶ƒrì“úi΋±ø›Êû52>báYZtÉö×0¾~Ñ%{¿cNÜ™û”/YÕ{adå€å'VnR¡3àdå&ÙÄÓu21cq¢%¾¹æ§¬ÅLøáÊQ"ãßcÖI¤¬ÞÖÐ\DñŸ3ˆqÂÜ$ÍË,[6oŸ“eˆNìtE@°à”è“ífêœ$Ë•ûBâlåÉÕ‘fdD»süå9Þ;oW´É¾‰†¦• ¢ÚÐaøC¢KªtÎPNVTo0Pà¤öˆ…“$ŒÅÒ᤿`¹rÍòŽ®E@ZÍq³Ý0‚eÇšÀúÐ/zfWC§¬E–ÝÏñ$ìù¬žƒ.a¡#Ø7(B²Ìþ‹¬Þ‡^A‹,˧}9´`ö·/o_4Íö0r$o¦ä9+¬] ¶ÞœDnSœ¬Ü¤‹„ÌAÍ_Ø‘œÔò/ØÍÄn—ƒeÊ–žÏ.ŠcjX¯5â®+_•¤3bdíQ\dY>óª“eÌ*0'˘Õ/oÆ„#ÇÈ•“5ó›bžZ{&µ,c¶ùÙ7›V¾“É5ÇÁLOn“0f'bêN …|ÕÐ1︩Ñ7Û©¬HF¡ï„Ot“µQÑzŽ´Í†Žì«Íšì¿õ1¶ç.tÍn ÆŠ“»n“HQ:ÉJQjp=•­R£Œ›ÄM¥1è„j“ ’næ_…`;ev¦–h™];¼ÞFL’˜Ý ZfÜøq²R4.²²+ªpÞ,¨Ž‰B µ_}‘è\’ … ?Å1™+§ì”:„ÓhAÇìV8©—(ŽùBïd¥Û´ÎÛY¢cö–Z]Ô‘ Ä‹7³Çà\QÐ1û"¹Ž¥Â¾f%:f»g—`œ[P&¢ç˜Â fsGVÙ)õ ‚¶ÁÊi DmÌMäªÃ^Ø0›ƒÆ)z´È2gkã_Ð/;w¼µD¿lO£•$):-IEêyI²¢z2aW:iHƒjkÜËä”TÐ/›ba»È/ÉÊÔÈLe-h˜-¤“‚ªCÞ´ÌVÍŸÓ³[üL€ZÓÑITĤ’ÌóÄ̯R„nxO×4[ÿÂ×DËì:ImNVnReÖ¢“µ™S?®èÅh9Ð"u”¼/\"u­(¾m®[e¢àûU n{’Š¿«KA»lhÇ/°F}íù¢®nÙ¾Jð‘Àö¦T.‚-¢’—Y±¼ÜÔÒ‚nÙ:r Ûß×L>Úè–]KBÁ 0*ÂNNzXí’WËŽo|(Ñ+{o0+ú£®e-¯²VôÑÇ¥%ze×*98©/Xmâ{£9[Âö¿I¯/Y­Çk!v` T¸†k˜áö¡Iªï“Œ$%6¾T£U¶§YíÑ*û&k_nÌãS±3QhúÕï/læåñòã2.«áœ;NÖ¸Ï-K'!âòñï®Ö,ÓDŽ#µNVº™U®Õ5Úe{*ßLìvüÃK…e¡F»l·µðj´Ëöf€í²WÕ\’cË­$ m¢µ"-9Yƒ_Ó¢­Ñ'ï$Ñ$uçÆ8¹³íDÖѹ«Ñ(oÍ7ù©•mï®ÁýÕ¸Æ×è“ç¹äed¯$±1—ætmþ5ïE´Ëƒ&\E»ì‹„à“µœôú’H¶ùwF›TÿË9cXuœÕ|žÑ-{™éÑUG8ÑV4ËV†#¬œc¯ÈO…så´Tw³l‹h–-Œ×8`zÞÌ ‡ÿ¤%XÑ.»9,F¶,IB„Y¸úV´ËL]KA‘üîYªtïk4Ë®]¸jÕM‰/ß¼™Î¦»Ͳo²¼9÷I I‹=LêͲ;N"Cé$«Yö¨ù£YvcAþ@é/5ç;tI­4ýk®yÜPõ2ò#Ë–íLÞr²F>›1-¢ˆ[ÁƬh•­t–áÐ =©ŠVÙƒ‘8'kØK§ƒ]Ñ+;êŒAV²½TFG*ºeW–ÿ8™%‚³šß¥ÈHlƒÄ Í…[v·ìM–ù“›šN*Ë}&Iƒ ÍH²~F. lXÁÚ“¨z|Õ²f¿4Ñí²3‰R…í²’ì‰¨D»lŸEñŽ Úe_$¬ ¡Ã*Ëø¿ÁûViŸIÿµUJÆ¿ÏÚe[NêRÑY°ð‘JõqRaΦç!Ñ.û&Ëk9QÚeS2qÃ&:†“`%h_Þ¯h—}db±è–½’- "×òk˜ƒžD¯ì›„5»I‹Õ…·3ze?Ä^¹IivHôÊÎê.]0ßcjI^ÛÎÓÑ&¯Î‰D'±7òÉFcÔ›æBŽòè“í‹*Þ1Y}²s¯Ú'¿ò‹VJÞ Ù&˜í%šd{¤6‰D“l‰¶Ã ‚$)¬èŠêöÿʘÿµå0˜!4¬d ÅLÃ’è“í[ºˆJ4Ê–ÎZ†EÖøGóGV£lé,ÓsàÖlûÒè”h”Ý"rÒWޣѓh”ݤæýŒFÙM;­ ‰FÙm6lT¢Qv›5G^´Ék> |èYCäÄ­Ÿþ¥›!Ñ%¯g•¥ŸÄZÖ.;ñaßwÐ#z¥¶™R‰>Ù=$2‰>ÙÞ§fDŸìÕµ‘øÀïcúo‘ž·/šd÷ 3ÜôñÆá|U¢Gv³‰,M·E;AgTÿ½-zd·)ü³[ôÈö;Œµ¯Eìþ1͉ü6 '¬•Ï>„=²lÀ ²›g`ç÷øÈï¹ç¨±Cµ®ªe=þ O»E{즬gÓØWX¹©xÝÛjÝbèø¸o…yöŠÎ¨2ÇñÕŠ×päeÜôC}¯¶èŽ-##muÇ–&ôóZtÇö|Ö‘`åº GC‹æØ>ÿˆmÑ[„%­N¦žiN¬ü/V°¶šc/WÚ–ÝS2Xߨ›AŠÎ¨Ù·`‘KzªvY~ jj3?dˆ ñ¯j©½Œ¿µ,5´N²¬Ø>‘XädY±]yÓÑ»~¬Ë%¢­àëi™·híå”_^vÕ˜(Sú´…É“UcÒ¸?»Èª`ùÀÃæÿÚ¾ÑÛwdšoÑÛ÷ßa}°/ê—a÷ˆBâ$«n´9"£9ö§H:pPQÖÇ;: YWóá¡7¶°ÄÒ‰‡ò|GŽw}¬¶ÇF%¯¬5n!àÀŽÜ&±¼/_¢°û¿ÂjS'uÄÁß²¿hA Al¦—)»¥~_NÖìü+¿J¯4'6#Û .¥× žEµŠÖ¨_a*ù"UË#Ïi«¾øË2zä}á—,¹›tô¢7ê75§C´ÈÛzS(Ñæ^_c‡ì´v:dBׯ¡CöEÖö4w£ôù€U÷4rT A^ÕœÐU:LG‡laÙ†“‚=XØDò²TÜI{Á*š®Lþ\Ä^²,ÙP(Y–,Uä‰8¶ÐÔîè’ÝX ¾È¼bñ½¤zF%hÈÔÀèÑϳ$ÉÐÈþ´$ÉVúim² ST´#ñôãaLeÝ8çt¶É®|©zEK––:YŽ[¯/Ò‘­£Mv–p;a/Í‘Ÿ‚ [$Ú]ŒÎ6ÙÌ•rRQÜ£-{£NZ[m²'ßÄŽ6Ù5·={´É¾ÉÚÛÑŽ6Ù=·X£FpÅ;±8õè“}Zl“Ž>Ù¶OËn‚ûœ£•ƒ„fË0?VdG£ìɼNÍæ¨•~n‡Re¡“•—40éÑ'Û…x3¢Oö7„«H>Ù_gz‹†ÒÌZ34ÉJÏhܵëÑ&û‹| •Ñ•1Š>"-ip¢ê1ùû,É‘­²?aRB_m‚Ä"¿dö—üýKbÃÝSƒU94Ö:QÝcÔí±6{êkßCL”³|_•bõËç½æ}1 +-Ií¸îJKjÄ_™O¢68Aö•!Ë­5’?cÿÏÏËHpÌi,9…]ÙWìu],f}-P~LîÐÅþók„k´FýsÎú~Á?Ó~´ËúÿsÊ`à0Œ?ßÝiãÄ õçË-'»PC³n9ÒÖ›üçþ5®]ÞÕA¥ÛbnÅÌ_³:ý9Çè5ôå¬OqδÐÏ(9yŒÕ$ûÏ.Šc9HÎ\cy@bÑÓ ¤­ïbŵ“îç´“Œþ’©ñ{0UŒe*¬ŠøÄX+æŸ_8iuykT¿Ë™è3–FПÈ=ޱ|ý? ßC¯™Y…;˜‘ô€?¿Å il¿5ñˆOÿ–¿Å\ƒm§Ñ±lé?ß”ûƒÑõ!ÕÏé 'ÇêsýIk×ìI#;d¬þX"ðÑ'û«iïEîÝC–a[>N#úd‘Z²ì ÜR´Eý:ë•t`-ør_v¤c˜Œì$òÌN2!ʰ?µÄhåüvƒIƒ‘<Ø"¯sÏo4äf°rÑÉښ냡À±úd{.rÏãµK¤yO£MöʹSÈ ÚAüôÈži½GWTÏÁº0Ð"› ÈU ö>B(5•‰âé/ïšdWV$8Ql`ºè’=Ó7#”˜'ßúP°YÛš0ÌGtÉ^‹¶‘¬€^о8 Ÿî¼pøt'AÆ=â–ìÊ6ž M˜I]²;uœ„C—!²1±-ÑòסK6RƒÌ{ÍH͘4•ºdKîCŒè’íÒ;Õè’]r+` Kö÷åOF—ìïËŸƒ.Ù¡÷²F~7ÚŒhŒz“I™‚奩2Ð$»íWM²wªË`“ì“HXž[h’}‘‘¬xÃÒ£ã0Pz¾uT„›|ë&šd—L'šðŒ:YN*$ë`#²9jéüÉ3ºdoU, ažeÎà~Í:îà 1 ›„KÇY}–0‚ZnàÎÐòŒn„¸&´€¬óõœÑ$ûkxˆ Õròò2+Ï>öQ@f‹¤ï2I–tLlÒ.R#·”'À¨éóM6ÈΜÅY³— &ÚYS_óœpè2gÖ¿(&3ÌkÓcB¦ÔDwìJ@'ì$ÈÛ+ÙŒkïŒIÿ!¨uÁ´ëmç|U.’öÿ¶®f¨ùÔ,,¬‚-5aþ§ „“AsõÆ^IS ˜•«}6´ÌÀóDoì‹LLò_~êN³×ÙcäT¼Q4EõpPT v˲­©Vçd´Æz-'Ë 5*1):¢º¥Ï?!t€|£ŽÏn5Ç>A4Çþ:*¬Q?úÕÎR 'k{ú+ùÕÑ!Û}̘s º$Ó fh¹Ô ìN´Cý𿽂ܘù¾£E^ +NôÈ;†;d7ºÃ²w0r†GÇx¼²3f¦ÍÌh}“åÉiF;¦b/'G_èÁyj6Öô* ¾†Ø PÄXŒg¨ey±¢!jmyÕ$X„P¦"3ã$+3#µ0ÜnüÚKʼò0¦awZò3è ždef\dÔ—DÉ´æï 9¸›¬Ô e…ª;I+5CÓÂ]ñƵ)W„–ÐÒÒX¼î 몆èªð­$‘fÖ9‹é—©°­t‰€zà`Ÿbã&¡ä :5ÉÊÍ“…lÌåJ«Œ\’Ð#õHÒPõ2ê’çhX”[2 ž¦¿6ê‘ESÔ›p‹Έ²AvfjD³qx - #íH¡ýfeÔZýžóç”0‹ª 5)Ó¥5t@=Û¡¬Á/¹dªDS5Š8èò’hÄ’óŸ¢?vÕü5PRÖß«b%˜›@4+ʬ’Q7ž Öð·B—PCüÍOá#‡e°Bô"KA¦dt\Cô$áHý¸ÊGêCêxÉÚÕéGÖØŸ\Ûº°ÀÐÕ+%J~j•ØvË¿"< É %t™Éø–†¨`êW¨íÆíZ~oˆ€JJf:YC?…%œ,´É¢pFí?'K:fÇ tB:)u•j@™Ì‡Þ¨7‰.™©«úrïMÑÛ˜³¥hŽmå¸LHà¦]¬šBˆ¼ šcË—¯šcÈX+þ2p{‚ŽÝ£}áÈÎÈOCô”j(f¿¦E–3wû ‰˜˜a(ÁÏÑÐri'IÒ*ˆ¬±¯TÓØFZ…ÙüɆü Ë›½±=µ }‘žˆk´c2žd!´jg ‰hT’÷üTÈg4O ! ø9™±µÚòCUÃ<\ƒ~¤›f¡$3 ‹ÎØ®‚[Õ¢3öε°r 8è‘‚ÉÃ1^ ýÏ#×!4ZWU>Œ±À[Kï€$·Æ,–Æ Œ…Мt\ @£çÏÖØ~+[ž³DFî°€ _9ƒPé´ˆ,ä?=qa“ÌÇ+yΪ“ÖÊ52òW.ö´Lm¬ù‡†ü§gnXwStEuI–—‰lcöz¼í»Ó^-D€|®ä  ¿šŸZ£>”aH0Æó”Q¢Ä ¯Š…þ§OËØv°Ðÿ\åà¸9=fr޽Ѓ[z?JR ÉBÔõjåµ]:ù©Ž/âWC.5Oœ,û§³:Ö‰âó  ÏKã«0™”U5"@GzyÄ@®g!ÐnÇ9Ë~Un„@Õè¥4€%Nœ~¿J -·P J ÅhÖEcTßú´üÐZšæÛ?¥˜„èžž ´Ó­Œ@T¥ÒØÔ^“–KÓ¬‚8lkZž?¶ÿ7iŒÿþåÌJ >ôG’è=òo€ý_ 7N öÿE¢¾$Zƒè`Á¶“e5j²8Yö¬Ï²k_î˜ñ/¢FÐünƒ‹½®â!kª!Ƹ±HÆî¯9™˜_j’ý'Yæÿàn¼}!ä…Sá.9 gÎþÊSÖà?Áû"uÒ!ÐÁ_J û1؇Ùe` 8aoø‚+ChÊA"–ͤL'˪”vBa×™¤!§Ö”dÔsP.Ÿ¡$‰ÒÑ“¬žÒð û&N´Y@àj %Oao)Þ ¨2ÚB¶úÑ!’;׆ö¨+š`E³e"kÌÉ2€*M?ûBÈCf³’¬ºÑöåϋٟ±¶ÔÉJº¹ÈÊ7®¼¥ª=oM‹<{͌ٷ1Y[µ¬+Z{t5jÑZ'Yma½¢A¢NK‚ƒÑ̰ ÷‡&¾I ´žY9N¬ß$¤@}ã¸&YñYÕ|ÞÕs'Y·¦äÀ)ÐÏÐ5h‘ήæQ'ÔÎ…dig ´l_dųÓtöýÁ‚¤óJ°ôlÀÎ06HíŒÚ‡&Ùìx¿ÈÚœÈüHû þÓ±sXŠÀ€“5ö?úE¶ÔÂFϯÖlè0yBŒüþqÌ¢M6»ü-²R=àEô%¿¥ä§"מv¼}h•ý±bÉØ"5“^ì£(4Ÿ-¤ÂLû ÿs‘ŽÍˬ±Ÿi N¦¼$ºªiÞCÉ4÷e|G¸\Z NêUÏn¡¯ÿ†ÓfA§löY[dFØ¢çW1q C£à2áøÚÄýŸÉÂ'«ÎdæZBTKþ ½ÈRCLR'!:8-^d 6z5z+m½@ô"ÎFA ÌR34IEþº_ ZôPYn€dÙµSéaEBA–!„@B™$ke3KJ§3ç$tpûA¢½²åãÅRÐr~.!Ú˜’aJ ©óæd™µK ¤zx×m) 1“,à£X“åD1*å`Yµ™O`¥e$k:¦žB #_éB +ôg$QgÒó»:êLJޤP~[ƒ6¯9÷Ìõq²„@¿ï¸Nص“FW‰nÙ,I Ì;Þä%äV¦·í²ke¶·“•ˆ¯’t,õ¼Ë¡ =¾,´ËÜ óL†ªCIÖl6¾|6èz‘µd¦“†uzä•£]sH-Zx¬¬ÌœÑzce4ô$+ïFkŽS…bZx¡˜u¤G9 •ûž¿í²EsŠvÙn¡Xž³Œ¡fÇ•—„L“¼óŠý9†ÏŒ=ReäóŠ0g^Š@{Ý+Pj Ñ'Kç¾äÑ;?`œûòN¦½$úÅçü_Ñ4[é‡8)g9›ƒè™}€•€Ü*¯[£i6Þ«ŠŽÙŠ{öÿ%ëlÓ%ÕA ¼•»‚yò°ÿݦª@ãù7ç[»5&@ ˆö¨ah/ªÏ ´·BÖÍš:f?¿±I 4ÇM“è™5JZô.s ³w8uY[njêÅð; "{-ÒÂDs«•çQ¢^àF9 ¯óÔLÕ¨ês«LñÖ% ÙîN¸¶÷Xášä€ê‰•²Q ôå 55ÌÞ‘lì˜êçÉ‹E–ò3›xº¶Ü€©ŒN8ðs&ö¨µä7 Ú98™z-ÏÖM=¦Š¦~ÙÑ`³[aS5)µNH“"ÐQ²˜q ½ X@´‡F™“ùÞO²¦Õ GÇ+'HQêé¶™%·q¥Úv[ÉÀwGݲ£¯4ÌFïC'4n[Þu˾Ò”Fdr:a³²™ÏFí²g„ ˜R¢bàBÔ»­Ôj”’_™«wÜ’ÝßÔ.ûõ°è ÆÅE–òOZ¤fŸ×‡(ˆ¸òWíDZӯb¿ì§£“&B…>˜.Tº‘ÇŒÁEå!È…e³0‘Í<×”Hú¤\î¡íIkX >¢ˆg唇°H 0>#ß2SV@í™&í߯ù4aÝ¿s˜çAZäÞ[GÑ^G¬ª'ñ/S"›Ä‰'ŸzJü=¤ š“éi¸æ €„ËÓzÇbÐQcœÇxîñÉÌqCbl­avxøýd(Û ²-ËÈ+W&gÈÙ¨¶ÜñëOÏÕ8zé:@ûÉRZ'gðë?ñŒÒÔTð,V¤[Ù9©ÈüL“º7–œœèúâóX‰ c²$4(5:ÕöéP‰ ^¼P‘ãä(³æ1÷Le‘è ©s½-]²ëÈ«K ´­0:zˆ®¼:Å@™Ãùx#<ýN1ÐGUÛ³™!jé,öÐÚ1ÍwuÊî;l .5P‹T'È8[± å„i÷±qc]r 3ò ¤Ñ£_‡¦Ýg®K´¦¡Ôgª"Æ™)ÚÓÃèÎÂ\#û!‚Äû–ñ”>™xßcÐ ï_ÄÓªù`°|ˆÚ0žø»³”,âb–»ùˆ õxf„ˆ:ãýd⃡¿{ºv¼ ›ƒåŒE1&¼š–Ç ï>û"£ƒ¿™/-°¾™x¿£ Ô ‰þ;Nx¿ÕÌÁ¹¿pØÿ¡~gŒü!ÛI¶=ã5ìY¹‚`zaë› ‡fL‡y÷ã_Á´ûç֦ݗ(Úr‚´{¶Ž±øÝÆ´û}òþÓî÷ȩ֡X˜Òî-ôœ`x¢"¬éúœgŸwªšQäÕFÓFÉdKÙž¢@O…|~¡š3à$¨<š!=ÐÜLw=ÐjaÊéÖèsfCz ]™ 6$ºCcÝ r-k.Cz L bŒsjÖ”ò_°°õttû2–—¡òÑò»ÂØCr 3#‹ƒr }”¹?(êZÜà–J²£†4àjls…‘ö®w“® v¢4Õ )­ƒËKƒ4C*ps晥d‘üç„ÒöLñxÍþ™´;þÎ]º<ËR~VÉc`ÑÖø"hd ÙP^7N ûnØà2à^MÜÑ¡]Š|éÙëøCÖüÈa\Gè•|zCî\ÚÎÞ ˜û*²íA}Ù\y†¾¥9$ —8r¯­NÙž#0v.JC‚@ë’ Ñ¢0¨ú´™pÒTßÙ á¬F%‹„1²c4Èþ’ýßK~ÅÁQ–»Y} »~l ýgÞ2\{úVÓÊôžÆN Ëcæø¤œõž3Ehýɑ~WŒ¤z|×_>Äè³v *]rÙZ 6¿¤êFžcå¦ÄhŠž‚h6&@S÷ʚϗb OW5'm FÿÚ±ì ‰Á¥V ˆdYOCo.´)Л{Œþ­½n©þ05KÜž)U TÚT¿é7Óz n]­(½ÍŽîNÚé‘r£å×rî“6©ê9ËŠôͪ¦&;¿ô@¹-(‚¸^VyûDB_¶è¤è3اô@{ƪfèîx¾Sz =:©ÚÎ’Q1©Z{úø³©ô6ê‡A-ÖòGP4sþpôç$9›”p3ü=% T"cÈm$ ‚¾IÕÜ:S´ÀMê¢{J~™÷©ïà;Ö#-.ö7ç2”Ç0°Ýc°M*‚úηæ¿9¤ ÅJN¨òu•YŒ$1#Ư–&P&pØ 9Ð(š6θØÍ/ù]ì“rX©Re4µGuÞ6C.ôŒQÖWþ†1šòJÀ2Öˆ ÛnæyŽJ-j¦gìjJô"x˜{çû"i ™KßõG"ɦ”¡ßëzkù–ЍCŠÞ ¶èÚlJtå*3%·£+ƒ¤kd'O'F,3ß3ª‚zF]Ï3cî"ìX–kô”,è(ùVmu#Vm^©[¯lIrÙs“drê¿"µÑgÒ ÒïwîNNé‚fH'{ÞCSÿE~_Ó-œ­Q‚ãD-5Òïk”]Ú” \ölw‚È^ö–pÂŒ“Ó›©gÓÎ'aÿ¤z(7•ÔÐl»¨ä•ÖN&R}HW2»â%eÐÛi‹zp¾ ¦á¾ŠÒïßD‚[–§1écj² pÞ#nê€-ˢɤ“&%Ø“í-õ`óó÷’©ü„%YÐÙøÆì,ÜáǰcY¦Q÷ñC×NggµÜÐÑ´¾(7¢Ã¸ËöY/Ê‚>2—¶ä)%9À&E¶¶%mè'fÑ€(ß Ò”ë¼ôõôçÒxâ¾>¶LbØHheúÅ`ðí<Æî "v•‡„¥bŠKAñ$) ZN®wK’ ¥ä$hÛÿžOaàÏ\¢×ÈöÉóÙš+¡6≵kMÙµ5†ÚL‰{Y/KÊÐ)eã±½S_„M¨¥å€j2/ph7øïΖ9R+º%‹ŒºŸˆ¤iÚ_ôÊÈ-Eu bi-/(Ây‘÷ÌCèô¼¡‚Ôh^ê´/±{oqÞ¯ÜÝÁ²~ö.2øuJ‚©*ßû9o€¨žY>KJ‚Vº",¼}È¡;×òfQ®¶ô˜V:BõǼ¹3sàSô©òv‚ݹ5ÈNŽôRdÆ9Ù\Mbr ]–¢ ¾ ïEA=Q¸%Ávè"†ª­Ø@ÍòM€0{¾qŒ[s;ÇEIPŸùx–]TMñC®CÈDÐÒ· ­YË„-AP€"pæh ‹Àf;á†o ‚î&Ç– èܱs²% ÔӜؒºÉŸcúŒÛy÷Šàõ%K œº}[²@+´Òœ tœüM%'9޶A›òßmK´¤§´)÷¨Í:E{"ÃÜÉÔF¡8›Â@79 à<çaò}fÒí†~˜´3Òe7…Ú³ ³%ú¸[*qÙãÀ îWÞ/J‚úêròìÌ=/xÿ)¸\T7%A=¦p+H_*EN`þœŒ*o©E¯-C÷‹·ñJ™|¹<"4d[ìÊŒÆîð«!ÙT„»IWJ°ŒE9Þ› QÐ:ëëCû§æ³”ñÿd(oê‚ú d¥'÷z¾¤óÉÉtØ„[!þáóeôEv€$'3q/ ý–¯eAý¥×º©çóMy&œ¨]p±åû²•¢U«P”ÁÏâMÛ•¸+¢zýäÈ¢,¨Ç7ãÝ”íÿ"²ý³{¡1‘ûC¦12!iËø²¼öQûé‘sÅ‘7÷Œ#o.÷)÷aA]†]›žQkҹϷmêï°ò}ñŸv@ß_Kongæõ¦ñïÎe €vÅsä˜45Ÿ.¯£ «eçÈø¶:N‘7%vF2Ôkcˆ©ð8fçy¦*<óسQÎ`´ª‘@³’pøÈ‚8²ýk¨_oÄÄ䟚ýŠ5ÙÒ+G´­ä§Ø~:ŸÕ©l?}£²ç €ZÒ7`)鉛~$šB¾N”f(çH$nF!º„õê~„õF‰÷PÔCá5Ùª§Ñ+r3.£‡0€J¾d1  :¤Ë=ÔòßJf8—=ßòÓÕ|zçí£.ç´Žü<¹‹x奌2Èü“óþëO4+{òÎP³²L9‚Ž$¾ßzˆûäH¤èM·¸yÙFÊh¾ülÀýÎ<”]=‡¸¤€,÷q¥¢œ“ÙŸ}†ÔqÅD˜Ÿ Cñ?H¾*Î4¯?ÂbžWœlmVʲ"ý˜Üm³’Í‰å °î&€¦«É «ÁîêÓP=º½:™ª^ìÖt²ª?Úv€0ÞÉ]dèµg™´±•߇`žß5¿-…€^›>F! W8Õ$šN¶Ê-4EØ#ªà‹Q 4ûÀ€¼š:8aS‡(v;ö1­+»2­Éæìy“Í¿ŸJ1 J'W†ì j'ü!¶o&5 ì<Åœs™9F1Pß‚ía}eÉÛÐàÏG¥% 0Õl(÷&Çn2eɾ t°qÒ”/óÒ¦ú5å„nSÔo2eÏɤ2Šú•7cÒ…Km'Ì7Žv™fT}¥f³œï½5e¡ $5M£î:N„òNFMŠ@+#^¬T4çmqC®ä^IèE6E³ÿ¨äÚ÷tžùû EZóôèK y'SºLÏ™™kÿÜ‹­\ûèªâ®\ÝñË<¹Ð ÑŒ·ó˜&ÿuä1ðäž”r*¯ .¾òaª}f”eüË 4ÊÕš»iì‰ÉÔ=Ý cnÒ~¾ê^ýy´AÉMMä&MÐ'q˨ šzSÒ ¢U•q[íC|>óüÃç4(=Œ6¾Íeg‘hÆfã"È+“¨±š’E@˜•—LÈNj£dQŽ/þÜçú“Ýùl¥Hÿmw. ¯î *ã[TÖ˜ 6/Êxl;³+%°Fr¸©<óÚØª^  Ã̤HÙ|ü£ÂäuÛ(ç G£aš±ÚL€tÝþiA ºÆëSHÈ«ÒóîR%´@‹Ú{€@‘Bö ÒêÈÒTÍ2zä˜-uÁR0gÞ0i^%¤CI@v¤<°FÝš—‚Æ}S®K+léÇÎï;H“pÍcº„øVU¦žUCª\D¨!]ILó£3C Ô÷ŽJı‡²TH¢ð¨a [‰° HKÚYpk3Èá·‰Wëjß ¶6¶ô‹¶ÊGR 1Ð2‚°»Ã› Õ¸*/d*ß¶Ðã·Ȱ7EÔALob×Y¸”¾óÛfØ›¢- hï0U‚l”“'–PÔEƒP·¾N}{ÖG‹`KB-w0ðmå›))И¤º%˜ Òÿ{zi07óå‘èê9>LAl%€`#î&‡+–æÐ*ÐÁŠ€*ñ}‚`+n+ݤk™³< —s‹·°"aP³ PͼU2 £ÅV%ÚómvY„¶‚ !iÊhiJ6×tX)ä ”ž]­šÆÔ¸ +ÁE ‰éŸ ØŽkyãÙñi¹zâÜÁ<6V$·˜¼¸2uWs]…¹40Xó þ0@öK+œ`=ªéL6NÐY]òu|jK6c'ý‚Dã™ N¥Ï©ZY;ö!H±/3–6ì]ÔdH…»îå+ ªKV‹•ßK_rãã/±/AŠ}¨. ׸ռÔ…Œ'ÁäЙ´{Ί R´J*vlS"->ZÙ `Üבã~*ÍøäÛ"ÐþŒ*ꀾ€t@GË+I´·Xú¨VË;^¨Å ûµb¾¬‹öÍþ几l¿ëë4H°?ª‰9‹ë¥å‰#Å^¦L¥¿—ñ)jåf6H¯ôB4§VMù­æXƒ¯Xoai¤#qF„~ÜÎA#%ÐQb«’½H“ ÓÌþi/Âݸ+q•\hƒÀîÅ–ØæI¬¾|÷qÿÊ¿ë9gYš³+@X³yHÇŒšƒ‚J é§ƒ`û¦¯œµ 4©B‚˜j|xH£(4eköúT¿ b495&š¬þZcAo…Æìª±µBcV‹Kƒ ¨ÏuhÈ®°Ì¨Ÿ„ÌQ- Ô›Hï Ë,ÜI €{V^X À^1™ØûC¯j«ÿ´Ç[óJpß^„" •Š"0~êŒ×°Qè&]éÕ2I·` }žfõWƉ}É‘uYó4TB¬±5Š€ÞD›¨ñ亚û¤·Õ Zg‹áÙ¨änRO²TS£aÞà‹bŽÒ»Ûºô|Út€jáèò_;v?§¡h&œ‚„+»€›¥åÒ'ÏŒ„ŒƒA~=wH@´ÉjfsKÒt‡WX²mǺà Ë•&tµ ˆ]°äNdÓè ˜aü&¦j~Ù† =c ˜ÄÌrD.åd¼ÉxçB‚ ¶dì×1KB«;AZ™YÌème<¯÷ vn²Õq7-`Ö.#¡A–M£\'Œí&! tÔ©[ñ¤`€Àž¥R‚ÈQE< 逞nf£( â[Äój‰I³Q‘ê<†å%å_25Þä¬4-!Û²%ɵ¥òÇ;MPì0éÊ€FR4ÂÅ=ÖŠ&Ð:r0QÔÕúj~Š2 oÂ`ö‰?¡ÇéVäHòXW/T»,ñ§vp*à ؉›Ï­Kn°™»4@£:„rˆß¿S´”è½H'À^ÇŠ¾s!èÒê'†Z§ ¨òJCY{I=ƒP4©é¡t Â…šˆ2|O²•}ò,!™${¬SKº~”‚™Öao*¯-y+ TV ‹’ <(CÕÐë”õ`Цô®…`—4@î“ͼ8MÙ‡tµèK;ºw †­¼‚ ŽwÄñ¢í)LÿÓòWuu諯OaÞ§ò»ªk׈øXR¶_á±²M;0½áÔÿÔµ@0ñ´ÐXƒWó9Ï’*‘‚”ÂVBz}d‡â¶‚`k"**J°%Ù  *ÙÒ•î¶,û”¥óÙ§Zš´°=º\€ÍmN˜´eD¨O²KÌ r u¦‹ß%Zžñ$9ÐýéÒäšy¼±Å‚)§ä[C  °HìK°÷µ,ïé–ºëÎ_¾)‚uíÂi9í”jµæ ²™`?÷ëÄH°çk(ÂÆÏ“hK»SÎó‹dçôÐ=a9v ‚öüåGúF~A©y*G€ùN EÄxVjmD¼Û‡Õ L&3SH½³ëK˜+ݘ]êÆ¼ F¿gW&,ËÌ&(Å ¡ho3Ò ÐMª²˜4OIÂëï ¨×iÉ…Úö錢üú£xH ô¬¸åƒ*@ž¬¡5Ýa£çÍì¨}ÉÞõ„nÈÐOæ¢äµ)ê©Y Šºô˜‚ ƒ"@®-¬iiHÿí"¡ }z¦¤/Mƒ2@1^A4,fíÑ””KÕvßëéhÊÎxÓþhÜ/Šfr ˆJŸC°S½Ò1¤hÛÓid*k&n{Omû5‚ Áì"жŒ Ê|÷ðÐ…€<«J^4í1Ì9qu©ÀÕ/ð o(—¦-–u%ónå‡$ñ#cnÈ ØìZ j®„ƒz ­¶x=Wl×n Uï Æ®× PËÍ›!qè‘æ'zžŒ~ÒW`’6’x,?„á¿KS꺲ÿC¨ˆ˜1íA —;\y Ó×Ô½ ÆÿN»ah1Yl("ösí ðû‚ü“N€‹¶„‰Io‚+p1}ÿºñp)äèÈc0ö/‚±o¹´jÖóøGN.¤ƒb 7AjÒE0ò홸¸Üd"!ëhôF-1ÉCqûóü죦ê1м7UA>ÖQôeåí[´YWɹ7ÀÐ\Wò9¾d1Û&Þ'JzÙ\ŒW“CWŸKcدô#f‘VÀ Ãmj!x¦{}ÈPµ–Œ)j<õÑ ¨~83¶:§¤@£CÉy%ýH¥C×gÄ™gU‚ƈ_>«ºiOLû¾$ö¿'I1*§9Ñ+€UG(ceIT•»lSFÛJÐÈt—E ÐÃiV«Ú¤°T¿²ð —$€öói%hÏÛ1SÜ~様k³bËiMîέ ŽzÁïà¨ælü¢]óyKÈr[•åRØÇ;ºB´Ä,º$]tIãxñ…WFörT§ï¸T€úsÿ¤TvL¾KzД<‰V­šŽ×¾;;€°ëô~™õÒÞZT]iä.ŠU&àŠ@Ý~g*Ü¢híiÒ¬s‰&`Oç ˜œ4ò¹†õž\·mùdV~èHd5†þÑEÎÎKZг†·Lã98# ][X\>ð¸ÔâoŒüšøeŠÓFŒqíÙZbÙ\¦¡ÿÌR¦ä¤£xõu¸Èæ§dx Ýæ£ú0TE¸`äG%uj¼d[jÐóĀܴþ+ë*A¬‹TmÍMSÙêšà·ÄX÷ 2T8iù©©Ä­úLÕ‡EY“ÕjÄìúOÙÜš÷v“¬}Xþ»i'gÇÝÝ´üÝ œy Ã+6¬¶„ -›–¿‡N^Šºö',½-ñŸYþå!¦ŒˆøÂÒþéùæniÿÌ Ðî’‹yÊÚgÎØ¦õÂÉ<×€7Ù*®Ì‹½èÕØ²þk&µmŠÿÜ„½¡‘Më?ë@Xf2ó‡ÕŒfªä¦ü§»Â3ϳCyß)ÿÙ{í›=ÓËH ÅŒgSLoÓü·çS½fÈžŒèÕ’7p2š½2/jOµk²˜ÅXƒ˜h|?UhnÜÿὩúÙ5/÷Ø2,˜{ºA¦âÇy!Êz[}ƒ`öE웃ÿ"Uvv­øÌ`†Æ4±Î{“¡èXËO©–+?uß<8üûï©·1[v^ûÈ•ëš ©Fƒû§9–µVx¸ùˆz—Œ·þ6t°|¡©üsnLÌç¼Ñ§LîÞ–ðO›ahmÿÜÖlȇƒ U Ç ‘ÜÌD}O¿œ— ÌkvÄ÷cc¼c+@ýüÝâW× ö½Ç ?Týq¬æiW½÷SÔ©òMðVž˜wT¼@Š ÒëixŠºç¢™øPõçµwq¨úƒŠÝnÜÈ$ÖCõϾϋÐËLm¶òÀ„dy†ó2rxšÜ¸Lbe÷dìnËj>MÓXæ>-O4þHþsgmÀ‘òÏÞaï)ÿX‹Åù4 ý¼a-õìý>Rÿ\3¢”GêŸqG%ýY2{ úýLpËCæú¤gDc3¨5¬yjÎ0uŽÄ?£ˆDµqq¯döÏËü‘ø§µ˜×ŽÄ?w 3ú„ø§)øu¤ýY2wáHû³å†/£•oÇî@û³õ -ý˧ "60׊w•M|*.EïP¤g¬kæ™ÿBÅàÀØg|dý÷|rqÀ £z©n4—–³T*ý&T¸ˆR"äj¡”µþ'þ† g™ÀÈÍ:lÈÉR8´ú1;&Áà¦L¤gŒLðçF –¨B{¾>bM8Òý9;[r15".'¬þˆ²)>û7‡ÊŸm„Mr$ü92«õHý­†a{Ž‚y¹œ 6Ë)êhà?_FVÿMgb•e¦Ë+p|dô÷L8TþyãË Ë˜ê¸ W9a¾qFˆØÍ• –×BzÆJw‚=àQ4¡¯LUAä¡èqš„?Gæ¬ZQ‡¯‡Iøó"ÑžOñ 6§}ûÅFåÏÊJ"xž1%?ÊcXöKÓ±5¿°mxw­NývweÕÇA÷‡Öø‡lf‚÷è§kGކJ?ô¸L⟭ioÙ¤þó$¬™äæŒÅפW3Äb’ÿ™=ìYZ­8få¥Xe²#*dMžÜëâpä\ ‰€â?H!8AqÜKÞ›þ¯Ó“,/-Á·Ùã½¢¼ÆïËL½WFéÏìW‚줧–ŠÞ3ƒ€l¾õhøƒø³]™ dCùÆ™Àf”þÁ¾z ý'ëȨö§ï$Ù*é`LÏWà‰'(wŒá0ÙÈá´xÉŒbo¨ÜI‚ŒãvbVµ)-û“Ãs2ÕÞÒ¨·©Tû,G´©TûÜ5.ØÀ×µ–Ô쳞‰êxÉŠ`Ë3l^ül> ‚m‡4¥Lâ?gDÀŤü¹óGÒ,Z¤Œ²Ÿ¯ÉÙ$ÿzF MuG1•Pö³¢‹G}Öç•REd©r]&0[¥#“Y&’Qùç•fkG™ö'¦p£ê§§cí$Ì´´;R>ìr3ª~¶ãÁ¸YjGŒ,¥³#éÃþº¸I÷*ž&O¾î‰ZÕÍÔ™l½‰¢gqmSa&™D?{‹{,ÍÏ•©sÍÏJ…ß‹q&âêŠT>š *·KP²A«Ø Ù-l¶ÊÌN!óÛ8Á2p²Ci ä|Ù5¢.µT%YMNªbæ|]´ù~¾Nº’Îã+WŠ*Gÿ诛UKÍ&=A®ý‰ê+'̵_ªÒ3ijã’ícFÕ‘(¾e*q-ýŒWšŒz{ ‚jé#mlس=ârN¨zë*Èæö†~dÚT‰“ÿ k64hA˜ŽyjN†2×F ‚`ÞV=?ÈÒCˆß$ÑOS“Œ|Š‚HñÍÔ"„¢Ÿ-G u?+[9ŠôØ$I‚lû-5Ä0j,ûN6VÏä½ôYÜ "ÙϾãþQö>ÞLr¾d¨t=ÁTêÖ µç´Ü“xP?,„!tµnB{6r%œôý%ÈË+oÕ¢A;c³ Œa„¸3Týôœþ’ç'Ç3IÀ±2L„‰öoû':•`[¢‡T)Œ­‚<1âØ{åøÛZÕGŽ€­ziÍ¡hµ‹¹N?òD ‡i Ö5iØx’üìj¿Âvd98a ûM`ÉR¦K96sJDKŒ ¡[ÍåN0]aì×ûEÉO_f ‚rÑ‹HlÒòC¨0™-~uÌ÷¦("Z¨¨ÀISn¥è'œ†&-¦‘*ÍÏ>´¯U«¦ûÐY¼4íåZ¥ù9%  ‚QßÕÿ„m¦‡¬ ¯º©²èì!çmM:QᔞA¥öÏMeo&å<Ê·®y,çϪQ¥ù9CÒÁ[ \ú"°úÃv@ÍÏ*§Í V€P6ùÓ-&ó*£«…5v?V„¬k•æg‰­`'IB]ÖÏ `à÷¡™¥öÔySìg~=©ÿ°»¤j¥Çˆ…£RñÓÚ“Ÿ‚XÌÞ²×*ÊÖŠ¹½rþG,¡f†;„(øYóáJðs̼ãü¬9_UNÿîq»Ë¾‹ä×AàÀHgv_2-&ÝJÉOl“µ M®´VüJÉO®óSÂF¤À‚¬/@]ùaJT­”¹A¥á®13VšýOI”“ºß³X…â§ÿ6³û¿We¾“¨•AçùÈíKhȆSä„#_ñs´ŒÓD·õ¸·S¾IãòÞ ˆ]ÂãpÂݸ7™ŠÊö©RülQ#îÌù±÷nˆ;ËEEÝ‚TU9Äœý4ݰ[}«„åÒQÇçÙŠÚM˜A2éôÊ´"ó'ªM¡ò£„‡ \è¤ÅѨÿƒ;¹‚ÀÚK3-7ÝnÐ9Ô,ߪFÿ ‹¨Qï3·ªk“üÏOÏ z’&·Ø "#½¢FÁÏ'€æ³I‰ù¥Q5Ð'ܸè¡7®¬¶­I- „Ü(ø ©ñ¼6bRÖk×™)ÿãv•Þ´ÖåȽ ¹7ÁÊn+Ÿ0å¼@F+{£ä§ç"ÄØéG®ue$…ëbœÞt©ûùþu?Sƒ¦ÿ¯cd’ɪhÏb ©¡Qþyì+sÏ X-ˆ©š(N#áÏÕPõVYWŒì©|¤È‹Ç}û‚©dÐxœ²ý/²GXyqó«§Í¯Ôdþ_„]v#JP™Odå1ãÊÔ@âÑü’%W£åyÅÌ‘äã•Ã_)iúÀVBÒ 0ÉòÁmåâuE¬œ°…U:dMÚŸ^s’Ç 1c¬jÿŒ†× ѽAË$³TÙáaa>RË—óHÌ;ìv4ôkLÇí¨Åtı*w.¯—AkA{&.*€¾VFPÏΊç"ÐRNšrÛJƒˆÞ™ùÛ©ê6bI2U§zPÈ^Âè¯Ê0Å5ø«:5€nR•ü¤%¸ufíñFw€¢ÛÅI»§ëJ¬þ¡hÌŽ"©Ê}~(ô$L±¯a7ö‚ -'eû^’v)¨8ªv}>Åt¼£©Ÿ*4¯rÓÊl§[ȹt:* ÔÚdu €"An'1.(#¡üa€ÞËŽ ìIýGï˜Wýþýšö€MYÙÿ]ò?;²:ý‹Sÿ'½ÂÞÕ]ÚÂ@èýHØ=s«6…9œ,%-?«ÖJüyôŽÅsë4i_„âŸOB¤A+^Ñwñ?0´üÐfCÏM­%yÈ G7IÄfr´˜Ä¦ög]5¿&ýLRsrig A° 3JzB}fŽ} FJ¾¹…øD*¦‹À™{$IVµ¨acþËC¢ßÌCº"hñ,—ܹH:u²êµ„÷¥â’綯làP“˜TÈänôyÆ- ²’2—À Þ˜wa|¶ S» –¾Ž¬¿.éÏ“±—. ÇòíÒþôÍàÒD³<¤)v8 5£Œx¡)üyå¶<ò2¢ó ȶ/AuÉ‹ÐpÓ*ƒC«€×*zÜåÒÛ»8oÀ“7Áàß3¶V¶óAÉX3¦ÇA j‘2ìDQ(ùKCºŸZHuH Žý‹E`Ò®¯ë(RŽ©¯OA9æ"pö‰¡Î¢ l ëí•Ê1oÀƬ¡Åe$…;Ú  qb--–Aà5u€NTC§¤ÓhÓ´Ê—§C HÕÆ¨"´£)°w^¤+Õ\†Ñhúsåohjb›°ØÙ )?¡)Å>vœ˜*û4–u€ÜhÓR6¨ÿù²F×à“ÁQ!3Ä1¥Dh‚aR¾NÜãNîÙ šúw¾­ƒúŸo2ÒŸ‹ç9h=±€1´=Ñó§zt'ÇöiÉcCYö‘# ýœJ³WËÌjÇjØ¢Û_Rß)¾p#W&N¡Ë‹]¢-§Ô}¸ ¢zOÔdHûóY͆´?s Ó‡$Œ©&ÂX†i\Ú:á­©])fÂA{2¤8 ýÙJZhC"@-¤Àœ˜d/ê¶Uó§þg[–ŽúŸ7A®ñÀ =–?³+Å~¼>„‘F>ÊzÝpÍO1Å>}~–gBC~󅑆¯¹nÂþ÷!ñhÿ÷ ªœáØ Ð9_àëù›Pÿs–Œ¡MêÞÄGþ‡ì/ùs7goâC &88çl^€âŸhŸ¿{ÿ€±>`~?²¾Ùß‹X½e?/ð=À-Ø9Cßω[<³eÌ4=Áô¼'%f‹‚;/£Þ'â š?ãdfʤæÇäÇX¡®âÄÇû°Pi©¬þ'Š0+›†1ÓÝXhó!>àoâ~Xè—89¸–ELnQús¤€¬ûán÷Ì*m#nÂΚ¡‹EÍ¿¥yˆûosÄŽ'µGß%R—¸»ÏqQógÕP7uâ#~EëV©æ<¦©¥²¡ÒX3sUX>ÖIv'>àwÍvAøsíÐHuàþCüÛ@üOyã9ëˆS3ò½(û³w$«£’ÿô”Ðvbû&˜ú÷HW{Qùó&ôázžXÊŸÁðïyVˆ]e¥ Ò=ߪx¥ü9Kþ&Êþô³ÃÚØ…møÖŒÈÓ¦Ú›Û5 lÊþŒš™x¬‚úµàN|ü» È q¦–À‡ÿ9l­=ªMPëî«Nö}@Z„›šÑÈMÑŸÑT´âÀ‡ºÕpm6WüÊ$þ,]mD{SôÇm¾šÇœù%»J… ÂŽmKÞvl à8éoý„ìŒ_mjžzuNÜŽ=»ÇH]®Áà‘þùs™•HG>òïµbYbºùä¾)ûsvh|9q;öôÜþÚþüí/GÔù:±P÷sg^<¶sß1m­nê~ÞÄ Ù›¸tFî\nê~žú>÷¢öØßÔý¹‰/§E™6öÓæ—¸){T‹ÖÌ âÛÿ!P3Ê„áM韛¸){“c7YÒIºÈù*Å„r ZiÎý²whÿ¤Ó¶W6–ޝ,è™™^[*ÐažñC¶*F{^KŸÜvÑOŸX_7îdÊɦðçxÜéMáOŸ-d7nÎý7ñPžÛ±ñC)ü9jælØÿ#{¹8€aëãðãªÅê¾¹xÎ< ÌÚb¯ ÁK5:'vʽù<¥zSøgÌP‰pÒp¥’3 •?o‚ ÛìAå¶3Í6Wƒ¾3ÓpSúóŒ€%4FäÊ ÿ\Â?‰ž¬rNQ‰í”+s¨ý3zÇʟÒô?9ô3z$ûYJ„4NQGÖÌFåZ2Éø]”ï lCü&¡,ÐLEäTé~ö(v«ö" `\äs „n€jé‹ôõ% `HªÍAèyëQžPýT1e=!úYb±8ýô¦—²”ŽD?wŽš# 8ËLâCÕOÁ´$Ð>¼ìÚ­¯K1¾[š;Ó…Ðy:¯ŽªQº¹ Rý¼U?/¢™þ!nØÞÄ Û›øØ?­çH¡ôÏM°ô÷§Ìh%Æw¦ö[›5€Ûµ¾ÈÒõàý%XAÒ„¦€Ø‡¸]{fˆ¿:ññÿgåÖÊ¡êÛ™gCãûñí{ŒÚ7 M™hš0¿K{ ±iĄǗؾ‰ß£ßC81«J¾}ˆ›'¤p°mð!>úý±Äƒ¢îç©!Aç¨qø·¡ÎPaY¹‡²Ÿ7ñYìÌšóeNKoèp¸‰›´g…Jvš¾ÀGþM|䟕ÉCÝ{RôØæîC|ä[±z úPy F~¯9j wzÉ{NáO·åN^ÿ">“¹M¨!`Tþ9-z€þ,™A埌?ÄG¾ÕÜÍ0 Þdã—G=›“snBáÏcé8…?ý+ëî°†º–Qî&nÝdÚ—`ôûnS^ £¿§¿a\ ÎÌÄL£pX¶Áðï¹íiÿô«·‡øm~2•Œ@7q¯î&ÿgåµúçO„÷nâá½32-Ïät‹”;“0Ó'a×òYãKÜò¡<“¸]k%ä=0ÅàMø¼ _€7ñÅý&cÉ"ÐÚdòlÇ›ešù/bí&ò,7TŒ~€= ö Œ?d~ÁjôÇ4ØÔøL_s絩ú!˜ñrÃÜ z²3’ÿ QÙÒð“)ÿQ^œi9ðýû#2£Ç c™pgTò/#SͶÈ ¥´}IŸ_‚Áß2úi=-:X¡ÃŠ·’éþ†ÕàÉ1 €¾ @÷È£èMÜ«[OhÓ¸ ¬TvtòûÆ»÷œ(´,cö†ýÉß1Ñ7ÐÉAË^Ÿò¥ýM ¦í)™%fÔÿôiHû”FýÏ3rÅ2êzÌ ÞjJÁ›ùSô&ocD”*@>9p”" ³«é}p‚a)ÊV÷œÞœôõ%þ1VôËAðËCŠÐÉ‘ùÑ’¢‰±aàIf>ü÷RŸz r#4¢‰-OL н»2#„ˆPÌ<ñBô.„œ0¬[ÑN°Œp) (·8(•€öjy!²û!þÜdh,[ ‚¾æŸ4l«Þ$gü‡XgÉs`òª¿í™yN<Âw“†ï¢ô–FŒŸé¡N'8Kd¨5¾‚¿{^òÎ@ÿsŸPÓk¼!‚±o±OÙ(ü#‘úáÄǾw‚ýØSZÿâÆPýÓýþÒ‚À©;¡»âba ¬‰ ¾7{Þoêö×8¢pxuS]»A¨ea‘ÆÆ—‚=æ‹`£n޼ÅÓrMÅ3ÂÎi;“{÷"·lÇ ¹0'>ðG=…ÆŠ„:ã‡/…3ò¨ÙÏh…Ö˜ëû;‰j4íß!!ØåÄô]¸ééeØ¢Ë$_'ÇD‰A7õK°Kw‘µ¿Ä—õåA°S±¢ CÛ‘þêé:U±ŸÒƒ0´]r¶‘Ü~¦êÞdÂîÐæ­ƒïßðçv´›Á²Ys–5­ê‘ÿÕ¨)ò3Á–Bü ±_]”ËqÕ,3lþ‘#€òŸ7ÙíKΤ…?zzU‘ETÀ ÎÖzW+õ?oÒ¿`´/K7¢VÁ &ý‹`Y¿}º‡hU Áã;ðé.‚)ß"£ÒIo_2æ—0¶N”ŸÆLUüþ÷ÁD·µ)qPè&UÝHÒΗŒú‡ln®Ñ u²¾€í%+É ÛoÂ=ºHÎõLF´E*A׎îUNbEO‡Ž£G¡Œžø ðúû+Šm«yèkêí¢ØÎ‡`Ð_ÄmäF‚PƒÖ=º,6Æù‡(¨sâƒþ&>‡Ù¼ˆÛð-2vœ„í£)‚rZcvGªxrçùÊ\ncvFrª³%4ü ½1¸{XóZ>ê÷~~;5€Þ„úŸ7©Ú'IºÞÂYKÁŒ7™õKàÌõÂôyþ<öú“ò?§GtA6 «Rþç&°b/‚!¿jÌÉh ü{+"—€/vüé ¹îžÄÚM¨ú¹O(g9©çKÍ«áK46Žÿà"×ÁÉüŒù‹ì?Ç0š—3{¥É睊goòàÞR ØÿîzÑg’![«A¥öÏM–<מç…wõÞ ZÖRãTo‘tQØÏßnô\ ¯ðﯛ&þFµ7¾j’Ãuhæ…ÿŒ÷uL]»$º?:áx—V@caÔ{úm”ýÜ™À¡Å´ò,ío€ñ^,FtÓÌÿئM¦>g-šú7Á¨ßÚi "H¢!Þ8ó?ñ>'³ÉRô¬¬ Û¾$"Z§þ“Z ®ØïK§ÕÐ0kt­>߆ò*œ ûLþYŽóvôå²0Ÿ‚KZ Rû—´ÅÉå!ÌÏ(ÿÌöù+íéÆ൴´¡XžÅRÙ(üéon)t?¯¿¹X=¦ÿ¦é?·Ÿ!Ö«=tYSÊ?O¬¥qÓá¿’ÇœkÖnÔþ¹‰ÁÒ9Œ—|·èÁ鄾[áFáϽCûlj[°¾‘œÂŸ/ÿ[›ðaÛ À\“z‰:oá"°­çý¤ô¯Nšµ¥n2øžÅÃ¥òçM·¸mØ´X¹çòÚô‡ä¹ ˦KQúÓ?µg&“5†èù÷ 7)sbœÌù%>•mÏZ pÕ³óRúÓÝù˜ŒS’ÅŸ÷oÒô³cØPïí&4aWxâŸйÃÅ~“3¾ÄhÌiÜpdÞ ~`û¸oK/ÚŒ{õ=ökî¿;Á°ç‡†ý‹PñóC°/”ÞfGÆ!âò ;??dî/ù dN÷$'æ]Jö>÷3D0î÷³Sýç&ýÏ1–M$9™xã{X’Ÿ>öz€3/«Süs‹¾ÕN-b'ðÝê ÿ®Óà¿ÀøK0úb¯Í Cx±ÃîdãݯKaà×v¥y¡?ãwo‚Y턵܇\·/7WìÃôüÆýcLö¡5ýMöæ;Ö’à'EÏ8¯ébZRˇ0•— vÇRTÄîvyÄî.²ê—ìþ%þ¡¹ò¹M¥$ådÔ—R’Þ„®[$&:éJy”ÁɇÌ/@üŸ”üÜ©ýN"x-Ÿ¥SìíCýgºÌþ…ÑNzç§æ‚‘ϼ‘©|±–Ç`E¿lÙ‹`è·™/ÃQØâM0ôËÊkqðÀ¤¢zºŸ7ö%ôàž÷ƒ¢oîE÷0€F¨Ÿ¡©t¿‰q7î"U;ã11PöÍjúýTïEÜ~æ1³~ †ÿ™9u™vãF>ÓnÜ›øB`­FTqPúó&­~ vã.‚ýˆ#akèmÀªîI»I˜q“-¥A8¨üynG¼ |¹‹À¤åðÁ†ÓŒQ9(ýù!þuvtzuÂHÞ›À—{*[§ ÂÄ¿a…â›vˆ–úA ›À¢Ý5òAíOäPäyð\„ û›žyœ{69ŠE`†¹2‚ÆnaÉ ŠÁíÌ_ƒ‹‚g²=ià ÐL? äFøÈks7ú(‘¯abzÿÉ@ÞEÜ¢}-Êÿ¼¯CåÏ›¬ñ%û œQ£œ­1u¶²¬?¤aÊ ½ÕFûrì–ƒÒŸ7ñÁ¿û Ó}Pè&[Û'ÀY`\VøçRª}î" Jîµs¨QøÍg©<„q¼@¦=³Dio¦,ë6ëÿ!aýáZpªª?Ûño¹é2ö“hŸâ6ÜQšUãF·½Nãâ …rl%Ú—9ãKhÿ"ÿ\”†àå>l1'â&í:!>åÄÇýM0îkH{¶!ëÿ"ˆå]±¼ñß”µ‹®Ü›¶?¯å?o3hgdkPúgg³'sɦi¬Ú02jìð S4/2\½Ë†tt5!Í’ùx€R¢dÓÀ•fÂQWnDU»˜´=tœØ¹‰–¾âVLjÿDDrBüóõ׸ÿœŠi‰U–ìx]aÏ/9ç&”ý¼ æ¯êÆ(˜úĺٓ²Ÿ§‡æ€8q']¯û}ˆ[F}Ë+ñ%X=#Èk‚àÃ]„¹!Tå¤iåén/nvebÜM6 ͺƒÞËocÊ|9‘‚?7©çKš&[™[“ÿM”“†i7âM½¸w#Nø^“‚?>†ôظwñJ½j¬~oþ­’Ñ‹žŸ‚ÍÿÐô¯Ód&Xc!œÌ–§Å_%ÀÆŠ•M+æþ‡ÐàßÈoh²iâÚU£þMèÀÕð¡§ü=r)ZUa¼ÃEÉO7sòR¦˜BÜ›ÇÞˆ95þØ_ç·èe4pÉÞ?™@³dï_„þÛ›`ðÓ9òtfž¼Z§½SXåÕƒ´ö%ýÁ2ð$›,*~Þ„ÃÿMÎïÐÓ¢àÿô•_ËÀ‹Pòó&pà,ºÆ¡w!ÜÉ™wbo°˜*ü:pi}¬!.ªQœØ¼ 5?oÂTŒhiÕ˜ˆÿ!ãì3óÉŒ‡l¥D­¼ÔQ¼BÓٚʮÈúW¿€ŒY ‹ª?7íK"Œ­XÒ¢äçMÉpTÛ”EAì.—­EÍOŸ*âÎPòÇ#ó%Á\v‘¡üÏ8«’‹_CmĦƒ˜Éâ6l ý‡Pñç&u~IÓ”-KrY@oÂÜúH¨u²¾€‘ìÐÓ@sMŸíf螣|‰»Îü“Š?î¢ÈvX\6kÌE:×jíÞ°Óô﬑ÃéÜEàÀÕÜ¥¢t9œí>,*þ,6 s²)÷ùè 8ñq¿VÁ8ñq¿,s7…Þv=1f6õ>÷Œ·Œþ‹pÌgˆ}kúgîÈ>_b0mBÝÜ;Bs.·¤öÒFÜ›0ÿ:ԹК 'n/UIg˜ySëÓ ^Ä6µ>o‚ôšïä’5»òÍ¡ÔçY'‡ïÎj’“fÉÔ¶­`îC”ú|Å ·,ÿ‹ÀœÍ^ NŽ}‰}Ž¡æÏk÷‰˜pq¼ÚTû<=äf éÙrÚœò-T«>?ýÈœáýSxç†ÚÔþ¹IU±ü À\¤€9;FN»¦½¸ ¯¿ÔíK¶òŒòCÜx:qNÉD¤#K÷åUµ˜œŽV€“¡ÀC©Ïx OQ,6“*Ù¼ûÏ%O‚(DTú¬›TåÖ´˜^)>#aÀ°!ðÒ(C0ºÖ{vjüš±ûH:Ÿ§e¬øTíÄ=¤iöz“ª{¥¼ 6 øŒûeùý¸7 ÷&û `Å^Ä>§¡ÌçM0êo²¿d|Áì_²”©µC™Ï› ‚w;7¡ÌçM0íÖ‡ŠÜúÌÿ§„·z¨ûs“…Ìδªe>­Ï˜ ©þ#ÑÛ³U:ø“vìEš^BE«u>o£í˜fÏTUU}¡¼)qvQC"ãìLU‰öØWe î3Õ uÝ¿’FÿMYv‘)ÏJéÿ‡RŸ79ü ²-u|oñ9Äì&”ú´Mæ`ãæ"ܵ´øåTú¼L u>'–¯Uœh×ãPåíMd÷Ÿ“—–êÏEšÒ;cž:üo0û¢äÙã‡RŸ79Hè9 i÷ûÌ%{üÐôÿý%ý `ú÷ôEn®¬|â\viø8Ôýy+î D§`W|‚![£ìÕ ²é[ºŒë€ÛQ5Wz$$ZQ;=U£Ý¶÷Œ²?îmËÆ0./@¹O(ÔhU†l‰Ý«4d//î&ªŒÕ[åÚ㾯^Ë3ª}Þäü9ÆôåߘւÔèwRUçü>kÊÊx“¡´ËOa["ã°¦µà ð0Ÿl>£êïG*Äçõ½•Öƒb_ìQðŽ….Ðû—Œõ%ü+¢ÂÖµu“¹¬ÝÇR_“0 ÷¡l¤çnL-{v%ž4ÓR0¤^à`œXh˜yÖ‡îJÔúô,o™"Œ}¾þ¤9[CáÇ ÌÙZóËMåÓ÷¼ÁSC?ë©„ÎL²„VÐûSL©š³Ï‹GÑŸ›Teô$L1~“®x…V[ûQr¡$öäÒö—tÙ½%Iµ ÑŸçS»}É™_bÊSádõÔ ˜Ždñgç̧©¥6¥×¿ K£W>©~Ö v²UÉ8óSû¹·Ò9Òãßôä2Vï¤}AÿC˜“¡°šƒ()I£¾ç…Ñ‹Ä"'’5Ó|V‡"ÙiÔ¡ÌúP×vÂÝ‹y±rú/MU&Üú)-$›;»Ñ)MâÀâu¯”ù))éħÿ2Vü&ªü”Þc¾bC¡n'çO6‚DóîAЫä"ó?6v̱SWj½ôlè'ï èwêÙÓð‡âóLrþC“˸ ÿ§Ï¯tb½:±–Ȱt‚–Ò-Ê´œø"PV¨Ä;a#¦ùº–i» éS;­Ù‡`Ì_¤õ/éëK¨ ó&«}ÉVyfÜ ®§ŒœX(÷ù&G{¿é쯄9B `=Ï~‘ó%S>lÏóDHû![ÝÌO!ÿäì¨uàE¨øy„´lÁ$f‘ØïÄ}9tlœAБ²AŸ‹ S9‰™úð%i”ü„´ë ‚fL+²f°#eH;q‹ yžùîj×€D±çCèA³b—];;™ä•¨eŸ«R£ÔO6éuÐ>£ ߎý©ÎŽ0ì\eAÐYº…8µ·f½¹Í8AÐ…¯D+g'è—ýÂ@6Å÷õí ùyýÍ>Ä- 6ä`ï­„}¥ßmÈö «£55ðIóýŠ®_I¡TÔëþ´àëAÐÂ'ö8A²9eNЇ̢׮H~Ö(AsÉÏ‹ø8#Uj* Ëâ΋£kœc×Èf¾HLt‚élÔû²o7A7Ö×™©ø MQ ‚FdÁØŸ‘šè„M|Vªý q„~Õ~Ð%Ö‚øØ÷Ž£Zl$?Ñ336Ô~°jènÔü,>˜,oÏ ™6ãÝ9÷Ê7ˆÆ?–0ʾ÷Îj·€JÄ8' _¦ÇŸh+]sd§ÇßÚ™žIãbPV.Nj?7A[é‹°ŸTQzÛú5ïÅ~²Tgã(ôQŠÑG½Ï§ãýó~£õÈØ—šï*?!©osØaQg¥ñÿ4¼ë|ó‡—rÊ›j\ ½ç`ïª×ÛBï×lÎ`;Ï‚a¿Fü‰1ÿz™¨õ ñ½$hßPBØ Æ¼œ°Lˆß=ÈZÈd8Y_°5#ÈÆàrsñ RåÇeÂôØ:§{äñõ$~ÌŒ(µ?ñŠÁÛ‹z½€w”ÁŒ ¾ð"hÍ„Ó?êHj´ ›9Ûw*}¢¹i‚¶UEMÓÐJ®•žA—ÐçEÆ•‹‚þ‡Éz5σ¶œü•v»’´y{c²‹T BèÝïÒù¼ÈhÈù’%y ½§½¥ô¦—™¶àœ˜ÝDRŸ%¢ÙNžh¶&ØçrØ»ìß„ öo¢<›ÙëKŽ]žEª*™±¶u þ\1=¹¸Ü=„3/#¼SîÇ?Òò#Ü•{“H¬œ ì˜i“`ʃ³0¹[ü!ýPô,¾ÝTvýÈA¥µîñ4ˆ:d>û~–£™ÏÍÇ<óÏš½d>»W&ï$~âÕÂ}ê¨Rï¾gyÈï9wÔÈÖ ³}ÉoÆê®"!ÓµCì§ï–ާ7 ú^òWAç³{qZ¼œ˜òûÎJC'Í¿àŒ,Y'Ýù²$°¹ºçÙiVêÐùì ‹©únr¾Àüë¬ôÞ:\…îå}2nØÎ»{´]Sb‡¼[GújÓýëxªúâßØÓ âïÕyK²ý‡ÇÓÅ<ÓñŠ æ_e8$>»'ë­¿‡Ñ]Ì%î±õv‰ '¿qß]¶µ ÓMìN–Óvøvf?ZxÄüZ#2àú€àÏÏüˆJ='ÕéÑpØI󟽢lÚÉo,tÔ{$þËwþéß«ò¬ËêÊ(N®³dóÈ{þÉèø€Íÿ!n,ÕH»ê4qˆÞ«ÿwòÎ Zý¥D檷cKÙùý©ùsd¥fs'¨e;÷|Ê{J@ÓL}¬ŒúS²²å=7eE` ‡:ªv¾ˆ±›®^åAyOˆm¯ °~jlŒ;é·5 ï醆Ñà 9£<kzæTNЂµ†b¿ömËwPßó>ÿCbA3²¹cH@ß;ü3¬Ÿ‹ ™©)‚´¡¬+LÖAyÏ› Ù‹@íçe“ ª{zÕGyˆÿj úÎ6 É^'›6¼ <¸ÛŽN<|¹è;<ŸÇ½>ÒŒ]Që]‡/ÂNd'uÝàüó%›]ÆâíYêD¶óí¡¾§÷¹ù1¶:‘½I…»Þs^Ù4eSÎÚ LÙlëîÛyÓ¥ö3-_ê{–*‹ ¿ø"ØŒkQ¡æ-—¨ù&M"KÒ¿`ü!ØŒ»7ã29¤ñ–z WÕ’÷·)õKªr­ãSRølÑŸÆ w%ÞË@Kï–½þºo=¯@}úO˜QÍÓ'5> ©ƒ¿°v<'f÷ߎFANܲÄrðÙ‘˜ý¹¯5ÝÙIÑÿ:-5êcìLj|–šfÞ¤ÆgY;OCÍŸÂR‘¡Üß<ñúüM…Ï`j}ˆÔ:‰Ôú¸»øœ=oUO¤“ÇtF05°¦Zº³ÿ“ÆŽœÊ)Ï”ãv²UÓ¤q5%óYsTOÉ|R™R${ð%iÿ½hôþ%ôãÞ„Ú¶3^…)‘·› "º,;A$;åx]¼™çGæØ •ÏHþt?î"ýÏ1Ì5~øqg¹ÞMª|ºY'ãkRöçM¨òyd£ˆ¢ñÆM|ì“7L«ÁE–VךŸÚ›+S<êþ æIW§Ò›ÏÉó˜\ÚcNêþ¸BÊH‚~LÙÓÉ€Uay ÷ù $1:ô[¢A¸óN†C&?¡±¦ŸEÅOH’$A3õ' Ä@ú[+¶4©ø‰®eù)÷æÐT#ÉjïvªNÉî¹@Lêþ¼B‰ó07c̼”üܳ䙪õo€2“› ¨äùY¦Tû7Y“i OKÕ«‡Øp²Š¬Ú6½ ÀMÚG@Ý ‘õH£w‚.£)²ßéV¡ÛàŸAo ý6d–›8‹JcäÄ¢üÛPpiQïs–Üå}#[x8ñsìhÄàÀg²‘oœø7=†â¢ØÏè;Ö’E±Ÿ7A“¡¹ôê¶ [¸+«¡ ÙÊŒ›ÕÔ…lÆŸP«_ÏàÖçðØ>‡y³»™—qûgìhÍáçwûg2wH]¥kâ;,ï3© ‹"osF/ÇÎÝ1{Ä÷u~fÏÈ=½nÜß“—‚VýÎ×mQæ ýîjÈÕ×üZõYšéZõ£æC¢ÎçÈ<'è½Gån_ú’_úìv" ¹¨ôÓw”òwîaài\z{?8.7õKæ`»À‘çAó½9ã5^zƒ‹¿¬/\ý‹PëÓ ]m,j}"lýßžG¾´?=ó†Qì’S6£Ë5Ï?®Är¸(ö*D ÀÌPÊ¢Ú"Ǥm»å.H}¢•y~È~Í* ûwån‚@6S(D|ð¿ìªEã¿–Ðîq£Î »¸9ÉÄM7€j i'°dWÏÇK­ŸÚC&ÚÉÖži dÚþµYÞQøä:'u>½OY¸q5Óhu~ ³›Š-J|ºJO‚¦{=}¸E‰O´áÈëÈ_×<º)ñy“º8Zdgljü ¶Ú‚p7bÇ ·‹2±3¹bKägÅãØE¼ÜØÐ¢ìn…¼”¹óº&úO0"xùjoÈ|Â÷9yÌðÀéÞÝPûùlÀÕþºÔ^ô†vƒ¬åÖÓ†ÚO?™ØÈèPé¶ ¾µŸ¤{`Òf¸Y2ŸÝ³)õ¼7d>»+?*¤¸ÒETt%9ŒœÆŸ†ÈeÔÔùTæÞÛ+¨¼!ò‰X¦–´ ±ŸßO‹åvC©©ïxL˜üb~Î`l qNL™LÇ{´QiÙÏ-ðÿw¥8M­^hGŠRÇÍÅJ’Þ¾‘ë–é‚‹]‡t™ñÈõi%þô°µ'^®üb±;x—åÒ8îd¿m$Ÿ~ˆGcÏÉ„å=ño/IÛ_â#(»®:ØrXc0L™®öºr0J„ 7>/Pµn0ä´º—ò/rWzCÞµ…#À«ž†6s`3[^èî!jÞš÷gî“mjü¸wI‚©*ÆôÎôËC†fÍû›?H!H‚^éù¨î‰žmI‚ñ"T÷¬ÃrD@äÍw™ã—SÜÓžCú¢½>“ ¥Ì¢1¶,Bµ@súNr˜3RóË £ÌžAmϲ2ª¿©íY›lS齓k®”’çÛÖB÷Í Ü¶–áâM#ß;ñ¬<ܶïMmO”òS‡V>²—FtNÉýÎDŸAu¶'¡¥_5SŸ¢6º™zu(õsûØ9Ô‰ië#ápAÇ¥‹¸Û†ÄÍ>ü/€ÑâûPKà·f†€´“#¶æY0øwr‡J?Ogo'Ýy5]ûhaAä%B¦òÏ!H?ÚQâcŸù&"ÈÁ8íumwÙÊLGô@س”4”íý2fÌc‡öþM¾kY0qºŒžó:fiçA#û@çÇ­ ­ ž•ºú~>1Ÿ œÁµü"mr–]I|óÍc5²÷ÒIo~ýºY^äÒ]&$¯ìáëîI²'?dÚª’ew&wàºå Ö2p¢XÑI“µ¡Ð‘7ÖòCj¾?ˆ3vüð 8/«I6ödK˜dò!?\¿Öd÷H¹j©¡Ø€ëyŒ_»e‚øYL=*é*Ü·îšHq¡ñÓÑâ7Oì{pТÌÃôyf.ðÏo‚Èχø*éZs.Ég3[r«÷À†ìÞ¡Sqʳ¹Îг¹>¹r(íYF&h2ô{;VD*µ=oÒþã–l™-b'É›Ýlä…·nOÑÂÁ¶ã7ãìG,oòa>}yw‘OÈ{Ú £ÏÖÊÈiÜÊ{>ÒÁN½¾È}öúC$.¨YÞBÞ³ÆcE›oÂéÐèq"A2-¥F©Ÿ›Lû’- gË‹#¾D®¼Iâ­†˜g·*©Ã7¹»9¡¤g¸–"Ÿ/‚„2ë±PEß^s­QçÓ'79"Vå¿ÅÞ\XhSÑ«¡PëDGÔîÀ•”es2&sÔO3‘Çí™;-æQjô¨Ù´ ŸOù îù†5>ËÈý]£ÆgY±§n]#?ºÍu¦¢#M\+¯Qä³Êª3*|¾þ„%k3ÒÂŒ?e§•g”v®)%î¡dÔ?~!ƒ¦Èj”ée”÷,OуQÞ³dGM'“·e$Xz{žÆ“ʳMƤ;äXÊ0Zþn Çðà"`óù´ü퉙,ÿ“±Që§”è5è¥ñSš¾Ë€±—«ÈÆ“Ëy£ÖO™™Åkø¼ ‚5³Ù Öû ðÓÓdv!ŒW €AÏ4SƬ#5èëæwÍ…FOÏ¢ŸIã¿¦Š†˜³A"åEÆdl”úq²“¬A³]«±Qç³°ü^ÄøÖ)ØeÔù¬3+à˜ ‰´…Ôù„’é“›–çA öEw%VžÙô'œøgjy­*æb2Š´ÞR§k‰ý@¸@Z?o€LŒms¤ÀgJýÄÛì©; ·,û’Ó¨LSfϾ³l!è½o \§œŸ%Áœ x]£5ñ`Ô U³'·b»pð%ýÌøÈüqrÆ—°ä!ë_ýD1nbÜcÜ+‘ŠÉïu‚D¤‹À“³¥µÔ‰OI=œ{l‚N-T“>j‰ùÍŸ7@ã PDòã{RékT :ùKƒ]3ó]¦ÌO¡*’0.‚$Œ‹DÒHâã¾ØÉw+À vÿTÌ#ßʼn›Pæ§ÎØó9´Åê "AÓ‡Œ?d*)$Æ´>-öÁœPé0‚€NPêÅ•Ÿ`{6Å €dœ˜ï¹)ñ{y¢]´ä­X™ †„Í›Ev}g¤8A:ýÖ–†,#ta|¯èwëWVª{Þ¤Ù—Œö‡ºZzT•êžH7éA¶´ ôÂW©{¶"3Å åByT­'ì('U‚-3I—êGœ§©(zÊ´r'. r'H¬¹ª¢/B…χPá}íFÊ¢XÂk×.Ü› Fô"ãÏ1؆»¶á.rþ\ËêM¨õs“º¿¤ÁøKìK`ÒÒÓ‰€vÜ J}º¤‰÷æý' Ú‹´/€'§²N†0NxN˜jÈæiÅmÊrâÛî®hiC¸¨»]ŒP%­y¹.¥Þ…<ž“†‹È3Ì\EFxÍcÆa&tžû7á½ÁJåµ´üÐaX&?cø2±›:*ÓAmt©1—`[ã3ñhžØ+p‚³D‰¬8rÙãÒ ¹Ak'H½»ôè…;ê¡#wžó:ré*—‹‡I¡ŸÒö‹ø~té-¿25>˶X,Úý½5…~j ÕfßüǰÏÝ'X ºå™©ôóì-;'·gN8&O.oœø¸/§¿Î³°¢E–œx6F¡\“ˆë­“£/£›Ó(õS؆„R?7qO΃~ZýÅ>‹ERœôvøAN]œu¼NÜ•+Kõüö±U‚öqØ~„ún¥žÝ/·<¦!Øe»NúáîOÉOIa n§ý›ø·;Ú\õ¿žwˆH9AeèQW¨Á½8ÜÙ†Öÿ³Y²êA¯lù!Œýõ:/†þë7RãõÎd¨ä…‰qv>8HüÜŸÊ"Ü•ˆ€®ìJ¤jæà60Ÿmž¶lyÆ'e>K·˜ƒe>K܇”í=©Â¾‰`Ž {ßjA0ìÏT8|p·“A¡š“][3È^'VІàV Kbë&ùüÍúÑÌ ¶%,_±Å]‰gþn(íéÞo¾ç19–‡Êç‡ Ž]žs)%c䜰˜’QjÞ Ô co%Òæ¾ÄÙ!'ÈÉXM…Nv‡"ß× r2Ú3Qlädx–ÀÊc¼*½”œ fdŒ©4¤ÁÕÿw/ž7êЦ'•~|ÖÒzÜ´œÐw¨Fj'»~ &²×”t¸3Ñvγ\ ÊŠ=†ÁpÐï%:ÊãrÒ0­F•¦“Ѹø¯<ÏT’Bü.D§°w²ò<È©ïÏÛhLÍ8‘ž8zaÚK‰?¹‘s"}Û våflz9AN}Ó½AÙÂÉDœ:×è•7‚4:ÞJFôAŒï¦nh§ÊOyüœ!!¼h€BŸ…•þ'¦üÔÙŒj2éPù¼œ¹ªF(#¹t˜ÆØ€Dk€çY 'a8'óýó&”å ïTvólfÍkKÀM¸!ñ&Gµ|áNÏr¢Xb°€Š +Hã‚ߟ¥…æŒû)—N¨ÉŠN°+qBKf”þ fÁF“ñÐiøöЩWØÜ ö%úÊÁ§… Îð »Ô~.ÂZ’ôp²Ç—ŒÇ‘|ЦµØåJŸ(#´$('©%äd=­¥+ÞåTËa¬µ`·|òJËïC¥O‚-Æ>û¼Pï§ØÈ‘¾´©9sôPï§@ÄR€õ$‘Y壿‡¬Š“%` àÀ§MÔkD÷_£Sé/´>µ%´"ÊשôY²#•Èc´ØDpy ‹bdJÁj\ow~hO>=Ù¸+Çv~ u¢+¦âG”$Úïi;‚kåtẍ2'R‘Ûâdiº{È>3Ïì7p=ÊèÐYÏÛ©ÏҢÀX´;RsÀ¢eO" ÿ¸Œ)-)ƒ<:?79|¥[^ölê"A©Ï’BrNàΙÒû´ÉA¢G9 ݹ5µâDî\Mw®Ì¸›£0­rEkY'°‚vìžR¿öÊ<ß›î\㦠üggbPÚÍ×ÞÇ Nz¼âv¦*¿ ”„rN"ðå²dÑ |¹›pg4¯D•ÏZ{Þ*ý”­»`&[¡ é¾\MËdPéLJ„^»A¥Ÿ›À¤Ýᮌ&W.ªw½bÚÐw‚J¹­VË<Ÿ¶¨OtÒµs7ó4ˆfô†Y<ƒ…(†IW4;* š]2$6ºœ¹Èéð":s!(ïć¾w×C.u*'ÓÖ¨B±Ãø’%%¬çSñ‰t`€õÞêv‚镞.ÍÇAL»õì”ùôù¹ƒ;Z½U>Ýhc; òé³ès¸s=RàD0#†—V‚MÔÁ$”¸¥Rú¹Èàdgy ÿRó®Kë§G>°“­y5Æ-vúð–ϼ¸á½/ü“€ïuËäÔxóM}ØBŸ.·âïѹ ž$S{úrÄÆ¦6ÀÊywljŒ“óíÿÇÉB¬ëD4bùrTùt‡5~Øþ‘ÕídDº[ ‚ÌŒ‹`Ü?Ø í_)` ‚éºóÝ0mP[(†IéMš¶¬e“ ªý4ÆÆD0îWɧÄu 1 ¹ŸgœT·ØBTù| Ë7¾[ÔvœTù¼ Fþ E'SÅušŸgù¨8Á&u‰™lÒþo#÷Y'ZÝ8'¨*I- 'ˆg?ïêäR Õ%ÿ‚‡b/7Òј”øte/}&%>=L¡yj%ØQC=&5>ë/·bd ´ÍöOµ2›&Õ~|›NÛ“ëÀMË9n'Õ~jª™8Á®ÜJOnJ`M“õ¤ÔOí'nognÆŠÆlN›ñÌÞ“JŸuFB£“‰ ÔÂ>›ZVˆ¸8Ù›#}æµìúyù'spg¢Eí™,Ô>Á“¼v&¨c*²è…ËÉšûôï'[JímD¦¤SVЬÿIµÏ› Ͼ?cj?u3ú{(‰~çg$b5ò#Ì4ž±ñ5'·%jîÍÉ<ûžI“Ún=»k€xªñ(9¼ún@'}poî&>òo2íÚâyö=§ÙI©Oßï•Ã?)õé£OßÜù+ï–ôÝÚÉ·CË€=//¥>+•ÓE`ήËÖÜéÍY~ Þ܉Â%'‡¾ÒÉÁ¢e#£Lû M*}Þ¤+t÷JŸOøzRèÓã5YƒñAÙ“BŸ¯èÑݳÐÃ[ùô€ÇÈCÖm ,®7 4¢À‰)´«5pQç³X®‹BŸÔÉ °¯xð¢ÒçkïaIéó™=•>ËŽÄL'[µZ…VÕþÄÈ{A¥Ož+n¶(õIõG¦t…€¥g¹´´wIê“ Ø"ˆiÏctµÈ´o ˜g5üñ£ºbú[²þ-Èœ4-nñu©óùÚÖZÔù¬ì²¿dËÖÿŸ¬3Ër\ÇèVzïˆ3¹ÿu"Htý•oyHˉ1p P¤QÝ5VдÂdŸÒùÜVA ÏwÙ”Î'u%E`ý_dHmÏËO:ŸXjÕÑ:©úSúü/ßÞ\ÏŠŒ)•Ï‹@áö"(Ê»C{étM©|ÎŒÙÎÁµß†w²IÕŸgd©Ô¤ìÏیԧ„>çÌŸÊ?o¥pç@VÜU¾:“9ŠñÞ1ÔyûD³ædŽb•\\SIŠe[iNVÛ_:1ç]¶‹IŠ‹ Y}¬1í•9“I¹Ïø›eyÏ¥j{ ÿ€bûÖó÷[l6ä†%‚$t$)ÆÉßÙ7úöšË“¯¦Ê­6ùE½Ï›tóÉ3_Ôû|ãƒLùX3ßþ\WËZ犂¨jË·;7,ÚÏø%pçÖÈ¢ÜgLy’@"`gùÖ’ØÛE`×ÏŸ wn{Pøs§øx  :ñ¼¶$÷¶Ó!_< B²LÍ¢p¶¥|Þgœ_Å·•ëÅÓà&téVþTþ •}ÿÍýŒ­~è¸ÕF¿†B{-¯5?ßúÆ5T¥‘ûÄ¢¤çs°ö·'vúî(K•³¦B{oà7àmV §®Î\¦”ý¹Éøç9pêŽ{{‚ ´íü…'ôÞ¼îZÔ 8Ï—ÄÏðä–¹E3Zù<÷gù„[+ îýãAõç¬_²¥T yÞ[¯æO5`,Ãsk‚ÔñKXn¿sAnÌo™^_[ºž×js~Ã(Ÿçlù²Ýåö”#9ßàñ$A` ©º€z=çbˆÈ:Й¹¨ü1ìž/BÍñE–ú—¼µš,Âë(S鈰Æþ‡DªºýС«¬ ‚•ßòÌÜ‚Úy?oI½MKG‚l:(%Ÿ3è"Gtþܻȡ+ aï".3f»¨â&S›º?qriãß…‡¬‹L5Ò&`4Ã#·ƒP½>ƒ“›¢Ÿ°FõQýü>§jGF·ÕÞòÙ< žT;îlÑGžT }Sý'“`ÁYæÀwÕà†‹l­:³7Õ—³=ºw ÚÔýŒŽu¿ßâuÀïnÖ¦îg|+Ùž›ºŸñ­žüpxtÒ™Û+¯—4àúÈ¥CåÏý)±¢¥‡Õ£½cShïô7µ?ô{ŸgûyÏiênþXÿ_ñÏÄúÿ!ç—pYÍ•<4Å'ó­œ«Š ey_{xÀîóHzlpGGE"ëìØÿ!Dö%Dö%ýŸçXüð%šÛ#orSü&Ë„#Õ_BùŸ}²piSüó&h8yí?šø–¾|KÓˆ³Hj¯ÿæ/€þáEö?ÏA¿É‡Hûó&ÐÔdóñ¾3Ý£-éÏ‘ÄméÏô#¨)€áíþu·&²~ '²¾„ÒŸ7aå}óÁ¹)ýyH>i‡ï#Ä/ú{d@o*Eg€ŠH©NYøžŸµ·—z7)ó—p&ë°cz(ý‰)8Å«¿æypIÙ ¥ì-¡„µ÷/)ì)Ó+(ø¶²ÁO™î8…s|.Âæé/Áê™ ò/˜¼}O~g²¾„ÚŸû=¾NÕ0¾ó!UZÛ:öo©Æ‘ôçÉíîPûóè¾z§/r~žƒãSØTq ôC·QÿrRÿléä*ÁA"aš`.SÍTÀ‘ügËJ‚#ùϱügš§çXVm:§{,ë Ú5_ HW+Ÿ²$mÆîÈ7†öᑨgÙ;Ôø{¾Hb݃m'²zޤ?ߪ×C¸"êùŒ¤¼zN.Âuÿ%ØÉ–'ƒÙlÑ|†¦²¾„r@¡ï(æLOpðCΕNÿýèèYÄ~ t긦Oéçù6ë¾dÏ¡З,¶^¤êkûW¢êç~kn`ÁðË–¯ÒµÔÉp$]¦³×TÜþ!l!rcé¡Ð ЭÍÄm¤/AiÓ ©X÷¯ar¨ùc4>8Üõ¿šŸû-T;Òü\Ågí‘æçE°iå†~(ýb/ˆK3º£EG’Ÿ% ?Õ€æJ„~úù{›9³ö…õÃOñ@žñP hòsç ôyÜ{$Ö}¼ ÓAbÝß$Žô›„/w“^ë~Nûšã¡ÐM∿w% hv Kf%ô@J_Íë\²—‚-ÂVzhïFAbå¯îøLˆj>Ú{K ‚•?Š‚/ ë—ô_0Ú/¡úù—`á_‡@–ر‚FÕ¥ ý½jþæTº ¦—Œ¢HFLdm]7t8Ñç^y‘©´Š ǃ`"k®Ñ G…S?Vç@„â‡Ly "¾–þE8ˆ¸¾oËQ>á(Ÿ™¿'­ÿP¤ãž„YQå?ãøˤ\»TœééåkE;,ó“ˆ/²Ôؼò}`Ò¶©ã8È97¡þg£ý˜ÔþKÐD]ܤ÷_ÂfÒ÷>šl¢îχ@Ï~oôA°÷;ƒºñŸ¹„ƒ£J~àò¸_2ºiióKÖ?ÏA;ioù“RóIôB .Lœ3¨}üT“z~ LÚt +<~É”pBÍw¶Iû“0i£›ÁWðü<ä °G¾ ÞìA`Ó^„#‰]¶„ÓåAþðèöÑ™r.R$tØ´Áú¿Ö¿Û•ÂÐlšï`r©ï^ü/Ù2{Yã»Ùôà´QxÜfÐ{% õ€"|ìǰh×£¸],ý4ÓƒÐú’5~ ü¹íiq£Tùs¹?·ÿR¥òd÷€ƒÉ”Š À9V0äiøKR(f‹ïûëE¡˜†'þŒBóÿ- ž|%nÒþylÚávÍA‹K«%Y:Ñ´–F_.d¿ŽÉq@Aׯs,Ù©ùE;ý¹‹`íçÐÁ XûÅ}ÝA(†õ%Ôhù-èÄï9ó}èÐiÎè(CþÜ»”×þEpº_„ƒÉ¾ÝEæ/À0îÕò¯¡.LßjÂqZ7ô^U– ±ô?›I™œKvõu‚àYÙ,ÀÔzô8s–Ã<&pæNõõ1C¡(Ð>€<Ð{Œ=_æA¡"h„Ív>KY*~A\ï"K:þö^²ß!ÓÕ¤ü¸µæ*Þò羄þÜ—p°z÷_( #ÇÎ2‘a¤Ó޽%}¥VÂ(GR2#ŸCIÐØ:¼d­ ç:çÁn“2´å‹fÿKŽlk&Œì©.7Ì ævµQ¥ $›¶R ôóK~¦åW©w´™ž“QM`Зoa ã"û&E!½/ýs‘ØÄ¢}rm“pæn2þyNœç73ww‚áÒ9’zTªÞAÚl‚ñ”Ã#7ƒ ¨w*(ÍÏûà§¼ÂáxJ,räÁ˪¬’zŽ·…Ú4˜ÌÃà‚`2Ùp3P~óU²@ÕsA°ô»“È¿wÀãð娓wÀE¸•9åän­¼êTº Úgydÿ1ö¶'Ÿ+(g_XöQ¯G\ü»åX\üiWD1Îô‹ŒýK8ÓçK°ø/r×&ZutW4)ó—x8«,»Jm µÝý‹ÿ"óŸçàT¿†³N—cÁêÿJ‚ÆLßÔG¡½ž›Ã¯$h8tÙ‡VÐEþó—Àéó5yÝ]A8¥É‰« U^ŽÅÆ#á³35j‚¦"Üàt®¬ú°øwóvÒMg} AWKW­Q4f3Ê@hð" ÿ¤-~G5ƒpñI÷nB)¥šß›â@_R˜ÙѸõ‡]÷”$ç—àUÁêïžM«ÿ"Xý7±“Ÿïsn@QЛêík„{f^bžá8(æÖš,Z—³™¿þÜEö?Ï9•»‰¬ÞFiPÜ Çkÿq×s &ž–Ü ‚ŸsØÅk< Îü<ƒc‰] d_Â,-î6èÏÝ^Cÿ/¼'™À#o…¡°¶¤ƒ eÌ´Ó6 ÄÝd)r'㸠yt;oMê‚Þ{ÙEp\Ývo¾ <º‹À£Û'ÿB(ÄœtóÉŠpF[œOVÕ° œÐdßkƒnKéê/>âEàÎ]‹ÿ"ØÉ–eá‚0_íTK¨º -H-¿„;Ù²Ú Ó‰-ç}ƒRrÙRhõŒ¶4ê…ž¤ŽÎFiÐHÒ*¤Ð( §½¯)õâÞ;I`Ýö'—¥AÃ%>ù>MµÏSàÔeƒE8uApï5jƒ~|¤þȸµ¼VÅÅô›wjƒÆÑ¤‹Í*x‘\öN} p¾ó}™ Û³v©ƒçÉ‚`ïCºýQ¾ZÉÔÑ¡:TT$ÖûŒXüè°#ëùœìk]º 5¶N]ОY—0è‡H®y q¡IëpC§.Ð\JoˆuY _yÏ{µ¡ tƒÝ»ß°ÿß‹Dó=.Ò ‹~Îi—°ó˜ÓEKA`eI_,ú‹`Ñ_‹¾z4G­c&9û&”ìŒÌžå8Ó´íÔ9Òvpó —î&©¬Œútz7AŽ¢ZÊaô‘‰/0{^ÃÁ4EÎÊ‚4¥<º (`Ó“,IÁúV¡,hX<:ËúÐL¾—@ôÌ_R±ûìü(Ê‚ÆBQ¯Ë˜S¢HAàÏí¥2ë «s‡òOL]PÜ Õ&m]ΓEspåO,#­St ˺:\ÈpƒÞÀX÷í½þ“»Yó)TÅu·?Èùß7íÓ©ú±¯;ÕA?VeßYuãMl#¢Q=/ÀhÿDÏŸ¼6Ùã—wŠŒtíù7ÁŸÿNuÐ ª}Žš8æþ¹Éúç9{S•R>Ôx~b'» ºÌ”2j€ø ¶êñФǷôxhÒ^Ä]ÉWÙ¡{Éá¥TÛ:è˜^Cê ï96¬:ü-™ÙÄ'¯uX4éCê Yí—ì«.È97¡BÐM`Ó^þÜx¿ÕAoB.†Cê ¡C÷%˜ñ°Uƒ>ÅA!]MèÏ}I•+Ûk‚ ÄWJþÆÔŠºÒÆƒA7Yõr‰•Yû!]cw{®Œžëÿ%í0 ê5BÍÄ`ªLqÁñ:+ŸC'`ØW<Â"Ôñ4ì| ¼Ûc(IñXþÛš3Aâ0]LÙ_ƒò@¡›¢3Ž3® M­)4B Lìn£m@ ô‡„Gw“¾I,ÿ¨ “ß?¦Rt^°)~Àùy õnRö/iåN“îL€øƒ‹{£ÚP5%WvP"ô&Lgμ-ÚDèß×<2†<€Ýò§¢p“.^o(: .‚øvߎͭÊÐuÇE&µâ‘èI޲“J›P²ä‡ NoußÒ³dÍåKX‚ü%,Øp“fyU£ÊN}ª½‚À¥{s“çÁ—TUà| ¬Û‹0O—%L¡aœ|ʘ¿dž_²ë/9?ïÓT|ö%0n»[‚ÀºÛ/¡uû%pê.‚"äî²ø 6o•×dÚ §‘® ¥Ðí!Çñ˜!žeáigUçἇ/™:ƒ_òp‚Údüîì¤DÐÊ!ƒA°î/2•)ÕÑ?×ýyÑ3Ö)ø:æVùñ—°ø>óÑÓnÀÖn<·JϬ%a틌ž³|‘· Û0@ <éDæÞÔIp÷¾„‰Šêàë—–þE¦œLìóHöþKX§ä¾œ±.6ùC Z!ª¹œ@#hûôXrú±cÈþ„¢Ê{nKÇ@j°¶K\¤¨JéK¸ôÓfmí Ú}à,*„F,K¾ÆV"Ý+ÃxÑ8Q+b°NùÅ#àKèÜu÷-3v A7èÿAKO!‡E} ›¬žwîC(ãÛFK¢k.ãj5)¹Q:‚z©O6–Ìÿ‹0šáNѱ´ÝßD5è'ɹA—C'ùeþ{Mµ]ã—ôýK¦îwí—{ÇUßL¸‹}É‘—¯tõ4.â"…Ö;÷%½ÿ’Á»C‰ÖÄþX´Ùç¾êSû†¼œû0¤ý­ßß`ªäìK˜¢(yÃOüù˜?=k:ÖÌÊ{“•¥÷/)ªC”±³¨µ!Ê/Qpô‡t¹Õ:qÖRÓI±¹¿–Z®NÞg‹éê‹°ù%;‹ï½.¢TeÁïS¡Û™Ì\:Ö¶Ù²¶BÚjƒ¶fŠví4h_rè~ª,}í<Ô}+ IÕ/®øÆ:Zþ_Ò÷/Á±~Ú³_òÏ‹ŽÜl9 ûɂ˗ þø"0‚²ql9ùç)\ý_¢¬†<*VBý¸só±­¸ WÿEª¢iÊÍlJEfHVƆFè àÎ]dªHXvç–õ,ÿ¹íD՗Ðú¿Im¿¤©òu`õõUmcpá?÷¹¢U¡Œ\€»e>ó%¥ýøs뽤4þoÂ2½/™²pd”mžñ÷ȼÚ4þoÂÒÝeÓv›ˆ›òp?äêÄ «ö"Xþ™úêºù¶€L£moëîŠî¹Çflj„Þ¤ÞY³M™ (²\Ip\dh’Ç·‡Ü¹/¡;÷%ÌÐ¥e¹)n½¶×=Þ»n€‹üó”Áî7{j['ÂëXïÉèÞê¶²9ð3d-ú©?dýwg–·„Þlˆí¥ò{wçq?õKØOí ÆAèÑ} øçù|ø^÷/ºrùŸ4Þ7µBobÃV˽ÞŸç°`#kþ"¸EƒDÎðÞtéÚÌ¿ÇÁîa½Æ—T%Jeµn*…F‘ª— õâÂlÐùé.:ªªØ E7º{OòLS C)ÿ<§ý‚þAñýöp– ópÍh‰*Ý„iŠ—P$4f)\t(z“º~ kó ?Ô ½ÉÀßó%P¸”.rÔj®––Se åÃé"?¤*d¹ :‚·ÅéµC™ S²‡Š– º÷õƒ …¾3šƒ°—zú:íç¡B{5_ÒäÑe‡ a`Åî$}ü¸tÇ áAp\dýó¶B‘ ˆ|ªZãP*ô&µü–"I_¿dþ‚Õþ!p¬³»íP*ôK(z:–ShU‡O¬Ûìè(èá8ôª¥\ Vi[u?²t#`‡A8²e±öé‡à 8¤~¦Oœ9ö>€6í öðç¾€zYkwèÜäŸ§Ô»ÛæÈ¸-Ú/™rdO¾N€‹àñ§X÷B‰Ð›™7¾¶D5¾„UJ_‚Êû“Õâ‡Àây!‚nêa•’ HÏ]äü<‡.ÀMjaÌÖ‹æ(šñØß=GUJ#÷º£ ä/arÖ}Š„Þä\µá“ÇéAhï"í]!í%öM—³%—Ír' is ²KË·9ýE*PÏoîX_xRLÝÀO5A0û"¬·|”Á {¶Z5,ÈÑ®Ûôªªü„Rƒjýðæ¾çùŒÎÀŸSaÌÞd³·†«:«ó¬ð rn­¼v†í˜ ˜÷pŽï³ŒèÄ.ÔNu¹@ˆúT÷eYŒáÇGÌ‘ лG[åä˜Ì×8Çz÷l¯¹“éœH8ó)ƒ%Z~T—2nÿ¼ˆz÷߇ÞýîymºFÿ¸e|>T ¦ÞL8ïÁ¶L$÷{A© ôê/MVBu·æïB5×ö);=ú“êKKÔAÛÈËguPÛôA8Á¬çÒHtÇjh$ö“7å¤Fâ°cÒ¸Ó¡ý GbxG_œšpïä‹ ˜ü“ê‚pòO˵Em g´ü=© „Á|uòãT§”ƒ`ØÃcuð jU3ÿšÍÑ}Ç%?A $6zÞTÅsü3ljÞ×£èQÊã¹!A5ÌN¾ TázÉ‚Ç@‰ù¤éo\†IÁG•Ü © brk™ÄSú‘O 0©Ç=ò)P½F®ãCÕû¬Û Âù}ïÕ¡ùCiô[ „V‡îƒ@ ´ eT‚Ä‘:nÆ.«$H 0;,™ÁàŸÕ>µÅgg¾ «?;('îÄê9c³H t…σT –U¿‚¡Û­RA°ø«% ƒ`ñ·.³>ˆB{¾B—§¶ÁÚj*.šŒ'ãîôW’BhÛ^[¥JëØ•'“E€¿¦\²Y,º}s(AUy@õ¾ o&¥jÐÉ—@ö{;;KÓ³ýß4À §³¼H õAKs¬2—¾å:&2´àù¾/t¿ç3Db­Ê+Á³vò9*ͶÌd.ø‡TÊìiÒýÅ„—¹L°ôwó}W¨ŠÑÅ"‰C½Ö ‘ØÜýäH¿Ï‹ohv_ÞÌ!áúù›ë$È!NA(’8ówšâú^dŠÅŽs† &><ž^5Y½„kÚ󳎎߉“CÊÈ÷™œúst  Zº*Mƒp{‚lÁFÿ¾1T39«?}§ ža¦®P.†Çùb¬ýã;Aq¼„²÷#/ê¢ìýE¼¯·“çÅJÙû|59܇©ÎJüèÊÁ °N^÷M™Ä9UT?¹­a^¾hP_³åûB"ôI·P "±Ë*‰å]ÊÔ}§æM6²cFñè&•e?âç¢4øâ{ËÜB½×¡:œ XÿË A(ºòr1^¹•J$tM¯J‘Ðeˆ´„r•V‰„öã¾R$è©yÚW©EG%‚xünë ‘ ˜G|ü«ÿ½gª4B«OÁ á^• ´k¿v-*L0À¯íÏS0ôaJIv"ÙóN€)fâ×0ÊÕ#Ëf­I#¿"‚žl˜Ùß±qA:þ–Ürj¥Hz êÁü¾j%ÔI…Ö¯1Ç fªÕe‚ƒ=K4gmœä”ó•‚Ä(×(ÔÖU¥úXØ=g9} $BS1-$BÇöS%š3‚`ñO«¡ÍÚ%v¼ójP" h=¹’¨ûö*aa뎮Üüã£Ê1¡eëj» °l£ 2ß‹¿WofH¬~›`èCü6 ŽNû$úðšnUnÀìùC¼n@ÉçlJÀÖü$Y<;aáçÔ”IS5ä¶RæïsÞ{uj õÒ!X)‡ ¯ø”Q»óÏ…>hž;;©‘ 5 '_ül#CV1BˆW{f¥>h˜Ë-ŸÓ9RÁëhi‚ŸU<ƒLÊ_k‹ª”ºÉ–›Uò¯92rôÓn ð[¹Œ¶T¿{þØÅL¦m€‰90ÈÍíÛeçHꞯÂ9°†= &¨¨+r~Jó¾ç:;tèÚô}@a wôfê.X™lW€¶ò]°èWúÐ,à\brèbimò~€¢ß–ÂŽ¸ãN>«¾[½º@1)K§gÎáÏÑ_Ü( ŠISÍ6íøØ´Áð¾¢2÷ÙŠ9yÆÁ¤ã/òC´Íx£0è;B,–ýôŸ 8Ñc1 €+7§#/º °ã— 6°V}È6©DoǤuAÃzÕ’iUö¬;K'§ÿ]Nè'G ^˜šp°‚› ÎóqòKQ(¬iVÓ³/i¿ë~oÝ4F>Æt£.h¼È?.uA㢷|Ѿo |íçÉ_VÛ± Vú¿ÏÐÊœà”ÆFë©uï+CA¸øãZ¾ Z÷myko]¶ìú|8nB+\ÌFUЇ[…¢5í·FaЛ´AW³åûpH¡ |ƒÀöo3ï1Š}N£Æý¿º;ÀÑhCÙxL Âö²žšáê.æIñ8Œwô‡O?ͦ,¶ ÍÕöÙ( :ðﻬÉ}ãägïÿfç«8ÅÒSYf[ŒêÍ'NXþí”<XÒÚöòÜ Ó]òðn80Ð]nYƒåÛ Wgã‹£ IîBƒ.PÛ}çGAóæe•6ü²m?Û† ûÞ[´ûK@鯅â³MþÖ~‹Þ4R •gmnkÅLNEi¡—Òóc”eh xá¢U±E«¡?¶ÿ‰yÔ¡ßâAÛœ#‚È^>æl=¶“ÛÑ5ºØíI!œm² ;4Aqûë˜ê‹©ê?ˆptqÍw^š]æéº“ÕŸïœ1RÞz˜¥¨ ›1Úîž³Ë @'p4Þ7Xpr:úÖè²÷«oŽ.{£Ð¢ øKlF³·Ç»L¶á<ö>GQИ8’`ˆky¼ÃŽ*ŧK§é“*ßõ4ý :&úÑãt(û‘—fH‡"Ð °øûÎ;Š@oóRž#C\W·Ã8¨ ZV³ 4dû·ô“EAcâíI2c&ª[‘æé?­¦ÿE0ºo¸ÜiÙþÓÝ A`ûw×;iÜ„k0²x#{:÷4tìaaPèŸEó›ÜJ6eA?5c¿‘ßÁ3àIÄM8dÇ Ùÿ3OÃ!ûd¢kP¨>–&AÎÀ… “RÏq»ö”ª¤.Fm]iP *ƒVά‰ôD{,œN¾ ¦—mç/UA[w“dXùmZ .H„óÚ“à *h+;¿7UA¿ïCM F•VL/Kí‡ Ïñ€Ñ Ÿ•îòèœ^6ëç³8Ú§5gBü̬ ÄÕ*‰ÅÉø4FPõ$ôæ<ê>ˆ'|ã¡´‘¢uC‡Áxÿâ¡`v†LU0òQ¿ËÔ^ÖòfœLOY]ŠEÿ}-ë\O&*pòLƒµ¸g7%¼½W`UýíáÝÁ،Ц¼x˜³¯D)¸¾c¨ !zßyÞùŸ\ÉT ëÐ÷"”A#jqòEœâZü ( ¡—a€Ì£Ü"ˆeŸ´ãÇ¡;7³/Ç…ñ7€"Й^´¨ÂàÈ’ï–™{ð0 S·<ëìñ6úœƒ”©~ÜI-¸w|Y¤©ÝIãËš÷&]î¿UßÑóÑ×maR(†uËAž: ^‡jR4r¦rá'5j9ù*нSï&UŠÿöÈô38®èïUÃK”]ƒø!þꮓ˜Ô­çöÅÔ‚XøuvÛ¬“º@µNßâ“Ú µf6oR´Æöi ¿r’¡H¸rµ¥¿>u\oÖåG‘°këÎtËlÜ×uœ”ý!ÿ<'ŽöVÕg ìÚ6¦O×IeÐF#‘¯9ŠM*Ý$‚z­ef}R4HM†P«ßštngA[†Ôvšv>@Ëé6¾u½°½§ šÉƒ Í´ã&UZ”ù„#×V÷6;! Úv†;Ù†÷=Ë&ÏFñ‘ˆêµb½è2 .¤ïs°­·jN…ãä§cÝ÷cw¨í½Å¨ t,û•Çþ¤(híËÛÚä–ÿCo1Ø˜ÚØWÞqT­œØ.‚e,ûâa“çÅßóØ¥šT±õ= Öýά#è¤æb\Z÷æ`êßõtƆ^4.VϧÔÍJ‚IQиSuPLêÀÝdþ pY51© zLpÝÅ눊@u[ódóžIº ü¹c¼ÉÞ \./6tEý½ÊSrƒÄ‘k „AÛn—èò)º©ßaQ4>ê$©XYÕ¶( w“>ÉÀoÞèXЍ·öoÑ `Dëbéx2;µ¨ úÉ}¯¢b³´ÀUÞ9‘AÈ86äVQv¢|ÞÙ‰ži…UX¡±²¾`Q4¦‰ÊºÇÚGÍ[sQ.rSÍÅ;]h΂¸à“/BD;77j^žq­´+,j‚býس%—EA ²30¸( úkŸlÖDa™bîÔúGÚK gQ…)Ëd2]©muQ´<Õ.4§Q ÿÓò9¨Îž|>ˆ¡¯VMŠ~9x˜î€Ÿ%ŸÑ”¸[I,3R9Û]A¸ôóØb^údQ Ý`œ´ÚÚX÷õwWF-Ƚr'³|\Å„Î\æ•·ý09ž|Š3fÏŸŠ¢ Hbäs°ôÏÉ+JQÐ ÚÃÕàÂÞI ÃGÁ¢ù_Rë<×þ—`í—÷·¢ÜM6àžÊ3¦›ÄbPÓ£$µüœµ4Ã5‹W—Ìÿ™ö‡C"—ä‹JYÐX:r½eAçòMYÐHJ¯üt¤çžî}ñ4ˆÄ°ž²U©ÚrP(þ¹B‹š@˜ä\LºjÀ¼Qñ4øÔ€-j½³ÏƒÀ¡›–g ‚꼑 p¦wÖÙü}úcç‘Ó¾%Ãë¨Dc}Þ9<ÀE¢ôÈ?ƒ›À H) §_„ÂoîÆt‚$Z€™NÒ¸! ÔNÍ:„ý0º×<õ3ÈßujÑOXógø³ûšn,‘†©®Ãѽšûý(ªí‘ksCôLPÛ±$:åvat/…óƒ°æ&KvQ†¢æ‡Ç.K!„Sk‘è8ù6ç°œF['kþ|¯4Þv¥O—в“3Ã[4)ɰÁ¨âmr«6N„†I‚Ãu÷V}š¯Ó¢/@ŽÖ®LÑ=yÀîFŸîqp›…¢¬jz‰êîµIGžšÀ¿]S‚Γ¤ƒ0A7?ÏA†nxÛŽŽàøN;Û"ÚoA?kXÇþƒ)ô0Y!‚hFv?ADUþ®v”Ý•¥ÈƒfSèA‰™R·á#bS .Br PTòV¢lj•çñC”hœ /졲¼ž+˜RpqpÎûÚÙ6uA#ªâïC]ÐOÉ"; °×ùÚQõ®Ë„GÁ— Hcf$hS(¢°3ßgàHÉ\ݦ0hYÇ6랊Ôvÿ”TŠp1@‰ÆÚTýÔhqz3 ½ê) wVidÝù¦.hä'ßgÑBôB[ÊË­¼sy| uA?qª½™¤HùÓIý>D‚FTÁ[L`2/Uò‡‚v'_´¬÷´É XH‘u6@JgôÜ)ëUÞð¦,èMÿ`…£‚û“ûÑѲòjÜ׬îÙ‡÷+;öaNgeÞyx7ÉX9ÔzræRzݦçQÁýö/w(ôäƒ C…ýºžöF™ çaPz¡"‡[êâTAHäsnRQÐò£p´Ý2&ËÙc-¦±)«r°5ŒAÉ÷‰]Œ…ÔéwPWñCÊ8p‹Ÿ|bÚOÖM(µèiI´FäŸD¨=>jdÆì@èýq7mÙÏæ¡’ÝQgÓ–]éBŸÍú¤–aú]¸]Û¾çB´Ew¸"Jç°<é"(O:é „±Z¨;øGÀ1cÌkÑœš$^÷¡ÔBÌ{’:-4 ¸´ËZþv‰æ‡±æ?Ê9*0HX±(ÉÙ&±èg ˆ‰U?-E }dzi© 3ÁÈbrP’u´¢…k¹{6“ØÀùI«~fÑ4ç±çºpjq8zÓý,Ë>vóï†lÌ$iùªSIN>çà,yt–„Ì!KÍšÌË ±ì1íd˜Ä²)Ãj0¸Ï¬ž`~mæÅðÊßÂ*~È<Ž‹ ¯ˆµè3b=.\_y!¸ÿ‡ Pó90ú×ɯÔèÃ¥KdÔ_2Ç/Á‰¾”R [öqÄb­7RZ[×" á97?†Íƒ‰­çxO®F·SLÆ`|¢$ÍŸcè‚l†'ÊHfVuéãb…åç¡l)¬@uF2‚ 6)Ûs‚Àöé®~‚Ú¤‹ô\g”}Xt.âFÛ¦Q.R§ç˜ 8)ª( P›ô¬\xSµIn_ì©B³ÕÊ·¹tÕ@7ã"ž@ýèÆ´‘K: !Zz’EÝŒ:MT]^«k“ÃÅ–A¾žn‚°Å8¹t´’ëhª8õK–*þŸ|ë‘z^v ű¶· â+ÏîB ÷$i“UÜk™ôóK¸èîˆ ²Tg^’ìòíd‚øu¾‰L0~W  UóšnÅ.fþè<žqr©Pô&¨°÷j6Ð! Ù’( é+¸•ù=)ôœ™÷5@Ÿ™O@ðz•¼C(ú,›…'@yÆùš)Y ßCÿüØO娵VE¦Ñ¹ž[5AäúßwõQ]öc¡Rù1PEùd„ÕG}ÒÕwf¥ðODg¾¢Y‹äèt×Ï_©þ§».T-ꫲ¾0Èú%±5'ºŒ¦4y¾ÍÔß“D*.ÒuïÛ Ójz~BƒÎÕÇ¿$æÞ}Ú]T›ky2Š„™îùJ ¸gμ”ÿ|r¨QöЦ…R)ÿ+mæûP'@ L«ª7½ù!ÍXº²"ˆÇʧac;×:֢Ƿ|#­ ë—àt)y;E—[ ã9þèú‰Ø¤Œ_R•šõ@ÕÏ(»,ÓdðtW@/ÈDéÇø<Ï£¸B˜=uçÕ¥öÏ—Pû§ì÷7AS=âÒ£˜ ÝFþ&CVì—ÀŠÍrÉÅH÷ÁÊ/5×÷ü'§¬JÙÏðZd¿³õ %í«™0xýäý2¹‡=ÓŽWôߺ V%iPBYó9ðßvÉ{~27œ2bNfI]ÌÁ¹z`2Â= àÀ=ù‚®Ý½$Auý̱.Ê´’?üb8©²0êzÝ7],ø>'ޗСÿæ&º M-D:ê–RÒÉmƒÊ?qúúRùç̼,Ôü|Σ¨>ȹ‰”–eè5€à~xK ègìÕ²¾*E?ß¼6rßÅÙ”ìG°|–SfAö¼¼žz´ê]*³«`yN@XûÙQ¤±FK.W£äg]j €*¤/`vnU‚Ÿ-G‡`löfUœ¼ZŠx¢QÞI£µÎy8X€¨Ä¸ ŠÆP_B˜ü¯¿Ò(úÓ«‰ï½Ól²ùÏûÚü­:…$–|îXìî½4ôûÏΨ q–·œ@ª@ùßsÜÿ$œ·žÝíAbÙ÷<$öÿ>Ÿütj~ö¹|C5j~vö‰ÄÊï9sOQNéŽÜ q ôæ4x°|zTè“°e¿5?{jÿ£ŸRŸ¥;¨qß喙¶X"üw5œ Æl›.< Ò×/‰ ú ¦r\aÔüìÅåäA"tÝ‹’r‹– <}•©üÓ—çùi¼ÏN_üéyq(üÓ›†<-0÷ñd¤ Qòsð|‰à&‘‹îQßC@ÍϾ\:$¾Àv‹n€XÿC±ÍFÍŸÏð`ûq¢ H>}YžkQéïw¬ÞN1¤ëè¨þ[CΚè9~c˜?$ŒØÎ´°H,ü¾zþøÔüìçÝ’¨þ6ª‡¿Ù¿ Öý—Pïç&eÿ’8Æc/ªQòóƒ?½V¦÷QwÞ–üŒq*¾6”ûÁtºirðTøQÙŸÄmGÄ3tà7 ~®4[Úùï ï>s'¡Þçžp¦êæ*¼¯‚nqÛÊ~€ì‹ôG"öù÷G®ÃaéþHÂõK8ïK8uÝYå ·;Ü…°hlöÈ>ùY˜áð!”ü¼ æí^„Z]2ö©‡dÔ_ ×c}¿ jò%ûŸç@ÃõC(û¹¢nײŸOÆ:åÞB2µæszù%˜¹{ܰ#Z/W0ÛWÖ/Ñà –XÆùwó›¶Ÿîh 7ÀMïÏý‚õKþqÜ$n€>\§c~ãèÇ“hƒÄÑÞçv kö&ÿ¹—,ùq'×ôR Ò±½Ó©úYNËE³Õ*je£ M‚)~g©~¶áW’?ÓCÙƒ0‘‘Äγàa}%Üñ£òàÆ¥‹Þ-úùøÔïýìÖB Ò®îà ®.ö¯'ÕÏ‘H—êgwS æôõ_‚êâ©™^kPôóVýÑ/>¤úSÒ#ˆ>_ëM.¤áʲÛ6žŸºúEiGtÖ6tIg•ÈBèa>ùÉÜóÈaZ¿å( dOÏ… ‚µÏ=[dX~Á@íÙ'ßeI“æI²âšDª?-õQéÆmËwA ãÍ ÊþÔbÁà }]™ƒÑÏÈÁ,?^ Wiñ±NXKr§ñÄ5š|¹/aO‰jc`/q£E€®6™'_3.ooPò3úxtÓ jþDpÉ¡ªþŒ¼4”üŒ'ÙRƒ²?7©lÀò¯KÉÏÖ²FÕ§‘k±‹í@þ–T} g³å‡¯M?ÍW˜šŸ_"Ë¿OÛƒº?­¹È"΀‘gè é“®M^!1Ô%Q™AÍϺó ›@ƒzŸõ¸1w ê}6NiA‹ô˜¹&(øÙ”I¦Òß¹W>o'Žêj"îN†ÿ›Ä¿ə7¡õßæ°1–œ¸æÌ6ûZàZ½$~§L´Hœ7™øâ'×å>¿?å>[ÍÐØ ùßš')øÁŸ\ê”û¬Ë ÃAÚºB@=åó6dd£Èa‚W.Ù ð9€8¡½ÔOö‰*Â6 ÷ýˆËÑQ², rxo¾ï‚6Ñ‹ Œí6·cœ“ ·üxã“`±m^÷Ý„Øg„Pš£±0Ëã‚ 7«#“:ou>v·'Ï€h++ù>l”¬cØ Å׎çÙß3\¥û ûë¿HHA? á†rK# ‹þ¸j2Õ¥'Ëqâ ¨]ÒŸñ˜Alkÿ¬)¥Ÿ‘ÒÏEޏÉ?Ïé<´†fe:¢L§#feû"±ìÃÖÑ.2)ü†Œh¾1ây3m16xaëÆœË¾ZáY=³(ùùŒLÇ/ÿ¯Vy)%ž“¯BYFqí,&òáŠåa¶dþïíôê’èç›ÅY: f󦽤ú™ýŠAºÚhv¸r'Ë’ê'#‰&îµ™&Çõ^z©~kAIRÏŲèdO9À¼²‹ªŸa½œ|›Y¹)ʘZr.‚@ƹx|ìŒeàKЬy¥?áÅ,Ôáí¬m¤"G–Ô-ê~~\‚EÝÏÈ?Ë8YÐý ûEÆ¢îg|ï@›"틲ŸM¶Ö”Gš™ü[”ü £wäKÂzÝï=ă ,eÙ‹Š?áäøïÊJ¤ ±¨ùÙŽcX e47€>Ò ñþ"±¼úþ°Tüü¤”èF÷>ß<™•;>Öd,ïÉ´Ê¢ØO¯=/Ä~zyz¸b?¤OZú= RAj¢fêlÁWDòÊ÷ÚPðá¾S‘Zºþœ sv”üð-?ÎŽ‚0…“ÖëÚJMdèfQî§7ëþ‚àÏÉOŽK•Íd‹g’œþœC?î"”ºjÿ%€ÞIËÁ:Ô;Iß`®÷¨h5ÀŠq°d@$£iÒ}€£$­ò­›2Ÿa>ÊÞ”ú H§Ø¦ÔOÔÒŒ$(Ê8eDý»Îxíæ›Z?á|祯]óUðâFu.hSëçU$[»H&ãK*R°Ó9½MÏpäµ{BrIc‰¢ütÖ'm }ÂåY&0€²%$ÈѾ£ vKíçXr#ï°ÇyÈEX@u~^?®×0mÊýDöM­Ïò¸¢jWM¥qMê–Ôg÷좵¥õÙ²ôrSëóÉÀ–Øg[Ž ljý<ÙoÁ¼‘Õ|[jŸ3ÿ-µÏìÇ ‚j´ôi6÷ÿç±ÄübÀç!‹2Þ2ü-ÁÏ·xj[ð3«u·?ßâîÒ<´\[Б¿-øé‘´AØJ›þ÷ævÿ±¾6?Ã~TÌeU$e¥Ì¶é_ó‚Êö?%oмÅs.Ù²ýsJ)šÞ`p¸11ìÙ']šMÉÏ0¿ü‹KòsÛ$ßTü|óí{jYÏŠŠŸQ}¦MuKñ³fÿ–âg™ÿ½`³ÅË—T‚Ÿ#‹˜¶?£ê¿š@ §ýaâåa»ÖÌWA÷ùX’=ÈØl]yò9,GJÛk/.þR\˺—$š=ÉMÅŸ‡Šä"TüLcgKñóŒü±¤ø¹GîBRü|kP7‚¿ïþ.ƒÍŽÂ%‘{«£ðK ðda–V>Y‘»%ü<íV}zƒ@:·—ü¹Ž¦ñ•Ü㤀’À“OY×>y³AõóïÌú–ƒÐ´³AükV’hÂUÚ&PòžÖæ Ò/‚ ãð;h÷§Våߟ“yôóPà-<:ÐüA£¬ S¨{¸²,í@ù3ú/Hûß+s{“æt‚ÃB{§¨A4]Ÿó§í×Å?Ø ÿ®MÎM†>]OeGáÛ¼€q-Ráò¹Úz7†ƒ°¶R¹3H¬}¸Öùœñž×W»<Èa+£îÃÓØÝ­Þ„Ñ<ÑAg´¶Pº×Ñã‹ù3hõÖ$Ð-.™í8ºÅ×sP‘údWÏéÿ¹¹ª@îp{€x&9Õn€l\OóæPëçSѺ/‚·§íêÓ5¸!KÞÐé±’¨$NJGZŸ=“C<=QØ’\|œ$HK wˆ 4³æãÐò¯ÓIFF*þì‰ìz8Ôú ÓOî¡ÔçMª<—„>\n>‡RŸè š&SaÔ'_…’¼çÉWºo;«­¥>£ºÖ+’ÖY²y`ý·ÝsPë§å¼?óKÆ?ÏAn¢{pÌâ¯ôgg8Z{¡ó—æçáVI’§ë©¨ÂJ»ÿl•$¹6ìþö$NôñHg/*’¾`ÿÓΑ—Ÿ¯Ç(Gª#ïÀÃr¤$ÑOÿÐÑv¤°qûY_÷,HÿååŒ ¨Æx†îÁ ðà+RÙr({þ9aúÄï\D ïsxpA&.…#ƒt¹=I²-;Uƒ„!vÿ&»0{xòUˆ[T‡¢y^Ü“ ܼ'_"‰Ï³ä|AN¢Ÿ¼ZU9 6‚À‹‹¹ÁâîT§r9o% Y÷ªE«1œ¸§ç¯KÏè£Ü/Q¬”Çø¦œ4j"Æ4¶Õ±—dJÖË_¡I¬ØŒ!qÜ“™Žþš’÷9UÑñ Ð.ú -€L(¡Î‰ªÔÅþglí3Aæù%nŒ^ùƸí2´7åØ â°ªI‘…åWTCzòU”®÷ÀÏ CZ[»$9¿Ä…õ^)ƒ…õ9ë&ÐùŒ·©-ÁTçn5ahÖý Azý%lþ¸qgå¯.½·ÔC ‚¢ŒAéÄ“/¡ÒgAÑ‚R_Ð\‚³LÆ>®a¨;r‚`ñï÷]ÀxrI¬T:ôÒڊɶ¼T[%%opÊ|–þ|žÓ%ìëåG©·Èªx%Qæó™¹µIæ³9\5a>ÎòÅ1ÑåY#‹•lIãùê?ŽŸm,îAÆdåµ/EÝz;ù¨ñùÖPo†>±ñò,ÁXóØãÏÇ ‚èÅv‹AìúÅNÔdlW«A(¯¹#È8¿d¡žÎ3E‚ìÎOò}Ê+[îÿ.ù £@k¯Pä3ää«´Š›]û –„ûC@6/-â !ÁÇ![¿¿O€lý‡T7CˆŽ€eÉÊ E6v–BOT!$‰u1®¯‚Tq;Þ®KM»g'Y6±òÓ±ò vw¡ÆgœA3IA‡ÅÎKNÏþ¨ì)@²}<> %>o2qÕý^(ñùC+âw~6#Øöw¡Ùß»{ç‚ °~¸–=Þ¸ý·óñú(«·†V€Yÿ÷™.d©ò£ä»"‚bR›ùg¨Yûo‘ÂçI¨Pás8¨5xÙ„‰›'¿$€›pü𻦥ðÙ-£åtvÍC †Ã¤ØRj кG~ñ)yC7A‡h;ƒÆŒ«ñ’Å.Ò>M$¼*3ªÌ¬×^]¨ïÙöÓLÊþ%l,,ùáÔ÷ŒvTß1ËýÑ'ßxʼyßf©]¿äs—}¬‡äè¼ñšÝtâÚÊ]‹úžÈOm“&c«ä«àÄM‚À -O~uê{fgÓfñ³Ãù”#Ò÷uÝB ¡ıÇ㣢:qW‹âEA¨Y¿r륾ç[‚ýúùtËÖ/ƒ#oZfe}¨ {#|ïGózˆrŒ÷!JÊTaC+Õ3¸dI?÷ý@§6ÑfQ/’ŒZ¾µÐŽÄAä«2l_ó9(Cº²3½‰Z˜ÐaP kÎÎ?¯ mÓrAÕ´ʹ–öö<ôjMzqµ*oó%ÌÛäžm½¬uÐ]½ý‰€ÿàÊrúÔÎQéowµdªbÁ·Èˆå)¯µ)R‚¹+ x]ì‰ÕÆ2¤,¾ ‚åž’èAPŠÑs+ª¥9û&ëý"Ԫϛ­Rà™qIª›/?„ùzò4­Tö¹ Öúh>¶k×ðù'×Ãøy¨ÉK3ž==§*=]¿¾«´}8”[uY!‚”M¶ô¹s6A àßQ;Îj‚˜õ¶¤j6Ѿ_AÒ>sç3©c›ãA‚ÌEÍ8yâu2|çY½[O~o z>þó—F \eK7AìîäiQWV`œi‚xõy?ˆÂ>ï æ HAŒšëciö¤g›‡ÖrÛ†A0v©¸„*ˆõ(OŸJêAŠtè¶¡eoѵ ·š[¤¢Ã*7 ÌQ{M,ûí Ó ÈA¤JÐnSã/rØ.•edÍAA ïsz^ÀÉÅ㎿¹0Ð,:/ÅF1ÏRòs0™¡æ>Ó¤äyJ®Gšúá1øÞ^©Lß £`O£™ßÞ5#3¿¹Éz7ɸ-ë™ßGÞ4ócè‚¢'mÓkÀ@>&³6û¶éµ-kv€hG>…NÛù¼ËT‘¥÷¼M§-ÛÞ‚p"‰µÔ@ô[ËÆ‰äÙ/¨—Æ]Le;¿u}²ò#ìžùÞ̲ñ³®/H\¥Ù»iö‰‘$2ÿúÃ:ú'ãã]ÊnÕµHAPIßÇdú£¡ ž°]YËÁA Ö­ÇÍ(7ÕŠî 0ÚçmμIÑÄU BU+·7ƒl6šÉí´÷Kñ0Ð ˜46Üdªx]ûÓ¸›9ùœ­†í?´‚ÿìå‘_´ª‡¤ä«¬>'/sý©> ‚Þ²¸K1Ù £õÕ+ËŽ§ÖAbº5"¢kÙîë<Ú\ùsQàç&uþäÞv÷êé¹·‹ …j¸F62ƶwÓ©éÏÑVÛIºçNîN™ŸÖM ‚ʛȷù*LëïÚ ÌOëÕQDyœJÝވΦšï±‘y:Ÿ÷c¶×¼ÕÂŽ­¿>\M"‹¾a*ùˆc\d¨gJö7:÷ çá¥C…Ÿ6»}N…Ÿ æÅă eÎ]Ò½ .`NVø4ͱ"Ê2@ÐâqÇÈ¡wx’@#çÃÙƒÏiùQ̹–:$ŠšæF©p”$>°¶¼NY϶[®‰Å$ÜEPF™‚bоEåçø„¯‹ë`vÿ}È¥Š#Yšž½¹Œv³ŒÍáþó¨ñ:+Þt¨éy“U~ bׯ݆š™¿zr¢¬g®K Ræ/4L•ªìfrÛ@}ÉÖ…0@äz» Èb´Â1dï¸n,~¤U~ºõ—7£N‰Ñ”ôì9î>Hï|QI-€‹ ÝÒÿb „ÏÙŠ“s1þŸ rHægglnð(ˆÅX“PæKÐZ2?ÉŽxt’hã”öŒ^Ë|öý•i–¹ãEº ‡e~2ù3(íÓhßç`áW?êjÍÿF.zxzJ„®·Ђ0gã–‘ \ô.jÛ¸³§õP÷ °çMâ]S—"@S1¶€¦5?m {öîºOŸï'Sæ5Є=›EžC*ýÁŸ7ü©šÇrèA¿Û%W™D={F­þW‘6ˆ$jG~2osùfØý?Æ«nÐ(îë"MÏ™~ÆMÕÎ9¤éYóÌxK»o@Óóá5øpåYÒH¨I„z,1ëgÚbÒô¼Hý0fûÉ{rJ wÖe#ý/7eL)zߦ"ìf_ jzÖžá„AMÏI9ƒÂ¾(…)ØöC±.y2(z~z[‚@ ºeÅÊ‹³$l˜– gFþy‡ž•ƒpâ.‚ØÇË ØW2¦>¨ðSŠ”—Ì_ÎØ³VhΫö¤8É%½#‰z ù‚žŸPê ÀOÔRyPà'ŠDv¾ û[ögE=?ÆÑ ÂÏMؽòK5D_AîÇ‹i>ê M39º|ï€ð¤®gtä×|θ¢ÓSÊnÃJ¯ °ù,”²ÙuûCXJïA`*UE‹_I"Ýi-ä)açæÉ[APIß]FË{¬ùfg*òO¾ ËyØsŠtgY gpý½*—à„°gdê·£©æö1©ëf«n"vGÿ?ïCvvï\Ú>µ¥a6©íƒá¡zÑïC Âôš|SCtóÑ2)ìsV]$.ï¶,J¥¦uLêzÆú¬ù”sUFôó¹* ƒpÒêÊŸVÊžµÙÝŸRö¬éNO){"%€\Ä»_O {~ÉVÎLwê”°gKÃ{RÚ§>³žöD¡™´oÉçf:釠#z[í.mK.sézöLÝLžöÔ¾0¥ë9§I«?Õt@¦fhgRà§TOg ‚“ [í!º#Dq&OÒ,ž„M´=¯žÄ}Š'ùqÉ0 ²¦OÈ©ÿ©¹]nEòVÞªÒõ|ßE²žÏÌÝH²žÓ‚wœS„$ý“OÁ˜Éýî¨ö|0€O1\lŸ¼¡•‰sè:¾dYÙgù¡¦ âpà±2JKqQÙ³ «ÛÁ²¿rÐÇSVƒ ´fYÙ’¶çc±ç`Bé>Õ}ZÉ Ü¢°ç,^c«¨š&¯Ô¢°OÌ—eýo:æN¾Šò'X’öa‡È¹J3WÕ’o^2«j¬žç²áX½/iXá™*YÔõÄZôBkœî%iŸá[A8-ºþ—ïËXž+á–„}ŠG¹`ÀÐæa¹“4wå% €GSìEeŸìP€¸lŠatÖu¬¦©z¢‰®¬úÇSÇA-µè𦴠Ät”,Jz†l˜/:¥}žeÍô‹è³v¾óœ¿ŸŽÔá®#uÊ\d(#Ñs=RÔ3R³²ëYAðѰ‚ŒD·ŒP~~ 櫾©âEYÏø¦Ú?5Þ"þ­(æ*Àp÷Å^Ôõ,Yפþ‚ö/9¼Å·#Ù-WöThÖe›mÔÈ6ø7†¸gt•y1IÑ­g­Þ¢¼Oá¬Ô÷“7Å=KÛŸ÷Áê§<ªÈ”8Š˜µRãä;«tgçcùçLø½¨îSkõ¾%E·•e¾K¦ÿ,¹àdú·’Ä}>ŽÛÚ¿®Ü¢¢[±"hjÔ»kbÓ>Å4k/ Š{Æ¡U“T)ë©^wÉöS ç@uóU[sšdKâó"ûŸy>‹i7mVÖ°”°¥ðÙÝ ]KŸSÜí&PÅX¡‡nü (òsÔÔOj‚ªŒñoªü„­æKµXXü¼fɟ˲æ-}Ïø¸só8s·©ï¹,6°·ô=çÎÕH}ÏèÎùIØÍRmStðë¶nžaú§„ÊOXŸ¾É¨òóÉ0mê{BP< âsæVA•ŸØJunï­¢úêD• ºV eŸ,ª÷¥Àgi½Ð)öê'Ÿc} Ó›Ÿ¡§=ò™˜°2QääÞðïÖŠž©£G?è¡ÒO8èòm•~B6lçsʨé ¾ÍÒÞGB?+‹×>oByÛ¬m:åç!ÓÔ#si‡Ÿ7$ÌÈ8í¡'ð©úÃÚ]ùÆx¦=×#ŸëQ™ÄÔ ônc(Ç”QB|äSÖÎ!áAP[iÍŒ5Eq@&,Ž$~ªûÎ÷‘Êç‡pÛÿ!ë—Ô_¥ÃÒó¢wµÓ¦¥s¤ò9¦÷ÄC•ψâå‹Ö£w/B¥C'{Ž4~ôᬽ/AX{Žük†&eøòHãó"³üÛË^šÃ“ ¿«M2Ÿõñ~r¦Š4$ø‹ÿ-”>’w{ˢ΂²ÿ˧ ¦}v®}*ýÔf¹´ ˜¶W,ß·ôÝžfsîPêçK–ô5Ø9+“rÃ9”ùŒ°“Ê=e>_°M¶^\K%·Ê|F‘Ë6 TñrèìPé§ô“‹B’o+ϳC©Ÿ}· šÚÂ}'îß²zÆÄ¡ü±_²öxò}àÖÍLužM·nd´ïPå³pŠ3nœêmË굓iA¦ ðè†ËCƒl:H¼ŽJ®Ÿ|c¯#cõÿ‚H ‘á€ÅÀä“o³d˜L¸tËEºA8v¬êì^¬ûü‚@ë­M?Dˆ¶y×ÒBjXôT¿™¾Ûóm¸è¸ ‚ÈÞEŽvݦ¯$‘ϧ痤ÎÏ+ô¤)>ìïMã?Ž$_½–³s_ÂÜœÅm(hôÌjr:«ÂõÆ?4:×­ÐAP_ßŠî· M}Äû˜ ™ö&òDãÃ!@3b "êëçþ|ËÌf¾Š:?J•å©§åR£é5·µ˜t•¢|ú£[ûÎÛsú3jçûà õG/Ù¸A¸ô=Žú<ùŒÂ×ÝMªJ®×2A™}Û¹t(òyž÷ïýÿÆå`í{f €BnþæKƧê,‚ ?qÙC0QÑy z¿i€ôD›¹-På³<.¦ ²Ç7täèF\z•êâµ k—2ù¹¶²néWéØêÔEŽ££ç«˜Ÿx`mÝK U>k-yQïí&M-5Ç€“Wwþ-Gú¶nç=ЂûØØ<Í9޵áý²Pãù2dæ¾ î@ÛÇIþ °d§ËA&ƒÜúŠõ=­ÅòVÓ•AO:ˆ§HÞóqøaq ö -òž(Õ?ùè[µ*S'ô­Ï« 2ÚÕµ*Ô÷‰2ö'ß9ô}ζ¤Ktz ¹ä±¤¨›Ã_ ?ÑwÓó)-´wöñ.[*õ­†ÝòCi¸¦›H¨ìk²)×´‡I¨!©mêžM*Ž"Ñ+´rŒnèüÔ–kç@ÛÙR?O‘{Í%h4@}µtQÔÙ?ï5E¹DÓšAâñïU²à„ºU¼¯–~éºÚG^d$ÜȈ¿¦,o-7'zò£Êþ·ïÕÒÙ-”]¿§@ë?ß8I¦|•¡õƒV “¤u¶çè^,¨g‚ •õám/R?Rë?ypŒn[~úQ!f¡S´Lv˜\¤¨ñãlʽm…<å ±]ë¦/Ó“W›{äpt˜ì™‹Djo«ç’ á¯þ¸òÏâ±êŸ?qÈïiÀþwÊ‚à µ(™~À]9ø>u›¬Í®”ÅqÃ#÷›%Œ‘ 6Z17¸úqµ8Ó)›Ã†×Ì µ¹ì—%რËJ^Ùœ<9gn ‘Æû[š¹9n.ùö^Ê£%o¥D¨áÅ¿OîŽùÁW’4|RÏMöpÍo ‚5‘¥® Ÿ×Á=•A`þ WHœJ«ÿiÃÛl}TeŸ7n}rv´þžúÈüñ˜ã CE ú1+µ~n‚ÜÜEŽ´%ûK67gJ|^ ª«F?T¥Âç“C¼‚ ^ä™';Ûf¾Ú0ã‚°™UvÕ|ÌÎae§VÍΓ¸òPJ$T·Ú¡¸l× }϶g¾+úªJnžU'Àòd mžN˾ºt 6ÖÂe£åW¡ô>’îÊO>Ý…5íèÚØ,Ú­v„Í¢n^Ì‘ïºç/¸aÎAÁŸ©ŽIm·ì¦üûORTó\Ã66M nx4‹^dQѯåGA姺Y+ȼ¹åbTíþ{Ù¸¬Rù¹T~š;ׂt6 zéaÞ/9ÚY’ Wô¼Ës°WtVïaêžßµ¢É†‚oÃÉ^ÑšÎW ÿâ†Ë-†ý(BdPÇÏ–VEecCX5ùC—_ò†ëÉûRâ•òf+4$ªž† –}ΑÒ ŠèôiÅ+‹âž7¡ñ³ré/.ýuì·TDŽt\õˆ{6Èâ.?§äßLqÏâºI‡•ÆE…¶[SM´H?; Fó›_Ó«"'Û £ULbý£ÿ€Úž,²0ØÜJò0f³¹ã°Ž¥)v-2Ö/ùÄßÒkÞRöÌ4OtC>R¸¬ÜÅ܈?ù´t´ÖöcÓº=´eÛ¶uÛ¤ìY2‚Ѥìi 3tbBD4}8ç4´ï‹PØ 9Û$Ö¾UDâGx–Ê ÄÚ×ø“øÁ©™)ÒžsÎ7†´ç˜Žö4I{ž“U¹úü&Òö|ñ&mÏš.µ=wΑ‚¥ÿôüÚUKßâ˜AâLG—¨Ô=³€:H\ßçñGqÏ•SÞ‚`Ý?N/‰Sà&!îcصÔ~P‰u=Ådµ_/êË7B£Ñ5`}xÂÅëE®ÌIIÛþþ}T{SÕ´È ÕÔ g×Pn°(ì‡XôýûPz[=ih{B}X¡Éf{¿y'lùO Ød”èO®zïæÝlðŸüJƒÒ«|Þz¶m:&Ò&åZÏÕ©-¿7o¡>Ö¤wj.’IIÛ>USë~Y˜/ŠkFXÄ=D¶’œÎÍYG6kíš„E P\3€Õ¸í‡ªpPC%Ã0ñ$aÏÎR$Öþ*êík.ks‰»¹¤“Þt dYø{áÁÍcå‹ \üž¨$ö1 F>&áÁI)W$މeŠLm«þm T€eÛ“@xæ¶zèÄ=+÷ŽC­ÃlÆ B­CWÖÖá{¬GË/-=y¡TƒÜCÏ7¦=»´d™6ÜßÒ‡VPuCáagæŸÍ[”Cƪ¾œ‘΃þQH6‡:4p”i%Suì£ÙŒæLGZ´î¥9ÔËl²ß@ ,Ú׮셞ÜpŠì°_úÁ=ŸÁú‹ŒñKàÌÏH ²ÿ÷Ñù@¡€íŸvòò|¦Ó+å2öʯ]iÑ>¹ô)VÛNŠ?+G ÁDrݲTzå¡^?/‚'7šïèOx£:ÙT)‘e€ÌtMg¥Sç3DtZtê|FDzæsàÈÕéÛ¬Sô'â§;ÉR»Ë“ŸE­Ã<ðºDF³mÕ%ús‘ڿŸATh«»•="?ÃJËoÞYh?ß‹ÜSÌ?DWî2Ãê:ŸŸ¼Zäpö{1[L7åA‹ÉEÐbR[~º´ž/ÂQºA•öOúÔ:ŸÊÛ˜ŒmOÔ$5 ð €@ö°TÖÙg«Så3~=/&©|f-d­…?X®ðä $•Ï¬× B™Ï’·¦t>/ÒÕ.÷$ARâMþ œòê±ÄcjHÁàüïF –˜L,ý‹@å“3ÝE˜¼t$¬Kä³¼[Àf¡ýú$pÆù­TŒ¿ã–À­åç£hFË‹yXoìþW­GdãRD!L2þ×¥öv2ÍÒ)ó¯òÍK™Ïø!u"Ê|Þ„Š­™‘T|»@“~„»AÙŸ•¦½dPö§p|–ÈR3N“!é·'”ãaVBÅìq")‘c«‚ &ã"ÕÉ‚|rÓÀ(Ò•ºxò9S¥ÿò5µn‚}ŒŠÈ"Gm2 ¥>o‚rû‹ utn;⣲É$%ƒ(«<ò)Sù˜’OA½ñ̤âÒ']A¨ôYK>äÐ1+Aµñã&½Ã©±?íB§å_×´‰Íüó$õ6{^ã&Áú/a³tfå¢à¬%)š’ã«Î]º6ëpÊpNûT$-d‡dº-Odë’£C½³‹Hë3ŠƒÔ_Ð$4xòEh5)+o"¯Ð¨Ô«Q–6òUXýs~ÞÐÃbcT–ÿN'kLé¶\Èû¼ Òr'SÄcª$©Ù+S%IY¬ŽiI°Iö¼;)ö9c9Mce^ΠÄ>‡wìá“À±Ž±T˜‘¥ƒ@@^¢§%:$õ¹Ó%ÒªÓ>ÝPM«wPê³ì'W…¤>‹ç¶iý— 6«Ù8Tú,!BјÌö­âŒ/AYñ5\›'÷MJ}Þ„Å5ïF©µ ¾ J}Æ/ãŸJ2@™ê¯èùª­úœžÏa«‰Çªœùd«‰œ³©ãà"¨Ðm„ ˆ™zš²9_ù«•»ÌÔyÓ*ƒlY²$9Ìr=¼>“B@ŸŸtÕ&Y0*H“`ÔHÒÕÖ©qJø³Y1ÈTëדD­ï‡u³­| 2Õ9¥Îv`kNÁp4¨5FI·4 &vÿ€}èÉ‹C ”QÔgì,V™ÔþŒ£G/jºz^žŸÝ~6Í +>»'µ?gÞø³©:)m‹I  2=³-Èò | 4rƒ›Ô*Ë]†‘ž€MA¹Iñ·¢;K›ô„_F9Ý5³«ÖÞ3‰ƒ Ö¾äö0%ÿ¹»ššAÔ_¤=yªEÏ×\òŸ-í¹9¤0òƒ†TÒ‘™<Â×A8‡ Íf® hUÊï  Øþ"èžþjE3·WÑ ,»«,i䘾 Xû)ƒ{X´þw@Ô¼ e£ù 6~ÀÖ3ò”qu+Û™KÝ»lxܤñ0­~ ‡Žýa"pèfž®“òŸQˆ-+lR(¾Q3ÀɾKþ´›µÆ=#=Tdúè ©ë—@Cãd®ˆÕŸYBAØwXó^ ÐÛ“{¨8ŽçÔ|ŸsWÆMê>Ƕ¥˜õ<ê2Ùùc™¶_—®uES’píÉeB Ø w¾3\º'ccópék]Ï÷ß\ôÕ çÁ” pæö°S»è9ù>cý’üòmØ7^â¢Ð«Øv¨cŒj,‹Êoefe •ª¨›˜¯biR:ášü‚¥ÞÆ| *“ºÛ÷Î’úçÉš™U5²ÊÏ’øçra~F¯V›ð¢PôŠŽ$¨9òŠ^ÿ<*ûZÒþìþjÑB éÏ™³Õ2¢×’ Ñé!wÒÞ= ‚b¼ââ«%éÏ–iâÅÝ?Þ·çÛ0¢íRô GºÃz›žmù«sôØÉK×Ï.ù :ãÙ3×ûêLNp&œ’Ë‘ƒD<{ ·ýèµÕ,à ’ó¸³*byΞóÉkå϶jî¥k0œ]÷ù¢éE`Ú_ Ÿ Ñ· ¢Ùï¹²ÓÅá2>Ìö”|ÕAŒYzqi#AÉEÕ$Ÿ” g!«©½~M†³Ã 2È•ÿò]Ì.; Š„ñÝY«fÇA"š­iw"_<Ë&D€þ~˜™—b1=Ñ,§©"§»J¾jâ9ÖÊ ‚ôDJyènkT)جΨõ‹ŠI•}lƒö/A¾>óµÎÞ3ï»Ípvò›oÛÔÇ!(‰@oúRKòÏêÁg!Õ ^fP5aQ‡Ø:»—ÂKAP—T²xrÕgdê3:³ w…xéÿP¾¸ó)¨MšžÌ~öÃäDÍÑý°DcJàp¦ËßM/Aˆœ¿Ú|:m}ê¼ö£êÊÜè6ÅŸ[ß7õ¢ž¨çSŽº–´ Ù/Ç‚Öf‚Ö’l[Ylt‘%¾ËÄW i%œ|cúq™ÂÚÿ|²8yS.ã•~ÜÉzSüó&°c/?nydeiØÛußU2öîB;6C<›âŸ•“~DŽÄ;ü½Úÿ>jfšúCªÆ“¨Ðg7É%­üh*Æ”5D±ê²Ê/Ùý—ÐÍÈé– PËR‹M=¸ZÝ´ú/ÐË Ð`xÃ,™sòlx ÀÇó¯Káϲ3¨¶)üY©þ(BåÛ/AŸÕ»ÙþŒ³–„C«Þ›ŒFÿ°paê›¶› Ðuf¡Ï–Ñÿë›@7©š !#nCøSk‚ùK†”Áz¾ „?ŸÜ]ö”ârmËîo™ܲûgʟñE»D‚|CËîÏ9-*T„M/i/uK{€WØýãñ–NQó‹ÈðŸBáÏ›`ú^·œwôžô¬7…?c¿É·eƒÉ[»eõÏLÌn[ýZáÞ~¨úù¼&Ç–ÅÿdyÓ–PÎÁQmè/Ùê:&êÙùêØÏAoIÉ­MåϘR¡½™ï>Ñþ}Ú²;7…CéÏ™° P”·<Ñ%‹ì—-Îr€u(›íPù3ÎŽ|_X³Ÿ¿¦Ðœ]î¼ R¤%î‚PädZ”_„œtõ•å…Q¯Õx¨û-gòfUà0èÈý…5l‡ºŸŸÎ°# ‹ÀëÓ ÂN«/ÿv¡¼Ù´S•’û’-Aw‰šÁYù*§IÊ>ëN£ bÓp€C5Q:³ÅKÿYŽ÷ŠÁÑ1ÏâðOHÙOKûA^neÔætõ /ÛÓ%e¿lSÛ–®Ò6iê\JÐUo.Kåôÿ$C¤ÛêH¨•üVjÅ»3»Dð×ø²S4֛ܴCÐpÂZxrÙ`Ä©q¨%}_¤iO,þáù0AØa’ÞÈê0É£á ©f’˜Ú!¦ s%í¨ –åDi´Ámør96#ìÙwÂAƒ9“ÎܨŽíœÿ“ufÙ²â8J îíùO¬žN£Àܯ̻A`lI–ަœ¹Ü’¬íuÌ:_‚±_Ü’E½c`¹ƒ´H|g¦ý›0Õ^u Hµ¿å^`ÙQt ¹I[á%ä& ú€`ðeu´ˆ40’ñä1^ $TRÙY‚6&. z¿e¼Öõ3ó¢(ú,)ƒ Ž]TêÜb9TúÀ¬.-Lj$dÌú¯t)«AjÒQ§plJtIJ5.¼(ï;ÁztãÒ }¨±jÔA0ø/Â|j*‚™¿¨ †®T3%pÀûh ‘PKÞÉ?" ¸ÙòÑQ4"o}š0ECFˆtÑNìJÔü&Îû1Qø)t­ìÍ•+*¾ÁÀ·ÒF‹©’¿1ÑÄ•U{˜hOìä!,—–‹ 2TðÒ’L©{®j‚ré£tSÛãè^Í— ÙTÕ’+8vã–̵ßiŠÿh‚áîDÏ9ûОuWTM–˜â?„oy Ú“õáù,Æ]§TÅpÖ17Õ¾y ˦7Ž@P6=›õa²½JÝÔ¶Q+H}¸;Ñ«&3ö²µÿ‰Tû¾}ѵ0ÕžÛK"Hµ_Ýñ¦Ú_žÜ£=„Æ=ÜŸO °åðŸbâÖd2ÈkÍ(†îx•æ[Ÿl~ù!] Q²y*õ?ck_ïK¥PØ3Û€5ÓùºÔ*íŒéY½Rùú€J©Õ•òŸPš&ùGê Ø£ž¹:0ð€‚< ³¾ÁV­L»Ú8ð{õ[W;¥3æ› Öv(û õ†gxæ¯s•ƒP5=f>™ÎrÃ6þ˳ xô Û@µÓ¨­C.Xí,2éÝî)ôFQP,Ó¾öØ--Ô`Ùô3lTd êx'ª/“!_‡*mªAÕ•U/A œQŠ/;ÀéÎÔÉB[¶:‰‘ŸE« MÛˆOTîá €­©~J ‹7¦&`‘‰†*ñŸ''æjñŸîù“â¬8&©’ˆò­¢õQ6ÿ<®‘o² hßs/%Úœz–¢Ù%‡ÌbÍ´?¢ùß¼ åv­0lјV^P¥ðg’„Cþ±C^)ü³©ÖØJáO„áòÄ[WíóPø3J4ãVZþåyügU1Çï#ÈE* »‚ ’]~3ØÑ®DΔý,õÉé@BoûÉÉÊ?/ШüDë=Û8!gWwEBÈ`k ^4Û5’Ÿ!Ó¦‰º=JDZžü5?¡ µLöúG/8ZU?Ÿ“VÃÃÐlòï+râÊïC0ewµGÞ$úù³>µO—¶ììÿå7íwûœ•Oýä#å7£qˆ?ZÓXÿŠ£Ç`دã7·UnLŒGÓ}TüÖ/P*¤ €ViÊ>éþ·Æ} ·JoÚŸ§ª{ÓþDNTU9û2l96Š~Æë./¨5õ#^y ý e¶–Ÿ‚œC¡-¬„òNõmqìá—™† †’Lç¶Dû"p‘›Y ¦6däìµ.ÙÃtg¢ì—aýMÍÏx/eU·!5ûfk“b(°´.7j~bâËOuE¤56j~FDÚÃdHû°xækÐüDp"ÂØ.içA‚ýo¥¦ˆ72|Q€‹8˜|Ú6Êû½1TþyZþbJÿÀ:ÌÓ¬ùÊ¡ÊòÒפýÓÏ~¢Ÿ±£ˆ`£êgLJ-iŸ1 Á·ýä@–êç“®:;3b+o$ùóo íȪüÙC‚o!éça+»?ò± ÜgWÞV“êçE0úÃoZ&S‰3Aþ{ÜaÔ^jIùvõi,tjÂÂÎO±Ö0=ùN  •ñÐÞ¤}Õ9І¿ÔQ µK(ý³ÞèÂýNÿ­4/½1o/;]puÙmFŠÀ3ófwºp©’ñ¸£þÏ.KfË?³L ›q‘ÅÃ’ C6ª÷g~”NµéÒ©ÿJ%Û  ~w5¨›¢.O’^~ ‡C €š!:¥ßÊð$ÒÅb¨¦,±˜ú{Òƒb1u擦øÏZi±Q\óC¥L4ÏtŠÿ¬}‡N>?ýì'"+‚„»R#°çwCÿ¤§gÍä&AwèÅ8û„AoÙ«ùØší‹z1ó÷.:p='µ.ùŸñäeQþG"z"páÊñ Ù7·¦Ÿê)µSþ' ïAàÃý¿¾9î÷ɹ‡ªŸ1šŸ< Ú§{ÅîTý|ÜÛ·isÓ®Ÿ(ì‰êðr?JÆû½¸Rýt9:S’fÞdÊ~Þd¨ý™œžNÙÏ×´Ì%Àõ@H/Ûw)ÆÃÐì6U)õ†ù¾$©ª[Ó à®![wHÆÛ*@½ók°}³39×>¯cŽtWe¤ É~Æ|hÀ¶¬Õ6TÔúþÒêùìÄÍå28÷?Çóï Ù“¥juM#lD‚ß"›tTV””Ü•!Ùp# œGÖ P(]s?wTE°—GëÕšGШ¬­ºBØ¡Þyõ»2l÷;v0¸È0@û±·8dõ´ñGc2RÍࣆH+y ù‹lhŸ<1ÖñsY]ÚõÛo×è¾Ö\3hõÇîÃÉc0è³Ïè _wÏïƒfÿMÜ‘U±ËÑ%\\l"Œ¡¾dŦÚôó9ú ÙZ=ACVUHFªéúE/ÍjÍCê?'h†1º6vD¨ø™±ÕaÅÏßÈ™T ø™ÞCŠŸeèíü|ƒH®O Z)éì' œ¸ZóNLnK_äè›t‹­Ø™žU”ùxlH‰~–ò&‡INZ’ÆR2ÒÌoZ™\¯Et,&#ueô üÖó5ã F ÐüT $×çjÍêUJFågú¾–¨!ý7—£€0·¾å€”ìgÿÁkËó´H¿ƒLÒî9ÑQþ jIÀÃ.ÜìçÈ“ŒWÞ?²ÊX'YÆß½”æOËý³q2©Lc|>4`¹#RµO¢)`>´`ë°õ ¬© C`¨Šhåi`Â>¹9ªÜžÜ€™MؾdeMë}.[fÓ‚Ÿo‚^|ex ›ýißîIõ7T(,±}zuºo%÷,tßFæùLi~>yÛgåÆƒL³IÕ´¡©&°cwF gM…$ŸVŠŸ«{{›3/“¢Ÿë¤Û0%úù‹VMÊþ¤ t _”E%ӯϤޛÚo›œŸ°,Ù™9F“¢ŸhŸUL0ð[fdÍf‰¤•ß„˜ìÓléÌÆH^Oãhvæ!í4£ggR]¶?fgðbä4»Ôës·qJ÷óìü.Øý)wÚT׎»&p®{¹›\&tL°q2;mRõG^ƒHçÀ©ù!Œþ#e*\ùôÛ9¸ß¤?¥û¹·½É9ÃN29ü[Fš¦Dà,ì ÒPÐ?¥û9»íÖIÙŸÇ­î@˜Œ”ÛÒSëÀ,¯Oíwúk{ÐÁ ¥=)ûórA'u?ß/à^Q¥)ÙŸºò¦/…±KŽÑ%m€Œ©ÏÅØEõQ³ëïÍ(öSlaÌÍd¤U3œ›­úÎY`K»ØÞî܌䵙ӟŒþßð”ð·ÑD0ö/‚±_O^·„ZË÷÷HÃþ7’³ëËã¨É<û ½Ì£¶ ýõò~’ó0·þx³yåb§Ñ¹žÌ­ÿömÈèîÒB°Ó[ÔýI1£¦¾Õ=?ÅÛyüÎ/Š~¾6üåß"N¶óÌä½ÎCÕO”¡mŒü¹=dW¡w¨½YߟD}šÂ™ÆÙ¤@&²$ã®ñ· {z³hI]ÓÍ¢ìB~ËölÍÜB@Ùλ˜`è·c¿xUýÑ_ŸšÊ6̯–={^çÙNÈÐ-mª’ž¸ù„Í ½Ï«1!£W/ÛKÒ?VÒl xbÛDñ+ôäÀVÆI@¤‹œ/9õ& IaBÒ›À[ê^ÙW§PÆ/7+–L~F“ÝêtæÎÎlá«Kº?opƫΩEÞºŒ>-odÚȹƒ9á½ÍÜÞZƒyx?s`Iög¯×§Â—»ÉBWÀ\&×`*ÞJczM¦âíæ5gAý­÷ÌØX¨©í}æ*¹×GY^‘e†›¼ƒÄ\6ÆÉ+çB0JN( ²?cæb»(û3z±5ÀÍ[|¨'‰Ñ?ž4 Y¶óïNOe‹Â?½ô”?{¯Ç^ö®ڿC2*´»ýï˜|z”€‹Uƒb÷Ùò×Àhê}4[¬‹º?7‰±“þ瘡_Ó Ðe÷d"è¢îOÿ­f Ÿ½—LU_Ôýiû75P÷§´žÊ”ÿ‘íÔ™…Íù·käw…ð1øƒxt¡ îß—gºí‚ðotu›Ÿëpø[佩Öc[gÞ¬ç¾Å¦ÐKÚ¬›ª?m.ÀMÕŸ–‰;ûáè–7Ó6¦þ‡¤7·)úÓÚð$¾¡üùï«2ÿ2âˆqÿœÒ·éô’ù!›>@ۙݸ¹4W–€ %ñEÐ’ø"›ß4óħñšdánÎiiSï'2`k’*90Z©òäņðç?¢Z1’Å/Ò A¡ ’mýãXÂíÔÒ°+²FxZ'¦âO”‚jRÚZNîôí&˜k›ÊŸ7A­ôL {7%VæÊ¾½¼ êEgæÂm)ö'Ï,åÏÞm˜o)¶LtÙ©ü©ow•JgΦògä-æ!þ<™º³©øƒ¶Ù3ɾÉPSÊ–÷t¨dt¾ŽAÉè)9h%üÙsÜC©Æý¿< 2g0[ºŸëw“¥ûiÕ[³n" ¸Ó<³n ¶úäÝ™J5ÎüÚMÑŸ›`.«¶t7ׂÆ61"xž;â¶dz±¥¶±›øï"2Tºë¥kºU[pýØ e9f6G€âÉ nó~ˆÂ«ò˜6EàÞãdI1ÃE{+Õ87ÕÙq Õ݃ˆL.Ïm’ý)Ûë-ÿ U£~Íwv$óK-ùO:W"®«òEQö!ŠcR$zª]—èWï(žáÔ¶}ÎxÄõÜkE†«äEþBSça`Mß{%V¾I¥¡þ$h·{(ü£xŠlÚ–óßy²ß‹¬+"{ ýeWš·NQ¹ô›Ð¡Ë¥âPûóåÇj¿!ÒŸêÚ§WàôÅ´‹ý˜C埛 ±²¯ë‡+Á+éèHúçdÈøPû3öå5JŽ´?­NBíÏ“×EíÏ:½œª¾LoýËÀ(™ûpäÔǶÓábðÊêÒYܣ虼Q „îŽw®¢á¯¼oÿÍÐvšg15é"Ì4®¶XYD~ª"#¶˜¨[¥ÇÍVÁtn‡ýMÇßïÙfÅhÍô¯# ã̳³ÏH«çHî-*:òdØû.¤×ÿŸCÝÏ›0¬ý‹RÿÉÜ¡CÙOT5dgìö"LJj^íX]úJž× öGêD ¥}IuaA’¦lF§‚0ÇÞ6ÒßšÔD § ¼³‚ U£æ©ÓPõó&Üœ²À@´yPºI/_Âzé7a½ô›°^úä¥v´Ú.Nö¡º^1bûûErgc›ÔþA(ð>¦«iÓ<&hN6lõ™çK¶4©z~ûÑv¡iL³¿BÛ¯_ØXarÔä „&=ÏܸE×N>ÒÆ_{ôЍòøC¶{žÿy¿š9˜Œø­(vU9vÚõÆ2ªž1ùª ^‹0/ï‘EÅî¿J{‚õ7&‹óB(±´/a‰IÍHé·÷¸ ïÙT‚pmZ#l¦Ûe^ ^:k’ƒ`øçt4?$ºø+2ígÍÁEáÏ_…|®†e™ E)çÈ m-¯>À‡ì?Ç`ô—“ï0µß žµ“Hìt“ö^Z¡z#q0?:ŠjÿIdjŒ<1Óí‹âÝA¶ÔÁÍgTÿ„p1¡ Vô ôFÞS©Ö•wGnÀ3òñÉ ÈÊ Ö Xyžmw"ÉQXßZ@XCÖ2) ¥{d…·]ÛÄu&þ='û³¶<ÂÛó÷ ©þ)5Œÿ®*òRžû/·Ÿå×£A¡ç*Áج¨Ý“)jÎê]ô G}i5&KåfÅðnRΕŠá‹ èÓòîT–Ïõñúö*ºÒLeU,ƒ¥rº•N]§èö¬ëñ’RZ*!þH彪ASoHFŠƒ@4`çÚP(þö8î;ÍyðEÖÿ~’M x]J>ÝÎmº‹”ùÎü›¶;6m–¤jg"ËZ·KgÆ}ï/BÍ€™c+Á/ç, §_„2@‘_ÿ$aƽ·ò$YþJˆÁô{¼•£û7$†œºê5¥ :uÏ~}ù–£%K£ uÛí~ÁˤYk)2 Ç8¼cÿ,OJEJ@uÊX‡Ú•ei· l¡Zs\P íh ÕäÔŠŽxs˜ Wå*ùzPè—¥²®»å»)ЋL´Í³¯‚¾tjAó)²$Zy9†ÿªêÇ×baE‡¾ò›s š²¿C´1žpÍ:@h½Ô/™oéM.o¦`U‡Ñ•ë}ÙêÕô#T•¤¶Zµ¶’³‡¤@·ƒ¸A°ºg0Ó•œ,d.&¬n‚~{;‡2¥@#WËi9L@Ë_^)º3‚e‡Çµs؇WpI£)J™ÔóC0†Êz‘EKí$ 蛜qM¤µ¨â¤1í2¶®Õ€)iXÔ”îAZ‹¿„rA0ø§bà,gÜÙ u•<†)÷΋·»¨æM£¿R H©V"ðìǃtesi¦ª•¾Lâ–ÓÃc½Vºv9ýZ‘îÿþ“~ÝJ‹¦6¦l¬ãY¼6Ž}ïz€V˹£z-PtÅ›2ç5AWê¡r!a¿i‡["2·n̼Ȯ6eÅO:@(è®&ðê2Å2ÌÚS­Aâ}ÖßBÇ)Œ¿{%Pô¿û}92ïGÏ·e2ó^ÓFL»ïÓëûsýÚA‚@rÛId2æ[~ÈêÞ%OŒl‡‹À¢-–;Qò•É ÑDtý{%t8tçx>ªKe¤5o1…@Cñj%¡¢óyƒ0Ù)%(‘_ÿ{Iÿ”ªz<5 bW5Æž“ŽP?Wi'ûuÚ4‚FÉwc«á´>¨>ÕØ¿É+m$Ùç&‡mælA»gNYR-¿/A¸' œaFõNAå!yH ´¸®)ÈV<µåiŽd4õ~7)fÅYøs¿[Þ TÜ9 KR¿¯Qý KpžÙJ'½“ö¨ˆÔyR.@ʘâJMR ¹#s~q0>ˆÂ“2=›¥@sþn”ýUõ¡;—Îw+Ê<»È¦5ºòÌl¿ˆÄ@Çðm?1PyÍÍb Ç/}«ÙÙÇ¿Pb aé¶uÜ(úK+ ²µÞµü.„ø~¯^“(kvEŠ\k™ ­eÙ­…Ô@K·CÞ´ì¢èr©’·•çAh[Ë]“PÍ`Y“èòžÈùµ3=67Âþ†F{ûiÖÛÎG“Pî0¨Obö Ë`cHøs«9d&Ÿø×&!¯•wý¨ò$ŸÔ¡7W«JíH×Õu ›Ž†f…þ0¶W2ÄÔ%ô‹tIeiGæ]Îážµ%.‚ R›ú¡A¶"öybŒýº}+º”@Çò„Ø‹4»Gm”ÏËiîRý ‚.%Ðgz~é…þÜv]XéÒ­–? ²µîÈSìzJþ ¹(8z:]kÁÓò'K(Öȧɠ n]+n§¨{°7uûsnB-ШÝ󉩽:[ƒpÆú=sKÃ¥EÕ© ù¸j‚;¿gÕØ¡ì¤3Ô-úû9Ò†«¹Ä0€ó!u}‰Â¹š–ºÄ@Ç’WØ»Ô4^ùóøK ô ξ€€¡ïNY8¤TW¥Ë ìÔMa¡}ߘ¡m:gñaV†º´@KÏ5?*ýÞRAª$:‹;œ<ùd'÷(ž4¦»Ô@‹“±‘­ƒYMÆ-¯Rj a¸,F´wÏá°Xu»G¢Åˆ¶[# ŠÑÓ˜éK{ ¹¾Ñþm¶Ñ7ˆ4ÿ¹Uu0ò‹ÎáG|77k®Vî™õ­>MoÒÊ— ¦=¶'ë¾³òÄw”ÀÏ ïZÎÊ[L)ЗGÕ´“œÊ'Á;¦®'©*õPÀ°k`c øs;÷iûQþʇwÓΜKt¹Ö^yÉ3c!Ø® ‹7ô‘ü´|µA9PɬŠhÉÑiÆ£"êtZ‡Öí"¼úõK˜ïÌ (Þ(ÿ^›¡ºk-C’pÇr A`Îæ–»:Mc'ää§àÏUëAO~j*V4òÌK¹š}Fak‡Ü$UQíŒpŠ…þ³|ªÁUà&í’4Ò•£¸ZKþ‡âM»£ªøä"‡Ëh‚sUY…Æ#ÝYE”vÂÖ,5GÿMÖ—`òÈ(÷h’‘é¯C–Ž™I6KóæHnGFçÅÈ­™Ñ±GQÓÑø ÔÈU(œ™ß$Q¸Ò^Š\ýäÖô€"[[n cU{À‹ rÊåAœùØšˆ µUrŽƒ½­zÉ‹lU–9dAЪÌ'Aت,=Ç1Ъl¯òc0DëvÛM Ýÿ‘“w Ñ&D‹jnÐýÎ3¢}2‰bLæk\6P›6UÆd<£×¼¬ÉxÆ/ah1èÍ!αÓnÒŽE›¶¦«6'³î’B(£/Âe€ -ì.£v¶œVîQŒ<37èìÍjê¬þ”z¶&=R¨ºëñ*3 ÚVdÑåy¥DNž&R•v9^ÇÕ@wo9¼¨ºçob’ ðäÎË*Ðo“qPô¸`1N«5dH¨fNÅ ,‹±àÐõúÍ?·4ýgžô•§fc¹þbr^þ‰8¶(€ ?#•ï‚ %‰éZ§¬þÉ :@78—ÀzáÎÞëOæh—áøî” ÐÚ~S*@g85 õìÝ€²IÓˆú¸ÛÄY 1k*¿A?«§Ûœ´ø#MZObJî"UjGZ»§LþmÁ˜ 0be}Léö|…''Äò˜- ‡–'¡ëΡ4‚ŒûgùžMà¾È<¢ÿ!C‚šJ'õ?oƒæ6UNðk´êÍÎäŒØLƒæ’ÆÉq0½3³3ɲ-ÏœSpnžD‚Hòã,©dŒ<e¤£9Kfvörx‘Á^iÌ!9D+`ÿVíZϡĤí]=NñDh£Ô+·„« å» (ŠXuU’‰À{,Œ·\o¶}¦àzî0ÌÉê‹tEÏdß„š@7 sv´LYÚ¸™2þ€ù%±Há²â 1üoÃÿM(w“0€nRÿÓΗŒú%óÏw­ò%aÐF¿–Ü’â‹„¥óœ|T‚ûó%aÑÞ$Œ ›@<À-Aþ=ÜÝ?ºI_Òö—ô?ÇŒïý÷ì?_uæM( t“2¾¤î/éåKFÿ’?_µÚ—ì?ÇœÏWMþ‹@Â!“ú ÒþýÁè¿FÿEbq¿Éþ|J:?£ÿ"ýiíKºÔ+ž$ãðB5‘oª–Ió›ª@ãço.=  hÿwjMˆ„mÛÇñB½© Ô—e%¡JXÿP¯Ø™$°) DñðM5ÐNÍ_‘þoa —Ãî³BQÂS)Õ@[‘>pØBOZÞ›~ÀM p‘¿à¸ýªÞ¤Œ/©ûKhÛ¾I__2¿`µ/77¦oÎájð&vބͦßÄÆ1è‰zsÉŠšàú%k|ÉÞ7¡(臬/©_Ð.i… ðë.2ö—Ì?ÇÀ¶éë†ÖY|•  C—Bñ€t´e^ÞBý º²uAãS²[O“z@:ž‡º ­yÛû`-øµE·ndMÚ±*P¦£ª¥¬CF2jÞ?®7 ¤ürí/‚\ûaéå û\9[§:U†3ÿ¨™Ž4‡¢ Ù“'6q~1¦3˶àÏP§Ê´IÏ`hï祪‚"âšÇ ͬeÍÒ¡.²ü¦ zûü&ÀCa l]6¶)sç“ 1ükvž ‚pÆÈ„ÙCa ˆ¤È;8ÔFt#Ú” ”œ%MÜþ_þù“ò~‹bs½ŽAho·ßY òZÒ˜<”úÅ¡õàΓ7‹²@èò¦/¢,PÝ-_¡M¿î" j¼ üº‹@Ûþ"Só]‚-Q›f™¡ÜM %s‘ú瘦7QÆU Z…¨tßþä‡bz¬* ìÚ›ÄØÿ‘=ûK ¢t“õ%ý-u„¨S£ßÎñ±Ž˜‚–9@Cé‘;‹jü{¼1ãÇ ùÉèô?¦xP”Ǹ 3bÓ%$AЯò"PšNàU ÌR#¿¥ú%"pq¥«ªii: r]\!î~°<¾lºÑµÓ×T% t‘ý%aÝ J¡,Ð`*ÿò瘺¿¤—/ýK0ôO><ªµ¬Ä ²%”Ö§É9ïiaÐJQ›uL ˆÕÝ;*b|ÉÔAzgÄlç§(£´sP¨e–‚6n¾$Ž9Î7¨TÉÿ7Ÿ<3ö‘þYr5¥AC¸Í7Ò 0¿dŽÒUMЫ5ó ‚`ügí ÐÄʬ76§ýg癵aeWw §î"4kݼ(H ÿ›Äðïj"@«ÖQ …Gÿý>}óâ¿ú ) ÚÏ“¿UZp ›¶ï“/ eACÖ­4“x”}ÕüiPênÆ-¸”þ‰Û;=cÆ&ÃSi¦¯$?§håC¿ý"ƒk¶ @Ö—Ì/XåkËdÃ×xr $PŸ6¥b.‚ñ8})<º‹´/€G÷?%h­ÿ{ÞV u¸åtÏ k|É–üŸfÑòÈ¡{:toR¿€þÜ›ôù%ðç.²þ|Uø"¾Ao(ü¹å­¢ˆÜ¡;Î@G{ƒ¸ôíN!AàÐm—¹ixXÇ›ën)„Þœ{Á¸¿ÆýENãÏÓËP¨ æ“‚3óWþ¥¢ ˆg<ÎÞ ›Õ7™ðdÕª>¤—ƒïA6dÝøI»IñÈóOxº®°‚Eý"PF\΢ ‚¡?¦â¹A&o„bhéõ-úùøs«7¡ý?Ú“ç¡ý?˜,‚à˨DÜ{Üf4Èø‚Ù*¨ù!3.‚±ß{:oBA Q×Ð]Þû2¾ªö| Ccß²ªÚþúœfâU½Ü¤9ª_°Õ¡ç‡°tçyÖNiÐØ”õ«GiÐx2~‹&óïS­+Hç/^y&l¤O×!ݢݼÿF*rÖPÙƒƒM HŸÌ¾?¿«¤*P¤^x˜,åkì¼­3ÿ¸oš ‚Âwg€Íê¥ZùLÕp§å LÕøíáN}dk®yÐonϽÒn~îRßJAv [lϵ'_IʶjIÉ [ÓÜÈïÖ[ë‘x˜‚¼3ôÑ©úK‚üûiç¸öì8Mˆ ¸Jw÷ ‚ôû” ‚ôûפ{²ÇÃÉcÐã¡ÛãQžÆ›°{Ó›`Яé‰e<ôîo†D{½„y×t‹» “åÓ›s]Êl‘n€,¥7À vÔ .‚Úez öE¢íÇ9H~À~Yµ%3 ·æ†K½@mÜžçaÆ™•Úb‰ã…“‡ƒ”Åm M,r }®ü9êÇMAƒt˜™Õ(6…™Ù °¡3ÓI´ÿûN«n@î"ÐEâ2gšpƒR@7Áþ\ö 2°µàvA`ÐþœÔA) ›œPôC­ô™¤VöTRžÁ "hl)î<[:ÇåÞA°¥³ÖëÌ{xÅ#‡öJØÀ†Ž^©A! ØlÒ+?(ÔSÑ>H•…©EmÈøŸ*zYúc¨u“uƒ,ì©üF ¥€•¬D˜}\rÌR tŒš?¶gŸO‘¦ÇÒò˜Îý'¼ƒb +E°¡³³ µ€~YL<ô5á Î÷ñÂ(Ì<÷©Ý86(ŠÛUö&Å>–fÑš>¿ÃÑŒþý›,Žö«Óg…_íñthížcåЛ»º—Õ«Alṡ™7=צ¨ FjDî͇îÜp)alï?~I&ÅáÂBÓÔ?™³Ž—Nʶ,{ög…Lêµ”èÂÕÀy‘A`Ð÷y BƒÖâ‰r“þ]e:ÑÑfÐ"ØI¸¸[ž4ȾP"hÑH©5$_€hÆMΗÀŸûÙlôõË™yJ¿¬¤ = _CB€%ÿ]ç/®-ïg£Ô]QÖlnÀ•;Ó³ÇäRp¦gta¶ÿþ³îÀùyͺÏuJ ¨[V9T4(j.Â.9—Méni@åí¶TQuÒ8y^Šh¸çR޲߽´]‡[ŽÕ)9 •ˆI8µÛH&MÊAÃ0OÃBjÉAuhmžè'§þ—Ñ8)ôòVædë²–Ꜭ¼}ZŽsšþÈ›î&dL«éê7°òÊ"fòÓœ¬*­9QÌ©†¼éáÏ©Jê4?ç’,bÍ_HMPdå7”ROw5 MЋ ”QÒ'`®(ÌOÏÔ¼RMõ“š 1=+!¡ÕRl‘J@Æ<ù:s-ˆdÊå(ù>çç)/à"ýY“$@Íl­É¥à•e8·RÎzŽjµ‘fÙ¶¤—¼xzÓU[¼òDµŸž—EEÐøÉ3ɦ+öûâz©/aÄõ.‚ÁÿÔ¼;M.ëƒÀ¥û…tA5U‹ ªzVÏQ×;¯Ýj d¤±´4ù×é€lc{PTé"ì`ìRÝ è`<ÝãDs(*DZž‡­,Ûy;gÎê‚("²žÖ`(#™“G²»(‚ PÛÏ1k0R;2˜»“ï!ÃEYÐXOŸüÛ®U”Z–´$H¾Ê‚Â~&õ ()Pßä|ɨŒÀœ$ˆÔδü9²:œ–<uò¿;8¹¾×ô‹×b¤¶åFöZ|fNUk©®zkZÔE•@Djwæî-ꂲþEqí“·² zå@6C¿Xߢ,hŒ_eAãÁÈ’\[\3:NKÒ_Âð¿Èú¬îsæ‹E o£Â2먑k†–Öá¦N·ØÈbس&é׳Óï;óaã7p& çvý:L[ý‘-7à"HÀ¿<»‹`=(–‚ ä:=Ü6‚"Óº$ÙåKàÙuë=Wðþ“YÈÙÔ3H•ƒ}ò˜†`„óK6€`…sm{°„~%|ˆÐÛçÍOÁ©{*õìE‡ëZíkÙZf6‚pÈ4Aú}öÁb‡}³êõ¦02pS"(z™ÿ9ªPªÐnJ¿wK§ ûcØåÝ{­ØßØ=Gä–(èÙö¢¶D‚fæDí¦Ñÿ¼ŽÁèY5Bq@,{zg6E‚ð̪ ÂÚé×R´»º_ä|IÄø¡¬Œ ƒ °Ý2wÿÊþÜZ JFÌ6\„~¦|ºÇqËMaП¶Tú¿æ AV§ÔÊóBë¾X»R2(ÅMaÐò‹_ìI=¥‹4”Xý^*ƒÆ^ÛIB=¥îyaS ˆm¶ªÍšŠêÒoÙëçÔÀ§û™÷QŒ)¾å]ÜžûÜפ V5™\(Jžx©®rç![!†“'F+öõØxß[›Õ݉€É‡4Ϊù™þˆe”Lêß\ÂKhI°¦—’Ã^AË‚¾§‡K×[~в a0ù9Zµ5ïða®FÉ"ˆ}dÕþæ¨Ã͹‹ –1µ) €ÇÈ¡²L·Ì 4oú—@(èäÌ|$ô3 Uá”/l²éj*9 ‚üÉ6Y—*Xmµ6^ê#ðª è!/õPÅíþþÉPË)RUr Á CÖÍÎchY:HRŠk[ææ#¥ :ó«$ 7š#4?Pí=òSMÕ…#¡I›qÍUP™­û§y&> êT=”makPô§.ÝSò÷Q'hæ†íá*+…V²QP݀̚PÍŸG™ mîˆ`ì_Õ·ÇÍ`Â`z‰Ì¸ À£kê‚êÛq¼h Å•4ÊO§,â¯xêt5yÈ ÂÓU}ëÇõÐü¹ˆà“‡ øödEÆ‘ýZ! ýmyŽ óRìÙ,M–u M«<2Ac;t&M+îLJâ®Ï:Aè…lûLQ=“2÷Œ´ü_±!v,dC…üÖ€‹-7~húGCíwiõ™Ã|eYäg©ÕÏï}–JÐÎ ð#AГþÞ‘ hÊA hìf%PëZE%h°@~Y»æg3¶7,›šJî€WU‚ZýÍö­+Ä#Aг^§Ù…½~~Ç mÓZ9KI4·ƒ@5¹å_JHþR ­ç€–èú͹Ò}]g|µBèyþû}ô@çÑ’»¹…²‹xØÞ­_ÒdJpŽ‚% Yv+’ÍŠ3^¤Ëö²ç‚`}t|.ª¨«¯Óœåi£¦ìnyjƒöêJÿ Ø ËcVn ko A©‚;,Ë3×ÌöFäšUYCJA u³ÌwT‘>EÓ“Â-ØÛ,ˤË+éÄ%—™oAŸ‘îƒJ»b?"0c·÷±·Q$ã0‹ 6'VÍ®%ÀRÀüYKÓp¡;\ |¸2^'Fõj¯ó0¨7ò"°ð¹íc„¸ µŸêÕ›¤A¨дHý­+íE†ì|d`*xÖ¥I%‚4º´H-|·$—¢¨AØæçÑ»ñìã,qä šÑ#?…Æh9r¼XË_R}MyòÌzmŽu6èvyNlÅà.…¾vªÝ„¹ÇγrgÞc“i}É_0Y+ÐóË‘y_íüEúJX@Ñ£ì&¨7¹ N.¢êÏ'ºÉ8_⊓ÕL\qò#¨8yªÝ™÷uj* Å[ÁÂø»jN‡ˆÛÕ/Yú1e˜ì}“£üo=]J…Lt_&õ Ú‚´ûáôClÁmZø…>*:i9øÒîëë<‡9ÿ\÷û@Úý£¤«Èºƒz> ©ôASR¡Ý¿†#ÕHš‹bˆ­D`å¤Ý€eV/‹ÀÊG¸TaÈÞ¤ì/‰Q“Þ¿d°rDf¡@h¨y?Ý£¾tßßB»ÿM¨ çé?²¿$ÌŸènªQ_( U*Z" BoÂaoå s°D&O¼Pcä´¦ V®ŠÙþQÑ×&e} j¯ùí~ÍÐúW¨ŠŠbÂò!çµYµA´à‚ ì°Ys^ú¢é0e·/¦òûOÔš¼þÜןWëù ¨2¹†ûEð»ädÕù¦Q4&-…ª 7i¸±ökƒôõ%óÀ?2„ﶶH‚„ï¶æãɶPô&ó &ìMÚú’q±É1_s¹*S5Co‚ZËs`ˆ-"ÔŽ>nrȬ¿À?NpQ©f2êÄ€¿ÀÚ×:T¨÷!‹ÃP@(è 0Þ/Òæ— dè"˜ú›%£P„±9wƒý®s €ñ^Gžš ÿ®iæ}àÜ“:¾$þM0ö‹a…ÕÉ[- ìö%ûUU2an?Î=R5Åij¯”…Ã[\MPd›MG`¶wVÇ•<3Æ~JºHæß¸žž1ª€óx«TBM¾‹j@;{ÜAáôEÚú¬äç÷{( ³žî`¥(èÊîÌAveݯÆq¥Ýÿ&\b²,Õ5‡¿Å°Òðß%Í¥ZU8ý&,œ¾ÈŸcX8ý&¨!}Òv¬U…Ó#ï!DA?`òjõ«]«È!Òë—Ä °Z·Ù\iù¯±<¹V.ñÊ®<3k­¨ß𬊵Ɣ>ý!(Êý­6UÿE°¢§Žt±¾äØíKPpû"TŰØ&e| ^€bí’ ý P9}‘ùë* 3öq»òÆž8™þY´.5¯×ÉÒ7è"2ú*EAwJ™çK\@ú#EåÞËÇö#Fd.ž•š@Q_ïAA¸0ëü†h5¸HÇ缟 aÌ®6_ߣ=ÞÈÙ€‹‚©Kß, ~ÒŽ¢â‡`ô_ÔÏÊל ÂM`Ï6ÛcL%ºÁ–å‹‚tÛEŽ Ú‘SÕ‘Aû&0h£”©š`ø_„Ã9ˆQ) t“5¿dÎ Ûº kwß‹FQ ›TÌ(wiÔ]kÚÃiTZnP‡ÝíûòCðã2!$Ž9ó ‚þE( t¼´k&áNµ\F5Nuh0i£@_Ks£.h”îjékԽɶÄ@1’Æ‹Pô&8±Õ­À®. Òõ®õ$¬¡~®ðo’Î\x ΄²'^}oP7wX·A uqZš`γ~’Q é–ß…"êlþ$>tŠWÂ& %”6õ!Ev•rp;;dƒì/ü}þ5]Ý£`u5¿dËךÖ( ô&TFàš¬•ACÃwYÞÀEȨÓ1°¦%á"ÓÅK_£;°÷“CyÈ¥û*ÝkÂr·£Æ¦^÷"pê–Û,áp‘ý%»| ߀‘?p‘ú º¾+»1,¢ìÀÑEðô¥œÛ xJÍѳdYc4ŒÜ‘|ý(¦ä3S4ÜmŠò 7éºtÅòåA!ºÇ@Læ"›_®x)3¿ñòŸü9ÕÈ*¢Ð„Qt‘0œbÊЋÊàsš7?‚Œ?`¾óヰŽ:#!¡7Aæ=?¤S 4Ì%-[‹BÛÕž|”¡”žl§@èr4•Á!#HžcßÁøþdñ¡îWTU—®N§6Ðkû :ñ}ÒóVɯâ€MÛbŠ7A–÷dDJÜÒÿèTUM¤ÈQñ¦î Okµ%ìXhëÒ7‹Ò@¡a+¯ºSˆ‚îȶ¤bˆÉb¼¹û{XE]=&¢*XUÔ-¿ÉÚ¸¾¤¦*êṪ7îU_¤ª¾Ð¿˜¡ÊòJÃ.Il9sÝíR­ùšw*„b‹5?…D ŽªÝ„ ¡oòV­ˆ¿±SÑOþâÎÁÿ´ÔÕµ9y)ô&Ò-;‡õA¹M$€±ÿ8¦D¥ì^uƒ>™qè>”žô»¡T‚bHžC? ‚å+xpq9¤—5ê““ APIËOaN—‚±ˆÀ°£“K³‚ Qc¹©e$j°s=Hü9ˆ•›ÈPºÉa™„/Š¡èŠTMºÊF3”ø9¶ÉâþPËC–ßbáovœÙêAþ{ßÙ¾UVh§DhT.È=îTúõ,ƒÀí¢\¸‡:$B£ Û“Û:+ÿÄžNÉØ_çBP< è  Mö6Bú̘4ú\²a]3@ÍÉx<ò8å_`¶w­Fô/ëÇï¥AŸ³<½JƒF+:Í݃~$R”<¦²žÜ‚AiÐçä|:èÜõ&='(6üD‚vÑÆ£ |"ƒ^@¤7hlJÅ™«A™ü}ôƒZp7Áfõã:$%J¾z 6îWàÁêµ qöuL˜dÖ \ªv.µA™hõu˜æŸC/ œ|y2ƒÊ@¿*¸ £ìü:_Í\¯¥n‚Š“Ì(ŽÝcÊV;7d_+ähje–pPô—B„ÉyN ‚É&7÷‡V‹ çþ"h÷@é jý²þ‚0Í2§ŸÁUà§ ‹úrî~Îü~ÿ9•˜å‡GuЛ`E¿î_dHí>wá‘Í‹ß+3`Pº9-É¡%Г %žûNPw"¿ÊÍ–V-…[‡têñÔ7¤ Ô¬þIÇÛíЂ ×C¶¥lïdôw•4´~Ö»|=Èþ‚ÓnBY ––}=¨÷+ÁB¥è78hÍ Ša (”Ïó¢”z¸éP¤nä_ÈÓøÅ¡‡4†c2ƒº M‹Ñ *hÛó÷ïPOú¢DAûo«pP´)†2¨ Ûë˜`¼/×£d5ë[ #ÉQ‚FúÔ}‚2ùHB-¬7éÎè/&CeW c³Ûú+—ª,…ç)ùíȲÜl¨ÍG½ûšGÙ¤PXë²æ&Aã»Z$Ú?9­LZýq‹GžâY5@†êÊé`>ª¶Í—iRHH‘ÖðÜ8)ªX“ÉyWqHäɹ# Ùyò"ŠªL\Õ=å€ÐÝ+ÉQÍ oû¤"¨FEiÿX 8Jn/‚Lûê^CAܺ8O¼h”ÎS˜UýMr \n‚^¼YéÞ(nÈ.†Û¤³ísóß1ô=žAP@šÑ‘IAÐ'ÕfƒD\»”÷yQq{œN)ØÈÊ»Iä£õ•# 6$ºõaý<‘¥mcÿ×1Óìßdý9†F¬6ˆ{mI—(ª«1”²ìO?sd²ñ Ëþ"CÉžCÆÏ›Àƒ»Èaú¾l÷IMÐH™×,6§í‹#ÜSƒ0ÖÌOÁk®•2´œ*ÐŒ¬I˜ÔO~h©ÀoPB&7C&5A•â" ¸gÛâœÔ½ ê wî-P¨6ÒèýçP5)“p7qߦߧܷIÞe˜§å¯ò’ ̳?yk¨÷Ë΂DûZòµÜJ´où\( JY¾„­Ä<èª3Ƈi˜PTÉÁ"EZ|2²(¿‰b`­Ë“*p¯|ÃIM ÄSØtR(”p–DK͹…’ ñBêÒ×Ãè‹–àEQ¸Ÿl *>†ìEº äE¯ç'‚å/¢å³¥7•ÓÌÙ»«Íš%A ‹ rz/-nYB MÃb-êÎI‚Êé‹`%sÙvÄ.z:Í‹Š@ú"G‰¡ZL%ACãGi‘Æš±•/:} -–= €`öEÖŸc°9q‘ó9†‚@7©Üð×Ò»š6çÞ„{9o2þ| ÉÛÉ‹‚ ;•B‚P ׂ›QgM5\+)Ük}ò''ýH›_‚½¹Hä¯&Ü›(^Û˜Þö!m—Iz ‚F4WKÅ¢ èM°—Ór5^C*ß™i»(z“©äHÍ£‹fÿM˜©ô&ˆdÏšoëT$Û¾üšJ×ÈLêEM ›0SI=¬  ÝtM’‹š@7A¶Æp•Id*Ñ’¡Ý{|þª%™{×A¦Òž¯c©´t1S)C;L—ïkŽ(\ "›©çi˜©T^Ç0SéG¨ tìAV/k+IõMÚ¹¯Š‚ 7™ãKöÊwÞA.7A²ÒcWoÿ×ßýé|¬#uãæåvq%¸ÉøsÌÔkßò<›éòìõ@÷k*£ЋÐ]Àv±œ£ý(WéMšrÓ–ÁPþ‰æQz/ò Uã"x˜ÍuÓ!$‰TË‹”?ÇT¥ƒÉ ˆÌÎZ©"ŒÌŒs~6ªßJߌ.ˆ¸Áƒ µ@_w˜•,Ò8 äñq>Å©‰bW=ËŒ+rË©L+?Þ\$žHÉ·Žy_Ož£©·Ã›Te ÊÆÝT½‰{;ø“4¶ëJ‚ I#›{ÙýK˜u–9AÌ-Àë#[jS ô§ÿå*“{E»go‡qs‡‰‘÷x&aÚq%ùë1dŸüvæiüÅ@o‚¡‘¦Üœn€lû7@²}j">ÃeIîÓ¦ÐΆ; ç&”½ ’íFƦPÜäšÇÜÉö›r@ñ’i§þ!ûR ²Ç—œ}ÊE"Ÿf M1Ð5ž¼ë]CZŸñ7ÆþxaÞº Ö‹¬?Ç Iéõ)FãˆZ@ëgKo®eä¡PäUx’ P¬³š»7AWu¿¯Æõï›\k²¾äp>÷ûr”lÿ&Eo‡,å}²«‰ì›­Uà9ÝÐú_¹!¶Òí_€ãÞ&iÈ‚„ûcµéÚD~Ò²`U&¿ ó“,)Ä ÷ŠshÅ®…Ï?dɰ[ùåùíñòwhÿǤÉäpˆéPãüÐþ_ ÈŠ =‰1oý•ŸB~ÒÜv}ަýݼßJÙŒâ~};Ò3^„’ 7‰¡ʲãŠxJßÇCòT%g43§*9ãM˜œñ&KµdhR]y8rÇN$Ý_)f«kó* ë&õ?¦,ÿÍ¢“78ôõ8ˆ;KÆ>„å†o‚¡‘Í%²ž‹Æ¿oqûü©Š“þß4€%›!´ Må/%éÊ‚ç¶ìE0T™x\p’_ßZˆ®|ûßÏëÊ·÷nAª,ø•Çôò%ø­+c!Ȥ]ЇÁj_²ÿs4“<"C~\WÌDÕÏ2i_ÐÿáÂVƒy>kÀl=ë£ßBÐxr«™”þ%̶—Ý 5š§›t]öL‚dãßwSôôâ\\DãW?n©[“E‚Ї+ù=”ý9èA0èo²¿d*ýw-˜>ÙóK¾¨Ka`ôRøÌ¿pkAw´ M¿}«dÚºAX2ý&¨­óKhËþU@oâne% º•5¯A`Ëv+Iuö „—áñ(×Þ]ÔƒúCÃHeËÎ!ì(M¡…"@7ç0o€öù›^œwÿ¤äΦbË^ÜEÖø’­ôwMùEA$†o{á °†“–‚ÄYëw&‡ÿ»UnF¤«Úbw“±¿–,3çE`Ê6«V‰KªÞÚ‹”™ÔÇO…1¶ì\;1E@oƒÿ&,3qµxÌcU©¢6/“±Gìï´·E›ø¬!}¸qÇ2ØèÇ=.y+¸ ¬Ì> 28søS(& ¬B Ð_ô1ÈV‘«,{]„ 7q•‰ %@m2àÆÄ Œöó{Ä’KÙ† LÙù{Þ”ÿ9O“ÁÖÏEjûÔ˜;VAPcr‘Yÿý%Ȱwj[øp? »?6* ê÷oU?IXoèdÝ Î®ÏCاµÛìbõ ÿ6Îù7@n½$ãc÷ñ¹–µBáϰc=:—2ësÞ+KÁ‹­½"uõú„°ëÖ¦@ýç^à %ßn‚8^uX?Í tA°!1œy†ý=ƪf2Û‚A>ó}ßjÓêv‹A`Ç>3ß0jÆýǤʳª?²¾¤bØÛ{9.{˜Ý_&sá psQ!ô‹Vv–b E÷"´2x•£Í[dAÇK…¼ ˆa?ΩF·€xÛYº+Ã~Ë—÷ª"8Ÿ–ºŸñ™ó•ºŸ7Á 6ÒÀ saÀPFIõð&xþÎèR»,–OT޾HUé´³K¥aú!u ,YþPX²ÝɘlÔ›Ÿ¢)Ûüçöû^Mξ õnºéµ1$ëúý¸Å®g ²ém ¾Röó'=й\¤«p´ä§(ûy?=m±J  Xô}'´\1ìÞ^ŸB`ö"» ʦ·³9:w\>KúE™ýMSuȉS ³Î¹òµ‹„8Îs ²úe:W*þöé{Ÿ?åÄY”?H½vŠ A‹x…qƒ„ýså)("?€ZÊn­RóíCÎM$þS]ܤŒ/©Zà=”–†þoDRúsqƒZDÛÐ=¿jµ/ÁàÏ2± ü/²Ê{“¢zF-eòBH}% úv2Ѩnþﵓ„ ÖvéUê?©¢–l¶d+µ?cþö8Ú¾y“úpãúÉɘvÿ¦ë#b»ÿGàÇݯâÎɘv<½ íQ^ƛՋk-kÒºHó¾é2Áº>½…ÖìE P¼ß$Æ~Ì⌗wÆÿûœEõ²ÑÖ)\¹¹Ó=hÔÿ\ÅMjƒÀüŸVœÒµmò#C»´-?55+Ê‘l2ÿ—‹!‚À }‘ªÆÓùs V°ímœNã}æ1Œe[“-Ö™´3)'çCÓ£èMšÑÈìMÀEàÊ]©OË[H ÐÕ]\„R@”  ²54Á5j€fè?¦ÿLFrNÐÔÔ(ºRï±£ùP7éñÐm]þÜ´ßȘ:Ü®ZL™t<Ћœ ùs¿18´7q<뵡½‰7i·[Ó†,Û7™Ò é=Éú’ýg?9ó0@õ!E¶…‘Æ!|[­m*9ÃÿAŸŒüÍ&Q T– ÂXÆy}hËáhùU,›þ‘¥ÖÓÞ Ëö"HMê. ‚‚Ú ô¶EËö"°†.²Î—°jºå‹¥5ap;«¦„UÓÚ7êMº@oÐÏpsbä5Ih§ÅÉØÿ]k~¡G÷ä£:ÚÊñ^cìN\FÀE°›SG¾z½IÌg7‰5á&[ÅÅyb¸uÇvB´?!¹üÎú~¢áy‚ø-Ùm(H¬ï7 Óöt7c? ’“dÿóKι •@ãË«ëT ’‡48Ú¹òtªÂÝdh§V+X‡'pƒúg¨ö3@ŒüÓ[~5ׂ›<…‚@q÷´Áþ€Ñ¾db›fù–S4b;ÉŒJ¬$ØÉy‘–±Œq,ãGþ€þ‡`ä«hÁÈ?.5FŸDŒ4'Õ‚HLASM¬NÐ Ôùó£Ø]§ø×‡„GwŒù‹`Ì_$ý›p8ÍåZAŠBÈò»Ä€RK H/_2¤[PòSR‡‡Ù)z“í½´`J:)ƒºt2>¤É”ŸÚ%Úçï4gŸæ‰°K (¬iBéŒb»¤O™µÖ¢.4kÝY¢wI€^„±Œî%¼/mO8OX W?dhÛ`æw­ú%{|ɹmß. Ћ”u½úÖ…ˆèÚ¡ª Î`â (ƒ5rØ´içÈÇ ŸyùHî Ê÷ˆ&“Îï@o‚ÄJ*:Š ˜}‘õçX³Ýâ¼Ña ÖlqÇ­NéÒ>Wz¨ìBöÏw oPh”›BŒD[gbù¸sÙÐ*öäª*ö„-;÷òƒ½IŒû›hB‡!8Š`ÏáØjÒ-nw„Iöo²•k®ExXt9~<¤Ô3Æ<¨tÖÞ¡¶Q%|ë4r´QlAÓÑè/p:ªbzÕ‘ÊQÓ™“ù1$:Ÿ±3'{i4ïNûO €þíØ4Ƈäª[šÁ¨ß9êå~¦!ùŸ‘èp]¢ðBMÒ”îøû(úT}IJ3¯iÿ¼î”@‹å”¢ÐfÏEjù’¦Ê™SCJ ŒŠ`(n: Ö—ju¾äHFÓ·XVuçí °b/°žÛiÉy’Œ/àпˆ¶íühõ/jU‰½C_.韋(+_ßX™˜ú#”þy“ñçSû\.D–^HCÒ?a^†;MD¿§ÂÓø–Êè†(6ZÀÔ«ýÔÁ% fomøÚýkÿÞÚý¿ 9¶–Â3—Ó;vzq[¿ÓþM°¦_ä“ÁîÎ?ÁÞ£|ƒ/_ß=  ¢}D´»‹gû|´'çvA8ú-â²y‡5‹NÈþlîA íŸ$ü©¸ß§µ@ë뫸?ý&GûœKŸ*ª.ÉD†Y¤ƒëÚ¯ xšn!_±_­“R 7ÁüÈ._rúMñ‚=«òŒ_€)ö/À ûŠ"•Ù_‚`öE¶®Y!ù) ÐiŠF½ kÓªø‡0Bû&œÈ¶£¤³i_ÎÙmA`ÊÒë¡);r4Õ–ô%Ò­NŠTOuDÇô*°™6¢‡z¦t@³¦,¬ÙºÑ›Ý y-¿Š•B™3µdú|´GgHû¨6#ŒÙ‹XÖÕØ: ©=0¹à<±—uMØSB iêMê€Æ#^ùMúîïÒ'enR”[ ´CPòˆþ‡`»ÒŒ‹%ÂÀúå‚ÍŸé¯5pª|ÑÏ@ íä{¹¼C½´?ÁÙѪI Л œ}ÌùAˆæñm (dÛ¶I™rf“`èï“Úbo?PlJzfzÛ”Ý ýŸ+ÅTÒçÙ9¬¥ö–ýú¤òÏMàÇ]„yI3Ÿ5@Ëêyå4ÿ£á,Æ)ñŸ‹¬ù%Iú‘Eóÿ&Ð ¸H¬7HÒZv墉†Ü­EùŸ›,ÔÍg uq)5(eš1uà" -‹" 7i< ÁØ$Jëu E@ãÄOžxêÒŸ<r\ÀÉœ¬Å¥àMèDÕ~KRΗ¸1ß@2à"£|Éì_²¤¡ÍôU- çgQôCÛ™h„-ª€F³U¹“‹* 7ìÕEæ°þ÷êCÞ¡[þUz“8ªÑÜK¾Î¢èM¨}5:`ní¿_œ»Q ¼øhšA\—9ü÷”úX˳`ü_â±zFÓ/¦èM Y–»º‘ÑR O÷²°„ŒÄñßèN–ºA 4Ó°¤¯Îo@Rÿ3~‚ï´eÿ3¼,Æày_^SÍɆju;%lÑ?æÉ±;Ù›°1_¦¹-Ê–sò¥‚øO\ä̳;Y÷ª¸»“w¿‚¡¿¦gàEñŸ›4ýœaÀ‘ÿø/€qÿT?LnQúó}?)ýyÌdÁLv4ö=ç¶­Æ>o2q‹gŽsêÝ#ÿ&ç.hê‹:@!>#×bQû³>™·ºŽF~n¯óŸf©õžè— 4žú"èÏú¬×‰ÑŸõq•wß”º 4.Rÿ¦-ºŽþ7áèÈ¡\$–÷›©üÉìÞÿŒ§¥Ux ÿ‹ ¤h oŠÆÜ¡itSü3&e0õhj’¿`qËUÜõó'¥c.B  æà˶Л°OeÍ÷Ó’µ)tŒþ‹`ôÏíÍÇ- õ&E*5ÔD­o­oÂÑlSo®`W«´…7½€Xr~§ÁàÊ}ÈæOÖ¬„˜Þ– 7Ê[–$ü˳æ¦ögtžÕNñÖ¼¬ñ¢ŸSt©ýwÐ^ÀM štþ7a«Êt›6Ý€›,½÷'É–E%GjSþóMf6*ÓÖõ–ü§/AÚŸÕ‚‚¸9ñ`èg'Í X öïvIûó"üA—²×Ï£îÛ‡NÒþÁÔŠIÑ·bÑ´=9›mÉ2Ê"òÄ=Ζ°A`Ùþlˆ-ùÏ‹”ñ%u Öƒ‹t „yÄQ è&°lÇpmoê`j×}S (.ÝÇ­îdÛ‡–íEŸ_Éõ¿äp¡öÏ9´l§ëÁû–èoéÙ}‘ó|þ¤Y»†½ÎóÐzÈ >îAD³™ÿûúËúX¨êÝäðKd«ž’ö¬.ïPÿ3~«ÖãSdϺ!U?Òÿ¼ 7¹ÛóÁDv‘ý0‚VæÊÝÄóØ`Ü÷Ñt’Œ/€E{‘5¿dŸ›hÞß¹¡s(ÿùk—vÐëQ6yti*½¼†#ý·‹Ì?ǬÛÍ:-=:“.îMèѽ ÖõÕm®0ñCºŒœüÐÔ4¯pø‘ÜëB©zxt/2þ ýt”±|¤w“ó%ãÏ1x.²tåÝ@zpæ(tZ?  ô­µ„ƒ OsÛ„¾œ]˜3m­ù/B  x¥~¤Ô/ù¿ÝÝ9ˆåÏD‚6œ©Nü!Ÿ'B  ›œÏ³¦èË~œù· ²ú}—OzoÌIåšìË£0ž}° å|I»6 ‚t=˜ÇgÕ€“©À¨^“"‹ÿ"ñVW¥(táÞAÊø†ò¬¤õ/a‹ E L¾'Ü·°Ò\%‰žÂÉz[üVš ‚Á¦¶ƒ´?@±ƒ'ÉÐÓݰ_/b¿M/r©é·ýÈÑ=ž:1•?ãË{5‘O £Pù=h¦I×`ÓëP<û—¼p*Fð`äy0ø/rnÐ¥a\_¤|×òe+¡Pú'fÜn€‘¿ºWJjÖ|I\w6æ²ÿ÷³„ãï#Ï㈺Ÿ¥Kö8åTMuÕ éaûÞQôó&³} w#¼%„1ì7Á2þ"“&ìE0ð‡·™ƒ`à_ä€ ;Ü'LØ‹`ä_äèAi&)Z^d)„ý&Éþˆw$f5ÁnÜEÆø’¹¿d—/9ŠiÎ,[¾›]¬ W@Õ†ÏE†6ìü*îÜŒû‘µ¾„!l‡FƒœyÊÿÀ¦š&Ußµ Úø€®É®tz?Ö;2µ_·ªÉþŒþ›œ‹ÔGܛЃËÉ£R÷3Þ¢šÇŒ?@¶Öè ÝÏìú%G×mRºxX±Ç½‚ÐŒžÕ+t?cêžWê~ÞdÎ/áîô›ÀƒÛ[ÁŸÁävLºëUVÿ±DÔ Öü‡ü°ƒæÖFx¡pa&òà^_…ѓͨuÝ1“­+h²dÝ‚'½8×ô¡÷&XØ/B/îMVùF°ßä|¾KKÁE`Åö¨A=Ðå`ƒÑ?`êíyÖÕ¾6íE0ô_„ºŸ_ï%Éþ’&·ªä§zÿö¯ræC¿@SP~fk_km•Ù‘rª‚8x‘‡´ö}~À8°êì+ªäìëj~FàW«[¥æ'æÂjÒ¾ ×/ñ6ÜÌ?Ǭþ%ûóUûóç7vQ·v¥w¾‚”ý|Ycu«‡CÛ•²Ÿ7Yt*jžxý!ú¦¡{uôm>Dðø^Á 4Ïq}}€ÞšZ è½ÉþsÌ©i Ù7a.†³qƒ´/àÄãŨqößÛæp{¿[¯CÖø’½oR´ç=}%˜h¢lþ‰½Ù(Qù+#êÉÓôù%ó5É_²ôF~ù)7©òâÞ¤Ì/±õ#Û«UY?¹†µ*[Ö~I«šÁEƒ¬þ%ZÍO18æõ>ãÍÕ<Óš2‘Þ¤Õ?„Wî?™Œ‘ʃóŸÜ°éù3¨øsô¡| þÞ5*þdµè?–»XAºR~ä)¶.£'úFÍŸ› !S±øpSoBµÏ›ÐK¯ ¥ 9÷*HÓæÜH2¾`¶/Á¸ÿ9¥mh/úMŽ&9pm*¥ìMì”Ó4Ó߆åñŸNAšÛdŽ/YûKNùC´<:3Ä>oà1_ š6-J’¾¿dŒ/¡Áÿ»{ë¿?àÈm•[Ý(ôo²Ÿœ§ïU©ãK8æßd(|[ò<³Éúçaœfr®÷€”½ÿ â4Êþ„!çIC+À™9ÏÙâ“Ñ^»]î$¤Á¶…ø9~xÔý¹ÉÙéò0Þ„IHC‰^Aš,=óþh"ãAýùe!%™×f`]¾äô›h8ÓKh/ æùÒ;Å.ÐÎŒzÙÒ?Ñ SnL§ÚçM`Ã^Ä£_`¯ý/0¿„‘¼7闋׫²j\øþÛE–,j…À;Åž×bÜ+­Øità.â†B„]SþhŽyGѯR>4n{“—¯Zoÿý»~É‘¯1ٻ̟ò_3(ýª<ÃÞM´öm04Øv~hhhÉzï]v¬‡¨ú\†Vþç é­ï{ûeS€,!Z¼úøïžNúÐГ¡€àÊÓ ™téy#¸ÜdŽ™Ÿ?9“ê°O5#sw™ ­~ Ù‘ÓKŸ2dJÒ‚8I«[§èçý)e4*@Ý—21ÞÄC_ó__™‚äŸLéŸê·› ÁëÏyÿëjןöÚº6ªý¼vfú–û&M!*?ä­Ñþ»’£ýGÁ›Ià´]ÄÙÚóë²ö/B¯íMjù’öçg_üÈøó]KElûÉàõœr‘AÁŸ.ƒ¢¨½¶»Æó_{§$Ì/qîÅ ýêEhû¤3dóO·ý r´)©yzÈæ_îôDšv2Gјï/Ò¯ü¦ X†%«ƒ0ûèMh̾ɹO\¼þ?Yg–åJ Ñ­ô ê˜QÒþ7ÖˆHù™·pºl“ 1x #HÇŽ#öICÈ !ÐA“ŸiüEX‚ggTD-̈có_OfÀæHC †?ÿã¨}.RÉ Zøf8ŽØÏúäÕÉfÔhÙ‡ A –š/rªî<:=°x ûì—ÔÿÁŽlÄKzL î/™#Á³oN¬Dr´Þ"Áá×µ%ÐPúpJ°é–Éþ9Ç`,n ˜³¬¸^DK&†/–Ö˜°g_Â’zì cbC§là"¬©éF2J&3ªÆDñ·Ì1aÏ>àTÝÙ%(?z ÎKZÏ„ 韒œBŒ—LØÍ_%(®å´/ªˆF¢(ÄxIí™´'>¶æç>0µ:˜™Löô­™0~Mb·7ÈIé™T¸pOeõc-Ž#õ³ rXpãh~F"0L9 ÙˆÉ$î0Tb8™¿“Šó9ìç“?ÏÞà1›?X³/aöæfo.Ao’7óH½íqÏç<¦€rö‡OEëë΂d5gXíº¿joî“…W‹HxçQýŒÄ,Æú<ÌÛnª($+–ãYË{I/™ŒžÉœaRLìègŒÁ=F&i6Lý—œ©ÿ’–Aÿãɽd¢©Ñ™ Û?’í`Q¤wÌ#üIÁÌ_ÖÿôІc l‡±¹Ù=5}É@Þê¾J°ÂptÔ!µ?&`+xA™ TKàLý°öÎÁDvÒ9<„}‰ÂÚä×€$¡á >Ü ,†è–´y´~ž¨Ûœ˜öžý™óÔ±¿bœ…à F·ñ-¥96ÕÞ1œ‚Fö@.R‘®>æÄ°•æê±_23›ý½ß®úƒí‡!Šýœ5jSáÁ=€i±FÀ:$8S±Ÿ¿dÖL¾„!lCÕǃ§a óÒ†i5ƒöÒG&'7hàN˸iÞzI(I§bå˜Û•äÓ¿äTÞyèI~ÇœŠP/Â:¤Ÿ“cÿ¼Dà´Ã¯—Ü9ö©-b-Ì6)HI4Ú6§æuaNë[Ë%]$/Ì– 'ÿ%ŠV6ä±¥¢ønøÇªHIÆN¤¢é%­¿ãôî‰ÌU±„½„½éï.È&™ßÙÊÙ3r‘†\ÜKŠ ð¡$µã¿ÕÇ´™Éöè9É8ÏšIÃ#`ôߤ! ÷÷èð)ŽÜg$¸1Ò'Æÿ>IÂ]à%ƒ¿N¶EˆH&ö3>…V‘¹ÏHZù8Q”…§8-|¬šŒ—À'‘µH&<º—”šI…XàVìlí^ýùØLtH¿D2К‰¥ÛµÏÇxœ’$¶l-Ò) Ž?'¼<“ß/ÙG‚Ýìh ô[Ë%°ü¯U °ü9™ ß.Òf&]jH;žäí~ ‘eEwôKØG‚¯¥ÏeÛð¦õ_ýw3OM_²zdÖÿ-C0Û}91Ì|ßoÛA 4ÿ»ÿ?;1W(c3ô‡äD¥·©?3ÑLzÉd`·Çc¦?ô“¼D?`fbì¢Æ ,!öW.B‹†ž”Õ¿¤ÆÐ¤½ä8t/Ñš‰H*6ø—”¿Œ ‡Î­üw|Ó±LFའËË.9Ý%í]¬\zÄnGù"î%¶amžž¸„¥—LÍD&Bú˜iÄŠ\í°†^R‘”„!«Ø ˜ÎDk%’ *a¦ßFÛ‡X$¦íK âWê¤j&gú{dL±ò‚§ú¾HZ&Šp2'û‘þYIqì'·— š\jÐù×2謲r2f&m0òNKn"Ф82I*Hͽ¤`J'U2iˆ¤‚þö´-0,) hOÀµ#`?†'áò°m)|¶Èžú‘ ÂÑU„jÙµ¼È)Ïð<—*ºJÜfQ;ob(²IùŒi1’¬ð’ÉD( ñ,…'0xþó"úÔ‡Aùç†0í‡h†?TF埗4´Ó`·Ü:¯‚µßqë^ ðÀð;„ÌžÛ¿îxìDØ©íÿD“FÄj6£#П!§ÊÞ;+HT¼Äè‰@ÙŸÔtÍ ¶ƒŽäÜ(Ã6p«Åìè~nϯ‘š{š¡Àß²AÀ×];ÛÀü±ÎÝ‚ÚÞ„eü ¤k&³|Ò3æQ($¬Á¤õGÓ: “^R,“V??7yÖÑ_ø’Ù2‘™‰Z&†r4QT9U/iA•h‘Ž/cú˜þ%¤ZÏ6–ˆX&‡k¸QùÇ'ÏÙ –#ê öØ Í§l"ªñ’‰§lúDõvãñû·YÆ_x¢ÊÞ+˜MP˜÷’úóÌÉî¤Q£AIöüï¾Ô”n8÷z?bK‹hÏÄð›c7hÿœð H­™œÀw3ƒöO 6WÀ] žˆf`íC,C±ñK*<-¾¹¡Îþ%Ÿ!«¯úm>@QØñh<=dþ~>ý3?ï=sg¶‹^‚zäãJ-0Z&sf"tf…DÃB´ˆÁò¼ª¸RÒ%vOë$Ð?dŒSžÀ7‡ò±Ur‘3ÿhßD#©éfíKêÌäÌ~j+.2ê‡h&Âö>#Ñž‰Í·\kþš»u¢$'ÌGYÎE*ŽŸ¿ª—LFÏdJ&Y+$:ãDi¨Rº¤C,†Å«‹ÔWµ`V訒¨J2`tp‘Ðú!!ð6pX±@LÒ-R%¬‰ý‚™ 뎃„%ÃǰB¯MÃŒäÊÍ€òE t ÅHÒæ/>=È}É™0È}‰|Æ(’œ“ùºWX&­fÒG&Ÿ{‰ ,ºûÁ»O%±=&/)Xî*g+ZÑ‘ ~“[@Z&úcøØ?L5Kb1‹D±˜EZɤ·LBOÖ´jë 9ÝKèЬÎßò!’ çH!h-:tg_Z„Ý%Ÿ|øE3± Õ?)x¹HÛ|ìÄEÊ@Ÿ|R-æút'½°HCrCI×L¨šqÉ ÉÅE>ÀZ$Ðþœ‚pË"¥erÒÖÉ ÉŸ@ä3FƒlÁ¬#]z¥ý%• â•ä”Üð¤õEhÃÎB2‚Õ"R2Q,oüEæ‹Úg·Ð¾°Ð+}˜ìT8_¤—ÑL¨™1ý½NÅ}ãÂ^)ÿ#þ]@ëÓ ˜f¥òÛKŠÆgXÜãÃ'Þ*}I”±_OãôÛÈÌDQüUñ"h}zdu‘Ò3©è%å×Níç—ô™É°L¨b‰FC»êí¢Ã—  @ŠdÒþ{B_ ìéßÍŸ+CDÏÍjW3ƉŒL”5’gæ¶¥ÿ£¾¤´ŸÇ²/©´é#“¡™Ìž‰|ÞÊ" âçKhóÃÿiT{IClLº&0CÈ"Ò2ÑwkjÅ ´ŽöÏli"/ihð3Œ“v´fãÕ öy û>†µy—÷V¼7Ä>o`¥Aìs®VÿKúÌd°$ßH&•é”D4+‘@ì3ÏŠ2ßé„þÛ%Ý2™ˆ Á¼kØ ¼óg-™X@Ä©±¸5lœ:ˆ/2P°RƒÚg7ÆÊÔ>½¾am™º,°Í4*~¾¤Öø³O/¹ç3Å·@ÆgÌœ™°â á¨ÕÿËZT.þ,¡Y¤”L*ò„üÆUÌï,ZEà±LhÈ#1´€!ÖÔeók `KE)J…i0sºß†Eˆç¬–à‘‰hØ 4€† ªpÊØæÊÑý´ŸO9è~ÒX—i$4f‹“12™èîå²xD€0TàIê¿t‰xÞKh/Ac-Á­´›È[v²¤2îmµerÎpðð|§îçKN…Ê{¨PÃ"Þ‹§q.9¾wÂâc„¬zñ’{lì@<evR{&-ƒþ!cfr*4“ìÕE웪ò€@ô3׌qR%“f™ôöÅ'  !b ëþtñCù¶]§ð3E3)3“Š€JõWõšÉqâxHÐ"”0#Xèï•HFºDqë99‰—PÑ_tÏY¥°È€ ÛýE˜ù0ÃûYõë ΰóú?¸Yüg:¿a‘szIñKV¥8A%Ö«NñÏ—(œéïcÉÝ.)Ÿ1P¨@Ê©CÿÓu3$³ºxJb’¨á½ˆj$UV¨/R0×à6tì?ÔŠ,ÐZ&´ÿëGhýR÷Æçà ° _üEpÍø1 e÷/a>î’Š¨1*ÊÀ½„ù\ÂÒ¤á÷¡àí%ÌK´FBé P?À}‘¢™4X8?'Ùz<R@۵—°ô’äÐâÅIØ=”à©¡§ph \5 Ž%óØð(~ÇÏÉÑaUì"š›1ÔÓð£C ht.v«1˜©ÑBR[&mfÒ±øÂ8T}‰Ä߀Ü ù ¨€ÊDQÉPÕÂz@ôíCâ±d‹ ”còÇ$øûˆ„K{®¨øv/ã_ë—§ Ã/éÀ ‚Y2ð s`hxAÐ| ¬\õÿ‹ͤ~ƴϘqf„òú¤!xÊá"‚`|uÂCƒ.a)|„ÅO?ç`‘Z29ý%ð²àŽér1ÃoLc¿T/«ßÅлæ¯á‘UüQ©åh‹œæ’—4dÂùß@ï3Scÿf!&KìçmsPíó>ÍêÙèK*Újš¿ªYXæLý@(÷Ùý>BÙ†B¢(¼DÂc¨;o$ÿ¹™ÚA¹Ï@,X ò?ŒžÉ”LôàÛb‡æp4&?©#“Óé’ÓmȵEÍÉ´LunÕïc#’r·r'QË{‘*™ o‚ïtBòSØk¶ÈÄÒVüÆçØáJ;!ùéSnBÿç‚Ê$ž×YýȆ‡ LÃOùŸ@>7’A‚Ÿp‘ˆD²7õÎ ÁOaiá"ufÂ`Ô%}d2ðÜ£òbñŸŽ÷Vyi±úeRù‡¥Â‹0q Û¥/a»ô%ôݰôþ#XWQV3¡÷ˆ~ÆPÄ’dÀuó”9¼¸žb°¦ì‚þ!G+@躭`[O'‚l3²sÀ†õ‰uÌ/þê„Åõˆ~ÌéÅõ—4ûû«:L|lD“šŸ/ÙeeEi¸ÍéÝÒ͉•Hþ›—qMR-“}Ù*¦p€¼?–è)Þ3]| õáëÌ+û‰½}?.ChýM(ÁR,.%ý ¤÷„´E†¼Ç¬-2{&Â*K/µH H‰Å?R@Þ°Hë™tÉ$úÓüܪK”]#95ÆvžòóFC¸H›?zl¼îŒÕú]Fó3äH_Mþ{BñO–OÁ²ß…ÿ°@(xÄÙÄ?é3“3ù;/O6Ú/%ÈT,b%Ê~¾¤ÌLjˤ}ÆtÍd~Þ˽7M׆>¢ó\D?_P,žUr&ÀX±‘Hó LU™ˆâ`Ÿ/¡Áï¯to½„7`1H2Z&Çmcø"Œ]cÙ•#ýYŽ~Ê&×úÇ. Ø&áéÈΤ?oõ‹@èFΗ…€DÿlÚžûœ|æ[Äb*F¦WaðÎGûózµ2½¸xú‹še2^¡ŠÎÙ úç#[:l{™9€'ÿ*ùLþ7A,BùúAÀ¸ŸAÊÿø&âç0] [@Óõ9~ø÷ü/†ÉÅi«^V _ ýƒ×Ó_µ¿S¹À„Ì–@PüÇ‹tâ?7°:«4*<3›Ö²Þ3àÔ¿dF[K üU¼/1|¡Ø™ÊŸTdýðë*Õ^Ò?c¨rÉÔLõ,èÏÏn I ÿsC5zt?W=Ö-žµ™þª)à/š€ À( 6WˆÿÍ0ùïÓI1¸—hÏÄPpzî,¿_œü Ôö!¡Mc‘ΰn!aMö%¬É¾¾Çô÷V‰®ÈïSܨ=Ëñ"uœ/ë¸+‹P!`ø˜Þ3’ÉhËÄÊA HA çù†©š ŒZs0Z&ó HÍ„ Ò—D%{ù5W½m$$£µœƒ|ôo x=¥Ì`à-¢iÒ@÷ó!=]zJî’ÊÇJÒ,ž§{ä‹“ö%”‰¹D±Ô ¯ýS6†å7ŽMë·‹l³6=ï9–íKFÏ„û@u"-š¶e’XúìÓá{ˆfÒJ&Ú,NŽ:ÒXä æ+²ˆZ$;¨aC^¤ôLªdÒ>cØ!­Ã8sÿþ PõBÛE¬DB Ð /{‘"尿HË ‰eÂãKü@V'QT~0^:~^¨À‚J¤Ò ¶Q;ÔCZ‚õ΋ìJ¤@x@úE2±ÊÏK‘Nd‘‚*G|çåç½Kx"å%]39  l¿Z„"ÆwÌçE–†o-¹¤h&­|ÈgÌç6Û¦ YÎE¶Wíg%16ŒP½ÉA y»EX‡t‰ÏüIâSßÉüŒ¡JÒ •/b¡²UJs ãd^¤@ü‰ŸÚ?³ –a‘S]ü’£‚ø’‰ì8žßr|€µ«-a/ÿ”×—Ò½¯¶ O%»¤á¹ç}¨ÿi%,íúŸc ¯¹ˆH&öó¿'K exHû’Z3¡î%~¢ƒ“õ·Lø¼'H¼ˆf`Ð7,øPÿô€õ"1¨½HE ¾U’&™Œ fûËDCdajÚŸ´«ê2…²^Ä)(~$ë%X¡Õ_Ãvg#™¨¨ÂÆXÄ¥¯.QDoÔolP"2Üg zŽÑ‚S ô’£~û’޲é„J—©˜—|€µH¨L€ß›rÐ/©#“†B¨ÑI¨ ðÉ•0Ž‹¡µ„ùûExšHýùi—4³¡“EªfrL¡A+¢Bÿs(<¤EæÌD,ýŒ9Ý%þ1„ 9"/i’IÇ\Ç:Y)úÎþKèÕ]B¯Ž¤ºÂ÷%TJª>–ÀZ½IvD­Þ%ý¸úꯒ’‰öL,Xùµ…ÃLöõL Z½&0Fì*qÀ“É(ìÊŽ/¡§KhðpñE(üyIC|«(I™0EqÉ^ñÍîG9`ç¨Tü¹Š?e]¤ŒL*Lîá„óž p ãç€'³^¢Ÿ1›‚‚»ÀKÊg –’6 z 3ºŸ/˜y„ŒØ*Í·èçu4*D?©Á0¨Gó3ËZýÆ«£u’“™ DOñÐpb%’£øIaˆ‘TôW ‚CÖjUzÿøU(Î&{€ôûÜ,$LStê~¾¤|Æ4¤ø¹ i }ư¡jú˜ S~8¡¢½ù«ÔiÐýô*þE šHOËÅ"å§Ã_Õz&ì/œNN¢‚x‹Hýôs Þ"1¬' š?dÉ;Š;a¸´â‡ìžÒàE:šÖa.¶={vž.²¼KT3±I½'”5’šA š{‹tn 5ŒdöLƒ˜¤«á7‚†ÊîÉ%µ¾Gƒ,rä쩲gÿ%.¤N$“kÐþ|HO:,R4“úÓ>c>C˜£À®ß:b‰E´fb#JRnf‘Z2i=„•Ë ÈÛV'sf"– sØ@÷‚K¦×©^R[°0Úô,Åð1O>tÿBñÃK´»¤Aüó!ÿôö«EÒîÞ•,­^„6Pk$#è(.r -)Ƹ#ü¤’Û‹¸ô¥¨=ºH­™Pó ëiƒôO %—LÉ Fõ7·ö!x"ñƒG7}ê `¢gFߢŒ°Ë5øTY 6œ,b#þóó.)ˆ_À²èÐþ¼~~?ÚŸ× î?/SÂo×~ž þþsí üRÚŸ^„²È)׸¤PÒ y‡ôO pü9Ï[t(ÿx{ï"[úÖÛ¼¡ôí}•J$é¶5·;¤?UM]¤Y&4l±ÔwJºÿÖ«7^¢-ƒ¡ƒ¨Mo~`å%¦8áqÓ—P;æF§ô'+¥™øeJâg”9¡t „€"A%\ø~¤?#éøXÓɘ™LË„ˆ—P‘d¸â%¥gR‘:ã%8ïˆY¤ÏLóØNèÑaíÃ=ºK,z8òŸ”™IµL:Lä{:×ÿ—L¢ýüUÒ3Q‰$_ú™±L’kסÿyc›Z@,oXß:"#»Á9SDßãã÷hU’22©šIë™t¬®Øú‘ @Z&úÃóÊH(ÊʬEX´Q| ëùyÝC=Æ"#ƒùr|;㥆^>PÿŒ„»BR3h-zv8Ÿ{v0—DàÍÄB sPüÓ¬! @h aJ ¸tD•øÏU4#ØÐÌ%Õ´€!ŒŽ÷†ôç Š½â™‹´ú!0ൠ(ÂÌÎ%‚Ç~ܨٳÕ 6H¨í~ҀРPŽæg•¡,` ÐUr +u`3dÎLÄ2± Ü ¾@ çöæ?h÷𲘃 ž¦Ð³¾=Ü‹ìÉ?(x½ˆ"Ç`>Æz$Ôõz@ô­}ò·`Ðû«$óUPY@4ûïQÙ ”èÈ€þ'¤'ÖuÅÛüœÐ¦½¤k&B¾«pN2ÙÏ‹ñŸ›>ó±g¨š§Vc02ð†x­Ò%¬Uºd”Wc‘s¢ƒ›Ï’p/PøÛÒH,ÍEñýK*“†Õ ZÊ`+­¸sl&$“‘DP ‰lÇ€"ÜMcŠ^bnaKòÊ€ n[¤ÃæâSf´/¾ŽìÚ—hÉÄz ó—.÷®IÅj'¬½÷<§ìú²JÂ&j¬l“âŸìÂ\„­¤ðt&U€^R>c*²xHºÎâ…g°Ú&e€^2%¡ãwŽ'ï.âV-ä?©#f­/é=“!a}žGÿ3E;¦À¬ž£&i®ŸqIA挿çU½ä3„Z A¨HM€G¶:0 €À $ ¥°íŸFÀ§ð¼iö›ªžÈOÃ7¹ž›Ê`î<ò?õ¨™‚ì#Li0.• cGƒ 5ê4~\ü'¬~?‡wíaÕ›{ùsú‘>—èïaÕ›Óµ’.¡nߊúÏ/™Ÿ1–$€¨n±€!ðÈ·7cù$SÔ׸ PSîîS `~›Ö~ÀÑѸ?@]©i‘cõWL yŽ|B( i=–ß_2,©¢™<+$  7ö1¡Hû€™I·˜vÏô1éÁì[íÀ’‰õ° %€^Âs`ÊÏÏq¸¤#. W] Èä×,$T­>Æ"(ž§¸¤`WÅ¢&m£ã$òúòEhÍ A ™Hq7î!– Ý8’êÝÓ0¥Þ:¥JÒ>«ùðÛ0áCfËD>c(èêw9öˆÿ¼ ¦kŠ_9è3ÖÂZ] #*€^BPª¾ñLìEÐ#„Ø¡@46Ãê"P d–AAxñ·b·•Ãç†ç'Ãtü‡'è.©#“†ŸÎ–@4x˜Õ""™°öXýÿaí1Éôã|.©%“Ö3éŸ1ã3f~Þ‹5gˆÂÈô“ù¢‘@T¸ƒ õ?Àj˜²rä?#8Íeh®Yd†îñE´Æèšþ$”ÿ| Õ /©Ÿ1Í25“Ä‘’ ›I/±½”#ÿ9îB Ë?ˤC ;Š@þÓEC™—ç# t“½Bé76ÌŠþÎ=`¿(å?}µQè¹ ø"M30*ÄÁ^á=¡¿?ÃùmO4›¢8‹œ®ÛÉ0¾ÂðWöˆ-RF&U3¡„dµR È7h¥þçKä3†½¤—Ò’ø‚µúÌ¿$vœ,ÒÞóØèB!ÄK¦e¢åCP ‡ ‡B4þž˜ÅJI —4,0ÅIG®ïI ? b)™hÏİÑc?ÖÃvúÖqBñKªe²Ed=“Y2‘6`íîË]B_Žd¸/÷„N±V­¶Ú’Iï™x牑 éyøyÕ‡ðt2ÞÆ ….ÐÝú@´ž_Õ‘ŽCÑ£N?Ùáíp‰¢*“ÏÀt-DèRðôW'PhB´C!:<“ª‰ ä” ÓvShNeJ@¡ê­rœ<Ï9ª"Á.ÕS«ô\7˜vBpJ=UMæ&¶RÔCʪ®rIÿ5¶¿¤ VE]ͳ‚ï«uu‚E<ží÷™pm†¿JÐÃlþ*ʺ^bqŒýü&"ÙÏiº¤1˜d$§ñÄ«†íG«!;ƒ(uÔ™OçFY±QÔí;£èKN©…i±^Ç  $“¿§¯µ¼dbMìNNTïç_Î%2ÐÍÀD@gåƒhPº‰QÈ]Ð@fÍ„§š\¢¨WÀrb}ü?su‘šAÃCÖ.Ù_OaXÊà r|º)ŽEŽO÷<~_Öt/?vPƒ¬Ê",¼Ç¢nÝ ï/=“‰´=ÌëÔQâ·GGÀk Ú@œ˜6õz©#“£ø’ÏVÞ› ;ƒATÙú»ˆH  ª)µé‡ÐìR’žAjA´é~'ÿt¿îúu‰}ëÐêóß`y3œÌKṲ́[&ÔF¼d"ˆ…\ˆQô%Ô4F¾Î 'Ô@[¤´L*¢•Xnò@/1Mj ýppªïÒmÐ[%hÐ?_I¡Iˆžš¹–ìsƒ4¨ºÝcºsA7NiÜ^²ÛÖà,ëAlã6Îÿ³n/Ò[&™IñWMËDk&6"HœWž-âúöNv#b-p+YËY$k9Kd™9'ï²äi‘µ}‰I$erpô˜5‚ìúEŽm[y9 ´pïAuûK¤g¢IK—P·I™P\ã’ŽgQÉ@)X1’PxR]ÐÒ,‡\uÐK¨z ÕA/ñɯN$“™ 2“ÿ`¿'ä4žPàEÐ…óòúM°þV#igW¬€ÚXâdÌL( 7…ÄSNT#9ê Ë°í•¤`:–FR%“†ÿp:é3“ôu-$R2á }UI¬D/@y®ä"efR-Ê „„‡\]rîõ§ú }œêU«¥“úî{)ª#:Ƙ7UÏIRJçOl^ˆÌi`^ˆ|I—LÓó»ðÐi5'–‰QÕáüœåç}¸ÅI‘L°¤ñ P?qI·LfÍDÐêz QÍİ⠼9ôA©´–I™ ˜œ:HæÈD ”$“Ä"¨ä3¦RšÎ »PŽÝ°ÏìÃÚY ‰dòy‘µH Ox8’%‹´2Þ$„¹Ì–‰P2Ço|¦?ND[`ïí]Q­«M1–*$ýT’Ö3ÙËÙà‡‹ Ôç a¨Kp¹J¡—X°'µ />;æÚ" õau( ry¿EṲ́ãY›NfýTé¿m‘èÛ-b¨EÇ.V Hý€ù&SÙÆÐ¯#”±È¨™œí%8ãÁ¿î/ac5ÆrµB/acõ%ôïÆ é(’å×#ÞX}É”L4C{ܽ±Y$ }žu™á¤¡l€«Þ– J@2y»2×µâ'‡Ù\¨4|ºC.4öÙ]Rácc)沉¼>eøæ¿8œv- 5–+5%a¹H…+È ‚ó¾@¾î $N1Õ"S3ÑàÞl"‘¤Ð <Še‘Šˆì»ZüŒ«¢Z$žÀ¾ÈÐL¤d¢ˆ°`ÆTHMæµV—É‚Xátê/RñÁa3TH…Zî3z&S2aîú– _b C©=“V2éŸ1¬ÁW'NX‚jór¥‡h$~Ýý6ºWo´FÂ|8õ(†F•Ɵߘډ—ÐêþVXÉxyê.q‰m`²0sÆl/©¡ãn‘mÕzYú"#:³bA×M®g–½D£s]ññDA,4KàœZ,þ¿A+4!™ *númäC(€ÉGWcj OG«é¨‡EâQ‹Ìø±L¬Fãß]„r˜B¡/i’É8s ûa£ñÿùŒÑš e5à…µî…÷— ø†}ƒPh$c£m uÞE&úŒ¦“-)ðcQâ"F‹ÓïÃ&,…¾ %—EŽ)˃jéšÉqæB$(ÍÀ˜ÙFŒ«Q#è%•‚¤i&£d2±ïV/É@[&lÀÅ¢ÞÄ9ìv J¡î6ì/`™˜ƒãÉ¡bd‰02œ«F•P7û›¤šExf+"UM½¸vTBWNÓ‡l… ô–À@Uj' è%ŒÎ¦®•hN¬Gb~‚Ù%ì(½¤ÎL8óÛ qómæêX÷U´k቗ø‡ôÏì{Heoq‚" XUA®¡½;J/9z/ÑÀG÷w2 €:¡¨#gf8é¨SÊ)Á2è }ÖLlDR=c} ó—TÉä3d´±LäóVúùwLÓڛv+¤C-.¼9vÉÞü´âKN/õäÆÐ›§(0ýzó|µuÕH`øÁ¶í¥,¸[¤ÆÝ®C$( …v'#FÏ{wa™K4ˆm,b@'4žûsIý¼ª—ÑL&L¿J °A@ª‘ HÖÌÉ Šd·R×ɵ®C&ô> T }À@‰Ö’• o†]D°*4¿/ÿ!¡ùO½¤EJ([¤Â(ÅrZˆüvÈy×û"¹¡á·¡Œ€6+‘P%ô%ÚQ­’´ N.“íý›ì‡Z‹ìx^ Jvazw·téÑìK žù.$­f Æ% b\2{&"gú!Ñ!Jñ+ Õ÷¼¬0’62an†ßj΀E—å’6/¼\yÈn( „3Áe>ó/‰êª´ø_B KØR¯âŸÃ‹UèÝ’…P «ûg¸MºBÆX†¼ï9[æÉ›êµ÷9g)üù’”…>…4[éá)Sv‰¢¢þ%edRiR ëAGÄ„ëÑþ €%±L¬F“ß)Y¤ ¼ ék…ðç :§ùtc×(åPó‚úK$kÔ\×þ¼µaÍ ´ó-‚žO¼³AúsÆ’ŒÒŸ¿5H¾2™p"šÉéü>Wæ«/ÜFÝÏ—ÔšI™óÕ÷k£îçKöœïÊoÜÎ˰¦„?Ùæ«ë/²·Ñù6@µB!¤Õ$⺈`‰Ç³mþ¶©.ÂswIÌWoÕ°æê‡—´ž_Õg&>4²qFáOŠE."£`'3h=$k-£‡Y=ƒЭ6²+„læêýµL¸@ɺ'"`,XGMñK,VV•?_R?`û¶ÕŸ(úÑÓ‹ŒšÉ)ÃxÉYË*—}{ôàl†­Þ H­™°›ä’^2¡l¬?;òŸ‘hÖ>$†[ úŸ·ÀÄû ±Ál~ñØ™A²1ëzÆŽòš¿‘ÖLŒÕm¸ Õ?_RˇH&=ƒÑ2IYS/A:B;˜{ÿ%ÙÛ—0qIc%Ž‘° ž?$€ÔK3Œ@îÖ›ù‘0zÌÒì·ß/]“ÖÏ'_„ç9\ÒBZÞ~×üHø‘’I¬¨_Äf$Ôÿ|IùŒa%† Vb\2ÐØr–×E¦d"¡˜w–Ÿ ·Èžý£aY´ßÑÿ¼NÕ"udÒBIÂ"ËâôûœV’Ûw‘‰ØØ1÷‰õ”ö£ô%Ð „ÅÇcZ¤¢¨ú˜þ3zt—51èÈäxtÜúì×½[t*IÁ¿sÇTÂð½ºÛµ—ððén$ì½DàÍv//1Æ}Fº„SˆeÒ IdäœÚújý É|ˆE0=:{ +ë/¡W7„„ÍÒbNB¬nÊ]ú‹¨s‰~ƘF1P…-rÊ2^rŒ:^õx9à^Ê$™-¶‰^¢a?±t@‰§9,Ëqv‚Ö2¡%tɰL¤|d‚¸˜PôÊ€¾¤P¦¢’T‹Kö„_¤k&<|úé™°—ê&&@ÊÑ]ÞäÙ¶)– »JŠ¿ª£°Ïs$\ 3äíÉ$&å¬@(’Ïîî—°QÚ:I»+˜ùu/~Sñ«¯So媀N'E3ái­—° é’qÖµc1/0CÈcÁ^Ï_¡ºdÆðWQ2ƒ¤y]Ys‚¶«­}ˆe2>¯¢hÌ%*€ñãŠ/0ωÛX9b ÊˆÁþ‰+.Òf&]_»g‘Y>ä3昘À*Z êe‹œŽ*õiL  —P×þÆ²Û 9~À;æ,üöR¡èKlF2ýx7N¨ÂÎ’Kúg û¤+«ëÕßJ¸ÿ4 ~—è±* ~qÇÛxè,è\„š1—¸LÛ>o!ÈD¬þådí/9b ‘”–ÉIN¼¤!˜üs2j&¶š¢I7c환D @èÙuv6 ¾9T€¡–LI ýT Ä,Õ÷‹ÿTñ-RG&<Òä’Þ3°¸ŽVÊ"°—3?@~CçæIåfðîï—õû”?„kºÀhb™HÍ„—°Bƒäè®3vÆ I8{IË S¡¦‘P«V’©™ÈgŒ¦1,:ÀA —Ô™ ó:x*D€°WU(ÞKAí%ŒÞ ÐYQ¥°ˆÍH:b|¬K[$×/‹ëéq·¨Ð~Sè-Âài™(i§¿»!r!Ð~óÞÆMB7×"­drJ“M^`HØÅoK±˜™[„Rˆp\+€—”žI•LÒ§JÐg<ÎÁspÀãX €º?îjVª¾¤eпÄ29qí—BÉâo® *//Q˜ñ”öµBÐ>„‡“ñ«¼  —Ìž‰ –ÐIè>· Ð@xɯ‘Ä£*i#o)©$H2í¨õŠ®E4«a«nýñº¾EN`›6@û¡y¶M$ܸýØ&ZýE‘«û"™™Ð™ƒSذü? VйHÍ ±kPHúÌdX&¸œ…¯ì òŸÚ¾iÿô³)’ Õ—4<„æ÷é°ôiÕ×°Kâùd‹hÉÄZ$ ‰Š—Ë„g:\ a!Ym¿0´`Ç7ÈÞXVƒüg \Æü66€þ§·o.RK&ÌÏ]B}€KÆgÌDБŽÖýäi›$µz~åü3ˆõ£úé-¡ tôYàAîÃ{L.™¡_{ÁÚsê>á ­$3]Bîç%øá¯yЮú5}ÉÐLÊF€­OM]blÙêÿ ô>½’u‘Š41¤.I$c‘(’±H²~:õ~î´†ÞÏlþ cùˆÞ{#ñ{'^cïÄkìð,“K¶=»|$ì.>†Ò$†¹ïQÞ…·@jLÜuH~Òg&ß3ÂA"o£#ë» ,?D”;D.ý ¤ê·„­l hþâzöFâzöNNô©ÿT0TâÁæÏýg r9¼jñ²p9â_O_´_bÆóÒž«ÊŠ$¿Œ­5\¶.; Š`? *z6æ&=yòÍ"˜¨˜`ƒÆý%ͧ÷%%( ,RG&í3æ3d†nÅEP…ÄKE”ß ¢Ï%Ðó ¤–L ¸äâD01G÷ÂâcÎQ ÆKÛÞŠø¥>—¥~yê.üòÔÌûå)˜w#x@ÀÇëñ™š‰¢yEü>Ö#¡xçKhš“:3iP?«1(áã»ð „ÏKD2QT°r–No}&7O/©ÐÞ€i4°šß½pˆGèüE Ð9˜’@¨¼·Aå¶@à(¾î ¤âsc½]ÖA LŒ#Ýæ"l µTœLË$Šw.Â~ó~‘KJÏ„ÍÏ—„ÎÁFÍ„ÝÏþ†¥hOÀâvµšw3páÚK𱱿¯ŸšÉ™0(m~Ÿ/À€×x.½õÖ99ãÑcó*ø gúÒþÚ§Ýoó&ÍùÉ•oR‡]‹pæ_™ gþ%³dâ¾™E%9V¤K~$–I‹>뤀çK†dòBIz¸Ð >xóˆ’xóˆ“ØºHGT`ú}Ø’eÒ2aój+&¶‡h:sx‘¢™ óŒŸ>橬 ‡y3aÎß,ÂÔœi˜š3 Ó¼„žÏD|Œ} ‹ {Šsš[\ÂsÙÔosZf‹¯JæO^"š‰Å<œ@Ä'=ûÛ¤‡.Ø \OË„:>|`ž/`…]õûò<†K4‹N²PųРªx¾¤•ÑL¨bˆ¤Š@ÍçºUˇˆpЧ7*˜@ÍVœ@Êç^RwÖ¶T?iì’–h¶õú‚9Ã*•zG\$¤Þ£5ÎÂv—L¤|ÆÔ–Iƒ‹Œˆãêç]ïUÜ;Ö# ÁL<‡BýΆ_¡9ÛýU, Æ*/Ðït¹Ej­†UA ßÈøŒa+Ððûˆd:¿6˜‘ Yð¸’E(`…¤š °ºä4PÛÛ:>¸&·ßY3àQc$®›[AÏ@*–ydÚž£Ñ#ãc4ý*>.`¶$ÎÌ_rŠÆìùg U«p*äÈwFrzÿ›/GÊ'’þˆÚ­kY`5ñ¬Œ:ËDG&,7%¡€çKxÒØ%ŒJ •)Trf «‰º =ꯅ"ž”‹]DK&gö_béòlëÏÏ@^…ˆ\Û_|ÌÐL¤d²­ Ì¨ù\¢¿$F¼È‰N³Al¶ÏÂRR¨ù’5¥šÏK&¦Wñ;3í|Ç(þD>žˆg R_Òƒ=¯Åç¹d ‡_¡ãÉ »RÆó†ÂUü4JO¯lTªx¾¤"GQŠçM²)×þIkT¡â9‹ÇPñì•‹¶BÅó:‰JÏKÚR@÷Z°Ð’–A¯™ ˆOà‰Ñæ­#—Hÿï9PÊN“s i5<_rªë|1Ñî…ó—t„²~N*«°a+=€—P‰ø‹€ž/)1µ¤Ã[ÿáêð~h8ºJE·wEpÕ°¹ê€;×ý“ïüG ]¾dº á%Eã›CÃ3cÓv.\:ÈðI1½“ʰ`×߉M¡$‡Î|š@Ã3:PC÷’­-…ˆg ûçì,,Q¨º½`ÛA'Ô¿ $<Âͦ”ôqO©éó’†p9ö~…¨O ³d"T&õ÷bªí‹¼ê‡_R‚æÌ" éÎ;¦ÇRR…²›kö/rê¼ÒEÍ]ºêDcsŽA×ǵI7A"öæIc'ÒzØ® RžÌc‹`^Øï³×œ b÷þ;Û¥ó³QÍ(è ¥JŒõXùcó¡:@þ]ýE¸Iñ×PÂ˱A×gð|f3Hºb°}±t}np׎®Ï 8Á Q¥êC˜ŸÁvaÐõ¹uƒžçäô<½ûv–Ï“ÐxÉgHm™ðL†K:Rý`– òˆ|}¦>Îo6ƒ”ç]E­{©Q%¨#¦ ”ÿ¨“=í[åÂk°ÿ»Û7Æ}ÀëÍ ÀC輄‡ç^Òz&)®gà ‘!3(ú"hàÂêlbh$ÓK.©04Ë0 yzðÏ&“7˜™L¬ˆ°ø >@ Ö#Ÿù—”Ï&(01êy¾d°]×HæÈ$ž¦¾ˆâ£s¡—7D4Èô¢%JPQ[P|H…Å%½&@Ml¦®Jßœh<8ý!‰Á¡{Éqè¨-³ç?\'P rúŸþeBÍÓ,4ÒA22˜¬5ówâ¬o>F-¼w¶O$o5û&; ÷ƒ;±Ik™PÕê W%¡ ¾ÍuÆ-71ñûù-K.=Z 69uF/ !/·{/½f¾pÂ_"°–Õ_uBÙ’or ãÄ+÷áá‘›ØsÚIZýV/ù}X7Œ‡´@Ë3yó›`Yi~c›‘@Ë3S˜RMÚÛj½I—LÆg ÌKv ôoúhè½äˆyFrjl^R{&M2y“{ðP†_ubö& w89iœK®¶:a«9€C’f™ŒšÉÄ['Á‰ÛÄÒ48\ì’IyC©õ!Ù¤±ÀUIŽ÷’ñ*Ïlâõÿ_qÀCø@Õ-òóºr¼®Ü¡jXtªn,ÇÙUouPÍÓGØIúGÔgÿh$µ|å¯*I;X6q“/Ðö¡šâ&,™¼„çQU/ÓH ç{F.9Ѓ[W¸ÏôÝ·@Û3Ê{ri½òž—œl4^û¯Rê nä&¥g’æýåù_îÉU–êˆy©=L¶ eOlBõÈzbI¯Ðô9Åi Af“ ³É™Llðþ6‚ëàÈ`4n¢;ÇOqé…*ë…¤ÕLhøÀ¯ô äN%^ Ió¦gþ\õ¤rä&U3¡üQs Ìt-ˆÝ™:,ù>ÐržÊE°RÉÇm”z=õÇ…¼vX°/3“sIÿsÀ£%±l× ¶û”9‚ž[¤œ€¾[uBßí’†&=luÀwS «‘Y¤uxIÒ%Ô²jN,‚‰šŒJÛ±Nï{.J¾çKzý}©ún—ð”ÜK”K{#9••ƒî\åò¯t̪¸óÆ_X’-»ºwûÙÂÔo3P÷Åߊ>° ´;Q˜÷QLþ—”× ìhRÝ Á«‚-XÕ›@/pØ«‘HýÏ+‘˜w^Â.ÐKö'/\€ çóös2ñÐÛ ‘‘‰j&ÖiÐõ eU˜ j>P™~sÃâÏò§MxTî%‚$¿?&–æeOVèb™T4Þc…iÅu ±Á7({2ˇș£Ñ´£ì)î˜4({>z>lyâRÏñ‚›ìòÔ@îÌQ©kxÁdÅm#©8PK€©iÈz¾ "p #ºÁð‚€Rƒ„ÛX4=yhû&Çì‰X&V"‚[ 'ˆ'|À´|i3,­£Æþ%lü‡qÔ åÃÄ7Ñ’‰õH`÷³€pøIXçö‚@še2>¯š=ÎhùPøxòŒ€¦,ÀQò©õç$=­Ñ\oô ¤—ø°NÔ$u®m¢,ã%šÕy“‡ÿ$=aMÒ% °$=ø ™–‰²ðKIlDQÏéÁɦ^cϵM½Æþ’ÏñŠ,mÎÖÛDðïÀyiŠÓU_böÒÕ¾›‹+á5*ù¼¤£ô¥9aó³°( ö_£¦§Ñ²nPvcö¨ÿú/]¤-4+;„|˜ÿÜ„B>æ¤L†dÂN–BÀ|Lãþó|ÉY÷ý@ˆM¶Mknk®–^Í„'Œ]2а ›°/2Ã#Ó‹k^¢Ÿ1=å^½Èì’Ú39‘Bÿè•Ç3<„^œLK@kÔ<_PzO<oÈørv‚Ê€A‡˜g GÌç%ìúW¿»Ÿ ?Ý•w†)Ð!æsEb>2ëó dŒL&B™Õï#=•HFºt€S–bž/i5“þª8lÂ>P<ªb>|ˆZün&têÝ…êPóœ…ñ•5ÏÏïÓ«aÎô£æ¹þÁß ™HËDY'4I »-ân]Ð+>Ïé(C7]xFCuБ¥ø9A‚±l§Ï7ÀŽmàn ‚ž•a¸óŸ'_ÿ#0ÿÕ}˜IŸ@X —ª›Ÿ±Úý>œÊ ãeá’g“ 'ã­ìÝä”Ù¿D383ÿèù²MÚ@êgLÓLà‡!|;†‹£¤a ³ª>Dk&<-šdú¼¿¤–yå7é ´ÖÀ 3*ÀlÂP¶ù}‹ß71–ÞáUó ¤¾²b›°¼;çÀVÈ@Œß ô|QÄ+‹¿—õH¨ææa¹MŸ@èÒqáRwé.LŽ7’Ù3˜°PÔ<±‰ùA{ð]ôÜØšpâ{Õ_ÅXí%£g2%ý€™ ë’È™?(Õ®â~€¹{1®€é3)èù z^òªŸ“ÄàN 0±Rz&|`‚Î#èÉ.œ Xlÿ;Fžâ AÏ›››ô ÄF‡ý>«5`wM zºU0p³ë³ú©Ã—P§¾øYn™;k´–IŸ™Œ·­n†3.áRv‰•H ìHAO•P˜¸ùº3mBßg+°uúaëô% £…/Ü-üÒ í±ª®†i©0‚^r|º—ðÀKfÏD>cN¥™øsImŸ—”‘Ieõ—‘0OqIe¶6¨’øiòv7nB¥z¸pòËNüpðÞKÚÀ¬A S~ l_0Q„‰•W޲O=çÁ€¨†@°ÌáoUÐAú’šAk™ô™I*ÒH{ЧÚÚž<ó/é=xåH2+¤€¨aº‰à—B¢@©ìy‰ÝÚ.ÑLjɤõLúÌd|Þ‹±½A@sµ­ ) koÛÏܵið¢.£(ÜKœwé Êž·âÙ ìyë/í—ƒÚöó ö%Ö#ýHûŽò ƒ¾g$Ÿ1T‚­dú DP›6ý½,‚êê¶ùŒa¿á%Çò^"ƒ$ÐéØÑSo1ˆî“NèÎÁˆ\À±< þy=ƒ \ 5}ð†¢ûMKk#ƒpë&229'õLÿ­šwNc^PÓuCäŠ3‰r@¾¡X÷0-¶!ëG§¾¸‹ºšŠ4c3³ßÇ$’ñ‡e›¢ T*uFìl áä%\Îø+p+ð‰A 4Xnº}n6ÌpOÍ(j ¼Ûô<,a›ž§¸dÄ%Æ —I -“Órr µ@_Rˇh&ý3†E÷ð‡’@‚5J½D?c ñ þŠs—Íy;z ‘4FÑj40ÆÒ¥«h4'XÐë$hrÒs8th t¦«°ð̽×b /(hƒ9qE*’ÝI™tÍ„é!'¨o¢XB —ÍäHÂþ#pÚc’—‚iß¹º”£‰HªWcµ+-ÔôAi=“ m¼É)¿É î±áa±°BHYur¤€ê9¤ C¥¿4÷èÚ$iãë”9Ἀf¢°Ÿ²k5ÎrS༠æë™@ÞÓ ]jÛóGè®m‰~ÆØŒdx×É%µfÒF&Vx˜Ëp{ö’‰PÚ¬$zL­9 ‘žáCÌ"¨±%q‘X¥±HÓL>C†¼©¸Eä‘ÞÛ@Cìj‘3÷«?C‚`‹©ˆ`bÉ/‚Å$ò×3X‚°®•cý? f?Dšœ‚ /±4F)pî/i3“ÇêdŒøï¨÷’^rÛÝ?¹¦Æ“RP!Wx‰c{^R‘Ôå—nnÕþ|Ì>t¯¢buM@Òõ6i_@G¿výyÙ½ƒ2¨!žTû"ýÕÆÛ„åy—Ì™‰´LNÈÓ×¹ !Ї(0 »HE¯ ¾¼Šm ¿àÕŒD!̨Zü\!à± È™ßVEçôKJϤbãÅó]¡HŸ™ »@…Ðýwª¯cŒxïG®ðرKN‰†ú7-Ð@ ŽádoêcøçÄÂOÓ! Ê·t$`~ªIP1F{:v6x-ÐÒuìA\dÄ8N§:ÐKä3FӸȡ÷ •ûÊØ@‡ ¨) ‚^ýØíKúÈ„*÷•€"÷ÞÓÝ6`–‚o 9Pe?é"©KÔEÄòÒ©ôžî€E©S ô%áȲMN–Âè wÊ^B9Ð@4žÃЇ·w—G¼„ý·—LØùpÆ;¶‚@\V¿Þ@šÂ|ÆBÔ»N©¡Éy&¬{#é3“prÓ& „UÐ@¬D2ݱƒ­Ý© JU»E˜§àÿL• vl°ô¬ðè&U•H5ų œˆÇD)Ð"T½„•÷Ø;TA]h‘Ù3äñà©ô# úuÇî’22apÿ‚†?Ò «VýÍõ3F‡0h$øäê/2üÞüœÔ}IÁZ×¥%î‹_K¡Qi éÎÈ£XAŽÀýK B ¨‰?Rã¨Ý<äøÁ } «î»¿hÔLØJŠ/x@”gΜsÉP …°Í(>ï/a@ã Ü_Ò>cNω;lú@£qIP… „ÝÞ…À`iÂ: „UJ—4t~™Ôò|T¯ÔÕÄòkN$Æ9‚x0êÑi˜‘4o@DÜm@$(Ö3¡O‡)9¨êÖæh~ð.â2A1KºprI)™ÔžIƒ4dï$ð×°®¸‘X&Z3±tŸá‰ŠK`¦Í $“ÝÙA• —L¼‡uÐ@îl™$&‘uÐ('pI›™ôšÉ™Pô => Ê'_Îò—y@ Hî ĵ±°ÒŽ# É©¼g¯á&’Éh˄¸$Zÿ«5P%Ñ_ÒK,½çOYP´d/“~Dꤗ~j. æ·Â ¤I&½e2f&Ó2ÑÏ{Y|¯ùs]K˜§@ðxþ`Õv>†² °D©:ÐN€­š»…Ø( ™Gô%T†óopWJ¼¤~Ƹê¥ß‡å÷—°“úË|—¹¿Ä,’ »ö%udÒJ&”¹Ç’=!È^oÜ@˜ÐŠÄ"Lh ôç`þÍ«dNP–ö»`f2à= æ¶šƒQ˜ ³a6ÏÒ]Â, d‚áÉeX{çQ å ÈôáÉeÕo3k&Çây‹cè’5 †¡'T‚®õ9U5.hé^zf~›¬ìtÂéÿ`RÏA¡D\C%ôš*¡TˤLºfâçoû{¹:–WÇrbiŒ`[ UBáûL¨„Ò{&C2a¾B;‰DûnB&ô!p¡È1læ ™Ð@ÚgLGe'BAß½Ûõ@äI™—Ôð¿ÉÏë”.9ñŒÊ‚I¹Ñ—Ìž‰H&h¦FÖH  ¬Ú£Â°Kˆ±öù]„1NNm:9n€oˉ _Û{ÚDÏÏH d“qJh E3©=“&™àûCàFŽJèS\ Õ‹•.Ñš ‹•H z«å(Ðð˜Á‘³À^êKf\a–WˆÒó÷6Tiñ;¦`Ü%ýÞ{,^ zzé0iy Â6®,“cÒ¾ÈXI:¡/09þ¬\×̤|ÆT„/°lÊQ Úú"B2˜;ó1³g"(j‡ß†ÕJ$Ó«•.©%žÂ~ «ïk%9.ÝK(yÏ:Aœ%‡{.õ¹¤<_¢Tƒ—g¾{šYŽ"ÜlŒ©-€r´û"ª#Nå/1dîù é=¬ÌI e‹æP¶¨—Û_BI¬î÷™iƒ.е9º@j# ꮘ—æ=Ä2é5(5¿1;o±ÉVJ%r0ëõ—.ýx‡KXuh£þ¼>éoUýUŒÏ^‚éŽíK) êEaJiPÛ²û*k&edR5“Ž`–&¥4èKfôä.ÑÏC1ÒÝ I ïÚF¬…2è ú‡œ%_ҠרR Ľ„UJ$Í«”.a•Ò%Ï" žµ¹æ}õ1}f%Òafîfæ.±4²@°ìn¤RÔš }УUZþ/™%陨D#@ Q¸HP›ÎŸfä žBèVã(õA_ò3µH¦çå.)ÑPPꃾ¤áwà:Ñzø¾¹¿ˆ‡õ!¤£T…cNM¹Üߺ@æC]ÔÀSÅçC¼@ûÌ"–ɬ™=,Š_/Âó`å.]K *Uöb÷PEnâ%«ê½Íˆ6J}8*zmurÉÉÎiƒû’2399ê—°ðX:V—A0K‚–Bìz´á°XŽg?/·¹¤h&­|ˆ†MÜ~l!EÒÕ~°b_r 4<o?Ÿöxf%DAÕøÅXqÿíúo—œRK·ð ÒpÌÏúo—ª³2*½¤|ÆT(!ØiO¦tA¡÷ÍD¡Ö ñy8˜Ö0÷¦¸ÁèAûË„lìwQ @Ñ:õ7·€bî Q œƒÀîi¾O÷>«KFÏdJ&è‹…gYtçT°“ ew@PР ˆë'9ù aVâÉ@ÑNsѨ ê@›ʾ¤–‘óPÁû±IYÄ F‹“ÿÅ,þÿÉz{lÙqXKÓ£¸#8Kü9‚ò«ÌZíµÛów;ì  'Wê» Å ‰"ØHd! Çž‘ž„4Î Ó?‘Ú^ÒæK¨‹Ø‚PèÜëÁ"ï°¸Q%·%ºöÁb埇‡IUÐH¯ÞGôJ≠a –Á†õŸˆ™´³1޾¡ ºwü½ûÔO”ñ€Šd´¤—— ”a…Ü;òò¢Ü\ ¨(gÏu¾do¿ŽýLkºXP±Aè&“Ʊ=!ÌŒþ¶p:dî—,ø4%¾k­L Ú›”þêÈLD×Vœ1êÙ/‘ŸsÖÏu¶d%¸æKê~I¯/‰>Aæz 3}z¶ªs-¹‡X¿v[3(°¾|­µÒìNyäN m ¤£ÄÃ^J¼vH®ëü¯¡N½à¹@(ŒkÔOiPJXs2+ »œ\D^2_ í%T˜dê¨øs(=à0[ÿD¤õF¯µ (Vé$cæÛNu8N[JÙ®;>EYP<ðù”œXH ‚µ´ö’S_âÂá…RH˜w?võ’ÍZ†RÁâ`å°Ø.àd!‘nvHû9‡y÷¸y÷‡H ‰f¼ø¥M¤ÜŰ Z}Ó“8Q­Ð‘qud‘´›¦ÄÆÿE 4¨(ldûß7‰÷/£†¦¶qª‹ÄÆlÎZuü иV¬„Ök×Ñ7£T¼î/ññÏ"A%Ü„Žã$¨{W0ëKä眵^’­ZÕuùä%õ­½ÄC\ ƒ0ð•ÌñIƦiÊ”L ”í @;è:t½“øà¿ «¨/»vNصìv¤«±ðÍ|G¡ J‡^AÅ|· …d¾¸Ì(/™í%yWNÉ®%Ö™BY V|ªôò‡_Þ IÍ–E9Ú ‡üæÝBÖø‡a{5Ž1w•Ž:,ÆQT.Æõ¾wü¬iú6JèÔÅ)¾ ¹2BñëiˆÔÆ£•Á(êîñ)fi,|j†ŽÒ×H¨xÿU’Š*¦íyÐ1‘$¬„ýû8pç³3§Dàc~ñ)³†1ÛvvÄÌ5µÿÛ÷¦UnxAgœR÷Kzy Óy{Ž<è"@R_9`¾„‚Xº ÔAñ&fˆUâ/À™@\NwLâXüóÁ¸8è7btU {ÿãC{dU¸H°RÂ}Š„û‡üœÂ”ûC¸‘sˆÔ—¬‘B7ÓŒµ‡¶oÂÆ!°/±îÔï m+qÓ–2”JÜ´½É*?d¥¶–ç¦-w•ÔCWÒöKúxÉX/‘òŠ(ùÖ”’R‚j¥BèMÊÏ9u¿„BLJ°àêùsŽ ®¬ ’5_Â%Þ(„;°¶GVCIcš?"ÛLU ò ¡™P›Ëƒ&PóJßF ÿC¸Y`Œ4õ7úah¶ñ÷ܧ;„ê +~8µ¢oR‘'Àñu D¶Ï kT Û¸¹:è¤Ì³‚…-Ì—Éê µËA£:h"ȼ‡9Úଘ½ôøè ªu‚\m¥Äƒ±¯kP!¶¶`ÒF|¯-¤æÑci¬%A}Þa ƒž/§0èM(’~%H°$R~Ωó% )þ«ø6]"xâ|«  µ¢J(*3âSlc Ò?¶1¾¬NP1ßaôïÉÕPÂÆ¼‡Lä `(u,‰°ŒÚ7”°Œš¤ -55%•°ŒQN ›°Œú!/Á‹¯C#(d]㻩z‚L/H®%UÒ2þ]¨K uRaÚñ! ù#¾j£¶6V§FPØj½¡”ô&.‘Ç£~j~ôÐ}¹8œ(^ÄëÔ©ž{‡2hˆOÖg§¨÷£ó¤Î—°†áóÞÑkqÎXwÕˆo`Üã&a¾OÁ¸² ÇíM„­®‰ ìõ’ùsŽ´—¬™ÖÝ=¸‹Ì¨¢kA Ê)±wÈ‚FBŠ’Þ_2ä%+L >QBMyQ% ¥ìü{ šHé/©XEK†bkú@¡*¡dì—HÞ2ìu‡‡0]ƒOgEºÆ!EÒlØ¡ ÊÜó%L:>d"‡‚suA¿a‹yJ^ÂÂ+~-UAoâº@á¡v× õ: Ò’FöK*’ÀðÆÍ¡:ú!³üyÉχ›` ¦~÷€(PìÑŽê›ì™Èü¢ŽÞñüBNÛ¡r‹ :â[œ2 · (r@°¯Pâ3H½çáFüá„"P"6æýw€àå.qJÇY¢Å^ÊY¢ÅÃ!«þ• ÔA)ý%U^ÒöKú­§R'Lÿ!Ü¡5zQÃ5ò”ÙÐJÁÚ5±ìs¿Z4p=„]°×?[¸r{Nx£Ò~Ÿ”eSd%Ò_²ò–ÙìÏ!¢‰ì—4¼ƒüj8g~öºÿ: åºâ8gÌJ$M¤ä·}ލ:9¤õ—tyÉô·…÷sDžR²`Ü/÷.–¹Ls> \•yI{Aÿ%Ù–ŸËúMd¼äIÒ›ò&éM(Ä%Ró´ÐDúH«ß„.Ðql¦Dׄr—‡ì ö(:’a•PJ3ä¤.Ó'•4øYˆªLêƒÞd–—„†R6ï8„=ÌpsvÈ((4¦ I+/éý%ãÛˆ¹Ï «ö&¹ÏC•ïéó`$;ñqИÅڠ…û,ò¡sGå¡÷xˆÃ™ÿUò¿îr–\|ƒ„j˜:Z@Q¨¤M('M¯4¡~ž’Y_"pF\‡9Ç˜Š¤„Â=I å˜Cê X6´Zý’ñsÎì/ñ„ûʘ…¸hȲÀZŽ7IZdAj}‰oÊÅV™P4ü$iʃŸ$Ô¥èQ•Ê16f>šØ!“\ RÇK˜s£P\ H>:Â% D$­! “Õ#ÔEõA•õ&;ëM."/é/í%s¾Dððx‹Gto=dò„'0ù©í% )|)]˜¿!E¤ ûý ì‚&²ó®I(XðiI±m,‚^dĺëýQ_ÂüMÊè‡øÎŽ_)‘rOrÔ@a fûL‰€j 7ñÁ“)/A8«šP ô&!u5гæ õ€nâ\DN…j 5þ‰pS&ˆ@®½@.&òõ…"b€ÒÀR,§Ë„@õmnFKoÝúB8æx÷%ÐÐnQ²“_Õ4d -¬#‚; J@'¨»ŠÛ±‰Ä~\\g®—ÐŽ•øSޱ­²êsˆ`vØ=ëÈ!siaH¤ÿœC;vÄ•±¾Ô8eµ²3i‘pHÉûe_/aRÒErÂ±šÆ¾ À-Y±D¯±lÞÐåÓ$ýÈ|aù4Fèê,Ÿ> ÿ‘³Wz·*¡Ê7|¢ ‹@ 4‘Ò_R_ÐP`TØè';<`Ã2LckDòC¨wyA t×cžÜŒ L1;„¡ ¤»,(Í3¸fdÃÈX”½Ébm~|›…‹H$&ÂĤCLKì;/ý‘б(tÜb–]·‡0Û‰b [+J§É}x•ä>¼J:‚Ç9/=É`‹"pQé²V4+;dã­‡µvŒ}x¯kGÍí!ÍM½/>Ôä%ãóçC§‰ó ä@ÙùœM=ÐX‚6ô@¿ë”Ö^ÂbûhÂÂtûŸ’õ’y‹ø†ö”`êíãâ]‹oB“6À,/xÏx7Ì:˜QR ‰”ý¶cGÄ%çÍ=Ná¡è/U÷ê-B¤Ä÷娖] »–®e‡Pàkév%Ðc•m*&²3¡èMØßËΆ虩¶«Ugc1 ¶º]ô'¶D¦Í!{d²¢kÙ!Ì´9¤bƒ©¬5â/í%ÜÃ9DêKâ2˜ú7A/EPaÒÞQ:Äî‚p PI£ÆU¼Á4Ìõ€…è1"9›KIû¾×þ`ûލO/J*˜5î}!PBûCÆz‰`¯À—†æu5qo7¦}%ö¨7A™¨û½<`ô«ÓYó8D£®„5§l˜Û8… +î$´€bºT’E4”P1>DÄï1ë¦Ø ´B÷Љ* Ê$aüâd‚@"N¯$̰?„òŸüAGþóÊ’ùÏCм¤½ ÿ1^2ëK‰Q­,Éä9a ¥ÃŒ9(™·ã”öC¨u;µ"%ÈÆÆ¢’@a•í!/q!h˜lÛ$鈥óÅv  ;f;®Ë¼CvÍòŸ‰”õ’ÿÜ$!ÿ$%*+˜Ð/˜“D’T”’µ2Yðáù9ÇB %žørC6:q;>4îêIëkS¼l”úÐJÜ‹1mìú‡ÞäB’R2x•!E”ôõ¶è8DhÖTØÙ_|Ón‰h ð|IÙ/¡ç6ž‘•Æ›VcK´asŸCD^ÂÝ ÊRÑ#Û–o+©°›1à Ô€aZå!óü$dðÐ-YV6*æ¡ ûÑa9)©ø+܆UÒä%ã³½D~ÎYI)ªy F" :®ÌPRoQTlP¶Wý’Q_Â=¸CXYÒ…$ú˜"™¸òg´yÚ q“Ÿi•ôõ’}:¼©&Ü*ù÷ ã ÒŸ6Vb†¶? ¨,$m½dÀä]‘‰wˆ¼`µ—ì™ •?oRËÁû™¤ÌHL=dÀÄAfÒæQ"0çÊ Yó%YÕ¾êݤö—4Œ:@Q®dÌ—x.ÒÀ— 'í Q…ŽGÁ• ÖßâFÿq8”TyIóHÎá…J ’3²_"å%«¿dK&û¯ü€$¦„½çt5v‚ñürjÝ™Ú%>äÚ17Ù;}H+€ëKêxIËîC…P"tâË[yl/ÀX|ùêíiÜ%o A"åçœ*ɦ©ÐºÁh/™/ú’ŽH!Ù+HÀeâ;c6Ub1¼:â†AÔ+Œ´hÑÊñŸØdVR±kÁŸNëŸrJFyÉDqÏŽ+‹¤—²µö>„öìÀ§zس‡D^ý&iã%‘W„…Ò‡LÄî±7ÈÿRë|ëÍ‹U´¹üf¥Ã;ÕÒ_nK#i08FœƒÌ¦ºÌd¥hé/r_`à¶•Ò|ìÐ=!¼vä°f·IFƒ hT{(i;ÿ932ë1¥héïx‰ >ýU’…pù9Ç+¥Ï}—?†°… Â⩃Äý¹›¸5ûÅM† h"îÏaoW*¥ã˜…Büjäð¡Pô&u¼ä÷S.}•ˆÜsk[ïñ‚ñµ* Ø|ËvÔHR° ηuÓ» »´2OÔ ý*RJ1SŽjh€&²³ýØ)ÊÂs%µ¿µé+]¿¸ÌÀãZvJæ~ÉJb FV&•°z‰pö’ÓñZ/œ±’>_âéõi¤JØÒá‹shÔz6›’-™p=¸IÁw ŠÚèõla€&méXpôxÏ1ÌùÇÃôŸìa“Mÿ›ôñ’!/ù?d=_៞NPì®+¨ëÆ–P-Î7ýÏãOv7ýXÙËèPÿŒ¢ôÖaùOÁÎ’‚¿e,’ö‚Ž¥Ž7ó}ÔÕ*É=É”ÈÈ÷Ꟙþû|„b”P÷1¬îÚŸƒ: ,œ—ˆøDoo\˜ÊçË%Õ·(ÙH4šæ‡$ü¸C*²­±ŠtÈþ\7‚ÒŸ1«uHž@fwéO“õsÜ‹€Bç Îw§ô'ë™””ý’–­6­ñí/?ç˜Qõ-J\Óþ&kgñÏáù¸cPwˆ&âiõ7鈠q2ܱ11âÊÜ•žAd¿„µ¢¸ò€öO”+ñª’F[o|Q,Ûs|Ñq·qÄ›pWô (³Š•¬ò’Ý3)Ñš »  2%´_ ñB2êKf‰È{ýf&5©õ%m¤7{@ôºï5º32‘ö0ƒÀ'­qa÷êöO"®}E %YhðT%@#Nep×#î–bV?ÚÃUß2ñjÑI[yPü'FîèÑ›ìÊßÖ îÖݤç_PO™ó%’´C”lL±°3—¨L¶1B*)@EÄ®¡LÀ!” 8„ û!È1ãá*w— %»ß&î˜ú¢VR°ÆÁN.þ™IÛ/a–=|1#ËþÿŒhì øçM6Bi0b¤a‰ &÷AõÏ›tØ8|šõ¢%®3™~¼HVò̆¯™l$ŸbŸu¬ÈÏÀL>VH%B©¤CzÉ@.ö  ´}¯Z)š:B_¼Ñ\z<ˆÿ̸.ä?oÐ}Aå» õÏLöKrƒV%¹A«’ÃfÊ?áÎ/4i/è[ˆœLˆ&€ö!7fÆw/ɤ<‡Q. ot–èéðiؼÀ;5!þ™ÈX/IÙe V{ E¯`»ÍúZµZý;^R×KØ”ï8tÿìÌű´¬¼w7ëÓŸ£Íöôç0òsŽ™4¦Ñ„òO"¿{™û%´ka|–£¤Ã´½Ié/‰@F!ií%nÛš…³‡7wˆ$ñ1% :Sp‘&ÖÉ2÷6è!ÑÕ š:DO‡Ø¨F¼Í+"xã%¾ˆ¹I$ó9ŒTãC˜j|áÎ¥µ‡ ¹…j”LšÙ‹D`nÁìŸ3·jjS¢Aö=¦D©ô!»%°þ&ÅnÂe˜¿§°=+¼¨ ýÏãNaƒÊ‹l”ãï[Ñ›[¬òŸ‰´ ùÏsùÏX_rˆüœ³ÖKösÎŽÝ 5×ÿ ñ+­½„­°NêÿÜ„IŸb’Æ!LÒ‘/âÚ‡”ù’ŠçSOèÜ„@#'ñC8ï‚ 5¼¬ (£hýωSRR­’\hkdÝ ÝJ\/&& 0y9úŸX³ŠoÑ»L‰-mÚClü7áü+}›‹ˆ¸ÐѯQ2áiaKFê#~¥d×LZÈ…RÊKj eéÐåÁB(ÔJäçö*ÃÔ.к$@©?–-âkÒò=dÔ—0×þY/Y˜ëG|¶’ 6ùA ] Ä‚.¾Ow~ª,›@üG"·VFÈ_‹®llšb½ˆÁ)™°ioRs"˜@þ3Týö@^")Þë”ýè6Ïþsõ+ŒbADããò/PÿùbûXŒAXÝÇ~Áh/ ýÏI"õ%ÌÑ8„9$ OL þ]2”üŠA7‚B2˜îíŸD˜h¾{÷Lös«ö&u¾¤ý|j<#`G§2d] Ä?C{JÉê/á> £Eí7*z))ó%õçëUö g©E *3(™9j}aزX^Ÿ¢¤=É‘ÿ¬Tÿ Ð`dcùZÿLdä­ƒUr¯Ö¶ tÒÊ–‚‹Ô0…a¢|±E  ›ÀÅ€\”ŠHÝ¢üg8Z«†Kw]ºCØÝ fá‚P"E^Ò^ÐD@9—-.¬¦W"y†YÔeiO[I¼¤­¢‡ ñ…C @‰td ´ø%c‘òCžáש„sQ”J âbë¬$ -.%³/‚+ 2 ÑDN “óAÚýŽM<ñ–ù¶t@x{Ixu‡Ð«;¤þœÓÚKú|ÉÀw!`ºÊ²‚õ³lÇâ4¹V”òCt~1P÷-΋" 7é?çL„J:ô,ä?·kÃÛY;„½aÖ} Â=ÎT~+ñÇllYßÄó5n"Œ_Å•wû‹¤û‹ìôí/z¶â›Q¯ýÁ«ûø¢é¬–›:@7Lw=>´k&Ðá빩z&ßÒ˜Ó¬“]à×QI mèò·]b˺°_1Õ€ÂÜÛ•íwhí‡ì— , ›:`’Ü®J(—r98˜åÛE@¨í%m¦E1 ëÝ¢ú*À\iÈîö÷¸ID³ Ј¦n B_Àõ !›úŸoÂvýÏÒf<¥‚öˆn(E@xCþ3‘=3üg"Ô2†Y¾¡üvbe›òŸAÚðLÞÀMZ‰‘6¢Cß!6·Äev¶°7¥€¨Ñ§¤"ëɦúçMÆ@¼køžPB¼Éª/Ù#yÒ-7=€/~•DªFqè2¸[J0ùŽM¶(“¸0“”Á–\üóØ~æ&y—xCü3‘‘+¿öŠ¡¯a¯¿_ ™ìç0Òíáæo/Ô?£.uS®òp`«dˆïÂÕÖ¨5‘[œý£ƒ>JÐöXˆ’š2°•ôPÿêù©/¡ý!óük þM¼ÈKP&\'AÇÔSâ2c¾„™y_|JÆKXrHRCÿpêRçK61f#éÌÂ]$c½Dît_´¤w\xgТdZ‚0Y£m’ܧµ-Î.‚mƒ¾Hاõ:r‡ä„3%›5®ø{ þ&=—߬„¤‡°€ôA…¬Mò æK<û˜FsÿF$jB FÀ.Ø›¬Çg:æÓÕI €ˆõ]‰Ô[t\ÉJ‰’¥úÃ9GèÛ$‚\¥’ ÷¸Æ‡ØÄDA†J bn\"6ø±ÁìŒÎÿ †’´×?ŠÑ*ìD€ÈJ*_œÃ•‡xŠÆMvPþŒŒt%ïá\$“Ç9•?÷õ)–›2±”p C(ü†Þ¨i¸ÌŽöLœ{!$-þÀ^ÜE~ΡŠR€™l%’öË”°C÷·©=˜Ô ¥?oRQRˆ‘]`÷'Ò¹W($£½„IJ%>%©øWIîåÐKyz9()?çT$=º÷§¤Áy÷js%.Jñ %læ°âÏ;¾ÏYå%»gã?‘ú‚†¸jñŸˆw´b5±’Ù_”ËÕHö˜™@ 4‘Z_ÂÄ{÷”ôõ’èP„Ò1‡°H®P˘p‰”Ÿs*¦×ºIš¼d¼`¦|(#)=Kɪ/á Ä@©?@^‚ðjãñ .÷&|—A ÷&a‡¦²IØ¡‰d²CÓ3=?„@épÝg|Ší!s½„!mL2e†1L!Ô;žCØAô3”ä R%m½d”"/A •ï‚ Qã&{f!ÐDÊx‰Ùµ}Çd!ÐÈ×W2Sá]‘pv•½Y?çì• t€©áZ$í=)(ó%3¹5JVý!È)„…R!ºÙ[IÁ«ˆ5£~ѨõŸÌ“PÒçKÆÏ9Eôx’’Å¢ÊMÂñ9ºŽÿ ¤‚.%u¿„‰J‡0Qé&*BMÄC–dò\–~ÀMêxIûùT‡Î@’ <«Zÿ~À‚(×—Y;“v” I/©ë%逰´k a{¸Õõ@ð 6JJ=˜Pj; X ¢«³’²^’vŠtäb`r¨Ðç7ôj¯JB] CÖÊdDƒ>R¸››cí%v"ajý!L­?„U‡¤übYýPÉú9‡ˆI ú“ –þÎe†=«FK|j̧̗é˜åCVA {1‘´Ø‹8„…£‡P% þE‡\´ÓVÒ±=‰F‡öç‰×õR·‡Ðc;d—L ý9#BÜ)qÛ  Dzý!ë%3Õn+‘þ’%ÉvìH“†±Ô¡íW””ý’†‰bwõϳ«¦„¢W˜•:&úDrë% {À¸[ÿ9-Æ:Že²Cö-zÔ+ñUû»S1IZH ¤½„/€TÊ’Pþ3&¤.'‚$ï†uyª¦•ŒLˆVñnAüg4º‹â?æ[&×$Þ—kf QW}ä³0K‰ü› ŒFDæú ûCù';¾is¾ŸG>üæ¾#õösGþ!æ ßqjÞd½€Ùõ ÚŸ‰| v=¾(.¹Èz E¡â!´ð¹ÔþŒ Ñåà"%Š ñBE‹j%­¿¤ËKF¿ #•Ldòã]šÌ¿V²k&°ñO”tpAˆ Ú  èMØøñ‚Y¼›QC¯È  è!š=n|ûÇ0è%â¼›xr}á¤=Ø7ñöMVIÖ@ì£g D,,Õ£#^ñqE˜ûCWÉ wÓH¦¼d½`ÃsÁ"7¨z“’cåcD2 ‰ ªµÄ§˜Y†…p¸ h+Õ1+aWljðzI-wq‹yIO ¾–cÚÃr0¨JÝ;%TM:d—lT¹Á[혛¸ ÐMÂ…£‘täÀbJ”¢>’¹nE%«Üb°J¼núÖ<á1@ H7Ÿ *žøWIZöÇ Ü‹¬—d1{% é¼[Ôbk¼> 4%î–„DêÏ9½¼„Ý¥Ç ñájÚ²0¿Â¸;ô1¿Nˆ€zÅ#H–NRÂæ”#ÎéÈùÇL9!¥JöoÒª›Çüë¨J¯xRôÂZñE²úKàÇŸØ! Sy•ã €ZÆä4¡Ià&Ò^ÂPÅ! Uð©(š;„)I‡´’¼×IPôÂQÀ6n‹`¶È|@¨!bøÎHÆ«‹„C~©©’S ›ùÒçKXXrˆÔ²^BÝ ¾¥½ Gý Ò~À|Iß/á°?„Ý!+ë(ÙP Á6É\Ñ_FЄÐYŸ§Ë€®o0Ä;]tÕs¡ke¢víú6ñéR ë[ÈÙUòßWÉþè[O—~ùÅóóe`U¦/+ÑØÝê±Ë;] 45k3™ " mú*°F$ALWÒa…Ô\QýªÁmq9Ð¥›½:úE- qA8Ùu#JÔ¨ÍD¯R>&æˆËŠÈEt7eAt™´Äå@eu®µâ:@™è‡ÆF9›õëd¦Z‰Ïú«Å‘¸P&jÔ®oÆï,6þ3Ññ/sÑ÷Ÿõ3ù9Em Ltü/-®'ÐÙLGÆ€¸þ›ìI-#ËÿâD?´7×Yq U&ÝõælTÄ×€ËD×t˜vÄe€2±ÑŸˆþDlô'¢F­èûI FÈwÝ¥@E÷°Äe€dWZÂâ2@™ôŸsÆÏ9Óž9kÌ•Øð‘^,.ºF¬ëâ:@7q! µ;£sâR ™èøß¥Ð`“}€þ9kðÅ—ÍDÇ&:þoâb@™ûs*½iq'`ͯ„‹eb/@"ö4Ɵĵ€Ö A\ hÉ÷@}º ˜h:ÖÁŸÁ~@·g´¸ù¯«Ä96öù6!R»Û»{š ¤+".”‰ üÁT-Á:pÍc®¤SæP1PTF]-¢ÝâÆÿšèdõßÇmЗ딸h&Ú“µâeqÛ_çP˜/â¶&s¾DÍ U=qq Llز\T9VÛåÓ~&ÍÿäÁcµfuL!Õr¹ è.ñÂ/—Ýš M`ƒ~rsm¹è–%öå" ™Ø˜oT}UR§ßtø`ËÅß®WyaHd¬—Ø OÄ}"6êë` XÑúËK•”™†õrÐLž¡¿\(“YœÀ–_®šÉšn¿|A6¦U A­÷­?d½¤•—ôî+r'°áñAÑâXÿí^@°ìg³÷[_®ªKœùå*@²>:ˆËU€.Sjù*‰=ÎDÔª•Ù9©i½o}ÉÂ:¿ãSºªßÄU€V- êh °ý=nÍ29Ð ú/Ù/™°·ŒØè¯(ëöd¯#7Dè‹,“½L‡å@âkˆ[³ 5KJlÜ'bëy"¶ž5/“]Ë¥@3±aŸˆY³ã‹×Ç¥@3QûgÍðj–KfbÓX"˜¬9ê] Ô¦oÉb+iÓôŸ| ÛMi4ô·ëÿ,m’`?`¼gØÀ¿Ø ¿â¯-îÅMf{l—þQ' Óý®ðâ ÿüÞ¬«®¯ÅuÝìÏÄç¶ŸQâ^ÜMÖ |ØÒ0ìoRì4ÌÛVÿ š<`øB ‡w»ôçCöKt5Ï„&,œôíÒŸ™è˜ˆ¼Ä¬ÜÂÇäÊŸ:Ó`ÖÞ®ù³„}6”¨¸Kãä¸}öWƒdÇ9[21ÍŸ]'·ó¶K.ï9 b£~DáÉvÕŸµS%¶Kfbflg´ŽúClØ—MoÑGZTîl×þÌÄLŸ+ìžpਢ¤ÄÃÕZ›þMäfÈ–Å=¸íÒŸê–"Í»ôçj±/¶1á¡Y­D'¹Ñ¸’l%;¯slä7T¯*˜óæ¾ïv»òçê±?³vìÇå~»ìO&fÇ&bC_ÓŸl)o”Tbî[-1Ú\ù3³d+×òíšoØfÈŠlF˶ fRå%mû\ów»ðÏCôœJ%;%jÈJ‹D¼íÂ?òE8_Ëå&ã3íÏèo¬CWR·[5H¯/ѱ/³ VPÉ\/sÙ¼óá%ˇ™ý÷¡ýÎ,O%6u&%(±%@˜}®ÄÌŸDB}“ü‹]̆èž³æv|•ËþȪqaÿ÷O@ªH6QÒ˱…müÅe¦3$®bÆÏW‘ϯÄmþ›ØØo¬^–-Q%pã‡-ˆ•`éØƒ Ã“ápñÏ5Ù¸A‰?‰ØzžˆÙ±}Ÿ‹ªw8‚˜—Hõ|5‚Ö^¢ÆÏþJü·úÕ¼óá“ÔŒ,'%ÎÙ%ý_‰ûçº?2gŒY×ýQS`û™ØŸpo”˜1›ˆÀÚþâÊ6ö/2ŸÃ¿_b¡¼DlìW‰{ã¢?jÝð%s½7µ8gœ3ûK<½ÿpì¸øg¿`²¼’еm‰¹pã>ÇÂØRb¤›ög6ô3±`ַܵ?oõxt®ù³kExRIû?§¨-›‰Ú²™èØßõûû™èª~“8ÞŒ÷ÌÔ?3hðx8 ]ô'ãÝĬ JB‰=ÍBI%;buB2ǼU\ôGãì#H­/Q‹Víor*±@ö`ûl%KÞwˆøé¡9%˧)LÅÅ?×÷ÁÅU4r< ‰‡/n¢k¸ŸÒ<š Ã0·ÉؾĦ¦Ä"E°Ã Äö%v»¾ÊVöN]š¡¥¿ë%>þobã?‘ž¹Kf2±Y0ƒØøOÄ# !#+—þé_Å…2Q³Vú†Y«¤ï—è ð½Ë%VåâÒŸ™lsb)ð:ŠKÊÇ\%záöŸpéO€Š4Ø;Î1S¨ŒxZ®þ“‰yt‰˜)Ôâe+.ÿ£vÞÐ2°5 MqíOé‹@qÕ·L̲mÌTQb1ÚÙ9ÕÀÕÚ$¶û´ Ìfk%îÄ-$#)ñé›x4›]G›ˆfßij2:çïæš?™Ø20ç–æ’Ÿê< Á„㇨¹äNXýÛt®3AxXÒ_cVÆh.ù£ßƒy¸‰{p2è4×ûÔíͺH܃«ñ¹Üå¥7üÔÇ‚Eº¹à§®õp‚›+~j¶lþ¶Øñ)¬'²Ú¢Ù±´7×ü±9?>5°UÒ+É”—¬0_âžÊ†ûÆ.áJêxI[/éHt›q èõóLøSCí0§šëý\¾¶‘X¤fߤô—TyÉÏ)6öÇÄÆ³3ޙگĒ2Yã%:öoâbo:ÞÒë®ü©:ì’^<)£pë®üi;%Alk⼜Ýå~2‘Ÿs¶°`8uZùÍÛrõœ€m9öPÒø2âœn¡rë.û©{ˆ t—ýÌÄ¢‰ì ¸›ØÐ—F³®Ãâ/ñ u—ûY¥1Ò±tÊ*1 (‹Ð&²æKlì7ÊRŽÞ±¤‡ùÞ]ïÇ2邘 ·7 žÞ1üoâF?ë.”Øš^êuŽåf,AªˆË͸¬þD|ü‡õì‰ÓžlSH¶kK|ª#d±À·ÜAÂà_8Þ˜vwÅŸ›¸úg&– ±jÿgbVí׸¦uWÍdgà  ™XvÒ.4ð»+€®½¸DtWÍÄÞD¦'94K{ÀzŽ7î0/áêŸú§pžtõOýs9¸\ýs·Á8½y‰Ý¼/n•«®U¸’wWÿÔmrÝ2ñ­êÂpÓpõÏLê¿+›MµõãW {³À Ù´_冀&Ę/=Q“¥ÄóìÃYâÙ±L‚͹› ðp@m/ió%}½Äö'T&6ÀzÀ{¼›{›˜éµxæ?®º7—HÍÓݨðæb™ÖJàò÷7‘”®¢DÍÚLÜ›‹€ËpáO&°#|!ë» ýóár?™tdÂ`ÔþÔ73ó0GFÃLv“m[f…îïhÏR‰a —ûɤ"×ÅpáO\0 F÷h6«ç Ì—X<¯±×ªsçÙ#WüYƒ*7J rñæ WþÔø äá’?ºìñ”™´ëSY`%Αõ³m1—®Œ¸©&þ©15CÃÅ?3±pF"Ñ»ÉÀOïA¼Îä&wFêðͽ˜Ï_¸ w4ûˆÏÛÅ~tEÞqNC*T 2¨ƒÍ±!XÙo’­îáÊŸ™XÂÔˆ¥u¸‰íU'R×K|ìÇ'0?D&¶hRHÖtKq¸~ ›’ÃE€2©ý%Í3Ù8´\ HC6|?v”˜|ñ!–˜â{9çíäZd~g/ºíóC8û&>ø Á”˜c§™§fÍr€gg_@êZã«Í²MļºÆzÒ1]HF᳚%¼: ”Y§q“Žä,lîÌ ¬·ÓׂL<×¾ÅwÝÏLÌ´½H5ÏNg[xE³Âº‰­í‰ôþ’!/ùó%ÏÞ-n˜KîkðtéÏLª¼Ä,Û½éO—þÔÅÖÓl‘yƒirº.’çXX#ê°”Øì_j\Çut'z˜a[$ž±IfЈ5"OWÉd•_¹‹œ¬•@*Ó¥ÞÌC[$)½QAû!¾5Ñ“›ÃݺÉEsDHã"¨­8׃†Ýå颟™DX0SÌcËätÑÏL,®ˆÙAjôJl{¢F²ØtM ©TjPb¶PÝîéš@zeXÓ521·®—xc\øSZ¹Î±€@gXpº(”²+êVû&0§Nz\×…?e†¬æB€ï&æÔØÃŸ.ü©Ž§DÊdì—°ò ‘¤éÊŸ™ì’‰ é¦ –ÛéÊŸâ¹G º´ÏM…x%º´g¢^]&–¨Q¨Ø¡Ä‰x¢#ÁÓ•?çšôâÊŸšË!ÕL[qY ©Ì67¢?¼PƒZ‰ù:ex”XÀ¶² D‰ÿJy%ûþëÄE´dxâ›\H“FÆ&©Ø½CìF ’4nâiJÔ…PbÕ‰LIoµ·ƒâK!tHEõôM<Êw3†c”xÙáM~N™pìñê‰Ïü™Üûâ‚@kû~¢¸â§Î瘇=á!æ|¬õVòFó=¨b¡-fH 0¨0£Äºº, ˆyte0GS\ñSw+à“þÔX)ñòÑ›xù¨0$#®ù™‰E3.2àÕÝ„%¤,ÄW(§Ä­ ãÑ倮¸¸\&òsŽíU$²}{8¾ËU?e°X‰ýLì§£Ô\…øn0ú<;©qQ— Ý€ÈE‘‰ßMÌ ª•–¯HìUR‘ñ k]»¡ š«Žë]/­fÅ~?µÿP‡_\h}‘Ð ;wÎ¾Û ÛŽ©¸*h&ö,‰ŸîqšmŠt(qmЋ¬OŽÅui¹<è’I›z¹Ðò7Ä£{ ƒi}îísU÷ꎅ¸>Ͻß×7¹WÇÒ %{fâb@™̽¸}ËÕA5ä kÔ܄Ԙ½Vñäû(KX®ª;Â_þª@`³™Pi,ׂ³Œ®5ëx˜«þ¡\qÆ)^wÂðÙriÐæ~€Gj;R£–k©^Š1–낊kæ€xd»¢H|x`ò! a.˜E«ÁŠTÙåö¿Œ0WƒK·8ùzîÍ•¥â Ö `ý»ý ÂdClÜ/&(,=õòFt]AÌŸÛ&ÆrQÐLlØ_d<‡Ð ”—îÅ{ºà$Ò‘•rÝ€3ΰ $âi÷•Ãj 7)ÀDÚ}§™²\ôZ¥– eâ¥Ó‘œ³\T]ñsùÏNJĶn;×å’ 7ùïÄú1|½MèfjÍx—ÅÓ”n0QÔ,®žK¥™¢ËÕ€îs\TÜ~A63v}–«‚Jc§X%¾£Ã2šå+@“ñ­ ²^bkèÇ}ïµÝ—;›@Ëçÿ*êFÛHÄk§o2ËK„éˆAÖ Ì–áÛmWÍÄþ c{»ú›®j˜ö‡ÀÞMÆÏ9fÌžªé´óß½º?lÐÝͬ} 4RÜ—K¤–—˜/×bEß®ªñ#,I»øžuè(™ó%‚lðÄ}¹ÈNßJÄU4vÜà ›ö&¶K1Ù¥YIg~p%™õ‡à±c5ÙÕmÚD̦6û’ ¡Ä§¤þ€ùïj…¢„-Zõ– ®St”á¸Æë¼Ckä)í‰×C\ HECñzîûÅm²ÝÑÅá&Ñ­’€Šˆ+.<ånI£d½ÀAçà*¹{""±!šˆ ‚F‘Ó¦ èM~NqûxÑ·ëÎ(ÈÙzˆì÷¢Ä{8=ÐDLnޏ7Ôm4•·éf0Úû!oÌWue¸ØTÙî©J¼ÃˆËºù¯í"±~l×Ò~9• ¹¾„ mèëOhtÿ¾\>d•—° Éòdž¿vEŸéu> ípÈð^Ôµ/àRˆ‘ü¾!:+$fǦhìƒlŠ€ÞÄÕ?ºÜ" ‰ŒþMÄõoâzˆ7Ùö.LsósPíäk±ó™¸Ê=—%ÞÉç&ô;ÈÜ/Yõ‡<ç@4W¹¿I•—üœÂ6•¾%¥ÄÛ’qÐ(‘zëu*¡ î![$M$ ÎïUÐëKÆxÉü9G~¾j=_Õþ]íÄæ%ÐLöK¼“§#%Þäê |ô³—ªù?d_"žóëx”(ãuÝÍ©”´þ’.þ·ÕM2}ú/B@ùÛCÖÏ9Þpý(&bJ ‰àÂmøFwAÉxÁü9E~ÎñžLñŸùM—·O„MKÚ&±ç6þ ½Y7•J 7q%ЛèD¦*º5®kòÞ¥ÆßG%Pv™•@oâ²®7ašCÚÏ9ì4}Èüù.éù¶C 4‘ý<JRýU‰ ýDZ} ‹¨A«C°-oPLSY‰·w¸ÉÚ±¨ÎÏ¥€îÃí/ËZ$Þk÷&.n¾wCÜþ&Ó5|ù.o¬å7ñV»¹ JvõIߪY>tfåâ­¤`Ùõȉ’Ú/³KA“ØûÃ>ì \ý&òs{S²qŽ{׳˜±Œ+©/°¡¿©kd¿Ä×t¶¯TâÍnb"¸!!­d¿[¾h'W6Ð \ý&Þ—˜æºW¶¿‰¯Ü‚Sâý}¾øëߨ0³0-W=ÚíJ L¯/Î1C6ï4ëai§_oÇ7a4+‘x§Ÿ›ì™ íþ›¸²}"6#v¸dJ¼ÕÏ‚ý¨ÄMYÖ+ñv|7ñÖ7ñÖ‰¬L\4þ‰ØøOÄd»Ä‹5О²ÀºSÂ^?#ÎñÞ ûiJ¼Óô!½nR~Ω°îF'iû%þ Üd¦5¸ør ËÌ'$ æõ$ÞÛá‰n|Û\Èš«´ v{ ¿JМ˜¡%Þ‘ì&Þïû‹ëâ­á;"XÛobžÜE<9ª’+Éíø”4¬DX‹ ÃeâVíM~À‚55+É~^ë K(+O(~H•—üœâíø˜!lÄ~ùŽÇ°aÔžÉ~轉µAê‡>e‰ˆ—G™”`Þ‘8Å;;°«ßtÁ´~¶+ñ í&òs[]yoreŒCøs7ñ±—·{S äíQÇ«ÀZ¶YQâØßS‰·¹º‰Í'lw0k }{L“ÕÅ@­)b%©;ß½Šn|lŠcdùBýÅu¼×ÏMܧ£¤·jÜ{dCIÖ¸ŸÕÕàNà #ë%ÞØá&3̈ëØèŸÜˆS"þìà9Ô†ÆeÜQâ½~$Æ ü€D8úk#áè?¤ÝçüŸÿù¿ÿ¾ú–Ôÿnöÿóßÿÿ¿ÿ£Éü§Ò‚úßÿ~Ïÿþ_ÿSTõÁ ’Å¢sÿŸiî® ÿ~‘üÜÜ6RöK<ñgyæ­ û±èçð8˜Ó][.ÕhÀ¢þ‚€– ûSD³ úõ%Û£ª6‡©å% ú‹Àë3ûß&˜Ï±mu%°°kHdçn£‘"/Á¶V­ä%š42H,俆oñ˜ÿø‹YÈ¿ŸÛ²Q£½¨ÿ^'ä¯$R_ÐEº|÷æ®9=ÍΈ¥±Ëð-U#V—œÈΩ‹‰”Ôú’†¬&$–¾ÒÑXψgo%‚ª°dy¢Qi–¼å1(#žÈnò=Aä·‡/ŒØ¿ˆ/™ä·à%žÁžIǾ>>2ÌdþœcÛø«q6ž¼¢iÆx•GZüà:O_7¡ºIbY,­Ð•ÈbéhÒnÄGþÃijXØ( Á5‘Åòõ‹˜Çm#–ÀÎ NlüÞŒéY,R ßeÄuÚL`ß°ÐÃPßÐFà*ƒƒöëdûM,‡%Ïa¹‰ýÁµi2:F<‡å&–ÃræÃé]mµ}ÇÄ9žÁ®R‡ä¹T‚Ú`Y¼7°ktš6öÿ|¥&ÙYÇȪ/ÙPDÁ ˜ž¿" )Fêø9År²±®ÙâÑyK[“š âe™•vÊDâ¢T¾zÓ[ÚÞ¤ÿ•T(éÁúšÌaÿhk¡™a&®Ÿ}“y«^פz “I‚±”Íá¼ó;=ƒÅ^ø”ûs_ ä°ï/“o‚bÍ`µ—°mÉD‘ùMê­¥çd½¤ûKŽàÁô–Læ|‰ì—زÞcú˜žÅr$±Ÿ Êî,¾äÈ^Ç.–Z½æ¨à•ˆ=ÆDÌŠe·KÝ ö,¤­Ée|!m}>µå=l0+6‘6_â;8ñ³w!e% ªèodyÖúÇY5å-þdÏ_±ý€IRPfyÎñm‰ùÀµÏýÇ…&¶'¤¶ÐÄ6AAb‹Oy%f¸QËóW–gíñü•L¼ç&ìbÛ+IÇÖ`sÌò™ÂÉhyþŠÖÏÁ^Z=ôu1'N„/ÇBÛ‹ŒÐ× `CÿÞÿëû°9n3æºÐÂ6‘…B…¾H6*áJ£‡¡ný`eYX´e $myDìa¡…m".®soa{A@º.ÐÊuŽ™±ñ.¶ ¸¶Ôb ~ 1K¼|‚N0HòÊÎS3bd®<Ú-{åwiÖd=‡PË.ñžyêŠù‹Ä\8ª&±hž«W˜["à³,u%û¢a>ÉFòM,œ—ˆ7»I‡ô –[ýÓ›”ƒXãl|.·úmk8Î1ó'‘–ãþ°)q“zWûÁt‹5rÐL­˜‘··²•¹9ŸlÏ_ÏdAØ››KÁâm÷ó3ûñjÌ4èc#Äíþ›ŒŸs„Ûqeý¥p†ñadf>ì‹f¶U*Ñyˆ´_|šÙ&2 Ï…i{sA¸‰W¦Ý„jñ˜7öª0tØÊ† ¢Í¡:WÐÌÅ{…V’ŽzçÁ«¢ù&¿`¾ÄìÙ‹ ™í.t)¶'±gbŒD\\ç&–š‘fÛ_eæl"^­ú1š³±\m­V£?»ÑË6‘ö—ŠýÀí©Œ™L'bŽÙhf›ˆ7¾(ØÉ³…S>Î\Û—‚­i&úr˜+Ýlq'r£F|s:b‰û´´â+ïÝl/€n¶‰ÊN’Šh;Ìën¶Ô”4Ò×Kfñ5°Æ•¦l63Ld?ç°­ Ž´ÙÍö &W%èxááomïeû…óÙ˶ÇM_päÎ+æÙëz],w-Ì3·m£—íÚ\×7šÙ&⎜ÄàÛpän2Αg ´³ §Æö†ûK Ü·¸Lv‹©%nØÞ¤ï—L¤• o#.ìÔØ=ObO þ;M x]Ù`·Ò£ÉæÕÕ—øØ¿‰7«pî•`öÞ-ÀÌmÇã.¥Åd┆ê$èëfÐÞÀ"yÉÄFP/,›À»%‚>†‰ >ÏwRR‘+$‹¤¥’ßéøÈ¿‰ü;Ä<+ IùF\ÿÿ4´Hü6bæ&veT­/¼ùÑM\]ó&‚¨Âh$Þüè&ÛbŸ‚õ?Q¸mÄ Zl{[“HËJBc;#¶$âYI7ñ¬¤›¬É E²{&ðfå¡ÅòØ܈ó:][h<ÄëÊob#?3€ÊDTÓúNØ$?8ˆ½¥­>ž‚–¶‰TH¾|=Èúw%ƒ*ñ¶ž KÊÛâ²ñ7±çY7 O%lù~ˆô¤ÅóDSÛÅíIK_° Õ„…¶ÐÌ0“Þ^âÝâ뉦¶7pM)è²lÆ%â]m3)·s© Âºù‚toˆøÅgFucÔ Û¥¦ö"‘ú’Õ_býœ;óªtCQä@a·ƒéÄM^%uûíË’íBB·Ë )%n΢0·`×ÔÆíŠ¯2s–ÒãFfy ”‚Í]¬%Ås×Uú®1w®B‘³ÀZHÿ9GíY€«ü¢?È©•8ÅܹLlkT¸Vïi;÷ˆ;ž¶êCx篛x×»w=mcØZ¾ÀƒÙx0âc¿qT°áEØÛ|Å/GWÛZÐkúõöÖóÈUu¡od !¦¸"ÅBØO‰-è…QS%H0 ‚޶èYo `ËöE9Óþ!­¹b'f—ÂŽ¶7ñ‘ÈvaúàB ÃLösŽÛþ™ØÐOĆ~":ôwaÈÁÈz‰Y´‰H‰ý›¤´WÌÊ)û%f­ï*ìÿ^¹˜±‡!õÀ ò´- gý_§Þ‚ž¶ASÛ^¹²tµM„]=k%quÁ%° «m…|MñýÏã B´ôØ *ƒÄ<¹‹Àú—? æÿª1ò½…áÅ<ò’ñO´Ÿñ#z 5þyh`Hýz#y§0® :ÚR8ÚH}Ak/éÈ=æ„޶‰Ì[Ðψçf܄šøUlaÈö^Åûd>ÀµX DkÄrígüªŠŽ¶Ò¹hVt´õ‰¼Ä¦ŠÎÛUÑÑÖëlŒ$&1€¨Äu¥nâ¹ïfEGÛ6højÑ’Å“˜ám[kÍwâÛ ¸Ázϰ Š!œÿª÷³E>HÅÆ8ÿö³Ýð-—÷4Ô2Ìñýl-UÑÏ6Ù/az%ICz%cåv'±I¸:Im/iÐg„åY[ør˜<*úÙf²þ¶2Fl“"Û•›aw¸Àç‘w3R¤ÄAÃN2R¯;•'ÖßÒMç‘—¬ŸsöÌdÀ¨½‰µ‰´ñ’^^œãE`6m_1þ¼™­lÎáÕ›ÙZ¿¹dgâÍlwgbˆü*IÍ7ÏÛÙfòsŠIf÷†Tf%?`Õ—ØÅE¼­ª¶óñz;ÛLL2»oäð(éî Á’«ÞÎvn[bsÿ!fÓ&²ÆKL2þ›ô*ÚÙ&âMÝzÌ0¾LT™¸ž©‚ü?¡ýÏC‹a\‡ÈÀ¬Ë†¡wm£ÿôÖŒXÿ¯D<ÝDÿ„‡ŒõÛÆq%d…\ØèaÍŽ‹Fˆ= ÓpûBPóÿ7ñ<û›ø˜¿É,wè_‰­è“†Q¬rZOtÜíˆ )HHº‰—LN5}loâ I7±½Ù4q[auIáñª/Ø The†fZ…LääbÓÐŶ6lÝ)1‡'\©V±¢skhb[:’Mób§´ Ħ+Ù+,»p•õqüöª£ÖNBuÔCæÏ9ÔË;dIZê ­ð=!ŒI¸¡…m"Ê.1hÐÂ6Ò‘´cŸÂ êm ðCvå¢ k›LcXèb¨Ÿñ)dWNÜÍ;Øž€½’é†áù*Ï̺Éú9‡›píÛD÷£›˜)›ˆ…²a;îC~.3N‘ŸsÖóU‚F"v“­ï&žfoé¹h5ïg›É@•®ñ-ê Ÿ±y;ÛvI`!ÇžIK m ¯€hÃì•v¥n~púA+^ƒÌ” ¢Äº7'bgü-¶ÇCïcËæH<1#|‰¶#¹ž#o#¿˜»’VPeS.“–”Lì”ø”ÈKXZ†õãoöL^ L ôÝ?HD2ÉRIóä'zÛæ8Ì+FG[öd4âÎÛMÜy;¤¼Î[GÛD<ˆwâÝäç26âeÓE÷ÂL<+£q^ìhb{4±=sg÷&¶ ؈÷„E;ÜnùáEïè`›ˆ ÷*qÿÑÁ6OÁKÄâÛA³Ž¶7¨Ø%XAÜØáÍæ…‘í§Ä'¨ñŒ¤ð {ûû;{’mlÝ?ñtÔΙ¼w4ó¼‰mHÌ‘%6îg‰?æ¾°[ Ôà£v¶±IGÛȆ²ý {5cUl]˜ œhxÖ>û`1÷­•¸ïèd;?N=l]¸Öu[ (Í_…F¶ÒâME#ÛD|ðßÄ#Ø7ñöMæ~‰þD\uijÁ HÁff²îÍlOɺm8c¹ñÔÊJ‡ Í Ïñ¬ŒIC«{3[$€ì“ã©/TIGµæÃ¹æÍFÿÚÛýk[ Eô¯M`þ;RéF<Ÿ¾Ä+‡¶ð©Hy‚!Ú1Û'Ò‘P ‹oŠ=D|lr²aãªXIÙ²°}¼°ï=Äb"U^ÒÿÝnÃøPMRâp§C7^…ãbxóZóÀâ’I[¸SÍk7+qŒÀoîAìkc“iøk‹Æõ(‘Lˆ7¯Ep°yíMÌà©á©zŒá:ÄìÅq%u¾Ä¬×Á¼C%;9d Àkë`óÚÎÇ6мÖóšA|øòu ~[Ëü+R÷Kzù!H~ÅÜ9м¶²‚[‰Ù¯‰Ä\²ÌyÍk)¸Ç• •tlò‡£uíŒHÉ@ëÚDîv¯†·®½ ÍýØÅa·ÂD*¶e7{½0ëÕ›ã€ØÈOÄ×2±ÔˆmH3¦5Ø·6ÚÖöÁ p mm"xàXfZ–»¤6 R÷[œc~›ÄÖÀ€­ŸHä9t³'»*dK øÈ/ôäd~fX•³üî\Ét~1Ç-TfqÄzËÚLläO/"õè!…ÇŒ?`꯯¦›ú™ØÈOäçCû9j?ÂÂSTõž¶=Fläµd@î'¤Ë0Q'9 ‰E­ÇÇC/ ÚqÏwƒLô¬-¯Ætkßb’BbFìd®1ÓÍ^ñ©Še bvl"fÇ&b#ÿ"èZiÃVõÏá Mt­Â}扮µ½sŸY«}÷K&ü ‰ O>†8'g i±oÊ@š5¼7ØèS¨Ë#αž%G¸÷vQ0aÍ`ÏŠ¬ú›¸{“ ØÔþvæF*Ò~`'°Ka"½¼düœã{7‘ý’ýó]i>xñ&Ô~ñ´zèíq+6vü§w­Ýƒ»ƒh\xm÷NïZ› ÅaIQë/¾ÊÅ~ö¨4ǼWá®Ì~G5’…Ù{µawñ$\ë'ý™ˆÈV ©ŸÝ“œèY»„OsþA ;-sB€ÞÐ:“Œôú’ÔßÈÈdd:ˆM•†:ÞD|YÅÌ6ѵv6Z*]k1Î7¾@< ©ý•òxðÖèY»æuÙ=3º["Àk;æ ô¬´M+º(/án "­èRhçÄu¹¾3αžµ‰ØDa«Z(¾ÁÂé=kOaŠ’ö‚þCÌÛT%S2÷Klæ|q ]ë'ºáõ—?ËGèŒ Lÿ=iƒ L©|©Ð§0_ nâ¹³¦¸æOËÃ6<ôqÏâµ-, ãca¾åCÏ—TxÑpRk±ŸÈ„ÛŠ­ c­ÇÏAXP‚_Tó‘oÚ¸Þ‰™Ö•ñ9í_c£\`û»¼4ÈÈI¦RÙ׫Ʊ$ÃUЫV"¿QÒé)¡„‘ëCªmÆF… Qy&ò¤WÃâXþ{0aJ ó“ˆMù›õjj™y-m$° t~Î4!Þ«vP8JAÇδćKeƒØ’žˆ§ u†“Íj/2£¸ÜHRYƒ ÏCÌ J¤£H±Ov)œ“HÅqŽ@&¬@òç˜8ÉŸDÜŸ“˜Ž)ù3é¾ $<ñÄëEcïS6¬Zj€*‘ñ’…ºy„ÜÄ%?/²>d"ݤú¬Ž5%~t].ò!Œf#Ëv¹ämÑÄ9žZA‡e¢Ÿ¶'7Ì—̦æ²}о[° úyÜÝ媟–°GÐaàÃu@ëBä€xXòGJV2bzÖ^=k)ë%õçœösB"˜zÖRIAÇ2.°PŽÈ‚äÏE ù™H…b¶dVCUId^,“üÌ`ä)x±oíM\à&ìñ…ÁÕIÍ)Á4½:B{L&]ü¹—”\À³.0ƨxKi¹Ú'„€@,©íxþòH7±ÕÀe@êLûq =kûŽ+tk^ñAï'OÉ»a¹ påD-ö¬==kñ¡O÷qAû- ¥•tSÏø©]íMOgMäàÝ~*ì†í·D,¢}Wṳ̂â—s\£im¥vúª>D×÷)ƒ“írÉŸ¹ËuåUót½Ï#ôej¦?m<ôŒŒ(;XûŒTæµΆ+ä»Ñn²_bq½ÐWQ²°S6âOq»–ººËûj‘_å A&nÖŽëCfÖJ˜Ç‹ýj)šmrwØå‡ö["KÙ*ùÙýcw îûþ°9S<ºfÒ‘r‰l•ýEbý bϲÚz¼ZÚÛlT>ham¨ý$¢†í¡Q½½_m&žWÏZG%6ò?J*±äÎﺰåÕ'²Pµ}>är?;.ŒV…-btË@"íý‡¸ai/Jo‰¸a»®O¹a{?OîÑno6ÒnØË¡L±’†Î/ˤk\yì´PmHþ$Â2i—›Ì?ŠŸ‰ìÃÂÁÙÔý‰E{w¨PÔÈz‰gßDúKE (öû†æçÙŠÙÐü‘(¼GléÂ-CÌ­KÄ ØÚð¢T‰7®-ý ÕÏ“Y½©ú¹h”íÓ¹.ûžQ.ÚãSžAQ/%·¶šKª7²_²‘놩w£qm"e¥è¨÷+|€¸!#{»p?÷LÎ2>dûs="e¢?ûå›ë@HþôÎ2˜íª?!ج µ—t¼õ|©|â7Åï8Çc4=x‘þ°Û]€›¸ 勯…Þ®,ô áç¿PÒ˜ñ.$¾Aµ'ÛU?Mjl‘ØÐOÙ¡_\Ø4‚ nú²_b‰I‹¥‹0ýmDºµ§dÀçõ*%Ü.X)•¸UKoc£i¡•çÇu6ŠŠ}Ôjäçƒ9ï‘%îÕU,Œˆ=Äòœ”Œö’9_"û%ÜŽ"ð®…™Pÿ­o’Úïe%fÙ ßO%E ¼‡è]žŸ‘õóê¢J]ÉF%݇s\û3èi8F0±m’†Ss<¸]á{Y”³¿Dç³LÖÏ9Vfø±.DÿïCà’¿Ü›×j’öç´ñ³m¥ÃdWbn]"‚ ¦ýi)‚ñU»Ýﺄ±uU(ÐÃ[ÉY|zî›üœ2ä%?`Õ—ìç2Tþ¼‰l©xâ|\ù³®øMPþüÿR2çK\Ð{ `¡ÄäÙøsøŠPù“¹¹J<åì& ©pþŒ§OÙ¸‰gÙøYÿŒ^Jlø_ļmĨ‰íÊŸ}B”xuÉMÚ~‰‡4IUòV¦]<ìщחÜÄsí¥Ú¥?oR~ÎñD¥/ÞrÈE^¿³o]fdJžc þÙæP²ð]=®³ñÛýË ´?'J›±Ð‘ÕÒPÛ÷éý%#U¹)Á†¦It0|ôÁ>wÀÑ@ ´ÈÊ&ñdû›üœbQ¾P&TâQ¾›¸lÌà,®þiÙ0ñ徿39Ô¥£‡˜s—ˆnU‰_U¡ qahí/n–ƒD‚.ž’ej’ ¶ð áC°Æaf- …M%}¼d@°¢‘òC°æJ#ÙþÊðWv4t¸IA@Ë;úZ™d!ñßM:L ‚Ý:¬Ê  ûÜtWEF,È®™@4ñݤ•—ôþ’ O„d¶—˜=„Å«@ˆY:~lËbÀ}Þè\xª ”Ô4„öù—ýÏC¨ÿyˆ@¡h‚ \ØjúŸåãD[ ÿ5.J̸Ý=FÔß4PAРPƒõ£@è[œj‹À¶íˆs(]+ÎñÖd­Jܸ=dAqÆu¼m&®°â\"–¸áM1@̸MÄ27¾3šsHü®¹Œ©ÅFöKrú±wínâeÓ•æehHܨnÚŽ˜”\ô"J ‰¸lÒMló:‘&/Ar™»8 <õþ&òsΪ/ÙБð]—]¡´:G\-)‘U·(cÃ#(-éq™Q_ÂÊiþê20®d—"nKÂh®Ðe°HAm÷êZ+|;*Ömt/<:&Jö3[\Æ4ZÜWª¬¶P°[& É÷7)?çÔ[PÒÒö‰’Q^âr 7A©-•«ZªÍ"aÞlÉ GàúåjrÎ6š1 %=¥¦*ý%s¾$ôc‚ìúCì§ss×òxèj6’Ú_Òœ C¬º+0¨5o`¾Äc}7YÊñÝÛˆî»B ¨…½T±"$RÎiû%6þ'K•ØøODÊÿOÖ¹e¹®ƒ@t*wgÙzkþ» U……ò™ÝΣ,‚â&îÜ&‚ÐN5üæá¼7(êýÚA<Ñ­£#môR CD†T¡âYëü\²w&‹rX')ý&õº×$ G)$ÈõæÀŒð U«A3Ù=*Ã%â5_^(”H»7O9Ù7‘$âÏR'éGÔIJRŸ(ÛCBˉÉTH7࿯ 4uÿ°˜`ö ,U¥ñm¨r@w¾¾ êNRÆMP‹óji«/Uí™^}Ùsr’É;¾Yí&ìbÓ —D¤·TKxB)û&(À|Ùn¤ÓÁ£]U &2ÙýPâÝQ‡?WÞ;êÀe²nâýÓQ&lÄëQ ÎŒü‚—oÆ“Ô(B1ÐhA3qû“”y“ÊS»Hã§w‡"Ð×qfd–› å$8´øHŠd®ê•j ‰0¶’•v¶]}¿Ô@3ñ°u$³#|ãuP¶÷O×éTjWî‰ø«êÜ@eø8ã’F¹îÚ•z [S3Œxޝ¾º!”€--µÆËR Ô³ÍžÏØ;> eáA õI ¤J^#åB\©´$ÚjÄ+ñß°jFÇI¦>ý&nú‰Têþq%®Ø<'VEú Ãú/c¦ïw¤ÀÚðZdëù€¨[ûAŠª¹ å$HgDÜ_7ÓÛ+> C€D&ÿo†ìu³%H“è£%¿¹ÐWÍf 0•8ãI•õ*+j–º²e R ù…g¿ äcN²¯Ã ÆmyYR‚T–Ë|׸*uF:W;:{íål‡“ héÅ‘™õR•#ʶÈ{5ÊFQ•·~+Äk"mÞ{ÁIÆD-,M¥Q¨³†ÚÀ¦ !߉"p'xß ”v:/p¿Ä ^ÊAØPV¹Àî ´ðe¹ó6¨Õã:à©u ¢q»éÌà¬x™Áœ;56 œÄ·t4àlvZÉÊû¿7_Òc:ßGÜìiT®Ù÷Ðö¦_Ò:³Ú‘*mýëxâU4d]FuÙu@Ö6 >ä"× ê3º?ÂÓRºôm`7˜£Iô$8¢ë:AiÐå8(ÛÇvÔ¨šHcá·ÆÐL0n÷$ÓZë%[|I!êR´I¦ÙH¡§ÕXíÇ`°Q¨|¶Pj›“Œ}Ìæ‹Ð½Q ê4N(ºf|>É€žÄmi€·ýD:³ú=)Ýßø=7‡4)ÿÐ$TÂB¡úÉ•íý·ª'Z—;.qoöQ=‹¯×¨šžfÄkõñb½¢‚o#~hÝŠnþPÖþUŽ¢óÀSO¡ïŸH¡0Òijz‰À÷Wý©‘>o2ÿ;Jî x½R­ºU»t@?B5 DÜø§ª(ŒV®t·} ™¨ ‰ö‚r Ø1 ÏŸ;B—ç¯Ú3#›]ÎŒœ{e½F×BÛéù¿q‚Ý%z€¦øªŠôq“Qn2ûMÈñ¥è ^™‘r4"JøÕHc)Ë Ò™¯¦CÔÏ'¾‡+=d6ˆ'”VnæëÜd)ÅC‡(Çx’¸ ⊈çú’P╇JcÜæ-ÞŠK0œã$»f ÐÓΠ”‰Gp‰h$O{:wGOR@™ „‹<~ á>2™ÌNdå/  Ÿ‡$³9±Ü€;>Ï<^¦Kø,®Á¹ôwcR4ß 9v¥¾8­é['#¸7VýºâÞøÄ€ªöÅ:“Œr“Ùo‚ñd‘æí‹ãÉ>ÐLRÝAß1˜/º‰†\ÝŽMÀÇ?lÞœdrm‰'íóñ h÷PÒ8€[~Hyåkx¶‘Á&^þã ¶Å5+eª@OE LÞ…vMÍÀàÇÅKĸD~.ñ.àY<æJ1^ÎiŠ@u@Ôk‹ˆº©yK J€ZÄ%аN0ï8 ÊÑG$ƒ®Íì"sßÄí~ë†ÚT–Ý«“ÕH©7ñò¤®âO#^y_F|šÊ!Mq5¤ÿy5ð\lÔh:i4û('Ðʤäz‘A×?©s|–¯ÙŒF¼ö>‘õs &:Ä"0(ZÃÝ”Íäç4•ž¤óg 4¨šÈúIPĈ(-î1˜Í‹“×1X¡t’JWžÙÅ ¸ ~.ñ@NEòV¹Àf{-VýÞv2/аÀ£¼ÑL¿É“¦?¾çÌr/Mê‘»ðûO5 UÃB‡LŸä´rôœ¨ÕÁÈàNGy@ô“ƒsÂæ: *ô«#E@W" Þ’D³ùè­‰€®XS7 “f˜4Xõ&;µUîIM .­#o¿ ”°$•guI‘ššë’NÂ:³`²×M\FÖ¸É^™¼<Œà,)nB<£ÝÀ#¸6ã³½ˆàBµÚˆíåcÅm<¡ toŸoÃÚ‡Ìæû¤À½³ù̉MÀ|Ø>Ô§nÄŸLlùÊÄ–¯Þ"û?±œúŸ™˜+›‰-_™˜Ý÷¢iyNÖMlCÏÄ|ÙLÌîOòwA[*ëÞšp­é´gB4s{0£OÀV®ìñ’ÚŠƒb.ìI ”‰™|&fò™Ôv“6o2n`&ŸÉú¹f_ꟙ¼þqÂ9ž®”Y}ëMëÊô…¿½êË1`ŽO{ãÐfB¨®·Né·‹Ì›”˜Ýgb†ßÞð&<þL,‰W?eBý33ü“ÀãÏÄ ?Û2©?×´u“ñó^óç½~ždžl{4Ý`O¨€fâ¶Ÿˆ&ë&Ãeb®O&~$²~ÞkçϳàøgRÞ›ø ÃÁø 0b7Y22ãYÃo{ 352÷MüˆÓå׿½qæ¶° dRÚMÌõiUúÛFÌ›ÍÄ‚¸‹ü\c›z&æÍžj ™”0nR÷MúϳìÈÄÑè7²Àu‰ëf`®l&Êeb7@&¶«g2~ÞÊŸ$É3~„kÿ+áL#æÊ¶¡ z ÍšÄÜþ¡ãCÒo` ZŠ<Ù… ¡F‰×‚.PëK>æ‚.P¹½—+ý½Lôµ,¨Áõö×øÎ^“ÿ†ÃÄÂh3¿A`ø ÓãÓA .“Õo²W&ÐÍ«ÙIê¸Iû¹¦÷›ŒŸ÷‚íOúNkÐôÌüȽÙÜê_é¼1«¯Sc¸Õ¿Rupb¿uHS1¨YX±EÜzfXtN] LÞŸkÊÏ5Íß«Äg†.Ð_ü¯š˜EÐ6»|ÿ] Ö46Ɉïí®ãD`!\ó®7íV',`VŸ€åòÚŽ*ò9P{U¦(ä@[t3ñ ù=žäfC`¸íE8³áúgò¶›˜Ùgòs‰m쵿Š6$ªN XWu0q»OÄì¾ì©€ Y Z4KÔˆeòjS“°‘¿ß  Í¥2МèTmC¨X㢀}i*\ØpýËŒ&¶ ׿ì/û÷ñK¤×†(Pé*ØXì°ý¼4©Ê1oÖ^…KÞ†¨}z.hž}âyÃóÏdg9ÐLÜÿIÄüÙLÚûC~®?×ÌŸ÷Z?ﵯOQ LÞu3ü²»~è–Õã[‡û_–ät؉¥ò21Ã? Dj›ñ½CÔ,ö#¶”%Å#æÒ–ÇŠ õ•䦷ü'Ö„Ýiú‰¬›¸K{h‚f⦟HÙ7±M ÌX{7DA3±Ÿ4si3±U>ÛÒO2}KÏäÝ7ñ{ ¿1Ÿ¶ô¡uuC4ó€2ñßô Ð*=rñ{­-®ñß4‘êï©0k ¶÷jè72~À±}=_2iùí eÐòF؆2èÛ8/Ö€¹´ ˜G›@¿›ý'0ï+Öý&û¸¢<Ô€(×ãZ/`vŸ@¿Ÿb^ì[ÐÿáÀŒþµ &³ù·ò›ÿ#Xî3ù¹ÄüžLÌä3ië&ãçuÆÏ5?`_o5ÐLÌâ3±í<“ºnÒß›Œv³øLÖÏçÙ×ç h&å½Im7i?×ôŸkÆÏ{ÍŸ÷2“¿Èõ¿C (“ÒnRçMú°3–b'ÅebP&nù›¥Uz@™ØFIù¹ÆÚLÜþ?ïe[{&ëç½öõ^. šß™ì›´r“Þoâ·@"¿àú4÷C÷f3)ý&uݤµ›ôŸWþ«ÞÄͱ/á` ÈÄòz™˜”I»A÷容+çÀÿ³\`õ ¸år  `­?@½·ôq·ù¬ûMVú/d@xëʸ@Ýhýý~7õþ"wäÄM=7õƒøì㋘›‰Ûz"í½Io7?×ÌŸ÷Z?ﵯ÷*°÷LÖMê{“ÖnÒçM~ÁÀê•ÉNÌå9 ´@3ñÕ+_½©?×´q“þó^óç½V¿‰oéP&ï¼I½Aû%û&£ÜÄŸrx$fü'¹.ÀêŸI¹Aý!íçeúý>¾Ÿgâû9´HvPÍÄÍ?KâebI¼LÜÿIÄÍ?‘ùó^ëç½öu $€2y×Mê{7ÿºQ6î¤ßÀ½ØD<Š{9¢É‰{ü¡ÇŸÉº‰{ü¥¡ Ή{ü‰˜ùgbæŸÉø¹fþ\³¯÷‚ P&fþ™Ø~žI7iû&fÿ™x#‘õóy,—W*ÕëËSàûgRnPɾIÿ¹fü¼‚8N5s²ÀÈJ ™”r“Úob·@&½Ýd̛ؓ*{»x wH–É„“·Ü¤´›Ôy“Ÿ—ñŒJ¼xm}{µ~WÊÁ%ÅŒªß¡Bü'J±œü¯­ïU_q¥ܪ8}û#/ÛDÙÞéÄk’¤»í%˜0ëÀK’JAU"ÈDmð[DJ¯Z¼îdïŒKÖ¸É^™Pzn%$*¥@Ç@禫1}&¹`8küà•R ‰xejå'Þ$ªfH'^[O¿·Vv•ÄC´”lmú"p `.ëI0—õ$}ßÄëêY?oµ¯k(ü“ˆw‰b(‰$püÔÆvª¢•£Bø'ÄÅbú ;’h× ^;¤«¢ýJÐDÞŸk¼Mô]ºëª”ÆA:öû+2ÚM\ù' xhhl8qÛW£|÷0“A¹Œ“x}"”‹×Uiå÷N“’xúÏ•’ØïóG¨þ£sY'˜ïp’úتަH£FT¼î`ÿ‡–—ɶ’“,õÓ ¯®ß¬Lü#‹}¢/÷äºP\<®åh4râëX"ýç4‰NÎ9AuýIv›õõ‰ü\ƒ û“x‰}"(±ïÚºêæp‡+ä¦RÆI¼5æÕæQ!Ê(F• ÓJ‚1Ó')?×x‰}éÚïš+ÿd€é“ Gš äN¼Æxsð¥“ñFЧh‰l/ÇS›À‰ä>ò¼Ð8ï0LÄ?‘}½DßLc¾‘—Mïñ~ÑòhËkÔþÁÀ·~5þ9<@"Ò`Šgy•}"›KoáFÐDÊpŸ«+¬iT]åÆNz¹Éh7™ÀájÑ´# (#8Ñä&‘“›>RÊM4Þ„›^ƒøÏüz±qëÚD$@ÍêAÚ€žWÀ{«2aŸCиñÛyL)€–WäTÏ â!†(à}äu7¨þØJÆ;ºQ”ó,þ@Oà[»$7œÊ/q=lÐÿLÀõDØI ”ÁBQ'®”¡2*'˜í6ušÒfÔeÒ'¡(×Ðc÷Ž»e²Èþ »ŸØzMv(;ˆûò[ßÍÊ8âç>Óa¶¸ë?FüŠÜêw”?3q×ÿsxÛ¢7»â7YT¶/Zv›v"ï»m*{·ø6¼ÙDÐ&}Œé{åu6È¿½=–K b0.‰»³‰¸Ñc„š‘N¹ŸZ´Ûuî%\ƒNéOisÑ““¨W”Î ŽÕ!TM¶’¢?y)€xxµUþC§ög"¾VþÄÒŸ'€®ýÖýß©ü™ˆ‡rkk-ê{³[áÁØ¥Ýâë¢êψ¨•BÞ©__Œé; b9*¹:ñ–ÑÒÑ’í=£[¶Ó!ýsþHeɧԘo5>ÂeN¿¥?ÛBõ•“Öo‚Uì$ó¿oH)Å6öÊyMcõÞ¢½„7ZoÑ^ò‘²nâîl/J8Xë)ïb6ÃåÏLÖÏ5ûjø#TþL±ÜIê ÷x}ë”>Á¨é›èêÀÒ'keBéÏL(†¡» Š?ïÔÔ©ýù†sÝ©ý™ˆÛ~«rA:¥ßA«ôI6z×]ÚŸS‰–NÕŸ~gç6ð°"Þ TÐkÜg3„\?â¶ÿ¥gúdƒÃ9,D0ñÞ›ýM2 Jîÿ9¥?ñ`7E…Òo•j"N\~@SNÜÿù¢¥Î`l-¿ÒŸ¡ôç±V0HÝÒ'‘G+kÚLeœÄ·™'ùÿý}ç›±ÜI|¦ƒ&—gÀý·Žï<ö–ŸÄ5íññ>mè¿îþÛÈDþPC¢?áÚŠþ¬¦3°Xß+ýäAÑŸƒPô§,¥„?€ðg"û&îÍ>ñ‹†b§“ÉþYZÿ û¿9ê~~€²ŸÇãÂV^?’Xp‚Xn)ã9¸ôW;Ì€âeÄhk²ŸOV Ê~öG»ø ìççuŠ¿iX¶wg5 Ó‰›þŠ fPö³‡8(üS†4;Á—í”ýÄ G÷g1°ÌIc»ôI Ú“¬qDsß+Sú-N|¤J³ H£.Å𣜸\ÌèÊêN*~V-l“‚ŸhtbßšÔýÑP0'…îwM¥“9Ú¸€¯J¼Ê¤4³”“Ê?‰lZr•˜Tû¬SפÚg"ÜüZ×Kí Õ¢,J~–­ìæ¢ä§äŸœ`@ßI*“EúÈÔ€[[é‚ä§%ùc-(¹âØ+ WnÚ¢æg& a`_K@'ñ2G§€«Òþ§Ò<«ÂþðOSå.f³ZƒÀ êa)TJÄžT¢lcÁÿÏD™ZÖ , ½‘;_ÔþLÄí?‘Åü Ì”ÚŸeë†ô§$@Åþ$nþ‰x^o?ß«t×›jJ!.¬IB/œ û¢ô§„ˆÿˆŸ-w‹@{äô,JJÑȉû³‰¸é?]Úq6Áåd?À-?‘=2¡ÿŸÈÛoR(PÃ`sÑÿ/%~K(þޢп •?Gø‹þÿçp/JÍ¢˜uAúÓlÇ ÒŸ™Ô¸pLŸrµ?ÇP4²¨ý™L?‘• ´?cdˆ/P*K.Ø‚ P&°ý(¦]Ø >¯lAÈVŠoå‡õ‘¸¨ý™ê“95›Rp‰xR[ó)–fõ¸Æ ”¾;zS¨M~ÀÍÀеø_miV}œ  L\ûê /ºµ½[:@[‹Û~¹»/%*ö ·VóÓœ¸_û%«6å?7YÔǪü' ÿ™‰ÿ ;º”vábÖô£oì™40í´ )”UÚ…§ð€îÐ}R@ ¼óô°¸î“ŠõÑ*óĽÚDæÏ5gµfžÙxfüü+Y×þ·©üyçæ£É % LÜ«]U9½MåÏLæߨC'þ;$nê¶8ûÚÐÿ̤웸W[#Ÿ¡ÿ™‰{A‰`,ßI0q½‡QKš#~ÿÄ€$£æ:®ß?1XŸtÔ'MíS*p xVï‰"» ùÏLPš·´<ïÉóœ8ãÝ‚K*ˆCíI/( wöäìÝ¡‚âMýÏDÜ zjܼÆÞÇçñ$í;•ÛÔÿLÄŒ?OÔ&âG‰¸b"žÕNÄã€Dü¬ú}Â)zÄcÅþµ=È þû×ÕñìÄü ñFA&¾–ÖG¤€7Ô€º«N˜öEcÁ†P’Ã÷P/Š£Œ”r»úP¥ŽW ÛìĶ‚L,·7ÚK/LjI¬U*ë:0ûM%šï- ±UOcD‡o\ã¾Pé´n#îÖVå¾ø%;þȀΗÚïNÐ(¨)5à[û ”Ùãg¨í€H{ñ|Æà'>yº~éFÚ pŒ«,¬?¡Hd®›¸ñg23q! «][s§ORSæÁHÛ7Á!ņx…ˆ!¾ñC4œè@ªï4ª?a­œTéÄý ÖÂ(µ'¦ýIF»É¼k´‡9 #^¬qh€Îg1LxQeÞÆPñ³ÚN©H'NÎ0ÛX«I|1;Lb@óÝaêÜ`e$îØ>+Œb@™¸c›ˆÿ(ñ:²t7‘>nâÅ¥³âÄŠ5tÈdÄOu2Y¬Qé…yÛM0ÒgÅWM LPr¹8ñͧ³ÆÖˆ»¶³Ä£º·Æ]=Õ Îò.ÖŠöþæ0¦6ø4Ö•WD³ùv¡ü¢€gø4ÉÂÉbÑ‚ÌËsµ=Ö­ÍäöI<¡‘’Û:Š6â¥J[¯I9×)ã£('8Xõ&ÊGò>LÕÆáõž}Õb÷>ªË;ˆŸè¼á„Gòé `DëIÜðûKƈ¾´ÿÈˈNǤNìšòj•z¡š€Ûý(²³—Z ‰ ¢;ÉäÚ‹mÝÈZ™–j4íe/34®m/³³·ò{ÔuÒXOêû8¡;&òÕø¶ ‡´í9/#€òÄ­>7ûDÜî{aY†“u“ñÞd¶›ÈðEX¦ª7Â>`ÿÓ[E<µ½;«Œ`’ÕI< HÄlßç[ ø «Ìû ŸÍôÈ&ðö øh¦WµxF|4Óû™0Ä@3˜Þ¤[þÿEöMvÉþ&>h:‘z аKªn#~F±å^AÉq¥›nÄ£¹DÖº Žª—¾œÉ ¥¦Ýðu1PË®¶šäð‘ÖoâY½­\‡Ïêí‡ýF<žKdãI²³Å©d:z5òŽ›`,ÙI<ž‹ê2#8Ÿ›ÿŒ÷³^ÀóàKŽÌ»XoÿhY#¾+hÅh['õý! ?ïÄL¢ÎXE dsÕ>2ÙYWºˆ'1”©4°û ¬Ø?ÌÔŠ_ ³!x(—†’U ÑP2Þ/åáP2U‰™û&¾ˆíÅç-PúÞB1èª>0#…<-´¼œJÆ21©×ÄÀ`=7óA >—€„½¸+û(€Zõ@"å¿£×ÍûXV¹P™Ô¦ˆû=MýPFàÉžÄ+ÍÊÖnI:qWö P²(ƒËê–ÝMÕï Ð1w|{PÈ xJ¯m¨y®#®Y7À Ò;Ù™4¦ôNâqÜûÄl¬ÿ„‹ñÈ·-ØFŸñ½»ç?FÜZ@æ±sã(Ð: D@MÜ›»jP߃Ù#÷Žu¢¸ hïOX(T@ûTÒˆÙ~&–ÑëëeÒÖˆ¥ôúìñÃó¯:çÞÏ¿¯‡iI#ÅßëÑš^ ×Ç£%§ÀóïM½FÌ•5µSƈöÐÚŒ%§@´Õ$qЭ²â·¸¦ro¡h".g…F\Wš½N šÈº‰K&bæßê÷B ¨ràü€ú[‹R#¶dâ"ßïw?@ ´ÎW9%PײŒkÌúk_ñÝ`+¨qPÿbˆüß5Ê÷¿Èêÿ}âõö)Ð\8`…‡{ù"ÐDܱrA¨Œ­ð @Èô-G<Ë•¬á4/¡cZ! TÚÒ¢ƒìÊß[}•Z oá~QDȆV oàïA\±G6¤R tëüÓˆëU¸>Ô3þ¶‚LÌ j['F\ØõÕÉ¥ógÛÒ9ª3þV#qU!dFÀå£úvsÈÞªÝóu­îºtOÕBÜDh¼Ë*Aëúú Z­A^ Ï ü<¾‹ºv)ͼ¢@íÙ²Nk æ×˵¥B 4ˆÛOZHõ¾Š¿+*Fm9ZŽÇfô Hپŋ@×;’)B í©ZE*…@W$Sª U+EàJÆšñä¤ç: 5ú⸲= ›Ä•í5äPtŒ%¿=E[GuI =ç‚Z!š ”í·v…Ú©lÈë ÓÉ‚Ð÷ŒkÌj¥j¿©ƒV¿ylıDÌêMvZ¦‡MÀ”´™Ò­ÐjQfÄG:Ôªµ¹Žthñ Žt8‰íê' h[CÉž ÐL0×ahµ®pÿ[i,†2Òy¾£]`ò¤cR! dÑú.';H‰ÁɆœ²L’@™˜ñ÷÷[‘ jis÷ÕE@;ÆY ø?þþ 0}õ©±ÒA´¿ÒTøÿç5ðÿÛŒ;»€}}O—µß“‹¯××ýýßo¬apÿíûÜñºnþ_z¯b°åGKüÿ¦qzåmjCНK›ø—ÎÈ©Rng¶¤A¨jþ›ßÔÛ{\ƒÁ‘ËkÍ?VÌöp°C=Þ˶ú%Šš+‚Ö½´6´—Jè'úI0×á$PB?Éø¹æìë­ š‰oꉸ¬}Ôýq]û¾t{6(‚ÖÑëW·˜‘Iõ«Þc”lPªãU¶¶A´†ºÊÛ¸ò?'íFÌáYMNeóàÿo“éZ»ä@ëXZßä@mqe¨Ó¸ø?ªt²°¾ñ¨&àÆßäa4(µ÷ቖ‘¶á¡qÙl­Ñ-aÄýÙ'δ$2Ù-ÈÁe⻺Æî9º½„úŒÀú‡n½1ÐL†¥¼Á†íÀþ æŠÑÊì;7¹1Pûõ¸,5èÕµ 5µ/g߸ôG{Zƒ.ý_º‹  T›„GŒ¸ºý£VÒ×Õvn0nâêö™4ÿHÇ7‚fâæÿ† Û ×f AÐL~€ ÜGQÕ 5ïD¸$âû{"È$òs‰vÈdãД‹tƒ$h&Ò%bö¨‚^dÞ¤ÞÀ#ºú†}A(“±n2®Yùšþ\Ýü3)ã&µÜ¤õ›ôû0à*î€|$þǽ‡þ¨¿eS½7F|¶CíÚäp€ð÷S)ÒéPÊ`]`РiaÁß-TŽ·vÛOÄmÿ Xú/²nâÃqÛOÄm¿„_Ø}é¿À¸‰»B5¢Î8 ·ýDÜöûßwƒ¡–#îÜ&âÎí*¬ª6âÆÿÄ>Ó!ÚË£oÒ@½ïøÅ¡ š‰Û~"õí—ì›Xv/·ýDÖõVeܽp€~‘wßÄm¿5vˆƒfâ¶ŸˆiÔ_ÄAm´ 7eµJâ ™¼ý&¨Ò8‰Wi¼ª£7âU‰ ¤‡èªa”áEÖ Ü±=¤AÍèTwHƒfbÆ‘y“Ÿ—Á„Ÿ“ÌÁa=¾Ž`÷Ö7ßG \}Jß Ú¸@¿Ÿ2î7™÷›¸Ér  Üx>¯·Xá j÷³}óòúæt>uB¼(ÒøÛ-ëOX*§4°iP ÍǃHn¨ÕòEîûzËŒx$·^ö=8ñ5Nò2F<’KÄÙD&s7t£DàÚÞÊÝ ˆÚ–ÏXn¬ÇS[À§4½ê7RùÇ%É™Û(àUI“sƘ3; Nâefïb1»‘íE QÚ‚LÃ_Î^'¶—ÁÊ€è°^¹-â…8V#ñü{ÁÂÿ»‰}WÕ"ðlöTOÍ‹B6Ÿ¿t€2)?àç?H¤ÿý *SÐ͵†ày*Á1°60nâ•ö½é¶]•ö'Ù,g0±(g $”Õ ÜW¸G{‚N™ î$‹:p‰ø¯Xj˜/Ù3“é6ßÂÍ[”ËÄ #Ÿ°&›§O‚¦Ãè±ý,  eIЪî†ÄåÞÝ¡ýhëYÍÄã¹.1M#v-aÎXþ3ñRû… j@ ¬z“ÍJLFÃèqp5*º k³äø$Å‹>5@ÅHc[]‹kÏE5ä‚"h}â;§"è±Q4‘M}šÀ– Ð’c¿©ª¡Fê Ú1Ëßï£` ͱ™=Õ.#pO„‚ {ê#o ‚ŽˆEö¶ÏkS.H‚ž¤ï›¸õ·ÈolªÕ8cÛÜBŸëÝÔMä7qó×Hf'-‰c¾›²@+Š6eñrûDÜþ׈÷ª×C”Û'âåövÞ´EÐg²uP½ôF65Aí&(¸W/þ‹}—íàR¶o€“à8 n€“xÑ}"^tŸ5CX‹°„|¹¿q)ƒ0ØQ# WÈëûéÄmÊ ý~ƒQˆq-€O‘ņZ½7eA3ñ/úË6dAC–Ú@¥xÝÒÆM:Gº³›ÛÁT™ó¦*è·Ëo(í¦Ø|S¨ %©7ÅàBŸÉ”NRûMÜø¿~” QP_â7$‹<ª¦³µ}78Ò8›J„ª m(PÜTMĹ1›¶h µ…<O€ÔX  4v$ì­}A-¤q÷PÏ}<ËýÙƒì¹gÍņ(¨-C,VÝýäŸ_TPz²@w5õáv{xSñ$è9Q:ySh)<)”6ï#ïÙý`ÒˆZÞŒÔqÈbÄ£¹òð?wBÖddÑý(A<š›:-(мñ[TowwÕmžJ,ñÂ/kï+cæòPô]\ªŒx4·$ùoù  F{ëÄñ>J]Êi 9J|ƒá\">ç!‘–Zj ›.±}y?aà‰×€€ÀG g!VÙ"G.á2ãÈÂåFôT¨šHo7ñÐ-îÀtå ä2ñ#‰®¦îbMÀå&…ëO¯"nûmñhÃäàN¢é>qд9©ÿ¼ŠŽ‹Ô>Â]ÀŸL€!e’E1RæM~.^€t[ŒŒqø°šgYpä9½*‚“¸@ô@e¤09Z»ÈðÐí‘°¤‘ÞoâKÙ;b ] ݹ®Ù â!ì¾O-Í  ?!‰Ûý³Â($ÿ£Ù%F:ê7®™,€ZMdñ”ì"›çRtêC‰ï“¼<åYj%'r'éT€âúR) ÈLº F/j¼;¦µ>úÚ+T@/bûzmL>–JÐD¼*)‘N4œõñ És•J1¸D0Þ§2'g Õî÷'â* K¥Rè O»r;HÄwöG5‹ÞªÍJzyµ\ãZø ð…ä•:@«]mt=b¸&«VÖe(¼©î÷§Ç^•·ÔŒædcw¥¯R):{ÏŒh²ÃG4ÙA$ï•û@íñ{C4úC4Øá#}%—²B(/ÉÀ9<‰Ÿõª«T v•¥•JÇ?‘BíРÊ—´u¨¡?Úü+u@§Ú¯¬ìëÊ€n•´Á¨Ö“TJ½ñ¬Æ»^?t@g +¢h“|œ/IJÄ}ÿƒPö-:œ¬›h°¡ ! Lš*>_‘Îz1¦Œ*…€B͈û´‰ì7“Å1}'AEÞI C\-B‹“ŠY-Q ÖšWØì®M°Bø-“õs jÌZüçgrUG8F0ÝaÄÚAí·&9'þ-G°_7üÚDF;몌@÷‘«T¡1w=ž¥²c&ŽÛC}ûÈO´'ŠÌV¬e±™ÿLê›J7m'ñíýK86Ê%¢Q}“¯üƨ¾àXâ$Ô%‚ î$LHí"€[ :^;ž´Êi R € i™o÷ UoT·‚D|wO¤ÿ<ËÍD¶¹Q ç‚$^rÜ¥`ÄKŽk¤$•@›ÖÀF%Ð=ôP4ªÓ f^¤3ƒÆMå—~pL/¦¹<´xkœH/Ýg¾*™Ç>‰'fˆÕ8vú$¨I:‰Ë¿%2o°XþÄ»¬Aô$PͤpiåÚ‚‹ÈêšØ`ÐåÒoÐ9×ợØ="€‰úJŒºÔ#®q«¯±–´Á™•ß/˜ìianp ‰¬r·ûƒp/ˆ‰Ò¼qª×„Jœ‘ºo‚â¤7Öî=œ†69´é$*Ïèñ^›Sº  Œ›¸_û6e;D@Í¢ŸÝ(ú5‰€jÈziR=Éš™ìë!Ú“ Ÿ±ã;æNðJÖÅHcz~ ôyû1J“"'Ù( ·$eTÐ6îE‚ÅHQ3 úõL•ÐL4°R¦ ÐL~.éiIµÀlf>:Óy'ñnhޱwd¿”ŸõýÞUö-²‡¥rÖáWðåñÜ5Óg Öw7\òá3V[Ë®&sÙ'AËôÔá„Ú|»\zlï÷-LLìø&äì‹bäŽFöÈdq>Ów¯.Td|™ÙùOÿ ¶ˆfóÍxÞnâ1r<‚–}<ô^i[NÐ)’?sE]â ôY÷±Ñ(z‚öCÜ…MÒO|¹ZðY‰Lè~fâ~ÏPIÙ„ì§ ãIÿ|XIùê—þ´²×ÄÝžª t>œKv·w×["ð”…úýLÀ›¤]ÿ‘À{¤OàæL.9‰gðA‹ôI¼ã ×ËÂÓ·1‰¬—š…5ÅáYÍ…< EÚÕ7F.’r?m$Ö•3¹>gkìfîN"›ò+6âçp‰”Ÿkj^äçæQ\SfÅÚ{YÁÝ|Bé-Ue|Äã·½t›/HZ¢4€gDÔýo þ’œž[§ø¨iÙ#N‚ø“ì02ö9-\b At¿–DDA}ìç'qWæ‘@gqIWŸºÉHvAùsvµÉ˜(6¤£$jhþ¼¯WaMýо¹ üi‘ëwVù×o€YÓ'™ð¢x» ÿ³M‚3²{&• %')ïñôÁŒÏçÊŸsGø€±î Ô 0ÿ¥‡šËMomÕ¨,æÞªK•w«±¯ö$¾šõÈÅi?×øÖ^¤‚cdÐÝbð· üéãØ^ä.bipu8Yÿ‰~n#^•‘HåñcÕE—¶øª:›«âÜfuöGŸÄc¸ç+«ó0"D×àaÄIÞŸkÊÏ5ŠáxP¾¨þ“È`ó ‹~ää×`qq,Ah::“Ê‚êç×]hc¹cû\3f˜è ›¬ªWïoÁØ‘‹ü·ýÑ6‚>éÐõï‘r]ŸøwáEñŸýÆ+»êçœRG.8Š:fµ:qOÃõŒ¸[øFúiAõ37ÿƒ0È„’Üð×þDz_­A ”©]Ÿô ²o™L*F|dñ\ˆõcûùï¬úÚdzžÄëêCóÂ#¨1P ÁŸAÏ¡Õ~ØU®.x#«Þ„¥ELVnH~Ú¡ Ó û½†’Áy„©´÷‡Ì›øôÐý²_Žó9‰úDy·¢yà º¸ÆïÂ#iµàyy èÄDõ̆ìÏù?@ö'÷l‹$îÌ~O˾Q/h¥ ÌP— o»I¹Š2N¢)ÓéOÝešŸY7qÏö ÝI {uéÚ«Ûcs/XQ(¿[Ÿ|dPíL¿_ƒg›ˆu;’­æŪ»£¶>‘W™ù"âAÝ”³‘Ƅʖî…# ªrÐÜAÝT\µ¥ûóèþØLgx&1b™ÚÔý .#Ô%ÒfÚØ÷€[{‚I{ãÉô¦ìO"›2D²7È~ºÔ€Çt'à:6>0oÒo0RÚ|OÎã‹Ò…MÉŸDüÇ ±²)ùc#Œ”\õH{ÅùÍèåƒi-º{Q#FS‹ŒhŸQ+Æ 8Hà ¢;‰Û}"mÝdü¼| &ÇxCñ'wh‡ºÑêóÐòOâ–ŸÚ“Ôu×@샡‘AsĺU‰ Åê$¼êv®öÙÏÈ^qÓTÒjÄM?ÏèaÆ ÆYÄ}ÚDÜ­MÄm?“•I‰Ñ¬X+ŒxHWT›]*€&â‚Í­©>Ü ¦&¢ñ\öûðŽ6â~P"´^ø¬ö?^Ö©ÁÝ3âŽmhiA¹ñI4˜uŒ&Ö(¨úp鯉6²gÍø8{fâ ¾NMRoâ!]"¨HzèÀÔ‡Q@ÓlN#.y54 ÏÈÂ%yõO?´ÀU)ý&¨´ozè錦aD¾4Ô.òV½Éî™Pî-ŽÜ¼ý&eޤݠsa]Sd°Üq¾"~.±ÞãšÕÏÃ2#~.×+³úÌ(I’ÍÎ8˜ëCä´"Å«YEƺɢ?õ” ªæ›û§kñ3­¨³^7üDP‰§6.#˜QYôMÒññpµ3è0‚F¡l–Ÿäý¹œºŒ Uè$ºO3œŸÅ$žßÏC ÈÈ¢HÁ×à4.Èûð4.‘õßqˆc¤¾7ií&nööyŠˆŸn-ç/„ßÖÒ#.ón}䢟X~Ý¢[KØKÝŸ­_F<­—ˆ·‹–ÿt¾N*#^Tä q»OÄ ’ÝŸ­!XÞyÏÆÎöRôsoFÔFÜê)’xR¯…]¼ôþY+þàzôï”ëq½Ac?-í¥àg"“bñ$´ÌépÝÈΠq&ëI0“õ$åçYÈæé ÌHc|Kàm¡v8ã?œ˜š^cÄ' §H‚Ù”hY_ÈýÌ2ã•;gKŸÄK‘" 6â¥Hp&ááÃÓt@ñ‘Éüñ ˜Pï3“uÔeô°rúý[ 6FÚ¸Iß7?× Ž“ú¹ãbºZ}¡÷™‰§0*› øfÞfÜbÔûŒü‰‘¶o2ÊM& G¼Ž§ôBŒFÚTE?¡(…ÇÑ>gqÓÿ("¸j,&Ô€›êù1ÒÙË©[‚Ÿ™L–BÐçu…úcþ­ƒ‘ ?3ñª¤·Èƒ{)ùƒ¾d’F÷ÎØËÍ dõØ¥b`î l./¨4¨‚Ÿë•Ð’”ÖKìÈú¥ã¡WGåMõaž‰ãmU6KŸdþ\ƒŒ‹Í*Fœb?k¾ñI^ÙHÐÚ@¥ͱ¼Ôò>‰¤?"éÃÌu“ýþirðBî³+;l@rŸô% å>Û–UJ4 q(Üìð©MäøÙ\—U-ÔzƒÜÉËØþ»õÅó_pÃ?A“;T$÷©!±Fæ Ü•MdL³Ù›ÆX ö“}–¥ü…wªÄˆŒtÖ>韄ÚO&Þ-Èh7ñiÜ“µc Šýœ °“—þp¡äg"¾¥·M 5?Ay†2VFpŽ#‘z#8ÇùÈ`yÆ`ÔÈ›n*fôšUF*û&¹-é~&¢¾¦)2ß›,Vvs,Òýüt?37)û&P‰9‰t?é'yþ=n{j¿%²X†¤/c]aúÚ )ý&µÜ ½wôbBï$1§"áÏÆìµ,úªˆ«P\¸ˆ9|}%l#2ÐÞ @å¥ÊØ,?(™­µ™‚?‰Hõ“¤rÉÿv¶*ÕOMn1ÂÓ7žÔXo;ƒ@ïö$ƒ§„t*öLÖÊ„ªŸßW\éý'RÆM°œ¤©z‹ô…ãJÕÏg±ßˈÛ~";ƒ¿6ÆA[‰Úm¨­ä#nû™¬› ÞU\+E?q¿¶oÅXÖý»3Ñ^  L#(6{ã­,±_LöA‰ýI`þ'õ&s܎튟¢Q.@ 4FÞv“ò~nF…èçwnmÄÏHLéû&“Âs=À¾À~€òµÕ3 ³~¦y“ú˜«Ó§ë¬¯W­…wi»*¨Œ Ÿ}ä³ßø üv’Á"¥“øé£ª^ ÔâKY"ýçÏÐ~¹Ö:˜¡}äÖÉ«LÖ(ÄOrúÆÑÏL*‹0éºÕÉ“œ“¨<®G…Ö[&ëûº„@‰ —ñ²sÉH}!F @ Œz“ÉÝžþI]ÑXÅ@¢Rè ýür"•¢Ÿ‰Ôv·þA LOá®5DƸ‰G‰H˜¤Qî-«Œ¼ìgäÂÙ¨úùnžý©T.à.Ò¨ú™ˆßÑãP¡Òu‘%傸<›áìËk¨ú™HI®n{#¡ý¯ÔøÂöör†CXn£êgÓñ»¿Y¬EÕ¿% ‰ù:N¤úy¨~*ß(ú¹yRn ½è ­éj4¨~Î-é}#L3{Ù óÙ;¾šjöÜ©T?¿J #¥ß¤Î›ü\Ò™ájñÂ.êÈb¹ù¤ÑüutnzöðiÄ“{Rª¬ ²Ÿçc7þ 6òì)2)ÚÀ$b“è§úiŒl.­4ýŽ£‰Gp2KIƒÐù“tžKœuö'ØmÓÐ:“Ù3¬ëþIök+%?½é†Àmþ-Jp5 ¹ÈGs ø'©²Ëñe¿ñ¢~" >,Øo-ÞžT{³³Mód ÃÒÝûèMÄ}JVÛˆ§/J9®ÁêµÃþ'¥b†‚ÈF©ÏD6Ï (5Jÿ$¢.é¤Þ ý÷fA“ô£Ý»­ˆäxhÖVtÌ1«Ö(÷™ÈËó=‹rŸ!a¤î›À›íròÚfƒáŠÛê?³Ç^Ó þ3ßËý†É¤cÈÄwô¢w#n÷‰¸Ý'ÒY¦Íå Sý'¦Ã™í&ʽ–X;OhÔ˜»z:_:p1ÜH-É™èüLÄ}ÙQµxöW}Ò-Þj2¸û.Y;“BWö$8’;Iaa½Ù.éŸØŸ:$?£®ËÀ¸ÏzÅ-uIF6ÃiÞzŸ¡·dމ_‚ŸUÊÛx¹+w,þ1ÐÊÀ`¢­Äë¢Ä,BùNáŸ7ìºSõB•$1Ž/‹Z¹ÏôÆ‚û“ÀôO©Û®úƒNÅ·LXÏ^âã Ñp…ÉRõÓ{{ ú9t¸Ò¥úv’úsr‰¸å'â–¿%edMðU‘A$Ÿbwߤ–›´~¿­¬J`´ à<ç˜Þ ê‘Ú'§7$âîî#?ºSúsVU©ª¼~EÚ¼‰Û~„«}Æ<&fÍúd2{†uAýó›™Wû¢õGj£Súýî$…%®ñÒŒ‰Ý¾xÒ9’ì$˜IV´«î‰x†ö}â¥òO"ƒõžÜ˜†‹¾Yãߊ—Aó¨¦TñŒ^YZ¶Æàè)Á¾“xU^ßñæË¤Ï›ü€ÅÖì*°YçªbÆ`JÝ4ó«1 ‚öQ ²2ÒnÐëÙ7ñŒž, âŸÓàI6Sh2DágÑ÷¹0”²j‘ŠfÜãTýaà3s+,˜ Я*B¬Ô~S•ÿÖm¹ãHŽ[è òç˜ñ²”üÙí_\Òú<Š[O,ÔýœCûÓî§z<ŒÐÄ™mž”ýüNr§d?cžTýIJ1‰ü\3Ò§™TýLdý\³w&/Ç6LÅ<ªŸ™ÔÔJh¤µ›x,—b9µC™Ì.X+ªþ¸p&Á«Ú¯¸ÃÈNRYõ£ŠšŸ‰¸7}4F» ®Ï]$²ßL(ú ½ ’wÞ‹˜$cø¹Fvˆì›`¾nWÄ5+ÜÙDÖÌ亠¡Ôx©€ÞÈ»S6!üi‹SŸ™¨súgy/‘ÉŠ¦z&…ÚPŽnRù§v­ç³#•‘ˆWÛ¼R70RÙ&Ï%Éúýóh™‘qT'%’èŒl–öên¤ôg"’ øHeÄ¿¸O×ãûè5œñðù> ”ìš7ˆL$²¯k ý“I¹A­7i<¾b„:'ó²QL>!üùÉ"™ÜÚèµOZ LŸ™ü\â>P"j7Aü`¢gM*fòsM޲§4€^Å{sÓþ‡Ü¶IáÏèO3RúMÐ;ºUú1)üù N~s™Ìy“u-ÿþü"¡EïÿË&/ª%‚IQ³¨ú–Hÿ¹Fñ݃E ð2u??ðF.ƒÄ’ìç£xjIöó$šåð‘~fUJnIö3ªþƒ€”nd÷L¨TÕHkÄ—mŽ]õÇù¨ÝÚäìOBå«xozSçñ &­ë'_JÄ‚¹“T s8OsøvÏ…`[A…@+Àôª@=.”èp[Ðü/T&ÅÙî‚òOÙy®©‹šŸ]£Ìr“Å~Yú‹‹¢Ÿó 2BÊþ#(M:I½A˕Ÿ‰ Ê,N£×@ “\øÝäÐxÊê|ÈS‰?Âä‡Gaðñ¾l_ Äéó&?@Ó÷êGVÑØÔûüzZöÃc‰“øêÉ*’†¸ƒYì ýŸLú¾‰›ýç„nH~.ŸFàVÿjüAÝ/UO’‡ñDvSؼ¡ø™IgሗñL^­ò66?gºÃ ×ÿ$tP˜Üúò-ÛWþ êA³ôÖþ¿)÷ùj½?Á q'ôdŸ ”á·)øùÄ É¦àçW@¼á÷OL’'©Œê[¼ŽÇqä茌7íp»~ã¶ÎäN²¯k(ùéÃ^\©ïMZÒk0Âx›%Ï›:@‰Ìq“Å‚G®º»ÓöYÿíµFP$‘R#:Âùˆ¦7@öbÄ Ó™Î;‰û=¯F¾A 7µ2lJ~&‚¢Ö’¨µä ^‹ Ýû2­ÚH#ÈRÏø'^Nmð•‘­qü/·¥Ã.#/³k=H¥öž^§PøJ©·ü¥Ì§ßÒA¿ôIPcüŠ€&òö› ¥c#µAÿY߀Â8ýfÿì:7²äÚÄÇqGö ÿ´µ¯7‘òÞ¤¶›´qÈžÄã8Kn LF!S`Ó§ÛüÖ7£¸'LBÛÀI »–èb¾Ôþ„œ=‰‡q‰ŒòCº|¯ì¹¼¾ã¦öçTV£•‡¶')0‹ú‘Vðò|ó{ŠHOÝ=FX„zF&½º7®ÁHV%-ì‘ÉË8N}¯F ïDúyåå p’Æ:¿1D0–õ$’±§wS^œà,nŠååì*ñ´BÑ·D^v$€âÜ:Á}Á sÃŧÀóÇD‚¥Â§-⦿;càV(ü™ˆ{þ™¤‚C#TÌàê^*[ 54Úˆ;þ‰äÁÒF<Ÿ—Ⱦ®iš¯û 7ýDÜôë¿ D2élã|kÉzXþIÁøˆ[ÌŠW¥ôg”)ü,cЏÝÁâ##~$ñmG»À.+,^&‹]œ;Èfš‹]¡ôçûÄ}ÝŸžwhA»t,Ae°]ú$cÞmlÚŸvÔÒ–ˆ V µáÛ­[ñáÒ‰ÔŸk°£ë,ÚH7ñ®’DÐU¢ ±Pø2¿Nj3ñtv"eÞ:Æ;ìqÔúIúÏ5ó½Ébov­"ÈÅØ„V¸`% öö“ iT#0Œ´rÈ*¹od°êÿk\:cµXS ÿyú\)k?žH¤²‘ˆ+}$•t>oòΩÊÂÉÎD @šßläe£8ýéJÐ:å-U.ü™p™çN^)zôLŸyŒG±Y}9¦Ç5ÕA‘ôLŸ¤Ò%Üí‡`¶úIÆÏ5“Ø5Þ#v?R9‘LÅ@FÔ3½ÊõØ#ºx­4þH-T¸ÿ®É1D|={t âdÝd3•ÏÛ¡Âý_±$yÇM t¸B:q7ÒÖMÆ‹|M‹÷šg¯˜Åc,ý[: @3y©ÓÂM¢2HÄÍ?‘Îmn zå™ó&‹ÿ9ƒÐ:¢ÒþA<èû¾eeRqÌx•ftT‚âà‡ cú$~þÕW|9ŒÖ`VÙ*“†ºâ¢–¨ÆèhÓˆ§¡cͬòÎ ³ßdý\ýÃPÿ34º”ÿ>¥o{,ùÏL:@¿Ÿ2úÜ ŠaÞFvÐ}³4wúº!š!q6çŠÒÒuà Ñ#1’lŠ`ªz"\çFZ±6ýÙ ÚŸßà-#8–;Iaí)“Píá8ÖÍ\[sùŸôx°äqÆÍw¥ÊF¿ï¶Âr€—…*m3RXyÊ­¤Qò-‘àmHa¬þ¦Å´7zK>‚¬T"ìnê$…CÉNRXÀDu£þO"˜ä ª&#…E%^g¬t#·Ÿ¶Dо•è©<•ãÙ”·^öêc0R÷M:÷‰¯;ØžûÄ5ó½Éú¹"(5¬ Qùê$…P¼AZ‹9V-H{oå«®X·5*_„Ö¯ @™ìIg¹q‹ŸÊŸ™Ôu?¦Ž²e#HhŸäàX®ÉénÔ:È=û'ˆ Ž?‚DíPÕ þ™€ŠìõæƒCž]£øç[Ž^Låï ›UÞú!(þ9Õ±k1ÝI~@û!nÿªš30ÖP—¤!áNV&Œ²eHÚÐ&A]’äL 4é$Þ8÷J«ÖˆGt‰L&vGA&ã$›m{ 85@c*Ž‘wÜÐI0Ìá‰Å‹²o‰ ~9eˆ@Ó»Äg¦h"›é4Þ° ™¬›¨@é#­Ý UËY‡ ÅÛ´¥Î !¹Œ Ûð#Êgs'ñŒFQU‹ß0ˆ¤›¸W›J”úñÊ«ßÄ·„ƒÖÛŸ* UaK÷À”CéLuÊ­GÑZçŽ9yÌö9‰;µÖÔ'°f²]ämއìÕœ(#ï¾ :GO‚ÎÑ“tæWx§uîs뤥S 4‘€ñ€.‘òsMm7ió&þªÙÇÀd‹ßw‰ïï‰x•ÆA:º“¼ë&¼¯¸nö³Õ?B}+F罇`ÒGæÏ5ÒÀ¡þ[&ó&< à=m—õ&mÜÓ'ý&sÝ$":f‚Öé“J„ÑAêPÍDý£ïM&‹#xžÚ]èØïûdÉÙG(út…ŠB ™@4Ž9»d€NÒÙõC¸S4‘9oâ—kÆ"¸8Úê#PÍDÅ »”@OÒ”Þ"½Ýdðôä‰Wžû&;G³ƒZ E³¼ïM<®Û*±6Rb²Ba@ô‰ª”Á€à;šÜ,òXyŒ¢Fª—Å;>1d€väãÇ' ý‘ʸ9žãþm f72X„Í tP4[k¼ÉŠ@4Ro¢=f+·ƒD …®ðFƺÉØ5+qWÒ= Æ´JyɈÿÓÙšcħ:p唃ûæG«ž}FF ”´âÛËOâtía­¨“uWéM7îh1gú#žÇxãÀpPù­Äò= ÿ“É^™@4Ìr8 ^yû€5—½>Ë¡…:¨šôN½€pxÕ—l¥ÇS;ô€µÄ²a@4Ïgdâg¥EÃ1X{oíÒ1ßÃÍ‚4†Kƒâ‰ £Ýâ¾™¡—ÄÔј1—x t.q-ž4æMæÏ5kÜD­È ö#˜dò}y‹êÞ' b K¢h±¢¹è×Îg`±óyú±.Ä6(úh2»çñ¬-í ÖüûÆM|O—$¬Ø¿äWÅP;…×]Pû!¸œN ÍÈê͇âÞUËÊtP»¹*Oè€~ƒchîΞ@Ú1ò^³Z€wˆï„­g4µI  P¦4ÒSŸ‘Ií‚÷#ó&;ƒB Ä®‡@Œ‡….£³ð\"6ŠëãCúÓŽ[èÁL0“ÒŸ‰`|ÉTÒ|R(‘wݤ¾7ñ0.‘ίùˆI  D¼J£J9ÊÈÚ™ÐñOV?ã¿ ôg[JªL:þß¡þl¡øNœD3Lâ…'Ï¿öÒ¤>ãk†P&Å%RÀ¸‰×&õæýÏÍÅqÂí?zgÕ÷p·ã!¼ý ’rƒúC²nà͵“¡i ÷“€ïKêyFàøœ¤R «‚¦–°õ)j2â'ñ÷UÒCˆêÄ¥?ÐúÌZŸê`q2oÒp·"ÐÙA·†È7A!ÒIT‡ñ¸ú*¨í]ý®þw#¥Þ¤Ž›` «ô4Œ q·˜Ä4‚“‡“`^ƒ\{#›‚h‹¯|?ŒŒõGÉ™@ëÓf<¼]ä¥`[­"…ª[%žå‡£¯£ ó&žÃkª97âþûò¼Ìˆ‹}„bŸJ(Œø!D"»--#æûdbnìh#¬r¸Û¡©Cb柉Ýã•üT\3è"æÆŽ"í #vôUã?u¹Ï ì'íM¢û8e°£Ìˆù@ýÙÇ ÛOêT17¶¿¾Óz뵄QBý§CÀ˜ÄÜØþJÁ c\÷EìhÑhÄnwÛ§ˆy²Úÿ$æÉöòÄ¿õ÷FžƒâËBôÓÏöˆ-d–Ëz‹ˆmyTsÎéŸþ6î›F~€EpýU~ÞÉNä…ôO—¢—×ßiÒ!3bæß߸ù^¨~öByÓþyøûÆý°~ ˜í·P‘7b¶ï¥XñYl1ó¦ü¸/¶ëñدˆù?ÞJ×ð…—7ÿ‚¥ãdÄ,ßÛx¶ˆm.¼8DlOw]é.bî¬ Þ^ÍOkéæö÷BôÓõW¤P.Ô@õ·Ò9ŠóLS´Ä˘å׈Ïý»~Ⱥ‰ù@V^C³~áþ[u¯¾vhÿ´h0b¦ŸIý¹¦¹¡¿ôUŒ˜?ëg@Mdú{±÷´c”Tó’qÛÔ[4O›i>þ“oy/D?3í÷øùàþw ="qÛUý ÑÏÞ%_Ø¡u}7þƒt¿j²¸õ'RÜÖ }'#æÕfÒüó|ß»‹~ŽWCô ˜ý_äïãŒZŽ·²xn ÕªÛínö?y#1û󯢟Š]úKÑÏg‡™Bô³«lÛÀ¨7è§fúR³n‚ÛŸÚ?‰PILï-ÑÏ¢Eóe ˆoïë{„¢Ÿ1¼ÄD?O‚@ ‹¶¬AûJsdŒ¼7(?—TFŽÏqÑÏ¡öT#Èe/žÅ;™ˆÞ†€[•)!ŒùÈæ8â­­êÝ¡”ô‘ÒoR×Mú{“¡ƒá-2yBöÏd—FJÍÏ®VwÛµ<œK¤¼7Ñi ®¸úuÝ º4ÐÙEõÄ%ƒ5§v gú$KJÄÙW÷y¡è§:> ”vãFàÜžD!ÝG:E‚h:@®S™N‚ad“'·¶ “MÑ/~2ýÔxR{;˦ŒT ƒÅ«h.ë÷ºŠéú™ó&îÝZAÑqïv«¶—Ê›_iå|épôK¥ýŸ¤¥^#ðn·Ü·R©d¿õOÔËþK¥æm¸s¥â|:¦(õõOŸ@5DPˆt’Jq½7”ߊd:Ì›¤îNFö #ð›ìNŸ¤ð¸L¿CWý Ó͇ˆæ8ì¸5öê¤7²úMPcÎx1Íj”zûq»º¸á7 qÃÏ„õ…?å¼ÂìñûDÉ>Ië7ñ¼^LL62™=n[dµ›ø:ó{áF0«¢ô²˜É>IJep³_#–: €&2~®™5[Ôz^m1… mÅIÐLÖM<±W·bûBÐDT_¿âY¿``£ŸQ¨þü‘JИ¯bÄ&ZÄL•2@}êÍ+w‚V• ª’:‰§÷™ìv¡S©Z")S¡diÂÆgAtVÎ?6àÕHšÖg ¢.뉧h(ñÐ,¾Äõ?‡tyŒL…½ñº8›˜ñ¬r= ýOýC2Ï„Áw¥è—f¨…Rö'éÒ ["“Gñß5žÚ³m]`ÃsârT¡ÿéÎK—Õ d*UßBÙÃH•Åió&~GGPZ)ÿ™L?‚qkÿ-ÿ“u¶éެ ÞÊ]Áyâ·ìcw¤ úßô;¦““Ø E$ÿŒ¤ìLT,à7|®QöÍ‹qQÿóZò?^érú8\2Ø`:&ü–;ò™« šé3“!™Ì‘ r‹Mså$×sÅ?葉b–À|@åÂë#ÚLÀª¡` {Àê äWH|“CöEh5ƒÀ`ú¹OiÖ*óµ2±>dÜ[ÛbuÕ%&ÿìA޶™Žñ±Õ§Ü¦8ÀKÆgÌdŠÒ%jÅ¢VìC(ùˆLÓ&l&ùéQ¡FÉÏÑ|i‚ägÖ¾êçdLv͹ôÓ"Œýç ®—Ô tÂG"™ ª‹òïìTý,ƒ§â‡¬‰NøŸÉ°)Y‘@ö³³:e?A1ÉK¬˜„‘¢NÙÏRÍsé´úá¡×Ê^ÜŒåÜé|V×uˆî' ¿ŒèáD3m‚C4+£XÂCFÈd?dR¦¡Xézóïæ¢×ÍæoþwÓæDÓê·é+‰Öz‡Í‰ÚüÃ-¦õŸHô`.ýƒ–L—@÷óäÓ0²Ð!üyDµiDue>"è¹Ü#ªŸÏ¥fÔßKMÁ¾—´}ºe}¸ìá%ª{8MBásÝl"BöGM{¹`¯¬nâÕŽM:¥>MnóYL [Üë™@•×¶éTùôže‡ Š’ÐTí”ûùýlKGÿí¾À¸F‡Ðg$û¹dyφK´4:ÝÁé=íÙЬµÐ! {íNµO±D‰Ñ)ýöê}ÁCË8.ËKzè"ˆd“2zƒ'‚#9±py/~ÈúïI=¤eÐ)œÀN‡ØO$sg²>c4µøgÊ_cüÒ%‹£_R™ŒBhPìG¬ù!¦Üʃ˜Sê»3Yt`Š¿j÷Lè0ø0(øérâ‡:Ý f¿ôGaõnŽa‚Ÿ¾ü ie/Ù”ƒàã;(øùªýRv&ê»ûwAð3øn?óå~Y3“MEê}ºòá!¥g‚œúbVÀh.`o¿1¼²á!™¬ú!úŒ˜¶èüy\ ú›ÿ—´˜™@ÁþǵvPï󣳚ÖóA5­õ½9D˜Ê-~Ðà„ÚVÕ®[]l[nv‚£ŠÆ ºHiÝì1hϾD³y«Ùtp_3ÑdCK¼(=JDÓëé;“Éœdî±cºÿ¶œì $ YÔ=|IÙ™èìä|œÆV± ¤òd3ˆÇÜÁ Ôü§¢ñ:—ø ö°Ýà%3d?²èFocúÅF¨ôfJ[P›Ë–7ñÂhnzƒªŸÏÓJÕÏŸ¥Í¢s¿›VÐÜ N`Á€Åñh Š~ºŠ÷9ÿ…†%‰èvð³©C ´hûÏŽ$ú´ bRõÓ[þ‚†ê¦qˆ%×w'ÊctRõ3(X  C  ð¨~¾yIÃæä¤êg]Á™„¨gÚÕ¶tûÆtTš³/àÕKÔœ±¨ÑTéOµ}Ș™¨MÈ®™Hº”"Q˦‰¶c –íK`Ú¾DåQÛ¶[#CsÓ,V2kE;³ŠÇ„úg¡Ù¹F‚R÷KÿÇE|Rù3¶c}Èä|É@à’‘.)bÿ=Žð¾‡èÜdð¡—Pâ‡AÏéš?@óê%Byú«“2oG?ÀRÕCä!ù6¤×¿ÄdÞ¸vÌÉê— ¤Ö\ÏIÅŸê[ÿ„âÏj¾ÊO ½ýî7±p8]}.BñgÍî7D?#Ñy¿¶õ#[Lwñæ7ÞtÔšTý Jö?ó8æfbK+DéªÆniüN€~ÉøŒAq´D‚úè—}w{4îVp J¤ï÷e¢ŸwM¢èçoû÷N?ÀeÍA¶±sS(³m_œý<ÛœõC ™&ë¢èg$‚킉 ~Àm¸<àŸ'¢“ÿägø\/iÛo«6íC {J¿¤°‰›â¢äg·läCm쟿ª¯L´z«ÙYâ°ÝÿYû9BB÷EˆbKSAh?Èý¼¤eÐ?„ ;<çXPû9í"–- }ø.âç)Hazj¢Ô•nNjrD|8\€HTñêçéš«yséŸßGÍ @–¦½U‡UH™™T:ö ´ºß‘ ‚Ù&¸v¢Ù/Ñ©SbåÞ<…ÿÝ n,uQó³mÿ%¨øH+™@À#DK%žº5èÓ½dÍL¶DB¹7ë7­`' fí —{d(øÈ`ådq2g&H;6iëC¤DBÁŸ@ Phò, þ¸’á!&ázI§sÍ}gQ÷³3ú×b¡‰Õ[²K&ß{u?×_Ôý¬Ï]Ì\·T sài¼ õ˜~‚m÷Ur»Y{‰„ˆñÚ¾µÓÛYû‰¤òg”c]ñÏKúÎdôL`Õ¾äó"¡³M7tSí'R3Pú²MfÓ ä3G/a…9ýªmj?/š9L?Ü”ÿ Ä"t86å~錖‰µ"¾dI&òy+„ø–…á7å?ÞÏKÚÌÍLiþÁp"W`ôh„[3²YÌ{ÇÓ¿8·7å?)-læÛ@=E|›èKtþ·iqÉm žj¶mG0]CL éøuÖwlªÿ¬nÓ•¥™rþxº½©þãÍÀ¬´áAÁ†h$“÷#ñÍá^› ò³µr›¨µoúÞôê¶2±6•ôq7}@´h:{˜º½‡?4Š7Ä"1ÐK¬§Œ7@‡Xjù†h",ó¢a¸)ÈæAžM(]y˜S3PBžÚ¼ëÁ÷m@Ëç€A’F³-uS´ýüá§иOäb£ÊKvºÄô7â·I€¾¤Q Œ‘KL¡×6Dû?}°Äï¬ë­×1 ITŸ{Š ýªÿEû—¨yë}éLU°å‚úo.NS:§Aƒâ—ìÏíQÖ<ÅN°!D¢IÅâÎòƒu»meG²N"èÌ×-v#Ôz[Å&’Pþ'ʹâ²0AóƒÒŸ s™Dýº@ôÀú7ìgJ^ËB(ýyÏŒ…@u˜…"Ðz;'“ÕI©”J2¥C ‹å¹üB@ ”>¦³¦™Î€˜ÐýÒ©T«Íög$ª0­‘ËÐóêÞÌ Æü{ɰýbèš+Å'Jm!/q’FÍ€— É6'“etÔâŸ'Mkøõíjµuò_ÿHñŸêŸs[ù÷*ÁUß¿"@ Gÿ$Ÿ‡‹¸¨úg׈„jhÍoŒ´ck!;ÄÔ?«™B_`O[êŸÃs3…{A sà¾f¶L,AÉßH+`Ý“ Àg"¬C(þY·íªC¯û›ýMÿ<1zEhìœÈ¨™h|/uín%£ÀXX”и‡q²þJ•µÏ\q„®@ y¨Ýo<'ä".Ü f÷ŸÚŸÅKC„ÚŸõçËÉf›Öí/¢ög™v` Q°G¦xˆi¾d0‹Â~øÇÐXNÖÌD§ÿ4á£CÔú-;‡:GŠØ€·sù”¤ôg[v¤'\ú·;\BE {†,”þ â·/‘ Õ4\ûÖ¬üíïˆö÷ ¤­L˜vo—“V>°Éd—L`ÚZ¾õüš¶Âu|þ üÁÌD-Û@ÆçUHÏûÑ';d1k`:Ù¡ºùóùÉÇüUžX˜1¡~šú”½ÛñÁœ°6ŒLJôLœ¤ËGèô„v6ÿÌ»¶N¥C4{#Fq.‘®Sæ(X™Ðý›‡¦Ão+4rð0Ì_gXÃ$:æR@Ï÷I) 2¸,Òÿ{Šö@ùsNŸuTþœ›Ö™‰¶$P¿úýÙ÷  B²Iý·“-ë×;órb w퉄ðg$›|þ"421P~ìLf¥Œ‡hd¯u› ú$ÐWÁÅ!8£xɬ™,* «\ž©O_·.³bôm„¥SÕ^'.ð脆 ü `5ÏåÏf ç³@ùSsÒ =ÛÒÖQ'.62AP»Ñy9„Ûׂ"“—ìÏرaÇYš·%ã\¨þ9~ö´ª‚D¥—°$¢7“‚hÛßj1 uø‹6Õ"¸ðªarÙaq*PÚͱB5 mÅñ³˜ögñŸÊ´?_2¹½NjȾ  &)= @Ä £ÂµÿW¸™Ø’´…뤄ÔMY݈úp¨×ÌkŸÈ`z”݉ w'š¸¼Û JÎЗHŒ´šI™à¸ú%³g¢†O 궞ʿýì\_‰dm”—4Î.nø8¯í·ùù,“e6L¡"P jÇ¢ÓY_²Y¨úŒ¡ü[¿‹ÛFÞ} ¥ƒUŒ0@Á]¶P 4Å4âd×L¬Þ°ð÷£$P 5ƒÆ¤ÔÝH&£f‚éÏ^O,æÙï@!Ðzg“ø5‰&ÚéÞp•rë?ïá0}Œ¥Ý_âÐN&—!þäŠ@ W׆JP¯H;¤´L*MøŸÓº=~ö%Wꀲ2Ø-™‘Ðٙ˜"·•J»¸%]© È’L6 ‡ß§&90«É€¾Dç³BèC :˜ŽvHo™Œ™‰¹r—욉p)²w§\ ¥gR?cšd2j&“!š´µ{2ò*F,ù¡Cs_OW_´ïêÆ]¡R 4´qx‰>ÍzýÍJà·G>DK2,@«:§îÙkº¡ÌJe oFpHeQ¡=j•ÂÓÉCpfý 첂ñ^)ª6áÁ}°Êý 2¾ æDzƒOÚ\Ffj×¢v­·>D˜þmß©BI6.õj tÜ,ƒÁóåCl1»»ÁKv£(S´ŸÈ ÒxØžF*-ªm/¡¦}õ?[£Ý¾B ÊO¤ß7b®ÒK^WN3Su•§£ŒþÚ‰ ¿Û%4í‹Ùd ‚@Ú>ÄÁ†©Äg«Q4Õ2Ù!4vˆ:sãg«Hƒ$P$fÔ^bFí%¥Ê(î™8ú{…‡ÌýwÈš™¨äÒG¾G9–Wuˆ®a`xIûŒAúýÏ?!T–VŸh#‡jI]ízÑø,´ ”@(=˜ Dk§MUë€þ%’‰Oße£Q4Mÿ’~AëéÒd.a8žŽMë~,gd÷c¹édìL nÿDó^"P4Šf›ƒÙ÷¦‹sHcüÌ~L ‚ÎõÜg–°f5 ‚VÓmœ;€¥¬ ™K&{í¾¤°¢²‹‘Æ“âácZ4ÿ¤ØÔ¢ Ð Ô¡C‰Éf]as= wכɾĺX]b]¬.ÁÔÉàÇ¡ÿÑàD²ø(ronz EA‡]ÎÆ]à¨-èÇ< ‡J×Ù( ꙇJv0ÚΡìMЮã–ßèÈô_Š‚@TK^ÛF•sš%˜´¦ 5ÐABï2‚bRëðtˆ0#bhpÙ‹MÒpýËC ã[Wçn"{–|uÈ YS‡ ”Ú*~Íü€ý.þô;tA#© ѯiGs/XõÉïÉD-Zï~<ëÖªÚò ‘èja¹š"Á‰ô PKdÐS¬+Œ­¢Ö‹‰h…ï—@áû’öW2¨-mfH¯™Œ‘ÉÜ™(øýùµ:tâN³nÈbíÐfïÌÐh¶ŠvjÒXÌÈuõ”—Y™|Àn\ÔýÍeF2Xv5ìY€4Üi8*>¤êßhg{Rɉ f£2À€¬š' |vîcØãÛ£{ý#<édD¸S (ùDg¥Sè†Tû¤/÷’)™À— dG²˜~?ýyY,C| Nrš?w‹MìpvvnÕlf_.!cÏÝò–ÓÕ_µéÇÞ; ÏÊè¦íu§(P» EéÌâZUͼ–‘ɳ;†¥;„AÏ9Ü}Õ^‘°˜ÑÞˆ.@s—¾S .Æ:ˆŸ´µz ¼¹—p©vû dü¼AXÓ·$dbWn€5BRÂÄœí÷áotÙ̾oâ“nVØàNHùŒi˜7ÇçaP.«ÁmNÖ0öâ@ zrúøè z.dvHÅ„ÜvÝZ¨Blþ +À¥©9ªw({ÈþïIò>D˜0Ee4ÖT{|d4êÜ¿¤2Іø€&Щi¡5c{VÞxf¾ ´N4t×oi ‘@èÞÃÂè4 ß:·qˆõé$ØËˆÚµtnõôIF÷:ÄâwÖßs¸Y1:{<¼ÁmþQƒjXv0Óý${ Ê"¾í—h`»M[Û%Ú%Ü Y¡èau7ƒAU Z`ÿ.yRa—Õ¢Û J=ô1&ïûsÏY3Y#“Íb‹âï%ô²è­ J‚¢îÛ`r×’éÛÀцhN†iLˆ‘Ù3ÑrêaÊSmö{öÏç„àf6V#𱇝›ÝÊ‹t1¥{ùbù7J´¢ÛÎ¥uzj¿úásH3nHÒ8¤P>žpÛîóLIÐ9‚jR“œ;GtbsX˜šô€Í¬1[ú  tëîæ„è”œÐ](þ#i<'ÃéÛ®5¤çÚ•‡LÖºòa™´þ½‹Á!R>dGB9Ð@*EÀhfN*¢“ß÷­iÂ@ÅâhÓ„^²K&Ò#¡(¾Z’b{Ð6¢þ\ M2Ô˜ãÏ 1kM#cLnÞ`ù»oÆR¹¡#_ ¹I/AnR Ÿ1ñ+ûš‹J_2È¡•=›uyàR<kJMØiN*‚>„Š @Ôº:Òèls‰œÜ¼óœæ˜hùœðºØN5¡‰ús¿â7ÆVpJí¶U}ºs/PoÎÒz0a>­“ûÀø™Á?©ê.‡XH›»ÇÞëÁd‚09¸a€€°£ 8™ØþcS4ÍÔþŸ¿j¯HX À?gQëˆf‹¡Ìå*¸¶(,F³›ÿô‹M^¢Ñìiú6‡èÉD è4} vÕ}ßšPZ(L$QI¬@¬Öä c23@†’[ß(îѵn:ÓUáŒJXýµžÙA9Po®vHçºJ" ‰ ¹z3Ç|R"è™j„ûa?Åiþ«¦–%ÚÎE=Ð@êʤµL¬W—­E=Ð@„5WË>‹fi×T¾© ­ÿi͇Ôßì‘t7r² ­ÿ@0ù—=Âhu¿.üÍú¤N©^@Êó©ÞxúD³_‚ ÆK :ÌäS}‰©É,w8ð’Fwî%¥gR?cÑžfÐ%BÑé/Ûö”'=r²Jv&jÙÊÏÿRJ„RV&íf&ÙÛÖSë5ƒQÍãäAÓîDtC˜ÓvêÝL8 P³˜ Ñþ¢>2êýK4¬\:«ï=D" <'xËôÜcîî2i m»Ôòiˆ‘¨M‹W‡¿hÒs¿ë¢”}“z÷Í\I¡B¨«:R(SÇíJóŽ_¢&íÏO‚E%B#ÐɈu-»D7ƒ}ØÅ¨ö%¦ dÍÚ©È´ëv­õÓÝ ¦PèZ==<áTó³0”!Ô­Åç'õA#Y‘@ ÔûZ@yć zÚ4áAÞ—à”zYf­@ 4’ ÆK “õûQìþ%x‰îì¨G·„i’Éä)Î|ÖK jØ¢ë:-èÙ&î%•…¿iÄŠ/”nÁ1Ë!H»·bßõ£8P ¬çå÷1¡Ä@m TfÀ!ð|ˆ©Ýïf„Aï¶L|ˇ@ô%8Òy‰ŒHLô%¥gR?cšd¢€¼Dc¾{®åA—EÊQŸ® w…ÖZtÉLÿà$"8…ªþ"uê#}á9Ú¾€?Dá[tÉÈöKêg fÿKÐìGü ,Ðê,mÕþéZãÚ/ЙßÍ«Z¿I! SÎ:DÃÚè§M¢aí@tæ¢Ù–ã½óÌ`}†lÖrÂsƒÍguqâ›šŠ’•I˦¿¨Ș™LV€¬bd1ŒÒ|ÌÞ‘P Ôó±Ó¹Kôœb7.Ç =cÔÕêÃH§%ÙüUcg²`áØ¥ææý&bÑܼúc„ë´ë´£êK4÷¸™øB#dMÜÓH¯™Œǵ@ù{û4‡<¨ÔíDäœÝú»k߇n2v§u‰*Ìbkf¡(PgùðÚöáÚõáz0÷‚Ïõ„ú&"k‡hÓŸÚíÛ+Õ–“ШïÂz@Ë#Ô˜E¼œdH&êË‚ioæö*&gDV©Ì:^ö'UŠ#šbÛ!E±:ú—0\'N,¤wÉ™@4à’–.™sü’¡z€²ÍT_!;ü{€0èQÐäCY( 7­Eð!‹‘«íD"€0è±0aÚRf&zBíe·‡¨/쟟O ƒ‘c;M@µÓ’½„:@È!© ŽÑ¢¯&÷ÝÓÔð¿å^‚C¹—Ȉ„b ¸¨A¿Ö—`-{ɨ³ûž§Ë»^²-ÛʉF1¼“ïªÐ€óœ'–éÚŒT˜Ñà­PéIÉ_‡Ì‰åÚ_¢ÈÔPB›ˆûs¥á?íá:2±–»±~Å—Œ•Éìö! å@ñfbJ2/éåCxd ÃÈÌ`µLögŒ0Ù•ûo£>t å3¦e`ºÓJM¬ð!Ñ«Û~ºö£Ú· ü¢’ˆÛ¤«A4(‚¾¤fÐÉç#Ü %ÇŸ’À¢ y_cBâDJ$4ÿ‹•*bs§ÉjŠiÕDMÑí@Å L ʇ¨’Œ'¢J2Ò;Œ— K®h£h<à;DzÍyÑ@ô`®ûÞš§h\2?c  Ôy”¹Õ@½Eý9û1ŽD§uïW|‰nî  ÷¤hüÌtoP @ë§#‘L ¢TmÒRèøø “|[1Ò>êhæ^·Á”ã—¨I‹c˜´/1cÚà'ß#™ÌÏx‰þÖ¨å€FÙ›lT B÷&Úyˆ†óPuN¢Vm³²×¥í¼Xðç´ðÌ ìA\pçQwn5ûΩúuæ\F^ÉÊ$(ê ™m»@£"P ÖuýlÃç>¥@½}ã!#“¹§SÝ6‹LÄ<æFE —ÓYŠ@ÕäNž’É!^R-YÁ@£B Ýìi¸FË9÷¢èÚ¾lQˆ^wã&ÀËþcÝ´›ƒýçJ(—Xß2ÆÂ;%@½ËÑ!(íf;tЉ)ò¢ž\ ˜ö–u,ÿŸyXb¤´Ljoù‡@:fÚÃÒMô%Pòm«snÂvSµôÉC„_°ð6T }Ë^‚‰ÿ’Îóp10¬œÊ‰UN_ÂÓ5ûÚ¹ä/kõ§D×x«"?„&h‚žÅ–š{ˆúÓm:¤à¼-‚• ×áîwÙdP+hù˜ÅS2né¶ÿ1ãýõ熕W@Ó틇Ã;Õ@«IÙª‘ þ\3¹S4õç¡ÅÖý6Щ>'(Z¬°ö¤ÛSçõ„§ wHšÛÛÀè>õ©HñÍN- @¦ ·s¥Ó—sŽ_‚Òi;2ìÂÊébL§2œ+ýÒ©Vèh§$h «f¢?¨‹„®Î˜‡ Š‚îmáE ³ŒóØa@(è¼DÿŸ5õ>d²|ÿ¾×1iû}öN9ð¿¿½‹Ød>†gßÛ‚é+Ÿ<¾Wðï³ôgPíÓ’(9Ó¿wøºwQSYÇÿúðî\ >¥£n@ R˜ÉÀÅmTïÛÇýl˜ ÐK:3û¹V È‚Îf®Ñ ,h û3Ô&d®Qß‘IÙ™´ ú‡|î2ùi^ˆõv¸cp UA#¡,âÏ ÿûF© HŸ™ ¦€q]…ƒx9 ôí_"Œ"O¾¹9¾Ánì/AÒ½i'Ò¸ ññÃ(.™AÁá46ñÝ1þvֺ̅A]"ýMMreíôP?D÷v?U_eGçæÛ€ °¶‡Ìe<ãú¤«ZéCÕ¡@ S2‘'íÇÐ3é+“ñ3g&K2‘v¾A7 R2ÑV–Ý\]ÐFºžkê—Ðé³Å|€—Àb·cüVúËÛÖ€qûý ¬ Ý!ƒÚ\ËoƒŠ“â¿“¤öŇÄöÅJV ¢ ?ÿ &ý€»ÞM*A¤ïLPrkâ ‡Xã2.¢ ªÒÅkˆÛ; $¨«VR8χøsÍV“i’ /Œ¤ñ§›TpÙP=_É`†èoùJc±ímR %‰FèóM ¢¿9÷/AÛ2+:‘ ?­Ÿ•'ÕíÏßòön?Oè.4„%ÑiHã9ÍÄÙ\EƒŽß„è³@þ{#‰‹J ”™Iý¼ª›6Š8Ù°èAYT d½õTš 9ÿ{İÑŒ¤ŸŸ ¬â ÷4GVñ®­Í@£nƒèVìc`¬fKÁ¼æ…f¿[4 V¿fÀl€±_Å0é3±Å ÔUéÁòƒÊQkrŠÏtÛë6RV&í¿÷€nqé²1ãy‘wõq²¨ÌÄ Öº@—HÄt@‹¥â-=™"‹B ÷´hQ4£' B ‘ ÏøÇ‰¿ êUó§ôǰ]×5¨„ø ç·WÖ`rƲ“´ ë:Ñ lú„åò†¦$ú{º@Ü!ƒ Dפü•‡0u@¡ÈNÒ(*ðó1me22€û’EK{ÏšžZI_uQ ô!” ¤b2ù5ÌX Ë,S~óC‰µx(ñµbëÏvžS¼3+sã«¶»p—™[”uÙ9µ ˜;ðsÒw&z"g¢: v´ƒìÓm¦˜]"lPöóßl½¡ÄÒHÕ@Š“Q2™=ú¨ˆúoÛŠðÎ)ªN~Ô’‘T;{nF ð’No‚S`SÔû¢Yf,ÂnwýËúˆ*Ù°úèÝlE¢–lfNnÈ€FBß‹Nñ698±9dJ&»f" áG¦P ¶ ÂÙÃöì ! ãçØQÙ£ï%š T­ÿè!£­Ý‡ ! HdÅW©¨žŠÍŠD2Ñ¥@Ôú d²¨„ØV µ"ý½7>G»§Kµ´fω¦šræ$ºôƒlˆEòšŸˆÚþ¡í?<ÑbC T£ËHÝ™¨í_,A~ÓôNþ">ùiù÷eþâ¦å¿­ Ñ!:ù·'2l*Z#3 é÷è8Û‡£hmwfþ0ñ óþg‰Ú{21£û PÝ`»‘Ò31]{F²÷â¡å2°2ÃáC`;‡rí¹1N&¦­à{yk>#Û§/A,Ï“56%@]CIëöë/A?“â µàªu‘Ñ<½ª>ÝüpeSèy• z±†A›;K–ÒJ&ж÷ó¿-¬­þDÉÕ°Ê3Ͳÿ5óCåÇ,û—@÷%•u |sÁFI_P¿á%PŠ*:ŽmèyéÜüB@/Ê#Hµ÷¥@ÔÅè_"˜^÷6jÖzPFŠwø¡›#½gõ&í1xÅÄ _ñ ´錘3äqj€©_ >f•`–‹‰¹½’¹" hµT\¡¨wH9¤J&mdO®Ú±˜PTC2ÑM n³õö¿æú#R"™lê ösNötx€îç/гhG‡hC‡h2ÞÏÓá…Rp“néôLÿs4f†šþÏQ¾,×1~ˆd‚¶µ”;d²Š³øuâßâ,QÐ]­¤Kæ‹¶7«ÜNg_}–@tk ,M³_w}¢œx‰¦@4’ïÆ–BZÿmúìƒÍÅHaî"—f¶õñ32õÿdo@Ð\{Ï[ìüµ-»V ÿ£Ué݈Œ—Ÿé·393?‘•É¿ïæèbáP_»er&¾¶g¬FŽ+§JöÛÈÙ"9Ö ‘¨êtgæŸ!ÎÌàÌü†*XÿØCŽÉ™ú*¨1Œœ©ÿ(¿E¢á¼úãV|ˆõqºcôÇÜ•±IMg(œûËæþK4`b>­†&Z&¨1¹‡úŸÞGúTWýüûk~8½ ô’Àè ÍæÐ xìØÎ²®CdGÒy!>#:+¥íë¶2A–}·ËÁ¤/û2;-Yë1|ȶDK²xÀ1%“ò&‚€ë8¨ö¶d¢‹ØI¿ñWéàÅ̇,{+›ÚbÍß[V$þœ“Ë¥‚™ öó—ôš lY³A™Ô†ÛÅÈꙨ×;Mä­ þ4Éç£W˜ˆU†‘X%­:r j‰–ýKÔ³˜©*˧ë¨|¥„~Káhÿì²üWÙT²‰Îù_³ß`³‡É}Þ6Ï£_23PË'µ|†õÊ=D˜ñ㌥œ‡êõøcgÂXYY0ë—ŸÔþÞ8dÒyØÓˆ) ^‚zQ ÄkâTÉDg~ zpƒ¶K$­eÄ—àäæ%˜ú–­®åš\çŠ)‘–Z©J£ÏLªdÙ7_o €Ð’—/ÑÉÈ^‘ÔtIÉ öí:ŠЩÿù/°´ÊµL¦„!XpÈZ™l®t\[ ¥?½;”ŠÎŽL*C¹¸*ÿ˜ï¯o¡†¥i‚ ÐÄÄôï•H&BÀÎw꞊!ÊJ@#ñ÷Ãa¸§‡ —†õz?îÛK¬'ßÏolͦ¥*’ðñ-Ôþ ¤f`©Hö)ÿ采˜žw#HEz 䇭ÄEU4rÈÏ7‘W9·}R1WM.¯øº¤i 'ÝŠ? L‹ n' fêÏ_DAûú&{8X˜DWSK‹ÚF b¼ii¢Û€ÛÞ‡4&‚–idÀh¾CôLbÜ¿{¡°dv_7LÎ:®é‰ñˆd£j4”J¿µÒ/Aºm³¯k#ËxZµ§~3“%™è2öH¾ER>cjËDݸmÂæ‡ å´ïÆ…ÚŸ?7’‹0Íø%›§C¶VPûÓó¶´9ÍÊ„[)­âJñOoRªP‚u¶:5µfG¥ó¬miLÁ1ÖªïÁ1:DxNó¥–L¿¤òÈÈîCá·@ ý3ýÎ d®L,ìZ  ºßX$j€öÎ4'õLydÍ'¿RtZ§¸CƬL>@mÚ@„!+ZöÕ4@§]îµ|Ò*…\+ëžÁà‚<†‘èYVǹhBFµ¬ûC “t‰ €¾¤rO©Ë3¡¶ƒcÉϺXh]ÄÈdîL´Âdþ|Np7xÈøïáÔ³¸–I™4ª°Ùo áŸH øÄó^­¶sVJ€ž`2žgYM‡˜`?¯Ñ8IÉdЬhþªÉ¸%7´ ñŸS+´š3k‡¿ Sÿ’åF1RG&­dÒ{&ƒÙÕï<ùwÑ­­‹gîâUºÙ¬u“ªnfÙoó7êfÍ´ÛÐuÿ±Ô¹]03A0ÛØJ Pˆ»‘èüD]º‡˜èKÊBcQ›”W¨ûºdŒLfɪöÓ¿aÍ´%ý›Á¿h?>ð˜g0Ú4«fÒG&K惴j¦­Ø_Á‡°r3°A(5l©;¤Üˆ­ê'ß~eb›ŒƒÕ2AŸbk‹©ÍË* >4­R8†}A4÷u'ÐÒuÏ@-·û…Cýókq¦ºÌÅ…Vݬå¾Þ¨þù| ÍkF§“šAk™tÊp1×(þ9§m‰p@Ö¾ÛÝ(þùŠžUÅÒº·ÈƘ`Õ!°ƒL÷äµkÇ0÷²u¦g¸áÑ þ‰Æ2A×ÝK þ©•qb¤P²‚fbƒú§Jù9Q§.(h¼D !/•ÒŽ­+¨]Bá·HxDM;±Q(5mé+“ù²>o¥“¿ÿÌ#k‹“¿üM––ÇÍ©Q´ülÕlT dd0ùˆüœ¬‘‰‰ ^"iÌvÄKèוjEÓ‹§„Jè]ÛŒ£P sd²d'ÂÐÒ¼dEP4(!¨T¬°I)Þ×JüEÏè•§³‡ f¦t3w& L¹åÞЬ0±žˆç_°k_¢›{ j×Zæåˆj›l×!ˆj¿dÁ¢‘Ú!ªÇ4?ã €N;ÏÕLHŠÑòí…冖c¢YI%øu•i3‡ é´@޽_ªPþá!ý©i6ü“+ó’ì˜ýJׇ3­Sü3ë¾~É`L©ù5q¸XÓCô€b53s{ÅÙÜOÌûèØ ÎÊÁµC èˆÌÓ;)J3“&™ŒšÉ™hpïçvm§úg³ŽZò¸B˜®S Èû5R™Å££nòŸ/é Üñ)ši!»Ÿ=ÌÏ[!çxšmrJ¦ˆ}…S?ú´Ig•¾}äÁî>Ë>]%@#P³6õéB)hï:¨½/{&jÖ¢ SFì™Ô D2YV+o`3Õ·9±F­F(:‹Š€¢ IËjˆ÷ϤP ÿF—w¶¢OÔ)êݯvÏ—8¨ØÛ…}³›‰ uê½>Ý`ÑZÔCÔ¥ d÷L$ÜEcúÌ¢önÌꀇî%µ¿„B@@Ôþ%ú‡[E»v¥mHÌâc7 É´\£edÑîàž=ª§' Źǿÿ­L(²(—::È£Që%:ùw7“P4øsÛ|’!ÐPtVÿ"è¬iÊ h Ûƒ2íšÄï#\Ëüøg`7ˆDÕ ›éÜrŒÚHô ]H¤~Èdš"PãYüüÁ£óÞÛL]™Œ lå_—° Œ¿Ö„"h$Ú6B= æQ¥Yþê|†4~ÉÃo£Ý5'A#ñN}Åô€¬ùÒ!êÑ=¤â xAe.ò0ù$ÓÝÐŰf‡î%±¿•6—ÊBXîÌ|‰Ð^ ðæ^Òv&£|“o‹ýªMâ 9ÐH4²ýx‘ ´÷„ö^bU‡—¨Èü¼×j™ìÏIïE5 @jϤeÐ?dÌL&W¼i™Jé™ÜB1Ð@ÔÄ6.i’‰%l\2>cpV1múÇk“b Þ•OEÚZ&efR%ýèìÿy,eRÎ*·@€o[ˆtB TÅôø†¥W:7[•"ð¿»½„/é=“ÁôO¦ŒMˆz¡¼æÝh0ÃzÄ(¡8mšI1ПøJ1Ð@ª%im#ºöšƒ‚•ÉÌʪOI0ã·Í€•Ms«ZÔ?3GNJ×ʤa‘ú‡Œ™ r6<cýhÔš–Ç!›™’̉ÐØæð-ŠÀ¹‡Š&dÐ>¤pÖ» O;sZÓb³[¶Ì®‰ï *¦} š§$¦rHeðŠ6ΪIâû l{é!jbš—hÆe+vP»( ÷HERv&ZFHïȵ¿«ý ôý’53Ù ´@9§X¿©CjɤõLwÿäÝ¿d~ƬÏIï1 H4ñ>èm¿¤ÍL:W³& íÀ®õU`A T+t9w&ãÚ/á¹”ýxPJD?K1GfMonuɤ.#H‹J@÷’Ó˜.Ô¢\$”(±|1ïþ%É< ^ÔýyXdÑ k ¥de²3@Ùí%PФðhžAÄE1Ð@Ôñç`¤ëÙ€î¬Îþ"Š=„B M|é£ù$Ã^ò£ebÉ— Uû%òy+¡ñÇ0Ù¦õ<ºm—ýs‡Ž' ›r è˜H‚~•ÖóȾd—°¿l“½ÄÌÿe öæNЬAÉ!Õôñ|L³L3˜WͧcSô¦ÌnS…öìáM) ›g¿KμßÕ«N–ËTâ²M è%zH± HôH¼g‚Ž­î_n BTEÔr-ýÓÅ.5´g—!ÚŸD6d€"iAé4jölìF=DãîæÈ— Mé%2"¡$ÜøÙb³;Õí_RcFêîŒzsÜÚhÞmä|œå¦à¦h jÏ¢öìC’ïïD¢"\ßþi¾Ä’ïûÛP™JÑ£‰ÿ´s¬Ð, f¼bŸVÏ«ÛЊD9otˆõQG.Ð9/¾Glê¾=@‘¨)ÛM¶H[ìLp–ÓmÛ&üöŠR1j°µN_65“^¢ÇsP"G‡´0·j-[V(t/Ñ•Ï3t6DßToÁNþ5c{·ðņ¨Ê,w#šœWÙâó€Êþm iIÕ2×aC4µ{~Õ Î  •¢õ1¨¿·7‡¨Ýs‰üXoHužÔ’m&™vH•L4ã~yªªüXE×íxW t¾œêo¥\ êÁ=DËÝý¬^¨ˆzpËóŒ¥ÐîñP±ÐìͦM´DKXgyﳘêo¥Úž*©~21 ”‘€K8°c ©_ÝÀL×gÂGpŽ º5¼ÒŽ5Øû2¶¹¨{?’ö ùmÌ)5÷#Ð&Ó 3Yõ/—ÒŸ7V/\ç÷Ï6m1éÏ—ðL‚‘PúÓë9éTŸ£*´öo–¹@úóv8dq1àº#´ö­üõʨ [ýT¨ùÖ†¿9ý@L¨ù}Ì„åÙ†Pù3ÅjRÿ^S»ïóáÏ—@ø3’3í#9Þ[";“ñsŒØŠ“’cÅFræ}$g'ÉR36’3ó#9S?«´²ŸÏTà^Äé¿ •?Î/îÓ²]‹¨P.Äe«ÿ¢T '/™,m¡+#” D Ù@Pqr å?a8È ¹>î!ˆc›ï!°}ÊCÐgz>7^+´©´®)z¸¥&]¡‰rþÑY+¤9¤R Ü!md- — +§\F4?ÃTKØéZZå?]&IOuy0Џû!‰çkðº¿ú/ùµ¿DBÚ\šSnÒJª¶Ñá‰Q;¶V.C‡ô FËõ&Óÿ(Ê®FƒH@éIû;¡ÞÖÕ?WgÜó]ÌÄŠ´õ ifÒ?cp&Qø‚$³—ì’‰ôHò%¸eFÈ!u²‹ê6Ò$a²3Y%›øÕßÝ:ð͇÷spPòˆšGt¦¾ÔfdЯªËÈd±#«eIû—ˆ¼Ëó·@ø–‚…†Wº_3¢™Ÿ>dÐËó­ÿñ×à¿YÖ€]ÌÑ>-V¡€ncÁD³•ÊŸ/Ð× f&æ½ ¿­ŠÆü~v¹ƒ]rˆìH°ÈÏ¢«‡ 'Ã,•CZ̦֗5€™Ÿ1‹ždóûlæ]7~á’.Y7í ôhüg1ÒG&P¼]þÉßú€a1)ÿ¼Í'Aéè¦="ÅV¸Â¥?N¿ C#8¡9`µLögŒp–Ás8†/ʦ_R¨U»‘V2é̃Ùþ*D-¬}Ó!~Éâ_%þ*uḀ”Êâ’˜Jõÿžnè‡Ô `ʾ¤ÏL `š§‡à$Â41”l|[¿bÄTìùð€ªŠN7‚³ˆ—¨ç]CÑåZÀîõàÄ éC“a©ù‡ +ÙKЕì% ÷O›$[ÅÁ!E2ÑÙ×ÏBÐeY#‚ÔÖD ƒøt&Þ¬×&É𠓇|ÆTFÎú4Òz&}e2?àC–d¢ÎÜïNh€ªáQ¨3H홨7Èç6:ÿW§ x¼¹i{Gá>0LÑ] 5@‹ÛUeyÃÝKxÒjÃbW¾@‘ê/5ti}‰zsb®ºä—Y‘l+Ÿ¶Ûlviþ‰7»´¾ÞÜÏŸ-“€6¥ÚC m¥ùªk–W™ðÑ‚è­3:¤H&udÒxT¹œhRÒ,f.ê€þ–/z\ÿÑx^ š”´¬öóHºY• wàúc¦½éwÒz&ÄöÖ‡h{.ÛH*u@½8Oåãä¿›æDp_° ¨w+’JÐ@ ðýñ,f¦@‡ÁƒòCPp(¶“W} ª§/18KØ:ÄD@¹Àâ;ID}9ïEpÈ eÁí¨Væ$Y Õ!z&±Å–¸ ÐHФõ=‘Zw•b@‘H&j m; 9®ÜôiÑ`ÕvK9„QÞî·Ù3‘H:«L^RG&êÎafJ¥,\ ceò»f"#î^–vˆiq-¨R}ñäY h™É² %òßÓ íÅ´ZQ­MD˜Zø*ê€F¢¿C·Ë Ùp@ÿK±±ÇaRÒx2wÈ™ /ÔÙeäÏ¥çÙ_R™èÊõÑfŸ4Ö+ÔØFÔ™ d±œ°l#˜ù?Æ53·üË£h å3­ÜM¬:©“¥ÑôÊ^ÌIE£ëD4RÈžp7g7iûK¨º·m°•ª@4–sÛª -P1FÆÊä f&›è-PÕ{#:÷A,ã%í3â(/ÑÙÈú¼—Îþ_·HûQäû¨=qF-Ð@‚¬\–Za4#•po¬© êö%{GRñΜî›A Ÿ!ßõ‘ÉØ™Lî)\<uÑoØW©fj /)áÀúÊ|,®Sr Elº5óº¹=r ~ö|Èj™lL.ÚÎÀC¨ Ô–í‚‚ §±…á¾`%0þ{z0ž2›5Ø’N§í¬W¥@©%“Ê:¤Q(ñ3?cÔ³ D¢ÇÔe#ee‚þd/iŒŸsÙl“"¸”:`òô–ÁÔF%¸@ ¤±ÿüÓH`y¦î¤H&–’g ª@*ÐŒ’‰Îü@Õ0ÉËCäô㘴¾æÁ««5üÑ…h$%-4Ôàtq70˜ŒO×½A(=¢ ^Ý%B¯î%º­‹˜{Ñ„^ï'UgqÞ.#j½Xw›&+úý.jÕº˜Ê!›U½ËÇ@Ú~qRtJ½€ß*y¤si6 …ÀÀ¢}À ¬Àæ2Ç|NlÖ,áÙ`YÚè´¤ÍLz\u{ak2+;?ĺ: ÂøFAüZX>ÉPÞ£." ÷R+Kî¥Îuoô~È`´œvF§P °™eå?«u “NùÏ@Ó3©™Cê·7&yÈè™à<ÎòÁ ´)ꂨž(";ŠRic‹Ú’´•:%@›‡@;U@ÑÙÞŠöÜ€NPn¶"@¿eËR¿òoùŒ±îL´Ä;E€~Ëb.*  è3ë(äí+©\‹éŒÂ,3F&–% ‚z/Ù+–r3FÚiôñ¨€ºçЩH§vDq¢&ì‘Æ3°àp yõ'E«9‘H(êÚG‡”‘IÝ™tfÝÚãJÐú3óªCtVŸ´øO>§£”2 .‘%2 þÞŒ7vÈ€¶fÎd§ h ƒ›ùW ®úmÖÈdï@e@)–ð'F¸tÒ:Tý¹ß0~ü5ýaÐÿ‰ÄT@‹N ²HôPRný!efR%X°/é&LRŒ¨šL·çÝ÷ÌDÒ˜Êxö4"‰´’‰/~?[ÄàjµÉ> ‰²%*Rz&•™w|•@é3]ÌQ.’Ï¡6ýzˆÔ?: Y”Cø%/¿ž ¨ûuÞÖ6Û|P ´Rê÷TJ?@z0ƒÆð¬ YU©õ=<Ôÿ ¤Lt#p• AÓô§•Ÿ МˆD@í·HÔvvâ:(ê]i#èßúMPKu/Y¼·|<SïÑ\±æd1Áì%H0{IýŒiŸ1ÅÊîgK@=·lMA_ˤ/Ù,“~‰&âÒ7åñÚ€œ7ÑÔ¸–Éœ™ØŽMxÊþ¸äš’ M}/6=¤².¾@V½ïùC(+,#©úˆþ€×‰QcVë8l6 ذ۔ *À%~ D;‘µev.d°´S;&T?#9Ó=’™Á1z"ÙŸ1’Þ j?‰|Æ´ ú‡Œ™É™ï‘h¶&ÓêÅ8j~NS8¤Äù¤ægq{~BúMk-#È˰®ç‡xi´¿×b<’ù¤æO ’ÆPô3´Ø5ýÕCªdÒéQÒB™Tý 9Æ/YÌÂêN6«hh¬_ºÄÌ„š üJE?é#“±2ùŠ¥ð¸ ÉûPõ322Q©7™^DqF"$·1U*ìsûÿëä¿—ZJR= ¸¨÷Ù«Eõ>A)ÉKÔöÝ}™ÐÛKFó3’‡Õ,€UÙPúê¼U“ŽR²ð(TS3ÐyßM_GÐr3ÍG dŽ`a# 5±ç ⢱“ P’²1šm‹¢Ÿ@ÌÞÚ5û—hè{&ÉÎ@¨PÀåe™æ§ØŠ½¨ùˆÚü‘ìLFÉDmŸU-½f À‰¥à,j~"i D®ÔÌ!µdb¸H®ÉðÅKåq–$cX¿C ùi’I‡Àöq|Qô'z¿DcyÍT‚Ó/Qs6YÃZ»¨È.™ HÔÄó1]¹¶Ù.‹bo‘0JÎéÚž[‰Z ÍENî0"ð¾îµF M LÐ[!­îVÁ(¸ß›ü‡Ì©D f_Ÿû >ú%I/ q/a:’“ýcc2ÞíŸçóÀ`ÿÉ6ýýC Ó-&´)ùó‚ÉtO˜7ö‚±m“ÙTüñ–‡à ¢Ú¡þIµÜ™@!)¦Û_U ç=˜ž± }9ý0Y]As™U]s  3å„bŒ$C "8r&`xHcÆ]™œÚÍ ÙÕóŒ/™;œÁ½‡p—¤ÛRð縌au‚‡4&;roh~&Ó>65?A?3ÜPüYð@•Pó3Ý Ž!h:ÐÀì ,©Ì51áQ:Õ¢½n5¢;ûO,¹!øù~F¢Ó>¦v¯Éˆ¢™¥Ø0Òà·á€.&œSïoG Ò3A­èK>C:åAºÝÚY5­*¹–ОԼõã¾e?‘•‰VÖYáý¨«ÝþÀ@ì'=”d}Æè¡j”ìt‰C‰@*ç#ƒóÛÔ~^‚M/ѹÈâY‘=Ïp"ü¼PýcúÎd²|ˆ‹ó÷µdÒpºJ¿‰õ/Q.Q2™=“µ2Ùé½ ò“ÈgL-™´žIùµ¢RŸ hF{"Ò]ëðÓ:4bZŸ/ÖçKÚ¬L>w™Ÿ­Ï˜ýy' cÿ†-"(½K¤f jŸ@íó%ãóªùy+hZïª}>„† ¬º¡ƒ#TûìbÇèB»?<~P-wk“U¿"Ô|žÃÌÍÀH@˜ÚÆ=K63^R$T˽¤íLtþ¢ó?ˆ}VËaJ¾YW„ÒwL÷j}bZŸÌ‚ŠýìfÛ–˜Ö§ûÔB­Ï@‚ôÿ.Î{ˆ¦ µ÷Ý…Yg:ÛïGµŸ@Ô“ ÀKÆÌLÔ‘ DMÿ@$݇j?¨ôs¡Þ­KC'M25$"½d1ÇBLJvÏjŸ,UýG¨öù‚ÊR cÉ™õ ë—5ÿ™V¹TŒlÒ.P½šù Ñc‰‡4¸rT~Ë*‹§¤íLFùÖt1¢_;»±p©Áжà²þ#y‹¤|ÆTæ»/1Ò3Pg.ÝâÏK6‹›¦;—# Þ§°Lÿ—´ ú‡Œ™ÉÜ™ìòèWƒè¡åϧ›ú§¬}:—p機1VUr ö÷†%ƒy¹sARÒK ŽÄ’f%È­¿„jŸmc‰Q‚¬¤—Tɤ—LPVÒ†R2™ŸÐ  rô{& Àf[2V÷€0 ­l#FÞhF–Qpƪ':/aDÛ~K(¿E²%ª}RL£¢Ñ¥lÓkPÒXâ0üUhKÖàœ+Š=kö”à`î%6õ/Ñí½Ó£j¿BÁÏß°¸Pð3–AÿÁ÷5‡‘ÉCŒ^Œ =ñÞ¥5‡FóSÒ%cz/©4,É6Á+f2(;ÝÛQÛ6Á³Ê¿ˆ‚Ÿ³ÛŒ-ô„Í’”˜JÀîFô|:´p`û%:ó¥#B¢DsÌ%ZURæŸMϸ€ò?/(ÔãFZ³ê©[¦¤w¬?¥ái¢4+”èÔ¿ûK¡ðú‘ìL4?£ú“XàD¢–m Ú‘/ùs,ÛH$½×`‡ 3LIá~gs@‘X†FíFºd¢s?ÅSg®Ke0¤Mí]%×k‡Æÿ?M>VIaâ#‹BÅO$ÿÑÓÊ„*,*·_ŠŸ›RµJ`ÛþlkÒü„Û" `F²˜q\þUbu%­i#R¼D7ƒ@ÔÚþ‚³m/Qßî!›=L^‚PíKjϤ­L>·Ñg`/L É®™Èˆ„@TLËuÁÊDuPJC@R‰:w Qã%pî!J%ØÞ¤VñC'*(’#ÛvÙ˜KƒÙæZa^†‘Au0Ú4Õd?_¢ÏçïÏ_£«ÙT}“nOL¥æg jÕ.¹/Bg¦Ÿ-›•’ŸÌžÉÊ`ó׿“X©ø¹¦íxhͪßWZ©áÊ û¿+¹ DC{KpH¥d0¼ù}Ôª dI&û3Fv$WøÓþ®+üy ’“ꟃÞ3) læžr_¯ÍÅ’ŒP Î$µ”ž]Ò.«ý ÄrÍ.QŸ®7{2k÷C{ÿ|Ôü|Îú  ø®g0hЙëi¿ãp™îáæ¿'—+ ÜKÔ›« ‰[ÿƒyt¸*Íÿ@êÈÄÂ{Í€E÷ ¦úÙ3 éŸ!¶T*~F"‘Pú§U[š*?O%ŸÊih ~N˜Lî%3ƒEI¸î7¶ò’KôlÂÒ<þŠ>㼆¤P?Á¾q~`Æ,7Ç ÙÏýcŒ¨×¿c+°ìãl³——ZÿØ/NO‰tNG{œ¨„…d•Lôx¡^ÁùØÆF à¶‚Bkø*™t¦siÔýœËL‡FÝOT~‘èÔG L–¹Ÿ *@/Á&à •Î/:*@¿a†²…Ð%b&>7Lž‘nŒÚj;h£öçC*%oH-U¢@ º ¢þ\ hß v EËj?9ž0Ý9~þÖ‹¦Ö½‰:sƒ2@ÿHóÎLœ‚è…§Ïpõ1Lñ>¤ÍL`Ðv3RP€¢7^ÖH@ãu 6D‰ôH ÿIÍ }H™ŒÏ˜ùy«õy+‰úŸ‰|ÆÔšI™¨ýsªá ¨F@+ü 5~. øÏ ÊN æ-Èf~M²&Ù¿@â= ø©…­ÃH-™¨ ˆºp}šŠìŸDà‰ím11ã%pá.¡Þ[ å3±Ù꟪?‘X¾KTó6ÚÓ—¨ ˆºp¡ÁHý€™ ²’^2>¯šŸ·ZŸ·ÚŸ1ß«Sñ3Z3iŒ p±ìTü d0áœ1úNÅÏ@vÒ>D"¹ªŸ—¨HÛ™|†Œ• Ö`[P;eA^Ò%Tý ½—Ô•ÉgÈh™X‰í%«f²?GÒÇêOµeò½f2F&hÈZl'éTýŒdEÒÓ%‹ _Rg&mgb¥V´Ù:T?#Y ÓKdFBÉ<Ú$°g_Rw&Ëv2z&3ƒÕ2ÙŸ1"‘Pó'Ú3i˜AÛ h²Æ xŸ`ÉDs“"Ñg ÿÀ¢Çæ•J,˜}IåV™F,Óì’ÎêíKPcXÌÐêÔý dS‹y4OÔz Ý ïw±½bz¨’ÊL–¿Õ?™%ÍÕÏmLü“@â&~yD« tæDvc%ð¹Î`S‹ƒ¦úø±Ä„’©JÊȤîL ê餯Lf«e‚ …Ø1Õ€êÛK¨ûHáèÏIË ÈÈ`¾µËJÖÈÄʤù ŒêeÒY™0"Ak~Pø3>34±¹ÈêgÓŒ ‚“Khñ¢3>Dð^Ò>cP(]2K&«gòy‘îç¡îg E2i54á~É(™ÌžÉZ™ìô^\òë4'x ¶îñPøL´Ië™àx w—¾|È’Lð [±Æd c™ç7(øS–í[ƒ›@ í3¦K&êIJF&º§"é½Løó%5ƒÖ>D2ŸWÍ‘ÉÚ™|n#éÓì¿’A­™4&m'}g2z&seòy‘å'ÏOº‰ö/©T&áé8ÊPù ™Oê‘Æ8lâPð'“@!™?سèìŸÓ¾-èñ&ÏËO pËdÎL–dá·— Š} d?#Ñ¡5m‹@ÿ‚Dúg tª¥®LÓýévyBn%mÂ÷úß--:—H8¤2õš?ï„èç*Û¿cˆ~F¢rhÂñÏCÝ¢Ÿ‘¨IûhE¢e&‘|Æt&7Ó”šÐŠdrËçÉÏlûXZ4üÆÒƒŽ¨~®ÞÌA‡¦z"Zgˆ†ôú 1:!ú€^wsZ'€"­y;@šØ "A¶}5ÇvR(Ï­±Š„éÇ\×çðôãK4Û~RjU "Ú—ÀHdeÒ2Àäï#&ôH½d}Æì4f¥Kê~.;›ÐýŒ¤ÕLЙiÚ.8¡ûÉ*™ Òä%ÁöFÄ6m¶7"¾Ä_¢î\$;“ù³>肋_(r¬ñìf6¦޿¹÷/AGÖßCtò¢³¿xÌvr7D[²®M‡b˜c›éƒ>¥X"#jøÿ©(_Øf±Hï‚ ÐXÃNT?Çš–$± úÉ™þ‰ìLŽyû¨~ÎÚ,h³ ú9ç@1¬’ó‹Î¶øw.h¾ÍÚýo€êçìbkÿ‚ ÐßsãcÝŽÚ-_ ÊyÔt©[ûÕo¢ÅÀ}t?„]ýœÅ»ÙOý›–‘3ýgÝ––Šý+é‚-È~>kö‚Ð*ͬ …V;$êÜR?cšªØÞ™ŠúV~ÊwŠ€3Pß.ÉD‹¨ÙÏHtöÒ>`a/àc¾Tø3û,–pbDײ1ý×ãnз1ëö]úÙŸ#<@bB6 ¢—Ô Zˤg0>/šŸwB·2¯ÑMYaiŒB} ‡È_É@ÃÜ ]ë²HÄûõ]¢‘¾@ægŒÎþ@t9CÕñ?R~?8w”Ïè½.”g˜} ãµ N"ºçQ}Oì[‹eûvÒW/?Jƒ"¥šD½;ŸJv&ý3fôL&‘ÍZÐMTÓæN` ½‰8–ü_~ V6uìÛùç Qœp9ÁöþKF¶ï‹â  yCü ƒD¨ Pþ#ЌӜ|å•\P¢•'¿ýW  ï†f‰åGyè@µº–ß ø/Aþ%‡vÛ¾šÎLä¼ú  ¸ñäm<ÀÄ”Z1²‘Ô÷ó»næ«T¾h¤K&n¼Äš”Íi¤íL:…–˜´Õgùø£+½·Íä(¬‡ÈŒdºDâ%%éRw&˜ö“Îõ!ÖÔí’™¼:KÓ9dÏL$½Uá<þ¤dgbj|Чiøï‰Ð½Ô[U&%b5umQ£ö!ÝB57%…ÉØ»Q èk4†ÃQÀº—)щ¿Íþ,?J„‚^e/‘4FØ«lûRB‰PëÜ¢¤J&½þwû…‚ìÿnC%êÕíâ?%B禟wÈ^”#Úü ,?æo¼Dó7ó"A îFbA5;êž› k\2©à‡Hô!‹xñ÷‚¼Le<¬j„.;8D€@t'jJ4?È˼df€6}Óf\áFˆ¤1• ›^‚†M/i03ét®{32k&(¨~ÉÞ™ó9q ¤B#©´é#D5–_Ô d­L$‚Π†›…+ VSz‰Õ”^Òw&³d²>ïõy‘¤!” ¤ìLZùϘ(¼Lê×¢~] ê×"é>&ºþšZ@”û}&0hù'sf²$)‘P,(òS[&mfÒ%“Y?dg²?ï%éóP%4ú3“&™ŒÏ«æç­Öç­ögŒ¤÷¢\P µfÒF&½d2¸sW+¶­/ÑÕBÌ)By±@$JÐ@P‘ø’¶3ù Ñ !ØŸw’tê„»ö%ueò2Z&èÚý’%™ìÏÇ‘ôqèRãŽ_M+ô%cpb}ˆZ·  å%»d"=’t[j…"Oy™—4Éd”Ù™¬Ï˜ýy/™ÔⱸH\+ÈIÝ™@-ë%PËz‰Va‚FN/ÙŸÏ#éó@.(’Ú3iŸ1ý3fÌLæç½´"+’ô·O5q#)=“º2ÑyQÍ?¬Ø"’ Ô•^²?÷¤À%¦ ÷’23©’I¯™à x‰nñ¬Ï{íôyvºÄ‰dÒj&}d¢ ÚêÐÅSò‚ÓK( Ü—àx‰¸ô• •`py^²?cÔÀ½¤ýØÉì%8äyIË Ș™ÌÏY3í›)]ÑH OU ÊsHÍùÉ/é¬M cÖ »ø½d•Ù™HC‡ È[æÚ!U2iŸ1}g¢GÚÝ€Røûy+-²DC}]˜‡XD#Ñ<Ž@pÔó´~<„8ÄTf¸¼·F•™—èQX&Ö!¨QÙæû7*E¢?…ÝRK&­gÒW&ô,~ŽÛáC`å¾.Þ%t Ñ' Äú^¢Á¾@>·™Ÿ·ZŸ1û3FÒ[M¹/© Öˆd2¨^ƘPƒ„h$Èä(Lù=ÄB8äR²"„è¶¼ªjËDmÜ1-ðÐ(!ÈøŒAÍéK(1¶í%§( :ÙLC ,\ËÙ;¤²Üa·FQÅ‘ ­ëKfËÄ4ã.Ù,Öë~g$æ˜0^9©qPC:ê!–È´‹5ÿ;÷@Š>µò@†þ,‹éç=–m" ê¡÷ðªt¨‡F‚ÞNÓ>L§jP ¨{ Ô0}©ê¦4©7uÄðëó^hkV-®Ô©g&”ž™/'–¦\ ØäßN•9“:…ƒA•âKögŒ¦è/wØ;”ƒ¼]Š’ÊTõ)NÔñ·Ü¿C41­±  ML šø/Ù03:ø%=­*ìË€|è*?;ééGÙ•š‡@ß$’ÑTún¡àí SöÀ}¥C;è%Ø"±$}FW:´ƒÎ9õ¨Ftȶ s‡|èù4Ã_Iü—@ÿ%šÆˆ>ãg'A"ºívwÕ¼Ñe@cÞ»2Óó8ö:ý_ çØÂ#ó63 „?ÂL—ìÑûùè¨B‚Cì— ÁYñ JñлàtЇBˇd÷LL/Ξ»å}]/19õKLNý( vúòÓ‹±L~ñ1‹‹oóÛ왉7Â¥ÿᨠђV2é=“Á˜oïFƒ¨¨Ÿ=íd©›3àÞy§3 Í⥠Bàøâ%p†EÍ;„P[O2$ìäú¡®zt T|Sî¶8?¶u}‰Î}ˆn“´ Ø@ý%’‰ÚBZØO°z›Ǩ^(ƒÊÜñ%亻§–X2AK —Øì·»R9÷HOö§{@<4Íaq^ @SóÑDwb…‡è®^ºÿ…Šd"ϯ 7?MŒòSSH\#xh$š¾ˆ¦/·äã" }ÉŸ±í ówò¸t4¶öóýop¸öÌ€x·­R¢‡ÞÓÖ¶ÑÙÙï%§Èö7P@.«:eðmtVš0ò!jÓ>„â¡¿Ÿßg c›K98^ÒxªÙý6(5j>ïUM[÷Å´Ø{]’†ÿƒq[Se,cbîZ&î/CÙ8kj Bq-.IcÒ¨íϘɵŽF☮;SüÍ·dbº3F–ëÎ\RK&Í¢9ÕH_™ŒÏ˜93Y’‰P2o’@;N~÷¦”P³ªC4ÐH[hÕŒ àl*¤+‘L <ó‰{ð ’P õ>Cuhw * ¢Ô!Iô¨¦D{6÷—¨SwŒtÊ¡P–%€î€ŸHOº÷qRL.12I=:Bá­¤ERøun^2yÉ3 faòRg^Þ!mÇw¦xhÛöÌLªò›‚,ˉÌH(ˆù\gï*A•îKŸ{B“2B #QCõX$›GÝ—ÈŽ„â¡TÖÃ3_hBG(€þ!å«Í¿wȇ>þФœºfËí4ýP3Lê‡îmfÏ„”ü¦å2ÌÎü¥— +J ;“U2Ù=D¹ô'$DÃõLîèÔŸw’RFȺ+±pÆ%ë3fÏLD"™0k¡UER¹¾ØÌ™LÌwKhN˜µ( ACˆ—|Ž,¶¹“»ÁtãsRG´úŽ6©$tw½I%!ˆá“ô˜™XÌö’U3Ù#Ù‘lö/>¹63ó‡OÉÔüôK÷’Y3YŸ1è’åi•Ðjz.±˜õê«î4+?[ÿ“uné’ƒ Þʬà|Qñ¶ÿMCDÌÛô?9}% …é7Á|¿“Ìò!ó&;é"¢')¬ dð3]Eô$–ÞKÄ\!Ÿ“nËøIÔAÝIöu 5…)ë&­Ü5L'ù<Íø¼Ô7ÁPˆ—PD”¶6©(÷>„Št‰çd2ob÷lóÂÙÙÙ‰B!Œ2) tïטës ãNp_­™X©Ò °‰`çç€vhV§t‚Ö. ×ã~_`Ó©[|Vi]¤ ÑЋÌLL1( ÝÚ¿14C­)¨:±”E"V{ŸÈ`÷7à ÍÐL¶d²y w’ÒnR?×´u“Δñ³œ ¹É¼é&&²G"ë¡ÈL$W×CYDf¦rOZ3Ø‘ñXÐ ÕÆ}úà ªA%$º|e¢±ÛEV&P ÊDÝ×Þ\8Z‰Z}&ýÆMt7îÜIÔò3QÓ? Tã2Q‡'“ú¹¦í›ôz“ñy-ÝÄ3Q÷µOá,2%z œÄdCûܾ®,¨Æ]dßDêMôÈd,È…0Û³L6èü!ÜxäzhæŸIí7ië&ò¹¦ß/ô÷ëóR{dÕ LJ¿I]7‘r“.7ù¼Ôl7YŸköõRƒÖŸˆ^SVܦ”|ˆY"fý‰èvžÉº^ ¡™˜õ'bÖŸHk71™âÒxJLg¦M¯_êm„B8¨·8’[ØD àî ”(HÔ…•¾Ý=]’éS›”¨õ_ä÷Ñå­¸_R²· à"Á$jþ'ÑêÕóð «ÛÓËÿÔC[ÙÔûiO‰õþ~&jý™|Á‡è»9Ȇ„h&¥ßD­?õc3‘y“qµþL4x«}ø—³±œî~&êÌfò{⺶ŸlÆ]Ä>ùÃÆH%£Þdö›¬• 4D/2oRo Æ_GÔÀlÈe¢ñ[&ãsþ u4Ï›hG¾Ôðž(í n7QãoÕ%{•T{ƒâ)šm“è¤5;¥D_ÿŠÉã Ñ EJÔø›ë8а§ûY ¢µGІjPïƒT¢‹Ü6 Þô(Û¿?ì™üžÅv¾ø#õi3Q§–ékµ~ËöǻѽÝÈ|7æ‰UÁM'êØZé¡5~K×m'º”ÙjÞ¨okõÂÉúBLò‘¨/d©Ö¸F—2ÖjUû 'Å®‰pC6ÈÎ-›uoëÓ½…gC?´Ž¯ýÐÚã€pC6¨ÎF‰=%êÞÖY½qC?TÿÊ¿fè‡Ö&hýãúnÖûC@>´Žy\£®õmké¾òoˆY,ë@¿¾ é Ñ ý¿ë¡TW$,7ÔC3QÛÏDm?ÝÛ3\ïèýÒºŒmˆ‡žzq™h&/“ú¹¦ñNäiý6Í Ü…64ƒš wl·íòx¯½õk3QÛI} š‰ÚþEæMtXÞ¨ Ûß´G%jûmr–¡5}yx«`Ù›ñc%ÛÞLçéL}HñU@‰Z¾D1¦µü6­Z‰n™¨WÛ† R¢–ߦkd+QË×÷’m‹çWÝ7ëöNºú@;´=•‹€5üÖÿØšìøL.²n¢NP&êe¢¦H‡fR>×Ôu)7ér3ý?ƒÚXlEQ²ì¥cp%{ŸËB} ÚêÃr%Õ^Ê#n%º´.L)Ñ<^ë5Ì a€¾V¢~­þœXÕ¨õ_D¯Áu# jë‰g†z¨Äà3%jýmÖø2L=ôã&}ÃJgu¢i=Á” ³ÿ:ãC@1Hº‹ž×Çôâd»X“4ô±¢J,¨Kn­wt+QóÏDÍ_´bżÚÁz5%æÕV¾òÄÿú'„r¨ÄhR%ºŒe¢>­¬7 ”C¥úT %úSJŒhRb_‚KÇ*ЈNÚsýz‡¯˜õRºé3H±·S¸ó+QÓ—¾¢¦/Í=#ó&ãjú2„F%Ëb'–(ÉpWª>ØúãʺJ,¢K¤ÝÀ"ºgû¯´- ),çT¢û€~;Èì7A@ç !µ< èN‚€î$õˆçN‚xî$Ï%2?/eº¡ÝG<+±xš{F ª¿Þ˜N, [Ï»”X@·½%Í~¬í-š¯ÇQ‚hN|Ÿ*P ÍÄì>‘Ýðöx3 ‡>>RI±73â WZ¿Ï Tbù ô½“h‚/“a‘,¢ æÄ‹sE*Ð êO÷[¦@+H¸Öì2›¯5JA™4áŽX *ÝÏ9” |þæ ¤¦ÅÛ·@(èñ•Xrï ðÿ{{âyàÿwñ %–ÜCO‰%÷žÎ^I¿ÁhHÔø#Kf$b¶/F‚à$ ê¥øý[L(¨Ë`vÍüËíXÿ:mßOõ”Xn/=Ͱ[qÇW ÙPÙ‹©%°}ñ¥µ è3öÍbÛ@ïÞ‹¬Àr{‰4Ë*½Ÿ BA™˜fn&v+õS¢`ùX jü¥–F ªYîв¡ $$HïÄÒ{ÓwœÕÐQJ,21 äDt3ÈDý !¬Ã­BA ˜NÖã5¡Jš}Å%>¦ eÐtéD¨†ŽÇ[”˜LÖ{UjèX^‹fÄJ|ß優¡{3i®½&á”ÍB›“ £ú$VšÑ]úA‰ÚÄtJ%Vo¿&£%Všé)J*eC),yIe•/­½>1â%>â%(¸? îO‚)—^ò¤ÄŽwB­ ÇƒR%8ŸÛ¾$WŠÇ%"T2éPu|«ÎÀÜJ+£ñÉi¬ÑÀ‡9+Ù,Q £[©Z:‹¿”¸ÄŒL*‡Š—)ñšc:¨µFmÒK>`Õ›@º}UèÄeRNÝ¢ éê ¬ŸzúÂ^):fü” •Ç7im¶J4Ç•XiF"›¥^ü†©z‚Jžå€ws€^êñ^FÒ “Ú³JVA5 ßÂÆÛ—ès@Í9žú$è¤îîÒVÊ…Æøo%è#õ »vÖ#¯£Ÿ;n'W u©K%›r]¼™+ÔBU\Ømh°íð$h;<‰Ñ%ÒùZËÁ`I芗‚Røg P¸È¸TÚ¿Z¡V [ƒ Â]´êZ¡#L‘Z¡Q̦:^Û©Ä*u¼’ÎÀÀý_ã’µ3AõÙ ¬Çä]x+t‚2±úìæs”X †x'¿L‚p¹w%Öd²û\•@+ÔÕ|j¥bÜŽ½¶R+´><üPâ³]%H»Ún‡owu‡®ÌK\Wæ%V’„‘â$k&Ò¼_Ú_{(–xë!ÛwÍF™ gú2Ü ª]È1*qU™—¸ªÌK\Uæ%;ƒBU™“”q“Ê—¢)µBU™“XMRÙ¾0´P zâ3þDÐDÝܸU‚RÙD}³þ9(h§Ä¬º\‚‘›t¬0tXÔB3ñ>FP*A¡8\&Ÿkê {6Û¶F•¬“tJçñfÔüXçz2L/ÆZNvÉD8Ùï$eܤ¶›´Ï5²n2(SÁ»Z[€åÜQT‚ÎÇ;m9Z1.€bû`ºß Ö¼Ö˜÷wƒN¨¾W®û:¡‰xuÙKPl¾C£P(†³‘@ ë$-õ(±J{L@"± ‘qÝT JÄl¿ˆ{@R¡‰”ë÷¦Th"mÞ¤ß`´as¹¿eJ…Fï„H…¾„AÚá Þï _G‚ôz“A±®ÎmqÀßI–Üdócóiö_¹W¶¸ÝÐùODêMÐ9í}J[Øã‰¶ºŠÍÅ‚ÅáÞõHèúGé±ø².D¬¾ìI`û>ûB \ÏKˆ„Æãå>Çpà ýþ9x\¦-&ᨠwLg ‘r“.71ÃïÛsmBq Ùž6nË5W”ì• Å1ÃO¤q›§U ž‚Wü“ Ç„§a vO€»æ½‘@Ké$ÐR:IÛ7él¢¤ +Ü0›d–›,./¼c„*¡oB[ š}Éá] uB1ëO­æ'±PN«•Ø&p‚u_±w²Å|¡Tè,¾Î •âÆä!¥‘›tëqx%Öá;¡TèŠXC¸„R¡ïû£Rè ê¼€m|ÞÁmÀ\-טV2n€‚ãï Š[帪Xâ˚̘[ê¿À„7U0JزÜž¸L¨ë(é”0ð;“:qÇ}è2¡'LèKî‡XÅFÄñBM¸DZ½‰y³ÏòàN£õu«°ß^™¥ Œ“p ¥C)”-ân•P"4¢`¡Bè ¤Ü`]`°§ÑÍ•z@ψexGu}k6w:4ÎÕîz@Ó×ÝN= êª°JP]ß"rúÀWïJħ>¼Äìþ T}ßs§ P"µÜ¤Ñ iIŠ@‰À™= Œßk-ì› Úþ%®äÓ½””yšú|Á@s댧6†ð|¢S"´Å)\¯Qm_ãyÐ]2<ÿÔ¡÷N[ª½qÖIê ÌUn ¡!‚¬Ä¶÷D¯S!4óhá>Êp¾KLõcØØåÎçua>oPWEI£<œî ¡Í3åÝBa»ËˆW_7Ø-ÈéoÅí®Sèñº%•o‡§9À|“;值ÜGÙ"fÿ‰,êsùÝ…Ð5wüäPͤÒïð7È`ŽøTˆ;A§o矜þ"sÝd—L\$´ûŠ×!„iÐ)çðƒ¢@#ê'Fg{]Gí7ö§¡Jèð1ÂFR/·©7ñ¸î%ÃÓ\ñ<ìv¬q‰¹¶¡üQ­Ùg=ñ^缞ÄÖ³E){>½‰Á !h€{À1üZ×wR°«’u“J}*ºJ² ™˜„Òz;èÀ©¸IkãÌê`î ì’N`1ÝòÚr%µaI§>!´Þ)í Þ71ÓOÄL?«ÓÐm¿8AÆK\txʤ(è Ú—ì›ôÏ58§ØîÌ+YköØzóÞ .t߻ؕߟDÖM:ßNçž³ ²n°[Úm'ô€^%8%ÈïQRITA£ÆgBTÝp.½3ä€^ ÆŸÉ¼y´#G»|럛çsQ 6) šÉ¼‰ÀæN;) šÈ71Û_›Z\JO/w¼½Òb±( ºš{\ë¡ÖI0¬:r_ [JÜ´ ÖTÝ‹Ç z@ªSXOõrq%–Òèžì>ähË“@ñ$mߤ×Y7™Ÿ×²ô^"ûz- ‚&Rë‡ØîE ‹j@Û[”X;u"å'žìY]Å-QtT7­EAP—•Ö/Õ '°^÷ß¿q*Á%"Ô” [¾èÿ7ï"S‚SŠ“¬zTMÏdq'âþ¢ èn¾ ,‚*ñç èˆkQ´úì¢è êr³J¬R£ºl­+ÐkG,Áe0oÒn`ŠˆÅ‡<+Q»kù–¸ š‰î뙨7{­9ÄN‰‡°ý'BEEÐDLJ#ÌuƒŒ58×õ‰7lJ@V鶘’@";eb²ˆ‰ÔuÌhOd"8y‚Œ˜;›Èú\³yÊ´ÓZ!õý’ÂZ1.ú B@ ȇôq“ñ¹fzÑßt‚sŠ—l©ŽÝnQ4‘z8´Q¡²¶«ÈÄ‹S4ãwsËA ‹d?œh|Uœ¤æz„M¸LÖMF¹ ê4N‚i~/¹þ„Š ‰Ê2{´©:ãoS4Ìz8 R{Å¿ä]èm¿É7¥€B) DJ¿‰íë‰4¹‰Ù´™W›ò{„sÕÝ¢Ma D,œ;H£t³ÿDÔ¡)Þª·±$`ÎËð=}#Ø-ò6T2±zËDöu0­wËŽ06h‚f¢ÆŸIÿü•eõ™ë&j]'A°‡‹_()7° Kl'¢¶ŸÉø<Ïø\óûz)h‚fbyíDtgϤ­›ôr“!7±Äv"ëó~öõ~dRËMÔúwã–ý`Kõ ž ¡ LƸ‰š&jþY™P4MÄn€Ddߤ›xf›g’ZA™ØYÅA  šIý€q“¶oÒ?…[à$¸N²>og§·£í›åÕm?·¡ìÁEäs Ž*N‚£Š“¬ ªóT¼‘I1ç6»±[ ‘Ï%(Ú8ɬÏ+íëi — †9¤Î›|.éí&fÿ‰Ìz“õy;ûz;Ó¯NRÛM>À"d•t{)o2Pb+Z"¨ÁO了)üͧnœ…'A½ÒI°¿»þ—+ÜØÞ¨ÄÜ¡D–ÜdóFÑM{ —Iù\SmmØìûR‚õì$6Í,Û0ˆÄ¦™%bÓÌšJöÎÊ ºY×dÝ…È^t¯$—á+Gt’/`BQºŸýƒ¬K{fo<݉o¼¤Î›°¦ã&^öo?™Í‰·Ÿ¼º¸/YLóJ‰ƒ‘æ9¶?–t†´m:±$_"“o¦t'kebž«° °=Ð RT¦“zƒö!8ªðñJ:Ïð«8™4€1‚°!à}ž$Ö[yX·Qø© #ø¡N€Æ>Ô˜+±ìv÷C%ƒÉž¸ÄôîO€ž«@"Ñó`­j$žÄD1µûDlÂI"ö;ú”jHm{¼¨Ä¬>ª•˜ÕAú<ò’u“ÊcEZ}©”Kô©ïJdÜfßã6ŒgAÁˆÛÖ£¼@ &8¹Œ•*øøPc®™¥ÅPã—Øµš°«XšàT`¹í²™áUâ ¯3žSž +ÁTWƒVbg"Oˆ ."¢{®ô³,]B‰%´1sOdñð³8Øl2ò/ ² º0´å¤Ö› îÞ#”X(—Èø€Œ“›\ŽD‰Mx/¶…º ‰@ôa*_I•›@ô$=ÛÄAõ°o'8›;ɪ7±´^ݾ]èérÀm¸˜0Pfò»P¹Áû6ã’^/`'s'˜©:@É.2a†Â_j¡îþ(¼?I7‘uR{9FÃX#[€Å—_:9eq(ug¡Bèñ=P!4ÜŸÄKÎ^b¶ÿt߀Ëf»ÕŽ¯Â„2°"D0ègs!¯]ÕwÛúÄÈ2.íqvW'Âãú÷Ëh//CPb¶ú.Tƒ±ãN®•À~|«²;¾¤Ô¶ÚvbU‰´yT ¿ï§°ùño°B!Tßá Ç_ó•´ãZ8Þä%Øt±,Õ‰å´ßͰV–i„»T+»¨OâóMò¹]Ô'1_öi,òj­u޶j ¡ÿ=e%•'µ8±¼v"ÉõY/Jì<§O_\+6wJ¤4 úm³ßªxe«Â&ê“@á>v›Ê…?ÛÑg;ˆÍ,KäV» Žt^‰P3‹å¤ô›Ø P¼N‰ÜÀŽç7˜©V îŃ…Ú)pÿ’AóOd»äº^ºIO $túêàx‡Ø›ê`ÇÕI¼›ô%V‚<¼Y´ÕÉ"¥Ø<+‚´tÞbrfß{‡p7Hšß~˜¥ÄÎ)Ú8^ËÎèží;Z…Bh&`ð£/”j<áGAñ"fý‰ØAÂ'ë&æÏ6÷Ç*‚Xô£üC-žÐ½d‡è·/U›íI̡էêÄÌ?˜ÿôð´nJŸÚß'Ykm»=<Øÿ. ¥}+ÖˆC;%V¬1‡G8 A1¨Q&<„óÜÄq²}MnKV#2oP: ‚2±@³w͉e©ciÚ°M‚"dïÜVb‘Üt™%³ßd¹Þ@q‚9í/Hh&öÄ.u¥M¥•e{J„÷šACõI†Ü$‚¹ 5xGŒÉ|Ú­ï3<”X4—H­7Áï R",<¢Ãß<hñí4žT¬ø‰{ÅwÂÆ ôŽR/RèW1Ñ  ÷Œ3²nÒÿM1 ݼ—ÌqŸâÍ=­ ‹ð_™Ð]b±j;3¾eF‰ ôl°aQ‰m ‰ X©øÖ×:Ovž0åÎî% ÊÄö„ÙY̧¤¶›´qáãÒ6x$²n²ÊM¶dÂx ‘úÌî‰8A'îÃj%èÄ= –¦§#”Buÿqë™ôˆ\pT‰9¹ÒXÀ®ÂŽ>ÅÉŸy±b©Ç_-V,DøÑ™ƒk‹¥È^T dÌ›,¼xÝ6oþog³RßWaˆ…fb‡¥»£‡I¿5-²µm£d)]öŠå(±³ŠD,¹]ŠçFÔB"o“Xr;Kn'ž!ƉòD_ÑKF¿Éü\c?èrUʆÒ[ð¹ë àØ ˆÝ‰à¬â$ã%‚IÆ'Ar;q¨­°!SŒc¤^™Þ; N*{”à¤â$èBIÄî«Hw t‚¦ëÅ*°/Ô뽤±^ï$h0,NURWZ.¤ÑúOÒÙñÜŒqL0sÉD%èK,nØâBA^£ÛÄ•‚NRå&l0ä*Ô J¤³4þf°ß™N€“^«jdeÒYŠ|¯ÜàB.²J'iû&>óÊïN¨P„FÉdÍ J(”ˆ‰¸Ug^¹.›sqµ§ØAeš‰I^Xè[®¤÷› rãý± ºB…WÉ2¿sŇ œ Ÿc2½ñø1¢@4núÍb@‰·V3BD™Ì~œQL:´B31ÃO„iQÆzZ¡™;oø‹wD*‘Äï¢S®M4;´BµN§ÆKmVJsê%\Û—¸kûo½zIë7AÉÒIÐa½}1é ÕÏÅÔY/l?7•^˜í‹Äh‡\¨fé˜ì ÕœðŒkPº}‘›t!ðFì œdR°NXl7«›SoŒí<&ëTŒ;Ev'°ÀN"í Íd|+S+ôÆAƱŒuÈ…-¤€PPV|)^Ç­¤ÊMì¤"ë­NÄ&™MñE‡Zh&^ˆÜXòŽ€±wNq•°‰Ž$· *h_âÝýà Ò|'Ì™½5]QÁÁ†OäÆG­ -Rp© O2Ô¤±Íjo'ÂÃ*&;¥‚ž?Ý­Dz }`ˆ± (À±ÎK\)hÆ-Õ¸#Ø!ºB–YI£ÓAÿ¦C)(¯¾|‰¹@yu z z ¤Bß!êJ ,p[ùcr®’@Hw+dî›@W ‘•Éf/âI*tsü!„Bã!TBã!+â!$‚âáº>+ÅA_2(šˆ%ö©^!ºœÀÞO{?‰+½d–›¬Ï5ûz-ŠÅdY%fò™xulü•”›tvµs5.z?ÙÆ¿cì½Ø™@Tý2žvŽJ1“ØÉÎìÇ_ ûžžéļŸDfºmGå?×ìS²{&-„_bûyí©ó&ŸK:ÏpyP>ZœSp£U§pÄ5V~¿âLdÀï•)Ú€ß[s[<3üþäC:ÏV<Í`‰½Á`µxƒP :ÉuAm\ú©ƒ*¡‰\¾ìè!®ñT'–×ÞÓS·ƒ^¿ˆ'ÛU‚Žï;Àðbç6 š‰ ¿¤®üâƒÝÔ'AÓÕIÆ f»Éú\™Ð—LÖ›¹Ž‡¦[ˆ*¹®xƒvíQä0(t‚ÁŽ´ø“ÉàµÄ%‹9úÄ:Wɲh=lbÑ—eˈècÕXÞ|ÙPS"©ÅJIß7±ÆÚ~¢?¨ " JÕ.ž| ˳ ƒJA­ÇM¾©tÜ<_> w‘uh¥dßd³Ö€ ¡'€ª’Ko)i0oÒám–£Ýd~®1ÃOd_×´ðc_RqäÏ e6ϧ9'響’éå“ò ÕEæ•lŠh1S1)Z‹¯³Jq϶(Qžô’6n³?2˜”’â«á¤0\"Œ1¹LLꃄ¡Ñ’¯¤ì›4:œ%þªqbîxR$4 e7_‘ЗÄê ›Ë!=‘IÏ_ÄP°±=3)”lŸ#­tž§sœÊÄ‚8x½$V«WÞÿ'’HsRõ~øº:!ªBVï5¹QIGìÊÄá„Dvº¡`#PFâiVÍÆDÏÿ ”MÄ–º00oÒvþTT Mdô›˜@ÌJj“’q‰X6O“¼P =×–|½I} 7¡2©šHÿ\3xÛ·xž…ÙNÊ„–åÉ¥Iy —hspÅ1S@ëaµÒI«Ó¦ƒÎ žs-ì™|€k$²©³Å@æþbûIÊçšÊ‚0†™–!±µ‚±¶³X#À°MýæÏ"¹@âóœ@#ôø†¤2i0ža=µ%’ Å¢2Pˆò)1v/wµ¼‘ò ;€Eöq×-î8þîìI¼•šNÉjÑJýõà Á]âéÕ¨”¸Ý\J‰'Ù “©-—†óA+J ëoéA,*„Æä8%>êá%>ëá%& 7–ßÎKXx¼âËVj<î¬.a¥ÆK:ù“ œ;IcuŽ8°\Þ Ì *ãø›‰m‰îë¢8P¨DÙ™¸FèI<9ë÷*Åj‰¯b\åöд›Œ»øLΞ¶/~p±¨šÈ^™@H3Õ\tBgâ[‡Nhç4}l¶ßÖ¤†ÀIlHd~®Y+ßC,¨¡-ʸ‹ÞÞ-€+ù"Ae ¶}í^ MyìD¸®q#[ËÅd˜¯Z ÍÄŽoˆ€ëÏ)q=ƽkß>Ђ량Y¾¬øXšH’l¦ði¡›Ò@‰À¥=‰Y~""7ù<Íø¼tB½q_ rºûŒ›@&ë&µÜ¤ÉMp2Õ¹»ÐøW¼× -OíÂ"äHeoê„¤Òø—w–lè„jb^ãF 0¶o›:¡™È¾ Dr»Ÿ$o*…š’EùZÏ®””ñ’÷Ý¢›:€9µÛ'öµM™ÐD¤ßÄœÚD¬´E­Ø†Nè–î)¯m:¡'€*Ä.Q–¶¹ŒíkÙ†Nh&á{K8µ<{Ú†›Õóæ›jÑÍç*™û&ФÓþ_Óé!”û’*7i죚ñ<,œg ŸÉ²L\/vçbV}7ØØ 2Ù×5PʤÞÀbºLöMúç¯"¦›NÌüŸ‚:¡™ÌL š@m7iã&²nÒûMÆçš•üû=)U|¥ÄímÉ ú,›Zq­ù®·)$Ë{Å$§—to-(N,¨sÑC ãú •ÐWØE‰—'ùónf¶ObËY‰b¤½£ù%â’^ËI—›Œq“¹obɽ'2ªÛ5‚¼eHž'æ>¼¤²8ß©Y+µù!Ûõ0¦_µíÄ'd½ÄL?±Z³ÆRIOõ_ò@$tyº@ÁJ ZJÐxûª„î? UB©ë&Rnb·Oãq­Û^Ë_¼’%÷N°î+ ~€ ¡ ÜWðx²úc¹ Êû–Ö>–s±¡6¨øQ®’"7©,8ÃIc:s‘q8µ'±xn h%Kn²3˜pjAMÒI*U…ü¦€4èE¸¾Ïådð°pÆ5Sn²˜ Œ—Ú|ƒ|l ”•§Å¢ã“ˆÜ¤Ï›|CËÚXaªÚŒ@töwmÚbvÓÅB"›E÷'ñ¢û5àlnryçhjK¤­æÄr‰Xžö%H¿[³ \=%æÑ&Òn`ñÜðÃ#U{‹•êƒÆ¤w)ÔMdQ®­ð™Ëõþ; \ŸN Å¢EM ú§}¶µàlÊñ4h(=Éœ7±e{Å»:èŠñÂ C¹³O,Ÿ…ú Û /” ž;Éà]4ÛÖõØ|Ÿ8s‘B] D ww–³¸(Ìø#æU%þf¤Ê4%“ðÈR)Yû&»gâÒ ¬@RP¹üH&7‘q“ˆ“æß„A˜,zº³ú* ·¤@(³½ºb9½D¬()3ûg0  ÄÒ™XƒQ «6h&V•tzþÕË_”˜]g†ÎÀ¸‰yþÈÝ‘à4ç$#5p zA,‘Oס@´yy¨jƒŽ÷“StßN µAiý&¶ê/arRIg»Œyñùûu¿ßGK¡&ÜXa&TÍ—ÇB¿?ã^ò¹UI‰¤°RPq?œpã§6èëVו¸9wa¦@®Ç>í!N&6Oü¤P.šº•¬~“¯±ä#Ñ/hÌ0)éÀb¸¾Üa­.w’Þo‚{—>W²ØÙßâ4™x¥€TTñðßðaKç¤.èöQ‚Jª#פĎ%ÖÃ|s¼Í_ 6aÄx¸Y‚”¿ÔÊ2¼ðÔj³é—ÔuIq¤3÷âs¾M˜v·ãd±}®ŒT*‚Îåw1Æ~&Òx(qÌwxÜO¬ ©©ȇtîh£;1‹OÄ,¾OÖÃ Ž£8²Û‡S*1G6t–¼¿%”€21m¸Dº]#îW(eb2X‰˜ ÖA¨ ו¨®ä“HÕQ–£ßU{è`½¤³–±5'>¼ø%SnbáÛðzGAÛÔñÂI'ñöi·ªCv:Bæ^âšÎiN,‰3<¤ªƒ©‹Dv&Ôy>J Ý9ÿF]tÅ躠áVè‚ê8cF ÕtAçê±$¸.¨7ù+YL'ìø#?—ðElÅ Ë—”Ï5ì`žþXn€ûŒû ¹/A\äÞ 5AŸp~*5Aßh§B4ªÛ´”ÍRâójüÑåô×ã×b.ÏûT²™2ç¦Ûžwõ’2nRwrvÛ» Ô (°? :KN2YÐέ¯Q4œL¼„² Þ¢3ШŒÉP¦Ñïß®E¦Ä:­J‰Ï@¿»l®øý>qsMPW•FMPÙñRÜÂoÔše^Ò\Ô<” ¿Ä'|*aÒî}|KâÍê^`sAP¡Ðè÷ïêÞP£Ðz|Án¾4eA3Á™ÄI0†ú$“ :î1 r*± ½ø oiÂIÔ[zÅÆ’_ÂI'±23T©“˜+[]"^‰%±1W6‘àf-lä(1™·ÿàPʇ€7h‚f2("dÞdÝ`§jiƒó:"áÓ¹7çˆ$öK.£ÍTÔe§WÓ¨ ´"Ùרÿ6¼ïP †—d÷¼L8³#2œmFU^wÐä’ÖH,Og`‚![‚Z<íÜù3¹,P"¶È/ æ—žp[Qj³´qa»âo:w·Ï;øJ¥8Yå&0þ—lV夰°™ÑF<Û5tѦ—|;AÏ´Kc+<ˆ?B}ÆÎë±4¸,×Љ°­µ:@ p€Ag“'<ÖjvÍÕŽ.BçÒ/5Þ/•€APw’¶n‚ʤ“ Ýä$TNZÐu§KqÀ‘ÍPZ8›"©% 'æþð¥†)e`aZ¡I<¬£§;\´úï«]Áý&æØÊã ³QØnâ­§J »}BÊæ÷W“wô :¨¸L¶’>nb¿g"v>—ˆÏ„ ÀXx|ÔÜ%÷èl¥-/Y7™å&>¼Œ7ü ,èAZ /{II±JàÄÜÚDº¤°ôG,¤«âv=(„ ˆdy{c¼:šM";( Z}’‘TÜvò*il¦c;( MfJàØFÀf“Ͻ~¸ÐbצåÐ{”­;,J@‰¸Ò«›1¤ACŽL† ¹„’EwµAG˜¤Aõ'žñJ0ýåwë P"…­ÕAûwt‡*AûôI“Ð}:™Ì=Ñ…ŒÞ#¬Á~Fÿ ( ÚvÜ—ÜJüp3æ7½D˜H”x”hœd–›,¹‰¹´ 5%·åÄÎtBlK‰™þÚaÖÐÓ!ÜÁU¢£gXÉ(71Óß-ÌZ@ûYaÖ+ưsKÔJãËN‚é#~Ê‚¢I‚Ä•“^‚šã“L¤_;ÎuHæÃšû“à¬â$µÜ¤}®‘q“þy­ùy-ó‚B;KÉ.™P4‹éiÿÁQ™…KıDF½ Ìÿ$‹¡ór°%ó‹”}´œ'áòLê%‚‚ã“Ìy“5A3ù\AÄ“ Béñ jR (‘ñŸKÖ ¬‰ô ͤ¬›T¹I›7ù<Ù¾„s?! š‰ÕÛ'bõö$è|ÊAê 쨢6?˜˜¶d`[;„8I줢DIš¶(e¯ú{V]Ä›ƒËþ î ÔŸË[‚¶v ³UJ@cGÞbŽ7¦S1!:õîÐù’x–Í.ÚÌD,w åNPû‹ýè—j/p¹É›xq]mn7qoÖ t@3©l( €b3WW‚Ãê“X §0¬XãæËJó­yBþmWêÈLü®©ž6C†ï"fõ}ø6;¡:»k((éX=Yù>]î$cßdÕ›l:Û¯µ¯×2Ð9¼PP¥ùû‡»˜ ýûÞ#^+¼ÕÐ!Þ¦«Ä&¸>ÑN`Ê[¿.Šx¶€Q|àèšš4êrG`A(5~}/L:.lC¢^gA({e/mÄY÷ïÍùLg%jú}„·½ ÔGxí " ½EÝ킨ÅÓ‰Ú¾no=®QÛ—µò{) -?ê¡ „@ +}_NÔöµÜÅßÄ€ø8Yxbzñv¸mo¦Æ©7Û+5ð¨é' –Ÿ€þN>þ‚þgï>÷Cô?û3¼ˆyÁë·Û¾9Q«—Hq`tüï\ŠW‰:>X3 Ôï‘5/ :@ý‰znt¯H/- êŸjmÌÑ/YÞ[œ¨/kÅˉ½Ä×Zºí¿¸B­¿…Ú—lÙ9ýrb;A"êÿXwVs¢æob*ÅI¿Áh7™7Ð==ufMÓ“¯ÐLÔúm^Øò{æ:£Êd›h]-L  U¶ŸØløþåXÉ T[ ƒÄ>Pöã»Ð†ó_¦WBmÓJÕòPÃO@î+tGO`Ü/²îWQ›¯…™ñßr¡ÅVuõP¶>“v¨D3ØõñÈF‰Z¼>Öió‚ʇ¬›ÌÏ5êÅf¢6h€V-ÝNÔækccŸ}©§3õ¬DØÚ|)T¢&_›—±(Q“ÏD—°:\ÄF‰º±uz®W‰ú>µz'‹ÞÁêÆÖá&®DC¸Z½ÛA‰†pµ{£—±¯Y⃚Oc–— {;-Þ 4@kõ!—JÔêõ×Züm¬ö÷R^º®DYý%ˆYý,ÍPb¿ètíU[ßôµVÿ{ÁæDPU›õf9‘€D½Ù™•þ˜ú[óÚ4{l¡‚³+1_¶<ñ¼_õ$Ë\ÙNÔôõxR‚˜/Û÷ñÚæË†\D·lîøH€Ú¹]jûˆ·ž*± ½ß0$@û^,€{X›«@WŠ7éãÅHqÆŸØ~¾|`PG1Æo¿rE‰ÅosòP£cÞÄï…V˜#ô?Çãû¹Ýjk‰ ¼ÛÀ|ŸD÷w¿¥ ÿÓ—ï=ê!š÷3k|Ȫ¿á_¯éÿd`ñÛpås%À%2>×èf®SŠõc5ø^¼ :ÊŠ¿‚è‹›‰i\íß@Gó<€õ~Fó33%jø£÷¸U!t‹êÇ_¼›ÍÎ>_K6Ïn&Gè±^ÄR2â‡Ø<È<‰•×׆!4v£…¨¦•Z¼º‰ß¾¤<×Cäñ0õ”¤ì›´z«ÈKÄŽ#Ä•X*¯-_ ÿ8U°¼{¿ojů jüúà nWb5W8(ir:ñJÌø¥dÀ+•æÀ¬LnÕ]°“êDsyê7Ó }ÿ-¬XQ߯wa@êMö@ן˜o®¤#Ø÷ïú?ºTí æÉJ=^Û‚¸Çk•˜'{ˆ€Zºs9qǵ:Pã+ðûÍ—.NÌ‘-¾Ó€ª›ýÄ%sÁùmñ¬yžÉoAÃ=›y±-@Ã&.ZÚ?zÇ Í"J¿¡ ô?{/dz &SüBûG7‚½sû=þHÝX摌@ÿ³×ÅÐJ‰¥¡pÖObnìð‚L%má‡ãrX ÿi¿hwbëX÷½tDqÕ^ÍPííx½­’Í$ _{˜+!†«¤ZÖF˜ÉWbÙ‹ácì”Øð„¡ sc{[q#@þÓ~÷¸Æb8qí?¦ ÄÒ_ìݸÄj/PÿdVŸ¤š]ÅæV üsì»Úÿ«fòxg¬ÛÑ‰Ï å)¯áOófßH‰~îÈöÖ™ŽRRñ­Ó,æK^Äb¸ºãÞ…üg¯^ئĂ8©a]~S#Ýñ<–Î{F¬%ÐþÑïÝ× hÿdbæ|ïÐ~Óçñ÷íˤ-'–—Ý=VZ(€J´')±_«†¥@úMBlÙ“u¼¦BÔD꺳ÿæeJÌþûãNP5鉚Î!e"1ß\ɨC˳^’Í\oó å·L,;+•Á¾ËÎ&"gÌ« [FÍײ P‰¹ºJ¦½›æ{v…h&fÿ£3ñ¡bö¿'SJÌþ#”WÒ`]þÁ+ÓØ'é¶ÊïøŠ!ü£öö^cŒµý®Ü ¢îÌSü×­Ðþy×  Ptã+|]Yi5H\¤¯›X*»xŦ’Ås‚Ï Ûß\˪o±MUzÿó ë£÷Ÿˆ™¾¸l’3ýD,“ãÛ•Lºò5^Ë%ºW€+1ÛmwÍöY #[…¼hI‰%³Ÿíë[…¨uÃL'fü"ñÃX Õ\Þ*w D¨d§)|m†µ0wÜ1ÞôÜe*4@-ð›NZKC…î¸þ½žM´ø ƒÖïg•,&xz<3Va3M¯ejŠDSz™´ œsu6%¶ø'bÉìG<ëP!$1ŸT‰…sá~ÁݾBô­…„¦Ëá{ŸŒ’f«Ýô…2 TY$éÌ$ÕâÄN&žx¤ïã9Þ‡:AªÏm BÿÇÄW«“b «O Á7Žä$iº·¸É¶ù³u×°4cÿ…åO@3±4F{W“T”²½_¼7(€f¢†ŸI»e1ZlwÍvÚ]²Q:AšY¸dv$Cè"v€ÂÆ ,M9‚fê?u ßûš5°H{\D‰}­.1¢ÄRÕu3•¨C[÷ö¥ºAü³vïR¢>Pݱm5ˆÖöøÃb_oñ½°a¨½ú/Ù ý©¿¤¿aˆÿØh¥xZ]ÃZLÈV2í¤ÈËÙ•èÍð ôLIŽ/éÏæÂW ÜæÀä}ô‰{3®Ü«¤Û"·ü7€ð§õ V'föÕ)ìxbãÖa´Ú°H´·w‡ {IÌŸ}ÂckÐÿ1µ+vÒ*Jl hµ5èÿ´˜t­dÚmRƒò§Dù½º‰–*5, ¾)Fn'UûfØÓ ü)¡e­¤ß`4|+žÆNãZ÷`¯AùSb”óúv¯¤Aÿ'“z ä2Ù7響RÛ7)–édšs³â'¦ÿÿ ÊŸÖì`Ÿú7=€¹?£xV­Áý·ŒfsbgvÌI`ÀzïzÿQ«nñ"-®² ú?3tÕ§~67ØTYà%枸‡ ûiÙ¿íÄ‚¹ºãç¤÷?$ÖÛÌðÇV“Q6[”˜ÿsúþÝð”Ø‰\& ) Æn¾ÿñ»@H·ø× ž’­¸'r4He‚¬^dºŸšéà3 t?õôoibUOÐ 6KˆKëuŸw¢Ä 3ċԔàDî$8‘{ ö‚LÌýß^¤«¤Ò¾hRx&w³ÿh,4Â#.:<áOL&±„v"fÿOc%ƒþ§ùô*û„Œ¬óiCˆÁ|3žZs-ebéŒRÙ+¯dÊM̧•Ȱ"<µ2ÿXæ= 3œXR[|q¬ÿ¶´Ä%êÒšWßœtK¥qêË+O_“r@š#Þqɶ¤Ä›&öâ¤A 4â N‰•˜=ÝXíüE ¡Jª¿eâ}É•ØïEPcŸˆ•ä¤Ç\>nJæMÚ äCz¿ ú¦O2?׬ëšq=d‘ý ã§h"B< êŒOГÌr“%7ÙLÖŸ¤Œ›ÔÏ_Iùu“ñ¹f~^ #ú"Á/T=Èb¥ñIPi|o~‰w˜¼ª'âIæ¸ f[ÅÙ›l¶˜<±8P(+QM¤Q6ƒ.’PÈ»ð-qšk”Lv¼øE)è~V²©ËÄ­¥S4(ÛŸ¤}€½›áa§hí+±^©DL =4™xͬÌ­| ¥ ©7@¡}¤+:%é\èŸ!µ|ÔŸdg)Ð)®à¬³¶í½†ŠÌK¬Ò>;ÖIÄʳ1=¸D>dõÙ©e²@™Ø ˆÝó‰o²@%²‚z  `\ÙI p’Å4F'¨ŒJ„z ‡"‚ ‰X­ý㕘 hžˆîØÆz»BIÐDü’âÀŠŽ±sºDì蔓R0(ÈÁżS4‘õ¹f·L+îORü[.Nj¿‰Ý¿ÝÓQkÑ©šˆÝ‰XÑ}"›”Œ;$A3©å&Mn"Ÿk¬ê¾÷ý:¤L¤8™û&Vw_½ ÉÈÊdQäõ$VwŸˆÕÝ‹·c)¡ê C‰¾¢‡ô%¦§Q"ÇØ¡ :Ûû±  zhÅNuèç]Ó¨݇o Ú@‰ î¾ñ¸¦o–ÝÀªî¥¯”µ”Xµ&  “M}^Ó¯ã‰y}/±öéD0Úá$íÀQh îÇ7Pò#4ۮ懃Š@Ý…q”˜Ý'bvŸÉ¼É¬–Îá¤AÇò¹1zz©fŸIéé¬~@ôT«Ä”¸µ J/ã&³Ýd}®Ù+“FE¬“T¹‰yY®¢­@>ÄÚMÁÈV×S²èçøF…¸ƒP4÷…^RçML9 ‘ð…‚ôÏ5po‡§R‡Ð½=‰þA¸ly ¤P;è%V´1}2©7éý&®¤ñ+ÚHÄŠ62®‡X–ˆ½/ÓTbE‰ˆÜ7@$~Æøû‚qÛÛBiP ŘýŸ ® `8€už` äb9dba]"¶‚@Z$ÃÄÿ€ P&íò%zÏ8(æ’ÿˆodÃ5 ¹ñAô$PU…¦GÔàt³cð0öûÇš(ƒf‚ú›“@ë$¶äg2ó·³Í­}Á|àÖ&RÆMª}â0mAø}_áeχ]‡ÍÝ´ù°Zé$³Ýd 4I1=±ŒÉ2ú>! ¤-ü'$ô˜Ëšnmõ‘¬JDnb{qPNheÓZYhú/œö\—ë•­kL‘ÍÊÆC¢Ä§;¼Â'ŸkæçDu/iŒêN’ç•)$ÐtWjR(qµšédÔ›XZ#Sˆ{7Œ qÐ(ìÚ  ã@Hê Ú—ìÇH%½Þ$ÔƒÌy“ÏÓì‘ %©õ&&sa$²n-“`nëI>„¹­/¡&P"&¥‘Hý\ÓÖM>—ŒÏKͬÏ+íëif¨È¼Ä\½¤ÉM> ·›Àªì¹Q‚¤ÆI ÈÊÄÅAOR©`Âã÷IuÐD p’Þo2ÖMV¹É–L(šHi7©ã&mßÄT”Þ­éº@'1_(‘õ¹3Ë‚, „&R뇬›H¹I—›Øˆ¥£ÞhQ$.SÔ8B1ï6Ëk$"Ÿkú¸Éø¼Öú¼f¿„:qÍç+JâIàÞÆ‘Ì‚Bh|MdßÄ%Bw<±Opz‰5S¤Y^#[ö–?¬;=DHçó¯ÙËw„t'1uÄDLJã ×Pͤö›ØfP|ƳKñ%Òé?3>\¦ ”Åu™ìL  ”Ié7©ë&RnbéŒÇf«CLãëâtdQ4L|(îv­c¨ò¹¦ÝÀº~«Ö¦Œ›˜Ý'⣛^b¾íâ,p=2×ö–Ë8AerQ†“Ön"ã&HpŸš÷Q²( ”Ⱦ®¡4èã®äZ”¼?@Ýzô}uAvâ$Sn²f&ûzHeÄ(¨Y›Êˆ'±€.‹éLÙûÍK‘èD&oïŽ÷d»(ÐI`úqƱ)W©ž¨ É,¦kQ®·M4 êêöÐ{S®Ewц,èIdb†ßv<³)]@ßMuÙ/%ý®"C_}C(³û‡sXZ¯nO¤íÊÑM'©7hí&<.z¨¤3dTµ! ªÊ-Ükv¥ŠLœ0oÆ(Ð|ëË66€êç;©8~*¨‚fb¹Œ~›¢@‰¬Xbû ”­Ñz¸! ª)};”->ŠÀȺI/Ù*¨ T½S‰Åt‰ØºŸÈfÊ£óy¨ ”ˆ+b¹]ôPÄz‰©â&bnm"cÜdî›ìšÉˆ¥ì%¥ÜÊ >ÙM ÆwœQ]m*Âe²nbnm"CýJƒ&R?`ܤí›ôÏ_™W;£ú`C (Û 43àÀœÚ@(Z/`1Ý  ú}€.0wöëzlá\ùmPôµ_ ­ Üôyûñº_cŸO¡UϺ@‘ Ôyû‚Þ.`†îSØ)õ LÞûN p6ñºà~,7èýã~‘u¿ÈÊWÔ‡Úªv\z¼ö’Ê@é%¯=ʼnsÀ¾ldݹkáM­Ä,{¸Žƒ æ{ ß)Ÿkêç3ïDºÜÄ <LÚ=Éú¼Ö¾^KBÕþ%f扴r‘›ôy“XŸ—Z×Û¡úg"EnRçM>—ȸIÿ¼Ôü¼Ôê7Álâ—p¹O¤Ì›´ȇô~“Qo2?׬ë¥î‡œS–ȾI«7‘~“¾n2ˇ|^ýz)*€&RúMêºIû\#ó&ã·õ¯õC î$M¤¬›ÜÖ¿??'þÆç’û×Ü8D;Âʇ̛Ô´vÄm^‡ª¤ï›˜®·+i+0ï5F*1ïõ PÿÌIJ‰X¢.fˆ•@ñ$èŸ>‰¹¯‰L<Ü®NLû-“Ú>|T%t¬“^‰ù¯ò°¨@‰Þ£vú¸JLþ-‘n}ÍÓ· PóQ«×NzÿjÙk5öÀ©Zœ•Z>›iFxbÓ‚Xu"½•ÎÒg%¾%2>À\e—¼P2÷M\qÑV¨Z\bO‰…o‰X]ÆSã Btl¶+°E(ÀÎIL@`wžû(AYFu¤è ”@½[ì–À¾€nîc{ »5}#à6Ò)à³[•¨íá3èGÞÎ;Š)€ê%ô5 %@ÅÇh)iOÜš;ŒƒÅ)JL1ÓAlÔ¥VÀSµ÷•ì(®Kü²ÐͤðÝ” ¦„(^º¬Ä”¥ó\R‰¾'8°¤Eu—ËTkòãÕ.°G=Ò'X°Ì]s D%ÿ< þñ·JýÏå¹<%Vš†4½„úŸ‰˜½'bùŠD,º™ô7À•0€•!ÀÌýv× äTœÄì=‘ò¹¦Ž›´}KW$‚:¼Ê‚%8“>‰å«±|õ3Ø52*Ä?«OWR€É܉ì›s.\v*|­ÊiA,]‘Èú€Ï%›~¨Ú \oâõH/ñz¤—Ø™t"^ô’Àœbo´S²™˜~]yë“”Ï5VU–ˆÜgpë®ì›˜?›ˆù³‰`@ßKäÍ[ï –7í*ësùÞo‚ }'™ŸkÖuÍuAçx¾“`<ßIüâ%òyž~¿óÖ'AÞú$;ƒÁe'ÿC6u_g'XLûm78t÷$‹.]›NöÎdÒ™uå'%pfOgö$åN‚Pn°ˆW Èz¼Ô7Á Oh©®’…rѦ•eÞj7 ¢uŸÔZây|@ý(ù^Äl?³ýDÌÝ+^‹r@ZÓíÀê1NÀJî@¾„=Å ÐLf¿ ¦ói’š87Íw‚“Xa—ÏP€CˆX¥€¢0N‰•"%‚Cˆ“X W}ܰ’4@3ñ)&/±´]"Gtþ!KÌiÝqÍHe)J&ÅLV²n€Z ×­r:™·*1ÛO¤±«h°,wù)é7@)FaS–’Éz:à ^&–Å;d@第ñTb>P"æõk½‘a•ùŠK0¨Õ‹•ø0+)Np 1ýc6žB"…¯ØÄ§3ñÖhÂlžQâí%3žÆç´¾3LÞoK"¥'ñÌV^¿Ã-mÂ:¤—@(;‚Û®‡¢C}|¨è€Š 9=;þ eÆ'r“9oMûåÍ.h54@µ`÷éN|ŽÃK°Ž¹0–$1N‚¬µ¸wÕ ” †NŸÄ²ៈeg©r+ÃHäó4fý™ì›¬ÏÛÙ×ó@(“úVâ8• O{ÔÕœdðFs³€ œV+1Êl‹ûúIöÌÄt@;o³º¾{¤Ô6«ë½IÑDЬП-ý ̧=º #ôlÛÇr0Ð6'NݶKThÚÂJRÁÄÝ“`âîIÌð3a 7Žñ”|€M&Kd³¨›_¸&´cß‚|ÿE,£‡ÙÙ$RnÒå&fú‰ Ùð$‹kïïÇÚ¾|?heâsù^Òn b…‰˜ékk§³|‰F*3z®È¤Á÷Óª5À š¾k ýÿãÇ‚îo"NÒ{üÅK|óÉN‚ùd'Ù¬7à$ÂãË“vPrAyç“U'VŒ1<Ë"ôÿûdµ°œUžÄj1A>Û[»‡ùí!E¥y óÿ±a{«· i=‰=LOÞ ¿qû" «ö  )öé¬Bz ´€Vó±lJ »™¹OÊ`yýö_Š@óV‰Ñã÷‡ÿŸ‰%2Dbdòl™X*ïßÅt€ôxßoVˆfÒÇMÌ¡M­‹ñ)Y+ˆjœãwüÿLê ,Ÿ—ˆÐï(Û çN‚bÊÈ/ˆo>oRÉÎ`Ǽé—àl®ÄgØ<›; 'NbeHÛ[9•˜O›ÈÌQlžN,–!*ñ9•´ÑN=Ðíº2JÐ7}’Æ8–wˆvý²À‘÷o7A …éÙ¶¯'2Ù2No´Cô$…Öÿ°âÞȺI-7i©K‰p¡?ß! ”É`éYçA-Fñm/,1~Iåbv’2oRYÎü±ó ­Pq€¾éîù—^Ù7}ôMŸŽíIàØ¾Š ™pEÙÛ-gÝuô”Ør–J1\ðE‰Ó=éPÒÀ` ';¡r€Ï&0²oÏö$¸"=Ð…3Чï!Rp™ÜäL4ƒÝ20P&eݤ~®i9ò3«c²»AXwtÏd_ÏaP;Þ†“JÍž{tF½¹[ÕMTK ª?¶ì^«’wƉ˜ù'bæß}f·‘• ã€DÌüA)ÒI,° ©P%PÒèñ&}Û“ XcøfÞ'+ìgÜ| )í&¨°? "“ 8‰Ý1ïF‰m ‰X$л»gê@':µÛL'µ~ÈçÌk= Wáæ¾“ÐxÊ ,üóH½o%9‹’€¢¤´y‘ `b}óìÄ€,Ð~Š&¨‚fb#§Ÿj¯_ºÁg¢|&Ö­í7È0UP#Ïåw@4‹ê™lwñÄÈïßòTVhJéŸmÃÕ rpíÏdßD]Ûݼ¥ˆóÆeÇD%jü»ìøœXü/23±—îØŒÆZðmtA3iì×õo‚›ÁtÉB%æ%2o`‘]"¨Â{ D2)ý&uÝ•x'ARã$Ÿ—ší&ës;^Š¢@™Ø äzJÚ äC,°KÝI®ZÑïZ1îZ1X™Ç‘ ª^.'V«‘ˆ¹·]¨¿¢Ä²Û‰ØJ–V²“Øn°¼©} È‚fbþmo+©,zœâDꇬ› ~ôÏ3Ñ1ã-®ë>gxC ½¸#›2 š‰¥·Ç»t@4d5ÎgFz;’âcqT«“Q²v&TJ¤ô›T6tÊvâÍ£/~ðá€Ýb=®€íO^Æ»è¿uJ.ó¨º\Hoû8%…*=ü«ùä±»óº×Ìé!Ÿ% Óå€N‚3ºå9ñ‰uÿ"ó&ÜŸGµüJñJÔò3AÞãÇk“;Á[½9¡ ªŸ©ÿÉ0£’0 H¤PÄ‹ñ׬Ñièï°F§áK„ŽäNF¹É”›|þÈüZ=a€:¨nüŒâ&äAW›ž)œ ¦âY7±AŘ7Eb^ÐŽŠŸÉ0 ³þÔVâ›Æ‰Ôr“ÆtΞN`ý'éö«w8Fz8¹ù0Ã_>\GgO˜á¯?å» ðŸÝ‹Ì*QHgˆ¸F(ŽÁÍcvÖ[&²Óf;)ÍaJP²G2s0¤Û‹Yü J¸ÏÁq­#~ïAÙ˜“XÅÆ3ÜÙTJÄ2|‰ìë*%b]Ó‰ ÃdŽH% é£*”À£•uNv˜øÈ-%Ìo¿`³ËÂo`ÈÃi¤ê×,ø´‰ ¦;I[7ù\‚¤ÆIæ P¼=¯:¡t’.3ýá’ŠFØ(Ìr•tÂÎÊhhB4“1nböŸˆyµ‰ ¦ëÜQÖÃî¶’-ÎûÛÒOÐiá«8±H.³ù톕˜Í¿ÝÕ}‚X^/ûö‡û¶‹®hUr4ûEF½Éü\cÐAÆõðÒUÂŒßJ”M5JñU¹hdN—«žÄ[kX¨¢‹b ‰dÑIXÊDʇ,Ø%‹wÖücn|˜ ­Üº¡šÉÞ™,žUwq´@3±œv"jñƒHHº¹ÃCŒ…õ?“ù¹ÆŒþ ›IŒ“˜Ù‹¾S¢@&æÍ&b¦_?MXÍDmÿ"ë&»$²!šI™7±5l=î¶onSüðt?ÌêdðµnSоˆ¥10¶d·LŠù³™”}“Vo"=9iªp™ ¹Éœ7±ß´øW-õ¶hn=~’²¹$R™¼â±Ä†P&æÏb$-Éø€S{’m%Ÿ£¦*KzdRÌЇ>ªp»4O6oèļ…îõæ›z ‰L欹onªÂŤ %æÉòÒêM% Ö<²ÝPñc€ 9Ð‹ì›ØÆ>¼•YÉ` ;ã¥, ›ñ'Íí¶ME¸ÕüÞߦš\ òÀ¬ÿ¶ž`09ÈÖ‘MmèY<*ÛÐz« 6…@÷ö#” !P ,w 层1¹ÇoꀞÀe@¸ h °èiÑMÝÔ]âéäMϯøA¨šH“›Èçšþ¹¤Í݉M Dvý• €Z”™íE¹˜“@.æ$4i¿Ã°œ?4@Ï»g1£])p£Ä̃½PhF·Î¦0t£Mß߇Ã)hûfõ'@ãØÙà ï[RŒ“ù×ôX(—ˆ•gìÆƒ%–ÆNûùK š‰åò±4v"2n‚PÎÇÝ(±LvqgKÉÜ7A(÷(€îê“M1gÞ¤ZxµX¶ ¤Ó%Vb¡ÜÞÇ_ z75þjö›Øu"Ûó üÉéø'RöMܳašmÅ5v4VJ…º8±£‰î’Jö0ƒVùA;#¹“@.Ækël¶…WÞPmÊôë&?ûKƼÉB0õ>1æ.ñºû^vO@ýÏîÑ—´gÄ£‰ÿ_ñÿˆµOÏήB H½qb~f‚þiñ}­BðSß ¿ÓJ½·ƒ@ðS‡+ø‡€àg&æÿ$bþ¬ÓJ\Ę[)9øŒ%æÒÊs¼‹ãbH–¶EDHw {ÍM¾Rô3k6IĺM$n©Jß¿»š›“³oEGJ\Î~’°Œ.ouÝOw«‡qÞnó9(‚æ¿u?åá™ÌjVÖ)™x)®ÿ•ºŸ™ìL¨ûÙ} ±³ÿá’JPq?<ЬôÿCwÏÈÄ5OsÂlÉ 0ÛMÖçŒ*Öù©T¼mO‰_œî¿úTЮÇfücºwS¡ú™É`ÛÏŽšý&‹ù).:ur˜ÃI K!ÄË ¸UÊ~>Í×ÝJ×yBUIß7™åClšñ»Ðõ—Ÿ z@zzî¯ÝOÓ})NLÑ~=L=*1Eû¾Ý‹‡JŒ5ø·B?Æ-ÊŸS" «Pþ´B<¢¹—Pü³ÌXK)þ™ˆEsmĽ¸)ð¸ÏV)þ™ˆý¢‰ÌqhÚiíÿ$fÿ‰XR/‘ÆÈšFùÏHá)éû&˜Õ—ÈçÅÓš@‰6=ÕIû€µ}Š¡†EkPs_¹•7êž`­  à>Õ?OP¯ÇíÊÅ8/ |Z/à'ƒ…ñGÉÅÛ13 ðg&æ4×øâ+Ob‘\"²nb¦¿Züü®ü¹<€iTþ<FZÅ^Ñ(”²îwYæôNÒ>×ôÇpæË>5~Yf‚3‰“@Êû Ò)g¿˜ÀURYá ÉîÇV••WJƸÉdÏÿÞR×”K[£.\ øÔÅ °Å‘K¤O5ÝQkýLÄG9<ÓIçi8wÒ6"=ëßèˆQñR;µüè*ü°³ÎJÃíHÑÏíÕVJ,ŽK¤óÈrÄ3Û‘\‘ãµìH.‘%¨}öAÕO=A êg´°Xí‘E'3  ?±õ¡íêÃõ¿”t¹ Lÿ$fú#ÖžÅCOZ´IŒ‹¥?£SQIí7iŒ¹ñ7Hõvà ‘‰·0ÃßáO7*€.ñd«P4‘"7qMD~ãÐÍ#sIYz̈\(šˆg$bʼnxa6"1I =e2B ”‰åsÂw(e‚s /’ãÎ}‘Å‚Gÿ”R‹å¯ 4W1AwsÕ%jö™4¦’¦? ýÙíûJÙnè5" =ü6®þ‰”~“ÊjvºfBÐDP‡t’q/ËxÉú\³Ù æ¿!e€$"=áê?¶Õ*1¿'x²'Á4¾â©eí6ËÇ€1ȲvÒø#ÛÇ_ÐÄÀb¸Xw‚Ö. ãæð êîØü½r‹ÞN`ÁÛ žÀÐÓ %õ«“XìÖ|<;G—^dÊMà¿zIú„¢{s×Y°Ä_dßÄžDÌãqY2Ùp€Ïc¾2—1úÏI þ“I¡ƒÁV¨ú–ˆ9®cxÞK ý™É©.g‚8vPæ›JltÕŽ½Xeë]Pƒ’§ßÇ6'i7±³¾ˆ„n¾‡W'Ð=< z¥}¡ºîOù £aØÑCÿ‡„Ÿê»r™í;kO‚’zo.Pb‡Ñ‰XÒãÓ'MQÏ ž\‘@Ýò‡Õ(ܧ:€2Á²’6è{År´JÇÏÙ!ÿ¢<”j±‚znƲŸºýÑ’:d?­òl:iõC왽{DI/É‘êôõAÚzýÅK­}= «?·{Q½±œþ$(§wyu›Z;oÒ?×`÷g%“B\tx:D?O"l'9‰¹¯£ÇW!TÍ`eª‚6/ЯǮW‚o>‹X‰eðÞO§øÏA¨ù™ˆý‘÷¤(@ÎbÇû§ì爀åït3£_`2vá2Ñ!øVëñ´>†ÕÉð9¬/ð í%´½Äƒ¶—Ø/™Èø¼ÔçÌî29«ä‰[w²ã$ÚNâ…/±¤D,]‘ȼÁú¼ÔfðçV´ {U]‰‚fÒÛ:ɼÉïË‘½X^ÏD†ôç]H þ)ë9®QÃquHÆ "³{°CýSF$…:Ô?3ÑeL|õð<{4H üˆ+(Ñý\j䑯ü=G {´Ìí﯊?T»oaãùýgñ¹ÙêRé^ž‰ú­R«op»~ÏájJÔè/²n¢nO&Kn¢+ØI ü“Iù\S?×H¹I—›¨á·ð©tÚ®þÝ!·ô#>Çâ;ý±‹k€hŠ~&jø™¨›‰fî2QïGžêËÏ0á϶º/±Â?™¨áŸŸ-4<•¨›‰~&ŸKÔð/²o2?/¥†Ÿ‰þI°â·¹<1 üÙöôÓ‚aŸ"q;àðËð±.JÌôGø“Â?Ò\-Úe½Fz|¥ðøOr]á Ý$%jþ½Ìƒè†ž‰º²™¨ùwqéd%jþ™¨ùg²øÄCËèúS¿ÁÿLÔúeu÷J”:½¡] ëNï@}Ÿ^]Gκ¿ìu†‡ Â?™˜éÏá÷ tdÕx+Ðýéï!í€îg&jù™¨åg2ìWðFJ%šºû}ˆø®àúKu¡MÍ2ª3›‰š¾Ô‹vé®”e§Ž´}¼(ÿ´îÚH_þVŠHî è~¶ãnD ½z©uf[(¥kô¦ÎlE?‰™~{ÍÍ|ÿ&ï‰} -¯¾V¢É»L†½¨ÐþiuÅwº-ŠkõýäÜ Ðh¢dBøGJœãè/°o¢Ö/#NW&Ô?e…¨\õûý¢poBýS†OXR¢î¬Þie?h÷½úa¿«ʕ[ïij³êŸúep¯…?hwW_B_*%ÚÞk[¢FN,ýR½Ö—¥[?C)ñ1í×ÿ½á¨™ÿ”è2QRÖMöcþÀÓšÍ]ØAú}‰™ŸžYŸ•+™·Ö)±•¬M¿!&ö™a“ª?"^ôŽPÚ~)ÿjšy´".  D­?ÝÜ¥{ëš[7WqëšÿT«ñâ›w#ï½ É7ýñü šüg“HéMȶ˜Øf§ðjþõ}b¨þÔ7öPý©¡oD¯&)‰'~`¨þT•Úâ%PÿÌD­¿Ì?'TÊpu*%êÔf¢Ö_´ªt;Që/;²™êŸe×ø‰¡Wz9^K¡“@4]Ï2QóÏD>×ôÏ5ãóZóóZz\D?{w]:•/å&Un¢w@&ýÆMƾɪ7Ù×ó@÷'“"7©ÿÉ:ÛtGVoå®à<í·îcw  "øoú“>Il„âÓN&£f2Ÿ{­’É~îuÒ½T4‚Úr2é51‡ Ú“È#‰€c È#p‘ý¥Kµ†"ÑùHÛ™èüdeò€ýÜJ§ÿEà DRF&ÕžübD¦$bÜF"Ó?’õŒã¶~Íöó Л@4™þµ,[r·îˆq[§ÕÈ ‘é‰LÿH¶.zž¯‰œˆ@ ‰ü¢õ›¶‘ ŸëßWhúÞzT|2é#“±3ÑéÜ ÆÁp"gE)¸²LhƒeD‰èüDç º¢"›B$볟{t¯¡þ]";“V2+·4ϺÛäòç´eîȆèM ‰®hÛã‹ú?‘´gŒl󑈕‰X¹‘È3‰ló7þOiÛ‚…R ¼°E'-ƒþ’“‰X¹‘¬‘ÉÞ‘äK,ièZ:mWÛ’!ôYQ¼“ÈØ™èüder"€h™¿‰-ÐHtúÒF&}g¢Ó?õÜk?÷Ò¡NËP’63é'™ÿ‘Èüd?ÏIÜ‚Hjò|ÛÍåƒM!’ñŒ37y"yÞF¶ù›@èÛËŠFÄ@#‘G ’®ó`Z~ëÁž‰„ü"y^$OÀM I©™¨YT¦E…¤€"y†Èˆ.÷îÚˆF¢FîE Z¶—z‘¬LzbE¢6n âæÉÚÎÕþpýdE²þJjãÒf&ºþ¢6n sg²Ÿ{t/ˆÀERž1ud¢vnë¶]KîGÉDý¼Òü·Q) ÔÎ DíÜ‹@ 4ýA#Ù™ôgÌè™Ìç^ë¹×~Æœp/©á/%“Ú3i+Ùä?3“y2Ù5“3"4\$¥gRW&íd¢kÚ쌧+9™èFÿÖQC7øy¿dªŸ÷qÉP03Ÿwøy7Ñg }[üO†&h-OÝ_K—p ‘ Ù"éϘ‘oô÷€­£« ĵ©‡ñ/æëêD„”‘‰úy¨ŸÉB\¨N#3uóÙÏuó.-¸Dž1-ƒþ13Q7/¥Ÿ|óTCˆºy$h$2û#‘ÙIk™ˆQ‰ÌþHÖs¯ýÜë¤1ð ")3“z2éõ!;“ùÜk=÷Úé³§7ÁŽI9™´šI|#ÝjëŒr Y3}.YÐHô¤–LZÏD€@fë¹ÕzþœÇx‘”•I{€®v¶!DöøHfÍD€@ôäôH  IÍ q!‚7&D׳ng^Bd?ˆd>cÖÊäDPÕÍKäSk&md¢ÓÍDItúG²2Ñâhèû"ŠD´²xFȦg™2%“Ù3Y+“îUÒ„Ç:ºk‹%=²1ñËTÆDúÊd>à!ã DS9. =æ ¤öLÊaý„Œ 4ÊÈzÆ •ã&'éLå¸IÍ µ‡œLÆó*D¹—]jˆ»[Ù‡ qG²"QiÐ4ĈžÚÒw&ã3Ÿ[=/:éVP-ËŠ‹…ž#Юj“î›h„»[]ôA#Ñ÷¶¼z!+p¢î‹,YÜGcÖs¯ýÜë¤{A*(’²3i%“Þ3+“Ù2Ñø^,ËжŒ'zèüDç í£)Lë˜û‰¶Ÿ‰h S ºú¢ûûE ‰¦0"½šH€*y¼äd¢¾@ôDÍÛ‹¤7¡3HyÆà°n±‚ÖÝD€bûLç†pƒµ8÷õ€Nhe$Pk-è+™®W¾ÉÊƉ7)Œg_ ì;ÁJ ¿Ål èO×­nEU'w&'6h$ºFW;ÿ”ú`M5 3!êÊ-+¢Ûy êÊ¢®\ êÊ]Ò ‘c4Pkuº©­¬¢a§A ¢Ìe¤œL4Tˆ†j%“Ù3Y+“­Ñ´b' hîÈ`tï&‘ DkRé „‘â1Ý»‰Fk»Ç×4‚"95,÷‘h´6îÒV&ÏÛÌö“É~þœ“ÞA‘°†çÛãNA‘ŒšÉ™hUV ¨9­^C׸¤0)Yêçµx”%²r­±íág‡¦û¦ù&¡­¯ß‹4²7¬ƒœmwêk¡~oÐ^"8 „ÉZxVM)UjÜÕøA«(üíø´BP$£èYE ½g¢æì¶"!Ð\¥HN$P ±í›Ô•IÀ3d<·ZÏ­ös+}.2½êôGÊÊDwøã-´B#ÁïYìx Rʼn¬gŒ>Yé’ ÚMjí!jËŽi ²ÔïLtöG²29lNþ›`òߤ>¯j#5‡†{­B¡‘¨Yˆ:sœ4úA‘¨iûùÊ=!‰:sÅ·Üy,Sã,UãG,WãG,YƒdA'4‘‰¦kÒè_Aý@ubg&–zVüUsf¢Ž@ýXø©ŠÜ%(E¢Ó?µpQ 7~23w8s7ÙÏßsÒßSéÏݤfÐÒG&êŒbÇ‚†P$ker"àúß¶­ä((Nñ½Áš!ú¢@ úD²2y^¤OÀE "$5( Rv&õÓž1V;´ Ì–‰d²k&'½C#Ñ'àóôª‡ ’h|/Éš-ˤ„$(½«Ç²‡ ;B™n,ÕŠ@+ÑØv ¨Çº‰V2Ÿ[íç^§G1¡HJˤ>cÚÎd”Læs/-@4u8¨;½ êNd³îô&ò$²3Ñ|ü@4Àý˲[›Éz7Alã&º+rbFú$R{&meÒ[&cf2¹Ûm'jæ¢A¾ÒH÷eéáRm¡iªB`ÝÞD—²Hž1º¿/ëð,ÖíMÔº½Hù+ ¸ÈÉDÛ@Ô Á›ˆÛóU m*X‘Ôt‰¼¥@*hfvlhÇÉþÏç{s'D-Û@ ÎÝ÷QzAˆ:w¡”P êÜ¢YÇZz A¾ÞM°w“™ÚBìgÌI·‚”P"Ϙ–AȘ™è¤Dwö@vºÕ༿‰&-}ƒr%B4°Hk™hÖR DѱD4žÕnl"[ƒú$il¬YKhÖR õd¢¡Hv&ó¹×zî¥óÿ"ù±¾@ÊɤÕL4o/ nTÊ¢±¾@4Öù;1no²©?s}ÑX_ ë ¤¯Lf܈äùsNúsà DRV&-ƒþç]æs§õŒÑ¤½9X÷Y™Ô ZˤÏLÆs+ôMÓw¢‘¾@NE-ÛH0ûo¢rB4_Zk!:ûGµàߘh$:ûûg.áÁvPLðE•Ö[$•±î›”‰F6"yÆŒ æs«¥¡e“O¢Óÿúœ&.·Íô> yɨÄ$Q=-—Rb«Þ—5Þ¢ŠB.eªÎD—¿3d¥è‰þ„…èzvŽE…~ÁÜcêr^p()4¬Í»H YO"!êÛ¡é4‰úv‘ìL6×ûÏÿžÓ#LÅ¿I}À̤LŒß,{ó ž^ܧ7ÙÏDpd2‚{“Z3ÑG Dpo2z&se²3À#Hús ,ÚªiÏ Ñp_ úò ÑG •Á~îtÒÛ@W4Ýzñg‚B‘ô 43ÿód¢]ÑHtD3óÑÌü‹Àˆ¤¶Lpzqì²·p‰”d¿œ;\î.UC—çûîÓšõË:Ãe;áR'øu¹Ãå*ár‡›Òrå%C—%þ¯Z÷ÛºyQƒ5˵óG¢s9ݰÑÓˆ@t2_¤r2ß“ù&ºÂÒ{&ce2Ÿ{íç^ºÄ{…Ãù  MnRW&ÏݲÏ­Phr“=29éV\á)Ϙz2é5“12™%“õÜk§{ñ·‚H¯H——öùc–ÉYiˆEM!*˜X79!*þÚ*«$„¨tŸ5öS D-(‚#"žæKkA1WÇ(tA…ˆ¹:zeÝ—ñׯ·í]¨úJV&j0¿¨\b›L"“_䌗ß[%—íßç£^èØì…&DåQùN¢olM,¨òkûü¯6\$ó£z‰®À,Dõ—õ’F§*ˆÊ…6«›;ú5% z‰Àº¹‰ÌýHdýJdgrÒÈ…FRf&õd¢ºÑ®`+¤ïLfÉdõLdîG"»õE õBQ½Ð@tú¢Ó?Q2™=“µ2Ùé^PJä@ïµ;1ØQ‹5 d>à!j°S梊¡¡bh úRiÔÂ\¢¹Œ Ô¼YÖÆRˆzlè†ÈIc  ‰~†ÎƒfúDr2d¨õ‘¢’¡è#È)ÑeÐD µ©qM¿‰>èÈ|Þg>c À´3i@ýÍLôDåÀs5}`îMôƒ¹QB$ˆÉ™Ø66_û>¸lÖêu¸Hú3F]¶@ô DŸ€@ô ˆdG²è²±Í‹}n ó™à¿~2ÑÊÃ@æ3Fm×@Ô|½ÈæpÝã©3µf'»û € þ²½®@0Täk5¢»BÝôy…ì _[ ÚwcHXzšèˆ8l£._õ°+ XF$úƒ""C"Fî€D"FîO\È~€üæÇNãØjMµŠ68R¬‹ðbTˆ>Ÿµž¢O@ Q3~a¢¡M” tÜ”ü€Rjfd Ðõì³V§RBºZÿ4!jàÓߢî±þ1BtÈF5…\còÿ’ר‡,°o‡µÒ¢öí(Œ– QwílUejÞïcC-.™ûø‡‚`h[Åž{´qט“¢Vªá³WŸ5‰PGE1|Ëi>ºÊVÂ+há{Gq!:ñ)8 ÁÄ7•!º»O?…ˆ3×k÷ß qæßDg~«þ‘  ×§õl=Z¡õ¹$…ËÝœFÔBí‰ÎüV™L+Dg>аITXï!*ˆ? ó„¨ ¾ ™?ÆáÑù©Ð…XÑŒl|{H…ŠPvoF´„˧ þð™o`6Ûï+¤Bû2Yl!b b «¤ÇúÕZ ‘¹?Š?RPêÞ®Qˆîç~5pQ÷X*¹™ü£Uf ÙêzŸnPº Tº7RÌ÷ØFZý%òÉ×ç¿'”BÇìþ¼Â!sš£VáÌïceÖ©ùRw‚±«ÿ½ê x¹ÖFÓ÷Ö ¡ÐH´Ĩ>E! ‰îì{^¯Rß®ûʡЎ‰Îý@tsy·Ó_Ňh+ˆ@f:ógñ绀×á 8úkw› z@:±¦ù»ÙÓÑ šÈ‚cÉ-±©J¨ün\TBeo[þ¢Å¿˜ëcƒP$g I'hƒJh$²K!ÈMÐ6ÄîCtæ¯avmò?ú4ï¾Ah|þtH9°ÚµÖbK\;“ˆ? "¡—÷аìK—.S "¡}Z§R!píü%2ïÅ~ØÅˆZµê!јÆÚh•z¾O5ÈÉá×yq¿õ\䨬b`•qðÕ¸A®­î?䀺˜ˈšµÞ/Kˆ†­Ïö¯½Ñ¯ë6$z;¶n5îFho…úŒB*³¶¹°bz&ÒÓ—Œ½ «L¬Ú hö,ÿ¾:ŒÚn5§A"´WÓ¢íªï(RÜaÿM£Ó¿Þï32ÐÈÆlziPˆëËÚo+HW:ûëñ{CH6&œš u¤ùX™¨W×§ß ’@b0,jÓÎ퓲ÄMtgï¾w5„Ê·Å ¯©@¨X8\B#A”›h/ òýbo ¡‘ÐÛ€Îþµx†týû`ÿG{ö&ï«FyÈÊD ÜãëÄA#ÑØv_>Ïaÿßû°)Šõ©¢)÷çóg öÛÅ—Ù¿¯1˜ú7ѹ¿¶[pÚþ-ô*³2O§8ÐlÌ‚¹ï‘Éþ1¤ápa™mB4)cY³3!ÈD:öðvØÿ’à^ýURª¶öv(ƒÖe”B ó¡íáÔåaÈu I”Ÿþ*PüþÂÂül7¨;Ô"Á œ‡q;”AÛò]¦«2¨üæm8˜·ûÑ! úëq#Dæ¾ô«á‚Øé4;å¢sÛc:7ƒ1ý¯0¨p,ºÿ-BOt7;ôÎ;6qŽìW .š“¨/7LÈ[ÈÂþ6:÷O³5´søº  ýs°C4’ª^M÷/Be®å¦sкukŠ…ª;D:Š&I´§ßÏùèm³RfõtŠÍϬ})Ö2Ó¢ÙGƒ‹u§*èªfûuSþ÷R®lÿ"¨ º>ÿ>5”|[ï<èµ’CHðÇR-žKt(E‚Üšjn†ìêW6ÿDPß“Û~‡$P$‡†ßf¡±YuŸ»CT¬¸m@ƒcئÕíÙí?-ô@¥…ctz cU¿7fûÍq(E"›Àœ¿µŠ@³m&‚‹vör‹6mnvÜ”êXõ#Q“vlÖ%DMZY£¦uæ.IÐÑ—ÏHÂvÌeîkÛVÖ! ‰LŒY¬C‰YǦk< ‘Ù??·1:6‚Y¬¡—±içZ¶T ˆͽl#ÐÝä„È×, v–ƒ‰›O‘Xµs ³a4Ag_6å4Aç°æ,BÔ›Û~yúu 5йÝõjýG ý©=Cìà-míZÝ”ŠD{T¯b¿ÓP5Ð@ 43•>…ˆ/‰LþHdòG¢Ý¼#Y™lÜœgeæ¿tå кÿ@hERŸ1ÚÕXâ®Fº–‰€ÌûdCàÄ÷€hÚÐ:s$ÚÐ8H  ªÍyøÛ@4Ù"ƒ6ùrŠu0j&Ú =õŒ{–½IŽ~rëÑxÄú‘ŽØ¦ #@Ÿ€HN&bÐJW>Æy&´AÙ}DŸ€Ÿ_1?¬eÇ\ê i8uä_SÒ¥ÎþHêÈíÙ‹]ê> ý;Æ Kè,hQmÂvvËD'þ/À=!¤j„ÛHá4güxB”Š€$6ñ›÷Ÿ5l23 (’­¡5Žrv$PÒOÛÉΤauáÉÓ„ (à1¤;! ªÂ9ÓˆÌ{QQ£í7¡‰ìç*PIÐHJÇŸl³¨sÞo3ÀggÇv?)ŸÐD *5‘ˆIË2™ø’õÿùÝu7¸Ì•}ÙFÊ̤êg·c™ IÐÆH@'ñ ÄÓ2ÏeD§ýEfºÄ´Dÿßìƒõ¿½Ù’™ù‘ÈÔWE-Õ "Æ,ëI”@ˆå¶$E2aLÈ¿Q‹Ä6öíïÓW&3ƒÕ2ÙÏÝÎgvê„õ‰Îý@Z:÷ž©›@jÕéú?‘èÔ¿ô@×/D€‚¶«îd‹Q!5ƒÖ2é3“q2™#“µ3‘™¿¼ùñYŠDf~$º pþ­æl±)°>š³7Qs¶X-£¥výgÝÒ- uåºÇó´@ç´’i!2ùgýl½YJDÞyû}´@#‘ŸS^uœˆIÉ>™h|ösî4"QW.uåÑD½@Ä®D–‚HÄ®ä¤{AH@ÚR ›A$ò{F¢¾\ ðå&cE«Á•Û~À³°ô¯ºüÇi0kŠÕ`ÖÊV-ÐÕ=·p©èúEœà´ ‘ƒ“€zs³Ú:° ´ú6³iAH Z7Kõߘ‘@(µh?7¤Ä@µUÊ4Òu½³†ÎBtg‡É\™È‹šã´@e³ á± $FÜr"-UœHÔúåÍ-hF"C¦u3 kY ÷æJ± D ruè.)P—mFÔ¥ãYÙ‚ÐuÙÕzr¿KÛùh$,ÈF²õÃJ4š>?ñOùši/-(±¢ž¤Ñ‘aDdqùÿ%X,Hi7žfdîLd¶Grz$´l%…P$uf¢³} J* Qƒ¿v³žôßDÞÿGÔîB*‰Ú=¨!û ûà"@‘”gL}ƨ!Û¦Åy6D€"ÑùŽ®!$º—m>šÓé×E?aCô&á‹Ï¢Í;@$Þ4-Å Ë_»Fùû<@§| ˆað]iöÿ.Õy›ÃÎ6¤?¥qØ­ÒŸŒö]s<×hCú3’=› µaôßDÅßX™´ Ôw ¾[§Éº!ýÀê l]Ò›EÕÑ,¦‚6d?çñü†ìg$²èÏóÙ¹õ†ìg$2ë#‘Y/ÑÄc@½·Ú}ÚaÕìIs6D?(#ºèо%HþD¢šçÃl~jwìjdÏL4bñ ñl[ò=3iOznæÃnè}®âŠ?‘hÄ"©û³c§ ÅŸÕ†­!Š?ë›þå-˜¯Í³ ÑI?º¯*úþ‚­eÒg&ãd¢ X$1l¶!÷¹GFrŸ‘¨ùzŠ,¨þDÒž1jÁ¢l :ñÑ™ˆFd/rÔ„ÕFeÈúo¨ÅÓ­³õßÑ0^ Æ ÜMÔûš­Q²?‰è÷ãg3²?‘´žIçê§þ¨øg«=䨗o—ðÞŠí»§Ð{»IÙ™´¬Lžw™Ï‹Ý%ú,’o‘²x„z øIÍ@½·@Ô{ D Øþ™Åx ‰Nÿ@Ô{»¬ýU¶Ü»Àg G¨óˆÎþ@tö2Ÿ÷™êTmKÃ;*øŽâ~ âÑ'ê¿âŸ‚?³|þí@ðgœfùI ³ìëU2ùg[90øåX«ø˜Í£ÁêcÎŒ$UÇÌó9ü™gYÆÁ† /r öOS¿ãz½­Ný@töK½€ýº9TòŸËÛý‘ö\ÇVöùÏHÆt;ð*«ùO9!+N4€½L‹AÈé‘,Îþ›”gŒIÒN&£f¢ÓWs@÷ƒê'ÑúŸ‘œ‰êFPëCN&ý3z&ó¹ÕÎà´‡¤[˜³ÀœfJˆ€Fò Aû& &ðò÷UK(3.Ò¿‚o‘¨14'2O”¨M;Ì9%Ö©®ê Ô¦­ µþ¬š‰Ú´&¡ªóŸJrÿ$@5°äD—³ÒqÞ¦äbI`IÍD%CMÉ•]‰®fhìÂò}@4@Åc©¤¦Kص¨]k¥Jtò—_J‰J”ã0ô?ׄ­‚Å8Š: JÔ¨äÐâlü{!ÿvÿvÿôÃ$%j ÒK&£g2Íî2€c‰ ì™À9t:r7 a«¦›µlQ?.ùpG®þÆËÂ:ÅÈ>‘@ú3xs7ÑèÅÇŒa%j v•SbÙ±À쬚‰Nýzü·ƒàÏúx£É}lJ4!coÄæ•hBFõ nÀËïá7ÙPZ5"Q¼H4!coäÝ)Ñy¿šýR¼±Méõ÷}2Šuú™{ú©ŸÙyR­D½¹@Ô›‹DnU™Æ­DC²<Àû û9ç‡# %eb·Ñ¨Ÿ?„ÐýŒ¤sñ±Ç’@ jТ>]an¡õê†ñò@êGžK[Y û‰Ný@0õ™®©D-Äî_;t?ýô_‰NýÃd(%êôŽÃÁþhý$Âøåp¢q¼@Ô© Dº@#WˉõY;uê.ÝO´!&(+ êÝ@cz7©À¬ ¬|çŠÜ+ÑxÞE ó‰zs¨7ÉÎd”Læs/õæynuÒŸÅÏH4él›¢¥¹3÷#pæn2ž1º§²N&‡¹O +Yäg$¥d‚¤Œ›´•Éó6˜üëïûþ9\† $?#шÞ\N óCE:’ú€gˆÆhÏ«4)#ûFm¿ídE¢’Ÿèä³ÿàlFIß™Œ‘É|Æ<&mA@ûÐ[$…?M“•ùÚû0¢&íf«}dK5 óÿ+]o>óÕÉ™‘@îS²±¸hü$²3éÏýÌ™ÉzÁÚ¶¹¢“w ù‰Dg :ûÑ_ š›aa%ód¢ÓWœ])9#ŠÝ ’Ò3AnÆMԪݬSQ—îCè äd²J&HJºÉY‘¨îg3“z2ÑÀöXf.Uø‘hd;E׆j…ð§I¾x]KïKÌþâ~M…,P$š Z( ¦>ÀMÔ® äÎXAsƒ¤\ß³2÷Y‰xtb19ÐrɶÓU¢áŒÝm'¯Üê¸ÈÌ@m¡^m!@ £DýKš•ÛÁ\öÐTˆE¢¾Åñï¸3;ã&˜ý7Áì¿ 2“¶ÏZè~®3ͪ®ÐýŒDÏ@4 H{Æèï¹—ßkÀ§ Dg ›Óm8áz£Ûé7JàÑÝÝMtîGÂaÙÆ@¨vüÀfȾ-#êÑw*÷;ãSR˜çgÓdѰ8QÒ{p«ê¢Owü^nÙþÈš™¨S×·Å!*D?#)=ÝiÏuêϽàÔuHA>©-B›ÇÃB'õ0Ïìø·ÕÏHÚ¦;ê¥:u»Zܤš¶åJtIeÚR¡ÿÆ>tB4?µïO7ÂQ~é ’@ *ô ¢°"_É`rdówA¾ñMo|u*ŽyÿH~.ëíbÇéÍH­™´‘‰ZBèäß)X ìüÇœ~ÉV=ÍŒ¿K«žfö#ÈO=þ>tX¾¤@ÿÜi€5 Ñtž>DSíAVEU•¨Y{è}ª0õ1"3_ä´ì×… jU͈ÌüH$¶É|ÆȨ̀PÉ)‘@ .’òŒ©-™ú"=Sº™ýRfoŸ zŸÚ&l9Ù˜“þ6êÙ5ð*9Lø¤wÝÌp£©@±13“v2Ï«töfá)ÑÙˆìZê7Ûö&ŠD¦¿ÊWU#2ý#‘½=±m#‘ùÉÎàT|;Œ²5lT‘Q¹ÏHêȤ­LdH>»±D2ùÉéð4è}F"OÀM ÷I陈eÉ3D€êA˜xÈÉDC}¼ï£@æ¶u•šçXp¼]o³ùúpÏÎ$$!—K‡DèÇv¬>éÚ Û;4ä,Œ—ÐH¦æPÙ•ÖÜþް:\9X?N4Ì·»™}ѯk(Ub®ÀX¦¹¿Qn¶£¶`ÔcMºŽÀùÝr@’ò`3r@7>èŸ_®p©ügËw‡2h$5›@ô¬€FÉd>l-F°4®÷Ñc_œ¤Ó¨Ív·5 íduŒÔ9ºÝ9ûaÎñM&B«' S¾T³ø;tA/2>¦+ùeáÇîNƒJ4#Çç'?‚èö²SšA ¶µ ˆ‰ÃÎ h|ÌUú‘„ËnvÈ(L9öƒ±QÐH´Ød›3¢ ‘L,s<*…éÇÃ~ÍQ˜~|5‚.RiÕºµ7 $v·}…Üi3=­D­Ú@Ô§C¯+˜µÕܳQYEºmõPµ$3›†Üh<®„Y¸Ç€÷Š‘9Âf‡®vúÇ¿µ¾Ë²ƒ°Á- 6ÛFg¼¶ØS5:N+i# gP^Pµ˜,²éþšNýÞÈø@ (’Â$xšcÐ¥» Jo29¡3 $¶‚Í’ñÇ}מ(E—nYpeLÌý³muÓ+¨i&É£ŠéôÔ¤û4ï>K½çV8 ê•J4õÞjڧ‚h$H¾ÿþºú糩…= €¡>C÷A ˆ"Æ$»d¢þœ©-ý#Û˧m Ô€$¼Ö† íÒx|f³r Ë~ËÍcŠ•äJ`üü~ºMãç&zR1üØ}3Šíã0˜1û¥ $•uËÇh¦R š©´màãüñÈõø=39'ù±ÔdÙŸèB¶–…'·‚@Ö3FmÚ‹@ (Õh͆æ¡MKÉS%*Í€š´7˜éåV78 œzƒõy½¡ö7hùz%ßaæW,®íüøëcèâ&ºþ„[…VlµÉ³T(ïÚ œ@§ûò}pAH;°#êâ9œIõSn„K…àd“û|ˆ>4þ@L“X•ëW£i¾*Ó,MÃU©›áÓpÕ?†¶»¿HóÍÖ4'`5¦h4[$@#{¤hxÒÆ‚èe3¯Æ*ÛcžÞ‚Õ¿>ÏEYƒ‹Dƒy8ûUB³?=– ‘ wnvÉç²`÷G2g&È»Ÿæ6-ˆ€Þ ~$Ì DÓ4Ñ4@ž·ÑðE$òç´m†Â‚é‰fi\„Z@TÄ<¶_ëˆi–ÒqYŒ lú&“1Ô9 êä&¨çsï`AT"9´á–ª€jÝ·]k–ö ÈuZ¶úæ ®Eãç&se²38í!³‚Ööªé©¼C˜kÓ”u³eA4‘•É6 |¹§-È]éëx þbîuøx¨sVó5fÇö_á0Ûò&j̲c°túqÓ¬±ýÑ«¶m¨€FÒ2è\€›Ý™k³À§!õtj[¤ks7°nÿHI—°e‡\ì[½ÄIÔ‹ ¤LÔ– DmÙ@Ô– ä¤{AîçâîÊxÞÔò¹š²7P'κ§(™%3eÄLÙ1SÖHãÔ¿ Vþbëün¿´{¢ œÖ»1†]mÇÛ ‡8ýÏGl–òù€}€¨äËчÛT*žK¸¡äµïJúè»òéÙªÍ6ú PI…[>á‹›àg˜Õµ)H±€©F£ùTîAååoº‰†òYϘÍ5«Äf|’-U€Ê1?kO‹ãý@{ˆNú¯X~C4ää5l¡$ÓÆçž(¡>¶dlH€J„ÞÆ^)–ü°aï/k¬ª{€ç%íŪÛéÎbÕíMtÞ·ùç@¿›œ8@¨{ƒVè=ü3ßdÍÔÔÿZú°dŒù ›†~ ­g·í&ê¶?¯€¢t"kg¢nÛœþØqäì§lhüÑÎÇLûe… ç£|Æärq û)e¾ü]d?#Y#“]29<#`4îÐìD-Ù5Í >Pÿï©98ñSAýçZyÅ?çgÉE§¸\ÌhhzÛÎs(þ9Ž™ÇÄ?oñÏ›@-é&KŒšȾ•iSiøÜd°íI`³FñOÙWø,Ⱦ]ÑA©©í™¨ÈÈ`RCeøë ¶?ó¿@A{[,õ@üGzÙ2°wTü'uã"9™ æ½4ã92Y;“S²"êÇåÓ ‘ ‚}õãÑ= ùŒyÀI·šp䎇¹¶6ö$AŠÍ²Íï@ÿ'’¡áòiÇq  ìùG¢1”Ϭ‚ÐH4%é"¤òHŠGd‡bpŃ}‡ ¥šQz(*i÷l=£rkMn18Oy8Tºå€Zñ'3'£ù*ÐëTê@HŪ‘13Q?n¹t¨ nrpÛÚ‰()<¤åyÂ9´<äuLè&ȱœ–p¸'ìâ_¼)U;<=TúEZÎñjØ åû¬€k“€J›g;8¸÷ñ×tÓV4pÙé@‰É'a9ÂÜðæo jxý#%]â'MIKÇ@cÄj/#}d) ÆŒs!؉Á¤‚rÛxÜÅ@ T–ùµnDó‘ê‚à¾=º df éHh¡ÉØÜ;…œ»fü¡h$¬wèÝHË óˆl3äÙWnÉBÑû~C6Ëœ&Y €îÃi_РK›ÞÓŒ ¹ò&ºìµòJ:7Êo–ÕD±"“ãc¬ÈäGNZËWR˜Ûns‚úŸãø„¥è¦ðˆF»£”!À®ßõΛÕ_¥É•µp .öm¿WŒæ Ìf¤éWÕÒ5Ñ’†„hve ²¹G²f&ûDÐHÊÈD3Ži=“¾2‘•Lµã·‘ÅœÚ9œœLqü#Ûs3~¤¬LÔ®±ðˆ‚™IgÖù\Fp<ýç¢h ›F6wOºd®ýM*§W1ТkY :ÿÑS‰Q¸ý Y,_tpîë ЇwÍ4þÌd¢™ÆôÉ,™¬–É󢓆@(’²3iå!Ï5Gí°_río¢N]/öü–B¯®#Œ!@­Ú€èoƒ,½–ÕRYpkµ B,Áì#ç5Û§Je8ï&ëd‚âé$P$å£Vm=¶£ ÙÈO4R‰Îû@&Oˆûv²3ÙŒ¡m'‡Ç¢ö;t¯¸å^ºUÜ^€Fv[FAo3j&³g‚¹Í“S!–›Q}Ì¡Mˤ WE´¿‡* ýØÆS¨Úºÿ¤ƒfmñ»S´æè ™+“£ÝêosèpîäDBPëK¯¤2=g#¡žj€Æh÷×@Dæ&jmÛá U@¿=T%˜þ‹N])T]G.BÔ 8ǧ… ³ž ´@Ý00XTÇ ˜p“µ30âMN³¡j_m‰,›ªö7QI¬ñùçÜ,¢³j=!ƒ•N_3bu&?²K&øK#å­) ê…YBê̤…#R!z8±¶Ï îèwÞüW€$P$6÷ùkV*‚SԉÎýoÙ¶Y?wé¢ËY ËŽ.·TPßD%/M ñòPt D}º@4¾÷5[‚ka éM¬‚úG¬‚úG6©~ï¼w$•>ÝôWAT–Îb.•( i'X²µfÛ¶B4uéÙým AW‡bó R$.Ö¢ÑÚ>m+¬”Ýý"êÔ‚Jº›@#±3CHÈfq' =F½/ñôÃà’’óß•×*¤ÕL:½>WµótÎJ„h`Ëj¼05îøÍu{ŸÅÎAûæS¡‘è°ªëƒeVÝ­ ‰P1ا¿jf ÖP ûsv$D£|»øw¡Ú@ô‡Œy…„˜9Ä¿NFùn‚sŠá¿8$B¥œBJÏ„e¤Å$Bo‚(wõ)I‰Ð@ SÀ¸›WJ„zr©”íÕbu³·ÃM*Ó>m•¡#к™HA¿¬!8¬X>Á *a_F6}8­((úó*B—‰}•j®€E€„t˜Ùq廉FùY+õìêd¢ViMäSˤ+I÷ó"š¡äR+BtÆ ³Z·„SÆ¢¿ sÿ,ÊV澉[banºz­0̥̽n”:n¸4jýæ{+|Ü–oT ä0Ì>TB#©èÐšÍÆ-¡ÛÙ‹ÁÝFæÈÄô”~ä<`E¢"¡×NÜs-.)¤LPH}“Á¤k>­Á¾mÍ,ç¦"¡¶åbÕ ú+“/ "¡‘ vè&è ¤1!f ú;±FgJU †¸8#€á‡vÓ‰Úýü;+Sò3od2!ŒfÞ·Ìß×Ú–ý27_…PYI¹Ø6ȉåj¿ä"Ñ©_‡m{ò@̉Ný@ÐÞaú7L‰Ð@Šå=¨´>¸ó4*„zÙŠTœtž´ >–Ûü 0c¨T#‡rƒßצ}k%B*å2VuÂú—áöíM 5|ÉÙÞ³ìGöf&ð튅"BA²ÒM ]m±=Õ(Ç€9wv+*„š\‘ûmÙfÐ(tÏsJ§ZôüìËéŸW‘þœ»›Ÿ~“Vm1¶OžÔòŒ1±WÚ!R¬K¯ô’+¸þ» `JÏ—ØÓWñ—,T’º.¦ômµ¡/¶m½€Š(Ý@ó6~‡Z ¡b3rÓ×߉`³xè&edR¹r{îÛ3îi JQ0ýÉ^Ì Ó?΃:ú©~§ÃR¦Â!‡å&7A¹ÉMÚV&Ï»L°Ó ê” Dý¹@N3( HÍ µL:Ó£8‹uQk¶{XdPÔÓ„˜?g„ê è*Heq'OÂBA±ÉMPA}”PßdÿwÉb 8-h„jml3RN&:÷W3—jTîé7%Lÿ›¬•‰æ]r —‡ËÆšÛeÖÿhž´Á½2›jë3P2'ÿ°³ÎÁ] l­NIú=0µTÀ‰œAE8Rxðÿƒ Q7£rP T*ñŽ‘‘Ád¶Ýža¡î! šÿ">gà0¬DC` ÏAûf“¿^ ´,û1bËV%“úQ<2P•£€ãc6ºÏßY]¹‹@4€j‰ŠËB~Ú3¸ ´rAÖêM¬ðä€:èòmsPôš%+]z )½yôÇI¤±Üm;Œ(Ùã I Ù4ÝpŽí¢c¹Ü½}€eÓÞɦα7‚@ª)t9QÛ?µf—û½c³‚Ú´-ÊàNàò"B6KÇým«g¹çŒã'uöÆ1~K$þbeõBzËd0ÔÎPè8LWvä1 $úÕßY¹:YjZ&ÅAQg.õæº~&ÅA§›‡“â ‘ìLºLÿ› ’á»IM¸@t38½ß•¨$™hÝH/™À¤½Éä®Çy UÐDï?2–ý-S’:`¦ ÑH˜ ÄÔ¿i-I±YÏd¬L˜µ´¦ÍM…?éäfpš9Ö³±u±/²@2æs‚JêîïÓþú&Þfû#\{5l]ÆDÈ™œ˜'1© d­ä”¨aÛ†9D ¡ô‡`A»‰÷ú6ÛlR!tyøqB!ô&iE±dhG×ÍŠ˜PÕ’U«@ènüÈÊD™å¿÷dÞÆM Kn˜Ç4éx µÆÔ]Æ2&Å¢÷´õlÒØÃg d~ŠeR!ôÜ.Y HpVq“V2QŸ.Û¸ÞÏÅv¼îrÌÅØžçLÍEA™Ù^ƒ² ”ž€Ijl÷.vÒg&V‚ò#:ù#áÒ@#fnÏÈ·©u Ÿ±È ¬d`jbwÒO&“«Ðô[¡ÿU³ãŒyØÿÊòµ…èŽQÈú¼¾õýÕ { ËDán2ž1“Zi¼9šÒèQ9õ¡Å?âFh$zŽÉš3ݫӶƒ‰ÐõmÛÂ<éÜœÌ,´­â·µÔ˜ÕT› tñ¹ZÐ˺1)û×'J¶sÚ&¹.¤±Þª°lo0YˆÀ8ìªly²ÿüÖ»& ¡½á¹1 ¡‘Ôÿ®²¯B5¨3\ºD ¿dYþKR(µl¿mñgTeB¹ ®\âàCÒšD,X+2èµ/ȃF¢3úR»°D‚Ž–Ë?'õA%=·ðýç3k°ªúø½¸´av×¢:вâÙ²¨´±Žíx ¡âÝüîEéžÿ­ëv/ŸÅƒÖ­Ÿ=®É©?ü÷œÔ:¶<„5¸_!šˆZB_µsQ¨˜HmAøEgO@Öôb”î`@q «†P{jÙÞ@b¬‹‚™É<™lZö.ÏØ3Bm =Y:#F©| A/×›4:³<|YÔ:¿»Sîç­ívít²ùÁßn'U/ÕõŽÒ ÑDÍÚß DmÐ@×¾‰Æµ‰ ë sZÆÆ¢LÜÞØ_ºÄÄßnboJõn›Ò@t=Ò‚Ø”u1!,Ešþ¢t„hXû—»)dŽ•”‘I¥Màwž´‹·2ÙIdÚ‹¤åïe¸ ”"ÑT¥Z|®u6sº‰¦*Õê?%ý@4W#MUúLFš=x®¾æºrmÙЃ“-ó88 ¨ñãše´ê^ƒi“…e¤úõ„©¸|Äf¹§â¤%ÛléÙ¤²(ÄnËíË=½‘‹ãV9Р dOëf"'¡&P jÊ¢óÜK€6A­ $ÈÉDMÙ=mKÝ” DçþE6ÖŒb—.‹ø#¡ósá½)tù™wi%ÃÊ©Y.`öÖJàp7àmk©o‚p¶'‚lJÃýî$}nÀŠøüU« ÍÄMAÐ2}ý:L¸ôÝ~Qïk›ž9Puüã ØM !ÈÆ‡XN¸E0«õPh3Ä4AO±fBžÔìRU¾íj ×eeÔ4Ðzз¿äí/0ó-5ùm˜‡‚@dzÿ~'™‡zpÔ–‰ÕšüH?™hÐ"*0.pLô&§GBÐÕlE9ÐíÓήà"¡þàç/Œ¡ðP ‘%5‹ið J  ÑÑa=jˆ&›RN§¢I“ ©4­¸ è€^Ù‡p¨ñº*·ð!Э^*¿½ê#±x$LtùLÐ@*+qhºZúR4È€ÞdµLv¬0:¦jý,ë÷yº=œÑú}žnÿ#IhX]„ôžÉ`A%*$TAº½U±Ôr@)lXÖ¹_ AòÂgZz[bŽžÁ `âü‘“ ØÖ$X\·›œ ´àÚæâ¦€§È b¥¤?Òk&cd2w&¦jÿ#¦jo¤á‘©ü©(‚7Ñ ˶‡ƒ*d¬L°­²e;9‘@HVÖSŒ”‘Iå áp¢ó?;ƒFf‹‰×öûö4ý… jñ#¶T> B4‚]íìª- u‘lÝ€GLk'Dg `ÚBÖÈ.\åñMý(Z\ݤf€0ÞòR "òo“R ‘h7ÞHv&'Ù/̓Ï0‚v¼7©'“öŒÑ˜l ³d²Tþ¯2¾*D¦$²½ßr ‘ˆ‰ö/Dû"›B$³g²V&;Ý 2A‰Äíº‹äýº–ݤs˯Å£ÃÁb®JùFòv7r(Gˆ]«:Ë2­…^ÇÇX%׬ÿ.Ñ(!ô¦áÚ PG.õŒÑ' C9B˜Uµ@%(’š>~H-¤SØ€ËUáŽÐüw(T Äò“~Äz¼qg)Õµ†’®+-N>4Å4‚¬:§Bß3‘Y²2y^¤ÞÜE I9™°«]"ÓÞ/¹ÜbJó¥l #‹Õ3\# 7ƒ@io'>Õ7‰T¦‚ØÝ;3“L­EH¿Pù¾ "ØÖ+]“:ÃSBNyȆ»_y+ª‚‚RRË¢gÍÒn+’~ kFFú½{‘ÞDó3öäá¥ù¡,¨GVøúˆÞ#jßîf—íÜ‘!ãVî0{H´ÿüë›Ì6ö=JUú¥Û °hÚàT$¨drx«eD$=økù€,è7ÿüÞûÖ(pNÛK¨K3‚vã!¤&mÿq·åXöXñ‹€$è´.cv“ÃC‚Ê߀Êphº±Ô£ФŒ°Àv:ÐyȤͽümWÍêö79,tãCWé4kd(kØMø|s#© dŒL̸‰3º *Ù‘0Yñ³K« ¶Ëj§óÕˆåØ#RTkñû;HÛß³Þþjr þóWÊ;n‚jCëâ RèÖ™VHç.´R4d§VºôB ñmÕùBvЩ¢õÓÞ§´ÖÆ v êdY0QHc‰SŸFzÏ][—ÿ.® jÛ@ Ù'z”ž‰Îý@“€é_Vj}¾¸Tꂲ¨K¸šèÜ5Wv"_+uAçôŸ‚º ÞÍHH‹sŽÚ@‘hæÿöy@aÐýû  É^‘Ìt‰séiz/µR¨ýHƒJt¥9AùèM‹Yüm4%)€•À ×=ÍR¡…@è&u£u 7ç YП¾Ÿ¾2™¬– $S-èb4è¯ýù7CaÐoðèHˆNý@ j…¿Bt!«ÅÌɪۀ԰/“yÿÛ_‰×›Ø!„Sƒ „n,ê@ËÄçhª}ÿý5 dpÁãV&¥À¡fVˆš²@èÞÚÿÖöùÌÿ]ÌÑ D÷ŽEhšIY5Ÿ“Ū>f1œv“¶¬Jà´H &ÿnfu4 „ÒêCô£/›ü­PëÛž… a™Eº…¬•‰.fè~лˆ ¡‘`³>?B̦m:eùèq5SˆÞþR¨v¦ÙT¬…W‹:!§FҼŃýÉT ¤öL43 ’‘=øÒL)nÛnÙ(,¡¡8¤·ÐíÁ=€f›ÁMZÈq¬Ú@Ì‘Ébh±ûûìžÉ µA!ôDjT]&¼/¤ÍLô "AM Rº]l•…4Φ`²Îä˜ÃßhýWî&¨3©fÔ¶É:“› Îä&¡î@€úsœ =€@*ìY¤ÏÕIcâWw‚–eÇŒšNÐ@þêd÷LN&:üç‡@h$õd¢ÁŒHv&×CÁÉ¢3±œì™ÉáæÊ`x‡,œÊÑî” DgþZæúu„F2V&Ѹ‰¦ïjVs‡@èM ººuî‚Éßìܰc;XÅrB„hX»Z‘FEÂã¿1ŸÿZŸås Q¿.ãÎ2Γ0Я!±™ÿsû"ÙU TÁíá£R\±6'B4¼ˆ¶‘`öé3ÞÀܦ(äôHà DR3ЃŠ6.Òy+{ò±D2™ú6üUšlïIÛBN*¡‰0 ‘ÆÅ€N¨¼1?ç€Nh|•>è#ÉÊäy‘†¶{1OM ‰:2B m OB¬ž®ûu•,ZÀäÁyõ!‹ÇÃßfó ¥ЄûnâÀuP(4J™:®öƒ²@ ®±ý3P)4È}þCPHpî»OÖÁå?g|»› ŒÚ²Q„hX£[å¼ÉD"û ܬә€Í€¢}Ç” ½d"A`ã&õÓ‚`„A·–Ûò Nh êÛ¢öíif脞æqèÐHT'·mÿ胊Ç7Q=@Æ3F³ÐÑ4´@Ĺ;ÝÊ#ë V\ïæ ¨E"öm$m¡c°C•B˜™ˆy{º¥g sèÌÏ¿BH…žrÌåBS"ªH}Æ´“ @Üd²¨Íæ%ÕÙ6á œÀöÀ®}þ;Ðè‚¥þ QÓvýæ uBÇg®a:¡Ýü ±ÿ^°þ»”+rQªt2¡ Ùä$Õ”ª¦äÜ>#Žçmüˆ©$2\3Ž©$n»¶f¿{:šŒSMÊñ(oR"ôë¶ÃLJ„~ÇV… ‰Ð_:­tí>¶ÿÎÏݺådñ<‹¿â4‰Ðf¶úü¨}ÿ#…Ú÷7©=“–A·ò¢jdÌLæÉ…VÌ­è{{ƒê>Ýp‚žËïMÐ@ÚɧKM:ÍmäI] ÙÎ X3ÎùnRåuRÔ‡…”P>.¤žLtÞw7æ¦9æÓMŠ}Ý6ÉÙ($ãþÅl’ùµÄ­«Nø 2FN&Hº¿‰fj«dNûZÌÒÔ>¡ãAéÄ 9Õßõ£žÄ6)úu³ì&ÅA?R'ÅAÑøÞ·}êæj43Cæ@®Æ tæ²™A½ýÏ9Ìžâö7§Ç÷èMLÊÙ£ eÐßUO—'øò²!2ƸãœÞɉËÛ„&èM¨ êš(Â0‰T¬)\™&4A#éV¸µhÚ¥WÆ ŽÆMð;ZƒÝªêz€líÆ!‹/ )Œ¦r‡›T  È7AòMf >õÜŒc˜xf¦ççs3éþ7æ0¶wµeÏ2ÏhcØ÷N8W‹¨¢@ýc·€ÉSÙé/²ÔÛoµO ‹ë}$SuR)ª@×v™&¨->‹¢@«™­½>ï¿Îíh}^mÈåhATö‰åïs¬v  °µ5¯¢Å&TF,9›4DƒcQôgZ/H‚.“à Þ¿t2»€&jüô@ÐedØü[¦tlÑX•*&'d0àÄ=uQ(üèÛXyŸ]j†­F‹Š@@ñ&5ÜL>YÐýVè¡àûi{` jÓN\ÜÖç¿/%A¥ò€Š Ó7…e’@•‘ÊEE oÛóÃ}àØÌM"¶.ê²K&§G²Ò%¢zß1iA 4ëß÷#:ñ·luàvµ•Ö¾ô¤ç²¶–÷­ÿøß¶Ä 5"Å5uQ ô—«µ 4ÑDD-Ùï»^¥¿}þËQ ôó㦥&ÿ<ž5·° L©¦2p,~L-ÐHÐ…Úô€æZ¾:bÙû)Z¬à¦.ê²YÁGcrQ ôG6õ€)=“ʳBn j eÚJ¼©:ÜÛÞÜ\¢XBÚ¦æ.d#ùÊ.µy_õô©ú}À‚“jw†tâ†#òDÆÈÄÂÅΪ)êW!}5š¬åsÝÝӦ̆ÐæÚ¾«‰ÆØe§¼ ùŸß¹è†úÏ}½[B¤±› !þˆ !þHµº}'8³ÊY%+“‰”OÖ¦üçϓ۔ÿ äìH:cØ7)Ϙ–AȘ™LYÒ¶ÜÔþ 5£VLT7D@%ðMãdÖKߤfÐZ&‹ñz™MÐÚm3ÝƒŽ›II Ù=““ƘèML ‘+Ñ¦ÐØ¶¢mª¿EB;Ö>:€Y=ôµši„gÀk'6D@#Ñ£”  býM{Lüz|B.VKwÿ¡¨ýs„7Mþ½m“Þ‹ç?BéŸáç,âo"fbwß<¸I뙨ëV~JU@çñä†öÛ‚œ²ÊÒ04½!*Ö›2 ¿r¨m&õWAû'&(ЯÝ.ú:÷YÏÈ€z–ʦ h5Ñéz(HÍ Q”‰‹ö¡ÅDí=ÕæP4^ÿ²ƒ-þ‹PÔuÞ„” jЩÒf&HM*¶ª€žj>À±õ¿˜óz Àa¤ÖÜ©ÌË»‰Nþ@êÈDCxØiIFÉÄÚ\ýo¢Ý[ëôï fÿM ´±€’hµ¤(#¾ä#¨~ ™3ì^: ’¤xœ@0fš t(üˆ†ñNó_¢35iÙ’áïDL1 €`À ôpÄs•€~¬RÜ#¡h õ0ô“¶3\ ѾõAc¶Z.먬¬ÇÉ¢B„=YÜ ¶{·R P$5HÑ ø›ur‚ZÒ›èq„ ~ ÑZRïÊ!D§Îö í·3êusíaÙ«TÈF¢Ý‹Wñ¹³Ø½ØD¨„ ÔßÛ_ƒ!ýóÜU> äŒH¨ˆÆe´}³­Rzc’vfÌþˆM›’&÷Ù>}6óŽý`ùlö-û‘Ã(¶)žãXòug™Ý× H&£u4µÏñNìa޼Œö}éQÙiý£… Ìdq[‚J“›@?ã&Ï d1t_ lºzp"…¨çJ˜í£\ åSO&·Â¾#d˜[9 ÃÕM,éþÀ뻦½ ~j€n³ •0í7¦•Lc§ýBÓƒ“@@ ‰ù–e,'<7h%@{çª ¤?`f2N&ж¿É¦4SéFPfuþø wó&ÏÉ…”•ICH÷æœmdŒL&ÃåöÓ D­ØiUícMîà©úHÍ =‘lÓ>2hBìmD]€HV&'J€Ë_ÀD;„À¥ë>¸ ÈVk@€ñÑ 23@íhg³kÀî·Ö=½ZQFû–kÇ|ˈڴP‰$ARÒMtâ;J¢_ßöÏ ùÏA c—fd3€ßùƱD;k>¯ ä©‹Ô¤-ÖPH§ÅÑœhBtqHLÝûGV8$rJ$TÿtY:!%(rAëÖ›´gLߙ̒‰)Û—eDí`PlZ‹j5©ÖGÞ2Ê„XJF5Ðh5<ë>D-Ú@4œ7McGÈZ™¨GWüï+…Ù•…JN&ðèì˜RH뙘G÷#óY‡aÁeDõ?/BýÏ@tö—aUè*ÐfZ¡è tö²ž1›:»AwŸi<—¸‰¾È@8ÃÜf%º¯<†2j&jÒk-$d17áó1˜ÿ÷ÍÕ¤­üjTôºÂñ/ª…¦ }‡µ¯Ø&PgÎ „<à°¸qñw£øçh~+nTzÕþ¢¶@å´ † ™<?ÇÈÊ`Óçßþ6¦"c„ÒŸè¼dgÒŸ1£g2Ÿ{-.vÜÊÊäy¦É, -û#‹=¬_He~7×ÞBýODvI:«¼V12f&šhŒÿ›¨ñ¿­à§nûó¿Æ Ö´˜K2Я³¥fDrþ»²n…,Æ.¦kBͲPô"PõsZBoF*ȶ@SÔ}h!QjÌÝ2W&Üüûr°21›3W>^½[!udbmÊŠÎDkšdÕ$@oò€Ý29#n:>|>+Eéè™\·N¯BdW«ÞΉ˜æú™­Ã ³#¡þg$¬àĪP žÜg¾I¥¨«s ™|¢¹GVîì4†•+4’jó’!®ÔÒ xfbö,ý…J= ?¶2XÉ=üUÖ­Õ>w£z’Š 9tffÜÉHÇLýÚ9í—­Õô€Ù™¨ 4–™™•‚@@ÒžRf4†QL¡²UèERv&êÊyU¸®!kÊ#DƒÕd A–ñöï2 ÓZf Q9ÄÏÔ0[…h$ˆbX†ÊŠªm Q7ê7¤ÏLÆÉdÕ‡‰!¨žŒP· A H4#©Ú9¬º¶r,ff³·*u@…ÝhTï‹ù݉:É—Ô6Uw! ÔàœN@{³’ìrµ!°f-{›Æì¨ïÃUºBti£d]ì?w+4@åPÁfdT÷]+%@«‰ êíMôl¢Xß8!š•þ›.”uUýÖ¨tÌEoTEÇ,’VÂgj\ýM}\ÀÀG¢OÔ Éš™¨ÙŽ¥M¸µB%û› #ãc®—>w ›èò¿MÅHR2ìLPÈbv’…@èG(ú¹sÚ  WºÿÔ ì›tjÒ¦oTdÃÁv€`Þ07©Uf#ýÈÏì·[QÈÕ÷…@±Û£Ýh÷¢…£Þ¶UȤÎF„ØÜ§/ß É™‘@4’Z3AFÒM¬K+£ ­3#i_D­ŸÏ΄,fÑÚoܽIÙE˜‚F£®Q È…„ÔžI[™Œÿ®â f&“Çöà íÍÇn”ýÉe–*„ßÍö6Y5ý›:“y6ŸUÚdÕ¨Ç:¤˜¹ìÜÃ4àöþ=k¦äñE©^ø4À%Ú‡l.Ȭ¿I›™ô"*dðˆ”«b[ìå0,ÀØT (‚Ó"Ù.1ðѨ :í¼CLÙ› »Ìj‹„èäGP# ž‘}¡ÐòFf6í¯Ï (XÚAÇöOMEÐ@*…‰ú1 ¨X€§Q4d×ßdµLö3YNº)‚ÞDå¾c ^ÿ¬ntûn)®NÆÌdrÁ£ØM4 Aåä×Þ µ“ k€„@<é&:ûg·m¯&§úÚ©Ú=NÞ© f¿ï{Š ³05±uî»2@$A·M°M Ùiì+¤$¨'R ÑÜmí„Ì’‰I‚r¿ì”]>}Ô§¾/) ÈÉ’ 7±¥ùFÌ¡íÔ© È>‘˜$èM ôèÌPïÁŒ› ûMP8}“™CX9ý†N¸‹ ZC7)Ϙ–AȘ™ÌšÉznµÓ­( Haþq1PÓ5Rí/ ¶Ð ÆN@ÏåªGÉ:v‚HÔTk>ñKFY[$@ÍÚ ™Ãör@RTz|Lg4iøöÝ0 A3‡éØbgŽE%c!¨ý‘Í,ûb^v‡è¸ìÔ ¤÷L`ùÊß7Ï'nâiöÇšóu‹²ôÃ0F jßm»T»öw £vøü¥h ƒÉÝÅÉœ™,.>4aûñà,ç- HPYbQ…Ô–Iã¢Ê ¯Ä”tm¡"»5j5ÛX[>»$p(“Er@4’šA{ÉÁùE j€2;¤‹hI ê­Æld!çzgmEÛ  P è8}“62é!‚~¹âÿBÇõ³‡r?׃´Øì&v(ý9i¬§°‰·ØÌô©…L܉±Ž¹Ø…ÏmÜIµŸ@^ÿ#›U…ÅÖMu˜›´¬Lžw™Ï‹Ôi[Å<˜IéÏ_ÊФt«–ê3)ýHÍ µL0ç»™“ÊoXKÊj@·5}E¦µß¬áG[´ö·e£ )3“Ê,³ÖÇ~¬Ý¤‹b? dažå¢ÐÛïvAëÇ뵘çÆ#¶áO9Æàc» üI£4CõWéfþK°ZþŒÕ%¦5,eŒ70@õOeŸV'ß-~ô´!©¼—ÐáÏHtú»¤’ìæ–M,D—€@÷w•?§§ì.ØüRìÊudaˆ¤Òdz÷ò§frø=ˆ[¦/D¸ßqÇâFà ¢BÔ…£»¾¨öc—ýü]ê9cñoŽ2?4&µ2ø¿(ùY-(¾ºÏ{:¬«{Þçd÷LΊ„ŠŸî+­AÏí& Ê v m ¿ñ´u دÓãõ jŸ½øHµÏÒ}j˜ä‹È›dÃjvÿo@ís?YPûŒä2˜=Ï#÷5ÿ°)rC{{AÛç&‹‚ߤÅ0ìð§Ú>·¿x¡yà мá&[ß"ö7Ù#“³#ÙlÞPíøwAÞ'’†•‘ÌÚ…±ÞÌBƦۢ¼Ïgi„ì’Éá¾nß)yxŸÃ^Òý leMÞ„Àa»‰un`peQå‚$‹Ññêcà³™€¾,^NöÇÅ˪#…hÄ:ÊD§é¤3±“§E›?ÖÙTÀd|êó!¶›ÿÈf°ûŸ£®ÛEŠWF38¾©ìVÜ?ØÔù D]·@P}µö‹ÙE»¸&Àô›[q!èv¥.Œ§ÙlÓø¡°§€ºÈOËÀ ¹©ó¹º­ê›:ŸÃÞM{l›i›BohäN¶b¤eТn[·Z!ȧ¿Ébº%.Û„>D'D³ÓM¡Ïrlo*>ßÅÑÝ–ÿm:Ÿ7 •ù}˜O¥þ–ßüD0˜O“Bef¢n˜ú?!¾3޶é|Þý{L¹_ˆÎü@,fݨåSªÙX{ºÊ¡MÇI;Öd,„´’Içúã/ÒÊj×@ÆÄ„,KrÁÙ´ú½FÛTú¹f¤)ºU;Ø0û#C6mÌÈ8™Èì?õ³}Tˆú¶Çð •O™ëÜsöf´'ón¨|ŠuÂüó½]±Ø¦Üæi´¿½üRƒ¿|Ò½Ù¸á&($¹ÿ’Ó"9¬½Iáq-§}Ø–õ&‡ò<ð‘šß’‰ÕˆÚ'‚Âç>Ó\ß­ Ÿ8Tù‰äSŸ1‡ ¤¯L沞[iÆñgè@á3\¢gÑÞ1AòŠ÷5f„©u ðÉzÆhÜZ hØú ós¸@R3Йß8èüœáÏÝÎO$bÊžêvù¾g$§=÷ dwäÁ':ý/¢òžèôï¦ ¨äd¢1¥Ú.xà¤ß“èôä+’ƒéÆoR?TVjs¯=”÷ DwõÕ,Xv(ï¹üÄë@Þ3úX+þq'ð¬!š„ˆ&!ÂD°Ï߯78™˜tý@æÐòy„À¤µe¡…W&ƒ¥daÊÂ^Ò2P“¶/„ '±E7„XÛ<.Bý½ß˜´\÷ûG…ÏjîžÂïx#Õ¼Øj$F°… &[y–+õÑ7Y%“mA¤fäDШ^o’FBÔªíñ‚L “h«íß%߾ɨµj›Ë YŒÕÙd‚òϪfQ®U–Yþ_×¹õê•#ç¾Õ_ð\l È·“Þòâ™4l¶&qd©/¶¤ÝÝ2thK»=öM~{V½UÅÅ**Ó˜n}¸ÎE²HV½Ì‡(¼Y‚uí/ˆÀ«5ã9 îU€áÜ d:-å ª½=Vù\ «|bJ7)ÁŠ„!±­S’DxGÖ•äê V$Šº"DZô¤‹p]Ÿ„#ŒuB4UR¤ãü|,óIO>&Iä O‚dH3xD‚´æ~¾Ü 6Û¬®¬üC/Ç,ã7Æo‹ ™bŸA‰d'yç,öI‹,¹( ÕžÒ«³.ŠØ§!YäRެ„‡+á-ÖÓüš¬ô<;í|È( w™¹È‡ ÿdé̈Àö) '+íwUAéžXð0Ê(™H“8¯ËYšŒ¡ê,ƒÆ*Já©’ÌbçȪ>–ðxm“#ëzZ‘ó+AçmH=q#ëzR¿ÖgÖõ´d˜”½›­$Hb¤ôÂQ|ü¡I@DröDS/R·2MÒeYÝóÚ…3Ç.I#sdEÛgÊzAq¨²@„7fP­y"¨†Ô l„sBW2dÎú*BÏyèð%‰´§!X‹HIçV“H{Ò7P=áPzÍÈʩɾ«qV=XÂ3e¶íeÙ@óDZT€p CXª¸MË–¶?v4&Q÷1„c‘t×t"ùnYÜ&P’'µzÒ$ìL«§H{έ0‰Œn‰H{f Ÿ"Eðeÿ;K“&é§é³$ÑöìMÖ*ˆèp.Î2]LióÁí¾ŒÞò!ã9U"¹#+áìYMÖ&Â+)’4SôBbø+éɬÃÍhÍ™û‚ނ·fÖöé, /„¥=Ššh‹´’’MíÍ÷Yú³f>ôEúVfHMO6Gɇ6¤ß-ɼDxþn%9yRª'uxÂY„C§.3+ütÞ$IB´Æ'Ñ…¸‹ðBœjnÁrDÑD"”t¦2‹ÀçÌD'Ò$:¡NÂ;Žõùq¤;èu%RÏ#jÞEåÇ8¯;•Ï‹Uù\I0ñܹÈX€Vž'è`†o5; ¦Ï¡–Dt˱ëÂÝÁJ‚èc¨<x¶†°¾ÕJtËy¡Eºƒ¹©/tî†Àµ5„v*ᘠ$v~ª8†4.…>/e4"ˆÉ¸¾J‰/EN­LPÅBe R´/(:_RDá³êŒÐ’²8ºE¤~ZѱBa…O êÝ2¹X’„d,@õ=Åç/¬ïiI“ è:BG`æøR×YìŸDI ·¶dQ¬_Iîž”­Lm¬ß«$Í1f•Ï®Ò蹈Êç x$¢'P¬sR¯ˆÌg«:¥RDç³é„Djò}ê€+dÈ0q~™Ò|»'°ýÔÔ."ôSgMÊôô eZd•´è•°é¯„M%]ZùÒ•pDÒEšŒê4Õ>h9$=Šˆ¦E_Dv¡Ô»ˆÐOIóÛ°ÐOçMÛ…Àµ5ddKðafHé3,Cf‰ 6=]‚¼ˆðnÃs¡ˆÆçÔ ‘åŒ4ÏÓd.½Îó¨ØáEXà"¢õcHÐüéIxX§ÞD²ˆÐ“p‚ôJ0¬›JÍDTëDƒeÈjESß­ ×MRYæ“Zþ‹°6RÓ¶ª3Úø"Ù†KTÖù$'K†•u>gØ?.Óåq‚a€ª|ª¾‘=‰Í“­H®žðFº38§²Ò§%]úz©ø5ȤÆÐF°ŠÐ!i¯oDÒݵ—ýÎ2½? èÖ{ÔèGÙ×y+28Ôí@ksu'U$~ áV%ºÓE²ÄøÉ [M3¿ä"-x¢â¶Aç§•Ï^Ôi«ìÿcü+ûÿl™äàAç¹>!h¤¹xYYáDzzK‹·ùŒ—…ˆÈgqa•E>iûõ6 D>óeã"òi @†!ù\ˆˆ|Îìˆ ÊÞ§Â[Ï7mjQöe–A”}Ôì"eo={IêUTVùeº°•U>-Áæ{†àÑçÌXmk¼’<<©¡Ö„"-{‚ØJC†+ÃR?”÷&ƒôÊR?PvQ@`Ó©©,õiI ž°@ÌJX fÆÄÕÎ1`¥8–ˆ†ŒZë}ZO¨iÜMe±*7?úÊ¥0¤ OF4¤âÒΉáÆzŸ–À«­U»œvˆW»’â&CÚV¦Kve›—Ò\i%aæJ_Dškis(ÕWfÄø›è»Ím–ˆ‰Åá0q"ê×–Y†“¥Û¼AÖû\ 7ûKw×âK‰ÖâŒ+¼uj.I)~Z‹"ߺ–o5¤Ëœß$’Ì-E‹²Xq‘Ķ“ºMÞ áÔÑ(üDR÷¤ˆ“Ôª–$оªÜ’êÈävK"y¸€Q È2·½€HÙìK_¢®ÙtX«X——[žc2}*^MT>g‚6‘(ÚjWÖP­""X÷iz/¢ôÖTæ‡ω¦"ŸÓ‘oEuT#·*º­+áií:íµê´¶þL²`˜')ÑŸ¤nB§~M‰µ*AÆM§°[!JÒ 6ˆ|ZÀsÚ†E"Ybme ÖØ÷'÷Lß§ˆ|²ƒf‰Ìè/É,©Ú‡µ.Û5¬$uOà®ãÊÖ%¾þ˜Ÿ‰5>KŸO$Ÿ†Àâûý5mÿuë="A’‰$Þ´±È§%ð€ ÁVm†ÔÊ™8ÚаãOÚãc^Grº?%¸²]Ä´sgOì2 ¾%Ére±ÿ_TB–O[½døP W@voÁy+é mî,ðI*òú:»ý$m<y³H³V@vüÉ¢„šK ®”$=…Ù=";«²{ŠyŽ ÈìóÜ‚)wô<5”3‹XóIÈî!7”Ý#É·(¡o Q¨„šÿthÚ3‘†P—«“;‹½ æyÈMS2 ׊±«tü‰I}Ÿu™Ý ˜y³¡Ï™·Îúž1…ùXÐ÷t zBÎìJXßÓúœ–ÄæIÚÊäê 9³1Îð µcGÈö-¡þ<–ÐÔYïÇrf-!S?†6ë{Z0¨‘ß¹„&vV÷´¤wKªû‰.À’èAÚH.žôä–4\j¶úž±m;ë{ZB¦Û\òè¬÷f ù±–çc ™¾%ÔŒY²4\ý±–ŸÙ °À§%dú–È“µ¦oL!Üì;Ò=‰Á“”=ÉÕ“²]«neÚV¦ŸªV¡Áº?–Àô ¡n=–¡‘¹ƒu°¯\P’ÑàÍõ¨Á2ŸHÔŸ„Ì?Í cˆÐ”ž%4£­dŠ‘%·X¢(¡OI —Ò-Qc¿H ž¤ìIFk«½Dª-m-ަº¡É¼•t1ö•„æIÚÀV„Ù¢ÌÝ©òŽÙ‘%co²¦G k-ïJF¶„õ>-‰kÇH€ ÞŒä )ÛQu+ƒ‘œ!ÃJòMÙÊÄèI*žäî Fr–4O¶ƒ†»–þ±$tOâV&¡L–)"ÅŒä ÁHÎtå=ˆgK]ùBþèÌߘ¿!ÔéQ þ†» ã‚nÂLÃ8C0Œ³.Ÿ†>”ÀbŸ–ÄäI‚ë˜çûc±ÏP³ ¿ˆÀú»f@º'=xBæ«îºUK~Z7P=IØÿÌý%‚‰ C`þMc ‰ôìÉ0“I%°ü%1zû7$OJö¤6Oº°KÜí°ügÒF„ìßvýW²A‡`È`þµÍ×Åê?+aùOKПOÖuHSXþÓ’Z=iâXϳÐ(. !@æô: Pýþ•ù[B èÞÜòFÈ‘µ„¬ß²~G\™óS9ÈX¿Vÿ´„lß’´E%4­g 9@–í[2ìµ"÷–tt´!»'9xB¶oÉvtî!É43x²1ËZ.‘1,aùOGº'4¯g œ!CJõ¤n×êÛµº»+YëOQ=ôÈ –lEàÐòôý„;{ý„ÝS®Øý 0|»K| ¸²G—é*"pe Áð͸²†À—5ÎìB\V{sdx’¢'¹xRü…^î`#Ý]ŠU, Å ß IÙ“Ü<©´äIßÊ w;¬üiIèž 6é$+¼‘âAÝŠ´­ L~!¬üéHó$z’'0yC`õ†ÔâIÛnã¸CE÷KdáÏcJ`A#Öæ¤C”NÀ´•!—Ö²~KÈú-ÙîR¬þi zCÈþéž”àIÍžP°¤o×B?ÐÕ÷L<0 ¢…ï’úQxGØü5ó”HÝÀFšN*¦OìÿÛ_˜’e>•Ïä­¤xÛ?†L“í‚Àáʰò%у”62<)ÛQu»lß¶}CÜí@úÓ‚˜dVº(Y7»7voìÞ’nHe‰PKBövOƒh<°[º‚_‚Gu èaj,!‘Ñ,0PuHˆ‘³_wätmåmŠÛZ!š ÜœFoÁÙ Xв½9p^0‘X­T¶ ™&O¨Lž±¢@ŽœÎ™#§å'ʼãÄS"úЧŠ-tét©”tž«BhÊ‘Óò%2É`¨B(A´p’D·Uƒ—H¦2±ÍÇ‚&P"½Y-¯ÐJP$*JÎ#§å‚ÀÍ„]z²’@o¹$mßiÓ_2UÓ&7Rª'5zÒdá¬Í‹÷n‰+ÀbpG›½a…>¨phgr-x´†À£5ƒ:Kš'ÃÖµ­!CâVÎ![ÔCP éÛ¥†;O’)î•ð÷J00d%yR«'<Ž’±]j¸Û‘1€!1y’ª'yxRŠ'u»Vß®5Ü“²<%èÂ! D0Ím×€•À½55À¶•éÛµ†»«„Z‚*` ¦ÔÓ| – µUÀJÑL„&‚o*“œM:…0Cª‹„®„Õ,s[‚¤Á ÎŽÂY ¼[Càݦ¨“®­‰w;f…d™Ð•tñnW¨î*­K$6OÒð¤Dãš6íVÒ‚'X·šDë ˜ØH‡zIõ,A?o†u†ÀÅ]½¶¥PGàäB3}‰é‡ûÉæo4CÐ%’·2Ez:‰žÁ.0ôäɨ–@Èòq-‰Ý“<)Ù“íR-yÒ·2Ã] ÚpžlePËuwÛS;ó7æoºø4çm;K­„uB-ÁàÎÜ­$ÁåÖˆòžØ'ªºA ïÝÁ—š3C`ý† KA§8y_%G`þ†Àü ù[Ò=©ÛµÚv-˜ÿBŠûÉý!ax’¢'y;Oñ’þ`% 5b ;T‚ ©bÿ+aû_ ºøÐe÷"èâ ÉÍ“ê Æ*D•?¢,Ü]$ÉÂÝJâª'ixR¶£êv©¶]ªoe†»kY£'¨†äàIÉžÔæI÷`¤`å\·Q/ƒC-AT¾!¨†lEÓjÈúv%Ô€¦;ð–Á‚¡– .ÙÄ%²A0¤VO°”mHßng¸Ûá!%1y‚Íõ&­ÒEPgW¯ ¦† »Úd¥,ĪA– 'Å䤂œK¶3·À ’Î1x8` rRÂ*q–„­ 9DqT )àݼ#é¼+ˆ#ÈI1„õ6V5’¡zÍDXjfÈ4V=X/4Îio"HÊ2Á† ˜ÃsR‡'}»VweX2ÔsÔ"ƒG"P0d+‚XCÊðZ3†@k¦éµ*G'Ÿe‚ÌLÖƒû„8t³w"Ü0$yuC ôtÏ&"ÐÛ0âA< B.n¢.Éþ‚ù[0€ÒÆ È»5"K+h¬5Ñço†ùÍzA„âMi@º¹9PÝo²ö4%Úˆôê 9´+aPKB÷$y@­WžÒÞDŠu+Ò¶2äÐfÕ©ÏYB¶nIô %OÈÖ-![·¤m—jÛí W†EB- Õ“8›2~(kÎóà1ól—X,*[óÄäÏB0cDæE~uBó\#BæOº%ÜÑ¡>duw%4 +3΋Èyš2{dÿ˜)ÍJÈþ1ˆJ¨õ§ð¸: ¹?PaÀRAHSJ"?xk Øüu%¿‘ ЇÌ}a© •ÐxΘ¿!0K[A‘«C&Ôr~,õë7¤OÈû)s]!{éYÿJX&Ôê8[”Pon 9³–ý[BöoIó o—"÷g%ìüç1’íC¡OB÷B;ß*ȨŠQFnDÈ•]ì:°R(„i&!ÛG&Ò¼Ù>Rdâ$x¡º©d ¬ UÞIÈö³F5€¬RɲöE:YºÍR`ÅÄ.É•åZÎ"º)¨dͽ!j`¸¬{8€dâÔ-%ÍDž³ÑÄÑe3u"E´µ´>³X¨%ܨ~0ˆ& º ÓŸk«5°Tö>«J¢\K¿÷©hør|2g !WvyÐO6ÏE"•¥+,„ ?¢’1,颒¥q.Dbñ$Á免~@$‹†˜Z †’ÿ£·ÁÐÔ¯ÁBAØ‚nžfñÔ„p_xñA>h¿L’…‚2/[ ¡»i})ÂÖŸe" ]J™ à€kIGã«ÊOD`ý]÷§©¬Nä Õñ¶TñC+HdÁP„‰G%Ô”!©£*©èR†Þrä¾ ÏÅ"¬Z´¥†!ñ‡ü“=Ù4+^ÅP©àQ$㮟èÓÓ´×Èb¡´Ç„tQÄB¯×E,tæ¦!³ ³¿Ž"íh#‹…&Öµ(¨²<4c–à‰5’| Ë»,”zÕÁF±Ð¦!!ÃOI÷'¨‘åáRšíMd‘ 5v›à¨’¡NL2‚;dj„à¦wY-´¨2-d5§€H©cQÔBÇõNY'(:A@¸ÕgŒ¢ZD£û¿x}÷ãÝq÷þÅq÷Ï/>w¾Kˆ&éwH9§¸+xQåîëÓy@¨ÙëŒÕï>½´5¸Ÿ]ÌÙhàF›^åôüÊ-}Å;ˆaýË?_'Ä®¦a=¡>áqG9žF¡çJç["eDú÷ùÞ×sÕ‚híå\Bè\ÇÝÏ/þíE8îèùÏ»OwÿðêÅ_ý %•ÓÃ÷óÍ¿úéEà2w”Ði ”–¼N[yõéÅíOz~øñþÕ¿¾ û:ÛÊ»W'ý/øSŸþû«ÿëüçÿwÉÓ,)1ët× &,¤ƒš³L×{}û§?ÿöõéþ!!.¸Þâñ×÷Ð]ãöꞦߎn_ß=}“R#ݾü¤®·ç_px¾½¹}üòóÅ]™7÷(uú³åö»¯ßžõW?Ïýùç'ùy¤Û¯_?==?}Õ›j·Ÿ¾|½Îõôxÿ@"1·q{wO‰³aäÛ/z†íÊ|wÏ¿|}zºÿñÕÿ ·Ó–·Cs,ù¬HÇÝ«÷ô‚éåûH+™#p‘×çcÞ?ŒšnïŸ?|ùüMN|:7”Ø{¶vçQ$&ÜOÛ  Û|v 8ú¿Ý?D<ôÛ§×Îù@éûc”Ûß<П3îûñÛË÷_~{ûñéÍíݛۗߞÿp~ú³ôR¼‡Û§§ÇÏonÏ_Ï¿xýáÇÿðöÍ=ýƒ[fÎéXœÖó꿾¾ýUðz?]\¯÷þñùþlûíñåOô Î+¿ýðùý›Û§ä˜ÓÂç×?¤ç…ÜÙ?ŸÇ};xsÿ·çmÿþO 8ë¨ùöûΟñü÷Ûóÿ¿~üøé÷ß?Å'y—g¿Þ%Éíœ}çÉܳÛ¤³óô~þˆç‡®Ú2noÏt@ðïFWÂæ9ôÝÐ9Âõ5þ#ýWï…îýüŸ¾¦³Œ½ïx.¤ÿêá”`Q޼Cuž®Ã³ž×Ã#iš­‡·r6Mú‚Êú‚ôÅðEf“øýîóãGúEÚÞõöîËÇß>}æßg-º=¾…5Ÿ¯êË=þ{ÞÄ¿ßCRµŒÛ“ìùöõéׯOßž>ãïFI·ço×Yžù‚çûþúåíãÛ?<ßÓVægcñŸríBµñ43¹¯zóîË×óÌ¿ž÷!gþòùý‡Ï?ÏÈшÅ×Vó*´ŒýÒ¨µtþФ֞öBÉÛãöš6ÚÆùè·ß>¿GÓ“¸©âöƒþî¼á?þñê1õlîþüˇwxÈ^ÚŸ”Ì©žþZª£„³“¼ýF߀Ïz{þò]'ƒ=[~´ððö;ÏF#”Þ¤%º½¹IeèÈ~xÓ>[oÜGÔÖ;Ò¢XàÖ;Ò’ÙÙÞóK?B<›Íog£ûšZ<àüÞï?¼{þÀæPÎâO×_>~~¯?Òíñýã¯Z®†µØ·ÇO¿~üÀMv)ÞÎïú@ž ]ýÛóù!¾=Ÿ¯ñ! Ï·oò·Ô~ç)§|æw}žóùñÃç§÷R«)vìôØì³  e®„Oø× õ‰¬¯òô¬ß¾óÆI¤»Ÿ¸´ý¿{úøþ%Ym‡yüÓ=æÎÚ.ІõG¾=ýÇòáéùŸ~ ¿lèfK*f§-ƨÆÛ·_¾píŠãöçoògíÂKDŒ‚ƒ»89ˆM”Îvþøû?þ£Ö–×ËÏßòZM(r½$µš³OÄþÝz:;ýQø s´pt¾³ã<»¾¿DáóÃæÄ…ÏNކŸ§Cy†† e®æÓUGùHåËùBÿΑÄ$ùræ˜77:¨Ÿ-I¥cÎBG£îúe4ê”éëý_þpÃ<%DÇ~ŽEÖ²¯oÿaÎçîÒ=OOM¼SØÚ»ž\V1ÐRþŸ{l PI*ðÝãgùq¶äßžð7\E~úzOEξ÷ü°Ÿ„Ÿ–Á6xIÏT‰¯pKÊYÖztÖ4DøëÛÏg›úuö‰·§¯?þ§ü]Ô,ž]þŸé_Oßæ)ár}¯ÒPèZ³ù…7ú&8 #÷¬•$}Ò{BñÔ©¨x®ÿL¢>rendstream endobj 349 0 obj << /Filter /FlateDecode /Length 3219 >> stream xœ•YYÛF~×{ÞöAÁn˰öÝ {8p.$Ø=@xü@Kœfu™”<ñ¿ß¯ú )‰“dVw«ëüªªçý¼,ø¼¤ÿÒ¿«í¬œßÏÞÏxاVÛù‹›Ùg¯Œ™ûÂaæ7w³øŸs) kÜܘ²ŽÏo¶³7ìï‹¥º(KÉšîxËö§ã§Ç¶ZÕŸ.8¶½QlÓ쪶®>ÝT·‹ÅÛ›ïg/of?ÑÝں™¹’^ÜÏ…¼Ðø—{Në¶žÿ<ßý® "Ú‚—¼tcQ…VE©çFW$)ûÒíïÛj;ßßÍ!Ù7¿†P°(1Š _kå|ɽ€énÖP9~¼€<7’]p!ýH„%ÉÂ*”™ké ©Mãë¶~ªw«t_0„,\©¸ž?Büïñÿ¯øþ›÷ÆÖΕ5¶0~¾)ó€.ïlf¯'¨† j¨„.q*GTÃÎ@%K¥ åGTÃΈJ;Yˆ3ª~g º”u,ý@õ´WϜР|`T3²0BÄ,‹r±´J™Â,Äx¡ÂBN`aÒ‰¥…â;D¡så„,¼"¦Ãî =A…èrýƘH—Tò(oœIäÒi JgDFø­ÎŽ·…´#Š´1&ÊjôDc½þ¤ †ˆ¶¾( ©])}°XÊ’;˜ñ²ÄJà&D<yEùÍäÙ™ ¦iÕû$ C¶x !¡Œƒûç\s_Ù£¼«€EÉK\RB€YºT`2{1› ^ª\.©dYh§}¦HãkVØô¥‘™HZIá}NÅçÖ@f×Såô»à¥„@‘¨ŒE鯨¸C‘©,xã›+*-€]=/ÏÇâš ÛÎëDÕ'ü…ôÚ—pYOEAp-–!”s6I7_‹¥ gy¦R %àÚ(…à=UF˜Ks¡" *JË-ìr%r+KËÚúzŽ ëYµ['†89>TÇÌQû¶GBtáªÒrÇö¡ Â18§„´ÊKÁ²\^²Õ~ 3¥4gõ±!ïaØ;D¥Â~/ñã›%xÔ»l9;nÖ5òæ‡ûå—7âùÛÅß.­+5ú7…`›´ªtelÓÔ]^Ù $Ñ•ŽN\·DG†i·®ÚéÌò^á¯TñÞº L⚘Â8—œÑÁÒËp ydBoà.23êDŠs(º?¥9LßkNž¤ {8Ïe°©NÝ_ˆì²¸€eú¨Bv"ªš}›édÌŸ’ÒM ßxÇŸˆD‰„ŠŠHrÈ\rÉ^7ÛfS%¦”V‡ÍþØeV†­ª]¾äÜÞɶZ׉Þ%iq)´ƒ nž½aÕº:›ÁWèºCUîªíaE–"DDw¬Ž@£fÕå=ÎnYSÔ¹PÊ@ô/$}ÿÅ_óOÇ^~w»(²så<š]ï¹(„j’èuyœÓØ!ØË€MÁêÒ°ßa!}©ÛÑRI,;[ÄV…;>„}å…qA7í}m·@׺ëÒ!òq[“….Œ‡ØKzCfUd9G0œ¸„ ¹DT€Õ9kó ëö‹ì¿Çþ½”Ø‘¥û•!åðûœìǯ~üj`Pu‘ YÊšãðuuÀ.Ÿ–ģݟîrbJ ÷É5\×]ÓÖ’(˜}×çôi~:îα%Ršdhÿ¨ µ„]b¼Ÿ½;µ»O²‡"jú0Xμ¸yù†ObGƒ¬DÛA½ á>ˆ FÑOÜk)¬Ý+Þ.Ÿ¼ÞPÅwYJº4HK@y5!E•¨’¼ªM¨›")r\ÊvrÔC}[YêÌñÜÀGÛt.¸'¼"ø7FDAN`^ŽÍáÇn°˜b’yÙ«%Ÿ°ª»EÒ.Î9nÜ jjÔÁ´To\_º6N#O›TO¬b“hšŸi0J<ÚA@ 黤ñÍH2<N’èÐdfÇZ€ÔoÛ:Ôi€†8JF"t¨èÔKŽ¡Ýo6”tH¨ò®÷ÇÇ£zH­«xF÷ou²ä²Àµ)4¾Ù”U{ÊBRã…T¡r÷Y÷Ô•ÖbšÂ¸¯|÷lÊwH2ëe¾ðî´[…†’J•’Ákÿi÷ËÒÃ]ÁÎàZxî/üÃ(ˆ›5åÚTi÷ÀT ÿ`‡/Ë©¼ÆåÜe¹ºfSïV„hBÇä­6Z¨„»ýî“Ç8°Ù.f¹Ö¡Û½e”vá3PÖm»ooùS5¤;¿(v7 Â@¡cÂ'±íN‡CŒÀpvr‡»—1 M8.w˜ S·qš§BøCSE€c$ƒ~›}˯½<ºÉmp4!›ãC3Ý)¢µ9O³„?Gct·¬( h=áÿÒŽ÷¹„‹ný]Ë »ßìßÁà£h”‘¿ )˜–€ãdûCˆ©[öy¾,'±ÅF‘ê {]„ðQ¦¸ 1ðPoùH°¿ljÛÇêsìý#É5! =¬HáHË×Xv×·ÎÎÓîvßö·‹d¯tŠ £ØìSqÀ&¼Î+¸C§£.1 !‰›R—e%BliC³·®ïªÓ†zR‡Ò’:=í{Ì ÐHKH«|@ZúÞL±i¥ñ9fÏd°IS(>N᩺pUš3[—[¢ÿ¡%JÒRVÇû䘓†;Di3§ûv¡©úQÓñØM5nÐŒ£ KRÄ;c*`zo2Í¡=íê©P+ç¼eˆ /äqv‰’#J«4eÀ5F^NÝ ‰’ãÒ0¤G¡k© éUŸk åCvBC]p´¾½I>¹emµ»¯ÉȲ¤Çlv¨Ú*”Æ0Vø4!HêjOÆY‰>Azá›<³Òà´ŽE[ ·¯ƒ´-mz ì¸Jý^˜o û¶¹ÏÇRûB[w](BPb”üý $œD·0UUf D¤B œuÚ1¬" ÍV)9°tžŒÞRH?X§¦9§Zˆ#uqQg""û—Iu“­ÈöS)—bêø£8tôB” û±:LEaIÏl™Qê2º&¥³m}´m}\ÁZš€D¯SBO$1j—Ræ,‹Å´ ž*Yž²ƒ½¥‘¡>®ªSGS–‰ClZM ëUß=ì‡í0<‘†.wºg"Í|n`Ž÷S–áè'8ïa»ñ„Öm]o²hò<Œ˜ ýÔCݤ ‚V«Ë$>Rrĉ^ã~XPWaßœÒì‡90úÅ" uïÂcZÉã A—~£(„¹ü± öKÇin'þÈЬ7e ¯ Þ‡áŸEâ§ñýâf|ã¶ú--t~6¹ŒWhtÂãûÔa?<Ìôó¯–ì1¿Æ ÁRâÒÄ¡©‹M­h®BÇGåV£6tw§MîÑuJãÜïÓ«ï“84°*0ú6¼ìÅç ×7÷1õo£î•fÅz2ï9õÔz²M"YÀƒ½å¯»Íbº¢?uâ÷ÑÝ?˜>{öÍ«ÿüìÁSì{ÿ¹®”DZ¤wäÏó™aoÊç¤ÎÛçi X¹ûò¸ý\øô‡Ûë9.µt)ý >¦‰>;Ìæ&ÉQ®'šxiýÓÚ‡ڦdzu³ "Ì­éáCм\R2M㙊 ÚŽ^†u|i½ÖbÜ?&*”¿M]Ý «Ý>̺þ‚~Êô&œYÜ:bУ'úÑB-}jÎÖ ôé¨`íÏê¹²Eø_Òþô»õœú>+z‹Ð”Þb7ûáíxÂ{²}phnMÔa³øÜȉëèi g™8$Å㧪á÷ÿyðíÞšZvªÚü¨Œjû®ÍmÊí‡Îô8 nH-•gSöæôüÃÔ ª7ïËXœ`|œÎï0­ïûX =x½Nïô ‹)è |¸@úþoø?Íþû.endstream endobj 350 0 obj << /Filter /FlateDecode /Length 418790 >> stream xœ¬½[¯É•%ôî_qdõC܇Œ{D #Á€P¿€,ÑR»<=žÆÈ·±˜â¿“{¯KæW4o¨ªÎªüò±cßbïÿéëú._WüÃÿóïr}ýËOþÓOJ¢_ü×?ÿþë¿ûåOþ«ÿeίó}f_¿ü?Á/ÊWií{Íý5çõ]wùúåïò?ü7?ûÛQÇ÷uµþúçÿöïÿÿ,ý‡ÿúoã¿ûýßó‡?þý›¿þù×ÿü›¿ùÓŸóþò7ÿý_êþÙ?ýòúI)ßgôõõË¿ÿÉ/ÿ‹»ýëóŸºÓ93ò³r£µîþþßýãÏË?å}~ôãÿøÇ?ÿê‡ß>ïòÛ?<ïRÿîÿüÇßý ¯û«Ÿýêg¼ùÞÿ_Ïüç_ýð¯?Ï?ñ£üùoÿéþÙ¿ñÜ?ýîýÕ¿ûã¿ðöÿ˜ïzfÿá~Ñ_ýìçz£{°þõO¿ùÅO÷ÓŸëé÷ÿî·¿ÿÅŸý‡ù oáÿk¼¦¯,÷•¿þ÷¿øi âý{ã8ÆÿògÛJ??üþ׿ýÃ/~z¿ÇßéÁû‡¿üú÷úÝoþ¢¯Û?üÇ?ÿÑ#úûçSòîüJܾü³ô‡_ÿ÷úÏùOÿáþ±üüŸ~úÿãüü_¾×ý…e¬@øÝoÿð›¿ÜƒuÅ ž«¿‡?'ê5p÷ñ[ÍÂ5øÝ_ÿõ¿}Måë¶þ²vÒø±<äÿÕOùáO¿þË_ïi‹oƔ޿Ú÷wýüùÕOï±x À_~ó§_üô§ù}¯§k€þïkZ_ø»ßüËoþðîþû?þõ¯üýŸ-*¿ý—ÿí¯?}}áó¢ø;F üÝïþúçø‡×{Æ8åûü¿üÉÿêaÖòÝúWs}ßk¿•²¿Gý*}¬ïµ¾þü›¯ÿõë?éßûýëÿ¼uÅýÖ_ÿû­\þÇŸ”Õæ÷^_}îëûê_¿rÚW_¥—óõ»@Ö÷5ïkVý®Fîÿ×ç™ßm iõþÕu_S„ôHùÞUÈ-¡7r⽈ÌOß÷( Yñ>kÄûÙñ¬uÿŠÏÚß×ý¬yo™Fâš]â Dî÷èó½óŽQºŸ>¾}›žŸ>¿Ç2ñåËÀб¸úwõ“ÖÁ]îQ"r*ÎgŸï+¾¼ÌïÚ…”…/¾&ùÖöÃ@\Rïwð%=5.?ü|ÏxT¿¹…¬|Ôýq¾fï¸ÏòGÜv">üžX^ÓïÉÎgÕï҄ĈžûvE@×ëϘÌyê÷Br-!3Þ¥ž˜0"+Þå^$þQ|Q,7÷¢ˆÇ@ ˆÄ¼ï ÔŠ—åÝHKÉòÄÝHߘÊk ™)kg; ú.B6d¯ø’ü¹—&¥WJþô¸Ô¸úF,±7R¯YBZ^Ó5M7—Ì®Åq³ýø6+5Ïëš#¼k ‘308¼oû¾6¦e ¨¾Õ…´Ž¡iþQ‡Lë›Ú÷h˜J‰Cûžëi €Ø¯ïc䨀ñ 9Û#M"· ‰I¸ÛœBj>êÒ²¼‘–‹îèQbkµîÛŒ,/–™2Ñ삵۪ûøƒRß´Ân¤4HìPã»OñHŒïv>Gk@ðw—>º‘Ôb÷dö.dLæ8Bö§¦»‘Ã1–èOh±{6—‘ššn{g ÜTéÇé©éj("£Êß„ðÏæïšþ{>ôwÊþýìêߜԩG—ÜË¢~ ú‚èß ¦u!)ú÷G5ÿ*EÿžÍi`a´´înU•¿†€”üÙ¾$%‡dCôïõ<·BIŸ]H;Ÿ“HäG³°!û·m»|IÊþ˜žß[ççŒûÉ{``Ž‘³±Ru““’_ I9üøü!¤áu‹Ôæö¹d ŒÕlBæÆ:FvÁGJBinã²1æã¢ºä_ûÛ Ô&$äþe4nDr?ª˜€ÙBÆÆ@<פÜ?’w#)÷a½}MÈýº¶TÔ€1¢â¸‘216\ß7R,(GëFzq™F Ýð¯&•ÔýV%ÔH7²¹ä‘spÍŨ)ù«T(ÌÀ*KBr#-uÝ”ÌÞHÏ×ÙZÎ7¢÷iMÈ< ê¤;SQ|Í>Ð[t0F‹UðRû7PòQÍ#ØRôCµQ'ÝH£²£.¹‘ÂáÛ¬J éG퉸Œœò¡÷Gåtßøx": #I$'ôãW=½›!¥9h Ú‘)¸‘4ë÷SýÝÈêð€è ÞH¸´k ÏÖÀ€J–FZõ5‡Gb¤?»ný8}M£«Es|#éÏ®n¹˜Î[;/_“Onžñ‘î,Ü=9™ÝÏ­g›OêUHáû’º1½} Ig6ÿ¨/ØZ½ð„7û Ì„ð‡­ômBøÃýªCHz³mHÑÞôõ£ñ[þÖ¥•n¤Áï. SØšo3àÞJ'­tâGU@ú²·wHOåFR‘Íê»ì”|ª'!ñÝŠ4!Â'Ùü1åtÜHJþím)ø·Ñóƒ&g{Igö6Aú‚ Áßïw ø72„"ÛwX¤Á¬Û2h%x@kÉ’ÝH¸³ñ+ß7Å> ­€”úµ¿}“|¹iÅ{ÆÝÀéŸÄ>”ª‘û}k±i$Ä~ßnT7¯²õº7Q\ C@¸?;üª#$¥þÖOϳw>i+$š0ûÖ#zvI÷'ñÄ7#éœr»ªtS±àüÓ347²ý«0é»´e"éÏÞf”šåFRð§7\¬_ éÎÞ7.]Híøª¬Õ…!¾&îRå³O¸þë820û^OÇhG(å»ÞF¿j)ø;ÖpR?gF nLoìF¬ïñFÂÝ·•a%x#GßÝRò÷­%(\*‡?éGxÔ=­|áqÜÿjÁßáž!!øq—ækRðcIl!¡½wxËFf¾4ñ}…ó7¢MÔ„ÆÏ–håòÃ}«šOªÒ|7’²¿®o_’¢â’²i_㡵/Ù H÷}Sôï÷”8Îtfw¤$šý@`>i†/û~ß™¾lŒç\BRðc±ùšup›çÙ{`´ü£Ãé–žX)øï]üçG ry¤"¤çÛØÜȘóíÛ¤ä÷ç£Vz³!Õ§ 9ýóavuät#%Çx+„¸‘ðhã#F’¢«©1…¤èW{™lܧ-!«`%^Fv‡è7d?-¼óIU¶oç¦,!iš!5—âe¹8éÑÆõ¥'UYHJó5“«¾ «¾Ç–#u#{BvžkÎÁÈÓ1¹eòoQ)øŠ* åTj7mL2uí„ ”èkòýš“€.[úÎEcÐý «¤JˆfýF£ݷùâlÝH*³é¼Àäàl*‚•1æýk˜Ьú3¼ÙP\ 7’‹ Ié¿Å„"° ö÷í}Q•’Jþ’ÞHƒyÓ»UHÿÇm ÉšôõLê—âÛ¬ñ9œ5] ½œòËÉ^ÝC× ú@ÜHŠ~¤ªº´êÍ¡ÛôÔñCËãFRôÃá=BRôÃ2ú>)ú¯Ém߇’ƯìËí¢ˆ þGŽ9ƒŒÏ·Ë³Ð!øÅi—ECðšxþï!îüÈBØ|õKÄ¡jŠæ.òÊ9ÂÏÃGz³±6$&‚_Ž¥q@ð«cõß?$–C„úíóé#C¹˜ˆá_Á º"°IÞ|V‚5-ùS°ôºþ³)<]Þld.¤7{ûMÍHÆq{z¾aÖnÊ.ßÜÙËë}ѽ¤n$ã¸mïuÁõ‡ß#`ÂEgæF2Œ›Ev>\ÝŠl7!‹þ¶Ä„Îÿpø¼Ö2z‹¾¤TWtn 1h2ŠC`KdäÐYìȶôGôFàÐÚíŒõø©?¶Š‘ƒ1¯F2•½ÖëšLeg…|ÿA¦„& Mï²áº._’Îì¾ýc ÓáåáÓÆæ‘‘ôi‹#Lj·âfdq"š€´ë·PRÏïÉpnKǦ\èB† Ç—°ìsi Ÿi."íëÆ?ƒéì"ï)Ü)Y‰Ÿ¶8ãu‹3šŒÅp„ZóbȽsö‡f Th’eMV8)Yobz&+myœôér»eIŸöÙU?>mq0)T¼æAìC!¹1㺄 <£X:Wú´±;Eõ|#éÓ>Õ7’rÿlNœÅR›K{7²¹ñ ؤv{67'¦—áæÎÜ"’;s÷ðèY¹QŸÛÀÓ¿xÁîK²@#|‚&$eÿÖ¢ËÈfQuoÃäÜx;/ýQdtJ4n£ÆÌã9(Ѹ¥£IEöèœÌ0£ÜB@ºAÕIÄ(Þ9Ø#?~8væ.†-á ¦ô{F)Ü7‚SH:¶Þ‡ $Cºª ã@:¶‡õçäÖôO°™S(·lƒøGÎa«-‘éw}S ¾-Ž^)ýÈ 9P&Å× îÝÁH‡7UÚ’Ò\1‘´&Ë!Œ¼¤ìÂÕIŸ6R9SHJÿØt*Ɉn7j»@Rú__U±CñqçŒéP¤F„{lÛ?J½ïà6üÔ‹{jmIKP•ç¤HÒµ„´|ò]Œ¯W€ÉÀ(UíhBlx­`ÕUßHz´[…)aß/Úù>…d&Ãû‰Äw#2&ÒáÝKd3šÊï^¾Í”ímB2À-‘4ØB&’åI푊Áò¤Ew!Êr4ñ èwK mʉ¤Yo…®Rˆ٩~VJ Sr¸µð¤ü§¥t¢Rã:ú³~¬ù@Rø%|áœu:Ã’ûÝügz?. d³øk-!²Jz±¹¿5± µ~»^×À¦_–û…Xîzî¼ ÷ḙ¬Éª¾Ïb¡ÇìB`”ª¦/™%ØžÊ:…¤Ck{’n~Ö tº3À¬¯ºmØŠaDËÈ®_¯ö@-žfê°BCÍ@²:)l¡Th®Éò¤9¥LÂ\ÆÛôýB6뽸²TjZ• Üg]óRPh6”Ð ¤Õ·+ê“T”©>ˆbRJVšÍÂM˜6Ë¿Î1’åÆMêæŽe²Üx-IRÉͽ¬ç4mYçÊñZ®NšF2’=íz]’¦àñ]ÊB8‡’¸Døýèÿ_Jm`kåmbŠ Á’/pÿ_B»áÐ^ÚØ $Ún³#)ü—J2I“^TÈ©0íPT#Có\’²_[„ô‰ØƒÞt!p gs|.˜çWh ‡ËM‘Öº8HR¨ª€ÊUÏg× mQÎ)thc7Ì·™\eýAèÊW?|clh×ë‡v ÙãZX˜·X%Ä-þÎ’U"éÐF1€ôgÇ”@Ö/ujDàÑž×5Í­ÕPa ²ÏפK»Ž4`HâÇNK ™ÔFB¤u¦Ý«æ²v0X6dbï*Š#jåþ\õDTÝ\EšþžGìÏU™”)¬˜ÒÔ4L(Š—ˆ¤K‹Š"ئ(þôæ ºò ÏòÃÓ£E±t¶ÛH›vV8ÉЬYP:|Z¤Š‰¤O›¶RúgÑ ®º,ªü¤Ôe¿_i æ%¡v8¶Ñ5ÁkÛ®ºÙ¬¯R5¦¯Iù×&ciÙWW4\ã¹gÄi[õ_t|›ÿ'îªní*rêD<·ªGtBüW‘ ®Ó›:Õ¿_¯¼c‹rR„d2õ²PLtJ±éoÒ¾áí¯W¦4óíÜ .Uºâ²RúG±ÎYþ­=§@´¥3 µç`òF2žÃÆ ‘ÃmZäÊ `._³½G1}MÇÓüVÆ«H“ÖpEcDRö϶¨oÿ¨þZƒÑ=¤jùÄrY¥G ²óò%üíÁ;0ì½ù#R{³Y ¸AQÉ.’¿å ×É_UŸÝh m×¼LU»˜Ñvš¢]ýhõñ}ŸE)i´ÓÚ·]¬;^²ÚíBH÷‹7‚nɹ£éBσÞ]£êïL™½®š@:œíÛ Z`½`Q‘6-S+èœ-OäàÆú‚€´g[H¡`Sw´êdÆe$ßF%p dÁu‘«Ù*ÜÚGMµ á÷V} ›ÉtBcð(®F[ЋŒUkÈìEŽ€ÏÄEkpjÇ‘¢Æ)]B(-A·\G“A>©Ê[Š=¢fƒ­âtêºÖ!ûÃ+³uöÇcE‘êÛ3Â^#’•[È`r×—,Ä1ô_ì@¤vý æMijÛ GÛ¸\â[Ù¨ú\’ÑÜQÍR ™ÓÞS~HçŽZs>­TLi;•Ú WŸe–EÕwȇ2G¤™Âž*Jh#]Ésß&¿©yÖ&ùnšôh»ål²wôY= á\ÈÛ4²€H^Wšôªæ„Po_¿}—þ™D‹²Ì¡‚oËÝ£—•÷O: ˇ6ŒÆßLo]€ 5ö„­ Fà­Æ6< ö¼ò¦KûˆãfézÝr?_¿ÚøršŽ¶Ù;­¶ ¨¦¼˜:ׂ?ü˜V#›TÍ¿’O+í|ìÓJHã¹%÷¹ÆsÕzÏy˜ûE=æª_ð¦êµAÁY6ÒÉ]ßïºg*¢¢óGW _°êÍyï~ѧU‘W ‡þ —8Š_;‹D‰dD·.‚P,tí¸{AH§ů׫×!Ô)Ù¸‘”ÿÃ}{Vô†£®?Ó:ÍS!û(#R??¨Rö·ÂÏ^aÔQhO$ýYÏIáö'¢¢cÃÖ?êеgF¤WîSÛ¿‡±|=[Ðñ7Dß{#Îÿ“áî ¢ÿÄÔF ;ÍÜéü»j.«X¿Þ‰‚p Òºt¹¨ÏÀñA 7V©_z§IïŠøz§è7Ï\§è-¡N÷N¥¯²ý½¢Çé3âëòþŸ± ÷ïß@*«¼¸óÑa ÞJ÷NDÒ¡=SþC}T˜Q87Œ¤´«²“èqxû¨N¼ HÉÇN(‘”üuÉuƒ}äqGC0#>-Ö‰¬öTáKðßÞhŸç^ÃCk°KvvÂûBõqq8ÒŠ”®ËºP¤ôD»°FÓµP¤Tœé ní~ÀÂØÏ$oTé=Ÿµ3ž{?|ëÝv¦"¥S¿^õvÙµÒ¡,$rÝ~_““媾9¡ÅúnéÍz‚ªî‹v•A’3±ý¸NIÒtX}Üå÷ƒ:¥r”Èî'wèhQ¢˜_´¨Þ’s9hÜ%HáørD(m Í øj”@0çÕÈÁÖ …d\,»¿dñÆ…²{l¥QÙ=uÎ(¬ÏÛÊ£Œ‚²ûªô@ª9œ£ FéêRTÑL-ÎLFD¢ÕdÓH–Ý_NëD,µ!Åðñ‚ŠŠ³¾<‚_Õq’Ý õ#74**ΊºIÁ¿TtH†s¨% ²)Ý×°²˜F&ÊdR¿NcÝ}QìáMLÌTkMÖñ—wµV", n¾Z›ü½Ñ\rö²|KHö›ì$'ûøOv‘FNj Èvø]DÛ)§o³Ùbvü«Ãf?¾Î¼P¥1TÖHнbi Ð}MŠ}w”5a^c:Á”ý²8Êô±Ñ˜øjljn£”ü¢*Ó@ØIJG òÀ,D¥w5 +ﵘ£Iì@£ÓÈzϨDö¯ÉæC³÷)oÌHc‚èUÕ2+*ï›z•A– wI£þÈN´³—ª$’ä×T_³¸Îž_eõñðFˬ¨>îÕïÓP~üúUó  Æž`z&I[€ô”{ƒs6öQ«n.žnš¯ÙPz?ž¯/ÐK-ÍNÓ.N¢@*¿¾ÇìX­Z û÷GK/H½½Á?¢íœyí¦žÊ@ûðô(½œ£H´}uÖ«`aøö‹Ý«‘ÁV.V‡Í°nÛÏzvÙ]F²öÞ=ÚºšT+s~Ú!(·ôŸ˜p›+ {¿|Nxµâ"`p_` À–ŽÝç9áÓöp˜«çNîd†SË~!¤[—§¤@Y™~„4>Ç?ʈn;Ž˜‹VÝ/»¾Ùãä»f<‡b"Èi+6š›'Íja³òØs#œ{êÍæænŽ7T&ÿí J Hrk‘n¸^oÒûÚ—œ ÊŽ ŽÃáþ„7Þ¢ž¼C¦%ç›]dZ» bé0‘Œæ^ßyÍíîµ{¸SüƇU÷Gºm]ˆæŽÈÍØˆšO§t.DY7¶„@î›Ü›[ícCÈ`ÄW|çEÒˆË×À©uÝÒº ÷G½5a"/n.ÐÏ] bó ‘ ç–÷fVà¯íïb °ÔHZ÷'H‰ «Žqž¾ófþ\ÏÊÛzj!Èòæjä| ûB ­NþUé¬UÍ#óüj}½ºX´:6;Ì5U¤ìs ›Nbÿ¿ ©´x´9‹ZÿRnyåÆlg%‘‰yZú;Ý Ë)ˆÕÍ9Æ^ÍÝVÜÉ\tÿ‹KH(Þ"Ñ!û|¢—}f¬`XTùÅ•vÑ\¿^5ÿ,VàÒ [Ý'ºó@Ç j¥ˆ¦Êè®4±65ßnÐåÀgˆD†º™¤ä9€2„Ðá ‰úz‡µÑΘ=FE+|MÈý“½\ ‚ËÊÇ-¤±µªù>袶‡ƒÖøwœ¸H tšâŠR ,˜õ³Ò­}*ÖâtŠg0²?…`Á­QG™Çx¢è•¤@OoP“ôÕ÷M¯Öíklö1ç´6c¹ñýûG@¥gÇ‚µÝ{¨Q)Ð˨.²Í%Ÿví§ôøIèrp¾H ä.¤½@ ”F‚>ê®-²^ ·D’èy!ë0œÖá`ÍB_£\F÷ÓÕNJ×`ô¡$IÚŽOÝ»/H¿§|_Öd\Ó›¦à™Ï RÐl°BP©ÑõðMr §îaƒÔý’ L<œÛ&7У‹7iA—Óx›´ s²A úl¹oR‰æ)€thÆ–ºÛÉ šA~Ða&™SµA ô2·›tp«)·+½ õm ± `ù6™ú^Ú0Ùd]e›dpË{Ì@$³$rx‹ÝX§Av«PwßåòîFéW;s ýÃ°îÆ¬öÐRÜYmï[lºÿnÚä|îþoÒ‚õvíMZÐyYJ:÷)ºÄx“tLÙÍÝ:\ƒÎ ×&-hwYÁ&-èt9Ê&-趉ÞäÚ5Ù4s{pÀ ú¸£›ÞÿåDîÜÔ)²1{FÀ¾ó†-H—Ü7Þì3ß~ø¡½e„¾'yl7hA_eh›ì@ÕcOoS0²Þ }ú.“ЉíýË×ì¯W;x,É›~Ô¡¨Xì?@ ꤦ3µ™Ô¾H§HGr“èIºnò]—œß½˜ÙöŸÈks€·]Z­‚~"•\t!v’‚f2ÚÀ`»=íæ¦%Xn;Ú›I½KôÞtƒœ;Ý$*Ï0œÜŸ8[ɦ!x”ó&/Гí߇û Žö!•Œs-û0§½_OZù˜ã_eõPÖ¹§þ‰”6 oˆTÒÑУ8¤ƒ{¬Ô¹è‰°9P£ˆ˜3L ŠW;€ÍG #‡±<½âCN ³ƒ¢.j¦pN!)ÖÒDB%µÿ’b?ÞHÒ‰a3€E*ÞSL%3¤K;K;ÕMÔô¯OeF›¤Ó´¯1T™¢mÓ^™ÄP_È!œ¹šYœnNå!+PS=ð#h梚¤³ 9dƒCæòz"E$} ×`4³pFÒ£öBy9ɼži‹ö'è{òÈ 4Š Ì3k.8A3˜~¯èþÕT3»ïœ²ÿ¤aO§ì»¸<ÕÆp#Ò!CœÈ¤($©¢?{@ ÊÄ‘”ýgè¨M ⦛©ýÉD¦u=õ+Ðòë‚4ÕT%ìü+%õ´ð@ š…=F&n¼}›Å=´f ?\L»ÒfILèþ?™·C÷¿.KmeJiXø-V¸ÿíý$µ]Çte_¼`w‚¼¡œÝfsâÒFúÙßä £ŸrÀ Êî "}Kt~îwùG“b3ü£µ?‡|s/ÇžÁ9–|ZôC2¸'Ã~èý×KÐ÷ÿ -YA½…rß{O‡JßÌjp[•i³sH%Sø6ç/èO’%JèÓ'ÒX ‹“È~›©@ÆÇnb pþÏë΋EÓwÞÞxЛUÞ'úQHsG; „ÂÍ?Ìâkh@­||ü®ìÜ ±9,î_D@ J>y"ª¸ÑËL—ï)¤cù^UÀ`ºZKj2¥­Î‚@2¿9üç&QZ÷]3"‹>×b '·@Ð@}¨oI±ïÓ"MnhSÆ2Xþ&íR ³ °)ÏmPž$—ü\ûõúÛé<-“M‰ ÇI‰ß…îF x¥ÇÙxÙíkÄù¶(¶ø€ž6˜s‰ N„r€>FAH •¡ŽÎa·X1HÊü3*¤‚s”Èb¥õöP–¤th ‡Á+B—SÈêÿ@*Ë5žkSøÛ×d>¯¨Ó)ñ±]ÈúzUƒ€‰÷mDŠÈ•Rèú;­HaŒ¶ Š¥V 9¶Io_’QÜ¥V «¾S.l&n¨;KáFŽêéN‘ÐÖN Hf+ HûzQÞ€²<±ô2¸£©1¦þw†%ôŠ‹Ù,Bå³™šÕ“´(UœÈñ^¾F•IÝHîJ+‘BФ3kBRò]Ÿ˜·éü(惨gJgaw%(Ü…¤Ž+dz&•¿ÛžÉL˜Àˆp5÷.`‘µâò£6Ë€|IZòÕ=“ôˆ’FÒº* Ærè2…t&5dp_ª@Ç¡ª8—w„d¹½›õNtÿ2A¤¯ ÜòpÍo’=Ñ?)“ÛÛÓKBPÛéBBУ*³@Výü¨‰Šc0DÉ\ÞØ–‚ºC-mL\]º†ä.•eÇg@ű‚Ã@°-ѼT¶ã¦Uf ÜSŒˆ¬9 hÙ(9^]Ò¶áÉâ´"ý,Ý?êlð+F†>\øcŽ¿’Œ Þô LX›9àSÈ´£ÌDÎ×C>JÌìÇ–Ã3Õ?¶Y•€t(sœÀÄ}·o¼>ª09;‘§’T’”ýa™ëå j®JJÐiëVA :ì WR‚®ÁÐ%Å=}›­ÝÊ)ÎÏ…?Éä.¼@ê׫0ñRWríç9Å>,½¹ >ÐG+ø@Ÿý‡@ÎGs"ô±°Õq*ø@ÁwL@¶­iUàtöw_ ­Ž@&¯™ö缉 tÈ&T²º7ä°í/U2=ë»’ È] f摤 !œuT)œŠ9âïýQýÈa33½ãÚM…KO«öUÚÒDŠäkàô?w–Óß-5ä:~Ðb5€†œT E¤ž‰Ð§–G3©´ð{it8†‘ñV²U6 (­bUÕi l1ñ‹ T&´’Èu#¾ŒF.ÿ{U ½Ãe¬|Ÿ¾ÏdG/õy% ­Iw¶Ûɯ }Έ95©@ó¤£" Eßí’‰¤ÞUö'œî3™M d¹¤ú°`o?‰D ë2}Æó2hmôM,e#IÑo—… d Ñ%±'\P!hö6OkÚŠ9ëF—I÷ÃAÔD—‘C&9Ú¤ + ~Ý»…€\@f‡ ´MòfëAWëëÆê¡Óƒ (FGS~àÍÖi©¨Ï< \ ñᔊFJ¸ÂìríëÅÅÀ'qR NR!n I´´‹ü1Êñ²ÕÚÈg°¡èUHdÊ™@êGWQ iÑ«’†€QÝ|¤3[u¶T yTÙщT€7IõŽ|´cŸFв´ y@ËóMäu×j ©ÇÜVÈ A ý¼F"Ð*n‚@Ð=êåÑÀý¤¾ä„’ùßÊðp è9š) ò3æ¤5[d ƒÌ0Ã÷!@¤‘ ´ˆj.œS6<\¤Û2 s;PÉASÛhªJ\AÓôå‘ гÉ@Ÿ ÷^ªD@µY&Èz‰ž3q!ê Îè;òàÙßžµÛÈZ¦¢¸&&ÐÂ]Ë@À**–@6âð'ÛQéã7ÚœK¤~½¨êhõC§5’5[È Ãñ&:8Àbãdñ%)ôÃk, Or®Éé_Väƒ3An `¶ïE¸ý‘ ðmP„·¬3ÈäµÙ0²ÃwmÆ” ÐHäfÙ@  ©'r€â°D!ûëÕ2È€ñ‘b(O2&²”š€ÛaѤhÏLôi÷ DçZIdàõçMH§K§ñ£0In “$6ôÚá!e—<™F e·¯_ÜPõu SEÓׯR‚¸K/ØAšÜ&·©§‘õéÜv’€UDra04íôü¹L;)€¶òúÞõщ°ìÒÀ`Ó×Oèsà@ (©TÁZ çëUãÀÄv ƒ‡P²†Am½öÉ:MŸß”úËÚ,véþQŠýÐi°§/Šý³4k1.$ @ÕN@çN(un_<Ìá‘èEB{µ†²>ÃɾX‹Ñ]·öÏ×*ÏrP_÷jù<ü“ùëòBê!S Žå4òYUÈ`cüÀ4ÚÒƒÉøÖ^wÙÌÏQ°yÖÅ:@2z3mu ’|kƒÿû]"l&à ˆ¾8’œaÕÙëã{à€õ#$ÿì]ÆsÐß¿D H†jbQ ]X3’‚oŽŸ@Äúsü¨´åÍNí ù§ÏÙ=£›-FSGߡԯ Q™Å3ÏS àþœòy†“¶ƒÜŸ½ø³:ó×:e*ôdE}¢ç—Û L¤ŒÁ}¸Kе‹zyý­?yÎ[‡à’±Ûãà ò~¶gøÈöPu˜Z éÈ^ Ä©?«4KV“Ò5×a ù=›нˌ RÿtU²>(IÉ7¡ÙdþK1êÿÛó+R>5 ƒÔŸKuÄt&r§ï3˜¤ÓŒ“ï­·AîOï" rÿT‡YƒÜ?/©ÝˆßÆòG@ë›E%t™‹<›Hò³îAsNòÏá¢AòÏG—Péã¨u"‡ê» ½‘4Îg^šÇdö—/±óm÷B/#:žì¹fqKP+ñ|³! Ẇî;_óòVÍß¼H}èh’úóÙ/›¤þ|ÒÊ“to&‹I$©Dpˆ ÿ\öŽx'ižøb’öç)è™´æÖ ¤©N.!Rض°ŒTN¸x?N^ ù olÌeá—ÔÒøè‰@¶¶ë¦CwK’ ÖŸ£Í÷IÆ7·1Òxj$6ÝYlÍÍ“É\»2·‰bžÛ$A@™ž¼ 7Ô “Ýu&i?Ÿ¬ÈÎúZ®ïUIã¬Í"éÏšr‹WugÐ2öCï©-ñ?ë˜Ï@ÒŸõÑ7h'nùìÄyÿs‰ÎnÒ"ëÏãÉ/²~6¶Î’ß‹oÌzLæ„ùßú’Ù_$ýìSÎ×ê>ŸUïBÒÏÖ,6düyÛÛ›yœÈ+QL²™Æf5Æ"ïç|D‚ÄŸ]à€íM½t4v Nß̇vxˆ?ŸPd‘øS”Ѥäû„˜@@|øŒÞü±´èþ?.Æš>˜¬ ÀFœw5­€Ë3½ósÁwmÍ"ñ瘾†ToîƒLd}x_ ÄŸæå Å œÌŸÓ·KÌŸM¹ùEæOsâ"æOz¢‹Þ¿ g–ˆ?Ÿ™"ñ§ÏŠ ¤Òé-¾§ùèë@ÍÙG[$þlóuMŠv©^Ò$þžºÃò,úD§@@üé=ÝEÿ¿…‹– öɪ„s޲ýÿ§P{—áØd-¢ã¢zÞf3hb4¤²úlûšÆâV*ÍMÞÏil“Î-ÑL:\EÀbÝ%Cæ}ù€bˆÅ~h?»‘²;Ú†]~”ÓÛdý4ýf hu!þïÏK&7- (wa“¨-Ì.thÕµ|¶¨?½#²«Jêé¦ïÊ&QUçn1ªs8ÁHƒÒ¶Éüé~Ù@°#'ºÚ@>k)6‰?W‘µØMÕH”ôÝØí±jܳíÚÔúÏ4W×P×íÆúâõ\Â0ˆÁÀ&íçÓ¾±©ö_#Õéκ˜f“öó©<ÚÝõÓ×𒦿Ñ­SYÎË— s±;«k`ã÷`§ó˜ááêŠÈö '«€1Š1?G…|ŸsZ¤È÷ù»áÉ|ÕÓ_¢:$-Ò}¾étc´nÑ4Ây^B¶Ÿ'í¾iæñ:!Õçµïí’²çWúË×à|õéÑ#ÛÏKíG-öœó©Áõùڊ݇A\“‚ ñ›™6édà©þÑ`v1ЉæÛ@ìŸUIýÿT·÷™·9¤ûlb¶ ¤Ò¯âÆÀÝçcù~¦ûpÎE{î=ès±¦žç`Ñ?BÐJâäÄ!ÕÏ ŠØ>cyPÁøýíò“ä÷»ÐôéçI/ŸBNøC¿?˜ílšsúi›š :‡D?×ÖJ=ÔõÅ•"‡D?EŠà@2’Ò€SYÙê@ ~éžzý>~'Õ0?tHõé£î)LSÒˆ~žƒ~Áqd®K;TÿU ÞàŸ¡àá€ë'^‡–ñ42Ø“Y%Ü@Û~@õ‡gÑm=Ý ö—‘V>ƦóHVŇn¿r äóLÖ@Ö|ŸŽHßæÃÏÎ<ŠOçò’’uK­€J '’‰»?ÎJ/}˜>ŸScAž8`ÙxÖòûèX& Æä‰dÛó²Ï<ïi Éɶ  € gwå+è~òÔXß¾ìòøLÇ·½EwHúÖe»Î"“÷zÞ ùZteës‰o˜Ò‘m[>éág¬p¦ôÏ"ƒ½ØÉÙ,rdpp¶5Ù2@ŸO·Ù¬¯¹ôgc/Áñ=:CJúXÑÚû•¡‚Ö<™~žjª¦Ÿçàí@RSTמžÃ 9‡lçpÇÛ‡¤oÍÊÝg”³-ßg|½‹°è>_¾äÑOY‡ñ-/˜Cï‡A\½.òüpG)zLùv 4E2EH ¾6¼/ Ÿ@z±ÊÃ'²Þ)…DÔMRyèݸ¯›óL» Ь¹å™ˆN¯Êà?‘Î*·ç6:Žl>+‰k²i(Š€”úzà‰ßHõÙ »I¹/¤¶H$m:O$I ½”|£¼Î{Ndæz'aA"yjÉaŸ~"ª,.~öáââP€èÓš$ÅW|ýD‡­2·&2:QÑÄèçº^×äÙÒg{‚ÁóéðË/"$ú¹H?œNe%•E"ªn6!ã¥gL,Q…Ì÷ÆE"ééìÜDP‰ýŒ2ˆ~t6Ly4åbéK"u½N~I¤”€^EHžÊºÈÇ“N㣚MGS^X®‰duñ\/ð|ZíßÈÄ©¬GÕö:kÈÔ¼€ä3Gã ß?¾iúš,Ä^ÍB‘,?qÉöp$ësÉBÕµ(~âðÒ& ò1]@Û8õI“®C[ÉYG‡ƒ‘Èú\ àùŒãl—€û8}µñ7›ç±Në,ð|ÎEö£DòŸÈj ˆwéËË ?q…„ ö˳ŽŸ9¸½H¸²sŒo?(Ëé#@ãÀò9;{©9Ó ,Y>ggiGy ëlß¾"ÏcÕ/ ’ÏÙ¹#•H„p³1Ãdã_¼^ÇgŒÌµ„dEýZ’ð’~å@¼NkZò<Ÿ³±ÚèFÀó9[Ñš) ú™µK9PýÌÊP8‘–× .ˆ¦Ÿv˜~f벑¥Aþ#þDRþ{·ô€égöãïÓO¼2×gÕçlL»$Ò°Œª/éí½° èÞB%#‘É‹U#Óç,çuß\‘àÿZš€²d&J²|†H\úN–ÃÍÏKU°|FˆCUQÀó35N ùy¯²$ù õÏ+ÀñïFÅQÈñ©C¼©ú~ !8‡¬ûUÀñVDCI§ó4Dp®ôñ<‚Ö-œ’âkNƒþ¦Â) ù‰³ÆµÆã8rq&’r¿*=ÁBV7ö¨$0`Pç€ýˆîñÅg(çG«•D2N¯¿n‹8>Ã<¶#¤ªÅÈzIhéÊæQdëõ«AŸnW!i1&÷gY@óããvo4?ñ«« I±ß—W!h~|Üx"-ŸuYI þò—‚ä3ÆP š¾ÿU½h 6«9ý=5¾¼2½ëšÎ(ìn§ª/{¥)xÞ¸ÂùCß©D+i~®!%Z/Š?©‡aÀ8ü¨3_¹ÇgHå¿‚ã3$ʯ’ãóš~åÂc¸‡ïLKpšœô –Ïxê;o¸¡Kç1|«*ª¨ ùŒ³â×èyü„ ¨™”K{K±¨Éò¶Ÿ½Vf1.EŒo¯%\Áò33ü«3>œž –Ï0Ò—‘üQÅ–"€ç_oœ,Ÿ1ÄúLpü¼£š[u©¬‡€µ?¿$?ñ2¾KšõõL]OWv]ZBµû`i½]§èÛó¯Þì#àø|iÀ ŽO˜˜ÀfÓ`óR•6¸ÜÈ€>Ô'‚àó=R ø õL/³‚â'ÌÀÖMȽގ Ÿå²àƒã§, u ŽSgg")øê½|æª+Bšß¾$ýÙ=<Ùà÷|/^ð{Îí{¤ÛCÚ§‚Ù-f!iÖø~~uøÙZ<‹þl“s]ÅþÑ v‹…*é\th—‡xÑ£mß¾1ZÇäžáK_sfH‘€â3Ôfw¬´@ñk—q]ÕO:ÆF†V¼ïœþÏcø+¨~æ8°MÉ·GQ7£¸£P´ˆþ3U û )õsèÐv…‡Ÿáܬ*œ rÉgø‹ÏWzuMv_>‹&º]ð¢J埖}Æíb(wÉïk4ƒõS‰Àÿ'I"ƒc<|çE×äØlÞ¥õm úI7™×sÁ[q0·–ÊÐR§ûß'£Ï®·.º-I>ãôátþ;{æôÛi‡O †ïG3°»Vk“ó¿=8Iõ’T«8³ŽïZ¥ðy{f` :¨~bŒ¹dZe8ç¯ç3"!údÎÿ\4óV Ét4°|†ûJ›Ôèû{ˆ¾ÿ^Òdðùó¾—‘”ý>=ôýg¥.nNí‘[Ù@òÚƒNGë”ý#ÙoTû£)Hm ûÉùB&WU¢?ŽÒj­3‰Qå&5»½–bÍgˆ×xÏg¼2€6Ÿv ÉXn=ãv·WR¯1xbŸ¯±…`sbÈÊ4}ÆÓ·Ä,Cîhƒ1x9S DŸqM[BRþ_Ë(‰>ÃDwß8ƒ¹Gû7ڃ頾é3| > „?¯X¼-8µ}˧h ±\—ío ü‰nþQú´¯ÁYði×£>ÀôùþÌEñvp¾Å¢SÖ@õùVCò)gÓÀø3{ñÃÁøZþѨŸ+m3I[äD4Pþ¤«´„œ¯WÒ¦æ2®!µCþvàÒŽ®x¨„t§xÁ‚è3—péŸÖT`~‹E­ O¦ÏØ@›~TºAOØ/*³7RèMq1vZƒ£üuÑg8nTT„?¥j:"¾ä$ôËsÝ÷Ííå»";Û|W’|>ÜN’ÏkË;é$ù¼–¢œž¬où6™×;ûÛÀä>Y÷]r#§\r: Ê¥yê¤x{"ÐNŽÏRä¥÷ê{ÎA'ãêZé¬ è¾ ’¼ÉÑÉøÓ––T'ɧj ÉêŒ^µ»H>/©—’ÏiUÛIòÙ«”@'Éç´ì$ùìS‹µ“òg6iÞú¢\w±|^ZÈJ>ÝW7Ò½-GÏ·w×$Q±v±|.%;9TÝÈ`Õ×ð}p Õ”ÓAô9†–G'Ñ'Iž°¿I#JžOq—&Rɇµ (é²Hšæ“j'ásm¯KØnIËÐÁùÅçÔ-œ?>UîFÈóy¼œ»x>§ìRÏgõ£ÈóY^?™ ÍóBžÏõÈ™ßúÖÓçô!Ó§Ú!nDLŸ—ߘœ?s)zëKÅ©´&DŸëH×uRþL§d;‰>»7øúraÒò¯²I}š7Â":ÆdŸ:™=‘:?D²Ï~)4ëÛ|>’}Š ‘Å﮾FM£Læwò}öâgÁøl’D ‹{‡¯ÉQ<8äûl]Že'ßçpb·ƒùMU¯ ¨o”殓ïS 0‰¤ì÷£@k\që1Â×á”Ãùèié,ƒâYöHދŕ^UƒŠ_…á@ØîÀìkùzH7A©}•>dü\6¿º9< +í/m‘2~n+ªAÆÏã=¨Qx®tÑŒŽòIY|#bü\´*ƒ¼?{kA òþˆ¢8œÛ Ý˜!²·%k;Hû³œO•ç9a4Hø©ÞŸi/ŽÍøâ¿ŽFï­8k4x3ÍgS#ŽÆS¥í:ö½^, ØæÓlŽ0=ê!ÖÕ R~.ûƒƒ”Ÿck«xˆým{È;;¦‹üÕÊOÑ'°¸Îžgë¾íŸêQäüT\"…Dx’›¶€©ˆ}÷gzã`þͺb ÓÅБ¤ý™–²þL«ðAÆÏÙ|rÿ<–t€ûgyShLßæã ¾DÐd;^È&pò“|k  ÅäRv|¬Ï:ûDÊü¼è߆ܿAÊÏ6½Èù©>êDÄxuü¬EçøYlµÖàýç*Ò‘ƒ”Ÿl£N5öW)?Ûc4@þ“uQnÓ?BnÏIíAÊO‘k%²ù(ÚA²·åxnò³t/E²ÿĶ€ çN•}Cšà©bKd¾½Úq¸G1dt¤z?_Ñæ¤ÿÿĺ“jÿÏ ÆÏˆ#¸‚&?_A}n/çË,³¾“To»½.Ù¤ÁÛ¾æ0ªfs‚ùç•è™Éù·¡ÔLp~fÅ_1’© ï² |'½&9?Ÿ¸a’ôó)M™…;:S’>i®*M›ß÷®™ ®K.í¬ çŽ¦nVîPx«hVfµ½·9Áþ×t߇Q—†¬ŸQ~Fµ5Éú©’ÓD@}Ø¥_&Y?Ëôx‘õ³WE'’Â_íxÌÆ=ºòíKÖ‡ƒ=Éú©êáD2¢ÞsŽ&`öêÉú)â0 o>šDú×C)À`é•Éì>…o’÷sû'hµ/:Iú©ªó!é粟ìW’µæ%D;ÀÖ®p¶¨÷Èç`Çt“)›Ã'ðé OàÓ.†¾‡îÏœ¤¯wåÞœôhJ˜ó“ì60Æ<N¸kDùù ûݦžì›¬  ¸Fw–8Šð'9?Eû›HgÉçåk9¸«2ÉùÙ‹ÇJÿõ¡‹ öŠË&9?—Sˆ“œŸ"ÀM|I®j™d|Û—&9?Å$–ÈX/÷D~t à²ê•¹yY·ZóóÛ9I4íÍLRM{åóˆ. úGƒ4 tC¦8?—39?Ç#ØäüÜÎeÍÃr{èÅ@ÔÙ@èeò> ¬ŸÛß¹àÿ‡I…í½çØÈDæþp‹Iàž*ÏEÿ 9J‹-¿Ì\-Q ÍËëgôEÐz,PÅ ¢Ü¬âžiæ¥Y?ŸùžìsdA"›ý |X?·œ¶EÒÏéÂÕUÝj8}M=.îªî4¾ýVÞšYôþ÷3¤š[Öc‘èqîY? ¹H4ì<¯fDf8h?ßoHÚÏ'³HûùxÆ«™Æ^Oï§iMÙì§£\ÝÔ1ô!y€–+€MA¯ò‹C€Ñ=7$šÏøø³m­ˆEâÏn=´H$’œDàÖK¹?·=þEîÏé¤ÒB  NZ¬Ù¾D'øpëg‘ûóñ޹€DX›HtµùWì“æz]Ó…ÇõÉÞÑ&ý¶Äÿérå%þÏêy ö Ú"ÿg_/¹½!S¹HÚ•ç\$íÝ_°Ñ yX‹ ÇAô"ètZi‘ h¹h/Z©>| äß5h‹D@»JM®ÅÖé©ÌEйüÊbusmŸâ u¾QyüØ¢ÐÑä¼/2€ò¼ØÙ(¸A¸Dÿf7b‘ô%‘ÇU÷’¿¤rS~N=£EÐ×r !ÜëQÇ\öÍ7Ná á"¨Î%¨×¾Økµ¤Ç7á>€e÷öåº{î`nr ç½6¹€[´ifyýê#äÜ¢šrÑ%ôŽª6)@kWIø&P›®M* ¶¥l’€>2° 3ÛE oJÿöû=¤p\ J~HŸo¤Ò²n²µ"C¸Å䮉M‹0»ß¹:¿ÇdÙ&Ðë»HÔŽ²?, ‘Kä:ßäÖÛ»™Ñž²½ÁjjÝD$ÿTU»}“aúongp]íF ¹¿4 /wr3XÞ†Ø$Rói"T’zÒ@;}›d@¢øKdPãIººÅÿAóè—ï¼¹›ñ Öi`Æ7¥DÏî¹¥µ©ø‡v6h@ÝœÈ U–o;É”Eÿdƒ Hlâ œöá)q«Ydðl†lòÍm©" ¨¸¿o. øbå‹6Y@‡r©, &uJä0·K­¿ÌãO;ðÄs, >>ð& /Åãu—ÝMÐâZ"<Ä ‰àXzopnÒ€VW+nÒ€–åÐ`7]FØD›þîo–DòHÖêbˆ РÙÕ³øXT ñ6ÍY¤ òQú*Dqhâ2’Žm¿”Sß  D_KœJrÀGþøQ«¼8…h7r°Â™ú5‘<™²:™r.GÌHá Tœž‰$Psnå¬I¦ÄÔĨkÏå -¾3Ž–~žUp0YuéëP|)·‡NAµNºM“U)É@÷Ñ”ž¢ƒÉ†´æÇ²'¾Nu\ÇLÃ!%PsKΩä4VªîTËêlÏ!#ÐåjÃ#F ÷5y¾t]ŠPF•cÊmâ½ÃÌF  Zr´Æ¦# ¡©!!è9Ôû,p±dað†t_““][þçèû«r#Ãå!Ü£cìÀöƒI´]µuHtpšË+¤4–ů“ÛÛýL\ Ënù!èvÛÞÒ‘n»ô¹ÔdXîþU²Ú_Úä9d}v†逞ŒÁÞ¦X~ÔùTõ‡|@½(ÉqÈD‚‘Ò§=U6æLòìçn°o“/C?ø ô5èÓg²êHúl¹’ÂE6E@ý̧r>{&‡t@OXzH4—¿›¤pOžó0?c"‡Ì\ õù€ž½ÉC2еä\ò=;JGl v2Ù@Ÿ]ÏC6ÐmWê0Ø.Ô;ä…#}§^Âàt9æt — q.JŠ-È9æÓ8¾)>‡L‡t@Ó…Gt@Óßyp,_ñG‘®^\VåPšé*$™í/UUƒ’Òß” ß H ‰í»êfù0”$ú ÛØ€(ORŸBpÀôÅ¡§ÓóïD@lOz§D^ïêp´ªI½?'å$´í‹\‰à¼ðå!è^j= $r›ÓÏ"\SýR \7!h¸Ó·™|Ôò’Ý~—5‘W èÂã;¾ò¿<É ‡ÂkLA”«úI×V³'’®m_¾1YA;I5™ûíb’®íKTÀ nÂà5ž.‡¤ ±@´ÐÀ ´‹šlIkÐ. ?HA}ºn"¹]ñú°‚Žf HVÐh»Ù—û^ IA›šÈÉÓj×8€q”ÕI^Ô€Wt sðÜ%£º²é†²¹‹„ü ÁðßBcКŒUIn °^þ NÛÕVw HfÈ*–R\«DCT Z•ò—"VPy5¥tºB¤è5Y¢]Mªì[àóuAT§z×R´åw®}ç$f,m’¾Ð¹¤‹hA•ê ¤0‘s| x¸üía]çŽx"¡C-BæÇ¦F ‹ÛµÓˆÊ•4Ǭgj¼@qÏDTç'Ò˜!â²+ ÄS›È !åeD®Ðô¯ÄŒî«³T?"/hž=ò‚6ÛÿB~ 6¥”Ê0Ùwõ}úzû륀ԛǥ0hU ¸&Îûª¥tˆ‘¥e{:I4—'Ä ‹Äq2¾U©B 5aûg+'µ1ƒvÙ¯BfÐn¥'n’„ôFÈ :UY ™A§¿œÌ m{ÎÉ$šÍDÞV~4ÌïyÃ%Ôàà,£HįÜÜ«Pr´”mJ\=zc¯b4‹Òæ)ÝRL^ÐÉ.Èæ7M ‹¤ÇÈþ2­xþ}xB~ oŠ’×ùº¦qW°m#ûë¡ØL„å¤Å?J¿¶ˆ£€?åC´È 7»çRAŠÐJ½ÈèI¨d]J’²¿-m•A.H d°ö—ú®ŠT9Ó@Yê.ÿJ4¯Ô¿•AëÈ>Tñ‚*UHÆu<‰5Ÿ8ía£NÁ` (ÃoA"ª•ØB6ÃÌ=„–\ÓpWƒn¶ÌÀœ†^\q[‘_ ®û’Ô%±¤.;Ck¼V&5äEàLÇ´2Õ2á7Pù¬¬Dà×O ˜AŸäf%\ºÝ÷IÛ>ìãƒZ¹C¿9¾oFu»‚R¿Ìri^@ ê#©¬×¯Dã…€°JóK^dóo¢³âK6Ýyú8àÀ 9hx°4ü@£Ð;­àÚKÕ*0Ü¥­`áÔZ` àå°Vùÿvq.fJ––Âæ‘eÏ@0¸ì”×M§v½œY¦nÞÆ‚'[Ày‡cÍ–ôj«ˆ2Ùôí–ž¢ÿúðƒÆ}Š€ÊT²F‡ü “÷$‚Š¥GÑ‚(HçÚ%0?únÁš9ð"©Uˆ‚ÂZPFùAG—´µË›t|Á~ÐÇn2ʳ2Î;±HVlL{{¡}k+ðÅT ÏqI 0¡Æ`²¦k‹¼ÓV°O·Õ*È`-ú42ÙâAõ× |ZG2\›äÆb:W ¡®“I„u 4¤ ¡nü ¤³à ú>8²£¿îÃ./Zú&~hÕ‡¢t-WkdKZV±5¾^¥x¥5×à3:käŠÓJ‰tîÜúÆŸqDk¦º_¾¹íËŸIª8W ”ÖY°4|M§4^×Ð`î¢urÝk>¼,³}Êl'Kâ?غ«Ïh Ú` þ°!t9‚j½uªÇ ­“6¡¦± d|ÐÔ’[uËú6„¶ªÝHj"ÂÒ&‹ðyjä *ÙáGç¯A¨Z,ébè+BĔȳ‰ ´[àHwd(ùAkõm–.cN¤‰!t(kbmJ45…ÚC $·®¯áI_?â– d±*ÛÚ¬áP îh³4R„^U1KWšIJ#WÐe'$Â/î¢ÒÀªCΙ¾M–á¯#§¶%ôéº-íYÉ~ª¸’f€é•FÒ8“'T€d¡{ó¯XÕNóйe¶Rní°ßÖ Ç{½ŠØ *Þï—™9TAÚ$ ñQTTA§J!wR‘Ÿ2I¥EÕÚAjb¬Ä¬T ä„ÎoKhéú+9•Pö@¤±.žÚº“"´ŠS2,Á?ªÊ+îÿ¥Æ‡@ØÜô7šO´sZ:B/m|‚Ø»ßF ¡—4oE¨H¼ TFÆŸÛHÊ}}#bßÉŠ|4"Úòwp=œ¡¥‹!´yÚ¨õ«S¹=I‚⻫o“Á\åùʼnLÖhÑï`]ÕÙŽÞØ¢žšÒÉʃÌn¡!y {Pu˜dC 4zçl:5ßI g‚§@ÛÍ™ì¤ Ú®nîÖ¡Ã7}/~x̃3[ý°›ZþZ'Q\÷6e'KtÓÖÒ¸°ø9p4ŸîÍ2Œsûz þuð=”Jd0´¤ç3DVZà ¾óÀ$qOZ§t¾JË N§Èpg ¨ìˆ ÇŒ*È1B"Ô;Ç7ž w†µ”¡lBöüðùF!‰@S€1¨îŸ„Õ¨ì%}^¹òÐVQxÒYA6è÷»  ¨ûg—©ððRõ'ªîttú7Fû<¦/‘ÊRó5•ðÛפ{ÄUP ›.3õN zG@(šN—¹úšÃN#Êýè,/Éù|Jب^E”ÑË=Âæk°+wäx,P…LÒÆ„”¯³‡â iÿ¨³â•b€°î½7Š–*˜¼#dqo´úšÍ…Oõ—ë·O†n ffó\CìÁiÖŸ5¾H ÔœX\E÷N²ïàc°À ô*Aª þü /ùÉ•)G@åÖT÷%ž Î=¨ÝN$½ K D H¹’Õ­ÊŽ/I/èѬ Ô@¹ù¸…d¥ÙKJ@šÄKHgÕ§d4qóRº‘SŽ(ÝçvÐx”¦ ì 9|ødDg—b‰'®ø#ÀúRT¨ÑÿXŠd:GZœY/E¿h Õ…°ü½o¼ÀäóÐodQö»_ô Yw´„°0…¡Ù"9ÐqiÂÐê5!“UR9‹¥yE‚BÍ_ž);èÃ_UÖfѽ³‰éJääI–6yœ_›Òï¬õ¢1è]‘á;Ð[´ÁôrPó|Ù4‚ ˆQj’ŸÀHvÝÛ&£“ü­×Ѱÿƒ€Vå¿,×ó´Õ Æt®_í8Mé¶Ñ§Ù—¶åôg!}ýºMK°‹ý&;èãKm°ƒqf€™ÀùÞ;N¶´É¾È‘X_לÏ*<ôã> Ž8úiý#²A·E.Q°;œ пAy† 66ÈBf©7 Bw„ ¯®™²«ÎàÝúeIÖR›ô gHd7éAü¿MŠ¸Ç»Þd}bèMvн%Ž›ì sËÙßd}r[,qêË-›ô »yläÿ; Ûä2½[Ù¤}6ýwãù­b3dsó–*h“twy›ü ÛÕ_›ü Oîb“'n»Šl‹Tý9ü(¢ÛäÝCÁ÷&=ÐÇ7i,†ïO¨ùWd::…!Ú?Ôï<‚Zµgª¿ˆ#}ù`ݱŽ3*[¡—âÂ=ØE-*Ÿ²É 7H 4úl2„š=$Tš‰ÿ0tKJr‹nI­or=9™=} ïò›ŒÜD3ð׫W)¿N³³IÔܰ;©»%…¡ÃɲMŽÐ'Ó´A´ÕìU6)BŸº“O†™²Iº‹ü¿½ÙJí:½]fIWs“"tÛÏÝ›ÇñÚÆì­S¨§þÞ àŸ'eLw9Èßâr¦{“ ÔÔ£e“ ô4¯r„ºµ@KdF#“äZÝO'E¨ù±Qá¯þ=®ønAyÒ Å=$5EI9$5-G ¢“áš> 2qµýÌÌ„>¯Cn ær¾C‚Ðgý!ô©w9d­CÖ¡%x*iB‹û'BŸòà ™À3½OÁôß¡%xêŒBÍyËŒ$|ËûPRÃuù|Ø@ÚgSÃ!CèǯP™gå!tµ© ñ’" ÁAèeÁ!W\­rÏa†÷à“gñGó³R‘™Eª^$Êþ9جVz/L*rÿ@Pj¦PIǶ¨5”~´ É%ΓÌIÏV‡‰'’5[Qh½@úð»ÖLžf' ´I$êêCHãNž^$¡Ïá¹ äFÒºMDZ/š‚Vüéd²Þ¬Wu•FoBRü›šŽ*h­S·jx¨ø}ìm½v f\‰—‡,¡U=½õ"Khž-’Ù©³^d u3N  S’Ò®—XBE´·øõ6ä†óÆI Œ9ô6bjþL²‰Ã ^$ :€¬^d†›Ü J -»öcêŽP›ñz‰#”Š?€ÉJÕí»¬3T/²„ŽM­Èa4Û8Œ|BA½†©±Æ‚°NÄõ[ô3uâ’#^/Ñ„^IÑ„jS=ÃB¾ò|û3Ô)/ÿ/Åtz—é#´<¼¾›¦ «ü,2‚é帧+±„~Ò2/Ö4’¦ U(CwíÒË[ÕÖK,¡ÇBL–P³å²ØèUº´ìV­>KB,žÐËša€"ð ¦NÒû§3 À–-F^ÍÊ”¦5Åc 83àriS½HZ›$Ÿ¡cYjÀÚª§—4qhK 2ØSØ|ߥ2&DÕEÀá> oShœJ©@«ãk>ìr£Â¤ò æqøìr±ÙD!r ¹QÑ óãäFEÔ9óáå#ÔBŠÐKùÊ@²N©(‰Hûèk®HM#…ä_eb;üv û!ÝwÙÊù’óÎÖZ §I<Ü£*A ¤~ì›ÒÉeP|MnR¬õúU×2œ:“>wP 8ü³‘t£ ÉhÎ)ë@¸s )hŒæ¶ô\ÜSæÈ$ÃEÁÜÇ2˜3+A­¼3{ɒܬ¤B*›MF”P/â Ҫ̙<·‰’ö3Yld»–‘Œ-ÇëW‡;r›²5H¢T=ã¤2l •-|z¬ÀC²Hæi‡¹ ê­”._²˜P¾dssR20X¬Ñ,]äµÎ*¤5÷N-¤õÉd8ç½ó@;)§oìjk}Øø2]«qñQâj^Ï´.»$mºÓ/4ö…Ÿ"¤³“òò}&üÿéMæô :é"ø@ï¦lw›¬%Ý&ÝKjh‰°PcèïÊ‚¼nuC“PÉ êôs ꟦sSéþ›+ Sƪ$5­f­$u?T­$5%k õ£.6Ds Þt:|‰ÒÚÏmP£'&Ð@vûëúxÿ¨t¨•Þ¿3"T¥Ç«d2DŸ[+¹A›êtì¤ð«+€õÁÈ©Nz%5¨{ók%5èã‰VRƒö®n.Ò£¬`zkk%7èTãW “ÞÖªBÒ¡}M ˜"á³»³Ú ²Ä½D²“úþùªî´6ÝÓJrPñò×úpƒÖ.‰½nñ"7hF]Ü Ï ƒTùýø»ÖOɦ)ð¹MdZÏu£ è~ú=Úã1?¨Oàƒ%.œäÔý£ÉäKa%Eè°‹[Ij‚ÿ@Ò£u³X c}>kªî^³9̉u?ÜÈàÓ´fY/Ðjb¯ ¤Ò¦õA¸¿I§¯Ú$“iV:ûGegÌý!(›»t‹¦kU´2U•ëŒ|ë¡èÛàÕãsÌôRÂù° "Ç¡9,¾ßðƒ¦VßB$û¥C]¦ÁÚ.’i¨±‚Žõu@P Hj‹$tœ(çHJ¿7yS´CÐv±þÞ)8Ü/º¾Šš•שµÔÝ ¤¦ïòQ±©î–-¤÷UÔHŠ::"ëëuÐ_Öàò7•ÐæmDªTh Ø£ÓfV…ÿŸëªúd÷œSÂÆ~N‹ d0µ,Æð\Ó­2¤{†‹Ì@oÔÈ 4­Z#•Ì󫦘ŽRÙšñÓ¨Óˆ·³‚‡éň˜d.ÿü¸—…à£&¾6š‚¹¹›Hý?Ñ)\i†Ø{é}õÈò,¶Yoÿê|,Í&~Ð&ç½1x²M¶€=é4fyfÒI&?hërËÚ0éýsÜý­jÈ&vÐêåBvÐÇÍ…Â먆@zÿPÍü Ó?‚Okg¹M5žHû5Ū6®m±…úPñƒªe¾6„.OYžè¢‘ ôñ> B½™ÿÿufW’ë:u%-¨%N é¿cý€3Hqû¯ò”†ÄT‚ã]XAÅåõA@èë’‡ñ÷* •Jãž1­“Á©à^·‚c×Þñ1«Ô––¦ƒd l[RÁÂúx¡¾ùe$œn~ï4¬À¡qݼ@zAc©`Q÷¾ÓÿB;Àå*é¾ùá2J#gƒ×Äš-[ùŒ&É@ooœ$ ŸÂÜ?½hj.x>J0pø¬Mk“³^z¼Ùñ9ˆyò]sL‚*ƒˆBçgaìŸñy¶ôÓ91››ÿð‚“½^³™y|Ì]?VØ$È”T~JØ¿·"(š¦¡I.ÐÏ…~¯œ®T6gûéc´aM ŒÔOŒ{ŸÅý˜s0üÞû|Ðw×.¶¶Ôæ !äí9¾¿~Ðñ[ÚÍÆ? C´¸ 4¹0û(•Îü¶Ø9ÜŽ&C•¦zÝ$>H*ûï³3ÞÒ÷ uIår¢×›ôMÖJ¥‚._oé\ŒÖPRPa¶6î»D*ùÏàXGK`’J›HåpcûÇ\ÃèK ôÖé`³–ÙVä̘&C¯i Ì`œR{©Pgxà à‹'W.AÜ'É `L¥q·fKè\d…•Á8H=8apñvxN—yX)lnÍpÔŸ›QJe'° /¶ºÏó‘Mú Äý¾qЃó÷êÏIç¹ÿ_MžÆT ©À¯÷~üC,¢|ºB^·þ$Hu]Séë;iL¢[™ Âîí9šD‚6–H˜œå#ªÉ»n)÷Б ŽXOJ¢£¥Ò9÷ðK/à€îÀ„ö®$(|}6ƒþ¸žY/ ˆóÞ"”¯{݇VV«1â^qÈ©Œ¿O>T_‚*¯9…Eï"ß÷"ÎäÊT¶p}>æœßg$Ô¥rRitÝУ¼0öÀ”B“¶_w¨;Åê4d Ú‘-ðI©HåÌŸo™ùTŸ\žiÁᮕÆx´!¡3ý%|ª—)”¡”óŸ“¢}ÃÈRAöÁþ(à`õϯ¹ŒŠž|„é¯IG͚ܜ°÷M—xXCÊä–ÁðYK»SMJËÕ|Ö&‰ãôM²è@#¨R´=¡»süÏN-a0 äñej{b{¯~-â]§{1pKuJ!!-|VmO˜þÝW0è^PóTªùë ä[5™ã‹\¸eß*2jûI­<Ð̇8V6Cá»/¬íA‹`¸}4ó ÷?%|Vñ@óÂBd¡Ô®T&÷¨8!-²áÌäî`KWÙòYeÉFû\'Ÿ*Í_ü è9öX,’á¶G @гU65•Á ÎÍxqõ ÊjœhÐ!n;Êd4{m‰E»mªKÔ}×İ.éÆÓÝ‘3Á^Qhø¿Óì*Ð5H›sÃ#6 S=•Ã/ã«õ-€tAóœâñR ãma\w¬¤°†¥€¨{%D§Rf¿²‰;šTmm Õô»=Á‰à£ Ýýgg—çˆÆj¥ë¤2ïÏDø³íÑ‚¿^Ççh¤Ü 艣Ñ8`ô˜ Tøz¹| À@VâTÊöéâ1ulÓÖSrü‹NCv~Ž©†ïÊ©Tò¡ $ô èZƒ8PÇ™§RMFä›ÜÏY“ÉìÍÊšÿ½Nìÿžu~>/p@/²Kÿ]nq VNPD‘}R©j8©0–6]ä”ý‚i…j}ä.ÇIy ëú) ý|ÎCt©tXú³þÿóßH#Ýî ô€é0¸à, Ôf ‡Ù‹²b1TÑ=NXôOF¨åûÏû3€E 4#‹˜J…f8+7•jöqünã·VG ùSÖ’ÅêïWÝ.ÞÊa'@zI¦© F],+5ü;#ª¸ œãߨ3Þíþ ÔèøÇ‘œäâ 2#¤€†`‰©L&öªE‘úsL`ç$¤€ÿ?LeU¦rùÐú½—U¶Ÿ‰CÿºŠ”'é‘.‹:lM‚Aèþ*ÕÞ×Ðüè]n£”ó÷))Ñ÷â ”M¡1½¾Àý°¹ ‰” †/wÙ è9vÁrESÙ4 ØµöC¦«mXNu/¶´ hþdÎ3›8 ðÜà½õI:X½ŸR© ¨ƒÐi©Ô\þFðìÆze¡ÎcªZí‘ÍTBžÑŒ§wèÁÎ-•Ñÿs †$y롎a›Ý4ãG‘%›£ÿòÔ¾ÊñL=¸„óг«:(Å8% Ÿ5øØú䃙ӎªy¿ÞžØãg زûL¥FG)mšýMåú¦ÙÿJ› 's:ÈödL’ÒSYønÍ‡Äø}ÓYÓïw™L0Ù~¤Å˜¤÷V‹1JTI…ësvñMè 7>ýÏõï£Ñÿ„›&€}}Ÿ Húô(ZüïydÊ&þóuÀÃÖþd¦2˜ˆ©‡$ èÝÈÙĺjV*`ˆÈ—J}ûâv0mZ™@}oº®=QîMßõýçCÄ £yº94·À?+}÷J TôòDþÞ› 8/é¶XÐá‘„$ /I™£JêQT3§á»Jïc~·SdŸÿÔ­L¥ŒX“: ë|-£-·öedåÛå ƒžïIÐë’Ù—iÓÛ?ùÂu ¾T÷öç Cv*À_¦M{¦:íXõðSôÏši¬ß”¯Ó燞‡V¬CQ@XÍPÙ4˜Ãæˆ9ý[îïc¢€Úö1L{áSûÞ¼9iš]ó4±6³Nƒ^$Ÿ#Öÿ_-ß<ø~€Êœ¾ë"Ü9Þ˜;uÊDFOe00ðñY4J8 b€Â»„“À»Ž9¤m¥¥ruÊ…ã^¼± ŸÁ2eŽL=Ã+•‰[] µz[nà¾X„TªáÇðWîciá²VôÙŸI HëÏ3iÆzæ8“ 8Û܇³À»ª>“eÊÜÉœ(‘æH5êé³P¦Ì™C®Ì/)i¯9ÿ,k®2•EDzÆ"Ñþh s@ÿü~šüØ5¥RíÞÆØ ¯ÝŽ„FkwZé÷÷«$ F Õè_[ñý’wë`Ä?v6R€–ø©\ºYô%uWÙnô\ˆŽ÷Ó1GôÏ]–J™>ŸÁê_Bt¤pÔ­öKò›iCýÐꇋ—JûÏÐCÐ|ŠÿyÎþR­~^¿+2€–Ð~©À…çÔžsØìêuhøG“í}hø»Pa)ÍæZQ— “¡ßÝ—A³WFÁ!ú-ºBŽÿŸw|½€ã@rŸ¿ròÇ]@Ú-•NçaèŒÿ[ÕÞRI;ö>Þ[½@€æ å¤viõ_ïB^€®× †“ÀÍ ‡„2còÕS)3ö4¹#. ç8ºät›ÒÓS‰ŽÆƒ h–Ô[>¤þçúŽ„—3@Ø?{Aýx/ ç8|üvWæc¸äÿœý9 þ;UTIeÓwp¬ÈKçá°dá‹¢Rmÿ8ÿ´ú礊®¿B”¦R–ì|o>]}Ìf”~¼Êùûf\ÜáR•Lî¤ûúú^dõöQúý¯2h{Ѭ¿€ímÏKPˆvJY³pÏS9¿S|;4vÜ[Ö5'S)[v .Úñš¾~†»ÈŒñz·#6J!¸²â ­{I/@ÓI‰7¸á¥Ê%ýí]û]"€^§ç%Èô©”1;5Ü@m¾æ/Eö›ë¿• ‹å;•-û9ks÷¸o.ã¼³yAšÛM`³N«½)wÿãÔ¾ ê´z¶¸Û{Ë÷VD]i—Skïô ÐÇt½ ½.äKè;^B@_sâ’äRî©¿ø° ©ÜöcËÜë­FT\âà_tIý<& ÿ.ÖP¿×‰%ÍgUÓƒë.§‚îeÇ5ô½L™³j¢ã!Ô™&©TÛÂz§¢ª»ÝÊàv]÷u3|0§¤óûŽSÙûÛ¡S©¹ wÃ$À¶y<4ý?M¥s¸ƒ —ÊànݾR¦fÛ!¥¬ ³üRhø˜ýã¼IPÑ@J9ß>=žNƒvðC¤Ò‰ŠšWWçJYxó¸oz}•ànÝ’p8ˆ_÷Ò9}øPd€6¡HRi´3Û”‚¹]ÃÉx†mÚ³¥À‹-ú[*ÕúŸL~Œé§ô`w’Êå6}çÒ*ŸJ ‘R†:š•ÉÅç‘°8$¾‡‡V ܈ëúmÿ}5äÿ+8žÅ݈ÇíÐ<æñ1ƒ½^]Ð4Z·²ÿ>Þ°T6NÒ{ T) °FµÇ#ôÛñG Úd¨TBTÛ2jíXHa1eoúÄß-§ÀÄþ ?B &#w3r@Ïfa¾ë×E£`RŸjª) ¸Xž¬T@À)°š[Éva¾ë £Nkø{þøÇs˜0*˜S*H}›ÚñVœnDœ™†©,îkÍ&¥¢2n÷øG¨c)\öçÅCÈ‚›îÏÄ€y2Sétâk½\Í)3U'{ÌË @®Êù‰MHåj»Jôõð”RO®ÝãTÊ®õ* •ZÒÕmMû8ƒL*\obr-¡¦[ÿYFÐÕe42@csZO;Ú?Håwg"Äd¨Àn*ˆÉÐÊ6ìLŒÏu6·Éô{ uÈC*Õö7ã³G#t ¾‘JãöÕ˜RÆßÇ÷‘ÖsËÏÙ™+­B"©”Cï(#•Í_ƒEJ*0ƒ¶¿½ñ›¿n¸Ô:zã@I0)È¢e«id€vzpSXçgÈoÃÙµÃÇìýµÈR¹¿ß‰P¤R-߹ȩtî)MŸ5í{| ´†ßÌÿ—ÊfþÊòY‡™Š\aÐæŒFüÏ f´¤¢ÐzN m€Ë¡·šå±¥,„P]R±ÅWA©lFbßꊧ¯'èvïK7 Xtw©wð^éÒòw¤²Å£ÉÓ4(ô)•Š-ö>s*—™¼j£Û•ù®•jü¢‹¦ f†ºâ å ÔmÛ¯TÐéÖDþÏV€t*‡‘¸Çg]b¢ÔÀúÜ‹ c R¼×ã³Æù†Þ¦‚*MJlJ¥Bë§\©¥DÉT.9¾9ò¬„ ÐݵížJ'=âZAq¾å!  ªrãëT€± ³¥?Y|©TŒñhš¥Û…YÛl°tr@›­ÄÐnZ6§R1Æ]1S©TŒñP”W*y™ç{™`ê0'ØúÛ‹áIå̳%”)Ô§¯+§ÓÐ#ÇH `ùåt"€Æã_#У®ßÊ“]R©ðÈS—Ju€&Wb)õà"tèxÔ”;Y mË ïdº\x*¨RÓ5ÀvÂ@§|s©”)4DˆH¥¥J¤"ÌF'ýíG©ÕÇ ´NP[~ƒ$u/S:Y K©~©Tûwô*g.ª ‡ãëöÍ/óú! tŠD–JíÏ¡‚œ&Ré} ºÔPH]ªã˜J0[üX©æ¿º§„¡ª¦©¨`—¦ ·çw’@»7$Ð>ejwR€œÌ”Ê"gY þžf¥Ú?ª*P¹ëgÀèdÂmA“R:†q)T}of`©áŠjã»sN0Ç&•ý“>™ŠXzt²@]j|t°@WSB}‰éË$Ÿc*“é“Ý—5I_”khn§œÞõB' 4}ò£ZNx X‘Jÿa2¤2öÏq²ê@ïTZ’õ#–úÌ! ÷ñKçð¿Þö&èr TÉÄ) ½¤NšÜºW×#n»? tŸJa ©“t7÷òS¹LRæ\48öoÕ *…G@@KIÉ)LÆ#pÀdŠ#‘šþ£?÷ú(ÆÃ|i±Æ ÔžRA‚í÷¤L»‡ÎN«Ie2³þ=¦‚ívR)ëÖ,äTŽ0E¾ãæñÆG'á;ô§í9 "@¯à© :Iáµ¥0ªI@¤ýòSZ€jßt{JåÞp`8mú³dk*ƒ‰“ºò a«(—Ti?}å ï¸Ká{ùU 昨¬Ä¤€^!ŽSiïtÓ™ã3$ &+€Û³H ‹&4‡ÝÜà¥q§6ýÂà¸ÓÉÒ¼µ(@‚ï§Ò˜Mĉk€j6k Ì×K_È•v±¼Tfò¶b@ß!ê´´T.!d´í1 ïP8€UyÍüA7îrd9c3•EbHóeƒ9Âz}‚ ÷n@@Ÿ>! FL¤¢Ÿìø@@}(ˆá.F(j_P ¦×pô$¿…"úS9øßùÒMþ¡A ìTT¨où˜AƒB}Hk€ñÏÂúIˆrbb*Õô_›hœ™äcîúm8¤€{¤1 ×ƒõàà1@÷mØšŽ{+1 Ÿ¦Î%À®ñö|¥“ ¶ÇÉ9@XâÊOë]žTFüÌÓ Ð¥’€©€€k;j ¤ìÚTŸûø·\Z™trM.LpM¥ÿÌÍSÓÀ{áæìZ~†É€;Ì$h‰”Jµý®íÝTÊüiöGOA€<NB€^3xêš…©Tã7)•ÉEVó1ªÕJ§Â$´/ ' €i³sr0ŸÏϹ"UP!4Âï‚ €×¸Ÿ¤-[ÜÓP:'ÐKìT‚Iâjb€2m<…jüó}1@˜9IyïM(JÆR™¿?PC¤S©XËþ}œ \\=ÔkU¥ÈTdÎê:€5% ¤€õœUJ©5ü£¥ã$¨y+hÚìûšËE§Ã ʇ›Fþ¬¬'ÏÖæzÒc‚š…ÁiÄMP@cÚô›`E÷<ÐߪVø°rXÒÛgí›B𳑡²ígeŽ™“ð·¦m¼¹a̶æÕfl]E×4ŸñU²égÕôc%²¬A>}åœ bo™Œ ÐØ‚ù¥r^Ž! €b ‹’ ŠNÛ š…Š±ýY€Š­ åTo¥'¯cÔQ÷1Uk]µÌK8øxtiMB@]B<•lûÊcOµŠ›ÖÇ ¬2߬ÌÀ·Z¾NÚAys ê å“__U§½a4«°U]‡ÓÎÂTo‡ßoÓ Ò P„Ê„¤’­?Ÿ‚ðhÞ¿pKTÀTöD}xÎ< $ÐØL‚Õh—2•ÇjlüÊP)åþþ^€@]c>…´ƒâ(ç*•ÉbÙÿ·ŠÓ†ðÂT¿è§ÔÄC,ı@Š%~X*Ùú³™èƒš·ÒÛ(Ÿêú˜â{/!kR©Æ¿d-@ó_ߪÿÙ-•*ÁÞ¯F†hvÎ1 k€^©­"å7è>ß}hÕL×}¯Õc¥•®Cìê[ES€ÝX ÆTˆz*Õö'ÙÏ)tü\úŸ@ 1U´&•jùÑüXäw¾Sµüi»rs}~Í­¶¥…Ä ?­´P •I¥þºŸcÒŠ%XX*³n5ý¶ÀÊW<­TÃߪC‘Êas{¯s^Ž^@ 9 pÒ^ ~‹€œ ¸z\Xäçä*`q.˜â¥R%ëÇû›ƒÍj°]Ä=vÃ.àßKO ua6ˆÝ?JçG|V5ÿO+ 4[û’PïôÑrrq2háwèg„^ æå̾[ÿõ{(F¸Ãr2ÞX æÛÑPP^çUÒ²vµÜY@Æðjb” Y©©}ªÂÁX@ÖÐz¤tt,.:h ÙaãU.˜^h ùù—)×öT©èTꃶㇸ¹¬‹ç¨s.èCKÁ¨®Û¤ôþ3F¹Óër~‡@‚TjvoS2*ã½åñ•&"Àhœ.$ˆXBˤÒj¨÷V€šÇ\ŸU¶Ð uý( Pþ>Ý _eã¡¿kj_ª›Ê]?sSTòÆÿžéèƒX y ÷j TØ$3>Ÿ`ø¹ÍÑâJ€%$2K*Õø‡ ô©\Îõ´P(ÐOW  @¿/ <†3JÑ]/@ËÙtø,Ììž­ h¾eýœ`ó_~rà@óçp.–ªæ¥29ùè!€ÍÆÁ+¸˜Ÿ“`Ûj)d¹ÈNûѬ›¶íûrÊ s‰¢¦Ð}Hµÿwq`¥Y &hC£/@Íß×|áêW)^#H"†–²ñ\l–wø’ú(%7•jÿ÷mÛ ÅY†H†~ÂcÖq—Öµz¸J¤qÙø¯‡_à@sQDc7€ª…¨ÏªÙý^wâ@G9J¨Æy˜ Þ°Í÷É;m.®˜© h“p©À§áÙM4ô£$¥Tè3>¤<|Ë»›,PWPIE(\ý[,PG÷lÂ@ ¡L…~¼y»}ïE0PÆGH(ŸF¿jØ›0Ðî¦M.+±ŒM.PSòt*pj(´<À@íoڙЙ Òýà–—Ï4d *&aÓ­ÆÕêØ¢[ÃÎ8 }–‰=ëAÆH ²1¶^ƒX ß/Y ïñž,X&Td*ˆØW,•òðý\çüú-÷r!^Ž@{1öÒûE{où¸•,îUW›ÊdtÈcEÛ¢]Âæ†!‡­M*Üç•/Ò¹‰ òÝRhô«êN¡-:®ý·˜pö‡nÀ@—ø;þëÝÞÁ]:{·wp«¢¹ñq"0þrìMâp/"Ð[X1…jøç}}dš,œ ß6ú7Y *¡’÷ÊI {”:DÜ¿-T¸á@óMh'‹&T¸RmÃT@vµ—pú LB¡§$÷ùÇÝÕãsËÅÏô³Ó³/«õ©4Z*(ØÔiîËh »(7A ¯ovÚºº/Û¾— › P÷S¹ŒàTv>æö—‘@µqwHõ p]B[¦üàÀA oTÖ!Ô;2‡Ðå.uˆzÄcMźÜè‡$PÑàR`ˆEøÕv˜¯rÿ>|ìTʵ½„KE¡:‹ Ðð×<€Á=¢¤•°ÿ>¼¸Tß0{Ù!´«R*ÕôŸó9f38(|C[ªY)ßvÑk€@›ãÿA ]¥ÛRÁ®¦Ø\©Ô40ކ¶ChW s*Á&ÉùåêF{ÈM-„ß•P%é.ä€>J I¥þkr@§#m§áéå4]£zDr@¹=4ýïq (_776§€¦,¦TiµÒ)PÚ:ôáœÅ= Ï`@?¾È Pî³r¸¡oM h Mð‡ÐeßÔ!Ô•òRß}Œ¶e¯A˜†'Ž,TæÐúØ£oóä$0º›Þþ{¯ãl’í=‘œÍý9oäŸÍý9€@r\Ö#m˜².‘Êf(Wê‡PW!KåòçèûnЩVE*دöÝ96~®í{÷á Ö4#0à>;Øçp¿Ú›l w¶Î ƒûÛs/7èTF$lЭÏ1eÌVÅu éÚÏr@ýLà‡8Ðçs] bœ\ç€7FîúÙ^½@½eSÎØvÔôôïÃíjâ^r>äÉ]MN»Kèzë¸}½™ucEWM¥ýŒð—DPGx]AãÑ¿Íñ–º7‘ ®Â’J@¯)xiú¿ª'«‡$4>:<ÐP ÿ(W3œ¡.y ñÈóqÉ ã—<ÐÑ¿ÊÆdÍ1÷‚êJã’Úm·ÜáêVºíþwrðµ‹{Áýl¿^šýé.·‚uÜÛl[¾wŽ.ç€7ÄïÎÿ½Si ðàXqý˜Ö@Ð ËÕw)4PU¿‡‡¿%¡–qm+ÚñÒôÎþ¸4ýß%ÚåL°šÌÇ Óÿ³4¾4ý?­h œöÏZ´ë»•2€úù\¹  Þ4š\ÐÊÀ+Ç*6¥Rmh^½÷?ï˜8Ðæ=ž h œ».p ŸÕñ¯²Y©` ÷ˆxƒÁ¦.ÿ7Þé‚ôí­Â‰ZŸÊ\¿ß| OøËÝ Ur°ÁÝ4h×ç^©ôç\A ¿/¥~Ž}@Ð}½spͱvX™ Zèƒ/E÷ÿMÖÿñžâ=,>íÁ÷úØw/—r[ÍöÚœ¥§2S„7†æË,¼aµZÐ@ßêÙ©Të×˼Ž;€Be ›P oúE*\ÆaE‘J•©c¦2¿3 XÅ©œS*±¾ß1•ÍÑåñeªÝ÷M¸”ý÷‰^žOÓ2n/ C|»Rv¿| ïÒ¿’¢4DÞH¥, ¦ú”©Ð£Ö›DÝ+µu>{s‡Y:)4zÏ‘kV)§©”5;”k–JµzWàN¥Z}[\¦§²á¼kSBY³M€»Tjׯ¾%P ïB9•ZĹPp)22­”äñ(•ÅÆøø:ÁtÝ|8ç¤5)5L…t¥r•ÙÀ+O:g•9˜Jg8T;RÐðûç¬Éè§»¥,ß%%è;<>ëг f;¥ÔyŲëûŸ…²fç˜JgHfïR°’;ÿ¦„EÃn)AßMó1¨ÖԸ˖ ªï*d/•Ë[©¥ úùÁdÂí֜ו7›Êd @Rªùø(ˆ¹Wüg*´DŽAÈývK¡Á­‡ä`i’J¥Ó“¤&°Y¥ï« ^õ¸©ƒ”ÆýÔþÑ“x}R5þ©JR©\…žóÕ€ôÊK¥VsëqK:\ÍÑÕÂäR#Ž4þðG"îY~pZÿ.’Êájºù˜jû}ú˜Ë¶/\g)t%éc è÷jú}ÑÄH®ìã!dÐwé–ÊVC—pèćÉ8À o,o*H7‘µ•ŠâóØ&§×øJ=Õ®Hö¿<3©læ5À–Ê¡mï›Ë£Se60‚jYx¤”MëxÚTªíÕ…J¥Ú¾2J¨uÅú\9¥ŠIeÿ §RH™GvI*µœóZc6Loøq*?‡½u†Þ}á °Ÿ0:8µÎŒFC¥ŒtS §u`©œÓn¶ÁŒm8ãdY©ºU*•ÁÝõuT²•ͽ &•¿0R‚L L¥ª»öáR¹D?²;6R‚PÁ ‰äE¦0ß0†ÐAA)… íc*¡ÚÖ_*•PývÙF<èsÔ ¸óÑT€ LàA3©dø:H<4žSÙ4ƒÌí _ÂO¹ÿ³žK¥Öð)*U6-ðÇè"(o×ß•sÒ–;Ù ¥)Ò =M¥A"¦f;äj(•;$تm‚ƒ"‚Ò¨“®†n© ›úÊHl„ƒ>ªöœJ5|W>Ÿˆ ±ý†E‰^þÉdž Aow!4;¤„jù]0ÕRRŽ!#Q^>6'¼N2¨A•©¼Ø¿úëå• Jûøõv‚A§Øú©åFÔIZý£Òh¯vâ ›]x ¢MS¨fï Ü©MÅk¨§m¦Tá¬;Á S{Ö©=5–°AåØd8³RSCK.4¨Â¿S©vJvNekÁöÐ…UÕÚTêeɶï"ƒÚ„ë$ƒ=³ z›Ö¦©Dà àWJ!óB†iônÝ\Ð;ºŒÿû(@,•¦•JŽÿ·)dv‚A·¶«g(–F§N0ÐQöP*ÕævS™$¢ž)%Ùû,ߊ`Ðó¾=Aß7L0(8¥ð+u@0è‘»"•jøº ¹ GyÚ©,t- h\P#úSÙ„GMŸU\ £ôàT.=7´?:Á ­kÑщˆ3K&Ôjšî…$ƒ¶îÏM4è;†t AÓ Ò| qBÍ¥rHÑ™¾{%>ÝÊf‘Žã¾±±’{M‰¾iýL Þ:©ëyφ9{•¤—JµýwâèÄÄMÁðg?¤}‡?ù Bj¤Ð‰hÒ$¨u7·c¤F÷…çµcÀ2ç’VJ'è¹tþ¦RX¬öÈè—îìˠωHëÊ!Ó yY¦,üÂ.ìÙ£X´TÖ¯éÒ‰úQ6YhïƒVIsº/ 2Ðîú"$ƒ~”Jµú¥ü£TªÕo!ERÙC5S³ 6Q)ÓGðÚ9hòï¦EÀ (<2i&Ö{Ì Ó‰#É Ô¥9æTûˆ©lrª†ÏªFÿŽØƒˆ¸åÖI4èV8t*…G<ö ¢A]J*•jöÆ)§RSÁ/$‘ѧ¤œTPáaÑDDƒwZJQ¼Þ“HÚ‚ž¤R¦ìVèi*“@®í³âgvš Š5½m‰lP×t™ƒlP“†SA¾ù;plrœpÐ%ØW*ëçÁ7ë”yzdƒÆÕ =„‰~9à}‡ °As™Dm úâBƒ*¤5•jýb¦ν¸©ù5m>¾S¹³ß¥ý(*Ð[8`á 2J¥FêÆ¸€ʚ͕„Á 4ý<’Aß5Çà€ß»fõ&P^˜ë¼qQ Õs”5*æ$´7™¿“,8×~LÅ*•<8‘†T+Õ÷˜ÓeZ®Ø9¡O²àLÝL¥¦€÷=̇Àoá(g柿ï6Tèó 0‰ƒköCd›Ã34_¦ÖpÍsËl^Ã]³éÛá4ÊÅ›SXPÑÔæ$´©¬F*N+i‚ôÖœO¥Öpcjxž$Äõ©Ž8;9¯žÇÅðaÊNä]”_‹Ù$ô u²IH\SNÁœ$ƒªŠÖDù»ã•Bù²_çÄÿ)µžŠâ3š?O;Q©\7z_$9ù=•ß-¹R˜Õ¬_L"л?5‰ åE¤ åh7'¨U¿°íäù8ôì›`ƒ¦c†9ɾnü¹Øìú‚Ä=½îÇôQ~C ‡ONÇÑ(m\õǧ÷dil¿eŽ2R¡c•öë4Ú¦Èûzæf°`«òÛRAÁÖë8èǃ2 5_%•Î~Ý%Ô^ÝòC‘ jÊg*‹9óá«C¼·Ïªà¤PY÷R8©™ò³hø (ަèy$º`*ãþ¶lñ€ŽÃè$á5RÙÖ4_爖'_Ü„9/Ëý0×(øó™ œÙG[ò€n÷‹ î4™¦ó’¥ñ¾>!?‘‹ù–pŸÈ6ünÅ. A+ÐãU8¿ÑB¦^ý@¶ô4è ]Jeq ‹öÁ"È ”T6C¥º9äFq_¢)ø,DÚÛæZÀƒ~6øV3I†sò"È6©”7Ûá4©l&pFò2Rš”«í;^§3ÔÞûX«3<éñStlçØp\Ý1–>§B4¶J¿§R!J¥¶'I– ¶æ„ošë'|.âáh­‰nK} g„¿Ó`p†Çk°X±¼KSÁù(NšŒWÑAßðã¹ÈrèY*µ1áØÝTzÿñA¯i6â±RK{µy‹¿ïæÏ"t¿ ‹L Þg"Cûúœ‹lÐO#^ŽMâh²z·Œ9pçù(ëï» »ˆÝÇÍJL ;ÒÖr ½~ 1pWŒ²Rïw­0^švÐ nËy+©‡Ÿ°žTC»oë¿×Aˆ†v¶É ¦ÎE2è³2DY¾ïhÐE–n ¡1ì \„µðx³aò^x3·†ÆÓÚ¿\”ʨ ["‹`PG÷ÍE0¨)#s‘·ì]„ëI0èºnǃ<’J5þ¶ü͉jŠ(ž‹SÁñFÝ"Ôä–T:ï5­ FØè›“ ê¨ÏTj.˜Ãm›X é%Óh»™’ ê°Ï$ƒ.U)I¥qº]¤°ÏT'8À ¡Ø®Ðþm0„¦E ¦ŒßE C` ‡À@gù$ÎN=IehZ‚ Xœë£1Fc²•¹ ï<äÍö¢ø$¶Št í·± ]%„S?É© ãJèTÖúY”± F¦B³húÞ@b)öl†â´ø^È5w)•¾~ ˆÜ•»þuƒEûÜ7c¸ð ÇŽ°hµÁ…ÁÀQ©ûX¤ÓQ¿(¸«åH€ú½‘ˆ  [Me1ê÷úÂ@‚Úœ ûŠóNåüÆ‚‘ ûú,"A—(d©t&±Ñ "A‡2ìgp*p Q^²„ˆ ¡?ˆêí„0¸Ç[_Á©à±ƒ3‚Œ×¦×(PF»ªc’ê|€TÖïh€e _x3„³Nºyá#D‹5ˆºÞfÎïÒ'ˆûQfÿm‚›÷Þ®ËÑiÿ}x²©lf6.+‡÷j.c>õN¬ZGkÎ Ô<©$Äy²ŠÃìÑãß'&èöç; PÚ¾.2­£ƒ3Á¹n—Å[»Vo*Ðgý¤}ÆÌ[ë¹w»&®ë‘ÒȉËz¤ö¦Ä%qýó!ÕúO|NºtјßKXÚÿ˜H-²øûöƒøŒG½|ƒ š÷Ÿ´èÉáZ©â¨±)ñö޵Ø«· 1Ë×Ü•@>wc©7µ‚¡²¨…rÓ¾Žü $ÐËžLeñ©ÃÊæú‰/oga*—ƒ_˜ ²£ß×¹—£XâTÊ­Ý®FÑ Ü;hnRA_ÿÇ4_xó멈}Ü7± Ÿc€ú¦ìáJ¼º° ¯/hƒ š‚.¬qéË êþ4}§ÝÊat¶ÖdÁî)szO—¬¡á´'q÷[^Š=]µø=«ZþçNÖ/S!ÑT*2é@ödÍ;î@“)7}¹›\ÐP2\*¨Ý§’H©pÓ„Þƒ½XÄÒÎñ½š¤ª…©TÓäNõÞ†¿Ìb­;:7¦‚ttJÁà­.“Jù»[ ˜@Ùº‚úëÞLؘ ÞÒ¦©¨‚Ù{áÍ[Ñ ¶Aõ$½}«À–Âíáf¥to¸Ü&ôxa³±ÈëÐìÝû7_Ç+ün£îýÎðíC.c†4&TŸABcn‘F—â?Žãؽ…½RY?ζ}¸=÷|”Í.6æÏŽÄ>ŒNZ~JpA«¸G“".hó1µKñ<3‹ë€[éï2ƒîò¾,àÔ=x\ìÐ=×ýŒTЫÂ¥ðsެèöï¾ê!tªI*ƒ_Š]ñ Z¥çT­Qµ²R:­•#0¨p,©À¦•/-ÍGp8€ÁUä.å·†ÓÞ°Þß°"«vø,´}a@&¸DßY&ÓÇß§žl*—®‡èQâbí ”= ±Ó9ši<œ Þ†r}+˜§|ôÇÊfä—§»µ¾MçÌîŸ3¸S!S*Ö¼C2è!ž+ú3†¯²¸’åbâ ºý˜ƒÚ;$ƒŠ`>Ïdò´ý[GˆhÁýæ™vk7+Cfd—‚ û«Áö ú†ñ‚ÚïšQÐ={Ä!ÔÙ“ó€ j»ò z¶?Á §ù3 *lx ë'¶ñ ú ¹8ë#&9„àá>v¦øßNpCÇÛ[À<}7¼P@‹ñýŽÅ( Ó}o«ç4 4½%0A?#ÉÙÜžhЉ8„‚/Ý  ©,+³ý^y³nŸ£7OÍù*‡…Í¡ŽÓü‘í?ÝW6Wsâ`ÎCàóÒ¡ßC¸5ÂE÷!ȤüTÐê½Mt€­­+›>‹æ³Ê¯ö 2AM‰H¥1«nû˜þë@> À½R)ÇÞžZ»kÇž~!P@/w#•ÃÔ^ΣÃþgy~‰‡~ÓFîÃ$Rw:`–>øþT&›Ÿâ>,öæ­™ûpÂOqŸÿÐcRKÛéûûº.P@ÞïVîw#´ìmZádSYãÙcŠvõíT·±„“MXd~ʺΠ*è',ìvâc¼â» ‚V¥î-¸ïÐjã‚ úÖÜK¥ÌÊø¨É˲¤)Ɔ„šúñ»$Ý{u zëwü£šÛ àa}ªG•R‹˜¦?ƒÖÍ‘°¹Øc—B&ܧ:á¼ ‚V­Ócå?o|þû]!\ A߲ȩÀšUqÌT=WÓÇÀòAJëPzþ»¿ßdq1çQ÷.ÖxPÍÔ žW½+µûÅäé÷í-®æ·ˆõ®æ¬`$ó–éå$`Ïå]ŒÓx?A@ï¾Û% è ¿‹`ò´ÇÞæÜ_+•äT¬KЛµ ìׇÅ0/ Û[7nÏÉïn²¾í½›mûœîæ~Îö;% hˆp•Êbfôú9GŠÒ¯OºtV뵓ôî†\àŽÀŽ©Ôœþ²\Ò€ÞŒ¸{œ>ý̬›>f¯Ÿ¥Å=fÝ«a†j8Qã^‡jp ¾¬ûã¦|l²^å¢5Ñ'vAýL¦—8 +Ör*H6ñŸÊbòßœN°Ç²’€ŽLòT°–SÞÕBu­OãOeÒÞFIeѪÛ‚±˜>‡§,_öþ8‘×CÐy‰p§óe¦R&£•SœèñzW9LËö_> Ž O§ÂqøN µ”{6gÚT.ã¡°—³žÎ²}Z¬§»p÷V8Ú G4 £´â=¢ ûGR)Ã’sBÍKá{©ÜŸ üõÐî_ª— Vr*}–J­äG™ êØw¿=p€*”ÿH‰óu$,°Îkµç ˉ1¨L¬Ϙ,ay8/¤‚ºÅïU'ë+—&dšê ¦-¥¦t™9äÊ¡Ã/Ð Áº&ŒÙý¸E\”¡wç Æœÿ|Äa˜/G¨P†*³Å¦eFc‹/¡š¿†²š×Y>QÇ,â=¤ÓBy³íë\€ˆ"(Ú×Õ8ÆgjYWB¤Ò¸_ðø˜z›C]¾5–âUÌK*‹?§û˜àP7¬l>8l‡TÊ å(Ñ:î›ÆÂÖY·XóZ¡Ï>±š)”1Û§ÚjëL3êÿ¨{YÓå]R6½6á;•;ÏÎS¹ôÕq|l4ü»‚¤S©FßÕÿQªm^È1›kÁTj:þ3èç0Ó€ÿü à øÏ×EŠ‚íƒŸÐw±“JccÔY`€¾æ©T³ûh›.@­/ èÙžLÚtÝâá+£á+òk5€€2=¦C[L³—8D½¾ÅÔbu¤2áNq3ôÊû¸€»û$t- æj#À×…'Ï3RƒáŸ½…–B f™¼¯"þ¤qpÑìUl¤ã3…`ŽÚ(@ù²Â—9Ê®±r¹sÁù¨mfŽj9>‡r`˜>¡Ì [ÕŸ¼ˆT0¥o6@€¾I©TÓW»‡ÑŸ žü€Žw©T–D×_H5\~O ÿœ\oI¨6˽ ðÏÌF\¾MÍäNÀIåà¾ÛBµúnS€fF"À?+»æJ©±?T'jzUÇèV V!v Õè]×|oSfâð15ü/B2e\ÒNì7$º>RüóµÕ!®>ˆ…k*tÛÑ6ê¬Xg–§ì¥ûCÿµ­ìøç[±”óÓyzs¤=ÇÏúç»ÐOeÈkx¤(´’VDçð½1Ò^É+©œö3³€~Y6ßr'ÿÓžÛTÚ‡2•N¿ÞÍBlKÊbxgЛʗ v£ì¥ÞiËÊ¥‘ ²¦§ŸtpKB‘i &ŸU{*ƒÈ‚-‰õ µ„B"¥Rí¿ïB̶pÇ;_ö+Vù7«O±“þÞ¾ÒwíØÍ“Ž•…ш¦fçàÒâ«`Ú°Û|'Ù«¸ÔŒåãüY}½{qV0õèÐglé…ýŒ}‘ 8œT‚‰†ï­Ê†í¯h&†__¶OhÔí@€æúLOP¦rÊì˜ÊðÙ"!- Fç}Ž?ð?7-l Ùìó1¬Ô! ¡Zx CglæK‡–üç›Î½öªqüZ Ûý€ÿ<÷í›)ÓÇ’ÆþõÕÞ_ ±køï~Û4õcz< ©ÞshÁz&GµöJ“£íÖ5œÏY5•_†ú¤P&ì‘3;•lôù6yП·/Y(V÷IÖO%]xwL÷Y°?ïsý"hï_‘¹R©|~/6;§€û~Iü÷ªE£¼|…¥… êß ‡¤n.øéþ'hç!•šÊ¯BûSYfù˜jõWÉT ð( 4•Û pF`æäÌépÝÿ½A%B§’œ‚ƲRùw¶ûÂX©vzåT‚¿&|§½Ðޝ›†ì}¶ŒÔÑALXú³Zþ*ïRJ>öô”5ÿ¼Cq ©Ì…˲wñù¿Ÿ7?Çì´Áõ•÷ÆSnß=oÕƒWk ·}¶ôðO~pZsà¿Õ»™>fÔÏ‘Û4•Yoø‘¥@ýÕD9YÀ?/  QɶÇòSšÐoSlÔ€æÍÕþÿÌNk}þùÔÆäç” 9•BL¨S °?oß:¸?ßF29Ši[i!§£ŽÙ¯²ù‹‡”Ž“he °~ŒOBÛ·b°?oW\ãBŒ|=¸…}ðÒõ¶›þòÇ 6ýá›ýSÝãJé]‘«‰øçÛŸèŸ`|åhx¬neó^Û×á¤ý1€þI…ߥê¼þïº \ˆÿŽàþUëŸòºÓvßù3¿¯’¦ÏíJ‰K¥VpWL°TÎýí¬˜ òÛéÀü™Ÿö÷û'ß±ÚØ?ùP4ÎÆÁîôÏ15|†ŠCÊûõÿÙûsVµþGQÛkþ¢õ¦‚)½ËÄ Þg¸Ï€þ™ä–;¤ÔÄ©|˜‚Kžë“6á\…„‹²—Ï*è]ANñ„¡O¥ÿ,+æCbÀ4Ïì]¢)|H¬ÿ^fsõúX+IèúÆcùz8ƒTå’ò¬éF'vãVR*åÀ0de÷üî™.ÀAËFæŠaÒöwyõ5ò.j —Ký˜N†—@þ}â“Ré\¶ë…’äОTD;hÒô_B(¥"¯‚ou˜Ï>a *Y“–÷ƒ“äø³RÎß‹‘Jar‡¶YYô®rŠCðr§…ï´y§é[ÅïYÕ›ƒí$Ôy™© ¹Di k’jòd*àz«¶q*bÚ‡¯„§pí1¹ô†ßýr«’Ãë4”‰[ÂOfÅšd€:•!•Ù6& ÎßM¥‚ì–‘Ê&«îø,…e<>æ2i–óÊÜØ’»×/žÐía 佤ca=¤,†¤¼gmlasßd’z½{0‰ƒ{]Š`fÂJSiëgfT€8 ?û¦),nÃs1zS—SA˜½­ªygï ¨5ÉMw„ë¬éx•ýZYó*2ƒfÌ$ô¨Lh*øœÞEù£:F=â:Î^†P—ñYëAG[ü‹aöCS.Òë‰8Y-R€ž«Éj=Ä Î÷ªÆ Ÿµ™Ç³}ed˜0>+&沿,"@·ò%SADÒôu›±öÛŠ*:°É.2@cªO-2@ïO¥vä¦Êا‚¬iÙ›‹P#gêr|Šš¥R‘. “Jµ|£kSAË·Í·ˆu–òZd€:­;•ý“U” ²¦½Þ^d€N{Á‘”YqT× Hˆv^-2@´“ÊdÐÇ%hóï!ÔY'k íà°€ou3NOk2ÈL!£©´ýí kª¨•ÊdþœÇ;”#¨aœ=Ŷ*IŸkûU“>Løµ88}­e°½î ¨©ëk-·z1 Û+Ú%"´ü+‹Pà­% ¨GÖE hÓ9„€î÷×SG½šAþyB@Çvë VµRÛ…<´J¤¥KeêP TÓÓ}ˆª:èó’zlì.R@¯Ê+¯% hw¯ÞPå„¶¶ 5 _F™ŒÇ'©õsp[ø?¯xsƒZ‹E èç“ê˜áTÄ¿¥¡³@ÚS!P©,²ôþ°¨'>¹£‡ÉÃÔioÖ.à\Ú#•:djR\ €îšó) sZ °…$á…ôa@Ít>ZŽ‹SK9-ð·‹#=}jûmé@»{+ŒýO±¦œà\§‚*eûŸ…Êœv½Tªñ»\ÛÂh]Eÿ¸ãŸ”º…ÜÍO^ùBæaÙ|ú9ÍÜ€WŒªåÜœ …H™Çwo4…<›†˜@v klxË/s»G[Ôsø€q ß6XiÖ8ûB ›{|òaîö¦-. ð7¡2·¿%ƒ³~.qÐÝ{ÙAÐTQªä å”/“x‹+¤PS{s°@Ô¼Çf-¶WJ™ÿ4K hû¬ È0‘…À»ê1ú5 ¾•zr³kê\VšÄãË\66´pgZm±Œ¶§åD9K>0¦ D{ט©–Fs×SÙ?sæ?x‡T°Aþn„À=ÞHÃ&RåC:wÍ8eG°Ý¿ý4О ˆáÆfÛ_¹ì åÕOô®á‚( çñ¯Ø.h¢¶ÐyoNKØ, >Hõ„š²’Ê!B…«„ 赃̉üÌ.vMõà`: %ˆZª5²‚s¹4©€ó6Òã‚M¡ƒ8 Ò§R­Ù^‰kŒ†ú @®ê´‚@ ÝXA¨ëS®à2 ÛóÁ—L %!.Œ=ÕùhÂì%¦ÌOàíÚœ ·R4ÄÕX›ë€áµ‰ß+s;“Ͻ9¼Öç& èm^˜ga„u)Õþ߸UÂ>Êkk*°m´}³tW[ó­Y»vse·íË€à·9¸æÁÚ\ÀùH¥q†ãÞà h©dI sü )3Aú?ô·â»•Íüõ€Æþ-@‚¾5ÐJa^‰^h!A?Cíô³é¾¹ØîÀ[< ñ9 ‹:ûè7˜ ;´¨ÛÀ…·"€¥ú¦RQ™>¶ó­i1†Guïá³€ü2ha™ø)µ@û _RA¡IS¹ãg Ú‹ÅZ=Œo\„/PÞvLœ±©üPŽRò:†Ù?iã© °ƒ×웸m3c‡ãí·ÑíÕü‚víW™LßSÿ îäpmN†,,¸ÅªéL+÷לÚÛdãÇŠÖtê¯Dm/Ü7™@'<m$›<Í¿g³ý;ñúßpˆ-6ÜãŽ*è›þ´6© ¯²8 ?_‚L wêÙœ\Çkäô!¬M&лJÚdå&wþÉ_Ö-ðKÐÞDïç òÁNe0»ñU&xúZÂÃõÜ·]3›`Ð)‹d *.ã:$m»Îc;šÑ‡¼´ËÝh®Ïeª¼þ‰ƒéÀE­RÀô.èÓ:$a?¡ A³èqHè\H]Ò9üÒ¶¨R3_?€ˆ5™ÒX?ÅŠ”[G«åô¬Cܽ}ÁØŸo-Õu¸ pÉuºÓMôþz‡(8W‘ZøŒßåþÈC%85+wþ˜CGãÿõ•‡ËWrÖ`ü»|8\ 85)°A‡L‹C œ³„×Ñ” ¨Ø:bƒ¾oƒh åm¼3]»•­ò7XësÎ †é¥RîÚþêDƒŽ!gÃ!Ô…ßÖÁb ÂÐõwü}`8ë Ê.tˆ]¤'®Ã¥À»–>„Åû@œ ÞÆáR`zð8¤}žˆXÐ4Ç%ü·í‡ë6Ñý~‚%ËlRAûòÍAÅ~/…õÊZ‡|¸wtH Ç=QA‡ŸAP ya*³è´[GsRçRA^[‡H xôç¢ëŽËC$¨ëö®Cдï¾æO ©…Üw€"ÔIï© HÏÛ ‡ÓÀõtˆ5y"A_ïÏ9ZÔéó,ê>}³À¶sþ\æOk Û@·6)^t}6A `,…›8ácâ—‚€ jÒ‚Îá®MP(šær8~Èû˜ŠÈ™í> »ÚK|—ß>iÑ–âG¹„À!PÊ^?c52å¾Ö5TV›oãß«T›w-ï…=˜Oé´T&—Xïe» ~y@ï5Ng\U–Hå·n庄>[ýô„ì*Ùìãªz*Õ컪Z¯K"Poþ…$=ÎŽ¹Ävû.p qU~~¡n¥§ÐKèx45_A‘ÚE¥Z>ÂШTËïvLÝñŸ¢ëërèª%ŠÊµZ8\ƪ™ÊIí:–¹pÝij—8Ð×P¸Ä"Jà±…jøÝƒÿ%îÝcºä朮Kè딽´þ‘ïD%¯ÛÞŸÇ  ;OíÂø®Û4ÿ¶´VºÄ;Û.q Ø¦¢ @/8Ðn«ê:E¤[—8Ðr¶]ÿæÄ¥Rsyì?• +¡ù˜ZÌ5g^ñ@‡‚Æw–ÒÝvj ""†O*ãçõa_ò@§£Ý¯x ò¼œ^È%Ôÿi]ªÃúz>.a ª¸.p¯óü;´5ˆ‘Ú¾ÇÇŸneÓŒP§#Î ÈTÊîñâýÒî](—$ w—ïúºd/‡üwíyÉB°•øuž_¡@ÅDOE…Šë÷ÅÃ1TWéRéü9ÛÇ ^+ýâ)ÌK"ÀløøìJaÅã›—!ë)>$ðñRÄ#¨ñ:ŸïßBV)ãÇKQ Ø)£ôŸ²IøSÊ¡Áá“ÊôAP_)½ÐêT:Gø!ap\ذ[ý¾sp€ö£Ž@í(MÊÁdw}ÝjûMt„@ÉbEvþàÈ{£RùdæŸØ™Óæg*ëïÍᎇ@¸G‰Ôñêš)ÂÄry)ÓiÓwKiÜ?]JçBºY™¸UóIuß•;Hç®cºo% ÜöY‡)~ÃÇ ¶Cç:+ùÔÄ °û?´·Têæ×^,nµ?‡¬/¨#B€ÖG¨tW)…))ê`˜9½B€–j»08ÆÊ`ZÝ–Pq÷N>¤Ý×#êUš‘ŠíH©ð¤ØnäÅÛÎÈ~;‚¯Jy}òR©Ð{UKJ¡"ÎöuS$è*%*²ß\ñ.•м_â‡*«TÚŸ¾  ’yxÖa…>mk¦RÍþhÈèGmÂ&e2 $Ž”E~AßRJ˜Is¦b ôC(Œ‡PÜî·O!ž@~÷å—ÊDÏþ»¢r7 â¹væm_e3oJ¨†ïºešS…bNˆF¨ãSi‚µl)ãcàET¾ãTA ìñ3ÀVìl4Zý†/¥"(/C4[#Ê¿aÝ¥þ1þŠß±t”ò“ *:L Ð%ÖF´æØ¤û*œÓޝ|ÿ^×|4"@—,ÉTäÆÖkè¬6-Gr4ÿÞÎJ¥ mä¥PØû¢:C3<95@_ÐY*˜ÊÑ\ñŸÞíJEåYוòSž5…Éà?¶ÃœÃ§µüôEÊêù ¨Ë!Ly i¯ÆqµŽþYi)Ʊ©‘þã$æhdºD\*¨bÒüsIÿ²°SÙܽ¾Õ%Ü´è¼^nð‹áxŠx‹FœM§#â–Ke’¬¢v&úXO©ìùÖMeù†F÷¶r|ù Ác…W€på‡ë*$©{†mb¾ÉéˆOþll¥‚°Œþ9KÎë÷懤;š'Ü·ÓÕHÆ.•2b÷ûNIÿ Ew¤2‰Ýã×€}s k µïöK!ÇÝ/p3iúÑ$ÑHÿœÊ(OèÛ불? ÿâ?Í»Heaz> øOÏí0kZ%„£?}J¹„7é þ£ˆÕTø #$(k:^…ÛB¯²è?¢ÐÀÿ|wxRÙäD-ß…­l25‚àŒ‹Œ*˜ù YI¡3ê–/°?̶õüÓŽc }‰þ˜€8|V-à®b›£rO_jbþ}ÉâÒÍ÷Û *U =  öJÈJ¥,YìH¥šÿvÿDå³ê"E{S¸1 úúç\¨´üÙ0ŽÞÍKbcïÍÿ=‹ÁR\*ΘôJa1@ÁW‰øŽ’½3¼Òý¬sp¨Zt²?‘^PÊà Nu,̉Ý,:ÙŸÞˆNœ‹Á¤²ò6­C!hNô—þ>æ"@’ý9m+vÚýïò§OWõ9“¤ÈÜèDzc):ÑŸ“…K¢“üi]t’?²äÏ¡DÙè ÎîÁ‘ßÞRÊ}©bÓ©À‹'¿S*‹aÁsI ~—á[UðPWÏ섎ð‡¢ë‚üg#Ó‹JgÜ$í¡.crt Lêvg¦ÞW)‡’–¤ôO§Vð~ˆ…ÀIÀK¢þ¹¶»áŸýq7(ôÏFlÁ}®ËÀ7=#À?¯'8•Úƒ°×¢‹üùŽW$*6.:ùo åŽðg¸÷š°×£×a]b›°ýຬla…”Õ¤îërÞEýin‹#"s*؃Û?ìAÈjÉ<`NiÓ'#Xl*ÕàIÊE&ßnúƒm@+ªIL›o<äØ C•Êdùõ1“ñØãŽAäçk¢Ž‡È+›Uã1Ä•³9†ôúÚºpÞ§ Àþìž§¢ºdÃgMŸ- 뇢J™²Ã£ÊhdÚ%5@ýÜSa1@ý|«Ó¤Ò¸ÑÇlpø_©Ÿóø!:ƒkÓ¹W%ØÏ7€85ýeþXc¸,GîAðçô 0þ|ýjƒÃ½£ÑJáÏÑOŒ°WHXÀçS­’­{Èúi8ðÜ i‹Á )TÞ­€ük0ÀíøŒjú³ù&ཽn©}Ðï1››­zSóŸ6zx+b?í:‹ë·íßFê§w·Str¤~®­IdÐî÷FJ*XÁ)=•ƒOû ð]¿¿ÔÏù6GR?› ÐAê§÷”chðs€úéMæÐò„‘ Z¾×¿ƒfÿjþÄ¿-¶"?ߵàÑ?žJ}þ!é ñs*S=•ņ÷X)ǵwöR)»§/÷'"?]*'Æñ.-Á9à!ä*‰ŸÞðHep‹.¬Lz¥¹Ê$~®·!ÆÖ+9Æq-Ÿëë\:É5Š^RÏßî}¹¡ØÒœ œ§ƒV럳wWޝ´k–ÏBY²w(®3ƒÜÏGEgc’ûÙµµ“ÜÏnGã$÷³É}998¥!àýß…U$•ò^g¥|Pn¹]Óõ)c6û/è\™Ä~¾¶ÚlÞˆ˜V†:½¯S]Ècül@Ú>IAìõÜÏ •jû­iY<ÁýLç:{Õ,è[Üî·×„aÓ±qe½‡”ûøÿˈÚK¥Öo}̳3²^HÏTîÆ¶2ûfÅj¯3²«kÿŠÇL+ñà2¬ØçÊ~˜ ~¾É•oÝ|ù¬ƒ[é×€þ³A1(eþôï êç»%X¨×|Ù­ä –ûÙz‚‰fß툞“flÓTS€ÃϦl eÇvñÞR©Vî_)€~î¦ìòTÊí]>£Iè'¸TªÙ{7:&¡ŸÝ}x¸z7ô”ONMlÆT{ô¶êåœ>Cp »4'¡Ÿ˜E© Œ™j`m½>?s]¾jT0Âô3ø¹ñ’’ŸáLM“ÄÏ'4†N?sdY>&Û} Ð •Q÷òNÔÄDmS)óÔ>*µ‚{ºÁfÛ[:Ÿq—ŠÉy yÙ7ÁzOìÛúÀï1hûo{;lû‡÷<ÜöÒp†a¼-ÄÏ HV)æô'Úþô\·ª¦Ü*•{~æðÅi๾0F© ÄÃ'eÓÏ6Á´€}ËßÇ^¶0 ÄíŸËl~ñ|bÎäY@íTÍŽÇJÿ™z±ËX·Ò „í[µÎ°ÑÿýdñûPõ\,LDªЬÿ;Äû„  ¼ ¶ôgEx§R@]*ƒÑŒ•2i1%S‰†ÌfºÀÿÌëœ%å0KŸ˜sƒ¢à:æl)Ê0¤1º@zãdRÁ$ây}q:XK£ÎšœØ½Ê­O:dž•C‡t1Éöèî³nXÀnq©”YÛ•»@•V#|¬Ô½¢—¦ƒ·åú1ç`@ÙÀôIúö›¨Õ\m’-°€"„LeÔWèÝðô;lgpGã¹¾nv€ØÚZ ÂŶã5€óÇ„`±åuÿ*hlU™Kat\— ’¥éàÑD †ùÿ~ 1(#ÿûÅ`@Ùþ·ÏªNãÝö\ÄuK ¨ÚíÒ;æ½ã³²ýǽþäf¯¡§baô-|)ÿi혟Ÿs«;ò#€[¸Tƒý¸’XœÆöÐ hNhÛ×Y?³ˆ;?­¸OɺœÜÛG¹?9£êEÔºûš\¾¬æ³&:?o[pÙT"ðyÃ'UÓwt\*hú‚’–R_áh² `@kü½R°¦S ‰j›Vñ*óþ4® (Ž E¦ÃVp TNû1$‚Ðæ¢ ôYý, Øv¹¢_}‘<º×t¾Ìêßž ª`Q©é ”#¡u€‡“ (.é Å!æ'@K®©HO Ù@µS™¿‹‡ èó{›þÛ*¸ ðò"Š»ý€Í‡J€š¶8gåÀB ®—ŽÁ…Àöˆ˜ Ô©«€XÞù‰ZÔœ²é×ìkdÓð®p`"ˆPœS€TÓeH)³Åʨä![r,6üíGä,0Up*•Ýÿ{Ì©£2ƒ©TÃÁ¢ò‡æ×ŸÛïWcþvË«Àgô €å©T³Ÿâ7¦’Í>–ƒ‚ƒþRT)ùÜS|¤Žø´zÐŽ›„jòË1Á=€-ÛÖg¥W¯6,Ž”jôãú]þS‹- Õæ£»ýrø¼rÀj5(!MÚr6ûÉ;M“¾ü«KJÞiv"À€Ö*ɇT«Ÿá~ h»lÑ ÿäƒë#`(Ç×2ª·+È¿Œ¾¼×X2„A“›åøjRjE7ŸÏujJŸ*6”Êá£Ó¬Ìl²†·ÃEþ ´Æœ)¥šþTåÎTʨŽ%Ø@–ñ/oo €j¦¼R*´~ Ù›óÀš2—Á¿®þËy`T>¬!¥Bë»2üD÷êÀüÈ 2覔šÕ»½§»Ö4õ-|ájý]Ô¢¨î;¶Æ’ \í8l)íâÚ,ÐÚïðYÕü›w‘7@ù"¡&¡ôÖTÊêÞîÛÕN,rp sÌÉ ´bS}LÎê^»¥Ô¬þ8¦wƒZñuWJ>磜§ªý·%S`ƒÿSñ¿Ò¯Wáül&@V¨vHÉæŸ Mž]üŸÚŽöïw*h…#ù*µ {lÍlà*ÖïH©ÆÿhcyýV1Ã×Êþy‚‚ÿTpâ–P-¿Ù¿¾­Pß%eñ³pµ­`/_¸–sMi„±iü¿3צñß´¹~«gjRj"èD§08.t+Õî»2RA»î™à¾U„ •ƒCšO*köQÒVÎaÙô+Û ¤4A¸6­OðŸò ù¤ÕÐ;ôÜ0þó×øNÕòoÝoÀjSQBÍéIã`ûW€ÿ‘R ¿9î{ƒþSQ[J6üJúñur*¨üCŸUöl#5­–H-‹¾Œ h¾?𳛿ÿ§Gq*xš&¯ håPN)ƒO>}ÌÂK_¸–rmùûr&xë»aþg»¦'oƒþSÑÚøÐÌ à8{ Z9IËBà÷ñ90 £v¥,öù-!¿ƒOª¶ß½¥w8tOõÐJ€äY…­`ýÝ;~/¿Ë)~Ô¬Œ½#eÖ1>¥>å<•àç߆½åêïj÷C¸Õz—ì§úðÌ@ú @‘­cèKœ¹ºG’S¬‡Ü2íþ{cPc{­:eGÑópÀÿ¬˜E_¤LÙá@ÏÌõ=˜šé?ï;ke”°aÜ œ…9^å’aüXøÏz !¥ý;e¢oÙÁðŸù40ðŸN4¤ÔöþàÞ*ˆ¸Kùc3á€úó1¨?µgRNû1vpo¥Á¸Ð¹p>‹¶¬ Õ³lÌ6+hò].-/†>ô°R†Ït`ÞY4|D8-OLà:<ÌŸ:õi9üOGêp?k'ÞÇÀ”U®g xIYBôp?kû)¤Ô\ÞÒ}Àü©Mrr×2g³Ù;ºùû™‹º÷èoi±«kû™Ÿ;|ÖâÏQ,ìg>'ç§æOªM+æŒz€ýü~)0Ê6kR°7ñhGè÷³Ü‡þ›ÎYu1jMës6'µí{WK:ͯ ØÏr×ñ˜K;öº¿€ûùYÝp?ß<ŸCÃÿ,7õr©À—§MC»?„zh÷‡#`f_¹àýÔ¢FBÿù±´Ÿò-)eÄÆüS-ÿõ*^šü×)÷¡oÊ`¾…ý,S‹'5ú±‡:ǥſUZ&.-þí`¬‹Ñ?Ž*€¥2ùÔûñš”jù!`kù ûN´t/Gü­²* õÊÙ§.¸Ÿå?YRªé﫾yÁý,×›•Å–>%]˜4//°Ÿ5÷úVÕôªÆñ§ ðRM{+àrx=—V8|çùSód“‚Eœý @ÅV¨þP#CøÊeÊnUöÌï_;‰äûYn¾%¥Ý®œË‰` :("1+À'UãŸ9½`þ|tb÷z©/'‚°oû‚ùS< eËzZº‹¦¬J-ŠS”s>¬”-ª›JÙ²!FK9÷Ë‘ÔÝ Ö?6/5îà*îíYš ® àÏïûòçuHÝÀ".ìÌI«ñ÷køSÞÿ#¥¦õŸ{—-û9ÜÏ×]vý¬iùJéôa>>fpì¥e} û™]øúºhýCÖ8¶„`Låð§¨lúòyúÉD¯ê´Ô·U®ûʫ’ ÔOy†—”Zýn­{¸%ç ø{è½8šè/Èoùª8IÞb~–óxJ(hj-s/ÛýÛf.G2û/§5_??Îò[˜Ÿ|Æ÷6eÈnss¥ÚüQáÜTªÑŸÆÎʯO6ød5—¤²Ú·§ó;ö¥²Ù‡¯|Æw ݨ4TýiRð³–îKJoßf_;¿šW»”ÉÑîë,ú°ý‘J5ü©ñ:•jøö²n¨Á¸ñ*ôÕ!#e£¬´.¥Zþ$g£˜Æçëí¶¿çÉ‚³¢OŠûûX_+•«~ÈÇé§¼5CŠfÝœæÿ¾H?¯Ë¯°|ôéë;t*°jƒsU*eծ㗠ìgmˆð¬‰æßüvhÿO%f”Â!($À™§TÁ [[_£a?´ÿ”ó÷Ù¿,?fðNÜâ ¦õ¿…*Þ¨Rc–Z Ÿµ´¥Ô,pd⤲s|Öþ}h@?kË—©Æ?…mI+Pí )re_S¾l›ÁÅáø¢Ÿ ÔOMm¾Nà©ôqiÿî_\Ë…›_°íËÜߨdT>—ù*µ²l>kÿãÊmû9~» ŸP³¥TÛtÙW´ÂúÎûwP¿FÝ܉-#H¾Û÷DÔ>û©àf+Õò»€wÂElóu°3¡(:jŸem4peù^ùr9¯»_˜µíÒªX»Àsjðòó5yR™œˆŸ…½ „¨mÔúËýÈÏwµ–ŠVtá+cs‚+Î qèïöJ µˆQªT‡ßÇÇÀ¨•‘‘ öä´¤ŒÚ%-•2j—¼5»²ÇÒhKm#OF\)5 h§‚‡ T¦‚ÕR`Ôjï¤v%¿vEÅ~Ò=‹-â Áäš¿u6mÓ¤Rc›r+’—£çÁì[ÅÎO)Á]†ã[íõÓ©°Ÿ9ÔòN$çÛÆ‰`jפP%?-« Gfè5øS5KÊ:?#zð'_•…ͯËy¼ò3ï Þg5³Ò¸Æî:g6- ¸Ïì…lõmÒz› pŸµ‹¹¤l-}岂Tc;…Ë—SI[4fßw ÞOç])ƒëF¡Mó€–A»êä•9ó Áý౤`-§jÍ_¿œ|óËo ïÚg6ûhR—¡€ÊT`û¿÷ 6{UCßó@naH(ÈÑ1©lEÃ^)µt£b}'"_ôNIx›]x#ñǨ Fº+“\–.!ú7Hµ‚^Èæ9Rô’Éú4\*;øHŠË¬§ .GÈ›SJaPgèFÖ§³8*¼Ü­-aÿ`· „u:Ì Ê˜Èç~ÃÛR©0û6ý5‰úDí^*’×î瘚>¨Ïöþ > 2ªxåñ÷²ú+7o!Ί6F'éóQ-ÙT*(Éin³¿a|4LhH¨Æ<¸ty˜J´WÅÉ*zzÁ4eF1½r ] µppV)†ç¤Þ“ä6Ûú,_³„ ³ˆ_ª7.æ¼<êœÎòS6†ÚË—QXL2é!¡öŠc®@­øF¥RáÆí¨…v‚>[øçô‰*¬T~³L*B÷⼊`(1kŠä5¾f•Œ°ÐÇô‚ÉüyTÕ;Ю”(S J†¯³ÑlÝñÆÏP—ê„|Îæ×7ÝôÕØH~kÊ0I¥ ÚÏ+å3®@»ï21ûdd¥ø|ÕC\xÛÇÀ©÷Ы‘Ê%ÔfAógO=Ré\ÔÈy«:ç&c\}‚;·¯S qÀ®0n…ã«Ü&áêEóùކœÏ®Š¶æÛŸdR˜£BÊbâŒÞAŸ¢¥P‘ö(úFå0k8¶ÔoàŸ`¼¡l¼„ÀJ³¾“ò™KÛ!aö˯† OëU<@³²‰Z _‘ƪE¾»’PøëúÝ]Ž”7O6S@ÿ2××ù^8|Ò9Ävp>:]3S%+ü£²98“t‚>T– r¥§’>·í¬NÒ§)¾¥T–¾@f©0_,,lñ ޱjþ’$}%5V3\ŸdÔTPÅêh•;ÀüÙ*áZØÅRl¡ ¢>"tSA¥ƒ¦|·2!S9¤ñpÖD}ºNz5ª‰ëpÿ8Ù¼ðdu+“O¾}·„¤îÏû˜˜Þ¼¨TÀ{ž~²>çTã$ÿÌá_܉¸mr› ñž¹±œ‚ª2ñ¢>ý^)®óï“8š rLº²f¦ïWò'ÚѰOSó_ÕüÓó#q•âT¥R^½ÓÝNÄúÔfy*‚.S­}â9ð<4(º„ÆŽv¬t™MJÅØOªÆß§&ùQ´Ïòž†„ÍÜ‹x"ðšÌå1úRäÿ8Ç$•Æh~Ž¡¸ÏyýLÄÿ¼6æ þ§7­rr¡MÊ`³²òûR9œåi¤gp¼¡Ébˆ÷)x³€†þ¦€ í1cô?4¦;^pg¢ù•Æ?Fê«Ann͉ŠPʅݤq`;ÌX·Ú´g·¿m{Vϰ™brý˜à¿ÕŽ„ï~~ ²â绽XwÁö£93@ÿyCÖ+µŠOÎE×òóÝq¬lÚ¿¯t®æ¦_)ˆŸ‹q€þ“^ŽÐôÇ?åtþðNœŽˆŸä4¤ n–é×Ü?»gU$†Î|½-?Óy©†àçgM8ÿy#€Ká{È|èÐÖ&e%È+êvKtßt3µq a1¬yú ÁõXAŒ½göù¸&§ÓIâçÛ©g£—öøç€ùY› SÊ í¡{‘ùù(Â?DÙ÷ì+£­ý,´'ÑÏgûA÷(ºOg˜½’vR©pšZÜö­"W­”U»íž½;N…Ýð^ ß‹¯]vrð¬ ìgmàSöóÝmežÎŒ÷º¿F£ç¡kj àEÁÄ ¿ ½W çRU¾ÌO§š‹!¿ÿb~‰»ëþ§¶[‡” N:GSÞÿç³)4ã÷Ë‚ûùæ‚¥RÀ³ÁSQÃïMÊ\?‹® ðgm)»}Mˆ)û_ÐÑT®ü7< SÁ›.TªøûÀÔSéL§ëʪ5Á$•5¦·IPÿ\·¬Úw 37ó¦ïçר×Ýó˜ ³Îj³2›4}`?_Æt*eÖ:³;y2¦˜A]y8¯‹Šž¶ÃìFZJór9÷øS]V$;ýî ò¶„Æñ¯¹ÿ±j'¸Ÿoñå"¿”ÅÚõçeö$§ìêç[¤,ΟìÉZ:ý A oÕÿ>üÿ¢d”y¯*?©”MŠî­/4a©OS6­kìò?L…šç-k= j.åw•µHþ ÕÅHäOkRYD‹…¯ó“7]Qhôc,B€\r%[&ñõZ®“Ö@²j½çïS°<T#cøy1pê×(L¼`*ŸB) ™0v©‚ØŽÑŸf&UÍ‘õ÷)Qp¢ó÷©ŒU\ë¿OÕ˜PºÁ[€ ôO£JS¨åÜ ß{Ø¢åH·HÊõ â?_ïÌš6h§•þ÷]V¯ÉÒ ßC0ÚL_“ĀŸñ4Z‹üÏ6ÜÉÿ|ýЋ €¦üTTºAW&n,*®œÛœÊdŸ (Äg‡ÝZDxØZKZ|†Ê“åËÂ~±{/Â?ÊYsKŽ•+eø¬Åù†³÷"ýóQ^d*ðgÛJYÄ¥#ÞW¾LcÖ½ˆÿìâÓ§â´Ñ.$ ·l2{²8˜÷J#@¿Ä" (à | t[žçuèÒ¶÷wô:ÆùŸïyÿ¹‡OYßåû:Æ…ùpcì@Zd¢,7•òê wR€º­Ùuÿ/4|È E§±N Cd‘ü9ÄæJä˜õ9©ZþšîÎõ½]$¾m€üÙ—¦¤ ùóu @(#Ner;|¸õ¼ñd¹&p•kûûÔ.ÇHÝJu4‹k|Å]J#‘ˆ»wAôçë© ¢?](•Å!èø:1~ì›ÀDкzýé©èkêçäïD¿½Îèæg ó§·DËšTP»¡iíDºXn Ó5ÆÛsDж•Ór#›‰ƒ~ "“u–.Ä¡—õΜ<‚äÏP.Pþ 4Kå²” ÐÐ=š•K’ƒh“§/7]b”¶WL˜³(°NµDDºpt)ïæ=fÓháðæìAÐk-A@[1úEí&¦K¼ìO}^‚€^ <z[úâ¾Üò$èQA”*Ö?oÑžUÆX¹Cûß/^¥Ú8ÏÓÀ ñà”¤U :R²®xµ•ëUåîþ>¹*ƒñ;!'‚× @ÇÍâÒÞ{ø?²Î,Ër]¢S©Ô²z˜ÿÄÞ"B:õ>3Òͱ­!ØìƒöSË9,‡fá»—Éyý¸~1 ªÛJ•d%'”jýòÈmŒúwgxƒú¼¯Â€öW˜ø9ðÿn€îÎÌn~\Flp@U()K×rxƒ‚†? èÎmô·»÷¾zF €žÆU ÐP>“­}z70ÿŸ/ž ÐÜͪWs úØÓ €n\è,î®Õ èÚŒç»~=§²1ø6]¹0XšáÎe™Ž)/†6cX@¢>†Ò€©Á„q½q ÐN6F( ›GèÕ“AcÖ]ÂFas¹îE(渃E€ 4YÚ®[ íÓÁ®Ây„’†m_z« >_‡$ÐÅw0!ˆ••9¨Bƒ:$*<ï€ÚIëËB~ž:p)d+Ôæï! tñÏrk«Ã.dj €d NšÛÏT”›H@ó>` ·ëÀ@o9S<Ä¥+Q3Ä ôL§` Ï­–œ|lÌ«sÁq@]Z,Ð@—v‚H@ëÓ^÷Ïs0ÜÉó„Iï,,èî& T(P| e`Æ}6pˆ,–”õ\ÿ¼æÝ! TFìÙØ ëê0C™BP Ï;?ðÒÊ¿uNÅÜÜuÊ®ÚK? .Ò˳-¬aöŽÃv« ˜æ>Ú ôzD p[FMÔž¬ „Í0ÐÝõ€>ßÒ@vUlè!ŽåÙR±ßgH PÖŽ–v­ÁYá`ÿy·vY óQjn×Fä èy°@¯£ç€Z5‘¡dÛ߇«ÅC2\û«COŽE•ºXv¬èÔŠ “A#Ð-ë/×&aÃOÖt]ŽcŸ.“­ÿSË1pá„JÏb0sð­Œ0P½.kªJÖ¤¬?O=¹v½¿«lø¸°Ü±¦EîT_®=ëòg`Â52¡µÔ2À@ïÚÁ:©öü³JKë[h ×>¶¦½Z Ð}ÃýÖ$ƒ2©sÞâ,€Èx]À@ïn¦ E(Á 1Â@å[±ÂM°òïóc›ßÈ·‚%Àu!Y ÷'€ÆêsF¨Æ›ÿjX±@¯ÃÐÀý?™ì»ŸCþP£ºúm`v™!†%ÀÉl!Diý•Àv¿t™ªL)CΈ½í (Ðîj@ ÕJ92œŽß¶ ¨¸©Yö†KÛˆO:ü³¢ò´‘b˜îV„y³a¢9 Úv2`€žë$jQ(Åå6¿d®ß ÐÝL±Â€>QÊ è:3€ºQ´VÐ$ß-*L3á›(hBl),¢ØW@‚[‡¯4Ãj7•B&}j5¦äi\ÆjO P*^ÛSØŽ4W¬=–#HC[DV$Еt îQQDse0©ŒB¦™œCï—4ÓN­cüW½ÁPÒôi3 ÿž³">ï•s%÷ÉÃXp† MÁu@2ý™QöBΆ’Ëil8 ¬•Š×â²™dÙ©(ʾQ©(û¡[å)L1ô}†ÙÛÐCú诌±¿­·h°4”…î…^ëÀ½¹q7Ö‹ýRt÷¢0¼ÐŸÂþô©ŸNØ›BSèÏq#>@>lü³b2>:¢|ˆãªÛdZ‰)Ðb2XéÙûS¦b2œBZ¯ªÔÊDØl^Ÿ5kwÄÁüTÕPV/®Ëöê°³å€~6YÁèç“Óýœ2TÐÏ!›ÍŠI+Ênßs¯øùA¡Ðà™RÊ~ÅŸýy"Ð|ÃmÑh‡úƾe k0óSuâO!cò¾QûS®Rßðãq·Á7âëµeá°õw㶆—­¿´AæEý¹ÐüTþy5°õU×!Æ×›Î:pU}: .ˆ{™*©«R/îÏãÿ/òÌZ …Il9`~z£æîá{VãìÅüø8„ŠÇøÔ”ˆýT¸Šcì~òÂæ§¯:6pvàþ!¼5©Ÿ §÷ùýÓçôóFi»#)âYaÒþP'éP ˜Sg9²jê+D¡ÙVö;…ŽÈ'‘ÁHÛa‹„’c½3–1ËÕ"©fPØöÏU CšM(ɘoÏ>°Þ&Ëd…’!“ñ¶¡t$3šŽÀÁôCeᡎ®LJ@ïTΈBfŒ*#7”‚2v+*z}°h*Î.” E:öÓŸ| iÿu AOŸal0à?‡1;V ©g5+þ„òG™¡ ¯v!”Ât½vÀÞ”¦nè?´O²SÎ9î°P6ò÷N²;gÓŸ4ö(‚ô!¼uM*ešÞ0˜Ÿ~þêB»~Üb\™þËaëÉèv¨ØËiÁâ¼¢’jûó(¦€mW6ò olWñÓ¶¾ˆŸJŸ¥8,£iÅü{ŒûPì÷©OYxqGaH|MGŒ€©c†8¾§£0¤%%mƒ»%Ú+¼]B"ãòËŠž–³_Ua²¸ü¡Ò°ûÈ› 8°ÜŽO-UÞÜ`ÜÔ¹“øy7°²×S7gZÉÒInï¬%º>|‹BãG‡ÀŽa÷r,Ûj–¥+vhºJ!Ý[ö'Í` g|M=QËõ…jóÄtd!Í|ƒ½¶}Ø‘†±BÅb,ØÒ¡,D}—u CÊšÎ2ÜÊu«´|Ä0ŽZ®…‰ack íž.àPrÕÆT®&Ll¼ñîÏír­¸?7¶ ”jö,éJÅß±"Ž5R•p ÿÎdÒPrÍö¼=ØûŠJ…3* ^ø©ël¤Tbjl²÷Ÿc*ƒ¾kõ\ä„Ò¸Gr¨Ô†4wC°²–Žù]¸…‚Ø–Z4†p`Ö`.ré³iŠ#,ƒn›J.Ä ÚýqÒ¹³u½Ósî–R˜þ3ôµbþdJ»®[päí…Rmÿ>øDM&ÖV½ÇeJÿmm xïI;æ&eawfI)¯5M¡` )ižs " ÷åNiLYÊïÏ%! YyB­P–-”*Þð*UŒ!c©À1Çö¶+cé1÷?¹…QÕ>½Ö0bÚÁîÛ}ÁµL„JåÊHd朌¿«ÇPï8å±PRm(ÖßCAntFÏ%Üós u\g™Z¾I™ÜìÒYëŸöØçU›¡é3x(G({«#¨¬k°íÓï0îÏqŽé àyB™p™-“n %8¤öϧc¬ýØP ¸ÏMLõ¤F|‡ä FÍ^¸Ïë ³ܧO>zQŽ_¾ƒý³_sûÇÒP­s.àTÕ‰þaÃ(ªd~¬)¥¢êÃ]¿Ä7·äVw…Æì¦°x{¡· ªçüÜ›vø[ÐJ{WL=ì¼Þ‘%Ý¥’J:mÎ^Ø%´¤p~>]/»_ˆ‹¬$Šy¨éºiËF¢ì÷Ký¹ƒúãC[/êÏ­qdÉ}»L19Ÿ½J+°túA0˜Óø '%=x*Žf†?·ó­ÃðWœP˜¬Ìæ7i¹™?Q¡Ô&…¡lÄ4c¸ÕÔÍí ²´2V]g,´lX qõô{…2tùé˜ Ú^ÜÏl*ã‚K1d/o)?Ϫ‰ ¡_‹JúòÄy ¥ûï+÷Ç nP’xÙN8îkþèÿ¨|G(†{a¼ë îM›¦ƒüÉZD!ÐYøS®êPÊy­¥høóœç˜2j·z=ˆoÇ9Ov?ïÒ¸ƒüs&Â,BiðÝ`™Ð Í_Ct7:1î!¹!P\( YM˜C:Пr,‡bðï¸ÇÈŠ1»ý)XH( K>ös”|ʬ%,vÌ­úvç‡òÏq: ºk;âÓY†{¡ïÏÃ2‰BêÙŒ(‰T¼ÆpôÎüçZ´ððŸ‹DãP\ GǤçÈØ×¦‚; Ž¢*eθ?Ë8t†ýÞ£•c]¸ f©“2Àx|Ïe°´t§ó“Øf.аNJ—ÿ`а °?ÑøÀŸ‹åˆmóg“B!¯ŒC降`:{æ ÷“»S¡üì%@þDDÜO›záÀþûg£°??' äLò€ýtÍ϶Ê1küQø·„$蘃xw×uª±éÉ'œÙôΆÒà¨FS±õ¼òDv-k±Yá­s÷K”1oº¨Q90¹ø}'8t‘†Bþ ìƒ¿Ž€â›ýüæ\Œ?ÇL¬7†®Ãã£cjQǘ˜PªñËs2v'˜èfc#¬ŒåRñëiÿ£ŒP¶ÖŽ™XÍ]Û±ð?×t` ÚJ-ê´p`ÚÑgçJ€ÎôPÿd§üÓ¶ºVŸºÀC{=J­êî·¹KÓ1þ»Æàÿ\CgTHç² ’oS‡‰ýP¹d ×=Õ.s(mgƒC»fT ÂªšÏ‡PÆï¢c¸ö'øùj2¸¼ŠPh ±OTemº8þN@@wc—˜Ÿl[\xzg´ ¨aç0„…}ñ{áZêe³fƒI¦tåÓ&Ì3”òiƒ.fPÁCùgƒbr6@’u9Ì]J®ëÖäל€ J¶~mö†’sûˆ© Å1Åá3L@« ¡øŸ¤Ë…’_øJ›˜ÄL³y |9€â5C©âLŒW²‚¹%øoà,L Âÿ[ 2CgìQ| %›ÿ`­žPº®œÍß§ôzÝçk»ë˜lþóp\œ›ÎQyÿ&èu*ùÕµ‘1AZ[whÞO:kiw?EÑßT14ö©CX¡ ‡,DfhÅ=}NümN:@‹¿ù m:ºn^PCHÛv0»/”\Ú‰…j“P™þEÿ¢¬êMeaÃÝEµ¿Mì·1õ©6 ˆï­ž¼éÂÙþÇ÷ܼ  F‹c:£ëtÝ+TõB¨öO´©ÕëÎ×…±¾8¼ŒÃ?rÖ±Ÿ@€ ®hUßé¶aÓîL¨IèýùÅÚÝõc }Ϫ‚d¡†R-¿kðtšzb²à„#µ ügG P¹ªëL–µ‰5Àø4dh·©§ÆDðtg¬šé»J“}:+¾ d…’ 0ºÕVa€vÍPÚ9þçítëò?1.ð?w®\Ö-á϶Úè]€ n ³te@Õ®'n,Ò 7 üOM)‹øOÍ:«‰i÷¾0òß.µšÐÞ˜ ùŸøŸ‹9D¡à›ÃQ¹8òïWñ?OÕ8[àÞÏ·°0²ÓC1ì¦cZèP0žÖPiV¾s¬€Œ¿Z®#jIÇ¢¶ÀÿM=”œÖ¯ÿd Uf]R¼~-þž*è3wªu뚢ÆÀ¤^`€^÷ã"”P[ºñ P¡RB±?ïêwèV'°èÝ']ëß=º¨Â­`âÛ’¤ûÚå Ð»í¼ˆ}/\_R³ßÂ,pwO ¶¹˜]ÉÊ0§0ÆÇym-놔…“¦³6<éŸ.\)ÓÙôî<- @]¦«ppŠ€Ð&e ›Î¥2I;ë W™®¶@ƒ Å(ïrEb¦S‹oËjM7?õ1«5Ý™œ3€pÆšGVþ†™!n©†Ù¿[H« 72†×³ßªtN[`€Î¥^å8ÓÞ÷*P†w*¿ÙVVÕ ¥à:&¶ÇŸ{ånÅéj)Žü–ű$œÒ¬bN2šU1™ÊÄèTR °0Í!630làîClP@·FÄ]ÐȘ0)¹¦ÛÌ´Ýs†)nnûER¯¼Me £×hµçÂÙþ÷`ûß À–¶´Z=™@Vð÷™AY¸rq@MuÕܘìѨDȨ'£’Qö®)oƒzX:Ê68 Å»lHû°›Py69 DØHÅ}B9ØÄÄjmƒÚXVÎ6 @*ël ?º{q@³â¡D£ÛoP€îjwzCmv@³ÌΠbØÌ;:&gƒ»°½Ñ+€Ôµ±P5¤P6†®3ñ{LJ¹·µAµ7‚•¦zçVÔF×Y/›  p®p¥}|,ŸÕ>Û@‘*«Èt:)(i‚}š $Üf½«m±‡Ó ©Iø1Œ+Ư5áŒ9P`.z.”'œ? Ÿ³‚·ú;×@؆ ™U‰êÝò­Pò'Ä:”GŽ¢¿mÓ…‹z ‡…Œ²Z]?qÙ¡¤I«=×QÿsÚû§0@ÉÝêTwK•lù“16#êùàÈ9S®ç‚:;•ƒí¢¦³ª@íøl†J@°CèÃ÷-áñ¯åwpö2U+öôI °Ú3zÂhíù6ÙýOƒ9KÎY(pÀbù¹¿XÏÀ¦¬’!OÛ- ßÏ‹» 8×ehÎv•-Þ§¬ ¹Ìßg:+—rKsM¹1ËæÅ½œ´ò1€b ‰Â@t úß!T¦é)Ê@­syýüRaJ“ãàÿ³7ýº‰` mì@‰çµþçµ9@×QºÑ%ç’ Ž9³Yú9Žt-¬N@ópÓñ€Šií€þ#¼ò?;Gųs,¯óÿS¬šP<¶ì ÀÝ`„Zìþ|¹-6Ö‡¶¿†Û³n‰ñà'û¡íÿ©AÄœ‘P`‹ìw»@„³ÙáX[ñÑþ–ÓÕmç­`Ðoêúiûü`´?ƦþçY9Åÿ¬Bµ|¹·cjù˜÷øŸ[>Éþ§êK†2àÈgñvèøŸª{güÏ£uï1íu'Ç †þç3Jÿ鮎þç].Ÿš®õsÀÿ¼ñüOÕ¾å`Ê…“ù€ÿyºšøŸ¦8ÿó®Ž üÏ»g[ÊÕë•\Ë}}ÈÈ"ò PU50#´ñ7[@3¨Þ²ÁôWÖ’hp}pmYäÈÊìT†ÿ{ÖB$d“²çψbíŸ[3P€Ú}Š&¬=ÌíŠ]Ò¬ ªy¹ñfÄ-=WG²’(*ýÉ‘ e#DúP(>¡¤A;‰ %É1×x6€€úàäi)¸°Ïùä0:¬8@OTŒ$FR(Ûß ¢_ÆÙšNªÀ{˜TÔþk  _2@Yä!”‰‡ÒIäÚ]¸@ˆ¤p‡RÜŒû=AŠhoÝÊI~“¯ªé IH˜}3€€„‹° É`‚^üÉtiØ ¶¶gʬY±ßîâ¤â•3ÚŠWEj_ËÆJÎÔ‰:ü”€Î/ þçÓ^ÚJQ±í¡î³…µ¿7ÊfäÃ7€DŶZédxj§ÐígåiàvâºBa«w…ά<õÑU¸ŠÃäaÀÿ( Û øb1Í@ÿSÝÝþ"ÎÊù÷„·nèˆjò 2SØýÔˆ?9:Æ~÷a ôÏg0ýóê· >åˆÔp5MÐ??{ÎZp¢) ÷¦{±Ñß³¼ýØ~M´=ÿ°†ÓÍ?Ø´ =u@o¿š×a”9@×p@ïÛp@?ã2®iÓ‚û4/xC©J…Nz»±÷æú™LœðŸç>pgss˜ÿ®¥ŸƒýÓ‘iNô³/8øŸ7Æ»€0<è’àÌÁÿ¼¡0^üÏq¸ sð?Õœ€sürà?Kã™ÿ¹Õ1ÆÿüØãÜ9)€G¡@‚~é ÿ  ÍIþQèŽÿÙî1àÎC¹_ôœ‚þ§&>'ÿ³qï4ÿáâî¯!ïàÞLÿSpB¡ùi׉þÙ´Óã}o¶+€»Tv ”ÙkNþ'Y:æ€^w»*—·º±UâKq÷¸,øŸëÞÐØ2mT ûÆÊ‚©ÐqîTÊŸ7ô=ÿ¹Û˜ü$õ›oå[ÿuÖù©ÕÜÀýÜÐ{Ãìi~‡â&>kP!‘ßóé­hórɽùw^ôŸ[ÝÜ@ 8“0¨BûMîqà”5Jåp6«lü'MÜôŸ.ÇQÅã>±Æ‘Œ¤,d PYc^ Ю/ N´ÌPbüÁ€€ gcøÁ>æ`ÿÜh·zoóVç0üG±vþþ#«W`W~áz£¡TëçšÞ?Òhpû÷)üxèÊB$[,8;õ·ÅV¦½WÆÑh»÷TëóPB±û¡‚h½ŠÌ}¸ºjn¡¬YÚ¥þþ#8«W…g1îà?š½Žž·¬z(×ÛÖ4!”tÛT ~ËLMÿm÷Ãtùô~ò5þ¿A¥cÃÌ•Öϵþ·QYØÜ<ºÎFP&›( üøM‰w^‡¤yî?¶¿W-µ´2¶”»ã[TXͤ›{ÇþP—:ưˆ(³Â?0€²ïß‚7ƒ±ä¡4|w*i£Wºwrtw`@ŸVî›jRøG±@¡œ\º°ûcø ¨*Å…Â’n{P?sœ €ö¡·L (£eCàºUQ@M_³A?úÁX¨”GUÊú¢ÒIÜT@lCòLØC@%ÙÊ?@@UìÊ?@@gÓCað´?Sr£Ð0úšeçØ¢Fí:¦ÀýŽæÇ¡œŸt¯êˆÏBÜI—â`€Š%å8pOú¨²ýt}0@ÌzOwì³ óSÁÚzW…÷ Zfy…<ù@^ý-7®Ë˜ %g‚Émaoà úÊþyWPÖÀ …üÛ¡c²å{  \ýzTéI¡ˆ‚Ø©gŒÉ¡ûÖЧ {p oEŠ=饛W™2’á¼¼äbz#ó‘Zž†ÃƒÕ ¡j”-¶òÖU£¬w*E¿emo ¾Ýû|‚£û¨B.Kò'‘^ÓçS†!”taæ ³ÀæF|(E@ÜÄ •¯ªSÈfïãHõMQ¡8Þ/™eÔƒÿÜèŸÆÒæÞ@ÿ4ÓÛýÓ<&¡¤Q»·蟶uwÐ?aDÞ¦Jôñ÷€ d„o¥’q (Aî H ÃÐAo@Ùï¥WÙ¢”>DÒ?…±$Ä“;½Ñ^ÃÃLF‰nåˆ `Sô0‘Æ ç¨uç,J®éœ{Ò¡¬¸ÕV÷ÅÀPòÛùŸs[Ã4`Œ(ö†5€5&0ŒU­½èt½ð?饃 ¤ò!¡±iÿÓ–† ò?o×TœÎTÎo×+h¬nùwÇ¢¯ ­\C™ðعŽYXô¹ŽÙ@GíCûl|p ”BîÍŸ$¡Ás ;®ÿ‰Iµù?õɼýùuÎ æ'ú1”Â'qÉçìÏ¥±öÿä;áŸäG{üSèeï—þ¹¤‚ˆ9¨Ð`Š¢÷ïÖ›Ö1µž{ïᄅw0„£ñü§*Wx­ï+ÔÂ8o @(i¾r×ß;¦V*ñø§PW¡¶.·Nªå³T½ƒþ)ês(9(ºËk›0'-e`ÏàÓuÈÃ*‡w@Gg7ë˜ j@…R•}4Ew@ïb¨T´Þ:œ):'ƒÁŽ×I•×xX4Eˇûìâ{º¶žÄiïC`o×!î¿fVÀ½3çÓûT*5 ÐN¼÷‹‡;:‹¹Ô÷,˜z|ÇSéC˜@:¹@²_;¦‚OËÀ.*»{'è>ùú‹ý˜/%õ.8û’¿ ÓtõÔ 4êT£±tŒ#‰¼á'oÖUðsØ?“ºÍÕ·â4¶²`#t°b§BíWß~¶rÏSgد8*Ày?‚LS»Õ‡¦T•ùyÊãytw.û;8 ÏÀp”K=t ïPc¥á¾+`@q e¶ó´Ðù09tp@koJµÜNô:(º^ÃF6.6IGE“¦Q²ð@7׫+¿w´~F#…²qa ¬5@Ó} iÇbŽ{X>>‘?)mþ¼¿A¨< ãS©VØ/| eGzAòsÕ:tVqȘñA¨æ‹A(·™½*§þüÂ&8",(÷B˜ô­4)?Þ4€œ¡Œ èfK€ëô!ùþ8ÓŠuôqù@°Àø@v_qG’&¼<Üí1ƒ| FsxÖ yÂ} JOråÖf ¿PèØû¤ü‚C©Ô[ypÖJöqñ@ºŒÕÿvÄK¢ùKÅòÚ®zRa½Êf[:f€Ñ5(¬?OâºW!¿'æÝk[î! ‡bp)Þë–S›› >ˆ½Í ö?úrdÁA„ ¶óX"j, ÛKÊbJ©x{bÆ|€ Ú>}0AµJ?“úزh±^d‚2=”ªæ ;}€§dg`‚ªŽ^(…Rr5tÀà¨2@iyv)˜6“kË£ûœ2iUc&”*äêq ‚.ÂGC!µu+UbÍ5@­ÙJljp yg†i‡“è TþÃaà»Ê;=z:‡ÕjŽXt­¥éðÑ~úž}£[¥¢¬ŸjD¡¬?¯÷p Êp`Ä…ý‰Pj1ǰI/ÐPîµS—o}PÀ¾ÇÖßqÀ]ÜUé §D”]>ïðö"8×°Z#Î"‚&àQIsÖd>D’Vº²ªî¹½‘­FÉ,"h$wt)Ùòó3½ÞãSÄ‹¦ûúQfC-‡É¾97çŽ?³h^U^/`ð»|žàÍA“i(ß8…õ“l‘Ê©÷à:ÞYãk)w6˜½ §åëD*Tòéá„8k:«x YÐÁ¨Lüœ­ë,d@ÜcªáËl™˜öm0þÏzÎJÿ¬ªnxåd£ÀH2'Ü !®ë÷©ÀÚ,CéåÃzªy•¾L'ÔÐ1Ùò¯«hbÔßZèÎb‚f± ¹”s¹xæBš ±Ê¡dÛ¿þ¥ ÜqŽI¶¿5z¥&Ð@{©%(«q9Çž<ÖÔ³ˆpׇ2ÁÝG]ˆ\ÐÛÒ7Ê´:¶H½Úkº»øeÊö;'æa¤~=“s&‡Ç§×•ퟎ¬N¥òLŒæpôz=·/ z:æYPP#4À'  Î$@Ÿ€‚ÚÑ4ù¼²Ý;9ø¡D»Oö¢Nšôð]åàVÊ®w€z–ÕoM÷I#Ö˜ê@P;zO5þ'éΩälîCߣˆ ÖõåAUbW( ¾crŽÉ\Nþ $èÜj‰®ÊÄh­ LÐk¤®âeÁi ½: V HPÑ C)ß,Óæ½J eÓܺn¶ù3ù U­9½µXW­Äݲ¹¾*“}ôg,0A—Ó»·Š z³¸BL¤ÒuÒŽU™@_€‚¢ BÉù¹^Na¯ëäàÄûø*.h™TZ¶­ÁVPù3™\:kÂ]û鬅6»)ä|î$.„r°u¦SÅF_ïñ*,hbÄ6•ÅLJÔ™õà XPU ¥ö&LíT µ9¹-ÐàT¾'ÿ1Ù¨@ªFì T ØhT²,ùHWú§ék ´4ß-€A…‡ ¥÷,è `Ðk©.Ðà–Õ0èÚ´)À “å’C ‡ùx $îÈ’Ɇ¦s*@cp ZE:“…ÝB#Ž' jS/}«Rå§cÒœµÉ5ät3wÕ¸ wÿb º5ä |¸½Ÿ»cðbWôîÊ”ŸCk§Ðp'¾=ÌK{¬«¬ÿ`óa5µNµþ£–T< „#ë2»Fü àÙTŸÈ\¯¢Ð Ifw*Ùúm©{Âú^NÑáöm7E}›(Œÿ3Ÿ gã¿ÖßÔ˜)”Šýy¶"Œÿµõ‹‹ôi«x@YmCJ6þýi€såŽv Û~lƒ*þZd5†¦9SϽiü˸ژ öâʨ ¦²WuÖÀn¾Ã¦ýÿ^gÃUîº1ܸaÿ+ó×+·ÒÆKtM©Ú<­ÍD ÕøY"”‰1Cýn0iï344þÅé—ù?Ãnˆµd:³WŒÚtï)2hî*+,,†wÒv—‚ýfL!+U{óZ=•å¼Líw(Û­_-»¦Ä<æH©2•s6Р×4Þ…½{ÙhÐ¥UâªÌÇO>¡qϲõ¶õ=PžLˆlxJË¿Iƒã«™Ú¨†I®ä^Ç`fÚƒVÈṉýÍßÒ&)ä¹^?ý°Zü“[ 2¬s÷Bâ´"W6Á dçymU>vCA “`xløsªñ¾“í.òd7•´j÷áÔºw­æ6‰^5›5›¸ wÞÌBÉùû¶„\ÌMbôšæåñ†âÿÂIeÖM¯ 3¢—ra•OÙùw!^åô«‡{ý'LÐvÔ"À…[ ÚaÇC·6T(sý^2Aµš¯êp•îjT™Ÿ®CDô¡PY‡®áÐ@y%òßk½ýÔ}›\Ù<‹„èÃEÿv±îÙd]õ¦1oǶ7-·+Þ¾KÙíg7h;¢Ž™ŽäHл w¾?o¨ÜÁ ?ÃùàÒÓEÎ÷OyV?ŸÊ/³°eÁùjSNŽŒƒ5€J#†bzÃHEÃÌ[÷Õ+Ü=7÷x«†d…†]j¹·OêžU—=ƒ€ÞWs²M¿æiªÌ‡ç`¨-½T  ìÕZÁÎ["/¤­a-vŠôìxœÎMêÿ+D›¨q/,Åã?»†µ3pßi]ŸsÖuŸñOhR' 3±©”ùO —˜ÿ7Hæ`¸ËÀ(èüžëø›Úë‡LPÅ+ž™ ~0 ÜqöÀüß$cø™78©QIƒÖ;uÀŒ;Åê×4]†ÁI|Å@‚93 fj¢0ÿo€ØÁDpý!g©N%–B 9ÁÏ‚E«9ý€ºY‡(Ö©ä‡(PÖ§PéÓòŠA•ñJ…å‘~ʂǮ똌3L£g#ßDÆÂTµÎýÅX²c&˜šÍÎ=F#çèƒbü;à‰oJEÜ«±c.èÜr9ÀÝò ˆzCz€ 7ð2-Å7*á¡ÝÓc(Ïz›¶Á¢=úVHkÝÐuÒ}6o•ðΟ'¶ßi@Ú÷ˆ”༕Œ H FNOÓYüÉ í;Öz™´"ׄb?ÑQœXFOyßøª‚Ú¼Æsy·j-dTªõ¾JZ´›ïÏÀr¹×¬¦PË9‡½P;EÇ­a5·uR!àžõ (ŠÀóøŸ2ÓIÇ÷YŽØt€à+XC`ž|påèÌ…íÔ1†ø¹¡ë¤T3_*ÅÍŠ=ƒJGäú¢uìO.Ê?C—äz ùä¬hÅÍ‚]²í›œ8iTÚ ƒÛ€"ãÊë_3KñL*Ùð­?ÊBàÐeV~„©7S(Ðë°"&Þ~Pñ¼qæn@Ù䢢Öñ3‹wè˜îõÊù …Êâ…F%þï1^cÌ БÖ€RŠ”Wìéh=C›D†@xÃ)dpÆùÔ_ŠKs¶ ,¡¡ÀÍ­# ‚E`*^³<$Fûßt•=¡™¶±”£À’ú¶«Âe¹™Me!Ö¥äJîÑÚ†_ûý5lùÑí(ã– ôÀ­§q̰06j,î2¼ÈÏŒ§\äPC8gÊóŸSFbúø0Z¡@ßñ©P OônÍîow*¨Ø[!¤KûÎúfÜÆáŸ†àOJŽ!÷.…}É vÿquÇž\×ïwíÉñ=qü—³?Gͧ€½—ì }·Â€>fž9Ú¼ö³Àœ´ÏüƒCÊ‹úÌ+^ÐðÎ~ºÌ‚¿Ö¥lìb½àEME·Ê/7®Ü°=Áún¡T†‰"½`pJü¡B3ÛŒ7Tk%""”lö¢Õ‡r°Ïuºw}×å‹Ïé¶Wø½wlÊ ~¬ŠÉÎÎr( ìÛݓʜ5®¼`@OPf„a½~!ØO*m(Žˆ¬i#kj×e°4ñ¡,ØÒ>eÒ8ø6}Ì„«8c(ôè¡ÅÕTžwÿ¤ H¾/ð€¦‚óÀÜœ+|Þú»:+ Úë€òY­}´µ@É5œp4î0úoŸzƒÐЛ1讲•¼—#Ê^)N• ‚B©({VM%#{k»|8@ ;æ©T}Õ$Naœ'w3Äã¥mQhp“+ü, ÉL"Ó9•*R¼ÊúŸR •TI¥‘téH¯Ìù&•b=Aÿvé: ½Ù§R©8c ØR±ùó“ÛEÆàV‰ÿ‹2…þ •‚Ðß3¨2eëSY…ý¹R·g¹¦-KqpŸøBìQ•2•*Ø„F›JUœFŠI* æ³K9¿o´ ÈWÍ¿ È’&Åáûp]âßÀvK¥!Ðܕހÿ¥³é‚?MGTz bkS9ÀíMÅ02åHZàï[H/A¶g*¹æTÀ¸&z²»”ÏqÓIÉÙçP)\†ÈRìÏõkþ§ì?7Ð;þ¨³£nÀ¤’ÊxSûR¡cÖuÖ‚eó-*€d°6–q˜˜_÷ itÖp˜JÄ„}K…)•‰“¦ë0]z*`ojà=ߎ à4Rq / Š¡í =ß×Êžý¾šR)âmû€²^b*çÏ­ÃPB4Àƒb©ØxxN‡#ûvhÓ+„T:îÄ÷î*n5uLAíQ™$Ö*ã{t6šJ\GaÜTŠ7øý@@äܧÒ0ÌŸIeÔOü;#ì'Ê9”¿¦¨PŠÚ9Y4P@m° ¶O®Ð˜éâ¸&òþRôÏØšXˆøº Á/׈-‹'…ýú‰S)OÞ`Soí/\¿­( ´ÆShû±SáÞ%¦©ÖQ°µqàm0ü»—ÃÿG!)#G÷펖ÿÑhœ²1Sá¦:C#TÓRʬB»nEÂ.^þ½±oæØ€%&•ªleºÊ倢C7L©tÊÒÙ€+•\ÈÕÆ+”¤Æ¯SI“öÎÇ à¬ÿSÀm;8 d¶¥Â²•­Qð™o•~ìÊ ²ûÏ0ß`þ÷÷,CˆƶäÉþp¯*¥ö7¥üìÊ•‚ô%…K¹¥³6 |‡[Ûr£[±@›ql˜†s8HmÝP ±î©œt(L8ÄÙ&‰„3µí;hqö¯àÉ' ëOcªl†öÿÁøl9ÇÈr4Þ½ðTIÅ'05Ìg P8Æï§ÂLÃ{§Ê1EbêR*ÈJ`pcÿ•ü˜Df¦²€¢€©ãn5u̇ƒ"˜pýèm9¬Zû¯µh=Õ?pñ¶:H •" …¬¥Ë,pšÎ*rŒ=·²z]]‡TÆ2ÆþS€€ã6l*U¸UãG/P®¼tÖÀd[½ÊDžT6ÁÑu°ÒÆøÑÁeØl*þf×ü§€ú5Û8®‰KADß9 j¶PÂÇS¡e{•J3œq;&润â/ì?, kÇv‚@5eõE [©Ì7±1•…´^Œ^}mϵa' të‹‚Ê&ÿ)Så+10õ)cóp Ô‡³Ð5}zÑ€Tb¯z¦Ž9í·¡’k*~~fÙè¦A׉ÝzDjäì@¶ÉUf' ôã€Ö/ +“4ܸÍûâ@1wdp:NÁR ½?°€˜hžÊÀV“2§žPC‘†TÎoÛÞâàúUCÉŸs”>ʶM ¨¦ü"(©‚©LÀÖU»uЦ„´‡ÖQëÂRàÎ"0 Õ1ÑtLÜHH¥ÁçÊFÐQÛ2lPµZ0A+ÖÊ~CþR9ŽÃÐÞMa<LÐNN* énŸ”Ž'ÇR¾;ÊüLuX2A'ÝP¥òA9xÉ]שHËK«ƒ¤Az€„çB³&…þn\§2Cgp:øžënü–¡cb1áàΦÏþŸÑ˜oÈùu´[…TÊ€C a4`°d½ RàtÊîžràM[ºu®é\ Óh›ì W‹) è®JPª(ͧ6TÐg2Gؘ¡ë€lÏ?X6o`ß®­8`ú_Ÿí‘)ÔJNë¤èœ†úor d€ruþ*èÏ3ô¬„þì¾Ù8Wq?£¬3&ÜUÜÏݺn]¦~Ô¿F‹Y…Û½ÓÕ° ý¹§ÆÿÕU”˜×)S?&n¾™ÂþD¡gÌ ÀÔ)cÿÌŒk Æ´±7­bþ¼o¯ÀŸ1îXE›‡Ãå*êOœÄ_WÜψ2@[\ÅýŒÉݤ Ìr04Çû¥7QÜϸ9ïUÆþ®êÝP²Ý¯ýW—©f?ô0毭 “6Ä«¸?¡LU%¦­ìUÜϨäÝ¥äs~ܶXþy¦ŽUÜϬìÞ¨°å³Ãèï® ƒõö47Ì,XŸJºð6]«¸?»jlC©Ó®FZ°·xɰ.WqöÞêñÅýQ™Éÿ”*ø%•^Ã%Œþðç'—ÙÂ4Àú•©”oÀ_Åý|v[Wq?ß.Ÿä!âJ8ªq’U\†ìãUàŸÇ†Ž®³þ¼‹³UÜÏ]{ ,ìÿ³õ›Pö˜iWq?‹q¡<Ø‹CGa?ãÞp-Àß’‡ ¡#X“ßrrÐîþrÖå8Òi1~ƒå̱šºQzcgãNêö‡X¯ñíÈ«I;kƒûIŠ~)çϧ¥2ËC¾°¿ Ë‹ïsØ[œµö‡¬’ASfby›Î*ïµMØOâÕR©(§Y²›ÖpX|oðŸ×Gƒxƒü³–äfN¤RÉ¢›Ìù“q»ÿ)ÈîÇ̶þ™ò´n`?¯“~û9ä_Ü]e¬°ÌÛÐ+ú-7¨Ÿ×™¸Aý|~Ø?MN즴¤òƒý,å Meþn=o°bšÊ†_–ò.Ü[Óžöúg4Ž[{ Žƒ¼"{‚d/—ò&÷sè3û9ÿJHÞÐÖàžðàihöói\@ÿÜè— ôÏõ½n`?Ÿûg ýb°æ¡¹ ûI¦H •Su[ÒЛ?gÁ‡§î¹ZÿàÀµ‰ý”·7a·€7ý²ËügeÞ&b¤î! ñ¦cèÀèR2˜ùJaÿûáF8—ñð‚ìbÿ¨Hq*>ÞøŸ&Wð>ŠÌh‡Ê²ß!ç`ãF;%ûü»u¹Á€û8jnûðèûÒøŸ´¶! O.¬ +y•‚=Ó•‚²S©„Ñ­OnÚ‹8º—c·Af8V&J¥aKè3ÚïP îçõ?np?jœÊ~s˜S9p–c·dƒýyûÈhjïá|àÈ—0Ü ëÐí‡ìOía°?§†ÿöçm¸ç±é˜òéáÇü98€??í›P€*=Ê Ÿæ€üI²K*E´WÌÂiµ±ï«hH/Y|Qãø. ˆR)¤·Óˆ8;q;ÍéÈ/™´÷N3i³±Î‡[èÏççu‘\yÌ@…2µÉ3þÝŠ;˜Æ|”ÄŠ®³& Ÿ Ð?ϸùÒ] ãý(8“ÖqèŸýþ>à?ïÖÌ™ä¸bz8S‘0øÎü‹LÓ!e iËô¤XÈиMàμ@Ú:­Gã·Éÿ¹:ÍÚP×@pV…f žV ½ÞuaGƒ„Õp€ÿ¼ŽéS¸¥Aè€þ¹ï½Aÿ¼Ê!Èõk@º[™“Áþh œ"M€ &þ§þy´R=à’S• Ur¤”U7R)âàfÅX)T1‡ÆIùÎ>¹h 6°ð;àšÂ @ƒ&ÌÈL½³AeHAISÈåJ=@¹V ÒSÉÖ¿µ€<…²ïS»èÐ}}ŠÿiŸ©+‚ÿIÔQ*«~ { Fþç÷ê‡&ß©•€•+ Š#ÑƇÈj7Jœ4%oµˆCLJ˜¶6-d…²¡h5+¨utZ üÖ´Ö²BÙ’Al…µnl^VP— Ój!`|%š(x]V“uíæY-lÊt´ZØè´s,@¶»žªøoYÌOÕëý™v­­ÃñÅ dË8ÛZ!@mk(³b€Ú1ö+íMÝ’jç½L¶ý©à&«u€­û] dëcó³š ‡Æoŵ©ˆ«u€MŸY€²jr£?JÜñî5ØÖÖ—Ȧ÷¬ ¶Siŧà;.¨u†M[Îy£0óƒ;½»V Ðh‘ü˜ÅµŠB’ ÓK‘LV“ÁûœÅgÀ|f…²µ9áFÂKÜkË&µ‚€ÚT¬¦Ȧ±žKOU Pë:ƒ)Óªá+Ü #ÜFÆôæ&¶Ô2^B~˦M7+P¼™­“vÃûÔ… lyè°²BÙø8£XóªñãO5þ¹ÕŠôŽ ,DgEð¬·ç:fa|YR²ñËð°¢ÁÙV0¢Ô†b5 Сða+ Ðó ”dÆFf<3¥Lë²ËŸ²>©¤I˜)ˆªá:4 £~œ¢­@1°aóà jãUF%Äs(v´ü£Uà·hÕ0q¬@ o/hŒ³SgeËïò§ùW¿Ö¾(~/^³@뜽@·©y€¬Ëh󢀯!«½¨oÑåü*ä54*^¿íÊ‹jCîohøòæzÙÿ6;£p½@pï3Ôº¶Þ¼ìÿ˜i]ge˯(G(Ùò?mç8fÒcÿS@òŽÞë19?•\ÏU2(” 0æ ï êªÐô1f j•'ÅÐå1:  ŸRQó@“Ñá„€j_Ýk ni*Õôµ¿äE²Šr‡’óÀ+Ñk`][^ è1|ŠÂE×ä½&¿Ü?^ ûî7ÈK è5åPÿôE±0Å9`p×ÜsP@Í9/9gq ðZl¹ wº^4h™£ŽE©¤U{-._êMWö:ä褲jš8 ~Oq@í³¿:dàÁÙûj ¢J*yÝ­çôÜvQk€#ÓÓ:Ÿ^ú6q'ôžÁ©Ð¨…ÝæÀ€jCË šÐàN…Ð$øœýb@uRÚ´…ÍI¥( ÂÀ:Ë ´A怿— V˜–  Ÿ“ª@™œeUÈ›ÎrÀ¾«œß–äEöú–€€­ÄÜEµÇ”â`@YJÎM§lûñ¸‹ÃnçÊj\ïØÁYº2@ZX‡’m£OóólýÞŽÕ›¾~/èg˜#v¨T ‡¦‡õóÎ5å4шÛAý¼«®ì§6ÍB)¿µ>´‡Y¸×ð=Q¡dlÆd¨k(iÇ’S˜ŠcWtàÊÀ½)·,”´c3ÉB)ŽýÑëösmšá}‚wûé!€ý¼“wÇ °B²ó½UÆf(ÿ¬u€žï +Ö¤RÄ¥VBì§é瀴?µÙUûqÖiŒw€?I[,%cN>އQÉq)E;ÀŸÊS ¥#‹Ži36Éu™‰b ŒÌ¸wJ뀼 á0ÆÿSLO,/;æµôà`±Ìx*كݨLdò%ƒüÙ7-â~*zž{Ÿ|õPXŇ$°ðY@þGí¯PpYû½Q©b>GèÏÉȸPȪ/{òÎúôã0 T5#(gÃ8‚Öª Pªñ׎ÝÕø%ÔæôTÛ÷ ÌÈ25v : x·Œ.…Nl¾ˆ¢À=ÖÄø`þ09”*eÅM´P°-Ð%Ìß|( «wtŽñ©˜Æ…ñÁ¥ß=”2d7;ÙhXÂiq8jзÅ@é?Fßû3É·Ò‡ý1+îßLSübÍ£©8å=Æá΂CdÀîw¹ÎF!€ÂA3tL-⸓JnM_cf$‡p(eËÒk8$4…K¸ÒjB'ª">^»QäÏëP¥ ·ZH ?‹{ ¥üx²ëíþ¡Wò§œ“¡\Øl9 ºØSñŸ oLس+ž1±)q[i‘?h$ùÓŠ@Ûÿü2~¼óÜ<×q.‡Û õ[¬ÿ"–@adÆÐ1éÊûäO0ÿ‘ ×~\W#-þOì)ëòãÉ_0 ÿc“‹mþçúîCICù¨%m4~×›(úO´~]eak¶QÐ\A:•_îÑü×y:0øÔ­ŠjZm2ÿ­1s+Z³X¬Ž£¶ßu– Yéµ#¡…ñ8±ø[ºp¶þk¼Cëï:É`Î6] ÐB CصÃzj˜ª³b ‘7œÊA°ÕT `‹ïÿùg'JfM/ùfA@㺔ʚf:v›µ¸é£©œ?¨60`ºÏ‚€Æ3t]&[ÿávÃ,ðÏMf %¯Ž–ê³Vñà0º'RÇøÆ7²Gå_š|©¡c*N’¹‘FgìeÅ<±ÍûTËßò¢Ï–¯¹aõMÙem4#Ð,ûÿf†Ò‘¬…™j4}Í£ó é›ÆŽË‚æ.ðÏåU†’ ºïS÷8âßÂ8™d€Ê4šEþ‰Á NŠY Ч0¥LC°½NɆïwL*¨òÄR©‚£‚)Õ–—q´|F—„’-ßRB)è¤?g‚*pB(ó‡ÙJ.çGù ¨É3»&”*L¦1s}ˆ66,%Ö‡<rRB˜bD^ÝCÒ«·4‰¯Å|:§þõ©:æÚî ƒm‘„ûûÓ8Q¬þ!CUCÈrBw_ À+¾—ÕÀGjº/楆‡ré¦Coý ú'ˇ¤BèˆÕQ™R#õõ‡uR)Ú•#b.x Ð|韌–Oåw]¹:bìQÚ韌¨%·ã®ãeþ©|ÃTþù9EÿTŒxiþˆ®Já®Æsá ²75+p ¯cü3å[X“üÃ-uÐçðŸs°u‚ûS¥‘¡TŒ=ÓfB9ö®–×TŒ½ãN€ŽFçÃ*öÛj4ÈÙŸ¦–öç¢wiý3™­J…ØkÚ]½fz‡‚Д¥CªÆ´|ªk#$c¨ËüÉÊÔ©%I¿fÖ•«püYå¡l0ǰn[V9(U_ýþ@?æüôçÝ[…ÿ9Gþ°Uø§IÄ«O‡,8Úøºö&6Ç÷ôç>œÙП·sõvMàþÏòGIŸÞdVE(.L««ØŸvß1LÖ/å×›¹Àþ¼†þ‚é_•´Rè+ t7–Ë£ÇìϬfaýl“-?«œ”ó»;¸@~SlT(Ž(¬z5»ÀŸ×_¿aù»vàwYþߊ1tØ›Ö"|pgËŽÞöqp³ üy[úþ°clmÛØßÂwÛ ñòQí‚ÿÄ6¾äõóúðwQ?­ƒ” Úù=ëü¹¥­SÈE\Câ•ÀBo—ÝÏ[JC–Zì.ê§F ÊÄâ§³2¾þFwìŽúÒD„r>%íõÓ f %·&ìþ¢~F¼Ç”Ò¹3îTlvø·ê2•õϯhùšÝ6 ŸÇiŽoàÞÖàgô3÷;•ö;íbÅÙuÖ ΞªJ¶uBÚk7búYÓ¡Tã׆äôóîsìøMÑoÐOßìôÐÏç%/´~ÓO^ÈêÏuÊqrÍÖèÕÛ ïªI©]¹Û”wÅØ_7ÐöÓµDÜ»ö¨¿É‰}o„áB…Ø÷ç¤l]Åúš±7"ì ThûÀ§·à^Ú… _ßùA„ýPû;Ü—[WØå»ÄRoèfV…rà!›:ƿ×u\"×þ6…óƒ[…÷ÉÕß6f—ðEôÓ*JeÊú %}zÛhoƒOoÒ½ úžq¶þx{J}i»0@7I$”¼êÐU‹tÃåC™ˆ àPVÀO+攃?,äva€/ýNâ§ ’:Ú)â§M2ïCIwöbfd(†§›ŸÂÀÙr`çCLRç­N1?#Qdé:OÞuwC@Ĥ3Á sé4¹g1Gž†Ý ² C©ä2@BɆ?6ù'I@ÖyqŠ”ÿ28£ËiuŠú×Å#ôÓ:áÅ©`”Çu ú™p‡Jg0;”¹ÜÛ§cwBcú)ð[Fc )?ÿ¡Ôî„ܺÔÏk€R?·>gû±=§¿a^ÃÆ=ä~’ðÊFâð–RI¶‡²ˆ[ÓesH±ÿ½ë#L×£+R?™8JíÊuÎÐg*6[˜ÔÏk·P?rnCHoèæ|sÀý¼sÒY(Iæô§ ?gçÖÉY ÙwÝ›æÿ§6ó_TçTΟ'K8¤Ü6”æÿatx;ÑõŠ%8èâ£Ë`P’z(Ÿ»IYžŒ†*eTŽô³Q“‘è¡”=KVP(eÏrƒòD×L‡Æ¿â 3ÔÎOE×on ŸƒÀ¤³À) ÐäuŽ¢ëï1Þ~›À=Ûô¶’+†.¡ L7µsÐ?ï†þýóîtÃ΄6oèŸóSÏþsN8øO‘iÛq ìM}µ&‚Œ›8T ÷íúÀ@±f`* €¶[.€}³X@w]{;ò±<lâfEÿ¼õ*B)ú§¼VV<8áBü“+ #ÿ³='í߇2 € uÇB`j ú™´µt3€nȘµ²hš…54~™÷ÖèÈÀÚÜZ™´sÓ\µV&íÚô X@Ÿ¡ÁŠú„žZG¢sȱŽÂ¬êDÖQ˜ÕùÉ , Ûn , Ó½u¬ç¦~`@>èi3À€˜xB6ÖþOÏ«ÍpdQ¤âÞ+èÍ eÁÁÕtaæ—)Ì\ãÝÀ|±ßX%›XÎ)°Ë¦bÌ¦Ž©å‡«‰à‰··Â)y6$–¸.kê0ìÛÄbîSk, еAli-×(tX¦C&²úºr`—Úb€}×eRõáÃ0Zþ£-`´k`ùÐ'Á4à÷³%(ŒvÝ{=ÓFt†âL­ OL™äÚ±­|Q ªv!3Þhûoþ™†ÿ𴼬&[Ê21Zþ¬!Jš?Ó%Ù:vÕŠÈ™ ÅÛϺÉ`øwí÷›ikÌ Å¥'M`+þgL™SÇTÂÜQ4dŒj³È zL‹35{X3UÌYÑË¿‘ž›Šÿ>Lÿ»â1GlƤukÅÿy{B ø7éÊÊòÜ€ü+ Ð?DØJã­ŒJeT±ðF(éлsºðè½ÊïK÷‘Iºªý*þ)¾6‰—áÉ>¡4tï&™ñŸNš¿V”ü'§°nÞÐî×sÃ‡Ì ú Ž €Ä‘Å‹1Í jŸZ½#º^¡8øÏ ªq ÿ[þ'ügs­±G,HóQÆìž4]} Àô¢=îCXGêo¾b¦Y†’Ƭ`þ¡lÄH“–©ïÿy¦pýçÆš{‘ßì>8á?ŠðvÒº.SÐè!ˆkK©•œv«ðSƒªÝ/èr:·PÕYkìÛtÎ(×èp8„ÚÄ™WÈpQ­oüO…yMw)ãänõnP¸Ó?à?—a, %×pcÀE“ÊùóÔB AÆ“g«_CM(Ä*¢¡Ôþ ÷GB1DÛV3 ¥Š÷L´þÁæ?Œ‚¥÷«…2@~ Ë÷ø¢²Ökˆ‡’­^+ŽPc?¥8 ú¥ÿyâçûú§t(ÕèAºaüXY¡,øË]'-¬ñ¬S9XO6£b°6ô[ªÑkVèèŸgêʘ[^(æß¡’¦ìlz£  ÿʆ7e묜Ð[GïÅó¿(ÿµÍÿS@ÿ¦ôPr 7†&çæÀª]( }SÙ?¬ÅPª™«Y`"x‚bþ\ðh( ÛÁWé-ÎI%W·[Ÿj¡˜ Ã?BI/öÇÂ_¡TIâ¥Nø§¶ÊCñßXÿvÕp ->POùj ûská†Rõ¥Y½,”а?ü3>K1†P û©f½ d/B~¯ú«Æ{‰Ä ÐÛGƒ>”âØoµWp?B K»9½´6…,à "}*^W1MÇ8jøLõ/ì!óùC¨ò{Så(¿×ôa5|X•$”4d?rÞB©ÊÒ¬»Õ˜Ÿ5†­^ÕDCéÕBš)âçæçm$~²Xb(U•h(çß;UDFç×l~*_¥70?'ÉÍ¡°¶ô·©T^ÉxÎ*4}°¡T¦(£ Ba 2 U|‰&¡ä®-öÊÖP_×9•4P?ïÚHýd^N(EýdLA(¬ÅŽÚ:"Œ5­6P?çÀâ+”sþ=Æü5{õSÅ©øÏ„Øý1"ïC!ôÓ_õSNáPöÏLÛÒæÖ_S¦¬¦ êçf^Uo0üå— ¥ý¤y…Ò™JM¡‚2úsÈúódU…ƒO~êG–NÇ­¦\BÝëÓ!ãÏÂÄ® zJæg“7JÅ•Ñ%Û;oÚKLQX¸ÔØdj! K¸Æ©º/Ä!±.R(Q—è• Ÿ½Ô‹ó+i6‘…5—É}¡úêá¸/ETò)76¥É©îUQèÙ¯ ¥s›šÂÄ †õÓ7Vpô…²ñjšŽ9p•)µ‚4êúFš´V¦½XŸ×G— 2{ø‹õy}U¡ÌR(ëgû,8V†ÉM鱟 žœmßn‡N¥ÌYV=¥Ãªƒ)Ø1(*=”‰=Ê{ ¬ÿèzèÀ}>_°ŠÛ%8rš8BºögRÉU\;œ’ºW",C˜hˤü®o»«kÓeÜLX>u‡=Ë*<}|Ò3…Õì¨Y LàΪ4“Ê«‡R±õL ¥*80*”L*QÍPÒ˜UµðPª&¥c‚Éû¼q}ïóYâ ÚþŒL ¥r½õ>Gñ>³â¯Q©b¬›“ê(âJù„p`×óÍÔ¨±ô[Çä„>]ßpŸB„’_E¾C©ÄS¯£>k*‡ðBÂFº: ¤ÑQ½AíztòÞGÞ®7o ¤Þ‡*àz¥åuÉ–¯R¡,ømLǤ1{†1j)7è[ì•Wõ¤1ö1Š„ôô’°˜ ææd1æ?¡Ô–+÷„²Ù¦y¾ðÍcVÅüQ’vŽdt wÑ—Ò~ý"„¢]‘JmÆ-5 bdtVu´LÙ…=6 õiKž¥Ôç ¹:ÔÖÕûm±ÂI‰Ò¬ÑJíJ˜^2À? ©ë•µ—÷š:+­ ªz%§ö™¦¡eóS[/Úg1¢}† ÉÏwÄ<ĪlíÓªh&”L”ÞŒE %.³]O^´O;‹ ì·sÛmÁ>Í£JÚA" öQä3¹2ó0·¢þνé-²¸?¶LÝ·¸?¿ÉDé*è%WrUµJ‚ßöшX°O;“–çHاU-D™(mSo¶¿O5®b¿ù§…ð ø™;塤´]#Ca6#„B(~=YO}‚õv× €ª† ¥ÿÞj÷YEH¡dë_L %[¿ÚÖ,ÚgÖ”Àß û<òðNÀ>×Ça~öyäqš@½-Ídz`¯3±PÜo(Õô™J‹5yMÀ>·¬‰ÀaÍ›^E2ócêœà}úÒuÀûœÈS ¡šþâ@:û¬¢RPr5g÷e÷éL ¥¿œ*‹€þIŸ }Vq(¹p&‡­ß›¶3&hŸvß2hŸ&ûs‚ö¹'M· ÚçíÑ´O\NÐ>7cˆû,Ú§3 )…|rs´ÏE¦t(`?Y(”ŠÉf\(;KnŸY³A¼Á­ë$7Ã5‡Ì™Ë!2s£ü¿®6t÷B~Fç2ÎØ;¿pá¼kióÓüp‚ÉüŒ/ƒÞ9 ûÊw¯ÏÉnì§Ëó7 ûé_ŽÉÑÌåâœIÿñOž—Ys÷M$õÓ — áäc/µœ ŒøOaŒf(ÑúãÕ`Rž…ÿy_qºòæ|ðÄ~zQ T„ýV·*ì§l JFØûx”Œ°Wa?Ÿ6Ï,öOÌ&üŽÅ{{fÖYìŸüúF%#3NŽÉøúÍÙc‚÷YUž T»ï÷ô'Žcüôo©3ðÓ×R¿,â§7­Q'`oŽ 8)Xµß-%l x»S'…Ië­?ŽaÌ ­%Z½Œ‰í ð×$´ þ㟖©+gù•0þ¬b~z!¡d»7í.Ъb”têyû¨Ÿ&ÃwõÓ“øBi\>)9l–l e`ÎŵÀÿ9Z•.ðž»ö3Úŧcr*0íd¯âÿøÇxú¾ŠÿãŸzø*î§¹þÕçðÉW±¼‘šJzõœ.‘UÌÏ÷¥ó3†¸ZW­â3,“^=cæi_Åü|ÁÊ%À3ª-ÀL#è*øOvx)5 h@ZÿÉè¤MkG直ŸÎÄ«¾@ý´Æùeýc®ê§1÷8””~ÞZÄ =uV†ã†W§‚k”UÐg•ä Vûg± M( ¶ßÀÏgÐF\K…|`Œ®bÿŒCójý9'Çøôç”k`þ³›¾ПS ‡öçf-¶P²ñÏö(Ùø{×{Ïy Sz$¤sokŸxq •×þ§Š&BÉý‰ezN ûv?qâìÈk³€ÿÉò F_~¼‚Ú&[ ”b%‘ܔЕ-0uL:µç¦!² þi›y}a ð|ÚÎôœœ >K\Ü{þ'¼ãGga ÿÞ*ðÛc´.Se&ØÔ ôÏnêGŽÌÑÛ¾@ÿœŸ¾MÑ?ŸÅØÂ„À\¥Ò®}ZàŸch wä@sžÒþú"ýS»ô»@?JÕe"H>”´k™£ÂÂs7 ûÏ»×µ?ÔezÎ1,­anò?ÚwC”b7ûÆ\@®Ut, ­Å,©˜ðMeÁˆì:kÃk½uÌæ ¢Ýp#{f7ìRhó+’~ëæx囸Oí¡í®hc¾ÏŽ{dž²†iR6"¡ø*ú_Æeº„S{ %7²„Ñb7 ×ݼ‹ýs‹Ûö¢ìì €~¬˜ÊAÂ) *}J¶þ¡µâ> Õ`·TÅiB©½ ù17 û£¡½~›rí£•CW>?Ð͘ý^QMCïPUmIÅÿ<ˆP ºè`Û@€ŽñœÅX3§F ¼·PñÆBÉ}ŠÕÕúAÚÚ €ŠfJÿ IÜÁ©šN(“NQ¶íØ€€…B6~¡3B©­jí·ž…¬4|0@?mž-çjâ4COŒÊª±ÎùSüŸK¢…e™¶Ž1øj1†Ÿ†`{†ü¦’˜²qNû‹(J¼šC(p!LŒA‹BÅY2ë?”¢Æ¾òC(顤Vûº »‰x½æËé(ʤ¹b½ñ5§£,SäCÙ w¥žŒÑ9Wœþ{žºH@µœ<ÔÍ8Ð.¯ñènäžb¾e +]§ ú³`®‡=#b*~{û‚Ùóu‚þ96 ¡€OƒåÜ™(I¶h–Ð??¢*BI§v—+üóíÖ”èøÏ¥X·3¤¡¥=;µSt ñX¼…zd“VÑ®~QøŸ[$#”‰lŒOÇl¤‚èâÞÞZÑh÷÷ù³Ë‘’ü™u^œÂ€b_%?–"èOaCa)2¸Rð?¾Õ3vµzëzA3ܦâ)úOÉì‚ {BQCISöMþyy`ÿ°ÐF›?¥QAò/›Ð)IqI§Ð?·Ja( VfócÈ0dÁ†PH±ç ¶¿HBäk0´úOOTÿÉvŠüsÑ4¡° ŸÆÎPªvŠí¤À4kPÁ„{´˜©o ê§ß~ ê§R CukGh$N²œ$Í·öÏÚl÷ö!¹Df«aø'±:„œÈ}pØ6¢Hî Å€ö1Ý*£ìo£!NBósËÓ^¡´ÜÙ©¤Ý³äí60?—[Fœæ`ƒÕ/îY(e÷´¿ü- ÙkÖ³bÿ 6³ø6 óNå7Ö:b4ä´ꕦë ÙkÔÊê_ŸþÚÞpFëˆÏP €ñ3wÕ;•Ž<ÞFÜÛâ¼mýŸ+ÃêW¡øP2ľMùòOoz}ä½¯Õ f¿’¿CI3VèÕ^øÙ7×’ùl+æç³Éo{ù¾¬˜Ÿ‘’ptL6ýÞŸ[ÑìG·ÿìÞa5<)1VF¿ †0±¤TŒý}Ê…0{mòpëpá›,XÂñ¬]vÛp!?c16¥tƒÁÆ€»k¯ÂðfxFjÛ0|úsläj»–p‹ECñjžìï+8¹xí” ;†F‰ƒôzÄ­ˆŸÖŸþ6µ ôŸ²Œr+ÚgÆ„ƒ¡qŠ#&€¿ð7t¥a˜;:cœÖfˆ2{/“«·eœ6 ð7•²å „ŸßeF["¿i_ÝOé(\r4"ôçºHÌQ…L¡æ°`—îäªBÆ~@èϧá0a’kÅûŒ¹ÏéÅû¼ š¡T¾¨œþÀš–¡p®b?Ú‹ú´S8 4èœlöS våà§øy?‹ƒø¹?þ9°†l:  1®¤7AÈB©øz;9xŸgôJ"Éá ¶¨w´z¹bÈÏÜA/ôt‚e“ø©¦æ ~Þ”/âç˜4ÝœÄÏ©÷ âgßܽv?ïPé ~ÞùÒAüœDg„2~œ3€F0/àçÒ$ì~®S‹øsì9ÆØ G€%ógkëÊ'k° ¹rs&Í9xŸ§Ñ@u‚ߌ²+iŸˆ®—¡æÀ}Þˆa§µßôH5ø?÷îÓSêÄ}²ÆJ(ø¬EÀRÁàÓu+ûsÓOãï4b7Óå´Ï»¢uÐ>Ù£¡t°|>3ˆ…qÛû<[Ý öþÈwØû×:vŒÿ×[èÄ}Nܧi×ϬXf¸‡2æïË9ð] Èj6à}ŠýÊuÏ*Þ§2³ÀµcÜĈ¹JŸ?ƒµø¹´/é¦|ü͘„A e#Üueæ‹bAì†|Š}w$†Çñó¦T8?ÿ#ëܲ$Wu-Ú•jAó†þwìi= öý«\å°#l„¦„½¶ßV??Už‡2¹ÂàT|ˆü¼kƒsŒˆéþ6™”Q6»}Éü¼}dCÈ\m|BÉܧb—P:<î*s•ÉÝ„²±XÄò&„ÃénøìFˆ˜Ò¢þ—›}KÉU\?¼;¡´Ÿ_ ! 0÷Ö¿§X#¦ÝoŸYö‹»Ã¡`3N±—ö‘õæJ‘Pi¯Hs(U ý>¦#èP¦„\Æu¥¹„’‘‹#³}„¿9G*”Ì´_Ë?Ð϶ô©úé ÎP*7£¿)…É'åH@VF÷½òç|å9ÍÌ­çûÈ[Z$í«l|ªòtUn5¤)dІðÃD{El[ý¸‰£ä˜PrM·Øl#… 'œCoõÓ-ßC@­öVBAš½—õs‰ V³¡¤äöw¡åÝÌj øÔ–€,ûÉ,œP2©+‰¯! ýäÚ…2XîКq¹ç”Ë÷èOUL(ƒû¢ôæ+ÐMÿBAáôò}èÒ»âØ¨f€ÔϰÈ],ä#²<”œÙ]€ŠÒìuÛ«L”eʤ뱭ä\0î=÷óV´Êœ9Nµ»lšÓP%÷s  LÛ"º€÷V þÝ·äOUöÄß›.ÎñiûÎ>o•àÏØn–àÏÞýtIþ\ƒQÑPú¯!ù£?ÃDO$øŸ›J.本Ú*¹Ÿ«ái&-êÛÿÞ+¢ ìçìÜ õ%Úu% Ú­à~fuO“þì~ä~îêûKîçÌ»aÿæuÛ+ˆoÏ0V9 ô¡Uu]äØßQ`Á§½Kª*ôg“KQÁþ¼Uû-[4¥ ·w“c_åW ?Óç>RT`¢‡·¹ž+ò+çáõz%úslùîu“c¯DÏP6«ŠŠÏœë¹®:£†ZÓL°¥÷‚í¢Œ¿L+î¼¾ó1Éž¾J%ýs8RAŠa³ùZ‹ð†â3o¾õô ðŸO¢}D¹ŠX ²Õñ¥æ•É$X@‰S¬R@sUêu(èã°Ÿóät â¼qäÏ7°€nÖr(ù ¸j2”öï©@L!¹àJ­‘zç‡V˜n¼‰h@€fjˆ?%ô-M4íwrj@€æŒÑ¤T\Šî(JÌoænxè EŽÏ’S{S6`(¹¨ë÷'4<Ž H}˯Çq³qèß"ç7Pýžþ¡dxo;¬Ô€}ܧָ¹OØðËPÉ=s_o‡žÐ®5€rt•Pø¡Ï‡4¾0œÑ8¬Ïw4I@1hËŽAºí3BIë¿3pëìar4²7A@•}Õš  ìËBåïf|£a ¯ÞU`üÕ¦Äù mM‚ Ð:m¤XÄŧ¯•Ö¿Š†DôóS\t6Îfƒ„’Žmëò»a@½ú‚z;_„2i>ONîÍ.i4†Êå3VÈL íö/Öœ!ç—Z†Ò˜´Õ}Œ˰:~x €^‚L(˜¶"~0 ÓjZ4+µ‹dÚÛÅj›éIÇ/0'÷ep«”sj#Ô­±C!ÚI0 Sý8·[ú膶ôi SíEž %7+ŽƒÛíü)“¬ZàÆíñir¯Â¹| X‹w:h@FŸ  þ1º­Žé¡rzx¿ºX j¡ ór—CâÉÓ%.lVh·6”ÅÜŸw“{µ$(מoyfää–/qtÆ“²’[uÇO< ‚ëÏMï$Š=àIÚÔ %7v E½9h]W’g/ w(U` 9žÔÐÐäÁ5´ye¯êN¶ü¡Í´æ2¤n é4À‰QÛгúéq °ÞóÏB'­æ2Èl™V&s5èßuR@…S !S5œ Ùzsk2.ó{g‰‰RVC©¼½°N ÐýMuÕÓ7o3רYÑ~øRBàŒÆÐ't8úÒ‰=âç…"|WC}p“îþAáÔ¬ur@ÝŒ¢u"¶RRBQk„é3£5™w@º pJÍiL ·lL ç#t.ØìÏ-.úÌ ÙäŒG?¶O'kpÙÞ'¡öÞÖÉ<†åp__LRº?AL¸ê÷4Ðü”Ô™l_ˆD sžCY¸£ßþŸ’óº³Ô²Jrââ: o¶spdÈá§ß{C^þ;Èwâ@§¶ÚC™˜}õ.rP=Ów-Dhm]T¸æÇI´àCAª½¸¢-ÑN¿­!C1+ ï!ƒô½iDBGž†¤Ú3¯"„M"/=HuÏ’PPbÕ5ú à@ï 4ˆ=ê!J'<‡Æ?>Cdhlƒ8P'ª¤²‘ÌBä/m™@ÕašQL‘áãäºZ*”6~F‹A&ÐTVD(™´  •E`M³²9Óó%œ œµÙ î^ š:ߟꄥeE(¸%éöžéy nDÚ©@nVÊæ:XŸjìÍ'bäÃAtC©¹i4š3î¹1À s§K8’NÎñ!“µ'Û‡JbB0ÿ%P £n–¡ ?ÙÖp;8ìOÞÝ È™Ú Œð‡ÒÊ$œ®ZA¢žj–CÙÌ‘-wdŸâ'C"èºÖ"èù|ÿ†s.9 "âœ0Ê` Àð‰'ǘâO¥c[¼Ó”ÍlsZ¦—3„ˆc«¤†¶–yÓeÈéÇ[x͆N¿oZ3 éÉ–·vhz“hD%Œ„Âüøa!uƶA(SC)ÌVéV€F2‚åÖ>ºÒBg–µ´A$Ù‰¡,<§ª¿7+lèþ *›SµA¨1¨¡TØèÍÔóPòú^§wêÝèAèT·äPvßôõ6Ù®^Y Ò@÷òK'¨sE‘@¢r†Ð¸¼¤1mÅC$‰@õóÀJ"Pmòž‰ õ¾¼$‚ÞEé$´Ú?Àû¾“PÐ2A²úãIN2AÝ¢MÚ§µÆ$´83?w÷i>ð®È&¡@îÔ¦¨ Ó_PTPÏÒ³¸UÓö§Fÿy&© ÝÅTP•çäßóßCÐl“PP÷Üi“PÐO6:±¸MxBiô»‡éåusÄÝ‹'VnEÛ&‰@7ÆŒNíïô1†Ö[‡f;ïòh ê?;ÊçS V?q°ždÃ¥Y6¬)Þ€î$´:ikj àÁzr p—ô³³ðêI®²=l•ÐéU+ƒ^äçÓ ›‰WLSXh¥C·I»ZµÜv¼ƒ¦ò§><„2TJc0ã;úáÀD|žÁ§=ý)dk/MRÈÍ!‰sÀ ms%6½Ý€Vïê Ÿ¾7m’ zÇ›I*è:¾Iºõ¥!ä‚Îiô¡ *Ã"Ôêß  º¦Æ­I(¨ÛÞ„ÒÛ¯=.ú´wZ\Ò9Mf.>Îé——8 ·ŒiÑÿ7¯µõgº´×UžD‚žéŸ¹Ù©ò^ˆHа$ °ý;°‘ºïÛ@"SŒCÁDp-HPWß64ÙÌ;Á€Ò<̽÷Ô;C"´yܤLäa²Ý$ôèËüó1(:QÏ’¶¾Ÿ%Õ. 4«”ÂÐUó1íÇ­[Ÿ{”Ñ®QÅœ#ߘÅiÀ¡,Î8|GÒ6)®:aÀcVN{Tſޅ?\ø|ÀÛJ_?_LPw·o‹LÐ#'d•Ûo·J9¬:¦ ¬Ê ¶v逸}š”µt†Qé7-ÕѬ uœ‹ˆ qÈg%w(êñ—©´{µâ P÷¯nœÓ›,k5ôšVÑ~±ü%Aè$ýHâ€Æg#i†"ÞÓdªÆ:š ±`Ć8ÿqf:‹ T¸›‰¸:ñ1ÞÀ^©NV[ÄmŸ#£ÛAžEÜú×X`-ol‘t¼Ù¿ˆ]G~Â"T°0æ[Q@C¨ÅPÆ0*à@Å3 »9ÞX$ÀMõ©Þô^Ä'$/á@»þläáph\d',ºýwCo‘d·y‘ZìO.²@M;o‹nqük‘Z¶Y µÊ3XdÞ°ý ÔØBpé´™?¥¡dToM?¹þv]I@wÃqÚ½©¼H½ûn‹ 3ÐCIË¿[ã‹8ÐÖŸcÒò›Ùg±lÄ>×"Ô À‹¾¿·Ç–0@"°†Ò¹½ÈYuÑ÷¿Ãϱ'Û|æ ËL½;_‹ »CŠÈbÞ‰c¥2•îØ& ´yÿxZEˆM…®Gï èçÍMhUS„P‡:¾€`cúH)2éùm¢€ZÕp˜åx€÷ú4£ý¸M[4Pß‹M(ÜuvAé]šlÒ@o,¡Îœy9_£ôïÝÝÙ˜ʽ8h F¨V°”óæú®¬ ö~TTs{â» t¸áQz‹`dà~(•Å=]6Y wšÂ†ÂSL“ ½:º»1¢í"‰Ý]ÁjÞŸV|mwW›,Pú› ÐVßÞäí£ÝøMО“6p µXRWîúv¹dƒö®hx¸D è "ªþ bAOõnCÝdÞuÙßâž ðø{«ŽÑŸ9æ³­z«0Û&h}š+69@†´„¿\Hþ^ü´ñ‘ä.O¡`WÎ^Í" îøœG<ûħ‡>%tÒþè„r@»°*¡,º·ÝW”î 㼡 ²W”¿“.ú©ÎNâPr0äßìSéÌŠlJÆóÄ aÒåàˆHšÛ¿ð·Kõ ,Dõ.mè¶þ&…ËÑO!ª¢@¯Ï~€ G™“ Êg³Ê¬ø4@N?ÎÆœ{ÿ™¿ÈãÈâtx <43å9)p@ÏPã¼PPoRþ|òí5µ$4eÍB1žÓfº}U»¬†6Ú™’¯g;˜nïaä ¦Ûkw}ÞóRŇd¶ýWl4 b .ÇÁ§Iø/óPdÎßÓd$ïVL!ð¿ïç0vþ§¸h%ƒ­Y=ÁB„Ûƒªn‡ í½„³^†Ã'ÂRYx »4îp÷§²Ô¤ ×ÔÀÊ’=¨d€>×&ôÜó’zœ<|H:ý~(‹‹wÝÑ8WRŸOÃ*Dºð$ ¸çœ†1ÒGM†þD’ª½„ ЩC.¶ ³&H¯-ðŸ§~µÿŒjŸfáfÒ7?€ž~0À?ã±qÖ@%ŸÛ–ECÍÎÇî}`ÆffÓü3.þùÄ“ÕÍÇ ÌäÞÎÛèM—7ÃgG+¥¬zÛJþ7éx…’†ïR¢ž0²|}à/õøÏ%dwÿˆÿ4å7@í5¿‡‚l{ÕÈu<³Nw¹cï,k‹°X%Ý~aý+¿•&ý#tËùé }úëýáT…‚RÕ•t`¡ò.þ,@¦uVZttå{ PT"â‹,|>&Ý~#ÿCÙïÄ‘Âú÷”"ôô.¦ýƒ×Ÿç€2“C7¶£¨;s=± ¥3\ (‚6½JÉ ‚¦£vû¹ãÄšÞ¿îêÑ:¥h¯ÃP2†}„ ¥³Êø~ ¶_ým0 |Ú‹ !K«vB]1Äk~AÝ-à?cÖÍ¡ËHÈÞ÷4ÀFæt)èç É1˜þç·Œ4¸ùùÿ™Dd FÌH–¯?¢ ßR™å*ËÂ,S~‘ÐçäÿÊi~Ìô•Òð{ḠÒÅ_¹˜l?<*ý«ïæcêOA(iø£=çéô³î1éʶõœ Äõgas°«EÊád×yLYN!!=Ù}lmž¬+DBIOvWî†2XÐr?µð–Ý+¡tZŠP6«Æùõÿ|6Ѐò…™RrÛÓoÌa4¯{˜ hcÀ¥Ñú´sXz+§µ.íH¬ÍÊAL½|,Ug(@Ú ’JÃÔUôwo¬\µpPJˆõD( µ¯~{ËGÿ§Þ%4 («çüóy(Þ^ §=o€-útÍ ¥×YïØy2Â;r ž`i(hÒ4èU…’+m¾w…ò]nVÒî]êÐ ÑŸóÐÁèˆøÜ ]H±e6”_f@(H±W½F/˜¶ñb¯Y¿À€n!f‹ê#%íÞuæ©° ¥X8ñhc‘ eÑ¥›¾”š94Ÿæ¼”½þõº7Õ†žú áŸC€ÝPúÏJ&åØë þ946—Îû®?Ë©è'â€<èNcr˪â?¨ï…øÏA¼}„ÙëO¬Þ¶OeÃB|ÈfŠù²‚î¬âþ÷Bög~Àþ,Šñ¥À@Ž*ešóù4ظ(”ÉU+‡ƒ"ö§¨½p¸ï6r¢€œsÔ Q@††R¶ÆBiŒšÉ‚…ÿ¬äŠðŸªYH¯²ÿÝ ¨øøÏéïGüçwü.o^!þ³~š|ÊfÝ¨çØ²µ W‡¤!iû¬#TóÎX…üOgvÐdñ3yqð?s$iR‚wÏÌÀEe¡pÙ¿§„4{c&:ZÃVq¤,tÊ!9æ{N ïÇ“Mh {ÖAkzz4t¤=ÓZ%h° 8„Áaƒ÷¦’ÿy”‡Êþaµ„r´YÇ,8tð?ï+W Ÿ®Q®’䯡 þ¢]­lÜNÎO ë5DðOÝpǦ~4¿ne‘tìmÜŽ!TVOê4•e†ê0Ñ‘RóЇ‚ŽÛ…SÀfeiH/VÈ©W1€ª&@ÓJbb¡ ?ÆA• ¾˜¥ Öo* ëÈ$ËašïSü3~€/³¹d¡[†Š£wåP;ýž%®ÅÒÍ7¸³XZ%¡äøß›ÃÚ],ÍeV%èù‚d=ÜÙ“O½r [Þz%¨.ÿ B€Z×DWÁÿŒß¥ï3Ñu((—Vï×:R°‚ûü¨èIònM.àÔü/”ÄbCCšùž "xv ØJocù4ëg2GÙÃÿIE8"þFòúô1‹†5ðŸ·*±WÒ߆zàu ÁÒº•‰)³øR‹ƒÏ=+8„tÔn>@„^9 ,5‹ %ç„Â4úm¡s3”£wÝD¨Ñ`(ó'-”5~FïJ#ƽ‚º«zↂÔúe[?zûˆÆMÃå#Òöö ÀçÅ@Óƒ'ãÒC9?‰g½êMýÞ2¾7B€¢®AB£»‹„ËPT/Ý­ÌŸ­íP+g›/µ™˜p|æÃQˆë¨ ¨#ã!(ƒã~£ë?ÕÙ4”N# 6ÎÃvÛèú/õ>  ^J·Bû÷ØèBši³À¯Ãa¾U6&ó åð;1µêö¬>ïü÷tUíA³á´Jt†¶B9œ{u·èú߯׈ ðÔ8lÇZûO‡ÊPàÎÚcD*êŠñ¯–¯µVèþZ“ù«H˜ÈÑŽnoKh£ú;­ªßTG=ª:ýÅŸéÎa B™œ{?$åÈ28èšsÑoSµTÎïíÿgë«,áÜo¬I˜L—®‘û6 ZïH<ø±×„€ÃèUvÞÞÉC8Û4Bß $ë³Àcõ“Å…Â-†2þ½ëÉFôÙg¡,t\@´éžLzÔ„ÿèû¯ÿú±ÐábqùÖýŒ–ˆÃÂ`¦‹^ð?c¹³|%¬Þ åp<­W!9‚Ë|¸û9ÿè1ýÓ‡ï Ñ?µz$ÜLy¿èŸ¡F²½‘ýã½½PÐLëºFü§é'½ò<7qàÔ'5§¤+Óu!( Å›0á?Õ£ç7± e÷ÿ^ )e˜;é?w®ë€Þaç PCï¤ÿ¸™p(ƒ‹JNüÏ14 wð?‰ì„ÿ¸¹p(¿ÄŒÞ‰ÿ¼VÜ‹q1ú rý=ôà_9¢.jpc–O‡ëX6ÓØ9ötñ?…–è3€Ë*züÇØ«“ÊNíàµßèxy2W–¡ŠÎ¿ª\(™‹q´Y×;ùŸUè¡ éÓÝéûGØRBUÊÉ­åBH¨¨¡yïdÿÐGéÿ±WBÙ„‚lŸ……*8êñ @ö'Œ’Je&ÎnR&èꀕq‡ác”Q߬,VQ/_k³–­X9LiæÅ9¸š#”ô}¾í'IôOQÂu(—j>f0Åqøcû¤ 5ÿðÁ¤eÃLAr@£ýÙÄòêèzøtq¥1郒ôç­P e¬ß‡;™Pl“E…ÓÏôŸLó¢9‚þ³ºrcCÉ$¤á%b_d¨˜ ”Æ2Šíc”S/³^Ú~€^žo(JÀãÞ: ¢&•çý3*õÐAÿ¼ÅK+ÊŸ_±ÝŒlù<µËzÍ6“ê‡ u³“ƒ6Öß|rtzžczÏ´wcD¨Üɵ€¬€üÏáë亶®w¢j÷`¢‰ Û¾ŽQ1÷ꀟ8ô9ˆþ©*N %¶ÿAô™n}ýsƒ’ȘəœCv¸ÞÅ úÝçišO³YåÑ}šôfüè@®¼½è-Ù¥½‰{}ûö óÊÀ«F·bô8„jóÔ)„‚tJe"ôQY%­ÂàTÌV¿ªì­DÈÈÔ“Ü×ýÉV>$…ŠT¦H V —‹?•Æ?•_×ø{zÝ„¢nÅ ZS*‡±c5öpBéda0X4;ñyw›w ~T)º][j¤UAÛGg´úL†R,àè5:ñTÓ±ùùóu½½ B™?µ|¡¬Ÿ$óŽÙùɘ UµJßìc0 ­¤ºP²¨doÛ6é?njJÚÿ·ä‰;#ÈTHÿù¶ß¾ÁbQ‘BA™´7éÆ$% iô‚ô öž¡Æ$.fù Å: °íjü=ùÖTf²t•Á–eÀbí†rXr#“[lëàØÔHöÏêZý ÍÃOôvñèØàÉ·J6ºØÖ¡kP€&×—Éü⥌žPÜ—Âþc.vÕß0ýîß³ÿÓÔ!”Îí =I®Ìœ Eµ…²ô­­‰âKf3¤7Ûñ]£÷g­îQé°E“¦BAcV5 %MÌ1*Épe^(Du\a³œ¯úCèg¥%(ö?ŸÊõPªÌ}Lò2¦P¡tŒ/¡s^›wt~¤ئ±Þ~Lý EÊaF/G²IèW´ö™ €ÞÚ> þÞf˜˜ b¨å`2A ܃?”O³:ì8 þñNVrOšrÏ”d÷QéÜŸÈZžVÒ­mê(JcJw•0øzÑoŸÕyõºy`.8SQGVšãûsÑ+™¤þ8»ONãøö6’2œ…3Éý ËŸà9!ÆS&ó…kšIî€T¶¨GÊáÓæx5;ë??Ò?ïØ–åC“鈞<`Ž€Ûíس@ë&¹?kÙö€û>›éŸ…¢P8²ÈÊÉýqS™PúÏx?…ýérf¦°?öÔ'ùŸEHÂ>ÉÿÌü1 èÉ7|ûHýAÍ •B/“ŽÝÿó®ÌædC+€v¤ƒå¬Z}LZñRZ(*©Õ÷Ó À›ûØ“6-Bög3Çðï¤ÿÀýY~Ã+¤»¿3ØŸq Úò9sd’úSX™@ÞÔ¡¤ÿu( þÿªÞ÷Zd½UGg§úÉñ\ðÿWõ†ô"÷g:#r‘û3Ësæ e´©énqh—¹?îŸ×WaY‰» ìÏU‡¿!ÍîÅy :äµÀþ\Í1¹ö窾=‹+€ªýÛEêOO“AsVÇâ «~4ukâ£Y¤þ ¯.We›2;ü‹ØŸêýÏEìOítVeƒiïš®„®êöü3,… âÅé û½PÈæí±ögÎUV²Húsô*)àÙs¼^aáÚÕ"Åiûˤ7[1\ Ƥ­/ ?çqDsúó9´ïÁŠcÔ(”ÂÐt¼€þœ»kQ¸€þœÇi‹sÁ×5ê, ?×ç]ÀôçD‡M*ù!§‚`Ó8»¦/’_X˜‹rb/^y¯ô þw^¯³‘&˜W’•€ü9×ñÇпJ¶9ÿûQYcëꇬG ÛŸËËõæÏ”Åö6·BÆèjó¿³:tÌÿ¼w²Eð~æþ4DFáo^fOŸ¿O† €¨1»/šö Ý«Ì3Ø=) ym½¤~'ÏnP?ó˜#%Ãßñ-Å`®ýçåcçxw­Ý B‡ÏâãM˜ü ŸÏgs* §Âiày]À÷¼ÛY¡¤ë3T Ʊã‡;°†ëÚò m{–Ÿ 0?ÃQ&Ù)¢P(iùãšìôÜg…C€Þº O¶©/”ôd‡ŠùCIËìBccذ8€%ŸŠ(ÏŸí Ÿ5·md1Cˆ‚Pr 7Ô =”ôd½„er ‰³dYðdÑí€Êé¿V±¹†SyE(Ìæl>¤r²)ÈÆ(¶ÙÍtŒå·l3xqï©àn÷ññ¹jõP¶3kF9läì‘Pª.U¥¤ñ¯jÛîçf†2˜núYIëw¾K(û?×F ^õO8tgõ ÆçÍ, E˸#AæÏQ´&ëç.ÈRàŒÃ§Y“ðóÉçC°Š³ËSú‰GG?|©|¾"Óº†ZŽÕ|RËŸöˆ›„!ÇnJIÛ¯­+hoáÐ~C Vq*Y@ÇÜÌQåú{4¬•«8{/Ó@W±a¢Ò ª•‹8•…‚EÜ~ŽÁ"NƒTjâì‹+ó²„{:þ5*áž^<†ÒÎÏæ'·²Š”Á Ùð1‹qŽb•žÿg‡·ܩp ¨Ñ…’îÏç9¾vÆ­UïJZ=çÂÚ¹ ¡½ÀPr ø¼š¬„{{ •pÏæeH%ÜóSÐqTÂ=Õ —Ñ|™*ážU;ù¡ p]ý3éû;ƒ"”…‹ßÓ p­âPàÿ0T1ª\ÿûó»´ÇÇh7} ¶¢í~Wâ=?¡KBA(¯=g^¹%&Èx({à}åÉÍJ1G%Þíæ©d(o)¿6”pþ×ò뽸³§Pr»-¡ÌúßO-nvŸ;pbèŽÜ¼Ú¢ãŽ ¼Û¶¤rÞ-›Pw&k•Òùe¶?•Ñ‹½žó,®Àý7£äË×>ØòÒ‹ ÌÏÔs;Ø|[˶¶[,ÙõBe—ßÝ„×æ¶Þô1ÿy{·ßÆsâ4üï{íCÓ©bkô-¥pãlÔ’ñó\»}Ü„=s4ŒÿŸ:Ó† ö±GVE¡À‘U¥áhõŃpèG!›–”Ÿ›ù‚ò/Ž?Ñçï—+Üyóš©ôÁsú­0CmUC9ŒÛslo@{®jÏ¢UŽaþÁkn‘‡~O©þ¾•ë7OE­rSZG(iñGUQ¡paÍÑÈ'üÕ€õŒáŠþTkÜvóÜMÞažÄO|?¾[­1ŸX¥’¡L¾êCÂb6×È­qó(Ü8ÜÅEÚ3ñZg&™â¦¡ÀÕY(È<â–RãgS2”ÉñTæ ÄO<9.~àžqŒloÐîUCJÚýV5Ð=3­äHQàøcD÷n rÛ§Y qWŸ&=Ÿç&Óíÿ´w>ڤ᫧u(ÜãÐ/ç€Ã6 ¨Ÿ*eð—Ÿ80Îò3Ÿ\ÁM   ~ ©ôÛd,Ï“KâV Óßiüµø,ôúŸ÷¤Ÿ˜´ºÏ2˜¼Å•A[Î?ò!Ì ¾Rÿ]q¶Më¿oÏ¥êëí˳’9GøÙPƒšÓÇÌþ;Pä ðŽt |Þý½P·¦e7ôùZJ±ÃÑØ÷âôù»x™¡¤#[XVœ¿CÒ¡ñßýÐm¶Q€~îñèY'ýc{Ó'éà{¦Ç,¡s„_þÌ`ü€O¡ƒïá–ϟ ΫŸþq/B¯xç$Ðí§vùüª~%}ÙÜëÀ{ÞxA/Œ]TÿH ~·¯†òÄñ e3tß|)X~c2òèõC¤~&§æe@¯ŽäqZêÀ{®&‚f(£ÿÞ®ŠœóBAÛ/U¯ŒÌÚ¿í•9Ž¡÷FoÖVü,âìEJûYËôƬb…|{£/ë5Roë÷þöóxõ½y Góëά—c½sGBÝ3BIg¶i'&J|oMgøâ{Îo2{ç®>Jšþ§çPÎo𬚾²ORYx[¹ÕÕÇZ½}p#îhtîäúåO–èÉF9̭ṃðùüð´jÇhúä–„H¬¡Tî?rfí“;Ò×Ð'㲪ùeüÌûäŽø¡döѱ£Ý矡<ñrÛU½|F&€N Àg˜ìÐŒ]Ó€úʇ'¨È½Y¥ †’Édwè‹Ë8Ïd¬'­„P~r>BiÜxþPï¯/Õ7³é½_ÓúÉ[J®âœúÊæ+OïªÃó_M œPlù>QlÕû¡tžóÈ,ô¾viÐv|(iûn£›JFvtí‡Ñ<ÅXX?ñ!Ž €Ï…~âTÚ>““úRUM(åPÂdÑÜò‡`øK¯Ë ï?”æJΓ(Ñ1èú÷yÅñªÔ†*3Ô’Êx³”BÈ)Ý-bCYÜ%˜>ñù÷ÔvÂgüŽÃ£ºß0«Q™ƒä »QÆ»7‚îÿ;”’Ü_¾[\}øZ¬³ã 0èþ߀úh¬$ñæÖâ3†¾/ˆÏ¸ÛÇ䤮êÌ~#Ý„Ïg¢ |.ô ¥²™²uü©œ† Îcñ›oô(ÝÿnËç'.5%ÀîÏs±ùþ ~ž`Zl°±FR&йç@ã\É}>Ïø+?#æãóYÁÅܱµòCÒýÔüÉeN…ó,£ˆ Ï'“b€÷¯<çë1áÐÞ ˆ1±œ«Å/Ìô¶‡ 1]z?5ø»¦?…ý¸é›JÒg[¶öÉíi? ’>oL}ôÙï¥=Z{ÌŸXWLÓ¹gljtôÙ+Ó§C™Ü%ap,¦eø#‡5e÷Ò‡ñh½g þ<›/cáíËo@ŸÏ&üØòŠ…ù³«<ú|‚¨c»¤ZÑbŽë²âOD…ªôôvf#5¿W‡áÙe+=\Íy<÷ãî äÏ-†ñY5= 嬟o8¿?nŸsŽžcþ:ós0ƒëõùѧµÃ5Áú¼«„ùÑüm€óûc¦—Kóã–œ°£»zU¯Ù,,§e&\u¼ö9AûɹwKܤç˜> gu»@³üý¬hf¡Ù{·p‚ó™Y²*ÍÞ^ü¬Ü˜VS(•?™›í³2)ÃëƒI߿ۡ˜€ýÄÛüùíLsèôý»§ýY¹Ç*â1Áúy’ &ðnOrÂlÚ˜Ôßb˜s6fe…ÊѤïÃ@³ycšCÔêó‰%NúþŸ¶ ß?Ÿ´àÙÅpècr&¸QŸIïÿ¦ÝÌN‡ÖÛs³s-§ÕòéS[$“³@Ùþ•ƒ ¹­UùNGâ ;ùÌ`¸•Á¼gÞ¬ÒcCÉu\­-” bŸª×t*ý‹gìçVà¤òÇœpý#ØäC:ãtçd6Ró ŸÊFâ„4‰ú¹Q×9™\ìô¿¹˜‘q_~`>3´IáûEóô .¦"ywt&ãs5ÿµÚï`AÆÏx&Gÿ;ÜN2~ŠV²“ˆŸ»í1“ïù¤ÍÍöýn$ü´íç±±qg÷ ¾çMes}Á ë<4ùO±ûy˜Ké@É<ª"lþ¢Øú™€üÜÀç<Ø‹XÓ¿[}ó8̬Q±d(,Â〱>Ôlï¯,à=cC‚wkíæòµÚ@­ÏçCú~êRB@¡7 ?¹“ãcr7EÁ%Óé—(cð?ŠcÈágNqwBiÛ€ãØnñN6+Üeá · kB½§² jB·8)¡lþpÑØnY~z¬l|Š.òÞóyx xÏ[ J&Õ¯Ïת܉늬ʤúÁõΪ,#ônÍã'VÛ|½?Åéi €Ïø‚|á?7Ê¿Èø)6ÒÀç-%ÍÿçãgV+G‚5¼CWaðóD“8Ÿww}?x‹Ð.]’¾O è²@LÏÆÔ‚ßŸ{ÁKJF²w“·»æª{ÈüÝ'[ó杻-„]ǾO”‹Èp­¿Ë“YpûclЧ0î¿w"QŸqbÝ, >o¡[(0~o:/xýsªýZ(iýSXˆT~·NÿPèë.`~â‡rbZÀüÌ9<Æ`ðwt(þ: üdαIã×Mã¿cÿuï)fƒÇ5PõÜœúÿe—hÁñÔˆãóLÖ*Ÿ™õ]³ç‚ã‹6C9œêi)¬Ïk¥û£ù‹Õ– 7اA^†7Ï÷÷ßuÜþÌvèmÃó¿¹ÓûãµG6`Ÿ¹aÊKºA^‡ì²è¡ÑbnËÉ Ú…nÐ¥lr~>íÜïÂòPOO»Ðþ]²ÁúÌ©‘'®,]Z«ìÊòPQ¤B‘Cëqœ:>"ŸæR¯ÁTXªÌ€Îê3ç‡"ñYû&ê§ø¥ŽÒ^Ü>ú¦›°Ÿj·föã:“PúO½`(ƒÕSÃ'Îu\q¢Ãnviõ¨²Œ ›kº»s!çÌéÝ=–}>¦Õgt÷y·6I?öø6H?.) as¶ø¼[ռÃs~;ö€KûyLÜ }¦Ë-¡3ÀÃÐõ,*ñ¾ñNØç3qnÐ>ŸáxWFëYõãݱIv+Ndؤ}^ÇqÏ¿öã°l¢~nòíž.,ñ!ów‡pOËMŸws£–þÊ&ëóû| XŸOÌ`/Z~ó™Áú|F»½X^øùí]´ýæ'¾neô’’¶ïÂÅPN³ÉÇØÛ67'œ#µ·K£5(ðö8¥¸Ÿ(%¯>&ÛQl)›IIóÏ'ÎåÜóºÒ“Ô•|‹ëèÊ`}NµÜc$Ç IújàüÜÒøPr¸Žåæ"à&íC·Ög>ýÄ0Æ—áô·sù˜JߎNÿùìÖÒÚÎ÷ß´¤óýRBXt<ø•ÏçRÑí2è•.æ‘·wî2@—*Ìwj>$§)”@(ãgö=\¬ú|(Ú%Hk(™W9=êÎcÈB8?áŠ0øqô9G÷¥úœãþ.¦@g¡äD0„P %³3ƽ8HŸñ?ƒU çòß…oÔÉY žœ~R£$A(¹¤G^ùi4{™ôäó½€üÄW¡»ÐžüN#ÆNÈéÿAÄRhÌŠ:¶o+>.­]©ÈçEG„2Û§rˆù¹Õo§ÛöïµÎüy?1?«(`w†mŸ®Ý´}´ÏÇÝ:^íóÆòù mÏÄúø˜Ãu–l€ Ÿã5ð™ôj=UI.’º1†ÒX·]%t.·ADÞș.½—ÚÜ18r_îó’äòù,NRÞ.‘'…ù{íåÝò1ƒÁ«û©ù;‚±~Ο¯½éL5 žÜ[LÒÏqŠNúxCël˜ÿì~T"ýøJýL°C™ëçÚÉùŒÑ¯ø$ˆg\“Êù}{Éù,. ;‡x¯YÎaj’§©ÎÏnÚ<œ žWæüñÛqÉrÄùñ4zZ9žóçóFBÁ´®õz(˜Öe³¡Ð@q©·ë§O< ¢i>1 aI…WßM K7¤ÏrÍ„ ¢†R÷;Q„ÒÆëQ„Òµ/j…Ü@Ùñf}‰B§¡ 1IŽ@(‡¶®'~×»¿ Ïè¥qãV¿œ¸ç „2]Âlo%”ÅDW½°‡…B¸åã…Š:SáãFd&”Ÿˆ@¿;¡t&"NŸyÊ#¹ÆŸL6Ö¥Ìæõ·APO]f)\Ç©‹Z(…sü—`ƒ¡Àú;ýäTTÜÄ/ʧWø!ˆt8‹ÿöƒåóÞvßîkEÒçò\öê«ó¹'ŸE˜O…?C)| ºYÂ|r(Ÿ‡‘óPG:ÝOQ>µt åwÊ)‚|^ƒ¤ë?í*A>Õ(1lO}NÓSdÙÌO-þ™tý×´i‘ñ9Žß)1>‹¿ ç}MQ˜Õ: ŸKèPêÏfI(°š>“BÆçš¶>0>o]_(ŠfÓ£(€þ\¢ì¬÷§¿NýìñwÖ»\…Ð~6IC|aŽ„ÉeGÕJêÏg+ŸûÓ,TÉøœCþBãs_‰ÎÿRK¤Tè ðµ«b|M¾•ŒOoô†§ÖŽHãÓ+Øxoº¿ÍáN! 0²y·•:~fªJÒçñ§Vú´zAje8[t¾PÖ¿gÃ%>9Öʽ9/gèsùVô¹Øø+„\ÉÅÆž„þ†0¸#O¨ü3Õ©"”\Èû Ú&ǽô9î™úTGTÎsδ»HèüÝ +Ù?³2|ÊÜ¿œÁP—PÒêË—Šúñ­û'¾/DZ:`øCAÉP·ÌèK"O?vµa‘òé=ÔP¶f»-åü¾†¤|òí®“þw”B¨Ü¼:V:#Dtvª9Ïrd*ŸK[†¡ GÃsKÌÑ`…/Åﶘ¡qÒ"°ÕcXã3ÓMáàXr@+†ü©=°& dûâ¹ê6ë¦ós €óJo¶ôrYQ8Oö°œz+7·%Æsìþ³Môv·%B9å÷ëG󚄲~üŸzþ¯8:cºÇ |Æ1µJ™õw> eWÍΕžÿìÚf?t‡g€ûš¶ôüc²áËÔ>:²* E¨bÚZ#æmÉ@¨?ñ,iãÔŸÑô‚µ}ÆÝäûÕú¼ðïPÒð»‚þ¡TŽ=\Å5€>ï$Ûä÷«·E(Ø¿QÜ:”4ü©¦‚¡p{¿ûÚéýô¥Q®ú·oH(ä–ؽr©Rá»ñù˜o瓤;! eÑõ>>ÆÛI>æ0fH¯µöy³BíóÞ=ºý×qh¤}¿Êør›¯â˜?qûü¡S~&`Ÿ—g cê}XŸq‡uÞÎÌŒêß Ög¼ð÷S 8rÓ8ܰQëÌK:L® %Ÿ3µjjàþ<Ä6¸ˆsX­q8Eq…6¸/aצ :³÷û :³ÝWîó‰¹4nòH(‡O‚‡L®ãem~^¶{(?kú˜\ÇÝuH›¤fœ{âÉå´?³Î¯ N¬ã¼M1‡ýQ m‹¡Ùí¸X0½ýr.®ã¼ mëžBñiÔ©d^åà®ËnYm,‡rèhé<›ÎìçÛµÿ¸ø{nÒrÁÐ63m|x²÷mØteí)6ÀÞî¾^([áð#嬟Ѻ¿ò{šÃEÜý‘‡Æ?¹MJ'ðñ³2èY/ŸÞývàÊ*õ1­ã8Vô£ºþ1'Éxòç™)úGb½vLBÜ1¡™w@âFzBâ4Ç—Ú¿KéØgîDâûöÂUœÇ¶^¸;í`J/\ÆUy.½pGÞY/´{æn„0ù6ë‡sxÙÜ¢-VŽÒü2€þÜmÜP¿àTÖëŸÖ)U‚"³œþ:€Ÿ—ËJÚ½÷~CI»ïl–ÂÆ•8_w?¯ÉöFÿGœ¡T®¬š?…øÅô³kö8°u9þö¾z³/ˉ¿ýþîô1êÔ@×¥k&sÐ;3Ž;—”à÷k Eô¨è÷ß©«Ëï¿VÛ™•á=Þ‰ŠqبsÖd¤»Óï,kp §çP‡Ýîcȶ ×½YÍ}üq“T6Á!ÿÛà¬îÙ¥OEòü#Áü|âÌOÓB‘ïÿù˜Î‹7Ÿ‡¦/ó£ëïœÑP6÷l¹ 鄽™=Sõ÷“’’îÑþµ¿õÇÂ!Ý?Q?Æî‹uUwrŽzlq©Öo®K(›dÚ;©Ÿw^ítþJ‚wçÔûfN’´¾“4}`¯Äß EeUÃçYŒîpÕÁþ9Ÿmà0Û^K},8ûe…‚†7_ú‘C«?û~sñBy°õñ§ÓgØ,Ê>þÈaÇ„A⧉¹¡(»ÌBcxú~¨÷ÛßÓ†¸ˆŸizQü;éŒYÙŒÞó7â\¼¯XÙ?<5–¡ˆ`ü©ÁïâCxÃuJ¥Má¨×ÖÝ$øgªym(™”áþÀÙÒ++÷»ï ‘Ÿ»h$›D¾Íó“?êÞ*B?cL‘•%£ÈÇ›ÿ,‡'Á?F¤’ÕÔMnéøgtÍ~“àŸ.öròòR[F3_¿º¼’Iîq\SåïæÔ1'©W÷)€ùyùÌf^øT³f†:wpý–4Ïs²TZ5?¹ê#sdIØý¿‡`ÏPÉò“”R&ßLÑìÆvÞ fø™àài…%âŒÉÌe‚«~ÁbaÉö³ð3 .°’V˜ä¿•®A½íº{\¤ÇðÃû %íÞÌ{nƒ½¡¨Iþ›‰„éo­Ÿéoüã¾ÜéV9Ö‡ÚJ%€‹ä)êO“ç€ÈàÓ†5”,–ç+êß½Ôæ1÷»}hwmùyYôüÝü|QfX߀W þ÷ðœ3Ó¥ýŒi‹ØŸ¡ÖLÄxW‹ã}UÝ cÈO56`¹;ÉKñÕX¤~¶©Ü"õÓôªDÜŽx%C„³_ê"…ÔÏQ´3°ˆþ)µdœ/_Ãã«“üixK"2íêøS“¬‡‹¸7·GÊNŸ8¤ùëúuü–ПjZŠzÓ+Yôüûö=å3Òëí–c§¶ÃoHô§{QcOMR®ðSÖÇõäCdDæ¡Ö¥ßJXgÒEöÏ,Mj “É|¹î^Ë,W=­ÅVdêúJ# F¦LøYÝ¡ tÎ'A?¦­107ò9½-Ù!pEÐvø}8 !=ôÃL”Ú°:`ÿ¨¤0þƶ„3rÈŸF¿„ÞìØ6H’ÚÖºyÿ9s \ûgÕl°Hþ1ç îzý2Z‚?¯g·Dþ¼ãæ±ñ7+ gÃÄÿ§u^öp.?wb“üãÂNæèäëÀû·9 ëCIöú›èŸû7áŸ]T&n^?$Ü™Ìû²ú½´ÐŸž7ÑŸ«Ë=Ø„¾õ)l»´èéÏ4ûã”ÎMöÏì6á?cû˜ ã¼éü¯©áoþsÔ?–; ÿSœ$² þM1‹Mø½ÊMözsdhê`^âX·‰ýU««Mìç,ZŠl2àD[MÊ;«tï!éÍ©mÃý¿“Ð&ûgn½Ü›Aþ•tÿwÑ@²Éþ¹Îþ&÷s.›#ÀŸsjy¿‰þMþË&úgNMÈ›àÏu4n‚?g}N R’šl0ì¡¥e.¿ ÿu¹J›þÿ¨ZåîKÿ™>MÎcØŠ¹hG£þÖÀ^E>ÝõéMÝ$î#ucØÃ/*ÁŸóÓŸéÏg=mR?s.6=ÿÇD8ÞÏ!×y“úiÏ“úéÆYYÜ ‡b%r«©f‹õf'dÓùŸ]aß üÏðÔ·IrS'V=-Î2`t`X<„ÔO3¯ØŠý}Û÷E)i÷16WqŸo'€%¨\ntÏ_§ë?ì‡nâFµ™‘ù9›GÎû¾ÿäÿ<1J€ÕWÍï[ÈÏõ\ èÃîûIäçõ´Ž˜ŸC^Á!óÓÝGBAC-8ÂÉQ‚ƒÍõ³èCLfŸyõ¯×(éowüA˜öõO¡?Ë>6! ™ç€Cð§{\r[æ!–1žÓïûùS¼¯P6ŒCШzwæ‡ @½ku„Ò¬4äb%ÚjÇ8j}ñé2àúx>´KjVÒ¡uK³å}œåéb¢?=y2à¦ú¿1þ‡Ž=GÊ€À©ìýÙ>¼H•y½ýÉàTM½‡èOcp¹òN açý9?…·psÚàZS«·CöçL•7ÿS¦<²Cöçò˜sÛ[£óûóK‡ìϽ5 °?wÑ6‚¹ÿ<<„¾OÎÍ!úsO¿XIÚÕÛCÐìòUÉŸ{úÁûvœÏvHþ¼SëhN_;$žOëÄCògD£$¬õû3 þ\Û/,ÉŸÏ¥ó¿<Í’?—t‡è·9üÈ9D`N¢zêÅ­_¾9Dº[[Vð. ¦zVpÿËæ„0‡M’èÏ[dv¸hײµ¸o0@aìœy'„1姟㸞ÆÒC—¶*ðxŽ[ñM£ÕÜòµ€³W™ë!ùÓ]é²îŠk ˜E†­0˜!Þšíb¸ÆÂÄÇ2OÏÛPD³ÇT˜ûd¯pñ§&g£jeúŽÿ^x9(¸1pyXãôt@­L"a(?¡Tn Ì,­ Û>À\ iùîPÊá”Wyc8ôÊ%aÖ ‘X&¿‘áõ¯HŸñWõ÷ø‰åîæ»1$¬» es5í³À-¾u$Žû›ÝÙæïò§pÏÙ‡#‡±œ3k#—•¾³ÁÔÆyÏ‚ê ˜J¯Uý>‚L&¾ñégGmú[£Ké4©¡³Â¡“c¦üïm_|½BI›_ÛO‰Ð7ï°{ÇóR ™ÃÑ6?ÊíYš§¾ Ñ?æ8•cØçc@ón~SÀþY±)áЋüxÏÉþtƒÂTö¿§ƒ+÷Яœµ™ùìü! oïƒûó¹d®å/Löç¾ëdîI'„=‘þ§tÿp â®/*çOdäôç­¸Ç zRgKÁRnѽaÙ4Öˆ¾VÎé³y Ôƒu(…¿T# ^¼ç¶}ûý¡d€N5·Ì]‰üéÈìK=þ=»2‰†å«(»`ÌO# §€½éZ%äéw !üÇ Q¡¤ña°K½ñ4?+ê­[¬,†)ukÎßO2ö俟Øyö ùÙ4`G®´¶c%Ãy÷}-@€מ-­~¡Êa¡IࢗwªÐû_WŸä~=*V?çMJ+ï8V8ŒÍeºO ™‚ÁÜŒoIùMÎ cäl>Â?¿¦¶þé\ƒÜsnÿ¢ãý¶Ø Éý9ódþ·Œ„¾¿s ¦QJð )Í3:7äÖïï"üÇõ¡´úæÞ¤’¿]ûål_…>)SÊ/Çžhºœí¾þ=¸öÿÊqÜG~»1†R‰kàœ^ò|€ö0õ+9|—EñüÝßJ¿À/o\iÆ Õ‹oL)…!|Ž˜år8¢Úþ û¢SÛÏ!üóyÁ§}Ùᣕâþ¤ ¾YY´í˜b«÷A:ò_.îæÊÚÀýù=ïäâ]aqcNlþP6çÚík“æÍy4{U½cÀÞ9 œ%q À¿Ý#biûí ÇvLiÕÊþ÷T ³OóC³°`ë’l›Æ¸V•P¹h×O>ìÅ·Þ]ìíäH¥4w_sF¢WB?M›ÌT&m ó…AsJ¥øÄ›¹¿ÕúƈÍÍNÃ¥¢9,vØgNr•¨÷䢉ù O^@¿'ÚZÜÃê^+ ÿ™ðæ€6 é?¦Uý|–MØÄfU‘Ó÷«Y9xãŒÝ«.ñ§6¯åa7}bp?Ým9…ùûˆ‰ÿq§ìÜ0æ,¯gCî§“xrËlÿ{—"•ÜO‚´¤ûB_iyzuÌ ÿlr?•s”Í˸wA®ûÙ´Fó²|˜÷J›ù0œkçÆÄýIƒ ÉÔ£7+±*œí*¹ŸÎ¬Èì³òïi„“ ·iï1‚ ë‡Î’ý æR‰þéUnSÕ< Ôu(…éè{Iùo*Ñ?nÄÊ eú¤§*•<ô¦ô¨_IþÔ ö³ûÛÑ÷¿NGÅ$ðyF¯‹)}@’„Jk?¸/Ó º7Ü÷’S@¹#ýþª>Â~[t³aö¥rªÓ3Ø®¥3Q7sìíÜàí·[m¾×“ç…*æ§ *LYz0NᚣÊP}^ÒY?o a6ImЊxöùëqjÒò™•kìC³þ‡$&áÐOñåóµÿØÍ©ßÆÉ¡ ÀP‰ÛëXonæažCkD½#+oÝY†¦2ª\ÿ=Íqc‘`f·6rè%2Õñ‡áŠôÛêpá~;•²ŒºLн¸º™†Å žþ[+.åôÜ@üd8„ sY§Á•3[«F3JÓ8¸ÏG(Ȱ÷I‘áY6ý›ûÿÍ&ÏQ§÷sûÿåb™­~ö¡t.e8Æ4â>Ì„§²E”ø4çÇq?Îóf'ÈŸÇJðÛs¥Î¤TeÈ¡×O¿ÝÍÙfä¢üCXŒØT+ra»Ï{8ÍÈ]Ø¥?ˆ·¥hãæøðè—µÁD$‹3 šßeËchƒ7Õ1ùåu_eÿ{|Ó_,8.>Œý´nÀîÕÓD…9ooèýÛÞ¹¾ô©˜öo4«ôÙ—ÓÐgQ˜BF šÊm)•‰nߑҘx·}ÌàN%ÓÞOA—¯….dǯӺn?u˜éÆu ®ÚÝ»1óí¸¸Ø‡Ô™dÇvŒO¢:õÛ9ƒ#Ìyú| «°º…ÃB§{âÃDÛÂÓõùÝa„~¿»$gpdã.£›!oôéYŸ®îÈTȶ5„]߲ê%~f×µñu¸h7…7×'Œ.ÂY¶Þ?öàSÎd(sþüîþ¹å¶²YN³}žóëÓôò÷“zI/®óŦÂeeíçq…ûe}ÒHâø„¡:`Ÿ)øÒû'ån!a¿ø«T·•4üÏóL§¿ïîÖ|ûûmÖ eŸ¼Os1Ù{³_>v(°{Eÿ;‘Ï7²Ñp÷Á5Ö‰ÚbâGW„%†¿|?›\XÝÎæF¬ÐÑ—ùI©Ì.fË1U ÝM`Sà:‚Ó}ï âM?ÿÎ:Q»°±àz’S‚·2*„Åå:§4{ò3סüLÃØaƒ&ȸ`Â@<¬~0Ãe¢zýXõÑ eÑo享vßSfB¦ø¯·Ô(óÔú¿§L6=˜Gï1•Ö% œîÛP}ÌøÉ‚à{ñFúdR†}¶6±>çË P>ÿ Ôg±im®ÞµA"ËhîÇ«7:I¨Ïçw,ަ툠Ï;±uÎjJÍi™•Y}ÈR¸PÂþI¸Œ•ýÇ×÷j|LÆpiõY¦‚Žƒ¨ÏD}6φC¨Ï®?çïz€óÉK*‡þ%'ø!Ð'Á$!V Óò†€oŽ1q>U‡Ë ¤äÐDy?Û/Ø çÓÊPö¿‡‰ÁÔ‡'™?óßSÿœ{m+>N̓>ÿ]C 6+ ³ˆ‚UƒUÂüAßåF©¸lVöyK‰sÿ•߆"çóùzâ|n…—†8ŸG ¦!ΧH¹¯ÂŠ+ ìm=oÂhnÙp¬qËÑqt#n9× MGwœÏ¡1dÏåÍèjÁÊ€J¯žŒÅP'øé Áùùl~;ö¡Æ`R½¤Ü‘ï\,Qhí]@Á }=Ÿõg  |º/³>$ß¾4ë?õœ#×v߯üc¼ó³P9Ê +müŒ{Øì\mSÁ£¬f½ÊCaA¯¾Þd2ïFE6€—¶Èš} zCù-Íð߯4¢_µØ}Xý~BAËѳ=9ë?}šÍÅk·r¯Ñ€´I­ÿ|w6MßQìvn.Páš¾Zµ^l˜ÈùpBY¬î:¾ø?îî ç󹇦ï=¿!ÞÏöÝïçÃ26¯Õ|Ì¿HÞÏõ‘ÄðÔË…‚è…Ÿñüþ½ñ7¬Ý’ÒS̘Li'„Çç ½Þä$ö àTÒ›mÞˆä|Îö|JØVN™“ÀŸã –É™`,Mד Ï{'?¦Hp_¹ß~¡L‰¦Ïò›`‹ÜQê¬Ü¦’EÒ“ÌÃìªÎÈβóá)”¦a~Jé¬Uç{V.äÆ=ñoqVVHû%š$½™>“ù< äÑLfcLVm*C©ŒÒñ…M„€+ŒHÌ÷KZgÒrg½/•Dš¹Št“&QŸ.ÀO…Þ5½ÃÙÿΡ0ûeúÁ®dLõÙ|©ÅæçKíýkLô’8–ÍAo–¥>™e3ÿ½»M“ÄŸãOt>lF¸'9ŸÏ£%çó:õ“œÏ;÷ΡýhŽà“œO÷å EÝXub²>wñ­›×ðz3ÇŸ(ãU`ø"Î1 ¨ßÆ¡öÙ8Nò~PÉK}˜„ö ¥¶7|Lï¯g:ך60›çáÀeч ÝöeL îgø÷ƒ¢**hÝóù‡‹õim’÷c2ÓGÁX>RЭ„Í^RØÿ sFéèÑÊðÉúŒ·XXŸŸÇ(²>‹G‰; põ2ÏEÄT)“TNº¯ó\‡±Ãž åùTNcjCi6ýöËdÁ BÅS ¥½²>F1`^w¦½ ^~"÷€²1ì2®½X=ý®âžÒ|A9ofy„R¹“0} v$¼æ^…ÈC}B™ÿÞmq¼¾Uœ_s/~šç*gU.åBY•K¹£ˆÔª̦¢q…°þ½{ΫþŸEتŒe{ m‘øc¬d(®”ö‰áÝÞ¸'á¸àj¼£1Qóû‹ 77BjŸEmôx—sŸ†œEâç^xWg6ÒýÆIü¼t˜…ÿFþ‰ŸÆ<…Ò¹ï7| –s^²,Î&ú„˜_ä?ÈóƒWë¸ïðóI¯Y¤þ¸D<”Ʋmú°ÈÌÅ:‡è5Í®6íAëßÏÕ7÷^»¯þÛ‹5J>†“ô}Äýq&Ô2÷Gþßšÿ ë-?Ïò¯ òóFñá?7'hMÚ¿jóSá£à’nþSî3^NÌàšs-¾÷;/q’3îö‰']@.áÖânŽ3©×2'I_ysQçýÀ… 9;TD‹¡§±ÈþÁ†#äeMksY×äæ ³õ­­ÍRéûîo–Jßï|þ˜³§/xܼAï>Ù?nW”uŒ£ÿ‹ë€›hµî:@÷1Á؇œ ×ÚވͿ¸ ðVãþÜŽuù,êÝÄ~ÞYo‹ü³9Oïïï×6©ŸFÀ…òŸL¼]¸•㬛]˜–¡°÷.ÌÊXú³syɧ¶‰ý©jšJ.èÆÔ0µ9÷BÙL~þÔùÁDBwaú˜]iøÞAݘ º³‡Q˜ôÔã…‚ª’â¯èç³E¹Éý™MsÁæ\ÐÅшÜq%$ñuÙdÿÜ•ë&ûçæLîFF€óWwsŠ=ÐMö ! ¨dû—7¦â©Z9SÙ3Ãyù§—CÑ‘’™ûhØÜÀ~F^´~:°Ÿû³ó¶ÿÙ_}>³ÁþÔœ#³ÐYO]}­ŒÓ¡»BAѨÙ=ÒpP*Y.+(|(¹XÅÇÀò3•%Aí.›=•e%KNøá40îͨLÐh¾O3)æHøMm<ÿ ÃMÊÁÆ1ö4–ºpã4–l_ é.Ë8퉴ã NÇ„Ó=¥s&;Éõ^ìP?Ÿª–ÃÀÛ p.%ó3°ýO…ùm×<$ÿÜEàlJéý‡Cú³Ñ¹¡€}è­£3„ŠÙþÐdâqñ!“û£ôÀÏ ;;Ÿ¯s~+*±Ÿ‚s„Pi’ú~œLW¥ÃíÓÝšŽj “[äÓgÑî\÷‡Cvþ.¹Iív‰1™–ŸåçY\Í9ðs–³ñî‡PZRýõÖ:Ræ,½ÿÝ®D!ìߤӳèÊz5w¶÷(†„Ò~Ï»éͪ÷s(ʱ¯wÌ|کͰ-…ú´›«÷éCÒò¿û#Åütšß9ŒK9´Êþ÷ÖêA?‡ÍËüÔ=?„«K[(€;tuýtÏ9 Ñ*þº1©ñK(•[¤]‚‘áa†’!Ú©q5$h(8ÊÔn—•ßæ éÞѤFö䌅RúU ¥rjKJcæ#†ÚP ë*L°o>3"µÚƒ e3P¯~Öï1:N‘Âü÷ øCQW¦i¥s—ôž&­pk!„4þ.o%ìUkŸ%PìµY½Ñ'çøiÂù¿[!¡ ¹®ÿÌ€¶{"…øsõs÷‡ü,*ëµ£r·”Ý™ ·‰¤»³®.ÞÕSd2”J{ÔîdØs×<…õïiDJƇµ‚ºWÝk£}CñÃîÜšã+µ¿Á®%¾ÑÏnãJÞÌÃe»–Ë š7ÜG0ؼ¡?ǀ⭞r¡äÖ„7Æ"æÓ®„Òíl21iûžú™Ë.EØó5¤ ÆÎ»?³WÌ,mPt+ê©‹X%>æ*èê‹IÓæ îçm픊47õýHeãöì)ÝÈD8% ßyù¡Àð»¿áOÌc›Xµ#Ja2úèRÐÀJ{›¡t¦[õ%e¬7À èÏÃÆµóëC@3²ÏÃØa ¾á! ìO¶¿¢’Á(6l°?Ù‰J­~“ý-9¿#!÷'jçÒ)•ø:µø—ƒý™½]S(ðÿÑpŽB8´Ñ¦#'ÿ¦¾Ká4PTªJÎéU®Pr¢ªj;”4~t‹£’Æ_UJîO,vús¥ü†'þ±!¿-B dãpN!ãÙŸÒ"B™yˆ<ûP_ú(õý×ÙE(…н¹ª n*—æôW*v'Šb#¡dmÉ}rÜÏl,,! ¿ R¥’ßFuL¡l\‰c]ö“-Rö'››I(¼Áœ~ `oÙ³úXÙ°£-!NRÖŸ?’ûrŸRcC ³G|³PÒîëg‹ô'Í@èHШ „’f_îãó3ºyëG‚õÆÖ\TÒ—-⌄’Ð×ü›ýŒ&ïÓJc•0‡]€zcëz*9 Ôm#ô'¾ÎìRroâ[þ:`~†­m“–ÿ©¾>• óãT[ÀüŒž˜ÍŸJËoÅvæg¾™SJœ¸UMÌÏ|V>$s4Z×|RÀü|ï¨?Ù'ÑǤí×®y©p"(Z|†r&^ÄÁìOvAµ’Æß„sÆ`Þ î»’QIë¯÷ê‰ýd iýå>-@àÞ¯ ìg\J'¦ÿß»7øÿláDe`Àî>$g·ý %SH„¸ a3)bøÃmrÝp?³9‹t¦™zG›±V¿¯‰ýŒ¾@ÓŸI󌢄Ö߇%Î?Ê >=ˆÒýo~.Uî× ­ þÜ  P&@HBèô2»?„ µ% e2=€Ö_ýLWi[Y¸¼¿ §ÞZìÍònÖÂ&Äê8 ºk,%ip€©…éIhkq«û©ÍÒ©/Ã~dU¾Tå¸ï$¢PÊüyÞµ²™ˆZíѶ-E ɆÏ<ûJî§sºCÙÜ!Õ7¬lDìEW%ùÓòP*SÀ¦Q•á±ÒùÛùUÒœ  –sJR e³pM%ýçk¶”Îí % ‡¢Jί•ìÏ&ð_(ÌmþPŸo¼5‘3®V’gûJà!FÉxÉŸæâ„R¸à«WÉÿéªb ¥×7fÊ þ©ø<` °Š9„Åß=­d¶}zW‘?xƒIþ¬Ý†C\Ù"$iœç5ó9>’nü¡…(Å=bq…_õU˜vìϬۑlI)LIÔ _\ÍiÛ:”FëãSÓŽ—Ç…õÇÈÁ´°ÀÑo"ûó»·jyZÎv+úusA×ôü7²ía`³«ôÑ2±ÿæe!¤ôždñgëY“ûSYʳ+ÙŸÃw)×І”ú†Ch̃»JgZ@íR¸›è·"D~(NШRÎOBÚnDº X(e¾ÚPPeâðM#úÓi1¡ ZÚËØFôKjCYLA˜>ó¦Ð jŸ+è8¶4¢?‹š.…RBæ¸ÑÈþtH(iúG±ßPÆO>u(“ß§øÌHÑðøÜ Ÿ™1»U&Zzèmœ öf`<”Ê<ο­2ç¾êá4¢?A±¡Â5ô#ÐÔ}íÅRƒîCr5§þ»üinF(0}b*C@POùg¡4•oûCãglV¸CY¬^þºXñ}nªyÎnbÿ|6þÇhû¶Ð˜ÿÈ!¿uÎë÷v‚û™=3–¤')hÒºÃÙß–rããäÒ8 ÜW¼%öÓÎãïúŸ/CðÏ‘µÁ¦êÚ¿eŒŸ)¼ NêrôZ¢n«ÒÒê ºÛdCðPÒóQÔ´^¿i²¹´cN ÔO6"£’†þ­Tòë©õuÕkÝïܶMè6%¦‚v|6ÎhóC…IŠŸC[%=ÚQüì»//@Àe‹k+ðhµí¶ÛfWVu" %m¿©(;”\Ðõã3Á(¶©÷lO8¸Ö6\Úv<´nvãsè·¶ã³_Þ»ì:”Ö³îíèþYç–Ũ®Ñ©ôzá·=ÿ‰Ý#kWAú~¦Œ-ÉÒVKîçmÄW¤Üáß×ç¬É¦®b;˜µêÔÊ&/öø:™u¯ôÕÝŸ·Ín‘RyÕ˜¢ûCH›¦º!tÞš÷A¸ºøÂ³bIØùó|ÀæsÿúCƽÿA/¤ÜWM½Òv`¹Æ¿cÄ=ÑŸ·ÿב2€tŸµ~†WOÐÛo=”ëÏ£)¼³DΔ„ÂרøsJí …Cð?{²?ßbˆ«œßœðOú¢ÜáÿFw{Ò?o/>¾ª1üùî à¦(ã¡PàÆØêÑ¿€ë úìÃôFž™¶HCY8»ÕÊfVdº¸á8ºß;{s*L ¥’{¾$d”¶ú±t:Í£½“tÿ|®¢âiì—Þ‰io¤„À¹Ïí¬j/J¡"…h`îHüø˜Î†A÷>\wX}åÉÏÁ:í›VéË¡\›ÖáP |ÒÝ5Á#BI ½ÃL}âνߕøÏëŒ/)÷òñ•'û¨8“´û÷ÍÃ؇<ÐÝq\öJQúy•’'67;NÀz§ŠEµšI†2ð7ô/Ð1ïXböÿù=Zݱaú~·)ª”Âþµ¾+Ý÷› ¡áxOÒnuõ…3ó~imì›Tíæ¶]?Íè!£[©³¼ûhÐrL¤Þ é«Ö&LO(- PîRðn’õƒKWårô ýŒŠ‘PW7…PdX4)w!xã-#ùŸï¾åäöå¡0xÑÆCÅIуÐà^ a<Ô‘w@Ýó<„kÔŽ÷ÂÉÿülwŽÂ^õC:i(ìý?fûYG‚€èŠr'²¡ýöPs/³ñHèÇit÷ ›„kÖ/1# »lTÌÚ®=¨QÓ¬ýÜœJÉI‘«3’úÙ’‡´ÆeÁ½U!dhOé€:ßц]ûŽp@ã½Ç¬ãýŸí/ÑTÝôÄÝgÇ…{¶ãýy@_£pÀ]àHÐ탻¤ ¢i¯|Ç~³17:c_ÕT¡\Ëv¼·4  ·)·4  aV°ú„шåNe.t ¥cÞé7'ô;(“ /Ú{ÿM;H#) ·’ß3)¹z¯“T Z&£¤i;ƒl抒†íö³Y”x{|$4žñ{Ì¢–^ÿsÑp÷|”ƒ›©ñ”P1©â³Úrë­Æ8Ç·b“©¡ÙP2OÉ ÈÀpÑ_(ØŸ¿ê´ßÂ.<6ØÀ èËÏé¥Ô>JS&‘2Xì}™Á4¯Á”¦4,d®†mÄô)Š·L@ gß)&œÍŠùÀ‘±§?U=G(ƒ\x†Í„ älþP²µšù¸µÏcåÀíàŸOH îÐÊÍ»¯B ‡Ò¾i‘!tRÿ¶„¤ÚŸ¿¾ˆø·„8æ‹m>)¡öäEï ôsRukbÝ-¨@¥)6?ERFa(Y¥t±PI÷¸š#Ó|ùNÇšÕIJXS\ ‘%BÉŸˆ~¡T*m°&PçE†2¨¸Ÿ>kþ&MM8 æ_…²)G{¯|Às±dÌn"–þEws>&È@oLtv6TŠY2VVã“nž^UEÄUN>.¼â ÔÄŒP EFLÚsrY?gežŠ?QëÅD6uÔ˃v`Õ¾aتÕ#OÜ÷O¬Úí3©£VwñP~!t¨5Å— °sçL«öL93sâÔ9Ü4zWJÎZ¹è›ÛtǃŸuÀVí\¤Ù¹˜ ºž«„ñÃNe±aè/faß~ñÖ_Öl«$Æ^ï²’NÝöl·ÉSšZ•&$Ð>üåIÈ×{åI¾FØÜ¶kßël ªícÒR—œ=“ ôÉ’šÃÖ3ô„úZ¤èçÛO®ë6Íça]ï$P×7‡²â8 èk¾¯¤ÃÝ]Å-%CÛ* %í Ç/ÖC)õÔ/^Ð@ÇÔ›¹ B¿IZK~@ù“†­wTt wx­Ä^ÆJm?ƒrš[ÓøJh¬¯Ì¿«0ú‹f“…'°ÍÚ+qôaD9$Z3,W"Aß2½PêŸo\kUç]ŸÔ‰baÁ/<¥¢»P&!µæ³.$¯ùJ*èpnÃbîíþ è8ô±ƒ.¿7«™…«{!WÀ“×bî… 2ère¥+0êG8ígœ.A¯ï²:,›Þ WàQ-\5ÿ\ý/7wvuöê”Ê}v÷øêìWŒÏ1¢|sAƒ¡Jý¹…ÒmmC*¡® Ô-uC™óg…[Éz!.¡œßõuA5µe¯„=‡ä´a‹ó°µq´€ƒ6w„2ÆOöãêZýP’)SýZC5h¯Úø^¬ohd%ô³Ð¬å‚Rm(AÏð«¿ÿ^÷ÖÒžÅÑç/£µpìœÐ¾6Ãß1¼µ ØX Šûlo¯MÚ†cTkÿC• åVŸ¸>!”EÖ©†KÂvìm½” NôØ:Z'ýº}<„,Ûxëx}ÏJëöñØ9P´]‡ñ¿å«/ø Fdíý¼ÉÈSJa¸3çíÇÙȼÖPÐñãÛ©dâ*?U ¡,0ÃÇȾí¾ÎQB:¿°d Ê£œ×Íð:ON3v¡˜Úx¶ìÁÙå¨R(¿“à.À¾½¨=. Ôà–P*¤Â~Ñp¼g›ÕÀWBršÏÂʯ>ä·%”C2…~ÜËÒ³„jA(• OÿBhSWÈP’(æùm·¿óç­ÚB·¶Í7€Ð§É Ù ‚\)´7ˆ 5üà „º‰J(¤F`fíÚ¬dÂ’š¨„’Cß}Ë{Úç«’qÿÞŠñ&,m)å×öÞ"„Š}J£ÒЉ}'"”F(¿¨ûP”ˆßüí7c©ˆ¼Êù!§í "Ô¸ÙP 0—"!I÷ž¢÷dì{ÞÓ¹ÝgM²V˜Ì¶¡^¡IêÆû€Úèù²ìé·àÊ¿cBŸÇ󾀈†!ü;öáD†ˆP“HBID¨€{{ïw¿¢H)0Xô4á­âq,N_éM ŠËö%„~öÛ7®ÀRX|³ Ûý{ávZÛ†úfëm0AÇöçNLЛ޸›ï„yd±àm(AïÎþ>бœþ±½:֊ì¿ü4Ïã­ë÷˜úcˇ·¿üÈð¤z Ãmûªç!ÂýÈù?‰ @æòuXHñBNÁ®UìήË4-§°]a»û@ }—Ö%ôÝG?PB·ÀK¡€6{|Òá×pGOuê™E§bÖzƒôˆ 'DéUH*辎ñò!SÛ'EÊ5kÛþ\æúu}}.sð±ÊNKÇnL­1§Q‚²ýdà„¾Ãö€ zÓ`Oóæ5~æINèÍh¨Re®]Ûªï`b‚>Ï“¥ 5?0A ŒVG¾}Òõê†÷ÍOg§®|.“ß³”¸1|Ì!çZ*A¡Ÿ}…3þ¢×XµÃÏj@K\Z€ÏÀ«S’óµNÉ8ÃÔ×éËdچݼ3¼_Á!“¬ ûö'Q¡±/ÃÕ™ä-ÿbqkÊu>0‚Þä„#T¨·ÌN¢BßL‰3ýÝ¿ï%Æéù&*ô“Ðs@…¾[]gÙ©Ó„²þþß!ý¬ǤÐêoÚ?9Pè»ß}…êO3éŸGk³¦?~’JS„ôç¼8Ÿý”ª”„„ÚN> ýäMŸ?çxéÁþw׋P²YŸ •t¸2´¦ŸcN¢¾]ÐîqtܱLïÐÇ;çàЉvžçÏg/ã<Þœ6C©{Bº”¼rØk#ö*;ïDþïP~{ý„’$¥çóU‡4 ¾IŒPÙþ¡’E3îJU­¯•;î\ %·*ÊG™$d¯!ånU(³7„ÍþÁôIêô³ùÅÉ};%„RÇ7öJòdÔ\$”Ó¡ù˜َ̘*%AG7Hèdä*7[]‘ó@ê¢1„òÓì!„J^¼þCË`Fû[ü™]œceÀΪMJ&à«£U(@Â’pð—5n`ÅUev‡R~¶ñB©¼TsJé”ì&E ËÖ–2Áf覃j„êP6Ý¿{‘î§ "4û0I9ßí¡P ôá–­>$ÁX¢Y‡ÂŸ¬ÕÂúý“#1‰‚ñŸ:£P”‚ß§mÒ=EJ/¿÷sÒ¯lzDÌ¿? ®rà?ïIºQ²²iº—ŸgAIô¨YtüY¾ÊRÛ¦u$t”êC®'gw(“­éc Ï¥IùõäγI—ÃJ1´ÉÊ?7„FÕÍ‘Ðç×þeœ¯)Êb›Ê‡(ªW|È)_§í<BÏd±%;=(”Š€pÓgi¿zø¬kÎê¶çän…²ú7$Ê& ýý¢LÀWúÿ) }ÑO¡¨ÓOª<´¹ÒBÊønÊ—Æè+/ ´IX?Å¡l\÷´¼N)Þžc(qʵ ¡þ>ï"@¨6\Cé|÷¢$ Ô—+Ìœ›/¼~ömC¹Å'æÍ Ô*¡äØn8”Ú¿¡…Pš^Ä*åÞ?uß !SðUPJRïï:«€{(…’[ý†A†‘†Ró1$d»‡éu"zÓJb5TáÊ­@©CkxjŠP(ª@éþ9™«áõ¤$"ÔíbC"´)‡u¦”D„Š]ʄ㲺•Ñšáëì€Õ‡äð÷ô\!m§…P~B*¡TJ‹•¶¿Öv(ƒàÖôu²åC÷ÞÓ,>fC™ð¯9¸Ô:ãÿóUÓ¸cæð2)?ñÔU0þ]wʵiŸâ±=ÿÝÃkÒà5”,¾RmâUÈ[`ù- ô·fÒ²iËÉ ¥iÛ¬HéLxɬÞež¯‘ÊÖü;¥¬ŠÆÀê‚ÆP U>¤þÚ8>¨·}BVFƒi»ãIR2¬÷\ñAÕç%”C€‹C’tûZM)IÈò¼]àŹ¹J(¦Ý•€‚œ¬Š:Pk&?6y®Àú¯iç¤Uk¨×‰Bákå ½Õ5¡îûB#7yù¤kÔ6áÃB¹–PV"”Œƒ áNgKµÙ¡d÷>AðNe=H\7Ê5jp‹R±ŸyG"ˆú§Óã![˜y"¯Å%vLäµÐÂL]B¹f­Zè…pM!O…š%¤¬¼£ú}I }‘ %Ôá¡ –•%a²iV%ÜÕà]*ŒÐâWº’ü‚ÑSUÆL(U•}[Jûî*€Ð2üE n|®¼ðª1Âj# ß÷<>+ ¡oÎS(E±Ž)åZBì…Ò1t†Ï?•Ρ̟’¼P)ÿÛgm"Ö×݆ „Ðgû,XA§xÔ&!ÔBÈ¢jY…'à+°>¾êe%>~U+ˆÐç½Ç8¯çP!w؈ g»¶ ½dÕTHA[¡«PÒ°µmY'èû÷9LwïÃ2«"-¿ô0B‰Jæk(‘'”ö³ ÕåÍÌã“:% ³þ¬^u–î«lvVqà²û—èÒ§n25¼ÀT\€é %h6¬ý¦*M)ãŠÖõê³~[9…r·ê7è0ò»ß»ã”#¡Rç<‡”LÔx·\/85!AFö…°Tòão"ÇLäÐÀÌS~{þiáJÁ–bJmPB½/s•õãôµGm,_øµMp’PîÈwfZ(I{²(«@¥ÁÒiPB]ʪû{Ä5iMŠ %;˜Ù2nšñ;ºP&~lõu²µÊ‘C9Øøâ­’£§}áPr3G¯P*ǰU:‘ûCéüž%á—zJîËÙÙmÉ}÷­Cöé5öæ”MŠŒZg JèÓØ'¼Êþóɸ %]:uÚ e’‰;|Œf(£!”L¹tŒ¡±›m L¨Ãm­{é#A»&!=:‡cš¡véZ’‚ngB“ÌWu' åŽþÕýÌ„:•9”Â/®G7š‡z2Bo‡C+!ôM0Bç”›Õ`„º™i(×ÊE(wðŸÇ#9AA·q‚MĤÔXæÔÜÜt{˜)CÖÖ–r‡ÿ¬2!”Є=£$Z£êc‚5„38me WWÛ‚+.t(×ÓÿITÜ L%›?þ± ýLèí‚迉pÇ}ïZH²kC÷ßÝý%ó HJözPñUVšxÍǬ¼“ÇÂæQOŸtÇü¶ç4 ÿ3ýÔ’=º¹ëØœìÆr ÿ3ü~¥áÿ’C¹Ã>É÷(wØïêwP¨èã¿•ˆ ÛD •žˆ Ï@ëI½xÖ%¥ýZñ=A/‹=”Áwñ {"Bi¶²ëÏøìÌúké7÷D„ÒÈåÚþûñu°ý×–»×A„šUÊù?_åüþ÷äÝö\¾òùG›Ÿ¡$ó~(FÜ/"ôö†*f¾Ï˜q½B•ñ$Ú+TÏ7ëÿ¶CF˜8XŒƒÎJÐïN%¤-\͹!»ŽäÇ4f§gºžˆÐÛcdIi³­t¦:ì…ÞØžÐÞq(+ŸîpRB?!øÎ*ðŽíÞíÉñòõ¤„F×"œþïøïIÚ*4ºÂú™Uû¥„Ì[¿¦x?­\kvUY=)¡tĺ ˆ ìS…"ö÷ãcîß^=„¼ëï0ô{h²úý-^(‹mƒÇ×¹FÐé“?ÉeAëJþI}º²źzâî^£¯q÷µúÇ&!ôv£=VXf±(ûüËš¥—p¼WóŒP ¡TŒÎ¾õÕoÆ2õûXéÌñ˜ù}ÁRRĸ/v'´'ØáUê|B8$ÄâãöÄÝ­ž*%;QÛàí;ÙfS°ìªÎ´ïŽë¡L<ìácä™õóh%îI½ý}§”;‹µåY, ¡Ÿ`D?t/¾>·zØR2ÑÌ–_O4Ü[ks•kù‰Ê)?Kø€äöÙ¡Ü‘¯ê©®ÓæXá€ô†qÇó9;z‹§|È÷¯•>0þßu~æý7l0zûG/)óÇ©˜B_s&!ôv õ1éÍ È™| :èJ¹Þ½-åyù@[z&ˆ.°(ƒ®ÇÛˆb(:2aÅÝnÛê^¦§ÛݽL_ T)ç!TÀ¶’A=ÛmáLD(nÄÄüïöpæt8a‘œä<€ Ô(ÕP*a½E¯\Ìá³ÍÆìšN4Ãl^‹¡ïµo%ôyYËkºOêùMÃÂh?kóZä%m9= <¨~¡l˜5Ä0Ö"×Þ»åk3ò›§—¤½½bCiäœk^`%¨[™p *ж5»6¹ÏçÊwä»ßZ(‡dL]çüûCr†óaW²AcxjìÚ;T³0ýÕ¹ó ¿”uhbéÖ…åßœw¹àÕ¦ItêSvË~IѼtRt o¸@¯Y·á=>e’‡9|Ào¦ý úæì7N%÷gƒ}“úwyû)Ú þ÷.$fˆÊø)x9;m7˜aS´¨ÿÀ¬ÿ­-JtÑ»¼aƒ¾ûå»þSg Û•Ì—›IÿMüÞÕ™ÒsÂήônU÷íPCck·¿X·çÖϨÞiù:ÅçŽ3Í4¼¨ûö9çŽûVõ¶lˆ@£ËšÙÂëGÑ6.÷·È>%ǽ܇ÍðF:wwºñÖU÷¶9·ì~¯PmÎÝÕÀ’Wn'4f–ï èñîA¢½?f–½“74 5!·;eÙîá1ß}ÎÆ‘ñ9ç·ÊbOoK/+…=PÞ‰éã€ê†ô¾ë®Æ¨>&mŸªåjO÷àíþ® ¥g½Øó^ÁN$èÛ 7Ü!¢\{¥-;èÝBzp®Ú‹½8ï^îÅ fß'î{/k néÞìß ÿ«äE¸yHÐÆ|ºYšw.öÆ”UéÍÞÞ”ÀûÞ›¬Œþù¦;êÝ_>”»–›Vuö!ÑÞ ‘;™ ?pF¾Ý™}¨0ižYÎ8ÜÉýdlîd‚†iݬd¹P×ü~ïK°$Ö€a·ó<ìK8ðuü8'bŸÔ½ObAßlüÜÿ¬Nâ€â ¯ójœOóJL\øsŠóì±.ORà^§ã’2¼×z.4–TV€#»ß{—§°)q´‚žâŒ$,›Ã‰]ü¾Jš1mDC¨¾6ôI$è5Ö|NÇÚÀ; ŠgY}ÖdÖÝ›vx¢«Ÿq0ù?¿6§ÿw”LþŸC²eñWÉ {®œ„½)8‡ù¿ªE(ûÏ·Êâ4ZðÊúU.ûÁÜÓÆ âðƸoï®.©>ëp‡™ϤbÔóÈIègïò$ ômnsNÚüŸáÊ" 6¸!d»bE[&ÿ»¡wàÿ¼)7g9·ž‰æ°”æ7.ù?ñfc8‹ž­^ýÎ"€íe÷,2ñ¼mp–KFY²Û7¸{~®œ Юþm!ä~„ÂW‡5 960DEB¤¹U_f2Á³œ ½ö’/sô’ùÇÜ5ý D™ šO8 äd~Âçä$6•x’ú‰œË}­sHÈpÂÚ9Ž]\ç§?Oâßœºu•2>÷æ*×Sìì*=Ì N]!C„Ư2…¤*RÖ÷_åš±}åz•Œ`Óöà?¨æŽ«T¬›=¥ Üè 2€|•d!Òø*šÇú’²‰’ ³¹9ƒïV”‚’þc´êUê·pû*Ùx¤«ôñš$WH;vû~VüÇ'mê¶õ*;qä…þ§4’2 B]¥°[×»”,+ñÇ^þ=e¤MJ®¼ÍWY8ÈÝgmœÉÇÇRôÕ@@匧òÏC”âé«tj\š/¦ø:ëÌHaæ~Ô²²Ù=œ4èqõ¤-{•ÄÛCR¹JeC´YilDë9 r뫹@ Õ7u8'£û˜ j)Ú›Ö-œÆÛW+eýþæùƒ·¿B';Abþš¾N)‰Bô5Ö—)s•L­'{ý?eýyaŠñ‘ÔúÇ/jR@Y»Bƒ€3»”>>éWÉÔúñ¹ÌúV­¥BÄs¤ˆ Ÿ¡€Îãaô<¾Ê6 l[I\ÆòPÃì×NöU&¿FOôØ0WQìBóÐÙ=С€ª4ð*7'CEWiyºÏê”hŒ$üGè+Ìö{» €Îæ! TqÒþà?4ŒJоa¥’ŒÒ§”F¤¢û˜ì?}4KˆoêÚt•l]ɶÅUoß5d‹( ô“üO*<ìUDe/@àˆò«4À4ÜŒt>š< PQÞ¯rK¦Õ|ç*7-c¶´Û®rú'Ùä?þº@_¥T}L67éïE(8ÊD®"ÆwñY 2W0 ?gOÒJ 3‡eå$a@ýÚ0 ³iô”æÉll) ¿zoFs£}¹ø?ž\ üŸwR,-ñW½ø±¿Ðc%›×ê¹Jýç»:(غÊ-Ï¡+ç²ÃÃÔûW纯«Ü´¤±õR”䀪MâÂ0ßžy³$èxj-Z šæÉ–Ù€Àí«L&úã“u5]Âá]{|R2»Ö”2ÿ–ŸU°¼е¥4 ét#¦éWÍŠÒ2†„ÌÊèþÛS96Ý×=íg* ~óÎÆU Ç0Áð?М®Ðö'p•,˜néB€–¿¾Êú¹¿"€VMÚ¨¸zÿ)@Õ›í*j6ûl+Ñ4ål—j¤mW×jÂôyP€ß¾Êæl¬T­ÿ”ã¶Mš&A€¾ D9ÔKoß.!€Þéíеli¡)B€.ŠãXöñ·63£õ1=ƒI±‚Ý+s‘¯R©\ÇÖ­¢yZª‰rÜ<•“²/,èÓ¥$ýjjÖ^ÀÐéIÝK |…÷¾U Ð3õM@µÝr•1~æÚŠ 'ô*KPF÷VŠTÞR¥v2UyK¦E¤ª“«´ú3%UyKã­‚jUok½ ЛÝ_%\—ŽmîT%žB@ùÀ®¨@+Ѻ«Ôýñ7¯"7à£Ü³=Ú_ªª…líðÈ<© €ÆÔx¬ nÌÖ“[ÝÍ®r7&fÓ¼UڟЉâó2Ônúm±2q8¶¿jGk>fC«`éª @•e•ò )^¥’õž•!í‡yª ÔsGã*ש]³G„´)¾ÊuêÆÔlV4«¬Š:Ó§S8ó*×§UÆx…ª’„«('IC h?²´+ÐF´ò* /~IØÔOv_&·(†f®ÊZ ÌUŠwMÊõêÔ õ*˜Ñöu’šÔüE*~ ‹ÂÑ©ØD…ªü‘ÿ”íœ< ôºIµoá¦Ò°jýªIý^y“jÿø¡' è{ wºuÚþN…Œ¬ÇßuÕkv8ägLŒÃÖ\ño> i´WÀÁ&êQOæg ÇSj’@]Tt•¼ ø«69‚šJ!Âͦ¯% Ô•cWáž²P·‡š¡&÷ ‰4dì6Vƒáw¿AòkÓ ͢ɴ]hä"éÇ$ÔÕ›©PØÆ»Ö’zQiVp/îh+¼~[!=©kbl0áæÖkÓ. 4Òv‚­á+š4 ±|s ­GþCcAÓÿ³’¥ê'Ü’DÔü~VÝôã«,²ã¶M¸&3»UÓ3Xî[‚@?¨ÖØÑñŠÐÒpôUrŸbú&4¹/3Áãa·öïèoÑ¿d#4pÊ`ºJÂcŽ>VA–”öÙ(½Bg¯KÈÌ$‡æZ÷ʾ­d~†#’­ÃBš<Ú ÌÄKðýÎ{ƒ™¡‹A÷òÐÒ ð–ÙUFýYÑÚ`ä¿o¸9ä¾6­åó]7Ä7¦ì©lÄ{ÓwqJZr@½…w•6~‘NÛøWæß¦ l¦”ýÇÕØ÷óÅ*ÓæÛ營·ñ ™¾¯&†mKPìT2±¶õ—CÊ+`|,_x²îì.eóÎë}^¤'ymjÛCŸ ±±ô¥ÀBÛ¤'-Íá-Y Ú8¹Bæ'=ŸËÌñ;™°ˆ&x•Œn?žÊ’äôÑÿ”ó—´¡Ï»âX¸óa—ÍÅÀx•Aý™RîàŸ[&uÚ—_‡c"Ñ€þä"ÉoëK§™%: å]¥}3®Ò¿8…«äÂ>e¯ô'õŽGE!ð]é·VÖ.hå•ïÅ´¢£½°Q1edGðÎi¿¡r“üp{y¾²X¯¢ðöñw©ä°ûʇX!“_‡ôþdp*Ú¸ [àº[/¨ø¤ÁÆù{ÝI}Í‘°!CV_fƒmÀ í¦û¯…LNêšý:Pµ³¸J#çªú˜£7«C-Žêöq˼êÍ{L]¸¦Ù¥³ ¨ÏÉUÒ¥Ûêè»ôî~}Õg©ÌJß%(Ü;jÂÐU²gÙ#g&ÓEoPÇ xé0ážéa2à~IÈ~ ´hŠìÉz^é á¶ø¤Rg°'…i "3dO¨+¯rÿçá 4<Œ“ê.WÏ´|HÆ·«ï̤ËÕú(7¸×–溾îMßáE—+{R€T4t…Ü©p¢ƒƒ.mà ·ƒ; Ðr”µ/ïUèVlÿ£%º ×}KRîÛýܾH¢«t„ØÎè.²¿ú&¸ç°\ßÀclÊ÷ qúÇŸé*¢b t1¡·¤.&´í—~H×xgÖ‚~l½~è×§`cgÞ¾?çð×y©ÆãøÞ¶rƒÛb ]Eõ¶ÅÇh»â=æøæÛžéߤñ°UWµÖǨL£k9µj'füÈ÷÷˜Æ4D,l$ô’ë­Ì|~/3An_&3×GÉÞžF¥rÈ Ø¨véxeËÁ;á€F”ïÇW¾ûËû0$èãý¯Ñþ÷­þ¬CDP7G£ÇÇéH"h¼ç4évµÜ¬8Ÿo>ë'7`)Åõ*7Ìöîª&}>w¤$äv]ÑT0…›š˜r› —¢*eÿ¬MC<Ðå HXÑ«(é›p S¾™nÇp‹+6SFÒ€„Z¿BVP/Pcd‡«% èö寅­=ï˜nÙǼ>Àž-ShLW2·þ§àë<3Lõerì;aLh¸û¯…y·üMZËúߗ лå¤{ìѱœtÿXQ¸£k,6+ŽÖ¯ ´8ú4 ª¶÷?…É¿x‘ÛŒ{½Tà@‚‡p Ó¿p3ø.ãÜUD‡>V2¼ý(˜26€WïràõQ*Ç8 ÿwݷܦqèîpä x jJr•[Bs*ÊþóÝòËæÉð…owñ÷g>twXÊP™»wóšÏôf­º…“¡N ™¾À,võfúuÿõwü·¦p&hÖ¦‘;YêÒË?üßuMõ¹µòŸâ.OÀ·a& 4®1_åäï÷9ˆXëçknÒFoz3Ý€Yª¦ÞYékR5"'d¸ÇNñ¼~ÀlfÑ™~ÀÌ\”;øËR i&èÞ+×z†&·™< Y€¿óͳdöÌÄŽc7&tœ¢i 3nûV¦™8ÐÙ™˜à@Kÿë“î¾ÎW¸ã¾8Ilæ:P»–ì ôÙŠ^M|€ÏÍKÐ÷^Á-ÿu.î=r’x&(Ðt)Pî°ORÊö¢Yü§ ÌÚî t-fèr:ÃL¨™’W¹NÝ|daMV‚¹4ÎAÞÆûB 7mÒ¿˜nÚt¬6Ïô„/è³q7g6mšÇèñ¶ð„:‡–‹ Tä¯rhÆP®e;šæ’¹èÞê,«¹hÛôè­ZÀªŸD²à¾ã-©@ß;˜T È'xüUשëÝ“ËÊÁ¯n¤ÿ); œ9¯˜=¾þ»ˆ#Ýó‚꺼c™yR_Ûdj!°9:‚¾‹àÜ4ã}ÿÔ¡aY‘/=“ghÈU* qzǤïÇ×é0™‰}wŠg"AoW=_F {’ñ½Í†ýzœ~ ·’z}Ì%¥1’ªrU¸ëëAÃXn&Ö“Ôzœ~Ïí[0”•CÅ%fÁ-õ*D1HÐ×’[ A ¿Š(ßÕÊ$O­ù¬ôêÞŸ,$èûsðZ—²’ ÷†ÐWÅ©Ó=_é|b'ÙíçWjOŠÆèzÉp˜J7Éâ»Q¼‚ ïÿŸÒ(=9zË–€ å,Øp?ÇdÒ†ƒ2 èY‚Vy‹ hizÇp¸Ç©«‘·a'ju7.žV܉·HÉÁ?ü@…†¶í´ðÔõê*ÊÛh>kaq=V/¾Fû0wKÈέ~ïW2A?Ék¼ã¿I¡rÐWѶæôó7Aoág!¬á¤ ì•è ©„%Þñdü}Cj .ÐQÚÓ‚úf¯É诚ç×$aÉ¥àÍ Y“„¥‰Û²Væ+½¯Ðrá-Óß ôØkY¬êp•ô†ì•è]'WBöôƒ{yp¬K (ªµþS€£XNF”^LÐU‰Z,ö 0hygqÅAÞµUHÝôùýê€ýHI1Ù}Ëí®P(…V*u—zÉ Ôœc’É›™k³¤L6ñ4Ô„z'ìC"²ªô'^¼pöCÛÖ*Ÿj?ä+9h¹Y ¶f©ý¸u%¯ó~ˆmoÍm&Ð*zRÙÑâë í\ >+Ê=`8Y9QÉ×¥!—´u•Fr&vú†÷Žá<º»9ñUÒ›s0o—7YÉWv^~^uA©® T53WÉ4|‡!vuç¦ã³(£þœ5ËOÄ#Õß[º¬ìù3D# ºsnO3ážIt3ñ?].iÔ—ü[ÅJÊÇ|³‚Öõ9 p$ŽãnT¹la}óÑ6PPÍ\%{–À@í(n¸ Úá²ÅÚšr6\ adC}”6TÐîÝÝßA7.P«~PAUy‚)ÌS*hqQ†w¼rn¨ otjC-ï£ Z]Q²µ?Ä'bŽÌn–M&&Ðsä×ìéRêjåf+©áU{“G‚:f³ ê© T –®’—¶l¨ åh'| ÷þ>¨ oÄf/×!jêHI[` ágú݆߀Dø¼J¡†¼[idG +çϤ¹“ $pÌî¢.âÐUn²F{g° Ÿuœ«t^:>Ì>ÎUÒß úyË`µ÷O7ìÛ>fþæimØ@ÍûÆ[XP›šçñÐ篰 oµÕ ¤†(WiÌwÌÑ0èëKÈ o×Á xëÌÎc˜Ìöw/Æâ?EdЭ‰ê@êM¶oæÿüBѹ‹2ؾeBIàÝ×ö=ÅN]“p~æþtv žô8Ìz€ƒÞð0BV¢x ΪÒÜ÷ÚRf®;ÅW™X\Óß”6­ÝÛ4á®ÁÊ!°Aßåâ4סT+µÿ8¹?qÆã댴í6èt,ò4ŠŠ\”s`ƒÎª¥ýˆ zDÏÉ®–7WøÝj9áÞ-Ëô,¿ Ä2О¾}8¢°Ì›ÿÆ­pÐ×Ììâl‰Í1ãšµki <°AÕ„ä*ٵرҴë¯%äC”…ÿžä4|Ÿ„e¤[<èÂë̓'Þpd•pׂáqÒ>?eÙúäžôMoÒ5 “ –å™Ù¯Ñcš¤áoM\gºkÂr¾®’h ÏFòID\‘õ, :»«—NbA#t‹Ozœ×)¿ÿêSåKgÝsyN–qôY]Â"Ì=$Ü‘?œ·w :3éåZµeûA%t6瞃Æ1Ç_•XÜ÷¦0‹íŽ“œ¸YÏy W^>æ:t­yŠL<Ð zù¬;øßÿ9D¶‡ì—“| Ùºv—ÓØ¿áÚÇgÝÁ_•TYžDƒþ•ý¬tËt(|Êõ馆J(cü{ÌdPf«<‰uÛVž”Ó]¹7Kݯã£+PŽðØVÒ¡Sô ”ŽÿXÔ]–^ØEp{è2°âľºŠbÛãHéëk’†’-œ„,(TüD®òS÷Êù®r%£Noïù«Êû4vv6.›þ ‰ Š—¯[Qã²W™?QýP¡†å o^Çò“ñRžcê÷–@)éôY\z<å"ïƒK0Ü+ E;ÖÃLjù­yþRÌ™{©¥$ ôVA)*¿>¦âd2úÊó¶.“ÐÙ=˜>Dñ fñ"2œ¼PuŸtpx™2×êS V’t‡¯x)Ä3<—•âèÞªRÚ&k +^I@è»…ŠF>/k¦u÷¬ÿO©”W{Ø”JÆ «d¶ÒÔ )Õ)øóHÿüõJd[»¡z¯{Z)/U©y)à‚D¼»JÁ6ÛV*¶ä±Òˆ¢O+ÙÁµadž’dO“YÏs§¥fe—Ÿ…°$"4òƒ¥›/ÀÄYÒ è ÔÝëfȰQpæ$ÊŠ ÷ëH¹/À<þÉ ŸrJK6!¾¯ãAº±wCÈŒ M’e¸åËi¤&Wùݪeò⳪hÿW8Ô6_æP‰É”S&Ì{9¡¤5¤\•PÒ¨¾ÇóïïV?~¬ê;}•õçS^2üöI ,É(Ë%2/\¨L¹dýew'ê«T†Fv¶«½³q†@Blã=>æ>MҰØ+­V6Û¾J¶µáU*´ 6d-'W+C‰GJ#QtHè”wT_f@ñÁ6H ä';”¬«^Z *¸ Ç‹Jštï^P¸ŽþT"B/OuKiÔ±ú*…c%£{_EÀ{&à 0¨‚Ù½ÊQ4ÿ¡˜QöH©ya¯ƒê”“R… mDEBÉÎÅJ@(¹IðÙ: Em,«ÙxZº2 Ú &nW *ñ=RÄ2ý0¡åø?uWM +Åý`šSÖ•ß«Aau‘YÁ„:"”ªR+éÐi—é*¸“z©ª¾WÈ¡¯J«Pöüý‡nhò®É ¯jÒŸ³{YmYÎõ…-2GBÚ@^´*¸ K.hù/ô§ Ä½NMMPèSü0jÊòUúü™œër¿«Ç—Y·1ÍÖe\ⳤbúüšíVº0 Ð×Ñ®"…¾f»·ø¬®}“*åڴņpú­Th©r«ÀqÓ÷T¨Ú'\%ãÚ寅;ø{ñp)tù«D }fÃk×håeó›«©÷¬y-q¡ï\Ûú®p‰‚¸~ÿS¥ ¨ÝÇ$6ÑS`«äkˆÅ —©þ1‡6f¡–ÀÐGYe%7x>!ó’›.÷ýdIifÔGãZ“GJ†GîlÁ¼©|Ÿ¤”U>„hZw¦£¶ŠS/£«äžµ‹ÖñèlÓ܈ÓwŠi z÷iK·T£Ê®?wdSÉ¢ìî–ðW©ðc4Ö…Škþ[#­ZA‘B¸Vm[ÙÉ u?·«\‡n<ë/)nú¬»ô÷:“4äã1 0(kWQ®Yë´ÞÒ@ÅEî”rÍÚvdÍ5ˆAµhN‚Ä5I± [bC#W™%¶Œ{Íã2hyYmaÚjû"”ôèlȶĆξôŠ€ óóU |×ðe6{£H¹¦më¾…PƒúðY^VõD®YÑ jPfæ¢ lªa%sð‹ÇÓþ‹c€MÚ€ £ZrCgréÚ!_ «Pê·ö&„Ä‹•Ï!L-Ê nhq쮹t¯/€…8ô Ôô‡ÜU’:È ×-íÓÏ^宄Êa»fRì äÞˆFHEÞº£=Á¡3ó³Qî 0¦Nº3«H¤,œ—#… %ÖŒž®À›¨]º˜AÚJ,¹ 'ÓÎzàÈP6Aݯš~¯U¯ìV¨Ì7”J)&\¯.¿êCJg£Ø—ůS¡W( XrŒ¨WÂ)thqë‘÷ÚûÖÊk ¥Ìß[ÑØÛÙþÍݺΦQéÌÿ½û_à Œ¡Qoäâ+é:”,Añ[Ô%(Ç¿9é¡/?î*ûÏ7ÒÕ;¹øësV§ôwú,%oë7w§_b™váC•rÊþr¬J&+]G£`8iI^œ+?CÉÞ‹D=ÔûDzè}êI™€ƒ’/ÀòmfMx}á.zèV ¼C=ö°:ä z¼^¡+ôX9¹b KI&Q/¦ù*Yd*tZéëÇ—ïPƒzö¸‚Ë«”†›ùXÉnÆŒ–žüÐï¼´HÚø*ÙάÉêë+[@LOKÛЬaåúvN& åšCj?p•ö“ðJB³Š}­Û1üZ%?ÔRù1ë“VñÉV)=ñ¡AÅÑI‰ ”Ä´×ݶzä¢t·WÙÚ*áZCêwõ3Ó½¤<«îZ°¯+^PSòSÉ z¯2€‡Îª©v ½Ãm@ jè\œ¡ÜTü%«t@ U«Œ _ý¡d¿óׂ–°à¼ “UBQ?³÷˜ôìÍ£º•ÖÛ€ä|·P/“èPw»Jà¥ïêÚåP:d=,¡¤ßÛÕL?>+}»£‡ù¯wÀ‹Sˇ«©¡UÌ×2¡†¾©s’±¡lŒ‰éÿîÂÏé„bE€ý>Œÿ7Ø8†¾qó 5Ô„™PK­þÀ 7+` Ê\N”ܨ«~.¢†z§nBŠ{CºjèÏ1‹< _fícžŸ8åñÃçâ›P*É*Íg5RÔðÔævg3ý ¡mÉX™âªZn\åäÔ+4TèþSއ>A¤ 4ô3ý¥ ðnMA¯6ÃÛGÂügêÅpÑe(¹±©’PÅgÜÁ…`rM(ˆì/ƒ†Þçõϰ=³¬ eQ,¡OÑ`ZÉ ý$ô­'£Û¶õV!aI«²XhBz…JfžÏiÔÄl+´ƒÐG6Ƹ»‹E@e|!P$\,ds'ïÊ.`¡UD†PÔeJÈ}PÁÕCÉÞN~¿W²BÕ4ê wÔW§.`¡¯k¼X\ƒÊa“Aµ€…¾;ß+1AojZ”·Kz5¡e˜I²“ô×sZM Ûõ±¥·ó¿—9?°¾«üîX áÏwCiA uÙF(rä°R–p¡~ Ô¸×D_â…ú­\//tø˜£ esY|KYQY€‚\¿JÖT{Ÿ,ÒÔîL÷¾+ðB«£ k¨¬ôøÂ¿u¥¡¤'Wy¹´ÐúäÇé÷N1š•NáoûÚ¼à,HAÕóÜ‚d’a(Éx0¨ Ó·ËZvåô] {Ö í‚j>S(lühd/6­Ñ»–9øXMkáÊ9À´à…~Î)ÈùÄ‹e JòB»HAž6Ãß™Á ^h³)³}{‚‚¾/,¼Ð7H±’Ú÷±ÀÄeDWÊÉA@ÈiA í¶ ×q[×êc²­«cbëädöN1Ç(.ûÉè"&Ò–åïwa?oÊ™„öS×JZ@ÞØàBMÓE®¼/³19ð¸¶p¡6­vaÃZå—¡¦ þâ†ú¾ÏÃ_8ýTƒû³•o<9Uꄲ±µª/s0¤¸›»¾=Ù—•û¶Ê®êmYô¹SÏx¬ œ ´ -Ô%s¡,HeÌ~\èí£øßÇd…¾ÏB)Dµpf6f¿r_¥µŸøþÊ8?oÏ,TLŒP6å9`°û6  “"C¹æì»1¾…dJw|ѤXqò‘òO0{ Z5ýeóe¯/ûC‡kVN>KÀ=ŒKdÞ`‚Þ<‡=þoè3é{}Þ[v½¿…üc5‰*[´PÛC{2ôë瘺¿¶Ëž†%ê‚…:†¿ç_•ï IP ](›Âæï>õ'µ¹7^„ö"UÃ[{ýå ×úÆC9¿·b‘|ì܈½û¶S÷¢œú}VûÏׄßZä-l“Bu‰DÅ´Ì »A½æD¤Hì?ß}”½YÑí—lAï–M$>ñû9é¤÷ßN‘B`½AŽÙûPPm›~C } © )ÔðœPTFT|»ÉKŸÏí§œÇˆ¶ÑA¢\†Ò´°ÌHqÓ;\çQpöø¤$%ú£ššaóŸÇi÷D­œ¸é߀„&9 ¥²9úø˜Œc+åæzM¨¸7| õvÊ?<™PÔÔŒµîTšš9ýÀŠs;¿P*¥зîTJNæ_ :_±@‚ÁãC6fó¯9l”ñBöW]þt›Xbúã áÞåind!koyÚ¿#ÿÀ2Ø9”“Kïûit·ôòr`„¾á³ÓAßO¥d„Fa¾ÆÐ>=äNÙW¹Ž\~*”ýçSÍB¢Dë/H¨¡bZLHÛTÅÛ?£(l42E-°²ò³tœA0O»§'é@!0Oœ„„®ŒB¢T2±8ÐQ´wZ$<@BÕ±#Yþ¿i±Ö³ùÛËß-H¨F–ÿ˜;‹†fžŠÏ‚ëL±³\¨!ºXÒ€yúò•BÙå'w€„;e‡Ê$\Œ³ çÙ.=BÕQû*í·Hðô£àÝkËð³BZ³…mø=îà9$[>þ9âÞb¥sH>¶!u„neçñA߉W|PgÉ–·õ]Þò8‡âCÝú@2ï)w4ÛR2;C¡„P® 4” J’ ƒ4”»11Êç¬,9¡œþ ”ÈèËË_• 79É%СdÍIÅ$åV[«n:„;•™=y•›•¥ù%”››Ñ6#)”¬¤Öp(Èiá«..²dú¶@½z÷!•T¼Ù¤Ü=¹*äM(ãg{*”;ó—…‡Êå$ÖþI(7ᆱ”ª^ã:›wåÇôäœÊõäšÚ[…Ò¨h_GÊ5‚faÔ†r·å\Êʵìñe6ëÝôI‰IäÞ%è^ÕJß`I(Ù̯2@Cé$fe}ýÕP0¤ô`„†)aÏßq•l 7V!B•xJÙ¯7„öçCµ!³ÌÞû t–ÈP²«eõI4Ð)wÜÊT¡Ne ¥üìӇ Õ(:&^F(ýg{0”L»—OÊbRí¾pîN+5?ˆùÃßøªP uózàA ø ¥ýÄØBéTw6 óǺ åŽz7€eSæ÷~ÕQ¶5?pýWd)”Å¢)í¡Áí¼}™_J\(ó‡J"µþ…²A‚U΂j¼ÌUÎÏ=´Ýƒ <¨‰°¡$õ^E[¡ÞÖ¶Å0Ž/¼Tgáï>õûÝã_ËK×ö·ßJûó)¾ÂJKŸù½`úËa aRØ\}•¬Ÿ–QÊæ=L“(”Ä~kÓ©–‚9+¶z(ÔD¦BcÓî=D#¿øíHt3)ì¬þª›pïäÈo¡¨pvEC!M™%©`ü» s(wKnLß® ëXy^¡Ìòu+®²~ï`MOÕZ÷ki¤Ü+A"”B¾çìR²§ëó9KM]«Ô8î%eæàÒÇEñªRöÉÊ!õ…y¶tCïõÕ¡_üó€ƒ^ú3BÿóA„p]¹®£ÌùûxAƒ:•8”CÂÉ{\Tž\Ë Ýx{à@Ên.(íËë ¡Ã­ÑÍ T¦ô¨O|ÍP¶N|,#~àÀAëÐ ]`u%é‡rÓíÛðP‚ÚÕ0¥Û¿gÝ|û^4V‚wý(ðAÇöK (S\E| .³£,¸’W8>¬¡ˆÂ\[À}&¡®à …\’îïc ,JI§ï€Ðýx`¼€PײiùàU±lÁ^õ¢‰­r€P¾„«ø¼ Sb •mÔ1Sxºšo(l w/°^Û¤\Bègé/"„¾ó¡âP†²È[Ðsê I(gÿXmUö?a”êO¼.’íYm+€Ð³?WBª/3¹ÃŒ­*@¨²‡®L3Mh–þZœ›Áê[„qJ;Ÿ°_Hæ w¼‚­Å?%mÿKf®R®/çòÙZ…Õ®N(I’©ú˜ìCéøŒÕÇ h½IFæHPõöI"$baÔDƒ^Š&— ê¬Ò«h×®HiìêÙÂmKžRmn|ÅœYaƒž¯0ÿ|ž¡lB Ì-6hkDÑB)d}áLU±AUÐÊ fÏG³•«¦BQ+W_õF²ýÊ&Ùœ÷ v2‹^î*0è;­¾}C=ßt¯`9òz•“w¸[™„ð™Ð+L ZþúºwWÂõȵþ¤S×:I±§ì9„B%w“l%…’õ£ÊWå0¶Èe¡dBRñ‹ ”5£&´?/`AÝ70”‚Í<”ªd/ ™1|›@µ÷6­lIÝ º†Ùõïc„ êˆ`(™^¯ZÍZ¡‚ºiz(²d‡i?›d¡d,júÊ9ù7*  ŽV…’ûï³ßäÖT+h@óÝ:Ýë-½4 7BÃÒ~/ÓçZÁÀ%<‡r·¥½KŠPßÕÊ¡‚ã¬=“ˆ?‡PæÏ´Ý@‚:k'”FmæeKÐÛE!”kÉNûèíI7î¨ìÞ>çü¾_­¸yÏ®u!w(Ü–•&Š­Büqýš‚¾ù¸¡,ö¦+¹/!žV(G \GHУY7í×°U6%ßÐêÎe ¶VAÇÐ(*„_J(‰¢cVÆRêÄäPrOâ}PAMŠ€ úÅAEŽ !Óð”ö{ÊÙŠ•­1¹€ ¼› Ðë¼¶þ—é“Ù¾ug×[PÕ4‹FTx£PÔ¹¯û˜Eõðñ1™`,²@(‡U ¿¿? 5!äÐï¾Çî;€À¹Ùj(ã×plËçø9 ýáC³~1s~rÚ¤›ýÐÜÑ& IÝÿ!A@«{nkÉ}#¡dãÂŽv(”–<¾ðfºÓ£J«õæ“¥%b‡„RÉof.k,ïrØÒìY¡\KÖàPæüY/ÚbcB R¡¨ëôïQb†¦Mb†¶™B©ä[c¡µÄ‚Æÿ:Vîb0–gÉÄ‚¾Û"¡ÜÔŒþÞTLÿÞ?ß®fìº,CUQ¡¨ ÍÇT ;=ÀÄ‚¾é¢¡ `¯À ´ †Œ&׃9[äæ¶CJ’mÓþ¨É VfH°WfS(BȰN÷Ç6öM0hU=ÊÄ`ì>KÅVÓßµIíe,w1ä^õ’íçB—½€E<eŸ•™ÆJ= å§ „|œ¶¦{¡ÚjRh[{rA¿÷&‘w¡d²2çB\Q|’l¡á ödX!bwð>ÊÿsöÏJÓ_6Ü\R EXš½ebÒf›+„Núé‘ð›aÊüÉ, e±u7}Ì&š¤ÁDdÕÇ bRB¨,ö¿:D ê:U5Å×ûfèݼ=Ypo| ÷¿lïkäÁ]Úb¥°[°¬T*yõ²€r-ÖU(\ÇöìƒVWÿ8y@ŸÐuðŽV¸n9Öá¹L*”l^ÖýP’úbBÉæeÜ ¸Cɽ G.û4‘ ¨][wèŒë˽˖ŽFúîv@Lk}Ù¨>%6iúrK½Ë=yù-Ð@×ñc€ú†zÒ@OóûÈ;Í¡tÒN}޹beñír†&«Àk—w¹ÚÜ å¾Ü^Ê:4 ç}Žë¥qa;‹@S¶t(ʯ×ó>NKÂ.ï }·dÆCZ’òµ®r·*ùB©­+d¡-¡³aôž4y±°ÇC,[{=ãQ(›Û7àº%Kð@Ý».”B¼Ûx¼pèn¥ýFÍGò@ÝY*„I”{îðÀþßJ3åÃg6à@gÑ:1ÀšÃJÓþŸÏJ‡NІP’‰xä¬J7ÞG&Ϩf"²Þ p C8:ÀÀ 1Bù ­Ñ@‡,• t ÑJ??Sâ€:·'4Ðééx$ tf·r”ÍÝ£ Y¤¡dã¾å ´w­[Pk¾ñ=]ºZ|ÃÀ±Êþõh=·'Âìð•“£š·:À–­™kÀ}wë< öh¾,ÏÖš8‚Ö![s2L>”ëÖ5¡ÚC¹~­^…ÿÎ$8õî—m‚»ï²PÇw¯²ÁPF>œ÷ó½ËåsÎuëLìåºuãø‰‚&ÊèݬS=;C¹~]ÔgJhìŸ4@5 _x‚jj¾Ì¢Ž•¤ƒÈT¹PÔ‘Z4© S=BР—Ш~µ ‚Ê€ØâËLr4˜¶P÷š'7;ÕC®é]áF÷LôÍnÇý›ô„ª²4Æq’ê‘0^,_†DgŒÞÔ€ÈP¤˜ÊÐñL:ÅõwÏÇ`D^¼™LÐØ”Áèš›w[˜lS_Fth|ÿ‰ð†ÆæãT3å ú<ºåÜ»pÏ"2"óæ ÚûG”ii j—`â4uu¸Êþóa Ô ôu6¦<€å?*@m€BiçkaOQA«ÿùK-þ*嚟•ù|!rKàßN  Õîå :¦Üï ô±ÍF•cl³Q<êÍâ)(¨­Ùk;€ž8õ¨¬(¨ëÀ¯rþ¼¥|!4"¼¬ä(¨û·‡2(hXú¹sÇß´¸5̪ ëËëtû« ‚ö"ÃlZ÷ §J£È jcîYîgRAßdšùRA}•MA‹^ª=ã=iRo¨òPîÅçÅ›¹C¡úªºò¼¼j–·9ɵw˜k‚5ä"”M&”þxbA/;k[Y_£p¾TÐ*¡Qá§›È%¾¡Œýc¬OÖÝý¯Í›üSîZòž±)µ'1·k¦ßc~Û²‡Ò~]ê ô3€uµ\(wÜ·êa½™ÈTÓJF¶Å‹¬$è»s4Á½ÁyeTOç-š®R~Š×C cžÜ›«*¨ Ec?Í ú†ÎÖãâÑácjù‰ê, ïýZ©6.”A ”+—‚ØÁë¾ò¢´¨ùÊw{Îd‚º½#{Á}7À wà ¥ýW§æ¡dÕ´]¶%&¨sŸV!ë¸i_·ÎÎàªnwµ­¨,yIP÷>‡U]o¨Xág¨ >”ܪðä»@¹¤<V/fÚ èݼ\€ÞMÛÔYä¡4Ê( P®8i~”ñ;ϯFtÏAÌÕþîŸ×|%ô-p­K, ÷v·²d\`AÝw1”Fù:Ï êkÌßmõ¿ÿŒq€¾Qc4‘ oÍP*Q=¨á ˜5þrcð?HÐí¼5¨6yo€M¥ÅR js‡ —n/öÿiZßÖ¤tZU¡4L&¥¥@PøPû²Y€€Þì·ÔŒ½Pe6úvîƒþä‚õíhê‚úî¶-ì#’B¤ v_à@÷ñ“Âþƒy ûß­iB9$i¨=^&sÿyg.X@îýŠH÷¥Ü3‘.p îäÊÎEqø¤ý›"·À®æ1TBÈm:'Á.‘€º•Ö‚æ×EN€§þ%sAI»úò¤Þ ¤%EÜV‚]سvþÙ.®œÖ·×?ß]¨ ôLM³Л*½YÞoW2”ºo_ý×£ÛU¤Ý'möeÙ8Ø"ÂyaØp€z†RÆÁºµÓÞ†ÝÍ Œ ÿlˆpn ÙfÓ—YXóÓ—Ù$L “ ã±Å:ðú»Ûâ%ßp€¼µ¶A}þyÇ£kÚüØbÂÍÏ1Ù»ÌVÅî® ÕãP ]JÁòx| ì &³=0k‡Û òðø«õÓ6t74 êÙw°¾¬ ºç+¨)|»§›Ë^îò ±¿´§ã?%¨7â÷KÒ;/¨jÍCYÔo“I÷NSÛ €t?¾É{ÿÃÐ¥‘›Å¸~îC‚@ !Ý9ï‡m0@ï¶ß Tô²º!ÅÊùÆ›†r·¢·o$Ð):x(q•Yåêì—ª‘èó¸Á±ön8 ¦Õ¨/Ù;'9 ïÃ?p@ g åŽúåÌà n¸€êÀíEïûyþé]Ê¡¼ãú`þ7Ï$'W^}ÖÿF5”ÆVú±’¤Î—8`@{•§{XÚÑôsÀ€ªÃvÙáAéxGPû4 hŸz9ËÀ;8 oôèTà12ÐêYöTúõ¹„æT{*‰ %M 'qX@obòilS<ŠL0 îéJÿóÍBŠ9bkºœ{'3Q@ù åÔƒât¶èÞ³º›–ééuŠE: ¥QæE„øtš–Ù*?m %´NV•BQç&Vߨ&GK ¨ûÙ„R¢&!|6/ÏpÒñ0Xy}Dr“<‡á^5Ì…‡ÀL¶PùYx‘gR8$ÃêLúõm?náß¶.$ 7é@2/”É„~|Öþ½ Ót8¹¡œ|pô@ æ¬†Ò@*¼4ý¿·«³3×=¸ï>Û“ô·ëí[¹WnýhëLI¡tvGË–r›Ì ¡dŽ’¡\…ß2º”“‚†Í4ñ9R2G‰•.„ a¼ÿše`¾¿xRn«‹P˜È|ÙE2TñWo½ô>'9@ǯ ÐÝüŸ`€n1@Ci@ø¦é¹Î”2ÒÖÖãjŽR(‹_ü^f£œœµÓ‹«Ë3‚•­ßPˆ¹t YAúøƒõf^(æfóYwUwƒ²P_U­ÚøÉ/´K(¸ÓÛJÅÇÕW}¶_ÖC޽̺P’40âBYýk„òO áüxî-~£ <4uP®S(MÙ˜ÕÊþó Ò‡2Ê7€Ê„Õ¬¤$c ”MêÕâ!àäæ^b†ÈBI(ÊÑXŠˆÓÇth5¹º†‚3—ùoW¸ýhÝ) ºàŸt¹1õb` &Ñ„R¼ÃhWq(×›]úPÆ×‘a¶¯ÊõæÄq a³qYü݇­BþBÃ:çâ€ÂÓÔ}hÄ0‡¹Ê ¢iã:³@­LB*uHY¸O½I9}”õç“‹ÜJ²@§(!ÜÑ¿DH¥\Є4ßs pýౄ’Þœg”’< g’‡MTÓʠܪ{$ux3”¤{kÛ<”¶¿žm(Ù°Oyì¡LåŸûÊëg²(b*¥9”3G0оü¯ 9Æsb[Ãgu欮"è{3`yÛ9º:°B”i$"³b¨k¸-oP4 •½}Ñ‚ ÌP’ïmS²$ ôS¥L ÒÞc6y:ËWÎíœé·žåà]y ,ÐñX ®W ¥ñÚëíÍ/Hèªö¡Ü¨žqD¡l2¾•ÿ&û’0кýdXÚö«öÂ@§Oêd¨°ü€¡t²P®O÷ù mï°úy‡ae÷¼P¢&¸þÌõyyX[JŽųBÉRRÏÈõqdï±²òû³*Oxžõ1 k£²$Så†öÆò/N&Ðçý¬— ô•„0”‚$aþùT„°~‚^¡l&<îgÔ«r…ê*Û«¬?ŸÉPZNTÃ'e’RÁ= %«NüÀkõÅöYw-põJ(i ùwý\¤yw®-)•âÝÇJ£˜…)»&(f2G¾‡x¶bt¡ìŸèU('glÌš8ЗÊù³øÂà@Í} ¥:×Pc-hí¯™*m•ÛÚ e3Ík¨uÚ:¼74œ4„R˜æõkF¶ý‘¹R“ëúhRîÀ¿èg¡áº„›¦1Šnâ@c˜cNUp sC %»:ý•• ¶%4ʽX—꤫Ãã hUPx C¹ªW9ùUþî»°;:Ý*T ÙýUà@M E«mµ€ ¶$tMªEÊd›­ú¤Eyû¬$áß ~ 4Ð1<Ôêr¬Zý™?+D ì'ƒr~wãã]Ñçôh O—ºÖ£E¿Â]‚†µÊ|?a©PnTo #ÊÍÎØÅ·hWt(9ìß÷=y@1Ð|ÒþóA†pØe`ék‰ŠoÂëjð€Â]–½LÔžø*;‡k•Àbt|ÙÙ~Œ”–0ÐØ½(Vî w`?”œÿU1ÕZÁ™S)V(iû«†*”†±­¿ 4Ì$Üù §ʵ~–Wˆí¿D’ åŽúùž•0Ð7Ð.h]Ú5ŸÓš}.”ÌL&”;ê×Tt«% t%VÊïSHh¼·¾Êá·Lÿ¹4ß·„½Ÿ¡Ô}úØxÅIKÖ³}k÷ËÇ,(Õʦ¬~ùÊYEª]°Ö„ÝúK@k‘ ß :92”ÜŸÞþ—@Ýs0”Iôð1 —ññ•“k/?©i°§ÞX{¥å…R)dg¥n[Öᯖ$ÐöþÍa¬ýò…'‘Êá“2¦7Ø> 匟Nä2ŒP a&h‰ìvlí hS aÖ|ÒͱlÂ…r«MÜD7”£mjýÊÝœݯøº¹ö£ÉUn @Çû€Àyç)”›k¯fb!ŒŸ:›P&¬¬é“öŸo7„CV¿æ’±D湶ɵ/š- ùÞñM®ýô ¸·ï*€6Y{Úå½ ¯Ô¢lù2wO®«Î¤5pM„¦Pn²}ñtÞ¶ò9놳Û;EAÍi%O«h*”,;,²Ä$ÐNÃán|ÖÙM­ÒþJYe¢ÇP¸ì+tHYCBV™,Ýâ´ù€;ê»×š¨n݆.¨ÇY:ªÞ§^<ìYÍ{ñ°ïV:¡Z¹½®ÞÚ¡Üð¬¡X¡ä¸^4”;îû”ÚBMù]Ð._±Cýü( SEœ¡dg¾Ç_%$ÜÒTÒ¡€:3(”Ma´N§@MûÎÝÞZ‡º•%JW}Œ6&Ö hñÈUà6þ–p÷%>ß-è£1tVŃ:Ð>eêt€p½yP€m>Þ:.˽»7qµrÇ|ŸŸr}µ­Ö€Võ; åF²‹ÍÄžÐ*M²²í“î°¯âä„r7%Z•‹Ú¡€6Û… hiP@‹ý´ Öʽ0mÔãsS-a•¢qÏ\Ø“%dÅŠÆý+ܹgûŽ^Ð[–×zÒ€¢oK¸£¾Uð[±ÛÝ“t+÷ª”Æ®¶;Ðb×¢C5Ò7”û4Ëñsa0ȶõ¤€Wã h9º[I»{PìÜ«M–Xg (2{â€âZ¸»Uµ7¡Üq_½Zv Åvv‡÷l?o  Ý–ô±-Ñ€>tp@¥{¨³Û=) óQcÁPNùy C)”N+•±Îoð€ÞG3`ˆ* e2Ë3óH ­ËŒààšý›‘$Ðkqäp@?WNh÷B0 »rjýy•\qôˆ‡pÐÊš %«G^«¨ÙQŠÂ*Þr¦v”:À•)kgÔL5~Wð´ÉOp@»Í‡h¨Az(7Ó8üQ ;ç ÇÂüŤ¨Íè£A P+ØP®Ô—ÌÛ‘ÐXY™GÌ abHu_x±IDaz÷`@ ~€€@Û;”öG Ìмï}Ú‘$ÐQdב@ßû t-¾ãC=R²©ƒí…Áb{WÚ탑@m H ³È«BnÅÓ(PEC™L®X¸C(PY¨ m|Œÿ*¥ÈÜZR’úþ@¬ÿò(’30ÿëã' ´Ú›,ÅËÌÀü/Â…rÇÿ# N@ïþ H ¦˜_…ߣÿ ´ªV9”´iëç¬xÆÑÃHûÿ5ÁëA+þ@?S $Ðzüˆqšú¦· ЧB>ƒ‹u|ì iѾpcÔV¿V 9ˆd›ÁrP‡Ÿ Ðzü{ù÷#9 Õæê8 ~U7_åðIXüiÖúôóó°þ›À|þ’¥0_[a=±þ•³B‡ƙ€V}÷|ðäºB 2ÜR‘y(× 5Ÿ³Ù®|tkbÆÐêrœP¥Ïꔿg]3È ŸCY9C »ýܫɴo®J›Iº¥ô[Jš´âÅ„rMZóŠCÉnÓâB„r‡ý›4ýnþ|“zf5@¦K?æ½î/ѸM@poÊÉd%ø<Ì–™6U³ól í=2»e‚ªÙ>kñÀ«I¦«2ùÚìT˜8f1»ÑöÄ,&$¸S};ùƒBÈ${Á€C¹C g§I™ ¸¡ìŸò¥P’ ã ‰ ôÖÌA¦Yõ@y‰@µIaª±>LEÑÀ&|oŸµ~“²fâ@oê#ßEAsêœð½·ßÍäÆ.:%G¿{ …"wN ¡}¡dÉ•ófA?C!BmŠd£l&ô“5á¹uB(×¾Z¹†í›6/ôcDÌEzÒã§—D ÃC¸ÙI ÖD››ä¤é[±Ý×A£?@«{´m2ïœs‘ o!W›8o~äH¥>¡äà_žrXTð׿qáh·B®1¶Á úæN k(J:›5M#~†f S)žà5—ˆ R„r}º)¶H[¸«Ê6X¸Kœ‹P”iÆ-^U…ÍÖãΘ¹ëQ±Mæ‡V¡M«S>W¡¯Ãù(jÐGXj ªÂÖPnDÛ܈¶ð¦o×**3ÿk!s,Å9 %³T½×»pÞY`Uw*c ¯Jå´j“Bé ªªÏìWóZPAÏÔÖȪÎÍ`è¬êάKXP‘VB)Tî3ØW3DcYQ½!ÆÞ ô¦ø­ë½…V­*gåZµ«)}iršñÔáªÕÿ2|ª Š„¬›~įt“Ç_&.h½Ãv¤K·ŠŸkÁ¬þà€Ü#"Wú˜ý3Q­Ao‡Š©¹Ä†£aR[3-ÚÏùco³kKcçÍë)ΰzÐ×ÿ¤gþƒaÁKh h`¸[·l·öãû’\kEæ•`…®ê³nfî½3##HùPPmÎþ3¢}ö/y»YŸ:„PÀ {$ÒÛ]Š×¬Z€°}?dÂÝ Ð]zÏù…„¦Ë,L—!:†÷ T¸›…~²É¬ ¥l ™Ç0êe†מX8å/CÍtÓ‹ J+BÙVè“H 0}K¦±Æ×k+Ûæ¸ªFaRp@Ÿ¦×Ö5滎)V€r@ ¢¹…r0ùp ´™nºk¬·É•LãE6¬®+Û#&‘=Ú–{tLmË×1Ü–»Ê˜1X{j/?×€ÉxXø'8”Ž…õS =`k@"Êù°H…56¶º—1¤ybÈÏæÍèÄ´­‹…%Û:X²(¬W}•Mn? ŸZ€Â$âí*h˜_ú¤ükr5¶®Á9̈…cTÞ½[Vöÿr3FûŸ¸æPØÑdJÙŸÒ®aã¢cœŠ}¾ªôÐö©tWZG ø•‹—(cÖXDÊ‚…X¡zgeNøëPÀ¹Ão€ú¡™g€^ÏÒ`ú &Ê€á7¥05›ïÔ2‰uádjÆ£ ¡òë™ýJúÉ7%”0Œ Ée+„böý(@@•žJCŽó˜T:H8÷˜\ØzåB)¨+½ÏPÊ›#˜,” g³(0”jlÂê¥P"è¸Ì@»JýÙöÛÛ¥³¶¯Q©{6(I%‡5 (C©N­wà€¤£ù ¡]×q|=pߺÁIÅ~^M¦B©–M¬$ eâwŸN%£b„„‚ÀêÒINìÔI(UÇWô!n/”(Ãq* Ÿ>¨ Ã1y@:‰ü«­C~ù4*†˜Ç- @ƒpÓù¤¦/¡´šé~ £fн(2Àõ'é$ÊF ¡ë¢ëî#¥ 1,¾š*lø”°ˆéJÿy%s‡@ž+‡ÑÙÞ¥°Ñ:_àž¥üϰ×1ð7†=i¡4lC¥ÃÊê “ùhm¬=)Éž‹ £ÙÅXfÈW×TdË 4a2…ÒPàÓ•ña@¥ò)² eý¼i!l<ÿ¥“2ÏþsLüEË!ÇÒVëÉl€€ JG¡šQ¨[ÍÅ  5øþ´GuVKž PetÏh׸h€ —2 @j2V±¹Bé(Ô´Ae ºiH™Hoïºr~"RÁÄûЊ¿téÓ3×¾Ó,ž ¶'+”þy{[W£>ÌR ¶¿l™Ù`û?(Ÿ as’RPÖª…‚jÝ®Cªltè$ @ÌÇ: zñŽ7@»ž&~ÅhCY0x±\4@×ë:0TùõJ¦5&Èoê¡J­´­g%´å£Â»×fY³*—9º ‡?oèľ_'Uç-t€é4 2ÙCé?¯jÞÎwHTÕ!,Tl²×Ç,Š`xJ® ×¢.³£-`û/Ü™]£„L‡PÑì[/”â%™†D‘à.A)’½±þ5 @¹?B…³¹Y:+©ð½Ø5dk>ù œMÏ9”Àß§ƒ-¹û}¶äÝNB€ˆ# åü¼ð.!ØxGÃBñf¶€ÞíüP·„JG“  Š4„²°M·òS_Ì×Pã‡NÅ€m˜:«ˆ®8 ×ÿSÝÃgsv_çDW ÛË1”ÌÎÐŽu(Ub2ôÿ¹ƒLÔºL'þS&HþóZ;ýQrÆ’RÖN‡áµô'{ÔÍ>ųç@›20¯ô"¾¾ÈŸ×:ïÃ~¾” gx«äOaÕB1¸Vüp?… ˜vÿõW{­×¿é *‚?;Ìþö>©†=Á[¡u]Çäð =Øý×2­„ÿÚevÀ?ÅÛ ¥ ².z1€n߯PÿÔeö‡–JŽýI$c(öÁ#„RØ ™6øÏÉ–<¡T¥!k¹g'þSïï# 5*¹ ö©¥j —ÆäA±4{+†’öìîº蟇U©äBËHX(U7jzí½æktOMm=é%)ìºÉ]'<“R £ÁãåÈí¦G\PE¾fwaP–” 0„Sؘï\×=˜†îI… åc³FAE†æTÕð¡À\l:¤'?{€þ¦®é¡,¼¸} ;e €®‡åm?é»Ud{Žö b ân Dn¡‡R®œ\ÂQüÏ[õÊÑ®r^ñ¼d7þí3áAÀ„ˆ ¥á$,™ƒøOÙ­ƒøO6˜£à?!…°‘‚ÉüçaÎí Á™Ó4U£Cwb 9ƒÛP¡tîÛ*•Ž79†G¡àìyTÉ‹ƒfŒ?íCÏ^vlÃbz@Á‰(6ðŸê3JGÊÌäü§Z¤…2‘õ¸(¬O^s(Õ S'¶FaŽ à?×ÒYK‰ö| Kµ£N¡ÿñËZZ9=œ±€´gßîP*¿róOö³âÍZÈN}_Ä‘‚CÈÿäžu(½¿÷šgW Ë¨L¸:R±Ž‘Oža(x]ü Y(Ž‘ƒí ƒ\ž"˼Èj¡T£køù-¼#ýœ$NGç|kø£Ð?šÀýé‹KÔÀ|/(ø&˜7Ì’AîÏÐ3²_˜\—©Å2KçûõºÌsÈüç5ëðŸ{ÓªEïÅ ¥x-G7¯V‘¤çþSˆ‡PØÇüçµðŸ]–SA¼>ŸúäÁ?aÎJÇ ËNð?EÑ¥ˆdš…’ñ¼Í£9a÷ÒICÑfœ®ÃÌJÌkKÀdƒ¦PX/gƒA+‡aÿ3~V± þçµnfÖûÂeЭŠ!‚†ñ6(IŽÙg‚û3´'2± \óbv`3ØJ0” ˆ* ,¦c6‚u0‰f­aÜÀ3žÿLîUÍ9Ê¢=lRJÑbd_Ì€†Ù„±=‚[‡óÂ,¨àq!¤EK¤H‹tj&Ð?‡Û¡-FïÌœ¢Åp4MQPíœdÿ ½9X_ìŸEÚœ€ÿˆ¾Ê¤KÉáoCcðƒl˜“8çÍþö"€^’N(yq1æúçÚp¸±_J@Áã£P-šh'O „¯ ¥9ˆy`ù¶ú/RÆ,‹¯B™çOeÿ¼(-!ìÛÁƒ™˜õç´E½dÌ9¢y‡†Ô<ØÅéz˜…þ¹îçòí,¾Z¶ëe8â$=:)Ùcú6@ÿìû2€ø&tÒœ ÿœ®a]ôzt€Ž©÷×ÔÏ Èðm²Î7”(þ–r€â0t(>:aû·¥Y å4'ׂ;AÃø¯³¡ÔØg‘j(. |Ý ¨÷sÄN©!¤M«Üƒ¹@½^ €N‡R˜0ºô  쮬Ô¤Ó¿¯Z}¤Xz˜…\†óé®Ëþt Ü–À¬¿ÚI¡äÈÓl.¬½Ó _àÿ¨‘C(ì7Ý(TF’, ë_ÀûPHõ†½³:ú°!](nÆ#™D÷2êËפ  ‡·hý+ º`ýoÀ^æ*P$}a›i_( âƒ,þÏ­Y¥ŒY™úkȘÕ!)˜˜JV±?#ägRÊœU¸fûóÖ°Î5«A1ñ×!”éÏÚ–PjW‚%2¡T_²Ã!ôçs4²ºñ¹UèÏóY…þ £˜×­I?r ›”J4fêq(Õo9ø! ìó“ŠüyóbgUKÍÛO6”OQÊÞ,µ …ϳÄÚðä˜ÎJG¼vH@) &¶µ}ã·Q o–ÁÚ¨-aÂI(Ç?N$U¢¦±ë¬ dO àO„ÒQÁÛj‘ÿÃÊ P&ª9±¤/€T\7+ËòòüB0ÈôIŽ¢=Ä)œ{ðŒLòPÒžmC/³ýÑ—8”…jØËС’Ù2eeÀP^†º’Íct%› ø¬ºËQeµIèÈ1?R&ª89§¹êE‡”ê±þèÝúGõ…sý#²y(Žè=|âý€dÏôÛPrÔ«¶2”J¯—…¾ ìõØö£6X{öSéõüüŸƒÔô¼æ \£c¯q·Aÿ¹qœ Üç}·wû5?zƒÿ¦¡äbþh’Û ]X-Š!(sÁî íš ÜÓ9Æw?_®ô.àçëûÁî¿ÁäÝáÆÄJíKËþØ~òFÀè¿kc5µ' wnÐ>ï´¸1×û䪷Aû¼ù^äïœÈ÷À˜WÖÁÈ®g×µPоŠO²hŸwZÜ }Š=:7,~壅’›ô×6ho7Ò¼9û+cÃâo‹VÏž2c}º>gúôtá¦ñMØà}®­§Þ§ïBåWñÏŒ`ﮋ_ìÉPØ•uP¨¦¬ÊëØ´ø=)˜üMû¡{«»47hŸ}òžo%d¸™ÜbÐ>; ‡rðŠ=W±ïûS¸O•Ì Ú§z؆RÃ^[û°yÉÒ!9û«ô6”Œ_«oW(lÉÊÏ>hF¦àÏ>Úh:+çUCÍmH/V"QaóæmèJE°]OÈÏÙ…ÿÉ{ªcö§†*&d]Ù^๠øýdžÿyá{C!ý[¶ÔÏ&Û§:™ÌÛË ”ýójc–Âùye)Ϻ•ó%Å¿ÙgØÏ»Ów€ý¼¹fçAF 7¡dFÆdòp(ØmÐ9ŰW¦eÕ §ßŒQpž?Ò‹Cñï¦Åi ¸6¾œYãñ Ü¿(6Ä[ÛöûiÜ ©*êwîØiåÕå %}¸CP(ÅýTë`Ú¿ÑSÜÏCIlJ†™àüyävžŒ=³JrÊÔ1þ¼¿¼W‚2øNÅ•Hÿ•¿ñQFNa(9üÏÑ…6¨åQV‹”ŒÜà9CrGÊž“ÃûKɈžõוӑsíBÀ?÷ýô)z1‡A€"FФäz°çë¬ôäÄWUÈÿû³–nj€¬=úí zÓ£(б©üç!§'”|¢º†BŽL·'ÑŸö4.”èO'$1”_E™³§ÐŸÖæë¬ý‚¿Î²—säÀÕ;XÌ9œpyv¡d€vï×19ü?Çìoµ8Ny &VTVŦâØ…=uNõä´XÏ÷V»LUä?â‘2ñu`!V¹À‹GJ …s2]å… O!ÃyDÜÍ|_W5T–°7Ä,î÷ƒyôFú'–r,E‹Á^thNÑòù*¡êœù@k†ÿ( {\{~ÛbÆ@ãqDóÇQW‚êžâ{C‡`|?ªBÙ¦=ûš8 ýA”Æ z–……RU% ¨¦óûÞͶ öʪ´çƱ•ª*Ñücœöý‰ìz\µ¡uÃÖ 6Ð[)/NïÖPNÅΡLdœš”…º¸`Ö–ÁÈ“5´ÚR¶¦Î ˆgXצ,'ëÈÊPú‰ude(ŸÇ:Z7ÛÀ~œ üG¤PKXkmÀ•#À ”‚²7Ð@1@íbàº.\•ÒšüŒôObP§þ³5eà?{3ÄkÀÀÝ4¿B?¥¯ÔHÿ¡ÓÓ8jÄ]ÆÀ¥ÙºŒcçVðŸ¬NmTªÁôÖÐ.èëvz÷Ó ¸m¯“öw›Ö@%ª+„ÊÆ#¶`Ûiês€€[C³èŸkp67ìu t%;\xm‹{ÅÇòÏfåì4æâdhÅÿ\dOOÿs¹¾ åZCÉÍiu” …Ý)9½ª €ÿ)èr(ÿp¤=4mÿi®—äå²À?§kðþóRB™ˆ#5ƒè#o(È?êMÊٟؒÿ)ŠÏ4ßÔÃ=ûøÙþçÃÀ ýJüu4 ø¦EÕ€ÿ\¬•…D¾R®ZiÌ/Nü'hs!´ó\Nô™G¡TZÆ¡ùïF>Ü'ý“õË¡äÈo*èqÐ?Wçûì  >ðÏy…^¿(ùG§Tò˰ó_(ô䟣SSŠÿ¼3aœ8=ögqÑw€?Ù‰6„¹! 'ø“ÞPÖüŒOøsŠý¼ãÑÞ>‡äÏ#.„Šæ™n¸ŸëІv+¿C à‘PÃ^ÿ͈… …{Ìž>P"=iŠùDÿ¥c:¸Ÿv‡ùoŠxq?­soƧIü‚{qŠ—ùD‰´’Q|* OÅ ùs›µO/ä@K!¤!{§_hƧ<Ù**{ç–øBšñÔ£Zˆb+ÓÀÂØZå}!Ž¡´;GÕ$@A?_ôóåÑVs¿wq…ïòâ–2ó|#Ï93ûþÅêÜC¡ÒŒD÷´ eæùÁnœb3~ŠG†F*pWuHùp[CàÀ–U&B¾÷-+—üÕi#”4€Ø /„´fœó¢þ>jCôB‡Š£ýüû¼3ÁÝÊŽ½iD^ÀÏÛI"”êÁ×t[ mÈý÷ʬWäP¸@|’Ž8¶su`n`ÉAzså_;€×ëìÏëõqlIhãͽ¶âê–ýVÖ“ÌϤNa×W®Ä“Púñ Ç}­>¡äî蜡TQ‰ÕÊÂÁ†èý(2? Çà½à5†=3˜VaöþPÆߥ¡¼ÒUí˜_Ud+3ë2O¡ÞÛ*‰é¼«~m ¥#U!4d¾žA¥ýáŸ^•O)ðè‡NÁþþÑU2$–.c([º 8ÇYQlÓ“-“?üB^'y?™WÑ(LζÉo†L(É;dA¯ª©©,k]ÇæÆ»7‘AI(¹ B5”€ Öꆑ<÷×e&âG2Ží 1…rpïu+w`V„’Üé¿tH.ç+ƒv‡ñšõldb<ºÆFZ=sÔCH.R&¦S¾§ ¼M{]yƒÑùÑ(«%6~Õúöꔸž¢}FˆµKáзM¥#~tˆ÷Aež?ä™ñÍ,£ÿ&'¥‚Ô³Ó©8bÀ?ÝнÊ_JcpˆBuƒû“Âùy÷­ª¬y!NBÙQ¯Nå :4tü:ÅçÛó_hŸÌô OŽwÊ‘€Ç¨U9°¯´¡,VS–ÎI…ϲQÀS-l«=»ø*8ß·êO^Ûq¡ dóv)l¾Wu(»à®J*HßÕ!`Ê`ìµx¦›®êZ%RŠŸ—S©>¬ ;…’¦ò€CAI÷½ÌF]^—Öj?NÉM¡äŠÞY½X?*·Y­#Á˜L¡¤!«\‹P̹ѩÌ÷Âú$Æ…²Á‹Ààk@}Žû•ÁúѾ^*ȸ;¸§)©Ü(] ´Ÿ¡eª÷3œËG¨(añJ( ¼ámÈ’•`Èïlº°£¾+z›@İsE(Ç®¿aÉn1ü;P€úœbígn=™‰í¸¥'3ÕŒrè˜2e;§ÑÜÛr‡£_¹›¡ @¡Ú¦RÔCnj¯¶”Z¿tLŽ~í‡hê$G†À’–wJWÛˆä-8<¡yÈA Üçk÷yô+·01|íûDmÀj`ý(Ù9G- ¢\®ÜÏë,à~æ„‚L‰¡C3­)TâÔ©PΧ‚(”/%&”ṵ́\ –ÿ|hà4ò>é †òád„0QÛÓ¥T^ÃPö‡ së{—‚jb~$šp‚tùp&¥ò2¶>–¿rB™ÜYÕ1Èï7”ÃäCeíÁÀm`þýŽÕ`Ie ¥LBCéHsçw?Y#Ê‚]_1áPöÏ+%(„ó !…R¥eúwð>ÅC]½aì³T&Ìó0;xŸMC½7Qq{zCOi:F«ƒúÓiÉwÎüšç{Å›mìWy~ù­A¥Í÷ûÛ;?aq¡€b¢‹TfS‡C©¶ë÷©LÂP2†mÎQ[¼•b´ãn÷©F ¡|cØ¡¿UVo‚ÃòèCK–”ŒÌ#³¡ÜcLÙ±Æ#û ƒ»# :ñA™xŒæ§â?µÂ@ìWòS‘ÐUeÁ•¶ÆÏùa_sÝÑIiÐ*p³*âýõUx%-†Ò±eâR20Kc°¬£AúùyCàÐÇâÑ6pµ‚÷} ü¼|yȽPP¾tÉżÅÅû4ƬCØŸ ´Õ·ê¤y'ÀüQ±ãêEü¼ŸSÉÅmÀÐL¢Ú+Ù9–I731ËÃî~ ‹ÊÆV¥é³Ò `¼ôà!16«²2š°?*”¥#!…£¢€ŸYcTæË’ï`þT57”SÓ)ÈÅw}2‰‡œüÎÜÔÌëHI’ÅÓΜ¿ŽØîæ³säd,ÝQ‡ Är‹PÒ:ÏK©ŽÒŠt Ÿµ+¾\õ襜9–¬êÏfk¸P&Ê+LgáÂû éÙÊ¡€þ,& „Bâ!öàÆ)æ}ÆCèóã& à>o,f” °¯Ð€ 0­«Ö›zȇ’ ÁfÏÎPÒ R†Ï@þ°æfN‹vJ`AÆÉ íÓ^WYpb›ÎªÁ¿hŸ×õðbs[R?Eû´¦Uö¿µÅ—jÀþW®Ç@þ6£%­ ê„’V?úU…üñ­[ Þç â}Fr /?¯AÞ§°b¡äèwnE‡²‹5¥TFóµBAX…w ¼ÏÍpŒ{¿kú›¶:jú†«Î(ærBXãcyÂ>™4Êù°PB1ZØNÅQDÎ;Üçó0D7€û¼îù(êOÄ‹…‰>÷† tôÞús—èòýÞ SÄ„æÏ%Ŭj¡ejús—ÑqÀ°ßôYhŸÏÒ£íSTûT>P̾ S)9ô'×õçÆu‡‰|h€ü|ý§AêVÒêvhB©Bi™êÌOÔ"¬Â¡å’=¥8"È¿ÓA»’™9uÒòï†Ã›;& ~úÔ¯õSˆøP°“·uáª2Í ŽÊVŸ¬ ò³º*„’»ªZEþ{»5³¨ŸÏ¡[8 övE¬â¸¾ŠBa–ý–b0¸åÈ„€“?0IÄ#¤‚b‡Aaü¼Ú…PíˆÉ_Uºü*í_U|Û§°Û&ÀÏ‘CÁ.¡>¶«,ÓÙ5òyÍâþ\ t(˜†³©”3'?hïófe„RU ÿLðÛ.¬Y¼ÏÛÊ+”jFÌ&”¡Tu v§Wña¸žæÖ´ÑsŸ0ü·½>§ì2WsU8SFLJ:rÜ›^ÅùÍ̼˳¨?Ù¯SÉœ 5£ ¥:ð­¯ Û0)5”ÜžÇîs=—‰ÞUlï¶&ŒÿÕt傽²Y‹ÀíóJu¥\zvK-v±ÞÌâþ\h{(9î'»Ž¦‚T Ì?³¸?ÙÍ·¹xŸ77?”"ØjÊ(‹ëáûhŒ*)c½®»QâstLû­»³Á¯×ÀÇ" k$e¸f‰¢þìb@HÔ€ý:‹úy›5†²0â0±Íƒ¦”¦~’Ô4•œjÉj4¹gQ?wcê_(Õ“øŽ&CJÒÐ{fêÉÊ‘RæÿMm %.£Ö‘!äø=ª\â*X«7»hò*ŽþÒÚ©™ŽñxA?ß·Â+9c=z±úlÿ)¡†ÿfTo:zOz‰Ó5aßcbP¯õµ4e• ™{ëÙ&÷o=j0A°{SßçUœÇêéÜ©d½hcîC(YcÒ™UJŽþÆâþµ úy›W†’7‡=ŠCèȽãohèHÌF%¡äã¤,„’óÙ *«{1õQV#Çu™j²KBüZ¦™ŒJ =óU쟸˜-Š0͘1™®^£Ï£/èçr暆ù½®œ%£aFSÈÈ^c–ÇZ-‰ïGý£Nä¡ätÖä§.,ÄïP2²7Ø{-ÀÔõ|-À:‹õCÉ`0y­¡.»°—à?©å¡d¹t{ôY…ýÜM1ÿ5}'\Á3¡dvR#,öeR£sûü‡ý™ChX|`ä,ðŸ[ÓCü§ç¿à?¯ßPäÏ×û¸^ò8BÉå½3 &” î æ¤¯•èÏÛÅ>„|†|ä…éÿN èÏ×#ús,ÝRxjðŠÕ2×t™zˆH_¹ ·ÁmŒ/à™\@öû\€þ|Ýób¾½Пe×uÎwúúS­åC©ÑùµÊˆ)š?äÏ¡ÝÿUäÏè†ÜtVþy­¡1zd„°¿sëÂjÐï05Àýœ‹«ýú³“Jý9^ æõ.!Ú6ô(þTùPrè?®`(“da5èºÅìϡֆÐXJ‡ñqÏxëa]n,]{òN@SĨ)ù~<:¦Æ>Á¡Ôؗٷ–w-æ» q%»¡»…’ƒ0H³á4 mBØ_oÿ3~ÕÒ'¥1Ž…4n»öžw¯DË¡½ûÍÕ@9>»ÃºUX.JaM>ºNŽþþðÏóóêÅBô2´7ðŸm2·úKklíâêªÅþyÝ,wUÚÅþ|­Ç{àA¢'ɪpT.\0|£x}æê9ÿÑ _µ[y,­{–Qû°^7”QCøž9qY¡,¾ð:&­ZŽ…©<ã{JŽú„Ѥ°¾ß¤·vt’ú¹×Ó)êÏr2>WÅÎò^O“æì}%7`o×ò« ¬¼ß®ëð­Å!ýL›„BÛŸåsƒõ¦>â¡ ‡¼+ÅüŒ×ÏuVø®ˆh‹ªC¹SÉ ¬/úÓÿx8Éí{ö^§¸?·3{(eϺ^Ú¢~†ÉÆï“àŸ[B%ËßÜî\C”eós©‡k*.Ád¹‹iåˆçlúðè˜j_¥À6´×z³ øL¿K€š^…r'ŽEa›Ø‡ðªÔ1ƒüÎŽ9n n‡={¿²Ë›k:f~7ï¶ÃôØwQ?oKÎPªk×ÌèðçPy±Îƒn¬ëã)óÿ:ÚµŸPNá–’n5Ë BIëg²Ð&”Iϳ¸d¹J˜®ã5›>ÛáWà'œ†“ÖièF¶:?ÅýŒa‹;q`ýÏ͹üûçV-„²kÊåËxÊúÈ€Nr:|%úçýõ¸°7Z(iþLæžØþC[M™ ˜ƒëœ×Œß¥«ÜÚòO×>×ùgÐH9À~.EÿLÿ©Ôƒ9_Ì)êgc!oë;þ×80ü…Ù ¥ªKç ƒE`(Pp`øÏ‡3Îúg(°Hýd£»P&LmxAØÏެîÒmûõQ9ò¯%{@ýìrîÎ’+Ç‘Žµ`h¿ìûù<œ`,ÿÙ^ÊÂßu £Ž#‹Áõ)è?«q=Eþ|¹Ðèχ¸PrôßÈ)\znN%ÍÙ5hàžbÞºžPªÌ¤éûÿÃÆ“¡p9ØRÒš¬"Y .(*~1À`ÃS¾Ü`ÙK(iÑyÞQY—/þâŸypkOÁ?o›ÖPjø+›õšSÞ±SüOÜ…PÖ¬B- ×0èu·°T³t( Ô6)•u³¸PCš»®(úý©–¥MBî(—âtC{ǢU¿ÜP*ßžÙõDZÃí¡5]ذKP÷ÆžÏÊ`ˆ·lŒJGè˸a%¸‘f{Ô&*”õ!ó„‚Dÿ.¡z8l,{” „x’Ä ùPê“p÷¬!Iƒ=B)š=Ë¡07“­%ü36,š„ƒ\(,Ö”¥Á_ÞD³Ç2n ÞýSØÛP€óÔ:²4؇"”̹Wµn(ÕTýÑ×éhL© ëHPz`CØŸéûýY¹_P:ò6¦Žàñ™ƒý9Øg$”‚&9g“"(ÞNW!T‹_¥ØVƒ»•dp\yD6ÕaÚuLG-3Âx6ÑÀ„¼Tìç]b}É”ûd€>Þ’þÙÀÀ_†XæF œÊSl¡)«¢ð¶0ø Q e®ï0Yª™Æûl$@³›p(IKúð4kOcÀÄ66)\c´àŸ¡`õ2pà¶¶?lìÕV‹mte=ŒRYÒ?÷ÖÒ`ðÔî>ÿ,gVôϽ䨑!Äû/`³÷c(¨R¼‡ n.l*ëçUÂî ÆŒÚ©[QôÏ÷7.ÐE .3½•xeö ‘XÙÍÔV¶‚Á Píz(U:ʾ,¡¤ÿ(&[(Ó[J3°å^Qýí¨šÖZaX:'ç¢~¤%Œ(|(¾Ž¢iÕ–X¡?÷TíˆaÚç·õ_Øé4ý»#róÁ‹ûÖ)÷3ì-,&þÀŸÓv¢øó6ßeá7uUF-)­¡D)ðq°ß†¿>«Võ §Ï[µspâð£Vi:Þ´=‡gàEÿŒçiÂ[™µwOÔ`ö ˨7˜@2 ›œ\µGiçÂàqÐ?¯³VÀ›42ð–y‡C'÷Í;: HïڟÀôŽø,!¡vŠ0N¼Ã¡k´‚üÏAÞK(û/aÿÜJëʨ¥Óâ .½v>Ð]ZƒÍ‹¦Šc!PaúªB¨÷ã,Pd•`;Ç'vçô"úÄØWö‘O˜´ó^†þœŽØò£“þùš8ôÏ»[áö,y ËAÿi%úçPr”þ3mÈCeÕ“W8?ï=e/ú电ŸÍ¡úç”çí¤²„<”bg¨,Íÿ<ÅEÿ<2¥ôÏk:;èŸwípád\9蟅«‚’]ìÖ@õ·×øÏE@(£> sÃø_š›ôÏ›|àz?¼#\ Ǭ¿eÂ:Rš°8øŸªœ¥¸·2BÖ¿6¼S¾vèøOAYC)"ëâC) HVè¾îù0Ö¼ R*G{Òƒq@@ÏÑ è!Ù!”‚€6Ý?@@w×=ôF¸P;˜ÃÃÉ%ú¶~Wº½Ÿ$µPƇŸ’;˜ó絋ÊF¢öÛCÙ˜_jø‡’ÿñeL%#ÍÆÊ~àJº€@§ë³ š³¦Q™ï¡“Â~ÿP–¿×‚P¢J]—1¼Kg9¢J_‡‹Í•P2¸7K(ãç…u !mZÍn‡5%!—÷C9ó=7„b€c8.<êOÞ½`§)à¯Ie jç:)ý9͈¡,lb]çÔmh:äà«ÌF%MætÆN@mN0ÔJmN0Ç9”ŽÐíT*çÞ5Hf­ë“…º¡ì·1BŽý×è› dÜO‹¶3÷w?KysRiجF%w È0 ¡væ¸áÊúÜs` ÛÔsHÁúP iÔ»íèWÖ¼Ÿã¤Òk½s2ÆwÐ 4w½6•øý}áœËÖ£—$ÐŬºPq;s0ðií…’sÙD&m™`[‡ThïQp€ÖARi(µMqßÃBÞ-¶P H÷:EDy4F zIJ¡4Äí8– £Ÿ¹0¡Ôèoš¦ z}³Pö|¯‚¡œó¶B!ka\\ÐKÉcŽÞ²€HleÓ¥TÑ ÉÍ¡¤ýh8t˜‹JÚµ‘D¡:¤öæ¦ìúyY‘¡4¸5)íÁNµ¦ V$ÐkFdòÃÏ«×RIÂx $ Y¡X/z¡TG«…Å>3/ò£–>¼X@ <…PÁ 6!M%W8¶ e!1VW)¨ý£ŸP$Ð]äB(9üÝù5`ápÐcë3`·Ó:l.LB .Àbð;” ÷lm* È LB .ÀÚ7­p@ÜÀÉ]W˜Sm ˜|Õ\F ÐÖî!…´gÈ$”êÎÊ$ìPªâ„åk¡œw]CÆTøC¥ N†.  ‹‰™]•¥Äl²‘JÖú±Ý[(…?­QY(êÖ…‹Ót'&Ѝ™CJœ¨F9³ã}n`€Ž¥{¨êzB©¶Ä÷: EÔC7 P¸gæ êW§Rµ‡ìü›‰ŒóçÕ"ÓÎ»š ”ª¼u>>&ëÇÓŠÊ*GƒÝ˜Ë~~Á¡l¸Ã„hà€ª•`(ÅeÒM(~¾7㨌kQH­SAl Ð×H@ˆP6o³SAèvÕþÜË8*Èa4«Ôûæz¯ …ÔD|e¢Ô§Ì7”9?Æo3 vs­X ªfÁXÇx¨ädfC#×U€ÈW ` áäBaê}×Y(x$0õž÷\ »†R©÷¬²KëeÕYS)À=Q”™…•·½ƒ §ÂÚPXýÑ)ÌO‰s&ö¬: #¥“ ¤É¿c90Ö'…R±mFìwG*V×Þà×MäÞTK}tÌ@àx:•‰ªJ íÞ~¿á«fÊkûyÕCæ^5Ì£cüçÅ:Šíº¬°.¥!¦?:•òëí¡ ÿž3eï‚"6³QÓt僅£³ ? Dаq ˆ ¥bõB,3PÚ1Ù/të˜þ܇ÜÎyTtTÑí­¯ _@$̪›õC±ô©bj¬Â¾@Äñâ¬õ—ÿé/ÿç_ZŸ¹Ú§:  çû(S÷Ÿÿñç_ÿü‡¿ü¶,žßoÄÿõ—öó/~ÿß¿ÿËóóßÿ¥¡!×ÈÜûù'} •ø”ÿô¨«t`åÿÕ_úh¹yqºÊë(+Öàë()÷¨‘ øö:ê*÷¨ùT›®×·—ò:ê_ôþ÷¨çç{ùüÄð?ÿË?ýü×ûËñ/ÛïY5Nµß³âßþÝï›—Çü´È¨ˆËDÒäïQú·úË¿ùëówÿÛ‰Ðë_×óüþë÷GEÓ_Û“Ö¾Òük[¯?ý¯]ÿƒíù¯ÿöoÿâ/ÿÝß~?ä–/óïOŠ*Ì÷´…ùü_ýgÊ­ûFá}Ìïû”%÷ *Ÿ£F>^GAù›¿ç•×QP>G᛾Žz}÷ÿŸw>îúßÇío‘#ÿÛ‘bó{Ìç­ÿûñû6‹(ûëß÷•ò÷Ïë¦ùýÿÿçî2Êh-#a-úìü ÿüÿ¯ßtÿÄf÷óÛ³z‘Ý5~/ÁEâØõEÿ«ÿñ¿ù/þãÿüOÿÇÿöÿñçßýóßEçó{ÀüïÿôóßþÇþç7úO~{dÇ>¿§¿oÌüýoû‡ß—úþÃ?üãß%º¨û_ëÌ{“FMž±šü^Ý~ô_óòû÷õ{sòøÿüÍ9yü›Ÿ4>{"9sŸûûúÿðŸ™S~¯`ë'¶ÈûOºgÿsLz«…_ÅìQ;JMZ˜7Y%ÞŸòMS©ækû—„ñ®N¥PåhPJõ_›¼nh+Zí';•ê¿ZRƒmuÙM ôªü:[ø‡™5Ñ`Qßzþåí‚—Êçžõ†.5xw­jh8~1Ï ]8.=´…Ù[ý—§I%_ý”©ÝÚ¨¶÷!y sRI‹@ûT {TÛÄ)dø˜eX¤R´Á\J% ö½yGç#æ¾ñ¬FÚYD)d‘øAÆt*ÕƒNZ*Õ·Âys \s" ]1/J%¸!¾ ;i?圦+gL ýÂ⟠»¸” &Š®[dÇÍš•Qy«QÁ)C‡d‰x÷òëZŒ}ÞšJ£PÈ õ•Vã=&uâèSY•ÿ0Â~C¶RIæ±e©}@Rq íx³†àµ|R5â›ãfVRGÏnTSa$I§ÞêóèWVz¶44RHÿgI)ÜE/ã·á‹e> ÞÖ9Õ†v*…»¨œÉ ùuïÅ„·jú:h¨÷úÊÈ/½Ts‚ùUɃ)äØ_ˆÙ7ð 'Ѩ ­0ÿLWõ À+•tUç²UKslk„¢…j|£¡sN]Ǥ«ÚП(Ò.¾ÌFTé¤RxLÏn£-ÒÎS™ ݳŠ{dú>•QCóKÎÝÕµòP¨ÑßôÐMûõuÐM»ï2H¸‹ÏÊxïRYõ¤\'e‰ ©$aé¹ 6+þS¡§ê¸è¨Ý7gãißv ©tLóéÄ!®õm¢£ö\œ':j³ÅRCO®j8BÐ/‘CŸ\¡†`ÐÅW¦RC¿qšX–¾ ûi#”žÊ‡C utQRÉýG›ú X Úâ°]ÑO›q›ø³>አ@GAôÚBçû£kÔª>''ýb>^Ç'öœ‹JñþlvQe8£y|1ç©4øŽ˜W•ÒœA™ˆm) s[7*ÉÊ!«+•\×ûàƒYH©k‹¯ôB?íÇt ’©Ñq¬Ãs¨”›ºùÖ¯ðéä ³:2;_ªÅ”:× »kùBA ’*[‚³Vú¾ÜTäó¥RÔr´cM%ö¦÷c!¥î 0•J©\vj_sj …iö¦Â04jÎ7o¡¨¦ÚÂ@á]:‹ µ½IqLoʆ‰ Ë¥óGTJ]vÅeVÝ ~ôÓ~dB,äÔ™Ñ>]K”˜/k}Ù§©äã¼+:©F ”þ>?·Ç\*ÅoÖÜ»¶‚87¥Žã©ÔgT,%•Ú€™ºŸh¨}M¹U µûÑFJÝç£*H34(ÐP»­Š7ô_¿ô°€ÐŪ§2þ˜ÊìYTŠøË%s³—6¢ã©8öD`mm6Ó–Ÿ¶ÑM› SoÂV*pá«T£Acf£›öð—r@ùk:˱ §¹»œ¹N¡aèñ¤ê¦mãšN¢3‡g—ýÏ6…)”ýß8ñm¬}qܰÿÛÀL²aþ÷ΙpøròYwfÓ‰Ü@iK Fð~Ɉ«Æei’wSMØþyð²›p$˜Ã])JZñ¿pÙù«}ÌÇ ÓŸYé©”íß¹D±›*›²§Rhï½¢íßùþo4Ó~¸Zï©„Xœ7füeºp¥Ó‰8Ý@ÏU–ÕF7m9ÝÕ”þ=áoXÿ×ÅÙ¹hw«¡ñÛåà6´pËkvW:Ý9¶ Û©^—a× ž˜©Ì8ª7\¹õKYLs9Ôw5Ü•N§î›©Ð“[¸[•N§ÍÀç¦â¤F… ,øúb @ÞvĶ.œ#ß:ͺnÚìG›ŠczÁú³± ¯g Õ\¸q¾a?m-ñÛäËñVPw]O³êÒoTÒ EWÒž}Í«ULCºy;ì¥:@‹l˜nÃ…TÊ“ëšÙÐRï( ¶+.±D:+=9{^g—~ýÒIÜtœúð´fÍiɟʦ³®yMGÎv*»ÚϤRæìÁÓ,vcuÜÔeÒ2.vì¥Ê¦¥ ´…iàT.ݱNä ±Þ2ÞユÚÛ8ûÌ¥ƒ›B!~8Ù|©¤1»³ÓÀovÞ¿ÓÔ„pKÉÁßåóŸ®]÷cRÒe=\O5Õæ^t åË9ŒöƒžÚk3®¡VªçRÜGM&]µûÖåÇè ©ö:÷§ò§í™úÍ詽ŒÝ©Lºˆa`\ʤ;>õ$QIÃf‚ Í>ß­SMµkNMµïÔ|ÐT›Íu:oüqV…0ä, ÕÞ©¤ýSÄ(5ðæäASíÈp*9ò_ãMµûä+ÐT{*|sÐTÛ†2OõÕŽÆ»Xåûjûë:¹¨o£¡zÐXû<´lÿsÇ>kÎiŠT‡iøa%˜HåKe`ûÿè:XG8µ_÷°©ßw¾Ö‚sŽåÓÅKÄoˆÖÚE˜€R-,h(Ÿ²ýí¡ÙqÀKCµw¿çlDy“ÿ~}´Ù{n;XʱN¦ÿètqNšþ¯éï ­öZºÅ¦í‰%%Vk䃮ÚwÝ<èªmñ¦cÿª¦‰.ǰD««0â±]µ«ˆÊ@„lH™öýQNGŽ“˜h'­ÿh(è¥=µ¾›Ë‹ƒ]m0üÙÙ0V†Ã&AÕxàM×9ûÒ`ø£gt ŽLUÌ ÎnÚ‡ë„cÊoÚõ‡…á¸[þÚ|/“Céá:ºiw½ ÿkBr,lÖâ•M/n¾ºÃG¨Ãð¿³*Ú¨ª×f*)¦BÚ>7úìl¨­7ÜÑQûnÀ9R§«f7vÔ–ãéÈŸë‡~°³£öÑâè¨ýFx¦ÿÝÈs,¶¹,9:j›–®Z†«˜O fæTôRͽÄ#åëñ8­ÿ­'SÉsñŽÎZYðyŽ?F¿WòöA Tó í1y%Ïeó…M¥¡F ‹º#{úF}"9ƒ1¯:uoJ%íhÓ=ŸØ“ŸÄVª¯ç‚:W4ÇÑ[oÐZð…Ô Eü|ý‰ŽÈ±&Mg.u×·«^Ú±ÃØõª£É­ºN¥  Ã@kÎ7·Ä‘H=gPß¿`ÃFu4Ö;²|cCB{ç^Í´ÓbÖY¹¢ËÇtöÕÓ{­¹¸æAJFÓ?h"/û”MUçà†™ذ ù apæöƒ!ÿpòvôÔ›S¡z¨ÞÑzÊãAO½Ñ1òj¥ý ¢-Ú/<¨Ó˜‡J¯¹&=c#Õ嘖SÛº¢ûë= ¥Æ=@¤©&èÃý½6§°kP:Vt®¡äàÝÀê¦}ƒš¡ÄàŸEï„+ú´G_§ºiÏÃ9,”pâ:­èÊîoº º©ŠÛRÉ5`;¢^¡ôO&V(a…EÉ›œý´=Æ¿cì[ïú µ¤ñ‡¿ Aº£s|½ßÞˆ9=ˆÞ7)™Qúý‚ÊžO{äéðÑ¡zf¿˜ÊF¥Î”’#ßf÷Pr`5O*0Îo…†?í‚P>íwR©$@ ¥2aïn)±žöžMe[=Í­+çèg©G*9úO‘ ZØŸ9ø;ˆ6 éÄ!”ŽŸÞtÖ@*ÖUª¨ÆvªÊ!0SªÞ(´Í¨8Ò¾ø† |†a„:‚‰ÏU¬±I%íÙŰz(iÏžª=M!ÿ¢+o覚­é•\ j †á<«®ª©°§ö}CØV›Q~c?Uf†…ÏÓ¦FÛjoÝÀj«½:¨©Ä P]§^¼Sk–i°¡4T¥ Åî%Y9“i>›BÎdgh°a!0×4Z•3é£H1Ü`7*þ®ÌjÂxœú›ëºQéØ!Á<ÑÐP»ö[ ,ÄŽ1ZÎ$mQ S6½ *ÿ /C>6Š!þD&ž#ºfê¦J#*”2€æ/4?–@( [P˜C[uÔvÀ‰R0øMM—1ä¥ò¤ê¨œ@~›j©ì›F%ǽBX¡Ì÷VQ ð¥±À´lªs ÿ>H‡œ“Šr¥Cr«ì»Tjˆ~ÈxØ­jf±tÌø)rÞ¢À–Ú]‡ä ¯6„P6nNÊ5ýÑ’ÙÐQ[&³5tÔ6Í… µYs—J?Ÿ±7o(oP)Ž»¡,”î5U5P+;©.½í -µYÂÙ¢½ÔƒÝC¼t -µ™DB‡ß~tRU¢’°«Ëà…oè¨Í²ÊT’\J|lþVr6Gƒ«ø³"yìTšJûx¡ŒþýM°ü•5k褪Ö^©T‚}Ó Ó_{¢¡p3Îð£ÐR›½¦SiˆOëŽTÛ5¨ lÆaQoè¨ýzx設Ÿ•õ¯ö¥x=Óg;b÷X°¬™×¡T»sU@/UmT¥·m*™v4DMùõGÊÓÎÇ‹VªhBÄr¿ÓzjG)ã ‚¬»ÍQ ~4$`üÐI©,$'S±÷†:š°ù/]˜qìr` ­T_·?lÂÖ%TV7ÿCø¤{L }˜XP¸‡wª£©¶b¡À„)ÓÑU{O)­¿£[h* Ø•ØJ®G·³«6@¡¬O.z(åÌéÝìh«­hX(6Ê ¾J®èë~Új7îCéŸxh(/ÞztWóKGWíÆmgÚï鮣«¶B¡Ôó¤†VªêžŠv¦uLGu ¦²~›jóY¡©¶6JCÙpc]×aSí«¤AkNë ³«¶Ì鎮Ú{ñîÕU;^#aJ,Dmµµ›JÿÖ5.ØV›Fº©ÆÒÔua6b»Ÿö,»E¶ð­j_AÓÊxtÈ@`/lGWmÅCYŒYm*þK×óÑ%8vŒ0Iv´Õ¾®dG[íë»õÄ †ÐBÉá¯äd«vªÚÍ¿QšŽy¾ï_Ø@ÐßåÍ9ç—Ž®Ú¯ç}°#÷VŠàaêwtÕ–IÖ³©vB-……ÄЮCrè³sj*µ1ýpUìèª=iJu4ÕVáƒu˜þªæ0´R XÙ¤yÿ.HndgKmÖæ„²‘€e¾³¥ö}ص¨‡Ýoû>pB:Zj+; ”õÞ4>ØR›‹IGGmk…RÙHr!;:jû¡YÒaùË^dU¥0Eéσ¨&Œ…Ó_9ðYôÉ %Gýh´“G5ÔŽUCq``¯ßT*·®S!=&ƒµQ–ŽÚ \ÇT:J~ø+ÐQû£L8=˜F“„p4ü£ [ÿ,0æ¿jmt$eÈ]Ix-µo j`ÒWÔbTOíìѨ˄I›ŒR}KKølª§vfv*n³h`!èǨžÚw«9”ükr h©ý,=¾j¥š-Îu™~j©9äҢܰ¶\üz§÷7¦R’0ø:j“v—Ê€•É!P-µ#™wÖèg§æTÎÏE ”pþüpÿ¹í ÕTO=˜SiðMJ!]4Á,J` % ÚlvæTâé®CwTKíè‚øè¶Ý‘àˆe±ÕQ xPö øI©x]¿ T¯£1j 謻 a£ž‘-µ}éq³¥6KVl ¥ös8]´Ôfvcý³, ´Ô^^ #gŽoæ3§iuTKíl°¨„Am¹š®“Ñlã9ØQ[+©²1r*i±ÿn*iYç,?ÐQ{ʽhª}-ã¦Úgè}©ÖªfúhªmKox5ÕÎFuN¥Ü9pbRáà‡M‰ÞªY@! Ú×8AOm媆ƒ?¬ˆ£ËââðªÑIõºœè©Ý™oJÿ¤]„BƒÖ¤äè_(¨ [ˆýN´Ô¾Ëñ¬–Ú«-Nü-µ¯·>ÑRûÙвE±£‰žÚÚå ¥’3˜¹JŽl¦1„PÙxg)tRU3ñT ¡ó®c*;ƒÉ.A#x°Š÷aöoZR FXMµ—¶9&šjßÄDSíʆrZyôáW£é³î%âE³ºjŸ¦ïàZ¢‰U©äð·ÅÁ4ÑU{jåœp* OÒ…;fð[guÕ~¹ «ÁôLtÕÞ÷&OY´|ž“ÿܨììºÊKxÐRû5¶`ý3ÏË&ŒÿÚ˜l©Í©Tì;Œaý©{…¦Úƒ9H¡°^Z‡Tbed¨s~ôáU3Š.›h©M\T*{#˜M殡¯ÄãP*Ïxpº›Ü~Eªç®ôŒ¶^W6¤`rC;UϤ‚µ`ÜG`?\’çÑö¦Í‰¾Ú]š‰¾ÚJí34X½5¡œö£è«ÝåæLôÕ¾i¼õñ.à^жÌj«}3ïC™°tÈÂtÇ»lðæšÆ[Mý×9ŸÕQ¯2Þ!¤3ç‹áÔ‰®ÚU…h¯¡cƒ8R&rx×V­6h§ÿaÕNÇã¼ó¨#”¡éna-I!”†ô:¬‚ëQ½núª®ÚlêžB±íd¨­™ÆÚZ¬Z­ÿ«ºj‡_ðHáîFòj¨1™¸¥«šjߤˆPjVç_s|cC¢ BtRÍ´°Må ȃ¡¶š°^X©j¼"yÀV‡;‡4É: x:êæXÁÊDìÜuÌÊ0ZÓ=èõrŽW‡;§àÛÊžÚï›[=µ_qÉ5õbUq(Ж3‚.ªñ 13/,÷õ^ÕW0(Û2÷CÈnHq|C,¾k*ÉëßšÈÐ`â^(ã“åJ|×…Råµ1ÏUµiG©ÄÏùÛ'ü¹û»à(êƒ6ªùÆw*,4äXÈK2½. aÚE×q-å™a#n-TKXW ®OwTÖÀ Y9¦›º1ô7gȵ+5éè^`âWr*À«m´ÞZ:æ|ªC1ldaqá¥ãwPmÓ | B IÛuÒÄ*ß(,!ø @ê÷ƒtZçXC˜wW5ÕÎäûM¥Á¼-°° -SËÓVÇ¢ {ÁP"±¡*­Uk€(!8’ø“€ÿ÷ ª–Úñ–u)1ò±‡C%¶¢¯Ë+ÛØõ [swPWKíõ[eý¯±¸Ò-¬GÉ@ûALO¿zÃú¿¡  þÏæf=Z¨‚á%Ö€ìH¡œ9&j‡rlþHq”±à†îj¨$T(­ñïJ5V„t7D³ 0 e~7ïvÃ^é© Clé“*Ëž»Z»•ýÓeZo𪪠Jo÷ÆJ0ï×ÿçn×ïê§òf(µ5·~IÈ×ï]í´_ùÝ‘n¬Â]ý´cNǶ°XÆgh¤úJ°ÚC- •=7•Ÿ±:Î5f¤]À]í´@Ó¥|ê lO¥gð^ vW8fOàjµ=±³vÜd>«‰|cùS{"ÕÞ¹bKCqdGbîØ9«ŸêÝ—Þ Q=Í ÍœôPâh6&—&å0!±Q1¢@(ªÖCÞ»<9çÒ¶«—vR¼tÈÀ›klo³ÊÇÙÓš¿÷F™á} ÿ³ŒFÆ&þG¾çF­²}ŸÁ¬õP*Ï^蟩?×w—xŸ›œÑ¨€Ôô1†\sã÷@çAVMÚñMYã¡dDï,½º†4ãû®T#m¤bCau-ç"ÿ¬y˜´¹ÜvWÎÉûç5BÀþ¹;QÛáȽÁâ8ùû§ËÒÞŽ –l…²±a4uáÚȹsØ?› ³vùqȤ9Ò컎¡áT_û®ëÀšüé–wZDç¥yëC-Õ’R%& /,Ø7«JË÷ÒuÀÿñç¥L¤Š)ÅÐÛpŠÿ“û¸NåÀÖÂT{r4¸;vP±Œ)àÀü¿q¢Ãu€¥Ú¡ Ú–”4€TÊBMÑЕ1Ûý Bžø)ôO @øò§zig-‡QiÈ|Ä&ð5üù‹¡Ldé vªŸöWù”ZÕug¾ÝÐeŒñºC%Gÿ}¯NYÿyË;•†ŒÕäÌ_@añ©L$Ú-NúÎ¥ìL,ëŠÖœj©}ËáC‰ÑF œ¨øEV^F´R½€ÃPzýÎÅ¿ž¸˜˜ì†”Ê´ú•KÓ°ÎBÉèá¤y9x€gÜU"ÅÙù¬˜¥*æC<†ˆÞ¦ÿyª«vf›ê˜?&3´QUmÐ&xÈÎÁþêBh UðºÕSûç8ÕS;YRÖÏ«‚1„4h¯)uJL´'t€ÿ”Íq@ÿ¼Ù§¸»½s€ÿ¼ÙøÏª<‡2aP`eEÕ,æÐ13̤c0ú/’íݪ;Åÿ‰Eœ/=ðŸ í`àTÊÀtÒô t€ÿT5w(µ›£hÂq!‡Îràî0ÏøŸGA\+þç–-€Nª™{Ô¥0KŒÃÙ‹B´Ù-ZJMeã—.‚ÁûU*Ù~r¾±¦lã!¥÷# ôÏã7ÖÀŒ‘óÌÆªS `þ§ ÝCÁ–VRÿó†l­kèóÃÑFÕœ†²uXAš{ öÿQáÿG¥ä!lx5[JŒýÕUx`àÿ\óÚ.ÿ;]Fþ§æUòæ)¥©³æg]²¡x6Vƒù¿7gH+ó?óªtV%ZÚw†¥`.ƒý¿dȧ®\ {ß`óín~!@ C @Û^W6”ü ’jSô[€ KÁ¸wy©]\+ v~9¶Á½~Z©¢,Êù¸²¶To躰c¦G΀½•è‘5g ùC»Ì€-l”5¿?« ™JÁê³»®bÈ yôÙ ìñ™ƒª-;ʶÇd‹NªaJ-òà  ý¾ðâÑ1RË¡@wV˜hÍç¥4$+ 8d €^«ÑŠªD2+h,þGç,¤ÁcZ7@UuJBgkÚhikºZ©¾œ_ÃZ0–¦P€Ö÷ÚY5 @YŠB¥(uÍáÅ‚»¯P*KCûíþü¼#åèTPÇÚïc^hÌ8èÑŠçÏ5j•DFTBmÍMZrŽ©ÿ¼  »qè Nìo°j'CUè} ÞÊÀ2ãí¢ƒü:€¾n  ¢t„RS™¼NïB 8Ä¥ŒÏêå]Õ£MWY™ôpæwßnܺÑUhiuôÔVµ(m¾í JP‚×çà^«ÂÁÿd[¢TrìŸÍ¬ 膙ÑJ5R%š”2„4›8øŸÖue€Žü. èÚ"þ§Ýï Ðk¤€t'GOí£zGOí5u$¾àÛ‘F@éн>¦ðŸ¯í<_·Ú¶Q)j€*”ü®”ƒ= QB€T­å[,Lû¾1øï÷è8XßJºÇdç[.ÝU#†ä嬵5HÁºùyèÍMv8·¬ÆáïgÕLõÒ·R€×7tTôð ¸KƒÄ.O©ê.\Çpk“#Àþ´j=)@‘z7uH þõÜûG'@»Çnâ…=R6²³šÎŠÐ^Ô©5ã táW8ƒó&øo[ Ž7à:.7`ßùõG¡“6ŠCåɦúºþ¨RDüyئÁJƒ…_O/R“j9KAÍ©ëTˆ¥I¡ìù^B9ˆZõ-¢ÅAÎv¼Céˆ+• XW™xë…4l e=¡TÚ=—™P• à€˜>Bkï1Jg±N,äÒYµ¥p{Ž·‹8 &ô‡òM?Å?™¦þ€:H" …dˆ&ù'ãP!qJYýmŸ„’%Ý`´:ª&2Hg¼-ׇ;*­Ç€´·¾à‹Y()H|6 :Ê“àœhÃÆ½æP2§ñÁ*‚£¤ë$ÇöÁÆG‘ʨy(Ì@n‹Ê°ïà)(ÐëÂKl{Þ央î:@)øJ±°È»ð0PZ=VA †ÒñIÖ©ÌŸ×Þië“ÊFaÿ=FÑN]Æ0å™Îò¬.œºéEΡdî}ß:`À)Ñ:”ùIÑ ea]éR¶½×žP ñÓuœ9%À æÔ&‚í¡äà·G7 0Pm‡B€’_¡ëÊçS?J5vh¯+;~÷Äu@R¶S( ±ÍéT:8ͨL$7é$˜.\¸{‹]MØtÝb"Þ·4ÐÎB+\ƒ'p—ôS½þW(3¢é˜ƒcxÿ€ꮯœ±Ä¡'¨©ddÓõ,/tL*iÚv朅²¸©eT|­­Ï:ŸÏP¼¦¬ @Ðgs„6 ´¯íl¨ª‚ºP¢ÅÂD1Ú”’Ú…'!œñ},À®;ˆ†ë†ý=oÄÞ±è@Êyà:¼vm! Á Hg;ÕµõxA]Ü© åÀè:ËàA k½](o×fúýòÁxá­ð6Ÿ` ã¾â„2ñ0T>Ý/Ëvé,À@ˆ ¥¡œïH©r(n7†RdÄ;Ö8ß: )!5”ƒdÓ£³jôsC4ÿÄï¼ê©‚‡¡T¿²{ A} nA;ó¤BY08]‡=†…ƒÜðG6ÿNCàÝõ¬ÍJP:n3g¿;ƒJ5,[ú¬B‚N×4N<Ð}õ]©gK^½ØêÉ;¸ Æ=¾P˜±ë£§Ý¯Pè: apüð,hcɵ£êÁ‡Â$d,§\Páv¼DBF(°™a—upAåý¥ÓÖJåt²¨>”½>/R'ôèV€ ªßTÎÇbéEU7zvX­:\­Vè§ziÆ¡ÄrØ¢Eec"reŸ…»ƒ¤°ŸwpAUËæ€h]| åÔ…2> œPS±DtAÉLðDÜäLÐÁî)Ç5|øª¥0÷2PÐM@<(•»ºñæu¸ì A]>ØEÀ4Ô1ý@ ÒRa½õÛ`û1* qÃÈï`ƒj¿.”|‡Ú¯û÷'O'”ýIZ …lÐûÙŒp㎒$ã£c9PC«P˜±[£ƒ$¤t( LBíµEÇ å ø`ê:ß ‹P 8ùÖôl½B@ƒ²8,”†J(¬7£ q1…N •~/›wÀP‰i(+ï”ÂÖ&÷Â4‰œ‚·e0L¥'ˆ¾ SÌùÃÔ¨ÏuÖ@6Á–²¾·tÐêûå ˆ3taƒ½}•ŠíuÚ³xPa2CéÀ‹À:tÌÜŸ5}pÐ’8hÿs*”2hßgåÈ?FWcªtõPZM×ÈL ‚”^JT‚ BèÔŒ8A=&äÄ´¯mÖP þnÓ×ÉØžZ“ø„pŸß#è®ô3?|ÀIó_ÁªI@n³ø €•AáàºÎ§°)ì—ò€º³óT ÷>Áz-”É‚µâj:‹D™¦ÏbÞûY޼Ì@€P%Ñ…Ò0ÙaRŸÙÆoέÁÂ¥~h¶Íñ ñ 8h8cvz*pó1g!B£¥:ì9ÄSB bλSAûþqÍËŠƒÃ2''ÿ\¨qغFZ³š*¥;`v™÷è2ŽDX~q§ë­Ã´0wè-%à?R滄 „…ßÌ7a!¦Í=ÍPào ]Åá;!Tûòr®æV "&’¹£í<™gÌ™¥Ü8-6“h G÷¡Ð@73Á½ ñ”‘>‰%f:”þ„똎<8^\ÐæzŸŽF½ëVRc¥˜Zøg?Õ´ŠcU@x} ä®WTÐëèÍbÄ=²ò'à@÷A jíuHQîYCŠa¯Ðt–¡´™w\ÐŽ´ÑìËEA{9FeÀmR*çÌîU*SchT9v'´üLÀXg‚#d…;³úû7âg0[Ð@×6_ ‚Þõi ºÍê«?&O Îc†w(„‚òˀ܈oª9Á·š²-á×,Ìü7XµšÐˆKg•Ë[· ¤f!ÜÖ¡«|R} Ô†¡F|£¥¾@íÆyu•ņìûU3¶ú”Â8^§PTtö6E¿ŽqdðGbâ¿Ûdk(E£Sè;*¡(2š˜˜ 70µHb{ƒPŠ‹¨Óô:L PЩ̃¿+·jæ¿NàTÌÍPr<û¥¬OŽi(ç“”Šý©øg¾Š`’+ŒJ-ïíZjOÌ7T ëÆ,@AµI·–02M'ô>`  šÅ‘’a«Añ”RQYy:‹T d2†ÀvÓK'qþç´UGª«¤+àO(lPŒ9m ú¸¾0Øpª ¥³¨¹QJL)5ø»> X © éuä¿qd¦ÝóOÇ~0þL QaCIß­ î¤-Aa'- n:Ä2øn¤K„² ã !Tq•Åé^™ ËTGŠ  Z­º|tt½Ë…º-¢CaØËö"ôÎÊàݰärد*„‚òPX_$¸ëcmà€îŽÓ~.BCgï ¿ìÇ9ïÞ îîœnAÅlÅ~^-bCpø’°< 5Ð …î ŸEàÙœ£6€ ›å¡ ±¡ ºn‡Â¸E§`ßmÑ šûtvš«8Лñ±í¬Á ÷ºÊ—º Ûû`öÞmZÃqƒ¤’ÁT¬æT>ûwiÛÀÝØï&}‚B˜_Kb“¤Í¯ Ðç8P­ª4Ð;çï)¾ý#%–ôh8Í1¨pÜ¡@F·‹4PÍb< qC©,Uy#{*Š7taÿpq|/~~eð@EDK…<›F¥ ¨•‹¶/‹Ût°¤:”¯•º± Üýº èÝ|ØàÞ=ÙM³Ÿ8‰PÒà!íMzŸ¬~ѰBÙX1¡l®ç¸· Nø1í+Û0îOwüc„Û’ðv½6˜ ×ÙÝd‚jYß\ˆ‰ Å{¯Ã‚s„½v^·08fú†0jT`±ØÀ ŠÊZïÕxƒ *bU(†„ç­O6ìSr(!ȯv™ ˆul0A• 3Ì9ÝX Tñ [ë2 "éƒÕØ#LЇM½üt·-σNeÚŠšàO†{(UEªo|À=ÚJ?íY¬BçQküô¼/“)fa…•P, Õ¨M%+;môÓŠqO}ó›øuZÙ³7ö{J¨e§ð€n2çiXÔYæQÄ[Ĉ 7˜@ÝLC% Zá­C™ˆòût®S‰6“ÓÔ)(P`‡Ž‰µ »ùàW º4ÝP®mu†J¨]ÊĶøÒY$#šŽÙíó–2Ae£‚‚î® G6€p¥)€áÔï,”öÁv„‚(žF)  SŽæHÄP0ûa)8„‚Ò;Ý`î!Tq³³”pßuLÇ\Çß"0¡Läs $ô‚C8Ÿ°ÂÁ´èæžb‚®¹5j‹ ´EX৬ÿ5e œÂ=K¿i«ÁæðM0;°ýoôò¤ú¼PŠêú2 À©ì0l9»”^]b±¶ AaAð@UxJu·RŠpµÉeÿ‘r0ÿl)i©S¢Ÿ2þ£ðîé)PtnáÁÐ׺ëÿî©à€”|ʆ Ût&$Á;Eº‰‡D ÅANA_)$@Л p\¹ö .Ú? ‚ªëj(i5m x}„ÂìJ˜EKÁݱ5A‰Q%lÚhÍúè˜Ù7ÞŠúJÃ1€áÔ -”Üعö Û^³” **}€Mï͆»9Ó&è!nÁ­ #ƒåÕÈR¬ËÀºq Ãj°eè¸@B€†ví$ÿº z†>½  ÷‘¹@ŠB  ]½ *o()RSu`GÂ)±âÁ½~y¿Y¸p1AÕ•"„N`W£ÂK£ÀyŸÏóR°GYp”ö-6Yt+$¨*qBpà¹ðf~vÅ ¡°ˆJT7AÑÄ>„rèîP*&è™!l°·°þZ.kýÆB%wR©ýmÙYšÚÙÚ‚÷$8k\ P "·õ ›T˜t HÐ=4Ò5YF&(IÏ¡¾BC&è5Ô PPUƆÒG­ýGJ–P‚“C™¨0w³:…oabB1lÁò‡ ª©>\c½¥[qæÔƹt¨$8nÇñ‡ƒœ$ ¿¿K߃eV@ÐñpOÇŠ:q¡0Óž·h »¹n¦L{L›V@С¢½PªÎ ôPbè÷óÐH´"‚öA°C(±°›8i…šl¡8¾A1Ac©„ék®Á“¡zLeÔóH)4¢ë³À½;°&¨jw h ›2jX –rFýQbæHè9|¯ü¢p{¼˜ Ci¥þȬŠëd‚jg×ÁU#ÏPªÉƒö3ýÑV>` kî9™ ¬óB‚Å7^@W²¸ ÔÈc eÛg=sRAÉÙ …­®0ÿÅB5ÇÑ÷/.Ðz´'ê˜õÕ 8”XÚ×–íáà5M¢ÞáÑÉÉw¸Sû¦.¨.Û^ëÀÝ:srA]'ÁP³®P*×^¾¸ $K*ø:X%û…À¶eM—1¾x«XP%ñûéþPÈÐÞCÐ}(£ˆÕ¤Ìo釗°*eƒk#á`kKQb6¾ÍRïi>@Ao À±Ü ¡ t³$PЛù瀂 ÅJÅ2T¢äÄ©ƒn(ÕìG© ª-(T ÝPÒ¡{î«YKA´&AüʽJ2ÐóÐlõ„]dX®ëÊ,4º²Ã{ÀLê§Vöë<ú©FN„k()ÞœNmwP).;5•J6ÖBäG€D> Âda9è@× v¬§éèî):è@7NíV¦­pº¡ Rw/Ì\›.%W÷öhdXY¶Æ:owÒAÑ_/„û ^‡wã8hÄå7ä&-²Qõ…à»tšn2°p£kt£"º?à@mׂš 6zsJIaÀì2R…V˜óRYï…'•´kÙÉ<•|žQ+l*|r­ü­`òçL™ nï:¶ñ”®Û’§RóJR©ˆ†½.ëAtzî:ÆjN¹B¥h ]|І>6©4äE<‡ õۨ <ˆ£c2P‡ŽÉñï°³RaÙ­„ÊÒ@Áj*ÎÌ[\f¨ð?¢ø@Ûºî`ñ´+œÊ[Â'•…™q.*w¹m*lEýè³}†ûޏ)äý¦ãŸ®T6óÖ¢‚@Áê°£á:i#ä3fj åð)ŽYÊ·o‹JYC[_‡ÎÈ©¤yËe,•õ6uRÙHK<›Ê–nþÑTÉ:¼r1BY|S”¬KñïûFhóŠõ¦²ßÅG gàyô@ D¨i §~'_ýt‚ïÃèiúvd„ºÞ@B{/35•Ê·ßúvà„Î÷Yo,b †%ß•êöPmj~ ¦2Ò5©TŒ¯"o)t{-3©¼Áa),Ìw|˜úŠ2Sa)ÝÖgrÀ\E  ¿°Ë±ã“s5:i "lS _wOZØÈæ-Hèð^{€©„_7GׄŒÕ =•íПFH(ö/RᆮÜ5ŒC« Dz‚T&ka6&ãû´ç[JšJmÖŸD$t8×¢ÖyŒPH* ±5^™ÐÁ…¦´õž5 ‚蚤²AðÀûÚš Ü¡c*ï íPRqÿ^§«æ¡vq¸ó­#k‰²©–ˆ ®(t<ƒ/@+P¨o®+­€qói\ÂZ‘B»#‘ã·R¤ÐæZ±ZA‚Ú3*:“JNgöplÆùÑ×%è¬×1Uq²øÎ¶Qï€ïו ت¥Owæ§•@HТ֦êM0é´…ö§A)Ì?ž pq¯‘ P(­ýT »›>;ß²ò+oÂMüY‹=ú.I íá¤ÙŠ4«ƒ”‰¤0˜5 œP2@SaæÆ3üuÒÅ}^(‰BÛÖÒë$ }C >,ýTü@âµ@¤vëà eÛrýmÒ×%dÍݺŸë‚Èj©ƒh%€@TÇ‘)¨iC2’P— nyâê$ ýAÊ©mSZ³“$T)‚BT±Ó·«ìDóçE¨63€CË+‰ÄxPÈdœ¥­Ÿl?¾Oñ$N‡¥½hR¢X{}HÊ}~‚Ðb–>BRû~7’%-O¸ƒ´˜~·ûNâ“R‹EÆRŒ¯‡ÙBÒ ŽHzµE‘Ê뀨(ðü"˜BRð9T•Hõû<ú3}Ú"=¾BÖBõØÁšcË_6Åžb A(iቤTtíGHÊ}möY©Å¸-™HJ~Žú¬Yϳõg:´¤$rê 7+ðƒBñƒÖ …e`ñC èŸr‡¨GÙòÅ:èAó;…I±¯í÷2½ÇÉ D2–+º~Üj<ùþ›ìÜ€ó_´a[H¯ûØ4ïkpþÉFN$]Y©×z»ã±Ø7Ÿtø³¹þ8jf^Òx+Æáô 9ÿéú¬ü$°ÒÏEYˆ¤Ü÷P 4àú×(•+rr0Xjš ˜€â=BÒ*rÇ!$/|/ʲ”ØÇ#?tJ¾ÓE&€ •Dvýò#Ý2ÀZÄɼøA“VW†ë¿²çɶã>|ðƒ®a»;àù;š/ ÁïŠ~Ç ì‡\Þ•_ô˜F.‡ r€(ÇèÓ€”ü(DJúïöÏ‚Ò/–Ò)eRü 9Òäñ•KüÏ#_f€4G¸0H`„#ýs!à%#%‘VÇ4©Šn â“ßB"ðÕé[ÉÀÓ…,)¡.d/\Y27¹llHBó=Ó@„rÔ‘4dô"2OèËÄæ§8B²b0–—¨j¬ŠO‚-°iÅÑõµØ@ TÜWHú´µ3Š#´8‡lÖ¹!å5ªõ¡Ü(2Ø•ã[a4ùcs8ò ‰#YS! ­14G/,v¨Ñì ‘äŒÁÔŸ°ëhjÑø²üI´£èaƒB.ôºôä-‡¶î o/|R ÿqši\ ÿ/5ÀWC¼Ð;?h  Á!N 22GH)³e‡!hv“† ðƒÿó2ñý}•ªS,ÿì;è-U…ŠZ€¨&ðÞ ­ WHyAwéÝèA‹¾ë œÔ ó÷=Z™Ñè ýYbE•YçAW#9–rö 0‘öHul›”è”{V] )¹Ÿ¶‹J %rüAª¶9hÑæ9ègýDiþ\,Í/(’m$} Ó·ß'¼ÿké«” ÇüB8N3#rèhRôœ@Å^Ì_N šÒ- $mý9æBðÕ$×#¤ÚlͱųhA¿2 ÏŸóø„\܉'@ ʉDJîï´ÄÂû¯_SÈüÑ„A°åØ|ÿMÎŒ ö÷s#ˆý•ЂÖ\(å;®J€ ¨F!²}>¤¤þóòàûlhÐìïYgâù¦)h¥æ‚¾ÿg耊¸ÍÇ H0ýø€ëÏévDÒ¡—•ÊBª:˳)÷GyÕØôhU+Õ¸–<Ž+(gmØ»²pý¿jŽú¿ ùVPέ èÊ/ÐÕб#‘Ü«da>ž|€èûñ.\Ú{¼Ä.c9«ü-(']Y8„YŽ+¨LV€”cÿˆÀûyVNp•÷zœ™˜àåÔN"õ1¯ _t@ŘäcÊ)ÕI••þœ`J*U*æ¬*òV\u³Yö#%ûkè3LhüÛ•žþìø\fÒ§ë>©d?¶ø€jµ¹Ô.ÁëÐ ,+º F T Œrgg4gQOeJdø˜Šæîùœµ~]ùÙáÏÎ+U6A Êi!… Ø$ŠÄ Çc ¹tΆr~–׿-(Ç,Q8w|ֆџ¾p»äŠMð¥ãÅ=Áô}^Ђ–çz…@öíOð}ßMЙ•^E JöM%ú7&NЂr¾8‘òe‡S ´ ˜/N „>~ŠlëÎ â¼{"R³}ÊÂ2”¿>AÄùöD3*z:p‚ž>ý1Aôñûgeÿ§„œ ©¤_&Ô ý‚¹(úî&XáR¬§/¼~„O‚täÂOøý5 ÷ )Éß*êO˜O=7ý«º¹È]?Še~ àÿª"ªÁž> ά³j„ 5kû)Ñ¿îÒ˜ôûí>LQc2ÅñI‹žŸÞ:<ÿÞÜ„†°BÀÇ!ˆB2ßô8õ6Áôkqþ#‘’üéÚ„Ö3:óÒ¬7%æuGS0ÁZŸ Xtýcëm-é}/ù:Ð^] ­iv!¤–óR ¾@Tó<l8Rú³ŒÀ^’½* Nî,¤Ñ“µ] \È.p~23«Ñ¦;ͶÀZ#c¯ÅHše5 þû«éú)…¹hbªŒ½Š ô{<ÿB¸… EÍ'ÁUqr~ÑëïÕéÎ~a²‹6`uJ¾ÃÛ5˜Áp(öêoža º³Î±¬Aw¶i±.fÐóMöÈ/Y0§i½¬Á¬^÷‡Pñ\óm\¿¯`6»Ký­ GëZh–> È¦þ.k—´MHIþTโ\S´@ Wc|Yø³^àkÒŸÝòÙÖäçt·Í!PÅàm¹íkòk†7jÚµoUþl¼8)ý.ÀÕOzƒ­F vwrkðúï뇮EÙ? ¨@s”þL=!­±ÀÊÁÖDÊý‰ã• > 4˜,}œëE#0U]`­YZWHù²ãÈG_àÊÅúôÚÿOð¡òêÞkÛžO_åþϯ(ÇŸ)¹_î¤Z‡rï­&МL§÷ &PNC&²!iÍ'S²@WŒ“¼MÀ^Þ`:í¨x¹@ ÄÙ®D—Y>d2 yOšŒÚ—€ýÝSÈ¡g3|LÉýëÅoúþóQ|°Áú¤]< yÎãsàþ<¼õ#‚ø : êÜMýÿV6ÜþréñvK§£ B r6»ùXZ»Ñ”oýY.ì¼ÿ |;ÿ|ѺͰ㶛“ôwCï*Ž;Ó×J¡lzû³kozûÓÁùPMˆïFÎçaé꯺©Dõl ú”Fv§´++°M¸;[ö`öÎ}d{0tsgè÷'GC™Ôéz>ªýW(7È?sÁnßëÐÇ K¶éì[oPqÎ#¨ýçs’òÖLnpqâ5‘wòD)y?"µ´ãvi7È?s¸,ˆ òON@$RòÞ—<ì wÿó©øßœÙùg .‡+Q%"|™#ÂcîÃìØg6Aä¶õçè¬Ô @ÔöxÝPË?Ëß ÔŸ«º—Ã6z[»¨?kŽ ï´™±pÔ¶ÁúV1š‘Êݽâ÷gÍžB໺Î{ÿû¦06Hß>Yõ  *P_!W·"r˜·~åäŸ5§ÒHJ~±d#nÒõ1_‰Zs᜴Ü`úDšû8r“r:.Hk‘ ˆƒ[‰Ðÿ–˜_:°N$ìKÁw²aƒ (‡~ç…»ímp–9Pr¿œé8sê.8ÅÇ)šàïTþÛé¥ST@OÇ¿ËyýܺÁyu€}£6g OcEÚ™†ÓX‚˜ÿ Lµ#ø2%ùËz¼Ÿ¯Ö=®ëû¦ÀûYS¢ùxàý¬Ôk‚ÄP~ì€h{Ò‡|p»+iu:³w®P¥J¥ª9 úèüÞÏt2Þ{•ïSvý€ (¯£{÷“c݉ ¦Ì¨MN¦GÎÅzÀÇɆD*wÖç$ø<öÚ|ýB»Up‘O„þö¡«¿¦VÇP® 02ùË©áO0vë:ßžæ Zty''ÞÐ ÀD/†ÝÁCW-­º3)ú]aÐ÷gºWÍÒwƒÞÅ¡«¿ßÕ1ÿ11}|§ûÛPþ¸ÉúÐÓ_n 8 ú´:p~’¾Üo™[ڨ紜×&Åw@ýYó–}•»~ìç¡«ÿ¦­@–ÜšN‡ƒžÜ¡¯ÉŒ0)G}6=7üúù!ی؜ò8‡ÝGÎúc\ ¢ËQâNr躺Éî€ù³RFMHÉ|¸Ó÷ÐÏŸ; Àì^Ê`þÌgë#ïó€èS#?—1›C©C0‡9@)®×ÞôÙõ#®³ÖÍgIè©Å.øà>¹î úÏô†)?vl]ù>{oú`ÊäP& o ñ}˜» 9¿,@§w¥Orûï…öá[Îݾ"J¼Íe¾åÛàË.­ÌWWé:ém Ü\šºí3æo×Ë‚q{0†$ çí·½ Ê÷þAäfísaRx¨]ÐUw‡€ŠÜ–e0·S=¾·Bèöüó!ˆÜ¼Êî E·¯•[€7OZBXoc¸wÁz†·íÜÁØmHí^°€æÓP/X@?UÏ Ðtôè³]v¹ðªÁ„ES=ûÂô#S|ÁtXœ¹ ÿɇî úϼÆò1%øo­ã’ÿç.…b·è?O{%ôŸŸÔâýgÞŠjùNÆon¬¼ ÿÌ MØNÝQ_ðæuºÙ ZõM&c8ëÂ;»  þ» Ò÷Ð|äLò]Œá"ÝõfX @¹¾õÄ‹!ÜVL‚Ý×%4tw³^ã]Ÿw3u÷ê€~:/@Ï´=¿à:íúw‚è£Û. Árñn¦­½=çnú²ü• úÊÉ¡ØËø]pUåLP14¸`ý¨ý ÐTàÍH‰ý˜Ê ]PÁ}úx1,õGrè÷/o5¼ðûÇã¥{™·phxiÚRB÷ÒïkL÷²aý‚èôð(ÐÔßÛOS6½qB{o(€Rñâ]4l±­ïŸ³a^O9;p ÊÀöu`&]ÃD*×ݨDò$ïEKàòÓ`É´ @‰@ÿ$ÒxV !åuí[M¤6ŠÞÃ…–HeÞN%ým2ñšˆïeÀ¬'rçwM·§³CÅçDJúnH â¸g38I$ …–þ.ȉÁDªŸþ6Š~"åʶ‡D"`~SƶÍ[óÊÅÿ“1SCø•hmØYV¯æ!%üíñ‡¢ø^¦Úéïa®¢=äM+(ãøžÀý“Û·2í2PM¤< Mä)¤|Ù§3ÚN¤|Ùgr&‚æ#ÙµD(÷Ã7¯=¢Ù % ä¾†5BÏþÏïë\ž5|LðŒRrß'­G"µ+èrØ]!¥ÅmPI·íR=wûO¾.Éý‚CÛè%2öèüç<Çë{Á¡mÛ‹üŸ_ñ$ÿç}¨õ)¹ï¯ î*ë‘2×Ý+üŸ¹T¯Ï´¿Z-àÿÉw¾Î¤–z|Vm½›J=‘ÃÔ»ý1}å"MÕa`}"eØ­Œ‰/W!%û}QÓ&R\oV‘ ƒKE1»Ã´¡^ü…Tè\º@Ë2öŸüœZv4vq –å¯Ï*wÖáH"´wz:€žþHú¯¥ŸrÜ@þ“ÒÆ¯ÙÀšëaél9D.<‘’þ©8¬5r€Þ#ËЊ4Õ#'ö×^±î›—ðÏ&Ὼ°Žï[Jö>FΟòt"õ3‡Cs#Æ1RÒ?™ìîimBÊ®«Û6òf{0Îh­³cËÜ5r€z·q"%üi,”p°5úþq¥öÿwÅ4ðÿT5Åǔ쫴“@Ùxßÿ 9y!}? @÷õ‡h^·M#B<}™E%t@ô%\`Zÿ®—F}xõ',A_ÐþÏó,¿¼°äsñ6i”à7õ¥&²ø(Í—)h„_0Ø2<¥º5ɧēH‰þ°£Ò&zÊJ'Rmúh‰Ë“>‰a„OAë]÷oš®E?>§²y¡íÞ­ÑûSš®-:´]ú±h~[º2v a'R6½& )‡öYrn(@?~T[”üû9¦ÚÏ×ÝthI ]HÿQ†  o¥1‘`#¯‡v z&RÙ¼±þùý³Y,‘‹w#>ˆæú`ØÓ•þXÖ v}LÙ»v؈ñxÕJþõϼÌåç||sÿä²ÓZé[ʨ®мùöu(ï…áϽ­ w¶kÕKÙ¿^f—¹Yõ=·þÀu:1‘’ý®@-$1Bß0}kð”}é>f±Œ^Gýg*}¾½þ°«æHŒ;XRwðEtšG„‰”C;üú:hÞEÜ>ˆzRÂï·ÕÁúóf>öíC« (Ñw‹J?m}:ýª.Ñ×Û \¾ ý¨Î~z{à`¯ùš©Þ©ÉR'²Ù]@¹é4Ã^Hïl,^¾×`?½E½ƒþ3õVýg¾ ê¿>hÖm1 û»¤;ù?[÷ÿgŠÛô…/û(£ÓÎgatý'ƒÙÀßüõ{F0³÷ø tê¤J ˜Èñ9,=èu‚ôã莠[»¤¡AgŠL$P€f09Œ ny?]qþäçæz`-}×…÷ñeŠ$æM¥ ²½Ý%Ý1Àš«îøÊÈì½o‹  ¯–‹Ž­J­ D4gy!Ò4gYîô²#ëK$‰·½ùg)Á•Û íϵ dÝ×j  irµèÉzœ3Œ>/  ÅŽÙm%Ìà OøelJÿõ¯ ïÏ=V d½Îu2€^y5p«—Š>¦äÿÙV`½Í?ëмÛÝàý©ÄqrépÒ¼F=üȤ5ƒZ"QæcdðS˜ðÕô±8‘ 6¬Òüï}Xncbi0pëlÃÀ§¯mªé%^èÒl ó/ïz):·C¯"@û“‹dYl,á7ÇÜOïI"ˆ|ÊeFW7*úÏw{E Æý*IŠ´a3‘`âîYB&{BŸ…µÚÞÓŠVëk‘1o©,=L.ëA!ºÉ½i‘AyŽ´¦‘Á¢í{ ’ÛýŸ/¼ØpM ˜‚ù> Ø?+ÇÑ„T!×-£º÷N`ÿüäBƒªÿ¨+ev–€ÉXkøÄubIl %+3> JêN/äü÷‰¾0X£.C»Žoßüi?ç+6`{û$K0báä\ÈbîîE*®{ƒÓvÝ0-@øVQ’€ÆjQøíÕÍAþùIºÉ?Ej—ÀŠ_„5x›µæ|Ôk§Ç“©mÛ‡ ÷ÏP5‘.ª¡J4tît«Å‰M[L,R^©%²¸?ÏaV+ÈüÓ–…kÁ­4dl¶j¨†H ÿ«EÁp[ŸŠ–;H÷ÖIÀ½YºC" öÏ,½êo(²çsN1^iêær˜Ûv)@ýóù.‡…ŠÐ»:ÿþç;üóÝ“THù™>C{Eî]ªdþ<ÚsÚÀJ÷MÄe¿1·À'Àä}7€xÎþL÷§9Oàý©t¯¯[Üo7äTbÚji:*…ù@<ø 'ˆÒÌ>:B?:‹ÿm’ø§Ù¿™$þq‹K¯í'¤Ÿ ýüT¥@µÿukX0<¾Ñçg•|Žx@ÎåNúþonõPà~‘ß"Þ”ï¿ôç¦É·9Éú󺪠õDõõýM’þŒP´‡y\ߌ fÔ‹à:žôýŸG–yBá?W9“ ¾Ïïg¡ïß,“¾òóæ` ·$s0³õžòþµû¿ ½d„¡ø$ëÓbtŸŸht‚î3­áðeÊœ7;Ü|ŸŸ”ÿágªˆÇǰvIÛ2ƒ’ï*ä¤ pÇE©ÂS_&%¿£Y•Hú³}¿7Ÿ9¦d[F ÿû²™ üYýyO)ÉÏòoãçzÜ 0Áø9n c‘tf;ö×ù»U;Öž”Ÿ};Á?Á÷Ó¦«~ mm}kãí.™ ï¿­¥ Ä,ŸvÙž§ì'À{–þï`g!æ¼÷ðòãgïöÀƒû‡¨m>‘”ýV+!ù»›6â%’—yœ#Ƽµ¿§é~é`üìOX®A÷ÓŽ«j |' üìÇêqÛO¦ßpµ"ÿÝéZÀ÷™ozw‚í'9tu§"%¨·Õ}«ôdÛ=~æ¯ÒÏãgÏ'‘–ŸÎÙ^°½Ö‡šŠi;õ0Aø3·öÇ%²x‰¬À<¯LãOÌÐrãÏÈ­ëh;B[`ýYcK®bý™W[ ØØŸ0¤3Û®¶·&’â?âjaÄY¬ö~Op~öã0|õg=ê¶Män®ž¯H?SSç€*õï$q©%RòPcëß­ºlòéçzØIÛ0¡³>yHmÜ_J¿]´úAxÚ"ãçc½°@ú“/“Šlôg.—‹(?Ñ«ëÏ<ÛŸ²hæ«h(?׳>'¥è¯fõ‡ù\õ‹˜ Y0 toD2©72}³…¤”#8©ö1¿³ÄqøÊ)ú+\éX0I ø^9Ý Žžx"éÐ6 :/Ä?ý'R")ú¥ºI¸@ü“‡hEƒö³ƒb‰HŠ~¡\ˆïÿôèù÷)}cúk‚õ³·eí׿QF'ÒËuë;Pÿô.¾°Df ò¨60™ÿ$¦ÃDÒ§íýXvÀûÙÁ M$E? ôBiþÞµõ¼€…Ű|H ){lêˆ?Ç#æÚ¾ø?³ê_àz›w[û‚ùsÅcýrI}¨þùDÒ­Í-»èK¹M#Züä?¯ÎÎØ¿v;9ݰÁý¹†Ý§ýTK„šƒûs5qTrñ¨"1ïùiZ#ÜŸ¹"†‘^¿Ê½»¸†‰Ø ؘÄu}R~Ï\|ïI›?œnÙ®)€µŒš‘ÿõˆ²mpÿ¬!ÜDÚ†VÒë*îÏ*Ûàþ¡­ª‰¤øÇ±Ø\_Ž 6¸?{“J"%ÿ}i çN1ÖëõO¿Ç—-CзkxÌ?yU&Ö6˜†¦Rú°„H ÿéï˲·#’‚DrÅ<Ú~™žêCŸ‹êC ËÙ¼>¦_¬*½PÀåÍõÈàýìëZÀûÙÏø\¹ÞEña(]ölEø¶ ·÷uú§ïé7 îŸÔ0×Ç”_[LRöGãfÅòêòy•°Ý þÃõ© ÊÏ1´1)‘à€}×…€òshÀ|–í”Êåç|ë^ÜvxýBÁý3DòŸ@I~?þP0ýZálp~ŽÝü†Áý3–¸BÚ÷ϸ!U»Áù¹š½ì]Š?ïísÒªsß7L;Í%¯?W‡/£ ¾Ïž[j–”ú¹|Ö m-Tð}®.ÆõDÒmŠãgïÏjbÝK¤Â¹f‡ƒVcL{îÄ?©´š€ŠæŽ;v1~ŽûÊ4ØÞòsK³€ögmMM$£¹õhk`"câNÒ5ˆV{"€¯jXýùgàÀwÞ>§ÄþºX{Àû3†õåïÏh® $ºò‚®º&OÑþäošú{ŸŸtÈøÙEá›Hšôáñ9‰\ºdŒ$?WרDRî‡'b$2žë” ˜´jtŸy ÊÕëßÇ–w}Y{;´?}º¤t`úR>òëOfX“;`ýÉå?}È(/Ê5ìÓ)ôÎu°þäH—md,•Çge{½ª|ý³K¨=ÿÇöòÀ¬¦Ýþ‰ôòü®>\ÿüPa$ýÙxÛ?ãmÈ80kÄçVgÀ|#éÐÆpt@øû¸?ǰb>`ëÇm¤Ÿý:t@ú9º{ñX?ûÔð’DR‹eR‡²1É?ëý¥ ýÓ=šÌ?£7 Æ,‡v„öš'’±Üx‹m)ýÌû0Ošý:.Í3áÐ.gþˆ?ûVËÿïçhN1ð½¥3HMq@ü™¢ÊŸ) y@ýóš¤æŸÑ]õ: {ž0’H Ý]ögȆG($Rþl¸~šûÿIQ€ï­â¹øœÒ¡Ü+ ýÏýç#Öó>$6þùÆéËΩ¦èÃäˆþÂ|Ö×A>`ýÉg§/„é½ß8ôÀôi§ëŽcrFåëOoö¡?SºOº 㘴RAû“?i…Âφ")ös:Iy@ø™CW=qHÈ_?EýÖ_'ú€ðs.÷zp~æË¹FJ5KôïO·\Ú€îÐóñOzGNô8ütþùˆúë-KŒŸ‰¾àþé£k-߇n¬»¢/(?;x[‰4æÐhÐ/Üþv\¿àË9Ía¤œŸÇMGØ^õwLÓ ¼qÜ”ê½àê\M—VE…Àéïoì|AôÉž\PÍé&¼ ÂÏôñÞcÊ‘ {2,@ùŹP/?û²×wAøÙ§»Êž÷ëwî·2“!¤zwJ{_¸ý©Xˆ¸pû;øðˆÌuÿ‰Lv{ï ßçEC«EùË\. @}»î‚î3ýn}\*|˜I{Þ1éH”êiâ[|ŸýÚ"¡i3Úq÷ÒéÞópÁ÷™f_RC§ÿyp»tú1ªŽH^x?ŸC*±½ž/¼þ.zª*€›Úw§ŸþÅágHП¹ç’ûGTz Sß¾Víßg†I±Ÿ\ÿh3ª €ªó‚¨½ÌKí_›$ ìJi9/v‹(Ý @)¡?öïfMÂS.€*ûBP“x_È>3­È¼ ö}UJz 8Þ|ÙKÍ£× ªÏŽ1DZ¥l¶?øRƒ­9,™l!¹ª¥¿‘“õfØ{X’X¤¤¾?^ ÿù˜–{½™HoP{×HI}xëÕg»Ý+Ìo©޳ʓ}Ö ®ÏÞãsLê°J™ÖÛé€*í1… “çÊ7¥üÞx˜D⢃BA"%õ&¡€ƒ%x}ȩ߭ê["—ŸûòYÀö™ Þh¯Žåx?>$ÝØ¾娣‡ëïVƒò˜È”ò€Š;îútúMÔþãÐ3J¤Ìù!lÀÔ»†Xv´ýü³uap}vLÉ$RÚ~«C(‘²æŠG‰”Ûźܫ3¨„X¯\Ÿµøj@úöýÝàúìM<-U‚aåêø˜ŠßζH ˆ¾˜)@9N³­Ù¸î{H¹°.“&R¢?5¿8kw%ú}зH¤8ù{›„ÿÌ‘J ‰*’GP}f¹ÄGTñæ Kþyß÷ ªÏÕ»e TŸ£kÌ`äðk‚["ˆá†7øÒ£¾[Hù>[te'òðq…, ÞëœÆò’ÏBîB4ཊqGŒF¥f¢ó±„ô•4¦q¿%–D&«VÓÇ̃÷w®ÝJ}ïu'ÙPæ7ù»AÔ—¶c'ÒèdÍ%¤2ØSQ}"Á ªù:À="2O¤dõÏY¨Hl/úMWV{@;61ÿÓ¬‚@ø™R ××?_˜® K0FXûð3£ô- ¼ŸñèÏò6Åš€ªó¹Ð˜‡ ÐëÙ&RåˆÛ-è`û¬^!Ÿ•a]ËH€ú’çÈTµÎÞV@bºÏ|ÀÝ…Üó£]¬@wަcOa9 °n¥ÁP‡áJ Ù¦’eL–)µïduyS-:|á³Q¢èç:¬ çg{WxƒÒ¯ôîR•é÷…6Ð~–cw„”´EqQá~6<¢jJ¸0õX+ÞÏÌæéÍ€(ßç=BàÉŠö-‘òd´K$híô":<Ùv?Hþ¨²´Ø|Qvuû2gáU,sÙÛÁÅ ]QyØÒT¤ïBBƒ¡¿Q‰S|[?¦^1[(+°o=X‰°¬5ðÿTDH$Jô3N]H‰þÖæÍDú×ùêØ{^¶6½ù³bX#ýÇo+\‰£ýk`kÛ§T×” îhœ«øBÏ >H¥Ye\ͳù'Mú?ƒQs"åˬ:6  c ÙqÔó‚÷³c`&Øtñ¾U“>ÇiBÊ…ìŸÝUóDJôÏõ:\}²+d± úžU>Ð^B‹ó¤_ÙÚþ÷Oz˜O7;d!(€z³k…ÛõxïeYÿ¡1n`ê~Ç`ªzCrÙŒBƒÝ@þ™r®_yX¸±áG³~]YŸäŸÕÔ„p=kÁûïÈE²ï;Ÿ¿¯ÑóDÞÔAxôç;p“Pý÷M]6#5¿Mjü×ýi—ÍHj„ªTȯK×ÀûÙ1)žHI~vžЩð»mT/âÏÏJètü×–òépüóe¢ƒ2q"ßHAÜ–èuš€«öãêC‘“2ÝAÿ“"¾,4àþ½,VhåÚ yU`á¨. zØVÕHŠt÷g¿JÐ&’bŸif*øN×áDNE•C–ß_¬ÀíAZ³Rè«e÷ ‘Ð#ž €(™1±Y 6løú£f¯Ž=úõƧϺL_rtÐ~VJìA/†HÐ+a˜H\Èø42)}×g-zô:èÒp #Åî—ÞÏïOPæÉiC;(€Ò{¤Nè þìgûy@ü9šb0sT-ôúÊ›ME\ =È©S¦cçMe«¹¾«C¹‡:¾ƒh4¶6PþnxÁ€ù3}Ðe¤|٦ͽ‰À—þ¢Eý™U·é[Wn*Äœ’ÈýŸQÍýQ¯C£RËz°¾’‰T7Æ=ÿ L6{u_¸’çÜ*C)Ç™H•"ººÓz§ ÈÎPU‰Í?ü?}jq"Ál0Ù¤@ï¶Kåk@ùJyšã³Ê—½×Ë  ý†~Âa{È5ìà}Ûʯè?SŒôá@ÿùo© ®kÚJ"ëÀ3”ºëÛh‡iÛŽþäʧIù±þ¢ü'u ÜÛˆsÕ %¤R²Èø:è¢P 0²«ëò]Q× Œ+ ô˜G¨uPÏÕÍéK€B¥”õ4R‚ý€ì?#”<Á¾ÍF†úV`„ª?»ZªYƒ– Û‹êí¼Ç”à7ñWÞ·ãÊüÑhЛ¯îÏ~,ÜŸãÙ¤‚¸7u3àù¿Y£¸·«L!;WøÅAXWý¦”P’ÔK¦Ï4@ÿÓØtú -ÀLC"Áèž ;|áÃ5!%ügókðFgaúñ󀨃ɔH£y‹RÆvù]ÀùïW;\ ¹ÐdÛ'­j°‰ýKD æDNµEm‹ Ì" ‚á@©6ÞüŸÍ?@Õ#¾¬&Ï$RŸ”Ê•½ËB þŸj\Bòýbš^“½õÚ”Hɾ›ÿ;6u”¢ë‚Má…èVðýßN¥jCl?aúPz¬>© ]q'¸$¿æ“Èw¨BÜc_³Wª(ð"’|ÚÞ"Ñ)?J2öÏÑÔœÈfiúV)ùcXá °¾õ~7`ÿLÅ+ɇëŸ),ÚþŸ~lŒØ?zÀˆÌ K«/³Y•p 96Úáày€ý3”ÆbJ~·èh¯pÑôá•Ðq_üé~…`J—qúÊ›ñðYe :Kí¥u4 £žÜ÷[XÓX¥ºUPÕ¸­âV!åÒ6ý9©ë®¯Qþlt«p°Ž¥Âj•½.Œƒg0ýÝh+ ÿÌÏI7$Àÿóv.$‚îça¢‚Çj›h>¦| ­DaÞ¿Âxˆ$X€¢ª;>iRó>¾pù³ûùÜj3n|Ï*è ™H0У…¸úÙDsd-Cæ 9ÿ´$“.ʯòúÖŸ‚a"%ùöïö ûb€è Iú»ò”2 Z‚Ù€ÿŸî“ñúÿzÐÿToéR‰Œs-è›=êöH¤‚¹i;‰]¶Õ4@×ãÒ*ȰhN¾@€ý'kAoýòÏÿç§ê€Ygå‰Ðq „=†_* Á»S§c”Åg§FnÜáóÏjjÔA¸\Õ úûA3ÐN 0ÿT'P™ÜÊ8}ýÍR`¿|i›í#Ð]|¹T'Ø?;†*©TömY5xûôfÑþd×%CÏI+Ð]@ª!€B@('®ÙòY'ÔÏã“ ú~àI+Ðå7M°þŒG›þx:ôztL(¬€µû$t#i÷c"hª·ŠÝ×ü­D„!Öùg6´SDfg_½ÈãJR¿ÅI°çÔJÐÓtv»æ0;üYïhê`¯¦ÿfr¯yY‰d&f¨'¬ôí@žÙ9wWµŸòŠAdåëà k²ÇÇ”CûØÓǺRšt¿æ CË™°  ­¾I+Lp¾Õv"" þé˜@I¤‚¹·ì4.­÷.$ÊS7!s£ ‡zk‚ûç“–šÁæ {˜:Wº6fNr#¥É^ÏdÂ| àè÷õ€üçÝК¢95í'RòÿºêsÒ R¿V"(OL¯ÆõîmB*šKGßÇTÅ-ä?•F2R™½×ÒOp€VwêR àUµ˜wꎀLìÕö!" ­ž±&¤<Í#è À¯ÆÚ<Œ,®ö&Û&MÁv ÂÜŒèB 3 S®tHLÀ¨§Vxª÷¨ ©¾¤×‡{¥Æœ¡²xŒÄæ¡ø‡_1hàÒ!x¯s`¤›O*ÿ¿_‹xFïÿ  »ÞEìy™ÕxÇ|ïR­¬Î‹Ý¢Söe‚÷gnÑ9$Rݱç9/ ûø\¸6Kû«ŒYu¼òBP›C·Á ^\z«ŒAǼ%•Ø»vr"€Ž9žDБ­íG‰ “!2NÖï;^ˆFssÌ*UF½Àý“&nû¿#öí?º…S•¾11FƒUEâú¬û›Â\ˆÆä‹ çñ=QÉ=o«KImÍ#èîZ6˜Kfû§–¤¯³¹‹”‰•Åàµ]Çü‘¯÷‹É±¼ë°cRÙÒµ,€¾Ô}Ñ œî/1èÚjãB_ÓWN‚€¸– ÿô³?®ûÇý $ é¡\=~ò§Ùwø³­&‘ÒSǭ樂Z¥ìþ¢‡¸@úöÎwÌLúûrÍò Ð>µ—¬[éý€ÉÌÞ+ëž¼?¼G œsxÁäIÓ×E<ç ךŒç–¥dýcHB—D}ìû3Áû3öµ/ì]Úf•H¥µçôâhFðS@¹{Ë/$pËûãzé¾­±Œ“pëÃ2$\`ýùx4 ¬?c¸¢ùD7²G³ÀúSåû'Á¸6\Úcݼ@þ9Ž­úëϨÍåÒ¥Öüüàþü$¡0—éBJè±u—HÞ ½íªÃþ¸Í £Akÿÿ2‚¢ÓqÙff/rÑ„=ÂuÑaVP þÉ~|™Ú):š8˜?W‹rèÒñ] þÉÀ`Ó"¿Ó_KÙð—ï‡]y>ȸßíd´_1—hl+Óp¿|‰ÔÖ’Ç ¹ úŸO¿&ýý m’Ëôqm­ÕV¶jµ[?‰• úŸî›Ø¢ßå²bzÝ7ˆÇ¨ÑÊš0ÖÙ þ|—ÐI†Þ ¦òFÑ4#[¸®l0Ô|žÚuK¥Ð|Ìd抎pÌúl)€šP/¸³ÉþH€e»|ýjPö3üÊÁýùi|Ü`ÿIQ_>«ºÇõ‰]ÜŸC'ìñc€6CïoKä2Ì¢¼<~@„ã:0Üñ •\®˜AUºY6`LÉõFP{ªìŸÆëŽY…UU¥ Ýàþì1&dÃu¦Ç¸‹û³ˆ –€ÁvèíC~7—TqàÂái>kñwûÞ›Ô4ÇÜF~CöŸG];¦VjMÏG3pB†w“ý'l1÷â>iû_”VmǶ—¸÷lƒÿçu6¨?«"Ì ƒú3Å„Žñõgz§/RþÿuÇ9¸þ¢hß¶¢ÍØŽ6üÿT­úä$jÇ"¹Yžs’ãœ+HÖ+$ø:fIGÑN!£¢±•'‚ö¤÷æ¥úûžV‡»FÝ»ƒQU®‘\€ùóÝ2V¥&ºŒ6Hß*)p…TRûˆ1+‘¢@ÉTœ€`cDøÂåÑ7ïËpnÊZí‹vû«9f‰\&PùÚ¨?G·7XÓÞÑÓ«¿+55Ýf{h Þ(ë€ù³¿ ïÈ[ÙLQÞNñ¾UqÒ·¾´pì†:ÍÝfT¶§¡@wÄç\Ú§ú²Ô›s¥ßï4—«‡/ ŸfðŸ&˜iಒŋ€üçÝ>jÕî?`þؼCd²€ëãùOjcª²òŸò;‡|¸c×ô€û§_w¿žÎ4íPú ã¥ËE×½ÁüY>à1Âí«´Ð§˜?³a[/ÌŸù4Ë—Y¿‹þ€ù³ßã5ئá·âÏ·Ts‚Yí÷œ`mNs ëÇ X‚7}‚}®Ìœà†iëùâÏñ8½p@üùFn‡›viÕØØ{ˆT$·Ü«yÀú9f(®<ôþ__ôn¸²z@û9¦[¯½ðW)ÁÿúŸˆ÷MÐ\wèºÿGC¤œÚ©Mé¯ïžáŽùÍp|™ƒ{øoòFÀNéeÖÏ¡G£óÿ&ÿ³š”êâܾÈüŸ'÷ïbïOô¡GáÛXn½?tþßøÓÄË@ê€÷g€*“HÀ¹næøÑ ý]û:Ù¬÷½×EBÛ½hç0¡-æÊê8«8®Ë­;°£;ˆ8åüÇî÷¹¬å¨Åé\º²ýÖÁÎ}zú?¿Ò1rMá}Þç¿oæëgrìÐò\°~Î7£|©þÎ òr0ä¹{“l ïÃt¶+.8J{ú˜ ýJ+rAûÙ1••ˆ|Y=`C›ýW"%óHt ù©‹ä.¦ÿ>”5Õ+3è¸úÞ%ô7¢]ð~Žî<áíîÏàwº;¥Ý†rAü™1U÷%åOwÁè’ò§9Ïpi^ý‚òg4×Ê.(ò:zæ@Î]YÄŸ£ˆ| tw½ÐÁöŒ&«q}Yk1Êþ³]ð~¦hIÀþ–fC?|p¯´}¼lϯs"Æ…’JÀó^˹âLçiÞF9ë9÷ÊÕjo²‹ñß·øyAü™W¦«çïϜ賳^ÄŸ#¼‚.‰?M#—Hr¹;Y–³_Aü™k“­TÄŸé1Ñi¹ ýÍÝ?—´?CI‰´ßœÊíO¿¢#Od0ËDÿ]”þó¹2èò…%þ݇ìûû³ÈýÝïx»A£ (é*–æôÃÁü9ºuæóçÜrØï¦ì»é’øç4? ‰Æ»Îh¦E¼?ញ”möƒ æÏâ¶¹BB4wÊ‘½WÌa¿±Û îq ·|o´&Ùݸ$þ\Í·ºè7vmñ^n5UD"åý„!¼?Ÿ4̽ä»òäñð­™D××¾l4S}ªJl1Ù )Ño¢%*q"„<À™¡é‚î5Â|ï ÊÏå¶ëD:}›kdü¤nªgÁNßdþpùמ÷ðI‡Îï}«©-ÀùUQ’¾7­@ÓnºDÊ•íÚ¾H¹²¡¾ŸòÔÈH# ççÛÖšHi}Œ7$R®ì¡Û”ÀýQ»¥RÝ& ÿ\‹ ˆÞ^_+‘èßDMÅÔüð1åÉ.ʼn8/s ã•üüBîï[Ÿôe-“%¹‡Z¬>ÈA¬¥7 ÚϷѰ¦²û²qïi $¿OËYžÇÒª·šz"YóBª*±ÅnTÄÔÔÞC@¹³MYÖR< záv!(K,zdÕ3¿¼]‰¤ðÇóxùn“$ ëYbRV Tü¶˜ES[Ùüæ;)ª—»h‰: Y!,ÚI½(­Á÷îŸ7¹Rm#ë› H}ISŠÔ?],—‰L6‚HHùùt¯;R~šj¼8:ןÒd:ßÄXBÔl>¦Ó ^!Ü?Ã’.îŸÃŽDÔŸ¡ïòŸ®íÚU›! Õc¤6L?sæ) •Àè¡OÕ÷gtSýÞÌUõÙ@ùùñY“¹k.×VœŸÕ䓊ù°«àšH¹@¡ x®&0Ê«¬žH&)×ÒI‹…ôI"ƒÕ‚ðYU™ØÉÔ•zí5™¶–òÄêl>沂ÅÑHÿã~¥D*ç e°ìõÄš7í'2Ù\z‡¨­9?͹“ȡߡ·SMýÇwá[ú”úÿô€âQm ø³bkM$æ×]H¤„¿kGem h8kùN›¤ Ó×Q0yl ü|+õ/†=ÛHg—Š.K°¦†’$RÔ‡³I6xÿk…Åô?ki°UÙ¾,ÏíwS°ÌZáWÞk Ë èÖú“¿ÜWÉ–?ØŸVü?ûÙ~dÐ~®k;Þ@û¹Ž¦J$’¿Žz&*HÏcoOØ‚u»Ï‚ÿ¿®¨'*k“¿¬ X€ò˜- h?ÍÔVí ÞFöÁ#Ï’>mmr([’Ëþy•h?éi"i æóøAü9Ÿ°B!ñçVq¾vKeÕ²©:[ 2y¯¶?gÆs¥û¸?ãj'r5kWÞ|ûŃ (öö2ùgl%Î I·¡?Ö(‡¤ÞjÀ-‹“÷:ýŸ/“+ ŽJ¯µ˜ñ|ñ ¬nZ$ÿ|´Ý:‘Þï& ùøN ZkÊÐ4˜ƒý¨++‘âþ<Í¢ " uìÄä†à‰ãí€Ô" å¥•­,¤¸«l¼s(’©œ9]–þÏÝ”’)*¹ ù¢=èàÿ\g|.SüŸn#J#}Ûݵí>‘Ž{SMv0¿m§§ ¹8I·P¾ eo ³¿ïoh©—¯Âwºõ»›Ï)ÐÝ¥t0€æÃøˆþí\uQÍœ+Ø–Aod;mÙ)b¯J\‡Å‡lÐ×Þ÷-Pñ|? z÷û%¢F zxc¢ï^ÜŠ,$@¹¶²?é¢âBt€ t™é/‘ò…ÚPÂd t©Ñ0‘ÊóyW%¬6úlô#6žhL£˜ßÄùT¾'–‰¯2™Õg\4‹@f«N„½Û| }{~ªÉsáëÖ ýDå„ UÙBÔ¨±}Ìbƒ]µ±É"ÐýaÀºš((A‹+P¾t&EX’£ž¦|€.g|HÞ¬>½"Šh½YŸqÈlÿŠäaç½Ãðq8×êýR`šÞ¨PKì ‰Yx½•zû˜ßZ]"Èk¼&á%1Od­ŸœÓ@(ÔïuÙ}Å´h€(ûþ¹ôFa.m¹©žgpäÐEeŽ«1À Ú=k!‘Úwís+L*³mЂæ­è±iAMy”I"ˆ¿uST(Q$ЀMÈ®e~›hlTbÕ<p#:­¤=ãs'u]2ÝÚ^æ~ ·­+7x>dFªQ)¦¢« 1¨I3 Öó¨R‚Ä [Ô‰ˆP†ª *Hä¨pȈ^@Ù,mvÌ­{­|õ7%RÑëè‚–ëï‰LÄÃ'•CÔßÏ~ yèDàÛ>þÀ ÍÇ¡; Íø…F#`ö›d 0ƒ~¢È(fÐ 4}<",èò«—3}Ìît’Œœßˆ+@”gq©EÑmw)×®þñã„ø–·D$ý'0ƒîæ?áÛjQ")ûù]¨Jƒ´ Wó\G0paµ$@ Zß_@_ð&õÀ ´]éLa]HÿXA3VÐÛ\ðm52¨ áÞZ)ç¶Y?ÇfXwýz7æ”9Á¾íÖPÆDàÛv HAóÍŸU,¯5‹Í‰•6®RÐæáf‰€ß¾yE¨ÖCHgqVߟô@òêã°ë¬É ÇaÏÆµž8¨Öõæ'&#Ü›UˆãdF¯A^Щ™÷‰`âöYà-º•#¤jñxÙÁ¬ÓåVˆA?©ÊAPJÁñÝعü’?4x. lOüˆÁCÐ~³ûóad·>D¿³üžHÍèsÃW"«qA©È®«.‘³¡<hN&<ùº&˜A3Õ 0¸¦‘AúW¹Lƒ~r7ô@Ãó°É„^›r§& Á'ÁÖ )’ô@Û-ŒÅ‹1VÈ3èvcG"ƒ¯˜áë$3h¿þÙ`5%s˜ñ%:íDÎú’&rµ¿•HfÐkõ<Çÿð#&RMçÚP•*¤BO`¢úE½6Ä‘‚™àʩח=ì'§‘œAáwIj2 x vÌ Ó©‡IfЦ‘³‰€ô|Ž™äm’“îyü€d5ñP"Eþºn“ä fãL¤q—3Ù„ÚÏ—ÃÊœÜ~+Ž£êˆ9?ÕþI† sýÓÁšÑ4(ì •ñ ! Öp9d’´_s°ƒn¦&‚€¯¨#Xžn”ŒúþQŽïØÆíñ…Kø›šÛ³ËÂ?tlAÚ?†AeÕ”ì'L&¸A3³|á…õ«÷ [†ˆFp‚t›Np@ðþÞƒûQ@êêÈ ~ ÔˆÍÇôøÉfOpƒæ« 4Á”¶©5!«#r}L%6^Od‚(u›^Æ!M¢ËÊó’ìþ}ž‹ Î}. ¡9Ž¡û¤q¼yéÖ:E1ÁšS?¥OÀ”þò2ÂË,_ãZí¦-PÍi)X ü6ÊîtŸ…†½G¾ÆzhÝ,Ê|Fµk5ýI_dùŒ;~’ë ÌU‰8BªscÛº.„îàæÊzÓ‹«øvsÔ·À”":Œ”IÔ¨•QÈõÊ£ ǺSÂFý·@úIû­NVÛ&Gmn¯ 72ÇÏÒ\ ý¤ß(B3Ñv|Öm0CôåVgㆳ) ¡u–€òh‡Xd«“¦¶V^°ÂÆ=AÂÖJs(ýø8µîÄÂøÍúYúœ †Ë·C)^ Úokd>ölzä`~û‘:Y$nd »Ü † #–æ‹œß .Ø2à·óY@´Wó@ —’DK¿`ÒubXˆ‘SõF·ÏªbÅtÚ?èöVôDX‚¡—¶@”R,I?è'‹¿ã9Í@JÅw ) °‹iðˆ‡ è†x£a(Ħ‡µ\«8FJúŸå/NS$PJáœ}õµ)üÓr\ ¡Y0 q[`ÍXrù$+†_B?Æa!4å¦ ¸î•VÕ¡ì¿?–àq~U °_ã»|Ìa¥NÛÙFÚÖ«aŒ¿hºs&’nÐöîïQñòkŸÁöÿuÜBó±x»À´=76+š™úÙJôÇó‹þÿ[ÏXej]Ößü Ôv!E¥tÝ)³×*¨öÃxN¡ 9ºù˜t¦¯‚†¥ýQ%ºgËÁØdL5Ð3Pƒ0il0»¾CÌ!#ô¡ÛI¤Û]Ô‰LÖ³ØõÞ«ö¾­Ai®¹T7‚¦Iê©Z…g ŒDB_ª‘´é9{ú:A¾*jÃMzИŸ+W¿Þãæ&=hwÎpì7LnhÁ^j1›'ÒöïøÎ*šë[¢¿A —£#ï‹\´FRm8ŠB…™Â‹§`ã{2ðqÖð®\D%AuÍ Ó}ó"9h ËcMÉýì@%[fµ:ªÅ؈?߯1ì;Ч[iÕJ÷ê•O¤2<û;‘Náz|Luà¼Iâ=ѱñ´ÏY Ð|ˆ¶gÒ¡u—6è;¹¶ ‚Ðí=Ù‰T¡®Ùöîõ5Bulå)ßyøùc“ö² t” ÷PlP•i€œžC÷½iч2õ»¨¶N|:½+°ƒ¦ªë>iҔБÝö·—C`Êf6ŸUP¼Ëì ië$KçëŠZc Ý&H$¡ãd©†·½Ó0ÊJI Ð ¼å¶]ä@é½^ŸtÙ!¡7 rÐÛ„‘rßÐh_Ûô~„¨aãú:Ìe#‚8@®?løþŸk_f2Þ'?hz3üUÎÿ§æFs'™26€.« ™ñóCèÒÖRÓÐ}švÎCé×·ÚÄ7iˆ_<çb ÌB¢úY\hÀ[ö? Fø74ç´im#€7¼;Œ<Þr ¾R.™ž¸ØòÞÝï‘c>2A[H5+½½>ü Û¬ÙƒêëÝ0u‹”¨?ïþqN±ƒnOvGÞ¿eÿÀûßžMžH0À§Üzÿa¯ýÈû—¡?Å ”Îkø±èNñÝt˜51¶ÉŠã ˰ƒ¾»00¶¦.øC3»1ä¦þpQó…byÇy"5äêy_hjÖßÒØÎÈù€4ëJ’†¢ʉÈÝ'ÕØéæLâìr ŽOJƒÞPX#r˜­{|Ì=$ÿâÍÁ:M ™Hµ)½Vê”H ûêÀ×p¾Ä7‰p@ ”?jøN5vúéÒ²V Kl¬´Ö8ÏCÄ@m¸år4L+ÿDIÎÑ6L f‘!óü”—XAÓícüsÀ úŽ» ¯©*íXzPÁoB0·R©ä×A6°ê“úQ šæ¼Kd‘²†>=æ5}·NœCwV{ÖÁ”‡ðó€´x§ðâ:_{ʱ­ª­¾<¦d ¨-ˆëú^ð(½Ëtp¯ÿv®¹îi.¹AMÄ“H¥gc˯¿y^ÝX}A·Ä:0 £Ï† nº’ÇKrбM_’ƒvûÍ—ä M°Èssºp¨ª.µp‹´Ø“ôwÍ€Rq›45rX†¥ù¬M»Ë çýÛ±UÖi¼/¯³*çÒÞ…ö7ÍÒÀ´h!Á å{Ìä}º/¼iä–@¥¨fK)ó"àý´oa†é'6¼ðù·ùïªj_ã~]çF1Fq´ùŸ†³ R 2•WH•§¯ë17˜™ÕNúËÓ…¿ Í'¦r§Uy ,„Wd=1 R m‚èDöú‰18ïëVCÛ~}3p–¾àùX` 2¼ðdÃï¤@— íë|\ºý&sO¹<Íg/2‘J"9.ÁÆgÔ÷›ñcßï²'KE{Á ZîBJð§†&ÁWo &´!‡$ 2yŸ—¿ÿÓaxÁ ôýMÑÏ1Á;Io€h½=Dw³*ñ.†MOV„‹Å"…Ü<£¸ VЯŒÂÌ?òa2ϰG…ÐO¼tüûP °Êaµd˜•¹4ïÞ­ ¿l)P¥-ù»tcݨ}Á÷}¥ ÚïXĶYå‘Ë|‹tGXŒ/»îb¹`M?–EÙ{éǺ¦y/»îusæzk[·Ê'ÒQ9ƒ•JÇâªñøªÓÌ ™•…d"µ“Ú­Œ‰ÜöÝ©à•ýlPJšµößg^éÊÖl{#c}­z ~W´^¥D&7vC£'²oM ‹Œ]c¾·öROÞª£ÕÒœñ¼Ñç 9"Þz"µ£´ky€8ø3Œ>‘jMj,žH™yîQÈ¿kCi(Mä’$&ø| G• À°Ž*<žf„ý‡í öáéi@ êÙB.Œ €q}Ýo ¦ 癟„9¤*>ç~ý¢ê—ŽS"5¹ÌNp")üíjâX`.R‘øJÞ‚=òÁ%PƒË–šÜIá]ûDJøMœœ{åJ™‡=Öñ!:•Y"Hè½B f 7é—H…qÏð!\zµg ©õÏ•O|AÁà2õÙG›}ºP[5± \xÔ-„€q¿‡ÔÄû.`²‚îåÇ+^ |Þ{ ìo<EwÃÒ│³–NZ(é0u™ÖÀè OxðH1FÁ'ýp¦%p¸³vùÚmu”WLPü0’$":­Uð‚¦+-EqH†;-pÿûyµÈᮯQ¼ˆcù‹’ɨdy<î"0%²æS·nä|Kû‰ ŽðóI%öKû;©™­‡­K ¬û+ jѼ É jÎîh‰îÕ»ŸHÍlrUéô;#c| ”ä:K Bú‘Ôo#‡›|áµ%R׿¼5r}OÓØ™!?®è^/:½¨´8AÛ”KQÈâŸUå›HÍmÝJ&RóŠ/9²ÈP.Ëà\- vàmAI¤’Ù)J¨Hnk_"Åt¿Ôƒ™Hɾ›qYlÏi¾ð^ÿ}&'’>í³5|-PHøûØ_^Éܧ˜,^vƒó‰·€’þ¦í“Ù¿Rvƒ~‹œCR^ÐåÁ-‰ÔÈâ9õ&&®ªgƒ xbZЋôÝ" b µôd('2¶DÊ…þ¬šÄí–àÉu%rÿûlïBÐló[*ëê¹N¤|ÙëŸÈ˜ß>ÞD‚ ê- 9Wp©@Î.g"Ü,Ihú©´WmÓ— }³MWvXklÄqκ ^Ò>Å ”?rúºåÊz·J"ØAm%Ü@úöE$¢”,߸@Ûf4’™M Â¸®ÖüDÔpK79¼¯‹Ü@ºMΈÊ7ï­.»/7¯R m¢íÀ”‡ "õF/Ó²b ŒÚ®ë¨RœYç©8Î4ô…°0MkØ@ún™ ÷*ä¡é ͮČQ Ìh,÷!Uš~Ÿ¸?LaÛCépý߆‰ $¡ K"Jb_½©ªé$‚¶ ÑA ”!ìкSôfá7€¤ªV'2Vn³ö··( ÷.…€Š¥ƒ.3ßÛHU§oøÂMö¢Odp0²á‰0t ,.Å!ü±»"à>×oj¾µÂ8ê…>˜Ãxf¸OobФ?¾NÑÖÃø¤9~^ù ì«×(0Íüç}ÂT£¬‘Ë2ݦÿØ ¬÷¬Æ)]’ÈXh…Ì#ÐBuðUã‘ìo‡;_·$?4-;:«’r°¦N¥ÛŠé4Õ'£ Ÿ{‚u"U‰ÛÍkƒ&À¹œD6Õá{L5Ù{ ^ AoQî_X*aÖ„ ÍØQIhª­ºÅRœÚ•YlI›¾Ne²õ~_ÌèÙƒë“= ²¸ÎÒz»)S0?áf‹u8Fbá—ÁæiÕR©$Fo~ó›ÙY‡«é¤6ˆ…ÃaGÒõ;–~½C]võgpO½„ö°Éi } ã 2&<>é²—VBKK YÓ À¬Û½E'øÏ¢º¬Æ]«…ë†$º6ý2A«‘DÔbÿøæ‡ª—Æk<ø*|ºñ°ÏÁ5r-Ÿ*j"HèùÖãqB.Å+P9>fÿ÷Ù„’Àaц¶óS 1÷÷“†t”ÜP–2h‰”ìwG¬ oz1‘1 _f ý˜ Ñ¨ÈÔBƒvÀÌU‰LeG·ì0g5@ äÞé&Íüò!06Jœ@ïf¡DÎù¶kÅ|kÑ>¸wsS"ýdžЂV#ÄLw_¢o;5ûËìÑZ÷=$r©{隌àþí×H¤„¿iÿ_"¾]ø¬ò‚Òôiù¢¬ö±’¤ 1 J¾sA[ÆãZÐTmTc2›­6ÊÀ@ÒÏÆšD‚¾WÙ€1x÷E%²èo ßKMöË×9l¡ý‹Ò¯ÎÙBî¯\€ˆ-¯ùç`ïåc$öÕÅ šFgúª‹òG{,¶7¿rp‚¦liÑ3°s:¼ šv`XÒ7 dÞŰÿÍ?6+rêó ÌþùM´ís]ø³òT0¡ûçõžô“µšécœÚÔùæ•Ldö_'h®Ãëë@ð• ­4é§ç%ÆeYâUQW[ %D—Îìöe/ª.‚%df »3 ò¿*àÚ¦#çÇŽKoÖ1X€ôFI âhÁÍÀ£Êc"ƒÝQ¡¥¸ú[ZŒk{ÚÑï«Õ+Üùóå°øSLÞ¬½€Ü[KKDP>Iíõ´%ÑèΊy-‘M¿}Öm?>h¼a!0@µd‚.otû³ Œ‚t@¦ªN¤jrîyè&DFÜ_ß…”CÚúëàÇ uÒ{ÒÍG Í55}Lù?áìú. y|ÌbmŠ¢´cZ˜†c¹mä®[Áö2‡OYBéðœÆ2B?“ª.À”u°íc&ïÕ,VG»ïuþûf.t@ó†¢O ~ˆAó-Só˜AË…fn„fú¡ó%iï‚t@åùÀ¦ñ Î퀹•i¬¹é‰ÁT=ÈMýÌ00©†¦/3ù¨‘™-CªebÐÜîÒ|Öe›—ÞñöÐ1›¹ µ½&2~´b(蟓&÷Šëm‰HR9tîõõdV’ÀÁãRµ †ò>qÏYåÐõ÷†D‚!Öã“*œ µ'"ï?|Ì¡•דpËô«§h Ô:@cp)­Dï?B!`È;!™4¬ÒÏòþ­H4æ?¹'X"%÷¯þ› }{ aVy¡ RÐO`‚ôexKd’(Ž¿a‚¨,´¯¼™Hc¾p>nÏà­ši°(øt@{:)=#95l&2˜q¢ŸÁœÃPJ~œÌ/€‡fäзŸ~œK³M˜ ]æ¹O¤±åšªvvm.yO 6½'Åýî¸LdÉÃ1²¹yòø:‡ U¬^Ôò¾§xáº"ÖÜ̶”ÇÈ _Äõ2A ú Xæ`*ÃqϤ!ø¼ôÁî GK³hA_†·˜A.,›®ÜLU÷Óé^‡‘Á}+T¹˜Ô€\®9áÝõ…Íi%bÒè/pIÌ%)žÌéy=ÏIÙwÌUæ·ß:ÿm™9BæwÇLEs–ì!æµ}3:˜·^9o½<ÀEh)€è Ìõoê10»K„ÁšWÙ¾ ˜¯¨åûð½7]FÚ€¹ÉYÍí{†Ë“pžd“6àͺ€˜æ³-p"®Ï1ÿ“Ƙä€{¶J0sÿ#oØ \zš47àKþSêVN¤]$NõȤû|Ðms£'òˉ˜HÉ~hc`öÍ7d‡¦Õˆ”ÈQëubO/ì:I+]{Î9_3I j阴ÞœÈâžF:JóRüM›Ç{­‡§žÉáÚFY¢ K"cÿˆáBÚ5Ÿ€:óXX›ì»OB^Oò¾tœm[bÕ<‰D:$…zt5ï3 Ÿ4~Ü™ýG¯Æ&{k*°ƒ A}„x÷\‚ÌžWú"'¨#¤Õ]Ðñcý¬£E[à-‰ Íž#ͨ@{cÈ£ \¦R)%‹­Þ ýÿ×þ-2=ï[ è°Ÿ‡AŽEƒ:|ùÕ“Èþñé@_«¹èþ7»ö+\ÊÑ…IÃ"B:Ð7ã¹èþ{òb¬0)"£Ip…}œEů‰V îgÎ}‰ 4ü8d}‹±kš W?kRðµ/7‘жŠ#dþ&é@ßÂÑ" ÐT#}"Ð=Ó‚DkàM¡‰(O»ŒtêV«EFа‘^dmζ¬õö ØLžúÞG9;—™\ÚÉEî‡!æ‚X"Ut"çDÝšHÐãš>kÆ—N 0IJ^©^÷Ñ$rèG>Fä×Rÿ­ã-ÓúX$5Ñn"ƒ;œ–Ϫ®ãp©w‘ÔM¼‰p ŸtØûͺڢ1˜<€EVзJº®µú³ÿfË««ý›]×ɪ뫂ì»Ëœ­Ë Ó.e®k§V¯ø:ÁgÙ³´Ôl¹xÿ÷Mylp‚:çµæ´ÌØ{íiÞ6øà>9š-jh›ô}ÁœðÊ¿ŽÇnTeÎ)mZ×£¶8€4',‘`Ñ`û¤É}Ì>I¦iw³GÛ°ÅhiwvhLÿèÎ ÓMßmw¦³C uw2HŸoòBO »Hd1ÄÚ¾Õ?†wwVæÜ©´ÉüæÉ†±‡·ÍQ§o0}$bÒÜÛZ€Oó›âÞ¢~swÕä¹wI|†sûsà em3ðTæØáÊÜò1à¹þzŠ\¡À€°oÍb‡+ÃWÞ¿‘Ħ)X]½èÿ—ê-ÀSVåa:w "¼.„²ÏDÆ•ÿ§O.ÐOÁ´¥HÇøV›‰ÎíëfTµÌDÇxŸAl®Ùor½½<›@6•Èü¡°Id‘Œ„fiƒè“öÙ ;M–ßù6_€.³mØ»€Ne¸}Ò`W„V4C€8þtàZ$PÀþߓα¼eàM  ís`|U½›éc:c>}ƒC"Äw¡í4aذIzÜZ„V0$€áÞ¤ûП}¥æ’ÑÍF›þÿ£9‰‰¨FÑŒ¤@œ¿¸/;”¶_€êù|áÿ©ÍmЀf‰Šîõ&œ·šFí1û&Ðù4 ÖÎÃ. }4 ËÓ“YÜÍC×é<ìÒ°yv(ù­’=ŽÖNc6CÝÃGìobk µûlʈC ×æ`ê»ð…™ñ†€-ØBÎø‘cô9CÐñÁ•Bð=ßßÙ½gz :Ôôè„«¾+*Šó²]_x3Ч0°¿½,1…ð›S ŽX€\kE3ôßÇçt"cÿ¾ö%»Œg€ãÞ»”ãÔÄEô0*Fª¬ã‘D¶öSêœcP]‚!$ý ØNi€ã;fk–ÐÕ¦Ž#$@·Õ`hO±]#éÖVÚï^»M¦w­Ô0€˜]Ë«@ó™ X@¢W ÂL´ð€®¾ý‘ ¾EîœHǬWý4Î{¼ÿdA–!ˆ;e©ßÂÞý!%4ÔI/(îõ[Ð|/[ð§Xú)â·&6ÇÀPŒÈ é1’^í*R$ ïDž@ŸÞß1[ßá"˜ñ=+-A%§Œæ2§E¹ ­cy†Ë24º Ê[ó7^ØÜoÇuÌ6U¬»sËìÅ]°€®Î-ÆQûÿž¤) ÄÖ´Úé=|ïâYÚñš+å—7&ЗYƒ‘èƒÁãï¥k\\"£~¶µþ èìv™Ô£\pÅíŸ g0Wɉ-$Í@5mñVàʹHúRä o~»E:¹ÆYüðœ\ñšfôø˜E*Àî«nÒ6Д€Î÷ï, b Œõ(joÆå6 ¯L[c¯‹'qH(0¸–H9´&nôkÿyŒbÍK°d]‘‰Ë%‘‹)NtTàÄÔ9 -ÑE_kŽA!FXÿIßÑŸ£Tî¥Ã‹é¼ïò•E°æúg4µÿžJ°Übÿ™Ã}I +þÓÊ]ùŒ|Íë# ‹LIÎÆ_ÿL­Î]^ìÞý ®T)m-\Ó¿Sä`]0ÿ,ôe©ÜÅ3¤/x?'Æ*)2ûÖ?H *» è¼üûb- V«qba¤•…¦­ºÊrêG€÷sbB(ˆ¼w†`ïFI›¾r±Ù·å ÞÏÊ(óS‚÷3ÛÏôUÀû¹]ÝE¨ù' תÊŸW¡÷3CAZB4ÌÔŽK†cÜ?E¸pD¤mÁüSõ¼B&¶TTÃ0‚M&"+³>¿óá&øÞ#£|¾‰!WåË…)ÚÏP1wãl”Cy¤Üg!Nõ|@üSMH¥òî¤õL¤‹Ôj )¯ß9Õù€ù'&½Ï‰Ýå_ _x# ½¾weòî )šh+ „-ŸÈµü}*Í…ŸàTÌ«AçC¸&šŒYÕÿŠ÷25ËaL¿ 8ýéF^#)þáéuó¡þ?A ;A‰E²À³àô§Ñ/ûOu (éo⦘à/³<¤-¯.@#µgttý™’ÿîÈ›hœ®Ÿ$! Dnb˜HY@ù˜U:kú»%D$™B(öÑœ¸YÍ«œà­MÃÑ…¤ó`å‰Öú¨í¨[H kÇïÌ?E¶ïËT Øøç¿ÏøÆÁ…T€ ròü±5w×ʼnDàÀúñãøÄ¢MeõIø‘×ü"Í•ŸµÁ!ŠsÇ'a³´’•™ˆŽLól$þñL§ ôË4¯(ðͤêÑj. Óéð!¥Àhdý|®t%ú@ë2úå þ©¶eŸ•>lí‘æãtÊ=¹&Ú×Jj¸v«§è#¨þEöÍ-Ÿ“þOÑ (¡R&’Jìu&Ú™¢úF}L1f„6kL#£VŽü®DýDýsÍFð\)ïМª‰¼eÙsZ4e±ÀñYÕ4×çîeÐöæMäájýL#5¦uªí&‘šT¼½Ã‰Rc…ýë ™\òÓÇ,>ÎPƒŠ×õ·ýO1xóæ“ÃÉ/Mp=Fþú˜òg»&ÀO´ÒGÊš¨l((gÙ°ŸÏ­ŸÅDºH¨þÕ¯ _ø2“B Ôàø륑’þ£ñÚ³ö¼Ö,Üñ9²ã“j iäĆšõå“Jø§vé%rèÚkÁ Ôž LÌ#¤Ì”½<$”+¢§Òàþg¼Ó|™I}§w âÏñzèÉÎWª?KøÏaä=1¿­¬¨ÖY™‰)ÜÊ÷ùüHÿäO3ç›*œØR«õñ1eÓ§š"gùÏ k~-~æ¬a­q~&¢CP¡[© Å^ ý¬Œ€EŸcøÂĵð÷†)˜½û•ÓõïŠKó1Ê—mšz7Á)E*¶„`D±—P/öŸ‰)æ&öÇ^‹N‘‘Í´)ßNçgÑxȧIGïÝþXÒaìÍÐP,ö×BާJ¾ 6±—§ž˜¯«7õûA0–LÕà‰Í«5‹ù˜‰Þþ¨î/#åц}mpEí !•Æ{ìd€“«ô1­4¨û>½Ü…×b#¾Weò‘Õ$‚X޳“þ'º_û@ö¢Y¼ÐÖ[J’r®ÊzËeì¨Àx±ÊE Y{Ù¢<>_¸4VÂ|H•§Ïõûùg%DCHɨÙ3‘AKD?³ZÄŠ»iú2p„Úç´úæ ÿ©IÉ>¤TÙÒÀ¿‰ ËQÓ[Hcœ&ÙýOµ!7!›KÛ8Ëã>$ÅxOåDµ§–È1R¡\4¿@²bn!ëC9ìr(¸ x‰Z4`ÿ¬ý¢]HåeÛÓÕÅÿóXAÿYÙ¾NyB¡rÒ¬•#Ž‘|Î6 ÌèuÐV¯À’Â?¼­l¢Ù¶l OÊp.7B3˜Gm6j;a©pn«{¢#ûxþ¬3Ë–ÇèV¼‰3ö¿±6•Õ_å¥!%qAན“ÁÙ ¸xÄ™X2VUÛè:o'¢ Ë­öø¬²„†öŒ'¢3Geuùîgý¬ÕQ ¶&\®©@I®7J«u*þuàíß,ÔÚ5ÀÿYÁ£SJíà¼Óí¤–ß1ÓA…R¿RÎÿ~"v«.LÃÉ£ðÕªñ5”;r`d·ê Ég•iÛ^ Tˆjù÷˜$@N"È.)åØ;ª1¹U“ð‘~½“±-:ü7Ó§ø6´]JqßÂ@%½z•Ê=¥”´Ü¸:@…¿¡Òàua—菉!ÿCJÀ Ô¬ÔYã½ÁŠ®ßg´’8_)ÕöôX­Œ‰jäTŸ›ã5 ìµûÁžØÁÿ©½e µ%±^¦NOöÑX×Áÿùô…,ü§ÊùïMËŽÆ_'õ­÷Ïu£ìA… MäÔ ZØ‘òÒx•rf÷Ÿ>8޽2F+ª¶ÆÐ{Òê°zhTtð*ÿMB™´¯(ÐÉÉåHg÷éÓ&í²Ò°IAoWŸ0i½ã9;  ×ÁW^½¾å[ÎõÍR¡Iû¹U5ü·»á€šn] òHO)_\ Ð ]RÊE{y}y;îø¬ZÒá^  Þ|ç ›G }á¯ègÁ‰|„šXéÃíÀ×Ê¢Õ#‚þY!ƒ¾H­æNÓ,€@³²9îuª4ë.·aöÃ.¡¼³ÝV ÊÊ_Rªá÷û{1 ïUOàuáñ­Ò¤-˜~H©ÕÜìVÀÿ¬E+/÷7ï1“›:øŸÕ{·”‰™LÍ&ØôŸÏI›;ý´i‘§øÙª} &Ð0 £rJùìP²çkP P€ÒX+µ9qÜQ›aTJÁ²|•ÛgUÛ ‘+eÿ¬RG@÷-lÆËÍU©JkÁ&Rj6áü<0Ì©¼Ì‰lŽúÝÊù1ø0@w')-ëZÒMES¦RVЫ*&Ñ®5̳í€,S+6÷ÑHÙê‰HÅþ„5Ìʨ )® ùs^_¦Vcúí` pã°S©˜¤©Ý݉TÏ­ËÓÛà`«ô{*°‚´ ;Ì©Áöø¬­ï&¥fU¤RFíêþZ`€–uf¥u*4‘„[þiµNK¥€R©EÝìšóöWÓÌôY§aþâÔ9j¯D$þê´I€W{Ëá;€j$£R%Z×F¥¸¯{ßh.Û8 2é|á~úî(Ëw¿D!@ópš˜ >v÷ 4‡ åØö†s*ÕþŸðË ¨ü>«"í>Ê©Ýú×­‰0 ÍÓ¹rË{…bRió»/™J•_߬9S;±ùà.ª0Ñ`ÿõØÇ´8 eY‡¸4†6 f„ò`@+ÊnH©ª>ÈM©”U{º{ìGã¾ @àò š…@x|H‘‡· Æ Ñ`þ9½‹øÑ¿9®”œæžûŠ š$S=%@ mˆÖšJ™µ}ÊAør-´hF Ì Œ* ªtÒ?ÃKN*, :ETÓŸAÂC U¢iÛï”Pñޝ’-ÿâ'0µª _§0 ¯]ú9™ä¨iãs‚Z•›_)o­«•ˆ—JUt0‹w"¥»vyèb˜/ë³*r"•¢€®W]ž„‚¸òkNÀ€Ú^jÐÜîâ‡øý« e0 ¬)»­ô%î1UÑ¡{ršä€‚®I¥8 ÝΊ h ­¡ˆ¯›ë šu8¾ÌNœ±ýJ³AÖk>+Í¡². UÒaÚ90‰ݯÛ9 KÅÚJá—¸?'g÷†¨ñRĵ‘?ÁmÝÛY ÐÖT¸„…½ú|&2xXÉE]žu/\­„f÷‰•@¾ 6“Á{–ßVït÷œµH„¤Úp@m*â#•ìïÞ~;œ ºðÞ©ÞûóXÀµñÊ ÅͰ!Nq<Ð[4¸”ÀðA´mEµÖ¢eb¨jV€ÁõÚÕÀ~@p¹…ÎùkÖB ;è½L•ö‘¶Z»D ö:PdbèÏ×Îùkb-ðžû¾ ”s§ºõfÅi;~' ­MwšÍöß?Jyøkh…ý|`¬@5Tªù?Œ«èµ¦ró!9\Fy*i e9CZPL ×íTPpZ¼‰!©x蜸gQÚš~é ‚¶WüßTŠnì"šÁæï ‚lþvÆÎ ÝÞ~ìz×Ol“¼2jøÖ(ÈVºÖèófñÂŒði X [×&•ÂÛ/M LÐv”qY‘¯£Ãñu óª —JÅll…¯¥û¢:Àžj* PÐ+f‘g½V ó=ì'X ‚¶aËÅ_k¼Ÿ>¦F4¤•P©Šëf—¿ÏÞˆ¸W¬ïDöQ}ö×J!î×ôïipq;e5î‡ÚSds¼§=„ ÌÅ[JEm 9¯ >“èâœÐ½Í²È†^Þï\@}Üf h ¿¦RÆôc Ô€£R³|÷fCæoôcºVjK¼ººhÐlsœûÈ@#À±h Ú„žJ™DKq˜©TxÉC™åI¬o¾.*®ÛñS;¢‘Ö¤›Oå© ¸ƒƒÜ @YnT¿ 0¸±³ê¦¥²Qù",Tu&R(ׯg)½§WÒ»~° Ý ŒT¯ôøç ÚÐI¥šþãåé î /®g0\¨”9ôØÊ_‹”{aÈs¥SMéRTªéo­Öf}Miñ @9.©O Ú@ ¤RÕÎñ¸\Nr¯o…r­Ž4Z ‚Îþº ‚Îí…ÉÂZ kê Ôš¢j+Ž—–×ëcÊ@JÕ,[‘ ïã£ÔÒ.}K0dQR½e°rõÇ u Tóó–Rk»©4Tjm·ìq]`}BÇÈ yV³Rk»šc÷󧪨²ckåŸí¿Ô_öÃíë­qkc90ÃKÆåÀD¡f*sÿìkíI'²7&ƒêW´4è6À µë$¡RN–Ы©”Û{'༟8öT*jéñಠZ1‘]B9¹·³7À@ÇøÆL0— çn ضi¶ú,÷wÊ–é*å¤u}Ý]AºxŽ…ŠBž¯Ì 0h¹î†-u¶¬ .hqþÂʆ#’[º4†çö!Y~5X T•Ú°X*Ÿ™J95ïHnpAo0s*ƒfßH¦ËiÖ¤ÀÅíYi¶|›9™\¯Ø¾Ê=…ÌšñÁŸhüTÐðEÆN¥œTGøT…|¿/À 5íY©­ºWõ‚&‚ª«êíW[š>«Âp=[l ZE,)û7Hd šu?8õoààÅRŒT=ÃâÂÎ+á 2h{ú·Az—硽è׸o“ÁÇÐÞ@ƒ¦½>«Vv͡½Y­Ï1]{ce×¼ÊÝ›•›ìXÛ ½(ôEe0û ù:eÛ>šõUV†~2qï,•ZÙm",ÒñôìoíTJDqjß`µÇ³àÆT%„·½|3ß`}l |Lu؃…Ýüœ”sû»7d ÞíÍ >h^Fô³LÚàƒ¦õÉa~'wïÀoðA³]t v7=;¸®sߨ©þj Uºò8¦æ€š»Ìyh)‹,•‰yÜ—…Sc¨{œšÚ£”†ªjÓ85•¨.$¼rNjźÏ5’Äë=¾ÌË|‡C‚ƒÞlÄ*j㈄]Å„8ùú¤ Zzí:ÂU½©«ü$ÖÆ'·2é]:[ÊÏN¥3Øß' ¥ºt)ŠB„¥RQKC Û5ÓqœßV*ýäÆ!ŽüËáȧ3jÉqpЊF;R:÷Ú8P¬*ÊËgÕ–EWözž˜9äœîüC½fÐ*ŒŒ¿t O˜×®üØÓJ%oy»õ€t“u+M3ïÕïÇ´¿¾×Á¦Š¯‚ªeïçןœ^—3™€¸dq,rï¨Y錥¹~8t¯¼– òY+àÃ!ñúI8¤ƒ®ÛP×w°è •ûa¥zÀôBå,ô€ã†:h9g¯¾|tЊ ;RÃ'+A“ŠÎ ëÀ\®ï¹i 94ülÆ$ß'ßܳ°?ç€ZˆŽWŠö욯Sù¤{iÙ¨ÞtGúÃE ¾è ïy=ršƒŽOÁ\ÐŽÃÂevàðA_—PN¥îáÔ­l˜Ÿš Ú;ܶz¯‘®Æ‰_¬Ëë–m:ðA?4 qS}5ʦ޽F^í–q•uÝÇÍ \ u÷â¡M몴Òަ”ÌmJÎM[ubC¥RP¬NÀÁ}Â` Th¸ÅÃÈ 8h…Þv)¯êÎñrogÉJËX ‹co€ Zl639¸pÊŽ—V­òâSɬcçŠ â‘—uZe¶”2k*UG0°r8VFCÀû6²ëAÙB| öQÊ®½AêѸ ³Ë‘ø¶–Ô[#&WCÑÌh€úY'è •ŒéëÌýßclû @­¸(ß«2QºÈq™DßÔ€´pYSJc¤©%Ý;Üà@­té%¥ |G¤è íC6˜44|ЊMãë´"*—”—KΕR+ÃéCjïÚéשL,ØÑ‚‹€š§b2±thˆÉÖ¯(õÀ4Pµ”¨,Nì^ÇD±*¹ØB…nœã§\\ÒÝ 6P•gÙR*léfWÅâ’nýµü,+°È›«ï¿´ÊÔñ6Í ¥è±Ø4ƒºþ¤W,_£"–ö÷>˜ÏEÊAÎ$±™Lmï|GâÓ´ °AÓg¢Ë€ ôY“Ø ß¡lÐ¥$TÃp£¨æIߪ|Ãk¬€ýÿ íØÿ«9Ë,€ª|â-E-Y©Qÿ3–€ ”þ}º`Võvôã—ˆ`ÈžòíÖÑ6“T*lcÊ:N¥Â6ÚüSmß!© «Z®žTʟѵ\Jà5Ãm˜JãET§RX¬¦OºÀAË Ú¤Ð/æ#rZÏÿî!¥*·Îðs‚ º¶‘ böôµêüý]¡§RFmŸì®© !qù©*7K—RFíRÕ®…¡9g\ýYí ú@R)‹6”°ø[ºïÃYrú*Õúí~)%ðyOêH©†› ÊbÑ“’BeToåù¤2YËBÁÉ”“ bÝ—QeÜSì^9U½1ïäTèTŠ·´‘JÛ¬xæc`G{J(6¨ÙæëÆ(=> °{­©RIsÖXÀŠ¢dbqQ'ŠØ4Ü>AZ±ÝŽ@ˆs™ïõ ªèåõ Ôî뛂béÏCvToVÎÍ´P¬fpWm= ­­eÈBÍÍ"›Ž%E•Ëô¢€ÚK3h*“:5BA]É5PAµ´KU¶›+ipªÒ’BQAç㇆Ý+å¤Ê« †© ÈÃ}ÛEN¶„Ê­{åüMtD‘€S‰9íá­mÊNü°­ÏO&hå-S$fu+@‚>nöeø/ ¹(€†%GÛzˆý¼>XþÉÇR[ô>©  -Pá«ñUPÀ2ôgQØO¥š¼cfR)"è|ô'üQc~‰ŠÎN8P’1‹“MH¹É)T{7®4•ÉŽ¾}Rýçuã|aõï£Ì¬TªÍ79˜Wõ½¡¤¢òútŽ1]J}Teø¥PDÄ® © b“Ò—R™$Òa»7G(¶^ò@f”JàÇñ©ÁÝÍ]òm„¢+3¤6T M!fC*€a*€¢÷Ï1 ŽÐâ5³§R-þh$•bµæwC¨¡èëí.ïÀÉàÉ5•â ¡¼^ý+üŠ8=·Þa Èô¤¶¥H¾9ɪ¸Ãz­p°]>¦} “ ùûõyÕ°Èò»¯—,С(ëTŠð­Â)q/,K*…] ÒY/Q ]Á[©T»_be¥ĽJ¡¤Ä÷mmd:(SXÚOB¡>HåF¢/&Ð<ï"âþ6œÅòJ%\/q fž¦¢Ò&´Þ…èãÑÜH‰uÒ]*Õø…2Oµ:ä¢^/0p—1¿Þϰ¥´÷·é€ ´§Û©Ty‡©´èTºÕ{,è%û¤ >vÙ—Tªõ-'×K ¨]Ò©Tëï6t*U±lMÿ@A÷^tû§2!A¿h ‹uOe~îG'´ cµÞ` ÞN#?âSõœ‚XZ ¿9í‘Wh ¤€òq-¸Ï? ÇT‚.…°°ÑrøÖ[ñ@/Éx5ò@‡"ÉR?ÐÉT~Jõ­¦‰@¿®‘Ú=„·âíé/×/a5°@W([)M4Ô±@Ý&V#ȈâTÔô¯²Øi‡7rÜ;a ÷S6Â@› 8&UHt·ÇÖT¨O“CãT€H'*eü,O1­±¸ÃV“h¤î‡n›dn¯ $ºŠÜ¦¨Â&W TÛd©TÛÿ9¦ÜØïë—2Pz5õ6€݈®£R8Pó¬S©Æ?Å5Hnl9PWd7ß‹v¿‘¾©ÀºwªÚªOdÜ+Ê?U8¡ÔíÙñ¹WÙ³wñÒ€MKOÏU8ÐeÔ8ú¿Ë·4'Ê 8Ðý ŸÊ$ŒANÓÿgmªÄÃñ­P¾Ò–œÊ·ñ·´çã7³Œ6æÀÚËOßï»Hú;=ÿ|ªæ¥€æ?ܯ`ú_zo.Ì1x×6KýÈÍšJ5Ǩ§2ðÔ™4¨¸^l˜ \ò#`¾ï7Ø0h]T(/âxÖaãWtm)ûÏ%Ú§Ð1ôÒŠo‡µ~¦¿ÛaÁbOíp÷|Ž)." ?P©º­ûÕØ[K €÷ð'†²Ö= ×qB §’óú:Ë!ȸWjM*`Ü?þ–ÁâÍ=*X²¬y¬#îýæ{+µ&•—ËÊ€f¯ªv© d™ûnÇDPE蔪^éì‡T6›Íðþpg{/=5Úikmu‚–báS@ Þ¥I¼¿¬Y6|™—F­2ÜSÿBûK ‘okë@‚æK~}s@îU {õƶ/S©ƒtë®®¹ ù†v=…|ÄïdÕÛ­Yæ³v-ÏçÊgþ´¦ÞXÀÒ¦xï,ZfE4Çp.ñzGë—5…!Å;v¡ÞY¹UÙp©”ôùÜzgÑb¯ÂûÀÏUÛâ4p×f} b±={}q¯÷Tªí¿á·G"¨ ‡,äØV½ lZ•íL%0ë“åúîLV6in¢“Œû­Þ(è€úd…Ïvk¤TQqÛ·rþ|r÷R(3èúO:ð@¹èS+^¬Üª:½ ÙäÅ݈«ŒÅ&º”ÿ®†íâ¾Øð§Æ¤®À¾'Á•wü`ƒ~fŠNûÿ¶¢ÍìÛíØ\Ï=ú~í,è^ЏN¥q¡¼} Êô©ÒÖö»1kÖtê!Àëò!çׯƒ–ìñ›™\ÈmõåBÜÞ¯ßÕ¤OOX„… lTÎó1“Þ¤{Ö¢is¬'x|*eþŒÅ¤¹TP®I¡Æk ôñ— €A÷éê,EÊŠCtúŽÅý˜ Ö3èë.é£be&ô«#¢_.è-Þ²ÀrB)Ë%¥Úþ¸¿gÿ§L_*ƒÛ¦F:_¦¬Ùû˜Ä‚ªC zÉk`H¢¯>æaù]»¥ @Þ4;Ƕ2Ù¸¨‡U+m6pA÷¹Í`Ð}4äc"ii÷Oe{¥ÒxýØý·$Y*ƒq´ˆ@·Úw*û3¤q°G¶”€Éq{>¬Õêáu>\À©ðý¥ùS6•löן ‚Þb©¬?_#{Òæ¿lÒæw±¶T*©Ù59üÔFååÐÃkÔ‘‚ªµr–›`ÁÝ’}©À•ýèOX°2X&ˆ ×ÄÛ4ç{d–Oüë(d;•Z¤ªÞ[ ;VÍÊàÒ¢K˜œyØ4gãžÄúœ?ž¶üS‰÷gzÀe¤E8;½ ³³:ŸWç@¢:Õ–2è§óeªÍ[#³³Íw¿`"Aï4=9\{~ú±”—ÊûÛ7€®*Ç g¾îè-à`49¼Ký}‚”s!‡ž9¸1¡2„ e.°½È{M–[Ÿ5=ŸÓ¿7½X©`)s_  ·@x*ÃèšÓ¥Z_+ªT¬w&ЭǷ&˜@ŸýÎ$oX÷múóyÓþ\ ®onÉ ÁÇTêø^ešæ__õÉ[@Ð=—ÙX¾y 07÷ã<„MþÛ¯nÓôñúèûq7—o÷õî¿\Šë›·§©J ꉇË7ï™Ìã¦Oóx‚ ZuŸ—”Egàö½cô“Á½LÐOhRLj¨Ö­‚ë·ÇM“€+¦RæÏÚ¾r¾CPÐuáUÿ Ö(“ƒ†²áë‚$²ÄZwäøºÖÆ¯\²TÊu±BŽ€õÀ§‚)Ln„jU~^*Õî]Þ5Tçóú|aøìƒ.0A÷Ù²vÁ„·Ro*ÕôÛW©¹·Mÿž—»ÌûN¡,Ùé)g Z[¾ µÚ-4ãg#å[j®=>¤éÉ_)NcÝŠ–¿K¹/DÖì³0x‰»hù»€y*¡ØV^§{_‚Íku–whþ…œ ¦²FRѼ¾|ŒÌÙm¥ZíÄ^4ý½4Yàí¥ÄôT‚]–£(¨ß^½dþ{st —wÐÍ9,ͦ#Hè—T6m“-õ¯YÈcûT,O·í#çÎ’RAÆÃžM”ßùzKVAAw¨LD ŠFÒ'ÖT ²ßB„Zƒ7ŸUžì­,T‚c ûl¸ùw«×/g¹êºÖÿûPy×®°P¾-_vqº×… ãvsà€6¨Õ¥l|Z HÐ\1r±€Ý`9SQ‘â©‹À éfÓ™ç°{£° ¾2_îeË}aùZœ Öv>¶hõ r {[à^®h*Õðïš÷ŸR3¸Ã²Ö¡Ekgóô³€ýøæX@û™nE𠔥”JYAŸ§ ÚxrXÁM o̯ð~\÷Y°j½¯¼‚Áe tÛüëjØKµ:,t?løöÍmÀá>Ž›ýŒè›oA÷·/•Mo]ø¬ʆpq©K¡ "èÇlÜåòN¿ù¥]k§*¢Ô닃Éݾîýr1ç­Ñý°]J|IåЩÂÕûf—¢Ûmƒ ÷Ù8ÛѶ"6  ùeôƒ£ñÿЀVØÛ½9UÀI=;.wã¶„­Ú Ð÷‚ ºŸû˜Ý+Ù×8V-W¿°{IGÛstoÇœ¢ÎÞwûr“ ×–öM6¸ k)=¡6Z¥ðZyiv±kíñ÷7ÐbVa·%\$áïò}s0úGÙŒò¼÷®æôÈ2ú=íÉýéûõ ô 9ÙÀ‚î A§0¸ÚŸSu®Â£Å4ot||z¶6W7¬bc°P‘’ŠJ®ÓŽÝZ¨G*e ½H¡f"±¤²hum+{À²¥¡Ò«jWï$ôõÞètƒçLåe¿§rooäÐ~ôòSÌ6•IÇ +un“Ü¿•ºS8ñ³­´94e’¦¯£bìÃQû°õŸ¿>¤Ó ÚVÔÖ9\ÿð>ôëyÏh·þãë 8É~½Í•À5‘7'U©”_ÏQÙ;èÎf6t Œ­é¾,ÊNÍ!›³A•g¡P9†ÃP6P@U•OpF&Ù8à‚Nû/Îé½i6=à‚~œ ‡\Ðé--Ì(/Ù= ¡ynµ‡“Á+ÐBZ¥c¥  w˜8 -ÔäÒƒ­'pË©Ìñó ÎË ¯Ïû—D ‘BŒv~•@ïÐÛk´i½×|=k  ¹,ÐSû!§7ý>Ì{8vû´^§þ.;(- Á(Îv™ÿ{`¥é>ÝÍ~ú˜Æ<ŽÖÿ”2h½‘’é¿Ü0àÝÇÛ‡ƒþuggú/}•ÓJðk³³œA;èøû–¬$•N¯É”0h㲯œÁðË©À¤µíœÙ¾Ú\RXo]c vÓ_n0€nyõ…JPWÎyáL®çì¸CJÛ§jw)Œðá€y&c3¼ÿw&×sÞ*9“1öÂv/PIjlVjhö‹!Û¾Ò#eheݤ í;)YW5SqJ<‹v­£Ê0@ß×µh×zH?›Qö‰:‚Vð¡DÙ{¸>‚^€p*“.ºÿÏþË™¿[8œNÖUÊâ²­r@]ÇQ(çp{ÂN™sØü½9EÝÃ~×s¸I=ÿZ@̱Œ"èFõ2*gþ‡›9áî ¶×~îôVÒN…Agás'_Ý;Øøí¤9œ>£ ×íÓÃ5À«”Ì«L¢4!ãqŒ%_UÕ ©A‹Vo€´·p© zê—OšçgÚ.^Õ¿+å76#Å%±¯€ 7j!hþîDóßu «'Ï?ßÝÅ€ù^!S_[•€S©–¿O­ÏÁí2¾Ïà°¿_õVêýîÃx Š¡»7®è¦Ì¤´ÂÅ}júGüãJOª…u|ŽIïÞi‚—…Y¿gù t^ÑòRy¹ANGJ`28.‚RV_ýNL p€v(•3µ~ö<$ûc‘çc66á{•U{TI¼¢‚ê^÷IA­•n‘n¡€{½÷ÁÈ$/Í@ÐÏàà}ò`þ)(^æÙ50ì½ÜÀÚtÅä‚Î;L1¹ ¥šÿöîK·‡§‚]“}À®ûço¨p¼V­IPpML•*ëpû˜Ag=ý éáûóudçï´ì>&ƒI—Cl®åŽ_ïæöœý÷±iÍÚ9™Vÿ†ÁÈ Å(hÎS4œb;Ó$¬lÚ¼¾Êi¿okÓ zÝÐíÙûTÇ#Ù–‹¹ƒK)ô7+ˆ5¶©‡š å²ãl@–Íã[¡¸‰£ÁÕ[‰Ù´!¢P ŸýùFhh³;@=€õ©ÔZÄA*pëÝ>4‚­ñ—vçðIØ¥ÐgeL2 —Ù€{|ZõF=«ÏðW qõsˆR¯ Xîn¢†f’J6üã:Ë’Ljož B“TܱèáÒ1€màñ¨t€ùøöTSy?\l±^kr,£öø9_Æšu8Ê6*¡}‚©JaŠ×Ëß×j&JðI¢æÉ¶¥Tã?BìÔüˆÉí¸F¾ +µ˜;BŒ•²¡¹ôv4>'@×ß¶NÝ–äý‘ .\¢FP-ë­TÛ"©§²µYä+Z[zk9íÚÕ¿¾£I­ëûŸODw)\c½CÊh4„}™I§¿RgŸc÷쎅ýçã Þƒªõ~¹Ps˜Ìþi €Ö2PÂøI?È)@£[á‚ëNÿú‰êôË¥SY´eGŸÚ;£­Õ¬4†`êÓö·W¹B‰úŸã­üÔ RèC.–,VÅ‘T üÓDW*ëý‰·Q™¥à­YÙ_ôU*æí|%TÆÑ>͸sµ/³8Ãï)míЧk¶ù%ƒšÖ¶âp5÷ú^‡‘öÇCÀõw“2˜Ü¥osinÇ{Š…Þ`|²ªS© “#†ÇF%gxõB Hµ×QQñç:»jñÀ¼»{Ȥߪû8õÛ«”á–­ .æš;}À¤uMe±0 KñR8¯/ÓßonÙ³ç“ð¸Á'øæ©Ô( Y åO̬ÜÉôi¿¼ÕëÕ‡Š Ú¥;RŠ´”Á_™Aø—meüD¥2‚•í¤vl†9?áµ~aþ¶?Êm9О8€¼‰&¢W eOÒß…Lêb|—wxF­M„?úÚÐá·{­Ý4^¤c1§çÁ$PÑ:‘Zþ¥€$±e+ž1‡»ùúEu.æ—µí?~ÕôŸ²…­°ÿr ~ío3ôFlhªß=Vj5÷Èç˜Je™Ìð‹̶ínÄÀÿÔ¸'áú°$D‡ÿÓË;éžuï}ÿ©›#1JÚ£/…éëÝÇL2}áÕ±_b ]ŽóÉ;g/ø~§íÕîÀÿÜM¥w6È#ŸXÂýÒúߪæQoŸ»ÃÇÌþ3”¼ËAªÍ÷’t¬ ÕËÐ{73§eooÔ(*C^¯f_{vKQ¬½~2🡬,®¯Ô¶8ðõ9ëüätVò$£ÔŽã4ž)¥Á´â ü†))(©”À;}|™Éé“ʠݪàS»ðë“~’6 Í|'*†1ðFi%½àæzZƒøŸû ÷hÚÿ‹*a„uêMÿù™N^˜ÿ÷ hý;)µœ„¤%p²m#í9M5Zÿމ/÷ãþóñ¿¦Â¶ìö0Ò~00afüù Õ†9·ÒÙ’à?åqóe63g8Ñ7N^Íy‚kKv™ [ý™ å²‚Æßü’7ª‡†ãÖ¼šÓK4W9z§.í#“«5.ç”Ùº‘ã¢8ô Ââg³Bæ™¶õX錆ztï˱‰6òÚ}7àÿ¬û”‘Çá§þóîåX©’e¯•—F¸žr0NcêÏÁÕò¶2‚ƨ‘þóùœzóφÆ<¾u-åV÷Ï›N›fgMwÀøóq^nÔæ¬WÎÑ®‘ÿãL”ÊŒ]>¡‰W0ô˜“z6Õ‡~ãÅ—áÐßÚ^å4Ð?s•x|V§·èõ1pe(€½”ßEuHy¾µ£ÉÔFuaà?ozfm°ýù$Q–@?-ñ¶s?Üe€ÿÜÓîP´íd=úf˜†‡ß¶¬ï†#GKvÝ뛎e6ÐÚùA¦F Ƥq2mÄ9¹ÆÂ?µ" _æ0…rL+õЧ?0@ŸÙ¡úY¯µ`ÜýãÏìá±"{|ßVA@÷y?'i;‡&w#µŠ©Ä»¨òÜÄ@HC* Sò!å°ñ_ƒ}~Y™ ÓÙŠ€ø(U¢ ñÇßî$™R›:/ en ™×m®v°€®w¤ÿY.Ÿ4øÌõ;Mÿ¦=þÝÉr¤Q)üÛ¿&èê ™Ùaúß‹ÝIz=çôæPËé³:Ç….^=wÃNú§‰75„ŸOøgÑl$ utùÖ¾jŸøÏ1´óZs©!q–ŒLyW¡µy‡ùÿùºdÙÏ»Q¸|…z€Á{›´ƒ~?òZX®AýàAvLȽÔÚçs mÜ×Þ…zi­öáÀã)!ˆ…£Íщrê[%EÕ¸b_ŸÊ±b7í$¡|%•ÁuŽÉÜQ»2û¤;û¶|rß®= Ð`Ÿå‚¥þ¹÷q¯\¨çp» àŸ7—¨¶-ÊÁ(¤nYG (×m¥|zŸW Pwlr=r’Þmí÷ÍPK±”J ”áãÜfó¿³´u¸QyµÒ]_Ÿ5¸cÏi¡o†Ý+w ”+ß»Ÿ?UD›ÃX—c4VùÌÚ9vcêùï˜Çíø¸n«º& ã(”±,ö?_/8 •(h#¡J¯O  £ Þ2iÉkÀ X´»¹éˆÿ©}Ë Làu XG½Ò?›j n fëÝ苃þ™¥á§„ÚœÕl-å µ±oÀ?±K·ËxÈr_<•b¹¶¦¦„ ½}*U©V•Â¹î®Æ5ÿÄpE¥2§‡"+qãå`««6OkFá·2~×—Ñ^éù¸'¾öügrwÙh@U«í•‚ª­M¶ñ þs?š5p@U.éŸS½Ê¯Ô¾¨åëeý úgSw¤vYLe•kËÆþþs+ …Ân;ÓñŸSþÃAú§7œË¯4 À)ž}_»bÀeM6Î'£³®Ï£ÝQæâµP‘fé=’Ü1P³!.ãÏ%”5{„¹­Ñ`£×±YÀ?B^©¦Õ §_ Íÿáuä üóîÒŒÁ¥œ„öùoÛeÐü÷Nw]±cÊ¡)008¤­6M8ô¾SŠðŸÍ—Y„AÑ>¦ýjŸ„™F°3zxãÅxûû•=á&(²7Š*T¡pšDc†6#õÛh÷ß‘oÿ9¯ÂYÀ¡]µ¤«Eîpï&hÞLþ§´jã”À€)aýù®`ðŸµNïR§ýã{£RñÔ:„ÿ´Ït'¤E™#t›?>©  k`Œcþ•~ðc‹×^#/¾¯#°%'õ8^V^2©4¬úNõŽà&µª^Ôªï'c¼ÒiÏnŸµÛ×â¤ÍÇ=ˆ8¸G|çJQ>élµxdûÛ>¦q¯äñ1вäžË¼ Ðne1òó*jPÔÖ,»xÎrŒöâ­rpt•®òsvp&ØwSaìÏÐ)°f¯S`ºU­eOA€lÆOàßîÞã$©†ÔrôždÝUùl\ÆMÿäfj@HèüÞKBY³u²÷ÔIW• ß1F¼¾Z~øÃ] ¨>S'0IõÊSyéßY] £Ì8oL€L1ªE F…­¿·iïe÷ü®K¦( ž &) (ê(…OÍQn‚´†’I èž~½¢€v-T') Îw(äêÄ«i¾Ž"퇤™tíMÙþ*•^«õõçƒS(* Žù3{ФrG©T»ß¯› 9 [E‰SÉ“"þú*Ñ1) w}8I=Ây§ÒéEå5‰2ð¥ØD?ù„©¤ñÓ ‡“¦ÿ™n%€æ½í‰y Ÿæö·Íá¨?Iº»ˆSP¯çfe>‡CLÌYú‰SøTÌ+ï’¡®÷î!!1 ×¯5I:ªÉP¿ŒÌŠ{Lgxí¾YÆù_ ˆÊ{ü'Ÿ[Í„¦ÿ~4ý×m¶À Ò©0?“¶#jHþ³â__† ³üBɽ ê72É·ÚçgZŸõÛtë'ÔQdöÀe¸Áº³c8ˆ.b€¦RQö"ô¨EÙ9ôðL_xÑgÁŸ³À5F)…ZÉ-eæW;šV‹ E VNèüóÝÊ]ä€.;9 {ù×q7â&‚ud~/r@Ó™(_Så ÊwrùXi¤µÄUèKZhï°í­†‰ªMIa1¯h[AE–¦RÖìQ•ã½ÄÝ2ë Kuåk;ŽYt¥/‚€œ¢^¡O?Èå§Óêž…ôiÇ­sv.¿ôÎm9Õ´Ø‹Y³ì/‹( ) ñF©B¸5»”Î0×ðYÙôçko÷" n7¿óaº7çðEè^þÁƒ7Óí, ¬bs$È í>¤ýî^¬éX{öÄEÐRŒ`½z“ޝ¼¹)óú¬CwÒëc‚|0½0R@誄Åß9owãÕ) SÕFö"Ô±°Å¾ùóaˆUâ#AÂ7?œp9“/R@wSW è¼*ÿV©àev†áw ÿa‰×Ý´·s§õJIí÷u‘ª¥šŠRMÔv8î;œzýÃë?ÐBô¹H:]KŸupjB£Ê:•CÛƒVoÍŸ1 8 ª‘<¤”(8hí?^Ä —ÂY ¨ Neh¡eeòÑõ›É]vn²@Û÷^L^ãh¶É5࢔Àø¡h·•§¶ª—§"¼ý=©¶Ã²¶5¨ÌU*›¤SB]¡¦è@h;”'[ÚûÜË5ЇéûÇ~ÚÅ=7ÒsêÄ´j‹´ïŸTƒY¼Ÿ›Ãšn:$ÕOÛõ–ÊÔ},`{ÎËÐ-¨Xe{ ôs™õ“UXÄL®µ¸ŠßÛÍ_ï‹,8¥•»æÏø’‚p Óç õÛ_¹IBõ5*UsQ RjGÂá»È@¹÷Ñ}HTÅuËâTݵ–’ÜŸSõ‹ ú4Hâ@·J ¤²˜Ìæ;¡éo oäÃ}Þa ªŸ‘KËjù7vþ€ tÚ£þrȺQŠçqè1Í“C¨©ý©oï=Ûó8tù:Õø»Á@ª2°¹@w»øzW;‡0ДqÝ‚øp¼p*pîyu^‡(=>¦ÚþìÚÃ;ä]_îálp‡DÐk:‚n>Â!(“J$`λz‡\ ÈºQB‡DP£ìÓv!ÎŒ+—C"èe±@ÇQt‡DÐ!ÐI*ZÕqæ>\|žX k[Î&¹íÃÊKp0´%~HêŽù;$Ý$‚ÃA¿{Ù|HrýŠT¸¶¥ay5\3”túFB§òί}pÈM£V‚ŠZ _Eù¶´+IpÓÛcgŠŒ¨?¨}>%¼Ç1â,38¤²@»±S8 ÞYަRÆèNbzCåˆj£èÐþ¿Á,‡s€S63îB~4&ˆê]òC"Á­•C[J½g‹!£?µ?Ñ­l}l §BA†;a w;¼QæúÊ'•¿½”0Ðë*?4ÿ¯§àwS–a †¤röï$Pvýæàr®»7qpí™T°œs.ɉËÂjR&ÉLÃWVŠ)“öz ˜ •å %ÄuS 1A½AD™©•вÃ×̯f³"Ž—ÚñpwN z©Ô‚nÙŸâÃ)«³Ì’"¦•—á·|Òt…oþ’…+¶O)‘ Ûåñ2NÃŽ’ ô.@âeœ†×¿5I}n¤IÀ € Úm2Zöƒ@7g)š½Ó—Ù¿Én ÐØÊãL…‹d ê⩼\j tfèÏΆÞ| ÐcÖd‚ÞÆ„™h” 0p÷Í ê¼ß ùÞÛÑAÐh2AͱMep«ù™ßúk9Ï…A"èTyò 7¯ÅÓP§RàœuZ ùhtF‰ Ã‘21i¹³y@wî aà”'Êââ’3zÐøŸNé ò€h!Å24`Xy9µé4í€n],¦™8;!—rJ|¯4pÅÛKξg/·Œ[‘ qߨ w31ÈZª±^J {¿>fraI'J€4¶7-‚, óMRáÅë¿‚œôn½žçôÖ^M%ÿX¯?Lÿ,Ëy3볪Hj*4T« •4ýg¾LÿÌKU hÂ÷N%'‚жhR*D#¼q´ýo D (ÓœÔ9 }³˜Œ·«õdƒ ¬T¥éxivä/}*Jë­T´¡óøg]…”¤ç£¿'C1q§T1 T±2Ð S9?!W©À­§ÈŽ„ê¼>NÙoÕBJç­ðÅSt-Ÿ59Âß³DiC œÚÛ?™LÐÁMÌÖwêO¥{® œJ#ðø˜Î¨ÏþJA+¿Ae¦Ó¡´}¯ŸÍëpß% ×DüÏZ}§Sû(ð;åYƒJeê¿© &éêUt[´;¤`{Nós*›³Ð³¥`.Ðú4•àœÂÇÞ¤x–”²iUa'%›ô-\Äã·^øùÊçoVƒoõ‹Iu~B*ñ3ç‡`8{ËSa2ý‰h{m™¥Ò¹)0|̤)¥Ή û™ÈRÙÈ3V¶¯Ü1{©€:¿_Ò€ìÕH¥‘Õ¡§&ÔÜR?føÂ‹ ¬{å2i]Ã(•³Šûøê¼ä>ʯH¥qÅ­·/àÞÇŒùµ½R™û÷}‚ôéª$‚6aÐK‰ßöyt|{”ˆ Ýc‰ SM-sJ,…vÝðY?18)”Ç_êx57|sU)ë|ªK‡VS#T•{Rè?=, .^*âžWŠs×ݴ¶4ˆ$K:½èÏûm ¯x BË¥‚$+¥Ì¥Ò²}L ™ñÞ©A1)ìž[*ò`_8^ÌSgÁöÏÉ—-ô%(#´º”Æ´—0ˆÇãú’jZ*KÑo¾0Vsç¯ï}ö׊;/“ ƒWå$à,ƒTÞø¯Ò¼)©T¶­éþ©TåTº|*Kù¾ÎæÙÎO.óyÉu‘·T²ågï´ÒèGb·{A»}”Át~ýd°@ãUçxeþË<,…»w0¸S ¥ð`þÏ15“½½nmã/£›õ*0 ÌWQúUZ:ðyב²Hëh°ŽS¤G*‡ÎãgH‰ñ3‘½„î­iá¿RèÌñSÊà†òëcæÏö]±™1Åaá tû©@z· žwq)÷r–1 ¸Ì_ MC]“Ò« [ê—T°˜SXS)⛕óç³aš‚ üp }‰}WF©¼ÜûÔKçDpífê´¢ÎSaŠ»²€Ø–Êf7ÓÛÛvS=>&¹Lá`)ç ©TÓßGvšÛŒõ3¼ç?eÊRY}šÙ?Ë«T‚}lò]…“†4Š Ú5ØÔ_8ˆÀ‚€{Ŷ¦òëÁ(¥üŠÆMå0±hùÊ"ܳ¯6@³ng²V ¸‰X? c3/Ó@H¹¤2Üh©,n,_gÿ¸ÈRCCq/©ãºi~5²€îÌß^ÆÚOv\î»n+5©÷åŸLÐ5Ûa .,› —¾ vqQ =ø\‹4°@?Æ t!ÜSéç§é4 €ší±F&œCcRÙ>[S)¦êõ5Wœæ ßHå8…—CR, {aÀ@„ ·G’:•UŠýOeÓ“ E¨½ø©„¢ÁyÚþŸ.;HŽcV¬ñóøªà%f…sI#ÈEES©–œ?ý³rº9äò© ØþøÓþŸáßÒ^`*hl)›)ƾÌ!?ÅG)QÛr°½0,ÿä3q,lâ€*_6•ÁHðuæz‡üud+4r@cžŠÐ1ÛÇTÃw¢üià€Îwûã^ãJèŒÊÚV›£^àv•VÏm3oÚËÕÆAÿî?ª6 Jô¥ò²] °‡P%€•°þ|‚»R8æ³¹¢ +‡›vz‡+¹‡ž£Ó8œûºÂ®l5¡€¿v²€\¯%P°X«7…õþÌT( ó•S9|Éüæýù#?ðéÄ€š…R %¼f'´]³“êtûT&ƒÎÙÖúówê(Ößß­ép×A*BÎ’ò2,ýõ1µ†{T½$mMŸ…P{÷挮E‹i>i³Ã³ÓuB@kÔ¥PPûf ¯7†ÚO™­ P“bS¡ƒ\/¯Ñy!˜U*ò†7 ‹qiÓ×Ýó§™õÆ!¬ûÞk8ñpKa´“Þ(@F§Ð…ÉžÒ»×pœÕº *s“Êâç^¾Õ¦Kë}¥s}Øsû¸æÏ+奩µ­ ÀOøÊ@€V»YRo¼ý ÄÝÅ`.ÐwdM{ŽêÃÆlãK%ÔÕTRy¿DÀ”5=}ÒÐT'argT¿˜ Э¬’TªñÇã& Ðz†q: pMEZK d¾qrî$¹vU*þy. :9 Í˃èµ1»@@k:A@®(–ЧƒgmåéÏ—InthtB@çÒPØ u*óÏ'¾"…ʲݷª]äTÃæ›oŒW%ȉ©4„k«‹ƒºÚtó¨ù³t¿.! × ×µG Óô¿ŽØÎ9àŽï=‘Dp§éÿ¬R¦ÿ’G£‡ã+›¯2å“*Ë©ðT´›¥¿ÅeOÿe€¦/‡_Í ȵ‘S©¼Ñ#V*“ÛEaeiVmR„»|È!´†sÐT©gÈîÏ?•¦÷çcÓØy ÿóêu×¥š8+ B@ÝÁ µ‹Rì»O*âRü„€ÞåÌt¾ªø”J§_á3F;`ú,?( µÐö1çwa9}^rL™@®/ ÐZ(å°WÇKMg€š9ð)8 ™?ªGÇÐ?óGS?#|HY´.(ŠŠs‰3ºž­AœmJ`˜«.CPßþæD]ÇѰh÷mã/Ù"Ó'©î.g¸1`Юåw<¡,—TÔ.€Ë8=yÝtŒ)“fêÂÀ©ÐÓå¿£ú‡•ÿ eƒ@襤èTjÓ¬`%·Ü”r§ÿ§ g§þh‚çEes]¹|óÃx·æcÀSêŒÍ]{ú™pëÕŒ2öß4U ƒ›Ö×™Œ¹'-ºë8_ MÊÈMå0E«^ Pné–Z}R€öëÆ ЈÇC@ #î›t>Þ>Žñ¹ûï>ÔÛ+/ñ=²§Ž¥2˜»8,ÐÔÔ/[A÷2›k÷µ¥œ_—Ê ôn4NP€fS˜O*/-.Úó!Ú^©”© 2IAF© 2ÉÞáI(Ü¿&A  B“p¸A³qrм™2ÁšCè¶Tj6ˆ%3vrà&© ¥44)“¹”lì@_~¿Ä¼ÐÇJüÎ<“0 ‡è¤ò* ÊJÿó5ò'Çþu4ÃN‚@§[î$ ôkBµ~ãRAëw/š?aÍgràÒ~©´oKšý¿mvîÊÙšŸ$Nù’¦H@MFîìÜš°w{z-ÆIèê'W.J£_8ìÍ~|µý%aý¹`‰ü{÷ŸAb¸›È“  v1 N7Hü[%ò§‚vï÷@œS/R)W¶7çdXÒR/œž­!`’43YS úøâ€ö+Ð:÷E§lJ¨*W*“IŸ ýº/Ú³ý£ÄOä除€^ÇÑ njïe’ê$éT:WÔê8d€~º@¶\J-ðí˜d€~:ò¦EëÍ‚Üîf §’yèÆ°·i’÷Þå°BÙñû: ÌpK#Ô¼ÂTäÉ^¾Ì¡¿ît8КáZÅj~Á3 Ìp‰2 œœ5“Ê$«š¶h¯³y¯ðuB®¤«0”›Ë®õxo‚Ëã\Ù ´/¾øE¨Â¹S¦KXÌ'å+]ä€^Gúzœ:ýøØ@x¤õÒ‘!Hx*\…s­¹Èu‰­Túw0•É{™Åýº }|óC*ÈöYÁ[Ž.«  =ì_ÍyÓìC«9¹Š³ê"Ô!£©L:»/¼˜ÍìC> m×Eø›³Ù8 tŽ,"@»Ã˜ æÍ¦¨›Ñow'4†Ê¥²ÿ|£O– Š"X€nÛGk8«J/œ,8—}Naë£ÈøáP·hø»R*J›æNþÂ$P—ÄeØ“°r¤ïY„=">¥Ò q$05|ùœÁe¥^(  w´Y“÷Þ4ýÏѨºDƒSÐëY$€š¯ÊË0X}šþËM¥+ ¨K¿ž­Û¿O!RIk¶æwAÐ:n  –=‹$ —¯Lå]zÔ0A¨SòÎ"ôî5/ÿ¤²ÞßwHèI óu8¿Ÿ†  ;:¯s]z>¦ÿß1ã>˜ Vr XMe'ÛÅQÿF»-@—Ò;Ï"ôQÄz*Õü_&¦€¢Ç£BüeìݺýºWáØrìÈ)C/•ÃÔIÚÞ‹C¾ bŸM 騩¼Œ ¸ W/tbìÇë¸)¡Úþ5Lö;Ö•ƒSQ–!1› Ð.~ÆÙÌmãVÐècžmLw‘´ ZC3ú&èú·3ø`]Ü$l¡¸^+û§I熷É!43€™_¢Cþ§Ýl»y GiƒWXÃ!EIÍÊ’sçHÙÜxfŒ×&HȈeðÁî ±w”Ú&ÈåT:iÃÇŒ.¾S·{öHXZ¶XÙ\RrØD€N/(6 †—ò;ðîAûÇј›P§é¦2È¢8¾òŒßwʉ F ›ë*=9A@Ÿ·CÐõÏnB@] 1•šÓ#dm‚€ú+Ÿè&ôÝ6) ž=6! o¿Â!D‚¶ÂžŽ3æêz/(¦Q·iý‡›$9@O—z çaaÓüº?98@Ÿ ¹½Xoz)êg¯¿Œ7¡©º9æ›ÑPJ°?t)µŽs4ã&ÔÔ±³‰5 ,•ÅMâ㳘a§ÕÞ¿)†)Dÿ=‰ eŒ¦ð2…”†Õ¦ñ­í}”äí© èÕ7!@wß„¿¹,a*‡y ú}äÝ™v‡£’–80¦ïEãÿúU7æèÒw0Ê^Ù-©¬šzU0•b€† Ø©´í¿¾wÍ{ék˜þýú&9@­;É1ò" ãë'<¤]ÇÜy›±?×=ì‰Ûש¶ö[ZÿKp­T0¸á@ÇV>r*]ˆ°.%mÚ qœ>NŒ¥§"ôUæ}*9«c‡ÞôÈ,9$€†í‡C(A õ88ì Z•ªçðzW怚ìQ.iP«¥öi}ÁV«t’íëZ4€€f82èdÿç鯜ñ×'嬞OùZÉi=ãA• Îx<†B@›]­Ðõ:¢þ nMÜG491lüÐ9–LãSÐÙÄ@N¡¶&–E ðŽùxÃô:‘YM¥x®ƒ”Ÿbÿ¾À P¨”Z”‡  »Â:Ó¥GÕ¶&ìÙå>~&ù·Þ|: €Îwýõ!?¥¸;@ßQÍó&ÍœCèë©âäŒðT:séôU–£3¦Ïš?dˆT(pnË\ž¼ÕYn5¢€vd]39s€¹K¢[‘êš#©Œ_ç:<‰Ÿ­R•êªÀ€~æ»C ¨©©Ô@æ¢zçt½ÀGPÛΠÏ3´˜Wx) w{íÿ6‹ÙHŽYÑóÎ!èîùB@]ôãB@Ï”ããzn?àž~Ós) 'd¥R@]Œ6•MÛNCÒÅ€jT"ÎÛËAóß5=Nt§® hM-³Q3kT.‚¯ª½Ø_©,æ®ð±‚Ðk˜) Nê?ùë* ·&î†1 × ¯C“8HWKœ…T&{ÙUÖø™×ƒK€ˆ$•?o=È G{9 Ñ}áŽwx£9<é±2”ÕØ¥pÿ›Ã@p 0CS`t@Dj!vU*E.‹Š¸7aAnŸôÃ^J¡LZ—nJesçÎBµþ;ÃY &t•¢Ä. ?XÃ:#t¶AÛw@p`fG*‹µzçBzíZ8P+HºAWÁqßP»TíKAÐ » ¡@mt‡P ÷ê$ùT¸8Ó× ´â¤ù2Äõz2–j’ä¿}úgs†S)×޵àîA;s®þ„ÊQW )ñ–fílÞé TãØ.S¬/A&Ü~ËdÆÔXdn{‹‚ ë± B€>]„Ó‹Óœ hyT b€âøîÇ»CÂú 2á®—;Î-Tæ  ²pí' Ð@oìV çBœ©Àµgƒ9@ýØüA ¬©l&oM_ùp‰é ×ì‚ÄC7ôRi †‚s9•N‚ÆÀxÈ23!—¯\‹:÷‘x@Ubmþ­hû{0¾fåxȵ—!•²… ™L¥Óø€7?•ùçPfQKRÙà¾ʪE*ÕöO§6žFf€¢­Sy¶ÈRiZ§á\0‡„jûÑ?‡¬õÖS?Cø£xˆªmŠ˜Iºq mã!hN?ùov=ÆCèTäy<„¹T*à!>´çS9\Ì+A:yÀϨÌÁxˆÚÛ-K4P6Ð:Ý8úºX…Ó—™L{ñ!eÅKó>•jøgýõbý6êéŠÓz"MJ°‰‡K€XIïï!ÈžúT½Õz Ó4Äåë”YAÓ<žé<õC¢@ͲJM_þƒx88Â*¢@hP Ûº´§³}ÜÇ=h¹®ÕäI\,Y'©¼Œ¾x­4¼jØjûáËŒC²)“·z}Rùµcºÿ’êÙ"vX0ŒuŸS,P¹æS¹<¦xDR„i*“Óݳ¤ ëê>$I@ûýÜø«Û9‹>< ÐÑQ %ï’ÒåÌ÷1ƒ;x§I™dÕi´!þAåÒJ`0Úñ…+Å Ñ»¯@ ÒÄK ÐVuóÿ’dR(zFh;1Y´KÂBOX>g3î¼ùåLOƒvï·ùºNø¬×AǺòËvïû’ähÜT&S 9¦¾Â€j••Êž?ÓËû:w”Ã*õÕØÌð6ïÎ…†îµ%ADöÝWÐð““zç…Wà7­J9ßõQ¼¤€†ªòÄÛiM5ĤjJÄÛfÉ1éå4pL/Q@Ž#I,åȦ²Ç•ÃPÌc³ºšxI„³Õ–ÊRª¯ƒ5-œwبÝ<‹0 שЗ“Á–i/a@w} òdð‚Z4 ìj Žtïôœ~¬DÓ]ÐÝO½ˆMò¼ÿ’gÖy¼„€NµI…ÆÂ Õø£iÞîDœD¬ˆ—æÿµÐ^2@ï ônmЩ!‘êèx ŠÛŠî&JèYôB¤R :—D‹W Ðøë §c¯b\yÈÜ^’Æÿ^îT0þ‹SâcÀU™ÝTæ\DèíŽw·}@@[Šñ‚ZYp[Êh4>9tÝÏ PÁj¦”løE_YRÄ¿Ý] þH=÷ýÑü?‹{ Ñ`þ´cJ3£kJiä¿m¹½E kóß'Íȹ·tŒö0æ>ô!) ®"( }oN ¨weSi|tŽÐcÛ©Õ ßà¾Âú1Ó°™ƒ•ou8s°mD™s¸èšŠZsy+.-Y@v)˜Ä£X.>F ,¶­¹ºCøÊûÅ/¼Ç¬I븑êS+ èš’B.çüøRjû’å RH;hí×/‡( {ùOAõh]!÷z&’€¼=˜JMî¯"Ù(°O{*•—{¦Ÿ‰(ÐÔ$Œ>£FJèíÔ $Ðê$ ;m12U“& `ß?ß…$ £œî¤QBj·09ãÅUêƒР¥J\ô…Ó¦-Ä¿‹¬Fèµï0 RHAö´¦ÒFhSZW*ؤ󚴑d/D4ÎÏü\X[9~Ô‹¸£[# È[ÑÈ5y#•Nßö1š×õaˆµG5•ýõZ§p´2¬ ì¬k”lÇv­^è¡!ÔÝ"‰=ª;” —tús2_ùž²ÞŸæHÐ5Q@ëømÚ†_Q .½\J¢·>¢@›’£jdA4¢@½ËŠ„f‘BáC3¬ù;Q ÏÒøÜIzT0:i@ŽgΩàU6LtÒ€LÀŒNнÑf~ï½H-æÌ­L%Ë1ª“ª8è²ÝgǨ èõÅôWõ­ügࢯ¯±ÚïóÐþwŽatÚÿ† Õ]Òó4·â²¢ÃúwÜS XÊ=ZEövÓG­L®ih•vr€¼C ®ÄÏèMy&:„ Pg¦"^ÛG' niË4:9 G\ùè4þ3— Ú_MwútøîÜŠcsí°ýÓ­¦7L hS.J*eÏ>¯²0 Œ¿ŽNœÑ ÑA5•::1 y' ›¡YáË‚šô½uБÏi­“êÎÝi÷wÁG¢ô¬"fÇ´ÎÀÕ SA€Òö+hmÛúÐÖåxëËø[ƒñ~…HÑ—é1zëä€:^8Äi¨ÖG*«æŸ£´ÿÖ%M¥\z{¹íª¸¦è$ÅÐ(†,ý­%•ZÊ=Ç( ãú½†{)ÑRîõu`ÑMò}#BÏC~ç$à·À××í ÖªqK郳sHN̰TàÏÞj¤9ž::i@†T¤LYÖÍ €{½ˆ4 ÷~ЀAëTò@ ºˆ™_0It‘@—‡LBá̾ÄJýk;Ý­)ØTg$áüA+DÅ6VÇ ÒxH³Ò™8NhÔH— 6è´‘›ÊföÁU „ì$ð8(-1À…Õ@AQ÷ [ÿ¯giM5…s0[*…A¤œ„–o•®9VEâòïà¶mÕ²’ãÑ]aˆö¬aAh·•~~_/) Í-bˆä?kìSìB "@ï¸;Èu``‹ófRx¢÷h¶¡°¨ý«Ž _Ôwù0ˆU c`›¶¤×·’ÝÿøÂÁÐ7}ia€´æ$€¾ÞC›ÔìMƒÐwº±‚š‹z,  í>æp£§ë ‹˜bÛÐÉ7@MË‹¶æˆ—$B]Ð!½c°€ æ×¤LNýq•ÀÛy|Èö ùŠAq1ˆ…{´ðßžWÓñ ô½ H_1ˆý4HþÏþë“V5r{:Æ¥€¾>FP¾Òýç»Õ7õ>Ⱥë¼A³»7TÊr±©=ªñœ GáÇ·:ܯïW!‡¶Õ8®QÆÝ‚A¨£bÇÛÓ¶4û¯Ÿ|pø ]±>·BÛŸr=Œã€{=9  ët·ÎÆ`Ç è®( O“E1€½y-lOøÅ%¬öc˜ R@ öŠ! ¨hU1A]Ën˜ùÜx³Òþ|W)t~rΡ“0 lÆQkê#Réß/ö<;„#h#&q@¡Åë|s¯1 u®NLB@‡"²™!ÿ®cÆTXœ˜¤€NÅ¥²2zátµN¢99 ¼Ê&H •“@ »¢…9^‚Â%j``7š 9ó.&‰@¯¸çÙw~œ"¿’@ “Lå%í°û˜F¯—mXA”át^)0j•‡SH @Æ$îÎé“(P‡¥R‘Ç#4ÂL"L?˜¥ÿŽ9jã7ߤ„õçÀ x²ës6ž$º,vL¢@±5EåœkfúN9'Q Ý¾…9v¯ dXILœÎs"Ã9/Åg!éDyÃ1uqˆ˜äÀÁZ’Â!OONèK'a ¯*ÊÆ$ TÁÜ1ÉmÓ½‘`8ÄP9>iä)mΦ“@ âÇ$èsÎFãÆ ÔžË &ƒAæv|’Ú1Y iÊK8ü.jZ$½ŠÌŠIèµ{&Y ®$“8PGLPáÌMMaÒ¹ @óßñ@¹ø£›Ð*1Iº&åZ™}1Ã+¹ 3E½í†H 6= ‘Š4*SNSSûÙØIm^ LÒ@ÛR·_²ÿýñ%UWØ×ü®¾¹d‘0¹sÄW¸‡[.+˜¦}=¶„Ž &ùs¦¬èè©,zè„Úd^7Å è4 †›(Ðî àMèi~DvZ{z“.ˆÍ@4Á&·JÔÅ•÷xO¯ä8Œ!ί¾¯:§€×ÓÓ& Ȉ¦T°=q»Y ®Ã›,ÐyÜ…»Û{¹FÙ‘°²ÝR ºtéÜÚämQìíÔ«ÇDZ5r\,•Átî×Ç`)7?×Y\| çý™f›3\N7öñÖœ>pÑ@/V6ø¥l³lÒ@­E7a ˆ›4Пëk<äÙ À9¹­þӖؤÝ5íZ²vÇgBðüíTô¯[“dìQ*km’ k+‹36q öžò%¾#Ý 4Ý]SBãoáÛC`BMÆÃJ…Cž¢sQ@¾ÊF£æJê´Ö¹?%8´0ª5“ÏOèû-Ÿ¨_eÿøâ*u£ü2³ÀÎyL.:nØ“‘¸ôïªL÷CœSûS)ò^J!¡ÌT@uuði{Sþp0ˆ#N³s–-ädŠoÀ?SobZ‰ñd}wlA§Û;ËÁètÖ&ó6«¾Ñ ˆö.@RG÷æËlåÕ¼R”aïì! èÆl°€òÃm /Gv¦C{?ƒâ%üÛM¥ö%¶•ãº[|ˆƒ{õÛC«å¥¤pïôzýÀG&ÿð $îúŸ—šÊÜÜÚR¸°V»! ÈÉg¥Z€‚Fÿí§$=Ë Ÿ$ Ž•âðµP(@vÿ!Æ÷k@í:€:;,€c”Ƈƒ}¶£°ÂÔµ#ØüÆq¥0øU¸@=d]£åþæ’9©Ÿ¡FÐ )‰C—+=}çpíæ€ŠCè+’v*½ý1Ð ATƒ8Ì.qơɓ IŽy=€ ¡‡Ðå½ê—³¥¤[Tp ÕðoÔé ›>\£P€¦©y«ùµI@rÉöË#þÓTÿÓKAü§Ñž©T³¿áhAüçu^1@®Á ^¹¾ƒøO#BS9Œpå(‹rS(óº¤/  ˜ }°´R3¸\»oEü§9§©0kZnæ“qî ²àšÇî ûC`)d:í0‚  ·ûMä|¼ÂàîÊ0Dò%•Ŷu¯¼iÕt+‚Úoÿžè?“wf3äKwïÌõD€Þÿ ttõ¢ n9à0ȽѬA(ìL*‡I:†, ×%-…x%®ý‚, ƒœRéL"ä²=bì_;Yc¨ý7_¦LÙ}›Y@û>(9 ’GzÔk‚Ð㘘ª3íS:%ÃçpÇÑ.HÍé_žUéo7V4„‚fá¬`€jêHaÊ(MÀ ôÆ«Gý;ÉDzËíÕ ôî¹( y«!!Àñ&hô?xP§§Ð¸I _C›ßôÎT1-w*Ø8~œšJ°¥BW×H! Câp;λ´!öÛö3ˆäÝ èîÀ! 7I%HmMßNV¿­‡Ž)ñd€Þ­çÕo'CˆjwA„7$4 p&p´T&wõޝ¼8¡L+›i5Ã÷ª“wz4”Έþ<}y5N•¢û× "ò˜+^ =°Ç=‹¥È™WY)â ×(_Jp´žüŸB’¨(6cXi´­Ö’Ò¹S ‘R´WE)raŒ)ET¸ðu´#Qób)µŽS9ÓJûË]•wH€ù%$„ø˜A¥ "‰äöR&7 t§ÆU×¥˜WÏ´P4öàR‚9EÐiÑÞL(R¨tyT$L¶1¬0‘0|Ò7ǨÁõùBKÜÊ0.`ZQ‰V5²@Õ=Kî®h Øh}•Å=²éC0µsó¡Õ'{†”  -x'’@Çm€$ÊÝXŠÎ|È ?E ”~™Rj0ƒCE }N¡@_·Ñ…ßÒyŠP@ ,¥ŒZÛJéñójHZ¦g)“þû&a“£Ð¬N½ï+;߃ˆp·KmÚ´·­‘úéôÛ8ãéc\™Ï×QÊ{/•(‹.åж{|eÑ!t½þš@‡µùJéL\ŸKÊ ©ã )“Sýëc”Õï¿k wh@_?9A ›9–¥¼‚6l)âºî.¥3¡HÏ@Kk–÷,gÁR¶2÷–”Ã…íc‚Éë ?ð% HRTÒ¡YIDØdR jül“/©p±uó—,ÐA¤@)€Çt½‹—,ÐÛA^fî- $Üäc¿\E\ê4¹¿¯Ã2øÔïËõ\èu¾¯ îÞcDµ×C‚J:Ô¿¿‰U’m)/AYl²/Fý„•=[ ÊT¾~h¬æ:ÙÞæjngH©¦†¾îK¨°¥ Éö±B蛥¼Œ¹`‡y S¶”Ÿò|¥”]üjº{ W_Â@×Ôdûbä6>9ìÿdì±3¼š˜|]Jc¸9ÇÕ—ö¿²sJßœ²R&»™~ §­³J©´iX6TŽñ4ù*êU)ðf„ßQ@gkx{ ½CÅK¨0'¥€œôj:{I]·ms.`¦m  NÑ/Vcyø}Aš‡Ÿ¥ôzËã¯é_–B)XÐa'¢„ÅlÎR²õ³ýŽ‹z0RJ`‚“)Y ‚®•‚Ú>·‡MóÅKPën˜ ªlò‘Ï^óÏÙ¿{¥”Yû¼ˆHù§º=Xˆ GxP)"v½âÃ]hþxUÚ~ ?Þ (ñçr0J9"ùÂ0ƒnë'è5VJûýyw&Ð3¤Õ¥”Q{£6<ǼáJeÍW>Ì,Z¾yì;-· 8Å, jû]öqŽþLþ9>c2±ÏÂú&•òÝÏ*A°díeÊôd›nà€Îgjˆj@eÁ*¶‡ö²JÙÆB)ÙîçÓe5 ûC'•—y/\m }·ö2ÁäÕwkà€V.‹$LM¢­Ñž¥[¥”Á7=8H †f•²8ª6+Õ,¥œõc'52€”}öO!hv l $Ð3 ZþãßLèé²+[wp‡çÖYÔ!ÔŸ[gÊ4SýK‰o@ô?…L¸í!³ ‚c<¶ApÌP mÃ#™)VcÄ”øsÓÏJÙôŸv_æQ£/:X¨58ò¶B~_²8@[³P#hÜ—Lèî2+P ;<×7®æ£A³ î¾0ÐÏ«`zW+aJi•Æ<ÜÖ …[ŒKáÄKkhTm„ÚDk„n›¢ Oëßf|ëV„ª—‘ªªR]»ÓÇ :õ”[h{ÿ Ÿöíó´þ§—JM POÎ s€k€•"§¶„A \z4‚@ïZ³³ºÁŒ¾4·C¿Þ£A¶:YëåŸBè5“šP ¯­ ì·<î1œ}™ÿS^ŠÆÛ«ezB«õ†A?A´Ëg¥‹ä™:© ôÈZèDŠ'UJû5o:P ™¨·}ðM†S' ô¸{t¡@¿×wË3Ðɺk„Nè±±ÒÁª È.¥]襌ñ3ovðßæè²h:Y@wìï/â¾”ÃUm“Nè–ÁÕ UÖi)íýéÑ0Pù¹K©pÛS' h~oµ™µ«Æé@©p¥8»:a@J.¥¬ÚC®D)l`é;X@‹*#PRï”8Ðyüm„Ýê8<ÐrÑSÆÜrÊíÄî®Á«Ÿ]:œ›ú°CC­‰P8mö•²øà4P:I@¢–BsŠKöNh,rQá<éõ ³vŸÏ1ÄÚ„]8Ðø\yq½qÏB´ñÑ ×§÷›úd…V}9Øž‹¦NÐuFuRáîÒ´ªšÇ¥L4ÛáC–V6!eÝ v"*œ„N}ÿ(•¢æO'WßfÜ?>k0_ùH˜ŒÌâàÞ Í‘×'íßÙ¾“$ÔÓ?E0Ð¥1¸s ¢·¥4†}ª7ªr¬¥ fŽwŸ¥"}á+/:-é­í¤.›œ4Ð}_FŸ¤6Ôþ§i\Îj\ä:@¯¥Lšê)Ƹ”ÍõÄë+Ÿñµ©:y@ÝŽáAhŸzªAèvKÄn{Kq ÛÍ`:<Üá@C&ÉÀb- !˜Á±?ÃëxíÝæØ>¸XMöî 4Û× Ôotа"*?þ½AÐ!#¬”àPÏv<ˆUóRÞñÓq ªÝ\ ?Âð!“®ÎáCàÑx}sÎBg–ræOKÍ%ôB;v*î»"Tô®RüË^5:§÷£eÈ TyÐ¥(N‰vì T;ÛPøF¹ø$AÒ¤.wÍAèðà;ˆRxA)5`{›Ê¤áE×û h5?äàFÅÐø2†1÷ü5d‰$PJNíUSÞÇŠh÷Ô T$üR~Š—²Ð[ôPÄ*Ÿ«”³€ù;¾L^Â…Õ ÈÆÚ îNä£P@óÙŸ“F‡ELc¤´ú¼zË«º{ ÍM@( ¥Aó_{þ =.åå“s$Ä›'ƒ ¸kqŽm."úAèYZãÒ€YÊùòÆJ &óð!8d— )/o¥ÑŽ4 »(D‚ '] ö鼡1RHx)eÜïå "A鸧ħZZþIv’—_ƒHÐψE•1ÿ{̤ëú^‡7Ý·ôž¤­ <À$ hx³o *o)¨ñàk’Ô}ÊàïÜÏbÓŸ$‚ l]Êá> Ǩy©püq¯Ë\é$Aw—u5:vòOñ@‡†ÇÉI€5~K0BƇìORb ‡»—ø®“0Ðá5ý$èõFÕhzÿp‚šeV8NÐ@Go~3MÔ$ùh&pd9—°¹yùú2ÁdB®B§` ¶S&y@{Éo2Å„ö®É$ TEÂJA¤ÒVï™ä ù³»P_ø˜_ÿ$ ô:N&Y ×¥0ÉerW þT½ã‹]¾ P Kæþä@9m¥l:›ouhÝèÓpØŸr»O.Þíß7]²Ìçtºêõû&Q¸ËÝgªV1ד< Q‰6Wê$è5ó³;AS6iDª˜šÎš|é98AÚè—Lð€6/Ã)¸î'&6X´7͇lQ‘Ìám˜žôý¯m›4ÚÓ:‘Le=¿þ÷M^Ó$'GЮëT—“F »qmÒóŸE¦c’ ˆ× Ðm›ä.¬O’ &É€º¥ž ‘Ô°˜LF6ã‹"€M0’L€ÚZNºü7e:éòkä*‘ζ¬f€†æ™BОäŠÀh}Ýj³Šš|’dç‰ è¥Åº¬œÄZ”‡›ä]CnÕè¶b¡Î4M‘€ÚùžÇ;¶R`×CoÖÊ{‘Tó‰T6Èq.’Ý4Íz\¡àk^$KKa‘ôZëE>¸ã.EPñi@o¼¸ÀêÞîDªb«-$ƒ8M¥y7¨'¢Ž³.`ÑÄëׯp._#!ßü²*ɧ2B«²éÞYèU=rr|L§gÃ¼È nu"bŽy|¯Å¡Îæ³6«%ÿE& c%R8Ê4¤ÀæÔÞÉñÚÿö%mr€Þ0u“ îºÍ{’ÏÞ¥{Òù9~ë$Ú®No’i“œD&iª–M e7ƒèåVí v?^õ âŸÓ¯ò5_y[n9Öc-îæp_‰@o"q/¥/ÚæwY­›ÃæSôÕ²IävM í<üÞ âÎR¾\–ßÛ›_f±±_Ð]§—uþºR  hë û èHmЀ†éoíjõøˆ â0ÿNd² þñ²9©(6i@¯¥8Oô¹¸y@Ô‹ÃÝ BšÄ8}HŠþíM;Y˜ ?“n¶?"ÒìÑIÐ]‡–øè–8äí‘ÊäŸúˆnKŠ9@—5ï¡×¯Ý™ÑÞ|Tú§¸Óì^ç°iŒ¾Ã!Ðm8äÒ.ωho¾c¤3E­'&{@³½µÛ!èÚ* :þNÀ:þ$Y°ñºô5ÁêyåD¼E±ÏêócÃ@¢>¢ƒ® úþe[H$Æã?D<@ ÷O§ä;®;¤ªž :¢jòfO' âô;¾ Õˆvt >4kYnIZE:tþ_ÒçÿVDŽx€î…i ÄØ—Ú³1?$ÒN‰,:SÝ·â`ôô­DïÍæ!(Èã‰T†ÓÔ¢‡ ·È}èý?MAÄIö·œFžè[Ó8ÿ7ÃvÄT•â?¤CÊîPï×!…xËž’ÄÎÝ»È&’Ñ©Û'Ž8@«ezÿöc€Æ´Âþì¨wå‘tKΡ+C¹#ò7¥ ìÀ`i€†«f° ÞIsúŠçA6›$a‰¶çÞœ´pvÔ)´<ÇÇ £x8Æ:l÷1ƒ*ï^Yi½î³ý©Bö'…Êrª.X@±7Ÿòil•ÙÝLJ€”ƒô‰h“¾Y…¨å¾û˜ýïIàC”r-âÁÚ|"‘€ªÐHeV|!)úV…ˆ½ù˜ÁŒÝœBv˜>)¤®îE$Õßy•Ë:ªíì°ŠÊÀºú¬Îqîæc Ñãc2¶QB)€Åzå6²?yÝ@²_—(à8'” Uºáx|›:‰[¦IÑׯ¢‰L®D ±Hʽ“ÞæÆÃ?OL ä”HÙŒc•c0Ûò÷ÝfÓÐϹL úš¤z­ßítÆ2¢~¯L^ Ï¢AÒåc*)ézÒYA¹×éûm•APǨ=1É ß mÒÒ·R’ ”ûÅŸ°ö¼)Ì2ÃŽÒØÆ%UH 4ÔÃÈ` ß_¡-pí64íÚ4ÐÈ4áRŠé°(Ç…d žAEj²ilŒ»ÇtÖ!„òÖ}ö)|}…¦@qJ§~^eDÇ}9)$|†.ªÀ…GcCÁçû¶*Ûå‚­T/ $¤åñ9¬Å7^‡t K³iP¥oÒøT>¢3gT–Õ'†)•G!)[‘aÔLcVr\Ïd3 ”¤­“ؾY’:‰í­M Ù@±c0ìÐ'G2•ç¨Ã ì€ù-#¢>Ì0%¢¾/9î/¤‚«VÇ…¦Ày›@ÆÏËåÀ;4!‹uƒí›§ì¿ž¼@ö©K!赉…t «H+Ò>ÜÁ"ñÁQ‘ÒºG¢ÑJµÒVÛÍBf ìÊ•™ºMY&Ó˜T£ )`Šjƒ~ Ø@ç³™û $¥Ù29DdôV è@ï”c)äu^8\VvZ 9âD}\ÔY²ü¦iÄR)nùq€H7b{¤AR>S+¨ö¸J@;VÒ*V]‹VË/QªÍZ(ü~•QÀlZ2•ªûVÙLëo_XüˆzYŠ –Jb Žínht¨(£•QÀ €*‰x‚v{«ªZ)ýšöä|:Ô žÏJ^ÐbÅP›©d¨Äk•Œþl‚¢„TZ‚ëRTúÿeÊwªdzŽÖ|+è%p*•dp]yâ@àÕ:V¬dºv½’ô.ÍÚéÕÞ‡"/¨§MQÏñÜBÀò­ÜI ൕ©är !JÖš"@ÛVRÿÕK Ú¶Á¾|ÖdÓÕ^B´ï4£â:nÓ _êô5ÝÆJbP³R٤ǚ¿jiØØ²|áÁJi™B3¿z§äÒ&0‰œõ•HƒøÆÍzoºß ¹ÆÃôS ´5úÉd-Í2Gn ìçJ[–MÿžÅ1êeyJM1¬MȪÝ倜¯(“ôÆ6•ì .#2˜Äª>fý¼8¦H«sd·+™ö²’èúüõ@þµýw"•Ö~i4)M€ÜÚæ slîñ!*ìHpHZªuÇaÁÚ~c#=èã¯Ùgøº-Q…7òqg„Îpª¢‘T{^%¢tmñ­7Ç è5rƒÞÅÙ¨øK—/ÒŠ©÷¹AíÑ4QƒÞ‡$5¨‹ ,rñÜë&A¢vOOä|Òw¥‘ô± lUmgú³ÒœP£7Ú®Þ@ÏÉŠ6ò½Þ ™AÍ1HŠ}YÒ.¼@&a)Ì Mc9öqÉ7ÆO“×ÑTõ>’Æ@C›LêÞÇ'¥ä?Ί4ƒŠôú!1è9–Ú‚ë·îŽ{ýäî}§«‘ý)´ŽÜöCØD Z^·Z ¬ï­°½Ã}§ŠœËkŠ57˜‚ {æ‚nä}ýDØÀ¤Œ#~; ¦`:ÕÈ tã‚6¹c“½žzPmå„ߪ£‘Û±ô¸îe2¿ý¨FÈ¢Pêç0 pQ&‘õcÂ÷?ô ×ok¢‡S m|éAŸÅÚm ŸnÕ&'îIûãã4²ƒ>S¾rÛLnOß›q7tmû»{e"_|ù˜”~lHIdÒŸÒ2ßÞº Ød±h¾Ì!I—„ëÀ©]6:í˜køHÕ…Ï/Çêõ‡ÇÎÝ6’ƒ®«H:¬aÈ×¶RÜ ŽYº¸Aý˜N^ ›Cê·Ÿ¦{ßIçln'5ÛSADw$~1RÅ<%½?ÌgØÆt‘ƒ:&îņÑv/ é–t/é¸\»ÈAUh ´Xle`1GÝ}aíôã늋¢Þ«ët\Ñ1ÿûaÂK„ú®ù˜®tø2˜-c¾¾WïÕDžד4O}’Úî«ou¾IôNrPmí™He'¤^;ÈAcw\}áÆÍ+»,y';èç¬õóv¹zãF¼ÇïÜ@±1ï cùï. Ð¦#u}ŒïÞæa ¹Èª¥ðw’ƒÞV9hl°ÚŒ ¢SkxéÃÒ¯—.ޏÇÏ rЫçûøgò0Ü|ú ­×~©hÜ;mÊ9¨â ¹/údÒ&‹‰¤ä»·3¸´Ì=¶¿ä 7ÉÕÉz €'Ÿ9$É!°L&£7à¸PÑ—y”ô.9hóuDªå!¢h»Oô@×ÿë"µCÝIš»z'°ï>}ÕÕ]€–mÉ5¨s\]€f}!µÛñÒ˜µ#ýiŽ-Àë2$òxg •Éd]‡–€;¨%ÐY/¾ð8_A"7èt:¹AçV¦³Óxü½ rƒ^«8È zSÐ1@Ùrz†¸¦bÇAS`)¤57r سÌJsȬHe0Ô_"] –—å×®>FÜ \߃ܠbOd°~ÏDè(æü^F‹—”‰AnPÛ²Q½g±žš´@¦t¤ÒÝj> VÝþà -3i1üó"ä `}$9?ïÄY$ +÷JáuI ‰®#’o×itu}'RÄ]¯r´IÓ 2ƒjk¹D4?D‰ÍÔÍgOEÝ”ß\d¤@ØLˆ@z´f ¤ÓÚ “yÚän%nÄG^Ñè9)þR ÝE6i Öt–“1~Ù¼I§h v 7?%iAÏc™ %Pôd˜¿®û”{wQ’ïʵ¶AF ³#•19s¢&õ@ )‹Iþ¼Èþ®'Ò‚šo*èŠ/¼¨éî­6Iù†Ï:Lòð¡È jr¤@* ÄÔ»ƒŒ@åÊãúWò—éõkÈäVæ@­{áŒæŠMâ-¨ø¦),“j ‘T£@´1d ãM7À¤k_|•ùéG d³Ú0ýk´Õ5ñ P¿Ë÷°õÞïOV`[sÈÍÌŒú]Ïäíb& d±CÑF²Û|hAcx…ºy&-hôÈÓs™pÿÇìºî”û¿ôgW˜[„ çøŒÜ©X[w%²¡ÄŽå1ø•&‹Otfq³öP?óë4¦Í‡‘$V“D@Ýe¤Y´ieÕÙ¢tä Múý[(“~ÿõR'-€rA>ÏU·I¿¿ù«Íj"¬éc&Xݽz×Ê{¯Í¬ßöuXºL¬ ±;4ÝæÙ¼É{‹&¸€®™˜-JÎàM’‚>Û_Ф ×†N’‚jžDŽ<Ï")èpA~Òõ¯•Ú{‚ (*…Óˆ¦§õ äÓÞË@öÏ»×h’T;e'">Üj$?ÚÇh^&XA_b@VÐkÒ'YA‹s “¬ nz d078L&ŠŽOZêÌ©B6›Ý·‘Ôu@LŠðVz†éMNª5 o#Šã¨\¦hA7ÍÔœâNj>_Ó:kÒ ¼ÞÍòø4+“d@7ç3IÔïÇ[¿<„¹Á¹Lö-õC. S¼ÒYwÄ…]a¿Âã³ÈM¥3'É€^â¶It_ ¤>±K<·{ïDÎí=×uoÒÂûŠA zcÙßXoòSJ¥’ È“‡YŽI& ÛÙ1Étk)¤ —n"¤³5=ûAè„ÌóË’ ÎYâu‚o‘ôÙ*‚,r‚^/t‘ÎD0Ÿ­?'‰_,÷ÅDù :ÄëñŽ­ÌÁ,r™ Â&gª€EBÐÛâºHjB«@ÆÏeÈ¿ç·÷m‘ô©~HÒm•E:ÐÞµZ)á–¹©Ì˜ÓÔ Õ„À—µx.ñ’t&€ÅâTñÍAˆ(úÃ@DˆH‡r5o\¦ïÒLrß}Œ&ü7û“î9ÃãvÛE6P³¨"6P½@±ºÉoÑ ˜P¦,zþש[ðü=ƒ@c'¾ÞÙ€¼-N Hç½/£j: ‹l@¹)5T-Ëb 6ÐùØß]ÃÇŒŠÙ@µ“n"Ú±µù,ñ4Ÿ¥æ=k~["|ÿi ¿èû÷ª&“%6Pà‹l Oõ¥0yu ¯ –×ËýöI“aeó!‹]ÏÛ—Ùõ_D JR¤5kg jPÒs’È” døï˜q-·hh‘‹ ÈõŸE6 Ûÿ³HªMnà­~ Ø€^Jˆd Øe“HJ}dWÉ@µMk"ƒu‰É@½eG Êfß뼇ÑÊÐUžÓ¢%˜š}¤~FÖ¹»OO!Úâaû˜I×®ûÊL[.›öŽâ"èö‚Ø$½]§[d "3L„ÂN¥¸Iª L¢QJ7ÒÛðY¡Íjs€¿ÁW‡æbù»W]…_xƒ¨Ã;[z}šôïÎ:íß…Å2Èß×kc*«²3@øCœÑÙésövmÞhÝN;oðÖÕýT ‚«]#°„T‹?Öh-x„SÛªë”@­4ßTpí:œ@ñäÇÇ„S[ÏÔÙI9ÑëôëJ:ÐÚ½6˜àâÞÕ‡Ôü v=6ø@ëqÍtƒ4îí“Búëæ– ìxŸb*ØU 7³”ø­mºázƒ ´y4šÏ<ü^@Tów– Õ%'hƒ¨Ý|@M{&’ßLÖHH~Ó>Áø€ÚíFÚ`måñÏhÕæâ‰„ä7ç“7¼ÿ£{HÜiË È@㡊O 7(äžNÅ!P»Ýè„@µzõnX‚º¯Ÿ$zË êq}wƒ ´VQm‚_딊ܠªUce„a¯sú­ƒ ôýºàÿ7ï·H~óöq›uü=Ö£Àl#Û­)ÀXš‡Øà°|D’èþÜ…%¸å” ÿœÇ f ði¨ù7˜ÚÓ-^ m×ëÞ ç.VPÍÇmd ã¸‰dƒ t>Î×äfIÇáú†ÞÛŽ 2ÐhŠmFªÝI© îî·^ PR÷¬\"5I Þ, j7>>`mÚ‹(€’+þQ&å@í‡ 0’< ­s¼Žé©«LôI>Ð:î}„*y|ïâ¦N9•+oï ¨}ëK°ÕQ(œ$­ÅÙ \]ÚÈ,‘ƒ_Ìp3ƃS×U)ðFÐxÇÍHH9dª*” õWO" ¿&ç$%h«®GP‚Önwþ€ˆN$ºúŒ×YaÊñX„ìï÷¹%ö¦ãï¬ýþ½š£}ÀâHsÀ Ë£ÉËŽã÷FÐY4ÚHŠ~µÎ>`Í…' –Ëv ŽEš›P胃h+è^ Y4ŒËçýãÇ_¶ 5/ß“Ä@­zÜ™™0•Ú·úƒƒt>Ųb ùˆ±œ$ ÍåªÇ#h¬yº°” ñºŽ‘PeízJìp³K-8AãuQ—p‚Žcóu@ 4Ÿ#Ýq@ 4‹gð¬A¼Ô* æ­D$HËo.>×@Ô¹ç€tÀÔ Ùˆˆ†Ï ·v–éUNÐx=ôð8Aã±´ ’4ÄkøpkgÙ^åàÛƒœ ³Ø`Rµ0¥ÇäË0RÕ[7PŠ8ï n ú¸Mâ€4Œ{H8ACu5!ýµ¹/ÿ€¨Ý´Ý%h¬Úד” éùû2!þážêN „«ÕaÕ%hXrVU(Akw.ù Çcª'¹Æq€„•ûg(«WHÚ‚T"§MQð½Cú›§GêRдaSHH?9!ù$8ćZ‡Ò@<æãC&m=~_ !ü©i|ó=`«o~6ÆRV Y¡ð ¤MX‡ÇHƒ®8ìÑx*s'@ø5H -~  mÑxå\A!{…[ëî™B*½nÄ ©ë*Qñƒ§¯3ho›ÏBP)&d°†Au6ªŠ¼þ)¾˜Œ”&,Ñ\BÒ¶ïNKH:¶æý Ò/uHJÿóX,À4`U‰ì‰R¦sø6x ˆAkW™9šV¥PMÒèo^$3Ûõ±¤0(¢†¨p¿^Š3]áªuƒðø£“'hW/ PƒÞÅHu«sÒá0•j ^óA ÍzÞ|ø˜E=ùl!Ù¤ô<^$  г$I ÄVµX0j§ ©Z[ï}‚ Ëžv IuK‰á6ºX\Öï$s|yÑ55ÿÙ^ÁËž­Þ0Xáb¡-áØ†…ÓZ;èX¢; $÷oBž™Èz«Är–úyßßR‰¥PùÙoVÄ,^1t–Zrû˜d(¢î®¸"|¬b$ÝÍíõ°Ó³]j> …ÿÞgOh†â«f2ÃAA}` §É N“„ÚšÏëœÜ¶o‰&;1±Z¦¯2Þýî¢w§U‚ f²ÃZÀ zª@2™±+W áÖÂK‹¿2ž3ß_ é9IH}3çc +ƒf•<ÙøüðiÉ€î( «Ä óQ@W¡S^nZ ¹ïR7p…eN¢û˜NCú,!ókP ˜Aç£Iô@$öËÈi¸{åo9èXÚÍ=Ätbd ¤Õw¨HŠþ±¦- ‹»Ñb é]ËYŒ©îóŒ{ž$A±¾ç4Bç·©+~IÇv/ÿB°ƒŽ- @&Ðô!0í¢ð$ýZ®†vЗÎ*Œ¶HQ)Kž:«È(B ¤-üÞá³=DŸ”nÐëƒ!è-: ‡{i ‚( s üÀ` c¦Wœ Ac_)=hȉn¥ÿþv¤ÝýuLÄta•¸ èAã9}oˆ¿zÇj™ÌgÜ Ã … d ð¨I<þæ Œ éµW|™Y°b·ÏJ+pÔœÈÆ2¿@ ÿK$…ßj©€´©‡/€Ìïõm)^ŽéŸ”²¿—µC€u×+‚ÒÎDv¶¨¨ñ83ñvøûÀ”'-!)úÓ±€´¹žHæ…`4xÝÔµü ­Þ5~Ðfî@ã¬éc2ÁçÄZ@ᣄ¡±h— H‚b/q½äƒ˜n‰Ê'¤¶‹'H‚ÞR’ æ== ·öæUkEh|›* ¶îÙ«p½þŒwÝ üÚHƒÐöW°„6º§œÍôb,:šoœ©â¡P6“,ÕÅjAÐëeÕìiém/F}‰Ä1Ss¡¤S;´Ït éÔŽíß“¯íïÊJ™’¯b~E0¶€!@ÍrÉŸÕ¶¿PA6¹ Ȉn‰1Lnïª]Á×–öâ .íº«ÉÚ‘ °3Ó¤”B ÒU;ŒH­e&–m=PX½vеG›³’å»,¡‘iZ¾LãsK8Ô&,¡ñ·/“~PoÌAG¦Uå3÷ܘ¹¼Íõ\;SÛÃß Ü@ÍŸ¤à;‰H ~S®'‘ü¼[š,u”÷ëˆLyi!EhmWÌdz|þ¥*| ™¨=â„$ù®za Î99HJ~}ü™@ò©_ŠÐXAGP„Æ7ÐÝáü‡ÔH²&Ã9©Ã:ÍŸ”vÀPСõwš.TLß<$¿i( ÂýR‘mÖÊ;Pds©l*BëÞ¾ Bý¦‘¬ðÿk³ê­éÿ‡ÉñÓ ÏÉ4ûj^cpÿSÀ¤G»î¢9Ðßô'òzJ¸Òù½‡‘‘%3‡"ô µiz'ë4õý:0Ñ3Jô ™•ÙB2«Ý¦ßüÿ6-°ðÿãV/$µ®¦Z™|l)^øÿl!²RADZ„.‘:æ›_—­èeC˜"˜gÈÝFrvÁBÇÒS iÒ§¹Iwvm¹.-)B_6¾"t ƒHúÿSWT–Íè¡5P„Ö½ü“áÿ·æ‹Ä3Ádë›·jÐ÷!À”™^ xã4- ô ’¢nÐ Hª”ùªÉÀ@R棛VÀ@òŸîQ5h(=A Ô Ñ‹[|ÒÞ߯.¸÷»„úhŠ"òÍ´† ËV×rkàNšf=9…{«¬R{…@­eó1盹iàCÛx’õ‰¢Q§@*k™>©1›Ò}´âG $Ë1žX„¬´a]nMKV ¨mKê;ëê"Ž…ž®,ʽD ëFŒ"¸Aƒ@LOV ðꛑôe#G$`ªNèC²6WÕµÈ>h<§nl°1¯@-ÑÈ ºí7²M»x¬@køçLtÜ{j)´ÜÛßmdò“Ôq/VŒ@DvÏŸLrP RÖFR O,‚+òÅÜ žË„£’rƒz‚ÚÈ§Ž®²Eéõ{Á ”Ð%ríiýN `òßd)Ú§(Hæg»ó? Ü ³ $¸A#`ܾÎÎeUR°m&ó¦5ÇAgg­†q꥜â§;\$|H:?&õ›<¨‰)ÐkJ`­²‰/¸ƒ n6Í&RÚ»’H¦óšƒ‡þ°61•öí`MƒÌ\ô¢ÚD™Ã-`3¶Z>ä0­À·Þáø¿Òdp³iŠ%Ö-i:ÿ[¾Ë†ø9½²ºÈLÔ_gegá@2›ý8‹ÖÁ ä¨/duâ A1è,Ç—3è¬";gÁ<µøcdÌwU2ìPÚ]ê·Óõß]é¹N×ßìyád#©§9ñ@rŸ«Ç™„×ÿ¥7;hÜ„‘¹ùúYÖàqÜÑA ô҉Ġ½¹EÄ ¦é«wÈ—]ì4•º «çòSïlÓpæ·ÓùïÇ"Z Ù»_ ŒÁ,ÇŸÌ á0^$üÙÞ–”dÏØÞíŽòÙìÔ  ñ›Óïì º÷@¾¹þŒ¿nÀÓI úhŠ!‘xÁ×é`£¨ZÐÁ ‚]}L~ËâÒROJ Y-¡°ñᎈóú{Õ¯ìMT%iê8,‘kÕ¨éC/”$zõïHNÐYÕ@§å¥ÓßÁ ÚK‘-î † dû‹U i‚¦°ò¬–(€ (¼&½mÀÅ>>& zÃ~31«n‚ìîˆa@”Hö&¹úȦžëFλðÝxÙu\_„ Ó­dýf5/IpÀÍ¢þ D6³Ë¾r:@¥½ŽY¬ W_gó^Rè ‹uÁO5@4‹K£d@Ù¸P…´t¶šþì,‘ ‰?²Zd@óÖLAûS¥÷A›ç*³S¨" W„ë]RÙ˜X 3º€F¾–ÇHú³½+•2À4™2 Í´ì1ÂOÇÙP3Ó+Ì)m4$„ ³‰Ñ%Ú5½;½ªR„ ‘¥L ‚¾’Ö„ ‡Tß<“« $óxM]Üÿ0€ô}lÑÆ¤+ë¢Ô Px}¾å‚œ2y€bÁO’®liZ–äÍ!S)÷NLÅ–$ÍU&²?ú&аžË—É®Œâ‚çØ¬Þ8å>@ÿöª Œkè? 8þ³ØÓ ŠÐ´ú¬É_}/d/®8‚èU Õîåè«6›ò8š@öäM7ç XæÑê@”Ék¾p¦°Û}P5oEÈaÖxˆ'Oo!€  æ­½IG¶kÛ¨L]¬O=q>¨ÆiŽ#ùù2(eç;¦ 8A:‹XÉž¼[Ìœàz©Ã +Y ªÕ .ЗDÎÂ3« YØc¦ãÉ@î®Þ " 8†Æc‚hv‹ö,pd‹Ú’bü7ò;ñ SØmùÉÁ”¾ø‚¦ ë’YÙ•¤ä@Ô•DÏ0SÑ·ç2ÿ^Ÿˆ1uMÕèGtvv#©Ä–:öA¯}•0Q+¤qžà ·–ºe&Ðlš« `³ý£ ȶ‰¸ëì¬K_!蘚« ¤Ò¿d°3A:¶å *ÐW=v&!\”c§/ ÷Gýxìorg‚hNÑEšföÑ0œ?Їä m~ãàšÍšmÑ2SüBA:ëòë£Êßûuïýiw›àJË< ³¹h5áôg Ège‡™‡þéóbÎéN‹lÒuœiŸ'0;’ºßˆ@³:g$3½ù;€h–b•&ÐW<5“ 4ܤá“ÁöI{þ{óäŽ)îrX3üœÿÙ4-“BÕ‡ôöñ:,»{H‡¶wéÐ*ÐYŸ×1›9*ÝT óq›Í‚%H"G#ÌfSA®Â¾ŒãLïÿvj,0ÍÇQÏ‚!xu&.rV‹Å*piEÁ…¤tiÛ= T ññøa˜€fkþÕ.m1’.íÐÎÜ@øý=è@'*_DöG¯J—ÖYµ6ÐYê.°Î¢áŠ(óíî-ò¿§4Ø@ûÓýmæë˜5¡™ºIùï¢qŽÉ‡™$}‰Îv{µ)R³)¾@MšÕ)ÿέ®Îú„&™ì—hÖù„ l@ïw:¨Î¶šR:½­4ªø˜:B2¤»Ùš5àÚVgQø@ëòe;¿dÅD0k°¶)¦èº@šŽ‡‘ŠÂ=½Ø: \WÛC|úškÒº¯t@óq²u(ãß#„ýuZ3“}6Ͳ: Ì7M!ÑÝö!0ðe¨M%½gMºb¼> (Þë ÛÞåñµ þnxZ ÍIù: X{Ìý,°Â冬:бÝL·¶»íõ“(šI¨׿°‰80³Lå_ Àº»p¸6gMD”RØ@C"‡‘J7 ð34Ò1ØDwn ôeBØ@£írù˜u>íW ¤pÑì ï :Ðæ)ÿhÍ0 YYlð…H2°¶™Ùªì‡ùl·@퇻ñºö…¦wkæh&}šðî|5|¡¤@³ø¥oN—U7b€X«ú½…Él·©oƒqqw¡+ä¼ÍàÑLs ‡.•ÞM¥ðß'€îou(‡´Œã¾… V y{6Ø@C¹-#“ñ,ãŸ(à6“£‘(CôâCÙëZö»¹/‰)ÍHàv¶îæ¨N՘ܫú3{³UȲß#»Qöï×%è3ý©h Ö}ëöÙ`‡¢òØ`mÊVo¾E »ÏÞ§djï:0\ ‘E^>æ|}®„@³8Ѽafujjå´©Jö`@§ÍR@F2 «V[{¸2Q| éºö›­ùi‡vŽ:xaYë \ ³q7¨Ôf_u ¦´­Öö¤$>ùW€Áö²0ñÎ4‘Ù§bÞ‹u‰-»S¬µ²й¡{ƒô5:€&¿¥;üòÖ¯ÒôGÀúv¿oð€NO4¢/É“¶ÓÙz„Mö®ÓýKWÙçtJÕôˆçÜÁþ¥÷,ÐÐ,Ú,x´”©wvˆç0¬Š~\rE¡ø¤F§Ž±È h<Ñ0’ÎO -Lb¬)s¾A7Góg:n3fÓ3òå¯ñÈ@Êü¨½2 ÙÜ”vÀ7WѽÈ€¦§hÙ™td÷:)õÓ½‚ç¡ÔóÏÂ×Í_й’p€N4&I™·øP€Î.öÛ@P—_Sv8vDÍHrÓµ t×eΑêöTrκ0ÀE&¡¨_r*ã¸ýBRè‹Wà©¿”³¥¿3ŒM5°" ™â“a\uˆqSÙN˜F¡¿•D@3½:ý¿eËvž$‡¾WE çø¡A”¥~_%E :"Éãí*øÈúŒý‹¤uðN¤Hˆ¤ÐßÞÒ ºà«þ;ËÕÚÓ¹ŸÃº:tùçù?tùoBù@÷Ï7?§Dciº„`{î\ D ô ð¡ò/âB dÿ¼JW,@áCè1'icŠ_:@窊-@’R#‘˜lHrd@:g“'tèóÏ®xèÀçïÏ#»}`¢#úñ½´e%ÍÈ¡Óÿú= Š­ß$~àУD:~þLCÞÅÓY@çôKèD^ŠHf²ïÓ¡þG¤™@çé^¼›¹ì%IßÞÎa è¯êà¡ö‡¯F$³yGû’îéžRå @¡˜Æ< ÿ UÉbõ¡º·E8`š·gñ€þ3:æ¶€ü9­^Éþù¸SüPÝ_áf±=øy@ÿ9=µÔëŸ-€$z4•Hcr+>ÔÿÖPŒOŽ29?®Œè-  %oMÈ«TyLfûs©–.$%ß#¦Ùý²a»Pð÷2Cnåªm1°!/¡Åz×6WAƒ¾zQ®’ÖÜK5Êv‹¶„tHRñesÇãÉ‚\%ÃoÃ&ji µÏÛ,ß8…U®DÈÿéô.Ùd2]ôi?¯´@¸üW•>Ø]›}·{ ÙáÞãëhÀŠwb·ÕÒŸt_e¹É)éóX>:»ðÔVHóÊν ”®Þ³„,ömŸ´™5k¾ð™ßO"¸qšäŸ76 ¤2•µ»ÄmÍBúŸˆ5§™¬Î!dqvJ_{Ð…=Œ–3—sd×—ûgÒëØìxÚBrFÚg’%fš $ÛêÏòÍÓß¡ÏæË$gF}hŠÉžŒ®Ù` ÈžŒ]| éLèH%ܯHǬ€ÖÏâ´¨ê‡ ”k¯‡@VÅÐŽ´ÍbÚbXÛ@ãßÂZð/…ı“c&]ó@HS ôÆRj’mesQ92+fJ†‘$Œj%L1ñV"‡T5üu‡£TÝj7@Ó~/ *eR¯ !»ÍjÅw˜´(¿>$g©ªFxÚ;›³ˆô?Ã)ˆn’d‹Yb¤|zâ³ã$)fT‡¤} s¼ƒý¦U@”xos2i½¨kØR²#$ù2Lhå•l­¿ú²I7úPdw½9µÉîúªAž,Ó°‡Û‡L>ùcdM¤÷ß*§j«öî‹O”ä?N7$òajÈÏXðet¯ÊNÃs ›±e~“:±€4£39;Å…‡éœ\ãÛ÷B½Šž éuf(‰@ö³ç ¿^ü’ ö‹>FhIRßE ³€C£ú«£shø,¤°µYéÈ0G$‡ ^•qŽ!ufã‰äp € ¯É¢¤¢(h'z¦ìI*ÍÐ |åü¤fÈ õ]äØ2=g©õvÀŠ„œ½nQ €ãHd¢ãT3°þÌŒ¬7kØA8'쨰{½V§ˆ÷­YrWÄ5G IèTËͺrjhø2)ý›u¤[Û ÐfzÞ@À€x¼ª@ýÓ¼8:"°ª€d¾ÛŸ Ô?ô ‰d}8¤fÞéaÈÚ˜åÐë[u?l")è- ùÉÕ:ýŠAšn‘L_×&É'õO]–aؤ÷óIÉ€XTi$üK©ªšsزsÍKðÅ7¼2‹j´ ¤íw >‘t»lØ+®W'WYX¼ÝçìüÞ¾hÅx~2çzÏÏ‹ô¢õí>TÀ5sP’ IEc£IyÖa,hÂ+ˆ<¼€¿ɶŒ¥LAî×xT÷J_5ìNÚéFõgÑ’«äý©Ü¨ao€d]»—".$ógÌúÞ)÷Îë…Æ 3P\%$G «ˆŒI–¤£"Gr{½ž'¶Ï1¼fàÀ¾ûuá”ùyÕÓþ&¸»˜?¬ŸÕãA [5§g¡• ¢·ÔQKH#q€î¾Èâª,~ 9ý’NÐ~’܋Ȧ¨M_ù@lcÜü9 °~¾– H?«kÏ­’íÇS͉äh¾Ú<I×§ªmJ1¹v›ÏJgvj¡@’…àDÀøÓ¼çöAq<…¤3;ïú8=òý+y?§Š0 û.ä÷“–8ðfÑçN$]oÐaÌÃÏ÷ÞÈùc2Ú@*Ý¾í³’ùÓãÎ ;õj6®†øz½ lÕÛIÞ ä@¥ß &ýa™ˆD¦éVq)5RmBŠ‘ÌÖ’}ÆËF{I¿xQã_É=ê ‘œ’‹d$·4v"O—*²‘ûsåb’üE@Ó°×]FTzƒ`ýI‡ª Yz×´YÃnI„a «MUµ à$óoP¦ú™B2˜«^Ž ÔŸtOˆ4>wò–")ÿcùƒë-^Hõe˜ £mhðü“û˜îº; îHÈ,FìI„‡t#·¦jdþ¬ŸÌŸ¬ARùõIiÔw—Qo þdk;‘”}§}“¸£+–Ù¯FâOïzÚ1ÔØHzþÑi¿„Èz|LFrÞf®a‹ñ·L p‚ªÂ0ȼh [#ëöÕ @²Ï Eñçå-OdC }ï ä"%àt*<^wq´d+`méû7o™À„ÈÒ>4úþ£é3Àõý\0þ¤ölB³V âmÁL"àýÌWl$=Ú›]ÂT/ÒQŒJäþ{¢”Q|•ù¡ùbwâkD®a§Ê,¶p%vð~F…‹Þa "ݺT¶{Sƒ÷¤ý¼c- ;deEiùl«óuŒ&­(7œ?½t½bd²e^WŽEï‚þªlK áÂv¯Ÿ@zÎôYívp~ŽE.þBìû3%±”Ÿî´ $ÕØÐ_ëìâ5Äø9¥Žzew½¨ãÉ’„ÙŸIf”‰êî³§Q«ÏZ8déoLH«¦Ë”lZ =¢8Þ-ô†²´»ÿ©œT§pb7ºS] ƒEñ{ÖütZ‚n ‡z|Ÿî'!íxoÞªŒl9BÛ‡MRÿÖœ+J9Oòª¿P•PÃQ ÉyØãêàú4ãWv£¥”‰¬šýiYtÐC’ês9æí ú %Ü ûÁ¡5J"Ö7}]P}^Òõ†ÝѳÜEí}ò­'-V>ƒd‚´oK\SdnËŒÁE*‰ÆÒÙtV|L&²=)HöÅWÏo Ùáþ±´q,a쓇‹.]§û¿lûb&¯ús‹íSMüôÏ\[ÃVcкÑ/yºOZR§WÜI÷³ï3î§ë#êÓ­“êÓMó´ou¨o6dØxçVijDC¬Ï@q ›­€÷æi¶K«ý° É&¡Ã÷•©³’î'´Ú1¢ß{QÑ¡ï{»j‚tŸíêòæ 5b’²_í#‡õVtƒú$6àtzÿ–ºÏц ¸ý½Š.MÿùyMë5ì@“ |ŸtŸw4?pž¹Pƒt?Ç™’QLbÏ71H÷¹E а[¸|VÒýìê§$ݧ)üYýSA ûìm¾î•µé[SÕ]ºè>Ç,¯c@£–›†Mš“ªJtTN:¯=àø÷¾äi ðþôaßå°”dŠà ݧ;lÙ(Ë2‡>D÷©î@ÒÝJûFz€ª?'¤ÿ{ÒÍÚ¾ÂâWèF’îÐó¡êSMç'±Ö[ôÉ>ÝûY§ FGSÆÕéiü“Àû>Áö~Àò1»àª:˜žÞg“ç5ç «3Ø>‡C¿1Hv¥ *†:¯I~väCl#ànÓZ ‹ƒDzжz‘š&ß{Nƒcº³X91-:ÝŽ€¯_¬`PZ]Ì Ûèå$›dtbPºÿ@Ð}z3܆Íäzóf\ ;±{« Igv/9C|Ÿ÷c‘ïs;-6’ô‡u“ÝOË—YßE¾ØZ|¤?ñP´­ðÕ²iI¢ºÏÞ\±ûΔ,!iûÕ^06¥Å'ui2ÒTà ôçáì M&öÀÊÖ<ºTŸ—:(ì±+¿@Àù㾌ò5¦ t쪑ì.›ÍßTŸ9ãì»cVZ}Øm>fº¥9ÉúSIë¶oà°|ÑÍdQbÒó¿úy‚ó§Wµ…²Ø9|oìå#¾½@²;ãöMþLs'6ì`›+Ôê¶à²M4l…Öûö)ã«ä±osöV_$ÇH:™sºE¯ LŸãX"&˜>{ïú˜Þ/*0ÎJ±WCd à‡ñJtþG“33áüïæßKºŸáh‚î§×.5= j’íqÝ{’î§N_9™>“žV‡Ü÷*­?7ez‘ÄõËeÕIžÏ3üÙèù?Û©›ãö볜fÿ% Žž¨›‰Zd’ëç®íI¢Ï£ÆÆ@’+cÛ[œäú1ÑVCTêhq‚ès[› ¦Ï( ë‘`Ún²ÃLŸ©Lš$òš®ŒÎékƒí‡Ú‚(à ¢Ïp­è°M’ýx®;úa¾ DŸ÷ýQáo«ØTo/Zá2•ç©ò¼¨¸9ÿ¬÷Å0N#Æ|OÉŽÂÐd‚éÓ ÐÛGeMrþŒûä`y‹>;© pþôÖ_ÇhLZb{P”ÑËÜtg«%{˜„†vnt¯«¢@÷¿pï!íõÝgEû˜L`<Ëk“†ÀS‘žÎlÞvqb’÷‡]}“¤?`Ë#’•͵§ ÒŸÝ ‰L6Ê‹ù*‘¢¿ÅïÒÖƒ|U%ø­ßÝ TŸ¯Üö6}÷¢,P}Þ=&ŸÁ@P˜>2c‹TŸÞò"͉A&°VñŒ4—â* å4fËm–2?ÁïÍ“_,ù©gÖÏ‹Î% œnË*l®ïoä †X>é0_ÅϽ*›ëÖ\Õ3Ò>¤ý¼†‰Xð×(+ ?C©²t¾*wðqžsUS×OßH’ß|§Ã¤–ž²Ñ »â¶@ø¹Dø@ÆrÓ%®ÕH`/t‰óÇqÈág½Vvð3ŠUté?ë+½qÔ´$ZìÕƒÔöÉ,ò}Nëì$™D¢z£ ýs¿î„ýJ©—¾Ï¢ÊêÜÉØ>³ºU„¨‰Å„µ_õõÁ÷S_ TŸw§¥@Rð»û‚ÛŸ\¾uV$®_³·ï©¾2ü~N­É’„w¡ ¤± Í„ùšÜ®¤y±Â ¼€H’vÁvdmT TŸU4“‘fD7’¸¸I+à=É‚¿ùAW†&ª,æû¤,HÜê‚Èý:ªl^µï¯ÉÎx”#X[ûðéÏ,îÿµP£þÿlǸu‘ç³nëM‘×¹ñ”ù"&ï@²çÁË@²!£:7°Ž;‘´´A÷Ã=m‰äïsTº;‘¶2è~ÈÎòT¯ m(_;¹bˆ +Ãùÿ ¢Ï¤JÛFÊDô@v}ržZ‘Ä©E7-7÷áëÚ¥8“I¦÷<и³}Lö×LwûEÃ%Þúã“«ôÇHnDì Y)W.î‚ÖŒæ”Õ.ä¬×xMİà¬wízWî­ëRÍ®ê0æúÞ•[R>~àûa«‘ì±ñVCìÂÇò­6ÚcðgƒºÒmA÷s7g ¤²ÑZoªqbéäݸñy”ެ õÓí¥âîF°Ù•‘Fæ9MŽ·âV© ŠÏäzó1ٕѧVÐßO¹™ï ¾ŸÜ|ØgM*ºÚ„?Éu;…dWFݯßsØÓK]³ qÚ4”ý¦}¹iì$dÔ±[’î&­§2ÜÉóYoÒƒñ'™X.r~Þ­/àu~m„ܰ[9j‡²¹~Š`7þóîãß üyµzoþpKG"éÈV‚ö¤èé)ðE§%æÛßOÕbÓçÝ];S@ðYè@íÅ&6¸~ú©ÖIôy9ÂÑÇ^ êYÛ‡¼HÅà0…}¼~ÈùöAÒñ9n0Ùpù{Ù2|ˆ)2Z||¯d­Ÿš+ä0ÌcP’Í÷s‚}ûÝÕqÀóyyàÉ©’îØà$ׇ7L±âl!˜*ÑzäT‰·l‡LŸÍÙ¡S˜Áv»ûÛŸ‚o v&À;žy¼åc21ÝDt ôÇvŽú€ìÇTÎíì1L"•·Ó·Ùg$ ô ©ó³ ï˜ êç²O²&™l¾pqE;j5pœ'¿È4rØ¢²ŸÆÀô“{Ä! º:¿>£sRù쪿Ó>‡LŸ¯' ÕgqÆð$×çk¤êˆÜA[„&­êé$#MGç©«,¦ë‚÷­7†3¸Y]‡ý´\Ÿ¯è¦Ÿþ©ø3ØZ/ZÄ@’ºûˆ =¤ìYà¢f~ú$ÓOTþ$[9ÿ™í Õ'¥]‡/I$ »Ó1O7~^[%¢sÕǤìßFï3ÍÜÍ“lŸÑ\A¿ø€í“—H¶dè6 ùéÝ)¸3ªíñU±Y•=•“$?éU@5Bô-ílÄpúŽ´û~ÙÍRÄã;ƒá'SüFRî››dÏ&ÃíóºNʢجÈDÞv¿âÑgøô[ˆ>ïn¯Ôò®ª¾Å7š>[PK0‰>‡Sgç¸wÏѧÿLðì{ŸÃþ}HoÌy#‹§õH¥z‡á¤I‹’¬a,é͇$]}Óþ2¤Ì?rHI™‡‰åñ|RÞ¤ßÓ«oŸÿn'™‹ê ¨Ô¤À/ '’?cÉ@2%Ûý§@ró¥=hçI‰?ùšê‚<~×ßx…뉜Ÿñk Ù„4Eß\þã;Áå¬ý½ÓFådù¤¬H/­‹ž®ÅfÒ¯?ôù½ßG (Cš¯@ÐHÉÖö2y€Hx°½.ú¤£©¶ðvê9ø  I3JÌtG¶XföÎÞ“~n'³íc±ƒ¿oîÙB&fiõsáî_>­@0H²™;UÀï%zŒìw*3ÎëIä{4ꈷhðe&ùѦp¼©õ2çïx >‹H"I‚óÑõ¡ÀíÃìl½úèÏtyºÈæØÑöÚã/ôa‡¥@ ó¢äà>Ü"ewµø.އ6/&{æò˜B:§•%‹OŠà©ò?k°_g-N1Õ-dÿóXËŽI¸ ü‘;«8±ÃzdÉ۟üžì‘ ²~^Äó L’c4!>~,ð{ÞÝmAN;pR3\ý%X‘‹‚Öm]Hö”y‡¶@¾¯¢ÃýÓå0s™¾š(BÎÒ‹-~ñ‘¥Zðñ%ÒàÞ“úWÕ•‡ó¡¶åñlô4’!\å\sÞzƒ¹ûf4Ú ÛNŠ¡1ú®ÛÜÒVPt6zQl ÝÖ¦ù¤|5>’¹¹ïÄÏ‹1˨¡ëŠ<õ@ ¹GRëÛU ¤}r:¤ôO¥Éé詺a Y…›Mk¦Ô_Š1íe©ìDU“Jü°Œàž-³PêÉ"¶NW>>z/“WQ0˜<>tõ’ c´JÙâáP^Ìžw8J:=6˜=#µ¡¯Ù¹qúð3â-™Í`ÓÕñº<•äIÁ¿îF%Q·g Ê^#™•5 M Y‰p>Œßæô'³'vï’ùK¥ÙŸ„a ‡É3.ß"rOeqáÊðßóãVzü„Hÿgœ×!éÈ.Õ8Á(‰²ë|<ª¤–NÞ%²¸ëê’^-‹cÑ÷S-n¸§Ñ‘@ ûMš¶,NˆjS’@2‘çáìâþÉ ×í“2‡=­E hݲlQ…€ÝPÁY ™ÇÛÍúfsó¥»ð@íé’ÈQ*mžÀùy X’i<´ðÝy)âÊÌ`kd<ûAÊWaRd,k©dö¤OK솶¤L?9ã-`qðÆçd+†r»NSÒ‰«IóÃþg!÷½‰?(F¯Ž>h}ØVÜ^Ç •e}ajè9›HÈa °n"…/—¿¥p(Zqb Þ¯ÇHû´•’ñ[%Et9¦ÎR”! ÷¦¤n ßT¥íœžIs~„$a7(Xˆdü湦@:ÉXš‘Á,Ê1’ZÌ!,*ø{Öæ8å½Wú³ ”H¤±­F {`ŽDµÒ@<ý£¿ÓžwÎvÞlµ5¬R¯ñê@6àñ­‘‘U~ø+ÙRïÄZ …C"g I¹/÷ƒëcëÒýyÔ˜È`¾Ö¹‚ë'¢C}+pýÜ­·Ù•“az¬Á6 Q4’6½k^&!B€ÇÄÈ #ØnøþðzFnh[ýcašpÒþLÙÏi ¿•²4¶ŸÔ.Dã„c A+†²…,|»ê[a“’*ë\Iô3ŽO"ÑÏT$°ÕOËÀ⮫÷æ‹3TVùu1‹§ ½®_ŠþðuWûø•Îÿ~,ÄàùIê5Jm€K%ÙŠ¾aôÁ“ççò€–2[Ù v··ÜÞùF9=VÆ|r¾_5›êñ’Â?¬„š4¿óÑK@á’à€å3k¹[HEï “ 4Ÿ—ˆ tTjÌ?lÊ0Ql Ù”aú¾@²»fy1Þ ÈЭ䭸Ù4,“íãH² ÔãLSöÝÓ^ )ÓO" ^&lÚø%Y×òIàEÒOL›< Ãtsrý¸×'Ìd›*lÊx íüe~ñe¶,}$yCódgUÄ ä0iNÅeìÍÑŠ&¤’xëÈ&¼©~ @: °”x>“F܇L¦yôþÀóIî "ÙVæQ3îÑÙ¹¥S"›ŽP³”nOGëµo6–‚pîXŸl»µ’MÛîDcÙg´ìÓˆ´ÍiVH"¹œÝHGD‰9cÑð…õ‡=ÆÍ/dŸ¯ôF;lͨþ4‡9†’¾ÐRûu¦¶3ít08²þˆíàüÉÑ´.¤’no8ï)‰@:›ø‹Oý#)lŸd&²!íLJ 8á%ÒÁö Løv°}ƪ¦KÕÁöyc³Î@຅Ôo·ß$Aó,!ß/ƒùº·îàüɼõc©9…¥çåCÒ³º°€Ž$Ü£{ý™mI[äA¤«WÕÉ<ÖQ`üÌúñ‚uµñm ýyÕ|£œÓ0âØ DûŠò^ã¡S«¶Ÿ@0.R“@æÏÝÍ3þ^í£N†ˆÞæ=ä|¸¢;*›Œ±Cä´EHƒÁ²Å숬*ö61Îäû<÷‘ ½Z‡C£P“©M©ò}5«&Â1x.†QáÕÊ&JÆ+íÇH þ£Îµ@ÐŒçÖ Ûç ÅÙ>›æI/(ú%ˆìÓaó Ñ›f÷! ?8S{Vµ£±ÇLt‹L*»"`±¹vøäo÷Ü™ÁCº:3ü>;ã91ý’[o×%³?Èþ {"hJrqnêÓ¬bY-]ß/ÊŸ0ïu¨æ§ÆK»‚x®¼}Þ¯7(ú®û š‚½ü{i›Ÿœ?‘‡FRúµB´Ó¤ðßlãåO©âèöN ð}^ÞÐ@²±F Õ ¸R@¸5#iÊ º§ƒ„ŸÇéÐÒŸ²š×+?A[/€ßÕ‡¤O{îË!ëO¯A Óa["‹Ö¾û¬Í„šô?/qIÐ4°s‰QÁØÞ°JÏ ÆOcc›1ƒ.Ë õó¶"Œ†(…ÙŸXlòó~NèýÜ"XƤݜ2@ø\­Z"‡.­³óã8·­ïKÍoÆ¡@dTkŒŸÞŽ"òuâ|X¡ëú³~Ú\Ù°óÛ§‰¾Þ|È~èJõ|ÜcO˜`z‹û{«=@ Y|ÖaK(?˰û?AùYÚ’Û1Iõæ-TAzOsU$[̶°Mðþ„y»WÎxÎŒ#äæckÉs‹¤Héâ1êÄ?¥Ÿ{@zµetvd’_¦¡Y9'í¤ð¬$òÖ|^ ‹ …{VŽ˜t{МŸÅ»Ö›A¨²RŽ–ï„-(Ë^ö$ég­R€³±Ñ~K ÌÆúÛÓH“ßJBæŸò¨ž0AüSLOH8µ¥w-© âÏÒ› ˆ?Ë#úÁ@© Ñi>+¼ÚrÔKÈ  2°8Œìëæ¨Puk”u|'PM¥.mÍRÝq1“ú³<Å×õO)š½ $ {õŸ9]ÒįHJ~uZo‚ø³<]NðïOYþ¬ŸÚh"csp7Éú9ïÊçO½MM“´o&ÝdqÎêhÒù7ÑDŸç‘l’ó§ˆ^4ЧeÊŸrìŒOPþ„Øé÷’ñÓ{§ÆOñ*’Ó%¦ $ÞíÐ!}‚ñ³x“ˆ@Ræw•öœðû‹¹dI™?"àOdc-kå’òóv›MR~ÞBÖí#IÊOïXÒ'hb&¡ÉPλfÒ˜>BèOt!!ôûhù@¢ïņõ"’Û›Ôz„Ðï­ÎÓ¾àúïíÅ´@ú³—&ï #°·|Áõß[ h„ØŸG›[b1å²*~Nó•áâ^ þÙml dŸûh†"ü½ÝNµÒõ?Ü  _Œ‘¿â*ÔE \Ÿ{k?Å@Bð÷rêfó'ÎZ¾ÎéxüÞ ®ÿ>Úå=r€pÙ-pþœR|}žgú©Àù³—­÷çO¼báÍžç‘÷¸’ìs;í lŸqïb ¿·ÃÁ²Ïx(Zü²ÏørÍ—éÿ¼â$ý‰W/° HÍ—ùáS-Ô ¤?ñŠé -}Æ+¦¡[ ûü"µãÂÔ…!ÍùŠ‹_h²}îí6¨Õ)øö†V§äo¿aX€x[TJ tŸ±¤¨è>÷R¸º’ò'nÝ ´†#Xi]iöqõsñç”æ“MÜùL÷¤Åç¦a^àúÜÛ©­g1¢ˆûâVVÄ TŸqêÏxéT´ Œ?qa3/£íZÙk_wã"’4ðý„DЭìYÉѤÜ/Jè~âÕ0‰¿@÷³§¨µ ÷³Zµ€ì3”Å”¢·½ì㯤2ÌoyÏ:w§8‚ë3~õåßÏžNÉ,ðý|Nê\…ÇÈÈ_㻟xYþÄ";>¢åœ?ïÏ ÎŸ¸²4¸>ß?\Ÿ{¹!%3/,iùÛ^ö¬qz íöI)ú˽ dŸ/ÁÙ™öâ $íÀÃu u}$z%_möéÏyDzHJÿUS¤?¡q˜RÛ ýyé)¼Ì| JÜNºÏ+¤„Ÿ¡ì¶óÒ ¾Ï/24Ùòe üv)v’þìU•Ü4[ãN¯SÛ/÷ ¿ÿ5ßcùaÑ-!}ç6ŒÀkÁlPþÄÛÜFxã©¿!øÎOmð}Æ"£¨áWþÝIštŸë‘HÝ£åc ù…–c7 ¾‹®6બ —?Ä¡ûºûkyw£Ü‹"´oPþÄ7¡Ë¹iN•^ÛÉù?OŸ œ?ñMŽO‚Üw…?»[îï…ñ¡î—áçžšiï—3èÿX%mxýçñvW ŸÿÚê —?LþöI«ð)dó>ÝÇ:’3pþ„pê,°}¦ " žEÚ ûŒßçCRè—öî›6àÚ– ®Ï—·'¥^äËèï=ˆ¶¡CåJ¦2Ü4Ç­ ÊŸ—«Ó¿\íUÀXßU™oç^?Iÿ–wª¾î>@ô¶Àöù28„ŸñFY«Ü ü SOE+°ãÚ üŒèË Š––*â1‹‘MobúÂ0éÖð„?{¹ ox³Kt.ФKë‚ðsï«nÝYç¯bþ·âëm#éΞûÖAø?‡èÏÇ~»ð‡&`ÙíËð (^&æ"m3Ýþ“Ùà?Yñ¤¾òé;¥E)<çceO¡à‹a§cYç‹ÑUÀùo¼û˜F¿š><œÆ|JzþlŸ!Ä\RŒ?{‹x=Ÿ7|™Ó>vî€ðç<®Çj_V7¯üåI¯C+pmáIÊŸ½D@ú²7 ƒ‡¿.û×gˆ5¯Bÿº¨>ã2ô N£ÿ£½iÔ@>©Ï¯€çmÃÍ 2ùŠYß ò4q¢ËèŒ?¤QÎOg§ ‘7»| ¼Ù#{ÉK÷BwßgxÅ>)%ÿºctŸ!€Ì{žÎ@îXA÷ù É|êï3,úô˜Ì@Ró5Fý.)þ¤wæcubgd%å@|Kü ’ψ/t þë²þ¼å7I>ßB–ÏCCxèñöíM {ü{Ÿô|–›+2*O{*YáÏË‚CwìPûT2hÓ¦‘ta¯•; ùÌgÚB­ìÞxžwÐ?0|Æ²Ò ¤NÜzëx>[ìŒ7—¿Üš@ÖÛs`óVÛ7‡ÈËMOaæ‚b@e,¾š‘ q®>)½Xgc“W”Èü8Y,:ÛÇì‰TËöuÒõ)šƒOeü¦È@*#W,ÿÌÂ+8XhïǪðc÷}ò ?vë‹?–Îyç½ÖÇÓàÅNõ^ì)ê* ¤2¢]>§¦ü4©ÅgÁ<~¨ÆÏ©ñÙ@6SUOv+==žþ[Þª1ÆÑúžñ›ú<IOÖê3þÉö§B þ\ÿ|ïn7vóe1‚îüe ù̼š‘JÝt†FÿêÑEàøEâ¾êçKDo çØô4j1òÉš hý—óH:±›©–Rð‹Xéô4šOêÔžÏ2ñàÅÀ¢§±†ÄoÅB®Ÿ«éÆCõ¤ÚAü¦p-öV±t®øe$åþˆÚ2t|^7_´äJf²©é ÏÚ”|¦ì(L›5:an\rŠÏ3fEÈ UnSˆ¸í;­M-áë¤ß³øýéî‘=R˜HÕ28zy4Fô½éô冯3ËÛ» ‚¯­íÙ ®ï^ü On|¾LBy¼Éë¤}L{ Y=þàòP𽤊<þ‡ú©Ðá_¢_ dŸÏò/…•ñrR˜EÙU̹±@=,~¨ŽÏø˜0¼L¸¾îjÐý"oo!™Â[Í)_Ö:¾¢è@µPûZf#wD0äsfý(…RYŠgo {ı€êçæ}FiÌàY›—äø ÷ž* €ãs›d!N¿–™€fdòÁ§¯“þ×XI²ŸX¨’›ÎJ„’ö|±äÂÎ.¤)fЩ}h™KgôF'1f ô]Ékÿm–Ãg|IèNí–Ú€ýX=Øæ×0èüx5—ÁBıÄogùu„öž¾û¡-¡jޱ_VSt|žÒý½'óÊn„íð!£ý¼òqLÆ} Iï§hgà@Ž2Ó˜ £. ù<¥Z-,ú²¿Ã¢{#¥1šó²˜ŽUÖ)´ç.å (å¼²$gQö‹h>(  "Œ¡ÿÀ„úë>§¯j×çK‡â}TÛfî0uÈfR§ù,ädí{•ÃîÑŸ}ý¼ÃÌÅöW8ôeEg|Yí‰Èä’_>fÿÜ`8þ>í³^Àó¿²_æðijHe…Z¶‚ç3ò™\ 5 öQëSë#èõûcà iÎGš>DŽ,mTÁÛ˼ÔÂ:„xKIOvY©ÖòË7C¡© ùÌŠå¢(·¬úñZ+X>o.C½K©©tû¤¤òVÛHƒ¢ #Péõ+ßÀŸµQÁøs%ÁÙåã!UZkEëçÛÖÆ2„2TÆUÕÇ4&tè½×Æžì žÏ—ò®ôùj¹¤Ô»œÈ¡¦£×\an®5%ñº‘Ê RÛBzùx;¼?{ª$YÞë½vÖ"Ô‹ÈžeSAó¡Lãe@óy#Ó ;p‹{´‚µP·d¯UÛ d¬WZáùŸ÷e3Yý‘D…^¯ç_æÉ§©ß¢Nšô+è“W¶@óy“©,æ ‡ïµÇ¿÷:ÔÄ´›uÑŸu^Aõ¹çöڄ둺X°ËV¥ômNêú§#¥Ôä²?µÐQù¥ôy7JDieMáíÒÇ÷E€êóÖ aÂèt¬H÷/CvéŸCgÖ†­VáŠÅo{9ãRÙå§> ã†?Ëù¥XÓþÔÃ0îjÃCÑ^—9,YÒì·‡aœê{¤TD“ÞŒ“ÚÃ0ŽPaÒ¿h³×V¡íq_ ÝÛö°qôBcj³¼%¿Ûs$‡©•Ô ÿ.…Vn R2(TI­°ÃJ¿åsg#Ã<­w«”{G& ¤?{)%He…’"Ъsyü.­Òµƒ†À滯L–‹·U6c¨d9X>oÏD )úW‰6}¾ŒfëÏûV­º‘Ô| ?½ÖXˆórh47Vné<§ZgS™£“ÖéÐ^Ùé,ĉá0!gK€ÊÛV;UPëlÇX–ìÁöƒáXŽ–© ·cÐÒ·Á`î¾æñ«_€]Ó6˜ÄPö¦ zAöÀýÿE2çÑ&Å_5@êW–¦‘ôB'³ywYMú³]þB›kÍ6™Ê+âÅguò3¬ßòV¬m±Ã*½Ñû_[¶ÚïT“!¸:èzÿxNõU ü÷N›Ñœó%–àz+m3š;þº ûŒøž¡eÝç+ÕÕäý_ÝêÇ ±m›½cñ“óÎÿ>j§ ¤2—t|Œ:2¦‘^ÂÐÁj`þyÿäcŸ–¹öv(üRÛ¡aWHÐíºZãFåç+ÀïeßQXåg,rF­Æ`©—"Áeß|Ìd¡ò"ÍÝH¢?ŒæÔÓ2:Í{%)ýóm:€^¥ˆ^Ï*Ç-Ÿ4Ø…E'»ƒö3Âêêc6“v•ÚϦ½Dê/‹ú5´×éàý¼%í@ºòÖ`~OI¢1œØÖŠÿç+Tƒêüƒ¦àVÍÇ`†8ù§RÿóçäÆðï·n6&³µš ÙZíëˆÚ4HißV_x2°;úÂÓÕêá[oún,ú¶j¹ ¤–ï×[Ìj¸œ5h Ζq‹¹m[•±èÛÚGËÃBZF ÝÕˆ@¡u¨ÅÇþ·O#Æû÷¬Í;“cÿŽÏçÛl7Öx›®í~]mwÑìØОÃ+–¶`ÝO|ØnìÌÿ8n³¾Î Ágh2ÛìÕxÈbÃcŠqœ´•î ¥ßªašvñÿÂ÷Àï2 [íµ³a ‡N>õɬ*ëè»ÌÊ’µúa©\ø ÷g¥/t_–uG2ßåü“àžõß&¥YéÙÞŸÜ(ü÷}ýí–ægûmß·Õ×9rŸqÝýÁ`}á©@À•œÙhÝÝ(2ÁfFßÀ+Þ™ aÌþo™nÒÜtöì5t<; ëuÖþvÍδ†×Ù¤5¸z|šwí’He®—~Ãh!Šºq¢ÏÈ¢«sïµg2¢˜4°tG°ÅëÛTÎénû£S ¼IÇv àüŸôÏ_z>´ÿ@wæŠû‚¾|͹èÖ:Ë<»í—_Ä¢ð_M±œäÓc/¦¸­Êæúßï²è ¹ýa.vÛÛ^LÚ‚©¹_îÚï€l šÕsîßöý}Û)n&<ç¾-Ǿ̔¢÷YéÛºé=½?IÑ *з¬j3'<çQšO²uXÞy^Hgûçð…Çgˆ2u\2Tž‡ÆÝ©ÀDÂ:Ã9Ñà§Þ´%DqÝ4‚b:¢”6>b²渭OÖó+-Nÿd=®XtŸµ¿æuÑ\9^… M=RT@ñ1è¸wÿÅ*”~»¿+i€î bó3nÈšÿ^f˦ Üo/o$ŸÌ»*}Ûûè ÝÃI3ìÀ›A¾¥tUçù³ØqCm†×ó²þ¾{îÝØ¸š§M¨aV£s«Ñ @µ+îjlÛ°vX @u ÕÛ¹…vî4‚dÕlWghwß{ÿ­ŸpfuìÜ´¶hf—ö›å«BÐtïH~èUXý÷[#ÀŽé]}¤kxpš>â ë\QYƒÂ_^Hg¬õ?=Ààäôý½ã—vR¿e¸iƒ:rMNN_±¡-XÎq¯iOèñ1M£8K/ã#&cL=&--éšÎðéÓNzµüù‹bïZÊb°ü¥©ôo>r­ß¯1^‹ ÷y[•Ü=°¼:m°/öÛy^˽JtÉÖ X;Á yå- ÑÚ5ÒéÝK!mÑÝo»ÒÙw^ÛBÏŠéÚLnÛm[Œ¶{ðÖqç½~àa‚OÛÖÒ¤®§¡)?#{çþ×qϪ”(#€í¢uèÕºR½ʾ“€û¡ì»n?¬]»ž·÷+QN°oø» ¼Ë~õYûcÌ6-Á5CûaÇ’Mý.ôƒ¬8v!k€ÕØ.¬ÕÙ¶nZ‚Hœ ó8‡¥;oÁ?P¿óœñQ  yûWØo>‘écªúÓ¦þ)§ìj=V.rþ= é=×–ÀôNTo°¥ÛÍŸÜ~ÙOC ˆíÔú^ ¤¢ Pjnš‘#8…úy D¹m²¾‰Dpm÷Û&ºéðrõbWŽw©lwvÞ»ÉtƒÈSø˜Îؼú˜AõÎÀ,)|ÞŽh¼1ºÇ—Qç={öà™=èÐrÄ<€º?jaw+QÇîáªݱ=49-©Ìk/…n {:èÚƒ“ÓΪïé2-óžlWrÌ¿çdY¶åª§R#8Ëô0ÿ‰½ ŠLìýþêd¹Ù¶AHBåûiŠÛ‚ûoåýì^q¢нz´û“š0üâ9˜¥»o}˜ ž0h÷vhç`Þº¾ÎR8gAkï!C9_æ´{/äÞÊú& ¦üÿÛf' ßSs2Mç„óœDsvîg€^ñÝ Ðì·™N¦él9&ð§ÊÞÑ_‘Ùëv׿ á…SsyÕ ÆzÊù¿/byÕÉ=«¿Wun!ŠïÕÎåÚ3ñõ€ëµg20Í ÐÛh+hஇ`n¾®ÓÃ_»'E0§åG!‰È þz¨W²õ^xÿS¼¸³ƒž† )EMݳüjøœö8Öõý§Oí3­äº{ÌÊt8@Æl%G‡Ö«É´|}—%ÏßÎËb À³ZÁÿ¼¹•©»÷‹T>Ãð*?Ä€­` Š×Z)Ühù2U…CJçë7 çtŸD=Ñãsž&TÉg?~¹Õ…J„í«:ƒ¡SÉ蹬 .ɽgº£Ïªâºï>¿©›…×?½Êc]nÞj$´]W³ÍÞîâj*¹°p5&(îoúçËŒ¬æ _u5*•œ#]¢iöaip2suç³ñWwñM¶Rµ¶Î×éŠÉQðgõ2ºK‰zwž¿~_áÀŸuرÆß×€®îìÈ/EUÈzËwövM@@×ýY€€n辆ÝYÀ5\z†·{Æ©óÁõ”`@ís$( Î僯8[ÒŸ ÛÒïTEýàÿY¼¼-½UÃî—„håS#ß“8 É5Ñé¤áYÍž¥äÏ”åÙ2„+«7õLìVUS çŶ ¬žÞ(wÜ{>€³±c¿ÊŒ†Ó¬¨ø¾)­~Ÿ,PW²+ƒ{©ßi4Ð<ÇVbTo¶9Ë+Je&ÞA< º^Çhàôßdђω¬žý‡´\ 4$(š£ÿf1à´àb+‰¹FÛ È3a[ÑÒ“äë4Vñ9óãú¼å+«>‰a&ƒ½?F…÷tß СU`[ÈŸå G¡ qH¨Ÿ\ÒV㯯Ò?仳ñ¿·ã—ºv|ÞÊZŸž3ËIí]g8 ×îfp^^¸•ú¡„l¥}¨\[Ç)g¯;aÐÎ0œ”èY P%@¶¢œÞXR"’s³ÞË?m8fæ”a< íc’ ¡œ‚²\àa1Ù²…õ5ñY Ðå¦ι᭔£”Þð)WÏËu_¦³„\¯˜q@íJP»Ä™â LlnŽãÔæ[´y'5¶R´†ßÇ|'&zlëòš€ÝŠJî±Þ èõSrá\BÖ³( 6|¹ÛjVòOk„ ä÷£àl©™_hõuƧ°v+ßÚŒ­¬õýÉ— §»ºãVŽãdà€Þ¡,½1OjùÉ'´^ïn6]Ùì-«æÉôÞ¡y ùVTh†û•/4û:õƒëa3ì×ôòV™s½0Xpvæ³@ ÍMeQš¡þ­$–U. ª÷Ëê'm{”õ92ЛKÈŠT:µ•ù)Sées@»67êEc€~yT•ÄÏ/Û>±Hy è>¦ÍO#)zÙg –gŸµ>¦šßJÒߥd›j¥`~è1%y¹I²Ò ±|ÒøÀ[¶Â²‘+ÿ'6+:JP^ùŠh:µT²«’°ð…QàZÃT3þ[èåûÖÅu Väú{ô+Œ·“@ žVÚJ&ºJÁ w¸@·/†¯PÙŠ–ÞÒ´ \ U—â¦Ïe*%–6¶¥ŠjÏØVà€zÉÖVJÿ ¬¥Rqï†^ª1J J¥þoe’ÚÊ>F% Ni¬¥v[Sß)£×æl¥ÌOW,ÀÜ¡ ,Ðéq¾À}µIqÃæ¥4²zª£ê¥“Õ³]€š×ß l φl¥~}©ÒÉê=¯+w|H"Ûp ³Ä·°ˆŸôÍ1ý­¹)Üèí Ê3TÌ·•g0ð”¡' ¹EX2"õñÔ\º s£Í fê_¾µš= ¸½bÎ^{Mr¶‡"èõœk2Øž¹‹*2C²z‰ÐÝw'ÈNhø9A·•üAÅlå³\| …³Bu=ôV:Ù›â OŠïu47Á8Ya‚Þ]-¤³ïkÆý7³z+c—|úYô³&M_y|}» èhµP˜ôø5k,p ^>а’¿™´ ôõ n^¶V§2ô¤€Ao¯€Aã®ôf\šÚœÑÖ'oÎcà9UqAE/ÚŠ¡j¥‘:÷e¨Vjúû´þÛ„rÖ ‚zu  w¡B}Ú똚>F¡2 ,ß;  ^šº…A€•}]-¹->I›™è©åÿÛ àþÇD(ï5¤ûïú)~ßJûNU¸@žÞÊ ÊíÔîõ.”q¶ÎŸz¼­äï#MŠ3<Zñý_Od Ë ÝJÔ%¥×1ƒôžJ 4—eõ½¸|ßÞ2 g«Š z­Bâ^^e… ú2[‹5¤Éýi¹&o)úš÷^‹ñ†X²=5´¦µÇVeQ¡3¤UÞ)õCÉÙʧTr ½¼Kz·2¨È¢©7À ÝÎ|T,G¡RŽØ’KŽù-]<¢•óE›¯–~ Yc,ˆ¥P”Ôÿi9ßÚÝÙš– Æz|LþŽ)-_DÊ’¢UÔWéùí‡4Ø Ó)°'îN‡5Ø ¦=õÔ{m…®XˆUÔE^[ w¹­àÙsjðîdHÈÙ—Ôž]T%ªGYŸŽÞ ƒÞüAƒÚU’´•J¸A–®Á…»A}«”ûÔ[Xlañaø¾Àî°Ô„…»Ï­¡€Ê¦-ØêRÚ½·…N®²ø*ãkcp ;éÒ€½Z[§õË”6Ø &Ón%¿íG 6¨A:[håc»šÜ­qÙÊàÓéÿÂŽòÁúô6œØcoãgg‡­ŽU­Tú½úx ã5ð@7 oƒÆïx¤Ÿ=úzÔC ȳTmºPcXQN[ocš!P}Œ*î¯2èŒÙ÷R‰’zÚt¡†Î‚äRÚ­hµ‰úCÂM{´eßöñYàZöBèM7·õ7ßtÀ#0G‘|«E%*M·?d¶màúãJín¥àç4Ÿ%R"° ªnÓÝȾ?.Ô>F«¨õsÄ‹s»ìù€<ÞLÓ­0ŸH4ÔEõ„IOèš•ñáne2 3>ôK˜õ uÿ•¿y“h ó¨· vYiä¯Rz¦éÛ9ê⃾™ã3n+ƒ¤w[h÷ÎóôB&CKA·R¾qc/ÎkÓW{Á²ÓÕ‹–Ocww3-á‹0ÜõâåÓC½²„Î#î#dIÉ„ÎVbnNõë[Ñòi½¿ú×?cmTkZ¶"H¢žªÂ¸ï¢ÆR˜Ý/%ޏ«è:a½á×ÞFßXg¢A·Òc¹…ï %îfÁzpVºM¸; cèêåÓbuoå4|3B¶R¾î] Ô‰¨Þ=¡S}Ø¢ÏÅ%½{‹¾åc´¿•žtØR“„ t;ü0ï¾ø ”Ó‡hXŸ:ƒ&½ƒ½`Žæˆû|¯cë}š‘¨÷Ôå¤[QR±R©Ì¾Ž²>¤‹™”¤ ’<êòÓSzåË´{=ÁòäƒR_F£0ô÷å‚ûaE•Çú„fmߣK_fã6+ÂÝӀЦ ¶ãQã'z„ÚÀŒGeªÓçt¸ I‚¸@ÓçLRÖRdðYˆs„ÏtÉ0/d$¯œN¾ˆrÚ´Î!>¨{oE5ï4Hç?¾òbôÁlÌtŽXj[Iý݆G¦èÞsú÷ßë™·RçÇAP¼/ÎV ëì+ ³0$,–ÐwGq‘mÀ]žYðA¯…Å[6éóÂ5-w+AQª~ƒòÿuðASrÛ*l÷ã¼è¨?$­hç&F¯|ÐKØŠÒt«\ WAé ô}¯võlõh`”|‡Ô‹õ¶¢‚clè|ˆäìùM`@ÃU²ó1/ ?/9ä+LÁ€Ü '0 ë)Ìçg˲­,Š1ÉMl¡~Lbç&[ЙàÝ‹K³•"ã#¡}3STP¿ó™Èëù>gåjN2Ÿ3aÀ¦/" Ãg¶ëC‹˜/Ç¿K9¾lìÒ0¨S‚š|±2ÊÇ'™b‚úëÎL»Ÿr‡fñ&}§Y‡Ùmž…ûnÄ}ôç©Lò|[ù¶ÎYhöZ’vÚž9þΧ8@Ý D@Pûý³þ±¬Çq^PµÒÖ÷óôny¸•I[$6˜Õ%yzêfr†šZA÷ƒ ÇÌØÔÏæòŒî«´OÈÄö{_­Œö{ë/½ObÒ½×4è<†¥.£>»1÷Õ‡ b^ò6gÐ@W¾-¯k‘­þœÄMÂ{kŸv,I ™¶;•Ýï:½U_ç°½%ÍVzŒ@ÇD™ý|]XÑiõ–~•äÖ<ĵ?×V”ÆÖ•',ÄñgAYl5hÐo¯®ÔôÆ­Œþvj'ÿrÎz.\X{–sÑè‹ü´‰õÏÍ=e±WYwk]ìUöØ,Zý}¥ëîN|•ù)š‹¥£¶ÿ+H ûÊMBD‡¯¹ù9×%òeÖ.ɯk $,ÙV¨î OnEæ{=@Pì» öH…•㛯„븕ˆàì5®ÀÁ}¯Üë§}-X 7Ž^ /¶Ëq["9ÂXwàk­l®+öghoí„÷¹½ lh¶Âü ÆhiäX€n²ýÐüéG«xë0л{ÑV‚w_F†x?W ‘¾¶€^Of¸ÆKyÆÅ8û4 (“1XÕQy¤(+éº*À•r«zß]zèªlY6q×VŇuK Ô=vU7ÿr ¨¸$ ¨s +P +¶­B9í¿TÍ ­`mÃÚ}MËÑóWc³Ÿ%t(0ÉÚä7(Е!­€¿½ ÿ ´ûƒƒ-Y‘é èåÞn¥×ï· ÅÖF(³¼“4+P /3´ÿ~—3;܉.ßj ê„ê ô¾öKJ¾òoë´~ Wë’@u™­Ø‰%Ƹ5‰à´2x+-쀚É$›çÕ° è-ÆX@onyMccÔàz°Aî‰É—H U™Ã [Û hNnú‘@Õ9@[™ßXz-Ê3äÇç@ï†ö[ó#þQH#4+ÊeGk+Cģ݂RÙè ‘C8ÂxGC¤‘ÄOK×™R2 Ôéc  Y(úV¢Ò¾éÏñ{ŸIò4˜­¬Ïú¾ñä;=-!1E;ªíî0‡œÙá“T^]w+ ÅçnŸ|ÝI¶*5)jõ< š/>Êx;Ò[Q†¸H¨Z>)¡1M?}Ý0ar^¶;;ä?_eª@[ptãÿG•n[ɰiR’RRÕªwÞ­>¦q£gH‰mÄFÝÊiði¾î®$Tã:yiÍ,låx´Þ­b+Ãi½ôV¼é´•FçÊEJÿù= —V>úV&÷j¾Î¢äM¿¹{c5Ùî©éÖ¥m?|VÔÙkrs+‘ľ §+}¡G‡êäîVæú¶“@€¾òÀ§uûƒ´^B!Ô¾Š¸öj×€ 1ÙʉãR}u I;)leñ’35‰ã†šä¤íç?QÞó*óVɇ‡ösÙƒ¶Ïró¶îOrïÿ³¸M®¯! û¿ê$^ÜJ~‡ [ÐtÄ=¤âfM ËÒu/›ÓWZpí5|nå³^z¤‡Xν,]øg’à=+}RÁ°w+•S,yz¼Qñã ª 0² óïÞ’äú+î)¹¾Œ>– ÿ8ûº• ÇWIôlEkÐ|U$5_f|j»·2)á¢û$ø?ëþÀL&OY­h«f%œŸõg¡ö·c½MÄ=YŠ@ÐÙg}WnEè«ÊK.PcîK.^_B{LÂ)ò•1GïKèÏî{þ¼CY*^c^­ˆœAcO…üõ#_"…ë§¶ü«êW(œ”£| ¶¶ÁœzDªx³Ý/¬Þ ÃZ©îCVÿ6 žßJþ,‚ßJù ²¶R™v\]JÃÅ||–öø™>S1«„•¿í´;”£' ýuLüÕ†”B¹E’ÀU°¢©3g')]ÜU´aYöY®IâÞƒö¯p`+¯( gw2¿O’m B 6ÒE¹ñe)°ÔŸ“‰‘be}xDã¿!ÿS›¼AouÐuÍ8Oo¥}Ê·"dLõu(;Îú[¬É½?³n#-RØ÷½­ëÈZ)øË2Îënç°¬Ð¨Ô —(W˜˜:ýïT†ýÎ?]µ!½yãòg[/¥¦£/ù3ûÑb^n+CíÌwW!RdF¶¢­šâÁ³à?ÃN.±­xiI‘Ry“Иí¾LÿÀJ¶2É$+«}1èOÝo%ÕQÍÙP±R>ô½­4òuë*ëûX™Š ù2 ø¶¢¦OCÉEŒt…ÏlèV¡µ‰Ï…‚ 탳•húzrqÓ×/ÿéå¼[™Ÿ)Ê¡ý‰!rõÎVôŽ\I`ˆe±1qCsŲ!ÉÕ Ä{ åH ¹:Ó›¨ÎÐê÷Šÿã0"ÃÿtâVò§ k+§õǦÔRp2ñ¥3ÐÇͤy©¡ï=Ur=¥|ó#w#ñŠsw9’¡‹crw5Rñ!§í{µìVº‚Ü)e¼Wooa~*þGýóvVèŸ×{ÈÁ*eàŸ/+ øçý —þÙ­¨Ês®cœEÿÔìÖÈ“2{×y2=áÐ-O§/ºèÄÆøç¸/ø§7lÛʨŸX.Cÿœ¾óú,èüçëMüâ?·R¾nT^Þ£¬ù,m=Ý}e!½×¢=ÊÔüÄÿ´SYàz©ÈV’¬]–’Y,^$h/‡éËÔ§b+ ¯Î'üéôåŽø×ü§‡È ç­$Šzé¬ú§m]èu­—¶Ðó'-¢ªîv+“Z¾Ëžaú,äú§çv¶ò5èþA[‘Öì©i=SþY3ºíÒ4}Ìguê(B€ÚÆ—âê { 0Tž§K)Ø:}…‚3{o^¼«•/ÓY?V}+|Ùîs”ÈÆ_(ðŒƒÜŠìîW©& bÉ PÏìlåk‹@aJ0@w’À÷Ž…s¬µÚÂjŸ!²@õÚñ­ˆª&Û~Ö×n…„[ê‰Ä­œ4v²™(€zÀ.i åã•€î~·¢¥%È‘;,Y9M£lE%ÆútÝÕõ8Û%øŸw>}+âÙëÁƒÿ¹&X»2\eŒŸTeÓ-èõŠŠ ©Êéïªï®!€@3m!ãÛë%Ëî;wP¦‹ë»/Ó¨9ÕÏ™DrŽN þ¿¿þ¿QÖGÁ±cø-‹Uôûpö絇ö§£ôúü,-ÙJ¤1}Ò |ÅôVàŸ¦8leQ ST“öfL¯âÿ0M¶|]üËK·¢å¢X›zÙŸKÂTÖk¼ÉL[)3ßDv—ib: nÅÛ’á'·r7r°R©èV³(žÕLT–‘}áÁšIšmƒþycÏ&ïßÓíŽÓJþºZMôOap¶Ò>\«sïK–_e][QaFõeÍ ?¤µß`®5í8õw°¡[!+¾JÃA(>«Sxº|Ý¡ÕdC 9€v*!p[à?ï4\ëž—`ðoú•½Ã&ò›“|­{`_UJ'A¯›ƒÿ´{Øú˜ãVÿɨ؆7©dTlà?oú«ÿ¼>Yÿé{¶ÒË·-ýMôŸöºð‡d0hÓ-á@ƒÿYЬxÿS‹†‡6K›³æ÷Ú —¶v¹¢ ügËî¯à?«ïsüÙ^4T5ØŸ;èÏ:üö€ÿäÇöøO~ç ¹¹kBÿ)ÙýúÏN¨J8m+6‘À?sÑ+ïÿ“»2üÏ.–p<Ú\•í€?ÓÔÐЖG溂KK½°þL|éø³$õæ(M½ð¨.µÏÎ@ŠZ~þY½ó(/ÐPMJÆuðŸi¨gv@ùÑ+î€R“ãÔá¦)³Õá–Gý®ÃÿÜÓ(NN/-yügÎ 5zà?÷kÆËíÿL]}¾Ãÿ©Ù_ðÛë$ðŸ¥ú½ÃÿÙT/ §á§¥\aúçûˆÓî³[VþSª:]þ™²?9ôÏ´üóÀæ$ï¾cõK¢3t蟯ßôÏÒü1ñÿK“áí rq3ý“‹FÖÎ0«zj'ÈÉm0YöOnš¢é ßr÷ÀþÙQ´„ãÐæ©¨ÃÿÌM¾ãý·ª¨ãýç¡¨Ç P†Âÿ³< ;Îi/å´ü²ÜF ÿä,{Ù^}ç?W% :üŸà¾•*a>ñjp¦'þ³i™@nÈ0Á–©xebósRÄ:þ\ó=ƒÿyã­ ôz&ÿ߸1ñÿKR¥ËìN ­)Îøÿ÷»LÀ?uÈÌ䪯3ø Å×9.m²l¨Ø¸cÂÿl¶˜þçκJ s3´MðŸUí|Bÿlî?úgjòO{ÝyR“¥oüÓFcsX¬ ú§:ØŸM»šlå éMlùgPÌùýY“ÛèϮͶ¢ML¸.¸‘Po{ ðgþp€?½•ÇV´»ºÞ8cÀhš€?3›€¼YØV xè{¹ï¹•p3Ξ¶Ÿç^rw¾¯ÆïC¢áW%äg ?›Çµ ®±_ÉŽ3[»"ê û³.™„ØŸýôj:ŒÛ4d¹É³ƒ?¼}ìOS6;,ûâß×iöUIÒ õçõ PÚ#ŸngfÏsÞ/ôÏæôÉÿy‹ƒ&¸&–p¼ÙÖÝ@¡öäþ³V¶Ä3Ô[ï¶5ÁþìUƒù„úSÕÐO¨?=½NŠvŸƒ_§|‹ ö§‰'´•“Îs¡Ã„ýY«_öç-Çš½=꺠?_ær9—=­œv߆ò êO÷¤Í„úóQÎP=°-¨?·ù-¨?̓õýY§ú÷ôÖ´©ØV¾s¹ ìO³ý\ ?»0ô[úK·’·0)WÁñ…èÏÞ”¯]òü§Âîú§òKèO-›ÛJ$ôÒë^Qiÿ¼îµ0vø ôç qèÏöÈY àî‹_°J•'°@Vµþù³¹©,œÿûA]ê ôgm¾9Îm¾9οs[ ôOËþ6Œ=ùƒâüßèýY“¦aèŸêñcú³Mñ- pµj~gþÜõGN$—[?︴pþ_¿†¡ ÞvùóöµÎÿM£,œÿ›KX°?¯¹ ²‘KοíÅ ðÏ+ôüs<}_àŸÕ¡æ‚ûÓä‘/ØŸÍ!Äjvi‰qìÏæHsáûï½È-àeª­we³±Ï ögŠiWPöu«/sB¹Òe˜–¿8‘»Àþ\ou×ý;±Ýýy³z ôgkJ®/,vì¾@ÞLêý©¯÷ÓÞÿ|Ê©×ï­:¾Y 7ñ¿ ÿ$çÞÖ´?K$²g÷Sô}€o/ìŸîÀ$*qÐÏWÇúY“j%¼·]#t• ”‘~ýLóuV#ÅÓ|L't·jV&Y4ÜÁý'¬Ø|OM„-ÞJ&n8n+Ç>œ­­Ôòþn[iÜ(‚•­ôõ«Ìü~¦­DÃï¶ù@€óÄÈV"–+ C[ɲ?>«`\º•–ßmí($xÂ/ÚJÌO \œ­LRd=I‰¦_|¯À~–Ž9Å|*Sã¯J8‘\ªnmp?5,l¡êýN+ã=Pl¥ÿ»³-ûïã”çßÊd +Kˆ ÆbìÛYÙD+æ¿×ìÚVöeÓòGúYÃÚV¢Ýç¿.á4ûÔR·2ÔÈ}݉Íåe‚üôµ•ÓêS{)ëóø¬RÞÞÅV*¿F ßÿsrÙgM’HYŸ`o>8ÿyè9!~–B>w+§ÕÇKB9­þ™îÞ0?S%¿¼•Î4íô1§Ù¿9ÐÏœÝQ?Ɉ}ƒ‡YÄÕ¤œ\Þ«Iàþça+¨=ŒP[id‰–Ï:ƒ@êÄ/[9þl½ßPV–p§ó¼)Ñò5_°•Ì0ë“b^â6Q Ÿù±Y ègªdŠ·“rÊ»å|ñÇ/èç“tLÂý¿4è¸JYJÙ‚(Ga7bÚJU—ƒøt+Ñø}5ýÌ6 þ[’—²ïp|ÙÇ­$öóŽ ì'ö*AÿñÜÆV?åYRŽï“”7ÞÿX9ºóþ¿p&BŽHÎódGYߟ›ñd'¹å­”Ï<ÙV*³ãµKéŸÀò(Ìÿ&+šR÷…H‡ÿ¹ý0fÕNC§ÿ$xo Y‚ùé¹Ü­ìËDE8žì£ Ö­œ–ÿ$2‰[‰–Ÿ™!ÜJÌJØBîÀ¸ã©KÉÔè}òóô’*¥’¤¾g5¬ñò•ÿóÈ­;feE¿>ka^WnÌÊ |¶­ÄµÒê[9Þlê~нì@‚ù†¥çokÒq ÌÏ;H¦`~¾¼óÓYÒ­ä8¤$ ýc`ÌÏ,ü”äèE½Ké¸7ÉÊ`Xǘ%ƒd§#hG)¸RiØ¥µpz@+n=ƒdF'ÊÞJÌL,ýÙ0¾ØôôóÖt¨Ÿ7{œ¥ö/]eý{M«o‘>“^ÇjXÁMJrÿ5p*[þ½f¢Ž0þ݉ˆ3ãÝUýÇ3S ?'FÃô¦Eã×ÔÞV"©Wlz!¶Ç¦7ÈŸùvrПÎáoå´ýë'F‚öøM€þ¬œÅé;3z‘ñÿ»*©Î\ëÉà¨êíøâÿNjq=ãþ·Bâe+Ç›õ¶¹ŒY'‹s’g1’¯sÆuüóØÏ›mÃSŠí·’™0ÂÜe|ÿ¶ägƒæh ƒþ¬* 8&?ý{%ÏDU¡Ø— H“k§:†ä ý'ãû;ÙJ-Ù+9BÅÏ+·º•V¿oÓ]š ý³?f2ôO÷º üÓ3¬ÇÉ'™„•Ê…Y¹¬q'3 œ^ñý=æÎ3uŸ¥¶¯_¨ 7¤NíëSUÚþ}7Õ´€Ü¤0©Pü7¾ÝçD:{Ê€çJÓW6“‰é×¾<[9œé]Û% Š}òëk$i?C`€ö ehØ“¢gÊ ¿ÎjŸYM NÊsø:ǧíÅ¿¹Ñöµ¤nÆÆÃɬ“Ñf ÛÖ¿Wz‘ˆâsÕi¥}íVP»/‚AàÕŽ@½^Ä`v¢ùçM+³z’i3šµ^8M{Ÿd0PøŽqY¢á/5s †êŸH0‡ÑŸÉÓ»SâÊçéÊ µ›©¹ ½á‰S&x+dǦ¯Ò™É뾓²³ ‘1<J_¨“€GÑ"ÊrP€š0ñûZª¹•Èf/7ëõ³ÃVŽSûúR=3!YÊJŸ]²ÙšÂÀ;«w÷ôã}(KŸ¤jÎyÉPÏ— o꺕Ê¢åç×Ík¸1ó% »Bš—Q`€zo¡3ƒMY0¶¬`ø½|øTžzcq9O k«ù%™Ó|É .¬Gþ6´6â(ü™ èvˆ h(½~¼ V6bJ޵&ª[>Kô“EÒÊ«­,~¾y)@pµèt+"†]%³à‡ÎW`€züɲý«w/€W°Î\o§h—õ¿!a2‹:%ˆ ¡«ˆª Žëõ{HÞ*¢ †CN€Š”Î'§›—Êb-’;Ñ<ë ð+ P­q8aF<Þ À¼ß PW^T½ûunå žD;Å;#úg³‚Ðô÷ é×ôΘ‘l<&Fo¢ãÓª&âóó:UyvŒ þíŠJŒžj?Ó”d©õu¼ Édì™N˜a±]Q´~~ŸÎb,è…ÌØV:Q}lËð`*8o6x”õù‘Ÿ;¯¹ø:­~‘hFç˜áë0bÐ*8 ¡ES”7ÝR¦_«4Oò²ý{-ˆ:…t[š+ÐÛac^¤^BØ™à {2ô÷d é‚ È ö4ÈÃJã–¤$0l¤*4 ¯ø ×:óS&ÅbÊÞ¬0ºg_x`ïî­&˪’ÏZKpÅk1=iXÐz².¥D;ÖC ôRÙ¶Ò¸ÓôIÕEŒÿ•¡ « `+s~›IS¼ª`@Z±wj:p=ôj€¬ø¨õ‚Ÿ“¢›q QU­¬ ¦äL ×·é1ÇUû+(ÐëUTb€W‹%˜ªs ~Ç•¡ ÛÖVb3\N-ta¸(Rb©¥É)Psá–ß°`@ZO{r,,Ç©"ÞÞÍ `L©à€îx[A^¯L·$€׻tc*\ñ·" ¯ËÔ Wùí Ô@æšlÿº–B8 yQaYïžH§2hÔ’ð5½Ãï½%Ââòåëv T’íP<}Öĺð>?«CÏú‡ƒ$Ã@ H¡N…ÚÖÅêén³&è5†Ë;“ +Z@úøÊ€ÛCËW¥ ?^å‘gb»KãkôÙ¶( ^Ea×ÛÒµÇäZl4<²Fò«Þ (}8ï‚§j°@¯÷×ÒÏF&Är¯å„QõöZLÝæÛmkÉß2ù˜(0³Mjw KµÌ’C7Ç–ÿ¾ãs”xœgÀb6X ^$¹•–ß VžwL'ª0륿RØþ§ZqËÏ´gJˆj{wïôNSD÷Ÿ7X@.ÿ!­vÂ|}†¢j{.í£þ³W÷÷Þ €Îò:D( ìQdêÐVš EÊiû]<ŽSÃÊŠæî³fù¶›ê=*I“48 Þ8÷¤Ò¿wÝ Ýx¤5ÿý¾õ¶ŽÇ[cO‡ÛÑ„²m:tlØýóEÒ,\²$%³Î·£uÇsø-H ³¸[‰—õ%õÓ¾ÞŽ@ H#qðb«œ|H¼­u…ññT0 ;´6‘@íß´áÍY§¯3èõÝÊÄÃ&ÇÐ. 7£:–„L#HV ‡.¡²|·£‰j‡¡)H¯;aª/³H «™Pà,[‡÷ßµ8èÜù£íY‰4š` ÷Îb9¦jõ®†[PÓÏ>)š¾_^—÷o÷¡‹ çwÕ¡š{ÊV¿o¸‹*6ÖVb—õ,ƒØpèâRleò{˜–ïwš&ûÒÁ.mÃu*ƒ?¼šH¿ˆdRëeªBu2+ËÇt-ÄOR´Ö܇Ìù?zöþ¬tÖŽÿoê÷V2O•­”¯éÙŪÍ×iŸ²f2ȯ[2ˆïÜT´ø‹Š  k ©rÁ©µ£Ô çºp nq]`8±¶ûTjãªSTNn;®áe7xÉÍJš ç¬ í³Ñ]ŽÂpÐÇv+ˇœ`âØŸ 5Ya+Ñ´v€Zå¶(ÖƒDö1[l40¤( Ã…Ùë‚Sd_x¶o»€w¨.*}½0xü{²"ÑáP–í_øÙ­´ö†2¶Uƒþ¶0vª‰€Î¦5z1]P {Ÿ$´½©> ¸×ï t}§è [R”ʨ¾N íÚë¸Z´k¾8Po/OÎìó-Á^'¶Ã…»ù«4Z'yGrn;Y™éÓχ¸ áŸ)›ñéj#"á¼ú 4œöˆHüýq‘€¡C<òÛ7â‚6?hpAö2þ÷u *ØÒ™ÁÁÓ™>¦à, BÜûœþ 9F¹»´v)¤ ¢™ºÚ¨Þâ!IHóÛ ®×5n$@°=ªZ÷IæÈXý3X aì錋e‚N¥å€ös8¶H¿†±à-4œµ>…lÂv§çET+ —êþAAqŽF`^-¿_2b—Rð=ð‡¨ Õí³rO±Ã€ zƒ’Ñ#Ú碂ŠÏüÜ{a0\£8¾-Õ¨¿ÎjÜ ƒ7 ‚^×lh¸á |ÛGU‚cÜÌ6×… zÓJ(è0âFQ®v5™ýk?í8  ïv¨ßÖÏpà¼×€ tscýìÛ„qüô‡ETçw€2¾˜¡õe†ûðv&Çò<]õY ?‡lÉgdÓVQ/¿p‚µ×0Áy?ÆõŸ“Ö—8û¶ÃÇL|*œ¬hŸowcÔ°4šÕ¶wþ“ÇÆ@NÈ w.cB^€Û\‰²›T³vÉW¿óe“‹âUÌì†Ï°0³í˜ÜëÇip€>³')²Á¿÷UŒ2ÁÝf5y¼±JßCÑneØÐYØáAŽúÔÀ ,èÍ•NaA)›…¬¶½… è*P¿×ÔNøÁw¿¶º ãùž¸š`A=øM° ×w™PºëÐ&T ›t˜Á=Û/) OeÞ`ø¬ò‰²fûu¦»ò0ÐuÒb”{m‚wÚKbcK€=ƒ Èë]Ù$äó­º÷ècâñáÓæõn&zÜxú`ó…'†W·—ÉœìÔ `÷gïñsQ±F³Rqðˆ&X ór¡«„1ÞætBz½˜ ¯¯-&¨¥ÄäïœÈ„äìäÔ9›i$hÑßòýõdþ÷ä ‚²ÓòqâÚgtšà€–ÝĹ´OCåÄÒß9Ái¿_–—¯ê¼§÷"ð¯—8xàóéãRŽþ=`,A“OŠ&¯1xÉë·—ÀÂÓœ›éícg<Ð6_ óL¼š• 6Æh/(p7\°€nxY¹÷²’[üòYáÇÚXð@Írù¤·7²àÞ)ŒôÆ е+ Ü­PZâ:S´‚tÅ‚tS+3/×ýàÞé¨ È[Áµüü@x 7óŠ3ÚW©ÔxÑ$h8Ã…!3¾“o èùXð€zRd¾à²z¸ççW/€@k(Q°ª¯ÍgÕOu@ìRïVêŸëkr!6f:)×á _6Âñ£½…Ï«)‘#›$Þ=NÙÐ=~ í›àYЀ®s´  ùO 6œ÷Ÿ!ÍôùœÐ€î\ñºób£>O9®þúf×·ùˆÒ¸èM_x~;Qð@_Õ‹ 4œ÷);» 0u©N$¨…ßã¤5ÄP›ç}AUØ´†''°çK0ÐûµF&%Ód@ o,rvø÷Ž:WÀ@ïf ÇÙ'´ÂÝ\aõ_^Ê‚zë1^ÿ­âXxýÓO èV&,8pSï3áÿrt0 Ï®õÝo÷¢5[æKh[‡ÜÿûêÑ£û³Çy½Ìå­Du†ZÃÙ]„o.ÌÉxæ·±>ŠJã|Lìk¥½INƒ#š\¾ûÂJœ ¨'Üý­$œèÇMZa¾ërš}¤&Q¾DóYªL KÌ&½×Ï&¨[}¦-Ö»€¿ŠP³”Óì» =gkßôöðN•&Cí¡†ØÁdú:Çj>f2ß§•õ¶ßìÓûJ±±1Ä+mΦ#õnD¿•éÊú÷±‚z·2>Øÿü¶²ggCšþXR41§¯Å0ànv²Ÿ€‡IœzéàggìüýA½ÿ»+¼¶é` â•»>†›¼yãÊç"÷1!‚z¢‹m¤^¡ìV `ÉÇTŠ R’ÒxðÇǰÒ!ùVeúyAÒ]jV›MÍÕ*%\=V´§ÉœV¸U/Rú÷ wï×:ºæU+±W™@ÖìTÙkÿùÝ¥8¶±«w‘-ÔOéÙÙ}ºÿ»~þ!{“ÌíVƧêíl_þ6vìŸöòÐØ!ê5ÂÇnÅŸO0Ü3Ε\Š2Ý'iŸ²|­°²>“õ;¦÷gèO6èÓŸÊZ¨W`ÿU ¶…¨6Vȼ•ïe[Gâ„ò4xu `@SáÂ{ì\L«¿òŽ[)˜øÇŠöçŽÑe+D)ö)uÔVÆ·&h@®d¹Þªô£hžvHQ±ýjR”•Å $8 ždÚ é‚ÇÖŒDñ…º'Æù!à€Úã88ÐðÓ’yôÇJ¡0ƒžŽï¿·¢Èú;œÍ,leÐÝLR w×Á­|sØû‚ªÎ(>«[P±}÷9*ÎÈZþ~—âèÝ)8 woõ­,’z÷Ç,ê@ôPU)<rªÞ×›pû]h½í9Ý}MF_§Ïï÷ ç·°ˆfÔÖá€:öÜÊný§ )reÕ(à€z^ùì=–ü|eyþ¾ðøšáôÕõäù߯ß]š4%d&Fõ‹»§ãV—¢âìéËÄnM‹yù­hc‡Ö¤ŒOi+Ú¢“ú­7æîÃÞ¬Žºn'‚ºnC†¤‰ -Ä8Ðôg§dññ5&ó#U‚æ# ?ez&î±’XNÆ º—33˜›”Â<}—Ш…˜VT—T­ŒÏ|ðV"“g'3M§¯4 »ÚV4·,|Í"-«¤ÁVE·jkË»: ŸEAõ!‘—­¾ÊZÇk¯Îï¶¢Ê$|× Ô›3m¥~ݬü\ïÇg÷¶j°ÈÂÌ ¬OBpïµî¿oNì»ÛåÄ~¬'g͸¿—ÿÆ!…†k“|åey9{=°|:+³Åö8ËÊú”(¬ ôú9»Ü˜~—3þÒþ>º  k´2 /£ØÊ SŧüVi1ÚäbGV?¨kÝ·‘œj›¶;•i‘­4ìn¶2ˆ¥qÏ2$ÐëpføoÞÆhåêš$¬~®·Ò>Kù ·P)<À`æÊî4ÚH{+ýë dp@× ÊÕEfÍŠ¶j}ø9Íš¨Ý4'ôðµssQÒ”Pëg|Îrü=r妺髨')¶2é‰Ù¹»égˆ@®mÚJÄqæ3ÃÀº?¸{õ´ºf÷<\õe®ÝôÍ'®~ @ O[¬ h5÷Mh ^2·’½IØ­›Ç‡Ôõ{Lÿdu·2>•[q:›‡˜aKÔé¼EèVp›ÔÔá¹´n+±ÈľizÓ!'‚·2¾6>ÔIü•Á:×´­4Wƒ\Þ¬R?¨S‰[©ók!ƒäí’¶ Ê’†ûk¢ÔžÆWäºÜ­¤ùéâè½näÙ䭤ѲÊÃÚQ§0 0P\%p@Dx(‹Æ‡Á)°@=½¹•üJà€nªn+±S™ŠÝ¶ÒÖg(+\{º-¥ ”äz$úTÚUv½mRÌ×, @ï[/Ù{µ6 ±ÈD“ [éäÃõäÙÕ•É·šX»áë¬òi{-ðYÛ¸Ô_öZàoüTŠWšè^Å[•)îµÀ,ž®¾rx´šMÙJ´~­ ߊ&åšQZªT'³‹•¬9Ï$¥°¶—¡ÔŸ½Ê¶ÒêÇ«,ŸÖAV 䢕­DàÖ¥ÓT:mAåÆúœ Ö!Vºì!–@v1ª· ÖŸ|§(ɰë\`^'· ”èæ(à€^?'p@¯÷ ‘@;½m¥œtÝ£?Éÿ_릳/zb9í¡¼…o™ýVìÎrãà€ÞÁ®”üJ!Êè>©~mqT¦j·­tj| 2´ãô=äìR–’j¿¸þN,@@žŽßŠ*‘ÔÄá€jFçãßË?/ò¶Ž[˜$Í›„Õ¿?Enuw Ü •ДŒ~.~~lhðûí0@KËè·ÍÝI˜~ÿI¢X‘#'Õ Ý  ·²[üø‡”Bñ-}­>Í“¯Óz Äôô ÔÀƒ­Lâæ jXüÓ¹Wr›ôY•㯭„ã?5èWH@Ë©ºš\QÉK®‰4¶6.ßÊ ;ß}ÇeroåðnF  è+ñQ!ÝYˆ ôŽ7 èM~Uœÿë˜VœÿRT×C€u=Í:ßá™~£p€îZú2+5F€ýxÀШuAаÀÓçDÛwf¤†ýÅ èrr¬VoRL#­Á¼4Â7–®²þª…ÝJï|½…A‚¼W·ÃY+9lçÂ* åk¯~¯ÝBùøÕ5@ ÌK às:íƒU®úºÑñ~"Ò8JgH~w§OÒÿpަΠ²æ¾—îÊl{íLÇ­{Z½6b<ÊÅ´U×Äß#ÜØÔÕáíÔ΀€ÞÑ¶ŽŸ]*·R™ž'4­Ã1\õ1C6Õ÷šÐŸµðue¦WK+IOž¤hµt]RjýLmÕéÕÒC‚öÜÍ>dôOøPÁ€Ï7ÔÀ€îŽÙ­$JMôÂÀ€Þ¸¸Â½3[uáËjÕÔVšª¾‡”ÁD¤^#nE«Fi<íùÙoz+i||âø·;Æ7q€´d`+õ³šs+Šâ®2ÚÇçk @½Æm+bgÄ34H ®FÛJŽH‚¢%/.ÑUÀÅÒ”ÆYÅJ§‚VÙÒ­ÊRˆ”q%[vQÍ´Aò*ƒ­dÌjò1å›×jù7—Ýpý?Çôñq£[À@¯×ײÛ?6²•Ït\tMPƒËP ñ!ƒx  ¶¬é;C­"oåŒêeÈ7 @®¡[ è–oÕ \]¯¿VJ \–‡ÓÖ¥dwZ„¨ÙÊiûMËQ·²XÍHÐ@B[â(8þM»Œl%ÖL ¼•LjN¼•Óø]ù²•”‹~Ú‹ Ð^ܺš·(Öuº³L¸4ƃ!àÆV2&Xhîr+-}»'$ k«æÿø­{nâÞK›Nì5H ^´½•LD³|LaÙ&¸½™È6\_O¢¥A½am hweCŸ8®õºþÕ@z×V¢¸þ>Á¼i +*[òIÇ«}ÅÓ»pq}mâ´W«Ž Ô倫]îrN¯[ÉãûjÄÁe½/Ü)c•Ôhð¾°8@²‹Ú §@÷ºßïlR‡:T×w¨p];YûYU°•F(Œ·Ñ^KÕt';T8¯Xaý¨'Ä»@ª+ÝJa¹Ìãc„ÏÀÒöË¢oö`9zÛ%‹¸´ÝG¬¯oßŲûÔ3uÆöÝ:$Ðe/½C]ZÙ¼¥³ïY¸€¾ÓY1š‚ÀPÊxPw¢?u@¦ÓåD—YãI‡äîÒ Nmò«)š’SîÅ´Ü•  %_xÎO޾ƒN(wP =ûîÕyxŽ"ÜÍwÁ@U‹ºÍäøñµu½ìŠgÔ WX½™žÁd^è¶¥vëÌ’”Š[1|VkŸ ™Þ\nŒ©è°@on° ô6÷þm¢˜ýë¿t` 7#Õ;ñÜTr¦Gp*5|Fü†ûÙûÏäDW๜ÞÐÃëé¢ydè‚Þgw'ûpBO7‡:‡âµ4Ð[Fщn8܇¡ISÂ’=ä$…÷Þ„Nõ©ˆÎ¨íw Dø‡]!€ q%M(s~ªø:(Л'ìzõðõ“Ìî‹d6 · …%¾ªŠñî9]µ$¾ÏÀ(4³Ò;ñ?‚ôjw#0  »=°ÿË3iãa0w\>`€Þj<.Ä«¾‘•d)xÀô¥!¨Ã² ÐSIS¤œÂŒ[û2Ýž<4h†a€½5 Ъ/e·*¾¹(|·Ȥƒ5Ý62²³Ø # Ôä¡Ôñ½»HpvõG&‹}ß2 Ðåy’‘ùšœÕ!­ÄÐ0pŸ¢ø‹Þ³¢ÔÆ}/Õ“—Ø3œ Y};uãì¬ûžÉ‡¹Z:Æz‹wG`@—“xö›qGQp™¤4¹SŠ0@Ä>ãb€Š•ï|Ëè¶ (@¦±nE,508 ·@g»îÁh¿åÆ£9œ#79‚êõd[Pi’Z·ào÷cu2zôe=Ð[a0èÔf ·nHøyW €î„ÂèvgIÀ0 ^Å»•ÌrbˆèVߌà€ÞÜÁ€º\¹2­?+ìâ€Våž,8¾·kk]0¦çqHÑ @˱ítëzÆüõ‚ ¡õ·[éߨ1]›„»0à€Þ¢P=¿ Wnå„rk¸À5X`+Z_"‹,ܵ0@_oQ™$ºÚVäÒòëæÅ1öN1¡Uˆ4qþoÇ„¤µñ[h,œœVb}‰c¥ îö…)¨ ' Ð;…2€^ß`&OçèÊâÁÙ+š@@oVg ­¸Ý ^k ä,ÝÄøÖ¹&€Ðˆ[HÌE.’¿©´Ðë¾NLÿ-ü˜@@½hx+ƒd~²"âðÍ¡%ÖdþÍ¥#h1K)Ÿáb&æ\Ø>A­)¿x êÈb tq¡èØCŠ`üzA@=m5ëoqÒd ¸é ô–bÏê¶‹0åþ L²•)¿Ígý4tQ@ïeÒ©­äùmH¢€zÕËl¦{cÿv ¦W¯è-Pœ@@½Jw+ë;[?5ØÇš¢€Ú¶M( w*pBºÃÙ‰ç4|Ìn§6K܉àwv¢¹¤lýø´Š˜' Ðe?~‚ºýpPpÜt# Fîl%œÚáÏ èÕÖ€Á­÷…à ª~È`€¾fЧ@N&Ìé¹¹{Lé߆èÖ)˜»ºŽ¼Õð•Õö—Y pä¶vÜô-G›@_xÎÙ•œËÀ!á\²1„váå è 7& ë­¬‡i ±ÓŽ²Â»ãů‹â/@7›µ. ”¶…sÕÖ«å õ{™õÁ® ô®OZÉûtcRVúû¬Ç> ö‹ORa‘¯Û)Và{®DHwM"¤S‘þÔE üÏ­ü^ù/èÔõKP÷Íý禋 Ð[õ¹Þùו½Ð„!yš¿§-CóY«P¤aç}Š4²ÖA,H ^t¼ÍQèó2x#ç­P©•ýkbé¨|ˆ ô¶Ð%¨ × î66@w½Â è« `E pJÍ}-6Á^1ÜxE ðŠá1À²°JŠáV#ªsµÒb0¸ÏÙœÑî¾pÇRÛo®Õ° j{Æ‹%\wO¼Pß è«SÁµY_`@]f´ î´ãô~‚‡ +ø?'èCÔƒôf¡“ü[ð–Ë} Ð;<,@ F²m¥ãÜ%_g0À%ßK¼˜æcó…ØÑ Ð5ܰrú|Å`pì_‘R¿ Z #è·âŠ{ ßI½%Ãÿ¾®¼Z™¶E@g¯l-ScHʬ`²Eùþdï0%Œÿ² zÐ^°(ªÏ÷MyÒ£$l$ä÷¦£ÐŽe>‚<Úsç£tØçû%/)Z\^}J!¸×Uqý•;?Jg]cñuDz|¯ùFe½6þ§z½>èŸJ-¥°’PVvy™Éò1ïlÜ:ö}úVƒuno5ÉŸÓ U+CúXÂõ¿šÀiP=а1|¼$Þ›mKbè¾Èа/åI@ ÿS’¹WuIÑ"†Ž$ôç”éK ?•Ø8J¥#_96tè¯+úyë‰Q€’ý#¬÷òêÿ(@ý^8Û›¥»$П*x e~¬TÊ”Ú}à$ô§íKú“ôÇQÞg!ð䘎T\i¯·ûó ’Â’=þ…@÷ç(oö(B¡Ü³´x4I8Þllp”ê…Ó   ¨Ž’ÉØa=öbàñéŸ úçó:¤³äKßÜ5' ú§–÷E.Pæ˜f–š`0€n¿O liS3Ú{ùíS¶º”Þ>k‚ÿ© çQVú½×úŒ:©ÿ¥W.æ™ùQÝ üç>Ô·;Ö¦îŒv³"d’Oâ×MßI‘îC‚ûöj[‚ þyß1 BIôÏk†«îÕ‡ Þ%¿É0¡ÌoœÆgè!äüOÿ@@BïeU\UŠ&ªõ!º¶ÖÞEd{õòå-M–Ï2þÓg5’ˆÏÒß”ž£Ì7“ó(«}šJþóÑseðŸGÈããæäç;Kq”†{Œñʦ¼‘üxtgèÎ 5šo¾ÆÇþç¤'ó ”$%¹®ñ*C½Ö5+ˆ…Gèóûû.®ø¤IoÄ©ÍßNžóÝÛJ‚ªîL3ƒö?;J}+EN-æ-gµþì;½£¹(Dí¼ñâ" I.çî1Y“åCJ}Ï–‡ò"páÌ•w[!@—,Y¤)•£|J”þSªsÚz¨±²…²½¾êpŽÞ‘…¥\ï(e ÓŠ¨öÍ7ŸóãFäFË·9ÎÍ“ÍJ¦;[)åã?åf,Êã+7$}½°æê<½Œ`)MöŸÐ èŠFÁ ”R‡#äõšº+ÖœøÀJ ”ù±Î¥z7‡{áU?}¥Ü7¼À½Í³‘Ò¾ï†@¥ÇGi8ŒxÐëUZ Áõx @ Û´DõÀ^ j†ñ(…yûác~¼Ú ôº<¥Ã´·é-]‹n›/¼ÈíL²øzP ×Ò•Ôÿ†•2>IÄ2þÞ…L!ËgL,Ãtïå[M–Ãå*e},%h _U¥h P+€zã¾ ÔcE ¨K Ы L#d–ï<‰/—YÌã*ïuÀß ôެe1¬ºÅ°~[4Ð呵,öÙ‹x vqŠèpv;êóñœjð@]Ôw”L5¨>+•ìÔ£ËÞš|e½p ÚªŒÐ¬‚ÕLëŠ8pSXM.»'›W“yˆÃJ¥ ²&)‘Ôr#+ 8 è²cRÁjBù( ‰nh:°®pà†ÌT È‹G¨åã„ÔL4Ç’Š£ôoøTM2½$'t*,P[È*¨;o ÔUL ÷ºªÀö°ŠÚ4GQ‹+5ŠÏšÄ•ÅÊ =CuzKVaMûʵzAécå4~Õ¥±à¿·zµdX Úê(“É,úbõÚ¹ýook5»­§œR þ¾tÅû¿ùñe+PÇU0èì6 èÎU`@¯·TŃGÉÌŸ¥Ij†›Ú D$QªÍp0a›/¦ûª;¥·/KÈQÃé#ê þÂç£jZ³ hà³Ô0ÿc[™ðø÷óà ×àíw¹|‘ÓÞŸ¤(¸ tŒæöÆÞÐ1å_Zp@÷ÁÞ¶à€î—K®§…Ã?ÚÒÔc úÛWÙù¼QE+8€‡jµ©9´à€Žæ!¢þmŸEjAÚ¯¢XÉéÝZ`@Çp|Ûºgö1|\:O ë?f’al}}§Ðó)ùÅÚgU+iÄÍiZ˜ÿÝ$êr>g³SÚ‚4fõOÎÇ•}ÿ Àíëtßk¦øÀ4ê½ø|‰,×§¾CÃvH »‹ çƒv{$-F€ÑmË[ @ÿkúó4üâ¬äwVSªÇ=ùõtÌæ›h Úþ^|î5eYÚá€î¯Ù}™ýÝ-20@ûEL Û3˶À€î.c¡Ðá«„§L_$,Ø#¯¦`~}¤`íCôkƒôêñ{%0 _ï!  ûÖøË- @Û*t+´O¬g è˜Ýí< cØo–ï4¸ïIkÒ`¹p @߆"@@û{“ën:/'I9#À\²Ô-@@»$+}ƾòiøsÊAnÁÝ÷RÇâ¿:bÀ€vW(>&÷8†Á¯t_uÍIË¿†+pÛLá´Ž•ü¤݃_ó1«ÇsÉ$h7Iµ® ÀíV«ë„ã?êíhÚoCo,@»Ó“ÂmÕÎèAÅ÷™=Ú ù ÐQ=ר:êTäÒÃï Î=üþQ}Àª3Ç=œþQX8x”Ãcá´ýê‘0 Qnë ;\Ð(S_· h+dŠû¡€î‡$~ëAÝ/ {Ùƒ4Jö̓ªW×zÚž¯zZ~uŽ¡gZ~òoa(NÑôü‡3,œ†_\¾Ñ4êÐgì͹•ÎPhõíŸC?Ʀtå²zP@ÇÎJK8þ-û?Ýãz0@÷Ï¥7õ`€Žê Øþþn1 Ö=üýóÝ$0œ¢ö €Žâ ŸèåÇuÀ¯í:C˜„Óà‹ÝãÎÐÚŸ¯ÛãÍazzð?÷[ñÑâm„{à?·VcÀü7;-=ðŸ»`a{à?w/Ö' þçqP³”Ö?}¿34gZ{@GK¯{/¶ÙÑÝ{þž{9 ߺáãcr¢þÕ˽¯/øŸ/›Û;~¬£˜üÏó½%ħt`Ôÿ¹?¦ Dà?÷½‹„ó-‹“Ù}`½<'ßü¶?>iÐñR}VOß&=“­É­zD³oNöwGuÓ‰'ë qÛýcr‘Ð'ž¬‡ÝüÏýYHéôàíÚ­„'›ôàîöèËG¶w9C=8@/w®ýíŒYÊÏgµ о•,î OvtEëýð?wÞEÂiûã}RŒçž7êËž,nÖèñv%œ¶ß<‡´ßD½Â 9Zá™îe;!Fñu [F´ =zòLƒ`4™Â‘ͧúÔ8 í’hDü6”JÝ·JVÏMnuô<ŽDgh$·}ÜŸ!¿©-Cƒ;‘`–ù >'¼~ÏŽ€íßGø8´?ïãËtŽ¡ÃŒ˳# @»#ê2…Æo¿fþs?–lh3%„'[4° î&`¡Q.+Ÿž~8÷Š&FÁóq&zà÷ßø|T‚8wà m«„Šƒ¹$´¯5‚´äò1+ß$œ–_ìòú}©kŽ ¾Læh´ýâöŽÿµÖ«ýÖôÏý&|ÝI¸³|•Óô›ßy'€+Jœl¾¼ó!¯ÿö–àÿ£5¥„{V§á;%:ÿù~H†îŒÒþçöGIgÃÿ|ß ·NY¤1áneèÎC¹ýÏë¬pbuãàη}õI ÿ]V+@çu )§åW§G0@ßmvÒôo e ¸ò@@÷½õ&ú âÇÄŽ]#µˆâìóƙ܃‚:VwG< ±Šè Oöeº¾Ì`È!µ»úù9žW}ÙÌù8ŒcLœmß“3‡‡3( ¯Üß è+S2|ÙGNš Vl2 \w=ðüÆ úÏ>¥HÈ$qø3Ñîe3fÀöw+FîÛ„#‹9˜‰6ï|à öÏ~^ÜË îÉòÞf°?Ï ›¥ßgº÷Ï`ÿ¼òz3Ø?û˜åëÄà ùÌ çžAÿÙíÌ'-Œ;Æs'.ç¦Ì}SÒaÿ ÜKúà úç¾ð½Îiô³Êšÿ¹Ÿ€iömß Ïfþs¿tšâÿùTµñðŸÝO±–øÏ3d»g`ß6çÒ÷òqA'蟧kðžð?÷îN›_Iiômw/ýÐ?¥+˜à?K÷ç þg-î(Áÿœ5ûÂ0ßrVD4€î"«*åTa”&Ïp†ß¿¯ÃÇ®úýþ)U±ú ösI2ƒþg^¯“Î$Dm2qþgI ½fð?7ê‹;ÿ´Ç/8øŸ%kì™@ËP^j­MãÈZ§¬éJJeBÿˆï('yýz½PJs[„úS»Û+ôÏîÁh‚ýÙ)` §cÏÕf)§©f÷°€îÇÖ7 òO¯nZ‘G0¶j£ü³% =s±qõ—‚ÿV–ìöþÙ’Ÿ øç«aÿy½PàŸ; !áL^Öj# ü§f9:ög^ŠTìÏ2äØ.ØŸ{æH™‹n¾Ã‚ý¹+4$œ2 ·àù³»ê{AþlÊ9¬°ÿû÷fßùTaTðù³ú»¬ ÿìAô½@Öì'Ýšì÷ÿ“‹,ÔýYŠbâú3g5ÉèÏúÈÃ_ýœ4¹@6§yV ?gz|+Пi©û.è?¥(å±ðmÿ¾äËœ*Œ§)_°€ÿäî÷•£ £.ÿПyÉ.èŸÏ’ÿ±JÌE—&ƒ¾Š?ÐB‹6A4¶€¦¥9Ã蟙‡ÌËüÓFiÿL÷@ÿ”,Û±ý“³RŒ Þ[éêC ôOÎFèŸ<üP5 1j{]ç4þRäf-€o»²ÑˆwÃ0°W•Æ÷ex^BvÙ—ú3Û/È?¯—Î0P²õú³L¿Š ÿä®lÔ‚üsGŠ]HØ¿ï‘ å¦W öc>VN%F~]?KÒP¶ æê/ðŸRmæû©æGÝü™—ÊðŸ×C€€KÓ7ü™ªü¯ø3WäôŸï•Õü»ÏŠòQR{AÿÉ’ úOz”©YÀ?Ó}tàŸ¯ßôŸÝùîu_ŸxAÿ|ŠFˆ5M¿m>ët€ç>$¸gúBÿLÝO ý3w$@¥úÙ!•©Ñr1¤¢ò¯è^öÔb<ͯögX×ôû3å—pÚI´ÿ£œç˜­œRŒÔh‚[itüêcNû϶³•%>Ãø5‹“ør“`ºoE_WüV®òVêÿÓ0w1,n…Æ?«„Óøíõl%ÿ {’Ø?¥Ð;·rê1v5¡„Óöímå´ýܰJ[9m¿<„™[¡›Õ)á8Bù¾™ðÿ·¡ï7q¨oea`Ž2£oö%åç)þ¹‡ú5¥œ†_á¥/7«ýçj¡¯l%ÜÙâöùó£œVßn»‚ý³sü4¤,%œ çoJ8mêDÅ[88O’ršý.…@_Ò{üã1h+Ç¡m®ÀV¡}ŸuZ} G™ñƒ-„KÛˆ¶rêòôcõs–æ[RÊ2ÈÁ¤‡qàÕ„¾¾àŸ¢Ar+ǧ-‰øj+§áç„ú•3®;lØÊqjÓt#üéÐ(=Ã-_ŸògêÌôo%óÉW‘rœÚÜÜP –Fòx+Lj•ż•Íå„W{”÷ºJ ì¿1=Aÿ9Oj%¹Ǧ-àŸ¹¢¡Ó‡$¯¶($ÙÊqkÓÂ1ßÊiþ{÷H ¿#q™¿Do/ПÇÏÌRrü’Ú$”üýt`Yl¥}ÆÕ­„K{›À²K[ª”ÃOM&eb¹Gãe‚úS‡Ÿ\éx[‰`.‘vÝÊÀnayÔŸ|ŸöçëîîÝa&Ä ög]d¶Rñ¸³¯iŒûÅÁþ”G7ûs.Z[ öçÒõæ(ìÚJŽCþÁñÜãC"°MJÏ$•µ•Î0Ú}Öiü×N$†‚füy¿J†û“«Þëf¼½È´l%B9{Åôg2›âÃÓ³F‚$s—Aæñºòú„{)ùGF}/ðÅ®êò$öÜJ%U¹|Lû$ɶrÜÙân˜“ý*3î…wsx´%ûCþlv”3äOÇh[‰8NÎBÖPÐÔ*2äOm³r”#_}«cÇœLØÊß·^ìé,È?JÚmáø´×ËÈÅ>-f!ƒþ,“J‚­t’ CÂÀÁ.>äø´%É:Ÿ/åüMÊ?¯‘Á¿Ý‘4Cþ¼cb†üéäÑVŽk>àü•e2C€ö£9ÊÕ»ª½R†û£tçN»¯ÝŸê§S¶[© uµ[Á—õ!¼m=Ðϼôþa~ÞQ#Ãy»îe†ùyD†ùùz›ýÉUcXú“=g@oÚiö(ÇÚ1…„Á !Ì0®‡œa~æ)#z+™œÇVä,êïòIkmå4ú×Èí·ÎPZö—cp6v+Çÿ©â¶<=‹£†ù§$7NÈ?í±ÉšÞÌG¿gzv"ûÊš¨>f|fŒ¶ršý^`#aáñ’ãÈ0?ï! ?oôœñýoÀåûO :•EÈøþuù×àû—û­`~¶ÎDH*œ‡ŠÂ0p}ýø§3Ÿ²…Â\IõInû> +Ë[/Úë¤ÈçYŸòóú³EÞ¿»büÓ”þßJ¤³—ZiùYäž•tÝYŸtÜÙ–ÕJò¬\÷eb~b)Z.nó/@?·À\cfùY›š[Ñ à¼Qúy›múY)À­ M˜)Ä'Ù?&[ÕÌÏk` ØŸÖeÎKÁ—µCY`~¾šÜŸ`•Îly^·â¤é[­òq ÐÏí Jˆ™9÷ó³t?7ÌÏ—*g6ù¤þÉÑoeî¾Ì$GI?+`ŠfµÒ~µ3†L’æçuB À·ÇÑÓnÑakëаŸÔIm-_8rUf³€ýÙ³'~~ ÌϜݔàþ¤¤©ÀýñtÏVNãOÍ=îÏuE ÜŸ§¸vb9;ˆ¥ãÏvß äÛ ° äŸçöi°Ÿ÷›CýÌüøõ39)€rW@Z^½êçMUÈ?Ow„üó,9iì§“…Ñ uwrÀ?7†.€<·´•Óüóó:†æß}ïÉFõ½¹¢ˆö3Û=-`?SÓ0Sˆ®ï^ÀÀÝÔÀÿÈzwl[vIÏÿ[±[°Fòl|ÉÔ'·úïÖÌœåÜ{Vì|ÍL@ðã÷s.zC!À£Ëdû½Š£öv11ÜÄóö§+­7Áý¹Yˆ™ìÏ—©Ÿ`Þ ûsƒ£ù(«·(T0'k1e´1ÆMM¹Ý‰Ñ ¿D:ˆ5&B€ÞØ–&¨?šk …ÑÜ–ò“Ôžnc/O™sOmûÓØ´&ÈŸš %Ûþëû£ «PªHCÎÑ„ÿ?£Ø ÿÿõY€|“o9òz÷ëÒýÒÑaÊ&°?Óž°üíÐ ›pÿo»žÿ4É9Íu]'ÛþÌ™@6=ƒ×ƒüÙÙN ?›:ÌDpÓàŸ.`b4¸³Q@×·÷g8 ×ü3ös¥Ð1ä!œÀþ4¥U&àŸ×§™€¾^rÁ?_zþy#ø‰Á`6úÌðÏ›±œ€¾š±cW¾„È÷çu+ 7àþ¨2"”…Ýt«ý.'&ñ1ó1Aý±Ûí&(n—Zòk§Ž™öù €¾ž#ÁœêC€N…t³àŸwŽm‚ù3‡ZÒFH·ÕÍ0XcJq‚ùcC¯fí½¿a§[ë„„mßî«ÎÞ7?0H¦Î#"Ù üç<êC…üñ‡“@óh‹Jä)fÑ?Åž !!oLNÖÄz·P*•áj6俱ºÙ¯Vù+ä÷rL!Û¾‚=Êjø?¦i"{Ê­59Bþç\´ üO™²ðŸætø ´·!ëlÀåÉ øÏû9 П)ß׊úuBp¨ ¸7•b…²ÿ½#-õGuÍ€ÿœ[¿øOqEC©Ö¿iÄ àŸ*ðŸ>PþŠÏOÛ6à?§rJòÏÐ)9°ü­ØŸšÿ4`³ØÐÄÜ’2¿3ä†à¦ì ÔUŒ„²O‚i`ª‚¯xocÓ¸?7Ýb`Þ°ÀÀþ|}Þ †r† `Èy1 7†2*3 …S:èwîÏͶYq^¿üŽÅ ÜÕ#…RJš²0°?o¶ÍÀþ¼µ îÏõg ìÏi4½æU¢¡¼ž!èÊi‚€¡ä‰¹rÚü ./èÑu|¼s–(!§`®%vœÒ˜4RèÊ:Céœ]T¦ý†Ž1ü&6%Pîä›úóNПý}á#-Ï­hèPÉ‘àÆGôçÍL"€Þ^×±ñ½;Пw¦Ò0Ì÷u6—I9ûÛlþ¼ÝäÏ›h2þ®˜Ø@þ¼‰ù3röÊ Òܪûójµ@½©Î¨9ÀŸ¥c­K¾£d4=‡+;ÈŸ7¼uXþ9èÑø£¡ÍAþ¼>Žƒüy³nò§J¥›ƒýƒ ÔRhßî ¥jƒôiös¦·ìÅ{‹¶Á›æ«ù³Ú-?–rP¯ÀŸÕ±Û4W.†ÒKHßqÇ;êE9ðŸFšM(!Äâ"þ½1¤ÜëV‚$¢æÀÚÃì„m¹‹¾æ ÿ¼®3þ0àbŒqÀnæ°X,ïq»'¥ÇÂþçßíàÞ©Ÿ*?†á>ù’^üOãzæ&¦šN2³[ ÑÜüOk4>å a(O ý:øÖX‡@ó¦#œ»«Lø80£ôç4} ?Ã’°î î…ýœvÕ û‰êùø“S9.¥³h¨SHhò³úiJì9œT9À?wÖÂþrƒÀM»{^SqèçTBßý¼ÃŸú9T@å°úÖ92øRjoé¬óstå·…Igp_8Xo7má[©½GÊÀTF×YÕìÏŸ.œ­ÞºÚ8po7 r›©*ߊæàá8˜Ÿv˜Âq0?§üi¯`:ƒKóó– 9˜Ÿ¯_æç˨"˜ª?rDcËöa ¸1ÁzTwߥ L}úÙ¹ '”‰Å/è„ ãÀ}YÊî‘’^À~ªž:äÇ1 ¾€ýìš‘_®ùYÀ~Þ©Þì§Ö´Å`Ñö­ö‡´É£ ;b¾{óýé‹«Á©å<êêòiy¸Ÿ7·¶€kò`W¯aý&«ÀŸ“««ñoÝiùïUj®Z-rüÙ޽ àÏÛ‰ÖøCö -)bÈñýÞÚëFsüM“Šè‹•Ç ’X*²À»3±¿@õþʉš{Z¥ì§iÒvû9eËF€ÛŸ¸Ÿ7…½Àý¼½cMØ2øeËÝ”ì ù¯eÏeà‹[ðv¶–a½ Ë×CñùÅVAànÀ+ÇgtY ~¾š9°Ÿ×´-G8'Wy92÷Ûû©9îêçè/¤Ô{o讽 ¥Z¾NáhŽŠ¦µ~kŽ×’;Û(ЛŠ´ÖßO7]¿%Ç ÈÏá´—k©Ýw)­Éâ>¼ýÅa@e& ÈÏ!G°pQïɵaÅ”rZÀ~¾ Ɇ7Ë•t­>óUU¼€ý¼9€UØOk2À~Þ2ÏuTx '}ûi ×Q‘Æ£ ;,Í©XN% ÔÏ[²ƒúÙ{Ô~”І/P¸÷ÄýõsSƒ€?¯c c £]ÔÏë lP?oÎv?Œåêφ‰jMbm ?§FëÝȹ”‰u~¦ëÐïo:5H í¦bû©[q*_{ùyã’ÝÕòùÈý.;ÜT¾EžÌOﯓŒ•Þ~ÎYöiVÄOS_Þ@~^§t5|¸›^¿¼¸1 ?lEn¿fË6½þûB‡êíá|m ?oĸ1¨êiè5û¹AülG_ÄÏ;4o?¯=ß°ùwfdƒøyËQöTFoè:{}Þ1º2ïSÄ·œ÷RI‚»½áöß ¶]  H¢ñsÛÍaHA±,Ë68³á7°Ÿ7¿ýrà6°Ÿ*5Ú ~¾:†€ùVæw¢dõ³kÆ~»&å¯(ØÛ{.tc¸Û^ª9F€Ë1Gˆn/¶|˜ï½ÁilÙ«Ft{Ÿ”¾ìõö’/{¯³ápÀÙÙ((À²ˆ½•Î;°t&woÔ™ÝÞ] [ܹwp×ÿ܉Ùûá6"8M™îß;pŠ•¿£šßïA§¼á>?ÔûÀ‹UqÃ>(µgÝëöó†ÃûÀ†);µËüÁ~¤±å¢žGkG…×}»4ó–#Ú¥øÏó‡¡hédzÀµ<ª3”ž<rتa>jÍáõóU$|<…-§!„“Ouš– aP8M¹<>2¨ÏS©–ÓP›¤î]`¢ê¸NG»—ßr8(’9Óïc–t¢žŽâ$Í"žâ~æ²T]§R³íuåýY-Ê™Ÿñ ,4Q^ÿ -¶ÝJ®ºŸ»ÒúŽëlÙgÀ—m4 9òÎøûú©g`DWà~&|YùygbW²‡ýáú37t½3‘ÅÐjŽS W}Ü™H橈öÌ?.]8Û¿q϶vLàþ*Œ¦tÕ¡ïÏeø¡dðɪŽc”†)r€–ÌÕÜ ÷6t° #ö)úgî³Ü¨pLL-râ ÓUÇÿ`¨t„!«ÉÎ窵×e\ÎG·ÞÈiÝ“K·ðjèûË$ž¥µ£pxÎÒÄÄ2ñàdž…Aý~»gVkOÁ?Ã:ÀÛ>ÿ|y[gMÌFµ½f7ÎF"[cÇ¡ëÿ>ƺŽý´$ºþªo?EºP€P85Á^uPhy_×A½ý5 EÊåè›ÊÄò _§ÈŸQrÅ—\äÏ\¸¡ë,ÌŽ"æ:猾öó]iÒŸß“7¥³º–×N UŸAo:óß«¤GÛ¸2”É©¦ë°Þ~à˜V.­n„’ø˜sÐAB騈‹ §¢©ìcïRA¸WÑT( Ëñºn^µfÏë¬Z9MÈCú—‚¿S(KMÊ+ÂtÃ,aÛTª6ec¡Ô"Òñºù¦3JAY`Ç«hý jCQ¥Y§2P"¹uÌüÔ††bX£ýðFiÊž¡ç-øÛû¥ èµõ0 -þ¥}RÈ¡t¬VnR&ê¿Ü¤0™Ô©ü4· Wˆ±¡T8Ç D(çCˆéÆ‚6áH†Ò> ØCÁïÜ:d~êB!5à,*Žr´%eaq‘„lüZ§ßŸ¢€¦—K¡¡. KÉÊ©¼ÖT5§2‘Úšºn…sêóàÉ—OåSŽ )|}Kž¿&€@ªå ¥#®15>åq¡LL@w ŽÀ‘ýn¡é뤄cTÎx0ý٨ΠJC—ŸRCËF¥fq\} C¦+BauF×YéyÓ§#Èd¥@š¬’HåÔ§ÚRèÙòÝ€$¯5týPy¯ï‰¿×gaH*XûÀvsÒS¿k 8ä…Òöç¶§Vœ0ÖMá3= "G¼¿"е~í¹+Nt­^TVyU*£7 ÄàéY[ü¶[­ÀÜA(ïféC¥~¥2BqÌ!Þ[-LZwÝê|ò ½ $1”öi]Q€zCH…–¡LXyä(~<º“"øP><¯²õ?ŽTPoè€ÆÑ£4^ךT8 ×·â€Þy®Pè=ºŽ£§¡õ·¸NcWÃXÀ•½¤€¨·‰%¤2m¢ñsr3”1¿¯t²è¾é2†Å”¦Ë8Ü;Ó1 ž‡~ͦ;±@ƒ/ÐPžÄjÈÞ€ªÁJurXp<õò©½4®¡:¿ÿp¤·(¬ÏJ¯PXÑuÒÙïÏÝK}zH±N('ñ•ú("Éy¡ë@Ft[—ÙðŸ+¢Këaq:Íè™8 Η†À‚{^ ¸iüj4 yʽ!¹×ø'«í%d›w»ÏqëÌp …S¡qòÏþYJÍMpj¯w€€:W™†âŸ•¿½ƒ¤¬¤Â¡P¦ÆÑ^ú@céÂC ¯à•ô’$ à}`™ ¡Øú~Çrþ?‡, $б;œÿ¹uá©òlXžÊ‚z tÊ9ììp ë )_Ó;X þ¨1‚jN² ôÎ÷ŽQ@Û½j$†Âò 6À@åUvð€+…Sù¬í ÅQEÁö ezhNïîßwšÁN\¶îÈܳʡ‘:p »éñèþsÆ¢wWµýÒYøœüxÀNn©Ö;`@×%ê`ÀMfñBH¶…ùÓ–VÛsÏøÞÁ‚×Ieÿ¼ŠUþ¬M5œ­â$÷N èí¿‚ÊKï[h×­³4ä`eM)¬0[:iså8Ú pSdH³·½."ÅЦæ\o<Ð6õ©À»Ny!óV¤†Â5Ô:„Ssh´ÀO)”ƒ)R|™"èdËýfi•uÄ.¥ îÃŒ‹…º‘ˆCg-<Î’r€éAŸ—ŠÆ4ˆz§ ‚jIm(K;ùŒA†ÒæßŽa¾éN~>~É*ÒxtÖAÕ9Ò@ FUºf}LÕÛÃ@È è< ž„â˜$Å@?åü{à vJ•h^¸€ ¶ôLÁ Jô S¡%üÒaªNb…÷¯Å¼}£9×!¡%{ Ap¦—ç_,©>ÀšŠøx@š¬ ÅÚ÷UÀù·­ŸU@ h€ cèÃÀùŸ÷qàük¸åHÓŠðÈœ•õ"¹Ú(ˆ@ª í8kêž¸æ§ Äì@PM5†B [ € wV“T“†¡øÏó °G¦P ?ô>Æô6Ì{p¼«ú²)‚¾ŒòQÙ±é:ŒçŽÎÚó3\0Aµè­Ïb‚Þ”ÇĈ ’ÈP:|ÎNa~à-}‚ ¤9ˆ^®Ó¼ B¡3t¤lz?ºòùðôz5ô|ïðñ&° ª쓈8Y¸ZÎ3/•¨O`Aï0õ×­ögE[Ÿ4WÖg—{‹Æ•Ì` ”z¡ŒoSŸSQ÷|3 :táý:æäœ5ÌÙ´)=A½HdÐÎÒ´>Iƒc5[*d9H©­Z52÷—ƒt2“8¸û.ÈRp’¤0r úoÊD¨9u–‰ôtÕmHXŸüòôKHÄVºOò4 L¢Ç 0hä)LŒ¨ì0Ýñs‚ ª²×Téiºpy·ø“PP ¹PЛž[DÜ+|Öš†2Q¬Â†*è½ÏúpªBÙXEÊþŽ@kú$ô^…¦CX­<ÏH;„b¨Y åH%[¡,,«Â´Ù,,¨vT˺§Ù-»\P˜Yô&ÌíÑ¢[^û?â{“™:æÃº ‹n‘z0 ®+nME÷ÝŒxè÷1ÀÄcÖX} ³`Mym´jkjøC'm¤SaŬ)·‡æh]¹=¸ôÖµäÍÚºJ.á°p÷½ƒ *nd(ŽTò½ÎÂ\)\»lPØ) ìо¬è@â ‡Ð1WŠ‘Á€}ÝhÐFüw(•ÔP®Û†V’)U°Ñõm€½†Ë€ó±ÛÔTŸƒ7t»| %%÷mŠÊ fϽÌÂ46rµÊ{‚ܦ2Û°¾4èÇ6¢A¼˜)´Ã@n&¨†.c¨&€I4ðžA'ÂLSMÇdd×€Hƒ › A,oï•*y§­cm0Ð5°g&8裓ìñǺ?€tL—aÍÆÔ1T!ö€%Ö+Rviqlr¤ƒj„5‚à Å0Áw¯ãö1F^œr¿@Ðëw-w. ¶¦ê |P¶-Ö=¿ïR#§mUlèþM}XÁúV»)NÔ¡nèSüJG¹íN¡ã.pVŒhP”†0ñ>ºŠ­oc,.ÐõÜ hPÕY†r@l‚ÏæŠïÑåhPq§Béߌ²?¿^ß@—qß ƒ.]ecöþÑ1‡«)ë+9¸@·"ÁÉ•+à°oXÈ4Má@ƒŽ÷13oº ×Ü>WÁŒ!&Р]×n óÛCg $V7…ùa˜…RéíÎ?¹ääÞyH¡®¨Äë£÷ÏÕK¡4ÿŒ›2Ð `PÍÒúƒòy†h÷p¯œdP9Ô2¨VAuG(cäðÿoõ©ä6z¥ÓÿWnÖ§š>߸@*Ô …o\—YXa^ç“( :4N8¨'tª±zC#·ßb 'T·ª¼¡_ÿŸí\ -xå|gñþ¿¸¡4,°‚«ìÅUyxäÀppdLÜQ­Áí}BY°ïS÷Þ²0H9ø Zˆ ]ÍCåë4:¡7óïÝ<€“ ä¯[9ü¿¦³Öúü†Åu¤ÈÙĺàoñ•ï›ÊhT:ªÿø57‰÷‡ª¯o±î”…À†oÑ^1Òù¾$¼àA…zè~4WñH)*ÖdBׄ{]¹È@w"ÔARìË‚ýß;õéGð$êíþÑŸøYÖ#’ :âôN­‹ÂÔÀ î6‰…q@«ÞBYªõ,Ó&õ¸«ÉŽñº€Áݼö"ˆkCþ±ú«)š›R¼lÔ î&6Ø 7N\M^E×´lP‹P ¬>Má³¾*Ãb$×IÜå¡IYHZ£Ç¯BƒkÒS¢=j m\Ö¥Tñ}gS[`ƒªð:”Êl«ƒ¯¡2 —ÂâûMa¿š¸ ¯¦öxè¡ ‡ ëîá÷/øýÅ>Æ{ dë^_dðï÷t«îÑ×  ·d™¶xØ:¦Ãäò#ôNz/@Ao|¸Õ<ý2-¸ET¹0ÜW ŸÿÈ-×lãàÝ1k¹6xR8½‰iƒÐéX®õÓ]gmTfs0KÅ·ƒ,»ÅÒxÎ>Ƥ¨ÑKá‚[þ‚¥Ý–ŽYœM(tø¯¥ÝØÔ@½©Ø{=± ÐëSí_Wví[«¡cÈá-¯ÿæPFqéB9È á‰ÏmùƒJŸK–Ó†’öß'ÇE ¨ÎEæÐˆ wžh7_×~4ž?R~ê“ö£…¤p/6ˆ ìv@PEHûQšþ~EÄwÙš>xt­p¬þ÷®}ÙM‰ì©CÒ•Ý“"³Ç@ÐÂfAán}WYˆ]ÐbUðút¡|®¹ÿ è û6H@ƒˆõPÊ`º7ˆ ·ÞpƒtÝÀ]$ [MK€¿õG( [¸±M3”ö-ÆŒEÁ(rÇÜÅôv† 6ÜÿS(AÿÝCTÄ£›oL\Ý*-™mý*2à{ªð¸IÁ¤3%( »D!ãVèãÀ­ŒØD©feO­8¿»½åÛ´ˆ>ÓH&| zG‹M$(ûï6±î]…¹ ˜ m¼"Ý&ÿ‘ûT°ÌPn5¥tLºµþ&ËÇÙv@ú\yau›²‹u÷a#s/‘îy# Aå!í¥yœMaÜâEÅ躮ÏoS_ZyK»@"æf7ˆ@·¼twã× "ЬÚ[«¨aX÷VgR¼LÙ‘ð3³AzõE AEíHÐy ‘ K¨ˆ@â>¤€®ÈÏ[Ž¿ÝC$¨¦—7@ïcöþ>F‚ë@î$ëyØöa<Î#Ò=ÿß ‡HP² BqüpñC$¨|œC$¨Ê³™ òUO×Å9pþ}Ó¹; Šþq.ßá ªÂÙÓTªjRøxüû`jCÃT”ýPÚwÈáX ¨üÊ5´¡°è¾ë:þE?]“ð=ƒkéЮL$Çè34+‡Àè\*(ÂçSH ›MŒ•Áð"ÑDÏPFoê2 ÑÞ¦À]øÎÁ€k¤Ï‡BÒ7†‚&è­>€Ý"ª3µÍÃÖuÁ|ÓYΉa Ä"šnuP–›sÀ½Uø§ ¿8‰) r_X¡±¥pÅÉÒUÜ>îÊ1å0`‡ ÀHл¬ç Ç=³´¿S0vH WùñÔYöaã„â¨<ï: 3lðN rBÉ\6©1ý ÊÒ±$èõE CɹSP ¡GSÀ›A®þTûÕ„°QØ?uÒKÁ‡ôú‡L ¥#˜@bå‡2¿/@Ð[Mp¶6ìc#îFf@P„B9ûcŒÏù„ÂM:.'ZŠ#3ÕŽ@š×tŒ ¨VŒ²úã "P£ˆ@ŠËCéHÏ3°ÄìáE´¯K±ý¬Ïj§P6¦+]ùÀ|W[ÏåÂÕ» ¥!“tŒJGÄwáöÓGJè/„R«¯î݉âê«P¸ýô9TN%èÑ3Ç(ëNSÈ©QòàCaiÒT&ÖYe &¹ŽA Ó×!û|?çPyÆžT¾@¬P:—‚æ|`´%K(öáw„ÂEÔíPÙÈòÜ›³4iá‘Ie,JƒcÙ'|‡~(LÌíl]Æ>œªP8GÝuá#4¤l$/Jæ»;?@pÊš‡Ò¿,P,—BÆ}“’_Ö%–&™.L&âä£üqêßDP A¡pÑ-_¹@L'‡’Ö­‡2Ñg£‚¼T×Ië燻–YéÞ‹x]0Ae¥Ba4÷l*µ¡v¨Lã#)È£ ;œŽ{™Åùj 4df£ê~Ë–a в…P°dâžôÝ€:”ÏÔ!Ø;O‚#mÁn¸µˆtéÝó}‚ªõ¡p^¾ ¯&”‰ÈPø1ïuHx¥>ˆåºÌÐp\h©ˆè˜±(˜1þ¡Â¨ñ8 @P‘êR!uHǼ­{eGõ-Æ‚ è}ÀF<FœÚzk?ùìPªòøèy€b¾=„‰)|‰V88Í<¥àŸFÐbØÂ¯CT¼äPj#›QIÖ"–P2œ.,¤é:É1Ò7ÝjC¡jTßW9X–âP@R~:¬˜€qnC#`èŽ'móÝuaÿ¬’ ea)ñ‘r>óÖ©¬úv°n­˜ Ú #„lýÛéz´©Â<Œ›m*“Ñu–avcWƒÿóÂð·K8¨APÀU`Jà >0À@f´ê ` »MÝ´kß‘âcצ‚)Š©[}«îC©Â$ ¶ þ¿©] dz[ &†2Q!æ:Ææ§a“ z{Ð@ò{CÙȱ]æ Že¯HŒPX—Ô&•^?¤ÌñqÀ š› Å‘é¡õ@pý´Æ ÓK£a0P=_( }ñiT:ü±Oo9¶|@pAýA|”Ê×Ùl€)X eÿüô­" *ÅU>…š·äŸ„‚Þ¸s+»BèCq,éÐIèš]£"‚6T éˆFxŸâ‹Pú•J5}fªB™ †Á.tRA5Œ÷¢‚rß—ø{W²—xð;Õé‡v@A•³ ¥#ouϲVô§N œ,T¯A@“l!,,/:Ò™ÕN@¡0’Ãëî][;ÀiIS^¸ "²‡ð-K ŰðyHNGçÀ­dB!Ùç`†£ð]¡†…èªçS!åèã¯TÕK÷úîVÊù k@Pïz‚j:%”ÚÝêp@êàiK*ûÓ·úT.æ©tûNÈL?b¢Ù߯@8Ó١ﺥŒO9D(Ÿå !d«÷Cw¶›&©—.³üÓ•;  .W¡ ê “¡Ô¾V·cX£sT¡LH AæB©%ÔÉT~¾˜@rB:@ÞõÄ€‚*áÊøög”¶…Û•u]Æû·1 ºô…áþk'ŠÁõf|Ÿ€‚¾Þyùþ†Yêø{ ŠÞ(L¬v1)†²¯)Å1+aÁ°ßûü¼90A]£J§©×¨ÒÁu™å(¨ö— ¥|ÖÚ†BÏÿTÖø¾ ÄX‡pÆÇ!À­F`dÆ>ÀóÆÇjŠý{M÷…àŒgt™løUá¥R\È }ÙúQ£©>À€ß/ @(«Ü„¦v?)ä àòÿÚ×ÊB7ÄÀ¹ÜÝ*¨æ!B+‹<€ZóuR6|G&.„l÷ëp`‚¾>Fªž’ ½ó>æ âwÃñ×z( ^½KéXTxÀó×ÒP Sï¦c˜ 4®q™ CʆÛüè^éË:;ÞT‹Bé{Ñ¿˜ ·e;eÈ¡ñí€ *:`( Î#Ü”(léŸÖ5åÿ` ¦ÕÓS +4`b–¾ì¤€­éCeên[ t€ ÚÇŸN:ßäÍ ¨ ŽSùM æôfŽX@â…b Ç¹.q\Â)¬¬(”Jкš€cé¨ëiÖæ¯ô A_?a ˆÛ(p«2v_A»±{*üg(™S›j5àÀµ­Ÿ´ÿ½øxcleóŒBG}+;*!@lp"e¥‚i Z1€€8WÂf¦N'ÕNÅÄþŒÜ3usÐ@ŸG 4P-û eâq$ÔÒ’÷…¹­¿Û…ÒBªõ¡”@Á“™@Ý„ø,è:›_{ HKC flª}`C©¥%ÄE†ò]Z’Jþr.I8P­k %ýmjJÿ,¨ e`njH™Xß„v1Á½1ïè&u'y \PÊù¬ª–d…Ò>k©Béøí°´“@PÖQ„b@ř窵à×)ëÜä‡xL?@P;R©Cל„Cï×Y$£#ý4ÁzýÌbݾ91ü óy°¡sjëé#¥–˜½cAµn*”1¿Wôá²Pò¥7FOþ?×c…Í_û†‡rö÷kÂýc-”ð‚ÖYºSž¥ÏB(çµC1€âØ@ÒêáPÖgmM(›Æ«ð@a³¡4´H¶€´”/„Ÿlö„ó/”J(57±èLWþbè˜õW„‘ ·(òðj{® ¥ö]Ÿôr'ˆ@wšëËD ÁÑùÎÁ}ôj€€x™AxLA[ÓoTë¼B —vÑrl•ØÓü‘ ýVü›1…À, XTö\2æQU5™p×€ª)õP>÷ÒYÝŽ&’< ®³¥Š3Úë˜ð€V‘º¡€sŸÚ£%Ó°³‘À^5Rah0à€´„/”ßݤL.âYTœ3£R¸ÀÏ…»îz³è¶­p ]ÆÙ€ÒrÔT>‹XC1,¯DbÓÀº~ˆT¬N(çÝú 4 6ØÇ 4 §ÓWµ^þìÆ 4ÐâBá<ÎÑuXp,¡(ßry¬h ÏþÓE¢á¯b§òË ¥1z¢ÀíZu—N]å;¹j@Ý©zîNEP@Ÿc¼:´= ôÏF¨ lj}-Æ ô}R†rZM 7kÅt‚Áõ¿=Ó¦°ÆŽ9»Öó³˜Ö×"`0Ѐ´8a)Ô‚içŸ$uà˜oRCºÏA?äW𻸖BÃW:$¹FTh(#û{£©6¸þE%†Rí¾ëÛa h]_áúþ°HÐs[>P@‚‡ÒÑǦ„óï…Á e¢dê26¿¶¤0 a´h9÷)¶+ÀÁÖ9U•$ŸÒ@Õv"¡tNøë˜ñsaŒ×ó3b@¯EHüýPØøáZQ ÷{b (Ð3Žéˆ(Ðû<…x6C‰ŽKÀè ÿÑ€}6Ý T,…PÒzxQ€îOp {Ì„‚ØîH˜ýÓY(Ð[Sä@ÊóK…ÇñG;•ñÂ0 0Ãþ":•ŽRh´o×™T&¾K0سþ½òìÞ°Xš@–PW0ãà™5ï¨4æ"ŠP:º«$€®ŽÃÞߊï5)Á*ÓX‘„ÐÎûo ç]ü+|ký­qù`*ßÁÆAÿÑ4…ƒþs'à}È“E$àÀ¿i%y(Ë>VÂAÿ¹Óu>µX^Šzë¡|ªÙÃdú„/{[ÄTB?0ÐáøT‘[ÖÔ~ë]ÏsI‚ 䀪2;”†*©c:L.#ÝR0)»ºtåÅE„‹ÊF~p·¦ËA}îk÷_ÈAUeq(¶~¯ã,¹=TX–4¤ÔÖòÐ|i»2Ä´èuxœ •79@C]8Л·ð¾^p 7‡æKÛ65)§_ñÖbC6¸ý[—äêCä­ŠÚî/ØÂ%™®»H Ôeög=K(¶æí¼ËëHk‘B¨­”*ô£HnQ0œ„Æ6kÕ9dN)îvýÈEïŸÛ“…Ò`ïÓǧ -xÿª¨eî÷×]déC-Z}VV- €4e¹ˆbÕðXDª¨k*ìW(ÚŸûHÙŸµÀ½.Ù¢ï&Y Ês,’߸b(óp!¼ÿÛV—G ç`*òb(ã¬íhª‚gu•%-Ý‹eIxÖ…òýÜàP`eF§Ðç§µ- @ïÀ¹€êƒêÚvšï£Ê¡CÙHÙ™n^…ö` wZzMîX†®¸¦ØöS'†,°„Ÿxг¾@ž)” jÃU>:_»q—Ÿ-¡Ã´Â½Z¦hŽ¿ŠcÁmí@ÝàwjíUò±€U\»€½~åî/‡WK{ꜙ]„ª£ ÿcº†}‹âV¡@µ U,²iêÍÙ=æåTý°ÿ¹þáüGX„‚D&ÌêT¤œPŽÐÑ1ë[x¸–j‘C[Ê[ZûX@éÈÁçZ¢Á]á§&iÿs ù?òÒ×F\ß@©ê Ðuð÷/zì®å†ðŽw׺i“Bª1âìÝ2 ›Ý]f÷2 p,˜’ÝÍ™§j“¸ºzlP€DB ¥¡“£[íŠn¶kMç “ï‚­3˜€ßãæ³uVÚÓ7Ùn—k]á_o0€´,*Ø6 ãƒá eÚ§ón0@o’o_è£ë¬õqv1@›Ò@ PnŒBûz¢îÿµ ƒ€8¡ÌýqD6Ü-W e!̺ùþ8vƒÀ­Åß Ýl»Ú£cj=‘ÊÚ €’…BN3&Í6øŸ·}zÎM÷_Éà ò”V?RúwùÍ^ŠæØéå’§ ù$¼7Œ~»?iabBY³-þ'çM¨æ6 Ú×-”²d©à½ïRC]gb佊c.õs G3Xû…}Ó•éÔ²¯Ä-Cù©´ßç.3T&&šÃ,aÓu˜ØƒÃ¿ÁÕ*»PàÙÕUŽ@´´‡C¦0 7t@(”‰È±é˜o)ïèv×CìêyÊ£½bP¡BCa]ºÕ N[…2Q@ã9ÛûÜ ;â ¦§ ë +t0Üþzל®xŽ?«0@7Ñ|ºvwXÀÇèRHD™:IñœŽY´ò‡ ×MÃ3>àÁÁé8E½+ê F†[(,ʃ~ÀºÉ 3ÄŽYº°£Üœífü”šp€Œ„¶q¦vꃉ< n™í!HyžCÐyc(ãg™Zdrïµ~oµ‘ôÂ8zÕX{õ¦wÐK¡àR&ñ¸_1:â HÀ½PªÖl0SvÀ~Suþ è °€\‹øŸ¯þçëå8™lèà~qüp¸îÀ-@=Tz€~{µPŒ·*ð,qáRÒ€X‘z²Íqè,!0ø€T‹{ºi”ú§)Eÿ¼‹$€W«ÀXàDÄ2Ù)*ƒÇ8ÄÇÛ\cÒt–gÀáÞ»ÏÑšivU@E¡ …›ôaœ:Ý•爟±) Ì|tÝ JÍÒ½éþWnp>ÈZ ¥¡¼>(ý“° e¾Ý› ¥ÎC‡p›®»ÐȧîM¢}µéPªÝ“z1@ ‡Ka}¦øŸÚ:„ K7t’¡à³*ŽBõ¦³š^7*½°:ê|úÇ,* %WGÇt¬ç•1ø[ s´|®jû&eae9S¡ì7})ÔÚŒú{ÀŸåB¹P÷ñÖ€ªù…2±hËš8´K×á¢é¡³h;THA\Fåqpù³_Y*¨nnNeÀ¨öI…í‘bXOw(¬oSšðh™à ¥Jí7¬Ä|.Ô c¹1¨blNeÔÑ¥ÌOu{(† âÖ1ÌdtÝk„ {øÉ]Û•™”öYPÊgÝ`“å@W×1Š6†‚öÏ?«ñ³Tx–ÅÇ¿^þ3{a±?í¾Üõ­³uö÷œÊa0ÍŠ£àvé2 k‡†Î:ÕÌh|öÏ6e¡´Ÿ¦œÒµ¡ æçu½ŸáTÖ‡Ía+‡Ñu\³!ጯBÐmÑGqœ;•Ú§Œ~k*Ÿ ¾PàÉ®NÁÁ§±E¥àŸ\íʹ`è,¢3 4ð?å†Ò±Ä Æ¤PÖy¡#40€®]kn ÅýÓP\ÿûzÚ€¢Ù·_P(¬ÍæušXˆ“×Lë*6¯´ÿ©%©ìÏ8ÕÀÿtâB)þ§º\£çÏQ=”^/v­ªïÙàú+i §r\v¬1؇ʂ…OÜ:·2™WÀˆÃ§!ôAÈJÿD¡°ýóÂ0ûœ5ܘ®CN‡®²?ݾ„Á¥üv;}#ûp…ÐÙ°(ƒÈ‹Nú±ºÛý¸Ê©y•ý.ø« Ù8í‹J ë«×–€µ¢|à?§ÞšÝ¨“Ë–L7ÒJiUc¹Z¯i{2ØÂH% Õ ý3UÊ@XÅ÷ œ&ÂCa{JùnÑÊFþtè^çSJ>Š aèŸyíP:f Œ§À‚u5ºH@S¯ ü‡H«P7Þ:dãVmP9XGÇ›ƒþy‡ò ç¿Bèp.iÀÿäF3¡°$©ë2ß½¦Cáä´é,’ì»”ƒì<<ŸFøƒíP¾¹‹P–ã«ýG¥¾¡³óŠ#±3uáÊ]4àîãtà?•Q ¥¡üÎ¥T›9¶P8/ƒÐ1Œ÷Yåú$AB!Ï?´?Ú›¬é,nà€Ñ¸·o—‚W×ÛR fϵݡdó×ÊüPÌ>=¸“ÊuH¡°.éžµ×Û2tÀu¸ý„R³qC÷áÐ^ÇLà<ô®É`¨{çfÓè2Pýû>ŸÞ‡y°ôO—OÝÇÏÆ|¡ÔŽÚ~ýSK¸BùdÃCà“¥›oF;ºÌ Vªc ¹)nR ‡¹‹þéX—ó×AÿÔ”m(ÜÏŽ_Ÿ7‘·¨Ô^ÓÜ\evÐ?(‡Ò@G@ÇëFfÆ’0ÆÇ*u:ý¶:éŸH臰Ú÷mÙݤթTÛÕH@ÿ·>’ì1ztÂ?÷üçŽðŸ{u°?ÅÃ%Û½oµ°?­ ¥ryr‡:ðŸ6ÕÁÿ´ûþÖÏ&Å¡pÏi~=Œk«‡Ãû×ÿPÖ7pï€jãÅÙU ÑÉÿ™üÀŠJ:³Z›J±o¹r=ÿ÷‚L¦JÙ£“ˆÿlRÁ…›D·4†±Œ]±02„ñïí)öKÿáVK¿ù à:èŸ>ô}È·CgÄ®HW Ð?¯³2~èŸ!T$'y<2d÷îÒ xþï0ÿ‘KÃÑ¿WjoPß”¥K&†!* 0?x"á¦"{ô³ê›Ö§‚Ñ f`4Ö%¡¥¦)¼¿Ñ2æûýG°¡-aìϸ> þ£©¡|ÔŠ;¾À?§qC©a]}|€þ£Rµ9ÿlCö ý““N¡Œù½èŸ¬Ä H{×…k«ƒŒt(äÅ5Á½-vr4à \(tlhEJ Ž- b„bW(9´F‚PÁnB¡c‹œÝljùh³ëkšd“à´Î®d¶©í¦šŽ wÚìbéO5*ÅÏß)„½¿<°Û´éM€zGé ¨1÷2‚»žÑt¾1È:L@o¬6ÁòöºÌÁL Û ëÑÏ$èÑÄÂ&ª0RNp€œ{ȇâȚ݊;4ݳ²í__“þ BÀ Üë#Mß6 hí±…×:Æž×…±Å½ 3zSÊFÈŒÑtíxÙV×ÁÜÎ÷ízÝ Mb‡’^­·×Y €4ݪvt¸=Úµ×:ÜÏ èÍ3M0@oè=ÁV-” ùŠ¿ªáY—jW3ÏEý5…tik‹(Ò áòmÝ’ Z¹*ýÛ<Áÿ¼¹„¹/.IǪ®‘ö[³Ó]·Z€qÑJlÍáÀ|O×õœà9é$¡°>• éh;«)e"‰ˆpr‚tçhæ¹Ûòéî»zÝÖeæ‹0­` €Þ.eÚþÐ1£¿‡}è¦ñ P¡áB!5 oÙ^PµQMŽÑƒ&årZÓÖ>pÕ ÜCÑî¬æz[^Ã0 Ò¥P¶ÎtÝ…8 þƒ*o”¹5ŒZ”J‡›‰‘ÂÀÿÔ¢ÔP>h«uüI]Ü×½ËÒ ¼1Ü @b£„_À†6]—0ðøÿìÜ‹0Çn~[À?…ÈeÏ_åP·Ï&‹ìÿî¨yÄPbS[òa`3²?«!ÐÊ=@×dYÁ?UÅÂAÚ–Ÿ6_+BiH[°oþÙ•5Â?רŸ×7€ß„… éó­“j½¡&:Í´nö3*0ö÷¥ƒûö,š|s•Ã2ÿ§Ìku#ÙhÆÇHþTûóMËeCÙ¨ëuSØ úëFî'+CéøEƒÂ@Mé‘2±|ûždˆ0—n½¬Èú ã¢雪6¤9ÿ‘_v‹È®èçM1@?ëSÁ•  ŸCæ`ßV?¨)€ô¤iGc œŸ¦ÅöóÕ¤ÏÏzéP¾bGö³½ÏZ?êü†pFò§Þ…ƒü©òïP:Іá€8Hp7‹á jíPŒ…F‡+lÀ!\—áj+4aý³±x?”Û†íDM=`Ñ?ozØAÒÎT¡0E{/¼ð8SJU%Ý·sùŸhÞõ†É÷®*a¼·f e1 íö ³z°~(˼BØßÂʼn0N¨ª€&¿sQr(ãS„JÙ³aûPÛŸº01Æ;cSf׋ÿy'ÆüÏ;Üþ©L«Óíô@}3Eþ'F‡ßS.þÏ-óËÿ¼geã®v:ùŸ›&Òí‹Î¡(ˆrüœøO…hÏ_ôÙP8 ÜcŠÿ¹ï…7 s º« A›»2KJGˆ‹¤•»Š3àò: @SoüÏ©JÿóÚyhhÈÔ”OT›±†Ò>‹½BAÙ3L “‡Å!LFN]ŹÆI'­ùýVëw~Â1ˆ>}«Ö˜ß í‚J´ÿùºrQ@§¸›¡Ä¸në¾Ó¢€ÚÜ/%üÙµí¥œiÔØ;‹þ°Ö`‚Ýk8°â B‰Œž=Mö¤0 f] ·0@ö¸¬müþ{.TH!$Ò„’ =ôËOú³VÿPVa@ÍÔVa@­ †T«ˆp6¹<”ðh­àPâ2y€íß&vm!l™M.0%FÛ2›«( V„¾T dK~åJ Ьí} D8?jQˆÖoƒ›‚„ƒ»…k§ëzþî¥_ÿöŸ[=ùñVQ@m©S¯2ýæš7]Ig± ¬¢€Z[ì°«( s ~ßU kÆÐmûÍÇäH´ j®|ñJ-åV€liŽuÀñËÛæ|Ä*ú›?Ì­EÃFw]E ^Ã* ¨™ŒÎhü¾VÑߢáÀYEµq^ÎÅâ«0 ¶”]…²%j (®Ã/\Bö‹EÅf5&~¾b½›W±€ò™;•hþù2\Jþv —«X@^å+P²ùÛ}žâ€ú3õ< ý¼~:þ*¨ÙPk*¨Åì …lþSîÑ*P(ì"5 ˜s l(á ÙôtVá€âqLge°©ßP$Ðø|ä­Aðl(1ÂÇûzt¯³ªWß\‰5WŽnU(àíèwÈÛÃÝ*h¼RÀ«bŸ‹xU,àcsDX‰²Ó_'íü]Í}£OãƒW( Ò[«`@ÞŒà*PÞ§FÛò VÁ€âÖ÷¬4KÜŒ4„lý&·uU(`Å[O¥Fƒ°ëH3­¢Îóè7 ÔZ£k»*°çè^ Ø–µ gK3G«b;J¿¬¢EÀ€¿Šc¦wá@ÍÎnÿÇØÏwâ€<ë•ðw¸¶ÑŒá{ï¢Z×oØE5×pºËøÏc|š]4P[ÞwÑ@§øº¡dëo.ò."ÐËVí‚ÀMígJÓlïBÅݧÎZiÉ;›í.¨u{]'Zÿ¼Eä;Ûÿ~—¦SwÑ@\(Ð÷­ š§ê”øœé-K‰áàZ†]$P+B)”pn×Úz=[k\ê9wB»ÒþÂÚîbÙsÏéݦ#ШÌìõÆ6¹ ¶vs' ÔžÉøfnŠëJx·ÖÉ œ»` ó†§»˜@áúðíh cJ Yù­ëäçl‡Ï]L Ì­*áÝÎëËî\Ëšð>s1ÞM»˜@YÖÝ©„w¿‚wOè¼Õ‡»p ¹¿– ÷vÞÜÒ.h¬*9šb¢‡Ídè˜B: ‹]|×P0o{' tÞ Ð]< D*éØÖ&P²å/nÉJŒíÙ~t«Û筩߉&h 4§•hø¹ÆwSéÙÅçŸN ¿6KË:•ð„mT¢éÇe\— K6µÛ{(qR“׿‹šxR8 ÜÙ«S‰¦?h‘ ÚÎQ§+\¿>ØNP·E§v (v"ÐÑìc'[6ª"fæÇ”Õïæêa…ͺ¥„”[Æ*Ñì×0ýê‚…‚1|§s1Î!ÿ)”zkÌ#ï ’H´¨D³o¦•§x@óÖÙœ‚ÀMACé£^è£c¯mƒ«žC‰vwߢٷ­kD£Ï½žJ¤÷úÓþî1Òõ6Øö j8ÛRþÉ`YãË:EÕ©ÄÏž“öèT [5l ?á$ºN6üØöŽ|6Ó9'휦 O±€zoœ]õDÔvÛsYþdCw*§Õ«à½Êͤo*-M{Ó3¤àâÛP2pÓŒW*»Zô£c2p{$ ²ÎJ§ê¤hôS{Y¦ìú}}EþÌ=7•vê…îC%žuó e"LztŒ!taŸ„§¿ŽÞqyúï.WèÛ\OhÏBÖâQg)òg¤ÂÙÿ þÇ4 ™ÄóGý´ÈŸS ¹Bñúv®;e˶^M™kŠBÈ öc˜¤ƒ$Ë{£’Ϋf?BõÊiF6؆ ˆPfþnTkfˆÜëyù) ü™4C]fgoçLU(9”/×Ç;Háuõ˜Úbõ^c|[_q¦à¡X/ÃB;QäÏÌé:™“mG/=¹?á`à7´3rú.­À?™Æ1*9!±0c¶½=»PÒ}U9i(ÞÊñ¼ÿ5ÛÊT†²ËšÔ•ÞÁ@¾º~f+îõÃfÜŠû¤ÒB™KûÞÿŒB¸>«¦Æ XÍ, eÉX3ÊʤÍP6fG¶î£¹œçhˆáÀŽ­¡¯ùÓ&&·²­Î2ï]Ê,K;…paoâ2OŸø‘*{ÍéˆPN«ªF2ãaŠû™sRr>b‡Êðj%§Sɶ_ÛAÉÆ¿­h+òO„BºÌnõþ†S‰¶¿VÓ·+îg.®ŸTz%jøŠû¹ü°]×k*WjQÉÐípÝ@(iÉ|°´ K¶ÙÇ[q?³ñSÈ„¬PÝ¿&ãšÚIq?ÃÃk›Ê°2µm[Öº-§È?ñLJ4þ²øv’û9UŸÃc4ɽÞJ8}û¡qkÅýÌ$Ú¡’ћݳàøû¦ ×’ü“HÕ.aU …ݵÿW;)ðON—•ŒÞ|êËû3ùX“JìÏ£vRäŸÉYîb¬m,à !-‡’w½ô¢ÀM•[‡²­Ž1 ™¼~µ¿rûcÀߨöù®j x8%dµ¹IM«P0¼_8/­¸?ñ®lQɦ?‰P´†@+ ,ìa])îgæ•î• Ó!éòW©"”öCï¦ø3Q%ºLz@ªf¶ªzåx³§{ÍÚT|‰åLß9É^V[zd˜‡³z‘¦&éCÉ™ˆÅåN™ Î¹:&^r  GBêƒP»Pµ­1¨øÓœEå1ui‹È/)ù½Ûp/ðgL…u áY±„¡äLÄbýS(œ‰h:‹3MÇÔ°ÎuþÖ;\Ú®ÑáÒ’\JÍÃ1%JÂtW ^'a$èþ w ´øóΆ’Ù‹!#Ð;&"¸)lL2e ¯}¾F7FêEÿ×nõQ.íÃc¡ºÜ¿^ôŸ˜`VÚÕ¡̵åiâ2³rd|–â½%irK9ï¤s(CΣ³ª*ƒïPlUcë˜( Ѿ`)¤©{ô# ýó²{¡;hN¥!A7tL¶~QšB³‚tØ­npiYä˜sEh\ºL&¯½ýéˆJ_¼Ÿ&\Ú›\p7ù~ôr ý9Ufœ!ñ¿Ú:kPÈi“¯×s˜Ú¥/„L_ŸÅ¨¡÷'÷6‘’áœmu³BfÚÂ¥Ägh¦7‘ ñpþ%„ID¤½ØŸ7?ŠeŽÃÔúŠ7EÇ %Ã9o¯³Ò bÊ%ÃŒæg°BÉFU@ÉdÞô¹{±? `ß(ÉxôÊ ÿ“ t)Ùð;}´žôŸ¸èÑU2{Gý^ØÏ¬äkTŠ„ø‚ ûiÖd€Šþ3U`Š!¦vã(“@8Z‘JeȤd0ç¬Ö ¥| ò+lÀÿ?jú£ð?V»£C)—¶³Sf¾¹Qñ÷Ìq þöFÁ²îÛ¨”>!ÄðÿÛd—ôÿõËGCA÷- %ùÚÂJ†ê«Å+Ϩ ió-&røó•dœ:Ç©iÓY„½ «Œ;75Ï~±*\GD5ÓýÏ#ÁËK_:$«´ OVþõÜØ?ÊÿŸZJNODÙ…ó ñ«æçU»Jú´¢w‡’ќ˿™EµÙ_×1£é¤Ìê‡ñû,hÌñ“¯Êh£¦(¼†¬À›M¦ †¸ìÍF!Òѯܨ°W*°ðOé< Žù]%C¹ÕÕÊÿ?»f€ÒmÄIEÿŒ”Ä¡M_½9¶g[;úÕ³CáÐE¼2Z¾Ë¾ä³]ŽY Èv™Î:p9¸²‚¾ü{jvByJ{Ê]~­¸ofr­ìA}1醒îìTj!–ÿ¦#Ï-»C9èôøåÖÐôÇK\Nd s[ÊÀDoU |;›Jš²¶Ù(¬F‚´Ç:ÎàÖÓ”?ËZù 9PIÚ¤äÜœª“¬&ƒËIT2ˆè ±8-ëdPcÿ|Y_+øgÌŸè¤ôhc#ÓFå èAüÓ»bR˜Ÿ0_V  ôq¥LTB¢G[Ñ?ãeÀ«´‚½æ’¬ @YDr¨¤«õ89OÝLm§@¹Ì´QÉÚ w=r1@§€ª¡°ýë$C÷Dg´‚€NmVJùAš²¢€æþxbƒ-#º>”Ji}ˆâ€&›zRÉ)Šè É+ hVИ¯ƒwgÅKÞ¦n^ÆNsaÍòP\'A £Ou5G*Cé~ƒé×îî¡LD—KÇd^Ï»º"Wø‘žÿÛœYá߇›/üH”Ìf4宂ÁÝ‚çUÐtD¤°Pƒ¯° oCàø¢ï[m”ŠuuÎ÷‡ hŽÛ©¦(è%þ'd>ã‘Ñ\Š{é$Ã*ù­ ;–N¾­…J Mz¯‚€æ:,Ük«R~ÚÚX3úÈx4ëÏuVš³¶éD׉,ÒßWA±Ø#%wÁD­ Š_Ú©NMâ˜ó‡¤ƯU@ ©=׬jÍŠ¡5¨L¸#l•›™ìUÐWâa.gYtåéKx1û‰<×”EÖ¶!ÉðHIs&hD(X‡„'”ûÅ.*éÔ:÷¯Éù) *ü{£"jóI4?ç} (;÷¤’¥Ç‹ÌˆœšÅ4$Zö.¨rÜB‰ÖïSFf'4gBuHFt±(…ÂÆ ~4­ÝàÒZäÝQqFXl™˜AXµ“”>Þ 01í:©–K«Œ|üÍ6a¬¡,UË¥U3µ šåI%›þ-5Þd’Tgezï¦åvQ@—«”rW•Gg-Üëѽ6Ú:ÃÆ€p«{7B€­8f(u•lû‚¨g.?§ÎÂí⥣ҩä²ÑZ÷e}–Ї²¹j¹+k‡°]ƒA†œªî^Nή ëÝ¥dpT•» ñWò…â˜1FaÆ® ¿ŽÉu£·"o (æSŒBA…­¢X@7i½ ôJÉí‚€æŒt§âÕ‡®»0ÚwRÅÇv¯{AççF0nÓZ(Ô`´±“”M÷ Hô°w¬Âư‚o/ø´dš…’±ÜQ=Ò^ˆå´Le(“‚¸NQ@£æ†#) þ¨.oTi`­§mºÿ2ŸcÀÍì‚€¾²»  I1*é¨oõ•Sá\S=ÍÆp›@·„Rk¥‰w e~#ê]И\:faúzQØ8B×=0»0²çA†2§ iù7•šžs:¹çÁ\µãyØS¶í€dþºW:µ£39€{9ó ¥Ôn„z@™”Lj…j§ Ë¹˜?”*QR=íiåÖÞrSÐÌîHɦoŠR0@Ýø…0@· çÔ@ñ/¢ÝVG'·È&|Ѱ9w@h(Ž”õ£ëTõ±ü¢ÓQ}¬A=‚ÑùH ÏºBÿ÷Úm0ÿwaœI9ER  ìcµÑ´Ê©OA€ö³_Jíú®€ó IpŒIÚ®IEUgjƒ>£P P%á pã¶¥bÝ]·s6eÕF [·Úo¨£€@µ«z*ç…ÄL_èC´hk|À€6BîC±7(-P?ù"€U.áhˆ¤†R{:ÐI:—Š~„Ó÷´iîí´ûë#}°Qq¤«·”{s£P †¨rïèC„Œ @EÀ ¥ã^üŃÓ. !p{XÑh»Í(PíµJ¢@›&ÊQ \¾lµá„ ¢@eDP Cí$Ðv»Æ—¶$Pír iˆ]×ážn÷¬bÚÝ(P.η¨vy …›9T(P2qCá>e[J¢@»Â©h[jÏÑ­¦{eËWN,@O…åÄn(µ/7×¼‡’8ÄÆädâ´ækê#„"ÚŸ®›0ceèB‰¶¿—ªùh U%:¿ !›~£ïJÇï64߰˼z‡K1tøG—ɦß&ÞP ‚˶ÊAøÙà€Šò’– /©Œ¢.>æ§q…RMŸ©étZºÖuÇŸµA™n›D`ˆÍ‰gôõì‹çºJ!@™ ¥v%¦½ ¥6hmü ƒÛì¶)aý{QjC9uÇ+™ ¹r5C(Í^0È:zúÒ!µ×úÔOœÅó~½ýùçïá*„…•S÷®)9y¡$Ï[Lê¨%JþgsþHà?›óÏQ÷=BaŒ9œ…beuLB¡?›¾ºãÚÔr ›òúyx¦µ)¡Ð¡d{8V…Òÿ½v !QöHõPª½OµJ ?;1†²`Iý*(ï•,Ü‚ôgç8JƒÑJ?ߟE4륽øÕ¯bBI˜kk¯+/ô­©c²Ù·ÛΆr–®øøçë—þ)Šv(£Ÿg~+;³Åô>ƒŠÃò…DžƒÈÐ˪wŠËÁ\§„óíé$ûÛf û³A‹¡°éÓ€%úóî*Ÿ‚×?ºÕ:ï±2”jú\dõ«dÙw Ùô;Ê2CèóÝ9Ú’½ I{þ`5ÐaÚƒmùèQ‡²ìö¨F4Ëî½J^^ƒ©WCH5úTkðÉ6ÿ¸ÍÖ9kg+¯}°^ÌåP’dÝ¥S©†¯îRÓþïfÞ ûvñÎYA^—iF!ò½B(ä-çPBÉf/ï9³ïÛìØò}§ý±Ó­ƒd/Ã×Z=瘽·ÇkÇ­ ’¡vp`’"+b[òHáŽ|Naݨ íâƒÆÛàêÛ„ì ®¾™^øÄv|„\§²ë6Î*4×'xíô5ï.Ì¡d›÷Gnbû†ó§“²Ék›TòVMmϰ‹Wù‡R;ÏJmI¬ ›vTÇ¨Ð Ûø ½¼Â}Þ½‰BɆ¯M3¼†¡CÝ[AÞb”)¥öñ¹ïÔ±/7e …;’ah®¦¿œ ¶/០¿{ë²µ-kûÓU³Ùk—/—oÞMBCÉÀ‹±R8uŒtmafc½vÈïÒuÇ­øÁWµ{Ù¸¶´/ÍÒIÜ’Éð®6vppÙžÈm·víÆÞ”C?j#tc”Êú÷Ú „Ú‹ƒ$»Pʈáÿ~mÏÁ»¬¨óZ=¡Ì2jMBíÅÇÇ ?×Ok§¼Wqí½ZÏ"Sx°©±ÞìáÀ ØTÖgôìÏß׌ô›‘mĈ^¶ë礲aœ©%€®ˆ¡?Ø—•Œ§Mh̹x/ð!T¾‚‰A/&Í+¶E{)¸±t%”j÷(Ea#˜Bÿê­6¦äJÚXP[‘qÓõP*n“ß‹óy7Qðr]ÞãQçàúS’éìµ ãÛ#((ؼ{؆R ±}h>›bl¾[uØÂA.t/Ðg?w‚üþçÿý÷ü‹.Òÿ{ÕÿßÿýÿÿOxþ/2ñ¿ÿýšÿûÿúŸ¶FU¬·“ûÂý¯RÎ(8ZþŽÿ”Ú¶¶÷]¾b*áögÖPJæö¬[*Ñ ÚÆPŠ%5TÝTbìòÿ©„og=R%õ vã?¥JVÚA%~)qLCí{*=ïµÊ<¤2fÑפÎa0Ë6OàâßáßÑžò²N½-Ó5N¯ß”aÒJ­·˜ðšTZþ&,çMeœ5†%Ä!>õªd¥96MÅ“aôC*aùÑ©„mhÖ_J “qÌS÷šU²Ò „SÉßàüv³ªÖ{ïüvØ«0Þç¡Dµ6ª§ƒd#à •ðãu-)ñ£ö–P•ŠÑƦnc»Èb˜l ªT"ÁÙ¦³Ù̪XéÏz]ÆÔ û[ʪ¯ù,*qR×5²áǘVêÕ¹21•œ¥YØö9•Îuˆ‡J ’ͱ‰B*ù•0­B¸ùÁ¢œ:),CüFÓ1;uÿ“pП¸êUâõz£’™ý=ùg4ù÷»Ìb•¸Æ’cdÛ0Ï©dVcDL%³úG†ïÉu‘³«‹6ܹJU¢+¡=O”ªì;R¨¥—Ξ>«R%‹è•\¶ŒM~¢RÅ`ÐSÙ­¬ÁÒ1Ùä_7¯Bõ¶«ä.…dBFVŒB÷zUÂ8ÕM‰ß LS óÕ¸ö<•!£·ù¢Cd[NS9«L%ÚªãmU™J{MÆt´yŒd¥¤éÙìÙ³êTáM%ëT2O%Ë´öT¿ðÚÁÔ:ýn„ Cbˆl³É@ÔNµmn½ŒªUïmª W±zãLX*yHÔßÑû¬êÓT`‡.»aU–‰fFÚp™ªOìÍk°K%†È>ýÊ*R …ß*wªmý©È/…lùÄM¤-ÿÝ-k§Ú°ŒW ï°¡ü0…hû{lü§´ý­oW%Šq’KIÁõÀU¬þþàU¢ïs *¾kH`3© ÅÆE¥ä1MÛ²'>Þø3[~ñ,ö é?lYVõ‰1Á¾Ì¿;ÕVµáèÂÙô—Fw{ÐôÍ6(Œî—eeÿ£ ´F¥á+ QXCÓoŸ¬ŠTÞ?¢ŠTÚœô°h)º«ë¬ÎÛyh;¬ÊTâÞ{eÛß ý§T‰âû:5 ÄÐâ:&yØsÒZUªÇ•)¶êÏn† ÕTjx8V[UªGWÄW™J˜œ-¥ÁÈŸF¥¯²ˆü U¦ï}ꘉ/1uLÄFmé²Ùô·½.›MG|ÃHpûUJIL%Ÿƒê×ThɆ”ˆr£¬«Àú ñ5ÃvÌNeÍj'G'¥/»¶Z…UÇm ã^¤ŠTÚjzÞ*R‰®‰!ÒªH%ü†¦còSr³€TVuùç «8áüU£拨•Æe÷©4«&¡Õª:±ИJ êƒ>ˆU•J€$¦â¿'eÓï£f«Rɦ¿I%]Ùýp°µ*Si(ãO![þõ,§'~ÍŸ¹–w`9 „ âP¨¾dy­êT²äN×Í:•;Øj¯¡µ ¶9] Ë2•x3|‹g— «ë‰W3uL¶{¯™šÒõ‡NªU™Jã¶1©$žÿ)U¦ÞL% YMèAÉq€ð‹T ¿ôéªP%* µV…*HÄT²és }*h%÷æ·Â;öªT‰ñä,*Ùø'²ù©dãçN#¥À›F%£¸¹ù=«v>gÀwò*U›ëœhûÏ’ƒè vçÈåUªýv¶°EéÇÁ½òªSyYÞâÛÎg·? 9ŒÆ±Ë«Lå9¨LO%Ã8 ȼ!Œ{Ø£½jÕ×y¦’ã:«HSéù8GX»Õ†…iàûó‡Ã÷ßï;å8°Ÿ×Ò zœŽ’Ãù'¸¢$ÿëÊY¦Òàeb¹R ¾[ÿž£úZt(¼ŠT"€x¤dÛ?ƒ¯³6«o€ ÉËè_ÓìµWmº.8$÷ªñcº—óƆWÞÿ˽Æ6…–òû—÷†W'¥tí·g‰J[G»JT¢uÂvýóTÒ%•Öß®K­L=Õ«F%N‚iö*RçiTÒû'ì7Œ]÷Þ£,FY7x@òó¼ªTÂ>²1:r‡ÝÛ1 œÛD¼¹M7Þ«J%ì.fU©„óª;-4´¦;m~n]æÀ‹g#¯"•ðµàÉx•¨k+…T¢Ù?\™Jú³s2 ­2Ùéh7ªF=$_iU©„ñÛ:+c9î”Ö¢°6= ¾_J¸´ï^…*KþS)—vÑñpN‰¯J•6z^•*­;½J¯J•x‡CÇdóçNma——Áv ëáÈäUª’ì¦2Ñkv£’¦l™¾W•ªÄ¯˜èÒb´õªTi$›¥’.혴8ëA8gt!VUª¼¼žU•*ùâ•ri'ÌüªJ•6õ﫞ö ‰Ósàòë–¸Û8†KwRieTùgÚ±ÛØVV©Ä.¦¿½ž ¶qU‘Ê+1²ªH%“šƒJ5ýÎ4gÕg§ÕE0°P¡î öV‡3«\C.!M‡ˆÏ[êñ¼p9VÍT¾|LlOøêà«*Ô_ÉÉUꀰÿ”QwFû]5OÙ›ÑCZU–ÖtU¥J\ög de™Ç[U¨ò ÀVU§g*DÎF&-Ý•ÇSZ¡°Þ™œäׯâô°Þ|ÁåøG®={^K¼0¬Ã´í*Ç?¬âÿUµ*ðè2Ùæo²wU]b¸ÖˆU–!-‹©ÀTÚ®G~¤d›¿äªÍj—§’IŒç~;Èþ¾rÆqgÓU]pþ—†ÑçÿlNσî¾8p¨]ðý¹Ë[*?ËÑø±ÿT*Êi°Àb¥h€l’Ží:ekVU¬ÄO7)Õú5®¯òþ_-¥ VúóèÛÔnµñ8“‚£+n)Ùø[gL»ÊûËÜcr8‡#Ã*ï?ÚÎUÐØiJª\Ån»ÆTå–Ä—Sõ*¯ðymLJÜ/œeê/g`´Íš¬ƒ9 “Yª:õF`*¹µÑ³9®/¸ÿ[§•+/·hÕ  mŸRÙ•íNÇuë*»êU^wÚU°Oƒ »¾Þú®’•ø W±j£]'9 Lz¸³Ç´ÿ[eV¯5Ž@»ÊÔ_Žæn5+ÑØþv•­¼qìM㺌!„ùÝU¶òòÊvƒO{ßN•­Ä0 뺫>ñ}¯þ·×øwÕj§Ž¨ÆßtïŽ4ÆÂ‰½ ã…^afÀ6*Ô¹Ä)•ƒÊ{ôè­j‡¼Ü]UŠá— ï§vÓ'ÛØ«vnöú]e+a––®ìðoî½²ñEa»jW¢ËÀÖïª]É´-ž§jW^³»jW:1z©Œùqç7ǃC_jWz¸æ|?n­¨]µ+‘hF¬»'Ú?£Â]µ+¹¹^Oծį´Ú<åÓPªvåÝÍÿèƒÁƒ%ØU»v‰Oƒ­j—©Óš¿ald,œ>€SC;|€ÑiƒyCnNþzbø÷\. Wµâ+AáU¿òŠx‡a;¸3½êW2#d¹„%éå„8¾gѲŊó*VOuFà@ÕcÇøøX&P)j§"à’ôò^ΆWéÊ+U­Ç•&°kš®’JÝ”Zô*]y¿ª*]ÉÅ6ˆd<Û­JŸXü²<Z|¦ L$JdeÌs‘Ô€ÚWþC C—Ày+¦ùȔԟ5¶ª-)?_(Ëpht_•”SŒÍ«\=Í‚#Äë›ñ65œVt~‰T0[‘¹õV=ý8ËJŽ@CxIÿ÷‚ÎbõÞYy↯(gÅk:mÆ|u•tån€3 ãýß³6Tšé,¨+~´šNû ªy•ª÷G‚3 ãÀ/*Züwi‡oørò{}Ãú鿺 ½ZX®PØ9Ê<‘*ËhúÖ®ÜТ?ÈK¨.Ã9¡V¶¶¬zý‰•yt†¡é"?HÇ)Ú\½qåØá»8j‘îzv²r"‹´?5aªÇYï^ói#•Æ»W­b¼ô-$-Ÿ3’qGDï}eoouž)¹†·HÛïPa ýóÉðe×2¡ÞMÇ,ô’,lä¬;Í6t+G=DÃ…ÛG.ÜRÌìŒ)\Êî&RŠ–®²4ÄæÛv „K"^&àÐOñ7}ž…Ne}ji…|‘µ¤“ª‰Z ¥Ï©‡ÉPžÓ! ’‘_®ìþ›p=U+²;‘dÆ&‘A"}½Õe iþô¡o9jñÓ¹9˜U±/±! 7ÔæT§(s_>x5Ÿ6Û‘ `t½Ïª]TI]Ùs}^çþq"ÕgŒžÒDÒâïóuÖAxçè,‡¥Èu¿ÉÞZŒ >cT †’&4¹T9½Å@*1±¸ÖýÔg©rõkFhÕá=ZH5©6ù‚:Nª}6‘´}Ø”žÈjo¦ùÚ݈TLLj‰”1KÁˆ#HÍ]µ±ø'ü‹@:ìš5…À¦{ŒÈD«¿jÖCß+çê?,á<V˜‘…Fä|bI¸—Â=]S«Þ"¨†Õ6Ðe'0ö[‰Rj½ÁLdA²6'bˆðìFä€D†?¹ªÖ— 8¢å&sÔ*d¤Í¯tí®¹,\O>KþÍaµÏEü»amÓžpi·D #1G'"z[ÉÞ*‚Jà]ö@ÆhÛD"4e€B'd¾­ÊŸšTÄ2ª8£ó·GÅ]œÍpp@CaË<Gª’ò4è5ôDWk¬Ñ ¤DСšÈ.*Á;{Ç|ÅÞñ"0¯VÊ?d1~§Vãj—¢±¤#Çùë…@¹-#£K¤uATÕö”ßè _°tMƯŠç@ÒâĉDFý˜©CR”uÌ~O¤F| }îÚT¦qÙð`¡ŽÛ@nB"ºÕÔÚìf6" E˜CÇtÊ;!c¼Úl5±ïÒª±µ!)ø2¦òëÉ¥?Ð:œHV&)–Í| gó˜…B³bÚJ ûG¸µ7…øìy“nÜaõt ¹øé?'_B¦·Ö¾Õ—‚¨k5µ6-ZPnœŠ ²©10ër™(È⯫Q… öšà%ʸ™¦S”ÊoZ Ÿù" cÚ†#'kªmµ,|dÀÙ€€¬þùW.{Øë9‡.³±ë!äÛU~­ÆÖ†Ø‚ªj[+ys@ ÉL‰Œ’Z°h«Ù9íû¦“V9G‡%öúʤƒ¥ÏK ޝÝð؃vhäÐÚùƒCÙ¼°+‚‹«Q 4­Gu†,Øjß}Ų£çQ9W˜;QHû(ßûÿÐ d`mÁÆé5µ6c–ºŒ}7Y¯©µñ¥¶Dõ]·òñÙ£ÓûäH…(‘¾>†d¯±µÉ=‰¬Oç@ eÕ‚ó1‘ ó"»?_Eƒ8j]'®ÜQh/©T´o™Ø1¸–s—™?¯ÀQë© Àìp ¤¿\³Þ!ÉØjs0­0²Æô vz­j 2J êm› d¢g†7ðçú9ŸeÚkpmz·ˆcÛwÜ|¢ÚžîÙœ cJ‡dªZY7|ža"3ÇÄCvq’€ ãËl]§‚Ùƒ»¦O8u2§ú‚]+°&§}Ü‘#ú«/Di7-Ý^“kãe,eˆÑCôõ‹¢‚ hðw&"ÛéúÇ¢ï†õÏâôFÞn•S C»®²>Ù‹@>¾W7Ô™5êÄ"«Ïe«§o…3``õ ÍÞhEö Í.õ•SþÒ)Ð â˜2h«“²µŸ éÖyaÓ­ý||ÛN€Ó ß«øü"€tø÷ü´_%­ üjbŸŠÏST–jÑI‡¥Rx&,àÍ?Ë¢=ŒAe³ Õâä'qÄ1¯©–Ç·…Ñ%wk8L ƘÐÚùùy®Üb&£Aöl "íSúHGá5\Ðj¦Ì¸Äj?;·£4AÈýE`ã#lݼŒÚþ+Àß%ÞhÜMsôï› Q=™ò£¦Ö¾Þßh¨³g uq°änêü»ÆÍ>hþ³ØóÔô„W‡˜[^é­@ª4IQ³‘_y‡=«‡ìòäî!¹îÕïÈÁsCÆVoú+s £´ Ÿr œ-£|ŒªÎ¸Ÿ²&ÖÞâÁ Â[Цì\¢:¤\¹¦7<Ð3ª€Ý˜ß˜på$MÇDVÂi-މ:ûIP¤\oCº®ßZ¢æ†J˜ºðÞï›Ó*·7¾Ph£HæX0f7(Æ^7xPúK…W¿Î…|òÐl”öòç.Ùk¿šW2‚¥ºôßbzÔ¼Úípž‹zì••?Sš®³VÅFøLÖDã¨U$D˜‘ã«ØÈȹ„Ć:Wàwì_ä"à"ŽXûRXE#–²»ë¤ïŠo§ÖÆ1Cgíó}É5°6$>¬¨q°òܰ·¤£x(‹ÇQ½1WñA–µ”=+ƒ{ÔÐÚvÎ Á„AZY×ÃaÏ2IHc=â&2ÐkÁÅSã Õ¢ÀÂ7çw&Á85´6$ÐÒYÕ--ƒ›Ã ·B1óù#¿q>ˆÓ>¿:¤šL¤ræƒõ/ñ7Ÿ d0‘œ@æéÓ™5´6ÃòºŒCöÂL™ ÙœCc¿ˆž^ÆkqÎ[,È@EÖ‚¥µ4Ëø ! +l7V>¡ 6 ÄqÃ[uµKCç$çO^ØuHÆ1ä7ÎŽRûûÜ Цß×Q—4ù”5±¶©-&GKÝÒIÒs§í5kíáΘ¶‚âÕ¼¹»ŒH“†ÎZl¥&`¸ÕÔIÖGR•ö÷í€è–x€ÔHGûÞÐ1<:d¾kïXp² Û­fÖ^½@réßÀ‹èFœö‡N×Ù*í(Øð®úÄ¤ÂÆ‰Q‰Lä,¡"öƒBUíèý ÅDÒlƒ ÈÛë:Žõ…äñ.…ð*pØM ~ëºtp¶‹ìõÆÛå D¶ýnÐðÆe°1´v“F'ó)Á>iϵÍ$ðî  cÏß©‰äùJaÊnø׈ßpîšÜ ¤J±íþûq87”ÁÝâ»+ª‡¸êŽe›íF{`õ+²!ú¯!³Âz üDña­Š{Ȇtt«/mÀÁ°Â†³&JUU‘»‹ èr‚µÎ8áÖIyî‰F[ö„i« SM"óEü©µûä'{aaPa¼èɽÈxTL[NÛ." —˼L[•(bNaV€éæû[è»W9v÷CbN.Ú6TܳIëÔÈÞÙG×µ/KcJ4šv½¡8‰blxÃ0Ž~¯¬Ø°n¥€÷†cwáVrQ›]Ck/d ß0ãÞhž¾kt£ê^êlï[ „ ƒôtíE ­½FÖ.Ðuõö.Ð8ˆL<úÒ1 ®—6ÕÊÍv±€^r¹@†Kt@7˜²1¸öPt@/¡: Q0RSŽèƒMЭµâ¨ÏSžgƒ·£úXió¨Hà  æ_ƒ _¾ÝyP{¬`ó è³)GÏJW)Ø6 q[’™ ÝÊTÁÏÐUžƒk#pE€e÷G'1®ôf¾2²§!¼'|ŠôÊœ"Pu^œC2 ÕGaVaÚ,×ÞBÊR-Ïé¿ë“û; ºÙëÓÖ84ˆ@ofãt„÷¤‚Ï%âÖuâŠÍ8rjOqª(€ÅT–1û˜g @Iv7f7ÓEÎÇ€:å$=k'ÂöQ.ȉîi•f’ÀIÙ2{ù@eUŸ‰þéùB•Ñg!²¡w>ÐnÜxg)¸Í¸°úY±r༾çÂâWEÜ!è-; )n E*‹à˜;žU„ —*,vøü‡„ ÷9 Ë_¶ÇÝîºòù„õA{ýÿ0ö³E¡åx8·Ö´L7²,:P\Sœ@±n¹šŠ¨÷‡´W5ÝDZë­9 †»^ÓÁÐZ¿’ëÀ²eaì):Ð[y@ª¦¼D¼¶ÐÒu7 ä–.sÖg! èÓÖ¸B»ŠÀ¯<ÐU1ÇaÕªâ€ôô×Y¹ô¯nçC)‹ƒµK¡ªÚòѵÒý& ‘U +|å%l 7ÜäœX+Õê5±öfûýA¡å Áàdu>¶ƒ h..=¯‘µAg„ë V­>”cdí ÕÔ·¢òÆÂcp'¨lXÇÌZR»@B ^p·®À¡Äö È ï0jeZ:fÖ^èœY+­ä`ºF#«€ÙAzx2ÐkÐ8É@%h3kEMÈDq(¢2PÒ}@ÖAN È ª<Æšõ‰R ™{R GZÒÁzËþl "H„Ÿ¼±¯oí½ÓŠ<8è@¯¥KÁÁWf8ëk¾Ô< WÖAzK¦|É£»Ç°Ð’[3kEäÈFÏ%?ðRÍ×(LG7øt2_ÜPx¬Ä‘“ô¾ðÞúF/>ЫN^Àm-tSÒº¨J ¼pÞH§ƒ ÔTP»Ë¯ø@o•F ŽÐ]Ãú#C6Bæé ­8‘´jeÂ`¥©àºÁ_BÐ@üêGˆ#Æ…Ú@*fØ@:óæN„ŒMgÍï¢l`U›G ®:ÇÃK –ü¬Ž à P˜:šðЩZ±ÝÜS Xÿȭɬ-Û<åïp•×Xù¬Yí*¶ÍPT ßÌŽ·»Ö(é[¥†^r뿈!™`ÙFÓe˜ø:ŠïÙZˆ‚{ ±°iš:°$1Àðš‰øÏ+HÑÉèÏ sŠ/s(²­»(’±MHml¸ `añ2S‘m>ô„I{?)Ø¥ÈX³¢MqÉ,V/s=Þê@´ïÐU•»x»KEò¤ ¬` d´ïB)èa9c‚aÆ¥œˆáÁùsŠ4ø¶Ž)Z ¦­PclS¾t" ÍGÇ`‰ðÉ ½¤è ×½ö@hÕ´Q‡Ýt§" Ø`ÍàбLØ8A•Τ¡ ¼"•¢c B ŒjóíHª m¶ÌÔ¢.j#Â]ïDŠí{èKX¶,ì¤ùÛ@d|Up#IæY¨/åS€ôÜuP´ KT¿„a‘b”a,|.WÞ2»ùŸ*ä@jm!û[ ²½œ8XM‡kc„äà&s½Œ"]"òþ •š³´É^j6WPqZ5E']4“)Wö’`Ì–n"ùI×uÛuŒÃ ÀÆïM“›  zÑ‚ª?-uþó"A „\ßSH y v ûã7âg+›°ïºXAñYzGçí}„.*%ص˜ex“Tņ”CGôáÜ”@À<Ðua¶žðÓ ¬~ùÒP¤‘ö,^g ù}ÖÂcAuò‚2©ê5ÝpI–v°‚^o¬Ê }*°‚Š)òê–^×Tý%öt§°õ=á\[¤“”¥°÷VW‡øWÓH"çûTKC¸AH *+¢“ô V·õwêד“]¿pÆ6}§@®“ ˆ5s4Äz†ŽéÈßCNu’‚­lC >yaLcéÊ›õy‡ÈA‡aוÏÍcö/Šiø©6Ršw•:ˆ4×z±‚ÞjÕ@–$ì©~ ×.bP‡$€(W#PåÈ ×z?ðêîC‘ô>8¹A»6QÅÝȌר"XnDö;ØÀù°Ô’Yºku—Yû "­*(ç;Ùätç¤(½^cmo[t"¨(˜6¸Š–9«šªØ31$é8W-‘ýâã©bdÒl@«v¨R=Öãb_“j€&N$[|ë•|´Ë9Ú-ØhD’«Mî±Ñ«•[ZC`^5;,d{a×ЂÒr˜Â&‹†¯ ¤ ¢Ê ¤Á×à¯)èn´-G‡£Ö`…“  ½‘¨Qä@AÙc:æPˆÃºƒ<Cá è©v ë5ŒžRr^2ÑCη5Öézò’ú¶¹°FƒÞ”g Ø c`T|€Hܰt”Él!ƒŒi›È´2˜!ÀG±]&§@6ºaŽîUKŸqê@’ì^A}¯ñIÑÌ-vÐÅ~Ìâ“—”0KýêOÿ¸£¨AczÈ4"…SMH‘,}q+‡Šw@ Ì»åÊæÄ3¦Ø’ö¬*_Y§(H·ÎJ^/Hj̇kXj°úÔ‡¸Aùg³ÏŠ?ÜTP¼ K†Ö€ñÿú¹0þÕ²ç•!¨3 ÿ×ï½wZ?bE÷A^P…xAo4d€TcÏ9ƒm/Ð0}È¢¡{›ÀþPÖRøL‡R#›8dÊG1ƒ®×ƒÃò7扉Eÿ¸´ÆpysCHÆõJu1PYm“Ö¬&CÂî¸ÙóÁ¢gv88db´ŠOð=žÛ$/¨ì¬ ^Pr’ëþnî _A 5éçðOƒVô.‘²ý'¯{ ÈxýÈüéÜc³¬ÿðÊ`‡NUÔ H­ýÅ·<›j.ªŸ%ô5Š/þ4¹ëä 3ëÿ©2 ¹þÓQPÓú¶žj »Ió§F¥IkV“ˆñ¼•ü© vГҘíΨv4ÏÚ{S'Õäi9–³ÈAÕ§è”p$±H¹B]ö@ß4]„ž4Ð+ÆCâ‹y]'ñ!É $ s‚ÈÞ—1·`3ÎY‹¿w-)¦oÓ•Ó˜] ¶˜†kô`“Ï"mM‚T ÌOÓi ¡4h’ rPkÚ2«Hîï»Y¨½—t›ZŸÅ Ú®û?Ád¦«Ü8iµYÌ —.1„øÎ“(üàÎ;—g ÇÎK Ûk‚ôF&â®í5I *i7A zã%Ä JÑû-Ðë'—*x–‚—s£P½Ó82ÑÈLÐõF¡>Á :ýœbˆ+s@(ôç }ò‚ÞQ¼ 9ÅuɵßšžE ´|Ðd/R°äêæ÷-^ÐX0¶gYþ!#‘›Å ôlÅ`ËÈÉb\´eú?Kþý,n (/ÚBrñ«ƒ9LЭŗ±Jò¯Fó`5кK²NÏ’üäUÔ ‹#m¨yÝ¬Ä $¿e’EJdà Ô ó^¸• çjÁø×ÜÌ@H „GZP&Cj5•k!ÕLÍbrOž _j‘N±ÊÕ¤Ù‘Œ[àº"hu¬~E©VÇêgµo dˆ/h‚Å t J Rjt Ê Õ±øÓ[ Òàe_P7è³hþ3*HÎsMå›—/=…Hªû&I˶™—ŠÓ×ਟús¢ò¾óO’‚ò]–‡¯Ë jºF@=È:Ÿ0ë"'¨ ½  ¿@üû[×í(u"œ= ñ¸À *Z¿@šÈ‰[aç.r‚J/p‚ŠÁ'c‰¹ Ä´ëUÕše©\°¦©M›@¦'ú¡áR†çm•òšá÷Í-9Š,ûšü7/f º—ï¼ ›rnO-ð‚Þlv7Ž3ÿ,RP¹Zkk\_²¦FTk+èå Ä?Þô1ºE©fjÚ)«˜àÔ œ€}·òA…†‚¡ë¨—úèºU›ÇÊî@Îwô%À ªf_Å zã-ËQrÃ)E01Gq Šö@ªäæ} +î·®Œ-¬PÜ­¯±çOŽ—TÌ» 0/w/C%¼-)hS‡=âD¬ÂÏ@>õS^ìÍóR¸H]>°ÒKÖ 4ÁÓËĪ’c#Á·­Ô„ éht„‘™ckß•wZУˆx…€æåËwÛš^Ùus–(uemí™bºÕŒF8{‚ªl~9r yÑ-Î;Р¼ êyw#/è}îƒ eîìû%]œ2¼*hA9³)€q¾oÁÉV‘„‘T±bsm‚‚1ÇŒ嘌¤ Êl2) ³Ÿ2fïn‰¾àóy¤ 7qQÑÕ÷ÙɶËÔ!›¶õ Â6ê¡[9l)|§¢.¿m7^e yahÉÝXro:¤B³J§V¹Ä¼$ ^TRŸ‡*z èë×eÎùØ »«â~h(âU:–½„|ù©ù±°6iAU«´»eÝ&í}¡¤b ê†PÏorC+ײI¤ÅEÐ;TKÆ»Jgƒ"è ðµõÞ/UçšIN¤'‹:à] ·AÚÆŸ7Ax/2UwŒE»A zeážrä új‰Ë­Ø“”X更ЪÙ ZúzƒHÌ&¾—H7yA•KÝ`ÚÆ€Ô&1¨Œ¢½þÔ&U×¼Ã:|“T0U¤ùNÐeÚ[VoSÏ-߯Ѡ…¼I¤Üô/´"h›¼ ÊØT‰| BÒeÒž½yž*$Î_³ì—S‡ôïЕpž·ù=ùáKñ½Å!Ö„: :V&ñEÐö—õµaü_ÿjÿeò}D¦!``o@ƒʼÔ:^47ó6wø&)¨iÝÚ³÷NäÒ€ÙYÄo“|“T×&)(ùª|ƒ!îÚŬ ¤çõMRÐûŽ]‹ÿÞüÀü¿Ç°Hb«<Œ©QÜ^Œm¯Þ¯ž)㮓²*é¨Jê;ÐkÏŸGeISgqúô=Ʊt}(+¿òàHƒ‹õvH Ц>?`5rÂRè©bC~u¼yéûyGGr WM·rô âc•Û>o×µŸÎÂ$¾RmI^PMðÓErï:ÆÖ'·tºFv “ÂŒeÜÕ[1/û˜Ÿ¢ål“ø»£f_ëPæËØ>äRÒ°\¶«C à_Ï%2Á¢$'¨•²x 6Ô)NPµvû%è•Ö')–l¼šx2é:?­éFE‹Y? ºöqNy÷lœ"„[*‘/K$™¸îÖ/¼ ~ 0‚^‰PQ§w\«—ïN€ZK™x„©SmgUG„ VPµ,ù#F’ø!#¶‰EªäHf_ùaó2ìxÅòß›VÐk”#Mþ)Jî®->¬‹ä’ŸœéÅCúŽ#P‚^;ælÍj… }À ZEe@Ò–]SJ Í©õ%°%½IAIÒíUЙ Ã{ÌšÕQ< IJ_Ó´Šè•;=E ôZ8E ºnj¥¼†<‰²Ç±ò¸®Ü>ÅÚÖýqþg¾•gƒuÍpÚÈ´uÈÁ›ÁwqØýóð»8A51×ýv]¾‘©‘©^|eð_:§*2T£QÅ’oqï ½mU[ÿ®+)C= ÂåVÐ µHøóÊî_7W^Ú¿ÊA:‘šU¦_©ö|]Î*ZP…漜G'/¨ªœœÂ^å†åÞgdÛ°¬žüyØÍÕë—íÍð¾f¿ÒoPzë0/ñ/j.¯Š²·zr˜ý×Nõ¡A}›Àd󞙨…[:ÆPá7uÌ&'ŸNîBÜ?ˆÏ;®Œëì±ö‹“s^bŽ@æ¬o7,tôš²ee=V{¼¤¤î0ý+¸•ÈcÀ’Œ7]ãÔÒ}^„@‹Ô\Ôâ—|tð‚*à\X¢Ô!Åò­x•/±|#,R:yŠ ÞÝHˆË?)Ã`(:tÀMBV‰mæ;¡ë\@Y@ YÍàó*HÎD[ÓS¡CÔÿê»D¨†(TZ߉Ôd£=åäUl­±> œ SÈJE½]vЖVé?}êî—Ž—) &¯~ÇêÖmDÒ‡«„9ä,ò£ÄôR)‰ -Qžä|ƒW^û5^Ϥ ·ÜÂI G*sw‚j•{‘‚^¤vÀÛ¢wG*NÜÍ:x¡;ò ÿ´ÿ£¢ òNA$0àQ¦ÍšÈDåe.¶D‚“¹„±·¨K$ùÖᾤ©±êqÌ\ÊþA¡U"U’„®D½Èw‘³Ó„€S -ŒDNÕëŽMÀaj9~MGübÖ·J¤1B}ˆÏ7 ´DŠ['²FztŒç1"{¿¬¸DôÝÐï!sÌÂu†(îy?Û(‘_y6"³½ })ó:†õ ²@óN= ÜwUMûÆÕ,'N¸èA%PÅõM¯t }• O$ËáÐí‘@ºrËôÆ!ø«· ›¦!M£ ­®±D@:§žª$ÿsºžªè@ûÑ÷(,‰äº³ê1hz®,ð¿ù•šÐÃyóöhÀƒ;‘´i£íI›öY& | «WAT"©Û«=HÚ´Íù…[ñ>s:‘šØê4M$×~u'ÒPkŒðI" éA”5ð’°%‘‰Æ=Þp¤J$-!Z(‰ìñ‘&¥ï|ªD~*x•H%sPÅüðï‡J°ph' Ž€9Ôv&$×~2YïÂþD Eb:iãûÝCjí;-µ>ÐeÔWÍÎú.ݾ„¤i;ž×16Wbý»Ï\ÕöºUêƒ"lâàQ©—ÜÍzÀËéédѨ€\ÿO£ÌîÐE'¤,¡‡B©ƒˆ‰l<ø½²ç*Õ_ö#¿ê.Ð× Åú¸–Mhõ‘©6“E‰Ô¡ªúHÄõB[!±§Qrô¢J)ƒËè³Qî’HË­ØøQzq©b5‘4iïºîɪ†¢ UàPí•1þwÌÔs‚ 4+‰T›‰skö$™DâçÕàVñÜ6)”bð¿s¼ÑèE”bPWI›¶H>€lh;h²V¸*fòïe,ªÂCEz}dVcøw‹mvüvÅúL©ã^¤paÀïNäßY}¹ˆX>¸ýêÂ'íŽA+¼O†3(æÃ`}ŠÌ®þŒ—6‚”„o¼ˆ€â"\GEôt£oý¾íÕ'—Hñ&I&ôõ‹vÕG·:ðda…ô…Bû®µF"ÐE¿µ›Fõñ›{C ͉T&G±ƒ hË[ê`€cÔ.‘÷ÌÖŠqki‘ ¨i%m xÅuf\é ºî\ߨÏEÑ7Ü9£±Þ·øL×ñwäöRd  Y'ÒÐ+îÕÖ©O>ÃAVnê ƒšõ7‰…_ø cºÓ èd•fïþÛ¾ïT@7&Ó]6-_ clÙ¡9ØÁÊI‰j (yj§7Ñ]•IøÉãy¿™À¥JØ@™%Ld Vä蘹^Ez‰T}{n̨é‘h€\!š £51Àêo¤£÷hýy³Â%ÂÒvþÍ ö&p쳃X€î7 …ff" >t'0~n¿P\ðÃFǼ¾Æ;J hšC" ¸§tà5´ÉüCÀj]¯o¨ÇvëX p±°Œÿ¨NßD¬›¥Ëìwz<‘\ùLu%ÂnCèœ1aÓJàŒ‰jû‡Ñ¢1Ñbr_É@6¤’m<@º¤ZÇî~Ý=™pOçöt‡r},rÇðÏ^ªC íÙ*öRÙ¹¥÷·Ì€U>à\[~,¤(´Á¸@Yr÷è¾ïÆÐcÒè¨3­kp²!‘¹¿_\  Pqr!ð÷ ÈÈ@—LÓ* àf`p6Àýà]ú.`ª^  ŽïbÞ•ˆË_œ±Áœt7Háö]þ µ¥{ôaÄcÜÀ>G¥f®Ë0¶Sd»ZFD@7hÍ¿•èå7÷\ý‘àäÊ. uCÑ Ü‹g‡BÇÓª 1¸á(Pº»ÈQ˜÷Pè)œÚìAÅöМI¼ºÊ, —¨šè]]Çôõ‘óQ½=ôÛ|~Ai†]4I¤˜Í!èÖUmÓŽT`6TÛKqÍbÍdµŽ©µ¿¹fÂÙ¦Q6AzÖ³Á—Û\×d ¬+IÄÑÇ—þ7Ö%’fÐ’'9ɤ8ç5n×Ùµø—ŽÉÅcU<@Ìî'rÐÂ>„8¬îë€twš+²_^þ,>ÐV\@jØ}‹9Ðkkzí 2í9Ðk"3¡ ’€ÃÔ„È™àZ›Öü,:Ð÷…A·¥eæ„f—´à";Z"†¤¡O"¬ØÖIÌ0=8TÁ6jÓ¹ÄA:—Ò:P)sañËô˜ÅÊ vKG—AÑ$¿ÝÒxXi<@{чžàÝò¡'iá$ܦÝZ !Üü{!¸ÆŸgšt…6 c,…Ò$èûº$MâÖÛ(Ñîôd&x€ ªYª€Å¶ L”,,]%mÚq[9º¦³>l …ìïW@ê[ü\¬M¤£Ç€Ÿò¨Íœ Š€MK‰è]&ƒ ý ÞžžÅ<eÝÛÔ–Nœ.Žï-¤Ÿj.‡Ž«\ lxLÄ>FÙhuÌI«–ĉäÊ7)ªõ@’IÚ­‡V-ÿ¨@…­²À¤ðð* uôÿEn?¨e¾x @kÓ²ÿ÷Ò ÝÍ«¡gÚ(vWC8Ûé®’ùìû.à]‰—ÈÂÇÆ[X ÝÎõ»rsïnúmË…YЬÛH„dˆXå $@!³ ¤=;M7õË®1T,4û›1X Ýk¡M÷m»$ ¦dÅ èR2`”D¡‰¤ëJ ­dŠÄü• P=Ù@ªÚ¬Q¥/0­ÁxØšè2q]gbÙß·*8S¢:zÉ4ˆ€ ‰Ÿ®ˆ@_Yò5•Êe°Àg2Ö„Ÿ†ìá*"Ð÷š( ’%ë>l2 ?WGdD¯šú€lÜçÑúaõ-°€®ûíL¶,¼U$@&±Š4šè».Ã<d岿±ìE"¸¥U P¶Þ&âø9°ë×F—‰èТ²YPW¥®kû#бÈz´"A4·:X@oÖtÐMw¯}õ9N èͬƒÅÿF ¢[ Ú÷9AjÞ)H@§Œ¦u°úéó¯£r3J;Wƒ«€ ƒ^í"èÝÐà½Z`h#g"HÔP ‚ÈNârسWþ¹|9„ÁÆÿä“Û£f[¼/{P¤!±oŠ4peKã?˜':ÿ6ØK×Ý\o’wX¤ kÞZ“1 ©däöûPÖÙ›îè¤õæ›I$W?9TÉÕ9a0ý¯<4¨«§¬@¯Kk´ü'_(€–¢ÃPŒšI`¡.KÄ@dHVôŸ.Ag¤ÿT|Ï@ÿyÝ:ÜRäÈ@ÿ9uJ.úd;k¾¨ó€\WÓI©Ö¯Ž80  ô?×öˆàS;9(›_L.gÿÏõ™bÕ‚`d`}D˜ùó†& ÌŸ÷ÕÜKÑÙD ûÐú4^wÜÀÿSÔ6@J„h°×똅¦ô¦cªgÔ¨l¢ÝAê¡{ùDO4 ÓÞ }¸•ÿfrH ÌŸ7l¦t§ÁŠ=¿6;˜7‘3_|y‰T¥½4¼ˆ]Ή4t–ºï†­‘èîI]?ÕÀüy”n±ø×¹µâÿi7JhÝÒKý ŸÓ@ýùÚþøuŒêÏG•zvʾ[*©?ÕH˜À\07R¿ê#õ§ÒJ ­ˆ¹¦ï>B¤…~4]iñÿ´©Ä¹˜½—.®©ŸÃª<(ù ³ÿFav‘¾Û~~Ç[vorvªŸ]ü?b5J„á‹‹lÝ»lÅUÉåâü³ÿ5¬vÃâ—¼‹ÿgÁµÝEþ£^µDZ †N)ÿM£Ý0£Û¹§v²À­ëfí¢þ §)ùÝÁ”dÜ »¬~µ$’¡‹›Mß—útÃìdì?œ”Ic°Ð7É?e‹m°ÿÜtùûÏ(l’.æiw‘%Ô=këS'•"P à åQ)í¡H6–õ.ÓŸ$Q ÒòpCÜ•¿ç­Ìp"¥®‡kí±;öS€2†$@¯QÔŸ­8Ä)êÏVºÌDð qƒþóÊý  ¢Ü ~œ¼•Pºmf”m*ªm0e•ßÚÆazJðÚ`‰êÿ';¢)Ú˜M½Áÿy¾]üŸ`ù÷÷ï-ôÒïÛÕK äÓMd¬’Ü[Êûyf÷Vð‚¿ @Å!„ã(³Š42Ͱ™w1€®¹te0€^½ Y…àv1€Þðý(;ÔI1¶äÈop]'mUs·:LÙ7iÍ{;LÙ»=Ⱥ~që*†`i²A@vïäß]v”ÛOZça½ñ@#ðTßê P €‚(;Ú†úë:††r¶O‘±ƒ*–ÛCþV‹Ÿ³(ià.ÀR? ƒj=$@KüÐ"ábÜô:¦ª’äªRÁ½#Æ;èt9rXL4@¦·C …ÞO×hÈŠS ës§x€Ö‘'w:¦9´_TÃTïy:Úèì«S4@IèC “¬HÛAÔž"½~Ý!œë;ô>%)@uŸ bO]õÿg"Hô¹ùÙ'RYE¨ù?UïtÀÿy³ã‡bÿ®ðÞÆ™h™VÈ)þOWÇðUmpÙoùç쟭zhýË£<°þ‹ È©Ï8u™Ï|²ˆýܱÂñ'ŒUpÿÜzžc¢1æ*ë[W-ò1³JžbÿœNóû€ýóõñaü“eëBãßh-ʾˆËþ ;àÀø'‘u"iÍÞÞ!ûçý¸Ð·lêÀúÿ\Ùq/úOÓŸeþлçþððï aË98 þ¼ÔŸÅÈ ä ª æP(x@ýY4¡@*Œ-Kë€ÿçÖž¢þ|þG³¡R@ãü ØEP¨ùó~G[!@Ä‚Ћú³M¥ÿ½¨?³/ðIêÏkˆ:€Ö ìÐW8zq¶bárPò6uŒ¿{TyV£‰êǼ)8‹Oì­´zo4h½UmÆMÿzѾêм›½–¤ܺQi'ý§TúÏÛ]æ º»Ñ;˜ŒµcZàº=N m5ïŠÏêÍ’s'’¾\1¯ñ¯‡å‰ ùÑ ŒÈ!¿hò®Û3ç ½Ar/ê·è)BÒ¢½~­YA[È9ï­åØyÿ,Y6–ÞÞ¥vá=l4Ð-µò¢më~:P€’2¾ýê¦O;˜o »#Vç`]’vÒ·[Fådmôz  RÍÐ×Ï[`r¯ËäÒO¾m©jS"&FoXMþÏnúp†ª¤»ï@Zp€¬,sðN Zÿ'éaƒ ìYÿg 6 ò‘A^ôŸOÍí’ ¿8àLÈî^­»>¡ †„¤Ãþ¿õÒ 1µ¸ÀdŠÎúùëË9™à® Ðu}$ 5ÃH-}¥EÚ©8ßò0 (‰Mÿ!°ÿMG.ûñïÏ0‡B¼ uJhÜD™;ª=·cí+ÏäIºL)/ „íYÇhG]8^Q|˜@*˜MË9 §¢ñ¬ùÞD$†J‡9uóÉ¿cñ/•É%Éÿú¹C´i`ky&‘äÏPD1»v%››AÙz¹n:æ¨æ*Z‡¤fï\´¤A«†Ãö€tRÁÒÑâ×tL:sE+ ä]s˜ƒéœ´g£®›@•ÙlÖ@]”+§8É¡ë–#qaMD1‘ Á­œH‡PXB*5ÁŒf eÑö_Â9GÈ~› T¡ñ䟹2°<@üÉßQ¬Ÿ­F!9ïb¾@Ò£ž Z ™Ä`¥N]f#@ÄÅAÀTK ,­á’ —韌h )ùM uùóèçXY³êT ¤¬Ùñ:&Ö|VéVµæ›^±À݆²@Š5†¥‘½ÿrÒ£Ë,¸~MzXTçJúr`ÖØ!Rɸ©…V¼Ÿ$ˆ(ÀÞÒ>ÒçtôùöK²:Ë`ÖLSÁ<*ô@*˜·$ÐÀ0ñfÀüIn—D:êø;OAQÆ•*ä€vIýáó«C9 ó§<½@ ¤ø5í¹ãÈœk26þñ¬Ò“@ô ¦=" kº ýÆ¿7•V?cø§F5º×ª`ÖÂý¤*W½J §òÀúÉ`þä,¤DÊ;/¤#†„õØ(ÿ;5j£ÕÏr@hõO]g£î§uqð7ƒûs.¸Á¡žù‘ mÈ‘ãK÷'G&2aÓC•4ðÀ-&a¿ôЕ«,CdÉx šù—äÿ6"íMa“È€…Ň†Õ¯z‡@vX?D äH@ÆñÆý*àÿy½qP.†+i H8‡HG¥!äOõ§â§ÌOßv °$¹ü–8oç?§™ ¨?W£‘Õ`÷«Ò-†öx>VR"Ÿ¡è{éÿ'ZõMÇŠ†š®º™u"µðQ°•9$~ñgqÿArs9Zö¬ï d®ïÞ… AQ"Å|ص€A¤|H èÉ€u×NypC6WƒÈWm E~Èxk /øè˜\õM&UóçÚ=I‰û.ŠùS4¤×d µâ "¾PÐOñ’÷%L‰œ²Qa 4/Ä%IR@áæ#®ËT1Ò]ŽÜ´>MÐ)Íæî@’ûJa‡@jºùábd!?|ÏJ#èÙ([M{úSˆ·ÅÖA$ó¼C(G’>4Ê£“Bó÷2·‚LêEý¹®<éà‚ãLîDr¦ë8:9± zQ.õ<’ø÷+h[¾.挩cŠQ[¢ ÐRô0tã0‹9*Î éJ 鯩Y'" éÆEüŽ@zqkqôbÿ\ª»d~’áTN‚ù¬@Ò‹Sål[*mqtátã8Œ¢ø55F#€ª (tã¦i¨éÁ‹Ô¤/úâ]nów¿ÈÿHÄ÷E|}!èÃÅ&¸ëQö"j¯·W $K XoŠ¥^öÿRà+ Wzê2‡q$Ý*ó7ê'08J„§[8jÙ´Md`ð³”°T%•ñ"d„CÂuH.}ÎO¤–¾Ãmëû#{ûÆT2íÔ¢ÿÌ¡äBª!7¯¡N×e:ú¸Ð¶  {«ƒð)äa8<Â}â€6ë¥ –Mí¢ŠE~;Њñ'I$æw}‚ÿó°Ô;)z`Øu]§lÚ­-uT\Ïßìˆd¾0¿)¯œž7êï¹L@j÷õкvf/ uÝÍP’7®AVÐy£8€^±’ñ€Q¶è(Ð¥òº$£ø(¢Pcà+$]¬Ëd£ nâ èB™dΆ=\¦©Ï òpèÍ‚’µ6.ñ•‹¥|¸AFCYÒ¢4.ª\¨[×Ùó#Ê¢x—„3YF] h¼ ¼âQlpKM- hãš–‹I«VQË@Pb:©F³Þß[ô?Kåa§d¡j²µk}ÌîPe ÓºA&|M"Iê­ §ôíî4Ù6Ê! G‘€.5W’ÙiÆÄ3L»êwí¼ãó röÑ9)ÈŠ\:þ»ÃW¸‡$Ÿ+9É~QL ìþÉ•¯B¯:ëçÂ\"‚5:–¬Z®€b½™Û@ªT¦n•Ufkë)‹t½Þ^Q€çT÷L2Îzpè»ae†Û0ŒVoÚÔG ÇP›!ù;Šh©Ò/gÄΟWò3Ã;ûçÕxˆJðr~©ýˆï8Zü,ý ¤¶ŒŒ•Qn@¼Œ%¤jì·˜@ÕaHZA&bP¤!˜@oxmP\Yvd×r£ص ÙŒ¢]êí ľ’«€â± CF1-W¨gèËÀàå Dʸ¶ÔÁ{GøîŒ@ÖÏ«"1€ÚW‡½'pð!ºNrlF&¨@ÃÎ3 €RS HÜ-{Ð „Ω ý– "ÐÉ­7Ájóu]‡:&çS’¤»Ghh@9>‘qÞ¶ÀœÝºÚ›:Á}×Uè\'9êpkðÀ‰/)ÖÙÃö›G]&MÇ|ó¨Ì~è2 ³ÑYãÎúŠ p€ª¨/,¨Ö¾ ¸›Ô˜àU^f‚ôºGì?ê`ÏXT{€˜®FC~Lp€n)©õ|.²@ÿ£œìzÄioBJq``¬GAÚ¡Ë,rÓl"•Ë¡>ZEÿ¹ÄÒ”‰©I´3Èp“É I‹ìŸdI¯ ìŸó"©HüH@7Ÿ·@ÿ³¸ÔÐ4Ó!Åð¬¢þ\*É>«ÿXV?"IÄUîOÓb›â†Í½Èý)uûSÕYsð©HÉúT¯òCMÃðZ ̃Ä_Ð5dHÕØ+Hº@þùZ4Eþ™.ŠYÈ–5†ê'€EîO ‰UÜŸ"ŠN¿a]HØæŸk´,[TÀ*îÏKÜL“h;ë:ËÞ¨™Ÿ?/. LÑVQ¬.âXXÐ# ÄŸ"‘ ¤}š‰)âO)ÞµQbÏHÒJÞÏË €} O3BmEŒÀµ1\º1bº¶ú a‰­âý ºn’ [Ÿrã8¼>‘Êɱç,+Ü j¸Ê¦’ɵõ„æè„ÚOõôdße4”µ%éSpœ(—@‘ò⮬qxqrw–cÂ4éåk"_%ëf¼'àhä„!hOùp7v·¯l1ˆü»HìÑT²©cJŸ–ä³/RA U‘$ÿÕŠñmÝ]fEýy Sk0~(¬Á˜U^ÄšŒYØ ÖÀPzÏú( c åõãuÌFôðè:¯ Ø:Bòê¬#>+/É:ìY©k+êÏWHÙú/hŽ.“>œˆq‡kBÒü:ÞÀý©žÚÌ7¤(cK@vý1îv!ʘ}ŸS!Ú® îÏkŒ¸?¯=iàýQ/SþŒøh1ô÷cOÚ„wWÎD5žr’6UfÃÅ&¦ú( h´þѪ”íQeiñÛöGM\Íñ…Åa ]†²« œ?cS–8Æ §dEýy Ù?/†‚ìgþ™—J7-Mˆ ˆ?[Ì ïÅL¬·ƒ@C?%˜?o†ÆÀü©v±Tå¨ÅÛº°Ù÷•CܳÁðŸŠÅš©ÌEÒ¶âdüòkÛX±þi3ß>]ÌùCAX S }ûü.4û¯‚ÐxˆX4!í§’Òv4˜ÏÚ5xdžÂÎtLj¤E ûM¸–å'ó5Œ%G&‡ùo{1©æßV¦/5Ò~ÞÍÚO—éjŽu¯¬’‘ìMù!#ígÓu5º~M5vnùðÐé[9‘l¬j|Ì âŸ[ð´ÌrØ÷ë¿o?¬°Ç†ßEü²«o?˜NÉâî$GéèÍiD8šfƒúç° %‰™>¦Êï'g¡&²Ð>í¶›*ìMHúq®‹äº½ªΑ/YÒ·ëåñ÷v.|øVÄŸ7£µ»&7]Øð ø"Šø³?G¿ÄŸj‘j5Y–£xr¦ƒE¼Ço7:eç,"¸V»xz»÷râî…9À„/|¨_tðÁ¾Áùél3Ί/{M·L¤ç“åºÁüær¿wq~ö"‡bø5Ž©WÑõY¦2r@¨€^tö‰,ÌØUà}/ &“å·AûÉUµÄa°¶0”ùAän0~Þ:º½T”Äm@ÆOY ›´oŠ2m0~Þ{ƒðóõµM|WÐ>¬?WDlh€Éú¬mb°‡„؆ÙL^ ?ÅnœTxh×ãná§Rܤ?œó•È„èq»Iø©j“MÂOÅöVì¢éVd°çË9··vùÐfZ/-Kž·ÃÊä pëüöç!e8®ŽÚçJkàÖ—çk˜œ?R6ÛÑ)Ýé×m‡×õààûTwOcP뺎¡ ËÀ,àßçRâ€òç–ñRþÐO: û¼õ<†¿(Yõé૞öj8¤û|súG0~Þ¸ö¹ŒŸpg?Å—r$›Àü¼áCÂOEà ?µD(L¡‰ÖŸëŠ’?Kêžbý½q ~½ÊS|Ÿœ˜ÀÄ €¤; ý¹òñÝgh]¬‰ºOW ô€îS{ÁÙ˜›bDJ Hð}^ƒ÷ Q$-ÅéÒGWN?N“RªÁÄ„¼;Eÿ2òî€ñS†ß™˜.ÝôAøyýéSüo1…ÞÌ)ÂÏ^ãf€í¡Ò¢§?5[=‘íŸ8Ç)EÐY#SÐùkÀgOþÈöѤÑþ;_c—©VimêS²_´– X™‹M'¥Aë‡9½S”Ÿùs„8L{DÌßr!€6±0œH &ôÒŽÈþ.ž"ºãé’Hï^'íÙþ¾N´ÒŠÑŒø >èþÅLôƒ †²-^ä?±²¸©¼RšèHoÛ‹õ³× 9 ÅÇì`Ãxú¨í9b@š@]Í+~Éj¤g7î°ïDJPºdˆk¼wPšöóâš d¢ÍM€Á²«ÍÈ©‡ÚB’Ç»#Ñ”w@ùe½‰Ü‘¨|ªUHGJa°zÌ2ÝÓV/akD$¯ 1øÌm©IÓ\µ™›?¯GZ®ÈFñ:lZÆ 齬ÊîD:êÎ R‚Ÿ %?À|;QØ~kÒdV/Ôtó e ÈŽä,\o1öñvsÒ2ýXD²2ƒ‹¢¨8²>_N^ö£×X&ÇÖLË{½ƒ¤ÞC.'Òur#Òß\&9 ‹C‡Tjbë×€üó%]Àÿ£œešÑh­Ù‹È—1$XûÔCÒavðs‚NìÓ)÷ðä]Ç,D»ŽAW68€Ä›ˆ¿ÉHcg”EKÏ"6ßB=¾ßÚ5t™èòy/!Îf»H Ìz‰: „Ü·eo…ÈàØuH²òÏ‘FÙƒX€­€ò#êòåXƒHÉýÉÏÐ@t´‡¢),‚+xâŠ,-S1ŸÚ@ËGˆœ¹Cd!¾ut žÑxgÌo ?Z…ñû;|¹û¦:ìÙûó:š¦9”$¥,|ƒ–4")' ÛZ¯ÎQ&XØ(ˆ€Hj—üóèç8 \¡È?é¨@WŽÏ4È}…u߆¦ñA+4¾ûj \nØHMam?Ü”ÕÀüy%h+î-ÑŒXR#0éäv"寑i8ì¤O›b?œB¾öJ[ÈãÜ7òuÚÒ±—¡f´€7Š„ò¿Ÿ¥Ø¢F›; ÌŸ¯ý³àÊ5í ÐÿÈ£;¢ø¼µ¿›É›ãj+òÏÔž“Èd/s'²Úëãùóµ²Èü¹õ B §€ùg“!>¤ Æ!Ò­s"7‚Ò@üÉFŠ¥ÚíXäü*[{…ÄŸwÍâã¢>G ¥ÐÀwí¾VÄŸÙã­ë <eÝÆWø_hé뤇zég¸ ?ÇáÇ$Béo6€ÿŠïÿ8Òˆ,D,n×e*¦'i3¦Š“šÎòï­@þ©‰^4”«LßAÒòOõ2!w».\öÿÝ. +Q Y2â ®âÎ æ-’ë~>Zh¦(ÆEæŸÅXìŸk3¬; ñìû]Šýó%’ÅÙbëc‹-a©QìŸÑ— Á5¶¦Ó!d@䃂þsÝe¾Å€u14ÉCµŽ-No®sЮ©· úÏk„ Ð^ŸjþÓ´DAÿ©ÖŽ@¾C‰©r{ùoã¨ÌÒuÌ¡õ«ë8{Zp–ô½«Ò‘¢`¦-ò脎‚ûGâÎáÑmÉ)¿“Y ìo`e¸SÐÚ@w2«áp˜XóAÑS¶L¤ 7Öi<º ýº¡[¥eëZO3yG_P}6øuŠ“M‰L.Öi@=̆: Ù̳q ÃÔ…Y£í0I Ç‚û@šÝîe;ÛxÐÁš`› èâ `€¬n’ ˆ­Ëâ•pM'X@ûR90ïš®üNÖçøsvúŠkOjå:d¢>”Ï]$ ™óîDȇx0ï*œ!'“e“Ð.ÀÑ%¦b´[‡ ôôrí”õzºýó"ê à;,G\…Ç,F´ùgGy ÷E‘€ÞÙ(LÔáñ ÁúWãc ŪPÕ$ ¨¤ü\ÈRí&²€:Ÿ$ 7_1 k^a‰ ¸×3T<(,<7—X@olešæsÂþWI_Ÿ`}Ý ö¿æRÐ]Ò¤•Å=A4È‘ˆ—Fákޢϸ×904aµMð€jèsŸÅê ¸NÂ]×q‚T9û@&‹ÿ;‘¬·_ƒvø„0§¤KÈOð€jvpŸ䜣u”etø±#àåP åͱ¥%õé& $ݹñ«¿ÊÎuÊAQe 4 ¢V¤hc¤Öx@ï»ZO9s}šïå·žï`Ö6*kï!¥ÓC—ñ¯ƒµ XJ@ªô.f è”—»ÀmœüJ˜«¸à’Fˆlôs"c°@z]õÐ)OduP`)q¸RþÇšæ èx¸¦W—3ÇGèh•…¾Àêþ:ë@§.Ý® Ì‚5Po¯ôÄ(™vè(úlBæ×–X9jT®`í-‘ÖPçèÑUÊK›®âp àn­bŠø 6ášÈN0¨¸fÕg¨ü>‰Ç†Ÿ»Àê›JmMhs¥´Ödÿ<°è`—.p€¾Þf1uU¡RÖ,¤ß0ÚZâAܺògŠC»Rþk‰Û}-Äh7Ì·eš± ëv¨r€û2tN…hï3 hæèHUgÈB_ u6r!äv7UÛÃdY`Õôž@`5À6Z†¬R% , 7˜¹ œ½S”+§Øù" ¨R7«X@¯µÀªÂ®D¼V(1X@oüT…èˆûVW6PÑñL¨\4¬W±€Þ´Ñ‚á¿X®z{JWÛ4ôþ¢ã¾`ø_«cùïúŠY°€ÎI»zt‚9€Yw¯[*]Vˆ‘T±_ƒÝ¿#f»_ôdÂüÀö2P€^‹Ù`ö«;&ý) „ù‰ @Âë¶&thCÿ¨euÎ PµMbˆ7@5øÄÜÈA¶~é^þõ0¬£àžq ë¿ÐèÐvV  ¯Mo`½Qëè2××´.:c¬ló'xpðt]hBœÜœ8¥K¬@濫@*Ž!CÀ ® µ/N.‡ ¬}×—ã¶øwe'hqÔ€Š%»MTg°">2g'ÍG› `yv ù{UÒaS tƒ@yp¬¢„ÜѶ J[è²Ò7*‚®% Ð+lU«‰² ¶Pi¯ý~°âe\ìL®r?6) õZöÓG56Ô?w=ìkž¼øþhÂÝTc]ºúFº:›ä?,Ê d~sv›toÊÜîu®ìînä©f7Íq€{ËšªÎ?•¼„²ÜQ<Õeì.Ú XÈ»«ÕnƒúGüñ`÷/]fï}´Éþ£@Ú&ûLÐ âÏ»•7‰?ýÞEö*AÚC•Æ0vJÂîËûiBŽ},” p£R{"ŽÝ¹Ÿ6Ì~‘aòá^€5ö:‡%ö:ÂÐq·t£ý)~Úãø¨+÷‡¥ƒüç–ÄîâýÔH³ÜI ›¼ŸÒ{‰ ìžÅÔ4wx?oºÃê7U(l°ÿܺµmðàZÙÐ7± Ê\\ì?uˆá^0H6x?5å* n4ª– ÚÏÉØåÞ˜ä@ª¹@ª6C)ø]vü>>u€Œµ½A}x÷áÆ +%%6€šÜ½áÆ)”²Éíz;£ú3ÍX‘'2æGîƒàEÂxd¦—¤ÄÇðå.ÊÏWälûÏËôÙ {Ó˜@úÿޏ¥‹£Ä^ê|;z¦ï¢ßÛT‚;„p&ÁƒÁÇ?{Hú¹ùBÏóûðÿh œ«pÝS¬Ÿ—d&´cŸ‡Šà<°cÉKˆ×­·~L~ËIöÚ~Šþ'ǦM"iÈÎû­ÖþÍhŸ&'îè˜Ôèb$ „=Ó'§1!×tó¢KRÝÈýÏý2¼Ÿ¢¤#¶sϦœ@ð©–ût‹Í ‹”Zg§H W¯ÔŸ·8ù $ã­D`ÀÃW=ãAk(Í3À~(Ïþ÷çË#:NœBõg¨,C÷vØ—ˆp^çæ€ýçëœbÿ‰rÍ£c¨`¾°ÿ˜ªN±ÿDÁ%\—CîO¹uÜŸ·¥ã ªÝzÀÿ£¼@ú·àö¬¿>Ü¡Ý?´ŒA·T ~Œ RgRFÒ¶@âkì@jÚ ¤¹‡W.Óÿè>`RwU ÷âo6ÐÙ3(xR­;àÿ¹ñ²âÏ} ˆ?¯qu`üß‚þ³Å0Ì?ãÿÈ%?eüߤÉÐMSð¾Ýlð¡ñ/wæQ òÈ´ô Åü)?o&î€úómqpÞ…Cëÿ~pÞò¬s•em97wuÈý©ª¸CîÏó:É-9ºðþfl)€¤wüùì;'÷§bOòÏ›hu2ÁÉ>tÞÄ”ƒüóh±9É?åƒùƒ K}<ÏÃwñbÿLuëDÒ¤½Œ¨À†ci:f¢"F…ƒh8Ýçø°?I}+ÃAþy§ƒýSÏ‹üs]ÛÓ;òÒdêòϵô˜ ÿÙY “¥®È‚®×I†:~‡."×®Ë|p|ÞP·Ÿ·;êCÏ*"8M3 ÍÚ»ÏôŸ×µðZ{©(I"iD"ð/ùÖÁÿy_ è?o™¦Oˆ2Ž•„ù8ÈpÜí¾ñ)2W¾À©ÌÄÑ•7Âp‰ ×%fðFEtËØÏ;Là ½n—ƒôõó@z½@óÛ݉PMY ¤¸ì9–+šä Â'JMÜo*“sÃ|26»2æGzDr£ïĉ †Ût҆ŕC. U4x‘€.Rwßhšîü³Ï"í›êôŸ·öÊ÷/|a„’|£Ð~ê³èYûåÿ„%å4öK;³X€ÖK¸œ*ÈP5²ô˜¨ÀÆAzŬ“T¡/èdøsÌÒÍI|ËÍ`ËPòd‚»Ã)È>×øs€*æëäÿ¼RÁ1Åáî(€Î_ݨ:;µÉÿÉ‚©ñ€ÿó0OHq9HØ%Óz Ù3ªÉK¤7§^Ý@ŠÈž™€@6>ÌÔ½ÎxÇâIþO3Ž j! $@%!¨773Ñ€Ó³r'BBû5‰(K É•/3‘Sg!(“@’”,¦(=¦@>ê#«{÷F¤Fú¼¯[ã¬8Ä5j½ï  Zþ´OÚ8¹z6‘áoƒa< KH qÇ780Éc9)^o*‡Q#ò] œ5Yj¿ù7çYù$’ÃÉL'dXO„ª,º>ƒHZ´ë.¥âÿ¤áÖý±m£‡,ôK/}€:" ȺîDªË„±‚DöÏkŒv » ¾øˆEºT HJ2åeÇú7M ¡;É&‘*²a‹t ¨äæ0ÙmM»£‰‘/ b é‚®ëøy{ãÙåÀ… ×Ï)M Ìc¬3~ŒH~LÅ!ÐÑ…9Éaê˜s¾‹â|…ËAaƃüo ÝÞú:ê0áˆÙ@R§w“¸9h™~ݨ Úu7Ëч-ÄíûFI§¯é˜LÌ&”@:*ßùgŽvz _:×@Xe?«ì]È·Ê>Gô ¯§t±#‘S/£üõÑ@ªH} ‰0,äPÎz`ÿ¼¦ƒ%€þ®2x!£}_Fk¨Jb/v O^Ö` EÀ|Z ¥ ÈÈds *²gQu ¬KztŽr˜B>=¢£ÖyÎÒ›{×z+P_(Τ£‡"ܦ$k •Ÿ=€£' hÓ¯÷ô_¢2†~ieýËe œ¹©§ Iá4€®©ò·5^gm$ †®Œ¸žáÞ`í^v ¬ÆÃÆk°þÅë©35‘ª?NÄ>|9ltïqÍN0`I4´RK!×ÑÖ^ï@j6½ß@jF«>8‰@ï…Áú>ÇÆ»p ýq±9躃ük¦µÏßG&Pæ|!}F×Yc~…ií?“H-~ÖAò-ËdãɹvŠ 4\¨¦V\ wÒO íãúB³v ,?íD&ÿ¾‰ša/´ nhAȱÄÑâÇ. µ¼Òà_6!9žL~a"ççU­HÑ{#@ÕÙ3Æ›§àƒê·8‚i<\ f’µàUD&A…40½Ä’ÿ©8¤rôteÙø9MgU‰†4F¨Jõi(o:¦#o‹õÁÈVšÎZŸÇê U½\ äv­¸k ? ƒ{¦7¥è H{ûe#Ò&0Æg;t2¡¨(€²hµ‡¢x}V_o"µ×UÁ+,¬@PÜË_[T  ÷ÐQt yÜ;V>ã3×õ^fAzðwŒ&c µ:§<:êÚNþ7òáòÍUÒñ±ù®ŒZRz²ÚG­÷Ê$†áù®´>4¬ë2ƒ¶ž`Š÷‘3’?„pƉ`£aß~N(‹,0¤dïe˜ stP<?%ÓÁ$¢˜@:‚W®c œÈ$M’õaÄ ÄØ^=ˆÔÊ¿ËD ê—”pì6 „,¦cú'ºÈ`RÖ‰p¦ÃÑY ŸÂÙUwªJû»AÈ*׿èÕ^T@ŒÐá\®Md~‚+ÔPžõB %÷N{~%ÇFT[ŽV®M¤ý¨×Öx@-~ƒ2P°+²(ÍM„J”}Åó‘ø÷A;ñ£;¹}$z/"Ð;C3 jOm3GP[ëÚÅ0„Ôl¾®[%èÝÀ†Ø…fë“vi3€ôîÖ™¯‚¤D>©Ë@Æçsð€ª(,®|< ÌfÀ˜öR•2Ëh@—ü£@ëé¨ ‚L ±=2ò2ÁaËdÐeµÕ«ý*xäÌ7eO þó£T}^&Ë@šà=ViÅÛeÅu`Œp}r÷Ž¢MF¥N„T ºp%èä G#0ûYð¾  ÔÂ9jlÉkJT ads¾‰åÆ (ù¤Y«q£<ß´…‡l6l÷•Ndè˜H ¤¡u†1ÕxÅ.ÐæHqîu˜ø`¾D÷ï‡,ÿyM“ „ÓšpaõMƒ>ú÷Ïk˜T £øjÆ`ÅdhºLÖÜwC5&lÚQ\ —(0,¹o$Ñ Ä¡pa5r’Qrä¬Ö|ÇO ƒW·µ÷Š (yÀtÌB¦té26ß«£X%ò9Mªx¹r.è’5zô÷Š4šÔy™¢M>¹úg£Å2Š 4“‘íà¯[åÛÒÿâ£|Ðir´FŠ(‰mŒH.ýn”££Ìÿü–›H\fÚë2¹ôg×w¨¹p½iYƒ t>Z6®1­üÉÅš":&—~o´•†C–MاƒT l> $df§K0@:É "Êžêzƒd só±&È@¯˜¤°&TH-}Nµ ¤xpIO4&(DÈÁ¦¿ÇdÁý"WȘ ÷ÿ‘ufY–ë*JŽ –Õ‚æ?±w€ˆ}ß_e”›c[ B°AྀK}6d…VÖÖEÊÒÌ4RdƨÊYùŠ]öù†B…r0ÚÁxŸ„‰¼h)óV‡,P–: a¶7ciTDPF¿lô-Ò:&ÖšgG² s#R9¯Ýµ1UÀb(}}?@L' nvnSÁ]ÙLð€ì}k`‚+ÆË¦™SÉ&è 3Н…Âr•¼Ì¬{ý•-_U9Æ ˆ©Á!0Ncé_ã¾ f?DŸ« ZyÇ'H ÚJ˜ ½Þ H@BþBã¤ÛÝu¢°:‡¹ÝuÒùúeÊO è«á‘ªê$HŽï üÛݹ™à€*vÌâÝù{n´M­ д6Sn|JCû­ †8tÖ„g‹°I¨¼I %„bÈ&Çè8M4Ħ{ƒ…!~‚tnG(\.'•ñ÷ª™BÆÝw£cºŠ:HØçmŽMWI˜”õáßfç$T³ìj_Míx5­æ`(/pá¶s²[ ª˜a(,P¬Ëb5§…øH#ßZÉýc‘Ä^c´˜y7X , c d”¯¶  ñÔ}?Z4cr¤Y Aßfµh÷3Ö$Ãçµ8ªòÄ 2Ö`ÂÕ½n1@e8–Ïk®j’P³;vAÖÅ€bù°&š½¶ (@ò*,b@eg¯ ÓGò¢ÕÏtŸ±ÀmóuŒù·EOÐa®-˜ý–½k)ÙÄtLG vÿst©HÆB1¿üFmÛ½×î‹ÐÃ%öZÛcJ-zÇçóz]é –ÿõ -p@¯ya"¸KŠè]îýŸ8íPü“M8øoÚT[œ 4•-€€î¼´½nÇèfNìÈ Vó’ÐDz»WÝ©Øg×~™a“,À@¯GqèýÚ U\Â*èºN½ÚQ}ï/VðÀ{O£Bq_Á[¡8ö‰`@,/âݽ®Ê¾ïíÿ´ 2XÖÌ*hnR…¸tÌ]´h ë:š×A¼Ù}Éçßÿ]&c4”‘5ʉú*G3ÊTK |bå/Ëøüä ¨"ïÆ¾ ¬s÷{Vûs»€ 7–cÊèä±€ØÌ›»ÉœÅ·ÚàN5Ò èµ3vãî£ûB€¶#­v7Y³Á7@Jã»#î^otwÕ*ëW±OÉÂçó§4PŠœ—ŸJ¶~Q2CÉ͹ë'Ý„BË–ÛÀ.0ªæ¸ýÎ] hXOí¡½9´ìÊ{÷× ÐP6h ª„7ÊwøÂ} ÜÝûØDi˜ÞÄÄ76p "-Ž ¨Hðc´ÔJ‰åªpO¥6]˜,¾eЀ =68p*?6f„%÷éèîì¥ÈûF¡ªµj° wí«M¨‚ô6h 70c ô–ÒÕŠrü€m¹·öt`To‚áH;e¡Qƒpi˜=›8PBa5îDhçòbƒÔ¶šNÑ€–¢†Gn2dÊóïôjß@± )¾hªÄPrA7½PÀ@+Ê),ÆÃvƒ ·dïm'qñïb:ÿ\ëÓŠ%pdl`¡WS+”o­SÉ´ÐP:B¢Ù)ÁRðèØÄ€j¯tª-Ž Û¿¶: ø×ÖÎy¡u‡º5ŒØ£d,ÉíѾF|ÔYùjæe{8§ëNö]¸ ×¸20@Çá|mñûas¶¦½ بhòÃÀíÎb ÍC£ÝÀ}»1žF¨‚} $ ¿Ç€´µ¦6@@™|:¬«B1_E‡UËBkÃÀu¦Pô…èR”šu¹1LW>$Õàç€Êïš}oE[}YY¹ÖÜW9ïí èvAà_{ˆσìܺx´q\í{ö©¸/-‚*´÷½R¶©Üé)%Æ®d6*eËÊ-c`€ÖŠ#*Ó\…z¤ý%d¹ÚÞ{Â0`£bµ³6é¬iïí‘ûª;Œ ¢¬Æ´1®Ô‚'ÝÔM>péóÓn¬æ´£e €*t¤kªÂqLB~ƒ¥î’Ð[GlT„ð§yh©:Ì(Ã2‹©Ëd˜êµ ˆ}E¢Ä%¿R{GåÞ¾x¨£¶*ßA¿…øË[-)iË ¶J3«íùÍ~YÐu÷sòM;ºI¨À$»”sêwLS{s°îDè~µáDsÝÜ?]  eKüÏŠ€Ò>éüÃŽ¶¨ùþˆ’—ßÀÿ¬røŸ“Iêý†—Úc Њ{ Å“OîíÃÅŠ$ÓÚÃ|8Lÿõ¾NÜ«¡8P@“DÀQ!Ó<ˆNS)Ù(1W{S­&CíÖaü 8 :÷;Fq'Në_sŒ—õÿT*W* €.Æ;xà*´„Bþ˜Æ¾ç@ÍQtÕù¸\h^CIgÆx_¹&vED: wùžË¨ùëŒ TáP¢ý?¦t„JÆœO—cÍaü7ã,ä0þ+` ×ÂùF{;Ìs,Ÿ( Þ8rUÀÞorp޵>Ýê„€2âÎA„»VªTUc†ƒª×Pœ‹Ó—ŠN³]c.¸‘Qè )ñB)…>„×9,ôÆyøeñU,MêMg8”0¡y@³ÂB£Ò‘_„aÓA…Ó2©âS3 ó‘’É&µñ¥*5µ×e*ÈRÞ#'ŽØáÀá @ªHA(eÒ*£Æ-ï=”‰ù k¶ÚüŸ7±sÔÎà;>Ñ} S€€.ùxÜ5”aúwP@o `y&r2˜R&2«8¼(WCÇl=»®lH/á³t³jø~%U*ìòžv þÎ¥zÁ¬^%8F¥î§•ÆÇTeû†ò“†„oÍéá¤A³Öü8 Yj\ AÇèèkål—v~M™ñóV.çQá]8ÜX ‡ŒQy/ïPéC¨‚˜N»,•Š\å2;•¯»Šã¾JªŒ**ÑÓuÜ¥˜5S ³n1HžïÚì€ ¤Ow:A2‹'`='ï\ñ “ !ót•è÷< ^gÒéÿõÑžþY{ègh=‡žw@½»‰gÈ©Ñä 'ÔѨUQ^‡mb óhöP û2SÇ8ò)aVÒ ´s@2yĨ@FŽÑ(Ú×;¢þ€z÷kOqTwpî`{&‚îåv9XÜ@ïèµrf!úÇ!TóäôNy‡h …ñž‹šºÎFÌ£³ì]v€bí‘Q¡Lù“Ù úÚÒ;5ö«Žä8 ‚^ùl°d43AïÞû´†f(Œ´œ:æðCà: ‚Š´3j˜NE˜'µ-” ‚[g•GƒX±PvM†#â€zíŠSDP¿MDЛz\1ˆ wf< ‚^Çq9µá5>Åý!D‡NòµXØ@¦ÒsÔü)íúy€ºÛ’E9ʃ%Ñô¨mê¦'Tt½qÀˆ»Såt!ôw>Ž…ÙBé¯D‘Y;æóÊ ûzÕÍæ0ðt³ª5¿ÆçYE¾_‹›ùÊ)o> Äfs̬8oq÷ù€ª¤ÖYÛ‹3«lQ˜ˆ¹2´’S³(iõŽ7Š×ÂùÑ!1W†Ük®S4+’®â•¾þ« ÇØÍª{ðŸcX«xê^œuˆ² )ç“]5Ÿ,j®cBÉ,êýQ¼^énT*>ÉôÖ š•¢'•×Ñ©°`ÙÖ• ¿&å¼WÊó™(=Ýôs&6èXób>D‚Ò< e"½êÑuÖ~Jó!Ôtó‰zÅÜ0¥¶tØ¥ç*œ’ÌgÁ^.ÀP:‚¡žCeI8(¬þ2 BÈæ?fîYõ¤gÒkuŒ¦¸P޽-ïùìjþN*&Ü ·M%gwÝPPæÏLP&*Í«€Ï}*hR!*‚¿>³;x…\ûCaV#…£“ÓtÌÇ´Á±Ê“ )¸x:*¨ sì¸E½é—ó T^ïPÖgÃh>5hÃy>.—ö½Œ´1•ó1ç Ð>ú©`$g[ èp¢ …ú\—©Ð$ÓÐæ¾Ï|Ž‚4jÞ› DPíxÍÓ_Q…¡tr™•„ô‰öˆ Sz(›D¯O(öåÚƒK.*B9깈@¢ÌF$èÒ•›<ÿdT^“àïØÎP2Ö¸?¯k”;›ÑL¡8COuáä-ÂgëµW³n.í¥7|سª„3Ú'þL—¶N³¦† 2q*†m]$LÙ§Pt©€ªb|¡4¤×´M¥ÃväC4ö\0¶7ð@WS£HuéB1nþ釣hJÉù¼€©Ä̶YÅÐó[aÎjEë,„ªgbjS[Ô¦ WY‡óR ~ÏŠÖÿ,î•Ìx7Ñó6ÿŠì†Òÿ^ÛQ!äJ®=œ[Ñ€ž¥I·e ÷oåÓØüô³µ-ÊïíÿŒ×®Æ¶þ%ððQÏTe)BÉ…\¿?ocwzª­ª*Ž¡L¤ÃLh‚2±6–œ~tÿ{åÅ„ÆÏSð¨T ?‡m´x@Oñf dÓ¯\T*^Ýv`+"À\³*–'Cò*¿'~Ê7+‹æ§lu‡"=ÏPÏìˆßk' rÖ$ù›Î¶ÚD1A£êÜÚTr$›Sl+4\x™}Qù?ã´¡¦ž6ápkO ô´­×“Vâï÷<úÍ9äsñ^ÉçjMÅzzS7O*è¯}uB÷[Ü×VP §µŒÌ£ùÝ‹+¹Pb%÷øÃ·Ú‹ þà!%½ÓƒÆX® Úè½° O1 ¬ø9Ö^Jö€Á¡dh²þ{N¿“×;‹ðý;†Ž ÙÁÝH±™•jñ;‰‰¡Dx&67CÈ™ý6§^L ç0Ú~VâÇïº÷ÁÓúw¿ëN'¿ŒÞ_-†ÏNC£ôéSo4­ÿácr¦ìy‹q:Ùÿ3×)?…!ìQø*¿—eÚe Á{µ%ÌíXÐׇ),è“ì/éÆèͶ×lð<Î)¹'4¶KøjòÓ³zB6þiXz†òÝŸÅ㙞¥/—–>6ßpò€žutk@A»Æùž ¸ße,Âï—SšX(¿Ž2öd¼a(¿Ÿ>vGntáÑ~FÓO$è¯.Ž’ñ‘N£aöD‚þ¾·C©Z­tû…òk÷Ã&9Ï¡üZî0Qƒfåô o»æ¡Xtñô ôSŒK Ú¦¦EyO"èïû{sO$Ð0»­q‡IûûÉ2i{A£5²E$ô÷éºZMAcÔ”`ñä¾ÇŠç&‘sÄî™åóìdõDý.|{”ÕÖÜãºNÍkUYùvÙÉ8*ä0üûòô,:¬³Pq(Ùô:xRñ:‹å1Ùý;×;ÍöáwµÜóy~ï½Á/J|ÑヶQÏÉà×øg´J,ûÝ‹K½žT œ œ‚g’IÁV– À:\ëz_Iú}¾­vœT qÂoK!÷æ¶Vi½˜ O#Ì8”³w´C±VvŒCñz£Jb]g<ñܤŸ#™ ¿·Ç=ÓP²‡xç{`‚>›=d€ Zù.PV>7µC a2ˆ=„XÏ=cÈRÉédá±Gžªé¥ÁÒD ­¿Oì.…2³È…[=Rv}4¶$he×Añì}JÅ™5&h¥QCICh01”ÓS'¥Qk½EeåD¿^JBû£@ÏÒä1º"”0hÖ†Lu{ ¹¢»ãê((PrŠð÷€ÿCúÝóKa  M¾9Àjƒ+³‰àõn°(ÒD*µx&]™¡¤]«-½Pr=׺¼ 1ñÃü€%…Bšµ<€bià ˆ)„ôc\Ûn€§Räs€ ªˆÅP U”Á ³A%ÿd§hÜP6 }˜ñƺqJF¥bîu"BLm |èu  @SŽA&èƒ]µP&b‡`ÑîIµ[-S|lmO`Œ¬ßWrÁX<®‡´Ý±¡fƒ[J>”ußÐ1ëcqB=§é‚ : ©%|zÏâp<Šôô®“F-w»BéÕ_Ù§ úlÆç…2w :YGAŸîú2}Š™ %Úÿc[£Y r\âÇ+\X˘‡FrA[1- 䪮N ã”M;ä‚ n`ä_òqŒƒ¹}ýÓ!9*ѬÅ‘7šÅmƒ¬µPj(cÊf(=Ç Ù`•ÝüëÒúyÖ+ëtIH“ö÷ØM— ‡Æã2&ðÐ0ä'`@,26#ØË€)r6aîñîfC»Wó kµWئ³ŒØôû‹úÚ¿˜ áöDÃÍJSÏú¼Š×èŒéx42 ½¢‰u@Wã¥Vs/àã{Öþd3…â㘔ܗƒqN A (…áö|@‚ JeO³ÖP((Áúœ`)’.kŸ¡c°';âèºa'¡@Øñ åÊxsN,1JÕm’CuÎë©Õuö‡PŠÿ½Ê~¦³ŽF .¨µ/€A…Ð …`PŒü`P†ÿ†0‘aÄö<ôdæúTâÑu>ú©C·ÉKÀD°‡ž²€@½Ëß2"œ0øÛÿ.n€éÏœJäÅ›@‚v¹¼& ¶õMö ÐÀm€½“Ët3X/dSc|šD‚®×I M MŽnå=g+"TëYbNÀ€ R%[ýs'‰ ò—LѤ,D‰I°öýq‚ŠÔJÕ6úÔGÔBÜ7݉@ЇÛ%pŠA eÕeù‘ ºîx¿BîǤU  uW«pY6ì*öF—‡’ÁóK/k#ä^›Ók#ä^‹Œµ‘`%cm„ÜkK`z·ïh "}ÎEè[iÈ&„Ý´@½³Ö2eò­ HuB`¨™ŽÈôi…3…âEÍî:$‘ˆWΨ²CipU/l€þ„‰ÉÞè¸c@ IDƒPQyÈþ! ;¨hC(9!¼n‘@×!û&”ŽÏµÖ: X ª„Y(n¯}ëU  øÅM×1di³å 41S7H Jc ¥¬Yg£Ý Ö Ñ1èâ»H Ê8 aƒRÓ¯?§Ð÷PX¨Øt™´~mmÀ@‡Ü7»H@¼u»fëðÞ ©{(™m¢ ÆP²é+W?COtÃøõGʳ/yƒÚõ&`üOò¡BIã_u÷B™˜ka%mÒ@YÌ8¦›ÀDß½6çäéÝ,í¬Wihã0±Ëðï,¥¯O›Ø€ŠéÊB @oÞàÉ¡dl³7CÈU\¬ uÈa,"Þì~¿oxªè4VÎ0P±!B!@Æ¥,Ä!t]g3…¯Q±Oô_(_Êw(q{˜Ý6h E|‚RõúO´AU¡ÇPæx»` OØ’¿XaP)=Ÿ7p@CöÄ ônoºöØvžC¸W(¬î0tãòL0=˜‘7` ¯¾èÐ&Ñ tÞn„ŠA†ÒàJpSQ,ëJz´]ÑÛhFvW(±”‹À¼¡ëØ|›<ÛÄDt ViÛkgn+ök»:À#¥ŒZ­>v¶áœS¶”ìcr%¾ ê·™(аq»2ðþcx^ökê’ØCO-懳ARáÄP’å.lý³•¿U6N(‡’uŒ=ЏGõGi¤èú$(Kð„@KhëÒ°0×[qá^R&¨ÂÜCqHb.ªeÖäDd]sÀj.¸ÞDèÈebà‘èÂ/6˜5”,“!läiµi…Åû6°@Ã¥Á‰:¥ttytCëÉXÌ!ÿ|7ëpg›ÞwGÁ2îÕ˜@7¦Î^,P|ÈbÝ\˜Pr574/Ù@Á²¦‡(¨rýC(†¼K(’FC©¥õº°cœçç T´šPªák 7Ìä‡0°ÔEç5 @ïÒºm¦(p½öѨdøáÈ¡ Øø“×#”l!Bi©%-FÛÃ,³¥Ê­[—I„ÌRÏ4À@—Æ[€áÞTk€[à7zõp«Z4g"s(ðÎaÔ2˜‰0mË—1tÒÂÒ‡} D ——Ïöeaé,$O`±f`*×9¸3uH‡gëèo¬}(,ƒ#%6uš oÃ׌¡öKBåj¢7ò€PkŽb}ƒí³Àõ p@×Ö³d®-AÈåóçC°]¦{×ùºQæO+ÝaZ‘@oU§P*6û­ŒñYJZÎKÅŠ }? Y@ŠØ·ƒÒrTÙAiÖ¯MÅ>‹¹(˜P‹l„"ùƒjš7^ Ð¥J›¡:IŽW/ÜRº`*^Ë#¬Ý¼@ K‰D¡à^-Â[Á®é[7zÛòö:k|=瑜á@ë ´ E@a5&co(Y¦0E ti=â`NBTBáH†÷îÀÀU’ ” °Œï(Z¬±ÃÁºÖ±ƒ$N](yô÷^Ç?f‡ƒ¤´þP¸¤»Çdû¿„^<8áùR€‘ KÓIeªI(ŸR×1™u˜Jýò€Ø40•Bº’_Öò¦·Ðë½O•,{¤ÔÌ>ù§c?Òtç4iŸMkË‹ª²C!tDd®«`›Ú—t°¤|©fÙR :Í“^0 ¡u–/ ïev¹¥ðÿ°þ— pßÈŒ[N¨ü]Ži`ÝnV  ëÄó]5›´ÀÝ-¬sXuýÑeÎ~¯×ÐÚ˜Cé½²¦ŽX;•aÊD ¸ë˜²e–i¡l˜÷^^댚êB8°nê ¯‡$PúËBaÕJ^Æÿ¦>”²€Úë¬ÓåPØã=r„b/|ŽhI[TX|š' tÉ. …¦¿o)Ø&2ƒ`gP?[‡°ùóæ°ü1³¡TâÕAW %C“ÖÖYÅŠAJ.æTÏ,”¢a™~`Më€ 7v–†%ÓL&‡¡8V‚kä8­L~‚b€^lX(kïzweô/Å—„R9dЧâårq§bíÛ²Êî_Z*„’M߹󹞂€.…¾†Ò)9¨tä®»ÎJzÌ¢ JÒc“J5}S n뀴󡬧ù‚7ìfh„Rk8ÔBɉ,]!ퟱô±7ŒÙÛDvÕ^ŒCHÆyôs¼h=†=ꥮZ лN¥w(Õ¶ø÷ÞóÑek‡zjø!ô~ï"­W HNÔõN1G)ìZ† )¬Š=¨dd†“Ò q6©¤CKžPì Å¥0ñÏ{;=…]¢:„’,mŸ†RàŒ¥ t‰ÊÂ{ùiâïª:}ÿû¨ŒÂÕf¨´§3T,”ÎmÑC¥ˆIŒÞIåã< +W4³ö†ø>¤V·6 µÖñ¦`p‡}(U§•KüPF…Bð ´d¢„’ü+?0BÙø˜* èÆ„P4QWëhô´%BÉF/¬Q(¿ºÅ©aŒÏ8ØŠºŒ•BYç¿·Ê!Ì™%•Š×‡q)ç'²¬þ¹ùgû¤4†ÂÒ|.…{ÓNa"–¿-*éÉÓZ'”jó´tCq:tóòäiLkÀ€ª€T(éÉ“J6ûÕøg¶yaCYhãŽÉ€¤;J· ú£¯RøŸ÷ ÿƒšóñgÅ#qË4”ŽX < PgK(Õì¹*eº~ÃHÿúü ñHÜF%]xŠ•Y­,þUÅ  4ÿ¾`°˜ –|sPYoDû³Â …¡õºŠcM…áµÁäWyâÕLF,°Õêmª;4k*ê–q›`hŽŠ×e_6h½ŽFÿÐ;ùGeCÁ†.ÆÎ›_ ¡ :…Ê+œzZ@—ö¶S±ÏäÙþáR<„Ã(sœ¨,£¨Jù…Â=i¾s@7)W¡,ÐØúÊäO»mP©õsB©­·A¦¢í÷Bÿ\–A(Ž3ºPµþ”Ë5i‹ëÖF¥â묊!\à*éºP6y*ÙÙ";øŸwZè ¬V3 eÀ5–Ó¢*J¹¯¹ʆ§bêâì…Â^u´“üçí¾8!ÓBéØ#0)¬ÏЬwx¯GøöÏìØ %—pJ ÅaЙ®Ãèz>ÕÀVÜ£»ìÅÑ£Ê@ö½Q¨í,:CXðUu)Û¾¯øŸŠƒáŒOçìqÆ2; «©åLp]Ðå\åõIZÀ=‰P6œB€*Œ6GÂë³>+ÃN胰Cipñ:K¥ÉîYó3°v @Uo-”ènþ> @µНÏèÖön´˜í…´'„ŽæÆÏP3½…òaËúê[¥0‡÷bÿܤPªíû?ÝÚ?hÂÕí;€ÿ£}þP:xLGÊ€+åè¬ OÍ^лËŠ1øÛ©8:¢u*çÃ`Y3AwÚQPYݤ  ¶|W ûÃ' Åà;eç%ýs««ºb2°ví¤Òàí@íÛŽödN„2ÑÖ°Hê jW0û@5„dº·‚²×x’³@Œ‚¡ÃwŠ>0¨<á¦u|—A ,‡b?º9韵‘ÊâÊp¯&ö”’e}®m2£²k(„ŠEbÝãPÂ-\ÇT}VºÜB1Átáo©é5x À¨ÿºuÇ~„¬øþçµx‹Ýñ #e}8Q¡~Û®bWÉèÿC‡C|Ê“V]~ Я¸¹ÊÀƹ.3í3þ¢Æx~^Ð??wRÛ×1Þ|~:Ð?µ¼„ÊŸ1ÿ¼ë¶Q ¥¬¾PÖßkË*„=¾ »h[qê‘ì›ÝŒ¹Œ©Øß+H1ä€u2Øû•ù]ØŸú…²±[ƒ™?æn¯ñO‡œö}*°?¯‹p¤2|¡Ô< ÏÈ üS^¹vçB©- Ùmc×^\ßúûŸ¿M±aÓrgu +›– ôFyX§ÃaßõíLš–.³à0g'ús1¶6ÆÝÒ½*UH¶AÝõk€ý¹î+uPí5dǦm½áÕømêb*Øô° Éuë…:"2ˆ`b ;þ<2Ç@pZs €?MÝðr?9p÷ó.¸Ÿ‡E!B1,÷`j p?µÿÊA¾:œóÁZŽo¡`^¸‡ 7~ ñ¦“ö·”ý ·¥s¬³ÊÁÆàÒYôåaé1“üy£5CèXÄbHš´þïÏ!ú““úÄ, Ø•P˜bˆ:›sºÓùúå'¸oÛu™®ŒM¡c¹ìRùŠ;"ìyÊFïÒ1Xg¸îíãÓÇ&m­çPa¾I¡Ãºy®‚Á©“&¢!ÑB'Œê‡"sV K“¡NÌJf åà3`žšSæìÒ?àÁPÒd·”‰“gNÅ"M)UrI’9UÍaHÉ:ÓÏ¢÷hÖLÐ >¥Á _Á,Ðåf‡Â"­l*Eþ šêÑuªæîÖ›_F’90þ¼Žõ¹Ðþµôž»â‘îkÞ*ÔÄGúS¼õP …Èe’ýIpu(¹œS¬N(†ÝJ~u@ÝôN7Ös ]yÔ«åÂ΄€Þ/ašÚÙ2 ‘Æ·e€ª´ŠPrJîüË?!שœo["qd!4Æ8•ªÒ¤-œXý×à}ŸéðdhHŸ^QÆ­«3:Â2äŸàOb(˜º&Fþ³iÍSûÓwm1“šüa4‘åc:d­o÷<¨çÀZ¤Yl)§¦…âø9uÒzþÞ –õ YˆÕ BéˆólRÊ¢eÚC(µšc€W(‹qJ@I0 ÅaÛÃ{_ó´?²È Læ…‹9´‰UÔ·^$2* 6“P› %ëîv½âÕ[BHP(Ñò{ÑéRé¨Ôd°iWGÙÝûœÅU%鬬„pk¾œŽb²§W‡MË`ŽŒ1ØUtA×Íbaã1 šU"ŒÊ·Út(½•›v4^ŽI©õœ¼²k Äž0¬P ɦ{$:$—sȱp£V2¹§ âV¯U PѯSØõùTŽ…-BÙÈtásr p^·rÿï•Ó±wíŠE´&ÆUKñr“)œàÚP&nµ(ÔD@ˆ_(1µG•â¦ëš}†µþ!G™PЛ™›ÊA÷•’n½ëH^…6ÊÖ…€òn2© ­Ÿ¶0 ·L](è2°°×V9ö{àŽ†ËÐú'Û€¡ñß6€%Àõ®¤ÿôDãï$à6¦†åb×ã~*™Ü¯PÐ^œñT¼üz"׆¨$Ì\ €£F[ôŸ×0¿0¨Î^fv Eš.cájŠg߸€_à¾]È*úÏÝYaI¬JòìÛ}¨S>í×½Ú>«¨¤‚,Ñ{Œ£×ÃÈXGm|?âcHŒ4àóiüÐû.ö¢ýâ½ÂÿÙþ^õö2œ"ïõ¾rµ~FFg}·QÍvê÷„e•Ëpá"€¾fƒÐTÐC6؇ܹP暟ž· š ®S±óÎEÌüýþ™ÈwƒsO¦Ü(Ë“@¨ÄQ­ØÃB²íÖ~½xƒvßûУCBN;“ƒäî(í£=æÝÑü»ýHQ£¹¹ˆïÀ/SÐW·ßd‘ÁJŽf™ó¡ä²î˜¾g1€z¡ ¡8rf]w?ö™Uvb@[ÿ€Ð1ßà ÙSfíÖ1Y°òî(í|-yo>±®“olÏÍ:ô·;öW §Í°W-êT\"”¾Þµ²J¸ÿ½js%ž¡Uwè>ÑÜAó§öª¦ÿšr{UÓ/t*ùïR'4§6¿j“‹Ã]Лž;ÎXÕ-]§3 sÁÐöÿÞBÛ»~OUsÐ0´ÁòÛ¥‹üÏ…ñw[ÅihKgƒtçömN’?hª9ÈN܆j‹–Ï.ÐE´f”nûÄölGt’¼?»Ö½ÅPªõˎؘª”3õ‘bì‡Îrì•ÞëìœÁfÙç?醡ԪNÁ4 »s²‹»`üÍGû:¦³6™[W¶ù¶ÍöA– 1*Ëb%pÝö`GSþÃl `ñPR™1fÛ] t) ¹Ã]×­{/lßÈ!{°S¡˜JkŠRj6 %T‘>íe您eíjŸ­ãoÞ n!ûÞÙ`:é 8c’ºäö7P€n¨Žäzá])ÓXLXMëþ^@€n¬Žu8øä2·Î’Ó\3ÛPaŒ«6¬Ág( ¨âÝ3ü ðºÊÜß·ÐVÐ’ý&³Ç@½Î<ÿÀu'Ò¦5m  >¸†7ŽúòTج] s96•8ºu 2•é,2“0²Ðo[9o¨=N"”¾y[``5ýš_Æó:iÂimRàuà§[ ¡¨ñ-…Úó#,•(à ިTüpµ]Ešª°”ZÑÉ2@ï&€mEÛcEbÀ¿9±´¡”_›•±B1xÙuÒiß7Q ¬Õ©Ty¾M#ÖÀƒ;ÝV ×Ö_xšõ)¡¬Z½%³L š ÅÑÐÙƒ z-0s%™p`+èݯ6p€^g™æ°ºR¡€^ž èZˆ‘ø‹¨dTåGåx²£e]JGZ¢‡¬ a›Àè6 @ox®¤TÛP6è[Wöj'S>XôÁÁáܬ¯JëûÞUµÂḇ(¨7”õ±_üAUÙ^Ó€o.$ k û£P d¨*í…Bç6%'Ž\“PàaE—qp@ïN…ôòn2liCgù.ŒAèŽ%é ™éŒÍh1¾†ÞUÒdIYˆL;6Â0ð1Ðë4tR@]_óû˜sPe‰ey0Œv„|¨¢U“²>yü¡l8LÑÉ}ˆŸáº;kZ¡‡øÐÀ€”JGЬcÇ\ ðY(“Ë,£ÂÖÏö6¨„!Ћz7 Sª{…BÇ6,)ôõ¾@½›SNÑX¡ ÆÞ)V¯Ð,tp@o¸ƒ*e0jÓZŽBß U‚1â[e~0äy‘@×àç@ÂXqηI* T(e±´V(I ¸ëßHý­×‡ 7XAÜ#vp€^¿¶8@ÍYO%”µ>!Öè5V W—¶ßÒċξÎ?±žjG…}ÍB^SA m0_ÝQ©˜…wC! ”CPa€®{-†÷Q‡èºç³út@€®§'¢°EŒ¥dØÐùò`úAq¾õ:æ?ÛÕ?åÜÊ€÷ñ±Š$Ð×ÈvÁB 9`ÂÝu@½„çù²PB˜±mRÖþ`8¸¡Š5é6§LÕè]w@@o\öÁ˜¿Ek1ØuMÇ1I±•ÐͲÓÀêºLfšXNCĽLòè]µr€ûöèf£âß–qÈ":0”$‹¦c2êþ.+NA@—¸Îë ©¡ñÏ ¹¿†‡P 4Ð×# %ÚÂyt†BΦ®¼çÇ?}àJk¹É?¿{Ág¢Ý›^ pp×Se0^«¨@±¡°ÙÃ08‹ÅÖ§ßiö”í/¨R›‰ÖƒŠ!šõÞÉ1Ê-Ý©"5HNŒ=îO`ü?…ÒfÿÙªçÀ¾±Å €;ý77ç•SÐWdù¹Ð)…ùø8ÉÐð•¡p0h,?0ýµ–:¦ í¦«L°±Ä©¢]óbûRñê…KwòoƒÔµa{Šºîöìñÿz0Ž‹é¥ÉÔ•\r€½›.P“õsÆ?-Ítë·løCË_Öhx KMÃj>‡­^CËÁ\®p½s§Ñt/CXâÒ•+@‰l°ý`ÄWÖW(U •˃PúÇ{ʰ÷ë åË e#Syë:û“[Š·w³ ¥ò¦éÙOSÖzŠPpá阮y¨„È 7€i¦„².8u–µuÏbìñ£›,-guEœÕ@Jïok1”äù£³&– Þ¨, v]ÊFHÔ¦ào‹-„ŠS"•t?Çw1j-W5k¡ÔZîÑS 4W “~…\á“ÉJ¾-æÖígh-çƒÊYïùx?³ÖrÊ ¥Ân¸Ð ¥X(=68q».³Æ{Ã=”Ô‹{+Ã(i:Æ‘óÔuaFj ¨*†R ÂÙ&nh‡@vŒÎY·ãûH £PÛ'S÷v„³qeŠ3E"»°Á›4(t‚6•ý²­“ªTÍÖçô°&c(i½žÐuû&8@ãÑXQì·(ÝÄ»Êïf"!žEe~¡TÔýÔÐö›¶·C1ìÛ°ñd®O è9X–ï§ K.ÑP:²ýžMe´ZÏð74öاŠÚ×F I(†SÈ͉¾Õåk6èUï4˜ÿ¯qôˆ~õè˜rcp …iH:¤öªM¦(@½ÓJ¢*’†Pa÷³C(Ùò{Ç:h7@€´=JÅipéÊx»ùB¨¥ÉFÑḻ|W(éÕkÆß×ÊüÿNà @.øÍhÁrÏí*pöÚœ ¥¿c‹B ô‘’µZUp.”…‡cTì’IAº÷©Ƭ ¨ÝB©%c×m]A÷˜[‡K‰Ü¡$]EÞCÉx²'BÈ}¹*w ʼnfÒ…^ÅÁ/. hŸ,JC°‚SxÅèe­  ×ï ²Óù˜€€zãd×e¿PŠæÊ2£»¤[©øÛ6 sæXƺ¦ËL¤²9NÐo¹ýÊæ‘neþéR P[jÅ€€ × ·rÖ¢Ò±kÙ7•ŠQrØ£¡dŒÒ3ÔöAòÛÐö÷½/[òσ€mµšÚF*émꀀúP¸¯P“PrŸúiœ  “‘Ù¡0DiëÊi× ò²øoó¨!ƒÊ­Ær¢±l(c~ß–•Y;YV2¶¥&{ucS1ƒº.Ì9¶~p@Ut)” QD¦„’ûÔU¶Ê@èß{‚@cïAçl¸xš”‚`±W(z?ôûu­È2Ù , ít…#ÞAë7,‡R…o0 mЇ²iÙéÂÑúã1—®óuhïœÆ»' 4,LýÁ’NSiÔøñ¶:`@Æ€ŸPŠý°ëõN=‚×C©€åæDW³é… 3m¿­÷P:Ö¡³rA§º ¡¬3*”u &‡ÞȶǻêE ©ƒz ã^öÿk€î@io)<ö=¦ˆÐ¸Ãþw\½‹mÿL*Ÿíq*œ î½”F뀺YQ:R@ï1Ã>ë‘>´Sm:&ýzÏÖ³4 0 iw¬ÚÒ“Ö Hìhì½pÏ’ùÙk †ä’’†Ðãìž½@ϼïPÕE %GU@ %«µ U(PFȇPÕZû?Ü ÐÆ¿XÓÍôÿaÕ>m¿”Ù¿_sÁ :¼ ì9ÎC‰¦Å¿³ÊÌèûÓO{‘€zUQƒ’ ¿7ú½èoAØw s~VA}c%7þM Xöãã3­vØþÚ­Ús€@*¡´ÏfA(Ùì'ó BÉ”3×0båÈø(»Fãßµ+¡eG7pJ¶y!»vT9ë©ÄcöÅ9¾;Aο‰A„}ÑAu£ÑYÕ sMvt§Š9ÖÄÛAm‡Z6—sè°èµX%2”7µo*1ŸG×ÂìÝ Þ§‡’ë¸ÞôĺºðŸãá:¤ ®9×ã©€ûÎ}îP¢0§Žéç36ŽGÉCh$À³^×IëgiÁ=$PÓ}JŽ`¨CÑŽîU8 ¨‹Ñ`(jùâkŽV妷ì³èbÈN(Eµ×zt€§ý=@ýuV@bÚíQШenRøÈ³À™( ]ëȪÁÖuÒ¢Uí«P kÏôƒPœÓÝ¡ré‹C"4oJ³A6+!4ž_Û?© ôÝ~ Dh0Ð<[ß_ ¨<®{` ÏÇT,ÖP÷©xL˜³ŒZ ¥š¿V£paí4Uæ,³CaÅ]˜£0 ¯ËÊ ÁPÒ‹Ñ—>xa@[{àÊeÀÝÿè˜Ì7]«ŒÿX.)†T⩳Ù3$¤ùÿ'бUª Ãôhc+ÑJ' DÆaJRý“62Ž0Ÿp@µ#J@§T ¿Ÿ Pq¢BaÎm×1ÙšÑÛ:L;s›ÂßvBëßôM»9G·:@Ö`~` “JÃP…Ìhk `*š ” \ÏÔ1tS×)´·Ó[8A÷SÃY±@#Ûð›ËþïƒAM¡´óÉ%÷©ûP;­ÀË6qÇtóŒ"õª™ Å ½œ‚ÃuÑt•â{~ôù æžù9¡ô¯Ó}ªÜÿP&öQ…´hc¾¦Š]nŸ .Ð16¯Y\ ›t´gSU¼ã ¨jœ„Ò?›Ã¡¤Aû T³X ½ÑÙ69ö“ — ¶(tˆ#rê×Tó×°9‹.°A!ÉF,ž¦|ÝY$Ðgéç(3=6•*ÑÇüÏPªª·ùC©jF˜„’ñ¢Øï(B[[d&@ wÓ`ªb¡$QäÊP2@Cå_B)$âÒ—*,‘rñwñ¶ÞÈB°_çD¥V¹&@ëp¬›Sô6‘‰}Ü‚Lž„{–U›ÆX<ç’¨C9ˆÉ‚Cb‚*,n(iÓÞ™`‚z=å³H ±Táû,è´†’#Y¯cr&PIÚPª@1 b¡ „[ ´Ô>ÝŒE åùÄ_ Î`/4ª”ÃÔ»+èZOÅÿ^q­{4¬HÞÊT×ë4Äg°”b(ôa4)d"² ýúº`i³3Gý’Rûr¦Þ]Ó@¤ˆñ÷€ t=P³˜@áµå/,hî= *¹’[¨°@}Ou…bÆÊìè,Ï,×7ª õgù³ÇÐc ®O×÷¯5@Œø:ib[6÷,&Pü:“b7*þvd÷Þsrk" žVzU‡†’y&cðu®¢ö,@ !ã’ Û¥·>  %æ0#…6„ôfgÅTÉݺD´ø­È«½@uV $ÐkX¯"*q „Ü•°Ån±Š×WçX¿‚SJíJpí¼ŠÚ‡±÷¬"öÝhN.þ‡‰[¡ÄËMo¡H }¶»Õ•_ÂïØÃÑfà*PßÚ Y5þ‡!Ñ(¤Ù?:ÇíU4 °,ŒBµù­OP(ÐhŠXj®‚}•4ehåPÈ:&Û¼¼£«P =l"Ý*½yK#Ú*hì" iøÄ£¹£UõJnK¸œó«&€^È äÇœ¬ JfN?¤…’Íþp½¿šý}î‚ÂõªK%ýØ£±­¢v'® ”l÷¾î…ócšœ«Æÿ¾—3«h ýp(_ê.›~ ¨†t„‹¸ñ,5ý‚Å«à… ¯‹ßn×®D_¯+o´ÑGgeÛŸ²ÏWQáâ9ùÅw²Uë,•â¾Û±Uã¿-²p@ñeº„S ³U<ÐIàý[†8û¥†S4 Ñ  %.ãÌKÙ« pñŽ9  ¨g g™:ºXh3”â.ebEÖuVŽ÷óáÆèôÈ™·’Ú«/†Ùó1íù9S~_(9Œ®Ñ¤€ ™ÿª³ò-'Vbsƒ­<Ðë¥^ÔÎéf(F¸ëöC–•#CéHÖDËÙäÀiØOÅfhe°‹š¾]fï]µËîϘ9]8šÿkäß B+Yyï¨=éX¡dóoΞ¶r-FwSóßRÖú¸vFƒ6üôî­ì‚æ&k}ˆ]DОUò ß[z9£rƒ[»€ K¨ÖPÒô¿a=L £ ‰ÍÉ`é]”éß« :”J–ɱ ÔÇÃeÆ. hn¼K85 /R风yè{•hþ[œPr9Cùw>73áCI°½ªoì]<Ð êTú7$kO&™ÞÄD˜ý~]G1ªº’‘`mq6¡,_a쇶Í6€@kª)zCvA³Ýè2Õúžœh8R´BI¶ý‘¯a4¾,°]¶̦°Àvò€ÞýcÿœºLÿ Ja~BÎCYˆé:¦Ú¾Æì¡¿kKk(?¯ceAòF&s#ö."h˜"“§(Ãê‘2+Gø."h<¶.“-É©¼ ÐÝ9›ý|8nLóÑtdëÅöqØrèmà@ Á !Û}[tyGŸý¸&¶ ‰ˆÁyª-âíÀÇLúd6a@ò¥oN TÛ|û eúÞè”A+8P(œ¶˜ƒö­8^o]Æž2h•GJÑc˜çJG<žÛ†3”ŠJÒ k2¦™JŠµÏ°kEz­¿Œ4P¦pl ôXƒM«ø0+Pìƒa²VÀ“SË@†#„5„ýJ±†êdò Ú¥òV½¬ten’ÅJ2 ㈠ô¢ B™P¸gÕ¦œæ^«I ƒd•°^;©ÖrÜ9?Û@hÆÒ[/hk›S­ ygѽm iZ“¦‘*Ç (›ºŒÁ}Ö$ÄF×~^W©€c¹åŒ8P­÷ <Ðë·‚M殤ðÙ±4Ð@eh b7‡R¡öršÛEÁwl`ÀuYV( t‰KÁÊ/¾°šëz3 «9ç’að,ÎV4Л  é1°E +€õ¨ÍnÖuÐC€wnïôL†€°¡¤MÛš^p wµ‚À]I(`ø5þ]YÓŒ¶ß¨»>„Á‘ÝùçÀ¤Š‰×@R‚S(…޹7 ôÆ|˜ÁÝ5P×^gåD06½nû?ê‹P耄Á45¢€óm½¬¬Pj"xh¦[±€b¼Ñ!¹šëï{pâà$²ƒ˜&¼ ½Ök®cªýÃÕBN蓉MÖ øs±±¡¤!»ÁÊøŒº­hŸ1v”›ÑF¤M(é½ëMOÜçZ¯ ×¶ÍÉÀ2Ž×7”Qˆ†Ý’õïŠ0€¹â^(…ûq½á‚}>N‡x(qÛüu…ûy7&C‰Y])Ð>'ã¾B‰ÆfkóM±¡¡TiJ”B©„’óO‡l„ó#ðçý‹k˜  U¬0¸µà!ÃV¬-µ}Þ{) ~ë¬Þ[-Nç|Ç þ(@<FÔ¯M%Û¾²-­-EÔ³]“÷¹Ô’Š÷Ù†©¥—áÿT– ”hûÏ$wÄÚVv•„0žJ€’›6Î…^(Ñö#óèà0Ú¤‰Ôjè|é}ôç1 0€þÄ¡~Mœ¡r׺Þ^ûOç=”ðá=s«ÿëóiGo¦ ÿ‡¤ÕÿŽ ¤Ïájh´úoÿ*«ÿ™Sý«h?Ï>êEú|Ìþé¤lö¦Q¤p?55™ÂýD6 ŸV Ï§ßF^ ÏH-áø£4¸CYùküu ¥?]M8­þH¡äc–Õÿ2)¬“öÃÜéPZÿ|ë^Vÿ³uJ˜±Ï ˆ/”üŇ6t”E¥«dbè#‹¯èóYÜÎ %›}h&ö}>›à—P:f 4‰èÛ3¹–éú$:þ^ ìÔ;ŸIãedúÆA ¡TRCB9à¢ÕGìyvJèoOUÛÿ°ç;o£qôéä|rg#”íŸI«wd‘p9RаӀî[ß (Ÿáå+çg5ö•JIx[u‘LÒjð«ÀzÕ…á]ºŠÃ[ØtÎ|‡L8.¦ÞxñÞ¢}¢™GŠïÇeʤ¥Eaàºð†3ã*öýS)Ñ[‡ìüN¼»…-‚TCéXÆt ¹z„X‡2aÅ?RÒšUÙ«ìÒ²o)änÉhéîÝa€OA„­ð97Ù^€Ïç Ýj+œ¶X/Ä[Dë¤XÂÖ…«fÃFBq¤'ÝcŽ}Ìøžˆ·Üg8•?tpGÊÄî!ªÝÐò§ZµÁyáz;€|žÉi­2$^e&¬–£'=”Ê‹ÞØ eÀÊZ:¦b集p~T’Ázq~„à @˜CÝU‹Œ>Xȵ—Òàôbû+Ìg.ë;•ÉM1 Ÿ‘PvÝ{, µoCøo(ŽÅÞÖI¹qÒܳ¶4BiàAa*ÅùÑv{ñ]M‡, j0Xàž‡&“ÎܤV%¹o ¥ €>ïç0üB°Q¤eª†0ÈehTÒîï›Å€ÝßûïhÚŒº°Êõè:ôäa|]lÞ ¬ŸÞ號ñ¡T ŸÉÖ5Šõ3Æ[egüèÒ•í³  ]Ø”tæÉhc (+«Î‡ÒðìCǰŽ1Ÿ ´Ÿvô6j.ˆÈ–Gg±†íQ¸ŸŽ1h ”#ãV³ x½1ÅPQÅÕ+zà¡J¶þ}Ô–&Ù0S‡G;]&½ØCÝ~L‘4¸…Ïy_q¡~–öB‹ÅÊéG˜¸P&ü“| Q›ƒäX`×Ë4 ðöZë©â…y·Â´½0ê¡|—rc£ù³Ö](¶T×1åÈfBT(,Hì:&=³“l€PðTüÒ매rÊ|÷(V·¹”3½v¼~꘴iµ3ÊFVÛ1¸oƒY;¡øg"àaW³ë箇c-‡‘:bÎØÞÀûíÄ2îíÃ+ìk›*”\ʉúŠ#?«ë¬ƒ6MAFß^ÊqŒá:ëÀA¶b(ó³Ôü ÀÒI{ŒšAà' I„p>uRcÈ_8Tð¡Ý3‰ú1NÛóA<§¦ Ú§ŠA†²0§lÃÌh ȳhŸá♺Õa2A û ë“Áöíö†Â4' K‡dD}알¨7-'X?wèŸMéUK×qì^us¾SÜìgtŽB³# µ! Ø0?g±~bX¯=Ôt]fÃgÞtŒ×ˆ&01ðoõñÙ“!§ÙìS[S¡t BGÊ ˜®SAÞ:kÅT‡ÌuÈ·S(¹11Ý|s"¡„qä¡4„Òñ÷è'œÜüzóbQï! ù}C—‰¶¿¯yN…ÔcŸQZΉÆ/WÇìSØÚPjSnÑj˜ûT&Cûv]—©»2³'i?+&hŸBsY…è΀ycäšØôÆ >7VtƒM«hŸ±‡ŒÕåíSô¬`j97<¼*¢2ä<˜X4SÿÀ"@±™?Z€D¾/b!¶îTeY]èÃCÛÔÇ‚‹‡^pŸ5ÂB© é;,‘ûFr±Í#6?xŸ×f˜1IÌ€µk¿-ïIî›Ü ÀO…X†Â@|âîÏ’+7²|aX .`ÞÎx]y£_™”¢gûpY}c(a|.ÕŒ²UCÿR˜¿Ûú•„jU•k…ôš¤ÿ#ôósLΦUSþÅÔ å`•É—>P˜µë¥f%*6ämÀŽ]`þ`~[…}Ö6ü@Ä0$Øp?¯· ÜÏhœ xŸŠ´O¾ªâ}ªF„-ð>UJ0”É,FDÞ§9•ý v³EÞçý–à}Nm²/ò>} ÆDH²-rß{ôÂ*àîZUY„Tø ùó{Ý+Zþ㇓ÃZ婵×IiÕ^ã¸`1Ú¥d|ÆÓ8H.?§sæ\`þt§WsmP™ÆJZB½ÑÒ]X¨¬J(hfzä¿m=:–{ës™ê7`¤_ýÉ*"R¦Ô„¾fƒw5d‹ÞÁ£¨?¯é J佨gœ€Û©‹ú“¥Vf}¤d|R'¸!Ä×ðVXÌ©aóùmÝ…ÀÒeÒjŒ¯¶èÏlz© ý\ŠFX5ö¿ÇH0?U|ϘŸ"_„²ALqeþíåûÅ{´EæçàËÙÅü¼]bc! bJ(µCÇÀP&C•…!ä^x£}uã/<«U6P68ØsØO…bÚôG'+ºÔ¼EnBÉ Âo¡,¬2±7¾‹û°áŠUVñÖe|TÝÉ{ó³ÞõTlõ'ñ<Ò«±˜wŸŠcÜ9TàÕåÏë`^i㩊}å‡F°ý4††RD(m@?…ø´ Íú*è» Ÿëº€ª†KŽŽ™È½‚wú9§^àPÀ¿ð(Ûv>´«žD®Šøiæß Ùjš·š{(iÜÎþ:&[“¼bùsb¼Ç, :° Þnyçö„‡[;Ö…ËÏ€$ôÎ ªÏ>ÍWQ3BÐ`­Uþ)¦+ú'~!³Ð?Ýš~󪕂e•µ–aC'e¶´‚­ E$O€=ðÏN—Å&üsªÇnX·LC±ªµ‘‹Š©³*Ѭ\KØUļ󯊶×>CA^B…”K[—?Îov^Jÿ$lY«Ée1‚qvñÞ91¤äSwzŠZšYîl³ÿŒ¸þ¥cŽ?oü¹šéR° eÿõãû½]±X–l—S“Ã&îÍÔ©€¾1sû®8–a™Òøg5ý~4‚õ6¦~ É?çÀ*·ûöì¢Þ¬ «0[Í£+gÓß“®¹ŒYz¿,ýÓIi %[þmV«€\Úw*¹Š/«k¬›j@£i[ˈÿܪˆ¸d5Ý=›¾èJf ‰sL‹ ¥1K|SØ×â•°1‡#ŒÕB঄˜¤4—Pre· ;….nŒV+ôí*Ùþ͸þ²š ÆÃš]¡ `l0(@0  -Oˆý¹òj5䨡s0öâ$ ?·¬]úsß_7¾™&V8Öl¥hK6@Í´ê èOÓìoµˆ_¼8@—Ó`ŽáîWûƒ¼i5Ê Éx%öX%²½(¡”cã¼ÿ4ŒŠðÎY Ž  ¦¹¼usð?Â=ùŸAéÂlî`Â]ÏZÅgÏG§ñ†•v&½ae§èQèlpÞµžwÄ®²ƒ•-Ç—²8ÜSØ@=mb˜vá`rp€”zlµ’~‡Cd¥ö*(„lÿÛôeÀº“OÕfͳ°ÉSéO¯¦P¸äº•×뺰’„k$]_+ëôî×nóËb.2ý ŒÊ‚…‡uSÅ”¤i•¨èõÔÁÎ~æXtM§¾°»¹ÔBuÖ€ ¥c•ÉG"TcðjK¥Lî16>ÛhN¨¦OH«,Âw2o¤]i²ôâ]£ƒªâð¡¬ïÚÏ7ÜÜ t®dè;¦ƒ§ë½ñµ¿é¦=^ƒ¡ XÅìÒÀA¯GU( Kc1´MýBSò vUœ PÖÊ1/ÐEfk¼*¡dãwV ¥PÜ5ðžeãobç\¦•YKcÝÒ@š¾[ç…= ež÷¦¢? ."ŒBÙpáÙ ’n-‰B)îÀ€ìeeÛ¯½6¯®ÖéF%-!yL¼°B/Tµ×–}ºç¢’3Y4”xëþÀ4ò\ c^Œ?Àj½ïp r†’Í_ì /êÕob¹¨P&¾ùÒu²ùÏÊÆöô¡P…ʺ¦A“BadòÆOh5Ý|–i+ö‹?`Á©á†R9¦4CIÛVk?¯L¯ïU°ïEzñDн՜€‡×%”4mÚ퓜~¾fTœYMÇähfo‡|hú»¼2?R¹'åBÉ\íkÕºÎ:†hŠj×½ˆJµíbT:~Í:T&ÇßF%;Àƒ;„lÿ««ã7ŒHeΊçÀ/ª³? ‚ZÓo1à]ðäæeþ€jGMÀ^ý¨ [Õvx_Ø‘eì.nnör‚„ñ÷*Pûéy€‚î‡RŸ%˜ýNQnþtpc#„òrÓ6Å(Õtólü‹³?˜ öP£-*¨(sþÄ­&¼KF )‡ÂÆžÕÑU;Óºs.ê–Ápô*¨ZDt/8 ¿q/ÓkG©š€Ž¡!´¤,¬ûj: ¥Z> o`ÁÙä¸ÐÝ\jykpräíEu*V¿Ž)Ð=3o¼ *´_*ø ¦³6âôö¢’muvñVTИyÐ7Yao´a*0Z€¡äšÎG—*¨/,ÒCɶï÷U'l(98 ö!¤‹Ï™êW®&œTPÐÔ'…lúþèÞ -¢Ä¼,ù,ƒ¡·4Â90½¶d‚.1CB°ÏF¾7Ì å`¡Åß7U¯•­¢ AM$mÏ„‘BþëoÌè µ“/ CP+FPÿï1tpû¤âˆ³uÝû`ÏŒ ¨ ¢ª…‚1tJ㿇DãÏ £²`l²A‚ zî;.*h´ Œˆ‰êÎgà§ÚذcUÅPZýšÁ¿ËªjHY,CK0VXì‹Cî•àòûÁ(Œ™B<ö9ê¾Ißrt§ƒ•;t‰ ëu°×gw†áUêÀ[q‚^Ó‡£,F=$;=RhÕN•Vívøþ½ “Ñ7ùg6|?êï… Šß °p¯ë’¬Ä¡P6|JWɨ¥Šñ€ãØÚ[Ï]X¸ˆZâ˜YLеï÷>¨×äŠt«3ye–•ãºS©ÝºñVÐÒù{NYµ¯áå¨íãÊPP…AxÆäT€Ü Ú]g ´ØÚµô$¨¶t½( &q¨ä8f×J(å*¦KÚ+†½0pVa‚b ƒ¥Ò½ý¹ƒ ºü¡ä¬¾™ìeн•2¨“Åä9 g§ÂÞA5úò2è5Ñ:È ŽÌزíoÍn+¿OU`Ð;¤wÌQÅ…‚ý½j|x'訃÷âEã²à‚ÂøBá¾5ìÙN?x{qA½ÁÙí\ÐÓh:w˜ÿÞ^·Êëâpêo•&о íçŸ .åÛ:lc¼R(iÌjkÃ;8A×v)ûkÀ옂³ZÂú{EDxíþäWlRúþØUv¿uŽ8E…²ü30wþ¢I‡BógR¨V?ô.9lý@þ®¡—áGóTÐa˜›w¢AÚ F|g)ÌP »3[Ç8œù¦Ÿs°œáu€õ‡s_Ç¿µÀé¦P|þdÐAméî&û§SÐ:nSq,®–Ž©:?M=° ¿c è Š8ðZ)Ì•±áf=¸ëœš4StÀA—¬‰^pаTÙµGm¶`A1ÅsD­Yà–þ ¥!h Y,hßQ ° לÙ<ð7tÀ‚7nCIköõ vè{ê>žÏ˜P\±÷41X³“‹©âç¢6tBùÏJn€ 25B™X½l)ß©¥œ?ùz1%ŒÂƒF'ÛºÕùx7½¢HòæŪR9uÌø{/À0A‡±¡|öªC(6ƒ½½‚\^Q=>@ :¬Àç£ø ÑÆUìía ¥ßß(SöõŽLYY2xP×`2€Š{=xáAoì™W­»wËÀƒžÎÙzLŒdê«ÓÀað²ðAÍõXE ЦõZ³°ª`Rnº¹Ã¾=ºpÌèã‘[Ìõ“•vÊ®‡Va†ùm?ŽaC.}%°zíÑþƯxÅÜåu`¦TDñÛ¯µŠº”Êœ¨ÿר,«çÂÆ" šUœÐt¼éÿ„Gû 3œÜ˽Ÿq&˜_gµêÅb|´X/6”…ÝXV ˜P…†âë3 -à‚ÖÖÛ.h1ë œPÅD†2þ^q&!dÃL!•œßšžœPÅ«„b ãªnîŽbÉPÚÎ×T4Kæ„Ðÿ^HCÀØð© ƒ_paB/‰*”4zÓu ¯Âù{¡P}M”écfL( „+Ó1ÑðhÅ«(¡¯½ùÛ¿Ll(Øå ŸH¹Rª9àN ¤ ;./PB7cm½" ^Å Baµâ¡crV¿cXÖº®†N![þbšn(†0tß:ú×íˆ ¥¸ßZʯ¢„¾¬ÅU¤ ·CñçÍ7@YL¡ójƒbBØøàCŠÁÀºL•žfÆ—W0à Yè Ô¸®1ÀàÐkúš Í­R H6 ӆܑà/{(E–Ѷ÷'( ž¼¶%ìè{Á6—ƒ«0Akß×Y˜ ¥ÌÕP’Rp8›ÔÄžü¡C 8©©{/‘õCI{ö1ýà°ÌÖÀ[˜ ¥”N_ÀõÛüjVýäƒØŒ¥Qœ É¼#/Ï]NK°‘j×ï…IÁ·˜ºöþ7¿Cqhr#&[yê_îšüGÏ뜌LRÁ(/³§v`•Š:–™²A yÉw‚n?{j˜D7(¡nü± Ñöj"•@øÊë ¥jô¾©ÝP¨Œ€¡dÀñí—µ˜Hƒ³M†,å”Ó§’„^ u¡Œ9%”É`X§²éxtÖÆÌ{Á(Á§*HÐZDz&;+v×÷@âAy3!š¿n Ýs³‹ ·ÈXM1·›‚•ݰ%8îüHI¢ÌÒúwÃè7V†%‘›¤Béùˆ›#Ø.£?xO÷˜5?¿fb3ŽlÇP ?çè˜2~ä-«È¼\ƒ -ìÅ‘hJæPoz‰7PqSß±è@y‘Me!»—hÝ5œÎò^;ƒüN˜¶vYvQBWå>@i³sÍ.›±ám›fœn(s¿ÑX¡¬ó™EjÑ“Šë:¹‚[Š.Û+¸ûP…ZKÎŒ]x Lš§ÐIê¢0{}•&¥rnYÝ7Æÿîjž†J•Kݽ¡7¦Ú+-… $߮՛Køä{‡2úgU³]‹7—ÂRÓ|F¯ÀÊ¡A„а¿%œ¿wðÊ T»|PCéXå`ßE„Ò§bØÖI»lQØiûtO‰×®è åD¸!¥–Îùjà-ª½‹WÚ–[ñAËÑ¡ XØ |Ð뼬(ÃTß |Pëü |ÐÃø–‚´‘Ê✲hCée^ þÍïÈÛ:-‡XlÁÿ…6eÀÁ­MÓ¤¶‚_Y ž^ÎjC¸p/ ÖP€&„"ƒh2èÞ |¸ë`²ž\™F2¨6 H ©ÐHÈLr# ŽT9¯êÇï]hÜ·3Ê„Ýj62èÝ ·Äíÿ‘unY²â:J ~KóŸØmIa8÷«OE™ ÂÖËÛÊkp¶:8ŽÀ trØ ‹ü_;`ƒn®ÑJ“­c:fÏ¥cŠÔ›ÂüÖ^ëT>VÇ0‡áózû­*³÷gzÓÌg©¿ž¶³´ëúRýõ÷f,ìò ^:èm"; ƒ–· ¥Ú1îmôuSA-ï šòFòDB;€ÄÝ`çÀå¿­zU{WuÏÆÒiuvg]âó2‚·Ék°*Ÿ¥ ò)8h4BÀAo\p˜(Â<ô—úM«oà…\³\˜¶=ôQŽQ ‰ cáÔÄqŠ—çT27®eØ÷”¤;` N'@¸¥æÍc—£¡c2€{ (`ƒv“ € …x c~/Œ‰€¬†Pû´š>ÉÑŽMm(Ï¥Ká'Så¨X`&0ºü¤s‡R›M„J2dÄ÷ e~ðH¡TË,ÍHå?¡!§ÃŠzAšfôúí¥ät e\¡t¬ºÇÜopýáLV½,¯e4¡¤ù } 12÷ʆf[ÌÉ>¨À…fàƒj¡t(iÿ ÑTLw*³½ßX#t¼Ù"g(;V¢Á0#Ü,±ºôÒØ@‹Í½ra^¥Š(¢7uÖŸ9¢ hUQ0*›Ã½S©û÷gUCIt+TÜ+f@„ sjFDèý>‰½« CXó†.¼°¼ºé˜âEkÙ‚ ¤­CñÏ*bË_å#ô÷þ{­ù7è)±K§i§ -ödØ[Õx^ ŽP0¸>Ê'£1¡@ÃS€ÐµÔPÉÔt¨O©Áì&j ¬hÛœŠ L Î%šЭÕe þ‡ëâö^_¯Ó–¼‰¤údµ¿«4Žh@\ P2ÐëÀõÃ'ì˜ D)åîbRrå´sÝ»9°@ÚÐÙ jôš§½?B)@èÐ(@èkÙ‘÷ÚÀ•W‡mö¹Ð™‚ÿ½¶º ű “ßøòA1âøÐ¾˜ß½ø v¿ÞFƒ$÷PVƒÙ´Ê5ùeø}Á´ ”\8-N«9¡ZŸÊy/¥×*hÄ”Fè]à`„Þ.W'#TKŒÐ}8š9¡Æ=¼CÉuæ¦T”/‘ïá‚:¡§ÉPH‹VÄ‹ ÔnÙÍ‹zWw‡’«§[4†RäîŠý½Ë\^ŒÐ»²Ç z©¡Gf²ãÀÝÚ˜*t`(IH¼é4/.P;ê‹ò]îíç:eþ‹œo$iUÎõSëGU¥ôƒÝœî‡!4× 6*…Ç%\ÃjqÄÝ7„"ß›ŒýÀüï“h«ËzY“ }Õ ÈË®¢À@aÜ.%ÝÛ[Çv« P,T¬¾òÑgåâé35YÁï—:®¼¡mh©'!´Õ> 6Vö:•ÚÌLGD¨j.è‹¡äÚigCɼ¶p‘V]qù°j÷çò•åPrç‡5_Ǥýo®Ü%k‹¡,<ôŠjCIDèbûr(¤/éÓä^¦PÜ©Ì"Bï"T¨ÑPê@+½gƒt<ýªÂ#åÔÍ[:!7£Ö«¡80¥c×RC©í,9´†’5Šó Ê|OþÊËBIÛßÜE&”²}§!$Dc±}ÝÐA{øý©0 í¡û;°í÷† eÀÖ¶ÎÊ$_g`ìÕà˜[Ïð7¨& J™>×v‡âxùYøÝ_¦˜@a£Q)ÃÇ àà Ïó:©v<á&±©XMgŽ©-€ÎK±ÏÐJ¾sÀö‡P G–*”¥s…P:¦×1Uœk´´ð=¡—ë¿BÉ™½hØP’ ´9‡’†_°ýT å“JÿŒÆ¡ N¸Ræg e}–Ý…rÞCGiýÇÞŠchÃê@ ÷TÒú_¯UBï&Û¡Ì¿(…¬\6Ì:¡,|ÔÐ1É1nSŠa7 ð`û·&s#"îè-2,8ÜzÓŒû>ðÀ÷\¥JY?ÓŽ¡ÔT°_gåÔ>˜| %‹{êæ¨j:¥¡­€xTüïµ b(I‘Ù]#¦c?3Ö@B!@‰¿;1A÷=:é` êú(¯û€—¨ôòþC)·öÁ»Øžb-R4B)7ˆ¡P8¯W¸ fÖ¦C°¦OJÛ/ Çh‡¹£ôýá iÊhŸ×µ‘DVžW;òk ¥ü †Z¡$¨vÄ’Ž­6òÖ˱Ýìë¥Õ„Á¶(âvþ~í<úƶÏîÛPÒök%¡ä`Ö‰EKÅj“@¼1­ð ­¶IJe€}?9p6@ä†RP ù“0ÐD€¹H[~†°ñ»i'ûRkžoCuº9©T£Æ}V³üZ¡zCánf%ð J¥†2Êk:k¡ ŒÏs²ï˜£G›ê¸çýhse‹7P¸ K „h: Q]×e ÔŽñîôn  ÌÍtݜڅž ¥¦vÓZhÔXÈ=xÛX;­!»mDuRù¡$÷^ûf„28ú6*5‡„¥ÜmR)ëg¦0ƒ!}Šky;Øú ‚CëÑ!>y!Ú0ÁÁìnôÃÚø^^M;ßóž" àæ ) Èäí*8¨°i!¤'Ä‹"X÷V º4ÿ6LéãPÒ S·¼€@ U¬øÛáL,¢È g›JŽûó¾«Åº‘E(µé׆’]3Ù9"€gЫhøGCJ-”ìRR—v(ŽØºbﺴóf/"PÛÜC<†t¸rG0ÙJzBMïo/$Ðë·÷"ƒ¶ÎÊi(iü!Å©ÄoLŸUdÐØ¬s^/2h T:$mÿǽB€Õõý0 fœCÙiÏKIÛo$&„Rۙɰ{áàžc|ZsÁ⦷¡¤g{ȱ %_{P…R»>p E(¹¥ñ9ºƒ˜ «È¡TL'Ëí…m;ï‰Ç¢( wxí;&ƒéúðBƒ^(_(Ùs¸WD(µ™ŸÞ«>jcvöû¦¿¼£tBNî$ÏyŸ`#uJÿŽS½à ­±o#”ôk'7› %ýÚû®õ„ƒÞªUù8µÝo(9” 9}Á¯õß¡P;:±¦Jºµ“¨€PÒÿcëLµ);ÛRñÚ¦ë2éÖÎ}?)½ÚÉzK(Ž…V[dÐøÝxË{Ñá^¡`/2¨)¨ïû_G¨ïö§¥Òòs;¦‚;ö 4¢œõjÀÓÜß‹t·¢ ¥GÖ^< Ö8×ö­RËj³Ž®«T·ÒFÕ<”´û®y¾.F}þ@AôÄPj ®PÐI>[(•Ë¯Þ ×¶¢–.èÔ8Ú‹t7s%,ÿ9Ü+”4ý¶éÅvpA‡¼»^< ölYzqAŸ¥À´4<À­³Òöš2Cøà“RÈ÷«¸B1Œó°›QXл-I(Ù|¶ÍgƒÞñxÀa/l(Y¬Xd„²üÝ~JîågÜ¡%[µðßtDiŸ9•”Æâx<U„1 ºwŠ Ýz¸¥£øpw7ØPvµ±…}÷F§b44k+–ÍMÉÎýn5¬›µ½öþ!'„:‰ËJC)Û÷ŸÎYöZõB5+'6:š¹N(^Û®#Ø€‚ª‡-”²|“@3Úç´±þJ\TJZ~›²ˆÂ=KÑùÈIàYD‡Pn«§>Šô˜énô±-3ôNÙ£x@ñ³øáI}léžô1VBIËoK¿¡üÿר10 4Í£¨ ­sc(é Å£x@­³DJFtI¡äD0¸Ü/”ð‚oÌÑŒâµvôˆ‹ w#à(*hl æRrÜHÆ ¥v3㦠¡ ¼õCÇ$±sÅ~(~-£@p­60‡’é½~ôp š¾>ëÀ³Ý2ËÏvp’ûoÎoèå…Sž­Ë¡lÄÖsÀòlGrAã§·#a×ÃA¼1 ®%2¸Ãàm™Oq"$ç£(Ü “fƒÙe„†î{6D…rÇóý³òk{“Á .Ü2B…ŠwÔuLµ"³tJ¾­é¥H2h†MA#Í(Áë®Óº‹ ºnÞ8!eXfA^oÀ|ªT§¬à¬É  ¬A ap6u* ¿{HÉ®a3“R9M—Éɽvô…R[™M23Á ¹vW™Ž¥¼P‚!eÂãÂ7ü ÷1éuÓg'èî BgmëÎô2sL³˜ ñhÖÌ"½¬q( ¯ÙaøÜ,3Ü_¼.³—KË2lŒèº>¼RÛ‡£Û,&h+7”Ê1ö1“+?‡Ö4]g!‡?tLEtî àp£ëû å÷0÷Ï!¯–|«%K&”°ü§Éƒ™ÉŠáŽ÷t«UŽu‚ zÓS³˜ í:9“1€\®9eúüY é=nœJ›ß à ¾â³à@ñpîY 1BûYQ@ädÌ…Nó,8Ð+/2¬_èL\ìyL~6f•¹áÙšž_QA›qÙP˜Ü^ºNå44ËÍ­ºõ³©T†{Áz¥½–>a€w½ôÀ‚žkp˜ ´åB(™ÜÖV¡¤ýkyT(°“ö_;·RñÏ\> »º>úð‚ÞMCIû×–§¡”ý+171hk¿Pö»LBm÷ ¢Ã,6ù!¤õwvpûÄLpsÐÓo¥¢SAO¦Ž˜(•v]¥€¸l· e÷ï/plìÚèOGn[Ïr=ØØ•1¡T¥NI¸…™@oÕ*.è%@†’Os)° Ô¦¦˜U\ÐW–uè•Ä_Ï%7Œ «¡V…@!4t§bÀ[E}EÀ«wííC¨üžŒmôÖXWCHÇ^ÙPr(l Å1übX›Zryn(Uª8úݽ<ÛV­^éŒÍjÁJ8PLó]×ÍY}h"]¹÷?W÷y)Æ¢!Î**hdhøxÇ¿éŒ5б¡’åð‚6ÿd³ÎÆT6^û<à› ¼Ž¡ËV¢–›¾úšè×Po ª iÕ¸ï\¶˜BÞa«¨ ¯:ãšØèA½ TÐ[­_¦ÏíBI§ö¾0k©_É( /Îé*0PÓúúPÒò'·‡ e±Ç£QI—v[«À@q»P6Y mZæk£[ÉõnÌìê&X…}•ÿVaAÓÕuÒö;¡¡¤íGK© AÓÚ?ø]Ÿä´yHÖVùo z§èuмÊôÚ:X‡¨¤Ã:Õˆ/¿c¨Ýô6æ…’Óúõ ÖÁ´®9r4LŸVkØÏUµ¾…ÀØSʬ)Òø÷BN¿ëˆô‚nx»Êÿ|ËD ûS7Ù5çÉ9hÁÿŸCßØÑ«¤\üréTFY…ŠwÇ1«;G²bݬP I.8nËБ%ꛀÒáûÿ&‚ý ½§1}#X6B€›ÎÝz¥'6f‚år!ú`»ø@ñ‚À-Úà=D5„BëÇK¾1ðo®… ¥ò{ʳï†J×”„R=Ê`í œýÔ!Tïå|}jÙ'·;Ò{ì%ý Æ­lCÉ€n( ß5ôOp,òïóÃwG¡BëîÊl›>;Í¿³1ßw¡A_£ÐÆ\p_‘]hЈˆƒ8™×=ÑPü»":Õe7fƒ¡ ù.4èã]Ïs N¡*l, ®Ž1{®axÞkÍB™¨ðÛô†ë{‚$Ðô‹ újJØÝŠ7\x»Ø ÍäbìÅcã·_Èd˜, Áëñ/¬-e«w(çûþ,lÞ·9$íbƒ†³ŠpoÌê ²b9|g¤â÷.‡v;ý]pЦÉ¡,)™+Sd»7â¹û«6ö/#ß4”É^O»È@¯€e¬M_d uÆíƒ}©åfDÆ6gzUœv±AÃÍXú¨ƒ_Žx}(Œ‡ôU§Ý…½x‰P*œSM{²{¦ÈЇ,×nü õmmÃ@¦¼Ø6l_¦n– HÜ£ÊÀvùA‡B¥k¯]8|Ú&S/6èû]-BPd~05í"½&¸]lÐW qôU8O-»0þ©ªÞÄSlМ•rƒô†«@BYxã7¼vøº‡î¿Ñ½: EËa Šï/¡¡ý–uöîSCè)6P|_þ‚†´žFøÓªU©Ó9=M±ÆËÿÿö7ÌGý©§à 5 Ä:×ÿÇs:ÉÊRÿ®žKR»C Cר6%â'C©F åN‡?k|£Î@ÿ½ÆµSl ¸åpÚNÁÖft5–îüÿNøÿZŽJŽ™·#à ôß«.pàÿka¡øÿw…ÐÐ0{=˜ÔœÊ@£:r(t ¶ôáí÷jB:Em®ú†½g¢IInç),èÝS0”ö+¼ÿ;1L7B8…} Þÿ!>”óíÃ=Åmû>Ì·Qîl4ßOÙÀF«ÆÖ¯Ø0}õ â‚f+n§²p®¼‘I£EôÕpw¶< ÞãƒÇé:€ˆ¥!”lÕp.ß eÀ™ÇÈvÒf¡T*Cmƒ3zÓÎK{èA¯†úcaë¾ûBØa+<©cÚºOç¤Cë›ýdPíÎÊF·$¿°a$S›Ò1&2¶Nr¤ÑxG2 ¡tö¡*c}G%ÐAk‡(LÔº®¼¿™Ç«ù^Óæq5ßcL·‹‰”´³¢ƒÆƒÇiEÍÙMʘ^=ÐÉN X¸§½>êÔŒˆ×Èum)Õu¶0ðǨ†¦Ké\æ2¤äx7^ÊÄ éÖø­5¬=QoŽ5­=ÝXÓ.–x V€Ð»Ó«[B_¹ ë(R¨Ç×:ðõ¢&箲¡0žÃ³²§–Ub+>è]æŠ×xGØÆÇ@m G«Bh¿W d´ïU újå4râ”.´‚ƒ¾òÁ6ЯYÒÆ25kØDÇ¥/¦»_þ)˶”õßmÊô…ƒUxïlb^WZÙ¦¶pŬc ëNŠBm8J1ï,6èº#½U°ŽNHl댢µß¼Z0È[¹ÿÙaT²Oc Ù'!Aê»±ƒ™ Ϋ¤Î&èFêV`Ð$C*Ù¦qgh+÷GL;ÚÞ¤I8Õ,ÁÇtªICU‡†R…Vˆ uÒ퀋¥  •çmB¦cìÔ7And=áKƒ§ônòÊèoÜS(Ù¤qT÷²â‚.s}aC‡’nB¹ýëŽÜ–Àû³‹ º° ¡ö,VžÆŠWáÝôõv zXB‚âûšN:øÝ4^`AïôfÄXÐûXœXPyÖ,èí+w`A¯»ãàXêÇõš–ü>/,èºQ‰?è·Qpà­ØX·Œã íIJAz‚‚.Z,„\J}TBò³W7˜½:¼° Þ•Šá¶7*Ùt³^XÐ÷W.VÐ÷˜â¼ªMÛkxŸ®m›šÎÚXœD˜‚ÅuLÿ]YáàÄÝÁÚ‰*áû(B¢^^èQÒåÅ]· Ñ‰Š“'êųàx±A_/–+(ÆðM}¢áL!‚_ZÜÖ1‰Htåä½XAßëÔ¦e¤'tÝeƒ^¬ ]û=B9•-]Øû× úzÙ|!£­”„n+2ó¢ƒÆ°ãºÌúZSÑA×]ˆç ýfíõÙ|0)ùÂn?jóž3 ž¤ 0¦¥CòXÜ) ”z4Jz¡‚–V2xÑA_³‡4²ÌüÆmîWî÷¿³Šà `#©´Ý+ÿåpþokª(èUò½–ï9&±êB±²Q¾ž zÍ<èžôxP¥©œ|PUa|Ðë9ù ÜF9Bhø„š>+Y‰v߇„¾_óòÿ×u3ÝáѪ=ß«NX¦tðAo`á®5ˆ¨0»kÙ ¦\w„sòMݵìäÑuO"-p<Ï#6ÓR©t|Vú[©ŒóòÀRÿ߯°_4•jQ‚a¤bhKËç—ŠcXNbÿ)`aâP©Öû{D ÓQ*UR“²°Ð.ÓT6–VòÓjÕ»šÙR1¬ÿá-L¨:™þSªE/)°¢ãWñ:&‡‹T& &9­¥²ìÊ>¯Ø6+¶5 è\Ó9åÔÖXÿŸ0Ðzﺣ­÷§ %•<²„…âµ)øÙSÎÈöèù´)áMK…¼×…“Š׸ã]* Þá‰Ô‡Tf}v7 k¼’"©Ðúï…Ï{ee*†5McPqà,:~ùK`è—/X¿ë¹,öi44±øí褅uÅ´¤…õÔGöW˜8!€5žNaâRÞëÈSÙýc&­€¡êKÅ0¶º3U]Ò ß0Ü÷¹5be`"­¡@Ñ:g®ÏÓo –o´üÖ¨E,8Ð8 Hf…Ù­uþâßú·C)•2|ôð§20m]gâëØ¡²_+SàV¼¼å$‡»u$¶õ>7@‚ /©4.ª”2Ð CkE ël)(µÂøÚ@•âšÍ@^ûð…jv¿õ,'*:šf‚Àp•_pÂ{:•É N£ÂnË.eÃó¸Ÿu°9Š¿wÿ§,”çþ¶°èJ3g[_¶F*cɶԧw -Xu—¤ð)g¦bðïšN*ªÌ}êëo‘EL¥a®§Ém”* UQúU%äÌ>ï{µÑ¦4ªÉ!•´ÿë›´$†ª'¤6j”pÐ¥Ôu³ÒÚØÚS óo#$HÆÎ‰à¾Wmh~N…‰ZÌ­í JÑõ¦Ú-½´HÐA÷b*U“«Œóï1øÆ˜Íš¡OI>Y+hœHò©Xÿ¾W°Ì¤ËÐÀÚ÷î#èÎý ó€w]Œ ¿ÃAl·Ke£µjI9(ÐL b ÿ:ôýùµ÷tÑõÞc´í †šFìþ`4;ô¨ûƒVEÃî †^—«"èŽTˆ ýÌ^„85L¤ÒÐ|áŠÒgQ˜R`(½Á¯E•ÊÆô ƒëÅ â¾×)ØøŒÑ½ÁBÒå?¥#³-÷©÷ï‚êRðuà1ôGHñOïX†¨ùµ„ìq*#ŒN2®<¦ààÁatëãuÒø7†@Ü}ó:(AìiMe¡h‚ס,”ûs¤`˜‚_Ÿ±­ç|Íz±B_A@ŸØøa1bêC–N¤²0°ÂõèS\Œ¬  Ó¬× b3~*l½§I®×\Õx0}©PÁ»³ÐzÍv¡¨#g¸# Ø“ÁD'2Î8ïôÂ… O÷ŸòæwÅŸèÕ»×·B:LÁ3Á×:£€‰ ¯Ä’© 3c꺆z!¿!A2$2‚4 õƒ>%ÅÌýÜ>¥Ae¢^·‰©àõú&,ôE÷#OÈõQöϸp´ß ­ Sk©4¡¸O˜Å{ÑBcî7)ë½¼?¶Þ/sàtqx1DtwpsÿáˆÝp=A*¾$zÑBµ Gg-v€êʧ}_+Œü7dêÎ’5îà'ˆùÿTzC:†tð¹Æ¦’ƶ¹`k`v2£ŽB…¾†ÈQ¨Ð×Oàm,ýOiÈo+šà]K ‹Îp´òl÷Ù¨,¤Nà p‚nÖ#V#â:+íi]/æöÑÕ¨×7•ŽhvPçᑎWH³é(è†É£+¥1% 7íèGaÖpwÀ º^âè¿W*b.t5ýp‚lñ£üZDSÙÈ(ã­Å í’R™ÝZ̸¥àu.4¢ð6Ǭ5ÕÏ=‚ë°X‰jÜ÷QsRô©TÂV³ÿ˜HØÊç©a>ï…j"¿±@JQ¶`¤#ª=tRø2ËF¡B×uǺ¶•S—ytáöp”vxOÃè @*bÔL˜Ž«,ö0¦R¦¯ˆs&(J‰:é †÷eÔD𾥎REc°=A :‘á,N躢Y€¸ušY” ¥pw$h­†Xq>0}ÝÐù”éÎóÁ¹m³&‚EÒåJQB—‚ÇÙPØáÏž †¯üÛLBP¼ªmJ@ Ôl?TöºÎIÃ÷Á{&4Þ$ºgaB£Vmvl餜â,LèºÎLLèb«{ ‹\ ÍCJV­—ª³ƒ©qïf¹ÿ¯iŽÚŽšóÆ0{çŸ(vþ=QaĤ;z5”e™/7aì_¬üç(W«”]KE™Y|Ð×›hÕàì0§áÔ!9öÛ×xT5ÝTÎßÝk,…¬Ì-Õs×èNRg ìÝ7é.,Œý· º\ž{‡¶¡†S¶º“†>½¨ ËÓ¬QírUÖP{?{¢=Coá*&èº5ÎEo_EøÅ_#ßšjNztåÉtP8ß9`M4YNÄ!ÿ>¼%—‡ÏjiûÖ{Lù°zíVAAÉØ©Ð‰lvM@(w:©æ ]Ø¿q΂¿]ƵÁÂÒ,µ¶ø1HD­æ¤Á˜`hùÃqvmÀ°”;[»P+ Yº¼¥µ¼a‚YGÝI|ÕNÙ¿"UTPµ¨•,ÚuФ(`ôŠ­ƒà¾$çç_k?ØÍRqÿJ*hÆ BG?Ú#….,ÍÔ`þr©–‹¨¢zÌ5§Œ²ë£ìOx±üÛáÜà€â‚ª2•[G°±\ÿ w°Š cßW¯ðM1uaãnÿR*lÆ•`ýk‘ŽèM·f?؇zó–ïGܸ æ8æÑîQ¿“Ù~¿©~½¸±*vì‚‚®[£Û@ÃÝç½ ª~¯ÿ”è~xÃ`朩v^þûæl ç»‹ôšfvƒ7«P{·2~Ó¶ ºnÎfÃI†Ó± ´LÃÀîpgU—ÝÅ]˜Âw‡ÝkÆÞ`Áq¿—TNû¼Î»+xkºNy³ŠZ÷¸#™SéÕô¬?ým¯{À•Õ”³AUÚj 4¢¥Cìóì¦cuïìÈM¾÷ž0{u íÂ.âòSaÒ‚Ovªéã÷.èMèløýŠÂ÷”ÙcHÝfOo|/¹?žöBìv8<í…ØM£Ü^?ÌxMwAà´as)pü¦.\-ǀƦbH¡˜.ìHÁ½Ùpüo¸¼1 lÓ•áø;gð Çÿývq€·I%žÌ¨T˜À£ñmt¨ª3‡¡;¦±}ÂiTÞçÆp°{ÿIÀ(Â7»p ï÷ØÐžÍB×.¿? ­Û`ø÷±`à²T6BhL»0@jÛOÅ­;•4}g7Þv¸³©wÁ@¿ÊÀ×á‡;V˜(k¶áúo¥í7ç€;Ôô•Úôýe§@@¯øà<Ú‹•óÃI@ÎàyÐp¯’ÞôÚñ!T#Û!”Oâó3 Ÿ†µ&÷^0C€Ïé˜ÑUº‰!9¿‹±Àr}S‘œ¥s‰ ¸¦›©: jRŒ«MpÖÀX¦×ê „rš*¦rvS!Ý•ßy”C{‹àѬ_/ lò ˜¿ˆ§`@‹ùTèÐB˜0U~ÏD4'íÌÌ =S½öKʪ»ŽÁ÷L9@„ÎÔ¡£“ Nݽ°¯Ï‹vˆÒ|Š4å¤AoAê,ؾf³³‘ÕÐcá×¹>K[—Á»9‚Þ æzcõSL¸[,>›{Žó<ЗU€t›íX@ëþ™4…Æ?­J\4`€îH|Šp*™Ÿƒ@NAäèv\p€nÏä)èËë;†/Oûô5¬ž½b»s¼Æ)çGžØ) ¹¥2ð† )t€0¸ý¦DØ1”"…“+‹rÅ1˜½:^Oq€^~ôqMê´ÏÔ¨Œo4sÊó'z;…›6S ÐuK‚‡®?³ÊÇ•¿FFÊDqš*ìùõÏ—1:þ <‹Iöv(ìÝä™íAÇRžqÈWÝÌé{ÄÉ€­ýp¯Pƒ3ºýoeÀÆs1ÎЏ nÿ  nÿ-GYû}ÓÍÖÅÉ9`j¯­u8³2|ë0|ž¬€¥! ºn—¶udó Z§7ûè£ nÞ£CÞ ¿Ý@)B£°a ¸mÛ6ƾ÷¾ÿ5kˆâÔdbQÜÖWư6£8+Ð+mm¦/Ì&ªpÕ¬@ q QÔ°šÔ^hS|ïGWYßä¡Mä±5eÚü·ÃÞ¦\áeµâ€¾J7¶že ÂV9´÷•*õûµ³‡Váb,þzζȱ2f ¶ÏR²-˜¾êV<¸u[gláUõÀ6ü¹¶±€t¾Îbž•mx´lݲ­½S0¬›]RÒŸ5¹ö±ì+iyoȃó—RÝê+ŠÅÀøá[Êb¢Zg:8Þ”¤•#²ƒŒÞ}­ ˦ՙb†õ£ªü[âß^N°´÷9˜‚¹{™ÃIžc¹£“¯=üdsÔ¤ÕÍjwöþ*ÿ!3 ÇÙŠºˆNeá£ø3%éɹÂù<:_VÐW>ÅŸúþûüákzöšn¯’èå„úgVÙm`øjÝó §e²^ E”m*È€#‹é ¡\gHáê3¦}‡ççèí£¥LûLò¿«‡Û‹tótÞ`÷Ji9&û>yW'BÚ¢žMíÊ@öL‡Ðìaž  åò̼ÓUéÂ;ÌþýÙ†U­d~?wÏ-Å>6í3N¿_s¸²ˆ}Àîµ¢Æ1 ­ÊAXùèÓk™1'zQ€´À8&1ø+&fu-ñ­%;÷‰mÙyQ@_Þ¡O~Ó‡W.OùG/ ¨¶¦±±Âs>³‡/®3ç÷[ªLÐà0,Ä„&7_Z6íú¨ó­ù*ãçô¢€¾j\îHd+Åã€@¼~æ[=sG"ûÞ.‡$7Ý]u¹ò^Zì¼ÿîöô©TZÞK(}&ø†’ýõ“˺B©Ëjšjq‰Ã‡ ËætJÁ½áê…¶©&•b€æ~N%û)'˜æ¥äÚõGß Ðáxœ¡,ô¼×ÀJ6×/ì^‘Jíê¶_*ì®ïR²Ç˜Ë{Ô®ì¥c!K×1ÜØä3¹˜NÇd“ñlü³øWS… P,ÈO%Ûë‰9Ñ)ñ`³•†î‹Juf˜~88@r2B)¢1õ¥øŸö‚Há`•^§ýÅ­£¨ ›ë7 @]Ö P{Ã@›I±7•êÍ(î@ ì­ß‹Jšþt¸¡äsT³„SÏße½Û¬³ueü 86@Ydf$þ¬…Ò÷­ÿsq…üO›TNµ•ŒA!m¾›˜Š£Ù}@!ÿ³ý$dW±æÂPÈ@äïþSýú¹ÇÔ¬7e• SÕ…«­~ütŽí¯)€þ¹8ŸGÛO­Ïä*ŠTeÒ!Ù²î|±Áþ$ª'•…¥ WÙ £5u°¬‡÷ ìÏ×OüSÁC(í³Â)·<—›Jeò8„’íHka€ %-žìÖTÖìôMŰrpëÊ(Æ€âÚwY«kEIÓ1eôL„2áLð5ýÓt“ ÿœ¯ ¬o±A%­žûŸÿÞ´¿×ê–xñŠ‚x8ä¶GÛúà4Â?ÙNJ-ÕÈÓÿTn(»V.ÃyÍ-avN„[á?YP¿²5µÔã'4@™ð5ÿÕÖŽír¦@a©L0­SÁkÖtsú®Ë$2]_‡ÌLJƒt 6%zMñ¡|zñRØoï›8Í[) eÃãàýêHd³4c+<>¿Ž¶ º2±ñÞƒfÓC®ë£#2|]‡ÌO_A(ëÓjÊžo§3”ƒ’0ŸÕøù;Š fôƒ†îgSi§»`½bì>–-,»M1“³? Ý¡”a»Ž±w¼Bõ³»5¶ {Ö÷ 4Nc‹ÓW†,ä’0·b®'À~dŸ¼T”ã7&ûí¾Žd5=¬¤ÞA ‘û "' ÿ¢m䳛̠ë_´¤cÔPöþ 1mÿŸýoTå®aØÿ5ÁóOk}(‰ÓEa âL*-M'•ýƒg’:цNb›1‡¦£®$ œÍÌ=zÕÊýß×à…“_Ò I=9h þ?öHaÏ/sЃy° §5C¡d4w=¿æÚ>PsØ?³¡pY‰ë˜ù¦‘ ì+öJ®f_ê»3û{õ‹ç>·Ÿ^Tüãë÷9mV0Baoý‘¢¾$§‚h#rP¥Ö ØŸj˜]ŸdlÇÒ!\U«í «JÁ`SÛWJ{®½òò¡QÇ¿•Ð>T6¢ÓUΧý/C­d뺎;ŠÁ¶wؾóÏŽÐ þwÇȯ®Ü¸7‡)PÙS©”žþdC^–Þe÷W;†}åœ[Gì|pÀ@ÇÕסÐêá;õ†¹ò›ÊÁ©|bÜP¸Y+¿ð@mBsP¨Mhì$¿i²íµ f]BÉÚ7…ØzqŠ 8°Æ¼Í¨‰GK—©d6Óª¡Øÿ}÷ÏP»¥ÌÛøJÇ""Lý@;ò?]†µ Þ…ªœÕèºÏ†08–û@}ÔÖª×!é>¾b€*m•Âþø}«7ƒ÷˜ P ˜}ccY+GㆱÎi€C|?˜×¯yýçåšÄB_$ìøÆÕå–Îb·ÍÐGTGi(ª Ù:+;øK]ö±ìŸ^cpÿ_uÏPȽ ër®Œ~„{HMŠ6*²K³áG9Z3®±9lÿþ$@•ü ]öô®bÝïù޲Îå%˜ýºËš:É0q„wù´0“¨–3çŽV l/È ôZä ôz£ÿÓk [Í`)£ËúINŸÄèÊÑ"À—Ú)zÝú(C ë~Ÿ±uzgßèõÞÇPgÞîT¸Ì„ŸEèóR6ëµú¬ƒ™þÑ1Æ1W ”ëSð2 ¸æ Ð; €@…PÈ>P”ð «ÆT…âè*?ÞÁôf4ƒ€k¦®ï98°)”×Ñ)¬Ï,3– G×=¨úÜOªÉ€-7¡øü¾ä€Ê[ÅU§mc| g£ÛX“ÁØÆèîmP5·`@¯;€ÕRùTÎß‹ìù¤^'„êLâòÆPRv˜à8 KÝ8ÆðhmTãjmØ „„´ëÝéjDÎ23S>Øn6NÃÛ“6Šš!†ŽÉ„vZï+pp¶®chÊÒe2IËícGî)„šR*§}ès`ßâfS@¢©KHâzŸC\Ì£cŠ ˜o€üvÓÁÐ¥+OP@E ¥ž§òÿ ¹N ßÖdÌ2 Ò8º áXý‹\âÑ1µQ›©ã±ÕFeƒ~Îhj®¢kׯFe ›tVÚÿÜý'@K¹æ h¼Û*çäÄl_þvC~±hBéÀÓažÂ]ïr´ªzØ­ômܳËþ1ØÎ¢€r—Èveâ\‡ø·r0ÉÕ|:ÁÛF¼¤Ea"yŒÉjº•ž…‹oðÚ¦ u— ÐË&pp7¾œ ½î@·ê3 :;ú èØ '+_3Q•ƒRÌ …tÐûêM`@ËÃMЊa¨œ¿W£eÞ•>\BmnµeÇÊ"æ¢R çŸÅAÜ20@ï<>A ÁˆUÜ0]Šûæ…ÿ¸”¹¾fE¨&ªI(úžB¨MŠ»F`ßnÝm’z/L¨é7¡’8–ÿ£Qjü&®J¾×íïîZ”Jmêð>˾õ»yÄ‹Áe0îß°ÿ#‚oîãÞ¦ª èäÂäPÖùÞ÷€¾Æ@»,Ð׸ h¦PÊòåÜM@õÄÿäÔ?AÿÙ÷£À½#ÒE€Þëhv÷2Ä ÂØÖ£]ÊàÃ.0@o>pô™è?7­¾QáÈ-0@ûfH·€ÿYóuŒ¡*‰·aÁ;.ràç BÖL¢²SHÛçv%ª,^M”¶¯ué¡l?ЍÜÊ*¨m§ß€ûp¤T•¢é³1 lçšJm>ªÄÄ"ùçÞàþÃZõÁ¿ ¾êºJ¡½9,Ä(Ô? ¯'èb'kþZN¼ÀcÄ[¸ŠÿyCæuùŸºHa·¼Y®QmB©ë–ÿÓ9 ÕΜï¹zÍÚ¤L ÆZ öyn î÷1 OÞX• Þ•¶5Õi@mþÉ(F¼jÕi¯ZÖ*7ÒØWî=Ì.À?ïKX!n• )ìöµÆ¥ò<Ê|Í_¸7Œ/Ü&ÆÀ‰‰Jí·Vë¶0æo6¸Ãa˜•®€PìÏ® öçuœØŸ·4½@|›Æ tþ)Ï~þ9†Ž)ô6+M% ¿]È·Û¡±0 ¨]„>êpHÕ1iúK.æ2íÏw{™¶ÝÅÌ»@ÿ,ÇJ¹‘PVý†G—Ùãã‚,Ð?ç‘)þ¹4G.xÿýÚ’Ëúùrýó怊 TƒÆ½Ç€ÞâôüsÊß]€^/twóE ðÏ­Ð.øç”¯¸áüOaÎýP8 t]¦z4T»ß¤î×GÕÒÎòôOѸ[¾A• «?áÉUØ@.=Ý ô§v HŠ¿©K©‚¢KC—È ®â(åý(ÚÚðúﺻº4Ž”‚ÊØÄ~*—T/m>¥­³Êð5LlNò~6¹Ÿ„R¶ ðç17ÁŸl ¥°·®ß5¸Këæß-YSG¬ýÆ6ÀŸB¦óÔ?N…Kå÷ã~üyÛ\6ü~ñˆÑX1Û­{m?o[Ææ°¯‘·ÒÔ/?yOí候aÏû46ÀŸZÖ›œÚº.æ© ðç-l‚?å,n€?o%¬"¼·ÓYÿzA1þõ´ªU ïÅ–Raû‘jJy‡Jÿ¶•Y¥™òÙåÍ.¥¹7ØŸZcSÛÒ¾£ûª3½Ó@›3<òMø'{ÛHõM£\Æ?ç§À²ÉS{]1¹§69Jå¼×µZfúê»…û®‡oSšÖgÕ£!°~KZÈ»œ[„úwf³Ø«“b›°‡S'oæ°HTï‚ÙFs;’˜ [CØÎW˜k6@7ÔÞ®EÓƒÂBÍÃtÒA®–w“è7hY}W¬kPf(Tè])© ¾ûÈo÷ÙWÕç}gΣ:Œó]ýÆÈÕOžQ™ØóoJ÷€d¾2@@®>§ÓeûG×9h°¹ßÇñÔ1Ü€€Õl•~¶NQßîT|ÈްU¥åÝøqÈü¼¿ÌOS\tÀüÜ÷¡ƒù©æõ$úÃ*ù@ úùº]à©1„õy¡!¹Å–”#“yHý¼ÖMsN<À~Êå8Ä~*B8Ä~ªÁåû©÷ûÉ|ɹØÏ¡Ël”É1Áb?4žÂ~Þ)ñ,­8ÄÀ{ˆý<²`?E]É=‹Ö÷v$í÷s]S"÷“ƒìç_ÎAcë$4ðèHýTgÂøóõ¤ÎÝ¢¬QùVó¹ŸrU@×£<`i… ¶sÝÜÈ!Hñô)ÉO:À~ÞÎÙcjNjæ‡_€ ɼK°× ™th44}vÚþ<:˵všƒ+fƒÊ@É> mzÿ¼«S˜—‰~ÿ9/½ë2†›ìúðZ:­Ú˜ûy½Q÷óÞ {þ-UÛ£ÕÓxƒ àÏÛbhviâŠBÀÒgï›·ÇŠ›ÍâÖ¨?{dñK(PïFG© ¿¹¿´K ëïs´MîÄ×=ôjk«…ÜR>v•pþû¤Á¯ÖèäGu)aþ=:ƒJ(\oƒwÝ þÙÄ2Itvs¿M€âëॱŽ-§ý¥„ý÷‡xslEœ_™7§X@ý1šrõoÖ^Û%ŒÚÊá ²©ußïûY( Ø‹›W-hüì«d,ç‡o•ôýí›T#oQ€¥ÿ.sô³gýfL9µ .ï ^ÍÚA.w~?<¥6›Ž6µIeæ£4ºV$ ¯rjûi]% ?Â^+hlb—£\‡úÚª¦•4¬S‡„Ù÷gÒ·rþµ[r*ûk EC|°òý_ß·8@qm|cŸõͼ«Õ, ê•– >§¶bQ¥Q]¦¬¾½.SVß9Äמšù$u]³: #]íqøŸ²0X¹þ=v4 Fß·nyͽO}a¸ÿK•Qƒû¿:=yèVZì€j›õgдLKmy P@·[²öË÷YH+hü¬GgMD|ÁÈR‹‹™º“\×±óqíC¼‹íºbš{÷VÀûAU ö®«”ÝO–#~¼q['óýE…Š ã2^ÐxÞ𑼠1ˆ˜ŽéHÝÜcÆ,ÓGæÒ‹Ú[çë‰Cà«úÓôýÑ6ë.¥¦€C?Ý+ˆë`|÷ŸO9A”ÿ}c-#ð¿ÅetÎÄ8‡±¥°éù……´ühǤP;8ÜË4næfÇ M²0…Á¬¼ Í7§ÔÚÕ'¿.o^A€Báo¬ñÿý“ ¯ó£cü3Âzní_6K0ÂúP«1B0ðd5½; v¿o@÷ó0càC]I®ŒŽà{›’àØø”+ˇ ˜¡ Ü`ÌËÎ)`2é뉊±†Ï @ù°•³ë)ðë€z˜^ö©…£pÅ|!S8ã€^·Ï •“\âÄŒÊ?Ó“ÕfX¡°ÕØuÊÁˆ€ùÔö i½ø?±/2ï0!Ъnx€â¹\¥P( x|+Ž›vÿøjœ¨ ¡¤+û2GÒ?ÕWå¤ÊuÐ?•4rÐàü>Ì£EÓ|. škØ H,,:ð í ˜Ì9¬(\‚«„áÇìÈßXèÏ>&g¯Ñ>ÜŒö^  >Ž^ ¢?•$òDÞ}¹BðQ33Æe/ò[˜0â/øgŒ„KJ__ÿ^ÿ¤°>ñ·ƒõi §nÄÐ)†1ÎtNº°­ÃBÂÛz°x¯ny(µ¾Š}€©`]ù{¡ 7¯Œ:„5j ¬®ºPÊðY LÇ.²ˆÎJB1²ôQÎ`p˜~QX£ ò¡ôÏ«P–±íI¥¼Ÿoj(Lç-)ûÝ8‚WÒtá/ö¶W##†‘þü©½è`^“bÈŸ-}¶Ÿï1û÷YÁŸÂ©sèðd÷3d¢»úì¹cÑ+³ÊÊwNGl1ïR½þœwÜÁjÞÝàE~î/ æ?”©¼Õ0ûeÐxJÑçüÎ;r Û«s,9"¡ (y—ÕXµÙ«øJæ.Ò‡€0‘O.Þå#%n{ )ü%…è[ëT2ˆË“S¨Y Ý—C%c¸Ö1͆cÖl¨ b€Èwlê2Ùd¯Šm¾Èá/u>+2±`õ3Ë÷‚ƒZ$…ŒážÌE(ý3¢·‚朩C&bW²V’y‹9øõHp¬xgD\)že#û“EªPȾºJÖ%Tè …èšŒ´¾ß„’Üz~ºÌA†cqûSY:Œ¸¯ÂI<³ç¼†Ò¼Çpóª{ÌäŠ^)¤ bÀnýŸ…†¡Ä÷Qñ óùËU O‚[˜à‘7P …çBÜ5…­ aÌï%ý“UíPpÛ›áŽLG‡4¯ãÛÀùWa'”†…­üðË‚ã$ÿ“-áí–­7Te×íȈy%ËZ䊣ž€{C^à¶HÁôÛ ÿ½û‹ðŸ¶õð.h*Èm¥šB9(™®ÌÝ ×ûo\rJÃpǿӒã™é˜]^/¼«V  P–ÎÚ­}ÐÆ—ÙFÅ*O³t%&Nt±')} $M f‚È,ñµ:JæÁ³k@€*S ™/)瓹ɴ)Ö8™”b&ÉUj€1£‚P Þ!þ™ù‹¾_g`NçÍ3ìÈäz ?€lHaß!ò@áð4Nò¸+üJÔ„Ò¹pبÔb!ýGQâÞ+G6ï}™L˶­×¥@ñ³šÎr8‘Ãû£$v… ¡dj¶wúq‘ÞØÈï*µ!17Ì›€ÔG§°‘¬˜&”Êa#çSØ÷*~Ê’0ÛÖ¿òYah«Dî¶åt„{Íñß«Tr–Y¬P'8£>mÌgêÜGÂÆ J!Û2¼óG’ÊJG(eù‡ïw/hÜ=ÌB½ppñv`êïþìýɽ™¤ª ±^—qdÌN*øÛë%«G_Qƒ”ŽD¡NšÈË ™º£sö?0ªÉØ]FRÐü¹JíF¼[ö"€flT²¿Ì‡nz@Ê—Nšø:NZëkZ…ºø˜Ì4·ïÏšð‚˜Kêý“Àå&¼B(eø2ê…âͽ5źIÁPž7&²¾T¼9º°á¦O ™Æ(“K¥ 9Êt*´£’†ÿºYêcÓï[U‰%eÃëå­T‰íP ËéÓ/†—~Ì­«àjF{§:BIÛo‹~z?He;RŽ¡|#N}—N(;o2¢„A‹ìÓW¤Û‰b¿K:þè°Ae"bF°Ô Nm]ù VÀ—Ê`ü÷A (gn\§ /c*hÞ’AåôŠÂf‘`è5Dïõ÷Z¡^&]–5°ñ5¥‰µ% ŽÈo7‡70˜ëùN4Jm-Íü;bÑÙDO %»+GÓã,œz#BÈF㛦¨²i5BSÈ.{ÁEC©¥U,§¤’ãü|)«ý½JS¡l,ú8ºÎ9_[ZÀ`5ýN@᪴‘ÊF¿1ð¡dšV4ÖP²Ï¾ÊIP²ÏÞ¸,%ö§v]gceMÓ1•§•§46Ö˜\k?°ÿG7\¸›$D®é%ímo¡`¡Qл“z*h²?Õ;§‡QÐølÄ(£8@ÙÔ·¨ô¯1a20nKJµs‰~(Õn¬Ø{^€)Ã0¬2‘3È…c‘%ÇJ·ÿ1CX0ŽP矵™ƒâQL8”¥¡,°Ñà,G—ýäŸVw·KHË¿¡æN°ÑPèxx&óAu‚iž þ'w· !{ì«6 % _ûñ„»¿”}öÚ±<g—Nô¦Í&ðoU<¦bŸ·n‚ZõD(i÷7ƒ8Áº‰– ¨ºøB©åµz' Ê N@U ¥ÏšjáœN@MÁÈ”:!dŸý& UR„Rv¯»èuz' êK ¥¡TÏŸ¨Hé¡ ¼ð.' Fàl*þy/çЪQ×1†¶[>â!ZÞŸY Ðÿ&3Ì€3ªÀ¡dŸ½=¯c&:ÒyUBd¨ ÝJNܦ2„\dèJíΉpŽÍY=û¢¯þÖôffq€švÑe¢íké¬j³×ü6‹úù¨4í–— 9Ü¿¹‘×»U0ÐK´¥£ádH™ŸyibPv(»nâĹÏΊaták¨:"ú,Pv *¹hÔå>Ï¢~Iã·û4:“àŠÌÂÁew.sàÛñéêÜ ¨§sà‹ÎÁ,ÐkÔ¦xî‘’Óº-ŽÕ³@@ï÷ÃПa2Q°@ï4M¤Žý°NsÝ ôe%Žêœ*](Ð;0¸†2ÓeÒ¥UÏ^(»}ÉÝ~—P ‹k¶®œÆ/|J_ʆÎC¥Á¹ƒïs#Þz8w‹4PICXxM'¥Sû4ú‘ 0Pg%=CdÛ¾z“ôCWÃ`Ö9œ,Â@k/À@¯g²":WWÃ`v¿aÑ@;ÕÂTÀËB(ŸVf²:Lÿ¡Q¬Ó—…®^©ŒÉw~uªU¶\E KÂë±:L¿½Î¢éó¹tô&ݟݱäŠmp} ô5ª¯ ^³â0þûQjüv˜ü~N€^ãÄhÑ_²’š ¿!L,˜Öh¸&Ö†‰«8 ¯™aMPc¸l+”zÅÇë¬4ýI^H*pë\gYY>Æ…ÿ_ë(úZZ7Š!s-X¾*¤ ÁZ ÐÆ•f¡ ¡ qì*hS[x(K™‚a1§éº9¯ç<° š@£Rn܃÷ßî÷Ëy É?:iÁãztáòþÙD ×ò‡ôècØG–lèNI‹ õ‡¬ƒXÎdŒ…M°ˆÎJÿŽç:pg¹ -#·@ž†³ÿ ¾ÿM§/+€õžÅyÀt#Ê÷ÏN ]&}Z­'ech¹gÑöi&§–_Ù´h¡È*衇ұpê˜4~®> !'‚¯b€jåû|&ÖEÐÒãu„rŠM橨gtó<± ¿|êà÷î„€6aSØ?.#ŸpO²þqÛö£¤6^‡ ÐÑ´´ÖŽrYL(µjšë³CX'ùd“¤œa aVÝÓ!å€f…´öHÔ†R‹GùÇÂ׿T"„Z4mLm€aÄ¡L,è<ºÌú¶ìb’:v€´QJ t1„o,׿…úx«váPò‡2ìóVm̆U1!¬óýÅÿ±ý ÃêÑ'9Y¼3àÿÜÔËžè7¾×™è7&Â(”²}½Š{"ž{_u$œ¯ã¹'Â9MüŸ›&ØàÿD¿%…>¿/Cáœ(’Ò¡½Ï^0}nwJ…sïËÐô’n€Dðì»8 Ùn¹©4Ì¿)vùÿïÛ^ð·Wºf ´Ý^£]$PAûC¨TWÝ ]‡zþf*ßì#|­øÈ§å$HÎ>X7­¾¿ ú›Žâ ëhNÙÈ}ÑÉ‹ÜÈwð]@ ¹SA" 9‘àv@nDwÔÜ`Ý`È•5Ûœ ˆ^ Åüû€Á5”†až¿Àµ·C—RxûõR&^z ô;Q —ÊÂù°B±o¦gc.U¥F\÷J³ùŸ‚ÝTÏy@ ÐH{j*˜ÊX0€Ä„ ¥à1ØQ$„bÇÖO@sÓŒ.åUkѶN‚@…ýöKNùþ/?ó$;?œØòJú@Scæi æÊô@“«7C©êœª  ;Gj)]Z"?CaJ–u ÚD=倯öèÊ8 óßéHi«Xs†¶vp •ÒV ì€t»ÏÐÎ9N1@/x)” dÅ=«\Z¹igÀô5¡‚ß\~]ç3áЪïLØýÐÃÊcðùNDrÊ£ž VïÏ™æ»`€±î‡ ¢­Bi%À—?KD×YÎqõP&“Õ‡ MŸ¶ô›ºS",‚§ —çô•:?N­*m'! ¯ð$þL*ñmj§( îßÔe6¨0H_€D Y×…IAļtÎ%”²þ¦7PgÒæì»;e € ¨ ÜL'稞ƒèF‡08n?JÇ’ª)e ¨îVõ f9 )Õqj¸îØÈî­èNÏPSFñ¸ZîûUλ?àôVW BŽ…²A…Óqàþßí¹$8ôQ@oõÉàþ_«¶GM]J-5ÑuŒ³½bHËgBÙ@µ Lc€Þ›cð·˜· …MxßV  8…hûGÊ@·LkXh¢ô—5ª5khÐ$Ê…ùìëÅYÙ^ ÙÖµ=ß–’«¬”š6² Õ/lÅZ7éc»´î×ej­‰Æë?€/àŽYG{’bMëÊéáæþi›ÝHøçÍÅØo 5m(£·¥Ôþ>ª1@f .¥Ú,ïMŸÂÆ 3`€nÈ€ÿt éVøO-s°‰Þ•ÝÞêL·¨ýý§ºíM… ;"t]§ öJBÇúwñ÷A'\[;è¶W{±,™ÆÚÍn˜®¿nn†G+iÆ7 €ìþj«nû›K67ãÞ<2€î8b ÐF¼Ú3\…:s,3¹®0@çZš‹éÍçíèÏP{¶9ìþ†à­‡N€9ŽÕ a®†c<<„LÂ8ìñ‰;9@\Ñ 7)Ãpîà™''Hó¡?h¸—ûË—/èŸ^goÀÙ+oãÅþŒg‡·Ç˜1rJ½¡Ù^õ]/ìÛrý¹Ñd!׈IJÖzÓ‚!„¹Æ‹ûöjˆw€LEv'ˆû „Rv/Ïý·Îu™T æO'ÿGÍ$ÞÑoÌ ð’ämú/IC·þÇÔ÷ã({cCMcbñ­Ò9ñ?ò}h›é{ 1ŽøŸ;]záî|ïEÿ\ª½øÔ6&=ôŸÛÅâ۳ʑð ³×pïSÀDß¾þÙ›8´¤có…ņ¤k†RÀ¢LB™`ò\%Í^›¥bu+\×ÁäÓõÙµÌDË¿|Ëò1û†åkpà®ÇìKGï[¸Œ¹6ºÑi¯ì£—×T¡ØøZöF§ý}Ë6öQîßAzýôâ®›×tÌæÈüh&ÞžƒþŒûÛNUû«žá ÁÝ?^Ð×z /èºU/7íåðè¬ùXÝ´µÏ¢ðe»…b¹îGù·÷Ñ]”!œñø÷ÓXŠw €n•Ë»9gÀ™Eb)Ãv¦ÌŸ4+ü³ò²J-‡Ò÷;‘Ê@ëín¢(ñ>fٿשuÓœ`B1öcIÉì…mŒ§8pIínT ÿézÚÀ*Pe¶W"'„ªÈí×!Ü¥u9Ò\Î2Ô`ã̘ãÃ7]¯%@f‚PjÝ4›>BÉ~ãþ¼”…å­Ý¨ /é, ».×·ðŸ·ÿ`<åþ£÷JÅq®/P6^BÀ—ÙSÐ | ôþ™}IÞk(ÕjÿÐþŽ–X9Ì«@¨J&jL* †˜S˜ 7ÌNea§‰Ót I]UmIß½uö SJCK©V§R«¦ÇOYöž›C9ï½) â9TÐ[T!Ðh‰1*[¹ý±t§ò-¡pm€ö Ë~rènðû£…²¹ÔkSa›½ë˜´{7ºí<ƒkGkä˜ ¥–˜Üë4Ø=›jB©>û·òY¤Â ¶×¨1\]Ša‘›ã2õ8™ZëXqÅUD¡6mš! øQK—)öQæ¡,ÿØgŽ·&mNhTrIop F0{½¹mÀ칪;”îšN€HÌE¥V˜Ì×Iù4µˆ1”ƒEE[е÷ “P+¹0Òµ‰šË ¡äÊÑçþî¢&«AÇTŸ=_˜6ÑfÏ^Pr­¡Hq¡T›=ó¡*°®³@ ³­èŸ·É0”Ž·óu+Ö8…0‰øÓe°~„Ö¶°vtÀQ %׎¶IŒP?_x}uæó10´]ÍÆq2…Á&W‚TïðF7ž&Öê› o¡Ôbæg·ÕcÏ7ú~5d×ɺË9C(ú•¦¶v0«]ø`á(—>†²ñÒw iüãŽJE}Kˆ,íÂtØ’ý™ø£¦/@N(Kz·Ž™]Ž”…•ðešaíÛ쇓¦Gÿ%_°?×£_ œú‹BéH%ÄPjÝôàMî@Ak/ñPͽ0þÞ´n“zo4~þ9Îg6ëäÀÉö;ÈŸF»ò絓ò§Ö›†â(\®Œ‰@ÝX¡ý ×¹w­6<:f€¿‡!»wÿ=«fv½†B—.ZïèÌxô» ý3^‡2Êü¹Ü"…ý;èŸmÑt:èŸÏý¡åÿßv¬P6Ü­-åÌ÷ËØAÿÔÏѱN'HFÛ§ÊqÇ© ,ëx¤L|NÓY üÙTÎ÷ËM¿|ÁNüg×IIJ36”öî ‹L0®öõÃò‚¦C›® WMëÓrb"W(ŽåÃ|Èÿ”ÓÞ7Z õâÝ Â„¿5t™µßÃjßèIz_¥¼ÙÅ ¦ƒÿ©UÝ£ø@)ðPW*;•¾¿OÐv_Î#–k—R §‰2 å´ïƒ90}–JCñ¿W‹Ô膅ӊzºa Û€BéXÎÒ¥L wkJÁäªÏåß–ñX§R4Wý™k¦ŸÍ‰µ“wô‹\ GMÇ >o3Q%{t :dÃÎÆq.…-ö6ñŸš{ǃa Ø8 RñËŒGk¦+qÊòÏ:ìÙ~’Š }<è²7}—–k&Bi˜Þð¼GûÁúöö;ÑÊÄs¨Äe(É }Šºì•ê²g‘;”ÂgÜJè¦ÍŽD€.­ ¡Â9"+C©D†’7¸.Ÿ{t¹´&å|c÷QP-›Ð׿¨Ï±y 8´ƒ‘ãhËû2¼ ½¾@á çêúpû AƒÀäÄ5&\ÚÅ(fL¸´ÿðo}s¤œ ä”ÉÎ ¼ÏcÂú¹¼*”ƒþ'¸A€ê2¡Ñ{0­6Šú¾ÎB_’·à¾Ôc¡½rȼ8(˜nl;ˆQ C:^yƒ wyltgÜ·f£;ƒ«ˆBI¿¶ˆPò¸ÒØ và@…û¥8ÎØ*Òx(_×uì3pCP§@`Ü)‡8Z4Loqñ€Â ø½\[¸C€×@Óè¾çŽ^û-Kô&¸†Ã¯•mϦ‹Õ¨4$p³&q ï³c8›žf×eŠh/onÖ„¼scó3ÛÏÂ-¹,±÷oýWxZÛL@©ú ¿¡T‚; …²>)¡ ë}–U3ueï.˜1? /cv,8dÇC(µÕ.W„R”‘‹ÊbËùUοÊù{m+c:>Ò@Ù¤5&p 7%3ö©dÃZ(Õ¼âs IC•9TÎq)U¡xd[´²¡!CG>ÞÄIÐ=«x@¯¼Èœ‚à­Ÿó‡Eœ[æD‘‚=#¡Ô.e$’…²ÑŽwsN´'™äÔôNÓYˆê]g!­­$ê\Ø£• ¡ ¬dBX21ÌÎq|4wÖu*éÚÖVËPÒüÛÑS/ èÝ}mÌšrëÈC… þ™Ží"Ÿ ”âÜg^<ÐØê‘¶¾µ]ÓÔ0 Ž®“ÍöãèæœúE¼Ãà€®º¸p–Ê@K4Íí`“Ö­—þ ÙLÆf E(Å¡w4acz\ºKÑB©Ý‡Œ…ÁîãH-d¡LfÓ)l” ›N*&Vãl½@ˆ{^'ùüÄkÁ¹U†d-nð@»ˆDPÃt)µŠš Õ¡l„µt× äT*:Ö_(ó¡lÌî÷'îòkCV(ð Ô¾WAAk·tkiG»ÜZ²‹CÀZ }×OÃI\q‚‰uäÕb \…½‹VB©†û¥¡â°VqÙè<¿—BÈõI†õ[4ià€Ì8S-SË=B›UDP`á¡·éYÛ=šü™€‚о [5…jRjzú†nKu’,Ö•° ÇÖr”–ée/V(í˜üº ‚ÖžP:Áø°­Ü^!”êÕPb¹¶èؾ‚».Ø~Pª`£Ë. hB§J¶(™Ü´ý EI‰ Üu¦vMëZÉ~ÐsOÄo(¾ßM^c7lSF0@(µ³ ·S@­é "¨ð™¡TqóôVÆv«.%ýÿªX   p)v‡á«Ói#¸säîJhàuÙ >Í71ûÍB@5&¼Á2YÀH«%ÆÆ °åØíµÛÆ´åžO!ÌOô± z×ü¥âŸo48ì!€Ì=Æ R)<ÐΉnOd¶5eíòÿ¼…@ÿžÁô¦17y ï³ÎúÄæ{jFÇ»1AðEXphÙß³š”~Bá¸^2Òc¦”Å\~ ²ÚnË èurô[Ñ=F^ñ.PîcѨô$”lQ€)”õYÜÊþÌE{#–“º76(^¯cþ6͸׻|ÐzLzL(±%a@ËQ‰ãðîeè„‘ÅJú³"YmðgŒo kPèçû. ÖM_ÐЫa2‹â¾GÌâ~?Ê7nC*"2yÛAÑĵTDnÙ ýY~bàä_oÇREY»€@ks/òPÖi›>+­ÿúçù{mJ=ÈpKQÿyÎi&; ‚Þøé<ØÝJuÇÐmv9`ÃqçšΛ¨£9Ô†NC4§Jxt¨®Oîà §§ÓÐz¬i + õ*hçÆÈ{šï×U°¼héÂŽ .èéÿìTJC{(Òb§ÿ°¢£ëïƒ~\ƒ&^Áõ&ÓNÁ€–Ë=ÀjßôP|}^³3ÔwߥôOêT½Ê¡ÌýžöÏ@ß=W²…²1Á†Ï@¯ÆÔãT«q&öwP@ —9c£ÐQ^X:¤’ÚšÀÏÜU•‚3±½Ãáè{Š—¸xc5tÀ«;Ä2ÉxŠzÀ¡d›Ò­ûœù/‚:•oýã,¬V~ÊïI1„óñµÏB¯eãØ{@†¾ÅŽÏ_ òPªHç2Š"ÝÑóÝhSR¬uàúw•öÎFŸ’JU‡0PM¶0PUA¥îÏAZO’sETÏà9Hi³s霺L+¡j"ÀöPÈDÄ<èüË«;à݌ı;Ž®€C8Þ€jö:f¡ŒGû3¶èqº=Ž»2†bäMW®V õ˜°@凲@åÿGâ^ØÑª!ò8¼ ͇@ ÕÀŽÿÀŽƒk\û•Ýwür [ÑßñÊ*ìÖÀtbD‚ª÷Ð%1ì*ÙÜ9ÙÃ-Ë`€ö¨[C¸‘¤ŽŽð‰>¼PŠ!Óù'É®pƒc‘ÒÇ#ÖoŸ×º”¸5”êÕ =[§×6(6ö±x .çÀ Œ8”Q·#*Û:÷¤×‡R]g÷Ã;òÊ-°pÊEØ·ÉÞ5ô°Ãæö' 6À@íÞ@à´V5û{÷Û‘7b ˜£ ¨ d¤l"…¡Ì—M”«—ÝTÿ1¿3i@ë§“Ö§gÁŠ÷œmˆ¨^c›Ü¯Š‡U[èºçv ¡ôo6Ñ@½ ¶Ñè:f¡I`S@,×ùwµ[rËT4E†ÍŠš¸|)éÏŽ£÷ico‡ñ“ÃçO*ÐÝ}$”埑 ôm±[;µN}vZ~êσ:µZ³¬@ ñåø"$4ÓÒ€:îUî¶#,ÆI@y/£ï¯ÛÕ ™-K¯Ë6v˜ºuÆÍ­:ÿ®,žj£fØ×A­P è^²D`@·Šg ¡³!ø'Uf €ŠõJC2£½Áë?Šõ 8¸ëã¼þ×7¾P>@€Ôdd­×‡;c½ "B©ª„Æd'ÔîIiò·Üæ…Ù#„ÂÆ(óä`€n®j ÅgB€áM¼°-!‘!¤„ÒñœÂ@Åzê¤I&ŒNZ cÀQô†r´: ë¿;( Z :œÐ{( ZÿJ®-Úôл\ÂA½Ñ´_ ¨®ËŽû!¥ò‹¼‹…§ÅAÚƒ²_ !󜘾^èV‚Лjpp@¯åÅ}Ý›(ÿĘPSÄ}}!@*¿y¡ßöG8eÃH;@Ã_Ç„/Â=ú“I|n N¬ÊMá O­Ü‹*„s…-å ½}H1€¸¶>Ü‘¸çèVÈ\ Lr±ð—xš#Å?ˆ$ºq({}Rè]Aé@€jãÛTPÅ÷+(‚jÔÔ5â €j…v(9‚‰WJÿ/k%TU@/úÏÍó8è?(`”ƒ[é$Ak6uàÖÖ-þg)ÿï € ‹JÁ’TÃppà8 ·‘Ä}½§€v»£¡E/ œ€E¡¤Û³He¡V ‡ß‰R¨ãþ%‡`ðøôÙŽµ^ùÿÉ’`(]ý5ê†B¦ýÔYŸôi XßUcl(dÚ›Ž©ø•àPüC]šOQß°S,ä°ùgÇòíÕ¨°ÑÞ(,4AØ ²ñ†Õs å`ØŸµÕ2GhÁ›UðOBèã{#ÿÔ¨ÊD¸êP´_:k³[¦SÁûÂoÓÑgÏ}ìæƒ¥¥|n€*z…øŸ§S©Èmð^ýéL®†Bü¿ÜàM¾)úŽáê*ÃgOu…¶Þáh(E?\úE;¹ÙKáNn. @ŸA¹ûëe¯И.CýG< ùûóBDR±*»ÍNeT1Š—Y Æ<²ò…=Z™ðeÜa›JÑ3XŸÅ>Ô†ù\ø§IÑfN¥ïwî%NB:?Û\†RDG°Ê‡Ë¤ö)ÙüïÕ>5ŸG–uƒP†–±©t´$˜Sa7ø‘#k‡Êþ-Baúº•*Å5ýª£ÍxeÌvd†90…2PµØ:f~q‡²àÙð&›jq:ä`mÅÖ!WÇíq¥°iþÏ¢éP:Z\Â@¹n*s¿¼PªÙþ‘é8VM×1µjºi$p-¡Ã°Ú­-Ç9”ªÆ1« s „²u›íñÒ4à?UÞ åÀé8ºŽ1/[?´æ }ÿÔ–>åË„‚Ž>“0ÐhÁïÒÄ1ÆØ.ÿóKkHÊŽ×Y\<êRü3ÿ5ð?ÉG û˜ðÛÿ©ÝªBø6˜ºZ—ñ/U;ZÝÏîˆâQ„bõ~ÜC*Š#‚c¶’+—R„ÒP&Z:¦øŸd;¤bŸ·¼¢z“¤ÂæbB’¶?îßÅbèoEŠ‚A6@×Òt³0”4þèQšT&¼HÁÓÞôÓA 'ͨ¤´ÇÍè"ÿf6@÷[I\lº ¥V2 ¥¸öÔþp²jÀŠ› üÌ£Ë*•[Çÿ³ëYÁýŸìx  ¿Âþ»”ûB½6¨ü¬+»–\Ça©tu¬…™bó(}ç¯/ÚKÙ¦Ää<l\ ôŸJ %²Qó„=»ÕÖÿzÃKÅH¸ Ø?•éM¤¿»™(Bû©ƒ_2‰Ø‡ 0‘…Jh¨”¶ÁæŽû_T̳ýM¤r‰´þ]f°ÿÅ6“È@Ù© ±¯<‚ÿSyÕƒ°a\ˆÃ-ëºyÀ'Ä/&(©³!(TCƒ"ß›Èüh˜P9e‰,ØÎ:§BýÞÚYž@ P ‰èO´2û©'‰@"ß1&‰ÌòìiMwЪ`-‘…ï:Ë;ÅЋþó¶!ÏŽ7d±7xrôÉ!sÌ=f|ê̱öÙ6:ÔÀf-b"ûïI>>»uošËÇËt´MË죒áìÆ+†DôŽª mνÕÓjîýBÌš&rbØ5+ˆ£tãÑuä#üCà Z}À™“ ÷ñŸEÖÁ¤òÉD =<¡“ª*ƒ±ÚD˜Œãë)" KÖ1s)Ä &Ÿ2‚ø SÊ`¥õ©šJ]fâKÜ“ Ä”7P)«’ˆ3>6ˆkàÆvSÇLÍ* ùH¤ƒJ¢é,Ê?6õn ¿•ÇÙMýU0"z±€¾y70Ú3~4;Ò!0!úB(› ›Dú [åŸûô‚?''°/Ô–MII±Ý­¤¯“GC'y¼&³ƒèÑWÙÈÃ]!Ù¨H"iR"œåÀw·U]¬Ëà}Ã,éõõˆ'àëûr7ö±©Ç&¨6âî*¯çFæ?¸Ç\óÁgMw"†_÷-0I÷—ÈFtÞt‡K)*Ц¢ÅD”<GüàÁïéÅzçÂ$2Ëàx!GðUD’ÈÆ­zq¨p!,¯ÇÏå0ˆ4T-GîÇ¢h‚|òñü‰ê%²ÚÇöf´NÝÜ!ÀQ\@IÎ{5„õtMSZ±™ x¦Sj’ƒ¼þQšàrŸ&²àañÇ´?Ü1‰8’¢|ÌŽÂJ’’$ª\Z}tDõ˜éOd|Ê<™HMƒä€_àÝÚ—ÀÆöÃg(Лà˜D j›J¤íïsB\h Z‹s d&H/™ÈbSAa@ÛuŒCÃ%óÉX;6Ç„?G DÐ8 ~LTãÉÏEw;d±þÎ<&²ÀÖ±„Ð¤ÕØ•Qƒÿm };0©Û3‘Žú­³âµ<˜@ƒ=‰œŠ¤ë‰+*Ä×r(&Pq'lî²”•ƒ" îĉtäÜøÒ ì¥ïF‘©Œ<³™™œ¥QüogÖu9owê¤ø¹Î±áÍ5j”±aÒÞ½áÍ=Ü[Ç®{–©%pLZØ'RÎ\¼.¼ãû­6œ9@$N_Z!Eú2æGѽLÖQt@Ùá¶tLsèÜÆ耮ú³¶ëî.V{ØAÃ5²Hçp®F" ¿§ )‡Žüä‰nq t"Ç£cö3Nœ~tÈF(…ë!×fÍB"ž6<Ä|dÙBâæƒäÓKùz?óv^ˆ}šÈY(ñÆ:ŸÏbÚtˆ#¤ÐtHà«#¾<›Fµ"Ì4|:ŽßKd ·q‘‰ã®ëÐÂ~6s:Mvl¯!¤VÉ™ç„BÐðèD—`¤Ì®23ló°¾6ûÙo8C‰xóŽèžöÿYl //nÒÐ'žp^?°¸à^’YŽÀ ³N8ÖèØÏ U3‡6ˆÐ¯ƒpO0‚ª=lί­1§&5AM0‚†,Ý FÐ]™SÍ£ÐN“Œ ¬Id#o†µ7á܈ø#¨J±ç¼òvÝ€!äôNï+o`•g"öÕ{Óª{Ô~ºS•&‘&*‡¡ÓuL|jtæ!èõÇæ‹NÇTiÒý0 ±m¶öÌ W@£•©Öiæ&4Âk…,L*ShsnUÛó,2‚Ê5ž`U•o"! ^y#[±´9lD·ï¶CNPy+³8Aog"Z §m‚t)®?‘ékh†Þ—c7¯„A'¨Ð;Ž*»HuOOýW¹=A˜‹1¬¸»E`jå£M0Ðn"}>C¾!4}7tå…(*ÔÈ$5¨Ô@7Ú`˜îý´Ù:VÖ&ÒE ut|o(&Hd"QüA+ÝÌ*SÚH ÊJþDU*ˆS¨A5'+‘c5çJ·C të ¨Q}lÏKùP¨'3è òZ1å2uï#ÿjZŸB¸ÔAN»ü Ú!º³¿¨ ‚µcÞŒÖáÝ),mE ú K[qƒÞ™v‰Púô1rƒ6îC6°ŸÉ1ès}ƒ.N*M¤F6uîÜ6Ðl"‡ÏÂRv¨^N« m ¦là÷[Í?£ú)ïNž·5P·{+rÐ;|.ÊÓ•kл8s^²0BïÝàß…ÄßÀôª½ÝŠè´ât"Õo"¯Ð ÚC ÄŠèÌ’Ó1iã>›°‰ùïMÇÀ%x·[h$Õb lr™ ü š”ˆ}’Þ— UŸ•Jxö#QYšn©ÞC9“f TÒòœfZž\÷Ë€ô*Û¨>ž¯³Î¸fºmÌ,&i}"GÅÏGŸ¡ë.âCúò… ÜDƒCÀjÎJ\‘„? ¡pÓ\C[a¥˜Sú]— ìK¼5vÿIÚ¢DhÞÞc:|@˜Hבo>«ˆNª^+YÒvèA›¨68¡¾þè{ÃÐDÛ¹ŠèUÓ°°÷ß_¼ÍûiBæ»1)Cäz=°nÙȆ~…åš»LN] ÔëÕTvg9hÓ¤žD‰uR•n(|´†<¨ò`HUqxôØW±Â]î ù'å·À $ ‘DúúþºÉç$ÐDRò×£ U,qv½«UÜ vóñ Ü ªÖO„ '50}}Pñ,*…pÈAùmkÈ·@®×{Òqíšq!.ðÍFÏdˆüè KÔpá‰i}l/OäÈþà0ÁDŽq;6m¡5áÚ©üdMÔ-õ×Y»Œ„hž.Q'MÜý9 ½.õ-f-$R®â<ëðƒ>ñHFÁ ”Y:G·¦÷Wü gd»îtdj7YÅz¬ R¿K" ]Øå×b¤›~о^‡œžÍ­…HŸ’k!Ò'×}Tüç³:è•ÌY`Ú Ô€¦[$0¾ÉÃR ë§¬­|ÝÒeHx/ÀQ! Ûs5¨+ ¹MÔ,ÆM¤­wU"ªYÒ1ó›…\ ½ÙÃå H·ŸNÚè*4!5®Oa¡.¸×/=¨x!=èÖ1ÅØ°VуÚk[-/àe½¯@'©W«Bs¨4ö »B\oà _L"gÆÉÒY»4Á˓Șï–÷D&æΪ.jôÀ$Pû8˜wVkÕu ). ŰwÃä2Vä&R3ûöOÀø÷Bu€õýÁ ã~ÈD’ȪÎfþYSÞ”RÙÅdÊZmjU@îrîì”DÎø¦5¹âwÑ™˜I™0Èîu væÖYëÏGè2i±÷!}iã]ä v‹üöÀðJ–~î ík»ÈA/—j"Ç¢Õ8®D 4Cwª÷û¤T\¢-K ¨Éu>wqƒÞyw‰4ƒHnRoOTà+~±gMûaw”|²Q Ša—¸v©jåô¶aÜ[Çéo7bZ¨å.mûá;aŸØV”GŸÅ4¸ {ê¶Ü´ä‡mƒÜã¾ ýÓ,>K_'lÍÜ| BO¶ÂD&ò¡cØ>½à d¿×=íK·®©eªJÞSËäÄî⳦ÛE”mÙˆIì"z‹ÈÆÔ24Ã'PRÏ.£Döþ>Ô®¡e¯ÕFÐEßOîžåØÂº~2Ù€®@8†–ɫݎ¡­Wö@´ÇO'Õöh pŒì»?t@¯=Œ@˵%è:—Èü[Ó¶£Ÿm0À“Cáì"5Ñ‘%Rs®d»î€à«ÛAäÊÓ8”À-eõGƒ®°VŒ@jËI¤d_.+¨æ+&°ñÍá:4!‘ÀÎ %à3ËàÚ9XA5)ó ñï5ò+‘bUäÇÉ *IqXÿ×ò"RûÉ6>9.ƒgÄ^íeüŸM¡©9ª–óŽ9Š$8´À${ÇвEßÓ{³læK &öÉlò"½c§htyØ>0¹UI7)è]Óþ—4ÃwÙB m÷2Omçeû¿ßð€+§È‹O¿âõ>U…]È'‰4 ´^œ@¢ªHÀ>¬Q‰,жÀ®wlúšUqÿ÷Ý:½(A_¦•d_Ñg/Ûÿeع]6¬ RC,e T-ÁÛ³tƒðK³ºAøï“›öQ –Ô:?VQ‚Þ Ÿ‰tvHìøÂØb,UçI±s鬻ãѽ6عBÇñWT"gjß öyqÁ™:ÌÂ؉ 0Q˜7ŒÚ÷1b2ä½|slŸ_`ý{™&â;Ó‹ÔÔu˜ÈY[›H…2TãÐâ.L„‘=lÀNb 弈îHáDܾ{øán˜1PîÒi0繌㇠ªÇ+@…ša©«,ìõ¦“8¼ørV€«Ð ž§O‘ ;œLåx~àyk<¬@¿x`Òî×9œ_¦CÖW߯ÝþºJ”Ä"+ ’/-¦k 0ÃÝ(BÐ×z‰†±ÅzuÑD $`Ïv¥®ÜGÑÒcð]3ºè°y‹.:¬ Àxt¼9xéF ›©kÖ°÷E‡È+ŸØômé3ôJèQ"¯”U€èƱb`5iwYàS ³¿†@ ˆ<þk¥Ç„¼ËŒ©á•.d|­›(P»‘Ã(Ð׉Æ+e cbj+)&!%"ž©h@ͦž²,ÿk‚„aòºŒé0 m… °ý×CÛ LR›2ŠèN"M$þ½È°êVpbQ)˜XpäÔÈ bE‹öÿ•Ç¢oéÕX˜ÛÚ_ׄbË 8× ˆ Ñ—IÔjt 8·j1Àzc_Ql Yÿ¦ Wfbh¡èÃ)~ œxÞ|^÷.{Vq…p8r²öÿëå8ìÙ+]Îb%^˜l *º˜ÿ7ÇŽ¼$šOÄí»ªÊþÏçS!ИZB º›{ /Õ`†žªu‰@ ²â³h§–‹"ͪ~‚nŠìyÞF€=`•£žHÇR,“Íj*éI‹Ô”ÈÉL¨íå È‹„Žù–j$â(Q)ùK$,ëhFHK{'r •6ÃXñ¯(‹•ļbK‰|šµˆá7Úc‰ÔVÆUžˆƒ°O";qVÇjF­¡;÷l"ÇSh"“6ú·Ed!@惈÷·”&Rc‹©Ð-«µÚ{›L䘴*iH¤ãç˜0Ù.b0¤š®\Ú€>A"狎xÝÝç;…–ý¹³æ¯½ÍÖÛŽJ¤,Z6L$2Áh·uÌ‘ÿÈ?%²üûzÀ'k ‘cÑÒ`´çí¡ÚcÛH·ïW 2`’5‘ùq-9Æ,£ ì÷6šÀñæT”¨~¹c¶I ¼9ÚZ‰t˜tþoŽžãA°Ý5!«.ÜœÀ†ù,"œÚ×t+†2º@î{"_ZÄDF}¸0QâºLMx Nä肱õ E tcS‰8n5qs‡ìw-i‡;Çè`"ˆêQ²\©ó™¦=:戾QË$²aW µiô D.(}°ýU—HÙ´®—Qô@iÇo!•Úd„8‘É)õ q%²¹ê…8ÜŒrÆ­=‘lÅ jÚ|ÛGNÊ¢ÁøW|+‘’}ý¸ö@öõ"Í’Ç&²<àñÖÚÖBŒã%Òp«A »¾n%¨"L‰Ùid"ëßËÃO`ÃÆ±oû ‘€uñkp¦µÖ/€ÿ^‘Þ@çûw³ù÷B€ié‡ SNS‰,»Ž7FЫ”šA7ÿ>b¯©y‰±Wel"†ý»yéIìÛ@8{¾îm,páYžÜÕ«­TÀêÜAÛ„EË`R"{*6ü6áÈ=¯³Vûìkm"7Aû+ÿlèm"¤­¥Ò !mí† Ìë>ÕÀýþ†¨žÔa3„´µÞ›Ác7E"•–»Ÿ ŠÀ´êŠè ž²lÆÏu¸àα$‘1?x[?Ä4 À³?©Êù‚I˦‚DŽä_«¨-ìb´TÔ(kEšK ;hÛðçîÛÚØÃd„dƒ0,)¨»VAçÞ:fù[fpÞjî×I}ŽPŒ ¦©‰À{k€þ£ð»ü¹"ϦەÈúÚÎÍáÏíŸNª^è»8ü9)ÄHP°<:‘ cÜ_’þ9‰T‚‚NL"Ǥ½fS 5Ÿ@A·¨ÌSV ´]èV¤#¨©X%‘ލРÐ@å³$‚°÷ @@K¯BP»nCŸè¯Cwª·Õd_¶U/~ ;N8‘cÏ.YN½ýæÇLêE Š Dþ¹Ö{óî ±<™)½ø@M刉ò8¦ÿU¡½#5ÁÐA"£n¥ÛiùËèrÏ.Ÿ±¬þ5HÄâÑe‚¯¿:ÀßHû~ýWzû„%üÓæG©õù‡ =‘§6!NžA$>±ëEjª=r£ƒÀ@"eaßWN«Ÿ­J‰@0±ø;öÿ—8Ãì‡6t‡Ù-À¾ òàcK ÓÐ!‚¦«”K.ÅD Nž€ýI&r„þõó°Ûo£Ù7Š2XÂÈ è©ó%‘ÃÐÄAM Ѓóß±Û«ú8‘cü8ÛjÙó%[Uܘü£»Ã}“Q“È'„i5í¼XÜÝ‘k\׎J<ùTÝ™ŠXú{W…ÿïá ”Ø3î™3\€Åwƒ§‰Ð€5ó“Mä¿ïú8KÏH™æÝQ™8Ù¸ÙŒ²ElšT 98ÕˆT…=ÇÔ&’vk°ªÄž·$ì׺lõOAl@ýáö6Š (Ëò°ïd÷oK›‡ã¢B»½éå6bk "¯o;šòpCÔøÑYË>vѨJ¢¡ÍÃ7ÑÅæÝ‹(å—¯¢Ëê™:k Wçht±&dak¯N·Dö§ê)‘Oœ1†e¡´GqÞõ?ª‘¤mÇPà‚¿o #qŸaÀ†•ã¯Õ3Š ôÍHı³lë£=ø@Çæ^8¦J˰C éô.ŠÔÔŒšH…±íuÅ6 °´ â?¦ê2`s C[Ò êQŒ Ù~°„T5µÂ(BЗäÐâ—K2@wMÖaã]é!è˜zÇ`2™Hÿ÷j'I Ld6 P]u3@ 4— â/Ãm!¨‘S.Öá…dáyÃz2Å›À7ƒ“È@T»ó(J \y0btÀ½5 ~…êAçô߸êþ›ÔápX°w 9-XþIçMÿ¿° ‡AÞÖ!N7g)ÃUè6BÕHˆ%@ÐB–Ѐ¸þÉů—βñ±}F\©×uö×’t„܈Õù|ÔW‚…0į5êð˜COd"¶çšê‘  ³A¯[ýoãl>HG°4ÆfS /„TM*Ë*aF s6”#ÑØ Þe¸JÔß[]qO¼Åq6xoJ$ÌÉWÌlöߟG€¸6Ç,FЗ/9;¬ö+Z1}½÷‰Ùá¼1+šÈÆNwo”ì>&<‹1-;û¿W:3–ãÁPØ÷o¯Õ¾rÓ‰0¬±Y´ —˜€J2}ÛÄs"†­­bNÄd÷ éÌC ᯠ)zX+sþMGd/pÿ~‰ Žã˜9òŸE €T+6TÀò+èKL­%&Ä`Ú ]wqQ7"Œ`O!,HâC¡¼…¢¿°Ýï½¹`b"G«ß¨Iß}z'b°”aèÏá¿«µ8A_š®_|¶¥Y¤ &–²Dd|Ê áW¬ºË4¾ËP¬ö}Å%²:æ†ì³‚)‘@Í7W•1¿·Ãctm:ª2ܘÑ×Ö:~œ"³X®‹0¥H¬Mät– røeýt–THCãlÏ n¸4ó ¤ ô¸1u9A t"™ì@šGî¾ èCõrÁúàöÀ¤%És",ÌÀŽhÏ6Þyñ œö {P—!=d‚Øï³6j\ˆÃžBI‚zLƒpwk?Ä¥Œ+D&Ôü=‡S­ð-­A±³ºÊ*kýVÖ~x&XÖQ¤˜«0Xxy²?HØ™Î:&í-Ò(_ºÒÈB9´dåmÞÕgO|" ñMœ—{^NðïŽÅ¸uD5˜(Ü\>ú;ë³DôdS¬ql–I–/ðŽ¢VŠíƒÖn8ðgÙ@êL¤Û÷÷7Ⱦ<Ÿ&¸×4(ueÞN.ô½¨Vƒ?§5¾šÙØÝˆàD‘pzîøØºTíê}.úóÿúõŠ&6' Ž.>Ü¢ù¯ìkQß½ã@Õ4ö È­oNKóD/^ê¥"ão5º|9ÅsÖ@1·Õ5þ´–Ø"  ÓO‡›ÛÿjãumÿGÈ×—[ó¶n"¶†¡c6ªÙ±Ë—»8oSÃo8sü.жõn ZÅð¾ÞÙáeè-ѶµL±lÄ:Ul e¨EbìhŠëIe Q ˜¡Õß2/yÃAŽð)>¶`ý¿îS,@v ïª×bÞÞÅš¤=oýè°ÕÁ'«_u–.Wêg %£ Cå?k#”¡Mtm•ֻޙØ~ƒ ßµþ¡*Š~ÞyG„ÇÇC8l‹CŒwª³šùÞYèê…ü¤#/M˹4ÄÛåªÐÛ媧›·à¸ÐˆðK8&Þ5¸Æð4WÀºO(®—e_©2ì6|µ>Áù™—‚ðÄ<þ½“’û5+­Ukâ­k7xoQ•®o:«"zlÇDLóíþ•¸¼7­2ÖÞ±¸ %p£dUy3_QñÝàÉÝßÓÐU¾¤Ëß’~vÜ*b,»{u•p”´C¬wW£4lŽùwʾ¶és–é˜ÁÒóÓ“ ;笲.d!­`ºðŸb¤²Äæ+_/îmDVÃÆ|U”«zÖæ&0ÖW LZ­©ê¢<Ö!ŒbðU X´ÚvÑŽ7áËÉtÙ“¾j¢¯Dqý=U“ cO8sì˜B„tÞî#Û¤ÿÑî|b€óò‰à_oË}ƒþ禪ïîÝ ½‘ÛЦ¸j2´Wl‚^¥³E:t+&s`ô–ùö—7tÁuÅ6<€×K†p ¤6Øîï[JOðæ¥ Dh„ •&$àòålHÿ½ÓV.§ KÀÖ!(ÛØºŠ}«„6Í9xæÿõXªœämBnØÿ×ÉÚ°ÿo}kõØÍÛóeÅîð¹;w~ªÜbÞ– æ½Ýšíj«~t;"÷{¸ÚkSHaì@P›õÀ gn87D\Õ6ŸE2„¸‘ÃéVÉÛùÊèUvô]$éÏß‚<”«FV²b7ïü]e5ß߯DµeuûÄŽéÂÎO†_êɽAü¥Vª&ñU¬š…WС D™~û#å“MhD ­ŒØOÕMõ‹Á!œØç€”]+¿µZìÎe\ÇÌlWyAÅå hýà=}ñºÞ|eÈÊf{ ×I§Í[»R,oIª4öËÆ.Ÿrš8O  ßñàêà:~ ôEU$¿‹Ø‹Çñí‘:Ünü؉ •)V:á#EÔäßKdBé<ºNÙ´¼ Ú¥«:¶Øúœ,p2‹ªÝïå*Õæ0_yc ¨¶µ2³Þ¾›\¹!d}V`µžN˜0@6Ð"Ò|ïÕN·¥ë,˜@ oNÕ°nªš÷íÁVAØ[;û‚Èk¬¿‰ _(.c[Zê‡ashßh+Q±½o”áÉŠó »·ª’tCH&d5s~äyÕ»B%pCNP%«ÔìÐ- sÿ¨<‘‰õÅç2i)®Úz~+‡+§(¨;ÚJ¤Ô«GSZµZl竚ԋÔÄá›È€uÓxÉ=eÔ?jUMd¡2åÑu6I ø§ý›!!éü+˜‹Aâټ⟮œž*žßú7óÿ.xÄšÅèb 6‚æÿýÅM²}€ùGµ šò;«§ìºî¢ ¬«ì¯UM©‰ÐeûùÏ­¿;Ó¾ß"]²ÏßóÿFí£K¡ AH¸jÑÏ=7¬ÿ{¨®;¥´Â¦•ËÌ?·vªÊ¥ç%œ°ò妮³PÁË:ÏÓeb|$ ÔŸW©ÅO–j`Ç¿ÅÍÅþ;oÕyLvغ̺-Ù¤ýQ8%¦*+ùM®á /@ûSé1 dÈø®° 溺†0ÔÖËg¬‘yoEÁ—ÙÁWŠ5Hþ£\OP (ú ½»€HÿÓ^×)[V€ð Ûn\îŸAÀ!3|Y f¬T]lu•æÖ\zÈ]ç 4t†ˆ•€³U0ÈÆëBhõ,]÷O‰q¸²ü(þ7!.z$IÂUjã:ËF‚ÈÎß]÷ sô£bßác³³§†¿~ö½€ {…/àÂu½¿E”BïÏ­à’¿½/¼¿O ÚŸ[‹ ýQú2y'ÉùY—I„6lí‰t8‡µægSŸ*c}û ²PùW‚ŠËy xñO»z"ñi#ZOS_íE:#I>û^¬­›ˆaŸã½/çç "Ž;•Þ8BÙÎBªcãÎ]Åõ¥I¤¯×ÚH`‘†J.ðé¡Hä4ÔŠÞ8ÐSgÅ'»ž!ïÍvÔò,üÊn%2?´b‰Ø§â-/øà`ýÑN“ˆÌÝDâ]÷µž ÉÇ’O 3¢Ðˆ Y!d¢WrCbè§î¼ëã‚ôGt+Á:äÏ£Ùúܦ.QDú~Û‰0°ã>A¤D ¦g¡ûÆwlˆcS÷%Š<®…õ'?HØs®n"(Ìè›ÀDèx4"$¼òN„„¶ˆl” ñ•’ò'ô?U`«æ&ÍÛ[èY¾¾ K–I½DæŸu¸Q“äÚ€`ø+Ḷ[Ç`ïx&GcI×ïu™²¶‰T´Ã[H„z€ÂEÂÆ…Y_Áq¸ql?H„õx:'>ÄKë X²¦E¨3FÑkGömiEƒîG…¼ëý-Ù¾L1ë‰ÿû– ûQ×j"ÑƟŬ|"—(f%ðûÚ#Ù/Û6ûôï®ö·û*²é—Öºr´ÏÂkíÖÙ að¢Tv"=þ"{Ð#dB½…·k(»|±Ãà ·Kû Ñiäý¡»²ï÷Sù•íYì㼟L§%2?ÑÚD¬}vÛÞÏ«ñZW› vÅÖE°€ýQ¤à©Cú‡w/‘ñI 'B“V‡À’›€‘9„°àØ&‘@‰VQñ§Ry‰4Lýc_'2ðc°`Û$S’ŽXÈäMñ­1KÄñc¶ÎúÒ~®ò±ê'Þ ì‘ ¼Ÿ{éÓ‘Ž+¸ûGaÿDÊ‘#7Q"ä¸Çà1!Øm¡ ¸?I€~S‡TI›Y™¬·jD ™€{Ì‚‰Óu8ØK‡Äx›4ÜŸl)I¤Á…B êu*&R®œ.bðgî)t:Ä‘øóÁû)O4‘ÀO \æÿë÷‡LŒ9/Æ$5~+3„ù¡„°(éÑ•¿Üʼn°Ë2 âO¥äV µ‹r· Õfð÷„Ê’¸oÕο®ô‘øÓµ2ãg,"[³é¬˜S¤?òæ°žû#òCÒ¡ñ1û#¢˜FàKy›‹’*D•+íñP½x?—æ°&ÂX\½x?E"›@Ÿ-©C(ìžÈìŸýºÃ5ÚAü#;-èÿî?½©Ö˜ÇtUgð¡Àü©ðb"ã“-Jd¢Ã rÛûŸêŒDöç‹÷.Ú[>øåýHö«øs†¸b܈Ъå•“›ÔSÙî ?’݇4;Ÿa”Uûú2þœ4`¿ÌŸ°`úüC{{ýÿ^¡—hÕ†.c_O¶“öG¦CȧOÄýcåðKÁTê¦â l´9øì“øGu7YµÏ&B«¶ ÙíÏ­Ui?uedŸqÄRDz¿/Õg4!”ýI€‘ Ê5ôÀ5Áz‘~¶×/âŸ&~žDr+ë¹" ‘=òWߘ¾ú5Ówï›ØšOÆç.ÎϦÚÄDÎ uH$J?@†I¤FOÝÜ1ª3ThèÜãbpL' ­2— Ä[ïϹŒ;íZ0ÅùÙ®nêŽù%÷É+™=Y=0}—ÉÊDj:Ùà®t(?s: ß ßDürÀlE„ÓZ)µKo40ÍJZg<5?n<Õ*' ÇàªãÁ Æù©¨mI F8HúƃY•œ_žÈ™LÆÒª¢¬l-£i0–Ï(ó?‰ï*;œÈ!€ë‹®ä(ÒÏ;9-‘3¡D€¬Óa¼~ºÕüÏIžr¿úû ò¹Îæ(Ο&þÆDŽÜIG|íçëKŽŽA­,~IÄþ½fC'pÆ’q:GGì5$6‘š\¢`Ü(%ÐXȹFÑ~¶@_M§»$}•ÃÿºË£hš*™IS3°rG™þwBr"Û?Ò9Šö³·+5Åü™ã|aŒÃûÓgç–:Šø3'Šð{ñ爙HŠ}Ï%L ¥>¯Ë/G Kzïç™\¢³Òêöp÷ÅûÓÛâ-Ày«Ù¨2Gi^Îüš¹K@ûâýÉŸ wógŸÎ=aógSßL">j ¼“QÔŸ½q6ÝEýÙ\þèXÓ*Ÿu€ø'˜ÜOd~­—êOM·L䨴!S`€ù‡ý7 âdü  {SY}" YJò†3'Ý›Àö¹D¨À–>¶Òr0E‹Åmjä•w<Àý©Q)k€úçÚRÔ?¬P=À®œ0ËGQÿôjÕRS§M{Ž›6~Т{K…Â×^Ü?}4: Ù ¼K“rO<ÜŸ)Mˆ›ŒÀàìÏDÆzI$mÚ\Yj–i,êÏ>†–ãaþiaÚõc§7-»™z`>Ñ,æÏþp|@"g.“ %R[™œš æOçPìƒl ÝÑuö¿×°áŽìwGm"µe1‹ù³×šrFT¦ÅL {´uÒæ3¸‡Ïâýìrf’u§ÈNjÙö³x?ïÐD«¸FÖì˜9ýFjsÀ‰Œw|sþ}túrÆ(fÑ~¶7<‹öóNDMä°Þ^3nvLh•ï1&´²(‘6ë9‡šbÅŸ‰€àxõDÊ’Ƙeÿ÷Z@Îl¦î¿ ÚO *Kä ä V‡¬ mðÈl›Å”Ú‰O:1‰Ã¬93ùÔš—H ?Æ»'pdÿ‘E3‹ö³÷ 4‹öó²ZgÐ|“$•ùÄ/ˆt« Z‹À赘ùÔeýç=ºÌý&Í9ᙈSØt§£ØozlÐI9‘fe€¹î°Ú‚È™à¦òŃì:«ëÊ0¦ôw geÕQ"Gô5—6‘#ú7R4aþ«1=‘šW¯=~ ¦é ”쳞$ã*ÓIÇžgN"5•¬Ú‰”={‘¢ý¼c¬9ö¿¢ó¨v=üY¬Ÿw¢q"Žtätš´üó$ç®Ã0£Y•1‡¨MYþÙ<¾¥?Ϧ°ˆ©77g±¿åe`’Í"üÌw‘õgû)ÆÏv•ß ŒšV4vB TO_"ö¨<2b NC)›~OZ²óÕdÊ, EüÆÐ‹˜À!r h~±U~ö+ÖÏ|Ø7¬Aô—þw"Gö§r”V¼Ÿ·ú//Aoºp`«£T°L¿Ø úÊÒ˜i4¥ ðøàX‘½ÄÚÀ^ÜhªZѾ学Ž9J}Lh Ù¨+¬x?óÊXõ¶0“½† ÔHng†ÔíçË;¶¢ýÌ{c°%á‡Ífeü¿v2[b  åP³ØmÓâŸ5`WN¢mørzŠôóeŽÙ†:_¯cýz¤býLy ³v$âàK2Æ­8€^ÈŠõ3¨³2ýSøuËôÏ÷¹tÖýÞô² ¦”¦9hÏï/" v+H¬˜€ZÑðëÏø÷šÝ›ÈÑè7ýgÅùùÒ×VœŸ—â?‘£*îî50&­+ÎÏ×ZÅùÙLÙøãÿjÕU,@š‚žÀÑZà«Lÿ¦I$‰,– ©,L¤ÒãY óÖÙ³Õ0“U{ú*ÒÏWØjÒϦq É7ö*%²`Ntsz7•½Šøóe¡­bj&ݰ ÐKY,nû²ÑWW±1–Ã* &ÎD ï‘àæOõŽ$âíã†'‚Fì@ NBk@ôIø“H‡qûvPS…m"dr&a/^ƒ¥f÷•šÐ*[—ûºvM5ŽbÝ¥ÑBª ¤Àâ·›b±_ºŒÍìu]wO2jý󿀀n}ÃzQ])J¤±ÒksHÁ· P£l꜊a8ë²›£ÖYŽbè ìˆCç:_z±¾Tö*úÏÜ"ƒZ ƒ{½ã¥¸ÞbØ`Lgm‘Ÿ-¹ ¢Q½­ 3ˆ™‡U,@í–¤­bj7»Šô-oÅtuÙÚPëRw«ø?ÛMj­¢½ƒÞׂßÁ«Ü’H‹¯i܉ 8ÔSgý±Vq½LùEB8 –«N•«ÊQž¡ÉEP%=Vˆ/Á® •²'rÔúdQÇ*ЦRÛDÖG'®À0î¡5„†íh@¯µ¿AzŸsÃþ¿[ö~~pðy÷£8Fè2öÙi7Ì ÑNä¸rÏbpuƒtjóØØøU±H"¥Ù¯ h>7Ÿ`£{h+í é'E×Ú&釲Ú£V†Æ èëM€ô>wQ¥9Š uI¯ÁOUÚàµUmÃt&eæ¶•YûBÀªž–Dz±Ð‹»(á^®Îè5G7x@ú‰”%¤HÀ^ðèdn*ƒÆ?4¦ÖÙ§kPsîäÜä>µw9te›È1k{×K/" ;ï*‘…í·p¼áAàˆþ๋®‘${ek@ÿnmÅš¬], M¯‰À›kºLÙW*eØ^A=E²v±åëu!Ëð£œ9õJ%rD«pk P»%Iû\f%¿I¾wȸޜnµazÂëßEÚ;ù• ÿD<½ˆ@Ó7CJÈ‹¨W¡JNtŒª ÖëCB| 9Úæ|,/&ÐÌ•@p¼èß2k“ú¬ ™X^4@yo±€ö G9™œ|é^ìo™WÕ!†}·éÂû.ö,oˆf¿” ÐIJâÇ Ð+ìÐêËH¤Œ ÒŠ%r$ÿÚ8‚³X@3OèºÊ†[ÝuG62ëÅÚDѵ¼X@_» hWG"£UÂö  è+œåòÛ>~ìcoñô„öb‡Ðåå´ê¶rÒM5ŸHO°!2‘órd…{1½ò^L@ígz±€žTnåžo]§b‹‹Ü‹ è”El"'´ç÷Z•hÜ'7”h(ÄéE”«ór’Õ͹¥{9í:^N@»Eϧgt=Sñ€fiÂä?Èõ#`à>ü¹Eú²r}! ­ ·Ã+xíù¹æHñCš9 ÄH¼h@[ȯñrzºyå1¡³Žìߌ¤ÃˆÐ×Ü¿õQ^D@¯S, -ºÄÛ¾Æb//Ð^5à@ʤ•‹ìEÚÄTÈüZv^üoíz»U`÷•:ê4¦Vx@E4¼<þææ< qºÀßȱj‡"Ý"Ð1µAèK5y1¦†º{UjHËx °­}<¨OR“Bè ÿ-"g7»ÎN”2h5šȱƒš¢gQ|@yŒë:Ǫηñr|ºk/ǃX­Š~²!xÕ[å•[™µC¦oè+lEzÅ'Šît€ 9VíTd;Š ôåAFS#)¶ÿ(B FηD™Øc¢C»³ž"Š(WvÅlþðp%²>1þЭ#Ò±Q3jð[ 4ÿ‡@ƒÀ+ˆ¢…»!)r{•ÄøÙÛ‹¡¸¶é*›Ö kˈ*¥û{' δ®â5QÎ$0¾åpQd@M̉›ö6YD±6Í+KdÃèÚºr ÿûæÇ¬=ÓÚ` îa3‹bÍÑuÈýëÇDqµç៕ž[zEš³°«Ç!jíyRÞœrG±Syz\cowêäÑ!ÌP4c¨HÄ>Åš¤ÂpÍb©8¯é:SJ&Š ´Ý.¸ØŠjcÿ‹`†Â±‘¡ ‰9tÝÕ`)~ÅôÒ2±‘¤PH0Šî¥J£¸€šqBð ‡C§v¿pˆ¾s§"}ÕpFyâ«:ÀQʲ—£È@_„7€ts Ð €&Šbj®PY@¸Z²^€ˆÖØ{]ÇáßW‹ ´‡–m¢{÷«ò*Gˆâ½1éý.Ð猠ÇßLh–~=È1ïhà'Â*¥³ÌÞûu"å<îDPBX›üðxa¤?®Ú¥Øåâ%Ðñ‚÷$ÂbËF`žVƒO<‘ í‘Â3ˆ~è*Gôû†ë˜H`%:N‚ŒŠDÚǧN¤#Sfx"³4d}ÿŽCW3o|øØ  غî1iûÂÞ—Èü2tb}ö†yuýï5®$tóòÂä冓ˆ­wØ=‘…ö¢¡cH°»p^×Dé<D@*sJ¤¨í»ž‰L ŒÜ&RÔö4T1Ühv"»½Ëë)ö–ò'P«¿ÇPrïz7 ãs"‰û9‰Û~0tÈ7B&ÐN€ôÞÓ‰8*¦îÄv®„¥êÝ„œÏp×ÏB5ÇÞ%2QøéªÛ¤k5Ü‘†`P›Ï´ÅœDÑ( a³ W)áHÙHõ‘²:&C+„é¬ žOÎ^ØN„ãš&Þ‹ñYDRöAFd¼{7àL×eŠ±éƒƒ T„‰TNG{Lççû…áµ€ N9ÝDÀú³tÈ@1÷NòÑhI„xiÒ9Ü<ÜzŠTúj·KZ*6‘‚´RÕ‰tä/°ØÛƒj{*£DN0ûÑÖÞ`ö¨µØ£ ð°¼ÚÃUÝ:Æ;H´[‘F”E¤yE,J—'R]&ô!‚"ø ™%rªX‡ž²X€®+šÈ^ŸWÞHúFÈk¸0H@E~‘ȇ1ÏL2$8>\ïÜäZÙü×K¤zë^%HÂâjÅzâÂÈÙíU¦ÈQå͹3¶¢mÙ‡GàxpýAø;‘É~úë2Ç诽@N´®æ¡ ˆ® «¿\¯DlGž5ÑgB†‡ƒ|’‰ SøSB;‘˜`þ'‘ÿ.ódzS¯TŽ“o´@óÁ±’[1€¦+UØŠ´)˜ÈDF†P  ¥" °X(¥ {}p~©¢j5üô Ez¬°Eä˜>­iy€H.F"žŒ ™0u™#ú½½øìü}K>ÜÖ1ÇŽ}†¼@_ÆO+. |;À.1i:iæ;·×!UmÓháµ].ÜseëÄuæü‰D5OÖˆ+¶I’n¸ÞCöYÆ“H…/•OshpTh"ÇŒm¬’OdùǺhÎîQîRàÒ˜ŠÝÐåDñ,òÏ·HPZfü½Åt³W‰”à³Òç »^´\;T@Mm¡ 8: a0µøC~»;Ø?¯YÓÁg‹ûl'û'y_©vC—&bèãv]ç;_:‘ýnOÀ×GÅö¢j5àé EôÚpz±>>^ÇTq3ø‰LPlc( ³>Ô9‰áwÖÞ üA½Ù‹ÿ3Ú§iØ‚x÷âÿ¼ùùDXlYê]â›®C4ÝèxpõÚ ”Ç´R"½ ôñc±Ü°êÆCH²3òŸÈýgée‘ÿs½ŽY §‚™ÕbyF‹©ÿçÍÿ펚^d¢6ié÷P®±.„ƒ*ù `÷ßÝ¥O8qCrsÈ€Îëmu¡“Nlöî‡Ý0£éŠV‘€¾v¶^$ 7ƒ™È„ÁéºÎUÖÒuVi_ÄÝËZ voZ0Ù—?ÛKœÐµ9±¼¾$5ëY' ¨œ«PÑv'²>ìY‰lTeñ}-hPrŠ´Õ„w íS ž2Ô|9Ez"lB柟³Õf«¾“”5ks‘NËÿ¾vð‰¤'‘†Ú78ØÝáÇÉï—È;‘ {!bè^O¬ïP¨'ñq•:©@¥0:¨@¯cÔA t}» ’§¸SÊ„¬ñ®GJdcÇ[ºŽã÷à)Æå­0_"UžGÖáD:z˧Îð7°ÜÈ@5ð3ûpo%²A”ÙP÷ë °:ù-ö)z‹ið¢x÷Æ!}Xǃœ@2à³)8>QŠL?÷ÏG ƒ\"îo?Û‚QvŸ2Ð×C¨:Ñokm )6h€I„ƒÊyà @"ñÙ)È@_÷.> 4© ]ÙÜ+ºÅ[hÚKK×aR×YGþ#hÒÃ1Jšˆ§“íÔ÷t âÛcª‰ }€èõÁK%85¼¢xüɳê4!  ª(Ao j€èzl£(®:ŠôF_éH534Â2‡î¦Û0ð*Ltܺ=ô˜EšÎ+ÓÐÎ4 ©j6ˆîQ„ }Þï¹ÐDÚ%ê g™DNå½úþ9•÷‡ç ÀÉP¼–ôB™Æ`ph,”iƒ`"ÍúPUƒ¤@w¹-hZþÀˆ'5à ´M§w-ÐË J[‹®€†Ü'h2Â/v4 }š¢m"ÌL¤šN†¥x^vÁpÔ(Éަ“õÓIŸÂÉ% TŠñ˜¢Mw œ)iÀ‹a¤¬·„0à ŽLþ6W^ òþÑ+.ZдÖ`õÍ¢Íß!LÛ‡ïf>pì‚3ŸŠi3³•ÀþÞ¹Ìæƒò¼‡*e–*h5‘È j__ÂPÕží‡Æ|ºÙ›SzbMöŒYœ@—#C *o+h«Ñô@]·òýÙ&hš`«Z"}}|ô / ÆÐ©$5Óú‰»)Ȇ?ÛtŒ£òs a†;Å,]ðÙ9¡P|oŽ2noBb$çäÍä\—˜Œ2neYÏâãÐgh>ïRpÜöY”@·¼û XB¼pƒÞ~ºDNÕÍÖ)¶>Z2ûH §N)jD1' ?†²{Ej'YAåoO°‚ÞäÈ7Ü ÞNЂº´ä-¨ŠúÙ°$áPLPiHR"œê@-¨hixô¡c8´éÑ1³\p ›ÀQì&Cr.¶÷ƒ/Ⱦ<ù¹¿/´ œŸ~vk!+è @#ˆ7Þ²i']¿ÕuD™@ŠþÏ-JDlÕÓaÑ6mHä½ß Tpû®ÝÜÒtY´›,wä')AÉ´—Ç›Ž pPpi\NP¾^p‚Z¼ŽùsáVÓ!pй'ÐþW„‚TL3‰8”<, {PsÏÞ–ƒì·l&¤]!Áö äž üD&úˆ]×µO_{"Ur¯h©ôzbö äþÞ‹Ö? +áè]lFjh½uƒù}3'лZq½¢6ÖÐp"¿ÔZi$¶Póu‘ô¾ÒbÍ[!6få¼7V °·b½í‰H¼(‰ìý}P0‚Þ8‘!Z ÂH *a7P‚²:)/É}"4ŒKÇ]×=Zý¦¡­(A39„TÑý}_ô÷ƒNÝóæ54ãl"¾w_ v}$p2MV‡Õ¾Lq„Ú]gìŠrq‚Š%!ؼ®¡ÛJ©a3´ÜÛ ” 7ža ½Év%¨f#&߯ 5 ì§!h<ú’ “š”ÜΨ­•¢€*3Áiºl"öMÈgSðþ÷J]Ùâh‡. àcÃR5‚Þå»ÁŠ(Û¶æû 56ãò'è"5~"k|[+M ­T ˆBQÙËèÿ^=‰pL_è˜Î¦Fóc,˜ƒä^éW#%¨vp#%èÝE]$÷Ü]@ z3ÿJPó%Òá¿s2d TÇ 9:]e‚‰T°ön " &ˆ_ÕIëùwÇxŸëAž‚‰œ^“ù>æ~W–l=è5a'ÎA¼&tÃ*FÐöB&‘JêØë¬cÏ%!VC‘¥|êv¸GÛó*JÐLìዯ†v‡_ MÔ’ãU” ·6/‘cϪY-‘²gµ|Wq‚æYxé«£ãD•E«#±3h´­â‡{Bé„Uœ © B×a•† A”ñ·R •¿& 3€G°È4_^­¤¬ñL¤œ¹„Ì:” ™| @ÉZE ”_EQ‚¾\¬5P¡ÄbÜD)$J (A­Ó_Z [Ÿ” “ÉŸ,[ µûƧF®´ñS†Îrè^ìmËÞþ"(iéHb§[ÅôÌ ùµŠ(3•ˆ¬b}BɤeüÐ24YÉ•_Ƙv¨:Pþ?Ì~ò$Òãcì,^}]° ³_í‰pâ4|­µ@k¬xÙZˆg“øo/°ÂÝØðÚhŸf‘c"'ž]„€—µß#ÝòOÜ›.²×Ç&^ùeþ¸€&c2Ë1Õ¤éE”x†ŠŽ–+–]x¹¼8>#?¡ßr&I+,ÅwÓJqQ|c7_/îÞ=4¤˜ï/ËæÒ X–W¨2)tÒ‚æåû )Ûº™B× ØPvû‘NG&Š˜:*¾¡CX „O³ÌkbÙm"ëkÇïGƒÊtR|„vÐæD*5-º*””ˆÞ 3§zÈä2^1"jù‰þ½†‘&°¡Sñ¥vÉ7Ÿ Á“S!ÜîÔzq»=[8e‚@K$pœÚÅ?Áôƒ¥±‹ 4§|w]5fŒ#î® 5]W X}|$°Ý0Ã?1,râ¦àè˜QÌiL‰pèî °þ<ô€!«ˆË|3áÆ)U·ç¯}6­=/Áw'2¿8rWÀ‚Eq%(Gä%‚Q¬§=5q‹p›¦: µ‹ ô’e'R–¬B)Û`ÉʽÞvû»LìöÈ¡n“×tGƒaq¦æ@œxƒ ´=z£Eô„sÅo²unª¤p×Ýeù?FÀDÒ˜}ܨ·6è€2ôNà8q-ôè`…SñÞE”5K|…ÅšjŽè..Ð,$‚k²h‚”Z°ÂõÁíphêU6w™þ©{§nuŒŸfܰw1=F.ÁDŽñÓú Iã'K¤‡*ÒPÉ#PSµÑvµN_d£ŸaéîŽfù©+LJ¢jïCzé8èL4!(üƒ5»‹ ôUæ°C$2[×9Áìgӯ܇è¼ÁA€ÝÓØîü©ß‚á°ýoÕ¤ƒèVÉ;Ù@%J6ЫNüQLk/6Ð6ø[üAh„„°d–¿(Œipí‘!÷†2 †t†ÿ­Iö¦¤¶;œì‡á£ß> .û×Az­Tèp]d Sû¨¨±3*ùu¯l cÓ:t°N}\/> C ²„€Hòèã2""çs:Û´éˆÏoSl ]÷5œ1Çe|È  ]ÆÑ¶Ë/2Pusm5œ†°%Ò Âât¶F;ØAz#à>ŇÏÒÁ ·Øðb}%á|¢‰ôaø&‚ã+í†jUrx‘eïû2På,àxrAÛ‹´©þÞèå>À*dë"îþðЇ)‘"¸l&P™"ÿep«A”@×sP‰^5‘ãɽe!-§Ø¹/Åh¡ ”@ê™L¤$¢\Œ š–Àd¤9ÕÇ7Àî—Ôuá š•¡›Ÿ¦“‡Ôä;ŠèÐû(Ep¥ÔÐOPnX'hpegƒ†$¾¯œ j‚M$ €±«ÇÌÒQ~ùÒÈ$ògq‚ôú B [ý™Áþý9wãߺN¼©vìcÔÞDk€ô–VÆ!®|×À¾oÊ.džQË@_l±|7§6©±ÅpO™\œ>‘6þ"õ5¦e'ÐáèDjÂYÑYhæçŠ*R PVv’$Ô`HA_¢^¤ )‘!¤ãV¼p€Jƒ#]9,÷Í´)ô¦…¬@bƒNd£m7Œº©¤@-@H ´ \‰Ã6°€8Â_'ëÑ)šûýºðŠwÍZ"NË£9Òï+ÇðÃņ©›Èá‘y8 $‘†šDª}šTˆ‰ö¿Ú޲ž©³Žr×pDüC’H á"ð\Å *ó髤©¬†DŠˆÁÐD&*ÒøsºH”LÈò7[O"Åo%ï‰8v_üâ³ò<ó^€æ&ÂüuP¯×W^@N­è›È1kLd¿ ¡ŽS÷zWdšBÀ ¤Á ‰œöDŽô;£á‰‘ ©e²¿òv˜AïrHàBA–DÌ-{©œßæÈàâ ¢ƒ 6‘Qz“ÒV ÍùNĨó„ÔÞÏBÙDJ±ÓK䨱Ñô.¤Ÿ„R‰4PUõI¤Èî‚%5(cЉÕýx]Ùj5òÏ}&©x£ñ‰k 7‚ ý$¶”ƒÎ­Ç$1(í²ƒàÁ¹†À ꘖ•@qÝÓäOÄA*²p™ó-Ctßû€T“púV'BF¬®c Ž W/tÁ û_"5´ŒyüDŠé>`‹ø~“Šó ó¨ñMM?¼ ’ÈÄ’ŸB`à÷A \:#G‘ë˜໲ß@ ªÙC‰4v— d¹N04!} ”@®­¢=eÔÊ6JdÃZ*Ç ‘’ý÷1Ǩ•‰å Ì N6«Dz½.,VÌ ©Û‡™(÷ÆvÒ  6íçDŽ%¤²ìDÒª½´w‰¼ÍZo'!~Ô”E#ÓÂJ¤ìÚÍí®õrêâáVÑŠ´©-‘à Úîòq §$âïA$ ”)Ä}Þ†>'Oºœ@|ÌR,oñ/ŠÂDŽŒ²ð+Uå˜0|Ùð´°B·~CUH"aïaCÞ&ê[QƒÞÙ[‰ŒYÊŸCF8é¯jИÜî¨ACûR5¨f©%ð¢&ƒW·ô¤Ðeœ¶Û‰ –Á ™ð2ïYgd#‰D.‡‡¡ú9ñ18½‘µ’ ` ó2ƒobPkZh U¦;‘…À¥é¬½¿o‚Úà.Æ%¾{Ã1dâtÏD:b,¼;¸A™¨K`~š©Úã €ôê³VÜ ‹la xÚ.p>‚ë1A*BùDŠHI:¥”C@ÿ7ìŒæ¢Gܺ z(Å ÒôôDŽY«0oॕ@C‹3ïR %8ù´‚&`Ÿ>ÀD*žôY×½Š3™¡“*³Ãù½^d¯¸DŽàk¦D"ˆnÃépæ@}D"ö Ù'²ÉÁÞÛ>#s¾…¬u$ø¡OzÛ=¾mo¨R"÷t"•Öy~&z,°_÷b½¥ŸÞᨖÍ{#!.¿\-¢ñÞ±ï‹&Â{×ËljttYÜcªè^–Ô3úœÈ; §ÞÅ÷½ƒTÓ! 8Ö ÈP\{|œâ¥‰ŒöâbP¶º$`¸–O Ãj/¤:Òæ¡Yø}¢ø˜y×DbXðÄ jPLÝVÐwj@ó§±O­X"›&ŽñùYˆ\p׊ìT²hºÁ¨½Òeà´uÖìŸ÷EbP”Ç'°@ÎÕ¸süÓAJEø_z_h³ÒÆÒ—˜îu ¢zó§“&öÞgÁ—»ï{‘ kèoÄ´‡Î©(-¢¿Þ72Ƚ%Ðì+Š`Õ\ƒDŽ1{]•¾AômZÅúúÒ`õ¡” ¯§&-œÔSwX?r¹;(Aý}Ìø÷ŠE'0ñ‚€ý{µŸ%PÔÐlÛHdÛWV2Ïø—÷PÁ=ß8XáT±›È‡Þ-bD|tsÐÞï6З†bzðƒ;Ø@•…I$Єƒ{€ TãipÃé&CHY> :&2aÖ4S Pt'°aHÀu$£dÍ‚°Á (“â‰4üXŠ\ â_O¤ò9Zpd &E7@ªÑg‰l踮ãèàãu@§‘K> Ôÿ–ÈQ[ áܲÐYGúÛ¢×8úo}æèb¹çÏ!5»”!› ¢ ¶3d§ilwkDªVcqàU¯]"§À”ý ,öÚØè#Æ®; ÄK—HÕ©výbP=N+jÌoÃIņ;ß8,Bȱe'êX(¾…›;ÀªºãDȤÄÏ 09¨ÉG‚b‰SÇ!ìÄaš×÷èŒ O¹.ð„ÑÎ&—c1¨h8²¯~o }I ˆÔ_‘YîùH`­W"†¶ºR²ZÑ¥Ô›@±"²]4‘ø³A Ô7’s‰t˜À,Pʉ&2ë{Sò7*5äŠðªv#‘#ú×/Lß ðnÓ‡ ¨ È>Pó&2ЪÍ7H] mÚ~:d¡wÚð2foÀd8<ÜjŸæVv ¿?'Êž•2ÀúÚ¡CE÷üX …LýšöÓt«²gï§ |ÐÎu6سòïç?Ž9îƒpjD&î5uš´MÇËue²ÀQŸRòiçONNø)¨hé莆0A 'Gs6¤«µ@'XAE²™eîäÊéN•Ÿ“1¡ ®9Á ¤žÖD:n…]r+¨Ì§Ù5å{ä3ЕÏ_Žm^‰8üS¬ w‰Ì †Â¶'ª”dDÌ ¢{Å.ç„ì³x-gSs'ÿÞà4TjÜïDÛ_aå Û_¦ð4H>Kæ}^’¸G—)ãÿ~^‰%‘2kµãLƒ3'm0A¤é”‰4F‘ûq˜¹ ûZ pTê’K5šNª kŸ}Ò Ð^6áhæS"Uré’Z°ÂÝÀ„@šñŠç^šhnp$.ÉÅÏ}—ðcï}¾ ˶KÔ‹45,¿ƒçDî ;cÐõØù¯‡?=Ö%r"z*0òI?€Á¹é"¹‡BcTrMàþþ€U+v†ò0Ff1ƒ¦ƒÇò°uÖšß•àG¼k(~ñYfö@öÙK—+.;š_)Ýj ½úÄŒ F‰ëß; l .Dz<ßÚ¾íQiÕï»5HþÖ½‹ôÒ¶'BÉÇ+7Ä) jE z½5¨¦ô$²íûjê-åpÕ[ݺF·b=[ÿõ¿‡ Ä­º‰@4Ž!nÊ)µŽâãûŠ;Æ–ÝvЫ• ì âÉN»O9¨8a,»ë¤‰ý€)Ð+îkÐWÏÛ -ÊÀQ¼|<÷J+ÈA5=$Bª…ú^ä WFÁ úúÂä•"5òÄiû³)¸ßzлmXnœÊÀ ´XkŸÈÄî⺎AÓcÇ6û3Œ7‘ ¢@×u…Aˆ*iáîYE ÔÔ&šG<˜Ž0iîY0˜)ëψ“ƒ uÉŸ ‚Ð14„ÞeV ñÜ$—îþ=;¸‘H^¼hqk"Ñp-ˆ*%íeV¤@&Z‘Dª‹úžå¿önXI zO$9޶Û÷!û‚HæàH¼_ ô j{J­1| ½öª'ƒ’è>¼¢*½ç*#Øû1tzðíèE­(Ä=“@‰¾,n£ Ód=ò† pAphÍ XA‹ö?+º|Ñþ—±À tãU º@¼<¾àÜE¿À tý‘Õ4á+q5xtœ ”Jaî!¹kx®«!¤­a5H¾ì¿@ôHÏ‚½vuß#ª¼à¨(8‘×/ÐUö‹Ú@ò"/«‚Ùíc•-0„ŠÃ6•èá÷€HX‰°PC@ÕiÈ¢Y`5}û‚°î÷£6`ÇE"5!SWf¡ÆÌ0‘£Pê|aï¿¥L ¼@×Z³ÌZQ%bu¿Š"Tã’àÖ¯#66öŽ†Ð«ABïj\‡N«~Üu˜T¸¡1Fë7‘’G—qûþb0„ÞîZ*?6!áäN|Ø„ÖB<ã>Õú3º,‘…ü …tÉ£ºŽûg+@]ôÝÚJR j³ ”à[¤ß÷7’Ú!׆Q{Wë†CGzǃœz™–¹þ{ÇwW‘ƒ¾â&ËÙ†G°ݽ0Øánn9ì »U8<ºûfÝÔžèóðhAƒnIüŠ(¡”3Ðk[_q³sÈD¨Š~=Û&óï÷Ò ìOôj_ e/èJwìuØz÷#ˆ‹ý`x+Û>©4…´æ1kYßz©  «þ Ìl-»!M¡’ªÝ$÷ø,ìp›dމŒ?·jpç”ªÚ M' l8+îØ ‡Û÷í4Th(ÙRq¿$ÛºË Ð,•(üHëlÐÁÝJ» '@ĉЪE*swÔh(-¶3h[÷%ß]Žì3è Ul0ƒÞ×3èëÂtÝ‚mß»¾D1ƒÞޝDý[Øw‚sH ¤pÑg%ø¦Ðλá,E7vѽ¤¢xA³´§ëý %oÐݲƒ ^Pµø1è ïÿs6]•¸lƒ.êÑ bЭm›æ=èòèØ3™QÃîØÐ7†¸3Ыw/xtA5º„_ÆÁ^ªNºÇv»{ Ë“(‘KåI0 wñ‚^Š@߃؛žºàný{#°M^"¯NÜ#'|[ƒ¨±ÝmƒÞ Ü>Ü@M]ì TCuצ^Ðךv±ÉÀ.Ú …ÂAàÌN! ïQA ºï71¨:³aªbèî¾¾»…K³Sr†­ìÆeØr Ê-eçî¢zù…;ʬ½µžÙŒ­áÞÈÉpDâqÐÄÝzF3èõAüQpÛ‡ƒh°Ÿ:ëõåÐS! ”©ÀvëÏ­?DÛ™ƒTéI¿Ü S"wM‡ÌþùTnP5.&²PK MîE ÷9„“Ëøƒ{É5Nè}|:1x¸Xfø˜UpÝ!ïp锞ñ"ºõ3bÐkü9ˆAoµ¾Õóë‚ôfpÄ / 1è-Apƒ^—É‹ôºtbЛÈsƒÊ½õ½LéSI:¬M‡.ŸU"Ì ˜`QpÓcêºU¤¤rn9Ðç2•ÂWj*RB¼ÊMý·Ø¡.€ËÈáp;"|ôÑÂó³•F‘„Þáõ^Í}•EÒIA˜>áðÝ—N7àn®pnX0@$²DÆúªÙ0e¨€™ š±ˆ£ÓŽ/9À&@¬xžÚñJnâ!Sÿ·D_Ÿ‰ ö»6"†°Ùƒø{„dT×þé{ªµ™ˆ­DbU×ÕÀ1 Š/8‘†í·Â‹‰tÄ–z™í­faµÒXD¨\BgUO©c«OÄaàm&°ŽCŠ"4Ûó¦éh…ztŒJ6‘ £Ë;C÷[×1,À7]Çû[ÁÐxN0iÓN¤a¿3dxœ¶ ¾¿!Ýî:„†íÔev+°Dœ-¯º9²6~ßDâš ªD8Ö’÷šªE¶ 2û{#M„¹ >'‰‚¸†ÙˆaLÅü…{!ÍÏSD¡×µ:HT° "E{OÍ”ÈaKTÐ*¾¶IdkœŽ8¤q¶µîŠ&Ôõ)†òRG'Rsœî‹Y`½gÓi"EJ+â »xA¹ðV ¤v‰‰BYh–ˆƒ5’ï®âLƒâQ¨Hbi0=¸¦Š$Hi§ÐàS n°Î2–ᛎÙ(Õ'âŸ4q<  •jH¤!ƒÄwáeÆ[yÙµï&²†[ç´ï£ëîO±íA>Vv"ß:äxñmFiP(|à aX",Ã瓃'H6`",?»gm,3nÈ4kŸQ"ŽÑTmÐ%J¤ª6ŒÛf{P®Çš–D&J  ¬qF#¯bûhfÿ”ZLÄA—ø=  kÒA>1‰tÖä lw"lC<µöƒ9‡ÜÈ„º¨Ú!ǯK'uùu¸O€‰š:÷;'2Å×Uì#p­Küù"Àd"Ø  O$СӀ%H¦x"ð±—µš¥†pÀAâ³¶¡–Rlôm fÉ:‰Tz‡IÀƒ@àÇÌ߇Ø->¾¯sBøµÐZñÝøc" ÖÔÔ1 õ\SWö?·ŽOs4ƒès´]"5͸K@MÙ .S¶¢5"Ö¾_N€œ¦hpTÇ–ˆÃ»žº{¬”À`b6þçý Nó1™H3t!†¨‚é:$–YºÎFÇãÔÍB¦cXµÁ­b#Äç’ÚÍà¶ät¡wy€(Hý`‰òy]fŒkÛåäºp MÉè*¿äkUÊGéÌê˜ÿ^,û‰[®4ysÐåJšãÞ‡ÔøÆc©ñ?÷KfxÜo >–½ÒJ˜™p¯CÇÔ䇭5šüpñ²5øsSm¶~r€\Ë(»„{•ÞIäæŠÎ/‘C˜+ß>‘Ã~µe` m”Ÿ'r ÖDMïxÍŠª Í™ÑA­øu"E®=¦U)œÈü¼öÞÕ`ªõ Q†ÍRLàŒë&ºG>æzM£g¨‰~ä »H“¡a{qG+È’G?À¨3¯Ñ‰Ô虩üÑ.o¦ƒ?š¡ø¿E˜dÆbäDÎ$3 íH¤dÿy!Å®5Ô‹.ôN£Lä¿è9¯)(‰p€ ?ïþ}³¯d!ôrî¼DŽðÛ”PL=ºrñGOÉß„q»õ '¤_V~Ÿþû} Ò/{©›ŒÛ{Ì@ c7°àk¥uzÖUy×p톡®úZ†(ß}Îë l! oZ¹/?‹oú"2aÖ?ºÎ·\1‘’~Rª$r&ŸÄ•ì" 2SE=CVšiø90¾ûþï3lŒÀ’ßK—]±…Þ1¾‰lˆ$îÆä·¦cüûÝJ܈d"^¦ƒŸ9DJôY©šÈ}Wˆ"s8·Z:ë8uÎ)°‰Dí6Ž“’—whêŠ@®`Œ3¾O˜þ°$øñãXWèÕS½´Àûª5˜—,ú1Š#è‹üúñ@èYPzýYºã) |ÁàpêÐI5ü¡•šÔx$ÈuH@Ý`ßÅjJß'Òÿ½†¨%0ÆgM2ß„V»NZÈŽo]w3ˆ®{þÒïëlÓ ØïEX”ÈÙˆE8–ÈÀÞÁEzçÚ'²°¯4uF?D׫(šÐT¢îU£y9Ê5²OaxœÙuV'p$_åAÅ3lŽlFúàÑeJò¯T H¾¶ÔŽ mL¡mrÏEšC€}éWòëEЋKjL 2À­¬M"ǨՀÕDN¦Â¯0MÍ¥æ'6Œ2£b /[j6 Ïïç+®Ð·Ü®P‹Éõ<Š+t=CßÓ0Ò’µ!‰ÈYF›HÀ °ƒ!hÚ£(‚†3 8.U(Ð(Ž %JÔDŽI«\Y"Ǥ mš£¸B-ìu‡ª5]§lÚ»Yèd G,Y¦9@z.€‰˜ ¢\¡mêÃlLs ýšýãöÇ¿›Nñº ¶üã¿-m R|?‘sVs Vñ„Þ.ÿƒìšÑÀ·y‚ž\™ü»šªïou˜?LÑÅ€íïRº£¸âRa"¢ Íc`| Øþ¢9O„¶ÿÖ•OŠîưG@ðC+Æ?IDb€!¨9ׯ| øZò³hB_®ÈĶ/bÉDŽ>ÁmaO¨‰¼+JþÒ•Ëø—Ý2±ñÇC}O¨…6ß ã_d‰ûGl¬‰ ¬yˆìl}-ßI] 2‹&È”Œš·õù… ¢/×vOh[ÜG‹O¢RšH!:‹'4ç¢7u¬ÿ=^gqü 6À eÀ‚ œ1@×L*Ÿâ¾âc6ô"\¹Ð'‡&¸´""úüÞâ }æ}}‡'ôŽÊLÀÇ¿×̤ƒÄ¿w{OhêI>öDd›iÚD8Ͼù©úzÍE<À.«sβ™Åô²æÄ¿M³tNÌ1c?TïÃÛ~É^V8–XÔÓʘÕ7(–Ð; 'ï¡ìF:)< æ¬výi0ƒ¤Ë˜–G” Øõç?œüt,ð¹¡XúýEd~È1gëëÙ0ì`ÎÎusºyÔ.—lî2gaËέQf¼ÆÆ(3ÅQçÆ8Kqsc’KsÃ’uSzóŽÒŒª ü|7*û²³ÌMš.ƒAƒé0hiO‡ÇŒÙtL1¾_ß1ÒIöìtÙ³ˆ­N‡Ü߯šc, !NÄ]¡¹‰!4Nœ¢¢E`Pq"O™ß)àÃÉ@›Pë.ø€A«F1Ž¿ß–=še—Ì/œ©`àëßÛ±³Ìô*ì'd_^›Áþ¿Z{0ËL+ŠPS6;xéØ7*±xŒl UðŽb´€Š¢ò$o]ÓwŽ_|SŽ«E¨iüAùÄù¾Øm¬#¤§Äšu¸r¯ËLø¯:b!ޤ‹T<剸÷‰º`ñ³ M2ÛÚ7tcCá<~\ØþÎbÅ83|æˆEÛô>ˆ^(aPeî¯bž¨Bîy§›…M)Ñ€³yk”tȘßo[`+Øhƒ\éÎXÙý/¥k°ûon¶’ å/!=ìÂfŠåÁ)®Ä·U`E úúN¹¿ËÇÐOººÊÂGÀŽi?NÞŒÄ^:տݧPfÌâyÒ}V†ÿ÷,C—¬XÔð:iïÎ/¢·©SÿV¡•Ä®Yu§S*°íû};Eš.¶tÛHM-rÐ#9:Æ?¦L¥;Îþ}9ÑŠ²¡k†PÃ^ â"T›e‡â0´àBl˜þ7é¹aús«"ÏÀíÛÝdm}v!B…‚ ¡,¶VyM’o®2_o#y"4çn pœï!_»u!tÝŠÀ Ã_[a‡BËI©PÞÒÀó?»‡R5ÚÊ–ŸðÚ%Ö+“".‡K€^Ìò¡rH#¿YI·]Þä{=Åý^H Lk•¦|?ÍÓ°‹±¢a§¡¯TV9ÚïLÐÁ*Ð'oØ#ôY\êAMAÕ“ „¹£; Ï2ª2}?=ÖôØ_€ ÚFJƲ¹{Ê>|»OB"‰ÁúŸÍÙCÉÝ\½ëA"4–L¸°e*æ•1kUãпcÜPÜ3uV‚Ûz =Üñ<Ú´˜s*2•/ÀÐ1é>âQFí­¼¬}xó,Wg"-'—åÌ_Øh.aà£ø &rÔ÷¡OørŠ8”;óoF™ºÍ…ºÛ¶û)4\´¿Ê Î{˜sÕëü›uØ‚JÝ?Ηí(ô5 €†kÆÙ! H%œÐìB±Ÿ‹Ò‰¿k3×£GE0œ*Ø0¡½ÑP?À„ö¡Ï&ôsL^¦k4†Þ™Z îÔz@Zóu•oɽPBGc¾å€Ú'×ù@Ð@÷f³~æ·H¨ÐÀ¡d§=œOABãY.]¦ösíÆ€„Þ¬Ã$tcÊL`¥<€„öA“ç`9xî«g(¹WÂ嘚©yw@ Õƒ¡duÒxhŠûdú"´®Ž³á„ï~Ü+Ž ð§¨Æ tÞ—€PmÆì‡| ùµ>ÐäV‹¡4ÇaL¡wœAwLØ„"jvzØ:ë ¯»ë³ji_ô× „Щ !ô–C€Ùï2ÀâDÛ eâ) §aå`ãöø×ý2†q„­p×­£2C««4ïÝt<´¬ø Úâ „õõ4¬¡¯Ì¬ tiŸÌPÌÆ ¶2ÿ—`³žéþ´`šÚPUŸï(;HõbU‡øN@WÄ­œÆN…y ÓYeÏHᵿè{ÕfeïÌ„I˶›Púþ~V›¿·‰ˆž*Tlª. «MeqLÇØøx¹6+š}‡ãBq†Šàl!1¡àº­JLÜ@ª-Ôä‘|æUÿ1ïîó¡ìO˜ÀÕ~%¡Ø·ÒÛ­T°ôÃ9ÓíwlmijïˆÜ¨³aÌÑvÅ1Lé4Ûëi56°¦¢6PeS9eÖ*¾ea •Bf¥A–¼î7§H‚h(DgEI àÔÎ>©p290k]Cç   Ž›)žÍ™£ð@ËdŸEäI3€â®9c…JgŽÂn«È¬Æ¾Ý›nðå”Â0€âðª³I…ﯣ@C6s ÕÕš«Ýä* ö’,VŒÐ˜s¾¾¥"èeôWOØ+@è{ fÕ|ïXí]öî/ñÃ_+‘?¿ßPœ¤'ìZI•øò¢„Æ·AäÇÛ jo*íûâç>–•RÑI¹Z˜ÂÞXž„Gî åIš½¡ÂRÞŸPÌÁ±¼®S€ u+ؽÿ~ÝRïªOâ½éþj¨~kîÒ…7Òµ]שá¯)Æ»ò9ü¬ñoû &s¶—°´3`(¯ÈÐI9üµ!m(¤I€kÝuˆÕ ƒ΋´„ssŸðéä×ûD³÷®¥ã ƒu·Ö×™õ‰±¯úbŸJæL}¶á‰7•QmSÌÃ*´•¸®Ò‚,XâXüêŽt¬·~Ê—¢Ú÷Ê•¦pþyð³ùõšý§Ç~øTÚÛM…1í)e¶ïwø° RÙíûée˜R±}mŠü]ïúO™ÈÎéÁLDj0j§î×D•FuÔ¦°ÎkšM3€›„ýs³l©°ÔWYðçÜLÓÿìh§]:¥ÖÄúS™ïy.•…½t*MºƒoaÜ£„(•JUƒ±òOÙ(Mƒ •;së˜QsØœ&"·|½7êì÷ë˜èÛÒ1g½Ö—T*®?1­ ÜJ,Öõj†´ŸEaôï|p0걬¥²ÐRt:•ƒ»0$ *Ť`å84Ô%¡µ6•¶¿Ó'{×£6gÜ[ÓŸ«©l|›©ÏRƒ‰®lg:É19ñ2ŽRû®yÅU™Ä¯ìhß§2èò×Y«fÆa6X]‡$qÞÙpÐx¿Rhz§“‚ú»«ttú` µ®ŠS©Ä¸š©,,tëPAVë¥{¿Êí)Û9Zƒ)‹ÇTXšÄË`˜‡Kkpå6ikˆgkL¶†¯Y¶ha—ͬ}f–ÖP£ »JQäu§ÒðQ<«cø£å¯”Á`BŠn`´L]g£¸u¹rãPyûË%0_eÀšÕ$ÐÌͲm¨ÖŒ}pøh¸ è;ÖÜ<“ÊÊ`ëÇì‚W­MTæÝ³HÒ²àø,~å {VËT›¿¯2§ü{¿ËUJÉXåÒ ´sah®Ü=kÁœÝ|ÚúÅ€ ²a% i˜JoZMmÁš­˜D iÌÒSJåàMüÙ0íßµP qxÂA_Ëa+8({ZR˜ï°·J³;6²Ô(OKeÛ÷!ì_”„ÝOú$çþ)c.D*íÝè˜J»î© ûL¿í`ì7í @ ýS©œÏ”Ø€}}c AýÑìaûwö0•›- ¸9׆ò$Óo€åOðM*¯–õfðå6'¬[ÖW3¸rwb("ÐÚšqžÜ};m&ÈŽ¥2´ °ÞM½©lLA¦c ‰¦B—UþÙ„ôª1…†2¼FéœÌ}ýA=¸×¥pŠr*5¾GW¦‡ßØ |Dðþ)í_#¶7„ôt7{ú®¹¯7ij5ˆ{C½ÑúêM]¶÷˜Šgk…é 1=Y+lØÆŠØ»êò\JWŸ¦2XJa¢ÝóH/ÐâÞ驜σì ¾ï( ;dzQA#k«t‘WJGhs*³}–¶Ž5àzV}°×ðÑ!6çÒelý=ÉÂÒÛ¹,ýð‰:û{ÿæ/ü‰%a~ܺ>ÀÀ Ö§ŠòîUλR!cS5îèÂÈ—{Ó¹A³²îe÷¥xÖôNŒŽèFÌjI9ø¬¡Ï²ùY!{ñ€¶¬™h†ÿ:&•†Ÿ¾¤äØ_²{ûF鹿ĆU¾“ º¸Vô Ðå}«6XXà ¤’é ¾dZ6ºlã~°-ïÒø:•˜»Vd=¥{tÿ¦_QH åã¥t:a5ëEMÏ J‘A_ëq7ÕYÂÚëv+î)¤äS_§˜@Ñéd:f±³¨Q9of`)äVèÜ~e0¸©c* p)z ”’æ It A @O…[¹ò‰ :ýÖîJT{ýÐ4hŸg!ûep/˜x$ ,ã£cªRCËû0Äöúëº" _iÿmßvÝsžè:uÑÜ?ÖÆp˜¶÷aºJ5\×±öñ/†Ã´Uðq>0†:þ„i;ùgW½¦2àAáõžXÐY—B=Èá0“Ô®ÇÍÀ˜S¯Ú}ýÙÄÂÅ­N`À0=E'°}¦§Ù@Ž‘Y4’ršªgSÖÞ, ¨ÊÌS1Ä®LÇ8•г8@ª–J¥#c÷s&¨½¾N‘nW4ïϘŸ]ûöÁõ™€ÀÝhàì "Ò'œä¢m2•ö¦}¦Ò¿“ÜîúK“DÐÁ×k‚j[·k`—‡û«àÆrª'(pò&' F—jNî)˜‚ʘà^Ÿ‚zýhËÓàÚxeèø€[0Â+9ÁUòb‚ Gtu*µ‡ë}S†½^® ‹}R‰6Óî.s!H;õF’äü³úLô°·b|AºA¿ è cMÐ@ç¯þNÓŸû¤bûã=MÌýÜe!{IÒô™^ÝI©Ô®nCÁ@™ŒNaŽïˆ©¹ÿæ&X 7¡4Áõöºn²[o¥¡Þ^©È ÐZ¿úwˆ›Xˆ˜Æ'X û}ÌÂÒ¾u™b!.ú,Ð0Ê•j3YzUh÷ßïG ÒPèkL²@Q-™JZ²³Óœ`Ú¦ñ=Á5×ûhÔéPxï[6Ÿè}¹×ƒhöà]_´ûåe¯b¿5çô¾ų\0ú•ÈYj.C|=ô8 Ðû´WA€šÉß_Å â2âF« ¡è2‰%”%¸³÷ïý^›V@ûópv] €r_¬J!€Zíà¥vvP¢oum^Ù¤äsôAãj¨±è&•´`o‚xêß°Õ÷~Ÿå áÀ<]€€^7yÔîÍ*òƒ ;¥`n‡£µõ{Óõý:+§0?LþDßïÏݪ£„SæÓ,P­ž5˃ó®_>˃sMÜ Poœ@Æ zO]Çtû~cr@5›¯Bµk®ÁõHºPèx|ž… lù–²êœ)!¦±þfåW­Þøž®º÷y]%,Øy×Òãϛş ¨š1«@qÒÔYñ.´¥ÇRÐþm–UÐ^Ñk(5ú'ßÕ º· ’¨ß“ŠÚŸû²ä ¯£ÁχY«@/²;”…”7 £øÏÔœë¹ÿ@@_à×ô†rVA@ãbÉY†­ÐËDuÕejŸŸG÷Ô€·úY†ÒŒIG赺-Çèz_Á„¾ ÊåÀÛkulì@C{´]'eyE/ŽFŽ#ž7¹h®B€6Wps4fM8t»Ì~íГJF/îBº¹ ¨Êb—ÝŸüNåÔèzôQ1úû£™a?ýÆÙcßµwb7ìÛäôêwQ€^ƒr'ô“Ü…ùïÌnØÁ’Os4‡$ûó»Ëðo7´aøß8þÆbà|P»ìþ;öwÇØ7Ϋ»@¯Åa¨×PNÞš÷1†¹—7bÜ…wlé0¸(í¡]ðöìZb΂#¹ ÿFÀ.ügÌ rS‡gÑVÜ0ùÝrݹÄwÅ· þ™¿§Qi9ýøôŸêÞ`NÚo»–€¨'…±¾‹þs=º òçr®×äÏû.m?·"E8îæ“J•#ÉfÞKD¬³äÏ›…Øàÿ(C³RÓ÷ .±3àüìõ­2þ§l¤%”JÝ@²ô7•OÌ'‚ø$£À{Tjìâ~Æ{ t÷S›x¥RÏRFÓ.îg 3˜ð›àÏMçqèµ$í#TÀ”’Ükø¨?fÉ>JJ˜n×Ë:¼îó±7LCÔfmƒ!«yoö*£· æòÛ0ð§Æ ÐQ¢|›x[uàaè†4o@J(íâ¾i{¸TjE× µAº…AÛ‘‘So;¸£C´¥ƒeÀúÙà’Ó“Ý¢U_¯ÀÉÿsë:É+9àÀ-åñÏó­É8 Þ óÀ–ÕÈ:…ÿI[Ñ©døÚ;í–ÓÕÛ{Ú/ò ü2 û”iœ†È…žÂiÚ£­+•â*à~ˆö 뜢ýa|ýÀø¿å § p,!O!ÍŸÑ8ülÿ[Dy:lÙÁ7ñtmT†±u:Ìcž^H{•áœ[VaÓüg…(4DøÀöªZ:û”©:óþS{Þ¥²ç'æu`úUµœ@ž"üO7QgÂúQ ñ€ÿyî£) P»gb_+<ØþóŽÀ©íîubÓ0_ÏÔ~±FáÀø¿ÕXga«&Eî΂7§éø,°õ'8#ü¾K ¬'gigŸ­c .ØÔç0yƒèúýóõºýófRÏ¥v)•‹0Nêgcô“ÊFL¡‡SôÏ;G¬GaÙ³±ƒ2f§àŸ·êÀöç·-6_I¥ÐŸÆ×ῌ:ÍÒsßIþAù·£wV8r‚0øNÑÚ­°:¦^é%e0ª`TrÜߢ«cÚ£éÑ•3Y{çKÐ?o²ñý‡›ÖþûNß{‰Eà™zW þ™Þì ’Cüá2U)yw'×€SìÏ|ß7•ƒ,0–­\ƒðÏ#ûØ%ẔôÏ⃲§’Ò‘F+ög¤ 7… `?ÎiÍÀþÙš#L‘ay½”F ´^ÊtòØÓ""«õ'*éöÏíäNe`žÃÊa¤ÿ(%m ”Ñ¿µÂ~ª99›ÏÆ@ÿé‡k¨.¾ î°÷S-š©tdBñ~YÑbYh:&§°æúÝXÈAI%9(áQ(N©³[øgPX¡?µÓ}*5ç+eÙCž×–2Ñußþ<ŠWX¢?óäI!&±àf˜Þ߯ȟ1(ަ#ŒBí9=8cÙ,N€Z=¬ð?­ÐÆPÿ³–nq‘?Ûc\ym‚ T¼÷­!˜jÅþÉb¡F¥ÂÕðƒûÙnq”÷3¾ l[[ÀÌaVØÏÀ0<ºnš?͹ÚBâFùÖ|²S…VðŸ@MÀ>¶šýk[Öß/½,…ý|eåm À½m,æJDÚþõyd-%*/1?oý’ û¦o\+@¬¼XM­¬~5§²ÑØÃ™äORoR1´(bÑ5’?•¡0àÜè×Ù%b–5“·tÑŸ¦cÐ÷ÞøwÙ²²û äÏuo) 9zß=²¥ ®v꘎oÃqNô§*`  ¥¶(o£’À˜¥P…(’®O÷V±m¬A^ìÏq°R¼ØŸ‘ÇÀŠè¬Y /øgÌ7ø¥^ðÏlÛTbø?˜œ½Lÿ bé£c’Ïj]6#yµáG*M[Ãõóâÿ<µi(”ÿ9¨¦¤ËùõšJŒï1iÌ.%¼©¼^'¡7 >…׬Ÿ¾KñšnðBx¡?Å+Dø*Ã…ÿG[ܧ‚V Œ ïŠäéœ4dÛ¡i¿0£`ÌøÀÆdÊ«ù@2NUG>jMg?n*iÈ’Äž JÆð6ø@s‰¾ÍÀÎd“ÃÏkˆ)ÃØ‹þI;Ð'¼¸FßßgÙ±ªöó"¾%ŠÅ¤øÇôÿöå*iÇͳ>ËŽ­ä 8 L°£B95óά4d‡ëÁûóõ vgeÚƒû³=Ç*y éÂmÅ´½°?·†ÅÁýy=’­ùð]¬ä;¸?Svµƒû³ï€-ògܾï…þ|-³ðqÔoÖËóÍR Øý`W2-îÏ<4d¼(pïO:0î¸*ðçk1sÆáüíEþyÏ>ÀÀµçWw%ã¸øç‡¸Á›z[ ãÞt“M›TŠwÓ¶d÷:…(°ÝÐV"?Êaûo¥þ¼@píÆ{‘?_kw„°rànJÞ]ù8~CG@orõwWJtþ红î¨Ç`P°¿`q× BŽ~b+JñŸ[ÕB:r}` %‡ÿdåGÒ1(»>‰U˜.Q„š Ûƒ´ùƒ«ÒøçkJ‡±årìOô?§2á€-“~œÞ¡P’€¸0nB0,ó&%‹ï”Õ,ÔÃȨ40SÜ©tAŒM¥@IÀF§² Ú:k×$UnFE‹9x”ɤÚ?/w%gH_p¨ɧû¹eF! $ƒ_f $ƒïx( soÎ@}ý}0XH0H% Ú×Ûè1lû‡ÒæûOµæTr)P-”‰Ê×1©,”µuZYËMŠÁÁšútÿ¹;>æÍ¤ÐPÿ1œJG¢hé˜Úš˜±ÍT09H ýw}묃¨®ϱ_,w(Ž(‘ᬻë"”5¡ ˜ócP™H‹òý-hVnRØ€=R²2Cí:¡>Š_ÐÃ{(9þ• ¥#xÈÁs°Kå”…ÍÝ—tÖ²2tLºs¬ÎHYÑ-Å1Ú~§¡¶Œvx( :~”ý¢òeêZÛïm·2i_¯š¡ºž•L¡ä  °D:ž†;ˆá?wsÎ2Íæð_”óñªŽÚ²ûJ;jË–î ±oSs¯#7ý>ëÀ²[:‹uu¯Z@µ_f* FN­·¡t|¦³Ò¤]Œ½„2N*³<”ÊãLŽ¿ê™ˆ©Øß÷ñ¹9­¡¶¾ëë4l¶Kç1”Ñ>SUÃr ÉPòßߨZB9¨³Â³jMÍU¦ª¥}pbo €NG”1”Ž‚÷ݨÔà×äߺŠëñÊ´®âú2BÙŒp9•ê-ñ×urô«r.–ĉo~áhvŸTʲ­-ÌRèàÁ¬ØŠzËhBÙ°=¶.\jד(hs¦r…žårâÂð¬k\”`w`9p\¥£éßëÂpƒùÊxp-*5þýuV.SÖH+þO<,>â…ôó;¡ð°M%_•`…’ë»;&×VøŸ^ (›õì ¬̶ ®€œ¤T0ð“€}¸‹Y¡P »Dá±ò4¬ê§³Ÿ ³s¡nD€²S<Œ•þMóÜŠ»”S÷rÔ_—YŒ#ë2•Ë1ãƒÝÖ÷¯®bìtiTœÖ&¾±1=Áèk˜`êWÅj(¤É£Ë¬OsS(Û¾7çEÕgUcÕÔ[îõBó”ð¿âïïËê2m¯²ÚwÊÁj0óË–°Ð ¬fyL‰Ð18ò;è?Üà •TŒÔ^Ðôƒ¤”[ÇO(åÖ9CÇbpW½N¨é^Ð AiÊQÀÈê­üºÑ½Hì-Vƒ³©¤q[Û BYXí»®³aX`ô&¿Žß¹amgð.|4&…´m¹%z*^—2ÐIiË#¥,!ö˜…rÚçêÅj*ÁÅQ^ï¥c1PH S*p2*OJ·½q!ìÅ/Ø)äèïlU ¥lÛ©‡>P¥¡÷µ4fÀ|RJõ‡áž£¿ö¥‚à1Læ>a É5è…½)ÝPòŸÞsý”)%—ö±8wô»vòÏoI(9ôÕõŸbeÅkÖ ÚŽ& ¾*´×t£€•7Š¡ZåH©ˆ+=bìV¡½lœè`û[(lmjàO á¾Å-oR „nÔ@€ªg.9øñQJêEš+÷s°£¨°oi?•þ®÷ aŒaÔ‹úrØ:|€Úª wt8:ëÀÆ>úð4ƒúæŒØá–B†Bœ1º! ñèI`)¨½2¡L8´[gåÐïSÏÆàÖÉ”ì·N«b/P#Ö¿ì\à(4tp|ùüJ~¶-‡°Yº'm”oñAÀ í*:uXûǃKöä§’f,Ëñ Jƒá¨d™*³’Ž~–A‡C×Ýì°aǃ–Qö¯d#2­n€ê/2‰z~^)÷Ü[?|ô¶§†2ýcUŒ†žQæqB9hçݺr®ìj! ÅÑ]gt£»"W¤ŸÛiW’bK£‚[ ;¦1¡ŒŽ.CY棫FéHñŸW‰R ¨ƒá;’zÛ)BH›VÝÇ9m0{p¨Lð÷¶Î"Üû^gjO’)_vïÒ!Ž2T>ß `ÀmÀ€©>Ñ0}ŸæD|›íT¡À :©Šn&ç“Qì·—c:ˆb¾7 ³Qýº`Ô2R2ŠÚÖà‹8\:vG'º¼> ÕXeÓÞ¸æXh6q}½N+ÈX ÜÇËÅ€U`1=5¼ô˜úÇF×Âc£â •€™ª&˜ S)¢¢c£]úhàl´KËníÒLX¦Çk“wç`e—6B| ÓŒóÇ %JòÑÇQHcè2Q…¡²ù]ãiºG¹NnüàZ +{(îo©aôÓ.…mì.Ë\BÝs×e ‘Í¡f·4~’ßc‚:­dä&VçaÉ ©Ÿ/”…ù‡ïTùÜ„7…*¶?~EjâÜ¥„$3‹t»;Ba¦âÑYè[:¤ŠíYÉ”ŠfÌù ò¸¿>Ü>ÍEmªŠáXR[{w¥Âˆ…ñóª aŽÏ8š`€jñ@€fhÒûdSÓ†ƒÈÕëOŒ×Ù‘¨ÐóŸUJãuÒúgÞ.Që«F ¥ÙÜÓ¬0aþ«0˽æÏ‹~é‡]ó> PÁCiû³vÌ!ˆ?b`Ü?úݘõoÄwÂüßï³Ú(aRÌ¡o7…ÍiŸ>5ö¹˜X^ª mk¦¡mÀwÌ)KöÄJðúÎôŽ”‚ÅÃÁ9¶uC7¢ýuÌø†çB )f¡äð¿öû,èËÌž Ý&Š8O,¯WdîUúlnt›tK³h@iWaŠ^aUO®,meãź·É'¸ÑoÂxüD(6í$ ˆu†™FÃïÖÑ6Åp&h f4&i w4q)`“v¾@¨ á¤s~¿Ví,Ð˪ˆÝMPç:¦ ¡¦[l°jý¥”U+{4’v¸L£P^V‹ [‰«!Škc£ÐÐ\7uºäxo ‡ "8 ªnˆÜé Î(®D…éVÞë*e¾Ëh8?hˆû;U¡5É®C&"=ø2  k¯c6 ®ñXÖN¹ õÀ Rú`5Œ|ÅŸW1à^Sé Tœé\x3ËÆèܪÆÞÈ‹PvûŒ¿œu޶Õ~Áò2ÂÚ3^¦k³2~²@•¹[¤ÀW¸¨À²¡,R+ŒJUÞ+—·ÈUâiuTŸ×g9ªÆ`Ò¬‚fìwP©ýšŒ#eÔ¶®3°WߣqP ƒ¹mÔý„U ,e£àbby]óztJîXi®ß]$Pm˘JþÆšéÜÙ³^_±Çg!_µd ”,Y:…Ș&‹PÏ ÐûhA½«ø?IÎÔ1«×¦U0ÛÖB­k¬CÉ"=o4ÛV€25¬³ÒÖréåêzøeþgß“Sˆ¦òQדJîÓz†nLÙÿÙHÑ©di p.sX£ 8•Fx8k€ý£nP: àøº„´ßÇdcO’JŽºûu“šý惂Š×ìSPí}›Ê@Q&_–€>Ã5ý4Ž:kW!6ÿÌ‚K3ýÌ¿eLýÌý ®ÇÇ4—rh º„á¨ìlú»H qÌÖurè·‡áÕP€;ƒQ²TkãýÀ¦/ÅQ¢ƒukƒÔÉË@n‡ˆÑ´ š„I%“góÑì†ÒûÆådû-kä(äšþ4N|»@@ÑsÎÖ£˜ÌÆE÷oüôÍ’ùÌ]g£Gç[µ{•Þû½r/›¶)G±‹š!£‚ï÷è29}xš´Ïѽ(è+y¹‡`ˆ({ȤŜå ?SÛø•°^eÁ™@CaÞ=æE»Æ¿BÒ{`üÝ €nvO”k°²5Ýý:g¢ß†ß$  Ú€ÁÍçõId!r0MetÙßt× H Y»óóŠl€€›:{ôu÷‚?§ª•½Ô¾žšo8`7)ÃEAÕ®0 ó؆ݿ™ÙEû*Ó»ÅWÐ~ï6P@K Ñ è]ö]°’m¢€Æ|6P@Cé‡ èõ¸6( ½qRÚ €ª`?=?TåM}Öµ¤°Ta  ãÿõ É9Óc0䪕AÞ4þ'ÿœ âÜSÖ‡ÏÊÁ˜WÓù, £2– m† 6 ¢C%Ò¢<Î@q+½TÒ›ÏK©ZUW¸[+¿]\Ž{0@—‚æ¿H´¡ÀüÇo8`íþ:„ì7ÜôóŸí¨Iïš?¯*’­y>îÊ”1²Ó°CŸ’ö§©JÆíÔågœ†}ÀwÈf7”à%:…Ò3)|½ÊSÐà>à -‘‘ÙUn"´§£Z/Þ)P°V0{Gok¤kûCüôúE§ƒ˪å´Qr@Ò? Áycøz£qPõÔçó)Ÿ¬ëù¶àÉ%àRBÈ'yÞ'UrâùÕe½± ¡Ôžì?Oå;Ìíþyg„èŸ7Yv¦ÊóŽŽ™èöƒÓq°)ÙÂgõ3§®cíÉÉX-? ÷/7‰þ÷¤”–9µ $ƒ4 [œ€NÑ€"v‰E>ªEó¿ß°ðŸ7êxwÝ]ú$Cu ¦±³´±–†³Q}?u]à€nü®i+šP&Êr¦ÎJ hi<57¤›Nq„<».ëhg@Àâlè }¤ÀæÏ ²ŸQœS£¢QX?¯=RØ5gñGþyŒŽÇüSà»ì‚_å#Zw€ ûŠBuÞûPðOu·d ƒ—°)TZNKí!ÿM$ »°€nyã1”ÝßÔÁqÚ:â=|_ ytø•§àŸ1qt `˜¡“6òi0ÅH@ŠÆžÂÁÅu±*ØS×À`eùÇWÁ e¶&ë<;™ž™á.$Ó†”…€•.ƒr0׆*Ô©ëú·Ù@šŠŠ Kߊz.ùæ·Ï{j €Êµ·\Ö5¬icÌæÖTu?¤8ÀJpŒ ­ù´ðQyOê¡ðŽƒÿyÓ$è­’±€FUÏÒ…ÏTŠ!éŠ÷Ç@õÁÁg €úâà³Æý¡9jEúPE> v?éF ¦I! ˆ_yÈþCmɉ;r€U(m,4·ÀÖ2 @onÇ&Æþ£ñ6Q›¤„ºäß ·XÚòç¯\c¨ØÇÀUW}VÂüi:f"tŒ¹ÏØ·Ê?[Íùw]µcVIôú ¶áÅéõµ­ÑD‰mu\M“«À­‘°â€fÔÌ© +2uHÕÜ˲ý·ÎÒ°¼†ÿQ¥– h f}¿ScÛ½‘!;µª_3:ƒépm*•YSŠ!_†Zûf±ÍTtÌARÐ}ßhð€nž Íúë2˾ï8€p·°ÂŠÔìÎA–i ãZgŽ‘ïü3ý¸Ã¸» .&æCa›ƒ°ˆùb¦UQ SÇ óFÓ[½)¼o€º|B”¡í…г0†¢û÷Ó`– läI ¬Ž^, Wº?2d·®kL[é,6Òa]sR@'óÁÞN:ô¾*¨òNyÁ€rŽR,Dç-u€@ý­œOk]º,òÆý" T¸wä§ç똂!Êó®r{¬n^$ÐÞöë:î¼ ™žYœêÿ¦+W¹}§Cã ^ëÚaû+ï`ÀáUv`@ï(÷²üãþ¡FÊÆýû˜ƒâS×1þó®$ðBeý>( _úÀ€j¯Æ¬_€Yo:¦ a›– JþS(ûÔW>ºŽ•ÿÅoLËŸÛí$æt•ÅÃÑ èÓh™xYþ/³ÉÉ}4Ú‹ú<œ0 íMÊùް€^ÏÐÆ$ŠƒÚ” tr@7}^ èÚy¾«6ã¾‹à€¶¦q»_; dñ} fl/ËÿâOóI·ºYX¶üÈšR^{8&ŽE@ŒÙÄÌ­wψz=n/ hoƒë„únV//' ƒ9{S1@_õÒ^–\–ã8 [ÀèµÄ훺N@·²Ï‹ôú`€úíÀõ;úÀzÍ‘àÝ2`'ô¡% ¾^P@oW¦;’ÓZUÝADÔé®F“R’&¾ —æÏA…e=‡œQÓ®c€"WÔ× Èþ):Éy™ú¡c ±… ¦òi¤Ë¤VVQ í,œ„/·uL³f»z53 ´þë:¤,Ú–ÞŽYR Ö³-*މuágÎ7ì›ö{~¥œ¹õ:©,Ú{5nR–¯˜ÕkÔÊÁüÛu£ÝQ‹ï¨@q¡T ƒ©ñôû{ %™ˆÂƒf]çgžOéÛcÍ–'L¬üI…Š÷ŠwH UÁ§£á4*9üUÙÊDø†·f¦A{ËMCÙï)1„3Þëf¾ðXëͨ”?Ç™Ò Á²3•ªÍ8ú:ëw¼×˜,JÃ/w´6N*&4sµ¡¤?W{¹A¡AËWoßsD6òLLF¥×Pß›»¨9n6ܹ;ÚH¥5Êë¨ëL¿[߯?µB±¦sOŸ&¥Ásä›w”Ÿ0 ~õ³¨L>]fcjÊÁŒÇ[A(ÚÉ„ÇhŸ¸@‚n×,$è-­ ¥Øö¬Ï ¥˜ ÖjÀh(;úÖÅPª#{¯¥itö7†'ÿ>áû *ƒ&…‚Ûß)É«*Éù×/Ç#¯oÏQU,л–åï@ f™¦½:æ-ceÔPÄ\Ý”$‘ÃÊÂ4Ì¿7üv<¡ö ˆA“-”ªHr~½ м€@N^_Z1õIçP£ =<úFóÿ~8Ö€û*7°@õÔP ÚÞ'Í®öýÝHã+v( ®›„Ç«MHûK&/õSÇìOÝ_*§f–G &ÇÑ)°Î~à @U؆ÖÙ6´5S×1¬6Æ”ÚÀ•»ÊÆû…•¢ D1ÂÍÉÇ`­kí£›1ËŸÐ$”ÚÕ}³¡ä®½#¡ L=Þ)wŽc(P¿?t¤}”ÃU»ÇT¹ñ½a 6í½ÍÀÉõ eà6c6Œn`$ ·”²iȧÀí=ÄhF6*´ia'5Ð@µ¡”Y«U<*·ö÷iúûnÍG¡ê+Ù¤J✠ÅPŽ¿)¤U»¦>‰d ¦“N9t“M¥©  ÖuÖDtp묅FmÞd AmóT»[¥€@JÓ9îuÓ9£€ êú3¹k—4A_Œý~ŸP‹UµT ·þ˜³ L ”í{41)•ŸFÛbý)f“WYRÓ{¨ÊBIcV|©P ½5CJ5N3ÉRš”Žt4V˜^ –æ'Jíé ½?"bUÐ)ûT“§‚„%´ß`ÙíMÓ•­¥ÃÜX:ÛYñO24xIaí—®qð9.…[YíC¥Ú¦YªóRÅódwuÂ@—î` Þønw&yc¡,4ÈbíXÖýt¶>º:Gµ@v @ïÜØ‡xXÑûЊŽW² ô#„2Ø‚ýQÐÜyY|¡|ÞÈ>Ò{¤”飹²ÃîWAE(íÓÊwg²Þƒ68 kËô C–ùPÎ'ÒŠ!5îRÈ÷æcXª°ÇlÞ"ÙîEñ@Åñ [“ÝC¦ÿ¼vÊ e#‹ë²_Q0tjâuîh çÝØs™ñP¾-Ó¡ bj:•ÚšÕuûV"nãö¸€è|Ÿ¶F5x ÚQ5”êšž/¥ /¡Œõ½ÁG]Ó˜¡bãߟ·ÿÓBëuvMó‡fÈví&'«w75r¢+èˈëàÀ…KNa¬#ʇˆY…rà´»>Û0½ðμI¯‚ݹMSçßF<‡€ƒ€]»BXhu7Û`{×0*è]º»cÜëº(PmeJ‡QQK@˜Â0ÎP Ú+”¬¯ßÓØ è-ã ‡œGˆ©a¶ ¹s°†=8 ¥½3‘!pO‡v«Û×¥Tu= BÙŸ6—P‚Ç&ÅüXŒ.Î Tm#¡¤)Û—“Ñ5-ŸŦ°æ÷¦ƒ¤†PÌ˦Ë8ú·1 Ç@,{ë—˜²2’GÁ@_ð ôú`£` ¯[:°ŸÉÑoîFÔFÑ@o _(¬Ìà½è°I9,TCŸš¤ø£Š´DV eõºîÙTöúymÒJV%©]6”Úd×4úÁUr²â^[ Šö³Ö㤠ÿ»Éz(5ø­$‚ÊR°üU˜ ^N¸`£8@pÅ£ª‰?ƒRjwŸ¦Ë€tƒ~£8@éïN*Œ`µ‘³Þ:eQa̱±%1Ó^½¨AÙ1W`aÃò fÇC!ñÑ1 K ? l„[šˆJ‘¡å±Ž-AÜû0”%ÉÇ…]*º ¥Ê’dšŽZ Ôþ>¥†º$¹ÂU_œ.Á³âZ¶Àplï£9{”ñc‰S`¡€–*C©á?4):†¿ëO«{>uÙÓ šýè×éú ?Ÿwh ”EÎù7êN1™LÀ@µµP(l‡ÅË0ÁR%X(oÙÒ1dg˜C9ÄÖgù;ƒÞgÃÎÄ@Ðûä&0@w ÍV”om…JyríuR'ˆJOR€Ø › šº0ÿÍŽý}XßÊ·È,”þi! eþ¼vþLmô Mb€0¥Æšpf¯¦ÕìŠczá³H¥†Ò`Ú-)˜Ô™#_þõ, Pî&eT6Þ2,yDP1LúÚ›˜>k4üHP€®u=‰Õ(ž ½8(@Ú9”õõjfá@×ëWbÞs:Ì%ÈÍÂÞ¾¾PJ± Ìâ®×“ZØ\¶>±w­ë…½yuñ…¼ÜÖg¢h[Ç8ÊŽ8pˆR¤mtʹÕ4 ›a‚*¸z( t”E¡x Kw§x K<^]Sw{õ>:¾C ©’¦O ánjgª¬e(9>âóg¯²P ®øËÁåÆÒ!8Ê\ùhŠ´®³6 Š=ÍãO„Mïÿs³&'Y ú3=9“9aþ“8‚¡@Ðõ=2˜'œcŸ´þ‰ã쳬Wúh:š¥ï³.Ð{²ÁµÑ6æÔ£OJWn’í bpy $P1xSñRp+W‘@× æ¬"¾ ©õhÜëö‡°—Tλš¿g÷àÝŒ:þvÔûÃÔZ {”±`+”Ó6Èâ"ð>k|ýéUÐs¿/8 jÓåìÏ€Yà€j[°PX™„iw*¤H¯jÃ\z%Œï”º@~3ež0 * e£ÔÜuL¥&do/b@5¯­‹Å*°€2ÎÌ PWðh 9sB•%)`¿HÕkºŠ3¿YE}M}kÀº7y¢Yšã¡d³´JuCIÈe E´¤,Äç›ÎªŒÜУýM®ÚšÈLÜ/ èuc× *¥F×,ÐÒîáä: RK( V‡.³9§ê2eÐ’&Šc½ÃD°R=j_„±€$”j—V€ií2hïò¶’ºn¶gmÚ+ϵ6ö)“¸e?N5üe'-0€n*wa¸ÙèÆ,0€^¿ m› wéã‹Ð D-B€dL­Sþœ¶×ë«H þè&ƒú9¤ª3”oY ^÷w™ºLxKA½Fã2ZrÖNˆ—^vÂÛ‹ PÖ²‡Ò×÷ƒ¤y~wƒmËumº lJ>‚@w^ªø¹ïG­sH o€@§¼á èìœ~«„ø7Üp®ñ¼ASÝuߊÓ7í†J™´¬ýï ÐC`D(9øoNchm® •œ†²ðÓÖÙà€¾>€Z=RA¾ÌMèdsÓó¶á¨M0nXSdc=8Zöuø ´î빺6Ïî&ä7Öƒ›¼ÙC>–ÂMaå¡”OwïáÐÝ0î6X@²7H ÚÃ>î׊™“Å£‰”+ÿžZ7VñÂz!¿^m˽îdΛ¼ÇS&í‚Þ×e˜]]exqÏA½Fø T½„’ÃÿšKD¸iœ7` ×³Ù€Þq àÚa k=o,ײ¨·ùecm0€ûBCA? ,PáuSñú¼Yµöw mµŽ^Åì³Xíb¾<¼M Ü£¹áüö)¹ÉUˆzlØ¡Àì>HRÜ÷kÁG÷EA¹}jÛ¦{Ó Í£šŸw¡@×õ—vQ€–ºC)Ë–€âPŽÁ\º½ËÎ ôõâ§}TCq8¼Èêm @o€|»z‡ø ):U¨m0à^¯t‚€âGp 8ò¬D¥rtª#Ù€^kíf¥¨Rt@¸ÕôP :T”q€½¯êY¢Ú$Põj…R+AÓØƒ L/øí4­n“« 2 Kî'……R`Ž@'¸J!Ôž¬­‡RÕI¤5öœóO”“1 ) È²xÚ±x·îè€ývëNyë&gÎAdO5t§X@—!×Oa@÷ÞÈPrÚW=Í)Päx €n¶æúz¼à€Æî‡ ‘Ò. 8ñ§8 ï¡æø®éÒÑ8­,Æqd(¸ v(Õ^¦WÁÐP€ú8RìI Å@½3]ÙAi‚yevnÂã³0DnX éöø>V(Ð[-j@Þtzçs Tûe…b ‰`¤X¡€^iŸ"Ou$œ²¯\‡Ü^¦5ì>MÄw(Ü´ &¶ª».7õÐGè<°ay?(1°@'C#Èøg…´õü­Ë2]c}úÅCAÜ~è¤rçî½H»u#H&ˆ `ÒÃÅíCgMÄ”øÊ4ØÐÊ~u*ÆßÙ:}ƒÕ6Ðhâü3órÚè¹ÛD`oÀ–µ‰ [3–ôŸ»÷j™›¸­6‘•SD¾ê*ßq ›°el° [öÞN@‰¥v+Û|ŽÒÖê! XÖ˜3 øÏÇA4â?¹?j(U^yGÀo}Ò€2à?ÕÉÜ øÏJC©ìÄy)9æ… e¢ÐuÌ´kb›»•ñÏóáÁ„RµIÊiq×>,§øçõn ðOE,*ò“Þõ’½ŠùP¶[WâÎÈþd߀þ¼yPþG»¯u3í9‚3mf‚ò3íÔ³ÇLÛ” %VF+ôç<´Õ èOmG &¸¦“j³Ö®û ôçý$˜üëá¯,úÏ]þ ¸»¢Y‘?ï2h ¾n0ÈŸ7a€ÿœû fé{ÝåzyÂÚñ÷@xSˆý)Hz(äf —æ@Þœ»ýyr‡¹§‡¹ßÏ©?V 5‡µ/fU÷&dÌ”2¿Eo^äÏ6e ;¦þ; {ñ¦‚ªÞ´Iîºù39ãR"›JQõçødyQ?/Ь;Œý×½ügêb3–¨P+äŸ;Ÿ9ˆŸCa ñSYf/øÛ TEa3Šï`;Ÿë>€1Ï’B© ¶Â÷ÔÛÒ{ëóÏÞd¡Ô†>rzì=C™ß*sŸŠ\pìýs“A>Q_¯DJtÏ*ìCØÄ—úK0›zM÷êWMÃ|QŸYΗ@IC Ár®Â0o¦2qBp”?áü#ó&º}ûÏ;bç$¾iöt€–3àÿÈÕˆ`|›GWÆÝãÓ$ðM†z(¨;äÝûóÎG~î.ÅN%~_zWÎïd‘ÂùyáAC9µêñGeÇë*ŽŽú3·ãmTh¿"°á`ÿ¼>ÊŠ|x~uNŽý*e†’àO›´‚¸×·øS”ÊPÂòyjuNàOméJNb³ÿJ?ïº÷Â;¼°®¡”õJb(9òµcr(6‘ë³3„Ý<‚ñ<µÖÔD=ž‚ÿܦP:>ž‚ø5+¼B™HZÔ8¥bxk£º% AÒ©€ GÇ)`è³ÒÓH°ðgq-Ç[_…2aÍY£²3«% îSù裪oŽñëP´‹ƒ>½vi¥C?žÎÎx…©XÈ%eüù>À~Ž®[›_µbãéì.©w3"ßÚ‘‚&Îe}Î' þ"¡TMfœæ{2NQŠ6¨þðþLP?U÷Š!šðè:þé –µ†RøC"¶C!.©Q˜ã=†²àÈ4)¼ë´ûI­ %l×Kƃ"—i<À~ª†4¤N§0ÐBÈŸ}¹ŸSÇ,Ô,s0óûb!˜^v(˜å;.SìÏܘ˨4@ᆎé(Å:*±x¯6â×XçCØïI÷פØ~b„â˜ë6î/ÀŸË5$ üya‚¡ ÔGñþTã1‰ b>”ƒÞ}]Èý¼_èŸÝ5Ž .œ÷`öÙ¢Òkòã­1³,³ e¢ÍçiTJfx»L•Gu໚Îr}qzøSq²PžmXdû‡R<ïÇФG ÷›î›J:q½c½ …)dâ,û©C¢xÿ¼¨­¡4ä)1DÛƒ²$}T#Ži¡P²Ð^fd(ûS‰Jfo6wÄ ¥0ö¬ à7¥ÆSaYä¦ÒQq²(Te-ÄPf¾óän…²_Í(t~½5©ì„’ûÉ´ähd2uJÍûôhBéïB¦^VèÏû`ZÇðC`‡É#¥Œ fýBù“F#þgéëþÇÙ|BQ_IÅßmÌ¡¬þ††²×¼ÊA‰ÊÖYŽ"vü“-£ý9tØŸf‡2ˆ(3*$¤­c*€ÍúP6æ^,9-@É.›Øc‡¹ˆc 4”6¾c ›Ñ6LãUl UIŒ4‡²,ç×è}ˆá—cj`­e.w€  µå¥b?¯Ôj(ÅþÔ$Ùà¨x(”Ͷ"]™ü+˜m‹›q¤hi4”%i©o•Œ.„2Î÷ èÜÛ|DytÌF­çÔ•kC+ãÜàø¿{4,rÆBiï®»X™ñèÊÅ=zÆD€úë†ô†Žaû(ßG"@e?5 @ãÚ£TýH)\ŒCüYíÒØd,„‰zOÓ! ³Ÿ&@Êp‡bÿP30(ЦÅô=À`Rá­êêìaÑôË~3)“1´Me¡ cè:çïeìkquÀß´?ñèX ÔÏ Û aª÷¦–iÓYóçN a‘Š¢Ë䊇P}üÍtÄ£s uMç8Ú˜y  Š²¦r>ö_/è÷; ŸCü, áð›JB9HYܳÌ>fd΢BÝþÏ JG°h阴i»ëë ä$¶~÷€M Zn/˜C߇é$ÿ¬0ôOç.n¡ÔÖdKôÏ%¬j×çÝÏ)”á¬C…5]JYµ¬¥*Ìh1aÑÁèàÿÜI¡ƒÿ³ïƒY¨²¿ßÐÉÝDCY nv]‡ì þ.@?g™¦›¾5ø[§ÒªÀºØ±¨M:”ŽVÓÐ{û%¹Ž©ÆiVæ‚Ä=ÆÑº…/vw ¥Á¿ä+rLâS'Hd'!̈Ž9ú¤Ú™ïþ„ó6*™…ÞÑÁÿÔÖ°¡|jªB Ìd'ÿ“$¡,Œ¶&e£…© ãÑG¡S 3~tÈ“è˜òŸ‰X(ýÏ#pµMw ÄÆl”c¿mÍu`­­Qã¬É€/Ùᨊn B@$dqsÓPªþ–«ñ vè†H  ªç …èÛ{’a‚•;íΊWa*[jzãNPacC™h­Y:¦jí»¾  sðWª ›B©ìÄÒÍéŠjÃÂIz-У£uTÓÔ(h” ÁfÀæ+BÙè¢Åô2°DŠýùå];9ÀÜð0ØF1€–¶Ê¥ãgc^`€*EJæ'Ä…m&®ëØum nò‚㣰 0@'Ë Bé¨A$`€:å'Ž©ÐÞÔuÒ¤íƒÄ(è"…R“;·⨱‚Ñ3°ôÆéy,˜´zÑb8ü] ËBndê2Ul¬uh,7.ìб_ŠƒÝÀñÐ\¨»c£ºRqÅ¡À/ñ?ýuѽ>vÓØˆeÈ!àÿt×½‘¢`ÝÆˆ]ê±ðÕ<e°Å7”ÜQ£ééÆMžBY¨þ¸×݈óL ösKnÆ8šÆ°öUšá¡¹3Šÿy[©B)œ=ãŸÃĸ7ª€oKYî1@ÿ0;”óý†¼œœ™ü§ pÆ(âÛj.”ÆöÊN¥³/\ÊÄäóè¬ÂÈIM}:ù¼®lp©9û¤µzÿ©¸îþs2‹ÊøX_ kíLÐ?Y%Â~—[‡ÀîbÈÀ0íOYF(m~l€ Ë_›7 PÌæ›Êü& &؟ר›€ÝpñlÊÌm)n Ö€; Ï®Í)1!L0€XéÂüÔÙ†²>¹°PrI«ßús°¸ ” goM5õÎxyfÙþK™ÏTÐÄ KaìL)3`lË*3`hiäPN­PúdDôدŠ¡i¾Ê,PnáTJsLJųµZÏb-¦©CȈžzèCA+Ó’pÐq·)T9R]¶HK`)¢›y.”$Ýq¾ª$Ioæ,òçÒ^ꡬý™oæBjâ~á…Ô„æ…YäÏ‹c¹žEþ¼‚Pºé\ n(,Õ¹±1®6Ëîš©GJÁÈš­%š&×$°ýû«ŽöfÂJ<‹ü™˜‚C¥ãç¸&ˆåY¡°$‰?èÏ›"˜…þ\×–ž ­®7 º#Ç4°3ˆÚ ¥ÕÒ¤ŒOEI(^ì¡°ÐAytRÅh‘¡á€QhìYî¨1¦£Oó_à–R›³ØŸ·I/”ûwÞŸŽÁoú¾À®7ï¢àø»AF{{‚$„ßXà-¹Œ±PŸŸ·›»€‚»óÔèæTÖƒ šd×-@@µOl(1ž­cÒžm׳è]  c1 ¹ ª˜Ä¨ÉRYMÕõ›ÂJáÑ!¢eK诞ƒ}KñÏ‹VE߯ݏÀ"û4„4gU9Jmè@tK(µ¡ƒâ!‹ V¢„RH{B’BAãáÐIް ‚qU’ð“úÛ Ï-"@•ý_CA=8ë0@‡þ±@½éä5 Päed¦;J ÐÑï,è—:”ªPr]ø·»Ì¬"€×(Ó8úU €ŽÃÅjÁú¿îûý­÷×Yi Y Ö¿ ¦Æ4æ' Õ§GÊ„eÏ×  f4ø8@Ú6”ªÓ¯ë8ª¡ãY[ƒŸ_  ‡Û‡’;´V• ”rä{¬ j€²5Ãxmž SŸUeöl( ( ˆÜ—оãë¨qz^Åßëò*Ðå„ò雡¨,…#Gm¥Uö w¬"€¾Œ¥E7À4½Ñ`pcÕZ°^3 Á¢ÑºˆÒòµˆº7Â0úÙ)7– Cbtƒåئ‰ÅÚ¡p5ÐI1ú—}¿Z n{A(§×âã- èâö}!ÐÂI»@@‹E‰)¤•­Î~þ„´7@@ÚŠ5”…î#…e–C—9(JCÖ* ½tßëÛV“)»®ÆT|öP2Šá›fÇ&N¡é}! ˜®÷¥€N)§„­“ŒÑ óx *jøªl ¥¡. ³Xؾ)˜ è- Ú˜õolf÷_$¥1ì›Vq¢Ý1ìû룪̞`‚Q¥Ò/ÿy*(ý’ð÷ø×D–¤QXû½ÈîGn¾®p%¾Aÿ1âtÇÎh~í'nL†éaü&’}(–æ‡M(᳡0Ž=tå"Ù+_¹'¶q ä0îL†pÏ.hbï'•ÚÇ`ÉQ ã¯ÿP&úøtr÷Y.ThÌÊA=Ú#¥Òrø#þ¢ÂÀå[2¨p[2ŽEð?[£o··*“:/‹*398µ„rÐ×6tŒ¡9nÚýçp›P¦ôÕ€Ž úOÄR(LX˜]‡ CÓu݃ŒÖÞp¬ª2ijÿY¹ (µ%1wÜ»è?³éö’ÓZ*w E°Ì>ëËÿyôIf/œ‘¼Ê4¤Ð`tt;{Kÿ®ÒŒG·—ôO™¤ÛÑ/çzÜÄÞɈøÏó:Æ1¡Ö…Í~UYBß䮚ýÊy˜ý7¨^è¹TšŽÙßEäp®—Á™5i¯~ÎqÀÿ\JÇð?wcÄç€ÿ©†™P*‰£´ÙôÞÓÈVtùÀðŸÎ—ê”៻ëÓsèßÔè!ZU[–¿ª¨G…Þi¼¨ZB™ç{›Áº±„¨ ˆ ÷: €¾î;LÿE3õ` ¸/ôØÐGY÷3îè—BLÀ¢°±¾ßËld+—Cz®çHKÈ©=€®NâLR`úà®rŠq]¼À§ ­ÒªPrü?åΡäøÜÏ>C'5ù%€Â);EÐ!„Þ?óßYåÉ=‹ ™ƒu@•ߣ¬©´Æ9àV%&Ô¡J–ªÏ_}’£{ÐtŽ:JÆÙ{ß·ÐG—Ù(¶w.¿iÒf†ÐtN®Ud…ã±Q0à`$8æUÌ´ç Æ’E*‡¸;Ö@ÿ­àOzè ^Còùóñ­\WMÈ9(´ïš¶`1[·Å0îµh žÉXÉ©eàu¿îƒó÷1õ‰)iŶ¦»i_ÜŸì[7Úüùâ¶ÃòO“ zÞÛ¦s{ŠûùÊëW“4½ –ÑuÚ‘øÑ¸+ôç˳>`ÿ<Æßm—ú†ÀœaPóJ(ÙA¤ÛíQ:£ÈíK¯Ôÿ,<”ƒI¾é˜ ççu–#pÍ@ÿœ‹ASøMh½P2œ÷,N³ÖÎS]¡5er\gaBÒ9,ÂÔ†_Ž{j°ürÖµ1ÞnúçIë¿hãÄËl ÿŒ¥ùç\ ôÏ©¢+úg¤4„âè"„;c ÿhPêÝøÐËôŸƒaKƒõ?5ñÀ?·äܰ\£Í`ÿOUCìÿ¡"9C»Oýs<Ì[-7ob€.%ðOö䇲ìãàŸÚ¸/„LÎr¤3ðÙ„ji3˜þ2; ìϲ·RŒ ûSýr¡Tg¿.|PµtLŽýfzó° Ô6%©€ýYenPÈþ„%``ÞÒuû³¶¦‚R½èú:Åþ|bݧpvuOm}¶!†ì¨üóLzJ†i¿¶ƒ’&P3z‰VèŸèŸºÇL”¿ b`>‹ÕÔ¿nÊÚr*6À?çÔ†¦ƒüÓhÈ9  7,퀀Þ÷Ê»*“°š:0pcÓ&ð‚€Þà±:ƒfhïº7 ÿ,yÄÎÅ€¸PˆÌà×)øOœ»ðŸvŸæD¹½œ Çrp«ŒðŸ~Ÿ/à?7†ç½ÓJGù2@ŽMnì–ÉXŽè5Ô}"¬§Ú3´5.îúÏœ ;ùR0ƒOo£UÙPI—ÿg,N^ˆ¨¡8Öû{@øÊ€€ÖÆKP *;Ð ú*hð‚€¾^{@@7{¦|+¶ÇÕá\Ó }ô3â°ü®E8ÜQB)ª½Ön/PÔ+tãÿÙ$#‡’Öí5 [LèÈYxnU™Gfý;#»!W­êô¦â®Àm.qº2Ú=@­zi(œïkŽr,qîhŸÖÂí]·áÑ ºöÔ< œÈ¡TpOM^PÁjB¨Áo´øž€…óN?)”ˆíEs½g¡ttsO5k@6”~]£Ê®—ê^7 Ûö`© ¥Üº›*¶g5ìèÀ¾’T®‹ªßBXµÏÙ°3BÉ ¶ìÆPbä?{á%‚N ?Úcø.€v´çÍøŸ9uR¯XÆ qÊÀC8&ü˜£ë¦W÷l}¿Žqÿüògÿ©}|CA¨`â2CpïÑ©4@ÁlRé ÂÕ|ÊešÄQ)iØ>5L¡d~Bå°ó!hëaŽJË©Lp> ¾i³éTìå …M¤¼y9$CYàAr˜ûÆ×9…]-Ç, ë~Á¥¦CŽô¥-Ì©äL¦w(”ÖÎ¥³&k>•´lû§Ê!'ƒByuC¯@@m`ÆžA@4ÆCiçû‚´5Ý.2@×ïൎ§N]x׉¥Šaâ·9(WÁÐc.¡ôwb1‚íù9EºNS( Ý´¼UEŠqÓ¤d¤ö1„CAZÀñ“ íÓvG(µ?ŸñÏþéeÀÜ:R&ëÑ:•*½©°Úì~Ч;%Ç´À §Ã ¥¡ðöHÈŽócÐ>ð¡° Õ)Ô>M¬Qå "mRÈÒ¼¹5-øâlê3LJ–'M°B©n[âC™0¥ÊÜ e¡*ñè:€>¼?ËêBÉöi•úÏV, ¥Å-”†Fc—’åöLU†Öõ#Šü»DÝ“6\ŸeR0ÎïY ÿT+j(E¶ÇNf³ý©RP:Îérì+Î Ê1ñ´Žò Ú¢¡l4Ì—CÊÁGáo½lsIa(Ï@07„b ²^8” hhžmC ‹‚¾fÞVôÏ%äp(¨¢À<ÛŠt·‚˜ô7×-¾øO̘­ˆ@·N1”q>ïC›¿¨ŋֈ»¿aV†X9¡XÕp„£_”‡Ù ÿ¹ 5œcK@ ¬Q˜¨xt‘õgdh-¶Õ…rÀâÓ](µ9ú æ,:6gă^Ŭ!TŸ [ËB¬B•2ñlSYˆ5]8­Ùn\ðŸ* ¥ DPÃ&jÀÎþ|(é˵uOÉyì1Ö.…¾ÜcG³p@miTÔh&…!6jÊ:Ä£ƒ]Ò m­˜ÍPqÏR(Yu¬êÖP&& ]fÍÏûc˜ÆîHã:p,ñŸ¬€ %ÍÙÇi`4à€¶ ¥°Mofò€2ÄÔ)”E{3 e}Xd¡l¬ˆS¡/÷è:Åb`vvÐ?> åÔ‹þùš û_ŽQPªî˜^O( aW Àþ ÎŒ%Ä¡p£¦¦c¾ƒ¿ý“ÅKù÷~?©^< ¥½B™,D£°Öç}é˜óÕ™ÊÁ 9¿ûsî†6su×/ìÀÙ3Ê·Æ,”iw8•‰ÙgIYçå–‡€8ö½cà³¾-¯ÁCº”Û˳ëåö2­ûÀÀg¢:”ùa7¤‚|I×Yûçž ¡::£Š³¹ñX(þ)òžhm÷ k40‚{€ºó­ì©’8”…‚ÞΩâl¼—½@@­°P Q+ÌÌÐa¨® ¥Š´ êú’Õö¯ »_XËP [g¸3í*öYTû>†€ÂÙ7R(F ¡Æý }Ñ7¶'¯“Ƨ¿"”IÛZg¥=«`\(¥ˆCÇÔÈ—ÉÖ± hÏÙUg^( eC°µúå€bfë ,×ͨ…à&ìBÙ mQ8ûíuwb@‰ PñqSÁTÇûu1 ®cÆ'„Ê·Þq7îåðè éikÍPjŸV6j„’!½vhõÂ-Õá…Òð–o £Æ§¤‚Ý®´P&r]×ݨ,}t]6›Àï šL¶xÅfÍðžH Ú`0F©…Jб&”‰rñ¡Ë,”èã½ ÎX"ÊAÙßÔ•³¢¯ñû bà$MåÝNBï·"z¨Âø ^G}Ç×*„óóª§ xÜШ‘—6G×d†×~¤ ÕT`“P* =~%jÖu• :†é*9ôV¥ÑµO Ò È6M²¨Ýß è P à@U" Àq°Šx ÚŒ-6:…ó)Æ …é‰u ¬à‰©N[ßp@ÚË.”BÈ=Àªˆ2” câ@7ŸïüÓ8ŠC€*€A(Uuì¼ h w–À¾>›d(ǰW`@*ë ÅQ¦+w*<|(©û¦cX¡Çùäp/L¾ƒ@Цø|*5âïü͸ºŽ_®é%ÂÄ-®6¨ …½Ó0Gñ@ç}.‚Ó¼…‰ÿÚé@ÐkÓ¶>º®£AÕ€ J(9ø{Óëà,¶Ÿü{‚Æš, û2¸HX|ºà $Êù,œóù™wº9‹´´Éjw¾kÜMð@Be‚Gö謅÷¾ÑTEI¡4€;@„Boköl0ƒ4=ÏoNVt§uÇÂÝP& °‡ŽY¨ÄÁl7 ¤†Â`ÔÒÇšàŠŠû÷2]îܾ :žæ¼IöÒ‡°1¡n F(ƒq´bÖ[è@„µ´ ÔŸûý-‡|lÝu 8Øâ Ðå] Á ÌÊiÕx¯cŸÞÆP0 ¬X«P@ñ…–_çèQ4‡H@jv %f¯ÞTœ³u­Ë‘™Pb¤M{C) (ßÿ ¨*ùC©z{¥á7pp79¹A½¹Ü ¨Š¯B9eò †äßчg8ûõá ¶Þ¹], uïÅ.Ð=/”ù1˜vC^‚=¡Ä‚¾… åôO^bôý•¸SJ±€î&—¡4…ñÞ3„ïŽV¡¬õ‰Äí®ˆž®ÆO ˜©»£2gŒ÷t»A5Åÿ6¦zÑšB©]ÉØ$ ³0÷P­ý‘rÚ'n½jñ$ÜB€ò94¾=&å=e÷ÀÛØ@€Þ¼ý.î[¼ªSÇ:ƒ³å.{?Þï{™ôàŽê6 wºß$€jéÜ €ÖîCPjWV C¨Š¤ÉLþÔ4)l˜ü„²¿µaP±C1ØX°6lþ£8ÿÈÙ†JGF˜×Íÿ¬6îJš±7§´Aÿž)×1*Ü£ “ÍþSUá¡° ‰×)‹ÿZ‰k€úÔCÉXž  ¡¤Ùc*@ÙG›ìJ0ฎNR·!~UA€nGb(iÆš‚ÔÛÔ>z²]§jï/ôÜ) PEC·qK @€´Ñw*(Ç’¹} "@•OØŽ-ù”yŠðG Úq…óólP€¼Ñ Ý®æQXU PmÝJ þÞdrœâÁ­ë_œÛSö×uVCl´Qd¸=è Üá~¡‚ˆè&å@LÇÏ?¯ÍLB©Ð…Š @2 ãzàC )Ç>wø4¹p¸ áo*}8½ Y™­§ ˜„(ìé  Î{•Éü‚SÙ°¢†®[æ]ÙУ{Ðä#x©Cø |ÂòCÉýÐÐ,@ïër™7”øª ¥ ö„„’þÛÍA@;M†ÒeØ:¦æ1åÜ j ¥IGß îÂñÏ,u½U £ŸC¨Æ,øŸç>+ð?¨‘P¾)°³þíC! ¥•üOß‘ y÷nUWbm=XîŠ|`ûkwšPjO‡Ã˜ïÙ²h]ÇÔžM·tƒ 19³ž"¥­Ü¨ø) 3×)¨Ýç@ëÿü^s/ ´sP›Ñ^WY«öxtL n£Š• aúû|‡$YXÂÁ"Ý%”û7uz ÿ?zHÉe@{…²Î§Äã$4÷oÒ!1ôcoJÌÖ¶¿“;O­}+n| Ú‡|‘SÐÜIÞ©ÄÐÝ`Ÿ2þsƒœF%¹íúYeüçFí˜ÍM¨6•4f“’=ùX§ PídÊøyõI…P,DUDYA@—ÒfVÐuCHFÓ_éA{´µ¾ž5¡1¯L¡Bé(6¿Ç°¿VÁöì4”´i÷ýô›VS™5Ù´®ï“5I·Œ/&Y”~a~±â€®›Æ³Žò •íYÇŽ\¼¬~%ƒÕj-x5;X QYmèšaÞ¢ /Œ ”W’»˜ŠÕM=RÒª½kHÔ–Ìš„\JmM¬5Ú#þŠî: 6ÄBÄ—™(Î`·W(µC‰È¡Tï4QÀ¡TÃñ¡ÔfMòG , A!B©”w}%ã­³ÆÀ²®O/PF­•†à1æQKh¬px=m¡(Ïù8AƒS§T(ùÊ{RF²µG_($ÈðáÁG€¡n@Áµ¡Á_ èöh€ô,=&°€´ã\( 1H~X@B1„rлßõQ^'Á÷´#ª=fD;(³Ÿ\%í(;ͯ(;ÚB˜V Ò º-Fv’˜Ÿƒn]¯  ëÑÓ H©# H^˜ô9S£¼¸oÏVlÎ’ôD“.ÿN_Nˆ¡P:û00@_ŸTÓþ3e'›£*Ié`s4N;R+ h«m: ÄÀæÒ÷ËDØ0WúÃÛUvMˆ°ÿoû’ èYªÖpâ€ä 9) j›ñÂ-í„JUs"óP{ż  ÏÐO÷ržùþð_løvNvþ Ì^ί7XAÜú%”¯á Ý|´c)¸Å¨ÞÐj¨IÝ0ˆ2ÿЃòVƒß^'9f ÞœNÀ7ÿ̪¤4õŽš<-ÞQ“§ ¶sûéDùÇÞQšop˜}¨Ê…×2ð쩟T.ÀºNTÙëeõ„€¾Z/¼  Ys{¤ÔÏÖïôz›^Ðý<úU€€j'½P2’q‹q|ªÎ—'ô²÷‰e^( W Ð' í.ò‰žº™$ öÐþó$=ëþ„B€>N†A(,´ï:fþ¹Ç 1½ûðŠºìÚb€^Ôo(1öŸÓôÃã}>ŒÐ{ñ?£cñ‘òÏîÜæ ”4iÇ~“uöçÑÙJÇaúó"MY¾Ñ6ª–2¿øO,‡Nþ§ÊZüO,SAûŸ7 Ú22”5?ñ./Ðmvå€vÏ*²=ƒ¤Ðæ…Z7#àVŒþð‚À]€b(ÅRU²g£ä¿;¸h-x1@_­®n(Ê»·¸Öè'¸£Ò^vˆô±AÛÁ½}(ç°uLeªüq@@… å WêHI«ÖÞ »¦óf¬'! K½ô)l(F¥³«hS™W 9ø t aZ^B)“–6Z(vÞSâª"Vó®P‘€CéÈx®E¥ÖbTB™0¶j eÉ5J~ö»‡`àL}T-ìÜSk= ©°4”FnŽSá¶G ¶èÖŸ§L4ÛTPÜ>%‚­A…{ó)uÅ1Ü;áŒáêPŠžATZ(£,´{ÈïÍ CYˆÓ›.¼ñö¦R¹‰ë%”B²ºc=…¦{^æ8ðCÁýl‡+3–.øžo* t¼-%ãE(¥b5¹Mãí=G®Ö¿‚N¡4N/›Jáîg-ñoù A•OÊF­ßÔ1Ôn¿ú¨ jw t-ói‚j\•Bi^û!Ú¢C?b3kSQ^Ψ,tnU=FtB9ˆ«LSÎ Ö¨JÃBɱ_ä(½Õ÷ù¯±³ûÍãÆÎ8z«a{ñ"7–—ß[ä¢ ¶ÛIѦ.º€í Åzk!K®$7Ý\ôo/Ïsθ.PØõûˆÃ™á‡‡äáöÌ•loŸMÑ9mÛ¸! Vâ­ˆ+*޼HCííØIQtb¯±jcÀ“dEÑ…¹Hë¡8ú™S€°òRÐ[ŠR1 ¢ÌÑEg3,äC”ŽÐR3Bà¶Æ×R hÃJ‡ü6 h¦Xˆeã5/î¢)Å̯ª`Q¦Áîíü³w:žãéT0i‡âÆs6PeŽçÖ+xAö(JÁ¤"ŠÂ —íÔ_QÚi#ÂÑ‘S˜=X@œ´Å·}8ƒ(zX«õ‰¢DL ®|0åÚåÁ⢽(&ÆóV-ßÊó¼J»UÀ˜.aØ/ŠÅ%¡j{ð@mÄ$ÂüíX~ ’¸-JA^c.J¶Op`Dé< …J;-¸löÀòl@QvlÂÆxÀ€¸iR”Úƒ7¨á¦ÒvëÝ"4˜_´Nhk,à@WçïÕöûj}©4:VIà@é-‹¢dD›/Ŷ Å`JEè3n‡`Q:À V8`qÀ)ŠžÑg ”HXQìÀ¦•¾³• ` eÕýlÇ:À.x£ZÈùT`ƒ`G=h É¢‚EÑEV­ÂsŠ/hvÞ£/XÖăÚÙæb¬¬(Zó£uo^q ®ws½€"Û @@œE¼Þ\ìyêØT1ØUP#‚æu‘AoÔ±™Ù>€ Ü¸(Šb°*m € ô=<`L”œ‘gFªko@ÐXYè¬v l¦Fs½á@ mOG;(—EÁ1­ö3Ãzº`Êô¸§B”–ŽÍ­h¬ÏÐp9\¿‚!´CG@e·(ù°¯FDó{û­ñ»l§3Ë9?Q:â.-`@y†ÙT,¤˜±Të¼)Ÿa3@¢d¬¢ÂcùÂ.ç†]„ë*C!ãÀøz|è¨mùÁÐWÑ„¤½^ä%ža“À¢hx†!J=ºÄPâÝEéA ¥P@ƒM ˆâ±å €½õ!•M,õ…Åh Dîœ+̧bwS7¡™½EÆ6‰g1 (û¯tš¥¢D„úS°èzÔò ðu¦™B`e„éwÞº¯ ðZÁ¥€ÿXعÜ4¸µÞ3b\”˜¦)dõcw•8¿s Q”p`Qjx Qt˨Dzq…ÄÖMÑafÑE€³”xMŠ{;¦éwÅ–½E( ¡Ù (ùgÚl¤Ò»lç/çhr–­¢\Ž4ý#„‚@aò?«ÇÒ( –g¥‘jïBä—Tœ™MPùŸ®¡@Å$y³ëüO=ºŠ}Ìj!àŒ»*JÄóXá4¯¯«ø(%BE­^5-›Îk:f ­ÁÿIð½(ޏÕ,à?yŽÄT°tQ˜R3 M–á? l'JEë0Ð µwTºmeÓ{E8ý>š ˆç3Ñ‰Ž§L£Ü£ã†. ‹RöÅ•þ³¶ˆ¢¡õ¶KH”ŽàtôÜ>¿E‰ ›ªl’Z ZÄ»(vÕ6ªËÏ]C"ØÑÄhšÑ🶅@”†mœð"\þåvÇ`Áõ|â`qIžIô(NEãÚœ¹(û)•’}~ <Ó!FS:,1šHD?`§¾ä¨üÏÕSD¸ü ^%–CŒ‘»¥+Ódlï7Áÿ¬¼O;í¶%Š œÛQ˜#àŸÛ²DðØ4L°™<Çk"ÞÙ <1ÏÞîþ®ÄµXþtús ù¢¹û¤Ë1c·¨é%J€gcÅ€^€~KÌ:x³Ht§ôªEr¥H”zAŠÒŽ#Ûðçòª"ÈŸÜj.JÀ>íF%bW6:ôX¸_6)žJ©lÝiT6°PèéXÍ«^a6ì[e! Í ¢’zÛ¨dE6^•á^v¦©Go#VŒÝ¼9±b_‰Q|rûgWè2ç9#¸Ÿ9!ˆJ”„Q«Õ$…ÿ¬.Q *—=s³ª_˜Äî “tÄ}¡{ކþäÀ!vŽÞ<Ã`à;ÙÆ|²-ÒvS Z)Øø žUTèÛ:U<' ?¹ "ŠÇ.5L²&…ÿ,@‚(éІП«Ñ'eÿ¬íߢÔCü(Íp &ôv°†É£òÓ/M@.•”þ™mô›<´âgHû„8NÞ¬ØîN:‘gcüǟ作Ð)t< ÈŸ %% “) K·I€òg³@NQrÛ›ÇHhLrØP%ÂLàX%ã~r*:-î§wd½Ç?ýÃ…ß©öX‰¢^?§£Sä ÎMþ‡û¸EÑŠo¡O9%Nâ¡R'à–‰JÊýœÝ5Ó$›£§Kpý¹&JAÏ«)z:«Åþ‰Òú±-ð'LoʬùXìJ™Ì GEgñl]Ö]š ÇÎJ àÏbÁÑSÁÈ61üY9LO ®FùsWÕý'¬f  ‚YÅú“PQ ¼­jBżNá½ÛÑ­KeP‰{Wëƒ%ÿÃÃñD1b \îThßùæ°ýzŠ7=§©ñ‹‚þ™è®&Ð?ׇýSϬâ‡khÚ_Ï0 sG´jÏŒµX¤µ(ò‚Ó£e¤nNàæuï—–ÝWêäÀª‹‚ù{¸ƒ©¿ÄL3 ü+ãŠR­Ï£Ò07ï™M7:¦ÉŽØŒnBÐ¥ØïMv¨ü4)øŸµò(“z¨\Ù„ ÂHg6hý:ËÄ›tÓ& ›  ¶ L((^ôýÀš™É ÿY0þSéå‡Ö"€EñXLl6˜¢öœ`•)] 6g%Ì`Ó(å€@ûU4J‚[8Qú!Hf‡½oŽ<›¯P‰pq’ Jf˸Ÿ2ð?¡ÚÂKÿ‡‡CŠÒ1A™—lüöüŸd»‘Eѹ¢lŽoNÍÑÍÈé%Ð*è3`p EE§ôhÊrBdT:«±· üŽH2ú‚e43 ÐÜ!.ŠÎΚÍÀÿ¬N&gÔ}²œy@Y bø«MŠÿ\0w|¬:´¤½bµ¾GVþ§˜6k2àòZQ FÕðï³âxhžF2Ætx®'þ“ ¼ò”&ÌSçÊc¦3/Êpï+…zè³¢v-^áŸ{køç²Ž¹‘fmAáŸs4O%ø@¢.F5c`…I0Ç(8½@N|) CI2à?e™LÀˆŸÇÁ£·C¯™þÃc EHÇiÓ úgN¬# Ž Jƒ‹cen 'k/ôÏPvŠÍfÃ)¬Iñb #åOèña_0(\E+àÿ¬i²¢ðÏuîÅ<À¡Ê¢Ç­¹“÷6mPdÎè+#<ˆ’Ðý6¦Éùðµ znmœ|`x›øÆÅƒ³¿{‡©ÇtÄ¿…CR´;ÈÜ?ɳþ´C$‹’°§† º*jÔ"¶¦P>¿hn›&¼`îu@ +zà hæÌ•ˆË}šˆè°È|vubìZ”×(´D:¶hé2·!&ìo1(” Æñ­tG‹W”ºfÇ H Ñ;s¯C9˜[©kˆh¼U= 1 @ kQ¥`-ß^à7Nõ”ü݇}o༘g6g­üöÒ>-WO ¸oÆ™:”FåhºJÁ¨Ž½P)X—㸪Ñ—MˆÇÞ­ÎiÛK ê2kD1Ûß¼ÆKa¬=²ü‡[„&¥ë8}%;1†²Ç”à­ Â=í€1"Ø–öÊlêq˜U Ê”bP&Á­¢h<§µ›±JaMÿgyS 5P-è 8çPÝÙ€Æ#Ê0(àÿìêD·3Öígˆ‡Î¢þ³b‰JGLgòKÇh.Ú°tì0a•.t›0,ŠÿÜÍ¢T‡Ñœ“ÏH‡¯€ÿp ÄT•¯:Îì&)Ø'§­ûÇÎ ™èôÇzôëèŸ5¤©Šÿ\ô1Qއ9Ìýcj0INûWAÿŒvÔâÜVpp2*k­¶üÃíLí Ÿ-¡b°ªQÅ`9ƒävIøÏÄoYÿ$ÁO‹4&¨;k˜. ŵ=&ð·k$ù60MÄb=êgUúçªWÐ?ךU…ûï’Oª¹ÿÌUßvÉÜ6ÚxH=lKMŒH² üçò‚*ðŸÉΘœqÉ0ï9ÄÜ¢?¬‰'µ:*:©ÍÑzÍ®U4ƒ¿1H¿Y‡Ày=v?gÔ@Zsæ D eÑ€%}c*íxw @W”@´¬7”Ș¬«P«JfÎï1@ˆÖç¶ÌÊñI³1×x@kÊ­eÎk£_n$C‹Ò“fµ àx¾ÀZª P‰7ÆZTnEP6ð€xXñ`çÓš2@—]h¬©ä†Î`YÍ(LoÃ`­6°[lÀ­ÂBO°»–·Ô@ân=Q*â·W¾:Á9¹V¹^¸ÊÓîD™ÛÆYŒ ƒ¦5Æ)!\«¡Xe ÐÌ™ÆèZ`kÀ­Âë˜ÍàF“¦ÝÀ.ЀvU«…hvÕ \µh@€ÚÃÁä×ÕRJ³ݶ³ë; «gëeSéà¿­¡nwÈd*]LzwX¢`ƒ—½À EséŽ'®'¦1¤%&›»WÇv­Ít@k5ó×åLTÿsMIt` Ú„nüÏusÏŠo¯ÐZÌïv ¼”=J7 Pߥ‰Çf'›múi?øî†å¦¥"К1ï'5 D”Ž=°=²öíÕfZ:ØpÃÛ¥``ŸªÓhí””Ëj«DcÛt7•®/ž™FÉ®•U§ciα+ t.þ1Ÿ¢T†¸„¢‰I Æ=‰ÙÀò·nBÆ'^c¾¿•žúþ3#™¢u?²<µ/˜“øÑ”Øf€xî²(Zù-ˆK«ü0B^MÎ|M¥J£B‹ñJÍuÕ댊+«R&7SI6z*¦d„£ÂDû *¢­ˆˆÒ@Qûä3HXp\|ùŒ„%ŠR ˽దÎU€Â²IDQ2@M‰WMzR5Ä (t"tr¾à¤ÖõÊ3Bx *vöŠ D Û’1•®Q­˜b‡µÂùðF²a¾( ß*÷$Á­#}§P4ãÊ›O("c­‹o€"šC,Šž×jzQ×D—Š£))̶´[z§QT Pn«.+hÎxãÍÑd;ŒKÃ\Z˨.{Ö•pߘq ËÖ°§Ò÷ü)Q*˜A™Ù(«î2¶EÏqšMK‡8S©z/¼Dpzh%o@åfQò±@œ­ÅúOe2î9r+Áï¬H E£E™ ¶2$Ê<}wõMA‘@™aq¢(çÞ¢%E™µŸÇ8‹¢µŸõ ÊN8 Z"EŠ»<‡%hhA‘@®°*Ðá WÂçLPQ*hh3Á˜ ´‹LPFZ—&hY¥nLÐΫŒ ºÞ˘ Ì$ƒ….-Ä—¨¡¼`F)j*JãÀ‰[fÍoäEk¾ñJE‰hsYí_/^ŸÞžÜéæÂþp1Ï™Æ>ÒNYÏ–Žw1ªßãy¤O¡ÍØôø°v®)šëìe†S4³ÚM†Í'Yö §Ù×üð‡•aÍs¢p—!ÍФ!‡Q,¯8^J6ËÿŽßçUò ÎÞåEòr§Ÿ/þ㻓ü‡ÿ{÷áô·¯.~ûÃènOòîmÔþW?]xMs’Þ²€¥ŒZòêÃÅöÇ?¾ö/Þ^¾úÓ…<×°•§WßM5 õ¯æ¿âü×ï_]üËøïÿºåhê² kŒ4v7Ôè¸vŠÃÅô£m޾ÞþîöçOçË«8ƒ"óÂï.¯&Z·×íÕ¥Ì•ÒØ¯ßŸªÇíá'ûwÙžßÛå½oo¶»‡Ÿ×ß>K÷æR~ p-mO×>ÞižCpaûéáñ ™:ß¶¿¹¼’X&7JdûîÛ¥?=_?ß>=ß¾»|ûꥠ£Û½vðÿaLÝéÕÍxÑ¿L’Cæ²ÒÊrIvi#iƒ ûBÎRsGêQ;Fj™‚æã$S½q|ÜyMkÜ|Êð¥Ç‘µôêpÕ›M.ó½{7ŸK"|—úì½ë©þ[Eç|Oö];~ºóõ»KÙ¶ìjØÞ¯Ïûy•‘;\1ƒcìw%AÉÃÜJÖã¯ç³´ñû$`ˆ„§-)5]–›_èîáòJ¶T׿·w£ª<Ü?¡¦ ³*NU˜ŸóJöéÆaƒ¯âpÌk¼”íìãÒíÏ£=Ìc¿Q+çÛÎoO·¿žñ'?ßnþs¼)RÉžÑíùrîѯyû…>Ø_óvþ…Iß]Êð¼×¾½¿½»y<ßÛ³ÖݳΓ‚>ÂvÿÍ›íÞ¿¸ãÓÍÒ8¼—l¢i_"Å>7)›,Å×ÿüÿýÓï¿þRNb³G¯r½}²÷Ûõ£ŒÛ,‚OÏ&×}Iiêçøàô5*ïÕä5Ï;3üåöùý¼<ʧhuûøx{?‹£Úõ|{ÿó—ÊBâƒÜð¨þßeü¾,®dÂ{–ÑÎgùý·Ñ;?Ê·ŽTl›wÎÉ/µŒŸîožð»µízýóããÃÏç'ûcÏÛx1`=õ¶›ÛQ¥½ÌŒGQÍÒœÿÎxïñÊç›——We×ËöÏÌ,J[û mÏ.¹9´/pÆ#…ù9´þ\É* gæø–ò¼2º ïY1?}¸Ôº]6ùªRqƒ”‚¤•~ i5Ÿ§JŽg|?¾ËÓè-J-ÃŽy13Ýh࿼?`v¿}¼~¼¾»;ßÝ^^wr©Æí×Ù"í9š–üOßž?=ÞŸoì^qÓtÚÅ<ìžçþáùÅø%‘FM:Ÿ°¢ÓÊðÅ¿»xõõëíÝÃããùÎn.“=mæ \Æ:ßá­l¯oŸž>ŽNÚ(…Ky‡0¾“<Ê< !nOgyÇïÎo剦›×ÆÅùD’ÆÅ]±ÌÛöíOŸ>||²¿ûò°û÷lAøñÝwßÛíývý¨ï%/3 õáR¾¾‹]MÌ46³ú$šº´ýýY:ø´ë–b²«l4Ìëû¥Ÿggá²Ý6ûfù[ŸmÓ®@»ÖK¶pu3“̪·¿ú#å›ëçký!-YÍo×X%L‘Ú­C?Œ^·ÑÌF­ÏØí3ª‡ ìÏцXø*I<|æ™n”ãOŸîgþ¿û’=‘Qé¼Á›íñÅÝ›ËaVòhú/†Ç$ŸRh:R\7ß¼–M)‰”æ£ÊX!–·Æ×-ûåªüÖ¯è~{I3 ³Éåí_¯ÄÞ,/?­Yî/‚´ª/tYlÔòÌÕ£Q¿šUfýö—OÓ»i¦Gñ<é%ê*:³‹_|åÿmL'yôóîÀÍVp{?í›Xl<‰Õd<Ö÷ß~ÿ-~f7ͨýìÛ´}Ó ÑZŠï5C ÆèÿhÉ¿ÉÓ2G‰)ñ}Ôéù!v,£’HüɨpŸºñÍ<îÓ{èÓÐi.jèæ¿]ßîÎך||Bí†ã¿M×÷\}ûõ­¾»^ëg‹Ö‡é‡[ᩆµùêÝpK>}8ß|eùjJó°{¦}óЫ%Ï0=i{Ã9UÊZJªŸµ”>³^­Nä:Ͳã)GþRKÇ JJì*ÊFgß§Sv=­ÊêÒ/·ww;p;ŒÖŸñ»|VÜ_¨úó\€dîÃWZ¾ú’ï A1ì}ÁŒa©x—MNùCrò Ìþtœ ¦endstream endobj 351 0 obj << /Filter /FlateDecode /Length 3277 >> stream xœ¥YÍoÜÆ¿ëÔ|Š ]:ÛjÎÉ *àNáBÒXEŒZ9P»”–6w¹^r­*}ßÇ 9»¢Ò…‹Cμy3ï÷~ïc?ÏÒDÎRüçÿ.7géìþì󙤷3ÿg¹™}s}öõ*›¹Äå*Ÿ]ßñ 9“Æ&…T³<+¥³Ùõæìƒ¸^Wó…Ém’J-:xNg3x^¶Û~)ç¤Ø•û>Œ´¨;¿&ÍDÉÎY±Û×Û¹²¢¯·÷ãÒöŸl‰vûùú ¡U±†ð¹Ð´¼^N+ÔÂ8X\ðä£ãd‰´™3aò‹±/·÷ÕÍ<è¤QÛrSõÕÞëfaç6sP» çÞ6¬ÖBZ—ØÜÎR&.Ë$o±l÷ûª)ûºÝÂÊ"…=”¸;l—ø&™/lfङønn5lfh÷|f¼å×È‚n±ÆE]øŒ7²¯Â %ÊqPˆ~®ð +ð ^e¢?wU?Ê ·ŒztŸ‘œLÜîË%‰²i.>ÑSž9Ë:öpØ«³ë?o¶]½‚å:‡Ó¸œŒæ d£qÒLå¶Ðö™#`¤ÉŒˆ–œî˜'Îä™ …aˆæZý,&L–ä6g3‹Íüú#Ìpù D!T` ÙªcXŒ4l¬÷áT+©'ÀG•._ˆ—Ü XuPmËÏèýš50²bYv„2g ;*4úº°$µâ$‡ƒ.dGSîe#F[Þ‘Îâl¢Ú¹DÜ{Å`Ô–DG`,2t5)~âµÆi%ÖÕ¶úBöÐF r ÍÞK¶e)V\]½ÅAAƒû]ùˈ–=¡V£tÑnyÃþz9®owè阥U½©Mð –æì}RüRíÉ%%æ¡n‘Ê¢Üíæ …¹¨Ê=ú˜²ôéMÁMâ’ Xã‚­ª°‡»¦\V°õ…Hç [‘§x`0ÀÍåá–~‚…rÝ€ŒLTªùÔÛU½,ûª âÕheeÁe Vv¼‚îX§l_BWÊœZ‚ù¶3¸ÊO÷!@¦LlìŠiŽ.'4|o9HÎÈ.$Ù‹lXj©‘Š´[à3{²#ížqRÂÙŠßCÜ2xtÄÛpË´‘Ìõ‰ODD®×¨µ_ö/ŸèÑÍR†ÒÀší¡Yù÷pºu90R„jü. —·9$Y«¶Až‡®òRÈdwãN|±¨„96,}‘‘Äîa‹z;Z|¥‚»ÏÞ}.~ò>Šæ#eQN”àSî¤5EŽÅ,£-¯×ã.àM×z§r R~Jë‘0ðZùz$ÝëÚl‰#°%ðñ’’­±¤?<“›P3M݈:©’‹£µSç”S…sÞ6›©sw9?§7ä9Gr\¢3æÜö“‚`"xÄ­9©§ðûjJ9 öBî×@Ê F¯2“ȽÃ]ºáÀ ðÈ`SðÊ*Ä|ppRmS"æ˜i2 ­Â¬sMPØ…†`–¢Á¦>$Ј®MKîé\ ÙÕ'/=‡|¤©ï׃·õ€ÅáÓªþ ®…c’~Ô‰¼Ø?3ü6u×öûvW/ƒrœ¶ë1æˆr58"Ñ+e·µæôç(aÄ—Äã]x¶Ä)d;Cøîêí² _uÈ iˆ“FlÛ>z‰Û”þ”`²G/6S‚r3Ì–Àƒ8UÑœ‰Œ©JP£gìQŠ`V$Öâ#'„ß$ÎaÇ·mÓ”· §ƒÄºÝ‡s`Û¬»E§ú$‰^¼“±|ªDò"@nG)¥Q9 t4¨âÁ*Ôñ`úxîãA¼ëD´Z%¡(H´-|ü~'UD–¹O•æp|T<ñ•ð''Þ„5¼ÉS­Fšº«ûð±`(Ò"H$6mlõȳ%d6bÙTa.Ä…å²ô-`—H̪ìK?JåÊ„vOñ'*ŠÂ§Uµ¸Òƒ5iD“ëvˆ™§¥iû§'4Òt tpì ¤>éïwÌ“cÂ1–}!‰(IEª/KH›áV8bKºgHk›ÝÝ¡ñó¡zª‡µpY§D+À‘„Ó( 3)ÀwAFñ\z˜øC¢#¦3ÍÈø •T{ `ÉqbX2•¿ìCŠS~¦›8ZÏáƒÉÚ†è%)è ®;É“áDŸgŠ˜.û1æÕÛ;NX¡£h¹aFjÄUÍ8먢w †æ1Â}àÑÑÞöe½å˜\0!o[Ì~˜|»ò 2}„´o7~”ºPšR¼ó·{_síÅ%±"êÔ•€«B7FH©¼™û9þmT>•7sŒ_™&µ®×ÓáVšD™ážLΧ‚xžH²bqr/ mÒF§Mˆ¦ìºu ;ôXh1¥CàjAalC ³}¬–á #r"Z–Ÿ:¾EêâÔck”¯‚ KDÁÇz Òº—Mâ0¦Q‚™š‹èûqÏ~ú²”2IžjY?N\T–öÝàP/jå0%”£e3% 4 þàÅvå—jÊ`§‘¥Æê™fæy”ƒÂ°À2^‚Råoœ¸c°nêÛ}¹¼o_½{ÅL€v4¥ECeÊ¡þºàg*9!M³¹ï/7ËGpßòç ¿²ñ¯¿öËvîËóÛôü"beâõ_hª#Ð'ÛËï^]!‘HóîõŨʗj{™zOš@‘úx‡7xˆai„„þRd15Õå9|L~Äyç¿ó¾ÿ×ÕÕ|ªOã/›•ù¾í«ÐDô Å ¼¡}–sw nLB¶´öHËupÔÜ5m?HeP·,r‘eyèñ6Þ²Ènì/ncá#ÙŒå<ìEœü¤å$ø4ŒjÄœú “÷‡¾õÜýAhµÚ ¡5Î=»j Ü7¨ð DϦ9P×EL»Ã>êÊ@Ðèoì…q)¹P@O›~ßåÀ÷GÀëMy_Sû('¶Õ‹MY7ÞRøJ†^×ßðàâ‰(êHzÜF$.2¾ÐfSSöúMC>àónÓ¦”n=¬ÛhPwP¡ønÜ´1ò¤Ø!FtX4‚1’¦LY»)zϯÑh/û¾ZMñ”ÉZ)ýë™…KòBcúÀ‹R!îBTÊ {Ù»¯×AJ€¸ýAJBb±ïúQ˦-£o”7ùÃ<ÃÖn¦Ð¿)´eCbÿÂ-Þµà •£wRC£ÌÅI¼‹Z( @ryöñ@‡P)#Ù‡-üe¸õ*ê™b¦#L­ª®¾ß†Åš`ARs±­Â@²{Ð$é»À*öjn¢ •716R1…*åäË’›ý“ýÆ┿)ñþý”Õ!>š±×HíI §MAQ->ÅEž¾GwâË0æôr«®?¤¾epoŸXi7…¸Ô|ûê‡1ñ8EŸí(f“w+u7bŒ”ߺ܈ó£ ä&– ¤`7¢êóP‰ A è V Ñv¯¶÷ýúR¥ÿ;䡆Ÿva\…,ÏîcD ^¾?Œó!øB2ùêêÝk¿åS{n‰’‹W¹¨L3lÛ/' · ¢_ƒÈÅQ ;Iîhµc.¤•ø¥Óá›öFÇÞ÷Ð ã©Ò§Ó$lL§ƒÌÉDZ Q¤¾¥¬yŠBã&Ê€7dìojÄ<ÿnÀ¡ƒõþ3¾"¬Ë®¢JŠo®__.oDz!Óþ»™?chÒй½©2>ïºmV44ðØ ª9ÖRõ/¾ÍB³,Õ©^€zž³ÁŽy&´XH²¥œŽ-^¨>¢x›@Dó_þ§šgô ög&®Àâ²I¬GSã9»hsüõÔ'_„»(˜ôh6›}1ÈĦ¡Ü~òƒA`±±òPõ÷ÆCÖ$š¾„ë)Ð Я€0-†7’hÙGåTÌ®M5ùÃDÕvSŽBõø¾ª|>9éaßÕP$Aámamâ/|˜w¡ñm3Ú€Îæ” <…OË|%IÓŠÓJ§ý%8Ç£V.¥`aÂÇÃfÁiÑ~EŸ¨Šß³Á,wèû'üû/+m‘endstream endobj 352 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1859 >> stream xœuU P×ß»ƒÝ¶7&=»k:S;£Mk”¤ãG*jâi)V ©ñëîcï–»îöí}wxÞqw-1FFOO¢Z:154imÚÆ4N?R:y7}vÚ%~4“™Îμ÷Þæÿ{¿÷$X†“H$ vm-.~fõªUó“o¦ÒôR@ºtGú_™ [²3K‰¹\¸üq¸pñÜc˜T"Q¬ØR[S§nTª–ý¨öRulY1[§ÔªªÄ•¯ì`¶¨NÕиÿà!eQEeÕw1l'¶ +ÆJ°ÍØ Ø‹ØVìl;¶+Àc9" ŒÀâ’ïI>”J‘¬>#+CŸño|!''6ýG*Uc9_Œ¨>W§à»©ÒTn./˜„Ž©%Ô§ðÙô×äA"nîl ×ã¬Ñ¬eƒ\”¡>»7T†S³lǪCÖWá‰@ i °L¬Â‡Ž «ß$$~û9$?Û E¯ìÕ­b í[7•m\È­¯¾­S‚ ‚¼ø#o\¿41;þì–VÐÊ·Ò÷‘ )¥ÞùkAªôZîi¸£`r å‡5pNΟÏL˜ƒ*eâ:£E#ˆ3”wM¯Å©Cš¦!h¡ö¸Ý‚[,.†B|HÑ×åé 7Õ %X,¼U‘³pðËðÄÛç{»†:Iõô6ü¹‚b]'ã…þên®Ú}”¹¦-µn‡™ð;E×rgRK¨Nøä°ü\íÙ¦Q@ÎBiÏÜXÕÙýQfÃZÇ‚0:ãrø_ðƒ3`¬Å¿¤úUn`8¥ºÂÌm"Ú`-\S;]ÝuØ}/¢,ý·KϹ``Þb¯—ŒæsZPacŸ`Ë_h= JÀ+=º$IUö´ðácŠj^£gò`å­ÀBjÍ‘WwÄC?D+* k%på$\3)ƒ+Ó[ä«ð†fN§ Y"ÌŸQ3¾3ô\8sûÌmà:¡÷êY“¥‘¶%û5twÀHëŽÛ ›„íp‰¸z:-Çmû~ÒèaY“µþQÃÒüu*79 YQ¨7à÷Ó9ò¨#æˆòÂû즙XnC%&€ž ŸûèÕwG/#´Cp:œÀ: m$¥kIœä{¡yCE'ÁŸ0ù €Tãj•µ.æàNñM$ó’xÙ†¶—꣆X<‰;“w2°­‘çÔÛÐ\^±-t…põñ×½ƒž!Ç ‚M/ÑJn¾#KcéErÞlÀNªb¦h$ÒÑã¢oæ {¶™ŠöÐûØPB"é,’Á§.§NÑÞ`0 NQ½ÇP#èXŽf«+ÀjPð^û¤ŸÓ¯ÍLÅÂîˆq·Çmä—(UYÊ=ót‰,Á¦/ÊÑ:B9x4\H”“„-»‰2 ÉøñQçpbhHŒ„XIÊØäâôoðHÈ™|,ór:‚ÇÌzúy\¯·h Ñõ¨ýCܼ ¸É÷®þþCÚ§ìã%`'hæ›GVÔXAùÆMëÜž²þÏ,O%á“) \ wËaî^ÞÈD0ÿl7”¡o œ<„!É?f½ý‹Þä ãéðA{¤É«ÇPsúÆš*£<6^7Ï’BRqãW  ´Ätõþƒn%ù¥`;R¤rïNBÛ<wEîYŽ1Ï ed7ÇijÌë< (Å#añÄFŸ†9 ³q(ýàhý]áÍ5A“ÃL"w¸ÖdÖjB–8s90›˜i½\ ^ûjÊ÷êj›š‡@º$Ü~ùZL_ÏíOê'añäHr 5ÇÁ[éroè>à;Èuë WÔúªC Œ³ÝÕ&´V3g3·7ÙŒbSGÕÉ vÁ.¨­ZËIê/ÛÀÕÔ|a>ôÑëç=áúÍèų®+¤€Ùè±ÄZz%^ièëgÜ„àsŠßIö”ù oßšº3Äõú™ˆ'Ü!ÆÆ»íÎÝæµt´ÙÝéV†«”û j5ƒ,÷,r~>;Nrb¢wœžÂ'çZ×®EO·4-_·0âQF!’‹†|ëµñËÂE0²ßSBš °ç@Ùn¾<×zé‘ _ør‚×>xv‰š||_“2‚úôÿ\öù88íŒ ÄNÇÎ2yBù2ƒLeÄ|9àóå±7þ \…Oÿˆde{5••4ü)ÑW窣©Y“‰oQXpÊ^+>/ú@sôÑý§Sp‡6¦Í…œèÈ¥ÈÑ4ZH4p-¬Ég ÙxuÃ]\G=ó-xïg]z-Åõ |­&lîöùàeîB‹\mP± QuO"ëf¨[ m\ESŸØm¼]ñ Ì  ò¡fÊ«ml-P‘W«ùÙp¼¿¯W3PESù6oSäpÁôf?ÌâHë!þ–5¾Î’6f/À°ÿ8Â"endstream endobj 353 0 obj << /Filter /FlateDecode /Length 41350 >> stream xœä½K¯®=r6?¿bã¯÷ÎÃ;ŸA<ð,VHÇŠakI–å8Я«ÖZEr· _䌌FgW½ÅbÕÃëâ¥ø>žÏôñØÿøïÏ_?žûã?üHÎýà??}üoøñ¿ü«Þ?ÞÏ·çþñ‡ÿûR¤TÊçèó£÷ç3Ïôñ‡_?þô·ñ»ß·Ü>Ÿ§üö7_ýwöÛ_ÿ§¿ûüË¿ùçÆ.Ÿï¬¿ýü‹¿ú»¿øÛÿõŸýå¯öÏ·ðŸÿÇÅùùŸýÙï~÷¯ÿð/üïøñš5½=Ÿoûh¥´•ø#åô~®,ßV?[iûÿ×Ç_ý¨Ÿý)y~üçeÛ¿\ÿÿ÷Ë™ÿc%ïg[‰ß2?ŸòñëàÔñ™–}öÏw,zéë‹|ûgÊ"þHãiŸA§‘ògwê ¡ßäÅÉós.s•>§Ïz꽄’TðÍ…Ÿ?þÄÒ”ÏU ‹—?›{%FMŸíµlÒçãv¾Ÿ[± ¨í~½Ÿ%©έ@¤gàn^%Xì;(uZ…Rý Í-Y@‰°nàÕë¢K¤öän‰³Ê~X.žvY>ÓÄ×o)h33»ù["»w¡@$rðä¤ñY]‚ ÒóùÔ# Ðþáh%ÂFjøæ…{6žú™ÎZ(FT£•ëQËòóÙ£NÒÊÑöïe|æz$½k¡8ª…RÀJ9D5 $A £ŸÀ©õir?‹+8üÚ‰™Fa,]å*®eæ;‰Ú>ëNOj*+¥VYIÿ.+Yp”¦( · p«Ï’.·Ä¡Y½~Žz=Š}¢Ó­™Ñ¤%ñ>Ÿµm"·câÈ.)ÝÊb{&#$!¥áöžõf¿ž‰CÃÆÊöl_ËŒ§]ž­VÎöõÎÏžÏHž‘#»¤@v+‹í™Œ„l”†Û zö¢Õª? †º³1>Ÿtôv«ÓMýêW³E›‚Ä|òç([CÐꃡ.Q Ô%*‹èÃIÈHi¸¼€c«b<ù*2qôÅj d>Kð,±¹2ëG›+³´‹<È(±àð{‡–‡rØ&T`²0Šüò~MTƒÃ/rh×óÍì´êûí˜M&Ò!QÒgÙcEÛ1qä˜È1ež…ám Ï./ܳ¹dë94Ci%~ÛQÑò0åGUœ¥›G[byØÓ¡AtTE1X‘B+ZdU1Œ„Œ”†Ë‹Û±(²-„/Ž©¦É±(²pŒá„Qdâ¨ÈÂ1Y8EŽ©PicÔæË x¶þžíòLÕ¥úYêmwÍ—gm}§£ÇŸýÙ©ýïí““2Géd®4o‡”w¸LÓ¢_ÆÃ¡•ñÝkG_ÚŠu[Û®YŒdï'&:3¹DòðŠ™%2»]ó*/[Ø YEÝþ¨×˜åýLœe¦ ¿ÈÉus¬s²œ>G²lÍ^‘nçjäóX£M‡ÑÈÂRˆ³ú½5R…†¹ë‘Iw 6„€l”‚Û x¶frùêƒÃ/ÞhwÈšÜýáš#yŽy¼ÛùbLâï Î|$ûàp^ 8mbb&HB&JÃí„;ö.8wuˆb .½ÏÄaU³òvï·2µ”é˜I¾eer(•18¬J¡€U-²ˆÊFH‚&JÁ彚=Û-rhVúfuÖœ0ü²Þøh†6$Ï=‚¹ýGfI¬VÛ¯ôÍsÙŽ]^À³…cÆUƒÃšô.À—wE|,gE´”uWÄw!­÷¨ˆAGE «Q(`5‹¢"† ’‰Òp;Ç–o·«ýŸNgÍ*çkùvX¬Ý– KG Úò].Y“ ‰ÕÒ …ÑÈÃRˆ³z‰n–JÂ(uæÚ?­„¬”†ÛË·Ý3‡ýš´ªßS¾»g”e!AËCƒèèƒÃ~íü:­ß߯õË7IÈJi¸ýøŸÆ7KÓßË·Õ%qø¶Rå#_Ò§o’Ë©!ê¨çqÖÉÕá·zø¶t:¾éÓ7ID¤†ÛÛ·ñذr¶·ñ~֣ܦ-[žÙy¶6þM‰Éƒö NÇz²‘k+h¶¶|äútL2Qn'nÇV̾_œö˜û‡Öy7rЧk’åÒ yœ¾-UÏŽÄ–¼ë‘èÓ7IÈJi¸ý€okìÌ×t?8–kAǨõ~Žk¾ÿ.—®½w,rRÈ=®‰£QI 4j)‹=®ÉIÈÆ//à™-ø½W©‰£o¾”­žeòŒ«ÔÖü'§Cb¬ê^ ¢w©‰£o. *å±KMVåêVJÃíÇíÛãk§o)Ù鵦5@žù‚>}“„,—ÑÈãðm¼Åö!BØ-ê°åAúð-$heh¸ý¸|³EåQNßláÙ{i]ƒ9²uòðL¿Ël% NÇ–½mÇl9>õéñ‰Òp;q;ö4ûà§c©Ú|èpl}:=súrá 5„'-ŠÛ<‡k«#Ïãp ôéš$h¤Ü^гחZÆò wÿ:8cÍͱaÓ²Uª¯BYfÐn¦f[b <¶ú."‘ƒ%g5ÍéŽQA[3ÄzdÚ£’Òp{qyfèt}¦Ã³Ùº}ÈÐêPèÈ—ôáZHÐòÐ y¾MlRl ÅpÉÎÂÉÃ3ý.•üvŽÙø—/ÇÄ‘YkDLõ0{ˆù½{lǺƒþíéÃ1rÂ1j áÊ"“ ü]&*ùíÄ娰¥èv:6V‡šßíØ(¯ñ#WÒ‡c!A³Cƒhäq8fíðéÛ±±æ‚my€>\ Y) ·ôÍgx«ÆÚ2ú¯ƒÑ}±y)e#¾¿²Å i7´Ø\jK, ó¦CƒhψQ}¥~+XCòSŽ,@»g4B2R./.Çæšž÷˳¹Fö™¶g6 溳%}x4<4ˆF‡k¶KáE %?ï‘èõ•ÒpûßVAÏyµ4q¢¥½œÅª¥Mß9ZÚ6íÞ/8CƒèÝÒÄQS‘µ4f±[mPC•üvârìhiâDKƒÒÝÒëÑÒhVHÐìÐ z·4qÔN¤!Zó8Z­„¬”†ÛË·nÛn—ovä"o×úšÉô²³%}¸4\ D"‡Ã³Þ‡mànýüQ ÏBB6JÃí=kŸï{¡kq„÷„'÷6º~Wä(ñ¾Þ—…Ñ]‹#lL ™Ç®iEHÈJi¸ý¸|k«ÊŽõŒSÝŽõUðmìLIŽ…Í ¤-ƒÃ«X1ûbòÕØzVd@úð*$d±4À¥áˆgÕšiHç×Áy‡íŽ/zU“‚ ÙÃQØvÍI³bÙæ$9ùyŠo=Ræ‘ÇÏ›cÛ¡ièköøî,@º[°A¿ËD%¿ cÕ—*{ñ.ó×Á©>–®\f®Í»aï®m[ˆ4¿¿×op–Ù㳄‚ ‘ƒ»ÆÂh‘LžZ$õ;é-˜ðwÙ§ä·—WmM¢o¯šµÅ¶½jÖv¯H^‘#«© Hä°½j¶ß™·W­ôÓ+‡Wú]ö)ùíÁ]VÏkµ÷,«¤ö«Oåõ÷ø–NŸeN”‰޲z|f{õf U¹úôKa45ÜNÀ±¥Å[aÖgUÕæŸÏ»Ò…Xi¤À3ÂLLöùÓ<ìèÓmšM:8>ŒÔ €ÍS7hÿbÌœÃ؇cãeüåÐJ¤Å|q÷• J*(Ø´çpúešûöË2.‡_ O¿ÀÙ~@Á7è–£÷eÄ´“¿Nö™•Mö3“­4´“„ÍUÒnç㓚ÈÃ×9Cƒhäá)ÈY-Û=§‚•U™G ½o¡àl#]Áw/.ÏêÛmªuzf}NÏR± ÊÎôé™$Ânj Í<Ïêš ÖíY]-þM; Ò‡gäl³]Áw/̳¥äñõžºº™lmksÖhŽèÃö¢'¾ïð3 -Ób+Cñs­~D!R‹†~“§ù„;Ò×f iëíUHBJÁíÂåV “Ͷ­Ä‘o ´;ˆpØ@‹Pä±s6Ù6HB6JÁí<[ÎpsÔ©-gÛòèñ–õv²UazñÛÂõHGr÷…d¨+TZõ…R­¾pç, Y& ·íôgôã³6G£N©ŸsIk¦òÖsÈZÕà)û÷…†Z>R‹Þc–8³¤@ƒ–rРH@JÁíÂåV·ÚÒN·zM6-–Ò¾¾êÌ;WÒ‡c!A»ChdqxÖ­¾ôíYÇAÌèíYÈF)¸½€g öU)»gÁy?ÍÎÂz²†˜î e8ª!íž9 ÚÝW(ÒspÇÀ)¯7ˆPPf±&YvÇ`DHÐÆÐp{ÏÖçWË"#Hò•W4»¸2vÃZÓõ kU„y¶,Ñ»i‰£–¡äj9Ò¾Û–2—m‹ÆyÚNw† ©«V¸CƪPþMZûôޏÙHï¹Ì ÝÊâÀ.$&.Ô„Ñžƒ%Æc&¶‚œ­«ØY€v·`ƒÂf*¸|€[K‡¤ 0p‹ ;”æy&‡§e z>L.¾­Ê‘v+_?økJSê¡A4²°â¬!&Y…•†æw ýÓÑ IÐH)¸œ _ÓÏ_iR¸šÓУ9ßÄ–ð1)|‹€—Dz¼§ AkV(FÌ © ¦…Ì"¦…aDHÐÈÐpyÇV]¯œ§tx&Μhÿ«‘r^âŽ.+ž´Û™1gxåÈë_W ‚FžB?µ»5ô‚y¤òíµFH ¬†‚o^À³‰þöè1ÄQË_>Ñ-¬odGÙe¤5êÛ.ÿ-%/²HttÁa‹äê¤}wÊ\2N}Æm¾»”l•èꃖeÃì4;vË¥ÕlÇ«ßVœoôvI¹¤ä48´‡K‘¹$d\|”Ë|ºôúrVy«ï›£>~~q)õs+‘O¨W¶Xï"í†V¯¨ÙN†ÒÈÁäÅX“Ú>”¾ ß[Œ H»_0!$d³\>À-†;fîÁáÜ;Ùñ¸7¦æ §ãöÌ=U‚>þnøÒ‘\tL݃Ùw(àÌJñëàà°ÅÊ$ùªÎb,€`uVc1^l×ðwL¨wrÑ:G±98i x#rˆ³aBHÈDi¸€cÕ²×ô¾Y÷ók3†Ÿb_¤¯l·¾>NNøúuív¬‘Kb4®‰Sƒhda)Äi~`k°«<ãÈ´{F+$A#¥àrâòku"5~ÙÅÔ–¶_#Nty„ßhl$”ñÐ|º³:°<wÆðuìpôéŽ$h¬\¶ÃUØ©œ+8„H©r BYõ'Æ23ÇÂÒšä¤+8„H¡JYÄ $ ¥àöâòlØI³zz6šŸŽ ­c}W¯`È–äáYÐîPô£(Ž];<kðòúÅ,@ž…€l”‚Û zVqzE{ý›ƒú•Mò ÜÉ_f<< ýþÅy}P ‰5/ùÐ Zûð›ƒú­;ù;íõo+$!+¥áö¾õüY½Õ``ct‘X0áÆéÊuâ®®¶V—wZ%ñzo¼5ˆÖ¶çæ`c44pã4òˆ­Õ°"$h¤\NЯîl g6gµFto\2y|ÂæUÉ6³I»™Ë°”x_®ERƒhäá)Ƚ!4Ô…0ÚÎ¤× Ø ße¢’ßN\ŽÅáŒÍÁÑŠPÊ£‘kγB‚f‡Ñ:;±98]±5øá‹glø»LTòÛ 8¶ê³M“íh ׿¼@L+&ÖÛ:¢Z-Ä{!Ðnf÷ɹ$òêëGÚ6ýs§%`.iXS/ƒT‘hwVHBVJÃí|›¾Ã·š?)¾òÅâ ’û÷®é#š/;'®Ùá÷œË2ù¦y|spL|+À1òƒšo$!©á›t¬ûâ‰Å*HŽ‘³:›lì‹å“Ñý.ˆð–ƒvK3O1Rbͤ JCЕ÷O6§t?lŸ;y€vßh%ÂJjøæÇå›ÝÍìíômÖêàƒJíZëª3‘-éõ áT$r8<›ÄŸ¡ ùåèEâõém%ÂF!ØÛ‹Ë3;Ÿ“ÆéÙ‹A'´Úö‹åKúp-$h¹4<ßì ÐónßìÌO?²pòðŒ¿‡‰LþÍ 8ö¶¸€ø¢§W*òšBûس#NÂ}@Ð4ÓG¾òÕŸÇÖ'—¾0FÒr]s¥5~¯¾¶“‹F–@[?2G `ÑÙ§ÌA´× Þô‘„L”†Û 8f±XÎM ŽF9á²…F+ûÜϽܱáx)$VóÂ¥jãYp8 …ŒW‘…Ƴ°¿ÓB¥¾<8œêÏë­0œê¶Ø3¶SÝVÈÒvJôvjKÀä­4³ØN-¼=Ps©á±­ÕwçAz»µ%hµ\NЯfÃHO«ãÄRvpì˜}F¥xÌN;•ov_Åív&ëØ·Ä2ãP@9¸<yøºA$·p7ãÈ´7Hš ™( ·plM_1kªvÖþ×ÁÞ1-úõ%»ÕøÐì–‚¶| \¼‡Ä±Ï<4ˆF–BœÖ|ƒ64TµIæÚ«­„¬”†Ûø¶´+f G㮑‘l'ɳm6ô.z8ÞËÝÖþDZ®6Ÿ›‡€‡ÒÈÁˆ±þµµ)xFõ5xæ@Ò¿LÙ,—pkéXCZ·¤ÉqYplÏÆ `ø‚QÏÃJܪ\‚¶lפg}Î-aá¡€dÓÒŒµûšg$_y{ @û—£ ’‰Òp;AǦoÍX/š'#gé/þ9;b±¬~ÔòB7´Zýh¸$Ê1ÿ…‚F+EpV/šüSPCc‡£<@»o´B²Rn?à›íq[U[³HZp^–´hVÕÖøn%bf´šÃÌ["ÙJœÒõ°ÈÄXÓCü‘zMs­@B?hÿt´€a 5|sávËnÀ_^! ß¡tZ9²uútK´› Dz‡[«÷³£‘ڮ؟Ÿ ôé%ÂBj¸]p¯LIgovÖåq¬}¹Yõ´³·/«Ó͇@©vth+Ý}pØ[K;óÈ!ºû°A²Q n/àÙU½»±“L>@Ç#Ù÷ξRÓŸœ}Ŧ”h7ôE'‰Ú½O“’ÈÁ䱿[ÝG&_-Zf Ú?]B¸IÀÄ­ávŽ­4ÞS¯¿NÎë=iÉŽüºí„ÏwrwÚ ˜jHÂú¦rhÚó°âdt£¡a} |<æÚ}£’•ÒpûßVÍÈŒäS_÷MœU»º§Ú |?n)§â ÝÒ—½%úðµ#) ‰LžŒ•Qµê«ä ^½ùÈ´<š ™( ·p¬fk ÇHD¥¾¾cœ*vù=G²Ò1» Ûé‡Ñ1–‡CQhàPyÄ`VHBVJÃí|[_¨í¥‰_'‹–ϳ×>ì‹§Xêp;»·Ðϳøn~¤ZKÁáÂ…Òs]#ôÇÊG (· —[q7vsp³5´òækäwceXÐîP ZWƒƒ›­JÏ{¯‘AÜŒ B‚&*ýíýªŸ^r”«ZËlû§ÝæcV“qnâãíZ¿/(á5FÉEC¿' 'ôÖR C9€öšN$A ¥àò€NÙnñšK6ž¬ÃVr½ÊuŸ¶ÙÙLWË(3h·²ÚêÞ–XÓзD# K!ް³M vÚÄVã•i÷ V„”‚ˉ˯Q¸$2Ù7#C£MS,<¼Òïᓇ EŒ8˜µnÍ¡æÎôé”$h¡\À©UàÏ<®8l¯*؉CE~Áê]aâ‡òvìÚoõ©¾¬„ALJÍyXŽLÎK¡]—væ’s©á6ÿt©ÛÑÅò.u;g{×Ôº>Óóyx%z;´<4<¶ok~Ò0HC¾Êy€Þ¾m Y) ·î[}üDÚ1G §x59pˆ)`Íó±˜#ÖR|$ ‰Õ[<ÇšBÐ1I çx¡sÀÈ#f‰a…$d¥4Ü~œ¾µÛŒ¿ΚL—¾5¿íS#_ÑÛ·-Ë·ÑÈcûÖüþOþØ:ŽžF]‡Sà IÈJi¸ý€oˆÖá¡ésŽÍyqØÆé‹w~0iÙõúQÒ–¯EI‡„mÜ Dê(” […‘¼¢ @ûÇ£ ’‰Òp;AÇ:‚X3&éf ¢èÊÆgxX/·S=Ï?êFæ3zø¢_ÜUrÑŒº'º ÜèÎBIi~–yJ~Ù—lloÈý:8\â¬öï±¥g_ºì%QËÓV[W)‡ѱF®rJ–@#-‘†ü]*õíÜjñÎ6ÑÊV.¾Š¥hfˆ‚™˜â-+36½%±RúìND+Ùæ ZÙÖ€hf;Å;ÛVHBVJÃí|›~ Àsvâ¬Æâå<1½ö«V"_·½òµ©9m‰–|f#"‘ƒÉ“Ñ<äæNnåÐï¤:Àße“óàôj}Ý̇8ïã7·¥tѾÃLInŸô;LŽÔ$©>\Z_Ö&Fê9„°òCFÁØÔµ O>¯~6ÐÍòyh3ÔÎ/%YW¶ˆF–@œÕ;ØrŒT_Ý9€ö/G(6RÁ7/ܳötô° •¸9ˆu˜íj—oEy(ÄeEze¨D7Ó×ðø{y‰^™\´Ânn™_B9(Tâ6A2Qn'.ÇvE ©¨JÔÊŠ¦l£"Ê.þ.³•œôQÅQ]¤Õ4å°ë¢L µùrŽ¥›6¶²îÓ©Íy} lIÓ¶îc â,A»¥Í|ØkŠX"n5Ñ,ÀãeÜßÈ@´;†YqHÀÄ­ávŽÙE«#Tøfp\mež¯x,«ÆýŠGnkˆ9^ñÈÍbö Hj\Íq5RsÜ ý1,‡’…Òp¹@¯æ³ö×ÁQ ©ýˆ‚»¬À«ѾìšÐÑþ,Á8R‹ÞíKµ)Pëa»yÉ ÈÀh — pËnîœó^18imk憽cLj›•ç´×.–¹VIÌŠµLiÓÞàpÒ8©ÊñUö£çýèí]¥¹y‘ùq'½cpع…v~‘Cta‚$d¢4ÜNÀ1¬úÝHpØ ['Üëy¤á壱 €^yø' ¢£ »ÐÀn"òˆ~$¬PO#+ÕÝ~¸oÑ5Æ6•±æ¥ì¦4Ö|¡¦³±×5Év‰Õû¤\DGc ›Jh`SŠ<¢±…’•ÒpûßZ»c¢oއ~Í£—3&z¶çy®˜èyL\? Û_O[HÅuÝD~Ý vg¡Ø±ÛIÈFi¸½¸=‹Õ'iU}S¾»FÊ2IÈri½k¤8ª‘Ò ©„ècÇ‹ óà|á½oRÁÉ«ã¯KyP;Ô½u‰sJ厛œ[JœSJë^[JœSê›­‡õ‡Ô?öåúx¶ÊÓVó9Ÿ ´“e†¼ €­ÚäOP¦çw¿O6Lµô[ÆßV`¿•ƒ_¿Û³ŸœŒ'[D×#§Ûå¦Uqý;ÿR »ŽÍ¹¤¬knï)EÎ%u¼RI)rN)Y±¥N»þ+¿ž}¹ßÛ'´0Õïv®šºº!ÿ|¿OÏú8óµƒþí·ß7ûR6üÌòÛúÓ#¢´|}´¨v«V«Ýÿx÷ÛG_ÉUÆkPžk\÷ ³˜‘¿}üýÇ_þí¿û·ÿî¯þíǯ¿øó¿úÝþý{iq/æê;ŸªßmúÿùñÛÿ›Ltû¿|™ˆ¶¾CuÕoÛ­Ú¤zïså× Íg `¬™ñ—1ôÒ‡CûÂ;ŠÞ}ºcò¥-m`œ\yÇÈö)¿ðDd/`¤áœe¯¯+.΃œêøÿ˜wFÇè”-h’1š ´ûø…Ç}5sqŒé\¼·ó*=Iâ±,3x¤#ûg缜†ú=Gã̆•ÙC4}áuÁGË\póåK Ù¼~áÕ=,ûްsžmËZÓ8©p†;Í;ç0:}ö…[ãäÊGˆ¦-}Ç>328š÷zTãà ­sfAƒ3`ÝXnàt¤j¸Pmœ†T½ðĆ»8ï§þ§Ý1eæNL?Y N§qõdã¼ axÍ9|8Ç߸/îÌê8Žs&_ ugŒ³>ád0~$J¸óbåË8ö4zC¦àðÄ›ôÝí5?Dþz¸ãÔ„;zÃã19Q9ì+¡AxôrĽ9}—%UTŒa÷ì²Ë›Ð9zÕ¾¯I~±Èká‡x§7¸fm‰¶ÌîOÖøœ2kŠ€ð­j!v€ñ,Ë|‡ÕÌjgú…©5Áø|a–Ú%lßËs6ÄcœŒG,›ÅD¢‚-ΖØò¼›õ`ˆO‘žšiau´ V~Øì á†<ˆ}#ÈØ™%ãåõµãðØ”w ùتµ äv„Õe¼Õ9³9ãL˜cÇR1/C7(`Õt0&b™YtOIÞýµ¥‚ƒUdßMó¯c'à<&Õôõ{ãä1WŸ‚ºŸm¨h-{Ð\#×çk"óµ% ç8"nÍŽµAíú|¼ ï­e1¦¥%á§ß³>ßô{Á/Z˾›n!n`K×¥è„æìܺKšè{§#ÆÿêBüž>ËñCyÙ½ ?ÃñŠóâéS›^>pâå5 Eáye{ˆ×AÝù"|ú›Ñ˜ý(¿¯ávÖ,¿|ãã {ðÅéÜ.O¬Yv4èñ%ºäÉߔð%õçaÙæZpv" Loüºß®Y‰»»ĵ?µ³\r{qŸ¢yÀÕ/ð÷A¶óy ›xY ïR|—o@ÍôGøüX¾g¶ºáuÊ'DÖ•·?ðñòjOgø.‡¾p|°C‡–Pr%ù}ižªÿÂaÑâçö;ÛOɇ‚Æ…\Šß^ÒÁ$çL?‘e^⣗ê÷*}3ª"ïê»ëÛT €~PË·)l5ÇýÁž—½˜Áñ¾Ýû p,Há¾H5xÍ%A«=E`ÖÙDŒ‰sµ¯ü0Î[âG‡¹v¿Õ*DC§V-& ï-y’šø„´Ýc(àpY½Od]ßÎ}ÜsÎà;c/û;ËჾmFLp&ÎD1*®i¿íÁøäç"|«ªNöݪp®"óþà]ÁŠ{Ç _ý˜œqFŽkf ©Ö·ÃzœG\0ޏ =¨XÖÿâñE}Ù.@WæŽ>¡Úh@ ¡Ùv+}&Uýê­qÞ0¿Ðx-Æ“o,µŒÌ÷ÐjÚÑ{0†Ÿ™Æerc”Â1¿Qø¾ÆüʯcqS°oÓPVOÊ!¿±Óµ]œÛõ½.ãôc~"‡3‰ ­#cÀç,!7Ü<Ä„æOÐÖLgq^œÌÑŒiu5ž’{\±­ÿ·tÌà²Aç˜æ®+„6ŸLà NÎ^–·Ñã=f³¾&[4†âÂ{œH/ÆË›ˆ˜|ûÊoâÌíË?e´Ú ÊÀÂu0&Š [¤çœIÎà[ÛE`ˬOœšqžy1FØ>qÏÞFB عU,®‚…D©` ¿âMÚñêFgð÷ŠÉe6€‘x{3øüš_¿2ŽmñepPvUø…=c”ŠW!ý;ù[žo Èvwïûz¬ñ/,jâ•gÎF³½ á-¹pž›m„ÄÛS`³:ÀãÁŒHgð8“óg©¹Ù+4Ü&DØ;Ô™ã $Ö—›ƒ£1擳^€ ¼aÌqçO~¬.hUh l—?|Rò¯N˜W=–ÔóìL;°–`ž£€;‚yÈ[cý¼AÞâôåÕL°(¯fB¡¼šQ’åUŽWæÕ„`üêáïO˜Wý£œ0¯&LF6ÌCxžæÙ‰=ÈæU6Ÿ óêƒ*»a^}0“Ø8Ï.ÜŸ çUaàÀy•8`ž•À˜`žÊoüÂ`Ã<+ud.˜§z°až…‘…9‚yåeÙÌÓá: =ÆgúÚH¯†•@zή#Ò³T„«Dz®^êYîAõÌBÌõÆóràÔó€N„zúÿ õ†ßaøÚHÏÇÀ/"½IìW =ÛA„~@z³èó éYÍäéÙÛј  é½vòÌzÞ—Á~½·–¸€ž…À¼˜@Ï«ñs½nÁ˜1×"ÐëVøžz~¿ЄX¯¯ï–G¬ç"Qk‰õzÂùX¯[ÌŠˆõü²È–"ØËGzöÖlS¸“`Ïn°&B;€=Çf@š{vO3\½ò4¶"‚½²>)ЉÀžã,˜L°W´Ö`Ï.¢–íò"&Ú+¥`"'°çà ˜`Ï´4¢?€=¿PéZ„öJÎ,a¡½b3$À+¢½bSP B¢½‚âÔ³«ÑƒàP/ã¤í׆zûë ëe ª_ëåÞYG…õÖ,Z©ˆõ²Ý\rÑÞ‚ZB•€{«xÛ ÷ºÅ?x¸·™p€xoÕÍÝøºÅ@Èä8à뫟aéð-Nbæ|=¡{ø À×mU€o1[__ãg¹|ÝÚ*6Ÿßy&¶à[œ& À·8•ýŸsðI øN¾SŸsøÜž ( Àç6c‘€ÏýxÏ='RÞ[œ˜M¸çiîù‘c´Â=ç@h *]@{ÎA¹î9§:Üsº)Â= È` PîÁž3Ð…íù‰^T¢=çÐA =çŠí-ŽpÀž3°tG°ç! =¿E ´ç! =Üœ"gòŒ2‘Áž3*9/Wn´ÔD¸ç=ñCp÷`åf î9`hÏÖ@\ƒ¶ÛˆÖs‘(ÀžsˆD'/' !!‚=ç`U`Ï/ ÀžŸ²FF´çŒçD{:‰ýhÏ£œd`, =ç4r|¨tÎ<à^·€Ã(">çTrØ&w·„ø|± «®D|ÎAgNÄçœAΈ{w˜Êò9c!ŸsðÝùºÅ€Æb=!ŸsPÄ|ÎÁÌŠ ÏÂ@}Î)Æù“à¥É‡±ð’¶”à%¬Îo|·˜eÄKSØL/i×) ^B—°^Ò¦“žF¤ðp ùDxi %n„—´ç/ á9!¼¤M§@xi|Gxi|GxI[Lð’6”á%íÂCÐäá¥.Ì'„—:Qt@ðM,°Â@|WísaŽøŽOI|m|WúÔvð]©MhŽø®ØÂ*PñMp¹—F|—gç²ðÝê½ÙQ ßÙº“|ç·ÂAx—µ{ðÎçø¼Ë©pÁ]ðÎb¢Ó¼ó9²"¼Ë¸kñµá¥ºöñ< >Ñ~Àp+tgsHnÛÝY@&"¢»ÜÔÿ ÝŒ€Žîìcå ÞÙÕÖàMÄ1.Þ•:9V Þ•‘¹*xg7|¯}<{£¢\èζA±“+xgÛ©åÚÇã+S_ÞµÌECmãÙe î(MΩܦ–š¼wýï9—Z*F »ªY.Åb6Ôœ¯ÅÁ©2p²s&æçÍ!ã}OñK×õ䨡-›Mžœ7Îz‘j$"'ûÆßÅéß„g<9ã{"›ëÄ]Θ;8öÁÚÅé>]œö=•ž;8ã{*{veÜœù=Õë'ã.Îû-•Oëó⤄§‰NÿžJéàÌ琢7¸ãƒY‡©À©¾ìurZúžªá¼úÁéù{*Û98ku™J$&éÇb;®¿O$§{ß×^…IX¨öÞ¤Ø°ì¡ _šZ²Ñ«FÅØ±8/v1{ÆiÐ2€ò<3ʃådt„Î龚ê#5Õ±m3ä@?3ï'pN†’6™¤c½º»AŸ Îx˜Š“âÅÁ•vÇ?°öžÊÎc’3ªë©}¼vtš‹3™júxXæSµ©ÔÈx‘Æ6ƒœ‘bEµŒ—b‘Áªòã¼ {Ú±þXí¡ã7íÏWmÆ“ð“W[€É,¦ ‘ô"÷îœÜìu{›È«¶ƒT8¤>8näñi}WmÆSŒ™b}zLÏ«-Á W˪‚éäÀÀÞ˜ˆÝHõí‰ÀÀѱÁ´8¾…Slšc—ΉøÜƒGi«”ðT ÓÝÅñe2wÂ{ïêïäYª5tûJNMéÁÁ‹Î“ÓÕŽ`¸H~¨)s̆´ Î`¢†Ò¬öœ–÷޽b’T­ßAªàÔ© 2oSuô»ÕÊ©x.¿zÃÍ(‡Õ~COü Ï¯öY¼Ssöjïßx*}wÛ¬kþ;PFµ·:èE?PmÇÛ;ÈI¸\mSÍS­¶îhµèûÞAN.ŽÔŒE{ßVôfU-$gÛ kBï_×>œÁë¶¾­ýýØFÈX4ˆü['aðë·ù|»Š\ü6{ùÿá*r±ë/v.f_EþÓßâ&òÿó; @òäòÛŸÿ­[ôÇÕjM£æêäþ‘+Éþá9Ëå6kÜ_þír×¶jûo‘•õiORVÛùÿªu¡lÑ+º…`ñ«Øšä<›£8ÿ¿ªmì€m?‰uì_üî÷m‡ç)¿ýÍ×_ÿÝŸýö×ÿéï>ÿæÏ~·?å¾ù]ì‘ÏüíC¦ÿÒÅïáá1ÖèÝð¬éæÇkìsWŸ®þSGLDÿ´%¶öÖ±¬1+,~þØk‘Ï ï ô ñ6A2é¿ùðÓÂ`¥¿ÚÇÙý'{è“d†7Ó–Ñ“ÕkŠ Ý+?ǿۑZ$Ô»OdørÄNýøÛÓ[=hsJùSb[ ß<€W¯Ç·«¶“>Aœìç’=’[,•AÅ·_Sv’fföÅ—ø=ûìt' ~þ؜Lj›´ç¾s í&H"L¤†oN¸cÃö™ÏZ(FÔ!_FÛu,ûVàY ³_yØvQ§DïZ(k¡°’EQ ÃIÐFÕâÓx•i¸=€WÍ7O¯Ä‘]ÝŸ «×Ä{ÎÓ+,8Çﯟ ßÉEo¿Ä‘YTf3‡Ã1š2Qn'àX÷C2§câȲáG&Âðé3ïñ×9·c¾Œ~8FúpŒ™Ea6s8£ !!¥áv‚޽hôÑGÝÙð@ÈÑÙMß=?:CÛªªñ»Še':ºÃÍa(ê•Cô‡a‚$Âhj¸€c¯_û>KLœøä5%2Ÿ…ÝŽ›x';~ƒŽ ?·¨8˜ÁQ^4 ÊKF‰_.Э‰jt¸EŽ {n»“ã·Ã¯ìç+â÷âû0;¹èí—8ò‹ Â/æ°“ Û1šŽ]N¸cvL§^£rpT“’oºFEC€]gñ-óøÝ.2¦#¹è]ƒƒj XÍ"‡¨ˆa‚$Âhj¸øæ˜Jl;ÆOޱ¦É1•X8†ßÃ1&7¢ÄÄQ‰QA”s8JŒ&ì2¥‰Q—/'à˜Ùj—câD]ò­ïÓðšOÇšßÕˆßûs¤ub»ä¤¬aº°–Š˜óö˜–E¾l‡?¥}ë1‚_Úî9‡¹íœ/ÁFtlrg¢ HN‘#«¨ ¬nׄÊKÖ-Ýþ¨Ç˜ÅC¿W{Ÿ¶t¸EŽ/ÝùÑaL™ý`r²ª¤›é7 ¶Àðp‘^$2°äØrîú7Øõ˜‘ÉŸ?„ …¡àö~U?á}—8úàv«<Šm*å5 G6ü>}©u'½ËK}n*ˆâ`GyÑ„]Si¢4ÜNÀ±Ö8—Œ‡¼ûèUv‰ÍÄÁ‰¶ß·‘»ÄȉNQ Ìâ(2q–iˇ†Û xÖ †¦˜Ë‡Sñ9<žKLÕí‹ç=uwK_ŒF’xý´ÜÖ :&óÁÁd<pªYÄd>Œ„Œ¤‚Û ÷ÌöQ¯®P Ö¥×}w×à7ÆQ߬Y~/~ä|'U18¬HR Š¦vU” !A ¥àò€NMÀœÃ+rdWºÍΚ Ê­âÏ}ÇïÕ÷¼wrÑÛ-qd„ÑÌáp+}s\&†_—plA—qÕÃà°½ áå£òtÔQ-*C=ê¡E[yztÔÃà …Ö²È"êa! I·ð̶ݭػ_‹üupËËïB4¶äVaç¨A[¶ÍßûÞÝO}n ¢‘‡¥§ùâÖÐüÍÎôÏÛ IÈJi¸ý¸|ÛýbpЭI©z=e»ûE4\ DF¿ž±W;¿õzç×C¿x~ßqz" ·ÿ“x–p¸â¬¯_ÛÙ®­TõÈ—ôéš$Ârj“„L”†Û 8¶FÍ|MñƒC’Ÿ¯Ù#Ök;oÇˆÖæ5÷Ž5U%½G4q4QAŒWÌáÑhBHÈÄ/'à˜}ç÷*1qôÉ[Æ‚ß.ŸD‰ ßJßqô{'½KL}o)Py(‡]b2á(S7Qn'.Çžé/ÃŽÙ}®6Ç¿‘²ó}º& ZD#Ã7»ìÝ5ØunÕ_˃ôá[H„ÝOt9‡§oÅBÁ¼íòÍÂ0n×lǰå#[Їk!!é¤rØž{~zŽðlÑ~BYˆÞžm Y- ·ß<ó{Ì—g~šp»öø9‹íèÓ5I„kÔ¾<}øVXgéÛð›Û7Чo’ßÊYŠ;÷Í#ÁÖ§ùÆì¯ƒÓý+®æ­×7w® ·c[fo ¢‘Çv¬¼v÷tÌ'î,œ<ãï2QÉo'è˜Ç9:!µ8Dă›Ì“{R¿‰‹n”xýJC(¹!59ˆ© 3³8 5 Ún/NÏŠ ˇge¾_^Z‹Åoä+z»¶%`ùÖ ylߊ?{Y÷b[½í ‰0ZÝÚåÄíØëÑOÎ{Ô¢ù¹’ÇÉØôYbàD‰@AøǦ¯ÆlÇVßúœ_ôé˜$d´4ÜNÀ±÷ÁPÔ=Z¯ƒƒX+lÆNÑX©Õ8Ý,;xGÚ µø ‡@ö3ìR°ida ı…¦HßüŽöδ9šÎ6ÑÓ÷áô«xDÌÓ/ÜŸÛ~{¼cn¿D‡_[VKÁ¦‘Åö«ØV_úˆô¬¾3½ýg›èé¿ûpùeçÈ®òòK èÀ¡ÔŽàå%zû´š 6,¿ìLž½L}γÀDŽ‘6RÁw/nÏp‡ø,1»çsX³—ñ=A&‡§ß~!ƒÃ/‹¹`ÏÆéà ¿B¶¿èÃ/r¶ÍPðÝúå×_‹ùI˜W‰“|·&Û2Æã]–‡DYføŽ«h7ÔO,o‰ìQ¶ÑÈÃS€ãÝy!Cƒ?t÷î^(ÐÛ±«©àöž•äX§O"øëà¼~Ÿ>?…íñ•e–÷¾A»k~ã~K 4ÞÖ yüü±99õ#t»">v¤Ý3VWIÈH*¸½€g-ìjcdD I6î„ÐgëïaK ¿Ç½5ˆÞŒœh#Ômˆy­ŒV„ŒÜÍôt‚~y‚¹æ ]ÅÆðú–±dFÚ ­Ÿï!P}âéEΤú(â‡DzDôØtvÛ&HBJÁíüÊ•é˜á3t?zðî |ÂëÅÇ ?UâCI4ä DÆs0CœÁG1Ç#$VSÃí=kXÍÞlœ¥%y]â šá'ûÚ¾œ ÚÍL~á>$šÇ®ÜÉE#OANòNqkx¼#Øy€ö:qþ,û”üöàöj¼ˆY¾9öÄI’WvmðÈÐÉÓ'þ.ƒ•V4´Ÿ. ¿tߤÞ9€—ôs˜Ëä·ùp©xØö}èCžÙÈ /QéHG¶°²xüŒ@À[¢wnô@È} cspdC t¤CYìC2bKÈji¸½€g6”Ûšx¶»_› 硊måÔ‚oïx´9°Ê.‰Ñ¸¦žÊM\›Û™EJ^<ÆòδûD$Aó¤à2ÿòK¬‡GX…Ý_ ²ó}:% Y- ¢‘Åé—E3=ÜêÞKßÍéÓ-IÐF¦¿\€W«´S9aXpˆ¢x0PŽ#0ÌŒP³pDùÀqA Û ¨Ð@”¥,…… «Ÿ¨³‡§gƒƒUPœê7¥µÚƒ¥5<¹=Û°{+,¶gõ±w·g‹ÆÒ…²¹=Û²Q n/èYå1Ølùg KÕ÷¡Žs5<4-®Ô| ƒyùÐ Z[ú›ã{þ¡€G"‹84F„„Œ¤‚Û xf1îŽ}Ú`ø.k¶¹~í›°Ù¡¿ç6m¶@SO;$^?¶ Dj 58Üd Ü„,b›6Œ ˜ .èU÷Ö®äf”—8ËËÁºÃ@üf¯F¶'Nú'‚°cµ–ïËKj<<9o+°ëVéÈ´W ! I·§gûÇæàˆ†”ꇲ݇< . A#õDìñ#‹—®· ø=L€½¸³ÇÊ{:fïÆÙ²–”f š- A#ñÜàˆà݈E¤2‚ad»<þ# n/úZʯƒÓ< g¶1ÂG#fEÂUB'i¥wü=OÄØPrÑÈÀS5m=Ú‘hoÇ4a"5|s³ “Å?o#h Îô§V>¼¤³zææ5« hË·è•„½‹[ ¢‘‡¥§ûqÓ­¡ùqÓh¯´B²Rn?à›ÏŽñL FœWÄ`e_üÙƒ×O¼O’ú!Q+nFHƒè΂ƒÑ(p°Š,b8 #$A™þráôÊÂ>ŽÓ«bÑ“¯,Äc9¼"}x´94ˆF‡WÅcœ†‚‚Щ‘éë L¹@¯¼ÎÖUYmˆûup,ìjF9ˆŽ?8쯥€Ýyä~Ø Ù(·ð,Dw{3tÄñv` &{°mQmàÇÞ|ö´ú¢“„ã>€d&OäÖŒl±Fþù#L - ·p,û†nµžØˆŽ=8fŸ'÷YÈçîùNáN»¡¾Ñ¼%ZÃ+ ¢‘‡¥ç™h“Ò€×sv Ý7Z! Y) ·ð­T„ )~C÷×Éy}êW*§ÛÕŸã^vq:Ú-}ÑÍI‚Ç D>œù‰‘ýuµ<ùë{;Ðþñh‚$d¢4ÜNÀ±êMYp8Y¬òy dTØn&ìÌ<²2I"|€‚pàÑüK{f.U_°ÙY€>’M”‚ËxµŠû™Ç ‰ÍáÆtÂ*M£÷ {¸Õ÷u)Q2ýóÇ6A2‘¾9q9f'0ûÎ|mö ¥¶«ÚŽlI~I‚v3½(èßnÙ«M"õš ÙÌ"ôƒ>Ü ‰0¾¹·^û̈jŽ¡ƒÓ°Çkï7û§ûã;n–Ï@›¡vÍí(~Èc+,,Ap< z((T|çúçm%¶ÕPðÍ ÷¬=ݬ"/nâ&f{ É·§WQOÇîÈ‹nè‡Äê˜h©A´â"nŽNÜ ~ e¡È‹ÛIÈH*¸½¸<ÛU18ªJ…ÇNXјëQiWHÐl)¹+cpX¥€u-²ˆÚFH"¬V}¾¼€gk4Hœ5àˆNp^²¿,ä³·âC¡½s;JÐn©¿d·%VW_$‘ƒÉ“1üE¬Hn“ÛVV¤Ý1˜2Qn'à˜ÝÍ:CŽoGØVæñH¶Ç³Î‡@r³½à¼·ø¿Gj’1<Ãk¤æðêctŽü%SÃí½šgÜ_G dõ¨GP]k}·8·³Þmp$>Ê@¢w ‡ D Ô~˜Ãn`2A2Q-ôò~ÙŸsþ L^mÝ©•=¹mvrrœÓ_{©ÌµJbV.oRCКþ‡“×ÐÀÉmäÓß°B4R .'àׂ‡óv,8´ëMŸ‡cö=¶ÞåXÞËuI¹o›–cÁ¡]¡fGÛ1!¿d£»½pÏú39/Ó¡ÅàðÈaGX‰8’ØsÅöaZôçç!Q¶$¥AtZ ÎJŽ$*‹}hQF„„Œ¤‚Û‹Û³Õ Ÿqyf»mýðÌÞ¬‡g OÏ$!»¥A4ò8=kèDCƒEO?²pòpL¿ËD%¿€cy"fYÌ‚ƒÃ9lÇéé˜ãÚÛÚǬزµ×¥ò!aa÷ŽytÐ1 ç°¡sÜÈ#fÁa…$d¥4Ü~À·ÞÎǦ~ököœ÷ñ~Uî“OÜDÏh/3q ³]o™õÐ :zÆà g ìø"‹èÃIÈH*¸½€goEùèB6=À°í¸½íBáìgboy0|Iäáß<4­>$8ìB»ˆÈ#ú°B½Œ¬T/tûá¾4yNQM-8l(vù±”ÝìþeMgSµÆÛ%V/ìsriM-8l+¡M)²PS ø»LTòÛ 8¶ÆÄ+ºúæ ˜l¶S¸;ºzöS¸GtõlË»ŸóŒ®¾iʼnÝD’ Œ49D,Ú0!$d¢4ÜNÜŽEmÜÖ%9¦º&Ïvm”k’åÒtÔFqT¥AµQyìÚ(+$!+¥áö¾õ‚E ]hâ諯™PÉG¡ðá”]hzC¿¿|ìEÉEïB' ¢H˜ÃQh4!$d¢4ÜN¸csõ6ša£Ð6Ÿ|¦Žâ,’¹: zu!öèÊQªöV‰/¡IAÐ*³àð‹K $rˆ" $!¥àöÂ<;_•-þwûo{UV¯°ð E6^\¬wÆÞì¸e‚Ñ–óžõà~wSŠÄ8…rç…N ‰q qÅk ‰q ÝfvBÿÏÉÚcä…~[]]Õc”þœ¬ M-á9Ùna¯ž“%¿ŸÏÉÆ#•3bõ‘Sm²ãáÛHjÕ±9§T}¬nBd\2ÇÖ"ç’¢ ‡ÔaÕëk±v¦úÝN[Мøx¿Oöì|ípÃüí÷ÍŸÝ]Î,ö¬GN©ãúdÿP¥þ÷B¬¡Ëb×+–â¹Zò2ò·¿ÿøõþWöÌë× ÛF{þÑa“=ŠbŸ™*ÿÞ$¶;ÿ¤§Jõ.hšñHdÒ#FÉŠj1ôҎߊøÂƒ‹ÞYg‚3ùÊ•?Ìfœ5§Æå¢a׿ð˜d/—ÌêLü™Ž4ðy~tËþôðbt FÉÃ*§ 0‡ŒíÙuÌóÌé\­_œVÀÑc&Ööœ3j,mÕλ'œ0yMÄê²Ù„ì >\Ï*0ùÕ þHÉžéóWÇ’oW:gà)¹Ðcww}6»ex¤×8`äÊ·‹üå㬑‹iá ïlõ÷LÄC¶.k*Bû o$j™OAúq-çL '›cOõä›ó~’Ò›vØø§ù'µHze\2ëÎ÷â¼8Òu¤zù¤Ïâ ˆíæb§¹ƒ3ù¬hȤÂu‡rÎÁ¹¤ƒƒX‹®SpÐÃŽò¿ ¾‚3 «“…ˆôûv=zê@aÃ.^þܯMùóZ_xÞ úV0zÅU—™øí~nŸ£Œ:áȳG=6Ž…‚m8HB'¦G±)*Œ73*l±E¯/ÄYëq=÷ëˆË¹æ-•œé—¥ìó?Í9ë3ù ìnë—Î`ÄD ¹ ‘ìÏ^›NôìœâÉ=üØÅ¥#4ƒÝìÎYs½`K>Q°;øáŒV­Û9“Ñ·®ŒìÃ=~áö/Ø&~¿~ãh  q,Nç1æb¾qŠï ùIhÔ>»)á=Åœ¬k&íç%¾^Ÿy ©–\ÄiˆÙm'9/îS4¿ð…þ~Š¢U–K¾iÛx}‚á¼xë¯÷Ù¥Aïô›ÈÕOÚ8ã-ýíÜêp~ýÔ®ßÖ€›öì¹Ý°2lg„)22¸*m"89yßë'Œ(wªld¶ßd‹Ëv( ~û9” ¿} Ì¥úoÕG"ÕªR™»SÌ«UìI¬ÚœªJ­&”~rÈÆ;ô›àÖðްÚÙ× ™Á{.šT™oá»sp{ ÏÝh./ŸaÍ®ØW«/K¦>—Øü6“qž^Åš*8\Ho/?Ø'0þ[ø/0_*Ó7µS>ü×ÄnÊŽyûBWÇlç0úç—NÙ‰ß5³DœÊ¡¬ ´Ú*-Qtp:†ÿâÓãØ¢‹oøuk¦Î\†KŸ±QlBqB渽8¾¾•/Cw–L]߯ÑgLO|‡Ò§Tv–Ç !ðf™s¸“dG “ùTV­lž-?7mA¸¨ z¾-ÑM0^þ#àj›•;3P³¸IüQà¶+2ùÀ$¾V[}ÿ k:ÕúÜ)·Cô&ð’3ùRXfiKñf¶ÚùâLÎæØÛY|CÃ’­øã¬Ç8ÌwÎÊÐw]&L“-¦Ûôuœw‹Vê©^v­¶[8õyGî…÷RfgÑËËKû‘{m|¤”Sælaðã8üZ?¾zˆôĉšj­Å,«^T¶¼úðÐL‡ç|XÆô¢[ï§Õ+,Î˵5õ¬>Ië6®x<Qéç¬_p:CÊ€ ™3Ôlï½w–'ºƒx(Z¥7Ö÷ó&‹”Æé9Þ³Bã44)°ŒÞc jË ²äHÜ®C˳©7Md{Ë:sÙº Ñú€sœYMÅ÷&í(âÀêØD›ù“¶OÝ>lª’?|šò¯Nüg ï„§sþÙ P`)Á¿'€œàßèJðïaÕÝðïéødþ=þ1ø÷t”Ά¸~z¿ÅiH$øgj¹àßÖ#ø·Íü{:ê冯-ðïa;Þðïñ£5'ü³¸änaÀ¿§qRðïÙ`ð/4ü{í ÿ=l]ÿ=î„ÿž†>cÀJðaO³àùÍ€{ˆ MæãÀ˜Üøïádwã¿'@£ðß¶Føoç-ü÷Ì86þ³I8ð–ðßHNøïàÿ=~òëÄ8°ñŸGBùÿ{I##wà?‚`žøoM®ý™Œÿ<šÿ‰ÿÖŒ)þ<–<>7ñ ¯ãÄ~ÅÔ~`°ßW¯€±Ÿ­\À^‚¿Ñ&ÁŸh#öXÑýÚØoض,P°Ÿõè@_„~ÝNE€Cè×+‹  _GOüµ¡_›™£ˆ Ÿ ¤<‚~vÌ©ˆý&á_ûÙ¿°ŸŸ^¹°_+긅ýìžúBž€«¬î ÿù3 ‰ˆp"Ü”ÍwÁ¢ØSí„þ® þ=σ1àŸ…É†Ÿ‚[P@ðQm¿6ü{,‚{%øgñG©‡ð/%6ç€O°_ð/­a³ Á¿Ô+çõ„vu UIðÏ.7õ ÿYœ™rá?‹ÏBpLÈQ_ZØ ÌРgS€V˜Œ Z憙¬z8© Z &,&ÄHüÚÐb¡¿ÚevÊš V>Sdˆ“¯ -’&SZÜN`z–º ÅÅ´“Ð: t €Ooa€vÁèSк(€'â?F0ûÚÐDP/Ÿú0ðŸ©EÏ)ü÷äL-ü÷`ïûkã?[÷«þógÁü³Xf/ÁàŸu²è`ÿ¬kÚþ³PÛè8…ÿ,67úá?3_‹øo~mügQw°ä$hÚ–ˆÿ[W*#þ{JNþ³°±HCøgѱ@"ü÷ÌAc„ÿže¡ñŸõÔ7þ³€ž^øïy®é9þ3’öÿÙí IügƒÁ^‰¨lí‚–3Ê_ðÏì¤ü³T àŠðïy…ÓÿLö þÙ§A')øg2ù‚ö%P˜‚¦}¢àß‘áŸõ€h­‚ÏËu*¢?Kƒâú³‘PXèÏ8X¡ü3½Ð‚f†8Á¿ô\ØÏh°Ÿ­& b?³í¹°#Hmì—žÊ:"ìgzÚ…ý¬¤àµ°Ÿ}aÔb?s4¡ŸÇñ@#ô3Œ¤‚~‡ ¡ŸYƒŒˆüÒ€–ÈϺ,¢L"¿d³à<"?&T@~æ÷¼Ÿ%BòÛmCÈÏÔàKùÙxWµ#+”gW·/˜góljòì´ €P^œ–ÊCä¤åçãy™«äٻ؜#ÈËýÆy qc¼FÏ. ãeVâñ2ÇÆx96…ñbÒO{ãi}lc—ž_¥€<»óÎà5«Cx­Nm&àù$ûgxm}l,àÙ$P$Àk¥j_Ï÷ ðìʺ*¼ö‡Ï ”pޝN.{À3"^íÍxÕ"U™àÙ>TAU@ć&ß^õ4¶µéÖØùÌΚ¾'½&©~g·Úzhcàwôv~ÓS¬æ‰~dÜ µ^ÈÁL™¶}˜˜92c*õlÀR+çô«0°údh 4w?×à1ެŠìËÁÔãò»‘”­yN¨Úä%g;!rµ ¼÷>Éîä`q‚ÁpŒ“×ç°œT©cJ½€wAª(¥ßÍgÇè™ß‚¥%“ñÑU„ǺTŸ ãûùZçÅ£¼ Š{zç@MHT«°Š6kÖ4c"æÆ¾rÑ83G×g«2ÖÞGYÏb0Èobl«„nØe,ŸÉá×l{»™õ‚39¿æ!Ýj‹2^ÐÕ:çeª‚šU,V 8‘‚¿òNôiÕe<À¦Îø–PWi#s]ŽÉ}µEOÕˆ¿ V5ó0„o—yªÌmßRóT5cáÚ; ©/ÖÕW¦9RMäŽU² ‡ª=ŠÃc¹¾†]XvÞ„°ÆîÁ½ï%VW€gr,êÔØÓu.Q}¯Ù_GH'YœÁ4 ]wµ·Ô;>Ðb™ u­ ëZ‘jõ>pÜB,U–x†5­3”t_§÷âõ*ì‹1Ȩ±¤ì¼³w¨íÁåë|žJMaͪÏ+FmãXh#G²¨}Õð¾±r¹ÀÏM{"uÌ8ÀU€QÛ2ð­={ï'Ú<ÕjÞæ}å4WtÔœ_¦âQ?9ê]êäZ¢Ÿ~õT‰wüø«_ùª\/]ß #UY¹r‹ðÎ(†…k(säÀ ^û‚-†Dý£¿[áý£v8ý°%bèRã¼ùóì¶c"ÑàŒÃéx¢gÒ[ê-ƒÛC®Ø–`|)¶N «ò>8Çn %/8=R‘S2w•Ê'Ô˜°«Á=ºZ­Ë+³Ÿñsð‚4ÕØƒ`¾ØÀôS)d±2j‡5¤éIH5RDëjðj`}Ã,†šYèy•h2¦—î²ø¨Ü°âì3$o‘ȉ‡¤j}!¡°+«|JA[ù¾>ážž¢D9#Qš¬IÖõ4^'Àç«8N\m-5C±Ï 7Ý<´Í]PôdÖ§!+ÞJ¨ÇÌiÕÜkC۱Μ3ël²y`òó¬Èâ`C+ö×V3hHUxC§Z(2®'ñ¤ƒ/nyªÌéÇ:-Ü•Ë` $B µðBýEé’U {ÀAGm¹2›ÆŒŽk¹)PŠåëòœ¬[¶‰G'ªÊø”¾|é …õ8¤±/Óð†Jµ4£Ã½ Žõ– ‡|,&ì‰pl©ÙσT,).zG?‚¼_¼Jb{é·BÿÉwŽ(ðn9€§wãºsüG2Á8î÷®_¤—‡¯ôûóÌÊMŒS(W¼ØBbœB·™‡Ýÿ´;ÇEØŽöýÑc_n™¸s< UÜ9&¿üó­{<&MVè¾ÝÉØÊü­:Ž,!Û6›§ ‡ˆï{ätȈs Yßüÿ•÷-ÍšÜÈuûþ Þôò2¤«ªÊ Gxã#örÆ ª§9jû6I5›r„~½ëä9'Ü¡Fi´ò¦û"¿D"³ðþ¼ž?qÊ·÷ú‚÷ËËÛä/Ûë¿ÃÛdwVôìñ6ùw/ïÿþ×ïüúéõãû?|úá‡÷¿ùøåË7áä®/?}ùý7¡ÝŸ|I?ëϽ[Æ+ŸþÐÅñnù7 ‹2æ×Ìÿ¢ ¡?·Õ•£ÁolyUlC^SW4ᯰåÕp¨³M† o·¼~»ÖžO„õÔÝì1}È…uö_¾ù^Ü·­¾üüúÓ×ß¿üôë×¢šŠÏ8ž„ï×·ÖÏxüsoÂyØ[Ú^Û?O”;*¥_±9Spªót0_/qú®“„»P3`Lÿ åÏä%?ñƒòôÊG²ócéú”›(ýd° Éa %à âÌk¾«@ú%0åŠHì;| m¡çAaGë@@ ¥Ã°ØàÀxp’%„a$ô›½ÙÙ{œò˜†aVA©¢$¼1‚†!J3¤àºoØe|ŸbjD¢Š#¶“žx™†ž%6[G‰éàtñáÝ ôðk<%Õ©¦ãÓI q¤’’°Z†!²ú>7DÜŽè¼=›Y‰#À¹ânÃ1qÔØ¶JNކhŠ¢¸¹ˆÑ­DrHÅlɳ ´jÏU£º’ཫЬŒ+bNÕUOú¿6ü|M”ÌÊRÚuåÜ®+Ëue ¦Ú -a1Vqéy²Ê+…ud›t>«<÷¦UÜ^·ü¡Z‚Ói— Vˬ¶‹†Y sXIKX¬ a¼‰3f‚Õ:åÆÕj_…N‡awœ/M†Å®ùd˜ÒÃ0¬–Xm1 ³æ°’–°X!ÃnvÙ“âáìdìæí®NŸàc<¼u(ràf\¸è—„L爘‰–à!Ñeä˜Z˜ÃZZÂjm»ã±òTi&ä'?Õ¶X%ÞŠÍu›ÂS»Jì夀L»Î’ /žT#.aT™Up•YŬôÙ™u± ³D°VÛ­÷o³]EîåÍQãìeHp:í2ÁvY€íriX*‘†IÉ4l¶" û”¶ÌÍIqKÚã´u´´' S[¼jgPs`obŸ$8=Ú¢)jI)A--Ëȶ˜Z˜ÃZZÂjÇÛTiÃ4}r ͦ¦bG¥Y1s¤i’¦¹ÒÒ2Uš¸Ò\Ĩ4+‘ÕjËÜœg+hX‰í–É0²-5y j·²†mÂiÈ¿ú6eDš)kã|ÖÖ’‡=.;-–nÙŒgåiO=ÖA# ù™Ëws=Ë¢‰:jø³9 7,Rz%‚µ²k},˪¨Yê`«˜}¼4®z3 G­ìÏåŒ ½q…˜«gbm0jìÜ9טãT¸OKp:kÌo ÈúPS#¨ë4”´„ÅŠÕ°÷tfËŽð ?„"(ý\,Ó“eÉaÅ-Ái–1›†AûdZݳõFLϦ™ÃZZÂjÇbÂì]e¶­ôp”R ý÷e¹JO¶%‡4O N³ŒÉ6<™:Û°-nôSLO¶%‡µ´„ÕŽ7¶…wÇŶ¸½3¤"¦ýTl$gËô{¦ìiØžÕlà {¢Ô¸`9J`z6Ìi˜$¬FȰ›aµ÷ðŸñy¢ðê펉[eHð~qDˆP LÈG¡ƒ¢ŽI‚Ó,9LÙšª• |ÔQ†ÒaµHki ««mw¼’œlk¸»2Lkxë7«ôdZrHq °,a¶ìŠcäñmÎÝÇ×cz²,9¬µ%¬Vв#îÂΖ‰bÅz¼{zŸ1ùdÙM’–uâ|[Æäl™(iÙ­»Ò[EL–I‰ä°Ö–°Z±X†û¥Í–!zW½†i劸ßY®Ò“iÉ!ÍS‚Ó,c² þõ÷c؆+½Oe0=Ù–©·$¬vȶ¸ISàÈ•^䓲G°¶GªZ ¯´ï¸Ø‹?¥CÓx‰68pSkŸ$8Í2C<â<0¼I.îe”¡tئÞhi™V;VÛθ:Û†ë“iW8ݦ1=›f›"™Œ&ËêSý–á¦á~ME0=Y–ÖÑV+hYs_%ûÚ­E¬ûÚÅCÑ׋޹7ÞÚÑ”%§¾fŠ{ŠŒ¾Æ"æ¾vk½éqFZ[ÂjÅbÙÔ×LɾF©£¯±Ü©¯I³äæ)ÁéÑ×’¢žb Ù×TÆÔפ…9RoIXíXm+q9t¶ W ïɶ.“G¹L϶™Ãš[‚Ó,c¶ ÛûdŸŽ2˜žm3‡µ´„ÕÙv_ÍèÚÃãSgBÏ—Ž]ß»öÞøû}s¶pv§º6ÅØØŒ]Â@×VÁVÑV#ÃvºÛ Ûù$'¥î}cSP¹JO¦%‡4O N³ŒÉ6¸þŠ¥˜%ÐË(£(LýÐÂÖÒV;h²DcjŒG>(x½Óbe«³]30Ì•V뱤(öš!#É>¼øÅPg ûI€î"˜ˤ„9¬£%¬VȲ¸\oà’e¢à-S´ŽKÙ-ÎbàÆ‘Òªƒhæ¤<ÿár·d’%„e$ÀŸKyŸÙñ^¡Ü£¥£/S…ä°Š–°±oo ÛâëJwø£\¦'ÃDIÅ)ÀI•0 ƒ³89ÌŽ)³aJO†%‡•¶„ÕˆµÆŽp1ÖÝŸeØW‡aLφ‘’†)亓,aª±û2#;#¦˜žkÌVÑV#hÞ`ž,qTóy¢ÔðO®gpŸ¦òQS¨…{xJCQøX˜J\c·€‘fÈ` Ÿ ¦€íʶ»t|:é@ÊБÞZ±XσËâYÁ0 Ÿ«O†)= K©Íü#É&»vzæÎü[¼£0=Ù%ÊÐÞÚ0ÛµGL‡Ù®§~5ÛSj8šjÌé4l0Po i1,‹M¹è”À'?£¦‡e¦ )à­Ká•Ú~Ï5¶õÂ-)}/xÿİì/ªô¨²dPHÀH³ˆ©Îà ·©, r Ï˜žêL”¡#¼µB–ÅÛW\OÆdðy¢œò7 èÃè4;_•Eãóà(q£xHpšeDQŽx“7$4FƒÍ2šãŦ¤ -)á­«m-&ýÙ6¼2œm;¸lÈr™žm3Gj. N³ŒÙ¶¯ð‡„2VV«Êl3¾U?Âùm{<æ —Z•±æLÙÃYÆóÿÅÿKÓ§=ÙÅ™þ@¯Y3Ck\X€Ó,H‰q¾´÷k«óÈœŽ¦: ê8¬V,–%€´Lð$-KcË’A–¤§-&J px´Q †/Cs¤Ö°ZAËJ%¼÷°8(Õr³M£^·<ó°H7 ƒãÀKÓ!@É1*ŠàAÑÙ=*ºŠCsXEKXa' ƘÇEó¼1M³Üô´eC@›:qôxôŸùó˜)žÇ,À™‹ðD–:˜ÁZÀjÃj×/g»ðJì†ÁÏ>•Êôl˜9¬·8Í"fËz¸zzl2˜ž,3ƒu´€Õ Zö|צÙ0ž, Ê^Î <üÞ:V?£ÏœyþÇ ¾„ úÄAWyC‚Ó,ãûA©¼ô‘ ÃöfÅ}S sXKKXí m‚^£—‹¹ìÜ'r‚ïŽsédôÜ=8ÎÇ0$8=º™)î%–à^ä2F?³æ’ÙQg#d×©ÏØñÿ0VF§)ì¦láÎpdßÂãåÎt|3néf‹î2çÊž»³¢Lñ.#ÇðâAò´H¼Ã»VrÈÍpJÈt®“âU¢%x™è2¼LZ˜ÃZZÂjm;»VGâ_Ð>Å XýožÔbk™= —Í–Ü,]2%|x7;/_¦€íæªÒE0m‚:˜Á*JÀjͺ6múä aŠûüuqÈcÜÅÞó¨WÝ¥ øïÓ¸“é5’¢NŸ<&¸Œ1jX sXK«a[ø«XĤ¤f…‡öÖ¼JŸm«OÍ÷'Ó×Éô°ÍÛf Ò<ËHÛR sXËü:‹²íæidÓ«Ú‰® ÞÇêø8{¦CÓöÝ=1´Â“ È´.Õ JÝÖ) Ä)å(¡èÔrè`ëh«´¬ìD@¹ÀOŠÖç{¹´°çú_|«ó‘#ˆ»Äqh»ÃœÎ¾(¹@—„\À«Œi‰/-µV;d[Ü œxï´M<+Œö¤ ´v³r1jÆþòà€÷²2ewšDQð¬8ö°$®dÚTÓÑ,柭Ÿ³¯,VEËŸÂG,—ŒÂv³âvÓ2Î*%‡TÎìNWÞ„¾†€î÷FLÛ¦üÙê9û¢?MÂÃÞq3ãóDáÝ‚X³{Ï»þhê¸ëñ!½ŽÞu°# NûfÆ ðîÆÀ»£ ßþZ˜ÃZZÂjmClDlЇŸ¡ÏƒÀQAáø§Dh2~ý|‘ -Oî³ë÷óЦº²;MùÈ`ÊVr×à6gÃ,ªÒÐ £ÚÆ=àA€_¾aÓqr·QLÏV™ÃJK@&7m'¥îBþ,‚)ùÝ"=Y•RÑhÕN±&–Á¨ý @7ÌB:g5Ï ©Eå Èe:qXR£R‚`–‹H–:˜Á:ZÀjÅbY¡˜É²ºÜK—T8*¨Y*S“]þYJgn¥%2 ¡ûdV¹6hëds#<¼»"«l« 2«éBŒ.LœûÇ7êãâ@¸ç ]x(wÌYÉÁ@D) “›'"Sxì?¨ä,†氎–°ZAËžõw›Ni“ÀSÖ¨ìx£‡°Q×÷tHûhyñE¬~G —9»Ó>@”Cƒ¹ðv”àCÚ¡‚9¤¡,Ȩlèé´J”ðóSà ì@?Õ̶’éôÇÎZqÜ·ö,)ÀI–D)¼ñ–vnvfLG‹æ°Ž–°Z±X–÷<’Âk)T·8²Ø¼ç‘Š%‡·%óÆ ð–F Ð-Ž,"ïy¤Éa­-aµ‚–ÁIKçƒbIØ5N±™ìGºè§L‡¢A29wz-!ÓQćwIØo¶žàÊ(Bé°ŒJ$‡”L ‹4ì ŸâãÒú xro|¶Ç+éñÁÛ>]Z/ ïôÄ‹âf±$dÚÊ…WÎS‚®¤gyi=µHk) oìm„6åŽ÷$Ÿq jçüð¶xQŸü(™M‹.IŠ£’Y‚Ó*ãûA¹œ-¡D@ð,‚ɰŒ:è÷TZÙß±†@ßg[ »7b†xûdÓ³aæ°a’i–1V…BSB—Õ£Œ®·×C q¤–Ʊ«‹mplVúl[x߇mG‹¨^Y®Ò“mÉ!Í-!Ó,c²íxfÜšµ„-œ«2˜žl3Gj) oì m÷¡—Œ\-:¹o¼¹…+é'}ªß„×v§¥& J]œÞXÇJ¶{çýEeÇã°VGJGW¦ æ°Š–0[&)o‰1~$¥qG,bYãÓûXˆöL£PÆ% '>$8Í2ÔÂ=µ”°s-Ë`:š„´0‡µ´„ÕÚÎ §ÙLÍEe׳ MUÞêœ'3Ä)ÙûÄѸñkJŽÉ,)šŠ,ÀS•‹“™•Hél‹ ³U.ö‡Upx} «àåºLV)=Y•RÚœl>½KJ­lµ€x[×TÓ“UÉ!-`1AVñ ©?Ã&wµ“/½;Û S)ªrtíšÁ?K¿ÆNù”¤àï’pFÄ‘·¼mÑLG7TÉæ°f–°êN{êΕÒ-ýóLáev\©Ä"¯!¥æ±;‰RS/Øø{?èšÉÙ3½ñ}À l»nnŸ¹Öb7d JGK  Éa-a5‚†ÑñS—§¶ë“‚S¥(÷èÐqÿµG:™D±g8- ÏôЛœfÈaJár>%ÀqSE0O:˜Á:ZÀj-Ó½-Äe(Ã’/(•˜N50A+t ¥QìM`’wàçWjóFŒðw¾ÇõtæF0‰~ ùJÇ—£É!SÂj‚̺â+cä¬'Í¥œÚkêqGcç­‹ÌX“)жÀý樧KÈ4ËøðnPB!¾„$ld\D$?¼:èw«èì«4ìŠ08ådD Ï¥œˆîˆó´–—‡[ìý8ýšpç!9öØž²'YBð“°i\Wö~‡'¾,@éørTÁ©¢$¼1b1¬_¤q2¬ßtð’†!\eŸ cz6ÌTÜœd Ã0Ä…¹&»Î»¶‹éÙ.q¤†ðÆ„0 BÐÆŸ ÕqÐÃ84ڎ≨ø§á G>§sŒOІhçÖž²sŒÏ¢ÍaÕ,`Uží•~èŽp‹ûy¢À‰{\_ ŸÚOšÃ ž‡…£ ¦CÑ;F¶äÀqÎ$@I–~šÖîÎ^|‘0ýáÝPÁVÑV#hXÙ9¼ž(ìóD¸":XQ(¦§ôܤ^š«#zž\3˜ã88«Z‚ÓQ2˜Ð9t¦€¾éÓ©¦Ã2)a+i ‹4¬6ú¹n´ÞÏåŽcE‘–ž§G®‡VìL‡¢·F6qÀAü$@I–~‡s7ù˜±|¥ãËiQoŽÔ™Vhüø—yæJ g¸"¿¦™ „Ñ‘ÆÌU;×pÉq†;îàdÎ]¦xê±OM.bL^V"9¤cJX­ eGÄ|™¶7’¢Í‰ð…‚K}ž(;pŸ9V7ŒûjÅê‡i(Š÷k‚=ÖI€Ó,DAHNlÅHÀqGXì,AéïRsXG xcEXh7ªSÞ%œ#Ä:ŠÃ/úNthØá]1ôäžž8ê­OONÚóá Ð7b ïÄ,"½+¦Éa-aµbµ,cR²-Iª›šËÑš™Ãš[‚Ó£9šâöh jmYF¶ÇÔÂÖ2[ôbmÛy éh]p’r¨ ì^¸Lˆ^{V'CO^òï-.Nen%)ì"TbÉÌ]"ÜÏtX¥òÍaý,aµ€VÕm ù1(šb±4šB~DÈZB~<ô9äG,S¯I€’9E› )6³k Îr†NÌa-a5B†]³£ÛÏE}¤õÙunÔÃès¡f[{á³ÌŽñTù}Ì÷ Èt(ÈDv1© Ö0;ébíÂëyl‚V°ÇqéÀ˜+Ü·"Ïy ŒXdqükŽ«iWSœÎ5ð Èë«%h…›eä8µ0‡µ–€ÅÚO «a¦X¯{ÿn2 çy¶nÃ:BÐÍ;ïùZ@¦Ó°A¡^)AjgÃ0)a»Rk¶Z–aèçâÌW%nöýàÞ‰.ÆtÕÞOW#ló5q4mÖK@&}%1)ºP˜t±0‹È+‰©„9¬£%¬V,–!Hí½XÖr¦¥T ¤À$.WéÉ´äæ)Ái–1Ù†à¾×0 ë9ÁôdZrXI X­ eårõR8)ZÈb“&\ i¡‹¨ÙÓÒÅ"–T™80zM‹éLçR8)ZȦ-t³Œ\ §æ°––°ÚAÛ€ûîydL G6€ð)ZU€pÞ¤ñЈ­€ÉÝó“¾´ú¡'shLŠF6 ðÈç"ÆØh%’Ã:ZÂj-»[|1†$ECÀ¹íì·"NÎõy9#¸ÛÄQNŽ>–àt"ƒÂ1 %hŒÈ2rI-<̤Þ†V;¶s×̾–õ”‘VëèIç³`hûÜ×ÎÖr™Øl¾' Ng_K »J POÊ"²¯¥æ°’°ZAËžiqö¢>t[Î^g/ê‘|/ê‘ÐÚ˜ãÁ“õ‘–OØA ÓØ!€NeGv;;”0‡•´„ŊŰÑ“âÆ$¡ÙØTìÔ¥XrHñ”àôhŽIQs´7G—1š£µ0Gê- «´ k¸{®4üÉu˜=ªÄ!]F¥98nu‘§³ÒLÈJ“W‰‹•f%Ìa%-a±" »žÙÀËlVZRôÉ/l(O#ÄgVË‚È*S­" I€J p:ëlPøÅ-@’%d•¥æH­%`µ–Í‘cwôøZþ²È±µâ˜‰1qÜñl^”WçxÃ5(¹¸4¼Cà‘æ•”‰ >-ΥĤL\Úýš¸’2q½ÑuÖ~pý+ÈÝ#òÝ3h_SYLQÇ΀§~®w½MÏd›²léÏD<:¿óopá*û ,\¸íÔ¯™K”…k h).Q.i1qMzý¥1bñÔ¥Å3N–+êê·ûúíuãRÿñòí¡vŸ¹çª/ÏŸñlü(ËGû­Öý× [v¼û{Æ(D»#ÌèËû|ÿùã÷?"6럶ý»ë|:ôŸ ÿŠØÐ]…=ض†È\½þc”:"èyÊÛ\¬:Hˆ à;îM1²ÎɸÕµ0\‘ž'C¨ï˜°Ôêd4ô§™7½#Šºe É8éÂ唪 ˳3šñS{7:#Y?r‚RzPÃçƒ1²#Ö`,7Ngº6ïÏ8b Šƒ—˜åÔŽ‡@ Î{,=IÁì“ÊÜ<è…âv<‰ÖWFå gÎÈTI9Ö팷ՠà)œ6ÙJ#E÷¢Ïªu­é±­„ºi_­²?F„*.uL‚ÒÆ^8¿'âAÅÂæ:Šb?&ÏÁgÙÐ8ìŒÈßA9í³7 ^Ó1ÈCil#ñνÊ€¾^“ر*å<ŸÏîÊK¿/¹‘Ô$÷Œà ¼mÃ@ø>'#Ü6#jXÉg1…qs®F $à>4¨pj£_±Ï“EáüïàñÖ§\ìý¾[ð²þ¤Ó†3ž­oêeï~é·O^ùä®Ç¤Æ¥ËCéôçÅÝCP´ŽÆÔ“ê`ûˆ7#y3"*¶xîBŠßžmj Ñy¿©ç<”›®áÛÆ¡1îì×Dê¯zšXàŒ@õ¡ëÆr¬Ë@©ôtÔ¡2zCì^cʤÜVyO–Ià~èqFÍrÐ'÷qÇÙ Üc{¹b‰…½¨§EáŒÝGã±ÕáÂt×VÛ<^œÅ~JÝÕZðèøê¼dt‚ë˜;A7Ë~zÚ{XWôý'У¨Ø"xå]â«K»|òˆ÷7)e×F–ÆÛ‡Òuèà`õÔ ß&á¢Ylé>öºXvã“ÉŽ+€ÌÔnn+ â[˜PÙ|‚Â&];1B²ï”ÜyËô¸Šê÷MzÔK¸Ç o`ý°bb;º¡YåÒuÚK]2žJÚ¹ˆKÚÏgcÃ6_§y„Àû ‚Ñ3VÜŒügî`ÀîÂ¥ƒIŽØÿb4²ªÞ{ŒÜ{s)»"q¡a0y‹1åc—‹Ý·É3 N:nŠÁéÍAJ%Ïóo]be[o½sÊ¿»¦.÷¹>cÁ;pÅ‚/Ý„¹»> QcÊs¼ó}Ù Ü:œÛeº\ÜWÙâ™(;c ŒÎˆ+"q áîœdãÈ,œÐã$ú åüî¦ ±ä‹*—BÊ­ }—ÌB_æYÒ¡)èx¦îÝtM88áC¼ªÊ:žñ(æ||b!qiÚ8¸\ˆ[¼·(—Boj[؈ÿ<Ùq+&|Ì0ñ=ÜŠ,\r ŘqhÙÊo€³y±AŠß žáf1(§¢{Æ0P /u6»|åîqܙ駢¿ÇŽç¥1½?ŸïÐUéÓõ¬2 ‚u-f oäÂs ÄMÌ(|ÿŽýT ë]•€½ÕXÂ)Šƒ’Îh[ýj:…»$þÊ´cóêkÓÚ¶œÛ¦k"þ'ýÐ?<„1âºöo)§‚µuË)•Û6¨èBÊ¥«Þ‡¾ÖYyƒÆK턱©UÄŠ¸ ¨;coìw@Œ½it>_ïÔV#¿Ä‰H[:þdý=sš<åÌ.±(tø…\³q3;FŠMõ‚`ÕE›ìœèØûòàÁum^©:) @ƒ8k ÿ?ßAàñþ±àéu1ÿî±J'¸çï<à¢VÊîuƒ'£½$ìõƱb€½#ó ö°Hô$°÷dâj6ÁÞT½Ÿ±^o\* ¬×Ãú özÓ=Á^7TJ´GÊ3ÚsCh¯)%Úë†/ ÷º]É(×Á•±^/ÖsßX¯ ˜$Ôcd¾ëõÂ%ÃÀz½ès&ÖëšoÖëêëõÂeÄÀz]kÕõúÎ.“Xo°ëÑÉŒõ0Vý ëu­§ÖëìVêaæ°Ôë$Ô;n}Ò„zð[+а^߸ç4°V%ÄN{ñè<{x¯Çoa´W¼\J´Wê¦oj´‡õm'Œ$Ú{ú@b;¢=…~˜ÐönnfÚÛ±*aá—Ý9jdž{þNp>F¹!¸ß½€jS°«»±]î…S:ŽoD|(•c«ßó!7,®_ñ=Ÿ¿ñ=•¶iÐâcLj¢'"¾§Qm)Òwæ… ºDsD|OãlZñ]û÷®}×@j¸wm6 ÷N®|õ00n¢ëá)¢°„s‰õ±·q±4IôˆáÑ¿hÍ#¬6rY!¸½‚+.À½Ø}ã÷Ü‹ö~2 _„ØåŠšˆÏþô^ñEóâÂIˆ/\ â ?ÝÔNˆ~jë‚ø6îç½ÄG¢‡ðßÎGÔ¯ñ…Ì%ÐoYlj}xI.@'ЇÇèN Œh˜¯\U•1ÞárkÐWKSI}œ\ôU:þ| ~1$G¨¯^· ‰Q.Ò³5õáœËJ£>\é"¨OgŸ¯õµÖÕ’ŒúptE}ËÖ×úrFLÔ3âû0ØqE#Ø×âJ×ë@}€\<õ¡¤¾ >ÜhÌ%Ô×põK8°¡Y™I¨H„[¡ÚuCƒ>|«¾€¾zJ×c†jð(Ї Å—(z¸{wóô!”¤4èÃó&} >´k}xzRЇL ú*œ// /HNA<‚>…2{ ’½Ó UFúà†£¡AžµÞ èCL4Ö•A_ÝÜN úðø„ûV}ð‡ÆÁΨ‡¦œ õ±YŽPxˆŒúJ|¥×úêæfkÐ ¿ŽA¶%…úðDõZ@Â*rÉoЇFÅšè«\›½ÐWk}èÁs ú*¯Î¿Ї}SAE>´NNa>¼Ée ÐW[:¾hÏÌ"Ї&Ï)Ç ï]ùiŒú*|G¨¯ò]Çë@}ÆcÔïCC£¾J¿©¯õáó êSœÊ×úÐNb-¨M’{{F}8.õ¡r+Ǩ¹ºp ŸQ–›[Ó‰úPã¬*Ã>4%~þZ6µ~Ã>ô™ÊÂ/¿ÄêÚÉ1î«ÍÐK¸vr‡Í¸/^/¸b8o÷¡?°U÷¡¹Õ÷á»sÞ1îCËáÜ.ÜALá¾xýKÁÂ}h´ÓÀïiNLõá9Ú¹ >´k!:¡>´0F}•ãÁë@}QëŒú@`³5êCãbÕõA;~£>D¿¥ÙF}8z¸|Fk„‰3À»Ø…¾Ã ÞuÙ奜DyÏA$h”—¥'Ê»´F0ïÒ¬7`Þep‘0o”n˜w‡†y×aÀf˜—V$Ì{ƒñ.íY&Æ»š€Wb¼¡¯1Þex”oˆ1Æ»òÜÒ /µK—Ú%ÈÃé y òAÞåÃÍyC²@^gÑFx½ŸÌ áaÛ¿./÷­áÅåea¾@xðÖ ]„ððʃµk„‡}âJè½¹™a„‡—dÜ…0ÂÃ3x©,„‡õÊ"ÂS0ï×q W/–| ‡ÁŽ#­Îô0fªéHKWNC>ÒƒOcN1>ÒÃÅNC>Ò‹ã£åHKô" ôpÓ'>Òƒ·Aûà…kE²â…ÃÓ:C¼ð ʑծþw¸\ áDyô×KÁDyá¶Î'zO.¯©}¢·sJôqÞÓ8ŒÎtœ íöqØéøŽz¥v­Câ@Ô¸¤ð^9yx›Gzr”Á#=,×u€§#=¸E¹g€KÜÅàaÍyÖEQðâá%% àa™Xçv=«–#€wì·Ï(ðpû¬.çh]gxx}óJÀ}ŒË{!¼Þ<#áa±"¼~ooÞ‰¥$s áaž!J0ÂÃ…¡K!¼ó¸,GKÕÂÃ|°žë]Û¡ÓA¼«ÃKA¼«äâak€jˆnvâi`ïjÚ Jˆw=í@§b„x¸º'|$ŒÁËÁÞµm‚†x×Ö[ ñ°J à4ÄÃmGŸããtqú:@¶@¸*2È;¯* òÎî݃<øn`Eäaî>‡ù‚…ñ°ÈÚ„úˆñ°¶8…èˆñpø˜1Þ¹ß]ŒñÎÄ,Æxð²´/¯?-šUnŒ‡µ“0|áè(M¯_›z¨0î˜R â!7< ñЕG¯_>›4ÄÃålR†xz¤þ: VÑ+ÄëW5ºÄëX ðO<t„x è4P/|@ âÂ%C¼ó™—/ôu¹šòé©!^øõ!®"Äë5Oèñ:ïv¿ˆ‡Ck޵†x½y/Ò¯ûNKB<cÑãáÕÎþâeIqƒ4Æ’âjß'ßt„xd÷ñâQl„ðú¦iʯïyr%€‡§ ððÿµ<¼ ÆÀƒ<àÁ›†èððþ³,Çzñ”'txÇ]ŒÌð !g"<<7:uŠ·ëaiᡨñÌd_5¾Ã‰¿l¾ëÏ]Þ D*x×·<ó$¼ÃM‚swpRxÊ ïâã“@t×nðu »øèÌ$t‡[ÂXDwQ»Ì$tçƒ*Iè®—]Û§FwxùÃqß<ܤ3Àë¹â1Àë9oàá¢ûªxTú¥7ßÞÉ0ÀC5÷åXVqÅc€'­“B€·<ÕûÝûí=.X=¢ßÿ¯çï?¼{ÐÖÿ÷Öëý=à-þ}ú/Nün^ížîY‹òLA×XV©w:Ÿ¶¹–‚£–û=ÖÛ×óﳦ‡p?™.Kûí$—T+^õÝÕ‡tØ/±­÷”›QÕŠ®Ô8ñÅ)G^¨8½e.¢U ³']*hÅqiæ:I9'-sa·Æ¼«RÃC":«xïÍL¼‰Pq¿>MuV<ÃQ¸@à•¡:Ñ»+Þß:SW<í‚t¬õmN'Óg˜I§ö~ì"þ¡»BÅuæR«‡C† u€ˆ¹vöøŠ‹<}¶lL^Ê’Ec†Ów¸ù8ý<6ñ U…G‚~M=6"QÖx[yJ¹ÛÕ¨@)S.梿!P°¯£jŠ­ýKÕ](§LJX o»[›ëÃçy°ÅPñ¶Ž™\¹=n6K§^dÊF1g¬Û£‰fHAƒc%ƒ*·QágqqˆŠö¬*fäX¯m’‚­šð(‰/•{î•«³¢eUÅZ)Pï¹sÍT±„Ž\M%êY±OÐ y€•OúÄ<(çÁʱÄ“‘“”Së–‹•wZ‘{yV±L瘩3ö>ÉIÁ0§ò½[£œ“OÔa/¿!×Ùn® +|¯ƒ¼Ò¨_ ,åb¦XV,Ž+ŸK²`¬ro=æ£r×~dÔ‹lź<0†ök†äSËꎄG†®>>ÍelÅÑ&V’gݹuòPè\FW ô¼‚š¸˜KNãà”Õ›CN׿OÅQ+sn†>¹ük3ß³ª®ÈN ]âÐâ!¯®û`&¸+u*/ uBôP¸7O÷ˆ{—ãÛ¦{ëƒ~i‚¯Ñšë„Ú*&çbç¸yôO”ãY˜«ÔŠˆj»_MRÃŽââcˆrF®³é^xEœµhÕ×wÔ¸_ÌÓ<€"Zû¡‡' ±+y´îªó „AI@¹éeí¦Qá;\™¢ÙDU5ÜŽLûÁÕPæ 3±ödâ¹ZXmØ•!ÜÑq~îL̸Ñ)¶dè6ïfwo›Þ£ùU–¢Òå`.ùUƾéNÊAWÍgmÒåàvåâá“êí& ï©…Ñ7m¢ÊÁå`Ãmè® ëÌ…ê{'X‹r2×V¤ n¡ÓLMÊ-€»ÆÒCþ¨P}ìXáÁFÕÇyç€Ш­ÎÞˆc‹M×Üù½à(G> 5”Ùx}þbžãÖážæÀŸ4§.‘Ÿ,èÜès¹i„w† ©šà¾) ].ò\§ž 4MyÇ­°#ðš Ê_áÅq Œ?¿n8t9×ÇÊ5(ãeï³dÀùÁ•”ÁõLÌgDa%&eâ*-/WR&®7ºÎÚÿ›^‡/aÜóû“DZ sñÅñ‰NÝøâXô6Ñçdzñ ©0œiàªÆ‡ÄÂROz5!afÁímáefÂþê9ó0³¨ô‰gÒç/}fŒ‹ÛpèÂÏÒ;¾Y|' íæ·‰}ÍöÒ'úõæ‘qwêõßá‘qÅeôÖñÈøw/ïÿþ×ïüúéõãû?|úá‡÷¿ùøåË7á`ä®/?}ùý7¡ÝŸØãæö´Ú?ó7Žˆ›I€£°(c~–ü/ÛñùsÛYÙÅc[«žœh¦n*Ê_a[«áÔf›ÇSÞnkývÅ=m>èžuÈüþ^±AäöŒtQmÿíÓýòñ›ocô¾ûK©ÿù›oquà©·—¿ùòñŸ>|ýôßÔ¨Èö’œíå—_¿üðý‡¿€r¾üþEõû,¦¢ÎžµÆõúúñ‡¯|…¾ê÷ÌäÏ`<¿{y*‘E\ÇË÷?þÁå¬âÿôß`¦x&—ï¿|úþÇ÷ϯ?}¥6®åŸÒhÃmÒS}ùôÇ¿ûM•žzž¿¥Ò—¿üúúõÓ4©¼üðå§Ïü_ÿîËÇQê·8<œýí…ûƒv(éŸþÃÇ/üᄟÕðË×'0Ùy½üú ?å³2ÙΗŸ~Ð/÷õHýhKÎIG¼)’?³ž¾ûúÇŸØز/·­ùáן*ýéGÔs\ù«/ÿý¿þ ŠÞ¢üŸ/Ÿ¾Á_ϲä~yÌĸ?jõzæ¾ûåÇo¾Å-ÄsïVô·¿8n]ç.U¿þô[*¾mÿñŠ·žgùåûÏ?¿ê{C-î(³ÄÇá/Ï7„üúˆqôä×þ@Ñz,yÖ·FËUýùÓÐäžÏòL}OƒµA³²X=3Ú¢-üãn{´ÅeS(Hu°ïìT7O ýß?}ú‘=«V4…ŠÉ×ùòó7ßbå{?=ð§_¾~üòé§/–w±O<þ<×ÏÙsÑÔøòQòŸþåë÷_¾%ŸVýO)¹ÝÓ7}—û3<Í-ú_ôMÿö›÷fžïùÓׯO9ÿÜ'}¾èw”ú,f û3 ¡`ïã™·¾ÅÇiçameòÿ3{endstream endobj 354 0 obj << /Filter /FlateDecode /Length 4181 >> stream xœ•ZKsÛʱÞk•Ü*g/TÙd˜aÌóHU:ÎI®oä<Ž•Jªì,`¢`“€Ç÷×§3HC–SZà¼zzº¿þº?^晼Ìñ/þß.òËÝÅ’~½Œÿ6‡Ëïn/^ü ŠË«ìåíÝ—RëÌYi —)]\Þ.ÞŠ7u³©Vk¥l–K)†ûñ¥]5»æÙO«Âd¡V”ûãØlD{‡ÏE‚åê_·ÿ‡ »ù²ȴѰøíöBF|¨6CÚ·ëÈ®Ú5ɰV…Î .×R‚¶ 7RѤ&Ï‚°­^4”€”ç ªØ%xQ><ìëj»yØüPuåPÿ´‚ƒ¶NTûÏ+¯a ²ÕÚHxôNÜÞ—Ï’ç4vµx"6dRʨ™ö8¨%ÅèLK¦£@™$ûˆÚ7ù¢ôN<€Ix’È¡]#Èo³ —j”6Ãkͦå?Ô»c‡b)”†ÿuWˆ0"Ìʉv{È•òbÀ# ÔO_¼Ó¦Úô^·]jôIX< èSx+ª©±?vw%6ÿ‚Þs7[•åµ÷$'ˆâم蹘 ‚RuU|EcDwe–hu-ÁM9ÕÍ*¶yfÂä%žªGÑ@¶>IgoØ‚½UhpZ‘]Þ²¼^”øˆzÎÁü¥²¢«wu³ãFйn<9tÙcèhR`Ü ³h‡ûiÖOõp_7i˜@ÚÕmCó8:_Ö_`S›ä1`‡Ý 5YH-Ö3ÙÈSÓ¦Omh¨˜üjµÖ9àûãÀ§ƒ–1;> ¬=š` Oƒàƒ è‹›¶!¶Wó³‡c=¶Ç>-ž¿éÚ~œÂãX¦Ø%è¹ÓµÇf[vuÕÓ‘äFñHÙÓ¡Þn÷ ï3\ÞÞ\Üþæm:œ ‘ˆå¦G8ŒúðøV€: °ü(Åë¸ §4Tñç܉—ÓN£Ò•uAìÛg=·€MÂ4É÷ì‘&h :`Cÿ_Æ-ÓªŠ8váC u‹GLŽF¯7³™ÉªÑ¾ÖasƒžéG&ýÔèÔKgM:5¹${Þ”{|£]Nzä¸4u¿• Pþö-îºö†D¯OÓ3ü両 ~ÒD3øIl5p,ÙÖýÐÕ‰p `»¤E0‚ñé¾Jo`Ìíû¡¬Äin×âC[ÏN @K€>8wC͈r¸#gçADx›1žßÂ΀EX8ÐxnÎÅ[çóy„‚6eU÷?ØÙç@]\D¼9z…Ì>ø ÊfËw:!*H>:߉аGi¼Ig’âòÌæ¹ rœ Ö£ÙaoïÛã.é/÷Uä Î;¡hA„•*á¤R4¶j&E]Iü¬iëþóÜ ~ŽØe ;`ϱ«Ñb[=ÔÌ`p&òil‘aD²\ÂŒhÊÉ•™ )Â6¢¾€ëªKm€Á]Ùô„Y³á×’ižÀš¦aK°[s„Þ2õUèØÔ„ë ÀÕ-ME”#(Ž ávwRð2jò5~Ñâõõ_Ój2 ®ôMœÇÊLëdÒoÅݱÙDOöšD%:¦½!ìe:¦Q”PDçä®p„ 4Ô˜°“'×7/Ó0j€-ƒmmØ,%Ä’‘ÅZyAƒXAvR Ù÷%Ɖп٥±*‘(d=›¡“= ¹¿(ä„Õ |\ȼÄ;ñý«w«ô Þ0ÐócjVÒfÚ'4øç?´ \ÙI5¢Á~Æéà)šIvûûš´WgÂòx&‰ókLÈXWÆ%ÇÅø®Å§1𗳃ª¯wdµ úÙÇøMXÏ3IN‚šÔî ¶7Û+äþžâ~=La¢—\i3ÉV¹Õ\—³ˆrh»1x9±«H4öú˜·½F§…YâÉi xD|Àma± šÙG–¿cD§~9“6Šxýò5š¢ñdFdÀǹÊÈ+èG©tE<ø÷¿Y>øZYp«"ûênH‹€x¿œžß„‰y°F€•.ÑnLRÝSÚ ðò»?\ß¼ù~Aî`'+DW­$!­ód;%?‚Nò’¾~Oì&·V4էعb‹Œìع¯$/¸PHnÀ1€Ý`QÍ[œüª{±.ü<Fù™˜Ò¶<2e«fKØM‚€©ŒÁÑšLé3ä%Ãq*B-ºvŒß³ótš·jâiC›~—‘úLm?Îè±ÞŒ8ô1ޱ‹LóY?°;8+Nb0!Íf^…ÁTŽÒBêØ{¢`Ðù§òýçy¾"žO>HËHN*@ìa°‘9•BÞMÉn"xÔ "ôœi.kt€Èã¾¥hbGÓ]Ç¢ ®‚ˆŠ&%T4AÓ6’£°É9y™qlºü¢ÙtY\6]𔲭Óµ2²öµ´Efüh%á Ô)X>jÍFeF†ðß™³¦5øÒA'P-*? ™2YçUì1Ÿ x¯wr^XÊšG§³*s&Œ'{…ö’˜Îö¥aq/YËïþü÷››…‰µ…$aì—qx*©á`8^ØdA‡[¼Í!ª Ìa s‚Ò²ÂÍðNTÙ.C•Ì<¯é‚Âc•øæz"ÐoÞ­®& سP4àk£°Å$2ÏwÇ.å q/³þöôDÓŒË'ºp\F©S‚þ¨ÿ@,T§'«5—)°J°ßWû±F‰ x‡@dSsþj¶iÏNŸ·p´}–$Ö—,Lj$†÷ø#ňLb”P¨qÃQBz Æã‹•;ññämÇ4™nÚø Þu½ ”ÿk8"ž‰»_¿a˜Êú%÷ðc;*%‹k8Ü7ŒS'° $§’Û[­þ……)Ï@Uå+ILJ‡¨' "mÇÅ‚œSåÔ‰4§Ìh¨ºf¼ ³ƒrÎ}hw9ƒj?”XGZŽå¹†`«|â;ÜÃâ%µ:/-žê/ÓF ysý×ë—Zâà¥fªèÍŠº+ûá*[žaiâÔ™Ë# $lx“Òx°~Øé¸=2L¥ÉÝÐP3é) ýZïZÄVÂGksñê.õõ½¤2L{L¿ÚÓ”§iÇ´ùzn(»¡@·€~êkè¼ÚŽ ¹çˆ!º[Ü~>¿±Ájžöç¨?gÌTÞ¦«P‰êøH <ãŸáJb›žéƒ?´0¢áfÔ&ôœ4É d"lS}2õÿýÚE²« tɱXý—7‹G‘Yïf•«$0ÕŸšsüãxo€?Mtaë±RÀÉIu/ºñ‚Ý‚r@5#—Àcr\A˜©h~,‰–I}‚½’ë–õ8—Ǧ©ð‚ádt¿ø {Qj.½ß/×ý\æÜW¶‹›¥­å|ùþHE/ÒF^÷iQ3fAŠ®ÍÏÍoŽF˜÷i¾ w\&Úø >F9ÛÛÒµ¸Æä:+ÞÄsûxÔTCÐâ&²d´JcŠ)SWxË%iFÿ¸~ýûÇP֞ȗØÛK*‰'^GÒFÂ&—E2aù6øÛE`†”Çå ­~a92ÃÃo_¼Øte“u뇮ýP­¤Ø YÛí^lÛÍ‹CÙxõ/~X—ÛCÝd÷Ãa¿”H¯ „EeœÞF:yÓF!Eû1ÖR­LÊ‚QŒh9½ˆ¾k¬,V{ÚœcÒð³ñ’ÿföõC ¦„A\s@ýy†_W–îYˆ¤šYew¤Ö±V[v»cIµoZñ4¡Æ`Á‚€¤íþxþÕÇÝ\LHw+–oòù+8z%²Oå;ó€1ºù'XŽ/Æi›êùГ¿™éã^^Êþc|³Š ,¦|}&˜ýKeŒTeÜŒŸëÜc’Òð÷<’00öÄ[!Dì}ÝßÇ߀²¤²×ò6ã æ–‡’ÓRè‰Ú—XNâòP€˜€ÕG¦Rôü#þ\¨’‰c=ûþê´»–\… ËůÊ OtïÄü›–*É܆uu¹óX°¯vñ;&`7ßoñöNOÆ[¯ÇïÕ(üp•Ê éŸŠ%¾¸¤ ¼f¨û„ŒˆðçÈx +ÚÍ`%¼&ûÚõñæ€@-œ×k{n!VÆ×Ç)[?¤b„r‚R3£MÊb 'øežyЇåùé—…I¬•ÿãK™„këëG¬%¥ï§OeÈR‹Mß×Ä7J•’è6qûx}€vêή&Æïù+Ÿ‘ñ_MUùˆÔ%én¿é‹Wš4Z?:»aê(uÀ¾¯‡rª÷|æAz‹= ÝlFH»úßñØýa,‹÷C ž<¿æ(¾ãê2@A½0ãûÛ‹¿Áߘgµ5endstream endobj 355 0 obj << /Filter /FlateDecode /Length 3326 >> stream xœ•ZÝÛÆ¿Ç~J)Ь‹â~p¹Lч‹c§®ÆµU E\^qz{íÿÙ®¿]_­ÞŠìºH -ôõzwåfðk.e’ks­³<2»^®~be³],eQ$i*YÕ,DÎ~†¿`rΙíúªmz`’¢0ì=;–ÝPmNuÙÕŸüD¥X»[üsýgظPñÆ2‡e l¾ÞÂV¯Ë4Q)7…rƒÏ¤„ òBaðûE²XjÅ“Âö²ñ"˜œ4V͹aí aØ—. UHÁl8OÁ6eo{ÿÈ 6ìÇoŠU‡c×.„†E³ñÌYÁìÁ6ô`²Œ áèÖ!TšâÞìv±„!)OÇípHÙ“–\e(öõ’ƒøYÆÝ‰@ew0XhEKÀ`ø-a"f›][o黯†½×¦Ècá&^™ìfýúæÝbýïK- “ä¹ Jt{(¶i`7»õ»óœ -þIᵤÚÚ]yª‡°[“ƒ®ráx;³9(V§\‡Ý몱e¸¾³·]éNÙµ§¾;c cŸ8å ¥“Ê å=£T=y£@¿âÂ[4Vpt0²a÷d½"7Ì‚%gYd‰ÉMñyMf©5‰a"¤vvî6n·\±}5ØÍpê¬ÿl2ÖQ.t ôÉ\É6Õo7nÊ]W †®²ãQrxõÁ9]ªaâŒÐ\§‰É‚Ð?¼z=#2™”Ìý˜]Ûù1gë¨D˜`Ä—Í`ë™…–’çI¦õ™Øüz<Ñ£Wþl7p¶™¥JxÁ?'X®Âßý}þ|Y*Gˆ8õ§²FF&©Ô¬ß·‹à÷þuÜ2N]ƒE§4-‚íJ0%†?ØNé YÞš0µÐ²`Oad!„†}{ºÛû•Šü|Ùmõ…íl³ñ¯Ð¤UïE@óÚÞcC^$\ª ïF,‚•C!%ÀýDŠø‚¤1F¡–RJzkÿƒþ•f\iðÈñ¶OÝGòÞÎ:‘J2¡„€ÝóDò¢p»ï‡áøÍjuŸTè ÀÅ ¡p °c»êÛÝpø±ÄÜž6C¿*ûC»lÊ•mîVBk“™EŠzà’%ûá°˜Á÷åüæ»p&è¢B9A1åõ]g€&L6is¨i©G×{ n0#äcžŠí­w 6é&)j¢ ?¬ùä¬! Ö;V›²‹ð3œj:ØþPvâýÀ×”—©c½ïÀ }!$³eÿÉ=¥Š³~°ÇÞ¤]öýéP5wàJd4ò3 xH3Ðì©ë-}ÔôâÓäü'¿,h|_Ž€4E‡ ß  ygËí'¿nF«jÌ1Nîm¦rɲ¹}GœÔÀ6–!_ÂêûghÓܰÜ/‘Bò$!ìAø.…AOfV1‰å°_–C]‚A½…_ìAc žzg“ÆsÞÍs€9‘0~æ` ±¨÷$(ïÊ ŽYd£[±4‚#ZÑÁ~˜ê“"øÅ¥WÄnƒmp8õ -Jˆ€U5¤Ó(bö³(ù‘‹2ÃÝñÁ ç=–.!¦ö>,24',_ÞE"íºöࣻÐ^£ÞçḉFH4‰Ö©ÇŽH¼Š³çÛj@†pì6«J—*`2D'î†H]v=N‘‚Bøñ8LØ’Ñìœè#ÐZ …õîεêÜÍiGp©ÌS,öæÕ÷ÿzýòÛ9$#b2„*ŠRÇ'àGgu¹±ÁÌ ìv‘† !‘~3/ñßëõë«õ×?Mr-t‰´üf”–ÖyfØëÕ~5´+Š£fo?ƒ³e]—`Ùñ›ÅH³7·5ÒKZ“gð‰¢f.6H4 %^´,\^VÎ9i>0øÒyGÊ«h¿GäåH¢'šA|ÜË©Øý¾|NȀƕ˜‘Fg ×âs “˜”ÞÜZºý:»!çÝ"¨“Ù•Ë’J"eQ!º¡V(ò.ŸràLÞÿ±¢xÏÞÍS®À‚âsè)¡PËÄXG¼}~óÝÏ„µ°Û gE "­—Eƒ <  e ¶m×`HiÜ»êYÒ¥ßeV$ÒúõE¦ îš¡.t²³:$àpkI ÌFõTðC½p‰eŽ_ JÍ>äR0¶u]³P3D]3ŒñÐ15ß1@—Ò<¼òÏ Kå|&ùÔ¶t½ð¨H÷¸ë°©ý"ê€v&„‘IG^;% Î:ɱбÁDÆw6~Ï)©°7 IýPHú–¿uõ_Ï^€áJ.ߦØt/„6¡MËã8ÔšFõ A cTŽ9=ìã‡.~°ñC?lã‡ß :ir™7;ê»TÞ´ f²¶ñJu®Z/ëÎ÷¥+/j€„Oc À•Ž ªƒ…Åûi÷ÌK–ëØ#R@39V »5žEƒÉ 7¼þ ù YŒ®ñ›c7JûÁéYcM‰¨ïþlÀKd>#Ô\‡ÊÝÍq"tAx3¶žºvÓ±ƒô¿ñ!µ%£P4—÷Òå&Ðï´`»`ÿ"¸½§ÿ,”ïMÐ:9Uc¢ÀjÌž“±h ì\N?ñ*elflOÛ­ÀÀýé@­Ö±©ƒã·–ò‚äl½§>)ìî‚´#ÄÝ÷“8¾PwÇAVçdâÑÍÓ9jCj3¡£ÇÞ¬dŸË0ò¢ä&ŠÙmÉi‘Z´îÕ®Ñ+ úrëx—È‘¡Œ­³ÁÃ3ª†„uƒ/§z¨ 8 où¹"7¶ïÛ®J¸)9>=h扡‡3à´ÛeŒ['‚n¿o,C9LKàõ®µ…L;±™ÛfWnÂì¬ ÂI d†4õ?#Zž8vˆW>κntÁÜï‚ÒúÅ="î¼½³µç¯ 8ðÔnmFwÂrpäŠúíR§äûÛõ\ñ#H9£H¿MŠ—dÛóìP:¶0ñ¶±›âº5Š úàˆ”>h<¯çTHû=}#ìIÓ§ÛÎ3 ‚V •QÊ+éîˆ*F}–KÛºxSÔ]=´k¸™œ“—†R3¾¥»=*ŠÀ{›0µÛÛñî ŠÕýô©.o} ú‚²þ)¦›ÁžËQ¹ÑQWKPsmôé'NØçM¢"¾ç\ãW»KA:½hÚÁ= ˜Ø‹ÂŒn«QŸîT í©÷5ÔIß4É(3 ´=™¥šbàsìê¨1“NH•Å¢> i`Ýà:jóˆñ7­Tûhö7­RÓÝö‰Ñ6xŒE`Æu¤K8Z˜¢cL·ö~¾ÆPÃä%YSŽW÷w!éÄfîüàCÞòŒrÌþL¾¦mžUãÛÔ§`ðøª¬ß/FP¹üöÉèÊ%/P)µžçƒÚ²8JwËR5¾Ç|~ÃzÏ ýQ1­F™h—'ýx†¨UgûI®Yt)› ³P¿ ǣNjº &3ì'¢,G=äìþÄ—þ8xƒ £v#¡þS =øùúê¯ðçÓ»> stream xœ¥ZKsܸ¾ë˜*W.IÕ1) —x\•ƒ,{½òÊ^GRöQöVŠš¡4\sÈY’cÅùí9¤»ð1¢½É¦|ðš@÷×_ ê×EñEŒÿüÿëÝI¼¸?ùõ„ÓÝ…ÿo½[<»9ùêJ$ Y-ôâæîÄÍà ®’Ȫt¡“42YÜìNÞ1-WÊÂ`ËÙÙR¶Ù,¾y…6Ò‘ ©"vn6'lõüíÙÕÙåå‹ËåÍ/ǯK’HsÁýЮöCÆÖ¸ˆx wÜ·ß¾üÇù?~}yöòzÆžÖQœÆÒ ~Çê»åJJ 6¬mÖ_½Î>,E 3†å—‰‚‰Ò²¬ii+®Mĵ\¬8˜ÃdDŒvýÓÒÈ(Ž­bõa¹:†»l—/à.OØ'¼)¢XKVåù¯8<1¸5÷„³lÞk<¼¶ï¶Mžmfö¨T¤¤N¿è3©Äª‘Ï./žÍùkbËù‹VÌ»–+üm•bÙ÷! æàA Ô yQ¢8z𦦠¹ºn‚™„=l³âœ¼’7ÞÓVF‰EOsxp÷þ¢…xqð0ä?ô »Vì#ó”œL7¥†ŸNXˆGãoÇ‚­ëݾ(óf°VTø`,o“ch£uÝ4ùº+Ã+”aeQ}ðW)<Ç]Â&cÅ6ù0ï¡è¶sA©ŠDœ„@ÜPLÛ¹@ðÈRýÀG¬$8 PµX ð7ÎE7[|-ÞGß÷÷yÛ 7ŠÝ¾©Î>¡Úå¹Ê$ ãtnàƒ±Õ}Öde™—áŽDCÞÍyÓuuŠ$Y¨é6µ“Aá ÉÔr›7EVÒl…Kt§‡¬¾…§#E;ÊÃö³R1çl•ëC™uEunZvvy æ­`mOÛ®X·é8å†bZc+0W¬iF ¶%¬É]®ÀT"-šŠ&÷jE(LÈ ïpN yl´œªÑà42i’öƒß3mcnøŒe ƒ•ap…c¹5ÊzËV,`Å©4D¤°và™…>UFyæÂ)Iknp  É¤Æ.n.OnþòèéÑR4xn!"•ÊØSáûåÑ‚'6@:#òíŠ]>Äè®næÜ§bdªÉòkú…=B•U|¼IeSÎÓ™5Y ·Éb2eßä›bÝm‰æÌ…v%cGªÀV†¤ç@€£ºB²“F„‘ìdª‰£,%Ò ÑSXÒM€ÚÙåk¼P4â=È]v(;t¬¡G%{q~ó †¨BáuP›ævÕ-ëm±ß˜Ã€ßŒÓœŒfNh,ùb2…üIëÒŽc¨ K–uao’•yFÔé—ŸU~¸=Tz$Œð¿wÙ}Ut"*ÿàÛ¬¹ÿŒ# d¿¿êGŒ¡P“KŠªk4ƒýÙUšé:$¼öÿZ´Œcâ–{Ïh4 å/ yg=l)&R’W]! €ã .!‚Ǹĉ±œˆÀ¢Úº`F™ å|Hz¡þ\!è"Mžýðß³¶0t4Ü罕Âr¦üô¥x_³!°œ¶Ùn_ú‚h©¾Þá3'ÊÈ—8¥Ñ~p[ÝvP¡‘€œ•gy'Ä' ×÷ únÈ@ä.Á <}Yøe¨ìk’qO"ÅE_î²@²<[“ŒaçÛ°EóhsYÂ#-xè8îf™5‹6§¹VùëQ„U¤S õeá?ú=rcf–/ :9Žð½[È‘m–0kºŽ}&]9—졦ÛX>ôâ Z‰±½üøë£D>ö¿H¹*$SÂH»¬lk_7a¬NÕüXmq[æØIAªCðÙ7uŸ·½²Ï?íYC2QÈt¹Ï][´kPãÁ¨|³:ì†D’pz6† AYb‰nóu]m¼ƒz±Í‡§®épý]™»–GcµÎjêÖï×e>wúJÆ&¼^RfŠv(¶ÐDûàTu7°K{؇}HH³¦£^Ç?œö:x3âˆõ• ?Йádºç=Ô #cÚ3Z¤dC[y¿ŸéR`{ ~ö˜„ØjˆºBl¦ÖÑ{³³/íÔ±TPõå!í¢„ƒºÂ… ²u€Î—Ób}Ê»HR8¬Áß jC.Ý'Î 3Öã'ír–P}ƒ@n=8ßñŸ—+ aêÎ_e‡î&¥Š~vÛd;×GqìíþåÅP&(æÂ*-ƒ/5ɹ³(<ÒìºËïU5xº'Äo\›ÁÁMhýv™`zAÎÐÌ•šЄÞO‘äš@ðzÜ d×Ô°õ2@ŠØB~†iš}½$!­Þ¡Z¯|keèlÂg-âÔÉvWiÆu¶pÅ©3è‹Mô´- áD *ØK*ñ&ïÍoòà°ßºA’Î>(c¼é/,ŸfiùÐÅÞ,Ië”e@!³!ÒDºw(± 'Ü?Ç Nò‚R×+ßäx‘Òu';<Æ\ü0^Ø©s–Å”á,ùƧä¦v% ~ú¦|"DöMá2Êòé lxì¬(ººGVÀŽ‚VÓíɼ'a˜ÞïÅ)ÿ `Ñ1ÕŠ©È9!æ´´Oºwb„þËûG Ïš¼ØedÑ¥öUÿT°oüoCo…<-òM˜]Ñ8AËü®l¡+òñuh@~>²~ 9˜Ïf &‰¤/\ç¼¶ø“‡ ¼ƒ¤²AÊûá@/=ŠÚ•Ë0”îÈÈû¦7†\OÖ’”Â6ào@u’t©;°áQ¹³¦–I—¼iz ô¿ qúy–—»ºrô#@ɰv~v:e§2i%e¥}”å(Êßâ2(&Šo³|Ýø;P)(î±`ýД}߇9o6E•—eOM¢éÜëYÖw…ÃQ\Þ(ÜœüÏÁyM@¾˜Jee˜" +n‹{ÄLc“ T6¬½‘0JÏ"˜'Ù÷ãÐ_‡º‡€c’ìz]äÕÚTG>ZqÕSÍi(±Ò8$±aoê(Ô[ÍäS‘Ê'\Æ*Œ†ÎƒçøØYÐw2µÓCçwj:L;GÛÜ•÷ó|[ì]Ú X}1<¼è ö2¯¡A¥qÖ×/|TwE£Çs_¯Ï%µFþdoÝŸñm£?óÅØ;£ àõÊ!ž´¾ÕnrˆZ:©4 ¤,y¡Í³fÝ粤V$¶Þ‡º¤ómŠv}€¼¥ ñ¨ûëjÐtØHÍ… hž“ÕWõ¡©& ]?ïQ^†çÚ³%–©Ûž=ªð<¼ “?9ãNŒÎZÐ8§Ë…#²¹ C{¯ÃAò©?õž•o+ŸZ™<±:ž¢ÍÌÖƒ€¶äÚÄ€¶˜4íùàÅð4…ãÅhÜE?]Ž‘—P’xô z‘CŸ;w[ð‡Yw„?Èúyì¹èC³#Y€¡;¡éÿ1†vu„¿öà/YÐìJëmòèë¨c€}_²¦Â|žG@¤Ì‰2Oe,ŸH1æ Pø‚ ùQE×£>GoÊ”Rb(ãý!†õ¶Š¼à…w¾É ÂÒMbUÞõþº3FdJë#V/ëÆ×`÷ª”Z:|—õ¾]QúPÉ~³*@U’®*„¸ªÍðEÿ.À-—½ ݉´ìƒ¿­¬s Ñw,؆ªì ®È#/sðÏÆMEŒÞ e±ÍMM#-%ƒÃ8!V•´Ûá¬*  W(ÛÐÃ>óuW7dƒZ”v5~R›ÓBðb1œ½œ‘nÁdÛ|Ì*/‰tÐ%«0úè;–gãNxÞŒâ(pæ¤c)EЀ_ï@ïûÓDèvÞ6®A‘ãVe=FÐnüúSÛå»YÙÄ¡wj”ˆgÔƒ€¯ËƒûªÐõ{fß/ÃHÈû=´Ÿ­{ŽÑ©}¢jCÃCöR(*ë[e˾ÍwÀnUc†½=Ü–ˆXúÆÙ—{ØË)5å㛳0´mçtœ0¯tP“Ôö´ÐìÈiUw&§‹ë½s=(~I•E9Ÿ=ϺlÖÉPë„QcqÊ%Ùzœà:FDîE™ò ¤ö¨vÏ ¦ùO Ü/.ªutêN?0À5|äq3|P÷ß0ß™1WÕ *)×_?Ïv%žÆyKDmñ¡ô#À}ÏIO²Ý¾u”¯¬„ŽÔÏ¢®ÃéYårHóŽô.Ý‚|>ta{0•§9CII’)‹³(×ÅŽ?Š«T²ÕH’>¦§5Ÿ?è&áÎ*ÉŠµ®t™?0øýu—w¨'Ü`h+ðxG ˜5ŸümÍÚ½ºÆñû4}ÆŒ±éÅó,f lbûQxöÔ5‡uwh>ÓlYéðw/ªÅŠÔ†¿=Ý‘§€½ï–<£#)†o} ÆÅS®ùžši± y`ð¸vš[vŒð×_„!vÏ´¨8•”ôЖGÀ¾þúßÐ̸í>ÇùÓ‰ÔåO~ t¸¿høåS0YwEè8».ªm6ïEØ ì9lyD–Ùº?剃1%ΛºÚ=m3FÇèÀ"P—á–n]Wvˆ‘CAË\ÛJY`E#ŸeŸ<Ä¥ÅìÎw¤*âÒŽ¸#Icà >oVß“ç ¼)3ÿÑ“øNZügÑ/œ´x‘m=£8 ñïœ~r}#<ú«œ`‘ÊY)¨r?úë¿_môXÃ$<é_@­Š a©Áÿâæäoðï?¹q·âendstream endobj 357 0 obj << /Filter /FlateDecode /Length 3026 >> stream xœYMsÜ6½ë®ÛÖ–N»˜- M|€n¶âX‘%;++›­rr f ³rBÎXÑþúín$%´)¹Ê$ñÕ@¿~ýóûQžñ£ÿâÿ‹õA~´:øý€Ó×£øßb}ôîúàÍ•ÐG.s…(Ž®oÂ~Ä¥ÌLa m2!õÑõúà+ûÊó_gså »-Ø÷•¯—ýln —åyÁ¾óßf¢ÈœæŠùºÝ¬}3&sN8¶»]Ϭ„+˜/×ÙlÎЉýg;wÉ‹,çìºÍ…ŧ¶¦U,NÅnÛ^LNsõ›r[•ulµŠ-Ëmæä8ç§r>›CW-ů×ç"Ï”ÑGsíZó£ë%ìk[µ ÎRëqv-·’³­ï°LÊãâÔ ^Þ†Ý˶ë¶ßÜù®Z„®Îivå{_v‹mÁ(vwŒV ©Ù»vW/}š Öû|×àš‰8Cçö•ó ÎÁj™ãAIv6yþ~pxWùåºl° ÆÀ±°Ë]½­¾Í´‚=)«VåÖãP f€ËrƒíhUÁ™O“jÖùUçû¿qC]5¾§ÝåÊH,s%§k€œ¶N„¥¬v¬À`)%YÝÞâ3"S²/[€Y?¡á$rõB€ E?»þíY4i0̦µŽãŒpÜÇ¥xÁ>‡hS°v†Æ a’TŒŸðäÎùKUç}‡Ùn’:SN&7Ùä'1ñÓeÑ­5Ûö¾ëJˆNi¡Ñ©‰³v‚OÆådnÙ,c˜ìªŠÖ€iwe·ŒÝàí"K³röe]mïà½À3ƒ0}›fã¬ñ÷ãl‹ºìÓJø·éÙ²¦mztDj÷ðg‚zàa,´FBASE–¾îÑ>^ÎÝ”“CÜ5Õ"Œw· ÎaEÖv[pˆˆûü¯wØHgÅNË®–a]1¢Ç§œýÔ  Ñ$ ˆîú*†_®ØÃÌ<¤áa-ÝUY‡ˆÍ]¡Xµ"Á=cì: xƒ¿«r‚+ؼRŽì{‡Ï:§xüЕërííP´‚ùî& »·4ˆ}[ úô|áý0–È`NôsU×U¹Ž} ҋΗËtdƒØ7.PåpT@ åÚ#?w¶œ½@vpÄþàPÁ6uÛn°™èö¾B‡I§ÉaÊðHÙÄ/ŽmºtÉÂ@†¾ÛÎ{ÄM!)`ÙÍ^ŠHg2…ý§—¼²‹8äQ@Þcù”)¢1å*ÄÒžaRËCYäÉÏÌpî ð?¯›jÓ»‰4û‘ 9fÌZhV`8ÈÝÕªÚ"Ø©„ÛEuÓa ¡K éFîâ1A½45Z›@SDÔHáˆvô L°ƒ5ð läj݇¼4ÇÇaRN|ô!¥¥-¿+"{©èÞGŸÇ™Ð³Ëq‚ (Ð" b¾ñÌLîÖ=cl1´L€^ê‡ó‡Q¬Ü@úZD Rwø¸mÇ‹v½Ù‘ ÃÕ¸ŒÅUªfµ?ái— ^$h·»ŽÄŽr!‘d•C^6l{ç²Â Ç» ÉR*XšÄŽ&Qö!u09äÊmj…h&XiKDûv˜=æ:®´b};C$çÒ°EŽ`OŒpÐtJ=K¦œñ\žpÎÝ!ç2R¥D ÚT^À>¸~–õ«P’ )(RÔU«€ñå²›‰°?G/„ƒù§E&9–н”>¬ž@1´Û r¡½˜*ž_‘tÃÎê R0@äe£x*]9TîI—{ÀšÞi“|rJ-“œVcDÆ€M…„€í@jßhÇ·œ8vLòÐWý^,;Ê)]*‹²Û0 PòËb–Ræq„t¡3Àu[€·¨¬xÊŠ ˆˆÊ´#­8RYAœ©¬à¤v0À¾Í8 ÆáÇ4_TÏ:²-Azdï‰2zöi@¾ê«U“æUq}l$Æ3f£t¾{!1j`ËúÝ&Öcº¾Ù( ÓÇIw‚ø*‚Ap’òD7¯Ê.‘{åÇÉZ:°hQn¡JP°³AAvëþ]ýkx' pÙ¤lr©lBfMƒ€zÃÖr@ Å@hq¬jÂ3.GÆ‚* ¬ÁØ” páëe’yFЉKB,w”nQ£ŠnÄVŒ‘Ër T}?êÆ“,—QH)…”•Ĭìt$'Ðû‰0|(/„IW-‰Ž*Ù¡ad¸:™`áhÀÿ=Fžp¤1z߀–HNÐ…Ú–ÊaÍþ”fŸÀ3¤ˆ WÉ2 ~]ý7‰9> ßá¥ZoÆð´” ÉBl¢ÙúuÂXÈ>„ÆPäQjŽTc¦ùÒŽˆé“mW›}e$Ë\$6ú6jŒ®ML {Aw¦µÜd"ˆRPÿ‘×X·g©¹„Ŭ”Oäo¨)„aÿ¡r¼ÒËA¡« áÅjT;©m’b¨ƒÙ§CgþDuìO k#+ži)òÇ·ñ²Ý ‚ApÒÿx=q!Iú™go6&m¬³ï‘Ï%,ÿ‚3õ ü›hë‹\ }*=€nòŸÐÃôÇ„Yb¼ÇÒµôûŽ ¢$K³¨65ɺ0—¿!³¬|Ûlú‚”´dÙ´ƒgÊÖâ–æýàǦº¥g ÞÕþƒÁËc§7Â…K9mO¸PÅ!o‘ ÄÃzŠ}nèXðY¦r8%(¬’Ô¨ ly}ðOøûoÉ®endstream endobj 358 0 obj << /Filter /FlateDecode /Length 2509 >> stream xœ•XMsܸ½ë®›ª\‚Iyh@Ò7ÙV9¶×‘&ëÚx÷@àn8ä,ɱ­üú¼n%Jé ñAt÷ëׯùÇYšÈ³”þÂÿõî$=Ûœüq"ùéYø·Þ=[<¹Ræ¬LJ«ìÙêÓ‰ß!Ïd–%¹-άÉ•™³Õîäƒø ²ßK]byaÅU²XšÌ`¬Å[W5ø)S]$e)ÞtíBå˜1FŒŽ–Ù$MµXW}ÓùŸe!E½Û7nç°¶HR©°¶klõÇ–ZtŸhœóÞ—ÕaꪧY±ïq½¦¤£Ý0Ä¥Ø-–)PfJÐ"K‹¬¸qÍ__ŠO]¿ømõêD¥‰ÎÍÙRʤ4Fž­n`ë³Ê[IqË#›Káü´Ñ˜Q¢w›¯å+k“±Wªö&,(X7¦­Ù¬?ÁAEªqõB¬-‡çœ¿iž™X{GäZlÛz]5áÔR\¹½·´(D×ñy!ž_ánâåéêê´ÌOٚɊ×'«¿|êñb™e™xáöcÂClTìÙ,Sþn·?Œ®O`ÄõºvíÚñVá¶õgvÂ!\?Ô#ÿ*U ÷ð©iOÅ97±ë#à̱KÇkX!ayÂ×^NQºIÂ¥g€{ž¼‚Já]2ïà,Q­ë®wÿ&¦Fj«„?íÉU6G5n"mYÙ|ìÛÙú®<ꪆ(c8²w`óOJñ®_ TVP|=¯j7‡j㪲ðСu4{±0²ÔZ´Ÿëv[Üv ˈ4GHAùo2Žë5¥Ä0ÖKïPs‚—<\Žb™µD]L¾ƒ3 7ŸLç)ï!ßjzs)þJn˜‡ö&”§ âݘy[:{+…Wkæ–ŸÁamP½8? cOˆY”?°€Ðt-M¾‘âòúÙÛÈ’RdK¸ ¤±LÓåqØ7öi]iˆFš‰«jØV…Ÿ–çBÖ)Gû_IƒÚ·Õ¶¯v@.‘·)¸,^¶Úšê*¯¸võ×yfŒ‡žÙˆ_j˜•ý8Ÿ[¡8 bM%0ËUô»5Ñ}ç]Erý8ЕKBz†ÛC7 •ÅàŸ3v4@{ó¹j×Ć©D6Ñ­sÍþ®éŽ9ê_»s'œ™3îTnÂ[] =„5ÿ“³ ¦þ% žëÛat»án•XŠ©~<&E¡8S|Q´oh; ²˜N“”©Î3¡àT.“\ª>Ý#…_¢‹BžE‘Ä:,‰ÓÉ1âruW°ß‘êx|MàVýÈò W\C-ôj£æW¡Hk}ëz2R“Ïf«æ;Þ×MSW»!®LMÀ1Ïë8ï„»œ6—âm7þç( *è=(´èëÕ–œjSNŸ¨?.–T¦bé ;_(r½±¢¸¯jn½¾b†Cñ ^’À»}Hh¬^LÁá›i"c9+/¾î'4¹¾&=Љ3­5sšc’sí{ÎõËŸÅ—•TSm¦HfÐÑ_îÄÑ/35—8Óz+Þþ2‰©l^Ï$æ¥þ†˜ŠΛ{é Wö•\b_Æé—aœ\eŠá6HkD9z3†E“ò¥ýˆÔ9‰z†Y#pf­øéÏ«6UK2ÃzÊ»¯¶ápmͤ¶SËÁ®ÛO®'Yê‘ù?TðíiGè0™ö^Jáf˜®;ºjP Pdj¿…w¤¥@Õ8¬‰SùVΨ¶®îúæä7qÒpë%z´,`E¼ê}‹ý«ßÐ0ó}„Ž[À‰¨ÜiÌî–ë"/šËi~šE±½+2k7ÞÞ± ¡Ê´¸Ø™¡x“ÏŽ‚ž8ô.ißQ˜5OsmNsSÌ`>GjiÚíc•3¤^S¥Ò“´ëHJ‹x3Mäâ=çTI¤Ð4ÕÈ‹ü…W³U/ûŠ[)f+ôsÍt˜ŽøeÚŸmúéã¬Ôí*N…m× ©=a90ÿ]‰åf%vÖ¨ú³©…|¨bb9ö™Ð„†&JÒ„@íz mYFÕ“TXÎe Ê©òšŒn=¸Æ­ƒ”âA*ZÊn4èÃÖ§¡¬“–íêv²uZapåßýiÔÿkõƒš¯¬LL®#*b9F7ÓM£€LkcwäGŠÛ ø’ W”ÀßÓw8÷¾Î÷ Á2ÔâB ïÖgÍVH±º ¦K=ïˆS¼žÐ\P"Ô^ú³„÷™—?’!QþÞ[3~qZ&¨[ó|!ÕŠÎíA‘±‹•¸ …]Á_>ŽÚÙ)á=ΠoµKb#‚Ÿ„~…è£nfÝÒ‡`áÇ´Ýí¦þETCÄZ lˆÍLxÏ+®À{’C2ìÑÒº8™‹a×ùì–·,ðbU푈Õz3qÛ ÚÅ3 Õå÷«Ê¾‚wè#ÖñãH.Ö‡Þ‡M!NŽŸ‹G#µ#Ç=™&y>5B‘ö'ÒŽ,O"5Xë™ìÿgyRZß²|ì#îS»>Ní ¹-ƒrR©:eìšà Ø?•§FMܯô‚9 «"‚ä AoêõD7Ûªæ¤â¯_¯“8Ä•GW·G½ŠSЫèU&€ Ø€š®‰½da¹ö±“ ¯K¿ùÌ2ͼ =Vï 3ïeM¦Ã'/òÈ ¹âC¼¨³¬å‚¨+!+&Qç•DÜ€ Fª.xM'Zé{¤ofeâEÂѬT¾Ñ*þzcÄóæ>Ÿûç…x¿­wë§6è8Uj†VÐqg†o1#ÚÏ1†AåsÏÀs±Sç«×ç×tÕ‡˜B¬fßã~Ek>v$”ÐÔ7·áí¶«CënÂÍ”xKT}” &Ñ…yÁófã>’Œõ„FØÿ4.bµÿâ;ïLл_Q™#]¶‹È;ã¸úä ®²]VcS É€ì\“ŽÛ¸¤uã“IoË𹀿¹‚TQÑq›> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 360 /ID [<08523f7bafe1379747f1101999c4261a>] >> stream xœí•»/da‡¿ïÌì`Ìň1 V¬EâÑ+THÙdbC#¢r‰NGAƒPI(HˆJ!"¢Ð .‰Ká’Ýb»å8¿Gá˜Ì)žüò~ïí{ßsr£Ç±Æ„á›qd°I& ã&š¾åjï½výÔ—Üuâ2nJW¶Ü-_l&·œ¸Œ›*£/:0§-{Œ˜Þ,Ú.1r&~Y³jÄ”ÃÏÓì±ä.ŠÎ1<äÒ\‘óË8:.¬Š…b°–üxúÄÊ=ñÛZµlÑ žÅïĶÓ[” ¿é§SLÛ@¥VÌsæ‰j%ꘊ3ø—‰A1F'ž}2Ñ~UOýɽ¦Åè·Îçôž‹å^:쥟\Ñç3‚?ž³¯èIbOEïìÁþÁœ>ˆ¡Yt{6ž#Ÿu=ÅØ™Cù=Êo3¡ÿÓ§…ü—mº_¬ç^Á]±)OQcâ=Û¼ü+}3ìÒ™•¥ŠœµðG·NCuÌÞ‚b‡fkÛ®¥3·±ÓƒÉÛJ—¾Aö¸•î­Æ'Æ{µ¤ØUÞ·È2öú_ß©úcæ²ÐR! endstream endobj startxref 1622390 %%EOF tgp/inst/doc/tgp2.R0000644000176200001440000005423414661702175013606 0ustar liggesusers### R code from vignette source 'tgp2.Rnw' ################################################### ### code chunk number 1: tgp2.Rnw:33-35 ################################################### library(tgp) options(width=65) ################################################### ### code chunk number 2: tgp2.Rnw:148-149 ################################################### seed <- 1; set.seed(seed) ## seed zero problematic with null btlm map tree below ################################################### ### code chunk number 3: tgp2.Rnw:214-218 ################################################### fb.train <- fried.bool(500) X <- fb.train[,1:13]; Z <- fb.train$Y fb.test <- fried.bool(1000) XX <- fb.test[,1:13]; ZZ <- fb.test$Ytrue ################################################### ### code chunk number 4: tgp2.Rnw:224-225 ################################################### names(X) ################################################### ### code chunk number 5: tgp2.Rnw:232-235 ################################################### fit1 <- bcart(X=X, Z=Z, XX=XX, verb=0) rmse1 <- sqrt(mean((fit1$ZZ.mean - ZZ)^2)) rmse1 ################################################### ### code chunk number 6: cat-fbcart-mapt ################################################### tgp.trees(fit1, "map") ################################################### ### code chunk number 7: tgp2.Rnw:244-245 ################################################### graphics.off() ################################################### ### code chunk number 8: tgp2.Rnw:259-262 ################################################### fit2 <- btlm(X=X, Z=Z, XX=XX, verb=0) rmse2 <- sqrt(mean((fit2$ZZ.mean - ZZ)^2)) rmse2 ################################################### ### code chunk number 9: cat-fbtlm-mapt ################################################### tgp.trees(fit2, "map") ################################################### ### code chunk number 10: tgp2.Rnw:270-271 ################################################### graphics.off() ################################################### ### code chunk number 11: tgp2.Rnw:305-308 ################################################### fit3 <- btlm(X=X, Z=Z, XX=XX, basemax=10, verb=0) rmse3 <- sqrt(mean((fit3$ZZ.mean - ZZ)^2)) rmse3 ################################################### ### code chunk number 12: cat-fbtlm-mapt ################################################### tgp.trees(fit3, "map") ################################################### ### code chunk number 13: tgp2.Rnw:314-315 ################################################### graphics.off() ################################################### ### code chunk number 14: tgp2.Rnw:337-340 ################################################### fit4 <- btgpllm(X=X, Z=Z, XX=XX, verb=0) rmse4 <- sqrt(mean((fit4$ZZ.mean - ZZ)^2)) rmse4 ################################################### ### code chunk number 15: tgp2.Rnw:345-346 ################################################### fit4$gpcs ################################################### ### code chunk number 16: tgp2.Rnw:357-360 ################################################### fit5 <- btgpllm(X=X, Z=Z, XX=XX, basemax=10, verb=0) rmse5 <- sqrt(mean((fit5$ZZ.mean - ZZ)^2)) rmse5 ################################################### ### code chunk number 17: cat-fb-mapt ################################################### h <- fit1$post$height[which.max(fit1$posts$lpost)] tgp.trees(fit5, "map") ################################################### ### code chunk number 18: tgp2.Rnw:377-378 ################################################### graphics.off() ################################################### ### code chunk number 19: tgp2.Rnw:409-412 ################################################### fit6 <- btgpllm(X=X, Z=Z, XX=XX, basemax=10, splitmin=11, verb=0) rmse6 <- sqrt(mean((fit6$ZZ.mean - ZZ)^2)) rmse6 ################################################### ### code chunk number 20: tgp2.Rnw:448-449 ################################################### seed <- 0; set.seed(seed) ################################################### ### code chunk number 21: tgp2.Rnw:778-779 ################################################### f <- friedman.1.data(250) ################################################### ### code chunk number 22: tgp2.Rnw:785-788 ################################################### Xf <- f[, 1:6] Zf <- f$Y sf <- sens(X=Xf, Z=Zf, nn.lhs=600, model=bgpllm, verb=0) ################################################### ### code chunk number 23: tgp2.Rnw:799-800 ################################################### names(sf$sens) ################################################### ### code chunk number 24: sens-full ################################################### plot(sf, layout="sens", legendloc="topleft") ################################################### ### code chunk number 25: tgp2.Rnw:818-819 ################################################### graphics.off() ################################################### ### code chunk number 26: sens-mains ################################################### par(mar=c(4,2,4,2), mfrow=c(2,3)) plot(sf, layout="sens", maineff=t(1:6)) ################################################### ### code chunk number 27: tgp2.Rnw:846-847 ################################################### graphics.off() ################################################### ### code chunk number 28: sens-indices ################################################### plot(sf, layout="sens", maineff=FALSE) ################################################### ### code chunk number 29: tgp2.Rnw:859-860 ################################################### graphics.off() ################################################### ### code chunk number 30: tgp2.Rnw:910-915 ################################################### X <- airquality[,2:4] Z <- airquality$Ozone rect <- t(apply(X, 2, range, na.rm=TRUE)) mode <- apply(X , 2, mean, na.rm=TRUE) shape <- rep(2,3) ################################################### ### code chunk number 31: sens-udraw ################################################### Udraw <- lhs(300, rect=rect, mode=mode, shape=shape) par(mfrow=c(1,3), mar=c(4,2,4,2)) for(i in 1:3){ hist(Udraw[,i], breaks=10,xlab=names(X)[i], main="",ylab="", border=grey(.9), col=8) } ################################################### ### code chunk number 32: tgp2.Rnw:928-929 ################################################### graphics.off() ################################################### ### code chunk number 33: tgp2.Rnw:941-943 ################################################### s.air <- suppressWarnings(sens(X=X, Z=Z, nn.lhs=300, rect=rect, shape=shape, mode=mode, verb=0)) ################################################### ### code chunk number 34: sens-air1 ################################################### plot(s.air, layout="sens") ################################################### ### code chunk number 35: tgp2.Rnw:950-951 ################################################### graphics.off() ################################################### ### code chunk number 36: tgp2.Rnw:967-970 ################################################### rect[2,] <- c(0,5) mode[2] <- 2 shape[2] <- 2 ################################################### ### code chunk number 37: tgp2.Rnw:974-975 ################################################### sens.p <- suppressWarnings(sens(X=X,Z=Z,nn.lhs=300, model=NULL, rect=rect, shape=shape, mode=mode)) ################################################### ### code chunk number 38: sens-air2 ################################################### s.air2 <- predict(s.air, BTE=c(1,1000,1), sens.p=sens.p, verb=0) plot(s.air2, layout="sens") ################################################### ### code chunk number 39: tgp2.Rnw:982-983 ################################################### graphics.off() ################################################### ### code chunk number 40: tgp2.Rnw:1006-1013 ################################################### X$Temp[X$Temp >70] <- 1 X$Temp[X$Temp >1] <- 0 rect <- t(apply(X, 2, range, na.rm=TRUE)) mode <- apply(X , 2, mean, na.rm=TRUE) shape <- c(2,2,0) s.air <- suppressWarnings(sens(X=X, Z=Z, nn.lhs=300, rect=rect, shape=shape, mode=mode, verb=0, basemax=2)) ################################################### ### code chunk number 41: sens-air3 ################################################### plot(s.air, layout="sens") ################################################### ### code chunk number 42: tgp2.Rnw:1019-1020 ################################################### graphics.off() ################################################### ### code chunk number 43: tgp2.Rnw:1033-1034 ################################################### seed <- 0; set.seed(seed) ################################################### ### code chunk number 44: tgp2.Rnw:1207-1211 ################################################### rosenbrock <- function(x){ x <- matrix(x, ncol=2) 100*(x[,1]^2 - x[,2])^2 + (x[,1] - 1)^2 } ################################################### ### code chunk number 45: tgp2.Rnw:1216-1217 ################################################### rosenbrock(c(1,1)) ################################################### ### code chunk number 46: tgp2.Rnw:1225-1228 ################################################### rect <- cbind(c(-1,-1),c(5,5)) X <- lhs(40, rect) Z <- rosenbrock(X) ################################################### ### code chunk number 47: tgp2.Rnw:1244-1246 ################################################### XX <- lhs(200, rect) rfit <- bgp(X,Z,XX,improv=c(1,10), verb=0) ################################################### ### code chunk number 48: tgp2.Rnw:1254-1255 ################################################### cbind(rfit$improv,XX)[rfit$improv$rank <= 10,] ################################################### ### code chunk number 49: optim-fit1 ################################################### plot(rfit, as="improv") ################################################### ### code chunk number 50: tgp2.Rnw:1269-1270 ################################################### graphics.off() ################################################### ### code chunk number 51: optim-fit2 ################################################### rfit2 <- predict(rfit, XX=XX, BTE=c(1,1000,1), improv=c(5,20), verb=0) plot(rfit2, layout="as", as="improv") ################################################### ### code chunk number 52: tgp2.Rnw:1298-1299 ################################################### graphics.off() ################################################### ### code chunk number 53: tgp2.Rnw:1438-1439 ################################################### f <- function(x) { exp2d.Z(x)$Z } ################################################### ### code chunk number 54: tgp2.Rnw:1453-1456 ################################################### rect <- rbind(c(-2,6), c(-2,6)) X <- lhs(20, rect) Z <- f(X) ################################################### ### code chunk number 55: tgp2.Rnw:1460-1473 ################################################### out <- progress <- NULL for(i in 1:20) { ## get recommendations for the next point to sample out <- optim.step.tgp(f, X=X, Z=Z, rect=rect, prev=out, verb=0) ## add in the inputs, and newly sampled outputs X <- rbind(X, out$X) Z <- c(Z, f(out$X)) ## keep track of progress and best optimum progress <- rbind(progress, out$progress) } ################################################### ### code chunk number 56: optim-progress ################################################### par(mfrow=c(1,2)) matplot(progress[,1:2], main="x progress", xlab="rounds", ylab="x[,1:2]", type="l", lwd=2) legend("topright", c("x1", "x2"), lwd=2, col=1:2, lty=1:2) plot(log(progress$improv), type="l", main="max log improv", xlab="rounds", ylab="max log(improv)") ################################################### ### code chunk number 57: tgp2.Rnw:1490-1491 ################################################### graphics.off() ################################################### ### code chunk number 58: tgp2.Rnw:1506-1507 ################################################### out$progress[1:2] ################################################### ### code chunk number 59: tgp2.Rnw:1532-1533 ################################################### formals(optim)$method ################################################### ### code chunk number 60: tgp2.Rnw:1537-1538 ################################################### formals(optim.ptgpf)$method ################################################### ### code chunk number 61: tgp2.Rnw:1552-1553 ################################################### seed <- 0; set.seed(seed) ################################################### ### code chunk number 62: tgp2.Rnw:1670-1673 ################################################### geo <- default.itemps(type="geometric") har <- default.itemps(type="harmonic") sig <- default.itemps(type="sigmoidal") ################################################### ### code chunk number 63: it-itemps ################################################### par(mfrow=c(2,1)) all <- cbind(geo$k, har$k, sig$k) matplot(all, pch=21:23, main="inv-temp ladders", xlab="indx", ylab="itemp") legend("topright", pch=21:23, c("geometric","harmonic","sigmoidal"), col=1:3) matplot(log(all), pch=21:23, main="log(inv-temp) ladders", xlab="indx", ylab="itemp") ################################################### ### code chunk number 64: tgp2.Rnw:1688-1689 ################################################### graphics.off() ################################################### ### code chunk number 65: tgp2.Rnw:1755-1762 ################################################### ESS <- function(w) { mw <- mean(w) cv2 <- sum((w-mw)^2)/((length(w)-1)*mw^2) ess <- length(w)/(1+cv2) return(ess) } ################################################### ### code chunk number 66: tgp2.Rnw:1908-1911 ################################################### exp2d.data<-exp2d.rand() X<-exp2d.data$X Z<-exp2d.data$Z ################################################### ### code chunk number 67: tgp2.Rnw:1917-1920 ################################################### its <- default.itemps(m=10) exp.btlm <- btlm(X=X,Z=Z, bprior="b0", R=2, itemps=its, pred.n=FALSE, BTE=c(1000,3000,2)) ################################################### ### code chunk number 68: tgp2.Rnw:1945-1946 ################################################### exp.btlm$ess ################################################### ### code chunk number 69: tgp2.Rnw:1957-1960 ################################################### library(MASS) moto.it <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10), bprior="b0", R=3, itemps=geo, trace=TRUE, pred.n=FALSE, verb=0) ################################################### ### code chunk number 70: tgp2.Rnw:1964-1965 ################################################### moto.it$ess$combined ################################################### ### code chunk number 71: tgp2.Rnw:1969-1971 ################################################### p <- moto.it$trace$post ESS(p$wlambda) ################################################### ### code chunk number 72: tgp2.Rnw:1977-1978 ################################################### ESS(p$w) ################################################### ### code chunk number 73: tgp2.Rnw:1983-1984 ################################################### as.numeric(c(sum(p$itemp == 1), moto.it$ess$each[1,2:3])) ################################################### ### code chunk number 74: tgp2.Rnw:1995-1997 ################################################### moto.reg <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10), R=3, bprior="b0", trace=TRUE, pred.n=FALSE, verb=0) ################################################### ### code chunk number 75: tgp2.Rnw:2003-2006 ################################################### L <- length(p$height) hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE)) b <- hist2bar(cbind(moto.reg$trace$post$height, p$height, hw)) ################################################### ### code chunk number 76: it-moto-height ################################################### barplot(b, beside=TRUE, col=1:3, xlab="tree height", ylab="counts", main="tree heights encountered") legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3) ################################################### ### code chunk number 77: tgp2.Rnw:2014-2015 ################################################### graphics.off() ################################################### ### code chunk number 78: it-moto-ktrace ################################################### plot(log(moto.it$trace$post$itemp), type="l", ylab="log(k)", xlab="samples", main="trace of log(k)") ################################################### ### code chunk number 79: tgp2.Rnw:2048-2049 ################################################### graphics.off() ################################################### ### code chunk number 80: it-moto-khist ################################################### b <- itemps.barplot(moto.it, plot.it=FALSE) barplot(t(cbind(moto.it$itemps$counts, b)), col=1:2, beside=TRUE, ylab="counts", xlab="itemps", main="inv-temp observation counts") legend("topleft", c("observation counts", "posterior samples"), fill=1:2) ################################################### ### code chunk number 81: tgp2.Rnw:2080-2081 ################################################### graphics.off() ################################################### ### code chunk number 82: tgp2.Rnw:2104-2106 ################################################### moto.it.sig <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10), R=3, bprior="b0", krige=FALSE, itemps=sig, verb=0) ################################################### ### code chunk number 83: tgp2.Rnw:2110-2111 ################################################### moto.it.sig$ess$combined ################################################### ### code chunk number 84: it-moto-pred ################################################### plot(moto.it.sig) ################################################### ### code chunk number 85: tgp2.Rnw:2117-2118 ################################################### graphics.off() ################################################### ### code chunk number 86: tgp2.Rnw:2144-2147 ################################################### Xcand <- lhs(10000, rbind(c(-6,6),c(-6,6))) X <- dopt.gp(400, X=NULL, Xcand)$XX Z <- exp2d.Z(X)$Z ################################################### ### code chunk number 87: tgp2.Rnw:2152-2154 ################################################### exp.reg <- btgpllm(X=X, Z=Z, BTE=c(2000,52000,10), bprior="b0", trace=TRUE, krige=FALSE, R=10, verb=0) ################################################### ### code chunk number 88: it-exp-pred ################################################### plot(exp.reg) ################################################### ### code chunk number 89: tgp2.Rnw:2160-2161 ################################################### graphics.off() ################################################### ### code chunk number 90: tgp2.Rnw:2173-2175 ################################################### h <- exp.reg$post$height[which.max(exp.reg$posts$lpost)] h ################################################### ### code chunk number 91: it-exp-mapt ################################################### tgp.trees(exp.reg, "map") ################################################### ### code chunk number 92: tgp2.Rnw:2184-2185 ################################################### graphics.off() ################################################### ### code chunk number 93: tgp2.Rnw:2209-2212 ################################################### its <- default.itemps(k.min=0.02) exp.it <- btgpllm(X=X, Z=Z, BTE=c(2000,52000,10), bprior="b0", trace=TRUE, krige=FALSE, itemps=its, R=10, verb=0) ################################################### ### code chunk number 94: tgp2.Rnw:2217-2219 ################################################### exp.it$gpcs exp.reg$gpcs ################################################### ### code chunk number 95: tgp2.Rnw:2227-2229 ################################################### p <- exp.it$trace$post data.frame(ST=sum(p$itemp == 1), nIT=ESS(p$w), oIT=exp.it$ess$combined) ################################################### ### code chunk number 96: tgp2.Rnw:2241-2244 ################################################### L <- length(p$height) hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE)) b <- hist2bar(cbind(exp.reg$trace$post$height, p$height, hw)) ################################################### ### code chunk number 97: it-exp-height ################################################### barplot(b, beside=TRUE, col=1:3, xlab="tree height", ylab="counts", main="tree heights encountered") legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3) ################################################### ### code chunk number 98: tgp2.Rnw:2252-2253 ################################################### graphics.off() ################################################### ### code chunk number 99: it-exp-trace-height ################################################### ylim <- range(p$height, exp.reg$trace$post$height) plot(p$height, type="l", main="trace of tree heights", xlab="t", ylab="height", ylim=ylim) lines(exp.reg$trace$post$height, col=2) legend("topright", c("tempered", "reg MCMC"), lty=c(1,1), col=1:2) ################################################### ### code chunk number 100: tgp2.Rnw:2277-2278 ################################################### graphics.off() ################################################### ### code chunk number 101: it-expit-pred ################################################### plot(exp.it) ################################################### ### code chunk number 102: it-expit-trees ################################################### tgp.trees(exp.it, "map") ################################################### ### code chunk number 103: tgp2.Rnw:2305-2306 ################################################### graphics.off() tgp/inst/doc/tgp.Rnw0000644000176200001440000030570313724171531014064 0ustar liggesusers\documentclass{article} \usepackage{Sweave} %\SweaveOpts{eps=TRUE} %\documentclass[12pt]{article} %\usepackage{fullpage} %\usepackage{setspace} \usepackage[footnotesize]{caption} \usepackage{amsmath} \usepackage{amscd} \usepackage{epsfig} \newcommand{\bm}[1]{\mbox{\boldmath $#1$}} \newcommand{\mb}[1]{\mathbf{#1}} %\VignetteIndexEntry{a guide to the tgp package} %\VignetteKeywords{tgp} %\VignetteDepends{tgp,maptree,MASS} %\VignettePackage{tgp} \begin{document} %\doublespacing \setkeys{Gin}{width=0.85\textwidth} <>= library(tgp) options(width=65) @ \title{{\tt tgp}: an {\sf R} package for Bayesian nonstationary,\\ semiparametric nonlinear regression and design by treed Gaussian process models} \author{Robert B. Gramacy\\ Department of Statistics\\ Virginia Tech\\ rbg@vt.edu} \maketitle \begin{abstract} The {\tt tgp} package for {\sf R} \cite{cran:R} is a tool for fully Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes with jumps to the limiting linear model. Special cases also implemented include Bayesian linear models, linear CART, stationary separable and isotropic Gaussian processes. In addition to inference and posterior prediction, the package supports the (sequential) design of experiments under these models paired with several objective criteria. 1-d and 2-d plotting, with higher dimension projection and slice capabilities, and tree drawing functions (requiring {\tt maptree} and {\tt combinat} libraries), are also provided for visualization of {\tt tgp}-class output. \end{abstract} \subsection*{Intended audience} \label{sec:discaimer} This document is intended to familiarize a (potential) user of {\tt tgp} with the models and analyses available in the package. After a brief overview, the bulk of this document consists of examples on mainly synthetic and randomly generated data which illustrate the various functions and methodologies implemented by the package. This document has been authored in {\tt Sweave} (try {\tt help(Sweave)}). This means that the code quoted throughout is certified by {\tt R}, and the {\tt Stangle} command can be used to extract it. Note that this tutorial was not meant to serve as an instruction manual. For more detailed documentation of the functions contained in the package, see the package help-manuals. At an {\sf R} prompt, type {\tt help(package=tgp)}. PDF documentation is also available on the world-wide-web. \begin{center} \tt http://www.cran.r-project.org/doc/packages/tgp.pdf \end{center} The outline is as follows. Section \ref{sec:implement} introduces the functions and associated regression models implemented by the {\tt tgp} package, including plotting and visualization methods. The Bayesian mathematical specification of these models is contained in Section \ref{sec:model}. In Section \ref{sec:examples} the functions and methods implemented in the package are illustrated by example. The appendix covers miscellaneous topics such as how to link with the {\tt ATLAS} libraries for fast linear algebra routines, compile--time support for {\tt Pthreads} parallelization, the gathering of parameter traces, the verbosity of screen output, and some miscellaneous details of implementation. \subsection*{Motivation} Consider as motivation the Motorcycle Accident Dataset \cite{silv:1985}. It is a classic data set used in recent literature \cite{rasm:ghah:nips:2002} to demonstrate the success of nonstationary regression models. The data consists of measurements of the acceleration of the head of a motorcycle rider as a function of time in the first moments after an impact. Many authors have commented on the existence of two---perhaps three---regimes in the data over time where the characteristics of the mean process and noise level change (i.e., a nonstationarity and heteroskedasticity, respectively). It can be interesting to see how various candidate models handle this nuance. \begin{figure}[ht!] \centering \includegraphics[trim=0 25 0 0]{motovate_bgp} \includegraphics[trim=0 25 0 0]{motovate_btgp} \caption{Fit of the Motorcycle Accident Dataset using a GP ({\em top}) and treed GP model ({\em bottom}). The $x$-axis is time in milliseconds after an impact; the $y$--axis is acceleration of the helmet of a motorcycle rider measured in ``$g$'s'' in a simulated impact.} \label{f:motivate} \end{figure} Figure \ref{f:motivate} shows a fit of this data using a standard (stationary) Gaussian process (GP; {\em left}), and the treed GP model ({\em right}).\footnote{Note that these plots are {\em static}, i.e., they were not generated in--line with {\tt R} code. See Section \ref{sec:moto} for {\em dynamic} versions.} Notice how stationary GP model is unable to capture the smoothness in the linear section(s), nor the decreased noise level. We say that the standard GP model is stationary because it has a single fixed parameterization throughout the input space. An additive model would be inappropriate for similar reasons. In contrast, the treed GP model is able to model the first linear part, the noisy ``whiplash'' middle section, and the smooth (possibly linear) final part with higher noise level, thus exhibiting nonstationary modeling behavior and demonstrating an ability to cope with heteroskedasticity. The remainder of this paper describes the treed GP model in detail, and provides illustrations though example. There are many special cases of the treed GP model, e.g., the linear model (LM), treed LM, stationary GP, etc.. These are outlined and demonstrated as well. \section{What is implemented?} \label{sec:implement} The {\tt tgp} package contains implementations of seven Bayesian multivariate regression models and functions for visualizing posterior predictive surfaces. These models, and the functions which implement them, are outlined in Section \ref{sec:breg}. Also implemented in the package are functions which aid in the sequential design of experiments for {\tt tgp}-class models, which is what I call {\em adaptive sampling}. These functions are introduced at the end of Section \ref{sec:model} and a demonstration is given in Section \ref{sec:as}. \subsection{Bayesian regression models} \label{sec:breg} The seven regression models implemented in the package are summarized in Table \ref{t:reg}. They include combinations of treed partition models, (limiting) linear models, and Gaussian process models as indicated by T, LM/LLM, \& GP in the center column of the table. The details of model specification and inference are contained in Section \ref{sec:model}. Each is a fully Bayesian regression model, and in the table they are ordered by some notion of ``flexibility''. These {\tt b*} functions, as I call them, are wrappers around the master {\tt tgp} function which is an interface to the core {\tt C} code. \begin{table} \centering \begin{tabular}{l|l|l} {\sf R} function & Ingredients & Description \\ \hline blm & LM & Linear Model \\ btlm & T, LM & Treed Linear Model \\ bcart & T & Treed Constant Model \\ bgp & GP & GP Regression \\ bgpllm & GP, LLM & GP with jumps to the LLM \\ btgp & T, GP & treed GP Regression \\ btgpllm & T, GP, LLM & treed GP with jumps to the LLM \\ \hline tgp & & Master interface for the above methods \end{tabular} \caption{Bayesian regression models implemented by the {\tt tgp} package} \label{t:reg} \end{table} The {\tt b*} functions are intended as the main interface, so little further attention to the {\tt tgp} master function will be included here. The easiest way to see how the master {\tt tgp} function implements one of the {\tt b*} methods is to simply type the name of the function of interest into {\sf R}. For example, to see the implementation of {\tt bgp}, type: <>= bgp @ The output (return-value) of {\tt tgp} and the {\tt b*} functions is a {\tt list} object of class ``{\tt tgp}''. This is what is meant by a ``{\tt tgp}-class'' object. This object retains all of the relevant information necessary to summarize posterior predictive inference, maximum {\em a' posteriori} (MAP) trees, and statistics for adaptive sampling. Information about its actual contents is contained in the help files for the {\tt b*} functions. Generic {\tt print}, {\tt plot}, and {\tt predict} methods are defined for {\tt tgp}-class objects. The {\tt plot} and {\tt predict} functions are discussed below. The {\tt print} function simply provides a list of the names of the fields comprising a {\tt tgp}-class object. \subsubsection{Plotting and visualization} \label{sec:plot} The two main functions provided by the {\tt tgp} package for visualization are {\tt plot.tgp}, inheriting from the generic {\tt plot} method, and a function called {\tt tgp.trees} for graphical visualization of MAP trees. The {\tt plot.tgp} function can make plots in 1-d or 2-d. Of course, if the data are 1-d, the plot is in 1-d. If the data are 2-d, or higher, they are 2-d image or perspective plots unless a 1-d projection argument is supplied. Data which are 3-d, or higher, require projection down to 2-d or 1-d, or specification of a 2-d slice. The {\tt plot.tgp} default is to make a projection onto the first two input variables. Alternate projections are specified as an argument ({\tt proj}) to the function. Likewise, there is also an argument ({\tt slice}) which allows one to specify which slice of the posterior predictive data is desired. For models that use treed partitioning (those with a T in the center column of Table \ref{t:reg}), the {\tt plot.tgp} function will overlay the region boundaries of the MAP tree ($\hat{\mathcal{T}}$) found during MCMC. A few notes on 2-d plotting of {\tt tgp}-class objects: \begin{itemize} \item 2-d plotting requires interpolation of the data onto a uniform grid. This is supported by the {\tt tgp} package in two ways: (1) {\tt loess} smoothing, and (2) the {\tt akima} package, available from CRAN. The default is {\tt loess} because it is more stable and does not require installing any further packages. When {\tt akima} works it makes (in my opinion) smarter interpolations. However there are two bugs in the {\tt akima} package, one malign and the other benign, which preclude it from the default position in {\tt tgp}. The malign bug can cause a segmentation fault, and bring down the entire R session. The benign bug produces {\tt NA}'s when plotting data from a grid. For beautiful 2-d plots of gridded data I suggest exporting the {\tt tgp} predictive output to a text file and using {\tt gnuplot}'s 2-d plotting features. \item The current version of this package contains no examples---nor does this document---which demonstrate plotting of data with dimension larger than two. The example provided in Section \ref{sec:fried} uses 10-d data, however no plotting is required. {\tt tgp} methods have been used on data with input dimension as large as 15 \cite{gra:lee:2008}, and were used in a sequential design and detailed analysis of some proprietary 3-d input and 6-d output data sampled using a NASA supercomputer \cite{gra:lee:2009}. \item The {\tt plot.tgp} function has many more options than are illustrated in [Section \ref{sec:examples} of] this document. Please refer to the help files for more details. \end{itemize} The {\tt tgp.trees} function provides a diagrammatic representation of the MAP trees of each height encountered by the Markov chain during sampling. The function will not plot trees of height one, i.e., trees with no branching or partitioning. Plotting of trees requires the {\tt maptree} package, which in turn requires the {\tt combinat} package, both available from CRAN. \subsubsection{Prediction} \label{sec:predintro} Prediction, naturally, depends on fitted model parameters $\hat{\bm{\theta}}|\mbox{data}$, or Monte Carlo samples from the posterior distribution of $\bm{\theta}$ in a Bayesian analysis. Rather than saving samples from $\pi(\bm{\theta}|\mbox{data})$ for later prediction, usually requiring enormous amounts of storage, {\tt tgp} samples the posterior predictive distribution in-line, as samples of $\bm{\theta}$ become available. [Section \ref{sec:pred} and \ref{sec:llmpred} outlines the prediction equations.] A {\tt predict.tgp} function is provided should it be necessary to obtain predictions {\em after} the MCMC has finished. The {\tt b*} functions save the MAP parameterization $\hat{\bm{\theta}}$ maximizing $\pi(\bm{\theta}|\mbox{data})$. More specifically, the ``{\tt tgp}''--class object stores the MAP tree $\hat{{\mathcal T}}$ and corresponding GP (or LLM) parameters $\hat{\bm{\theta}}|\hat{\mathcal{T}}$ found while sampling from the joint posterior $\pi(\bm{\theta},\mathcal{T}|\mbox{data})$. These may be accessed and used, via {\tt predict.tgp}, to obtain posterior--predictive inference through the MAP parameterization. In this way {\tt predict.tgp} is similar to {\tt predict.lm}, for example. Samples can also be obtained from the MAP--parameterized predictive distributions via {\tt predict.tgp}, or a re--initialization of the joint sampling of the posterior and posterior predictive distribution can commence starting from the $(\hat{\bm{\theta}},\hat{\mathcal{T}})$. The output of {\tt predict.tgp} is also a {\tt tgp} class object. Appendix \ref{sec:apred} illustrates how this feature can be useful in the context of passing {\tt tgp} model fits between collaborators. There are other miscellaneous demonstrations in Section~\ref{sec:examples}. \subsubsection{Speed} \label{sec:speed} Fully Bayesian analyses with MCMC are not the super-speediest of all statistical models. Nor is inference for GP models, classical or Bayesian. When the underlying relationship between inputs and responses is non-linear, GPs represent a state of the art phenomenological model with high predictive power. The addition of axis--aligned treed partitioning provides a divide--and--conquer mechanism that can not only reduce the computational burden relative to the base GP model, but can also facilitate the efficient modeling of nonstationarity and heteroskedasticity in the data. This is in stark contrast to other recent approaches to nonstationary spatial models (e.g., via deformations \cite{dam:samp:gutt:2001,schmidt:2003}, or process convolutions \cite{higd:swal:kern:1999,fuentes:smith:2001,Paci:2003}) which can require orders of magnitude more effort relative to stationary GPs. Great care has been taken to make the implementation of Bayesian inference for GP models as efficient as possible [see Appendix \ref{sec:howimplement}]. However, inference for non-treed GPs can be computationally intense. Several features are implemented by the package which can help speed things up a bit. Direct support for {\tt ATLAS} \cite{atlas-hp} is provided for fast linear algebra. Details on linking this package with {\tt ATLAS} is contained in Appendix \ref{sec:atlas}. Parallelization of prediction and inference is supported by a producer/consumer model implemented with {\tt Pthreads}. Appendix \ref{sec:pthreads} shows how to activate this feature, as it is not turned on by default. An argument called {\tt linburn} is made available in tree class (T) {\tt b*} functions in Table \ref{t:reg}. When {\tt linburn = TRUE}, the Markov chain is initialized with a run of the Bayesian treed linear model \cite{chip:geor:mccu:2002} before burn-in in order to pre-partition the input space using linear models. Finally, thinning of the posterior predictive samples obtained by the Markov chain can also help speed things up. This is facilitated by the {\tt E}-part of the {\tt BTE} argument to {\tt b*} functions. \subsection{Sequential design of experiments} \label{sec:design} Sequential design of experiments, a.k.a. {\em adaptive sampling}, is not implemented by any {\em single} function in the {\tt tgp} package. Nevertheless, options and functions are provided in order to facilitate the automation of adaptive sampling with {\tt tgp}-class models. A detailed example is included in Section \ref{sec:as}. Arguments to {\tt b*} functions, and {\tt tgp}, which aid in adaptive sampling include {\tt Ds2x} and {\tt improv}. Both are booleans, i.e., should be set to {\tt TRUE} or {\tt FALSE} (the default for both is {\tt FALSE}). {\tt TRUE} booleans cause the {\tt tgp}-class output list to contain vectors of similar names with statistics that can be used toward adaptive sampling. When {\tt Ds2x = TRUE} then $\Delta \sigma^2(\mb{\tilde{x}})$ statistic is computed at each $\tilde{\mb{x}} \in \mbox{\tt XX}$, in accordance with the ALC (Active Learning--Cohn) algorithm \cite{cohn:1996}. Likewise, when {\tt improv = TRUE}, statistics are computed in order to asses the expected improvement (EI) for each $\tilde{\mb{x}} \in \mbox{\tt XX}$ about the global minimum \cite{jones:schonlau:welch:1998}. The ALM (Active Learning--Mackay) algorithm \cite{mackay:1992} is implemented by default in terms of difference in predictive quantiles for the inputs {\tt XX}, which can be accessed via the {\tt ZZ.q} output field. Details on the ALM, ALC, and EI algorithms are provided in Section \ref{sec:model}. Calculation of EI statistics was considered ``beta'' functionality while this document was being prepared. At that time it had not been adequately tested, and its implementation changed substantially in future versions of the package. For updates see the follow-on vignette \cite{gra:taddy:2010}, or \verb!vignette("tgp2")!. That document also discusses sensitivity analysis, handling of categorical inputs, and importance tempring. The functions included in the package which explicitly aid in the sequential design of experiments are {\tt tgp.design} and {\tt dopt.gp}. They are both intended to produce sequential $D$--optimal candidate designs {\tt XX} at which one or more of the adaptive sampling methods (ALM, ALC, EI) can gather statistics. The {\tt dopt.gp} function generates $D$--optimal candidates for a stationary GP. The {\tt tgp.design} function extracts the MAP tree from a {\tt tgp}-class object and uses {\tt dopt.gp} on each region of the MAP partition in order to get treed sequential $D$--optimal candidates. \section{Methods and Models} \label{sec:model} This section provides a quick overview of the statistical models and methods implemented by the {\tt tgp} package. Stationary Gaussian processes (GPs), GPs with jumps to the limiting linear model (LLM; a.k.a.~GP LLM), treed partitioning for nonstationary models, and sequential design of experiments (a.k.a.~{\em adaptive sampling}) concepts for these models are all briefly discussed. Appropriate references are provided for the details, including the original paper on Bayesian treed Gaussian process models \cite{gra:lee:2008}, and an application paper on adaptively designing supercomputer experiments \cite{gra:lee:2009}. As a first pass on this document, it might make sense to skip this section and go straight on to the examples in Section \ref{sec:examples}. \subsection{Stationary Gaussian processes} \label{sec:gp} Below is a hierarchical generative model for a stationary GP with linear tend for data $D=\{\mb{X}, \mb{Z}\}$ consisting of $n$ pairs of $m_X$ covariates and a single response variable $\{(x_{i1},\dots, x_{im_X}), z_i\}_{i=1}^n$. \begin{align} \mb{Z} | \bm{\beta}, \sigma^2, \mb{K} &\sim N_{n}(\mb{\mb{F}} \bm{\beta}, \sigma^2 \mb{K}) & \sigma^2 &\sim IG(\alpha_\sigma/2, q_\sigma/2) \nonumber \\ \bm{\beta} | \sigma^2, \tau^2, \mb{W}, \bm{\beta}_0 &\sim N_{m}(\bm{\beta}_0, \sigma^2 \tau^2 \mb{W}) & \tau^2 &\sim IG(\alpha_\tau/2, q_\tau/2) \label{eq:model} \\ \bm{\beta}_0 &\sim N_{m}(\bm{\mu}, \mb{B}) & \mb{W}^{-1} &\sim W((\rho \mb{V})^{-1}, \rho), \nonumber \end{align} $\mb{X}$ is a design matrix with $m_X$ columns. An intercept term is added with $\mb{F} = (\mb{1}, \mb{X})$ which has $m\equiv m_X+1$ columns, and $\mb{W}$ is a $m \times m$ matrix. $N$, $IG$, and $W$ are the (Multivariate) Normal, Inverse-Gamma, and Wishart distributions, respectively. Constants $\bm{\mu}, \mb{B},\mb{V},\rho, \alpha_\sigma, q_\sigma, \alpha_\tau, q_\tau.$ are treated as known. The GP correlation structure $\mb{K}$ is chosen either from the isotropic power family, or separable power family, with a fixed power $p_0$ (see below), but unknown (random) range and nugget parameters. Correlation functions used in the {\tt tgp} package take the form $K(\mb{x}_j, \mb{x}_k) = K^*(\mb{x}_j, \mb{x}_k) + {g} \delta_{j,k}$, where $\delta_{\cdot,\cdot}$ is the Kronecker delta function, $g$ is the {\em nugget}, and $K^*$ is a {\em true} correlation representative from a parametric family. The isotropic Mat\'{e}rn family is also implemented in the current version as ``beta'' functionality. All parameters in (\ref{eq:model}) can be sampled using Gibbs steps, except for the covariance structure and nugget parameters, and their hyperparameters, which can be sampled via Metropolis-Hastings \cite{gra:lee:2008}. \subsubsection{The nugget} \label{sec:intro:nug} The $g$ term in the correlation function $K(\cdot,\cdot)$ is referred to as the {\em nugget} in the geostatistics literature \cite{math:1963,cressie:1991} and sometimes as {\em jitter} in the Machine Learning literature \cite{neal:1997}. It must always be positive $(g>0)$, and serves two purposes. Primarily, it provides a mechanism for introducing measurement error into the stochastic process. It arises when considering a model of the form: \begin{equation} Z(\mb{X}) = m(\mb{X}, \bm{\beta}) + \varepsilon(\mb{X}) + \eta(\mb{X}), \label{eq:noisemodel} \end{equation} where $m(\cdot,\cdot)$ is underlying (usually linear) mean process, $\varepsilon(\cdot)$ is a process covariance whose underlying correlation is governed by $K^*$, and $\eta(\cdot)$ represents i.i.d.~Gaussian noise. Secondarily, though perhaps of equal practical importance, the nugget (or jitter) prevents $\mb{K}$ from becoming numerically singular. Notational convenience and conceptual congruence motivates referral to $\mb{K}$ as a correlation matrix, even though the nugget term ($g$) forces $K(\mb{x}_i,\mb{x}_i)>1$. \subsubsection{Exponential Power family} \label{sec:pow} Correlation functions in the {\em isotropic power} family are {\em stationary} which means that correlations are measured identically throughout the input domain, and {\em isotropic} in that correlations $K^*(\mb{x}_j, \mb{x}_k)$ depend only on a function of the Euclidean distance between $\mb{x}_j$ and $\mb{x}_k$: $||\mb{x}_j - \mb{x}_k||$. \begin{equation} K^*(\mb{x}_j, \mb{x}_k|d) = \exp\left\{-\frac{||\mb{x}_j - \mb{x}_k||^{p_0}}{d} \right\}, \label{eq:pow} \end{equation} where $d>0$ is referred to as the {\em width} or {\em range} parameter. The power $0>= hist(c(rgamma(100000,1,20), rgamma(100000,10,10)), breaks=50, xlim=c(0,2), freq=FALSE, ylim=c(0,3), main = "p(d) = G(1,20) + G(10,10)", xlab="d") d <- seq(0,2,length=1000) lines(d,0.2+0.7/(1+exp(-10*(d-0.5)))) abline(h=1, lty=2) legend(x=1.25, y=2.5, c("p(b) = 1", "p(b|d)"), lty=c(1,2)) @ <>= graphics.off() @ \includegraphics[trim=0 25 0 10]{tgp-gpllm} %\vspace{-0.5cm} \caption{\footnotesize Prior distribution for the boolean ($b$) superimposed on $p(d)$. There is truncation in the left--most bin, which rises to about 6.3. } \label{f:boolprior} \end{center} \end{figure} Probability mass functions which increase as a function of $d_i$, e.g., \begin{equation} p_{\gamma, \theta_1, \theta_2}(b_i=0|d_i) = \theta_1 + (\theta_2-\theta_1)/(1 + \exp\{-\gamma(d_i-0.5)\}) \label{eq:boolp} \end{equation} with $0<\gamma$ and $0\leq \theta_1 \leq \theta_2 < 1$, can encode such a preference by calling for the exclusion of dimensions $i$ with large $d_i$ when constructing $\mb{K}^*$. Thus $b_i$ determines whether the GP or the LLM is in charge of the marginal process in the $i^{\mbox{\tiny th}}$ dimension. Accordingly, $\theta_1$ and $\theta_2$ represent minimum and maximum probabilities of jumping to the LLM, while $\gamma$ governs the rate at which $p(b_i=0|d_i)$ grows to $\theta_2$ as $d_i$ increases. Figure \ref{f:boolprior} plots $p(b_i=0|d_i)$ %as in (\ref{eq:boolp}) for $(\gamma,\theta_1,\theta_2) =(10, 0.2, 0.95)$ superimposed on a convenient $p(d_i)$ which is taken to be a mixture of Gamma distributions, \begin{equation} p(d) = [G(d|\alpha=1,\beta=20) + G(d|\alpha=10,\beta=10)]/2, \label{eq:dprior} \end{equation} representing a population of GP parameterizations for wavy surfaces (small $d$) and a separate population of those which are quite smooth or approximately linear. The $\theta_2$ parameter is taken to be strictly less than one so as not to preclude a GP which models a genuinely nonlinear surface using an uncommonly large range setting. The implied prior probability of the full $m_X$-dimensional LLM is \begin{equation} p(\mbox{linear model}) = \prod_{i=1}^{m_X} p(b_i=0|d_i) = \prod_{i=1}^{m_X} \left[ \theta_1 + \frac{\theta_2-\theta_1} {1 + \exp\{-\gamma (d_i-0.5)\}}\right]. \label{e:linp} \end{equation} Notice that the resulting process is still a GP if any of the booleans $b_i$ are one. The primary computational advantage associated with the LLM is foregone unless all of the $b_i$'s are zero. However, the intermediate result offers increased numerical stability and represents a unique transitionary model lying somewhere between the GP and the LLM. It allows for the implementation of a semiparametric stochastic processes like $Z(\mb{x}) = \bm{\beta} f(\mb{x}) + \varepsilon(\tilde{\mb{x}})$ representing a piecemeal spatial extension of a simple linear model. The first part ($\bm{\beta}f(\mb{x})$) of the process is linear in some known function of the full set of covariates $\mb{x} = \{x_i\}_{i=1}^{m_X}$, and $\varepsilon(\cdot)$ is a spatial random process (e.g. a GP) which acts on a subset of the covariates $\mb{x}'$. Such models are commonplace in the statistics community~\cite{dey:1998}. Traditionally, $\mb{x}'$ is determined and fixed {\em a' priori}. The separable boolean prior (\ref{eq:boolp}) implements an adaptively semiparametric process where the subset $\mb{x}' = \{ x_i : b_i = 1, i=1,\dots,m_X \}$ is given a prior distribution, instead of being fixed. \subsubsection{Prediction and Adaptive Sampling under LLM} \label{sec:llmpred} Prediction under the limiting GP model is a simplification of (\ref{eq:pred}) when it is known that $\mb{K} = (1+g)\mb{I}$. It can be shown \cite{gra:lee:2008b} that the predicted value of $z$ at $\mb{x}$ is normally distributed with mean $\hat{z}(\mb{x}) = \mb{f}^\top(\mb{x}) \tilde{\bm{\beta}}$ and variance $\hat{\sigma}(\mb{x})^2 = \sigma^2 [1 + \mb{f}^\top(\mb{x})\mb{V}_{\tilde{\beta}} \mb{f}(\mb{x})]$, where $ \mb{V}_{\tilde{\beta}} = (\tau^{-2} + \mb{F}^\top \mb{F}(1+g))^{-1}$. This is preferred over (\ref{eq:pred}) with $\mb{K}=\mb{I}(1+g)$ because an $m \times m$ inversion is faster than an $n\times n$ one. Applying the ALC algorithm under the LLM also offers computational savings. Starting with the predictive variance given in (\ref{eq:pred}), the expected reduction in variance under the LM is \cite{gra:lee:2009} \begin{equation} \Delta \hat{\sigma}^2_\mb{y} (\mb{x}) = \frac{ \sigma^2 [\mb{f}^\top(\mb{y}) \mb{V}_{\tilde{\beta}_N} \mb{f}(\mb{x})]^2} {1+g + \mb{f}^\top(\mb{x}) \mb{V}_{\tilde{\beta}_N} \mb{f}(\mb{x})} \label{e:llmalc} \end{equation} which is similarly preferred over (\ref{e:gpalc}) with $\mb{K} = \mb{I}(1+g)$. The statistic for expected improvement (EI; about the minimum) is the same under the LLM as (\ref{eq:ego}) for the GP. Of course, it helps to use the linear predictive equations instead of the kriging ones for $\hat{z}(\mb{x})$ and $\hat{\sigma}^2(\mb{x})$. \subsection{Treed partitioning} \label{sec:treed} Nonstationary models are obtained by treed partitioning and inferring a separate model within each region of the partition. Treed partitioning is accomplished by making (recursive) binary splits on the value of a single variable so that region boundaries are parallel to coordinate axes. Partitioning is recursive, so each new partition is a sub-partition of a previous one. Since variables may be revisited, there is no loss of generality by using binary splits as multiple splits on the same variable are equivalent to a non-binary split. \begin{figure}%[ht!] \centering \includegraphics{tree} \caption{\footnotesize An example tree $\mathcal{T}$ with two splits, resulting in three regions, shown in a diagram ({\em left}) and pictorially ({\em right}). The notation $\mb{X}[:,u] < s$ represents a subsetting of the design matrix $\mb{X}$ by selecting the rows which have $u^{\mbox{\tiny th}}$ column less than $s$, i.e. columns $\{i: x_{iu} < s\}$, so that $\mb{X}_1$ has the rows $I_1$ of $\mb{X}$ where $I_1 = \{x_{iu_1} < s_1 \;\&\; x_{iu_2} < s_2\}$, etc. The responses are subsetted similarly so that $\mb{Z}_1$ contains the $I_1$ elements of $\mb{Z}$. We have that $\cup_j D_i = \{\mb{X},\mb{Z}\}$ and $D_i \cap D_j = \emptyset$ for $i\ne j$. } \label{f:tree} \end{figure} Figure \ref{f:tree} shows an example tree. In this example, region $D_1$ contains $\mb{x}$'s whose $u_1$ coordinate is less than $s_1$ and whose $u_2$ coordinate is less than $s_2$. Like $D_1$, $D_2$ has $\mb{x}$'s whose coordinate $u_1$ is less than $s_1$, but differs from $D_1$ in that the $u_2$ coordinate must be bigger than or equal to $s_2$. Finally, $D_3$ contains the rest of the $\mb{x}$'s differing from those in $D_1$ and $D_2$ because the $u_1$ coordinate of its $\mb{x}$'s is greater than or equal to $s_1$. The corresponding response values ($z$) accompany the $\mb{x}$'s of each region. These sorts of models are often referred to as Classification and Regression Trees (CART) \cite{brei:1984}. CART has become popular because of its ease of use, clear interpretation, and ability to provide a good fit in many cases. The Bayesian approach is straightforward to apply to tree models, provided that one can specify a meaningful prior for the size of the tree. The trees implemented in the {\tt tgp} package follow Chipman et al.~\cite{chip:geor:mccu:1998} who specify the prior through a tree-generating process. Starting with a null tree (all data in a single partition), the tree, ${\mathcal T}$, is probabilistically split recursively with each partition, $\eta$, being split with probability $p_{\mbox{\sc split}}(\eta, {\mathcal T}) = a (1 + q_\eta)^{-b}$ where $q_\eta$ is the depth of $\eta$ in $\mathcal{T}$ and $a$ and $b$ are parameters chosen to give an appropriate size and spread to the distribution of trees. Extending the work of Chipman et al.~\cite{chip:geor:mccu:2002}, the {\tt tgp} package implements a stationary GP with linear trend, or GP LLM, independently within each of the regions depicted by a tree $\mathcal{T}$ \cite{gra:lee:2008}. Integrating out dependence on $\mathcal{T}$ is accomplished by reversible-jump MCMC (RJ-MCMC) via tree operations {\em grow, prune, change}, and {\em swap}~\cite{chip:geor:mccu:1998}. %(2002)\nocite{chip:geor:mccu:2002}. %, however %Tree proposals can change the size of the parameter space ($\bm{\theta}$). To keep things simple, proposals for new parameters---via an increase in the number of partitions (through a {\em grow})---are drawn from their priors\footnote{Proposed {\em grows} are the {\em only} place where the priors (for $d$, $g$ and $\tau^2$ parameters; the others can be integrated out) are used for MH--style proposals. All other MH proposals are ``random--walk'' as described in Appendix \ref{sec:howimplement}.}, thus eliminating the Jacobian term usually present in RJ-MCMC. New splits are chosen uniformly from the set of marginalized input locations $\mb{X}$. The {\em swap} operation is augmented with a {\em rotate} option to improve mixing of the Markov chain \cite{gra:lee:2008}. There are many advantages to partitioning the input space into regions, and fitting separate GPs (or GP LLMs) within \index{each}each region. Partitioning allows for the modeling of non-stationary behavior, and can ameliorate some of the computational demands by fitting models to less data. Finally, fully Bayesian model averaging yields a uniquely efficient nonstationary, nonparametric, or semiparametric (in the case of the GP LLM) regression tool. The most general Bayesian treed GP LLM model can facilitate a model comparison between its special cases (LM, CART, treed LM, GP, treed GP, treed GP LLM) through the samples obtained from the posterior distribution. \subsection{(Treed) sequential D-optimal design} \label{sec:treedopt} In the statistics community, sequential data solicitation goes under the general heading of {\em design of experiments}. Depending on a choice of utility, different algorithms for obtaining optimal designs can be derived. Choose the Kullback-Leibler distance between the posterior and prior distributions as a utility leads to what are called $D$--optimal designs. For GPs with correlation matrix $\mb{K}$, this is equivalent to maximizing det$(\mb{K})$. Choosing quadratic loss leads to what are called $A-$optimal designs. An excellent review of Bayesian approaches to the design of experiments is provided by Chaloner \& Verdinelli~\cite{chaloner:1995}. Other approaches used by the statistics community include space-filling designs: e.g. max-min distance and Latin Hypercube (LH) designs \cite{sant:will:notz:2003}. The {\tt FIELDS} package \cite{fields:2004} implements space-filling designs along side kriging and thin plate spline models. A hybrid approach to designing experiments employs active learning techniques. The idea is to choose a set of candidate input configurations $\tilde{\mb{X}}$ (say, a $D-$optimal or LH design) and a rule for determining which $\tilde{\mb{x}}\in \tilde{\mb{X}}$ to add into the design next. The ALM algorithm has been shown to approximate maximum expected information designs by choosing $\tilde{\mathbf{x}}$ with the the largest predictive variance \cite{mackay:1992}. The ALC algorithm selects $\tilde{\mathbf{x}}$ minimizing the reduction in squared error averaged over the input space \cite{cohn:1996}. Seo et al.~\cite{seo00} provide a comparison between ALC and ALM using standard GPs. The EI \cite{jones:schonlau:welch:1998} algorithm can be used to find global minima. Choosing candidate configurations $\tilde{\mb{X}}$ ({\tt XX} in the {\tt tgp} package), at which to gather ALM, ALC, or EI statistics, is a significant component in the hybrid approach to experimental design. Candidates which are are well-spaced relative to themselves, and relative to already sampled configurations, are clearly preferred. Towards this end, a sequential $D$--optimal design is a good first choice, but has a number of drawbacks. $D$--optimal designs are based require a {\em known} parameterization, and are thus not well-suited to MCMC inference. They may not choose candidates in the ``interesting'' part of the input space, because sampling is high there already. They are ill-suited partition models wherein ``closeness'' may not measured homogeneously across the input space. Finally, they are computationally costly, requiring many repeated determinant calculations for (possibly) large covariance matrices. One possible solution to both computational and nonstationary modeling issues is to use treed sequential $D$--optimal design \cite{gra:lee:2009}, where separate sequential $D$--optimal designs are computed in each of the partitions depicted by the maximum {\em a posteriori} (MAP) tree $\hat{\mathcal{T}}$. The number of candidates selected from each region can be proportional to the volume of---or to the number of grid locations in---the region. MAP parameters $\hat{\bm{\theta}}_\nu|\hat{\mathcal{T}}$, or ``neutral'' or ``exploration encouraging'' ones, can be used to create the candidate design---a common practice \cite{sant:will:notz:2003}. Small range parameters, for learning about the wiggliness of the response, and a modest nugget parameter, for numerical stability, tend to work well together. Finding a local maxima is generally sufficient to get well-spaced candidates. The {\tt dopt.gp} function uses a stochastic ascent algorithm to find local maxima without calculating too many determinants. This works work well with ALM and ALC. However, it is less than ideal for EI as will be illustrated in Section \ref{sec:as}. Adaptive sampling from EI (with {\tt tgp}) is still an open area of research. \section{Examples using {\tt tgp}} \label{sec:examples} The following subsections take the reader through a series of examples based, mostly, on synthetic data. At least two different {\tt b*} models are fit for each set of data, offering comparisons and contrasts. Duplicating these examples in your own {\sf R} session is highly recommended. The {\tt Stangle} function can help extract executable {\sf R} code from this document. For example, the code for the exponential data of Section \ref{sec:exp} can be extracted with one command. \begin{verbatim} > Stangle(vignette("exp", package="tgp")$file) \end{verbatim} \noindent This will write a file called ``exp.R''. Additionally, each of the subsections that follow is available as an {\sf R} demo. Try {\tt demo(package="tgp")} for a listing of available demos. To invoke the demo for the exponential data of Section \ref{sec:exp} try {\tt demo(exp, package="tgp")}. This is equivalent to {\tt source("exp.R")} because the demos were created using {\tt Stangle} on the source files of this document. \footnote{Note that this vignette functionality is only supported in {\tt tgp} version $<2.x$. In 2.x and later the vignettes were coalesced in order to reduce clutter. The demos in 2.x, however, still correspond to their respective sections.} Each subsection (or subsection of the appendix) starts by seeding the random number generator with \verb!set.seed(0)!. This is done to make the results and analyses reproducible within this document, and in demo form. I recommend you try these examples with different seeds and see what happens. Usually the results will be similar, but sometimes (especially when the data ({\tt X, Z}) is generated randomly) they may be quite different. Other successful uses of the methods in this package include applications to the Boston housing data \cite{harrison:78, gra:lee:2008}, and designing an experiment for a reusable NASA launch vehicle \cite{glm:04,gra:lee:2009} called the Langely glide-back booster (LGBB). <>= seed <- 0; set.seed(seed) @ \subsection{1-d Linear data} \label{sec:ex:1dlinear} Consider data sampled from a linear model. \begin{equation} z_i = 1 + 2x_i + \epsilon_, \;\;\;\;\; \mbox{where} \;\;\; \epsilon_i \stackrel{\mbox{\tiny iid}}{\sim} N(0,0.25^2) \label{eq:linear:sim} \end{equation} The following {\sf R} code takes a sample $\{\mb{X}, \mb{Z}\}$ of size $N=50$ from (\ref{eq:linear:sim}). It also chooses $N'=99$ evenly spaced predictive locations $\tilde{\mb{X}} = \mbox{\tt XX}$. <<>>= # 1-d linear data input and predictive data X <- seq(0,1,length=50) # inputs XX <- seq(0,1,length=99) # predictive locations Z <- 1 + 2*X + rnorm(length(X),sd=0.25) # responses @ Using {\tt tgp} on this data with a Bayesian hierarchical linear model goes as follows: <<>>= lin.blm <- blm(X=X, XX=XX, Z=Z) @ \begin{figure}[ht!] \centering <>= plot(lin.blm, main='Linear Model,', layout='surf') abline(1,2,lty=3,col='blue') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-linear-blm} %\vspace{-0.5cm} \caption{Posterior predictive distribution using {\tt blm} on synthetic linear data: mean and 90\% credible interval. The actual generating lines are shown as blue-dotted.} \label{f:lin:blm} \end{figure} MCMC progress indicators are echoed every 1,000 rounds. The linear model is indicated by {\tt d=[0]}. For {\tt btlm} the MCMC progress indicators are boring, but we will see more interesting ones later. In terminal versions, e.g. {\tt Unix}, the progress indicators can give a sense of when the code will finish. GUI versions of {\tt R}---{\tt Windows} or {\tt MacOS X}---can buffer {\tt stdout}, rendering this feature essentially useless as a real--time indicator of progress. Progress indicators can be turned off by providing the argument {\tt verb=0}. Further explanation on the verbosity of screen output and interpretations is provided in Appendix \ref{sec:progress}. The generic {\tt plot} method can be used to visualize the fitted posterior predictive surface (with option {\tt layout = 'surf'}) in terms of means and credible intervals. Figure \ref{f:lin:blm} shows how to do it, and what you get. The default option {\tt layout = 'both'} shows both a predictive surface and error (or uncertainty) plot, side by side. The error plot can be obtained alone via {\tt layout = 'as'}. Examples of these layouts appear later. If, say, you were unsure about the dubious ``linearness'' of this data, you might try a GP LLM (using {\tt bgpllm}) and let a more flexible model speak as to the linearity of the process. <<>>= lin.gpllm <- bgpllm(X=X, XX=XX, Z=Z) @ \begin{figure}[ht!] \centering <>= plot(lin.gpllm, main='GP LLM,', layout='surf') abline(1,2,lty=4,col='blue') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-linear-gplm} %\vspace{-0.5cm} \caption{Posterior predictive distribution using {\tt bgpllm} on synthetic linear data: mean and 90\% credible interval. The actual generating lines are shown as blue-dotted.} \label{f:lin:gpllm} \end{figure} Whenever the progress indicators show {\tt d=[0]} the process is under the LLM in that round, and the GP otherwise. A plot of the resulting surface is shown in Figure \ref{f:lin:gpllm} for comparison. Since the data is linear, the resulting predictive surfaces should look strikingly similar to one another. On occasion, the GP LLM may find some ``bendyness'' in the surface. This happens rarely with samples as large as $N=50$, but is quite a bit more common for $N<20$. To see the proportion of time the Markov chain spent in the LLM requires the gathering of traces (Appendix \ref{sec:traces}). For example <<>>= lin.gpllm.tr <- bgpllm(X=X, XX=0.5, Z=Z, pred.n=FALSE, trace=TRUE, verb=0) mla <- mean(lin.gpllm.tr$trace$linarea$la) mla @ shows that the average area under the LLM is \Sexpr{signif(mla,3)}. Progress indicators are suppressed with \verb!verb=0!. Alternatively, the probability that input location {\tt xx} = \Sexpr{lin.gpllm.tr$XX[1,]} is under the LLM is given by <<>>= 1-mean(lin.gpllm.tr$trace$XX[[1]]$b1) @ This is the same value as the area under the LLM since the process is stationary (i.e., there is no treed partitioning). \subsection{1-d Synthetic Sine Data} \label{sec:sin} <>= seed <- 0; set.seed(seed) @ Consider 1-dimensional simulated data which is partly a mixture of sines and cosines, and partly linear. \begin{equation} z(x) = \left\{ \begin{array}{cl} \sin\left(\frac{\pi x}{5}\right) + \frac{1}{5}\cos\left(\frac{4\pi x}{5}\right) & x < 9.6 \\ x/10-1 & \mbox{otherwise} \end{array} \right. \label{e:sindata} \end{equation} The {\sf R} code below obtains $N=100$ evenly spaced samples from this data in the domain $[0,20]$, with noise added to keep things interesting. Some evenly spaced predictive locations {\tt XX} are also created. <<>>= X <- seq(0,20,length=100) XX <- seq(0,20,length=99) Ztrue <- (sin(pi*X/5) + 0.2*cos(4*pi*X/5)) * (X <= 9.6) lin <- X>9.6; Ztrue[lin] <- -1 + X[lin]/10 Z <- Ztrue + rnorm(length(Ztrue), sd=0.1) @ By design, the data is clearly nonstationary in its mean. Perhaps not knowing this, a good first model choice for this data might be a GP. <<>>= sin.bgp <- bgp(X=X, Z=Z, XX=XX, verb=0) @ \begin{figure}[ht!] \centering <>= plot(sin.bgp, main='GP,', layout='surf') lines(X, Ztrue, col=4, lty=2, lwd=2) @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-sin-bgp} %\vspace{-0.25cm} \caption{Posterior predictive distribution using {\tt bgp} on synthetic sinusoidal data: mean and 90\% pointwise credible interval. The true mean is overlayed with a dashed line.} \label{f:sin:bgp} \end{figure} Figure \ref{f:sin:bgp} shows the resulting posterior predictive surface under the GP. Notice how the (stationary) GP gets the wiggliness of the sinusoidal region, but fails to capture the smoothness of the linear region. The true mean (\ref{e:sindata}) is overlayed with a dashed line. So one might consider a Bayesian treed linear model (LM) instead. <<>>= sin.btlm <- btlm(X=X, Z=Z, XX=XX) @ MCMC progress indicators show successful {\em grow} and {\em prune} operations as they happen, and region sizes $n$ every 1,000 rounds. Specifying {\tt verb=3}, or higher will show echo more successful tree operations, i.e., {\em change}, {\em swap}, and {\em rotate}. \begin{figure}[ht!] \centering <>= plot(sin.btlm, main='treed LM,', layout='surf') lines(X, Ztrue, col=4, lty=2, lwd=2) @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-sin-btlm} %\vspace{-0.25cm} <>= tgp.trees(sin.btlm) @ <>= graphics.off() @ \vspace{-1cm} \caption{{\em Top:} Posterior predictive distribution using {\tt btlm} on synthetic sinusoidal data: mean and 90\% pointwise credible interval, and MAP partition ($\hat{\mathcal{T}}$). The true mean is overlayed with a dashed line. {\em Bottom:} MAP trees for each height encountered in the Markov chain showing $\hat{\sigma}^2$ and the number of observation $n$, at each leaf.} \label{f:sin:btlm} \end{figure} Figure \ref{f:sin:btlm} shows the resulting posterior predictive surface ({\em top}) and trees ({\em bottom}). The MAP partition ($\hat{\mathcal{T}}$) is also drawn onto the surface plot ({\em top}) in the form of vertical lines. The treed LM captures the smoothness of the linear region just fine, but comes up short in the sinusoidal region---doing the best it can with piecewise linear models. The ideal model for this data is the Bayesian treed GP because it can be both smooth and wiggly. <<>>= sin.btgp <- btgp(X=X, Z=Z, XX=XX, verb=0) @ \begin{figure}[ht!] \centering <>= plot(sin.btgp, main='treed GP,', layout='surf') lines(X, Ztrue, col=4, lty=2, lwd=2) @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-sin-btgp} %\vspace{-1cm} \caption{Posterior predictive distribution using {\tt btgp} on synthetic sinusoidal data: mean and 90\% pointwise credible interval, and MAP partition ($\hat{\mathcal{T}}$) \label{f:sin:btgp}. The true mean is overlayed with a dashed line.} \end{figure} Figure \ref{f:sin:btgp} shows the resulting posterior predictive surface ({\em top}) and MAP $\hat{\mathcal{T}}$ with height=2. Finally, speedups can be obtained if the GP is allowed to jump to the LLM \cite{gra:lee:2008}, since half of the response surface is {\em very} smooth, or linear. This is not shown here since the results are very similar to those above, replacing {\tt btgp} with {\tt btgpllm}. Each of the models fit in this section is a special case of the treed GP LLM, so a model comparison is facilitated by fitting this more general model. The example in the next subsection offers such a comparison for 2-d data. A followup in Appendix \ref{sec:traces} shows how to use parameter traces to extract the posterior probability of linearity in regions of the input space. \subsection{Synthetic 2-d Exponential Data} \label{sec:exp} <>= seed <- 0; set.seed(seed) @ The next example involves a two-dimensional input space in $[-2,6] \times [-2,6]$. The true response is given by \begin{equation} z(\mb{x}) = x_1 \exp(-x_1^2 - x_2^2). \label{e:2dtoy} \end{equation} A small amount of Gaussian noise (with sd $=0.001$) is added. Besides its dimensionality, a key difference between this data set and the last one is that it is not defined using step functions; this smooth function does not have any artificial breaks between regions. The {\tt tgp} package provides a function for data subsampled from a grid of inputs and outputs described by (\ref{e:2dtoy}) which concentrates inputs ({\tt X}) more heavily in the first quadrant where the response is more interesting. Predictive locations ({\tt XX}) are the remaining grid locations. <<>>= exp2d.data <- exp2d.rand() X <- exp2d.data$X; Z <- exp2d.data$Z XX <- exp2d.data$XX @ The treed LM is clearly just as inappropriate for this data as it was for the sinusoidal data in the previous section. However, a stationary GP fits this data just fine. After all, the process is quite well behaved. In two dimensions one has a choice between the isotropic and separable correlation functions. Separable is the default in the {\tt tgp} package. For illustrative purposes here, I shall use the isotropic power family. <>= exp.bgp <- bgp(X=X, Z=Z, XX=XX, corr="exp", verb=0) @ \begin{figure}[ht!] \centering <>= plot(exp.bgp, main='GP,') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-exp-bgp} %\vspace{-0.5cm} \caption{{\em Left:} posterior predictive mean using {\tt bgp} on synthetic exponential data; {\em right} image plot of posterior predictive variance with data locations {\tt X} (dots) and predictive locations {\tt XX} (circles).} \label{f:exp:bgp} \end{figure} Progress indicators are suppressed. Figure \ref{f:exp:bgp} shows the resulting posterior predictive surface under the GP in terms of means ({\em left}) and variances ({\em right}) in the default layout. The sampled locations ({\tt X}) are shown as dots on the {\em right} image plot. Predictive locations ({\tt XX}) are circles. Predictive uncertainty for the stationary GP model is highest where sampling is lowest, despite that the process is very uninteresting there. A treed GP seems more appropriate for this data. It can separate out the large uninteresting part of the input space from the interesting part. The result is speedier inference and region-specific estimates of predictive uncertainty. <>= exp.btgp <- btgp(X=X, Z=Z, XX=XX, corr="exp", verb=0) @ \begin{figure}[ht!] \centering <>= plot(exp.btgp, main='treed GP,') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-exp-btgp} %\vspace{-0.25cm} <>= tgp.trees(exp.btgp) @ <>= graphics.off() @ \includegraphics[trim=50 65 50 10]{tgp-exp-btgptrees} \vspace{-0.5cm} \caption{{\em Top-Left:} posterior predictive mean using {\tt btgp} on synthetic exponential data; {\em top-right} image plot of posterior predictive variance with data locations {\tt X} (dots) and predictive locations {\tt XX} (circles). {\tt Bottom:} MAP trees of each height encountered in the Markov chain with $\hat{\sigma}^2$ and the number of observations $n$ at the leaves.} \label{f:exp:btgp} \end{figure} Figure \ref{f:exp:btgp} shows the resulting posterior predictive surface ({\em top}) and trees ({\em bottom}). Typical runs of the treed GP on this data find two, and if lucky three, partitions. As might be expected, jumping to the LLM for the uninteresting, zero-response, part of the input space can yield even further speedups \cite{gra:lee:2008}. Also, Chipman et al.~recommend restarting the Markov chain a few times in order to better explore the marginal posterior for $\mathcal{T}$ \cite{chip:geor:mccu:2002}. This can be important for higher dimensional inputs requiring deeper trees. The {\tt tgp} default is {\tt R = 1}, i.e., one chain with no restarts. Here two chains---one restart---are obtained using {\tt R = 2}. <<>>= exp.btgpllm <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", R=2) @ \begin{figure}[ht!] \centering <>= plot(exp.btgpllm, main='treed GP LLM,') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-exp-btgpllm} %\vspace{-0.5cm} \caption{{\em Left:} posterior predictive mean using {\tt btgpllm} on synthetic exponential data; {\em right} image plot of posterior predictive variance with data locations {\tt X} (dots) and predictive locations {\tt XX} (circles).} \label{f:exp:btgpllm} \end{figure} Progress indicators show where the LLM ({\tt corr=0($d$)}) or the GP is active. Figure \ref{f:exp:btgpllm} shows how similar the resulting posterior predictive surfaces are compared to the treed GP (without LLM). Appendix \ref{sec:traces} shows how parameter traces can be used to calculate the posterior probabilities of regional and location--specific linearity in this example. \begin{figure}[ht!] \centering <>= plot(exp.btgpllm, main='treed GP LLM,', proj=c(1)) @ <>= graphics.off() @ \vspace{-0.65cm} <>= plot(exp.btgpllm, main='treed GP LLM,', proj=c(2)) @ <>= graphics.off() @ \includegraphics[trim=0 10 0 25]{tgp-exp-1dbtgpllm1} \includegraphics[trim=0 25 0 10]{tgp-exp-1dbtgpllm2} %\vspace{-0.5cm} \caption{1-d projections of the posterior predictive surface ({\em left}) and normed predictive intervals ({\em right}) of the 1-d tree GP LLM analysis of the synthetic exponential data. The {\em top} plots show projection onto the first input, and the {\em bottom} ones show the second.} \label{f:exp:1dbtgpllm} \end{figure} Finally, viewing 1-d projections of {\tt tgp}-class output is possible by supplying a scalar {\tt proj} argument to the {\tt plot.tgp}. Figure \ref{f:exp:1dbtgpllm} shows the two projections for {\tt exp.btgpllm}. In the {\em left} surface plots the open circles indicate the mean of posterior predictive distribution. Red lines show the 90\% intervals, the norm of which are shown on the {\em right}. \subsection{Motorcycle Accident Data} \label{sec:moto} <>= seed <- 0; set.seed(seed) @ %\iffalse The Motorcycle Accident Dataset \cite{silv:1985} is a classic nonstationary data set used in recent literature \cite{rasm:ghah:nips:2002} to demonstrate the success of nonstationary models. The data consists of measurements of the acceleration of the head of a motorcycle rider as a function of time in the first moments after an impact. In addition to being nonstationary, the data has input--dependent noise (heteroskedasticity) which makes it useful for illustrating how the treed GP model handles this nuance. There are at least two---perhaps three---three regions where the response exhibits different behavior both in terms of the correlation structure and noise level. The data is %\else %In this section we return to the motivating Motorcycle Accident %Dataset~\cite{silv:1985}, which is %\fi included as part of the {\tt MASS} library in {\sf R}. <<>>= library(MASS) X <- data.frame(times=mcycle[,1]) Z <- data.frame(accel=mcycle[,2]) @ Figure \ref{f:moto:bgp} shows how a stationary GP is able to capture the nonlinearity in the response but fails to capture the input dependent noise and increased smoothness (perhaps linearity) in parts of the input space. <>= moto.bgp <- bgp(X=X, Z=Z, verb=0) @ Progress indicators are suppressed. \begin{figure}[ht!] \centering <>= plot(moto.bgp, main='GP,', layout='surf') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-moto-bgp} %\vspace{-0.5cm} \caption{Posterior predictive distribution using {\tt bgp} on the motorcycle accident data: mean and 90\% credible interval} \label{f:moto:bgp} \end{figure} A Bayesian Linear CART model is able to capture the input dependent noise but fails to capture the waviness of the ``whiplash''---center--- segment of the response. <>= moto.btlm <- btlm(X=X, Z=Z, verb=0) @ Figure \ref{f:moto:btlm} shows the resulting piecewise linear predictive surface and MAP partition ($\hat{\mathcal{T}}$). \begin{figure}[ht!] \centering <>= plot(moto.btlm, main='Bayesian CART,', layout='surf') @ <>= graphics.off() @ \includegraphics[trim=0 25 0 25]{tgp-moto-btlm} %\vspace{-0.5cm} \caption{Posterior predictive distribution using {\tt btlm} on the motorcycle accident data: mean and 90\% credible interval} \label{f:moto:btlm} \end{figure} A treed GP model seems appropriate because it can model input dependent smoothness {\em and} noise. A treed GP LLM is probably most appropriate since the left-hand part of the input space is likely linear. One might further hypothesize that the right--hand region is also linear, perhaps with the same mean as the left--hand region, only with higher noise. The {\tt b*} functions can force an i.i.d.~hierarchical linear model by setting \verb!bprior="b0"!. <>= moto.btgpllm <- btgpllm(X=X, Z=Z, bprior="b0", verb=0) moto.btgpllm.p <- predict(moto.btgpllm) ## using MAP @ The {\tt predict.tgp} function obtains posterior predictive estimates from the MAP parameterization (a.k.a., {\em kriging}). \begin{figure}[ht!] \centering <>= par(mfrow=c(1,2)) plot(moto.btgpllm, main='treed GP LLM,', layout='surf') plot(moto.btgpllm.p, center='km', layout='surf') @ <>= graphics.off() @ \includegraphics[trim=50 25 50 20]{tgp-moto-btgp} <>= par(mfrow=c(1,2)) plot(moto.btgpllm, main='treed GP LLM,', layout='as') plot(moto.btgpllm.p, as='ks2', layout='as') @ <>= graphics.off() @ \includegraphics[trim=50 25 50 20]{tgp-moto-btgpq} %\vspace{-0.5cm} \caption{{\em Top}: Posterior predictive distribution using treed GP LLM on the motorcycle accident data. The {\em left}--hand panes how mean and 90\% credible interval; {\em bottom}: Quantile-norm (90\%-5\%) showing input-dependent noise. The {\em right}--hand panes show similar {\em kriging} surfaces for the MAP parameterization.} \label{f:moto:tgp} \end{figure} The resulting posterior predictive surface is shown in the {\em top--left} of Figure \ref{f:moto:tgp}. The {\em bottom--left} of the figure shows the norm (difference) in predictive quantiles, clearly illustrating the treed GP's ability to capture input-specific noise in the posterior predictive distribution. The {\em right}--hand side of the figure shows the MAP surfaces obtained from the output of the {\tt predict.tgp} function. The {\tt tgp}--default \verb!bprior="bflat"! implies an improper prior on the regression coefficients $\bm{\beta}$. It essentially forces $\mb{W}=\mb{\infty}$, thus eliminating the need to specify priors on $\bm{\beta}_0$ and $\mb{W}^{-1}$ in (\ref{eq:model}). This was chosen as the default because it works well in many examples, and leads to a simpler overall model and a faster implementation. However, the Motorcycle data is an exception. Moreover, when the response data is very noisy (i.e., low signal--to--noise ratio), {\tt tgp} can be expected to partition heavily under the \verb!bprior="bflat"! prior. In such cases, one of the other proper priors like the full hierarchical \verb!bprior="b0"! or \verb!bprior="bmzt"! might be preferred. An anonymous reviewer pointed out a shortcoming of the treed GP model on this data. The sharp spike in predictive variance near the first regime shift suggests that the symmetric Gaussian noise model may be inappropriate. A log Gaussian process might offer an improvement, at least locally. Running the treed GP MCMC for longer will eventually result in the finding of a partition near time=17, just after the first regime change. The variance is still poorly modeled in this region. Since it is isolated by the tree it could potentially be fit with a different noise model. \subsection{Friedman data} \label{sec:fried} <>= seed <- 0; set.seed(seed) @ This Friedman data set is the first one of a suite that was used to illustrate MARS (Multivariate Adaptive Regression Splines) \cite{freid:1991}. There are 10 covariates in the data ($\mb{x} = \{x_1,x_2,\dots,x_{10}\}$). The function that describes the responses ($Z$), observed with standard Normal noise, has mean \begin{equation} E(Z|\mb{x}) = \mu = 10 \sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5 x_5, \label{eq:f1} \end{equation} but depends only on $\{x_1,\dots,x_5\}$, thus combining nonlinear, linear, and irrelevant effects. Comparisons are made on this data to results provided for several other models in recent literature. Chipman et al.~\cite{chip:geor:mccu:2002} used this data to compare their treed LM algorithm to four other methods of varying parameterization: linear regression, greedy tree, MARS, and neural networks. The statistic they use for comparison is root mean-square error (RMSE) \begin{align*} \mbox{MSE} &= \textstyle \sum_{i=1}^n (\mu_i - \hat{z}_i)^2/n & \mbox{RMSE} &= \sqrt{\mbox{MSE}} \end{align*} where $\hat{z}_i$ is the model--predicted response for input $\mb{x}_i$. The $\mb{x}$'s are randomly distributed on the unit interval. Input data, responses, and predictive locations of size $N=200$ and $N'=1000$, respectively, can be obtained by a function included in the {\tt tgp} package. <<>>= f <- friedman.1.data(200) ff <- friedman.1.data(1000) X <- f[,1:10]; Z <- f$Y XX <- ff[,1:10] @ This example compares Bayesian treed LMs with Bayesian GP LLM (not treed), following the RMSE experiments of Chipman et al. It helps to scale the responses so that they have a mean of zero and a range of one. First, fit the Bayesian treed LM, and obtain the RMSE. <<>>= fr.btlm <- btlm(X=X, Z=Z, XX=XX, tree=c(0.95,2), pred.n=FALSE, verb=0) fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue)^2)) fr.btlm.mse @ Next, fit the GP LLM, and obtain its RMSE. <<>>= fr.bgpllm <- bgpllm(X=X, Z=Z, XX=XX, pred.n=FALSE, verb=0) fr.bgpllm.mse <- sqrt(mean((fr.bgpllm$ZZ.mean - ff$Ytrue)^2)) fr.bgpllm.mse @ So, the GP LLM is \Sexpr{signif(fr.btlm.mse/fr.bgpllm.mse,4)} times better than Bayesian treed LM on this data, in terms of RMSE (in terms of MSE the GP LLM is \Sexpr{signif(sqrt(fr.btlm.mse)/sqrt(fr.bgpllm.mse),4)} times better). Parameter traces need to be gathered in order to judge the ability of the GP LLM model to identify linear and irrelevant effects. <<>>= XX1 <- matrix(rep(0,10), nrow=1) fr.bgpllm.tr <- bgpllm(X=X, Z=Z, XX=XX1, pred.n=FALSE, trace=TRUE, m0r1=FALSE, verb=0) @ Here, \verb!m0r1 = FALSE! has been specified instead so that the $\bm{\beta}$ estimates provided below will be on the original scale.\footnote{The default setting of {\tt m0r1 = TRUE} causes the {\tt Z}--values to undergo pre-processing so that they have a mean of zero and a range of one. The default prior specification has been tuned so as to work well this range.} A summary of the parameter traces show that the Markov chain had the following (average) configuration for the booleans. <<>>= trace <- fr.bgpllm.tr$trace$XX[[1]] apply(trace[,27:36], 2, mean) @ Therefore the GP LLM model correctly identified that only the first three input variables interact only linearly with the response. This agrees with dimension--wise estimate of the total area of the input domain under the LLM (out of a total of 10 input variables). <<>>= mean(fr.bgpllm.tr$trace$linarea$ba) @ A similar summary of the parameter traces for $\bm{\beta}$ shows that the GP LLM correctly identified the linear regression coefficients associated with the fourth and fifth input covariates (from (\ref{eq:f1})) <<>>= summary(trace[,9:10]) @ and that the rest are much closer to zero. <<>>= apply(trace[,11:15], 2, mean) @ \subsection{Adaptive Sampling} \label{sec:as} <>= seed <- 0; set.seed(seed) @ In this section, sequential design of experiments, a.k.a.~{\em adaptive sampling}, is demonstrated on the exponential data of Section \ref{sec:exp}. Gathering, again, the data: <<>>= exp2d.data <- exp2d.rand(lh=0, dopt=10) X <- exp2d.data$X Z <- exp2d.data$Z Xcand <- lhs(1000, rbind(c(-2,6),c(-2,6))) @ In contrast with the data from Section \ref{sec:exp}, which was based on a grid, the above code generates a randomly subsampled $D$--optimal design $\mb{X}$ from LH candidates, and random responses $\mb{Z}$. As before, design configurations are more densely packed in the interesting region. Candidates $\tilde{\mb{X}}$ are from a large LH--sample. Given some data $\{\mb{X},\mb{Z}\}$, the first step in sequential design using {\tt tgp} is to fit a treed GP LLM model to the data, without prediction, in order to infer the MAP tree $\hat{\mathcal{T}}$. <>= exp1 <- btgpllm(X=X, Z=Z, pred.n=FALSE, corr="exp", R=5, verb=0) @ \begin{figure}[ht!] \centering <>= tgp.trees(exp1) @ <>= graphics.off() @ \includegraphics[trim=50 50 50 20]{tgp-as-mapt} \vspace{-1cm} \caption{MAP trees of each height encountered in the Markov chain for the exponential data, showing $\hat{\sigma}^2$ and the number of observations $n$ at the leaves. $\hat{\mathcal{T}}$ is the one with the maximum $\log(p)$ above.} \label{f:mapt} \end{figure} The trees are shown in Figure \ref{f:mapt}. Then, use the {\tt tgp.design} function to create $D$--optimal candidate designs in each region of $\hat{\mathcal{T}}$. For the purposes of illustrating the {\tt improv} statistic, I have manually added the known (from calculus) global minimum to {\tt XX}. <<>>= XX <- tgp.design(200, Xcand, exp1) XX <- rbind(XX, c(-sqrt(1/2),0)) @ Figure \ref{f:cands} shows the sampled {\tt XX} locations (circles) amongst the input locations {\tt X} (dots) and MAP partition $(\hat{\mathcal{T}})$. Notice how the candidates {\tt XX} are spaced out relative to themselves, and relative to the inputs {\tt X}, unless they are near partition boundaries. The placing of configurations near region boundaries is a symptom particular to $D$--optimal designs. This is desirable for experiments with {\tt tgp} models, as model uncertainty is usually high there \cite{chaloner:1995}. \begin{figure}[ht!] \centering <>= plot(exp1$X, pch=19, cex=0.5) points(XX) mapT(exp1, add=TRUE) @ <>= graphics.off() @ \includegraphics[trim=0 0 0 45]{tgp-as-cands} \vspace{-0.5cm} \caption{Treed $D$--optimal candidate locations {\tt XX} (circles), input locations {\tt X} (dots), and MAP tree $\hat{\mathcal{T}}$} \label{f:cands} \end{figure} Now, the idea is to fit the treed GP LLM model, again, in order to assess uncertainty in the predictive surface at those new candidate design points. The following code gathers all three adaptive sampling statistics: ALM, ALC, \& EI. <>= exp.as <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", improv=TRUE, Ds2x=TRUE, R=5, verb=0) @ Figure \ref{f:as} shows the posterior predictive estimates of the adaptive sampling statistics. The error surface, on the {\em left}, summarizes posterior predictive uncertainty by a norm of quantiles. %%Since the combined data and predictive locations are not densely %%packed in the input space, the {\tt loess} smoother may have trouble %%with the interpolation. One option is increase the {\tt tgp}-default %%kernel span supplied to {\tt loess}, e.g., {\tt span = 0.5}. \begin{figure}[ht!] \centering <>= par(mfrow=c(1,3), bty="n") plot(exp.as, main="tgpllm,", layout="as", as="alm") plot(exp.as, main="tgpllm,", layout='as', as='alc') plot(exp.as, main="tgpllm,", layout='as', as='improv') @ <>= graphics.off() @ % do the including over here instead \includegraphics[trim=75 0 75 20]{tgp-as-expas} \vspace{-0.5cm} \caption{{\em Left}: Image plots of adaptive sampling statistics and MAP trees $\hat{\mathcal{T}}$; {\em Left}; ALM adaptive sampling image for (only) candidate locations {\tt XX} (circles); {\em center}: ALC; and {\em right:} EI.} \label{f:as} \end{figure} In accordance with the ALM algorithm, candidate locations {\tt XX} with largest predictive error would be sampled (added into the design) next. These are most likely to be in the interesting region, i.e., the first quadrant. However, these results depend heavily on the clumping of the original design in the un-interesting areas, and on the estimate of $\hat{\mathcal{T}}$. Adaptive sampling via the ALC, or EI (or both) algorithms proceeds similarly, following the surfaces shown in {\em center} and {\em right} panels of Figure \ref{f:as}. \subsection*{Acknowledgments} This work was partially supported by research subaward 08008-002-011-000 from the Universities Space Research Association and NASA, NASA/University Affiliated Research Center grant SC 2003028 NAS2-03144, Sandia National Laboratories grant 496420, and National Science Foundation grants DMS 0233710 and 0504851. I would like to thank Matt Taddy for his contributions to recent releases of the package. I am especially grateful to my thesis advisor, Herbie Lee, whose contributions and guidance in this project have been invaluable throughout. Finally, I would like to thank an anonymous referee whose many helpful comments improved the paper. \appendix \section{Implementation notes} \label{sec:howimplement} The treed GP model is coded in a mixture of {\tt C} and {\tt C++}: {\tt C++} for the tree data structure ($\mathcal{T}$) and {\tt C} for the GP at each leaf of $\mathcal{T}$. The code has been tested on Unix ({\tt Solaris, Linux, FreeBSD, OSX}) and Windows (2000, XP) platforms. It is useful to first translate and re-scale the input data ($\mb{X}$) so that it lies in an $\Re^{m_X}$ dimensional unit cube. This makes it easier to construct prior distributions for the width parameters to the correlation function $K(\cdot,\cdot)$. Proposals for all parameters which require MH sampling are taken from a uniform ``sliding window'' centered around the location of the last accepted setting. For example, a proposed a new nugget parameter $g_\nu$ to the correlation function $K(\cdot, \cdot)$ in region $r_\nu$ would go as \[ g_\nu^* \sim \mbox{Unif}\left(\frac{3}{4}g_\nu, \frac{4}{3}g_\nu \right). \] Calculating the corresponding forward and backwards proposal probabilities for the MH acceptance ratio is straightforward. For more details about the MCMC algorithm and proposals, etc., please see the original technical report on {\em Bayesian treed Gaussian process models} \cite{gra:lee:2008}. \section{Interfaces and features} The following subsections describe some of the ancillary features of the {\tt tgp} package such as the gathering and summarizing of MCMC parameter traces, the progress meter, and an example of how to use the {\tt predict.tgp} function in a collaborative setting. \subsection{Parameter traces} \label{sec:traces} <>= seed <- 0; set.seed(seed) @ Traces of (almost) all parameters to the {\tt tgp} model can be collected by supplying {\tt trace=TRUE} to the {\tt b*} functions. In the current version, traces for the linear prior correlation matrix ($\mb{W}$) are not provided. I shall illustrate the gathering and analyzing of traces through example. But first, a few notes and cautions. Models which involve treed partitioning may have more than one base model (GP or LM). The process governing a particular input $\mb{x}$ depends on the coordinates of $\mb{x}$. As such, {\tt tgp} records region--specific traces of parameters to GP (and linear) models at the locations enumerated in the {\tt XX} argument. Even traces of single--parameter Markov chains can require hefty amounts of storage, so recording traces at each of the {\tt XX} locations can be an enormous memory hog. A related warning will be given if the product of $|${\tt XX}$|$, \verb!(BTE[2]-BTE[1])/BTE[3]! and {\sf R} is beyond a threshold. The easiest way to keep the storage requirements for traces down is to control the size of {\tt XX} and the thinning level {\tt BTE[3]}. Finally, traces for most of the parameters are stored in output files. The contents of the trace files are read into {\sf R} and stored as {\tt data.frame} objects, and the files are removed. The existence of partially written trace files in the current working directory (CWD)---while the {\tt C} code is executing---means that not more than one {\tt tgp} run (with \verb!trace = TRUE!) should be active in the CWD at one time. Consider again the exponential data. For illustrative purposes I chose {\tt XX} locations (where traces are gathered) to be (1) in the interior of the interesting region, (2) on/near the plausible intersection of partition boundaries, and (3) in the interior of the flat region. The hierarchical prior \verb!bprior = "b0"! is used to leverage a (prior) belief the most of the input domain is uninteresting. <<>>= exp2d.data <- exp2d.rand(n2=150, lh=0, dopt=10) X <- exp2d.data$X Z <- exp2d.data$Z XX <- rbind(c(0,0),c(2,2),c(4,4)) @ We now fit a treed GP LLM and gather traces, and also gather EI and ALC statistics for the purposes of illustration. Prediction at the input locations {\tt X} is turned off to be thrifty. <<>>= out <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", bprior="b0", pred.n=FALSE, Ds2x=TRUE, R=10, trace=TRUE, verb=0) @ \begin{figure}[hp] \centering <<>>= out$trace @ \caption{Listing the contents of {\tt "tgptraces"}--class objects.} \label{f:tgptraces} \end{figure} Figure \ref{f:tgptraces} shows a dump of \verb!out$trace! which is a \verb!"tgptraces"!--class object. It depicts the full set of parameter traces broken down into the elements of a \verb!list!: \verb!$XX! with GP/LLM parameter traces for each {\tt XX} location (the parameters are listed); \verb!$hier! with traces for (non--input--dependent) hierarchical parameters (listed); \verb!$linarea! recording proportions of the input space under the LLM; \verb!$parts! with the boundaries of all partitions visited; \verb!$post! containing (log) posterior probabilities; \verb!preds! containing traces of samples from the posterior predictive distribution and adaptive sampling statistics. \begin{figure}[ht!] \centering <>= trXX <- out$trace$XX; ltrXX <- length(trXX) y <- trXX[[1]]$d for(i in 2:ltrXX) y <- c(y, trXX[[i]]$d) plot(log(trXX[[1]]$d), type="l", ylim=range(log(y)), ylab="log(d)", main="range (d) parameter traces") names <- "XX[1,]" for(i in 2:ltrXX) { lines(log(trXX[[i]]$d), col=i, lty=i) names <- c(names, paste("XX[", i, ",]", sep="")) } legend("bottomleft", names, col=1:ltrXX, lty=1:ltrXX) @ <>= graphics.off() @ \includegraphics[trim=55 25 65 20]{tgp-traces-XXd} \caption{Traces of the (log of the) first range parameter for each of the three {\tt XX} locations} \label{f:XXd} \end{figure} Plots of traces are useful for assessing the mixing of the Markov chain. For example, Figure \ref{f:XXd} plots traces of the range parameter ($d$) %in the first input dimension ($d_1$) for each of the \Sexpr{length(out$trace$XX)} predictive locations {\tt XX}. It is easy to see which of the locations is in the same partition with others, and which have smaller range parameters than others. The mean area under the LLM can be calculated as <<>>= linarea <- mean(out$trace$linarea$la) linarea @ \begin{figure}[ht!] \centering <>= hist(out$trace$linarea$la) @ <>= graphics.off() @ \includegraphics[trim=0 0 0 20]{tgp-traces-la} \vspace{-0.5cm} \caption{Histogram of proportions of the area of the input domain under the LLM} \label{f:la} \end{figure} This means that the expected proportion of the input domain under the full LLM is \Sexpr{signif(linarea[1], 3)}. Figure \ref{f:la} shows a histogram of areas under the LLM. The clumps near 0, 0.25, 0.5, and 0.75 can be thought of as representing quadrants (none, one, two, and tree) under the LLM. Similarly, we can calculate the probability that each of the {\tt XX} locations is governed by the LLM. % (in total, and by dimension) <<>>= m <- matrix(0, nrow=length(trXX), ncol=3)#ncol=5) for(i in 1:length(trXX)) m[i,] <- as.double(c(out$XX[i,], mean(trXX[[i]]$b))) m <- data.frame(cbind(m, 1-m[,3])) names(m)=c("XX1","XX2","b","pllm") m @ The final column above represents the probability that the corresponding {\tt XX} location is under the LLM (which is equal to {\tt 1-b}). \begin{figure}[ht!] \centering <>= trALC <- out$trace$preds$Ds2x y <- trALC[,1] for(i in 2:ncol(trALC)) y <- c(y, trALC[,i]) plot(log(trALC[,1]), type="l", ylim=range(log(y)), ylab="Ds2x", main="ALC: samples from Ds2x") names <- "XX[1,]" for(i in 2:ncol(trALC)) { lines(log(trALC[,i]), col=i, lty=i) names <- c(names, paste("XX[", i, ",]", sep="")) } legend("bottomright", names, col=1:ltrXX, lty=1:ltrXX) @ <>= graphics.off() @ \includegraphics[trim=55 25 65 20]{tgp-traces-alc} \caption{Traces of the (log of the) samples for the ALC statistic $\Delta \sigma^2(\tilde{\mb{x}})$ at for each of the three {\tt XX} locations} \label{f:preds} \end{figure} Traces of posterior predictive and adaptive sampling statistics are contained in the \verb!$preds! field. For example, Figure \ref{f:preds} shows samples of the ALC statistic $\Delta \sigma^2(\tilde{\mb{x}})$. We can see from the trace that statistic is generally lowest for {\tt XX[3,]} which is in the uninteresting region, and that there is some competition between {\tt XX[2,]} which lies on the boundary between the regions, and {\tt XX[1,]} which is in the interior of the interesting region. Similar plots can be made for the other adaptive sampling statistics (i.e., ALM \& EI). \subsection{Explaining the progress meter} \label{sec:progress} The progress meter shows the state of the MCMC as it iterates through the desired number of rounds of burn--in ({\tt BTE[1]}), and sampling ({\tt BTE[2]-BTE[1]}), for the requested number of repeats ({\sf R-1}). The verbosity of progress meter print statements is controlled by the {\tt verb} arguments to the {\tt b*} functions. Providing {\tt verb=0} silences all non--warning (or error) statements. To suppress warnings, try enclosing commands within {\tt suppressWarnings(...)}, or globally set {\tt options(warn=0)}. See the help file ({\tt ?options}) for more global warning settings. The default verbosity setting ({\tt verb=1}) shows all {\em grows} and {\em prunes}, and a summary of $d$--(range) parameters for each partition every 1000 rounds. Higher verbosity arguments will show more tree operations, e.g., {\em change} and {\em swap}, etc. Setting {\tt verb=2} will cause an echo of the {\tt tgp} model parameters and their starting values; but is otherwise the same as {\tt verb=1}. The max is {\tt verb=4} shows all successful tree operations. Here is an example {\em grow} statement. \begin{verbatim} **GROW** @depth 2: [0,0.05], n=(10,29) \end{verbatim} The {\tt *GROW*} statements indicate the depth of the split leaf node; the splitting dimension $u$ and location $v$ is shown between square brackets {\tt [u,v]}, followed by the size of the two new children {\tt n=(n1,n2)}. {\tt *PRUNE*} is about the same, without printing {\tt n=(n1,n2)}. Every 1000 rounds a progress indicator is printed. Its format depends on a number of things: (1) whether parallelization is turned on or not, (2) the correlation model [isotropic or separable], (3) whether jumps to the LLM are allowed. Here is an example with the 2-d exp data with parallel prediction under the separable correlation function: \begin{verbatim} (r,l)=(5000,104) d=[0.0144 0.0236] [1.047 0/0.626]; mh=2 n=(59,21) \end{verbatim} The first part {\tt (r,l)=(5000,104)} is indicating the MCMC round number r=5000 and the number of leaves waiting to be "consumed" for prediction by the parallel prediction thread. When parallelization is turned off (default), the print will simply be {\tt "r=5000"}. The second part is a printing of the $d$--(range) parameter to a separable correlation function. For 2 partitions there are two sets of square brackets. Inside the square brackets is the $m_X$ (2 in this case) range parameters for the separable correlation function. Whenever the LLM governs one of the input dimensions a zero will appear. I.e., the placement of {\tt 0/0.626} indicates the LLM is active in the 2nd dimension of the 2nd partition. 0.626 is the $d$--(range) parameter that would have been used if the LLM were inactive. Whenever all dimensions are under the LLM, the d-parameter print is simply {\tt [0]}. This also happens when forcing the LLM (i.e., for {\tt blm} and {\tt btlm}), where {\tt [0]} appears for each partition. These prints will look slightly different if the isotropic instead of separable correlation is used, since there are not as many range parameters. \subsection{Collaboration with {\tt predict.tgp}} \label{sec:apred} <>= seed <- 0; set.seed(seed) @ In this section I revisit the motorcycle accident data in order to demonstrate how the {\tt predict.tgp} function can be helpful in collaborative uses of {\tt tgp}. Consider a fit of the motorcycle data, and suppose that infer the model parameters only (obtaining no samples from the posterior predictive distribution). The \verb!"tgp"!-class output object can be saved to a file using the {\tt R}--internal {\tt save} function. <<>>= library(MASS) out <- btgpllm(X=mcycle[,1], Z=mcycle[,2], bprior="b0", pred.n=FALSE, verb=0) save(out, file="out.Rsave") out <- NULL @ Note that there is nothing to plot here because there is no predictive data. (\verb!out <- NULL! is set for illustrative purposes.) Now imagine e--mailing the ``out.Rsave'' file to a collaborator who wishes to use your fitted {\tt tgp} model. S/he could first load in the \verb!"tgp"!--class object we just saved, design a new set of predictive locations {\tt XX} and obtain kriging estimates from the MAP model. <<>>= load("out.Rsave") XX <- seq(2.4, 56.7, length=200) out.kp <- predict(out, XX=XX, pred.n=FALSE) @ Another option would be to sample from the posterior predictive distribution of the MAP model. <<>>= out.p <- predict(out, XX=XX, pred.n=FALSE, BTE=c(0,1000,1)) @ This holds the parameterization of the {\tt tgp} model {\em fixed} at the MAP, and samples from the GP or LM posterior predictive distributions at the leaves of the tree. Finally, the MAP parameterization can be used as a jumping-off point for more sampling from the joint posterior and posterior predictive distribution. <<>>= out2 <- predict(out, XX, pred.n=FALSE, BTE=c(0,2000,2), MAP=FALSE) @ Since the return--value of a {\tt predict.tgp} call is also a \verb!"tgp"!--class object the process can be applied iteratively. That is, {\tt out2} can also be passed to {\tt predict.tgp}. \begin{figure}[hp] \centering <>= plot(out.kp, center="km", as="ks2") @ <>= graphics.off() @ \vspace{-0.1cm} \includegraphics[trim=50 30 50 25]{tgp-pred-kp} <>= plot(out.p) @ <>= graphics.off() @ \vspace{-0.1cm} \includegraphics[trim=50 30 50 25]{tgp-pred-p} <>= plot(out2) @ <>= graphics.off() @ \includegraphics[trim=50 30 50 25]{tgp-pred-2} \caption{Predictive surfaces ({\em left}) and error/variance plots ({\em right}) resulting from three different uses of the {\tt predict.tgp} function: MAP kriging ({\em top}), sampling from the MAP ({\em middle}), sampling from the joint posterior and posterior predictive starting from the MAP ({\em bottom}).} \label{f:pred} \end{figure} Figure \ref{f:pred} plots the posterior predictive surfaces for each of the three calls to {\tt predict.tgp} above. The kriging surfaces are smooth within regions of the partition, but the process is discontinuous across partition boundaries. The middle surface is simply a Monte Carlo--sample summarization of the kriging one above it. The final surface summarizes samples from the posterior predictive distribution when obtained jointly with samples from $\mathcal{T}|\bm{\theta}$ and $\bm{\theta}|\mathcal{T}$. Though these summaries are still ``noisy'' they depict a process with smoother transitions across partition boundaries than ones conditioned only on the MAP parameterization. <>= unlink("out.Rsave") @ Finally, the {\tt predict.tgp} function can also sample from the ALC statistic and calculate expected improvements (EI) at the {\tt XX} locations. While the function was designed with prediction in mind, it is actually far more general. It allows a continuation of MCMC sampling where the {\tt b*} function left off (when {\tt MAP=FALSE}) with a possibly new set of predictive locations {\tt XX}. The intended use of this function is to obtain quick kriging--style predictions for a previously-fit MAP estimate (contained in a \verb!"tgp"!-class object) on a new set of predictive locations {\tt XX}. However, it can also be used simply to extend the search for an MAP model when {\tt MAP=FALSE}, {\tt pred.n=FALSE}, and {\tt XX=NULL}. \section{Configuration and performance optimization} In what follows I describe customizations and enhancements that can be made to {\tt tgp} at compile time in order to take advantage of custom computing architectures. The compilation of {\tt tgp} with a linear algebra library different from the one used to compile {\sf R} (e.g., ATLAS), and the configuration and compilation of {\tt tgp} with parallelization is described in detail. \subsection{Linking to ATLAS} \label{sec:atlas} {\tt ATLAS} \cite{atlas-hp} is supported as an alternative to standard {\tt BLAS} and {\tt LAPACK} for fast, automatically tuned, linear algebra routines. %Compared to standard {\tt BLAS} and {\tt Lapack}, %those automatically tuned by {\tt ATLAS} are significantly faster. If you know that {\sf R} has already been linked to tuned linear algebra libraries (e.g., on {\tt OSX}), then compiling with {\tt ATLAS} as described below, is unnecessary---just install {\tt tgp} as usual. As an alternative to linking {\tt tgp} to {\tt ATLAS} directly, one could re-compile all of {\sf R} linking it to {\tt ATLAS}, or some other platform--specific {\tt BLAS}/{\tt Lapack}, i.e., {\tt Intel}'s Math Kernel Library, or {\tt AMD}'s Core Math Library, as described in: \begin{center} \verb!http://cran.r-project.org/doc/manuals/R-admin.html! \end{center} Look for the section titled ``Linear Algebra''. While this is arguably best solution since all of {\sf R} benefits, the task can prove challenging to accomplish and may require administrator (root) privileges. Linking {\tt tgp} with {\tt ATLAS} directly is described here. GP models implemented in {\tt tgp} can get a huge benefit from tuned linear algebra libraries, since the MCMC requires many large matrix multiplications and inversions (particularly of $\mb{K}$). In some cases the improvement can be as large as tenfold with {\tt ATLAS} as compared to the default {\sf R} linear algebra routines. Comparisons between {\tt ATLAS} and architecture specific libraries like {\tt MKL} for {\tt Intel} or {\tt veclib} for {\tt OSX} usually show the latter favorably, though the difference is less impressive. For example, see \begin{center} \verb!http://www.intel.com/cd/software/products/asmo-na/eng/266858.htm! \end{center} for a comparison to {\tt MKL} on several typical benchmarks. Three easy steps (assuming, of course, you have already compiled and installed {\tt ATLAS} -- {\tt http://math-atlas.sourceforge.net}) need to be performed before you install the {\tt tgp} package from source. \begin{enumerate} \item Edit src/Makevars. Comment out the existing \verb!PKG_LIBS! line, and replace it with: \begin{verbatim} PKG_LIBS = -L/path/to/ATLAS/lib -llapack -lcblas -latlas \end{verbatim} You may need replace \verb!-llapack -lcblas -latlas! with whatever {\tt ATLAS} recommends for your OS. (See {\tt ATLAS} README.) For example, if your {\tt ATLAS} compilation included {\tt F77} support, you may need to add \verb!"-lF77blas"!, if you compiled with {\tt Pthreads}, you would might use \begin{verbatim} -llapack -lptcblas -lptf77blas -latlas \end{verbatim} \item Continue editing src/Makevars. Add: \begin{verbatim} PKG_CFLAGS = -I/path/to/ATLAS/include \end{verbatim} \item Edit src/linalg.h and comment out lines 40 \& 41: \begin{verbatim} /*#define FORTPACK #define FORTBLAS*/ \end{verbatim} \end{enumerate} Now simply install the {\tt tgp} package as usual. Reverse the above instructions to disable {\tt ATLAS}. Don't forget to re-install the package when you're done. Similar steps can be taken for platform specific libraries like {\tt MKL}, leaving off step 3. \subsection{Parallelization with {\tt Pthreads}} \label{sec:pthreads} After conditioning on the tree and parameters ($\{\mathcal{T}, \bm{\theta}\}$), prediction can be parallelized by using a producer/consumer model. This allows the use of {\tt PThreads} in order to take advantage of multiple processors, and get speed-ups of at least a factor of two. This is particularly relevant since dual processor workstations and multi-processor servers are becoming commonplace in modern research labs. However, multi--processors are not yet ubiquitous, so parallel--{\tt tgp} is not yet the default. Using the parallel version will be slower than the non--parallel (serial) version on a single processor machine. Enabling parallelization requires two simple steps, and then a re--install. \begin{enumerate} \item Add \verb!-DPARALLEL! to \verb!PKG_CXXFLAGS! of src/Makevars \item You may need to add \verb!-pthread! to \verb!PKG_LIBS! of src/Makevars, or whatever is needed by your compiler in order to correctly link code with {\tt PThreads}. \end{enumerate} The biggest improvement in the parallel version, over the serial, is observed when calculating ALC statistics, which require $O(n_2^2)$ time for $n_2$ predictive locations, or when calculating ALM (default) or EI statistics on predictive locations whose number ($n_2$) is at least an order of magnitude larger ($n_2\gg n_1)$ than the number of input locations ($n_1$). Parallel sampling of the posterior of $\bm{\theta}|\mathcal{T}$ for each of the $\{\theta_\nu\}_{\nu=1}^R$ is also possible. However, the speed-up in this second case is less impressive, and so is not supported by the current version of the {\tt tgp} package. \bibliography{tgp} \bibliographystyle{plain} \end{document} tgp/inst/doc/tgp2.pdf0000644000176200001440000326450614661702202014155 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 5716 /Filter /FlateDecode /N 99 /First 839 >> stream xœÝ<ÙrÛH’ïûõ6=Ñáê.lLt„N[²eÉ’lÉÞèJ„%lS¤š¤Üö|ýfÖ«¤ä~Ø  UÈ:ò¨¼ Œ¤„Ɉ ÔÀQ)%ŠhN‰&4Í(1„rÍHF¨”øˆPm$¡”ÐŒÃCFðœ&™"Tf8ÜKÂi ÷Šp.8¼D¸Öð²!‚*/Á…!,%Bj@ˆÐ<% z’qx}áð2D*÷Ð3žA¹"*“”0M´Àú†èL@£1©6–Â:ΡΈ‘Ð.çÄd:!HÆ %\’Lp®H¦vŽd*AÓY¦à CK<Ðg ݃S M è=vpa Œ&1€‰aJBŒœ§8­85<“DØy„ÉYPè‡ÈBC&ÀÕÑ@¥†©“YhQd™a@V^—8§ëdÍ ¿ kýv©I¡? çY@Ÿ@6ðŠ3n4 †€V…Ï`Ú@ÎR˜o3 MÃtÐŒÁè”A$k¸È™Ð’ 3•Ââ_Á¸4Ð1¨ÆÒ”"^à‚Á,A}–6 â7E쥀Àƒé@äÁ…‚y†n3j ŸÐmÆRÀ‹Ò‚2¸ÈŒ¦ @fÆ Ș‚94™i :™A*@Úa0á s£@ªáˆk5ÌP\y†¨È"…Û aä@=Òž€®f/l…„©È2 æ-ÐBgéýûß$9É—£ñh9‚Ǹêœ$g£»|œeo.<æ$Ùƒ “Ùùí7ûÎÞ<-‹Ùt´ÌÉ/ûÿ—6ô«W©øGšþ㟾ÞlN~¹Ì¯áöd6^÷ÆÙ|6~ºÍá•×gïÈëûÙb¹¸K’ýKÊ¥ÿ,»0{š.‘*“·ÅxAþdö¦O€<UàI¹)çj*WE¹´«büÉÕ¤©ôgíÏ®20”?ûzÔ×£¾õõ˜¯Ç}¹ïå¾\øráá_OøréËý8€ËüÙ—ûQ?2ê‡FýبÕ¾\ûrí˵/÷æaÜÆ×3¾žñõ2_/óõ2Wï÷@&ŽrJ M—ùt¹&ò„u’‹Ñîì;`+…Ÿ)¬ŠÇç9¢ÓÕ;ϳ§ù-€B8‡¦£Íùìö"_„älÿÚÍ¿/Ào¿Õ»z°;ZäöíäôÃéÁÙñ¯‡ç'ÀÒ‚$ÓÛÙ¸˜Þ‘䪘îLEõà°˜/–{÷£9 HÛú~îh(ÙMHònä«€%ÉÅÓÍÒ6Ž] ¡'®å«b¼¼Gúdyá',ÊVÿ”2þJÃú±®vüsm V ¢ϰÆÙ§xïúƒ¯´öµ|),= i϶jºáBû=ÌóÎâ±§S†’âñM^ÜÝ/³ ÜÂ$!¾~Iö’×É(¹Mng£dœäÉ×ä.¹OŠäd’<$Ód–<&ód‘,“å_³ä)ù–ü•üHþR€-¼bØÄádt·À%ÒNñn ([¨¹´ýøÝ“w=´ð@ϳ5| f´ `5Ç3>‘VÂ¥öŒp"ÑL¤änKRÚIv“}Ï'Éyr‘\&Ÿ@P–ÉMKZ…EÙ‹ì ®óy1·¤6Èìä?ù|ÖÜ|•à3ð§iD£2 m ZI£ Á ³²V6d1Åî¼½Þ?úíí^ƒú'R,¬›ÅÊ­7Ú›/ÿõŸ”hˆ‚õ•š•õÀ>khX.^Þ›4”¶hhd Æ’Bó2àrX TYâ›™ßÛ«ŠRö)‡4rnœÜaÌžÝ2ŽÿãEËYC¶iJ’~+Lc¡[»™]É`Õ°ïiά3Ü´[–è;¬ºý#_Nò¯Ëp=Ç·­Ä›Ì¦M¹WX©wÿãñ>Ÿ‚ðûßšÆ:›æ(Ñ|±Àì•åe㟖%ùCá /&£Å}CÇýi¹²ZÐüò XØ–08îÏèˆgÚ4¼’g8 <ƒªû:–a1Ëœ\]ž_Z½maÙ¥åÒíÕ\Ic5·z†W±š+šj®X£æšUj®±«0iaÇ´±M×*ìHZ©¹}úVm)ëÀÎå‡7GÇ»V½Û;j.ÛZÍU"6U¦šf£ÚRÍE¾Ýšö¬=íÑ< e :TÍý¸÷úâÝ•[ª6PsU<ÓÛ«¹ÜêN¸ô7¾ŸáAÕD7(ÂCI­_¹V]Á ¡•ì‡Maa2{–)z³UùÜuOºƒW·­åKÑ9­ÐÕÚ¬q%ÆëÁƽ…p×8 Ümm%ØKì:páWÛX±${CÁ½ŸçùJÁ–$Ê#M iŠ>ŠÈ?AÓ6F´’FU)ÐÕ¸Vr›ÉýåÝç3·PØQTÊNðTòºƒNÛÊ-ãÙP:eÊžÞ­™Î*2B¿(£xÚ4Ðð^+ ª Â@íáf!âá =°>–”ƒ¥ c)FЦ0¢寖qPÕdÊm}”?”|nï•ëŸf©í¿…ep!¨òF¢Þ6šw/ ÔÚý™eYùÜvîq=Ãkœ [Ï—ãs7)ÊžÃ3ìžñ¼Ÿÿ?üšãC’X§;ÊÈ.ÞËø 9 ò ÈŽãämò$Èûä´ÉÞ^þóUr|N¾ åüBc1šŽ7Ó3óÑíÓN¶8£–˜Oí $þ‰ýû"kdÖFXòy]=-ÆE>ÏÅ¢¦¨N fë´Uœ‘Jkýói¶ÌÇ7[1ܸºöÎ]¶tÛütaQ|¯´Ü.‘{*…Wt+¼™1 oð·ÕTª¶[)7Y%7EŸÆ‰Ê'_N?}rZ[ST®ZÜy¬ã²gXˆTx7}uU]¿Ô‘v\u?IWöaÕÛí«ô§Œ¤ïX§‹2Ë' Žjr H”V,=8'Ú`0žM&£yRÊ€?ŸF“$ÿ~;=X+¿—ëŸÁë“§Eá_ЧkVR‹©©7“X—¾N£XMÄp«Í$QÅj¸üD €sÌ I]ÛçðfèÇ9•„†À$,šT…kÌ[ð×`±ð.ºqûèêﻳð®&á*#F4 îgM¹odË éñÙëãwŸ4\ÐuØ‹|{{Œ’˜GeÓ^”ÛÚ‹)³o·è/ ‹Dó0pMÉúB…ÑL_½Þ?={ã´}|SN¬ Ökåj¤ñüno%J^éÚC~<­®ñÝúÑ÷މ <«3Sš•ÕÙlU\+M@¯ sîû÷¡ox6V(sÊ äæÞ–ʵ„g„¸©1yÂ3¦]il•MÙ´(»LÉ~3²ÓŠ4Zw‘Q¬$"«•„+³ÊˆìótÔŒH“ñû÷ןÞþºwí±º Xª±6Ä£øêñSè%6¬$(D¬2±p­½P’¢þˬîï*ö<» ‡¾„Ô Pt“qŽ eÉ´Ìd€éNµj#IXbh ÏQd¤5ï+—Ç´Y-ë6,}Kf†¥pÈÃÒÇmÖb÷Òæßg,mÒ7³åÒvvxðñÍÌØÉQƒRMðÑVÎŽqù¦;ÅíìãT¨qŽ ‚¤–Ko3¸'¤órHMéÉç›éLS{ ?åfÝ¿¡-ÙP84`XqGö‚£ÓÀÕÊ#¬ÄÁõSÚ7&dÌIx¥#¡þ̨ <"5a%&«¢{/Å dfßF.¡¡1˜D­ûC’ÔyYl¾’BÉmgHÈŽ%Ú‘us>Ãܨ¾£!ï”wî¾Bµ}òxç'UšvP±A¿’I¾X$Gípøcêô¢¦/çËÈyÔ”ûâ £?ÐØœÛ]–ùS§–•Ñ Ž¡ÔöÉ@껼:}} ðÏ›ŠE,®câ‹•ãÁyt¸àfˆ"i Ü’VÀáݾ£ßí·ï~@lh7!¡¦ŠÑw°HìÆœ‘ :·°Ž>SËðGͤïðÔäý'f«}(7ë~n·Ñ®ä4ìÛfôíÄv[dß; Ý+Ÿ½tŽäóŠˆR·y´êR®YälÇ`ù,Ö;ŸU‡ÓõðúâË%´upÝÖ&"ÅØÏ*⤩ՆiÛ÷§²ÇZbaÚá^¯H2éþÙ zÇaÀï;ÖC¥)ØÍ(`„®[ØTXáÝmTûÂnpi‡“P7„ºá$´¢4”R8ßwwµ»euýPŒ«›åcMŠßÔEzYÍÞùz^Eà­Ûæý²~ç{åï*@®É R¸o=hêc°Ð­ûÑò¯bœ/–°Ä,ó»ùh2.“Ñò^Zâ2~º]Úëùh\ÜŽ&Øöâ \VÂKå¬Ù`sëµì6¡})E6CÄ´¸<ò¢µ8o Ÿ£;nàsv¼óæì-Æ6 Ç›ddO#o8þ{B­møq¸º«ÝÏÖ¨‡äeÆ› ëîàq:®Ž}òÈâ¶(œqS…‘oºÕ»ç–×F”­C!xlPyúôp“ÏÅݰÌçŸWΚ1½W`Ùb•òŽÀ2‹²£#†¬óü+º2´<`uà;/}äɹ°»øýµDEÓ_kܺï¯3"B}Ü¥àXÇj¸F‡*éô»‡M´Ïð»+ß­-ýî»§»W‡g¿¾É'ßò%ˆûº®r%ùb GÆA¢ÁÛ¾t[iàºðÞn,Eß³«…æ!‡¯mDù•¤3ÝðêWm^Û&†ùP[ÑàeþíðFõ^Ùjš6Z/¯m{XŠWØJ»¯8R[Þ²–iõ?RmD35NÐv2íQ¹a å׆Û*œ(êB éãLÒ‰-õ-¥€y™ ˜ï]Â…šnu"ueËìL´$KäŽé|•:()}¢ÙPuâðôã‡Ã÷U¯vg“qÝbˆv)u1Ô36´ÿ† ofªÛÁÂèf¦´ÁJ]?„ïrÌ«3¶‡×xT=Å+ãóÖë7Yã-ˆª³æfLÔÎFïæ‘®åºJUÿiÌѹöÒm;ue†‰öááŠ=zHw(ônèëØvýáã)¦ŽµTn-7+9,ÒÛ©h7¼’* ›/⽜h/cÊŠð‡å$Ü-!ëé6•3Q6žñ–÷w'ã¾cbpÖ¹mCÛŽŽWëÀQðßæ‘0áñõ(·ýÔj¹[C»Bº#\ó´ºw}Â;»Wͽ…GÊî>lßÃÃÏõˆ.N˜©ò´ÛÙ™W­ÌìnëI¶¾k+ŵ$Ë5¬ÖÌ“²¤ßcª|DwËÅ™Ð<Š*D¤¿2ùGTÉ?jÍnþµÙJ#MΕý8”¿æD†w¡QÙ“2Jž£µn“-Ò;ÎçŽçù‰J¼äx~ÞÄóǹMëæÖVÍÂjŒyÅØäóǶÍþvªgSoc1nœmV9Ãó³ÍÌó¬Þóïß_¾ýõäb÷¤áÓ§iÐŒªGd‘ØÕí†lµSŸ¯Ì6[Õ,þÌ5öËt<þ¤ˆº¾ »Ûšj{œÀá<ïÊÌnçØMpøåE„×Zâ"+«5¯=¶\Ž 8ù°cÓZÔ@w­îøfØö_þP¦ßžéÿ)Q!?x$Ñ~Q¨]⇬¿ÃʬK±ÇtÝ ·Ç .UNšþxûÞϼà¾GÞ•t¼]n›S?8Ÿm€[Žv$.:¸z¿oÃËðoˆC¯HБ_3XÁž!®;ãÈtëÉi}¿íƒ¿Ì}—hÍ·`^î‚×›ˆ›9«òÚÙ óâ!¤V‡@0ïJsÑN¤& Žßrxqvzfá×åMmé Ã¶©ŠW‘!_A†™7Rÿy$‚ߌ?Ä‘5?Ä‘õD7¦{ÑŒÎ"m¶pû›8œKÿÒFÓsB•B—œgö[·þšÞ¬Ë=h˜ÝM:•'ñ|E×lg| ØE÷·Î]9_ñ=_I6[tø]Z¾žø·ÎÒVT…rn…µ_|ýšÏ1IÍfŸCY¯¾.[VÝz÷œ‡÷]'_¿ÂQ -¾ÜÒQóÖ¼T“¤•AÚY¸i´³UºCT6sHЦkæoVFì²tIš¹ ¤•ÎQk.€Ê€ó:ؼ4¤³Ô˪[€_fk$tzidˆà†œ(Än¬lå•X[ªJ;q™OUJÉ a7Ù}"¸ó×íë°„åòîñ+(ÉcòÃ{‰s/â¨]”£œa×ÈËöËLãµÒ=I™JK1~鮞bj‰ºTÉH#ã%TÈ%õäVû}„*Á“*é¥öKß!]•ÍýÍUÜ1S£Ã:ºÔåhøå&~8â_ˆi|˜ƒ4¿ÌQ'ÿ ‘º´K¾N~¢¸+醷è£I¨—ZµÍ ±€Èh{¡™C!jóE_ ýÆÎéË{éÕîÅGK‰Û›J™ßOÛzkû0^¾Í^‚ªHèe»ù¥£¼è‘ÿ?|ËUendstream endobj 101 0 obj << /Subtype /XML /Type /Metadata /Length 1167 >> stream 2024-08-22T14:33:36-04:00 2024-08-22T14:33:36-04:00 TeX Untitled endstream endobj 102 0 obj << /Type /ObjStm /Length 2569 /Filter /FlateDecode /N 98 /First 910 >> stream xœÕZYoãF~ß_Ñ»}_@Àg<;ñÄg&Î ò ‘i[$:ñì¯ßª¦xK4E¶,ŠG7«»ÎþªšœIÂgŠpëᬉΆh-ál‰åÎŽ8åàì‰7ÐÎñ8‡Ãkøƒ§R¸€§J@_4µ¢šÀ>Ðl5ö’ipèçU Aƒ?.\C“àD a>BÁD¸Dh‹MŠë<• iÀÀR(ìl‰T é8"„¹OÓðºdDæ$'J[|"ˆ²&ý4òÎ¥"Z✥ ƒ$aa@.-Ñ•Ž™KOŒ@æ#FâèÀ‰Q/1ÚÀJcöQÄXdnŒóÀ¼`pÉYZ›#V;Bybà ˜ ¼®9q Õ‚8Ž2õ8óÑ tš4qÍÎÁ¤8°íƒ|´#©ràÍKäÝ0â5¨•*E]€^½E]I¼»à¨32áȃz°; Í$•#{,(Æ eh‰­Á†<õÄ,¨Œ[To0‹–£Ü#·À.^)´ ´‹b‘ Љ;¤…3óÂ+Ô2C¹¡Š0¦C[Þ£1¡yà,@ûð@Á¡ò Z-ŠTX|•-¶8ƒ6êЂ8‡6!‘ š€DSÆ¥íqÏÑ,PRÈŸ4(ª`!eYνA:샳P eàÑzÊP¡pœ7Ø£ÃGkÌüãûï =œ®“Óå"%ôß®>}wt>1„ž,fËëùâ–Ð_拃Åz^>8¯ÖéÑÝt†wðîq²ž­æér\›‘ ¡?M7À¦èåÓ×ôÛcBèøçÙ){é_§wkò… ~ðK™°â‡6†Ço䇔ֳ޴Hùhúx–Ìoïò[ñ2IÉ?ér‘ÐÇé*YÜ'7ivµÂ~ôñþiMÓ¿–ÿ"ç”Þ|÷ô~z»?Ò ë0·ÃÃå3Ì‹eíè8ÆoYãéü>ÎØÅGï§ICŒoÓéý|v°¸½O =Ÿ¯× ÃÀ2%“&ŸBø¨¥"Ï ËGðfº†]6àyr=ŸæD! bÁ`vÈkJ6z˜$ëåÓj–¬ Ò "ÇpÚ.VËJë \ŸÂ ’ç4ˆ9ŸÌÅô6ɧ0ÁèÌCüF²D>DA±!9‘7פ˯5šËæÚBØÏ¯!^æý!ꨜoÎê\ÁæýÁlÞLßfýÛbòÄ䆈 — 1TH}£Ñ¥¶2½y>ŠiÎ1½ƒÑ]°!:ÕAçt`]Ð;´«yFELFûht£"£**£ÀÛÆ\»LÈL YU&†H_E˜ø° ²Kú€@ǘ“ψ F-`Æ @ñ§füzöqòÝåéäœ9„ý –oC-!›P‹÷„Zr’ühÂ*@»«²Û¬JïVIÒ‚P/ (Ȇ#µ:€Ò-ÕPˆ’ õ ˆˆÐ‰¡Jœ|~÷ÓÉ;€h‡W®"ËÙ\ ±;·Eìº!vLûÉÝd0æg²YBcÑÖ¤UýÔ+ú»¢éüþ:¡ÏݚüU]u€|!ÉAª ÅåÂ*Wk_è+w©^mXÀt¨¥Ãã·ï.>¿Ï¬ÄŽs#;Ø g̶éºé^nÄ}§A³†õ©5´á›Úh ¨Ó\éF¶¯}|ùé*Œy;«yRîÕ…äAÊmÉû–'‰¾¢wr‡‡HÝ!G~ŸÿãmüzÛÏêö½4¼ú¤¤‡yáÆ¯9ùã­ÃBW4æü,™.ž‡iã=PÀk‡E"]¶ãs K”GDÖòg84žñ@ší,™×³d^µÃzFßÒŸé%ý@¡Sú•~]Mg¿'iÈš7×YÞ<£³åÃÔ^Ó„ÞЛzKïèœþ‡þNïé]Ð%}Ü‘q'«ùòšþAÿxZ¦IölE×t=¦iéô‰þIÿ¢ÏôýomeQ…O¨š?¼Q,këó³ºOÖô‰–Åvúh Rš÷vŠ?üC\^6œ¢+.A„my‡ä ïp}‰ö²PG¾&Û–ƒm×ÞnÈš·dÝDOYûþËøÕ§_Ã>ì!je¶ˆº‰¤0ß舄&ÛƒHÜ_9^åGù¼þ¤~…GË 1©ÚC¸-ìaœüü};xvæÄè·iÍ;±t•Ù‹u÷ÔY«†0ä#Zð¡©ÎN!ÊË¿ dYÅÂZhQ Áb8/“P².Rtz.\q'CM?¿Ó¹üýµ°2ÏnÔÅv×ÂL„ü[F(}MØcêk#_Í6_.Hµ%vGAÄD¨+Ȩu…á©w›¹5†|üø•×—k¥,¡~ âwÕãúDŒÀЫ_©Nn"졨!þWb—Ó«ÉgXìŽÎÏßòzê”grbá[Šª™´b]®oÖZMdþßF·soËD-ç ·¶Iï’tZ+€¼qÛ †-†©@¡_ZùvS£=ëžuÃÝIØl.¬úÕ½fëŠ×ò ËÆ{Pªö„ Ñ6ì ö*4w.6Ân•¶hôÁJ•-…QX©ßf°£¥‡€Ñ2ö^œ~¼<=Ë*c¦wÞˆ_6´Â°nÕ‚{'ŽÆ–•ÜïTøÄ~üäiµÄ¬(špÉ‹¹—ͯŖDÞÊf`k‰«+²©ÀV4“y11»rü¬¥p´h°uðxÞFÀózžo­¶T4DØ'ôYD"¥Pµ<¶ß76Bfa-:UõÆÈÏl„,üނQ±’W·Œkˆ¹ä‰x¬¡^½à3 6EÈuÌõ¶—-U…Ô3y³¾ì2¯W<)´Ûš¸‹€™í¯®lN¼ûùäð–òÃ+.jÈG°Íì*;v¼wlsO¿›î›vî¿÷-yö¾›½ÿ2=¬t§œ…JG‘5vVíuÈ®1IÃ~šËâ|BÙ9´Âp5ö`•ÌÇÑ^…£ã|Çù*Ž;¦'ôœ^Ò)…­¶dq=]ßÑ0…°ßvvÚÂ×­eM> ûgÏô[}+yǾËÚ8~à£× kïä4­¦s'Ǫr×L¾ÁÑ ÷ÂÊóÄrOgëŒ.BÊa­±êÓ»ðDÏ5ÀEذÃÖ€]Ài¯Ï";J|ÛW[ ?æækMm a"„uà l¯0§²<Ì`#W7 ¸îTe5øt øÜ:˜‹DÝèÀ³ßÁ ùÕ> stream xœuYK“ÛÆ¾ïoˆS<SKóÆ$?’RÙeW9 +9H>`I, ›/àJ«_Ÿ~Ìîné èéééþúëîÙO‹²‹ÿÅÿ7Ç»r±»ût'éí"þ·9.~Xß}ûÞ/TY8§ìbýxÇ+äBUxS-œ …×j±>Þ}?.Ë¢4ÚKD½\Áƒ V)†¿¨*˜J‹}Ñ¥T!ˆs.Öµ–ÓÖÛ¹†Ãr¥ËJ´§ËuèIvqâ_ÑgËšì÷)ÿÐíS;,•+ÊÒŠg\鋪ùF§øÄkÏ3 ùÃýò÷õÏw+]/˰X)S„Ò/Ö[pÄìT—¡=â:m”³F´_3_̽ÔÎÖèÈ`ì3OÛô,Ê5_–+:œ´7næë73o±œƒDï¸"xí`wÔkQo`çÂUzˆÖi—ù ½!uá‚“Ñ6°7>g°h‡=ùíÛ÷!‡•Ñ…Õ>´`…v—åú[èi_H¯4Ë|OK0*WÍ"ÞÍâõš?üTùûû„„›pœ¢¡RÎ@ªÂÙ*YñžÁì+ÉÂód© À†J²—™ú !QWRü¹´Ü ¿ê˜äßܹcœ¼çüCÇ0”•+*)ç0ºæÄ`‰w3‹®YbÍÜX¿pc ô]º3CCi%6/¶bù™RŽ€7"ÇmRms#™1ˆ§ÐÆ)t/º°ˆ²•¶…©|„Ûû3éöw Ý[„ÉJrvt 0P•˜$1øâB©w¡à·eiÄ»®ÎÔ‘ÙÆBî ~¤ Ù<Ç(hÈ$ø U"+¢=ÿl.¹Šn8f;5'†±N–”RŠüñµñâ?C¾çl„a1ee”‡ÇMþŒæh è*ÈhM2ç¿,å|¨ »]¶W{ÂPkéàR¬—Ã\A8 «â)8{]aŒ >³bÍÝ+ƒô¨”øîi(ší•ä!ø…•~auÛ²ô¯1shçÜACòäÀdC.±Ý²¿¥,¼õÕÜÝßóùؽoÄëkîaÎó•1¸ã³ÞX? XóÝKŒðþõ|§bs~!h”qš,ð²p^œ- nÕ+ç¹æáºÎ#ÐÛ$¤2Kï“ÈL¢Ì$ò÷fz³ÏBkì‚좱‘g­$æþþ¡ºz30}Cij+éLá ¬ŠT.Ät]ïÈÚÉ"j¶HJb¨Ïw=b¢D âIÂT¾è7]û@…/`kF]V û&IB+Ð|N_<&å@^4õpíÆe”i•Ç"C@t¢éúƒ*‡dB2²¼]|™ì??ÆÅ¯¸ô\È¡KSør,!Á (mÔ½ô;.œyüV9¦zy }€„½ †`‰†”®wÍä‚ÇsMP2×d}ádHõöýká"(A޳È=ЬL ™oí‰Î‚™lG{¼ P4„M2%ù P³ÅGIÞ|W_û¾­Oñ4±‚àJ¨ MßÓ'ñQ¼ûíãrÒsL¨°B~蟔Լ­÷„ ìNH1à{8_ˆIApòŽvQvÒ%Ùu'Y KÛÓæpÝâ)a»Iç±ölèèõËØòXSA®þr·þÛ‡²À÷ E^¢ÕõУm…Û¥O^|Æžž° X±©‡f·„Í0,‰ïuê|ùÃLÚ€;5„ Ïó-Ït–Ó³å .·³;'C)i@Šb7ÉOg‘–¸ÔÝß–ŒüdÜ0º/¦ºfD8âáØh PnÏ¿ž¡ø‡šcHx^&´4I$S‰¾9õ©ÃÇz®´H°¾œjhå‘hø{¨*"ÉÏä[Ȫþ[ŽC#gL±É÷] ñêãAÊRƒŸ®‰«Œ‚|  Vûgök þiô :Î`?o+ñpH9}áê“£TØ$ÑkÄ—(ÌÌk§ ªE[Œ±ñÔ[”¥ н%-ƒŸÄ…ð ~=ŸFµÐþÃ;¢^ñcÝÎéÑÈ\³¾Üz‘w@ÜÅ/DkMל6I=Ô'dØ´Õ‘ (¥×ÃЮ²UÇÙ–cåx3eM9‡óI%Î=‡­*-zײ9LÑÛÊRûp%ákÅ-×¾ø©,‘#Ž 3Èõ‡öÔDA8McV*0×|›>Å5Ç ãšFŠhƒÊ¤0¯ärg˜É¢K4!£¯)e Ø”» ÏòI×û¦ÇE”ràŒí Ÿ\ÃG£O`È—¡¡ÍcÎRZóà ØLŠþ©<$c žqEœ³x¾VÓ´M>ŒÃÙ@} ïpY¾ZËTYìÓ‚zÓûž·£IìpÀCœxKÿIŒDÚü„^ìÛ¦«»Í2ù{Ï'Bù;·{Jh²\,eUl¶^Т±ž )± ñ<ž\ /`É(IC›ñg)¹n©olk=´d˜Á2œ“#~üþý²B y¨p÷I‘ÉÄâj,ž,/®$ ðxQ\ Ò6USâëñÒ϶HÌÄ TP„ MBÃ*Ž-—yhÉ’t\Jâë›xAµvJ;þ4D…0YQÛ$mZ÷=´xÛ´[JMþ¬ç†tMÍ>D†î’¾0êÃ6,c}lÁv”8„²¡Üê±#’ør°Iª¼x¨û8zåÒåœáØãÅ’.¹hb3¨±Œ'ÐÜPãÛhÜ(C-6n÷QŒ9_Ü]¢%ßõœèk2S{jx’ü_º~H²Ð·¶»S3 ü]|ò÷"õóZhÅ ŒPzsœ¥( ~:-ÑTëÓÕ† q»Þéa›?äRh³ó8GˆúúæŠöMÅ›ìK4&ˆ†µ*Q‡³)òÀe|@;â ?[M†­ÔÔqS¡*›tÍ.ÙÃ[+;±·ë˜(EÔiŒ(Ðw⒪ˉ$œ8×KÆ t+"1÷¨DŒ¯cK~Ä2Ã=Ã|×`B*˜õÍ1ÆxŠ2s&–-zE>sœBÄgÁ`™?HJ]×ì`0êqߨJGW¡{ µÖ±?c]ã]Ò®Pt' H3ÆÉx ˜Ç©W ¯…äâ©[¼¹I¾ÎŸM”Å?Îøèbä‚ UÉ· !”FkÑ X!W”wÖºZ‰Ÿ°y„ÌÇHaEwl''7ÄÏ*TäçC´ƒJ„Ƕ˜›õ“!LõÊàea,³+AéGñKŽ¿_?.ï§uðtT ±ÏÀ‘Ö=óaJžÞqÒAØä~¸p-|:B­†1g/ê80dÖ§äJ“˜v|ýÒSÉÀ¿<æýÖG€êRwMZmÄ7ÓŠ/‰EálíCû$^ÁæY>ìsçgŽ9gO‡ó'¶ÙSÑÉ”`[á›{0çiÊ.î•þñší™3ú?á~´ùsngB¹š›4ïy‹Ï7Ç=¹Jä[÷ÍvzË5¸Xü)Yª&c×õË'Å€Û†¤%úë䘚.”)™.š]ìsq¼t¡Îæ¬#ˆ6ÙÖuæÞ]à Îâf%ÙîÉ÷PÏ{¾Y1º–S–?i†ê‘{ ˆ|—k–YZðÇ8, ·Þ˜}ø/%Áé*A‰ß÷ ˜Çýõ²¢> ìk´ tÞb(#¹ÒãU8lÆî]Ýbš÷SHê¨ët7óFwÍÓ;ƒAÔ ƒK–9 Æ0#š¿nÚ†§8MaZkr"kŸòl›íµº!™){‹Õæ |Â×z'®9×Qâð}Mć…™Ù@ËaâÍ;3q½ËÈ>zÅ0ÎÒÙòXλãšs!Õᜠ_É ¼9R†úÈÿí3¦)R¿R„Øm™ŸÆÂcpîÈާ͵䰫Øë~ÊüŸE½Æ‚F~"Â’‡ b©u8Ò>f+©0óV™¸¡úÄÚOyÁnopGöJ‚© šÈcÆg»}ØCæêor=_f[<ä¤0µÑyÞó‡Kö»ÆvcÀ¿ OØš‚¹oáTÓË,Ø«þ¶m"x Ô àb#OMüëBl `ZÈ›ïs%qÖá¾–‡6¾ÀÚCUËñb2á¢oâ’`Sã–+ºM£Àí/«kôè*Œš£æ‰¸™{>äžÉ½ñNÜ'4ˆnƒÿ¨~âÿ ýÇé™K€Ä¿JÚ¼LP\–hâ–0|;G7J’þ‹wcØb[„}Û cÕK {’ÅÍœ.g­À@±®¨2´£ÝU^Äkhê6y.ШÛH•èSjŽè&]^}ó)Ghά±å†¯îXï<=LWqS»õJ¡®sp×èã¬àÐЊÖ¸+žÊF`ŠÅ@,KònÞC¥’† èÚ4:à,;ô<û)œ ½QÏÿ,÷úïõÿµ¾û7üû? %ú€endstream endobj 202 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3100 >> stream xœ•VkTTW–¾EÉ=G|$±RcϽ;¶N¢!zFˆLÅŠ¢(>xHUPO¨wÕ) êÔ «( Dêð2 6Æ´Œ1äѽLº'ÄÄØmÇSöÉZé[ÓY3³¦{Öª?u×9gïýíoûãQS¢(75=eCÚ ÏÿêÅÈŸ¹á9QáŸñÉzPü`C4šÎGÓ§´ülfÜ,üêcXðÈG©(ï‰yI…ù‡KKöŠžJ+ÌÙ+*xjCa~vÁûHQÔ“…I‡EÅ©%¥bIvùiÎÞ}¹ûÊËa!E½N½A=M­§Ò©Ôj•Am¦¶P‰Ô6j•I%S)T*õ*µšZC½F¥Që(5ƒšÃ¥LJDñóîF­Žú’߯OÉ2=@ï¢ÿ rÀ(LS™cй5­|Z÷ô¬é¿›ñÌ÷¼_¦f~5…²ÂÏKx÷ðžþ©ð ¡¨´7¶³äÈ+1ìfD89 ¢bëq'ÔBõÇúzzÞBðbóÖ–ÁÁ|s£Ÿ8HsÛY,còqÂ_³eûc¾=ó{Þ;å‡7Jx£88ÊÇáuBB+’ŸF„玑©XˆyÇüó—cš<Â'‰Ièè]Û}Ðísúª¼Ó=wñíܧ°“Ú¬A PÞõï!W‰o ¥ô?x&`–̺+¸.Üqñµže’õDHRI2IƱ$¿Îzh<ÃŽù÷f¡ ˜­Æ*‚Z³AÏê€jiá ?ßS¢.6£hEÏŽÑ-—eŸ¢ÑÛu—œþäÖ…;?Š.‘i¿°TšÊ\:ª¬NÛ€  U#«ÁM´éå&­ê°B¤: '&ð= ïÞvòߌ íí~S&ûäJŒ;'®ùÅU!Ö‚w4e  Ù8æLã¨{ÉÈVÒ[›òÅÙæ›qØM´B}âç#¸ñõó},N¨Î\êᅫÿþº‹<±\‡tf=áŸ{â‡Fß럌ý?º¼)PrK­'Yü4ø­?q×á0ŒB§®Dr(uÉ›j}žÎ\oþºÌ éjÆŒ£#mÍ»ÁµµYÞ i’ÌjáŠP¬ ôÞ°q÷ì‚×Þïüã@Qï¶ »±DIE7L6“ Ù Œ /œ<´Âɨ@¥¥Òi·ÔØ ª‘M_)©ôŒ‰lJöÔš“¶X¼(½?gHÁ^+ÿÌ\ûÔ‚Õó^‹/üä]%ýh×EÚ§Õ³d)°-ÆjT‡\Ý._ù›s(eKá¸~u4VðUxô=¡Crt3Ç).` ‹_Èfv ;ì ZN2¢zäµxìkÑg³E©,*¤‚‹—Xölü¹[YÌ¡_W^A—ÑŸZïߺÒs|¸ñ,¡úÈt¨®28™jºÚb©A5Ûàãÿ‚¯.îXÛóò²ö°Æˆ’êᥒY}çqöÀ6¼ Vp÷ üG¡o¨·kÁ›m+_c÷ù$!ıàH»Q4ŒÑ•V×y®¤Ý­Ù§;-ø¼«ÆßYÝ ß“m‡tY¹Œàîí© ‹3j1U~ÑPz{:‚)k2þ£Ô«:Òàñ4QxËôz³IÏâCó…óZ½sýjÔÓÛwèg­ÀþÍí®?ÙàdãIª8üç;?‚j²ýoœŒ?ñÜÉx«ÖV‰ÔH"-Ô”•m%¥! *sÈ\ U'j„>¥[*“UJ²Î”žüâ8f™3÷{0ïÌ·ÞÞ†·F H“§¼\¦)çr0awBÁ‹ršVykűÂkùWDc“Ԁͭ3š÷_Ø?ÝÜòù)Ô[ =‚e¹TâU6²Õt³ÝæB ðã—ûRHL2™9wÞU2 ?vy¤ûr€©ª±:&„Ël5YLH…Lå†JéÖ-û¶ øÔ~üا¬|Ô‰ÁÝ¡ÁýÛ|ÌdDN%¼>5y.ÚKW]s_þÜê·øQÁ÷èˆ0žÌú%yÜ S«‘jkLœÞ Ý8%ZFë–––[_3éÏð¬?`ágøñê§9 ]_¥eŽóƒõ‘¢°›S‡Á¯DX:¢ÞËš‰Itzs0Í&ôÂ#Ñó.“éxúÙѶ¾fÖ²GsS­¹Šúì —¾CB·më>|çt£û¨Ýà[W¶§©Ì*TÁ’°yUzúÊ×Ç*“¹MnøSL¹®>ËÿWñqÚaµ:¾Þö‰&ÓRxjþňZ¶–CçûüW,ÖªjT «VCRiŒŒ$#s×jhÓ(Ã}-áX×··þÐ2oeÈ'u‘åõhû9£ÒÏ¿ÏÁ¹Lô!¹C?4›":¿ÈÚÉâ/qt€Ð_BÇ]íu­þP‚U´ÕëëuJL‡Ä‘]ÖÐ\çóvå4\¼óß—1“3EV‹qaO8V2«¥Ë|nWÞzn°+V€ïát¡H$ꃨíó‰¢íÚÛP&Ô€ÚÅxfá ‹9þÕ…½½ lNýË7Й¢Öžæ:·ÝǶ”†*B~üöÕñòÍb?k­GžȆj¸¥£×ë f 4U­ºÞm«s¶”Ô—8¨1F£ÉÈ9NVP™Wi+wHª% n'¬OLÌuï>VÌ ðnÒ*t€ ý'F™Kô0ºY°üçyi©‹ÚÇ4Œàöþ«Ðι>ºyõHbúVå²D‘ÈÝ$edÍÆc |hü2‚.Îál`„E.ÐáSå²ß5¤µh8rî/62Ê]ÞÿÇÊ:iê-j/:–cßÖ£õ;TfŽã€§~ #îá~?çÛþ3²jA{£~ÇOÌÉò€HÄ\Ìð ° ç Ë *ƒ_YSSƒ¯‰t5JˆÁ5“Ñlš3©?“”ñMZžÿ³¢Ä€„.[Cì_ò÷µùýµeîòúr®ÿÑ\›ºV”P­Q•q‰Ä@&’6åŽÌÃÏÅj´I°do=êªïíîx;¢N DÀíPª‹ ÄR9û‹EjF­ÖΫÀõN@ýp^õ0«3¸‹|þ²¿[õœÈßÊ:¼9,9 òJ »¸ S20‰úª‰)¨koèíFð#×N´§Àœiwþ'ÊébTZe@¬ã¢Ëó_OÏ~CÊp´ËhOE›Ñ®CÅYµ^cª4ß‹›œ&˹ðÍ{‰5lz®ö_zÁOFW&¤ì[³'ƒ]·tÕÊ5+ÅÅqAÏÙª ü 8ŠŸåTO»Ûº)¡ÃÆ"$G ‹‚@–ê>;øþõÛ! !Ž^4öoó_NX ¶IƒZ&èõø›¤^±^o2ëØIÉ+âˆ\à—¼BTÁ9· ¨†ô²Ì}Y&n¨ª VgsÇ‘Z¦±»¾BAÃ;ÙVX$“•”údÍ.§ÝQËÎTºÃ‰u8ßáõÐd» |38‰á×­˜>•¢þ%:¦åendstream endobj 203 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 693 >> stream xœ]Ž]HSa†¿³Ùw¾™˜¹†Æ9z‘^¤ý(±´n Ìi’Ђ”©¤sfmgº?§ÛÚ7çæ<Ó£Ç$S±Œ¢4râH‰èGó2 £Áê[œ Ôºêæ…÷}/ž‡q2@Q”¢¸@£9°ÿÐÁÍ’K•Åv˱ÄÅ®Ææ¶á9Nˆú™›Lèìø–d•š¡Ö×Ö_i¬lH+ÔWT6Ô¥i¸úJcCõÆòß×7ê(%àÔÐ`ˆbd™¿©¯Ÿ@âVJ†9!ï"ÚHò ÙU%Ñåg’S¨Féëΰ‘QC‹Åi¶„ìý¬òý£_‘r¨|ÝlwšMB›È’t8À‡Ä>GW[N¬p¤â~ÝF$n™@¾hˆ"=Ä:a1>o¨ª@Ä/媜yå99.[\`çh,x{±€ž=™ºú`o¾ËëÂ.毛kÓ‹$)’%G¢r’;¡RÃVìôµbd²¶p&ÁÕË®I·agÁŒî%FËo&ß}AÜÉöÛ»Í\‹ÍÌpt±ÖxálÝh„÷ñ¸‹!9J‹½þá®ÝÊJÇ>BÑ)˜8‡ÕÔêsâ¶h‰›&eÓKS¤qJ;›¼%¥ÑÙ‡)Êõ÷TÚ¦ªb\†ö¥öà QN®…ž&HŠÉföAil\„=ìpÓ°mìâáÊâ«ÕIËPó{3t#<†ýͼMĨ¿[ÙÚ5^Öãj\g՛ݷۑ¶aï %1wq“9`öÉü,=_Ûw™m÷øÝ>7vX›=ÃkÇvlú¨FJQa¿×ýøÎèä„Ð}œðùwwÖqIf(¬¬ŠU¬^¸4èš@31 ê¢£wæ?|ŒoiçP ]z±è ã…¬‹ºfP¢­'¦æIn”ŒAz=>²‰—‡óüñW=endstream endobj 204 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 254 >> stream xœcd`ab`ddä v 6207q”H3ýaîîþqî§-kc7s7Ëòï¥Bß™¿3ð``bd”ÖrÎÏ-(-I-RðÍOI-ÊSNÌ+VN-ÊLC“a``` b`0icÏýÏh²’ï?S¨3òïw}_´“ñÝáïŽ2¿ûi+ú׿ð÷‹ßõØgv|wþ½mv)ëa¶ß‘߯Ýòôz÷SÉÉì-ŸëO©í©é®íæø­ôû‚è÷EßMدµ=ÉœlÀÑÎÞíZ‘Z—ÒÒÍÁW7ó‡Ýôï5=“gÏéfû;‰ý=×^n9.æiö<œ ؾdÛendstream endobj 205 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4404 >> stream xœ•—yTS×¾ÇOœsÄÙ˜/}çXµU_-Åkmq­ ‚s ™svB „0AEQ(N«ÕZ…J©mmm«¯ím_ëkÕÞfݾ±wõÝî{+YY‹$œ³óû~÷çûÝ<Âׇàñx£"Ö„oš<ÏûÇ4O ç%>@ÑCׇöø1|0Æ·ñ%Á©I0n"|iüÏï…WBD)i™’ƒâ©›DŠS§†‹Rö§þÓ›AL_™ºJ”¶Zœ&ÉÌÚ›·)÷ÀÁC‡ãÃ""w¤Ì[¼bNAL#¶Ó‰­Ä6â"‚ˆ$fÛ‰Ä;Ä*"„ØM¬&‚ˆ=D(±†#Öëˆ7ˆõD0±XDl&&BH¼LŒ%Æ3ð¯!(¢„çÃ;å3ϧ“ŸÈï÷Mô›ì—è÷€ÜAz¨,z"3jö¨ ¾ÿ×£ïY9æÉØmã|Çe÷ß:aÑ„“'MŸ”6Éö;oé4bÜï><& nxÐíÙ&å57 Epƒ›%Vµ°fÊXYRYl·¬>QÚNCée;ËÒ¬éeé¥é&¥Y”tZ4'fDPæ–P;€ÜUЕø}@8 Ž€ÁÛáBE}€¾\m‘ƒ K×ȶ¢ÑòmheÎö¢ @ÃM°HGÁ‡Ð=ôÃK™p/Å3WʃD/ŒíåŸô¬Š*)w“.ŠE§©ät˜ÉÁ]î\R$6µ²p;uëèO?^©Ù¹–A *!]'bò¼ŸKÈLeÒÖÓPNcÜñœfIûÞò°lŽ*ç~ Ø¡ñÞ¯nahRe ÍpO‚ÿv¾/üË]ç‡VE ÔÑí!§jvØ@µA Tô¡dm2“&‚¤@â¨áj„/œ…3~xùãŬ­Øn´Ó‚®k®kçÿnm¿¼¥!¶:Æh4=Â@Òl; §¿ÿ`E0« 4AË"‚€ È 2@/'%ùæ^ô…¥Tk¥©–HA×­»ñSgÿuçì¸ßyŸ?"”NO¨”×r6õñ¡Ä³MˆÆæ†ÌÈ. JÿÞL8Ðådƒ©®¸®ü¯À}ÚJi¡ÏbèƒÆá¥"³X¹RP >.½·½ª¤Ú\ è§G?x¹ùÎHgz%§Ë@Ô­¢Oô6`ÓÛèuÐv·çž“÷¸Vôó{Õ±SGµûÙá ¨ *lˆø4]:“ã!“LÏ4c pK}tä,˜Ç~ýðƒ·ú¡Ñ»7§ïË`¹~?hGj¡vuòŸèí›.žeᛨàl ‚î½õÞ•_[ÑKëÔ@Å©¼ŠÁuØ#J¬Y3'_ê÷LüúEAõ9¬™àè¿P­œ$×89g \ gÀ)0®@<¸ícÕR)—Or :ŸR¼3ù%'+R@ ‘YÙÆ#VƒXXž¥\(£GAõ»Œ“t‚Zƒ\ÝꞘ{ëlˆg˜ @Á)ñäxâ‰Ï}ýÛ%þ±ÿíé¤4}*#Áx7Yä\ SÓŠO°_P –«µôç5Pð“¥p†£dš"ȧ³+³ë\vgu[¼3qcLxdÃA_ìgž4аe¹²<;¥“ZOÁÜSØÌ_të:óÚýñWÍOΊ:âêØ­ÇÐäìüôWïIË+%¥0ÈˬÆ 'SÅz‹º0G¤Ñ1iuIeñ€^·0=ÑðUãµLöX^s 8@¯Ú˜¹sVî·ýR†3kLZ@«tj5‹Þ¤ÙZƒQg4’`²˜Í^çü8—ÈuÃ<·g–›×sßóÖ¾çVŸÐ@ZÅÇ£Ëm1X‹Y¸Œ®XéãõÆNÆÊE” Tª}®I³Ÿ¤Â“V¡ñÿÜ{?šI¾¢ì×i8õ& ‡pÌ"QÍåúìJ@—šŠ­,,¦J8«R»P¥côäá š·a÷oC,Z6 Up"Ú ôÞ°wt°¥¥¥eæŠçJá 膛¤“~í•:_|§z†…³PÀ«L%xte‘@Æá=K/iÛðåç•?`NJ)oÈÇÒD+ÞÚ²UÑwŽpªM…›¨‘S‘å :jÁŽ}F¶Ÿ>c[ÕR¯Ýôìj,ú+R©öôúýݲ3à2¸Ô^yÑ07N,õsçS¢4ÓVÐÿN!ÜO𩨜jq뱇¢(Mh\È2p¶+»õP˜Bð|gÞÓxìÏ\7¯Úâµ]70‰Üa§^kÙùºYn’ÙÔ~l?Þ¿ç‚/@ªëŒä€ À¿Œq8D¹yqyL·ø¼ ¸©ÖfíA y/º•Ô¦}ŠÜ+v»©¸=–›¬ÁsÞ¨4áÇû¡>´é&ÚÜ6N)Í0ªÍšnŠ˜ëŠ+nÁˆ»pëMYRm­6; Ã_JÑ&2bÔºÅdb²ùD‰¡ÄËoƒ—5V¼æGŠ›ËË8PŠ3‹Ê×)e(qxÀOO¢DÏ€ÒžoòÃs18=ARÞ,Wšïç$A‹ù¬«©þHGñ)P ª9Œœ~2-QrX6wCPØ<­F¥ÄQ¨(Ñ[øY ×ûII]¬.J’ :´K·sÈŸ|'}'<„³¥´cϪ6ª˜?Û³­Ú/óá{#þ<êÒne9”&9»Õ ¦ ÿ`ÄC4òûù@êò‰Æ®vv5ÏX‘&2u±Lоa ¬¤@Ùg7:kí Özp\µFÑHDE.ßõβýƒýE WÊõÏà-ý°ð}þ#X(„ÇÈ2³©ì‡¨_Ñ4f)òCü©}ßFÅZÈ>pûŒ³Ï`2š™6kе2MR¾‚‘ÄíK´šÅ噎ð³šOÁ-ÚP-lÿϯ¾i˜¹ÿHÞ´o"ú»a£·ì]âCOw‰è3ô<œÆbÔÿHD9 EiÅÇXøú¹õ7 ô–ýü‰™6‘xŸi*´yª|ЙUyµ ¶gÇÞÚø…‘+ÞdFP„ÖgÁäsžé¤ÆNÅ x¼óEÁOðCÏL!Gf4Æ•ãl[ºñÍøÊèf ËQÙÙò ‡«Ò›2hÁã}н1»þ2NŽ¿÷9œÒüèêÁÓÛk˜X[ŒWºpr·¸ù4[B™ª,6«c«^Ò®hàÃsßÐeh•ÍjÐ90aFÚ\*ëWÌ)5j%Ÿ¬Bn³—Ùlõ™qÂÞüd ƒ´ÃùB+uå|k/sƒ¼G¹ Q`vâú×ÝýE¬à§KpXh£.V|6xÓ¶5F³{¯˜‘« u… ˆmy®¼Z}£®þ£J=›.Ž9þI¯‹lÔÑzínv¸…:Êf4ÿ—*-%ÅbS ó©±ïÍß¶eD>®O¼õù|¾‡8kh¡Û[Ä`Ç}Ü7Îýëò ÜÉdrºù$ «žRwûb_‘ê¥@Ê ²ÁÛíÛÑ¥äåÖî Å LóNZ1+,p_ל•}e|ë\^ivi޹ÚRçþaÓÕ÷Ài4õòkÅ4bÐ}!tSM5Æjf¼ÿ] š¸h{Ô ›¡ÍÀ‹_z×x³!ó­´Ö›Æ—pÂwx£Çi½fߟ+ÙV<‰ÏÆ3†Ú Ó„Ú¼NZZ•ÑÔTS[Ç>uåÔ‰Á÷:§ ™y®{èõF^O¼ÝÃò¾ð쎛’;€~tï‡'÷ö~±¸™Í+Î5çšÃ+"+£lâ´6]%°cw \»:ÉÞ9Óm žU!.EV£¥„…)””*eÉËsn¯{= Î؈ÜÚ/b«TÕºjÍ휀ëyÙ®“Ìäm‡*J»fϺ5­ gƒ9ïI¡¿¾ÊÜšh§Â -…R…ÕÞ2¼°i;ŽO@C¾ÅWï𻇖sÎÜmú¸åXë± ÆN@_#ú 5žŸšóãa7u A“$/2#Á÷v2>ÞÜÎzÜ(æ,Àê+,#þ¿NpAߚВ` 1¿C;É(ö9pš½¦áUx² 4è«£úÑÎôÎ ÚQš€›‰¶7s}±ý\Ÿ7á²ÚîòÛ_{3.TD5µä¦°zŠ+T˵òÌmQhÒn$ˆBu®2W“‹ÃN[©ªÔT&~'ìƒãöÀñZ[Q5°Ñ&ÊXßa¨i+ü)†?8ã¼Ï>t&‰ô"¯¼;%-}d§€ë®?l¶ÛMýWjv­aQu8•‹÷rëÿñÅ2=Ÿ`u[Ò?-l_t¤˜É¿yðèR°lÞSñÇAÕK2<²%^ËvÜ‚–>ÜaæÐkB–­E0‡ÆÇܹ%ÈçZhËáó’sÞ \QUc€ÿP<Žìǰ=yWã®@Á§Z § D~ïunC;è¢áè 8—œÑ%hÁLæ0b@Œ>F¿T5mqž¯¾  À×(¿¤GÖb¸î¹…-óx?è©:¯žîôý‹Ë³T!>`ú¾öÖœÄøµë€˜–CÕƒqþ)÷wÇbºâyâü[Nöôô\ºÔ}ûÆwŸ€Ç4ξ‰xL¹@±b ¢Å¥ém NGC]nH£æ8ÍsžÜðe·'ëÕñ>¿.ŠYdl·“QyÁBÊA¡71’ÓŠO²??r¿ê‰£J´f>䂸•Yñ¡È'ùâ×i€Z¥Ã'4 1x]]çB•g‚ßðoaà ”p¾gœÏëq>í…5½]|É“!̼úv#N ä» ¸}‚Ó—ì¹tôL[²·5ñ 0€kJ¼7çCšWáooE“ц–Á±h|çÉwõ§~a-F›XYkÔè¼t9§Ð¾7?s e$Z[1¾`0€SïÁypa›Ã\mtï{4šmG³ y†\‡¥Õ#ÞFG&›ôï‚ê¨r1‰ù‹7-\h¦°œƒ¿|ÓXbÄ] Ÿ.:bšö™Ô&µAE£Uˆ\•¬k õr0†<åÀsZ¢åYð8ž÷‡Fúº6> stream xœ]’P“uÇ¿ÏÏóÅ&Ï-ìÈçá¬;»P£îìò*,f”š Î8Áˆ[nÀ?6÷ë»± †2Å(ÛÏ\†¨E¿´î¼8Éʲ?ì®Î:ÎÒûŒ¾v4þíÏϽÿx½îýþ0(I‚†IQæç=—³vÍ‘ϔğËÜWs…É$UJR“Bÿ|ò%À>z_†$ #¬RÔ©÷ ­<µ¹®¢ò@mV^Ý¾Š¬×õÚÊÚŠÊŠÿ…!îµíîò=-GJ´ mGyHÖ#œà#YÑ=&(a%ai¶tpž1ÜBióRUrÆ`e,®Ò1g?’«ÀãÔ[Éa¯ßÓ%ö„ƒQ_ƒ›°_¥Ï$¯RÁÓì;rÎe³ö.K—µK3µôUxclyÖ›û,~ ©%6“v«‚nÈ¥ùytc»ÆÑðžUkÓ-ÁÐïÈ!ÆÓ±ä´yfú7ÔqNs®BVU$= k³ïf?ÈàOFã[䪎?:nS‹tšãOæ³|•j–ã½Ç¹5°Œ½ã‡§ -Fs#iÄüɪíÈé¡ÐèeåpiAañ†fÁe, ¤OF%_vÊ©K»­×3ø›P/–¿lZ[KVº>»C¨ oÊoÙU¸}p¦^°öÁm¬ÁÖn©Œ#mÎö.;î`Iÿé^Òéè<䱟ÒG­‚ùcÐoM(úÄÂÃ4ÉI¾À_~ïûøŠ~G·àj²6 ìaûÜÞ€8Ëùmþé›ô­™mÄÐepë:ºÌß4›æÌ„îD²ŒÇ%‘ª(uéTƒ´X?¯ÌÉä/í¡‹)ª8þ‡ŸèQ–¨]µýõÃåŸ/|íêÙ?8Ž#¢Š%F§4ãòÖ·w™.~(@Vpü…]J.m^’]’(NÀÊDù£ÀB%H3ø¬‹çÈ;‡œ çÉÏuOŠ5M¡åº4÷÷ª_¯\ê;=ÞNŸËçn¶5{›ûª§,ã‡Ø`Ÿ;°wëD3«s½O¬Ç0ìãÈ1GЬ¿‘3¢ XÃæ/·¼ ò7k‚ê³á¡Pø¨é¨! Àfš/_ͽ¹£l“ªtdâÖݑﺅ€³‡\8¡Ù8º°Ýc°é˜ûà0ȤÑ9…\Åù‰Ïé'øø€E->ü›;ïœœŠ¨®é/“Ç!d7àYàŸŸ¥+w5Ô”‹pb.žúÐ+·•Y÷ÖUköïmÞK°*7|I„F®3<L¼hrwVžXÏ‘vbr˜t†N-L±dœKpáßøj¹Ñh6=© jÎXptxðÌmšâ-›X%Q¶ìªÞ²[­ ²³· ZqqÛ´vš|KfB£ßtø|âÇV—IH4D쇌ºwKµ%S™’nÿÜ{ƒvÛ€˜Öˆø¡Ì5ÜÃÒb7»èâ#Â"i÷ºÔ„þ¦ØøPendstream endobj 207 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5268 >> stream xœ•X xSÕº=iéÙ‡Á±U¹9 *È "*>D@-B¡ìLiÓ¦I›4’fNvƶiÒtHÒtJ' Heʤ\©@Aœ¸"^¯^ŸÃSÜ©›ç}û´âÞûî}ßÉ—/í9gÿ{ïµþõ¯ó¨qÇŸ¸2aÝ‚Gÿã îéá{#ÂÓ"waÛÈÍMœ 'k›w(™§¢‡'3…ŠàñîzpyH\\”)¹o]AF¦$ÿ¾„Qjþ?ü“¢¨GŸÏ_V°\\(‘®**^-“§–¤)ÒוfdfmÈÞ•³{SnžhÁcO?3ëáäisSæ=2Ÿ¢¦Së©Ôêj#•@%R›¨YÔËÔfj6µ…J¢–Q[©åÔ6jõ•L½@­¤VQ ¨©ÕÔBê%j õµ–ZGÅS1Ÿº—šF§&PÏR"êj MM¦¦P È¢)@ÕóÆñÞX1¹4rpÜã.F©¢®Ó;è7À“L st|Ñøï'„&ÆMüdÒ†IÞ±âŽ=ÑK&/™Ü;¥tÊ•©§žŽIŒÑóâ«îœpçö;/ –B‚³w­½«ù®×ïºË‹Mù oŠþKÄu”%„v„ÂIr^w—@D~‚‚4o/kÐëjrx== {«»d¢›¡+©¶Ð% ì„2F” „"@Àu‰>jŒ ,¶V¸+=Ÿ¾a3šI>IhVz2N_gtVB94k«ðú5xý‹xcYZYú3A[P¹G×Ðx|-ŠÌhV ™Qøn?ñ. ô ‘=áeQ…ŒÛYiæT¡N„Ä¡":_jïgQ<¸¼ÿ³¯ÎÕ¬Ù Ä%`—Ø(ÝZö²H`ÈÜUÞ.=¸Õ½®…ëv”&š¿‹#¡ÊÒ©–¡o|èÕEƒîû }öÒ—±ü‘¥pC·¥2½útöV#€:‹ê˜ìÝú\¥Ê«ÈœüâfŸÙwï§ðÇÐÞŸì[=¬‡Ÿ¬=½Ý–þ’sɽ3ñçô<ÝÛMAåIq׸™¿ì¥Ù¥¥X*\LËöv‡ Óë Q ͸¯ä:g2Z°ð™ø'Td6*aô_xß?LUµ†çx¢î«‘¨2œ Àw–/™qsÿGxúšzã'4Mx Eá{„ø^\-0×ÀZXÃ|Ø„îDÑ?ôÍšótæãÉ:¡Ž~&_Ô~`rA—ÙÅ-{;LÉ»Fæ†x'¿Š _cÁÖë÷< ¼ÏÆÏãD¼ ÍÅ‹ÑVÖM£8¢‚hSg¬V+¯ÈõBéƒ –N‡+àÊ®í'7^T| ÿo4}5|yàµóoAt'¼„£ü8¢4—4@Æc­®e‘8Ì.µZ§Ô„åÒÒ¢J 3Für=â?äýx5ü!²“cŠt¶Z…S’…£D„({X ZH{Cö¼ÝñõOh"Šx Ñ8:1E¶#} f¬žK›1_˨é䕱è=f7ô0'ο~öû>,X¦‡:³žìtĤS£ñç¸ø}WQÃ…Èpô[vWj׸’ äIl{Ùð›@nR®Ö¸t­ëî‚=ídÇ&ϽOÄàs&œ>Ðu Å hš \Û¦ütîЪÄZ!~ ÀÄI©J•QiVÁ™6 ŠÓ'ëç©Oþš&?-üŸS¤*D« Ò¬„Ln¾ƒ$Ê4ðAºç;»Ý B3(×iÊ`9”5(ü&¦£±)¸/Ó·{íö„-JÖŒx$yÆU”Ú^)é9„*ü²C±ü/?í4ŠŽ—í—à'-57áÛÙ[¤.±MâÙã2j’|ð(sæíÆ£ïôîX]#TÃ*·ÿ]ÅE€†j]©ZL2ÇL“\rêmÅîB‡2ñÉgb MR —³šƒy–dfÙù–g³ÎžWuVd´zƒ†ÅqêÍ:’…«Ò%ôZ=] &zÄ/¡òPx&GÌð²"ß¿-pKz3ê!Sm©v²h1€Ns5¬fö´Z C¸S`“…°lŸ.UmÖ@ •%¬d–.O^8çñ“LæžÖ^†çàŸ7¯žmïé–3ƒï>Ú‰#ì ã.dÜÿC·ßÜó‚ƒQÑx=^„âxz¯D©WÎùÞ>ΎᧆïòËBh<æ‡ Ò šÖËÍ ß¬*À1 e€ÿá'¸™†"«È+nI?Túd®6~zŽÝ'°ÜRË™íUK7$T]<,D-h:àáéhË·,<¯ÏIdmTHcùïJ©´Â.“£Àª‚äbp €ù–üzqûÖ3UÇáIx¬¯ù„å±8t¿+*TòòlYþAô À¨¢øï‹j@_)™Å«Á²¬EOdäx^W MÍ\ yì÷`«cNÖ§”½M#™Þf#ñ…×bùý#‹âQEuEíÒg²·ú@fž.·²‚/þ.šø-¶(4£VŽ7'ÏA¨ìírv{êͰNÈ÷„0÷œÔ5–…d•„xÍáåQ3„ö¼¶µûçìŸÝ?Û¡´Wxa l¾ìíï]êœ öž€L¼`ŒZ(¦[Ì-P KªEñFIBÑFm©N¡)Íù"ó³ÌÏŒÕNíÀè„>î­1ù‹×ÄÅ«'¡=§euÏœ¾GzæÚ«lc¥Ð{ÞÝã;ÞD.§×éµ70ºaeï‹Ý9Þ—üî¾ú8ð–wx˜ °Ê5OL·™Û+lŒÀJ]¥¾R²Bº\ü‚QcÔ˜ÔŒ™.ü"ó‹Ýúurmýár™É^èQº³mZ»j0–¨Š´òŠÌʬŠL­¬J¦/&ïꃪMKÑd¨xÈTmಡ­×Ò$t„è±Ú¡öËö Ý>ô”?fà]”váJ0– ñÂŒ ­»ß2—÷®[Éî˜ÆÏdbþÒOEì‡>j?¹Çsˆ¬Ñ–Ö‘~ÀÞ^ûóŽt+àWŠ ©»ó´û[ëêuB$ûåf¾\x⩵Oä<+n,i 67µ¶(|“Ñ MB”‹c3ÿ|aû¦ÕÆ@oOí?Â:€óë›ûnؘ1Ô‰öÑ!^Ãê‡a“¢%¯'-”Ú“fÓ×j¡ê5Zƒawj\ÒKi/?efDhE(ª½­A_}ÛäohiòUWºTµ*¯¼Aî•תÊa,—i*¹§w„ä` , uÉ:Š;dYGâ u gµÓfïÞwøô¾Á÷!cá"ºÉ¥¨ÌÚ”U”Î]si\ÚÚÔqW™z ×_㱌±‡ä¤:žãGÕr"ÛÈw5²“³õ ›Sî[ß‚ëÞ³­ÛO'5*úë›h·Ãq›S 3²Yt™©[f1Y“’›)e(2a*ÌHûÔn­z™¿Ö«3ÃGÞ@¼vý”jÌÚÛk§?|µd$°9¼T ö‚ãÐVÖûì¾ù{æíŸoÓT« –•Jte²-¢e/ÁRXV]Qç³{ëa€i)õK*²¤#â+ýïü¾M|ó5qQ‡PÄÝM¯ûOGãþà cÔãb:h”ÃBBb¥^U¼Iúrñ&ÅŽ8ƒÚ 6r<Ö´)ƒªÖÂs’so«5£©æð‡ˆ’p£Ì'Ã(¸çú‰Ê9A^/ñ3¿„' $²²Â¢æâ`°¹¹­Uï=LäÊé…ÇãñŸ“:2eèíþá6Öæ´ÕŽÛÉa°êaÔ¥)Ë¥YiÅ;!s&ü¨1ßU³5t?<¢jË%ÜŠ´}I¸52®“‡¦·‡}ïE5‚uc²ÕÒgi¹êÃÞR‚5›5;I/ /W_ %ºXK¸Æ!«-©‘ß½oÖxöxÎ)<÷n‡Ê.m€^‹#h¯;ˆÆÇFž@’ïÚ€+à Xnˆƒ —¸™yÄZVŽYËH$ZxOûoE<ϱÇi! dÃ`_—³Ëíæ1„…Q]Ž nÇâðyµWaûuß,Á°ÀÏ;N’D… ÒÖ^ë@G°û°m?1ÞQôã8fž2OÖë´¨fÔNC­Ý P|””6¦¶Is ²·Évá(ºÆãr»ìsÈÎX[i®„•,~À ½F£’dì(HÏÁ—ªÎ›ˆï6Õ3· ƒò}h©Ÿ×ù¤&3á¡ :@»×7›¿ÁÑøŽ…˜‡æ}ˆ£Ñ=ïÛÿAk±[mÐÎ8u}™.G¥JRSò·ÁD¸m_ñ±Òýæƒp€±ø ܸöIÛÌåœÛžÿ㘡v9E8d«‹>À×éÛmˆŠó`*¾<‘£E#¾°öÔw{:[C½VÆFq4¸åê -”2ÅÞ’ö¶z_à`r sÁÚ•³¹ím--¨h¸ Å ö:õU,ÿèh›Òzº Ù:³–ãe#HÏÕçªFÛ~¹Ñ€”ãÑï~«©¹NÒIßt£M8ËYšï¾8ÛSbUÀ‚Ïl|C€z@kƒÓ/Dé÷®dá Ù†Œ¢|6û•ê-«8µ%žþ¸ƒuò˜Žc†:Ëÿá&Ú,0¹\µ‹ÔÖ¬ÆÂ¶B†3E½35ùžèIéBwõ}Mzºm†p%ÍÿóÖÂöMµõÎz¶£´SÙcbjè«ðâQÏuÆ`²[Öj²™¬ÐÆXÇw¨±Ú¡Íl‡ZNG ¢”y”Þæšúúî|¯4'§¼¸Ph4 H4Fååv¾F.³Ëî]—¾¬~–©0Ó›Ú%eĸKPN ¿¢OÂ÷*]«I?µô>ÑÚÕóCª„ƒè–À N¸ß}w(¸qÍÖÊåK¤‡OÝfû¨ûæØŽxC(‹ô©M »ÍÂÞêYC¡Pòo÷©ûXT`—¹§´£hJ} Œ‡/f”m4£¸Fõj %÷ÛÚÐI?:I”‰½Š߈<ðo¶¨4hù+þ*ÈìÎwhu(‚¸¥£eíÛŰæ1É® Æ"÷L^È~½ç}b4å¶¢*«Ë•gfÁyðU´fç{’¬¦dßßw‡áŸ!âá©gæ×•Xå£ä‰Â PhuÕµ ß¡¯}/ñOoÛº¸‚Ä„wîLæönŠûFî'æ0bˆ´{Ç:˜î ~×Á¤KLIdæY¡2 .´u³á‰`**Š`1SÔ îîjnmòßo)kÏò¿4ͦ{Ç’«qÿ}{ìÜØopc7ƒÞ.c ‹¿Pa) f‹nÑj…ÜY]&´¿ÍÝ }L›¬¡X\& íIoÊàxê¬ó&l ÿFlÎŽZÞßuÆ abxûOŽ<#(ÁEDwƒÖáî¾îÞS¶ƒ9@üÆ\Îü¦eé²Ç@Ê£ùbš øýª•íkéŒ]öœñíõ[ú„½ô›ð’6ðTMŽ-Û¶‹ Ò%¨(êo|j”¶ÿ;s ÃDEö}ì ¯¶µøjËÿú¼g=Þ÷ù×oºã·±úïòè_ÝË3Ò;usy&HªK¤GÛ¬O«H"z¡ºߺž;!J—Çžq:goWËFæ2I.P¿C’î0ÜSs¸‰¹å#³…I£ðÝCàk#ð-l§Ë ÂL:Öô¢´áw@­±ºª²\¡V wæoÖ$ÝVPË•ð™Ýú$òz8 ð¾õæ‘sùìТ%l%ÐÍ~Ãê­›¶%&m’IãtVB½E L8ŠnGÏ‘ ­·•©ôúQYO§+Ìä/¢O?uìâï¯_püSPô—ïŸýèâÄõ}í~{°4˜¯×›!w’ÁÁ…ŸçæOÿË¿ˆb ÿD÷þ1º_¥;¾6îàîGýû؈ø9ÙH7ä§(Ræ'íz¡I`᜹ÆK6¦í45£]¼Ãh÷ûšë„­ûëÀÃÌ>õÐ&W!)ÌÊÛ<Õ.›~ô_Ìh¬£Æ ÙÏå\ÔoOs ¹8¢Tèr¥OÆ“·áe?ñº7ñKèA<ÅntêqÚö:±_åaB“rÐ@4¢§»Q<š‚¦8nÎäðûz»žÄ2›ÌæÛ±J¸X<¤8y–Ä1˜ÌFh„ªÖ—ò&ŽéÆK ~â¹»ñã³q´T§Õ*9¥·BRð­>¿Û¦¢©GÑRˆC´fZ‡B“ 6CÍä2™•Klõÿœàçý0ùÈFðK9šíòç„ëþÑžb`Tú…; B»†"üÍ„dç›v ‰(à’®ÐFìÇu´tû5i,îébS†PÅÝ•ÐÜY> stream xœ]Ž]HSqÅÿw³{¯h¹–Ôâ^{éÁÀLÊRˆDkaM“²å ™º¥³{ïÔöå&í¿-¯º;'Ló#V˜ˆÒ´l¨ù2_B, ‰ðAúþà?¹A™õÔËs‡ßÁ@Œ`{J©RíÉÈÞ÷Çìˆ*$ÑíR(²QgtbL„˜¾Uy2"6!ôu#`˜"-_W¥¯3hjRëÊ55Õ©*N¯aj*Ö’ÿ€To¸@(G׉€½)‘ü’ÄL‚Äu¯Î Ý³èÅ”j6Ù‡vDk>E¶‚öG·È¢×$¨œ­·0l‡¹›–-‡~KqÙK®ÑÄ1–>íÅ{:Ûo}]Š4øíHÝ$¹„0„W"BL:WÆjµ4r‰…r{^IîAH*Õ‹s‚K€^ Nô‘sÏCÓK£™J‡ÓÔßkŽ4?ƒ’ ¥EPFDŠÒ¢ùòL¼Ödf˜Nk½,rx‘7m^X{M Äm#Ï,× TQváÚå"ãð(…Ì(‹ôxü6ƒ› Þáƒõ¼‘­oÒý£ˆly#u¸…I†™: §È>˜?¢B¹“h0Ú«¡꼬¿VÍT©àYR$Pºvá-RÜÿÂSm"Åøl*?oì¦yÂÕêiu·ƒÖ»|õfúóuˆë§¼÷ø›¬ßÔ·vÁ@‡»›+÷UTj­F=Õ|£¹Ùá$¸rþ†RöÍÌsœ‡UdÁÃÇìH+ÛÔýÒ$öÉe?ÌNt{¶…§‚!ê=>n[áa™#¦[™;{fmÔÚ|­ÊۉǟLN<*/æ)+qæRÉéÒ‹žÚ©D‹ÍkG¹.2<ñ).OÅI…C ±ü Š'/endstream endobj 209 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 273 >> stream xœcd`ab`ddä v 64°4q”H3ýaîîþñã§kc7s7ËòïBß™¿3ð``bd”ÖrÎÏ-(-I-RðÍOI-ÊSNÌ+VN-ÊLC“a``` b`0icoøÏèmÂÀ÷Ÿ©‘•aaÙ÷ '¿O?ÚU.ôæÖ÷;wÄ…ï¼ùé-ú×ëÖ÷ ßµÙgt~wù½}Vë¶ß1ßoÌí3yö$ÉÓ+Žžè¾Ê1…]øÍwÁ†ßÊ•¤…ïTVuUJký¾ œþ‹ýR÷ûöÕFýõ}õÝõÝ¡I Ñ•É5‰Ý‰Ý|å ~ÌùžÕ3kñÌ¶ß ÓØßsíå–ãbžfÏÃÉÀ4ƒnæendstream endobj 210 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4150 >> stream xœmW X“WºþCÈÿÿ¨u!¦Æ¥¼h­[]ZºLí¨ÁWT!,ŠlaK€HBÖ²³‹ì(øƒŠ¸ Ö¥kÕ±¶VÛÚÖ:Þ¶s«í s¸OçlçÞ™!Ï“ç!ÛùÎ÷.ßûq_‚Ãáøm ŠX¸ÄûÏ,ÏtÏ .@ÑW måq\0ηe†Š?LŸçL€ÄD‡Ãa^ NOÍÈÉNÈœ–Ÿ™63(=%~fˆ,;!->!þ_Þ$bö{iéÁ!™YÙ9ks¥±²¸Äñì›íû€Gó2I!馂¨èXú¿\¿c²Æüulè¸•ãšÆýï Ç^¯?0aãÛıû'Mžü+'ÍIŒÿ•»<0±ðmÖ³[Ê9Ú#C9K¥mÕ6ç!k¹¨ª«žu¥a-ù'ô6o‘Þb’ê6y[Që*¸aÜ€Ÿ5z‡¤]žlW0Úö6 A᪜T]P…I h˜÷ û úxãõ‰ƒøPÏ·7\6ÿÇùƒ0zp ÿa·g“@\Gño·4éSDè>Å"†–ä_ 1äýÞï¼d^·Aå#/‡ÀJ t:em'ÂÑ „ì–†Òü‡FHñ—Äç¼ü%¡íôˆÚ8nHÂ2Hs¡Ó)@ãkZ Ö4¯¹Û·ïJá%\ã püux!ÿRb¯(òý•uÁ€FP­`€gM—u76v”·ƒÛ ?ʱ¢Tj’EHÃÖÔ„¬ÔÄÂD⫳ݒЫ;FãÎN{(êÃr®Â©Ü¡ÉC¾‚ÈþU®Õa&Ò–¿½y}úë ¼áZzeÝ'ï@zß/¸ŠpÁc8_d¥ NµI h©*1*DjJ®HÚ—´7fcÖFð&XÒñç=j¿Àõ\·Òuéôg:è¾ZT‡ˆR…A~ÐN²Òl+A%åÔÛ”…²ŒÂB¦ÿ)‹èQ ÐvÎu{¦wú·Ãà€AhÔþ`»†fŠÿcC£!Y4\KñŸ÷{y$•žwÀçÍ}¶öTžghÈ $Z¸-R¶/3€x”Ç™šàÌ€Y ìmÎ<¦³ü ¡š²¶ßì>è_êÐä5PbÔˆp!7˽ <ÅÂz–gÂIÜ#C+âÁáÿ {þNõÀ:^YV²::zWä{Æu–©ðÔ%²ôk«vÙ¤ äÒÝЕ@b¦È³¥âõI€ÞëáBòcp½¤7äP’%Î*¦»É ¨Àôãœðžè†Â7¾ù[‹/zòr§ðoµ?gà‡¿3ð¾z9f +Î&šá8–Q(Ô Góo%µä¶u4´´žÙéŠ Û¹u“Š1B?Dh½gt@Ôäz‚ûw]ƒyÝ ×¦ð?ë´§ŸTô£/zž‰Ê)í¥˜ã;ë$eé– «Ø\èóª8yy {•ƒQu5c'+¬Ö*ÿ‰Íh³N{H9uVUž<(VËÌùæ|S> ƒ^‘!êe8Nög…è¸úrØL¿÷}³²,¥3ã+}™¨­Ðê Eh<ôF-ÐÒ*sIYEe¥ÝÁØm«ÍŽ9Áiïôêeœ;……Û¤þ? &tÉ]Søwಡ‰‚?ŠÑø™L Åÿüj$AjiêAIkÌEå)@ßíºvWÄ&P ÐTä´X¹vû.å@Ûà,ŠŠE³à6j”sZ·çR$¼šçvRíh2”æÐHCá_M©Éh¸¥; ®€«®ºË¦7„pEŸ„ÌÎ-u‹µ‹FÂH,§ÎÛ·S”XMVP,k |½%´hj U‰N‹¸èEa4É è\1ÜÂ’)V¥ÍìxýZ“¿˜Í‹Ã|6ŠÔ-Vèì;š ƒ…XX£Øv‹åë'ƒ‡ì•ns½¹Ô{{ºULµkË4Zåë³^“x'F:5ÊfÆ õRÎÓ'Ð In»—f””™œ€n¨×¦ˆ†!Õe:w¹;®?ó ˜ 'Bß{p$ƒ ÍÝ%KŽÁÓ#¦9ìè÷hãÓögI’ “@47Kºµv€#ÖÙqËk*G>+E +ZmTÓ£íAQnÏMÌà§ÜŸ§ª€EjSœG¼³ˆ<ƒ(«Ê^„¿PT QäìJݼA‹K1Pš‹Í5•5Nà¢Ý9õILЦ0Hè­Óû¾í»wÓÍ\Ó>„S/Ãé.ayÓaS3 Ë½¼'ÿÉ{…4Y•» …Êlevq¦{§p„îœÇ—¼f2½“sR\ˆäÝ+ƒ~pRs³N׈©âËó›è_îõ<Æ€°^@‡¿¤òĆýLŠZÙ2y)æ©ç‹¬"×)›úZóZû9Zg—›¥pK½æKv†ÝƒµeµÖZÓð3a€~Êxž ²(•”M‰¦°8K¸- E‹W£ÅXúš|,yÍ!e­ºv-\ âçâ&¡¦Jc—z´)¦Nœ|8ïc ŠÑr^7ij7wÕ¹\ÇNYNúr)š¸MZ‚&hK4* ¢‹ÊteŒgY#ð ÔÇêöJ’’#uÑ€~‹¬ïhq7¶ôè£G×Yív'pÒj‹’ùvváøã|Â…ßy»ÑL5Õ{§[•Ð}0ÏÓ‰Èwš»³rgû^QÏŽÓ¯ƒ0pðX½÷Qj 4âñ‘“kÅü+æ*Ò;g©;Õ Ç?š·¿±è,Z“†F%”W‡:MF\dz$±ï«nË€ÓXæ½ü fŒpÁíœ6\’âΆ9x•¬´Ø+ ±ãZ¸=\ž¼W› Bi<88¯AæÎ—îûnÆd)5 íTY‹eZI¡š‘ÄEäD ¢)³_Öm<zi—/8aíw­wuÖtàAÛ¸`%æg3=j!p,| »ÿôÁýß&F| ‡€¾,¢¿%OZÿòÃa4:™ü"Uf+ÿÁælw[sSûùí®¨Ð%YAŒ2 db¡Œº%Šn…o}{·µ¥õ¿øô͘òÔqw ÿ‡bHÀHAvfQ2H 5©‡Ó£KâA,ønþ½oàÂ:HüòöI´€ Çr,2zϾÆ" eª´–ÛÊÙüN%&ŃgìÏÇä­·¨©¬©¼Å„G¨éœƒ…õõ5ëÜéM©ûöÉ¥ŒÁ 70*G‰™æÿ\\œhOœ>ïµ jwwæˆL¨CÌÆR`‡¹;*Ì• ÐÉ ?Е²­kÕÜVŠNC$h§Î9¯Þýø`t£¦vÈ·¯Ê”8kåLA­±AßHÿŸ ù…cüŠ9Oà^⻽;„ÓcK3H ôÏôøŸ¼“G ]RwFïvœà׃å1ùaFøLˆx^YZ€š%õ?—!!Îy2…ÿà„73Pvà09Í¿ÚP¯K¡¯BŰÝàY„¸ÿA74ø7’K$’ýÓö¹’{qŒê°·´€NúHFGìsq³C/tq®>€·¾æÂigçöÜÍÿ,ý·[PôÅ®OƒŽˆR«ö[“ª„ÛË×´€»ôgv}9Ÿ®FÜZ¦´X¯ÀÛN–YÍx|aÓ78T’ìÍ 1’jsq¹Ú{8²<г‘Ï4ãÍÐ;)¢ƒ%‡tµº§ÙÂëò¾DÛZE…Fn{g>âv±YŒ¾ƒçÔZ•ŒŠ,2¨Õ"”H©¬ZGUÛPã-z¸×Ûñï±¹ÝÆ‰æòÐ2 )°XN›¯î:ròré ¯ æ‰=ËX4Ïóý€ïëêæÚSÍ)¥©8ËFðèD âô»b¤©íÏQ»ñ;j0BJŒÐ$²´êÌq{aE‘S1µUìŽo—ê¬8@êU…^¾jÄPÂ’I¦lk^-Z “ ¶ŠJ8éI³íŒ™Ç¢01Uá2¨DF hKtzòææä)hO,¶’ßAƵôÀå#µôŒÌPleÞÊ¿ÑxH›&¾‰+«ÙС€rpYÿ¶Cެ‘~[#ïüâ=_#¯ÿgÆPÿþZÅÈj™×*éÛæˆkAh\Nýò½ºu¿ošþߦ‰«ÆÉ6r¸_{¾ÃWè§-}Õôðaô’Ø3‰EÓ=ŸPÀbÂ!ƒ®Ò:ä2i¶2—Ùž¹I³<·äy˹'Áp8ž )Ï9ëX#ŽØÎ-QšWWþ1l}øÖ-Û"6©Õ-(¦s=K(LÄÃAgÚ²ôY »ú»ä@ßÀ© ½·.|w ÒPˆ&_œµQÛgƶeut7µut§7%2£'wyVÁ¨ýþ}P8N€¯Âñ³áÔ)üø_žÏ­­}U؇Îw¥l«(Ë~wUa–n—dÒª´¸`´FYGG” ðvÔR“8m£zñË;ã+\‘Œ‰ê´4a‚öܶ$+­&ã$i‰ÈÎLýûä‹gáKO^ÿ`q™ˆíFëýÞ§ý =øâÆ/Ø×’vôh³ëHgVK2ó[³¡뉓úà /ÃþÄ _@7ò›)†7ØÐïvgY©³ÉqpÈê\EÁ+h&òASç ™˜Œ:<[;üÇPïðÐç\lÈ…Ó¥œpºw4Í$«%Ù ‰NrqGK#8JÍhÇ.R\áÙì„{,® EÙ¨ŸÆœˌᖯçGÿîÙøendstream endobj 211 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9696 >> stream xœ½ztSWºî1C  (˜¦Bè’PB ½7Ó»qÛr‘dI¶,«·­.[²lÙ*nrÛ`JLÀ´B¨¡$BÊM¤Ý-gófÞ>¶Ãdî;wæÞ·Þ’—½lIGgÿûû¿òoGÝ»=×/Ž^5múÔ©Ì//…‡v ‹LD–ßÒÛU=@ŸHЧ{Ű)Þð鏿¹Gý‰n/ŒZ–š.$d¾¸*->!“÷btZêÞø#A›æñ¶ÌOÛº }ÛÂŒE™‹ùKK…˲–‹ö¬Ç®”Ä­ÊŽ_°fïÚ}룓Öïß¼1eSêæ©Ó^˜>ã•ǯxmæ¬Ùs^5zLÿ7ÇŽÛ>lâð“8“¿›2”K/kˆÙÄHb-1‡x™XG¼NŒ"¢‰ÑÄzb ±Kl$Æ›ˆñÄfb±…˜OL$¶ ˆIÄ6b!1™ØN,"¦‹‰©Äb±”˜N,#fˉWˆÄ«ÄJâ5b1“XMÌ" Á&ž'8ÄMâBD "¢ˆÁÄb(1Œ`$AIMô$zs‰T¢/Á#Þ$úiÄsÄ¢D¯ˆÞÄf\füÂâˆÞOºˆœùU÷ŒîîadMc"—G¨‰ÔÙžÒžŸôJìu¯÷K½Kûôìsµoz¿Qýn?·ù¹ýßè_= fÀ•k¶±§°[Ÿý|%çà Ù/|7¨xпGÕ?Ø1dèÀ†&ë>¼÷pÇðχÿÌÓƒé<:üâ¡o¸÷RüÈ‘#O¾<àe㨲Ñ9æÀؗƪÇ>×o\ñ¸ïÇKÆޝbü£ Æ ßLôORþ%bñ¢ß_ºÝû˜0…`L(¼EQSÍáÁm!2=ÎSï¶»­…´½ÔùåÖƒ%€‚RV!0É-Jÿš(§ÀÉw ,j«¨(Þvc:—í!)“¬0¯PëÓzÂËᦥp£¶DÌy@£6ÈU¨UhõR´zZ-Ý)Š}_wÌå@ >€zÐßÍÜSx¨/—`Ü¥ÈÚð|¯” UévÒ¨–Ü+ÖFãKÅÇã[Òpyµá‡Þ/\»–‹òÈDž>•›Ýñ<+=ÃÔHC j59U‚æíž° ì‘$íPæ©ót¹ÆŸ¢~¯A{PDCûÛ^YBú@ò¹Ù§_;=Ó-‰2ë-z J¹B«Š[»fÏZIš$5MÌíU'ŠÓB$ß”Z *(i Ë‹uïÔ·Ö¶Úœv‡Õéñ‹0ÍŽ²j*“ŠÊÚ§Ì p„¤ä^lÎh^ùýÊïV|§uÊ<À \ÇK*|Õþ¯Ú[Q\QQòt4*„Òxd™±:d€ÌäýÙÙ™ÙüìL…T™“—«öfûó¼‚za >ýP”Φqe"Kø¹!/òðë„©J•ùàáI4roà _®øz»¥…YvYW­Û«6j€†~ZBÆ¥èösSxð4‹-,õ}C¿°G}$¬n³ROFÝšÆ-²›‹ì»ábàLÛÕ!àúš³+Ë<±–8@±‹ÅFñÐqèkÆò€"“PϾ1{ü[«ÇJsM —~“•./¨¤áÉîÐNV¸ *¸°?ë}p<«j5ÅnqHl"щ37NçöûKÄwY„2ž0ІnÃê;ƒØGav8šó¢bÒd€Øb}†"aìóݯ°'—}vŸû¢Á\öQÖ¨Šú#;ÇèÌãªãë;(ö§·ÔZ2´Ì.Omˆµ®›Áz㊄™){% `ˆ¹¥ºi(.cõGÀO?‰,`* ƒ ÜP,+Ï*ñ%7¯hZѼ¢@âÎ.8eùJ ¦˜EIû$&Ù°“+áÁ@ˆ•dÆ<@%§Û&'°Óðm8­6‹Ã]ÕzëÈwn—†JýUµME‡™ÍßÌ#ý!y¦8'K)¥w/Ø9÷UžJ®‘­y´òáÚGZ§:äSfÒæ¯Aü²_ûfQ¨}J(¢íÛÈððoœmmk¾(´AóP4ZG¡yp ]Ä‚Ï9ý“3Ù€Ø(§1_‘cKÎÖqs^ž> uóÀüƒ;Îm¸,ûÜó¯Öœm¹{ÿÜ÷²ÁÔ¯t¤Ia{岨œ4t“v½]­ÒÊ5:nÚ.B£Ô*wv5Ú‚S|ቈŸ/Á¢;‘ULc—ÕUú=ôÓ˜Î2©©„TÃ~n.ÓÀBVZ†õm‚KÊ÷œƒa߯aì»ÏÄýÔwîô¸}ôe# G»”ÿöÒ}RuŽ.P;{—†¯“ ÐèÆ`=såÄù' (j±†Ù §n›p7ÔȳÚG2­ÀŽùï§ñ{X–Sζ¦C-G¯šÎcf¢Y щëö­›†^žŠ^ž†Fj 9QyV­‡Ë¶Ùl&ëÐp4«z{YÆeÊ7wíÞ¹{‰a5®òXVÏSâ*…=àrØ.Ã?W8 ò]&7åÖÙr¹l¿–&¾—?•vtfûÈj n8ü“0ç›Alïa|Kì:^-YW£KèjK/ŸªIÍË39ær’âóýCo‚Ë¥Ûn_n|SðmÔÎG{¹loV–Q4}ÊᨕøbÇ¥ªRA  ^c‰DæZ§ sV“ ßX (v](9Îýœu \“ž™ÿîÇ+`…QÎ4@÷ª?ì_Ãèù02ÜóCŽ ­ï‘$Ò®ï`d™šai¤Ãï“bCÂTþ‰˜–`0ê?eêƒz<À ÚûݳUÇ+häC8.ܪùå~ÐiÉ7çÊʺN¬p®£Ð,D¯Ý›'×çå`²%öSÀÜBQ/F¬.†àA܆CïÂíÈæö79¼²¾F·OcTw©‹»Â§YÍ0oŒ|µf~ Þ™E†5xcú³øK= +¾#ëÁACišGhâ J€ÅB ¶¨v­PŠ  ÔBhaÕ”Z‚\8Õ.cÄ™×:·PVäc­Š62Z5EñóÅN8“ÕÕúÐ)Yˆ”ƒ¼ŽnO³aµF‚;nØí^™ÓÌ´>n9£ PFRªQJA%(ÍñUx|¾ƒ‰þ¤Mñ »Å\n £Â#­’uèõ æ+» 7"ý×%€ï„X2 5æj{º­…†–ÏÈSgti ³X ùv:-LCÃi™¿ä~Æyp\ª-:M™XléK}RóÐàî€õõ‘pÉÓÆìOV·”»0º]\H“‹7pQß½rjöŠ9 oðJsÊʼ¥Árq1Ÿ ã›3‘d·.ܵba–êw¿üôè}7×cÆ´0ÚÕÞëü'ûQ¨ýé¶fÎ%Aq™×媪 UTUÙäN¥]g U”SîÊÁôžd”à·)Bzr È m¹ƒ–Ê(ƒEÏÀÁb¶˜ÍnwÔ‘#Çi9v¤µå2ÒM<²¨L)”ˆ³årZ.Ÿ0aÜ䱓ÃÉ£5¦³\Çï-€Õ Eu¶À9P˜VžL ¤S]¹ù9…yX¸ä •L)ߺbלqLš"E6U(o±»ØW(+©Ä.‹¯‹ %ÙÔv5Pi–Jf¤˜´)&·ƒïÞw…!a•0$óæù¤E8¸\¼Xû#$™ûœÏ#K ²s“ã“Dé´F¥VkUJÍûøÍîfü(òç{LÃÐ –ªI~è`$z±ÉdjÝ¥ÊOŸ~³Û[v¬>¦)ù<ö“½þŸƒÔ H jëJ~Œ€6›=`ñS#G·]ÃÛ›±?>+Ä‚„2~ƒÚ­rb Îa|e!ö•ï];vv+Cýfa{oT3Æ2.ô{Lø}›ÿ~° VE‡9QLWAT OÍ©€šÏÊ’Ú+éðQ²é€ý€×k…ñq_»}á{ÏØè4°ï FœrpRÓ«Ê.ÃÆYGê2³“"ñ.ÞÚhäù’|\J¿¹Ø”_ê ³¥‚­ÇÓ=:¹à¸E@où…¢ÛwMƒ;H+h äš2H.Q‹“ç§ÏK™÷EÊ·ñ_Z†¢*êM]ÍÖü<#`S ÿO˜âèÁ¤”@"d–f‚¾âÊ{ÓjW ¾¯¢ˆBäçØûõ¿|þÀÕm¶[ó;ßhÕ™u@ €T¯oÚ’°P#aïû÷* vo>.I*£ûýÆé*'].¾yä?UTI®Ø¤ÞƒÁ¿?DîÜ–™6…Û²ÙöìÁçиÓhìY4î(êe•YEEzŒÃ"` Z]pQ86ª°¡°ÁÓ஋²8,³ÓôôlP™˜‘FBŠ6…iF¾°÷éß+d¶^ƒbŸ6ö0°Pl¸QÔ’méÑY"S å‹8‰÷KŽfàlan0V•Õ±4álA±¦ ÓÐÀɨ¿N£f>Té08¹ðK'Vb`èãôÛ2“ÒömÓÇb?Ñ“åò¹<'oD]üâÒç¾°ÙLóÕf÷?à›sïÅHxŠ©•›l.3`•M&“›bʶà+õ›ŒÝøˆÛ¨|¡­1xô½„„#°Öæ©©–ãt‘èÓ§€SD‚òo_=æsì@¸·Rf”f“Ñswm›·ãÚ %×€ÛÀPø·ùxXYxZY'ö›ÈP¥AJ? ‘‹·¨wwnÒîÍù`J-`¢‡7ËÃ/^yuÄÕ‘ØbEUïjç5Qæ|\é‹ä¥“Î\äý<²å¤j9ýt‰ÚòÍ=žapš/"ô1T\Œü•"5± lÖ‚Ÿ6ü õB}^Cˆšq|úûè ¢\]( ë#pýˆÿ¦Éb¶+eÓØ´yÚt™š›¹kGòF’üüª¸wtÁ{”©”sûð÷¿,{y!Sßö8BlŸÄ ;ͽß0󇿴oä ×sÐKh$@±𠻣­0n‚œ÷–2Sˆ%ˆ W£í\öQÖ¨ŠRžöáxI{Uà×ô¼L±ïx*«ók†~®­ižS¹>X '­@Óâeú\C.@4˜ÇIaoC©Ñg(eüã„á´ +E0ouÆØ¼Ñ¬ß§_²P +ŽoÁ–ÿØ#„ÈïIPj k «ËkL…À­wksÔ¹ ¤„Å’`¥§4pdg aYôîÕ"®Fd¬¿&®ÃeðRÇ̻ɶo±þbÃڕŠϴ`Õ2b?ú½².HP$û.ì§BQ§Ge?ì˜ MDßq`YQàªäÞb=øUÆ'éâ…itâÎuªM€êTuã‡O?@“ß%øÞµ UðBë ö¯ðfxÇÈJ/sá òö¬Í“÷»÷2i‹Þ¦ø¡ÑtûOy"5_0${B9X¬væíŠÛ¨©pоwáðÐ#øêW2›û&k÷þ` m%M^‡ÇYÊ©Õ('ëp¹µð…³j}^™$¤ïTLªŽÀ™â蘗`‚ÛWNI åžâw1×Fê‚"/ì»rø)2<Íå8ñÊêj =¶bS ®°>ÿ¦u½E©É·FðÖ,\yCÁeÿÚŸr Éw÷?ù låªÝª¹o¬´žÖtmüöS8Wä ×¶}Þÿõ öÝpšŽcÚf¡{ƒoém@=.ÏÑvÒnp¨e¦d…ž›“”¹l´IÞË> þÎpø1þ§·¯¯;ýF혶¡h-Î++àP´®¯i°¹Btq Gu$áÜ¥bmOŽÛMkHSŽ]šŸ‹†Ú Ç8‚ôy¸.„KΠtÜrÝÒÑàñ+¹èRŽ[¡ºòš†Óöظ¢EŠœý‚Êj÷ã]†ª q&\ЬeðTBÖVèvÒOkȽº4®°s„û/Œxk³«Í; wãZµW²Ö;¦»WS°•Æ >ョvúþö)3 <p!Œ πÒÐîâ SàQÛI°6.£òYïÕµ²ƒ…Ôœ‘g 5)‚¤$°¨ïèšä÷L·æÏÉ—8%ÖK~Y~°qz´B/¢Ï8°„}÷#Öƒïùˆ3gûö7sè ]& èŸ{Èhü'‘7]ÄEœ·vÎjË´»þ0[ˆ å’¼Ls=îMn„|Nº.Wˆ7«8­¦¦´¬ 3?§*…ËþV¯7ê‡vÖ^jŸVÅÐØ9xãc0²slËÁU@ýüõ}Ø÷Þ¶¯f•Ó(² 4ªð;É›—ÎÝøþÆRDù¸æ<]ÎÎùi<‹d5Úô-Σ’­9|Ìf­©‹*Ö5åuÔýÍwÜH£½j¯Þ«½žu9çJ2x ,Ú¸t¡†R²Æ€q'E°§±À˜o,  I£MkÑJaÔ¨i”NjM gQõ»…ÛIwŒ÷ùóïy‘)Ȧ ~fwÐè: „&àvŠ1Œ_$Û9\¯ÓëT™¤„Ÿ‘#l>/8róÄÙk\Ž-ÀC…ÓÉõ5àšñýüŠ¿W³öÍØ¶w«Š€Þ<Õþ:GÒ1&´ž0_ÕÖ4ž³ÔQ–ÏoØÏdËØ½šD9¶ Jn*þZÃJØg=D‡ýÌ›*Tb«ãÖ²®€ëÿ«Î$s¢%‰ °$S–gfz;§I¿'1æSÖ&3zEK‰¯[šºÍMÛë6Û•¦!‰H'ÅÐXÂÆZX{aëÞÖäV­CçÐØ1q]8zúîWŒ¯^ˆý¿Gž›¶—/Ó‰)ûR“’©pV׃dhUÇôà×ÊÎfyó«´q*£àmú†X&,"¢N…»ƒ{?ÿ»9üØo›äµÖücX¾Syä‘w•ËhtËä+wmIJØÆß €èÓY—åA#îA6ÕØj].#(èô˜]Ð>©Sáêž›øêgÅHñY<åÝÎú}ò‘Õ>{dæå~2Ì-³e9²LˆzM?¦¿¦9…8½ÚÔ…8n[ÊìEWáª[på‡pUqsÉá[Lm6òH?(UIíÊ( o Ö™Z¦“‰·EmGìèù­h & ¨t|m5|}5œ­Ày‹™äÙ( i«hI>rʹ¿9ÌúßgýÓdXÓqÞuh‡g&Õ ’582©¯®-«Àê9Ñ_‘?œëª——©W®W™Ñë’YĶœêÉQï¢WÛÐŒèU»$Ê¢°*\ŒƒòÙ«`/ßùƒ°ÛY#ëlrbZ„…i~+w=Š&XÔÓ€ßàÖK½$ê=¸ö}¸ê<\ëi,i¼ÔUæÚãÒ©B¨É¡·¢ÑÛÐè=h,¾Uå¡ìC²æ½°w<ì{é\j/( B'L•N:\»"à5º5<{œ]Üu i yš<½<õM@ýâP_m®û'u¡HçÞGï„ã¶Ã1”Áf`¶©ú¨|6:ùÚ‡ø°Ãi¾ óo3¤˜Ó>™ƒ¢%F¤(4¼ mƒ ¹nŒ.1C)ø™4 ãÁÝh>æ ­Ž±v¬§ã˜&lÊÁðí‚¥Ùv$Xï¯mÄn˜ÅM¢ç‘`žnnúfɾ½©{¥a¡>NøŠòë.¯ƒ©f<ïjä×áG¸çŽ‚FÇ‘Rêi€Œ×ÄçHM@†‘ò!3È1Jµ•gk¡Ã×±Øç+róÄj7†·E¹…Q‘Èë?°Ã®º»è·½¾®uš®‡/` ß¼öq|ZObÚÿêøÌ¹£æÏ^¹€^0'KÅÏâdhT* Z“è¨0ãê\œJT;,ÛcÖBCö sX'Ožx·­õÚÅïoƒ_(8p<6ñãf¼>:­ 뀆[ç –sKÓl´h€ÚеJQeûse=†›?[†Ýä“Ã78å-gÊÞÔù–„7ÖdÎ])¦ÅjM¢¡t,ePàd”O»XnPhrŠýíwu3ç­¢È1+ÖT½·ÎgÕJkª¥©´Ž•¡Ï‚LjäOk¾‡ÄãOa/ç~6ÕÁe?yPwîÜC¾}©å­·'ì™&t ª´\«Âç«(—øy:=0êè®*… 7æã8~9²ÎåÀ≬Ø4ÃR\|ÏG3˜…‡Æ„÷’ùZ«*+aþ>wê>E.DÝe¢(R§r a„*q 6ܧÇÓ>Ì^,^ÃÐBà!sä3 ëÙÁþ[?÷rÒt²,lÙÙW3|‚ÊÊ€¿²LRÎã²ê X«Ðºøºl1ÀB|UàÍÕ”**DÁtæy`zã³ú‡‡ûà‹7kD+aÎÝÈ;°?Çn´a‰¢*JK+ÊE¥|0'ӈ߄Û3~„}¾ùöy¼ /:¸ öWÙ‚½FRVkCà¸PÞzÊj·Û€ƒ2c%ïŒõÂÜmš*UÇ»@‚+Æ£5c…7Q–èqÃPX´UfUA¡½Ôéä†j•¶ÊÎz +B=À<°XýÊ[‰Ùªl}6X–ŸÊ阛㢅ßÌ‚Fü臫ü‘OÂæ%ìJ,üº5‚M11z½{JkÓZ=å ¥nnYcÑqpŒjλ´™'d¤û³*K]ù.7ƾð?~ï³:¾ìƒÉe‡îAí½HØÞÁ<´Ânw®WV4x€ZÐ(/IÕ›ô@(¾DÂxÅee>oõÕeµkÐÜéh#†U¢}pé¿}z㟶Íe Œúi!¤PŸM+—äpM/r\äõjH|ϵ³~QZQ/°„Ê&Á*õñÙr±VâAª_X›zÜrV{êw*É }½CxÁg‘ÚgsRÐì[lÕ¶Ö"—ÝVÄ„f–ÿð`vZÇÊbþŸ'ØÏߟ•¸±¨?sª.'-Y%9~@™Yõöê } G×nN8à½?y‚ÅþâÀçp@”Óå°ƒ"ÊF VÖ€h»!ô×^ïW>ðÐQÉ!XÖ,>6ˆý\¿æÉ…É‹ÖjgR Œx´ò[=6ÔO~¾{¶ ßI¬§¥žì‚lwn~®KÊ@Š}çlðüû%*Ÿ¼³ô£¯MZ3úíæ]ŸìàŽA[8쯰ìZ‡€k'OŸn°šíVpƒ¿$¯5éAXH½:wÛ[oÍoýç«;ð ÎG—›>üàfÌœè;bx\A§Ã¾ÓÈR¾OZ°µ.j¿?¥B{è÷Û¯‚‰¾ðèò®-ð6ÇÄ3 /¯[”ž˜(Þ…C^‚ƒ¢‚5þÜ@ºP$åi¹àƒý7ï^j»ÔÄm¹V|Ü¥às|˜„/\ÏMWî;¨QWQ/Ø÷üû‡ß/ä`_PtáQ»7n  ÆJa;t=y¥vûñI ´^gÔ&D1î(žÇøá/b_…ÏcþÈÒ‰$˜ú2‚ŠŠ ¯ ÷}…0˜Áe_í¤‡Ï»ÿ‡0Ïâ§€¾ëŠè­¬ön—Tú±Cp~ Ǥø¡_/\§Ói˜ÿh0f­Õ`ÁÈ)kp•›ŠÞÇ©FÅ[ð'¥J23ÓâŠâBGA½3<õ¿¹©N‡´ÞáÊöœ }_ù¶‡ÑAøÚ{øû vÞ)x¶}ç]þñYÐ Žx—£—Q2R<4¥HÒ£ð]©€(ª|Fj1pú.ØFC6Ûsp]ãÙƒçÏZíVƃ»åvu®*G¡æîÙ¼4e)XÖ·âÅ8€åæ5å¶Iú×0ògǶöû:8ðÖae½¬™ o kœÉy{^³(öÉSsŽ£¾?|söûøë}°Ç(.$QG»2mô"°äþj8lÄRï{ ëÖݺ] 4F-÷é’ð˜æu]3§Pxx–ø"Ý>rÂ÷‘í›`?޵nˆ5\k‡mOsZ­ÎªµœF½ã­,o 6›‹ÊÜ’Š@½³ž±ZI<²4«m)T©爕Ùû7¤¬‹Ýª×i”ø·gWå•ì¾ûAÊ5ƒU((pØGÞ9{\¤Nˆo/Ÿóê›Ë‹WùVsMÌ´W ÍMIÏ–ÄlYP¿Ùðù…*[Z¸f“Åbà’9ÕM)'XÙÏ|~àWú©&rÌ,»°PèÕ¯:¼æè»&_…íµ&C’«JÅÉõÖþÏ?¬uÖUÒ%5µþ’uè6G_¢öjK”MÚà™:ä½~¶Í6‹¿+563‰›#’fI$]Á™Ñ‡Ìz‹ý‘pÑÿFºäfìC¸Q¡ë›’°òÌÿÙ8Hë{ÁS--‹ñ’6­M—›™(Îãò¤;ÀN*νüd¨4XQ™åOË•ò¼¹ùŸ¾· Ö¬p(¢= Z9…X-V¡W Wç£W*uRPP«ÞîÌ·›í\8ê2{޾\]ø]&g3 Ü"‹Ò†Œá¯{³Ü©Ä—#÷ËäCbr¢!g|~]‘¦XY¬í:¥F’¬ßrEÚ"áíJN¢lÙ+)ë£_ >õhå´ŽBýmz»{›Åfq¥…ôØ; Îp €¯×Âup`·ç3ÇðLÌÇŒc4r»>Aœõ›ï—¨-ò<þ½Ñˆ Uˆ]²ŸÐ€Zô@¯4!ÍúòÓ£Ôê<ÞOF(×Âr›K|……¸ÕûµÂ·|À•ëáj4ögBƒMŒ]Ð@fßo|?]Œü©]Åù³ŽñÍümÃg>òÙLŠª‡Žc£„‹‘?ÿ§‘j2Xi™–~_e²¥ÎºŸBÇ~·jÉùí¦H4JÞq~f )ï¾{®þ ¨¡¼2>•)’fŠEå_Qm!/-©Þ0oZÊ‚D®BhõŒ‰;`¼Ãø_$á¿aà¿ÎÛ¨æÖjm è ò¯ÿkÀVäzZ0ÙÚTæ[¶9ÛDå°&£ž[Q ËÉAû~a]oú²ü ¥Z¬b.PX•EëЛ4»¿\Œôã}öç 3EpÌoÒ.c ×µE¸ Ž³¶uå–ß“LXê#W¿Žaû|þáÖ§ÆœêÒ˜g‡p‹èÿÃyJ†‹Ö¦pŒóAIQ¡#Tò†¼Eù'R%Òb‰8/[&ër’H”õ[¶("<·€B¯á©³_A†ÉH?éEDë³6(ùQF­ž¡.̹ƒý³³Þáý7h{­ø»ïLé™ài“ÕlÃwj&m:K‡†¼Þë¾ùÿÌe$EZ…dSé%¹ÕÜ =ß J¨ãÛK÷ÅÆHøbnzmlA,À-+CÁP£Ë2G¡Þh߯ä7—Ï|ZU®–•sÅX’ääK‹˜tÍMþБÿ*pÿ5kº°XT,õVztµ‹´l/Ü Öõ’Ý{³š¶ï³ê›;–Âø‚ñÿ+ øM~§/xò ¾N(WVgð(× ä–<§ÒªË×›ÔT?‘?<¿òÌEe,´{èÍíéz«OO‚ø¿ w!Òendstream endobj 212 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8884 >> stream xœµzxTÕÚî!{oP³ij7  8€ Ò¤)M„ UéR§÷ždfÍL¦÷šB¤„©I@¡ –£õx­¬ñnÎýïÚC(þç9ÿmÏÍý<Ìnk}ëýÞï}¿• ¬g,##£×â™ùù£ÇŒÅýgH*·Gê‰L3+IEŸ—Î÷¬}⹂løñcpö£¿ôÅzddä>;£¤¨T(X_>è’uëË‹åKK×‹Ë Ñ7ÿé †as§/›^2£tEÙkå3ù³Â9"ñ;’5ó¤kß­›¿~Á†¼›.Þœ¿¥`kÑÒQ£Ç¼0vÜ‹/ ~yÈø OM:ù•áÏL}våsÏ¿5bäŸ1l¶=‰åaOa ±‰Ø"l¶{ËdžcØìYl)¶ ›Ž-Çf`#°Ø«ØHl%öögl&6 ›…Æfcs°°¹ØXìul6{{›½Œ=†ecö8ÆÃúaý±¬6ËÄb¹Xö†c4Æ`½°ÞØ`ì!lö0Ö{{{닽ŽâˆØ™Œ‚S{œÏšÙØszÏ÷²^Îúïx1”¸DŠÈ¯{õêêßû<Ôüp[Ÿ™}Z)|äÓGc}ûõÝùXÉcŸfë¨^”åñ oïf¿¼~ï_ÚÿjNý€ÀÀ·sŸÏÝõÄ 'âšù§vz6}‘™ÁœôÎ v°fð•!õOö{ªÇSEO:r¨gج§óŸÞ3¼÷ð…Ãw ÿþ™'ž)ÿ=„Ø#飥c¾’L gS»à³¼:˜™_ÂëØL#0X `€H¥‘0T©Ô¯NÐÔ.§ÓâȽ€S¥§Ù™ ø¢uB›‚Ñá`v˜\ÆÚœØo3ì_ ûi÷鮊z‡Æ¢¤ßÌ[Œ¥ëÙQØQ…ì#?Ǥ7Ñ)®V•KêóŸŸx£è˨Ê+2ÌÀHï“yG (üÍ쥬î$áùäÒdv›Ûwõ§.Ãq©Çx!¢FëÐq©B'–ú4èé]‡ÙóËqj¯T¥‘ ƒ†8Gáµ^o$¢òJ™åp*Þµ7Ç›MïÆw²=´~Ã*—ÜåR¯¦–»<t&º//ÇÏ+¾d3—¿-Ú´‰¾;–õ¢ÔѤ3Gwðþßü‰}3KKäz¡(lˆ0_âÔj»ÓìÈMø|†ŠoYå´—ÉMbkga²¨³Ê^éÒFX¡¸3t ŽÌ±»m^/ CxÂï‰nXeÌ8œ²c®TÉ-O/Fûñ©ìˆ‰pD–<јÂ-fã Q_ÒE˜0ñ%Òè†ØÆè†`i޵ÊZ *IQ¥1h+´Z±N¢/f3s´"åj õ¸TŠø±Ê ó ¸ca­OÄÜ »< ×$³¿ê‚²®U(ì¿~•:Ê»­/"Ä ½HæEË •x¨·Ôºß¯=Ð΃ËËÎN “Tª£¦íàÿ>áôš-ÂZµLÔǘooëyP)‚úõÒ±å³ÞXþö|#Âûxp ìI'´áYèv‹Ñb0‹V¾½À@ÞME~œÌHž…‰³™°25ÇöQ½Îf€!$›ùñ øíÁaoï¿_H˜9 f±ÐlVÆvs5°“WŽ}úéGÇÆM›T0zÂøUŸ_4t¯§&™ %3öte¦žI]àmj~+¶üÕÊù+7,D<5Ì,}•ŸÓ“nü?]µr‡tñáÑ+Ç0bÈ(l¶u9||:ÍG¾·¯\{gùÞ@Ù¥·jŸÙÈmÕá0Gq½_\®Û"¾;¶, Ç$áåû·žëO}‹ þ8ÏG$t~þ þÕáÛ-â×ÿ Ä ñ–Í;…ïŸÜ‚äO³`/¶Ï›o‹¶2ÐÊÎá¦-Ÿ23W}Øá·ø€Üà|äûgŽw^?2n†ÍÆ{`OéQÌ»àήLø(Z{èÃ_`ûc cÙº•y ”,‰TDhø W71?õJ§T¢Ðñ+,FPAç± Ä°ÿg0çsØ?ÖkŒ69ýn'“Òj Í~‰ËÅU¥Ì‹„;pÕÿ1$ד­ga-ÙÁcË Ò<‚‡}hÎj¯„)HÁ•‰Ti(¥Ë‰Âkj–’%G?ÉözòÛ ö=ÙZÛÚʰ18ô.>:wããsmsßpÒó‰™ógΞ¼ì/7´¤8Ü—„k¹,ÿ® ö;÷^×j„þØwiøo!Dþ %ƤŽ1÷kÒ”–¢ðˆÕa€’e÷e"jó¥2Cy…¥Åb!…2ØŸ@ñ5)ô«â O FD‡Å‰nˆ«ü"‘Z)â8ÙˆÀ ×âè°j!^2†ã^_Œþ†¨Œ*«¥hv¿áÔN,MB•ZÊ  …aCôÁ|ýÃÜäÒŽìw᜹hðnXá™dÕê|å4›…KÐ| å¼ÎžSëD*­DîS"ˆÕÙí{.\€¾ ÍÁ܆¨£.¬ò Ê¢×› ¹cao\wž>Pmñ4’ª«W­Ý“KYâÑPí‘ùî­ó¦.ÙrŸGJ’°˜‹æ]0E³?õÃéPnJ3‰Ü«Š0p,GÔ—^ÑE°>ÿïê X ­õI¸Jé”åR?¸á²ßàÔ'FŠÕJ÷ƒ0t/TÉ…p6Ì‚Ïçud_Lö§üpÀNÞ¾’ݪ6@^‡=ê~9\¸û3©• AÛEw‹Õ Ü7ØkÝ«Iª±ÜäÛs›,Ñ0s“ˆi½R…V£ª¤·F7Ø7ò5¶·ìé¥û6’3Ǥ'-ÇMº}b°±Jš#]ùªq(oÖIÚIjSÖ.ÎÝjɘ±0 ¹ëI‘W©«®‰8î±|9 $3v¡œxèOCˆ=ªx8l¯§ál?CŒË]†í‹óµ©Ìƒ(ú(^¥j“Z½¸tú«`X³Oкù„¦ œ_n‡~½ÛmóØ<Ò…wÝ3\ùÕ¨Ú7²Á 1pQ£óIšbI½¹imäm@jqöm;°’,}™ ‡ÝYÓÜ|/ ˆÉà£â ø\|ñÆs©¼Q8_­‘ˆƒúówV/ ¾ºxs×M‡e ]+sʤJ½€6ïˆÖHDv¯‚–Lµ †„•p‰T×ùõ…•agý ߦpHQ®—Ý{áRNp™ÊIƒƒß¥zñX3ŠAQ´¬~}›n?8vv5”ds¸*JÇ(E]€Œ†] „71³^ÀÓâN²Ví)£§s´T†è6Âe×áÔÁ‰ù[òÖ¯sœ¡áv"®ñ $ä© Єih?I”«tb‰_‹ú²º @†Õ>Ê ` _Jé?Aãp™€¬ zba-Û{¸Ü¤W%)ó©k\. pvO2,JõI‹Žã©Ln~™ì ¶¼‘Õ„GCŽš˜Ò-džÅ©8¹!W,׈ê¸8¬Óµx˜v]ËÝO½û¤Sä£l à­ÀÙØßøEóç _ØÝ¦`µx8ìB¹ɽbš:ŽÔ˜1÷Y\¨Ô‰!c”y`gÑl…îŽÂÀTïÔÐT{qµd8œ¾f˜[¶‡Á[pëšà;¾užM9:Ð ì1û¶À‡ëÛÍÕÍdOø<Ñ„Â)bØ>i•€gNâKÙÎÊ£ÂNÅÆ:U€ ¡ÌÈ×éŠôERƒÔ$-€9'ñè¾]¤0%>m‚yMf·wA) øRê^Ì·ÆyèCé$FM «b ”€Í!_ü|Õå¶CÞÚVÚj±Ym øåþ „mí6s}n«¯1ÆF˜CJ—B\Xn‰#ŠÕ œJ€¯ó¯°™Nr#¾|RÅëe1y<‰$lÀf¶1p>ûo,AœýŠzåÆYÁ“´…§¾Hìw6;Z¬-€|@UöêV•Èç™ µF§ÐªD¥âRúäõUz Ëq B&C­–yU54w9-ÎÜðHЪ½BF©,+þKe)p‘Z#…PÒýiR'Â|nׇäv¼Nd“Òe¸¨êUAÑ6Q½h›&  ©|¤…ðzÝ·/Z©‰ÔÆêsì.» ‰W¬(iP.Ö3”=¬ñ ÑûÓü:—Êõ"õ(Ä'™ôk–ï¦")3ÉXƒÁR¨QIË£•œ$vqõÒ‰‡A¨Ì'ð£‚(ß­v+}šûZïzöê4§ë/§†¾O—ÞQ0FÉÇéñïeÎ ¢¡´º”¦>R*ÍÚ\=.*7•0Ô÷œ`¥SûËÿ¡J þì[]ÐÈáèV:»W§-CIƒw@¤œhVÝ àÑrIEÙÇSúN"†@Uyh'à54~Ä3ݺGœLí¹“çd'ñ¬N«‘R$(J¥Â%‡Ëwü´ö½Ñ@ïúmÌØù[ähŽÍ ¸ü#fkLˆ«̰;L`̧ËÝqNzÓMøP¶Sµ( g5àñ€+ÑxùiÒH¯ŽX©E’æ¸ R¢kðr§rÏ ¶§v²é: •¦Js¥U­|þ‹ó@0YªÀ½åJõg\9›™ÂR}xæ*î,YWÆ"O]5}e¬eÙ¬‘@­ß¢¶¨†fkðÏ?ýâÓÏnú¹_ÈòZ2®õòiö;\$7–0Ë¡SQ Ú#¶Ë%ªÐ½’Ù»ÎÂjéÃðW>v±¾yK¹ö‘©,Ábƒ®°=!ɸñ6ÛÎÚ––n5F)>M‚¾(Ç‹+Q‚¯HEð¸Î[FOÆe2½XîE ’]Éþ|Wj_=õÙÇ´OšŽ€…@mF#'7Ôá¹+§L›¸ææ9ÿ8ë¯CþñþTË×éU-!ÄÊîBúNm} kЂꞘ.I¯¬Ø%vJ´ŒÜÇöÚÏöÞÏöàx$Ûª1iß• 5œ¿M'Þ 8N—J‘‚KIP£n+pE«ºUÑú|h5|xìMRaC¸*¢ ’TKT-âÜ7¹;9Õ-Ö¨dÜhX÷…Ïàv8‰€Gál¸«2j}¾ÄOK`&û'ö‘±,Æâ,ïÖØûôõíÍŒÃã Ÿ)¢rJ`BLPT¨X&ƒ)gt×IK;Ïuñý÷ÿ@“6.i*s¯µ¯'t®ígá6¤96ÿÞ“·Ð0ˆ&ÊóÌsÁŒÃ×?ú‘qÆOç_yÁ§´"†â´çp‰¸5Á|Çðaâ¢ñD>x¬.Zù¶¤Dè]Šd%ípö‰Žv¸¶=ÿLvc»¬ æwµ¶÷§~ÑÀk©gyfœ_³ÆU È æ?[âÚä3¶Êj®luš*]¥ªJ^*r”û¥“Å„¶b«X£ ©h¤|MQÑ@ƒôºÏ÷p„[é÷bGwWŸ$]|˜í[;ž~ß$ohdì„ÅeCŸmÒí:”7¯ûºEÓ od"ް©";n7Y5ö §ÞSéEªÔ‰î\.\¿Z.2¬þ¶žg椑ìì¬?BŸÃ»~1ŽÏŽÐ ò†%Îè4•6ÈòcÛ{ä„å(h}ÇQ@êFÖ,_b^ Öî3¿‡‹4qõý~Oï«;k²œ ¾ýÿнƒou‹‚ë_¥EAwBÁ'ؾÝ^5û³.8·k.œÅŽ@CS|v—‰Z‰$¨‰# óJq'àc_„ã"¦–ÜÀ.yy“ ÚÛFüíPëþί®o’ÓUU:|êpyÕ¾:æŽ(ެª%©C{[´\øÝ —ž¤ÙWq¡¶[·}Ãó`1aK'RŒ˜uåÈÒi^Ú^ì5E‘¡´E FÄu~I¹¡H\E¯oY^ÈqÃóÙs-î(gÚ—À‘ò=’†u`9gáŠ×缲튜6lw×­di¥DΰÑ[­s6Åî–4V|jÄS²»ÁhCÁØ ÛP0nO%*-œ ¤`0:HJPmp´½“+…IHN¿^¹ŸàçÀñšwÏÅvY[Á^25–Ø.¯Óì(\.©*õWOüK|ZîÄgïñAð8|a2»¾ àØŽë–·õ‹p®o%ñjëø*s‚¨ I˜Å)=0§®I¬¡ŠPn܈1 2»„¾ýÒæC¥œü3!òªãᣞþ#§>šÌ®…ô’ãÜT3Òð,@6ƒK…UàÛ)ŸàׯÁ>ìXÃ~¿XÉD‰(¢Ü•®Å)‰™ÑÜDÀƒLàÁz12R\ d-êðÔr´A-p#w|m ~ ŒLAz‡;–¹¤F£„+ŽÓ8€³/±£²àDÚY»È¸1TD¿†+¤)×:¾ªj®æ_í‚J³kW9)ÒH©Y‚í™=ìÃ0GNzñKàýã ]áVë>„-ø×f™÷8hXÅùkz×çÉHw=Òæfö@P!T-]·`XÖwªŽU$@ ×T¸ñ¿¼ÿ߸zöQ¢\©ŠB†oâÁ;¶>ªt hö±T¯“TKiöy\&2•É<ª{Ï逗’Ùæ[KŽÃ¾Ü?dh~K á5Jí"®`¤Õ¸Da)Ý\ÊR5±çñ;{3$õ=RæbäkcÌ·i·SzÄéN!N¾¹°Çš¿…f•„ñŽ`•(´b‘_g¾ÁcÿO—+‰NÍÍIëVó·ÊhÉn~xØ ŠåA7‡ûE©Ž;N¥ Eƶڳºzu„¥B,e)›ïmÀ|ع#p:pÚwÚ´-AÒ‚ÛÖøÖ¸Ö:7¹7º69 Í+ÚÀNm5QH… Tõ~Ï~Û~2r&j¤ 3žÎ±_—`ðuì>>»4šŒt‡5èc¬5íÞZMŠðâÊÊBãÍJÍJÝJc±¡ÏK)rð„?-ûÄÌëw;$¹Ž3;Âá.÷«;·¡Ùé‚»Î"BTìåö Àö < êò›fuN¿.ƒöS-;Îø/ƒ‹ S{º¼¤~P4ÿÒÄ\êZ%òH¹l?öc^€_oƒý>orÛÜV7²©YMì¼×f«fo^ÄH ‹7½SAñA  NÓ]}@-ýÞñ—%Â.¨K)y·§ 8H¦ûpN•¦û±õ1;òà»"*™²ãÀ‘î]Õhý~…@n ¥›Š7­Õ ev°…¬$l’peˆ+ð;«·‡ëkï½/eëÌH îÊL îà±FüýösGOŸ<ÝÞ~|F¾,v‰ÅF3¤8"«áZxh­ßăuö:®•t±òÊ[`xrÈôYyEåÅè3{aŽV¯×ÉV†hø ‰T72-D´"R&•W”>¸õ’êÓµEü&¼?çݾë8‹”‹ñËa{'sÍS²ldIDV[Š$arTz±¶ŽæO]µà08Wn]Lš·tÉBãZÓb'XO–…*|> ðÑÔ…K¯;yÊŠ+ö3&›É†<‰ÛæAÖIÂÂ2¥P„”SßU_þ3ÏÁÞG‡Wï •^™_Z}_«dr›§ðü‰Lø|…ÇfÎ&¸ÎŠÔ§‰2p öúCi'8fžÇíÈö8™ðÂ5ÝKð66ÅKèB|30ˆååkfç¬zmõk«^+y;G+ÓŸ4%AcœnJò` ü-‹ýèŽPÜ„/%3>ï‚&ÄAÏÃò`,$º{15áêíŒ9¨rË‘݆‹U… [KÈmÂmµ®¨ÏO7Õíòîäõ#¯¾6zRÁÔ küeŒÑ©õ"yïqÛA¬‘F„|™¤ìé[7oÁž¾¿¼òÛkÕµtíý¦sÛ)8)™qü ·‚_ð¤=V7¢Øf ì­PèF cø1Y¢6­¹ÞÄæÃÙûòkˆÿãµ_Y’Öàù`9Ý:ÒÅöæ9‰+W÷¿ÿá±É3_]2eâ”5œUÐ6Tsý5³Ó„ªR÷RxD©3ÉJ‰(A.@Œ+¯1œ}œ<‘KÓ夆°È‚J¤”¬xÂꊂ8é#\pÁ%8„}>Ÿ—ë4(\ˆ¢;ðJPi®@»Kf rK2rËbŸ6 Ù·uO=!ú½GZR¼õã0˜9ì+îµÖß3yÕ˘ „u-Xk]KR§¬ùՋ󪈲pE˜Þ‰‡mÕa[?A5Ú? _Wº:ˆªF~¢½ôBU•¹*÷¶³çÖJi('Ëc[Þݾ­¶¥©¼~k•É ªîÇÞ•ÞƒÝßµ¬ &С?õ3šÎ§¼yÅS‹ÀpyôÌ?ÓnüÛ¯—ÄÀù7-Ú¦±«m;*ѳ{/ü™Í8õgZ‡5 ÍOƒ™gWuJHêçé잇øëõ£.œ_óŠŸÖ“'¬˜õê¼½×”4õ}î繈®½›ì8_8ßEë‰ÙS6.Ì›ÓüþÝ2ø“L‡§ßWÏütýµ3ÜÎüW¿cLüÍsãøŽtÚ›o}©Fo5šÐ}È0µVî‡ÖZ¸N_"ÙJ­Á€¦.ŒHjè˜%°ÅH'~žrh„Ÿ|ˆª½2™Z#¦“·åA>qB۾̋–¬\l$¦Ì<öMâ-ïÜ:ptœk>è¾kŒ{‰RoÞ ›ö§aC5O·^´u­B]!¯D:P@Â(ê‚ßž¦úÃày¨ôȲM¢Ò¢­uåÛN‹ÕA—¥^ù¯ƒ{/€a³-' à´á4ÙTÎïsd£|:[0…]„ŽÚRm©¦´B¡‘) *"´¯±:âÎÈU¸â\~.ßv)Çîsú,~ÒŠQ¥t7~©¶ÑÂ[¬ÌKÉ%µãß§øIWÍ%pŒ<Îÿx c·]wOç×O:}ÿt{ÙõùÈU°©Lž—Û<­1'b³m޹š2ÝZ‘1!M®ÙgJpz†—¨ñM4ØgëÓgé*\´­U5ÝÁ…osç“ÙÔêÎÔHž¢JŸN%¿2î°#KÃ_ðHÔhr+sû1œëÜV™I ûܽk½ÊMÅín?8…Çü¾P@“¾:‹S¨Àhî~Õ'¢”Rœ‘ê ;y \'ײZvxŽB'6©ð)B¿×é£a\êsùœ 4ÀJ˜Cj§ÚÉž…KsÔN•W H¹Z¡ÅõAÑíA]PÒxøð¤V åRV©Ô=Û{ÂÿÓý•wY>K”šŽ"#;• eðOk×:µŽù»sÔ.¥OH.3k@øMÚ„º^Ñ mÐ ¶X¯ØXR¨Ph5\þʽŠ0« ø|®Ó»s<Óc7£ä2ËÈ2Â$È’“FÂ*÷kB ü>k•1S”¬'Ìa6‡=ƒÇxz}ŽOP¹2¶ø‚ j¶z…¾²`I¤Ä‹’qwpgÃŽ`Ð㳃0©ƒ2 ¤(Õjýüõ9Z£Ö ­°„¹ž z²½D¹Ryå@Tj“ !Y%hl4H‹¬{ùÆs}ç`iÇT»ù¼ßŸã‰ RCU”?!q"h4èÍÆ\ö\"­*fþ¹pŠ<&$Là8œÚäàŒv$ê¨a¨Fàöµ»Ÿ~Kó“p1 ¶$‰¨~ÉcGá¹F˜‹4¤GŽaÇâRŸ2ö"4 G!rY"hÞQ¹WB³†cðˆ&(•jRúÉB;zê›p`æÿ·þËä%éÉK~Œ÷ÏgØñ„âή5µ‰Eˆjtº¸Fê x4bkd~ß@b› Aq,NùÜv“Tbp³O7©î²Õ‚´ŸÔÜ‚U(½ jD?HbÇi؈GýžHàÎxqjªÁ`Ñçr›tæûµ•j*´Â¬{U@óÇ*0õUe{jHÃ9{>ÙûÉžO~·Ú!¥_a2³‰~DãKMwé>œ;ˆÿÖûÈCtïL{aØÿJk”;endstream endobj 213 0 obj << /Filter /FlateDecode /Length 5359 >> stream xœ­[K“ÜÈq¾ó¾'íaŽh‹zEø Ë»9$‡,C“{{0M,ÑÓ\äˆúõÎG ¹³aǦ ¨g>¿Ì,ü|Wäê®À¿ðÿtyUÜ_ýüJÑÓ»ðït¹û—ûWßýE»;¥òÚ9}wÿøŠ‡¨;_çÎÕwUáóº»ûË«7ÙýûC­ª®³öpÔŒª]v9¨¼(ʪʮøž)—=,=ûñ5<÷عʚ§ùÅC˜Âšlâ‰ËºŒ3go³w˳flßâŠUöØ6Ó'z[J©lhG~Y&»>âo½³€±uöQÌz:Àv åLöáà ’@e͹· ­aŠg:ÂWûBeíxºwð®„':kB·²Œ óÖh¸†Etö‡ÇçÝ™ ak]ú¬¦¸Ž×ÙãugõŒB’Zë²v»Ãé½Zcgo`“OËz?Þÿû«£ªˆuGesWÝÝ?ïTþ÷ÃÑ–ÈÍšhD¿Õ†NðVpNÈ'&SGKÈ„}ñ¹ÎÞÀÂùáèKØœ*£˜ÐŒÝV*ê ô˜%ÖQÙéÓòøÒ>KŒ©²i'©k“uÜ£NOíÓ2ôAý!ìÍY¸OØt<µ÷ýufÿóñ*Ùà ¯l:-ó|é×ÉA縎ƒÉé\6ð$g{> ·ˆI¥º»ÿã«ûz#DIO‚mr$eT3ás ˆ/³E):PaU”šÒ!K¹£ËÞ±zZÓéà9´ {dD·Æ––ÈH}€KÓ5nÄ­%†¦­|f…ù¼EÒñ@çq³%jŽ!¿Æ7¥Î4 í<+ˆ˜5†×Ùï–µ˜BÙ(I~¢ñ­ÔÅ×|$E7-ûîÆH¢TŠºTaׯ»/gÔ&!ÒZ×ÈàvƒÛ HÙ5}ÿFUdf…ÙìÆŸ®aj$î·â™Çö4uW)JãoA`MMÊGä«xk§fjÏס;5=>D´Qh‰v‚er·ÓVSh‡ÿ*¸Í+óÖf ¬2$[¢n­Ã“ÝuÓŠ”Ë©ÊâÉõÔ¥i"g˜7äæ N,´ ¡³JÙ:ª”~{@‹Nöö65S7NLíº®ìºX»©»tÿhø˜šD·Ú§v5,3ÉôMb’¸ø‡îò1øŠL÷05’@§6î–ocOØ èƒäÖ™çC£;Šzš¹0±‹PºN=ïHkßP»´ûµ¯¢mÀ13×GŽ­ÿ:ÁÉAÜw,XaØ><…º˜=w`7¸aÑÄm+W—Y”QêꢌV³¿Æ_ÂO€Rß2;`2I‡TE:ÔJ›!’¤ùÃÊ€T¤<ËæÈlD뺰Æ0Uùç0oÃ3ìà-i0Û°©1š²’ ÎGi ®’¼}{™ç©²gÉ‘ º@0’â1`[%a›…~º¨º‘·ŸÎL^áã! IžÖ¹¥ŠCNÍJŽÖ @c¿÷‚¿ÍQC2¾oQÈЇ6ûƒàØ16½q?" 0†¼[»°<þì ÙQ—zƒè #¤–5Þ&€Â.\{ ;>]IÙÀ.–Š„ª¡‰F‹ ®2îœAKú]m7£ ^^®¬½ÞVRÆÚ>vqä%øHt'€I­TFp…—ÄÊw‰GQäqÊ‚VºLgÏ3´}3K$î¸ ‡îc¢º* %MD6ëTlTFšT–ðØ3¹Z_ˆe¬ìÈm,j;´Ÿÿã!x%:Ž0%°úqŠ+—L¤°ÄÉ[òáÿögŒF@ªù0…IÁŽq0àö` õ·9Fa€eQ;_ÑÄk6=qC5‹Ó¡OBǧfå²ÁÚ͈ Ø+Öœ`ýKãg• ç#ámC •Q¶Ô A¾µÃbü¥~ íÔO} ­yOL¸>¬þE¢%>üÌpÎ(Ü ó´CüoYßï×îÚ'®€+/œ·v.[D¹Ÿºã%Ô)¼·‚úäX´¶uæûu0Ý¡ˆ]“–'Øx"Ÿ^Uyj 6VB×›$åqá9z³€a Xa1–ÕN!YˆçsTöëõq*8Õãp½,ž†¶ï|&E$ˆ+¾1{±kP#¬à쀪¯økɶ¯bÙžïE„A(/å úÁ“Z #à÷Iôéø9â=IṿãLwÀMh¬&%HóÜŒDšÕ¡ï ô,xƒyJP¯-® 2‰+P¾~‚øsDûÆ ÷€œÍj ê˜:  Àΰ*¼˜®ç6µ^ÚµªØ =Æv·v©Ä‘úx- ƒòÌ–\è­ÊA4ËØQ‘-96<¨ýÕ)6ÆR¬Ü…ÉÀL ߩǎ·¬H3ÉLJ]íÌt³¢-*î!ôAÓÕ°Qtª4ñò¢G/›d\Âñ· ¤bÝàLÒMrD›æÐ"Ú¶…]Ò¡Dâä*A ' Y=gÍÃÌMÔ; `Œv„&0™Ç [®´æX}¶ÊÀ3©˜¶%T¼†ö‘˜ © 5'"YP´G£r–¢q#= Ž.ÎóØ\:@$“á-œä’ªÍ #:IIM]Õ¹­íª:ú½–÷laQ^h£ö`¬a÷÷(óYÃò|§Hƒ/5râØ¬þª_ÝÑ8p£NXx¦p„v¹Cá¯''M»U1·ÇÅV̈ñÆ44©ðB; Ž,\RÏBVUi%T:ùX $ E´sÇo^–TÓ‘‰®iPZÚìÆxÅ!9äÒý2°b ô×ó—0vS£¡Å |8]/—-.¢5ªHhl•:µSššâÒkYøù€àzRôÓ$yBJëð±T’¬b­0Fj…©M®¬‰jñ1ížáÏÂÌ9~bžÙ1)±‰À"æ§-°èS­º*­CYàe)¨ÀXœ}ô•ár®×N^*¡ä‘ƒâ]òëwpeï2 ®Æð˜âÁ´öMÏñz€Dl)”mãy’šé®ÍóÀ¼ÒG*ÿUš¹gÙhe£‘Ï·ºíqÕ¢iœk=oAO¿lå ݡ˵_¬éûV–‡ú²õ6ÏI׿³lµs±åía·ÄT™Ü£ÐĈç–|eRzìÆ eÀ$§bÉ ¡&Ž»´‰œ¡º!­¹ÆÒßIZ[ë‚, â!–òÕ†a`µj-ãÊ‘:vr©'’šÌYݤ ¶ ø²m²û2LHÍ‹€¤'4•½Ô èÊçüYbœ*œÑ»ÉáE1Û×ñ웜/=6kµ[z¬sðc–þ)˜'Ù:÷©øì w™—¥Z嬜‰Ä(‡+”C„©¦Êë•É’™‘Žqs~£CJ üМȃriª›ò¥$°ºˆb¸úÝ2Ã-NÅN ŒßÊØˆr†Æù•¼!rÌx†;¬Y ˜/P£— ütÖT éWÚ²œ ¤,†Ö1“^ DÃÙAY©” jÆ>pÞq}‰ƒIY&8 ÀÈóBÆh:t‰~߯™MY„Úg•œ(Àt}RbÇøÛpú£&O" ÇåʱðD´À.åæJ]œä—ƒ“ïñ”Ù$¦gYzcíèy*d`œ§ø°e}œ+ˆ˜ÑZKiœ«TlèÄ_p:­‚ B’’žâóŠÍó "Iû°âÑvàÈ’RëËÖ›q‡H™qçå\\a%a‹#Üt|C m%]=ZlQ¢ç"ªr†öJµ[:·0g´˜jRÖ'ÎèyJŠþÊ+Œs^ /Ñ…5gNÐÚ{)çEw‚ 2§T¯7Iâ•7^‘©ì"Íl½Öý2f”ÏrÈÆñVÒ'ívýéf tºIdÕë͹Ï7‰óps‚ÓÍ1ɺÂX¢H|¸èos”ê÷ÝWT3OZ¢µ§²ÇRç%øÄ•È­S^EºóµS ˜Î8ŸMªM¬JœÝ7B_ ‹"é•Uê´s·²àÀü«yu2 I/; û‡8-,œdrÚ¡™Èá|KˆðùüzOM1£[¸9q2&ÆwÊe+}×>¤†¹xQ§Uº%Kƒá¢612qýÛ/C`_­CœÄÄ&¹5¼¼[Q]‚ªÁäBš±>Á—”´s²´7ß,¡‘n);q=mŒªíågÄ{nsñkq‡#]ïtœ#Úıâ½®€ ÙJ.ùwëjgÜGÊ^Â>´—U8Û…Åë¹xØñ4«„“ §·Xó– Ñ˺úM„—“z × ”Qðâ(mÓ"皹ʅjïhóoJ{”EܯèÞܙڦÆ;Ä!µk`“ ãíCøù#Ž+iÜš•Y)?+ _jð Ë ¿uU¾h‘§‰½ßè¨ù‚}mÉŒìoŒXŒÔHó¾¡QJÕR-JÄ$—n"!‡v“Žk”hñâM qµþSjGŽš®U›uâ{ !xxŸêÕîÄ«›"1G<_üÃïê%å­ÕÍßî7TØGµ1øQ¯ˆNj ãd¾Þ$}覗 à¾âoež×Q'£0I¦U‚àx¥º˜o°òªˆéŠÍþK†2RÇBéá¶aåÅú<ͧ©bÍġнJQÍ­»&Äʪњè¹ÿ2ŒïùæÃx½´Sw!h¾øØïMæ;Åx´¢º¼$}g¥ÕÞÕ?ÜÒñA’· Ó(üêd¿ÀQ\i]T’ÿþ…\q™+§TЩìõáþ§­¯ËµEˆ3þÏ f\2ºáx>dhïzÇýrMQÑ_ÃÍû‚×KúåÏO±T¾úaAkþFby¸Mb]RÕëúE¼pH&öSjn9Ì(æR…"¨Xü1b|ªr­œå"M^›b]^ŽªÀ¯—0³Ãh ¬”x³Ä‰Ÿ¾¡ ±r…×&ß}>”ED”ô ÿÔ>¼ŽI€¡á× ?‚mÏ¢ëU¾ÂOnä41Ÿ3£|îöDI„ÕØé=a-Êá€íýøibðj”õÞ­æ–¹ö:Räûf «ÿxéÈêí€ÒTépÛiö0«xªÌËÊ×ÿõf•ÛÅ÷,Ÿ5\GÎsFE;¾¼!Elœø0õüõ²ÄÊþ›ÏË7½¼×gèöE_åaK MN†™–4+ŸÊ;ÊãnCñŠ8}½z ¿ß9YS÷¸.^Q­Äëµ×ÁI%ªmú×1%àÓ¯ Îíð '(oˆ'›G—œ¤¨(kC¾ÒE#îèúÊ;ép%°âí„R½Œ›¯÷Í;f)ðþïO,V]$3䥱‡pvK×Äø:Úú¿ÌdÙødÂÊ:›Ë|¹Ärú•Ò8Yb¶Óø óÛé•§˜Ë×t‰$€¨K!·Ós¾·4@ éRmIç~ñj~Î÷B© I0PµÔxœŠá2^K jühã¼Ðõ‘*Þ„Ø0?*,ü¯cpšéH²Iá1É;|’­>Í¢ÌWó›k&y‹áæ›ËNã¦T*08Õòâ¶þ8ÓÁÜt_¹ELª·w~™þ`–û¾“À”£Mt \)åsãç:yžúù~FÔƒß#¯À¢ïòLåî`µÜûŠ2.™ÆWßß¿úOøû_¹2}endstream endobj 214 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 257 >> stream xœcd`ab`ddä v 6420q”H3ýaîîþñî§7kc7s7ËòïBß™¿3ð``bd”ÖrÎÏ-(-I-RðÍOI-ÊSNÌ+VN-ÊLC“a``` b`0ic/øÏèæÏÀ÷Ÿ©Œ—aaÙ÷‹Ç¿Ï<ÌøêÚ÷[·˜_ýôýëuíûÅï:ì3:¿»üÞ1«Œõ:Ûïèï7Ì{t±û…äDö–Ï g•§ÔôÔv×vsüVù}QôûÌïìì7ºul6šPß[ß]ךV•Z›ÒÜÍÁW¾àGÀ¬ï¹=³ÍìfûÚÍþžk/·ó4{NtgÅendstream endobj 215 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3569 >> stream xœuV XSgº>!rί"UNSPgNTlëR;j½OµÕë®à†Šâ((`ØÂšY³oB6öU„@.¨j«µµVGœQ;èm;ÕkÛÿ8‡çöžˆí,ϽOþÀ6`‹°ÍØ,#±716ËÀ¦±­`VÁ¶ öï—Êý-WÆý¯1¿“ïê?€¯ÄÄGD˜ DcecŸŒ«÷|¼küÀ‚€î ó'|87°(Ðô3ç ü™ûþ*ÌÐ…–yéX ÇÓÅKB¹^"=ÒP]V^oªà—;Ê›Ëæ*kUi5@¼Aw•ùØÿýDtÅ»×@µ^ ‹ Þª±É›B–£]ËQ{dÍ!š µµ^ÕjU‰<;d9³}³m5Y”n‘&*DÚ\(‚ ÐA¨eúýöÛ•À–C“ΠN´x޷󞡽ςÉáN:‚—ÔH7MÚ4>ó ‡×&"•'¿X‹ŠqÓ—ýCC|jÚÉgj^]Y‹êØ¡ë8ìÌ8e‹†kaØž¼p@ë`8jß_MÍÅÔnz†“ãBT0.2Ñ{y[”‘ñqñq’Íp \çXwþ@OòÅ¢ ðsx­¡¯ïÄɆOá'p èBrwô¥•GW@ÀLdêyçØ/ëj²·W¶ÃðlŒm™1Ï y —€{t© ¹Â¤¢$¸ Æ]PþA_Ëõå`´_fgšã¢)wPZþÎ3dBœ`òE›¯åf‚üþ¨]—±ä‹×íÃ;RzŸ†WáM{÷ §»fĉ@Ì‚¨]y‚Ô ÁpÕþ4Æhxª°\†;‚ø•ígøHM˜Ý×»Î@ðÓ†·^•z?ðgÎñ|ÌàEÇ)t¹ÐÌ<ÿI0yÝõôË¿‚~­ÀƂ޼Í¿1¡P4ž*.‘Â|@^Omµºìvgï>gLÄî›d”›æCšã²`j'=ËÔyåyŸ“ß<õðÜéݲn|íù‰_Ih.î?µ»qëQ&D ‡À¹‹5g® d®±PBnÖÚ(N>«4Z*ø?ez›,¿8S:\iT™UÆœòlS«C ™±3ÑøÃ7Šø§”$0„o,Š]”péj>¥+Óš¥Èq…F£à3oP«g FEYyY¹ÅJY-ìÃl±Nf+n²ù¸1É)ô¢HIÐÓgšä &o£%/'ò–&0Ó)!AÞ½Ë8p(4¦×fµî?/íƒà«ŸÝªÕ×ÂZ¾‡E†"XÈÖïŒR\ì¡M'È>/3E££¯Ó1Î>–s;GÞ›tF`J &hXú‡ÁKŽËG)Ã"´´; ÏÛøôD'¶+ü“ŽŽ£Z!ŸÉ%Ô[“"6*A1žo¸Sc¨…U|ô {Û‰¾Ó'(ä1J‚…Ƴsu¾\É Îb8‰è‘—áÐqÒÛÅŒeGœ«óicIV'¦ç{9Gèm¼¤~â¬Ù^•Ñ=ëÄœž9Ö|c¾6ACµ¦ Èÿ4"*šÍUW ð2 “ˆت·H–€*R§9øaÚü¸Å ‰N†\ìÂ_ ωZÐütWPÇópV} Ÿ}¢ۦӳxΗÙÍŠ¹/y_@̤̃âmk $Ò,˜ –—~ó왺žvÊl³”Ë€ßu2¥ïtŸ{€º$ØJä+³E9ê–z %(pš÷}мöŽdq†=ÛÝf··55dÛøhóŸ¼ùĆ};Ã(NÞ>hJhÕuïÿÅýeEµ±F_] FQ`¢B4…Në :ò4˜ô¾‚ƒø\_Zb-1—LF‹Æ 5j v²Î×­J«*„äìLß´ Ê ŠR¹©±¬ª62Ó%jÈJÄ»Ï$Ÿ¾×wýº‹j½2€Æ¢€shüär{e“ÓÐ'[|â5Щ3Ë^#¨Õ|Äl‘åȲKrY»FQäÜWø(Êws:Y7úìk„žÇÓb…T Å ¥Yâ¡Ú­5°ü…yÃzpsDA| 'Þ7Á- a½ñ=.å]†·àŸ<ö!ƒ–B#(%ôf¥A /€ú"u‰8:&;‚w÷?@Ü;6ˆ&¶:UJ´ƒ›µjÎy³Ô߃Ü¥žúljӦ†ñåï® ]õ¶$ã@,[̦)§h¯EQþ\¯‹ÍHN;£‰…`!þMbÏ0šd²ZmÐÊ&5ªÖ9f8‘VòªOë.úÓËÕ>¡4ñ¹R*‘艩ÙÃúûÊŒø­éJvÃ=€s!Ðì }žãÔ´¼›P@™^Hlnã¿ô#¶kýWàL戅w–¸[‹ü蓇“]”ImRT€Q¬5*5ª¬Ñ™Ñ0 jD­íúnÍq–ÜѬ]Ò´—ƒ¨.º¸‹Ûá+èo#ÃÄáý:•„ôÞ$<%ÙXϧ¯õ’ZQ­Í`ÂÐÛì“}µ*Ì%•ØðJ³©’OÿDé2vPn/£Oòà˜?AŒpéÉÇEŸ}~K²“F1Íhåè®Êæ">’ðмªÔRùbÏߘÙLÐÌ%Ì;Û귋㟎º•w ‚JüK˵ŽÖ¯ ¥F42…Q.*Í“QYcs£aÜåÈ9×¥ï…'Aó˜?:¾ûvøÈ»«XÔ9ám¾q/šˆBX"ìÉß‚É{c½:é«ÿW{`#?/ãÿ?kyðÐf…zU\,•ë$@Íî­Ô£¢¶ÎzGKÿÞÖ˜3ÌÔ¨ô™˜´ôþP ’·d¶¹†v<]| ¥<-¿Lþ0ð#ŠæægBÔïk-zö—ö+âR¢§ÌAÓ3=B jÿ½‹«©d‹À € /Åú(‡rƒÜf» ‹³¡ÊRa®<žïñ-™¯ÿÚýÜ[àÉná7WØ+Z ¬/) ˆëŠêjÝÂF¡0MZ˜K©5J¥ =®„J«ªÏjSÍ‚©Ì Mª‹îðõL;ÏJô¸›ÎRÇðØhh€çá×jë $VÌo_·°á¦Œ:ƒþÎsƒå—o_­^¿CöqvvY}!UP¯·kíàŸ¢Ëm6í,ýŲYçE§M„ –Ê ¿·Q ù#·ÿ±þÿŸ¸SCÀv]G¾+«wwÂá†ý¢Ízô<„á²fÁå¯À¤Îü.tʉNyƒXö°a|Œ&“…žQú¢ÐDtÇŠz~$~¯¤Ù>ä™ðú%(œªÀO[uÃ~P¡2—ˆ-R ¥MͦÀ%Њ5çÕNr/s²ïZÃ÷ÇŸO_ì;¿Ùî^×À|æuå† C¬†¬·BЂŸ·´®ø£Y–dV^´Ñ‚Ìøäíº]†3÷˜˜y(½) ò¢¥¬é‘³ÙD2|·"ëˆæ&mŸ&ÈglïÞMôÜé¼ÈÈ#¿IÓäd¦MImNéêhkétg·'j5P¯}m&RïK²ƒsiÝâ"Þ ïlôPþïÙñ¯:q¬÷dígð¼¿õî²V±-×$23\û‡Gá·àÞWî+?Ü[ÅÕK±j6Œ”™JËù(…°ê,Šüä]Å *¦'²1 ‚Ù w'Ã_rvÝÍ4¾§ð¤ªKîP9µÍÒ^‰+δ(˜"MÎÎÎÌLR‚sàŒ“"DhÛCÊ5¥2JŽËµj9ŸI&ØXc«ë8We£~ãåÌWPø`xàý†\ÿ•!X8äÞµ/߹⭋ÒѾL>þ%Mßþ5Ø=~¦¯¾¢×þ»÷ ¸l\õzÿçÇU<¡=%t§µÅšB Åwkb32âU2µT)WüyÍ‘Mp5\#YÈÇÿ’¼ÙÊþGÂAâ܇ô#¶›xÎØ]FÚ™©‰4#Bèˆ U©¬@$’åQQYª­>n¼ú*âÒf/gM@»Áý‘î㵞êuœƒàaÿŠe|ÙÌÈM×mß¹aËV•B­…E@BÏ"(ž];êƒpg"LÖôI0Æ÷ÃþîÓ½çNÞúô¯ŸAäPóæ`è†1#©5§ÝkwºO¤Ô ^[W‰‡ÞŒv¦ºƒzPÐ\4ÍG`®OB'ÐTú¼gwM/Û“×nÎ\±±Ÿ¦Š)cŸ’0È-zƒ8yã~gà üþÞÈÊö~W©½v€ÎLÇ¡8Iª`:¢R††?E¼ /þ®’"¿¸í¼söÑ”̸öE+C“ª(!°gy:š›Û;sRLÔ/€¢/À¦¼OööÁä3ú€‡Z™€‰è²÷=4á;ï{ôš fhÕ*S ¥Äs¡B,-œÃLžÍLžÅ¼%+,.%à˜•R£!fˆe ³\Œv¢7ƒ¢iB'ËA´§7d­ß»O­Q¨¡èƒÊ&·² o;^Ùàê©„ 7ïóm 9éɇ^м^k-Õ•¯ÇˆªÔ=FH{œD ´’ÞZ†ö™Zªp&ÚBü÷¸³ã©qÜŠåc1ì·xnCendstream endobj 216 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1223 >> stream xœ5“ lSU€ï]×{ï°›`,¬Û›°ñ8„è’À`òå[Xé¦t-··íÀѲ>Foÿ¶cm·ƺvtŒÁY£€D”DMЀÅÅ,!Á,çÖ3ï$'çœ?ù’ó?¾CùyI’tUõûÚ¥ËÆ®oŠ3IqVžø† \¹;¹MrPÈ@‘e–|ÆkÈ: í{i§2’4Û¼UfËa®ÞXdz¥ûËØ¥••˲ËÊË+Ù÷L®~¿¾­Öóu“ž—‚ƒìVóþz˜-]UÇó–w–,q8‹õ&ëb3g\]¶uÔóuìƒÕÀÙ µì:sÏnÒ› ìDr‹'Ž*³Ébã [m®5p A0Ú]VGãÖmN‚¨$VÛ-±“¨ Þ&\DT‘O ròlÞ†¼!È~Í/ýE¹!ÈŠÃYRüXd•è]doO´†ªÞp+œ¦7KñÂJ0ÃA¨.ô¥b¶ŽŽÃuèwá¹X[ŒËP­üq–2 ‹`ÔC)XÆ™aqø{¼§Ü.¿¿Î¯â„–€‹Žê =‚>8@FÐ,} ´ÐGë»­Çaù u!ô.Ãx1É, ‹rUð…ø,KÞïÉÄÑÜëÊhN@„I{À® SÇp³|Š¢’7Ðt`Ð,jtÎèß·Š@Z-&©Óè‚\OypA#fðn`ð\ªHÜìÙ~òò}ôé}™X(®Q&!ÒäÀݤ>î?æmñ›;´1áù€§— ©¶ó-š³-¾V¸ê¾ÊžY]víÆÎa³Úׯ~^ƒiº¼§"!èìV÷&?¯ûº@õ šGªk‡]š}ëÛ¶·oèØÜט{A ÉÚÖr!uÐ…80)÷hŠr7[R¢2KæjÅBeät8r ˜,Ý 8Á(õ\Ú'¦»ÎŽ7kJpÓè²üÛ,ejÀ"õW€ãÔm:ì9álu‡}íVhÁï ø×à‹1’c> stream xœÕ\K“ÜÈqö™7Öë0ÐòŒzWqw±bȯpH¶ÌÉâòö`F-w³¹@ïR«_ï̬* @wÏÌRr8x €®g>¿ÌÊšoošZÜ4ø/ý¿=¼hn^|ûBÐ×›ôßöpóó×/þñ×ÒÜQcäÍëû±‹¸qòÆ5¾n´¹y}xñ¦jû‡ï6 ¼;í‚©ÝûtucŒ¨N›[åuÝ4º:ñÙÀ³«N¿§ö6ØPu›·¯ÿ çr|.ïkpÂ×w0ûÍ-¶—ÞkWý”½¤®å2-tõ>÷½Ok ¡z?>mO»ãûi Ãç°¶àë\õaúÜ7ÒÖÁ[W}'¥Ï»;j!,?íJUmÞ¬¯Ç>þP±YÚÓw¬cßîcûàuõq#=ôÇÙ`u?¤1M¦š‚ÏÝÜÒz€w¸ž`‚o` ûÔÆÛêãh‡Õyò8ß‘¿|Öwmî<ìÎÀƒQ¢j÷|]Ü©Òz$õ­hLíÂÍ­ÐµÖÆE ïÞ3î`Ï\*NC½¹5ÁÖPÕ¿2j¾‡e¸€³b±pyðÚÈjè"¿ !ðH $ÒÁy"?öö®Xïv¿Ÿ~ØEy´À¢S4„ÓÝMíù¦·yÌ0ÔýÐý‘máÔqYZ‘,ITnÙ÷»4”w(ÞwïhµJ9’h ¨vÄï µ3Õ>ñˆØR §¾=u‰6 |´# Õ¤Rs6i±ÒŠ›×ÿþâõOßT[δ¾Oº¬Œ#]n.äéoañ]?DÎ4’Xx¼Ï­ÌLËcﳄ€œ·[\À8ÿ³1 ²°öalêªm»(ILð«µY¹à Uí¡o·]Rršj¿Gº5 V©e‚+ãý>OKÞ)hNë\uìw[Rú5dA#|`Ïœ$èšä3T¿Ùxd›N¤Ç£½Œºi‚‚=í‰øƒLIß#S ½$3£`¹}¹uü)šØv"óô´‡ýDMÂÐç¸Áõ5Z©ê>uz¡ˆÔº4fÝGü¬ˆM÷ÝÌ´ué7´´mžM¥Û»ô‹–dÚ臀=Î)ãh¨ã{Z <#7ÒÀ²ÚgùÑΆh÷ K~HûE k•‡}ƒª¢CV•Ý»ä,`ËL;PÍ pÝšÒb0'³?ö‰'ÔyrŸžA›ç:„ŸêZ± ¡Åq8uýîØ£¡1ž\íŽñi –~ˆëÓ¥ëøþw@ëïQ!ƒilœ,Ù­í¨…`*`…´FßµAüÝ€m¦u²Û- —÷ üžù«LpPI•¤ö`É8ÎÒ6›"œã´f¹F3<ïú‚5Ý)“X\E$±´$Gs“ÉÞýx!u Šu‰Vb4ñ[2ÐÚÇÕd)•Ñc€‘ -¸Ú˜ìOq+èO_íÛaˆƒëlúy¨Ñ‚å]¶ð[ôh¥…):-Ò®!rM9t*`s=:á¶1ŽÖ©ðY^}=òëG9 ò:7ÐÕñ–]HÁãÂ,èᇈQ´!bÆõWß2ÑgTØÆ&²À*ÙœD9¤„&¦‡a#Ä¡AY/¢’Þ4Í凯´ý´Gm ‰®F‡$³³@ú¢¸jÔa ánü¼›ZàÔÐÆ’ídß'Ã;cý­ö’\Á«B’4ª(Ô—i+7‹$˜:²ƒ@+'ý.’ßcºô 4Ç'Û,/°a&/ݸÍhYóó;n! õQç­”‘p†ƒœÑ†ÆqT©Ìû]Ü€ ñLŠ€PÈþ¯´³IÄlìH¦MË ’dHE:ÞsÇØ ©8åaжÑfÛ¨ ø;%P†WhUÄ`³år\Aæ\ƒÂ˜…@8duÀƶ¶FRxY†Œ”±´€­¬ÍàkëTÁ ïó%ö±`‘¼M}Š@ ¤\ãóªÄ¼u™ÚÊW¹5H¢“¶ú.RP#4‘f£-ŽÄÜRaäF‡ö®0¥± …‰Gž9-r·ŽÚä7zT| ÎÚÈGÂ/4M¤Äeô3­ø¾°-3ôLˆþ 1³Ë3oOB„’ Kœ¡Ø†ð’CðcYÀÙu3]kÈ䀣ý<ã(ðrå'»ç›hM?ÏhÉEäƒSØ bŒËh ÕÞÎÇ'h‹À`"¸ûUÏûËȻӵM‘.¡?‡ pï~8¦7?SôÔAFë”üSÎîò–}Ú~ó²yB».Ñ®¯ ·–{4T‚Vƒ%˜ae5Ù ´VÂQ¼®Œö]ü ´j'š!\˜üÒN— ícŸF’Hf¼qœNW¨öýí¿c°´è3 .i7îJü“¬ñ8Ž ÑöãtLh²%/î[Îïý‰zä Ü‰ ‹™ ä؉‚¦õÏÿ±ßúî¡EÊÒ‰TGzYKJËá´2 !7Ž>÷(3õ*üyé ¶%Ž Ì_~˜Ö-“)Ÿ-s(“_Å´|´c'/quãò\ ™È"ø¡9"ßó„W Ž!ìÁ§åN›M 2öMŽ5,±} ~à`ý›Mî„<{î"0œŽ‡ÃbVUŽ™L&Ÿ §²5îX€á”èïÒØ “÷Ç~œÉtG§j8GûØÍå6Š•2'ÃJÍîÁu ÔÖÀ¿ržlóh`%ï—´b£Z—U£ïD³ÂD&ašèÞHb©÷¢roÉ_KRˆß~ë}" ÎŽT-×¢œ£Hí‘Wý„³À¡Q`1LŠ!:=»ö;ŠÔ,¸kxÄ…ÚˆFf„ñÈV5¸$:fÍì µhÔ”ìýº¬lj©é+H§z;v)Ꭰ4Í]Hø5éÖ»UhcdC²º&ø567=N£WѤBýIÑd¹yW[å|(Ñdã혆m÷79ʓϓ$FŽ·©Kƒ^‘AµDw ±å£‹´Â¨»,½šÀ-HÛŸþ¦=%Úz½–«¼•ÊÖ¾q3`¶ÜÔ §ƒ¡)ÿ0a‹#¸”‰Ù”ëÓ”C¯X(W˜—mWs±½ñ‹<Žôê¹ç}èÐÏC¹›¯S#)†ŽIGÛ·¶ð5m}ßís²C*ÁV¬ OŽ¥IÀîÿ~ú¥L¤´‡î”î\*5¸£l–J²´ÈfU*¯äšPZØ‹XÕÈ[pS­1<— Ô*qðãŽöCš1Ÿ>Fß&BÝcŠÏǵö'ãc„($Ï2ž¦ ;ß$†Šæ l+„'æÖÈ·¿aæû)Ø=3‘‡ûç2@y”"k“N'0cOÐ$ÍÉ‘GîèéØ&ÁÂ~Ü$æG¢ë·Æ”å5†+ëjïå6Cç9®jåe£J3DI†ö¶LDÓšE"ò;‹DF¯‰‰…‚,ƒr°Na“e@˜óü©Ã@ 7‰@›XgÑcXe= >Y‚L‹ôÇ+ á«}R§0gº@@À ݺq?¸ï–‡X6òð2&`ÁV]Eט° åǬ)þ"ªÂ° »lÇ%q sK±M>zi‚,Œv Iãyù9#wdå1é;.É̬Êi7˳ï8c>AFW?Ô¤Óy•çASêŒâ1‹(c ]t }‡ÖãѨþ…¡¯cÌjŠp!* c.ñŽç½)i„3€…¸/}ÕiJóø$¶¦“¨”Ks…wû8>äÔ_˜¹;‹cà¡êÝf|œb¨tœ\ˆË”ž.¬T·ƒÓ×Ëχî»SÊèw)ú$á…Ü2NÅì eÉïãº?®¤¸s:öUqFº›¦Cœb*qHÏ€RG<œ@`nñ`¡Ôä­õ”KœÃûÔýþ¸ßG¬ó±È<ðYø û¤F?aêšœ3uQ)¶Ð Iê|rMÇ&Õ?m<È«ÛÐïø‰zuhó@Ú˜©=µiTIoìÛ<†cÙ ˜¸t± %£‡ãJ"ªˆ/¼J! Wˆn­ñ«yWåØú«E–6­´N%)ÕýæõŽvâü”™]8b#®:bŠˆTÓˆ°š]ÖµS GŒÁyÁpeJÈM)1¥g§|‰Ñ=¾œ}_L ./OÉüóy‚Ä´Xi(Sï`Ï!leýÁ0ŸætƧ €!´ë£jÄ¥ª¥Z´’ÊñtÆxÊèæiBƒÙšô«0å2K }Žëð]`\¥G!¢2›€£†µ=‡ZK-Gì'Ñ—y(-HèªÈƒ~Xö¤a.ÏÞH§XPßÐeó˜Ø^^›b›nçäíŠÍ"ºÉ’p£‘Gkf¢Û•½Ý´{ŒýA{¥f’²\¶gxy&}«…Ç—lSzâ—‹S-‹•šÒIBþûîO=WÊ”° ¦:/”7Ç6Ö¯œà¸¶ý.yèNaf~}R H~Hñ§‘UÊuC^±pvI2 EN9Æß!eƒG+k”óàE3‰Ô†ÎÁiq)ˆM÷eÙ-u¬¢7ªY.ºˆ¹zêEçd‰1©t ?ÄðXnSTì†.UIP±ÈLóºÍv<¸d+v›Ÿduè¦lôªT;”€65¨[“Dé“\ñP+·+>s¸Py–Gsðìm˜¬Øæ*3‹³j%GÿO1½ª_@1¬áL¡_·óøLéÉà£#ºõ€¹¿šG™R>a«Á¹%jëÔß—³Ú;$g:»þYù+ÄÑÞ}áW'Æsï/Ë_¥¨ ºžó}­;7/~zy™,,›ö7ÊÖ£×…GmÀÞ,&2Ó1Ç›k8Éߦ}5¯ ¢9y¿Åà ¥¸dªÚI12Ÿ×^ŸÑ/\ fÝÕy–þaf¾ð”O%aÇôJè„Q2Ú|ÏåÖ5YK5iÄWQ®Ms{+И5ó¨T–Üž<ÝŽ °ÚÆùBm/X*=#°ºƒ»Zyî’Àu©Q^=° ôåe¥`ÃBŒÄ\„¥'¨k¥Bcψ×BRÀ$QŸúü™åEÎå³}Ä4žªëò²~¦ †Ü„Ç‹ÈRõeDAâ}þ¶$%XFÏy´º@°lB‹Ç/p™d3—¹@Ĭ/ÒH^&ÎÂÀ—ŒvÆ!àÙæ²ûœüº l>c¤Ï2nìÃ÷)“ªÖö vh¹Ö+†þÚZŸkAé„Ê?Ç‚Ž«x‚ûü?¶ ,¨—þI|»-:²Ot4Læõ:#§–Æot”,™ûñ_˜°ó8gìs 瀵1Bû¿ÎYd,Ê¥W5–“!’¶AÄ<}%rªÞ(ŒAH4Xj[¤YSœFÕí®ž.ÔPÎ>¼±Ún¼5µ šºX¹‹üUà. ¿KøøÔ¾–¶ ‡ù3`I]Yç¯c¹Å/y)Én›WäÃ"K¿›ê#ßÀë¯gC|­ÅÙ5. žñWˆ¸š«ü•¦ÖNŒ(c•¾ïn>”Ùk¼N%ÃcNde¬÷]žÈ&Jí†Ts"°˜p°ûn;esâ…:÷ÿòm»TÙ¬m,;žŠÓÊê x >^jQžÖ´v¾K â¾á”Z{Í¿§ºŽàc7Oc—å‹·ãŒâºRnkÃiF¼R7–µ—Ç5©ñ²T\k2è4¦ëßé²è”L‚žt&G4VðµïWõ^-üY›rQ-RÝh/ª3T,>YËt¥‚çT’¨‚®¥W3Ô|ÇÙóÉ ”o0Û!½¥¬;'Ä‚ú¬y5ôjÆÔ.+ÞùóeL>TRÙ§/K0‹V]qO˳^?õšé€×óÇ/¦Ï8ë]:µpΩ]=ßetÂlcÐĘÅÅ\" , Èã]{––ä ÆŸâ]ëéŽÐòVÁž·ïÚ~\ÉôS’ÖüÛüÍ€W:°¦´KÕÌŽ®ŠÐFÐÊD©“é¶këÑ墾üb!È>ˆŒ73K˜@cWK(fçÏ󠯀w«`–H9ôu/ìfÍE'¬ŠËCNº6©ªNÆbä9ÁW‹DŸeÉ’—ó ì&ø|¬ Nñ‡@éÕjV§ø5ZèX\Ó‹©ôËI~ìg¿ë‚2iã_Pà‡Ã]nïPMçÃ{~?xvBLâÝ•ñùúŸo‘Ä=’é ~üû-üå{Yeµ@ä>F¼Øq;Ös•<‚¶ÚÀqË.ÞznÒ)¶ÐÕ}»Ýíw§XWD{óXÁÍ|‡wógÅb‰'ýÊIBì¦ …â`uä´ûÝŸ¦ ¶|½Œnö«ê¾Ç;2±8ÖGÜŠuW‚*žëëtS3?^½´™ÿFà6~¥>\äÀsU ø%Îs]Œ‰GÚùûï¦}J} úìx3÷üvϪÀÝú®œe8)ˆÏÖá…áL  @Ð_¼~ñŸðïd³°:endstream endobj 218 0 obj << /Filter /FlateDecode /Length 454 >> stream xœ]“½nÜ0„{=…Þà(‰Üõ6Nã"Fä$Š2TX'ÈçÂoŸ™¹\ŠCàÓwf—<=¿|{ÙÖ[{úq\˯zk—u›úqý–zŒÛ[m.!ä˲ä¦nó¯¢Ýÿ˜–ǧS¾k˜ºÜ\º>KÀ'bÊp"ž³†€Ã˜¥úJÄ6°K–¾&ÎYÂÛ…X³„·ü7vY !ÒF„ Øc–€‘G0-K@# <a0Ê$V ,DÙÀ „…(Q6–,i2 Y +’l$ÚH¨™T7±nò,ˆšIuëFBõ]Ç­ »šv6!v5ílÜÙÎÐÐPÄTÈXÈPÄTÈXÈž²äÈ ÑMññ L6L60ÓŒŒ5ÌÇ4#㌠15ÇØCcLÍ16ÇÐSsŒÍq¤¡BpÇô\tNÐÎÐÐÎÐÐÎÐБƕșȑƕșÈaß+Ïôãðòxó¢<îE[>£n7Ý&Ý^’u«ÿ.Ü~ÝùW 5¡sè°endstream endobj 219 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6000 >> stream xœ¥X xSUžO w+ÒÉЈsoA^â: *AP ( "åÑGÚRúL›¦iÓæ›ÜnÞ¦i“´ié‹ÒB)"¯V˜QtÁAwfttGf×=7ÜÎîž´Œ3;ë>æÛ¦ß—6_Î=ÿóüG(˜8A  '­LO_»`aâÏÙÜt!÷ÐîÇ¢BÞ~Ç×'ÁdLžØùÐCǦr@í÷#å!–(ŒV‡Ëß´²¤T%ß“—_‘öXöãi /~zNÚÂùó§-/’É÷dg§¥gVäËŠ2+ð?…i›J²÷È*Ti-ͯ¨(]2ožR©œ›YT>·Dž÷ÜãsÒ”{*òÓ^••Ë䕲œ´Õ%Åië3‹diã!Î[YRTª¨ÉÓÒKrdòâÌÂÒüÌÂÌ¢¬œÌR¼\V‘YXž-ßSZ!æ./^QRúÆ e«V—W(Ö¾¤¬ÊN¯ÎY/Û›—¿gSÁæ½…¯m]úÜ3Kž½W"º[ ˜!Ø ˜)Ø(xEðŒ`–àUÁlÁ£‚Í‚-‚×?‹#G?£$xB¿dÉ#|*Å?"F5 F¾¾_¯á“Hþq•ªt^hx Z+˜h5ÅO=”òM¾Þª[5½J‡sì‚…~'F?E÷ â›OVž\â¡øü ?]\ x•MkcXð€›u±Þ+è@*Ú(F÷?ÁðÄ¢Yü*™+OóáK¨ç’ˆË@í’¯Ò¯ÎçSùñðϹðÂçHŠ$èô0Éù&ɶÜþ+Çb·ÛORƒm; Ä›³WeW¦ÉÖSYk6—ád'sþµ4o¼|O_DéEGø‰±ˆ6d¡ÑA•Õfð×Y¨§Žˆ£0d¬Éo„ê·'0ˆ–¹Z(ɾœS8]I(=ŠýbëÅe/oI¯ÕR†“9mÙP µU2\²õÿ©d Ãáá»%+·èh5¢•¸ÛÛ;BA¿oûA ŽFvmÝ^Â'É·Rò-;¶ïâEíg;ë±9©äøB芋:„çâ3Dññ4‰Ëítp3¶ rt¸ƤÚ̯Iµèp‚­m7¹=¬£ÞAö!Á›—ÑBðÏÄ£ƒèµ4 Z©Á a’{^Ü6›«é *KµÙY78'í4Fn 3yÉ®gù@ðËÅÉñÓÐOêÆßøGZðDŸË Ä_ê}EŒv¢mH†ÊÑ#Oý+?“úÞf¹fÿ®Ý&ˆ¿üìužÜ¦äWü„Ÿ@•<¿šŸ„7Oàê­þKõ]DlDÄ¥s+%x¦Ì†œ¼ü*R5X¸o7^žÄ'ó³ùÇ;ÿÊûoío‰R6FÆÿDŸ§/RC#Õâ:]w°‰… u[ÜÖ†±:‡}Pgà:;m6{=eEv‰¹¬µUŠ’]»3€Èªè>Ó…&†¨ž+Ç{ñÞ«_l`,uŒ(ÏÖ;¨¯Kx,¾E©%6»ýÏ ¥­ŒÅBZ°ê•ù´ÝøE8ÔÙßsÒ˨#õkñÇ®ê"èE”•fh°F§Ååµ¹ƒòR'%©gèZšT>§TàÚÎ_@Œ÷k? R4SŒîo-xžº€bhÆ„ûÁ€×»Ž&–Œ¢•`g}ÀJýzP‘£jñX ÝÐxŒZ3C[´‰‘î/°ô»sŒ¸÷Š;D$ÇïÇ=‰‡}Q„N¢”üN|ÍU]\g­5+1›ñžF›ßrçQm’Ãâ2☫i²r™²¾ø" ü9æÅè¦ÜL °”ᘭuxxþû˜‹ÿ1c c Sך!fm›f¼ÅR«»ÁÉzX7šL]äüu4ï½S‘©CŸšO¡¹C;¯LK¹ƒªP†¤Ñ²ÏäbêéÁØN–,á‰Êeö3J²ßé‚f"ZëW*Š«wnɽ޿ ¢‰§ }o7)•;·ø‰”oK]»½ƒFš~þÕÀáš<¹Ë*c*Ã&o°Ý?0 ;ò,?-ÿ‘,*å<ÿAM‹™HFßbÔ{¨­ˆGFDh7[ò…8ì ZI=)îC³A`Á- Õyë –½2‡2é§bebÐÜø°¿¯å ùê¤ûwŸýæ4šíva4°Ò@[Iÿk*·íXõ EÖÖf„휆ÓxçY]dê¿ £•ÃÓR>B_ž—Ôo:¡‰A7Ä¢¡žÆÞúa°ãfVÓ¤jµêµlüØ_ßb÷ù(÷>÷>Wûaôtª»i'4>u±Q.7‘ºœ-ü^c>‘2Èä,^1}«n°ï\ûõ¶KT ÛYâHaßöy¹ü,C/½6nóØg‡bTô…˜½eÚbµŒÚÅßk–A1룚ÃdÊGÆ…•ã¸t˜Kq¹o%¸£|¿¢ÙƒZ • *Š¿_¬„ V „A‹3åÈ IF+føDãô&gH‰4úÀÙÔÌB…îG ÙÂs·qÒÁ`ÁéጬŒ\úŠÓu¯-⺸;O'ë{ˆP¢^z ««ogÂ.6½Tx_`¨Vñu0¨0Ò5?itGÙ¬5oléØÒ¼å`œŒˆým!]´H•©{iÝ©]?ÿü÷—¿Ša”Ùðç2};Röö02š–2„n½-iÞpA{®Áà{í—[Î÷¡T&Þ.téËåJÛè¤I¯¾­¶Âž’ŸVf”¬ÏÍÞ DÊ/7©Žux8©´Ôñ‡ônÙÊeË䟥t5hAå{eŒU«­©.Ä+‡–‡Ýè^*Ð5VÄ¢ƒoüM[u¨·o¼ˆf¨¬ÞEeðè²@FÌø¬j¨q®ö“ÉÜ[ºHècT~£>"l¿‰®ÞqÅÜÉ^“¦ë¶ò°!ØmÛ7°=œ¹~φ*=YñaºCĬ-ü4޲.Kõ Ñ¥hƒÞÌr…©B³ÚÃÿX½¡xók 5ƒ*ë{ÝžNu ª¼¬roæñª#'zŽ’¡'•8ÈÛ§Ñ´æ»ím°P¥O¾’µˆüª¶ÃÍŽPè=êz¨a¤çè1²ÐÑ:Üz‹utèú`DØ )>qӹɒ*ÐC­ÆdÖª¡†P6h±}‘þ;úVóÓðk&?cÑ饷ÑCŸ}[ï‚ÖÂ0z=ùò?ÌQË€X­9y ñVïûTÛñÓ§ßz8cì&’ï¼8ÞâoÞÙ!º“Æý«ÄÛÃú®öâ7BÅO˱ÐÖŒ G?H]Æ]¶43PR~Ê÷ɵŽº5Û+k,R‹†©Æ8éˆ ±àOˆƒ˜ ƒã‚Ø«³ÑTm¯ zÁ¸˜ˆäN¤ÚÄ¿ü“Ð^n³xAê§ÇéåfǧàùY£×þ|ÇT6…î7BÔÚˆgè®Ì^Ÿ sÏк õŒÔ_áž¡”’#oè:98rª­5Øpåòóà!<°­´ÑLÊw—W–A%h½U±ÊÖêÆb Vìš_i±™¼˜hÜvª±ÿ„; Qˆ£úƒ5!:f`pÚ r¶lß™5{nêúôÜ`Ä^ÂêrÙl7jíîëÃ+|ƈ<¬h¬ìâ÷gQJ‹ƒqé ­³PŠËsð¦Jw¥7;¤…:ÐáyÐÓ¸œc*íéö_D›†EÄHlÖN‡…ófB²šQ[UŒÜjd°À|Ӧי¬X:ëyZÛVÚ¿×ê¯tË™ãGö·S¾Ç«;¡bMM½¡žàÛcRâÏè«ÞXµ«Öbk[ÄQw;µÞ÷÷¨•ÖñŽ:K¯â>”ø„:¯Ù {ÀÖ˜À.åëVL8Û±itk*_ÀuCŒMü 9‡AoMœâ¥£û4o”W®µHÍ:F…±Õþ¿4›‡õ²4ëNuá:ôH?ú›T§†5y}hw4â´oÃs' g#ÂÁ÷P¨K„^Äjk¼ÏžhºÖá>MÄQYÿÚüsøÕ3FV|þýãöjÑàAhmx—rF$GÐܯpív–Éf`q–‰“¤­l‰?Ó"<ñç½.Šp/IÐb^ð ŸÆð…|5_Ã/øç44 å¢ü2’£ÏŒ®‘,^4‚æ¾=þɨ_üêfï% ~õéËü# e<µfµbÖüŒå 3RÉïŽD®sÕè§7ÂáÐMt#ß«˜ò#ž1)ª¢–ˆÃ ^õt»bÑ–6Ü¢Q½OŸCkŠ¡z X"2[víÎÜ›£$Uùº¼ ~±Füb{W¬š›ÅWV¤U/R¯ØlMTá!Û *‹ªe»*Ý@/Ÿô“M½‰ÂÎN[>Ž ­‹pS#LdjÓMùÅi)¿@Ÿ£ ]c¥ëÔY¯eVa((l»üV'šØgô¾ªå›6ƒ”Æ@_å‹9ÃaˆucY¹¢(ëhõáËŸý¡g=_,i­ôhJq.ÕU3ÎdŽã FTA0Ÿ/âžÂ튱Þ‡‡Ý—øÃqúY5-3åRŒ& WÚ…5fÈNv U¬7!•¥ O޽ëã×cÏX-Z`³Ãì÷ñè¾èY$â’8æ­¬f¬kíÑåXuƒTŽ•€“rk ­š/n…}ÖV ü¾1•P¶¼ ˜wÇ´« è•OããsèÂå›ÿu|ò,VÕÝñ)¿;>>ð ^G'v&ù™£—ÿj|Ú]Í]ò8ÚðsÑ"Ø.Ð5þ‚ÌÄ+s†ŽÅ‚2ÚWö;£kh²vkåª×PÖù†ÍŽÊÑ6Àðkûçz›{ν{¨û´€Ëä6åÒµe S…ûb-Ý;7ïÌyæR§É•åÖb uT‰§ö cDpÿ½Gš2j´h­¨‘nëËÚßÜÜ"÷ßùOÌûïéŽ3o2w©2ŸÑ!<ß âþ»,é9ÝrølXî7ápéI춪0þ±%‰kKƒªô^ÆAõY°–Õ€º¶‚aøK£æÔU\oRÇ)Ößà·/ÕJ+T“›Ä+ðRfŒ‰¶74d×ËíÔõÑ?Ù+Áiœv_™ߺ{=ùä0ÊF{þ»JÜnš Jþˆ¡¨j¹U+¥Õ¦2l¸—†Î–^/9‚ ¬çÉ ýÿƒßš-²Ù¤åtÁ‘e°2Ö©äã·›ÿûUÙßq»ygþxÐý7ÐÀ Ñé¸-‡šûF\^›×!  i£u-æœB¶8Qˆ„²Ñ{aºMPu´QWÍ·ÊSó¸&øÃgmÒúÄéÀœŸk…´;=A\T¶$Êù#ÂO¸/EñG¹I“‡uƒ‹ðˆ”ï?Ò|»ë uøÊÙ®A nŸò´œ)9J›Ù¦ÅÒê}]4þDDøW)Bâ"‰üêRl(“töþTƒ5` ûªþÈŸÂYbÆ`àëùPªFc0@QЄ~Öå"C h&Zù9´=Û=¯ëi§ÚY¬óéæ”‹nð8í ô~cÀ[ŸÒE¹ §±\:&Bî> J—ò«WÀ3D-ð‚ÃѦp#ælcYz>K4\þ†@Åõû¡»¹*qò f¨=°ã²â½¯iÌF¹mv—“<õÉ)ÀdsN¬X&_´˜_i¨IPQÙdövxÚdhX_?#sχèÈðð0êÅži’Û{¿^Œuõãü1¾t‡Ÿ÷/è!4BJ’?Ë?,iŽÞ쿺äÀ‰£@ìo.y"ϲ­˜ŸH‹$òÇ+×å­+~=?«”Byìë‹¡÷±[Oææj"ñŸE„_ !U³è ôœd]zz gŒnç¹3^éZÓºècè‡ÞÖP Þwâ0x §Ùe¦Õjš&ó÷ìÊÇ€¶Åøñi ¸=ÔðÛ(m´ŠèWØ=w Ÿ%«%iÝ+ü\?•¹ ±¹QÃM”Ö¸¯±1D»W‘¯[°ˆŸJ•åfo{u‘\åVúü~Tó»}“šï¹x/yÏħ#“Ðìžendstream endobj 220 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2506 >> stream xœ¥U puÞ¨…Sã5£ît8ëÍ êÝ<¶PÀB)ÒÐÆ> M›¤y´y4ïM~y4M7IÓ4mÒ6¡Òò(-Oµ@é Š *êéyŽ0ÞøÇsä¿e«wkëÌŽÎÜÌÍÎììîìþßÿû¾ß÷ñ°Ù³0'X›—÷Ü“ß?-aîç1ÌbäëYïrÒœ™|ÈœÝÿÀümw£è¯PÃTºËàñjfʵVV§•WUT*ÅKË–‰[µê‰âßåä¬çÖHåUe’ZqžDY)­‘(¹—ýâ­²²*©R+^út¥RY·úÑGÕjõJIb¥L^ñÇe+Äê*e¥¸PªÊUÒrñ:Y­Rœ/©‘Š§á­œ¾¯•ÕÔ5(¥rqž¬\*¯Ý/©Ù[.©«Â0ìžÚ5ʆ åUÕÛöí¯yú©ÕÏEV€=„mǞǖcÁÖc°Ø°MX–=ˆÝ…-Àò\<ÀîåhÀfcçyE¼Ë³ä³>ãGg?>ûBÆ_3þ%¸<ç)|Þ¿…3wå\ÿ<1CeMf›R ™â1÷\m¹ÎG%èI¡7BñFÚ_w">sjä àƒÝª’mV )& Õ`^xJvâ‹ãH¦-^«Ñi5Q„b•¤\ x“…N$qº—ŒAsà<þvÑàÚÕEÅÒZÂ:¶çШ¹²i¿¢Ä´œ¸¹Õ»}}­DèLçø0à}~yƒÖ®±T“N‹n³Cÿ"ûH¶Cg“ƒWÆ,áÎH(ÔJxý–n Q’™#@«Ð4÷ó77ÿ&H"<þå ø{Í«ìÝû•@kàþ A4}š.e ã,'Õ6àözXðE|ãÞÇsrØ{IVÅÞš=@+<ÿêÏF{ÿ<¸ië²å9l&™ÅÜÃQº0ÖtñÞà(­g ¿ÄBk7@#™#D‹}h·¨»‰n¬²Ö½ÐLìg³2– 4†0ß°V›Ü\ zQÁ™ª—oO E¡ Ùckv9tVB½kç³ù€«Œíé˜7è s{²32¢y×ùÌ|ÄÚ5%k×^Ü88:~øVüâó™ ækaÛaOà%ÀÛÃs»Âz›‚å¤ÊÀæ6ºw¹€Ût+Aèq÷³—L:ý0´P,>%ÍV¯znËfPÁV¿ê4~Í{±%ÕQ*$šÍyc»>üa—¿ìåø91Í’ŽòN¼ËgO®º=Þ0¸ñG›Ñ±Ÿr*‰­Ž§ÉZ‘¾B§Áf¶Yªíj¢˜-2GkO䃈Ïþš%Ù¥])xçòع®N²sÝëΜ„Ä‘@ôGÄØä6B¿MST>CÌŒJ¾oçº"Õ>Àw+‡_:•¼!Lœ> ø«±5F‡|™­ž4”€ÓTŠg1¶4…žM1Âï‡ØÊd9×ø9Ä MÀ ÔjU©9Q8‡ë>VÄ.a±7¶¿uòxï4ÙðX³ÄZ[^-’THAÎ] ·¢%¢»!Š÷hÃ*ù~uYỎKhñ7&"D=Ú%´ÊÔ*Ù*­áÔ,«M_îE¼ä9òÐ…Séc€_éÌ5“”># };C¥ðÞÇWÓ×øèÜäla¼©CY_«¨ièhJôèé'Ø%S|áv–°ëìFh©xùóÇ…ò©½{Ë7[’=­áƒ$¤“ÁäÁ÷³Û¡ƒγe‡w<"aņÿZ5õéÉd?gÚ.3¹ô¦NØ\Ž'æ£i8ºO‘’³ÿcž˜.¦¨©—Õk"šžþ¾TÁJ¿}\¨Ë/ÞM ó9Ý#¾$´M“Q['¯–É/L YGPf?q Ýñ†<ˆˆÆöݲ(ïA·7ÒJô_=wî,àÝ!}µžâ.Âwfnã1;˜¯„mƒnÏqÀo¾Uï”ÛJ]vÒÙì2sAgh£üAŸ?æ%’hsF»´ÄÔG98ÁªÊgs³vÊ6ÜÒj =-Q?qýþ@­ü¨ ßí²PµËA²ÙSq³”j~DûL q!š¼ê…$ùA ®Q)À.iš¡NaO=¹ÏëðA|nŸ—æ\uÖ”B'nE¦]¸qþ3>ýŸf§]K°‹§^sè¸p‰Ûõ±À¡vA÷}³]Ñ@!ØÁî4Q§ìøæ‘Ò‹Ã}ca¢g¨ã—3âÛ´ÂPR¿¾ðz[<v‡Z¤Ûçë€ |ðpçŽÖ¡øÀ@(<öÊèÐizˆ ˜¶[¡\xCTOöÇ(wn)ÚSXHl)”77Yñ,tÍ”šÌårùñˆ%–)ËÏœeá”ÕÁy;KÞ¹}gO$âA¢3‡ÜOµÌ”ÝE8)»–jÖmÑH*WX=?äí?ÍäíäêŸÔ¦—ö÷xhOKúÕ‘ô@_:À 2ÔÕ°[aS6¿@Zë×ÛêtÙöFk GÐOû,q3û—ËwŽfiª§¬ ùÙò}R"ýÅò]WX‘÷aùÛÆÎ"Ø ùMÛÖZ/íJ•@%ÈUU\ÿÿE|ec7óaïæäýüÉR&, ùÛüÆÃ&Ú@q7S²‡\¨‚A†6[ÈÆp²ÃVxÓt8löýäÔãBæ4û|7ÊE|*HñQADô…yyÊé䈳l­¡¿¿‡æ^VŒì©TËêd1ÙPO¤ÝMp+[õ W/hϘp@¯Û§¨¯­J5$õôà*(Åz»ïlíâ39|F:¹CèoÃ4Ò&‡Ñä Xö»§mzn0)‘6…;|!ÚÇ-ü·±{ò·]<&åL°OµQyô~ ¡§×á%ívÚc˜×³­1Íé‡7é@o¤]-.²‹Š9[®³ë³.a²Í&“‘ëwuÔmoÒmÜ·MÝèök<45ÆGC OˆæT9Ú\È+”+ÂÚÒ x<ëiuym¤ê¤î4| ޼‰£»ßqå¦-%‡F‚ýV )直í+§2 =Þ€Ÿ8s}œ[ˆ_Ô.zž½ëÅ5VI f\5u¡|ÐMd©º™µt0ˆêºl)=çмwçóf?Ñ•97åËÌİÿ{“fendstream endobj 221 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3586 >> stream xœµWiXS׺ÞÛ@²UDº-Z»7=µZÔ:àˆc[‡*­8£2(aPÂ(†$|„QæL€@DTT¨¢×Ù:¶ÕzħÕÖVEëñœví¸8}î xÚž{ÏùsŸçþHžì$k¯ï}×û½ß»iÊaEÓ´ØkµÏtwû§ñ›´0v€ð–pŽí€MíN"pr80vXÜptùOH=mF9д,Z­ñŠŒJ‡…„*\ßÛáæ:ÝÃcÎdW÷iÓ<\—DHåa;e®«¡Òˆ@¹w]¹#LªHp}oA¨B5oêÔ¸¸¸)ÑS"å!‹Ü&»Æ…)B]}¤ÑRy¬4Èõ£H™ÂÕ;0BêÚWÝ”¾w¯Èˆ¨…Tîº:2H*—-•†+)Š'‹ŒúP¿#HúiHØÚðˆiÓÝgÌœ5{žß½ïrÛ2iMQŸPŸRk¨ñÔZjµ‘ò¤6SK©©¨éÔrj%5“ZMyS¢†S#¨‘K¢Þ Þ¤öR•L ¤R¨AÔʉZDgRïÖ(JK=¥åôƒËü$ =q8á8Ò1Ûñ©x“d¾$—ù€Q\0ðø ÇAŠÁƒ}ÿê”âtÄéÎ1Cü†´ ¹èügçœÁ¹Îù¥ uZÁ*Œ5Óˆº‚v\ k†…¡VÑ ;´5/ &‚tnj“ùRŒÇ¦8Ê$× Ò|y\%ñK•œLR­ï‚Z°BTë:Þ±J>N†vyKþ~ýÌÅ‹¥›¼9œüÿ»äYÇ8 JU…àn¦ën£ºÛ"Áídëö3ØiòÛx8ùÓ$$Fƒzž¡áÞ‰ýØ`ð+—uDµgžƒÃÐêÛk-o‚Cp8¡&¨~¬‚`…Õ»·FnÙ/²E+Þ`ESÍÂûôß® òÛ"¤Ãlµž£¼-è20Hò¢±hÄûÏ0=cë*–¿*Á¼ö¼4¾w瀲X(dÁYEåuí¦`¾:? ;àÁËf. —•˜âxEe’jgÛ°¢KVÔ\O£±÷o…È6íccÄÑxZôR¼ÿ(‡F‹Ñ¨ß\†Ç1âÝ(Ú±·MfßÊVó½Õ’`­Ê‹‹“ ]bgaXÿéþíÒ/wEh>R²=­îè!3‡KÕìI‡(FV™Rn6—ÔÔEÕÌ–MOç2‘HŒÇü›Ã®ÕŸ†:¨›PÙw€qO]ÑAÞY¥2 ³tc;Jh¡{Â|Ö¹ªÔøu¾?k$‹Î÷/Ú úèBê2U²vwUÐM·‘ß}úU³ÉÁ°=ÚXUi*µ^ýðÄ<b=0ÞóN¡ÉhÞ7m-§“‚*‰HZ‰–§šQX«ýÎÆK"tʶ˜ýg+ì–ÄZš¼‰œ™ nx$ñÄ ¸}´ÓTÊ$Ao:Z%ËRó;xágÉÊÞ/YH­2&:t»l30»1Uˆ6Ü*n­häÍõ­õpšü ÷'È ¯!E™WŸ¦^ #P[¡Ó‹õñ,ž1Ã.ˆDhp;¢,y9é©D¡:~÷œåŠ@`Ç×¢%¼I’eb Ðô‡ÆZøòðÛYa¯çpºb¥Ñ[wÑéEH†n²h¡ üå‰ñ›<þþ7©ý§‹ˆ«ôÝÄèê ª^7½—¶°™×!‹öKúüè±ÍìXŒç•8Ђ֟þÖ‚ôúÂuäuýP)­`‡·B0ß_½v§&µeW¨õ8äBŽý¥Si2TÂ( “Ë Œ¹FemèÆ ]IJ.¢2´„¸øôåËù4ªùä¤ìš&yAƶ½ÛB`#óÑc4 ~~ê«ýiç>©ç6Uo†Yà i`RªM`Cž¡°”y®bgÀ‹J#´jx“µ®ÐÌC¯H€í‰Q|¼,B L Fì$ÏŽÿ*Ðj©æ+J÷Á `î#G˜ùéâ­SygTEŠiE#zhD‘x ½luleäî˜Ø¨ˆªøªzcu‡9ìM¤sy_:‘Îþß]ô!´ÎÂ~M¯Ôäâ Ñ^¬Õ6½†î:‹n¡ a»©Ä¯.37Î\úÍ­À³ò8}2h _{ò“ØV«½iÜNï-WûÃh,šçþîƒó¾)¨I}3¡)õ´²4ý¸¢~=¬e>ذt®ßê¢#¾Üš“š[™™©D€¯½Ö¯Ïkó²ôÅù\N¥¹ ìàŽKaß’Ñèpï pAÑÕÈ·û2}$Ø[ûøÀ¶’ퟕ}­Òkùo‘OtBí"‚³í̃‡={ØÿGö˜ Ÿì RÞY_±êÿ5‡üß2K¬Ù6ÆL·ÝF$³¬C_°p?ã^Èíí÷½*|a ,•Ï\¥Z ˜‚‰ùž—Z|=ú$<€Î“Ö³¿Ò?ƒ³ À_²»`¥1Ñ)çá6Y7|Y~Îpõ³z»WžU˜f•øÀXËaqŠw<°*>Ôg”„¼VëQB_äuj³±l%dÅqÑQ›ƒÇ1ÎJB÷éj¦×( Ñ&ÏàÂeâ}1ÒFx 5}HÂ%3´Åöá­„›èÕcäh¥;£÷EÂ*´€$mbê:Õž4µD»[-®©¼p¹ºŠ˜¥ë™“ðœD¥iwH@c–½7kÓQȶT—5ÔÆ›"Õ:ÈÔr¦k]Ç®óÍÉ¥Sgû.ñù˜è Ç:F ´ÄÎ[ÍwÏлUhÈ£«UôµGhñ¢U³‰™šLP3ª\2_‰¿iùp~cY¨ïÊÏe|C†Õk¬92z·Rêþ§Ý>zñÃ’[“ ܃ýg¾€¯™»g'NXâí¹£>µÌRUV×]“ÞWQ˵ÇÄb˜Æ+InñÚµ²>Â?LKFL“ˆ³ þ„ÊŸ‹Ð?l;|ôÂ:^²BÂöÁš~”Hòù˜ÿU‘™~QƒöÜ¡‘ öˆ²)“8 r¼u¿4G—›N&¯FÍ¯Þ¢Ý +`«9¾ -›” L*¤ïáq'iÈôb~Š ¹Ú¶ãUp ª}  AY¾d`KÁ'Ò/&$HîO¯lOø"W——I€j ÔÆ—Ëv«ƒf_³ ÇçOÐ4xþó?ûøË#wó}5 ãÌ?t·UÑmÝHÓ-"þù‚Eyhhk×Áƒ)&.Y ÛcÊâ«÷ʬ'¥ŸÍ$ÃÔ³8 ×"§Õß úÇ'h=å» î;Eªx4_cWAĵE]­ê€Ì݃Ͽ?m +ãʃa3À&ð‹—Ê·„$î€>ÿèAªúAQ€0‚­QXä²8…> stream xœ]‘1nÃ0 w¿B?0EÙN\’%C‹¢íd™ǦƒÕ=7âÒ£ΫíÑö¤ë™2ÿ®z™­rBõ ñ¹[endstream endobj 223 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2382 >> stream xœUytSeÏkÚäµ`E!Ú*æ…YT§Ü¬ö Ê"ËÈ”"Š„š¶±iZ’´iÓ%¯Ù“›—}é–&%Z Th™¶ ö¨àŒ¸â.ŽxD\ŽÃù^øÊœùJeŽsæÌ?s’/ß˹÷Ýûû~÷wïG ÒÓE‰—­-*Y˜?õx;+ÅÏMãoj±çò£)SÌÂÌô¹Y»näg߀¾¾½3KMQ5u×ÞÃÇO¿ñþgßýcYMm£FYQ©“ÝY6_¶pñâî–-ÊÏ_,[Z­Ð(ËäjÙZ¹®RQ-ב?*YQM™R¡k”ÝYP©ÓÕ.Y°@¯×çÉ«µy5šŠ‡çß-Ó+u•²?)´ M½âiÙòµN¶N^­M͛ޖÕT×ÖéÙÚš§µZQA¢×¨µ*¹¶R®ÑÔ诒k‰‹R[ERWÊkk55 ŠurU…F!'†«ÏäGYO6u™B¡RT+Ô:¥º\©VêU ­öª y¯¶F3^®Ò*«•*¹F ÌYµzuù3i‚yÂ\É ‹ÎY#Ü%¸[pŸ@C¹[¥‚m‚~Á (7ÅQÊKù(? ‚TH !ì Ò{)5u!M”öpÚ›i)¡;=+}Az8㮌—E E^ÑßÅœø2ÝE_âÙü¼È¿ù"…PªP‚gA±NkúívÝ h¥->—?6º»7(ò„΄x÷s€¾ Z³N-«À¿Qã,ÝC;6¶±.W-ЫE À‚¦™µÖ ¶º]½Rôµež??0ƒÃ°U§ic,õk иHôÖ©ï ¹{•üvä”?ävÇþ›(!èë ùvuA”ö»ÜuÒìWw$%9B!ë+<ýŠmJÝ(a±:w?ómFp‚‹¶‹ õôtI}túh|ÃÜxé(xY¶º¹M/-Õ) ‘¶Àâ 9*å÷N%nm¬‹m‘ÍN‡­©¶p>‰Hß…ç¡3_ty‡˜³ï Ç~ü3ЉΦ§ ìŒÕc q£ž±õ}å+°ôÁ¢)‘`!¬…û~Àª·9¨L´ÀðñȡѾAïnðÐSLŸæ'NwÄ©þŸ„¼!EIÐʯÝgçlìζF c¶:¡èÉU"< 3²ÅV°“¯îOrŒ»›ë‰÷…£ÁàQ Ñ‘µ7;Û°h²$Ǹ¹~úqëNÚêuùâc{Røè‰st6@%—¨Ï. Ñä‘ôk“jµV«V'µýýÉd¿4«—¯SˆáíÂTVj±$ذ¶·Ö‹t²øÊs ïÈ5ŒíQ¿# ÍæØ“àË“¼’¼¬:#DCü ÷ýQŸÛë?1{Gþ¦¥.)nÃÓPUöL¥Zá¬sÙ\v;X¡Ía×köÑŠÈfKâWÐx³äP5ª8\ý{èH"aâèfÖx7¶w„¶!•‹á˜¹»j°>¡×?Ù5t ^š:*t¹ˆà™1,D÷¤¶IbÓ롱QúÏ{ÅÐC,v ze‚W&¦¡«p¦Êv®Æ”eÍF ôíű÷ÜRD †Ááýûq½îé£ÁUP«¼[†Ø1Gdþ n9T¶oyX ´‰öê™WícUí›<¦éè¥AÃ`U¢¾¿m¯y±®¢ÖÓÙ©X(Á¯%ÈïàõB>í“à­h‹1êäÌÛÖfb-œ3Â2h+.Åd±¬Ó –\6l 9.•¢-äS†Ë8WÀæ‡Üh0áÀëð1.߃–G«Ñꟿ³ÝçwsäRÑl·³,i±2 Sçx$LÝ ’îÄã``&‰  ×Ç ›É¾Ü<å4q9K˜z—8m×î0·n[n^CúÏ…`·›‹y¥»¾{ùS”q,êõp€€Õãt?Õ¯W GÔå1m6‚ÑZóÜJ&^Ý_y¤Š¾Ò$jœÎcHm$ø[;Ç…h/_(qw@r'4Ak«§•nwàxÎE“ÏÉY ·¥µ¥¥)lÛô+Ò‡+›Ìf;4ç6··v8èÙ-Eé7れú˜-í ôH›Qš“²qÎäv´wttš|F?óÇ'<‹¤grº‚A/tÒ­í-Ò‹)N_’Aø™˜ødâ0YÔDê÷ÂT9¿I’°„,v“]ç’Ú—?¶ãqX%ûžcN®ˆ6ïÓLl›hûÊúÒÉ_/œ¿rÉ=ë·=—¨g4{tûÖ}H/ß.Ù±léí˜ØçÿôÅwg>þü¥çåõ fwí.Õ©ú¿ËøAñ}äœêT›Éî´K'Çq‡Áì°€9L~K‡•Çí9í2°É° …"!»ßd&ãÈ•Áû'õÿ³l??{„ð€.$r”Ø¡É逨øòD[wíÛ> stream xœ}“PSWÇßóAò„ÈŠÝWë¾—êÖÊÈ*èvý±®Úº‹¸V§-jÕ-(b0`B„CPHr0F¡…(‹ "*j­­®ÚñþèZµv©ŽkG—ö<öº3ûð¯Ù™Î™¹sï=wνßÏýš FÑ4¾p釳†&“¤q´4~˜ô:Ä5X9X*Ta-㕎QXš_aÒHŠ¡iý梅†lSNÆF­¨žœ£ŽŸ={f¬zz\Ülõ;zMNFZj–ziª¨ÕèSEy¡S'Ò24¢I=y®V³çL›f4§¦ês§r6΋‰U3D­úCM®&'_³A`ÈÕËRõõÐÛ¦ úìãwoÿ~Î 'ÇL¡¨åÔ j1M¢^¡~MqÔ«ÔhjÅSVj8A©¨hY0FµPÏè,úñ°·‡™)Œ-ìͰΰgá3Âá“›%{”4Ó”ÞÚKìÅÒ^%iWÕ…ev0›y‡³¸ØNpÀ'ÛÍ5Y5)Àµnþ_W·f¹ìB›>P~Éz¬ø¦±6'O›”uëT!_îqº­Àš¡¤@ #•f°yvTTìÞÅ»Ý5·»sý1G#°øÊÑkëÎúšDú…’mIÕå «ü¸ÚØýþŽÇæžmØÆW”TÚ+­‡ÊÝB”ok–F„p–Æa}8¾™ÁeÒcB$ßÓ)œqëc§ÚYÃ÷¤QI†oêºÔöÅ þŒn…2A—®I„ûõ|”ôBÒÈ jŽÒ8¼õ}Œ´Ïpßjz'ÌHNÚdâøHAbŠÂ3•—«J×/<Ê+,á3•G\G¡ öA±÷¨&†”K¬Ð)àbåÀãçÏ{×½ÇÓ/Ÿ’‚ùÁÁˆ ÝþÉ‚W9ø¹èbæ…µßÍñ/2 ’k1l|×1>‚Å®IÝèzçzÁ)è†ûÞž§­W]á"KDr‘Ë€„úü¢³ðNÂøºætó[Õ{¡®lñÅÕ.‡°Þ‡xkRþ„K&°òݲð¡£2;ëm/ FsMŽŠl~}ÚÊÜX`3•MÐ Ÿ7±/ª•évk,¯ÍT´»îC§ ý¥ ­2Ö^Û:$þŽ?ü3DŸ@ñ1ƒqWïíÕ×}yöÜiø‹‘oÝ$ÑD57núšÃ¥u ÍÞC'Wƒ•ßwíÒÞãÀþÐ=wæÄwç“2B £È«Ö"Ù_9c$A±…ëvcÉjkÁ'%óÁ,Û-A1nÿ5dðÐóÏéëÏpý¿Ü¸Û=L ÑJ_¹|ï”Vølo t@ lÊ6lI‹}¶8æ‡þï.î{Ó/Üž» wØ;ñg'ªç|0?}¯¹±Ùçß׺©.¯‚ï8}Óµ ØÆ¾’ßü9+Õbô:ѱ¬¼ÀYâ„BÖ²>å_ÄÑ!)E&xõ#ñƒã8Tå:O®¾H Ïă³dzEóx1Sqϵ Îʱ '*çÙkZ…»?…ÞP.¹á¤RùRÙÀSL"w¯ÖGÿBG?ƒjéç)o³uÈ]Ý÷·¦ÔUæp@Y±°ak²u…ü³k¼ºZ›Û!w&[E&t)M`­¯rm¯róµÞC'îÁhJÞYðéÆmɰÒ+ k ôiº•ðXÒ.^t9w@°Aÿ®æÖ,Ѵɶ.þV*1ú§'8Ù™ÏIÄêÍš—¶Ý/ ~ÓßÖH}‚Û1Èã·Ü­¼öÙùý='Ú¿tÙÚGy±úÀ–=»öÕú"åx<Èä5¢#{pTâ“#|Ûá–xÀâèÉý„Y¸.yÈ#Gnp+!³ukPìt\†CìÓÞë7{öoÖîæÒ!Vɱָqs²Ö´Vv3vƒl 2t?2 ®•"¹–l¿!#/ÛÑ”lñ7yr-ìÿö¢/áˆ.œÓEŸüˆ4à}Îëƒ@ ¶ ÿ®Øš ¢è¯08‚h9ï9cÊD+¶åÌ9#Ó®<¥â#ÍœÁ­OÑAˆ_ëÉö˜vŠ2lcþŠ÷}¯µw6C  Á¶§°©pWqƒ¯¡÷œÜŒñÄÕðï$ýü"ƒ÷‰‹«ª…ÚíΊB@^G.—NlÇHw¢«ÎSQnÖ]^i3¯^U\“±Dm ‰@T@ÄG$ÇOùŸšh—‹~‰.›Q±#ÖôÇ}cÖf/-+G­U@5s€,2H‰$ãW%Ê6†2¶ÌUZ]ßsbgcQÄD@+C›Ø€_uá-íb¤D4rxLQç—ùäE ǰ[Q~Q„< OºI·Ò’'óòC€òJa¼@üu|T~ƒ´Ð‹†êªI­Q†"ú"ùˆ°™>Õð [¥ê«W ¨ÿž¸¤endstream endobj 225 0 obj << /Filter /FlateDecode /Length 232 >> stream xœ]ѱnÂ0€áÝOá7HÓ$t , EUÛpì;äÇ2aàí{wþH_lKñ¥;œŽ§’Û}¶9~ãb)—Ôð6ß[D;á%ã›r\žÒg¼†jºÃG¨?Š–7 ­>‡+v_Þmõ•[Å9á­†ˆ-” š}ßÞ –ôoÉùõÄDÏ­~FD`zÐh¤p³¾Æœ„ï ñYnAãÕ Ac:á4fИ^8ÆÔψ 1a™„s£—|ÝFî+“{ ÊÆ{kX¯ŽO¦– þý:W9e9ó ‡€ïendstream endobj 226 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1916 >> stream xœmT{PT×¾‡Ý½÷b`«îˆö²l[±CШÑðÐTI¨ $ K]ØYË…å%"{.yÉ›]^I0Ž;“¤¢‰nÒ&NÓŠ!™XëcplÚ(ÑFfzîr–žå%Øþqïý}çüÎw~ßwÎïJéE˜Èݯƿ°ÁÉ?2ï%(ªøÿ\æUƒÎVôQ@å ï]þ´3`…|ïgò•åOVR™T.UAÕSÔu–ºH]¡nS(7x øç@¯‚Ò€T€  ƒàˆÌÌ*0SRmPò:í ¡¡[ƒµ7lÕî0ÌÆd]†v·NH5˜téÚ}™ÉFƒP  ŠH„¬°õë-KˆÎ”’iNÙ¾.Xk1 ©ÚXCŽÁœgÐk£23íÉ U2û‰Ì4eå ³vw¦Þ`Î0f†³.]0ä YæL}n²à Í:½gË$cJ’Y—lH7H<„9¸¥ääš<•ffè9Y麂¹é³çáãtÏ~©:ÁbÔr„ùzqÌî.,„&£~!²fÂYRáq<Ÿ3f“æ+Cþ"°¶ˆm-$."4ò)ŠZ“µÚË/^ÁíÕ'„E¼¾-tó–/nÝ´"€@5 Ôzrì  4fÐN‚VÐÚAè] ›\+°^jµç6)©ê/À|®—W™×€×eÅ&E‚bB¹YÙ§ü—êyU§ê.­¤y:‚>@ tí«Ôrºû¾­÷†óá^øì–¼ò–õ»•\ ~)%1–@Sm^×»u½°}7·5ß’[bzûBê÷FîüæiýôôQ#Rt£ÿ6=Üÿ1l†CÕ¶üŒÊra3l%Ý=¶ÖS#ûO¿¬ÿÕË…š£q)øtöeÕS¯¸‹íSÁv€6MÈ‘ „ÝÅœYÏŸ tÞ”#§o2&˜°F“Œ>›­eNÁó4öé±dæL0N×Îå0ê©bç[yee#HÈ AIjî–?â•yþ ­°Ö²-åMGK*ËJk\­î/±Q®ÀÚö¢¯/©ÔÎ2Ò°VÞ{K@ã·òf~j=ÏÁo£oè/Äþ!j½õÃûh üœ•¿aàeˆüЛ÷ëm;k…Rî‘jx4[”°."««,° îb]I L‡o‰¥eÏîÙ€éè¢2Q„E°PÛÊÿzè~d^Q'ÀjXʺ¾g þÅÃ`´|¯­”PBÖ*A[‡(•×&õ`î«<´¦º ¶À/X5) ا&‰q‰vJ$ˆCqv<5‰‚í8ŽVË}D‹ƒgrTëP Z9ÔáÀz2†ôÜA«yU??Uu‡Wþ4xå#sÈ}£2Óúçžù fLyÇ×eã8ȺÒò ù‡†ÆšZX¿ÊccE³ës…¿ü1VÃï4U_*¿Sx}Ñ•Äá0¶ŸÆ¾hXÅã$Z€¢XõŽXóa©<0êïjwM; CqUiìÒ,Ö²“hIóhá•à¸dìžÄÁä\‹11fQÖÇ¡Þû÷¸#éiõ”Ý]ì˜ °9Ô5Äaäz­ü˜X +gwq^¥ÇQ Qfþõ®=[2ŠŽGåàµDØ6=”w44au«`(½Ó„ÿ&ÇúËZÑV\ů9/¢ÕôU:KÓ=¶ÉcVäý'PÅ«N)x•UãNôMÑŽéT¼ãDŽ3iTjùSÅÚîñLý½ÒWÎßN(&yt”{¯¦ÓûÙ÷ÍB޹85þ‚îKü9*A~­¹†F¿Bc—зgñ :0Œ¸“çÉë,‚ýùu•iÕ…¹Ð̦õõöõ·Ÿ¾ôÆÙ¸—÷a€ÆiªJ1ï±×ô³Ùøù ž† vþï ƒ)0§W„¤Û|Ü+­Î¤9ü¹˽’ë—¤Þ.Qª¬ LïüäÀ?õßY®Á;¬¼“¥,ÍkÉÙ®äj]Ã1è0f<<¼,[yúö“ìÇ;½¹lIÔü™”¤@9ŒÈ7ÄâQ 8’ ZÆ’ñ%¼á ÜZ€õ8kK=Q $±¥lÀ2úæÈ/φ÷l„gÊö\¶,¹ösð¦ íCQèéÖfI‚]l¯(™5E4>ŒÙí8âµ,)yqAOh—ý\û8¸9ïůàå%Ç<[³‚$hÚi”ŽØïP DkŸ´á…KüÔÞîBz´-Mžb ñ³´)»'êâÛÿÖÿÝrÞeå𥲉;Ø÷| ˜Çy8 'A¼Œ%ãOÖ¼X¸Ÿ›Yj29´v;ŠÁ‡ËÓÙ¢(ûꪇ„±øsëßxoÄ«v†ðÎgFyú4ù¯]U ërh|wò´#Š&ó®­òçg]?r£òƒ™qÞ©%r‡GÖi9Âã@£xœ^ÂÛGæûxç!wF¡qža–ðÎÌþ_Þ¹u^†ÁãQ¨“´²¾hE'L.仇»—ºdé¡É/£‡9·ìÜSšeÊ‚Lo{ƒy|)ê¿ÕåqËendstream endobj 227 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9993 >> stream xœ­z tUÚvŘê”¶¥BüªÄPqdÙYD ²'½ï{wõí®Þ÷=ûƾƒB@Â&èŒâ®3:££ŸŽŽÎmÿâœùouÁùæ;ÿÌ9*ésàTWÝûÞ÷}–÷ÞìÆ°‚‚‚!Ëç._ñèÄGáÿqo®ä†Ü]… Nžûþ—…Eà–BpËÍw=ra8üÓípé0Xtvºmâ¬Úê:‰xSÃÝ/Ô–mj¨¹{…¢n“¬¡‚ÿŸåUjÄ›Êþé ÞŸQóòÌÚU³êV×Ïi˜Û(–Ì—Ê6È7.T”¾ ,[´iñæ-åË*–¯¨|±ªzå#ªG'j&M~lÊãOÜóä½OÝ÷ô3S§3vÍCã^¿nÂÃv¶{»[‚=…݇-ŞƖa`˱±Ø‹ØKØXl%ö26[…ÍÂÆc«±ÙØl 6{›‹=‚=‡ÍÃæc“°ç±ÉØcØBl ö¶{»[‹ Ç„Ø:ìL„݉ÀH¬+ÄFb7b%Xvö_…ÑØì&ìfìììVl6›Ž Ãnà€b죂Ý7d ·½QUTTt F„kÈü!ÿ¸)}óЛ߻eÙ­Â[÷ =0lå°në¸ý®á7  Ç ÿq‡T$m»óàˆ(é([ü§‘ÎÙ]cï ü×Nª…A¹{ÚÝ—FÉï)¾çȽ/ßûý}[ï¿é~ç¢|Ð:ºaô·c*Æü~삱m {è‹qkÆ}:~ÌøðøßMX<Á6áóÜpƒšÿtöm’Âi}¹{eÃá'7_!<'Ÿ퇅EðqÜÇ5à2QF åÊ ¶™îõùœÞ’˸Pîñ:¼%™x(M ÷f”>5eÄuŽ`ˆ „Õp²NÖÁÉö.OóË`0Jôu ¸I‹¹Çæsõõ$cbÌz@¨q¥Ì"FWDuiJx0ÿð‹èá^ŸÃW’†SImHN Z,k \§Š¸<Ði¶¥'ÑîŠvûºÝœˆôq·õO ôm‘æ†ö Ï>?B¸Js"ðº|ÀK¤Ô~%5—+LYÌ” âv£Ãà0là<¤]ë–Ê€Xv@Èq¹Ä^C;[íÍ€hÁ…uÝÝÎî’$žÈ°­ ]XA¿‚»ã®›ˆý™Œ~ºçë¿‚Å[-fð*Z¥v™˜I wnµ¸J6›“)©Å%*£TšDoÖyùyBÏF‚é¸!,COód\w&‡ž_'è$Þ_ݵx嫲ÊMÔµ¥Êísʆ 3pYî¨È# È}òÝFzå±z "c4­&îfn.©‘*6J¡Á•R{8mÑÂ…ë½´h©h(E 3I]HF™p(‚k/rk‹4h¡õryÔ˜¦ÂãwKJ”Ò\ Q{@ñ©Þ¯B—zÉxmhy—xX7ë†wÀ¤7äÆÃãY¶µ]ìTÑ÷ãRA†ž—¤}øÜøáø¢(žŽðïö¤4A9%̘-KÉD\¢5Èd1cÚçw/}]fîïƒÑ:Î?¿é<Ÿ™ Ьm Fn“Ͼ:“d,v› ØŠ. ´¸Tm­¤]ú )Èp-Ê¡HÔ-9Ž&vïÚ¹½í(8Δ_!„{/·éýpäåUg ¸F\ª×*¥qsŠö_5‰Ü)6ͦ[áxÒBa Å…{TÍ}nÑŠçLôx¸OäN¸’l¢ ÞEºüö`Ç…{nXºü¥Õ+5´Æ¦@ôÏÂÚ?î+øò-Ør¡^Ê-qBÍhnàn'}c,¤B8†¿‡·x;ñÙê︛©¸—Eæ'sØh@<[õþéÏ/üôÝ[{Ÿ_b6‡•þ¹0Eå/Ü™jnqQ%.CI†bž¥¿áWÛïð£* ¥3j¿­¸Ù„Â튲1W4 o!={z¶g¶í:µ«oשLéñ9}!@dñhšmOjRúQ\è±Xœ–¹F«@ß—ÇŒ ʇs#¹JM£ÝÐaj+ÖôJ{µÇÑÂ7…ÂI´²IMˆ_Y ¿²â2µA¦ˆè³¨°]Y}_.ÞWðéùœ5wI´µgcj ¸ÙÁUsOs…'¸»áÝß|õÖÚi6莀Á ˜¤Ê­ÀÝ`’J–,Yõ< &®ùþË/º¿9}‘îÙulW/ .n[°Øê°-IZã­îX‚¥ZàX§x€»Ø#`¢Z¿ˆºÂ¨X®žO²ê>øÁ±•(Í^¼0B¸Á)rzn=¦ó©ñ ‚ ³Xœ²¦èݸUÎÈìrW@¢?9‡¡Ok5i´ÙLT) -ËPSžQç;`U{énÅ~P K¾‡#¡ð/}=jÍ:YÍf6r£E–I³GÄâÚS¯Ñ>AàoÛþ @xñ7Í]KÁ2` ‰Á,X ŸÊèCI«AIÀÝÀ@ÅÆ‘Ï>J4Ѝ5Jå0¼ €¬'Åár•I* ›è÷psSokØÄIHc5ROãrNѶ'h4Œ”ɤÝí)m !€Éä0—<ƒ‡O¸N'Žvüñà ߢ!ªÎ¶Ä³M”[`Û¹!\ ¦%U«V &òIX×kBþ" ¹]ͨíêyW$µk«t–¸RÌÔj‚º(CÃ)x2ínA,&§WâÛà:O,„3”§ÅS3$»œ­MnÊÝîms·>A³Â­.wlQPÜ](øU|•ÿN¯ðq4;M%­Ž£,bÊPƒ¿ÎCé2=eçxšµK´më!ÃApôúö´îlêØ€¸;ËBµžÙ>°‡8ñçðÑž£æW­43JŒ«Ù‰³Tø§Ÿõq\Ò¨Lz­™Ú¬ó–â1®¨b‡Ág=gåt“¹Gå¬óVW0fÊ/° ”ft' ¡¼ÕêHV•T ·)4“I‡ÑfBÑÇš‚­ ßu£žŽF ‡¡×ÁŠÜ‘]Çh*jã2åb°ŒxîäÖóï~´ïãåìOY…WU]ß  „;«åꊒºÍAWРÛáTw‹·ÕÕR §"än˜#jÍÍÂ=Y¶ÉÝä °(¢Ò‰ª:»Rb¥Œ/2*§F Чàb”Mа>ãõ^ãÄ›¿Ë§C/œˆÆf‘06I 7›dt ‚bæ)É™"­;(«@Ôg©³¸ A ˆT,”NjƒJµÞ6¶ÝÓ¶ *HW(yn0³küêaož ã2¥I¢iÓô!Ü*c¤6™œÃIËFû–ŠªÚú-úÍ€—±ÛýNŸÓO‚N"OqVæVR3pÒ‘’¤%õ+räL}ˆæŠŒe¶Rsé’ŒÁ¥Grà1!·Ó©^£¤í§&¤Gz öàÉ&gJâ“ÙÌôT<°Û½Ç·ûüé GêçƒSËãIÚÓ• ºqe££F54û·ú†ænˆÛ8·W”áŠÒ\‘[ìUï{@ ÝÑwðËC<ø¥7âIFyi›@ED³‚&«¥ÀyææñB­C„ß+K“T+Î=Á}° ~P´ OÇ] ÍÝŒÂ(E*:ýO¯†Ãß!¼‡£×®ÀÍÝ€> µ AÏoÞy‚òÆIW‚pâ`£{£g£»‚ô”‡-Í “öÌi²åÝVtù[Ü4Â8žpÃÎ8Ò›Âi¥_F /å!f.W¥ª°.C¿ŽßLJ̇,‡ŠíM®îÍ`#Ðm’®6H R£Ä¢EŒ¢qÀÓäI<CÐ54w;Þ¨5  ˜“×rî““!¤ÕÐdDYWÊ݈}4‹tv½CGs·r«k¸âomxg×n_dõ†ýo|ëQf?Ð2,%´GÐ¥q{ûÏ"6d£ jýpÞÁ^¢i¢m&í’&µ)@´&šZh8‰›(ÒNóMä÷W­>z¾u_˜>9â9ˆß v¿èKÂF‘C Ö«dZuC]C]}N«ËaÆ8WÈ¥–Z¸©¯&¤ÇòÎê;< ¤óˆ©Åa!^æ„Er\¢3 ƒ·^7¥ï|áºÏNﺲçýíx¾AÇ(íèZxõVÒZçªRòDj¥!‹›“¿}`¿Ó|;7uÐi¦ð˜+1¢MâTPeøKÀP·‚R·¬fyÃ2›Ñjd Ào9HšN˜NOO’¦CO5 ârAž¯Ákî¡΄Öœ.ôÀY¯¡Ç¡1ét:C1÷—UkÕÐX¬›ãTn¸öÞNW€ ¡eÂõqFëW–lþ:})ÙÂÛ>³ÓZ™ð?ýáó>?²‡LF“ÐB$5^ ÅýˆD³Æj¯1­!‘îá‹U6¤¶;wt°Ô?Õ÷edùò®å¦Vo+M¾ йâÑ\ 7ì™}÷@âµ#ÙíÛi$}øì± œê°1ˆðT?=)èuý4ºçÍܨªœ¨ª˜”ʃœÜT\„­: IÓN®E¤Ÿfœ>çe‰ªÎXˆ9uï¼ñåï!öÝþ#+ìØCu2g`Õ…ƒI¡˜}uɘœFݵ„ZÆTÒ¬"jAƒžJú³)UPŠl7°Ð(=œu¾:O}q+‡~G¢Oo5¬3Y@ñÀÙänû WOº#–HÕžFtB»ö”Æ‹F>®¿ô,% µ^.‹2¨¤|~„ÕO]UÙÂŽ)–À›ÄüïôKZ¶Ë]ÈæÌÌ÷ïøû¯ï® 8:‹û ¾¸;·áK"Øû€Ïáݻ烺o¸»¸;9œ»}|þ,xëRÇñ]´/èGZŠIjBÕF¦Q×W–*7¢šZxì¶Ÿq ¼ëbïùÏÑ·«tò6Óo¬ÿ'á…‹…ðí_nm´m`*ê+ê5¯êK+¸›¸Q€#@½«<)i«îëã­êá7lO™v›¯¿·úàbY´¡Z@¦§Ž7=bÒÈØ Ôx$SŠYЬ-FÁb7W{RÊ/®™ž‰ƒoñf.–ñ4gÔþFš» ÷4vD·F¢1©N7'²M{׫” _æ6T.ÑI˜kƒ]JÚ 6`Ä\¢Ï«áfßuj˜“Ÿ€óŽŸzn<á• žØwšOŒÂ™+ràâæ¾z” <9FáVz•´ËêA#ƨUYtf•M@îSú•/J×?–&Aä!8¼þðwï<€„_‹¸›Ã“©ùøfm¸-ìí ¹h'ʈ„.d‹[ãv”Óß~ñé·tPÀ¤¬ISbWŒìòÉSÚX*K»(@øýö-±ª²W5âzªíª\¤›Í k\ ˆU÷%O>²o_0¶1@¼ƒŸÛ<‹ÑŒ‘{!^ÍÝ(²,[µl ÊÊÚÑBxö7ߤ<øakóPl<³ÿj7KsÃxˆèoïtèr›ü¹«"ÔZx iÄUb{mˆSö8Í÷ab†ˆœ^ûoto-[]¥Šü£Pq÷·oi¡\šïìüÏ:¸Î„!y’dÞ@xAÌвÄ#¸Zi–jwq· øááðG8gÂ…B9œûoábÅÝB2Ì\CwÒ•b“Íð^‡ ï*Îá»ú̋׫փu´ðàÚ–W?pêõ„*¨z%1l¦´L"ˆÆÌ&iÿWÄ‘bУÚU“$„{ߨ~òè»#¿{æµI7—jô|T’ý>¤ƒ«y^v?éô1ˆ°ˆ7ñ×.Ö/@¶,^ñÊ Ì*²k²–/»ù²LÞüýŸ¥7é&3ÒMD¾‰a°êˆ‰o»îë¯A]¨±¿§ã¾¶ÓÓ¹jIdYù&L³ù4ŽÆ5bG­4flòûù!Â;¡I$¶+匘`)ESk&Óâ¢Á¸Ô,OŠ)ág ‚ÿ’ë1 ?Íg áÐÝ¢å»ÕçÐû ÿúGxãÙŠÞeÍôônn¤ÖññΕ#ç·÷j³TBê®sÕ6È[|B’¶E{­i–ÊÂ|Ó ¸‹º€ºÑP%3Q›w¾] ˆÑ£¦Ý=ëКÏ%ôIuÖÚdOŠ;Té*°•oí?;{ÑL@,˜Þò^€ ‚ݤð¨¶:ë¥vJÂÝéÈ×H±*jˆ6‡ºR^êºj)ƒ£—öñŸ7¦¥Ö–Ò¹÷H›œÝ*É7Vl€hÀ•¦Ž_ äK£>Œ —øøÆN:émNÂRz%þiÎtÁ[ù–‰ÈaF’°ÆÛØdÚM….äU´·¸UâTSWGâ[[o•˜V‘3ƒÊœÄÌñ6žd)oO‘Ðr1áXÉoŒ †F¹¾ÂgºÜŽ®9WŸ"£É­z®EúAǘ뉆”Õóx<•ðgòvf5ûäÏW¾â&5æ[༉ ¿Æ…u>Dh%­¡HŠöòöѬqªKT¸XÒæðÖÇ«OFüáp8ÐÙÒÕÜÙêE?HHû졹ƒˆ°Þ&$vâÆ¨Œoõ xBÆïEŒÍt7Î-áf;}žÎâ=ÐÚßZ-vó k^mÌ•*£LÒ¥¯ ›W?Ÿç=òÓhªæj{•µº†›Iš76€ ÄÓ‡ÇýüãÇß|ÝDùZØ6w븓ô_ÉìT"€XgJ”P|c™à{ðí€ oÇÍU¶JkU5÷©_h]¸î¥ÆÚ-u›±ºôèù‹.z4y»çÒ ¸Oƒ Ë×F´ÊX5Åa¸pg^«KÔ¼V¿Äï‡PÿkW#Ç©á#’ï‹Ù…ü9‘o…xó×oW®ä6‘N7ß>!òn’Çç\­:¤MÒ×c{¯G6<·þÔaœ‘{@Ô*wËL|}Sz\¡4Ê´~mÌN·áv¿q·žó"wä’+Y¡ÕË  Ë•qCœv õ–\AÎ<˜NBbZÕ¯ª“ñÿ&CçZ¾ˆ¬WU_k©±ÔÒ2î6›Ä¹F Šû¦p ů$ê›qêùG$uAÞÜÿxßc³x;ééôuƒ.B9$;¼|ã+õµ Jµ[ãUMµºA6€’aiVš;…áöã¯z¥ÞÒ[ºg„p+¤Ñ²¥CáPš¸Òa|·¯Z D êuDƒÀ¡è"ê#ÖÄïk;bTÓÙ–3MçÜoÄå›0|ÑL;]»§ø'd>E[w0ÛÁñûà£GàOÜg„O"}VùôùyÔ˜¢[B¼ú˜|¶+†¨=V ’ åHZà}d›½«¼Ê ¬ÒQ5sªgKgZµ6-£!¸psî-‚w ¼—‘_L%}M mHIOä»REÔøZüú| )ÔZäfȟ䬀»‹x²›{Ѝ~ÎÓ»×áKŸmƒ7ˆÜä„ÔsA‘aT9wûäy ­Ô(ÄŒjˆ½o>Ÿ„Eh¿‹ïG.üJ×èYF`p^ùdß/eHv“¢t(Œ%ÓÍî6Og“i8>>¼æìßs@Ô"öåõ”MãP3Å=¤­ÞQ-“U×¾hBE§Ãe|§Ï*¯Àq{À\浑»—dT6PCÒt áép8™oXªñÍìLì^$ðŒlÊ¢Iö6yG}ðº>Ð/7æ»@oç"[¥y«µr%wŽ49ôzjÞ¨ÓñíI“ • ¢<_ ¬ÅãÍ #­ArÀÌËçòúÇ¿’[O:ýÈÒ!¬ñkdf…ÖD5lªØ¼N[o®ó->iÀ–ä›;Ø®DGæÚÎÓ9~g¶2¿Ã>õ”è¿9óñïO=| ¼Oø¦Ÿ'žâFAF/”Œí瀆W6“hXK¥YAêò7Iôø3ïÕ<ÍÝÊ=ð謕t¤Z\#)¯v=¨&³ö(¿Á{€£I˜ iˆÖ%õ!„€;×t®«à'NÁãèÕŸàYQ£N¢U‹Õ{ƒ­AÌQ¤þ¹f$D­¸Rn­W†õ™·`QøÃvÚ›à…J⯤» teÓ]í'|;x3–â»^h­´©œ C`Z/¿*÷’,3äÁÿÌÝ\NñËŒ{%m ßo¿À€õýzµ‘£IFmU¨LlîÖ×çtnüLt¼çôI,¯ÀüÉäí3Ál0IR¹À¬·ª†hL©Ó™dÉàç-=á°‘îXÒÓìof[±óœb5bkóóKW,0¬·,Š‚u"omÈq}øÑ+â''{á™Íkíµ´ÅkD‚ÂAW„hWÅ$å†Ê†±Ûø,‚¢áÇÊϯHþ ÷°°/wÏ€ûNÖ2 ”Hyàr`Ð;øc@ÐÆ®ÆÓ¡H2©*-°" ìïqoóô~7ë§Þóáp"¡K詸§Ç»ÍÛ³Æú°›ˆk¼j½}•J`k\ŒûŒÔªt*Ð@HÉ  ¯OÄÕá¨ZÏ¥‹Cw‚£(κP+à?DþC¾CþCÞ¤ËÏÜ„u8¿ñˆDp:I5KY%<©耩êU.…$Iò´u:›h‰¤©öd—¿Û…<á…m/.=aú„Mk»Õ´Ãå`ËtÅü I¤IY…¾zëøo7¼ …ð¶ïaÉ—ó®ŒÞ´Î$+§~Ü¡SðéS¹oÂ9ð+Q×Ï_À[`ŸVGÖî1ð´ÙmŒÝÎ÷/L„$£KtEZ[.,m]ÂIÇriî‘p7ÂáPø3@á—sÞ¿x½xËJ z8¡Èü̼ɂՠ¬[Ò¶GòûÀãBÙIdKï½qGÏTOEªÙaÀµ 4—øqißÒß öæÊø½âaܰû¹ÿz™[j®×W‚:BžÔE›ü)$å¼m{à2X§ÂûàÅÑp"2DZãC ènÍëYBèQ8â hÙ€)55Éì<É{!}¡Îᚃ•©;ýùc—Ï3oBã…Jäg~‚zø©hFýäUÖñ„^pïWK¿€,þÞtù¥}‹š)á_.e>8òÙÈoÇî›Fið‡ÌÜMóÁ=`ÅÁÒ>J;n¼H?õÉ—¦€ Zâ^´ûÒÈ/ì}›òãç-½À X‚Ø÷ŠLóŸ.]€ü—Us;O_üôÈÅck_¿ß ƒùtïÍÍÿUÛFbYj^b^ê0Úüî™_ÝL¥\lÈ—éãHOÖ‹¸›ßÈd %ìed¸wV1–{5ÿMó‡‰ÑcÿwÓ.O‚ïƒËò-^'ß?˨Òk9ó J„]7_(Ì=ÛDбñM R·<ì xÂöZd!EZ\7ç¬ü ;ÆáHðò#°0s6ø8O|¹ÞÄ Ñ÷0NÀ‰{kú—v7ÀÉÌÞ]DNDþÑ¥²)¥ófo˜ˆ«\øë'u)5gÕ`Ÿ¡I Ÿîƒ“ÐpªrKDçi^Ò¦='ðÐgqÃZÕ+šWì&—AÂ2\fÔ¨% s½7Ô™kLµV¥A ¿EKxn߉ì÷$|ÈHø7núS¾7D¤ô4à !só#¾»ß¢30X“•ÂËðF~W+q^²_ÊÍUÛëAQ“wtw´ö¸(Y‹ŽÆl-åvÆa/y‰»,ªµKĶZÂ"¨i·wµµvº) £±©Ýì+¿HúKR6ü“óÊ3Psf„ð+؉Ê8Ó¦àËqp´D“>iMLÆ6|‹qKõä7—~h£í*« (ž5„,;Æwú”§£!Š”ÇõuâóÀ·àòŠ·'·ÃJr»©WÖ z°iµfvYTÓd#v·u¼·zߢ8­gu¬°1Ñ+r/ dê½F–Ôá›-‰…“ÅfrZ„ðÊDÍÔÙ†§£ýë `y1˜ÿÜòEFÂ{E•Á…ap¼ùöÞ“!ãRr ‰5Dš[ÛËMP4½?œ­.‘¶¬¼f³FgSZÐŒÔM”I‚d0á?Öqø48Ml×¼¾†²ãå5õ[há™ÚŒ¸ÛÍ:›ÚŸ{öÿ½ýoþDšÓ „^ß¹ o"t&»‰oŽ“ÍÑ–hs$l€&ÕÇTN‚A.³´ºF5vÅCKG¯ÔšÔ G¶Ø6no$ß^…®Õ›×î±…dØÑŋĢ W 9œdðüzoñ¼¬ãÏCÖv=¼-7A¤¶›t@K¨Ãê&/ª)/ÆÓ‘p9w•‹¾znèr ÜCƒ÷ª"š ÂTBøÿåÝ×O47ž)µ2£Â°`ËÂÍ Êç–‘*C£ HÐ[5ñX8ˆÌ$$.À›ÎBüRØö#5ã8bzŸÞ¿z9õÄ´Þ©'Œ^£_ïBY§ÒiÔÒ¤9ª§“º”6©…î&#†ˆ>f&®KâXy¾0Çüò¼h«uñKåå=ôW‚”:à†õÕŒ 9d"Ej¿.@?{¶ü/à;§|‹x†¾‚†äE£ˆéBJ;×ÕG‚‡føÅ›|¶Ô Ç룹*n š®,Üñ ¸ “¹1ÜÐIr]•H€6¨‹9¶O€X(€þåGø €sÁß6AìéË„pgT-KKJ„—®kòÀ"in&šÄ>øwQm¼!]—Òû´ Ÿ ô£ ™ƒúò† %` Z‹Án´¬S6 ƒÂ  O›ŒF‚Þµ#½=»#i,³”šÊ˜þãQçâ»™×Ú<ÛèíªY›ÛG&ƒš‰°9¢Ðh =µEV.Ù¢ìöîñïvúñ}D]æZ]g¥ìÕÆJ$›Í 2 eÆÛEð†_ÆÁ©ẍ(âð¬Ü«¢Žr£øÃ~f§¹¤X æ­\)ÙÀ©çF7rc¬Èñ÷‹•,¡àþØD7žö6Ó à{°¯ý»®èƒËQ4wÂ/DÜ#¸RŒTxÚœ Gœ Lÿ7•ÛÊ-å–Í|kÈÌN%ª;МÝl6 ‡‘.ŸÃB"n,ž‰Ò-n)ÍݳgÐô¿FzÚ¼ml/Êbº¨ÚYlF©CÚ6…ãד}C¤ÐƒF€¦ð?™_†þAüÃ/·‹¬ù}ݱW?<´Æ=€+d¶z­_ËŸJšÚ¿sî/ia¿» ~™Ïw#½ÀK´ä»‘ ÆY¡à7è3@ëÓÅ·áâü›ôHzÙE~§QK(ƒú& ¶ãü±Ýˆ9¬fi· Ÿ5‘næ÷ž-ƒåŸ[&E|uw~¤ßäΉŒX-7–«Ê•[TJ³ÙÔ„*$K„#Oړܙٓd]n'Ëadií,“Ö‘MÚ¬¶IC×[B¨ÊK> stream xœ¥[KǾïÝ·A€ q2ýîâ¶clÄQˆ+(z´¢A.eeY¿:!_õkº‡Ãµ´²ÚnVWU×W]Uý˜Ÿš¾cMOÿÇ·‡›¾¹»ùé†ùÞ&þ³=4ŸÞÞüñ)W cSŠ7·/nÂÖÞ˜Þv½TÍíáæûö“ÕZXÝ9aÛqxµêñ‹‘Æ©vsÚœwÇûø³bíî~ÅM×k&Úó‘ºM{>mÐëÇ8×ÞÅaŽ·›Ð«v퉛jÏÃxÞ?#Æá<Æ–í›Ý~ï¥u}ÏÛç«5G¿¶²b/ãíë‰Ï8¼(Zûĵ}q<¥¿m»ßœ‡Ô´¶Ýaæ®gŒaæ»ñx_t$mœ†|²d®}ÅK×>ýæŸõçÝê?·»a²“R™æöë›Û?|ßÞ¾,lKªK Ù®l¶9 cèïaâã‹Hãd{~9ÍȾû‡ièy“¨mûâNÔT°˜jÇbðqÅ}olû&ØŠûæœøˆe©¢ýÍÔ{Ï‘ ƒ’Ã}«`QJiT{Ü¿^­ÑÒÂZÕ ÈÓl{ÑE÷ÎEFfBÄ)»Þ¬|*Lé×BÙÎàϾ¹ýîü ÉÒÎÊÞêÙ*`gŽ%êè›Òqm½s’úBC…ýëBòaî d ø c1áµZ í:gX³ö°køÇiÐó¼dš×ä ðé¾÷@“©¤R½Îý¬túÄNÜ29W˜^{ÂâõfVŽ´V µ1¤/aÑK˜s˜`¹ÏŽ|NëœdHCžL'Ee:Ç;æD2ÝWž-̸%CëŽõ‚Eê¶[ÝþU‘¬™³wºYsÑ)n]`ü—ÕZÁˆ` ×d&n-ÔÚĆ0’·‡Ð®‡³ ¡Á¬tc9æY[¶¾«~Z­83›jÈî3óš}_Žg¥:ÿ‰:s×þöªÄnaxÐcÆ¢ý®Ãù‡ e# G\ï:\^éêÆë«Ã{ÊSZð›ÅÁ°aBAgËÖoýz  ^y€û0paå@ýlVañš×W¿Æëa@®ç6\nšYYûßRTY_.Ê¿O tx‚ Ö÷>Kiõ?¯|ôTÿÖÜ)_Hl^eŠé¯Óq³õÄyñ%KRÍ×;þoÓŸçõ‹gͪ¼¹ã@›ÒuL³›¤ ¥b’h5"oY¹üG*7+zÒ *¥(+gI¼§h³d•Ó0$n’µ_~›UýºtóªñMâmÛÃ1ˆ'¬ª|¼Ï|vwe†<žveó.™@'Ó”ùœ–ÕåØFm7T¯)dRž!o ‰ªë~†•·Ðë ‰¥„õ¥Ä§…©<Ñ”Ý*B÷¾<ªg7™‘f—h¶>ÏjÊÌí±À|ÿ6òÇܬr–Ýneõ3­´a±%ŽÖ]Z^jráP·íFïܦ÷s¹Ûý° æÖö ðgiìÝÝË(P‹y½ú$©bæQ&JHTø÷œJ‹`Å^þ>Çs"€™÷û £{…3¹¡è±žµŽÚùu{€Ÿô(˜ö3”5'XÖ¼õk:ü2·SÒ£Ú`L Ã«Ž§1ÑIÔ ¾rB(· 稑¯í©¶rÒ†ÚË÷ÊŠývÿzQÖP® ?_¿¦à”ü=ówÕ†c?$K² P]nB±Žø6NB˰óÂßK¼zLÌ ¢„VäexŠ,¡à¤Ðâ«F„œÙ~ÊǾ „œÁ‚›jÏqGÖ¢¹óM*Oyûé&BÉövåM¨QÖŽ»Mª*±{üì“É\OW–¹lo?¹f‚i÷],Gëê1׌a{UT/Êä²+“ô¹¬@ôBµüçrÄ:rB:z^öo—ŠQß8•©øüŽõçÇWy’J Óþûêˆ/˜szG—ÒaÁÚŸË~¿uˆ›‹²ÿùUUQrQnç}Ò~ûC‰ßxµêO`J}ÌjcðÓ~¡q.ÙÖøj{\s‡ûëP·fŽJñÎåjªj³ß]uªÑ]×z®ið4 E°?Ä·±ýïÕ°¦[†^.-ÝGB?¯«}œ/5OÒÞiǯZÓ,Lz¡¯ˆk¿,•¸©¶ ÚÆª9Äí{*¤ú)’•§I¡Èä¾jÚnÆ!µ.2¦ï¶ÕAÝt†”óe BEsŠCb Ò·ÿUéT?{Öe.;‹N; ¢*‰;d7¡°6clõæW2÷³U¬ç©–x^ˆx]Ô(çi²»l‹$xÊ·ãpª:e˜nÇbJã1ÍÕú¹.¸æyvhÇ%÷%1Œ±ÿè畢ݗU·‘i^ÚyÚc”åéhi‚›1±75&—° UçPg¤W¿m盈ؼ -òèiPZhI2«ô›>œrÉüìüX*èŒBb‰Ÿ†ÆMªË!Í ÊÐ)¦Ÿ•Uóâ?p·a{B5SoüÎ틪j-±ŽJÓª <]:ÜL5Wë÷Íx­f€"K§ ¹weTxUžîj¦¯"×pµñÀéÔRÙ² ¨Ê)ñ+Uo¶«˜_…üW³½úaúóÛ›Ðå‚ЦS²a–™ÎèF(ìîµC[c7ΚÓÐü«¹ð&i^S=#my!4ï˜á`ØwFpºŽh¿êDóç¿àgüGg†^±†Ùæ †b‰6?BØ—7Â(ƒÅÚ©±\s¸€¨³*÷ìoþyÑWP Æ;n=Õû)NAƒÎ6±ðÀREÅù‚âIs S„p.±…S&÷ðy_A…Ù9ö…è$$Óþ\’Ç{Ù¥ŠIwÈþÂp:½:÷xg} –«ìýUdØài„Z÷²\x¿‹VìTÏ{#'-“4-â äc4ûç’?ï+¨¤`ý% Â.ƒË¾cÖF%ƒ;Ù3Dˆ¬dFŽ­%‰×Øîk›{¼’³¾‚ŠcŸk#•—ÿôKüˆí‘ÁLêNiOžz´Âœ˜öÉMØSê&s‹í-à/¬¯‰NŸÈ R3H ©‡ör¢™`ÅèRDhÓˆ¤D¢H:&õ,¶  ö¸<.9* „÷dÄ-­­€Êk 5Э÷ñùHÎc "®ñ¿² E“ð5à˜5x³¾‚ª“EGâ%€¹'Øß Ó17Á“8N:#鯉Â: ™AjfsO4fáÉ"2€Y‰D‘tLêY<@ ŸBe>GL HgŒКpÔJ^ˆ@Æ›¢–W^†Î¥CER…ˆy_A5…ˆžbn„ÃÈ]O?sN8=¨_ù8¬0¶T:xBbÚ[Œ@îÑ$YS0Hí ‚¤ž^ÂXMb k_HˆmuÈIÇÄ žÅûÃàé𘔅?°ë/áËëOÛ%ø2ý¯¢†ï29Tn3Ê<4ë+¨‡È¶–\{)I¬œ~ŠYÚä>I›ÙÚÉf}Õcó"'Îó JŠÞ¸"W&Y9Fq%%Uje$›÷TE$o­òRP¬ïÊ@–;|⊣Ö09Je~9ŽqYFÆ’}2ƒÔL1fê Qhb¢Ô$"űI‰DUL ª) šª©âÁCórØÝ½<¬Ÿ4ûãݳöÕ³ÕÇJ¡r5b¦Ô’œ«Ÿ¥0ZR„ÏR¾(ï·ïÊ×KþÐÒÓDײ?­Ö’ ø×Ýæî´96çÝ6Pô¬º-o©wÛðæÝ3Òák lOÓ#üêÒ܆O›_ÂY¸£>ä›ÏâB÷¯õìJQTLü~µFDn_­m[˜iãy8펧Ýjñ)=Ôr:Ö~óIq)ú-ÝÛyÕÁ’®RÓÜUxdLÅ.o_©ßŠ¥o „ˆßd)á¤7ڜԟ8ìÊOÊÏÂ-~þ†¡¸>ñ{å¿ò_ºxc²‹'~þœÁÒ#KeÛÓn( =ä菉x^äúç=DþSa—¾» g ŒÌ˜†”ïçß(Å×jôä'oùæ{—56=y &÷oÞzæö6\õÂܯ<ëxâÇ_|žh_cy¬úOÓóÄêík¹Â«G"A¨·‹h‘Ø¿”ïhÓSG $·çèhñƒ€ð:%]2U  |€NÑȆGÓôà–^g€.ðSÿP‘Z ¹ bú“‡G«Ž–Iá”[ÿ’•|éeä<{$~öŸ·ylö¾ƒÈ)T¼8I-^JŒ¯Å%mÔ±âö•…‡Í©˜ãÃ7럒z‘Ó‡f1IA] ÆÚXR†·¬»ò=òvH|åÒKòõ"<§aŒfV,=¬ñï‘ÓsWØË¿döËMäùOÛ¤õ§@Âãû¢/R£—ðþÓEF«upñn=hN/×}0@šî±I[ST°ÆÍކÿqóÞ·6endstream endobj 229 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3483 >> stream xœWy\T×~aÞ{"‹2>Ñ Æ ¢ ‹‚,‘}‘}QYÙ•D!jU£\ÔÆ5V‚Š#‹ T!¢Ü@ "PF" FÓž7¹cÛ;`›¶ö÷›ß̽oæž{Îw¾s¾34¥©AÑ4­å“”ž—”›–¯Þ™ F´0KC˜%B8ãW;e¾X˜­M!mÒÖ,Ÿ¥·S_ ¦B‰ÄM¡D4½Äm§YDèÊyóç[¸gfåg§¥¤æ[[-²5^›oüþc¤œ´” ã¹d‘—”ž™%OÊÈ L“¯Ý˜cŸ‘óÛÁÿÏEQv®«2ݳ6dçänô͋߼6!  1)9%54-,|}º|¥Õ"k[»ÅÆKì–:¹˜-˜m»¢L¨ Ê ¦æP!T(F…SÔ ÊœZI¹Q‘”;åA-¤¢)OÊ‹ò¦|(_ʆò£l);ÊŸ  ){j*¥OI¨iOM§ (ššAR3)#j6%£&Q§(-ʉҡ\(=j1šÒ¤–RÔEJI¯¦4¦j,׸¬ñJ´Pä!J)5-5wi~/fÅâÝâAÆ9Æô³lû3§Ç¹s‘\÷z’ç¤äIw´Ü´r´îOv™ì:Y>yT;J;OûöŸµ_ëhè8è¬ÔÙ¤S¢s Îê*-Q)D÷ V¥´™|7οeð•r1ÖfðáwrñOLdŠá‹^oa@žˆu…&T*„v¥–êwö¸ ¾ɹN¡ŒW• Â%VÒú·æÎ§m—ü¥ø‚1;ä×§'ØbÐ¿Ö ìnî +±Ú»µ°x‡QZ»>Ú™“¿du…Ýi¹2;‡D‚Ÿ Ë½ñþëˆtüÍ.%¹¬wów[ËóP²adÔ:·¸¤ÃÇó¤ÛŽ|zdW5gÃìÇ:í!0›€2c°õuïê˦'dŽ_yÿ)ã8ª6l¸|¦ý~UFø^©.œÍíÌÛé'"8@ü³ƒ9öxއ÷÷*c&¢*£õø±½¨”v²¿ß½½¨q);Jªe€Ÿ²jȺ"Õñé·ÀþeÝ’ÍBÞt¡Ì7²’zã0O[ßø w¥k¯2cm[Ã~–JW»­C±>„Š-pÇ%8—Š_2`±`€cÅcã¥×^*ô‚ ¡ô\#„޹Nx'ï¾ÏJ/4ettÄà.‹Á2÷UYÁ‰28ÍÂ\\ÆL09à˜üž:g oÖÃkþ³o·ŸÛt:¥Áÿ´!‰Ö$v6˜ú¨¦•È–0[—¬‰÷@œex7Lƒë½?vÖ­u+!…ýp"GÝ á€B$¤N‡xÄ*P(å˜gqê;=œ®Ôcâ²BT V£Ñ%èvÑBšíFnPÏà6•¶x™àÒ…{Y¸'èˆÿ;ø÷%× ’èíq“ÚVéI¼eiìˆ=ŸbL4žj­—I¶x=dqÏ“šÓ—IÎaÿ,»¥ã= |ÚÁ¶‡J`ú>½º¥6í©ãµyÄæÜX„]±ë° ˜ö@;0e\¯˜´ÅUdÖm:óÉ™¢kÜÞvþÀXËÝAÄ=iñ] '¬@ÌuÑ R+It¶ýÌù¯ŽÕØ‡Š¾’v°›÷o/&%â»z™ÌÚÓ»S3 Ä ©+gtÂTuZHƒ9?ç{ $³3bá#V2v7>¶Ò×Kl°v²)[^¿BVÛ˜}ÝEõ•um\‹Wšz$WÞ*”.f¾0ï õ {'¾¹t¡áH+=Ž˜óc%é8'€W4ºbC,YåjkÙ Â39¼»ó`æý„†;Áx㋘6ircðiÄ9k¾¼bŽWáµ±óç-ŒyÑ}eìåOi8¤Á!’VÕ!…2%„MÇ¢M[ð¬|n¹º˜ŠŸ ͤ´†E¾!^5‰ùã­¯k†š^5ÏøéÆ·Ñ3t+§9¾6¾få1´ù ;i{Ü2)1û>?}¨¢¼îϧš×w+Ä9d]¤ŠÌ2›-^ã]ˆ­ …ô‰Î,(zôÙ°×°¤6ÀSþ SÍŒ~gkneÓð×OeDcCJ’Ž®¯öìH#:;÷…f?Om\|F&yÒvê\c×L˜²´aÓñ‚ÝRS\·ÿÄÁã¥ë*n ®÷JŒóªüôÄYÎŽõŸqãÁƒå#úHü}àÎcw¸ÿòÈDHócq·*Z¼…kxœÍ@6<˜h£0Ô –C´àHðÈRFò* f…jºø1s±á›£Íˆ{ÙâgòApÀ|—˜Ú¾<âô¡’̲ "¤÷§M_½s0^8ŠgE&l“¯•UB”®N€m½d˜¥/¿„b|—ð5_Zub 9#Ϥx¿8Í6 ¬{Ôåòòšà;éDcÁhì5ü ½ÀÏð +’dÅàÝüÓkt]NøÒ“#šåÈ?i šoä»Ô! ãùð­;Cêö:Ñ£~"¡U‡‘a+HìŒ?õÂf+ðVîS ›žÁJ°…´‰ijBA¯~õ°ß0‘7É™€§òëË«P;Œí#"ÃSmœ°Ø«<µ+V*y³tmB°ãLmímŠú'»ºendstream endobj 230 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3267 >> stream xœWkX×Öž@23`ˆB:‚3ÑjDPÄJjEn¢à‘[¸ Ä *Pm‘ÚSuƒíA*ÈMA¹‰"‚(T‹h«ÕöX{Ú/õ¨õ¾†³Óó|;`k¿ïç÷#OöžÌ¼³Ö»Þõ® %5¢$Éx¿ø”ÍñÚØèÙžº”8Ã%{ÑF"Ú‰“Ö ŒdÉD^N!¹1’Kkl#¢ÔªÇCÆJ*‘¸ø®.°[³:d¦ƒÃ¬%º Yµ‰Iª7œæ:«b²T/QyŧkÓTj²ØŸ¢ÛŸ–¨MÙ”® ŠNKWÞý—ý+ ÿ4EQsÒtÞõÞ˜ž±iéæè̘¬Ø€ì¸ø„Ä$mPð;)©Nsߘçüæ|•‹«Û»Ù3g9RÔ j%µŠZM©© *˜ZC­¥ì©Ê“ ¥–Pë)/Ê‘ £¼)Ê—ò£–Rþ”3õ&µœ  )sÊ‚RR¯Q5‘²¤$”eMM¢l(ž2¡j(SÊŒO9º))yøSê7É*IޤËè-£,£N£+F#Æ;Œ;¤ÖÒpi£ôžì5Y¦ìmAï§aL˜læ ó sŸ f¯²`h2hJ›Æ˜þlzkœÕ¸j¹¥ÜC)/–“ß1S˜M‡:…¨\t„qiå} ‚(PY*ÛûÄfNßL¶×åõþS'‡/M^ÆãŸÈ•ÿ2 ÷Ĭçúwcy¥ëw È<™¤‘ÜP*cèOsØM%Øû<Â,·Ç@',³{=„<,ã®wùLQ‡x¿½hÝðÓ§g‡¯ (Là˜`¾ P9£ÁÀz Vý¾›\i¤Vtê† ÿ p½¶éZb— \w6ѯÁ߯…¥iW°Êë`ªã¾îð}Ý.Ì×Û+|èÑ㎡¯ÿ7ü‘?à]E;¿äÙ›zÔÏOtÀ 춨rQÓz¡iÝ ¶ ¡®Úc½,&Ù1JבÝä^\ˆ)î›Ó¾Sg’7x‡ =zÔ9ü• ™ƒÀV‘˜K¾{cÈ‚Aƒ9~ n¢˜ëýž*ž$ß­­ ÷“@ãÞRÙü'ï­Œrå'Nüp`ÿîeÌÛ‰>BËPptŠ'«tzNXïÎ#xF’Nò@0a]̸]@ÏÆÓ‹'Ï÷ÁƉ…)e›…²ÌÒÜsÙ°0Ī1§(mb“ã¶ø'èþ^œÅo-ü¨ð£Zr7ý ÷s ¸¢oÑ…’ÖúÖúC]¨}•ÔîU½ÏZÅmß‹*Ù£õåg¥¯ÏãðSÆsx~Wrs¬àÕœLÇ*<ÝÇqÿ“žß}§¾jÏÞjþ³m׎Ý9ˆMÈ-ì ã¥bÆ9”‹;Çê<*ºL±e¢ØLn3ÊöeQÑ>+Rëxø «ôrËü€½r¦úËV^¹n£€:T>â].é3p¬Iå°ýï©`O8íF\ <™b³ ÛÑX¢°‰(Ö°Jß,åN6·\tÙ¨VÀd"4±¢”K¯ú°Õ°ÐÍ€ÑÛ籫`ó\lè‚óU‡ÛS“•˜•»uk®¹!Ÿœ íVª¬`dÏÚø?¼Øsø\ éöl/~…Y´²{@*· 6Â+<ípëÉÊò/ŠøÎ}ÍÏ/Ùký*^€ÃxA… »ÓÎØe¸Và…+°>,wú¸ßÆî†Õ(&³ËE'"hçr‹Þ?ÔÞK¨ D¨>g”gÖ6tl²îŒ—+›®&žº—6,E¾(|£v E ˜â.nøŒ÷ »0Ò)ƒOv‹ÝX÷ddB¹Dä ½'ÕOÆãÄÉ2ìHC„¾W”’“›ÿI6?•©ØY´»5¡Ö‚Ãû—”VV ÀÆ¥ÕÅ£¦Ð`fÜæ¶ƒ•ó÷Ø–Hs¾ã¼ûÜ}œÁòö àŠ<‰ÎöÖmB¬Wtßósû;Jë…’£u%­èªÙPâÅ*F®Ž•ü2ØÃ"eO8°ÔÈHÝdú°IÅ›üšþ:¶¯ËpÆKUìD$šAeè1W,ƒ|—ãA–‰A Ã5 „AÙÿe¶öf·Š3'‚Š «pÔqØ—äÁÍİ‹gåâ¦A™·¶ùròe›!túPc«LÁ¦¢Ù¨ Êcc61üÐ`¼›0õ.Œ!+`3—W„>E¨çî÷[8÷b Áž3 KñR¼ø×)0Ì ½¨0Ogkâ6®C±èÒ-Gß/ÿÛ¡]gÙü»Ü¾›­—P?jÑ,dIcI9ß½÷LrËК—IkºvÓGŠ>«..Þ½ë3þ“šŸ–·±Ž‘QN‚ÿ"Çkz?P‰~7 ‰Ón=#©ßuÉ${X[*mÅi„6WFy¿/NS»Ú& ­MOˆ[¤ó@³X¼àL ðEcYïÞ“ñˆ\šRy"‡ÇÓè¼èiÍ©mI½Ù׈i;ýú-˜ È3ï&zùŒçŒ™á~ÞšÁÛ¾îþH„}É yÿZ’ÃàKU“yt©ýT_]UΦ¾8kÏV¤eñÍÑ©„³:êRª#D"º!n åc>AÚ«ŸØñ ŒØÑYbðXz$UJŠiNVÄ·3@NJ!—´ÃëÐӌŧâ'ÜnpPßÄËI1–¨ÝðT,» v:áñ–ß2›uh¥u`P‚ÓôÕmßýÇjzvz1I–+Áøg˜ ̪‹Ø¦ZÀt¥ª"¥u[ÞÙøÝ½îØÅŸòcIÞ AÁDÉ"'>â@K†Â Ï»úG12ð(—ô"ƒ›œø:™ƒ¼™ó_‡seàJãPø, Ï£ÿôűd ¾8ú­øÙŸsþ"X o},•ÿ2_ì¨Ý á±~ôÊå¦ÖW{Ñ‚y¶ì¦|ÂÓƒ¢ùwÏ®©õCd Ø-AìàØX’‹…¤Ó ­g£z$‰[„üßѬŒ Μ‹0°Eɼ†5'}‡n¢ë¨¯îToëçå·X#˜øÞ/ÚÏ£‡|š] í2iªÝRšðYêÞ·ÐL´p‡GNÚ{Ñ©±(éʲ›¶ýð*º‡~,øGaí¶ºC­ˆåM¹†çŠÛ8ý6Òµ¡ŽÌ&O VÍB$SZÌZrl Â`OûÀœÃ=tYKeÅÓoaü­¦ntŸ…ɳ~ÁvxÆ›ÎØžß6UÌ÷ͧû/µh¼ÜÓÓðXÊc¹[BÀGØŠ7Ó¯2·€ç Â&f‡!¾âzÐtxGÇûGcP»<**pibË•ylKçá©wÞ5Ãý3±gáqAùÏGÚ&é¼oñäiî‘o¥ðïk?Î@+ɱ‡ÎkÙSVp°¸®¾ìbÏ×kW.‰Ir> LV_Ž9n5·XôÃn4.ÒûȰ)4㹤$s¯28XÐçdž¡ñ3¢GrD!Ïn åôãéåzAôÆú²6Ä~ݶîMWÍ:¯@mÝ…/ÊÇ~už?ëéSbRê¹±exÒ)1BØÉàôKN ŒaQD=ðÖÆâ'b;·ãtnUVuÂYÿ£o¡yhIœÆ+Ú'ÛaaÅEM«O,½÷#Ážòïg0l]~ÅŠUqÙQBÞüË{*ö×X—k¨>ƒÚÑ¡¬ƒ‘¬æ.Ÿ u;"8`YÔ¹k×Oõô Ã×ÐG_R;lÈêcÒaÏiMÄ|ÌéÖOÛ蘉ÈKèbȸBºÁ¢Ø—Qo»¤˜•¤–,™ ‰`F¾IMʼnܡâ‚Âýµ5¥mè4 Æ7°%¶rX€¥¾G4ýZ^ùÄ-R»ÖežôÄ‘xÝ“»0éGm·[;¯¼'Á&îR[|𚨸Àåš–ó=m-}‚òÉ.ÜÀ ·E,öŠôõÕ´õMÛé!Ã,N'ÁX eD±G}-àÆíÁ’; An£á–“ß4÷U¾@@£§ïý#¹'òšwë|Ò> stream xœ•š xUÚïÐêR…¶¥ck•û ®àÊ* ‹@D ;d#ûÚé½ÓûR}ª—ê}_ÒY: ! „MvQ@wÇegüÇÓLqŸ¹§ü¾ñ»óÝû\êy’î¤ê¼ç}ÿïïÿžŒáÝ4–7f̘[V/.X6mú3Ïp_<˜ÍÝ;®žuþã«kÆ›ÁmãÀm7µÝû¤s윟»ã¯wòÆŽ3ùÑ…µÕuM’’†ûWÖ—4ÔÜ¿L²½ª¼è¿}—Çã½ôr͂څu‹^ih\"YÚ´Lúªl»¼p…¢h¥²8¿äµÒU;ÊÞ(_]PYU½nú³Ï¿øÒ£¿™òؽO<)|JLðxò^ã=Ä[Å{˜÷:ïÞ£¼Õ¼ÞÞÞc¼µ¼©¼u¼Çyëy xx yOò6òñžâmâ½Â{š·˜÷ o oo)oïYÞ«¼çxÏóVðVòòy3yÞ]¼»y÷ðÄ<>çÝ»•WÍ»7WË»cÌ­cÆóf¡˜ —þ:¦c¬{ìÿ—¼)}ó*¬ û™_„¿~ ÿVýø™ã¾-qûŒ ·L8yGôÎywþ¯‰»'= Pß5C8ñî‰wÓ“ï|R”Í+½çQñ‹â«÷úïSˉÈïp=XûÐô‡rûþúÑm~ôo¿)ž²iJjÊåÇ&>¶`ªññþsÌ–?ò&üsì;yÎv£4-…šlnlRÎv~íó?˜,ˆäP+„é5î÷Z`£­ÀêvX®ÃŒz›–´ð›M4CyÄ‚Ùn†v‰ý˜ æõÒ^1¼l¶‡ÂöØïu‡HAÄcv¶8[¨6\°ÙŸÕÀgõðYÛnj·u7îãGì•ʬњöâõc [ß|M—×L©œ@Ž›Ýf&‘p‚± ôØvÜÏxü©õ*°›tóñ@Ô=õ7‘ËëbüÀÜv'ÀsV_‡_dØ/nFë|ä^Pš[“[{rŒCVh‹ëjZK@Þ {R·Ín¥ÌÀ‚necR qݱwúžtK”õ¦s¹˜í°[ìèMyÍ~}8ËdZ⬽{òOŸ‚<¶Ë[Z·¸jŽdihÐÕƒz¼´½xøÒ®/EÚåp7îä3f‡©–žR^@-z›à k4ìsø^ÒÌüîàÀ—yg·ö¾^ðZÙæz=wß…ï%áPvRîê'’' ¾Ë¥á5aØwDÜ—;.ŸŸ#eÖ'*Ct9ÀÙLo²è4q ú͸O©Ì*›š½ãz³ÈÜ@U”Y´vt\é Öf#cõð]Lðœïÿ æík<¼²•T1 F‰~eµN—cçÌ™°L[:}šLmS5zåNLgtRÁNw ynrú~ÚŸÇ$…®Œ§…iÙ E"WÌsÅ\ W¸Í‰Ãɘà»kÍ\>{V)³ÈìR€Oøç˜¿}Î3$sO%ÇÀ±gaàÜ8øçÜJ!+R=Â>Ø»ñ¹ƒ/ü…ðcprðïð!'ãWJ¿z¸ÊÞ-4¾ eÇ.]Ñ$­”Vü ÙÉý¤ïèòd=Ñ3é³÷¦âÙx'ÀØ[ ¹ÆQŒn6öÀû8ad]¸ƒog, {…Q^ôøÓO±cþÄÜáøý¾}Áa²íç·~øúüP÷ñÌQ€ÿ½÷ñ—T@I©H»…23ntÛ¼ƒùtÀá9+DΠ+èâ.>cs™5Eùµ Äh8Ø5Y“.ç‚2)·äìdÁ0\ó–0^ÒÑÔ †ÁPGgÛ¹3Cß‚oðw*?Ÿ¹±pÇŽ*‚Ú½£»,2–gªDmVÜànŸ›ö9‰Èþàg{QF3MŠ"u‘¡„œÎþê²)Íê<“}¶Vv3ªlÚÌP ª"¹ËM;ÅA,L‡@}=ÜÛGõŠýn?¤¦U¤Siè éäÃëðøw‹Ãáà0-0.´í0ì0”Éç²ãçÚp¶Ez¶›¤ý.¿Ãß 9ÃŽ(Šì<|þÀØn[p¨f`²›¹=úr.î0J¯=”tmÞ•É‚>h¼6Oh¡¬FE½—ò­X"A)M”Én!Ù{¯·ÕQ5 OŽéõ”’¤ ^»àЊ êb1{T ‹á(ƒ%d'ßoZùwö~´ßG1Ò5ÊŽçV±•BA»H;‡²z…‚Vˆ7`FÚH?Zºà=¹‘'cëÚð¯±>Ðoë” W%×9Ör\ÈêÛ°eÕ…ÜÍBOÚÝâNï…‹DžV*zàŸb!¡# ì²µÉÛ®jPv9¥°sR §¹"DåjË:£ÌQÿ1÷Q8h8p¿ž6×K1­É¬mø¨T‘ŸRš•V{çu£ÈXé¬_ ð& ÂLhÇQŠå$¨öQáEv~"Š Æ‡"ƒ´ƒv'î±8MMúu-!ßÞ´½¤zÃŽ|jŠÄM˜AOGVJžƒa‡‡öúAÞÇX÷nj{“N d$mâ0 @Ðé=ëD´‹v¡‚pòí³Ã ”ÈmZåʆ†©@d´l¤®c¥¿﫹©B™Mƒ^•AmŠhsÄ[@?¼‘¬­iØTHèö4vn‹€ê7º’‘äµàÆÎŒ&opoäË=#êî²1fc¤u@¤t-f;E”Áj\Ї;¼­7qª"göÿîœ7Ï‹%AÒÕqOãúö•yü-(zkÜß. ]XK*•‰i‚ª uUí+ë}ÿåùö— l‘EáeVp ?~¤ÿÀÎU)CÈ(¥Hq_kµgN´¯Ÿ=?›—_ìXâ•%[—mŒ8íþÉÊ“eas{n*'4¿—»rNèiŠopøi¦>*òïµ÷¸ 2ž*$;Ã…²h¨f´'·`R u Ô›ÌÍ#íx;ÖÞò›â—†2siCmia¤¬›Rå»+t‡À!ÐælseRð®#p2óáPçÑ ª³ûŸœ¥ ôóÿzÔtvak`ìM­œñÆœSÁTœ½ûV _xÿÃìñ=œb-úZq®“ër ­zJGéV³‘Ybj¼,½áôåýŸM·“ p[ºØ%&•l[ùªõ—Â-d€OÇQÈ_€]"§v¢*¾€q;ïx€aA“Ck2Ù‰\ù{½}¾^ŸˆÓÚ‹ÇµÞær[Eƒ‰¨fo£PJ4ƒ< °Ð6€¯Ç¸ÿX®Ó›u:å#Å?ßea_;-KÉ& BðmøG!ÌbŠWÕËTËÔ¯‹4«Õö­WcZ³EM Ö‹Ûæ¶ã‚™Œ›fÄ­˜ D{½À+þ;&X‹S1±Ïë gæ4‚vÒÅw$=)wòsÛDL‡{0í 3 ¿¬ÈÃIÇkq™AH©¤”bv<&ð¨T•ØŒé,F)h´÷â(–nµ+”&´íäFvZŸ­©«Ín7 §¶+Qs /§ òc(a (a®=x#[l°y´1™ö Üz”YDKePlMM%ÉN¸®R¿®5myˆ–l*Rð 0#³£  Q—íÀHâüÀ'þ¬ŠGmq„Í\R¸ýF‡hÂdt4îIºã$œSEN‡Üà /‰=î)01v‹Ó"ØÌNŵèwÙ z`ß LJ¥í®kq6;÷ôG¿ú%èO¡ ¯Bˆ%µKå  (ƒFos@ÁH€Ôkµ’KØÛ§|³zo»§i#ý{¢ƒ‘AOÊ—B±hØBPØPúLó:»ÍŽn€›Ê›°·†ÝDp ýíaD.†4ñÍ«*óUk Õ"s£¥qñú–å&¼ØWÌ~ÈË\öúö¸S®ôk3–¡JN:ǬäÉá✩Ý|Nº$tÇõ©î„:*)RW.:ºãägœú ›d¢H/bðæÜ‘g åhçu4„)ŸÑ2þˆ]£±kÄHP)™Ì!tÉGô~»—èÂZA–¢•¸•Ìv3efÇ^_!R­¼ºªLkÒX5 ÔtèörYK]ùÏž‰á­'„É­»›öxèS[¾ Gx«e°BÚ¤Ø   <ÍAÓˆb[k¬3ÕÉ^ªd'θ ÛâÕ€>°ËßãÛ==?z´ué°> ®×7¡ÜÖnT,®›gY”§ã×/Ú´Q±¿ÿrÏ•Ö÷7Z4ˆá=ò¡u ŠŸÞ¤#ì¶à3º)OÒžŽ¸‰Ðî¶³ûQý{4ê*M•®†lz­v X/<´ùòÞžl_œøxóÎŒƒ:#ôµVíGAêhhOpHD;QŽº8l0'Œ/!¦tœdøN„7LË)¨Gjã ÐÔ2"H}µMrŠî”·oC8W¦ª—K¢¥« ï/â+:§vh §¯§ j¶j¬Íå,!²éíZ‹¾qõŠ­á)¬Psd×Pp·79?»o8MGZ8‚ßK¥^Uײý*¿Éi~ЉDAèÂR¢Î®€|ËQm7² ½î]Ý¡nœÆBE=5ûÀepðrú4jBÀàœÔ4F•™¿Y¼é[¹º·3ãmE†&0ä …Ž%¾yÄ@È6ãv¾Ì¬R‡2lˆrØÚæˆr3¸9V¶Y^WXNh÷µ‚—ÁÚ9Ê×цr'- ßÛw µûîHE-ÊS=YÉÞ¥]¯˜¶ 䩀ƣaþuUЃ:)vÖž¥¹»„É‹ÑKñK‘ߊ§xP¼9'bxÁ³ÓH²yX%h\.¯zš}bûøtöI“Ö 57[£ ná‚>œÐ o×ÁÛmýÖk¿m§(dª öL¬”M‹›ø“õdÄKI±;Ô¸»¤L]'Dºí†íÚíºÂÅ3nƒÙ¤ãÐ9 ‘þ+"¬… ²/èŠxLN3iÆj]õ°$¼i&±Ü‘+âŽ:¢7\HDîžÓ“©ÜXøá4–ÏN|q;Ñj4€§ø‹9ðà¿rÕ¶ý®ù'Åïƒã‡OÐ.j†¸×ì0fÌHku*YmyC‡=Å®š®B€ÀÞn²§;³ímmW®|rñäwnrs^äÕ(7¼¨–ù[8©Ýæ¶žÛèF zlË×mµJ«™±y‘eö1D4ÝnCTGÅþ_iF´ 5ŒÜôÜB;¦ë+Ï”‚à5EE’ö¥ø«ÏÝÐúцr ÄþDÕÍ QFøÎ!WYC‰|I)S*~ uiWYTVÕ ö ‘©ÚTm¬Qi÷ª‡Þ„Â-pò6(´†©0²ãìݘÎjÖé=¶bd]Üâ(ˆQQëvØ„³‘À`oCKÏ8¸j„>ìø‚>2”IƺA¾·´åkoTkÖÖÎóñ¹=ýxåêà‰½„Ëíf¸†jòš ÊZŽ(.^]¹ à«Tg÷õûÜ}$“F®þö›>ØR]ùû$XÆ™°ï/ðd-×f§iÙ$ø›s¥N\Íu_[#dkdì\VØ2œÅO²ÀYDƒUqø2ÔX ~Ú ocïÎâ‚a§JÅiüU‹ÕnÃgY“°™RÀ>ÏâSwÔloÚbA¶…ÅÊáøÏà#gà:xÏÈÞÌ`b/GŠpœ¡û0c¤j¸æ6æñïGÚÃ'YèA±¨Î-ÎÁL”ut¶Byˆ÷°rö)û\û´¾P¿`+P­GL¹’QQ£WÎà•ŠÆº¢¦Þ¿öÀYÇCdêëÈ·‰o˜®^ßNÃÐÎÓ}Î0çù½Fuñ™XêœYè! o´*È4kêd{¢µu 4Sô){ûËjÂ\o®³Õß:šx1Ïe']»ããÉ‚Øÿ1(‹aiΘ•ÈÞ°·_Wi·:ëƒ<¦×!'˜M[œHˆÌ ÒDåÉ)pŒöû_üçR&ƹ‰¾ V±ŸTb~3²&RL&AÖÄ—v'Èýðu¤ßÑȃb N€ýNþmé¡ü4Y¨¤+QöubH[¸YÛEö;!ÓŠLEë!¸IäJ¸#-NüSìøç–éìMùÏ>¬"5”hÀ´D{W$ss!êçÇ…ÒçTì쨿×ÒMþ˜7v$ð¤: ª—Jê×}Hí$|Øepe°û]OÔ…0ùÇÜÓÈyºÀÇu^D+—ÚEOCk@—¤®iÑëÛ¦€éøªÖi_õ¶e³Äy˜RZk³M[ΊEærTڠшŠ:YÀ·iõ¼} žæ5šáädÕò:¨Fk¤Fõ_å2÷ð‰q°1ÇFކŽf!.rÜ1ÄŒÑi!Š-³AoCÎÜnÅ-|Ú82¾D8—r©¾{Ïõ]v e–O–t¶ÃãIx,;)×ôEÁÅÝŸLü OÃ/„ßcýï™fjlè"u…7 þa®7ÖÕß³½}ÕïOž8à'Øs^Æctš•vY³•ÐU7íx¥»ü|"zôÄ=^¾õ`éð–@ÔsFÝW:?;¾§J‡V·o‹o¥Qb˜Î`m6¸m>²K¤(µÂ¨°![-¼0Ö´o€<%f¦,U¢l÷:Œô‡·c1§bÜÌÈÃͨ)ÆL›.Ú$tÌãôÐ y0oÆÕšçN ½w+“Aß¹â®(ÊÈsعOõÓ—–¼¼¥–¬ë‹m7ÄatKËFÐ÷s¸¹èe†ê9êÿ2VÈø øñ4«êõ †F²)_²¢)ß(3Ê@þf[ùÑ÷@~?cvš¶j5²y%õ«ÐjU¦p8ãkóµñƒñCñƒÁîø.° î^C\…eB™M.R\ÑÆ2Étš¼Ó„”„às åœxô K–½6­} |ðˆ°gý±¦“‡÷þÅðŽ£Òo´’+Ú§X¤ïÛ¼”ež‡ÿÕ•¯¾ù¨ÙË &ä—Úì±1À\‡÷,Ñn)ÎX]¼L­%,&‹ÑdV¾•ŸÜ„¶fÂìm,¾1µa¸|¿Þ•ì]øã/<ñüœ%¾Ž;’®ø}ÙÑZ¹É&¥§ o²KD6­It¸ÕevÅÏ3.bô\æÆpå¾ì$Ò×^ê­¶F³f ;C„ŠŠƒŽšSî=iì ö´dzz»öüæ ­Æ¤FÙÈÞq]gUSJ“&OÛ¸ÃVPÏ4³•2 Êú‹ôýÚÞM‚»Þ}íôdÁwpT ‡L§e ü 3J›îÙ”Ù|ær7¼…즭µFB_$_¼àõÖL¼'Üz¸¤>û|ëV7Nó/ïz Þû9€€ÕkXå €@;ÂyÔl´=³«&UÁŽÙÀ>U7—ôõxwùz®Â3¢Ñ½á¦÷¦”¥³Ëi @ø š.&A-ꛬ2vòõ¸ˆÒ›5@‹«B†à ãøN/:x+|-ˆwí´ kóec¾;6ö_[.,´Î¢,ZŽ%í’²ñ¥2}-²ºûkX¼š½¥–Åó8Û„Ò`kÛ¶ãè=|18=Ö/' #õAÕil„¡T±q"7{ØÛï"ám¹‡yT_p[Ý‘i!Ïß°H¹u'`ÁÉq9þˆðÔòö¶Žõ`5ȯ¨Ûh‹‹F~uîkBÄÛ«E5{†ø·g ò¹òyò¹ÚM"Ê8rР„kw¸Z=-Ga(þþ™ßð_yuas±¾ˆÜÄ®³lè½y#ïuaY—³“iåFì± oq•Æl—©U¸‘ –&}©¶¤y‡¾JÅ©·™ï*ê¨Ù Þ¿öžB±àYªìì`¡æ =Ìee’IzÉ©ã‘SLÚÍÐÞÞÞŸ¿i[cY%aÔëõ-–÷b…SóR}©Ý‚!GÌZPø9B5cJ€„™Ë$'ò"z£MGZù@v* ¶©J¢“ÏgÅ‹Ø{_fï5iÍ–fÜŽ]Ö?‹ï[à2gpîãƒÎ]î4Œãpy‘}õY†²2 ”Õ˜`P¸Ó2\… ÎY-´El0Y›eûü!=Éh-ÐÔA蜠*µÔؼfÊZt/5Ym ‚0ã)¾à}¼™‚˜Þl»$²í!¤³=î´ÝÛCÞÛâ2ÔÖR – Ö¢’¨¥q5&xߊâ#6Êj5¢7:­~‹ív¥£œó²›v“ŸÝt#Œ&>0ÐÆ€½8#Þð'pêGpê'ð1_,÷Æo€‚ììVé•$ 'ážä$¸Þ_D;Ô ½$üàÜðûC:ñó.(ÂC|ðá–žösLËóY¬ú‹ÂªBö¨>PÞRíó]ðîlزKã )Ìl³X4þf &7n™¾^iÅß÷Ó§ðÑ‘jî.|…¿âù§—“[«6IŠŠ7l®ÌozU®ud¢kõtj¯€ÃÄ èªé’á‚·Ô™v]‡øsðÖßÃ'F&h#s(7wj…|4RXåêí¯åƒ|ðzW>0½Ýð É’×îIMú6{¥½Š/½Óvb²à/ðvÈ"F°;Þ’Ne"ú°´D[XùÂ;ÛÎC>¼û{8éPé‚ÙÎ[Ó{v§ðòOÌayì˜'¦TG«ûöõîÝC8øö°¹S p‹ÅjÒо“5uå•„àgus°›ô~ýíG_|÷>éBRÏ×ÏÞñì ©Â"r¤(˜ÚfБo!(ïÄN¶•l™W:§ºš¬©Þ&ÙðÕoî9GÞXB{î¾$¤¸ÆÿS܃¶çcx¼Kè´;ýp¼5KÚbjzŽ7*—vÏûNãà4(z·äÓg7m•Ö–“‡aI‹®ÝÚ ò2Ø)ætÇÐËÅpÆÉeqÛŒFe$vhJ % l÷•%pÁŸi›Íaë½ÙnšÏÙGçÎ"±6_€èlííøþȺbV9©šYÿäÜÍ2­Ä(øúÍCﺀ“vý²ŠX–Ì=Ú:¾ð.tÿv\n)<‡4 iJ{ë3+UˆâPž—ytY¼%k˜| †´`UʆÒM{jOÃùp,¬÷õ¡Ã¾Ãà~±éoÈÊý†]ÊÞ¼`ÿK_Ÿ|ûÐP”Øë„ÆgØ»ž[£Ô5¥_+?°ûÓŒn_—·+y¥ á8€¿ßXh⦊ä([¥¥¹—oÌAn°ÎÚÐjpYLžÎv·u‚TF•‚#6Ô]Ä3Ù/„õ¶zdpiX–éêlëÎ("M”Í(↱LÂsIœz¾!CeuçØß¡é€s²“è®MÍ• ÷·î¿”>é ùïÂú°L"“ITþæ4![½}æòümgñòtY_"ʸ‰V­_FØ0%¥n¶ªˆQKy]':[w¦D¨{¹‰¢1¯Í/c ‰ _)(Áu|ëŒ-SlE¾à³é…·½×~¦õ™–·©»Ðæî?J zt;[·—U(åµÄ¡~Xoî(\MØhŽ}p‰TÞ@ .ëTMz7³¿ƒ&Þ)<¸’ÅžgóXžžÐ ¶MË<2š¢¹óŠoÕiôfýŽ-•‹©H¥Xœ¸ÞgÀÉ?ÂiýÓêjmà„ôÈŽ!œM.Z+%•å6ÜŠ5–eÒ¤ƒŸ8±§'m–Žœï£”›+…{dcàsÿjçnÌ/XoµÙ¸t´¸­®pgO"J ÜuœÁQœ«*ëê*+Ÿ‘õi!&è¿1cÒ¨¹†í›,x/g¸fj·4ëØÙñϳsÞd_Q½ª]–â>x45õüL—…1¡u¡NÊE9ÉMWÔƒ/ÀÇ‘’Ã¥Wáø0.?¼¸ ÏmF¾Jð»ø¿ßô“atS˜@7µQ#`©M4zÕ]+} ÌVÏ’ÏÛÊ.œÇ.dïc'Mj®ç£òdˆ #™àF8ã'¸@Þη~Yÿýª³è~.›™1‹ÿó†‹sÞuÁȱøÿ4J¨f§Õ±Ï–°Ïè·é^%xu”+­`¤ôð ySMÑ@S߇½?]H’HÀÛá}/í ¸ÏÇLR«ÄÜ´Ý$²*-J»9¿m­›Ž\ê‚ãwr¶On—¨m„®Xñ*2_rs*FøŽ„ ]ñ‹ñ ±‹ñKôG› Ñ*kÁ wÂ}á€7ÁûA8@µÔJ-r hÀU>Mª#ÞÖöö‹¾Íë6ZË7ëJš—4¯BÐhküe|2o4InúqpuT¨˜]²úu6Êb±G”#ÔÑ {Þ꼇·»ª*«$å²,‰¸A.Ó¶ü‘ß8<æ/Ð,4Z-»ç K°p´:"¸ƒïåŽöØb쿎7‘¸AH' tßìÐJQÜ_-ZFŽ©sO`‚ù# ¯ÏéãF.äõg1¬vüíùÓ é™ùçÿ®+œò iAʃÔeÄi­ûˆÛ]¼9§ËÂçáÍH^}ÿv‹kØiµìs%ìÓÿºÅiWm1.¨‹"òjE}·Åô~>I Âû£ð‘.ø Ã Ü!´ÅÕ˜~‡¥Ø´C=K=K9 eÚl•Œ}zŠX$îæHÒO‚.(‹kƒ¢ÆÒ܄▃ò¡O½{±ØùUèño}{¼CÞ=®“v¤ðïÜ0H³pwÀ< ½í;rÆÛèCE7t ³T êÑd}¤#ÑÒ>´5UÊÎìcÛA!ÁÖ`ÞóñŸÚqA¶#±+´SÜ2–¸ZjSÊÑ­}HŸ’í±t«ƒpò/.ZY9¯–h®0í0—Y¥f%å¨ôÍWoðã2I0üoãWÉNkdŸ+þ7ñkÃò¨!ÔDÔÚ• èy‹Q ¯öþÇ» ¢í›Zµ·? o 0‡‹ëÏPŽª­;LªYšÙ*Çá§ö©‡ÄR eTá´3:G9w‚X§hh\{V×{ìHÿp1x*ôiäBêÇÌ‘¿á°ôÿYqöA°’P˜ Òϧ“î¤;qöŠ1qeæG`½Xâ[ÿiw‹· q²tÔK¬ 5ZˆÚ§Iw…;Z.=L®[k.ßN¬Ü ŸÖ¼˜2ÐÊf”Ó£ñQuÃq ø$…÷Ø’J™udÔ~M2oË]äÛ¾qƒ¾¢”ØZ¤[®+°4ŽÖ¨,™[IC ˆf0v+àÿõÖCã‰[ÇæÝv ÷¿i 2endstream endobj 232 0 obj << /Filter /FlateDecode /Length 3302 >> stream xœ­ZÝÅß÷䉇Q)½È7L÷ @âXŽ !æ">"÷æÎ »ÞóÎà3ùëSÕ_S=;{Æ(ðàížêªêúUWUWß목yÕàÿñßÍ~ÕT·«×+îg«øÏf_}q¹úè™Öçu«µ¨.oVa ¯¬¨lãêFéêr¿zÎ>[_h®êF[v³¾hàƒpNY¶i•`cȶю \¡ëFXö ]q9)É^Ðù‘vt°îŒ4ìŠÑOßÓÁ§g¿ëÅ >¯õ\Soá‚¡ö‡ø ²ÿœU³¤;þÿƒwÁò£gÂÒÈ L­LË“w=§"8ñc2A[n¡0¡]ØiЃÓ/êì{ª®>Q×%mÿ½FbÛ¶ÿ¿5»9Ç_æ_àW7ö»_טÁyÂã+y[ÃüøÒ“˜Ö´l;à´­›ÆÆß-G¸Ɖ‚®ìÃtëÛtkßÌýè"{¬§2 U°g_;­~œæ;¼˜¦Çn$· çœõ×Qˆ–Q»°dØî·»îÕå Ø!*ÉER2r˜´<ΪÆ¥yÜ*˜ïÝ‹¿üœÌ?óFuV±ËuŽX&ûÔ”ÜZ§»&8õ;ð…ආý`p;¡w™B¿)?áäÄáå„ÇZx#´ì~H´²@¦ãÂÆc`(­Ãz2ì³$µô‹Qw´‹†íþ,Bâ?ÊÑA~-œÁ;"þ8nÇí,z„ö×s†¬!õ+Ø–edÝaŒ*6Ñ ÂÔ F„³Âu®Éïí¦ä´ù7k-ѧ8èºí^Ê]?ÔëpË‚B¨š7Ö-$¥"&ßÒrGƒTMƒC±¦ˆrýÙA‘¥Lça,UZ³?M EN¸£ƒbÍI? º¶–h²Þ?èâR“]Ò/OéàK:xLÇHWÚèç¥î$˜èî¬Å¯'ÆQQÕΖã‚ü|Š:à6JcøÛÝ"•¤…ô›©¤yyvñv&{¼œí$¸/3Y*!,ÜŸe;ÎØ¦t·Â‚‡%E¤ÀbôT‹"#ÓLÕÔ¶VÑ‘ô‡ùñåê_xqPÖÕVUÂH][^Iix­dñC×NVǾú®zõà-‚¼«…³ÚÐ[†²ÖÀHµÀƒÄ~ÅžÖ²úä3ø ÿ­/ :èšÛÖÊê–BÚ¨~aOVR „媪öõ¥ªÅ4³[}{2G¨”´µh=Õû).”ª­•’6`£âüTñ,JX”(œ7-8mžñ*Îæ&*鈸îw¨È[Q UIÈ‚›¨¡XÐ0I§@M÷+nµ«É3({>G¨¸mjc•—ýì |äAzãlí•)Ä|n¢¢UE@°²À`'­Óxú4¡LmýÁ“»¥5¶¶¢Êüâx+ä+7QˆÊE;qÈc/¤ ÓÆ“OrÇ("*‘)¢’™C±‹÷P6༭$Ô­VNÂÍðp,àçœõŸeßiRŽd[¤ ÙÔDó»ÔÆ ±-Ð÷1s‚«‚Ÿè¬f6ùŽ `×…‡Íæ&ªÒÃп¸÷0ç˜SËÑ?x6'–øMUH-‰‡µà@’xX'KÉ?ƒä?IÄäaI‰L•ÌŠ]ü³àaêÔÃbˆà ž®t0 OþÕ€rÓ||€8â¿þužÒø—àÍç&ª<ˆMOi ¼i"˜^iŒÚx™_Oi°½™ÀS°1xÓ8Z6ODÓgš,"ƒ—•ÈQÉÌ¡ØÅûƒ§æ‰ðÚðl#x°Õ<ൖð¦Sç ç²k ùƒ Wk<µPHC°Ê5˜ê~Ká,«¶6ô(”2ÜñJCühL8þÕË~{ûrüT=ªv‡Û+vwµþÔª¶Ö˜)µ$Gœ{Pë»`›ç±ùº2¹ûâG¾ÿâð’Ñ2ñ1¶k¤ïÿüuÛÝ»ý¾·›@Ñð¢rWô|ÿ#02’nð7öÔ¼…æ95’í»·áÞ:BûÐäÉ]?» 3ëÊZJÜ)÷œuÁ¦6tƒ­#¸[ cÜŽÛõRƒ®> è¸üŠ}ý9i“}ƒW{¯:öÆBÏÈï]‡¶Y0?mÉà¼óO#¸ƒí·ÐX‚TÉ»¾#Í8TëB‚kÁ¹¯.|3MµA-ísÒ^ZjéH,öÆÛË€­ûãàm/6¦´·½ôÆä'íK$iÁoÖŽ·=tß%6ÊP¨»±Kr}o,°Ñ_ëHÓh°)G3¦%ѶÖn‘Äz'Éû¢ó[ëð¯kø ÊhÖÛ. V¡™wtul·-:ÝqR%·&C{Û´­k2<àBY.éñwè… ˆÜrj™7õ"{Pâ6åºð =cGwåÅ{ Ÿ¹ìû¬Îwyui(Ü_¤|~Ïáĺ÷ΕOÏb²DÎcPVžc|ÝáhÖEM‹Ü îÔÅÃüp[2ëÅÙ†ž F—â–‰À~©õ|GŽHчõvF‘’ØÔp¾‹eh±úï`c*hÓHD¢Ömã¹'ËlÌKí_îƒ'I„á.i¥K’¦ƒ¨ÜÇ.ŽndI#ð°½MGïÆãöm$„ýŒIðÏbo‡}`ÇŽ5xl†Á(jýd°Ù€ÈÕàƒç¸NoX¾o[ÿì5OßçönŠî†$ákØ i£ñ}óyÚ@æ.¹i…’Ù1JCû·½— DéZq?Öá§e›ÃŽ&£Wq©4YQ¿`·óößþxÈ›öÙ‚ûã”iÊ'™áj$·Øçq_F¥øæ‡J²'ß$+JÜÚç}^»ë2½ (‡n"m‘9r6YÎC·ï§(~7=ÙЬ=¹Ò`ÆýÚƒeRŒ¤ÜÖ¯ÙùÔbŽƒ*k|²"gõ>Ìb ¸é»‘XaU6$Šm^±Ôvo+W9·/¾Tœôb_!áò¡—í»Ÿ½Õ¤µ!®Z{r»Ý,"¤ÝÜo1š†Ÿ}[šBcd=lrx'Œ:O¬ý9(«‘!Û ó_¶„ozà“‰ƒÿ»ïtKÏï…÷Å[HÁSXðe —®6BÍ -Ê–ÍŽ˜SÚ›ÛG`É4‹tû8¯¹Cú-r¢@6„áô³=.£¤ ¥šÂú>†ŒëÈJó‡î Á `Ïãü+ˆd‡§Äp\Ø'Fá¤}Xz_L¾JjÏ‘ìbvÞí9ªüÆô±ù8€Üb(Á²[œ†Uå v®N" ^-•‰ÉÞª\‡+iš(™´ü«qðØËPˆî” dÒªîxKØcV²˜•xÌJ'/r-¾©Øt¢‹¿ÕéÎ>Æ/Iç_ ß¾#œÀÍ*Ý áƒkÝ\?8yÆfõÆ[ú¨sW<ø\÷ttÓÑÑ/;:‹uwk|þ¥3ÝžŽ†Åë‡Û²M‘=òÝ7eT 7ÔY èʫ˅ò…‰¿zhŒ UؾûGÀy­)¥¯úÝn;%¡KZç_ƒ—0æo×وŮœ,n®f$üãeÆêÖß‹tXNûœ G¼d9µÞ7š]‡-­ Žþ&â·¥·¼ò¢äOA‹CtôlOÊ2oI“Q7D ð*yž¢žóuÒØøZ4iÿÄ·8üšv!îG€ñ/w´s¾’}:{Ê÷z(wú§C$ã-þd¤Šþ-½X„ØÌ9v]umçìiîfÆ9fendstream endobj 233 0 obj << /Filter /FlateDecode /Length 2992 >> stream xœÍZKÜÆ¾ï=>å@Òh˜~?Ë@ŒØ†pìbXëô,wEgfg5¤µV~}ªúÅî!GäK¤Ã²{ªëùUu³‹¯Ú²†âÿøww¸¢ÍýÕ«+æg›øgwh>½¾úË·\5ŒµN)Þ\ß]…%¬1¼1Ô¶Tªæúpõ‚ï6[!uë¬!Ç_6~1Ò8EN8oZJ9éÝlñí´#Ýá1P9Göý3 R¢¥Œ“ñq³åÀHJGúÝp÷&,Bºáa“×ßo~¼þªg*õ„mµp âõ-hõSXË­•†tå`,}98\\ê+&[* yŽÊ?²’„ƒ¨_å>cð1ë׿Ìϧ~ôn#ÓËy²›pÎ’#L9G¥äÅ9å,edÿ&zZ¨jYþû}!aœR`ÀŸK>vðÌÈcñÔ“ŽkK¦1L‘¡íÛg1¢Š f’µß£¶Šr¡åšoÀµ‚fâãC!o@ uʯÝJ0‰3×la•”Ê„E7c|»}áÔÛÍŽð1ÁHŠR¥ZcyRåKïeJ•qkzë–QÁD¢¾Ù€o¸âàIº¸Ÿ µÑƒ(uìoqš·N€3ø,|ê<–¸-¼?ì¦HåÄyx=#çQsGñä¿­~^[8¤ŒômÁñ”Tf—$}ñ͘tV—øŒHZÐKŸÓû¾Û ^8ýÚ?i)H?¶›­¤¨—$Ÿam uât+íŽ1¢á—CiÂèC¹Õ¬µ"¡FËÓõÏ |2Þ Çù>©à|Ÿ¢e|h7ƒƒ éãôÂ~œufVÛÿp˜Wމ†û êŸí"‰Æræ}g%AÌø„……à݇H¤   Ñ5)…¤uÓpL¤’"å%‘7d×Mýýñ4ìºýÍ&ÑÛºNÔHí¦ãi\Í+auk¹­Ë‚ÁbµXº–jÃr± ¹½uCÆiØ£F¡pÖJj« ¿ÕŠè¶xæbæa´"wGD¾–>sçÝ©;Mƒ÷ÛZù@ƒLç¹.<8–Šû€%¤ÉáŠÓåv»Ÿú4”ßÚ—#îæ úÿwÀ­¥é€ 1ñ»®ªH¶ÜÁÙ͉Š9m,ù$ʆì®8Ä0ü騲DD¹!—+¶‘d[åž©ìW<¬¸ã•?}_ž_üåY’ÉÉWü°ºâŒÓ; \JÇ`±·w£à âÝápA•‹Hfa}}§Y•Ÿ.ʨØbÉ­pw¶9è9­çÑ3–èé˘'(I}JU>½ª­Y‚l J‡‹þ¨¼þPÙM.ÎÒ÷c”«q.ÊÁ/¢±´—µ>×Ô{Ž7Û¹\\æ[‘ü»ðËt롟·¨ßúó‚V\ïÆ$i/ÖÒÀ‹ø1yÃÕéQyÓ®ôP±o.1êÖÅUÀÛ¨SbÅ9,îKÍKç´¥R՚ʻýÅA•(oEì%AfS„ãÜÞ­l=–ƒjÍJŸ]_ý/¾¤±­Ö ¼Ý™Ö4BÀ;¤² WpÐu²9õÍ¿š‡·^’mË­qÕ%™à¢Uð$%HµoÊÈ—­h>þ~†¸;zTËà°¡š'X o~a_\ É9hÛH#šÃ§eËYžÙ_}·˜›©èÓ å©ÞOq.e ¥¤ð~e:*ΖŠgQÞŽagÔÂ1(ÏxÏæ *JSþ*2Ç[.d#€¥äQC¾¢a’D-m¹ÙÌ(ÛÚ<¢Ï¦2 ׌·Ú/øÛ/à7˜dî€æPL(Õâ ¯"ŒÁ} [b‡;X`%>e82…qdÇ^,ÈpüΙ´"Œƒ„8D Q…LTL *vïï~Íñ>®Á‹g8ð?Å×]æ]o+ÌÕl-"Ï‚LØæøÓˆ¿‚l¨63<,šðk"4.•k™¨¢v>7S•q£` ‘ã¦Aùy"8žÃ;B«r\2»9ð'fÆL¡ 0~äqôë<ŸÄÀd9tI‡LTL *Þ?rxÅF­^DŽñ"rß¡æÐ±:tPÊŠÐñ:t‹Š ˜(ëŠp>WPÕ¥­ÄÐ ’-¦»·H¿ ÍXÛ…t4pêÂ81 㬰pD±3Ç÷v3sÈã VäÉÓaeÄ1ʈZdФeâPÛñþñ2—¹†;|}æ9~÷K™ÇÅZø¬³þgQÅo¹éHtlNå¦s>7S}ø¦ç\Xî9ßÇÍ^%7*+š…Íð± ãjÍTÈb̃Ìâ¯.A–g"D, ›Í šfY€ˆd3…á8qÈã ²<!’8$%3È’™"i™8Ôv|È € 8ƒ, Ö‚’܃W±1 õŒ—BV[ÆN* kX»ó¹‚ªŒ]k½º;©°]ž~— |&çHÍìR䤿9Shˆ‹3‡t÷§îpè¦a(hÝ:+¯Ä‡]ì¶ #-B·Å®^={NTCW¶È‡Cnš•Ý£ØYÑ•xÑ.˽’?m¶‚á«¢x÷oÈqœúÓp< ›Õ&¨åt^~C¾þ[Ñ~ýÆ7~l¸œÆÛÎd{ê™ØÐXtípÞŠµ¾•±‘¥ø>ŽàŽUæìþv¸ØÆñ½&l^‡nHÙ#½ó…T¡z—¨–÷þRù{ßϱ3C¼Ÿ†¾ê¡{ˆkµ(ƒÝM]h­£W†LcÈg¯ªké0ox•ùÖA\RÄt¬¿lˆ*a×(PÃã§öœ3š¼™­‡.©U¾ˆöz(²ÊzßfUê»è¹óRô›ö‘¯³+×Ògw0‹ÞL¸ûiZéµ×,üÊÒüd#ܼöý7Ú¬¼ÑÞB JªÈ1¨ÿé ûíõDPá¿‚øÈ|su|™}s ©.y#ÁYØþáyØe߈ûî{LZ?ýM¢v1cO]"8&#XGü'À¥Ö}ÁYÇrѲüP!·þÈŸð̰‰¹¦*~è°”Qw£M1±p‘Ô¤Ë|é l—e÷t¬FC7õwˆÓ'ïekxêÇ‚µéû"¨º?I0¾œ%jÈl@I|'u0Oâ|k¯þÇShFÆã¡4¬cÝ‹d›óÝþw¯7JúnlW~"€®öd²vUáö²?6uu3×/V ÷'½OýX~ϳŸÂ DËÌ£ËÏ0Òò}€+¦Ot’µÙ4ìyûõwÅÊÏG^’¯D¥úrl ”ÔêÓ±ØõŸì¦Ð÷㉎^[8Hi;=&«.Ž ÿÏÏRendstream endobj 234 0 obj << /Filter /FlateDecode /Length 3703 >> stream xœíZÝܶ¿w¿¹À>(·ðÉâ§$ )àiÑ"Rç€ù( ïéÖ[ïž.’ì‹ÿûÎ Ii(iïœ&y)Š{8QK ‡óù›!Üä™ÜäøþïNùfñã…¤·›ðowÚ|zuñü•²)³ÊZµ¹º¹ðŸÈMYeÖV›"/³ÜØÍÕéâ;ñb{i¤É*#Ní6ϪÒè܉®Á×V¼W¹)ªJöÓó“»í¥r@^Šv‹ðîžÊ¢M×\ã×&QßÑg®r•€Ï`£3¢kë­Ìri`åÝVYžKX.2ȹB´ï&Ç‘p)vǦÏ,wR¼öL¹Òˆ&¼•F mø¤¬ÄÐ5õ–¨´¨Çð[UˆÃ--SåRJqÇžýò¦R®C¾.­¨û‰Ð=>y¿µ0r¶Âï/ ü yÄY‰(‹0凫¿_\Ê‚”s 3±Åæê´óÔˤnÅ0ýp¿½Ôy—¢°ó¿~_+{ÕÚ€d•ÞLRlâ+@†^ðú==9§EÓO´Û›@¬a•ˆA±6ìѨ1ñi`“¦Õ݇ð½±âŽ¿áe3Ç5á·fz>[’™ÔšÊ”f8%€Hxv^¥ž]ù±*}¶Eù?¥ î3FÉÌ™ü†ñ ªËæJ;ãgÏ<ÌdÒÆ¹õ-£½MÔüü•ÑüC¥²rZåo¸J Ö¥‹µU\&s-µŸ-žm¯þ}q ¾”&Ú“žÐkf(ï¸ t íŒä ž‡¶…ÎiуѴ Iö4W9¾:èk mênéöšsº “¬Ü®§ÇîÚ®œäÞ“:VùëÇõ ®™ ÊO!Àå Gã¬`"Z¹Õ¢?Åe ÎgL‘Àñc£¦œÁ"NiW³½§I|S«<+ª"zMŽty®K·ê›3Ó™wz=.½3YHiøt\Gþ¬uúf ØÞ,ö}Ø£ Q• ã~C²ˆrÐé{±$ øÕdÊ™àïàøÁßÇÜ7úc9ú#ý¤£¡£9\Oy}ôFe1ÃJÌjš¾¹¥ð«!, Ü¡÷ž.ÃÜøÈ†” hömK7•I¢K øäì/ÏkZ‰oÏ~ñíÚsJ¹àêêFÞó÷ t|ðúì*y"‹-¡U`f íÖ¤H í¹B®†¨]ãÎj·çï<»‰“MÕv:+†šnÏ+>Í,|QBMLÏðÁïÏj>d繞sJÒQ¥”ÅPòÝDsâ_| ÎÏûô„À’æ†"Ó°bzÿŽ/!ù?DTãû¥8·\#Lƒêµ8ˆ<~Í`RKì"–Y‰æ…$ì?eŒ¦?ì#Ê]žê"{3b8‚éå¢lóÓ«¤JÛµ§ØHv5Ë=¹æ òé4iwÙ *‚¶úoâVŠsÈp-YÎÀë¬ä 0øŠ’ Õ ‘N#V8—k@p,{¼ì Õbî5©!¯µ픵ŸMY:Ùq€?¹©¯Ç¤%ÒhC?XŽÉõ¼‘( •óÖB~'D‹s@’ÍOLyõ‰-s„:Ñgš)ïe”Еz'IBØZ^õƒôx»T™†½m.ÉíKÚg®åÌÝO)óní ¼[‰ï~;Í”xvÁ¥ƒtýæã’Ãþ ¥$UÝŸ¥u7Ëå(‡¤Ü„°¤`§0óp|ü’Szï-ú¥]¼—Öèµ÷ƳYø}8´iòñ§ÁÀzCÇ .q¬»= ½§íBÿ ›W=­¦E,¤‰4 䉲¢^”_²D&‘¬ ÏË }\Ï‹ üJ¼üìågËÜ?o`3<\ì€À1½ø\">]YY„–…xß@GÈx&d Bž*šÐŠÉa+÷ØðqÉÍ!ûáxô ê¬)çf¦6bð™cŸ[hýþŽ«U0úä†tñt|9„—ÀÊ÷¢}=½¯Ù—Zq–sâþ€ñŠF€N^§P²²4Ú9WœÉƒäph¥#ì þ½œÃ³JrÜ0PmK»\–ï+ù–f*ñ©oÌ¡+|ðöa°1w xûì“ü«m‰y´0âj¢2kEù/¶ìfµïXOz‡ú"D0]Y%^Æàn@Ú$É âµP >"QÝùXšž .I J°×éì7?Å‚¥Døñd‹òG"”e>Õé¤DÊn¥à °éŸÅb5Í¥´µÆ\{HZ½´€1iÎl¢TÅ«—_O„>÷9òRæxß<Ôþs["¸Á`-G½è)é·Ì‰®Ã3KÉ¡{OµÂ$lD`x²–œjߌ?è…‰Òë"1óž¦SŸVÐ9B…¶#nâl› .rE|¶Å:ýݑɳŸ#LGŒ¹¥­#ÿcí–€YÖlS+•©ÜŒ¶lËûGßðÑ)ùìNŸxÄG™³9«¶‰°Èu\/ìµ,CúAÞ¥Nzä±i2sQ©µ±Q‘˜Ä}R1>8Iñ…ËEïÆÉUÕ:MqŠÂC c}+Õyð;|èiL[ͽ¥Èc7mß:ÅÃ+µ¿Ô¬£ŸÀ쑯Ÿ‰M¢`Gð\·ÒTót?ÖÓL5ó_\²ÅžÔ]B ÝÉ ð¯÷uMÈglÅ*ëmè¡9^t-ʰ, àrˆx¾\)Ѹ³c‰öo{¾ï%¡êEh÷z®v½’F×J ì×ëzÍ›t½üÍ®×ÏË+ÛŸçFÆÌٜȷÿ«·ÝVÌþöaìÿlßÍòÁÿûn“¾çðí÷Ýò³"LtôÝ’m'í¹â,¹ä}Y´Ž‘öůyVˆÒ÷ ë¼a±}™i™xˆµRc;f-ÅÓ±«ûÐŒI.Ä¥«é¶^¦Ð9Õ_ñÝ®æ&º!³ñ†B¿Lzn¯g ¸C›@éKÉäOç–%ž‡%pƒ#¦ÝC- ÜðYtטÁ>À¼ÓH8™àŸA‰}ˆŠÓŠKà 3º&z¨3iPìi–öýྎ©ÒèÆÛRT+ùÍ´ßµóÜ<ì€Ó—w• íï‚k-Ošî ,\.ˆ€|,÷—Ò|+M¯ÆQ¥w,còçxMÇ'KG™’Üš‚LOŽ\MÝ…ù²ðþ‡6Z¸ÔÿpŠ·Ý›6ÎÇ”°Ûµ©RÈ—Jµ¸9áW˜}>ÓŽ_¯bžêÃùâ¿ÆP×ë±JýŒ7lp¸ $­Mû“¾/ oN`ÁO^¦¦‰¯úødTÈòÊÖØ€ÅkÇXª™B!WáN³ï_þòÀ%‡ÅzÛc¸34É<´$ ©íêx‘ ËËxQ Ðaû6¬¬m¸TUHm/L3’x¢J<¯J‚ÂÆi½éFmåtéØ2©Èæï¶–@ÉRRgqS©+ywh»Ãvõr‹ËŠJ©±•)^òŽðWÔÚ´>`”Eÿt·‚6nû^ñnQ‘gÀã &û:ö'"¬r ~?מò}>…ñd"&&v¡ùºŒÄ„côãð×”ÉÅÐ)^w†ôÛIÍÈ¥åã½²¾³„3tN@épVü…ñ´ç®ß5Ûñ˜ÕàQ‰.a2$EP™ ×nà^JgáþT}Í~ðþyoLÑb¨÷Щ2mÍ 7œ†Ü4>©Þ­ø`×Ö;Ÿ¹¼ T¦pJģ}vtº,­GªþþtºÊë =ÑŽìaâìQ= §(Ùé-áñ„iW×GL¦T׆ÀL›C‰úí—ñ(ϯØeíñ(o:<ó›Ò ìÇŽ¯ mðÖ.£èÇ£¼2=Ê#ã.JÏÌ'ð-ÄÊÃ)¹¡9]‹Dórán@á£ßéâNÒn{ …‡MþblE—Í×|$xYwoií4¿‹éi@¤f×ñ'myÂ%B”ØpŽ '°Hà¤ð ­oM0*±&Î+fA»Óþpu+Å-‹§»È?,sÃ1G¢¹€|ˆKO>QCü tºê~¾YT†’ñ—Ç-Âcìân-U}ôž¥žWQø»£àUÇ© > stream xœÅZKÜÆ¾ï=7#@8†é÷#° 8ˆ-8ˆÇ^ †% f©Õ83;+r,Åÿ>Uý «IÎZ+8‰tXvOwuu=¿*òMÅ^1üŸþîŽW¬º½zsÅÃl•þìŽÕŸ®¯þðÖç×ZTׯ®â^YQY˜¶Õõñêyýéf«¹j˜¶õk|Ô “¶þd³e SÂ9eëmZ¢dýŠÎïéàL<¸3ÒÔ¿¥¿ÜÓÁ‰†‹Ô ¯é £çìÜ^ÜS~¾aW^ûúÝÅ ÝÝÅe é ý7½¨éèq]‘LJt¸HíP’æ ãÌé÷¥ûbCG?Á×¹RÊðêú¯W׿/ F9i•È·“ži—%µ]ìéWŒbe0¾(:”Öç×WGÇVÖ5VUŠ1ݘJJÃ%+¡nœ¬ú®úGu÷`‰»F8« R9 d¤hœ ± þ¢Ê'ŸÂÏðosýcdA7Üz+«w°tXý‡=»åHà¶2ª~=^ /LÃÄ8s¸úv17­ÒŽÙ†»°êqŒ +Ácy¥o´4‰q¹d|<ʨ 28\ÝØi&°8›#«8œä쇰ȀE,2Ó¦‹b…Å|c®áçV;ÐÇ8ƒ‡Ïç¦UJ+ÖÀÙaU8ü›gð#‹QÚ6Æ…åyÆÉFò .&!a;S ¹‰Zî`½WuãïL‡yû8ŽÀ†q¬‰™j$  Ï0;ÆxDba\‘YÌÊKì­n€ö•¶‘Þ%€ƒi§ƒüÁÙ<‡=ÕÖ5Ry K7W5—®:½pœ¯$x˜#@:áçQsèKí ãEk©öæsÓ*ª=xSåQƒÂ(ÝxK48ÍDcLG M“…å >þn¥ü}géN3Qþ#¤Ÿñ„Qƒ# ãŠÌb¢0»Äã5( D±¹¹ñDƒ˜*UÈT¡(U¸ˆÒÀŒ,cÄ|ެ"1"ªOjë]iæC«Óç¦1¢’†±0” ˆÄ#­8Þu¨¬°b!ÆéÜ‘g -H[˜ý»éŒ4Æ‘‰¼ óœö—Wx¼î¤‡+P@À ?ꎫ¥÷Y&“êÀà–ªó .†?ËBuË ¤´A/2Ð|nZE3Pô>Õ§@ìT*múΑL(ßx°G-š¶–Åq¢˜Æ;Øá4Úü¸Â@&€$;RÇ"úë8a¼Ã#cm§#ÒHLŒ+“#…â× R3¥µ q4ÇOÈkyÄtªB @½O* ؆Ù`^°Ý5ª’ “h;`4î½°¬|cŒs¢ i¯ŒEÖ#D¨^wûÛ×ç§êIu8ݾ¨ï_lž:ˆ\ÚòOkçˆK…Ä¥Æ K©/6ˆà¬²^×û۟Ȩ* 'zïkõÇÍVr¼SõŸ÷ímßíy¿‹+¯oÂF㯻ûðìÁqx½ß÷§»DÈÈúô Ÿ¡^cª>¿&›%&ëc.=Âûã€ÇÇŸ¦åÇ ÂMeqGa SH¼)èíyÝþn³•ñ¸n ¥Æpîúý©ß§í¥ˆ Œ0´‰´ýEýÕgáD×Õ_#Ú ¬Ésße޹®_ú,*žo¯ŸEèdýá"$• ¤Æ%ÈãеwÓ)ÈÖV °,a«m(>”ììïˆnn¨Öví˜xý6ÈË€¬»~²—òáŽAö2“Ïe–x0yQBÙÒï;¢Òc›É(CUÝžÛ|®A#y8úó7D…MZÃ4È”£ó¢Ñ!Ý/ n³~l¡^¾sY=//,ÃÅZêr‘ST»OSåÏÈ`ÕlÀ!™ô‘/¸,© ý;Um¥n`u`ø]PŒ³¢>Q7;Ü€< ¡yÍ¡$ÄØaø†[€.šNZ :œq1úa’7n4ï‚hŒ÷Á¸¼‚ÙÎÀ`ƒ(U4’:ƒZ0Ó1fëgq¥÷RÓM7é0éë¾¥êéÒÉ.T¤Q(ש® Q)ðΤ¬”¡ àzU„ sRŒŽ·IäÁN‡î|.,cˆ÷x/”¼qfÌ8 ÆF÷£þ2dAº¬xJЉzŸ#ê;âÓ§¬o‹ùn× CÛï?Gƒ ³Á¡DN ¥Eth-ã5w§Â¥wû›—õ»=\/:–®o“v˜àsEár3) UôÖèuA†#lfèedÇA6h¿ ½á!Æh‰Êãu{ >Üe>´*„:ÞØY?M°n99JÇFé|Ö hãÖît¼Ÿ<`ìî6È”â@¢íÆ…‹¤åŸ¬ÆD¨c2·áb³ã°Ò_Yé /.»[Í3€§Ä0žcGF‰è‡íápÚäÔðnH"Ož)/ì]!Ì¡ëÉòS~Võ‚ûîvûW£¼Ô"U…yæSˆÓýpNç¡ìNIÝñ·ã]:F¹\Â3,›Ñ>°w;vÓ íž<ÓèxVU(±tg£¿›õ¡æ‡º`›Ì˧xzŸ’2fbD)eëw¯Ç€qbÊtØ9ÞëÆü“Ö«™RbÞÈ3Å›"±EÙö>;LÙ¥Úc42¶¦ƒµˆ—$éÓ1Ñ[ø–XH]á:¾†è¯Ãs™[b•°Æ. `]¾D•ez¾¥9ó~Õð…@óÊ;Þ’0 Г  ü8™aX>7çXÑm8†,ˆ5‘ÕŠÏÕí'$Øìw4ZÝŒÓ!n¡¬Léií9ͯ¦D°ä-Up{È[,<¢ZA;Šºê¡ê 뤸,ó0CUƒ¹ÝõD–Nœ2•ÀpnG‹ŒòŨ çš3u–#„ ŠDé!+p¬6¢p×UYBd1 ¢‚xá$ÁËHÒ <0¾Ò3¯‰ˆcþeÁ€ûŽM"ã}ß'‹Ãàû%É@mQÂ"†ŠpL³‹,›®ò¡®‰E $Ù뙑H¨zh]¾màzK…áF*s~*½5r›ì'/Z†^TWß )ÔAÎ&rÐéM„A(ŠðllÆé€X^1µà/xu§Éƒ&m&w¾ )_Z)ÃËaD(‚Nù %åŸÁòÏüjkR V»ïÀÛº'(8Œ ‹Œ™©O˜Ï ÞÕ´Rm¡Z:–—8QÓ¶ã)ÊÒÍ|±;lFWÁ²-ºÊC¸CºV$! Ýj°Õª‘Üóƒ,+¯„‚,éý©ŸN¯V9&š)Š·zkAÞú€ º ·ô<ˆ*ļöf®å$óÓ2pÜ5q@ì¢êW/ƒàøBd û%„öÑš †S„Èe©&¬±uªS5¡%C‰gÉBV4j²Œ€„4Ò¨5ÆÂ½Ü˜´Û¾ËìdØÕp!Ô]?±9ûžàyϾ9ŒI^Gü½•à“ŽËYoˆÆV"Ÿ`¨$ÀäR E´Ve*»ø^-]çËtà.Ö¯£@(2×Pà"âPÐ'–ü¢S%¹ÁS\f`òN“ÜÝ! ÁhŸÉˆúßÒ¾VKòÐ!å€WZƒh,/#~VjͲa$sòeLªöK È†ß Ø—ñ¼Ö'»¸MÛ u Ô–i-èÀÔ?€¯;ÜÌú^r$ŠY!¸?ÒÚ ?E8îiŸk,;!¾ï‹æa +B×I“FÕ²uû`_µý¿ymd]¾Må°ÆO*¤ô5uâ”ö´µ€ºŸä¶—¬Û³b ¢b%—Ùõ!ÞC) H±þÍWöÞ¤`©ç¨Ûð¾å' «ßq„OÎô“¢ X~bÃØ>ÄŽ—S~Xý.âb¢Š¹ép12—<Ð:ƒó…_ò7ðøýÅß/vÄ+~÷®žHëУ\&$zý_¹·qGk¼§(«¡úçY€`.o;ºªYìaÁDF§RË&öLódéþÄ\û5Æ‚¹Ô\‹ï«²í*sñó°BFo.~¡s¦dK³<^Tf¡¿»Ë†ýàw=cD)4cè øêû‹ƒËŸ{usNƒt ”ÞNè2ÝòªÒ¸¼nñùÐå­>PõsV¾NÐ2VäÓžÓ#8=â‡, _¢Àæâ=%壸üJ­î0eî’¶‹Þñ· ®ÐnÁ¡°yÈ]j§øŒóÐŽåglhðJl( ¶R·¡ÌÙ>–âÇ\?bFìÏmìÁj~Øáôцí¬uÉÝ{–õ7@ʇnÐ{¶ýà‘ëñµå-0š ˆ| ÒæŒ­Š€F‘¸Ü$Ìï9 @#|$¯}Ä×Qœ¤V"i„-q¡®Û{‚™¶©cjñ5 ž¡æ £= BDÌ_RúÂ1Çé>‡³«-r´¶©¹÷ßËc«ýqÛ=Õ( t>ö¤æ!¥ýÿ­¯¯±ê³n*®n‹fyzm¡U‚ãá}± x?t©³4ëLÊQ籟/ Žú†DVÝsÈ­ÄøÄ-Ãc£k*Y 磃>uba‡Ä¸³ÄçœßF8òÂ\gãendstream endobj 236 0 obj << /Filter /FlateDecode /Length 5236 >> stream xœ[KsäÈq¾ÏÉ>è´RoF;†½ª (|9$‡VØÞ¥|™™¶YìÍæ˜åR¿^ù* G³ Ø@×#++_>ú§›üXÜäø'ÿO—7ùÍùÍOo z{#ÿN—›ßß½ùö»ÒÝűq®¼¹{xÃSŠ›º¼©sÌ­»¹»¼yŸý|(«cSU& ÃØ]9|W5U“‡ÛÒÁSa²ëÃáãÝášµ^Ó¹£¯òÖ½»‡¥¦Ã-N.½·uvÖOêAJˆ+‹£…MãBÏ]ßãæl^dŸˆ¤ºi²öPÖÇ<·R][¹,0•ô­Ð[f×áÂc›2û¼©oó=5°p‘µc¸—éÎdÝ#M©r“MaxhO!.˜M×HŽPC«µj­{µK˜GŸÚüÏKx;…óuèNí|²ìC¶ËÕ²)ŽÎ›ÈŒ‡–™g›²òÙiÒO×A?‡=ÞZsÌ)ârrb_Åðlä„mˆ×é“:YhÝ[‹‹Z{s[X¸-Wóz¯QÃ9¸çåógõyY2 gya³ËuøD7™õÝ$€Æ×YˆƒfðÒeûo¿3&‘çhêx¬ï˜Dñà£56ŽÂy#‰;lé@þ‹l¸*A™:¥a|+3ŽçãÛÝk+ð>îÐkñ¿üñ/ªc™—qj«¶¾?¬O•ŠJy¬]5‹J¢s¿Ž´N(ÈŽ‡»¿¼¹-w4U)×]¼Åº`JÓ€¾ !>ùY/p̽¼•ýa~Ù-ß·Ã ²Á©ƒŸPãã ŽJµôµœG™ ?„§å ¸ÚÀºljV‰É¬ÐBÀ„L m‡©;%bè#E°ó¤´}è&Õ¦l²^4weöL/½÷hžð늿Æ%Œ%ÓÁŒq™ÖªãÁŸû°L8µ‹Õ ¡w®YÝÉW«`Y£Ò‘¥£Ï+ÈjÖuöÿ¿ní(k8’m²‡¡½9jUƒáù‘%ŠXêQzœ[kóxe {,ónܽæÕ½ÍºIjЬcBA^pº-ˆ›Dš1Ù£^ž§7`RBÂÍ1~ã“ ËWmøúy}G•‰ª€€[r@_§e·öIM~Rû×ö4 Ã'™à<Š^Ý™mnîþûÍÝ¿¾—;ç˹&Wj\šœTi¼·67°±ËÞÉûY%H™ÆVéÇÏgpÉW nÞ” ÅíÏnJ¼ öe¦ [¼f¾Î+QÕ‘²Ò2p§§:ÝÒÖŽoùê^UU¡¼©ùzé³K¶o§HbÅâ ´œÚÏújCœîÝõxoŸÜ–0bˆ´ÕU¢dŸÕž&–ta-`!ÐÀv ŒÑÈu ç´¼^Ì÷‹:É÷+W*6tíbýz:‚CYj¨àƒGŒ…(> ‹«Épj#ÀcÑš»Êži^M(:p´¨@t§ÙvÕÎqSS§¼}‘}]¦ña_[¦›¤Ív’eà.ÖW„¯A…Ø_ð¹ëD‡À /‡¤«Ï)$á¥NìßpèÑ*Õí°:‰OÅ»ÒÚwE‡QWĶùüÚ’±4d Ä=k¬B£éî+“#ÌDÅö½œ¾‘NZl ²ÄÔrtÑqçÙãàk0Õ¹<ËLPHÒòÍY& &x”Ï.uéÈ#ˆ±%¡D‚r§ƒ¹%½öò¹c;OM¼V»³R •‹kãGNqÓuBߊÆâK›=hÍxÜQlö¬ÙÝfIW¯ã œ@íáš<)søý°©©eë»S7õ/<-´Š¢5° àY¼7ˆÐÈßa°j˯4*â‰àÒÔiâÄ6V%s˾®*Ò}‡Ðö·lð°íõ"á^]³ãÚÓt(iHWß—õGô¼Ö¯=/Þ6‹ªÌÚÀÉÞ9…ã(³®,²Ñ’ dô Í›C^àPïey÷Z v•½ÉIÙiÇf–6X9eLƒ2ZÎØÅó Çih;€o!rLóõí8–—%qÕ&÷2oTgà¿Z¦^^ѱ± ø¾Ê†ðjô–Ìæ,@ÓÄi¿ îJ,?CROX‰èÆÏph•ÿ,lÅb7%;КCØ`’Ê2¥‡ñSÒÞ.çPðpO`¸k¦òߦLÎÛS˜<Œ‹+Ø!)'´¼úã¤P-Kàk÷MÅy!>q¡·0P;[(›Ñ-H³73úù#RîѸ={ÖË46ŽþÍF*ì[NI™ëÖ–†V}íx ƒD~èYì6ÒŸ ;pÈøEÙ5jÈ ÿÅq-¹/Åôv®$HXW:LÒP™²¡ ›ë| Ñý…x$î·Ñp.ð¶—Q…Qç@¢ä­ ÎqP“9õ;lˆË1Þ•¢d+R*8 úPHÁ¥­ ²pÄcð9ÅPŠW;Ç£Àº.®:Õ(tUöïÊ9]u¡wüºî¤ü8%7D.Uï¹AÍ…6àúk÷²ÙCx&uâ‚ÛŸu¶lþò;}ÞýKÏ9¼ÞœM«š³QŸ„çgbu†Xã±Nšœ/©‰€hw‹m¿½„ħˆ}^õmd㢢hžwrˆëòÓáÞ”‚Zd×'µÄe0—é¡’&~*à¬-ldШóÉW¤ˆ¯{Êc}›´à¡vŒ-)оŽaù‚NÔì³Ò§½ÈÌ”úدj.{¥¥Ìû¢Zº¨.,‘u’Ý—Ö®kªjZC1¦lÌFÎXw¬M±êĘ >GG(ÀIÌ1Æ1ïÔç„m±ʱZ¼’^Ôë>N•l“Üĵ‹ÉÍRù )&ö0¨kf$¾ÛYò½>ƒ®ÙÌ‘ ÙT0³ð"ùz0ïÖ KV Yæ\âj$I~غ¢†m?¬–ájž2“+Ôñƒµ;¥¸×R–A÷ìëdëm¡V c’i?¡5&ŠxÉ"ÉÇOÛ„Ül›cmE4Ù5 ëŠê;:7| ßN€ Š@h/‹IÞ˜V/W•½9ðn¿Ð24㉠Wí'¦àV ðÄm9>a ‹C³-ÇQáSH/Ñ>©§M@¹ŽU¾ CP=˜qtgc|¨ÔæåWÅ)Ëi¾evRu:Í_Ðìœ{” ¯VSå ¹†¥Zdd;ñí3  ¼¤øx^¾²Ùs§ëN»usÐW†½)1]P—X•@NÃ\êâv„´s¯4œZÊ•³O05•tÕTWâÜbÕ e)^0_Xæ´’\v~åü˜Óš‚´ ÌS‰M*ŸžCjª†Ýmª/ìt“,ÂŒ#âãnr•ºr”ÿ—ä 6ø˜&ÍÎà îÍz­g¯#ë*yé/uó²âÔËgµâƒn)˜Ã4á[IkÒ]CÒd7ZNR'©èè3cï¬eù%dD>Žô¿Ze-h“ÜÏ™ ¼įŽÃ·¤Y%̇Z§Ø†°¬½p càhò¨¯‰¿@Ë¿®q#3/³ñ[—¸i’”¸+{ëRÝÁO©Œ2ÜîU/ýp‘‹»^dÙûYƒ©›š#aÙ#áÇ PÓX$Á€«Éþ‚Y;?iTìŠF•®ÙTµÕHbêfô Ðìã¼#3Zz&¯riXãp·«1Swéþš„oc†£ß˜#N´î)1ˆ\Ö›ßÄ+Np&þ*ƒ)\²¬UIl/-öðÑ7`aÆåöÕ½Œdî+îKà_Ñ|ïÖÝgç~µôÿnFl äL]I€/¨6®N÷È_a#ä:*DŸ’Èñ·»Ù ªGVÜb©L–ë†eÁ­ƒ•veI£-¿oP—C“ç’‚?ÎÉò´vZ ?Ϊ©C? X=W£5¦}Œ¯‹õ HJB›Dôé{XþƒöÔù…ÀËîõßúê×À~Ïñ¨Ýèi^FÚª° ÷j®ˆ’MÔ6!¨(«|ð(›Á¡Þ› ‹¡FÊì6 ™t4ÌÔ'U‡Oê»É(gâÓŸŒÌ7-?³NÎD¿·Í‰cñœÎ÷3Ã߉@WŽágÆvÕO+»×bÏò¡‡VŽd æD væÔqn‰W¯c— ”¦^ ×½ aœŠ¡ïÒ]GŠ<øfi‘®õ¥¶²©ð ø+ Xƒêä\bHÚbÓ¼+Í™=fáçNñA`´Æi.–»ì}ÁH–|œýšÅЇV;î’Œ9E’§îÜêêú~~“ ²·¶»UûÄ)‚/Ýç‡e‘0pZS†æçÔÿ€xa—ëLžw¨—dgr· ÆEÅÍ*¢;.)šbvưÝÂï–xVÚ è;)’[ù¹K{]Mi\¸M¿teb ä ¼N©ïè¦Voñ+u@Ô”{®#‚ýBn³ôþXóGÎ úáQ?èa»)ÏæX×Õ\Íyx%DK˜sŽ›ŸFàn4ÄÛXÙYŸ¢)ŽÆ”ó)¦³Îœ¼’•5Ǫ\Hlã³Ó‚4à· [š½"¹lìòs&” DkT mØ”qlCíà6;÷–|e(¶(§ÒÙ^†³P¯r;]H„i’æä94‘¦Ì¡ÓOg›zÝÄL¤â•ë雟f4œXø§$غ½>Ü&¦áV‡e³Ký?!5GChg.s£:S¹*õ†ø;²_™Å“ÄÔ~¦X˜g ”f ÚU2Š›·,GʧæüS†¥MúE†TëJiN5ž¤[¯#AuO2t…ê¨ëÙò/‡ðç(]Îk’Wp'Ž}ÕÊq]‰Z·D"ñ–ëaÜ~} ¯6õ2 içÚâN‡4ýD­¶7`YA?kj˜ÊüMïîÞüüý :×ï‚endstream endobj 237 0 obj << /Filter /FlateDecode /Length 6576 >> stream xœ­\Í“ã¶r÷yÏϧø0·§Ivâ°ãÃ{)'õ\©Jbo•¶\ g¬4²E­×ö_ŸþH$¥Ûµ‡åPØèntÿúüé¦mÄM‹ÿâÿÛëöæñÕO¯ݽ‰ÿm7óê_¿’îFˆ&#oÞ<¼â!âÆÉ×ú¦ÕææÍáÕ·›óí] IïµÛ<Æ?”ÓrócöË÷o¾ÄM>£”‚«öæÍ=ÌóÐvû_o=üný¦¹ÅwºqAws't£µqüè›nqb¦¿½ÓÎ6!H DYÂn~å÷Ú`Ò ¼Ñºô(>q|HÃÜfèŸÆÙ†Ýy÷3Æ?w0¥kÚVà”4ÖˆMÇÓìÝ>×°ð1aàÅãýÓ(Ûüœ=¹»§_C+„Øô÷‘»yKïÓ"äkˆ¬+„!uÛ(àKäÝ¢ è«2ÐÐ!Â~Ï‹Ø|ØȨÜ=ámŦø¡OkqÍ|»;uù"w‡8$5±ßn÷Ç·ôPrïö,xée#Zo“7Ê Äc.JK)–VIZøû(,–ôðŸ 0@m>d uêq©J©Ê§¥’ÔúxÛ;¦QÈC\ç®{;=³Û#°4ï}N.™®ÛÕ9Oý€Ú c °(Ó²¡OcåU ¯q½O¤ð”ígz¥µjÓçÝcwF¢yB$ÒÕ[úí9N ›â|Œc@*Iaäý½zóÏßFñ2ïOQjüל ¡qÀ‘JnîGï†ói÷vüóý4ö¼;>ñ˜ôH‹‚~Æé‚¶„k.âk@ŸèÝFƒ–îNã}‹ÜÊŒÂxù>ÓQä…A…Л!{¤ÛöÍíQ‚TåMýZ -(`ë6¾ÚÂCçôƒ-MH{°:tI|9þ_¤Ì„rÓ3·ôæë|+íÏý~¿KÔØàGØG°&šAfûŒÌoUûý$C’ ‡þÄʊу.É`€"¹éÆk §Ëàu9á´; ÷eШۨŸ|ÍæöUÐÆ»4¨å'«ö÷Ó@§ÃRüÏ´ý£=Mo°‘tûo‘ °Óôºi.•S”„%Á=OÏ+7_W´Îo3^ïûÃDnZ~™Ü çî Š»Û2¸eD¢€‡>Ћ§¿·=Z˜V Z{6TŸ¬m¢èøÌ)mq3K¼v¥²àÍÖÌ =ë‰?¤²?Å]oa-Ç}Ç;Mz…f£ðiéeÀ=4&‡ñQ¼§AÑÊY¶wa·ÝÇ5m·qòÝÒÑáü>Óx™£Ù9ðãzæhèÐî‡÷¤q&xàí~_‹ZÚåxLÌ@kòžªÄ–;-žÖ*ïag ŒAPP p°œÐ;Gžlºv´dº†nÑ8£žºáœ3Éã_FϬ˜ó¼—WAFÔ@žMoòçι1#Û!9Ÿ8`d=XµÉfòå~/_'š|r’,ì-g¸=.F 'U²Ù¿Þ צKþ ŠöŽÜ †ã6E¯Ž#´ž|\ ƒ¡Ï†%é¤×¶~îÙ¡škæm7c<>·a›Ožire†]ª¥™æAIÍæÑ¬ˆ9λòȈU„œîSüìg—^ã7áC=Ÿ¦ÌVf²•ÙKÚ=qµûζŒð7·€¶ÚÖùq0͇¿P‘ÚìóY ]‰û“Bé¨PÒ’ùzäãßø&Ú‚‡#®OšEN·am‡n÷T› Æfø#‡E+¦7ÓІ¤yDn_ØõrÜfèÐÇm [öÌÛ]¸Æ˜PáÎ2àÞ Ïèyð“l‚,í¶h‘Ñ—T…!»VE ¦]ã”Iý7²Y ..,üq‚Ì"…c¤§v™!Ö–5QŽ´´¥¹Hq$cþgá*&L•ñd+Ã"ö .ÃYfi¢mŒlÇU ˆìëöÆ=Ú%ÈX„e“Ķ‘½¼†2 ‹þ õ4º/ÄÏuûÉ]´J#ÑÉv)^qÕIooQ¼ 7kï>™´hTj^­-V«mãü“½ÚÞꀨ ­ÃöÆm‘à}pÏhú=Q¸È:@]Tší5¢—Üóîû$ãD&QbI@ŸXC¸ÆÌ> >.Ÿ9W¢!í %æn¥åR6RŽ'Ï „ #âÓ…2ÙÆZáF–}·ÁÇ=l a–tOÃWB®é^97Ð 8cÜoßÝÖs—üƹE0 ü®Q2kBoȉLì~Ìt5·ã§cñ×½(€F‡îôXx€Q+ Ñ¶®²l+˜ÍY?,šPEÑN¼#Á(°tAÅ§Í XZ׊\.w¢qA9·/ޱ°OµZb¸j”ÈÔ| ‹hÓA/’l—N"Uà””]&‹dô'u[“uQÀéz¡Èp~“[ZÀ‡Ú(r”D2’„yêó@¥b`jC!>>‡hû-™o£)å@éYT@sèÈÜ_­i™æÏ7*Už΂ø]D‹Oæ’¨Ÿ¶M¾0Wô ¨…QÎrù€ûlk ­Æ$¬’à™HÙcJ/«´áûL×S4$‡²N“­¯í™c,Dp!&ÿþ—ÉÏŸ1”E­—’*жÅ2sçIÇ!÷ÐçÑñÍ åJ2¤çKÈÓ÷©Ôö¥}6L¾ûÂÁâ»ÚRfž˜ËÆnNÇCä„g°AØ8r¶V6³laë~H‘|tÉl‡èwAÙ ³Òª1ÈÔ„rŠ”a2äƒ!ê˜þzÄ’rÃîÀ8Bø¤3ð@J"äCq/fYs·ÞmS¬‡#PsV¶^…¬x°ÌÑTwê=ÄðÃ"’¢Ådc.#)ôfAÊÌ=Ñûf*ÅTcaH×¾Øãå‘e¸oŽà çÔI`J7Òëd-e´_>ÌÄp–ßÁðÓ]1ÆÒ˜Ç JFžMÊR¶èê žÁ@D¸$:ˆ¹•µþù:†õß™Z¿‰BÀÇ)©{Žªk!äÝH¡­s…Bÿ6 oíÅ*W´3 B ý 2Vôð­ðçqW­`(H&–ÄÂŽ˜ÿá'Ùƒú8³0sãÆc©0BЏ\[í«o„WL×°†T¹QE*ü•}Æx8žRº•~…  œè(–CªÏè—í™aªëŒ/†ëU†~ÉÞŒ„—²c¬œêFr¬!)„ÑÄ5TãÀûàÒòÇý ,f¬ŸÒ®ÿ‘g]s“Þíc¥ ?¹0ë(KF)X,¼¨y‚ê@ cÝÊ6>æÍ¨R6Ç)ñGU’±Â78Ö(x¸Û ¥»:ƒâO%¡ï6C¦ç ‚…”0ÅG€©Ý0®ºÝéî§|¶œEݘˆ„ñYM¸—2Žñ@û>¦Q)öÃw·Ë¢ù¼Žƒ9)Õ¢— $ĉ²-¨[ëÿä• £<ÄÔ,!7hÛ]c‡Ò@¨È0õ)^Û±üEõ&u¡'g¡Ý.ÏV^È|ЄÊo|B…<œÇ 8 lAÞŽ†r½€j«Û–¢TˆÄŒXž=Õ¬é}ÓÊgU™%Ñ+ …2«¢¯STwSìþÐmÏG´AD/lëï6}óØ Kžl)n–ˆ Á À:ªH¯¶ÂŠ?aQÀ çîûCJÐ9Ì.'–Ub }|¦òˆ–-e›»eäwÏËÀ¸f»?Õ/øAPh{7w®ßÝ¢3·œ×ùGnžâX-gp•î1‹(—H.K¬4Ò‚Þ[2û<ÎêÈÖÓr¯3UkðÞÞá¯ðã¢L E3êÍ;ðö°¸ð+`:)68©Â¸Äñí\'þmÕfrðÇèÜñ,n*啇ÐS5[´¶Š•88 ìkÎ;ŠÆBt}Çø”˜!0ºM™¥ýä×b:ü‡<©òc¢_–2º!§Yôý¸&S¥Ø‹èQ%·-쎮̷KŠ÷Š2L‚Z]®A¸^¨ú•å<'mÙLOx”)/ªc%²%£‰àdQƒ”kÔ*_É  ^ S'öbXk_çû0¦äT`xÀù A϶ºÜ Ù"·©4“CýÈ¿9ô¹Ø—qÞК2ãFÙ™QàGBKÄËÙ¾ŽãEâ± £ aqj»IÖišÙ¨ç"~÷Ñå¾Å¦Ìr†Í»~›jÃTMN£%6$Éf2ÿ"»Ç^òCà`†F·\¶9-üƒ*6çô-ŸÏí[Õ ¨~WfÇÔ~afA§œ.šÉ&õÌjpäN`¤M5QiRäƒÆ{Iy# ©±"o²˜jmøPÖû5ÓÜÔq!¦Ùž+>4ɇ¹²‹RTÉsJ`Ú']ª+‰Gce¸ËÑ{>WÞI²Ô ¼â4÷*¤ž¶nç¹ÆÖ³ÄÃnÒ†ÛºÝue|”äS‹X4r“ÔÖ` ¿4,´¤¶ (Þô9T.Ü Å”Àìdjg¹ œè.«[4µšõÁⲬ»Ð 'ô$3¦Oo CG~ ¢›:iŽÈpÜŠO€)½Ðµy7 [ÒŸ]2ƒÆbÃù¶k‘¸Ø‰@L5›œßÏ9~+–œoÄèþbWËrZ!N$PÍé°2RÛ©|ÞØÇ»BmÞ½_Ø›SUšZô<÷¾©­>Î T0îD?L؉ÂÚ{“hQóMœZ/€°3OŠе’‰|œõ¦¥æÝ‘‹ƒuDD4Øq §¹ï§Ûne²zD=È~—£•Çlq p–£ •ù¨aåNµäÚ7ý?ÉBRZn‘àäp²ïX}`l¹x’e€¦$QÞ½Ôw¼ïS€Da°eÁŽU /ê,p^uÁ”UQ²_d“b· n.;Ë1~O¦pŒF*óÇÀ¾­\ õyØmtƒO/yÈ·ì’½mÅø`„p«X bç³üô;®Ñ’Ës«¬·„¼Ð'[©K¥™GØW“½Ü­ÓËë…0Õê›bÌ÷õ‚K8‰ ÆeuÁQë‹Öb ç:Yë\'݃Ÿo¬sWX-‘-uÁt£[²Æ-·ÎN)ðÀ»¼_á”5;¯;ªµ×Ð~kmÚoÔO¬´Õq¿ÝIãl¬ƒ’NêK'.t|ýw– Sh¹þµL|<…©ŒÄi„ò©‰# ÂSGWˆŽžÇ^ê#]ס9þª¹õ”®Tñ’c„)i00@¤×sç'˜ù9m%Ýc…X£Îƒ…‘¬|žÜøßN%àý_DÎFÖéâ]"ʘÔ2µÈ÷¢åÜŸy\Gý×xt„Ç•ÐÀqšâa^&b`¡4…L±í‚†`|ÝÇçìÔ`ݪ(7ïlQy³áT`é8äÕ «ŒæÀþú‡Ù xÓ(¤N'ÞpSÍe()ŸDší¨Ö®)wK]ê‡êÐÍ,®¹¼—eÙ2ëA§ÆüQôªÜçRÃ.šE-Å+ …ð¸¤]PÔ¸M•ð w~ÿ{:T=<Ó9òšöÆ]Ô˜]™gYô@µ‚ýÕ¥K!Dôv%S®m{¡< Á¹3b­3jôUblòZé½rJÉÒ½}ñ‚åpùS¼d×ñiu—/?›¸ì}•l¼Sq÷ì|Ž-Ötã H¦¤« èn<¼ýó·‹ÅÝiƒ¹ëÊN=0ÂLf¸h7!©ñ¥íŒ‹®-²*6þËì=U’³QV†ÅB½âÿÌ”óPÈÆ ‰wªÔò31qê} ؇àG|û®îŒ+V«ŒtÇTëç±õÎ"¿¢8 â4Õ@àäšö›«¬8`²U•<££°._=¯£ð‘ª)È^¥¯ì²ôm#œòW¤_Èj”>\ÀŽ Ùþ‰„ˆ?_›nd^jûË$ßEFï¦aÖS¹ù·L1fœ)Þˆza¦æß¿°Qò/¼O¥&±GÀ–×Xeü÷› ÿ5øï‰AÃ’ö]¶Úu?ëŨdEû ²ÔUíͶ¿òJ¬Ùj¼[áʵÚ…¬ðë¶8)|dʧ±£1xYE’å¹Dã×^íëšc~†ÕŸ›À {ë3 ¶ÂX^Ç•ëüù¹æ»ŠwÔŠýb-¬màŸ.ia)Øâ._~6=ð{ÁÃ:ÓVÁà ˜6ÓÇ2з¶njÁø¦œ°5ÙR®–i¶œ[jÃõ¼åãC!4&ëߟ©ôìàÌ6õ#AÕæýC1?Ý»ñºªÌ÷{êôÕL/µ4kGE™.^Ò)ј=h!0«ºÇ9Ħ8f .ï¬JgÑvË„ÂÊîsÏOÁZ¥šÚR¶Çy†7–hËXŒŠ H VžÒ’Õ³ÎK-·ùbAìËïmó•Vñ1Î1 ß'ŽcʈbSÉ‚D«UE¯]–ôÏÒ ûãiif’ µPïöÝi’îÅãB„¿bòÕV Ÿì¨'¹Åò!L¡êC˜có=·wÅ¡âŸ%(Âl­/åâ§lºÓnH$yU È*þË üTAyv¿“Êx¡:7À)KùTµÇûfñÔÐî7ÊÒ2BúƒªêxTUp³zVðz*´†fÀÒÈÀ…0ÀuôU„Œýy’dl渓”}–J2­+Sqg:X,âÀ¼îÈwç';èvÓYjñïS󤂘>REm“˜·vÖP±K¯ ªhö+óqlŽ ÎrvûýqüNF¾)Ç}–¨WIÙm‘ðü•nµ Ç©:S–5‰Mót‰³*ú¢âX¥„òTž*Jݶ*u+)\ñ²Ga2ÇQ—dÝ…s]•ßÍVèõTÊ)Œ~ý%ŒùršIÏ3ãü˜™Uýi€wËÍ'4ó¥^˜sÞ ³²yºéö>¾ÛŽ~Éy°V'%W„P|_ŒÁ×r¸R4²| øjµ"3w£í˜áª+2ù¤ï"‚ß³Ø>بü|Á/5½eÕŠ=]‰ë¾œ©®´–†ÂÀbÌçu´]."f75ÀMoÞÍx‚u'[¥Ú.¦ VJIë)lýr^”„º""P ™‘󎃑^Z_håŸâÓ².– J4½r›±[J“‹õ8× ÑÑ9=bÖÕÙ¯œuߣÂóG@fb)“ ~tæÜ…ÂÐ’FU“Ê8ÍRþô<“Kõǯ.–9!´3ÆÛS]Sì ƒOi Ç4B5^·rôÇ"Zœ·]š§@ÜÉ™È5;ìåþö g©ß*)Ȭì{eÃ_­Ä^€Ï/«ÄÎ÷}U‰}î‘¥Y9õ"ÕÏ9jõ²F÷µÊùs‚ÉlîûË”€KåYý¨B¨ §oëpý£äÚ¾¬ž­"áYïKSE¾˜{V (|ZVµh ŽëfÆUFIBä]$¢‹ÜÎï±çn*ÂÏ h‘þа]ù[…/MÔöüJúc­vÉϹänðÃ`É_)žTÝÊÐ1ê“T:BÑÜQíx F$he™ÅŸ¥ZÐ1µ°Ú:µøž?%•|†à]/6¢ ¦“㺠c­qÞzÃMŸ~µ-}߯ãõíõ󷢯sS]M´Ûé»WpCh”ü2À£‘¬—â?œ¤žÑî¬Æ;—l½o¤ÖÖ4¤µTé •BšÉU]Á?[½^‚F>-ïd呾åneO!jÕXɽ¿³€–ÕT,†#¤îÞ­¨E'9DmT9·ÁmúOãw%b$g²¦å2¢éË/ëTÏO'xë©ÍcÞ­1¶4‡•æ¢Å¬laCÎ?òpwå{$èØ‚Ô®f½Su°0b‚•f \ aæÛÿTÍÜ+Õµ=ÂÚp7–Åzç è3³&Ž×ÀYN>ñ™¸ÙÀ6”r8gaÈàle ‹¦)aòW„œÑì-#çÚlŠ– ä‚ÄuãžpÄc}’»ÌË>?å]qˆj<@’w0ác~éË,|Û¼àãÄ8ÀNèªÖahR—­Ã—Žï>?k4ëã•°‰ž=®? ÑcAïõà'f¼îÙŽàûq¥uÆ)FÚãy °K_aÆn{¡Æ àßZTåºÆG)‹ÜЗ”Úñ£$J;‰ZâšñÀR³ZVZ皺àÚ„Sg8ÄpS ÉÖK§œu«)7™1ËkɨIJ̯~‚¬¤9sW=ù£Y€g2ò…D]9&ø9ƒ•%–œL ÁMI1ÑòiZ…,·«ŸçÖ~’Ã>ª@îkJ?ðÙaÄõgˆx šÃ]Öy9uét[šÆå9õM£¨f´ú)™ã‰NÊö3f©ÜçGCî0èÔ­½¹ƒ%…äX´è¾xóêáßÿÁÛ=endstream endobj 238 0 obj << /Filter /FlateDecode /Length 171 >> stream xœ]Aƒ E÷œ‚€Z“. »qaÓ´½Â`X8ÄEo_@í¢‹ÿ“aþ'oX?Ü´‘²Gpê‘‹:Àê¶ €N0[$UMµUñ˜Š«EzÂúQú÷ÇM0û|— °gÓ\ËSµ—”Ó°z© Hœtœ‹ÎAõßªÞ “9’—Vqžœtm-Š8Ožëg0ÿ”™Nª¶c/`™Ç"ünóÎçM"_€ŸVEendstream endobj 239 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 887 >> stream xœEÿkuÇïšôîÚÅL…Ê®—ÜWFÛM¡¶ŠÐÊŠìšn݆[loM4ijrÍ·&móÍ,yî’.iÖ,—¤™-éXåT6Q‰à‘±ü bÝ~ð'aLù\ve˜º?<¼Ÿçáyž÷ ÇômŽãäèéáÑ}{éAõ®2mj·n ˜ŽÃÍí`ÐAóI×Ëhö%ÄïG_ÄÚqÜ9'ßuÎù]¶«À™:Êè?Îìëà†¼Ë6e™åF-‚•wX„VaçN;§l¼à玼m„¹ÁÞ^¯×Ûcq¸{œ®™wŽç¼6ÁÊñnÞåá§¹ç¬À}`qðܳ÷zžÉ©y;ï²Z¯mš.. Ãô§ÆÎ_À°CØëx ¬½e ÓãL[wÛD[Y½blö€‚~Vж‚?RþPÐÊcE‡ÖÐCzê xêöŒâbK@•àzÙ„6Hä@ Œ²q>;“¢Ð Ù¨À['ÐhŒ\£bPÞ[K&ô y+)ÙÙÝU¿þ@r¿d¢çL»Iò•ðD0¿ eV­ÈCúº(n¡·`…ºÉFC‰Åÿ,l¾tÆ~64Ô8áöAÄ~R¿§Ï“ŠOö(Õ~ åìb¹Jõ“îš½Jó ( k°-SÿË|j×OÂLÖ›‰P¯¹2lÂ¥Rã´Hn˵êz9•ˆ]LE)có2ìAi¡ÁÿVþTЇʣ—*jÐ_è˜Ì/lL_ ve—ÒðPˆ%ÊE(çâÙˆdºœ;wß½ËOÞaåoí£I;\×:Y­ñ?„•Øä„ÉÏccQßs¨öߥR–ǹMÈŒ6è­¯Ówá;¨Çï~zçNä/;‚÷g_óQš…è*|ùëïßZµN¶û´“¬Æh ºem V)U"[Hk-ˆ À Aj÷* a˜Ëù©Çh›ÎŠ1E¸!¥¢aÚÈooRÇ#C^Rwªhè¾Ä>C~¤îб$æcb0cz:ˆæŸjóÁD,á®”(°O†ÑD»‘éèVw¶Ðà=|™éèÕ1útóÍh!ÍãO$ 5›„…BZi•eô‹ÈÌè—4ój²Õ€®ÈR>*-K&£w½9T!´×ÈÛ·÷±úþuC‡²b0´â û‘Ëœ"endstream endobj 240 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1403 >> stream xœ•“[LSwÇO)Ô£«Ý%t+SOûâ-3^–M§qêd.S(‚sxH+í ôvè…ÒJ{èé¯wZz ´ ¥™8 Ù¼‚‹q &[æm1a&nÑDŸÎÁã’U¶‡=l¾|óÿç÷òùý¾ß/ ÉÏCX,§X,Þ»ùÅk½ŒE/Ï£W°©}Ö;_R\6pó3Ë9Ëß Ô¯Sµ¯R•¯!l«Yk+VªŒyƒ ­©_+Ú´uë–u¢w7nÜ*úH!ÕÈëëšEâ:\&UÔá¹O“è3e½\ŠEk¶Ëp\µmý^¿¾N¡]¯Ô4ìX»N¤—ã2Ñ©VªÑI%¢O”͸¨¬N!-À­_Ðb¥BÕ‚K5"±R"Õ4#‚âû$ò/›ò9ò²Ù‡” ¥ˆ)CçvCò‚UÈú>¯&ïû|þꂵ´“G«:²4ç,µ;É¢8÷ØÔ ½ŒO±8ɤã0 WrÆ(̇¸‹R†°Éª¶7Ú0 ³¡€A8:p¹ºœDW—¯9I@ŸpÊ™vÞ)kQÅ%éujÑMjE¯—ìiµ„•Àä»ÔÖzÂ5Çß/äͨËNQù´ò,‹âR({~)ý”ßõ®šÈaÝ6£Î™c1€Á¥54Ú­u+=Z°ƒùÀé5wÃ0¤ §ä q‚´“v†óüˆ@÷Á'KÁ bêüŒ?< tÈ4Ð$Q4.¹~ä!…P웇0Þü›¹{¼•¥¾¸Èº5ǦŸÎ¯ã»}žø!¡wY]L¾MÐ겸GMQˆg‚$Å\m@:-º÷MŸê‹ÍCòq1 L!ƒ1o3«ä¶xnvf*ö—ÎvÂNö¦'b×Àz\ci7ua¦2]•P¹óL< ^ŸpçŸ0in;(®j×Z/ùéÜÀãìŒ0såâø·€Þêßn:Í<ºâoâÂ+9wFn³©'óùü”1«šÕÍš¾¶Ál:“Æö3Où¾p(å yC¾0ô¢ÓÕ£Õ+kA á³ÅbÞ@È‹|tyè$ É ×;rhÂCL¡µH‹¼È¢ ,ЊVM5\}r ¾€7»ƒ3Uß_¨ÑI%ñè¨Gw3µYúî?P‘G”íW6-ÉAe´aS£¦I«KÒÙtcänâv•WUêTº}n¯ÜÂx$˜€8šUÍ*EˉÊÖs³÷kŠ›ÁPϘ»pþÒäUˆBÄêÙÛ” C‡í±Á3‰ “ÙšÒòÃõG±CÇšÔ'Ì(^ّϻȺ“«ëå—Ø„÷¼Uàl'm`F˦eÓߤF†bØÈdt|ÿJ¢ñcü¸,WP˜'<ÝÞ!ïÙÝ…€±æÿ¸Ë¦¿ñ Mv´¥·½¯¯7ïÆ<И?9ø@öõ†B§Ç.'û'3¹ÿU†òZ‘ñ˜ÐÑj7ýw~Œµ•G5›™d°/4 ì9ùµ®¡÷ŧwܫ߼süR>ºª¡ÄT²¸½§_ RPãÆFu]{%8ÑöPW(á&üXò^ê«, §=2“©£Þ®ÚUlj»Æ¡¶kìJk58^‚\ÛQßÙ(äéèâpO¥à0µáEcKæ^Á–äoIrù¸\ù mJôYendstream endobj 241 0 obj << /Filter /FlateDecode /Length 203 >> stream xœ]Á †ï<o0֙̓ᢗ4F}Åpܾ½¥sÆxøH>hCÿVûþÐÇ0ÉêœG{ÅIú]Æç8g‹rÀ{ˆ¢é‚>Ƨ}˜$ªýѤÛ+¡¤ô‹ŸÌ«K[¾ª—&;:|&c1›xG±SJï¼×£û{ê–†ÁÿTjФfH;Òz£€vCÚPaTSŠé`Ô–´m5£T7í4Cêx’õÏ2T‰·¦‘vÎãÄ;àŒ%Zˆø]SSé’„xϺeëendstream endobj 242 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 982 >> stream xœU’mL[UÇï¥ÐžiÅ×&à´÷~pdl‰Ñ²E5¸’ ¾ »Ðn}aíÅòÖ–¶”Þö¡úré­PÞ¥ FQ3MºðÁÄøaY2ôË¢ñ_–,Ñ/Æd9·>xËâ¢É9'Ï9Orþ¿ÿ?MUWQ4MkÍíݯWªSÊIZy¡JyQD,—C5 ×€¾zõïožÁ©§qøI<ö¥£i§'$JKëf×ШÛ6håÙ†þFöŒÉôZ{¶¥Åľéàܶ~‹“m·ðVÎaáÕ‹ítõÛ8~”mhµòüЧO{½Þf‹ÃÓìržklb½6ÞÊvpÎý9w‰}ÇåäÙ-Ž=æk>>Í.ÇÐ0ϹÙv×%Îí´xÔÚæ¹â¨ÈØ9çäíœÇÃ]¶Ø‡Ü6GQ”n`Òœ}®…¢>¥z¨M:N=C'(¤š§ª)™~…î IUOÕm^j• JϦҷIã‘»üƒò—6àËâvjnkãÖlv& £\|„jê>7’´.öQ÷'¦é@< àÒñß#;])—€ Ò§ƒ+Ð{{à;÷­pPN‚œ‚ð Óœ¼|sj[ E„t° ?T¼»VØ“¾³‚mtÌTRz ÿ2ýi€-øö➥ðÞ|/ ÿ$øŽe™û‘boz „)ð!¢~Ø ïcdíësùº„€úlG¤Mmºlb.çÛÓþø”Š|ó cêý_fŒø3ÀÚµÂõ­½ô®(ϤTËpLL4)÷\Cµå;Ø[¢ï•Ojʰװ° kkÃ0Îý¬ž_…F%ß]Qž_¦ñäå ®3d""ÌZÈÉù¥àìDŠiÛö̼ŒO|_——2iQJŠdP6²ä0’—s¸!±ÛpBý(ø&D èr¤‘Ôß%˜†úqŸtDŠ~1Åܱ¯Oî{ɉ‹uaa$‚!!4šó/¤ß0bÝoäÕïbH–3ËRt'ž5Fw…¯…¢ê¦ëƒŽU}ï¦FùõŽ:´2f0z€›a“öQƒ´jI9EXò1ã— ƒßepëú&-i‚ø1S Œœ+aÓŠr¸ü0¶¾2mÈ&3Iuš²Áy|"ãÑ!Ù DBð׫ƒÉF”CR¬“§ ’%IΆSþ$s´—j”£Õ‡˜|ó@;ö(x|ãÆŠru™ÞÆQ Î+NÜ<› ]w¬ºú'­¾¨‘<{dŽ@€x=„’1IȇPQIBjÕzÖËçW´Ä˜Õ•+=^Êëõê~‚¢þ"ùPendstream endobj 243 0 obj << /Filter /FlateDecode /Length 176 >> stream xœ]1à EwNá€Ô.KºdhTµ½1!Co_ MUuø–žío}Ó~¸ Î& ·èÕëtÄÕoQ!L8[GZÚªô¡ZÕ"¡ýU†ç+ ä4;rAzçüT[ínR^ã¤Â(ÝŒ¤kÑ#:ý7â»a2?›EŒµLdä¢*ã9#Ï“"ÖpV¯¾r¸D<ÚbD—ê5g‰g~_ >d‘7î·Y2endstream endobj 244 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 549 >> stream xœÍOÓ`Æß—ÙàœB²üè^ˆ&@43Æ,ñ6’(&^šÑÐ![G[W÷‰PGaoq°N6ºBKÜ01büˆWvð 'ïþij§vNçÏ“ßszžg€ºÁé‡WþÓEû´ÏwÙ7Ø_º±ÛÝÎ}{¯Ïâ{­…ÓÖÜÐ a”_y¡ØX‚ Ï1 )¿ÿêº<9éG·#4QQ¤†ŽPB;, i6¦…¾ÎBìÚÄ„(ŠãT„g¹¹#cH ºGó4§gÑ6* »T„Fqã°‘ØæP¥¹(Å·9Ì?n701.¡à˜àæ!î¼N0 ~BŸ½æù}ßÐêm>r4ß[‚·ZÃõ:‡S¾¿=®‡k¸êó4ûMû¬mÚôÖ¸ˆ ½ªFzK*øfÌóÁޯϯ_îªZqg„‘Ò’RN^•ÈÖД²Sx§”6 õ+Ö =]I$SÙäziJ‘IåYV²­¡ã~i3W0‘L¥EQË©²ï(~o<½D±Ë )ý<³ŠEB¬¦uUßVËäŽz¸_)½5˪YÎgd&¿´<ÚŸ¬fõ]­¢++ÇùM2¿-ÈW ?š6oÀo–æ°¾ÛóÞ¢¶±·ˆ7l}>´Ädd²…þÜZÏ­IXH~’”R¡¤Hÿªy³æj –O4z'¦ÛÝÖ)þ…Ïãºendstream endobj 245 0 obj << /Filter /FlateDecode /Length 5537 >> stream xœÅ\Ë#Çy×yN1œsŠ{’e§Þ;:XŽì@°!;¤=ôrzG”ÈåŠäjµþëó=ªº«º›CŽ$#ØÃ4»ëùÕ÷ø}ÚïnE+oþK×»qûxóݤ··éÏzwûÉýÍ¿ÿ·²·R¶ÑZu{ÿú†»È[¯n½­0öö~wóeóýÕØH6ÝaÓ½¹ðÉÇØ¬û»•V®Â4ÃÛ~½ß½½[Áûè¼nöÇÍi³ƒ-muh6Gî£nº;óHË96Ûî梋ͶO]±ùñîåýg°nã«uKÝê nWÚµAGy{ÿW­`˜e%Z'„®9à3,ÓDÓ|Õà „•–Ç…¾Å¸J´&À£à?¥®°Y»´Ûqhü%6Ž18!Sk]¶†•Ymný7j ñ1µŽekؽ—"æÖßð‚ñŠ[k_­•ð¹ñV-bÃ:^Ž«n¾ºƒCô¡õÁ7L£Ø[ذ’&„ÃögÚhL"ÿuEÊD[`åZcðßJ·6Øh¸×ÿb/#„²~a"Ùª „¾]?H8Â’BoÒL²\\€'BÞáÇÃÔv3î¹ù‘àßLY¢š…Øêxõ|^ÊÜvÆkõIºV`äO)Ô>ÉrWN5µÌôô©Nø »QÈs·’”£üˆ ÓâãD­Ôš¶ j(ñ¼g©8)b”šÐdÆBfÊBÆªè·ØX )@ÓFP÷(µôC #MäùÃÓÜXwãZ'ÁtU냡&¦NÈÖù´u0 ´Ýý77+ h¥Ð:kÒ(ï¿fëöÍ6ý¡¿[Téº5ÚTÄd;s†½æÄLòô²ªðÀ½ºÞàǬ¤-YPàï`Â{W.ª¶wZµléµwWºœlõ†®’Q}ÁÐiX’^²QÀ´ŽgQÜ ¬ŠƒdãX“²æ/Ë6‰’Í d­¹R %a.«# ìG+$)HCŸá™™G/0/ê"Xú‰Ì󳂥rìXšóPÁq?<‰?–™h3#ýt†9ývÔîOO …èäó@Å9¾­°Ý„Ýbm¿\Ô~ øGOË!<ÊàÏÛ‘+Tßœ†“3U¦¨7ô÷_Ռ̵/’ù¸+`\ðd“«Dn /Ûæ¸Çg ~iöE“öne4‰ªùý¶ïÛw&s*Žƒºl‹"xM²éߌÞªã›7Åû·Åó;z6Q¹ÐœØ³}[r+ÀJƸ„å»:aVd½?úmwêðH½öynÚùwVñ‘‚×f¢+½Ã7äòi0¤§ÍéNyôeóû€éÕº)(²çpÛ’Rý!µϳ˜z¿}¤e|ÕtÛryûwÅ8_§-8Ò{´CðvþaÛ«ŠžåQ®ö‡Uÿ!“Š’©åvuÚÿŽRƒÿ¢äG:h ìþ»;|¶p6Ð ß[7Ð _£Ÿ"›-“Mo$* éGY$0žú@º¹ÿW8£í{¢¦täV#\ »È)"i¼æt(ÈÐu‡¼´PóIñå”zH\Jzt|Â’µ×»ádýë¢ç–› f=á1JOŒ}èO´WVC‰EŒ… ¾IœAbó³ÕH>Ü•º9ÃoN›ïñCŒ†ÌÎË1Uóþðv쀧8Dyÿzì6‘E5î" Q}½:Ifp,÷øŒñIPÒ/)ÛŸ]†¡Ï¯JG ~¤ðĬéuµP&‡¼C <ü™ê5K·8úD¸O¸ÍÁèyè{zrÀWý¡ÛnSÌGêf×7…`tù›°‹1#j´î[f_ßZ;]Ëç#;R”`ÈãvÿjxŸ'AUôÅðöwøÏÕ7ï7¼F”Ø9*[|Î^¿«µC…ƒSe´Rd}E Ûf…‡“Ì^léHܸ*˜“ÃZ0Š-é;ßl*k06^÷ÇE†S1‚C1øß_P´dWņóíÔv}6õŸ'* éfxðIwQÁI)õl ¨—TJ@=>J€ áÒšü¤Õ#êL1?»ó; cÍ4¶b(×XS9µèoO°æVÕ2ZãŒp¹yeÊ7k8°öå뙕Yþ?®“D‘ñfÑnÑ2Ë“MÔ{5*‡BIû>ëAð7ôìHóNÙ›€èÒ86Ȭb©Ò ß³]¤ qcÝ;üÄ]ÉHÆ6‰+ÙXZÑgǯÑú—&¤'¯‘ÔÕIÕÕð™õ.¦|K*öîšýñ¸©ƒÍ‹ºUâ ‰ŸM%qZm˃BÈT÷ R*U,¦Dd%j{(­ÓCÚ dYvö@õYºæxZ¶c ¢,"5gø]áòr3YÙË3‘yð„[²8Óz3Õý÷•:ž ²X üORŠ *Þ„s6x¦Ð–«öv4O, N¥ú*æ$lHñ¦Ó'] hh×îú®‚CFò€µ±ð³šH*oÆÕ|Àç7cLv÷öÎ ÄÝ›5<¡} C× À ÀàWêZÎ[ìäØŸÏÈÀ‘hu½´HP—KS]븤n&køt,ôÀ`щ0xF¸—ãè%- À•Ö±&|úª`ÓîHXØ ß`k Â1£=ƒXxŽhÛ?Þ‘úÛ*IÀšzÙ¦H¨uÛŒ×OóÐz8zîà/cOŸ½G ¤@p4mù~mT%âÊØÖŒI¯#­B` =þxSþ(›-3(gGìðºô˜Jp˜,îÔÔÚ{vjÀ/|LÄ•ª¤4œhwü~AŸu·]—£o3ìdz°)™<]ÓJ“=ÝœKJÔÓ²yÏòíy¡À¿¬¡ð‡ô”œðD¼KÆ4vŽÏöü©q{3ŒˆCœ#´ dØŽNÀ¥†Ð¬7 ¦âGÆõô5Áî»5û“ð¥x]ÎSxL%O¿AB_MÎâ ¼Æ`)ûæ)dkZMi®‘§R„ÿDÏ ™f1¡1˜Ú­Ø*‹H¼S°f»Æ£‡ÎÈÑæ}ë\ì–m€:7 Ír|â'cÉ&O”E¢-k‹·Åó»âù4¦Ñk·iôz¶ý‹Å=È`ÁnEÔq•U”1^uÍsˆ³ŸÂæR·ãñÀaa8ª„Èõ ‘cF Z]Nƒ×ჼ.®1\âsâÊÒ_W~2 17ñdXYióü¯tæúï§÷7…^>ܾ¿·•ìd ºÜÙZ}»»!‘ˆÃ›íÍg+G&ˆ3UŽh¡ #ˆ»×èOå#K,ðL§L?¨©SæGÒ/„ºõ„¿$Èp­*²”%ÓL4nMÈ!s¨§™Cä´‚ÿ,ç)¸bõrœ^ïOß°•¥Ÿ˜ üY[ Ô&ŠßØój,‰ ¦[Ö)ÞŽ¹ÑA/ÀZ ‚“^TO¦ºd+H*ai­’¹>çžSà¿/Ë@|¦L\£¥¦ú…´–”µÖº¬e0Ó<×2Ìë°E}½º›°£m½òzôd®k^4Íu›Œµ•£•,ËGÏ(yFŽj¿ÖR™ úKæUÝå G¥e1óè‡7?Niið?úÿ?¥UœÍE­…"J¶V 4a¹däiÍ%Э4—™Õ‰Êk2ýÚü¼¦¿H=<«TêbMp¹»™éÇšà:}ùÑ,yóDAæ¬Òó¼í&˜Ú~+9“8Áo+ÐL c&~ö¤ØÛW+fsžõ@}øñ s-Ü",ùUµ_uV`¯—ÃYÍ W¦µZÈ]“œÖ¼Žù*\,ë#z¬Â¼ŒmÁBüìe}3˜ú4¯>¦†YaÜGÓ0ÿEœú÷ª,r*/8€¦‹)T` »îî°°GF{“Þ‚gV'îèmȉ;úåäTõ/ºrÂë „ÿY\®é&=)‹ªÏ |a }4˜O$-\luÁ«NTxꛇw`™ë°,0¨J``ôªÌ±N0¬‰Œè¡¯ÁPzxL A‰t¯W)5€Qrí'éÖ‚T…‚èφòx)`‹‹ðÀlM©+ÀÊV*ÏYŠ}.ÐH ˜ÚËë,êq\NÉ,Ç4:4)­–ÐtoËÁ9¶­2œÏð—C±úI±Ž3ÁhÝ e J{Œä½³œ×Y™r è®>˜ãi³Î«ÈYÅêÊôOÊŽšÆ`æZY…`¹HËjç±ÀmÈ¢ÒRW![lŠ÷²=ž‰æbNB˜ŸU\km†Ðÿr݇Ö}x­ÀÕŒÎîñ6²A›¥êvèà0̳Šôê R*Ò‚Øcóxù!ßX_áE©Î* 1¹ÿ£È4œ»°^u™ßžÕÐè‰~wÜ% Àap›j™Îù¢°¡ ¦ó<ØiÓûiÝeÊ)bBjd· 狨³vZº!éò:‚Þ—¹ùeèKy¤+€””s•*I¾ HÓûAáöýÄßœt¥¬j­œÌ Ø•bPõi!ަ eÕg¢'’pŸ‰ûÂY¸œo™C”³ÀçUS Bpm+F9ÂbyŠC˜Äú\Œ„® PµìRðc´i)øQ˜¨eÈmZ+¦µVc„lZHéúËpçë|¨$’ãÀ±’Ha›º.´ËyfÜ–óç97íˆë¥°±½²*áŒzs,ÿºpŒ aT‰“â†IàÆÄV;MfOBxXá‹&vŠ(ŒÖ3¸&j£)>Oyõä-O°(“¦t°íÅ ÊúÇQ¥¤úд ÐU;2ÄÎû\ÑL•TY­ÌU”M?¤^ÖÏÃBSÿÛñŒs†LcÉO£À 3ç ¯+KFíGÑÅ‘ìªÄ\ ‰ÿéЗŒRHÏ sÕMw¼ŽTÒLo—f†-”…ìIõ»EÕŸh}Ì2ç=—6»Íߺân¾©ÔÙ!Õ\ó±lûݱÍÎÝ¤ÕÆ±·n3 1KÕJpEDxÒüá4""8ׂ`ú )Š×Y}h~Ï;°X‡Úh>­£ÅëÜ(ëîHsì‹CZ¯A??r£ ^yHÁ>C-ÎbÈ{qÙRúAB ¢¨éÂË¢c®ÜT ÊàÈ–¯±Â^°«x»b±ð ((1Óç?K§•Þ>AŽCÅCZfÜÇML³ë†Àæ‡Ô˜«w_ÈSÿxè¶ÇÔ#Äe·ß¦g¥š¾ÐÃ/¸HŒ‚ú w9Ø‹cÁPä申*a^ ¾¾.š˜Ò f’ÊËãR(›¦®«b÷§ÜÆ7ÇÓ¡Û<~Msh¼´Q®x?Ô“uEr #Ïdã÷Š)Â,ÊZD|û«ÅhzÒnžµ.Œ¡W!pÝ誒ý°‘ê¦^ÑZ8¬Íeóy÷mA¼mÿ!èTó/yðØ|þëÿ*Áüc÷& Žê—ʼL-A§WÀp}Ø$Äc<EšVòÍc™ì>ù¬6‡Íšزù¤£‚Ê葉 ÓAûV,$PjôºbMÀÜ/f'(Í"Øs ‰Ó¿ñ9¼'¸Nð‰ë( JUËh·àˆgPÚ·g926(Z ÞîÛõi°*K8©ŒE™×•²*8– óSÚmu§lApߙیç±ek5jãu¼²Ù\ÊåçòܶcÛÇ¥-)•ê´éM«–œ”æÁg¾06b:¾™\På=ûm^geöºC·C”sGíf'8^™H™­b2¾ÂÈãŽÈ~8pfÈjjnSb‘G¼)XU¦A ý<ú4ªŸÄ'^r>ˆ’)áL]¥{–j†÷£–Ù~`€„¬Z&‡û Œ¶S#Ó5K‘­Ù5KFi—;h¾ÆùÎש °V—€Î ¥Ž_ø¾œ¡U÷?╯SKˆ !¹ÓÀ½|SK° 9Ø–jóH%AÛ?wn{1ÞôèOyímóÒA·Éø’Úñ}–¶ Šéû"å7ÁG‹(YppâÝþ¥ ÈFÿŸÑHòSo„ÐOÖnóh, ü|N{¡|€¶›D]ËM¥4{œf\WN¨V9¿‚ËÚÓÔбT@éXÑQ³òKíÉòHS¶ßò@®¾ú–ë‘M;ÖäfñöS}&‡c¯^±:Üó3ÎY©ÏWx‰Cñ9Îj´×Ä9ÿ\Pƒ4b.Wš$/)uÍTàñý«1Ô¼Í-äS†XÖzvªþTVËo¾%&5 $f»áº#ÑæäÛŠr|ÔºÉ4°õ9uG¦Ž$··+Íõ"÷ Â«ñ˜éUß9놬ù÷£mÃé[®8g-2ËPA@mí“‚°èeÑ’©˜Ð/ux‘‡ò’/Q.”“› Ü8õIL, t•#8s­OcQíw ¾á}¬Ó°ÀÑ!Xõ] -ÈÁjÂË3~,¼½t=B¶n¼2³A¢¼Ïeœi9‘B„è¸æ‡îx*Ú½.¥v‹ÊˆHæãžà:J¬V™(Š"EÝbÌqÞVÀð&–‰I‰5bT{÷×›ÿµ˜s™endstream endobj 246 0 obj << /Filter /FlateDecode /Length 5720 >> stream xœÕ][“ÜÆu–“7>%UÎS×<ÅG £ïÝRù!RTN\bÓ[•ªz€f±Ë‘gw¨™‘hú×çœÓÝ@w˜ËrIËÅ*ôõ\¿súÂïMÍ þ ÿ®îŸ5‹»gß?côvþYÝ/¾¸~öë\-«R|q}ûÌWa æ±u#ÕâúþÙ˪}X6ðËHãTu³¼ÖÖNºêMòz·]r];«Lõãò ßk§]µ¾YöÏÝ>Tu¶jñÑÕMcªÕö>4ä\µé]ü$ªvµÚþ@ß\ë–ÜÔ²¼:¬††ïb Vmo㳪¯“¾C×VU? o’¶WÝîЮ}ÂØê@O`ջФ¬Âg Cû‘¦«µ¨¶›ñ­“\U]2Ýzy¥¹¤‘|±[wÿœôõni‘êÖVŸ.¯d£ˆí!’GT]»òä„"¯Ãk ýº]{Xo“qsý»gLÖR*³¸þúÙõ¯^zHí}ðÏNÛêù—Ï¿Ä_ º€ùúù±êuO|œ¾/-Eµo[h2›uJ«»ØŒ­nwÛûáWIrl >ìºî&”’ªúíÿÄOdèŠieµÝÃôÖÛÐD(VCOÕ6aÖá Ê•ÓÌÂèÒ÷C÷ë}˜9«|aå,<ïº%4×XËPzû×ëÕaôEÇo¡›n'‰õMoÚÝ]·DÂ#µ_U«v×Ýþ0ˆð†K%§¨¼ÝwýWËP¤kßðJ'&úg[­‡ò KRÅÀŠª¡V6[OQÇŒ¬ª²¯QÜ\õeúò&ig—o7q@ž?R ^Æf¤9Í€±tt».kדšÚÒ‘«ÒqÊÛäG6§Oq"Šú]$L¨KÅrÃÆ'N'’ÿ]ò:rn›µáy½"SÅ )ïŠtˆ’oqEùfDh(²Y%Ðz¹¢*…9lC»LWÏ·ÁœUdòèmõe»CRÃ`«ƒsèîv;‘› ‰ÕÕïB¸žÚ‡*±Hw=µQÝA„ÆQšŽ&VÓ3h@IyOy‰~aK %âjÙ[+颵Ú ¯ªmÊ‘=òÙ!@MzäP`ý{p5o½•s½Ýý1¥óPúΗFiiQT!ØŠpæcî^‡æ%Gùé+@WìAß°ÒØÅ‚Ûo…ëvƒ£èn†–w]œ·âU¦¢Ý«%Àùj㵩"5€2¡‡ ?dµé“æh¥ø´Ud0ƒe÷Þt[4Ëœx=®0QÏ–Ä“®SžÄ'TžàÕÐl$eVÛ]—pȰväÄüb4FIòXínÝ&Ô\oP¡ƒ[|Ê+}ùNC*Ššß¢ó”c4à¢mÍ4l3 nXß{•óÅ5‹bèI3¼ÏQÊPdU°bvÒ µÁº(k¢Lzš“_(ÁÄHèè5«ÿ“ÜKîÜP&úRnU$¯É? !RÕ¦†”ZPA¤6¾Ý֫ăc$›Ž¨Ä8GÀ›&Å›h!¸Ìy}0sï{äÖJ÷áÇCú#-ZÍP,Z1x ­ÞŽYCCê‰#°f•Šâj“Lª°DðFƒ¢MÍL€RÒľï·~¬A\ºô×f95x!j­u¬@#u•÷]ðÒ{|:ŠÄÛ×™Ñ% k˜©Ë]¬¢ «ÅU© 8l• 07è÷¸®nÑ^®Èü¡—£¯h««oÔ¸'+…•wôèPWh´ÜChz6Þ°pR¥Jb=뎢¯ŒdÛ ‘—ÌHEʦÍ>^ç8Cªµ³‘êߦÒö«ÒÎ7g [‚T÷*¬ 4_ŽNÛZ«^Iw©½™"fk©X „ëïù _æ£ÇÖþ{Ð}b¸#ûÛ#D^]xŸ€îˆOhÖ0Jd*'þ«ô¸Ppï(¥>(Âø7Áló(DU¾€FÝf³þellýKÁ¿_¢!DÕAY€cÒ¨ê«uP©)BÀQRû:¥^»dHú¯`^ûÌeæ9zS تۭRŒ[{lDôÓè`=Ô¹bh\Aô4lÞäHEhAÆ÷U(¸8e«ÿˆ0(#‰æÄ±½³I ÑÝw¡`L¯ÑÔ¼Î=›f¥H/¡pt¡> ¥2¬bAÜ@Ž€U¦aÞŠ»Ú:·µ€ÑêÔ–ƒEâœèß –0Ã'Å$SKͬ…í.Ué]œ‰Œ.8g?fàÌa{ çCwßýc·:ÐŒ3Ë£€*àñúG¨ò¿K‹ò#½1Âv`þiÝ-)ƒ.@1ÄíÄk.Y ³à’¾ØI ‰ÑdÊzÔE‘B‘Mßbá$i4f¹+èu³¾‰U…ç®oZÏ&8¶»]b**\æõæBKBsD ÀäIÛ«>^~Ìau ̯_H‘»8^ü¢Aû…C€œJçÖü!h{,ýªÂâ$š…â"+.AߘS±øŸ°4˜vÙØ©Æ ‰h_5J‚ŠX@/¿¡š­2ŸM‚ËÚ0mh¤4تÿ{¬#›†«à*¤JôjsR.j¦Tc}Š—L#• :(‚ ü»8üè2ŃZ1¸-1ü5E%¢6ÌÉ)0Q ÆÙBÔÒÆæ‘ŽùÀú`ždÒ× PÜ–7ÐuZgÌÂ|pÈBnDÆÂY¢Â°ˆßO0¬e9¬ÜJ’vÃè†Bœë p"‡ØYni˜4?Ícæ©:Ì>l7{]a¼ß|J_cš†Šè2?E-ˆÌŸÏ0/u¶É³OF°¦šã“ï¶d„­ Ïš0Më_ƒ&W·]{H[Ùu¡  JÂ!aÜ =:Àžï“ó9wbæ.yÿwY.çpµ½½Ê™xiÃ2¾Jåï§ò!mŠÚò…«w åêÁtQR9Â$9J#¨~FuøÁþðý0èn’R¡À“Ú2í ¤žì9ÏÿV>„Ú ÷) wRžBó8€õf‡“ÇÍ]–ê<„ÔMÈ2aRÜ(4cÀîïSz§­)Á†åÀÎÜ÷iÅ­×]'TàºÑ² ‹lUL©dð‹¤Ñ0šE$Ä:±„(êV†¿M`ô®kCE„Ÿ÷Ûý!4c5Lån×í÷Iã;­‡¥†{“s2ÙPæÆ ™¼-¦Hi\Lž #…Rµrúâ8²±)<¢a˜Ìa CXašèhzÂÆŽ¾I¤sá³Ô|ªmYVŒV{¼Väéaz ht}—qKVÓ=ÖŒªeu¾ÛFÿ…‹Y±ùÜ:+Ù2!&‡¤í%°D§¼Á< Ï ¡š8ÅÔå,Uõ¢»õ S^ÉöK¯2“óR>yM)rz#tX$LÍSc‡o€øÿ%Ð h|½Mlw­ûÌó°Ý´CÑ—‚}3Œ$ÒàŠãR²*¢6ÉuÁúz®¶ÙjpHö¸$mÄÊ„”¢µÑ·kŠT)ÚMöC`·O:èQªoÖÞÕÞ LÅï'¢.bF—Ý|Hýäà¶0t‡œ÷àói1Köäå†Q‰Åïö+D >í2½¡£2LÍϬù¯Àí}ê(†ê÷_¤H÷úu²¾štÈóx›š®Ýoût¤_~”‰ å@,JÖ)q÷qµ4&BG“à8‰Ý}žü§u$©ò}*C©•YH‰ŠµU†Œ¤ÆATë(‹Ò¥ön•UDôIìÞæÓ(|”Ÿàqg+9!õ—š•šÎv“14cªH ÁdS3h“}ÿމ¾">r¦Zâ#î ý‘“a±«•ÍêŒbˆeÓñPsoÚ¾*L[=ãš “®ÖÁR•¿)ªäí£‰Á˜í*«3ê&áICİ@_ \óø(2.Ò ¬ðUVå%é°®aS¼5Wé½äŸ©4]ãBi—–13¬éc5ŠT B>å0 NçIéÒad¬Žþb‚Õär’Óª¶€wÎéoÊùªÉùfŒøÛrdY7(./˜w"ÅBCÓ5f¨ÆÿMÈ`– Ì.®È„„,â ¬ÁÀ…Ç dÑ~úFi胇LÊ’‘ mTCÔøEB«uÃ5K©:¯ ¶f\;$1bú_Us‰ž4×ÈeŠM *Kq½=&Iy”RV\<(fm1¨Q~k"í&zRÝŒJ²×€‚°'KË–SvœOû,Lo>éœëü³åU 2$~% ów 6 ¤{Ÿ·LAG±’C‹™:Y\ß÷`Vfh6…ÂíP<‚bGûÚ],`s’df6ݧ“pCä` ÆÏ@!¬= èKžN ÒTœ´C h/¤ÍÓ©dÜDz06ÚzãÎÜÙÖ½áÁ¼K›Øw«´œ1ï`Uɼ£°‚­ ΃}— Þ¾«ëž­»Ü0(§TççÞ8™i$º Àóû² }úbvö Ñ à›Ðfr†PÅ$UpžŽ8azù¤ýQûÊöIƒn×L"A?6ý GéöJ¨éH¡šÞ}í·,D ÊÎø­Æš·M¸’x¹“Ö¸7M¥~ ÖXÌY¦¾Êç¥ßfä·æÇäf}ißÁ'å˜rOBédÆÖ³\\ßü{ú]wziéäô 6gnN­B=V¹ õÄÀ•·³'0’ s|[¢2#.Fþ\\ o‘\À.!æf››WS[0~rÁìãk7O"ÿ±áì‘ÿØnÀ9v=Ïùv)zÔn>"‚.b*‚þi„˜Ò‘):Ô 3 ¶'9 ©š\@<gýöå÷Ñr5í'8ˆsÜR0Š«E®µÎH^ÆÕ£…ü±µµ®@ןŒÐõ)qŠ?IL”FgóIZõÌ9:«’;§ Ì~êˆ/ 0Î0¼ÐŒÆûÓàgÇ"Jœuµe"$eþá8 0÷ãwhèÚÆñ öš\>¹Ô}´¸ô=‡5“!˜ä΀—À‡‹£6~~N®Ú¿ jC×,ãnÀQLÚ2¨Á(.ì_CûŒ»É”EOÞÌ4ý±Â% n›F·ñû¹áR²îX¸T¦¤Ÿ0\zŠ4_¶ú0ëäû:Ÿ÷3}ï>áùž¦Ï'(s(½úÈKAß_vâ,yø OG§V€¾Ÿ2Ò;WG¤'„þ‰¾ù÷Ì}Ï+ìùx”¸ Òf¦·>î ÎIm ™þ³‚ýcÑYÊq±T]Œ³©:cg¤ççžJÖçQ\>¨ãàr<ªsz†ÌÖ{Æ$²ÈÝxˆüŠw š¢`Ž)8iŠ3i›_2`~qw¶tŽ 5"Ûx²{B¶˜ø#ºS§Þð¨þ¾ÿ1’+NÐ&„âéaÇ㎴ÑaþxJø;¸ß»|æ‘)b9P*c]ØubhAe~ÉÍDJ—ï:9„]'nè’³w ª$I®p°áXàÉxÄ%ÁËùYÈ~;“d!iÓ´xáê ZÒ!ù©n”9vìç ˆž`ÉÓ´¿nˆn@1>DO–ˆž$/Ûhñaó²ÂšsѺ°eªý4TDɹ0:}Zª*&ŽºxawŸ@¹þŒ¡âèø!gïµÏå¨JÀÒÓ/è%tÎϧ—¬{Â|ú,òê™wù*åq,šXù# NÖ8êtPÖÿê¡ú%•Ÿm…wá.³ølåøDšðGêÓ YÒ#rt¶Öf[߯fF÷hQ+Í™Çuý`Ó±Þ„†áuz>¬{ïµLÏ¥{š¥¶éýKÃx íi_{O'î“SáOw>ô²‹Ÿ6qXJWÙyj¿G[±ô®Øš.gy)Île§Hö‡ !„¿Èém;óDîðA§7ó„¦3äÄãÏY`)ëF ^X:°6:?ØôüHvVËLI3øop˜õV뜀òø§ä’†¸4ð¢„kÞØá Œ>H^õ»DcòàÈÊÔÑSÐâJ¼BªMO®¥E©wUq„¬F®GmÔ[ÝûZ¤I&?Rö‹Ujâ6A'ƒENŒÙÁQ_q+kÃËÛN²k/ü}5ÃY£Ý6ÛHy?q(^zÑ­¶éɲõŸ‹ûƬÕ›¹ ÁºZTŒôüC(\fÃ$†$ƒiçœÓújÄ;YßàII qçÉÓøxy›‰8âôžÑ|TP¬ï”BàFVÓ£ú¤JqĤAX=‡MýA³m'¶ÓƒÄÚ“Uzß õ…ÊeQ[xž´£Þ€SéÍÍèìÄH·SK†9ûk‡zxãOìñ¤p0$Ðäãæyʨ ߘíoÍj§óY“Ãâ57é£kêÇY%¦ñ)PÚÔ‘ú6§>Ìß´‘1"“s† ñ~j# /vRgžòä$ƒbÖ&ÓSwZO/ 0Oè4ÁžFOè´A7©Òø8Ü—öU‰ègÎÈ\¨Ô–•z^›™)¤œ–š“òÆ$ÊœkñI•Ÿ"’µßG©´zj•>6Ù TzŒ¸óÑž1µjtËRbŠÈ›Kx”gă7ï¯jet7È$ª”tþ¡ œ ßÀH7ìæŸ&ËH—í¯(I—î¡ô¤K“®_`ÊyMf…¦‘%»ÔZn­®õ$fÈ\a_éÑ›óÇZ#Xª6ST(¥[H]‡rÔ;d‰;Â>’·»ŒFcÙ¤É=Íœ^ú8âdŠf‡ ‰ú:¸åÃïÆBG Ã=„¸Ôž'Ùµ®orTta5ø>¼#ë³ãØ(jkÚk†]_åQ+_sÔÅæÝX\•ê»IȆ)í¯Ìý¬xë? ŒÏ»e¢$8a ŸŸK,p^«a‡¢œ`—†û¡Ã=©‡pytrñè†åK:šºêÎÇF*¢5;2»öÙEë†!<" ϵOÜHˆñÎpyÄ$l–‹Ám<ï½µ˜Rz ˆVZÒØ,^Œ7ãîÆ—”ûÓvtÆd”Å@.Ëù>Yâäs§ÜèÈäsÃë$í1‘¼ÖFòJÏì99NLŶ ¸aÙ›gE”BêDg¡­ü…òèâ ݨj9žÿ``J}gû20Î|œª­ÌæéÑ%xù­¬¹Àµ¨‘TòWòI@ßÔ ›ð:ŒìghC öë!Ê}ûY™Û)æèj+‡$Ú“Ì.[úM&UãÆ†ri¹È„sÜ‘ jr…ׯ®ãõ±xidÿ_üÒÿ5’Dºí•:]r7›Ó˜žÜ}‘Ìë@â-â_Î:ñœc³Œ{ÌÜ2ÆÁÔhs21wL2®\t¶Ì@óô p¡¯"Ž©§9¦žê¨zÆ5„äý~èÑZo!YxG«Dÿƒ7þ¾ÆQ´¾º~ö{øóÿ‡Jf‰endstream endobj 247 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 664 >> stream xœM_HSqÅ×mwÓnšÖìÏÝ¥”LÝ E+Áì"&Ì—‚ ‡»¹…sîvÕĦNœš_Û4Q[¤®Øªe¨§ô¡ ‚È`úbEJ¡/AÑ÷ꯇæ[8œórø†¨Ã0š²JsÁvÈTö1Êþå€ ¨osc³Kœ 8õôfZZSñb šwÃ8\eÎÆVÉ^g“…¬ÚlÁXTT˜#˜òó‹„R‡(Ùk- B¥E¶‰‹/õBµ³Ö.Ê­BÖ ›,7çåµ´´äZ×rR]IvŽÐb—m‚Y¼&JÍ¢U8ël…ó‡(l£ån[™ÓÑØ$‹’Pé´ŠR!Dc4ee&$ì&‰$‰p„ß!jREæ™$ÆÌL(}É BT™Œ¾šd0üU…t3Eé_^‘ u ³jÃðÞ<Òý½¥½ í|•÷/ÃB\Ë0ßûš;­ÑfÀ§†í©5üŽd5Ê,"Á‘Ÿ*e«ôWØ›nOùÎno1¸AG«XÜókúáê»'‘ôHäÅ,|Ôa*Õ|¢{©ÞXpäÂKïhèñø³ûíS—ù³oŸÝŧ/:Sa êðxúû¡>]9Ç&+MÔܪŽÃ§-ª”ƒ´YO>ÑØØö ¡ú øü0¨êîh¥^j¤t»©ibÌ?<4Øç‡þ¿™EþAŸ×i7š®wôuõxúÇÛøµ’4 hP[)=J59îö8†W×ãëG/qƒOÞ:N A\ŸÃIF©œS)”õc!‡%ph —Ø„\.Ü<]¢1­[—+Æèë)†P€On*ewÑ92d©eTMZÙÁ'© '¹Ä©Û·rÛIÈ?ø±1ªendstream endobj 248 0 obj << /Filter /FlateDecode /Length 7378 >> stream xœÕ]Ù#·™Ï¾ö{ëý–êÝéÚâMÆÈC.lÄÁf§`gY£iË‘FcI“ñø¯ßï`U‘,–Žž¶À€G­"Y<¾ã÷]Ô7·]+n;ü/þ»ÜÞt·7ßÜúö6þ³ÜÞþúáæ?ÿGš[!Ú`Œ¼}x}Ã]Ä­“·®³­ëÌíÃöæóf}¼»WÖ·Á»f}ÀÏ¡ A4oïî¥mƒõºÙë/ﺶÓ.„f³âF]çšã>;xÒ…fu8®·‹ãê·•½]ÉÖK«Z/¼ƒW¿‚W¿º»ïZÝuÒ8îDÚç^´Æc§û¬×ï°—ë:m¸“vi'×'ºK¥ÆŸcã¼íDlMKµÒáúÖßQë®3.ÔÆ6ùØ…µxlóKìh»NyW ­;ý¤jáVô]§¸·À.ªëDÐØåw7¾þö=êÝH ½œ…³ p úv ßßZ7|³¹y9{ôÚ$¯ïO†l )acÿ–v3\õÜ`Y·[¡ÚÎ{ÇSÿoìc‚WZÇmÊ^'[+à$áÔ„Ñ6pŸâ=¡•!HxÅoþýóæoøTÙu¾²ºµRxßïû/™l„ô¼‰NE‰Á¬˜jµwB\H?fv ý3O?áý|Í[ⵓÜZ¹|l%“Ö‡rÚéž $Ó§öƒ»Lvµ$gA\•õùk¹à\ЏÖZ$å8©Å ö ¸?†NˆêY Hƒ@+Ù3Á_ \ jSÄÓ5Æ›€Ô”ôûû­ï”m#ç5{üìaû…9wp"´Âyãwîi|/Õy¾WAq ³ƒT„Ó–Ogv˜\œaöüˆ@¼›èV¿ÕÙ%}[Ï-ºU*t–{< ›RÝL Ïà0î³>p\W0˜y0Ã`)ó~=ÒC}ìŒÁ>cYâ…µiƒX3Nù„ªd^L˜vÏ×YvR‰DÚÌîBçüå»03Ï» ÓMÈg`a¾> óý “Õª ZÔ³!ƒgÙì“$WІ”äÆÉ©[¯`bׯ•ﵫ,Øó¬2ݺq•¹vÈm^Ü=|}s¯-ˆ? {a}HáýWŒ'QšfµH)…#ÜyüjT)ô5 MçËÝ›;éá¶ ý ™ZÕ¬Þ °t Ÿ¥k;ãesŒÃ¤쎋ãz÷æ´– WôÈiÿ¸XaÂÄ"™Ég§µ*1±Niö”ÊÍd;PA±5ÚÃY-þFGŠ‚¿¥ŒfhhÓlW‹É–ç³ñ –: ÖÉ.ž—¯'œãŸõ€&ºæÉ`.ƒ ˜S=Û¸¡\*0™’ ï³>““-— µÃÉþ pµuù£©#ðc¾°’aàă¿\ß=‹pš°JrÊ}7=‰ËŃ۪ç«YX=ìêvPgÕ“@¹ƒ¸¦< ‘ªËô-¶50}y‹P(5¢r¦DE3Ë:µ€L²i~52]³Ùôò0ôâ•,ŽQÀv²Ù¯¶‹uª°5øb0ï=ì‚„=Ð­ÖÆ%R À©øÈíž½ƒ€Ÿ]ÈóÚiѪ`"¨h~‹Zcâ¼À!ôÀ>??ÀJÑ@†ýi~»ú$™õ›\{ÀØè§Xð|€(šÃj¹Ë¬ž©ÖÍqË;-=Ðzóû±ÉËácÕ’ÀzÒÏŠÞPØÆ"û¢f§.]i¦•G-­óì>ëôvœß~}5ʹf·”=\lú£xPµx f-¦|W"ÀÉQe†£Ø½î Aå´Iu÷a±í 4òaý]òlq¨Ó„ó.ä»zbNuüK£Æž¶¾4KïáëVÿ1=Ûè8,H‘m>u$lŽE€WjÕ`E«n>¢³ãÍÖ\#îtn¦ÿH&§«çZ“ÙèÈ{Ä"ZLXä©t(Ç©—d@–dø~ {Dûxì^×­í'ù‡øF!«B>J£Y½ÜmÞão"G·eàPhc glËÕ+|†pÑ4_@Ô"ð#šœàM:úÎÂËöûÕ!2àǦ(2`Û&“™éq¶üd›‹Öa¾À?µ}’¤¿‘—Òn›’p$ôõû”!S®X®^Tß{¯¬}ŠE£Ã¥ O'ë¯ €¨‚P õTî}ú%{CöÀ¨µ­F£6:(d†¥¤ÀSõ½cÑf¡¹{ãC]‚Çüel6t€c…ö \HEuÈá‚4ÿI®Ê H9Æ<¡èÎô`ÚpcH᳌ñ¤B¬û, ‡ÈÊNÊÃƸՒ¼Ï•ý¬¬§Nb½bGr¬w(¹·@±¼9QLP,XþÕJa¤JÉ (¤¾>Eã#ðò*(;]ž³«»ð¨g½ØÃ_²|Mè.ñ/«Ú¶•Þ‰Û{dÚñž v,•¨¾ø9ÿoÂðZ¶Î8_ê󄮬£Õ£¦Jè…£P20¡O‘9¡;X¯ Ìy-¡c/$táJJH]~$%è%ät>õ´ªb}xTDçÚë‹éeÒ¹óâc ½“×Sz~ÖYdÁ”~v<ºÃ˜Ò½­Sz.ü, q°ö­ïEƒšÊþ1¨ä&²}¨ñ¡9é8€‘¬E®#Þ`T™DÞŒ†5κnÄÂaZf‘a8¯B2Dºêf£7£_†)ÜŒU V®«©Û,|1U·V²ºíª¢nÇ-ŸªÛdË/T·Ï1|x­ŠQÊΨ˜çT¢=BªT¢×2ß)%:Ï|ÖeÌgëÞ£¤xŠÂ…áµ;¥ou+È—“o…·BñV̇ΈÙç„¥”1À†uskT¨¡†éL®P°OW¨«DžMKz$䃈K¬dçâŠ5¸0zÜæµ©íä¥DŒ\DLnö$âÊôòsž_Þœ®L©xFYbÀ¾_ŸÊ³5u9>­éË̱[¼/q‘iÌ_Ì„‰îa¿ =,IÛV·á!‹ ‰Œ]¼}Š0¸ÙCæ3è&4Ÿ{jØQCtE ]n`_’ÐP=f®Á¨c7†ºÿ¯T‡gckë)ê8ôêý•…Aì(CÇŒöK5to}&ºð¾“A< ™ Õ\xA¨ž¼ÌY§4Œr>X}&Ε…ìÏF–Æ\°¢Ð_º%ç=5¨Ò®"L8|߇–†>ÓÐҩĺ —áeoäè¿ý¢9-ru Ô€|·, ;UWxHJçÉÙØ9Í0ÁFP"ÐÿÅ]ÙµðÂaÞŒ¿,7ª07 "íë¥QªÒ(”Ò³òC?k[`&Ðe¶…‚CÅt¥äòTçã†ß›ìú‡Ë°©xæÏa¥œzpÛQÛdž-AéÒ€m‘ßgšÖŸ¦øv"ἪI8\eÿHÂuj"á.æˆ6ÔêWˆ¶dð(Ú¤¤ùYÑ–äY}„dËßs¯ƒÎeÐì_c/P’U×ðP„BÝ=øC0x©‚}€§þÙ)ôjTò,p¤Èz¿XÊÜ„§K¹óî®)!úM¡d]~&óᥚ¥ÉL×—²´AÕsr:¼º­€îÇœŒ§ ÔþfíݽWŠ©#@M£žw`¯‘ þÚŠ«!T@%ˆ 1I[c ië -¹M¸›•Íê[’ðü}_…¢U³ZÆ>~¯²ƒaxxßEÙy£Р¶Њz3`ë(¿–00q|Ñ|9Ö»¬â·`j¾Ë^Þ )ªŒM €%¥ (.‡ð‡€e|“,ã]šGågúÍëݾ’N·r¬~xyÒÁà'ø^ý塨¿å¤à£$ës¾æÁjÙÂõ|`©<âª\ì-æ+]=ÁÎåó[gg€ÕO5|ÜÊôv_Žë8fN5† ”æp¥_>‡©Y¯sU—ŸÙ%ª‡TÍt™ÀD`Ft°_idÈ€~ï|içF«é#Ë——Êë¡&2(A•JØzw8ÔNÚzÖ}™~¿9®6›uŸÑBÌ¢òq­UQ5ìWËÝv›ä¿>aª›Ælir²Æÿ¬Ä‹¡úé2”'bõÛ#1œà5‰¡Ó\ÕˆmAÃŒiè¨ØIâm³L³è6 ‹|;¢è½&¼,š .Ÿ<ç¶t`¬ÉRF*”z‹Á<ߺ>Qc·•ÃjÕ€C`®9ÖK¦*â‚=¥&YÇï1]z¬³Þ¯SìMMtM qOѬ'€[|{`^nvž°"½E8ÉHÊâþnµßÅ– ©ŒÍ’Óú™æ>;‹ŸÝÕàn¬Ê±Ðñ“‘yPÓ[&yðezÈ+Lï6ÂS‚pšÂ¸£±€ª›÷T Ô ×¬XUj…gÁIƒ“‚CWXáÚŽFKCLxZu´Äýc% Ár7ªö}üŒŒYe¿NÙ9JPœªÈ$æùtEvüaÕO´§&Åí šªN¬žI6dèy4d€4œéª_ hR.JAãá÷žÿܬЖ2ž*ú tɯӮ9ôyä2×ú’Ô}ÏÇÇGÞ$îþö®Æ_ÐÃ&‚(äa ´FúÑT@†zòc,Ä9 \Nû‘#j!ê)Êyõ©šÝ#žbø/iu<‘r¢*Oi–g½’ç>ëtÒ¯UÜ`¹tÎÝ` ™Ig2o¥h½3O¸¿a¦~ñŠÀÚÓÜyg–=_¤ÙÙc‘…‡Î¬õt=¿!; Ë¸*–•¤ìø˜<ÉQVK¬þIG‡ž#5æÍÁÇæ“ñaª5X%x‚îoGɵ[s¹§A«‰T¨%ùýžË4¬cžwýt\ãMMÃØa˜Ê½†Éz\/Óé|ö›Ï~ÝGÐOH=©Ù¾M„Ð&Ó×÷£"gñ-œƒ±™»hõ¸.-z úæ°¤†Î7©fØ¢´§6  HÚ÷Ãån+nbS<¾\±Â—Žk¢’R-ÇJp—i£ýØ45¥wñF6»MßDåeéö"ê_š/šUûؾÀ‚1Ösc9VÚ•tn=êïn!1£²Y—äóQ)dQ††}›ˆ~8ÖQ‹oÔ vq·ÐDªls;|W–mÀËÐGŠeOôb É´KR|’1 Á@Å•!_δégo&h¡Ó4b{PÔ#Wd¬¹y'l°.ætIa•ä¯`‚¹¦ šø‚ lŽ»íú»JÑ4 nZÓ# íuq (¼‚e€øGF\i÷˜þñ6ù£ d rÌܽ>¦˜wÁ¡ÃyÕF_˜ì˜,Íœ«ûÈÒW#Aá24©@² ‚½·Çø=È^*%ÿ¥0Ÿ¦¬Ï¿ú–Ú1§ X°âö•†}é顦ìÏ/X™Ö4’ç]y R ¾ÓËt龯À1¢líÐÉ”9¡Çq"ãÄÅ®Õ)Ô 1”[<„MöHOÊi¡]8#"XЂ>ÂË^9;–»åqLöë£AÍëZE¥ÐY%`åšïÒͧ˜ÝçéN×É^sZœ©sP¥é‹zŸõI^8 Œe€nEµô;Œj£ët蓼ñœËˆF×/Šoùã§cƒÓéC nL »ÒW½šDâBª Æi“>Àó•"ßâ¼^pU1‰»¯Y×KçôK&ÉAEL| ƒ<¡²f½æ¬u¨›¥»v£—w›–rmÁP÷…¯ø—ˆ\Gƒ†¹W}¶‹WZ4ÇÕÐö7‹= ú˦ZܳÏØDÃù[€8Ê8tÛÉ€è⮬Ò{ß²X¼¿KD=¨Žzõ.ÕÊ첈gîdÚNh¯ §¾š´.¶Miê?€ÒÚœ†­°,VšŽRhØo‡Q^â>±ö#ó˜ÚÊ’Wá§ŒJRÊ(b‚˜ÝÚÁdcm +g®sïGHïTÏK9ïe„-¨¢§<‹räp~_ůá#ÁÚØ˜è¸0(~eÛH¯(VVtjk¶;FêôJ¥7qØÓ´(ÿXxíØMs@òr°2…ÕU4QY,­1טòîÃë.#0P˜h=˜Ôèõ–טm l9Ä`¹½‹¹Ï ™Ço¿ààû7±¹5ðu=¢Ûì¶›ܬC™¶\ö€;вÀ™rÊboî†Àü- <}J½ˆWK,ZîWSgoÿ’Eœ(¯ýbÆ|€u1™…"ð@s2KM·ýêU*Ö"+ÃÁÁ¹Äë~ýí]¡¾¨"Ü@QôA“ü%݆¿œAµPm7’^ãá yö~ÍCi`Õ<¥Œ—ÅfþPfÍûÉ.yÆå'N<®ÎÛ9Â9Ä9øÀØÎs4½<ôø¦KL 8©òŽV: »ŽVß'ôS¡=¿®PŠë5‹#Óòéݺf‰¯ ¶šðÒ>9’G„‚AH}9zÉ8Aæç~H;µ´è]‘ä.Ù®’²—íWÃ…*¸ãyÞx·ÍÝ|Ëìr”ï4ÎJGüIƒM-£8bXB½äöÃ#€]©ëlp Å1D7޽è;ÙáÖž˜5Q¤(ü3¦ãX‘öü¿}Øò®ßü×{Ô°j¢)È×¥÷ñI2 *2ÐÔîïÊzY½+K¶~Ló>™Æ§Ê1)ÇkÊÀGy-‘¢Ôž$´ãPÒC±Þȉ ’“B„ôþÆýâ‘™¸ìÀ9¼ABUb£´sfÜx¶¶‡zLÌíTóŒNþLýÅÈ*váã¦ô(AXŒ¿f&µ3`iô HéG³Ùµb/‘ˆ5^‹&jMwc¸cJñ^ áÞDä:„D’Ó›c25_Å·i?!7z›È³qS‡w¨}ôèÑS.ì‡,Ï¡¢H`ñêE~#S•µèÒHÅ#»r/ðGÿöå®`¿ãÈ€©—âMòy¹ÚS(M€t#IÅJÝÙ U}„ŽyWxv•Oí_’›ØÂ›Y]À[ž¨3auæÿì½Õ/SU›§(Ëñ5«i^‡q¶É È™m5 !;[O$A% M²ãÊ•R\T`Û¿÷¬£Û*BÆ`x׳‡;¬b™MÉš\õ’º±k²”ÕôJ¹Ó¤iyÕE}õ:, QYQ±ÅN›æSN^SQÆÝ‡xZõÇ‹2áiBÅïˆ÷2n²‘ ä‹ñ¸d¼J¨-¼<•4ïA˜ƒiC" 5œíDé˜Ù!ó©ºHÓä(c1ßÿÓQOåÒ¤©˜Ûcô4Ãu¹©HbQç1a¯S1%g«Ýú¹ûÔeÊÓVSù¦ nŸNŸ¿Æœ[-‡q<Êçá}YzÜ ›!Q(NŒÈq‚»íý ¯RlÊ®cîü¡è´g±¸J×Ò5».‡bl­±8–ƒ= ±ìx0:óÅýÀÒûÁÇ”­W?M̤õ6—vÙXÉ–/nÿ‘n Æß ™Žó7vH—:W†Oª7/—KrŸÌ¨ö=«ý˜Ä)Kì-lªÚªï€@_^cõõ$? ¬1§¶c!­Z¦¥©3=—nu%Ç&±ºâç)27lZ–Ë“ÃM®Dß;•æŒgNU÷"œ8>tIݰA;@RÀoRôÆ/5족´I±+ÎÈëðóÁk×ä¾ÇÌa}ˆÃyúõ$z9½Øéy78;RÇÇn´ÞÄw[;^^\äÄâ/Âa,,·c'7<߯³=^SÇ?\Xp’Ñ¿-`E•£¥‰T/šxbUzYñ  ­–šºË{÷ÙxXû˜êÏ~Müˆ†Íã~=TÌ]5íðâXç²U+UÙ™U£J:³êÉ æÒ¹bÕIP*€q1·±l/âTáP8T÷+~+v¡—!Y}šOÌ6¢bxlÓýš‰€ŽC’7*ÖQL¼Q’ø`Ë&"þÕ›ˆ}§"­rŸ8£c–"æ¤àýG¹¬qBRaðd²)CD9!ÑòìÒ¬»Ñ†d¦ÕÜ#4¯ûkÅ]Hý¢ƒNvþÛt²÷ž¼nš›Ý/2[ró!~oe*~£LôµRÜȬ&nø´ò.€ø0CãYa+Œ+³9_‰xŒ¡(ú¶Fdûø0œ¿Ê`xˆ‰RëðDz0éÝJvC~=^å'dŸ˜4þêÏÃSRÇÔN?•”e­÷=¢Ÿ†mRÓyß¿·8ª$²“z{Üàí1ÑÅÚqþBvEkº VÊì‡C’4R¢ùí¤†*2œòìM¾{v3Än÷ÎOÒ)‹;yÌ'ˆ/’ˆW²=ëoR¥ú.ã~sÏ’s·Œ8{“E>>pöÈ¢Š³8fØÇœJôŶӴD~/þÎRú :d¼ŠIÆÇDMš?=²¼¨ïmr¹3&"’Ñm5¸z˜E^ÄØX‚«ÑÿW5³w¼j¡Kª¢æbqEÜ$åk’Öi“|*Ît.&÷?&ì9žó’]°·Ü„“Œ8,ó¡¤l›´?ÄÆaíÁã*¶ ¶>‘‘©–ÍU½nÕm³<ÀÂïFaZAÜÿ0Éâ³|EɘR09gLéÖzQê£urÖµ (h<Õ2üñŠë>Ã_…ÎÔ½èèw ɯÑôŒx ¬ß±KR.ßî†L²,ÀRÈ4JÀE´[I8X<®¸\ü9ÇZüPá÷ÞIIé9žñHê  {ÒçÑBVº´~üªÏa:Œ ´C£Ç€cÑgzM’išqÞó&-wIámþÃNÓt±.MèKB/cÂ7™>¤Ñ…agº%áÏ7ÿ§Dçÿendstream endobj 249 0 obj << /Filter /FlateDecode /Length 4736 >> stream xœµ[ëÜÈqoú’ Á@8¶–a?I:‘³qAlØì[ —“î5Ë]ÍgGŽnOùëSn²šÓÔŽâ öÃN“ý¨®ª®Ç¯šï¯ªR]Uøþo÷Ϫ«ûgïŸ)zzþm÷W¿½yö¯Õõ•Re뜾º¹{ÆCÔU­¯êª)+ë®nöÏ^ãæº‚–n[ïBÃÔV|ó ßÝü¦·­œ^ÛÒWV¸¹}Vüýææ{ì‘àʶö­ã.¯ úª2ó™´wãŒ2±÷{Û¶5•âÞÚ%›³¥²*v~Ø ©uÛ}wìÇÓæÚhX½u¸?]—­m|q€Nm[YcŠÝÞV^™â4bgoêâuqzK3ùÖÃT›°pÊÕª*µ«ãÊYfRã f¦ÛÑMé*=ÍÚï?!m¥”*ö=Óë¬*NLnU5Å­ õ®û0·ÞsàtÀß0ZUi^oʸ-à¾-õDÀµªÛÒsumli-ˆšeV‚ÔTÕ¶0UñÕOÝži\UÅÝÛ4ÞC¿™ã&»G]*o›«›?>»ùå«â¿6†mxŒ¾¶5JÀ»aø0É’xÛ¶ÚÖ°‹c‡âk<,QœhnÉ-$ÛîÝ4M÷fú¹xÊÚ5Åî´ëǰ2jÇÝLÅZкR{Õ‚~MðI·‡ ¨2mœõNêÀÃLÒö´;<j-ÞnXÕÃþ*:iµn‹Ã¼. Þ‰‰îCÿÊÝ)²ÂÆí󺑧U[üǦQ09ðîHGÉ;ó !õ›éç-=vmÂØ³è¬©|ñÀÓµ¾‰Û³­†ÆƒX’÷7µ‘S×´Ùyu­P=½bmC¿¤ j·»íÀ±Œi€ˆ­Â°ëá1!¼£Ý"©Ö9 o7†À†%×îÛúÓ©/qú5ÅMªÆ´¨O{µN%ª†2àÑ69Ûãö¸{Ãℽ}¤±UKíçǦøŽ8]1ŸGç¹{·ÉYb[iäZTÃo‘ºª”nsJÛ”M "ö~½y €39¼I–=þ¸Az¼…ó~»®…éÝ,„û¸CÑ3pvNÝlåg9wÇÛ`¿½-þ<3ãpÜwC4•J8ˆÃnì_DëX’ý“'ð`q»….™Ô™¨ÝÕ5¸ATs&ù+d¬b[Æ$V,¬Ÿ|æ+dÿ²{*‡Ò95ûÏ39¤þx!‡ï±wG[9îmRLi´èýQRAŒ£¶ žÜÏ"F§ ëzÉ?袆™VWM[Tà4|]ºÆ±ÍcªÑV(¶ˆ }ÄÂT.bPD­§˜à@@¾´0èµUž˜Ç9ˆs ܨYgSÖZ)Ð'à®U–G+c€’5n×F7ê*óéu|éI@é:úlúlʤëKÁA6•-~Å?˜2!O§ßOñÍ€wÒM*ÝÏÜ…9ÛE›ª„iÚʧ»ø»3ªR§I?§ Mlè‚xð׳Úäæ6”‰³â$³6K²ReAÖÀ8ÇÆµ—É0îþ:$§ò‚ËíS›Òzßü-²²—Q›ŒĺO¨êÒ‹XûiQj)î‚£·< ðlä߸ÒÔ*è6œò…äãÚ:ƒ–œ-2Dö<Ë—èíÈq‚Jƒ…Ó.xxŠ OˆÁ+e(Š2£mˆŠf¿Ñ çÞ#Ç à[”‡Xó!,‘FðÓâ‡><¿‘^†p?¶-Dж×ä±y(ø½.„þZ1a°&¸PŒVãäg1LÝ`þA¾¬…88ƒ¯èvC'HbïVCÄpAø›—n‹}ˆ!1t½•!á0Î_}y_¾ÈFÉÖBâj§@â͉9È!Á°­l¾@ f0Å Î0Ó®­ÝËÄ‘Ä,¼ ºïe†+3´lZÙ”Ö©ÉCc `4å‡cv‹Z•®žw(>å¨y¢‚lƯï|v·ÿ†dÔÎ⑤ÚÔ ‹ZQ`¾t÷­»”ú‚Ä@¡Fì­[În0!4À1L´É÷ÛÝÝÇ9æÍ¦=ª…£ß&9zÜÔA6nW¢A6^ÊFʼÃ23 ˜ZXÈbmBMÖpÀ)P3[ïÇÈ›œ!>Ûø¼è9@·'Á@)€­iøÍ"cbÁ ‘ùŸ>L•-‹¬ïXh•”»À¡ø£YWŒ«SˆÍ‰õ6·kð¨uY{µÐ1Ê]"AV8ÔtÇòïÞ°ü ¸Á'…Žˆ#>4ä Ýp8îâDpæöq#Ò<Êßͼžj˜!¶#ŽÁIDf˜YˆfŒsžáE‘⇠DÃöllÉÏnýˆÇ½ÝÍ‘ˆË¶K ëK5çP½31¶G4±/¤¥9Ê|¹ØÍè[†/p ŠRE ¡¶`†âmh…z²DºB_ÏrmNª÷Y©p+`«oäÑúæ)‡ëQšÆÎ¨]v×D ¨šD”NÇ´Ò_ìÆNY…0óznCgºy%eF/Àê«*¦ ñ]¸ ÖýÔ á‘$šQ‰bÄ‘ä¦Ð\ÝRP g-S5ǶØzÙV–ú&Æd…YùÒiýs{V.¼Õ΄ÒrñE®Ä?ëʨl…íâÑÊϪ•*ד SÖ„Œsíy‘¨­Šm7ö_Œ‡(Œ_bY' ¦™Ê¬ƒïÎ~³Á'hµ¼„·A¼tv‰È' ü‘êR•" ò¥€.øcpNx‹ÖDïÜÒŠóé N-¤É³)Jïæ¡  !v®W‚ÁÔ[§ë¿•¹‘¯žB1±@«?U†XJ)39þúÄ„¾TNv4Ãôýi»™î›’;>8Å™DÍ$£NØ$ñøˆ7%[‡ §´†¬AòzYïb6â…Ê»H…IJ’ |S3.3-ÂðVn«ÖM:}:J?Õme«Ï:-cJ«ôtãíÚ0Á™¥ |¯6Üëƒó­–ˆ\rg“®—* ÷ÇÙ ‚ŃnÉâÚºÊ\¯À‘w"{ˆåqN kÍå°E&AÓ5ö’‹¾“&ý«mPæ=—Û:.UÐ~ñ:Ý>ÖX7äÄD™ûìÎ.Ýa¾¬~š*Ú)ðäÌÀ̳þéwú]¨}¿9¯.{}U6óø^êÓÃ(Zù*#Èý—‰Q&¢ß±„Ð 8Íc‡ä(´‚*¬U­”™û|ÙY½¹‘ŒYõnÓ ×Û¡#U=b؃Eb ûû~{zã0¥á ¢6OöÝÌ ¦ðôëùá—‘_Fd“aRÄô "»,»6Ç×£A ‰ê½˜&¬C}˜A§Liò ¶W ýÀÁ…‘ÈæVÛÖzú®bŽ†Ý¿ŸPš!ùÙ£G<ÕÕçž^óe'’_ø%™åîë¸jä‹L3ÙC'wˆ\“bœ GÒ4r™¸Î_¬vË嫹…2Àdzø(y5}Õ‘ Jî컘·¶éa[¯{‡M;4]6þÍêYM†¯W6`6å¬9›øÛÕF’ïW™šBÏÏg<á9Õ[Á³èKyŸãª Þ>E=µ‹¡LvZÖÏ¿–öüù&Ö$B¯/úÍb±ObT15X ŽAjíÉV- *¾Ác›äÑËá ‹¤rœ|mg+qeãÎÆe¾fb‚!'ášèC 6ûÄMž  5yd¸£P ÇW–ËK ö_r—%|éƒsø$@þeB}ü@¢ª›lpös•zɇ›”±Ž1ú%c%Œž¾–cV"5ÜÇùô¶Ý‘k)XÔC?Ìóø©â6ÒdÝ&£™ã´x­­ç[ aÆ5-l<ò;“¼M’Wv‹¾K½lâ€vuNð³ùš/uƒß]ÄÕ¿•³–ïeKå““$Ì"ù*u+7²<ÀÛŠÖ\B…~’ Rº“ާØ6ÂAŒgoCt¡˜(ã Cü)©V«qÉÀSΔX±.–p ¦ï̪|lD¯zþȉÃG®ì.ÃG¤¦™¾¾¤ïeŇ}b6Qda ø=†.-Šhvî¼í§ÈJ­«fŒ‹bùú)3XáMùé^ÆÙÂëâ× ½ùÚÍë h T=I»$i›ª)»ŒdØ.zCpV³O'~Œ±÷§*¹xg¯µz|…­•z¾âöyÍež8ÁëDJ£L6<¦WV™\?F€ý‘ßIˆš¯u5à2Î9äcd!]¡Q|ГZtšêÄCgç¦KèßfŒ·›®ì¦¥¿YN+®^¦õÄQ~¾Ú እÍåÖäפTç_°ûQœz¾“Á©ŸPλøÓÍ_±pŽ«èÞ¿.ò'QYfN™ÿš%`K#]f7´ÂÍYòÃEÔ'Üe’ è3 v^3ÙÝŽ;ßwÅ'0(ùl9ŒXÜ¿K¤²ÀrGë¯fþruH<Ôǃl}H>Fyù\¶Î Œ _{¾vG®iÚF`Ɖ±ÿ í‹>-t¬É Ê¢ÑøêæÙ_àïõ÷…§endstream endobj 250 0 obj << /Filter /FlateDecode /Length 12638 >> stream xœ½}me¹qÞ÷ù ±†¿øv ¹9‡ïL–a;2¬ñ^hõܵҽ½êîÕZþõ©§^Èâí;;3Z;„V×)V‘ÅzŠEžsµ÷« ÿÓÿÞ>¼Ù®>¾ùý›©WúŸÛ‡«_¾{ó_þ1ç«}?öœÃÕ»oä‘ýª†«JäzõîáÍ?þÇõÛ¼§ã–ëáûë·ÛqK¡µT÷Úˆ5…ã4bßr;¼Hco%–÷ÿгo|ð_ ›|Üè‘ûëtÚK ‡ÏòGßxô|/þ/ÿÝ7þ⓪œ|ã»O²ýÅ+10û‹×²>~Y/ï/¬Øyûeæ¼|rp.ÎÚk}>|RÚÒÏ·×®õ/ïþþÍß¼{ó¿ÉÁzǸõ«ÔûNNU+ñ\Ñöc©WO§«ÿsõÝ›~¬yÛóÕäjOÿÿºÜ?þùç^Ž­\å}+Ǹ_=%Ô#É"J=–vuO”ØŽ­…¼³$¦¤~l â L)ä<‘(!“PH–3t¥…#Ĥr ÂÒ#yQr#·' >öD„ŽM(äœ=¥5XJ(Ç^¯r€Æ™)‘4&õÝYãôÛ¨ï*ô%÷c§ÎI…)uw½«~;é·‘ ‘F ÊS¤ äÄl’±æØÒ1Kk‡,H{ÄðBêAHJ»=BêmdB¢#ÛR;ndBê âA!õ '“ »×¾ë°Gú$·=+÷ž¶pÜ©÷ƒZ±ÛÉŠ–‰‡ŸJ!±äF“%ú$r¢@½7H yätrJÑ0åz ÔW7K;2¡“)U!ƒ!¤—tLBé¼!wR¼±z´PŽL轈K’GCLÙè¿)2%ÄchD!7 ,&Çt •(iÃB%eü­l9ª•9“»¡Ð€JO…ïD©  ý‹ÅÈ Ò:\¦Ð¢Ô•W¶ [ÈéÜ7ý ³XÈ©àw „€™.4‰ÇÌ}—HÞIÓ ™ú¹x!Õ…ý¤‹³œÔùKáV°Pô)ò<¦ÿT6³ÐªŒdÃÞÌÌB«)VPºº@Ý7D„²÷|d–hÆÈ„@¦d–[É †—úqMÃD”†)…ü—Æ¿'¡¡–,r0"§ÒàP(Â0¡UÌ4¢(´ä@6Ämëð¢ 8Hß B!-îGBê‚ð²³.-’MXhSJçiiäc9-<51ÂÒÊ1ïÒQ–®{ÅŒ%Â5ˆÒÉ~³Ã5@Ùû1ó8PÄà±"G4b«EN§ØÃrv[ÏÖVá1ï:—½Ð̃PŽEX*«A”hbÍXô…UQx.«,gúSeÁ˜Ý(ëGBì,L Ü)QvÀ€…ÉðƘ@pŽÄù*<äˆ,‡æ°w¦Ö±¢yŠ1;[8àdM(Õ°Õ(”#ø ãf ÛU*4%7)6ÄÑÇ\…ÍD~–·æ`s»ú;àO†2à>`H*äsÂÏÿ>š{–HÞMNa,£éXrá°o,£éX*…3Š—Æ2šŽÅ+çu,?•¦Ò¼RÛ6—¦"/HäÈ óBr¶J¹Iº~°Î(Y¡V V†óhHéß"XNùCC­<3RKdr¢ @óþ0(¥n¨{‹Öb,uP®F™ …0Ç¥ÏUдO.£,\ª…ãrz}ÙbøÞbÉí;á Ìs ÷뷥Ɗ [é™þ»ä/ ·Ê¾6Ëÿ87šùßo'_ÚœyûO:­ŸcÞ(Uñ~€´ ‹ä± ¿¾¹ûîêo>|¸&kìñpº}yfmÏÇ‚þIÛ–rõbÏÕ»÷oÏ·7÷§÷Wwß}ÿÃËõ»ßÍ#Ä¡¼) H–Rg‡§Óó÷ß=ŸÀÈcñsòáý,ÞC¹Ë‡‘½Æîóá A¦û|x£„LàjäÃ;hF>Œ}>,ù0áõ^–„˜’˜T–„˜âwÞ}B¼S~(IÌHˆ7Ãò‘S4’p?âÌjù„˜L—ôh$Ä€ð5!&ß‘ÜGbJ£Ï‡#Á¬X0òaú¯äF#¦ŒCò“‘#XÒaì‡û’Ç.±¦ÃÅÌÒaÊu„g:LO·%¦ôñ<I«¦Ã…ÐNf|¦Ã›èL‡“X>²aJ;·pž Ë&ifÖ™Íl¸ȹl¸!‘Z²a˼g6liÍ̆«ñŒl¸`(}BLÉŠ ÆLˆ»BþLˆ‹î 4!¦¼3¨]3#®Ç5!¦D)Õ5!N’óÍ|X¡{äÃÕffäÃät¥¯ù°%H3.˜³%¶2⦳7â®C1â®n<âZ⦉ÿLˆ‹N¨%Ää·-. 1cZbÂ^QÙb$ZâÜ3#GFLž"{Æ‘ïÝ(–ÓðKü1"B\2b¤`eI‰i²Ö”˜Æ$Ä%%¦YÔ$Ùrb¢Ô¸$ÅäŠyIŠ£íîGRLYX#)޶«I1‰éKR³ÎÌHЇ6#)¦AÒÜÕ’bJ…CZ’bŠÞGRLë]ÖHŠÉ?dÓmIñã‘,Èø¤˜Öi+>)p¼è“bÌçÞ|RL9¬d¡#)¦ÌWÆk$Å#I1=Žï’b¤ä©.Iq—JÆk@ì#ew26€›í,Çp:)cH‹µ.'"ÈxuÛ¨@ Dv²¢À½Úº³ ’W=5Ñ RI^ ‘i‰¯1‰—†€À+)tšYåQŒ›•¾ #…oyCÀH]\Ø0ÊBwi%~¦m×Ã+ƒÀ„]vô˜¢fg x ‰æª.'"‰ü]ê®8?Õs…@„ÿâ(&X”mÂiÑÛñ‡!à´8?0u¸€Xd V-²Nì솀UæÒொƒ;ø«$L‘LáÑUÂð¯ÒB“­¦á_#_í ÿýEw„Š”*YRBº ¤ž«(öm3TDÈë~H8j†€ “<vdÝC`ïZ€À$KõÃ6€I–ÅhÀ$'¿DZ)®dÀ‚VñÈ!SÍq"BË@ÄØÆ@½Â6€}:‚¶ä {Ýî¶c@¨º‰`®g"¨Ù´‰”9U݃éþ/n¶Ïµý_¤¥¼/‡"Xža" %dÅv‘ºý‹À4€”/Ø^Êv\røGsa›eÛý%r9²Ý_j¶k°ÝêÍmÙýå`jÿœ7=5ü£Õ (ü‘ÿŠ*ü!•RUøC=©-'"p¨êѯ`Ã<úÁŸöå@„˜zú•?úá”6yð+¶÷à‡¾w~HœÚ~\ÊòØWPŽhŠ}Ûöa°óRüDäØüÖ(]Ó°/UËA ûœ·yìKÈ-ŠÃ¾D‹}žDö‰§ö!*e¿÷#JÖåoØ—·°îýˆbµÃ>‚:Ûê)öḽ,Ø‡Š¼ò(ö!råû¹Ú¸$I./áÓ°«ÔÁc…¹ãr9½nú Í̾\ p #aЇt\B‘A_AE¦zè+8MòÈWh!®WÈ“–­0c[p½n)}"°{p)1{”>7ÈQú¤•Gq¯â˜zÁ=äëÛ²óCMu=º\=ì!ÐI’o¸W)–H™Îp¯6ÛŽ ÜÓU0¯a5| EM_øä$_ÁG‘¯ÑÖøRÕK%øòزðIh¨GKWŸp¨·û²'QºÝPÔk%ûŠz†þW€å†Ä@=òÁ²¢¢â îü:i¹{Ô#ôL(mç‡ø(6éί×qU@w~½í:z¶óëX»õrÓRöܶ¦ûC=”–%¶êmc«e¨·Åb{JE½\AÀÜPI|[P÷/¤Î ¨‡ÝÎRõ܈³-7€åZÀTÔÃNòUOœáÈ|ì¡<¥P©¸Gþ­™…ávH}>¾}<ðíãÂ’ÎyúRöÄÁº¨<ÊžX\Å’„ýUÙSÊáVö„Êë]J}Öª'¢Á|ìÕ{«zRøÒ§U=I~ß=ò…¢{ÌYõ¬»8ʬzÖ$î5÷}Uzæ¾ÖJÙôáðjKú@áášû>@9ÜÝ_A_ºúª'Sd® ú@ÉË=8PävšA( òa†eí*òñ”/×à@‘‚ !_#_\6} ÈÔ€ݬ)ðRàs>PНzzÉ |,9xàE–.šË© Ê©á^kv£gT=i¯V—=_£þÚZõ$JZ€”}¹Ç<ÝËÙ=ò¡¯m>PdClØJYnÁ¢7Üû`EöØ‚,8þɢÐ)ºß´S?¬[|­mz¤6ýP‰ú¹|[v|É#_«¶í2äý9qPC¾†ÕUè«¶Ї{|}¾j›†}$GêÑûªÅž}ãòæÀ¾ªëÂ_R÷ðW­Ð8à¯ÚÁ倿šÏ6}H£‡¿)ÙàIn þf™ÝàUöèBZДÍíùØpÉ ýæpú"ub_òô>Q'8è› *ô1A7†}NŒBßœÍoÜõ6\kלbäj_& W‰\2Ñ0óM"¹ùóôhÙegÜøô¡¢"®ff0ÿòÞ©Y¸öÈ™·W̸ñF³¸pSœ™ìûʾñ•¶OßθSä±»,|Å+ß/ü„ð¯¾@G¡ à óEw™þiÇ-&ŠçbÒÕ» J¸þKj¦À„H„Ã?%!O¾l|Ò,Ô·¡(9ã÷S·¡ÈŠè‰·ënb=¥B8q ´ùÔ7âžØ²Ñ•üâÇqrÔxCyÛÆAT)p¶¾²' ×"±«¡±xvÇ2¬tײŒ¢JA–Ñ ²îž G¡Ö¡t@©çÎwЬ[Ò[MÉÖ‚q9‘Êeæúü±v˜øjuRíŒR±rÎ:9m''Û§=Ò¾¥'ì¨Ü8ªÞE1 £Í}ðJ‘-SéHIÑìCÚx´ª¥IXí¸]l“ê¿·-òrJ|æ6û•¶·Í8Ls“0Ú܇·-ðn}J xB1qö!moÛàP-MÂj‡·-‡Â•ÛGAv0ç-c¦mÖž¶MÑ|J°¶ô1m#JhO ˜ùÝõ!íi›ã0½UÂjÇb[D%3zÛpµÏ͵‡n!¢é,³¿«ÚãqkKΰ¸á•¶i%Áu mo×à0EÀjÂꎕo½ywl|\6¡ñ½Çé*Òöîhæl&ÁÚÒ‡wÇÊ×¶§„Ê—gÒöî88Lo•°ÚÁ¶!‹C5f±K¨‰” âh.P’sŒ7O}ù`Ä=åÀ§ÈiP¾"·$ùk" „“¢úp8TE ~%Ãqµ¬w \ nä9rtÈDnD¤0y‘Ìd„û/Öm—Ç2RéGà @ÔÌØ”qtƒ[¤M“†d6wÇ‘õ–‘Im0 ŸðO ‘·è³iã Óbp¨’*`1âvÚ•cã+Ž‘ÀšDjóù÷˜mO»&‡h=%Œ6w1íʱr nJ¨¼už}H{Úå8DI°áí =!s}pÞL‰8ï®Oi{»ŒCµF›»pv¹¬9$à lÛgÚvvMUR,F,óµ%¹N> ]‡Bí¢”"û±”¶·Ë8l6LÂhs~¾('®ÑÙÕë2vÚöv UR,F°]=óÅŒ²"%˜¶q™O—ã“=q DàÁ—ZŒòå*nQªVã–Æ ¨B5huoò‚Ç  椳L±w~;ÎˤHŽÂƒR8ø—“©\J¹ÿ²ázÈNšœ¤oE JC™…Ú\¿–+äØx˜AÒ¾…Az 28é0ÚIrËI©SÊ»ëCÚx´0ÓÒ$¬vÜzÛøõÌÝÛÖq]ÑÙ†üælÓ¶³mrˆæCÂh囹QpͶOÛ:9Zs¶iÛÙ68LK“°ÚÁ¶áVM××<º Àki”é]òýñH$±È-c@¹á+<Ÿûq>¸²ò0(¦{¾Ñ€‘{ñ\¨Fö²x~Ä…v¾U1e&£°Låò2…Ë(÷_68Põm­épPø¦`Ä‹Ÿ)ÊQ6íF¦AÒ¾…AðÄ ð\N H»ªëCÚx´0Ž¡¥JXí¸]l«|ÏÜÛV¹œ0¥¢<\¿Òö¶‡inF›ûð¶¡@ëmý o›´½mÆ1´T ««mr{ÀÙV)KÓ4ìžެ[m;Ó‡*nÌéÁ[ÖƒÌë›®³h£×5 Ìñíë,™„Õ ¶ŒÄyVPå•xM)%Þ\¸¼¢õ¾ŒÆ³œp ÊW,騥p>Ç(ª/,£át;š=H›{PŒCU´çnUmããòGàkµC"v-±Ï>µ=­2ÓÙÌ6÷à¬Â+²¹L«:×m§UÒöV‡©¨Ï/&x«jîòÅi9_ÖssÅ·XÜ\)–̹†97"`Î ÷p6W[wsÅqsµk¨žs¥s®øùÅ„e®ÊŽ]Œ›«Â—hæ\É Âœ+i»¹R†1*`¶¹?W8v›ˆt»¹qÓ¶³jp¨Šöüb[•79eÓE;ÐïEÆ‹i¶{¤Éûʱ$¾$b”¯ˆL4Âr­yD‘3 Ç£EyƒÌqáÍ>v‘ opŠ6&åÔÎd*×”i\ÑÞSû¢áêìPëžCõ¤ @Úî˜aŠÜü®î´GÚ4q‡º»ãhQ´S£É=ðJI|&3à×7Áo*èßMA{|5áv1‹²î³(÷OÍÙÕùU¿Ù«´½]Æaj›„ÑNšuMʆBÍ”Pùã³i{ÓŒch©V;VÛp‘®­¶QvâLk¼›ÝJÛ›fCq`MéÁ[VÝœónÙyEלkúr ­UÂjÅbYJQ3¨IÁmŠ!4áÂnžÝjÛY68Tq0šQ3¨AÁý•2-ÃäG£ i;ˇéhV+Ö9Ë|Ôë笄£wÇRĩǀ–á\6äÊaS¢Æ2ãüœáT<¸9˼ϛ]HÛÏ™q ­UÂjÅ™e|µ~ ¼‹sRùPÛõËmošq ÍUÂhsKá×g]‰Èn] áöD”cD•°Ú±úcÙådÀQ ãàðÜSpÎÂMïŽúws6{|´gÐQ Áž …ùsB¢ï<>ÉÑ€[Êa*š„ÕˆÕ0Te–ðˆÚOpþ˜Æcö+mošq˜æ&ÁÚÒ‡·mçØS¾q8ú¶·Í8†Þ*aµcµ­sZémë|¯kHÅMžÍÙ¦mgÛà0ÍMÂh[.;(xCËÛÖ8·œ¶5Kf‡mÆaZš„ÕŽÕ6J‘Û‚ÖiOcÄø²…Ó:Ð×F]9Ƭ¨kKÞ¶-+Z¨“]Üô–é߇ÒúøjÄEð~gX¢Þñ‰ûaqíu_ðzpXŒ0 £Í}ø(B©§‡ëV$Üä¶"Æ1”«gñ1iaÈGÑèá/J/Xºk5b†~åp±>z¼–>–øØ5w±øX>»øX4_ŸñQ9F|T ««;6þâÕ²ÔpoNš|kNš´ý¤ÇXY"`,+îaYhü‰·ÐøÖ’[hÜ^šr ­UÂjÅjYíç–É×ܜԺæ Òö¦‡Ó¼û "}xÛ䨔PÃj›´½mÆ1ôV «g¹q—YœßJwæÆuMF¤½äÆuMFLÂH(»eºƒ’ÇbÛ×lDÚËbÛ×lÄ$¬vœP/²h¦j²«­ »V½g€ì‹-CÂhsK€¬¢éˆD\ v±ŠÛKˆTŽëbëècÉŽÓqŵÔÇ,âØ#Wàö’+ÇH‡ûŠsÜ…· ·ñ¼e± Hì˜ÛKv\W3 ‹«C¾‡»$ÇglËfb÷Î"í%D*ÇÈŽUÂhsKz\5òX>BrsIŽåï#êã«‹a¸µ»F‘ÜÂEð ”"Úö©ˆq¨ÚC‚µ¥gXÆeM!Ñ—"Úv¦ Ž¡wZ"äèãg~&Ðnè§÷L£ñ™À³¿Ïæü4ŸÓËhN;в^FÓ±h}ÜXFÓ±h¥ÊXFÓ±xý½9?çK‚x-$“¼åK‚ÿ´ã;‚¸I½ã$ý·¡w\œÿNŽ';z™Ƴ«³Îd”’J– Âß\äÚä¶?ô5®´ñ•Ç¥”…«Òú —R<ÁµDÇe”…Kuu\Nû¯üê`Hô$^3À§¼ò.ãÍßdÀÙŠ|gK&½É·9äÏFÿ÷áF¾gäU†ïo b^7J—o îÏ/WO×x¼Ö~xzºúæôÝóÝËÝî^þxõ«ïÞßÝž.t_3¦ˆí¿9øÏþÚàÕ®N…r?Ü<]¿Å{‹m/‡»›ß\ãÛq{‡{:¬þÓƒÃÙµÜËmLx/(–/º¼›ö̧Í=ÄåØ5óW‹?qww>Õù=¦‡7 W>øM¾®¯Ói­8áK[•ß åO\=LŠêėΕVy1׿e«ÙnxY­8áÅ6¼¸àd–$ïÆöjŸs5./S¸Œ"\Ÿ!ÖŽq¤à à|Ž5)‘_‰Iú±5jãÎýP^š·ÄùL`üølîqkKü€Qø­™)ß!ˆ®iã Sap˜Ò*a5P–ðnà÷RÜ®¶â^8F°'ø£~|' %¼Vå+\Û`ƒø®e`YJQ}x‚”Fc¥—Tõü}½³pµl+‹ÌÄyQX¦ry™Âe”û/ÖŽˆ‚#€¦Ú…ß~KØüï¸Ò! œöH›f5‡°ëãÒ`éÌ‹&0h¿šfþ0è-m°[çƒC•3 «úìyç·Íx/O¡k\¤ä²/.GÞ#䥆»­¥ ÊWxEæûÀøp°Ršª Ï êÎß ±¿çÐlÙOÈ´]/Õ‹*V£ˆ4åšK)÷_6$`ÂK„r¸Å…œA * Eâ—ý¹Í_Ë͵q C2¿K7ÿÌÅ›ù¸µE>?a”„ëyS&3[Ò»õo6}õéEý[gQÅë¬ÝY„·Í¶<-ª™_Õ©‘†³hþYô[[ä;‹jâÊê”x3¨$ÝÎþíϦ¯>½¨ï- ©ø9*ü½ 7F|óц0ËŸaû³Í€>nm‘ïç(ãoS@âÛH*_~ŠìϦ®<¼(¿Ø8R9{"«i ÄÇ £õ' oÏø³jk[[ä{{Þñ›ö®Sº†·ÇþlêÊËòlOÝ6þ cèüŠè@ã2Þ­z{ì6¤ê ×VC”¯ˆ=UÖý‘/  Š*ÄÑÀhãºÓ ¤\ cFªÑ¾d26“"2•kÊ4.÷I–/09öñM·Oá7¯>FœôFBÍ0[Ú·0ˆ'nr´M¾ÂkF;H]lRð©®~5%>h}=ŠZ‡iiV;nÛðËi_fpBÛ±ù^Ÿ¨;µäïCk}|´÷cXÌÚù°v>¿ó»³i{³ŒÃ44 ‹ Þ*þ(sJάÜQ;VQ“_Z¶^­=횢÷`MéaF‰C@à×mgÒž†MŽ¡µJX­`Ëðr{Ñ·;hN-…B¥=]^Îã Ü5€÷fÜÅÅ ”òË™?V¼ïÈíAµá%¥¤*_˜<¨üä¸.eþŒvYvyWW)"Q¹œHåRÊý $¥"oç¨ûœIÁËæ‰€o+ñ‡§LwmÞ˜¦¯U+CÙåcúührxÀ(òˆ)/›ÔÙƒ4¹UÁLC°ÚpëíÂÏð :Gá 7¤ò6lô*-g–ýY•Ov’#GGÙÔ ùÛO£i:³ÃPp[Ì]8³FÑhR0üû4 ߃ yt«MgØ`P½‡kKβM6¬S‚ü ÓèBšÎ²Á0´V«ë„á³´‹#â[Ñ}†Ô:Î Ó¦3l0Ø„èó£Éøküá½9cÈ‹lº$ksÅ2Åì¹Uõ3s2Ò¶Åü‡·Gk-f7{”a F›»ðõqaÔ€ïÓ¦&wgœYÊ0tT«°Œü$Šó—/G~@œ¹^ܺÙ°ƒi3®Iã{ JùòpË?éÖwçÿƒ¢ú@Ö ag< ×í|Æ'fs]DâÃGi©Ã®)R™„pÿE#ÕðÛò‰¸^YŽðJ8¾‰Šï'fùb\IWCsmß¾áð°GÇ‘ø›"S‚µ¥ ~Â(' SêºÅõ!m}7òxËOÊJ/×8.ØvüÜ/?‘ÒáÆ=psÿGÇþ|÷,l½7üדñþåÙôk‡Ohà»]ùðòÛÉÅ6 Ã½ñ‚VOw§÷“店>Ê~ø =¤J;ˆZŒÚ·/w¾}ä9~[ðV¥ßâ³ô¨â³«¨•Æ&³ HÉ5ž_ÔTŒÙûñ¯›§©Žøc¨~ö ñѤM¤ú/üÈ/ÿj²J]|‚wÝ%˜ÔÛLJ‡o¡¢ãõÛŒïÔìéðK̶b¹{ŽÓ‡›en~A\x‰†ž8Ÿ‹‡;ï°2lâ •úøürzºã Å…9¢<ÜÜ+~Öø?ñ½© B£gR[#9Ó€ûÇ—šhù[‰ËtžþUFGZ/2™ø)Z›XÕ)›ËGó¬zø i‰7ÙZ¡¡FUi'ûþÕùë÷n _ÌuÓáy.eò¿gæÚyåºø=àΣcýÎÑaß§õvó໵Çún«¢ò9ÝܲÊ[¬‡ßž¹mÓÇÀÞ0šc|û(6îÁ¸ó€\â1^_îb%~š&P‚ÈÏüÏ-K®‡;0¶ŸË3> ¼ŸSuQC¼øPMÁwè¬QÄŽõ‚‚Hþ6м_­` «~w¯Ç%_úÅœ™›ç}؃1/©iÀv‹¸qfÌ͇¬!_- làÌ-ÿŠñeäX,fqÌ^èIyZ=̰óø‚>PÞãáñ;e¡Õ|î{øÑh ýO×;þAHϱ†Ü™p÷0„,>3\ì×¼žiÙñä>°€0”\”¿òðÚgOÿûäO«? û©ßy¿4áø]¼mÄBB;üúõ¶ç Fj­ç›ûÙ’=ÇÃF‚ŦÃ3ùîc¾Y9üÞ{ÍÎ%nî’˜·T&1ΈîƘ«Dõ¿!òéô‘@òyA*ö!üúbÚ’úPV~x”¨K¹Ž¡‘ Ö=tǬÓì=¿Ü=ÜÀg„Rn4jSª~:Ç51¼o€ƒ§ñ¿Ó+DÁ4{>qøHLò%°\½Bw{ø×ýë¿>W<üÒè ³œôGÉBHñ1O¸ A Æù¨šìß_C d÷4OXø!o›'|Ȳ̳—´hkÉÈtÙ®~Ÿ-S6û?¼y÷ŸGp”ù9’49I‡\¡«ü;0lÌ™ºcµ[‹äcx"k¥¤’øQrä»9‡>þåP}1åË:…HZÖe â–y–ÑiÊ™œædZR÷ßN¦o—Á ¯}Ì4%ÿàñÿœ,ßXçÉkø<”Ê~¬ ÅR2 –/´Fnî• ƒù½‹¿>}xz´¹Yâ;Vƒ-0yè¿‘0|›‹ÜîFRYeÑ&ïÇ;ŒEä2>g»›ƒäÀxß&öïI$â1p€s?üõÍÓý£µê0cW3Xù+×ç[ŽÀÞæÃéÒ pà<ñïx¦K9ÿÅf‹µÜóáÛÃÝñtüÅõ¥Í¹Îž*dËxï}ë·Ï®õÉÐw“ûí5«sx\Ó;Ÿ_TYB®°oŸN7ϧùGž“5HFü6ÜÞ΂ä«\~—äÊÌ»ÿFøÕýŒ®ñ=E™oìyŠsü{¯'EC7#O¿ñ‰í顎örÈ,~ÅÑ©V‚ðïD&²{øæéåîÖgç7O¿p£ô2mºå”|—,å73%?™®ØÝŒ'Éjøßá5&©PEuUð¦óuÆQ¦ÅQåGft!,.¨õ|ût§J'Œä{ü;q7£¾¥/åðýð‡™­à¡Èå§åæôÌ™ôÙtñ%@м/¨9X3}Å6˜Ÿ(ÁüÕ%À‹2…Šm´×î/¦Çø´JÏÿù1>g¶¸&ÈùŒµÉŠR¨àm™hè}Ñi!€¢}+ÓD#^y«e¯ÞgSâWô²ëòéã †›BëIiÚsÐ>º%Ò¿òPJ‹2p™cdÌâZS`lœûâ:%–î®s‚–´Î=R>«Ú‘>Š¿Qd<ÜÞŽTÚçO&Ž×¢ô¿3 9ùá;‘7<ß<ýQÿHÍ£óâ>í.…i|L)ôòÿ7³žákË ý¿ò°úZžò@‚ºÅD±é@†ßÀ®ÿ,Ú\²´µcCQÍÊ& ì<¾,´´>~ÿHÊø-±0 2_Z4b/ÄPm%žyá­Å6KÒ÷qÔ È©Îr­£U–ìKènè}ºVÇòi—¶Bœ/‰üÛééqîY—Šƒƒ ÑOºkÀÒ||žVe§ÿáîþÞ¥¬>Å{yº¹XŠ£|%ç~Þï~;í½¼°ÀÆbxðŽ}ãw– WÖ0pó/>Õ¸DñÃi¬Œ›§ÎNd<Å /²f¡ñËfX(kŒÄ oXV¯òa<š$ºò“´zÎëT">Nwæ75S pbØ Ô@’hÅŸîO·/"Ýk}ŽeAµ>'}B¬Kõõ…“ðÁ]Ê·×Ø‹ÉÆì@Ž$5¹í˜Zßm^£ÂÓnepη½®û:–¼l`0o‰–J4BÒŒ¡kyVâ¾½T+—í¤Bê·×G1÷ÿòÐÇ\‘±ï<»ø„— £üe±0ööO²pÓŽòÄódzö‘òñÚR­¿S]’¦q`ý,°>›Æ=Ÿ×Ve«ƒ,ìéô½›Ž§Ó³ún¬ ¾‹ÏjàùY¦òHuzzû KÈdV¢LKÁgzi§­žžYàFýEYH!·y·…NËëê3Øi‘|ð^èÕÑ<•þù¬µ×’úÁçõ<0ü›’g…Ké9¾®§iÏç[Q×!r-·<Ó¦2¶³BÏÝò~ Vâ'œù÷>™#n€qx¹û³A¼ÕÎ~(I%ZäÄÏLÖ˜\N ¹úÁF)@ˆô*íÃmw’í76ÃY\Ž0A7âªÝÒÝýÍoÖm*Db›zgfP¸<ËLÜ=-þhïrÒ§* “寴Ú\ÿ);–ç㘯wË.Îxèl0ø k Þr>r3–ê•;¿J‹5ÆÜ>>L1”x¿×?Ñœ9ùñ|Ct/LÓèÅý_·SY‹fŒ;ìÙ K³"/NçKÓXÎ÷K¡ýôYœ¨^?—V‰YE‰§Ó»eèʰ¨ò7K™õhFFz*{M›!Nj""ÕáDW¢<}ɸ Šï‚aŸ/ï¨å¤‰ (ÓáWº í%M&ÿJwÏÀü+-†wçr¤ð¥g^Šò*aêØ;ðáwGÿ¤! A]CÔ{•–²'{±s/`ZB?J͹Ôð2û?÷&»œØQuJiŽùÞ&ª”ËíU¿Èj‡ƒé~<¡þÌ3Ä™å_¾Úéòï÷Õ‘B±&‰ôΚpå}ÙéÜm;Ûéîx&Rèìwºp–ÞÒÅ£ª%MøÄ9Õî2Þ3S ü%K.ál?k ãOôO[’ÎQ cñß/U¾.e.ÆÎƒbf¥°ð)Ûv¼˜õ¦Ñ€ž™–>ëC} ñçwîn»ù§ ~þüàŸŸwòiJµø4ÊzìNX¿ædƒ½+–O¡j‹'êÓëÅÙãBfìAw©õ Eü¦Ñ„”š ÒxdÙ¢.ôóô“±`¸Ùèì3±úU]Aã™ÛGÍ7)–¾ >jAÀcµÛö|Ä} ¾áDiŽãùèPãžï€àM~ŠÏ¿wɂ㿠Í8&;éÑFŒ=É¢› cKq+Kæ Ù[ tIòZ® °bñ ¢!ûénVøi¾x²1âü¸äÎ÷—k¥‘?U¿bõÇt6-ŸYý<-zÙa<Ã÷š’TŸN÷3 úñ}xÔÊ÷ÛXñCêõ¬ÂqçðÏÝ¿ýÁj •ÆôEêy“µnBç(^Düfê_á¿6P´#uAè§± ?7¶<ƒ(T¤¤õÉ‹g±pFÆñ^š|çæËï¡A@âP®}ì)„×xæ"ý$ŒTùìÅ×Géaì@¤Fi}„ÜýÝï^iRIFnåçhòŸ~­ cuŒ±á+°-nǽå?ÛV·ú©õWGXÏÈ¥±(Õ0 t)>ú°q?Ü#¿>à¢]åóÍÃÉ\#Øñ//ÞT^Ý$;?IŒRÌý³å,`ܰñ;†ór •OîÆ“J‘³á ¥+¹±Sr¦½Â,æžÇdñ–rt?–ôH»$·~8·¿Œí–hQ^ïŠ2ï(×BÕUY v)?3]ØVÕÏ\Üäç"Š­;å¯+;²å¸=;¶çƒäøê$aèüì Ð_’ë`ª^]ãÀÎòîBŽ ÇÆW²TÕ¥vž³]ZË÷Y@Så™]þæërHã+àË= þÅxZ±ãd°ÌŽ/'ÚÑPÖ"?øWÚ=å:vÙ›CéY¡/J‘`9{ò÷)¬> stream xœµ½_gGrøÎ¯°~(X z!–oþÏ »€lxa?X$°$?´šÍ™Øä¸Ù3³úöŽ'"od±Zì¦Ç臮›¿¼yóoœ“‘‘ÿãázJþÙÿoÞu=üî«ÿñUÒÔûïÍû‡ÿçÛ¯þýß·öÒÓj-?|ûýW|%=Œü0$y<|ûþ«|ü¯¾n©>]m<þáÕ××ÓUóœu<¾¶‡2j~üÀ‡²®6ÿé‘OiöÒß¿ô’>|ˆÞÄ/ŽO5>üuüP~á—O¿Ã‡ãzõ,Ÿ¶»œ-øþ“-ø)>üùsÛöéZ—O×íxúïßþ¿_IEkíéáÛÿòÕ·ÿ×§Çì‡8f?Å1û{òìñŸ?Ù|í¢&]Ô¥äKæQê%Ÿcü¯Ÿì¡?Æ/~üdwýÕ'«ò6>üøÉlõÒ ¶ôoÌËwŸ,øí'»âxøÛçǧþ&>ô/ï¿ûö«ÿ&«zÖöT{{QèO½<´šž®ñÊZÞ>ü?~µžÖßeiËyø[âÿŸ¾šÝÞ,×zÊùáýWs\O­IIøãáIiO=/¤Ô§‚„y=õŠ—’;5¥=Œ—òx*š²®§yá¥ÒŸ*SÚÓ\IRê6Hʺd²\]RÚ|ZYSš8%eä§²’´)­L)xhBº¦¼T¯ú¤ïäô”º¼Ss~šISúS–êÕZž:žKzʯôþ4´©T©xg姤ïH—Ué¹&M²©7)o=e4[æõSC#Û(OE Fw£‘]ZÒõ­ž¤¯ä­.1õSø&ZÐ[}ZΡ:ñÖÔ¶!¥KgÉ[ãêÖùiÊûò©ütiGÌþ´º¼5䣚°DdÏ* ’W*ŠéX´SÊzêèót]Ò>)xæ%­aÊxJRðlå)MIY» 㬽#)ÒÙÒS \MS¤o‹äYÒ=¹3eh‡­²dè5EªÚd|W³Y!)ã©!ÏUÉ“åÿ¡o¥Tžª´!g™)™)ÝÕ3ºM¤^ Y*$SæS—6äÆÇR´«²,Z~¦Líª,#—µI¦ü”äéYêԞʫ²ÑIÆ=UPiKY"»%EÁ ]+б¼+[(­GOYY…u£Ó‹Ô>u¦,í©"ƒ>ÙæYµ§ŠT*ó­¹Ðg"`±~R/‘6½Èââ0¥¥_•”ö”ôëYVzÓ<ƒÌ"¬:*Ø/kwÑ„ž*21ÆdŠÌ9ÍÓ¸XSΓ”OjÊÒÞ*hžJ.ëE¤ §D®"q3RÅ€¤4ö—¤p:ævAhtH­‹åHåó‘UMLé,F*–?Åe—ñÑÉêè‚NXí/©2Û ¢W» r›ËH7mƒLf¶\D/»KZg)ý%¢£é’*"°Ú ³´ˆÌÐþ’¶pø³ÄÁ*‚òK´Y_™ÎÚ_²®¹æ1E.Ísq‘¾Ú “•# HÐî‚xЖ‘¾IótTTS:†VRš ÌHMá*CsŠæ1ÉšJWQ¨)\­EÄo«LÑ©ò"æÈ×CÚŒ‡:„ö&`Ñt°¬X!7Z^”QCä‰Cì{)Z†KzÁSPô/sÝ)¹Qœ}£ !R$äºSî\"ÓDdÄzBÈ“:šòxBÈ“»Ž_È´SB®g­‰í»sý[›ˆõ§<ãb °P<4YÀ2ñ¹‘åôêë\'‘cT0"_ch†Ð‘ÙMä}嘫Ì2*²Zd¶N<¦¦")›>ž¿^øµç1l~\ Ûö¹Ò£¾øÂ˜>§©"ª,¾_.αž¯Í/œ‚@â"¡ 1˜Y›ûøéÕ·ÿÂ*}&{þÇérA A‘‘ÿ]Jþî¹ø%¥ø×)u–O-RjàV›‘SgaZ#Rê,òsÕH©3¸j”:Kç÷Ȩ³ˆŠÑ"£ÎÂ~H?QÒÁ¨!ðsŠ”²VÑÝ)5@YéËæÔÜuœú2tN]$Z¤Ôµ]‘OWšH§«©Ù´ô%án³iy‰ÛŠÍ¦›T„[gÓÂDe$"›ÒH lºcðK¤ÓÝzÓ龚1=§ÓCÈÅL‘NáfuD: žN@v:=†-×M§‡¾Z"žW7Jãtz -¼j¤Ó³²{6›žÃ¦ˆ³é6…ÈŽÀ¦Û’ɘ"›™6 }M·Xlº¡· ÇÆ¦z²2Ý´“6}A:lú’ɳFdÓ—|É6Ʀ¯îLÉÙ´~rF6}ææÈ¦ñv[‘MËÎÊNë/9Òi‘œ›Q'ôõˆ”DÚ¸¼QêÔ8K7¥N²ÆŒÄ§)®§N"k­FªAxG‹¤:I#z¤„׸¹‘jàUÙHu–Fœ¤’£GN ÂÛfäÔ ·Ü:§Î²jWޤò¦¤Hª³ìfޤ¸DNeJ^%rj¤pcàœ:×eƒîœ:c¶ÎÈ©³/ÇÍ©‘b„™œ/s8§FŠ]ãÔ¨që‘S£9Rê\†“lãÔ¹˜ÌÜœ:—Ë÷Æ©Qp_‘Sg™ܦ8§Fž)5êÇݤSjìù®)5>5R¤ÔèHJ§ÔèlVÇ95†¼•È©³ˆnNAçÔ9MÛú;§ÎÉ·‹Î©±+å;§ÞæLÜ85fCi‘SgY…—‘½*ò0—zUæÕ zUÑF¼š¸¹ÙˆW!ñRD¼*½£Ó#^…¬jòªìÙuh6äUYr%È«ÃDÁ†¼&]•\ò5ºÝvÈk˜ë#Bžþ†<‘”¦À2ÈëÈ[#æ-Õa¯ÏæŠ%ý‘ŒnàÕvuø†|œ wàÒ'mFà›5ß”•–{>`[îÀ‡žÔ)¸o (qÂ9ð-(±F¾%}zè‘:òr2ð \O+à^p™~…¸×A¦j"î©*§å€{*·s>‘ÛÕV¾«‘’”“#òul¨p=R’öµC„ÙnoФ,õâVÞI`]²¦H‚ˆZövYɆ}Y ×ˆ}YæŠå1ì+"‹ û  × ûî}°c_ç;4I ëºn6öœ±ž<#ö•ÕM>8öaÅ®CT“+ü*¤ÊŠàWeÜNð«²[ľ:Š5Û±¯vSÈ:öU©5ç’cR¨Þtì«B ƈØWÛEž¾±/ä1쫵»ŽÇ°ú~r\Ç>Ì7®Ç>¼Å>wì«uDà«°NŒ|¨L-øP™B6B•P~ù%q¯({h¾Yd™7(]ºH¤föJ¶Ý_Á<ìCÅ»š_¨ìî"eò@?ËÌ1‚{[cð”˶ÆÜjqi0Î4·ÆL™.Å1xÈÏ1Ÿ&­§1&É”ûËYc&,¾Ï¬1ù°Æ|™þ,kÌs†½­1›bc\¯ƒbC§Jæé 6nDœbC=joņpæH±±Uk‘ag¸%ôȰó¨ÆíœagÉ›#Á.—oÞ`YüT÷9Á†Ä=ø5ltùà×z” v…†¾G‚:wEN°+Ü&r$Øu.gÆF°›T‚jj'Ø,îZœ`·¾»n«˜ÖÀÙu‡¿UìZ6¢NÛ]Ã"S"¹†A†ÉÉõQ‹ÜzHÇ´È­Gß<ÔèõfÙz=´5Òë ºxðë‰yüzöé4üºÍ¹‰;ùu›«=3~­žT#òké›jÊã×mIG“š¿nK¦Í ôº-!Ãä¼N¯/ ¤@¯/ìf¤×W¹Œu:½wâ$vz bÄÉæüúêÍ*èü¤‡¤Üùõµ®H®¡Ðb¯;¹V%^äÖ©$Ó¸8·N–ÇÁ­Su×4çÖ Ô™9·†çƒqbãÖ²<ŸuBkkäÖÐo6n]D;¸uÆ í‘[oHØÜôÒ#·†&¨äš n²œ\«e`Fr›MM®3õk\ÃÚ›K$×85rëÜÌ ksëL¥\ ×ÈCÖçä:˼k5’k|Üx²‘ë\W`ÖÛ´±™5Ô¤V†1ëm>Ú̬u0kX‚ÊÁ¬3T=2k|˨¿1k¨ÍÚˆÌAþëÌ)©FfVªß̪ʺͬQÉ5ÆeH¬s3ÿ&Ö(¸ÎH¬ññkDbÍ+ë\Mlbù6b —@nœX£›Ž±VCÔf¿N±&æN½ Mw âB;µƒ^Me§ôàZÛЫ²jë¡W‚®ÍQ¯6×à;êÁ—ºTG=¸þ”S¯]j°…¡ŠÁ^k®¯wÜ¿5MÄ=`¶kvÜëÐGŠ¥.RôÐ+uAÃ\ƒ½!Fõ¸Ã^žì[L?e°\jù¦ˆ½ë@>y wG¾ mý|pÀ¥Æ¡oe·:ôÁ´rľ5ÜßÒÀ¯C–̨[ê»Ìlià'PÍÂ`à§ ŸÁO¤»ëï üT½S#øuÌk-S.aïRW¿ÍþØ'b8®™j †¾ô©eÓàÚTKY¾ÄyêØ‘VÕÜ^J„¾,HÜg„>¨` B úŠtr=TKP£rr;ôa÷KÕ²C|cLàú©^$‚Ôôqô+°VDðƒ[{ŠØKKêûjr_dǾº}DûtW"öÕ²Ë1샪›kϱ¯Bó•#öULúû â§AÞ±¯·l8ö骎ÐWEHp’:ôa 0Z„>%˜ù`£0ʼn!dCŽÀ×d4R‰È·<ù`ãø¥DÜ»‹5؃õfDÔƒqdÍ|wýPÃ=TßÐÉpv™:"îá-ÓŠîmÛÍÆ½ +øŠ¸WáXY#îUˆ¿q¯v³uoÜÃÀ±g÷`j[)â^mÖ,ǽÚL_¿qO³Œˆ{Õõ.÷jóF8î L e¸‡òÇ=˜UØ,Ç=ÌÇ6#î!ÏU#î!9Abÿ(¼a}‘1æò­bFÙªÚŠ÷’B¤V\W´UhkT®$Êž /ƒ^iûU©+)˨G¡m3cx¦‘#ªE+$Á¢™ªÉ:+©G2_¤¬ B…£é|2¦Ô5¨ ׂ108°@nÔ{"†/ãX n}\|2Aý?ôô„B[†Ó1à²VÉ–pÙVKs)fªLi40Ȉ’t áàñìAøqºï¶™]5»šÀΈF³L‘ x«1fºÎ±Üëá—å)"[Wt¼Ë° ©1‡.X ب§…õŽ”˜ø}°d#¦ ÙaÞg•?:ä:ì0…&¦Ì=ÑÚ´]]îÉŽuƒ-IQ“¹RÝÎf”§¶+é6.™3Ú]è~®pø`¿ØàFÃo]n ˆÚVÔÝ)@f+ Y÷‹0”“Ñw.®VÕ±œ)ê„×°4ÙrP«qã["•–L¤”0©‚ ›¤%ÌJ ]JX@÷0e,…€%Ž(aM$’\ „u1…ºðqÑáo‘þÂ×4O§)CVBMÃ"ç.c$z’A áÚ?ª1æ Jx©›k¡®7ƒBMbjß*@ZU«PêA äÄãhì P¬.¬Û „‚ž²PÍÏ!ƒ¢¿–¼ÌJX‡éG:S–Šn0nÓ ‚š,þÖ ÓÇÕ]ªÌ©GIÔŽÉu3'> ¦àÚš Á…*Ò“)í[j‘ô®Ë|/߸ºW H¡n¡4Ó–‚rÛh6Ü V¨ÛÆq™-Ôm#,×|«4n¡èÓ„zq׸'†Z‰íЗU§]4Ç\v<ê7šc²úKD³GÆI€gæ˜rí”`ö€ÿ°zxBÈ£êÁ3í”k4UÇ„\;%äš %‡1f§„\ÏÚ[ø›1ó Søc ¼°–cбƘÀpTô½ß)jŽLÕºü¹ ÚOy§¹jÐØ¹,åÈ5àæ™c.K‰¹¸œfÈå)G.«kÈjÿ%&”,ó¿Â„"[ÛKD£›P`%)°÷_Ý­$¥%`»YIÊ3ªf&)ƒk>3“|šNžf’\„•þ¥Ì$Y=-ž™IÊa&ù šûf’_r_læŠÜ7]ôRÙÔ7]ÎVœú^«•wê ‡È+Eê{ 3Clê —ª1úBÑJ¤¾PT÷ƒúbç§ž?Î}ö˜jÆ}…À¹ÖÒ¸o[¤`Æ|¶þ-2_a£fÄq櫇¨S‹Ìç7j‹Ìw¸WÚf¾ (ì g¾]OºEæ rÆ}Ž3_ÐÇH|ASKÄ·5ß8ñm2¨ uâÛÀºG$¾U(áÚ‰oí¦ÉÛÄ÷&{N|AíúÁ|¡5$Ø8õÅü/+Rß"ßb;úªQ_Ø-õÕã¦#R_„X#R_Lædrê›—ïšœú‹Ñh­Qß J"õ…äÑu£¾8¤pR_=€0"õ…xi‘ùB¤XÁÆ|Uù¿"óUû™oL!ó…Ëi‰Ä&Êv_˜Igœø¢˜y¯Ù5ñÍÙœ•6ñÕ&ŒH|¡t¾â ÎA§'¾Ûh¹‰o†›sÌ7/s)ÚÌnŠF»ùâèm‹Ä·ì9èÄ’ŸK؉oYÍ–°_xPËàÄ^Éœ;N|+¶V9_ø„5â‹@-½_ˆŸv_À²‘=#¾ÍýÁ7ñUnrß;åŒÄWuÐ÷v(œJä½ÐÔ´·/÷¥rÞ‹qe:ï…q³ôÈ{±Sv&¬¼·¡âœ¥Æ{ÕrIãñ^ƒn2Þ+2axç÷ Çv¯#ã½"o]ÄïÕC`ü–ó^8úSœ:ï½`ª‘÷^ÍwåÎ{¯^Óヲ+‰œ÷^Ã<;6ïÅAî÷øÂÕžó݉ïµ|ª8ñfe'A~PdÎÁZ´t(~*$tè‡uý@áNÅv¹-EôÓéÜ#ú•5W ýàKÆqvôƒÓ2wv®ù)Ù}·\ó£¡\z@?Ù+LWÙ˜êžâ)àŸžºzÀ?=ï3"þõ46jÿz‚7u€?Á‚jæ-ƒ¿eŽŠAy;èð'{43P;þaW"üa¹Œþp`‡‹Íáósð?¥“ßn3K„¿‰†×s•Ãßp3̆¿1ìÐĆ?÷¼j„¿QÖÖóþFj@°U"úÁµúG?ÃCC¿›Q8úõQ ý`Ùjüz·stüà mš)¿^ç3½~ GôC% Ô ýdzÙìrôëѯg×·9úÉö™Ö’ w‡?ô%–Âè¤Cïƒ:çñ¯Ão?Â^ºøÃK5¢´!%†~è%bº£_vg£Úkß6ôƒý°è7. ™²áõäŠuøÅ¥œÃˆ¥i¼ þFÞƒ?˜©¬uø›)»æÌàoº­rÃõqøƒì'Çvø['ö­dÆp‡>è]ê}P _)Bì<”“ľ ù´aŸ›ü†}ºMœ)`Ÿî5jÔùˆÈ±1Ž}÷©Û­ó Wžë|nß×ù€ ¶°O5*íÐùè•Cçƒ%#@Ÿ:årŠ:ô)ëúÀeN•lz‡>(XÉ&ú`y;4>PDR}éÈ,¡@väÃŽÑ 6äÃa%Ê_G¾m!ãεè‘Ñ/4˜$l‹"€oÝÔ#mï‘Òé[7MƒUà8¡¾uÓgã„úÖ-Ó¸™ô­[&£ vÀz|岸%3”NƒÂª2¡óôJJ–@ý¥$˜D(¨Åe~sºr œì•¬ú—Ï1“N?T®l¡ÌÖ]` ¦om4KI<¿¯žæ–Âóû°ç* 5"Û‰XíîRh“Õs2:õJá™å­™ß*æ•QmVZ»FðÖ‹5¬<Á_áRÏràÀÂí^åKN8àfwžà‡£éd1}pÛ˜ â¥ð8WkeYçÀ)>µ°û,ešOFo;Å|2C”²Ô¥C£¦$K¹]2øR½Ì%#YP WEé’”d>À~K±³>~–¶¨­`uù”ÊÝHb‹KQ`PŸŒëâÖ®€Ÿip58Ýê`a›°ÔÞiý¯æ¥j!¦J¥¿Fƒð¯üTÓ3ŒêþawsG„ î‹0°ì¨\©ôüÔHöÖ C"ü.&S¦ XßÅ¿>õ #c?°3–9$Š »,e)lÎa'Å ö1 8õ»˜B‡D=ì«Ýƒ@ˆtH4UuA <…!ÓË«Â)Ð>¨Cb³cþEÍZ —ÍSB1½›ã>膡³äÆCŒPëð¥f‰™ž­”Pýa7f0^Í_<Áxy@†J¨ÞˆÃ†Sz›ºœedxöÛ*Z¤K<:y€1es{-òƒT³ æ3›§$`ÄñÖÊ„®.;Z\T_Ä5HNKÏvv?Y ¿¢ÇÇyX©²˜b®ˆÅ,;<,›C… ¸šz×uÛÉAõ®ƒ¥o5sE\vȨtªy;ŽgR”õnç|²™ІDѰZæ¬+)Ýâ‡eO™vΧ»Ô¨€X­/V"f¢/ø©eç|–© È 1sæ ÈàeŽ1ÚNpA…L©1Ç \P!Sà•hŽ¥˜™Ì²S°²3ÁîuÀA3³)úÊ`Lˆ{#ÇsÔL'œxøÍV’¢!*‚ Á ŽF’_fò„ÛÌPìdkÈ´SB® 'ÌxbåN ¹Ô[;†üºSB.i»RÛ;×N ¹žµ'¶ð7Ip±"^2’ ’Ò6’@v<3’lV£ù›ö&S:ð Zÿ"“ %¬d;rµÞDWµ%9Ý1M!¹‰.HuíÑ… 7E¢ ‰„݉™1#ÑÝZÁMt‡mw¢;=Êò&ºpζrœèÊ7¹SÙD7Û''º ‚ØÆtUÃα0ª«”GäºBªóÁu…S›•ìæº²œíSNv“…ÕÞdæT.Hg»ÐÁp;è„÷j>\Nx¡–w LÂ{ s~Þ„Äz„÷2‡Ï›ð&ß®:áÝ‘œðâœOK‘ðÂɆâÔ /BªqQ8á8rl Uø<o¶2›ðBãͩ넇P¸¸œð†HAí„W…eŠ„J ʃMx/;¶u3ÞkyñÒÁx³«Cœñ–lÑí6å…²ŸÓÛ)¯Æ:(/k:(/h;—¶SÞ`SÞâ×6å-P¬vg¦À¢A½""…TÙPc÷€·-ED0‡DSôð¤I@À·[Ó3M×v«z–ù½ßªžÕü-ƒ@ìÆ¡êAÀ±²”/9‚.sö:ÂÉ™xG@„­ì=" ‚Ú|¸ªgm@1lFm# . GÀæÚÊ€­ù¶ß Ç}9·ªgš öVõ¬ê@jˆõ[FÄ@YN®Á2 ÄRVŽ€@о""Žš!²!àD¨¶CÕ£‘ïZD@h˜gŠ8c5n„ÇtŽøK¬½cø‡øsdeŽ@Ž\#þ-œékÿ€ãÀ?@‡½EüSû[Ÿÿ:r€?As¬tøSóméþÔÅÇ´LÕNžÂT\ü©Ù•óÖ= zóàO#v’ºª@ÁNv]¢q¦Cדº–ã¼äשìÙ RÇ?˜ ¬Ã ÿ²ŸjÞø‡ ¢¦ã'ð-ÌÌÿœM޽Õ#üÁÂ4@¦ïÁIá¯0Y€?@€A’ÁŸž/þÅ…òÃá‘éû©ï™¦sô«×†gC?U§¬ˆ~XƒmDô«ˆÀ×#úíoý`É0|6ôé \G?N¡$ßúžáZò­ð™ÉÕ;®ð™-÷Vø,Ï­ðA\³ýÔ9{EôkWy†~ÏŒ$õJå $7"þŠa§úš¿GÊ4ìLD&¨bØiò¯"ü±ÓŽ@Tð2b§™%e;§¨Ð€;MjJÊ$v.‹¦[qêƒØ9)*\*t?tÙ™ÿŠÀNŠ)s²IÊÚ1¾2ë¼x°±9š$ex^”k›à™¹q¬‡øÔU_á2 à9ÆNYž¦¬•jð`ý×Y¡–e ƒÓŠX žÙ@¸â^ÏbñkÒp ‚¯‰VÁSDJÀŠ“4 žÃZV„3\ °™S½â¨ùe{ñ­q<¥ í­A_Dعù=ÔšÈ Î¬ŠÓèÅÎ¥f¶aÑKÛª³è?!ö`¾.J°A*L¡7b¸h9™MV Êè ¿1EO¿ö£ÂiMÑÓ*ÔÍ ŸÐjñ-Æ h£Úµ*®dË­ :ç ¤TKI7¤ªÁ€Õ b6¬šyÎB`ØhU7TøôuV3ÝA˜}üÀ >óà ®à† ŸÅ|¯*¸¡ZJªÅ¨à†j)iƪš'5$¦0&†@õγºYJl 'Ó:mK ûGr Dàôí‘–’ìoÑ'MÀÚ<ÚT‹¦–.Z0C5“´ÎÍF3¼,Úöà‡ ý1Ö°“©µ˜Ê±Ü*?]é±–‹ƒÂE¦Qm2Ëizð× ?2n}i!v&·®ªòÉÎ#ëðá­î¡_â§æäîhÇ— ‚tgÈWÖ²ËV2@UWƶ…µq3ª7´pòCˆfÛKY;Æ—ò† fÈ­ã°Q5äÖqÞ¥kêÞ:®õð›Í%sƒR´’h/y!×N¹m'Ps< r§„\ˆÍqEûÅrÁm`Æ£ wJÈkþñAOyžµ'¶ð·ÛK°- ò‰_­†_õ™½d¨3Z×ÎdÊöyùæ…LΠj/aÊ‘ ›Ve<;—¥¹fr‹‘ç²”˜Ë,¹w¦mÚýæyECž»æ_d-A(á¤V!åã8O’«¼Ÿ'É ´PôB²³YNz³F¯¤¢ÍI/D;©»“Þâç7é-ÜùÒ \'V;é…Š-GÒ«=#édO7Ò‹Xàå ½¸»¥ŒHz±ã³*éÕpÈéHÚ[Æz¡@áÎÆYoµ3ì›ôêf®FÒ‹sµo'½ëzDÒÛ<ÂÔ&½êãœ"é…‡ûÝIo«uÓ`’^œ½]émLd“Þ}ñã&½°Ðšôª=&GÒ ¿V+ÇH/ÿJ‘ôv†= ¤Ûòë ½}Z¨¯MzûfNz»ÌOO!é…Ú<ÅI/|޹œôŽlÊMzG1…Þ&½£ù6ÁIïè—ó:#½ðQ+’^¨æŒ¯ïU¯Õy/¡¸©sÞ G¨<"ï ¾"ïÝvç½ ž§%Þ{‡pÞ+[€H¯²ý8o[—o'ó68qrÙçÅY2o%9oÃ=d[Æy‚®p<óòLZœWoNàÌ5Î+\ÞâÎ8çåÉŠ9/Ì<œƒÆy¥ÍÈyáiË*;çÅ- `'½W±s››ô"‰•c¤WÅh‹¤÷š> œô"Ü÷®NzqqS#½EatÚH/>“V:éM-Q×´Yov»Èf½iXd¡ÍzÚJ6â›àèyoâµ ÷"å ½iY\¶M{“[}7íMÔnÚ ±Å¥ï´oY ÐøíÊÿZ±\ÿ²ükà±5âß±Pùb‰ó8´>Í/áÙ(ÒѶ‚€H1}’ ”!WŽØº€ØˆÛ¶Ò€Ð±Žˆ=U›»Ž—#üëõr…Žá††}\Fÿp‚ÍrüƒeÚòþí«tÿF6íôÆ¿Uê¡ô>°Døƒû'eœÃΑ»†ç2gOsÌÝð‡"Ãß¾£wÃßX;áœÖC鳉ðÆ?S͇Ò'ÖÛ¡ôEÂ(†p¥\qü›#»²Æð±¯Òƒ”ˆÊA[Ä?ÈBSþá>`N Ç¿Õ.ÇcÃ?„›Zþ ¯þ”z÷y‡ÁŸH¾æš+Ÿ¤Ø9U‡?½Wø€?Ù\˜ƒ‰ÃŸ†º7… á¯#¬ÒŒ:UkP‰að§Ç¡(¬ þzÊfowøS¿/ƒZÂ_טIýT8Rúus6T2­Ï¾æfk}nåZÌ+5×ú`qµ¹Ös†\×µ>˜+dlÆ€ùpüë¹Ó~´U>°Ïrr»ÊÆWŽŒ«|p ÆŒð×á8øÓ»>f€?TÑOO—¶ˆ~hZ:ÐÏÍoðÓ{@S?l¦­Â~8nʾrð«~ngƒìÆ'øaïÏÞsð«uCß…µÁtÙnàëâ:T>(¯à‡òò~`ÐäDŽ~`Ù„L‡?^ó²±Oïã(ûö}7û ‡§b˱ﹽD…Ù]‰â;GĆÁ›Ë®D©pŸlæ]Ã…; Ö#…òqVõOS¶F±1ybPS¸àpþÀ õ-ûm6;]èg–+œéõDkòýn6[šÇÔ†ê4‚¶"n£"HNèà,¤’Y+<ð5Á²ÔOËY–Òí’u»£âj'°(Y`'®–‡b—›i®d¡§ªþ•Ø,®0–d‡Ù%UI¬Ú³IL˜— .ÀAk-%û¾Kºr9­X<Ë©yH'Á|—æá¡± “´Æ\Ë¿Ýí21¿ß¤âÒí¯Ë.êð¤y|Ëe8oE1ƒ ´<Ú]—À¬Ð¿TËBæF­¶óË<.+µâæ2É×À¨µyП²án3Þ¢y±ä†»Íˆ›£¹án3í®néšžy5ÐB5–4~ˆÊr©žâoÿM›`®- 7›ÑR²T>6Äñ ¡$q²7\lÖÍC®3eÑ1C_b1‹ŽÜm5=bÑøe]® ·š±«Œª4ÜjÆ®â´iàƒêeç¦â>Èžj> |=U(uø`¶(Ý•Ÿ*æ•QMËßÀµ§ª-†BXìp ;„ŠdH‘i)~Ç0´áR3=W“14"Ç}è²áhb7—CåÏM#Ÿšk‰.˜†;Íô¦oØÕh;Þ×°CYÚózh „Ø2âãœÆ€rí°Z¨ìPçä”B5žI›®È–£²”Ü}«RßÖ€þPKÏjÛ1&á»kÝ7=؃yjc‚jøÓp¡{ËÜ+4J~oqd25 ÚÇ•_ïÝUmÿß kš p±ÊC–Þ:üÖ¼Ø]»“A¯ ‡êã ¡NfuV·Þº l0-¦pzÞΫ)ºÓÒÓ‡+…>Uß„6X,ç?Ø`µF¾•yÉ.ù·J 9®i¥”§gv’_dºS‚Eˆpœ¹Sî\ ì9G»År%:‡\;%äÒ›­£¡äN ¹Î…þf; hÒX/ÛIºéóÕN¢$ù™Ä‰ N5i $Oé ­Ó %¿Ì5††ñ”#¶¦9fbBÌÓ1¶ÉSŽ\V‡+ÔêKŒ zµ_Ò›é øÝre?âA´ªliž5KÂÏÔúìWlB™ÿr¿spŸÙ<úióøu’ú™¿ŸÌ†Õ’"uÝg‰7uÕ`Ñ+RW\æ4g¤®ˆ–Ä ‡SW\ 5êZ¦û|8uÅŽËX¨QW¤pÛçÜg’K¤®p‰¥rÄ©+œ¿¬:F]áÈÉm€S×2/Óå:u-+Èç©+,äñN]q¹`o‘ºê-ZuEÉTA9uÅVÐ8§Q×ÛšbÔµxšM]Ëv…pê ‡:{ɨ+n˜œ=rWÕ ”È]ÜX9w-TM:q…çÞ¬‘¸Â»Ì*€r0Wä¡~Ç™+úŠg®p¹^%2WuÌ]‘¹ê c-2×2“Q:#®ÐH”‰kqÇ‘M\áÉNˆwâ N鑸ÂkÞ>eÄG—ÖA\wªM\q£^©‘¸æaîU›¸"…lǹ+<&ɬœ»"¬ÀÌ‘»B¯°òª&µÉ+R,‘W´\ËÉ+Ü0Xgç¯Ùo6E}XŽóWÌ n"œÀæiÁ26…aИ±Xe)Øð–X´Ô8¤X¤ô ¬–ù+¢%Ìùkñ c›¿êÉß lñì&°8dÚ"-Õ$Ñæ¯zq‹üUƒæ÷È_qoá5#–°åÎ_ïÑrþš}çèvÔ4"E«r‰v/ÐÍ`á·ßGd°¸x9ÕÈ`QöŽ3ØâÎÍ`U)U#ƒ-­9å6[üVìÍ`á[Ãu ¿]«1Xt'˜3XHnßœÁâ2HŽ3X´4­Ha‹î߇!æAa¡2-‘ÁbE²3œÁæf7Šl«ĤÈ`±ússži$¤g^Çæø§þ¾5â_ÇͰT‹þÝ÷ù:þ©'±)|ˆªLk9à_¯ÕN’8þéý¹üÓ{uPÿôJ_újžu7z,œðb¨±ç{Ôݨš®FÔ¶›Ø'jhþÚvaK UqG‚ ú:4;ìå†A@MIQwská õN{‰¨wPj‹!öº­¶€êŒM ¥àiÆP/}h=` ª É ;Ž;Pom»‡¨Qm®¨½Ñ˜k¥ Ô«+ ,ˆ'@M¤ï ;Ž<Åßj¤6Ó¨õ¿kÔh\¹‚N3‚ :ÆÏ@P¿eJ‚ ^T`€KÔv娽ѫ(Ù ùV ¨SÕ4WAmEiU3m@IT'üAP]î)m ;v?=` f1)ÙMð5“?9jJI5åjïûI;|Ä#v¸‘»ÆÆ.‚‡Š³츸®•½ú8‡ÀXÁfÁ§é M Ô+ï©#3 Œµ?¼E(n¿«>ö¿ ǽ«dÇ¡EÙâ<~x÷ö»ýýë‘_fDíß³Ó”¼ËóñÝO?²ØU‡¼ó.¼ôöÿ@¯üµµ=þùÝÇß{æõø¸nÊbžõñ§Ÿ¥oÞýôÁ³¦ÇuýŸö¥LÈñžË£dûÓ+Ñž²tÜÏOÚuÿþïÛÑ;_ãì’=Ó׸2k"ØÆwÒ/ÿáÕ×0·]màÛhÂÎÇìçŽâƒ,Zé|HS–Íã?=Æ—~ŽßLJ¿Æg Aº”,ëG¤™Œ÷ë˜å_ãÃOñáñ‹ã/þê“Uy~üd¶¿úEÑ1éñ}L?êüî“¿ýdWûãÓÿþK|ø&>ü]|ø§Wái¯Y1zºaÇ6Y¯¡p¶ 4*cMh|ÈÀû ¼Ä<)þž›|¾uçÐJïü‘ØÊˆŸºæÃýzÍìÿŸïFí^C+àlÁѨuÙ%ç–0y3à.±H´ŽöM{Ú9Xi/ÀÛÀ„FMÕ•„>ÑH¡×ô96Êrx•­€³qúáJç>㊢Òò^Q8«XŠâs\QžÃV”àüÀ=ýôÖŽvO?D¬Lñ|ÓÏsì5ÏÎh£`À‘ {Áþ2W ;GL¹çÒö‚tôW@ú3¯°µŸ;å $-|$3&œV–¥x…TÞy\uÆ‘ ×ÒörJZÜ…*ó2”‰à>÷GX$3…"™É~ø¼ÎAI¼á´`·¯*¢‘E;î¯× Åü‹våíYÆ Ž¡«…z¾&”`Ïö ¼á)Œþ¾K€®à ß°g¼aµØ9¼Þ^ÂÙŽ7¡mÞ½…¶e8*ÈÁKÍPå‡{<õñnÙþÕ¾_÷g~ànX†1"z¯¶ð}¼›µ÷úùëg ŽVa­—[…å¾ÖÝ*Ĉ^¡YöÚµsXµw þÌo„†¡~‰w ]OIÞßàshÚÎáµôÎvÇ1ó»mVÂn›~#¶m^VoÛЪwÛøÛæ9v½­„³Ú6D‹ÏHC ï{5b/^æ‹¢j¿±XéÅ®µí”/Uêƒ!ƒ3îûv ë£Ã’Š:]Ϙ Â窧¤Bp.a~¡Hxw¥±S´LËÊ´\žòÃgujWÔzUTñ¢Ý±S0´2ÅÌù£äKdw{ìù îV°;#ÄÝ%ø3¿7vŠê`v ¸{>‡oØ3Þ°Zì»ÞVÂÙŽ7±m™jªÐ63ðìRqý ȘמCÛv«ù.Áží¡mêKÝï¶á~Ô¾aÏ¡m;‡×ÛK8Û¶eõâ^EFÆûÆ!Ò^éýJ§ƒÊû¯2Nb#a)Ÿ?ó3T”Ø”ÀÜ—0MwŠUHoñ´•Uïrá>ƒ£óÅ£±HÞÏà)Z¤ç EZ.Kùáózµ»Ô`]4<³^϶SŸWÞº4 \A`¹¬÷æðù nîUMí£è&bàü^ð\©ðp¿ÏB¡Ã*ww<‡WÑ 8Ûðæh—Þí›U5Âuh—ªçB»ôùh—åØ ±v3ð‰Ø.ž/» Hjà¹?ÁçØ0Ïá•ôŽVœ kzò'¶¬«ãÃ]h_¬§–ϱežÃ+î%ìL>Æaµ¢^BÑcr÷7ø›æ9 MõoHÛlºy|rÏXÜ;‘ë‹ëÙ_)°êR€GûðËoðã:;eøqÎovZIô¹ ¹`m3f¾×3Mçw™°:ò’y®P¦åò”>¯wPÔPËLÎêç)¸ñá!5Þ D¨ÅìnŸeàê¥|ß3hĵûõýÈò5¿§ Fê~½©§|è.}–ü^ϰ+¬¯?«ÿ›Ø&@+§üNIzÎÄË„í£ìµç»QžÁëìïïg~!¶ŠAév³/2|ÁžC³<ƒ·ÃÞÖ†7ÏÇ*s¬Ôs–ZmÃ`és,f¸‹ïÇÑJg»šÞwr—'Âpés.Ëà5´÷Ÿµá/šüãxuµ»Çkè9ž{¼øÆË2ìñ±÷÷3¿Ú•Ñl@¹u¡˜ÊkWÁ3x íýgmÐv!ì.@Kœåeñt¿¢q™ìHÆdí¸ðgË'\+TW”%ÏRxÉ­¥áBÞÊê)z ÑÉ´s¿”u…2Gê‘γLËu—é¹,å‡Ï뽃·¢zûÛà àéÒ½©1=k¸Äöp·‡Ïoì‚©rL=Vy—àÏú ¼à Ií wIÍ¡Ëôox%<‡WÒK8ZñæhÌðùhl—¡aCï(¿¿ÊçØ0Ïáõ¶ü‘_ˆ Ó»Ôî÷‹úiÝ_àsl—çð*ZgžµKý¯b»`®íê'óþ*Ÿc»<Çn Øú…£]êõ–±ÈCÃôùh˜åØ ³ÎV-ƒÉ5sG¸f2Äèšéþ®=‡¦íVó]‚?ó±mˆz3CÛ4LhŸcÛ<‡·ÅK8ÛqŽZ©Tã…Ñs¥w©M÷’÷w›í6ïšyŽ=*VÂ^w•ûİò—Í^hs1,´A_Xh–c/¬v.<ÿÆ!BÔ§ò!zåb!s È}>dˆåØm±vK¦Ñ¢[ˆLŽônÛÅ‘Þm»ŒÝm³[ˆX g;Î9É qNò:ã{N= xÏI>Ç9é9|z þÌo„¶Á§¬„¶á]ßàshÛαWŽ•p¶ã7 ß9n MJMGŸÚsl›çØ«ÉJðg~#ŽÛ¨\=[iȼ ®ô9Ž›çðZz g;Îq£Oc·¦'¼ï¶!¸khš>Æ–Ùï>$þº?óqÐÊ ,ߢˆRuË*<Æ!³ß÷¼ìÄÈÜÝv=o~÷•Yvoò9®4ϱGÈJØã3ŒÊݰ§Õ ‡ôsT˸Ü-Ë,ÇF^+álÇÙ6Äi?š64L»ê‘söØ¢Ûr„©VâdÔOÄ–µÆÙúœÉü’ëÇ–yŽ-èûàûÇR»x RXkz½QàÆM?pc}>¸±åØkÍJØkM¿q,6=‰æt9Y?ŸÅVNòá%œíx&"—éŸn©wø9à„D¤>"Òrli%ì¶ê7¹Ô{ƒZâþdƒš> –ÎŒ—p¶ãAîp ?²ú‚ó¼¤s%”gÙrlªa%l‚¬ß8²zA)KCÎ-‡õù È–cÓ +álÇ3)9ðÎ!%¹µ½A¥â­;ÕkºÉr„íØŒs’ß8¤ä \ÝRR=‡ƒ”ÔçCJZŽ-%­„³±m‘øk$‘nÓM"ËŬý»þ|·íÎÁšß%ø3¿q·­\×AåùR›çþŸï¶Ý9¼–×AïoÜ~²ù‚7ñCÕJ÷àÜäUïã·…Ò]áÜÙÅüí¢…)Ñ}íεS*ï®!—§Ä\Û6ºsyJÈåÊóP/O‰¹¶zzçò”˜ëY‹BC®_9+o^Wzæ±ÛžæBÒȺUÝH¯¾Î8ûÓÇã?dý|ëñJH¯áïþî·ûðí¹í½–Rà^ð”¢îï2â ÝÐGä·ïÛÏ^;û¬?`­À¥H­üE/tÚ¶½Œ³f/z2ܯ ÖÞÔ0‘Y# yÊÌ °±Œ9Á˜+ïï«ާu ¹à„½Ò9)&/eŽ‹fNìòÍ+”i¹º´ü¬îA&œ<Ëzìç}H˜4þ€ÿ¡”ÎÃNw{ø,·²ªïˆKðgý^ðÕ» h°-tY¡÷ø] ˱+i%œ­x£A‡@ÒM~ ­OzëÛ sc¿±˜M#ÒsJXÂçÏŒ 30ø'.ÿ`4O±Ú0P>Ó Bµ”s­a‘ïAôÛŠefF+ô”|¿­X¦åò”>«o¾a´MÕÇ Vͧ;«0–ªú†þd»êöüA5õ$ÂΣv5”°Ÿu_p?vÝãܯ õ©ñ|Ƽ žÃ«è%„¼ M*æXB£”¾¬¹å–à{„†Íu¯ÕÎaµÞ%ìçΉx'4©wUgòý‰jsý®„çðJz G+Þc…Ëýê1\CÃ#Ü}5õr¦»7ù‡Ër„áÑâø¨›Ü‚²9ŒXÕÀ ÷7øGÌsx-½„³gÛð霊M]´Žy â˜)j :ærÜ5g û™ßˆm+ "à.‡ðâ7øÛæ9¼–^ÂÙmnç…Cî0kîþ çq?!£öê¦Rq+!Ø@Ÿ_‚\Ղ×ÊãÂïï« ¯Õ°´í4µS“wžt¦âxgŠE¶¤¡Ú=…E2Ó]¢g²”>«WPOׄڹtVxJ%TTØtè]Ü¡ÍÕF çh®˜××ÅìÙ¾7ã ¯…çðZz g;Þ„¶e\™kh›@zƒ{©—€Ë¶hŸ=ßm»sTwX±ü™ß¸Û–q»]ëw ¿Áç»mw¯¥—p¶ãhÛÖ0Ý)¹>CÛ.õ¸¿¿ËçØ6Ïa5ß%ø3¿Ú†k×¼ÛÖιáÏ¡m;‡×ÒK8ÛqŽÛ†O^ê0¹¢ÃŒ×lç°šï|”6Ìì‰{ä "÷Üp˜¹gåðz{ g;žµm‚gm›|k·MulZ'·½[ÆßwÃìõݰiÔön˜Fœ¹6qžën×äy¯»Yöûn•½~¶@[5W1SMW£¡ùÓAÒ@¼(†ý•qi¼ÏLÉvVûéså°FÇiñ\ÏN± 1¨§¥-^¼ráœmj§Ö[‡ÛQ¦ù7îÎÊ´\˯÷ý¬îAQ³Ò7[vVq' p¯q‚P ®@<®Ý>¿a sdu!óîgý^ð„¦z­»€ª»ÇûÕ÷—»L¹+ÉžµâÍÑ0Ó]G˦^r}ºôªƒû³|Ž-ó^q–ZZè®Úªa±îWùþŸcÓ˜š¢%¾ƒ€’,–ËK#œRõŽ,”?µôR…T\¡S_Š‚?J¹÷r¤=‘øÌ.34ÊÊ?E™ò»ß[.™•§D}iLpZ+»>ÔíM|øøkc!p|Ù´—~þö_~ñ]™ë‘Ú¯æÀï?€îŸªÞK•(²k{íéhg^G±ûÝÝu/õO†eè^ÁïŠÓÿ»·áé×çäëFCøöû·Ä¥V]~–ÂÉ,\’FE:.Á.³=“éNgdÊ6)öµ$,íãÛ·\“(È£&&DMü݇×ÚÞý`TEà^© ^)言˜•?yªBºD°x‰Í¨°n È&ê:N,q>†éøZ«†xƒ†o½ÄœÞ‹ß|Äœ×÷tÖçç·?ÜÂ÷g¯]1i[úã?c%ˆ°¸ ‚ûåD9ÿ]›ýY‘BŸì¸…µÈ¸ÏžTzG¶lH¾†“Ê(º*R¼ã–ºr|endstream endobj 252 0 obj << /Filter /FlateDecode /Length 4324 >> stream xœÕ[K“ãÆ‘¾Ï}Oö¡>€»C…z °±ãY¶CÞìXM;䵤†ÄtÃ"›=ǽ£_¿ù¨²@€Í–6bÃчFõȪÌÊüò7E®n ü ÿ7ûWÅÍÝ«¯½½ ÿ6û›ßÞ¾úõ×¥½Q*¯­-onß¿â!ê¦*oªÂç…±7·ûWßfÛUÊTµÍºþtìÞñ‹ºÎ>Ò“«]ºÃÃØêóÕÚ”&‡>_ŒoÛ‡aä¦}½úþö?‘ˆ*!B¹­”Û-¬}\­qD齩²V66²q0k²µÒçJ×>κ$ý’žëB)•‰ ´ýj]Ö6à²Ó½|߯Êì<º¼vÞdqbÊíÌ™ø*û#—åa#ø¾¶µ/TÖÀк.ŒÖÙñÔm>ÒOÎÖe•횕ʋÂ{•_¯Öº(iVIh7lÀ"x±°aS—Î'”Ž;6q¢ðÃø^NtØ7]¤¼ÊÞ{bèZiŸWJݬ•ɱùÓ½”¢Í Ï­V:»ÇJ<Ãô˜ñµ-–Ù—|Tº.¬„ôV,vÖ9P•5Ç–5Ðt:„ÉáY°*öð ´ÍD‰…ƒl÷§Š¢Ê¾Yù`m9î>êa Búubj){LÔtõ„]«²¢í£Ó6¨~ÓìÚmX@ûdw§&ÐãS~¡@ @9kq®áñØ­Ö Lª¬³w¢ûG!&ÃÝæfO"í¢‡4Çf¿&! Ö;usûå«ÛýhjÝD°Çý";hWªÎ>áKÔ6f"sÚ¡ò ü z©îe£‘Gn(ï´K”ÈœªÐ&W¾ªãƒÀáîp#a MÂ3x]Á,¥ä°P—Ôþ(Nk8TjÎêB|q‘’½ÜÒA6¶KJrVšÜeœô5ß3Òr‡°…ººJARo<åTsîúþpÜ7§îÈèZ—%F«ä¤\mÚã u І®@ìV%ö÷(#ÉA­KØbÐ1(hÛ—ªµ¦ûRÂAÒ ˆÿ MàœÎǺDgÏTªFâ ׂ©YŽ;ÊùT9\®@ ©™ÀφA}8wïøÃ=nÿ‡wJË5ûQøvA £B<¼š”ÌhQûO{Þè á¼?…±ºJD¶Ù}Ýû®5ç¢1C bÀ>ѱ†2€»±*Qu©àÁŽ›XXaFè¼Ã&`=ë'Zmà3 ÑòËHm¡ª3Ù&Qhë`¹$Ï¢Põ+ FÀ^¡®ŒÏµ.p¢“:ÙHPΩ­>.*µÝâl Å«³¨œÍMí'ȈÔÚÞª‡•É^ã%±†,]Óí¡Øv¶´88¥löÔÁ!ñ,FM <½P!¦iú8¸¨_¤Gi\^¼¼M­­×,zÜæ×…2=]:vÏ#QUv{Ÿ߸Õí¹y¯k ŽNÑR—¾=ÅþŠ$eÛ•;!œ3•fN¶4•M.FÏ"ªË}©.(>` ð\À«rl›‘¥Ý¨,îòZ‘C}BýU™í[¼Ìô‹Pûcr7uA< d«ªì!¼¶àk–(4öA}`@õÑmµ ÜÞ혧øà‚ï²ÀS—Z2§sç-3)û3ÐÚ®nÿ~nÐU߭@ to€Äþ°kŽqó@f“h–æ4R’µ@E ©DògÌ¿>³ë)E€bKŠø\©—¶é†«2Ñ™<9"ÐB@VÞö'sìiH­QGX=ø5¤–î….óöÒÓ˜)\z šhugXAF²ºãØø ‡J›Ôì¢X° Ž3!Ææ#6‰voN AÐYú(øulv¨­*›HÚýh¤…FGÿÝŽ„uÔôsWÇ#Ø43*Ë{Ëò9•ÒMúb¢UòÒÕUZEiá~ÂßåÄ™šèÏÉR ®f¹òêA%eWÕÄ„?Э†«Ÿ¡ `»P³m&ŸÔI·@PØÉƲ`ÅZafÖÕ Öw»qú%7»ÛmÃ7”ø—c`m]2" b}†œF(T¤0÷bÍMOtèŒBO–yTžuØÓ(žÝ.@ÜuÓ÷Ò$>Ó]ìæ~f¬Dð$PTO¢#t 4·`T;¯Ïƒ}\äÙøùïÆÝ¶!Z0ÈÀgÊû®ïeh2LÕy4W“g@™ËÂU”] Ï1$*¬EP=¾ß†E]Å»Ôf.ñL]À‰ÞÈ C"V[2}4°œLõc ÚŒqè)ž+s3Æþ«s·$øsR«<ÌSø4<§=Éà!õB…x ;½dzçàg¶}7§Dª9Jo-uÝh€#G†CÔ°¸qÕN½“pXä<&¡˜p–ÒW<¶gYÀ’ŒU‘œé4{Ï4¹ ú$íõ4yϽ§Yép‘Rßô}#ÆîNóœ·*wþg$sS€‘¨÷w 0{‘9މ‘œc6)<_k¥såíÍzP•¸…%³/š…Nªïãóf!™öã¢YxœL»p|ýbã›E[›Ì–˜änEÊÖ`X²J &úE:“éú ØñÍâ/GX…È¿`4õ°HL‚ÏpH€ÀH£Ðåä— …ͤ.ǘ‚/'¥ap¦b¬† 1ʽD­; ¢c0oG!KÆy‡ÑJüvˆuO§qÚˆ9y¢Ù‚E EY]q:#±£(ñj EŠŠ2ƒô‹*—$vÌ êJNDÃypâ\wCÚd”ö§yJ² £µ—°´™f{†*dçÊXÛ*xƒëTÛŠã¬KŠ´ú¸Q › *Hjž•A…ש?úL‘ßH%ïÕýÔ ¯±ønL6áåØËÔÍ]Döî<ÍEÉ©MCûÁ‡8¶\ýÌG¿"Áì›};®Ç¹ž™ÂB1â¼úW¢òjÈÅèÃ`}gÂêz.Œ|}Øt´"I”{9öò}ŒŒ!¬Gˆ¬œ.Ôs¼,©ÛOÑ펋ۋåxùõ±Äk6÷f=–r޲ÙÈõOŒ¤cž's‘S*Ÿm4SÛ(ó:¤±ùõxÙ:Y {“6 ÷  upîQqE¸xçÅÖýüG"p¬ñ³é» ¾Ô¢/ó¾1Xv5fáV x™»¦ Ôå^iý3È](j°‚¨÷ç —ãŠ1Èq¯¤ðž” c{:%…gwóÇ^¹UþŠdd¶K¼…?ýE¶¾üR´–cúbLÂè2w¾¾2&‘è¸yÁzyÁ¦BÁ¦üç P ÖÆ™óÿ_(.Œº>@16®Q,léR"ѲXS`|qÅÆ(ŸÝ L€[P©¡¾àêÛ0L\œ?¨²Ë+Þ$Žy›ºti]gñKó8Î/œõ“³Ã|NU\ݹ«ºŽ;]F7|ÉÓÇÏ *òу§Ï­rRUJoƒ~—©‚{q8VÔS"Vâ~V/%6h xm'*q¨8ãÐþ‚|º¸ðBÉQ·aZ],i’Ng]P‰M>=wVñWrû¡ÆHèP½W•rØ®9ÞÑ—UkÏCìXŸWñ—}SGµã„„u±\c‚~)YÑ£S¤¹ðøp}KB÷šÁþÅ}×¢7QÙ’\ãÏRo'ð©;ÓÆy)E‘x£;þ o'z3špKú=L,‡sƒ¢ûgÏr7¼ª‰F+âNîþ,7í…õ*öÍÖcÁú® t?…Á†«üéX¾O×î}ËgX2'wÓ²º þK’ gá!´Ð†®"]u¯Šê^9Ãåк)>[_YáF ô$4^à´D¿›|ιÑ^Šv%÷< ´ìB1´&e š„*‰1TZþ’‚¾7²%µëáÊHMD#](ú–?¡:%|†nbD{ÄÏŽÆnâ;ÑÏÂ[JÄxyS&ßÈ]?¢ ~¯Áç ø5qÅNmOäzÒÄ-ßì$&K*·‘ªÏcBìÌw·tVxÍï05wæìβ„&‰8?|ŒÒnXƒJù02?ã7¿ß ¯Íeùx£ð." iI~†%àmDîUe BMŸ#Û³œyôyÌ•è Ùôhml‰¢wv±=_À—}7¢g8ÖéF¹U$qR°”ç’¼§W¿ÄoÎÁGY—uîñƒRIJªB0ûûÛWÿÿ “x\endstream endobj 253 0 obj << /Filter /FlateDecode /Length 6953 >> stream xœµ\[o\Éq~ç¯ø%ÃØšœ¾wI€8p‚N€x8ÁÚZJZÓ¥5ŵcùïùêÖ§z8”¸»ô ébꪾT}UÝçüþ°Âa£úÿÍÝÕvøúê÷W©ýïæîð³—WõËR!œF)ñðòí•<-ÈíðòîêËãß^¿(!Ÿ¶ÒŽÿ~ýb;m9öžÛñµ6RËñx/4¶Ò¯¤zMõøGz¼ Yí¡bs:¾óôßúÆGßøõÑËMþOÛ“Ÿ˜öÕtú߸ñßøßø„€‡K}Æ~¼óô—†ï±°¥ÏOxóDŸŸÎW¾ñÍóX¥=S¯¯]ë7/ÿù ªå\Ãáå/®^þ岦¾¹¤àã5µNþ2*oŸœ£e¼þø¤‰Ëô¯…³1ÞéI{÷¹8SôÕ“Š~^i奛ø¤rùɿħÕ~4ig3õöÒÐ~n¦n÷í럿oÿeŒúÙ1¹ÿsA×_¿%§Ó–Öe¿t¼¬ç/rꋾîñÌ-sº,±//ÌÁ“ý/¿¹è­Êñ«çyž¥ÿÿzÒÐe…s¹7þÛ7Þ=ÙÑW«ì !$Õ–iVŸxâîI .úxiýÇ:ÿˈ~rûž<Ì÷`•ä*ù»ó–lÊ­ä¾Ú´Œã.4d†—1ýÓ÷ÓÏôs¶^Âúøâø–ÅótØyÚ!}ýôòûÓÓ“wòñyo™Ãêù><9l‹rý»ÄïÞìÏ8þòê߀“ƶr Û)öCÈy;ÄP·Ãý›Ã¯ï? ¥ÐIõ *”x ¹@X<å’K}ñáÝ«û낎CMÇÓ/¯gÏç}ã±µïrª±þù°êð;èòФ—SЇ\F9åt¸»Šp€§Ú'åÝÕ¸vJ§¦\1u€FÇdÇêÝ3MŠã"\‹çšÇUG=¥…kRWÏã’çš”+nP¬#8ž³‘ñcµs}§Þê©Ó󹞀—e†áZgìÈB¿CÁ \.½ÕÓèý 7ú)ÆrŒ›5Æ1ú?¤ù‡˜Ž ™k%`ÙžJ;ä d>…PC¬'¬™õGLÐw#,<½æSY˜”â¹ÊÖò©{.£,\k+,\JY¸ò¾•+û«\m+43ŽK) × o¾p)ÅsÙØì\~´>7ç4ß/hâ¡$i¤ö9ã±¶pB¨ ÀÓ@ê %¿#¦’™„cv¿‹û]Ýï¶­ŽaΓ®Ý@+·#w++·O÷õûÈSœÆ½·@ªµ'³Ò äêgWs×{žtè %„*mú•)ļÑ.W&Ûóko!·HS£L¶åÏ$¥Þ¨e²¿2ÚðhT&ÛñŸ²†2¦ügrðq@«Ú½ƒ?þêöýëë—¿û.=VLRón1e FK‹K̵SœË*C¬ó\“²s¥ˆÉÍÞÅîÇu¦…×ëû¹ÏX+/ÌÅ}–ë©F¸ÏÌ›)¥œ±Eá1ù7oŽè6GÌ}urF(#eÛÛ˜ò¹'œ<£eñ“I)ž«Ä‘iFw.£,\5¬ý)aáQ=“ÓüÙ^ Žã‚[ÊeÛxôè7Ïig·„ßpQ‘Ý’üä–—3乜XâârÈñ‰—VmÛVìžØ†Bÿ—ÉÑ`[Lç"V†qtŒ\xÄ@{[lÕŸsxW”6lÌGPuÌüP Õ/›ÉÂpLÐ×ù!µ§'È?RžÔ7¸§s¦LA+N&Û^ko.ð$çÑRë&–eê8ƒ¬/¯Å>ÿ»o~ ^Í[Ï+š+[z„Wsí”ÝÕ ÃpòpnýΞÇާæ9¤¹ÿý\C¯ó÷s|fëgŽÃϳKáŸ~·Ó¨Ç.¿±êqÐo nÃf¬Îe€ä*üSïçnpò ŒåžI)ž«ø‚Ò—Q®\Ú),\JY¸Z„©žK) —Ú㸜…Ïv—©§ î§žò°ÀÃCå7OErô,¿yºÊ™ëœƒøƒ\guq¡Ÿ: vd›ë›ceªuœ¶)n8ÀÚÉp‘íœ3–„`˜§É™À硲ºPÛ]ç<ø‘Í?æJͧÕá-xf\ÓäòÅPe‚—/eëÎ7^^ñâ©F² ,•¸œ%Ë⮩HРR9Þ~ý­´Æ8Þ¿Áüc¹l[>öŸ"ŒÂ% ý¿2<õñã+øKâÆÇwü@S8¾½ÿpg‡ãÃow.fj ÇãÝ«û¯oßïzõÎ)Çow²pŒ Qèxóæþáž! ˆ Çþµ¥@e~6çãëýÙÛ÷·_íío¬‡ÛïUcx›·îU³©¯°™U ÞÞÿ^j*ò'/íÕ»[(ƒqÈr§2U•Qž‡W'ÞHçÇR/B”™A~„ÅŽ‰~ùúêé3+qeúƒ¯L¢ÚûñÉÊÕYYð©‚Ù¬bÕO”øþt¡¾%Ú|{¡*ý¹Jà¢óR•{ÿ$Û>Y-³ LÚ€lí Ú_ 3ŸÑFš[«908³²ï»d+ý’RÍ@µ‘CÀⱫñƒ)•üuØiö1yˆçŠmÍ”™wÊ8¥À”TP‰ÈR%1…J¶L@ÐJä¸ ˜þ¡À PàHX.È[§>˜’Èíƒ:kÐ'y«ÈÑ™‡7¨o䢌Ù1TÁ0ð—®:»È@y‡3à©$b(‘Fw *Ö%Ò‰ ÈOÄXE‚ ÛFú€D6:R0BÆ‹ý~*"ÊA (”¡Ñlƒ@@S(=±qCÄm#z`1œNí:P§êDÁB‡¢P”Õ!ÀrJ8–œÀ¨/ ¬EQ–Sû) CÍr°¼*÷ž*åÔ ÀðMúTdÄ pÌ”XrØŠòä-žzÇŒé"Éø(ý¦O¦S‰búäTN½Ó4G¡PArt&ž_*‘ú‚] 2B†öÈF@é´T‰Ò†È©ÒѦŽZ$°IhqÄÐ6… òLkŠF’‡Bi`# †„ lb9qN_)˜0{UÄT¶„a,nI aV¶€PpEŒ™ ÔD©H1n1ÂJÑ ÷›`DÄÒ—­YÑGÂHDl¿ÈrjÂhSï}S#ªŒ(Ã$c{±œMÏc\+¯¢˜¨xʃQ1ûL‹*‰àÎ $*Ëë€Ê(My‚t†)Ùx5pç@”¦»µáo,‡ÔâÎl¦¾`è ž´›Þ»Xý/”Viò±å65½ayf2sœ¤wH„λ„Žiè¥ê΢Z&#h³‚”2›X)Tç;ļ)Ö Ë5RÎÐX.Ì‚)by§•‰RŒ‚NK Ê àIt”sžtØÇÖEÆTüÅ7pOÌiÓå4ð k7¢ä r°½ 9ÙJ}!M—ÕMÞ‘X`K<_!#2¥ÆDè…6<ÅúÆö®dœD&Ëᵚȅ_ë™)#GÌpôQx°Ì+Ù€ù,)„RI²hEü­’ Eý"PT9Y²8 ¤r2­3¢Pä)vaQ1°…”·äX¾àØÙÃI@/°´5hÊ3o›`êÙYü5þ0ƒîÝ•8÷4)\Í~Ì5)0°kíŸJeØŽkRW©ü·ãšÇÕg-ŽkR×™®^ûë3Y2ÜÛ¶a`–3ÚiЛ‹½š+´dd‘òŠF­Hy1­ç#Æ™òexÑ’ò‡Nî·陉q&Âéð:pðw“’ PI“Üô¥!˜Y£x®H`€>ŒË( WÙ.¥,\T  —Rt~pÿæã7Þ|³ž!|_8N]-p<‘³Žƒ‚ÀO™Æ²:8žh”3)O¸QÀÂqP8œL8ž ²V8Î,ჲéCŠÇÑU¿mx<‘ÿ—Ȭx<”ä¯x<%à(Ç…óÜO/$*G Ji¥Ãã †0¢âñD5 aP<$\Œî€<Ž”`*"¢î  ‘WŒ„ Cä rxDžkѤÃ9òw£ˆ<‘+ô€< °ÈiÝÅä9pˆöm€œ‡(x@Ž]¤àÖ9´Ìò@˜ÀãqØk‚ ‡ªàlâq` ”<.óo`œ‚jòX|Ñ6,¾a<¼ßwr÷X|«CÂöÄââeh ŽoXù‚ò Žodvôpœv€X`p|ƒÙ"Ùàøž)ß0ø%88NÇË):8ŽPØé(t‡ã ÅO Ç)°8Îé¡à9…ã Dã8¬UÕP…㜭ÊfU8„–é´a‡ãœ_K*ªpÞŽcK4ÙRŠÆAˆJ0FÔäT±x ²gl‹Q¶T,ŠíÅâŒC¯ ’%kò¢XèuH¼2,JÕC±8(Q“HÁâÁCsrÅâ‹G3¦ $m I€8Ck)(%êêS Žÿ‡®â TÍëˆ3¯ÀnâTõÑE¢@” ŽN8(›š­@Z M÷ˆƒÒú¥ÉÍ â T]ú ÄA)ê≳yÚ¹ q¦(:$J”’€!q¢8Žf0Ð-0œ)ìQ †ƒ²œΔš gJ ; g;ƒáLa÷h8|§̤Èçâ$Wô¸¹G<ö(à˜Ò›‹xL‘‘׈Çñ˜ N\#^¤ë1©$âÅyaÆ"S’xLÙ|ÄcJÌ.≜áBž¸ÅàBY©³¬!)¶5äqéE’÷È•!4ehÈÅv‘…<¢h­HCÞFAf yäµµÂdE(PÄÎ*T·šÊ¬BQº´V¡¦>³ 5‡kV¡.Ao£Ý}УY”êǬBQá¯ø ·«‡Ì*xÌ*ÜB_¢­¡¶T¡ètPž²¨GQd­Bm±XõÈ"œ§ÿfäƒkäƒ;U‹|¡hÒ=#_˜ÑÑ"ö€‹|a–”,òÑá^\"4Ôe‘/YÁaF>Œn÷…¨nkù\AÐ QT,ÅE>. "±B-±µµÁ- i! »×¢£¢°ð% Y B+ÂV‡Âœ‚‹{áM§OËPpÙ´ ÷ÀÇ8‰ïV†¢êZv‘/FìJ)àXŠÊd!¹È‡gLßY… Mñð¬BeÛ{ªY,´*Ô°ú®U¡r êw´ •³í«BåfEm«B•­êÆ·*TÁ0Vü"%U½¬ U(œEü"Í̸U¡*£ ~±Rü©.øÅJδºàŒuƒZª‘_w±#ÚuZªÁ‹´"T£uÞc_¤±–àlE¨F4ºØ¹@‘\ìEVÒ,B5ŠÄ>ô¢ñ{¡xÊ\ð¡É ÏT£m[]ðeÈ4ÌT³dËjPD¨Ã?¦°›E¨IùÂU—¸ªÔáµ!6!¤®S¤^¨¬Fn0I:-éïý×WŒn(bo‚§¨ Y˜ÕsUÉ*n,dlƒ…óbìô€gOØŒT…¸,ü;WˆhPe©„5Çù=k:÷Ó{Öp«=P¢ý ½¨÷D¢4_.‡¿¼FÄÚoºðæHés)8eX€m/'(‰ä½"Þ;—KWÓ+R8Î×íîŸ>6"ï<º¯/×ó¤Ðy°'#U+±{~ƒx}VVÄî Y…»G¾†¦´“Þ«˜” ;;íQzà;†}x™äz=i|T¹pEºµêº22|–¦ÌÈ×ÊÈŒËÉT.£¼{Öà$J.xÅp)æÎQ"—6¸ŽÌí$UxÕ^Û7dÏ k2 ®^í¬-]Г©0r×èz6÷ :ÇÔZ¬VÜxËJç\ëÎSà và ¦”½[mï†MUÛžŸMîÀÙEe Ó®‚¤"6×´]“Ã44« ‹]¹pÚêìÊ•Ž°vèv/‡º¥½6Tï)ÀÚÒ…³ŒO¦wËèÀ»V׃´e“cj­V+n~è!õÄó˜wnFwHý˜k§ì‡Á曜¬Iq\gò}?ä`™âT e=X~”6¼ÈÈæèm.Î^`怞Jf’°Ãc¥$òEß!¹ÀµIq܃èb·k2K* \FY¸ZÎ4ÏŽK)žË´Ø¹¼^ßñ Kê4ù#MˆY/QÓé/½V'¾hP5šÏx]£ž¥W|‡(þÙÏs#߃nëynøøpøpM/5´6ޝßܾxóþãíÃínþtø§÷¯ooÞ\>à¥ûá1-ç»_ùd÷ð‡k:•e±‚^ ° äšÇÛW_]ÓRAþv|§B§Õß>ÎF/Ÿ‘g*D§úÜ´y|’ën]j˨ŒýΗ:ì©Øøæî*ÓÍz*»+åùÁ>§Ðù„bH¡ônRL'yõCiô>§N“BÅÜ—`Ÿe©.2©x»÷Â2•ËË.£0×gGˆµÛ¸¿>’¼Ñà(\†Ëz×-ŒÞt;ìVKû†näs$Ø9"…w ³Í}ðJé\Žš¨ ÷.¤IüªÃü»ªh¯FÜ,†ÉoXT Þ…JulïUÚΰÉaj›„Ù.’˜8 ½cë £³7xÚö¦MÓR%¬vœÙ¦^ÙQ²N’JÝõ+mo›qLÍó:‰Ò‡·-3Fu¶EÒÌÙm4¦mÆ¡Zš„Õo[¤·%Js¶ÒO}š+›ïCjíÝ´CŸf“{Ø-eã|§€Ì®jïBÚ»eŽÃtT «‹eT,^-£Ò<½=gR›¤5³_m;Ó&‡j>%X[úp¶5Š¢Þ¶A×:vÓ¸é-³¿›Òq1lvà§,ó]‚eÊ6¿ÑNT†Ù{•¶Ÿ3ãpSRüJ~Òèjpu†¥î—£µ½i“ÃôŽ~9î}ø­VùœÒoµZÄ™éê‹Ì‹hÝÆyå°}¤fs›[Ó¶^¥B™Ûª‰ŽtÜfæ¶ßh“Ã6–JX­`Ë ÝŠ¥œºóù† ½îÖâ¥Dy>BU-® ä5å;ÏÚµ>AUGÂŒF1…8„m*&%aÒFZƒgÝä\q—ɇU}RD¦p9™Êµ_{Öð(Ë£ C±v“ _ · U˜ôuF³ZÚ7dŸm99›f;ËÝ òï€W“ë›Äo*èß§†úøbÂÍbUjºæ'…®I;«Cø« Ö§´½U“C•VÖLŽv ß ÝÈ¥¦½ i{»Œcj­V+Ø2º›Ó£\÷ve|ºH1ÊÅ%oO”ФdP‚Ü3Êó—|Ù0tÜJÈ<ð»¹Bmäý]¡ÐQ(!¡Ð‘ãXW;]°ÊÉË£rYk“ÂëØ¸v‘Æ¥”wÏ~·¸ÑI+´&¯+Þ<:J¤û(= êqÚ"Ͳep8øÃNÀlsô„QèÞ>ì0ÎÛØ»&w¡:ƒªhÏ/&Üx«•Ôî­êì2w‰ÈJRÙ»”¦·ÊLg`méÁ[Õø„i—Pù¾ÌìBšÞ*c0õùÅoe·-8«8Ì»U1ðë&siJÓY5Tç)ÀÚÒƒ³ŠÞ *e·*ЧGv«´é¬š ¦³>¿˜°ÎU¶ d„.ßü™s—”æ2WÊ0gBÌv–*·£l¸Ü\ñaö>WÜ\æJLE}~1a™+ºÐ–¹*TzssÅ—ê÷¹âæ2WÊ0çJÌvš›+N±w [¢T{v!MgÕd°ÉÑç¼Uˆ•RÚ |maŸ}©%Ìå!MgÕdP§€Ù޶f š[•/9Í.¤éW 1¨Šöüb²é*ɯÀÑu‰DJ…{ž]jÓY5l}™€Ùæü ›[~_iÚW87ýò3Óo;œ)ÿƒë«‡Îj§ªãË«™vÊ^µðî¸&eç:ïúû!ÅUzË *=Y\ a/®Ö±WÛSÕÕYËÚ3t¥,ó•Û÷‹ž ë°ÓU¬Ë( Ý•*žI O§kOÉ3)Ås¥@×~¼VFY¸vm\ÎÂïX§•W Ç…:môÙ)Óòï¥L›GܸFëÈ]Éátþ±‹N˺üÙK·t© pp-ݾ¼î¼|úñÃëwüRN Þz¦—rž_Æ¥ïÙY>³Ž[ãÿS÷By¶òËãçuÜïò $R!ѯø‰/XpK¾aP‡í8è{§cË)ùkT18~1?wñÆ}ˆ‚‡X>@º•¯L„’äÃôù]ÌÏ[ùq>þëþìî?ÿ^™·ê¾á>C¡½°ïFdýn„|ìôáýŽü5 ÿŒÿщ{ùd˜¸¦WŸjÇ´Þ¾²[@¿ŒQy¯Âr>þñÖPÞâ'&+?ú^Þ_àÙÐбiÐçkí «êœÚ þDHøޛÊÂxÿF>#Ýu쇈¢˜ÉÈo’…î^ û?DƦ†endstream endobj 254 0 obj << /Filter /FlateDecode /Length 8322 >> stream xœÝ=Û®#Çqïû„ <ÉžÉLß;Ȱ۰‘¤0róRD‰iý™…¿±ƒ_ÛÁ««\ŽŒ-ã2°| q9ƒÏϼ¼JøË›'Ò\iÔË óREŽ¡|By®Šü)ÂOÑBu©¬§7_½ùý ç)æÞùæ-¸¤p;Ïaýý΢¾¶£W³ÀHêViÝ…ÒÂ$—ÜY/´^~²øWºÖ5Wwl3û¥qó”ÖvðhYûîê~xeÕó‹ŸfüâªG¡ªýæÅBè©ÙO~®«Pr…Ÿ!âäLÿÍy™R^v«?¬^Ô)Çy‰«‡~ÿÿ“Ä£Ï ÁkISI+ØpeŠau—§º4È@|™JePEH¨S)uAx°gH.ˆüRAŠ›Lr“_P=„H„„É  !iÊž  ªC®qiª (=ÏòÀ2 âGZjg\–dðUqñ’§Ä“2pŒ2‘ØAäe¨ÙBü†dÜœ'Bq ÝèÀg 1ç(NÄùÉÑ:˜Cλi!vÁÁ§paAÑÊ4ƒ.º)0YÔ#ÒI~ ´²Ëhp€ä¶VY&°ut%M‘)WÇt*XŠfùÙO ¬îÐ9­å×$ðÀ!«Æ»Ht¼O“gükµ<(m¡µ|ÈLMÅ8`{¢“Óä ²€ÒaÏN4ê $G"€Y£¾.D6 j a&½Äà—)Ÿ„x)BIiVp(‡˜'Or'«X3\_˜¬™Hˆíp-X33N*ÈkŒ³8A€m‚dââ&^xǃ, ®DT`£LdeàÈD%Ä)’œˆíÀs"¬˜‰cÂ"Xí‡ØD§xtV„DÐ7ÀXŽ'%`DH‚%"“<E"ÄRÑ1AØÁÒ<ãî‰ öL¦Y * Ø1ÁR3ÍJÌªÈ Œ@<«g0+º=‘Aµìì)F¢“c£» )œùì0$ z›I_©Ô\,3m8„Àîñ Dqe"” Î@†nï‰Jv :~,@ŸCL†íBd0DirðhjP@W†ô8¡.Ä9BR$:–J´x÷ùb ê6<˜$ÖHN…Ü.ÀÉ8FÖÁcÍQ¸)8j‰S"­pWØ>±Ö(º)Á°ø: U@m¡£ÀB@/Í°áØ¹ ®à:ç@Zp3/wœšÑÍ”?ïê\˜h«Ð¬ºT\4Í9ɶªà1±¤ÙV¨¢S5ÈT7 ¥´€±V7 w  Ú@lò¨„  »~N§CÂÌdá¿™gEð±‚ÏÏÍ|ˆè&0">ÑAOâY oF@åíáf0“©ètÔ„©„!¨š×”;³›WvºŠ· ó¢®äM°#$Îbòæ¼ú-柈vФ{Zɸ„Bp‰ X Ü“'¾Æ@ë19¬1X"¦œ,Vƒ¬œ)õ¬1Xg¼Zî;Ö§N6`lmó Š1'ô¡¾À%3ðO(ZÂÍ­st2Ž úrÝy z†ˆÌ1¬ù‡‚¡ªl˜ÓjœVáTWçï$…ZØG__‚Ýéa‹)ÄbAÞ¥ Ù±2`A„Eu, Xä…ºÇ` Äb%¬:²AÀ€#ò$#á󌆸E‹@Ö€(W˜ß ”d Ry€0  ›‹þûÀÛA°ƒxÁ2½ö¤²¬×ž6øíŒÅÐÙFû¤»ÁÖâ ¡ÅzÖT  (@I¾ÿØìV¿~÷î„Ͼúõn{:Ãçz‚BÕ’V·7àAe}ÜnîvoWû‡ßnÞü©+‹ÊHF®¤ÌõawüðøpÜ!"©ãg•ã¸ÔPŽwGÖ‚©;²L‰X\õ‚ •#¥L¡B ]Š)˜À§²TZ0Í;83jÁ4C”ç ¡¤%-ª¤dò‹×EJ¦5ihÉ”ÂKK&Ìe\HÉ”0 ê¨L JR0¥ L)Ì­Ìâ‚)yȤRfQÁ”<Ôf\îJņ™…°TL RÇpÅ”|ÓŽTL”S‡Š Ï&RfIÉä±@÷¶dò° r´%“«AL£%žŒø`©%“ËRƒjÅä²´`r –[ &‡!*Ú‚É¥ã‚Éáñ7Ø‚ÉU±LxÜs¶dÂs`L¶d‚(Èn%“C¥[29ø¯ ¶drp>—²JJ&ç"ó×J&! %žP«-™«-™B‡—V29=aE€AÊ„(ØWÔzÇ€ |h—Ž@Ë£ª—9´HÇ QÎtÒ1H’sw ÀT¸a@>ñJÀ¨ðqH´:i7ìÀÒ0ÈÌÚm ,†Ø]µcPÁÏØ¥µcP«ž9µcPÁó2÷¤cP‹“½K-ƒšÅh­eP1²ð1^Z¢9µePÞÜÚ2@—dkË€²ãHË Âl>´kË ¢ñêÒ2¨°_9hË b»š×–A唬ƒRõp¡ƒRTëÚ1ÀêGp¤cP’jT;ƒ3‰®ƒž,}é”$bjÇ °Rz„¦ªG;â$‹¥ƒ²häÕŽA¥ó 0ƒRò3ðUlþËȺM¤ã(¡é/ƒÒÐ1ÈžvŠIÙeáF;yÉÒÒŽFÿ¹ôôG§xv·Ö1@'³ÎþÜdkŒLgƒ8ÙõŒ:µa€mÖ¨6 ÆKR׆Hѱ6 Ò¢å‚6 àôª8Ü07Õn…4 ÀVrf׆6OœÉ¦¿¢ ÔŸTµa±Ï–Mþ‹B}²ù/â‰ccòÐ0€Ó¨K!cºjé/b¦årA!ÎÓÐ/^Ž˜­_\Epö‹¸ãfd¿€Z5ɺ$ùE(f¥4ä=l öIÈF4[ÑC¹T ££lxtMæ…Óæô؉ñ[£5 õµ3Yy +›sØNéðmÒŠŒ­lŠÑø £c6;)Ž2ÅJ½Ën7[»5 ÉVc„Ô5l>+³ìM¡©yÓ×à±ÍhŠÑ¸ ££l:¢V¶PÄ‘…j\°UÕ×展­açJ¡i +›¯’Ü5Ù'IîZÐØÊ¦­  £$›ÇßøÊ0æv\„ýä!ˆ^(¼e0é^ÜãcJÁ5ÈO¨»qóÌÅ| ¤r·øuƒE¼‰š‹Á‚ãûŒ›m¨»ÃBºšÔ?ŒÃaZ± MÁRÈݳ”ƒ”r榟£Ç\î-$ãÉØã³i%ò³nP½7îe¼Ey*vxB¥K®N =Ÿã:d¡ËÂF`‰(a_Ç´‚ð Ê£¥Ø’…™©RjTÁ‰±ÜhëòØH¦Ê·hcZÂJæ©_ØUC½~£;[ÉCyT£g’Q^$+”pÕˆ™©/%*[òsCf·±fÂ.V¥ßÄ¢GIŒX4ÄŒ&–EÅçæ8Õ!‰"hwƒJ9¾; `ŠÐM´±“0Õ s¦ªðÚ-˜xl%S åQ ŒR<1ØGƒe¼t0›±ùk,Fck2Ah6ÆfsmV¨zi6£ qc36Œf3!0J1JæèÂ!|ÙÌJÕÉ^×u¥›Ô„.„@ÓV2‡µnsº§2NAã!zFc‘ç2Œry:yX¹¹Ê¹ xG3ßá܆åg¼vyÓ.nú•…@à,7k/ôÖL÷µÃņ`ÑE K!V†4Aí͆%‹•fp§Ù,… X«Á2ÜÿÄg-ñÑŸJw6çÏZâ³ül¥ü+пÒäàß©AËÙݘ+ôŒäßú™I—ðæ9ÏL.ÇÓêñp³à#“¹®ßî«×»‡ãþ´ÿ~úaõ»‡·ûíîòC”x{ëüð åkzzrõýÃ7Þb]ƒ«áÛ`µ,i½ß|}ƒ>µT·¾¢Mê¿~»>½J¼üjÀ‡‡|zîcÀ׋ð鼇 Ý†ðݶ+wŽmžÓÑÃõ@’žH xÓ·ëtzÃÚ§A„%ºœVÞ¾Ôj±à”Ä—ûýØYšøÀM_…h*–¡)X!¬W±73)|@E„PH¡‡7íôÚI¥G&º@<Þ Ç)£a8~’§QhcZƒf$ÓCBÆKk³q†rÑ0„K¥0ʱµ²áã n±²ÍŽ‘hTñ²ôueldkÂy£ c^ÃÈ6óF§€7Á¬Ác#[ÇP¾…Â(Ç Û‚÷ÎʶðÓyê2Ó­[wWÙ†pÞ(´±ã–K—­Òóy]¶ß±•­aˆ,Ja”ƒdÃ6 =šè6£ÝªaAáÃ¥ÞG›âù1PGÚm‰ òöu* š:ÍKäãuƒC´»Öúj ‚å½;Û×i¦çÔ Mzø©4Ó¬NS±Ú³ÐÏR’Êôg¬©ÒuOàƒ.°að&"ÑsŽŽ•{oQžÄÏ+6 }K(蘖   &B'èõ´¾q†2¡k¡0H±‹ó ¿>Ö)Fø¯Y’†V(ý]XÖém<z޲Ït)ÚÉóØJ¤ÊŸR0ìò@±„A¤D[Ç()OÅj‡V$ý]­ ÓÛx憷’҈щÃË(ÆV*ÅhR…QˆQ0Èÿóè‚øšY4‚áKfV™ó4: þ.lëô6öÜ®ëGwØ€£‹ý¾­`Š¡,*…Q+XšñÉ\#WÂç\7XÂxž—• (37•1ƒÁì7 mì§e¬ÒóŠ]²z&Y}"Y=“L) RŒ«UjŽd?Šd3½ÈÝ%㱕¬a¨$B¡ R¥è(QBE£WcŒhNj.š`4¾ãEt +¾^•o,Ôi¨Æ<®Gl¹RhãÀM ™±maB*œülÌÍÓh4ù½±(ÓG!μ‘ž3ŒF·3Æé~Û¸£Ü€wT 5šPhã¨&hê¿ÕÐý¶QžÜ€õ FãR(ŒrŒFƒ|â`4~£¸SõôP_—ÇÖh £Çˆ´Øqà›(™ñ1ñNaIô¶f[ƒÇV6Åh\ …Q’­ sâg@^ߟ\"¾’/9m ¾5ƒe\*½Ï®ç9qÆ'µáLœéÕ{(;HIAÎÉàøXù%pSààëf:A¼ôÂŒ'*]Ë,…Ü=O5Ⱦ®Ã/ÐÑS\è!c|ã\Í3½æÐž¹3ñ /ê(¾º‘ 6vR;$RÞ)Dzx¾-ÁCZBxPaQç"l­TÚ—é€BM¶N‘^ëK:nœžAyVmøÊ@¨ÃÒ)ÈK.º­TŠ ,ÊüA„Aª¸ðS­&g…â‡Ê›P4„„fžß† —®F¦L[µr‘xheRBæŒ2%zH¬s–„ vú‚4²ÉÏÍ×dö ààzĨÐM ÂyØ$ƒ#÷÷žñš°t©ÀïAEÓkádØ¥êÌs'ÐÆ ?¦Ü!3•©Âl 5U›»(dh)\ÀJôH‘½P¬ˆ/éæh°2`%~ÈË` dÀÂ2Œ¾Ïаb± œÉ…†Ãï½a¢(FºŸx_€¯wUzÿÉ·*8Lvò9†6À/0@¥Çw ®tmÀভt_½Áü·¾@nÊúìáÍM!ß)ëÇÓæŽ>¿€ï/ºðó Ï¿LÀŠòÈ3o’û?ºM¸pIH‡ç· —õæ.~õq¡ËP0H€B?Ë+U¿¹AnR…¶ÿ r­ëÃîæ» pl^/ó¿‚ñuyÐæ¯ þqjMëoùËpÿ®£lîö§D‘/ØÉÖÇÝCG"˘ù8%£1íŒÇü7~#ª®ïÍ·÷†Ô[á(xø'B+„“e½A‚`X¯_Ñcðqâ.ô y\Ýz|4È·ÊÅ7¬ÐKÓo¶§Ýaÿ—%zivYM˜a©Hž¾1~¼~/uýÙî`x|4ú¹»ÛËŒ9 Çõ›ª)hXüpâÍmÆW6þk3ñt²úx/^î²u‡¦Ò>¶8|ð üpõó_\ýæáWÃ÷!ç³Ïž;*~† Ĭ»®Ëñîñp¼( ½äSš(ÃÇ"ì—&/-ˆ9¥–6ûôõ™“0?ìÈb°CîvßßD|Ë-€£?Ü8ü¶l—“|…2£qÂÙW(yFŒ@ÿ€¡C÷ÛR-ãËzÄãI]K1DøÏÍáÆ@?û ƒ>Áw‡o:ÖëCJ2¬íÖÛ>Â\p­%zë~£ ÉLú,­º¬·›Óîýãa¿ÝÜÉÏ¥ ³>ô~gØ8  ±!–h-–<qdQóö´|ê¾®—/oð;™ôy¯€úîv~+â ogD 5»ðk¢m“òFì±7)^[/ë¥ofV|Ü#®·»~9µ$Bœ6 *5:¸ï\¦«hšŒz<€ø‚2i¾¾¢5VDQ˜ò›+±ä­àD„Ь ÒDîšØ™ òqgÌ ¡¤¤°þÌ.T¶ª;öŒ£ˆ1'p‚ãM‚Ÿ¾¨U|¾Y=> âÚ¿´»õí°w¿ØÛÑW7—¶oÀ׵â䬿Cœ¾ßA æ½ˆO‚ud/BUEøo¹÷Û¸ôÕ††ŒƒÐ;/BŸ²ã£±ÔÆü{'±zñ”k`mÒfï cü° ±Mó…eà¸îœ,ÝY y‰_-[È›1’4P¥|ä„™2%_]ßßèÖ·ŽqR„²6;2®ï)™‚¯yž R«³nO×üò«þ‰ÞWú¹bp3ú@² 9B¬>øûr¹ðùß'Õ~LN쀫¿ùø~´2TõÏœþªéȵX ÿÆ»ÀVú³©R6÷´å‹¯ §ÆŠýë"ùK™QIïe½ÓqeÜnL¿ûÁüËNVÅ2ºƒa»öïm”Åè‹/þ£±6\Žá:õùåX¤¯›X°9m„f]ÜL3¦õ O\”i€yÈ4›Ów&š”^;ÎöΆ2[•íÞªje•ÒÆv´(Fç½ÍãÆÝœ¥—OæW*+~Œû¸;á0³®ûOOôNùV˪¯õçbÔ@slÙüKï×¹¾TÓSÛ"n}o#òÞîã—B¨4Õ¨.¥"và;‡G)}ac?Ž¡øðqÜ}y3Éö? ­ú¹j4Éþo[¹ýƒýHöû‘ìýõýÕzq(/’~úmõ¡Æ¼·ë|P6ä¸#嫟IÿJ>æîòÕïÒÛ§_¨þŸ«f¹¤ ¨¯iã¼V'm„KŽrñþ¤íÙ×ÔÌŸø–ÿ¥“H¸ÿ2|>ý‡ëä5ëç×ݕϲg‡«¼ ŸNÕFúÇü2Îh ’§Š2-V|çÕU§øÜþˆ¿R0þ]Éš×}XüÑš÷홳ÿ˜y¯Ÿ&/Ù­ûiòWóK×îu Þ_5Íus¶ïò»çíé¾üQ³=ÓTš ¯ý¹Žo¬m†?×1ì5Ô3× õ‰?]q®ÞN÷Ò/ñOéùäÇDÈ0á’#^øÃ&ƒË¯þpÕOjƒ;Ñ ‰9Çú‰hr¼n“çþ]‡O„ÀWWyÙóÉ¯Îøã“ ®23욻꾹*ذ ¿ê_ç…£žCzí~zÅ€µnyΩå¥4xdÆx¨üg8ÍÓûæËùîDcuÏîª]ÿÓ*ŸèÑ]L:æé°—äÛß8a”·Ï[þb¸J@ÕÄ«Ã!êû~„Û,Î×Ã_(™[÷ë¯7ö—±¯Ç'¯àç´ÞüÙþðÊÙÑ—7l®7±úÅ;(N{¿± í†Ó¨öØq[¤¬åö±÷Ü© 8ç²þx”Ò~¹xš£ûÑžŒîNG]¢¬ßqOh.°òã ¶B¦Ƨ…ò¤'Ã4—áü?/û£ž<è_:ŒÎëuª®´Ê¶Ö2ã­CZ¿>‰ÊvÚ³z\Â1N^æW<‰â§@á$#haöÏw‚TÜ’Ýú°½Á+–š°¹@ðÔõŽ'¤’›w̓Ò, f*Nûûý_FÞ„‡‹Ð­ë¶~cÛú;²/ö’Ú^ršßçB¡âñk 3·×Àö o—v<û—ÛÇ~¸?îm?ÿ gQ±5­æ¨{ØmwÜ/LÔ<–¨Ú Àßñ$ëp/˜Ñ`gŸ;¡Œ-&[X?¾)À-§ Øíx‡žB(PA½ßÙÞ*pé ."w4"zye#⾎ݷÓí¥ªò4¶XQ¡q†í´Ÿvr#7/îY½ÕUl4ï­Ri ÷BH’J’vw¼C¢6x#/ËS)òßíÿ‡~ðÀ/ÿ€¸šiRƒGmhOl•rOŽð°Û6âç5ž´}Š=Pð–_ñªx"ÿÐ]Dæ³>‡-¿ÑUæ¨ízƲÊ<> stream xœµ}[d7r¦Ÿû7ÌCÂ/{j¡JÞI^À×YÞÅzÔ€a´ô]]ÊqeUOfJòì¯÷¼³ª¤’ec t12ŒƒƒÌœ?lÖ­Ù¬ô¿úïÝñݺ¹÷‡w†©›úÏÝqó×ïßýÙïBس-!ØÍûÏ喇Ù$»I §Íûã»Ëÿº¹ Æo×–/7·ëvõ6gŸ–‡ÚpÉÛåI®¬!/i˜]\¾Yt§³nluc§Ý8éÆWU»Ï»ÿQ7ž´6ßëO.ºñ—ºñ§¯ê¼×ÇWÙ&ßܨַïÿñÝß½÷Ϙ“’ÜÖ­eVë¶4)kƒÌ6ÆÍi¿ù—Í㻲Ma5aó#æçñßïë<ýî·˜T·9n‚7vëüæŠËÛ\:å_¶9 %8¦Äu[œPJf F,†(Žz%ã3"„­L(B”´5,’·Å¥l=‹1à.k·Ö0ÅÆmIDœÄ—¶…T¶y›¤\ipg·Qz…²-4º‹Û$½ÒJªïÍÖY¦@Á•Œð±I††,'Ò»’z!#5¡ÞJ&D¿MBz,$Ù*á¼]É„ŒŠÏô(yëØ7걜W0!ÑônBXcõ–ÍfK30$QŠe1Áúêt·º­ÁàÁ…j“CdXëP~c9!lÙé.14T ÕYÎ'“Í3Q`1‹Éà1±l œJ¬Så`‚*Ä5Ug¹bXr4ÍN¿Ú­ÁàSåÙ,Š#"¢¬Ì!É‘&‘ýåa& ¦mfiŠXNl¡ãñ™¥±HgvykaE̾ZáS9…’SÊJî zI”bal-¬HÐ˲1Mrôò¬OÀâ²ä Y(ø ³’Dz“^p8Ë ¶Æ ¼%1Ñlƒ å-ŒHX´žR1psÁ¹ÐL†TrU9®ëÖÁˆLù”y"þr0"CÁJ±¼TC–•A‡Ä€Ñs@ovFôžþ KwDËãj¯•aDF)ìæˆ¿HpÆ?lU”†ž±Îz,PF qÓ¿ $³n=Œ(Œ,&YC&‡Ee¶–*É)δ^ð¥÷D)u¬<ýŠgÇ1ËrB3=¥H‘…°ä9" é # -x Îdyå|JæI#Š]i²CA'¡@±@F`‰6"{¤¿ æÃn“4.DI‚¼æ¸v?QŸJ©SœsÜ 2‡t¢"˜3Ï.-k1KŒ*ÔÝ%Öà.n݆ \±J/d6–ƒˆ[Yr œAÁBb¼DˆÀÂX’§èò™@+žÂ*bu &:’˜øB&Y2—¥"9Ã,øHrK ˆbË6’°­0¦°\D ¯»"ÉF`àI:EËb°)‰Ë-)Jb åœõbBÈLÀ˜"ÆJ²°Ø(93…­üš÷Êd×Oð,‚ ¹‚“³užónÝ(iy‡5«rÝü–¶ @ë¾n²GòI¢*xÎS ¾ÀKÑ “Cˆg«˜*abBú$ ¦J˜˜æ {ß`ª„‰iVsè­™~ Ûa’±>ÖQØ[=Ö)̉%ÇèÄßÜZ‹@\AË¢(Œ8gš0¿È™’nZ¨O3Êx4æúØ)ÈAVÒÑ×/qaUº˜:eâÊØÐÓÄU)š ¹’Wëàj”‰«j¡¸”^os!¹ï–üˆ,äHIÃ‡ææ–¥š"nK+l"·ݰ/¸­#@†K¾ýˆ¨•rÆUôÿd(`=mà p¤#-X˜“é@VüŸÝáqówŸ?ßÀÄäŠ[öw—3ë{í ü ´7·X±Ä»yÿéÝr¾Û=ì?m_¾¿Ü¼ÿýp6"Ú‹`?ö ¶œöç/Oç=1²7~ &¦‘&L1^8«M”J˜ÂY±‚dÚfUArLÀk6 HŽ ›žì)$ƒ’& B‘tÖ@2(¹Š© 9‰^d \H޼ójiwö$Lj /Û}ÉØõá £@rŒ¡Ë£m(¯‚äHÀD¶"É(‹pæÉ‘@R0 $áåjwÉÑ#¤ÅÌ ’£Ç@‚e+HŽ’¶%G‡¥nHŽž¨C HàtU ’#HŽ–0ŸQ 9*ThVQrÄ*Q2З©0¢¢dlžQ2OCÉØ¦ÍŒ’á¬XXCÉÁ£FÉED.˜ød5DÎÉÕD&L"S× r†qÙDNعÓ‘`Š"'d‚:VƒÈ&Už‘#vÚ¬rxˆY#䈉‰Q#d™ë¦!ähÚ’©À§BÀ†7›àŠ¡ Y§2íŠÆj„ŒÓ”¦@¦cQÑø8àߊª+>¦-J&¼ác_88>&I(5|LQ›­ÂÇž†žð±w]LÅÇtÈ­(¶âc¿6øÙð1ÅFq;8Àkxì0wq‚Ç@ªæ e'«á±£h4ÅV*@Œ‹²È ¸†u B¿Å+€ ¯V!dP¼œ&B´SQ³5 ƒPOu #®‹dð™b‚ȃB0¶?]ÂÖMé}àÏF™@jáÇ!´RˆkÀi†Ñ1H`>x.§8Kª›å¼êª´8ÝSdXÞœh“CäÒ~A²0­9a÷_¿«{¶fÇ>„­aâ™Ø53N–´¦^áþÅÀ˜,w àú(pè맇ÝéÛéJuÍíï !Sglo›÷ÿônù—Ãã§›ÿA¤éýÿü°¼¿Á®ŠÀ0Ëþøe =Â76ÔÜõ“ø¦ ÷ß¿³Q 62œ%-߯"¢‘@ÈXX€¥f©?ö3Oïf#‚1¿Áœ}#Ðô~Ø´~Øž û~øtuв »$­»mÇA©*‘¬N‹XþÎh.‡˜/®Ž(#XÂ0T£2)™4Åtç2W¥×Ï:ˆÕ[Y%j,×£¦H7ÊÆ´ÇpÃ2îê×özÀdGŒ¬L—ÐÛ<÷¨Z“›!€ª Q !mêДèUÉ*`¶âN[FkÂmYÆÞÒ°,g95´ak[YÖ9ªÞ]BoóÊ2ª=a_"'¿1†´•iƒ£jÙ$Ìv°m%É^RòÚ§ÖЩÉ«¸ëØ_)Zk—HqD}|‡Sp_¥¼=ò±ÃÒ8TÙL$ó8(U!’Õh@™ÖñàŠ´M– TÌN›a´ïÈ FŠ£ˆ2MBkËÜ£Qø45$ð57‰¿éP?ïJ×î³wʰ@JTuJ"ÌÚ„˜ÀAc>¥= S¬öÐÛ<Æ0Œ!n6Ý0®´»á¼Ö¦ ަe“0Ûqe›‘ü¨(`îZ*Žq¥­lÍ–*¡·yŒÉ¶HÛ«²ÍFT¶q{²­rtÛª„ÙŽ») ©Džu@Fœ£¬W¾½èÑRÛ* ‡„[—ДÇÐI (ª€Ä¢ñFý*éG-‹Ê¡– K˜í˜l‹¢W¶EÈÃ6 ñ”mÒÖ¶uŽj[“ÐÛîÊ6,É6:ù¬Æ¶²­s4-›„ÙŽÙ6dÞB…J:AÙ†h˜æMÚÚ¶ÎQ5oZ[ÆÐ¶Éi{Hˆyš·ÚÖ¶5Ž®·™mkchÛ°•׬Ü)…¶«!àÍX5®´µm£jÞ$ô6¡mƒ,[”m†ïÍÆÒÖ¶5Ž®e•0Û1ÙVkTʶMG*A3¹[ÛÊ´Á!Š7­)#(Ë95k\ŠšµÚV–uŽ®u•0[1ÏN^~š4Ïgìá.©M ‡J[OZç¨SÒ$ô6 ¡çÌź¶Y·u+lqÁm=g£)Ù$LVÜ]ïÙ&_ïÙN…#]ç&5gµ=íÙc$@§S¤Œ1íÙžJ˜ÓžtŠ”öÕ®tŠlf;Ø6çÊ6ËI‡ Öéž?½éZ:¸$Þ £“úK¥üD籯Y;:¥êÃè«Ñ(c8ÍÄåA3:zBA5›!2:yLG™ÎÕE6&!<¼É3$‡êU|qÍå‹£¦p±Ûѳ…LÙ€”b›îµ}GÖ¾Øn …ËÛC@oóÔ¡Q°ü)ƒ6Îs‚í#H›G¨:4ަc0[q§-ËžÏGM äõ.5c­†0Æ­íaYg¨zw½ÍC(Ë2Õ”†eÙqayŒ meYçh:6³w¿öîrœ¾ëàá~wùŒ§ô=ao]P%LL³ð1Ú¯»q´Œ\Â|ãø¬°rë-Ì“TTn=í›áµBÊ(¢ô B¥6­ò’çë¹V©Ëê:CãrX“1i®J™¸¢åB½âª”‰+SÐh®JÑ\ÑЫ§¸eâòÎHæë\•2qU»—òÄ/¼ß´X1…Ë1Ø}W#3Æ7šŽ^¿¤(7š£auÃé†× ñª.f¥úð_}Ëiéb tºå4çËæétc¨$ÊòiÚ|½<.‡—?nþáñÓánÿòµ'=ûÀ é[Ï ßwn~¸¡§]%”¡}kè™—‰Ëa÷ñ†bØ»ézëmÒ¼ÏÄ•ßc(™|ËŸ;EdV®!³qõ‡Dor‰J^\×@¡PRóôÂ!yÒ l1¬–öÙùUÎà(¢q“ÐÛ Š`8žª€Ðž'Ö!Z›zˆƒ£+Y%LVÜ)Û Ý,5…Ÿ¹w¡¹ð‹’>lmˇ<Œèz›Ç¦Éƒé2LË™Ÿ 1¤­LëMË&a¶ãnš´„)& ÿÒ{Ò>iò|fLš´õ¤uŽ:'MBoÓzÒ"?däzv !íaÙàhJ6 “l9šÈR‘É d„ìÓÜ‹ ºõ œéô ÕÛC§¼}A‡•ÎùTò”jŽ Ú J‰Æe ªÆ’MhÏJûZ.té´<ªw¥Ô)¼J+—Y¹åáMŽ!Ýh«A·ÀwGE ‡æ6@z H¯þ¨ÑL‘æ™RäPÙ ˆõ¨ý{“åS‡F¡â'=kn°·†4F&PUh UÁÖ2ànØL r9=EˈD pÎ=m:js5Dç! ·ƒŸ…sËÀèûÜ6õ›~µó¤ÿd=ÃôÚ¤B+†<Ìtðc€²j­íAo!v‰TþQVIS[ÕšÎM@o¯Í=™Dyh¨’5S6²fš«ÆÐ’Yí?™0Y…Ãmš¬òüÐOùÉðk‚îHnj«C³¢ èmAÏÐAYeé ÍŽ!¤©çª1T[ÿÉ„_]¤ïÇ¡V6ï˼×蟱4‚®¬wtÙ™*A3ͲûX¿®Bï-%´üj…Þ˜Q¡eªÐ§×Jô£ð¤ÉoLe:å¼ÀEkÖvÊÄ嬑¯út®J™¸èaú4W¥L\‰¾—4W¥h®¸Òë碸eââW•^sUÊÄEoÓsÔ\•2qSaãRþú……|¿Òu:§Øï[!Ÿ*ôàÓ§Z¡§'Ó)Ô }oDÝHµO F®ŸÄŒFlf»ÎõmG7at.ú/®ê{KWÎWUý÷7™£5/O—Ý‹ÉÐhÙÓ·˜Þ^áÀ ™o,ñGûßTâ^ºôžðY‰ÿe·Ù×~ÙÁcàÅeCz$ŸJX÷ß«Öi%nè[Þ˜Vóç7·ôÅW~-L¥,ûGþ3äö¬üÊ}t¸Ü؇G¿Å@řՅåé3ý &/ÿwôýWêW‚Érù³¸ì§?ˆDæú~tØ=|zcæ‹–yª:C¾Òmw‘¾‰Ì,§ÝCÓ",?ÜÐþF;v—ÃÓc• f¼þíÍòãAäùb󟔸¯Àäáè’—³æñ%¿ìf9uG?_ÁV¬~ù¨z´˜Ý©þ®7)È =€GôÖgçÊÀ·äL²?5ÃiFh>ùk$a¶úcçy`œ JZ¾Y>?¤ ë]{»\¾®=íϪõôð© ˆŽ'[z/©´±Mõ³ïïOûýù››-/ú¦‘ñÝݯ8ö­eùYž¾ŒO.‡ãáÿO‚Ýrzú^3¨Üo±~"9Öaýp´— g(þ;Òªd,ïÄî‚Är¾`ˆóåp·{xøcu,Ðñ·?îuì?U…Áçýît' #|wóS±óEyxw¹ìOzqcú M_^îÀhÐ'xò–”ö9ÒÏ¢0‘3bîLÊ0Ùçe¸|§õ<´niZDϽ߹ô´WÌ«“":šåîéøE û°¿ìÉ•ÜÛy„ù~{¿¥j§·&~[{#?<Æßlþ–~ÉÅÑ}’ñÓg°€|JŽü‘ž“ÿƒ¹`9P6q”"&B`Wþ£ZU‡OÒÌ?’Û¤'ýæÎ“¬ïb1”Èè+è´¤¿èpçÙ«}tx ‚J¯{Ž>ðÌî\µÀ´ õÍòÁÅoiÕÞzúú+tü«)ïIà„¢k„W!—l‹N‘U<©ÿyßr•dFÎVœ2e×€™Ë>Ýßj`<úþŸâ¢3q9žnèK±Ñ!ïw—=ñÐA9âKÔñ×éiW…`ÿŽ˜#g³Ã™…“¤)w¡“‡ú7¹ä¸»±Y·ü±‰t«<²ýTàÃ2àZ<~1Ë¥©…‰ÿ75ûÁóEe˜mHxr4h'?ì~®zArqÓ¦†…ÌƒŽ V˧åù.÷|WÄêî9&¸–ctTßíO—ÝABÄѨü×ê |Gß }E‹M‚åÇï9í92}1¯Á]@¦_ vyÒ»Û¾l댴Q&÷Þ«ôŽrªS-³³›ÐÛCÃÁεP–Ÿ=£ŸÃ¢Ýæoy»½yaC~6=Ž`9î/#þëvqÿ¤–ù¹r—¾áL4|Ï0~ÁÉ5œÌ².Bjo¹‘ý3mŸ´u:¬/; âgHÈqè$òÎwúŒ°ùT‡ÀRWw•9M—ÕÃSß+ò¥YR–c3Ö§ %üF-èT2äjúÕ¬Èÿ­——$däê$‰½¬Ñ€éÝŸ¾ªÛOfdÈãXyÞO{Ðÿ0Ö³ý]²ÜGay‡§ßñA×»ë©!z`È@‚¢qËÈO?°ÊÑZIqžqÙÌKŸcÓBZ}–Ç*?Ï“"h‰< ÊÚ)Š&c>|©ºù2åÊqÖƒ7áÈýcã³/Äk´gø:‘§¯ª·Ó[мÖhäãá¼:÷çÖ ùI£™h¯nþÒ›•Zƒ/çEú:Sünó3€Ë]ðÉÇ*žw(€±£žÆ*,ˆ}®Úi?iuG'jRÃ%þÙA–]R;fJ—Ï;*cTiaù|z:VÎül;¦r…˜Xª›¯@M÷»ÄIë…°âåG+1Åy«à|&ÇÛ÷W;Ò«>uônü)ç j\mÀcª®Ïü³=Q ¸HWc‡QŽî¼vròÓñpžŽÕ÷mÖf| “ŒdWo<–Ýn¤ªK ‘îêÁ1©\öÿ> Œ—3Åéž´<ßerxÛéŽûû Óµ1 âþá©âÅ`È™‡¸Ô§’Ë\Z¯‘·BÄîÓ”ƒ(m8ì6eüºÒDí/U’ÏŽ)7°îèŒÍG)ºêçyØ­&ïºüÍ+ßhƒ&m9J-—n ˜žÚø× –¿œ_õÒÓgô»ýK°•à’—íçáÀ?‰ ý@ý¥}à뉾æf)Η¸\/TÝ—çœz]×@:^©«ÚÕÓýõ!]Æ«‡4/æ§“Žð;†Ø¼¹šcþÉ?lÃ2Ùï¦õ´oRƒF²ŸõùÑ”Õä3ûXm‹€ö)î0Hª•X/€áQ¡ãýð럣m¹ŸwåSuÉïÔœjhbÇz¸²Ñsyc†@çFKo8pÚ%R™ˆ¡ØÄ$è^‘V¼ö‘Hõ“μœFŸ·ã'îa´­Ÿ/§ÃÇëX“þµ¶K:©f7—Óž«¬õ£ßþ¿¦*4¸Ç1ó<lûñýçazŽ ­Ú,“° ×äÒJŠü7eÜý™&”Ò4(Ó’‘rNLéºúÃPÍ…ŸØ”é÷Œ)púfAƒ) ìfŬÑ-¯¸êðð©êíù†Cø‘k^X`Ì0äÐuÈâÞ²>«X Ã닾•^HD­J$w[U(p,¥}+õ“ãîßU)­–œ­>ןµôüƒˆœ(H ŽÓžÜP‡vûM/@Ö H0Zž^6Ô÷W¹4 ƒÌ¼»?tåÜKîèV½¨Q,í ‰í®GBÈVà™ (X,s^ž ¾¥W— SœÿÙï¼Ó Æó÷$}5\ÇÊnW!Ÿ°TܚՔиå‡ã3Óƒ°»‰Ýÿ9Ó¡OWÄö²æ—„ÃZ,!ü†68úa./¿üáÖŠøÀ`ð Z"Où•ùœ”‚ õýë€å Ð¥* ÃNðþ÷Ïܶ%eãšNŸg=À6˜±$Wßa›"æZÑÏ»¸ØµZÑÆ^^·RðÐ}"ïè‰øI9úéIB›“¬?¹ö÷¬-ýdš÷æum¯ýMÝçÉdEýk“i“›&3Á³ás9˾ŠBÈVqõ˜È—¤†­…y=X×gö•™aÜæЛ§w†ô4½iØô•’hqÍ웕¦ó€}sh¤Õ™Ÿ  Z(mÍ^DH33G†Ôôø.÷Ç ËÏåc/è(ìpνÜ<Çä^8àÉH/Ujk¢—·TþõÇë7Uw_Y•O¿øÏ|ùÈöÄvuwKï“)WÎñuà*pEîü¤1m—ù1„¤ߎ#²£Tu8ß)%¨ .ÃÎ}{›œå&­Ð–ž¸´ÄRàÕû©¹çç ¬’y%õ??˜ÓoHÁ€K Ì@ÔMËU-¤*põ&áP‘já³äòƒz °îoÌ W/—}Svù€ðkÎŒìÙ†K'HtÙÙ$·ç|S•¸*Ë$`‡ñ~o=lŠ“/äaÃtj§TàÝ¢Â÷¥#>½ŒÍÅýú#>ýºv–\¡ÞþYµ’§«À¯Zq.hku¥¯$šo›z‚–áŸøÉãˆ} ŽÞLµ% ÎÒ‰ª|5I0u»æJRIdž>Pêƒã¥.¸B¿‘ì¯Ü@6¾#zÖË%¿ë‹×(• .ÌòóŠŸCmÌ…fý#?åºzÅ 2‘ÔzQûú‘>µ\ŽRxgSŒb6eã³c ;‹:ºgǰ/wS¦Ålàÿ«Ñ,üLºw9´uúµpBVÅ8Ö((?‚qw><ÈýEpk þ…sLu‡Y4ÔÞé›Ý{¹ÏνbÛnœw•Ì'È« rÑ\½–÷:>ÃêÖλL»WOœôFõr/w¹Ó;¦'í=^W¤]´º ¼¿ç3m-gÔ;q1M.ÐóKïTd¸òâ®&ë¯zýJv>Ÿ,ê®*:oAõ4_©Þø¼¹¥_b7c»ª\ÿ]Tëendstream endobj 256 0 obj << /Filter /FlateDecode /Length 6267 >> stream xœÝ±wˆITgÔëîim“ŠÖ~ÈoÏwT‘U$ûI/²Yçw_U?\W¥¸®ð_ø»Þ]U×W?\ úõ:üY﮿¾½ú—o¥¹¢ôÆÈëÛû+î"®ky]W®¬´¹¾Ý]½,6ÝÍJ«ª¬„.ší‡YãUEs#mé½/þz³‚¯Úzë‹Ø¶rÅ#þìw•(ö7ðè+­TöóêñfèÙ>4ý€¡·Å†y¥áù¿qF¯­)Úg0ºÁéavœIzh$Šw7+\ŠuºØoiªvEO‹Ň·ã,›5¯Ö÷6  \q76Øó¼«‹dqû>ΦŠþýøûá14×.Ýãûd}„ˆ/ú}Åo`͸-g‹6ÂW„)=<Š¢ý0.e‡©œ2R×&k½Ù˜œ×Åûäçúê“PÂEÁ4]¿Ùno^ßþǕХP_ßþáêö—/¡/YëÚ›â°':SjVãï›а%% ¬Ó@£qV pÍ›ñyK­-͆÷T„î÷‡]Óoöa,ÀSó†÷`ûd´>NØy»°ŠIëw €¦£à2DÑ¥8¾oÖmÉpô¼Û· ;ïÒÎÝ3ì lSIÜOld\O@鸠öG†ˆ¸Ñªh×=ïzüJCrÖ Ð^ÚH·Ò—¦o ˆ»ížšîÃÐâ‰Ðà? æù ¸ëÍH+-þê°{qh‰û½×¦hwÃ0í]h£%b-S¤|÷ð6¶ˆ¶]Ø0hŸ°Y's&…m ‹u{è›”|o¤Cy„Rˆ¦5¾xɈzߥÜûO>=Pda‹6câP€†*ö‡m–?EÝø¼Ý5‘ë¡}È1²¿„O0 ôÁ,„ôam'a„wÃÓ„XqL ÊõÂ^)´n_Ý éXGŒˆ3ŽþYà×"Úy$š °R¬ÛV€ŠD²Ân–Ñ5 º™b×6ü";,٨ͨuÝ#¤hb#OQpžQÈWuñŸ©d;ƒ«S%F ŠìötWÿÀ¨bvy»dzOʲ¶•]Ú”ÃÚC“,ÔÁzšCP!°º·9nWÊÉÒÖþzEâS{1žMß·‡ÇÀÏ&²s7`,åÍM"H†×®U¦³Aš€@Xûw«a¤J,íV<3ìt > QÓ¢œË$jÓG)§gëTJv› ¨Q£!»P; *¨ù116»ÍßÚQž½âŠ\–(úÃ8}gô¹¸ëÖ‡¶šu×T2"KX圙KF…^×ö¯n°+*PXPgƒ'×–&ïÚRm—l½eid`¯ý¦Atjƒš7„²l¥ÀCŠL³V @×3Eí eè÷\?Aj|/Xë‚ÓmûÍjËâ‹>­£Å¡¼›]Ê—{– "[ï.lÊ‚$èãZu†–›4ßû¸BP¼<Ü(*E ²iØÂw©<§•)3™úÛ6ïÌ¢D3‚PÒöƒ’k¶ '”dˆ¾Têõ3~EU›(ª/¦J%ª/%4% sŽ)çx[J/eäœo55ĦÌdÇ‘ê¡ñK¤K¼«Ji„7±Ùï‰bµ­Í5௮6¶¥¨”P׺T d\UØÅ‚°v~iºtBWöz•uzUÐâA‰{ͽԤ—I—õãd«F$«Ì‹LJ_s]¨ˆ8A¾o]ÖJ:oÚçK’uÄ”Ïñ‘¥Þóɯüø%›ÀÎF)—o°.e¥Žm +mÀ©Év„ê%¸’™ pÍú€N)Ù¯§+œÈaè íâ Sÿ¤=´‹‚äHvª¶§ — ¢ìoÐ_ú©D“tº„hd}æ—Yu”h©ŸB4Ç©EˆË©e¶ò¥49¬ì+6-H:s "W  ز¼6þ&òˆli• ¶˜o·ßÏÖ2®vb@S:Ý2Ð3Qp?®e8¬(0%އ]Wh ”£ŒG!–ö ßZ¡ÙXÿpzµü(ޝv‚– ýÛ£˜Ó·ò³ Åú,}g2%}YÚ>˜/•©Ë÷“ª>Å"?sª±î'¦šÄWø²ÁåWîˆt©­]X~‹ts^]B7Z¥d³4)%Ú_±Y5“Ï[»Q€Æ9"Šj¥HÎW™Â&Ò ,h²lc†«¥VY§çÃsl@GG ðjaA°ê•6 QÔ. rT»ÑxLÜ;ðIš.qÝ•¹Åìõ@s3%žS5èÅÚ 4'Ñþ5¥…0ø„õ„ „WÇ1¥¦˜Râ"ô«zàiñÙÕB';7hbb\8¨zòJÏ Í‰¤œ àn—ÓýÄö3.¦i4Šˆ§EÏ»ilhð kAAø‡í>‰ž’É0´Ž~˜±m¬%FÔÙß ÏGF]6}{Ø4±¡˜ønø#xiC °¶C 0xäÙAe5Ò4 \YކâšFCÙó“ÂÏÛÝ_æ«è]*7ÆGWºbŸ šbø«V œéCƒ,ÅaÇÐ3ìëÍÀ”›í¦çЕs¸5jŽ þfIˆŒQ“©îÏÑ‹BK7Ï‚—Ö²ô‰¾>'§@6Já39Åk™Ù39åä@ˆi*zÓn§"ëâ¶Ò}C W´Y¾:uhŠ5R×oÖ˜Ÿ–Ê?–§[ôAÀýWPùJZ¹há0¨Ä¨fÔ¨¾:‘ÆÚ¬W¬›A™ƒ·“„Æ¦Çø¾Æ\©,°!T–ì¸ &»§§qhl²ÊÞ§i€IZSØÞäz=5 h캈xÌ.j(©À÷¬]¦¡Ž†tç jb>)²;ÓS‘ÑÌmáóÑ‚UÖéc„ö‰•Ù¤§0î)x…¶ÒˆØx¥l´J5Ö°éàb ˆnuzóÇ•´tš(õŸ§ü6¥0ðÒ\}¹ Þª¸ÄªF²ý{«õÄÖBI,ÆÆ\¥J§‰=[ËÄ–u&(HË… ø3÷iÒè;œ;^‘&ÒDûß%îü¦ )N~íB•ò“¢&úUÏd%–P¼Q•‹´G3¹ çÔHr3u™Ã¶¨éYÌ}©¢kÛ°€ &Ââjû[Ÿ›ìú7é®gÅä5¥Q pè ùˆ3gRÑÄÓœ/ËöX0CVq*Ë“–8¤,#œÃ3ôŠ˜Þtá“Ïê š5häfK©hl ¾#*ÊŠbI`óMB"„ln>±Ð+7¯à¡=ÖH`£e@Y|ZO^CÒ¡O½ô†jÚø“ôÖ6££š–{0, –ÔÇhÌ—Ä2/Ï(6àÉ!t sÃñ¢äÐê;<ŸA/H)ùÿ)7tÊk™iªð1DxMƸL-k}\Vÿ¶+{¨Ê-,çø!aŤùæÐ†VI… sCZZ5©Y Ñ ŽÊ<„€k˜ŒÉ+¢ê Ã^S4Ù˜ˆ [{_$£öaWÎ mfÂ:ô“Œ”уأÉ,˽8ñ©jª ûšª®©b/ôøíŸð™Km¨2kì“lKgø¥žÔ¥R_xL ¯:*qÃÖ†*Zé-½XTn—dj.šÕÁ½IàœêÙÍ–*2ÉLŸJªDyªï@Ã9,ã^ê⥨^¿º¡ÚNE¸üÝ8×~(L År¶J^ &êŸ- [Ž6_Ï»–«äÒ—wÉË¢³&AàÇ÷â´‡ô®K“þûð½B.Fëur3HQ`UðsEϳ(K ¬ó§QˆÞej†­„ê‹T޾8#GaqªŠeàQ¤Rd¦ºÔ©G ææBâΗ–rù¹z;Ýk'€D*°×™HhH@p qrŸ¼Î–$|¨7–Y½1"Û ç2bî1ÒèH 3Rµé˜¥ 8 ÚO,r+ˆñ¤†Ø¿gºÀé#•×ФêñÉHJRf<§Èä7•ÌãÀÒä P´ïHS5¨›Éqj‚\Ûµ±¯š3c+ ‰Ž#š [i5 ²wYô¯¡!Rö>4«fu»£ê؆Uá±R­FÔÅÛÄL&Ï$ÀüÄ ³v¥ñÀئYÇ=‘M £i  ³ß…-Øç²ZRãD`œkÄiNäŠc¸!\ 2ˆ(ÄaD¨èƒlAÓ/”D³1uLž†x1G*TP|ôbçÕʃ©·X¬ü,ôt™YÝMU¬äc8HÉ4±þ¾ A 6£8„ª•³£-áœZŠûnY+¬øtîãxœÐj`«p^ ,§K…Ì?á)%Žka‘šòs”ìžØCâ©—xÈœÛü-: –r¤>é‰NU÷zÓ­@ßu Žˆø¤åsEÍv;Vøèx0:_B>¶Éß„ßA”Ý7hDÆåaMB3؃À8ml©Šn¿M÷—íè4y&vn6ñº€ZS Ù£A<9u5Øpú!Bê!öb‹Y¾ÛË¿y+ÇŠž“énQ?=œó3+õÕX@ti8'ÖB}þ®ñœaOˆç }8žÃðLââÓºŒJ°&¦)Û’U>¦©Ÿþ°É­Rjƒ‘ŸMO‡\ÁÏ—©å´™ÆÂì(f°Ø°ð™$4ÉÌ÷K–4Õ„ñpõÜò¤£;î¨å¹ÈT`ð w"ɱ\åþy(Œ¼™R`Íx¯¶!Øù?ÓœONbøQ ÝVy¿'Ô~”³™•»æZ¥WÉhNmÇ£‡`Æ ;ê“#®ÿÒt+P%¥Ôœ –® @ Ø4õbJ‰¢€~d‘磩¡¸ª«ÅBI:$8­¡–“i&µ]€!ŵ,âÙ¼#@±”¬Êš@¶ÊZ½È[-œµsr,Ó"[ÓWl!6lÑE£ñ‡?{0”2ÏðHÙ¨´cEÏ-s|]ÌÎÛ/pkc™¡IY³d¡` ë/¾N-”Ûôå›ôåeú"Ó—×éË*}ùúÂáÄÍতƒ-Á¼^ ±¸ö?þú¿ŽÀÖÑ€ØOBŸt©$ n£Rl¬÷‡ñP*žqÛ=x=qÕižûåh];ŽÍ#Ýìƒa™¯ŸVA.¥’VJûàp7ÛÁ\SãÅrL Mð+ûcYì'Å%íXo“Z}c œˆVÝ$K4§£0mlG…%ÇS£²!<g»ïÛ::—ç.Ó!ÿ*C%CwÂFêÒ!<ë«—‹Y5°šæø–Ñ(Cf€ì:ç5ÙÁƒ H \7AÞâp<,/<Ö5ˆd°³”ͤeêÚƒ~;RZ é3‘•™M˹4¡>÷1ˆër“GDA.øUþU•ÆÑ2þú¯ùW)°`ÔŸè[c ?}>3…'õT¥FýkÕU ‹Ïž lˆI2ôÓmˆ£*ó"Sû³;Z˜(ÚÿO:ô ì`=ÒlÚgj½6½SšŒÜÓH“iå“‘†®×Oƒ´£†ßgÏcuòS‘†9ø3H›ÔÇà;´JÁhtáÌ)‡PÝû@×ÃÀ¿àÿfgV¡»Eƒ%†ç9ËF>ÖüÇqâÇœÖ0\x(*Ÿçv«œ-¢ÔýdŒøœ ŒøçbÄ£‡ï>±|ãcf¦‡³À–©„úøOP¾_}‚òýòŒò}wøI‡?Ø©ñt!‡ÆÛ74˜©àÍr¯o[¬ßŠÁæ…à}¸àaÌ.™¾5y«þ³˜¾jY—á ý‡ª"ÿ&+`ᬈp@>äUt£ÓBü›òNð³ÌD 8 ¸o–I‡ki*vjjäMÚœÀ+ Î8)¦*îZüƒAèI`Šq±4 4\R;°Þo·mHó¦å±ÒEË·‚d®¨Ò%¬x$©4:û;ûÍzóòìÏå®xlÈL&½ŸeÏ8»»Ô3«&G” %OH%•ÁÚ¨/d§wÞqÌÑ‚¦,Ë…W*aiT©~ÿÞv›‡ÇT2Fa0‰~K´æ>ïÅ.Ù®T¤c²>_!TÁæÀ#1#ÃgÇ’ßÃ¥0 °8|›Ýy‘~¥´à‚ˆäÇŒ‚%]&xÇI'”†•=¢l%¡Û³‚¼ðùM"=*<+ZÏ'±¥ÁƒþŽ—¦N%Þ8WR÷*kE¢´±ˆ‘â<ÑT—N#j°Úåóåù¦³§W>&íô3wœ?ê|⥠Tùš6³t»Æt»Jª[&é.Wê1zù=a¿’¢Z<툗”%e w9>wcˆ…“î~´øëÑðéã—cƒ —¥²‹£²ÈZ±Ø†Ž~s{õgr¯?\U׿½ªeu ö/\ﮤñл~Ù^}wô¶ZªOb#»Ž·Õ:†#Ø)`rbJ¯¬õ;d‘¾eª S¬°`Yño(èÅkïßÓ ˜S_ªØ¿£¤0Çæ€J± ’­Ät1sŒƒaûøóc _ïûÍ#¦›=¦Ìð†D.CÆJlÔÈÜp(º6@JÒï©Öš¿¡¹‹F./­½8Æ ùB̃Kƒaë8ñ»xÁ ý*døÙï¶ÍšÊÄpHo(?¸yŒ‹ä Ežž·û|ßÅîQÃ=> ‡<^ãµbü‡z¨~ÏÁôÊÆ-ãµ’‡»áø%—SVPÖE¼BÔåá¡}$ÓY“éÌ62ÍÄ#¡?í*ûÏÕ’ü](ÔŒ@nã]„Ž uéT&î*it¸ uЭUmñ ~øªŠ·\WÕ\60,Ä2Fb³á (V»ð‘RøaÿfÛîâ>¸š¯ÀËþ¢ý‚táaœƒ¼;òàƒ=†*##´•ÃŵÂ]³{·¥;$„¡3–DÇt ,So,ZiÅAn0WóßÊŒ˜‘¡_‡‚°€ªöñ.²J(•H(¼£Šj¨øvIˆ|UÉÝv¿èÂ4|s2@™¿ÙÛTÚñ>^êÒ Òƒœ´£Û÷HðoèÊ ¼-©HÕ"&›9òuiA@«ëU ³aéN&Å  þ|õ¿üÞendstream endobj 257 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 527 >> stream xœcd`ab`ddä v ò5°00qäH3ýaî.ÿQõSŸµ›‡¹›‡eé.¡ï ‚ø_ 0012Š©:çç”–¤)øæ§¤å)åç&æ¡ 20003013ˆ€­b`gb¸ÆX÷Ÿ1I„ï?“°CÏšŸ<åŒßëo3¿ùñN4‹}w÷ÎIÛçsü™ÆÔ$—‘õýݶÚîꮪnŽð̾ò?N²OiŸZ_ÞXÓX+“ÜÒÍ5êþk|þ^úŠùõU¢óŸÚt²›ãÙ^Kù:öf5G7g‰œœÜ¬œœ¦¦–¶îjŽºòì+¾{°æ°µåµÇT×¶´mÊfËìÊìÎêæPg;yøäÑ3ι|¦ûÇwÑß\gÕt\”ÛåZØs”®Zµ`Ñòõ³3å n(_ù#ó{@Á2¡íßm>~÷}åøY\xËw¾7EWn94wO7ljíIn^¹ÖîÕò…mA“;Ê8j§tN•›Æ6£{FÏŒnáK_W:È·°wyäØX4s4²ùu;/ÉÙ˱~ñ¢5«‹ä¦Uåæýfý.žøð;Ówökß9å§°·?²ºb1CøÌ¥åç½zþ›a§™Õo†D= #{ æW,ïæX±háÊ•EóóäùÊüpšõ=¿wæb¶ß¡Ýìï¹örËq1O³çád`ÔãÚendstream endobj 258 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 636 >> stream xœ=ïKqǿ綻i×õ É•åAVdZA¶¨ †ZâB+˜©cžnÚmëvmÎÊéH=÷ÑiØœÖf>°sYÉ=êA>±ˆÔ_У¨'}oÞ“Ö Ÿ|x¿áśׇ@Ú:)Чe²V ø ꣫ô!5iX‹LŽLJj©ZS¤Å ºo2Ù!6à¶ÈŸ¾«®ª]êì@(é’ BvŠ}·\ÏÎ5HÀW)‹ÊTÐ9©R¸{ñ%õŽî¬\Šþ‚·ð Öa-G)&³dü#ë«ÇR!Þƒ÷>N¤@ƒLñR  àÜôŒ%¤Aip0)9yÂøG—’ÉF©®Cþ#Ÿ)\¥V«%êáþþûV0ôÚÈ…è $á|„—›f=0414ŽÖa­Êèxù!: ïáÑSM1Š¢| ñ[)×(b¦®p Ôí±Ã-pOuMwÇýã½ÐB°'è÷ÇÞhMñE±xúù2<…ý‹}éÐÜp–`>9›œ› …WÞé™{3JÃnMÆfHµe’’ 0³í`¶ê ¿£iÌ<£·Ò B)Ò¢endstream endobj 259 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 534 >> stream xœcd`ab`ddä v ò5070qäH3ýaî®ø1í§.k7s7ËÒ½Bß?ð¿``bdSuÎÏ-(-I-RðÍOI-ÊSÊÏMÌCd```642f`bf[ÅÀÎÌð‚±ñ?cÃe¾ÿL–~ =²•3~Ÿt—ù;Ó·¢éì{»wNÚ=ŸãÏTöîô‚ΒμÎÜî¼nŽôïì‹úX_³íí`]Ï^Ù]ÞUÑÍ‘:qƒüÓìÓ['ÕU×T5×ËEå6us@Í~ôcãzÆS_¾7¿eþÎøcµèÊ£ûןíæxxÚÍ@ÅÒÚÕC>4<$4<¼¢B¢¹¹­­»¾»µ§­»ã‡ÛÊïÞ¬™lm¹íÑUõ-mÕ]•Ý™l]Ý™Ý*lgŸ?rñàÙý—Ow¿äø.÷[ø˜‚ÆoF÷ßÌ™ ËV­\¸hźü99rGT¬þɼBèàw&›Oß£ÞØ~ñ]öÇMѵöÍ=ØÍqzg¢»Kª›wµ|^‹ÏäY]ÓäúÙ¦wÏè™ÞÍ1‹MøÉ“íFŽæMòl~Ý.óRös¬[¸dÕš¢9é•yy¿™¿KÄ?ýü]êØw©·F§ÍæÈ ߸°âêî×Ro~sl5qý-˜§”µ¸|ÙŠE W®*™ß/ÇW¾à‡Ó¬ïy½3³ýŽ›Âþžk/·ó4{N¸àÊendstream endobj 260 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5197 >> stream xœ•Xy\SgÖ¾1’{]±Ä 8vîuœqZ«V[k[—j«ÜEëR¥., „@’°„}{CYØCB€°º+nX[÷½¥ÖŽvj§Î×j7íûúuæ ЙÎ÷Ío¾ß÷{ó!¹ç=ç<Ïsž1tÁb±†­‰ON|aÆŒ‘?&†Ç ?ÍNEe?êk¢ÀH694øtìû1Pñœý` 1„ÅúÕ¤E¹9y’ütÑ„ÄÜ´t‘`BrnÎ6Áÿx“ ˆ©oró„"qþÉR©l[ÁöÂÔ¢´ô¤Œ;3×d­Íæç¬qæËÏ<;yÓÔ”çÇÄD"‰XE¬&’‰5ÄZâ-b2±ŽxŽXOl ‰EÄÛÄbbñ&OÌ ˆ%ÄRbñ±œ˜E¬ ‰•Ä«—KÄ1ŒNÌ#Fó‰hÖpbN” ‰ÖÓ¬Š!ã‡øÙvïÐ C›¢è¨œ¨9GÈ­Ô³TÛ°·‡}0|îðS#^ñÞÈçFÍÕ5zØè£Ñ/E{ÆÌ“ÿTlLlŒ›;{f,3Œ}ÈãòÒyZÞ¾_)ÿÆJ|ý·!÷¯–Ü §ÈXmm<>ä‡Èl°½ÊÔ *íN«ÓÕ^Ùîi³:Û ((ã¸EiS7¬ˆ«Ö¦)e Õâ4³P:>l 8ù@\VêVº 5ºª pòøÜ:8¹ð¸ø]E¯Á£s”0Hu²5èµD47Í“&Åé u…%%ùâºl"ðàPøŒBEá NÉÆ Çùbàs˯ÀíWb¹÷Ú‹xü*²½Õ¸™A-äö\óÇ—†„n_®ØÖÍÀåäµî/œsÄo¥‘†Ìùtaä"NžÐÖÁÀ\´›;Š[ólp§€•`Å6YŽgþÇd}‡PÂÓͲ˜æÛ°ùv,÷ , ¯å¡ÅœßDQ(ê.ÇÁ‘ß܇14·ŽxRhÍ=hЛ ãQ4rñܾý‚Q·%,pÒe °L;gy†L!Ñ僅`Ã)åG&ðš<Ô@ªè­œê O°^Þ;ì`$Ó:²µÅ˜Ê<“;„ÉCÌÉÛº |£qûIÙ~0ŽyðŽ‚#Ÿˆ†­Ý$Þ¾ƒ9OÂdàé¦Mœ¡¦tœ­ Í/îÒ¸t•ÀKÁy$ð˜=ÀCõ^:zú›N»Xtf=ïüÅ=Úoê«ìpôž%FeˆLëèþød®×9ü)5)DyËE'×w®ãPÌtÄFÃÐÐÏÑP8êðÙ@ŸAUð7< >nùòóæŠ2§Å ΃CË*WSè%$­Øœ¦TKÍJ°¼lËUùYc \–¡| õ¬‡ ñ¿[®qJA‰¹PÙyvÜöqäzÈ»o³³6“r¦ƒüªâFÕRWØ“îÛ±jݺ·TŒù‡H§Í •/¼DÖ ‹i? ýâ#±Üëp1îu†!M+‰¥%™  0ô@ÏQ+׿®]°áħ%´Éivâ°ƒNË I‹Þj´›©2N5¨îv[) §E Ú]­©Pºyà‹ ›N,­ak&pâ|ÿbÕ#—òf©-W¥­¢Òn¶ýFÃX¡)V‰€’6s4 ØSjÃwʬã¹}:½Y7ß\{.‚QžO‚‰²˜ï¯ˆp¼?–ûœ~‹ §&Ñ’{óSä‬²¬j/µ§è >©þâ,Ó-"Ü"ÅÔÕüUÉêËiè‡InOM„‰ä 0´Â³!ØÙÊ‚Oß…Çï²Û¿Îã“37 ºZô’!2=K—©(µàËòááP&¹-¯lkáqTK¦fvÐY‘÷q—‘.íäÛw3á¹»ÍÑáñ˜‹¡Ãür_дA*tªÈ=¶.º=Ä`„ÒŽírÈ0ýÈß×O~/Ù ZLŽ‹¨€’B›Heá× ‚[O•ö€ƒ`o} »¼²¼Òê¶ÌŒƒ“\Q!9™•c=È`&ÿD¢g•QܾÀi)ùFúìW×¼0áœ=+3 gÿ˜ÝŸ:»e0o¯k`gHŸÁ<é Ó³uYr¹”â¼O†HF¡ç—íØÅ„;Èî{‡Çkn:D0Ê% ?bÕ ðù(°ÉB n¡”¸êôú×ý Ô]«ê¾ Sãg|m'B³ø¤/P$VèJô F°8÷MÁ›Fµ^mRQf޶QÙ¨nœ ߉3V*@e#íõ!K=þ^$ÚÕƒÑjHs”I‹ñMñþøÖWâlJk‰7Uð^ô´×öÖõÖ÷Ú½¯Õ‹ak-q”ØKZæÄÕ®¯ßP»Þ¦´•zÔ\uw‚3ãÏzo}¹ßl>Ùdn.±æ‚Ü¢lµ°x«T%ÑKð õ~E«*^|NrÁXn¼£¯DîˆÖñkÉÝÀ)÷d–iíj 1«õ*£&ÍŒÓé‹´Å¥MšUP¾¿x¿|á±8“ÃPÊ©¦n‹¯¿œýúì“tì† œ)ñÅìýCãz –› ‡†ŸâB¼Ý€ºÑ¾d1#$‰^Ûb Y1ÿ+Ù)p œïðÙ:¶30R@W»ý u]´ÌÓoçgëwi8—칇újFï«+^äÏ¥¹ MÍ5>K~M 3ÑÞH¿ií2eàlÞÖ}˜±“åßÀ¨ÎO­Ô@˱x ±à8ƒ]éD=î„WÚ(ø+ŠŽ³*4½ÕhŒ†¤ø-3~(>L‘ªZo}•×]Ÿ«ÜÕžªŠJ§Óá ä5dûu¢8›¾\ ´T±D]‚q·-TH‹¼¢ÐYZWZ•u`ç¬jwœ©Ìd5[£Üaµ…vÅÕúªý õ¡æÝÕû"åç“õú FA¶°(_«–K±öƒ’FµKÒ¼³ Ô€*_…Ç2&LA¬S}Ð!Ã: ko³ƒ:Ô¡wž< ýežÿ¾¨2ŽÓiñQ<ÁÇ| 8’3á4v}Š(m'¯àYôð ›ôÛr2DÙéÒT€ÇQ ?2Žœ Šê¯xÿ8zïú¡“hB1ó4@kÖü<¶úÂ7éS¹ï3Ö¤BC vbÕ”+˜Í&`ÖJU2µLö¶ !ÈÌQꮳֻ@3|òZIÅ/.mìád,œk`×ÀéÖkqŸváã?WÓÓÔ}j|Å"…N¡/e Âøœ„~ò©È× ö Ïó/ˆ1´12#ÐvøZÀ ýXGÞÂÊ Ûá4Q ¦ý6€ë±hAŽå MÒbKåÕ[«}Í´ƒT]Ù¿Phô” h Šú q ïÂù®+A¦ÌawbÌ—ëíZ¹:]¡¥ÅiÛÅï˜'€¬ô7)7É=>®ƒ#áJª‚Ó v+[DÔ@lK Ìõ±zq¥”hVT€SÖY¶××ìoë±îÁÍas¦¡Q/ ±ÓQ´^§ÃÜ£TåÆJ~Á©IQ"Ž6A?{Š*ß$ù€z‰sýë_ßxàkÙÔPNµ¿¿„¶5—ØðTÕdgаš1£ ñžä†ì¢'ÿšð ãŽ÷ö´3ËHø,ã"’ŸcíaÂIt牅WE‚Î.ªw7–7êÈ•Ô ¬¦ Í!B¯Öª„i[›±aJ¹¨¼lò‚*“—úG¥sà>Vó6¶rÜËqÙË]–}†¢è™ˆ…FL?6û³T¦QÔeåôsûƒ}+°+UnÀÖe)u´hË&Áz²ò‚©‡ŒçÁ)K¯oï—ŸÐvÎ}µùw•I8&{˜‹6=~µ {Ãw¿ oû{Ã0ùxïEÅë‚Uo®\œ=L§Ðë0­‚;áø4L€+"q9—¡šžßPb›Jšâád9…-E©6R‚Šd:|,ȾȆlÜø×ø¡Ûlzs"¦WÊæàvZJ]'ð7?€œcÉww]R¦OàU½‡B'è8g¿TÏ_8Ÿ¸tzë%ƒt>áyÈw=7nœ ¬^¾]3ç5¡Èí+¢åõ&¿ÑOýb!‰ ¹Ó¯°Û"è¯"»› ›˜'e$ÐZ´˜Xéy†\Z<°–ü?–’vy«øÀFO îþ²´‚5føMno_$ê³pìÈWýðÛ%c¹w»ÜDK“!…A­äÎB]ž Ù!)[Û˜ð2ÊxÜ>‘Q&Éûµ n6ùB-".ͽg4™ãò‘†Ïhf½{^>džÔÞÙ·Hû°XŒøà‡oÿ´¹on;³2°À´®-5¿ n^L¸/eôõºýIÅÉÿ"»ÜZ äÔë½òÌs½”Ñf§¹Òì¤ÊÉJ½]£2i´4Ê#µeÚŠ*W³§‚v8Ë+m•ƒ¨L„ŸËñý£þrüq mF\ŽÛ$(´‚Bjnz‚\hu•ÒVwh Z$ÕbÚÀÉ/ˆ×œ÷ô;s —’+ÿïRacei ÿ7v…—ï²ß}<‡W€$XamÇ­WC§¬‡à›AfÄ!¦¦êv( Â8JथÛöFÌaK}à§Œ;C™ÖŶõøkPõ ßkdý{ÏÀ°mkù·ÐÊ åsrD¶]Ì=4ìiö×:‹¯ëОãÏEFà2>YåQ–älÎÉ“09B0GD…ÅäÏP|ÕðƒäAàT5Æc3­jÊ„g¦ªÀP’5]0-gª*K‘¥ÎÄbirë]7"à§qò}ʽò½f[d㤬dyÓaÐ2h^°Ø[n†{ÛXGÂ-aß ‡xþcÝÇ®ê¯ûf½6=qAòR&yÉÊå«—ªÕ–çÒ0I6ÃEØ:hRì7*•#0ãÒ@:ÖþË⚃Á`KàÆ…¿^MÁ¨)Ÿ ¨)ÓNUfïkmlh Êšøx$ýà°‘6‡ùp6Oû û•oàÜ{ ðÝ Yá>^Gωª€:LÚ¸B:{‰ŒÉ×­*ÇcËHZ´åæ @¹9.àŽ¬§Ü«÷›ž_ÄÈIóòÜ™³ÀZ°¤Ip,2Ul€jk „š smŒŽ“Z˜ËŸ£6|‰G7!yoÞÕ«îùëM—Þÿó¯?›q|Úüg·MÍöƒõ­!I=ÿŸ—œèƒÙÖ¾Ïaéçl8Þæ™9à®íÛs—[Z»öƒЮ¨Ï3Z À(aL(¬—5ëj;®'„’ÐÜ©h5š‚~Ó‚vÀpôLJ>\‡¡«“ùË  Ϋ$/ù!çdYи•t!¹D‡F ⥼/ohP \æ~-Ät Ï’Â㲘Oá¨üÆXîe¸<ü¨,j 2&‰ÖnÝj0hõxk0’úr£µª©»ÎCûwׇÁÅ™MŠ{']"Ëâû$¡Zo¹×Í ü¼€ ¤?GäõëÓ‘‡^y¬æ•è e¥¥(EoDóz  ¥§Ñ[ð4Üntè€rX6W^ƒÒÃüFgÃW|ÀÙíp)Ç8•·Ìívèm:š{Ùl2›Çÿ3–+JáiöÇ`2qÙJ‹\¥? 1m‘H/4+ -G#ÑH­V¡Â*£·ë´…ã.«op»a Œ9 çƒÈkEv[€côV½]Ìø˜Ìƒ¥Be¾WùXß_dÿXÃûI§ø^ùqÕmß °¡ƒ•&mˆ$PÇ+Ó[tx;JÈ^½e“ÉhÂí¤ vÝÜåÃeÜëé=ÔAÅéõ4÷NŽ$?'³© XUm÷8™ øè"Û‡Jnÿ´ê œò£|0 OÚ?Á¸½0öŸ| ¢Dõ‚P°¹!DsšdÍÙ4·×h@ 3‡ÃKÄ{/ÞÇ2ðà»õ𗞯ßSˆCbN®ÐŠ=Åm˜gáÏïëÿ$Chø‘àŒçÏלÞȦ+Ò(Jk¢°¶ ©Õëk<º®~{fŽ¢HHŒØSagUR¥tH\b‡ØB)9SÑÈwжïçÕ@ TjæC’{ë‹K'o57j”ZŠ×zì + kuÔh©/¼° ,ž&z _?:‚ÎÖnÛ2rAüHªv4endstream endobj 261 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 259 >> stream xœcd`ab`ddä v 6400q”H3ýaîîþñ÷§7kc7s7ËòïUBß™¿3ð``bd”ÖrÎÏ-(-I-RðÍOI-ÊSNÌ+VN-ÊLC“a``` b`0ic/úÏèëÀÀ÷Ÿ©u òïO|Ÿq˜ñõÃï·î0¿þé-ú×ëá÷‹ßUÙgt~wü½}v)ëc¶ßÑßo>˜÷ðb÷sÉÉì-ß~³WŸRÛSÛ]ÛÍñ[ù÷Ñï3¾³±_é~ݾÁ¨¿¾·¾»¾;(!1´"­.¥;¥›ƒ¯lá€9ß³{g,™ÐÃö;aû{®½Ür\ÌÓìy8µŸiˆendstream endobj 262 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1803 >> stream xœ¥”{PT×Ç{|íí68÷25“™'ÂTbÓ‰h"ŽŠS F3D Ëswï^û`—÷ì{—Ýe—}«X5&ŠZ„KM‰Ú‡ÑÊLÚ¦qš¶Žš³ë´½u:ý·3gΙó;sæ÷;¿Ï÷|%Ä’$B"‘,-ÜQT”••µ¸ùA"#)±6Ù$¨ñÄ¿RPZ2J[Ò¿–œ—â—VãÔ•VIIÆúíuòz¥¢¼13¿îpycmfW_Î6V‰‘ÿ9!by]}c“¢´¼¢²ªFþ*Aü„( ‰"b±ØAä;‰]D>±—XI¬ "H¢F$]I“¼É[’¶$+¥ e¬÷IæßIiw‰OfËK¦¯áþùdlIì‘ ©ºí™(êI» Yx /EÐpj÷‡èô’8yó}a‚“!»Ùìðæ¥Ûw7±ým7ÝNn=øÊéN°ÕY|Íðü.‰ÐÀã<¾ÊñR/ÞøÎ<¶žNÝÃ[ß—¹É•…£ßl³AÁôa†úó…ÇÇöê«Ñ4«úƒs@_Ћ´yÕÌ~\ N9Ã#ˆÉ?>Âä·¹«JJ8yƒíB¾Ì˜{ w ‚y%·¦}ò1Èkø«+çgƲóL¨Ól¢¿«ÌÂRá…Gyü>^:„ ß™O§<¸ÿSvŠÐûha9P·¶«T~}?C¹î üf@Vhµ\³¯5ÊP§Å‘߃ 9˜q"ì8ÆP–Î×H $&ÁŸÎá$¼‚¦zÌ%gÄ"½ñ‰ŸÊwT—0ÏìÅ;ðR¼>NzÇ!>êÅ̈ìtݘ^|ã·'þÓ…´3ÀÔ¹J{Ð 4vÃ=dõ ¥ ¡KFW¤F\æ–‘ŒA{8ÌÜ"#:¿ºM×®5ÑU=rW9‚o)ÊõÂkøÖoP&ÓEî~±S)"ÚŠ£ªIHÕĵ( Ïwr³‰Df#2B¥OîwFB.ú¹N®òx%+Áæq¶¨• ‰í²,Фժ٠í+Á\Û¦KàÍÛãwyŒ³sJ­VAÉ÷K”•…ìÉqkðd(f;Öú”ŒðÖ—`°Å©V·kŸ§Ù{>+œÇœÈBœH•…lkÁ™kŠ7!MÈ«–¿ú—²›¿ðôa¬«Õ† 8PO«ßt\ "Øß16ÒÜÛæiFPÔ¬5ì°Ø‘Á»Htoÿ²V‚ws:vÖÆšû‘~›¨eƒó…lÙk$5¶+Wû^éžðÅé¯Bg]ô°cÄ6ŒàóV¬Å/I¬½žŒ)\$Ã@4ä8q©uºú,Sùé¾È>ñ¤¬Ë2˜vÒ!¤>ÚˆÓì“Ö™èÉq·ÏBAå\œÜ¬nÖÓª#åmh ÊŸT݆–YYø³Ñ¹;è-°ï€ÏtŠyKy Þ-ö~·Øû#2X 6i4¬2d 1þu1h|Ôµ5·zÚ‚G|D¼þވƧ0ÍÈÈä`¯a¿?WØ[aõ8?ù$jl×:iw[À@0Œ\ÌsÔ½½©lÓS êY¼mjrœu²ÒÁËì<.š?=“N=Ðá?$^‘™"vÈ]ƒ`Îë{6Ô¹ä&ÆÚé0YLÐL"úR¢Z¯Úß©otelõþ/¬Ã/|pobÂù9=8e¿Ý$^-¬‰¼Hï&K§Ådí Qv[»mÝÌ€&®<*¶qáög÷âÆmsÔÚ%úòœv…lvµ¿5ŠÂ(ì·Å ƒh”s4nnŒ•gT£ê…ò)Ÿ˜ ¯íë}¼2»±TvÄ T¡jX¯¥‡Ý±(§Ž}H¯Ð{Û> stream xœí\Ý9r¿çyÏSöA/AZ«Óü&w³n‹`9w;@°@–5cÝJ–O’cï’¿=UE²›d³g${Æv€ƒº›ŸUŪ_‹üó¬kÙ¬ÃáïjwÕÍn¯þ|Åèí,üYífß]_ýó¸š1Ö:¥øìúæÊWa3Ãg¦³m'Õìzwõ´¹Ýü÷œëÖinšõëùBputsz5ï ”vÚ5ËÓüùõo¡IaÒ&”dÒB³×/¡¥÷óEךZö…tÖ:Ó1,kÚÎ9Îg ÖÇñUVáÎj-|)ÒdkïàUZç›ù‚i˜@g›¯ñ'ŒÝ)ÿ3yëbÙÚÈaœ365r M>r£u1ò?a휓aä.­#Zk¥è)ó+,,œ3ÒVH£[e5°¥› IÎGÛj!xN’åagU³ÜÖË—ó~ÁOºí„m6Ø4 Y1Ó¼J¬¶o‡_ÓuŒ±fý24+y³ée# êHÔñfµßn׫Ófÿ:iâ õ>®‚cuMZrM\ˆO§Ð.kvëÝœ#;aÐ/æ xé¤ÕÍúšq¢Ù«ò¹`P²“³­tÌ&Ü&ÖMpÛvê>nˬ#&[!U!§ßÎVˆV9Þ,©z,ÐÍd Zr²¹Åß f U³QÍ ¾ V„F™V™ÎÌ¢å´F¨Ïÿ-e‡Á@‡JðQ*ë,PtëœHI¢`ÅY‘fÕ2%˜ˆÊIšq`y'dZb8®ŒM6tÔåB1ZTI©?b)æëÂ:q,%³i­D"€Ú=™(×nÆŠ kë)yçWÕ]…à0tÅbS.Ó ×P Bs3¿þÓH_4czBýHAƒÆU$M· H¨f²uB9é«ÜöãqµéÈÖ2ÙÙ²JÏšr䢨¥€ül==–V²üáõtdÉC¨k lª,`(!MMÀQ] —«kÙ1>¥­‘òÝe̽”y6Iš¸ƒ_ !ï–(hB€Š}‰ `â ÒÉ’öK§ª|á#ô¶Èë¸gò5î寛$•›$ÌÕ/JS.JíúŸç¢¦ARD`bZ)°Êß”·WÞ 8ÏPÞ}©‡WÞ0,°¹¹òö’i€ †OýîZ¤`¡ÂGÒbrUëx©²A¸nÊ5!sVšO®šv½¨мšlD˜ÃJÆjsa5fmýêîÑúŸlz´åR”ÊLSbldJ|¨3ðªô^½êÀâªÎVôêåJŽ Tw­>NjL'ØJ¶,5ºs—ˆ  Óý¦½ŽÍ?“i/±‹ÅQ8–Šc­Õr)-øédKK!£lwc?\¶¨­G­)œ£w_)8ÕhÌÎF)¢…&ÙÎzaìF¤qyi;,£³pPe˜©dD` 3„ÞaɬÒó0Á…ìÀö–üd@ â–e´˜J…âÿÐBèB/È“­šäUgúb÷»·HŽOãÞ^‚™7‰@³¦§Ÿ†Y¨iãôûuY8Ê.8·¸ÜŠHãõ«9Æ0Añ5>Âj$4ÚŸÌAòÖYÓ,oNÉ´CUÍz¹¢h<¨ŸÆ‡LA·Õ†g؇^ÙÿY×uºª[P"‡¥(„±ÎW9‘ÄÐQÁäbç@´ +WeR?„˜axÍðkSD—[?5P¦Í›ù‚öàç~óš­Q ×R ws …Aç§ìQDÚB3Â5§=þ†ÆÄ(¾ŒEÀ¤=Û:)¼ÆŸ\Õœˆ‚¢Öï<½µñõ ÕK÷>p¤Î*Ñ„}-Ò’¡ã0º¡çÝ2 govT|›TØ… ç³ò‘X:[Öž€µ­ Âu õ­­ [)5›Šœ¯Q,‚ ýÝvOÑu°w¢Y-‰“ !A+ãÓ3ù°÷sq)Evë×¥—0•S¨çX³ÊÄ!ajUR¤"RôK>bl(òÕðöpŒ»S9Q¸äØÂäÉ,_¨À3™£<àÏ¡)“)ÉTwåtëjÔ`6‰Ì$$.’¹ŸË±Át xÀQy$òsŒ4Éo“m ìO>,ßWY­Çåa³ý%|–#©õ0cA3«B†R½õ:ù;µþýÚÙR§¼€õÚ/ /;b9~ ¹N?½ »"–ÙSh•e|ZA ß0~’´ÝI€`Œ„3ÓÌ}± ¦FZÅÜ„~.nDz?uî7î±|'qã>#{©¯„mf/ !$ûaIqÖM¸ž.OŒþÂÓ0%XEsVÒ† hbÃÒ5².z’3Xí<ˆž ¸%2ÓË^䦰‘›a™‰2Üà†¸‰ö^¨Iv¶´tÁµUÊ….•éa`”]äŸBÈÂ2Zâ°ÙüGÙæ¸L…i»ž×(Ï:¾žÌü1élÄõcòÙ®'ßru:RwÍ’þØF–%µÕGX§~è¢Y&c{“H§'®×BÓÅŠ½HCÀšêFÀ-ätx[H=u­zÛ“S­ëL†7ÇÓaóbÀMîªH ¡D¡¨n°yHr1R޲–óTùÄ·wâ€Ø©=˜)JÃÀOrœ‡A5 ­)È•üFíØwq\G»Ãs¿ÔòT¾þèyÊ­¦Uqãmï´~Òà¤5ß’}z&ãIbõ÷q’šåêo“&¡gîR!ø@d_éI>NµL–&j€`N”ôrè†#T±¡›m9<—ÓX&Ð‰ÕØ Z£°µnŠe† ¤Ä"Ñ2ŠuúGiT®.Év:iҦ˸.l»XUP¬‡.¾mÒꌸ´ª:£ðà™ƒåÚÏ{ëiÏaMצ-Z#“Xߥø0‚µÞÈ“28ËÌ“VÌv‚^ާÍê2.Á‰ßô¿Ñ¿Ü®E¼]¼‰Í*„a5ŒgP‚ó<[HÀoš‰ê)©~ æ¡wÅ:Vº€[/6а䵵¥€òGIŒqï%Eaå%€¯R\ _ÇŽÇŽˆð4èr_ÿûÕõ¯Ÿ6ÿšaÏ5|ý—ü+qȹ;êj!âׯó¯ã@˜:‰C•OéxF†^÷< #©ôP[•§öq;ñ\µ›e—ë}\ ÷a‰=D`E÷‹1–\«úïY9„ÓTë~TgÏSýÂÄ=Gý#&Õ¨þñï¹{2úCH{ŽYÎ/íI{~ªE_e.Èú‰›‚÷õ“« Cý›Ö)…µa‹°€w+>:†-¾%2™ïðàJäc°ããéÏ€/Ñ!=~-)ñJï…%à( {{#¢kÈÀó4 ˜W¦šæ¢‡E~Q2àâûs”yt\È¢£ëÑ"Íqxp£LÊÄ!_†²ø8ò·Ö—¤0Á‡©)‹/ …Ô¦§P ñ1ô†*Ó©1š2“Ú;LTÇyµÀ5gSá˜ákŽù6ÿZ ÇLÖý&ÿ:Òq¼ÕÌZ|%@Ù•,.à¦[qÜ£‘7,l%`íAgÑÅô¼q‡[ë%(áO»c|PÉpÚXÒšöçœ1PZ¶R…è(ñ*nk”BW KÎ-+ðUñÙ¼÷&âñV  çê8lw1!šwaèÎ6Ëd׿eø-6PàÂ¸É šÉ\žÅVûôú.²@2æ>Ù)e‡¬ú¹î–§Ãæ½/× 1|A‚®!£®˜^æwfûz †4ÏÝ«Ee9³-SåA²ÑYàä Ù>8 ’gî‰4~áÆùBÕ¸)εάÓÌU•Aaœ›'5ò/¤–¸!PdôfÚ v\§o§Œ ¸gÆU#d DÐTÓï#ä7äƒì¾‰óŒ¶r£”oꆛ§f.= 12scgûTN¶ÜéQ&’:u!Àdö$ñýÜ —êÆ©ÑñŒjœ3®A<½ñÙ¢N÷\_›â<§çYŒÃØÃ=ŒËÕ&2…)e\8«T¦ÌÂz4½Ô-Ó\ÓÇU+ËÜ¿ªeƒõl nï L ôJ†ü™Vµ0^VÈA%ÃÇ^å9¢•ûWü¤úÉzXâ³Q~‰6´×˜ìßú¢ó¯‡õ1l×›,&M£8RC>7Kû ÍQæáÐQ–Ä>J¥Ò®‹"–E–œ2ýû¬¯ÿyôió˜vÙ›r,¨} <(¢Y™@\¤Ô{ìÛÂýêñÖíay»nç ÍåPþ”Š”!ëЩo–Çü~Ÿ¨tŽZô,Ìíi³ˆ\X8¤ÑÓ l¿¹ìÉ7—u?D™d*Ëýáåqé1’O7Ëí;ß½Ñq–þ¢ŸŒþL‰·7õÌðð|»^1H ŸÒGüç”Y5¤+nn_…×ÂfEF"È}ÖìYrI,õÎqˆð›ùl¹0}Î(+ KH×'IO>c Ët>½À·˜p\#¿3íî ¦ h¢ñXø9ê¸ÜÅÖìtw$•홵?nR&ìûaYºÙ(4äuòhÙÒ峡¼3JK"RÁ Ÿe€Ÿ´Èƒ¬Ü•ŸÔOœ2¨8­šS)ŠiÞ¤¹ÍKÐ2«5Ëù4ì4sù—Ð7 îfý.4€Ù“>¡.Ë.9ŸŸ5Ëp»“BØ?¤L¦ëëË+@"=tïþ!t‰gGn†&G,¤2xpè„I^±JL˜ëÄMú€)“‘1ÇÍ_úÃ(²vF";A¼¤w/«çYtZøf™&‰Ä3O9yÎn©¯üÉÜïóÝ ÝÖ·`ŽÃ™°Ÿã„:?ªí³æølŽö_I¦‡}ª÷Q7øóA¶’¥é‡³?d©z‡MJê[ªß¼I|ˆ«“fuŒ Ñ €¤jäC¶j-²ãé¢\`1ìÈã#sí²*ð-TÃ$Ëy0¶ ßcO– kuM§Zð«ÌlOÌ`åªÉSm©ûŽ òŇü(òä"š§Î¦²ÚïÖà\hE‚&Û„s8Ø,Ñ¿¬ûv0 ²ç„¥_9샇#ñCÆÁʧr¢Ñ{¼‡‚zg‘@XÍlkrm‡‹Ã¡#ïjðÛ÷ýï¾ï?L¨_V!Þ ,wÙðfןÒúÎÏΧ/_§?¤OÓž>*ep‚ˆ @ÙÛ<€°=âû9t" ©L­~<®¨úãÐ5€8³¿ù“ÏòÔ@ÏæägX¯lrCÕ1‘þt`Åh‡ê-ã{àm ÈÇ¥:&w`ñT1s¾p^žEÁ{<1Ps»FM‰GW’säĸÁ5‰Æ\+Ïe+²ÄåpœâèÏDà)}¢­å!Úœ{¡©‰nt\ëtìžÓ­¾a/ÁÜ»OX±zF¨ˆ^g1 šþçœÅ`LÃp$П¸ ãûS¦Ã’³‘›¯Ré ‚ÃpÎÝH¼µTCYd ÞëR7§û!Í:9¼[8åXœFžÇ;eÃRÄÃ/Z"©P*Á@š5•¹o5ÒxaŽ1ñÍmj/¾ª×îODì3ÁUy†n[6ß&ÜÃ)¬Ø‡Ðváþð¢\°§øÀ`ñk—S¬ó"}¨¶F«ôáçÐ?7>i;F €è8S|ÿ6}x]iÖë”~Ù¤‚¹Ïè/2öÑÖøá}úàc˜ñé¯à*tÊ?R–±ÀFh¢67‰õ[¾ñý2}8Uˆéç¶™èôžÄ>y•j6mÓ‡o'álFœŠ7Ð#íÝäïÓÉÞ1¥§ÅüÎÈÍó š€:X ¬:³Ó£óØDÂ2îoN`H•¸ìd†¾±ll’K£QÝ#Ïq¤ÿS”üáúê÷”—8{wÕÍþíÊðnƸ‚2l¶»âʪ1ý›íÕO“wÌ3Prï"àHà&1Û¾”Å‹æ£ À›áõ \û]©£‹P5è¶°‹ð¯) A)EÎ þ9DÏŸÐ(ãU ÑÃ<5§%ÈK ß¿‚JþނИÚ``-ÐÇÑÊõ^Œ‹mÅ-e´¶àÏæí6§¸ãéÕ:~µà„Oqða÷Ú'”ÞUñ0¬ã/AGçœ( J Qg9F{nC3¼ßÐF(={?ÂèÚc9 pçðbïðËœÀŠŽ¦øàü‰²'ÁÖbÔUlÖ6ï^…k,à’Wô>"Œ”Rp>7ý% ìÓÀJåÚØp˜0Å›¿ºs½G¾z‹qR°dÿ÷þ·Ü­ãÐÍöa ŒA!á£ÖoëÝòôö€œ1Ðap;r#9È  ̃³&¸¥$”´~õòlLendstream endobj 264 0 obj << /Filter /FlateDecode /Length 3952 >> stream xœ½[KãÆÎyÎ9ÚÁÀð VL¿N6‡ìÀH{Œ,¼ëƒVÙ¥­E­Ç›_Ÿêên²›ê–´/c#’ÕÝõ®¯ŠÜ_.IK/‰ûþ®ï.ÈåíÅ/ï^†?ë»Ë\]üå[&/)m­”ìòêæÂ/¡—š]jbZ"äåÕÝÅófu¿ p¥…¶²¹^,9Õ­¦y\0ÕZ£MÓ¹›~Ëfx剭mV›¿Oˆl^.–ŽZÑl_$÷ã¯ë°…TÍÞo¡¬²~gíwîV»5i…m^…J4ÃÃD¿ZG^`Ï›í.PÁƒë„(Y°ïÅ=•àQ B`ÏÕ]B´é÷ÈÂ#Ýì·qSVfU4»n½Z–)ÓÜnº/?^ýt.lªsntˬ½_]ƒªÿ°X’V;f±N‰-"#1uÄŠnTikÛR-‹ÔœoÍ3Û³VQc"ñoŽX¤ÔòDÓ„:bÕ*I­¼\RØÐqkzdħ´ÄŽj5áM×0¥˜²42%çòæîk+cƒhû«Ÿä\ )ZÂ(ð.Z!$ò¬{ÒìtÝr*ˆŠ§?Ö¦•–zÅK ®/‹º4-PÚ¸ð¯‹%-I'[&‘Œ—N¶F2Í#u»X .Áys5EœsApfoCï6´’(J›[ ±–Λ Þ¶\X5ÒÁfû2 Üx_4wýýäâýy¥›×ÓÝ;G-á¶m¶7~%l2@ñívèîL·D*Ö¼œhv[Ÿ!,1Í €­Ÿ#B47þDK(È“ð´Þ÷Ûû°?ðÕ‘Ѭö‹’â] [:ÚçEã4b@iTb*7­‹ IßҴɦ͋ÅtZÉÎþ„À˜Sf$Kn 0”¸\2& ÎŒ§ü}±”àÔDêfçÎ ‚#t³ ²A3ø n‰Ä´í.¨Q\5÷éš—éEq7¼X§?§^©3:Pþˆ¦OªO¼ÚŠWA‹™SøùÍÅÕŸŸ7ÏKû¢>~ Jc¶!‡{fjwÅXÃRˆ®¦|Q¸)Õ´èš Ê‘zï÷Šò&ÔÅ›í&üf¬Á*£|]…½ÁÙ7ÛÄÝoã™¶ö]÷Vp {Bjƒë뮋q%¥‹=÷“ -›7a-”ºÇÞ“Iµ U¿‹é¹·»P4}Ì%'Œ{éfØlº0üÅmØjå§Émë.Â%üÜÕ¹¶I4YѼŽ\ÑIÕ »õ6%ú”Çn×%—Ί˜æž€ÅÛ¥ ‹NÎɤ‰p±æz4dÿ§õdßÍ>f3Ù<Œww[Œ°£H²ébR„,ëa^H0fHsàqë˜h]²ÚN)úÁgn¨õðÉ]ÿ¿Õ‚GP[›˜ìš|·}"™ÄMº¡ÅÜ€œ T;2Å@QñH§ÖŸu·®vpé¼Ö=p–Ô¢ûÀMÂSÕìV¾$@Öyìg~êv°Î¦ðÓ)Z5ߤøÕDý] –Ò—G$ðGX“nž@³´*ì#µ˜©µ6."kXejt]6Dë¼~yaa¬wÃÔç¯C8¸„](çWl™G/‹6í ü¹«€¢srÖÕ~nôCQ,Ïöxs‚ƒ Wû)„²]†±ÌëãúoCYÎË3bc¤ÖÊY—¦ïuZÎön`"¦›¿¥+–a'H{ëj‘ëÓ‹û´^]Ÿ¬k¥GËóŠ\ j$͈äù’#‡Êê9²Z>ÝÕ˜(>Pÿ³ W^×ë&½ÿ*½JÜzÅŠô™±Ž;sS¶ý¡ö˜Ã™@?œ¨Žy†CA=;*߈ "ÇyÖWÂÅûc=:dWð?IëN 1€'%ˆ•ÙP1vŒ™¼·éÅà fƒäاޅÌá–Ne¦ÛDž¯áÈr–v'~']$4n(éÌÉ5ç:Ú¯“„·‰|ð å%» Ãâ4Ó¤›„¬ísº@ð ƒh 8òðßíÛ¥ýq’d6eY+*f]L5_ûí#ÌôK”Êš„•ãÆwÚn߯½XŠèP6Ø;cà”Uá»°"f!€NM·îoÞøSŠ µäý®¢]aÙ;¸¼›¯…qŽ œê…©34q²\ZÚRÅÆ©Ž/Š ŠÓdì}Òd휛CÅr#èYmÀÛà&”„ÅØºÏqxŽì­fÜpô«x–„@þ-u3è »é”¬‡I8é÷Ýn´þ*NºÑä2Àæ ªE–6û~¹ ]º{–0?Õ¨·t– HàÔxð3pFð³=;ôñÐ&ƒi÷ì…vS LMЀu1§)ÐÐ>¬3…Q‹çxk×5S† „y“WëY×OEዞ–ëâXš´ŒOcé§®«c­t¦?>ÃsIÃÌ4xìÛ®EFÑHÍ—¿$6nã G¡z±x±€;R)7ýkt»ï‚nìÌÆñç¬breo䢿KÌÃ.½Úþš^=½J¯¾ý>½úrQXC"×ãûŠ8ÄqYmµ¶¾F®Z*Ø ˆ<$}ö0ôÓlÚ·Éœù^ÿ&*”kbÃÂØÁ§ÀÛz5”K8¥¶MÆ´·'ÒØŽ£Ùç)ÆìnVIŽØì‡p¸ë³·ñ·jRÿì&’Urû:Ü–‡ï–8æø&-ôý.Ù&ON1'`ñt¿‰­e¡;ú˜7®‡h•ýì£P[wT8‡˜„Á¨üwš=pÞeqÏu6ʸ€ÂC97ykú‹•ópf%ò5t{w³:Ç/Þ‡ùiÊ ÃHcTO1¾&Ä©È:ìè¬òIb¹Í|^ã³cƒ+ÜGeî0ô·‰M–˜@v¾NËì}XëÊbfì{€ýÙЧÅçÀt.6uë£ŽÄ õ¡*$›š(XûnÒ™Ö&êÈ{q`)í;RêÞ(¤x”}.ˆq¶Ó§=ࣻ±8IEý8Jà|é›t¾óÕh¿ï…H'‘^ëáEL²+ó’Ž~Gø#3øSk2qS1ef#€lÚ±ªÿîDrvB‰±¦ä)aV»f¼±V;ÕÆö¹Š¶®ß†À¹p$;§Û&“nBõ•”xw%§Œºy•–”¡XR@\ÎíhŠ›Úv=‹Ñg z³/=D·lž†vݧi‚Ã|! Ó~ÃAµ½!’¸º¶ëV“O¾ Or¥mBbÝ|à×ct^€J«Ð¢q#jýJä pCåUk!í‡!îô¢Ö5uÙ×®÷¨Ng-³–GkR}ØY!«Î ‹ƒC8þ}‡yÞR%©³íoÒæ§OsÖ3éó&g3}<›I=]üP}RädÇ&ãDú£6u´jß|r=މY~jfíŒÓ—UæÞ®cœ½«ø>zù" ööáÆ±Y?h"#ý“˜•æíd1]"کﳂ×È»Íg'ä ¨§Qìr½Y CºéÏÒ½bvÎO.1ÇÂªÕŒŽ…¬&‡n¶?¥o(GzìÏÒaÉzóz^*‹|"i¼ ïj¿ëKY±G Ðc‹3¦|õÆ©¨hpÂG5%nð˜½t½ŒŸ8½ $2†óãÏÐà•ž§Sì´CϪZ#èü5â©æ]¸küºhTéíÆ)Uh¬EÅ¢#<$ëÓoê²–?| qÐò …ÐÝã <áðŬð»0BŠɤûÂŽ¾Û€XyØñɱiÎ?pÓã¬u•Ææ4¨ãÞJ<")p|„¢º>jÖ„%ÍÃຠDç,L—û`_¦y«¹š göé,Ä0E"†À¾NJ¢*éGp7-‡v|³a?'ù§Ú|' é::i£ƒÿºV”™B gÕ–8ÂÖ½>Á•Ó|{>ºáÚ REqÁDõ‰n¢@"×[ãQã[0o‰,ËCÓÖE ÒKüÈo©’Rä}i Ð/ÀïÀ RÄXQ²·å—øÌŽŽ{Ÿ'§ÇôêEŒù,Ã@P#‹#Ê–K?RƒÈÃïÔ–Ü–Z1K)SÛæ‡ôá;›øßè?Fðaá~ _qé –_ð²s_ð¿Cùj>/ùƒÞ÷µPÎex0˜4CIÏ]ðH©©ú`â©§Dø¼*öÑâÁ2ÍAôÓ©Ù¨CÆ'‹q\õãaºÏ± m%´j—Kü|½Ë‹=o¹øÞ;ÙÛȫ܇LÂÉåʬ ?²›…[ö¥‡‚J.ϔҞj§¼Ù>Û8½À‰¥‚¾@U‰²½ d0‚ß’¹m=‹ü‹™Pz¶ÓtÁªd’ÎD3áxuäÌL^[•KWŸ0Qã­0ËVŠh6VåÏNfã³Óëúf³Ó74ËœWÞ¤egksn™ÊÙÙq–cÓó,h«ê²¶FWdŽ ?Và‘ŠëS‘™àÑ‚ò--x¦WÕƒžÎ-“÷Å  úø3ÉÏ{’™ÄVÙŒŸˆÍÝòwHz²`vº9bóÑ‚lJì<iU;¦Ê¯˜Û:¦N^=s •Ür$ «Êˆ¶¢%±è±ò'ýïo¸zn’Õ­åLxo:1exîãÍ{[ÕNµ”©?™µ=ÇŸUI«'ŽÉFj\ ÇRÑe¸zÔ‹Ÿ± §Ò˜+ŽžgÅù 5“R'Î3œ©>ÑU>¹¨=:m8þ WWQ£Ô“L†£“áhÅp9b¬š§Ž^r® PO϶ÊÀ™éƈÚ”Y,•hCù»_CÔõØÐœÎšõX¯[ª^lµ~K”R?þLiy5a gv€LÍ©> 9ëXÏT¥UÇD§Rð’Ùùo‰·êáZg…ÏYöZ2s\c€Uů{”­Ã¡ùÿ9<0ªMJ—­?‘U²ÙèÓ1Z/Áõ‹zøú>;φ9‚¯Vëò ¦uÿQb J1F[?3ånbúåÕÅàßÿ«Æö+endstream endobj 265 0 obj << /Filter /FlateDecode /Length 54939 >> stream xœ¬½K¯eÉ‘9¿Ð=hÙ(^í÷c  Zè‰T hP¥A6™deu^&•LU•ôëåöÚ{›­uýD AEÆåösöq7û–»™¹ûû<¼ŸùþŸ¿ÿ4|þÓ§ÿöiÔ¿~öÿøýûç¿ýþÓ¿ýÏÓúyßÎu>ÿÇOÖdü¼OŸ÷áx–õó÷ïŸþþË÷ÿøÝÐþµ/û¹~ùé¯ßýn^··a˜¿üôÛ¿þðÛOÿüÝ´··/?Æÿ¶|ùáç?ýòëO¿yÓóüò.ÿÛÚþ·íËûßMÛÛyNç—ÿá]Ï/ÑG·s;¿üúËw¿›ùŽýËî?ÿwý¯ç0Žã—ßÿŸ7}ùõ‡?ßýßýîúï½ßÇßDÿüÃoò÷¥½ÁøüøŸþ·õã—¿þô§??¾î§ÿýùÝíûÚO–ãËo?Ç/ØÆ/üõ—wÿäcþòC|ùñ寿ýúÃOúGm4·ßôÛùõ_¾Ó_x_~øõ÷‡ÿ×ïÿã§qy[–uÿüýÿóéûÿãï¿üâÿ»ôâ¿þôçëjß0NÒ‘_~ù£ü÷¹}ñÞFa¿-ûúå_ñ—Ö§2N[{â÷¿ýøo¼l_~zÿËõ™­ëulÎ/6¬Ë¶~ùñýGûÁ[ôßÞ¾ûÝ2Ú©ß?:U £½ÆÏ?þðèWÿγÂ/ñÊÖ?úüþåçŸþúÛý/*ý]Û—ÿ·ý€öjÛ±|ùñ·ßt¬¤…ØÿNž¿<†êç_~ýñ¯÷wúGÛÿöc¼×ñå§çX?Û›É-ç´µ±ŽWlÖñ|æ‡ßÿø7ßɸÉ`ý5ÆG½E¬t:å;Öô³ôÏ‹ïuŒä'.sŒ‘½ë77‹úïwƒßþŸ³}ù^û×ÚÞ|'ÍÝœÌ+þû³“½Õq~ùãs\öûß~úåñÏ¿i-–ö¯qj£%ݶ6ýÉumýùÛo?=žÿ“vICþþDþtÈHøµs~0SœŽcÙÅmïü»ç?þÍó?=ÿñnÿ°QøË¯ÏýòÏÏý›x¤@Ûþ¶­ó¯#¿q>U2ÚO±^nBñ=¹ü§§‡þúã=xÍ㨶UýþûlDöÝkúîßÍÛù6MËçßMÍð†öúÿçw¿[GñŠ]œóþ¥?û?æ}iôµÌç°*&äã±ÍÛ—øòlôëóü°{þãoü¦ý‡Ç^€ ýã/¾Ù/Ïüó‡#ÿß=þ%]úï¿ÿôŸd®1óÛ¾^š—½Ëçq_Ï·}ü<61y;ÇÏ¿þøù¿|þó§åíØ×áøü/mâÑœõó?µ©Êø4NÍ?§íórìãÛ¶~ÿ4µYÀÛ¶|^‡­uÃþùçO“§Öö—íóz,“|‰=•ÿöÞ^m;šo¶¿´‘O}ªþíÞA?k›ÛjÛš™Ì“|ã~oÓñyÝ÷õmõ§Êß>z/xûòéú^Û|¼-íoÓ=Áž‚þªíä)–}>Ïë±½-ûçIÙ±|žèÅôæŠ  ûÛÑf3‡xK›a ç°m¦¹ŒÛÖ^àw×»þ·išÞÖöéK{íYêýÓ—¿ûþŸÌR>0€£uJ{íeÚZëE~öÚø¶­Ÿ—uÛÞöÕº°ùòÛØžZÛ7úÔ´s{§ö™‘Yw½úuÓh¿nÙ†£cûQDZ/H×úÿ2¶Î]÷¹}øþ6“ý¶éúmãÚÔg;ÛOoï7MjTMe öfnóaƒ7Om@Û‡ìíÓøCã<´±n°'_þ†ýÜÇÅ~Ã8­Ç1Êoh³A™Í?þ‹ÿoc›Ï4„}–¾[w¡ÿyÿˆÖƒoã,¶µ¿µfâ?K›ù‰}§Ø¹ùuo›X¶›éSí{Ž·Cicº^&ù•¤›Yrci¿fTïZæIÌAümä#Öuh/Öž9Ä ÖåÜÄ@ä/s³þ¹ýe:ÅóþôŸþöSûs³×³=8ï­é©–?ž5š¦ˆ«¯¢:dþaëü&_:/ÖuÓÐ~û±Ë‹-Ò©?óW-ßçŸÕš´Ñ]çñú°üªì5Æ&|oËl­Öóþ°öFë!MÇæ•†¨ç«²×ÀïÓÏOÁIû¬©ùìnŸ•_•½Æx 7iµ¾=~dûWûßÛ—nbNòYGsíŸ)û‘؇åÝý³Æ¦ûþëò«ÙOÂw÷Ù|±h¦A^ð~6ùIãÙ¸ÐlnãýbͰù q3×ô«É/ÂW÷×:wmÙTám1kÍ¿šý"|uÿ°µ™bû°ñБ‡_Í~RsÓÖuÒh1Çò߸˺Q~Á)ï-/Ö^õhŸ¾Ê|˺‡¶vDøä®ûÉÔ…¬°#üGîí…ÚûNãáB_úõv„Xµ6sns³öJ½Ò‡¤Ƴux|“i|³¢)ö"¿ aÐX‘ºuôC ¢Mf袞Ö_¹Y÷`?„åÚaãÞÔhÑߘ»uöƒ¿YSìU »M„&µý†™Î4³ØÞFJ4”Úþfí'TÆ&³‹½YÖÙc›ŸËda§QfH7u:„z¯B:{5œrЙÝÔ~Ò´Ó€°ÎÆ^õ[fý°±ýçn>™Æƒõ5öC8e{P~ã¾ú|©Œëkè{¯£ýTù„Ýü(ëê±M Þ¶CZ­6Ì~Úo;|¾Ÿ†ƒu6öjxø¤ï; ŽWóð4 ¬³±[íÍdr2kI@O ¶MÂd¥°Ê;‹EQ.Ýêo6­o‡öÎIßë貑Ãn \ŒúbÒ§uY]2rØ«>–Ç £Ñ–"»ñµŽ.¹ñhß×ôwrÏÇ‹ S[¨J×6xšõçÑe#‡C’´ØˆÚXæÑe#½ê/ÖV“LŽöÍä­.8ìU1Ѭöç¡IÅjZ™—vk°gjÓ{íŸÉp—öªeëÒYF¥MxF]6rã±NbÌ«Ì;ÎÇŒ uÙ¦]Û~“, .8!÷¤ÑDui–­|ÛXpºJ¬Eq­:B¡»›õl[9ù³¡#ÀŠ)§=7Ûh½ƒ¡0#À *:¥Ú(ì†ël(Ìp„b;;¤lJ …Ž¿Ø¢“¿U>a;Ô,²¡0#6«ÚåÅšõÝS•æq­«Ä,ÚNfüÉP˜àÅŒ`Óß>7ïµõV6f8B1!8DL[_O2 ï`(Ì p„b–¾hÿLm¶™]dKaV#ä½ßzCÞwh¶8.Ød(Ìp„bz±J¿¶ÕµIx¶f0<þVÓf6ÑøtšMd+aÐ&›NÏqÛ‡P¶µ°¬Ê–69lW ¥5o>-Å<¾ŒuÌyvé½6j«,2ÞÁâ˜9áXǤg“~ÑQ;m¹•MŽÙŽu`Ð÷e|Ö“lŽÙvÌzVµžÖ ±xË6Gì ‡ÛDzu‡ZXSÕÉbrÌœp¸cÕzAúz‘Î{¶8bM8:þN­#fùÙmí²Á1c%xzHïÓsá ƒ:Êx³|ƒ#ƄӰS#S2Õõ©k68fL8Ð1Û´3dÈñ$ƒcÆ„±ÉÌkÖUö;3&ꘈm ’жÍwŠÁ1k*cí¯Õ:C‡¤ÑNqŸ­Y޵c{G]¶Om›ñL­+V‰u(¿8êXÇìðÐׇQ„뽚.3Mkû¬ý8å=—öûÅþÞ«ù2Ólü¡)ÔøŽãÐ`èr{fµNyÀ`Ó¢mŽhwvbêh†±ôа§Z‹e¹‹;0SG3tkc"Sø¶Þ±¾?ÕÄuY|ꌸ­FSŠÁfkçìAÍâXÌiÐc)sÊX´n¥ ÞÁ±˜× F$lU ‹=m6Ξż­0&öà°LUzÏb^ƒvè6ÖÐ9ÈOhhn”‹9 šaÌ+&ˆö_LÜŠc¡Ó  ƪh‘^i¦²KÀ;8s4Bÿ‰íŸê"’EÖÕmq,æ4ãÞóxtCLQFõ±=?Ù +ûs4ÃXdí2ßÖ/f[e%ÇbNƒf³”Acsû0Æ<‹y aLRTNW-ϰ™kö,æ5h„1KÞfñˆ].ïàYÌkÐ #t¸„=M³E“c1§#ŒEÖbÁ·Æ§Í¼(ûó4Cÿ‘Rå%¯+½¢#™ýŠù ZaÌQ<ÙÆÍà ٯ˜Û ÆŠM›¨±,6È®ÅÜÍÐ>lk::‹#É›e×"nÓ¦+:oYdVû€þ¡ïÕŒsñj/ÑœiìŸÖ?T’EÇäi’ŸÖV§EqRæ€hѱ˜Ô4•Ûè‹Éä¤ÌÑ¢c9y¼©%^qîì£ÌÑ¢ï¤ðêsI_8d/eˆ&]V“R3gs§ä¤ÌÁ¢#ÖjæÔLR¤ð½ú(ñ?´çXK®6]n¼X2û(ó?´gÿ‰ÓlƒÔ L#­ÕG™¢=GØvV§Á§ÁÅI™¢ÆÊt×â·s?¬ ´:)s@4CwÉ}•÷X$赫Y'%ØtIÿµ¦¬÷¦/Ù q·šÙê¢è~hÎLž-oÜD~´9pvQæ~hÎ1 $ú£?Ъ°Š‹2÷C{ŽUî¡Õ Óë¬ì¢ÌýÀžc»˜¯^W=”yô½ÆÔXG u%Þ‡æÁéU#©c{]/ÊÊüÍ9¹›C`±ikõQæhÎþ#Û÷ObÓRìi?2û(ó?4gû™Í¹t˜–m—aý˜¬L«~U?ˆ¢T“ްù"ËàUªÓ¼ª<;×2¾‹Ùùé1øäïÌ›Á9î MàÌSDw²Ã3gFïˆe|38ù=b®>;LÏœ¼#Vñ»úlE–Å݉/£sÄ2~“¯ÒÈÇn³¿3_Fçˆe¼nh¿±ÙËø‡¿3oFçˆeüª¥W\õxæÍhϱŽo$;D¤(;×¹ŸÿÆìóÌŸÑ?"Â0›]¯ZÙÿ>ÏüýÃ¥mÜ4A»ÈΓ¶ePÛ_·Á³ LìŠD¼Â3_m¾å5ƒ è¯8% ¡#wzVø p7ýM‹ÚÔ*|ÞšùÁØ€î¡Ý6Ò ûŒ2¿ÌÆô~l½Ñ¤Õse~06 ƒÜÁ}3ðbÆÂôï³65]ë!ËW€0:Œ[›—©Y7Ämö"5b7>#Èax‹PÊn†|1Îat@»C)úçe‹h]"ú[„RŽ7/üòµi&Ã:HDR[Em³M¬+BÀA"¢Ÿ¡¿Ñæu… Œè!>’§—šØî™‚†tˆ¤ìžº?­¸¢âƒ¡Ý#æÁƒñrFUjÆaz‡÷—Õšègi´¨òƒ±½#rZ¶¥bjÝh¡§ÂÆôŽËX}›àyõgæcºÇ–™åG‰¶n—yðƒ±ÜÃ>k5¯Z´hΖ £ì=V©ý’<,°4Ê¥+AöÀAúZDy³ôkÒYðÁЀ¾QžÉœr‰QÁc:› ¯$ÔsV+˜ÄDÄØeo©²(qu·ˆéoY¥ÂRŠ™EŒ3èm0:kD ‹gÐÙ"^$£Óz'vF1Ì ³Ý‰;Ý#>‹Æ?PÄ0ƒž#­ i>3úÚ¡ ˆa=íŽé´a‰ÑEŒ3èiÞ_M¶d+³t- ‹gÐÕ" ¨Ú×\dˆ­P™EŒ3èj€Ò ¯æ<þ”PÄ0ƒ®ñ§Ñ~üìéÉŠ"‚ô4O›Ï£=gáÍ‚"†™Q=l5z/%½)ü*ûmŸñ'1΀«E0ë”erà4»È(b˜AW‹`Ö$e"‹tñiáåŒ"†t¶fB¦æ6‹í·«(bœ)Α¬ÓÔ¹©oNbA_‹Ùþ`³,ÙÕm‘× "FôµˆdÍÈ^$/maÜL"FtµfºùJœf8"Óù  ºZD³| rnQœaÄ@ƒ¾vG³&ùñR¶E4ë#ô5ï²a6o½`[ ŒhÐÙîÄé$b#)"ë³ #t¶ˆŽéÎ$õ ë²Ä"Æôµ+6&Ý5Y¦³‚ˆQÍhÑThsÓ‹þ§Ý ÖöŸ¶Mõ¼ú™3¬ýÞy|Î7 Õ±ÆuQ…jÒNÇöžš²Ú¯­¹™j„Xè·±Ѫ4ócX¦#úmDì&˺ϳ;x¡#øíÏ•¥â{GëVù¨ÉsÖ•iŒWè¶îFVê𘉦1^¡«Ý‰f‰i·5ËiæÑ­ÐÑb 2XvU¼Î·ì=‰Æp…Ž¡¿ÑVÓn;¿Ò®ÐË`Óbû=ÏX2¤1^¡›y×ÛƒykaãÕ¸Ú+è´øvÆkC˜M*2Ñ®Àic)3¸M‘îÉDc´B§âd³éô¨k!¡úìþÕ×VßúWˆÆ€…>Ë™AfZ“¹ùvª5F,tÚ!ºÿM«•·Tª1b¡×Fq´ É<[Ô¯R ½6Bˆšñ]ÇåðTT¡#úm,gs“5Â~™j„Xàµ@mýÚϼ»@«x­{äf—˦©­dEÂVÙxnqwœdT¯ul/±,fxƒZkÁ#CzmdùµÖZ+}üX‡'úÐkcY4È(ª¥øF‰ŒGÆ>tÛlŽ–¿ŸbçRá#úmÎñÏm µŽ¤"’áýÖ»_NlXL´¬B¯ ’௙è,ã â4=‚;ƒoq’(‚Å•" þ%Ål´Ã¢X?!’á aRfY§Ì&MˆdüCä’ñôß•‘ŒH€Xe6/’ò_SÜÌHÆ? @‰’Ž‘m(ˆdøCD˜tp ޱÈʈdøCϽ lé|7‘ÉðW=7–X£'G Ye>ú¡ßFŒt´”иGmj&$Ð6–Xƒí ;õ|·w $£:­÷üâ™}“v%$£:mTE,¶B—3¡Œ‡™ŒàµQ1ÚÔoò¬QE$úmÄ[Õg[ç{J¥"’áÝö®Š8WsÀiyVE8"þÐmíÍ–&eúfòã ˆ‘Œ­•›N3ß´ób²ààqT—Ɉ ˆîh%'íÁø‰’Œ€à6›lM=u”)Ɉ¸‹,$ï;¶™ó±<‹,œ’Œ€XµMֹˉLIB@ÄÀÀBSlÊdD ¸—·!Õ§ bMó°Ùñ{Rêg³œUĬç´R·k=YˆËhŠ$¸ë?ä”U­*»ê?ÄEš"¢üÃ'€Óß%â2œ""¬t=Ü]xËpЏK?t6#ŽÊqM‘1áÑÚÔC¬X¿—Ñe$‹³îB¹ÎU|—À aåQÏk•ò9Édà2˜""¬<ˆýµÛì ÕÂ[ÆR@T‘ìâuÍqWß^xËXŠpºnm}mžÂ[ÆÒ†•Ó ¥Ç³âr›=O;Å!b™·Œ¥H“;F-ÝFÅ“‰· ¥ˆ“˜=úYÓàØ)´e$EÜ)ƒzîQýL[FR@T¤xÐE$Õ+RmJ¢­òzˆ™¶Œ¤wðÕÎY†Ñ VhËHŠˆÔá>±¾Ù‚2Ö!Ajµ×u8¦(•yÀ–¡)Qj%‘Z”A¿à–±1QêÁ¦¹ÃyÕ•Þ¼e,ED¡Ì¢gøNkì—yËXŠ pÿ–EÊf]m.YxËXŠ ˆ· Hl)°e$Eÿx·wsìÙŽwÊ´e$EÄÌé4+Ÿ=^‘aË@Šþ—Ü«Ì6[ýH†-)ú¿w}û§.‡çÁb¶ ¤í›}ýÌýÉ9q£Íâ­0»–QIrGÎõ%†¨ÕϤe’8%Nõßµý Gá<Ù½õíA:'+$‰|üaùkù—©ÍˆŒ$¹ë€6+{ÜÖ(z@›AAøÉJ0ÌoÞÚÈȑ–¶¦8 C›¹pä®Òã´§Åv«Vd3G¼ç§ÍÖu“Ÿ¸]ˆÍhŒ‰ün¾‡ÜTb3I"?Ù~ 9tÆbNØ ÆH’˜fÓׇ`3Jî‚"­äh ¶ÕU&6Ã1’Ä)±û†î+°VÍpŒ$‰€þj¯»zN2!›ñIrGóeÃÎqžW4?1›ñH‡êÛŸ7«©HÈf<ç¿+“NÝŽg›–*±Ñù½çÛw©M7²½û…Ø@ãq‘c†4¿='8ò ƒ»Ëä§¶%b3#F"-`9‹sºêŠÄ&8FŒ8%v…FóÞÅ<Ù ÇH’(6ØÌõ¾++6HÈf<”Ä yðJ•Åv5d3#I"10Û74ÃŒÍ ٌLj’˜Åº¢“¼ªïÈÌ#G"+ ëKEÂ>E­ÔÙÇÈïùa±Àøû:›á19ÝÜG+®È&8.‰ŒÀ$'\µžŠ*ÿÂkÆb¤HÔ,F¡ar£/¼&,ŠÄòxГ·äôMû× ÅˆGÄ:™9ËDH»àš¡1¹…U‘*ú¹Ì׌ÆH’GrA®>i¦¾Enálcäˆu˜œ&‹Õ& – ›æEãŒmwxÎë$QJ¡Sl_›gú´#Gr-˜l}Ø×¨»ñÏÐñ†:™þ îã|Úõ72Ï=—ž}k`ð[2ÿÛ‘I‘ô°{‚䶪ŒŒÆvDR¤=ÍrÍí5,Ï]øÏØŽXŠÂŒÅrô0Gå?a;r)íƒ:ê9G8㟱±YYPìøi² ÿ íH¦(Ì8Ô*½ÄÐæ„ ÿŒîH&çN[P¨)Ê@~¯ÀèdŠŒÇdÛ ›Y ' ƒ;‚)»¸ •'œ²Ý‘J‘í° ÌѺÈ" EÝKQßan™- @ðŽ$‰dÇi*ç‡%d `|”x× ²ÝÆí " ïÈ’Hœ¬:÷~–†w„IdNôHöE*¿=~Ÿ$€ñaëv¹€·1`·“V‹0º#J"o²X8W¾Óªè³0¼#Jœ»^³%;Õ?¿ÿ Ü$öV³³z‹¸z?ÏhôLÀh”S»Ð²¬…ÿŒí¥(;Ñ“Ú QHœøÏØŽLòA4ûPšXýiá?c;@)r0“ìõ},Ž þÛJð*8¥àŸ¡¡95?5úÙs0Oü3´#–¢èd×s|óš“DFv¤’#g[5y7{]f?!;2)ò/ƒî‡’n6/ÉðgdG&Eúe·]ÓÇ1gú3¸#“îôË&÷6Sl#ÍÀàLò¦Ü )óÉaŽæf%ü[ëi[t’9g¥RärV÷?¥Š S ¤R$s;ÿ£-¨ã¤&D)K1ÇÜ-¾ßþÓÊÔ‹š0¥@0EbHmjx~šV¦ˆ¦˜dÚù¢² ö°cV&€&ÇΦGc4¤xÁnV¦¦È ©æé¸­6ÅÌj”ÉäØY­€¶ý ¿rèÖ&@%WŽ6¦6Ý[š÷ÙÁ¶YL˜Rá"Ê1x Ê |ª˜0¡@ÄEêkò[¥£ -‹  $œãKN€YìY;ZuöÜ"wÃæÂq‘G[Ä©Ûwè5ëï LLvr5ñƒÄZwØFÈ"MLwr>”£&÷õ;ìÖµ¢MLxs‘MÛíGµo=®nqbƒ˜»’ivõ¼ÕÌeb²ƒŒs€éfžÆ¦ˆ£eBÕAÂEm´17yebªƒ„‹Dš‰¢{¿$%)¨NÅ›³«á¹Ç휀¢KLso‘‘SVvÅ I—˜æ ß"#·‹/:S¶²ª$KLsp>ˆ£ßÚ '5ZÈ$É“\Ì|ýòùö“lµ]d‰I ÎGqôúõyñ‚•¢JLtq>”©ÖÞ°ûî‹01Ñi­tàïáŽ,Ÿí«>¶ÓÏ?+ÂÄT€I¾Ållß®$ßS˜ˆè á"ɧÅ­bìvE&¢:¸»N˰jOUa"ªƒx‹Ì`…íÏ~$[&&:@·’à“íûf÷Y—˜è à\†&•–u}U[…‰‰.R|£² ®ík*ÂÄD˜ÑŽý¦®*LLtqnù§Õ¯‹åÛÝ«E˜˜è è"Í·k ï°!|abªƒ ‹Â¯CÆXsŽ4ß%LLtrN°UÏF³u¹Í£“01ÙAÊÅ4Z:Wóñº¯,MLvr‘ãÛle¾N ¨Ò„ʃ‹yt¼×j×kUubʃ‹|ájÚÐ&¸~wEV'¦<¹Hnfè†{LêÄ” ç†êa‘ O³•Oqbƒs‚íº`Rÿ³RŒ"NDxrnör[Éj"oç-qbƒœ³›-°PTXx¨ˆžqÚOwÚ1…t{3½,ÔIœˆð 4ˆVé×ìÝo™¤HRŸR‰¦ŽËfꚑ̜ˆ“¯“‹Ò1Chº]Ì»]ÑÚ,Ðî–+ZÇ„ ¡é†1éêú¶Å<‹S2dfd3ÏË+ýFˤvDɘw.Sµ`b§BV;¦d™‘É<íöëÙ¶ŸV¥c*ÄŒi¹GO÷ÕÍ«1$f„‡K.îÛJBÇD ‰sóC‹6E,ÜQ„މ23ò™»ÞA <ô Œ³Ð1CfF>Óy‡|— d:¦c€LI/ å`kÅaV:&c€LÉa“¯Ò¯´ÕhQ:¦bˆÌHgnVL"7²X63 “1D¦¤\²»›M61OJÇT ‰©ÑÅF­}©%OŠÒ1CbFnÔÎp!<üÜÒ¤tDÆr°Ý®`–‹«ý~§,uLÇr0_Ë/ðݬuLÈr0ÙOm,r~e©c2Œ»“£ŠÈ5n/âÄ”!çZ$% ¨Ã0(êÄ”AÙQ»çÃ-F”Õ‰)’·r´ éåRÎÙ²£Y˜ò ébrî4·â¡"MLws‘=5*¨ZŽ`qmbʃ˜‹ÜèaV,Þ3Enô¡N <À8ؾ\ÿvÊh'"<È8ÄÖËf:ƒÕ¸mbºƒŒ‹Ñ`üZ¶ogmbºƒó1\Üùv¯ä«ÚÄt)éQ½Át‘#am…[´‰éR.ò£«.ëŽu÷ GÑ&"<¹ˆéôæ}£$âÞ«8áAÆ9¿ÌºÕx,õ‰é".ò£úL²ûɳ61ÝAÆùÄüôAºVEY›˜îÔÙüjµ6ÙŠãѾ¬MLw˜ÃÖ¡uôÓ¸›èŸ—ãw ãT½3·“îŒOö}¿Y蘊!0#ä¤0Ò}ã~òVV:¦b̘˜Ÿ6ýØG¥#*†Èt®“y;yuGV:¢bÌ;s«=‹ V…މòÒGRbóB»9Ž“,BÇD ˜é@lfj_:Ç.Ö¬sLÚîGçbɃFW f™c†Ðt î«Eà¼Vä¡qL¿—‘¶ÕK{ÕalY4Žéâ2Ò¶zË!»õýúª$qDÁ–mÒ³w÷[yT•c´ô1lc<ë—ÆùpY昄!.#gëGïILÜj ³Ì1 \úN>H×Ü·¨S0Àe$mW³Êæ?¢È"Ç qY[»ˆE³¼lÊ"Ç y[OåY9û;¨Ó0$\dn5!.#iWÒd™c†|‹Ìíj¯±¾*sLÃpwâV' Ëâ'5ib²ƒˆs|mV:»ˆyجCOG§8ñ.ËÓ.$eÌÈuSc{)jð³¾1ùBZFþw×D±ø×Qf‰cò…¸ŒüïljµŒ^`P$ŽéÎÇr°’³Èí(«¢qLÀp1%?Œí;,ž5Žèð-ÀÞ=Q½]%Žé.r¶³‰Ì¼¼yÊ6)SœÓK('gÊK*u¶ÐPR&¦:ˆ8ÉÁnñ#³«21ÕAÄ9¾¿.öŒ­xE™˜ê ã|$G½­ÀúÃBåY™˜ì ä|00WÊÒÄtQç[|b;Ç‘Yšˆì é"6dG¬ £¬ø!K“ ]¤mÛűl:)ÊÄTIiÛÃvTÉUl~0òS™ˆê èbJ~ÚÊüšèeáAÊEph°òºùˆkê“81áAÈEÂÖ'³+m'"<ˆ8Ç—2Ý`µy¤¶ˆSD\ÌÈO3¹e÷ÄBQ'&=ȸˆÙ–P œú”<Ë“¤œã ×à¶7›]?Š<1éI3ù;ck«9&ݶmbºƒÀôIù¬·3­ë÷å.v„âº-³o»cÓôÌHÿ–£Ÿý*ø¢sL×hš´Üb˜‡¸#,ëÓ0䥛E³±ÝMÏŽöÉ:GD iÙß]÷}ÜY蘈-#ýkÇÑrN®§Ÿ:Ç4 ié(´:ãÆ¹ÈÏc¸tr2޹²_c“TŽ)âÒÇqÒÄ©Þ1púÅ?I嘂.cNÞþw{ ;1K“/¤¥£•´ÛotAËÇô €©ßÝj§ýªÊ|JÓ/à¥ÃðÐyû*§šVO–%Žèò2²¿ºžXôpaËþ&‰cò…¸Œìïn‚6¬é"qLÀ—>Œâœ‹½˜Å†ŠÈ1 C\Fö×›J´–gc"†ÄŒì¯í¢=¦ë‚ú,tLÆri²Ñäü}?~5K“1¤œLBw“õYï—¤ŽÉP.BMã›Çzü,tLÄr‘´µ &‡mHybÒ˜s-²ÒÁUf¥JéªNLys>”íhÔ<ÆåáI˜ò ç">4Ø .Íæ›Îeubʃœ‹”íø6šßÛÌ©ˆ“$]¤l7[#6­ö)]–'"=º;g«Å˓Ϫ<1íÒ¹Mj,zOŠGˆ²<éAÒEÎv¶ê<{^-Ë“D]ć&¿`õào‘'"=H:§Ø¶ZžEŽù²|ßSž˜ô ç|Ûkéû·Žö›²<éAÌEÖvµâ”)ËêD¤!A"=9¹ÁÉÁ/êĤç£ØVçb_±Ùÿ$OLzqÎ/!¯Ö@VjUå‰IB·q *Œ^Ú\ä‰IOÍßyÛ]}mŒk4‹:1åA`: W½øv]-'4ó,tLĘîGm¦ ö4þbY蘈UbFØkõä ;1ËÓ0$f$€]Ö~”a•9"aHLÇaò ÄâKå"sLÙ19?-Ò2Å ^E瘈3#Ú4RÚX@³è1d¦ãâ9 É?¬ “1d¦óðìWŽqîV‘:¦cÍÈ;±®ËZÇ„ 1çÒ6k­÷:l§Õne­c:†”s‚>JÓáûûŠÖ1!CÊùPN^«å*vLÈs‘¼õ̳¦hj”ä‰IbÎÅhR«X—yŽ˜y–'&=È9ÈI·÷Èk,×E u"ʃ”s„y7žGÜPÔ‰)b.f懭†'O¤TubÒ˜‹Ì­ ¶Œ]I˜ô è¹ÛöW¹Ï/|ª“äœCl±{âYv•c‘'&=ºÈÝNvnˆt…²<éAÎùHŽ»ílí©Û¤NLysÎ0;9LXÙZÄ •!éÛÅêeÊl3ó¬NLyr‘¿U Xä.·¸:ù©NLz€qί]÷Û¯rH½mß-êÄ” ç£Ø^KÓè§×q"ƒŒ‹8Ñà;…ü¢*NLxq15ßm’=~NI'&ÿ;&dȹÈáÚé-r‘½¥ØŠ>íAιɉ·Š,¯¬úÄ´Aç#éÛøÅ,ŒaIž˜ôæ"Ld™åú>ƬNLzs>’Íœuª,E>¶U ˓Ĝ3Ì//:&?¬ÈÓäÜ¢ïgì,úD´0ç ÛÔxVÙck¿"OLzs‘ÂÝ#O3ybÚƒœ‹@ÑdA qŒÃu²>1íÎE׉>ÞaEž˜öç"‰»Û_‡-rñIž˜ô æ"‰»)žd M$‹<íAÊ9ÂÎÍbãéóâOL{s>’z)†¤Ïγ<1éAÎ9Ãv?,MrBv4n–'¦=È9ÉÉlàâBó¢OL|ê¤þbs ùó޺Τ„¦ñTÞ¯ë:xè\v„µ&m~~ú,dÆ^©9aCÁ.·ÍØæÏ¬vLÊ›v’«tÖaÜ<óZÄŽ(R3¦ç‡E-íP«wP;¦dHÍÈûŽæH‚TµcJÔŒŒ°^‘±HåŠÝ¿XÄŽ)RÓGr”£±×ùZh±cB†ØŒŒ°^ê¾Èus¾.‰Q2„f$„O¿ýð’Û¢vLÉš>’ÍF4©:¬qêRV;¦dH͈;yN[²˜~t\R;&e€Í;#,#.Çó{Ü)«‘2¤¦‹Ûl{­%g§y¹cR†Øt$®6LrH¶ÍϳÚ1%ClFÜiÐYÖ1Y½Š2„¦Q rv3°8û2‰2df¤„W5Í]"ÚVŸ”ÅŽ)23rÂzãÃÃ%‹Ú1)CÌEèiÒÛ‡†ØŸWåŽI‚.Ò£kÈÁó$wLÊt1ÉëºsŠÍ¼Y!è"“«WÃ,»Ýfø ÅÔIçÛ4[µ ¼ìB­¢PL}uޱE ³È¬Ò&=E¡ˆúé|(Û‹kñª\2bÑ¢§>1ñAÐ9ÄÓ´¦`"vžЉ‚.¹›9¯\Ö`‡%e"⃜»¹²\Ù¯ö¯ÅÄAç;´^®Ù¨‹n(&>ºÈäÚ¦&ñðÉ3¹I ˜ü éœbrbÚhÇúΧ,QL~u1EßeÚ­?ÞÖZY¡˜ú ê"™{êòZ¼ÆÎ‘ÏEÄI©Ü]Ÿ“‘\®c˜ÅÔIç#ÙztQfm`+ ÅÔIÉÜÙdldÏ ÅÔ@¹ÜÓŽ}”ûJL’@1õAÎù8ÎV2$†~Ÿ#ÿP(&?uZ§rµÒE{?Î{KÅä¡i¿Rn$UØ~¥Å©å"¹G޽´{BpÊÐŒ¼°Ý8³[\µšõŽiBÓ‘ØúcÑ;F?¾èÓ2à¦3q×Ï_|ïfÑ:&d͈=¦ôÓäeÁEì˜!4#/lZ°qïd;&dHM—¶Yo[eí>/bÇ„ ¨ya+ê×°rø¢uDÈšÄf¦§•;ØqYë˜!2c~~jBIKñm¥•ÅŽ 2Óy¸«‹¶;â,vLÉšw^XÒ÷»\~Dbø¡vLÉšNDËB7׌+¬ŠÚ1)Cj:%Ç7ÛPž¾«7É“2 ¦åd‡ô­ë켪¢vLÉ›ŽÄæÄ§¿×îSô§Ø1!CjFnX»¥}ÖâµEY옒!4#5lSù}÷C¡ªÚ1%CÎ9ÃDGëuYDV;¦dȹ˜¡Ÿ*\wµ#R†¨‹ìðîå9³ŸXäŽi¢Î1Ö|BŒ`߯뺳D1ùAÔ9Æ,GÞ û¡‹D1ùAÔ9ÇV«ëÀú =K“d椻ԖsۼϊDùØ9È<@¾Ë©bʱ‡@1ñAÐE¸h°µ¢ß‘Õ‰)R.’¹ZÆß^dŽÓG³:1åAÊù ZQ.¸²kž‹8áAÆE.W·¼-ZWc©Ü¤MLxq,šõ) ¨ÆéOqbʃˆs~ëÅœÉO¦OêÄ”çüZ-!½èÇ_fqbÂŒ‹TîaýµÇõ­E›˜î ã"VdÿÉ…‰«m‚ÊÚÄtÉ\;IuÐæaY›ˆî â|$åÀSÍ íâ(ï MDwq19ßßN¾ŸÒ’¥‰éNÑß¹ÜMCöû§mbƒ¸ô¹ù¢²¼J†ÛJýÖFØQ.²ÒŸél½â2ÃvÅ¡ø÷î‰á¤tLÅ—ŽÂ6ß–Hï0ø…U阊!.†‡Æÿ9óÄ ôŠÒ1+ÄtÆ^ÛÑïyª:Ç4 ¡‰áÓ´CÊ`¬L)ëÓ0„¦qÕ+^VYäÙéáE瘆!5#3<›#íq*ZÑ9¦aÈ͈<Ù‰Ròàˬ¬sDÄ›>Vœ 5^Wmß:Çd ©™aMðÉËÎ~gÁ­tLÅ™wZXå½ýO‚d¥c*†Ìt¶®¿Ñ÷<…Ž©ÓiØŒH‰+'XVø)tLÄ—r¯mô¤+BÇT é4Üí6y/[“¥#*†ÄŒ“†¥§…Y戄!-#%¼ª5È©.6'Ï*Ç ùæch7 7RE浨S0䛢$"¼·,ÉSTŽIò-"N‘)ñK«Ì1 CÄEw±¾ßSȪMLwq®Dƒž¼JñŠñ¾hÓDœãkÛMS¶Ý [²41ÙAÂEh²Kc¶!.ÏÉÒÄd ‰\w¸}öðU‘&œ¤ àjðµ]ªE™˜êÂE ×ÎñÞ¥ÌÊ2¸I•˜â à\ƒlÿDCSOXT‰).2¸vò“¼†-ùŠ(1ÁÄ9¾ìx_¢ÚñDE“ˆà á|¥–C^bð[ï‹&1ÁAÀE×Ò]ò‹FOà>E‰i2ζ*ƒùÏýJà>t‰iR.âCvuÀ8NžûȺÄD! \‹½ívœä{&¦:ȸHàž¯±¤wP&¦:È8סe±ïØ6?Ω(“2—¿S¸§[ëäá̧21ÙAX:7«UY÷Á¥v4Ȼʱ—v·3™¤WXF2XÏÇZd9fKî¬sLÖiÒnØó‹ªÎ1 CXº²òtQ9¦`ˆÊ4 ZœÌ¾ªÊ1C\: ›üìêEë›ÍȳÈ1Cb: -ؼÎëh©U䘀!1#ìÀ߯8–>‰0$¦dó"Ù@$6iâQDŽ "ÓGr^µPk—+&=œDŽh2Ó‡rPïiÞ¯ÛܓΆ0#¼ØÉ Dž~Ê“0䥳°‘wSôÅ=ÁE戄.…‡]ý'”°Ó‹ÊZ: W?qk¿.HÇ arå¢öoçM"Ç Yé \,¤+Ÿ5û¦$rLÁ ,#¼Éé:†^È’%ŽÉðÍÇP®5Üì6HKgcê…xóAœì2Hí-;Ý +“/œ[üiÃhר¼ƒÂ1õB¾EÖvÓÒ¾N±-«œËìZ‘PÁj“ñ¬JLqnN®ÝÇh]"•ŸU‰IÐÍÉÕFþÐ[³,Ž%‰É ¢-fâzò‡˜Òé•Ebjƒ\‹|­±·—Y¯{ŠÄÔÁùZ[|©a+·’ 1±´¹ú,z™Ñ*Û'üH‰¬GLkm‘­Ìc[ƒáºå¡GLlnŽ®só›—£ ¯ä[$l5»K¡Åȳ1±¼E@È.òoñÛH³¹Aº•lí²yE‘$¦7¸ˆ Éá««V· $I"zƒ€‹\­n¼_ôTm–$¢7ˆ7FÙ©yŸAÁ•‰‰ ²ÍåG^Õ°5ûF§¤GLlêäýÃÉ?kðŠÖ #rõ©$÷H0mv5î*g]Z?™˜WLFÆWCøÍv/b-âF„ )Á%­ó[Îs¿ö<Å ‚2ò½“–‘ˆ9 &eYܘpUR:íÖ5¯—ñ%ic²… Œl¯»Ê2ûUŸEÚ˜l)ƒrÌ  Nö¹«ó<•©r22½‹ùÅÔe#ª…˜t›7/a°”c6&ZˆHÇŸûÒ^atÎdac²…ˆŒLïf?góãfª´1ÙBFF²wS#YOyee#²…„ô´ª…m¤(ÒÆd é/R{‰ÉïTIÊÆT Q¥ÙÊ“–Óò³UÙ˜j'‡FàÕ¸üÎÊ$lD´“‘êÝím—acª…œŒ\ïnNÕÆÑïTÉÊÆT éæèj³  íC×ëÒÊ[Ù˜lÝ|g) Óî²à`6¦Zȶˆ)ùmå’4õÓ(nec²h‹Ììi¶]•ňi ‚ÍÕgÕjÃuÙ|*_õˆiM!›SKn´—ònY‹˜Ð ØœZ»gx–Ã_Ĉ)MA›cË.—m/±^“IŠPfl-?ûMè6úF€¤DLfl>‚‹ÝS·ÏqÝX‘""36§Ö¦NÑ7Ù%bBƒd‹tìào1F±d#¦4ˆ¶ˆþxánóýÕ¦ßI˜Ø Ùbö}˜ÉO-+rÄ´ÀæÔ’Ñ^BVåˆI ’íÎÈjìÐ.Y~¯rÄÄÁá=?¹1jwU,‚ÄÄÀÙøŠÑOÈzÄ´ÈñŸÑ6·L–¶©jD”¦p-&ß§šG¼ƒ1¡)Sö;»Z(yŽ B‹1JÚïÛÆÕ6±¾°›ä4ñÖër ¡Õ.à„ ¹ÝÅlÁ«•²¦1½BJFiPnÉírV W4B2»£Í%CmE)IÔ˜b!&#Œ4ÈåÙàO$U#¢… Œ´îfc&G|Ù)¿Iؘj!']ÇäL©Á“¢+í¯¢l ZˆÉHéúzO`ô:˧²1ÕBJFɶI™ÔdéÀ¬l Z€HÇß:™1ϱy&ëQ-DdD‘ý>õ~Uý?”©22rº‡Å¶›ýXf«(‘-@d„‘tR°êDÖï HÊÆT éƒ8íî1ÌÂÆD A¤ÁvÇÙUטh!$‚m5£K9àÅ&ß]#š…tîºòIÀ¬kL³’wFWcîÓæñÜ¢kL´nN.Ñ_¹eXNõ R6"Z7'ײÙÚ{žýèÛ"lDµn>Œr­¹2h‹zÿ$l Z6ïùÑ»fÚãî­$FDh€kάCg‹ë…U‹˜Ð ×"ëu°²9Àh¾Åˆ pÍ™e5üPÓu iÒ"&4È5çVû!škèµ{fŠ1¥A¸EþUPS{¶ùdQ#&5H·È¿z%ÓtÝ žåˆi Ò-b?ÚK³ßTôˆÉ ò-°z·Íƒ©E’˜Þ à"þ3ØÁÛvQFÑ$"98̆ï4WòŠ”$KLs*à"ýzXÊ#V°U•˜â áPŽ4²‘̪D$! ÉnNs<ìè¶,KLrp‘„õß4ÅeY–ˆä ßœ^›®çùUYb’„s Úì€}ZíÏê¨á~ÄDV:¦bḦ-irTáç'åd¥c*†Èô¡­\îvÉ¢tLÅ™>”´ºMJîßó#I“Ð1CfúP¾ÿEè±}V:”1@f$vW›cµö¶:.JÇT ‘ygvuÒq]#³ûP:&cˆ9§˜ÔòvÁ£ç—¥ŽÉ’Î)¶Ú›ò6C)RÇ„ Iç󳯥>ÚËbG„ IIY=[z‘RÃó²I ˜øé\=amå †¢OL|u‘—ÕöÑwá&qáAÆù ¶¯Ói·(„-­²81áAȹշ_±ÎF|;)¤ˆS„œL³õn««¬NLys‘•Ýôôˆ}8®=¸I˜ö æ\äh ¡SŽVä‰IR.³£ezÄ`,/›Ô‰IBÎ &S>½k∉y–'&=H9Ëyõ[âØ¶,ODzr>”“×ÌM×v¥$OLzs‘›Ýí-ìFÞw'&=ˆ9#A­F æëPˆ$OLzs‘žõ\õ8]çä$y"Òƒ”s‚¶L”¬üYä‰IRÎgçûâÆ*Y䉈OÒ_8Üf7‹˜ bâƒÈtnj¨ëÖºßâsâŸrΪÐÁæd¾^™yg{õ ~ÀGU;¦dÈMÇ¢¤ƒyRùùÄŽ ’3Ò½ƒž^º~vw;&dHΈ9Möçmr‹-bÇ” Ééƒ9Ì65–µ#J†àt([åä ]™VµcJ†äŒÄïf¿érò‡Ú11ClFäÉOòjóÏÚgÁcb†ØŒùùiÃ&Fj¡Ö,xLÌ›yò=\³¿ÿ‚ÇÄ ¸©_ªµ÷󣻫Þ1-Cn:½ÓWyçG%½cZ†Øôqœ,ˆ-ãh3f½cZ†Ôô¡œ?YröŠ•¢wLË›1??]EËíT½cb†ØŒÐÓ`uÉ£_üW©r3Ò¿³rw;?¬¥(S3DeóûUïzÜìܼ"xLÌuޱÍm]n”³¸k<¦fˆº>^¹ùAƒEñ˜š!ê"bäEOÃèu"E¥˜!ê\“$£×~ý"'£[ídV)¦@ȺHÞNš•ÁÜ–Èß>TŠ)PfëÑl™g©ÿôëv“B1õAÔù@Ê‘xÚ]Sd@²B1õAÔEòöÔ3<Ä®­Ô´(SD]do-o)·cͶÖÊ ÅäYç‚4ŸvÙݕòÅäX ÜQwÒm§ŸOPŠ)°Î9¶mfÖvbHQ(¦>:‡˜Í<û«Ÿ5ŸŠ©‚.r¸‡Í÷Æí:")Qä\¤pOŰìŒ8<…›Š©rÎ&9P~.JU(&?ºHâj–w‘ªg»’¾HÓ]DŒFs›s²°U£˜þ è|’Þüx›ÌöG?n>iÓŸ:µ¿S¹»1e|2V4ŠéRÓ‰ØæGÒ•›(…Ú¬¬÷ä6Oq_[v“y{¥fä…=@HLÃIEð˜˜!5#e‡äžûá±±,xLÌœ1I?uŸ…üX¿!,ëÓ2§«›¿o%F|JbÇ„ ©™áÍ_+vN±cB†Ôt"žzôÀ*ìRá"vLÈšîI§]G"o6Ø@f±«B†ÈôAä4Õå8|WGÕ:&dHM'â®õð‹œ¢i»µ³Ö1Ch:wO6)ô³Ö1ChFjØÎX—>˜,j‘µŽéRÓÇqÐÛ4[è…IY눎!4}gµ‰öƒg:‹ÖCfFüiòc¾ãüçÖ1C`ú8ÊàìöV¶e«hÓ1¦ä辫³j2fd†m¶¶vÕtÕ:¦cˆ8W¶Ivã74ùaXUꘌá_»ÎÞÉ[Ùœ®(S1Dœã«y‘ΕådCǬtLÅrN0?ÌY¶ûÛþÜ"NLxr.E¦Wü"NLxr‘Ï]´FA†Ò64qbƒ”‹€Ñb›^&?Y¹ŠQ$¦Ú$æÒfò«_AžÔ‰)¢ÎÓŽìm–í¥ I˜ò çœa ªê”Ç—¿gubʃœs†mzÅò:ɵ vx[V'¦<ȹÈèÚŽe¹ÝIJmE˜ú èœbmÆ0øé¶}!+SŸ:‡˜›y­~ŠåS˜ò æaël£=,×I˜ò æ"k[Ù¶}÷3MŠ:1åAÎ9ÃvfÔèEÅE˜ô è";j)óvL×±9Iž˜ö é|ÇÊ÷›¹Zp¹è“$ÏÎO»KL¢Ñqœe’(&?uN!ñÍ8=fçY¢˜ü 6ígê }o¸›b"›NdH´FS? çë€Í+?,v±Å!+òÄ´§ÎçïLî¦1qiêI¬OL{™>3_õöÕæ~eÜ$ç`6/Xå8›£¹zeæ–3…Tî÷H ?ÄŽYAfÔ¹[ÑÖ E鈊!2‡RÁ?Yß^´™”Ž©"3¢N¶HBp¾›*)S1$fd„õ§EJçì¶¾¢tLÅš®k‹NýÖY®±ªÍ¬tLÅš‘Ö*dGK'™c*†ÄtJF[êð÷¸9(+S1¦ÓðÜݹ£ð¼1$¦£T:œ×D愎é2Óy(¥GÒ¹ž N:Ç4 é0lÔÔ#«åÜ*ea–9&aÈKg¡”¸Èå…Ì/2Ç$ xé,´ªÂë »*rL—>Œb:Ò]q5OQ9"aK¡ez5§íÉà¤rLÁ•>†Ó`35UŽ)Ò-ÂM:Ó^‡). (*Ç çø:­.AÆÓÖ1E嘄!â"Üd–(ûüÊä,sLÂqޝf4fN£ï‘(ÂÄDç24ê±ckûõ~lz&&:ˆ¸;}»èXÎq‘W&PDœãëÔ˹ÖʹŠ21ÙÄEòv¶¯ˆ[úª21ÕAÆ9¿-÷Ò£ó++“dœä䫺«¿Š41ÙAιzû*—Öñ‹41ÙAÐEþVN}m/6¹t?•‰©B."D~¿©ÝÝýÊDd)ù[Û^.Ýewxib²ƒ˜s†97·ý´sS‹21ÕAÎEþö0{’=\VÑr+S`œËÐdÎ(±) wdab¢ƒˆ‹Ôíd!©Õ.Å­ºD4çð’³4ucììe]bšƒ|ó1lä– §Ø¦È›t‰‰NÅ_C(<Ú .ÃuSÀ-LLt•‘¹Ýld—Í«‹01ÕA¼EtÈ.â=·%®ðÊÊÄT çøÚôЍöCL¿²21ÕAÄ9¾ßU+ws\gK<”‰¨.r·§œƒ #iéab¢ƒ€sx5i—rùùØ¢Š( \¤ng]lËê¹µ"LLw áœ^Ûi÷Ë&+¬ÌÂDDçã8ØÝšâuàÎÂÄD çã8­æFmà «E˜˜è â"uëKó%®î(ÂÄD'#.‚C£ßf ä"JLp€q‘µÕÕø"‡ù©ðI“˜ä ã`§NwÄ©ðE–˜æä`‹Õ‚è¡d–ë˲Ä$ Á!¶µç&ßU‰)0.Ò¶¾³¤Ò;ˆDœãëô½+Óê÷Âabªƒˆóql†£h’œ±cR&&;H¸ z×Á>û¶Uš˜î á"Ïjg*‰?®^—Ÿô„‰2.R£ƒÍ·çïa+‚Âıäý/)9c°•mÕ¦¦È G7×¢'L+LN;ïø* «r´ÁR­Žo=vú†¬'L+KƒeÖ±NrF´•.f=aZlŠénÝy²ž€V™"cG“£Ä^å„i’)æ¾§š¾˜Õ¼=aZhŠ Ì¨ ñmÛ< Yô„i°ÉÁÓÞ\c,s´\ä¤J‚ÉÅCÆ}7ÆÌ–ÍrB¤Á™Q§aƒY}‘¦¦ˆÁ,¶g+N’®rB¤¹ä£(Û·³Zä„HE2ß¹Ñ]·Þée…V'’å„h".R£®2³^4üzÂÄçøò+ä„gÝÖU…‰2.’£ƒ½ð¼Ä¶Ù,(L-q>”ƒßöΪ¢0µ@È9Àl®ÝÞl•2ßAQ˜Zä"ŸiSîmºn¸Ê‚Âű=Y[OÇ´ÅGÒ¦H&ïýQ®T³ðû@²œ0©@0Eäd²ÌÔ>E©a’&È%ïûÑö­lÍ|üØ…,'L+L®Í* 3«W=aZpŠ”æhê!»lmŸqÖ"'H9£öy¹n•&H'GϪ›˜ôÅ,éQ$…ÉâÉÙ³ëMÃÛY¢¢(D-N‘Ó´}|ráÕEaŠxr ±òU ¶½Þ0« “ Ä“¥¬›äÅv¿²¨ Q „SDP?r`ŠðoV&'ï|+úSñ,dR†ydÓ8Ô÷&?1¬HÃ<ÂÉÁ?Ûiâç0Ž,Y æN‘<œ5$f×y$%`”GŸ•€QðQÁĦ½˜ÕÒ! G:yïvò61ÕÌBÀ @‰X…mû=gK%!`”G 8,ä¶B{/»B( ƒ<âÄû¾ALA›4UT€!aÙ¾M|ª-®8 ËC<ÒÄI±ë˜á<<‡RT€a?mÒ^ì´Ê“ª ñH“ˆUØX2ÿð­Yâ'>Ž“y› Ì‚­Yáë$õÂΪÛùõÏvÒTFx$Säü&›^lXU€ÉÑŠAæËçº^$`€G0EÎÏ6Áˆ‰ùº!‰#<‚ɲ}™.Í~¥@QFxSäüÌs/R`„G0]Y:ù…³íÞ©ÀðŽXŠ@Ť¾-@Z±HVBw€’wü´YĬY„`p*9qd#Íx­ Þÿ„íÈ¥ÈЭ†¹qŽ–™ÿ îÈ¥HªÍZµ$åVX€ÁY⸟OÛé°±ç? £;²Ä9áEí’Ï6µÍ ÀðŽ,qN4€©Îk¯ö†w ‰SB^Jºk8ß®«’ÀàŽ ‰à¢g’ Óà'}f`pGø0¶ß«ö5úË* Dˆ5F?z¿ðŸ±Aù°ÓÀ-;-¢™˜Í€ ¹Óašqk´Û=–˜ÍxŒ(‰€@Yàçõf3#J"6[ç×6Ìld„IÄFë(#®Ðf@Fš8*Rô[[·Xw6#2â$RXjø‹çcžÈf8F8$äÊÃöaZæ6#›ð1U`º m‘-à ÈÌ&<Š8 g]Þ0½´9!›ñ¸PÄû|°c"d7§—6g`3#Gܯå.8ù$«­-´f$FÇ…ûr—f§7Z3£çGÝÖ¬Ud À¶FáÖƒÖ Åeæw¯ÛoyÆ…ž™ÖÆ‘H8éQ9Ëzžv]á5c1B$–íš \ÄìøÂkc€Hä›F'×èÛc ¯ ‹‘!·e±ç÷‚^3#C¼ïíLEEªÕšyM`Œ¹ÓMÖù»Çk °Œ Eb;hIü2úP™Õ ÄÀ(³ÚtSèzz’µ²šq!âˆüZáÛ33«‡#N‰EEEßlðzßÄjÆa$I¤‡ôÌ£eÕ Þ{F5#1‚$Ö냰,ù‹îeZ3#HîÒ¨m¶·²¨Dá51r$Vì£ÞÅ".vS6À)¹¡Õ;~ŽÝÄkÆbÀHdt '®§&\3£ß»S7—|ó™_PpÍPŒŽïN½Ø192þ&°±„Ÿè÷Þ[~;£ÀÈÆ°0–ßýÚÂz;£ÕuÈ€¢ó»gï6ºë9ze,#(z,‹+™]7¿=®P–½?–Åz½‚Øé'%Ê2„¢÷Gf1Ï>¼ ¼PZ\ß;¾ÍõÓ'±Ÿè÷Q0d y?4#–áý>ųmîlQœËð‰Žé—U!´q’sA,Ã':úØDHŽ´¶KÌa@‹ïǂؗIÍEÛŒœ Ë艾U>šŸ\¤°n¼ª|„eø¬Sµ r枈á4–ñ1Ù;b•£…,^ŸKø‰‰ôƤn·‹o(ŒeEÏuìr•ÓÙ ®`–!=?Ö±º‡]Ax\uÌ2†¢çG†C uðÈl,(ú½{v[!ɰIdÒï Ëe­ÞU9D\)n§ÎŒeüD÷w×> ¢/³•çfÆ2~¢ûGzCÍ[ßÌ.M,ŒeüD÷ü†ñ¼È]R§_Pød, |?–±aÐû­,­W(Ë Šî¹Á¬k?|x-ƒ(º¿÷ýdsª“TÎ2†¢ÿG~ÃÒY«4ÿœe ÿ”„²½¶Qžüäø'f¡èüÞõBÝqxiUá,c(:¿;¶]¾ÒÞ!"³ {èú‘B˜õ´¤uŸß|×P"#ã:Ô˜ØåC⃶ۡ°‘q=ÖI؆Y£›²ËÂþ™Œ{è±î§Þ'¶ê[}2÷Ðc#îo‘,98iöK÷n62î»ÆšÑ¯ù;|ÿdE#b6 LÃÍ>ºÍ42ì¡ÃÆ¢Ñýªù—Ÿ~žÑȰ‡ë]?&ìÚJFF=tØükÿ" k›Ù2òú?®J$ÑÃf9Ž |è³Q¢ó”ö^‡'$ øêÜèê}) vç¶D2øªÿGà_§ýíµü‚ÜŠF‚=ôÿÖ[ø*µÅvHJF#Cú,=q}[}›{Å#Cú¿Ãp¶p%a)‰‚G?ôÿˆ×ïÖ´}—…82 üŠûGÝÅnζ-Þ(pdàCŸõî’#Ggƒy”Û%82ð¡Ïº?îVS/Faô*pdàC§ðº^z*7yúö¶ÌF‚>tÙXïù!ŸËàe« ~è´d·+båÅ6ëþ H?tZwHC\ëé:Í*’Áœ6í‹bs•üŒá0ñ‘±½6â옔²s/—È|$ðC¯Eß`ÁýöCË|dìC§à¸Ví¨Ã˜zd¢!®Ðc#6nã-åÊ§ÇÆÒ¯Àc£$AKžqL?(#á ½Ö=r=­(o:ã Œ4†+ôZï/;€¹½Çäî]Æp…^ûˆh˯ôƒS ЀVè±QHphèH>ÈîyÉDc´B'‹…Õ o+ΪÐÃ"mky«Õ9M8c¨‹´g]ýd‡B3†*ô0w9½i¾N+yœ1T¡=ŠÔRǸ 0㌡ªÎAî…•m`öaÆA:l„¡m5§~ƒWÆcº¬ÓkÖ›7VxÆ`…>««Å=Ë/)@c°B—ú¬E 4ä5/Ðzá =6BÑã›þÆ+ûŸ‰Fh… {ÑÏöQ{œ‰•Æ`>K«Å*‡%‚L™gŒUè¶:¶]×8Vž1V¡ÛFèx6Û\â·Ä3†+ðÚúöËbY¡J4†+t4w" Ô˜MÛÔäI4F+t²øºX-³Õ–V¢Z¡“E¼wÕ­â«døm1”‰Æp…NË¡Ñ *¶¨Ý/Hc¸'‹Â¥MÏßX×ãÍo·M b€sÿYua¿Èio¦M b|A'‹Œö®gÙɇY9Haã º™û”ãk¾mó㊠ƒ`ÐÏî‚£QÍbõÇ!Fô³+P«C)Ë}«sÈbˆ©n™hc€|’'N„`ÐË¢BèÔ ©öØj†Lq³(ýçí±e%ˆÑÝ,«Z:×>lñ3I _ÐÍîÔ±ì ‘<¶÷¨0ˆñ¥Šý½æ°4úíC AŒ0èfîC§¿î웣+…bÐÏ"}lW‚ˇņÀ„!†ô3‡ÎÝ&§¶èH"„A/‹5Ǩƒ$je"” Dƒ.ÑÕü}Š+r „`ÀÅ"á{j™†|ÖlÅP™AŒ/àd±ä° J²¬Â1#ˆá½,jhtoŒÚªW8f1¼ £ÝñP ûL[ìÙÎB¾ ›EÓnš•Z,Œ™Äƒ~æ>tÌ>J¾>®€—Es5µ’$±!'Cˆ½Ì=è°+êÖ¦4£år2„aÐË¢ÄÄà«„‡-V˜ÀÁ¨®ÁB=3v‘;Élªš¹Á˜€®)ÑÓL§}–Ÿ0Ÿ¹Á˜€¾á†êÍ„§&n0( oD™É¦Wx‹CšÎ&n0* gD¤ðPosHWÙ ô‹ˆöç1Ž=*à P@Lj²ŸÓ6Kž|·Dƒ:FÄ wÃÄ4Äýö èÞa“Õ¿Iq«mœ,à`X@縓§üYêw  U¢ïšŽãÍÈwñgr0€ŸExïPÌqßeAÃ:Z„÷,ü)GBZ~µ ƒa-J'N‹5O…)è \爠Üù¦Æ:†>&r0* oDLNÏŒ|V!£:GÌÈ‹›î×}:™ è1#l^+ÆjŠ„ÆtŽ;$')O 8»á'v00 oDXΊ°å³ì˜Fô˜”ëõéj=~ˆU¦#:G<Œf®CœÜRèÁÈ€þ±9wkTîgz02 ¸{ËpœöçÝÒÉá‰7£wDiÁhÖ"·Ù\:y<ófðˆÖ;R`•Ùá™3£DAÀ¬wQ¯rà»Õ$'Î «É,ÀnFy¯þΜì9"V£Î¸Û'ù\.»;se4g7Õå°ŒTûÏÃBVÙÝ™+£9G5Àb¾%·jÙ4 »;óe4çYM£”Ccl"Pü93šsä­FýQòa~'UvxæÌU ï4¾¥èå04û™Åá™3ƒox—Y9w{±Íï¾.þÎ|œ#W“* ì&õÀ{vwæÊè‘-÷QN?ð®¸;sft7->–SLê²Ãoÿˆ`Ó¤?@>jñ㺒Ã3gF¹SÜúY‡,û;qf´è;8$ÅpËáWªÃoFƒŽðžýø¬ìñ̛ўcÚ:YžRò§&EÙã™7£=GˆhצZ—í÷m$gÞŒ!¢ÅòˆdñxæÍhÑ1ÓÍSå("O%''%ˆq­.Z´xÒ\2;)q@´çëÌö“Žˆ–'eˆsMû³4µ%HqRæ€`ÒÙµDR®c²CM²‹ÿC‹Ž`̤ aù(;Ͳø(ó?0éHÙêÿ®ýåw‹%eˆFá;BÔŽäÉI™¢FÚCϼÖÛ¬(3{)sÁ*;wÞv7¨ ›ß“½”y tdnMOê±á–ùÈ^Ê<-:b(zOdû°-î”Ì^Ê<M:2¤Û›Z«ŸÑQ”y ZtdHy«9NàÉ.Êü :B(®ÑóÂÓì£ÌÿТ#¥©ž¨¦o{Ü‹ÿ‹Ž°Ç©3eYJ¯÷xº(ó?4h7ÖÅNï¿?«ø(ñ?´çHCÚ…Ëî»;«2DŒPÅ® GÙMm'¤'eˆ6Ó0ÝV§/låÙ¯˜Ï  FþÐŽ¾\Ú$dõƒÎ“_1ŸA3t³CÛ‡-~ˆ^ñ+æ3h†‘ô³µö²ûaiÙ­˜Ë ºµžÕÛü*úäVÌeÀݾ¤Œg±²ÛÆ‹W1AŒˆ€Í>¤ë½„8{q´Á;" 5qm©âÒ]ÜŠù Ú`ÄÌ'³áëÊ_1§©Bq¯â½#%ü9[v-9s4B7°Ó.[Ö+1‹9 adÄVM”ÉÐ~a@r,æ5`…±Œ÷¯X—ë¤äXÌiŠúOœ, ·¬qäsñ*æ1h†‘Äšu¶,öw\=½Š¹ Za¬ãmô²ž»-nE¼­0âÓ¶þþ¬âYÌkÐ #õ4º¹N6C©žÅÜ­0ߣÎ×Ú“±”Ì®ÅÜ­0Ö¸§¼Qû°=¶ìdo`–Ž–Ñ[[´¶~Žtñféh<‘æÑ#n¯Þ@,l'–¸:Å[¤øÜwregCGÉàíæÝeÙÛê ÌÎÑp>(§ Y^&¹³s´›Xâ®öº³Gª/0CG»‰xëlžÏ˜Ogg`†^‘|§S$ûÙ~ä×,d_`vŽ6ËRi·Ûü‘â ÌÎÑ#m1šÊÏ«ÏP}Ù9N6mi'›8ífŠâ ÌÎÑxbZar,qz}õbèh<±–ÚŸ§Ø©Q ˜Y'XN¬´6àñºE;03N4Xf‹ãê[Ͳý2ãDӉő] °ŒqY_6`fœh9± YÌòÆÁ§›Ù€™qâhGë0å²,À;01Nì;¬¿Ñ’*Å€‰qâXßK‰eËeŽ%ÍÀ™qâ`GwÖ®bù]LŽ˜Žu¬Aì\”E*Nm)ŸMŽ™Œu,N3ê¨D)Ǭ †:Ö vÖ2Œ±%³&ê˜ëÛÎU¹ÞɃúÙâ˜9áøDPÆvuè]Q¾¥>™³§ ˜{²ºU ^%[lŽŽvLöÕS9uÝ’.FÇ ‡û®é’²•ùŒS²Ñ1‹‚Ꭹ¾^0ŸSÜS™mŽØŽva ºV™Ó HŠÍƒÂÁ¾‹+Īå³ß𔌎ö=©–×{@l#V¶9fO8<ª³uû|ì~ª[1f0<1 ¶{Éæcöë<Š•0 ÀŠi°UÈN5ªwFB,Ç'&ÁÚb‘;Ï}ù—¬„™ŽOÜØýŒZ‘oÛx³™0ÀеüaݳÇ>Þb'Ì*ž“ÍY?löËÞ²0ÀŠÈ“•›Êg­–ÎÊvBl(2̧./äâôÝk,“0€й¦]]4o‡E²f8>1ÕœUÿæ¶ó›P³™0Àññ÷’[;å³b^1f0<1 ÓÏhŸåW/×e£†]Q”Y÷úÈæy«/#ˆ :5Ò’‡ˆ1KYާ%ÓÈ’QÃ>IØ®š%»XV*?G– öiLÂEîˆñËTÒвa«®÷œ9-ú#LjȤ¡%Æã“ݬµÌ­ßüú“<´lذO#¿laËY|ßjòÐ’aƒ>dÖf½#Ûð=™•F– öiÌv6Ýa8/vÇtY6lÐ¥Þõ³ÿòöŸÃU»ó ÖÕØ§1 õ2˜YŽ*6cÍÃÁº;"&v&ã<Ï>×)ÃAú;"Ò ³.ä³fÓ¢<¬¯«?'2c»f}"ðÒÕØ§þIRØ)NW=pÖÕØ§1ŸV/[ä¿/ëjì‡ÜYõoýdÃ:¬¯¡#B"Ý47G!iéAÖ?Ø!kzÀ`û¬(,}Èú;"‡oç1ÊóJ²þ©¶t‹‘m2˜<´–ûôtDˆÑd?r˜"P”»õvÄ]×¢|†(0Î}Èú;âµì œN¿x©þlò›ðåƒÔ­×ÛG±¯±ülö“ð݃®v ÉtlqDþÙì'Õñ¿‘¨Û£©”¾‘øøÙì7áÛGeWcœävk#âóg³Ÿ„ï´X5:55¹·)J~QöðuÁ ÙiÝ>irïίÉÞ¡öñí‘“îç›dó½M€Ó{’w€o‹ƒÞó¸LóÛáóg“–å—øGýýçá³Ãüù¿¶ÿþûpÙï)×dDCí`ݬëçOkë2©l3ðußWúöT[ËÊš•Í-–+ ŸõŸ>ý·Oû4|žåÜ‘eÿ<Ív…ût z¬é¯?~þ/Ÿÿüiøü§öà8|–ÿçÿñû÷Ïûý§ûŸnÏ·qZ§|ÿÇO£=òY®ën¿@Àt6…ÿþýÓ—Ïÿóóû?üù»ïÿéÓ¿ÿ¾}sýîe;tÓeùîåíØ×F¨iŸýÛÿÿ§ö6ÿáSSùQ§mR£!ïåõ<°ø‹ü<|êþ˸ÛÜèï>µõ€^žùø¬ë/§Ä%EØï§®¿<žÚìê‰ÇS×_O•w}¾ýýT·×ÇÏ:­×§g¯Ëtålë>™Ë®Íº[·ÿý—á»ßÍÓ"÷®|õ¿¶Âþeºÿëì¬Ó—å»ÿúý´á™å¢œÃçÅ2ƒð?¬¢\ü;òÌ|î×?ŸOÈíÖzHƒ=áÿ|<±‹Ÿ_®OÄ?ŸOÌVÏOø?ŸOø«Å7ýº~”>ütæ¬ÕäòË$¡0Þ©G»ÏÚ‘ò_‡I;RýÛ:ÒÿúèH±ó&<êWÿ¿ûÙ,õ×Í©Žö÷âiÿ÷û_~ýnjß1ë—_®ÿöÏŸÿúÛ¿ýõó?|ùÓ¿ÿá;}ÉÚ ³ÜÓÞ´ñw“Ô*7ûþþŸ¾üë(~{÷$ŒeÍ/wÊ5çÿþ×)¹vŒ¼›x#ݤѺÎëKž^>ò×?µ&~zÎÐ8¨µÛí‹nKÍ{cد?~jc$¤oŽ­6:¬†önÓ„Ê›Lm‰ÞfòMs›q¶ó^ùÍm$óÿ¹¶:lÈ[­m„†ÖGi5Í^(Í^pkÞÚÉÿÍd|?úU{C”3´—F³ÈÈG¯wì‡4ª=!†$G“òFg›·F2PMÄ×Ô²5µ ìÛÂSºð.ç=7<,F÷ÁWj7î³üÄ©}þ³å:[à룖ò wy×f§¹áñQ_ž“üÂí”/ÜJî&Ò-°½†íÿ´®Èí Hôš†Sî™ö«m{eï÷iÏÎSŒ½}åv~ôªÒ%û&–&|4“òÛ‡~ࣿKá ÅѾp?jiÃ×VeÅÚÎÙfHܵЩšµì`÷­“:PCXj´Jc:?z¿e]Õ<ÚJÎtû°?}Á}/Z›Û[ö‚Àd[ ²¯ºÒKÞ?4ˆY‡tߊO¯2 >¸1\ÏÈjê˜^<#‡Ò}0Æ×Cš”ûÀ›ï‡ŽÍ h;ß&Û!_õ‡Êè´º’»¨f¦û¹ŽCùzfŸ7+wï}Ù~hYW÷™CV®/úúð…iï ˯ºú§–/„Ô¾RšÏÛ˜¾XÈ~ü²¯²÷Og% «¼hÓWaSD%óX^ó… w즯ÂÇb“¯©ØiWë4/õÕ·êèÕª«¾UH£UW}«^ºê›uÔÛ¼ߪ£W«¾ú!V}õ-:z5ê-_ã¡Ë×u‹MÝSßx¦£¾¿sWŽã¡®_uä8žéÉñõLOŽã¡ž_Ïtä8žéÊñõPGŽã™ž_Ïtä8žéÊñõPOŽ—Ób®±`”e\r<Ê!¹… «‰ëY[]‚ëEãÈí¨Þæ!È䛨‚ñjy‹2k©4×@=ß’„@¯v·"“vϘdjvë1{ÉG³37»Õ¸ÓNºtmúólùPãþ{nsnw‹ñ‹oŒ0o´|ˆ1\¥^-;”L¼ÑCI;²Ì¼ÞjLÞæ~Þê¡ÄÌô›Ts«[‰ñ%k˜&=”˜|UÍ\­n%&­j¤6Z=”_°Šj´¹…Û€¦Z£§“×MV·³VU ¼ÕC‰ë ÞÏÜÂË>¹jª·z(1´ºº…÷ï/éÃ~×Cx?þö‡ðvº…÷ÃW¼…÷ãÏyïÇ=„÷Ã/{ï‡Ï<„÷ã/»…÷ãgÂûá—=„÷ÃgÂûñ—=„GºN«õÚ¸—\P?uµê¬„Y 2ÚõWà ¡W³þr˜¬Û¢e9Œ‰½«]w9¬‹ [b6ÿJ ûËáÉ¢ùò¾ë™ã«åðy‰Ú6æ–ýå°¿«tNs´Ü°¿þ¸w¾n5üà«åÇ«a²¬VÝõpM \ºkáº8VýupÍx^­zëàº6Fýup]œ^­ºëà"¤Ñ¨» ®Bz5ê-ƒ«Žz£Wëà¢7W«Î:øz¨¿ì-:z5ê-{ã¡nŒùz¨³Êg¾i•{5ê­rã¡î*÷z¨³Êgz«Üë™Þ*7ê­r¯g:«Üx¦»Ê½ê¬rã™Þ*÷z¦³Êgº«Üë¡Þ*×p{¬—1.›~b•k©ÿ7·ê¬rYz,Ú½Xé¥U‹¦cÊ-û+]X{F»þR—©f4ì¯u¯š°·ÍÖѰ¿Úõ؈njØ_ïÞY}ãgËëÝóŠo¾¼~Õ‚÷^šG»WË]‹ èB¹¼jg¹kªr6Žù=»ëÝ ¾u׺ZhsÂÔª¿Ö]m…|-[¯VݵnYµF£þZ·®Z¯Výµn©/ŠVݵ.(g4ê.v«vX£W‹Ý*ŠÑª³Ø½ê­m¯gúkÛ’{‹V½µíÇ/Ý[ìÆ3ÅîýLgmûqGw»×CÅn<Ó[ì^Ïô»ñPo±{=ÓYìÆ3ÝÅîõPg±Ïô»×3Ån<Ó]ì^õ»µÞVnm;W‹]Ê»Zö¼Ç‹V¯–»dÝ-û+Þ‡Vì¹á‹/YEFÃ)©7ì¯x­®tò¥Lj×_ðzÃÅ—NÏ–ýoçU_-xÉêÜ[¾Xñ’dõÕòÅŠ·h°·ê¯xKjãjÔ]ñ‚{«þŠ·†Ž¯V½oÍòD£+ÞR‚xµê®xaõê­úKÞJùhÔ]òVa²FÝ%ïýPw…ëõW¸UM£Qw…ëõW¸ñPo…ëÏôW¸ôPo…ûá`¼XòÆC½%¯?Ó]òÆ3Ý%¯?Ô]òÆ3½%¯?Ó_òÆC½%¯?Ó]òÆ3½%¯?Ó_òÆCÝ%o)šªÈÑÐ_%¹©"åjùM’­¾Nrµ8hs˯–Üüž_¥¸ÏµëÕ°¯¸WøOè³a_q—ñšÅ{þ‰/$W«–M•N_IF˾äÚWjÄÿ(?ò…䱎–_'¹ŸïÝ£œÑò…è¢\\ ¿"ì¬þ±yŽ:~Í"XKh¯A»~Í"X»Gþï³åK~>û5Ê›éÑò•ôb@ájÙÑ^Œ{D«[~C@t+zj÷5{Ò<2Zö%¸êöÕª§ÁU·£Q_…‹r_ú:œ¤;Úô7eé¾Útu¸h·7z%Ä%¹|µêo4*b­¾©âêjôMâ­ºê|=Ô‘çxæ›ôùjôM­¾M¡¯V‰Žgz}=Óéx¨§Ò×3™Žgº:}=Ôêx¦§Ô×3©ŽgºZ}=ô-EZÇ>iö‹´jîíjÕ-ÒÂ%L´{U¤Ëê«á‹ÝHXƒ-_TiÕ⮫Y¿FK]^wÝò/|Q¢¥ëê#,I û%Z$è-û%Zd¹|5ì—hÙWZõȽó¢H«ó3;EZlÞä­ú›’ØL-v µØAѲ_¬ÅvÎ]-{[yT¿`«îƒºZu ¶ªà{£þÞ¤¬÷ѤW­UõÞÚ¼(Öªqõ«UgR&x«Nõ‘¦hôM[•¢Õ‹r®*¹ÑªSÎÏôʹ®gúå\¼s¯œëãþéÕwÅ3½ú®ë™^}W<ԫﺞéÔwÅ3Ýú®ë¡N}W<ӫﺞéÔwÅ3Ýú®ë¡oÙÌtŽ»ÜÇðb]·|\­:ëìZîm^¬±‰à_-_ìeÁ†/Nö@½¿ö÷2U½fß¼“éjø¢° S¾Ñòk²Ì)Z}5üšÕvŠDË«m,_»~¼Ø¶_¨_ºíùë^œP‰z5üª#*Ÿ»¥£å«3*1tµìŸ¯µ}ñŽÜ7ýUwü«Uÿ|­"øÑª¾V©^»uO¨,Étoôê|­4M¸Úôϧ,{¼¢UwÝ]Ëä®FÝuw™’D£o;ðãjõ-iêhÔKS_Ï|Ó:^v£àG£Þ:üz¦·‡zëðë™Î:<žé®Ã¯‡:ëðx¦·¿žé¬Ãã™î:üz¨·¯Û#O9|ÿå‰ uà:«ðºÞ÷&ýxÝú‹o“•aÜž ûkoÔvÝÅ7c¸µûêÓ@†ôu¯NÁ=ÅÞ°¿ò&áüh×_x[C‹mNé¾Zwã>®hØYvã.oôbÕ½^"¼NéË^,º?‡Kn6éó†½7Ûjííú‹îš©ŠFÝ5wMŠy£îš»†ó£MoÑ] ç¬Í‹Ew D›î’&Ö¨·_*鮯W›¦Ž[þÜËëðF¯®‰ŽZ›Þj;é âÏtwJÅ3…´?Ò[GÇ#½e´?Ó[EÇ#E´?Ò]CÇ3/¡É¤ÈÚô–ÔñÈÇ+êG²»ÂŽgz ì2Ç\¹:éeíX™8ß­: ìâµW›þ»,îVýs§3‰®Výs§sànôçN?Ï@¹~ŹÓÂö»Ù‹c§¡Žîjùâ|zÊÇÝî«9S»¯/ÜÞsϼ¾ôáóUí}5úê;LYïv/¬†½yWËo^Pß-_/¨ÓVþ«áW]û@­­¿¨.…íW«î¢º$èïF½Eu ¾E£‹ê2g¿[u—Õ}WwYý^,«?úªþº:Å î6½UõDî§»ó¢ÿnÓ_eçŒÂÕêE¶;ÏCîVß°ì¾u–Ý yw£Î:üz¨³¿ŸùxB~5ê-ÌålÇXøäF/Ô¯g: u¸éánôñÊJ0®F½¥üÇ?¼úv«u²+Öú§o³F½ë+²Gy‹—WäùöݪkT°x«þ­Qy=s7êÞ•ïä¹õoÊÁÕ»Ñ×\õŒX\-¿âÚ¨²¸¾8mf:Þî«N{f¨ï–8¢ÊÞª3ƒ¸ŸùÖë-®–¯f áŠoSnöú~¨g–èj÷j¦ðñpõg tŽá-»³Rx7ìÍJ°!ug ÷CÝ BÇÜû“’Ø»v& ×CýyÌ&¢Uofk!oÔ”ƒìîFÝ©A Õ^­úSƒ’å¸[õ¦\^Ì êÌ%ufdæâ­:S2s‰Fß4wðFý¹h|´úxò á@]¿,õ«ú³ ­ßRŒåFÝÙD™Úx›“‰:‰V½Éü¦S¯ä|1™€NVÙ’·éÏ'`Š­ºó‰2sñ6ÝÙÄY¢Qo6‘#W›îdæ:Ѩ;™(W¡\­º ˜ìD£î$f;ÞêÅ¢*K´êÕBÔÏ[}Åe:Ç|“ÿ55|Q@O¤Ú[~Õ•YÏðþÝò+Rúô+¿j^Afo^q=ôb ¥wÃ×SˆT“ _:_ùrnña￘[à„8šuC8…ôfý¹FgÈúó^×tç¸Ý‹9Äe¼UÎQòÃw«ÿÕÙÛôX²äXbûØK›€XF”)ÿ2ÿ Å  ¯63ývÝZdEå{Ý/*k2³»¦õëe<‡‡fî—÷Å PxI‹Cͯ»‘F£Ñ2ŸãՂЙR§ãRë¨1¥NÇ¥ôBp¥NÇÕ'Oês\gz§Ï!®Ü縸Δû›­ó|eÊ|Ž[êÝq:.žŠ˜RŸc‚ï:©§q™ë’ëîœO%¸2Ÿãâ‰çÎÍ×—Kp¥>ÇÕåWêu\ò“Sæu\}"1¥nÇõã¦Ôí¸~ˆâJÝŽË^ncJÝŽk8G\¹Ûq]Ý×M·ãRÁ!8ÞS¬¦1ý‘óz§%±8﹯øÁyÛÝÌÚÛxS¯Ô³(ñ,æ8oï¿Ã‰Î܉xå ˆïŽ ñ*!¤1Þq"^ïw‰3ó#è¶Ë˜Ü;x#†Œ©‡=æÜK¸.‚+ó®{RbJ½„ëš(˜R/áºþWê%\ƒ4Á”¹ 7¦Ü{Ûo[ŸÜM¸˜añ܉L¼iPß™Oæ$4PêÐNñ„Ý.Ýq .žNp%NÁ«q;ϧà2p1å>Á%N"®Ô'xõˆ)ó ®.©˜RŸà•Ë"¦Ü'¸ú,ŽN}‚Wß‚˜RŸà•û!ÅRŸà• ¦›.Áua#ŽÔ%¸”~mLyKHF\ï:¾ß¸2WÀ1™+Ð@é>Åu¹(®<£áÆH󌆷z×'xßçð úR ÁxÇ)¸^1ØørŸàõ¡’à¼[xãŒiháUN‘Ør×!QôŽëðÆ¶ 8s×áM§Cœ™ûðÊ=w¦Ô}xµSê>Üx­s÷áÆ\‘»¯gÊ݇ëÆPpeîÃ%"žÔ}¸a<î¸o›©wîlWe8ùÓ<×…ó½#W"¸’3WB<ù!ˆ‹?Lé!ˆëƒWzâê„ÓíãI:\•`J:\_q¥§®›GÁ”q¸¼ÖbÊ7\? àºy¶áºu$Žô`ÃÅI žüʗ˳¸î\ozqo‚ëöy†ÀÜ)pYWrx!@ï9¬Ð˜²Ó ×iÖ™îW¸.Xƒ+=°ðÖ¾Ž8Ó:oÜkßÓ³ oÅÄ™hx#!9³C ¯ ‚_zê)ÂÁ—–xã­àÌË ¼áÉãíƒoûbLŽK¼¶ŒÉ!Š%§(ÞviƒñöÙŠW‡ë‚);mñ:þ\Ùù‹óJvãõ~P0eG2ÎûùbÉNd¼öO‚+;£qÝn©¶ýS¹¿5qÙ: ®lkâbÿåNâjÿÅõ®(„¸’(DÃÜ:&1\1¥1†WN‚s%1††IC ¯^ çÊC טGpÝŒ)\7iđƮQ’`Jc ¯<çÊc —oJd0æÁ…7Ò$Äy'¸ðªŽtcLƒ olŽˆ1 /4Ì»# â¼I¸æo[Fxˇp¾4’ðFêpð¥Á„›j¦Ñ„·vu‚1‹(¼Þ[Sx+­%8³¸Â5.#¦4°pÝÒ ¦,°ðÊq¦<°pc®ºsþâbNçiÆ›˜ù ”¹S)žÌ'h ÄPfñ“X|a‹ß0ï2ðâÊ |` Üž_½€àºaÏkLb­”çJ¬±0wjâ_—àzGYü`Êëñ^ž`ÊŒñÕáq¦;ÆøúÙWjŒ¯ñTq¥Æøj÷ƒ)?ÁxÙ0Wn„¯³ep噃¯³hÅx'sðu#ï˜åWæNŒÄ*÷ö'øî›åÎJŠëŽQ~í<ã«üjsGŒ¹]~õ¾Ô,_ËÅÛ³9Sºj&½)êlÁœ%7NoëÇ6£žÎ“×[¼äóˆç=õ’œ'·LW{!¦Ì0]BžÎ’š¥ë¾¨x2«tÍ„ržÜ(]¹bz—MÚL,¹Q(±JÉÍ’@©]rPj˜„É,“cRÓ$Lj›”'aRëä Ü< tÓ>9 5P¤ÊA¹‰(³QŽÉ”@©•rPj¦„Éì1w •@©¥rPbª&5MJGJG¼+fL‰ñ PnlJ­ÍÕt8Ó»CÁô®Û‡Äõž‹‚ç=~ŔٜJ+ò]6ýÄ”[™ëä/¦÷”äÓ»êþÓ{ìÌ6u‘wÇÎè¶$µ3ÊìŒ@™ Lbg„ÉìL`2;#Pfg“ÙR; [vF€ÌÎ&³3¥v&@‰&µ3ÊìŒ@™ Lbg“Û™evF ÌÎ&³3¥v&@‰&+í˜Ì¬”š•%!5a+Ò0Ùe¶e—Ù&½æb|Ĕڄ%—× “We}{Ž}WQwñäàZ*5¸Þe¶/[nJL€Cr Pj”ša2à˜Ô“š¥&@˜Ô8(7Ý4HM€0© pPnÊL€cr Pj”ša2@Ì Pj”šaRà Ü”™Ç¤&@˜Ô8(7e&À1© &5JM€0·M@`ò_ lÆwL>ã_–HÁôžË¾ÄtgÊ¿\Ü\ï™ò÷i¸3ßq{²ÇßÓ™žˆlš"›ã H&x²Ù€lj"›× È&u Òˆ[Ó9þšÍåd9é,ND2…ÎßDd“7ÙÌM@2m Ÿ³‰È&l ²Ùš€lª"§‰H&i²š€lz"›‰H&f²Y™€lJ"› H&cÒ™˜ˆdà]s09Ò øri8î;:6Óq¼kæ]+ì^\?@Éüë| (…”NÄÂds±cÒéX˜tFvP:) “ÎËʧfnÎÎH'haÒ9ÚAù4-P6S;&Ÿ¬Jçk¥S¶0Ù¬M̉[ tîvP:} “ÎàÊ'q²yÜ1éT.L:›;(ŸÐÊætǤӺ0éÌî tr&›ß“Oñe³¼cÞ7Ñ‹é=ζ˜Þçl×{¦üc´ª w¦üÝžòI§üeS¾@Ù”˜dÊ&›ò“MùeS~`²)_ tÊЭ)_€lÊL6å ”NùJ¦|aÒ)?@Ù”/P6å&™ò“Oùʦ|²)?0Ù”/P:å(™ò…ɦüÀdS¾@é” dÊ&›ò“MùeS~`’)_˜tÊP2å “Lù óž^Lwføôé¸r½k†/3ŸáJfx‡ä3¼@é ï t†&›á“Îð¤3¼ƒÒ^˜t†wP>à ts†w@:à “ÎðÊgx²Þ1ù /P:Ã;(á…ÉfxbîÌð¥3¼ƒÒ^˜t†wP>à ”ÍðŽIgxaÒÞAù /P6Ã;&á…Igx¥3¼0Ù ï˜|†(›á“Îð¼c‹T@‰ ß0·]øÀ$.|Ã$.|€¾a>@™ ß@7\ø$.|Ã$.|€2¾n»ðÉ\øJ\ø%.|ÃÜvá…I]øJ\ø%.|Ã$.|€2¾n»ðI\ø†I\øe.|Ývᓸ𠓸ðJ\ø†¹íÂ&sáè¶ ˜Ä…o˜Ô…?@¦÷$º7¦w¹ðÇ€W wáJ\x‡ä.¼@© ï Ô…&sᓺð¤.¼ƒR^˜Ô…wPî tÓ…w@ê “ºðÊ]x2Þ1¹ /PêÂ;(uá…É\xbî¸ð¥.¼ƒR^˜Ô…wPî ”¹ðŽI]xaRÞA¹ /PæÂ;&uá…I]x¥.¼0™ ï˜Ü…(sᓺð¤.üys6˜îÜ~5 âz ?Zw¢ð tÛ…$uᔹðe.|`^˜Ì…LæÂ ”¹ðÉ\xR>@·\x2>0™ /PêÂ(qá…I]øe.¼@™ ˜Ä…wLîÂ(sáÊ\øÀd.¼@©  Ä…&sᓹð¥.|€^˜Ì…LæÂ ”¹ðI\xaR>@‰ /LæÂæ¶ ˜Ìco Ûz}Åt’O×%ÓµCòéZ tºvP:] “M׎I§kaÒéÚAét-L:];(Ÿ®º9]; ®…I§kåÓµ@Ùtí˜|º(®”N×ÂdÓ51w¦kÒéÚAét-L:];(Ÿ®ʦkǤӵ0étí |º(›®“NפӵƒÒéZ˜lºvL>] ”M׎I§ka²éÚ1ùt-Ðíéz±zsuêøÛÃøøŸêÿÿéaxü?æµÎ:¨ßºVÎòøÒµlåÓ2?ÎëQŸ–=ýùS¥¶¡Ø«ãäóüåSÛß§Ù>­àšòA-eµÏ¢ Xj¿] +^ýóÏ¡s_ô~ø»ºøX'|pó6ÛoøÒµìÓ'»¦m> -׺z;>­{ÐÏ•a?0CâØ< ’D²cPË:Zp Ñ”òií» mRBé( çQØÈ–a¬£µÙ–ÍÒX_º–ú<ªøaªÅœ¶uÁ‡9Ø[3ý\ê˽7!Jý9:"Ùƒ1¨Å&V;@,Óá.ÞiãBHGI8#›\g¾TÿÉ~²Ö0í`šŽÝÔÜÛ°y¬ tív«ø1ë&$.ŒA îBÀ0~šJ×é燦„#BI—p¶—ñÓ`™åõOu^~i-Ë0`^Üí:sk‡[ÇëÎH5éÚí¾Á}h›wz N{Æ¡–}Ä%Á^&äyN‡ké- çq`lG}g¸›0/]ËÁiø¨o™…†vò¨Âqó éÚíQ§ Ô<â?•^€hvajÙªÉÄÚ‹öõà1ïÃiã Žp…l^êÔY¬ÐÉa7[Ø´¨–i°Ëaç¥ÐϘêKRŸÛ¼¬UÚt¸–­ZеCXy—^‚ÓÞ‡q¨e·Ú!aÜ&óÅ¢§Ãµ„ô–„ó8ð«ÍubYl—§J+6å·–úDÌM­“°¥-ŸpØgÀOOÒ>œ:¹míÏuê+=·hÊ7¼Z ýNñ—¡^ ƒªküMz‰ï¬9§Äa`ÓQ̼´–}ðŠõ«™ì'x=CýÌq¶—4&¬ &(uJ[z N{Æ¡–ú æ]JØê3°5ŒúpÚ8\‹@HoI8oaýÀ«¯mOö¥kYW{"³YE,·Å µ%;žÓõ ©ÞΧ±tˆ þH“ š}‡Zêô\߯&a>Ìo}6i!„´”„ó88wTKzøo»Â”EËJÏû8P°¾W…×ߨl7m&t´KL:Dv‡&¡ÑìÞR5Ãír’°À·>Hcºq-ØÒ´¤„ë80¶±¶™!9ªkñE‹™œƒß#oY˜yÑÔq˜ÑfjªI±÷BˆiÄ‚fÆ¡–êAá G—°sôátå–.á2¼“›ñ¬«=9:ŒÑ2 tùÌHFïæîuúÛG‘õmÙG¸ñ÷: ¹cšƒZªÕ5ŸÏ”ã˜Í%ôœ4“ è³_F€_lÝ`~ê￸%‹–qý[ë³쪊i‚¡Z«ÚÖ ëÓܪ|s”„ØêóŸ; Aòż¥¾c v.ëÓ±õ!úùAZ4Ä&³I —qp¾±r(Kuäê~éZª«i«Î¹ºä¨T'ßáúÎ-cÐ6-/9wˆ2à­ ¢Ù‡q¨¥rnf$ÁÜžÒpÇ\ !¤¥$œÇ±UkUѲÙRÇÆ-ÕÆ XPßeöªí‹­Ÿª8y¤k¿Õõ5ÍbÆÝ$ˆfÆ-8PÜ$Tû4÷}6iሦ7%\Æ/mŸùÄÌ¡1ÃÖvxäó¾ ¬qÀ÷wP´}9ë`k§ØLÞ €÷†ê1Õ×,ø úÖic BHE 8¯ã0aºnÀ½t-;½ë¹~˜¶4±•Ÿ9hó40Ÿ4^Ne˜7¯•ãD³ãPËŠ8d¨„g¡.Hc5áJ!%]Ày™ç0ÕôÀ‡-õ3)¶À_V[ÖÇ12øX°Tm/J]Ç=¼Ù^‚höajY¬IB‚-ƒú>H‡´BZJÂyœöÍ„£¶ÖfîÚK×RƒÕ¦Õêl¦êìÍ›¹ [Ð6/×G7ô9’ š}‡ZªÓ4Â%lÕ•_º>œ6×"ÒRÎã ³o/'û»œ}o±Wí¿:æu"¶eâ4s5ˆˆù:mÐ0¶?×Åÿ§½ãíò÷–!o²›' Þ¥;uº€ôuî‹þx7ÝAÿÒ·,âTßàÉ–€f>­®ß82ðGÚ–„ÓÈE¢õ£Yz AîGËn—ƒ?†„©.O¶®§Ãµ"´t —qpb\ÝôÖ7{ą̀‹Ù´uxÐeÆ‹µonyIÛ¼UÝÑ#ê+¸wD²cPKývª>M€m5L]¤1—ºBHGI8«®Býį,Z‹²ÔW ØD»X{宾Ðbí¢á--Le¢«¹—ô@Ç¥µTcTไj¬Ö¾ÒÆ!-Zº„Ë8è𫆭–n2“ðÒµÔ×{µ°|ígÅŠÞ]ߪ’H›3^Í øŽXF¸ !A4û0µ˜á]›„²`~>H‡´BZJÂy òÔß o0ó/]Ëî¾êÛ`ïËb>©¹Üõ}±(†ÓÙ ”J‚Íž}¤ëØB ¶4-)á:FTë<³X[™lþҵ؛lÅ`ênÎè^¿Z{¦êc{ж¤´éqë;boM‚höaj±Ž‚½zôCßiƒK!¤"ØÏ#à,R]mìËÔ7iE85ZꄳíÊÔßÛÂQGmÇFiû —µ0/·— š} ‚è-8T/ö‘“`t@Ú§©±GHE°ŸGÀ€ù5˜ ³ä/­ÅnÅ=hõ‹4/¯Œœ‹½•#h,æ Þ*!¦úÑÞB ÞReÙ¦²$,ÈëúpÚúp-!½%á<úûՇûb›ÎX¢EËÂýܺŠÀï0•‚Ø\g@[ 9]û]ª¦¥C,ÕX: A³ãPË´s% æè÷}FPÓµBZº„Ë8øÙ^|ësck©~&5Š:ª_гÚ sŸ<†ððZHÍ>Àá-uAQ'I¨óÈÔ÷AÚ8¤…ÒRÎãàÜX?Öé`p`B 'Zê›[mêlk\Jn‹@›„&°Ä¬5ð÷ô¿Ó=mì¢Ù¼¥ªYlš“€^YtÒðRÀÿ.ýÄ~G5a­Q?> >½t ö³V7í˜\&³”O{õåmMT¿VÑÖi]íÀܸž_´Â]Ñ0îD ~FŸZî’HAñŸFÀ Ïñðr'“}Ð/]Ë¢(Õf¡úuA€¶ú¤ôaœ¶À¨Íµ Ð- ~ÑìÁÔ2M<^èªu-}¤ÁU@Šÿ<_Pcit«¢Åz³vá‹[ÿÁ+{ëÜl‹_§± †‹ÚtQ›Ñì jo¡Â! *8ö]ÆzÚ•BJº€ó(øŽ‹`›…àÇ¥– Sçlf¢ Žê„w{.~cêäïþ¢:«ü{ÁÖEcÍðÞzË€94˜¿´¶HÞÐߥŸØÏ#`4®N‘ÜòÕ/]‹í±¡¶òB‹¸.›±´p‘²™ç^QF‰º„ Ù‡q¨Åòl ! ÕYšú>H›qBHK—p÷™lt‹M엮Ŷ±m§ºß<3#eÎôPg3{àN›ù´ýÛ¥!ÆqE*„$Í>ŒC-õU²eLH¨¯ÚÑ÷AÚœKi!„´t —qàm\«á·Ì ’Lpñ£eGÊѼÕg:.Ç-±U'kÒHëÀgÒó€Ç š}‡ZÖͼÄ&¡6a¶>H‡´pDhé.ãà—V_s‹Cu¹F_ õAìSûRìÁa¾­ß{ƒ†™A&FCì¾Y$ ¢Ñ…1¨¢š€²pQ¡.Hwg ¤¤$œFÁ5çá›\Õ¶ïXOGK´íÁƒo‹ÕIȸ0ɘ´9ª¶þê¶>ë%ˆfpm½Å79B‚orD¤CZ8"´t —qpÍi/+’§FƒD‹ù6u1Wg«j^*¹#ÈQ,)%H¬á‘6@}GÇ/’`ŸÔ[,d…]N0b1=4© €4”€ó¸Í´`X¬ ÆÕZ6ÆXÖú" #lÂÎÏjI@SжT}ž½X^QÏ/š=€Á[ê€ì7•Û›í{ m ®‚ÒPüç10‚Z?e‹•,+Âê/]‹õn!SK¥E½OlRÎõÜ2!í© [X¹1D³ãˆï›.ÐZ¤CZz»„ó8¸â¬‹X[•o b#/]Ký¬‘Õ â-ÈP±Ø…ÓÏ<Ѿ6D±d€Ò$4š}€Ã[ì{{lìsë» DWB) ×Q0ŽZM·¦Ó‚ô‚h±T‹ü™ç}¤‘™áZ!-%á<®ÓfÄ.ªµ[-³â¥kÉ…œ ì“/¡àiK(Kü蛇‘ÑìÂ8¼e²] C¸„Év-¢Rw ôgW0¸ÏC =Û OÐÔWÛaÏÔ2!b6ïõ‡@2¾í|×Ïæ°]ü1hsÄGìP4Ä4ð¬€Kš}`ì-M^H°á¾ÒØKt-Zº„Ë8¸Ÿk9P¨ÃÏ%jž‘/º)GÌÜv˜Æ‰‹´e™Ã³uˆjZ–N€“ŒŠª»<ƒ·>꥗NÚÔ¿®ž4ݹr©Ënì'×ñbÿ¶µŒ˜zpÈ,Ì>aêY̵lz§‘®Ì3Xìî„Ñì{_lÙŽAFIØ®uÔ‡ÓÆáZµ çqЊى ºN¯öa§ó†:gÙÎh©KT³•f«Ã¹VÓj]4— >³¥û»-’ŽÆ4åƒZê¯b/S˜-é¹uÒì‚àߥžsŸÕ§/µ!&Œ#|{µŒÜ …c³Ú!&ÛYéø $i¸F“$CÑÞ–ú%.vZ°´ß|| ª>œ¶>\‹@HoI8ƒÆêe›‡u”~bkY™j_]sÑŽÍSeê놅ñÉ4u¢`j»#–…z š] \è-ÕËc“°ŒH#ÂE%Žp…çH0ûÀU®3s$¼ÅöFËX@u N:ÍvºÎÑNw9BXŽ>®It A³› ÕR¿Œalyc]}¤­i!„´”„ó8ø«™¹¶PÃÌT¤h˜,ZŸçÂL]‹/­Œo%h{žGŠÆïÅ#„Ì‹>Ùãwîýàf”ä;w‚Âõ“€“þœ6ìõÞiWfz«eE:ÀlqW›u—º|·sPvjj‰y€FC·Ä»£cÍŒA-UýÃ4`'ߺ@^ ð³_Fà1S,ݱ‹0,Œ™zKñ:=v2ÀÖõÕµtŸqÀüã¤@‘·'ÀÄùL‚fÆ¡–yäD( ÎUE$-b*:º€Ë(üÔAabZ]Cí~êÀ[ê‹ÌCNOØ–½­úêËea§q†`‚¿ˆêɽÑìg·¼¥ºˆ8»„Õ’¤º>œFrµ„´”„ó8¸›T]‹Ž¯õ¿8±ÔZf%°¹c3غðäŒ 3£ë4v‡ ¾‘@¬Üx ¢Ù‡q¨Åö ! ãȉ^}6i!„´”„ó8ø»mO7È1~éZì}·Ë"¾ xAkv1|ü°ˆüÐøƒ”Ö¬[\Œxÿ( ˜k=8‰>U€k(—1pfî63Üx‰†jÈ‘‘ÈeëhËTûXëk1• Í-˜¸ô „ù6ß)Šœ |·­zù¤‘ñè8Bú¹€³þôxýxÖÈ|¹—®Å2æpÅÎò ¾ÑŒÛy(Fr!³ã…°ó=c' hvaj±½ºÇ&`ÚYyD]L2æÒA©HþËø Vïy²ãÌÍÚÖR?ß}æ µ¢XÛ€W~7¯¿ÊX-ÈÑ#f¿®PD³ãPËÀ¥¨$Øq£Òõá4Þ[j!Dhé.ã`|{|sŸùK×bYÅ'€‰S>£©h„Ÿ7n…±nIK‚höajv~’00H}6i!„´”„ó8èuØB´xt GD¢åð³âÇÆkê[ƒÃÊ„¤u;â{Xòa' hvaj©ÞåŽítJV¸GêÂIs=\BGpcŠreʶ,&×´i!„´”„ó8¸z©“älÙÕ-BöQk±œQósÕ²3‰ˆëNÈN G‰V5q‘‘ìÁÔbYrŸ¹n­‡â{ÞM!¤¢ 8Áã¬Ærxf„Š­Û[E… ; ‡°ÿ@#DÚ&®ÛB aç׿S‚7 ŸÆÇÆlÓw/ž4B®€Ò—ü'í™ú<0ás®SeÁt´ÔÅ\Ø­>%œ Z±{B¶Eâ4v”gXÈ@Ts2öD³ð–Y»Ô.Á–}¤QïÀµBZJÂyŒ·MÈ2/ë€ ã—®¥ú.gÖGFgGnÄ.¦×´ÅÃÊðiï–íÚ Í.ÀÀ–rLŒ¯ß"ðös«§ ï*ÂUÿy œ-³Âwp¹cƒ¥Hc3rÀd€MalVŽÜŠÆüÆ-Ž@LØ $½àÙà•`Än™Îk×ÓÆà*!•UJæ4~Y^Ï`=¼úÒZ,ý`ÂÞÔŒ ¿9ÍöùX!ÁiDÐf$bÃ!¢&ÁiïÃ8Ô²3EVÖVP}8˜ZBzKÂyÜ˯ΎýΗ®Å¾`_«þoñž‚ðtúµÿ³/ïÙE³pxË4à€GHy€Š@F‚÷¯?K?±ŸGà1·»¶V{b­Åxlmº`Ûw³ÝŠ™¶Nû ¼õÛÄo‚dXn{‹ü~lü#­҈»¹Ž)à2zSóùúÎ8¨ï-ëP½ió+·Á2Ì*y`ÏtD4ÍI{E&ËÉ‹?ÏÈØk̤%“¶·ìÌh&u)ûH\¼“8¾j½ëÏ¡­3_´÷ü‡ûßVGcç1[o™m¿{¡¯fù$¶`ËÖývÆÁix{¨9Õ[±€C“à´÷ oÙ=ÅÐ%X®úܺ ix×A—Òb?‚kæ©Óöv+ÖÌj)Hã¬>ÞŒóä[á$"C´¹7#_ý@L(œ‚fpˆ¼Å¦n`]½õ1ùŽTÓ¡¥K¸Œƒ.ÔÂs°6± ÜLWËÁã?æp[œkà6Ïö€‡=hgWQ „Uºè%ˆfØ÷– 9_!Áœýeo}8m®E ¤¥$œÇÁì0Ûæ™X C‹†úRÛÙ=?‰wÁÎö!{w ú™YÑ¥GlôBC‚htáYËh(–66×ô]ö\Ï©GHII8ÂF<'0à+yéZF­Zì¼eNˆßU÷`ÑD§uf¹ž@LÌ®sAú2ÕbËœÄq¨ý×uá´ù®„ÒQ.£`Î}µk£×aø7Zl¶=.œIGr;îV(“mжtxžÂn;…Ý Ép†-ûág)\€•ŒYº.œ6W"®cH8‚/ãpø¥N8úÒµ#3n‘|àð(ÁÛÛ»Ã{PzÄ‚\ gAéþZ¡e™bìÜëìÈ.ŸôóCÓ@©çÎú{ñ sÔFÖšQÃÁ\þu²Š•$”Ÿ]DâÜöŽì5ýÝŽ.wÜ"æ GÈ)ºq[ôiìÄ“Æ1oï_WONê{’óì9b¾Zn-Ûì¥ÕGÏu£ïi‰fpF’3½!l§t‚^:ˆ–Âí½°¬¼¯C}, „BHK—pw6Ýa¶x"p´X˜ßNÆî³×_‘æ» 0;=  E„° q%ŽKzö\‚Ö2-Hã #öö[£ïõ7-„–.á2ÆÝ&¼©ë›B/±µXʲÍK#[ù.`sbÁ PÑšµÌ¬±â h“ š}‡Z6¿yÆ%ز{íúpÛÔ"ÒRÎãàŽú\˜KkÕ“°¡ ·Áé°î±M;RgÖÔilOqq|‹&!è^R4¬ƒïÀ»ÝwAÚ8¤„RRN£ðDàÉýò‘f¬µ¬xáç2{fäºsja:†Ó¨Nt°©õbšÑìÉÃÞ² C®I˜gÌ«Ñi$»BHKI8ƒ†lcÂbV,4ÕbÕBLþdÁe ÚYˆÕŽôÕ×l Òf¯Ù7̾îˆö.0ßy‹—œ”„eC­uá$tR‡Hkp—Ðæ—à˜(¶_º–/ŽÛO½ûsÛ˜Åà4ëv5ÄÎ)?$ˆfàð–â©®’°p'3ú eºk!„´”„ó8xTsç^¬ØÂ‹¦–ÅËެiÕ PuiBÄ–$N]N,ÞÇ¿[•¦£ãíòŸZ‹U,bòÚ~Ø8R$ŸÔ¿þ,}û¢¿‹@Ù¼­Âü"6˜‘±-áÕ„Š!Û2¶‚HÀ#˜ܢ®'ŽNIï©5l°­.û»³/¶µÕuà´oåà–#¤² 8€vzÁöY±ÇçInjæ¨l¨áh ¾j¢‘³f›z °Ï̵“ÑìFW- ˆºûÆ®§¥£­]Àyô©¬â!¢­ÚAŠ–…û?³g,Ù gÛB½Ê qÀÁ+œ5ZØÝ%XÑ®©ëÃiT¢p-CÂy4ÑJ.V†…ü¢ÅV¦–â¸2‰õ`ñöi*XA’|æÚtîË•cçŽd¾pD‹„}¡ G$A* %à<?E€‚~ˆYè·3¶¸:@ ];RpŽÀ[¶‘9_’°Î~ŽÀûXç8GàZ!-%á<®a.U¸¢Å ±–¼µ%(:üdšÓÈéeÈ#<›Ö$8í}`éí-;v©C‚b»>œö\¹µC„Þ.á2¯~±óüÄ4ªà®ZfßZañãJžTˆÊ.¢}òZ{„…Ÿz ¢'­V£eœ¼`®Kðmìè#6ºC !¤¥$œÇAÇjÀ)˜²;ϵ–‰w>Xö踲6{˜ÒÕœñÆyöÒ¤ŽXpL£I=úâ µ0vÑ$ \=Gƒ;îM !¤¥$œÇAkd¤Å6ÑÜZfÖ¥°Q‹CؾÖ^ˆ$v{¸m¢¿/^ÚGì¢Ùïï¢Å^¼ù± ¨êÍ] Ÿšþwé'öó<^åGêí‹g¸Š ë0ø‡Åæk‚f|Ø;íŸV Ä̲é!ÁivoଠÞÔuá´gôót’#¤µ$œFÁlªj*,Uoó¢w–xXV&±YfŒ…cmidáY§Q° ‘Ά°ÿvœÜ¼D„è*—mœ{eˆ¿ªDDh „+(½þÜx) ן“ïO´–y`º¤­…ðæa÷aY·É׸¾?±XXïè¶Þê89É_QÃè?±Øø­ƒAþJ¨ „T”„ó <;ÝVQù“ëÞ°¡ÂÕlÁ~|Ï;æ¨ÙvCÇ%hdšcAˆmŒ‡·`ŒG»Ðóð†Âk°ø—­ÒØÉp„p ]Ày^Ï'¬ê*~`‰ÌÖ²¢SuÀþ× î˜ˆävÒ(èAÓˆâY’’ š} gS™–^¿`'2ç®Ò(éáZ!-%á<O6ÚæcçUqb¬µ#Ó§æâeLwÚëê| ™C‹×=uÀŠxR š]‡Z6ä6 ëÌõ˜wAòù¡é €t”€ó(8²)/“¥‹3J-tÅŠ™v”ÅÚéc˜DÃCâ58BÀÿèÍ.ŒC-v’Ø’àÙÑiš+!€tt—QÐÅŸVÏ„^ý`U´+Ël2к˜Ág™M&!8ýÌEÁÚx ¥ Í.à¯{ˆó`‰mS׃ÓÈþ¡Žp—e…ÁVÛÙ`è#Z¬xKaÍy{ë­>ŠE6ªìÞ9m‹&«ÉÜ#voD³ç‡Ö20Ö* »UèÞ[N??„–’p§ÆÚ¿E)Öb±–—®ae…‚Õâ­Ø?,r;ÛÉ~ ˜9-Õ…{êB°“ ]àD³7Øy"Ûƒ•€yñ=Xï‚4²ë\ !¤¤$œFAc¶N\ë­ð©_º–mö2Ø<&i{ ªŠÀ»AUÇÂŒÂrB°be“ zU‹h)ôÛCÂB?=ú ¼×Bi) çqøîæÌJåððb´¬;W1^ÝËê‘Y\EÕ¿œÆöæÀú‚B¬Ì ¢Ù8¼¥:1J‚캉Eªëà—Šb?‚.ðÊrˆã4ù¡¿h™GæJ³~¢­K,Šb™ÕÈ—Ÿ=…fÙ¦Þ ±W|k‚dzˈ¢%M€ î» 4,WBé( çQpá²¼+o=|Q-õ•ài=&œ~]˜ÝO`‹§mQ±!›¡!,ê^: ¢W%¶EKጠ¢Ã­ÒÆ!-„–’p7ͬ åE ¯å‰†Ý÷úM(îkaiž¡vk_…Ó¶ŸÅø†ØQª¾I.pþÁV&¶…€Âðè‚4¶å\ !¤¤$œFÁ­®aÍüÙ.åÄ0¾Z'¡ä?²à·…",׆¤‡ÙîïövÑE—E‹}4Ûc0#ë :˜Y*½)à—~b?€+²c²évµr!¬›ÓZf¨îÂj÷“XèÒî@Ž qbè`™æét‚ôʾj)V¬ç(y`¸`Š]ˆ~~j‘Ž’p#¼î½¬~’L V°Ùb®/4Ú·92ùmÍä4®þØü%pÄ„E— ²¬r ½añŒ{±Ï ]D³ûíM¶„†p'{Ö–/–~:óÖ+o1»ÎŠ©»ÛõUè'–›ý9ªôœö>ŒC-ûÆû‰\‚íôî]N»yØ{„ô–„ó8¸%]gÌ‚ôÓM婼ÅÒyœzð` #œv˜e؃Æ.î À‚ñ&Àiï;ÌÞâ¥W\Àº³|«zpûVÔ!ÒZΣð9‘l¬ãÆKØÔ2³„ç`›6;ÓS&tir6Þ§?Û&QÏ.š`õ–úm óc“0²&; s‚Þ¿þ,ýÄ~ß6q°òë0¾t-v¶É’Vlõà5”vhÛЛ“à4Jž3c(«¡„Ñ£|öh­jD«Z¤QqȵBZJÂyœ /³ƒû…‘*o±£ûJ….ŸP=•lf«–„ ÷¤QÒm6O'CÁï´÷€Z¦ÞB__¶ù уÓÈ#„ Îâ?ë2ËDzmËÚIJL Ö·³U^À®â€õ/–H–Øà4@X±Ñ(“—Çu¢Ñ–qÞ°a,~Ô-é:pu‹ŸÉp„T”€Ó˜ôa ’X»î~ÅZ&–?¬ôá;¹ë'¯ì3L"‘lÓâú»’²p™ØE{8Üì-¬žÆ§©ÕI4§ú»4ûyô8F~®~©µl£ŸÁã‘¶’°EÎ;mA#¾½cO'u9z ¢W?)ÔZŠ—‰„…å5£E8C !¤¥$œÇAç~çéNËœæ—h)»^~h]yx~à~ÓpÖq¤4ãÆ-. hv³šÞ2㡇€ydý|õ@ë×Á¡£ ¸ŒÂƒ:Ü µR¡Ø‘n-óΫ{mQ1y±PÔÏbôÒiÄh°A†/C@ÐìÂÔb?ª}R€ìÚºHc/ÎupDèè.£ðe Nfá„ÞîËoY™8Öe߀Ëå|§£à¸–h¸¨~"Oˆ ¢!A4ûð…ZXö¸I˜Y];ú e‹k!„´”„ó88¶‰Éâ¨Õ‹¡©aeµ9;»Î¬þ‹ûžwÝòÌp VœoD£ < o° \ÔPq3ëÓE¤ŸšBHII8‚¯£mO-,Áv0zê-V{[¢¶¡e/ÉÈÄB{| úe´t»±î<Ï N{àð[A ã†ÃhчÓ8J-!½%á<&ì°2ôb“'ÏæGËŽ0Ã21¸d³12XY*Z´%©°\uC°œuÉÀà-+¹‰ß‹[GÅØM!¤¢ 8á*ÜŒ\—µ“K òNpËÛ´°0€)mg$ö5h›¸<9#ËXJBÐìÞ²ÍÜdq v¿ÍÜõá4Â[ÔB)é΃àé¿mcl|ðØ@4XLO½`Yn{¨3 ?§«Ø€lJC¬#kkKBЃÇÔ'¦]ÀÀMóèÂiKœv%áJÆ¡íÓ(8g?Á4ò¦šhÙ˜Á0[)”*fVölÁIœë#ýÜêMbõ’à´÷áÅ wß'[ÆVýqeDôá4ÎS‹@HoI8ƒ.£™‰É|dø‹ ê70!ÉQ’e*ˆ[Ïð4Kиö‡Î…€7܈„ô燠'Ä—·ÅÎzù¤‘Ôãõœ½ÓÜ“L‘„[,WÐsL½aZXQÔ.¹±8јmin+]åc.<,Ñõ%™z ¢wedFË6ºóìVéñ>VU0-Zº„Ë88ß›ýAðïð 3¢e?˜9:¡TRÛ™ă3Nû$>õ+uÛKÍ>À¡K ëÄäQõAúù¡i!DèíÎã`Œj`*ÏÂKb_º–ÉË&yÏÚ›õcð7˜?u^˜~Ü¢G¿¨µ ïœ'ÿÌ»_C¾ÓÏ-h)(ç!póoXý”¿yéZì´øÄ;€QÏ`eZ–Í­¼gfâV*®zŸ{Ä‚ÚGM‚èEEw¢Åj!ŒM´±"±ú˜Tu'´BZJÂyî4b3,Y #ZF>¡b[–ÚÎTx§‚h!Ù1“@ÌŒ ¢ÙÅóC´Ø°y(lYCnïúpÚ8¨D\ÇpלŒ%ñ4,9Õ0ñ’sËQ°l¥ÂýW”3T1{$ªãR¾£GXѨ^‚葵qZƒm¿ÀØ%k[×…Ó~“ÍÚ#¤¤$œFÁÈ‚*l,ÀLZµT´Ì¬Kj/‚•fÆF›e¼/Aãè®ñlK¢ï%ˆfàðË#µÅ³$L~˜E}F"²k!„´”„ó88óÛRqÇÅïÈ‹^Ž‚ju±Lßjµû6æ -@±±s vÞ•D³ç‡Ö²ún¬$ß}U¤CZ!-%á</X…‹b *î²^•7̼œÂ’å-¾ce Qv^4Ž¡ÐXb¢q ¢'OÊ»|Ñ@ÀÈù?º•‡J8"”t çQðK›µ2ùy¹h9p›n¿Ä†/“@q©û4ênÍ ±ÍÜšs"Ùƒ1¨Å’‘ÚïÖů ñ.HëϵCHGI8‚~1¯¦CN%«šFË‚J¡vŸŒ#Nãsië4\ÖÃ6°´£©ãšòÍ]RËÄ %Àb¾}¤­( ?K;qŸõçîßÌíÓiÜ݉–‰®vÁN^¹±²°ÝilÿíÐ2–JØK=úÒ¸µØ90ìdº„‰ ÑiíæOBZJÂyLeñýS›°7d²¨Á’‡p!\ó:ç¬<îd™SÐH¿ãQ.oAð¹Ih4ºx~h #kʆK/ê» lWB)I —Qø™+úôV§ L =b§… ¢¿˜¾µÌÌ .‰o}L~i|ÓBi) çqÐV,?6lWK5ìÈ•ªïÀì”%--h=‰Ã6Œw`x“‡Vخ𖕞]–bGt!¡õ™I˜Hk 8‚¾~á…àûÂó­¡°²Á²2‘z/÷6†.~n5˜±óŒhH½ðpCk˜y9f`تu1ùù‰¦„RRN£ ·¿0tDöb#w”á™­úÉî§•ì°³U?±³PN#kÏòQÀNRöDóò— y¢(¸ ®émâIãŠ@W@)(þœ;ªSª/Ç-¶áÅÁp™…í¶m¼1Ìæf§q¢’—ÂÂÓ‘ìó€·àUkü#nÑh=6é „Ttç1Ð8/ÞÕ?m^#ZVäM,¶¸²eù¶°ŽÊêʼnI›ñÜvžWkü¢Ù¬­·0•6X&íÖõ@Ú\¤¡øÏcà’lÝxµ½EWyíŽZFÞ}SXÀËîŒâ•);W^Nc……åk ¬$Wé$Í>lÀ‹)Xz$XLaêúp{Ô"®eH8ƒñ8 Búá›™7¹¨eGeh\–€’§^ó¹ÌÈÒŠU|Ø@,ÈÓmD³px‹m1ŒM‚îû í>@ !¤¥$œÇÁÌgÛÌvwÝo=Q‹ßÎ=Tn”-^îØ }iÒ8ÝQü¦BG3ýsIÍ>ŒC-³îÙv Lfk}(¹­i!„´”„ó8¼Ô²±?÷"Òj^m|§Xœ¯ Ú%Ósж\\=éBˆMOºÑ£ _FËÀ+/$a:¸|QN‡ki) çqp© aÄT ÷®¢ ѡȊm¸tYF6\@ØöËÔˆdÀï2´–ì3ëXD³×Âi*Ẁó8 ît“wÖjxéZDëê#ò ûÇÁPÓàøI[àhXq_ˆ‘×KBÐìÞ²!¥¨IXiÚ£UÆ?´pDhé.ã`T€Õpa™ŸøSKáÞ$̸ùpöY»'±ˆ´^'®ðõ÷yñ+Õœ]ôâ¥GZËŒ“|M€×pR /ø÷ÐÏÙ/#ðcVX3!Ì52~£–id9ĉê!P6ra°ŽAãÔÔÄ/BVí ¢Ù|>opR/$ tÖõá4ZQ‹@HKI8ƒ“¾¿VæzBH ZVTçuâ…£VjÃ-w¼ÌiäHr8Å IÍ>0…{˲ðzPE¯}¤q€+!„”tçQpi¹òº+#ÁìÑ2¯Ü¥ñ SËÇöÏÆKêœÆRÑoît@ÜëéD³ cPËÈ… ÷ƒÔÃà!˦ƒÒQΣ ‹8ï8Ð5ÛÞ;ÞÇhá¡pÜv¾bgÈ3ó4Ü·‚tò@l,ˆD³œó+àíİgµí}¤qDεBZJÂy+ehrß{k #g¸Udáõ% u:à'V À½'[“ôî±·hØÜ4¹€}Cd-ºp 8*)éΣ ²1çÛ.´y{Zf¤0Á=°][ÍÙ:Ã2Ï÷=hóêÜ3ˆqdÆ—$Í>“ñ–‘•ªB‚•Qìû ínÎÔ#¤¥K¸ŒƒÁŽ Ç”Tzì¥kañ±y÷ )Ûñc;Aˆ0:ilT2 vup/A4û@Ã[†‰ÆÜ% vh¢§Ãµ„´”„ó8llÃão–ဴL‹ï¹DCus&¥ØY¸ÕêÁ¢´ã°ŠÄ¹h”8ן­¢vãnôÂÍ®Aa±Ï¸ $¤ƒôCÑè ¶o`=iÿüðÌÃÙ…bag”k-3*¬tèÎ*HëÈŒ\z6ÉÜϲx .zÛ›„Žž|÷/Z^ÄæÈE¤­i!„´”„ó888T,o _ºP^¬Tô°°~¢Mì¸y| ú™×Ëc‡XxÒ-$ˆfȱRKÜ‹w‰éëÑ…ÓÆàJ"Ô¦€ó(84Ë´UõÁcM/]‹W,µ¤4Ô¤ð˜UÛØç ŸYõ٢ٰkêz ¢çEEAÔ2íŸ<¡äõ¨‹É‹V5%„’.à< m¶ÒѬÁÊ›xZËŒÂ<ÈÀ³tx;ÃÍ£ ³[½]‡ì::/nDO¾ÚZêKk¾JH°Ì¾ÒHèt-„–’p‡JÞ89ø ÙZV\½p±XV¯fn%SÍx:}”Å#*^ï|`–”$4zð2Z,Éã± ‘í׺ ÍWB)I—Qð•œÊêç ‹ç~D ·‰‘f =qÿÒJ µlÒçdYÿ`GV@ š] "ƒ· ž(ì^=~~h:!%à< mÙ¹?¿ñ˜ÐKߨ¤=0T±¯?º]Ög—­`Gœ´}åvºa¿ÉÑIh4ú‡·x]§°Ì_R¤áuºBHK—p‡nö:àTÀT-+¼Yyg¸XëF÷לí#hë¸ðj¿@¤[7 ¢ÙÇóCk±k ›€Å/ÌP¤‘ËåJ!%]ÀyüÚv¾¾¨_«kYé]à….8Bh†Ÿ/´hdZá£jˆeôäôà{Ñb|¶C# ¼éªõAî•@:JÀyšIÀÞø—䥵ØÂÖjÜ®êŸ×•ïÈùÉœ›1hTcd™ñ@Œ¸'$ˆö>PQ-8TGW}Œ:ZÑô¦„Ë8øJÚÖ¬|±¸5½µl\¦XRÚ‚Œ˜9‘–ÎvŒAc¡=ð ¤ ²ÂšÑìÞR;Ú$èr õA m×Bi) çq¸W²xfv?ÎB¯D-–ïå k¼Örd5Õ}ä‰-ÒH’ãj1V³— zÒiÝÖÂï$$ð`냴oÈ@ !Bo—p7[µv‹îÍ».ZîŠYF7'Þª[­ ;öë42®°IÙv„ÑìjA¡Ý&abúeô1©\\h!DèíÎãà7‡ë‘ »ò²öÖb7FZ!‘…ÇWl×Õ•ŠŸ"mÙK†X™}D³Ô*QË€é!$X1¿®‹Ù«†„þ÷PÚÙσàÈ,¥ >»ßrе Êliu.X˜T^XµÎi\ä‚rm ÁšMBÐ~AkÙ}Ì%`#¾ëÃil½Q‹@HKI8Ãwàbñbw¹sǺµH™)>ż…‡yí(ß4ü¶hGŒ›¯Š)¡ÑÚ³Ž‹8Ût, +®Án}¬~QvÓ¡¥K¸Œƒ+¨L†:M ¹ÖbÇБÃ6òä("«¢%íeß÷­ClXf4vуßü-V§ °ëqâÜ»p›Pc÷gWOÜgý9‹Xl"«ˆ¸–v¿ªÿ´ò¢w³Ê(Ò·1-cM?X~=ØECþóCk°“<ëcã·LƒNþ:©lž÷ï—zb?éï“DZx6ÀF7«µl¸÷x¶ÓëÙM‹­mcþãuU#£6‘Q# ^½”R×bÑš€RXžU]F)%W‚-Ú®;ÂßA»h±|&ït ô\FüÙùÕa•©ˆDtŠù­ú»ÕóïÙƒfZMk(\´¿M|Ï­ÿ»ÔûIŒŒÈ‡_퉱6hkÙr°LA»âuB"W]¤ ³ˆ¶ …ÝSÐfT‰k‚ö3ù­e '"ÃÀ£#êaˆ ¥ƒÒQΣp×qàbÜr¬Yq!V¿²wg©Nó>qfo&áwñ«þ6­¼2RŒAóR±ÖÀz1gŒ›l( å=ûߥ˜ØOšó‡mMcgïf¿¡2˜f9¿ÛÆÃxÛÈ)Hl!5%¸ªñ9ë~Jo° .æcˆ}éúºüaTM) €ëçügý9¦uÙXî¨ì•‹–µ¸C1ÃXÞ<6ŠÚt·‰ÕvBUˆmdyIÍ>Œ#Z&”¹ ë¤FKÜ.-„½]ÂyþƒÍœsú—/]‹û ~OD¥Wdšø}ÃHÄlˆÂëfC‚höoYwVï’„•{ñÑé燦…ÒRÎã9Æ‹_ÏùÒµTûŠÈ÷:{ÍëÑ£~~*iØW|M ±óúˆ š}x [&5R‚mX¬]NÃ$S‹@„Þ.á<wîw¥7¢øK×bEçm{?P¹¯0¿ÎŠ; qœ4θ1-„±Y;A³ pxËÌ­–0O~Ëû˜ýpT(!€tt—QøŠs)¬WR°«ñÒµ¬,Sdi¤am<2[àˆ¶Õà «Ô+œŠ&AtQ h±ˆüñØ$,Ü>¿¤§i!„´”„ó8< ²³¨ïf \$²G ËãÖOÛ³Û,qÐîô´ZzKиA7`B÷ˆJBÐ죻it›Y">$Ì~»©ú mqi!„´t —qxDµ0ãÙJ`´ka¶Ýbw|[ÐŒm³] 7NA#¿täVBÔïgï%í§‚ZKý&qˈ$0¢õAÚ8¤…ÒRÎãð¹rcK`YTÇÛ¯WÕšv;tÆ9h›Ç&œÖhˆyñ½— š}I\;ä àú9ÿYzŠC”=<¼ºd´,+wûÍßæÖN®8‰!Ç”èfbc¤6ˆfàPËŒ ˜vþ(ê‚4N)QBiòŸÇàÁ›‘®ö `³¢eÂÕDÕƒ¸±5æÿLH>ma‹™5V1#¥£IÍ>Àá-~'OH0w±ïƒ´qH !¤¥$œÇÁÙzu*ÓãßxÄÄ4Yg«ˆJ±Þò{´hõý»˜^54ž¿{ø¯ÕlÚÿü?Ï/ÿñ—‡ÿå¿Ô¸ÎâCe}üåׇ‘û$?aƒ¡N¨ûã//Oó‡_þéá#Š×™â£ÝÍ7W7ø—??<ö'»Jv¨súG+Ü2ÔiØþRì/–”RÈGK1›«9±?LVMãVþ#ÖßüËbY,¥>;¶ÖÊþ°‚ÅR ÷ê;},VÜ©Àˆ?Ùy¬­ÎÒ‘s¾ðO;þd…áWS÷£%>WCK¶Áþh3¼ýÉ Õ.Û_6ûÃÿþËîÿ»õàê>Zñ‰rzpŽvÔWd²§ö÷OÿÇûÄ«Op”§¯¿ýKG}ÿòá#.WÊÓ8ý¯>Ú¾ëqLO¿ü#QÇñôåÃÿû˲éÔ—•8.µ7Óô÷/¿þ4e¯úLVZl&èïŸþ?ÿ¥ ÿ] ÌO?Øçz¬ÇÓ·õW†múÛ ž~v…Ö¦èÓË—*ì£ :ïˆï_þ ⪓öôõùg¥É3OÿåÛ/ù`g«‹õô§ŽëÛ‡ÓZåûÓ3ÃøôÏdæééW>;ËUߟþÒuðüóë·¿x«=Ö¥¤2=}ûKÇôãËÿ\avhêõø—?Ç0z{ôx5·ÍÞQ;/[6>O ü!ßþ‘Ì,õ£âÏôýëoÿøöïdç%¦M?Ôß>˜æ{}ööœmÙ0–§ö>|æƒYƧp]çøå¿}øԟºTˆÿ¶þ)ëÓ¯1ܱõ·ýí÷/þ—}}ú]?Ât<=ök«=~}ùëé×îèyñ_v­/ÔOi5?ýík}\!æú.Ù…[ÃöôóÛ_…9ìÃ$wýƒ Ã~šªÝ·ª·½šÅð?Ä;?ýÃÓïŸÿä¿ù:Ö÷ú÷íRê;f:-ãñôo|:xmðã.öžÏ‡~Ü™¿Á÷îùg²ð‡þ‡UjµÇ^º/ê÷o?ùt­ÿú†ã™Ê>œo ÷ ¯‰mÒoÕ!ùåÿyøåßÿ½¯nO„ýèÿCÿu~ößu>ê;bÝ.;ºúþå7þ\ˆíOß~µø:öúvÏÿ»óöêØF]"Ÿ¹Þœ_Çû_ã;¶§çoßÛwY¥ï ‚úÙ⇔žê³sþ}³—/l]ÿ.xk–ýéç÷é¿4ÆýPì`}&Ÿë›ðoþ‡2?ýOþÆXçÞúÏïøeðTí¿Ì¯µù£•÷³_ûò½´õ€ü­ÙÌ~²˜ÌÆód6Ù5Hó¬ÉÌ íwæD¥NV¨g8LO__=-þ–ö‰vúM ïׯ ýŽçïóOŸ·êìÓOHé)‹&¤?ñ˜ö}Ù¬ƒFüµ#\Ðyf³‹ÊÉyñ'bœÝÌA¹úIýávß{È··†X_ÆÏ✟~Ó¯¿ëXòŸ[?†úö'—]-„}²ûgÌWâ•Ýúz2ü~ë Ì“AXï?´éàÇ7ûå¬\ó¸žçs;ÑRUl¿ø·Ÿh®¿‹#§W?£-n{cÿܬ¸©ýÑ.Ï®ÎËéMé¾ÕþK‘øa ±/œ[í嬪ÚÜŠ®êðù»÷; 1šu³9¶‰é_É0¾uªÿòýu›^Íüß¿õ*ùœä_foèzçã"öøÜù0^í ô?~–Ž«æ(3†ß¯vÀ>÷?÷ø¯ß?·Ò&ôx_ø‰û4YêÏüåûO:Mbf„sYë“l¿ÙçþµûùµÓf¤¾$?>÷síï_{ç7GUØóçþýñgΘã2MõS±ÚþC]]=ýüòƒ/²]2YdúlÚ³×øÿîÍÍßö×Ì>Mþ»jöóûg³"x[ê×ü³Žòo}ýp?w¯fý,Ên(|€ÓC¿Î;Vü¥šœæ±vSÍ÷žøÒ=ñÜ?{âÓÏÿî9 ÷ß”QJúmІµ:|3ß:·öçgs¶ð—sV}ŒOÝGúåoþWs>¿÷Зï_ûéç·&Ÿ¯•×Ï?SýçË·ïA•êå¹Röù÷7çþ“]ô³No÷ôˆþ7'æm™êúîŽ ¨ßëž ¸] ]¿“Ïn8§ŸÌn)ÝÜXÌ[*Ú¹ß9¬Óo÷~¯OcÇð®ÿáç­DÔ±¾2ãÇò᣽ÛËVMIûTþ_P9öaäbÍT¬Ovœ}uÚLÖM»ùU?9F¼è'Ù:}¬ÿî_ñãKÏ¡7غ†_ÆWŽÙzô³ž<³bæF=ÔEQ?ÿõó³z¯ ÑWk$kŸmH°„vëï/‹¦͵éÛ??wý­sõ¿Ñ÷¬«ß6c|ýwÕœ½éAÞ2U ¡¯Ç=Û“×Pö‚B¨“¦8XþòZN ØÏÕö?cµXÌá£óÙÛër$ÿõÜæµôÞè¯'Kwrä¼ïãü ßðËæÕîéŽWù7ÿùãLÞüúìçtœƒþKó±ú_ûòõ4ýÐÓñs¹tÓÛ:¯­¬ÎÅvµ/ÏßüMõÈ·—¯?ºÎOj?ò—Ÿx¬c™{ê‹ÖV˵ªiTý»çÏìžÌTºù­VùóåicQ6µ¹?ßï²¹õkþòùû3?žº í~ãOz¾ó£]‰°¬üIì€Æ¦ÃüiªÓˆe|Õù? ÒðôãŸ?ÌC}ª ¹luÊ4gˆeßëkò 6 ŽNÕjÐøèO__ø@gó/¾þZŒÛðT5}þ0sÊzúG²Q|ßlëb+ÅÖ~ãMW‹˜q(¿\—;¨«>ÕÇÜ’šƒôõ÷¯?¿~Óh¿c}+ÞœCÊ‹ÁôÇpwŽÅ»M-öqcÇãá€äúgwG Ô9Mš¿vÔïRe1‡˜ÿ.ÛÙ›þú] µëôo‚/1›0Q?áÔ/xë?ÿh¬Ÿ]j»º·gµ·ÇÍÕ{ûñS°6 »%Ü7M±7>ÄÏ\'X?ßZ«ž#xlõÙãã«ù±S̃=×tÍÖú_×¾ñó\ý`¬þ7¸>Ôà´Ñ䳯ä#—õ<÷€µÚ¨ço§xß÷/x6ˆq9­xªcôâ xKyR`h­>Ú«•DL'ÛòÓDz¬°R ô­7±õëüÌ9ÁÿÿÕtŸk ¿éé ÍB©ùòÝlÊÌ ÌgƸÌtuá[WÍv<}ØŸºàQí°Í³ÕÝŸ~ýþùåK³Lß¾ÿ³‡Äêß¾ù¯Ý“í>¯ß¿xäÌ,üuÝ©žßÒYæüF¸¶³»½­{îÔ5ý~Õ€Ë%žóã‹þ2ÚþÃõ°‡þkÓéúyÌÍ„$„ýñ£e:N3cÿÓÒ…ñÿÿendstream endobj 266 0 obj << /Filter /FlateDecode /Length 29513 >> stream xœ´½]“&»q&vß¿a/Ú¾qφ¦UU¨O‡åÉ¡]K¡›¥N„7‚ÔŰ9çpäiÎÑÌõë'3Ÿê}«²g×Áà™N¼™‰D Häþí±{î;üÏþ}y}èzø·‡^Zퟗ×Ç¿ûáá¯5M}ÿ¼MÓðøÃJÒ?.Ãã’›—Ç^~ýô¾{?õãs7-O_߽qX×qyúÑ€´ŒÃÓ'ÒÖMëÓwúuNóÓò)ƒóÓÿQ“¿7¶czú¹nßõñ±~W³ýTÿòRßkà7O§¼¬O§þŠÃïŸþ{ݾþæô—ÿ~ÂëïêöjàïO¿œ¬ßu³ƒº·uÊî7ïÞuyޤyuùm¦›GöZçïóK üIqæõéo^j(®îºuퟦ¿z÷/?üãCš·çnÀ ýáwyRÝýË•žþô±þéëow½`$똺ù©ËÃ*¿ ‹÷ìã}~Gã8÷ÚU5ÿwû\Ïÿ/§óÿ|GS(NŸëö5ð—ƒg®Òüñ´—ÝLû_OY;E£di(Î{yët:šBìøvÂÛýûþÖÁuëÇ~Îó`yÒœÇaíVüûõããÿ󸇇ñy]¦n}üs^ÿ1ÿÿ_óú_†iîŸÓö8Îi}NããëC~ó3ÈØòù៰¼eÚúçɰÖiÁß[*¬ÔOéy™êÙRcåü¼îäbKu#k%}…íù{Xž×®ëw{ÅÚæõ1/ùËštËÈgÆÌuÀJ’ÿìžg™Çü3„ñ¿aXòè–Çq›3Ó„§b-sþDŸû^ŸÝÖ;Ÿ½¥Æš†uë.XlÙaÍ}~Ce-;¬mž»¹Æ²–‹²¬Zú·=]<Ù÷xÄC–¢ó ߯ç!/Mþxç!ÏÒ$vƒ<ÞyÈ@¯µ=^›ý2mÏKÿØoxw}žý‘|éq{î³|ãîí/ýó˜ÅÊ[C^1“Š÷øÿðúó×wCþ¶úk#þÂÂø§Çoß?|ÿöø›§ŸþfÊ_(D»zÊS·ß¶Ç÷C–ª_6,ÂOÿÞ¿ûá_ËSé·%w;>Nù›É|ÑíÓ¿@‘â;¿¬|êy6f>]~”àûõ§L7õÏyDyùOÏ)Ïë)zË_Iž3ýŠg”ßÎó–g†ýwO”'`:£É=d‰fèfÓ²#[r_ø·¢ú­BÂ%-ù¿C–vG™;ìÇsÊ”è8õ{Â5w™'ç=®ó?ôÓ;Œo•gÚ­ÃŽrë3å1aÁÉÜ3Yˆ4å™ò¼ŒÍyê2óynXSžÅÏÓɘ Ræ>µ?ÐiÈÌÇ“!‡R ¹ÃtþîLÑyCÇiÝS¦Üå°\Œ'¯ Ïýv6 a‚Xò¶§)í¸™{2› RæÞ¥SáSûYÞe·›FÓ$'–S¹6ˆtó̓Æ>¼.‡„Ž3ãÜs2IË3ÍÿÉëÊŽùœ™/¿äžpÔš‚“¹OÓÅ#]3£ñä­†i¥‚H°eæi8}êçsmË̇“M¤9ïÏý/ø2ç.sïŽWiÇéÏ&c(ø,:âÅR4}^íΗ¢S¹‡ÓûâqÞO³9åþæ‹•(ëùé— yÌܧӗ|>š1w8ž¬DŽ4eæéD¬‚”9 g‹ÎÚCô¬›s×Ýf™“ÕVÝç…ãv«>Ø‘HèÛõÝÁ>bdÕvMº«o”e»>¤¼ÂFXm×G¢ž÷Xm×G=§l×w„§l×§Hõv}ôzn4)•½ºí×›õ¹Le³¾ÉQª}ùH‚£Ïˆ”ec(ë¯Û«}ù\ôj_>xœGû²Vûò9÷j_>’ýh_6Êj_n“«Ú—O_Fµ/7¾Œjcnúäê}¹é“«7ëóç\mÖmbU›uË¢UoàG¯çüVxÛ—Xïê§¢ÞÁÏÞ¾ïàMOªÞÀÛæL½«ŸÊTíàMÓ£ÞÂÅ*ûz㋨öõÓñT{øù˪öð©ìá×ë}ówÂãvÁ‰N×;é¢ãuA NÒŽœš Np@v¤è,ì8ÁYø^2ªèp\p.Â÷3‰”ÑIøpùqÂèt|<'®NÆ÷û¨'cGŠÁÇß¡SÆ'ãS±¢ƒñáJæ„ñaù`o%åÅaù|ŒÁa9ct€.Hña9+8,‡O0:@‡ó¶ùPí„ç‡ê°Ãø }¾ÊÅmC ÚéüP}ú±†§ìs©ÃSvôœ¢“wÁ OÙTá1Û‘ÂcöÉc Ø'kz|¾&Rt¾>—'¢uVÏUh?ÚBHØf#'Ù…<4ÞÙ )ÜÙ‰îì†ììáøâÝþîõ)U¼Û§ÕìM‹Íþü‘»½£\mî÷v\§¼°{ì†FÚ½©uw7ºÐìíH;ùù¨Ûwr¶îäF÷6SøQoÛÞºlÞÝIïî¨íÛ; Ãí=è1ÞßÏ×ÍpD½Øó‰îù§ËÖù¶_0.vøÓÇ[‰Âmß·}R…ÛþÁSþ¦‡Ëmÿn:Ýé®ï(W^ð»‡ë„±ü`Ÿ"å…ü´Ç 'xðü¢ƒ¿ãĪÀ©XŽñóçЮ"°]EpÊs(*Â-Ú)#‘® ÷z„S6ª¤k68á…ÚpÚc³Öà„³œ8W½2ã”Âù£¼åŽsqØ?}ÌÚ@ð¸":q‚¿àÄ›ü鋎7yG ¼åĉÎñç_\ì-'Rì-?ëÑ.ï8›úùË‹6uǹpŸ.øá&MÆ«ýt¸ÚÛï;\æç5…nô‚Óæ1'Yì1¿Õœ*ð–;Rì?Ú€HxÆ)p‚Ÿ¼vFžqCŠ<ã'v„Mk£Œáᣠ¼ãÑ[¾ô˜ì¤Œ=æGëŽQF.ó¸Ïf?: #?úñMÂØ·¼Ê ßúi‘k8®õàÙ_¸ÖƒgûÖƒgùÖãGxáp„=îç?ð¸œØ¹~>žÐ¹>ÃÐãNœÈã~>#B—»#ÞõXðÀåî8oó®ß¿­ çzð"çzØaäp÷–Ø ïH¡þ^ È«÷óvi×?xNÚõOûk·ë;ed×'R|¿±Ž8Qdè'R«¡ßé. ý§ýŽsq’?ëâ$¿È‹_§mÿ¤.‚ÞO;‹Nö)¶óŸN©_àÙwÊð`ðI’ðêdú$¢“½#ŧøó›þƒá\ìï×h§ NöŽÛùƒ÷ŸìÏ&éÛŽõÕí„Á©ž8Ñ©Þq.Nõ§3>Ö;Rh»?ÐlHxn¼wŒèXO¤ÈNï8qÀûùxÛ±þþåµGÁ“08êœÖS= ¯Nõ§ßdt¬¦‰pqã´ùßIö öiR^ä¨ Ù(ÃÍûÖjàD¡mþ6ÝTñn~«'¨)BϨâmœ8ÍÛ¸ÆÛø™H­Û¸‘ÅÛ8‘"[<‘.¶ìƒï‰„Í;¶¶ïØ$|“-~·°eó6NºÀOœ_°c“2¶ÅœöHyá®?}‚ñ.~6GÛóNmã†Óì–wÂö½])¯’ÞÎtµáŸwløÄˆ½õ糡ݸï„qŸ8íÆ}§|‹P«FüƒC¯=‘Âd8Gj4äÏXÒæ«|¸ƒ¹ì„§Ö}G‰,ù)Ns;xx¤l¶æ;a˜ç–W{PfÄnGš÷o"' Lû÷º‚QÅYp·'' ŒÿŽÛùo§Šlü'cˆ ügƒˆû'O9Î…s¤Ð†>]®lø÷{—Æ6ü Ë؆Þc`ÿæËœ¹ûÙ)cþô¶âµ-Û~Œ±]?x8±]ÿäó½L¢;}¦ItçÏ4²é;ÎEÂÜÙºçË9Ò¹õ>\Z[MúNÖœEGÊ ;ÿÝÎëtaf]Ðá…íÿ|úEÆljíüçsæÒÐ:";ü$Zÿó´Èb{Qôæà’°Í¨@²03Ï‘bûÁÑc0Ê ãÿùpbÂÝFgT¡ ánŸ#QTñÆB“ã&Gj³ò;UCòiâན§qaó¿ÓeŒ*¶Üí¤:78Î…•àd챉àLžÐ‘šüøNnã·ë0©š\NÔä 0ªp_wœØp,O£À©‚þvó%Mèp¤p_?'Þ×Çy±#è UäH2w—%ÝÅ}’i?ÝEÎ{"ÛzÁ‰õgã¼ØÖO?¸Ë]ý~? e¸«Ÿ½Å¦]DW‰ygËÐUÞýéÒ:ò§5<ß­ß)c[ÿiç¦~LjMýÊ)/Lý§óçbÇ?9[þÉnùÄiÊÌs¢ ÷ÿÙì|ãŽ4Ú·üqyžæ_Ðç„åvH×®0T )TnN*wÓǨÚµ)Ju•¹wØÕ¥fpúŠ.ÓöŽû RöˆrUÌötš¶Gû‘ð"t x ±÷±Ñ…™þއ œ'ÔˆÓØGÂö”=§ŒûˆÔ¦¨I?0¢æÄ}'lMÜ'as„€ÆJÃùÿŽÔR­‡D‘=àôÙ]j ÷ʈ6Ç8a¬0œJÚ¨/*Ò §M_ Ñ…¾p:y~‰Â@Êf…aËÛÉr>p¿,’.Ê ¼‡FsQJ÷èÛ åE)Ýóñ…1woDMñ¤ŠÓƒÑ…郆tQX÷ôE]¥ž‹u™Rxø’[Ó Iv‘Nxþ†¯Ò – #¼Ê&<øÚHgÞ¯ŒFw•Lx°4’2ˆDp¤ è à„G*¶g:e`àHÍÁNÜÚrŒ¨9–À [c HWä Æ)&p¤0˜àøsŽ«ñž÷*àô£|[ÁÁ7yU¢÷ì^Äœ¬õqáñÔˆ¢Ê¼ŽÓ?@Â0OБÎC†5-ÏKì58ž©Nx^õ‡(ÍUœ°¹ê)›LNšnÕRµ& :ÝE  »wn„Íwã8]k †wã8RãÝ8¤k®ì„ÍwãòmɃ]¾©(ÐQ1ç=†î"EæÇ ‚ˆÓn9pÊÖr€$Œó Î?ð ‹Â@¢+‹Âù,½p9œ~:Í¥~0*õkH—w꜎§Í¢@¢Ð¢pÞ×ÛL ŸM˜uè8Ajq.R N†¦Üîö$Š2 §ÙT@Ê0§À‘b«Àýþ°z¹d¤Üí~$ ¶C #)r )ÜÕo->NÔ!@ª‹]ýþƒ']¼«¬„Jx±«­½$Œ·õƒã%)¯*ýŸ 2Þë¾g£ ã)J&$RûNÂæ-ÜÛ·p6'’2Ü׉íë†Óž8è”ÍUüIÙ¾±“0ÜØï–]£jö8a«¯€„;'löå/ÙîIÙ´ÝQëvO²Örÿ$l½hÏéÞcxð [ÕREjÁÉ6«ĉՂqšk:aëµÛ°¶{”è<éP~o«¨$¡oàö„/$¡SàvaQŠÐ#pØIì8˜ŒJç˜YAvá§GG¼¨0x¯]Ù…/à~ÏSªÈpòBO€a\Xü§Þ•¹ÿ~UQªsS¿"¼­@àÝ(/R OÆYø!4ïŸ|ÊW¶ýƒ%^É"þ`„Vý£¯ùœôm¶ß®§T…þ„(¶âŸ=§Ð„ŒØ~¯±ñþøÅ¶Zï•&*ë'±þøy‡õüá"¡ïLÜд0ǹ}·§@¥ˆò7û±\¤óßm·émK’•§é´îDa¼ßqGáñÝ‘BKýÝlTáyþî¨ÉJOªÖó¼Óµžçðê<°A0Jò#ÒÕÑýà³!eh§?{ñÑÝ‘¢£;‘ÚK÷9eÌw*{ÌçHÁ|çO4:¦;NÍw´áUÀýŠBÂ(˜H§ôá±B©®jûÜ!œ2¨íCœæÓ¸6ŸÆòâ4~²…™|Äi¼gÏÉ.ÞgßGhfwœÖâ~$ ïÙs¤øž½ó1Gçjljªõ©½hŸSÆçèÝ7”º~ä–Ý»½}÷všØ÷~ÖS¼ß|âNnç7:@!jÉÃwª–<üBîå']ÅùIWFù“gîê)ØÀÏÆÐ”©_¨bûñŒ»¬ów÷%ʶ`}§kÊà/TÁ†ïHõüNE ö{ǹØÚïW½BìíŽÔ¨_ˆ‚½Ý‘Z‹íÂØØ~·‰8a«½Û;‘.vò“oªÉ¦îD§[{Áˆwñó±^ÙÏO¿»Ö$}§‹¶ö‚Ôp…®…ø'«gsÆž6ïý…²iïÏ›êx±õßM6£iÊ×'ÕU=ßCñ¢­Ÿ8ÁFï(mÛºµíêFÓx“žÑ5¥ã9M¸«ª-M߉ޞ¥O’‹@ºã]mñ«þ‚]ÞÃMþXÊhƒwœðü~ònš·w#k<Í“îjÇ?|¼Ù+N«·ÝéZœí$jßþî|÷'Jë1ÞéÂm^pÚÎëNmòÇ“*>¾½âf—9é‚ßQZ÷v%»*Æ{ ªaãIžtáŽò ¯æ§ý‚ ßÛBëòS\Ÿ§þÊk~ ¨žzÎ¥Éy^¨ÿ¹#ó‚Óâ#wª–ª¼…(ð’)ò‰œÀîH±óûÆ;Q¨Nߎ'½ >t;Ò…·ûfõqªÆ»N{Áo·§ à7aœNuQ[÷þ“uÂsç¸ã\¸ÂƒGyÃ)pˆœÐ~6+®®¼»s¦Ê8§íl)‹ágbF¾p"]\ww2›bù‰<çò‚¦²,kW>ò³‡z•Ævk¹wºfïy¡Œèg-ô¡Ÿ=“+7úé·uéM?]ìQ?ú*¦”gØUÜÁ‹ ]ÛdW™q#$etL'R\Qï\¬èðîH¥s^+ [OìFxud?í±­¾žSÅ÷»õˆT§'wGi³Æ;U“5žTÍ¥s åùAÝqZJê¢ÈðN¤ðd~öˆ.ÎåÇO(:”¤0þné3ªæc¹¶¸Øª©Ln¡ŠËäž ÖÏz Oê†Ôhwªó³ºãgó;ž$ááüd¸0ÆŸ?ÕæúyNxqd?Ý»šÚ(8¯œÖ<7§l.‰S(Ãú½½£ßÖ,C{ ½BØVBÏéZ“â a¸óÒÅÎðäIný†lý'Øå‰íè'ؼ©©Ú]¡ öjC¹²ªŸ¾àËjwg/ø—lÙ¤Œ¶lÉ·ì})¶B×ñiL·-•î QÓþmD±Qý¬«ÐªN¤&º…{÷Ý.cT{7©¢½ûlèmû6‰Â}[‘Z÷mREû¶áûöÁˆ$á¾}ò®öíÃ)ø öl# =èŽÔjR'a¸G§}6Ê_°G“ò|NØäùó‚U£»×wHÌ Rd'RdwœÀ>îHqÖØÁKpÂ8qìô!„frljÌäDºÈ;—½±fœ“]ÕŒ;òUÙ¹¤WId§²^XÖ÷« ‰b«zÞæu¾%ŠŒê»š±Aý`YqÂÆÛêœ0²²¤È N¤¸nܽ–ït¡‘=˜;vöûÍBÚÙuÂn›ÿÛï㬳 ÇÐØnHÆöƒŒÐBÙx;¶¥¥²‹¢rg_kÂZ¡;7Æ;Nó=t…22¼£‰ï¦ :¼ª-wþä›/§+”ñåt÷ƒ\WY‹.Ì°ÍþN²è^Z/·wÊø~ôüH‰ÔXx®Ð]ØßOÇ×§µb½S†ÑïŽÔVfÎéÚÏñNyqŽ?ï³ý ð¤k²Ç;Q97$Ý ¶ªÖÐ9§ Ïø[·Ñ…fzGj½öÆ)cSýÑnKÂ(bžH!sGZ)ƒ 9âÄQsR¢à¶ÞeOÊËûmNŸíE¤üùDË;FcΛF¡sŽÓz¬'á•)þìãh?ê“°åV»Btqö?}xíG§l,:“RŸûØ>_pòãHÓ–çT…iûj½«¶¶¤¼;U¨Üãœ(2ÛR¨8N¨ÜÜÑæT±ÿÖhçTçv|¢Äûÿ­Ï©Zmø$lwÊÀ†Oœx›?{J¡ßHñ¶~ðe;aã¾Nºæât…2Þìï®°wÂx¯?ØŒ04íi ¤lWœ2Pˆ+Xo»ìîàu_Ö¢;û2beàd)k̈/d­qõ$Œ´ÇiÕHج8a«v@Â&íÀ‰Zµ¶kNiwscÙž‡ñB3 N Üí„Fkw;©š2çIÕ”9ïD‘‘€H¡p· “(´Ü:ÜŒ*Ï;é*öî)Ö n޵NX Άk 'o¯12TW*Âý2@ÂHC0œXC8~l ¸‰ Q¬1œ ¾9ƒŽ„­õp aäð'R¬­\$Œ5ƒƒÅÒ›ËâÊH10œ‹|ºS©®n³?ØÜ”²1ËΩZÒìHÔgç$ÍÉõ¤ 5âDÁÙЯŠÐž‹Ô·G¢6U€D͉v¤¼Ê´;›m™õã0>§)pœ hàv¦‘¦-ÅΩZJÔ:UËÕu…( 2 Rdp{ht¢0ÀàV51ª0ºÀqš´'ç"ÜàLž(Ôଧ¶4=§j¬Rë„QŒAA ã –eÆ1·ú€S…™z7z‰šã œ0HÔ#NBàHAAü˜Zã œ.Ž+88“òm |]qŽÓZ¸¶!§ËïELÁÉÇœ,KQ,ÁY?qçó*àô1¶ÞNçtíÑNGœ‹„œ‹H‚Óñ\%òÝiNÅܽèyË_IlpœSƒ€£\UÏ9x ¤Œ"ô‰Ôš›çtÑ©ŸH͹yNÇÜ~øJÕz#]¡kŽ e+àHçn¢\]f?3IØzûœS¶^]Sã«kîý¯$Œwú©BcÀ¦eTMÖ'j¼ëÞ ¯¬§¯¯õÂ:'¼°Ü×ðÂwpç­ áÛÊíÍ´ÆKëœî¢ÚÞñ;l.¤KÊF“Sµ”ß#Q`28ë§Ýd@Ê8•àü½EvÇiv"8aèD8†ƒ`4í¤ŒŒ)2Ü®mS?>OK¬"8Nà3¸,¤¹Ðž’SÆ÷  /b ï$' ƒ "Ykéº(¶Àšu §»¸Ýö~š‘òª–þi—­±ˆ¤{Û•·O>Ô:©YÁpÂVƒ„m †S… ÆÉ'v¥`Ü/ÇNتd°YÉpÂæhDR6kNkA—jFð`#Gq.§ŸX¬UœÌ‘P£(H->5øœ¤5„oÒî?ãöÀ¶»"œ2V*N‡Ø¬T8a³RAÊP©p¤&¥bÚä±EÞÇ ¼w³ÙhbïÃáXIz ×£Œ2'¬üw¸ÖåÅ%yçb]¤;M¥ =Žß’wþ C¯DAzýxõçldùŽÁ˜/|çÏ9vF8RèŒ8°y“0vFœ|Wwç­NFyQ:ð~ÿ&]˜èxþÆ.ª oìÂsqþI]x.î­ N{.Iyá¹ÞGœy»QèË8Y’ýFÕèÇpªs?†ãD)çì2òtaºp]œÏÄf×éb×ÅÙ³kv[0Ί<ýD/]gkÂ/¨Iè” ·üåç1>¯sóu»….*p0ÓHw¡kL§lÖ5HéŽÓ¬k2Ö5v)'lÖ5ŒòâZÞûIétúÇݤ$aë=½…ð¼Z1Q®ÔÓ÷z©~œ¾³Xýp¤Võƒ„±úq»•8UãÕ½NØ\¸Ø ߢ~Í¿0H‘.Tó÷z$qþZÛ£$Hëg¯,Ô3n·"]ÄLœ¾æ6UèU §j¼Ø K08Y¬œOÅHÿ(8ÅIw%qüÄ›U ¶ªNתj0R5 R\iá`8@‰] ÇR‘î%R† ’³ÈébBÐcàB(8ÑÝ„†ô6ÇÀÁë¹ò LfR^•g¾[xœ0¬Î|ö”/«3Ÿ>åKwÁùÓ¹*Ï|ÞgìCºŒ}Q—Í~†~„[¸9•ĉÃnu§Šê4)vÜ,ÜN» ‚É» ÎFÒz"éOAÁ¹ð œŽåª@ó©XÎÓ/·Õ7àd;R¶ÖgvºÆÐÒÅþ‚“/¨Ý_@ÂØ_p>¼özͤ Žô–«ë­~ 4ßDºÈÄpÚÛ•…á@¯0ÂæZÍFØjt Y³ÍÁ#÷Qšr1•¨ýŽDÒ…v…»¥S‰B›q"“¹<¡I8‘gÁp®ª,¼Ø« Ìgï548NTˆÑp"QÎþD ‹&çÂ7pö„b×Àùj.•dt ç^¤AÞïJv‘y:sC‡â´›H×h 0²ÈpúÜ.ýgk~è> J£)ÀÈÚ|$ju]t}Q¢¿á4»H×x“ášòß}»cßéÎûDivì;áŶ|*T°-œ‹=øîc"a´;ÎÅ&|¿ es"£Ó5]VLªp+v¤0añT¢ö»œ2Ú¡‰Ô¼E;aëMÂp“v¤Ø’°ü‘òM5”ï¿’«Ê÷J/ ¯j(ŸöØž¡HÊæ E'¼ÈP<¬¡?À‘‚dDâ\˜ÿÏçÍ•ýÿì Šã)ÜÜÏLëöîd­w'°¹°6îú¤kOLtÊÆÄDÒÅ>€à¡6WM&a˜—èH­:Á2É0šýNØæ ÙUÊâýS a³[€”­n§kv 2Î,8š”$¼¸´ñ~V*á…ÿàtŒ¿À}@Ê0±Ñ‘"WÁ­¾b4~‚@¤ÈOàHÍ76:á¹GÀq"ãAŠíüçßÜEÂÀéGÚú‰s•šx°o“ò"_àT¬‹tó/üÁŒü)( Hœ8 ˜¤áŒ†Ônâw Õ8¡9ÿl¥ø™†¤¼°æŸŽ¥5úŸtm‰†NZóÏ_hXÑqbËýñJx•QÈÔjÊ߆ü,2@º¶ë–ª½z /T³cEààq’îB8ëïâîæ»‰O² %àì¹\ÜÙH+ ±6g’.¬wp*çÛêÜw×~½³†Ù†Ä ÔC µâ4+FèŽlÿ†&§9/ÐßT;ù`hÑ6OœpC'NìÆ?}ý­ $ =û·û…;¾ãÄþûyZK ªy¿7Â(±(Á=ʆÒ^蘄çû8Q¢›(M¶ÅûõÉ‹ÓV½û8æ)ój·æ;ÝüîGý]˜ø&)/lü÷×›¯EtÂVÃ? #ÿã\„öŸ=ù »ÿA̹FI~D íüŽÙùïkÁì*Çï`Ë&eóɤŒŒÿ©ñ:dÒ]%þN­ØEO¤ÈGï8­UIºîéMeŒ¾ó+ïýéì#÷‰Zê)°Ô§5PßéšÊUl¥w¤s+½ã4^WèdQô=‘bãûé#¹°½RµEß;Õ¹áÝq"»ã„öô³7ûÜoCýœª1ÿnìz}a›t¡kÛ¤®y“.”›´^lÒ»IPˆ7h'l¬0\èâMûþðBÊ«]ûvÏ,t±·^._wähó.HÑæ}_ÍéšwïBy±{Ÿ=îæ+ a¸¡ß/FNØ”Ê_¨‚ÝÜ‘Z ¶T~§‹vø‚Ôç„­áy…0Øáé*ïtÐÁ®ï8-÷¢–-ŸTx7E¡:×§M(dÕ‚ðB/8}ß­Ny§kvÊÊsÝÀqÝ à´èNë7÷šªsÝ`D'y:üù¡üÇüÿ}èÿëÃ0õ+&äÜ™rz|­[2uzò‹É7çWù¼f0MX |Éø¹·q)¿O Ët!wX:[R‡o¿0òæVu ð)€ýNùH¾ÁËÃ??¤uË pþ¸àå¿–†,c~>ië:Yj¡SeÚ oÏóèðKÖ¶úí9ÕC¦¬¨ßÒò¼áw’g!ûº…A@ ƒƒý0¨aW pZ‡¼föxUÞ’òRô8¬ÓŒm'ƒذBct0?I¸dÆa•7áôµ°»ÎöXt#ô,ïAAP"PB2ØA^V?t¢ímôÌWo˜ºngÑës'>…Õ¤RŸŸQó³ìóSJk…0MÒ‹3PØzòøòã%ƒqËãËŸ¢õ@*BA Ìd°ƒ k^;+Í2a/y­ZÉ•ÍðúŒì«uÀ–žæmU¯¬Â¹×¥[¡A;ÆÒÏò ÈÀaílÉ\–ÇÂ!0¯»¥…_\"PFcp3 Ù²ÎE$ÛÒkÕ²Èòž–m„Ê•áËrZ»„ÎÝBSŸjŒ5‡;›·äÅ’‘øäCzÕ‡Á 0)ƒR’Ã~2'gÐ@É\'S½%¯µÐõæ¼Köyžó¾›çõŒ]t!˜gË 9çò{^®RMNX;[ò†] ¦û³w  ðMþNùH¾¼±)k*=ÓËf›™·äÙ¾ä]vÊÏ¢ÃûØfÙª¦¼-ƒÃùiNПjŒüü‡šáÅ4±Ò‚ûÁ–ÇÂa½¨ô1›žT¤ ¥$‡ý8tÍÏšõŠ“`^ˆ7U­Ø’Ÿæt?%- z l}‹ÃÐ|Ñ¡ Æj§Kr ¬}€‚-PÌóÆàp¤©ûPXÔ1“‚”’öã±¥ü÷ ÓÖ4b5~­Zò®—¿ô”òAbFYŠ%ëžyާÌsÚàÜoÊ´[K`Ͱö ¶Œ#ÞOáfÑ<½…AA)ˆA)Éa?ýÒf}b´eùÐØ€3¾œ¥³ºª¢ŽÐÒ¦Ña| øpkŒ¼”w5ÂÒ…XCÞ«&|;d€cÖXu¡0((1($9ìF¡2/• îŸÄäúZµÀBÙãUãt›áEºËS£“$Ze®È¹² Ì‹×ñ„µ P°e„n^ä#j…õ  œ&L"PD£ßA'ã¼êB4ÈùZµä‡‘••”–iÆa7S¥”ÕOYÙÆDÙò_ƘUZläà°ö‘)¼%&8”8‡^6ÝÒ‡ÂèƒRƒR’Ã~2'¼f)1g9vzKþlzœÀ¡• ‡>,{Yõ%Œ#ü&cpŒ™Š†qpXûÀäbKÖ.WôAù%lu £JA JIûq¨š•Ÿà‚Cx^¢Tá÷–¬¾OP`` Dýü9Œù;ÊJìó°: (uZF—ù}­5ÂÚ‡PXË,’»ÝXõ¡°L bPJrØCÏŸ¸Zꋪ—–|ɪmÊZ¶Ãü(Ì“4gåiëÆá‡¥TaLvg+9Ö>„ÂZ²¤`‡¼su ƒ‚RƒR’Ã~º@nº=ÎùÉM¢÷{ ¬@X½6œ©2¸Ê[:Ýo ÎtÉS~­1†YÖacà ö¶ 2 øœ†ª …eI5! Ãe47£0%kÅ ËÒ«’e-yü ßJšÄÄ’ò»ð-a#Ù­iÔÌCb¨ç¤p ¬}¼<”–¼öt¢‰‡¼É÷u ƒ‚RƒR’Ã~j7È[àfœ1'^«˜`àÈýÌ0ª#S›Ã8Öç¿ÕyYk„µP°0þä׸­îCaPP bPJrØC¿¶MTˆ¼l‰ŠùZ·lfzÙdýéæÅL3Ö!Âb¼É3¨BȰ«¸³OÇ[FÝ É QsÝƒÂøÖ(ƒa¸ŒÆàfºF®2[ó!ÇÈת%¯ÉÛ¢ÇBÙ»YVZóÚLX–+uŒ±ŸDm"‡W^½e‘žsèóÛ\ª> ÆiR8¥47ãPóÍe°.‰¦å-Y!ïóJ ß@64æƒzÍÀ`œìE'(yµëkjÂÊ_Ì ÖÒˬt°_Õ=( €?S:Rïå×#hÞãq²Ës£—‰ÈÌÞ¬ u«¬ÓˆYžç@·‰éŒ0 ÜÛ\aô=lo΀ v|kè1Û³¯æ¯0Ÿ”€& Òïå×…#o0÷ùDÜ‹)Õ[z• 5DŸ7 £–¼ôAë6ß ¶°µÂØôìkbAÔ–n¹È [Å”ï]lk“Ø©‰aB’Á~27¨5²ÈæñZµ,²½¤.+B+NK«l?ùd>áÄNXÎò™ïZaä9Ô×kba°–¼²Lëcá0‰·ô¡0((…¶)•Ãí8ä­ác$Õa°š· âéÎz뤃 ó„X“ÄE ‹`tê+Œ¬=¤šaílé9^‘ÌÁkÕ‡ÁbÖ!2’Á~ú‰ÁƒÅ:?YKKf¶á ÂÏ CDkwgv0ƒå#èä;ÚšaíC(´%krÒ!‡q]dF³ƒAaR8†Iéöã¹äÏ®‘5OÚE¬ κMf½Mk^ja­p ,̵àkC¿ÍâŽ"9vÔ®êÀ`˜Ž¡:ƒÝì$-~& yP=Ê[‰,È §NÚn³j>L rê5XNÒv Ç;1j:‡µ9I[Kž[°Ñ(ƒ Þ¼¹tAXÒ"DÁ Æ`? „på¯ÝA?,¶l²hØ ¦ü¹Ý"3®ç‘ æÈbWÙïYª¥&'¬Ȥµ–E–Og‹\_:Pø&§|$ß@ß–GèÂYIj†c Nµù‹kÚ4N½bKr–0XLdI+‹c4c(9Ö>@Áœ‹A8×}( JA JIûqèæÜK°ׯU Üרö²ÂÃì ööaÄÞK8?Ñ-i¬ò‰!Õô„µ°¥<`w« Šà”ôû1¨EgÙ9Á2²È¸¼e–€©!ëdzÃ%{CÖÆÄff°q ¢¨:Ƭîç@Xû[2/œC!aéCaPP bPJrØC¿²<Å%"-?Gѧ¼ac¿‰iÎ ®,´ð*.Ë3ˆgˆØ€ºŠƒÃÒØÏÂÜ{dß:NÞ…ÂåÃ,Ò8ìG¡:0ÔyqÍ*&ÈkÕ‚CÀ€cé„13³ cW¡ŸâT_#àÔ?W k¢Ñj ä@džua LG0Á~zÀ„Ižø¬…¨ÉÃ[² klØy³Ü°gd1 a9ûMbtŒüÄ·ŠAíA|£Ú’²\x6•‘}Õ…Á 0!ÃdtûQÈ;áóG¶|<”‘•–QâƒÒˆ( qEyY³\R¤]aø}òŽ“,1&DUÖ>„‚-2- ‡A>›Ò‡ÂØþ(1\nåp3•а6ñcŒ³ÄJ°eå&ëúB×Ú#*aQ_‰ÂÇÀ+Í#ë¥SͰö ¶ä%`ç0ÌxŸ¥…AA)ˆA)Éa?Õ¬ò&1JYÎjÁkÕ2H|SÂrjkU7ªÃ¡ ¿h-œ¹¯0à+„µ ¡°ØHÁIÕ…ÁB#28E4úýÔ¸ïTêµjA” ÌxùDÐÛ²=mj*”kL¯Ïà »`¬VæŒóQ”5ä*Y郒)ˆA)Éa?<ÕJùæÇ˜dlÞ’Õ–¬mfxÕ[‡³–ók>§K”ŒÁ/úØ/F~Yˆ¼!‡µ‹M”–¼/ÏÓcá ±¥…aØ¢†áR‡›qÈ|Ü6õç÷y.k<£·ä3~Fî²F(¥óÖY‹»~‘Èà—‡Ó©1ò£›+µ°eZñE“¸lJ ƒ‚BhK‘Q9ÜŽÂŒ‹£™íœ'¯U æ@Òµ{ÒJî°jc×ðÄf0ÿ-+BkEè°²tkIb(䃾nç>pBxç†á‡ñuHH{AÄòØ1t‡-S§¡;YûC”ÂŒ„î¤NhƒÑïØÉ‚ìã*gç@Xû kI½ÞCÞûº…AA)ˆA)Éa?]ô³ 4 lé4  ´¬²\ååtÔ;ZV™øyA–“/aYô“œc“8ú°ö!‹¾µÌ¢›“$4•>–Eߤ ¥$‡ý8Ô7=ZqÏXüeÞ2‹+<;I)þU¶EHÜ-KèÃö¼TÛ"çHg@X»[FDð?:ƒ$a¥…%Ãd e$ƒý(ÔÇLäµÇçµjÙ4`Vžàx•#y³ð’åƒn7ŒÔÉYÚ98¬}àÄÅ–¥—#ç0羪.D”Á~§ˆ$ßB•ý^µM˜˜5ìXKÈ_Y‡AÝ0"Á˧ŽÂPÅóab¨1ÔõQ8l}È)ÙZVÝñÈ¡ClpÕ‡Áâ:,ÎÄ0(79ìÇ¡qIˆåÄõˆØ•°$kXó–ÒC­›eÅßüßoï0ÁuPC16Í)pk `Ã*Q}Î`ADOÕ…Á 0!ƒR“Ãnê)›69Âf G}·¥e“•(Íp€!½Y-}iÎJú zó8ÌYíÉË1`¼­9Ö>Äóe-y–Á(N¹3ùTÙ‡Á 0)ƒR’Ã~ª„ôâ á+N²yKšÅ/:âÕÎuzÆ–“Ä=j ö¨Q<ëþû4èó#9aílÉ/sËä—¼V| `¿S>’ïG ö‚ü%î7/…ðZµ¬© j”Õ¾µ^Õ ä èI‹h‰Ï‰kÍ€°v!‡kÉK6\_ÎaCŽw¡ ((#ìG¡Ö«$ºó$–Ûa˨!÷)ŸÀW„ÕM13‰JJXBÂf ¼#Æ2j 9Ö>Äxh-yç%êÆ8ô“®­ìCa±w™Ä ”ä°‡ÅHhôÒpû¤1Ö2Èg<,Ya“vIr¤ò2´ˆUÚà*æÁ1 Ök `K'~—5ƒ[Õ‡Á 0)ˆáR‡›qè{›$%h‚ccR«#[6q®¥¤!|\ݬVã¥wÏt•gU0²–1ÔkbW¶–¼V` ‡qVïû0Xæ†Já”’öãÐ5dÃÆëu¯¶h¸kþ¦­G>ÌÿL„dE°ÝÄ~žeß-Ô„•?Ø’?©¾v2@vÛV:P€ öC0cê¦Qu½œà_«–AR¬¤PMðOäI ‹ R¡ðYlÆÑµÆÐà’°ö ¶ œlxtл¶ªƒAaR8¥$‡ý8, a”`µa‡ÈkÕ²M–÷4 ßZà²æUÑ”KVØ^ Æ"ñé…aíC²¹¬A}ð¬X<Öªƒ%ZA¥p JIûq¨-$Aä&ËbbC/Înqú`аOÀ XëÉañIÐZÁ€–S10P;¾6ô›hõNÞçתƒA`"8†Jè v#ÐÉØ‰ùo‚~Dqô–­Ã;îdk—9 3SS„Å®ßéU´ÄHâÿ6r«8—–EªÂr˜>ê³¾‰@ ÊGûèÉs5¿&ïåI ©l£hÒÃì‚Ã+àQ²QãH˜Oî54§& ÌÛZྠ¨P#x©Ø,qvš&¥#ƒ½üª-"ënÑ€¹W‚ˆ—ËÊåÜ’Ò¾$‰’HAä„,±…_0Fɪt*{à[œ&…º“,ÈÂ_aàSbˆxF]I®“nç%™F³®€lÙDù”ÕhÔ†Œ#9’ò’ƒ²œÍ˜naV‡ž3 ¬]€‚-‹ICÒŃ](SUepÊHûQ¨{îdÍœ6ù¤_K 2=X<ÎrØŸæ^b«ÒþúÞa±A/ê!b抃ÁÖ(زŠñÅ9LZxÔû0&…cPnrØCÇÖo:‘M/ù!Þ²ˆR”°ÛɽË(  qRpöŒ~áÔ«1ò®”j„µP°%SȈp£(E¥…AA)ˆA)Éa?µ+êosêWÍ(.-êiÏùOðr$QTÒ–Ÿ L…‘Ǭc*È«¬9îù4¼¥^…C'’•>:> —‚”’öãP5*ILË„_¢J ”.h5bßšC½Íz´Bœ¨Á¢ »ìf{!‚ÚØ‚H¹ÇB?ˆÉ·ô0˜ç»È@ Šh öc0»À [E^Œ4@Â[ŽŒ ~Vh¥ý(nŸ„¸wœt Æ¡}ÙÔ´K hŸKa@P{C‚µäå.(ÒcÝ®{PXÌ&1(¢1ØA™IþG„2vê”f‹š.‡)?¬UrèWÉ7A)9,.æ“fÁX´†s ¬}HÒ€µôt[>ê>–r&1(%9ìÇ¡8p‘@ ñ ¿V-ù[ÈŠAà6GdƦ®Ùa‘RÂ0­R£`¬«cÂÚ‡PX Âr ƒI£b¼‹‰q3.1(¤1ØBWÇA›Æ¥§‡“-ùd/ÎÔk8(Nþð-Žb‚%,ka Æ$Cá@xa4¢·hÅœÂGÿº…AA)ˆA)Éa?ýÒf-Dm¹—]Í[ÙiòÄO0ÿg}y’XÁIË%‹Zǘ;MB!‡µ¨l™d¯*&ݽ‰;§KA JIûqh4Á8z!‡ULÂÞÒ‹¯7-Ó`Å Iõ@ÁmvØëç©ÂÈ˂ֵ7„µ¡Ð–%ïÜHõ ‡eÕªìÃ` YP)ätûq˜n®$ͬj„³–Aê\Œp#Âr—UG¬{›Ã¶.Ï5† pµ9s[ T$RgåJ=QÆß`1©ŽA…|/¿ÎÅA"ûóîÜkiÈß"÷§¤™ÓšŸGG‰Ä3sd’ÿŽLŠÚ@å.ë·6 æ1¤FÌAÅ]@ÉfµÞíw“Ô;Ù-0¢ƒEa]ÄðZò䆷ªœ×ð.HÄÞ*Ù_„Eù[`¯t XqæÂ€ v AÚ0K¢T!‡§·â/ ØSûÝÄ#õN|U¥`—L: ~­Z‰èLÛ ¢Í“_§-I€1a¨9£Lö‚GCͰö!Š‘µÀ8 ã'3lÖìÃ`P˜ŽA)Éa?ý ðÙ"áq1Ë fÍýâ=JJ¦˜–‡Q VÛ¬X—cÒ’ÎÁaíB\ñÖ‚b p¬“C’¢¥…ñMQ b˜Æ`?uå9H”@y­F©’"aXЙQÕ©}ã]“Ã/­î6Å@prª88,]Xôr²ÁÁ—…V–º …-êS„ …$‡Ý(,7º“B)Þb¹ÑÖ²uŸªyò#Nâ#àü##Ñ`±8/PÁ@æaÅ€àÊÒ[òš>HЦ1˜å#)]Ìü$]bPFrØB#ïó^Ö[!5üzËŠ,ãÔ-’k—ç÷,G…‘v"&~,^ú®³y¡wP;lk™-‚ P­êAAô@ˆ@ É`?Ši“ G'It- 3L¯y‹Wð‘¦E£Áŧð‹N]1öcÁBïô){›ThÈ+¹M!!ÎSh¨Ù+üòP †‰gô;é­ôÚQ£½eÈ[u’¤~ `›Qrдìn (iÛ¢ÄûïØ«–ŠÜ`ë@\ãÖ‚X>É W}Öµ°œ²ƒ%Ó[Ep MûAXÀ³Ø ¦.ñÌì-£žx±oK¢÷ó<îhçNCÖø3â¾jr‰foô¸ë=kOËÞ?¦|$ß@ç_'Usß­ì-°éã#OŽÁQ=ëK®°¸~ÔÞì#/þ3„; *ð–nÛ°é8‡n¿÷a°díªŽaR:‡ý8Ô:Ù,á"›éƒÞ‚àedœÀHf3êÒ›ÇÑa)„&ŠZÁØ$œºp ¬}€Â[:­„F01Ö}(,“‚.·qØCÍ£³dnIªž†yƒFê¦y]B: EưZ%‡Å3>øM¢ÀX:YvƒÃÒtr6h¬oa ±½¥ …Ñ… …$‡Ý(,(x0 |Ò-¬´$q¼ RŸÑÇYK !ÒÝ`)N´‰Ü1` ¬9Ö>$ŽØZz‰’+: "-}(,aÁ&1(%9ìÇ¡kc§±HØRsiiãj‚Dh«c %Y#Œ¥+Z⎣!*îÌ\ê-³Ô)(&‰*}(,y&1(%9ìÇ¡•Un#ÊÈÉÞ[°…À„˜:µ52ÁÀ+^U…ŪÞK¬†c n¯âà°ö!ÖÇ£`‡¬Btu ËÁܤ0 —Ò8ÜŒC•2aÏCÑ$ÙÓ¼%Oy¬ÝRŸyd(ž‚¼JMUP/Í׵ߓ–"qrÂÚÁËCi™%9¢0@égo¸ì\~£d$ÜËn"f±A!‘pàÒ²ˆ'F< ’IµŠç&¡€,· K½‡$ÆZÇ@™ášaíCâj¬e’û cÝ‡ÂæÅ™k JIûq¨Ém‘ÈÉiÉïÑbÞØ²%y[Õ÷\bÞ6ñ–¶Isò ‘©âà°ö![¯µ,Z2Œ `ÍU‹‘N¥p JinÆ¡cë5IߟfþyK/~ 4ä­”dgñ%‰éœ–än-³Œ©p˜$ú´ô¡0ãåj JIûqX9ŒUpó6³þ®µàøƒ(pì&iИ9I»ÓÈdþ,^ð†øÏ0BÕä[ `Ë:[õ\å@¶tPÞìߦÄ$ß@Ã#’dψׄ2¶àÀÚKöìˆãœÞ¹åG»êßæ¬2)~Ê_sªé 6Î@gË*Î<'‡}r+Ì ”È3íÚ(,ì…WUØ|¨‘Ôh¯-y]ZUéTïÆŒzâ¹µê;Šg§ _¬žÉfæÙ•¤_Âô® 2Œ ìÀÀ— à¿Sb’ïG`–*IÆz|àj©²†e´ïhè«Ub͆E“s ÛG2Vó¦¾bÒž­ „7àó¶ÏP¼×‹}cÖÁÈ‚”€ô»h^ ¬šV W,Þ0k}$ÙM'#lÒºÚ„¥D›Ð.ƒÐvOV"ÂòéTómŒAÒ ÞEbÂ0\Hã°…:ZVUd$oR=-ÖÕt˜4T’ïÔç0uZÍ`Ì‘^+¶9F/eŠaëB(¬e•z„κlWõa°xsD"¸ÔÆàf”®5jf&¥$KË4èfÞÛš0wê©´êÁc.–Š‚Ê5£•z,-IͬÎaÕ²ô¡°82L bPJrØÃ*{Ì«3ŒV&Ó[’–dZ5CvBÀšÔC‡B39,µ=tÓtŒU²EÚƒDijC¯g*'ïD-(,µ=LbPDrØÂŽ4¸ i!ZÖ[f-Iƒ:ó(A§6œ×(u/þ(…%|hã´clæG#ÂÚ(Ø2J\aá€˺…_ŠÄ ”ä°Æ&wpàʇUƒ£_«ÕÁF)g ­mÒÔ'”³]W‡E7’@›‚1NšÁC„µP°yÅÀ ëËûP”‚”’öãÐ à ®šÞ­¼eé´Ú¦K±ãkµÍ„O—0>äÉÌF>‰Œ5ÂÚ‡hëÖ2IÆFá0жô¡°™Ä ”ä°‡žÊV5»JZ¼œ¦Ù‚ÄùÙ Ñ‹¿»ÓrYƒÖÖ Œ“n/aÁè7½Å8¶>^J˪VWr@ªýXõað˃KA —Û8ÜŒC=·“f5 jª½V I«Œ(£¥m%EzÑ,)ƒÅ«:>O‚ÕàwzÂÒ¤7[ò‰à…5zdÕ(,Av*( éw#Ð= W£@+JRcâµjÕY‰TŸNª•Í^#¡€¶C¥µBPÃta@8±°…· R^»pz r°.”€“Á\Fcp3 ón& ßR¢‘-L^ãkBÄ#L*VŒ°ø7;±¥;†Öð/kBa-CRS!9ôsÕAo¾Më_~£p$Ü‹¯JpÖðñÉn³%ûYb¾%Jb…FÔØÇÑÕð  ãß ñvŽ› ½BÆ^l…ڰΚ¤gÔ3 Wü –x+•€Øìå׃ʲéEŒã¨Ç¯Ò2IÙ¡¬§I½µyšY-o‘ã†ÁxŽÝ¢Á 3+îIÕ7r(ðÈ6oIúù;ë>Æ™…RƒR*‡Ûq¨¯l‘Z£ó(E±_ë†MÓRÀ¾lª@•5¤bŒ^;)aã䮸{¶LkвۅÖÙ.](,Î8•ÑìÇ ¯LÃïfX;µ¨·¤Ië$mܨE¾ar@`‚f\_«ß‡N}uJ^à7y‹–è, :S`Õ_w¤¡È§ä·#З5àƬ±T0$ÈK®æ W|örãÅä°äm:Cˆµ¦/ .¬ì-³Æñ8ƒIãx¼‹‰u‚]b˜ˆd°‚*¿ƒªØ(>3i];¶Œâ}K(8a§W­*—ô¤d0tÓQ‚M n3ª9N,+ï-ƒ\^P8ôz…”÷¡0((1(%9ìÇ¡ ü¦Á3]eëò–¬~kµÔÕvõM‹Ïwb)!,^9±‚Œa.ä (wà 8‹ó«NR~µ°VØvéÜ0\8ãp#¾:‘F¹ e–ÁRh½f2IœîÌØ²Iäò<‹Ë°¸„¤DoÁXÄéV8Ö>Ä£l-0“!“‡ïW÷¡°8ªL bPJrØÃVC‰OXïA¿0¶ôƒà]¤Jˈ.D˜ciÚf‡%`Ñ›ß cÃy¯âà°ö!+¨¶ nJΉpó\ú0X2U Ç0)Ã~vÇ„æ1²·hz°µ r,òŒíî6äh#e¹’ÿÉޱtZ…[’ìk-«¤@;‡e™¡sxK½!•Â1(79ìÇ¡6*ä/"S_ª€¼–-Ã9ÀWzq/ äEV¨ÁRÒ-IÉ6ÇÄæD+Kî ZųO³¾v0YÅð"‚aPBc°žÁ4kD2Œä˜zì7Uá0ŠÔýmUUCËê°d;÷‚¡eý ÂÒÅËCÕ 7U9XØê.–º€&1\jã°…Rº^ïõZ’Ý+ä-Zws@¡huÝvZ³`ՋöŽ5 V˜øsšõÚ1RVþ’¿l-³”ªvúI¦É~bB5»·ß)©÷ò«ÂÔšUÏIš}ä-ãl‰w›æÉNš\$9NÉa±i¯~áù Xk„ó¼qI4½¦y=\ bPJrØCWü~еwH–Íâ-Ižxš+>„¢4ÇHê˜3XÔtÍ"t +-êk’ši-½<õ¡³‹ Ù‡Ârr0)ˆA)Éa?3âLvWR÷sié%jnìXZt(»µ´ñ©,&™$Ÿ¶cà$Vs ¬}€ÂZÆMLjÎa\µö4û0XÜn*…c˜”Îa?;·è‰3i½åת—ŽâD°v0Dš‹U^7‡EEµ4 kR-Ò¢ «3rΦ~”`¦Ìc”è5ƒ¥K¤½„Mî‹)ô„¥y ÖÐ/ØËœ>¯kÝ–ƒ;Wô»¨þ(¬(½]'Ƭæ‰Çs‘Ô¨ evðä7-¿CXlžr)SÁ<…ÚàkΣò»‘OšmæLÌGsˆa’Án¶2ŽZYAsY_«)ð4‰£dÂõ`°&@1ƒYÂ`ØÌôf‡‚¡7;9å.èÖ’4}ÔƒØ ÿÁ,”EbPä%XË¢Ë&9 ”¬¯ú0X2üT Ç ”ä°‡.÷“TØÕä^«¨ÝȰÞı&7$­ç±®[Æ$œsŽ*©0 ˜l¡+-Pæ ½ÞþQzP”ÑìÇ Yp²KäÁ¨æloXE…p‘Êþ£Ä¨–¼éô®H…-Àª1PC¤æ@Xºk€Ö7<“dÍ–.–Ú­&1($9ìFa†D-%ÀÀÍ ‰Ö‚òHšÇ&Ѻ«˜€Ê[¦Ía± jÕÇ`Ñ.c@pæ•Þ‚â©Ûca0®jˆd#/¨t! Ãe47£ÐüªUŠRŒ(`ª5¼eÖª=I¯WQeá¼XËñâ ÆLéd©p dT‹Ü88<±ð·ŒR»Ç$­ëã]$Vþq!ˆA!•ÁÍ(Ô€3Ϻg¢æ„U¼¥1¯èE6Ó¦Þî99,þp™Ž1£úåZÈÖ°é²!S耰ªÔ}(¬&¢êgÊGòýtéÐJ4s¯Iá¯UË4ëw:jø~/Iå,mc ž½ªóþû¢ùNNxœ©÷±ÅÛd©0’h^:P4KÀ~§|$ß@ß| RhiµaÞÒK4³‡›¡“ÊÍÕl‰„EÝÑÒMDÐ uJí@gñ&Þ‚[íP ˨Ӧ5iÉÞ`™ *1(Üȯ_Ö(@&‹’%ƒ £Eð †4j7ŽÁ“U-£¡0fý¬åõ#¯kÍÁ`ílXµä,à2¾¡êÂ`IQ8îY9Ç[p ª÷’C§7^yKç¸Ä ”ä°‡)‰«Å­÷,pÁ–MŸ®å$ÓRŸ*&⮃Íz4ÕƒF¼’ƒÃÚÇËCiYä`\8Ìr.}(ŒÍŒR†KinÆ¡Kcê´|<ª™ÊÊȆm’„l„"ˆ9Yœ¬ ¥F´`}²,DiHmPbÌâ) ¯VíÆàcA—õç¡êÂà—Êà‘ vcÐãó"•Õ´€ÖdKžLT ìµ>Ž´³Ú %¨Ó{ ´eDÄPX» kA9d'‘C§·° %¸Ød eT·£ÐÒeµrz›]ç-vó j´MbÊowÂý‡ƒƒø¾;Ét¸¨ä&Ecà°vñòPZÒ¦y£ä€ø·ª q£ D ŒÆàfVujÔ˜HZujôšˆqAø;2RPÚWl_¨ùê $˜ôQâ“Ø’ ÂÅY±eîf¹@@ $ÇRz0&‚#˜ˆÎ`7ýÂfõuL³Ý¦Ãd-éµ–êÏ5Xh•43˜ý›Üãàˆ«˜ž²Ç¤²†|¾‚Ô°™Öü~y(Ãä#ƒüªwV¸v´"¥ldšÈUà›Ü#ÐkBV/†.¢ Ê-’#-r-.¨ßºQ³r\%« ‰à&!ìF ®½Y>Æ¡£Þ¿h-ˆ§L/-©3"¥“L¯Õ¢ßyF*S_cl³ÞK[âÞ³¤v‰R9,‹$£x›£~­1(79ìÇ¡¡EÔÁ­³qArË èá3¬,å8H¨á­1>Vã ÅlÈ€°ô`Õ¿“¤Üja}£Ç=W,A0*‚c˜ˆÎ`7K¤’Ĉî¿nÐL*kAî+Nݤª ‹Q0C Ž~Ñ¢Õ¢C‹˜„µ+,--“ä/ÆI °…AA) Ã¥47ãÐe··àç~³²Þ2HAë„ês‹DØÎa€ø+³V]Œ Ý„ † iö£P ‘«ò¾0ÉA¥A/pæUO&‹^ð0̛Ԭ%,ñxÉÊO(j—w‡¥ )Àd šT¨q¸t¡0ô{ A iö£ÐU©\rÄZ,îÒ[àÞÒ¿&)z5J<Œñýæ°äJzE…aà6ª¥0pP{AZFÄÑøj äH…˜Jë‚0ºP! †ÊX8ìG¡±S‹X¾Ç-õš$VZF‰”Hó:ZݦÅM6«7¬°l¤É‚ð¯$UÖ>@Á–aÐâä7[)¨Ã>†”RƒR‡›qè¡l“ø1&êüó–­×{DQK/ƒZåü$·Ü–Öå£`$¹9·0 ¬]H˜µàL r˜5‘ÂûPXœ*„!¸ŒÆàfj‰CMuÉ©é´ZniGaл$ñz–"®Aî“ÃRŒJbš Æ"1M…aíC(¬eìÕŽFyê>¶û¦ƒR’Ã~ªˆ˜ûÅZìî¶èõÛúÍZ™/é¡ñÉóè°¤pLvù aè•‚ÎÁaíléy‘¶qÐxµÒã׊†áR‡›qxéŽM¢ å*¦×ªe4Ü~œ­þ2bhSržló¬rÚï‹h§…œ°v RÖ’$¨¦0@úoÕ€/Eûò‘|?Ý«Wf,1‰À[V½+ ¯£$1IŠ@>öÊ¿„% TöŸ‚ÑËÁäP`Fú—ØÅH°5U [ÚíX0Š”ÊávVj6Yšs«¼%i¥DÌÀÀÔš[5JÐ/Á½› üDÀ½`bÔ5–öTZúQÓÀÉ¡ÓÄ)vÑ1³Êe e47£Píqõfìž5Y½e[”D“CÜ1tAÑmpl\]P¾ë‚1ÈwíîY•Õ[:­©Jã¦5WÙ‡Á/.1\Jãp3=}΋ºK7Þ‘Á–­ÓX,d7í¬ ÈŠÍž ¶¨MêÒ8ÎgÝX¶.^J˪\êÛ2»0],¼QÒ(5ìG¡*:‘|ŽD#*[’Ô¦”¢C(ñ²i9¬QÇØ€ –àªNCÞ‰‘VÝ[ɰö!ÖÒ'•"‡N+Xx [ñ¤­Æ ”ä°‡Ú­zÕ¥ÇIê¿V-³šñúÁêè/IíXÉêì+ «’æÜŒQoXq„µ¡°–Q.†+’nùÞG¢RàRƒR’Ã~ºò«ÝH¶˜WÚ[uUv¸b "2øt#˜a]žtšóg\äVSîæû±¥Ó"EÎÕ2 €ÎîígJGê½ü–i5éM[ù ”kKË6ëõC“äN¹7|õ +-ö{ƒ%o 泂°Š›¸0 ¬]ˆ"h-Ë¢••AÖóÅgà –<+•Á1(#ìG¡«>æŒ4ƒXY_«–$vÖAÞ-Ì6£ÔÌ/ùøG‹ˆÏk®$HŒUò) ÂÚ‡¬âÖ’w6YÄAÞØúº …¥È¿ A i ö£°³§ø>Ç¥ë-WÝ[ú^]7ðžÊœb’’úW ËY’Wtoð4k °Tf•ÃÆZ½”¶> –Ó§JA JI7ãPÍq^5ÛKi_K˦üØ1gqjOòÖÕÜ! ‹V7iE"ÃØT»s„­É޳ÔëFÆA0©êÃ`ÉŽS)ƒr“Ã~fOÕ²y-Ñ*„lXĺ–på„ü‹NÍ£ƒ\IXì£ú;Æ8ʉÓžÕxV&ÛžÈ`œ4&]Œ£L"PD2ØAUÇN/»dKˆ·ôÇ´é­ßÓ¨ŠCÂ!ZC¥Hz«‘cŒöåkb´Ñ–ü‡,ä JT}LEg¨0LJç°‡nÕ“Ö|µc¯U‹VäÆ^Ø&òê‡*¤Š™]añ^njŠ'Æ*Ñ´…aíC¬ֲ̺™‡yÏ÷a0(L Ç ”ä°ÆÖ=þ„pñ¤Nò¯¦E³AjB²\ .¹I‚óVs j%sûmÔ„'tØœ0ÞÐ˵³…g­Š·€/¥gû‚‘|'ùËÃß=@{[Íœ¸˜;Ð[¶¤¡HÓ’:“º‘ ŸZŒ·T¬‘(^b$ º+kâ¶d‹Ô”,°ö×}( JA —Û8ìÇ¡ƒÃu½Ë肯U‹–JNI®ÁÉ<‘f ¨qtøEï]— céôf^’Ö$ÐÊZpéÊca€€ˆº …A ðgŠgÔ{ùuPrѦfä^½l±b¤¨ª%($(MJkàâ!ƒ_´²3<ŽÑËMÇÎÁᎮ°Ò‚[œ®ÿ«. †?Є F[ÜŒB†6 qf,‰õðaíC(¬qˆj&½­ô¡°¨š&1(%9ìÇ¡ƒC¼N7(¡ëciѬ7ÜU&ÞõY&„¾Ï“ÃÐXWuD8Æ*/¬pp¸³%Ò[pëàcaЯ–Mh](,]&1(¤1ØÂ–A"DeTËÆ^5 (glœ°ÛÏp5Û­ö3¬ÒµÊÝ­€Á]@Nž5ªÍ¹+ ª‡uΟM6Rïd×ñˆiIìë#œ‡¯UË*ŽÉ·SI&èj“–D”@…¥Ì¢T/£˜˜ ÂÚÇËCi™¥ dá`Uq½æ)ˆA)Éa?‡8«¢ÒU+«|dÞ2Êy$!'r”H hJgƒrf°œ¨åTQ0-FìkBÁ­Ìè»Þ€}(,gj“‚.·qØÃVMòϤè‡ÖZô–¾³xµÑ®®”b¾yYè­¸ÉdŸ ‚שÂÐò–…áŽ9ºlÁajÿ‹rX7½â€},þ•‚”’nÆ¡ƒC´°é\iQ¯X¯ÅPG„5@tÜÔ-‚),AWâªt )AW88p9°†N4’BÞi7ï c 8Ñ8Ü B?8¹É>C¯®W-R’hX¼îƒ¨2re˜¤) 'íªG ÇØ4•Ö98Ü›wÊ[à.“ú#ÆAÊÚ•.:+ â2Øï‘äûA˜"2Ë=@s7óþkoÑ2'CZ’E[oIÞIaNƒ¡%¬bq/Èʪ9žyvi19L¬ã}L çq)ˆár‡ý8tpØz¹~™.koAÄ+*›Ö¼FL_¯—ûÊ9OaØ—°•õƨYˆÎðH§uié´Z"9hDé#ÙØE b¸ÜÆa?ýÚ¤øJ#­vßpOÖ¢a”â¥ÊÿŠ Ÿ®ƒVÁÕ´¬%ð˜‘ÞÁÅ.ò- Pœ õ<ëuÏÆ^Á—‡Ò?(¯Ü¶—^_צ5AÆÙâÊNRMuØ4ZlD)Ôlʋظ4÷%âÌùû ·OrÂQæà€SN¡Nz4pöÉ®=-ýÃÅ5•ø: ,b ˜µrŸ·¬RA§}ÜÀ§UKx¶±© ‚B ´¥æà°—Ib *R?ƒÜZSºPXê$™Ä Æ`? ›}©Ó`dñ;Þ0ŠÝH‚~ ƒ"Ͱ×K0‡ž ØŸVÑìøû”4º™ä„“ïxði 2éKRñðå¡ôo¿S<’ïä×1-£†ÁOël•>½e“:ÐÆuŽ3޳ƒd$Mæµ1[*m,Æl!É€ð:3É[:±—8‡E.Ï-},~a¯ A—ÚìGa+a42é•d¥aìíº]½÷q—È€¤ ÉâðEïÒ•pIû]“E 9á4Zõ'6hU˜BU¤â/ T²þíwŠGòüvЄYÿ¸]šlÙ4" e^¥82¹{uàô‹ÃâñA˜‚€j5ÂÚÅËCÕ"w”;uc–«Ó\d †Km ö£Ð¡eX&;2ÖÔWZ¤ŽfÂ9[´$Og•Ä ÂPá6‹`6 ¦SÅ¡ÀÉ qÞ2ÌrÝ–s´ª÷1øß”‚”’öã°e~žõv›QÊQ¼V-Ódå€ä&ˆ …XqÚôbnÂA~y(RÃå6ûqpW–ŒùyÔ;(^«–MnèK¨)ª%¡åÂ;IŠ ËF+‰CC«pCµ‹‘–E ž…ƒÖf*}(,»³I¡-EJåp;3 ðLÞ£úͬa2¸R?{œõð-IqH´uPRÜôj GH¨CPè Tþ‚o šœæäd>9ÿÎR£ŠD ÀF¿“ߎ›‹ÞølÕR™lÑëCÂoävæ¼ÖM (ša7Ù› †^|Y8Xý§´ÈÝd…ƒ–-}ô+m®”‚.·qØÃÎ-½–íÅ­½½Ä‘•’Ámž(y›’häÜ¥w§Š4Y=2ðûAƒÃ¹d½¥×‚ïΡ³;Gه  Ä ”ä°‡ÁŸI²ÇfsuZË,u|ì¹ŠŽ w³Lr7‡ÅÎ+,¦Ží©“Übç`0û ¶tz…ˆr˜ Ðö³÷A!©*EÁp¹•ÃÍ8l‘{­Û-zd­BmY´8ò8k%­N#ð%.{s Ø´‰KÏ1æÑ.‡3wž4a-R Þà`7T],¥ UÇ Æ`? óYL›f(hµ¦×ºEVR¹é~ÜôŠßEîØé´–€Âت-¬íë ÕÈÁa«UZÔñ\8,hä},=KzQ bPJrØÃvîqÖøÏ‰±Ä¥EUB)‰" ‰êF1}ñ®ÏŒ‰qaÂ\aÌ›N1rp˜±ÄÞ2Ê}ß…ÃØY°õ¡°%åŠÄ ”ä°‡½¹$uç¥ô„]žä-‹¾‡$oÎÕ13lvøE ¥-‚ÖÑ, îy}[¦Q³ÓŒUò–ä3“”‘ ö£0e‰Á0ÎLRÇÕa½ö7!› (&÷íYYƒÅ1KBÇô?ç@8iÓÒ€$-©m ‹ÚbƒÇuQàŒÆ`73|¯b$ŸàðîEÕò–eRjSnZ Jî–;Ä–l„E\)ŽÑ‹mß98¬}H:[$s¤p€Å´îCa©YlRF‘[9܌ìà½ÝYšfMñ,-£Ù›{)&"7H¨½YM틼«~Æyw©È k‚n-æFr!×èöÂ]a ³bP>’ïG`NøUê lUËL²aЪ¬«fòdØ®ÅÜ ÉLz×ÞäJ§&¨Ü_pqÚN.P2Ö H“õÌŸM0î¥6óǨ¹ØÕÉé-zuç€JiÕ –†eËgoá¡ü³SÝ·ª~ø·‡¾{Äÿ쟗×Ç¿ûáᯕ¿ž¼ w]þ~øñ¡WXjò†$÷<æqô?¼><õã»þõgÌ>ñ}B¦tV#ø]þiÀOï‘ÀµÊÇ÷¸²mÈgpü6tøm–()ÔÔÊk‹Ò$¡mlÌkë{D‰/F3IOy‹Z³rÝã6±¬‘0CøöØ£#ìjè¿­ÂO*%¤Ç÷Ðç‡|Î*í e(Ä ”_ªý0‹lYî‘{€Bó"¿,B{ºô#µ°zíGÇŠj]ž ï,Øç×'üDpÜ}{”Ý|Ñ**ÄæÏ4¡D„þ$ÏZé±á›Ó´ ‰XEò’‚Í)¿-éÇÄÃËÉZU^ɶ…OH+é;xt(Ç£4³²C5:Bžx>–*>:ÄèåUç=,È}¯Ï¡)þþ‡‡ÿ–ÿw6‡²&Sã4íæ>ñU+ðóGžçЯŸþË;î_Æ<ø§O?ýQ¡m{úúñÝ{ºnÌ3ã÷~Lø*ǧ~ï8†²­óÓÇ÷Íó6oO?¿Ã“È gzúøòýã³ûӧןß9Ö×/ùüIþ˜çŒþúñïl)]zúN Ö§o¬è~üðò±üôáå'ïixúþåg“nZ0å ¿úòõw…àãW—nžž>É‚çý¢›Ö§—ïú§ïŸ¾(÷-ϵþéÛ»÷=È’žþª0üñË×wÿòÃ?â±/õc‡çmÈßc‡÷öë§ŸþFŸÐ¸å-/PF²S¸ "/¹Bòô¬Žü1àCzý´~­¢âé cÕåÄ[ÉR¢ ƶOä-Jéªí©`|ü¦/XóòôçOß_ɧ?Ø/ã„g«ä)·ÿø5wô§w’V8,OÎ:?˜¾¾¼“G·¬O¿·¦§o/úŠ;4–‡þúñùÝûYvæ‰óIQÊ®›Ÿ>T3åçê|ýòA™®«õÄòôýÃÿ+ÍÓÜ?}äò«ÿ­L§¼B>ýŘËÓïÖþéÃ;D”­)Ëÿ;¼š ·râïÒÙ_Þ¡NÈ”{ÊïÕG ÙÇïòî°ŽyçÿáŸ~øÏ¿~úð9 ùXÓ¯Óü/™BjÈnÚÑ–W“ôô"Òä^ÊGôé£Nÿ´äGú <ðL§§Ý;‘öu?élJ2ò÷õëó¿¢DÃŽÛÇÃé*׿Цëwå™÷Åü¼~ªŸ+àh#®h›{Ÿ÷ëOssOF™…ÿöñ»ùéËög^PÊßê .øfãê~ýÊœ|óøcýÙ~ª‘~*ÄöPL²Wþ0çÅ£üýAYégû“¬Oxîãú¤óà½TþÀ,3bZtØòl[±bn7ßêgý+ÑÏ> ¾zýô:J%Ëìí£’/y“©ŽÝ:/S>ÿôåëî›}Å÷„ª\ùCû}=:(²›†»ù$ÜòÌþ³~MyøÀõئý,ÓùÑÛ¶ÜÌ e‹É]­Ì»çùå«tÂEHÐ3ðÛêi~æ«>r Hö™lÃSÍÑ¿”i¡xA_¿ü¶BªßÖ7}Cø<¿}ùüÇj§»]0unO®¾K{ö½,3(ø„gÿ[ÿýÃçzçÁޤSw»}RÊ;ï(_Þa÷È¢§?øw\m}_÷_Já8?ívMÛ]e½øúý“®x…Ëî:‘bÿ]}Öòd|ý¸{ïÞ‹ª²Ì»ÑûÚt×P¶ãtó)•î~úü¥~ãU‡ß^8Y²ýMý\½&S²ZŸÔûJQ©·pìd"ÆýúHŒ£ÅN"~ò ýx±“;«êÆ(‡(Õ•Ÿ¿C‘q§¢ø.ü±üï åZò^ôA'Ç4ô²cuHŠY¹VègV/6ò¯_êï°Þ>“ï»ÞIíS$ùÁ*¯˜DBÑçIù§w°¬Œy|ø\¯©¾ß.ªB¾ÉÃÌóüòÉË./ߨÃí~®¯xôWl{=íÂw,(²ãòœ4ØB<›¦$:Œ(…yƒÙ­ß>U/H:/ë'ùÕ5ÍüA~)Úñg×4!øcýÜÿS5We§§¿~y-Êã‡ã½!XéÆ^Œ«J3ïp/–ä'ûùÓ7“3¯: tä÷;‘(ÌÛÙ&mkųîA}7ú¥sÎ;×§ÏŸ9úÕTø:¿}ût·‡öúÊdIþ{÷ù쿬oMqÁE_ÛÍçÂÝO·þZdj`feé¾ü¬OŸÔwQnó˜ ­|ËO¯²×Í˾õ?™O\¿Š—çÞÁcú¦¿âÑTOýÃ7™²B–%®{TwnÖÙ³õH¾ö?gù/Œ°ü§N>ó¿5!çq/}V+ðÃ~À*ý«‘äé®sAŸö‡o¥ýÇ/Ÿó7ÇùÏßp.GàwVfëåæë·ï2ÉFÙƒwº°½{)¨úÛµËì*{Å?éÈn%xú¿«‰ðÏÀ‘ÓL7ü™U¶›óÙX¾ˆö×ê$Ú¼ðÌ‚)÷óÍä+Ë'¬:ïPìwÙª>êö™OŸO¿ÉC$ë[Uìp&ÀȲ&¾ÁÏõÛÿ} |»^jû4úTøñd^¾p߯9%íŽk/Ÿÿx4m÷[d9©wÝã“ÜDNìŸj›ÃÏç6‡¢ÁüæÝ³Í©þéW©¡ Oe¯(Cúü›+izºÝé:Õýl7ÐÎmÞ%¹w»9,‰Þº¬\ºËd;~g*à¯ì·õ[úÏW,ŒvEñ{µ ¤•2ðz. »mo9Ô%à°øüT‹óz¶˜<}­/5ð§ø_jàoþK ým üS ü3>žÂ§¿¿xùÄ5¬“ /_ üÎdðùäÐO¡âº$W uiÓs=°r¿j-úÈçØÆz½Uþ\¨m0õ·óâ}OXŸtšÌµÉiÓ~˜°ÂaíVÕöç’›GŽîý2߬‚#”ßw¬+ˆøÏ;òíJ†{xóê“7Ï÷P˜ó0žþõã ÍecÖ/„x“ÅòÇ´Rela΄ؽqô«uÔœæE€õÀ'ü’=$£©“Ì»•æÛË×O¦ÏÎMV0qB+{÷×ÏŸ>~Å:Rbùiüpó”•(/Ò|”Sº;?øS»µÃøIPfÂécô‡‰G‘)äø¿é–=Løç󇉟ó”¾3m¬Â¹~Ä?Õ(¢ múô¾ÖV5AŠÝûwÆ'/¦,å4¨á$ãýFi}S]J6½Ýû0Õs0;Ñ&gòüÊaFQHþ¯/v°”ã!uÛ?îž¼v7 !g¡>}æ3[²RÌ¡~©L.n…šo†QQp…f?å3TyGÿÉÿªgàÞü?ª¢~¼ýþ°€{³>q¯Œjà¯Ù|£TC½=øúõ‹ŸŠiL^'˜ÀÞúÅþ†¥Š²¬5“˜.ò¬çAއÔÝ¿VÐÂ2Mög~ØÃÓ®Ûêzcètin /ú òËúzûjEΙ–eúýÓ«>§y?^ £ßØõÆÞý“ Ý }‘ÉlúÕŠÿŽÞõ§ü1|ùÊ`ÒÓ˜|Õóýú¶ufµÜÔjùûÝœÑöÇ­ÏÊo§0œî¿¨Mt”ïµaåý×9Y¿æ1™&=L»³˜}H)/µß)œ»] PJ§NŠÛ—eR|ûðê+æàÇ¢†!aãoýsåÂÓ{^ùÑûÙ½|kž'â±êD¥99cŸÙ£ñsþ^?¼£sì/vjMÛÎúQN¢/_^ë}þóG54€Ó¸½ÝL7È•„îJørªMíNp§Ø‘”à7ýçé¯àqûë_¥Tc ½u(6”_ Ã)+Úi8b˜ÕHu%úÿö&†ùÞüÂ#þ¶W‹êÏþ«½OLÃ/ß>{Å!WØî>p¾È½ê3 8˼Þz-êS)&‚EM'2‘ñ÷4ºU´e|Â(6ÔÙÚ(O•39Ïèj]—óÙ¢V–Û•°‘D¶ðü5 ô!óúáúH‡ØºuüÿuÖLÏHþg±õuQûߣÿbYÍ«vGÿ¿Â® ·a~§>4²“À'ú‚^PêH–RYr8õõegÁC’kDXlÆìÎÌÊ.X^(¥gwŸÿð]Î{ Š·¹Q<}¿Îsum‹K²¥ô ú-$Cû¡éÊÉ4œ'æÓî(‡ÖuY×é‘Ð{±K¥ÎÄë;ºsÖ¶ª2b4.(½ú˜/JMÞ̪ñûFˆpŽ%y[ëZÞ.Øëw·‡½5$§Ýä }!ÿ*Õ—x'Yntkר–ª£<¸ÉôÏ'Òêµ…ÁŸIJçwø˜§=ÜÛÆ"%~¾6p,ÒW©Ú+D»ÊÀFV6ÉÙ/á¶ÙúÒ+ ƒÃâ·?²|õ9ß¼³`ÚBåǸ¡ -ʯÓo‡…ªÑŽ@9?m½°…[Š©À8cx?•9Íùm6:°Údѱ½R¦Vk'îF`™3üè~2Ìx¢¢xù= Ú„ âo¹(éù"uý¿ûñÓendstream endobj 267 0 obj << /Filter /FlateDecode /Length 5442 >> stream xœÍ\ÙÜFzϳޗ݃ @8 5MÖÅ"r ìn°l¼$°½T§E«{(“”e9Èÿžï¨*VÙim = ›,Öñ¿ï ¾½©Êú¦Âîïñò¬º9=ûöYMwoÜŸãåæ_îž}þ…Ð7u]¶Z‹›»‡güJ}Óˆ›¦²e¥ôÍÝåÙWE¿Ü¤®Ê¶­‹î\ÂÕ–­m‹¯¤ùÓs|fà§)Þ½º­à­¦m‹~êñ~]VUS,|ß´ðTUeŠá1 ÿ›põöö ™Ú* cqM¡]<ÒmÝÚª.Ž~ŽZãƒ_F§óør]¨;»}¶¦øºʾ¼ýÓݿ㙛øÌBʲ1Î}wG]pJ kUSœâo¢n¢”x¶Tº~¢¯oýÆd1÷Ýt¼‰a‹WŽ˜Füé~Ýúx+‚½rûBtoÖ|ÙVu]ÓØ¹ñòpèÙoP2?Ýfc¡ï¾p÷yÒþ½ß¥u§ãû£'J~tÛÓ¸~ŸÌ½x£ç0§WH·V4²šlê›»ß=»ûUÆâÙ×ЙV¯úz\†ñÑÉ{y{@Ê«€­ë¨Ž¡Å¿Yåd¸ ? Üâ3¯¯áèÝý>ÜÑ™€ é^ ~q h“h°î {yÔ¬/ºÔ¤¡‹©·¨Ô6?ºûÆ›TäÄz…æÔ]ïép n_ø0^C ©žü£¶Œçå =—ªÔ{Â~¿j ¬‚" ÂÈFÈ6ª`ÜQË6öYZR_“‹}ˆ$b¨³ò´šNl3ÈÅqÊXÜ&lä9O†þê]´ÎàPˆê+ÞJí;rk\ˆ¬lk‡ûàïÝ¢@û£3¹FS#dÁöݤˆq:9Š Lß_‘ÇžAOXCH§Ûè ô n,-—{GÙ¥\â80liqE`ñâ °1d5QÒeâ+Ý]˜g#zΗ$ó8¨ÌÆ×Ð4×<í3ýNj¿A„ )[üPjƒ`Ó"`ZÉpŠg99B€¡ŸcY™º£;)…KÌeLßßÚ²†µþ%±SÕmñ>¿§rÀ¡R´6@vç5=º Î+÷ x »ož”Qev0¨•AƒÀ¢øÛ©ðRE„\gžCa¤Ä诈tÑ Ó¥_ÇÅoÌæVƒ_%!]9ëztÝ-á›XVú uûLI•yDUÒ°Hp×ÔË+›°(èÅpÙxʶõÊ*ÑÓy1nÅÈ_³tÞ™$Þ¶ªÀ‰[²y ¸¿Á= ûCjÂo´äéÞ8uK¶Ïˆ[»ѦÁ€aÜæ]0 C놓“F'¼˜Þ ñ+g2ànΞÎ>„'ªø]¬¿‰ŒÜSðåÇßåŠÉ,#ûÜ…é½{=oBŽÀ´€ð#s²lbWÚ-ÍÝ•FdÊœ X]™ zϰÄkÝ&”]bÒÄ÷qxCÜ$Ü›Äëóðšö‹êÑSÔ„”‹qþ¶I¼fË#™óÓ‘A«½ÿ8UâU¤Cø D&&0Æú<±Z5€ù:­ñGä½Òk ÒÎh¨nJGr½»µˆÕÀýSp#É•ü2Ðþ{¾YÁ”ÃÊ‘¾›ÁÇApC2 -”æ°Ð.þPeå¶F3”Ÿ»×1 yyÅFWñŒ½Ú%†™ó² )hOŠü.Òý›Ö`”úý”¼‘ÍOùYÚ&`¿s€°¯ªÑJƒ¤v§ÞÑeÍ}ñöç·yqê5;šY?G'°hL= Æ¿?÷˘Eö /ª¬M›áÉ“Y}Œ®ÎCõj˜²VçÞDVhÂ@&ǵ!#ÛÑû`ŸâƒÐ>ñL&Šy% ÝcÙn°,Is>ý‘¼$÷"4û58$-Çà§ß”´)ÖìNô9ÌïÝyµI"œ³ã7X×1Öù,ÇÈ–;ǤEÃx bý$Yü¯L·i9²õ ¥e¥ÂIV¿Ÿ©A±…8‹²¤!Š9G¾lWSªªT¦ùó¢þG7è}Ös2Auî2]•[vû4U‹UWk𠆔œÐŽäùÞJ×Ã…·Á¼ÄÑ]˜øQŠ´K–~ëVÜÝ5bËÁeaa¿ºÉ’7‘Î& Ùyø¥ß¢do ½–#[S:n£Õ³{æ4™.Å®6[Ò°Âý77ØpRd|¢j¨éúC)$ )SÌO‹J@nS»Ìd4ªÁ+ Ês9»C_¬Aú›)-Cüë²>ȪltHíö2rÂÝÜç‰"”,0/ó¶ø¨‘dnÁÞìn(“üx'&Ch›z)Â\1ŽÞžB<Æ©"iøúɸPÅq!šF@Í=—zû£FÄÒjòlý8zäŽoƒæõßGûx㲬Xá8r‡éD²GÑi gŽx‹Öb‰ÇNNû0gÏèÄÍ€«Mk¨ê”•7`K”,³ê­pé°unfZaª†‰á”T­¡  çÃ|ÚÕ¡¬q&èŠÓ£ ¼ŒÒ(Å–€à¤ ø:ʑܻ}Ž '×@Ãy$ˆ+ƒ’æ–Pq°¿ôq¸‘ ®ßF´‰!ÁÜ1îò|ýøýi—‚ÇkDBÞb”½Wô"r6Ê]ÏD†"b®‘+ÎÞÇ1è<œòó€Ø|W$äYÔN‰NáCr*ˆ“·Äú÷yló¾‰#ý…Wk95ê6ˆ ˆ7Ôgd O4XŽÐíë ¾´z}%‹Ñbê­õã?‰uS¨ÝÔŠ.um÷@ð0ršk=¸»­J­û6zs¬Š¦É2ôÌ`ùÔÏNó1ךAØÜ)ûJxÓ>©–]àq-·rÇ•©Y†Pªnƒ]þo­Á ±GJŒZüô·‡zoN] ¥jå‡}¹™3mKQÛÕ3 •÷„z¸ËŸdÃ|î¾Ù¸š¦¬gú±IìÁ¼øÇ'A>¥1’ãká©i‚׎=ÐéÔÏËìk©m¢JïÖÒkìK®“ Ë#UsëÆUv©þ°É|Gå0œPm2o\.·Oæß%w D¥Å~‹\uyŒ\¨´rÍxgÆXÇÎQÍÅ¥Ä+,¯dÚ‘å¤Z$‚‰= hè‡5ÚõˆàÝ’%%$ÇØ{b ™VYÏóÈ¿0 ›ú%†q.Á_ËUÃèvTp£ÇFlP±ß;åæiÐ&íÊ›‘Ii‚¯<'™~¿z7ƒ™ý´"ÎëºB…ŽÆtJbƒcO$tÚ‰0ð Ú¦ìZÎQÑ+‘…~õk˜Òf¿ö0žÏÜTRkY¼›wÒBžÃIh¹ß0C‘É_­@퀀Iý 4Ök€ð„> „­*MÐ&°xvcZ‘F8Õaúð˜fÄ—ém²F °é%¨Ž'EON‰wÓ´lãx­€–](õï?‘©Žâ,Ɇf´Yˆ`&BÙG†­Ô½£(“:G‰`ªI¼kÎñ|΃ zUûÔ¶lâþ&Œÿ£›d:. 4®à‹[µ5¼šÌL¼\„\òz9Õ+„?€ËðE'øz;¿¢ÁíŠÀ4, h¶ÝôcÐ}µ£Úä ìcýZc‰y}%ÈﶆÓJ´1ë›Àæìý4†"çÿú42¤¶¥mEÖ®³K.jŸýñäúÌUPyJ·JÒØ²²µø™’4©)¸Žvž8G#âÎ,RGÛn ö° ÝÙe&,wm»€åŽðNS[NÒ€Ø-{¹µY Èy|¶~ °ç¼¨å§6"m]K²©ƒ«/ÐÖ(ßË¡ˆ1°Ù‹£ÜË`AÞ¦yPè¼Á‡|& ¹ÏÄáìÌc›®Oš-mû»„Ï#"+…VûµÔ¦÷Z(Ž&7q7C¬Z¤Zâ³Áâ ½+bÄ(eº:í6rÚxvÀòã•ØûÞ1®wZè ¯D“tk˜r9ÏMç!Ò“ó'¡d;ºYÖ&áÕe#ñ ’~ñŸÊè²Ù|*Ü2Tf=&2!’Y/‡Í¾9Isà,\hñ×64-atDMK$ÚÆ7-ari§ìËmI;‚Ó_¯¦­ýqL#Cå,_=s­æ;Ѷ/mì,wËWÖ¼e=pÜÔÔlt†¶}µ*oÆûÈTÖÊrñÔñعêeµKôïv“^àÙ•þóÂD6½&Šq9 6< _ E-›4ßÅ¥‹Ý­g 2+ÐCmRü5òä>јFþ¢Uêq…ÖY¥˜'£ï¦~ݪ«ª)îóº^U#ÖàŠp»»–¡eÅ;_7¶Õ~Iý[ÇÐ)ýÚ1iyO“Ïå=˜«Õ@Cžt¬&»¥þ ÉŸ&߆VI£‰OÖ³j©J£ÔÏž^ËK!\qiëÝù‰z‚EL%×Doˆm­’(×?SIjüLû#|ùÉ»R?Ù'T“fÏ õáO(k`ŠlM†˜ý—’Äez™·ï¢³¦4µµ?khüIñd˜\¤0[oäÏX ¯šár“IŒHW‡oB7YQ$íŠÁ‡ZÔ@E“cèø+v½`¡|Ë)¶ã³»«Bþ;> stream xœÍ]oä¶±Ïþyi 4@µ­W¿D2m $A𶏴HâAîò [ËëMv­‹¤;çZô¿w†ÒP¶/¸¤…,Jäp8ß3œýá¼ÈÙyáÿîtVœïÏ~8cîíyø·;|yöþ—\3–[¥øùåõ™_ÂÎ5?×…É ©Î/OgO³»›M#-µUÙa·áen-ÙÍf+‹–—Ù¡Ãgžðºyî§[›uuûÊM/K‘ÕWa¾ÙÝ¡w«as¡³*.æYwªŽGÿ¥(lVš—š-cÙí†ë¼( ‘õ`Ô\‡å0ÿ³ÊO/m »w‡ê6ì"KX<|i]7QÙ3ŠŽ’Yw5nùíå߀NRS: %€N—W@šqU™—…ɊͶ€‡B˜2, qmnXÁãÂ6ÛeØ9W̪8MžÙt³ 'u®”@žmòͶ,‘Zeöé±>ÕžŽ*ë«ö5B*”(àäj+¬ÈKÎηLæR*íaìªãî%ƒ#¥óf+€É“ÙþøÍyV»÷*·€o3N¯z?d(y_‡é6;n Ó'Ò”:#›ž"p‹°Hq#s&X¤Âõ$CÁÔcáxh·m_%¸¡L»³w.X$Õ€…™ñ#¢¡ P®%ö’MÄ‹k“+ Ô³ WWÚd% ¡ÍpÚ_Mg«„66çÖ@€"çœY\“½Ø\~wöéåÙg2׿ü,ÇggÂX›3AõÎOg²€i_ϾZµ.“£ës K3e­713yNY©r££Z7™­ï™Í†ÍGÆÿaE1UÎ¥drI1Ÿm¦Äž‰–„o~i–#™·BÀéK´¬dêåÍ`:ë L<Á‚Ã*Å+Ò8å•Ü©dÐÓÁÁ˜)E‰Š3~Éé [P¯î“Â í¦”éŠýÚŠ%D¨¢0ƒ¦¦&н]hÀžs#@UMÖÖ?x¸î#1 ‡Mõ/ =3=nùÜôøé\VÕ'-º87_eWÄ{œÐLˆ£Ýú§-p:¸ ƒ2°™Ìsh‹Ÿy!;›5#ÿ×®b®GúþfÕéEÔ=al‹Å£›eÞωßSÀÉùðl“}óð®×)þõ)ÝÆKʈR­­ˆd½¤¹æH¼p¶öº9硘ÂôÚW˜Ùµ î÷RÎ[Œ‘L€b ˆ/[œ‰V U×Äàw#¸–áH`2és ª[t,hMC¼ÿÜ!¦`¥Oq)Cwœ–_@#˜%IˆœwŠëçÞÉ}gÜ ]¤1YÕR¿ÜE´Uöî,Ìñ.ý7>ðƒÚÊ+ùšçdL¢BÚ~\öèšOCÆ5¤Pi¸Yª¼,M’AÝÆ•(0¦iœ;µ¡[Í FÛ?XS„Ld? i_R[Í'<®iEš&š™€ÝSe\Wàn2ð(– »+÷þïôý?éàÉÆe— ¢Ö'÷«þõÒîø-u%©¡:DÊ”37)ÃèûVmr15SÞÌÉìß´ì…í÷KŸGc Ÿ™’ e¿¡Ûýf$Þ~• }À‚?ÚØ6«ùÎiÀ-$.µz(¯Š›b¨µ²)¬n<ã"s£¬Æ3&;ÜLð“nWÏñãŒt>âx±º÷Rd‘R^ð«f”«n•R ©“Ý È;ËõˆË¢9HÎæyÍü?¤Çkkö£¸$+R_žHÌÅÈÍÄǸêýcœ"]L±²â›•oÙ,¾@¿´'7÷ðdý«dφˆPö²§#:{E¥,kŸÓч…`sɦ=Ò%Jp5Äs®™é”ß‹ûºÂ&ä›j •äAö.ÆP³Z{õÃs·ªâ¯G3ò¶ÌÁ ib﵃ï}4yœ™ Îì™Ç[ÎèÕ¤î^;9Þ[…µ˜“£>"'¹' \³1÷¤1K'òäù)'šŸo¢ümÿ~U8§N!9Á>‘ŽDvôÄßXB–ë‘ûBßAö«“|QÉÔã,ÄóÇíGм™›^0/×¾,0ò›"¼5kà½Õä0X²•Š-åM™>Ñ×70³ï­òóAz?ˆdZ®Y±Y1™úÏäóbíÃØ•ÚÇâý‹Ê¥.Ù~^Yºu%sWC-âõ,V!$EÍäBBJí Ø}[í°:a–`P’[y i“’h›\¼ïo"x9½8ÁÅEÁ°¢3Ô>ºðVºb‹ôµÕ2M ™—r¸Ózdî•|IÂìëU®T'ª<ÓÌcVÎ`¹ÂÒvÀ ´@êÒ•±ª.BË]CK7]ßR²ízO^åš$ªÈ¼ˆðWL@Âpaþ³¾ð×4HÇt9¹¦Á\÷ƒ0ã-4½ìp—7›­ÌŪðh]¿4ÉÕ}¬ÙU¼(ÏèF/ÆGzÊ~ÜÔÅj£rÁ8ˆ§¿ºs@Lö…]Þ×d;RÒkÛP‹ÃÒß°›N½Þ«lÿ’VèºxD±´o¬  Ǻ™gh¬›“ù4οnÚ0°eVW»aþä6cRž‹ú… ¡…º+òìîá¸+…ö;No,ðJ»þ_&å¶DÑÝkZíÐ|µ“´¯hëFÖYOÿ¼Cc#ÄVám%¼þ®Þõ±Ùä¹»KV‡šš_¾†9/Èmæ!ðVƒ\ÇÃfUÀ:SK°˜þæÍwÐ)½Ë–¬å‘›S*"c3 –팟Ã!7ޝ`\³ëñíB½¹x8½ üjƒVJöÕuÛ`7öÛ @ܾÄËËÕrç.$5Feõ˜†2¶ß[ò¬"ç¤6îÃñ¤7a‰-©¦¶¾à˜ûIÙ>Ò1¹9í"Zç®ú*’š%-H r£ÛµuMõˆ0ÖyÍp_zl6¨ÆÔ.‡q#:˜ÊAÊåÀúÞ H$–¹îF¦Å¦0•ý™–È÷£F¶uì)““ø,œ<ïhCÙÄφ4P4lP,Õ´ê9Aò8ÌWÞ~8¨;]kVôwSÅèÀY k÷5]°«]»Úì£ôÄí"sŠÙçFxW:P …hBm÷½ÍØSþµØO ¹7Ík÷c)ù]Âjñm7ÞÀúº¥.E‰yç™›jHÃRsc&/_kÎJ ¼kš “·žÓÂÌmjtP³¶7áiuèFçLù_Jp™Ç¦«ÇY¨sîÓ’ÇäN-w øIT'V€-Ùõñ AuG[FŽÎÌ áìP•ÞìowµÎb~ŸD!Ã㘱ÜÝÆ½,œ2‹ â>´öy¨€²V!ßš8ÑÃeºß‚¤vØF¦Íwà+& Åv8¥.‰N ùXdWÒ‡•Ò¸Ôº ¹¼™!Æc‡SÈèÀë$ÍXÌ*IÞ¿$ê²ßQ‚!Í~Ûù‹õT¿™ÀF^ö¶C—Еc#sÒt‘D–u  ‹e íúý¦e ã"ªÃØÓ?Z÷Æ×'ÀRd´5ä˜68gI%ïŤÃBú¤gÖbxø—Oȵ³¤åÒ!¤ØR„òþ—̰įhž«ÐÆÒócÂ3£õØU¼=†l¸°c6ìÐiÇ’í†ËäBÅ‚ÞDÌx¼äÂ ä¿ [”bðÅCôÓìIg©Áìôñ!.®mŸMX a|]&qÉÎõ–º&k^P±=E{™þ´À4…Ái6déü”ª6<ˆMM>²ÊÇø1UuÅÒÚUm9 ²öô#.Žñ÷…ë0'7³Õ¶¥Šjë-X¤}jÂzP ×)­• ó“P9•BÉrMŒÖ›]8ý¢Ô¢ô[Œ°¿;¸:‚–.ërB‡):¤C©Ð]¹aÒ…ÀnLò!0׉N l½lø5>¡wYªöÏÇf’|»Õ<™3ͦµts;Ø©´f+MÔ²¶š/îÅ]>ÿäóOÆ/m3÷ÃóÞ³.¸?È‘ Ÿ–#é:Hë~ÚåR°¥Ø‘;”Ã,–Ãüx=¯}‘ھĈE)ÿ °G7Ê«ü³lùw@²ÌýÀùKÀG ½øžsÃWh2wºfh×þ˜Êã%|JIt¿çQôÇÇ6C l!!HY!‡_¹d ÙF±žñdŒ¶±Öך„*¨ÙpÓß“ˆ«ßD[üzcܯì\h® TÀì+2•&ª»áFOÕîéœX^Ø=Ñ9¬ìÜ9öBjc ·jÿó'®‡ß?}qö_M‡nHendstream endobj 269 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 579 >> stream xœ8ÇýCMMIB10$øøø‹ƒøðùR‹ ‹ «øª÷i÷d÷`pw†‹Copyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMMIB10.CMMIB10Computer ModernthetaxYŠ¿7øˆù'ƒ¯ø¯±÷÷Ö÷ø¬ø%gyi‹ruœs¬®°¨¼ÀV®NRf`y~rµSžR‹ûGûj}š‹”—’‹˜¨æÓ©´‹±ykx}T‚giû|Ngmi‹†‹t‹w𝕭‹¤¡z£jhfnZVÀhÈݶ˜¤aÃxÄ‹÷Ï÷¬™|‹‚„‹~‡n0Cmb‹ey« ˜À”°’¥¢é›šÇ®ª®‹‹¢‹Ÿ|øÅƒ¯÷»»÷»¯¹ö÷³öø·ø~÷D#¯N<'Wû@X-lû‹:û%×IåÎã²ñÐß÷¦÷3‹Öûñû ™Å¥æ©¿¢´´À»‹µ_PLu4€a[Mû 7ph‹}‹v}ª¦‹²‹Œ‹Ä¡è–¶zœøP“÷{Ÿû^“³ ÷  yo ¯ Œ 9ñíendstream endobj 270 0 obj << /Filter /FlateDecode /Length 4120 >> stream xœÝ[KoÉ‘¾ó¾÷öÀÀV{§k+ß™xÏÂ6l؃]=È:´È"Õ³l6§»©Ç¿÷ù¨Š,V‘’V6Œ…©3**32â‹WVêçU׊UGò¿Wû‹nu{ñó…ˆÔUþçj¿úþòâßÿbÌJˆ6#W—7é±rrå@v«ËýÅ«æ?Ö#tÛ×<¬7]Ûié½vÍ6”Ó²9¦ ñÍ_›4Þ*ÛìùK7|p䃼çƒ_óÁÔ þè[>ÕKëÅÑëË?^`«Z[±ºüÓÅ寪Ýïwæ»à2Ý-nñ<·‘4zø4%Ýò…*¶žN‹ƒW‹ |êïÒ@i}­Ê×ëŽÀã„¥×0m§ô;>¸_´ñ7|ð!@}®^fØžÑË7Kº Lþm½ÑV™Dyïwû†+qyƒËy\T×õâF¦û(ºûøY2‚QŒ&Ð&´3ÚàÌøàëçEŽ´©=¤’ÿaѨ‘ žÎ™Pïx~AQ3½_Ô÷¯+($ XXÔ¸›“5F[5z–e[×¢ÚH¥®Ã¢ºŽ|¡Ê!+¿y»8õ,Â`®ÙÈüvÄ‹3«ç^—‹¯×Q¾Lf>×È3Ë ‘NÔ[®T~WÏZᵪ÷»ìe 9™©v‰ ˆâ»1(‡\¦ÃL.{˜6¢òÀQyæ`©mºœÙn—ðbO+}Qçƒ_ÎdªI:›ˆ3è¯Úλ`•ÌôV_7ËNfƒ(A‘³oJëÏ<âJúzíZ×ÇIeºÖ8:óòÅåáçùæÛI,ÝöÍP–Ñ[ÈŪóîËs1¥(©áŸ—‰_ŠÎ/dbèјi&¦Ð`‚ü²<¼ ‚b8ž5Ü«k?3ã'zð¬Ó,‡f²òo//þ›Z¡C+ÕJ+4 ‰ët+ÃJX§ÑŒûÕÿ¬î/l+¬–fõí "Üê'48¿¿RÈVY¼ë½»%˜V‹rw!”ó­&§ˆ ªEõ­uD1Zp ÈB+]kåÊtz*A'ºÖúLÑ‘TëT¢„8w¶u‘G´"R‚ ­W‰—’Ð@›{0mˆoIÙh*½å%ȶ ‰§‹o)gèýÈÓÑF¥6¾!QLä1Z´PZ¤hÚº´R·*M¥q#5±y]èHŠH‰êú1š)t¶µ@w ¤؇ò+)Eh…*vRm籡©Š~³÷Ã2…BË<å(ÒC.qe•2®Ba\E=lÅBá\)˜\Œë¹V±Iܘ—uÒÂ<&Á\,6Ôf½qÆÛÖ4¢ÃO5:ÙûÖ›FvëÁ/F¯ÐžL¸(˜Ã’¢.f¸`kJÅeé9W¦T\Þ"šse ç2ÀáL™Pñ(‹ý+Δ)—ªEµÂ¸2¥âÊ»f\LŸd²ÌFD&×z ÿ—¹×&ól€äaà÷¶ÙÀƒªQzf[ïD1z†tÕ*Ùtñ‘ƒ£1=ÉziÆž QnÁÍdç9õÄÍž…$´Õ:£TI°HÚ.†¼¸å+dg@…Œh·ÇþtŠOôæ@²‘ñJJÆÍñðx}Z_þ4ª5PÃÜKˆŽ5š¯¾ßÉ×ÄÕðéÿD°.ºïR^cë¹D£˜UcHü­åê/,1xe(j³Ä)cb@Ö)ö•Ä`dpub0J#y8žÊÎðÌ ¬Jà2ƒ²eæ’” )™AYCk²Ì@<ÒòÌ@ó8Í3Q¼ä™AYIk²Ì0Î\2I¨xb —¬f‰!ÎReFÉ™fqÉñ^e«ŒaŸÂ½¤°y 4zXعÖ(‘Ð>RZ$CÀÁ|ŒÂ Û %-5ˆ9ó3€›0¾(ªKHŠ B!Ý —ð-چƨÐp5äú_G¬C¨(ÓóXŸOšð9E!À%<ÅZ¥ò8`c¢Xí¦”¯Œ¢ÌnÐÖµUÊ¢txÉA%*DJ@º€."Å!Ùyð(ƒ „,«<ðÀc(ª†*FªrtH¸¸»Ðè…àQ4ÁJõIíÚé„3-àHP•&!"ì‘W»–b/‚)‚ÔJGÊEh^!*„Ö]rU ¤bC#µ‘`áßšb|8ˆH!ÿDqiŸÚᙡ‹Õ˜öäß•‚_¡¶) kˆq™±¶yÊ5PX¥1¨tœ«P8WÑÏÈU(œk"“ëÿRÛPØCRZ¨mÜXÜXÍŠ]7ƒW Ô‘Š!S¨$Ú —€%á …Rqyd'Å™óÌ–bîÈT(|ˆÐÁ¸2¥â²€dòÊ•)WÞãb;ü¼²c´mxŸ7¶”-a½ñᤡÙxöÛåßå‹¿qÑl ãÑ3&y¡>AfD0úêå âM+à¼<Ùo?¬î·«Ý¾”)G»‰…‚ ½æL­‚ÂÑ tC/Õ*ªSX·ø„|Y-ø×†VÄBÔGwªy—ÕÆfv_r飚BlîBHkünM=°Ó.˜fwûÈFÇ¥#Õ GG<býÿ:æÚ,?öÍîž~S±`›Ý¹?nÏ»Ã}œ*t(›ÂŠªî&k –Ku#ÖÇ1‹­þùÓŽÚÅãs¿8w[/DgJ#jÜ.½‘wRé™JcDÙÉémTƒB°+!èôå›7kI'H"Љ éD÷|Ü^E:ÿoZ2©rÇõz›§ ª9¿eô>+YÕJR¥μâ‘R¯îüÜF°xð@næþ—;…$N7W³N‚d o4!žX™e1Â` IX¦Þà'”c˜ûÓ™èH£hA "á_q‘4­cõ2gÔ1›rŸUEïîöQ÷(¶šÇ‘y_˜%;eï­½›²h ¢š»þæL^ûÄ·P(䱬*:XJòûf{?.wÉÖ<¥Œ œ}{Üñ‡ƒˆã–±ÙKŠã?m™$òŽ“¡Ø–ŸÎWÀ3° î¬ÇcQ„ ˆuÑZX¦ß÷÷q!ãét4=jO8ÁÔô§3Ps:ï®,x½²Ùžé7¡jº'EFÒF#^ænϳj"FÉÇdàsžòJ]46ù.ª¬dìãîöí¬µ)ÕNÆN<•«m$žèàäsYÕqê¯ØçŽ9”»U7<6J¹vI£è‡€€×Qs fª¼‹8DÔ©?göhÑáÜ·-³¸'V¡W…mú»»ÝÓmŸ5; ïh íÞÛŨ۾]©ã2BrO3 ¾\³=ÞV@/°Ô€Ö)k‚ ~˜•M7zð埖B8ù¨ࣖçþdnDZ)’A?l=5?h¨À‚nÅjjPqSWKŒj6N¡42hß7ŒóUó›lm«š* ø=WÞ\yŸtô?gæZ’‹^ŸhòO‹ŠxQâ4ø±šàû˜Ò«÷³hä^ÞÙsŸ»@™”|_5Ëßäãíix$pòÓÃC:ßByŸú"'›þ]ìË bZ,>Oã[:[‘ú›-ëïÎ¥|…'×ñIO®vì@ë„ЛÚ4ŠÊ|ÙRO 1‘gý‘˜Âßé,ü+æ*cÆ“É1gÚ¨ä;m®îxI}‡UÞ›äáAjg†C:Ѫ–x<âë?ðúâ|ÜÝÏ%#BE ¹ÉiÙ'&ºÊ.8Ù­pEŸä÷ÒAŸ– å¹Oc­–qÊó¯,t¹Å¢1ÔÇéøi¬É#Vt(‡l‡»,}©ßÐw"#U)Ì Szñ üøxŸG]‡žš‰-4Ýö=né¢g[‰ ÚÛtBá…§Ûåi* Gè ‹K‡xñè.N€‚o{ŒUä}L‡,:v©®\E‡*¤MРË5ã–¤RmW®Ö6‡‡ón?·sE7j‡Š,tÄ…ÉåÈw£L¢ÞÔé!°õW»›ùQ> stream xœ½\KÜÈ‘¾ë¸À¶ÁØÞ)šùdrŒ5àÖc–×ëiìEÒªf·hUuõ¥Ñh~½ã‘IF’ìnÉ^,tèJ2Ÿñü"2¨ï/ªR]Tø/þÝŸU·Ï¾¦èéEü³?^|sõìWuîB©²qN_\Ý<ã!ê¢ÖuÊʺ‹«ã³—Åo.wNÙ²ruqs¹«à…ÁÖÅ)6Lmu1pÃ4• Å‘*xã‹VŽ9ÈÆ(¯Š­¹©q/gÙèåBGù¦ü´ nìv#§~uÉ-ÛhŠ—ýŽ—R°V¾è\æíƒg»×W¦èZ2E»RyÝ\\ýéÙÕ/_ûM’¾”¯þ$;ÙøF6~'ßÊÆwŸ6Á—xzkmpÅW(&®¬Loåϲ‘‘è I|ý`·áÁ­¼ÈÇàVjgC.r×ù~E#íX/žÿ#$"B¸ºv̓„xþàLë]º™K³å~û …ÿüôÄ‹çOêK}¼D5®*]mÁR\]ƒqè’}º/e ´&ŠtfgviŠÝ$Ü8Ó_í¾¿»ÄáuÓ€fn©ƒU¥ð3®þy2Ï‚ö ó+•ÍÎçmÙ¨0èîr[†·¾8¿¥ãùÆ7(â:@Ï`@Bç§7íû¹u8DZEÆh_6>Øâ4öçþ”æµ®èGþ]U¾»»y‚±C¦RJZÓs·Hj~³ïÒBÙy^ܤ+Ž]|Ã#N¼¨`¼StrÒ›Ó°ïÒ B­¤~!C·?·Ü—Eåö†´Ü©Ê—º2;Tk½b"žÀp½bš…d<-D×à´*ΰš1ð²2E;Æ!+ÆHe–k¿¡Lж¥¯ªInÀY‹,ÕÅÕ‚%¸áJÙâVˆJ;tLg?ww˸ٞãY›•$&BµB¯+YÞfvµ‡8ðrŸ12%í¹ã-ݜދÇR`/|½æõØbÆNÕ®tÞE‰±Ñšl5ò“["¹òÏ7v»y‚ßµ*C¨Uâ÷‡þ€DuÎ>izGO€ÙªøáÒ ”v*ü-¼kOF7ò63—‡‰¹®ø ½¨ô—$@Æ7¥¶ê1 fXôõà\ºŸ~ §€þÐF\p>m’ŒgS‡É =e´ð§ ““¯“vS¨Ý,· G ïÂv£¸XD`ˆ–²i zxð—$AâÁ}wˆWµ[kÊ|þë\Ì¢ÁÛ £W4zÏ-£&Ú…#…Ù$ ¬_*;‘ät/eèÜËÖqà_‚ž@ê(ýÝím72[Ь%nEmÌ0Ùm:g(2äÕmnzgÀŸxÕ,Ó?ë³7?=„t¶¨X;&Éz?IÇ,µ{æˆ67ÞKyÏ]›{9^ÃÀu©•³tê´ÈÎ4¥7Màµì%àÈ@’/þpDìG G%jx\`8·¢uG¦ÓG"©Áý]L­j½‰Ý´‚ô(ö¬®h¬E”Ìp£It£©ÉÇ|ñnœÅjŽd÷ÃOÓ˜ LFéÅóÏc¦Nt¤7Ý #:'îG9 MhˆÓÅ7íe2Ó %X¦fìÛÔ`ÂÐ\n@IaKk3_ãâ>ó“ã¼Z¦?ë†1í"…átŒ7Y ÃJ­ŒºƒR÷?Jò#јĞyD‰xp öÈCvðw—A#+ëlÊîGÁö8[Óš![5t„ço§çýÜå8ÑÈ7Ï3ÚCèá¥þŠè\ÍëÔËa,t:»%&¾Hb€F_Ú4Òòõûjp!Óçv8/M ­Œâ˜›’‰R€\rHH– Œ _Þ3È‚¥ÖlÀC"i¯c¬=ö ?U1S¬•ÚÂÍ¡] „Ý[ WÁHÉᙕÒÅ»ôÕç ».‰Jkì—¤ ó¸ Eºqî‚q&ÿ^¡â¬ß³ [ØØ Œ0eH!®ËØØ*‹¾ß3n La ßÑ©âU†#y{yâC; )rwµ8«#•œ85Î"Ùî»W—æ4&9|…G!ÔI¡±‰^ùÛ¿àoMZò­cì&Œœ?°¤L:Ú¹;pÔkŸLÇöݽÀ))ºŒØ†°%n™ÉéÛ¸stRç´‘À9‹¸âúœ†sêºc;¼“6d©.0[®*í9‡]=æ³3~!ÛÒ!D¡à¦d io*CfcM{â’º '³O¿Ã*zƒÙ]ÔZx4k-ÁÓ¸%Tðw¨·& ¹âPNX™’‰‘â~Ãá¼ èÆ,‹•ÑçàopÇ£td‡C Yò"ÒAyS#Ñ M±H;ÄY ‡â™ sFͺqœ}†’ë÷Yœ–Em‡ÓmOÆÄæÀ䃘2oÉ}X¨à·A_š(Š-0z£ è*º'¼qó¿äžŒv #ƒ#B«ÊãÔÖIâ§IÊ[ÊÂÕë8øíñtìÒu±$‘²1é°ÝÁ.ÉÓ‰ä0ž_ðo[dŽåp_›ý¹¿mcˆ¼pÓËÈÆÔ† q÷³nObm´"(®µ¥X`À9È™ã`ÐÏGyƒV‘7Øß6‰7Æ®ùâêš´lâJ›°…qƒ n¡]ÛQ/&°¦¨÷¯O…`à|/B°[ÉÁð8«zÖšÜ;1*nú¢‰J ¬Kk¼ùå³òeíç=E¬Ïª™å™'KŸ”’¢^«HÅ2orÓîûCQ'3®Uâ’,SB=SG“à&±c.Îôr>Ë.&̺<—A©à$Ã;J7 ïhGðŽDº†poxýtEIñìù@~iŠ@„ú¬a ô°¾xžÿĽОœ»=5ˆÍÊ6»zR%¹‹_ȸïÜÝÅ7Ö¬°ªãÔ¼ŒZcNÇôÉÆ”?EˆÔöc{Ud3PȬsÝsóspÇÞÀ¡Þ ÜwK©œÊBèöV<Ói"f§ý7«¨dãlû*¿f˜‘6[)ö¹ÁaÎëÕtav$Qn$ôŸ3¶$a`1) ¨¬ÀUGyõ2roô­of=éC5ˆÙEäßM  N*ò|ý˜v‚ ‘Ð7m8“ yøå=ÕéüßåâBóëB‚¶ý$äoã2Þ~ZÈð=`¼ŒÑס»Î©¿Ôþ5¨IIÆþøþ€XÁÑN=»šÁƤ@ˆÃþ]š *²Áy T®«¿­ÝT(½Hv¾*¾|¾Â"í9ßû²yç¨é›M²Ø1²SÏ=_|Y9½ÒÃ8×d¥ÕBFIâñ!ÔNÕgócy××ñ\¬zC±ØÆÂh·¥¥¾ß–ˆ.S‡ä¿L±sÞ‰ü'Ðg½¥?Ÿ=ÈIE´‡[>޳[ ý厂PÐýù©´Çh¦#Ër;}à ,§?ͶùÜûŸÚIçc*Ú5†:æQ° l¿›^᜜éÁݽ¤ê1.é{èJ«Ê]€ÚoDtÛ2ØlHÏÇLLƒÛÄ4µ¼.§1×NŠ–1NKè€ RvÙz˜·’azɸ±?O—„ë[Vk²º ‹ É'ÍùWìnÁf¸Qm~©¶0ÔnÖ3ìp!·99xbm¦+¾ÁÞ¦ÒÚ¸­É]Y‡*L[áÒ,9ù¢ÚÄ‚ŠXæþCx $žàŘ*ê)ÏF)•ášû4NÂxIG†ÛIx7RÚ°’PtmW ¥q×*Ò»âE>5ú=—Ó¡¿÷ºíxÎÐT‰‚üªx!:"]ø*^ꊢ‘ºP”y¤“Ö뚪8tñmæMe‹V«)ˆþNŠ[éxÛõ@JäUñ­´·´A„Ò à/k4·æô÷Ãê‰À|9‡h3^u×çt}Úp­!ü°à—%ëP± (J°ã ^slˆãŠ Þ ±K0‹Àïr²Ø™n KNÅi|³Å;a«>Ý0&3DÑÃ4m¤$/÷¸ŽCQ´·í%âîÔ”ÅEe!P¼v^hθΙâHÕH1ºó\f`ÑäÀïâFM#h¶NÀš˜z_Cœt™þ$G/g}àDTž-Ø ¦}|=ݽ}Z±çå8À¢4Ï&¥mU6'é¡õEvé’IQ{»ˆ‡¬÷ä"3¼xîhÎ><OmÁ*­tiÜ´ý7Œ§À±uç ®^VÐm(ƒK`NÂVב!K’0RMsþí¨Mä0$ ¸ñÆåiÕýеSðqƒì·‘’ ² ­\ì^í>eŽÉßËè…®¶(4&…°µ¡xš¤ŽYOŠ §§çê¶môÝÿœ”À×4?OªSš§u‹d\”€¥ )í–Š/™driNò³­àÿãP¹²¥j¢ã+î‡÷wÀ§ ” ÚÖ@Œ) ɨ¼+–¥àXÔEuî8¦±¦‰õA´oÍI‡Ej6ÑÒ'Œ]‹Ž]÷Ud¡ %,¶°áèŽÉ¬Hœ6|;È/š‹(U’eóºÛ÷¢þeÿ11‹K¥6Ksz…¯ (Í’_ÚìѲfqrP[sqìa™ÏŠýCžÜæ|ÅÄ}Va/w™ b*ÛLÓ‚ëS4 xq‚øjcd' ®T$t½×‚äâŒDÅk|½‰M'ØØ΂IC»(ÌúïåýÀþ0O Fáf†«º§ÀÑT›`†þ·}Œ°µ&;ÅÐ h)v(©4Ègè¹Üf B>$«1×¾¦#,)ßg5ªó ^¥;~~#±P,zFª¿Tá5ÞÕR¤¸ŽÓ߯;Š"2Ïe± ÉhÃdÙ9Š®A8fCÊro”ˆã¤×"‘þ‚oü¨˜:t7YHF…Ë€pÒj*ñäAÞ.˜OOAª„-ç%<ç¯"öYQÔxήöçy2€×í®¤{“ S ãDSRË#¿WK.ýÚþœ¨@V‘“]–¡ˆZWNËbW‚PŸºW¦¢Âm¨ÒÌ%GÛi/»6D”›²Œ×äc†µÎÈ,ÕÜ“eDÁë<0Á1µ¥„®¼Ž¹N<(#6ƒE©xßÌЯ” –CÌï¶I6,Eù,–}ŒT¡«¸Ueðâ-+à,#RtªôzY%~õ63s1µði­õ•\§²/yMݡ߷¢TÉF(Ó«%rçr‰e^•¯t^w5ßk¤í"-„’"úÍvsçMèmYÛ©¢±§ ›Àý ai¬úD‘Ïsl%©Ð]¥û!°súu‘öDÙ§¢4XÏ|ˆˆ†b}Vƒ+Æo.Œ Á;,ÞÄ*Iðì½|NAlºo霌Á‚]]Ò<"ÑáÈŒó¶¡2Ωʺ ,UÚz¬ó4óÞñ ñEm1š–ÍËI·ö "¢›¸£Æ8üLŒ“é©×‰7ˆÒ~-Ÿocp­1w=•š-±”ÖsÂRëéZ+ªyB¸©›‡‡Ué%uÇ/~»Ø&Ë^n¤Í´6¤Ë'±‘Õ¬fq¥ÍdRrñ´‹[Û¸bedþ4ˆ$B³| £MÍõ#ˤòTk‹8}u4ª–îè§å†) ?î¶ D5W{ž]Ñ0E\yfÌaŽt.¯Ç™1xdbïFönÊ €©·ÆÞ5À•Í4üÔÍäq^‚Fp M~3M×`©åüʯaÈv~N[3'ÿNê€^OCr¡^ÌŒ? «j ‹È×yþ”¨);ϰ"·¿Ú;zš’1M‚ë —OÒ”n…}ç1þ ~k} Nuñ·S¬£GètŽÛ™xðÖr²-Rëš.gÿ¿Ò­°E£€ÈR â5Ýð´›ÒS—NÍ•úë$l.™ujSM;üI&jÐÖþ”ÆBææ3áîç^5î3rÍJ»GŽé.5Õ•’sƒ³Ç×ÕÕ\9¼ÐpÁç_ì²A÷ŸÙ•ŸÉnqâ'ëKÄç6Oe×3Y*ìlÄ€3DŠ2@toª2 J6Õ¨š‹Óº»ÁÀ•Ռӌô—ú§:2°b²þNéb-ŒjØd·ï¨·‰ÙbÅ=Bz8£§ï×Mü¾*Ï Ýy¡#•†(®!Móȶ²bŒmsoœ/ýüaášUO˜{ p«†}ÞlÎŽuósÎjr§„(jä…·ª §¿ [NþÇnKZmðÛÍlŒ°)_ãOOp÷ëÅSþùë¹ÃúìRÓŒ†m4‹Ý'«bpxFU:ßÝ׳3¹¸Z…Ï!–O+/±Â ãzA¬ÿœ%F¹P†Æ-Râ*úi0Û&"?e„Ÿ¶t½›NøCoЖ Û‹SôDÔU³M§ÐxàD6æ7Éã׬j±dK¢¸ÖKÂÑ’|mr±u‚™"îÿ ùA`lØ x¦.x>\ÊÖúbe;ë…+ âS *gÏr…ŒðÅf~mågcL÷?5E^±XÚø-ÌfîaQ]7ó÷£‹Èí’>ãk ‚>¿ø9]CíŒk(Õuh¯¯ç:s8®6CÀîj2¨/§ÿï@~¡Äåtk$/À0±„Á…vó¡—Ð;ÈDRŒ± F”/û "öD†n«¸ÒÏW9ŸþAx4ËÍÚ‹f"+¥sÜÀÛÌ€Cfau”b™yòà¸Õ–2øáÀ\÷•¿f’J·)—\\¥kàžÂy­1Ä1× Êù]=ûø÷wRùÓ¬endstream endobj 272 0 obj << /Filter /FlateDecode /Length 6451 >> stream xœÍ]ݯ$5vg_ï¾$‘VʇDu³Óµåo´‘`•°‰v"-Ü7à¡§§î†nz¨n˜å¿Ï9Çv•ír $èÛm»ìó}~ç¸øvѵlÑá?á¿ëÝ]·xºûöŽÑ·‹ðŸõnññÃÝ>åjÁXë”⋇Ç;?…- _˜Î¶T‹‡ÝÝçÍ‹{nà/æšî—Âé¶¼yÿ¾ƒïŒ4N5Ãáˆ?¨ÖYÕ|çp®y}¿äºuZˆæåý²ƒç8Û±fœë$|}ÜÜ/YÛ1fmóÍ8ïéþˇÿ…ÝI‘îÎñV3ç`‡/aSÿ€+Š®cNøÑ 6Þ:Ó1¬ZcœN¶BXný”/œÃ»NËð•L-wÜ™¸þÇj眬­/ÚNÁâàßÓfœ3Ò6lܘl¾¸Ç?`׬³~•‚â®Ò.–Ù6×{O ta@9ü¬vÍæ¸É~Zm;X¾Ça5Ú »ã x:%(‡Ãæ žÑk¶?àçH<|ªYq‰z0J³îÉë:{;õŒºžz–_K<Ñø©$Þ³û¥d´Puõ49lRñzŠÒ%›çÄR¦Ù“®òY2¾¾x•|ß§‹>#Ý^ ¡@"åbÉd+¥2~[¸¶ðÌΙ€Šöøz4 Ãù ÄPLû—ggY+A›‰½S…Ø;+‰qÆ:?¥+-†Ë%S(‹,³9ÿˆs@SµMÁ‰­Ò#¿%þuÉ#L:Z‘Ñ›ØM‚”NÖ—­¢]­è®Óù‰/ÉŸLRsb’)´"#fó¯÷_Í)hZÅ„¸­å!»ÙV2¢s °t¼à«?@ÊØ\ÕöÜŒÛBÓ cV#SuH>¯¶h’HÞ%ož6ß{ûäm}¡‰4Љ¦ÿ6”­ÕÅu¡¯‡ý‹Ôa¼HœÉvs$¿”lâ6tsÜû@›æ˜iqÔLѤ[ëWCÞßïá¾qQÍEóý=y ›½×{f$ØGô^³ Fý.˜mPr½:NA,v…{;ô4ô«cˆvΣÀè8š(ÑlûÃ8)žÂS)ÙzU7-o•9m0Nªþ÷ZK_?•ŸDSÏ™óR;nèY ð NOŸJ¬×ýë„ÇÔŸ®û‰äÀŒÍ>Öšf3–7ëÕvº-ðæeò÷Õ8n©A4g p­ø%(úG^ѳóÛÖ áœPà*Þ y'óD!œ„c…–a‚¢óŽ3Ãk¦l‘œB¸d›¤àhnu¼kX‘ÄØv4/ÿä7ÐqejB¥rLæŽà´—)ŒÑ»‰Y~fRKð…Ì¡ÌÜ*gÛD:³9_—'ƒs€x£ýN÷x Qgæ14Ä#1D®{`:@U—¦e 7I“^Ÿg©jíäJ¯aè9Ï^:=×q‘Ÿú§w޼ç¶uM4s›#ó®vô³´e~æ,æÐ-cºˆŽOĪåFßAEÏð‹ä9Õë9@ÉÙÿz¸ûëzçÅ›»nñÉÒ·`¦µ´ð8³ØÝʲØ¿ÙÞ}vY(¨X€5!ZRzxá Ãw£ž$2sá­$kù+7|ù6¯3|Ùœ™ác]Ýò š›C9‰:íD2¬¤1“£9–›ÊŸ£Éß Æ‰eä<ã ”½ XÈNy…3¼‘³`Î$è Ä•ŽÔ†&}@¤¡«e …ãÞ!‚…ì‘‹.¤dÿÀ»!õPÒjq>7Í™ÉðH¸ÓÔ¹ÖWž!ä$’?R+‘¹ÅlHvœ@ª—c&ÚCŠºÛ$ùdE~˜2˜xí‡4Kšeú<Õ:Ÿ‰w¢LaûðmÇ •ó˲y>÷‡¡ÿª_ýÄÓ†,UëA,”u”³úc•¢s­à9ÎÂ…·ÎÇyÈù˜x¶Ë»•¬ö€:#-,]aägêPàXÁÈ b¥Vð“”8‰8•¨îd;2„0ËbWo6)CŠ” ¥²N_§Å˜ùu=ùœƒN•kAÇâ[ÚŒ3¦UœYs+ŽxS±¥¢®Òà‚ñ¶eRºÔÆsÂ÷E³»_‚6⿾Õ„à°D°kÍcp …·tFOî+ˆTÀÈ ö!ybåBIJ,L…ptüýP5HœµF(w»c¹…Z¥g¹6X{Ûàþ”XžµG¼Õâ&œ²,lü‚õ<ÓZfXyâ}æä†7›Cß"‚®›Ï¦ï«yi4@Ûâ¿‚ ä¸ÞX¶`÷ÀìQ‰‰þ1£²‚æÚDhX:®mº2Y]®ÁË2UÀÖŸ|†¸wG3¢÷wsÞ b-E<ÃXÇ›Ãj—@ôÛ0t[5Ã~Z1óû8¨“Ín5<¥áÅj{¨« Øz>ñyž{--Ñ/&ΜBÊD–/ÊD çpiTŠJÙ-˹ óÚ,0†±!Ç\#4M§Ö¬yÚ¬ô‡î¨±‘ŠA4Qx…ÃdÞª@ô‚×ûíB¡yI…M¬ˆaÑ JvCêTà\ÔÜaЦÎÜá™HhÒ^ Í-LáK-ágP8°5ƈúÍ«$J臾BÞ]ooǰ(‡¼‹–‹xêië˜ËeÛ!³ª Z×õÒ,‡ ÿLZW(Lg1RËfSž¡¬ÑÛY½Èæ´¾t‡%šÏÆ$" &~Þú˜¯­?ú–™Îb¨wOÁ`ðr¢®5w§-À-1œCÚÊÈÈÐÝœ}§‹©òÞ$4Z ýD ¦ –¸Þ¤ÖóB‡8ás¿²º_EÔmY÷ÃÀÖXv6B‹ÔÖ¶||#DjKI#/^hë –·šßÃT¬…$+¯øK‡ q”M$û¿Tä “œ9ôuh‘1+óñãʲYIí{½ñ•tnA‚vóøhUzP½%Õ¬ˆñæ‡ðȨ§Í›ù2¸}Ý<_ _“×Wàeöô G|ÍšV†>HPdýÒJƒÇ%}ÿcš¥÷¾˜.usÜþ0-zÜ€ý;Š(ñE³ ÅuÐHW¤†¡© 9‡ vê)ܨl&nnž^á׊üïåj<η½ ‡e«Ú¦@pOƒ«¹Æ85{¡ …E™*“)PXÒÖ%cüÉnì€VÔÙˆSœïׇä°^%‹!ã0ÎàR©?*lè@ǪøD¢]øÁBTšŠr$#F¡›„¤™1[ýêUÔ? Œ†ÑZDF¸iš÷õ˜ 5œ‹@Õœc»;ms£ã ŠCÀ¢+¬Í%cÃÁ®°ÑÃ"Æ.„ÌH„-\0êþ0•pÙÏ árÝ“³VLyøÌñ•IæøÚl£|á$k!â~Ú›TøvaSÖø`–þ¼f‰#`¢Ž©–ÏüNÕy(›6U,% -lî‹fÓN|†]½LR˜¯²Æ¾üúßžâf]Ùãã³Nµœ‹Â|3îç»DÎvd,$+éI4VΓ*ëÐácüB_¨­Õÿ$½úágT¿ÒîℸãŸõ‡é¹q™JE«ƒU9eè¼Ý i5ÛUÒ„û2µD! ®ÕÔIã!ŠÆxÎÐf`Çþ8ã@åfÊæýòuò×°ñ`?—ü öYg ¨Ã)£oÿËÝüeY ¸tmˆƒs´U $¦el8.> “ÞŸÒsï’K‡@îWŒmiŒÚÒ@}¤V¾-- ¹( ­× ì^ô?HŒ^B+j׿ãG›ÆMû$¬?ì¿ C¥k>w_Ò`ê¬ÊÐüÚŸâW6D+¢ßM`܆pC’3Àé4©ä~•¶!Sá)îxéÐ:@ÖCbWëÚ\äôÁóÞAC¾h8eùžáø öq! h8†~"U ‹õAc}ó¡á’[ß‘‘ò—ARRï‡1Í5Ipºò1´d©ê†4Ï¥½áýc? }앾™Õ¿bM»‘>GðÝ¢¹E\%Tܱ{D¯}jëåN ¶ÊH¾€‘Ó9{-x€ØÐð 4“0Œj6gi¨ ¤±`ºµÞ‘7ÿ\«[@¸c‡ý¸V áìÀÀŽCô¦ mû}ønö7S©$ËwÁ`NyM,= £^÷lÎ(Èrå´¿oÛ’²P¥>'[.’òô{#n_哲j s7eÞ^ ;ØHQÛOý~ׇÍ:ʶ;kMk%•%à CæéøéTRS LÓ`®`Z‡9‰h]Ã4ˆs¦ÝÒ Tõ)Zó´ÊX”­–—Pè#KÎ3ZÇD^¬BÖÇ©±J•IK$h®”2SàC™ÌÌ„±@_$h¼,Ñ›´r0ì’ûIÍ$Gê9ʘ)%ì•qÑ©Œø¤$˜ìô,»«`Ie=bI#Ê7V4æ-Lûìüƒâ[ÿñÃiÀnê £Õ <€È›N#pé0Ò€šË…‰%‰çû#DTð]G Žvªò þ3V…|J”âY#¦ó*ü®Y ZîÂ/ˆÜÎÂcÁÍoÂgŠy’•ŽÛ²{„ž-Yq§BÀ÷r‹(Ãæ»x,Õ|Î,åZHÛ|‰î[ù UŸ$6Ix~Hc„qË!6£Ò¬òW¿À´cóÉ<ŽóÑ×h¹CƒÃäžÇ5ýOØ‹õ‰Óã}Õ® $;5Ün±.¿Ÿ|®€ªƒxØ¥KQ̵ڜ¾.ôãsÕ÷¦'ÝÕüºPŸãu!ÇÆ;DsW[ŒX¥r·LbDbš·ŒAæš.`ø¹¢@h Ýü_"WtgHùàósÎ'Qy¹c.¾¤¹¾ ×ÀKHi™ î°zê§a³ÐN¡f°)é¿E˜Êo’ŸMi_Šãv(È’Yƒuž,ÊV“Üm^&Q¾¿p…&R”!dQ2SëpWiI—“ËTˆ=ÁTCŸå 0Þ’6d0„­¼E1áç¢ùÜ~ð )DæºÐ—±ûb)tG½„§Ü! ¼—rLÍÈÝm²bå³A|¦`DVœàsú,K­Ç*:õð~ËjfÑË=¥¼Nþ89­FK›¹æ1Ïþú^I[0aèîL7ƒ†Lvž^M+Ývñ:It‡ýXkø>Ås7YY h<™‘é-ÇÔåeïWòž÷q•þõÝ6ýëØ¦mŽé_ýî~¬i¼>$¿ÔÛ…!··#&C’ó˜Z´]x=¾³eva R¡ù±ÑN£QÚÞ„/!*ø»Ãæi·ß$önµýûû¥B&ôí&zøØ¯¦½íÂÏ`ƒó4’T“—v³Ì4Çä"9z?Å|§Íê§‹ìE ‡ìÞã̞߀Í`œíT|Cg·d4JÇÌ:¥=«aµÃ®âz¤¤Z-¦.ÉkÁWt—“;Q ­oesþsÖDa*ˆC—ô½ž.¹(:]o÷¥li–²,` –õdi8æB8sˆ¾"—~½y?‰WZ_@A–~ºÊ›Îâ|Q^öOW*Aãöà!àk¬ÕWútgýüÒ¤4¿ñ0½VÊÝÆªÓ]>œBÙœJugne}õ«1)Ñ']0)D{‡ÙÜv»÷Vþxƒª“8•F¹Sä +ñŸ!, !ᆸJçÕAGPÏ>Œ€Øå´|‘¿ÃQŠ5Ù…þU½³L°–Mä™o'x•É /D]$å+Pð©z·úsgôþx¤KûþŒòd,ŠJõÞ0&!×ç¶(ñL=ñW¤U;Ÿ!AN^k°’€VÙôÍ‹ ¦ËæÙèa:ØûÉ×˼nùÖTv);ƒ];Eô­Ì«­ã… öàD~¾,”Ú¬7N—F£û4w€ÿ“ˆVÛ·ÏbaÄ…—¨0¦`cîÁ|¿B‚IƯN§Uêp ìé'r:¦  ×z†rcI¨KØ"ƒœúI÷wcæ~¢OÎѤ·Å©ñ–r”gpê?–ƒ‹õ³Ái;Ú8ÜÐë•ÄÛÀá3:×B$];¾þö™^óIôÞh"NÄØ ò[S·âºÅ³Xp´eó75W9aR]ª”4ƒædŘ|·¸ï;cÙ r¦é_ÓZMî')N¨œPÆLô¼Få°¥ø•Kã¼qμ²”]F­æt·W;ë±äÛ}¯ì-§@©‹oÖØÅÎ讽c8¯ñÍ@ÙœY«pöº‡xñ>{ÝÃ{#qóûËÀ¥y~¿§ƒóó诋JS3”kÇ LWVÀ­jM @—ô¾f öäƒF.vw 9¢Ó7goæ§;Œó™„0¾â8á/æÏÔ»°Y»ÞåS%Qfqª™_¡R/:1 ¬IúR±ŸÆ”oae‹ ÃM%kÄ¥]g"?š€?ûÕög©Æ=·y<ç_i(’–Úv¨) ;3ÂG—ÕüŸŠDƒöÄŠwýeeôÊ1Mhâ¾à#µ6…Ç…Ð ñ¯ŽÚÅ_©±ÉljV„ SZk}-®4¾sq|“Sý€šëÓaÞUm›9înÌò„ªÉp—c²ààñŠèì°Z›ôÕ”e¯ æ ”A²õÙå> )#°íú&Ar6ë0Ë ™ŒÄwÓñûḡn Ç|K‹°¼”Å-¥…âðUá[â'£joÓ¬¿ôHÈPÏuË ¬ÔtIØÄ°2dxa#±REÛOr‘ä>uüªè0Ëa쫲ò"ÑбAy#_"À˜ô ¯ŽY!©Š[80÷*Ϫ¤ÃöÖ%X–ÄNÉê“‘¦×¯A!ùT§úŠœZwÂÊÖJô€•êRÚUPVÂ+mÜϯ;VTĹÿipŒ»êñy«ÄÆ·}¹ò[õüpœ»3S¸Ú™y\'5 ÌÛ^Î^L¹r¡™9Þè¸å!SAqÆò"0¯±ü‘#¢?Ë0КZ0ôdXñÒøEÊMjJ‡r‹RbVÅõA %Oßþºâ6Ô…D > l˜º™³ecé)wT6–Þöò’ÀXÎ:}µ.Ï yꈒvޱÞÇÝiÌ7?«µä6X¹‰ )·Àb{¶­Sþ¬`Q–Ü÷-–¯ló«µó¾Ŭk ï˜áÌ ï¬¬µpœs­|Óø^¸ÑÍÞÉR>˜§GK0ôÊsÊË÷"¹ðw¡q v¥™ ï!d¬šDSÆþL̵XÁŒC(|U¦¿9›qäJRô1×ÔŽîVSÊ‘÷«]Ò„$£èg'Í›¸Àfÿž/)I™Ÿ¥Ÿ0’KÎ/]m.EÒ*|Kޣ⑞—Þ¿ƒwÒ`W¤*]T•Ø1îñ¬X*Gýn•F´—#!ºÇòãÓ¬ùE”Z2k~I^e±©‚ ¨;%‰‚”ø‚wé#›ó|—zÞaf§35µ•Ùôã‡çµ´óI¢n´?3ä¾PLHÕµ àyeÚÃy¦Ÿq–9ËDÿ©Hbœvx…Â7•,ñišÐNÅŒD¸¨YOº›šÓëÕÑ2ãNºÖ·‰™ÊR¢!<"›sî­óR Ø!~z‹oãýgå›Ó¡¼F·T†ô+Í¥¶ÛÀ ì‘Kë1Ç8~Öaå¡Fr¬ËލËXc®Ô9Öø‹5³ßx?ÿrTõ«Ó/[J|?ÊÍm‚L—­Ò³6Á³/(¼lXÁ-£«»|1óºÎÝ_»]å­uš]kXo韅ÈI§¸G#™ "¬À >Fpƒ9zÝL0Æâ-¼°ü9^5f¾v^ [ ›CÒ7óÌOÁžï1<Xΰ@=^þÂC fxÊþ XÝýoXýÞý>ô}_´ÄüK?¤èe²¨?¸Í¯±F¨L‡;PÌ_ÉJî,>N8{×kE ¡ÿKÊ¢¯*=ðòÌõ°ãÆ_ßæ¾|ºKâ«Ínäå„Eí"\UÜ0ÌšIý~ V«;> stream xœcd`ab`ddä v ò5030qäH3ýaînúåóÓ›µ›‡¹›‡eÙ§Bß?ð¿``bdSuÎÏ-(-I-RðÍOI-ÊSÊÏMÌCd```.ÉÈe`eðdð[ÅÀÎ´âæÆøþ3>ŒehZÿƒaMÖæï¾åBß%ï§mø®±A\øÚwD­~3«Ée± ßzó»­;«7{^Þ²¤ý5»º9.ï=úxV׬îYòilݵ=µÝµñµn¾µGwË}ŸöÝ’]x׿ߖß}Ùùþ3->Äп¡¢ì‡öšï“Ê…N~7¶¾ý½ý¾¸ð®“?D“ç° o[±¦;RþO{wkOsw GfA{¾œð®"6áªd AGûX¿ûl(bË/ì[-ÿÝ“ýé•÷åzÙ®Mð‰‘ÿ]ÀžYБ+WŠ¢¶„­ ¯o•ü÷<öîMíòWg¯Ž™œÐíÕíX˜åÛõý•ßæçaŽê¹ÉÀî†Ýýï- $.¼²áä'ÑäÙìÂKÖ/kÿÝÅL)ì “ÎlÚ³¸ÝQÏ®9êÒ”Àhùß%pGU¯Ä¥úâÔà(ùߥØU³åö­•ÿžÍÞ½ªsuÕ²¼]Ó"º»#ó£|8„g6\iÖŸ-íÞm–QâÏÔÕõ’•¯lá§Yßó{g,eûÚÍþžk/·sKb<'$$áendstream endobj 274 0 obj << /Filter /FlateDecode /Length 6481 >> stream xœí\Ý$·q÷ó¾Å€‚1ŒA‚ÞXÛj~“'Ë@ä(†+¶u $€NæöæöFÚ½9ÍÌÝùô×§ªHv“lötÏêN@c¶§»É&«Š¿ú$¿_u-[uøþßÜ_t«Û‹ï/Ý]…7÷«Ï¯/>ùJ©c­SН®Ÿ_ø&leøÊt¶í¤Z]ß_|ÝüæòJ1ÙvÊ4·—W<àÖJÓlÂa$ovø’Ÿͯӗ®Bc)šgµÆôãyúcí0«…n^§OîÒÇôG›þØN¾–}ô>ýΫôÉ!ýñ¤¹ì€DB™wö.ýñjò3Ÿ¥?þ9ý‘sW[¥»lûÉißL~õÉeòë›ëÿ¼îH©Ìêú×ÿšqûE…-žÛû¿qû\nçÄÜWÆædrðò}0¸àê¡Ö'qõöo\=—«91o—q5›Ü³ Ý*¤:ÍâO¾â”sÑ:¸–ôõ‹K|ÛHãNŒ;xÓq˜ðpûnw<àÞl_ÒÿÖI×ü½¡v0¹×þuçš}ß k˜ ×Ö5‡ý+»K®á9ôñÖw×±æøbènîvz;¼Üaý¯ÛØX㸸i;݉æ u®µh6ûCì‰ñ渹&â3<[“އA7wëgÃ}é:Æv÷1¾ea:¶YûHǵE>QkáâßíJ‘Š.g?Ùu\éSàM¶Ît ßP­5 x "È]àm‡-¬'kò*[#xßIÛ€¡(9¶‰—Šíþpü¸:,áZmá²—xüà©ÐçŒ,PµÚ–iïfm¶(^̹L¾%+ØI.%òdƒæ„ÕdN<¥u ™‹æ(²ÑKgß2¢µ¢cq.Põ¤Bñn^¬GT·‚ RcëW¯öþ©ÒÍî¯Û{¿FkS`\µŠõ ðÈ ^@u3©JçúèúNnf$¡–Û9YÈ¿€²À´Ì)M–¹9·Ÿ2N`¨ŠÄQ}M<^võ9´è âÛdÀ+è›óZß ÄB¸žàcÀëèÍT}ø*íü87p'„ëÿW£·E1›Ÿ€N: p…ö sÖ06K{3»½âgÜÞ±ªp1¤R˜§×ߎ)‰r=Pìæ&?c¯âNÌÞ´Œ ‘-ñBãÉo »¹qPßaŠÕ>¡[iì{Yº,;ωj‡¶ç7`2á *S0£nÈlµ°~_œ^³£_J}‹ÎI2V°¢Ü«L~:úvNBri (à. Ùü 5Ò¦Ñ5Qèâœha+X«¦J^†×<#/qPTE¨Ûé•laMÁÿ„´¾¬Ì «bµ:ÖZÿ3ž3/é¸ä8 ° ®²Ñ¬Cö‚¸E-,0šÈÖŒo€9}s¬j;m†•4ÂcNŽôÝ…GH°…¹ç e²tfD‹ÉaéÌ!%¡âå¬-¹BðRSDãQq×_~:¼ð9‘¼6aj–-XéJ¨@ŽæéëýËÀe¡5P8¤w Û—¿ýò·—àõì¦\–ÔQ ~& _ªð3ëû,"Zøi‚a0$¸LøzEe0|~ç·»­w÷3¾-…¨c¼`Nºj}Çà‡VÍLð8ã43Nq*–J97Z`Å'AX˜dK­ü¤Fˆî™èÈCOå<øQ:oq! LBèE¾¤“˜O­oƒžP§Iîƒ ’c¥ÃjûÃfˆ%< lS–®t Ø»{šÞqºÝu+#Ôò)kfŠI³åtߦçh>߀ñ·31¦âWËÓäúʯÙ±VËÒb÷‹T ï 8êUĴαœÄȲHtég>e9pt´ŽG.2@,[ ôÞ‡µŸß©/(öqÅÁBFáô¾âè;i Îzvðlì`|Ál•µ¸]†× Ï@[‚!t%5<“edMà­,iŸw“ÊaȱåÑ!o®›*b€åa›ŽŽ¼¢i„Ö;£t­x•»dÊêÎg…Ë457ô½¼z¡šodðªìã_Õ1Ö¡ý7¶x¼é›Y<~J˜^£!ÒôT–a `åƒ^`O{'M«VW8i)ÆE0ã&‚Ý^É¡#c6=V¾¸!§æ#o'>^ ^¶Ÿ&­o¸{wi1©£|>s×È|‰cü$ó~e<±H³rC§µQZ×|¹Þç+C4KcþS²žg^§Œo#aÈÔ¬—`FÓ—Ò×°sÈ—æ÷÷ÔØ* 0ø ïH€÷Á:P<_˜&¤µZ…Ô»F]‰N´'œUòÑBa$9ÔÉOt©µÏ3=÷K.µhȽÖdú7Gt¹bƒ¢cç¶I_Ù‡J Õ©ìþ3ß%’ìY:†íá˜~zûô5Ö‡jšŒƒ{ªñÒSíq"q×àPiÞz’ ·÷”áÆ]…lê˱A<„þÀê»Md£¦°ê -ó®8D+Æ2ñ@Íüó“Ñ8ÕÃs£qh¿Ÿh\‘«EãN…>²1ôÇå‡Lâ,‰-r°DZEpGZ¬cxt:£É<, 2$Œp‰†Æ¯èèœL‡±ðJ ÎëC„×eˆ0—sÀ,ÓEóÀ£¢“ 9H–NÓª|›âë¾níJpg’é/{p Ï•Éä{’”|êÜÃÎÉBR¶H@R² iT¥¢êC*øQ.Æè=a}¬³¸¥1$ ÿ±4| #KKZ“èÔD×ûø–fÈ2-p-3“ÞeN^}KLµBƒ+G¾èÖ±_&ƒ›ýû4v ñ6ç- ¼Æ;¬—£ 9™U´ñ°m´¢,}Pùá¯)BÙ¼Ýoç-× È=ÔŒ]û|ª²æ÷k*ÞÞF]bqtø²6ãT`>*™ä°zm%ÊU\òq´\« ç=gðàÌ)3éLæ™ÐEú K|yžÉ–Wq…÷ã“[ŒÈmí|ÁBàJg(†åB›:8Ã%¼×…j¼—Ö¯äŽ æÔŽMM¦¿††­÷¸¶¬¡B>¿¶X âî`MQ‰Ú†ÖÇøñ²Æ»ž€c'dyë'`5  Öb¡qð {®pÖ§Å݈?UÐî+Ñç–<…¢~@(ª&¿ÛÔË`­C,à :XÕdZ·°š"6,½Àˆ;Y.æ æ›~q~ëñÛJÃý'ã´®µ%™sâ'å¶o“|³®à;ý1‹¢% ËÒ´Š$1 â×Ñm“¢ýÍ‘œKá>ªœšL£ ¡ò3J°J%Ø?‹M$ 0uå‹õ %è?9%À¨¼X85/À€›` Ó x•¼:-À~aRð2Œýfww· e-ê0Üi¦mR.t:,¿<g˜ËM80Ó ûŠØ€buX 2WÈTȵ¥XnYþ‚ÕW¸`ηbøU6icÊ<€/)íPM“L”"Y‹!öÏÔò Óþh½Ÿž Àµ6ºJk?•Þ>±Ñ„Ìl;dç^5£ïS¦&ù ƒUð[6ÿÇé’â#‚XN3<ìüuWh¬õ±jIä´°s–N⯎ÀΜ;ß•&Ýò”Ò@¶Ri°mu.Ô¨Š#)ý"ÙÈñ–a•Pã·ŠI­‚Æ©Â'îG±fŸ}ÃçÀ¿²øC†EqÜÍúe¨²ÙŽšp׺J°˜æåcªÂoYÈ·Žû´ÑÍqèÌã„ÑMóMçÅWàQƒ%VîFÙŽXL¿‹›•º´r'/ÆTÈà^€¾i†”œà™ÐêÌÉIBÇ:ŸªÉ¤À³Ö6Û|°i^œL¸hû¤ºxI¸0IìŒQ¬ˆEúÀI7ÇЦ±Èºcáò”r¶›"ÆÉÇÛnê.VGðÒѲ~qýå´‹… b†“•× ¼ÕWäxaÄ_«dL_E=íp«2Cé“Ð(`*ÀùŸN|݃óó‘âl  ;~žcÂòHî÷§J:+ + xK&2 œqÕ%)hkO^puNrPdÁŹÑ3 Ú°*†€™2†!.Hß&I±t c'.ZüÐóG=9ÿ/®/þŒ²]½½èV¿»à,¨] \«ôêLZÃZ¨pçîâñô9+¹(†sV¸p WØ wÙJ0:l匥‰[f~’µ­À¹4;wîÒ´BÏÓKó¬Òô³–&&ÅϱÑG¢‰hfó@®#9L ÕúÄFW¶©‹%¾U ½šûžÁÿU½PᲘàÿˆ*„° ŽÊÎá`ᨬâ(Vp} ‡ñ8úß'Ý5è¥;9ãjnYã5.³ÁúútbÛ#fµ‚Å¢ÛÞ‹>¬ýÎ<'À6µø2xX ¤¼s=ùA‘<­BÕ  (L¶_‡·ü rtŠy8x_ñ,ŒHéáI^ɲŠ1Rß´6îyÀñ0ü$jv¿‘/?fY;*ÄO…cïYx +ƒ&ÎшÁÁ'—4q ë1îhÜÄOטùk}þÍ×g„y‡ \,ŠªUY‹¢Ñ»G÷>(TßÒ >L’(îé…™e(0ö$;À"Þç>à´§sبé:ܨéo+7w† ®*ê«ß© Ç£Wë=ßô†6¾#ó­ñ¶n6¿¼ÙnÒôÈÍ»ð=,ªÜbÚ¼'D}{ÇVÝ“ÅtcйL,r#²½JX¦ÃV¥›B1G6Ä/Éœá>ž•Àeoøà…ñÇ~<õÒ,­&A5>px¿Y2> Ϥí£ô€¿ë…è(#ü™YᬊÛaÛ Ft ²aš-ž×„?°J(Iì·Éî‡æ†’DÖm“ A9†N]¬ N¶eø7žïöÇÑ£üÜܽ ã2Ïšm±c–’I—1#‰é>­í/oÒÞ…´0Ëç²´¨¸QÀwîn†Ù/Äg,NjCG›Ü&ivXcw„–ößòÔŠ6þ8M ò¬*(S‡FgBÀòèO!¦#XžÇ‰Yó£aÓç^p%õ9Ô†6>Ö‡ÎÖŽ8ž ›;ྙQŒ •µ¿Õx%:’1Òóc Èá’£Ë÷ÌÕßú;÷ÊÛm(LË“N3Æi+3V 鉂™ˆ\‰NÃ0å=œæ¬*Ò¹¼”ð°äS€¸Ùa€£¬Šµê#]eæ–KaJüd>|¯jÌ8Ê Jì<èlÓI†öÌKŠÊÚú%‹N6 Çi8@ÌÙóJX+˜5yZõÌJ²±'Sd ´}ÑÉ]­VgÏO´«uúŒ¹a<3u`’É>ò³ÑÛ…9Gµ™ñí¿?má9+élÏäÕhäq"«²ÙF Yh^·X';|V×δøípç|+ >LZ° DØy3ëÌ-Ó3[Yá’ÉA­Í1†.û·“½¸M:l,æÆèТi~e ÀmrÞ*Œ~ËØ*ÌáÊLÁ¤p7¤¶v‘1% îòUv伯¥ÉÎÓäàÇ1e”‡Ï«HN4?ƒvÄt—^$ˆ2Ï5ÛÏ< ç•ÕùÆcÄ-°_t`v².qÖGÁ.Uddá s 0ÔÓÿsºtdwp^³Æºhè¾Çs¯Fi5 ´ÓmÂÅlyÁÆžã9±˜Ø÷=²5ÒÐËì¦Ð¥¤Š‡ ']Oi†t@çEžM±H<4 Ì¡Z‹X²Í£ Y¢äž‚z_ŒÇ2Œ¡È¯ôæð#4ryGg§€°¹ÖâÖ|">"ðç‹ÿ¼[ú>endstream endobj 275 0 obj << /Filter /FlateDecode /Length 11560 >> stream xœÅ}M9’Þ]Á— ®²G¯“Ÿ™x|0`0|Ùµ<>hÔZµvSÝ==òÌøß;žød–ªZ™Ýã]4Ъˆ7A2™d0|ò·åžn þÓß}zµÜ>¼úã«ÄÜ›þóîÓí?½yõïÿ¾µ[J÷ÑZ¾½ù‡WR$ÝÖ|[‰½ÞÞ|zõ¿þããë–ê}iëï—ûRó¶Õõá­e­ùá'!ÊXÚöðû¡ÒÖKø4ú‡™øi&~˜‰¿ÌÄïfâÝL åù§ßÌD:z|‘úßoþÛ+jj­=ÝÞü÷Woþí¡õoçrûÜúB 䨅^káZŽõþÃL|œ‰ïç}û\[…ú0ï_ìÇ=ÿô¤¸j%=|÷ÜSýò}]WKz±eÎéúây=ÔùÛ‰ƒâÃP=ŒÂo~oá__|Ž›xæy}µkuûë‹…|Àä‡ÿû·­Íçyļÿô¸ÜG][¥—á›ùzÃ|ž«ã™yn®“ùû0¿bïçñóý‹OéøVj|&‡÷òÇg­zyNùîEÕÏöm_X!¾úªØÏ¾°OÖ¼»)uêüç—7k…?Г³ÿ§¹ãÞ¿Ø=‡Wçã‹}ò´_øåäjòéÅZÿë«“îKZ¶vv5z¹.‡2‡aýv±2Gczßß½hç ì0Þ^bÅìðký/¹T¾\èÃs…ÄÒÉõõùÎÌý_îåýÿºÚ^ìÊ‹K4M k^Z¹°@Ÿ„x¹í.ט¿Jíõçë/ž6Ìëß|áöžxyáúÊ.ñÜ.ËìÛ?ÌÔï`q«eéß|œøü~¦>ý8Sß|ñ†ÿç7¯þ›¹mË÷µßjÉÛ}+·ÜÖåN[¹R¶{·ŸÞßþçíûWíŽßÓí/´±£5çö´ü¯¯þx£Ù±´šuŸ8zm¤B7‹iËömËå¾–ÛÌ)´jõÑãÞ:ѵÜ󸥑–{Þœ~÷*L&¶I"ûVCƒÓbƒK('e#·Ð°Ô{Ú&B¿{µP ¯¥jxÒŽw¯þÇíï¾ÖöQǽ[[kºoÛmæ´|ï+Õ£mwÚ+·µ'ZÁ‰îãž«ÓhɆ6Ilô„&JŠ–FI÷„®±â9ßKž V“°*š†c#Î4zq&D;d™¤9^¶¤yשׂâfÜ$¬r¦áXýsM&·aã.Í#3'óysÔù1%xV¾X šêµ-+»Õ&gšg^Õà´Ø@ ã,ü:»œôÑ[é6”FÛµ.aµT OÚqªí¹ ]4løq§#ÎKÏk£‡Ø6^ØrläB•Õi´„fØ4 ¿6ʤ@i5Æ¡±é^`¢£¡î”F­ƒKX­MÁ±çZ>ø Šx\™C¯ †íXØ ¤þ]±¶”‘Ø5šê52ûË!An‹ÔC5-6PÂ8ëŠ “kh}óuJ£„ÖÂ$¼–ªáI;Nµ}çG:¯cÎÙøÔ­ †„7¯ ~ßÊ 9;§Q/ò´à\»â!cÒ`´Ø@ ãÐã&Ý¡¡ÑÖm2Á$ä­ú»UÑŠq¦áu¡W£WÑøK0H ¦Ê…ü p è1,%#ºiô;*@NÖH“DKrF³0FãHs(¨+ÏunBh”Ð:˜€UÑÚp®Ù+ŸTqO.ù6shñÀx\èÍBsâÝ028GÇhªUZ8åÄ%""548-6PÂ8ØTÝB&õ>™ ·J˜„UR™¬&a•TÇVœk9Í•;sHp=8pQoš¥rÖvö¼ øDFSµ2Mék™$àU¬¡Ái‹Ì‡þÅêå$J6,jµP ¯¥jxÒi;çÉ!wÙ`Þ°­bó¾È šẄ¿*QmjpÝ8‘‰:Ï*®œýLÊÙZ‚Sx)?£ÅŽ•CKpÎkñx§k Î-æp‡çœ×ò´/gάåçî¶‘ÐF/#¹˜|·ö3´ÙA¤ÒŒŠ¡C+#-M|Ñmy|ÝÍ#-?$üÝi9ÝÚCö¿ÓC±¿—üP—ÇHÉüÊSNÏZ‘õ[0,;ñÜPyª„CsF_R10M¥I‡2®(i±-”ã’’V6‰÷›e\R¹ªªäØ­/QËBh|°z„„Çí5îA¦•çXW9n$W,É™¶pvç4l!JgŽ” Î)[8-€¯6"Y‡•wæÆÙ'NˆoïS)㜳Õå '¿MÑ&?ucìÁ4 fhcœ²ƒX8μó0$µŽ¼^™(gŸ8èQáX)㜳E3ÜÀ ;$¶ÕÒ* ÂÙ'Žzy¸{)㜲…hoæƒOÞMƒCKÉØœ³g#›I8ZÊ9§l!ºÊg)ôB®ü#ËgÂÙ'Î0ë^Ê8çlµ!gä2j®-Ý#8ûÄY­¼”qNÙZiF~M]Žø2 ‘O¢œ}âÐL›¸¥^Ê8çlÑHâèüàkVCrd9&ïœSV6Dc¤£Å=s& ò=ÖàìÁALuGK9眭Ñä°A.aà:6“ÊÙƒƒc¨•9\ÄÉSVâÈ/fh¸}ÑKáìgðjŸJ猭‚Ù’#­µjü 7^Zpö‰³npÆö©”qÎÙZ“Äcéùr€wLZ2Æ>1úÆf¬@?û„ â +:pœŽ”dcìÁ ÷xÃÊçœ%rÙ:G ²q%«Æ“™³Oœº!νO¥ŒsÊV†´žÉHØŠœ  gŸ8•dö©”qNÙ¢^—ØÔX%¯à~@Μ^2b¾{”rÎ9[€‰~sºhA>~ ΜΙæ{2Æ)K57‰½ÐJÁ‰×ðØ8)grƒ»p´”sÎÙÂuÓø"· ¡%8{pp+³)-dŒS–p§©p}o½ Õ{ ÎŒ”E8ZÊ9§lá¦XæØa••¾àlgŸ8äÇ𺥌sÎVOÐi Á×$åìgØÛ楌sÊÖš5ÖÖ8­úk Î>qp R8VÊ8çl­ƒ=!Då=F ïæŒ=[•™>Êç”%ÚÉr¦T£Yœ£ù…=8ûÄYÕ‹Rë¿¶ÐFYN?²Í#9ª=8ûÄY9±xŸJç”­Ñ8º6i¼ç)H •u—=OpV!­È阦œÊ¹7f³Êä`¶à짯²NF)㜳EûX ©³)ä=Vgìƒöre°%+cœS–ÕÁVÚeÊépEªa-ÎÙ'Nã¸ø>•2Î9[#q²]ä´¹}%8ûÄi:+F)ãˆ-šÊÈS¤­xÂÿé!=Ža7±Wì¨äŽ4yëÓmîýÕt#|“Ö§mã.r.ŒawŸ‘ÖÈ–oHñdßÒE°ßi•9x û$s.² ·×QtÇ¿4~‡v7ìØš¶z¼ä…œOlÂMäœ%¹Þ‹”Ò&1 Z—pacÖ+"[aO”ƒœw"ç" z›9 ïHÒÊÇíMóU÷Aâ.‡3"m›dÎEôö*æT‹bð[Ì÷ó3w—Él™Ón9ŠÁWQBæœ-½.º"N¥QŒ/˜®rAm™ÍC¹pêvˆœ ,èM„•—U‚쪑Û„›ŒæFÃÙ¨“È9Sz»`Ù?Ö…ßbz~I÷ª&ƒˆaeSa­1Éœ‹-è-ÄUŽÁéƒP—&Ôï“ÈàK?à$N™s¦äîöÛ<3æ–G;‡F·Ld«øÏ´†pˆœ bèe»i€Ä@’0º!|Ü.³.ºÅeu\¹s™s½ä†äDÙ±vd§2*À½O2H#ã1÷ É\æœ-½^†$Ä$7¿ÇXâ3tsÒ F “9XÐ+]H·“ËVX›€Ò°é~ÔEVr§$– ýpaÏê×´ºÜnç0ç’ñ¢Ëe¶M§Üµ#m1DÎäÒRC¶‘Ü&ZWÖ‚AÉj]#ŽÅ“TŸdÎäŠPÃÖ€_ó ç ñg†ƒàán2=¯`Ý6|…Ì9[|+§5Ã*ɸΆ•O“_öAš+¿Õ8Ý(Š‹œ /È)pC­¤ó.4¦YOnw (˜HÓ«, ßÚv‘s–äæI#ÿK`)J¢a†à3®ËfÄd.?ð¶k¡ÑŠ«å.s.Ì ·=È“^u3™ÈmÇÒÇ)уƒ &#õ‡<˜V&™sa¹^ÑHB·x™Ê´£¬ìFí!ƒìuÅ—´añ ‘s¦äBCÃ"$;ןÙt'n2@»Ú$˜Á‡·!r.À i´|3»I0c`Ý««\†š%³âVøð6dÎ,5vÍze“(ô`À=dV;f-¸Bºn“Ì9[š'Š é&É«cõP´„ï\FÓgʨ|~"ç¢ –›98¹Z,ú&yÝ‹D4T¦×.;‚ºÐ¢Ãd“9gËÒ!åN¢©Iþ$Î&6Ö¬2=iüš¶ן\ä\˜Áò-… ¦µj:h(d¶U¼¦š²ߺÌ)[‘ðW%… æB«¬çóí“H×,šoëœóç¯&îÜâÂɽ¦Ë|z&¥Æ9•Æ‚LùVÊ9çÞe\¼-X:gã}vA ð_«dB”,÷Íi¾l;ɸßZCÓbâݫ৩ðª %¾ßâ„æ[Z•ð:ª‚'­x§±£«90·6±yîuè™|þ%8ûÄÙŠž‰y)ãüÒØ•·)³]b·Y !šà!ì“ òcäɯ’˜f"6Ð~Yæ!N]:¶ìHMÏCR¦>¼ÿáÓûÏ?=¾ª$¹¼ß F3€¦W%8Áß½%xT°ú?|¯RúøáÓ¿}»?þ›/s›2Ücrþö‘äˆtY¡‚ƒ[Á›cD’CؤP"‚FFdH¤kpZlFdA¬b¬·ÐÀ©=a‚É@ˆ´ß½ŠZüI#®D’ÿWî3>$Ù¨Èp2pF2ÂWP->itàC†ã?†%Ù€ÃCÒð)˜ÿ¢tfl¸Ð/tÀC†„ÕÐ4šp’|Ü`ædz0hÆ0«êØJ:¤ÿ.ØQÜh1èäæ³³ê ÈC`lA³ t C†„UÑ4q²Ä 8&çz,=à! è%¡[#ÒýÑ8-&²9ì mã¾S L:¤ÿl´ÒÇ&\‡¤íœ¨$GpÍŽ É·¢[wÔF£2$÷14-—N8ò¥qF\'ýB*dHX UÁTÿ+ˆè{’âw‹#B’…T6 e+xþ»€=zq§Å@ÀAÒ~˜c*® #Ái J¤KxUÓF\ƒ,G¡Dr\‚Õà ¢ xS5®ntÀA†„€=†£ÅDÀA–Üy h»ÞòdCh‡ƒ «£)8¶â $£9$IO4й’ãAr´d °F£2$î14-6²š_(ȼ/BdHX%UÁ±Wà ½E’ÈœÌÇKÄHFø2ž;p.¡`®Ái±p±̃¦!"àŽjC逃 «¥i8¶ã dÁÁ“¤´9Û¦Õñ ‰æk¢vbtàA†>†%Å‚BÜ÷jíÅ;»a@è@„ «¢i86â &dIò›9/“&#YéŒü'§2F:(¤ÿ®˜^Þi±¨%ì?½|^¥ÛT¿ VA)þ¤W@!KÂ÷6$‡Ö8™A^ ‘Œ·"£2$ò14-6²$r«ƒB–…&p̈fC逅 «¥i8¶ã4.dYè­’#R!é¥ËÝq! BŠx]õ¨ÊèÀ… A} F‹À…, öˆÍq! í_x24J.¤KHµø\ý+¸ ‹‚›æ„ ’¬mŒŠ¦GfF0dH7R 0$MÂ+Ï‚®€6*€EsB;0dX MÁ± W€!É h‚°dTC†$#›®xF2dHðc(0ZL4d¢"ÞUÕÇ`WÍlíÐ!`u4ÇV\†$Ç# ÒJpß`1PF²Âhvžht@Cº„?º§7EXÎÊ'î¦!òZ0ª £2$¬–ªáI;®@CfìæV9=5NÇ4k°Œ™7ˆÝdÈ`äG/¯”èw`ÈŒ˜-‚ ^ºð´ú…`Ȱ š†c®C摺$?'ó>Ç ùÜ•ƒœ¶À!!°¡Áh±À¤»KIÕ°ÑÎ =g6”`H—ðZª†'í¸ ™7 ƒÍœÁpP˘Q·ÑÈ@† ~ F‹‰€†¤§_äq«†Ì‚P é?[­ô± p!3@Çm¢»B0rZßC–žC¨!!˜®ÀHÖ˜g6i»Ey¿º¡2$´†¦`nÀTHNˆXä¼Ý8Y€1#­^´ž‰¨.¡˜®Ái±¨ 39;*dFÆwœÚP:P!CÂjiŽí¸‚ ™=i-8Cà|“1#g¬,¤Ñ û Œ ™ FÐ4¬ó B:,¤ÿl´ÒÇ&\A…äB’‹` Úå ú£pŒç|XÒ4[Àè… |t N³‰À„ÌøP VEW@›:„ŒÜ„Ð é^IÕplÅHHrÁ<8™k ‘ŒòI”e/ !!˜¡Áè¤0ãÁY…Ü5tóš ¥2$¬–¦áØŽ+¨™]™O_3ÄTDÆÌ xÉ!TÈÌÇÐ`´ØTÈ ;¼µ¦ x=`!\ȰZš†c;®CRG9Ê ý ¯ZA3΋Ðü£ÒöÑ8Ýô»TÁ©|0ðDêdAè† «£)8¶â 0$mEOs>P2#5nÚhtC†„À>†£ÅFCÒ¦‹agBòH ÝlÀ!aµ4 Çv\†Ì81®rYÈ8ctOd$+ØÈD@Bêo‚öèÕ™q7¯¬g4¢Ú•7!t`@†„UR[q2#ušþƒÓV$ #ÙXø šágt€@†„`<†¥ÕD @æ¼-ê¨òÊXfBHÇ€ôŸ­ÊVúØ„+™¹îœ.˜É ¿HFËIJ  H—P„G×à´Ø Èœqi»…†²IÏ™ ¡2$¬–ªáI;® @æŒst›9À IŽÉÇÍ@ÐôG£2$ã14-62gz¡ÛâN2B dHX-MñWp s¢W/µÛÄÁa+î+#YIœF«ù˜FdHÊ£k0ZmdN)×5ð5ŒÀš4:p ]Âë­ž´ãŸ’ú¼X¯73® @ºg,â†]t%θ ÄÛ¦ÄW”˜íJŒqAÉ“nœ%¿2!_~[ÿ™ iÅOraÐ8–~xïpÒ"x‡Æ¸¤Dc¡D—”Œ´ÉWlL‰2®() n¡CéK*"Uu»õW!@b^ªM3u_ç;€„=•‡×´ÎµZ&jáßp¡gËËuÈùšî3Š1 ’\°×ŽpΗO'?Á€l¿îòpq™V_î¦ý‡¿ HêßÜ ò÷Œ™–_ ™:ÐAë/‚‚DsS[¿y9]úCA–Úøûiœ}âŒ*D¢”q®@AøßM@øÑ8ûÄYy3½O¥Œs ²À “Ci~4Î>q,'+eœ+PŒ9%P| ýhœƒ,y±»úVÊ9Wà 9=GRKüÑ8YRz³ÜJ9ç dYä01à ³Oœn e^Ê8Wà 3¾Q)©# þhœ€ƒ¤ Ga†¬Tp®ÀAÊÙy»¤qö‰ã@€^Ê8Wà 3®ól’Û)ðÆ @ÈŒ[M8ZÊ9W !óV3 !³OÚîKK½”q®@Bf€ ê€@' !éeêúÆY)ç\„Ì@/¨Ü ÆÙ'ÎÆéiûTÊ8W !ã Ð ³OœV¾,Jç $$ŸU-€4N€BÒ µÊÌ륜s2ã}“Sn4NÀBf`9¨u-åœ+°Y¯,¤qö‰0 ¿´Rƹ ™u[ÀÆÙ'ΚÅÛˆRƹ ™‹! ¤qö‰ÓÐ8Jç 0$Ñ¥Ò8ûÄ––p¬”q®C2l×:C'€!9j/ÏËJ9ç 0dÎ’‚èÀÆp`ÈŒwj›!ƒsAç[ B2¹O$N7nû$®Œ+€4Ñ]?þÑ8ûÄÁ?æx)ã\„ÌÓʹ—Â?gŸ8ø®p¬”q®ÀBr[0RûÄÀõÕÛ>QÆHÈL›Nñ4 Ò8ûÄ‘ ý>•2ÎPHÞ›qÿ¤q’wtM8ZÊ9W@!306APHã(dÎìç¥òêï—ƒB¬Åù˜†sdYHA0!Cä &dÁ5*ž ² u Ï djdj… ™+ ¥V”(d_#޺ˌM£Š 2`!ÉÔ¦ü Ij²‚w™ÈXõc "W`! |¾¤¨¤& ÎTˆÐ„/_…PTȹ‚ YkÑo Y4ïdŸDð5@!Cæ ($ç± Ø¥‚B÷ÇB†Æ=o²\rÙü–f¤…ä;ý]&ƒ/.ò°Pȹ Yø›W¼RPHñ¸¿\†üATPȹ ÉyM" Yªcã»=¢&ß¶Pȹ IÞ^·O[(¤½Õ{ˆØ k !r’L-‚ƒn ßu’ÏX˜ §Q0!]ä $dÁÅfDHêÏÍPM¤û„† B†ÌDÈ‚±gDHÆWO>¸LkúR+"dÈ\A„$¯ë­…„dð€Tô—à6 "dˆ\A„$?ÚBºŠɘ 2å™LE8Hð(2D® Br~/g^+$$Ã4HÈÇD!ÅŽ•AB†ÌHHÅgDHj¦Âã»eUQDȹ€IÛÅ$à I;¸¦à&áßaR@ȹY° ‘O[dA¶Q’8‚‰ØGT 2d® B–ÌŸ:18È‚M@›á Ií¦8l 2Wà öy†ƒ$Óúé5—ÁìÎðV2Wà òDä‚ÂA2¤/ƒ!ƒ)B¿p8ȹY–‘yRà B@#&cë…áA†Ì@ÈŸS2Û² qc›!©‹œt"dÈ\A„äkÙU?p¡§Ém•©!d¶¬Ñ-E„ ™+ˆeÙ RS!i8fÝ3š _ â=¿"B†ÌDÈÆeF„¤a]îò• ¡ê,3 ¤‹\Áƒ$¿¤YbºàAòÉÎôG‘¡ÚTÅžT<ȹ‚Éw,%©xy`Ç0ãAÒ›ÔezU<ȹ‚™7y <È À§d ·uS<ȸ‚™&Ÿœ$­Õ¾daUu 2d®àAÒÄ”¯Îð ù¶b”™Ì¶èW 2d®BÒŒ°)(®BÒ¬“ þQeÖe•d„ ™+€߉Ù䋉 p`’ ‡O!Cæ dn@š·„Ìü1ì.ÓŠ„ô 2d® Bò!¬"$M÷«ÀV‡Œ€a"dÈ\A„äÜ/8 "¤gΈSCl1"dˆ\A„̹Uùx !BfàîèG.T¦Øg¹ 2d® Bf¾˜)_ÿeDHËì DÈL2fJ!CfJa+O³Zh§Uq´–9áDDnäÇ¤Š­§~Îô¿<rm­ëh?üŸ‰úéýãkl‰ÆVRûíãkÀ’/©?¼ùN¤Æ ùá[güWïzÿý#M‡K_ÊÃg‘¡1€¤ãþùPƤôáýO‚<äAÒÈ]yßHýöö³Ôª>¦J•$ÛøÓŸ¤î7$Õ7V÷þí;64–íá;µBBùøYš1–”’¤èß0õ-ôñÔÞ|Kõé)O †•J¯‡þ%s£á¦Ò¿#Kˆ‰¦‡Šr}YÊÖ‘g‹Žã3*øô€|©ê ™ˆ:B‹^ã~A§Éñ5ÐS*€PøOŸßþô™:۞ȇÇ×äÑ#o??>×\þˆMÀjýŸPUZÓ("Mó%IÐV ÂȺ§ ¥·™Ö4)“P†V\z¦Ïu­ç¦ùÛ¡ uTÆz5¤ôË“q9mIV¿·Ñ¶oÑ6øxô°g®?]Œº×H)-z"å—z€]kJ/ö-¢ÇžX9knªE볃…üOêêç;"}9LŽõƒç“Z¿ßrۨחôœ-l3­àËôŒ~¦—i¥×ãöÁ7ZÑQè¡ä)—ìÿEYRrendstream endobj 276 0 obj << /Filter /FlateDecode /Length 4814 >> stream xœ½[ÍäÆu?ä6ÇÀ9v‚Î)l[M±¾«d+@dÈ‘h'A€] z8³´º§¥fï®ÖAþ÷¼*²ŠdϬì$ØÃ6ɪW¯ÞçェùaÓÔbÓà¿øÿþxÓln~¸ôvÿÛ7_ÜÞ|úµ1!ê`ŒÜÜÞßð±qrã_7Úln7¯ªÚîŒÐuc\õåv×Àé½vÕËø œ–ø`„ÁÇê7ù ]œ¬UuŸ¿›?<æ{~Þ*[]ò/}þpºJàu•?½/>m³§onw¬imÜæö_onùªúÕ´ÕÿšŒŸ…ÑªnTuœ­A›7öêæ‹ñ]þЮl„7ÿS62coŸ~—?Ȥ(q•×᪢Žkr~–ÙÝU×÷TýaÆt1®£u΄êÓëŠ/ŸWå_ØÎCþpyóç˜U¹]q}Ü/?N,O bÅšuȬ9ÙC±ãaöðœ=ü4Ù­8îŸ'Ç't[HõW“9ó2NVݡݛ»Ä×nôØ»›êÒÃVoÿ¸ÔŸ©…õi¯„ûf»SÆk ên’ǤµGXàEï Ú/¯ŽûÓµ`³%¼ª=¡È}ôYÖE¦ñ=)‹ÊFeû« µ…ïi"Xpîî>Z o¾6‰jfº-[–0ªún‹&RmÐ7ÈàdõJÚoâfèåtŽl+5“ŒÑ£ÿ}…5v\m”l¯jtèr¢^FƒD¸‰”¾è`EäÆ Š™íåÒ%¾Ì= ćžFí!åy ³Gv#ÀlÇÑṳ̀ ]ìI˜P;? Ї€%åÚž€mÆÁ/ò ú22cMÕ —þØ^Nç!1 æ÷‘“ ïUB¸È’B)ÌíI‚C;W&èÉ‚23.çv ßÅ”‹3yȹïþ.{üGi3ÊÅâ)ÑùÚ(Cz¤ "‚¬ØYU†Ó‘‚-æ Æ7%ÃóŸ@7fŠ}Âð8¡"_2_Ïó½˜c2‹î÷饼D¦Eª)äÑPðð:âXf¹y°4(†;Zj¡X\I§¼‰«X‘VO˜*r%«rkÊqb"2J¨D§1²½ß®`tr]ÙPHœ!Ö|§·Àâi  /Ø¡f~F4Dc‡KîíÂDÛK¹Î‘.Šë=ù·‡¬HpE"Vyîìúbéó45 §¡ˆ žÎÓ&ÏÝp:p!N2%ÖC•&¸õb*†ÆMDcÃÅ„©ö‡®='q„R}í%«íù¡;¯& ^,µMNLáX/ÌjBM­Ôèñ°xî±°i-kã|‡£ŠÁq†ŽˆÖ£ gÒ¬öR†Œ;{ÔC;c‚Úâo*ÎT–x]µ™®î"a+“ ø(~ùr–ý|½ý$qyÞ*BPâE²¤ãÞæééBÍþc³“‰@8î2>ɰiQÅ~ä8 AÐÐ`¼Ñ$ˆç‰Ácÿcîž‹Œ€,``zŒSôÜÍSÊð›Åå¨. ï#rÞóK(6¦3eWüè‹lÃd‰`­Ð$ªÖÎjMZ@¤ºu C­¯Þ'˜ nTÈK¤%'G;É3.ZÌ!}R(¨…ŸìŠÖbs=TjÇEhÎs,L ] "1»­c4LË@ôª›³5»Fà`[k»Ñàl^zžòW8EA` zò×VUh1éžƒŽ¡jëE^‘¼Ì2À'is*ËÍ2H6ñ¡Ë-lèbòÐµÜ £k­Hpy’ûTáîçð˜g(LzüÓWÇÌÊúã5²ø}ÄÁšàßJüàŠ§K'€ ›×À:¼:¶\ÑJ*‰Ĭ'¢ ýC.„þy_£eà FBfŒzÔ(£_ž£ À꾈Þq1þ§ ¾2<á•ßÔ£÷þËÔÑáªí^§¾#ôahMT¸ÇFƼ-’Ë}LæE5Y5dzØ}7< •£ÚÇéí¨„D B8¤5tQüä@‡òªc<þí"»=#xJ¦*ë^jq§€A¹:ó¬6.…ñfXÏ¡«ýTµ.œr`™C=b†×ÿÀÈZ—í[+!G‚ ´²¼]s}ž*Fåì]UÌ÷8(¦g\_Î@2Á²m™’"#¯—I÷k[Q¡¶V>½S[~ÊV¤·‚éÄJ ¿/µŸ·´ˆuzxð³ÚÑÁ>l=’QNVs£áf=*÷ûqD´yZKƒ2xÇš‘™¥ ª²L‘ç»8@ûk\®Ñ#äq%/±úÏ]Ò0Ì{C||™™û-[‰µ0*̬„&YI“b6)¬„~SA˜äÂHñ±[C™NÎ… 6d¥Øù”·Ý ÄÄí1g¸V3®¥–†JL„] ¤v™qe#W±Frß{jÈâ³Ñ唵꿹VöbÉi•Ÿ±YÙ;LµÔtPô6SÕ2XtÑ Å—@froP<¼t$22àvD—y»'<ЄYOèó0 6˜8f„‹>ØÈEíÌ CîÚrÌ|0 ÔGÜ 3×ry®è‡=–ÛÓ(‰!{»ãÉ ÒŠPƒ<ÑBª&±BÂ*PRÆþj«®¬{c¦_Ž­:#æ0Ðëò©“Hä"Ô9tT@„0ödp°‰4ae´R?Vs|4UP.[§ÀŽ s„IçŒâ’5qRþU ¶2®!žÿmƦr ÈT@~±yx™ c< 1¤4(rœÓb“I@üïþ~ßÇy9RË,úž¡ÀeSKiÚe!âz†Ö˜Nž‘b­ÅßȬHg.ƒ«ZBïÀ‘z:Ü•¶Ó`½›·2ïŠ6רIã~VVåÞIÅ– " '®ÍÐ#ŠXÁÅ€‰Ý.r§b¾.]~THÁŸaáS˜nÞÑ®6&ÌJŠ%ÎyaŽs…¥–Ðû©`íP‡@2ày5IõC:`˜d•ó:oá Õ¢Ñ*X¡…%á;°‚¨d\{Ù)±ÐÙÈåwé‹c<&‚ó lÙ6¸eÚ^+D9ܹ„‚Üj¬KS-;D0çÉ…›UÈ…Š‡A‚{z<ø$-m׺»BckÆØºKwîOù92S®­»Ÿwû Çgjãß§ßó#)~ `RkL"d“ /f«Üö»!{Ÿu|ÆÀ?¼„ˆiˆT™§³œ‹ç Y"0jÝéR%£,ä¬Moý¥ #ß…ï”° ¸*€‹¸hWY˜8Ð ®Ü!€À=IIñÊ©{"¨{‚Ô¸©©i¥dY)šÓ…ËÇcîÇÑÒØÒÈ&h¤Fí¶«•®-¨19xÃ/Alï©«3‚N,”°?Ž ÓÓAJ¡¨Rv©‘)a€°o©Á-“‘Œ! É@ íï8j0zWÀÅ玢ܢCGc[ÊÈ8<–½Wz4ÇíN•ÍÌ'KÁº)4±téâ‚c…ÇÓ1r® у´YxHwRXwIü¥îf5ÏL~ë5À¨<á¤òNµÒ$,Rwt8¸ß¥!ó)½ÅN7ÄPöy~¥øY[¾¤‘KŸÓ•îO­òD]ÄCj\á{ tii—THà{¥üX6sÝL¾ã>N”ª¼ ØÅ2‡>i­üºÉ ÎÈÎì@iÒF½ýGô+@±Yµå–(O'bX„ÛhžpWÿL¥"F’ÊRàCiï!®AæJa+j"[>jx¿U à v &Á‡H Oq$Ø žï+AU×·LÛ8å¨Ç•=uqÍ/^FBÊ’×¥!CâÆYðª8·ÔXj¯†ppañ'o»0dê!xÂ—äÆØ$&»!V“ÑîiLj¸„²µ[–€‰¸g쌿­HÚ yçýÌáHëE§™˜ïW{pÒ‘ R¼¤ËÍ[2f¥Jòµµ¶ÁT'X.Ñœ¿%¡ßHi׺]o¼x(o¦IÕ}ìy©r`p6˜Ä ݘ´ ÞÆ¯•H¶v »ýM^ଗÍFXb"þ×ã±€Z#nj¤|YãÄܸéèÿaíÔj41®žkúWš©+Iíjv 5­)m³ÒíÔ‰‘*wóãå°gh)ïõñBžh fÇù±ÿÔ”@sýl»ª[S @«V6Öº˜W¯¥f°zd±Ù)‘i|¦(Âõš)&í—¦ø74’ipkÜùÚü¦˜óù¢Ï×`¸]l¨îÑ"»*”/cÊ éÚÓAìÇPíO³þgiÀ Æ­-§ÀµðÞ^HâïÙ`%µÒ‡°Œœ.0ÑFàNHb~êµè§\ª¯l.< sdX¸—AÍä½à¯”·ª5&ª ÊÎ7æÿÛzž"ôzcF©6Þ–ÖðkÆGÞ6«ù6ÔF¸±/ó¾¸ÌЭºD°µpÊ_íä—‘$À`-Ç~ötP²¶Â´Ÿ× «*,„fQ¶ÁC’bÎÏØþí¨õ™Ç˜šÇÀ ý¿ê1xËpÕe¼NÄ…ËL1¢Çx)ÜGyŒq?Õc®È;ço‘Õ–òþ;ËNàŒM_KçÆ>ægÒ®TIƪtAóu Áá%M øÌÔêQwÿ>Æü<ÜCñövþ…@OwàÃ#­ I.IÖÖ~ê].D:kí®!Ï  ­'~§„Õ 7ÖSyŒ2ŠPó³Ù[þùëiÀÓ W(¼0‡G‹d1Ã/¡‹’½–º®ÊTÎÊ ü›z¸xv§„ Ô¥Ã!/Žœ»òZ)ª¦á+„¤Qýêª1kºÕø%4äte®á,¨ Ðb7E°þ˜ï•Yñâû‹S¾©5’bÎΕ:™aÅшu¼ŠƒâÕó?ûPŠxáÚ3õ”§âˆN‹I}НTMù§µ!6•¶³ž.¡ÃL²Uõ¼6­µó¡Ô&‰OGmZ‘·~åº#Ά –Ú¼W·dƒ9D3ÞP„ N=wûéâÌÔÒŒGµšÏ|¦{ŠëE ÒßxAŒÓB÷Æ÷=WËŠ:^û–®øi]â­I¬«™Ðtx-òŠ"Z£3Yb) Á¬šÐPp™M1çs<©uà-ö¹C;)k75*ÛÅéÎÕÃP˜@Jü%;“OƒL™£Ÿ¥9ÿw)Óû{‹”9ËH¯Ï„«‚æ² `$;a@º+Ã=©âHê2Ýó˜§ÒEºyô·[Æ?_I7æ·Ji\ìpiÉÁ²öÇ_éê¶á«Û䀀…× -(ê5”²„Þ”BèöåíÍ¿Á¿ÿ'_ èendstream endobj 277 0 obj << /Filter /FlateDecode /Length 6086 >> stream xœÍ\Ý#7rwpoóÀ‡zlžNó›´qÃHœÜâ|ÙÁ%ÀÚÁiµ½»º•F¶¤õœï¯OU‘ì&ÙlI³;v‚v¤V“MÖwýªØ?,º–-:üþ®w7ÝâÍÍ7Œ®.Ÿõnñ/w7ÿüŸR,kR|q÷úÆa æ³m'Õânwó¢ùty ó9§™ýîîßq˜Z˜Ö™Žá(ÝZn™XܲÖ8îÌâîŒÙàÓu¦saŒI¥á7nàéé˜ßáåœ5*ŒÉ—Ç[ɬnþ/¼YvW¦²(Ö)^]”vÎIQ{€h…í¬®,Jw°Ú?S8Ç…öãa9ém«DÇâ ?[Þ ®[XbóðvÙ=sMè—µ‡Ë®›ùíeôcª:Å›#á„„S5ÂYx€î¸òb…”5òñVóÈ'Z¦Tgý˜ñ¨çhM®"i½¸ûÃÍÝ? gÒ„Kfä­E1ÉV,;ÆmÃð#ÌÄ«r¸Â:·­´Úð«™Ïx]"ÇõåÌCæã–³1íòV ,”Íg¡vx9«šC|?þ°=ÁS²¾Ü×ߌúãi³[ö‡xÉ6›cøÌxÓÿ€Ë Ã’™7?.•hôÍjÛß/¹-6§qÚÓ~Y““[ p˸NÊÖ‚èû}ýÏ(Ô5š£º3õ óÃÞ¥–ª*“°Xåfe²¢ÌšÏŠ»+Åј…lPNúŸ]4ÒVÄM·Ê6ˆ[1«µ¨K»À•ã:„ý.(ˆ+ÊuêVÁ‚ЍQ0ÿû¼`‚ñ‘“«–u:Œ9•V)Û‰¢ZžQÕïÚoJts²JaÙ*ÐЃϤá8Ä:¸ÅÖ8h[m]§ãþm…¯> ˜,ò?ë©íCµ†ŒkÆDÿp-¬«¹yT»L’ÎOž¨tš^Ø’ä†ÿv‘jZÜ„lä5!¦}wÞëABG9Úm6hê8ÊüŒk{=›M'ØSÅQÎÒÍ©~f]ªšø—Ó” 1zÔO†¶ŠŠ(‹V¨›¡|n_Àr¤KNyÈ>!@ ákŸºŽ1FiŸ¶Í |€gjÕlûÕ+ü¦á›ÁlÐÿbE³ m~\rü] È`14áÒ@ûM‡³7߃‰À;¬löd-`Ū¡\¦ÓWD7 šÝô~^) r‰K’¢Yïwß/ÇU¯½7†à‰5Qá–YDD]¶RªwÐâ9/¦yž˜Ò;T`8Ù1Üc]ó°ÙnãÛ¼ôë– ­1MgÑ #ü²Ûß_ާÃêÔ¿ ƒ!7 ö÷a³^m·?…IT³¹÷ÐïT¢~)ýß’ì}•ζí‡öÐNš×ûív¿$JöŸ®ÇoÚí'Xˆ‘\\ õÐ2«H;|Ï_Ž›ëž/J$”H¾Šø<ánµÆ&÷z£)ÜY`B"Mrdb ›”ÍÃasê«ð„­ÄDˆÖ¢¯¿œÐB"'`3àD®Ž¤ÕyHH²|šZSwk(iÈÆL½^ß’ƒey ½+SÒ²µ”vS ¨ÅU´ñ¶i'ì À9ÁàÄ•PBö,×2ðäÜBdÅçà' ÜÆho)@_äæLZ™®.alA¡ñ•·ŠK~eBÁ VÈéð× ,›éëQ&° f. Úøã* Œ˜J–‚‡Ïäœk؆ð¥Üô)­ßQšÞ™!8aÄv9^r\›Ð£¯y„3FÈ~Ö«,Ó‘„“¾aÄņL¹!œlü5Ñ<2‰æÏ%àZ‚!÷kpKƒg¼–BŒgö7e¼Ï‹¢(9ÒtE›‘3þRÈ–R>õyÄ1µ]Pu2›Üpn&‹š-¤ c¦ywN-ámúÜs*„˜hV|¦Æ:-ÞÌÛðr(ÄûŒ5ƒaÌç39$ø:‚;f‘l’E:X_0*ðÞâMÅ›þ¤Qä¼w­Ö:“F â>¬5ÝŸk…ºèãûn³A¿Ãàʂݿ˜Û =ÐfšØÖUåÜ3î5§C²™*”Hÿ%cëa™ê$™12ãi ?/®ú_Œ7œßŸ€5¬Gï/XA¬¸¢’Qd('Í@¼2/Í©ÈËÓ2yBçl©nd5Dð˜81nÀ”d;oÁs:Î?Œ §ùÈÝK5Dâ´}:FÏîÎ3š?z{Ñ÷'Œæá-„0¨vÂèŽ%ŒæW0ÆYFÿ²d›SøipR×´2EÌ.X Úó_JPÎ[„9ìxÊø, 'Gù…AÊt"™`>.„¼’Œĺ°¯¹È«pn9RÓBòç,eð¿§ŒP2לN}œ6÷É·7àZÐi8Ÿs¬H@ J£áC– SŠkiöÇz Æ`¸ë¿“§(×:X®‘ppÙ˜<dÅŒâÒ_Œ7œÁ 9î¨jœ=j—G’%Cn¥e—–ðcK°„m˜lv› Ùì6ÇÄßÑüyiyÛ .šÕ¡š¸[H€&@Þ €é 87k¹ªé€Y[t\Ìë1‡Éis!¶ä„”.3ÅSs‚º¶3¨±aÇ#¢´9ôkw ]!ìð° R¾¼µ¾2ŒöøÉo×Y ‚~®#\íÙþÐï£$ØaoŽR›æ5sÆL©€Í­¾1·&Õ¾­oT‘F4›õ á@°õµrŸªå1.ÚâЀÀiÙ¤#â-D²6Ýkª¹«eTܰ‰Ø”Ç;ˆf±Ÿ"ósƒ˜î䙼¾òKa’sì³’Üе9áíÀ*&¨«††:âM¥L[œÊòƘàb4ÒºfŸ0瀗mƒúÑÄr¢lÁrZNÇÁ’ ˆë>é :z6häà!yÖšpIšR6›SfÿÞ§V4îÒx9^¿Ï &.§}ئ ló¦[‚¾›=Î3h`‹ïöJk\ûÃnµÝü=as©õM­S¼Õ'äR1Øíjåï~tÈ3.XK½Ö À–éùbCn´¤‚`¦æ ¾Œ”€.DJƒÃ¼6$†¸á£b†ó¼µºs—6TqÀRc| »CL"€ÜÖÅ€µ1/£1¨f`V‰ð¢„j –fD”î:OI®zßŦé«íûTã6y·Mët)ˆa"Ù<û·p»tkò2}Ü #t îï]—RáL•¢ß£¹¼eÎAtu8ú!œët-Ás -Al$à×^l`bÉ«¼±š{LZvC¸ù.qx®9mdÌèSçiùû+†!¶´«í¹Àöþarw {ðÄŽEó|RÕr‰´(&±;sfÒKîxpJî½æ×Iâäñ ”$tÜv¤rä4¹qXÞÊ,?݄׭iýêˆrDH3ñ~2£úô—½7þ¼Ê¬¼ŸÖ6ÛÍ;²Æ _(Ðq–Ü}ûë¼m–Cnÿr©p$S I«û5}~“çí¼9yÛ¿?lÀQ­—5 Zƒ™ø0ß a¾û ׃äjž}ùç°d°Æ/¸J~idzzahÜzŸ.pQJ>ý}â:¶+¯¬B¢Y€ˆ'8ftl¸ *nuóåê°ÅÈUJbñ·Í7Ͼô­‚vúB}n†IÖ«TÍ»²?ÑeL†“B¼°JªuY ´éN¢ YCóë9w{žYKâó5=Ø…æx” \s=^1˜d ²‰6Hå¬ñ#´æÄÆ:˜&øãkµ¬XzJð|M*):s†~?Ù$Ä‚5àëvƒô.oòš==PÓ««N$z5tãMºW²‡ÅÆ|Iy¹ŠÛiuQÉc[^,ºpLÐá³Ý'j`K‡£.1ԃ©VŸ"¾Æ:Ê ûß®7}¢µëŸüop«Šé>Ýô«µÏhÅìñcÜ ƒyîÖ,AÍ«q¥ž‘§Ë4³ç¤j¤Íã[tØ`²1ø§í•Á7‘‹A°Ð¯Ò#ÂÂõq„´Y }È`ý7oË\3§ž8aO}K~møm·%=í’*‘½éÉêÇ”µõUŽ [>kôp‘d¦ÔÛQ¶Ð:­@vÄŒD7-Vy´ b2cXŒ§ 2$ƾ£Z;JÎb] ¤Oûº˜OòNþÄ §.{J©ÂXds¬es–vÜ¿Š7Û²ŽQô~³îà n¾VbÀÀèù¬¹è… ±eòê&Y Lú§;z¾L5œ6*,H›%\޶§æ %à$3ü0%+Ôã5ýÑ &Œè³³1 IF/-sl¦é2 ')#ºÅv…Qnö‘‰Ó:G$ó1•jLç‹u”cvã™,¤Ö³)fš»<›šà?Ý!ÓúPP^¨Ã©pkÕLø#àÃOÈp‘d$ˆ$üñ¾¢Ó ÎÄuäLè²æsB„y°érS!ºâ}“—‰P™Bè{W–\ÿRr¼™ÄÌ^Ñ}e„+uÓóBS:ö#U_Ϲ[ Ñ 0ýÿº¢e nlÅâÚ±4ÙMƒ°ÒgX:l€a¹@šš Ñ#ÙáôpК Ðè2ß“ýV΂•=tôÝ#MïI!¼ÉÕ{ó¼G)ÂÉ÷yÆs ÎR(V@àrÈôGüƒèäIk›bžöa@ÜrL€8,/ž;Ö0e©À 2^ "ê,-‹™¥îP3âLðWMkèò÷ìîâÈŽ?$þÁGv®>ûžÙ‘lÆŒ\:²3÷ÖœB8Z5T1ìÉ„Ã^+°°I[Ö…Ä-&‰âÄ’Õ¼sb?9_dfhµò,¾ )½ð½Õ n T·ƒ ʵL WÎe×ÅCv S¶ /ß·tÌ“k91¶ÙÖ€ˆÔ‰ÇXÉ¿´A0)(Ž—·h¹C!Ù£ÃÓMW `íX±É¢Rå SF%È6õùy0 ¬"A„–ÊAœC"àCLÃ$™ö&­vV•`´L?B\’sÄ‹ˆP¿MÀjé{É\vZnµä^§!_ÖFOPÓ–qdÙgàW”ÅŠÓ¹½3fãH;¶V…ª3ž÷ºkb-XùRs\DÙ½C³ºtÑ›ûñѯ–õSœ¨•‘O–N¬Ì|1¨Ú@=‚žÄÿÐ{ä cQû¡.%ÈîER¡—U÷%hlTƒ¼Ã؈¢}3)ëÌ"o9mñíc"âÐØ––¿ m|%ß/hƒ§+œäõzâeœåxYU*§†>&1LÖ£òùG5*d¯Æ“šQ&ˆÇÐ9uq„SèÛ1l™r©( ,#Dz鎥B,΂!ýÌtzü¼¹Ïvýûu\8‚NϱvÚÍD}$v<ÞF7­ï.Å„–ئ™&¥qN7˜/ÌâŠd¥Î¿M+£ F/ ÉÃâõ~ç‰D {ÒlêðKjÒ*€Gß"ò—îI2»#œ²^¿§ š oâKÍu‚Æ5þd;0X&fÇÍaõ2Ïsaªià .—»Ò6œÒÃô1…–,=ˆŸ0ñ1(ìùî§¡³wX•Hú_€ÜýaÞ<%ì6Lº9Ç|#yÄo¼3¦ÏýzhÒ o6D}þqì¨[ƒåPe¼Ðpôy|§â¤ÏÀ¿k hÉF§uäýv$N|{"z÷7‡~;ö”Ïf$™êÍðÂ…„;?ÔZ¦`Çêp:¶õô¬öz†_Â*Ž CÝéÚT»ô‹Yám./cjl3½x†"¬Ñ&oåˆÀ*kú4¨J(%¦Ín螇ªÕ=Ùòä`Êǧ<hüŒ; ñÚ‰÷KÐø™SîS*"‹+çÖ7€FSÚqøy„ɽ-‰×Uv"…˜AG.\Óñb˜eGʲ©Š@B€“„“׊`Qg°(§cZb˜Û†1໌áôœç)Š îg*U»þ¯_§©ó{~¶Õ_™—ñ‘‘Â…mÖ;JŽ!C#•·ä„ƒBi´qòöÏ1‰w›4ÈOhˆ’»ÀÏjj™üæÙêðnh- Ðú¿È Š*…·)„‰…—NS8ð2ɶòc4ÃfÌØC éšM€íB=M+Îv =NÓ¹ùèÀó¸8ÿ1E0î›þ²·ú×{j¬" ÓìôíÁ¤ccf½FÄ.n ”Ö§(r’zô²Òè U!:ªx¼é÷»þQl¼44ц¤™®‚ü7ovûMÚ4½Âw: /ÅÛÕ«Ô %;?†)°žç_Eß$«‡>LilEAh9• ¯‹éqº°úôîClþô­ß$óaVúCüÌÿ‚Œ;îÇɶYþþfÜïê8Þtù(Ö«”ö…ö±!ó&†bCÇQqdc×'‘è1Vî¼Ïð“ØÑˆ„âjÑòj}žàÚ[±•7¬ˆ£Ã›Â(v͛ꕦãÆeS}XÃ4$ õ±K/Ü¢ÛtVj+2œ¡®§ µ Uº,g[‘ˆÅ_úá6UÕdÎD3|,›Ê»_ûv +âî›'cë´M®Æ2µWÄ9ÜÙò‘Ï ôèj‚2Å`7kòžKƒf2–úé¬òĽecðq¯ÈZůªG0zÕÐãíxè,7!?PXR“¾ç\Hü‰ðÙ?Ýü/åv,2endstream endobj 278 0 obj << /Filter /FlateDecode /Length 3453 >> stream xœí\K“ܶ¾ïÝ·&®0Ž–!ž$Ë+¥<\Ž“Ø›²Ë’Ô wE{fg=¤^¿:!@68Äì®eÉ–£ÒAF?¾þº)û‡EžñEnÿø¿WÛ“|qqòà ǧ ÿ×j»¸vò‡/…\p•IeÄâìüÄ-á‹B,мÌr¥gÛ“‡LejyÊóªÊªŠ=xYo—9¼,užìjy ©ÊÒh¶i–ã [>>ûÌž¡œg•Öx†7ª\œ}~röÑCö7ܪ€}›}³7•ö±ÁÇÇÃÜã3û„Ì Û6~¾Ýg·<ÅÙº`k¿Ò(Övaó’unr•sÎaºQ©Š½¸ôSTÁÚK¿TV¯úv7¼Sì|·7+¢›IžÚ€ÏÖ ´ÞÉ*Êö» ƒ+2˜U‘Ì´‘2l´ 7RöF£Z6]¶<-d*(ƒf܈j½­©Vp ûÓÉúýn³iÖþVZÚÌÝŽ«2+¸B=ùȨ*aʹKð"S\Taþù³å0‘£˜Sî8v^bñL©bq î©”án—çîÐ ­Y[ƒ^*ƒ× öÇͬyd™™\yZjÈT lÝ€—FšÈn çq#ªbœK_’ßcÄX¸Ë¬÷XìlÁù»,:i“t—È žÐH:_"¸”â œ=† PÎ~¼ÊëwóA 39†ï:±çÉK=£ƒM2n²ÛAC€t°·. ]] e•I «úÒÂ{eÝŪóU©0@#6ë‘è,dãlHoýÎÿ†(yB[wMP§° …y öÙu}³·‚–¥°Á{‚ߨBCïÃÁ‚ÑhÛ7k2jÁ Ÿc攺ðÞ²”™„Pr~¬ ´ÔwÏ!˾»²rjB”ÑAf’Ù+šæèë& ´Äà'“‰Ööm×·«€V‡É¹`_-ãÕž‚âL­½ `ÑYÑBLâÓú¿NÆH7¤áÀ®Æ)‘.wõj‰ Zì©ßQ öˆñüÑ#šÃK;Žð‹¦ÉÆÔ2ò¦xƒ¬Cè9|ŠCo.܆²Òg{põ³ï %»GκªrÖ½·<Õð /à×Ñž)ô±ÌD‹ñÞÁ­Õ¼ÃSYºô8‹ örC$}ŸLxQ¨¶Î.½øR±ßÒIx-È!Ú\{-£2{ ´oâ,Æ@ètÄ7ý4Úü®'ÝÖýnï5Pj¯£yÓ¤~Oö\õƒÞ€Q<§\Y’=¼¾o¶Wa@Ù–p‡Eà{íÖ#…©"4è}P8ÇYùPç PŒO2VWo¯H¬o&÷”6Pzûw‰¡=Ñ>.Á¢e›ð¦BRŽô•K¸"‚T;¦Þ°î) ÌgE!ü87rƒËk|DæP ÉëÈ[Â|®°ÎÆiÝr!Ë E§õÔõ®D{EPoÔŒAÎê?©Øg 5õ™¶Û]ú5krýxÜ¡î‚ÊÀ¸<ÍÙ´î,à@_k¨ äÄð^P1T:`­§æ¾–’Ê%<• P±ÎÂ]D`pŽ‹«áa½¯¡Ô‹{;*19ˆD-‡úkeu¥ r´7‰†Â6«ŠœÛÉ–ºebghÖçªÜ®‘yÎ+5›º³*/«r­‰“Ƥ†Š%„Â.—|€ ô(¢¥3ÚŠïÇI(bm½êŒi¶CÒ€õ @ ÆSΉÄÚ¦Jo òX ÃÆeÅ^§´6Ø;¦r9wš›œH1ËèÊ×. ­JŠI\ÿÜ{c´ŽËs¬C'Þ‰œKZ’âÇœ ˜¢m`D/®ÚߨZûµ>µ=¯Ê•”–öáS¬âü6Љ\žÖ– lkÕ'Z\C‘ëÈ…Æä)À‰ÞÌ&^Ð?I¼Çi¸…p¼$ /@@%Q<|,µf ôdÙUšŒçzhPX2í2õÖ®Ø@¼yiEZX¢µ¥î¼iºqÚ ºb,€úÓ ¢JÅ3ðø >ßm6;4gzá(Ÿu±¸@Eà{–wí–îæ•ŸnxĵÂüâârÜf=âñyq˜@š%ð’%† Jn¬}ö8Ï G<§€lÁ½FNŒ<ßäSY!ß(¶¬áÐ`Q橦-;„šÔ÷Hk˜D 8ÄS7Ñý'TE4Ò&Cx„!°õûrÊ3wo!\ Ph#üãiuuMg™FXÂÔ,H þÕn6´¸ïÁ¤—ˆ4ÄÜUí´úq—ƒ¸BÏb5ˆ›Çâ:bf3R‰y ÷dݶÞl¼º‹ 2é$aîã^”kÀ¼Øh(|aw†d7Ô C=}àÄÓb¨pÈóhö–¡×Q²]À¶ Œ£-‘Uüy¨rš÷5ÛÀèÛzƒgÓ{Ý×þv@^Î÷»­—Ä!íƒÀhCSFfÒKª ú±"=äÙ‰’€n±ÈG0¬wÄ/†4ŸŒ~”v½‚…,”‰WV98…Hö # ù1mìéà”ž3+ÛÁ×– ÛŒ‘l{ºuÔ¾Œ7°a  nÀ_é ë­ NÀž(õ›¹û¡RO©R*ÑkßïZÝG7wo~GßLî7¹Ô·ï䥾\ê€GÛȨ‚ ¿ _±ŒR†½ÀW…Á*`Ešôýbûu !>TWvÊøkã«|û{‚Žn™<øŠé¤ÂtfÛ6À”L“Ä9÷ëe J¯FžÑµTpc?6øiÐûœêè^ˆÜ·çü,zð¸¹Ë&^XÅ.špµ½­*ãMDÆÖ„d5{ûQ³2ôŸÆÌx Îø `£ªÛñ§Í÷yî¸wk%î ö¤âË=¿h}²Ú¦\j/Öž‡…Såw—ÑWÙžì&ÙÒ¶ŸvþÂzHó”E&ª¡mô$ Ñ7¼ˆŽí’ÓîÑÁ‡ÑÞQé–þHÔß<>¼þ›‡˜¶~ñîè#"}c°ä)ר÷º•Qïa' ËPc?rÙË„EÌÝ1`Òç/âB/r¿§ãGÒÈÅ¢I»›8Lx:~{xÅUr°Onü2@#Ÿ˜:ÝB¿“TJ”Ù½cŽt³£n¸æˆçÒÄÈ‹?¢sÃýã¯ôMDÿ¤ƒ¯ç6§fÃþDŸ§óõµø¡÷ؽD|×»£WE.9…Ç„ª²]}®SÀYLÜ B“ØîÑfÅAÄ;R ,“æœIôïžù›± ¿Öh\75Z´™9‚óCª?ÎÎŽ[ê_IKý‡¾H&³Y³ÁÆ¿(³a‰\cÏ’šž¢Õ¯ØÁùM½mˆ:æíDE“Ê×ðö?Ó7oÆõáîo#ç<§Ï#^²OT ‡¼ÝáRz§MÒ†?!5ÂÒ)}þÉM—§m¸ºEúâ~’üRj9žþÞC„ëQà9/2{:çñѹøQKM¨ælGvs–Ô¹N^éáÌrgšÇc 17iÐál34þ8–N?¹¢éàñâ®)âoò7„ž<¦Š¦EžG·¢¨¿âs,vç‰O2v%|ñµ µŸ\m¿Ôäð6JÚ·”HA­xŸÆßÙ4~> stream xœí[Ko7¾ëÞû^¬Òx³|í’) ‚E“¶©Š\T=¥–åHJÓö×—Ü—f(Îz=¬¤†Ò,3ü¾™!9Z¿Ò„E©û«>Gó^½é½ï±âiT}ŒæÑ³AïñkžGŒ%F) ¦½r‹reF$ʘh0ïÇ¿ôÏÒ$•\k™ÇÃJ¹äñ¶\Cá 3(\AáMÿL1™¤*‹¿u_U’ ×%µF±LpÜû)Òª¿dXó (Œ+e¾y (Œ °‚ \ ¾ïÙ©¤ÌX4ø¡7xx?„}B”¾ƒ-¯¡ð#~ MP %´ b©"Lg"‹×°åm=¹·ºN«ã>gPxä°G™2“xÚ oxMÍëï1”x7[¸SŸóT‰X¡ÉúiíLýD2õ+^AáÅ´Ù‰OŠ6 UÆ´–4 é ¶Â×¥¹Ù×? ÙaT7"ø9g‹A g ´OÉŠÔø[Ùd äõÁl± é.˜b¤6_¨1“ë8 /ù¸¨† ìÔWcÕÚi#|³Ù çㄉr3¢+ Y Pð;„OV ÿ$íñÜŽPú…ì w‘×î“Hf²lMfãŸIžaî°œçÊàç(Ün™Ù8¹ØûÌvú™¶ {rPã9ˆwâC\;Ná+èöôq+®J~%i¬ØWº‡†-¶âÇM¬q^Fý WpâÉ–‘ªÀš“Fš"Äs%5f4o7± ñç¤&–œޚo¬õ€£!'ùCšãëþGÒÞë ÕÛeH»*‹¥á™ŽÕ NËS8²®&Þwj)„ {°(`“?]9¸´6¤ŸnAsUéçE²¨ÉE]¦uzÂÇU‡׉6L×8ý €§eH§oØ•GévBØPr,>îæ!éÍ­æ$6Ò-kW¹¯v ¨Ïï}Œúá^Ñhf/îš-¶=´ƒ_À•ñÅÄï÷{Éq÷’c]DrR@Vsr›ùB‚ì¾.s4¤Â[Ê^‹Ì#®)2#ƒ·v‘ûßVvõõÎW“Óªky;Ey–9ÜN ÌIðvÐl–]«ìxjTÀ× åñ»‡” -D¶ Èc°@¢ø‘jNÞ« „h°ædsÙjN!;WP7Þnñ^ªN’THßn¹_uúÿ”šø§–šê;ñFm`š’Ku³ù/o‚z—B(#§•JÌ.Cs)o.¤ý_ÿð–ðe^å5<(2žl@¥i›TêEÒ®¿ÖÞ寚ø§P ý¢ÞÒâÇKi+,4årdo7u$nŸ$áî·¨‡.˜5ô¨[ÒÚ•¡àŸ@ -L¶ÒCiéX»7†4-Dävá¸D’¥J,Ð?>ŒHEA·+‘ŒÔ‚‰ ]¶ÅÓÕµ õÐï“.ÒÓ÷J}~Îér˜)ï˜HäH4CèÌ­ÉÅïH$#…}&PšHËIœü×’¼ê€ºcNQ Uè@·@pÑÞ§mÅýcpšÓ÷kÿ>ë³Sâ”Þ9Ðþˆr‹8§­¥¶]8¥oˆx¦³–=rDæwL$Ö ¡ž`ŽùîÜiR8X<"‚´¢èBhÔÜéS⮥PF&V‚xï‡ÔàQø°§Ý-?ÕDšS"²Fˆß6 —rºôÖ\ÊëwÅŠWö»½áŠ^x„i]U*JB¨Un.Cd)¾;X­Åým~¬‘=8*QIQIê)}q ëÒ(e+rL³ÖuøWTjE¿My)¡£ÙÞ™°y­Â/ xçZD8ýŽzÁmSgP@eÇIšzVT°¤Ô ;Üv=WÝzÚ_5ô$]kБе·}t¿æ þk'Ïaš×_õ]çܘx±ž¬íB«#‹ßnúvˆq¿7XÊ>N³x]¶g&3nÅõã—Ï_>wsh;‡…îªèdRÆX<,'W›A£f”±¹µy¼´¬ðÌŽNµí2Þ4|S-ÁØÕz¸\¯jñÇYeYѳ\¿hýZ'’gQ Æ½óø™ƒË¤©ÊMÕÿ#,O„_uþÚuÎÒTè,4uñ5Õuïë­V"'¦æZðº·uÁr;{õŠt©¦ÌQíßC,Ë4‘†Õs/¾’…Ò¿ÆàùªFUÅ‹ié )³›ÇÚqâ\@ A\Û§ÂÄæx¸²ÎÓwvœ‰LYÍ2:k¢Ú0,)έC©~_Þ•¦,þ»ôÛ‚ìÙ|¸ž-l¸‰T&&Ël¢ª|É9äl=^º¶ÌñpÜ´¼ƒË\­çÖáÜì’·ñ“].Î.Ò÷áTÙf½q5ù° T‹¯ ÏÎK—.Ëù¥3µœLI8Ùå°ðy×Éò×Q®_±øŸ€RÁ5P6U˵0@#&Ó!\ïåº4B¬Á0°« ¹«”À\£HhuWÍ2 ܵÍÿθHKqd ²ã¤v£b‘õïz/½ŸíßÒéŸendstream endobj 280 0 obj << /Filter /FlateDecode /Length 3205 >> stream xœµZÍoݸ¿û¾§îÁ(öÀ׿©â—DMÝ"-Zì¢mò sPžG©ŸåHr¶Ù¿¾3$% )ÑyÆbქápø›Oõñ2ÏøeŽþÿñt‘_Þ\|¼àöé¥ÿw<]~w¸øÝKU^ržUZ‹Ëû 7…_–â²ÌM–+}y8]¼f|·Ï3]U¦Ô,ÿòï7‡¿k¡)kQf¹.ûá¾ÝåÀ½¬*ö`UQ±þn~úU{·ÛË\eU¡Xß=Ì/îòëùáíöJ€¼\²ÃûùqCˆŸ!;“ÁÓñýò´Á§æ ö5‘cýâÆÌ‹Û7Ža•sÎayG£KÖ½³|ØPŸîâÛ–’ßxòJ°w}wZF+y»ßí®J™‚uÃØôm×;zôØN~gª…aÇfÀÝqxÂaÂÈ+Ã>íDøIÖô;§%©Jö^'{®2¥à‡UÍõXåy^?)4ž™¼4“"Ÿ£¨ôΙˆ¡Ès [XýYl‰¬€Pó‰ù—o7nÈjNíbOˆ>×  ÞíÑbT冽G T§YiÄNä¬{»<šþÓNKœ³zl»;?]–  ¢÷»¢,ÁJÆÁóÊKÖÎô°D½-EsB;€°Pa=>¥÷§¬«{/%@ÏÆzÇa UJvk5Y  ¹m›k2FâK=9Œ“¶±†²×ãs”Ãø$`‰4[_ãªP®õ||Ñ»šñjg³Ú$û–Ö8VC6šI˜  °àdÁKÄ êá)„Ź䯻*„m­JtÕaˆªûÆ`çÒà¦hh¹’’ùàeML ÿZ¾P í©½­§í™ @ë›ýÕ®¦ùÓi‘™Ã½Ì´Ž3ÞwÍ»qU¢²ö÷5ÑÝ‚qK’­9@kJ[x£ôƒìpAm9ÒàÙ¸‚=b:Õ}ûS3¸ì½‘ج «°—lNŒ×”–S1Þx¤!Œ Jdè@ÒA€t™œS¦(”`¦b¥†Š—Îlï#–E™p$öÖ‡ÆölC fè?l`ì¶7b>â ÒâË&1K²E™û0»=ϱŒ—³(žno œ([oÎp­$f±e“Öœ˜Ç‰ž ñÖ ùjã -¨òäÂ[æ RôM°§"iÕe*Mwr©ðy•²ÚÙŒh µTI©’®ÌAœy8zƒ‹'C%u¬"6ÁÑÑô ž$J,w¦I‰ pÔ9à¨H§ ËIïÂDèn‚‡SGô˜óoÊ䛹±Á #‘É­óÕ ž$*ÎÁ!?ùB•fq$[~é 1I2T Hâ˜ôDHÊä‚e¤J¶gË'CÂ)$:¹Z=q7!‰}r‚Dœ'×£:HÌ‘³·˜spˆíxÁ!È*i‰Íz ¾lUrº>®jÆ¡z2"5ÒÑSG |9µ¨'GÏ´·¦­ÎÌ8Äj³õ‘:”_¬n“k"µ² (näxôÂv§LB+d{AÚ‰ZFØX „— -› üƒýÐ]Äv×UÁ>mÏÄßDÖÇcëzn­æn'oˆGO•OÝwæ¬Çzó+DÆ =Ÿ&^6Çú;?FØvGÜ1ÒvDO³p@TЫ`æä´t‚ÈIoJ”“Ò.Ái…„çÜÝÛ½›h¤o¤:Go¯*Åd¦¶çlŠ®ã«ÕÍV€Ð™^šÇÁ!øŒ¾vН¦éaS↶wšql¼ÀyÅ^sþ °ðü)h/ -½ßñ߸ì¥2™ÖÑ-Ãiï Ñg!U¾jÐcïJì}d•[õn4ëÊ”Ó×ÿ‚ XÈmä+äWT å¥Cé¥Ù—ƒþTq§ü˜v/ ÿaa}AîaxeÞÍyÀƒ4à…2ßû6ˆdms¾»Ó¸SŠ/RÌ÷‘2@,ÉœŠ„$j47¢&úËñïþöõÍM\ÿk$Ø)ä1 –öç¿ëJBkЫéÅkiæ{3ð„X@r§úAßãn^?ƒ áC³/IôªfuqJdaVe JF±­1‡3¼IçJΠÏÐ…VïØáÃ{?D ʉL6i|eK¢ñ4¼Wô…ŽZÞôtvz ‹ˆMt®¶ª,*TBï¤Pª1>o«Bž]±e¡¬fE‘6 ѦÆY˜ëö…†x ó¸ÁÊÜöøï ˜û:ŒÛ¥w)æöÃÑâIÏÎ#eG !0õ",‚)/ÿŠçÇ¿Uš+“£ð:¡oÖ‹ôë*¢¢rÊ5åÆ2D§¯<à•B%U;pnh ÑwÚñ£‘:¤5ë¤ÓîñÓ¦qØ+”“â³*æã›3B™–¡É×EŒ[vçîY2¸J1;::ÌÓa D]3Dc,ÃV)Ó¢(2+¦/ø=”ûÙw^¢¾Ó—1¾'Í–bI¡c(óòªVmÊ'”'"ÿÐWWpå`˜…=,«&æM®qU®Ï’M ):…2²:Z»:9-95Êð‡ñ“0ü9‚ŽêwÇÙKQ + }²™‹ª”ªœLãDÇØGžEŸê†#Ú¶Ö¦×fÒ,)‡á´{¼OdÙåe ÿ¾ðV(sÅóXgþ Öß&ŽXKa&y­–kmŠÄLU¨µe¨”Îé.8È~{{ê§ß}«'%Q¶=M)ÑUëªLU4sÅ ÌÓû‹ gù™E¹sYˆS…ü< Á#¡Ì_áåÉGE/gâàY’\Šùò+ÜJ¾x(èK‡?ù|yj–Èdd¶6*>Q=~DÝ0—bFY<â(¶'ǽÛ7ÃâÁ*‚üúø–ûÂEª«¶Û¶Ñ'Æv.n§8R&È1³Å_HÈwm-^[…¡ÂYÑš;bô z‚l²×76é]åR-YlÝf5uÐPH¡‰ÂwâzÓÛSkSÍ\ŠÅ”qiþÞ|·^ê$û{;¶jZË륰GŠž£Ö$¤¾)a~ØœÒç½z«÷”KÚhiBVÿŠc›ý+þåuúbE²QÊŽj-vTjuµÚ¶"ñ`ÚÁÔ¡Ív½K‹t´™B:Î`˜âòRí®m•Q‰Tˆ–ÁF–’Ûkœû¾¾xº0C¥l i@z³U#£SëTv‹3Žfy3½†Zµ9Q}OóÞñâ®ý _#šÅñ2ª×P§Õ×,yz>L³äƒþp²;æøRÙ®_C™ƒ]þFS-¨-z÷ÎѧÙ9ÞùV“Å€Œ´‰ëO¯5êv劋s£×«QµÆF[©vgC;ê ™|OA«|K™<Óñœ£ xè+oKŽCà{@CPË€¶å¢¿“å2ªõ™¬jÚH¡ª’Ü•j³J¦Ú\S¬VT)1½âãþîx·®ø zw‚ùð·àÊJM%R¢ííÊí ìëv_ÅÙ2¢7TlI’Æ¥D¢H»7z8}4ù¬ê4:‡.ô œ¶9]¨ŽnP[Õ ©B–2]UáæÌ‚Mœ¤‚U@}{¾ñÎ/uAºP·¹KÏ-N°à²_(78aÎ;êû¦ðsÀió ª,Ó´M²Ý¯L27×Ú"µøN[5v­MÖ¼íSüäIüÔÇxv˜¸Êj˺PX›ÅÑêÜs H±¼À瞣·Å®½õ­ŽVË݈9O¹ÌÎòݸÃâB² i4º]Õ q ?…ŸÓ–«Ëõå´‰¬.UÄCH „l¦ºS¬kÖ¸ÊÐCÿä4ñ¸Œ*?XÐp‹7ýS.ä²Ô!º£Cω;ƒÊîKmá܇à)+ðBüÍ,˜{|l‡•&€ˆò:„,¥F³Ñ Um¿Ôw÷¾bå]›hŒBØ?=6ØÙÒãêAÃh¸¤;×n°ë-:WsÜ@:ƒ.?#!/ ½Ž2>Ô6Õ£s½¿;ÞsÜ!®^¹Ÿ2|X…"8Iîv¸š~M¸…—þ%¶<'Mº)½` ZKãÙ XO]¼ì¹Ô'±Ú8½Øézµ£²Ø¬(­’äe$*“¸LJn+d‹‡L£ˆ¥û_ö^»þ¹ûÍuN‰¥UX+èÿR.K_›} 2ýFq{ØË>.O:ÛréÝSÿΓÿ;Eס•YÅëÍð£ØGÔe;¸Z“3U!£°K`ð;ë¨ßY¹ÔY\œ‰L´·é圿r'V±ë}Ï`!ç´C`1g¶jóó¶>žÝ›sDâ$û{Ð =$÷¤IŒQÍNR‡x'¯Áùk\8OnÅë6íÊÌÜ–SšˆQøÉ× ‡ªë†j>ªúF…ž¦ÿ´&ûg°àP ‰Ñ-lÐÛ«$5dµ^W#Å9”Eg38L´ÜÚÆ[l´…¬Eu5u†qùÉÊ t iï?ØìE^Ë/a~WD³8Ï)·4å´ä0¢Ô×ç{&~þ6 Ó»%Öj‹v7¢ëÈF‡½A ™T©®ªR¯V«%ŠƒÁ Ñ¡03ÉE¬Ë`KóÄÔÇùùú0©*dÄ¿«‘‡[9óÇVü)¤g#'¥˜zxMáÖ9©âAùW}×8h!Öñn}·Ke¾0Ïð¥Ýâ@ºÉÐP.Ñ’UH[£ÖÇd¬ÔDÜ׉ÿòiXÞû@ÄçBþ„h`ÀÓ:ŠèÏ?Þø¬´†Râé3_Z¼(77"í¤‹}˨^ØÎe±NfNØ‚ŠŒ¨ˆSЋ䱷G{ûÂû7O  !~†§†ãà4L¥8´¿p° g«Uò¯öd}iÜÍâ3ÂÊüÔ‹Ep“˜'ƒKì o° |Qd³ÖQ!©&H£¬Ú•¼^¼fIäÒµK¢^ë9! =êq‰g‚³B|–zp:4ºypDëûÐM=¸C sT¼oaæÁ\‘Ÿdh+ý¿XVÝè‹©ƒÍÖž&';¨›AcS$Aü†•S âŸÔ¯b¡endstream endobj 282 0 obj << /Filter /FlateDecode /Length 3760 >> stream xœÍ[KÜÆ>ä¶'ûàSrÀI4 ûÅî6¬¶! d‘ÖpÉj†»K{vgÍ¡´QþtþBªª›d5‡Ü]ÛAè i²»ººž_UsZ¹Xø/þ¿½>+V—g? zºŠÿm¯W_œŸýé…´+!roŒ\_œ…%beåÊ./´Y_Ÿ½Ê^­7Œ¤sÚf"”Õ2û~½1Bç…ô™Ÿ›DÉyWª2s‹kjŠ ¾?ÿ+òm8ß²Ì `õùÙù^eŸ¯q®õ>Ûwu{3Œª®y·†™Þˆ¬Þ¿_;Zo³'ë@R%¢°*WV4Îw €;dÀ…’2LÉØÜÛBà\Ÿû•ΕòE¦„ÓaOí#»Þ® L·%N×¹WÞé•ÌB„%¿Á%¾(Œõs'tðN»ÚØ\üA‹¶ÕÍz£4N³Ù›õOW:Õñ©³YýÏ »Ò—>ëÚjÛÕ»ø¶TÙE{X‹¼(Jk³k|,quWëa Ñ’´´>>Á[dÕÍ8…|;>=†àTÆeÝ¡§î²ëêGÒƒ¦§qS<§Ï zþl½AÙK6ãeœQJÃ~û–½Úƒª7ãèÆƒä„« ˜«Ö&JpÌ ÄdM[o;fy4 “Ú†ˈÖöçè0ÿš¼P6ûŒ[ï&NÑ e<>?ðA7ó&øHÎß4‹k>Y|ÓòAÅ[¾O½Hív‘ë#ˆ¬ÜødGÛ å1=ã^ò`àG`1¯3ÎÜí"sw|°_¦À!`¼¢$sëj7þþ;v!¸œïŽ|ÙY—ÕÍåÕZZIÖgƒª€©JºÅ¨š2,ĈÂ÷³«¶g؃žöGŒ( v+4h yî߭ƘU;"-ûÒ"ÏûºŸ-1è]¯çÔ)„Ï¥î÷ûy>õ:PŒÒ ¨Y—gAbß­FG0üA-.Æw€ßk¦°$XVݸä$Š* /TvÃçÿûêɃƒ&»‘ò ¶s‡f[“°6Ò¹4CUx„ìp±>ÿó¡šhÔáÌTdé«#,ó.šK`xä(†”ôÀ äë -ªoM0MÿüéXß&ÕI’ÌÐj-€*n J%®g2á#kàú¸(½O•¶ í¯ø`6—÷Ç\HÆŸ*.ñïA:h©Ê”˜%Fh:›8gËÍÝc;rIú7|PŒÊx`Rr÷OºU ÏpâÞõ’ëMq C-H0(åØ×ÙávÂX÷hKš«˜Â¢aﲉU4¤{ Y˜hºÐûÛLcZÖ*/ÍPÊi&IÓ¨ÉQb¨é> pÚ•Å,m…5.qvÉŠƒ‡2J…’is ÿõ«ã !;B‰2Ô¾Gð«¼ói¬—!¶Ÿˆ˜ßÀ¥ë(I@+ÝHÂpÞì ›*ç”)™®óÂ Ë ObE)}nÊ2†ÿ2vB‡R'våFH‰¥eŸPéPjœd†Ò8¯th‘¤¤‹¿}iXy# Ê<›6õžU[ÇHÄ\õÀÑN6€,™7LÖéÜÞAzªTÏ`¶sÕAQµ3Ž’„[­‰w‘9ÑzÎæ´‘þ{V÷ÛYbÏÙï1"c:¨®ì4Q_ô5›èµ0v–ÈfÃÐ;‚ I¡Ó‚ý×}uèMBúÄš‡Ì?=$Žf½‹E©Jà8Ÿ²KRØ+-.”67Démô›Á&¡iôŽŒÉñ†>ˆgAåal¶í‘OAÖ²obSÜY¾Ž ñX†^¢°ø~êHlãë/¿þ²Í„|œè!a"ã2Þeç5ÈŽÏoûÓnTä 8éGNAð p:tcÙ‚} ³:¸k›cbíÆ¦E’+îÁ†¥Ÿ‡³ÝzJ²‡ËÝú&8㲿+(³ÏF4´o’u7Yz‚ïÂÞI÷;܃ÿžB9Œ0Ý5Y’ ¡÷‹oö‹çMðÊ“1}‚KÚ쌹pš_ÄÚ«Éž m–5#²/øós>x¶Èô¶{ðYðQ‘Œž˜ È•JÔéŠ'|(’—€–†$ÛSIçØyV¸"{±È²ZÐLb›I…1WóÛ<,N{Ê9ÿ8¡ÍÁeöñ7Jþê>}zæD›/¾]Ô-Dz’mv‹ÍÍ"7_}ÎGÏùà僬¡¾«¹pÛ7|ôtj2³ð=)œ§×G`†óº:6‡ÂŒûCº¢‹÷¶9nâl£)gÑD€Ã]°µ#ACilh¸ÑtOM‡}̪›Ã‘ŒòTIôs&©Iûz¼¨*%^U…­|zWÎ3%€ëÝÈÿc“`8€]<òÏû&(àëíª€ºK™;[²;x:¤›6S·{>ª¶|T'˜öü}û,…]½/Ð8 öÈAÚlaîñæá(qµ¨¾ãŒÆ‚¥ÊE±/›úìíÅ …$J$^°[&7©¿ç>5»çšàÞâ{Ápº_R?<ú[¹%Wù/x!ϪœqµÇîwÉ-õª;¹¯¼/?¯î°ëiÞ¯5b¿âߨ¶„ØL”ýo“tÖ6ÖewÇ~Bß©…HêòȨYÀ2Ͷš¡@WžÖávb{HëD0x³ÛÅÍ\ÆøÛÎ}Wט¢ dÂóŸ÷=AØ|¤ŒÍàxC^™™*$ðû5k%·¡C4}0á»8×,|!vR–H¼õ×Àm݆RÓˆ ¢iZQX"¹ŽZ¦ß¸²óPWÁy¿:ü".nQòÂæ0\ŽÜÅ÷§ßa…Çú¤t¡úß•÷H9ÌÐÂdRkrÛ=t#©2ûàs¦,Âþ¾ÿÐÌ«Ž•zT߇cͨ‡ž(í ðÓùƒu %ô»ñ–fÔV[c •?6¯b³ë:Z;ˆ ‹"©õ¤ õ.¹†tLTÝ`CĆ 6¿±-±XtÆéÓLÝXòJ/H?wÉuÅv˜jÔéxÑ1WÈG³ªFæËò>Uã̃š†3•þPêÓ·t ð!]¡Ò¥“ÎX?þMD;¾ß±˜º!ñ ½#}%cÉ®ÏS)„/L0J™^÷]O²ŒßÒXR !]ÇïSº)Ñ’]MÞ+ZKKðOfÜw•±zà·08j…ßg±vVªã›®îÏæNâlöøg,mì Ä[p^Û8Ja3[+Iý-´jü=Fœ1îa¬ÔhÔZ)J‰D¡è³!ºŸkmï,DŸü‡V‚>Õ¹e•zÛwÜhÊlü ŸáZ©'¾=´` ·á~¯œø·ê$÷^ö¤N¿ÄËè6ÞºÖq~”tÑï©m.¯EŽÌ.’äÜ’v$HPЗ£>wÎRQž)‡ü³ó³¿Á¿ÿ¢¡Šendstream endobj 283 0 obj << /Filter /FlateDecode /Length 3988 >> stream xœ­Z[ÜÈu~Ÿ÷õKŒ ±/a'šue•‘ °»ð&,¶ÆðC6T5Co÷´–liVÿ>çRE²É‘F,².§Îå;ß©êŸwU©vþKÿN7ÕîáæçEowé¿Ãi÷ÝÝÍoþìÜN©2:§wwïnxˆÚÕzWÃëzwwºùŸâ?ö·NÙ²ruñv[••Õ!غhRÃÔV=7L¬\(ÞsCo|q”cβq‘ Ùš-ô*  ï[Ùd£“ÜoŽùF6îdãϲñÙøÝšdF‡Ím7—T²ñ[Ù0k«([ü²9q³©¾Ù’_o ozrÊ¡‹Ç}¢€GšÚØ ð¯Q42ÌÁ‹‘Àª²ÇÁÆ4¢kPW+Ô•WDÓ.ÔÀ9®æ‹•Þ¼ ™•+É\t®.Íh«JcW6oAdÿ‚lƺXê¥ÚP8_š^Îøº.«ëmy¥Ko¥â¬‚W ÅR: É*è„³Æ –áee”~ɨÖÙb³µ÷誓/­¼YŒÊþöÑ„$ëlDSÇ€ä  !F|X‘<7¥.ôôh¦GK!sš]Ü«ò8g„=ÅÚÀîÐÊéÅ¥oÛÝcÛ=<^†]ût8xº´}{¿¿ûÛ•LœÏænµF›ÖË p Ê|‹Â+eJî¬/#˜/hö»(°¼TÛi|ãMÀæ@moV{VÞ¢Æ ¸¡è•ÞÈ^Nk ôEôÊof½¨k9W~3ë*0¾’½ÒÙ TQÏåÊof½Ò¾E/¡‰/óœÉF’ÓCùä:ÕþÖ[)tUÁ£ö”A±°Ür1–Æ^|3Eà–Ѫ ¶P7Ýq ¢yF|'„í…­wÆAxúˆ@¸ª2¯£»µàZ!î¼F,„H‡la,¤‡’Q„¿a$°AaÚð 9lnŽ cw–ðá%$È hN´ê% È#!sm¬÷wG7p9­ËZQŒôíÃîõ÷¯¿Ç(AÿÐ(ÝûöxÜÝíAåeUa8½HóÅïïöÿ"ô¿º¾Þ*c¢AVì?ì1o×¶Ž®è>ˆÖ>¶BWô…òP‰9ð^¬·¾kú÷Ü/Æâx†ðNý`†§ñÃýøÔšKúà£ÈÆ,„KŒ¡¸ŒÖ¹Ê´,QE„ ê+¥°V˜œ—×B1€‰¾ãç"Î3NŸÅ®h <0T E¼=átƒ%!>Ú‹÷Y*;Ÿ¹;µCþ¤óB,—XéuÓÿ´GŽÎ+àȸlûû˜z?Ð&*.ó MÒKªË¦u~,Þû©ð£G€³H#”[ai œèUjFJ<ñš@éÞNÖxZ>ŽFwA7kññ$ª¸€Ó!2€–jÐmß\>LƒzR õ¤ÙøÙ‡+{¤™;¶¤¯ hçôÞÀœCî¢p½=ö‚PÐÂ`‡\y\˜UEΙD<6÷B¥÷¢WÛ£:VcôE#U}Ÿ†›07édµnã¤õÛglЉ¶á@X˜Çh`‰Pu}d L{î|ï3§wwÈ·á%Ï@2¶üeDÒ|޲ìhòI~†…œÁ¸÷黳0Gî^¹Bê”×k “6‚Æ«árs‹ÑkpÿÓùrîŸx¬¢Ã1u!5ß\š2L”Z!ì±òh'¿z~€0îþ“S;DØ Îë*\ éŸðK¤Ðnz¾Pò¦Alý½|¼Í®uîÙB0´!P ’XžKÐÅÆir—6Foa_töâAÒâW$€X*CDmk'Ýù)-[š¹ÄÐedu=¤­‡0Ú‡Ådkì>ÛђVaéLýaø¯E±²-²¢™îæ°5,˜l¤ä©Œ*w˜ý«¢ýš º 4IœfBþé©? õ÷]siÑz4ÄJEžG8z&ýê9#£Œ¬ý¨å§R5W^ Ðj¼E]àjç§™9µŽNIü —±€zݧ^ÎK/êÏ죾ž[Q:ü8#|8÷€†*Ïs¸™FÍ`Ò”†`ëÙ6 9ͱrPÇl†L‚ÔjÇù–ÞÊh};}éŽÝ…”b§´vœæÙ”,x1ÛÑ(D·€'EEàÈa‘y?ÛÁy¦é¼R¥¥®›¾9µþ¨(HEók»´N…½Ogö$>§›z_aŸH?vL9L <”óÜ’¢°t“zL¾6'_Þ¥ÞLöcÎåÓÉ,­Åšz<†þ £EÇ œâÞsêK"§Ô»x…œ÷ªº²¶K#wèZ•#êÐå«”#³Œ˜áÞ— ìŒUІ3=/iùIJ?€‘?¥vNYšK^Î\…IdŠSÓ?H_iŽiªŠ3P¢•眠£D[qf^ă)ïãÌ&§e"¹zU*ˆÒäj)’G_ËkLêÕý"³÷U ÂUÁ!×kÇryþ°5ÌÝH"Þ2z—^þÑxüI ã¡ÿ0ÚáСҰFØr§°B°LWPùçùæÛÉ€³[%ðB gð* Å:¬æp(5FÔå`™Â 9…¯¥Ç·k:UÚ”¶ _¨SJ«ÁæÞ_ ’‹H(¦VP[±ïù(‹–!÷Åp†l"v´dDÞó¦ÏüŒÑ/c‰ö7ã,C‡§Ëc»ÄÒÛQŒ¾¹Z%Y·MsþS&ñœ ÍS’ÓÅ•E?î'ÃJ£¬š“ï>H88^Ø# JÐ_òW³‰CØŠD½H—œ3õ¨®ù·å*u*“†vÂY}%*)¦ 4ôš6¬*ëâõ¥gçæô>A¬?DHHøâÔ&L®õ,_J•wÃIlVlü¡½L=$þŒ¥GbÒÆŒ²AòûÛÀn1ÌÞ¯rÊJ•*ú¿‡S^;bGÌšÆrúïÆÍxä%d|<êóa €u6‡ ,4??Ál&0%®d¦ž$çØÙÙ¿ÆÃÇyð­—çãùáSšiQaöÇ!ÍK™«:ÛD>qg X°òw}Dóøœa«/`•“’(ïF÷Är¥¿tY@Ôè0­ñFŒ¹Ë3ÙYg'tX‚—#õ‘T4c+5N¬¢s®•̆ŸðP€ÑûYµD« ²ÏÓ9꥙mÏ™h¬³Å;(3ÇC̼ôU–°\¾ŸšŠâ¥i»áÒw"I» C…AxøÊd! ¼¹èuù0¤ÒTžA”xMˆ|’¦ççi³x~éÌt‘ ] V³füñ¥»KÙâYîtrøÕÔ\iµ¬X |5àeÿŽûð2Á§õŒçèRài ZöžÃkV#ˆQ"säTá3Z]D'á¶!»|þQËe.w>î"µ™—à»ÐaʲðH2l^Hpˆw}û³Œrérmâ×€€£ÐS‰sJ—ò«V¾tÑ/ô1±Á¸g°'ÌøL‘²çª)>EÁ‹ÇÌ•‹Ðd¸…•„Ž{Ÿ:àËÜïæ@†‰£æÕ–¹6³c1tñ4­ÿ‚k“¶Á՞܈y!óz†ìyÉ;Y ¶Ìa©â;=S]^×D®± Ê-› ŠªÕ¹’7¤siž“o„h õx4jð¦ûµ8rKð¢}kÊ+­!ç5ß4–mùj½ñ¦ôÑmçyHãÏrª8r‡oXzqó™èÖPÅ@¨Ñ=¤}ƒI½Æ–z)މ ó9ÿÇô«Â\L¦ÄÙN R!k×är2§D>j¥‚’C.:¼{_0Ú…õ %úÙ©$šóä„ü5ãó ™¡.ég˜P?ÛèÅ­ëò’R?]T~AtD¾ÚøˆæêÚñ1R>cèø^§s|i†vC<u=ëéRàcê`èv–l¯ÑDäs¹¸ªy¡R5G_®TYÓ9€L+Õ|PžÁÄ/Õ¥ OjjÂïÙ<ë¿8ŸŽÿ Å`3=J¬šlŒc‚cSÇå•Xú]ÑÜùÇû±6=¿ÚþcÃ,ÄÐå:þ~–nÒ Tù'@k1ñGlµ’'$d•¶9ŒG5éõ ¸šÈHoŽkw^PÔçëÕŸ]\ÐŤf55kÁAñm)rå±Î¡tªWkJBS‡†W²J†F^ ¦êNÝèÓÜ@–Y®ewÑ:A®¶E ©ÇŒ@þÐ7q ‘§€ tiŽaW&s¢eé¾Ù"'Ó¾Óó¯4ÒoÌùWu KfØßèRg¼ãlŽÇ®4 ¢5þênŒ¬rÄ Çß‹ýéæÿççÏendstream endobj 284 0 obj << /Filter /FlateDecode /Length 58336 >> stream xœœ½M¯=½rÝ7¿ŸâÁbíl¾VÕÀx–@@v²#‰%¿HòíÓUÅsºÖ¢/`‚pŸóûÉîÞ½šÝ\dñ?þñý´?¾þçÿÕ?þéûÇ¿ùÓüS úÇùŸõüû§ÿîYëÖ>¶VÿãoÿõŸ²HûCúò`ùãoÿñOÿüÏÿý_ÿÍjóó]òçÿð×óý|gWòç8 ™ýÏÿ>ÿö]úçÿ+ÿhºÇþó¿øó©Püñïëÿ¦þ…þñ/‚–à_>õÿã¿P&ÿøoþâ¿ü§ZõßåÓúÖ?ÿ«ö÷ýõë'mc]ÿá/óþ¯;<æ¿ÿ‹×ú]ÿú'?¿\Ãvþß¿Xšù§õ¿ú‹¿â_ý43Ö QWÿø—ÿ•ÍüûzÙÿÍsSüoûÏþ4ÖþHßÏú·ÿûs{þÛŸsΨߣòçÿçê¿üÝ¿¬ýÓ¿ªýgøÿñ?Ô¿þáï!Êý“8¢¿ù9¤¿yžs·<²ÿö¯ÿf|Už`üÅþî/þÌÿ®ÞsÿÔï¬ÙçsYáªü—îR¨8‹Ó]ú\”õ\”Ž÷â¿~ºÿ_Êü·ùæû+ú'¿PÿãßþéögÑØòYóÕFû|屺}¶ýÑÖ÷¹~ûÿô÷ü¯ü»?liúÇÿý<˜þÙóÿÿçó(ûŸþÔ¦é§Û{Žý±þÇ?&™{}Öÿ`3°ùÇî6½Á öiN–~Æþ!ã!Ïåû¨þõTÓžK7c´‚õýþ±¿bYçÏO_ù>µö2L¿'Ⱦb A{žßÆËœëxÞËž‹ öCĉôÏsbDú§7¬§æCô¹R³ÿ}ÝXj|¾p|úƶÆg5<ñ罈щÎO£zægÇ,ÁsŸíx„ÏÝ~‘Þñ¼žÿ&[¸”R[ûÓáö#£˜E5?OebŠ¥äÓÆÈg^d_ä¹]—Øs-O=úù^ä‘ ”ÒP ñš-Ê0 y4còH†Áb ³‚æO…çàz÷KtH¿È£g"ÏõÜ«¹hx®Úڮļ—ž7–öÜík¿ëNüìçqÕ,lû!Š…:–xÃàÑóò§¶²Ǹ`*ŸÖ°áኮgz!"Ïñ9L"©—Zj†¢‘¸¢ëåœ~ð@–?¡Ô£Á¶â©GäyY$b/裗Ž5oWôÚþ ýY‘‡Èóxî©Ä&¡èzÌŠ.÷yK½`©­ãz©m½”Rϳf`©G/¨»vôÄPãÍü9R5þq‘=á©ØB3õ‰×S4å¹ôW4’‰Ⱦb\ÒåÙÕãW©ÇóÔô\ÓåòôM¹:Ïoò]ðÛ<ÿÕǸpJ½Ý5Øð#¬t„ ë‘Œ4ÆÅL¸ûúŒ>°IÅ@‘ÏÞxl“ûÀ¾¼$2“uix½Whºþ&;ûÀR*ƒdcŸó%"Ü>Ä5].±dXÁÆžë!®è¢Ù–jãF…B\”cä"Ô>MtìZ2©-óÄa!èRÏøº kÌ8r˜…’zˆ &†âx^X¾ªK}%-ßý–“â‚®¤» ë›ãC:>âoµHðMèjXÍð^ …h(æ ò ×ÚA‡ûh†Á¤*f¾Õ–†C2@–÷‚D¾ŽÅ¯‘'’’!òˆŽpû]UÞïøÖñnZÉPÌêL„®OˆŽGý߈ЋíCÖ£Ç\ÔDÕ@ëj”ÉÓ –¯'êäy î|0ίëšÈpŲœûCÛzˆáÝ4CQD怳xÈÆNo¦jjÌ£ÔÚC:jmÕ¼×ð!2¹”QÍ#¾k©‘º.5ÖõLÙ”Ëã£-õ3Ó‰þ~‰:på œÚøi`±üsÁ vVhcžSùùLòÜëóyºõvþôÿ‚"©™Zíöް~J¦‰OÁZ‹„¦‘¸¦ë¡H| "1ªGCÓ¥© €§Dàr©Õ¦\êi[º6dÞ ÙØ’…žË•Y©–7ä£xúÀÚôJ­@ˆ!h¡åÚN*ÉTÈ¥\Îzõèýd¬âÏtÿÑߘåä¹ÛZû!rÅ<ï?@Ft€H\(µ­RÆ—r™ÑÖÖgH ÞÀ+”‚À(dEÿ‡Äµ2å÷±ö³>týèßwˆ¸V±CÅP$ú¿úkïܨD¢ÿ«õ¤V¬Í¥ä"¤umpOhH¹ F÷‡µ¼,z¿ÚRŠ¥^ ‹Þ‰\Äìoô~å–xȸȺˆË¹’r®5§b0Æ{?$Þû•[k§djL=#ñÞ¯–êÑûaŒ(Ç‘½’9˜lȾ$³gô~H:Šñ!Eô™LŒÈŠÞÉ šWô~Hð³wô~H\8µâ#œ÷†ˆ0 Ó”jäÕçÊÐÍ>Ÿ½ûùÈoLúE¢,-iôƒ¢Ù–¢.c!êz ¡›ÝBÔåZÉ7:ÀRê!ñﱉFb”êi)kˆ™ø3PR0õÝl!˜zGà3K”ûÀ‡L:¶£ˆ1‡÷räRš¶èkë} ÆŠC¿©ç·æ‡LTøC¨|ˆ¢Â5åR~(M¹”{ø! ¿ø4åR¾ bø¥¦Ý£ëøÆC·h KÕ¡§‡( ÀèˆqÇV2q(RC.c8Ú¢“Gv2ÀxÀ¢Šg ìÔž1°SÆÓtÅÀNY9RûŽÂi(†Jù-µ½ „Ö7ƒ>„œ‡ã<„vT|œ¿^ I×_O¢D¢8 ¢]`ùŠÕÐ 4õ|åcSJÃ: †,]²Õ˜EõºYY}½¬˾i¾G÷äG²7—R²´–#;ï9?0»ÈEŒHЦÍC°éöÁ^'ýý Òß/E:©ù¸ûµ•]`=ü]`I½Ô˜‘]à[qÊ¥LN‹©d† ‘àD·}Lþ÷­g“‰ –J¹ÔC^ÑÖCN¹ÔK~¦Å¼·§›üâp“ewL~$>Ù ‰¢4É_ns7ù•ɼHL‹)Ç,!èsɥ紌YTOúüõÜ-g|•zŒÝ/Éä”P" :)ev¹üN[r—f›íѨL“¿^öve}ŽºÉÏHÕÔz:NúrsÖvXüPmAצMts2ðeî!»q)üYÆä^Ð]~|·1.Ö™1†N›ŸÈ@å»Í:w—_8ÄPçÏëWïPhGX å¼,¤ð‘¹/““ÿý¾Øiò×—ó4ùáVúÜnò+Ö£ô1èd]D³áÇàNŸB¦bãF#<;=þZÊ=~ør2.Bšqµ8¿Ô ÎF ;ü¨útø¡–pø!¦g/Xb:M]u²ÈâBÝÓô)è„N{|6…»$Ýýz'¥»O¿ÝÝoB_‚îïSÛ+1Ô>DQTs‡¤‘ô‹Lª'<þz±R1HLá¬G#4åÙɺˆp5&øsǤ"$îÿÀ3Ð-g`9¸¤£È楗‡ÈÀ_ÆhDt§Ë_ëq›5•>­y]zy²ßɇDLx/s£_Ýé'róv^éô×^'~"rê×øà;Lýµ—q£{"7úa.ô^)šòéüÁàŠÀï¡ôù¡Ú• êÝçoƒí+ƒ¤o,”ŠABƒ'éõÕþL¯J…×OD„ } úßñxR4H6Ž•¸Ù/u”#Í~8õ0û¡š0û‰Ul1ÊQêq³_!f§hJ=Ùøýèf?Ž¸Ù¯KnöãëfšýUiöSŒ¡ÔÜìÇŽg§j,ãRø)¸S4åY°G¬e@‚ªN«¾×¦Ñ;ÿ¬ÅDprOêŸ`|lúa‘E] [üØ¿¿¼á Xpá“Xøó;æ»ÝäßÕQs2.â¾à;¾ìD[³¸Ïÿzuûøü¯ß¼Ï1û"*Xʼ,N¡“˜òõë:q_°Ö“F?Öc0ËfKÎŽ)õ£ÿ×av°‡(LIÛÇç/Kè¥^i45Ô‰ ŽqŸ¿ÖÓij辌þýcô—ã ½áx׳H§Éœ\ÊWóÕ¶B2““cŒÉÄmŽz3ް¶žf%.¨f…ï]«Y1÷ c”ÈÆ9œªvÇ Îú[¥×_¯DzýHfc²/¢Ø¶Ò,N'ý"ó"Òà.Ušò¶ÝÿÚôNÆf‚¿œà옭ߜø¤_dÂ\'ûªG‰œÙ1@L2ÛÇîG"1EÒiâ—“q×5–ÒQ§1lÍé15& ÿ2a§á_¯|þåÇI¿¿þ~î÷O,”¢©Ïp½ëá¤h˜a©«jÌ Yc̾bÔðòìœód௵cêW­&uƒÄˆ¸ßGóȆ#6¶œnýÒí¯“³d\ÀES+NÕÔË™_%æ¨bÖEëIßHÇšÓð'²7—2T–þ®—¥jÊ%uÃ_8F„c æ¦më¡ë†½M­ãh 7»ûýøˆ³Ô „¬ÕŽè !Ä`òõv»k ·š4ã͉N$+:B$šZ1—³tî÷—R"›Öµïôû‰,ìÝï78­M“Þ¶…bJ„Ðô/'{á¥HÉÔý4ølK«,¼ùÂê’dLºõ-ºA$ RwûáÖwÒ/2/"W=(iI·ŸÈØX*ƒD@âv?Ï ÆÉì\j —R"#g—zIZÒî/¿Ÿ\v„òMÑÔzR5µž’F¢Tó¢ŽPÒï‡+¶rö7ÄÈÀ+æ%”JÕÔR›–58YÁžP¾’ËJŒdOXÎ]²',g*¡kŒQ"9K¦¶¥4 ÚÉZX³Ò" ùV™KØýE±èØŒÖ5Hºý•¤Û_ž'Nƒ+Bƒo0OBÔà{OÒï/³‡œìÆD‰„áõô\Õdn&¾?àª>qÃæx:Y‚dž?ÔSd õª~Ÿþ’†?\ŸI…Np)¸á‘ŽÚsßêYôQ(iøÙ´ªOÒð‡sOÃÿ@p¢Ij¦–Z ëdº['Ûð·Z +nøO,¥™ã¥sþð[„ãİHˆÁ\Ørªc>æ¤?0(âV6Køý!‹CŒbܼ$0“ݰšFËÛ}øì ÃC1ÄÖ8FÀ‰—Ëô7ý7Æ š÷ædUïÀL‚÷üÁuwÒÁ¶u3:!f Ç(ŬLXQbM{“ãù#pï˜"á)2N|Nç;x*ÇóÇXDŠ“ž?’ ÓžœÈÀc>ž!¡"8êïd]ÄFkëéù#éK¥çdLó"Çô/5»ë¿8f9àD ñ‹Œ†EÂò‡ÿà ¸ã¿˜(5œŽ Ç¿Ij¦üâ#5SÛî™æåýÆ 4/ryþr<ÿÚÖ‡°’I~‡“.LÜïøu äxþbàÈHÑÔ˜ Æ,a"Â¥p¢ŒÓ¿žhŠ Îþr‚³¿d¤hjŒÄt–ZD–Œ‘‹ +]"ã"{0ñްþ8)šz5,ÌoŒ™Ù$‹Y…ÛÉÀ¶ÜöÇší_Žy6¬¤…ýd¢$fʦüAIÏþi ƒµ˜ ç_ÉÀÜMfc²QîúoŒ™Ñֳ̉2HjøøþE±Ç÷¯'‘¾­'MÌ"‘y‰Æ}ÿŽ¥vô…µõMm}G_ˆdƒù.Çø¯$$ã" &á8‰dg¿õJõ"S)3’“9˜ì‹è€Š-D]ÞŽó_ÆÈ"”ãü×{Òhö›¬” ’¹“u—L¹ÊÇù¯õ4ÊwædÇàËÄqþkÅÇÃ,Õtî×ÑM©¸ã40¡ç]ºþåÞz)ú¸þH”š™4LÒõÇÌwæD6ÛxŽ)$“šJß¿Ü+§Ê¼÷ûþø¾ë¾¿`¡M“ßœWc«‘ü |_­Ýö‡ÙfNÖED°”Rî&9¶QÃJÅ”ÃQšæg€Éºó1˜,¬Ø(5’׿:®ÿ[hóL9¦ù^pÓ°žÏ•q‚Ï%YPEÌ“©g¸rmC9Ã0ü‰(vnøCg†?E¬ÆW÷9‰OÁrUR.¥ûMÇ®¥Ðôo'J$,(•r©mi®‚"W=†¯Ù’zA2ð;/="8õMÒó'Òaùƒ“‰ïîù£ÌôË ¦`Þ߯-ÿAó}:|MÇ¿êùRûjì!¤ç4ü±¬·ûQbn÷£Ä4Å‚×581"G-åhfȹžÔ̰œCøý@MsÒqR‰>D¸Ž×jÌ‘A0“uœ%#Š#énõÃô'ó"8ÿˉç…(ãÝšsdjŒÆw$ ]c÷—±u·û7’´û‘ ˜#ædw&˜ìL,'É éXÛýÙÂ¥ =F·ûÆ»¿ÔsÜË×ûr»_™˜bÍ=ó7•˜žÙ‘^¿îØýů;~”òLŽá_K Jy&ÇñGb3)噓q‘uÌß$ÇóGÒ©­Eù›œ M{,ÿZMš—õÇIÝ”Ê6åtÓõÄ„þ$kð2üåþµaùб)Íÿ’4üë éó­9‘Í1®™Ú’e¶ “š2ÊöâDÁs×ËñwÒá’;YKÉEŒHËœg¿Çãd€ÒôËSdœhGÒIÕzÿ_×Îþr³¿(‚¹›Œ•ð '³]ô¸ýï£Ç퟊N0y““=¡ñ3E¦T³rFg©fEZ$Ó¸”\õØÄÆyŠŒ³ÿ}Øë1û‘IÛ»Ô#Ñ b̼b„UÌ‘©•¤Ó!kái¦Ó_®¨á=Ãzq‚Ù‘œ@¶O “¶”K)äVc²—‚‰¢z¼þuN<‘œl0À(˜äÚR,H0y“Ì÷éd_1Fm½”Rƒ¦~é±úë1§`êÕ™˜ìÌÎür2/‚ù{õ8ý•¤Ód ¼‹f~éÓ¥ üou§ÿ"˜õÚ fzÑtúË«šþ8ý¿¯€N0Ó‹^N¿ØÃ-$J/¶Nð;Ð Œ)8P†Œò¼húüDöâRV?ûÔm~øÊÓðù1ÖÂ:ätb+i”²BÓç/ßš>?Å(|ôéñùkL§Q' †;œHç#2rqqðùõøü5dÒ°Ž£¿žè¤îNöETñD-pw2.²—Âîúcô—¶ÒèG2–Ú™çå÷[Ö‰NŒ‘ø¬1!"ó"nŸ£¶4vj[iô×cf£ß‰R=–Žw‰IÙ Y\H°mÃL/:¾”éEË_~ˆãò—j¯ð+u¤fÊ¡¹Ë¿™lðÿœ(xr:zHú×!w0øÐΛ™È‰kúMD¤Çå/…ÒäÇDœÌއ7b ´Þ ;PÇÌ/%†M~'óŠÁ½\ô¸ü•¤bj[‹r¼èqùëÏ’Š©?ÝŽ•}EgîòüÁ7ìèËD‰—È@UÜ} ‰ ¼ÎKûêyÅÁ©1NHÓÇå¯m…êqù‘LKÆM~TÈ<šycæ—öKq²¹^®‰ƱøkFCõÇâ/ 7²ºuvZ«iò#X›‰ gj¦’Áš>.=œAëuõÇå/dÒHNFç\ëD.b(5wùQjîò žé¢õºz\þZÏqùK=éYÖ#ÜÜNžãÄðfw—`ÍB Ïœ`Â3=.= ž£S)á™›ÉÆîÊm~ö,:B$ý"kâYXv„@ ¦½¨ûüÆÄe]ÎýøüH\Öåùî>ÿªOó•ÊÀ t+&Æt‹ä_z(º¶’¿¿­÷õC¼ÄRŠ``©˜Úðˆ^cöEû¯ãñטÝ`mzr?xL~Œ1j+M~$³3qÅÔzR1õÚìÐt-•ŠA2/"‰w„õÜS1åÇ”èk¡ Q¼4úA$ý"ó"¥xlþ"¡e”ÃÐIÌø²H ñ%KÄì#˜·ž‡ÌÉÄ%ý^žãó—_Ë}~¿Û{ ]âŠö‘{‘âÝ`ùEwnr‰õx?X~›ª©1ÝçrÖ¦ºwƒ›!g$®çZ(}þÚP8– ïÿ}©ÆþÍd¡Övª¦Æ¬˜É‰¤£úŽÓ_¯ß ]×ÓJã²’T ï ‘¬‹¸jêåÙÑÖ‰ž°OLŽ¡˜Ý™(‘tú‘¸®kë=am+eS¯ªFOXIʦ^܃d)ÜÜéôWœœ¿!Çé/!ÇéG²'E©Iª¦±¤jÊñ§‰€Ñ_+N£¿t•ÇéG²ðYàN?LU4ÚI¿È„!˜ùnû¾Å£¿¼GHns‰¿ÔeÑŸ9³”Xü=(©˜òFõkH6íîéd\„Þn%·¸DBo·"ùv „> %ƒDñÓÍ~|+=f?’Õ™`²=f%FÉ^œ`²' »'w[ðíßÍ~|Õ/¿;ºÙï²Çì/¿é1ûkLx—DÆÄš¿;ºÝoU3îöãݯ©™Ò³#„×tÑë±ûËõ:~?’~‘Å@.bð~©©™2?“ÁfÏ­túk/“N?œQNA"\ˆºAÝÜ º×/†š’)pÝÜ úþêI¿È„Ñ™tû(µ­üê¨1 Mdák¡*¿:ºÙ/ДEXCÎä˜Bƒiõ×Ë­~˜®iõ×[ØR.XJàµÕ~ìÝÒé¯Ý~嘥ã]`é-v¸$âz.½v:ýD¶1Q|´ÁoŽØã¥Ó_¯²åü˜òcå€2\žI‚N£ M´ý(;¢)1ë38ä*ƒoF0|Ýt›_IÓæ'â} –¢Ÿ*SC$ºA$_ MøÅÑ­þ†$¼~"ƒÚÒÔ4&†jL³b,ºÁÚ–ñ‹£›ýpQ훪yë±4ûK)K³Ÿˆ\es,¡ò‹:õYêGPœ(ôyæ^?ôyN:ô^–f?Åì‹(‘‘½àï[‹u‚)ãˆ11"©$ì8K¿ŸˆR[‹æ½YþÃG¸(¶[XÏÆÌgê”;ÿ{s ¥Z…2Ú[šýpEå³ð‚ ŽÚ:°†¿‹ÒÊ>'cc½)$JõXȺÞKF#£N0“¡¥ãw—¥Cø¶Õ¾¹öiß\ dÁ;¨œÎé—öYk92Zb½ÝZšþD°347ýkê +‡Lx)u"0BâĈ æ±´ü,ø¨´tü볡Mê --"Ø:Á®Ð‰YÔ:qQc̺ˆ\ĨžL ÇŸBöä]H„†Qœ W„00 Qê íøýH°+´4ü+HÍÔBF]¡“ /¡N°+´ãùrLÿRÊMÿÍ1Ø:Á®Ðz£‘;¾?’yÅla¢Ts§Q'£3YÁQ'c^Öw…}Ф“=ðúŒè +‰9!Ðú Y#ÁQ;Æmkrg}Œÿz—lzìwI1bC²é;–5Ô¶vô…åqŒÿz}b" 4þk=Bã'‰dì8ÿå·<Î?\ÞgÇú¯Øik@›±ë%´5h“'³c[#ºBŒQ"©™Z*­ÿÚú¤ôö–Ö?Oì{ WlÑ~NÆEpŸ%óe æ‹Þé––Ö?ÅlåzpÇ ;Ö=¯K3Sh…Ÿ…xNŒˆÒ2w'¸%„ëc”ê1þ,<ÖyZM£uîNè³p®/.ôs€G³bºÌ«>·ý©ŽÆŸ… `Ѝ\ë§wš[ÿØó­TM­¸çôN Š˜5¸/tûOjÐ:w;î­xP's÷ŠkÒ¢X' ¥æî?JmÅ|™*ˆµbu’ 9­œìÁDñö?î¹ýWŠcÖÀ¶v̇.¹¢"”ùÌÒþ'âY@±”R=J™Ï,í8eY»ýoL0ó™¹ý?±£µî–ö?³ÑKû¿¬¦³ýäg&¤:³tÿËtq' ë"l·¬œs0\Eb¡_i:¼ =7Ê2±šNÙ°-ÌÿwB¾¹÷¿ tXôàdÂz$'Ò8Æ`?jKï¿VÖ™ŽoiýÁò¶­qpÒ/2;þ+Ö8 ‰÷¥TH._XÿPjçÖ×å÷Þ™½â½ývì| 1G2¥‰Eã¢Æ%¢±È¡–Òì Ë1+å¸w"W=†’©5[n]ÎËr h  !L¾,j7ÿ!å¡“‰¯hnþÃ;çñþËÓôxÿHpï&'k1Á†Û”û?à³UB1åZyQ”búþ@Â÷¯¿ÂC‡\e¤1±mOÚÂÉØXj¦¢D ÐRje Ðò;-~¿MóŸÈ¾ˆá¯›ÿøf(›6GrBá1ÿ1ƈe|±cþ#ÙøF'Bé!ì˜ÿõÆ ÍYƒKázw'6à5ZïnÇû¯moÇû/¥ôK9_ìxÿH&Þýš’Á…µC¦-ûÁ÷vOïŸb03†ïÿ=Ñãý—·(Í 0Ë×vJ”dÇüGbXh|üwç1‘‹‘‰;:À lj{òпÛÿ8¢9e¦–Z™ÅbpçO;þ%›ò8Ùñÿ‘íáÿÕ±uÞþÒIïXPP'û"JDs¬ȸȺˆ\õ@–SÃDI&Žø €‹(~Vø XUá¤_÷ɵ3 \¯3 ’F™Åœ`ê3'ë"ôMx¦ÔcîùMøž—å”,µ¯zè›ðL@Bf¦ ZäDP¡³€ž?1 ¨ƒ+b/&8ÎŽý_?ÓþGpE¸dŠõd¹ûeSµ”L-•’ÁÌêD‰Hæ3Ò7¶žjÍ’G¿˜¥dêÕQÚÓÖɺˆÞ€–KþÊc´äÏ΀WE–Û_€´/ý{ìÿß'}Q‡Z‚¬‹Hý& bŠ1 z‚Œ+ÒQª9$ó¾¦éõ•3¬ ²/b[øEdL¬yàëm1®Ç¨­‰€™Ù5?LÃ];ÀàˆU3½‘‹ØÂR²u˜ íÌ!Dk6ø‡„jˆôš&Ȫ/¢Aä"FD1Ë}ÈrrÈQ:¯P Ôª!2[7\úD1&gXsΠŽ1E’ºA2ÖÓò³bo Ÿ p÷ä€z/·žc=#1T¤O0ŒùY1ë":±ÔÄÏ 5꓌cHÙ9 ÈÂwÜ crÌZðäk V¿?`ó2'”‡Õæb‹ßƒh±+ -ÀÀfÃþG ›ŠØÆœ3ƒrÙc”ˆeNÃR*ýŒ™WŒ4&2°ûGGƒ á˜uø(|HCÓ#Hïp¤ÿOdã½ïþ?‘TLyæ¹ÿ?˜¬‹ÀèhêyÈ`M§ÿ_Ÿ1éÿ¿©3‚èÝ÷TLm}r_Øb€lÔûÿ¨¼žŠ©5/î Óÿ§RrÃÞ±oÌd¢HzÊc vù4£jâxÿ¿ïCA¤×ÿútú{Öý {3Ѥ`~_Õ‚@&ý ×7ˆÔ/Ä †5ï¿Ô|¼ÿRÏøâ Z_A’f~_eƒÀB‡ ó"û"Ö‘t|¹ ÛBµïAà{0ˆ)žûÀµïA [D=à:»÷¯Hf®}/¥Òû¯mMÌgD.bDV®}/G¸2[Di='ÌÔÖW®}/¥6&Ãy@ƒLã˜}¥¶Òû¯Ç#˜ ;ÈZø ʇ.!ÿù¡Ÿ<ÿÚ°f*Ðr±çŽ>Ä0vÁ`1€0A %2/ѸõߘlßÌ 35¦±¬gÃT Aæ#W=Ö±-š0dǬ‹ˆ`©_„AúE&Šo\’Àtš7Ÿ›ÿ(µ9q[ˆ ¢LŒÈÂm!‚ÀÚ÷ °ÛKH6® Ò/2/"“‰•U€HÍT‹à’¿ bðÈŠÛV%AæE/—~ð2cºL-b¹äȺˆ Y_8¶4ýÌ'½¾¸ßIØâ! 7…2Ç,쯎óÄ6’tþ‘Œ‹ÀL° ŠÒ[GFƒt”Õ82d —"Që¿ÈêXÿµTZÿH¨'\)™JbL"å™Ö?œÅbQ»õ¯Xjç,8 kr)©£®A¨'tëߘ Ãã¡ù2AtbÍ)$}ÖW4wþÀ6.sZb;ÀÀ÷χlŠ€WÅý…WO7üq0ç8þåeÙ‡yˆ!há}#ÁÏúÝr|çý”pËsŒ鑨°VÜy€çxþµæž<%&]ÿ3r“@ «s)iL ‡FÜöÇ!÷ý/²pÐå!Ú1æøþ@úE ·a­£D6îïdÔ„AÖàR 4ˆ•©HÛ¿V#˜Û0È¦Š…¿·âöîAúE`¿Ü 2±foÁ“¶­'m$Ëð'¥™2ý+_L¤_d^D‚ûÆ5 ouYXªÓŸ¼o$5ƒ!{3Q"·2\<·ý[½'Üö¿ ÙÆHÛ d+ ²é¬R2¥©•[Ú–B+4] ¥bêµX1³³hÚ]ÿO¼týëSQ6Îì ²„‰à0ŒHÎìÒ/2/²¯z”Z×ÜâœxÈÀáNÉÍ/k=ÊC¢¢9«µÔlŸ†c÷b˜4HÌ{%ã¶?Š1m"ݘ¸¨Ëï¥!™ò“jnù›gù! wó 2êþÐAjŠéŠõ­”†?è™äÃbFtƒµ™˜'SOp°œ5ƒÄèðgæ÷BŠIËŸˆn<À• ~K=)ŒY‰4&Ö±­ù°ƒŒ‹¬‹hG"¸vÞñ× ËŸJme¢D³Ükމ2o¾ð ¢LL±”…¨kÍaúÃYXî€ 1Š·Åî—õ˜-%ƒ1k•wÓÿ"F¤…¨Ë}˜¦?Å,«¢x€R5±&‘Ž}ÑC.€7˜±lž܆úuÃUŸ†?Å(\bÈìï†fÌÍd_D7¶¼0É}J³…I±ƒP?˜ž?ðüë{†÷ò}°ºçN ¥fJæž¿ÀcÝ=ìœ,§É”Ã=ô5Žç_cÒóGBazþDí'÷üÑw7Ë9`@&vNiú×,]ÿÓ¾ßô[oéú—RNÖäRcû~ÉéhßÔL­''ʼÇìdO&ZX<¤ÓÇ`K×ÿý(kiúS!¡[Âñ/רÉàÍŠ€Ž4¼þZÃ$WЉàÕ&§¿}S.HÜð®…Ṽ®?HÊ¥Æì˜ÓY/ÿAc l~dol=Íþ“f­YÒð.¥bÛK*%‰ NɬYIÐíÇìÿ};fÿû¦ä¶´2•ɾˆÁWxs³ÿ"ã" ÌC'r4û[kÑ Ö˜4û‘ìÁ¥Þ ››ýðæ¤_1è>ˆÀ§Ÿ£˜4û‘ èÛ1û1ßl››ý c&} :YXqAímý~h‹~ ¶ôù¡’U7<oüç›#™¯S*¦žM*¦¥ ì[:ýTKÝâ97À„×\'»3ÁWÆæF¿`Œá&/A`c¤ þXÏpWˆÞÜèˆéß4»,¬ù!:´ø,ÇÓS-H&¼°¶cô¿/JíýµT=×R7z ‚¯ŒNİæ¿*IµÔRÃgsBë6z  f¨¹Ö’6¹SŽÍD—2¼õÍ_­õAÁ?`3P¬d‡”‘ô‹à¸Ža@'pdl&kã%OÉT¢Ñ "é!ѤÙODAiéõ#€¿‚,”^OÉ 1ÚHÉ Áï@'¾èZZýå+«¥Õ¥‹z¤dʵG2ïY¸Õ?ꉎ;# Á¸Ñ¯L„ZÊ™1•Œ”t)5ò+ fŒü,!©˜2i,ÔÉÂÎÎmþ‹Ê#m~"ã"5”6?ÔœšA‚½ú®a`"¹¸ï}[HŸbPCañÃá*žÒ,N'sãÁ*¿2>ÄðÕ3=þúê9bj Xæ„^jÓå¯d~qß 8ÛÍÉ¤å7`©9õRÎâ!«3|ÍM—bz(ºü0îò+“uÅ(Þîòã7×LÅ”Ø]~ªyäK-Å/µtùáÜg~Y“ ìýg|µ™ScLü–œ©$°7ÒCÂ凳ةêrîáòãÍ/ƒØÂšS6H&^žPMm)TS«Õ\ßWÊhú‚¥Z%_°…ÉOÕ~"Í£ ô18nÊýž³cÊU_ßXè^bÖ7?ßšÝêßL6¶u¬þZOËïGñj¸À/Ⱥˆ|;»ÕŠ\©›ÚzÏ~³;Ç(êÏ­~ª'­þZÏÈ”*@d01"—nÜêW&°Ò=} ®ÅÊN«ŸÎüv‚Ö¥EM¬ÛЃ¦Ó_û€µÉtbTdgXšÜ%0Èž\JÁ÷hKqelÁu³”ÆPÒè‡ãÎ0~"›~’ï/½{ý›É¼È¾ˆá«ì1ûËß|A'‹êa·¿]nûqûÌÎd_DñA´dÞ º/ɤÛODPæéöW™ï‰‹bƒŒ:âmÊ‹D„¬Ü!éwž‰“³SœL¥B›aµ;“8U0&…{ãþÏA F'·àº¾ sRÈÆ±Dwù i.ëû8ÓÒå'@ƒÀzØ ³4Û6œÈ馋:Ø f‹¶´øË ¯–-õ ×{#=¤Ñ4N'ë%ȺäzyH.°ÖÜ3èï,5's3Í‘‚(^ ײ^P÷ù;sªcD˜‘‰)@ƒÌÎdw<æ™ó¾KÌÂ÷AzÍòa Al`[)™ZjCÐK9¶zyˆàV/AúEæE¶á-—ª©˜ªA2&“uØ)äÃ~ˆA>ìƒÇró¦òKXN`}côÒÆ˜åÓ/l @¸ˆ¡Ý忊ZsÌr—†Ë_E£=8é› Î}v‚KœÀ÷‡ Üø3È šË:½~ˆ9`éTó„Õ°¶PÁ2)™²r};„¬‹ÌÊ\†åh÷Ë ƒ.ûÎYœ@t`©”LyZ¸Ñ¯ø Kæõ-wŽàîHA œF?Ü^G2@pê³éÑNŒˆEOˆ6…²QŒiô×óJ£ŸH7¸ÝÓè¯õ¸Ñ¿ u;²yÏËN€v0l¬¤EWXC:ìv ×ŒöAêæHj Ú6÷!¹f˜67ȺˆR=û陛ɾˆY˜ã>¤Í ²."tî 7GzÈÎÍ‘JÌÆÄ¾AöET‘&ö Ò/²غ`Ú܇hèɸl D©­´úk[†ù°ƒLªÇ¢+D¢5%nïßoXÞï]èd\d]D f'F$¬þr„NæbâºÆRû!ýÓðcÌZ¦®"r£¦Gîyd2Ø «°éÙ&fëÒ7“yiLŒ˦§åOòaAÙôïÆ|ØAzà ˜²©×xGgXò½áoVæ‡n¨dÀ“²§åO1r£zR6µž” ÆìÇ“²©Ç̲qÒÏýȦœ{¦ÅÀz o¹´ükÍí‹ù°ƒ,c"1"-ºC$ó"oÕ´ütLt„°ç¾g»>„Ns|:ƒÉ`s¡éJ&î÷d0€~¹‡ÙOò½<$wÁüícŒ+WÄ:Q";7†ø}KpÒ7“ _|==ÿòîåòu?DrÈdÁÛ¡\äĈh,îû}5u0áE´§í_F%œDâ³ßÁ™ž¶ÀéÇöGÖœ`¾'rÌ ÑÝö‡ÑÔž¶m½36HZf…(5§íÿŽQ÷cû#Á¬N”HϬ¥TÇ  AÖijè”ï¥Û¿Ö|2b™ käx8Ñ…¥æ§aSsC8X!1"9K¦6®?‚ݸ]â´0ßC'}3™` :° áÑÝøßLÆÆÃ2 (rn‚Yo&¥ÙoN¦0ÙÂõ@>ì‡f4 2:ǬŽ5f bHÆ7Ó$, AöE èCf ÒÁ–èÇúG‚kú±þkLÏ|Øïõ¹f¹nþ—Ãó,l7ÿ/2Q~nþá`a§û¥f¦‚é^œÈ³@‘ŒõéXGª¦ÊÊNå$Whºþ0)›“Î?„\ÂGýûJ‘äd ÝùoLR-õ‘“ej̱ÿ!þcÿ—ÖÓÆ¬Är=P9‹œ.S/±å°¹Æ†Yîƒ@Ðç÷Í, oŒÛÿcöƒëúeÿ;éW u†³aÐ †i·ÿ«íÐÓýG°E0rWˆ `tOãÁoÀ‰ ÑÝ÷Çj'f·²ŒB`Cˆ fxÊ+ë–˜•¡!fO¼tëƒÊûƒìj)¢{ÀZ\F¨¡{B>!¦p8…fA÷ãù#éXcV'¡š5÷„(‡c˜Ý>ȸȺˆâi¹éJXg² )L¶p=J1ûÀ4ýë™þ˜þï™^¦?¦¹%Wª¥Ü¶+·ÁD‚££N”ÈÀüŸAúE&µ5h{?¦ÿ{ÿ§ç!¹ fyÑ_)$BdQ²'°%DyÅlHíÒÓó‡R™£Æ¤‰1káY¤p*8oIþ÷¤pJõâD‰($ô ~R³¿~ ­ã_Bïed:ÁL/N0Ó‹ØéyýfBß÷¤Òò/§Ž?…Hcb îó}ôòjÊÔ”;þ¡þo÷Tt©§Ó·`þ6~cîÜþ²„„Ý!#²¼ Yd¹A0eE?vù­ŽÝ_~á‡ìÁvþ|Hª¥Ü({Ñ€?†mkQj$'†JpÏoäcú#ÁNð2ý{šþõù—®?êíÄ°í ‚7—†–ËÑ¥d0Ĉ„å_Ͱülë6Üñëùìº#,·üÁþN.½Ï¿JËÀÚXKn|Yk¹Ôrÿ¢1wü…cÀt ÷~Çï/Ju¿_˜µ4(Qn—I‹úœL|ÔI‰rÐÐŽûýŠm-Ìid .…©|{úýõG6¥òu‚ ?,|“{ˆâËžþxç‹PÂO'Ó¸Ô¾ˆâë¨( úþå<ŠBŠe°O•” LuædÃä' Soº~©ÿ;V?¬DÓ´,Ï9÷úq8RS.åéè^c² jN‘©1=Ó6•¶:†·¿<›ÛĈ¤dÞÑZ7û…À.#DÒëGÒ/2/‚é ¨bLºýõæ.ìÇ믗˸ƒÖÜö²ÞL©$‚w²aš³n¡˜òK=` YàF?˜ëýýÅÃ1´Óå/FFºüÅ.±ÜïC”HÊ¥ÖÛsG÷Òpî‰\Ä6’túë)¥Ó_ÛJlj¢µg)$MCwú/ä14Ýé¿È¸È¢šÓ²¬ç•‚©G¸Éív»?ÙWŒ*‰>°–Êù1³ÇÈEŒÚb§ßÉ0ŽYÆ1:‘¤fêÕÈù1H\ÕÅ,ûqú¡Ø ·ãô¿1ãrú lœ(jôg¨æ÷6ÇäÎÉ®3_ÆñøkHxü%",~øfÓ8胜ôAã;Ð t0V3pó‡ JÕÌPôûpÇâ¯ÇŸ{]ÖË0IÑãXüõÚ­œ¿RbVô€³‘•Š.¥ÒâGÒ;Ö³Cѵ¶ø(ýع×%’w¾Ô‹Q&¦x„¬'sàñ¤Å1J1¹×e­9÷º¬­§^iÁ¢,¤]zq‹t7ŽÅÿÞbÇá¯!í¤/¬øhb„«1,CÓb ª¤‡šËµù±÷ß_¯ {¿¶›š©í šóå{ÁÑR35fF/ˆd]D.bTOZüõÓãG⪮W"5SÉ¥÷ø…c&ª±]ši±TbÒã¯5§Ç_¯Ozü#‚gzi¦ÅV—£Ô :ÙƒKá|·á&ÿEHÕÇäǹˆa=Çä/W£_šé±×e} »É3@GšüÓ(¯“y‘}[Hzfð2jN_›þ†é@£ú“õœî~ýzNŠ©—j|ð™”æ~-æ~­vÂöõdãeJÁ”~±¯Þx_ŸL˜ð2:OŠq¢TÏΌץžãdÁwÖH{jNÁ¼Ãí}Áz÷@ ².¢TÒ¬o'˜ñz¤½O1¦^;QÅš-Ç÷K©L-•‚A"Ê¿GÚû5&í}"û"˜&~Œ†Û{Áu@Næ#W= Æè”&~{É‚qבö>AƒNðcÐ lDP½s^;‹C0çµÅjéßÃÚG0ñ t¬Lyý>HFjæ•çóO ß7ÝÚG9¸·o nîoŽ¡WÛt÷¡fáwÛt÷á…ö~#÷¹,‡¬´õƒ“)\H: æ¾f…mýàd“uÁŸ{~cg‰™¹ÏeQç¼ãæ¾r ný0fLˆ©çõ1˜,j=Í}Œ1ŘŸ‘bfÇ.ƒèÄcäŽãðc̼Ȧ¶­Çã¯5§Éd3À'Õo¸Á¿ðP‡:ÙW)|JÍû0øË ð¸ ~'¸¶Ý‰Ê ásBŒ´øËÐö8ÿ;mj¸ÅØ7løDǘãÃ-~a2.²ë1Ê\8Ò⯭»Å‰ÎFZüDbåøï´'6´Lóò»lÙɸȪé³CÐ)ÉËHªí”òÚ‰ÒJᤞæÈ-Ü!F.bKÍÌß[bfæï² gfš—ßÜ# þzê+“œAÈ¢ÈôéÀ옾Y/ߦ,g#½}"ø#þõéØˆäöíòždB$ˆ„Híý†­jfù,Õät$²™äéî™TQî^' éÉÆŽý-Ë!ï/e»v‚Ù®lÜçĈ„»_ï¡Ý2Á %x8áî×Ãé‘¢6žb©ÕtJ è„´œö>œVL†š%°éï‘~%„LJ‹ëdš™± B”HJ¥üzéî×ÎM ƒßü!2™*Í}˜µ×ÉÆƒ ±Ôk%”»ÞI_ø+„µODÀ$ر•r»8›cpÓ'‚=Ð6Jôé¤7,•ŠA²7 Ñ¦#íýZê!£1Yxó§Á_ïH7øñæ—–‰KLËM€ìÎD‰ôLô ¤S[R:Á,gN »%7ùáî—AiΜ,HaæD ¿àH¿>¼Òã/©ÚFzüDöE|¦s%+“]qѼiᜬ‰­§hÊÈ=~‰\²IŸJ)Õ¦%O §³opI@¸ ”f¶ëRF)ÛõH‡F?ôËàó%þús[v‚å”;AIÅ”7ø!Ù‹“q‘uÌu=Òã¯Ïm”Št¤ÇOdw&Šï~îñãƒIS1HèÖ=~Èsæ„ÞiÝãÇ÷U´ËóH—ŸJiǘI¹®t˜ªâ—/8ÙŠÇ<3ÏY9÷EÉ{GºüP*%ƒDŒ‰Q[›6}p2ñUÓ]þÉ1J1’¯µ%FhWÏ‘F?ÅÈÄ«!”i¤Ñ1JK7œÀœ*Š‹ùô‹àþÖ#l~0AhØ7³ˆÁ8q_0néŸÏôøËÇàt>Œ+fsˆb½°•ÀL—ŸÈ„o?'{S%±ìµ¶“šA2ÜŒDŸHds)#²ro& ó"˜%Þ‰ žWj¦ž×¦ýÌf:ýPÏŽ¯Ázî;óØ—ßN2}©'5óû‰í`J·„Ò˜¨“®x¯i| b̾ˆ ¼ûŒü™>?Å,Ãz,w¶‚ƒ¢s|cáO9B÷ùQgãKß‚N0wïLŸ¿j1}~ŠA‹c¦Ï5§hÊSgÄþ–åÁôª%$S›î¹˜½A™{gšüPÍøPË¿gzü¥k±·%‘½Ó˜´øÇ‰Â¢9V| "é KÅ5*õ1ú1D‰lJxídt¨fSb@'˜Ö%t[@Ï‘scjŒd^—÷eÉþ‹àÖÖóýµf¥ýêLe‚«ùœ¸ïsíïd(Ǭ‹àܘyœþs9ýó8ýå¼~œ~¨G KñÜ'èv;Á¹NßuÝéÇ÷Ëãô—Ÿý!øn{ŒþZq§wÛ9p5Ÿ:ËñYx¸ƒøÎcò×B3¾‘С„Çø8Wæú,·p?3(˜;[ÂuZ´œ}¦Ë_Eï6?8öNp9ûüñù_ÕOÉå|¥”ð»múüõÑæ>?¾ñ¹Ïc¢s*‰:c8 NF[˜ 1ÚÜÚ î±ád¬Ù¢,}Êúf?„úA÷ùa¼sþøüo[Çç¯1éó—þâøüå®ÜÙ²\g7úñ tµ\[JuZëSº8Á°N>!Ó鯷r:ýõFM§ŸbdQ5ô9¸æ§3À'Åš4râ.ÿBr‰&m~йB„>µÖ¦íN0;®“³4àŠ¾¹$Ó›ýÎarÒaòØL»ÿ6Óí§£ŠÃ¼¬C0K3çu9¥‰œND¸”QŒå’¾Ò–E7ˆ1»ãiY î”cN»¿Ö“~­gsë{<û›Ý ÄØÀ˜¸Y‰ ŶZvƒ¥ž–‹ÚK©žÝ`‰ Ãê锕{¦áOõ¨!4‘ÓɸæÇu"¿Ú‰™™ôºÏÌ ¾¿·O:þeÖôLÇ¿LožÏs¾Õ™âG,¸¨o¦Ý Åô"“Áf $³÷þN¦tÒA!;%S?v·¤BF瘚)Õh¦,¬`¡òÒî‡_)ö¶„cI§Ý¿›Ñ"X' I§\Šq»õ!—bäKSDgÚýPO£$ŸN K¼ƒ sí(ä‰ôâß…z¬è«…R/XHÇ‘0û¡TZ—³Œ‰™´ÈIÇ[_R/µ­™kÞÓš¹ ¯„„ÙO–2ÌôúŠA`íÌó'®‚u«`ìÅ!˜³wJÊ¥ÆÈg0¸"„IY”ÿ8ÁÅ?N´áåŽÙ1D:>Ò뇫^?ñ¦Õ_C4Õ!K8D„B VM7ú;LÙ;Óè'¢°Êh¦ÑO¤ – =R ©E/µ¸Ñ¯XÏ¥¹éÃûtq£ I£¿<'ŽÑ_ž%iôÁ ßN0ÒÔE“ž` ¤™F?¹ê1"aôÁÙÑ3~h}Ó"Ž©ò•:ðX3A8 Átùèß”0ñò…Ç_zÕ\Êð>›É_nÒT †àR'Ò8ưKt—ëI—¿Öã.ÿEÛ²–]`©9]þ÷­ÑK­{üØZ£,×Óz¬d(·±{ü(´ãñɸÇ/cDR2µ­‘K`àX'ŠORÿþƒexNúE¦r)¹ê±¥Âã'‚éëPh)™³£ DÒ'^±˜Cdazüõx„²\Ïãñ×¶ÒµD‚Y®§á“ÊB2ðï:8Í^ˆbvìýz¸†©ëgÚûµeûÐý—–åKÖ7ƒÞ`b'ø¸¾>tXÒ´ŽÇd_:Áu,~Ð:XB@˜à Œèkòº8ÙW)%2)k½“Ñ™¬5OZ÷ãÄÉÊOÀr‰}:Ùƒ‰ÂC~ƒÿ}`;Á¼fëüHöcP¢ D2.²Œ‰PÍBŸ€ç¿à¼”ÿ¬có×z”Æj××° t£ËÖâ2Ø®cóÒ¾ŸÎ`2€ %Öá­có—£k©$«1‘†57Ê ¿Òê/ãC+­~"ë"JõŒè‘ô+fÒ1§l¨à¹ÏLÖô ©]²I«Ÿˆ#’²A‚›z9Ù‰7Çr<;ºA$å×6í}´Òꇚ7í}´Ò꯷{ZýP*eƒDˆh®jÒë÷™ƒÉ¾WúüP‰±ªÓç'².‚W«¡ÖŠA€K`ì‹(‘öiXMûൠ‡Ÿ€Àr\'†Rì)$…×{&+¢(Å>rU;~‘yAQ¥Ï_Å™>?ÄÌX‹1 }‘•«ÚK©•«Ú!ò{:À|½NT‘ìÜêá×Lq‚ ,˜œâDÀpb0e¹Í‘¡X*}þ×XÇ评§Æ8é0Ír£ɾblây¥dàÔЕF?ÅÈE0ÍõJ£¿˜VNfuVúü‚ ×Ù €9±̨v‚[=¬tù¤Ë_ uÌYï`Ãl1' óÐÖ±ù‘àX'˜æÚ‰\·zX?N9âIsÞœlªg朷r<+ç=—R‹6«u‚i>@šO¸Wír§ÿ"êV?˜öëÇê%{¬þÒTîm `2Ø›–u­V3Å5LqídáûåÏÿ>áŽÏ_KYæ,2 OÜ(ǵ}¹ÏwÿLÉ”zÜç‡'û"¸r®ãóÕŸ¿üæ3¶·¬ c‰þ¹À\LöE…—&?˜ö¾f΋ TíÈUí…\zq“¿á …^àºð̘å>5ñô—wQ–ëuŒ~$Ô ÎÔ ê禜`VøuŒ~$åÚÁ¤¦„ô<`JHNŒ©ç 8sÇÁdà%ÖÌÚ[ˆÑžÖNæÀŸÊ2k/Üîh¹Éõ¬/nó°ÒãG€SWœ‘†Û<8 5§Ã!‚’[Åœ?ÅÌÅD¸õ+äR𱀡V2([ýú±÷K-(u6÷Wšû塲&íáåó[¯ËÝw2ǬÆ1rÛx|3\¯ãï×3Ú¹ E¹AÒ߯Dh‹'Ô÷¹¿³ l˜†çÄ`Jàrƒ{Õ4ø‰`Êúu þz¢J[¶¬e´æÇÉÄä2Jrí„^jwÊ彄û›Ýß{ÝÝßLdP!ܰe{¿ü;õ‚d—R”Ç×Ag0Qdnî×¢ÔRšûHVÌóaœÐ¥™ô'æƒw€¯²në/.ƒO‘tõ‹6ÒÕG°¹ˆ4ö¦ Lì{ö¦íœ(V#™¬¾ÚËÚ ‰ùûHŒˆâjC8„ú½‡(ô=ÇØ¯¿½ñןûTMûå=l¿)Jî`ù6u|ýr I*¥4î¾¾rŒ¡0ޝ_*n9k³´¾>Å£éü"ë¾>¾_¿œ¦ûúx»¯”A¹à c²ŒKÁB§ulý2¹ë“É]ŸÄ&–P Öº°ßsGÀ}ÊÖ±ô+U:+-ýòØLK®õq¢DÒÒ/}ˆ[úø¦)©ŒÁ¹ N û´ãê×zÒÕGBï°¢´µ‘á\P'¸ÖÕ õ{b9ôýÞuWfu.·õ/2`¾èJ_¿Ì«\éë—ÕKã$ëL~WD8™°òÄÉ®k$(‚KYiáS¬´õ¡¥°õ‰˜bÛáQB=#Ó>”R¹se9œ‘YJ¡‰ytÃ+1c;’mxÕg¤¥xg¼®4õ¡©0õá¡,kUœÐinú3×ú”ZÃÐ'â{ûÕãÝÃÀý|8Z÷ó)b-&²ð`%ú¢¹Ðçw©“H~T~¥äG+=}8M‹T.µT˜úDVc"ë1XÀ´ÜÔ‡UZNÆEÖE|ù^9f»c1¦ÜInê ‡ì‹(Ìy^›V0ãÚÉ¡Nwõa6µS,•ŠA2–¹a'ܰsÙ¤•>NºqÌT&¸Òljk¦¼Å[j¦Æ¬\½1Ë8Fq¤0]}ˆÙ9»bàÆHP5&±z¯þ|«÷0f]1ô óŸŸŽWS);““½ñ|”²-³X·€d\d]D6¶n´açNWŸÈ„œI;mýR³Ì~´¿Ö-8éÐÃ9™Á\.NŒH΄yûW'˜“b§³_î¤Ö>Ï ü„Nú`2/²¯ÏÈ\.%fæ&·%ff.—Òú$Uïôö)ƨž•–F)•šA‚+^(‘ÔÌ{cîôöË­ìÄ{Â·ßØéíÁžp§·m…·O„n1RÍþòŸ¹z¯”HÙ` v„Nèh ;®>µ˜5”š) µØº’ȼv„;ýÒ¥m7ö¡kt‚y øZ$ݰ£z:­xu2.²;aU׳HÍ”ëãÆ>äFs‚9=wûƒëØw›´ÖÇ æqq‚y\œˆrŒQ̢ˎã@= 'ªH6-öqÒÁgp‚7à§ #"9qÈ šÓØÝ' óXö1ößaC'}a)ý\&Ä;0+^kÜɸÈÇ}cÿ×qßaìÿÌØÇ×ã|ýZ€æx9Q"-×ú¼GÒC2PsÎ…A‚ ë÷±ö+é´qÙ>Ö>’M­‡d žÜÀ²Æ„dˆLáRÒñLG&·.­ç\$ƒjž´uÙ>Ö~mkѪ '}`ë<ÆÉV&ªXϦ+NÆÀcÞi¾7­{û0©l§·_ïÚôö‰Ì‰5ç–µõ#™£!j$8ÉÍÉ4¬GCÔHŒO‡q2¨-à Ïð Ž/-øqÒ/‚3bœÔiŒþ7ÌÝéë#°wÊNcŸ®Òxz†\À¤ÃÊ'ó"¤ë´öëç|˜z€#·/û ëg;ïtö©”Q=3ÆC‘ ÁÙ´„ω¢ÔÆ%šãì×Mg¿œVj¦žÄ¢¼öØ4ÙÙɸb–â©§f˜b)¡}[öñö1f_÷mÙCi¯#'ý"k2Á½ŽœØÄ f¹‚ï½`)˸ŒÖ©jû8û:L]vÓTŒ»ú0WÛɸê#MýÚp§?sË–R¢Ó–-Nöfb¨:wõüjó’‹ûú›KÉE ŸÏ‹UoL&µžÆ~¹CÜØ,•›X"é‚õ,´;ûÏ"gÂÔzvî^dϦ}Žœ(µ%1ݹÖséÅ­}e²•K‘^¦²¢ÝÛ¿È¢ÖsKŒ1ª9ÝýZÊrùJœ©˜ãî>ê÷¸ûHæEd2ÁÝËN¯^ïùcði­” RŒè¹Ž¯´t)çøûõ¬:®äs€W4íýÚòànðøûµ¡K6kf7XJÙ@̤¶& û˜üõb-Úôo“¿ôMkѲ×}LþòrtLþJ6etq»½/bîòwŽQðb·»üÕJÚÇä0Áew"à&:A§{/E_ÐÁP‹ °tmçøû¥£œžN6~A¦¿_ÉNÁ”/È›XÖ/Q7øa\Ò‰À¨3,Õ"§áyÈžL”j‡޹ãL/‹Lp`ÕöÛîïƒ#îdÀ'x«¥¿_î+Ürf»¿¿˜L˜zídoޱ†Õ®œê\bR,³6ÇÈEH,Çå¯õ¤Ë_O›]~'*“b©õå}p²:ÇHçëXsÚüµTúüƒóA÷ñù‹œwJ浊`VO'S™lÅ;‡§Äì4úëíæNÿEpž·Lp½Ó鯷º4ÚÅÉ„Sœì‹`‚ëí^?µÕÓ겨žNû¶8Á×[ÆǰÓê§Í@©–™ÓK5©œòzÈ„áE_at Á¬fûØýå'ˆ6üwf5û}XHª¤hÚ—á¿á_’ÌÔ dPÓ©ŒÁ™Îûþ•¤fÀ›RKF37wÚýUUÂScœL?r‚S·æÔ˜¢i·û•É‚¹'Næ–n·û˜ä½Óí¯§•n=­´ûá;ˆj§ŒfNÖEpZ¨3$ƒ–²oåÉ1;ý~h}ÐRö†}tjìf‰{4 Å ÀôL[Wvƒ@ÆEðF·wc3;»Árô›–È9Ù°ÞÈ ¦?Ú*”þÈɸÈÚ\ŠºAÕ&ßÞiøÃ1‡á_o$¥,…Nß*ÔhÅ“ªr¿¿ãõ´|i|›2\º°Óí¯µØ—Þ-÷°3ݶ5~gt«ò,;™Ù1ìÊŽ×_èÇë/]‡{ýÊDÀßÇë¯äò-ÝëÇ·QËÙ1H{‚ãõטÉàC¨<^qw,d¡í½/«ßÉf  ÛÞ™Ö³\œ!S[ §ÌÂØéôWN1µÜéß³®E‹ÏB0ïœ&­8ÁíËöqû‘(L´ÙÇí¯1ƾ Yú‚¥- lj‘oNy=?'³sÌÇQŽÛ_cÒí¯1éö¿®¤·KÉàR60&UScz,âØ¥ØVy,•ŒXÄWK ÚîÏÉT&[±õtûk̤¹_NÆEVxæ@Œ€Ám)îõÖ²BÕõÒë¯ç™^ÿ{÷ÈwÓfLNƒÅ§91ŠJoíd2Ø è‡Òt½ÀJ ®ÌÍ¥ÐòvbDR4HŽe‚k ˜àZÚ7T]ê9v¹8ÇîG²7OíYkNÑ K5Jpí$\C)£z:Í{sB¢q»…uìþZOЦ¶>"µg­9Eƒ„Dsìþ3YÖÇî¯G˜v?ÆàÖXrìþ³bòW‘M;²²/¢(¶´û¡æ3EæW³éö#Ø>ЉÁôi±¥åÛ‘HzýD6—Qª%uóösNà]BÂé§2ÂÀ¶œûYÖ˜Mm(÷³D¢0Lú—öýsÒaV›“¹9fÃ*B'«Šäþ5¦Ñç \ûãD.b‚õô˜Òù¾ý8™Ï+çÈ QA†½>ýÌ‘y¯j™±ˆÀ\$'FdÆì¯r{¹áØ÷Ö+D]Ë„ÝOd*Ú û«~6´2°¿ê©$غ×Jì1=¦>=Òë'²aºµ¤×_Ÿ]éõC)¥Ž°‡f°Œ\„:ÂnÙ–£Ž0Œ~hÙpê·¤ÑO¤ÃÎNðíÑ N‚vb0ÏLFË}ÿ~¯pzý²`*š¤×1=ßnߟ7½þzƒ¦×_ok÷ú… f¤`Ê£ÁÍþÎ1 :‘«”ÁÄ3I³Ÿnaâd¬gæVÖ¥Ô¢ N0ŵ“©x5VJbŒZß4íÍ æ¨tû¡õM½¹Ÿ%œíS\;ÁNÔ°Tª¦ÆhZ@ÐêtûPµ±§%ü;îóà`/<%£/B™_ÚèÁ ^óðú)B8Âà³RÜìßLÆEp´êgçnÐÿÍdbǘ޽XÇñ/¿Üqü‘ TÈ´I»œíÄèjÌè‹bÝñ¿n+éøCÍ+U].ü¢Í<%Š‘ÁĈì\ÚPŽçh¦Ôœš©G¸3q})%”¸^Òñ¯Ï¸tü‰låRjX³Ò$h'¸å‘“5¹”à‹ ;þD,T]'ÿòxOß Q_†m|±nÖ7G<€¾.®/¿@>ç‡7Æð¼Ãí¯·ûj¹ºáýÓî'Ò/²ð-tõÜÛ¹œSÈoäû-êq².¢0Ž#éø—‹ž†í/ÝðÇÎÚ ü*[“¿ ׊%~5få7!œî‡zœ˜àIìÜú¦AN6Ý;ûÂòûIö…å”è 1f^7HZþ@”ûÂôüëÌMØnωÀYqÛ¿.9w€+bLðœ`f'˜ºWŽëÿŽˆKºþDp¸ì“£X¢ýüùÁo“Á†µµN’²Èî´0VØð6ü% ¸“ìTL´CŠ“Ý˜(‘TL­yÆ wŒ™ì@Óö²h÷?'Ÿ1{Ñz 'Bç¾i=“Ž]ªÛþKmáÅn7m¨YhBIÛŸîþçSœ‰Ûþøj¸•öpq²±›sÛŸˆå7áïóÌ]ì÷Òõ§Bû"†½“|³'|c$'Ê”t×ߘ,¹ubàñ‹´è ‘L|ž(ã„ÞoŸ› ï' ÙÔ2¹¹em©GOˆ=9ž?€ÉïR´ÎOŽå¤ã°Ž[þØJª¦^ôÉ=¡»þØË¥ëO1ÑþÞiú×~F6­Œ•tý‰Lª8EƒDñ;Ñ}|• Æ,LKߟ½á¦ï_E#¹±e­ùˆˆbßèÎ?ŠOŒ¿ ²®Rrê ÝùW&ÛÒ£š·=[¾ÇìÎ?ªOmèd“}%ÒY×iý×ß=­*Eo¸ŠŒ†hÌE%â³ ŽêÄ…~®?E,<ØÉ/·:ùåVS3õ„V xÔjQÞB'JdÇ:¿úcî2©­Íï·éýCŒäºàRäÚØ÷±ãÞ?ö|š“eJ¿ëÞ?$ëpÒñ-EÏd ˜îS.ó_.ó_Žù1ë"Éæ{ûRj$9î©æØÿH”H£}­åš ? fSë-³}–˜Ž¹Î |Ñsÿß(D‚A™>%Í"›Žedê¦rN3:À×G·þ‡þóÓLlvñ«­ñ¶–r|ÿz(á`–›Úm¢¹¼âpã%åÎ?ÚÇùG²ñarœÿJ4{ÁߎÒ!0±»5å>ð!†}©ÿØ¿™eXÎÁ2á ÄÈEpó?ý~i”ÇÉ„—B'ø5è—º«ÿÐS9éÐS9Á¥îzŒÿ÷÷Ó/O—Q7þ©­N#£N–a=fuªÿÏtЊ\êîû@'jx^iü×šÓø¯õLêõ8ÿ•,¬–æÊ8˜‹JDXÏ2'ËÔ˜ýi²Ñ Ô/M•Ñãúצ7 êWhhÔ æ‡p²/¢D4ú@$}ãÏ’¢©XIÔzŒÿ“Æ?’!XsŠæ}Ñp‚C(êÆ?¼Œ8é™Âd_D©æïŽ^Æ¿“5˜øZw$þ=øiKÑÔ˜²Æ˜}¥ã!k$ݰÔ1þÈ`b'Eƒd¶5CÖï—ã¿–Z!ësŒÿrÙøw"¢ÔxèÁXxV;>‘¡??ôûÒ\›« ‰`z\$tÅ5:B$rÛxŽéû×+e4.ªÇ÷ÿíÓôØþåjö”L9¾þ¥i`zl,E’qÛF8Õmÿ‹ŒŽõ´5.seʦí_.O?’’ŒÛþxó÷#™RêÌ•B¢î—dŽí_9m$åÙS2HÒdÊuNɼ?©ûþF`—1ªw³¤ŒˆY†¿Íþ(V,аä4°R@¢„}…às£ë§a#¡—ZDCËH¾ õXþ•Xr¼Çb”ðÅɦ¶-ôürÏ56r– „¬Æ!8¸£Çò/Þhô^ëdÀõ—X‚³:Õ-ÿ…R+å»ã/LÐåÐãø—{|ŒìP8R+µæ`=À`9À”J½8“Lý1ü(6ü`Ö3=†?49œ`Ö3)–ZóÎõ}@p@Tá_cÒðGÒñut¿8ù‘!\w' ߇R–$TkÚýåÊØ‡.̱ûß/€‘z) _v¿“‡;¿ô%èD—Â/AýqüKL£¡½ýqüK©N®·t½õrüHç#22éõ{ÅÜñ&èøëqü+™¹%ÅïÇ´ÇÉ\j+úœ—h‚ œ¬Á1rÅճɿÐãø—nî´½(~MÁüŸ`J§ƒÉsž91ª6íþRHi,ÔÉÂ~ô!Ø©O£?¹t§ÿ"û"ØÍ®ï§1€1W=F?†ÌEsBoŒ«QòO'³a©Æ]àñúk[’:éëI¯¿¶Õi¸¯¿’t.K—²R0µæÌû˹Õ#.ºR/å¾Zí´®Å– 磆Í_oŠ´ù‰l¼uÐf𪹷e­øhn„ëWº;1"©$“j^”üSÓé²i—g'ý"ò:‘ºQµCí¹ÑÚK£ŸÈºˆv$ʪV¥ÜŸN&äãr²/¢ÙPÕBÕHÆÀÙ1PeC(eHŽÓd&rœ9Q"-¦s¾ùÀœô‹LÚ[f=ƒz ò éqú‘`Ö3ýÿÈ:³,ÉUˆî¨Nš™ýoìYý¬üu݃%˜éHý$¼©»FðÏÿßÓúûÓHS¾LÖsq¡?¹‘ ý]Iï¬%”þLºÄþ4ÂXFÚÃKêûóëogèϵG„<Ë >¼ûÑ™‘?A6«™’®ÞE 1œïڗÄ֊ã~®ÐúÅdÓvø I•Æ·‚$ó"qy·iýˆÂ»CëÏlý¯Ë;¤þôèvHýÙ$¼…&ÑþŒÌ&…vcÓ%‚~‚ ê§Ñ,iÈe~tÆË\È2[¦[e³»“4‰}m¤^dh¡Å†¤@7Þ!ñ £ØkûÚ‡?#}(™CKm±™ïìÿáo‡È/6CZŸ1©MdIìk#EîùŠð…°™…WºdüÛ&òKÍ;¼9•Ú2þáø·CäÏ¥žð–ïÆ?‘×’&ª,!LjÔ‹ô‹LL4whü %B_ƒpRkd4µaèëmÿVÂÐ×FÚfÍU&µ;4~Ø´Hmöÿq‡ÆŸ¾’vhüßÇ–…¿#¿å÷¡h¤t1a^³íú¾iw0 ŠÔ{;ä})4…Lù4Rp ÝH»È¼¦ð™\Ïr¯Î=\’×s‡È/dN>–ñÎ’Í–ŸFZQ2 _œð™T³©üSIaÍÅ7Æäz^2‹’Í׿„Óäz_â 陋õ”ˆx–lŠ{un=œ†6c)aºÂ]Âi²M•#@F:¯§ù\¤xÙÕLå§«•&_‚F8T~Wùóo\é1~?`ÅV¥ÅdªÅæ€d*¿1¦¶‡Œ„.ò£Œ4ã*?JÌøÌEäKÐcžíN“»N“f¦ô%ó"{°Wú…˜[D(ý˜Óî“&'õ'ѯ0úµó–ÚB g¿CéÏRîÎ#‹;;”þ|GkÑIc4—´Km戡ôTóÕÐù…ìÅkjÞ½|·šïzÎw"¼…¥¾æ¶ ý)éøâ32/²…xºËïSr‡Î/&ƒ-ùoL"Ýe®fJäk#˜¬×öÅ,wæ|³\OÒ»–ZìÝöQ0÷.Ü…Äõ‘0ðõ¥?×Ü~îЩT(ý¹T(ýRjNµÙl½…Ç´ÂzÓÍhá2™”XÚùÿE¡Ÿ M-3¯Zø¸[•ï@#NÕ.—iÇe>_ÊGKÇc¾Ç*¿æ§Ø¡ò£žð’Ú”ˆÇ´ð˜|×»€ùY I*_ÜPù… ÿÑ?2¡ò éR†¿™&òw’p™TfýñCöC ä)m®çìÐø ý²ù7ÅÓ\æ[Ù’þÁH¥‹™Ê?ÔfÒ5Þ ËOêyÔCå›1”,ºXg!©îL忈¸‹©ütpSù/R/2ªqçù…>¿ÞâKdðÛð%ã[Èü•®i*?‡·Pùņé\v¨üBdìC’?Yt_Sù/"C`¨üB¦ÔCÂÔ4Fžéü¼§¡óçç:?naó’Ì¢õlD£Ë¿‘ºØVxM~8Ýóe›Ã`º®ðšü¼†{5KQÞØGçÏý™‘Ø$ÙÌS[S—CMçßZjc•r,æ@2Ð8ž•??õØ“Ÿúv¯Î¥¶Ž‚cËgàp¹?OñMäç¢é ¿!á'è nïø³Åã>M‰~½ÊO2%[HÑåú‡ORSH(ý¹‡¡ôç«¥?} ÿSúQÏâBÈ ¯É57 IúE&¿ÐLéçRª)ý\ð²Ì^CÒ 6T˜ i?›T ÈÏRóQ²…„ÏTéNøLzT/YåŽÐŸ~ÇП^Áí{6ņI>,ŽE{xÛïÝ6©ŸŽ¶Ãe`"ó[Sú9îØ“{3ݧIFU²ÄfÉÏ^úI¸—~¾dV)´)¶©?™lYá9B¾á0ÿÿvÔß/ò\’”ªà“±•¬¼ìòÙã¤6µéMmæeƒað%å¯Ð$¤~’Ñy%†ÁD*³â:É?fò,ÕÁT°¥’ûIê`©HvI²v/<†¤ %mðÞ„Ç ÑçKÇA'õás8É.aƒeQ'[Úš1‚´Â7…Ûc¬É¶¸áÍI¹†A'Èví“Ç—D®Ël^“ºìq²X)þõ˜â¿ÔÓ['ã"›Îöømº=ÏÃ/B'}+™[ m:èS|'gz4&ø7<â#ø§Gl‚?=ëþ$U²]:™Ù·¿¢@:ã[dÒKjj¿Tz?Ié,Õÿ¤/‘é2ßšã3‰ ßø•K…äO¬Ž:Yô´#ù“ú§IþCmÆP›Eÿ4É¿ðB}o¾ÎŸÎ#ù³žM??’®'$’Qy76WGëÏ$ÿ•ßÒòãHè¤]dV%â3GñO‡àŸÛ~˜ìÚÉä¸R<Û¥¬ó8‘±Ðÿ­dÑ?àOR/+ÿÿg N þ%bà.CPó†'£Kî4釪ô¿GÜòþwÁ“-6CÂù.IÆEÖƒg9™½ÖI¹HRI܈K¹??”#_‚tŽ;%&_çæî/'EÌæÔÑɘèòŽað z¿“Z”ô‹ÌªdsÔ©FÔËfð%0Á_HìIWe‚?GÓ‚?ÈXZJÆiSü1 Öã/ôÍÞÔAöf½ÍGA’FGTÅ߉8ôQüIª(ßNfç£ §ÉdÈÜö¤Þ°¤¡ÉL×NÊeÓq?Ãcò}Édññ˜*dœÐ£àPè›Gïϵ„ÞO²&ˆéýœ~¶ËcLïŸJæE¶ÔüèÄöèý¹Tx É¢Ÿ™Þ‘²ð<[aw'ó"[H ŸþžùQüIúE‡³É.¿‡ÓŽËdÐøî›â‘ÅA±uJNd<Š?É”zø4÷—äÏ/hx±MìïZfÑdþq°x9¤þüئú²Šý/Y<,à¤áÍ7µ_Áâ`lzÿP"ßmëwàQüsÿBñOä(þ©ž£ø“ô©DÜÅÿ¢¤à¯‡·¤QÀÿ©dMŒšGð'©üÆë"^:™UÉæˆÓÃ[rÍU¿àÿÿB—“•÷š¾$vÈ”ÅR!ø“Œ‹l©'üåÿÅNj^·tÒ·’¹YjÄ™¾Tó` {'í"ãªg ÉÿßNj5o¶v’Ã:˜b²äO„±wÐ ­‚aì_j?I'à ç}ÕN棅ö1½ä :r?Àx,6tÔþdâi. š4üD:—ç­à\ûKŠé"Ga„x'Èjæq{l!Õý9—ªÜ%Õìîòöv‚X/iLûà¤\¤W-…à.NÎå%> ص“ž£^8Ap—— »v‚@ŸNÚV2.²6ë™ ví¤æ°žNúeƒ@Ÿ/Yò'r¥8hwkE Ït'ƒ]¿d#`“ƒª—¸ìÚÉ&™?ˆw‚gN×ÉòD Ï¯;&õKÍOD9;ÑRÌGM6MJô/¤5s‚(ŸNVa½•ì ¼‹“6Õ&‡wq°Ä¤1v¯“z‘.M5ïÂz¶Î4€NZkçdTtÐ÷Æà^ ÷è\Èuþ/>Ž“v‘yÕƒ€…/ É5GŽËÔéñ&Áb´B'¥±¡yÿ…øq’CÍ9X›dGÀTh3§“ÞÕfæl|õ·~0p…ŸÿÿÇ›~n!ðƒ<‘ð»jøÓ}Yá+éYÃ;Ùô°UÐ {:’E7 ‰_H™JAêEúV27z¸òg$¸üŠ˜¾ßÕf\„ýÝÏßÃZÜchÑ»šÌ‹li¨0™“&M…ËÐA{_R}$A„3'ýQ›y‘-m5FíuR/‚8ŸN=ÂþÂëê Šë¤Mö§G OØ,!ƒé̜Ԣ6ý²™ôµ}¼&‘ËkL㯬gª_ï‘®YŒtí¤p\ ‘?ÿ~…ÈŸ~œv8M¾ñ›iáTN5÷–Q0Tþôf<¡ò§þA‚k'9 ƒ)#àKÆuP;[V¯1²ŠüùwÖ•Œ‹Ðaž_Ìí •÷ üå{FF°Öɸ MÆ@#ÈWë„càò~š”?&ïçX¡NÞÌ Ò·8AR'»„»ä¶†‡7û>Žž÷Åf ™‘Ê ¤Öîò}¬Kmøøü–|©9V¨“~‘Yµ”9ô÷ú}ÿûP}޾ÿ}~Aþ'«<±-†¤äcNÚV›±Ñºéû = }_HÍ!Мôk?ßC~é?Oä¶ÌEÂmrCá6$Rkýãkêâ~~»BÜÏo{ˆûù- q¤1Ÿ—“v‘ÞÁ¢7>q>ø§©ûšÚB† ‚FjŽÆé¤O^ùˆ8Ÿ‰LÆùtR&ïÅdœO'ƒžÿ’-õœ¼–éÑ,æ·vÒéç&ï/Ö¼˜þï%›>´Ê>o¦ÿs²V¾ñ¡îç[ò¾dnw2«’qÈÔýÍjIÞÉâò¾"Ý)Cg)Höà`IS5éT¨Æ·à7Ö”pŽƒóîÇÅ}hŒÜëd\d –ê:ºº†;#ã:™C yìÞTj02®ÎlŸ÷…,ikÆÌ¤LÖìú¾Y´Ô²dÞh±{ty¾‹9\^²euç _H«Zj,¶.“^Àú“Õ#ßhFzÕRó"[êybyç/ …_L'…õ‘ÏÁ§&HqRðéd¤Ñ!^2¯z¶Ôs9IüRse '2µ­‘Ü2·É-iÃ/B#S\C—¹­ ü]IïZhvÜõÁ¿|L¿¢u0í‘“1”,!á2é7ü%•óBÓ÷9+ …­Ïˆ`ŸÈÒÙm]L{ädÞˆIÙL{ä¤ÐõLãŸjƒQHáR“øñ]þ„ÄŸcBâ2é‹íò“øéU&ñ_dT-%>¾©-\†¤7-…oAMàç ×*×C t~¡…¾¦[D¯O6 ù[´­&SkYrIÝv{å·´…à åƒNOß>—÷ •§“q‘%ÕDFËl3)oèô “ø‡’=0¿jË=:ybHüB†Ô¼˜¢÷%[¿ÛfÆ'½¨Í,j#óFù9ÿ4‘ªM¿È*,õÄÌö»…!ò‹M[Jp‡I}î…ÛÔ‹tÎHMå_ìsaû—T&rqÒøÜ{eÆ'KHóÅ~$rqÒ.2¯¢¹Oç»Ñãkðûë¾ÑBˆ ~Ÿmݽ&› ¦mw"߃}è÷àK¦’†æß£ JC“ù ~í¬'R¹€È0z?j~"• w»=¡÷æø>NÚ ºÙ:“JUOå’o…ëýbÓ.2‹–Út³u9ÌŠ¬–$ý"“®¸ºýKH‘š»ƒ&ù_õ,!ƒéœTÎùLòçÛ$’Í·ß$N×Öå3&ùÓ‡CòYªu„䟖9€‰_˜µt\;²>|CÜÚÌúàd`,Zûoì†ûó`r®4ä~)µ–z˜õÁIͱZœô3ÔÉZ Y^RöÚI㈊¾Y¡øÃ¦F€ÜTO8 ‰ƒ$³h={’4IêE†ÔÜÂ÷%®øÃ¦_=ì±ù9=‹›ŸAv%÷:Õ3"î5H_JæE¶+ÒœŒ{íd4%k“¬‚¸×NzS›y‘ÝØŸí³Û\Ï–S}OHþxÛ÷@^P~¿ˆ ñ¿‘rølqÍ?ù¹Í"ÌmKˆþhú‰Ø×©ÞçoѤ°™"sG#-o¬60+ ŸÉµVF«pRá%T!ÈåâdÖã²zFZQBŸ1² ëéŒÛäÁì´Ëq›œl!ƒq‘œÔ¥¤/Ö>“É”# FÊEZåuM†½v²m 9©MI¿Èl¬y1ÈËK¶|i׵ūˑýÓý1ÙË‘ýIòá!û{vµàI ò<û頱̃ ×øìžÂhgNÊEÚEðƒl€Cay*ƒ9©Þhª?¼ñ ŸI 1–½“r$5s"N¢?z.CRùûaªÿEæE6ÜLõ¿H¸¬á>M“UØåãàç!ú‹M[¬'<&55}üæa%4!6 ~ß[FºT¼"§È²Õ¥CóÇ{±e ÅÈ¢ã•p˜t¡%&• Ñ?;§‰þÙtòPý…p‘§„ê¶³M¸ §Fp˜½¸è/`³H@öŸ§…æBã›?×üa^“MÂkrÅÍGÂÜxc*@'fÿ’.\#üé„\#Œä?_â*¦ž…52ŠÚ¬I›?ÿ?´XBøO§Zô¢dâ„´ó›/E)‘ä2—ZrÖH_l}ùé¾ÜÃíCa.µ% „‘&õìˆRˆ]Ký1¯™Ä¿v‚ÀŸN¾ÉO¸—~“žéK‡¹PþóÊö$Sþém¡ü ¡#ÕÈu™^^þ…T@¾¤)àPë'¡úãš“@8i˜]õ°éµ3^®“J'©—ÛTß/“Ýæýθ—zyMhÿBÆà;àR&HxM.y.SSSB#A´\'›îhÒ?Ý1¤ÿü"‡ô/¥–´uÂa|ÝÙ üé¤-1 rÃZB÷'¨8Ók¤_d¢ÚöH´³ª?MZU“±Åd!ÐDiá,ɤÈÙö’?M¦ô¥ Šï <Ãe¶¨Œ÷é„!›Œ¬NÒ˜þÁIU“« _†0TE Å_Hí¼ê.ñ]Š+þÙM[x I¡™êϯ¯6˜ÏÅÉ–¦føòw?g¤sI=žîÊ0™SÀ¦ÅЏ…´"@¼Ä¹›Q¯”ËF¿üQó–`H¥ÿëÓAU€HñNÚ¥˜ÜϯÉþÈÊI ¹_ȸÈRâ;õ{r=œ…¤_dn%[He@' îRBî²è‡!÷ç»r¿¾é½ég`Éì……úŸ4Ýÿ†Z VE9R6LèäœÏö¡óÅ™-IêEdà{Éâüõ}¡ÅCîÒ†–rá+F¾to¶o'©Öú–gF&‚—ÙœeŽÓ?8iEÉ`[!÷ƒ<±ÉˆŒ}㑨€F±ÉÈæì0ä~ô¹¸W§ë2¹©Í›Hp™m*s 9iMK ;&÷Ó!F“ˆHåÈý¹TcÔk'ó"[jv¯!¨'ØŸÛV·YSÈM]'ZGèÏdê8¦D42µ‘7`I¨O# qf!Î Èdñhýùá†ÖŸoïfF3']z.C‚ˆ×µ±ŸD\ÆÔþ©d —I}~ £–£ö³Ô¼l6_õY$ ’‘zÙ º•©ýBj|~wÃÔ~>ÀPû…Œ‹lޱ¡ö§G:›~ÎHp™»Ó"l!ÈÒ=ÂK¾Ð±>ÓÍè:q4½Ÿ|ôþ|é¡÷Ó¦w%³k©Íéåœ öi ©ÅPÀ`Ÿ%Ô~!Erá2߉åQ^HÄmLï´ÙŒdï¤ÓýLï§k­ŸúõÑüS©£ù§šCóÏ÷/4Ø<ìÓH½H¿CøÙBŠ~ÍŸ6ŒtVŽæŸmªŽ…ër›UuíÄ4ÿª¥¶¦k'¡ù£õ&‘ÎJhþ ‘ã’¤HÍá7Ÿ‹šä¿,‚¡ ??Á?O Cð›¹ÕF–vÖd¬3²Âqôþ4³Zá6™¬¿G˜Bí'˜=ÚŸŸJ¨ýùnnF.40ÞÞýÇç¿ì,2ÁŸïþþI°3#“~vÿLBðO=6Á¨M—¶.Ù‘ä2·^$6 ‘Æ™ª þø¬4½áÏÊÑûÓ7îK*õÄKï/GïO“këÆbÍM‚©‹õ´vö-™Þ/¤‡2˜Jõvö-ÌýÓûa3¨0þÓû“Mø Ò?8é[‰¦ë ŸÉdþ1h®QÞO²¤žÐû³ÍÑûÓ}Ž\—É·úÍ^.¾ì-N½Ýmrµ¾G† kªõŸÖÿÿs¨GëÿÖP«jý&ô9#[ÈñÎþ×›ŒTì32°·ÌÈÂïú+>f›âw¿ýLõ(þ¹æüIöÃRU‚žaÐ3#Ümd^„AÏê¯EгÿÕ·z$ÿÜŸp–âFèz$ÿÿ…>e °-ùÙta²+Äà–ÎzäþüôBîg¡Ui‰.³MÈýùºgl‚þššÕP¬ï­Eþv'õ"KÿFæV²7ßmw™ïÇÂ@‡P±ßÈ‚XQŸßߣ * W­?õîhý¹ÐÙ Ò%"_=rÿÿ^_MîJÊEVhŒLÈõèýÿÿÕ#÷?AõÈý$ âkë¢õi\æ7Pðn„à‘É¥‘%¤Ëı¹Ÿ¤KÍ9ìÅBƒ £(!A>'H‚ô’Qì“ÍŒ ×é1LÌÊwiÊ(XŸð˜\O¤º¤M§7<ÇcÙq®¤4¾o[DA#cóº¶èµèþ#œÛ¡êmdÒ#¸øþù‡Tx/ZE ‚©–"š ‘ª@j !Ùƒ©²2j¤^d<¼èÊH/i²2j¤ %Hä„B‡‘]øXz¤@©…¥ºlÈmu‰dodO–È7Ù ‰dodT-ÅEÿz´þ\êrÓú«’y‘-$´þ\óR·>ZîáIu™lÂiò=Ü’ÉHÛZ ŸƒÄgLêÏŸõ(ý©7Gé'áç`ý§ô§ŠªƒZW2ðQf+:oÿX3€üµN&VUê‘ù³Må ä|v2.‚î/h> æ¦ÂiHú£¥ýº¥?_gèÜɦ3{½“>µý«)ýj8M~#’¸ƒŒ‹ÈHX§„³¯GêÏmMY52¯z˜¢Öpš\Ï ÙdT-µ„l IÊEÚEæUäþÚŽÓ|ï‹T—$ÌaiêÑûs¡G¾ð{°Á? ?GñOó¾£ø§ð‘üÓì¶…ãÌÎR•î5¹eÙc`ð;îþ¹PÓÏÁüs!×/sËM¿[¤¹Ì6á2¹šp’ñh©%$$ÿ|U!ùç‡äÏRCÚò0 黤…Ǥ“ü§˜ôÉZÂaro–»tn{¹K“´‹ðȦ‘µØV8L¶Ù¾£“¤óS¯…Ãl~ÙÙ?}wÝ?}ǽ„‘ÏŒ,~ýõp™Ôþ·~öG¿_²¥ââ./rØHgÅ!ûÓ„Çk—T—Nçy½ÊÁX#œY÷ö‡£8Õ0ÍŸ3Û#ú“p¿[ ÑŸ@>{øLn»Çq D†„ù ŽÏ¤z†m02/²…¨ò_ÿ)ÿ©ÏSg=]f›ðšÜçðšÜÖò6»»,!¡üç×+”ÚôÂ÷b«_÷ðšÔú¯IWaÊ?–=Œ‹,þœšò¿”iëÑ£üÓfsDEò@©[múE–”ªêצü_6m«Í¸È¢GŽæ=$a"#ý"ü¹ˆ"QCõÇÿ»S“Œ‹,!‘ë2W<˜ ¢†ðÏ2<kd q§É ‘/i8†[Cùâa@ÿÑPMú—zV,Œ~K“!ý ™Ró’u¸Ó Ôö$‹žGûO¿ÒóçniÿEmÚEÆÒR2ÎpšäX¦ýs04í¿j).é?7ÒîNHÿ©PH˜,$Cá¼\Æ”>3\&¹ð —InnÊ?#g½£é?×Ót¥çHÿ™p”›]N6i\%y tŒ:ÇV §l•©GóOŸÿ4ÿï3äŸæŸl¦|¯Î SÅ“éá¬ÁjVH„ UêY>’P"4²ùµwdÿl³E"4‚ìµ5‚Œ%°Â_Òg‰‰þ\ü0Ѫ͸ˆ,óÑ?õæˆþ$Ì×TèO"K£Kó\iØV—î•1²mª¤7«ÿDÿTsí»ÑŸdsIÉDèoF*4:#Ÿˆ/á ¿zD’r‘F8ª?m–Ø ýd5Ý¿óº†(„F¸Vµä-Í¿Í?7<%Åg=š®fɱ†¢¾¢ðšð´»‘ÍåÉ>CÒ%Ün)ëÑýÓKº²ºnÝ)Sÿéþß˵Ó|ŸI&OœjH?ºÊsdÿ\*dÿÜÁ¢zÇ.º†²#Õ%ÉrùŒéþUIÇ'#›=ëÑý³M“cPFšÔÜÔ«wøL&]¶)i™MÉ–šÃgHêVÒ¥æ!Ç êž²•Ç^i]mä!O_M¾U† róˆþ$²:º¥V×/ñÿ±4 “Á…PýAÚïì•ù¿”‘ŠEN#ýQî3²¥æPýs=ì3ÂýÐFx¨ý 5BƒŽ„F>5l|j¶#ú“ÔÂR5>YS[á3ß/“O ˜Zoq¤U\D“Ýoíhþùîôpj²x¿"Û%ɬZŠ;Á›Éþ[IÝìO¸ Éj¸ˆ)r‡‘rŽƒF¦‚%&GÄ©·]7Ê‘ç°åÏ8ãðõ?$šŒ‹äÕàöh¾ËŠºOOˆ—$s(ÙB9Û׎äOÂAÐÈ‚²×þiþßKü„Ã|S~#‡ÍÛÑü“3<á0߬¿™è?•Ô‹ô‹,©'TÿÜVÈþù*šºôù.IÖâý鲫ÓHÅÐd¤_68á×þÉþ©â!Z‡zô?Ù?ºË¹.óÌ ‘MÎ4ÿ¦dÓåæŸm–œñkGóO? GóO?âÏ–3~F¸ÚHë¬y󔟌¬­ü(¨¬öþ´™b}®…àOÐ.Ž€F„¿VŠì5Rµé™rMEGÀ£ùç+¨:šæ  ‘%¤É1?#å"m²õ&ÇuÛÑüóUtÙn„ÇÚÑüI8mleÄñž2Ò.Â3îíhþ™ÄF™\ó †Moj3éã%äËL–ŽeéøžohGóÏ$4ÿ\ÏŽ‰mêOhþ$S—:ÚÑü“Õã6°á(ò^&5šéý•>2¥mGðg)Þ*ü%Mñç»nŠÿÐBâ3¦øKÅUGÁ#ù“ðœ_;’?IáˆR=ç¥î|3²Å¦û(˜mº‚iô:’?mV! É?ÓGòOãtøÌC$yÏ„L¿%G#µªM¯¬yJ§v$ÿLBòOcù‘üI|'J­F›q!¾ùG Ÿ¡M¿JÍÆšw>ûˆiþ¬çhþéJæŸî|ûÉOkO¨ß©žðœ\Ïów™LÒ™"_Œ0âK;ŠzU^™O«üÿpÄ01´Ô›¦s[“ü/ÂUQ#âÖGôÏ6]‡ÂÖu°6ÑŸƒQ;ûd’Í“~F ‡§ûdHfQ"Ca›r8ÖH]Jd(lS‡B“ý« [8 mÆUÏâ@|d™Ü¶-‡cÛ‘ýYŠk<­ÿt(ì??šìÏšìŸZ?²¶ ÙŸDf¸ýá Š ìŸ^ÃnC2pÊÞ«ü©Cá‘üi3."ÔäLPëÀ …ýò™Þ};K¾›Ý½:?§ã3(5®zV>âÛŽæ€P/º‚ÉAÏq&øóÇ®Oý|Éà÷OðOdéÇ Ý%©gEŒˆÔúÒÁ—`÷W3½_WDð€Ÿ‘¹ÔF&ŽãçþœžË‘ûIFS²øµerÿEÊEzS2/ÂÑfr¿Ôr? ·#÷§»arWR.ByÁT iºÉ)¿v´þ\Khýé‡Öÿ=NY§]ÇÀÑu ]¶AYØþÒŽÖŸ†yÓú/Ò¹XrÔþô^µ?·5%úg µ­‡Ç¤‰Ñ˜ý³™Ú?i³$R ‘vÙÌ¢dcCLá2Ÿzm¤.Ö¼e뛆 l¦ösº9*ÐH[JxƯµ?]û|$¦o;j?m:'…ó Í¥xÈæEÔ´¦6<ÔŽÞŸI3~ß›pôþ4ó:zÿ÷.OÏ~™‡¢Yu ¢êÏ%úiK‰ …&úS~XŒ…+¼&WóÈñ#òAx4ÿtSæO­oFö4á9¿¶ÂkHÊExÎÏÈlj³Å&4ÿôët4ìmGòO üæÛ d¤\äSÁÆ.±fz?¶´µ£÷“ v×åþ ¦üé{:ÓOôš±6ã"<·ÛŽÞŸîBì‘ÉW´Ü¥ó-Ù÷ÖŽÞŸmv$­Hõlßû•šÚ’ˆ]gªÆô~lá/$Ì’kdÁõ—Gý%Äþô»fd^d#1gNÚËÿÔ‹ô¥¥VeÍá0$¥²TsN]v­w«1S|©Ÿ 6VÞ’›î1þý?.Ùíú3<“m¶>þå 2þYR«ýidí¡ö£Ô”ÚÈD0#»Ófývgý5CÁêlzK–³Z?Jí¿«ÐT°q† Ízi¤"á­‘~‘…Ö½<>’0M®‘6”ŒÁþ<’&÷ýFu—NWQ4륑^´”{I5 öÒKl!ᙆ~ÿÿgºýèý „ÜÿMÄû‘ûaÒ°,c„§€Œl|ˆõ»cHªÔÓ%D?jÿ÷AÒÚŸK…ÚŸK I hdl-µ6m¦ˆ5R.=ÄþÜØ!C²7Iˆýù9,IsÖØO“@½„×|“u#UAg-.õ³’M“úñíØÔO›¨EݵþüFVº‡iýü¨—üdâ0‘‘-$&×SÜ¥Ó/k¨ýb3¥­‰lS©¹ìAdÎhj?ò†YBü_¨§¹Kçþ´A˜ùÚȦ“×Èy™ŸCø ã7YBÂgÒ[`j?¾ûúQûó[j?ëÙRó”ü.Fè3ur}ÃÀ¤ŸÕ)'b{]q²/Ù,_%li…K§j¶$wéGê'é¬fËw#æ3ŸIûýᤦ¦`(X$TþTkˆüìHhü0Ø@仨fÄWM¾Gf ÿCR}!4— •Ÿ¤ %ã"kð šœo7R1µ&™ŒÌ©d é’ ÉH“§ÔEàèGäÿ–ûùI ÂiKɬJ˜°›È¿”0ˆ¡‘~‘%5G¶K’rÙ4©gÅøÿr¥‘%dÇ9ØïQlwæüflÉwmDÜÙ4~l°éGãO—Þ#çå§Tô£ñ“0ðg·ò4yxÈ@W0¯JÁ°÷Øó-H‘¾ ÔCáÏeªÄµ7R†Ú´‹Ì|ȳ@ô#ò“T©&T~&Bê½Ë¹¾ÞU·4Ò ¯³ûi†ô*™Ê?ù|‡¨‚ýèü$<ÞÞÒO›-õ§©áñv#KÈÒicü+¿þGé§Í¸lÄ­ÔŸÛ ¯!é›÷p‹*h„9»iýÐ0ÒK?Zªçhý¹Ô#úF?ZºÒ£õ§>G"a‚Ü>Ê©‡ûMúuÅYœÅ¥?ÛÔ?Î*Bè'˜ 6‡šÑ$ò§‘zÙŒG‰ÇzI›cHÊà ¹?ßô#÷§Gºe&ÃÃüð†¨‚Fx¦ÁȼȞl}ÊnN#MÚš¢ ¡äÝÜŸ¯4Ü&¿+vs‚Ì‹lºŸÉýKI½H§û½dAÜï&÷óÅ=rªç’ûÈ÷àüé÷à|$ü§‘z‘~‘)5?êØ³0F’F_û§öÆùqû¬ Õ?¹ðúw™ÙœdÎ&²`­Ÿ&â6!ö3‡£õçJÂi’ËÎ.árLĺèGìÏ6£±?×bn=œ&×9/s©)éì0¥»‘F–%}ûûsBìÏýYÑC”ÚRóiÐH«j3ªÚ¸4ø}XšØ¿ð™mb?D¾bþ@}‰)$»²”‹ýùCwyÒËüy¼<éeþ„^î4 ÅÜ:Š›Úßòšëò-2&t°Œ-Œ¦%ìÐúó2÷Klé–¤w%¶0šÙ]ø„…ÕlU4-Ô/s°•6“ŒB¿ÊþÛÅŠÅdCžî}¾*š»ë#dJö`-á2¹¥åûXHÆEÖóݩ³MHþ$mh©ù¨ Ìñ„Ë$“ü±­Ì“A™bóÄìöÿù¥‘RX*$–W=‹.r4ÿô ¼¤V–òU(´åN“f·F6ë¨þ$UZ¯îÖùþ„êŸûs9ÍÓDüGõg)qš—ìF›îCaîÏå4&üo^{ÿùº\øÇ݈˜ùy ‰8Bø—RRÍü“÷Éý&ß®©>}©þã¨þùÖŸ¼M¦ú§'#KÖp§IŸ§F ÖcŒôGmæE6IÈþBêE:ºS~”¾Gy$L ‘ÂË6ÑëNFly”¥ÖDÅE‚ŽÐüѽ"¢ÇÍ?}ÞÙ‹¥j,¢¤R5¤oØ ¬Xá2Ï0Õ±­«£©ž&A}Ç‘ýIvå ëáÓß«Tz „Ÿ7”®áKßt“ý뉭2$m+äÊаLõéýQO8MîóüãOUY¼nu˜ˆ;›ä‘ÕyÙûï¡ÉfìÏ¡Š¿9Ø{Ï}™¯°Æ>’†„Gã’üÈ8XŸ¿“#û“4ŽÂÿdØl!%ÆA:Y/b ™˜”޲?HÁtwÙŸ„²¿‘µXÊþFjUÒ9-­î3Bö" ŸIÞýÓ'ÎÙ?Í’CõOŸE£†Ë”ÍŠÃeHÆEvCSá1¹âð˜˜Kp…g„è²bHë¼ë.ú ¡CWóµ+é™l©ýäÏ?¾#-<&ÕÑ<í¥ZBÂcÒí}IÅç«‘ŽÍ™F&¶}ÙXÁ!ý§5”Ú¿Ø ©ÇÓ^Â&<æû(7R&{Xýs0_Åå1¦ÊkêÓM7ÊéRO ŸÙüükžöÏ¢Çaª9<†¥Ä§Mü¿H‘¶†ût¾öÁà#´ܰ)‹¿ Bg¡Í\j³…Lý| eŽ¢¿Ø,iÝS^¢Ôò0— oÉ=\~ª!ß±å#`¾á.ùmÙîÏ$ý"“Ÿ˜ÃÕË\óøé 8ÂkHø{üú÷p§IcÁ jWÒ/2…`Y|¸ÜŸÇŠNƒ±Ú›Åqi„ÓÔGI¿È¼È–zšŽ!ù G8M¶é>æ›NC›q‘-õŒP:R[C”Ž’¿”šSmÌi²ÍŒ£@ í"ã"æÖùº–é6$ÿô[Š~³Cñ²…l? ”ßãËg†g½²8á›Çg@ÊVÒ.2.²9 Å_H•¶ž?~ßLË{ ÀPû»è¬vú.™|k^Ñt¸Ø‹úWô®eæP›Íñj6_ëOwÜÔ~i*\&_T‹ƒ ‰ôø)á.è‚?Ú —É6ÃGÂ\ψOÁtK‡Ž„/Y\Ü Á_HÁ%ôþüî›ÞÏ/¯9yh˜Ü/ObŇ HçäÓäþ¥D¦µGîÏ÷bë´öÈýù^„Ǥ{±~ºÖ¿~º º.1¹¿©ÍryÌ‘ûIºÔüè8xäþ\ªÈ #ï÷Køe°ÔkVx €| µ?7TEKúæjšh¬¦«'+’^¦u™å.Òc'Ë·˜hr?×{LïǾk#“‹¦¡øçµºPü…´GɸÈâäšrÈNh f° Îþ˜t•+ÖùÓý[êÐGíÏaûé¾ôê¯ÜÓ“ ‡a©±´ÔÂn˜±Ïþ˜¯ÔKxÀ}µŸd^dÓMíç ¸ÏþØð€ŸÜO"ƒ Éýt]ä€û8r¶ Ÿ¡ÍP ÷‹¿@¦ôw%ÃâŽ2éá…ÒŸ{L~O\êϯRhýÙav8 m˜ i˜Öÿ(a2¤qÔ~’ÅeÔ£öçNÉo¤Sâ;j?KmŠu¦öSš3µ²õËiŽÚŸI¨ý$…_ˆGí'aT#tšijUR/Òñ¢™pÇyôþ\ê ·þÿÚçÑûI\ßÈÚ$%¾S©pšÜV‰S± ³i=ö~çzª»õ÷¼æ?½6ý²YPÑfèýéí5‚CAôoìÐ5€Óó×}Cg6é~À6ý²Yƒ%Ï@`œ#ã"KÈŒ8/銧‚´¡*hd%{ྸ֟Ü~†Ö/d%KÈ–@/FÊäcÛ" ™W=›$´þ|éO$¼L—Z¿ê‚Ó´þª¤`›´‘v‘…o†Ö¶Š$œ¡õ§Ûü9;ÔÏjöbka¤\#Ümd5^D“g3¤~t¹1×ç ¥_L6ý!”~!õ²쟻̷y>CÒØÎ£ó“0Á™yÀ.óç2Sâ©ôÏúQo8M&+ÒØ‚”‡×°$N ‘!Z~0Gì·~"áez0¡õlˆëÓ¤þ<Ý4Péz/E ­B›³=æsjÓú±©f†Ö/d`]Òw~ÙË(XŠŽ‚vS¤ž«¢ {±õêN~@ŽØŸ¯"Ä~Ú¬M›&«¢F¸*jDFAû›ÚlŽ‹&öo%2 ±?÷!ö£­Û¿@ÊE0'59Ö@–8¦ ýØm¤B:˜GèÿVCfý¹þùWXEäº$YƒÕìÝ4¿ëÙ¡ ‚t웞GëÿVïæÑú¿¾y´þds´þÔzýE¨5IÙm¤`·µ‘޵L#³h©]ØŸâS[’ºxEÖD,i«Fx¤dScM4Õ\}ßK¥6KZoîÔ¹ThýùÚÃer=žíRJmi=\&—꾓6 ddI[#8%›ûIÚEfS²;I¨ý$Òøüì±;M.²"zHé¬%Äþ|Kן¼q‹[¿gÝñÌHj#>]·DHšíçGH!i¶ËmŽàŸ®áþÙ&’ ÝH§K\‚¿‘Í›Ñ Cž¨—‰øõÑûó…†ÞŸª ¹ÿ[¢˜—Üo„ú ‘]Y*œ&Û4Y5Ò±@bD¾ÜŸF•rÿ7¹Ÿ6Š¡ùlá4$Üúe¤sÜkî4yD5½Ÿ#ªéý©ÒÖt·¦Í’¶ÂoHª‚ÎzÝkhÁíœÓÔ~©6öÈ -Ä ‰©ý©@å’¤ %cH%qÀï››Ù“ÇZŒ.‹éRÏ#¡?gˆþ Å}:— 3÷0\&ÝOSýyCMõ¿H¹c™ÙÒV¨þéí7ÕŸ«!—ê?êŸëéû„±?ðdÃ<ª?K-zã?Õÿ[Á9ªîÏÐÙcûlÕ?×<%ö§‘&õŸI=¼|æŸêR.Ò."«<=Ü&·ª.µÿèÂݼïÜf–øi’?ÝäHþ©é#ù“L-Äiýxbm4™DÊËÜö±_PjѵF‘Ø/FÊEd©'t!²Ô3ª;6‰ïƒþ¾G Øßצéþ¿bdOÚ´Èñ}‘¾¤µað—º?H8©ž.é 0-’w7ÂãîsŒˆ‘J _ëÉ×5" öÿQGŒL!Ó×zr©Q°SÍS¢`KÉÚ¼?+Ò"ÔÆ¶–¤E22/›½ÙçÑíA*¢ÒÏþSܑ¶™¿°ò/TŠdU1€¸õb†èŸBLý‘þÖH•jƶŸ.úâȟØÞHJÆÀ唈üò*)‘ŒT5éÈ31CôÏw2D&aígˆþù9ÎðÚ,zâ !aþ”¢~÷Lô¿È2$ËÆ}™ó„ÆøÞ|ý¹Ê9§®šèOÿ5ÕŸž8¿ÀfK=+}>²¿¾•0ZÒ Ù?ÿº¾ý(M ƒŸ”ìÓ QgÈþù·=dÿ\óKzÓRà —É…<ùe²xþšü=XçãrEâCÌü…\€ká®÷çǽ"ë%‰,Œ®p’õ´Xý^€.“^Hý‡–YBBôO¯„‰þE FMóç:¨iþB†@3ÒŠ’!M©æ?ÿiþ醿OÂHIF&t“;“_G—ýs¡å#`~s|›Lž±Õ?͹ŽêŸ&jÿTÿo*¹TÀ4²(ýmÝ&c¤B‰7Ò¡»™ÙPÙçQýÓôQýIv`Ï£úgR$@„.LíòÇe•Ì®&[HõïÁ´<󒦀K!ùgÐb¤Hw[ÄÁNõ6ÙÖidsíãÈþÙ¦ËÑ#ý"“+/{ÄцtCGœtÿV$ŽîO2¸²lº?WHöŒ@ØéqÎ8éÒ/2±ôb²¿T²îrì•É7Õ“^ axˆ¹ÃkòíÙ¾«3ßÔk£ CÚÚq´á²ŽìÿõpÙŸ¤o%￞Zf(FZc©ð–ZRsÈþ$EÚ*®ÛOÙ6•‡‚ HÿÜm¾wÐÀÊ'Ö/Ü&— ·!¹À”J bý<ç%îx—…Q#ý" ®·~#F“Í £+„܆!'¡Vÿ¸ã3û¦Rê2FxÈÈœj³…,ßÐ’¯}IpûÊ¿5yí®ü )éUɼȆï-Sþái+”ÿ\ꉭ2,µè{¡ü )8c¤á4á å?½,ÏÃÓ@ë)r¼ÁNø­ç8Ì÷hL÷ßZH\:t!Žº¿Ø,±iÜ×i *è ˜Üe…êŸæëé±.úÿÜÂÖz—‹þi•e¹èJB½$)ƒÕ†Ëp˜‡X!û£ñ)áí0ö ÙdÅ’zRKba¯ý¥øYœÖ³™Â@åOd¨þBfaS®û§ùÛ*á1éBËOF ,MYBÂcHŠÔóHR¤õOøa(ìš»®þÓ„×Hßj3…TßÒBÂ`ØFâM[m¾õVÿ¨¹E|ßÔÃÆhØ {ñ+íý“'Ý Ðe^À F–!«¢F*oùøëlh0¨-&Sb€©뙲(ºJl”!)CI¬'6Ê쇭ïP;R=î2(i/ÓCÙò=hd#¾áª¿^ñUcºQ›m0+tGö¿­Ðý…ôªdòñÕËcL÷§WÝ?ýäÕØ*“¼Ót©¹Jxûººa!ûãf„ä[XÃ|…"ée6i n¿BôÏÞ¢¿†Ã^!ú§µ# Û/Wˆþ¨§3/àz¯—ïm5—¡A—¿'7ä~´2#úçWhþÉM˜\ÝY®ö,IXh¤ Ôºä\ƒ‘ù°+‹Ñí—©ýôÝPûÑÒ–¤€FÄ›ÛOB®PûņÁIŒ©¥–'Ž6€ ¼ý ±?_„‰ýX¹Y!öçBE½i•ÕßûE²„TßÐIÂ@/Fš´UcG'lv¥M‹åP*5GªËô–·&ÑrWë²£Ó—C4‘¦öo>­.ûÞV¨ý°1üÁ¦_drLiòȧŒÍ†`h1þ¥Z.—q¡…–Œ.ô£¯'ÙeªdË&h#õ"ƒ3϶#ÐËGzìIó©ýCI»"­PûaóÈ‘#µ(aÀ3# –kD@Sû‹’ÆáîŸÚŸj.ðl]jÿ µ5W{ÕÐÔ~w¦ö/Ö¬j¿<3ÂsîëRûPñ^—Úo„Á‘Œð|ß2µgáÔÆR#Î5¤šCíÏý9;d™‘é,Õ<åDÐ:jîË–ùãáýW#ºo!àþ/#k0GêOßÑ}ÿX50°Ó7­£õ§¯ún“J½¤?j3­gc/è2µ_ÚzbI4ÕóÈ’è µ¤ÈI÷j¿Ø´©dpdÄ&™ÜÃê'Ýs+ƒ®ûÅdN%[HxMnüä¼\rá5™t?äGR/"¼&×Üuy'Ä~ÜÂØ#CR7K…×äÖÃkr©é‡ü²MxM®'öȰԸêYBbL®gEìtí.öãÎ/ ƒ½†T²ÿäeÚÏ7]ÁöS~´Y´™¿?z„ ýbA®Z Ùƒä‘ÐF¿Âˆxõ|tMô­ñ'5÷j’Fÿ|ÉÄmÈý\cr?½Êôþ‹Lúâl!s¤zš®ˆÎ&©ÎŒŒ©dqå0ôþ¼4»ø´Éý\üŸá1${‘ y¶Bîψx“Uaþ’묗ùV̈ Âü¸F6}ÁÄþ‹Tik…È‘j^áÑéÑ,É»BìÒè!!ö ^á3_5Ë}&õؤ~zﺜ&´~Tóüz¸ûÛ€¸Ìz$äË ¹¥Š„&÷?JæE¶*!_V(þh«ê@Š?H“°gFd±ßÿɶÂiXjË ëáÖɦËp#+©!ù ÙÒŸ!!_Œ4yêCG˜MÌ SÍSG—ôªd^DÄAÓüém¦ùo%ŒodÑÛLôçX´¶Ä=3Ò b˜æOÕñhþé7dÿâ´û÷‹v4ÿ¯š~°Xä‘?öÌþf'#ƒSÒí;dòÄv—?©Ö¥þ´JR?£sÙÔvøKšS›ÔÏ•~Óú/²¨X¿/¡¹G§ën:±?=Ø#ög›Ë]LìŸJ:]awØŸœÃÄþ¢6¢ ±?·u¹ËûIª´îB2«–ÚRóR]ð¨ý$ƒÐjªgK˜@#…CÑ?µ¥fS²1ðìßON©[I¿ÈòÄÔ„¡NL-$õ>3ÀÀgFúE¦*2ðÙþÉöLçnd i’ÂÞÓ¹éá× ‘=hsÔþÿŸ÷>j?mŽ8áY ýÓ 2F f…F¶Ã—ÍÎ?ÛÄþ‹—!éS 1òç>Zn{E>÷ò]ù’IF¸„b„‹<Û´þ‹0Ä­?-òì£õÓf³­£õ§šŸŸd6Ò/²°Š¸Ÿ'tA‚eP#Mêy| üöû3qµõÑô®6‹MUù“ë¢ZW“q‘%Í´¿‡&ºà¥Ÿ`v-³;ÓeÁßH»…A#k ?çþ-NïûQÏp­#÷GÅþýOìOdFÀz‘Ž¥I# ø²ØŸß¿%_Œ0èþ'öžö, ºŸ-GÝ÷Qûs.Ÿ1µ© Fw¹|æ%mµ?Õj¾óå‘%#ܽCí›Ù”l!Çg@*ý*Ô~!“þùOí¯.á8Ÿ$b$ËCö÷¦{Í'´¨ÈÝi¤wTÒDÜ…ÿïB?þ›Ê =3²è !ôÃfÄé¾tÁCÄA#ó²¡Ö±ÖŸkž¢î£õ§‹š²ÿy÷!¾ÿ9Ý;÷ÜßYrÿyldyÜ&õ_„Yr÷‘ú?ix­Ÿ¥6N'ìú“3@F˜Âã½Yñ³Më›'â½|âhýéþ„Ö/6’ð­_H¥'VÿõÉ{תƒ Iý[IÛl*´þôf¼dÓÉþ‰ý_SM’}¡|iDný´voÚGçtº—Èm™‡ÌOл–™©'Ý%ˆ õìYðLí¼lQû÷Qûi2ù uÔþüo9Õg¤ÒËê–øHFÎî#÷§ÇÔboÌ×ASû§šŒ‹0<Ò6µ¿¢š‡Ñ‘ ts Øá)âÊGéÏ=9JÿW¨FÎçdŽBÂSF&ßùŽ’mšDF2ÂÐMûý$g÷úI Rµa–x#üylÑÎvíÌH½ǾðžcwÕŸ@†äæi.ÅFƾ¶äd»‘Êi_sW2¡¢ïÐùA¶$63ÂÄfûèüiÚ×vL¿)]4—©fÓù/ÒpþÜÈ,J6§˜ý‰ä©­GâîKçßÿtþïö"‰ÍŒ0.’‘Æ_HÓù±ïe‡Î{cÒ3} ÝùÈü4‘±/dþ\¨…C'“p˜Ü¿&ÇùŒ,†½ëØ*¿Ø´­6CÚr•?wpÈ>·"?®sü!Þž¹Y“­ÌHhö½ëGßÏOwê÷ßK8cvy׳þøH–¸rˆûèÙbhÀÝwhÏ )œ†¸Ÿ{bâ>ª mŸ s( i_ÈæÐ8ž8È÷Ýëáž"6£(A:³Ê~¾SöùBÙÂtfFxo*ÃÞ?ɽ©‘¹=]Cõ6[H“Ìí;”}!2öžüuÇS[¢Çá(ù:{lôJ³KX#[Èð›¹ÔPWa_l¢DìöQó”à)Fºš 8«ˇ>’Êõ”¡þòy œãº¦ŸØÐôñL¶œ{5²"p›¦s¯F*NÝé8ckij€õA\ÖÂÃì;d}!‹c³ÈÁW#å"P“õ¯zx˜}‡°›Ùt¥5>üPJ>üf‹àéJÃcHZå•¶8ÌžÚjúá7»$4ÂÃì;”}!8ô»CØÏ`ľÕTfÈÑ#ƒÊé2c:›zìʾش‹Èt6”}Ü‹ÓYº• ÞÒÅ@Ÿûý×UÓõ»Ú´‹LÀUýÜ•‰-iÂ8ŸFçs¯Ç/äROD€ø:¼.§1a(áqö½|/L~I_"n½ŠD€Ø!ìç—`‰a¿Mاó­p’!5W‰é²CØÇU¸°/¤ÑW“Fb›°sš\O—˜.F¦ÔÜ%<îaW:b ü~¦CØ—R‹Ž¾Âmò•†Û¤o,ö›s›/¦ˆs›ÿÃŽlÓõ·€*õFì‹|å.ë£7®S¢Ç[âãáÇÛÚ k€›&ê#T¯‘z‘ÞµzÓA\ÖÏWº~ŠPcd ‹é’lŠ„Ù&<†¤¶Ut i6Õ}:·åÒ>jvi_ˆbÈ¥ZDuI5‡ÇÐÆ|:×Ó| d©MÏ3m*‘0´}!2T›¶ÏAnMÛ_JÆÒRæ1¹ÏÓ}:_×tŸþ^õöÅÄ7HÌ¥S!u˜4:ÙöÔ–B—HLØßJÊæ£ñ}0¸¨-AšŒìÿÆ>'Xu2Ŧ2°™“ò°ÿá0´Á>'9±õ c];ÁèqÍœÌ<Þ:ÁÔö%Ç_@êd©qš`³²'¾ÄuýïÕrR¦Ú´‹ŒÅš=±å÷²½$ü%—š× ÄÆ@–šÉ=š}Ô˜CÿéÊI¹H»ÈÐjÌŸÿö’p˜dâi-q+¶€$ó"v†/µm²þEêF©—Œ–?ª~.ª~êñó ¨™ƒÌÁT`ޜ˔jö/ð™“z‘¡`¥@h/¨ò§»2‰’Ë] w¡€™øþ!õ"6þ§ÍÉ”þ†¿äËU?÷'T}’ñðô¿Ç4|̇»äBÚÄ@T³ \ÒÇÎBÒéò!ég÷yÂ[HJESËG¿|Ýá,$æ-ùŽº¢›í£I—÷Â÷ýH=›~X.w1E¿¡æîB²„„¢ŸZ?Š>mlÌ­‡¢ŸzXÂe2 EŸ¤n%|¹ß­Ž×Ô}:I ·¡ÍèÑ!ègСA*ýá(ú¹éæG_3é>æRÇg@ªÐɸȢç—^ b^ŸC8 mæT›-7#Ü&ÛL?ÈG2àkGØOžeÂ>}øû¹šösãžÙRÈæ/t ·!©™L×çX6c{¶_ýqVë³Z'­bqt}Äö|ÉÃï@'µa”6]¿¡‡5¼†do’óÚï6]?Ýæ£ë§[xtýlÂ> ï{u¯Iïr­îé@œº6kl„ÉÕ´?Ž"¡êç2R tJè8XÃcH6½¡†ÇàKÐIùE2e_Á&]?Wº>LFQ“Å¡©†»äwÏWžñô—‚¦ë_dÓÉŽ®Ÿï_¸ ‰­n¤ßÈ£ë§çÐÂ_H ë1a¡žþB²ÙÖösÍ¡ìÓ¦/µ‘qðˆû™ßÝEÒ8l—¿˜¼/5W¾ObM2/²ùv7Kn‰ÆC­ÌTyÁêxê¦îsJzÔý\±mô“©€?.-[¦WÐÄý²#î§·yy ¢ ‰ë¤ %ã"Kú¶YêÔmqñÄÉäØÔ–ƒírÓøÅ%¶;6‰¹MzqCãÏõ„Æ/6í²™Um6¤_nc?­‡ÛL!%û»ö£ñçþ„ÆÏRãªgÑ%zIH¥³õã6 æØ¹f_1i>æ6à•?½àGåÏ$ÄË\ÊS\æ.w™>¾`^d ‰m1$MÁP 7tºW“ˆW÷©ca÷ô–¸Èß„É&Ü&ß¾ó[ØtÎBûŠÁðs¤¾Ã±?÷;b?I£ó÷0IÖÄâ×·I³ª—T®¼ÁŸdr-Æÿ‰ŸŒ#øg›G×P†§·"«<£èg¡)þœcŽÂUQ'ã"›³Î£øç¶BòÏm…äÿM2FxMz\GñϤùp˜^Ñt8á5éÕ0ÅŸ¾v$ÿ\*$ñë#ùçþt]Ižæ2]ÕÐUžán“ï¯úÁ$ü&74 Þ‰´<ÿ¦ZÈýŒ—¹L8 É c™àOwá4$e(iüÜ<ª?‰¸õQýS=3œ&]ÅŒ—$ 2óò™ùøÎ\è‰oB~šæ/ÕJNÊeÓ‹ÚL~¨ÍËeLó_JêÂOÊ —IËÄ/Y•$4ÿ´~~4ÿ´jmšÿªõÑüÿß„âá_Ò±ãÙAU€èfN¯ÉÉÞ´‰M2©‘üŒ‹,iêHþÉfþUÞ¿ iÐÁì¼}“™=_›dr5믱×ûs_\ïÏ÷n3|½“¼ÕÛA“Z679Ù®qý˜#ʼnˆ¦ø<Ü£øgò0`¡l÷vÒ.‚gNÖÌ—µÂcrwJįO].Ü÷æd^dO<üÔ¥6ƒÞ ‚ÿK÷²8)Ô©Öñ˜ï²“Ö:Ù&ΜԥûÞœLxÃÛ­ßtSûoé`¾'Ø—ådÑñŽÚORégGíOÝ™<ìô’|¬ÏþÄÞgïÈŠÄíÿv¦9YB6ƒâ:ɺtS‹ì¼I®ýög~œÔ¦_‚øfNcwù.ÊÔþ¡¤]d\dK=!÷“ ¾§bp2'Ü. ø‚ê#`.T#çÑ÷âï³?æû­;jšÅµŸ¤\¤KÍ!l!=6}ïìî è¤sP4µ¿²Ô`'å"MêÜÁãdm–òÜ–hëò˜­sÔþä¦ö Y2¹Ÿ&ã"‹®¸÷Ÿ¼;Gà\®“y‘ òü~EAS€AÇÒy½$´þÿ¯ñ9R.ôð Ÿìür²¡•?&÷%õ"=ï;s²¤Ïl ›üIZÞ+çdLµY˜ž_‹ ©­Æ“|NúE¦ÔÜbL¤3ï‘“VÕf\daBú˜â¿”|SiÐ$ŒLLcŸKñŽâÿÿ¬ú9‚?@ß&ÁÕû‰^¥Ù»‘v‘±•,![>Ÿ#øÓ¦ãƒÒÈÄŠþóüPäùqQÔ@VöíïÑqŸLëC‚Ïê'´þôÔBëO¯ÃÑú39îò½Ïqñh©õ°©*k¢FÊP›v‘q‘-õ„àŸmš,¡îm‰ÿšM °•ÓI)¼.ÿ©A=Ýš¥–!b‡íápá;?­Ë]Ïj ›)ßÏ£dŒŒª6KÚ ÍŸ[94ikqË›“ÝH¶ìü2R/‚£¯NæE6ö‹=åçNÚ:¢?ÉhZjmÚ<|y‹úÍ :]Ë$ÿ®6[lÊ–á 4X4°8^Á?_@¸Múå7Á_uFfÞÓf`s¨4É(Áyv'ü|ŽäŸm:£];)l<ôK€1¬ÉÎ Iø!ø½?öGïÏ÷&ôþô"•É`×N°ûÙ ‚];Y9ÒÄK–$å"Èõàd^õìJ›ÍTfNªÔ¼× RÕ¶ÇÿœtÖI¹HÛhÝÿ‹ —ÙKîuRsž2'ý"9«÷ JŠ¿cþ] u)áƒ$«³TýË‘ˆä¤5º‚y„*|Ic$'-GSr2.²rȨ—tmFR.Ò.‚`…N¶ÁDfNêTÒ§–šB&ƒ:)…÷gFl3ØŒ©6Kj^Û,õgEl3Ø  “)pEˆÏD6C:AÎ#'£ªÍb[¡úçþ´_ù„ b›9AO'»‘„ÏÔ‹ ¶™“y‘-¤Dl3ùt2¤­A>¿ûÓÔqZ8@Vè@'³lÒþr(X ë‚?K ÒõKzd&©ì|÷“íù1uæþs‚Ðf/ß3Ý–¡ÍR©Á¤NݼM†t‚øžNÚP2è /ÙRÏò“í¹Ôq„íu2§Ö³¥­Í€…Nš¸Ãfò?'‹ŽfŠÿÂkÒ}£L~æ/é5?ãü¥š]YèaØ^'9l¯DÅu²ø¢›ÞqÓû·ÚŒ­6â0¡÷ ©ý©ŒsíDn`Ãîî0ùv6÷f’q‘EéýïÁ­êr{;Òþ9˜Rk8L&ƒ™ÿœ´‡-‡ÃäKºÆ´~ަ¦õÓëCëG[3¢\§>ψð™l\ëR'~qz8Lš›ôp˜4±0­¿Ð&†¤]Ä\úÿ@NÖÂìiH 'µ`>5ÂaR=¦õ/%›ª“úó’VÕfTµYÒVq—Î}Žœ–´iÒº —Bòá%á2ùÚkD6ûæ­¦õoµ™œŽæNïXÓ¹íh ád*XÒ¸»M®¥{ˆÏ| ÝGAdó|É?‘ÊÓܘá./hø0˜/Ú…~!õa©éã`®9œ†dKÍ®õã>¬P:ÒX¡t€¬‡¥6Ã:A:/'T:ŒP4² J™Ö_ðìBëÏ­‡ÖŸ[­_Jí‰kŸ<;i•õ„Ó,~ÚÍ ŸNäÓI¯JfÕzäƒ0Ô~”ªúA8+Ã:A`ˆ—4ÆxqR."„¦öÓGæñšt¥]Ý:ä~!ý"rÃÞå9ÇZQ>ô‹L!C×yBóGÃqH¦‚Å!~©ã˜âß•ô‹LÎ+¿\òçÿÿµ S[%ÖyR©ë<(%ë<»FAòÁIㇶ©þKK-!ÉœT©¹1†½“YµÔæN¨þBêV2š’%d0僓²Õ¦]dl-µ¥ž©ë<¡úãJ§®ólËr‰¦äþ¹vˆ‹ñëŒË†_µ.ù àgxHþBä³p«Ó”Ÿg¸ÒД.Ž–PýS[ÅTÿA›‡ÉœôGKåäG6A‰0d}p‚¬N<¯üªø´‘rút Í_ÈZ$-’z¥ÛÕd™Ç’9™‹·¢1ëÃK:³>8iUɸÈ2§AÊVÒ›’y®ŒÓü·’z‘.mMYè)¡ûÃfÉB‘®…¦‚%-mÏÛžm6Ó>8éáƒx~ò'²>8 CAÚ'kÐæ‰EJ_|Ì¡dKÍEÖFˆO‡òzŠ „å‰ —éE~<Ãe~‘Ÿp’ ÉÁÈâe’W›ð?Õ„K£%„t§‡Wƒ”ª¤UÖÜ}$YBÂgHje†è%„ÿ|Y®ûg0eeÔHÝb2°Ìnd ‡ù>J¨þbÓX±ï“AÛ.úg“Í´GN<íQ*& ïUùåJMîÇ0d¤]„ƒFØŠ«ý¹ÚÇ¿S‰'f´ßM ±¤xÂÚïëÇHÁ∟¨ºÈÀ"K ½6ÕÀovo¤>jÓ/2/²{Ø"ãC²i ‘ëdäP»NÄ÷%á-¹æîîLÒ.2&kŽÄ–ùnDbËÜŸ!ë¢Fúb†ùé Y-eÆOªgFÆq®Ü–ÐüÑÃp˜ü¼"±%ÉlZj Ù>æ¶v| †š Í?}S–šÿgóOóéZËo6Áƒ¼íñÁIÏ‘q,ìè(®÷§ôz?zV˜óÁ‰¸Œéý’úàfÖp’yÕ³…4Y-Gò'áþo#«Ð&[æÖ;ã^;i—Í,Jva©q¯¿—öHþ¹THþ$K>åHþÉej¸ ü C5\&Û¬Hãò9¬Iþéü6É)ÙÒVHþßOù ‡ºu¬±K&uÐ,{”£ø§ÛÓb— KMŒyGðO ôþ4:™Þ¿Å¹ p l‘Ú2×RbL…ŽÚÿÍV^ÂIí 8Ÿ­?9y-aÒ¥¡Pû³Mó¤pFØšÎMðç7Ý?É?]fl“É·¢ë¼öŸæ›)×¥š1ÍŸŸcmÈò‰‘Q”,Î>æOR8Ù4Íÿ"CÚ’¼–/ ŸÉ5/6šæ¿Ôf^„óF“ü«€¦`ðóþŸI‡I&ýl‘éMÉÄB‰‘E™b¿büôêÓÿ9éYROÑÁKñ7ÂW¹«Ï¼`Ó­Lï¿H¥{¾„¯í‘û¿'G¹¿˜Ü/U¨Þod`ù¢KbË—ô½AêE:ýÎ$úÝ‘üSSàA„/GðO?³&øOÚDZËôÚÃ[r©éÛIfÑR›Rü9¾Á?“GðOãäKÇÒüó\£‡»¤‘¼oYè728I<‚²?ØšàÏÉæ?Ád²æ#ø§k?‚?Ik¬çñA0דûSܧӕÁŸ¤m-59Õ=‚¶9‚²©LPè‚°|~²ŒÆÃ@x¨„ØŸg›.ö‹ÉF%ýïa‰.‡aKHýBüÔ7kCN÷)Aî#'c(Yr|“ l&³™9éEÉ|Øçá¯Ó•®8 ÒŠ’!5»Ï€l?Ù{¸cf›ž÷Ž4éyo÷jÚlÈ€eþBüÚ2½ç¤ô‹L~sÌ'N¸ƒðx_ ½_÷•ÐûaS5Þ ’z9éMKÍËfK=ÕÏ÷åÖÃgr=U¹—ÐûABï')R³å·€Ó+6"Sû‚ÂH½HŽV\ëO'§ C«”ÐúsW,YBâÙ ÍA}Xfú¡†ï´•Æþ,¡õÃÆµ~ôf1ìY ©×´üXCn|Kt$#ŒŽdÄÃÂf^d#S1©Ÿõ„Ô/ÄNA±ÔbÍ+ü%— !i‹õ<©„ÔšCê'©•õ ÿid"bQ9Rz«F4_–OÐ "­ú~°„Ð/6Œæk„a Ëú¿³AeynËä@¡ó‹É`-ÝøåBƒY œ”ÎRãï—=þ䊦úòм–¹’矾ZL­D™1^¾7}…ä2Ë·}ˆ;‡Ì²ÅŸCåGÓá.0aÐÏ"&û'A?0À‹†14²Ð”iü“&OxiS Í¢&»’ŠwÂX¾F:Nú™8g^Ãs}%$~! ‡pKHüùM ‰57 úi¤6%ž°cÅ;ÙRO÷Ñ/—ºÜ%$~ôÙ%~…‘KyjKštSÁîì^8 I¥c¾d(Û§29¡“ÖÕfâ ¢n/{ËYX#u°ÔŽô°™ õ÷“@g5~!-'„p‚NüºþŽÇdPl×H¿b_`ĦjÿdÓ®ð áAØ ?He$'e±­Èl™oÅq]Ñå&m¤"⼑¾”ÌÍÆ›œ®¿.m¤5– É—ÕcüK6C<º†ÀŸ&‡5~!3\# ŠTI¾T©xþÉ8}üË&+Æ¿d^ó½ÛÕå})„ãŸ6û²#bSªdË÷ê>ªÙÈÍÛêCRÉHÃÑÝ n<þü¤BáÏ× ~vÏ#¡0D …¤HL$#­¨ÍàÃ{ÂirŸ«y©¡ð£Ï5@€Ì¢dWÖÙ-³M‹óí ý"Kêéä¤\¤I=]‚_×øAÖ:©éMK!a­“½i3ã+0Õ3ݯóÓ™ñ˜žàdv³—,ùN5RÐmž%¡ÎŒˆW?›yœH÷öŸ¼Ýî6É¢üâ|ûg:®¶·A)Æ:3¡°–p›\ó#q^Œô‹Li«0»™ CëÏ3´~! QK¸ I¥k™ÖO‡,—Û˜ÖO÷ ­¥ÂmhÃ8/5´~ÜËmLë_Jš<ÓËmBëGÍ#Â}?—eDv3ØôŧnCN¥jhýhý¸ ˆ ‡¦õÓýJ¸M¾®¥ÃahýèáŠåt]á8ÿ/;Ú¼ m5”~Ô²=ÞK®eûp˜H ÏIõ¼¤*¸Ê <‚Íí(ýé"ëå65ò]’,:d-:šÜ?” 0D=rÿ· gd?0©Ìôé¤Jo"Û%m&GºPûsÅM"žiELFa½-‚7%Ò™çÓI¹ƒ7ÕÐúÅfóGº \a¤^„+¢F–¼3VDSÍ“ 4ÎoBë—z<˜ßÿ+´µ.Æü4P»ÃBah`øÞtfKÃJ¿Ø0æg ¥_HU_5™ëÿF6Ý®…Ǥ¦_Â_… µàÍ _H¡k¶"1? ΋ºK»Ü%„~ÔR}Ì-ùæé;Š£¼ÔùQ¯«–BÄ]Z÷8/$Ü'd„‡‘9•ìÉR.óçqç9.-f$mO÷aF°OaÀÈäÈ?ÈbvO'Uj^îÓÃ"Õ9.IŠÔÞB2®z½°†ÌŸGÖ—p§†ÌŸÇÑÿª;›ßÊr$»ïs?^Í"axñÒ®Ô<~IÃc`¦ÑcÌ`ðt%0†«z¡ÊRe«[J•%u•ë¿7ƒÁ§çPÙÝ€½1…Î÷S\’—÷ÆåÇ!&óû¡IÁ®R x*R2‰ßz?ݨ Á1ð©D:òZ L.§)ðÓ5•ÇLà‡dÍ[\Y,Ä¥¿£4Û>Kæ,î¢<›>)™ÄO©`H—d?ÜB±Ðf@JeR+V9‹'2?$";(ÁèÉT~°™*?‘¸‘Bé˜ÃøÜÍaü]´Ùúys_‡çOTåÇYUù77’ÙÎÙ&±—ÇCóæ1•ÔôŽé†¹G×%èìÂd?]DÓ;&ñ¡;°8—>á8Û?$½àU‰‘ àR÷½P @%%0©¡^£*üÐ]~ •¯RhÏ´~Ÿ/‰IKâ÷é˜Ë`:ÔgT?2IØÞ5^“–Ê„ZÀ¥ò»Üû™âz)‘àÊ•¤2ÿFÈg)èiªó£¾·t~O";õEçy8Kæw H·ø–>+Žo©$B8"%¹3tÆn>ãm²…4’(/“ù}:äNx4îøydп•ˆêJÙÈöõ–Àï*Æ~u#Ô¡íæ0># qéF¾ªð£ºÐ+Ÿz³ÈíÇø]eþäàöiÉüneÉüHLgªÊS$Ý<æ˜"ɪòG&q#y#pzo^"ÿ‘U^*¿¿(ЬN^2?^UÛô†6æ0HRƒâDœÖQÐ@kÈKåG‚A\òRù]2&òãE&Vò9Ói×JpÒDIé|UÝ® ͪòSÊ…¦uòRù‘`—¼T~B[ù””Ô‚éTúyñŠŠs  ¤`á*v—Äïo²aT&%0©é‚YõéÒ¾|Öz+‘À¤+æ¥ò/E°à–®&–È&²™t˜íϪñcýs$…Ò ìÑ!Ð4h‘d %_þ)î‘’Ö04Û@w[›Ç R“º‘NYe’5ò’ø‘”Îg÷³Jü‰Š\f@¨¿ëгéûn­z6}ßíŒÈ¦ï»]Ùô} QÁ¿ÓMJd# %Ë¡]4Q²Í/ÔtJvº‹ÛV¢w³+‘4Ø ›U݇í»J"liÈKÝG¢WaࣼÔ}$©2!‡‰ÕÒ“8›@$S» Z(‘4VsL4ß—ºï¯2ußçžæÎãTqù‹sÍArÂÌt~½’–°v _ŸMÛ‡çWl»Óñ® ‚ç×+éè qs™(´åG îeÏq¹Œ#ÕÎø<ÞnÕö)å©í©œ _ŸcÃ3>$ôUöÑKâò—SÇ º¾¿Ç¹Æ?“õ‘4t%ë»tMÖGPÜò£¤ ÚÛÌ~” û>sö]—°ïI¤mrJbe›,l#•IXž4AŸŽyŒ¿Ê¤}$xħ’Ndjûþ‰§Lg*ªçLwNËg\ m= ’‚’ ˜—¸ïm„ŽøÌ&îC™…ÎÅclŠÒæ3*îw&¹óU²ÙtJ§Ẏ£M0ußmÎTR`ç|6uHÇD:ñ©$£3¦Î-á XÞ|¦†pJû¾®TÚ/LÈ£—¸ïžf^q-'•W\K ÔqTy”ï¬ú>ô ³­†ñEvë%ï#é”U²ž­Ë*qC˜Íiðª†Ã1}6ÑùTâGGW‰#ò²È–îÖ—ÂïAõ'J*ˆêJ:޾òZ„z¶KâG‚1póùÝ0$WŠ}”—ÈL5ä%ò#é~N2g[sÌ,(Á™~%¥c2¦ñû«LãG7‚ú†’ ¥éÍ,—ó•W©õw*lQ`nD >Ê>fÓ÷dÂIØšgG,®¥¿*âÞ ¸´@I¾¨1wA’Þc¢|ù"ñ»Üóôgocq-]u²Æ¯¤ÂÄ¿’óš¹Ø‚˜cÎR îãËKãG‚³¡¹Èôg$q#8ªDæ.6êˆù Üǧ¤$Ìkiü`ƒG¾hü/“yiüH0^»’–±V;M‡*‰IÞˆl¤c^Kãwåa‘?/‘ß½ƒÀnª,~ÚæŸcŠHþ¬“VÒDŒc–MßGPpzeéûîk¸ô}o“hƒ’Œó"b.ƒ¤ ^e.ƒ$ æe¿/sæÙ%ñ{R(F¡’„Ã11Ÿñ¹ º2›Ï ‰É8¨T‘#Ö:K¥Íìy‰üHpÂV nfWÒÞD›‹W\Vmú4êתÄ#È%ñûœÌa@¤Ú¼~,TßïN>Vó0i8q¸Ô}÷,—ºï §ò>ÄÈU`‰û>ëhë6]*ÑfB]ÞËc\Þw0äŠ>fê¾óÜ2ù¢î­IMÜV jém2j J`R½°§ # Å0yéû>Ó÷Á¤Î—/òþñTy”¶¼ä}×¶¨¼íO'Óø/nµÕ0HRÅÜÍQÔŠW‘¼Ÿ—¼ï‹lŽâ“±p–H‘µÆ¥ÓiŸ’²‘º‘Â_Þôý¼ô}$°‹]AÖ®™·¸ª¾ßáÙ4ó÷lš-†ABmßÒ÷½éûHJgÒXDK_œdB·+²ùŒÏ<]á3[Ù–¯ÖD¶î¬»&ã>ö¼Ô}¤Æ­$o÷±+iàeÍ@ È™—´ï“òfVö¤Š7PmѦ«Éj ¼œM㮢Jû•m2=“ö]æmz³ÇÒß û`R*ÞvŸ’ޤŸiÇk^º>ÚÈFŽá–®O|P‚ ¼òÒõ}îN|ȪëÃþ>%i#e#¸‡=/aßçžxè·„ý£R;ûÊ’õ݃PY¿0!oék1ÌñZ ‚ß>\>–MÖG7¡lÌY¼Ø/—±¹‹ûfôµ®ªè†ýe û¾î*â’—®Wwç>ƒXBFæ.þ¦-ñRR©rá’UÖÇQœÊú8Ò[º>\±Y–®äU–®Wl*‘4øx­Å)I)©I'iì§$'&8öSÒ2Ú¤©o#‰¯JÔþ)©™IÏXB^ £$Q:™Ú?%T…3–%‘¸‘\0órUts1ŒOÄt}$e#š¾àêÅ¢º~`’¡]R‚[ÊRö=±µ0þªF'3•%í¿ø^YÊ>&Ó)áN>­~P"6—q&Á\Æ•f)ûÇE*ìW6‘tðû–Ǹ”}÷èTÙolSñµ æ1žÄÙ út6Yʾ/O¤.mYʾ¿Ê<mp‰WYÒ>\·YTÚG_ æ1î}DÐó–´ï‰IûHbg‚Ìc\N…nÕöñí›Ï " è9 cª²OILiŸˆl¤LgƱó$sá&\U7‚g™•ÐͧÍT÷!e[ ƒ6ØN—x¶†ðxâ™B%¸pS N‚*Áa`‰ÁŽg‚=Û²Ô}WÂ¥îû¼"õl•Dt»Ò‰4 ª¤¡‹,ußÛ$nc¢IвÔ}L§É4,Kß?¾D1Óbg%-ƒI™Í O¥p3m9Œ/q™Í 6SÝ"´Ì»,um :~œ^ã/ª¶áÇ]Tñ@¹ðE•å¬Ò>Üä”ö¡(v9)iq·ý{/ýp%pš™‚ŒÍŽ–æpÊ÷Ig›Õ9®Rq?°MÁÌÓ bI¤SÊt %ºpm榔àùGEÕ}ÊËÔ}$y#uK§1ñå± –hS6R‰d:ÒLILl“7"[:8,KÝ?r*´ÔYIÉdRÑUÛïHd6ƒ>ó´LXh‘w1iß›˜Léï ^²¨lÐ V^³ãÌ\Å˜Çø×¤] _ÔТÓOR4Љú†ù‹/ÜŒ_é‹’7Égî5ª®›÷”Ôtì}.]ß§è8³²tý£:3ë”%oî’Í]üMD;› ®"wÉË]Ž S]u)K×÷W™®„zéú>÷<—¬ É óZîâÊ“ç’O ;´ û Ó)ìÐKÙÇ«:±¹®V…Î(T"è›Yl–Ã=öj j¡ž­*ûe¿ä†ûÊö‘”ྒ»íá‚ç*Ù@åk0#Õõñš¥ì£MÙ̲•ìà£ãÙs÷¨¸/LðD³²ÔýC2)KÝG’^i·’ š^Yòþ¡é”b^ƒ$G&‹.•4"ù ¸—%ï¿J òfR·dz‚‹Ìg¼I±Åή|æ3hS‰m`P7‚§Z—¥î#ÁóÌÊR÷}½W;Ï HÙHÝHï˜W£S­•¤Íw0”¥îûûêtªu),V*) *,«TÒ‘ˆù XÁ©Ö5Óö½E°õ›@"%kòþ¡V*ÁœJ:ó$ ßUøý23U°8ÉŽ«!¨Q1ß­ŒS"¤Q]˜Ó A•[I‰lƒ‡Á+é”N¹ÂõóÅ~(s±ãêá*\äV–ÀïË#³1D›ŒÎ&æ6®RÅ–oºdLà÷ÉØš´)mjc›Þð&LàG¢K½ÈFZÇ ëá. -&ñ»%’JêF0ÂC©gÜÊPLå÷Y™ÊÊüÉtH'ØÒЗ… J6Pà=™ÊÉN¯‹¢…a5J^ãÖº*‰ôDIö¡S„_/&ô»x+Å„~H&ϸ-Hfœ#¸ªV&3/·EAŽ„A£TeFmA!ĦÚrD•)¦ô»X:JzBR),­’´‘Q‘•`XÚ¢J?¥<=ÊÓæ6¼J(åfÁ;ÝUBò*I™ ¼=¡Î6I›ëb|^ƒäÌD ‚R1­lÂôiw¦õ“MÁÌñRÒ!vmiæ4Hðζhh‘,D»3IÄlòfS“NÄ|Æßw¦íJ bRR‰”éÔ‡˜ÜO&]Ïä~"3ØÑ‘Ìæ5ÍY‚Ia0ãÝÂ5R©¹ÌÝeµÈe®n*…r.&øC­7 c­$6&¹ñU²ÙtÊkó™Ö)r™’ÒØ¦¢7šæïS6ÍŸHÎLß~Õü‰˜Ï?@‚ÀdÅ$_•ü)«`NíH¼Š 0ˆµÉlÓðýï›× ’l•AGG3Á*Â\‰€;L½ßÿ.ܪâ/~{‡mÑF6Ò±…3ÉÒŠá©D=‰¶‚®™6ÉH[|Êu¶ƒh#KX§Kû«Åð,¦úûž…©þr£øeJz‚Jµ0–þýë³!ôOÆ\I·ý!rŸ’aÅD"²‘F$X$K—×ò %óUµ³úŒ·™ËdŽÊP!N´˜æïjPLów½51Íß=-1ÍŸl ƒ C%ˆyÍñЕÀ&(‚éN§ñ‰LÁ)Ö±;‘ÔÀ¤Ã¾#QÅÂÓ*Á}JÊfÓ°R4k1Õ X§[ûŸª?]…N#£ô!2ÁˆÎJJÄ6;ÝÓÝE³á˘UÎF„JrÄ«º­|‚Ì$˜†‰$6&y#vÜ*éD‚ý;îK…ÿƤl7ŽK°`–H"¥lnƒwô)i”r¢!¡’Dé$©éIÆ!¡˜îYM “ˆÎºÇ •$¼¨àöv™²?Yt2!¿ b;a4|À•&R”DÁ¥ÒFX%8‘"&ýi´¹]–ôïó2émªŸ¡”¥ü3¢Ê?ìmW‚Ó£J$B2í•%ü³t²„´Á3®e ÿ.ó8ãYºA‰Áöô9›@Çâ*˜CUÒÚD;¸Þ¥íàz y#²‘B¢ÄÏÒM®+I™m ìÍQR7Ò‰d;áHÞˆd,a¦ƒëeIÿ¾6LúG‚û”Ô‚)Ú $Q®"ƒŒ©ÌÕ2ðÜzY¿·©tÒµ’í¢ð™Wš•þÑ#b£3^”Àü¨‚†®¶ÄçjKüwNlê¿ÿ‚,õm¶bªþÃþv%i#e#èÖ*þ#xÒµ,éž!Kùw&‘ŽlR‚S£J¨!Tá›Ø¹!\¿OÇ„ŸŽ ÿxU혲E³D“¼ÙHÇ”3ñ"©pC¸”´íO²”pnýèÖ^Eúñ=WÕt %H½Â÷|€Ä @>Õk:ÜgÉþÎç–ìï|9YÓ J¢ŸúP€G)‘tpµjª¿{\ÕT"د­¦úƒM¤Ÿ6Ó{Q"éÒUÀâN§ñÉ&:¾¢šâO¤Sa2vjäÀD`rD n­ªù f5WÊ@UŠæRMô§t:Ùyu]¢¿¿Ê|Æ?^¡ ïUE˜šT¡µT’a‘ Vý][]Mô'‚a­«‰þn&YImlÓ‰tН$'LÇ|æö*ÁðUEÿÆ$n$oÎ;«Kó÷&à*ÀÏ””T"Sò÷ÉD<ɾšà ÒïÖ˜néêEÅþ¤Àt‰˜ð¯ë¾N¡’Ȧq¼ÌC(ØìP/Bÿ‹üSC!Á»N¡Ÿ@YNIÉMI'bÞ‚$S:bÙ¿ˆyJð ûªZ?¬=Saéy ¼DF‰.âAÒaAL ¶DÆ§ÓæšNUÓê%R)÷>×túN±ŸH†C‘•HcÒÄé-¾~I »))‰mêFtM§+³©ý—-‘qe6µÒ vèõñt"/‘Q;^éÐk%²‘ž‘$;ôÚ•g-‘qy%:–»šÚ%¤ÏØ–pI¶C¯G³z ¤û•p5–+X4© ±E¡D¦ÎwThÙ[BË¿”d|“£yÏ\æÞoc^ãm*­UR“º‘N¤Y€ ÷.5ÛÕáÊÜæªN$-âóít˜½’ ”dPÆ•ÈF:l5ª±ÿHç"ö)°¬MImœNohLõ’ñk¹$RŽÑHô`´öj‚¿—S¤øUÿŽW%Šÿ w)im²¹µ³ÉÿáxUUðïlS Þ_“É—HRÁÌÍsüm•+ü &¡ŸW5½‰¨`±Sr¶?U íUMïG M¡K¥ZKè*¼rK˜ÖêWü]2¦÷@‘£.½ @ªKïwÉtZ¼£¤û¥5›·8UûaE™<Á·.µßÛ çR—ÚO‰W‚‘½”·äˆñ¤Ä&e#u#“IÎ¥.± ®xSÒ ÿ—-¶¥¿(Ïa ’¼‘¹†HϘ•9‹¯œbZ°¡NíÒú=±—HâF¨÷8=s¹‚MÄ5W<öZA‚éͺ¤~7úYR¿ë䆗4Ûêc*aÒ¯2‡A’¨À½®™È(Á_êÒú‘$Š " Â)iDÌeüUÁްBÁb+d|î¦õ»JV­ßOþ×%õ£ jJðüO%xTnU©?¡M²_\q©uIýžäéÓn$¿¤~$άKêGÒɦؑ/.B'Ÿ)¡É“Më¯Kë÷6¶@I¦” ¬›Ô_ «–JÎ…”JÇ*ihÒðï´:¦.™®°¹ T|‹né+o*ýn†C•~a<þS |VåL§ùÖ%õ#ü”4LyIýþª@Ÿ)ÁÙ~%x¨<-°ªÔ_Ñ&ÚÁgG}-©m¥œèк¤~÷lÄ\"ÁƒÏ”àŒh•L‡ú*IèibËcÇW¥Ýj)ý¾€¼«"$v+‰³"ùúÍ¿¾ù_o¹žµÙ±§Ðߦ^g—d†Ny¼yûoo?¿c;ãï·?¿ oÿiü÷û7ç·ÿíM˜ÇªG¥ûôþÈfÍf·z!ç>èUÔ-›Óó.V/ÄY%UEõ!¿X½gÅ¥pårVç·Ÿf¼Õÿ­ÿûxÿöï?¼ù›ßè(o¤ª 䇯ýN“·AƒÛh;¦óÏãùpÿæ›ÓùÝû Su; ®¿Šîx/§p^?c?æß~ûáŸÞüúèødÁ#ó¼´ûrìhüúU«Öùè“€Õ”û³·Z¬z¡³ZÄ[IT…Ú-6«¤ÎÈ•ý/«Y­Õ÷Z½!êVCÕ¢4T{¶ª}?ºŸïÞ§óèWÅÓûñm™?´‹§¿ÎëW’Óûóü[RoL§ñp^©éõ.¤yf]ôÚÑe¼ùS…MoÇË•âøð¹× êF]ÝϨKÊ,ëéùñúãÍÛ‡ÞÞ=|úöô‡oß½ûðûý=Ò“GžïÃÜØß~øþÍééúþÇ»›'µ?j#ŒÒìÚŽÎþð_ÍÁ'<ïì_¿XìáßzrjßbWìñÖ(ªMÌÚý‡wª¢Œ^áx=o?ýÑýz¼•9÷‰çS¨ÿùÝ{=Ψ÷Óß)Öf¿ØýN«Óà ·zzþÝLFºôÓúó¿üê_~µ’;—y·‡‰Þ÷úS?ýðøpÉ7ì)ipà~º¿~ütûùøÓõÝå’rúñÝû¨[a[>=<=ß<Þ><é}?¯£ÅñïÛ§çÇÛï&È=J;ýÑýñùöáóʯ4wsr)’™ÝÌWLg~5²Í‡~óá?~s%›Ó?çvúéÝ,‹¤ÓÍã“Þ€Î8õxz¾¹_åU=þvý¼j~Üܬ÷ñ§ó9Ÿ~|¡××÷7ãv¾š9þÍoFóàŸ®¶;¢Ïx¼LßœþðnøB:ŸCOfï‚.öêãm^Ö_]òKZôùï>JÌu¯Eo£îž?þ¢9¬?~¼{¹³zºùßî/—g‘õþoïo.3Ÿ·ñ>Ø"¨÷:Fc?Ëó½{ á…\Ü~}yê‰MçxºùIÓªl~Y|<¶õÒ+8¿t—¿Èéú‡Q±—äúé»ÃÊ¿î…û+ÿöiýé2Àq[?û:{¼¹Ö[;²gÙªs`­¯×_W-X—£ÈVs”UÊñN¾ö&hÈô4F¶þMˆ½…^{ÂŒi¶l¯W¹Î!ák¾îÖ~øß|øÏ| 3Üô西ñ MùÛÓõ³V’®­>]¯:ï½f)çYO—È£†>Þþµ«¯ï—•ÔKY†O¬ªpC*–Œ¯òº¥¿·—1¶–ëéƒÿñkÿãÿ#ù¿u?^«@ÝÐ=>¥+»oß]Ïd½úNÿæøçue{f¥ÈzéþpýG÷¢>¿{õFµ¢Ã‹Ç?ûB?ú×þÇGÿãÆÿø[ÿãü¿ûgÿëë/Uâkµ£«ë9/Øj`ì{{ù”NözŒoòååÀÏñÓËP†Ÿ|v‰Üý²®È¯}™µ70† BïãÃwîCòtóøÓ»¢Ãû2^Nûðk”H}Ù>>ße+ly>?©E™ÏíçÛ»;ý•ç+üÝáÍ7Ëf¸êõlF#=«¨®o﮿Ñ%ç'xþ{x¾+¯½Q'öÓ«oÁ'ÿãÇ?󤂎V_Þã¿úxwýô´Ê1¾ª£¾Þk ’œ~óñy|ñf€¥¦÷¦Î{Î) z¯¨·³6´V‡¥ÐcyºÜꨢ×/÷ú¥ªÛ^‚i>>Ù®t×ö¨£žp9úø¨Ÿ\ÃúøðÉ>8³µ«§æ·6ÖõŒ‡øÒ­™MZøÒ—6¨>7Fy›Û¤šõéJûoïCÐyÝN%þð»—k!tÞ9Œñþè Œ.ÒíìMä³þí]‹ûa]1ZÅk×ÚùVäñáú£½ÃÉ~gö½¤ÓÃñ$¿sOòùúúc®£w0q×#ÛOŸé묽ri¯'~òmä§UÚ‘%çç2 óO÷·¾ƒ6{uZ¸žOw×þ/®Õ9Í–{¥1_(+J:­.ÊjÁnî¾_©~ë‹™lÛ>j›}s雌qçåáŒç<ŽuT6<ýúk÷™ŸÅá²¥gkÏ¿ÀóW•sôåWñ¿éžK=Ý{7}X?F /ÞœºöeÖ_B“1Ò¹ò×Üúð³§/^ói&Ëé¿xþ^¹žC öB¼šÇk_+äýXŸiov¯oZçñ¾=ù?ü/¶HPKЊýòÅ¿ÜAmüWþGøRƒ¯f³fR=ýÏÿ·EƒvøËE‹¶h£Íz­“cµþë¿õ¿>^*Û~F' ŒWÛå3¦“‡ÍW…®p¿Îç¯ô9êp;øÓ·ï¾r?­!^Ùà·î?½Á–âé7_¬Þ´Ýµ.d®øJúæ »?ð¦? ™~ãj. þ{ÿr9ÑìR®¬øóE¿¹™™²ä?Õó?þ²>ÙK¹F_âöÙ?¡™cki4o÷?ú?<Á+ótë}z¹ÍzúéÆÿåñHî;Hàüí;z¸aœÆñb¬/ã¯ü(íúe0üÊdÀl¸Ó/»6þîùÌF'ÚHj}¬çµ__>ᣃõ°Òy%u5>|Þ±Ž>o×Ð>FëÜÏÅw)ö–n%ùéæa åo?èÒ¼MSßÒÍÖm]kIÏã}݇w:Uvî/S :Äþÿ±å9~üŸÏÍxzåšW¾°àê÷>éïüû Åù<¿¥Êÿû½óŒpÝõVÓ¥Šás|½þvU~ì§òÅK|åòW*¾‹íÏtïµXÿýîa\bžcoÓÿæ—tþyôÿ¤Wå»EÜôÔã L­}|¾]s2gY©^zâ3£Çf{¦3†M·/å½|Wžë§Ž¯×ÏŸ—µØIÿ™×äå4½Ì]Zò+mÈý’O0ï´Â×£K½z›·O—¤Çkÿóí¨™—_0ˆyxúҼߜé©|ßp ˜l6Qå¾1È WÁ~è ßœZœ»†y¸g&#»¿>jùé “ºÊè2¸ø¿F]µñ2yô“XÜ~òÂç9ŒšÅ.§oBøíœ÷sTõ¾ß}©I'ø¬?ß~ôs×s­Î!õƒÏÁùüè®ú̳»õzrÏ—²TžXu¨#:?iðt{y"úŠV›t¶N‘«p«›RÖŒäJu=NÊ”éC÷k¼¢ÏÆ}ÀçÜbΫuúdYé`µDkqòæv—o?ýÎ&E¢MŠh2úÊ}Þ͇—Îù’iRÆGn6d£Síjöã„ççHOGä©[ïsãfG ±s±/ë>wðô|ýø‡•e²ù‰™PÁ›°¢køhz{Žç8¶Wú8Ç(ìæñ騚¾¹¾äbUõþ¥t}ô4\­úAœ>GuÇí¡é΄ñAxuì>g×wÿîçcÄ}kCcõ•ßMeivü4þ/+¥Nw·°ÜèŽÞÜ]þÖLæeFúólªÇÍÌç©)ö6gÔxŒÓ¿÷uèœäña¥’D =ßØÃƒžíŽN×s0ÕrÒOº{ðkj­EŸëüØŒ‹žoï/2>AOÏ~VÎÞ˜ñEÑžì冿C×DR?Šž_¼~ù0æ—>ÇýƒÙµarß öµÒƒÊJ7s¦{õûf©×¿»qUõr-9ÖHçè²=\ºRã3ñiŒóGy­Ã¤sh!¡‰ ¶’çÐä”ÏNbû?ÖŸŒendstream endobj 285 0 obj << /Filter /FlateDecode /Length 14450 >> stream xœå}K]G’Þ¾öÞc 8¯O>OfÃcÀcô6faOËð¢{E©iW‰j’êyüzÇ닌¼·X­îi¯ TEÜȈøòù<¿»?.éþàÿìÿoŸîŽûïï~w—„{oÿ{ûtÿ7_ßýû¿oí>¥Ël-ßýÝ&I÷g¾?‰}Þýt÷ë‡ÿøêuKõr´óáþ³]Žr>ü‡W¯ËQóõ|xm"µ<¼üÏ‘x‰'%Òè¥?üù‰K$¾‰Ä›H|ŒÄ¦í1ÚùðEß~óðŒsJ|xu\fmî)>|ÑÍ/çÀWȾô¬“Ï(þÌÆ{”±?ÓÆ_Gâo#ñŸ"ñw‘øÕ/·¼x¨øú¿ÝQÉÖÚÓý×w÷õ_]ׇÛ)gÍ(‘26V á%°_,‘~zûLQK[&ý‰ovÙßú°U¥:s×Espƒ:Sß½þËŸW~ϵ’gêõ§¿üblNÿôÅ<جnî+´æ´ðV1®(TíÌÎp¤^òîÊVð[5M‘øE$ò•­^reüw¯^×^˜½ûúî‹èÞÇbüö‹i6¿ŽÄßGâFâ—Ïå"eÃ?1¶^ì›/Úÿ‹/öÏ.`îÅJíuW†rkýáŸþ¬^î5üôcmæëô•ý’ú¢³ÏuZò?Óó-G5æý)MXëÄU+ýæ‹Ù°éúøEg6П7:~­ƒáûÏÛclùGƒu>3j<>PFïã¨ñ.×Ïí¾ÿ⋸*ˆ›º®†¶ ÿî‹ÚnaË}Ï×\û“Šÿ…"ÿbþpUœ¨ÿ+²#]õ5?~Ñä§/Zùrýÿáê'-‚ñðÉrFÇæ§#õøNêf9Û%ƒ‚ݯ¿¥÷Ó_D™ß¼új)ûîý–ü1R"õ‹¼+C¿üúîHð}R#œ÷5ejå¾L2žËè—qÿñÝýÿºÿA¢ôzI•\»ÿGŠÄ©Ýÿoâþ—»Ôr¿äv_[í—~ŸÏKÊcRÜ>I>Sú»¿¹»;.ƒ—’3ý[‰ý=%låRÆ–ÔŒtiGE:2›úq^Ú¸1ptb×— ôR/gBÂ'bôtŒÇç[’Ç»ß./Æ 1âÖ‹”/-½ä…Z”ïÁ‹³–KêÁè-cK½8©¤ò¼õ¢õ?ç<ùÏåÅ ²nÁÆ-cO½-]z¾õ"Oj¼/y1Îq9[ð‚ºR’ Fo{’èÅ,™"¹k/ædùóbvj gôbœ—¸¦·Á‡L½È¥”¨é”s¾àC¦ý*E>ú¸´PŸaÄ›³]úMÍœÔ<ŽùR>ä”óåœÁ‰Tçe†Úÿ cK½Hg¿Ì›V:©JÌþbN°K ­4ç’.9 }†±%‰^ä6.%ÝÖ̳p¾äÅh/ 7ìPæ·Œ=Iô¢”y9o˜ɾäDéýržÑ‰Y.cF'n[’èD͉ƈg¼È܃¼àE­ã’B#Íž]òFo[’èE;ò¥<3:P ö ¤QÍ©#xѨë±.Þ2¶$›£\úíBÿRyÉ‹žˆ+g/çeÆfyËØ’D/z§ p;„ÐPÏ-ç%/¨ÌRl¨gš$ŒÞ0ö$Ñ‹“8åvá:;_¯óI¨…!$ã¸ôØ.o{’èÅ Ãçmíä ã|Ñ‹ÑêeÄÚ9(b˜±]Þ2¶$Ñ‹yÌËmoQ¨»o/V‹Yú%ÅÊ9;Å2Áä ½%Ø\˜Ç\×>Ðää帢‰âŸ¾|(Ü]z(òg[’àE9Ît9o«f;¨Ý¼4¢—ƒ†Ûª&õ’=t;Ï0ö$Ñ‹Dáq[5Û)•û/Ò °(4Ó’)f,¡&Þ2ö$Ñ‹L1`½í¾Õ¢öR—U¨é‡н ˜±ŸÑ‹Æ–$zA™q¹í±z<æ¼àD©9ôGäD¡ñµÿÆ–ds‚BÀt[9[•.î/*“9´ÒR)d,¡<ÃØ’D/*uõv aöx©ß,‚Éšii2ÆðþÆ–$zÑÚ¼ŒúL¡NýżhÔ§ÍX9»,_£7Œ=Iô¢S˜n*Àý%':…“9¶ÓNÑHŒîŸalI¢'Eõ¶Òìä¼8)žìa)'E1º†±%‰^ êœÆm)ÔD^ŒÿË(G˜8ƒ¢Æ#ÖÅ[Æ–dó‚¢ÀgÆ1"Ç‹ç¤p²Äv:i®¡s~†±%‰NLŠÛm;ý^P<Ùà R|lþ ã*Ið¢õ¼ŒÛºÉÈùRµ¨ÇYeýÁ½ ©$/,/n{’èE¢(0ß¶ÓJ-=½”5QS5©]—&†µõ²­XÔFQcl7ô– úÐ)ÌÏTLÒ_Aj§h²ÄFÚ)óbpÿ cK²yA1`»­›™‚‚ùbWqææ äÅÙòÜ?ÃØ’/¾tì€*Jç°7œ9àÈ´rŒDƒ ù®Gҫד‚–QÈÕ1_½–©Ü(DžµF²çl9y¤ÿGüµôs#Ìm'S#²r?ÄdF5&ZŠ¢)o)ÓÑe˜ð–{êAh–΀2ò}¢~ªPS’è÷?¼âÉáyŽ‡ß¿þüîéÇûß|z÷‘Ð33=üþµþ9rxóùý‡îß~øé‡ÏŸ |ef¥ñú¤L|î¢kxÏ ?½úšW“ÓýkÎð”8œ÷ ŽFÎìÓIb²h-ƒJœƒÑ&Å&T¿ï~õœP£#´Õ 3râÉR2N”jÇì.)p6©B *I2Î&Õ«×AÊ8›”á RáϨÁ+W)„IëRûHM«ðñêu9¨N§þ"2w^s>ÔHt'Òù0„à¸:ÒA”ï$È^‚ç9››÷¥ŽJu‹f.: ·ý„/ì%8h*ª}'µº“èÌ­NFÍ_éÒ/×pê­úAÁw#\}o\\Îñâ ¿RR=çëù”lçÐI½¸Ciç’¬‰ðúçä&Buù8Zºm"'–&>¶ùã‡OŸ9ajï?|¼ÿôæéÇÇwŸ®2ùYÏò—NKÕƒ²úõ·¯xè¬ç$ßÿ¨ï^½®4ZÏÑÒøÅ«×§8?þó‡§E®Ï>Þ|¤þÀ©ï9 Í^Žüð›‡Ï¿]?D¡ðç»oåïy¤”䆦n t‰1dý)•‡ï>~xÕôÐѤéãùð[ÞÓšmêFÍùC/Ñ€2ëè’—”ö9ùmððÓçïessvã~ ®q)q*Þb T;€RåÞAaÄd÷è¹pqÓ®×òðîã§w¯ž9¦Ä½ùÙyó›råã›ÏVÔÞ¸ 2/§Ïòð£sß||óôŽà|ek-[qÓ@t¶†=ÃÿðÊqP?®Ò{å ú:æÑ!ýÙã'UÔß<˜[­¦}™Ç*ÂH¥ôŠB¦£Ÿ¶aj¹Oå%“¢fœŸ?*„X+Ù)Ùøá›Å¦¦òûWÔØÉ?k!–œ·‚?hÎèÎ¥æq¡¡ˆšê:έä>QÓÄÔA©c0€\:±2¾ù ççUs¾N² Q©7EQrÞýZЧw±=}þþðoVArŽRVÝWú›Ê×Y¥"O>øøÖŽéÈooý×óáÝ?…_8*º§wV'’Õ›ýP%Íî: ÊÏœƒxö  œƒøÏAlçÎþÈÃjÏüòϪ¡Ë÷ç·4ß_üØÏé`ûÛF4uˆJu6²(ÔÒ ›—†,YôÂÒP¢ñƒsšleÊRn9‰î™ç ‰àîä[JÐ)`A€w¶sPZMH ãèÁÒÀËYç2¡$'€€P°£xËͯx¢O¼ƒ£ø§È<M©ÕÏ"ÀNžó‚?ys œ²n´Ò;-88ä' Û®€ª:ŋ˂ÒL]€ÈWƒ ¥šy x ;Ž [ϲf°õ"+Ò®µ×¬íÈì°¹Äĸ`@«€­'©?Kƒ.A.Jl./¡aÇ¡ØN9y±φuMŽMúØÍz7àÃÜÜkCÓÍ9Í4845±ÁÀG(ØQlȸ  .5 “£ c!«ç´ÎLÌA~CÓj" “s{c!ãN@+¤šP2 sø; C6dï€ë°õà$>0Àfd¤’ZÜ­N6#øÇ"‰°^Û’;­Dœƒ§Íš¼Î5jŒE *µïî±&¿B°£¢z_#(^c—>Ü”òbm f(ü —‘Ü!ˆþˆ‰ÜÃÄ#a!Ç”˜\ÂýÕä»ÿ iÜ4®qÕ¸&Ÿ(Ý»…­qƒÏȄƕ®Wºi\io\®mg^7.ø:–­qg׸i\ãªq™Vo\óªqÁ/o\éªq¥›Æ•öÆåÐvæuã‚Þú®×x¦qwÈEžˆ,ÉaÍ¥5 ™Y%#2p¿MÓj" +:r eL^J„ #20¡à …!¾lip0æëçk"-·rr˜Hp¬‰ôHÃN1hr§}"í{z›&»5‘†˜HÃC›Hï6XyNž<X…qæ«$ŠÔ–U%,ünN#9h3`ñ­Œ3-\yT¾®êŒ¸ ±œV W uA“ã2¾¡!8Ôód;VK±ñhÈÌÐhñÔª"$² ®´ÚàÎá“ð÷K/*Ô`Ci©îæ…I,¿UÃÃ&OpäÒp$Ú94/¨bÇ ­Ÿ¼ä,MDj¸Òâ©$²6(0R-ˆ¼2*¿Ks¿’—“𗥘¹`î¢i¸±ãK¥D`™—m.šñ¦¸›5:àr õéA‰þ+S›<æ‚•yS6ýJXpMĽ¼’ÔßX^T_RÀU²Ôà•Ù[ 2VP`dB›ƒÆï³†ò:äÎë2 t,/“pMÃ6¸RfsèmçTü ¾sÒu{r§U´:ÍvilNg¨ÚD\è‚YÈâ²4î(/f 6”–Ì0/ á~›†dž-ó›@¶Lcn:6~ÿblFl.až»§ÅFÀFñ‚å†ih]s6”Ø\^BÃŽcÃvt©´¿€TB¹rHyÙ5:`s óÜ5€VÛÁ‹¡Üøº¤äl(°¹¼„†džﵧ±%&Ê\Ø¿C2–]£6—0Ï]ƒÓb#`Kz¿eièO:,Jl./¡aÇ¡Ør•Xì×Yñzs2 š2xRæ3\|íR‚„bÝ‘Òâé)çÀ\¢Y F› NÎW\{&QµÙ0šS˜.¿¡aDZcëó#`K§¼C´ÊÕï`7y)À3“€çÐZmDl|Ñ9bã[ù›Ò$à%4ì8[å=…œrâÎú)0&ä…žM4/9ÄO+{¥Ù* Ó| Ì%N«OÐà´˜ààðÄ„ý„êÏeÂJK^˜0'¡`q­y ˜…˜FŸ¥˜Í01¯\¼v  ×<Ìc Á¦)nÃ'2î$ÌI(Ø@(.ÒÁ§gBÿz·.Û°«÷;å%¦Ø?ŽÌo-‰qÕÃŽ«¾kqлAz?ØXý#¼€¼„†‡b#œ©oãšslTâ_ EìclÃ5c>·ç£Î ÀiÖÀÁ  ´`c kæà#ì(6d¥òã™Y¡üȬP®ÈÌÒŒ€¹„¹ô Õ@ÀU¨Yžsá*E—“Ý„Ò — ÀC(Ø1.+Å2-Üwo±•&ÇíŽVåþÆVQ”?³Ùs‰iUÍ€T ’œÄ»¡žž:·Òƒ¥—ù wZì)á³A¡•ƒ62é}½ M´B´²ÉÏÙ‰™ÐUƒÓÞÊœcmÄ5  Í•·ÖÊà$à¥·Ó ‡a›|^똌þ)ÐS1hàã•Mîj¹zOšýññ/£ÅÍ̡ƒ p  ‹f ’ÀÔk PÇ)/.¹ £—: øh 6Š_‰’¬:o>EΔ@zêƒù ÿó.0_ —¬Qú­>VÈ»«.Q,»¡Ái±!)¦ÞJšÒMAâ·[r %'ĉ%¡Nº‚…"ãç G GC¾É¯È…ô+1fœEaXÕŠ œFÌè‹ø\ƒE„0á!£ûø; E–W‹Í=Ão¶šäÀÇ/<±äì.NŠ›§œÙsfn[zj€€Sšôi®€ŸÅlË‚’’uæà!ì ×”ãu«ópš>/ò¶Ð5Ty¢2v„ Å΃ºýÜ‚Ыó4X×à6¼óp/ /¡aÇ¡ØÈJÛ¦gÎg\FÏ9Àݦg“ZqÊVë¡ôÂ<ƒx ¼€¼ôÜÙp(6àøèàÁë%~8§Ú©6gÉÃ.ƒð<å8è·ú,i¯Abjýp  Õ§'‰X\C:e•Òm(Í)à$à%4ì8ii#Æù‹£aº<ˆº{ñ‹Ïìy O½RÖé…r¤_¬kªh ÃGãô¥ÁÂx·á¾{ xi‘þÅ6äáš6[OuNîÚM½À+aÒM-}£ÅÓ“ClpäÑX®Q¦aÑjãíÝâÆ!èMMVS 6”–’6/ /UÃ5Ž¿¡ñZ˜›)-‡®IÁ¬ÑšqÜqÓ°€ˆ‰ˆl+5Cvêz¬#;±bëÈ ¯Uà FENj<Žå1°¬³R—Ú:ù!~ª_.Á¯#¯ôFá”ÆbÈ1Ž•Zy,ý8²<°ƒ Ëe=raQåÙ±Xä<­ñÁ¹–³Él*-NžâKqÚÓ)Ãߢ­–¶ðcsi7ZrLÌ»€;k ‚óšš»îs._ɘ eɈ€”Ž€ ¡>{z#ÕÀÂÄ[l},L5ÉQ‘e@é…Éà ìVªº+‡ÙØâÈlЬ&ésm²•ùÕl>ÏæÓ1rSÞQ[Uû\(‰¹Òâèlj)ÐÙÖ2éØrðv2¹[#²ÆÏ¨ŽÏÅÈŠ§Ù5:@s óÜ58mó[çÈmÛsa«£kc6ŒØ\¼t ;Ã6Ã>ÿÓbØARÚå2¶ª¤§õì9še¹Å%ªÖ&×`4¶úã°_ØY7á§ Ü —p¯MÆBñ¾Iؾu†n¿’‘îW±­ªá®¶ÖE~-h®ß۴×–4öVG6_WzÝ›]°{»<€„9hé7ÿ¿ÑêJdÖŽÃ9ÓBµÄ3 Y‹”¹!¿!9/Oé]¢ë ✜¾ ,‹¦ÜÏ3ØPúíÝòðv6?ü±8zvõÚÙ·ë§?Ü3—0Ï]hÍX=¼±4ØÅU·ãË HÀKhØq¶©ç2·§Å˜‡Âòƒ55냔?åÅÿ%Ñ­_ƒÐjBR笆Ý4ôóM)¸ÌûÝP2yû_Žc°i篒îWu½ùÅ籺LÒäaJÐâg ?Ó<ël!¹Ñª_¤Ág¦dAFú L¹Ñ‚IÍ»üEòÍÿ ×Ú1"&¾Û«ëeª”ëíXV•"ühþzZЪ= â{Á§jó´µ=Ë-¥ —€o–zw~ħ)Z€äÄÅÂ3’‡U£È6‡‘ÚIQÓVÙ85r“Δ ¹„yçÉwÿS7™.ÑÏSàœzm™îä¼5Ù°+4Û¥2—3C˜æ64€îs9'IÓr M¯» ¥¥Ùšp¿MÃŽC± yµ–ò[@y þ°†Ø•ÇC‰ÖáoZ IVÓ!Ÿ,ÀïüT¢ %wZ ppìÑ(8y¢u. FKV¨ .MÃ6¥Î†q Œ:³ë C•ø #žZ$O‹,‡¹DÒ^Ì€ôQ r<¹ In` Zpƒ\Ä µƒØ€ÍֽČÓuì€V^9)Á®Ñ˜K¨ãPR-,`S/u{jr{ЯtÀ ÷P\APXSʦéC/’-ŽÝJÔMS¦”ÃŽv¥Cê hqspÁ,‰,5mi­68…s•MCžvØËl€–ê.^¸Äò[5\ál‰:3îyp;¥ÈÇvµ©Çæ!ƒïE²ãü¾ ’­–qÉëg YÙ¶§vÚîÔ-ÕÜ&»Õš¾è$Çõ—æa@BÁAa‘l’RzP`qøaPq4ÉQýi›i‰RÃi¶Kr”àÌ“ ¡ÚYVÉ$Ý '¤¸N–РZiÉ3 w×4ìî+$>¬FuŠö5$tΩ7­u¦”çúµ®!|—¼8Ív©K/gò•¥´Úàà4;ó |.JKV˜€—аãPl]ý9uÖù´8ÃÞ‘â¹Ç”žùԙé9d´xZ$’“Br§U?'§JF/|aÿ ”–¬3 aš‚ÁŠwÑ6P¶—·4&ÞY6“î=¯T½6 N«‰ˆëÐÌw Ôí¥l(qAœ4;Á•õQôÐÕ;Ç:jþ6ÊêÙÉ©Æî†ž>ó»AÀžöõô ½£_í¦U÷âf!ôóêÂpŸ-ýŽAq%ùüV¥ë)œÅáîXN¯Ê“ÿY>Wg~óNÑâ§|+bITuÌ5€Vœœ¬¯ ¸êÑG 6”–Ì3/ /¡aÇ¡Ør»X5èÒ/:cʸÁ; TúRÎlOÝÖä´ø)¬/ ~Ò© N'›¬GÊ€£Óy×ätFJÞ‰þ»x¸RoT=ìY˪÷§.}šÊɾGÌÃ|–GOúD^’`?ƒÄ©¹  Õ'§ª“HÏÏã¤`AiÉ7óp±z. Š‹F…6â(æƒø!ÑF1×9sÖ –Oñk -OWÚ1çØälˆ‚ ÃÜÀG(ØQ(²~è¦/n8ÇÖ&r?e´ÇÚE>¥¬Å Þ¥áΦšw }qcqtmÂ5ØÚLøâ†û÷Úì(6d~§vqôF¬kµ³0ëWjÝ/0¿]h\x]¹»è…Y·€µËÀEK¿c0\Wò G[ÙJÌ8Uºà|Ê÷ø¤¤¡5‹*4hÁ%Ü\SÚˆ+©–qØM9@g ò!¹ ¥¥º›€Ð°£Pd§Sß*{Šœ)óUÞ äìâyN±Óç­9-žjŽC‚w)98€†E‹ Jᜢï9¹†¬:¹ ¥›y x ;ޝïç ›í¸Öj›¡°«tÄV±g Ïmß ´ÚˆØ’Æö®!%)h˜2"³ßá"’ï Øhº…‹‹S­NSX¹îEˆO²'‚{r¡Šw\"I+Az¸Á°‡me[r½± à’„{`Ëåö™7,>™Ú[„ÅgWyµÅ”òY²v.«FX.¡n#=H5°`.™»’7]ºp ;ÒðÀÜASpA`ñfàØ"EçX¤Ç—šZ˜òóöๅŠE^qübCˆöXqqÛ  š,šKÂý>|›s\E‹Æ“©Tn›¯}B+/¥á(êy:½°- õ|i­66YJãS-Ð ëŸeÙ0:`s óÒ5ì8Y™§Ná4v•2oäðvF7»ÒÐP3†Ól—¦{²Þ ~Ä9(0R-°¼1(ã} OÞ­þ€Ғæ$à"4ì ˜Eb:Ë,áíq²ý•u9zÌ ¥ûõš©\s=f˜M—p¡Ái{itqô-Ò¥![Ã^3]^@"<>¾¹¯xFÒ… _%uŽ-ršÞq/‡5Pö+KºJ*&×Ë za2¬³:íë¤Î±eN×`Ë nÃJÝ HÀKÓp…C±Í$+x!m1ô}3Ù´ÓW ô%ºÊõÅŸG#/Í+üœ5¯‘Üi{»l1ôq³¥@?3ýxm™·ŸÝ=K¾û/ø Ê|&WŽËB¢s²|]"³aË`Øu ý”dù¨ë\¿7Í7OZ pçè‚+8t Á-(-Ù`.@Â6 ;ˆ X×7•°n¯.Cëi¯2îÑšK˜ç®´Úغ½Û ÝÞi† £6—€—аãPlÿd [´ÛXœi¯fÈ›%P)IxY™Tšíö*1”KœZ7\ƒÓXâwÎažš†1õpl-ù§^¸¼„†‡bã»W÷ëyEgèãˆz:Íz]Ž]*TÍ÷ëyÅÌ/ïóôÜ%øÆX @ãíÃÅÑ×—}=qÙÀóŠË H˜“P°ˆ¸Bu4†×%Óˆº›«6Â+H˜×®ôªà .™¯kf#ÔÆ¶öéÓâ 6†«Ûb‘j| œ‚ã…EÚ/8Õ¢5‹k´Ñ‚lJ_áC[‰k­68vĨƒìÁ„RÛÍûݶä;F™W¶±yq†Ç—5ç:UÉÛ!¸v‰–’½í<ìÌhŒÎαáÕ5ØØë6|t†€¦à …"£a@ž¯]m 4‘)ߺ÷&Ôx[´ÄFÆ_Ði=HdmÊÐà´72çXq Ö„ÜÆjdð ^¢•í8ki1Ãâ×–äã¤ß²W5Ÿq˜A¢¨_®´GÀà ~…Ä·°±"`xáê¤+Ø@(.þš_Ú€¿x?Dî­Ë—*#2 CÏ$ή«²Ðz!3Ž;fÜo³™.a^º†‡bãï!çp0 +”³€ë " &ᯃ‰Ÿ9—§lmiíCBŽÂÄ:˜'\½6 Š Ç_#mÈätÙЛǎLéˆÌ$™ipZmhÝ>$äš~³Æm( ¹¼„†‡`ëGºx(ù´h eù;­®P·'SáÁpÏUŸmƒDtÓÁ°3,šuíº ‡Ý H˜P!((ypÞ»E%­GãçÉ{º«œHIç}á‹9É7ÊïÿåþéÝ›ø#å{Uào¬RÔù:uŽEô»çÿ”žýæ9?üÑåûòÿâ_;ÿ3|¥Ô>ZÝ<]_Ò¬²Iþx·>@©süÃrž9sq¨+~¼[Ÿ ,2g>°WäˆÄãÝú,]‘½&æàcn¥hU\ß@#N•Tþy­"Ÿß{žSÖ…¦ ð<Aóx¿½T†0Úú“j‰ŸûQŽÄFô?Þ­O¿y8‰9öÅ”"_Ø{¼ )fz}¡CvQ6ެÖo€Z>÷ÿ2CŠãñνç]€C²ÏUïU¿<8׃6 o7"j aóîÝ9‡å–½OÜ’TÐÀàwTÂû•å¸ãðÖëÜ£Â]0dë÷ñΟ̬ÔãÏsçœ< ?Þ­§'óiUoò>ˆ¥rŽÜZœÂgàżdVø¦bºæ´1xaêJ$«bÞùeýÌK$§rpœØEëƒßª.YÞýx¼[·’»U‘ÀÑBZ÷Eù8ÞØ8Iúx¼ó›—|ùúH©¸Cj]¡ß‰kÙ:¾À‘÷©ïüzesªu»™•eÒÍ Ü0jrkäšsîéGïÖm”ãв^×8º\Êx¼ó{ür¯×œdœp[Hôà¬ú8­Ÿ[G½õýZæèi¹_ ƒ¿+ž-t;¹*GmòÎàËSwë(e휜Z wëÐaš~ù‰=Þ6Ñlדny 9^ɌӎJØø³6HàDEÓrÖíñλð{†¥oœfä:c‘OËPç”bÐ7ô‡ö¨!óXæøÖøi¥àÛÊ]Ö¥=8%Ρý†îfr¿/]ÄÚëȼȑqÎ÷œ˜“%óÖ~« œ"E‰í¾ÆÔ5•¯ÝW>Aøx·–£ùY-ñÇ—qõ­9æ`ù³ |m‡Ù£mœ,Ã-q°NÅ Z|™'£Òê*I©'øÚ;˜·òµÚ±1Šåæ­éÐèÓ¦nc9Eù—AÝ¿“é_êoþ>DQYn•Å(Jwb•«uvEeÄ:Eå¢ÕoEQÙŠaEQùÐ.hEQiZ4¶>‰«ÈÇd­{ ß(—rÍÐá0~ìSÓ„odšHõ¯0Nñ%|–ѡҩ%¹B(¨]Ï3Wü“sð;ÐP ïõŸ[US3C‹cÝwHUµÍÉÕ+ŽA¡ÊŠH,*YJ9rŠ¼Ò±qlD]‰<ޱ€©PÝ6—“iü;,ÌÒ÷˜ÏaåÏÕ,<²çÁ›<69ýð0Ë^u>­ø!ÍFˆðê8o®íŒnƒ*­%á=Ñ|9wâç´ªexJ·^ÊÎèˆçœ3öˆêЇLC´ÄWÔ-6 œSk´DÑ…¼Y´q:â0Ÿ$xÑߢ%™ê§±s2¬küDaӰµŠd³E¶CQn¼Ô6ØA e$„’G5ú)JS¬ iEZO«D%s³*Ñ JæƒZ­D”÷Mã9‹™øZ{Ú9ÜjÌdQÇÚÁ"fJü6ÍÆÈ!YÌDysEñöªjpv•뽚²(Їlp4fâ3Ä-…·.éS14µÞíá‹¡×íðtÚ¹8Ó6ç䬼GQ•†˜¢›EQ-Cb¦¦ŸLÞ8:ó ªrY/Q½Ø àA÷Š1i u6a[W³D,bâÁ¥Õ“…"ˆb5U$ ¢ºÞ× AT§DÇoQÄP,¢+b(ÞÖøÈ·^‹M1§Xc@ Åó´ÅP–mZ2U›¬©"ˆZ5ˆ[,hj 4ñËë{ˆÄ«åº”Î<2Ö¾7Î4ñõ¾éáaÉV¯,h§/ìXüsÎ[δø‹5®9ºXŒÄ[3mnœqèAW‹m%êäû¶†¿FyÚ…D¼ÛÊÆ˜ÎÀ°H!Rç+³mãŒd1(‚&þ¸µBDÔË©½ÄâTÌ–L³À ßt¨EgZ3aÊ9dz¤†G|ðfÔ“t>Þo¶È㜂€ N² m!”=òÌW æÎ™:wô§r¢bÅ©,‰aщ¾÷mÑ©Øâ®8qˆÝB¼„ÇÊV¼DBI,:IÄ¿Â%yp+L.U®—vYpÄ/ƒõ´sÆU¸Ä=£ö{ˆŽúwq’ ˆŽx §÷ÃݶêÄÕJûíõWA*‹Ž¼·\œž‰Y¼Äí¤«ŒÆK£c)ßXÊXœ¢3›Å™‡ÆŽ/ñU¦=^š3i‹ŽäγG‹“u)u=%QO ñ,`*)ZÝ0•Äãïý ˜ ßÖ·Å+ ˜ _‰®q©$}^抣«¸Ý,ûqÈhÄ$7uÐÇuZ~™«Åe'¹¡#&bd["Ô©Zc"£û"“^„;øîD»_R9F²á|qª- •C×Cyjصîàt[ùsNš \â·4-\še‰pižÃBI —æicÆ:{γ³±s{øYêË3Žx!ðl;ç´ØáËvY¸4k½ —f-X=²xibÃÊ㥙‹M[tX ëÌ=ZšÔõê¼Ñ?˜-ÎH°ÄPk;E°Äœc#>å_ãÔ¬¶äƒ`iêáÖ,Í~j^þêî×÷Ç}‘^þè¯oï¨[²‘Gµ“Âiª2‰ÿ-I–¢4{ãÊ(<ŸWúx¤ÓXµSc"4\•ý;YàB͉ÛäV—–^ÞŒ,…—ÿÄÍÈÂGÛyÂ~ÈÛ{OÌèúÒ¶ OÉä1@~ûª çLúܵÂ`T]„*|ÖtGê}áÀYÖ[ (Ù‹LUÎyÚ‹ÃU‡±Ò8Y£÷Â]{êQóâ$­ ¥SOÍÁ¦2%ëÞ TV=üQ0‘ø¤ôjŒlþñù'Ž YDbÀÒ»nµ¯Ìá³QòÜ…,ÊÈY3ôÔ œÙ'¦ªsb‘iá9½4ÕÅánl½–9GÕŠd¬Ñ9çÐ9º-Yø1E-<^ë>¥ûLæ1ÉbË Òà28mXæp³’Žm6íœc¯”‡vá'xJ¤“õ§…›âà!ƒêâdωa‰€1,ŒÍ}»9;åZ%é¼6¼qŠn;>–Ä÷ù¹ ¼¨–A»È‘}ãT€vN+º×SøÌά:öH—´8üÈÎÆàʸ18Â,Ê9õQ›b£Ñ⶯Sx;DÆåÈ`R ¶vGÓî/p²v¼•g—퓈¶-ádúÅÉÖRdpèm¥éœa/ðL›’U>älã™tÚV[Ò%Ož~Js­­Ù–/fèµñôHv’›N d¼ip¨ß`N³¸™‚‰ j—ëØX[¥0Ån_¶Û\y'µ¨e™‚,F7Ãç© U8²Üp™Ùjø¿êD&‚ÒUytn?‘y+µ8ëäcáÉáv"sq–Tåc;‘¹8AʪTrNºò5zÿ'ŸÈägÕÛŸóD&¢aÙD“Sø½a©J¿zVJ×uÁÙ¤¸R˱b—2Î&užS¯Lº”q¢¼XRѯ?æD&…õ™|ÆhhÖqv>‡tNÉ"ùûÈö0®ÎcyùõÏx³p˜ÇÃÀ:ùë‡ûßýôæ‡ÏïßÝûþ»ïîóðîãÇW<Ÿ³>|øø›WâÔ•Ï&PðâYÍÂ+Â|V³$9³É‡5Ÿ±$âΟ9kúâDÐÛõ3B›„¦©ŒÝ„ÃEl¥6€ìÂç Š?DLR:ÞPTÔ¡rtËr¤”þö E•¦³=¼ÿþ§@}|G ŽßHù!Í_¼zÍC?R}øï¯x_jæùðáÓçwßøH‚'רóáGU0'%ÿVþî³Ï‡÷o?¿ÿ½$£ªò Š &UÍO?-¡ß½yk?ѸõðèeŽòðù·KÉÉÜӇϯø¯ÑDuêí?¿zíbo]0=_Þ|~óÿ@ñðïIµºßëÃ<þ-@Ÿ¿SeóH)=¨Ÿú÷›^ñ[Iíëœ%UkÝ7Qî㧯¤’ËgW(úúïî¾þ«_?|ø&dóç7ïðL£<{]hìží4‹Ìýa9ÿ-û4i–|`l¹žTVœ¬  ÿ²àkÓF9¥8…*çuvò ÎòOï¿úðþÛáQ5Sö>¾ù6ú±Ò¼ÈÌ;^ø¿æƒTTi¤ñÖáÿÉendstream endobj 286 0 obj << /Filter /FlateDecode /Length 62330 >> stream xœ¬½Ý6IrÝgøò½×/‚/zlN«¾?lÓ€HÓ4ѰÈDpÉ‹åîìr¨íÝåì\ñ¯wfÆ9õTDœ'{ZûöDÕS•ñ;™Y™ÿø2¼/Cýø¿?{ÿ2¼üòË?~Û__ð~öþòGß|ùw1MëË8¾ë:½|ó‹/vÍø²O/ûp¼ ËúòÍû—Ÿ¼.oËÛôÕ×ã8-oçñú—_ å¿Íç°¯ÿõ×_Ícù׸¼þðUùòϯÿÕ×ÃÛ¹MǶ¼~ûÃw?ûêëyŸË•Ëëôo~^ÿ±ÔŸ|ý“vŸé8–ýõ÷¿-/O²­Ëëo~ÝþÃrNÛñúmù©ük_øî§¿ªW¯õg^ÿ¯ú#´úé?ýêo¿ù³úJî¦émÜ–ãå›ÿðå›ÿå'¯ñíÏ~ú«z¥˜œ¯?ü}û¡íÜÎ×oë_§×ßýW»mûÛ¯¿šö·aÝ'oioToqìx£ez;Ë»þþvqy¡i+/´Ì|!»Ún:¯;ß§\; ãëÏ6õmðŒåâ_<~ì/o÷ùÙß•ûÚš×ùm‰×ÌêøåoaWzàŸíyÏaÇ×ï~éÚý‡¾åϯ?Ç¿ýƒúÏ­<ëöú/v_»îÛï›áÜzå÷_ZŸŒÅ}–mdüðý?5“ý´gšê-×ï¿ý]m±½´Ø|²ÅªÍï.£ùõ»ßáóë/¿ûç¯ZOSmÔò÷µ¼Óöúw­}—ñ|½u¥ùÆ2;oßηãœ^¾¾ðçÅ×ÿµùîPzí÷‹Êolg¹h0ë¿y­æG1W3ŸùòVþÇ>Ó¼ùÇ^ÚiU÷.}ÃzÝû«ÚG¹ûñú‡õ­4Á±©W™†·éöTíg–a˜Öݬ×Óoç>ŒÕx{ÛÖñ\Ë{¿íçtîvÍX¯™‹#ž‹z¶ím¯‘u¿âÛzÅT®˜NûEk†êø£h˜å ¹ÌëÉ'þ’µ{¿³½Þ'߯@fÞæÙ.™üëí¥çÇa¢Oæ—?}ÇÌÇ9l/%È×âN?ê‘Ûÿ,møßí‘ësNýNZÞöyfÿœÕzZ]t¯¶ýßšÿŸÇ6Œ ¨_Oçòv¬ûË×ÅçÎi€/ü?þþÛ?@0žãë¿´=öã õò·ï‚k”FüðÓÿÒlÖƒ¼ˆ1t®oë>žOcÈuÕXZ¹6ÁpkçWþçtŽ´ýIñ[uËùmZ‡ýxîª{ÇU·~஥-o|øßcãGøLKQZqï׿MWžáM÷m¸Úð쿃ýÏ{Ãôî]Û§:ïoŸä~DûÌã§ÚçTmŸÛ'Œ|ªz=Þø_¾+:fNZM¿Æ”ZnlÝ:CµôTFÉoóœnVi7ãÉ&ˆë ÕÒ©I Ä£ àRp3ºúÎ-ÚïX”³½Ü jä:C´tn’õ|Ûko—±éÒº1ô†jéÜ x®u|›ÆûÍBo¨–.cŽÑ‚ÝßlÜjñ·^ZF!3%÷Ö¢¥s“2´§úÏv¯ÉÜÞ÷†hêÔ¦h°y¯?^.\kÔ+ýÙîd½(¼7¶)Ú«õ»×ÚxzVõ[nSr¢ žÊŸ—Ê»÷Ô·ªßr›âÉ éì9x³Ð·ªßÚÐ|Ùíf·Ž\-Û½f#…ïZÕo¹ƒ¨Dk;—?Ïœú¾—[•Üi“žv/ƒaè\Õs¹UÉÁ›…ÞU=—[õ6kM6!B爵ËÍŠ'+s>kÉÉ@:WtÜ45Ÿæt«qžê´j©/‹˜ô«:.÷šisÐv3 ¤òüúö°¶N¡;ˆz{ÔÁP»âÛû‰r‚ÜADâbR³ ˆÊà(Ê ráÉ–Ù†k×Í‚£('È=ô¹¶·_ÏêïÉQ”ä.j7Ïó¬c»™ ¥så-/plñ^%âÚ¾Ý ãï)Ê r‘°S/U)v› 9OQn»ˆ„-âê½l0àÓt°èá‚<ƒó:åQ¹»ñ`eF|àf«I’÷:áQ¹·9‚ÚZšd]Þ07r>§ü)w<¬öïÕòFÁç”?g±^—x³â,ËÛ„›M6êñ>'*w6Ud´ép¹×ˆá˜s:åP©³9;kv©Î±ÚsyŸSþ”;›£±ÍüúºYð9åP¹³9\ðdSÄ÷ätÊ¡rSDF›â•›Y‹yŸS•»]Yú|Ûì^–DŸJsœ‡uÈiM–ñz›ÃÄò£x®É&[wVΙ;¯¸¬mNÆ;EÿU¾Yd`{Ûâ­Z6½M¤Šào˜è:÷U¾™‡ÎÙøTn¶b¢ëüWøfö›Ç<×^ 0ÏôÛû¯òÍì7oèÞZµ§ó_å›Ùq8âÜñCíÐ÷ä¿Ê7cg£#÷Ù ¼m¼œW9fîkt¤uÅ2,møžœWyfîl*Ûh‘[nfCÄà½Ê7sgã%§Ýþ\n¶Ù[:ÿ¾9ž¥Ã–#ÞªøÝ`=Rð‰ ¥÷_å›Ùq8ÞêPáv³à¿Ê9³ãjÁw8¨>­ÊÍì%},d?ÏŽ§X‘C¨w2†¹XPŽžü†ƒóÓfŠåVƒy¾åçÙq8:_,´lœ‚øXP~ž/9œÆ§z3{I ÊÓËUƒ=½»YÇ[‹mVøhPžž½cýÃþ¼l(F†hPžž½ƒýÃätY1Ñ <=»û“e —¥ ÂÓ“ïp¨´Rv½ÕõvÁ =;å{²ÔRñ$#¢‹åéÙuðŠ¥a×·²Ñ¦áêÙs¨ß“¥Ï–æ·ï)”«gÏá´¡<Øf7›lìäÃA¹zö{ËãlÞÉ›ÅpP®^}|ãƒÝûfÃå"«6°Ñ <={!šÆ'Dƒòôì…hÿsGÍÕ%+^ÇÙÆƒ +ˆ ¸Á9²ðç©vÏ{ -6É9¥Y,W?L³I³,6Ù9¶Ñ>W}؇– ›ìˆBÔ±Ú͘»‡–Š›ì‡xɱ üì^I>¶Tàd?d’mEûŒW’Í— œìˆœÆ•ëf!¸TàdGD(í-<ìfMGBp‰À2}nY7ÿ`c™X Õ=ßSp©ÀÉ~ȹÖdSÏe`eË— œìˆ© †©e@òÕÇ–Š›ìˆ¨Ì¦]µœoiI["n’>&[æŒ%à&›m¹ÐRq“ýc•Å^½ÄÆfCZ*l²r¶µÙó× &–o¡¥â&»!i ñ*7[ >¶TÜd7|¤%Ûì§é®-6Ù 9R¬x¯Y*j²â%WLdq¯X*jÆ£¼Ûp¤çšëâ»Íî55«‹ÁÛìªÜ¬-ûR\š#¨É4åfƒ1ч© ÁìÒIeûs¹Ùh£N¦*³Ss … P‘$\˜ªÌNý¨7Q-÷š1†ra*b0ûôcRÙä¦Ük98©¼Å©ŠÁìÓœVî6õ/Ø’%§*³OsVy˜Ù¿§8U1˜{ Ö´õÁlµ¤SƒÙ«¯Dn½nÅdש À서ž–Ö³‡²Õ >FUüeÄ ÎVMãS…UáWÆy ¸ížj*Di£r¯#1¢*ü’73µ¼Ô´M»Wc~ŒP}Ù›9Õ]íÕëÚÒSÝ[„ªèËîÌäré¤véÂJ”P~É9×Ý[Ö¥.!ZXê¿¨Š¾ìÍœê6Æ­¿´rª{‹P}Ù›9ô x‡ Ä|€ªèKþÌqØPSJíV›é‡P|ɡᬵd²à±læãSÅ^òhÈGáI[6ÏVÓšæù4ÂÌ  %x4Çt(ñ•› òçWT©@ÎþÌÙ7Vm•;™ªù`W‘œÝÍUÕo½=UˆvÊãQûuÏÕ’ìC²!ÜE(çÈàL¾-±j÷Zˆwá®B9ÇÆm.›5}Œá®B9Ç'ó§­šÇúàï)ÜE(çØà\þ´1ü<^‹?îá®B9Çeè´Õóhõ™î*”sp<ûÖÃ2l>ÜE(wæ4Ë~Ë}00t¡.Â893^o­îR÷±1ò‘.¢8ù2ÂzhyâöPm¦]qöe¦V‹ÿr3KÒ…@Wqœù‘h9Þy0yŒ±®9;³Ýl?ôØ`¹Èì*’Çý`ã¬÷ªÑT<µ-é(Þo+xB´«PΑñXv³àf£s|¸«PN¡ÁìBù1»•}Œ‚]rŽ 1'[p=WrÁ»ŠäbÂ;ËÛ†ì*’sxPÔÊ,ØžëÍÞÑ£Ca!Es'C«ëÕ/Þ¡‘wp((äè`êo>q±‡‚BŽfNêžYv/[ À¡¸£ƒ™“Åž—7‹ìPdÈѰ¶v¤ÍÝ=rppø;ZÚyZ´ øPhÈÑÁ4ÌYýÝl@ÆáC¡!Gó0›}š1Ùg8‘Š ):€ŠZ›Å­Ú¸<ÂCaÜËïÙÛœ~(½Xn}š±˜ÑÃC!G‡Ò–ZŸF.ñìP`È‘ÆT>ÊöÓŒ²L€‡"CŠ5ÄQ­hLv¯ÍâhÖë%•ûX{Tئ u¬"E™kLÍÕá¬ÅPas$”É¡Æ Ê±)̤HãàË}-—÷žH¤0“#)¢³}„]o†Á¹G‘ÂLŽ´GЍ-u¨›âYöÝ£Ha&‡⨮Ÿífœ{)ÎäXãà|±êÙÔ>ÞyO,RœI±Æ±ùˆ°(8 Ha&N;Üs4$ ÌäPCƒü§ÝÊrÉE 3ã>mh°–Ì}ä®6àV×Â%‡"Å™lÌ^Í6»$<‹gr¬QÀÏ6Æ­kˆW+~8 ̤Pã0ÂÃøl,HP&‡SWÇÛ¾Ys W9òF"E™jÌ^-6K,7›±vÄ‘Ha&‡ÓWƒ}DWÞàñ(œÉ‘öX„Õ–4—³ôU`‘âLŽ4öñ`—S)ÎäP{䯴ÿ#uc‘âL 5ÄÑ6Y¯Ðõ#Šfr¬±Rº¡/w®gô(˜É¡ÆJ©}ÞßV–¿¼')ʤHc*l7 Ü¿"€Ha&‡iC–ñêɺíÀ´Þã[Hz 6´~MYÎv³ÅZßsM1k܇ÕR>õf·aõÑ^¯ÜlÅÐ"pM1+‡.3uKey»ÙÕ·Žk Z9t98­‹‹_ ïÀ&¨•—óÕ‚µ‹<Ù¶rär"‚’׸1«ìѦ°•#—É: F|¤Ѧ°•#—É:>ÙþfódSØÊ‘Ër0Vüj5 Ma+G.'"“-d‚Ú¶rì2Y‡oêËÿÝFfënhØÊ±‹[F‹°ú––´ðhSØÊáÆÌ2qãü†Ú²#›ÂVŽ6fþæÆ¤r«ÅrÞŽl‚Z9Ô˜ö;®˜DeÙ“MQ+…ç!›5ïÁ¦ •cÍl;ñçr³ÅÚÞƒMAkÜ|¬[ovß‹a0'TÿØ´rà2¸Z%úÑúl Z9p9º8mAr¹ÅayW6…­¹,}ïµ?ÚÍPuðhSØÊ‘ˉ Æ46H}OhSØÊ‘ûÈ%¶©Ay2K‚´)låÈe.]·-—xG›ÂVŽ\¦Ï67G¬Pò`SÐÊËLâlKVÆ#þ6­¹Ì$î-{L‹XSÌÊ‘‹°ÜwûqÆâ¼ù\.¯°¤šn„ÈEÓ׈_ì^“5½g¤â_ŽÜGy¿½Ópš„F*þåÀeŠs±©+Nllᩘã–uÀ£Ñ°ˆÌQËòþamQî…§‡¤`ŽZ ±®)ÀƒYv @RpÜʬiÁ½nD\'<ïÀ=<#ÿ2˜/]ô#—FzF*þep˜rÔ’‘  œn –lùíX ¤¢_F— ÌÅ#m¤H¿L€G¶tÃ;b)¤‚_fG)§U·G|Ô©è—ã–Ó­Ñ<ªÐOÜ ©è—¢–ÙÒÅFòµâ üRÐ2Yº[ɪ¼áŒuÏw>*öå å\«žˆÓn…\©Ç£b_ZŽQNüè`ûEE>*öå }¬‡hÑ6lØA!ðQÁ/G-3¯«9Ïp ü©è—£–ÕNÍÀ÷F`AÞ3JX­@'×'c^Þ3Iü" ;ÚÝf¤Aßǵ~‹WÖ>v8ÎÈÏg½(¼g,±ú±‚…¶y  ðž©Ä)|[—nac' ïJ¬~ÐéWÍE PxOPbñ£-ómÑh£r/ î™I¬}ì¶¶ø6½u àž¡ÄÒGƒ[k/[…@Á=A‰ó÷Äá®ZÿŠí™Jhü…Þºréù¯àž¨ÄÒljq\†Ç¿@{fÒ£ð±mÖ§ÍÞþÚ3“X÷XÚicõ­ªð/ØžXÂÉûP#j®Bƒ/Æ<þÚ3KгÍ­ÀþÛ3LXF9àÃL+þ+¶gš°Ž²¢ßp´Xà¿Â{† 'ðíÜ®ö–¶ÝsEøDÖQÚwMí¹¬€D@>Ó„3øÁ.=øÕkP…øÌôeýßÌÒsAáÇunßL´çº/.ž9?ܹÄWEø„&Ödêɪ÷ " ŸÑÄlÀ\[ôñ’Qâ3›kPÌŰC”øŒ&¦†êZ·á¯—…øÌ&ÖdöÚãíG¹äßÉ€b|‚K2síI{ ezˆÏlb2`ªQ\½Õ2Nß3šX)ã„úWì %@à=ƒ‰Õ˜órUÒã$@ñ=sÉUcZð­WAæ¦ ð‰K`μaX;"9·Ø'›7ô‰agÀk;-tk¯ 'B,2–˜WhQ1ŸÇÄoy¼ (±ÈXâ8³øxµÃ¶QO”Vd,±Rtbs1Çë‰ÒŠÌ%VŠÚíÉfK,x=Qb‘ÁÄÌÂZÒšß\,Š‹Ì%ÖŠÆÚùíÁð=‰%™KÌ,ÔoEšzð³,§'J+—ГuŸ†ÙžË6¶ñr¢´¢\4Ö¥í±n»Â·…3-·;aÿÖ 'B+2âXtZ ãõ©¤Ó¥™qÌQ¬µøVšçàÇ^O”VdÎqÔzYK{Î'ìÜôD‰E“£- ©9T·zAQj‘H÷¨:0`or/(B,2èXtšÚá£-ŽlÎàE©E¦Ó­çs?¯í!Š¢Ô"³‰ÃÖÄæ°M9‚ (µÈhbŠ'Þ×6^Q”\d4±æÔñ—çjâõž$EÈE&¤.²[ímýI¥™L¬;µ ÚÍlDÐ%MÌT´mÊÍleæ5EéEF­[åRû³Á¼¦(½Hhb ëÄb¯•»CyIQr‘ÑÄÖbíx`+“()J.2›Àm¯“Öv3+ÃIQz‘ÙÄQëY=º…„%óƒ¦(½Èlb®g:”@Äî\NS„^d2Ùs-¶­=— R‚¦(Á—¦›öX·-Û*–  ØpÒkŠŒŒ9ÖæêƒÍ÷gûvÜ‹ŠŒÌ9tåØÞn®gXLØãΉŠŒÀ9Žw›£×„±­IòŠ¢Ô"ŽYÉÖLN+w:ð‚"Ä"sîQ c žW5ì&(J-2ç±uD­vÑ´l‡ÝŒ/)ÇÅt¬®6>6[ïåIIO ¶!xKÛ'AAž”údÒb5ßboi{¬xRê“8Ç Ž…Gx~(%>t,¯­ÆoÛäâ= ”RŸ :&QPÅ~¾A¡”údÐqÜŽð™ë—öecP(¥>tèʱíTÝôˆ[ÝÞJ©Oâ:rª¹·öXvb¼—'¡=™r,ÔáÓ÷zƲêœ<)éÉ”c¡n6Ï\9‚½ï2§$,1îQ&m±ÆkT&%;‰qà—˜ÞZÇúÑ+“RŒ8àkÙ-]SzÙÒ0A™”ì$Ä1=4ØOl¾ ʤT'#ŽÃòÓr»éDe²“‚í“iʾãc” MJw2åX&MfŠß;ˤ7mR“0ϯ5»Ðö6Ò¤d'SŽbM(o¥IéNÆÓCƒ}È3ªƒ4)Ýɘ㰼…Y»Ô>†÷Ú”u'1Ž5ÒÓÎϸNÇ Ò$d'#Ž5ÒöéXk­Ùøå¥IéNfÓC«Ái°Z=h“Ò 9ÖH'xÓr[Ù÷Ð&¥;‰q¬ž æãÀr˜—&%; qÐ!NÍëÑ›É2)Ù‰#ùGµõ`„—&!;™—€¡½Ûƒí«ó4Íß7[M.Ç阀amç^å„‚e\2Ï4[wo ]y•S –yÉ1ùa•¾cT9%a™—,Þn }õ€í:þ&sBÃ2/µÛ¦j6ʼn:'4,ã’É&¤ ö ³˜ sJÄ20Ñ“¶}g»™g„NˆXæ%“MmûíÖ)V( B§D,]9Sÿð–Q蔊%`‚‡ëdß¹ï3>{B§D,3“ÅÛ 7ãà® tBÄ23ÁÃâqmôQx¸šó;¡S"–‘ÉÒ-Âfç¦ÌA蔈%d2Ù4Ùâ×}µAkÐ9¥a ™àáìâÞxðždN¨XF&+·çµO ²M^锌edr`Π™0  R§d,ƒYFÊ­©7ì´¥NÉX&Gæ' +ÓE©:–AÇtSÛ?oë:oÖ !Ëœ{oÛ@¦@Ì–-}Râ“AÇQû2¤Á¸JˆO ¶Úª—ºÊÁò¬NŸ”ødÌ1E´ØTl›oç¦ÝJ‰Oæ¶­¸”ûARâ“9ÇâíÚ>©gnIJ©O‹·‹Åà¶róW¯PJ~2è˜&j§î´··ÝT‚D)ùI¤cívF ¶eLT(%?™tL-ØÌí{‰Rò“P‡¾¬ñ…³Y–(!>™tèÉÚ:£ÒŽ¥Ä'£ŽåÛÁ~tazÁ듟L:&ІÖ%u¨kÛ–x}Râ“AÇÑùi«q¶_¯â“9Ç<‘¾P”ß~xê“9Çñùј²í˜-RêõÚí†p“Ï PJ}24EåÒtm¤®U˜6îªû-ÕWRöÀLDÑ+‘Qí”’%jÂ)ªÀ×w_O[´NéX†&‚¨.Í:ímMwÐ:%dšL: m§ñúy󆤓;¥dš¬¯V¿1Á R§d,“I§Ý&>­X•ä¤NéX&&kÁóÕ`8hã.uJÇ20ÃqZƒßü;­S:–‰Ž´SÛs 6ªóZ§t,#“Õà¶ §t ¿²Z§t,3“ÕàÉâ»ÚE©S2–™É¬“ñ©´í”N¨XF&kÁ®\ßP vB§D,=9à °2[·e\A脈ebrx~à1¹ B§T,#“i'Ö¨ÎB§D,Ý8‚E3OOs:§4,3ŽI§Ñ†+ö:§4,CÝXxÒ~¢~Ó‹œÎ)ËcÖ©phª'`Q¾S9%a™p,Þug“ùœ™÷Ò¤d'Cމ¢±-\*?o‹¼2)ÙÉŒcõ ǬVõž¤IÈNb¼¾òU{ñÀ¡”^˜”èdÂ^;½î_kôò¤D'ŽÅÛ¶„y™[uIiN‹·K…Fy%lhçtIiNÆ:q:ÑðØi,È’’œŒ7VnGó®âXëdIiNæzqÆjacŽÈë’ÒœÌ7ŽÉûh¨nUcðòº¤4'ŽÅÛÙÎ-9éöA–”ädÂqP~Úê†z䈭Äs²¤$'Ž)¢ÍÞ¨øýzmJÿP%%9 p€×jÓéâX‡çDI NÆÐU4TÞGÌÞƒ()ÅÉ„ƒ•7iË˃Ùf%A•”ä„ü#E4Xv·n£g¢»()Áɬ´w\í ðò ØL{ª©µvr §Ô+ÓN1·]¦Ç®e7…Sê•YÉ"p;z®‡Àâ\Q¯pJ½+™fjWXÓ˜š9ySÒ•YÉðdqVâå=©›®DJf™†–Þ4áÅM)Wæ$Gâ‡hyAìÆâÕM)Wæ$ë¿íƒ¶¥n]os¯nJ¹2'YþláY;[õ׉›Ò®„I&˜† †r%'^Þ”t%Lr~˜Ýz\{±8uSÒ•@ÉôÒ`kSJ_q£j§nJ¹2(Ás¶H¬gIؘī›P®ÌItc=Ì'°þëÔM)W"%ºqÂçÚûÎm—½¸ åJp¸ÖÝ@²ÎXµÄM(Wfú±ÆÕf.aeV¯nJº2ÛÀ­ÍöĬfCË oJºÛX¯=Û·œõ@ZÛÔÅɑҚL6¦ƒ«·]5Þ“)­Ilcµv¶ìUõðæò^”Ôd¶1ÔæÌ­í² GBjÝ8 ?-ó½^É ¯FJi2ÝЇcû2e™‹£ó@w§FJlÝX¬m;¯Ïu»gÔ9¼%­Élc.hµµm°Éé‘›7ŽÂOû0kå6ã^„Ød¶1„˜âÆr’¤ä&ãðÓ>~ZWœ-$IéM»_Ù¶¿šët‡ª8Ej“P‰Aø<[.~ñçZWì­ÖòVIRÃòÀJ–|{¡Òí­ÀÕMHW†%\bFSÔåJØ’ÒɛҮ KV|ûzFbs /oJ»2-Yñm+-u¯ |äéõ-iWF%ë½6¯<® ñú¦Ä+£’I%”ø× 5//pB¼2+Yíá(×vzNà”x%V2§´ØN„WÔ7!^‰•ààºÑÊ…X¯âõMiWf%sJ¶ëñ¼0ÙôMhWFå£Ô[ŸbÀ7¿QÞ”z%R2©´zD6œ¯LJ¸|ýÞ~Gˆ{}Sê•IɤÒb›È-'¿Ñõ §ä+³9 VZ±'x”8%_™•,õ.¶aëÒö~O§ä+Ó=9c‘à¶b„ qJÀ2â˜W𬹗üò"§,3ŽÅÞÑ~cyàžW9!a™qL-µÏ¼‹ت)Èœ’°Ì8 ¬0¥®ž:æ+«wW&!;‰qL­¦Žµ}mõ¤W&¥:‰q¬ÎNnWú9“R9tc=z­þµ;F8]Rš“!Ï?6˱1¼ƒ.)ÍÉ”cq¶- [ªSaÓ¯KJv2åXœm‹F溗ÜdBä¥IéNæ3BÍ[‹™mRÊ“A‡®¬¯¹X“Ùä NBz2é@± ë?Ëq¼ŽŠ¾É“О :tåq0ÿ¨ÐέrlØ÷4 ”ŸˆLqE?–é«MmëÇßÍ˱ QCõMV{áèv"ŽZ§t,S“i¦ÙFY —<­S:–¹É‘ùnAR^ÓÊ­SB–¸É<“EU?Ñ2 Z§t,s“©¦±-Õß+‰½Ô %ËÔdªi·ðZ6¤WƒÚ %ËÐäàÜ~óÊú±B–‘‰(:m9]y†Á¾ZtZ§t,8,Õâ´:@‹!/uJÇ21Ñ‹Cû º(>è‹Z§t,“ßvtÎ\ÀN— Z§t,“É&lfáÞK’±ŒLôcÝ }»ùD”:¥c ™èÈeÇñX«}¦¥NéXF&‡ç[F.+¾? R§d,#“5ßÍ„9+ø:S–yɂ_Xßó:§T,C;+H•ˆ7€¥S*–!Ç¡¹M_¯ B§T,3®5ÿã±rwp¯tJÅ2äX©«ªì뙑§,<qÌ=Þ™#º‰“žÌ8Vj™³AÊ6Š“žL9&‰Ûï³ÌÑqŠ€'%<‰spüs¶ý2ãÃþ MBw2ç˜#j Ù¥àl+'½4)Ùɘc–hl-»×˜ñUÀ]š”îdÊavlDkÁ6ðÚ¤„'c=YÏß6ÏÇyIN›”ðdÈ1O4\#?ûðÄ‹“Rž 9ÍôžuRÊ“!€ÕUµÛÊ=±ˆÌ«“RžÌ¹GÁ¶ÔÈ NBy2æ˜)šm¥ry;ÕΫ“RžŒ9Öl±åa]Xg¹"¯NBy2æX³ÅazÅ7íKÏ NJy2æ04?F3Ô£m#§NJyÂxþQ²m'5¶¦Æ!ð7qR“y r¾ ¶)û´øæ®D‚險;b²ú»ØîÇËÁÍá¼Ò)ËÄ 7ìÛ:¯x² tJÅ21áÓj«‹+Zñ‘Ô]锊eb‡{;¦A^Þ“Î) ËÄ ëòðâ™[ñ/œÐítN©X&SNKCLi›ËœÎ) ˼ ëR†ã>l :§4,“)§Å2-Wl™–xÉqùa1ŸüâÝ«œ’°ÄKV€Ï6¡ž·ƒu§rJÁ2.™pjt˜+gF|àTNIXÆ%XXWñ¶—Ä–)Q攄e^² <[k\-æeNiXÆ%Nm<'£A䔂eX¢ë&(“¹¶çõ*§$,Á’5à¶ðv©ºµák§rJÁ-¯ë"ëzž‰à›Ä)ýÊ€c²i10•$yq§ô+ðZÍSꥶñ|Ð8%` p,·ekE›,S §ô+#ŽuÛö­F‰¡¥ŽŒÞ“0)ÝIˆc†h°ý…ç %¿ MJv2äXºMRLÃÞ“4)ÙÉÁêP{²¾´íj‚4)ÙÉ”C_Ö3DF{Mûb1H“ÒÌ9@¬hhóÚ$t'1Ž ¢Å¾h˜¹ù`&¡;™r X½õl¯x`«x§MBw2äX½]ëñóÀ]æ‚4)ÝÉcõ¶9Ä\·ˆÚpR•Ó&¥;™sÌa£âcvDEÐ&¥;™s•Ÿ 3÷ Ú¤„'sŽ)¢Ñv‡ºb¾‹“žL9ŽÉÛY¢å![‚´IèNÇ?Š·-m=×Åq¨Ý:iJ²“a ÖgZŒ7VkÝì¼åÖîv§Î ´dØ}–!ª‡^甆eZ2Õ´¶¦˜˜Ë 2§$,Ã1O-Hm½ qB¾2'Yn[B.åXF$NÉWä$Ë¿[£ìºsÅi8!^™“,SûÞì ž pJ¼(ÁúÉÓbÝoŸ‘}SÚ•A‰>œN»tÂÍ¢¾)íʨ[¸Îؽ;Š›® JtãÜ4¤Ñ°Y³7!]™”èGìå¸Ö]rñ=€“7¥]™”L2aÓyäaÎ^ß”xeR²<Ú:ÐyÆVHAà„zeP‚;öôX°ÁrT8%_”ÃSÊ+b^åõM‰W&%0X·X?ãŽö§Ä+£òQý­_7”Ǧ+^à”xeÀ1Éd7«ŽoË~‚À)ñÊ„½6#¡}÷žôMiW†“LæÖCéH‹È oJ¾2åX³m‰ôy[pdFÐ%%;sWnÈ`o« KJs2äX±íóȚij‚­“%%9rÌ a‹âiãMN–”ädÆq4Ž•YåR ì!KJs2âX¬=jË-ãÉ„\Ð¥¬9p,ÕnÍ×zî­•j,)ÍÉ€cRh6lO‡"uIhNækµ bc »¼.)ÍÉ|C'Vïm6`ætIiNøµö«÷ ¾ë’Òœ 8Vk[/S¥œM¨¼.)ÑI€{kë÷µìðò KJs2à˜Ú-®ŠÓÛîA—”ædÀÁëÏÝÒmÇE]R¢“ z·@¥lÃŽN—’ædºa(^Ϙ˜n|Žº¤4' à¥ÚÓ¦ªµ>ŒƒÂ,)ÍI¤´{mu èqoúm¦ß5 Ôš^Ð,YùmŸÓ—QòÁ½½Æ)ýÊ´d’ €œfä|ƒÆ)ýJ´dáw° qýNÂòNâ”|yX2¿4V9^†ýÄæäAÞ”teX²è»·ÏJj2e/oJ»2/ ¦63™V²ð¦oJ»2,AÂã0xÞØI ^ß”veX2¹ÏOâD}Sâ•a Ú‰K~ƒÀ) °dÉ·mòV”†£q/pJ¾2+YòÝÚ*’º(è°=æÄ)ùʬdni±Æ´\¹%'qJ¿2+YòÅIÓ†¹qÐ8¥_™•,úÚ|uÜÀÁ qJ¾2+ÑÓjA;aµC”8¥`—¬ú®ídßúy-@ò"',Ó’5ßÙRGÑA䔀e¡+ë‰Ã͇',` "§,øÚqÚ×´àlé rJÀâГ3êé<(hœ’°L9j6;©ì´½»ƒ4 ÙÉ{ä…Ú®„Ó„í?ƒ4)Ù cv2«‚-œƒîuIiN‚sBHsÖ“”l†—%!9™qèÅŸN†A–¢æd¾1)ÔË8ð`± KJs2ãX¤µc9š{Ú@Îë’ÒœÄ8¦…pöÞ4⛘ KJu2ãX¦Å—lÓÌ“ë¼2)ÙÉŒc^¨ºV!€å‚.)ÍÉ„ãp‡OÜ9$èRÒœŒ7tãT×|.uc#tâdIIN¦:ql0Wìø(ÀÉ’ÒœŒ7æ„pÌpyqÛ;è’ÒœŒ7ôbýär¾q0ê’ÒœŒ7i1#¿áuIiNÂÇã'žbÀ ôA–”äÄQüÅÁm2 ˜–믻,)ÍɨĀ|Z->Fî»-üÑ[¿ª!z`%«¾Gûh©.·Ä©Ò^䔀e\Â/Js´Ú¸ãÛ rJÀ2/9"?lwõñD)ˆœ°ÌK¸ÅØÖl¶ÏgQ0ñ"§,3“UßÃèWEÐ&W^唄ef2Çt˜gW™™fºÉ\’°LLÄöÖ›ðíVT9¡`™—L16è³mBÞ“Ê) ËÈ M6éj¢æeNÉXF&+¾G ½¶Ç›‰¤NÉXÂ&k¾{MüÔ3o±öÈ ± Mæ™&[;5rea:%bš–ŸÖK¥MoƒÐ)ËÐd¢i±JêÑÌØô!tJÄ1ÑEiZ%£z¶©š×9%c™¬ùvf[•/|p—:¥c‰˜,ù.mΚz[±7³“:%crL3Yj¸ù…4““:%cr,ùB´ê®WXˆé¤NÉX†K¾§­ã-¯€ÃØ¼Ô ËcvÈ&ú›UÿžäIiO†Ü#=´[‹µuÃQž”ôdƱXÛVˆÏG‘^¬&÷ò¤¤'sžÄl äIIOúršÍp\Yððò¤´'ƒ«9Õ«ç‡ë}RÚ“AÇ¢íQ±_?aƒyyRÒ“IŒ-$ÏÂO›¼<)õɨcÕv¾¸“ï¥Ô'ƒŽI¢ÑüxX°š,(”RŸ:Pl[mÉM½Ù—ž^ž”ôdÒ±fÛRK­çY?È“ž:–lí,¬kžÔIIOsDsûêuœøíµW'¥<™sèÄqµ²çÈï;‚:)åÉœcŠ˜Õu.–"râ$´'Sý8`z¢ >lrú¤´'é%Ûörm‰ž ¨ƒ> ñÉÈ—¥VÊŒ,°m³-—ñÝ—®f‚‡[óåù¨»i½Ú)%ËÌd¾ {01éÕN)Yf&xhßý5'[±-S;¥d™™,cùóέ#ƒÚ))ËÌdضtX‹'Ùz˜ wJÊ24)§¶÷õÈ­½Ü))ËÌDgr¹ëxòSn/wJÊ4Äýð;>FµSJ–¡Éúa[Û#–oµSJ–¹ &Ö=¢j¯,œµSJ–¹ÉRðÞ‚©î9‰…åNí”’%p2ñd;å] ž uJÇ28Å¿ŽØÈKÒ±ŒMfÚ2ýöµª}à¥.ÉXf&‡ç8‚o ½Î) ËÄDÖ½GË힨;"–ÉpÛör®›:ؾƒA蔊eÈ1ë4_N€9¥S*–Çð`Ú0^;Qx¥S*–ǤÓlÁQ±vmEñP:%cqÀ×ÚvÒšë™õÖúA”ôdÄ1S´Ys ,cyRÒ“ÇÊ­ZXÇÝØΫ“RžŒ8&Šp¾Í°[å)ª“RžÌ8ôåŒA|¹–”{uRÊ“Çúm½î±ÓŸ—&%;p,Þ%ê!”vQ&%; p·,QuÎê’+³D7eR²“Çòíü†VDñÃ+“PD8Ыq«4–ÉÊ„-J¿¯Œ©Ä`;>¨6~ã…I‰Në·§-€žNÔ‚0)ÑÉ c·ý³0kÂ~A˜„êdÐ1S4Ú©ÊuÅ„%Šî¤D'aÝ8a _«–V½uº¤D'S^žSýë…IéN‚ºq´‡-ï·áÛ¦‡2)Õ‰cùGݶíåԞɾ ʤd'Ó$¬íö¬¶’b;fÛHt8ð…¨¨Z² <´57uóC‹  sJÃ2.™r§ö™tN‰XÆ%P¸a<,¦Q蔈e\2å„M¢ë2U¤œœÐ)ËÄDoÚÊ%~§æ•N©X&&sN;‚h®1ýž”N¨X&&:sÄø)¿¨tJÅ22™sZíË¥{?¥S*–¡‰ÎÚ·ñí-q°¡W:¥bš¬oµ;ÚÁZV²»+R±LL–ƒ÷—k!„-ÎJ'T,ó‘p2çY£Ò)KÈ×Ãöw°ë@:¡b‰˜èŹ%ðy° …Ó9¥a ˜ á‚s°Ê ÎöÍ»—9%a™¬cwA¤5NéWF&«Áíø«¹n|ZíÃkœ°L9æ›Æv\ú0`×8!`q•Ÿ—Æà¬q/rJÁ2 zRÛt Ö{R9!a™p,ß®m+K*xuRÊ“ ÇÑÖ&‡•&–  ꤔ'ŽõÛóQOúBýÖ©“RžŒ8¦ˆæ¦Äõɤˆœ:)åɈã°üÄK VDŒê¤”'#Ž)¢É¨V7O²=¼:)å ˆcõölû;Öu€8×K“’Œ8æ‡l6…/¹£4)ÝÉŒcyçáÚ=Âk“Ò9&ˆÌ£*Fœƒã¤IÉNæ fǬ7·°õ¼“&%;tàØ6Û´îäÖÆAš”òdÖ±„;µ.ß¶ß{zuRÒ“Y÷H 8¾øðò$¤'±Ž%\Í0ó /¯NB{2ëЕãf^1‹MKïú$´'“Žcóóò “È OI{ÂpþêÄ{N^° OJz23ÁÃöå8N£Ri’_üÐÒÐj´˜ÉrðØ^¨¦ÃmÕHÐ:¥c™™Ì8ÍWë“a§uJÉ22ý­Ï~DdT;¥d™ÀázX~±qbCs¯vJÊ22YnIʹî„1£ìäNIY¦&SNmÖÚúxAÊÉÉ’²LMtæ„á5¤ r§¤,S“9'ÛŒ·ÎÌp>¥—;%e›èÍçn¯‰•š^î””el2ç4ÔÛÞïIí’’ed²Ü~©hÛˆÕ1Aí”’ed>rNÚ‹+“œÚ)%ËÈ‹á ÷´Ï+‚Ú %ËÌdÖi1ž8uÙI’±DLàpm¿ÔÞpÅBM§tJÅ22™qðÍ06P‹J§T,c9µb^a‡A锊eÒ1å4 g,4J'd,Ý8´“níË tJÆ2è˜tZÛàû8'ä‚Ô)!Ë c ·¥¯Ëw~ÃqïN¢”üdÎ1Y´Ù–SåÁl}¥W(¥>s,ᮆýíÀ/A¡”údÌ1W4šáåüA¡”üdÌaËa*œ÷/÷¥ä'c}Y¿¦i¯ á QJ~2çЗ“íD¶Õ-¶,sî%JÉOFsE¼l°íÊ‚B)õɤc wnŸŠÖ_h]éõIiOæ3E“ÍÉŽ“4z}RÚ“YÇún_4¿°ÚLÐ'¥=v¬àîoØ™_c;yRê“QÇú팄ފ1OP(¥>u\Ñd ¶LÝJ‰O&+¸sK¹Ô?£üçJ©OfÓEV¤íØPõ®PB}2çÐS;¦¶½¢ñJ©OÔ?ʸí$#ÛÎÚÒç^¡”údjÚÍZ)t´A–mÉR°'ÃŒ´l²(<†Í† j§”,S“¹§6Rnfuž vBÊ24ÄX× ÙÅË’² MfŸfh7@ r§¤,C“Eá­=Ǿs‡|/wJÊ23™}²ƒ­«·®–|º«R²ŒLàp>ïI uJÆ21™xZµä(dÁØÜK’±LLôc­×/ö†6¡wR§d,ý8Z¯UµnôJ§T,“a«AoOQ蔈eb>2O+Zl¶ÄÓ]甆e`†ûÑäï*´yS–qÉ´SËþ”§Zøá€×9¥a—`á66XÕ÷ãØÜ‰œ°ÌK°°øaƒæˆó„ƒÈ)˸D/Ï©Ç5Ö™°­ê*§,#½8–3.¤®”ÓC唂e¡ÇV³oˆF9؉œ°L8æœF‹µcÆJM¯qJÃ2à¯s¶ÇO,Û Ò¤d'Ž©"ÂkÁ&A™”ê$Â^; ظ%®&%:™qà׆iÊ1c`&¥:™qà×ÊaÀÂ㡼2)ÕÉŒc¦hºÆ8ìË+“R 9qç‚Õ³,½à…I©N†EFºRçN™”ì$ȱ„»\®hÇBÜ•I©N$zq8áä8Y=ê’ÒœL8ì\hÒtIiN†vNXt?@…œ, ÉI„cñÖöâßglšUI)N&Ü#C´£½lãUIIN‹·ØÅªüÙµª¤4'ôZp’ËÎ-%ƒ.%ÍÉ|C'ÖàV{C$̽.)Í‰ãø«±¥oîìƒ.)ÑɰĈ|: åf6ðÝëVç³iI{'5D°d5¸š^0wb·Ø rJÀ-áå7vIЧ,Ó’õàɽ4¿¥Á¼È)˰Í3`9%`™•,ŸöÀ­.½Æ ýʨd®é°î-ö6Ý'ô+‘’¥àG#Ú HœÒ¯€J€Ðöm{ÊAμÀ)ñʰd¸w^_p³º‡×7¥]™•,ÛujAß”v%X¢Çö\­ gbæÔM)W†å#Ç´£½$™œº éJ¬k’Òþh§JqËÚ•I âN;k ò¦¤+ƒ’£qÜëà*¯nJ¹2*Y>1 ]y~À]Ü„teN²ú;´®Ëzl äMIWfÓKÖµµ½pt²—7¡]™mèÄÉv!©¬ÁXÜë›Ò®Ä6tãd8åÕp~€—7¥^‰m,Ûî­¥ë7”¨QxMRz“áÆœe/Ž}­-üž4I N¦Øuìö«u¥#ʶN”„àd¼^5°ì¹°‘º×$¥7p€×¶"²·«jë4I N&èµ!Dö»²xQRŠ“ Ǫm[߸ïü Å‹’RœD8f„Î6:®¶"%äDI(N+¶íäv&%v[v¢”'ó XB¨fÒ8‹’œŒ8ôâ`óÞú†ØJ‰’œŒ8k1)9p¤D%!8 q,×n­Q÷ê{­ $)½É„{¤ƒ4—%^‚& ÁÉ€c­v¾Âôr¢¤$'ôªÓ‘æò2/^–”ädÀA„–ÑèE—²¤$'ŽàÕÚöàsÝÚI 'KJt2,ÂââÍuö KkÛ6 “½¤¥œÅà<°’…ßÕ^ÀÎà §Ô+ƒ’©¥£ ^êSY¶1(œ’¯ŒJÖ}G Õ#ܰc¦“8!_™”p‰¡}&Ü\bÆŽNâ„|eP‚å¿·†ž¸˜/Hœ’¯DJæ–Úb¿ö\–ƒ §Ô+£’e_;Ëõ°5vïIá”|eX2»´#”1û÷ §Ô+Ó’ƒqþ{-G…Sê•h –B<6 zuSÊ•QÉ‚ïl ²ŠŽøf÷®nBº+™UÂÙyÛɳ¼º)éʬ„בjݱ³ˆW7%^ •Ì,mvúцõQß”v%TƒåŸuÅYñ†Ö^Û”p%N‚Õ‰O»ÿ‚M✶ áJ˜d¡wjØÚm;“÷¨mJ¸2ÜnY¥ÙÚj¹ÖÝÄM)W†ºpn%꣺)éÊpc^i…sm8™5țҮL7´þ„àXGœª4I NÆ$È6Y+O¶[5(h’œŒ7 «²RßiÅöN””àd¶1dûŽÔ§²éF%%8 nWݵmµ{í– òš¤'ù Å¼¢t¤­ˆ ¢¤'ŽÉ Áp2ì˜8UŠ“øz•_¯»†=,ˆ’œL8Vg׋0›}àEI NBBõ Ÿ¹fl“/IJo2áБ£mKPßq¾VNÞ4IèM†ÓA“Éq]⯚¤ô&#ŽµÙ³­Ž9ìÊ÷¤IBq㘠² µŽmÁ±¿A””àdƱ6;Û@»nÁ‡“ï¢$'Žù ¤ƒ «íd„ JBq2à8?š—Ôl¢Êz%!8qìþÈÙ–Iõ›™g¼;QŠ“9 îm+Ìv/û^t·…‡E̯ä¸Ï+7Û¸“›—¦$;™r¬ÎŽæù¾ŽÒ¤t'“9Ûwuõ±,´IéNF+´X´SÏ7µ´×&!<™tÌ ÍhüõÊ 9qRÊ“I-*o·-·Æê””'Œã/ÖñÆlOeß_qR“‘ „-˜àÏÜ—ú&NJy2ây¡Ö+v ⤄'CŽÚÁœ®¾aã—×&¥;™qÌ ¹>Î{Ò&¥;™qhúÑ\úX|Æä¥IÉNF“B‹ù\ý"Èðå¥IÈN&ë³¶ßtý³í¤I)O&óB(1¯óµFÈ©“RžL8ðkmÇEÖ{™{qR“|í‡-ÚY¯/Ò¼8)áɈÁªÆ×_›$GqR“)ÇÌjßëàqR“)Ç"ígðåW'%<™rL -€… ¥½2 ÙɈ¾Î Î9¡¼¤IÉNFzr\máÁН¾‚2)áÉ”c™v7‡š®­‹¼8)áñ”C'ÖuoËí¡‚.)ÍÉ”ÁÖýŠ!Û--è’Œ9¦†Ê ÛsÙX:è’ÒœL9lµŠA½6^sj¢”"SŽÕPûî Òmy5Qj‘ÉÄL ˆR?»6·~(ŠR‹ &@§žò1?^2Š‹Ì%´ýhù‚…=QZ‘±Ärèao^OŒ´½5œž(­ÈTbf±Æ©fË{¼ž(±ÈTqVDßí”'(J,2•˜…Y͉˓á°/(J,2˜8ü=mVÍÁ=–'^‚¢Ä"ƒ Щ'ÂUÃeÃÆ>AP”Xd2±&ºVÌ–Ž¹}¤%™LLÅ [Ê«ØbÀ (J,2žX]Ø@#Ê¢NO”Vd:13!Â7¬¦¹ë‰‹Ì&ÈǶXíð° 'J+âù‘‹™ì‘&ëE'&J(2äXtóŠC3‚˜D¡È€{$bZö¡ $7Ó'&J(ßX}— [w-Q:‘xË^lï//%J&2àX=lŽ_·lìrJ¢T"áLä}œú…D‰D&'-ÛY¯œ‘7q:¢D" °© [nÍ„D©DâXsgËÌU4NH”Hd±‚¹XCÏGª^H”Jd1i‚Áö2£®”D©DÆk˜xÁG4AI”Jd1i‚¶.OfY€ $J%Ðö‰s»“9X¥HÌ™Ù×qRAG”F$&¡'‡ÁŠ?¶ ø=Ɉ’ˆÌ$fMFK[–3äxQ ‘°æÔÜ…ù½å˜¼†(}ÈTbÊdxÃCÙ(.HˆRˆD%V±$b™0s¿ƒ_Q=1‰åµm1Ö–˜æ=øØ3”nyމV_|OðdÏPB»mKÚXØæÀÃ_€=! ¤çP£ž‡Ýpãѯ¸ž„f¯ØûYZ“_`=óˆÅ½Á>%¦*Fô+¬g„0+±^ë‚ý ë™ Älþ~ùC ¿ÀzFs“ þË-qXG¿âzFË{Hr΋¨Ù¯¸žœĂ›ñ¨‡À~Åõ tå€ZV îÙ¯¸ž0”Ähß„Í;V`ô'¬gˆ`PY¿ÅâÌMïúÖÃPôêÈá°Å¶ó†±R ¿ zÒ£¸wÔGŸqöMľBz&s£–§²õ ûé™G¬ïaHU÷÷¹6Uy`_1= ¸©™s4Ö„Å*wî ¦g"7uÅ(Øa« ÷Ö’ÐòÃiS¤_pFò+ªg&=òÖi+N äWXOLoöµyܼ^‹ãîàTÏDb:b¶Ïúf~ âÉ/¨žÄZòÁ5!ŽüŠë™G¬žÙ$éjø€~…õLæf+sÚ’â÷„~ÅõŒ±òº´—-ÐòìW`Ï!ŠÁ0Æáµþ ì™", pü‡¿{& ó³µöÝØlj$¬Rá,´y»fpÄV4Î(áÄEbùć—؂ƙ$Õ^Í ë Œ¶Øël…ãÄ0¢:ÄjO…¥ËžØŠÇ™#,Q1¬$,³3G¸B Ëûflè ­€œCŸSõV±hÃÈ¿‡¶rŽ~®ÑÐdÇv¯vÌV@Ž#¿«ùë3TvUç ­€œQÂÂÒÑF0íd+g–p®>›û‡¾á±!tÌ<Î,'ŠÛC(zf g’°´Yd›Î¼'h+ '’pÆ>[ŸM >¼ ÌV@Î$AÇ¥²¦…… mAä @bÃzõ|Oƒ„§¶"r ë@øZm ¬‘ÚŠÈ%,Ý ö½Ú´2Ÿê©­œÃžíð²zh¥±0`[!9Å?'ÇCsÍÒbØtÔƒVA4Ç?‹.“U&.îA« šÃÿ1;neĉjÐ*Šæð碣Ù&¿õSsãª'­ÂhNgºO#¶„ ¨U MY‹Û´þµjj­‚hŠ^VËÿTäØZ/ÇYÅÐÿœoæ†#OI œU Íx,jK°§ 9ÏYÑÿhøº›ûbÏeg¤xÎ*ŠæøgáSÖê-´=hFsøsQÏùæàðOZAÑüœ ÛA¨u?jãW ­¢h~޾NsËñ4HGÒ*ކ1Ûc‚<Ù"”ñà)0µ £%¬•ØAt׃EÔ*ŒF”°¼1¡àœÚZÑýœÔ®ö¸u\œSà@+ šƒ‘½cVQìÄ'¾wÐ*ˆæø9Z ±ñ#hFÜ'Ƶ#¶{‰¤UÍàb;?ë7|§H«(šÀy-²ßãŠÅ^´‚¢‰¬sœ6 +µÚÇm7Ð ˆæðGh×Áãf72ÑöœUÍáÏYíb›à×ÃÆlRë8«šÃŸkgðIQÝîdäÚ™gDsôs^‹º÷ÈãhEsø#´—É ‹Gœ(sÜI«(š£Ÿ… Di=oÌRŽ´ £9üÚëa Œ¶«¨UÍá±Eum›‰::*ò¥ðgE›Güþ%À1ƒ/?W—,æˆã„u8Ž |9`9{ć3¶È{‚£"_XÎG+ÀÖó–,=úBȲ pÀï¹*°Qp/ÇìmòØîŵ—Š{9hëKZšl¸óµg£â^Z4~1hÉÛ’ú=±Q€/-ÒöKi-¶£àà¨à—‚–¥€ÑV„X ø¨Ø—b–ÈéÚßóÇ;ùrÄb˜ƒóÏjkMXâè¨ÐGWh¯§]:,x<*ôåøg![]ýð¨Ø—Àä=b«înÓwÏG¿ŒN í(ÁºúÝv(ô|TìË@t×*,lÀ¹w> öåøg é,–Œ|TôËà ŒÕÆÉõÚÎRÑ/‡-Br;mSOc³OM–yk š"VŽ[4½ ýêƒá(Ç4¬¶É£íÛP¿µÒ¯rÌr‚µÙC]_x¤)^¥eFúlœ¨÷:qò‹CšÀUŽXf¤qzf«`×}‡4…«±¬â¯×ƒÙ„4 Má*G,¢ñ°qö¾“ÍH=Ò¯rÄr¥ÕØÒêõÉv¬´rLS¼ÊË\²ÕÛ“]¹äÓ¯RȲüŽí.Ê=±¹GšÂUŽ4΋FtæÌ-M=Ò®r¤qTݾ½ä‰í Ñ­r¨1¼¶w¯†c0ѯR¬qbÔR[åVª i‚W9Ô8—i'ƶ[Y}!`H!&Çs¶ :rÂÆûw )ÂäHc‘{k•âºGÔMnoRˆÉqÆiL[€0×y9„Ç@L޲Ç*¤OeÀ!Ře·„-žkŪtÇ!Ře¬Ko­ÄXof+a‡cr˜q³´dï~pïýÀ!Řf\>dS‹údv|tàbLŽ3¦ZÛË´'ÃÇmžC‚1)ÌXPn{Ïu6kþ€!…˜(øWÕCƒê½vlk(¤“ÙQÛ¿é8 ’B 01ÎXMn',µ§² '‚_b˜q汷ܬzˆR|IaÆ%:&Êõ^6S RxÉqÆÌh;ºÝ 35‡ ˜f¬ÿÚ—Êu»”ƒar”¡Ál},pˆ@!ŘeÌŒÚÆà­kF®¬¹qH1&G“£ÍEÛÍlõÀ!ŘeºíºØÍÔm‡crœqæ1?Ž™SxÏ!ŘhÌhÚ1ÚõÉF|jí8¤“" Щ‹#ZgNVRŽŒÉ¡Æ1þøÖ‹›úyr(*äø`âðÀFLá=92Rp°<ºÛAÇx•G92rlp€?[8Ôq1ÂwèXÈ¡Áþh÷ڹ  Ca!‡Æ#iØ£ÜÌV?t(.äÐ`E³-qi7³Ï†=;rdp„o)¼Z¶<;rdp¥ˆiL½ržŠ 92àöuÛÍn6ÚæfžŠ 94X‹„¿ì»©Zd‡âBÔè«Íƶ¤œa‹:R q‰ÇÔ¶”ØÍÞ9Rœ±i›^×ÇÂ~äŠ 9Ô¸”bm…}GY3Ca!Çós¶ïr½—Ð!ÈÃõÃÝÏ–h½'z(6¤ð,&ïΪSÀ‡bC.¥X[%b·ZÞ?rx0=7¶­zêÍVfçnøPhÈÑñ(úív+ƒk ‡BCÌóÍ}ÂÚ“€…†\ÿ°Úo”›Y.?àC¡!‡“sC›í;. øPhÈÂÑ´@·ï8ùˆќƒY0“­ëF!ÞE0çà`iíDã \Áå^sŽ.°m ÛŽÇ6‘ô¯¢9{4ÓW‹Ýi·o*|¸«XÎþÌjØno´†x±œý™C`ûx©¶€íÌâ]Årög¦®Ú†}õ^FÃî*”³;3s5™Oo;r¶>ÜU(gof kµÇ­A¾°†õwÊQ ¯àž-E¿×m…q| wÊ)2˜·²€ê½0ðÑ®"9Wö]o½™J¢]ErŽx~ýø¶uå1 Ñ.b9ÓMu†?×Mi±›‚ wË9:Xv:íÕë9ÓVCññ®b9G‹Ý6¨u*Ó…xW±œ]ú‘&j·± vwËÉŸY&j®råˆûB¸«XNþÌQë` Û~7âÃ]…rögVº'Ë©”ÿl߃ûpW¡œý™ ";'¼Þ ƒ0î*–³?³¨lyÏ}½ªõ1*â/»3kÊíåÚ½¸Ý ‹QÉ¡™Ø±Ýú÷ç¥ÇUá—š•`Ûœ }ûmÎêCTÅ_vhæcŽV‹¨7³|Œª þÌ*ŠL\o4à[H¡*ú²C³tÛörØ×!„UÁ—|éмÜkcöäž"ú²²êa•çz+KÏ…ÑçòÔrëÄ"TE_öfVm¸õ3@+ÚºUÑ—½™¹“ÖXWÅǧ ½ìËðÓzvÖK;XÍJÉ!:UèeWÆÖ½%G»™ÕOBxŠÐKžÌäIÛæµÝŠÉ*ò²3sX8Zœ­-D§Š¼ìÍpÕµM¢ÚÍ6¬“rÑ™B/;3‹ »%{W ÃS…^öfæ( Éõh+BÞ£SD^ö?&(¬C–ƒß¹àT‘—EC[XZ7Vö >¢T´ddN¡ÔÛÍì»wQ*Z²2©`Ÿö´ßTxD”Š–ì,ôí6ɬ,·}¬\D©hÉîÇŒÂb›B/ü¤2D”—ì}Ì(  ?J !¥Â%;à£@×hYL6bH©pIÈ$À`ÝŽ´{O¥â%¹à#OÞº{áј!¤T¸DxÔF¸Äd«W|D©xIçZÚ.jíNvúš)/Áÿ8Pš­÷ËôĶ쥂%ù§ì‡ýbý'çºxRÁ’ý“vÛݰÞlÂzXP*^²r¤d[qíå OT®\L©€ÉxMÚm¤=Ü“Ì•Š˜ì‚LHæ)3’È1ªTÄdd¹É¾Úk;¬ï,7Ý¢JDLòANµíÛ˽~j3í{L‰xIÈrÎÜÆA%Þ,—àƒ@xxö”›g¿am¾ü«™@+n‡PP~žNq Ö%uI¾mºÇ‚òóì7œ4m‘q½ÁøXP~žçQPh£ãiáAâ.”Ÿg¿á¬qµl¹×zmLv‹áçÉq˜µ,o4q±uð^ášÉq˜×;¯[Ù¶ŸÁ{•ofÇá” ÓZxÊSç¿Ê9S_sñ—}jT÷¾´ãjƒÿ*ßÌ}Íõ&íK¯}§ü)w6'sûbr·åïÉç”Cå-nÆeóÁé”Gåîf:gkû_Ô› Vp^§<*w7‡øö5È>lŒ#ïuÊ¥r1c{ÈÔ›a¯`ïvÊ¥"dî ÑF‘a¹¾eqn§œ*w8:ó°3"ëÍ–‘£ü›ã)§ÊþX·ÕÒu›ñÂ;žrªÜáëCl‹O9Uêp®¶š¬¼8 X<üNùTîpæ<–¶¬·Þl±!º÷;åT¹ÃÃêZV¯baÛÇSN•ûˆÙ9Ó—íÜ!ãÁW”ä>⢀¶ý\«Jö½sðå¹8>ê—LXÅâ}EùAî¤G1¿æ€êŽÈØ ÏûŠðƒÜGÁN­µë®¨ìx_Q~ûˆø±õúf«Èß“¯(?ˆpx ;ç6ÙÎñ¶îÍW”ä>âÀsoÉÁú[³;û ¾¢ü ÷‡žkûN±Þ ™'ï+ÊrqèÙN¤™ë|ÏÎ ¾¢ü wgÏ[{…[ë9GQ^{è1Z<Û;®ÜÅ{Šò‚ÜC“µ[ÊÍpŠ]ì\Õq¹Q9(Ûku·ÜŒû6„ÎU—•£²©ÖIê½ðŹï[Õo¹Y9*këüæ­–ŸmPæºVu[nUNm£çz/æ­kU·Åໞª~NXb¿ÆÃ¾kU·åþaAÌ×í¬& }\תnËmÊ¡O[C[n6sòì»Vu[nTκNûÕ'ƒ„®UÝÚ”ã;fÛG‹ÇЯªÏr“rp±7ÖmÛÉÕ¾7TKç&e1¥uWçP¬¥¸ÎP ÃV¸™ëà8ˆÛ÷…jçÔœ?Ø"»m[0]‘Ú9:÷}(Pfضû†¾P [”ê½ØolØ}6v†jèܤÜ©-aÞVlòêûB´snÊíÜY5—gYøÐ¢s3P 'ëí•›J†T­“›šÖ–¨Îu£mKò„T­“ÚDË”ÔC¿°Mk@Õ<Ñ:46’o Ž–ŽM¨Ú'7ó›heãgŸ¾ Uûä†`VN]”þÄ:׆¢}RCÑG›¿Ô£9×u¯­^)?;mÊÕÏ¿V¬[p¯­^)?;±:ÚóÎ~xmñN±ÿ4´ÃRêVÁŽyuï­Þ)?¢iÔA4Mzˆ†MÑ´é"F]DÓ¦‡hÚô ›>¢iÔC4lºˆ¦MÑ0ê#šF=DÓæ)¢7žÒ×A4m:ˆ†IÑ´é!Úl>@4ºˆ¦QѰé"š6=Dæ‹hÚôM›¢aÓE4mºˆ†QÑ4é!6=D׃„‡éDÓ¨‡è˦ƒè˦ƒhØt}ÙtM›¢/›¢iÓEôeôÑ—IÑ´é!ú²é!šF=D_6D_6DÓ¦‹è˨ƒhÚô}ÙôM£.¢/£¢/›gˆ¦AÑ—ÍsDÓ¤‡è˦ƒhØô}õ}uM›¢/›¢iÓCôeÓAôeÓA4mzˆ¾lzˆ¦QÑ—IÑ´é"ºîgò¡Í¦ h˜ôø “ž›IŸÎ0éÁÙLºl†IÍfÒ'3l:`†EËfÒÅ2LºT6›.”aÒc2LzH6“>‘aÓ²™ty “.ŽÍ¦OcØô` “§,¶ÿÞE1L:$6‹.ˆaÒãp3ùðéR6=›I—Á0é!ØLº†IÀ0éñ×Lºø…I—¾fÓƒ/,zì5“.zëº×Ù £.|iÓ£/mzø5›>iÓ0lº¦MÁ°é3˜FÓä9…Û9™usÆ+yMË´érF]0Óæ9™óZÌ뢫aÓ‡5z´†M×´éòF}`Ó¨GlÚÃiÔa8Mz ‡M—á´é0\°Wu¡N›.ÔK»ÕïñÆ=¨Ã¦uõ ›.ÔiÓ…:ŒúP§Qê´y ut¡N›ÔaÒúóNïRÞl> <º”§Qò°éRž6=ÊæKyÚô(O›åaÓ¥«N¼ª§N°éªmzê›®:Ѧ§N´é©lºêD›®:Á¨§N4é©lºêtŽuk©Ô F]u¢MOhÓS'³é«mž«SV\ÓùЦ§N°é«žç³.“®E]ÁE}1ŠáE]1*Öp¿„«ºb4VyxK×Õ¢i8ê5Ó/êÍ|`ÓŸùŒG»ó_¼¯FûÖ.ŠïÝ‘£rÑZ‰¶[¼¨«OÏš¸?YŠ:Ì‹zzE›'zõüQ:öôIz‚µ—ôõ,Ê8/êêYA»è#=Óñõ‘žEäUÏõLˆ .ê mz›®ÀÑæ¹À=«®âÁ¦«x´é*ŒzŠG“žâÁ¦£x¹'Žyª~Ú—@õ$ð²éHàeÓ‘@Øt%ð²ù„òšþ„m´‹ÖxQGiÓÕÄ˨;c“Ü×È0’åE] (»®éKdÐ^Օȩ¥m±.êiäÜo_ÓE¤M_#§×}‰­ÕÕÈim2?‡ˆékdÔù뢾Fú/ú@"ƒ_Wu4ò²y6§£AoNwÙô$pi0ÄvèjàÿìK`ÐM\ô‘êðù¤^W}FyQO/›ŽÒ¦'—Íg$ðº¨#´éIàeÓ“@u$ð2éH m>'uûêê]4êJ mzH›žšM_ió Ä5Ÿ“@^Ô)ˆµ ÆpA_iô =ä%]= #a^Ô×À]^ÓÕÃ$m¸ª«‡³Í·ö9^ÔÓÃ¥Ó÷ãˆõô6}=\L¥ö-ܹ«‡sU·}‹ÍÕ×Ã(¢¼¨«‡6xˆ(.ú@ã@…Wõô6Oõ]=¤MOµ«õå0j(/êéa˜{âšäPGÏGræ‘×UŸ’C\Ô•CÚôä6]9¤Í§äõä6]9¤MWaÔ“Cšôä6Ÿ’Ãsœë.þ}9¤QO/›Ž^69„MW/›OÈ!¯ù”^ýX9ä]9¼Œ~¼^—tå0ŒŠyQWãÜ庨«‡QxUW—š§};â%=5\ë/¼¥7ê‰!m>ÃÖVǰ„;÷Å0:/ê‹a:\õ'‡A×xÕjèçºè¹æåuÑ3u¤A?ªŸ¤«–!=Íkúrùäéûré§œ¸æ“ry]õ)¹¼®êÊeP#^ԑ˧dïê'mzúyÙ|F?¯‹:úI›ž~^6=ý¤QG?/“Ž~ÒæsúYO.ú¨¨H£®~Ò¦§Ÿ´éé§Ùôõ“6ŸÑO\ó9ýäE?Z?qA_?iô‰1×5= Ãh^Ó×ÏæùûÛ©¯Ÿq.Æ«ºú¹Vá)b¸Ä‹z Ú^§øsláÆÓrQìǾ¦nseÝ1§«zšºNí¢q u5µžúR'Éñ𮤦1 ®êKêÔ-û’®êiêÔ¼oŸbK<¯R¦a®ø”ÈòšÏˆ,®é‹¬þOi¬]󑯆zþuÕç4–W}fJÊ‹zSÒ˦'©°éJ*m>%©¼¨'©°éJ*mº’ £ž¤Ò¤'©°ùœ¤ž«iÖ•Tu%•6=I¥MORͦ/©´ùŒ¤âšÏI*/úÑ’Š ú’J£ÏH*¯éJjÀ®éKjœ1ñ¢¾¤†Ä)¯êJjk×"Yñùº’ÚÄêíØc—t%õhŧã1¸ÀEÝE¦—QOAÛ+‹Çé*hRx^ԕЭ©Ô1ÅžéKhšk󪞄¦¹6/z.¡Oܦ/¡qžÍ‹>£¡¸¦÷ÙÄeÓ×L¿T }V4yÕçD“W}J4qÑSE½¾ˆÂ¦#¢Ï¦·¶õ²é‰(lº"J›®ˆÂ¨'¢4é‰(l:"º s=/²+™´é(æeò\0/“çz “ž\^&?^-yÉgÄòºæGj%í{RyÙüx¥¼.é ¥‹}^óPº¹ÉuM_'ïYX^ÒÉ ×5=<[ï Mø¹ëz2yÚo5 ao×õ'ŸçH¹hÓ•ûuÏÅ“&]©´GÚÏú*íÏ[÷ÕmЄ¿Žæoö³­†z;8ô¿.êéåÚê†Ç¸…kžÊå¼Út8ôjW-}‰öº¤§•^_yIG*/“O(%®ùœP^}fùÏuÑ'd’×|B%¯Kž‹$M>£‘×5Ï%ò2y®4éäeÒÑGÚ<—ÇËâ¹:Ò¤+Žõœé6¼ŒºòH›ž>Ò¦'fÓWHÚ|F"qMO#½Þñ‚çyÙôE‘F=UŒ‘Äk>%‹¸¨¯‹~åç㢮0®ãBéqWõµ1¢šõÅqc"·AÉ]ØUÇöˆ-ÙÜÏ÷ ?’ǃËJÞÊù+{³ËóšÀ¿Rºëúª‰ëêÏ% Ü…}Ù´—l<…Öéë&Úµj`+†»+{âÙ$­ð#ÒÿOÙ›äH®óðƒûð¯æùgÿš ÿjš©M¢ükò|â_Íô‘M¦ü«¹æþ•wžÇû7úþõ8Cßz¿mŒsÿú¿^ÒŒ¿øW\cò¤¼mõÉ9õ¯¼•Äal—·3ãÜÁ’‘±Èr=ç–œxßG>ËÈù‹ƒ6åù½Ný«N¸^Žç÷ú³}&%ÃÔž•u¦™‹}¦+'ÏÜÇ>ýròL]ì3YÉL¿¹ØgZ_çúÈÅ&×'.ÖLŸ¸Øä™¸XÓ|tvM¦Éá5i&.Ö43›43k¢‰‹M’‰‹5ÍÔÅn×ßõ—ÑØI4u±¦™¹XÓÌ\,iæ.Ö4Ÿ¸Xñü»‹5ÃÌÅŠfæbÿ7xœ\Ÿø\óL}îÛNÛLŸù\3}æsÅ5÷¹Ï ÅÎô±Ï5ãÔçŽų=ó¹™zõw×i89§>—±ÒmÕÝïÈ8÷¹÷×?ÒÎÝlü­´¼ØXŒZ~s³?/lîgW;¿¿åÉõ£“Ý…8ëûó4÷²o±ãdšyٷïy>ò²æùÈË’éS/k®Ï¼¬¹>HïM¦OÒ{;ÓÏnö§—ë‡n×L3·kš™ÛÍÔíšfêvE4s»&™¹]ÑÌÜnYâOü‹Û5ÑÌí&ÍÄí&ÍÄíŠfêv“æ·kžv»É0q»¦ùÌí&×n7y>9êšé£+ÖdúàŽÕ™> $'ã?tã\uËj¾ÏϹÉ9?çy‹ŽcdüÅçÂM3ùm¿9àÕ±yÜ^œÿä€ñ%m×Sç?8àð‹åñ“íŸ=°9æ:ŽýýþÄ›çœñ·æù÷Ôßä™»Û·P\2ÍÝí£$™æ™¿ïo]3M3[•zcšûÚ?ï™IæûÍ×þïÉ89çw¶p8ûoÇþ`ü—˜ò#Œs_K '¿û‘óã˜r2ÎcÊÿ±÷1ãÏ1åg UrÌí³r¨3}âlÅó‘³5Ï'Ç]1}èmÍô™·5×GÞVLŸy[3ͼ­h¦ÞÖ43okš™·ÍÔÛšfêmE4ó¶&™y[ÑL½í¹ÆeÊ/ÞVDSokš™·5ÍÌÛ’fîmMó‰·ÏgÞÖLÿìmÅð¡·5×'ÞÖ<ÿ^»š<Ÿô~èLŸô~H®yï‡g Hgú vµ3Í3ˆp]Þõ/éÃCä4Ù¦Žv¼/Þ×ã?eG…ÓkõÉ÷‹Ÿ¼åƒï/ˤ*øçRÚ“sæfé`Ͼ¹2ÓÏ©Q?ü©ç©Qo×É4MzTÙ&ϼ–õ-!9™>ÉÓ‡!åäúÌÉšë#'+¦Ïœ¬™fNV4S'kš™“5ÍÌÉŠfêdM3u²"š9Y“Ìœ¬hfN¶–¹“5ÑÌÉ&ÍÄÉ&ÍÄÉŠfêd“æ'kžœl2ý«“5Ã49*‰>(ÉIžú &Ó¼¿àÛ~<™æ ß¾æú¤Á`gš¶Tz»N¦™S}÷Äfš;Õ“að÷ŸÌÜ¥þGç.õÙÉ÷K™ÎÿÞ\›sîTXßÔŸ¾Ç’éçBþÊ¿Tê<}c2ý{]kò|Ò€©3ý{só|˜jœ\ÝÐ&×'îÔL¹Ódš¸SÓÌÜiÒLÜiÒLÜ©ifî4ifîÔDwš$wjš©;ÝëßßÒžD3u¦"™ùR‘Ì\)HæžT$Ÿ8R²|æGÅóÏn”ôs/*šnJ˜Œu1Ï܃>²f™7¬^9‰gÞ®þÝåŠgÚ­þíÚÍ<3ßù~ÏG½”’iÚâ­I™>*r5Ó'¹Â♸È$™9D’Lý¡HfîP$3oH’©3ÉÔ’fæ E1ó„$™9Âûø·ývUj¢™+Lš‰/Lš‰3ÍÔ&ÍîÐ<ùÃdúW‡h†©GL¢w‰ÉòÁÜÍdš:{;‹&Ó/£Îo3Í'½’i:êìÍ™&ÓÌ3¾§‘šé—Ö½oN!¹f¾ñÝ ›iêßÊÉ4õŽÏä/óÌce^ÔñþõÍ» ¾9»dúyÚ[ðÓsÿøÜŽ%Ïl¸ç[äÓ<óahoî.™>îi¦Ï†¡u®¼dr}â&Í4ó“I3q”¦™yʤ™¸Ê¤™øJÓÌœeÒ̼¥‰&î2I&þÒ4S‡yÿ)ë/y“hê0M3s˜¦™9LÒ̦i>q˜âùÌaši’¾kš¹4Ñ>Ò,ùH1}2›º3ÍgS¿¿wÄ5w’oŽÕ<ÓÑÔïŽÕL3ùÈ3Ó/³ÏÞ²O’k:ûìíÎLÙiæ£]~0ç—Ö»Ïl˜dšv³æ’g2ô?ÿSø?{13Í\⻣ÏÜ%þðƒž»Äÿ~t¦.±}2Þºsýì“fêðL3sx¢™:<ÓÌžifO4S‡gš©ÃÑÌá™dæðD3uxçþ·üvóh¢©Ã3ÍÌá™fæðH3wx¦ùÄá‰gâð:ÍÌ¿‰fîßLô£ë$SöþäˆiîÏÞŸd3ÍýÙû›F\Sö?NÐLS‡öv20ÏÌŸ½§R˜é—y×o·LÉ5wýæ ÄóɸëÎ4ŸÖòâ>wÝ™fþí§¿ÓÏî§ŸÃÜý;3Í<ֹܿ‡ûṘx8ÓüâÐL4qhhæ¿D3õ_¦™ù/ÑLý—ifþË43ÿ%š©ÿ2ÍÔ‰hæ¿L2ó_¢™ù¯­Ü.à÷%š™÷2ÉÄy™dâ»H2u]&ùÙs™d~2{:7³Lü–H¦nË4dĘåg/f’‰ÏJ’¹‡z{Sˆiî ÞÞHæ™ù§÷WŸyfþéý+ž¹{zw™iêžÎS,³³–I¦®èûçžèý@c¦©'úï?ÈÄý÷_}î‡þûG:uCÿù@ÍΚdârH2÷8¦ùèe¦‰ÉÌÿ˜dâ~D2ó>&™8“L|Hf®Ç$3Ï#š‰ã1ÅÄïˆdêvöãïõ[sXMifžÇ43×Cš¹ï1ÍÌùˆæ#ïcž™ûÍÜÿ˜èçcS’ÌŽh¦Ç4—“DÓi¦.åý%f¦©OyUŠé§òî½Ì5ó*ÿó&ÓÔ¯˜fîX~0çÏòÃ÷5w-ï/I3ýà[’à_òŸ¿õŸ}I’L‡ifÞƒ4¿¸}æ?Ì5s ¢™zÓÌ\ˆh¦>Ä43'bš™ÍÔ˜fêGD4s$&™yÑÌ\ÉŸýÖÕD3W’4W’4W"š©+Iš‰+1Í,â–4“Œ÷Gзü÷vâk:ÍϾÅ$3ß’4ß"š¹oI¢|KrM|‹if¾%i&¾Å43ß’4ß’4ßbš™oIš™o1ÑÄ·$ÉÄ·˜fê[Úõ÷ø-ÞDSßbš™o1ÍÌ·fî[L3ó-¢™úÓLŽ%¦™ûý{¶B²Ì|‹h>ó-fšúM}‹iæ¾å?Wõ™kÓ‡®Å\¹1M]‹i&®%‰~ñ$?Ø<÷$?|=3Oòö‚Ç'ǖ䙸‘L]‹if®…4¿¸}æZÌ5s-¢™ºÓÌ\‹h¦®Å43×bš™kÍÔµ˜fêZD4s-&™¹ÑL]Ë¿¯ß\‹ˆ¦®Å43×bš™k!Íܵ˜fæZD3u-¦™¹ÑÌ]‹‰&Ǔ̞»xf°¤™zM=‰i>:¥˜é#W"¦Ï"`ÉõIÌLSWbš©+Ñ/®ä›?ºKI¦¾L1ÇG·)Éôï×)f™úÓÌ| i~ËÓþoƒç—úI4ó-¢™úÓÌ|‹h¦¾Å43ßbš™oÍÔ·˜fê[D4ó-&™ùÑÌ|ËQ׿ÛoeK&šù–¤™ø–¤™øÑL}KÒL|‹if¾%i&¾Å4Sß’D?û–$ùÀ·˜gæ[’fæ[L4ó-Ió‰oI¦OnWÌô™oI®O|‹™¦)eï7òÉ4s6&úìÞ>¹>q6ÉôÏÎÆ9›dúwgc–™³IšiJôÛ2?Ù$ÑÌÙ$ÑÄÙ˜fæl’fâlL3s6I3q6I3q6¦™9›¤™9MœM’Lœi¦Îæ(Ñíg#¢©³1ÍÌÙ˜fælH3w6¦™9ÑLifÎF4sgc¢‰³1É'ÎF©}1ÏÔ™¼¿-Éó‹/y/‹é#WBžyeæ³^Æ,SÇBš_üÊÛò™[Ï¿{2ÌÊÿ0æ>åíµN–_*0Ÿ~H,3’O=Œ˜¦F43ÿB’©{ÉÌ»dê\D2ó-"™¹’L=‹H¦Ž…43¿"Š™[!ÉÔ«\÷ü· fMýŠifŽÅ43ÏBš¹k1ÍÌ·ˆfê\L3ó.¢™»Mü‹IfF4µH¦éFD\&ÓÔ뼿ÍôIÉ¥™>«¹L®Š.Í3w<Ï2ýä™zýÒà¿­ù¨@2ýss|æ|Ìô‰÷ÏGîÇ<3ÿCšO¹¦ÈD3$š©2ÍÌ ‰fê…L3sC¦™ù!ÑL‘i¦žHD3Wd’™/ÍÄ-þŸ¯8mëöçÿûZÿüŸû¿ÿ÷Æþß_õº-Ü#ós=ÿîåÏ÷€)Ñ)º ãgÿ»7‰ %á×M~=>>ÿn§y P4h¹Ýg\4‚w] /Er+7EÚ*ö§í¯¯ÿëëþ:Ú‰·õîé¼Ô1¥â×znü£DEëmç ï1xÀðëæ¸Ÿ˜pmI±7|µ)Á0u€Ã˜ö÷úÓ¬+×TA8l„)Òl x®‚K;êõw¯4k‹•%¢®#ëýhÛ’ûm¯í£ñu¾µÛý íŶñ*Ð CŒ¨ðT)à¶+ð©‚ppȤÍðXÖUÏu‹Ô휗 ó=b¶xVoøº_£ß>àþ·´¶&|ÿV΂·L§¸WT÷ABÂÐÆÜ¿24á´„ûWuîƒÂÁa+La+-á¹þÑÚYÿ¸únaØ÷ˆ¹þ®‘t¿ ñN¿± l×ú÷HðþJ۵߻‘àRê–$Üøm ¾£RB½‡kWA0lƒ ÒF x®‚K[¯ö”«”Xÿ÷ˆ¡˜õ:J¯S–õvÒ ¿b¶íoìâ¶¼u †ps?õñ®O ÷“ÓÎAá×W·Bi¥$¼­ƒ?Ê«œ±âûßöwmx1&æŒG·^µÄw†#’xu‡¡x{µ5¾óüøþæÉgî„! -óã'œV8¬T@0l€ l <— ?Ú½#ŠG¿±wl×ûd³D"Âqý½"co;ã)0ßæ^°KŠÛ7Õcp!¹Àýˆ—tgß©(›2цè»傎–{Ì ÿ05f«ß¿ßÚâçtÃø*nø JÃñÜï­m(î7ÛÚ †©Ƭq¨H÷¯ª”Aá`°Ia³)๠.-~í«‚œ÷Îî{À ^Åe-±£¾áCËzàYOLá0)Ê{Å.Á0u€Ã˜ÂI–pÿ±ö:è ¶Âi·$<×Ágl»½I8ø^.H0Là0¦ýE¡¦%„+T zÛàÏm´ØŸ‹àÊöû·q?ëí–ø«%âÂo·îÁ„W~ã7Ì´à[ë¾/üõ›"Û¯ƒÃTcVj’„ã ×Ûu[a [-Eèõqy'ÚBn/¸³ÄÜêªÒ®â.·9QnØÿ ŽüŒ†r…œKJ0Là0fÅá2%ÜÛ¤et[aŠ´[žëðF¤…*WœÌ6nD„¹¿’ø5÷ÿ&¿á ÄÛcÔfÛlÔóóðj·@ŠÇDˆ{Cm¸÷û§t â c "ý¦H‹%á¹-‹¿ÐÛßá§ó=bîßpì\ø‡GŒ=ÏÉgÀp(æCÒ)øu /ÜkvLøç8îZÂrï|ƒÞ6øs™höç"¸²£Ä>°Š¿—W´È½Oò÷{¬`WØxWY.–¾µ÷;™;KQÔ#¢.Á0U€ÃœG»„û!ª× ƒppØŠ¤ÕðX„·úˆ9•óÞºàO–˜ëÞÞœØXß;s|Ò'bc}^ c'ÞâÒ)îÇùlƒÁÒcj<ñ)á<¯Ð•:‡¬è¶[žëàâö ïq{Ö[¡ïs✴7žøêíUbǶ· ߱૱Ú:PÜ{c´®±„„¡#8³ÀÁ[Âý,…ßN‚¡ƒV$EZ) ÏupqÛ½K»â°z«[°)¤ˆÅ!Íö~Ðãþ–¯5á[ñÖøt'ÅÆ§;%$\´gJÌýŒw|J¸e#8`„¡CV˜ÂVZÂs\\½ß³±§9V¸šïs :Sïß8*7ïõÛ¾ç>÷âz5¶u ¸Ï"Ë5HH:‚Ø{QÐ&Xî6+4¤ƒppØ SØJKx®Ã;ãŠãÔVâ¥ü="“ëýõ8»žñ*jÝŽ=`lv7ü;Å…FJHxùKWhÄ}t¼°;–€µÐZaìŽe„)l¤%Ú]+<›1÷cSð54¸¡øiø¢OxÁávîÇ"¾Ð¤¸í¸Ú Á0u€Ã˜Â2K¸_ªªK„ƒÃV$…í–„ç:´¹OŠ W±øNLE¤%ºá{ÛšØbˆ­ÂyÆQ³|!*ÕÙ [Ap$FÛJ¸á5.S À@Sÿ8-ûsÚóß[É#î¼v¼>>âb"¶ßåÝpƒLl×÷„±?±ÕOŠûË‹/7%††`H¼lpÂjTÆŽ_F˜Â6KÀ¸½òkÁé'Îí'_ù‰9â%zÃðJ0ó8Up¼Žo׺î#Åýðoƒ„„‹âQ‰‰èºÇKÂÆ8kê ¶Â¶ÒžëÐ6K?¤kÇ ¿ƒb‡~WW”·€w|k‚ãÙ^ŽhÅyoàw%¡Ã ,ܱîì÷÷GµT@86X6Á6QÆ(pu0¶»îxX¿ÌÁÇùºÝ<îø«_'"†y?¤IŠÛŠXNJ0LíÓ0ŒÏv>ÿ©‚p0ØS¤Ùð\…ÞŠ'Ý÷zò•˜à†ïภ‡®ßßÉ…î¼ÅÏõÂ=‡)Î{ÎÒ:Ì·†ÁûkÀùÍìá’¶AáxÚSØDIW çëD¸òþ¾éÌÓy³$Z¶0à~™A–`lZr;Åm×v .| wÌýœÅ½_Jˆ}â6è Œm›¬H Yi Ïu8 R°Ïj÷9·mŒƒàJìºÑ=¥ò\¹o ör‚ñÊjØíuŠ»Á”0t€C˜‚¨w—Pp²LE'Ï´AŸÛD³?¡-ÕýŽ_Fº0!Š\P»w)¸I”‹j÷×Óö„c¿s¡ˆ@$Åň…%^Ó‰u ½%¬òRÖ±¦³Ia«%à±½>vJÏÑŠ×GbŽÄØa¯x*…öÂKB0žm¦Mq›q^ƒ„„¡ÂÜ}èJ Q0¨ô¶ÁŸËD³?¡mÇÅëÄ%^)¶ÆÄk-ÜúýEœ˜µÇ^º^ñº^½ o0“âÞç¬{—0uGbÑ%Ä{otÆ^EVˆ¢ÛÝ´»y¬C¿Ç[û!A*Å÷€‰ÓSléwÜ„áQG»Ýß)Ï_1\üðh›âþ£ÄeJ0Lú}mʸªº€8~•Aá`°Ia³)๠--Nªñ€,%^Úß#æàÔ§û´¢!²=nï$á7ÞJA¤ÏA@ÂEžÂ˜ª+k ¨±ÉµøÊ=°µë3š–|Oãµí¸º_ô;óïŽi÷† „›¿Oom÷Ë üI„:û‚ˆ2A­È J‚¥¡cî·D„f$!NÓ‘"#¡‚6$AZ-ÏUè]Ü1¬µhisÀ²µ­¸ ^ÛBWy¿}·ã„Û.\F'Á}nÂkÍ.ZZbîcwX– ¢©‚ TÈØF x®Â«ŠMCñULÇÄîïà{ xÑR#î?·â«¦4\#Å…³YJ0ìk’SâÒ¨Kˆ `tÖ»V˜"í–„ç:ô1­Æõ=n;;‚×â÷†;˜×æá,—5áxÊÎmXR\܆YB•/ñDÔ‹'| ¨¼GO„ƒÃF˜ÂFZÂc Ü.¢`nÙ{íí\)ÏÛkĽ\ìΑÞ· WÂ8Â7¸›Nqâê/%–pS0nÊÂ%[×!88dER¤Ý’ð\‡n>ãh¸Ò_È é˜ ?ñ¸ôÃåðý†=pmx2U‡0îþ NýIqÿÂpCm 7™Ú1Ì*L ÷/êT zÛàÏm¢ØŸ‹àÊâlFÝÀŠËûïS°ÓlËŠäÒ—•HD]7„¢ßz—²àÍœý]‚aê‡1…9Ÿ–°\x×¥ÂÁa+L‘vKÂs|Úâx[Mo˜0 œI$Úˆ¼ŒÜqn|? uWg SÜ»d]Y€aª‡1pKXW†Ò­ƒppȤÕð\…·o™ýþ—ÆÇM˜û‡Î=~ú͈mL@ ÅÄ“sáIñçWŃ”܆)9c*N?)àÖSÎAa¨ &H“%ไ~‰ñÁø-÷K4bμD‹KÊx|‰I¡‚}‰6쾩?óÍ7÷ý˜¥ß¡é}PPWhG>·K^¡ KÐO1Ò 6¾Ú ’¯:æü«„ˆ WŸE)×ßƯä~ÙÆÉ/ î÷=‚fâO°1"1Gltã§*ñf+Gj 2¡ÐÂð\ƒÖk…cÔ!ä{À\ÌU¨kä YjCÆ1èm‘‰QÜ™§Ã>ù ^m§DºLÒ¤Õð\…–È“™" I!‰©ŠÄ/A¼HܨÞå†Coü”Ö"~j× Á0u€Ã˜‚;‰”°*`„ƒÃV$…í–„ç:´áv³\qÞGü*1ywÐÞuS€ ¨a\>`œwÉ)!aêÐõ1-Lë"ý§:ã¾BV˜"í¦„·uÈ«Ý;UÄÅ"²Ž¿\Lj.#‡qdû8-áð8÷Ó}§¸˜¦!«R쌈€[ä4›="luP@8l‚)l¢%<¡3ÍÁˆÒÉf<Ó$æÄf:®Š"ÐqDB\¤‚ÞïåmK8N§Žù¦¸*ž 0ØBIÄŠªŽä^w¤W¥|Â/ La %๽W¤¦ãÏ*Wƨk$ŠVþ¸8Wùˆœa¼¿Jì:EÝxed 7ûêÄ,:{aˆ;r›`Š4qùó¾å•]ÌnÝgý1ÒâÖû:éÑ bá¶^p<Þˆ;¼Nâ„”Ðaçw ÷Í)aÇn×A8òÊl…(º•”ð¶ç€ï±k+Wì½6æ€ ³ftG3W$¼`Ó‚®uM Úxl;Å}zbš©$¦ä€Sq‡k ˆç\]‡ààI‘vKÂsÚò/øi´®ð/—˜û`ß{ÓV4¢3è¾qû£$òû…¼Ú§ÃT ‰Ùðµ[ÀýJj  ¶ÁiµÒœHË•€û7« ¬¬Ûu °‰ðXƒ~×;!ž;‚±ò9ë™a¨;Ûžðýu^ ßmI±¢h®K0Üì{;Ñ©.©®ƒ0tÈ Q¤Õð\„’] 3Ñ¿ÌV³È§ÚÛ§ ‘¡r“(øÅôœŒMÑžœ-Á0u(u…ܼw Õ¹„__Ý S¤Ý’ð\‡BYŠºjÜåLIÌÉq'nKyówˆ¢GÂH[<¦HФÖΟ`U¦bv>=)`çÓ’*#Ï‘6˜ÀZÀs ú«mÚŽíÈÿ1‘´qÿÈ´?;–±ìüÕ Ž/ôÐ.Ñq¤h]@‚Eõ.‰¹ÿÊW”}£ûÞTA88l„)l£%Iq08%¦pÃ(\J8¸©O„q?%+L‘vKÂsÎmçã»j½ú³éÕ¿2.ªXô ½ö„ñûÂ>¡SÜ‹¼Ê !áUïþÄÔ]—@’P«ÞíÒAøõÕ­0…­´„ç:´¸½âÏw£¼NKLt|ˆòŽp‹ëV£¶FRý†Ÿb§¸ÐÖÊ6Õw¢w½-¼f³ÂÁ`L‘FKÂs=8·âÔ„‹ßfEfQ½*nðK?;[K ÏmAÔƒÃT¡ð1-Í¿,LK¶ÂÎÉS¤Ñä®Áµv;¶¯û¡ö'Ê£¡üOT™FÔÙò„Q8‡Ë$ˆj¬³ó'è§ÄDÔ#n6Ä¿ó<™ vg8¥ ¦°…ð\ƒbüÌ{EÉýŠVÇìHVe¢l[ù ·Èb¢ø¢*±p_f˜"Þ}¥ HÐW8‰á“ßl¸Sé*6_⤦°–ð\…^ügP+Ææ:†aÄÃTrÆ$Â4û™p¼˜k4t(îç|oƒ„„݈#1J€º„ƒaÄÔq¸GZa [i Ïuèºâšêö|¸ø0•[Àè€ßÍVQ°yÃLÕGÄ‚L$(¸»í ßEt *:S@aó³Ô@8lCRØj x®B/‘x Gt­\ìÔÐ1•í®‹)¥¥¢»Âý ¯¸ד oã;ÅÅm%t˜:ÀaLCû7 (h¸ÐUF5ƒŒ f0;¼¯BK»·˜œ`‹nߦ24Ê9›öm+Ò¥tÝR³Ƚ3Žn Iq¿º±m²Ã%{€$fE„;%¬<¥ŽÕǦ´Âi·$<ס`Ö‰Ä;T³Œ‰0Šî«ËÊú ”>ÆË•0bSH÷K $º·.!aêˆWCbVÖ6ZB;Yûhítu¤­0EÚ- Ïu8guCJå}ÖU Fb6Ôëܰ†—ßï¤xý® ¥|†‘QÊÌĤØ`H—`˜:´j [,¥„¶j‘ÒA88l…)ÒnIx®Cç¶‚}O["KŠãÄ ôÈŽ]äT/(Áãìü“&ïwS@ÂU;˜ÄÜGsd¥PÀ5$kW!qØ6QüÏ5x‰tVx…}Œ9mж¿ðYM'ˆ…,Â/†Ð%)°Uï S…¢8Ä0«?%l§¢:ÒAX›¹s H«%๠·5¨ØõœKUŠŽQlA,å>îòGuöÏŒ6ÛßK7S@Â*SMÌqiŠ;TÖ m hCRÈÆð\…Z¾¨eüBXØš˜ÆÚ¸­!=¹E–ruô( FC&ª&æ.ÁpÕs0`6\`¤„hO° :‡­H Û- Ïu8C¼àVüD÷·ï±){Ë€)s¹…0Œlo„B ¶/I ¯ÊKÌs]¡÷ÖAøõÕ­0…Œ´€Ç"!¹ß(±ê• wß7;áCãN…WER|ï×`; Fìâ>)ÆßÊŸG{ØKŒÙâ>Äþ¼ºÁºÖ ’"–„ç"ô¨Ešn¼:Õ™ˆ“‰|+ï%ׯœÍ(Š8÷„ÝÝ£Ž'{ŸYBÂÎê잯SBÙ™ß$Eiiƒ>·…â~¬@Aȸ¼lì°ƒ³Ú€a÷Ø-:8á]ÉÛÊØÅµqeÎåNpá6$\y”ê˜{ƒ±ýé66&°‚AoL`Åÿ\ƒ³Â£Ó÷ÏèªÌ o¯æ°†_G¤íDwÎBŸ #a› ™“"1u`˜*”FNŒ6˜’°Äväì:¿¾lD¤ÕÞ¡>V¡7ãÚ‹ëWü£bú-êÓ#G±ôþ•﹊n’"g©ôBT„o’=’ùƒÜèó´XìÏ(”µó¬ÆÙˆ¡,câŒ@T‰¤‡vñÿþ·%ˆrÿÇê$8™ S8Z¦Û"Ük Q?rvú’ &H«%๠‡Ä/•Ûo*LKLt²BHAÅfo=Þ^Qð’_¨­í솩@qbVÂSjÕ 7Z©¤¡âz®wü…×'j¡/¾ã¹`ºHîÈ[€¹mS¾‚àx¤¼´ Ô处„©ư´:%ç €Q–ÔŸusÉøf¾qrò6ñ»#îogA×UÞœœ¸ND>Þ¶Dì¶2÷]Ÿol<“ì†}9`*Ž˜) ®®AaäÊ„¤ÉðXÓÉvœ£¬EQoc*[¾EBa”WÆ‘8BQdº&ˆ\¯“þÙ÷" §, aª@>™1èÒ%Dcí*¢,C6ˆ [Mo«PÈ*jÅkŽØ=)1ÑVee·Ški9“ƒÿ`ÕÂj‰Kn#^ÒÉg˜’AnÌŠ“=âºgN‘*©6A+Oã]¼wÃqS¬êÝïƒúÝv.|«.÷;hC ¾v#aˆïå¤@“à.À`SûÆD,8 'û† {W°íþÙÚQt)ámîÞÈ «åÞè°ä81ݶW\KSCTÿքãìLuJŠƒ©Q)Á0uGb´Ù·„ÊV©ƒ0tÈ S¤Ý>.<Ö¡FlÂVT7–Ÿ%¦i߀V{ú6—±ó°àØT&™¢¢½_—ð¢¬ÙÄì;C[–°óŸ:vÿ4ÒŠ¤•–ð\‡»&±•Ú“ó½˜Üm4ô˹xáÚô°Æ…Ž`¼ADÚMqqO“:쬕ÄØt Q {:ã"+La+%ámÞ"njÏÛ”wÕ1'ÇD/Ò¸L(ÙÍ#al‘oÝ)bëZ 7å]%æÞÇË.%Mx°ŠI®m´€ç*t¾lê•Ñ,0ƒæõÚð¡÷ÛÎa„ñ­wŠ{Ñ”ðêÆ4$§€¸š)ƒ ˆ0ÊSØH x®B5^¦µeC'Ïï³#i£-¼Ž»áÊY)¼°3_)¯ô:Å¥°‘%¦pƒ³I hÈûè*ƒ0EšMÏU8‡o=¯‹8b¢Õe=˜ÅÞŽØ» &«® # v²©µ)ZQoGI,(²3>%D{²¥u‚•ÞÅ^¢H»%á¹·¯Ù±bœ¶¯1Ðh%³©÷ýnU-äW6…hÑ+!¾vS´…ÁZKèpusa¢ÏyEO‹S¹k,Ö°Á¡CV$…¬L ÏuxƒOÇâ:"º. óc\ðÁÂ¥´±±FÎ)aìÃ+ž…¤ˆÞ…Ç A0U€áȶ|R@¼gù¶¤ ÁÁ!#:…­öûv\…»ÒóöEåLyIÌŽwmt|¿VP4YVWÂØŽ—ð—B}IRBÂ…1ÉŽQóÝ” Ô‘wiERÈJKx®Ãî]Ú¾8 <1YÜ·"§œÈñ¾”Æ ðÅòŒÒ?Geâî°uÌÆ>û)€É+]á×WZ`hÏ%è^ð\ÔÍg“Ûî˜ ÏC¥`'ºàò. ˜c7O0îì®Ò{ ÝŸãÁ¼6ç˜^ê$wxæ‹ë“xŠ,XpKs§X²ó$þ_×j{íÚ8ó>Í÷…tÅϹݞZÃ(Ñꊓ“a¢hh„ê>¸ÞÿÖ‘@E2𦠭ŽÁë,D'Ë}Ð@øõÕm0EÚ(ÏU¨#`ÌâßO˜á¸<9˜KƆ°‘•Òö„£Y_e†oRÄ5å:H0 `0¢òlm•U„©‚ppØSØf —à&L+(û¡|ÍÄà6 Wö¸mQrcsaÁØ®3µ!)6¦>˜ß  7‹1ç¶°qøKª ´Ái³<×àT¤ÆRÊsc3†Ñm{„÷”qÙiTÔø¨j`†ƒ­EįAB››»'†Ý¯S‚ÚÍ¥ÂHF’¦H+%á¹·j?¸w¸¤LüKÌÆ!V*Žñ]ˆGßßi) ¿Ø©}â òìü© èîæEÇ €°j]a‚)Òf x®AÙÂb©èÀ²ñ13f-ØÝÄHµ]\TÞ¼â+0ž•—øIPðÎí SžcšžIX”º(¡B6˜ ­–€ç*´·ßyØX‹.ƒvf-zä ŸE<½ÈÇ>Ùï‚ð‹ý¿¶ààž;$ìsKbVfÓYÀŠ>Í]êNÎ݆¤ð\…~Ž­p ÍÆ|ߦr¬áv¿óЯâ6àþ5-œˆT}ÿ³j®k¤8Ù±Ö SÇëkÀlœ”n 1•¢:ã')+L‘vKÂsnY£Aœ; ¿G ‹#Sª]ì_‚ñOŠD ¿Ø²¦´bß„±„„WEì³±š1%l¬vL›ë!ÓŠ¤•–ð\‡ûë3Ÿ¹î›òu:†}tãÆ´i‹)E  ¢ÿÌ…\ï$¸Ÿ3¶ñ’€„71JÌÂ9D–°aÃh €Ôðãn ¹ß–ÐÝ‚Èë¥xcb"ì ¯³p0eÁM6¼¢óE7ÛðK ‹b«Š©J‚aêg[ÔkmÿÓ¬¸të*C…Œ0EšMÏUèOWŸºÃÄ)¦#65ü¼ðCÀ×;ùÍÁÇnuG{°N™e°zMïÍO) ®.ËÖU‘22%&'´(ÏŒÇh;›â—~Ð6v‚ïìß%>ý u ž“ÀÛí®âôƒ–F˜"ͦ€ç*ôâªÐ•=l.¾ø‰„´“ƒR;>JcÅ÷4^zgÄ2ºO]¬çO̤€H&a÷ƒ¨BŒ÷îv$î3š‹mű³Õ ø,*eIŒ;[@Ì9„áÑiCÈB x®Á­\˜iYkãÙ1èýŒóÝ¥JM6Hw¡ÉêéÅHJ‚Hüeé t¸úÅmÌy©þ"5®µ®Aðë+mH ÛhÏUè µ@áû"©-sa ýRv$1cûíR‘¼ñžµE¿–zôÏ+þ=áMeäÃÍ_ ¨ê–C…L0Eš( ÏEø.-‹îEÑg"t³² Ç"b¸ÐŒ7XK%lòš+š/¤ƒEž‚£®+ŽùZEò7W§I! -á±ç·¬lv¼©¬§cvTå oÃŽ±¦¨ÚÁ½#'±ª®‡7×@±ïn. †7Ý Ì3ëÚÁS„u4öt+’ÂvKÂszТ*½Ÿ«§¯&æÄÎùXöÔ.¬J<ØÚ°Šö/2EYå’„„] ”˜…uŠ)A9Ÿ©#³BÓ SØJKx®C®¬2}£´]Y.‰ÙØÔ.Þ„ÿ@çðõDb¶`xš‚Täˆ\2H0Là0¦à¬’*Ûâ¥ÂÁa+’ÂvKÂsp.htê¼, ¦qôæýº £Wç‰Ü^6¸übG~v•ņž™)€ 4€^T'{”fá=(‚)  ÂFKÂs½<0~7‹Â;‚1²M?´(sˆcpTïE>`TûqÎNRTŽåI ÕûÁðL°2ª–*ÖæK)a i U(Îx±ÿÂí‡Áua…u´ò>Y;ÁêøM¯GÂáJṳ́X9=À /"OpE0Ûì‹r­@0R!a º½0Ú¯Gl眈@윷ΔŒTRü(î'uÇÕfg~yžd'à$Ç. áÕm…)làhÑ ÿ¨]ƒ`Ü_цNASÀsºƒ‰E7–_󼙘×Áø3*ë`üŠ‘yM'‹ªÈ6)âAÛ¶.!aê‡1Eit’нÝuÆ­¬H Û]”É÷X‡ë+X4¹­ša1`N¶Ÿm;+cñº•°/‹`Ô>°@³SpV` HXý:&’ߢþÞ¢KÍ:è Œ¦X4¶ў«ðU.Gv-M÷¸7ÖÆN7ìÐ;׆â>Á/ΧŠ<”¤ˆÄå:0Üt‡k¶$;;wîuœ˜ í•€ÁþGa]Ãkz,¬»÷a…µ“¬jkÑúì…u†{a]§@á\ ²°Éû[ɺ†uí ÷º¤èFSÂÛ"´eT?Ϻk†â€ÁDL¦:”ï¯Õ]#°ªÛÝ$B%Ž[º€‹6 ±abg߇Þl¡ØM0…M´„ç"ôª_Ý€3¶JŒŠ"éG‰q¥õ&R‚‘鵩g‹).õl‘ÃTŽ+{¶\È“„{³X‡ÆU‚ƒCF˜ ­–€ç*|«tqbíÞ<]61ÏZ[ьۚàMc°¿ØNUL±3,%$Ü|O”˜yd°Œ Xa\EÉS¤‘ð\…Û}WŽW=°/ÿ1¨>lQmˆ7÷íƒ.tç^9‰p|¥1Ÿå).ù1IHxáM}Çìh}Ò%ì,ÊK»ËöÒ SØJKx®C7v§©Ñ‰m„SV6fz3úüŸê¨“`|¥+ó=:óAÌo À` íI Æå¦‚8ƒË¤Íð\ƒgsàÚ¦EºöÁÑF Ó4†b0±ìÝö5áÈôª¸*(8Ï7%$¼ðþ6·Á¨÷·€¥¨_T~}u#La#-á± oò™%mËÁM¾0‘¬Û9öÖÚQ¨'YTÖý=(vÔ¥t †©Æ Ÿj—À! ]a$ØîJi·$<×á~è …ôÊ€~bØzÉ…Øà_jËQ£‚žßÖâØ™Ëo ¯ºDL̺³‘«%DLxPðõÕmðç2ÑìÏE¸«Ug{vÚô<Ù9<°Q£JX]­ØÕȧšIBÂM›ÍÄÄñö§KØYmœ:«¯¬0…­´„ç:|ˆÙ`@¸¿‰ÒÆìŒÆ)à #{ç 6“¬ƒ ò×L±¢÷ƒ¤œd„@(1¹•°™ò ë DÑm†€·%¸ó¿ŒØLV6~2âd©mѯ¯põÆj)ÁH>9ÑdÆÑô$ܩ؜X”üËΉRV@øõÕM0…M´€Çô‰Ìº8#^aÔwG¬Uùhø##c‡;9FÓ_“â`úkJ0Là0Fõÿ–ÀZµToÙ Ïm²¸+Ðαéb÷(,XíˆCtº>9û5îMquL8öu›.—“‚WÏ`ƒ<Þ9 6¹÷ÆÁn–O8l)l¡%<– ­~;•qŒ!™ß#¦á+Œ™ÓH )“‰ ð¾x°ÁÞ”- {0gbVú°”°F¾Dj„+wY m ¹ŸKЕû…>Ëè5~°«¦1UÊ/tj®1aÍp—UÁ¯C4†Å©Sàb©ôBlª{AULW@8nÜm‚(ºÑ”ð¶Wvb6å}¬@Õ÷ˆáõ[TU¢ÇâŠn‹Œè"¸zneTîÇ@Q&±YBÂ\Ù1(¦J qšig×!Xµ<ߘÂVJÂsJiÜ™;Š1ØÈh4ââ}Q$Qo*lcb: ŽkËðm ˆmq$>Ùn@0z•FóSaä¾Ëˆ¤°Õ’ðX…ÿlÌ®XXõ=`*ÛÀÁùíATøG;ÇWªœŽ¤PWÒ”`˜:Àa [»¤Zuñg– ú<ûsÎnÁM!Ò;™—ö‰sEtýÌö&¬ô\ˆ›¢â³KHxQzœqå‹'Gâηl]…`¨ I!#SÂcº‰ád2Ø *1‘–€ìºÊV Ü>2 +GbÝв1ñà S8ŒÙXšl ÷ss *"C‚&èã4YÜÏ%(bµa„ÁŠèÒ1æX£vÙBWcäqÇűÀˆ)í¼VN‚ƒ×Î)Àð©z®ƒ¤¸pœ™& Çé™j6Ái4ùŸkÐÁlñ1gµtÌ¥ó–“±_`tJD¡a›<M…³Ï,À sZ±*»]ì÷#ÂÓ•›`Š4Qž‹ÐÙeÅÅg‰†@Œ¸Ïhi¸…¿çGl<²†ã`í1PT¼ˆ»ÃP ‰à”†p\Ø_¤ Â8~ËS¤Õ’ðX…û’±\a?À¶dF\¨ü+ÐÄeleL<¿Xÿ—%Iù&ƒƒ÷ c"dro&B¦|ÁÁ :…-”„Çtj‰4•#ŠìÃÙÎ7ܘvîŒÛlib¢}QÅøæp‡¹ÊõLøÅÙÍÇ>P„h»a*x} ´>î¢ÛÑ  4¬ùa7—¼oæ+ú¡Ö‡hiÀjbNuÄLLFme+z;ÅÁÑz`q„1·Æ–Ô¦ÚRA;a Ûh ÏUh»ÿ:¢-*7¾ÌÊ íÈΉ;Zm£ü÷úÛDY v YY†Oåéf8¦„…ŽVAµ6²! lµjr¦ü××€©lËnë¥ã6¬ºöë˜ M–€çüiøÝG‹–‘Q50 7V^hbj ›‹V¤´î#ÅÅ·¾%† ½wˆ`é°²‹tªX=V00EZ- Uè.¾bW†˜%ºõ <ºá“[Õ £¹Åi7åò¯ýqÄ8·;á•7~³“1°¾&¸§`hÏ%8ga£Ð¨ñU1š WpHŠ)óògxŠŒœOwEå9,$Üä~;£˜º„mµSÇæÆÛ6" l£ïð#™fS¼z&Œˆ=NŸBy)Áð¦*ªƒsH—pÿã&0u~õô‡¤H»%á¹½75à+ä9&æ¬ ^l*ê8ñ;F{lŠ‹E ) áPŸLúé6¦§ÂH%¤&H%๠×GrdÓ±zv]Çp†àŽÉ¨AA‰GFµ£¼¢(:ðZ@ž]—Nßè8n£ëX´L#L`-๠§³pc²×÷ˆá½&ï <÷r˜ÌSV~÷>T¼›»€„«j¶³á gþmC¿öT@éà2Á6QüÏ5(hP0âõÞUEÂ;fÇñ7.à–Ì¡<¯„usŒß©–°¦Ž'f¹Ø”À–‹s¬CppÈŠ¤•)á¹ý ËÆ°ùr¨Ý~bVNÂÛoOŠ@úºqÐÓíiQX@øÅ­ç›âv©[‚aêŽÄ\lZBÜ –½ëŒß0­HŠ´[žëp×å‹í+¢ÍãÊ®ËÂ\ ˆm'Ž@5Ú#Åö`;6Ä übeLN5Å…cW—`˜:ÀaLS ¡$œ5:ã*+L‘vKÂsÞ>®H]¾8_ø{Äp6QlÞâÞûÚXÛ©(!N°6lA ŠØ  n:Q&‚3G“½r2Q* ¬ý#LH ›( ÏE¸•Á¼ŸÍ³Œ:FMìïß2‡võ¼¯'«Þ ¿8q/[*¤ƒžddD„è¯?½!ƒ¿+ Œè¹LH ™h ÏEh/rLˆŸö‰¹$¬ªç^o¹D(ÇŠÄ5aþ/loŠ‹‰|)Á0u€ÃmW,áà-|ê8Üù>­0EÚ- ÏuÈÜ¿V\,_ö=`¢o\¶œøùDuñ®¼¡µÃÊ,•„("÷ˆe©ð’C¨ƒøZJˆ±ÇÞu4" Òj x®B.€Ó k´/^˜Ô™˜oªpQ±Šºè÷p ‘µÀx;shb'àPÅ. á"g˜˜Ê¦“)!F}œ]AÔUÊØF x®ÂI>N1sãØ™ä#Ìna-†Õ£Zç@·0$äÄ/\°Rvâ)OŠH³jƒûÿ³áè’vî“­ 4È}žF‹ý¹eøÜo'Ü_ž§ÂƉ¹ ZÜÝŽù,‘·yÒ1†Kj—£·Ôþ-$! Aj@`ʘª>}pÒï§ŠÓ;ƒ4BÝjJx[…¼öæ¸hÞ°´Ž9ã ¬Îè±xK8j¤;—"šu~CME_‰XÔ"Iܱßù„ƒÁ˜" ”„çí9y×½vËîˆÊ¾Þ‘äz©-‘MYׄ_ÌÝݯN9åè.lf= G‡ZÀŠnØ]Ū~ÙÝS¤Õ’ðX…Bý õQ˹hôO"Ðó·…ÿ‰ãEô Š;ž˜ÇÁ„ߘ…Þ)˜…ž^Ü`Û˜¸“øÓDámTa Ù(þÇ´¬Â†ð‘]Á×Ĩº6^žHü;8Uºrþ‡àÐZq÷Ú)""s  o.qíV¨¦„¬©cskZaŠ´[žëЋÝ|ëÙ*ûŒͱ=ØþܸA#Ö=al€ØV>).¶O Wöí¦ùt Lóé:£·ƒ¬0…­´„ç:ô Yq5Œ®•ÓŒa’W ac› ÌY(¸2üâ ·c(jÓpî5'5¦‚××€)p)¡!5§ëhN¢ þ8-ûsÚò«£fbÇŸ6¦‹yjÞdldìÖ-áØs†A§ØÐ¸*¬Špfrdç.lÙ˜ò‹›:¦¦°…–ðX‚6 û¦/ë¢îƒŒ¨{·•—7ˆfc-Š~—3áØ\œA‘W£ ¶€„—¢³ >,…µ…VA;Ú`›(þçÜV£à9ˆkúª¶ƜؠE× üî—6h o§ÇŽni쇖çßÒ$ØäúÁ.¤É~Ÿ Ð«ß ¿¾º ¢è&RÂÛ"tkDD*6ó0ñÛ8R(gò!Éœ0â0[^ª‚ã¢,¡ÃÎo¦^«$ᆠM§ÃqsM+’BV¦„·uø÷È<½¨ a–qÇ00»UŒnˆÌÆf]Râ·²éD¥ÏY_›ì «ÁLÇÔ]w©‘ÿkÐ@X[îv 6Ñž‹P¾RÔªãFN—»‰‰+· …~§š²"úÕ 'ZîÙDb[sô$–Ž××€ÁÕlJˆ­Æzv‚ƒCV$EÚ- Ïux´ÅÂtÊÖ£K̉œ“¨¸¸+\0W‚/=Áñðì…ÃBL±³Eh H¸9FgLådÚ”…`ë ƒðë+HÙhÏUxK¼èBý`þKÇD‰ Ò›+/Ð/„¶[”t/WÂØ³bÄl§8=£K S8Œ‰ðvp\ô‰VA9×2")l6}~âÈœÜ)>ÈÀÓÎ]X«›â ƒõ›"-–„ç ܧçÀq":ÞŸêÓc ƒ01'{G"zlVÌ';F•«“¢bdo—°æ‰YÐc³KXÆI‹"æiƒ>·‰f.B°¯¨{+y(q.1^Ÿhyw6ÆåÏ–5aõ,¬‚3Em¬‚³çó;¦¨›‘$œ8:ç!§¦H»%ṟÏ0ý¤îQÚËã™aG%<±ûÚ"wKPg­ó [^¤ÃÐ ‰@³å. -:ÞQAh &H›%à±G kbS¤h1(yŒm¸Àh¤¾à —¯aýãI—k~C›^q‰`¡drW&o¥üêô®´Ài $<—Ðr,«lÿ3`0Ó ‘ÿpˆêÆxY=V<Ž¥¤ˆ€š‰½Ã“yÌ–À±ª]aÄä®áã´OìÏøC0 e&HÌÉî-±UÚ+ßÞ¬jkÙb–?“è¬UÏ¢²‰~J0LxÆŒi` JM™%šV˜"í–„ç:<×èd’Ó†ô{ݬÅ‹ê»úc,õaðÅ®K럯 ÛßdOxeû–ŽièXÙD†kÐ@ؘW§H%ám~{p§²î!|–O\«xˆJ  )ö8‚ñtór%)ŠfŽK€Ag ±±º.Ù7O¤ÂPà⢰‰–ð\D[ÅNyE[¿“\;òÐ6ü{ù& ½¼àï×Àà`PCè¦Ðùv±R2á×W×mŠ4VÆ«~$”`SQX\7`¶™‰'±h,_¾¾vGmÇ7s'¸x k Ö¾uLáXc ˆ­ï:h  ¶Á¶Ñž«ðÖ£¢ôŽ©¬ß‚á“Êš)cC^˜¼zX{­l9q;ƒ_¬M §{1n‡[þÈeÝFd—!ù¤ˆ(S$$Üx 鈅ÃT%`¹v[• ÁÓˆ¤°0.Á.¤ ´Ûƒóoe{œû«\x µ®ºÍQéáo Î2PÀñv™IG(fÑžüõâÐÒC:õ'…ìK ƒù.`âÙ.F9"ˆ3`Ø| ãˆã¼®pÓ¾zÚäå•ÂŽ:IQ\u# ¯ ±tŒâM)aC¡_×±¹°0­0…­´„ç:ëXQí_ãÞâdÇ#ŠCñ†noê·X0’Ô0*ÿ°¡édºÇµd´#J»î⺦H»%á¹E‚>½=De‘ø€9p]^¸‰ ŸÛôZÿv)'ÇÈš ­Šõ?Áª”³Äœ,ü·€HÝÁm:5 ™¶ÐžkЛã:ØÔó¸ôWKÌÉ'8ŠðdGê\ö,,ÍQ¿…SD“bEì´K0LÁ‘˜ õ) (ºÂÐ!+DÑí¦„·uè]‘AQ£ÉÛÆ^Ù‰Ñ@ÊJçµñò-º¼]5á8U´óo¶•¯R HxcìiÀ heþ˜U* ô6Ái"ùŸkp*R̶B…ŠEŒà‘ãØ6æ5]lòïÞèo"yE¬gKŠýP&½$$\T,’˜ƒ‡Ž”p`Pn×A™H²")h¤<¡íG”ô5l981gÕe>ó—"y=î÷ò‘`ì ÖKÅ?"(̘J†©"8Ã>ú)áÐþE*ŽÜàØ¤Õð\….'<Ï-&sIǰÆ0*>ŽÆlTÜEPg8®¢uË5Pœ] %$\u„KÌ®6¿–°eKkÂÁa+’BVZÂsŠ~4d—Ý·âpbvuLCÚg[>÷¬jŒîHŠë1˜r`°8*,D;Ó{ãÀ™T@8l‚)l¢%<¡Ì’¦Vbx(ÎÑÃôµ3E€tûÑÕaí0JvŽT5ŵhäª$¼êéLÌv°Ë†%ľxtF0m´€ç*úv8qhÉ÷€@Ê;v¢Ö,)òØ«¢¯am‡÷:P¬ 馄„We &¦0ÖšJÍ-7tÖ~V$´€Ç"¼aÒEœëŽÊ­ˆÒ0âþce×¶§akªH‡Ç„0¶"è¿Ó)"¿~$–pSÙðD¢°ó8ºÁê[€6Ia»%á¹yìhä¯ñ5œü“˜¦Ø‰yájäø"’g8¶âg‹¤ˆÒ•:0Là0fE^DJ(‡òŠ¥£8-ÈF$­–€ç*z[é(kйÏÛá¾Òì_)š:#R» PmŸÉ]Ôí·§èebŠº±¹¼%–ÝÇÓØðX¢éè¾v‚__iER¤Ý’ð\‡ž¶“­0ôÕ>‰ax-º(`^õÆÒ(LiO0… c-’ æd£ÂT:¼ªéRb_¢)!þ~µ« ²Á¶Ñž«p©¸ÎïLFí˜mag O¨oj|¡Fc›[(1Ãk À6.ù 675îVˆ˜¿²=R*¨n ”&˜"m–€çäÖ¢” £P6ô=b…èÑBUG-‚õL8\NÛâ·3P`hvgO8gW s^|¥ZF>­]‡`ÜÃDz/ÙŸ+pw¹‹½Æµ90¸­ÞªJ1ñ¶ÛÎå9ÕæüÞÛ41Á×d°j  ö¤€>(ØYö×-Ðçi ¸ŸK¯.#‘ü޾ĞÈù1 [å"-ì>TµÃƼŽc Páðê¼1c*Úìu möRÁ`° &°ð\…©+§!óž÷{Àð¦·Å/€c[6\ÓÅ/ÝZ¿x€™Ì¢ð­£%$¼xdǰ—½%”‹Íì­C0v.´¢SØnJx[‡kQYXEþ= PùËq =1Ô!Ü#A5Jˆ}x~ÎÒÍdO¸fg.bÖû}©ÙCˆÖùH‘Á¯¯4!)ha x¬@YV+Ó‘ãdT¿câ¡ o¹29ÚYÇ+èÂ9Ž÷wì!®¢hê²%>Ô’hÀ  t—p°¸:u[‘¶[žëÐeLüŸ¿³ÄD®ODdŸ Ùë#^W‚è³µ«¼Û—Ê¿%À0U¨31+6‰)á~G aX*ƒm0AZ-ÏU¸Ïí‘cù0mÀ ¼Ò¡>‚ø†6TÜVöZ;нjPŸ$$\8µ¬cNU½HÂy¢EFêüúJ+’ÂVZÂsÚbEyµržyPKÌÅì›(‘FFÎÖiÑ«¥ƒ±û¹ðe&A `.{ðéüŽaúMJ8™žc§ówÒ¤Õð\…¼Zt[ÄÎ\5ƒ÷¦øwë1ÂøyàE¬k´Î)#EÝÑŽ*$¼8}ÊE SÂZØdÕ:V• ¦I -๠Žë©F|»ŠbeÀj„Î{.ÑØ}jíã'¶Eíÿ<~¢©= $¦Ž××€)ì:` ñ Ù„__Ý S¤Ý’ð\‡ù^JÞFËüï³ó mç!1ZùÄ)s?üÿ±c=V^!êõ7a·èOL´"~o{UÛà#×WWîmœÙŸæ»¿HÕ¸#Pºfb˜4O%ÚüÇWÅnAk5ˆW×ÊÖ8ü<Ž¡èŒ#ö/JÖL̪—«®AaËËSØDIx[„bª÷ÇM:*cª‰á9)f¢áŬ›ma§\Á±_…'E±jö$t¸rÔ1áÊ’ý`N*84e¹› Š41ØßV #Li&ñ…ó= Tg^Øxã“ÐlÇo £ù®:P´E+]ËnXo¹Ž9°ÅMX+ƒ ÂTÊSÈFñ?–àlFuÅöeg‹ aÔ¥(v¡H}¸½H4ë]èV~±aÄy Qus  S8Œ)ÈßO ;;k¦ŽÝCOÓ S¤Ý’ð\‡³’4+¶. ót̆SIå]#ê}w¤%­¼'üRö‘€÷ºÐaÇ~û¬íO (L•N ÅwÛiƒ(ÒF x[…~Ž+›™ECÕ Kë˜KAêÇsnhŠƒ 5ÛÄ]²l¬è…µê)!á¦K–ŽYðm§„ÊÍoê ŒçRV$…­”„ç: A‚V‹,ñ¾1Ñ¥0Ê€ÁïqƒQ G'ˆ(ÒÆúç‘TÖ¹R¼â&'_ô§.lÁ½³uŠßÝ«:õ›"-–„ç \‰ßæí/9éÄTë•…%^÷¯+\0’{KÂ/>u ˆê”s`˜*ðàSy -+;ž¦ÂÐ L‘VKÀsÚìl}`.vÞ4F5¶Ñ:þ@•æ®qX,?ŒjïŸIÍÛ÷A‚aê‡1LML …©‹©£8¹1­0EÚ- Ïu8ZÌwÏvï°5Š$1—¾=¨Œ-v‡œ_IP kÛ1|~iü†ØÞ\󗘕)ÒpoÙ·kÐ@øõÕM0Eš( ÏEè¹³l´¿bžÄ\hßþªqõ=ºb›ã âì%ZѲ¶<Š[€aªƒ1l÷Ák  ¶ÁiµÓ5£µE•)MÁ”¸”`ØQÑÚ5°@¢«ÈšŒ4¶YÆ%8ûå€O‰(̾JL$-F"Ê‚û·5jN˜Âº`ÁHLah,) Ci`ðÜÝ1"1+_:pœ|éXÅqú˜d#L‘VKÂsІTÍ›[pü=b8­ýªšP·2“%Æ[­%ág%nÁÆ4Û0Tƒ0KŒ_¬, ò«<@k- ƒlH Ù˜ž«ð©úb‡·cè¾Ì…—ííœ ’u¢§fÅøP›ØM–Ʊpد´ 0|jöÝ€)šG@Gt(ï â. ôyš,îç|¤Þ8Ê»V5…êÍcŒ&1‘A¸¢åS܈¬Æi÷à„QSlHk$…t]@añiª(n™6˜À&Šÿ¹ÏBkXmøY57¦±§–ƒù»:U35£( ³h:…æt¦ÃuwðĬj2+ …÷¹©ƒ0òe…)ÒnIx®Ã‰/èΉý&Ä'¦¡Ù §†žºán9n›9ÑO§­#g—’Ý¥ƒÜ˜Â²a³ÇD­cP@I/2Ái±$ zö‰¶–ÇÆò“Hжµ$ßá½ š¶Z@Â…^/ñ N¨ä$x$?Kà` B&ZÀc º›fõ@;_Þ•u Ëù"V›¥G¼:Þ¶‚qß_5€BQÿq nÚøu ¢º]“"ºŽCqánERØJIx®Ãé; 6bÑÀ~eë¿Ä\|T Šp*:àGÎKqåmUs•“UIÝJÏA@›Úev Âï)`;Ø#Ý¿¾º Ia%๠ç‚pzuô fqÇ\l‚YVÖ;—Â0UáðLÁñVNÝNŠÊŒµ”pÓY¤c0N£KXLì:#{DV˜"­”„ç:ôw[Næ”èNÿ=b £ÞCyêˆ:-nåð}_îÀgpQÍ•;“wg($E~}uͦ°e–ð´]ÎYyüq"øÿ[»–Gr|÷}O¹ø åîH*©ª Y H€}ômf^{»íéÙnïÎþüˆüHJ²Ý³{˜ÒI•TR‰âI3¬áLk€’À´qJøQ =få`°æn1 å²â:á81r•$QrÕB)TKåÐ÷C ¼s³Ó±$VLFn4²¶DqmÙòÁ>º ‹/ŸŠÄŽÄ•ƒÂ‹fW«˜´®ÍäN3‹fW3””Nëóhõ¾;FÀ3ª"ãXKžgHþ€c/ÙrgÙÙÍÁÂ&ä4M•Á,Aüé€À¹ØPLE¬îWU%0Á ïCõ­¥¸#Qû "¸¾5û9d>ËIýøÅK¹ö 1âÜV)pÿg Žr)Z1ì[¯ èÞŒÃ]D„Àì\ %ŒBuDû® òŠe6§–I=ÃÕ»bìßÄž¤õ_úªGú¤s…GR°HΉdÝX–DÚH”‚r²§X9T8ʃ0̇}ã@UuCª2æEZ…j)Îú¡‰æ#n«G5˜†öÛ á²“”a¡Ëý+Àѵ(—QÎ¯×æ j.­<ôÊ!̈ƒd$Þw ÍϦ±4ï{ ÆÒ^íäq5Á3Â0ËúŽ’ªx‚]h¤¥ ܉Ëï N÷ÖÜ`×TÆaŒƒ/­1 :¹‘x¿ª*(…ª¨úN¨Á„¥,[ÅÁÐQ€¿4{;UµåÛ}äÆ˜o÷9Ò…&ŒW‹ŒýªÁHÕá@¯)WEïkÞ{£0½…CßuΟĿ‰Ž-Žhì¼ÀŸÉ¼8d‹x¬%al(P_¾r08ê÷Šb(Sæ²®Òtã ÊËÌ:àwSQšŸuBÖF;+e…/tŰ5…ë,rŸÏ@<׋P˜/ÅË(WŒ¨ V_hûƺ2˜0Z&ð~U•P URô½Oè Åíà>}l1˜%”-‰b³Ã(—'0‡Ž¡~a¥@ýBã`°:mW "<ÃŒO“˜ƒÍD ¥0-…Cß9oR]!|©¡‡!|Å'X¶èK5F±ReÉÞÇIàcC±x”öS{ùº5Ì,± Êa–X•x¿ªZ(…(© ºNÔLIüü<3;¶˜Yâa81¾<¾i8¡`ɕǖ¢m*wdIÂgò¬kCÇŠg%A‹–ßU3mÞë.#5bb—¶'VÌg“‰Ý©Z+?¥g0é9F$‡¯YŽ>ÂÁ`–Á-ƒ¢£Æ¼ÂTe̶haª¥rèû!^:Žë(ß*W~4ÄpêPw!Q’ó”HlÀ’)‚>îÂÃçË8( ûUƒ½ß8ˆ½ßdæÜ¢…QˆÖ ë„lÔõhG&—Š‘¼1” ŸœVFêpä}wÄ(Êïi/Pin°dÊm0’vFÔï0 A |˜ F¡* ‡¾bv’ÔuøŽ-î#ɱG:û­rJèÀßÖ³©v–ºáB&Áœ$çQÅ8ÞeÃŒIg2fõ{T%”Àt}/Ôg ë ¹ò £fÅÈ=)]=ɤvb½Á9Æ1JQVþin8ì%«¦a «rÀ¢Weè²XµP ÕR9ôý;— ‡²<:ÙÎ*†ÝÛ <ñ±RdÑfœCµ«QÃ7=µ¹¥XØÔ©*ìd;3L˜°@9„€„*0ݹ¨BaZ ‡³~¨w>®E=ݳ¢µb¨`|†>/hå Ê­³¼Gå8Ž^QŠè1ÊAaÈØ¯L€o¥r G«©‘XôY ¥0½…Cß¹À¾#eUâ ÀIìéVeqŠeÿ¬‘ˉ È7_œD¬»ÔÔ0P˜%PC°ûveàøiœžWM%0…A×±v œ —­¨Ç؈Èú@ùtiEཀœ§<¦ústˆ²ÓÖ'ËÕ£8Åj{ŸYãïÔ«ÖP SPô]Ð,ópNKi‘¯}ÃLA2ä.¸wŸPŽ2’rCÀôQg„~(ER—bá 0dP ÃŒ|ê2‰M)UFcKÕB)LoáÐ÷Có&d"¦ú¡Hk¨ˆ…OTG Ò[¹Ò‚7˜³ΰÉ(Åè%‹»p08òÁ¤"(¦›Q•TR#0g6Ì–Ò™)TIåÐõBŽ2™¿£•k_pqkv,šsÆU6Õàä«Î¥¢ð×<¿”Â{\ŸƒAG¹Ä6LÌ(¥ PI©ŠÌ—â„P˜ŽÂá¬âØBÙTé0Ï’ž×0 Œ+äÕ&ä›3ìcôm.°¤Es¡¡¯„rPxÖ´_#Ù°•ÔÍ&7Eƒ÷«ª…R˜Þ¡z"êDRé\Ï÷±ÉD æ¨QÞ„"_(LÛTBqK£H‰qŒƒÁN+*fNÈ«# ö°ŠÌæ!QÂ(DIaÐ÷BS¹DÔl…ûбÁ”M‰“$Ž"‡¶4±£èX2³pš&¥H¸©3 C'bT ;ʃ²gq™;˜ßOQB)Lm0è{!& gÍÈ׋ˆ!8¡}áøNÙÀRÂUŸKó]Ÿñ ÇUisîFn}%§kÕvS@6Wå<Í÷ª²•BuSò݃- A~Ftb&©ÿ(:GY¤fOC,dFf„l*ƒƒTÆ1ÌÂé”Ç=ù*B`j JT QRô½3õÂiÈA" sÆ9fµ°§CÆGù’Qnðaw0Ñ EžaÒU{Xé Q“¨Q" -QE¦ª„Q@GeÐvAó­qá\ÊÅ%ÝTe>"óŸú|D%äU Þ# OŽJ‘a5 ;­Û^1\Ä8P[¶YãbQÉôœær† Åú©Ê6ØìaÓPôÕ â¦›»*µ|¢‘<ž/nê¤Öp¸K)†‘‚7ÜKŒµúÜKS6Ì//˜¯2 Õµ(‹c#èc­®¾'­Di{¼Â_1ÔN…¬ô¿í¸\%ÎF÷¸’)u´‹à3µ.æÆçÞ‚+ DÛ«ã¹(êT¿|ú§òíêëÕ+ïÖôGþÙ×ÿ¸]ýù›²/‘C}Ja}{·ò YÓ+© q\ßWo†mÈÓh¦/ùááûŸèù°Ù®Öº Áýe³%›´óãðÕ†l.-ÃÓËéðüðô¬„Óð r.Íßóÿ§<åáazøy(£À<Ä8—ßÜ8¼üT‰žïv{ü4Ü)Oç–át_i´©OCøâ½È~8ü²ÙÑÇ‚§°á8Oš¶6ôýR²áô°{”ÆKEw§÷´4/àxØmÈ‚7¥”‡Ò` ªuvÞ{QûÝí¿Ë3Ÿºg©2"-ëÛ÷«áíðx¸;½Ýln¸rë›hí&Ê7ÃZǦE´cY$dKÆr_Vº-æ( 7Éî›-—˜-OìÇæa4x‡J÷DMFláOCöð»Ãó¡y`¯t˳­,[·ž¾¿¥_[¥Ý²‘×ÍPöó“ŽJtç%—IGÿ/säÞ4|â9TNŸÃ§%Lç„®¿ò2^Ý8=žš¾}:ç£M—2ê„f&9Ë„Æü<4Cq9¥Y›/§ôÍfKžì40·÷42e7XÊÜlÚw2…÷ý´áúx}–Qeú0ÚÜùãfKU éMý¸¡ tÞÏÖ±aq6LÊ£ŸSo‡ÿþ½›¯Êo#›´‡ÓóÔ/ß¹ÎÍÃËü°LÍtzÞq/–ò¾}ú ôJ¢oyø™fcŽSÏÊË_ &Ë#’g¯¬Ì túAe¥éŒÙµ§G×¾iö2™y*q¿ûðþÚlN¼\èƒþØÎ­§Så…¢ª3 rýÅóC‡.‚ð2–ÅëTižîôÿ6­eJ¼°ú[Š?LéüíÇpàõ÷þ¼è ä²l}Wg·’1ßÙ(víkQ¦8Ö…2hwÏOG‚æV›îQ–-¯]ʉ{Ê6O˜Ñ”l¦×­àÚt¤ø¯”Ïvÿ¸{yQÕ'Ò}Ë…d˾ôÃa_º®k˜ÙßJ[ 7+Ý»§ÿÒ•Ô<üµÕn+$xC+þ—׺0ÜðË4NÃsûËáÕgðûW¹=µÀK œZ9ƒûW…>ôÐ+H³âþ _oZàÓ«B:¾ûŽì¦…Ž-°{õy¾^íÁ¯>wÿ‡çN¯+ûɵ‡~e8:V¿u> stream xœ­;]Éqïû~o@dèˆãéïîÀ2pv|‡¾Ø>¯áÀ§<Ìr).OärC쟪ê©r$í:„e÷TWU×wuÏü¸èZ±èð_ú»>Üt‹íÍ7‚féÏú°øõíÍ/¾3f!DŒ‘‹Û·7q‰X8¹p0í·‡›ï›_-WFè¶3®9/W]Ûié½vÍ6 ”Ó²yŠ:ã›6„·ÊÖkN|°™ |𦙅û;'ôÄŸ´ŸGu˯ÒFµi¾äó>èù "Y­y³d£ÿ½ýÝÍoooþ„jPÖµF/tªõ~¡Œ ­ Ø‚m…Xœ6‹¿.?ª3+¶í¤ÓžëL!>@`m×*PuÍßÅâ—¿Z¬PÁBËåí‘ Õ:ë„_|€Å¿ƒÿ?¹on”Ò¾UnaÕ­‹Ã hÖ·Ö”™ýÍŸ/æ”6ºÕ– žÇº¾5(+×*“X—ȺjePÁÎ -¥Tº"€i–¤>cPRêV¼„GaC+;¹°` JrAÍV ß\j¢S­%úÖŠÖú2C\NæF(è2ré÷ <”®uø6e<ç#QÂj…dMîGtq¼†ŒC2ˆ`@ò CG¸"ÏÀ¾‹ŒÁ‡€¸ 4Ɖ‹‘¹Ìê}¬_  —q ãB©¦[ ôW¶5Ê€~áG礵‹Ûû›Ø?Þ øÌËz<À¦ŽOEQ:Á¥ê¤p¶ÕªRÝtn„âª{殂T¨F_ù/„$ç´½ óNµŠÌÛ˜ÖË<} šb0Äa?Ä"‘ ,H›’d`e&þT€1¸øwDÇ üà(Œ>´N1 yiàŠ4c½n­^ Nù‘FãŠÄEH\ õ>^`` ÃΉ…1¶O™˜v®60ÙU¦l40,=­ ìBwâä ®»Éƒaº{fˆ•PE±úVZ¾ìÈÍBl¢E~L¶-58š-3ÄâdŽAðk= Ãè›ÌKJ|Ásíd<­È3`òVJ´ Dc:ÛB1ÆñVû–xp6Çäq$ ò ä&eÔ)mçG iŒ "ó˜Ô»x¾qI)!ôB|Äܤf Ã…'qͶ|ˆ¶¥jÛºTÑ«ŠJu“9U©NAžÍº3¢k%W]žH‚7Ò´ÚŠ)‹æŒ•­Ó 91äqQ]™I’ϲf2Qw™‹‘˜ÌªM¼@sFëá³5'¯iNbiOõDsÓº <µ®k¦s ŠÕ5È*TÿÎ’æ|›×©,•›6ãe e¿ôñpÃy[šÉ(Óäê!zÏ @‚Â0 yiàŠ<£ â1@± ²iÄ1®È\dˆÌeÆPïãÚó“þÂBV€‡³A]uQ}.« é(Ö•ú.Kg a+tU:OçÔ‹Kg-@°ò²t–5½“O¡UŒGwèî•…M¦F˜×Í[Z'u]7‹È ö¬)É”JI¥œëªðšÎP//¼ئo© ¯”¡£§Z9/+ÓAçxîžL1˜çn¥ Ã0êJî†ÎÎ96…V íJB‘¬ëÜ=cP,<“Gë<Þ »ªŠG aËìB m×y¡d ‹ò 19™cPª“˜´ÇXç¤ÄX§ºà±«1RKì<lºèZ”€&<df±«)(Óx D ÈC›7B@[.ÃÇ‘®È3ÏH#†ÎcŸ3Òˆc\‘¹H…Ë„a²çÇ:%P(`ð7tŸ.`!;^霖ôÔÖ±îR}Z"ÖZ}“9U©/*OúT€í*®¾2“„¯;‡ÅCQNF9ªOƒýAœ!lGÕvÁÇE}e& ¿`HÊ)4Šú  ¢p™0LöñõiÈßÐ=|®úÄUõ™ é©«Õw"ôÖÕ!b2Ç x˜êŒ¨>ëmë+Ç™Xã)šïÆpD™«Då rS Ò¢áò8—pãL¬ñ2‚T ¥F,ÔÛãa_†€æíˆ¡ŒóÑÝ8÷ †tøWh”ãÁÂE†(\& “}<_ZB-îõg†rzcZl*ç]­½Ë*šŠP—Ñ“9Å ib˜ÎßP œflÔÆ™Øfiã©IÈmXAY5mÁÑœbØ“äåqÛ§4ŒÝÕ¸0v_#êÜŸÄDa.a˜°ÿµäÙª?+>ç4WäÞ]³r“.]:¾0îH…Ò(71Ÿsã¢B¸ìlÕQ:h€S‹Mü.6»íÃùµ{µØ·oš§7Ë×Ki'ü\£"çîâ4Æ6ˆÚt÷õ¯•œvÁ4»í{6:m–+å1mùFŠÿX® D×®SÍîúí©?úón ˜ÒUsOKÁâC³y¢ßò–hvëóîø˜PÙߦßA5ç¶(¡êLsèÓE=Ø– ß¼ÁK¼YV»”j)hµ;TÛ÷MÿoË}Ø‚iž–¦ÃLêšãpÞœvÇÓ.¡¨e±ÖTžP¼i¾ýŠíæxùÍù´)22ÍÛã)KCçÅElkò‹¥H¢¢gÈÁJa!f1Kk+"åMBÔÆÓr%1ƒ(߀4i>€Ð—MÉúæ¼ë÷@G¬L$¤?÷8 kËû2ý8Šr„Ýœ"h'd3œû úÙŸîÓ|û›oƒà¡óÍОF¸ýî‘É`KÂV`»týû›ÛŸßüßávèHEÍnH¿;à©þ‘FD~D9`$ÖÍ€ÒÇÁצÔgT[z$óѨ˜ŒnÞn>дPq×gºwÒ¾hú%zy§•jNçÝyGxNhŽã£G¶bȈ,Hi“÷£›~}f¦Ûï÷yGºRÄf½†þ”z»Ü­úSf¦öF‹¼mvÑ@¬ mN›á\+åi¥˜]ÔÊ:[•r`âýþh‡Ê8m¶Ñ™fWãéxˆ#ÔÿÔ•‰fñž‘<ŽLœfb;&”m¢æ]ó/µŠ)‚¨SåY No¢Ì¾f8·Œ.Å6â:@l) lÇ%9 ¨èá Þ×þ¸ 7u8D8Ñ“k $¿á{]‘ÜQØç>…G,jµ‹áƒ1Nå)¡ètH4ýÇ ­)áÖÆÖæ›ÝOÄ¿ÁaÔ¥†£jzæ¶µ‘qSHh|Mh~§A[ rúâ‰Çt®”©J‘2ˆi—™³ÆÙsMeÛ‰%(tF–´¥I&‡åLá<î3ú|‡9 ƒB'ÄM1/L#3*è.^¯IbdX"Û4ÍÛ÷i7ìÆè¼ÍðšY(^!‹ýìzް SîOÅÂõšæ0>$DŠ^!ñƒŸ³€4Ä8E¿Ï4­ ì˜R^f(ä 0•§Ÿq·V5ÇÓ9ƒ»”Ül É(à!>ÃLA&›ä²=m .E:ÑØ©¡è`š?p¿`>äÙöZg›ÝeÌHk7÷£N³ö˜ž†´7Z´y‘9ð4‘ÊW(`àƒNÄЮ¬%6³,àêöÃîüj³L\D2I>ê(CæL7[Èv•# @rÆ A[ŒóÅ cæ½Ï,4|o‘#š¬VMÞ•°•²Pô£{DÖcñ4zC.£7P%VïxÇPŒñ®¿ã缓Œ¼üKU@cÂÑŽl«½ 7¥K¤ S²’¹ Nǹg!£â¼¢ù Uë<¦a‘N©dómzGN¡;Œ1/Òñ¯³v9^ i‹Ýì6Ä•½¤"‹õ’Æþx>oò–•n Vu²6 ú3žÜ«´;’ñµ‡WV&Xz¨Ò{© tȵ†ëþ°Éõ¢zq­ˆð]ªA1ÔrÀ~¬3÷Lj2@ø]Ç–ÒnsHðõ·ûZr¸ÂyÌ•ˆ¦Ä|GÕÐÀ=l½Ée±¨=jQ51ýZmŸ™„ðµá]ÈšWCJÙ¸™ºÆ:fZn›R¬6Ò¥*ÛÄ  U˜k žUMÀ™£­AôüÛ 4Ü5놗õ"š¤Á\d’œ‹Ïe8-¼ms{fò|ÜÂ9#„·ß§ÅP}Mò#‚`”>$#3² “ôQFÆË‚¨KFxt탔üsë~Ødj)¦ßÓØM˜šÄ¶ÄMŸ:=­x§m^kœÍÞ;Ü­ ^¡ñr´äµéù°J¶ßö:`~Ñj 4†°`€ˆ}‘äëª$(|?ö¸Œ ¢7­ôvÚ >²P:\´îF]OoFÓhdbÌKŽd°xjŽd´äÈkÐC•§bCËŒç‘ëÄwû›!3š;;Ìfï€JŽdJÜÄŠFã9~d5vô§9°X§’BDáþuéq%°•¶‚™™—öQéAMOˆÙ™H9rˆ&Ö>ƒDÍ‚¿]31Ò—q9z&g‘ÿœ‰á³Æ›.nb «<9Í7vFpJª ø.²ë ,„úwü¤…EÈÁ *´áHq>ó3EdžØ{¢8{E0”Î3­Þ´èÐЪ/s"Èìª0/!FŽ«]3=ŒnYè(E§6Ÿ«96ŒãÀÐRøGnÀSSób]ÚT£6â×”¯ñ0ûYñÅKÿÊ_AhÄp ñ&?…ƒž‡ƒû¸§`Ñчµ,à‘I6µ”.¢(©âR˜>]èlc¸nëøÆ¸Õy»ô–»†׉kÇløò”¢û‚&s¯Úó°tiKž·5ìø…)’§Â·=¯ÏC6U·ûÓiAvßîR“+M&€Á§ç~䉒3Mg4ª®›7'ˆ0‡žûÃz“y 1'¢* … ÆŽ@à9§ª @©Š2‘úË €Öó9î°O.vü«‚ü-}r1 ÁaóK´ÊŸ1àï܇o¯|Ó?£xÏŸì¯Q¿üÀâ*“—D³ŸkL?ø@.E7ïfifxäƒ×|ÐUت‘üèד7¦Ÿkߣ|ꓘ©¸Hj^w³â­¾_yâ4ö³jÒýÕÓx¾}Ìg7ŽC¿‡’c…GŽ·c ]GÜpþ«+Äu¢(¼¼Æ!Öœñ·Îl8z³©9æc½YqTWY(…ï1¿±–AÓ ¡&憌á Â·WyÇ“+´d掛9]Ø\‹#òž}A“ Ñu’éøà=eS‡®RÕn ŸyÀâŠá‡ÙDõ8»ý 1‚ïÔÁ÷Ã,®©y¬Šâ)Š‚£*ëò’«²ãªt\•U)RŽü,˜Môå ýˤ¢¯ù5A<3ÐÎ"}ÿú~–Ê<}9 > stream xœ­[K“ܶ¾ëžSR©=èÀIyÆÄƒ ŠS%Ûr•SVʱÖåƒí5ËÝhfgEŽ´vþtþBú ¹«8)vHâÑènt_zwQnÔE‰ÿâßíáYyqóìÝ3Eo/âŸíáâóËgŸ~WUJmBUé‹ËëgÜE]Ôú¢.ý¦´ÕÅåáÙÅ_WëJÙMYÕE»Z—ðA{oëâ—ø`j«‹{~0¡¬|±áåqE'ûdÜȇç‹_îåÃV>ôbžŸ/ÿ+Òµ\‘ ]u±ÖÕ&Ô°œ+XN6v&ÜQ><¬ÖÆ•jSš\€¬Ç{ùp7Y¨U€Ör‘oåC“w/7Á)oM."ŒdJ_£ ýDÀ…‘¤¼¨–õ 0£µUÍŠP£]KÙ}#íZJ»*i׬—V>ùàäCç× óÓC9óÀóûÅçúÌH–õ Q˜iÍbìA-.9³öióÈ4v±X kæ¥qcd[=í‡ož]þéÇâòv…­k[‡ŠÜÍêM©\±»ã÷!Û®múö ¿Á(.]sZÚâx½âi\Q”†yÎYbº¶í7´"Uoª*LÖóÃÊ£yœa“x×babˆï„¼gØ‘%ÁÁÀD ˆÃ VúV4ÞÿJ£Aøƒ}<Ü®ÞtmÞ×gÁh€ß·ÛÓîÃjpS–¬oÒ‡¶èwÿ"µÄaI-Ðaaxù´3öKÎá]qìûÌ×âl ýÓîМŽ]ÿçÕÚÖdžâµpžËO¢÷Ì)ûNúÌ¿y";˜ñk¡C*¾VE3‹«h\çp/§·(Öà<.gÃGH´Ù€ûû¦¹ÇŸ¤Äºø‹ |ë1¼ÎB•s<‘A•ürZD'Ù— di8Ëû­œçù¢8é—&¥½’Ìv¦œ«9‰(™Ÿd2o¤DYþ¹þ¸õÝO…|z-'º”_>[\íûʼnò±ïgÔÊûab˽ªV.ô0‹œÊª\°ÏF§ÊÒüO+ùôIB3>‚_ˇåÕ¿œÑØÌÃO¹»dŽôð´pn¿A¸¹½ÄZ¾ßd:?Ñ>6No|íR>ÞÊ6}/Ÿžoòñð&Ž q 8ÚP.¿ÀêæðþڿѵÍÿëÉ"š~ÔLÐÈa£STm7nÈÆ3 ;sžZîËJîKÝPO€dµ³æQgV[ðÖ°ØÝ®®‡Íìb´°Ò0u>ÀÓØóË÷ì ¹:SœŽø;@ֳ簛¸ìµD|c"ö& Goy ÈüÓ¡ <•¾xÕto !‡.@è'bx7b 1@Y0 8,Ä©9Õ G°îç‹0 ?.Ò‹ŸÇýÙ˜3£–GÄÕWY“DÂÈ‹@ØÒµ^ŵ™œˆevÍ*Å0w=çý@yÿ ƒIvmOUUm!váKïi´&³¸ ›$Ön·Di)‚W¥6ÎÆÆ™º•Ù8A-@EÚèÎrei|d²ü{N?kØK_º T𲂿ô~ð¶Áž®ÙOÑ+4±êœb`DOûæJj:ÓvŸ Äžð|Ô‘«SGä4†itÀ~oFx(ÆFê&)TóF A„Áº8_±m»S3J›o¼æ4N:±?õ/m¡B°±3К ljX%ìG‰\O‰¯ñ#FzšÈ  y{׬ØcC 1"søÀ°m+r\€0 Oõ'd¶R€®Ø‚™Éô®ðO upŽ‹}ü¦`È}Kˆ¥åJeY¦¯gÀ¿O_`©4wSPr UðÈ5›•B¥Õ&q’P˜‰ÙŸ%Ævݱè8ä k€5—Uq?î¬cj»Ý±ûDVS‘']7ËÒöii¨,­ëÚ=ðû«ØÈU9ýl„¹f èiZN`yƒqbˆÜ£+CȈ;M]!u~d;ý©‘„Z쟦ˆ)^}ñê‹GØå‹av”©DG6Ѥ§Ñn¹ P¾3”è0°®í¯Ñ#±h²oc_gò$NJÓö̶µQ%lir M©l˜pà¨Ñ]›ä=g© ž”&f)%U»»¹¥Ð[9hE çõœÊ;ö”PÊêbU(~£VnZ—ˆ#-¹ Q)Úéó´F—”…~ž´•È¡ÖlEÁ~¾yšî±m o$äÉ8_VÄ%$3ðüvqÖœèf±O&B†ïQQ˜õ|ˆ:{-éd™}ÝÏ<]~'Ÿ¾™sÁ´†„´Nä±^l7OG‰ÛEóÍÕeØSõ¢Ú—]=÷ÕíâY”ÈvÁÕòpæŽÐÈl lF´<­ËëaOÖÀfFø 5°ÿûÆC¼XújØ]æ æÙ|쨷±:Rañùæ(nžpé3R‡ÉóàWyín$µîR•V¨u,Öºèoy® Åá3¤f¦hRÉVgød¯÷âõþxÛ§B9V ¹òß”N>KO7ªÚb¹\ñ Ùÿ–E‡s›Ž9àí~/Nz†tÚÖLTKÄ\TƒѨ;c<Œø( ðSǃ!͈yâð˜ åë®}'ñ–<-L` $¢ƒ Ô(<Ìá³áWõ+·1ÆÄȇD õ&¬Üì÷G¦Ý`}<ü"véÒ1ÌÚ©@/«ÏÇf ¡1RXã‘ žA«JUzÊþØxˆ@»e ±ÏOè¤7ÒôÕ¹}hØEAŽ xuÂÏW±7ì7ä©Ó#à4.[‡]ßO5øëÐD³w¬fYµãII: a8£ “ƒÆÙ"yž÷3gAD§ªóÚLE&¹>J?êâ†v-‡Í ò¼ì4r'O纼B0D»@1)”À râûì÷Ø«;=BÆ.é¨O°x²J²áሱK{®޵‘]×nisPCãgNñ°S©ÎÊØ|é°û%ÛNBŸ7iz®ÒäÑiT[ôÂË›­q¦ÄE̓ç·iLsÆÝ’pى׀ˆÆKŠt•$s³GÔô­òE¶æÎS ;¹ '’ä*\žÂK2~¶Hëx3A¨ÝÆÇNék:T¦MïÂxLìê³²nêéýãô•&KÞx~˜´‡£Å;GæØËù õÅÙœ9§¾qŠÑwÒÈ€¹Õ‘"ž<ÜÅ&¦â‚5þDñ•¼o3<Ùñ­ŒC€ Vk«¹òóeÛjßÈÇ3e—¾X± ‘'NW,þ׸¼!˜ÅÔm¶ˆ~æ Œ&¤¸ã¼ét<ø¡ 9ùåº3Bòâ¶íVs…G4-¸¤-9¹>²¹£†*í*ºng yÃί»*ÇñuʃY54¥*² ð¹3’@õèìÇXŽà”~ÃMÖÂüŠÌp*úZªöŽÇÄ´„Ma1tM"x*e.ˆ1{¥ ‡sîìlK lR?‰\Ñ-ï¹ ¯)lž¡¥{IO$W‘é=ÓKë+Å E€Ò¾ß&× ’)&ë¦&JÅ Î @%S#Þ$­¹’o²­°}°SÌÔ.Ü=ŠØ½bèNsÁN³ë·ÇéA™£ƒ²Ø\™y¤Erø0ã‰Q÷4€N9©½q“UgiknVa*M¶Éjøvº…{> u2Lx LdÏÐïjDT4/u?@ L5ÁRÞjÆž ˆ¯Ë ·B¯æH½Õ ˜Ö—ñ£ßÙ]¿áþÅÏ$‘I(˜»\3ø¡Á<Ø}ü&öv¡Û»ØËwQ2p™Gsý°VMTÖc貤$>ßzÈÌÜÅ#Jš½J8Ç_‡#ß&úbÒ©ÁZËkŠ_æk éâ¡©%à82qt¼sÓ5’/dÌøj¢R‹œGî­;šSìéKÎé4A› X£±ŽožÂrk«Sy±2ä7b )‹·\e3Ö{ ôGþè}ªVxä ì›Tµ©m,ÄÅö7’ÊWd+¯µ¸´áÎnHèrÖÏ^ÏE}ëŠñ[dµ—þÞ½Åx ëEƒ†ºÕÔM’¤ÓŽõË=‡‹ÙsÂÔ1âAÂ…k¾ñ°±mºípðs›-–ÛC€&¡@Ù39ç tQzˆÈkHÀkjM§®4 $7>¥†þìŠì°ÞïÅk ÂwœxLJÕpç¶[ÏBÀ;I&«¿5/¡Ï-¥îºŽ—IÍÿ]Ò®®!Ó=%øòB”§z ;v|뙇pgùˆºÃ¾ùûøV %©£xýI’Èýwý>ý~ü-ÄØe72ˆOm”î†ò­¯y¶–õ‘± ýR—ì’AÛí¤1ox(.|yõN8U”ùím*ÒJx ±‚i®± 5ËÛM \Nœ]Y,æ‡÷5m kñÿJ¼¼|öø÷ƒrðDendstream endobj 289 0 obj << /Filter /FlateDecode /Length 3328 >> stream xœ­ZM“·½ó®[SºL´ãÁ7 *§JZK²]VÅ–˜ø`ù0âŽvÇæÇzHEÖ¿Ïk3Ä 9'•r•L€ºÑýúu7¸¿UÉ‹ŠþKÿ_oUq»ømÁÃl‘þ·ÞÏW‹/Þh]p^z­E±ú°ˆ[xaEa1m‹ÕvñûÛòJsUVÚ²÷Ë«ª¬”pNYV§´J°.¤¯´c÷qÀ‘†mò=û|pÌïX> z’“ù&òA›+p3»çË|°ÊoòÁ?òÁ‹KšIÁÖ³×ÜÌŠäùài>—¤pÅ~Ÿ=¸ž5ßHäãYtÍÄNšk²!»[V@7¸dsÁÈqp›îf…<>»Éðìsº‹òÂ8Ü“ž³÷_.^}»ÆÃÿ„ÏÕ ùx/ßÌG»c>:<ÎGOÂaWýiW°ªR†ÇCÿÌ }4Ûž®\Ï^ywÁÈqy‹½Áµ›¯!UŒöâ3ø¡·±‹)?Ý$]IeÔxÇqöó7¼™»eðKð†ë|·XýeÄ;›K‡Þ¹Íy§É°›•=¦šyg,qá’QÐÿ'TðÑúê9oåÛÞjœ½Îç¯óÁü7ÃY£ùg³,´Ip>©¸µëá?ª"'óßÌRøa—ïõ¡Íùa3¢¡/yä«Kn]Ï=Oe¾&A÷ÅjñCH²ñâ %´)+_Ho]ÉU!´ä¥VE×?»‘ei宸„¬ è¿`öBÀ»Rà£d©œ+]*Y`·TÒaÿâùbQ•Îjdx)þU¢ènÜT8Q · n+_r=Ìl.ÍLvmwQ€´G;NÿJL6C€ƒ µË;Ÿ9ÀÜsf;»j ùÀUE%t)ÏlD¨“J ϯ ¸ÄDn#!¤)E®Þ…™É®ì ÇK㦚 »H«>p¥lÉùt£°hÑ]•i¼cM Ëö;I7k°âLàåa§‡tsÆ•n*¢ îûnÞªRØ3ݬ¤Õ>ÓMro١ʇT“ÂW€Ç™Ž .3Ìœë&¥×Hdg­Cœª\5S™òL3/(âíCªY.`Ÿ3Õàé Èª9åÏâÀèÒ(—«¦*áJ-Î@C®÷æÝ—è8חλ‡\Š$ë/„PjTerÝ€b*¢¶´6ÍÝ´ÖäºÉF,ÓÀÝŒáee²hVÖ˜Rù,R/ÌLveÑ<×#¡>4”Ñ”Ë{$‡`/(®|©B«„‚Þ(U•Æ2qú(O}„Mdú4kNíi ™òea©Å€Ö$¿²¥0ÎCß&CéÊŽ]ÓwM{{w<Ín½ÿ¸;6]s³\ýr¦¿€KŒQÅ•®µÓhÝïŠ.ʹ, ò˜V¦ôð.ÉÂéZ’Õ匴fŒ†á°ÍâíÅU”Ôò\‘­òˆg„e¶*Íä«4!ߨlU?3Z¥5‘J¶(NŒÖ8m ù¢4“¯2ÐAüVõ3£UéÖÙªÌ c'û#â+Ka%@ dÕ Ì!ÓU…ª ðŒWq( ;u—ºšx)ôi¨“áÛ¡’ µÌà2°2p"µð%€‡¢×PîJµÌå:F)  ö3¢âXP(ÔE”œ…Ÿ„Ìø6ñ†ãT Nª@‚˜%! sóP½3l”0%À|£âñF¿v™‘÷_“"´€ "×ò&]s[¼¾~}M‚ˆ…š¼olžm6ÅjÉ)§T(·÷‡`yöÍjùçÌþ勹4#¨8y„ÈËeÈWÊzÍÚÛÙˆº|Ua)7Lˆ§(„½ / Ïëî>®óžmöˆð´'ì†/n†Oíº>¦/Œ7žú¤d"ÇŽ¡ïñ öʰ "*OÌÖûŠsŽþL­¡»‹²H ô\âgï<3ß«]…ø •c¡ï÷Ú;Ìné8ÃÐã}T»^+5>¹Ý6‡þ+Ñ Šze’^×ݯKÙkÃÑ ’Ø ÷ûWZŽs.QÅG’þ„:Ù%½@œä¼cöÝ©Õ5"–ÜI›šôæô‚^ z’†^ˆÛ(ÍËû“7vÓƒS‚YM½M<„³#@+A+l•êãÇÓ¦.˜&¬ §ÅÏÆù#ÜFO¢•€eèLc$Î<ôK8É[ÒZcÑüÝG÷hê ÁÑTœIÅM}“™ô&[Õtdp+ªV禾IÛ¥»t]«£¬~õ)( ŸRî ×ÐPçHAõ¢ _wnkš7}ÏæVÔYb2T< D›8M:’ Ãy:$ÚC¿ALÆÏ¤©HƒWë®Ýgîè—Wšåöô5"L!„Ei$nì±0 ø‹Gà ¡êïÙu’sPα}nÙ&Ü}lë í& –;©>Öez­+'†Œv~ÓšºK¡‚0=H+ì:¿é Ãë–D ªªW]¸‚‡WÚ[qÉ^|ÿÅW•ѶR_ðD†îƒâ|5¹3IžêLÐÝ!­‚e’QˆåŠmnzÛ´‘¤wýñÄ‘Ç}R˜ëññ#€þš™ å´]]˾Ͽ)¿*OßÔy\eOf²·tBk"þÃ>DŠŠ õuf–.cŠ9!‚é¾=¦5a³ ÙáÓݰa[Ä«®÷)ø•¶Û÷™ê¹½Ûýnè(ÐõÆ Ó7ix¾Íö¶7§ÏùòuÒ»ªT$©°w„ø6H’ì>ã6¸IÓS:¦iÖÇ^•1›ø —¤™Q~‰¼¦¬d½ J„(dÕ‡nòäWç–ÚDv"&õS®N$«ßf÷Ê¡y>Œ‰éåevõÌR`þÏKG ¹¢ðä;AXw1Û©góØGçI™bŠý~#a_UtèÈüÉ[ñŽ¿¦åáÍ ›d“Ü"wrB—”–}ÎXj;áGî)q} Þ¥”#òC 韦٠mql›¸E’n¡Çhh6÷ÙèCîÅÍ¥\޽m¤LÜL¼ œnO%ÛçI³§em.R·g§ýu¢j£(žËÔ+J”‡¨69êv”‡¨F½ð;¤µpmìo>„‘Ô®‚f°ÛnÝÄçW)‘KLµÔõEòRy›xXŸ’Xà°Bö9ô5}ñny9†¼.9¹?!òÛýÇnªÏ ©~ÖȲI“ô`áÁ&Û¦k×!jœ1ž6"–É2Îñø«œ÷`,,XŽÇíᘶӂÜA"úý‡Ã>5ƒ-b:îÊ¢‚^R³z1Ò=?)=éK|μ|ê¥~äMõ¤'}‰È¥Ÿ®;:$F†W)2äldH«–gg³82#ÂÁ/†ãì¨ Ó<0ïRûPdL‰•ä¦ðGñáÔ¹ð Vgv/XsèóyûkΣ#œÿPóu“tE°ÌÇÂá2é‰&‰^c¯ëõ]»kè}'$*D;ŽŠï€ŒŒuën×în/â|§¥8ǃ`Ê=••|$…Êð ðMƒ¥•žO™Rexx;ø2ð˜Ù쫚ŠûØÀÿ3лD¹Š®²&n3Ñá/ÇlˆHåÙ óÅ&ì‹Y|ʉ*ü ÃÌq¯êí²çÀ¬´Þ×Ä}–ê·¾¨~•ïëÇ5ÅdNzÐ0¨fö›¼ZÌëÉm{Úÿ´"†jb¦ð''G*áPÀù†¥,M; `讃Ýú£bâÐÛÔ~ʼnö8úçl~ Q#'9; ºº¿@`Ív(!CW[}é/˜–¾=RÔ@ËôÒCp·5B]³©ÓK=pñQËuLy½{œ !x)«¾©ø°ª?5Šw»ý¶A‹¸¾\{ Å5Zû³Ló§J‹GÊÈqøžž‡Á¥ÂR ÐPzøâ‡Å¿Óÿf]endstream endobj 290 0 obj << /Filter /FlateDecode /Length 239866 >> stream xœ¼½M6kze5¯_qÔò  Ê/y]×u#š!¡f*‰0Ûí6ª²»Ý– ÿ=qÇ…3Ö:§  ôÉU{ÇóäÎÈ|w„#sÿ»Ÿ¾~´Ÿ¾Îÿ{þÿ¿øÃ¯¾~úë_ý»_µ›þôüñ‡Ÿþ‹ßýê?ùï×ú©µ{­þÓïþõ¯>–öSöŸòÂùÓïþð«ÿñ×ÿùoþ|µùãkå¯ÿÃoþüëÇ×ìU3ýû烑³ÿúo>Œýµê×8Žõã«ç¯ÿ³ïŽ?Ž4ǯÿþ;ÿ_¾ð·ß?øëÏ­bįÿêûÿò?ýúûGÿöûöýƒóýƒ×þæg^èg<ÿð›¯;û׿þíóy éÿøÅ·òãûÿ‹oåõêv¿b¬ÝóOÄô¿x°?ûÅwówß?ø÷ÿðÿefß¿R¿ùöÑÿü»ÿæW×)0g´Ÿ~÷¯~õ»ÿèu~½Þíëüú»ïç×?|?+þ8>/ôú¤~û¼éOö?üâ›ù«ïÇú—ŸæîQ¿þ?÷Yßü‹ßþãwÌ~ñTx½ÿ×·Ï¿|ì¿Bÿ'ϬÏÀÙó¯Ÿo……\~ùÿv¤ÞóëßÿÌ'ù ö·¿9§Û9Çþãßüùøª¼þ—÷7ëï1Ôÿõý庾#gŸ×—á—S|ý/¿ýÇ?ûCóŸ|Á_:?þÍ?þ8úÜϾã¹ÿÄ;þ›;ˆ\³ÞçãëDûSöo¼ øÉ𳇹2üí÷Ÿ ¯o²×‰ñþ1ñÏõãûóBïß¿ümöÿè‡ùçÐöýDÀó¯ów6|¢ÿÌ?Öö§^¯÷[~ýhx}©^'Fÿ§ÿY˜ûgþYøýϽñû‹ÿ׿øÅýüË_>~ùûùõIýÛŸùB~^èŸçïü`\ïPÿï¾Ï×Wò¿ø¦ÿê—4ÿå?ùÞV{ó?Yeþøcþ¿ýÎÿËïüòÿòz•×)òýŸÜßÿb¯Ÿ=¯“ïOdÛ~ûý»¬ýñe¿ÿ#2b_§ý)È¿ûË«ÿÅß}—üþõãºý§ß?ꯣCýW¿ûÕw ùˆü±æOsŒ¸þi¬¾Äþé:«âGk?ýý_ýô?üô·¿?2²ÕOÿûÕίþ·«Ïÿ××÷Ê®}ÿt²Žé¿jë«ý˜ëÿ"¿ÿ«àϺ´•’?F‘Ìñv]¤HÖ +Lt䔦LäÚÐÔõ5)’&M“æJ dÈÅ|ê¤r¾l :rˆ0‹HS:ò6ë:3'I3‘«K3LäšÒ0­4®[法ÆV‘i´/¦qˆ4M¤Ëõíûë!Cš¹Dtä%Wˆ¤€\2•^jÃÕðá:~t‚! Ï$xÿ júAt‘„!´% 3ÀçÓÏ[†ÐÂ$S@$ J@GÙMÇŠaüàér‘ é"C@’)²ôRKš&Mä*iÆEàºZE#aSaÌ]Æ3•ÆÕråb>SiL¥qi˜ÆTS'ËTç²U$ßßÐëäÒMädšÉ’&LôZ)MJS"[® M(«°ui˜F(‹HÃ|Bi\D.æJ#”Fü(i˜F([iìûlyæsÎ$rM¹–\WW i˜ÆÝUAJ®’f¿e¿»*‰4M¤ËÕ¥"S®)Í’&LäJiÊD® MSMi´seC" Óh÷Ù" ÓhJ£ÝgË›¤À")wÃÔñáik MD¦.ÉyŸ¶ýn­ ! I”€<ïï|Ë÷»±‚4IºˆŽ;$aƒŒsAÂC÷¹ñ&E°õ9mįØ]UIh¹ËÙ› ¹¦4ËD®&¤I‘’«¤aëw’xý£x‘&rÒ‘fH3MäZÒ„‰\)M™Èµ¥ÙÐ|ªê›´&"W—ëTUi˜Æ§ª‚ÈÒ¤‰\%Í6ëSUߤ™ÈÕ¥a>©4ò.îßÏÌ‹HÃ4Riä}aó&L#•†ªêE˜O)ÒÙò©ªoŸËu§ñ&£“L¹PU»ªjWUíªª]Uµ«ªvUÕ®ªÚUUûfq着]Uõ"]dÈ5¤a>[il¥±yaÓUU‘«¤a›iŒ/÷C¤i"]®¾I†\S®)ÍÒqPÜǧª¾IêÈ%Wɵ¡ùTUMÒ¤é&r i†4SdÉÅ|šÒhwq‘†i´ŸIcCÓ•OWý.îoÂ|ºÒèJCõ"L£+®³…u°³uÖCp\œ^*­ƒ¥õ]àÝÒÇÝY$™""!’’”È€dòæ"M@’N0ä™R0†Oc}“©‚dƒàK©|Êê›à¾êø”Õ7"S®)Í’†A|Êꛤ4e"׆&îê$MæJ#îê" Ó¥÷¥Í›0Pq_Ú¼ ó‰ŸIƒ§Šî«^„i¤ÒH-É»Ì#y—y¨¬ŽOY}“%r…4)Rr•4äSVA¤iÒt¹†4L£”FÝ—6oÂ4JiÔ}ió&LCeõ"[法†ÊêPY½ÓØJCeõ",c*«Ceu¨¬•Õ¡²:TV‡ÊêPY*«i&ruiº4CdÊ5¥Y"!WH“"%WIƒ|fSÕý"̧) •Õ©²z¦Ñ”†ÊêTY*«I9¥)‘­×BYÕ}ª¬N•Õ©²:UV§ÊêEp~vÞežw™§ÊêEÒD¯UÒ0Ÿ®4«û!Ò0¡4†Î–¡4t£uòFë21 ÞhºÑ:«û!:ð†f²½Ï‰ö>'o9_¤‹ w­“µuª¶^$R@ž"ØððC–Ö뿚H„,f°xMsýž#š‹F"M”@à±<£1ƒÐÌà3#é&ø¢©­NµÕ©¶:ÕV§ÚêT[j«Smõ"%²åÂø™¼?“ÿg‰©¶:ÕV/Â4Ri$¯m.Â4Ri$¯m‘mõ"¥Ï‚ù$»û,v÷Y|&â"L£”Fñ™ˆ‹ ‘©×šÒ,iÂD®”¦LäÂ3#s+­46Ÿ 9D¦±ymsˆ4Lc+ÍgF.Â4¶ÒØ:[¶òÙì]ë‹ù¬O[)’.ÍÐq†\S®)Í ¹B´Õ¥¶ºÔV/‚î¾ÔV—ÚêR[]j«‡È5¤™&r-iÂD®”†ù4¥ÑØÝ¦+®4:¯m.‚6¶ÔV—ÚêE˜ÚêR[]ÏŒ¬Î'D–ÚêR[½È6Kmõ"xBd >!²Ÿ Yƒ¿°Ÿ}¿ž}?Dš%r…4)Rr•4øÝ€5ùìû!›¤IÓMäÒàñæÅÊzÀÙ$É£¤Ž[z{x¾yñC<ù¾ú^ì¬Ku©³.v֥κ‹ûEB@’)I.^&ØÜ/Òº€<ƒ` Èc  —3HRú·>%Ô³•ÊA·V—ÊêRY]*«Keu©¬.•Õ¥²ºTV/’&r•4LCeuoÄ" ÓPY=D¦QJ£xis¦QJ£XÝ/Â|Ji”ΖR>*«Keu©¬^„i¨¬.•Õ¥²ºTV—ÊêRY]*«Keum>î}‘ÙráqïPY½H3‘«K3LäšÒ,¹Bš&EJ®*¦Ñ”FãÙr”±PY=$Ip#>TVCe5>eõýêaR$)M™Èµ¥ÙÐ|Êê›àÒ&TV/ÒEPÝ‘†itV÷C¤ ¦Ñïêþ&̧+®4p¾Ó¼Ð»H—fè8xœù"S®©#/¹BGiR¤ä*iðð{L¥1ù¸wL–ù˜¬î1ù¸wLå3yÛý¹–4Lc*ÉK›C¤a“¿ÍRKi,^Ú\„i,¥±t¶¨µ^„i,-Kù¨¶kk¨¶^wœño{¨·Fà6|¢‰à]øÜ…öÖPo öÖ è½…$) 3T÷ Qk½H¤‹ I˜C2‡dUÖ‹¤€Løá«Â*¬¡Âz‘f"W—¦K3D¦\Sš%Â,TX/’"¸×ÅGà£øûçïR˜àÈ[ù¨°"׆il¥±yysˆ4Lc³¾‡ ëEJ.ž-›gK~±¥ ë!r!ŸTaMÖTaMÖTaMÖ‹¤‰\%MIƒÂš*¬©Âz‘&ÒåêÒ0¦4/o.Â|šÒh¬ïa>Mi¨°¦ kv¥Ñ•† ëEºI‘ðl鼟…,;ë{vÞ‹ÏÎúž*¬©Âz¦¡Âš*¬9î{ñoÂ4TXS…õ"ÃD®) ÓJcðòæi˜Æ`}?D¦¡Âzˆ4Lc* ÖTa½Ó˜:[TXS…5UXS…õ"e"×–…5UXS…5UXS…5UXS…õ"x>Ÿ*ÊÅGG.Ò¤‰^‹ù,¥±”Fèl ¥Á»­X¢3 õÖdo=@&ž+,®(‡Å!TZ“¥5UZ3ÙÝ3ÑÝS¥5UZ“¥5UZ/"ú R’"`,ïüT ¡BñÜ(÷ä™’0•ÕTY½C(† ›«aÛlî‡,’& »˜ºjª«¦ºjª«¦ºêE†ºjª«" ÓPWMuÕúbs¿Ò(uÕ‹t‘!×fJ³Lä iÒ$IJšm‚×RW-uÕRW½ΖRW-uÕRW-uÕ‹,‘+¤aꪇHƒ[ñ¥®ZêªiÒt¹†4L£+Îæ~ˆ4L£³¹" ºX©«×Pꪥ®Zêªaꪥ®Zꪥ®ZêªI¹J森Z“ͽÔUK]µÔU‘†i¨«–ºêE˜ÏT“Íý"Ìg*©4¦Î–Å.vH‘ðlYÊG]µÔUK]õ"LC7WK7Wëþ/”+¥)i¶ \ꪥ®zˆ\]¦¡²z‘) ÓP[-µÕC¤a¡4‚W6a©4’W6é2ñdIÅ£ÒZ,­¥ÒzfÁÒZ*­)½=´V~c±µ–ZkîÃW¡¹—Zk±µ^@ fP¸€$Ì€õI˜BRa½CØ<96ïÂ_dLyXÆTV/’% Ë™ªêþb[Uu«ªnUÕ­ªºUU/2E–\Kš&Mä*i¶ \6aMi¨ª^„i4¥ÑXÜ‘†i4¥Ñx®lUÕ­ªzˆ\LCUu«ªnUÕ‹0 UÕ­ªºUU·ªêVU½H˜È•Ò0ŸÎâ~‘-ªêVU½Ó¼°¹ÓPU=Dæ3”Æ`q¿óJc(¡³e°Š×ÔÙ2•Ïä3"{òš=ùÔÈVUݪª[Uõ"K$ä iRš2‘‹ù,÷­ªºø¾ÓXJcñšC¤™"K®%Mˆ¤\)M‰l¹ðøûþ2âE˜Fèl å|ü}ߟªú&ËD®&Mä*iJ<þ¾“¿ïT>É_ÖÜÉ_ÖÜÉ_¸ÈIãÛ_~ºÈIDš%M˜ÈÅ|Ri¤ÒHþzÀ.¥QJ£ø«½›•u—Â(,¥“¥ð›«»ø'wé\)üæê.þæê.<"±‹¿Êº‹¿¸ÊÓdó÷X÷毭îÍ>¥õû×ißÕýM¦€Ž+’$A Èóú¤ãë "ƒCš€$]dÉ”É@$t˜ÔûK¹Š`Ë´qà†'Fi&rui†‰\Sše"WHÃxþ„ä!%WIÃ4ºÒè÷]ø7a]iôûÒæM˜OWý®îoÂ|ºÒèJ£ãÒæw»Il¹64,«‡´."Mr i¦È’kIÒ¤‰\Ìg ºß.–ÕC˜Æ¼ÓøþÕ™ø;47‘fˆL™ùL¥1•ÆÄß¡9„iL¥Á²zÈ»¬Æ×R\ 8¤ÉÕMŠdH3MäZÒ,iB$åJi˜Æú™464ê~ÓÜe>„i„Ò\ÚÂ|Bi„Ò\ÚÂ4Bi.ma¡4x_õ&›„i¤ÎÞX=dˆL½Ï–Ä]æCÞ¿«y“M’Ò”‰\šÂïjÞd“4iº‰\Cš!ÍYr-i˜F) ®ZÂ4¸jZµ ­Z…V­é’0 ŽZòþUÖC–‰\cV `É$ÐQ—H轤ɻ¼ßkVz3¨c­ãNóM¤i"]®. £è¸Ó|i–4 £ãNó!Œ§ã¾{4ÕÕ¦ºzV¬L‚¤IÃ|†Ò¸Ÿa+”÷ϰշ âø [„HÊõþ߇¼ÿÆw|†­Hð~&þlâ! Ç™ø‹çñ¶r ¹¦4Sš%r…4Lc*y߉“ ²ðÏã¶zæ³ð÷ßã¶z“œþˆäM’dIóþÓ"ñ [½IÊU&E²uä MàHÒ†ˆ\]dÈ…ºz†­DPW›êjS]mª«Muµ©®6ÕÕ¦ºzf¬I3‘«KÓ¥a¶ [Â4Ri$/nΰ•ÓH^Ü<ÃVßI±¼·by†­Þ„iË{+<qÈ4)’÷ø›l’I¹Rï§D¶Þφf+Ghn"M—†il^Ü´­|6¡‰gØêMBš4‘«¤a>¶ŠÎÖèa=¤ ,™†È”K ôöR@G)½ÔÖ®ÚÚ±ÁzIFXo É$b‰¼ ç¬BsVÁ9«¶<âّКUpÍ*´fu ÙgÍ @¦%‚¾ÚÕW»úêgÐ @&ÔÕ®ºÚïºúúšp†õn"×Б™Î`yïƒå½s‡õ†ÁÖ›ÈU"[® wX£s‡5:wX£s‡5>ãV$rMi–‰\!MH“IR]D\êuÝ]íº»zÆ­DøíÆÖC†È”kJ³¤ ¹Rš2‘ ÷âÏ”2¼ë*H“‹ùÜãVp yH3E–\K¦ÁÖøŒ[Áų宫$ï[KŸq+6DäêÒ ¹¦4Sš%r…4)Rr•4LãÞa%‘†ù”Ò¸wXA˜O)R÷¸Ó(¥q[‘HÃ4JgK)Ÿ­:¶•ÆÖÙ²ÕÇt{µëöjßø»‰‡,¹ØÑ6ï5÷Í{Í}ó^ü™²B)P]Üa=¤™¼_k|ñfóP_꫃;¬7ÑûY"!WèÈ)Rz‡% îÅÆ­Hð~¸ÃzJëgÜ dèÈS.‘ HyŠ@oµ·tÎ`•À"‘§K2D¦€$‹ï Õ}t<HŠ[z¥÷%3îähÐ*8hŸA«owÇžA«7S@ÜZºµú Z½IɵåÚÐL>%28Äziº4ÃD®)Í2‘+¤I¹J¦1•ÆgˆDš&ÒåÂS4϶՛0ÅñgÛJ„i,>Eól[½ n­ŽOW}E3’OÑ<ÛV rMi˜·­Áxm[…¶­BÛV7)Üv×¶UhÛê&W"ÒðÇ7‡Xo"×’†ipˆõ”¦LäÚÒ0±†¶­BÛV‡0 ±†¶­BÛV¡m«x¶­¾Çí;7a|‡¶­BÛV¡m«˜_xÈùf"Ζ³d%×û™æC¦4Sš%r…4)Rr•4„C¬7‘†ùpˆ5´mÚ¶:„ipˆ5´muÓà¶Õ!) óá¶UhÛ*´mÚ¶ m[Òdb 8­uv´y·V8u˜dƒàlWm¬­s0†Áî>Çv È#’¤€$Ì` ¹kÏ*´gܳ íY…ö¬‚{V7æ0™Ãä3ðS…uª°NÖϤÕl™ð`Ä\|êû"ÍD®.M—†Y¨¯NõÕ©¾:ÕW§úêEßOŸ-ViÐçg°½Ï`{ÿ¬[t¹†4ӟק¯¾5Ì'”FèdQ_ê«ÏºŽœìcS}uª¯NõÕ©¾:ÕW§úêT_ê«“[¬‡¤‰\% óákLõÕ©¾zÖ­D˜·XãY·z¦Á-Ö˜Üb=}uª¯Nn±Æ³n"ÚÙ²2I’& û˜úêT_ê«S}uª¯Nn±Â4ÔW'·Xaê«S}uq‹5·Xc©¯.õÕ³ee"×”f™ÈÒ„4ècZ· ­[ųnõíçØR_]ê«‹ƒ¡u«›lyL’©×šz­%M˜È•z­’«äÚÒ ¯.õÕ¥¾º¸ÅZ· ­[…Ö­a]it^Ý,5ÖÅ-ÖкUhÝ*´nZ· ­[ųnõ&]`‰èÀ CÅu±¸.×¥âºX\Ïj•€%´V¾ [k¨µ[k°µÆbs…ûðg¬J@$$a¬¬ÏœÕ›0¼Nð‚æÌY‰tIÚØ3hõ&!“ßpJS2m™ÐÎB]5ÔUC]5ÔUC]5ÔUϨ•È’kIÃxÔU#ÙÜ#ù M¨«†ºê³kõ&L£”FñÊæ¬X™ÈÅs¥”ºê³k"WÊ…®êªQJC]5ÔUC]5ÔUC]5ÔUC]5ÔUC]õ¬X™È•Ò0Ÿ­46›{lÞ…OuÕg× Dš.2äÒLi–‰\hgÏ®ˆ\%ÍÖqÐUS]õÙµz“&W—«K3D¦\Sš%Â4ÔUS]5ÕUS]5ÕUÏŠ•I‘4i˜‡XÒ0±Æ³k" ÓèJC]õÙµz§Á³e°‹¥ºjª«>»Vo2ärMi–‰\!MšÈUÒ”4誩®šêªg×J¤ËÕ¥aSiL^Ù<»VoÂ4&›û³kõ&Lc* Ö\Jc)¥³…¥5YZŸU+Wof‰A ÈS’0¼ŒJkª´&Kkª´žñ*‘) ‰€Þ]H’% ¾8D*ƒÄåÌ3fõ&Ì yj¨¬>cVob :Lêýñ ›lî©®šêª©®šêª©®šêª©®šêª©®zF¬Lä i˜O)bsv­Þ„ipƒõ&Ò0­46¯lž]«7a›Í=ÕUŸ]+¹x¶lu1uÕTW}v­¾‘RW-uÕRW-uÕRW-uÕ³k%²äZÒ„4i"WI³Màj¼²9+V&rui˜OSÍýÙµz¦¡®ZêªÏ®Õ›0 uÕRW-uÕg×êMš4ݤH†4ÓD®% ÓPW-uÕê¼ _ꪥ®Zêªg×J„i ^Ùœ]+¦1ØÜŸ]«7aƒÍýÙµz¦¡®Zêª5”ÆPꪥ®ZêªÅ±€›H3D¦^kJ³DB®&¥aêª5y¾ÔUK]µÔUÏŠ•‰\CæÃ Ö(n°Fqƒ5ž]«7aŸ]«oÏ]+¹ÐXŸ]«ï$”O( –ÖRi-nDq+à)× I’ äÁ{Á!T[‹µõ3g Ï„°µ–Zk¥2Hf¼¢yÖ¬Þ„!èü(å Îú,Z½I'A2u\–A¨°ž+“÷Ö¥ÂZ*¬¥ÂZ*¬¥ÂZ*¬¥ÂZ›|Ÿa+¹† kmúRa-ÖRa=[V&ráòælY™I“¦IÓE†\Cš)²ºH’„\©×J¹JGÞ&8² ëVaÝ*¬[…õlY™È5¥™Ò0Æú¾oÅo֭º/oκHW*¬»+Ÿ®4:ëûîʧ+®4ºÎ֭ºUXwW*¬[…u«°n֭º?…õÛÏý)¬o2†ˆ4Sdɵ¤ iÒD®’f›Àõb}¦Áu«ÐºUhÝ*žu«7™rMi–Ï–©³e²¾oÖgÝêMx¶¨°n֭ªu«›È5äš&r-i–4!’r1Ö½Xß· «Ö­aÁË›,ôZ· ­[…Ö­BëV¡u«ÐºUhÝ*´nZ· ­[…Ö­BëV¡u«CºÀ":Ê”I $IIJDïÅu«¸îBßê­a,®»ØàwáfüfoÝê­»L1ŽZR[¸iÚ´ nZųiõ&ìcê«[}uo¥ ¾ºÕW·úêV_Ýê«›}5¿ØWo$Mšn"×fH3E–\KšI¹Ršq\¥®RW©«ÔÀUjà*5puÈ»Ý$IB.æÃ¾zHéÈ%Ía_½‰4M¤ËÕ¥"S®) óéhï7‘+¥a]it\Ý䙳2I’& óJc ½ß¤H˜ÆPCgË@;äÝÞó¸zæÃ¬7Á‘'nÇÒLäêÒ ¹¦4Sš%r1Ÿ‰›ï‡”\% ÓXJcáê&¿¸Æš_ì«ùÅ5Öüâk>W r-i˜ÆR\c½É&a\ È/.äûê!ï¾ziºÈkH3¥Y&r…4i"WI³Màb_=„ipõ. óacÍgà D¦‘J#qusÓàk~qõw_Ë/®±æ×Xó‹k¬‡tgH2E D‚ ä)}FÌ‚ý£ Ðñ£ H ö) 3ØÌ€[¬‡0„Í8Æš_cÍö…QÞAC»g­dSGA[mcÍÆ1ÖCB¦ÔSšÙr¡¬ža+F¡²ÚTV[Ã_ZÉgÛêM¦4ËD®Ðk1 ®±RÒ0 ®±fãk6®±fãk6®±Þ$I†\¡48o•š·JÍ[¥æ­ò™·z¦¡²úÌ[½ Ó¥¡²ÚTVŸy+Yeµ©¬6•Õ¦²zƬLäšÒLi–HÈÒ0 •Õ¦²zæ­@TV›ÊjSYm¥4ŠÕý™·z¦QJƒóV‡0 Î[¥æ­ò™·z¦¡ÊÊ/úV[Q°³žÙ*¾ŒNuÖ¦ÎÚØY›:kSgmì¬Mõ¬X½Iÿ‡,­ý ]¾³³vuÖÎÎz¬äIR@’Ù4¥ ¾ú™´a9èÞê™´ÑQ–Hèݤ‰\Òl¸ÔVÏ•‰\]š. ÃP[íj«gÜJ„i¨­žq+¦Ñymó¬[}'Ci v÷ϺÓP[}Ö­Þ„ipŒõÕEtd¦1t¶¨­vµÕ®¶ÚÕVϺ•È{lô&IÒ¥&rMi–‰\¸¶9[V&ú,JæÃ1ÖìcÍÎ1Ö|Ö­Þ„i,-‹m¬sŒ5;ÇX³sŒõ´Õ®¶ÚÕVŸu«÷;¬"y?8’gËʤHš4ÝD®!ÍfŠ,¹–4!’r¥4L#~& M*ŸT‰‡Šò³nÂ4Ri|ÆXßdM¹B.æ“x®ùÒ‘K¦ñi« ›¤‰t¹º4Cši"óù´U¹R¦QJã3Æ ÍVŸÂ " ÓØJãSYß„il¥ñc}法ÆÖÙòc­ºÿšÝCN?û¦_ø§Ê3mõ&]€G}öägØ dÊ$’$A ȃ·Òðá]YßD’& 3hÌàaa4üQüCBc £EyïY0ø*wüELC@ž©ãNi˜Â§©‚È•"%WI³AþÞùMÞ=p¨©5Õ1ØÛ‡šêPSjªcðš³de"WJ“ҔȖ ×5Ú¶Jm[¥¶­AÓ¶UjÛ*µmušØÐ}Õ¡¦ªm«›ÈUrm¸ï2Å&?ï2Å»ÌCMu,ÞsjªCMõl[‰0Å»ðgÛJ„ipÛêæÃm«Ô¶UjÛ*Ÿm+¹†4¸Ë¬m«Ô¶UjÛêôö¡ûª#øÈÈÞeº¯:t_õl[‰à.óHÞeÉ»ð#y—y$¯kF*Ÿä=÷‘¼Ë¬m«C˜F*ä]xm[¥¶­rÿo£”·­RÛV©m«C˜·­RÛV‡à¾ª¶­RÛV©m«CJÇÁ}Um[åõï î2ÝZºµ:6ïÂͻ̟ÉH¤™"Lcó.üEÐÛ‡šêPSjªc³·ÍÞ>UV§ÊêüboŸ_¼®y¶­@äšÒ,¹Bš©dÂe ÓTe}v­Þäýƒoê&ëäMÖÙx~6Þmž¼É:u“u6Þnž ·›gãíæ³`%² Á§ˆ ÖÐÁX:Càë!“@ fÐq~v…Â-«ä–UjË*µe•ø©¦-«CÐÅ8f•³JŽY€&6ÕTçàó"s°·O®°’Ò”^«ôZ[4Õ©¦:ÕT§šê™´r i˜WXo"MH“&r1®Z¥V­R«V©U«ÔªUjÕê¦Á¡€ÔªUjÕê4±©¦:ÕT§šêTSjªgÕ DMuª©N5Õ©¦:ÕT§šêÙ°2‘kIÃ4¸ÂzHJÃ|¸juÈ–‹ùpÕ*µj•Zµ:„ipÕê&EŸb\ H­Zr¥‰^‹gK²‰M5Õ©¦:ÕT§šêTSjªSMuª©N5Õ³j%Â4ÔT§šêä kjÕ*µj•ZµºI‘4i˜W­R«V©U«ÔªÕ!hªZµJ­Z¥V­n²IJÄiàl9«V›½}}±·¯/>/²¸Âz¹¦4ËD®&Mä*iJ<=£U«ÔªÕ!Lƒ+¬¹¸ÂzÓhìíϪ՛,iB$ôvG­A[;V&›„' [ëbk]j­‹­õ¬U ˆA ÈS’0¼{•Ö3e%Ò$aƒ!pÉ*¹d•\²J-Y%—¬’KV©%«ä’Uò›”KV‡ ž-•UMY%§¬n ÓYz)ž“Í}M6÷5yþŒY‰l¹p~-Þƒ_‹ÿ÷ˆ¥®ºÔU—ºªF­R£V‡0 .°¦F­R£V©Q«CJ®’Í]«V©U«C˜W­n’$hgZµJ­Z²ä ½VêÈ%Wɵ¥AW]êªK]u©«.uÕ¥®º¸ÀzÈaꪋ ¬‡¤‰\Ì'•XS«V‡0 ®Z¥V­R«V‡ ‹-uU­Z¥V­ ¹BGN¦¡®ºÔU—ºêRW]êªK]u©«.uÕ³ae"ÿñÛJC]u©«..°¦V­R«V©U«<«V"HC«V‡t‘!×fJƒC]U«V©U«›ÈU:ò6Á;TW uÕh¼Çꪡ®êªÁÖ›HÃ4¸ÀziR¦¡²\`M­Z¥V­R«V‡0 ®Z¥V­R«V©U«ÔªUjÕê‰'KWª¬<UYµhuHiˆè(S’%’$A ȃXðÖÔYë«É«ÔŽUrÇê½#ÀŒUjÆ*5c•œ±JÍX¥f¬’3V©«Œ¥tg5ÔVCm•[V7iÊ´Lä iÒD®’¦¤AY •ÕPY •ÕPY N°Â4TVCe58ÁšZµJ­Z¥V­aœµJÍZå±2 ž,œµ:e,TV5k•šµ:dɵtäa*«¡²*«¡²*«¡²*«¡²zF¬LäšÒLi˜'Xo" ÓPYÕ¬Õ!Lƒ³V©Y«Ô¬UjÖ*5k•šµ:„eŒ³V©Y«Cø¡Êj¨¬ž+¹¶4¨g©²š*«©²š*«©²š*«gÖJdɵ¤ iÒD®’f›ÀÅY«C˜g­R³V©Y«Ô¬UjÖ*5kuʘf­R³V‡¤\(«©²š*«©²š*«©²š*«©²š*«gÄÊD®% óáë!)óQ[MN°ÞÎZ¥f­R³V‡0ÎZ¥f­R³V©Y«Ô¬UjÖ*5k•šµJÍZ¥f­’QmÕ¦Õ!]@¦A šò„€$) I‰èBmMÕÖÄë $a l­ÉÖC&K$R@ž"ØðàU8euH“eU[V‡ ¹¦\Sš%r…4)M™È…²š*«©²š*«gÃÊD®! óQYMn°ÞD¦¡²ª]«Ô®Uj×*µk•ÚµJíZ¥v­R»V‡ Œi×*µkuÈ’ e5UVSe5UVSe5UVSe5UVSeõìZ‰t¹º4CdÊ5¥a>Ü`½‰\) Óà®Uj×*ÏŠ•I’ ži×*µk•ÚµºI‘L‘%×Ò‘C®Ô;LiJšm—Êj©¬–Êj©¬ž+¹¦4̇¬©]«Ô®Õ!Lƒ¬©]«C˜w­n" óá®Uj×*µk•ÚµJíZ‚z¦]«Ô®Uj×ê&›¤D¶^‹ù¨¬–Êj©¬ž]+‘!×fJÃ4TVKeµTVµk•Úµ:„ipƒ5µkuÓà®Õ!]æÃ]«Ô®Uj×*µk•Úµ:$dbœµ:}­ÔZ‹­U«V‡t™†€$SÄ@$R@ž"ØðàU‚p€5¹e•Ú²:„`€55e•š²JNY¥¦¬aÁÔX¹e•øWY[V‡ Ÿ•ÚªÖ¬’kVL™PVKeµTVKeµTVKeµTVKeµTVÏ •ÃPY-•ÕâkjÒ*5iuÓàkjÓ*µi•ÅÖÔ¦Õ!Lƒ›V©M«Ô¦UjÓ*µiu“$"Lƒ‡°Œ©¬–Êj©¬–Êj©¬–ÊêVYÝ*«›#¬‡t¹†4Cš)²äZÒ„HʕҔˆÓÀ¥6­AÓ¦UjÓ*µiu“"™:2ÓÐFÀVYÝ*«[eu«¬n•Õ­²ºUV·Êêõ_M¤ËÕ¥Ò0 •Õó_Ò0 •Õ­²zýÓà¦Õ![æÃM«Ô¦UnްææknްæÖFÀ³iõ&(«[euk#`k#`«¬n•Õ­²ºUV·ÊêVYÝ*«[eõ,X™È5¥™Ò0 •ÕÍÖÔ¦UjÓê&Ò0 nZ¥6­R›V‡0 nZå³iõí1$mZ¥6­R›V‡0 6֭ƪI«Ô¤Õ!è¬ø7y³³jÎêN0ø*?t)ÉÑ› I˜+ëæüê! Ùª³îd,ÉÔX¹buÀçmÞ fIR@’Òa¶LŸ«79e$Hº\C@¦)²ôRKš&Mä*i¶ \Ÿ®ú& c+ŒOW‘†iÜ]uÖ¾oøþ‘É ¹Bš)¹JšýÒÔ×ÝUI‚¤ÉÕM’dèÈS®©×Zr-9DR®”¦D¶\švš;Hë"Òti˜Æ½¿ 2¥aMi|öWÿñ¬;$M’¤¤)i6ÈgÏ Dš&ÒåêÒœ.ö&sˆHÃ|>]õ­ ¹Rš2‘kC3îæR$Mšn"׿ÝU™"K®¥#3¡4>û«or¥ñÊyüL®©|¦ÒøìY½É•Ïëµî=+’"™Ò\]Œd“„4¡#§\%WI³Aî®J"Mérui†4ÓD.æ³”ÆýUIi˜ÆR÷þ* 4¡4îÂJ" Ó¥qïY0P¡³%”Ï]ZIäb>wk}üH¿[+£8µ•@¦A ƒLyB@½ÿ1ÁQŠàì®HŠÜV Ì ˜Á=`Š!”Îb,¥:V:5ÓV»»*ÛÙf wUa9cU=d‰„\!MŠ”\%Í~“vO¯’HÓ¤é&r i¦‰\Kš0‘+¥IiJä}aSÏšÕwòY³z“ÖD¤AkŸÛª ÒLyɵä iÒD®’f›À¥ªÚTU›ªjSUmªª­+ N¯ÞD¦Ñ•ÆgzõM˜FWÅýY³úN†ÒJCUõY³‘‹gË`qoƒÅ½©ª>kVor¥\)M‰l¹PUÏš•ÓPUm“U¾M÷gÍêM˜ÏT“ÅýY³z¦1•Æä…ͳfõ&Lc±¸?kVoÂ4–ÒøÜV}¦±”ÆÒÙò¹­ú&a"óY¸É|“M²¡ Üd¾É&iÒ4iºÈkH3E–\KšI¹RæÃéÕ›ÀÅ5«ÒšUiͪ´fUZ³*­Y•Ö¬a\³*­Y’21 ŽYÕûÿèT­p·ùFÐä’L‘IIJ„!à&|ñK½Âgvõûwæ=aõC@žI Å IR¤t˜÷=÷:V¯q þT±þ…{Ì7‘fL™¦LKš0‘+¥)¹¶4hª]Mµ«©v5Õ³c%2äÒ¼9äýðÌM¤ iÒD®’†i4¥¡¦ú,YÈÅ“¥³‰u5ÕgÉ DG^r…ŽÒ¤HÉUÒ ·w5Õ®¦Ú?»«oÒMäb>ãîí r-i˜ÆPƒ×5Ï’Õ›0ÁÞþ,Y}'Si¨©v5Õ>•ÆTjª]Mµ«©>KVoÒ¤‰^«¤Ù&p©©v5ÕÎÝÕCÞÏÜDš!2åšÒ,‘+¤IiÊD® MàQ¢êÜ]­ÎÝÕz–¬@6Ɇùpwõt³®¦Ú¹Pû7‘«D¶^ Mõ,Y‰ ©v5Õ®¦ÚÕT»šjWSíjª]Mµ«©žÝ*¹JæÃÝÕêÜ]­ÎÝÕz–¬Þ„ipwõ¦¡ÂÚ¹»Zûõ,Y}ÿ^®)°HJ¦Ú$¬k[ýìn­’t‚! Ï$b‰A ÈS’ …ñ…Ê°é’ ‘) ‰@H’% £ ¡ ~¨TV‡ÊêPYýLXH2E–^jI")WJÃ$ÔU‡ºêèxx¦†ºêPWêªg¹ÊD®) ÓèJ£óÊæÙ²z¦ÑyeólY½ ÓPWêªc(¡4ÔU‡ºêPW}¶¬ÞdI&z­”¦Läz?è}“÷í„ÁÕÕCZ‘¦‹ ¹†4Sdɵ¤ iÒD®’†ip˪´euºØPW}¶¬¾'¿t¶è®êÐ]Õ¡»ªÏ–Õ›„\!WŠ”\% ºü6÷lî#xe3‚÷˜GðᙼÿlYȵ¤a¡4‚W6Ï–Õ›0ø™4peólY½ ÓH^ç-«M2¦ˆ\Ì'yÇ}|ºê›„4LãÓUߤäÚ&p}º*ˆ4M¤ËÅ|>]õM¦\S¦¡®:>««o’Ò0 •ÕQÊg+­4>[VoÂ4¶ÒØ:[¶òÙJcëlÙʇ•u¨²VÖ±•…*ëü‡lkS•u²²NUÖ©Ê:YY§*뙬 I’ äyÇ‚ž4UYgû!IgLy DAc§ÆT[j«Ï€ÕwÒ•ƒÚêT[j«Ÿ+™øEPY*«SeõÌV™ÈUÒ0•Õ9XÝçàmø©²:UVçà•ÍY³a*«ÏœÕ›0ÁêþÌY½ ÓJcèd™¬îS7VŸ9+ ér yHÃ4&«ûÔÕ3g%’r¥4%Í6k)ŸÅ›îsññ™©²zýÓXJcñÒf.Þ†Ÿ*«ç¿äb>Ki,¥±xi3—Ò¥:[‚e왳‘‹ù¨¬N•Õ©²:UV§ÊêTY=ãU&rmiPV§ÊêTY*«gÎJdÈ5¤a©4’ÏMi¨´>{VoÂ4šÒ`m=SUò”Ž‹g¾ƒÓ«‡4IºÈdŠˆA ÈSˆ¡³½ã'ÕY­ —4ό՛ ‘) É ½üJÀÙ±) ÙøRO|¨“ƒë«‡t“ ÒL¹–4KšA] ÕÕP] ÕÕP]=ƒV"¨«¡ºª«±XÞŸE«7™Ò,¹x¦,¥±”ÆâÅÍÙ¯2Ku5toõY´z¦¡{«,ï,ïÏ¢Õ›,¹B®&¥)¹p'>TWCu5’wâÏ~Õ»öjѪBu5Rù$ï»?‹V Ò0T\´:å]‹V¥E«z­¾Yu5TWCuõY´‘kʵLäâ?ª«¡ºÅ¾£”Oáo#Vp~õ&õýïÖÒDN Ò i¦‰ÞÏÒû ¹R¦ñY´z¿úÖûÙoͳhõ&mˆHsêØ›¼ÿ`=‹Vo2E–\KG‘Ô;LiJGÞ&pq~õ6©irui˜Æ§®¾É”fJÃ4>uD¦Ñ”Ƨ°¾ Óø,ZHƒ_ТUiѪžE«÷qN;{™ÆÝYt˜Ð'µaÂùv—V:Ni}dÈ3$AoOL¯Þ@’)Ipƒß²ÐŠÕ!  È3ô:SÐ+3 ”V¬AoÏÉÞžÚ»4cuª{r}õ.2äÒL‘%×’†ñp~õ&r•4Lƒó«•œ_=„ipѪ´hui˜­J‹V¥E«Ò¢UiÑê”1-Z•­J‹V•É'š3y§9?eõû7ùg# êNå$I†\Ó$I–4KšI¹RšÙrmhêNãM˜Æg~õMº4Lã3¿ú&̧”F)Ï¢Õ›0RÅ;ñ©²ªE«Ò¢UiÑê<ÿž›¿¨E«C†\S®)Í’&LäJiÊD.ü®æÙ¯2)’&M7‘kH3¤™"K®%Mˆ¤\)M‰8 \ÚhѪ´hUZ´*-Z‚ßÕ¬ÆßNÔ¢Õ!K®%WHÒ¤HÉUÒàw5‹ó«7‘¦‰t¹º4̇ó«7‘‹ùt¥ÁùÕCR¦ÁE«Ò¢ÕM á¢UiѪ´hUZ´*-Z•­Y2ñdá Õ!©ã”€$¨­ŒOµõLW‰tI^hÊ#’$A ȃlñ¿«±rÂê’0‚Å8aUš°*NX•&¬a‹!p ¸auÀÖ焲ZüMµÔTKMõŒV™È5¥™Ò,‘+¤I‘’ËŸ)£àöêM¤a>\³º‰\̇sV¥9«ÒœÕ!LƒsV¥9«›$ ÓàœUiΪªØÄªø›šš³:¤Ë5äÒLi–‰\!MšÈUÒl¸ÔTKMµ¸½zH—‹ùpÎê¦ÁíÕÒœUiΪ4guÓàœÕMŠùhΪ4guºÙVSÕœUiÎê)šêVSÝjª[Mu«©n5Õ­¦ºÕT·šê™³ajª[Mus{µ4gUš³:„ip{µ4guÓàœUiΪ4gUš³ª­¦º9guÓàœÕM6Éaœ³:déý„‰ŽœÒ”‰\hªg¼Êd“4iš4LCMu«©ž9+¦¡ªzæ¬D˜ç¬JsV¥9«ÒœUiΪ4gUš³*ÍY•æ¬JsV‡ ­í©48gUš³:$ J@¯Äs•ÖÍÒzFªä’0v֭κÕY¹bUZ±:„)`xµ4bUè%±ºŒ%G¬Š#VHÁ ‚ÏDìà#Îψ՛”€Lx$b'Ÿ÷~v¬Þ¤ÉÕåêÒ i¦‰\K†‘ #ùÈȯ2‘kKÃ|ŠÐlîYÝD¦QJƒƒV‡0 ZÝDæÃA«›$ óá ÕMðZ›Dœù*¹x¶l>±7Ù›ÐìÍGFöæ"{óš½ùÈÈÞJcóš½ùÍ´z‘ý´"‘¦IÓMäÒL¹–4a"WJ“Ò¼Ÿg>äý¼÷þ Z½HS ÐܤHºÓhx€æ©#/¹Bš4‘«¤a Ï{﯎ç½o" Óèxœè&Ò0 Zm ZÂ48¾º¿8¾º¿8¾º¿8¾º¿8¾º¿8¾º¿ØV÷ÇW·­¶­n²IÞÏ{ßD¦1ð¼÷Mä ‘”+¥)‘-׆fâé÷CÚ‘¦KÃ4¦Ò˜xú}±­îÏ 4!Ó˜Jcâ‰ïý´a O¿ïÏ ÓXJƒ+‡0…Ç›1ÐÆú‘:L‰èÍlHõì& I'òL)–H¤€<% SÀQÙYaÉ ¿Â’!¤ÎŽd,,¬7 }% ÏÆq å}q~õ&M ’.2äÒL‘%×’†Y°®ÞD¦Áºzh¸¿º¿¸¿º¿XW÷ëê!Lƒû«û3jÂ4¶ÒØ:W¶òa]ÝŸQ+¹FS]mª«gÔJi4ÕÕ¦ºÚTW›êjS]mª«Muµ©®ž +¹¶4¨«Muµ5–÷Ö”G­¶F­¶F­aµÚµÚµÚµÚµÚµ:uU£V[£V‡ Ž5ÕÕ¦ºÚTW›êjS]mª«Muµqõ&Ò¤HÉUÒ0î¯Þ¤H˜ÏÀ­æ›ÉfšÈµ¤ ¹Rš”¦D¶\šÉòþŒZHó¾Õ|ÈûæêM¤a>ª«7W iÒD®’f›ÀµxqÓnÅÒDº\Ìg)…Ghn" ÓXJã>kA˜G­¶F­¶F­¶F­ö3jõùmZÂ48°5jµ5juÈ0‘)d*dÃ&nÄÒDº€$Cd HÂòýÍ $ÑgPò 88dµ9dµ9dµ5dµ9duÀÇ@$‚$d*™¶>¥ ÍV‰ÜD®.Í0‘kJ³Lä iÒD®’†ùl¦Ñ¿ðÍM¤i"]®.Í™rMi–4a"WJó~,b?³Vo‚³åŒXu‘$iÒ4iºÈkH3E–\KšI¹RæÓðÈMàêʧ+®4:¢ÙϬˆ\SæÓ•FÇC4û™µz¦Ñ•†n­>³VßÉPCgË`ëêª]]õ™µz“)×”kI&r¥4e"×–]µ««vuÕ®®zf­D†\C¦1•ÆÄC4û™µz¦1ÙÜŸY«7aSi¨«vNlÍZmÍZÝd“ ‘©×b>êª]]µ««žY+‘’«¤AWíꪬ‡4iº‰\Cš÷ï­Þd“,i˜XI½óá¬ÕÖ¬ÕÖ¬ÕÖ¬ÕÖ¬Õ!]@†ÁU«CPغ:«V­¶V­I¹J@tw~ó«¶vÖÖÎÚÚU[;kkgmÕšÕ!! I H °¾º;×WwWií›)l^Òœ)+‘ñ>É7/i>[Vo ÏÖ®Âú¬Y½I°©¯õÕ¡¾:ÔW‡úêP_ê«C}u¨¯žI+‘+¤IiÊD.äsv¬L‚¤IÃ4šÒh¼ºy¦­Þ„ip†uΰîgÚêM˜†úê3mõ&Nƒg‹úêP_ê«Ï´Õ› ¹†\Sše"WH“&r•4% úêP_ê«gÚJ¤ËÕ¥aCi ¶÷gÚêM˜Æ`{¦­Þ„i¨¯õÕ1•§­ir¡¡ õÕ¡¾:ÔW‡úêP_ê«gÚJ$åJiJ§¾:~YskÚjkÚê. Óà ëœaÝC}up†u?ÓV Ò0 ΰîÁÖC˜†úêP_œa݃3¬7‘kèÈÓDïgI&z­”&¥)‘-úêP_꫃3¬û™¶z¦¡Âz¦­D˜† ëPaœa݃3¬{p†u?ÓV pq†õ¦ÁÖ:¸ÂºWX÷à ë!è­ƒ½õ¶zfÁâz6«t\½u¨·öÖ¡Þ:Ô[ÇF}ê­gÁJÄ@$R@ž"ØoÏ´z}ˆ ž=«7é’ }ö¬dZ"¡w:pÊU2¡ MÕÕ©º:UW§êêT]ª«gÇÊD®%Í’†a¨®ÎÆ›ñSuuª®NÕÕ³m%Â4:/n¦êêìJ£ë\éʧ+®4ºN–®4TW§êêìJ£+ ÕÕ©º:UWŸq+i†ÈÔkMi–HÈÒ¤4Lc°¼O.±î©º:UW'—Xé&r i˜—X÷äëž\bÝϸ՛0 .±‚:6UW§êêäë!¨cSuuª®NÕÕ©º:UW/²Lä iBš)¹˜êê –÷¼ÿŒ[½ Ó^ÜÌP>¡4TWŸq«7a¡4‚7ϸˆ\<[Bù¨®>ãV ru¹PW§êê3nõ&K®%Wˆ¤\)MI³MàR]ª«³XÞ§ú꙲2‘kJ3¥a*¬Ï¸Õ›0RÅ‹›3n²•ÆÖÙ²•Jë3nõ&ÌG­u²µNµÖ¹këTm¬­“µuª¶®/|ˆÚºT[këÙ«g H²DB@’)I>çÆ+šÏ ÕtyÁG ôÊ(«Keõ™´z“’kË…z¶TV—ÊêRY=£V"C®!Íᦳ¬.•Õ¥²º:«û꼿TV—Êê¼´9SV&rui˜ÏPƒÕý·z¦1”ÆÐÙ2XÆ–ÊêRY]œ ØKeu©¬.•Õ¥²ºTV—Ê꙲2‘kI³¤ ‘”‹ùL¥1YÝ×äø3n%Â4/mÖR>Ki,V÷gÜêM˜ÆR*«gÊJ.¦±t¶¨¬.•ÕgÜ $Iš\(«KeõŒ[‰L¹¦4K¦¡²ºTV—ʪƭAY=SV&EÒ¤a©4’Õý·z¦‘J#yióŒ[½Éû/PïgÜêMJÄiðl)üïýŒ[I—fè8ï¿x~È”f™ÈÒ„4)Rr•4d+Íg¾Ï¸•H—«KÃ|¶ÒØ|Žæ·z¦±•Æg‰õM˜ÆV?ãVßÈ3nõ&ï¿H ÍýÙ¶z“% :nÊT’¼ÿüû>ÿÔ¿>dk=V"]@’A0äI’ äÁן Ǭ6Ǭ¶Æ¬¶Æ¬6Ǭn$Ì 3ƒ®S£³Œ…ʪæ¬6ç¬Ø2¡«†ºj¨«†ºj¨«ž +¹¦4Sš%r1žÁæƒÍ]³V‡0©4&¯l´lµŸe«ïßbŸe«7ÒL¹V'á·ógÙêMRš÷Ÿø>¤D¶\G^øƒç‡´."Mr i¦4LcážÒ¤‰\%Í6ëÓUA¤a?ÿ¾Ÿe«7a¡4?ËVoCD¦J#ØÎ"°Î³Ÿe+$iru“"ÒL¹–4KšI¹R¦‘?“ºêY¶As–­Þ¤K3LäšÒ,¹Bš4Ù$%MéÈLC7VC7Vƒc;8p¹XÆ6o3ÇæmæØ¼ º³›·™có6|lÞfŽÍÛ̱yþìX™l’&M“¦‹ ¹†4Sdɵ¤ ‘”+¥)iœnÃkÙj?ËVoÒ ÃàVÀ!S®%:p”€‹÷‚OH­5ÙZÏX•€KipØjkØjkØjkØjkØjkØêÕE¤a>¶ºI’”ŽÌ4¸°S÷UÏŒ•I’ti†‰\Sš)Í ¹B¦J#xþ [pØjkØj?ÃVoÂ4¸ÂºŸa«7a©4RgK²‹=ÃVoÂ!8pºXê¾jª«&çAWMuÕ3l%2äÒLi–‰\ÌG]5‹Фºê™±2‹+¬7‘†i¨«æV>[ipØjkØê¦Áa«­a«­a«­a«­a«­a«]ꪥ®Zꪶº‰\C®!ÍYr-iB$åJiJdË…®z†­D˜Fcs¯Æh4lµ5luÈ”†ipØjkØê¦Áa«­a«­a«­a«­a«­a«CºÀ‘‰a¨µž+fÁÖZj­¥ÖZl­¥Öz&¬Dš€$`È3 ¤` ˜a= ä)I˜Þ笶æ¬6笶æ¬A#+5V ZmZ2…œÒ”€LhhgÄÊ$Hš4Mš.2äb:ê«Å!Ö›HÃ0ÔW‹C¬‡0 õUm[íâëÖ¼ÕÖ¼ÕÖ¼ÕÖ¼ÕÖ¼ÕÖ¼Õ!«‹ÈÅ“…óV‡ •új©¯jÞj—új©¯žy+‘.W—fH3Mäb>Éö^ê«¥¾zƬLäÚÒ ÏkÞjkÞê&Ò0 Î[mÍ[Â48oµ5oušæ­¶æ­¶æ­aS_-õÕ3fe"šúj©¯–új©¯–új©¯–úê™·)¹Jä³9Äz“"iÒt¹†4ÓD®%M˜È•Ò ¡iÞjkÞjkÞjoõÕ­¾ªy«Cº\C®!Í”f™ÈÒ¤‰\%Í6K}u«¯n±Òåb>*¬›C¬7‘†i¨±nÎ[Â|8ou¹ÐÖ4oµ5oµ5ouH×q†€LŒ‡µu«¶nÖÖÍÚºU[7këY­€ïU­u«µn¶Ö­Öz&¬DôJS†0gX7'­6'­¶&­A,øß¹hµ¹hµ¹hµµhµ¹hun»?‹Vob ‚Ûî{ñ©ˆýéªo‚®ºÕU·ºê6÷­®ºÕU·ºêVWÝêª[]õ,Y™ÈÒ¤‰\% óQWÝœb½‰4LƒS¬{sŠõ¦Á)Ö½9ÅzÈê$LƒS¬{sŠõÒqÐU·ºê™²2I’&M“¦‹ ¹†4S„i¨«žq+‘”+¥a>œb½ \œbÝϸˆ\]¦±•§X÷æëÞœb=„íL]usŠuoN±ÞD®Wë__誒$M®.W—fH3MäZÒ„‰\)M™Èµ¥a>˜b½I"Ò0¦40Åz¦Ñ”¦XoÂ|šÒ@W½ óiJ£) tÕ›4¹x¶ «ÞdˆLyJ³DB®†i «~ˆ4š¡4ÐUoÂ|Æ»¹ˆ\C¦1”¦X?D¦)Ö‘†i ±~4SiL¥ñ.­°HÆÔÉ‚Öz“%’¤H HÂ(øá“FÐäS@$$aïÖ€$”B0L±Þ„1c@c½ÉÔuž(¬7I½Tl™6Lè«"Mérui˜E* ôÕ›,†¾zÆ“ïöþ!r1ŸR¥4ê}us¦QJ£ÞW7" Ó@_ý$a¥4ÐWoR"[¯Å³}õ&Í$Iº4ÃD®) ÓØJc¿ïÄß$Mä*i˜Ï~·÷þõ¬[HÓDº\]š!2åšÒ,iÐÇšúê³nõ&e"ÚÙ²2I’& ZS_mê«M}µ©¯6õÕ¦¾zÖ­DR®”¦¤qûûSòùŒ±¾I3‘«K3LäšÒLi–HÈÒ¼~[ó&è«­ëlélïM}µ©¯6õU®[}ˆ\C®i"×’&LäJiRšÙr¡¯6õÕ¦¾ÚæûNüM˜† +×­nÂ4¦Ò˜lï\·º Ó˜JcêlQeåºÕE–Ζ¥4X[›jkcmå¶ÕM¦L! I”€ÖÔW›ú*G­nr…\)Rr•4è«M}µ©¯6õÕ¦¾ÚÔW›úêY³2‘kµ÷¿Å>Ï«›¤ŽÌ|JiÔϤ¾z®D˜ÆæÕÍY¸a[gËV>ê«M}• W7aê«M}õìY™¼ßaW_íê«]}µ«¯võÕ®¾ÚÕW»úêY¸ ¹Bš”¦LäB>\¸ú$iÒ0¦4¯n¸pu¦Ñx¶páê&è«\¸ú¹J.ôÕ®û«½³Ï÷ÎöÞuµëþjïlï½³½÷λñgÏÊD®†ùt¶÷ÞÙÞ¹pu¦1”ÆàÝx.\Ý„i ^ÝôÁ>ÿ,\ÈÅ|†ÒJcðêæìYM¹x¶Lö±®¾ÚÕW»újW_íê«]}µ«¯võÕ®¾z®DR®”†ùL¶÷®¾Ê…«›0¥4ïÆŸ=+¹¦4Ìg)ÅöÎ…«›0¥4¯nÎÂH(ÐÙÊG½µ³·ràê&S&‘IIŠ@ŸŠ+ÿH”÷®ÞÚÙ[Ïh•€šþþk+7a×6£+Ÿ®4ÔV¹ou¦Ñ•†ÚêY³2‘‹g‹ÚêP[j«Cmu¨­µÕ¡¶zö­D¦\Sš% ÓP[j«c°»sßê&h«gÍʤHš4Lc*Ékî[Ý„iL¥1ymÃ}«›0 µÕ1•Æü™4x¶¨­µÕ¡¶Ê}«› ¹†\Sše"WHÒ0 µÕ¡¶:ÔV¹oõ!Ò0`wç¾ÕM˜O(`wç¾ÕM˜F(àµÍY³2‘ m ·-8nuž*쬃u¨³rÚê&’,‘$EJ@¦‹:ëµé’ ‚) @H’ú„˜Aáj†_ž­ÔUÇV([lf ª:TUÇf[çÆVSSjªCMu¨©5Õ©¦:ÕT§šêTS=3V&rMi¦4K$ä iR¤ä*i˜FS×5œ¶º ÓPSå´ÕM˜FSjªgÈÊD®Ô‘Sï§D¶ŽŒ§FfgoŸjªSMõL[‰ ¹†4S¦ÑÙTgW>½ÓV7)i˜FWƒ×5œ¶º Óì휶º ~lsÚêCäbjªSMu¥1”†šêTSjªSMuª©N5Õ©¦:ÕTÏ•‰\Kš% ÓPS“wá9mu§¦z¦­D˜Æâu §­nÂ4–Ζ¥|–ÒXJcélYJCMuª©rÚê&LCMuª©N5Õ©¦:ÕTÏ´•È”kJ³¤ ¹R¦¡¦:ƒwáÏ•É&iÒ0ŸTÉÞÎi«›0TÉëN[Ý„i¤Î–T>j¬üF.…SŠ‚uª±ž+“M2¥Y"! Iès*yð^ø!Këܸ¦ªä’0VVŽYÝ„lf°y9sƬDôYãäx­YÙÆ–Ú*æ¬n0ä™:î2á›cW]êªK]u©«.uÕ¥®ºÔU—ºêµérui†4LC]u5åÓ”†º*—­nÂ4šÒh¼²á²ÕEºÒè:WºòQWå²Õ‡ÈÅ4îÿ"Ñ‘C¦¡®ºÔU—ºêRW]êªgÇÊD®.Í0‘kJ3¥aCi Þƒç²ÕM˜Æà•ÍY¶™Jc²¹sÙê&Lcêl™Êg*©4¦Î–É.¶ÔU—º*—­nRrm¹ÐΖºêRW]êªgÙJdÈ5¤™Ò,¹˜ºêZlîkñüÙ±2+xe³Bù„Ò6w.[Ý„i„Ò^Ùœe+¦:[Bù¨«.uU.[]D]u©«.uÕ³ce"×fH3E–\KšI¹R¦‘lî+yþ,[‰0bs_¥|Ji¨¯®â•ͳl"WHÃ4Ji”ΖR>üP§ÊV8,­K¥u±´®­ TZ×~ý¥‘ ‘ÐqKDo¥õìW‰4I:ÁgH±D‚ ä)I˜>ã¦PTW±fõ2 ™¦^jJ³¤ñ ¹Rš2‘ mõ¬X™I“†ñtv÷P[å²ÕM˜FW÷á9mu¦Ñyms¦­Dœº;·­nÂ4†Ò¼¶á¶Õ‡Èųeœÿ"I’†ù¨­†Új¨­†Új¨­†ÚêÙ¶érui†4ÓD.æ3•ÆdwÉûðgÉÊD®- óYJc±»ÇR>Ki,¥¡¶z¶­äbKg‹Új¨­†Új,壶j«¡¶z–¬LäêÒti˜†Új¨­†Új¨­†ÚêÙ¶)¹Jæ“J#ÙÝ#•O*TÉk›gÛ D.ô³H¥‘J#u¶¨­†ÚjäϤÁ³Em5ÔVCmõl[‰ ¹†4S¦¡¶j«¡¶Êm«›”4Û.Vn[Ý„ilvwn[Ý„il¥±yms¶­D˜o´rÚê& cëdQiM•VN[Ý'˲’kH¢£H±D‚ ä)}BŒ¡áC¥ÒØÜ“­•ƒV7a4^ÓpÏê&! I”€<ˆŸOWj«´ú™ÁÔQÐUÏ~•4ŒE]5ÕUS]5ÕUS]5ÕUs°¹§ºjª«¦ºjª«¦ºjª«ž!+¹B¦1”Æà• ·­nÂ4&›;·­nÂ4¦ÒPWÍ©4¦Ò˜:[ÔUS]5ÕU¹mu“’«äBW=KV&IÒ¤iÒ0 uÕ\¼ŸêªÜ¶úi˜Æbsç¶ÕM˜Ïú™4Ðܹmu¦J#xeÃm«yÿõ þfbb‡õ&Kí,ÕUS]•ÛV" ºXª«¦ºêÙ¶érui†4ÓD®% ÓPWMuÕ³de"×–†ù”Ò(6wn[Ý„i”Ò(^Ùœm+tUn[Ý„ù”ÒPWMuUn[}^K]õ,Y™ìÿ“­wË’äÊ‘e§rGÐ+6€ýšÿÄ.an½NšHÿUJ)<"•^¤†•3…$” eR¤tUÊL‘¥«¥ ÛÐXÝ«ûrËÓmõ#—d(&ºJeÊDWS™©ÌÐÑÖÑÁdÅ?·éµz›àd=š¬G“õp²MÖ£Éz8Y&k+¬DŽ€"¬¿#Öx¸Yé³zH”€n–€"[@vØí”YýGR-h®ÍÕ“ê!ÙƒÖêÑZ=Z«Z=d)³Môµø®On÷£µz´VÖêÑZ=Z«§øž^«‡° ­ÕöZ‰°âÏ6[=„m·;ÍVÿ‘©6¦Ú˜z³Lµ¡µz´Vi¶zÛÐZ=Z«Gk•f«Qæˆ\}-¬Õ£µz´VÖêÑZ=Z«gq»ŸÅçð4[ýˆ®–2ÛDWü[åR?Kmlµ±ù³Ík¶õüo/é6@”é5ö%½VAt5õÊKWK¯¼•9z£«‹«ólwC2”Ê„HêŠýüÖê—L]MeØÆQ?ë—eÜÆÅÕU?Wm\µñ3[} Û¸jãêÝrÕÏo­~ ß-WýüÖê—ôZQmÜßZ¹$C™0ÑU*S&ºšÊ,]me¶2Gäêê"3ÔÆP?ë—`»Ólõ#Ê”ÈÔÕTf)³Mtu”Á@Ã?†îoµþóHâþT_|U̵ËÙz5[/gëål½š­—³õ¿ÿttsÑj½‰í~“ái³zH (Â’5h³Âfõ€- ›Cppƒ¿dÅ1v5V¯Æ*uVI]}\N?¢ÌYúZK™-rtu”ÁX½«Wcõj¬^Õ;9Ýïäƒø×l¢«© û™jCcõNõ3ÕÆü?ÚÀ6T[=„m,½[§ûÕX¥Úê!ìGcõþÆê¿»þÕ/é6@tutuMpõ« Ê ‘ÐU(“"¥«R†mlµñÓ°~ÉV†müÔV_Â~ŽÚ8jã§¶ú¶qÔÆ£¶ªsŸ?¢ÿÉa†mN÷Wmõ%K¯ƒ±z5Vûû¹ºâ<ÓX½ÏXýü¾ž± ʤ‰®J™i¢«¥ û¹jãѰâêè•ŸÚŠD™!º eR™ït¯ÚêK¾cu¼j+]meŽ^ç;V›\d¦ûC.ÉPf("©«T¦DØÆÀ6M–Èw¬©­še® ®¨¶R[=DW¡Lšèª”)e¦ÈÒÕÐË Ùj|ÿÏ»ñÇÍ:¤µÒZ5 ]é…S‘1Y"[@‘C ßÒÅ ~‡õ]îàÅ÷9|ƒоK¡ËjÐe5ä²rY º¬ —a ü¥Þ«MÂDWIP:ªE2•Y&ºÚÊ]]e.2ܪMX·j“I]¥2lc© hXÂ~hµ²Z5a?ÔZ i­†´VMصVCZ«‡l¶AMÀÖªÉÔë¬Qf‹]e.2аþÈ&Ê„‰®R™2ÑÕT†ýµ ë(Ã6¨µz2Wm\|(bHk5¤µÒZ=ä”^™mPÐdéj›èkeŽ2ßEŒA ëC”"¡«P&EJW¥ÌTf™èj+sLtu‘¡Öê!‡d(Ã6¨µÒZ i­†´VM°UdzUÿý à§µÙ)¢«#òßV%Á+?[d˜\’P&MtUÊL]-4Üò¯ÖêKŽ®Ž2$ù“Í«µú’!‚å.­ÕÖjHk5¤µ¯Öêÿ=ƒ¯ÖêK6°Ö-CV«&˜kX僛UF«&Aü*ÿ£QbŠ,EX'ë ~uÈe5ÉÉÚ"+‘P$ J@7K@‘Mpô*xc࿧Ī ¦ÙÐP•ÅjÐbõ•Èßÿíývê—,‘­«­ÌQæšàê·S¿d˜è*”I]•2¥ Ûøé¬@”aPgÕ«}h§Jg5¤³ÒY=d“¤^¹tÅw‹vjË«Lôµ¶2[™#ru…:´Sõ«Q†mh§êW›”2lC;uP¿Ú„mPg5¤³ÒY=ä{%ÕÎjHg5¤³ÒY5Á íÔÐN•ΪÉÒÕÒÕ9º:Ê`§†vjh§†vjh§†vjh§¶¼ÊDWS™© Û ~õ!ʰ ꬆtV£uV"lƒ:«!ÕÎjHg5¤³jòý8ÄC. ß-eÎçðyø”9cõKð¾ÕU&‹d(Ã~®Ú¸| ÿÚ¬¾„mP¼úe–ÈÖÕV†o ꬆtV£4V¥³ÒY 鬚¤^cU:«&SWSWK™ïç¼›l‘ïç¼¢Ìøœ÷C”"¡«P&•)]Me–‰®¶2lc¨O½Wgõ/ µœî¯ÎêKØF¨À§Þ›”ÈÔךzå¥Ì6Ñ+e® ®ŸzoÂ6ÿŠf“P&”aÉm*ÕOâ_X¯Î D¶‘j#ñoŒWgõ/)µQøzÇ«³ú¶Qüœ÷«³ú¶Qj£øÙ™–W™èŠï–â§EªøÙ*>e®âSøš|Ê\z¶Z¯6 ‘Ô>õ^ÿ kÿ'¶1ù©÷šêgâ_X}ˆ®Ž2×W‹ŸyuV_2DBW|·,µ±ÔÆâ¿Ð:+¶ÁÑZ­¯Í D/|qµ9ÐêY­Š„H (RJL‘E°ts®np¡ÕZG,÷×bõ%ìà°ƒŸÄêKXÂa ‡?Óü$V_ ßÒÑ«`°ò}yÕ‚Öj[«LI”Ž0Vëò4uù‘‘ºœîu9Ýëò##uÕÄuüÍüãtmV Ê„2i¢«Rfšèj)³Mtu”9Ê`ºO=Y•ÏjÈg5ä³zÈ&I‘Ò×*½òTf™è•·2ÇDWxßö*“M2”ʰ ºW¢L‰°à6í³aôY ù¬†|VC>«!ŸU|$b&?!ŸÕÏê!º*½r)Ã6è^}ˆ®¶ÈÑÕQ™t¯>D¶A÷êC”IeØÝ«M¦2lƒ>«!ŸU¶AŸÕÏjÈg5ä³òY ù¬š`¬Êg5ä³jÂ6&?1'?1'?2"ŸÕCtutuMpE÷j“a¢«P†ýнڤtUʰ ºW¢ Û ÏjÈgÕ„ýÐg5ä³òY ù¬†|VC>«&øˆ„|VC>«!ŸU“- >z«!ŸU̳¶WéŠmÐðCR"S_‹ýh¬nÕ­±Ú>+‘«+ŒÕ­±º5V·ÆêÖXm{•‰®J¶A÷êÏjÈg5ä³jrtÅ~è³òY ù¬†|VC>«‡\Ì3ù¬†|VM¦®–‰¾ß-›klk¬nÕ¶W™\’¡ÌP†müÆê¿KCcuk¬ÊgõeØÝ«C>«!ŸU·é.ŸÕÏjÈg5ä³jÂ÷}VM°Yå³òY ù¬šl‚# ¼WÎ~ÉÍz¸Y6ëÑf=ܬ‡ÚÕ&%b ²D¶€"‡€%p»cÛµ³J€øy¦•Uº)EØöª$VC«A‰Õ æþ)-‰U¬³£­z´U¶êÑV=Úª-²R†Mh«mÕ6W™èê*Ãrè^’Y É¬š° ºW‡lVMØmVQ†ýÐf5d³²Y Ù¬†lVãh« †lVC6«‡l’)}-ö£­z´U¶jÛ¬Dø¿mÕ£­z´U¶ê¡{µI˜è*•at¯Ù¬Æk³úçŸÛ¯ÍêKvˆè•±Åd³²Y¶Y‰`«mÕ£­*›ÕCtUºš&ºZÊl]eضêÑV=ÚªG[õü¶ê¿u~îÕ/I‘ÒU)3E–®–¾öC÷ê8t¯ŽC÷êxmV ‡„ï–£6~[õK°U_›Õ—°Ã? ðü¶ê—,‘­ïg+sD®¾ÖEæ·U¿[õh«mÕ£­z´UÝ«M¦‰®–2K™-rtŵz¹Ü/Ý«ãÒ½Údˆ„®B™Tëìr²^ªWÇ+³ú’- —9&úþ0ZñéËÑz5Z/Gëåh½­—£µU"K@–ÀÉzé]2X ü£çj²þ÷ŸXB°¬š°…` TX5À»tX5ÙG`‘ð/=þ"Êp5U¯¦êÕT½šªWSõjª^MÕ«©Ú+‘­«­ÌQŸ¹ÉÏÏÜâçgä²rY ¹¬š° º¬Æ¥xuÈe5ä²rY ¹¬†\VC.«!—U ÷«©z5Uå²rY=DW©W®ï ”˪ÉÔÕ2Ñ×ÚÊleŽÿ~¡©z5U/Å«Q†mhª^ŠW›”2lƒâÕq)^mÂ6(^—âÕñº¬@pEñ긯6ÁT½z¬z帛Ãýê±êÕcÕ»9Üïæp¿šªí²9º:Êð﫚ªWSõjªÞ£6??s·¹ÊDWSösÔÆáp]V_Â6ÎÿÑ~°i—•Û¸z·\õ£©zå¸ò\MÕ«©z5U¯üWSõjª^MÕË©œªQfˆ„®B™)]•2S™e¢«­Ì1ÑÕEf¨¡6~°‰×eõ%lƒâÕø£xµÉÐÑÔÑÐËE.Hà—XkM†ˆŽB‘)E¦ÈPdÝ ÜÄ/U¤« B@7zY–B}UP_ÒW…ôUA}UH_Õä,’«ßÓEÉ8UÂŒ³&ù™¼ÑUéjšèj)³”Ù"GW,‡S5þ¨]}ˆ2lƒSõ!ʤ2lƒS5¤² ©¬B*«Ê*¤² ©¬B*«Ê*þ8U›ŒÑUè*u•Ê”ÈÔÕTf)³Mtu”¹&¸âTmÂ66†{“P†mlµ±1Ü¢ Û Ê*¤² ©¬B*«‡¶AE@HeÕd$I˜èŠýpª>äLe–Éùþ]‹OU¢Ì¹ººÈü¦ê—ŒQ&DRW©L)3Mtµ”aWmüTV_Â6.ÛxƯÊêK†È÷üC.IŠ”®J¯€ìå`¹/:X›ìàà1ü:\ò’YeVP„ $ʬB2« Ì*$³j‚'Í´Y…lV± amÀ5¦µº´V>+ažµ¾Êd‘ e†2!’ºJeJ™÷3·ÓJdëj+s”¹&¸| /³UÈl2[5I]•2¥ Û ) d¶j‚1¶õ`Uf«&lCV·¬îàcx™­¢«ÔUÕQÏ?0ÿ—l’©Ì2ÑÕVf+sD®®.2¿±ú%#D” ‘ÔU*Ã~RmüÌV_ÒóìKØFªŸÙêK®^cUf«&c[cuk¬nÕ­±º5V÷o¬þûþÆê—°ßXý’-rtu”a?? +È!Ê„‰®R™2Ñ~´ÙÔ°†ÌV!³UÈl2[…ÌV!³U´Ùê’ðÝB[@ÈlÕklk¬nÕ­±º5V·Æj{¬Ltu”9Ê`¬nÕ­±Úf+‘ÐU(Ã6¨a}ˆ2ìGsUf«&ì‡f«Ù*d¶ ™­Bf«ÙªIèˆoŠ­šL‘E°tsô…1ZùÖÒhÝ­›£uk´¶½J¤a —%ÐÁ´YmVÐÍ÷wý•Y…dVA™UƒÐM ,’Ò‘ÈÒËl}{x ß2«E‚å~ô`õ nù3¸ÜÏàr?z°z—û\îgð1|;¬Ltµ”YÊl‘£+ö3Ô-¬Y$C$tʤ2e¢«©Ì2Ñß-Áå~‚Ÿ÷–Ù*d¶Š£«'¹ÜOò##‡Ö&©«T¦D¦®¦2K™m¢+öC ëCp¥­Ú+]…2lƒf«Ùê!ʰ =X•Ù*d¶ ™­rH°Åd¶ ™­š`=X=“ËýL>†?“ËýèÁêÑVm•‰®¶2[¶¡­z´UÛl%Â6´UÛl%Â6h¶ ™­Bf«Ù*d¶ ™­Bf«Ùª Û Ù*޶êÑV•Ù*uÑUŠ”¾V)3E–®–2[™c¢+lÕ£­z´U¶j{¬Lt•ʰZXãЇÖ8´°6a´°Æk¶ú·ŸlÚl%Â68ZF«ÄV!±U.6­ÖÃÕ*¯U“­£# È÷›¹ø%gëål½œ­W³õr¶¶½J@7"Kd (rDØ¢¹C5 Ö@¡UPhZ=`‘^•5èÑjû«LtuôÍ`]­Õ«µzµV¯ÖêÕZýï?± ­Õ«µÚÿI–¡µzµV/=¬ÑÖj«¬LÉP†ýPn’[…äV!¹U“"ʰ Ê­²IŽˆÛà»Ekõj­^­Õ«µzµV¯ÖêÕZm••‰®–2K¶¡µzéam‚í.¹UHnÕ„mÐÃ’[…äVqéa}ˆ®ØÖªäV!¹U¶¡µzµV¯ÖªäVM°V¯ÖêÕZ½Z«WkµåV"SWSö£µzµV¯ÖêÕZ½Z«—Ö&lCkUr«‡(Ã6(· É­Br«Ü*$·j‚5&¹UHn’[ÅÕZ½Z«WkUr«‡è*uU&ºšÊ,]meØÖêÕZ½Z«Wkõj­^zX›° ÍÕ«¹zéa É­Br«Üª Û Ü*$·jÂ6(·JÉ­Rr«&!0Et”"¥+% oo èUŽˆ¾—‹gk“! ‹Àn}€"E ÄY[@7‡à à¡©´J)­’J«”ÒªI.’"ºb ¬Ñ+oeŽ€Ž.ޏW²H†2a¢«T†ep¯6™ÊLeX÷êC”aÜ«)½Uþ•Ú á*e¸J®ò2Ö”á*e¸j2CDW|³”Úà^mrôÊG¶Á½úM2DBW¡LŠ”®JöCëCtµ•a”±6¹È,µÁ½š2\=D¶AÃUÊp•2\¥ W)ÃU¶AÃUÊp•2\5¹)‚¿ÿp¯6&º eÒDW¥L)3E–®–2[äèê(Ã6(c}ˆ2lƒ{õ!ʰ®R†«”á*e¸Ê?ÊXó2Ö&lƒÆ€ü£Œ5ÿ(cÍ?îÕ&£DtÅAƽúeJdêj*Ñƽú]e®É÷jh¯¶ÏÊDW¡L(ó5\5©ÑÕYúZK™-rtu”A?ƒÆ€”±æ Œµ Ú 1 e¸jRº2Y[@7‡@ßv+þYÒÖ*^ünØ M¬MJ@vì€&Ö”Õ*iµJY­š°…Ä/¹ÞiµJZ­RV«¤ÕªAéUØBò­‘\cCkuh­­Õ¡µ:´V‡ÖêÐZZ«CkµÍV"©«T†õÐÇú]±­ÕAk“£ ÛÐZ•ßê!ʰ ú­R~«”ß*å·Jù­š° ÊR~«”ߪÉ÷_×|Èf†ýh­­Õ¡µÚ6+]¥2©L‰L]Me–ÈÖÕV†mÐÇúdè·Jù­¢+öC¿UÊo•ò[¥üV)¿Uì³¶YéŠmÐoõC‚56´Vå·j2tº eR¤tUÊLe؆ÖêÐZZ«ò[5ÁZm›•É!á?—´VÇU—Û]~«”ß*å·Jù­š° ú­rIØu)¿U†Öjh­Êo•ò[5I]a»Çž5?D™)²tµ”Ù"GWGlwù­¢ ûÜîò[¥üVMØ}¬ùú­þùç…üV)¿UÊo•ò[¥üVM0Öä·Jù­R~«&Aºá{%0ψ,E¶ÈP„Eàû×jm‹•H(¢×-Ý,E6ÁÐÍ@„F«¤Ñ*e´J­’F«,ÖP¬r€&KßÍ6Ñ—:WGX«¡µÚ+]…2¡ »ÐZ ­ÕÐZ•Ú*¥¶jÂ2hcMÉ­Rr«”Üê!‹„ýPn•’[¥äV)¹UJnÕd†È&a”[=DWGäêkñݲ¹ÆBk5´V[n%’ºJeJ¶¡µ´±6Ù&º:ʰ ÚXSr«”ܪ Û 5%·JÉ­Rr«”ܪ ÛÐZ ­UÉ­Rr«‡è û,´V%·j2”á?¡´VCk5´VCk5´VCk5´VCk5hcmÂ6´VCk5icMÉ­Rr«”ܪIšèª”™&ºZÊ,e°ÆRkUr«”Ü*Sk5µV[n%Â6´VSk5µVSk5icm²Ltµ•aZ«Ik¶ÊÊä’ eØåV)¹UJnÕ„m„ÚþlÓr+¶A¹UJnÕëLr«”Ü*%·j“„ePФt%°ÙG@7øVð½j´&Gkj´¦Fkr´&5¬)£UÒh•2Z5a Åh´J­’F«”Ñ*ùÍN–@£UÒhÕ IéuÙ åM–®–^y‹E°ÅR[5µUS[5µUS[5µUS[5µU“"Ö|ÕV ºÚÊ]]eØE¬™±fRÄš¯ÛêKØE¬M؆¶jj«Êm•r[=DWG¯|Mðýh«¶ÉÊd“„2¡LŠ”®J¶AëC”aÚªIköC·ÕC6 û¹jƒn«&© Û Ûª ß-t[5á£Ûê!ºâÓVMmÕ¢,  ¶ji«–¶ji«–¶ji«–¶ji«–¶j›¬Ltu”9ʰ ŠX¢ ÛÐV•Û*å¶J¹­Rn«&lƒn«”Û*å¶j‚-&·UÊm•¥­ZÚª¥­Z”›Z«R[¥ÔVM®®°V§Öj‹¬LtÊ„2lCkuj­N­Õ©µ:µV[m%rtu”a?¡6‚Û]j«”Ú*¥¶j’ʰ ª­Rj«”Ú*¥¶J©­rIØu)µU¶Úê’`­N­U©­š¤®RW¥Ì4ÑÕRf›èê(s”ÁZ•Ú*¥¶jÂ6hbM©­š° ª­¢ û¡Ú*¥¶J©­Rj«”Úª æšÔV)µUJmÕ$R@_‰íp·NíÖÉÝÚÊ*Ý}aÖ€¯¢Õ:µZ)´z€",֔Ϫ KX,Ö¤Ï*é³Jù¬’>«ä?Ðè³j‚67K Ï*é³zÀ")½ [ÑVÚªS[µ…V"WWXgS[uj«NmÕ©­:µU§¶êÔVm•‰®–2ì‡Ö&GWìG[uRÚ“Ö&lƒ֜԰櫶ú¶A k“$lƒ֜԰6áÓVÚª“Ö\ÚªK[ui«.mÕ¥­º¨amR"SWS™%²uµ•9Ê\\QÚ¯Ú DW¡ ÛÐV]԰梆55¬M°U—¶ê¢- mѶØÒV]ÚªK[ui«.mÕ¥­º´U—¶j‹¬”aÚªK[uQÚR[¥ÔVA&ÕÕV)µU¶AµUJm•R[¥ÔV)µUJm•R[=ä’`­T´äÒV]ÚªK[Uj«‡(“"¥¯UÊL‘¥«¥ÌV†mh«.jXSj«”ÚªÉP&Lt•ʰjXSj«”Ú*¥¶J©­Rj«”Úª &+þq¶¨ Hy­š„_•“UZ«&¥ÌÑ÷·Ù"G@|3ø»²Fë‚„5é³z€n’ tc Â`³JÙ¬R6«¤Í*e³ÊuTƒ«ŒVI£UÒhõ€ERz]½,‹ÐZmƒ•‰¾ÔQæ(Ã5¦µº´V—ÖêÒZ]Z«[5aZ«ërÍ/­Õ¥µº´V×UWm\þlóº­@ÉPf(ƒµúº­@tU"3DôÊKW[_këêˆ\}-¬Õ­µºµV·ÖêÖZÝZ«{p»o­Õ6Y™èj)³”aZ«{¨Ÿ¡6è¶J¹­š°Pt[¥ÜV¹)bÍMk¾n«/ÁÛZ«[kuÓð]]]aŸm­Õ­µºµV·ÖêÖZÝZ«í¶™ºšÊ°­ÕMk“£ ÛÐZݱ¦ÜV)·UÊm•r[¥ÜV)·UnŠXsSÄš›¾€Ü±6ÁÛZ«[kuSÄš[kuk­n­Õ­µºµV·Öj›¬Lt5•Y&ºÚʰ­ÕMëCÑ`ݬ›"Ö&lƒn«”Û*å¶J¹­Rn«”Û*å¶J¹­Rn«&˜gü›3e)±U“à«b­IkÕ¤t$°Ño`+rDô½°­Ö ëa\­›Ö&E ÄY[@7‡à à ­RB«¤Ð*%´jÂ1¦±º5Ve´j²tÅy¦±º5V·ÆêÖX=«Gcõh¬¶ÈÊDW©L™èj*3•Y"[W[™#â6ð£MË­DØE¬y(bÍCkºòPÄÚd†È&Yß?Pæ 8z²IŽ^ùè•1VÆêÑX=«Gcõh¬¶ÜJ¤tUʰŸàt?Áé~‚â%·JÉ­šàG›VY™l’¡ û¡Ü*%·zÈ!aÔ¤äVM–^cUr«”ܪÉÕÆêÑX=«Gcõh¬¶ÊÊDW¥L)3E–®ØOqºŸât—Ü*%·Ê3ÕÆä6-·a”[¥äV)¹UJnÕóLr«”Ü*%·jrô:«’[¥äVy4VÆêÑX=«Gcõh¬¶ÜJ„mh¬Õ£±z4VÆj«¬Lp¥½Ú*+]…2ìG‹õ•[ýûO‡ŸÜêKØåV)¹U¶A¹UJnÕ{Mr«”Ü*%·jzP¤D DÁÐÍ!Ðïˆ= p1Ýf+•V)¥UvkÊh•2Z%VP„%\–@£U´ðUZ¥”VM0Ñè´J9­’N«¥WÁ\½š«í°2ÑÚýƒ}´É¹ººÈüæê—Œ!¢Lˆ¤®R™Rfšèj)Ã6èbmr”at±vãCD¶0Ó>d“°P?»Õ—L½Æû ˜i›°ŸàŸ!ysõK.2¿¹ ²I†2a¢«T&•)‘©+ö“ï—.Ö”Ý*e·jru…nd·JÙ­Rv«”Ý*e·zÈ!Á@“Ý*e·j²tµMôµŽ^ù(ƒ9v5W¯æêÕ\½š«WsµíV"lCsõÒÅš²[=DWìgr¼Ën•²[e»¬LÉP†ýÐn•²[¥ìV)»UÌUÙ­š° Ú­rIŽ^ÙmðÝ¢¹z5W¯æêÕ\m—•‰®J™RfŠ,]-e؆æêÕ\m»ˆæªìV)»U¶A»UÊn•²[¥ìV)»UÊn•²[¥ìV)»UÊnÕ„s ©¤¶j)À/ó?z%¦ÈPd‹E¾%Ôß~‰ÍÚdˆ„€"IPºXŠl‚# ›+€uVM¾Ëý!‹„5 ÖÀg«MJdêKM½ðRf›è•2×WT±6aT±6 eB¶A³ÕC”™"lƒf«&lƒ*Ö’Úª¤¶*©­Jj«’Úª¤¶zÈ&IeØÕVMfˆè•×g¾Ö«¶Qæˆ\}­‹¯UxÒÜd„ˆ2lƒcõ!Ê”2lƒcµÉRf›èê(Ã6¨b-©­Jj«’Úª¤¶*©­šä!©ÑÛàX}ˆ^y+Ã68V›\\q¬>ä eÂDW© ûáXm2u5•a«Q†mp¬–ÔV%µUImUR[•ÔV%µUImUR[5™%¢+¾[¨¶jÒclÔó’—½ò¹$lã7Vÿ}ßXý’!º eR™2ÑÕTf™èj+sLtu‘¹jãªß^Q†m\µñS[} Û¸jã§¶ú’- #¾Y®êùÖÈøÃ/Ÿ¹ö%hb<£@G)¢W)E–€"›àèæÛS/ŒÏ/ÕÁc`P„<‹@v0ØÁo°~ K,áç²ú’CÀôÖÀ_åßTY$:JÝ”^·”a ¿¡ ¢«-rtu”¹ ¿¡ ²þ¿:÷ù3I^ò_; a¢«T¦Lt5•Y&ºÚÊ]]e.2?«Õ¿ý”Þ+¥÷Êo¨~I†ˆ®øÞø U½òRfë;ܺ:ºº&¸ú Õ/áÿ–~CõKBöós°~Ié Cuh¨:X¢Ì9º:Ê`È¿V«¿ÃŸÕêKØÏRKm,½[Ö3Ä@tÅwËÒ»å7T¿dë•·2Gäêê"³ŸÙþ%#E” eÒDWìg?³DWKÌöAk“£ÌQCUV«‡(3DBW¡LŠ”®J™ï3æ’Õªdµ*Y­š`¶>Umr‘¹xÆüK2” ]¥2©L‰L]±Ÿ‹gÌM¶®¶2lƒÖ‡|3²Z•¬VÑU(“&º*e¦‰®–2[@GGG¨ÀBOYe´j:JEJÄ@d‰lEŽˆ~KxÜŒ‡=ÿêxÁZ‚%P¿Ú¤”`ðX• X¢«­Ì1Ñž0·¼Êd‘ eX¬MRWì§Ô¬QæûázV Êe® ®¨´*)­JJ«’Òª ž0KiURZÕ«´ú~?߇4ù~xæ!›¯³E޾Ÿ£ ž0¬Qf(ÿéPÀÚ„ý,>o XKJ«&ËDW[öC¥UIiõd¨´*)­JJ«’Òª¤´zÈ!Á8“Òª¤´j²tµMôµŽ2×Wšª-°2Ñÿö¬©šª¡©šª­´ašª­´aTZ•”V%¥ÕC û¡Òª¤´*)­š° *­špœiªJiURZ=DWÜbšªRZU+­. ¦jjª¦¦jjª¦¦jjª¦¦jjª¦¦j ¬Ltu”9Ê`¸KiURZ•”VMØ•VMØ•V%¥UIiURZ5Ùа ­š`®µ¿Êä’ðÍÂÙšœ­©Ùšgð­ªY[@7‡à ÌÏ3Äÿþ7þýe—2DB@É<5V§ÆêÔX«Scuj¬NÕ©±:5V§ÆêÔXm•‰®¶2ì'ÔFüm\dRm¤Ú ÑªIˆàÉ¥ŒV%£UÉhU2Z•ŒVM°Ïd´*­š` ñKk¶NÎÖÉÙ:5['gëälš­“³µ-UŠlEŽÈ@D«uN¶@ùjÖÀÑ*U“"PbŠ,‚- ›Cppƒ¯B‹U“¡ Ö™4VMRW¥«RÆßÏÒÕRf+sLt…­:i_}È"ʰ ÚW›¤2lC[uÒ¾úeØV%£UÉhU¯ÑêŸðe´ª6Z‰° ­JF«&تS[UF«&SWSWK™m¢«£ÌQ[uj«NmÕ©­:µU§¶j­DJW¥ û¡}õ!ºb?4Z•ŒV%£Uµ¿Êd“àÁªŒV%£UÉhõCR"SWS¯¼tµõneŽ2×W´¯6a´¯6 eÒDW¥ û¡}µd´*­š° ÚWKF«’Ѫd´*­š° ­rIØV%£UL¤Üb2Z•ŒVMŽ®Ž¾Ã« >2²h_m‚§«K[ui«.mÕ¥­ÚF+¶¡­º´Uí«%£UÉhÕ„mоZ2Z5a4Z5 eØV%£UÉhU2Z•ŒVM¶€ŽXM°×–Vëâj•ϪIè()‘E°ts®nðU; {µ(²*‰¬J"«&% ;X쀫’Ǫè±z€^†- ZЬš` -ÍÕ¥¹J•UƒÒQéh*³Ltµ•Ùʰ úW‚ŒÖªtVQ†eпZZ•„VMØý«%£UÉhU2Z•ŒVMØVµ´Ve´*­JF«‡l’a”4áÓZ]Z«Kkui­.­Õ¥µºµV·ÖꦵI˜è*•IeJdêj*³D¶®ð‡ñÈhU2Z•ŒV%£U¬Õ­µ*£UÉhõ]•^™mPÐdéj›èkeŽ2X«[kuk­n­Õ­µºé_mÂ6´V·Öj­”aZ«2Z5a4Z•ŒVÕþ*“CÂw VM°Æd´*­JF«&X«[kuSP2Z=DWG¯|Mp¥µºµV·ÖêÖZm•‰®J™R†mh­núWKF«’Ѫd´jÂ6h´*­JF«’Ѫd´*­JF«’Ѫd´*­šl)¢f­ø'ù~F뿳þù¾$R`’èE”˜"K€ß¼JàdÝT¯–4V…go[“õ?2DB@‘$(Ý,Eôý½ æ™,V%‹UŒÕ­±º5V©±z€"%2õ¥&ÞÊy“m¢«£Ì5ÁÕÅŸrÞd˜è*” eR¤tUʰ«6.ÿEÖZ‰°‹?¿^¡Õ?äüáO9¯Whõ%CWa²IR¯\º*}­©«©W^"[W[™#ruu‘ø3ß›ŒQ†m µ1ðg¾7)eØÆPZ5aZÕ+´ú¶1ÔFèÝêç·U¿$tÅ~~[õKð¡ÐóÛª_Â6~[DW[™c¢«‹Ìo«‚’¡L˜è*•a?©6~öUeØFªŸ}õKØFþm\dJý”Ú(½[Jý”Ú(µQz·Ô³Å@.ÉR†ý?Ï|~[D™ òÛª Ê ‘ÐU(“Ê”‰®ØÏTÏgW@¶2lcªŸ}õ_²ÔÆR¬¯ÐêKØÆR?¡Õ—°¥6–Þ- ~?‹~?ÏhÐëâ³ïüÇÒo´~É ER¤XŠè7ptƒnqqÔÁÁ3稔£~žyV_Â;8ü¦V"[@ý&¹ÆŽÞ¨ISõhªMÕVV èˆÛLKõh©-Õ£¥z´T–êÑRmÕ—Ü?îö«¥zµT¯–êýãn¿°7ÕÕR½Zª¯ËêK–‰®¶2ÇDWWöó[ªç<ŸŸzI·²H°Ä®–êÕR½Cmh©^-Õ«¥zµT¯–êÕR½ZªWKõj©þG†‰®Böj#¸ÛoÀÞÔ„mÐeõeØ]VQ†ýÐeUrY5Á6“˪ä²*¹¬š”^Kõj©ÊeÕdéjëj+sD®®°TÛe%Â6´T¯–êÕR½ZªWKµÍU&ºZʰRÅŸk^—Õ—°ÉÝ.—UÉeUrY=ä’¤®JW¥ÌÔëà©ê|Æ,—U“£«£+<ƒ¿‹Ï˜/Õ«M†2a¢«T&•)‘©+ö³ÔÕ«%—U¶AõêC¡Ëªä²*¹¬J.«’˪ä²j‚ǬWz¹¬êuYýû~æƒÖË­2Y•LV…ÿ#ïê)ë=øÜHªt“а8W ²D¶€"G„%ði3ß—%кZôWýU%UÑ_UôW•üUEUÉ_UòWýUÐË|;˜_Õ”¿ªÉ÷q{“ï§!¢LŠ”®J™©Ì2ÑÕVæ˜èê"3ð¹÷‡,’¡ ûjcà³3S"«)‘Õ”Èê!ʰ Ь¦DVS"«)‘Õ”Èjþ> 1%²šYÍ?ZW›|—ØC6I)ó]òM¦®–®–2[äèê(sA¸T¢ÌP&LtÅ~Rmк:ÿh]mÒmü¿Ÿ¡æ+²ú’­ÌVæˆ\]]dJmp©>ä°R\ªMJ¯d¯ÈêK¦¾Ÿ%²&¿£#–ÁǬ³­U"C@‘ HÝSdlÔ€ÕÚà |oÆ~ÉÑ:(]ÒÕ9(]¯¿êKJ@‘)²ÙG@¯‚…6øKµ ±ÚÂ*“Eò}Èüe0ÆÆÀCæ‡(³D¶®¶2Gäê cuк:‡ÆêÐX´®6é6þß¿?%³š’Y5™&ºZÊ|õMS2«)™Õ”ÌjþdVŸ×yÆ*É&ºúʬ¢«Ô+—‰^y*³Lôµ¶2ÇDWW™‹L©ÇºJ¢ Û(µñXWAJ„mµVCk5´VCk5´VCkµÅU&º:ʰªWgP½úeØFªG½ Â6Rm$d£óõY} ÛHˆhçë³ú¶A=À|}Vÿ’‚Ló!›„ï–RT¯6I½r*Ã6¨^}ˆ®–ÈÖÕVæˆ\]]d¨^m2Ltʰ ªW›”2lcª í|}V_òýW‚æë³úf°Ï^ŸÕ¿„êÕT¯6Á‹ÅíT¯Î×gõϦ ­ÕXøÃ›L½ò2ÑÕVæèka»Ç¿¤ù¼²Öjh­†Öjû¬DRW© Û zõ!ʰ­Õ×gõ%G™k‚«ŸÏêKØÆQGï­Uù¬æë³úfJ™©×ÁZ ­ÕöY‰]e°ÝCk5´VCk5´VCk5´VÛ^e¢«© Û¸jãr»¿>«/a—Û=.ûy}V_‚6^ŸÕ—„Hê*•Áb{}V ºZÊl½Î÷M—øìHhNÕÔXMÕ¤|µÉYúZK™-rtu”Áÿ'‘”¯>d‘ eØå«Mø?Ââ'Š$´šZM ­¦„VSB«‡l¶A¡Õ”Ðj¶Ðj“ŒÑû¡|õ!zåRfšèj)óýìûC6ÉÑÕÑ+_ÕÔXm¡•Hè*”I‘ÒU)3•Y&ºÚÊ“C‚mr«­64VScõZ}Iê•SW%2õµ¦2Kdëj+s”¹&¸ÒXMÕÔXMÕÖW™èª”a?GmN÷Whõ%l㨣wËQWm\þhóaWmh¬¦ÆjÒð½2ç™Æjj¬¦Æêä˜èê*ƒ±Z«¥±Z«¥±Z«¥±ÚB+‘©«©ÌRf›èê(sMp5ø£Më«LtʰŸ¡6ô°µø°µ¨˜¯ÏêK6ÁÐë½.žÃ—Vkqµ–VkiµVà¡sÅ·¹JÄà;u+°ç‹«µ´Z‹«µà^¯Çê_‚ï>ÙAªƒÄ“ø×cõ%ìêÕYT¯Î¢zµÉÒw³”a ÉôtµEV ÅgͯÌêK†2a¢WNeÊDWS–Q|Ö\ÅgÍU|ÿ*­¾äêŠýL>y¯©6&¼ùï?±©6&¼©©~(µzÈ"YÊl“ï`­‰™µÉÕæ{i°–ë+µú¾[4XKƒµ4XKƒµ¥V"KWK™­Ì1Ñki°–km>‹o…•‰®Rö³ÕÆæ|¥V_Â6¶ÚØü&ZjuHÜ~¼‘Ôª >'Rÿzb“P&õ:©«ÒÕ4ÑÕRf›èê(s”ÁçhŠÖ‡(Ã6h`}ˆ2lƒÖY4°6a?4°Î¢u ¬ó'µ"ÑþŸ‰VX•È!ºÊ|ÿeÍ&©WNeJ¯3u5uµD¶®¶2G™k‚+X› ]…2lƒÖ&¥L)óýCVšàCßóg`ý¶Aë|¥V_Â6Bm?ÿJ­¾„mP0_©Õ—à™óŒÿ1ÐÑÙz™# oñ¿Ù ÿêx'ñ-ªÐM(1E–€"ì Ùí«S«Éòé±jŠ%Pd5)²šYM‰¬&EV °ÆfñSß?“ÕÞàáêÔÃÕ©‡«2Y5Á£æ©‡«sòQóœ|Ô<'þš&%‚OÀÏÉOÀω?x¥É6Ñ÷sôý° mÕIk¶A©Õ”Ôê!ʤHéŠýPj5%µš’Z5ÁƒwI­¦¤VSR«9)`}È&ʰ X›¤®ÊDWS™©ÌÙºb?°6¹ºÂVm©•Û €µ ÛÐV•Ôª û¡ÔjJj5%µš’ZÍWjõﻎR«&Üb”ZMI­¦¤VM¸Å´U§¶êÔVÚªS[µ¥V"KWK™­Ì1Ñúi…•É!Ê„‰®R™T¦D¦®¦2Kdëj+sDÜ~²YÚª’ZMI­¦¤VMR¯ƒ­*©U“©«©«¥ÌRf‹]e°U—¶êÒVm©•Hè*”a?Á徂Ë]R«)©ÕCtµ•aš«’ZÍVX™\’¡ û¡&`Jj5%µj2tÄ7Kb¹/­ÖÅÕº´Z—V+;×j]Z­‹«uiµ¶»JD_©XŠl‚# t‹ÿ^‹•«(Â`±š²XMY¬&-VS«&˜cÔXMi¬&5V ®~O«Kcui¬.Õ¥±Úê*]•2¥ÌYºb;‹Ó}i¬ÊgÕ„mÐÀúeØÆª”VMØVSN«)§Õ”ÓjÊi5å´jÂ6¨ ˜rZM9­æÒX]«Kcui¬.Õ¥±ÚN+‘©«©ÌRf›èê(sMp¥±Ú+]…2ìçª X¢ Û ÓjÊiÕ„mÐiõC‚y&§Õ”ÓªÉÐU˜’Ô+—®JWS™©ÌÙºÚÊ·±ÚN+¶¡±º5V7 ¬SN«)§U¶Aë”ÓjÊi5å´šrZM9­¦œVsk¬Êi5å´šrZ=ä’¤Û '  3ïàcæ|̼5V·ÆêÖXÝ«[cuk¬nÕ6X™è*•a?4°N9­¦œVM–Û Óª Û ÓjÊi5å´šrZ5 EX•VM°×Z`e¢«¥WÞG@¯‹—ůպ¹ZÛS% ›P„%p´nÖY‰lEXÂT ü[o/–@ùêÜ‹µ,–@÷êÜp¯ÎŸÇ @dé{YúvYÂâ[C[uk«nmU¹¬š ]…®B™)]•2S–¡­ºµU·¶ª”VSJ«Ù+“E2”a?TZ5I]±:­¦œVsÓ¿Ú„mпúM‚u¶é_›þÕ¹µU·¶êÖVÝô¯6áÓVÝÚª[[uk«nmÕ­­ºµU·¶ê¦µ –ûÑV=Úª‡þÕ&a¢«T¦Lt5•Y&ºÚÊle°Å޶ê¡u¾N«/ÁV=Úªí´aÚªG[õh«mÕ£­z´U¶êÑVmƒ• ®è_mÂ6´U¶ê¡uúWçÑV=ô¯6aô¯ÎCÿj¶Aÿê<ô¯ÎCÿê<ÚªG[õп:_§ˆ®R¯\&‡d*3õÊKdëj+sD®®°UÛi%‚­zè_mʰ ÕCÿê|V ºZʰ úWç¡uúWç¡uúW硵Ièˆo–©24ZGëÑh}V_²ttDôÍ`´¶½Jd() ›"P‚5,<†ÿ™¬ts®nð¢Z¬‡öÕy6+ }µ ÙÙì€^€&,A{õh¯žÍ^6[ÐZ=Z«Gkõh­­Õ¶W™è*•a9Z«Gkõh­­Õ£µzŸÃ·ÒJÄm`­ž«~®Ú¸ÜîGkµ-V&º*eØÆUWï•«~´VÖê¡*`¾^«ÈÕZ½Z«íµAWkõj­^­Õ«µzµV¯ÖêÕZ½Z«m±2ÑÕUkõj­ÞÁí~‡újCkõõZ} Ûjcðg›öZ‰°ÁwËëµú¬±×kõ/‘-àj­^­Õ«µúßJ]•2¥ÌYºZÊl‘£«£ ¶ûMn÷›|Î|µV¯ÖêMn÷›ê'Õ†Öêëµú¶‘j#ù³Íëµú¶‘z·¤úÑZ}½V º ]a­^­Õ«µzµV¯ÖêÕZ½Z«Wkõj­¶ÅÊWZ«WkõNn÷«¹*¯U¶1ÕÆäsxy­¦¼VS^«&ì‡^«)¯Õ”×jÊk5嵚òZMy­¦¼VS^«&Øg—«õjµJkÕd èèèE0[ù·Øá~µZ/WëÕj½›ËýrµÊfÕ„%lL÷»ù¾eV"G@ÔòýÌ.¬“2«I™Õ”ÌjRfÕ tc ‚1v5V%³jrtuuÅyv9ݯÆêÕX½«Wcõj¬^Õ«±z5V¯ÆjK¬Ltu”a?«ëïÓý!Ê ‘ÐU(“"¥«Rf*³Ltµ•ùޱ%µÕ’ÚjµÈ*D6ÉP†mp¬6I]¥2%2u5•Y"[W[™#ruu‘áXmÂ6Ó½I(Ã6Bm~´iÂ6Bmp¬®Wmõ%l#ônáXmrARm¤Þ-‰1Ö$RD™T¦Lt5•a«M¶2ÇDWWöS˜îëcuýq¬6a¥6 ?Ú4a¥6 ?Ú¬Wmõ%l£0Ý׫¶ú¶Qjƒcu½j+]ñݱÚ$EJ_‹ýp¬6YºZÊìχjš|ý<Qæ‚,ÈŠ¢ÌP&Lt•Ê”‰®&~ïKmPÂÚd+³•9"WWª­–ÔVMB@G©#¾Y¸Z›L‘% Þ::Š\œÐÁÚd„€n’ t#°ÙаX× ¬ëµY}ÉP„5\ÖÀźþ.‹¹¬Ö&\hÜ«KB«E¡UÎ1ÍÕ¡¹:4W‡æêÐ\š«Csuh®ÍÕÖZ‰,]-e¶ÈÑÕQý šX²H†2lƒr«5hbmÂ6hbm‚6hb]ƒ&Ö5hb}È&a”[-É­VË­6 æêÐ\š«Csuh®ÍÕj#8WGàI|“m¢«£ÌQã}h®ÍÕ–[‰°ä7-·aÉn~r+̱ŸÜ „ý¤ÚÐ\š«£ÔF© ÍÕ¡¹:4W‡æêÐ\š«Csuh®¶ÜJdëj+s”q˜«câIüš«Csuh®¶ÊÊDW¥ Û ÜjInµ$·Z’[-É­–äVKr«5ølõ!—„mPnõ]¥^¹LôÊS™e¢¯µ•9&ººÊ`®ÍÕ¡¹:hb]C{uh¯íÕ–[‰° šX×Ð`4±®Aë4±®Wn‚«£wËQ\­C«õu[} ËÐnÜ­ƒ»õ5[}É&8zY}+˜­C³up¶ÍÖ¡Ù:8[ÇÅ£øõJ­¾Ä@dlÝ‚+ð½‰?ü-¬+`am‹¤ô²Sdé›Yzá­«# #Œ±ÐX ÕÐX ÕÐX ÕÐX Õ|ÒÜ"+]me¶2lcpº‡Æj»­DØM¬MØF¨Ð{%ÔÏóŸHtÅ~Bmh¬†Æj„Úµ¡±‰?3±Éùþ™‰Q&EJW¥ÌYºZÊleމ®.2«¡±ÅmÚde¢«Ô×b?¥6è¶Zr[-¹­–ÜVKn«&ß?A²É÷<2t[5)‚¿kÑÄÚ$MôµJ™i¢«¥Ì6ÑÕQ†ýLµ±ðGž?D™!Â6lNMØÆRt[-¹­–ÜVKn«%·ÕzÝV ºÂ6m²*‘K2”á»Ec54VCc54VCc54VÛm%²uµ•9Ê\\i¬ÆÁyþKºJ]¥®J™RfŠ,]-e¶ÈÑÕQæ‚Ðmµä¶Zr[5ùþ ßKn«õs[ýc‹nòß@1Yz™- £Cp¾7ù‡_þÏàÅÿÁ÷¯I k“"PbŠ,E¶È÷ÏÒY-鬆”tVM†Hà[¬eàô^I7ÀÊÁ^þ¼ó‡,’­ÌÐÑÕÑE&ðÇ7CD™aÇ«-µ™ºšÊ,e¶‰®Ž2×WÉmÚde¢«P&”aÉé.·Õ’ÛjÉmµä¶j‚éžz²šÉçÌr[­ÔXMÕÔXMÕÔXÍâsø6Y™èj*3•Y"[Wì§ÔFñC4Y|/·Õ’Ûê!ʰ º­–ÜVKn«%·Õ’Ûª ž¬¾n+]ñÝ29ÆROV_·È&ºÂ“Õ\|Ÿ‹Ï™“"Ö‡(3EØÆâsæ\|Ÿ±®¤ˆµ ûÙ|êž›¢yÝV_Â6¶Ú ˆuÉmµä¶Zr[-¹­–ÜVKn«‡\’£««+üh“‡ó,5Vå¶Zr[5I]a¬¦Æj›¬Ltµ”Yʰ ÕÔXMÕÔXMÕv[‰„®BöCëCtÅ~è¶Zr[-¹­–ÜVKn«%·Õª?¶ñs[ý»Hn+ÐQê(•™"‹` èæ(‚å^¿ìÕ 2DB@‘)E–€"›àè=ðÛ uøyæ'³a-³"X$ì ØAè­=Æ@¶¾¿­Ì!¸:º8z¶*È0ÑU(“&ºâ{ñÙª SdéŠõ¤Êx<¬$ʰR‡„ý”Úx´V ì§ÔF©g«‚°R¥7Kõ#Ù$|·”úy¶*ÈeB$u•Ê”Ûx¶*ÈRf›èŠýÌ^î$¸z¶*ÛXjãñ°’(Ã6­‰2lãÙª$‡„m,µñlU‹WÞ|Ì,­U“¡L˜|·jm~f¤%V&ºšÊLe–ÈÖÕVæ|þmª&½UA9Ïrÿ’‘"øZÔZ5aÔZ-i­–´VKZ«%­Õ’Öê!—ä(sôÊø9¯.3×åcxi­–´VÑUŠ”¾V)3E–®–2[™c¢+<†—Öê!—d(&ºJeð“ͤ‡uMzXפ‡u½Z«/ÙºÚÊ‘«+üd3éa]“Ö&!0IRG,CZÛa%²ÙG@7ø^ð¢‚µÉ Ð K€õаƒøvì€ Ö&˜î­®úÿjýd^ÿ æ—$~ÙÓ/šøyæqY,ì³GfE ²t´ôÂ[ä(‚-6µU§¶j ­DBW¡ »ÐVÚªóQ°‚° mÕ©­Ú+üï ÖÕ+“E2”Ê„Hê*•)þ¯wò#­µÒÕÖ×Úº:zåk‚W¦‚µÉ0Ù$¡Lšèª”)eجQ†mPÁúe.¬kj«N*X›° *Xפ‚u½Z+]ñݲù‘ˆ©çª“ Ö5©`mrtuõÊx®új­¾Ë}ê¹jk­DRW©L)3MtÅ~Ÿ2ÏÃÐÌÃŒ¼Z+üÝøQ°‚ ]…2¡LŠ”®J™)²tµ”á»jãêÝrÙÏz¶ê¿¯¼ô\ué¹êOkE¢«ÔU™èj*3•Y"[W[™#ruu‘jc¨GÁ ʰÁÇÌk¨Ÿ¡6†ÚüÌHK¬L¾ï–Wk¢ –û«µQ&&I èUJG"Kd (rDôÍ\D’ã}%Æûú9X¿$R@7E kHü@ó“Yèæ\Üà;+uRª XAéÍQÜc«ø šWfõ%l¡øšU\h«¸Ð~>+a®.ÍÕ¥¹º4W[ae¢«T†õh®®Ÿ…D–¡¹º~Ö/aóÿhsõ[} ÛXï¯ØêKØÆRKo–Å9¶4W_±ˆ^yëêè•2lCsui®¶ØJ$tʤ2e¢+ö³9Þ׿x_š«­±2ÑÕUs~i®¾b+eØÆQ‡?ܼb«/aGï–ÃñþŠ­@tÅ~4W×áx_—â×åx_—ã}]>ˆo•‰®J™RfŠ,]±ŸËñ¾4W—æj‹­¾dÿ±ýÇO¿¿b«/ ]¥2e¢«©Ì2ÑÕVí[}ÉÕûœc[V÷à‡FZl%’ºJeêÿgëܲc7‚¸#Õ33÷¿±¹ErfTþ³Â[‚i]—jH³LäÚÒ„‰\)M™À¥ºª«Ñ•Fç#4ß°ÕM˜FWñß°ÕM˜Æ;luæÓ•FgyuÖoØ ¤Hx· ´`kýv­n2e2Ù! Oè'bø^'Š{¨µ[k¨µÆdsù£b(*­1™Áä[š3f%’’ üýÅîþ®YÝ  È3¦®‚²ú®Yˆl™BiR¤äB;‹Íæꪡ®ꪡ®ꪡ®zV¬LäÚÒ0­4ÞVi˜F°¹G(ŸP¡4‚ïl¾a«›0ÐÍ¢®ú [ÈÅ|ÔUC]5ÔUÏŒ•I4iº‰\Cš!ÍaêªgØJ$ä i˜FþGhîß°ÕM˜F±¹G)ŸR¥4ŠïlÎŒ•‰\lgêªß°ÕMx·¨«†ºjª«¦ºê¶érui†4ÓD®%Í6‘+¤I¹JæÓ”Fcsÿ†­nÂ4šÒh|gs†­D˜Fã;›oØê&LC]5ÕU¿a+¼–ºê™±2)Þ-ꪩ®šêª©®šêª©®šêªgØJ„i¨«ža+uÕTWMuÕlîß°ÕM†4Lc(Áw6gÆÊD®†ù ¥¡Æú [ý%SiL¥ÁÖz6«–ˆ®;¥Y"[@’II˜¿dmMÖÖdmMÕÖdm=ëUòlIB@ÿˆ%ÉV ª¬ßœÕM˜Ãfj¬©ÆúZˆl™ÂD/•Ò” \*¬©Âš*¬©Âš*¬©Âš*¬©Âz–­D˜† ëY¶aÁúþm[ý%©4Ri¤î•T©4’ooÎ’•‰\¨h©Âúm[Ý„w‹ kª°¦ ë·mõ—ë{ª°¦ kª°¦ kª°¦ kª°¦ kâÏ’•‰\) ó)Ö÷oÛ Dš&ÒåêÒ }ÛV r-iPÈJ…µTX¿m+¹PÑÎ’•I’4iš4]dÈÅ|TXK…µTX϶•Óh<НÆB_*¬¥ÂZ]ùt¥Ñ•† ku¥Ñ•FçÛ›ó´‰\¼[ºòQa-Öêº[ºÒPa-Ö³m%Â4TXK…µTXK…µTXK…µTXK…õ,Y™ÈUÒ °– k©°ÖT>SiL¥¡Êz¶­D˜ÆäÛ›oÛê&Lcên™ÊG¥U_êVYŠ‚­µÔZ‹­õ›µºÉ”I` H) ¾Æ ÖZݽTZK¥µXZkóMÍ·gu‘Mò$A Àƒ‹ÛØ·gu“N06ÉÔu§4 A]µÔUK]µÔUK]õ,Z¨«–ºj©«–ºj©«–ºj©«–ºj%âÿ¦¡®ZꪕÊ'•§­r‚‹¦­¶¦­¶¦­Á'‹|ÓV_½t·”òQW­â'‹TñóÎ5mõ¹R®2¹\ñËÖ‡HÓDº\]š!2åšÒ,‘-×–&¤I¹ N[…¦­â›¶úÿ‚‡t“ ÒÜí,¾i«›,¹–4[×¹»j|ÓV7I¹J®‚¦£¹Ò†ˆ4]ša"×”f™Èµ¥aÍý”†ù°«Æï@sˆ4Lƒ]5¾i«›0¡4ÞÙÄ7mu¦1t· åîß´ÕMx·LÔ±‡I“¦IÓE†\Cš)²äZÒl‘+¤a>Íý!p±®Â4–ÒX8Š?„i°°Æ7m" ÓXhî¡i«ø¦­n ÓXxgwýˆo× „…ÃÎzÈdŠˆl‘$ ô#<¸hÜÅýtüt‚! Ï$‚ÄÏ„#¼¡‰oËê/%ñvæ† !uk$caU}È&YÒl¹Bš4‘«¤)hê‡ÿæŠûC¤é"C®! Ó(¥Q8„oÕê&L£PÜa>¥4Ši|³V7i&ruiPξY«›L¹¦4K×¹™ã›µºIÈ•r¥4MÃ!óC‚¤IÓMäÒL¹–4̧ášCB.æÓ”Fû4 š®4ºÒè8„?„it¥¡ªúÍZÝ„it¥¡ªÚTU¿Y«›ðné¬bMUµ©ª6UÕ¦ªÚTU›ªjSUmªªMUõÌZ‰0 UÕ¦ªÚ‹{SUmªªgÄÊ$Iš4Lc*É76߬ÕM˜†ªê7ku¦1•†ªê™µq¼[TU›ªjSUmªªMUµ©ª6UÕ3be"×–fKÃ4TU›ªj[,îMmµ©­žY+¦±ùÆæ›µº ÓØ,î߬ÕM˜ÆV›ol¾Y+¹P×Z(P¡»…µµ±¶6ÕÖoÔê&’,‘Mò¤€$ÌÕÖ¦ÚÚX[›jëÙ®™’lI‚àúT©Ð˜UpÌ*¿Ä'¿rŸ¬>ßgⲉmLmõÛ²º Û˜ÚjS[mj«Mmµ©­vµÕ®¶ÚÕV»ÚêÙ°2‘kJsÜù!Käþ¸óЬÕ!!’r¥¾¦Ñ”w­B»VñíZÝ.ô³o×ê&L£ñnéj«gÅÊDßaè;Ä1so©4Ri$ߨœ +¹x·¤òá—™gS Í}êXuêXu66÷ÙØÜgóÞ1;›ûTWêªgÀÊD®! óáë!K®% ÓàkL.°Â4¸À“ ¬1¹À“ ¬1¹À“ ¬‡àyr5&XYráXu2ÏÁg½'XI¹R2O.°>Dš&ÒåêÒ0.°>D.æ3•X i˜X)i˜XÁ!üäë!Lƒ ¬I¦ÁÖ‡H³utÕ©®:¹ÀzHÉ…®:ÕU§ºêTWêªgÃÊD®)Í”f‰l¹˜ÏV\`ÉÖC˜X" óákhÕ*´jZµ ­Z‚v6CipÕ*´jõ"IÞ-¡|ÔU§ºêTW=«V"C®!Í”†i¨«NuÕ©®ªU«CRš2‹«V¡U«C˜F±¹kÕ*´jZµ ­Z…V­B«V‡„€$ ƒ£V‡ ®-uVZ…F­ér I¦ˆÈ&y’@?shøòÇ€´Ö¥Öºš2hhîß’ÕM˜AcoiÎ’•H è2ˆ?P×½¡ºúnYÈ4¦®‚²z¦«¤YÒl‘+¤a*«Keu V÷¥²ºTV—Êê¬îKeu©¬ž +¹¶4Lc(Á·6ï¬Ó˜¬îï¬Ó˜JCeõµaSw‹ÊêRY]*«ï¬HÊ•r¡¬ž+“ iÒt¹†4Cš)Â4TVϬ•HÈÒ0õi º³V7a›Õý›µº ÓPY]*«k+­4TV—ÊêRYýf­@¤A[*«KeõÌZ‰t¹º4C¦¡²º8ÁKeu©¬.•Õ3be"WIÃ|Ri$«ûâk|³V7aœ`=„i¨¬.•ÕÅ ÖXœ`}ˆ\xbd%Ÿyg­.ò–Õ›4“"AY]*«Keu©¬.•Õ¥²ºTV'X㛵ºIʕҠºoN°ÆV[Ýj«›¬±9Á›¬ñÎZ‘ȵ¤Ù"!`‰.œ"¨¬ø¿ý;iÂ$ØYÏZ•_æG™’,‘- Iˆ¤€$L?:ëî¨ò›•u«²nVÖ³[% À$$I]¦`JAmu«­î¡sPYÝ*«[eu«¬n•Õ­²ºUV·ÊêY¯2Keu«¬n•Õ­²º'Ïá·ÊêVYÝ*«gÓJ„iL¾µ9›V"Lcê^™Êg)¥4–n–¥4TV·Êê^Jc) •Õ­²ºUV¿Q+iR¤ôZ(«gÔJeu«¬n•Õ­²º7«ûÞ<‡ß*«[euo¾µ9V&r¥4Ìg+`uÿF­nÂ4Bi„î–`Û*«[eõµºÉ–kËÒ¤‰\(«gÂÊ$Iš4Mš.2äb>*«;YÝwòþµº ÓH¾µÙ©|ò?Ò@uÿF­nÂ4JißÚ|£V rñn)•1•ÕoÔ DWfSYÝ*«ß¨Õ*«¡²zF­Dº\]š!Í4‘kI³Mä iÒD®’e>TXC…õµº ÓhJ£ñ­ÍµawË7juô³oÔê&ÌG­ÿ¹µÖ节µ5T[ƒµ5X[CµõŒWlI‚ ä)HÔZc »Çà1|¨´Kk ¾§ù†¬nb ² B@ž$(xðl²Œ…Êj¨¬ÆÄo„ºj¨«†ºj¨«†ºj¨«†ºj¨«†ºê³QW uÕPW uÕXlî±x ꪡ®‹ïl΄•‰\! óYJc±¹£VÉV[ilÝ,›],ÔU¿Q«›0uÕPW uÕPW uÕPW=V&p©«†ºj¨«†ºj¨«žQ+‘)×”†i„Ò¾³‰P>¡4‚ÍýµúKRi¤ÒPWýF­@äâÝ¢®êªß¨ˆ®¼å }‡q‘žQ+¹J.¶³bsuÕPW uÕPW uÕPW=V&rmi˜F±¹G±¹£V7Aߨˆ4M¤ËÕ¥"S®) ÚÙ7j"WH“ººjª«ž +“"iÒ4iºÈkH3E˜†ºêµ ¹BæÓþ# 4÷oÔê&L£+Îw6gÂÊD®) óéJ£³¹';ë·iu†Ñu³àþReMVÖoÏê&]&]wH2E D¶HH’"L¥•ÁM¦0YÜß« yô:R0ƒ‰Úþ­XÝ„LôöT]ýV¬þ~©{c±‹¥ºê·cu“A0ešºð’f›ÈÒ¤‰\% ªjªª¦ªjªªž1+‘!׆il¥±ùÆæ›³º ÓØ,îßœÕM˜ÆVªªJ#”FèfQUMUÕoÎ DW^rm}‡[šI¹RTÕTUMUÕL§ªjªª¦ªê¯2‘kIÃ4Ri$‹û7gu¦‘ÿ‘ÞØ|sV7AUýæ¬nÂ4Ji¨ª¦ªê7g¢+³œ©ª¦ªjªªžñ*“ÛUªª¥ªZªª¥ªZªª¥ªZªª¥ªzæ¬D¶\[š&MäB>ßœH’4i˜FSol¾9«›0 UÕRUýæ¬nÂ4TUÏœ•HéµPUKUµTUKUµTUKUµTUKUõü•‰\[š- ÓPW-uÕêJc(Á76ßœÕM˜Æà›oÎê&Lc°¸sV7al¬¥Æú­Yè¥P×Îv•H˜$`貺ˆKd„€<) Sà— e±¹¿+V’0„Åßм+V7Ø’A è*hh¨g߆ÕM-¬g¥²úŽXH2E–^jI³EB®&¥Qìª<„/uÕRW-uÕ3^e"×”†ù„Ò6÷oÎê&L#”FèN ¥¡®úÍYÝ„ù¤ÒPW-uÕoÎ D¯µäÚ&z­&Mä*iÐUK]µŠÍ½ÔU5guÓ(¾³9sV÷¬|sV r1ŸRœ³ ÍY…æ¬BsV©9«Cî.–š³JÍY¥æ¬¹»Ø!SWžÒ,]gËµå ‘”+¥)hØU’$̇]õ!r i˜»ê!Kš% Ó`W}ˆ4L£ýGMW]it¼³ÉoÎê&L£ënéʧ£‹=¤H¶4Lƒ]õ”+¥)vÕ‡HÓDº\]š!2åšÒ0 vÕ‡HÒ0 –ÕC š©4¦Ò`[=„iL¥1ÑÜ󛳺 Ó˜º[¦òAe}À‘‰a°³æ/¿ü1aè¬iˆè*S’%²$ ‚±àUØYi]@ž! 3Ø?"Ì`3ƒ­›c£Rú™xsà²,«Ù$]šëñ™l’ûÃY&z©­—ÚÒ„HÊÅlØUó7ÑÜ" Ã`W}ˆ4CdÊ5¥YÒ0T‰w6ùíYÈUøgQø0Àüö¬nÒäjÒÜxÈЕ‡4S×Yr-¹¶Hà_bvÕCRš2¹]M]õ¬W™ÈÕ¥&rMi¦4Kd˵¥ ‘”+¥aœ^ÍÆéÕCÐξ=+¹˜ºjSWmêªg½ÊD®&¤I‘’ ]µ©«6uÕ¦®zö¬D†\CæÓ•Fǧœç·guk˜FWïl¾=+¸ßÙœõ*|‡Ÿùþ"rM¹¦4K×ÙSD®+åJi š‰ßY}H‘4iº‰\Cši"×’†ùL|æû!!ó™JcþGÍRKi,üNo~{V7aïžÕM˜òÛ³º ï–…õ>$db<_âÓÎi]@žA0ä1Ù"! IŠ0|ØyžÉ*‘& I'òL)Ã3auƒ' J?S€%J²‹µ·«‚H3D¦\Sš%²åÚÒ„4i"Ã)|ÌùC6I“†i”Ò(|Ìy~kV7aÅw6­”O)RÅw6gÍJïñ¾5«?¤««~kV rui†®ƒ®ÚÕUÏv•‰\[š-Mˆ¤\) ºjWWíêªgÍJ¤ËÕ¥a>Mi46÷oÍê&L£)Æw6Z³J­Y¥Ö¬RkV©5«CÐκºªÖ¬RkV‘kŠ,½ï–ÎæÞÕU»ºjWWíêª]]µ««vuÕ>”Æà)óÙ®2‘kJÃ|Ïܵf•Z³J­YÂ4ßÙœ5+©4&ßÙ|kV7a:WýÖ¬nÂ4¸fuÎUÏv•‰^‹w‹V»Vûä)sŸ<…ï‹§Ì]g«}ñþ¬Y‰ ¹†4S¦±xÊÜ—òYÔV5guH—f˜È5¥Y&rmiÂD®”&¥aj«CmUƒV©A«‡È5D¦^kêÊKšm¢+‡4i"Ú꙯2 ’&M7‘kHÃ|¸½šß ˆ4LƒÛ«9¸½zÓàöjn¯æàöê!hcCmup{5G"×Ô•—‰¾Ã-ÍÖ•C$åJiÐV‡ÚêP[=ƒV"]®.͆i¨­Ž©|¦Ò˜JCmõÌW™ÈUÒ0Z¥­RƒV‡à_CmUƒV‡0 µÕ¡¶:ÔV5hõ¹R®2KmõÌW™ÈÕ¥a>j«cóœylžÃÍsæ¡¶:6ßÛhÐ*5h•´:„ipÐ*5h•´J Z¥­RƒV‡ ›iÐ*5huÓ`eª¬ƒ•UsV‡ ³òVfgꬃõ¬T È3$Y"[@†ÀÊ:’ÏÏü# )©²Žb,Å8buÈ ˜òÜÝÿþj È’°Œ©¬•UX‚²:UVÏŠ•ÈkH3¥Y&rmiÂD®”¦LàâúêC¤a*«³).Z¥­R‹V‡0 .Z¥­a\´J-Z¥­rª¬N•U-Z¥­"×Е§É&YÒ,]y‹„\!MŠ”\(«gÑJÕ}ÄO•U-Z=D.æÃE«Ô¢UjÑê¦ÁE«Ô¢UjÑ*µh•Z´J-Z‚2¦E«Ô¢Õ!C.”Õ©²:UV§ÊêTY*«Seuª¬N•Õ³_e’$MæÃõÕC†\ÌGeur}õ!Ò0 •U-ZÂ|¸h•Z´J-Z¥­R‹V©E«CPÆ´h•Z´:dÉ…ê>UV§ÊêTY*«Seuª¬N•Õ©²z­Dº\]æÃõÕ‡ÈÅ|TV'×W i˜†êêäúêC á¢UjÑ*µh•Z´J-Z¥­a H-Z¥­AC›¬­Sµuª¶ò{Qm=ÛU"]@’A0䨒A È£Ÿ¡hÆê& I’L‘­ï&dJ‚ÒUPXÑžÏl• -ìgg·ÊD®)Í”f‰0µÕ¥¶ºÔV5fu£àþêC¤a>j«‹û«‡0NZ¥&­R“V‡0 NZ¥&­R“V©I«Ô¤UjÒ*—Úª&­R“V‡t¹ÐV—ÚêR[]j«Kmu©­.µÕ¥¶ºÔVÏ€• \j«Kmuqõ.ó™Jƒû«‘†ipÒ*5iuóá¤ÕC’„ùpÒ*5iuúÙ°2‘‹w‹ÚêR[]j«Kmu©­.µÕ¥¶z&­DJ.´Õ3i%Â4ÔV—ÚêâþjjÒ*5iuÓàþjjÒê¦ÁI«CRæÃI«Ô¤UjÒ*5i•š´zH‘0 ®¤&­A?[j«KmU“V‡¤\)Úê°2)’&M“†i¨­.µÕ¥¶ªI«Ô¤Õ!Lƒû«©I«\Ü_ÍÅýÕ‡ÀÅýÕü&­@äêÒ0R*­‹¥U‹V©E«C‚ t]Ü*û_²³nv֭κÕY7;ëVgÝ꬛u«³ž%+‘$E˜Ë;:ÐnLÛ«É«äŽUjÇ*¹cu€Ì@uU;V©«äŽÕ6 Úþ×®«C-¬ª[Uu«ªnUÕ­ªz¶¬¤aªª[UõŒW™ÈUÒ0®¯¦ö¬R{V‡0 ®¯¦­a´J Z¥­RƒV æÃA«Ô UnUÕÍ€Ô UjÐê!A2D¦^kJ³Dx?«ªžA+‘”+¥AUݪª[Uus}õn"׆ip}55huÓà Õ!! óQUÕ UjÐ*5huªêVUÝ H Z=D®©+/¹¶4a"WJS&p©ªnUÕ­ªºUU7×WSƒV©A«Ô Õ!LƒƒV©A«Ô UjÐ*5h•´J Z¥­RƒV‡0 UÕ­ªªA«Ô Õ!K®¥+o‘+¤aSUݪª[Uu«ªnUÕ­ªºUU·ªêæújjÐ*5huÈ–†ùpÐ*5h•´:ihÐ*5h•´J Z¥­"¨¬Áʪ=«ÔžÕ!! Ë¤‰¾tÖ3^%Ò$éC@žI ÅÙ! O HÂð㨴ž+™º$ ¡3îX%w¬@#ÓUrÈ*9dõ€M‚†vv«LI“ -ÔWC}5ÔWC}5ÔWC}õŒY‰„\!MJã4ÐWƒ¬©M«Ô¦UjÓê¦ÁQ«Ô¨UjÔ*5j•µJZ‚>¦Q«Ô¨UjÔ*C}5ÔWƒC©Q«‡È5tåi"×’f›ÈÅùÛ{p€õ’}5ÔWƒ¬‘†i¨¯XaµJZ¥F­R£V©Q«Ô¨UjÔ*5j•µ:},ÔWC}U£V‡ ¹¦\Sš%²åÚÒ„HʕҠ¯†új¨¯jÔê¦ÁÖC†4LC}58Àúi˜G­28ÀšµJZ¥F­R£V©Q«Ô¨UjÔêôÕP_Õ¨Õ!,dê«¡¾z&¬LäJiØÑÔWS}5ÕWS}5ÕWS}5ÕW“¬‘f‰l¹¶4!MšÈ…w7µJZ¥F­aµJZ¥F­Y21ž†OÉÆOɆOÉÆÏœÉÆOÉŽ/ùI#Ùùi+Ùdê’ ‘) ɹÿןª­Ü²: äA¸_²²rÉê€. .;$™""¨c²J Y’2á“Vòm«Éäg¯ää'­ää'Ñääg¯ää'­ää'­ää'Ñœý*¹¶4[šI¹R¦±”Æâ'Ñ|³V7a‹ŸDsf­D˜Æâ'Ñ|»V7aKi,~Í·k"ï–ÍÏÌ·­Þ¤IÃ|6?C27?C27?C27>ïü%×’f‹„\! ÿ+ù¶U¸Bù„Òx'XoÒ¥a¡4Þ Vi˜Æ»k" Ó¥ñ¶Õ›0T©»åm«7é&r1Ÿä§fòSóm«7Ù&r…4! ÓxÛ*4o[½ Ó(~jâÙµr i˜O)âgH~»V7a¥4Þ]«›0bõËOM,mh×*µkõ""S®©+/¹ÐVKmõìZ‰¤\) Új©­–Új©­–Új©­–ÚêY±2‘kIÃ|8ÁzHÈÅ|¸k•ÚµJíZå¿¿bܵzˆ4̇»V‘ íü•\LC[ÿþ*t×Å«ÞZì­ÅÞZê­ÅÞz¶ªä1Ù"! 3Ê€'ñ³JŽY=@’N0ä™R0¯rÍ*µf•\³: t®ÖâQ³­iru¹º4¨«ÅևȵD˜gX iÒD.法gXSËV‡0 .[2¤Ò0 N[¥¦­RÓV©i«‡ ÓÐT€¦­²t¸ZÁ£fM[¥¦­rᨹ‚GñgÈÊD®-Í–†ip†õ!Òà¨YÓV‘¦‰t¹º4̇3¬‘‹ùpÚ*5m•š¶JM[=$IøÿN[¥¦­aAÓájš5mõiXÇŠGÍUÓV"!WH“Ò0 ΰÖ/gXKÓV‘«K3LäšÒLi–È–kK")WJÃ4XWKÓV¥i«Ò´ÕCŠdèÊLƒs‡,¹¶‰^+¤ iR¤ä*hÞºÚÎo×ÿ’SWA¤é"C®!Í”f™Èµ¥ ¹Rš2ë¶‘¦ ÈÄx†ÂxkëM dbOmÐeRD×-HÞÚz“& I’0ˆÉ Þâz“Mò$A ÀÃ/™ÁR‹·ÇR(K<{V’Üåý»°>d“„\) SáÂì«¥U«Cš4Ýd“ i¦‰\Kš% Ã`_}ˆ4Lƒ}õ!ÐÚ{iݪ´nUZ·:„ipе~9ÅZß¼ˆ\¼YBi°¯r7´Ò¼U}óVoÕ·¯‚IéMDš!2õZSš%Í6‘+¤I¹ šR¥4Þ)Ö›t¹†4̧”F)wÞê&L£”Æ;ou“L’"·ë›·ºI"IÒ¥ºÎkʵLäÚÒliB$åJi äb‘†i4¥ñN±ÞdHÃ4ÔW5oUš·*Í[•æ­I¹JôùÆãÕÒ¼UiÞê.Ú{ãñê!L£³½·ŽãÕC¶4a"WJS&pqŠõf"W—†ùpŠõ)×”†ipŠõ!Ò0 N±Vãë!LƒS¬Õ8ÅZS¬Õ8ÅZ“Õ8ÅzÈ}ê|ˆÃÀqëdJ}w¿¼Oœ I'òLI˜VX 3`imœa=„!àuÔXÛf,›!p‡µÚf,›!p Úæ±YÆšÊjÛ¼3¸pHÊt?ñ}“Àc"‡´&"Mr i¦4ËD®-M˜È•Ò0P‰Çh" Óà¼UiÞª4oUš·*Í[•æ­JóV¥y«Cî#¹Œ¨Æ±€j ¨V8i~H4iº®ÓårM¹–4Kš-r…4)RrÝ'Íuæ­DFçë!]ša"×”f™Èµ¥ ¹R´3Í[•æ­JóV‡ ‹u­ö†“øC†È”kJ³¤Ù&r…4i"ºê³2I’& óáë!C.森ªy«‡HÃ48oUš·*Í[•æ­JóVÕÕU5oUš·*Í[2ttÕ®®zƬLäÚÒliB$åJiÐU»ºjWW=óV"]®. ó™Jc²¹kÞª4oUš·:$¤aœ·*Í[•æ­JóV¥y«Cº€L ƒëV‡,™˜ŽZkgkíj­]­ç£]­õÌX‰tIÁG@ßÜ–$R@ž€„‹VÅE«Ò¢UiѪ¸hõ€M‚1pÑê­ï&LäJ‚’ 'Í=yf¬LäêÒ ¹¦4Sš%Â0’onζ•HÊ•Ò0RÅ“xí[•ö­JûV‡0\•®JW‡0 \•®$Lƒ›¥«ê«C}u¨¯ž+‘!×fJ³LäÚÒ„‰\)M™À¥¾ª«C˜çXKW¥«ÒÀÕC¤a¸* \•®JWI44 \•®iru“$Ò i¦È’kI³EB®†i¨¯õÕ3p%Â4ÔW‡úêàkiàª4pU¸zˆ\[¦Á«ÒÀUiàª4pUC}u¨¯jàª4põ¹†ÈÔkñnQ_ê«C}u¨¯õÕ¡¾:ÔWÏœ•I‘4iš4LC…u¨°ž+¦¡Æ:–Òàkiàª4pU¸* \•®JW‡tEÂ0¸ouÈ”K` èºAº,¾\B¥u°´•Ö¡Ò:XZgXK«V‡\¿ÎzÈ IR¤ I|ùÓ踩·ÞQ+€M2 tUf ³Õ¡³ÕoÔê&ú‰R&4âAó(4ÿû«&ÒåêÒ i¦‰\K†Q £xÿï¯ÒD®’ùÌ_¦ñÍ[HÓE†\Cš)²äZÒliÂäß¿CÏï‘¶ÿ%§œÝ䤲oòVÕ›4“ûß×oÞ Dš!rÿ¾æC¤Y"[®-Mˆ¤\)MAÓñûšõÍ[ݤIÓMäÒ0®4žÿ¬‚Ü¿Xß¼ÕMB.æÓñûš‡”®\Ð ¥1ðûš‘«‹ ¹†4Sše"óø}͇ȕÒ0¡4Þ-Vi˜ÆÄo÷>D¦1•ÆÄo÷Â4¦Ò˜øíÞúæ­nÂ4¦î–©|~{õ!E»e)·ªÞdèÊC¦ñVU¹¶HÈÒ¤HÉUÐlåóVU¹º4Lc+ n±Ö7o"×–†ùl¥ñÎ[HÃ4Bi„î–@9›O\©oÝê& #ð‘+‡ˆ0 –Ö©Ò:UZ'KëTi=CV"M@’N0ä™R0†üÙ! O HÂS)”RÅ J·G©‘C(ÝÅXÔW§úêT_}g­þÖ¨·®Þí¬X™l’&M“¦‹ ¹†4Sdɵ¤Ù"!WH“Ò8 ÔÕÕ”OSMi¼uõ&L£)wß D¦ñ€Hƒò¾ËûzëêM˜Fgy_ª«gßJuu©®.ÕÕ¥ººTW—êêY³2‘+¤I¹Jš‚Fuu –÷5”ÏPCi ¾¹9ûV"LcðÍÍR]ýö­@äb>ª«KuõÛ·º êØR]]ª«Kuu½uõï}øÖU¹–ÓP]=ûV")WJÃ|ËûZ,ïKuu©®®¥4ßÜœ5+¤ñÖÕ›,i˜ÏR‹åýÛ·º ÓXÿ‘ï–Í:¶TW¿}«›0ÕÕ¥ººTW—êêR]]ª«gÍÊD®”¦LàR]]ª«+XÞW°¼/õÕ¥¾ºBi¼k¬7a*¬ß¾ÕM˜O(`yÿö­þ’T©4RwK²ž}ûV7áݒʇµu©¶.ÖÖÅÚºT[këÙ­€µÖ¥ÖºØZ—Zë±™’0„bŃøwÕê) ÏýSŸQ«ëK†ðŽZÝ  È36É”É@dë2¡o/¤I‘’ 'Í»ñ$~7ž4ïÆ“æ­³ÕÝxÒ¼›Âh<‰?[V&rmi˜FS'ñß¼ÕM˜FW'ñßÂÕM˜FçIüY¸a'ñ[eõ[¸¹ÿDO W‡à¡ˆÝùÈ·®êìYu‘ iÒ4iºÈkH3E–\Kš-r…4̇c¬‹ W‡0 ޱÒ¥a\¸*-\•®J W‡à¡-\•®J WI<¡…«ÒÂÕ!xhdsŒõ!ºòfšÈµ¤ac=$¤ i˜ÇX ÇXK W¥…«C˜Æfuÿ®n2¥Y&r1.\=¤HR¦Á…«ÚÁ‡"Ξ•‰\¼[8ÆzÈ™ºò”f‰l¹¶4Lƒc¬‘lޱ>¤H˜Oòx-\•®ac--\•®J W¥…«ÒÂUi᪴pUZ¸ª³p%Â4 ÐìâÓ#¸* \2åZ"[@™R@’û›‰_|ɇh[¬tyÁÇ@d‹„€$) ø¼V­Š«V¥U«âªUqÕê›d꺺,sàë!a¢—J‚’ O4GçßÑùÄwpõ.W—†Ypõ!Ò,†¡ºª«ÁAÖÒÀUiàª4põMÒ¤a¸* \•®JW‡¬." ÓàÀÕC‚$EœïÕÕP] ÕÕP] ÕÕP] ÕÕ3ge"×–fKÃ4TWƒƒ¬‡ ¼kàª4puÓà kiàª4pU¸* \•®A ÕU \•®"WéÊ(h¸:u5TWCu56Ë{põ)²äZÒ0 ÕÕà ë!) ÓP] ²–®JW¥«C˜®JW¥«ÒÀUiàª4pu꘮JW‡0 ÕÕP] ÕU \=D®!×4‘kI³Mä i˜êj¨®†êj¨®†êjpõ¦¡¾ª«C˜®JW¥«ÒÀUiàª4puÓàÀUiàª4puHX$C@W™2 lIB@’Ñ÷‚Úšª­ÉÚšª­gÇJdHÂØ[S½5“iÌs¬•l­gÅJüƒîÌ€c¬•7ÇXAKõÕä@@}³V7Ùrm]9DR@´T]MÕÕT]MÕÕT]MÕÕ³fe"×’fIÃ0TW“{¬¥…«JÕÕT]= W"Lƒ{¬•Üc­äk%÷X+¹ÇzÈê"rñf™JCu5UWSu59P©ºšª«©ºšª«©ºz®D¦\SæÃ=Ö‡ÈÒ0 ³øoá $Hš4Lƒ{¬•Üc­äk%÷X+¹ÇZÉ=ÖCPÇ’{¬•œ 8$åB]MÕÕT]MÕÕT]MÕÕT]MÕÕT]={V&rmi˜÷XI¹˜êjrõ!Ò0 ÕÕäë!̇{¬•Üc­äk} W r…4Lƒ“•œ ¨äkeñÁˆT]MÕÕT]MÕÕT]= W"K®%Í–&LäJiÊäv•êêÙ³2‘«KÓ¥"S®)ÍÙrmiB$åJi˜†&´pUZ¸:­ØZ5puÈ”É@d‹„€$I  µÿ*ÖÖRm-ÖÖ5ä™’0l±>@fÀÎZµ:„!àûçªUqÕª¸jUZµ*®Z0u¦0xk –±RY-•ÕRY-•ÕRY-•ÕRY-•ÕRY=ËV"C®! 㙬ªu«C˜ÆT“'ñÚ·*í[•ö­" Óà¾Uiߪ¾}«›0 î[‚2¦}«Ò¾Õ!!Êj©¬–Êj©¬–Êj©¬–Êj©¬–ÊêY³2‘kIÃ|6«{©¬jßꦱÿ# œÄŸ}+¦|kS¡|¸oUÚ·*í[•ö­JûV‡ ž5+¹˜†öJeµTVKeUûV‡4¹º\]š!2åšÒ,i˜†Êj©¬–ʪö­JûVuÖ¬L’¤IÃ|¸ouÈ‹ùpߪ´oUÚ·*í[•ö­R$¬gÜ·*î[ß_”Õ‡4“"¹î–‡ ¹†\Sše"×–fK")WJS Mi ¬>„i`Žõ%ß=äzæû!ÓD®%Í6‘+¤I¹®¿_M¿ßè=¤M’N0äºîÙ’„H H ðýûáï‡4‘. ‰®;䨒A ÈSL¥0¯Gà_ S˜LaÞ:?„1LÆ0uwÌû9燄‰^*¥)¸ÖýÔ÷Cš‰\W]}È0Ù$Sš)Íaëþ‡0 ̱¾DW.Ì[½Dš& ÓÀ¼ÕC˜ÏV[i ®>d˵å i®‚ö)½óA]}Hë"Òt‘!×fJÃ4PW²¥ ¹R¦9Ös¬/‘†i`Žõ%Ò0T˜c}Ó@]}I’0Ì[½$I®A§¤îÁ¢—$I“¦›È5¤ÒL‘%×’f‹„\! Ó¨ÿH£nÍ™·Aœ·zH—f˜È5¥Y&rmi¤H®Í—èÊ(ïMuµ©®6ÕÕÖXÞæX2D¦^kJ³¤Ù&r…4i"WAÓ•FWonZW>]i`Þê%Ò0®4:ßÜœy+¦Ñùæ†óV¹NZ_×P>Ciܧ­/X$ÃD/5¥Ø’A ȃo?à¼OœÒ$aógH &3À¦ÕCÂdØ´zS˜JA÷¿d!ãªÕC:þÃöÖÕ›œ‚v“% ²eÚºpˆ¤~´Õ¦¶ÚÞ¶ú÷:o[½Iérui†4 ãm«7YÒ0­4Þ¶z“4‘«¤)hBi¼W Ò0gàj>£ôñd“L‘Õyk^ó![W“ ù×Ï@ÊßÏÓVAšItiº4CdÊ5¥Y"[®- ÓH¥ñüó)¥ñ \4üÄëK‚dH3MäâÝRjcj«MmµaŒõ!lcj«Mmµ«­vµÕþ{5?¤Ë5äÒLi–‰\[š0‘+¥)¸ßÛô¦|»{oìî½)Ÿ¦4šÒh|os®D˜FãÝò \ÝÝý¸º óyÛ*H‘4i˜ÆÛVo2äÒL‘%×’f‹ ­öÎ÷6gàJ¤äB[åÀÕCš‰\]ša‚ï縺 ÓJ㸑†i Ý-Cù@0u«LÝ*ó§ ,’! «L™ D¶HH’"úf ’õ”÷›4I:ÁgÜ]˜«VÙ! OòuËR _*”­ 63غ;6Oš»ÚjW[}W­n°eÚ2…4i"ÊêÙ±2Ù$Mš& 3 V÷oÛê& #î§h^²I¶þX¢â{ð%zð%zð%zò%¾u+¹º4ÃD®)Í”fÉ–kËre‘¦@êþdÀ—HÓDº\]š!Í4‘kI³Mä i˜F)âA|/ÄsÝê!øc ®[=¤‹ ¹F’L¹–\KÄßû¹ˆ—ÜÿïùÖ­n‚26TV‡ÊêÙ²Âk5V÷¡£Õ5Ö‡0 ¬±¾Dš%Â4ÿXâ¬[‰¤\)MAƒ5Ö—$ óéJ£+ ¬[=„it¥Ñï§h^" Óèº[t´Êu«‡8 ÄŸu«"AY*«Ceu¨¬­ŽÁƒø1xÐ<šÇàAüÙ²2‘+¥)¸&«;×­Â4¦Ò˜<ˆçºÕC˜ÆäAüY·aX·zó™Jcò%†Z¹nõ’"áݲxä<ŽœÇâ‘3Ç­"ÉÙ! Oè…™^eó ~l8cÔê’0„{‹õ’0„Í6â1jõ€±à¡‚ mž$ÁghÞQ+€ÍëN½4SQYÁ§"FÜ|?$EJ.œÃäS##ùGS¬éÒ ¹¦4ËD®- ÓHþ©ÄH¾µùö­n‚S÷Q|k3ŠomFñÌ(þ©ÄÐÉê¹IäšrMiÖ}Ò;ŠçÌãÙ Á9ü(ž3â9ó(ž3Ÿ5+“ iÒ4iºÈkH3E–\Kš-r…4)Ó(¸šòiJ£)Æ?•8kV&I2¥a>Miñí[ÈUr¡ ­Á‡DÖàC4kð±‘5øÈ|ˆf >6²YƒѬÁÇFξ•Ó|ˆf >Dóí[À5ùçß¾ˆ\]¦1•ÆÔÝ2•ÏTSwËäIüš{UòLI˜ÁY´"„3x­@BüâKÞñËzölZÈ4¦®‚ßNŒ_ß +¹Bš&EJ.TÕPU UÕPU=ÃV"C®! óiJãÙba>ªªï¶HJÃ4šÒxÆ­H¤aÅ=TUßq+¦Ñu·t÷PU UÕ3n%’r¥4¨ª¡ªªª¡ªªª¡ªªªgÊÊD®% óJc°¸¿ãV Lcðš|csÆ­Dð Í;nÒ¥&I‚röŽ[‘èµ¶\a¢×âÝ2ùÔH¨ª†ªj¨ª†ªj¨ª†ªê·aªª±XåCU5TUCUõLY™È…ªz¦¬L’¤IÃ|¶ÒØ,îï¸ÓPU UÕwÜ „i¨ª†ªê;nE‚+«ª†ªj¨ªÆ[U÷z>fð#äH¦4LCU5TUãÙbaꪡ®zÆ­@Ri¨®žq+‘.W—fH3Mäb>©4xÊúm[Ý$MŠç¬8¸ÿ†­n‚?ž³žÍ*¾Ì."*kŽš£øìHÏš£pÖÅgG¢BþâK>@ó4‘. É ˜òlûÏ0gõ€§ iüƒˆl|à;øæœÕCî‡ß³ñ—Ïœ•Èj"‹dKúCß á³ñÈ=Ÿ~ÏΧßÏŠ\"‘‡ðgÆÊD®)Í”f‰l¹¶4!Â4: 9ËV ƒ$ñ-[Ý„ù ¥¡®šêªß²ˆ^kɵMôZ¡+‡4‰¹U3U3'U3'U3'Uó,[‰ ¹†4S¦1yÈœSùÌçWAäJiÊßáâ'HrÙê!Lcñ$¿e«¿ÿ¾?]d¹–È–këÊ! ~±7ß!ÖÌçÓ§>rùKž®J’$Mšn"×fH3ñs½C¬ Ò0­4Þ!Ö›¤HÉUÐÄ“ÆMð‹«ß²Õß».øÍ·l"×Ô•ñ€H9‘ËV ¹RWNiðM& ÉdCËä"™|€&“Мe+‘)×”†ù$ I ±>$¤a*«™|€æìX™I“†ù ù–­@¤™"K®%MÈ2¥4(­õ‹/YZ¿U«›t™ðûšõ‹ß׬_>?S¿?[@’ H»ñÕ/>õ±Qy^íG’&I’0ƒÆ ]“SV IR¤ 鸒Ž:‹{uþ¦fuSiLÝ,Sù¨ª–ª*w­Â40Âú]yKÃ4&?ì¼&?ì¼&‹{©ª–ªêY±2‘«KÃ|‹{-÷ZüÔîZ=„i,¾±ùv­n‚âþíZÝUþÛµ ’&M7‘kHƒg™kóYæo×ê&[®-WHÒ¤HÉ…g½+øä{Ÿõ.UÕ³k%2äÒ0Ÿàg¬Tð3V¸kõ0¹ w½#¬7)¸Þ]+ið‰<•ü šJ~M%?‘§’Ž’ŸAó ¸—†JC•ÊG窥ªZªª¥ªZªª¥ªzV¬LäÒ i¦È’kI³EB®†iÔ¤q?ùÞ¾]«›4¹º4ÃD®)Í2‘kK2¥L M×8g=D’.°HÁÇ@d‹„€$)Rü ?tW ÷ë pÝÎ`:cèø£ˆC&Œ¡ß§ð„€<) «LøîÞÔÒ6Io"r ¹¦\Sš%Í6‘+¤I¹ šùÃS&™iÒ0Ÿ‰çÞr1Ÿ©4¦Ò˜8„?„iL¥1qß¾Q«›8‚k)Ÿ¥4–ÒXº[ºXûåJ@ûåJ@ûF­n²‚dëÊ[šI¹RšaW}ˆ4M¤ËÕ¥a>ÏsÈý@D{G­@ºÈè"I2E–\KWÞú~ÂDWNiÊ®Ä#‡0Äã!‡tiº4L#ñøÌC¤Y"L#ñÀÈ!L#•Fâñ™öŽZ]¤”G­šF­šF­šF­šF­™&r±±«6Z5Z=D.–1vÕ¦Q«vF­ŠäþÕ‡I—f˜È5¥Y&rmiÂD®”¦Làâ¨UÓ¨UÓ¨Õ!Lƒ£VM£VM£VM£V‡0 ŽZ‹„apÓê´Ö¦ÖÚØZ5iuH—iH¢«H±D6AÈ“%¾ù¡P>:²qȪiȪiÈê) C CVCVCVÐU ¾5YÒI7‘kl’)²tá%Í ¹B1qÊühNá›ö¬"ãákk`m¬‡0 °¶oÒê&Lc) NZ5MZ5MZµ¶qÊÜXÛ7iu¦±qÊ|ȹ?÷½}“V7Yd›IH“&r4Ï}H4iš4]dÈÅ|gî­q€µ5°²EB®&¥)¸8Àzÿ‹ËÖÖ8ÀzÈ0I’©+Oi˜Fâñ™‡$Iˆ¤^+õZRø¤ó‡HÃ| §Ì‘kHÃ4JiNáÛ7i"WHÒ0Â'·oÒêù&­n‚44iÕ¾I«› ¹†4S]µ««v®´Î•€‡È•ºr™À¥®z¬LäêÒti†N™{Ã)ü!Kd˵¥ ‘”+¥¹‡µ½“V$EÒ¤é&r i¦‰\Kš%M,™R¤àøòþ]Íö®Yt^¿¬yˆ®2%Y"[@Æ0î_Ö|€$ˆßÛÄïjÒº€<ƒ@¯Ã æ3˜¼7¦B™ø=ÍöÌXÀ´ïi>d“àÔCViêÂ8fî ¿¥yÈ–+L6¯“ºr™ÀÅýÕ‡HÓDº\]š!2åšÒ,‘-×–&¤aœ´jš´j=x̬I«¦I«C˜F𘹙{àÛ&­Yrá`µ~Kóè"Ò¤HÉ…cæÎýÕCš‰\]ša"×”f™Èµ¥a>Ü_m契4Lƒû«­sµ½“V L£x ÿNZà˜¹™;WÙrm¹Bš4‘ ÇÌgÀÊ$Iš4Mš.2äÒL‘%×’f‹„\!MJã4ð‡ï¤ÓhJ£ñ%΀•‰\SæÓXÆFÃï%¶Á•€CB®”+¥)•Õ¡²:TVGç"ƒû«‡ i¦®3õZK¦ñ쯂„4ÌGmutV÷Ñ•ÏPj¬ï¤Hr i˜WÚ;iÂ|TZWÚàJÀ!(hü†U[kë`mª­ƒµu°¶ÕÖÁÚzfª$¹ÿ¯>ÔZÇdsl­C­u¨µžÕ*IÃb ‹ïiþæ°˜Ãb}f¬B@ž$(ýHÌ/³YÝÇfuŸ)òi|å)×”f‰l¹¶4!’r¥4 'ð +Ù$Ì'”F(À'ÐÂ4Bi>æ!Ò0à{›wÓ „iĤQФÒàD@œhï¦ÚØP[ 8dɵäÚÒ„‰\)MJƒ¶:ÔV‡ÚêP[j«CmõúŠL¹¦4̇›V‘‹ùpÓªiÓªiÓªiÓªiÓêô³³`%W—kHƒ~6ÕVµiÕ´iuÈ–+ô†4)Rr¡­NµÕ©¶:ÕV§ÚêT[Õ¦Õ!Sše"×–†ù4¥ÑØÝµiÕ´iÕ´iÕ´iuÓà¦ÕCŠ„ùpÓªiÓêô³©¶ªM«¦M«CR®ÔwXÒ ­NµÕ©¶:ÕV§ÚêT[j«gÓJ„i¨­NµÕ9ØÝµiÕ´iuÓJcò½Í»iE"W—†ùL¥ÁM«¦M«¦M«¦M«CB@&†ÁI«†â8UZ'KëTi*­“¥uª´N•ÖÉÒ:UZOI¿ÏtçB{Ÿ‹~Ï…¿çúa,­8Ö;»UtàÍ©g H 6Šû;c") Ë0Ü`ܱ:'«S'«3xÎÌ%«¦L¨ªSUõ,W™ÈÒ„4LBUuªªNUÕwÍêú)’ÇðgÍê~Šdr~µMί¶ÉùÕ69¿ú½ÖÖ÷&r¥4eWñ^{VíÛ³úû=sÏê!A2Dx·p!à%×ÖwˆgFΞ•ž™OUÅuîßÓlë—i¬_>û¾~ñ{š‡t¹ðÌÈY¯2‘kéÊKš-r…4)â4ð»gÏJO3¯†ßÓlßžÕߟ´)Æg"Vã3#«a¡¨iÏê-M˜ÜÿM]ªªKUu©ª.UÕ¥ªºTUWçÓÞ«óiï³g%2åšÒ0ί6íY5íY’&ráÍY¯‚‹{VM{VM{V‡à˜Y{VM{VM{V‡àÙ÷5øÌˆö¬šö¬"ÚÙRU]ªªKUu©ª.UÕ¥ªzÖ«LäšÒ,¹¶4[šÁ4ßžÕMð[«ßžˆ4M¤ËÅ»…ó«‡à÷5çWÛâüjûö¬nº0ÃàœÕ!ø]EÜ*EÒ pÛª³.vÖ³QEÏ’GßÛ–$DR@TVÀ,UÖ„!C¾yF¬¦€/ocBU5TUƒÃ«‡„‰\)M™À¥ªz¶«LäêÒti˜‡W" ÓàšUÓšUÓšUÓšUÓšU{׬.2”ÆÐÝ2ø¼È»fE"×fê:x"Ÿ9ÛU&r…4!MŠ”\8„É#÷àðêC¤é"C®! óáðêCäb>ªªZ³:$¥a\³jZ³jZ³jZ³jZ³zH‘0 ®Y5­Y²t÷xþkÂ|TUCU5TUCU5TUƒÃ«‡t¹†4Cš)²äBU=kV"(îïš>a%6?Ž'6ߨ¼kV ø¥ÞwÍ š.×0‘ mí]³"‘kK) Îàñ.9TZÏlAgLy D¶HH’"Ì€ogÎf•H¸?V屺ÁgH±D6¿•зŸº Vï «¦ «C-¬ª©ªzF¬D¦\Sš%Í6‘+¤I¹ðg¹Êd“àóg´euHr i¦È’kI³EB®&¥)¸:?Q$9Ð’-9pÈÐuðù*Ùù¼È7fu“%×– ÇÙùtHv~Vb>UŸ¯’Ci ÌÒDº\]æ3”ÆàçÏ|cV7a³:OÏœé*¹òþ„œoÌ šÉOãÉ÷T$Iº\ø4žœ˜o:dŠ,½Ö’fK&r¥4e×§œ‚ÏWÉÅÏWÉÅÏŸÉÅO\ùƬn2åšÒ,‘-×–†i,~Ï7fu|þÌ7f’$Ìg+ÍÏWÉÍÏJÌ­4¶ÒØüü™Üüü™|«êMBWiR¤ôZøü™3f%‚ªšÁÏŸÉàçÏä[Uÿþóz«êM¦4ËD®-M˜È•Ò” \4M¤ËÕ¥aog½‰L ã鬺LšèÂMaªè& IÁ«Öšl­ÉÖšj­ù´ÖûuB@ßJ”Àí9V×— ¥~™Á»a É™’,‘{_´}+V7 ‚Ø$…ëòKÅð¶Õ›t“M2¤ÒL‘%×’f‹„\! £hŽâi«É;½z¦ñ¶Õ›0Ÿ®4ºÒèü´Äó\¼QºÒèJãݳ‘†i ~Zb ö³oÏê&Lc°Ÿ=+‘©×âÝò¶Õ›l]9¤I¹ÐVÏz•I4iš4LCmµ¦ò™˜mßžˆ4Lc*wÏê&ÌgþGèîßžÕMÐÝk±»×ÛVoÂ48½zÈ”kJ³D¶\[šI¹Rt÷Úìîµ±PtóÙJã^½É†ipzõ% Óàôj+N¯¶âôj+N¯¶âôj+N¯¶âôjûö¬@¤A+µÕoÏê&LCmµÔVKmõÛ³‘+å*¸ÔVÿ‘f"W—†ù¨­V²»×;½z¦¡ºZïôêM˜F* õÕJåSJ£ØÝ¿=«›0R¥»¥TÎêÇ@&ÆÃÎZê¬ÅÎúYÝä.­ý÷_Þ½ýtÜõ’ ‘) ÉÙ’„H HR7ÀÏÌÊÚci ëýëý±Ç@„´ûÖè߈ÕMr“”~¤‚¦+–Õ‡ÈÕE†\Cš)Í2‘kK&r¥4LƒeµÿŽÞ'ïøêM˜ËêC¤aCi°¬Â4†ÒxkÓ¿A«›0¡»e(–Õ‡I“†i°¬2äÒL‘%×’æ”Õÿ_?ä”UiR¤ä*hÞ²z¦±PÝéÒ0¥4ÞÚÂ4–ÒXxkÓ¿A«›„HÊ•IRpmÝ-[wËF;¤¹˜ËêCtå%Í6‘+¤I¹ š@uH’œ²ú÷þaY=¤‹ ]yHÃ4Bip|õ-r4÷wÐ $¥)¸ñý—#ý—ã«ý—㫇Œ)R$S®©+/¹¶®¼¥ ‘”ë4´¿ÿ”ó©îÉ[VA¤iè,«)’¡+O½Ö’f›èµBßOH“"%×ýÖ¦ƒV7Aß ÕMºÈkHƒÆö ZÜÿÜ5huȽTtH HR _b¥çIº€<ƒ` È#°k뙨§Öuë}#V7¹;Gë|OóXÝdH›¡ÿˆl}7qGūΫª‰Ü­©¯žá*¹º4]š!2ñý <qÈÙrmiB$åJi˜ÏÄhÓC6 óQ_mSiL¾»9V&û¾)ßQ+]y‹„®Œ†¦Q«®Q«®Q«~F­‚¤u¹z#r ]yJ³LäÚÒ„‰\)MJS µzˆ4M¤ËÕ¥a›í½m¾»9£V"[®-MH“&IRÐpÔªkÔê6HÐǾQ«›ðn <8rÈYºò’f‹„\!MŠ”\è«M}U£V‘‹ù$fŠºF­ºF­a©4ÑôoÔê&L#ÙÞ5jÕ5jÕ[a¦¨kÔê¦ÁQ«‡ÉЕ™G­Yr±Û{+LŽ’&r•4÷c4½ÿâ1šCîÇh"Mr i¦È’kI³¥ ¹Rš2‹£V]£V]£V]£V]£V]£V‡ ·vöÖÎýÕÞ¹¿zH¤€®‹[ÿ§èÜ^=¤ HÒE†€$L¡3…ŽghÙ"! I0¾¥Áž%+:ð–æìV È3$aª«]uõ]²I™ÐƺÚjçë!Mšn¢+i¦‰\K†Á ÖCBš†i¨­vµÕ3j%Â4ÔVϨ•Óàkïœ`í¬½s‚µ¿«V LCmµs‚µ«V x-µÕ®¶Ú9ÁÚ;'X"×™z­)ÍÙrmi˜Æfwï›Ý½oŒŽöoÕ $Hš4ü/²ÚjW[=V&r-i˜'X{çkïœ`=m¬«­vN°ö³j%‚¶ÚÕV»ÚjçëCäšr-¹¶4a"WJÃ|ÔV;'X" ÓP[íœ`=„iÿdâ]µYÒl¹Bš4‘ 2q6¬î“ÜwÕ 2ñ®Zô"ÁéêÐéêàë!h«Cmõ¬Z‰„\!MJS&p©­µÕ¡¶:ÔVφ•‰\S¦¡º:TWGS>Mi4¥¡Âú®Z]¤+Î÷6gÕJ„itv÷oÕê&(hgÃJ@„a°µµÖ³`%¢oµïÛkëPm¬­ƒµu¨¶ÖÖ³S% ²$a,­c(”¡ 𽩱ž!+‘. É Ð ñÖ˜ŒEmu¨­¾SV7HyJ×E;{§¬@ÐU‡ºêPWêªC]õŒY‰,¹–4LG]u,6÷¡®:ÔU‡ºêØ|gónZ‘ÈÕ¥a[il6÷wÓ „il¥±u¯¨«¾›V$r1 uÕ¡®:ÔUßM+¹†\ÓD®%Í6‘+¤a>Áæ>‚Í}¨«uÕ‘J#y6­D˜FòÍHå“J#ÙÜßM+¦‘J#ùÎæ,X ¸JwK)uÕ¡®:ÔU‡ºêÐÉêÐÉê?²D¶\[š&MäB>ó—Í}þ²¹¿›V ÝD®!ÍfŠ,¹–4[$ä iRÄiàÍÙ´awË»i‚ÿ³OuÕÉ¡€C–\K®-M˜È•Ò¤4èªS]uª«NuÕ©®:ÕUϦ•È”kJÃ|TVggsŸ]ùt¥Ñ•Fç;›³`eR$Mš. o–¡xXZ§Jë»h2¥€$(­ü¥Ò:UZ'KëTi=ËU"z¥)‰À$R@d‹¿¯Â:ÞÎÌ¥P–2X(îs)”¥ 3Xº7ÛØ\ aéÞX,cSeuª¬N•Õ©²:UV§ÊêTY*«Seõ¬W™Èµ¥a<›Õ}ª¬N•Õ©²:CiáϨ•Ó¾µ™¡|Bi«û»jÂ4BißÚœ «."ï–P>*«Seuª¬N•Õ©²:UVϪ•È’kI³¥ ¹˜O²ºO•Õ©²z6¬LäêÒ0ŸRÅê>Kù”Ò(¥ÁU«®U«®U«‡$ êÙ·j$M®n’$CWžrM¹–4ÛD®&¤I§²ºTV—ÊêRY=«V÷‘öj|þ[µº óiJ£±º«V7aMi4¾µ9V&p©¬.•ÕwÕ „w‹ÊêRY]*«ßªÕM–\[®-MH“&r¡¬.•Õ¥²ºTVφ•‰\Cæ3XÝ¿U+i˜ÆPƒomΪ•ˆÓÀ[›wÕ „i°³¾£V c* •Ö3ae"oÖÖÅÚºT[k+_Wµu±¶ž¥*yÁÇ@d‹„€$Ì`)¾¡Y[1lưÙÞŸ-+€! Ï$‚1¨®®Í¶bؼ7TV—ÊêRY]*«Keu©¬.•Õ³g%2åšÒ,i˜…ÊêRY=V&r¡¬ž +“MÒ¤a>œ`=dÈÅ|Rip‚µ³V7a©4TV—Êê;kE‚+«¬.•Õ¥²úÎZ°Œ©¬.•Õ¥²ºTV—ÊêRY]*«KeuÏáϬÕM¶ÊêVY=³V"ÿÃÖÛfÉ­›K³S¹#ð€ç˜ÿÄ®AÖ»N3Âÿ¬p&«;7%eAìÊ)×”fI&r¥4e"WK³M6 êÙ;kõ·@¾³VÊj©¬Ö`u¯Ásæâë%!’r¥4%M›Èµ¥a*«5yG¬LäšÒ0Ÿ©4&«{©¬ÞY+¦1ùÖæÎZ‰0©»e*•ÕRYýÍZ} ÓPY-•Õ;be²IRšÔ•K¤åji¶È‘ eõÎZ‰ ¬Vð¾ÔVKmµÔV+”O( µÕR[½#V&rmi˜F(Ôݒʇ¥õ]µ"‘‰a¨¶kk¥²HeÁÚZª­¥ÚZ¬­¥ÚZª­ÅÚZª­w¿Jd HR¤H´€<›àÀƒ‹¶Bieм=Z¡¨±>cV21ÖRa-ÖwÏ @&4´R_-õÕR_½V&r-i˜Žújm~Mmþ´fmþ´fmþ´fm~Í»kräÂÏöÖáÏöþ¦­@äšÒ,¹B¦q”ÆáÏ9ß%+“&ÁÏ'þ¶­¾iô?þ|bÿãÏ'ö?~ÖÊoÛ D´÷V_mõÕV_mõÕV_mõÕV_ílïýGñwÉʤI†4Cš)²äb>Ci ¥1øîæn[‰0Áw7ï¶úX«¯6.AkõÕV_½KV&r…4!MŠ”\%M‹l¹¶4Lc±½÷âQ|«¯¶új/¶÷^Êg) õÕwÛ „i,¥±øîæÝ¶aKwËR>ê«ï¶‰\S.ôÕV_íPê«­¾Úê«­¾Úê«­¾Úê«­¾Úê«wÉÊD®) óQaíd{ïäQ|«±¶ë»mÂ4Ri$ßݼÛVRJ£t·”òQimÌæ`À%!—H´€<›@_j+ÿ\n4÷Vkm¶ÖVkífso¶ÖVkmµÖ;_% C`iíæ{šnÆÇfw÷¬¾` ȳB@÷ÖÙêoÐêK¶\G.œ­ÞE+4÷><‰¿;V&_×þÇw6ûóù[}É”kJ³DB®&EJ®’¦¥Aû[} òÙêª[]u««Þ)+¹–4KšI¹Rši¹Zš-‚ÏYÙƒ'Í·º„iL6÷=•Ç­¦Æ­¦Æ­.aSi¨«þÆ­¾ä;n55nõMr@Þ¹&r¡«nuÕ­®ºÕU·ºêVWÝêª[]u««Þ)+¹ÐUÉ&Ò i˜Æ³ÃúÉð·ú’I¹Rši¹Zš-Í1+±¬9ãV rMi–®ó]Ö¼$¤ iR]u««nuÕ­®ºÕU︈ºêVWÝꪻØÜ5n55nuI˜È•Ò|?~jÜê’–‹ùpÜjjÜjjÜjjÜjjÜê’) Ãh¾±Ùj­[­u³µþ¦­¾¤eÚ’ »ãgÂ÷æg~ïOÜŸ}¾7?=qo|zâÞøìsMZMNZ]P’4¾Ÿ-Ï€„{V“{VS{VS{Vóݳ(ÆpÃágHn­n­jÒjrÒê‚#ŽVÏ?4ß+¹¦4Sš%r…4)Rr•4-²åÚÒ Ÿ3”ÆàGÀkÝjjÝjjÝjjÝê¦Áu«KrŠHÃ4¸nõ&Ù"NƒwËä±û™üÐó3y&?ôüL~¨÷™üÐó3ù±‰ïŸi$r•4m"×–†ùL–w­[M­[]Â4–ÒàºÕÔºÕÔºÕC¤a‹-¢u«©u«©u«‡|?ä¼uõ/ ~ þoÝêK†\Ód“,i–4!‚Z9Üb½¤DZ®–f‹¹4ÜbZ·šZ·šZ·ºd™ÈÒ0 ®[M­[M­[]‚õÖºÕÔºÕÔºÕ<……ž‡¦¡Á€Sü˜ïóÖÕ/ ¹Rš2‘«¥Ù&rið¡ç§•†êêáë<ê«G}õ¨¯Þu+‘”+¥)iÚD®-Í1kóÍÍoÝêK¦@’0 í··žî~´p6ÎáÏFu?ê­‡½•·„Jëai=*­G¥õ°´^ Iˆˆ”H H‚XNÝ‹VÿGÖ]´úüò{ê¾~‹V_2 –@‘„®ºnŠ”\¥+·Èä€ 4?Dš!Í4‘kIÃ0š/IiÆPÍ‘†i 4¯ß¸Õ_2•ÆTñë7nõ%Lcêf™Ê‡G«ë7nõ%Ìg*‰ƒæK¶®Ì4¦ÒX8h~H“ ‘)×”f‰„\!MŠ”\% ÓXJcá þ’M( Ž[-[]Â4Biâ/a¡4BwK(ŸÀAóú[ýßãú[}É÷Øý’ïÑêC I»_2–ˆ\¬&ŽÝ"WèÊi"WIÓ&rmi˜O*w‰D¦Q8h~ˆ4L£”Fá ~ýÆ­þ¦Zøg‰õ·úæSJ£”Féni»?ä i˜ÏÛU¿dɵ¤ ‘”+¥)‘–«¥ÙÒ“óÿžu®_òtUa"×”f™ÈÒ¤‰\%MIÓ"[®- Ó8Jã·™)"ãyZ+ˆ³¸­•@¦-¢/ï|%ã~ùßÚJ@r¹{Uò)RŸ›z¼3¬_Ò"[@’2ðËçÍ— ‘) É"½RÈ$P2U‘´4ß?f‡ÊêPY*«Ceu¨¬Ž·¬þ}ñ·¬~É"Ò„HÊ•Ò0ž©0Þ%Ö/ÙÒ¸Þe«/á½³”Æ»lõ%Lc)¥{e)Ÿ¥4–ÒXºYËØXx*â!Ò0ÀSi’!Í4‘kI&r¥4e"WKÃ|Bi¼K¬ Ш¬þ–­@¤a©4Þe«/a>©4Þe«/AYý-[ÈÅ»%YƆÊêPYý-[}ÉkÊ5¥Y"!WH“"L£ðÔÈ%-Í6‘‹ù´ÒhV÷ß²Õ—0VghÖoÙêK˜Fó­ÍoÙêK˜F+ •Õß²Õ—8 Þ-›Õ}lV÷ß²Õ—0ŸÍê>6«ûØx†æ’ï1óCIIÓ&rmi¶4äð­Í8Êç<‡î_2åšÒ0£4ßÚü–­¾¤Läji¶‰\xk3ÿ1ß²Õ— i&ÁgéºßŽ:ÕZïˆA ȳ$AqŸ¿¼¥dˆLI–HH"P’4ÁçûvfâÛ™Ê`âíÌ;f &ÞÏ̧¬‚0ƒÉ ¦ny»Hëëki¶È‘ë@ótUa"o«§«’ÈÒ ¹OuÕwÖ .泔ƳÂJ" Ó¥ñ¬°‚0PÏ®ó ¥ñìZä$a¡4BwKÜ.FÒ$GæótU1E¤AWêªS]õîZé:Lãéª ¥+·‰^kKsLà*¾³¹+V߃ðÉÖK¦\Sš%ºrH“"8X:XÕ®ÕÒ®ÕCä:¸rãyï¥]«K†4Ód“,iÂD®”†ip…õ’–¦¥aܵz4O¿/íZ-íZ]òýÉK˜w­–v­–v­Öo×êï}¸ùÎæ·krHÐÎæfsÿíZý%êªS]õ·kõ%hîS]uª«NuÕ©®zw­DJ®’¦¥Á1ó<ÏáËV r1Ÿ¡4†Ò|oó[¶‘kKƒîþ[¶úK¦î–©|&NÝcò)‰;c%ð­Š¡Þì­w²J@’d‹èka2‹O‹Ä³Â sXÌáaý’ "EŠ äÙG|e¡PBoŽP(Á>Áç""ØÐ"”Bð¹ˆ6´6´>%ïë—๑H>%ê«¡¾úßÿ5MäZÒ0õÕHžÅGò,>ÔWƒK¬)’-räÂ3E·Z¿q«¿¯^lï¿q«/YºÎÒk…4èc¡¾ú·úÞê«¡¾ê«¿q«¿D}5ÔW£yòO_%‘f‰„\!MJS&rµ4ÛD.üËIJ2i’! óÙJã·"‘†il¥±ù/wÜj“ ¯¾ãV ÌG}5ÔWC}5ÔWC}5ÔW‰\!MH“"%ó9lïqØÞßq+¤‘ÿ˜F>K¬ Cši"×’&LäJiÊD®–9¿ãV G.æ3xÖœ:]ÍÁG¾ï¸Õ÷oûT_MõÕ;n%’r¥4%M›Èµ¥9&p©¯Þ)+¤1yÿ·úº˜Æd{Ï©|¦Ò˜JcòÝÍ·a“ïnR­õ7n‚ï}énYä ‘)×”fI&r¥4e"×-«ÿ÷Á¥—l“Cr¤9м}õKFˆH3E–\KšI¹Rš’†i¼ËV_Â|ÞÎú—ð—Ï­ò%Œâ)­ºÌ29$!@ HÒ[@|)x•·³~É„!<• ¿÷4·¬·¬–¶¬.)‘dxpÑæ­hÍjqÍê‚%P$¡ë†4L¬‘«E¶\[< Òa}ˆ4L‡#¬‘kIÃ48ÂzIJÃ48lµ4lõi˜‡­–†­–†­–†­–†­.a;Jãèná°Õ%9Etå’†iþxb•³ÃOHì·ªþ!û?3ñÎX™È5¥™Ò,‘+¤I‘’«¤i‘-×–ùhØjiØjiØjiØjiØjiØê¦Áa«¥a«¥a«KPŶªª†­.Ùr¹PUï°•ªêVUݪª[Uu«ªnUÕ­ªºUU5lu Ó˜øì÷K¾Ÿv¾6GX׿ëÚa}ˆ4LƒÃVKÃV—0 [- []‚sU [- [- []²uœ2kØjÝ«9$Cš!ÍYr-iB„ip„õ’i¹Z¦ÁÖ‡|ßü†­¾d˜È5¥Y&r…4i"WISÒ´È– oó¾-ks&`mÎ\2’d H‚κÙY·:ëVgÝì¬[õîW‰HpU,°>€tÖÍκ9ÀzIHÁ °dõI˜–¬––¬––¬ÿ˜åë%(c{3ެ½‹ªêVUݪª[Uu«ªnUÕ»^e‚ßÃ<æ`¦è’1D¤™"K.TÕ;i%Â4¸Áº67X×VUÝÜ`½„ùpƒumn°®Ã Öõµ‘kJ³Lä iBT±£ªz´pTUªêQU½£V ªªGUõ¨ªUÕ£ªzTUªêQU=ªªwÂÊD®–†ùpƒõ’#ó™Jƒ¬‘†ipƒõ!›åìý_$ºrÉÕ&z-Þ-“U쨪UÕ£ªzTUªêQU=ªªGUõ¨ªÞQ+¦¡ªzTU7X×áë:ªª‡¬Ù$C¦Á Öõµúó'íoÔêK˜F°œiÔjiÔjiÔê!‡d‹¹pG­ ªêQU=ªªGUõ¨ªUÕ£ªzTUªê°2‘kKÃ|¸Áº7X×áë%CdÊ5¥Y"!WH“Ò”‰\-Í6‘ uí´ÒàëÒ¨Õ%“` è•t)R¤Z@ž- c€E­õ¿dˆLIÂf\²ºDàÛÿX/i‚- ~«ð—Ê@«G«¿)«/Y2±Œ©¬þ¶¬¾„eLeõ¨¬Þ1+‘#×·¬Æ?–ÕK†‰\Sše"WH“&r•4%M‹l¹¶4Lƒ«V¡U«K˜W­Ò$̇«V¡U«K¾õì’2Ñkµ®¼åÚri4,«—Œ)" Ó`Y}Èçwú%!Â4XV/a>Õ=´jZµº„iL¥ÁU«K˜W­B«V¡U«K¾eõ’oY ­Z…V­.)¹JWn¦Á²zÉÁ•YV²I†4ÓD®% Ó`Y½$¥a\µº¤¥a>¡4â¤q I¥‘J#ñÖæ¦ÁÖøÇÖøÇÖK¾e5þq5~«V_Ò&‡dëÊG®ƒ×âÑêCÉ™rMi–HÈÒ¤HÉUÒ´4Lƒ ¬—hZip5~«V_Â4Zi4ÞÚÄoÕêK˜FëniåÓÿi™x³´Âx+ë_‚;ecx4ÞE+) ÓÑUB’)üþÅúê[@žóü%:ë%ƒ` ȳB@FpÁÁ»™xW¬@ôMßÍÄøÇ†ÚêP[`Ö|ÿ³Ž·«~Iš$Ié«i}}[š- ºêPWêªC]u¨«.°^²DB®&¥a\`¡®z'¬Lä:ÐL¥ÁQ«Ð¨U .°^‚.6ÔUXã7jõ%)WêÊ%Â4ÔU‡ºêPWêªC]u¨«uÕ¡®z'¬Lä iB¦ÁÖ‡HÃ4ÔUX/a\`ߨ՗0 .°Æàk .°^‚®:¸Àƒ ¬—”\èªC]u„ÒPW­4ÏÏ<š­4¶ÒØ8†¿„ùl¥±q ¿Q«/aµ Z…F­B£V¡Q«KØÏ`Qký-Z}Éi„€<% I H²Eô !•©Öz‡«$™"K@’ "EŠ äÙG|ÇC¡¨¬>CV2-™B/Ò¤HÉUÒ´4ÛD.tÕ©®:ÕU§ºê°2‘kIÃ|ÔUï„•\Ìg* uÕwÔ „iÌÿ‘ÞÙ¼£V LcéfYÊG]õµáݲîÿ"i’’†i¨«NuÕ©®:ÕU§ºêTWêªS]uª«ÞQ+‘+¤a>¡4‚Í}O᧺ê;j‚w6wÂʤI†4Ì'•FênQW}G­@˜FênIv±©®:ÕU§ºêTWêªS]uª«NuÕ©®z'¬Lä iBš)¹˜O)Rµº„ipÔê!Ò0ŽZ…F­B£V¡Q«Ð¨Õ%hgµ Z…F­rH¶ÈÑk1uÕ©®:ÕU凞ȒkI"LC]uª«NuÕ©®:ÕUï„• \‡ïlî„•‰\Sæs”ÆasÿZ} Ó8Jƒu…qÆÑÍ¢ÒºTZßM+ijÔZ[ëRk½V""EÐòl}GÌaà—ÿ1 ­u©µ®¡ šû;d 3|Os‡¬D¶€.ƒXð Mݪ«KuõݲY!ÚêÝ®’&¥)‘–«¥aj«KmõîY‰0 µÕ;h%Â{Mmu©­®¥4–ÒX|o³ÔVßM+- ÓXJ#ØÝßQ+¦ºYÔVßQ+¦º[‚ml©­.µÕwÔ d˵åB[]j«Kmu©­Þ +¹ø›2Ùæ—ÚêR[]j«wÔJ¤åji˜Fþ4ðÞæ7jõ%hc‹¬ñµú¦¡¶ºÔVW) N°^Rr•®Ü"[®- ÚØR[]j«wÔJdÊ5¥YÒ0 µÕÅ ÖXj«Kmu©­Þ +¹ðÞæNX™lÞ-œ`ߨ՗0 N°Æ;j‚¶ºÔV×V[i¨­.µÕ¥¶úŽZ}ˆÚêR[]j«Kmõýw ¹Bš†i¨­®Ãsø¥ººTW—êê ºûoÔ Dš!Í4‘kI&r¥4%Ò)¢ otVü­ø´ú&ÁÒz·ªø2ÿÑEB’)I;k žÃÿ¶¬þ|C*­1Ñåß+yAÈ#P’4ÁÐUŽ.»‚Êj¨¬þf¬¾d È"©—JiJš6‘kKsLàRW½ëU&rMi¦4LC]5ÔUï •Ó¾³¹ƒV"L#t¯„òQWdsT>©4ÔUC]5Ri¤ÒPW uÕPW uÕPW uÕPW uÕ;h%‚æꪡ®êªQlîñ°þyFã7hÒ$%M›Èµõõ0ŸR­»¥•Ï;Àú÷µZi´î–f uÕPWÖ½¡®ꪡ®ꪡ®ꪡ®ꪡ®zç«LäZÒ0uÕØlî±yꪡ®›ïlî •ˆÓ@W}­@˜Æas­@˜ÆQGwËQSW}­Hte–1uÕPW}­þ’TWMuÕ;h%2åšÒ,iÂD®”¦Läji¶‰\GtùT_MõÕwÐ „i ¥1øÎæ7hõ%Lcðnù Z} :kr# ’—  á¯¼TiM\"Ó”i‰è*!‰@ HÒ[@ä´ðKe°PÜsñ>UY“•õ7aõ%Ì`1ƒÅ74wÂJ¤$Ù A·þƒ©«¦ºjª«f0UÕTUMUÕ|«êŸ¿Úó­ª Ò´È–këµPÜóÝ^ýëJ|M¼[V #YÜ3ñ 4ñ®Y‘èµR¦‘JãÝ^‘†ip{5’Û«ñÎYðf)Ý,Å*–ªª©ªšÜ^½„ŠéX5‹‡ðY,îY,zÇ«LàRU½ãU&rMi˜O+æ4Ù<„OUÕl¥Ñ|csç¬D˜F³¸¿sV²•ÆfqOUÕwΊD.Þ-›U,UUß9+]¹äj]¹¥Ù"G.–³Ã➪ª©ªšªª©ªšªª©ªzÇ«Lä*i˜ÆQ‡olÞ9+¤ñÎY‘H3D¦\Sš%r…4øk°TUß9+Ö•·\¨ª¥ªzÇ«LÉfH3E–\KšaªªwÎJ¤åji˜Æøi ¸kÎ*~sVþFûÍY}É”f™èµB¯Å4¦ÒàœÕ%- o®Y~G–:k±³Þ•*ytÙ%Iˆˆ”H H²E;+Æ,îï†Õ,yô:R0ƒÀ›™ß‚Õ—0ƒ@m/µÕß‚Õ_Â_êÖHV±RU-UÕwÃê B¦)¥)¹Zšm"בMµÔTKMµÔT«Fñá™ß”Õ—0RÅ#ø»e%Â4ŠGð¿-«/a¥4ÔT‹óñÛ²úÞ,Í&VjªÅ€(\’r•®\Ò´È–kKƒÞ^jª¥¦Z›M¾ÔTKMµÔTïrÕ÷ ¼6{{©©Þå*“æuZWf>[ilööß–Õ_ònYý½òÛTA6 Ó8JCMµÔT‹Q¸„/ª©–šj©©Þå*“¯«ÕT[MµÕT[MµÕT[MµÕT[MõnY‰”\%MK³MäB>Ú² mY…¶¬â·eõçni5UmY]Â4¸eu ºY«©jË*´eõ¹¶ÈÑk¡©Þ-+ôöæðê%Sše"WHÃ4¦ÒPS½ËU&rmi˜‡W£9¼ÍáÕømY} Óàðê%LƒÃ«Ñ^æ@@4‡W/i$aܸuíW‰ ™K@—ÕE¤H‘"hy¶€$L¿T(ÉæþNXHÂ’!$ßм V_P’4ÁÐUÐÐPê~V_2hÁÔè%Sd H"·«‚HS"-WK³EŽ\î®Fswõ!rý·«þà¾d™IH“&r•4%M‹l¹¶4äéª$Ò ¦ñtU¥+3g!$åúîŠ>¤IZšm"בæà»àîê%cR3äbGiœûÎ$D˜ÆÓUAJš6‘kKsL¾®wÌ d,‘M2嚺ò’+tå&u’«äj‘-×–æ@ótU’MÂ|ž®J"×’†i ¥ñ쮂0ÚøYH³EŽ\šwÌêKÆ‘æv±/Yr-¹BšÛÅ@Î7§«‚ô‘kËuLàzº*‰4CdÊ5¥Y"!WHÃ4–ÒxvWAZ¦ñ”UæJ#”ÆÓVA˜F(gÌŠD¦ñ,HÓI‚ûòÝø’yÛÈ™’,‘$EJ@’&Øò \¼J)„»º 0äY! #(FPº5Šml?m•®VO[%)’)Í)dJ¹Jš6‘kKÃxTV÷³¼J" ÃPYÝÏò*Óxç¬þþÆÝ|kó›³ú’2Ñ•™ÏV[ilÝ,Geì)« ¼YŽòQYÝ*«[eõ³I¹XÏέî -WKƒ2¿«û~—Wÿó.¯~É0ù¾ÖQY½ãU&r…4!MŠ”\%M‹l¹¶4¨î4¨î\ÌGeõ¨¬•Õ£²z«û¬gw¼ÊD®#Íf²ºŸÉê~¦ò™¬îg²ºŸÉ·6ÿ%Lc*yáA˜Êê™|ks¦ò™Jc*Å·6w¼ÊD®) êÙ;g»e)•Õ£²úÎY´\[®- ÊêQY=*«Geõ¨¬•Õ£²zÇ«LäJi˜O°ºŸ`uç¬@˜Fü4ðÖæ³aÉ·6ïœÓHV÷£ÎúÎY‘ÈÅ»%YÐ[ë»f‚~††rT[këam=ª­‡µõ°¶ÕÖÃÚzª$iüþù®®~É€ä)­ C@’)²$ )R¤Z@žMpô1X¶RÙOW%‘f‰„\!MŠ”\%MK³Mäb8‡‡îçðšß˜ÕWÃ4ŽÒ8Ï4 Ò0Ãæ~Žò9Jã(Ôø­Y}‰Óøþ£DþcWÍßšˆ\Sš¥ë¬& iÒD®’¦MäÚÒliÈPÇð— ‘)×”†i ¥ñN¯~ óJcà%.a>Ci ¥1ðÎ&ïv•I“|V²I˜ÆÔ݃ÕKB$õZ¼[&Ž™/i¹Zš-Í1ë^ý¦±”Æ;½ú%ËD®†ù¼Ó«_Rr1Ÿ¥4–ÒX8†¿„i„ÒÃçoÍêK˜Fàþ’$L#”Fàþ’2Ñkñny§W¿d‹]ù@óN¯~Éi˜F*wzõKB„i¼Ó«_Â|ÞéU¹¶4L#•Æ»fõ%L£”Æ»f" Óx:+‰4L£”Fý§ ¶€<¼WØZó[ë%C@’)²$a¨­)‚øüK6Á€Žý}ÿò:¾ïhò±Y"! IŠ”€$ a3„ÃÕK¾KÄtð¾î’A ΙR$Kš0‘+¥IiJ¤åjiÅq8‡Ï»f%‚4Þ5+)²äZÒ„4i"WIÓ&rmiŽ \´J Z¥­.a´J Z=d“0 Z¥­.ÁßESeUƒV—,¹B®&EJ®’¦¥Ù&r¡¬N•Õ©²:UVï|•‰\K棲:9¾úi˜†Êª­.a´J Z¥­RƒV©A«Ô Õ%8hþ Z} âï|•\8Z:ZŃøY[ilÄÿ­¾„il¥±yǪ¾î·gõÕ0ž§$.Ù’àØßÀá)ü]®™’,‘D $i‚- Ï÷›^ÿðKf°þá_"Ö?†ò[°ú’% Iˆˆ”H H² ÐÆ–Ú* ÷RU]ªªKUõnV™ÈÒ„4)òý°Ä‡HÓ"[¯µ¥aÜ^}ˆ4ÌGUuq{õæÃ5«ÔšUjÍê’2‘«¥a>ÜH­Y¥Ö¬r©ª.UU­Y]2åZr-iBš4‘«¤i¹¶4Ç.UÕ»]e"×”†ùp{õ¦ÁíÕÔšUjÍ*µfu ÓàšÕC6 óáB@jÍꔳ¥ªª5«ÔšÕ%!ªêRU]ªªKUu©ª.UÕ¥ªºTU—ªê]³aªªKUuq{5µf•Z³º„ip{5µfu ÓàšUjÍ*µf•Z³J­Y¥Ö¬RkV©5«‡¦Á…€ÔšÕ%hgK窫yʼºrÉ6‘ §ðw»Êä i†4LƒÛ«‘&D˜׬.aÜ^M­Y]Â4¸fõh¸f•Z³J­Y¥Ö¬RkV©5«KpÒº¸Z³J­Y]Ò[@¯„tâ~ÉsÖø‡ãæ»Qõ©KñvÖ/Yô,]6D ¾õ3ÔYƒ5ÔYïd•È€dà—ÿ1 ogÞ +y‚@ f0ðÀwþ&¬¾„! ÷xÂù<ÏÏ{çoÅêK†\S®)Í’†™O>Ï{_Â0&ž÷¾¤¥Ù&ri˜Ï»½ú%xÞû7gõ%Lc)…§ßó·gõ%Lcáé÷K˜ÆR‹Ï{ÿö¬¾„i,¥|Â9?©™¿=«/áÝ|ž9‚Ï{Gð š>ïÁ'h"øMŸ ‰PÁç½#ø¼÷ݳI¥‘|Þ;Rù$Ÿ~äóÞ‘Ê'•F*wÏêK˜F*äóD‘ÊGm5¸gõï_VÚ³ºm5ÔVƒ#©=«‡ÈºršÈUÒ´‰\[šc—Új¨­†Új¨­·WS{V©=«ÔžÕ%Lƒ{V©=«ÔžUjÏ*µg•Ú³ÊP[ÕžUjÏ*µgõC²te¦Á‘€KR®Ô•K¤åjiØÇÔVCmõîY‰ ­†Új¨­†Új¨­·WS{V©=«KJ¦Á=«ÔžUjÏꤡ=«ÔžUjÏ*µg•Ú³ºd‰ µ&[«æ¬RsV—´€.³MôÕàá‘»]%2$™K@ž "EŠ äÙ’0|;\±º„LfÀ«ÔŠUrÅ*µb•\±ºç«91Í“ïŒÕlâUpºz‡«L’dH3MŠdI³¤ ‘”+¥)‘–«¥aÜ_}4Ü_MmZ¥6­R›V—0 ŽZ¥F­.aÜ_Íäþj&÷W/Áéjr55j•µÊÔéjêt5¹µzˆ\KW¹øÛ8y֜ɳæäþê%ÛD®# újª¯&÷W" ÓP_Õ¨Õ%Lƒ£V©Q«Ô¨UjÔ*5j•µº}L£V©Q«KÐÇR}5ÕW5juÉ’+ä iR¤ä*ü)Úl奄šê«wÔ „û«‘†ù¨¯&÷W/YÒ0 õÕäþê%Lƒ£V©Q«Ô¨UjÔ*5j•µJZ¥F­R£V—°©¯æÛWÿþ7}§¾„…L}5ÕWS}5ÕWS}õNX™|]¥¾Zê«¥¾Zê«¥¾Zê«ÅýÕ‡H“"%WIÓÒl¹F­R£V©Q«K˜§R£V©Q«KR@&ÆÃÚZª­ÅÚzתà™ø%ËZ©µ[k©µ–Zk±µ–Zë]®)Iš` ȃX~©0d•²J Y%‡¬.y DPƸc•Ú±ºdËtô-¡W.AW-uÕRW-uÕRW-uÕRW-uÕRW½ûU&rmi˜ºj%›{%Ÿ¢ÑªUjÕ*µju Óà¬UjÖ*5k•šµJÍZ¥f­R³V©Y«Ô¬UÞ«)Ò$Cš!ÍYr-iB$åJiJ¤åji¶4Ç.uÕâëCäšÒ0 ÎZ]Ò0ÎZ¥f­R³V©Y«Ô¬ÕC6 Óà¬UjÖêt±RW-uUÍZ]r…\) ÿPW-uÕ;be"ב]µÔUK]µÔUﬕȒkIÃ48Àúi˜g­R³V©Y«Ô¬UjÖ*[]µÿ1 ÍZ¥f­rH–HȺrÊUú KšÙrmiÐU[]µÕU[]µÕU5kuÉ’&LäJi˜X/i¹˜g­R³V©Y«Ô¬UjÖê’) ÃàªÕ%(lwÃÊD.Þ,“­ÙZ[­õNXàÆUmmÖÖfmmÕÖfmmÖÖVmmÖÖ;]% I H °¾šš²JMY%§¬ cÆÀ-«ä–UrË*µeuIé‹i™6ÁÑUPW[uU{V— ¹¦\Sš%r…4)Â,TW[uµUWµj•ZµÊ;ceR$C¦ÁÖK–4̇+¬Ù\aÍæ k6WX³¹Âú&a\aÍæ k¶êj«®¶êjs…õ’%×’+¤I¹Jš6‘kK³¥A]mÕÕV]½ËV"S®) ÓØJƒ+¬Ù\aÍæ kþ–­¾„ùl¥¡ºÚª«}”ÆQª«­ºÚª«ÍÖ‡HÃ:¦ºÚª«wÙJ„_ª®¶êj«®¶êêæ knÕÕ­ººUW‰\!MH“"%WIÓ"[®- ÓP]ݪ«›+¬ù.[‘ȵte¦ÁÖKR®2Ñkµ4-Í9r¡®nÕÕ­ºº¹Âš¿e«/aê«wÙJ„iLöÕ­¾º¹Âš›+¬¹¹Âšï² \\a½„i°´nްææknް^‚ÚºY[ß]+fÁÞz'«t]]~ïà3Î;ðô÷>ý½ƒ?·¹ïàãßwÀJÄ@¤Z@žMpàá/™A*ƒÄðïœ3H<ÿÎY0ƒäcß;ù óN¥L!ùÔ÷N>缋ÏÀïâSß»øÔ÷.>Õ¼¹ÃzÉ’&LäJiR†Á!Ö‡HÃ48ÄúhZipˆ5ßi«ÏïºfyßÍòþn[„4iò}šêݶ‚¦Mšm7Ëû»mõ!ª«[uu«®¾ÛV$Ò,‘Ðk…4)Rr•4- žß›ÏÀo±æ»mEÒ$Cši"×’fI")WJS"-WKƒÏôÞ‡Ÿy®m«Ô¶Õ%øLïóŸy~þñS¾öÎ?~¸ÈùǹKV&ß¿@êêQ]=ª«Guõ¨®ÕÕ3XÞÏàYü»m2åšÒ,iÂD®”†i ¥1øææÝ¶"‘ wËÿ?|ÔÊ™üp‘£½€£½€Ã!ÖK–®¼¤ ]'åJ¹J¤åji¶4Ç®¥|?jå,~ÔÊYü(š»de"WHÒ0ÅÏZ9Kù,¥±”ÆâGÑÜm+P¡»%Xçßm+hx·h/ਵ¶Ö£Öz4pX[jëam=¬­GµU¿Dm=\a½d,yB@’)IZd H‚OÇg[kÏ*¹g•ܳJíY%÷¬’{V©=«äžÕ¥W.}¹- nΰ^rdbÍO•Ïñ×l‘ÿ6w’Ï•ën[‰|Óxˆ4Sše"WH“&r•4m"×–æ»Ki<ÛV Ìg)¥4–î–¥4–Òx¶­H¤aO[%9$L#”ÆÓVA–Hèµx·DUuªªNUÕwÙŠD®%W˜È•Ò¤4%Òrµ4[äÈ…ªz—­D˜F±¸Ïg†„i¨«ÎR>¥4Ji¨¬Þ+“o}—­ a>¥4ZwK+vÖ©Îú[0 •ÖÉÒ:›…íݵi™¶ˆ¾”Ö»aõ­};¬d,y‚@Š)‚g Hr@pS¾£y÷¬@¦€$ldj¬ï ˆÚûÔÙêÔÙ*'­ Ú±2)’!Í4‘kI³¤ ‘”+¥)‘–«¥Ù"8hþm[ý%ƒïn~óV rMi–‰\¸Wî˜Õ)’Ò•KWF[ƒÍëé« Lcò yMÄßy+‘)×”fI&r¥4e"WKÃ4¦Ò˜<ˆ_“ñ¿y«/ÁAüZÊg)¥4â5ÓXüg‰µøØÈoÞ D.æ³ØÞ×âc‹ƒ— ½¯`{_ÁÇ"V°Ï¯`{_Á‡hVð±‘|Hd…Ò>6rç­D¶\[¦‘|ˆf%¢ùÍ[} ÓH¥‘|wó›·‘+¥a©4’ѬdCûÍ[} ï–T>ŇDVáïúÍ[}É”kɵ¤ iÒD®’¦MäÚÒ¸¸Äúi†È”‹ù´ÒàëC¤a\b­Å%ÖZ\b­Å%ÖZ\b­Å%ÖúÍ[Þ-›ÏI,.±Öâk-.±^¢Ë¤H´€<›@/ŒÚʯŒ3¬— ‘) É IÂaÜa½„)°µ.±^òý¶ã~ÉC¬õnZȳBW ™ DÐÆBm5ÔVCm5tº:]ÁîƒÝ=Ïšc°ÍÇ`wÁîj«wËÊD®’odb(Á³øwÞ „iL¾·‰©|¦Ò˜Jcò½Í·a“ïmB§«ï¼‰\¼[&Ïšãi« ¼[ÏšC§«±xÖ‹gñ±xÖ‹gͱx‹'ï±”ÆâYü·i¹ZæóŒ±’ÀÊ'”F(àYü;oE"WHÃ|Bièt5tºúÎ[0 ®Fð¬9’gÍ‘º[’gÍ¡ÓÕHž5Gò±‘Hž5Gò¬9’gñ‘J#•Fò¬ù¿d›Èu¤a>Å“÷wÞŠD¦QJ£xç­D˜Fñ,þ·aųæwÞ „i”ÒÐéê³2‘‹w‹ŽWCÇ«ÑÏšóð¬9ÏâóV_²äZÒ„HÊ•Ò0Ÿ£4ŽÒ8|w“‡οy«?ä7oõ%Cd $ÉÐ+…L% Ilyô¥à‡Y‹K¬— I¦È$D DŠ äÙGž‰_2nZ7­J›V—¬" ]˜©L…À-Ö‡èÊ-²$9¸0ÇXR$Cši"×’†apŒõ’”&¥ac}ˆ4LƒW¥«ºW"LƒW—0 \•®JW—äiÞ,¸zˆ\[W>&ø 9Æú&"S®ùY¾d‰Üî"MŠ”\%MK³Mä:мW M2¤™&r-i˜O)wà DšÂŸ¸* \]²å:KšÆ'^2LäšÒ,¹Bš4‘«¤a>c½dËÅ|8ÆZÅ1Ö‡HÃ48pU¸º„ùpàª4pU¸* \•®JW—|?Õ»4pU¸ª;g"‡dH3¤™"K®%Mˆ¤\)M‰´\- óáëC¾. \]2LäšÒ,¹Bš&EJ®’¦E¶\[¦ÁÅ€ÒÀUiàê´fkÕ¾Õ%!“H‰´€$›@ßj+þ¤nÖÖVmå®ÕK@ž„`‰õ’0vVZ•F­ iÔª8jUµ*ZG­.]m•«V”L%SK³Mä:Ò žµÊj«¬¶Êj«¬¶Êj«¬Þi+‘”+¥a>*«Í5ÖK˜ç­JóV¥y«K˜ç­JóVõ›·úó®ú7oõ%xæê7oõ%8hþÍ[ÈÕráhµŸ²ú÷à©“ŽôSVÿ|–âCšdH3MäZÒ„^Íý”UiJ¤åji˜Fý4ðÍ·Ác4ï¼È”f™læÓJ£•†ŽVßy+¹¶4[_ŽV{ó ù·rá¡ïÞ|èûÎ[‰„\!MŠ”\%MK³õ}m¹pǬL6ÉfšÈµ¤áÝrxìþ›·úû5Ä¿óV ­×ÂA|Ý礻eÿãAüþÇc÷ý?²ùÎ[,¹–\!MšÈUÒ”4-²åÚÒà1‘wÞŠD¦1øÍoÞêÏåwÞ ¦1øÏï¼ÓJcð1š;fe"“xç­>d*©»eâù‘»\%"º®$)R’´È„Aàë_||äÎZ‰LIÃÂc4愈@ HÒ[@üÁWÊ øØ÷;i‚7Gð¹‘|Jä™´")™Z__K³¥9&p%¢Ù©,’ÑìäC4wÉÊD®†ñ$¢yÇ­H¤a©4’ÑÜu+RÅGŠ´nUïº4S.æSJ£”†Úêæ`@mÔæ`ÀCšd‹½óQ[Ýj«[mõ®[‰,¹–4! ÓP[Ý͇hvó!šßºÕ—liŽ \›ÑÜ-+¹¦4S´Õߺˆ\)‚¶ºÕV÷V[il¶Õ½ù#Šûð6÷álîÃØÜ‡Ý}v÷}ø›wËÊD®”&¥a‡Ý}þ@ëoÝêÏ{õÍ1Ö‡|5wÝJÿ,q8ÆZ‡c¬—Ü4þüãÊákޱÖoÝ D®’¦M ŽVµnUZ·ª££Õ££Õ3xЬu«‡H³DB¯Ò¤4e"WKÃ48Æz âÏTc½dHÃ|8ÆzÉ’‹ùpŒõ¦1y¦ÒàëC¤a:hÅo¥Ã%Ö:\b½d ðª\b½$¤I‘¤ ¶€<øZð›Oà¸ù®U ȳ$añfÌ x ÷¬D‚nþ’g«ï¢È$XEº®.Ë’ÇÌ'y ’ÇÌ'yÌ|’Çð'yÌ|ŠÇ̧x g­D¦\Sš% Ã(ßâ1ü»mE"WKÃ4Jiáßq«i¥ÑºU8ÄZ‡C¬u8ÄZ‡C¬õŽ[}þJ~ª*4x‚æ´ÒàëCäÚºò1‹C¬— ¹¦4ËD®&¤ab}ˆ4Lc+ç­Ó8Jãðy¢wÜ „iÌÒÖ;nÂ4ŽÒ8º[ŽªØá3稜壪zTU«jÿcU½ä[U"ÍYr-iBš4‘«¤i¹¶4Çdÿý½Üÿ8ÄúMÂ4XUû‡Xû7nõ%LƒC¬ý·ú¦Á!ÖþÇ!ÖK¾Uõ!‡„ù°ª>ä i˜«ê%K®0‘+¥IiJ¤åji˜ÆDq4Ki°­>Dš) Ó`]í߸՗0¥4ÞØ\Â4–ÒXº[–ò t«„ÂAg}@’,]%d2)‘d‹è‹9$ºû%C@’I°ä )C~ßÏ\ÐòlI˜^†{V­=«æžUkÏê’¥ Ç‘F—)™J¦–f›Èu iT÷‡ÉfšÈµ¤a<­0Õý!Ò0 –Õ‡HÃ4ú¤q ÙÊg+êÞ¿m«/a[ilÝ,ûþ/’&)i˜Ëê%[®-ÍaY}ˆ4CdÊ5¥YÒ„‰\Ìç(ƒê~IKÃ4ŽÒ8xk󝿷mõ%ßêÞ¿m«/™"K.Ô³»m%WʕҠž •Õß¶Õ—l]ùÈ…ê>TVï’•‰\Sš) ÓPY*«Ceu¨¬•Õ»m%²åÚÒ0©4&«û»mÂ4¦Ò˜|kón[‘È…z6¦Ò˜JcênQY}·­@x·L売:TV‡ÊêݶYr-iB¦¡²:TV‡ÊêPY*«wÉÊ.õÕ¡¾:Bi«û»mÂ4BißÚÜm+¦|kón[0`u*­ï¶É!áÝ’,hƒµu¨¶.±^"IŠA ȳ ôÂ̯¢Ú:T[këPmœa½$$aÅŠojȹ ÚV *¬Ï¦L‹ tÔÕ¡ºúµú’’«åji¶È‘ uul–÷¡º:TW‡êêP]ª«CuõŽY™ÈUÒ0­46ßÜüö­þœýö­þjËûàk¿ûV LCuu¥q”ÆÑÝ¢º:TWß}+棺:TW‡êê]³2i’!ÍfŠ,¹–4ߟÕìwߊDši¹Z¯µõõ8 ”÷wß „i ¥1øææÝ·"Ù$!MšèµPЦêê»oõÉg( ÕÕ©º:UW§êêÝ·™rMi–4a"WJÃ4TW§êê]³2‘ëHÃ|–ÒX,ï¿}«/ù>PÔÚ·jí[]"ßOéwß ¤tå69$[W>r¼Và“E.&‡dJ3¥Y"¨«3ðÉ+—¤HéµJ¦J#ð94—hRi$>‡¦ß}+¦‘J#ñ94ýî[‘ÈÅ»%•O~?k¥ßy+™Fâchúûƒcýn[}þëq+à’I°ø2ºO¸ÂzIŠèË+IZd HÂnãƒÏ/S@žEò”€$úòJ+ƒþÏøVãß Õß¿¬Þº R$S®% SèÂi¢/muª­NµÕ©¶zW¬LàR[j«Smuª­Îãø©¶:ÕV§Úêݶaj«Smu¥qøÞæ]·úKÞu+’"ÒL“&YÒ,]9DÐÏ–Wßu+Ökµ\[äèµÐV—Úêxàû!M2¥Y&r…4i"WIÓ&rmi¶4„ëV­u«ÖºUkݪµnu ÚØšx໵nÕZ·º¤ä*]¹¥a\c½ýìnY™l’!ÍfŠ,¹˜ÚêZxüý!Ò0 µÕµðøû%[§¶ºBùpݪµnÕZ·º„ipݪµnÕZ·êߺÕßßËÁ÷6¿u«/ÁQóÒáêÒáêoÝê/Q[]j«Kmu©­.µÕ¥¶ºÔV—ÚêR[½[V&rµ4-Í9rh¸nÕZ·zˆ4LƒëV­u«K˜×­ZëV­u«ÖºUkݪµnu Z+ÿ"Pk]­(X[—jëbm]¬­Kµu±¶.ÖÖ¥ÚºX[ï`•€Ki,¥±x—¬Läâݲxÿn[ðnYÊg±‹Åâ9s,>6r·­DŽ\hg<‡à9sÏ™#xÁS÷¥<‡¿KV&r•4Ì'”Fðþݶa©4’çð‘J#•Fò_%"•O*ä¿JDò±‘û÷°\L#u·$›{$›{¤î–âc¡ÓÕ(>ÅÇF¢øH¢‰âsQ|H$Ji¹ÛV"-WKÃ|ŠÑDñ!šwÛ „i´Òh>Ds—¬Lä i˜O+æC4Ñ(kï´ÃhÝ,¸ã6Ÿ‘xw­@˜Íf;‹‡$bóÙ‘Ø|T$ö DJ¤$Ñw©o ¥•ÿEž}Ãh‚õNU È’0ƒƒÞþŽY0ƒÃ ŸŸyǬþ’ü‡_òæH•ÕTY}ç¬@AÈ„®šêªw¿ÊD®–f›Èu¤AWMuÕTWMuÕ;j%²äZÒ0¡4›û;kÂ4›{å3”ÆP“§ðwÅÊD.Þ,êªÉ¡€Nô»k’ººjª«Þ]+‘-×–]5ÕUS]5ÕUS]5ÕUS]õ®X™È•Ò0Ÿ¥4›ûo×êK˜ÆúiàÍݵaÁw6¿]«/aꪩ®š\ èäRÀ%%W›èµx·¨«¦ºjª«¦ºjª«¦ºjª«Þ]+¦¡®zw­D˜†ºjª«f²¹¿»V èªï®É&Ò0RÅæþîZ0·«þ9³IuÕäR@¿»V$rmtÕäR@§ºjª«¦ºjª«¦ºjª«¦ºê]±2‘«¤)inSUYM•Õ»k²•†úêݵa›ïlÞ]+¦±ÙÜß]+¦ÁÆú›µú†±†:+ÿ;p% “+—L‚%À—ù."EŠ”€$ý}Z#ŸÎ B¨ø%;ë²™’,‘D $i‚- «|ÿ;£öiÇê’! Ê™†¬šCV)DR/•Ò”HËÕÒliŽ \jª¥¦Zjª¥¦z¬Lä³D5ñ©+—¤HÉUÒ´Óà¦Õ%Lƒ›V­M«Ö¦UkÓê!M‚n¦M«Ö¦Õ%)W™èµx·¨©–šj©©–šj©©–šj©©ÞM+¦<ƒ¯`“צUkÓêæìíÚ´jmZµ6­7­.aÜ´jmZõoÓêKÐÄJMµÔT›V_Rr•\-²åÚÒ ©–šj©©–šj©©–šj©©Þ+¹Rš”†i¨©V)nZµ6­Z›V}7­D˜7­Z›V­M«Ö¦UkÓê4±RSÕ¦Õ%LCǪ¥¦ZjªÚ´êRS-5ÕRS-5ÕRS½›V"!WHÃ|ÔTk³·—ªª6­"Þ×hÓªµiÕÚ´jmZµ6­Z›V­M«Ö¦UkÓªµiuI ÈÄ›å( UÖþ‡_²®iÏê’) ÓÑUB’)Iš` Èó·:kc{õ‚) Ï„`Ī5bÕ±jŽXµF¬.AãŠUkŪñ7y««¶ºj««rÇê2…Li"WISÒ´È–‹Ñ¨ª¶ªj«ªÞ5+†ÁùÕK–4LCUµ9¿ÚZ´j-Zµ­Z‹V­E«Ö¢UkѪµhÕZ´j-Z]‚*Öªª­ªªE«KR®”«Dxƒ«ª¶ªj«ª¶ªj«ª¶ªj«ª¶ªêݯ2‘+¤ i˜F²¸_" ÓH¥‘|cs­@Jiߨ´ªê»hE"óQUmUÕwÑ ¤ä*¹Zš–f‹¹PÎZUµUU[Uõ.Z‰,¹–4̇ó«‘‹ù¨ª6çW/ÙÒ0 UÕæüêC¤aœ_íæüjÿ­¾„ip~õT±æüj7çW»9¿z ªj«ª¶ªj«ª¶ªj«ªÞý*¹–4a"WJÃ|8¿zIËÕÒ0 ί>䫹‹V"Hcs~õ’)Í2‘+¤I¹J”³Í€ÞÜèÍùÕÆ_Ü[¥u³´n–Ö­ÒºYZïN•€<"%Ò’lfÀÎzW«D†€$“` ÈR0l¯^Ðòl]…)à«çôê%(c[eusà’%WÈÒ¤4e"WKÃ{^eu«¬Þñ*“"Ò0 ί^²¤a>*«›ó«‘†ip~µ7çW/aœ_íÍùÕÞ*«›½9¿Ú›ó«—,]eus$à’”+å*iJšÙßÏ`ÙoYý’¢²ºUVï •È”kJÃ|ŠÕ}«ûVY½óU&rµ4ÛD®# Êü;h‚²úZ0V*«wÐJ„ip%à’Ò×Ó&º2ÿÌTYÝ*«[eõÎW™È5¥™Ò0 •Õ­²º7«ûVYÝ*«wÐJ„il¾µ¹ƒV GiV÷ß Õ—0£4ßÚü­@äb=;*c\ èÍ•€‡–1•Õ­²zTVÊêyËêŸ?‘î •È ]9tå4‘«¤i¹¶4Ç.Zµ­ZƒV—L¹¦4LƒƒV­A«K˜­.i$a 8j­gò§5ÏÄOkžÉbý/™2-It)R¤Z@žMpàÁ¿ÊâO¬¾;V’0ƒÅ „õ7cõ%% SXLám¬_‚\ðµ…R j^2MäZ!SIJ“Ò”HËÕÒ0ˆ·¬‚@“Ouÿ†ñ–Õ/a<Ïú*‰\Ì'•F*|ÞÚ| ÓH¥ñNZHÃ4ž²úgͳ×Wû´ù®¯>¤I–HȺrêë)]¹¥Ù&rhZip}õ’!͆ip}õ!Ò„Óàúê%L£•Fc‹¶ßI+§qàÚÊç)«$rM¹˜ÆSVABWN½VISº2>^ål~¼Êáúê%øx•ÃõÕ‡H3D¦\Sš%M˜È•Ò”‰\- Ó8Jãðãg~“VÿGöoÒêK¾?³5iuÉ·ŒmMZmMZ]"ß²úÃWÿ~ ÈþMZ|¦Í/ù®›_rLàzÊ*È0‘kJ3¥Yø¾>~æ!Ò0¡4ÞõÕ/i‘-×–æ@3ña<û7iõ%Cši"×’†iL¥1ññ3û7iõ%-"21 –ÖýwÜúööý[³ú’I ‹,¾Êt‘$EJ@¦€ÊúI¾8vÖKÁgèuBüG $iI¶.sô1•T l«)’)²$ ]8Mä*iÚD®- Ã`YÝÿÞýUiF¡º?D¦QJ£ðÖæ¦QJ£ðÖfÿ&­¾„ipÒjkÒjÿkœ3ïߤÕßë´n–VϼdMi˜Æ{² "W‰´\-Í9rh6>ñ’1E¤™Ò0­46>9rÿ&­@ä*i˜ÆVŸ•¸“V_Â4>9rkÒê’±©aGwËÁg^KDš”¦Läb=cY}ˆ\ß²ºï€Õ·Rî¯^2¤ÒL‘%×’&DR®”¦DZ®–fKsLàâ¤ÕÖ¤ÕÖ¤ÕÖ¤Õ%Lƒ[“V[“V—|OV/ùž¬nMZ]Òrm¹¶4„û«‘fH3MäZÒ„‰\) Óàþê%- Óàþê%GæÃI«=ÔX“V_2E–\KšI¹Rš’m°µN\‚~ÆïR­õŽW‰LI^(ä(Iš` Ès Qi‰î>R±¤R`gý­X} cHÆ|Oó®X}A ȳ ޾%怗)–±Qx(â’ïCÑu–HèÊ!MŠ”\%M‹l¹¶4 §Y݇ÊêPY*«£•Fã~ÿ­@äJi˜O+fuÿ Z} Óèÿ‘ÞÚü­¾„il¾µ¹ƒVM‚²:TVƒV_’ß·ƒû«—”4m¢×ÚúzŽ \Ü_}H“ ¹PV‡Êê´ ¹Bš)¹Jš–†iV÷ß Õò´iœ¬Þù*¹¦\K”ùùÕ}þcuÿ Z}IÉÕr¡¬ÞA+¹Ž\8gžçð—0Á·6sàþ’e"WHÃ4>ô}ÿ­@¤i‘-óJc*Ésøß Õ—0 ¬¾ƒVOž''öoÐêKPÏæd›oYýÞ-“mlêhuNž3ßù*“C2¤Ò0 î¯>ä„HʕҔHËÕÒliŽ \Ü_Ý¿A+¹¦4Lƒû«—|ûÞ“û«{ruOî¯^Ò[@¼±™øRÏ7_2$ñe–€$ŒË«)‘d0DæÃ1«­1«­1«­1«­1«=ÕT'÷¶Æ¬¶Æ¬Ò$K$ôZÌç°·ON¯>DšÙrmi¾{ïÅéÕ‡4ÉfšÈµ¤Ao_ÿØÛcV Ò”HËÕÒl‘#Þ×Ü1+4Õ¥¦ª1«­1«‡Èºršèë)iÚD¯µ¥ÙÒ ©.5Õ¥¦ºÔT—šêšx~fÿƬþÞ-œ^}ˆ4)Rr•4-Í6‘ ‡ð¿1+M2¤™&‡Ýlq `ÿƬ¾$åJ]¹D˜†šê³úv鵨Û×Â<Ñ^œ^½d˜È5¥Y&r…4i"WISÒ´È–‹ù„Òà˜ÕÖ˜Õ%LƒcV[cV[cV—àUcV[cV[cV—´€.Ì0¸eu ÎYqº ‡Í«xؼ°¼zÁ'¤H}m% CÀîê$aˆ– V—0„f\°º„)4Sà„Õæ„Õæ„ÕÖ„Õæ„Õæ„Õtœ«ò¯@®\‚r¶TU—ªêRU]ªªKUu©ª.UÕ»a%Òrµ4[šc×ÁzÓÖ”ÕÖ”Õ%S¦Á-«­-«­-«K˜·¬¶¶¬öoËêK˜wW/A¡ªªªÚ²ÚÚ²zˆ\KW“úü·ˆ·ª~I™4IKÓÒl‘#׿­ª_2¦ˆ4Sdɵ¤ i˜Æ[U¿„ù ¥1”ÆÀÏôîß–\ï–Õ—Ü*¶÷óvÿl’[ÜAšdɺrH“ºNÉUrÝâþý.nU‘æ@óVUM2¤™&r-iÂD®”&¥)‘–‹ù,¥±þGšP¡4Þ-«/a>ŸÒÜ¿-«/a>O|È!)iþ¶Þ([nY–Q¯ DÌb¯‚ÉuŸhvþZÖîÌÜ^,É•¢3Ä3Λ”\%ÍùUUi†È”kJ")WJÃ|–Òx:È‘†i,¥ñÛ]ý—l¥Á-«Ò–Ui˪´eUÚ²*mY•¶¬J[V¥-«&G`‘”€®‚cÖÄUuÌš‡‡ÍypØœ‡GðyxÚœ§ÍyxÚÜ“U"[@ý% bC5 Gð=W% OH °_UÚ¯*íW÷«JûUMPÇRu5UWyŸª«¦ºjª«¦ºjª«¦ºjoV™Èµ¥ÙÒ‘’‹á¨«®?<æ!Ò ‘)×”&¤I¹–4ÛD®#M™Èu¥a>ƒÍ][V¥-«&S.4÷5x¯-«&K®%×9riJškwW› ¹¦4Lƒ»«MRš”†ip˪´eUÚ²*mY=¤H˜·¬J[VMp¬ª-«Ò–Ui˪Iê:øý}¿éÝËU&riŽ4Lƒ»«&yȼ¸»úi¦¾<ónY}IJ³LäÚÒ¹Jšk×â’ømYýû¥—ß–È ‘Kr¥\)ÍÒuvŠHstå’«äÂ_b]›eu=]dH3Mä iÒD®% óÙJãÙ]%‘†iìÿ# ü•ÞÞ²a‡¥÷·eÂ4ž-+ÿêÓ8Jãèn9]Ï@JÀ\ÿÞ›Wá¾'ªp‰n­ Aòˆl‘# CèÕUHnÇ2$™! OHÁžÆ rd*Mr¿dÿá—Leÿá‰"M¾Oyˆ4!’r¥4Kšm"ב¦LäºÐ ~ï}~Óû]³ú’i"WHÒ0ÁソsV_Â4†Òxæ¬@˜Æø?Òà­2ñD‘úÍY‘ÈÅ»eâ‰"9$)Í2‘kK³¥9"%WIsABiž?ÓdˆL¹¦4Ì'”Fàù3õ›³a¡4ÏŸiÂ4ž² r¥a>©4ÏŸyH‘0TÉzÖsV"(«[eu«¬îdÛOY)i® \OYa*«[eu?ë LCeu«¬î¥4–ÒXüÞû;gõ%%WIƒê¾7¿ñÎY} ¾mõÎY\¬jΪ4gÕdɵM.ÉÑ•4%rue|Ó{3o¯>Dš)Â48¼Ú$¥aœ³jÂ|¿÷®9«ÒœU¦ÁáÕÒœUiΪ4gUš³*ÍY•欚à¤uó¤us" ´fÕäè2e¢ ã~_9÷P•€$S$$I)–È&8òÁøz¾+V¥«&Cd H") ÉÁùªf¬š‘Ø$8^=ü¥rÐÙêƒ'Íg𤹗«LäZÒ,i¶ˆŠ# £àúêC ™Dš!2åšÒ„4i"×’f›Èu¤)¹®4̇“V¥I«Ò¤UÔ±£ºªI«&LCuõ¨®ÕÕ£ºzTWêêQ]=ª«Guµ¬LäšÒ0ÕÕÃõÕ‡HÃ4ÔW×W›0R*¬š´*MZ•&­J“V¥I«Ò¤UiÒª Û;«­J‹VMŽ€.Sº Zkýá—(î¥ÒZ,­=S% O H²D¶€$G¤$aø™UY9cUœ±*ÍXg¬Š3V¥«âŒUƒ­WF[åŒUiƪIÉtuaÔ3íX5AY-•Õ² ¹Bš”f™ÈÅxTV‹û«MøO|* •ÕâþêC¤a*«ÅýÕÒ¤UiÒª4iÕ„ipÒª4iUš´*MZ•&­J“VU*«¥²Z*«š´zˆ\!WH“"K®%Í9riJäÊ…¯ô¤•Óàþj“) Óà¤U“”†ipÒª4iÕ„ipÒªŠû«)¦ÁI«Ò¤U”±RYÕ¤U“+å¾KeµTVKeµTVKeµTVKeµ¬LŠdHÃ|¸¿Ú$äb>*«ÅýÕ‡HÃ48iUš´*MZ•&­J“VU*«š´*MZ•&­š„®ƒ²ªI«Ò¤U“%×Ö•·4G¤ä*iPÝKeµTVKeµTVKeµTV‹û«‘kIÃ4¸¿ÚäHÃ4ÔW5iUš´*MZ•&­êrµ®V.÷WK“VM–€‰L[>r•€$¨­ø#ùª¶öv•È$R@- É!(y®$*­ã«„)L¦ÀõÕ&Œa2†©ÛCõNæÀýÕ&EÀøê«W}µ§«LäšÒLiB$åJi–³P_í=+‘’«¤a>œ`}È&a>ê«—¬MB¦Á Öºœ`mÂ48ÁZ—¬9$Lƒ¬u9ÁZW}õª¯^N°6™r…\!MJ³LäÚÒ¹Jšk—úêU_½œ`m2åb>[ip‚õ!Ò0 N°Öåk]N°ÖåëCŠ íj(àr‚µÉkš ïõÕ«¾zÕW¯úêU_½ê«W}µW­Dœúêåk¦¡¾zÕWÿ#a"WJÃ48ÁÚdKÃ|8Áú|3G.æÃ ֺ꫗¬õ®Z} ÓP_íU+¦Á Ö&KL}õª¯^õÕ«¾zÙWooX™\’!ÍfŠ„\!MŠ,¹–4[äÈu¤)iœÆ…‹¬÷·jòùïu÷7j&—äÛךèým½›CPº..;ñK”Ö&C@’)’0„É&Jk“-r$)†€ò~ÿðöƒ!„BˆÿM]„ÄÿR@fÀ²úM‚!°«6¹ ìª÷³ú’!Í4Ñ•Cš4‘kIÃ0ØU›iÊD®+ óYhî÷Ý´‘†i,¥±ðɦ ÓXJcá“Í}G­¾„i°«6©IÂ4–Ò`Wm2L ïvÕ&!’ºrJ³D¶\[¦Á®úi.4ìª9$Ìç ¹ßwÔêKB¦q”ÆoÔ D¦qÐÜï;jõ%U$7Dà*¥Á®ú"™Ò0 vÕ&)×2‘kKsLä*i˜»êý»ÿã9ìª÷]µ Ó¸ødsßQ«/aìªM˜ÆUÍý¾£V_Â4®Ò¸¼[†ºªF­®F­šL“KºrH“z­%×’k‹¹Ž4%råBWêªC]u 6÷1pß„i ¥1pß„i¨­jÔê!Ò0 ŽZ]Z]Z]Z]Z5™2ñfá¦Uô³^°a,­C¥µ÷«DôöÐZù/[ëPkl­ƒ­u¨µ¶Ö^©Ù’0vÖ %”ÞÛ¯°þóéëݱúj¦€$L!™GîoÈê ÐÆ†ÚêP[ÉTV‡Êj/W™,’! ÊêPY*«Ceu¨¬•Õ¡²ÚsV" cá¾IIã4PVÇV>[ipÔêjÔª ÓØJcó£Í;jõ%LcëfÙÊGeu¨¬Î4a*«Ceu¨¬.TV‡Êê(¥QühóŽZ} Ó(~´¥|8ju5ju5ju5jußQ«/áÝR*c¥48Єö¨¬•Õ¡²:TV‡ÊêPY*«Ceu¨¬ö¨•HÉUÒ ŸÉÖ‡ÉfšÈÒ¤‰\Kš%Í9riJÄià£MZ]¦ÁÖ;¹ÀÚmlª¬N•Õ©²:UV§ÊjOX™ÈUÒ”4(«Seuª¬ö¨•È”kJÃ4¸Àúi˜êêäkæÃÖ;¹Àz'Xï;jrI†4S@&Þ,Ü´j²Ld:2.‚Öʺ:fj­“­uªµNµÖÉÖª)«&L!QÞg²¼sÉêrÉêò üÿ*¬²j0ä M o îX5ÙºÌÑÛã½±XƦÊêTY*«Seuª¬N•Õ©²:UV§ÊjïW™Èµ¥a>›Õ}nVwmZ5aGižÃ÷¬•Óàk“ø<åþv­H6É’f›Èu¤ù>[äþv­@®\ý$š½ž?jò”UÿÊ*‰4S$äú>‰¦IЬ)¢+o‘£×:Ò”4×®§¬‚0«4žV¦ñìZ¤4) Óxv­H¤aWiSip†õ&gXï»mõ%Lƒ{M˜†ÎVSg«É½€›œa}ˆ\¡+§‰ÞÏ’f›èµŽ4Gš¹rá$>Si$Oš3yßÛV"L#yÔœ©|Ri$Ïšßm«/a©4’'ñ½de×Òݲ”O[S§­š¶ºï´ÕW“r l½½# «”ˆÞ NâsóÔ97Nsó,¾7¬DB@’$b‰l‚# O\xpQZ] Z]Z] Z5Ái3­®­®­šà°9›ó(†ÃÏšóð,>‹gÍYKi¨±þæ­@˜ÆR‹n~óV²•§Xïâkô³Å)Ö»¸Ð$å2ÙG@ž"ЛCmåïæÍ}©µ.¶Ö¬'$a‡p…õ.uÖÅκ8ÃÚ„!ÀÂֻбCàë]ÅXŠ!pà®âQìbK]u©«.®4)¹®\lgêªK]u©«ö¨•HÈÒ¤4ËD.森º8ÅÚ¤¤aꪛS¬‘fˆL¹¦4!’r¥4Kd˵¥9Ò ‹muÕÍ­€»ÕU÷¯«þÓ¼ö¯«~É49¼NèÊ!MŠ,¹–4[äÈu¤aœb}4“Í}sŠõ!ÒLi˜§Xïæëý­[‘È…vÖ[Vr1 N±>¤HÐŶºêæ\@“!×”kJ")WJ³¤aêª[]u««nuÕ­®Ú[V&E2¤a>œbmr1ŸT©4’ŸlzÝêû¹ê·n ÚÙoÝ ÄiðnQWÝ꪿u+Þ-‹]l««nuÕ­®ºÕU·ºê^üÞÈþuÕ/©‘æ‚pÝê!Ò i¦‰\!MšàgçºÕÕºÕÕºU“#M™Èu¥Á'­[]­[5™2ñfá¸U“% ²tÝ#S H‚ÖÊßœÔZ{ÄJd H) Ï÷k½`% É!(y®$—ß¡ù ZH2EB`“¤L"[ïæ˜è¥ŠàÊ„oÑœ?~o¤W¬LäšÒLiB$åJi–È–kKsDJ®’ùޱ>d“0ޱÞÃ1Ö{8Æzßu+¹Ö$aCi Þ,çWW¿¤Dœï–ÉïEœ_]‘fŠ„\!MJÃ4~uõK¶4ÇD®’æšÀüÍ»nõ%L#ø-šwÝêK˜F(à·hzÝJߢ9yÍû®[} Ó~‹æ¿EsTWµnÕdH3MŠ$¤ iRdɵ¤Ù"G®#M‰\¹PWÏR>Ki¨®ÕÕÞ²2‘+¥aKi,~¸y×­¾åý]·‘‹i¨®ÕÕwÝêKfˆÈ"©×Ji–4ÛD®#M™Èu¡9Jã(Ã/}ŸgŒdŠ„\!MŠ,¹–4[äÈu¤)i® \Å¿"ð[·™‹„a”Â(~û»§¬¶€$‡ äÁ[á/ùý÷ÃÒzTZJëai=¿Ö/I½ôa—!\þµ€gÒ @?õýzê¿Ä_ø-ZL‚Ø$©ë¦®»D¶\[W>"% ¾Ñ\OW%‘fˆL¹¦4! ÃüÆw ~ãû·mE"ב¦LäºÒ0Ÿ©4žq+i˜ÆTS7ËTÏŸt$Ò0Ÿ©4&¿ñ]“õ7nE‚× ~ÿ½§¬LÉ”fJ")WJ³D¶\[¦J#ø÷êYbýTOWa>©4Ri$ÿ~@OY}Ûô;nõ%Kš% šû;n"WÉ…æ^Éï¿kܪ ºj©«–ºj©«Öâ÷ßë×U¿d™Èµ¥9&r•4Ìg)ß+ˆ4CdÊ5¥a[iüÆ­¾„il¥±u·l峕ÆV[w‹ºj©«ÖáAsq,à!—g«¥³Õ:Dšýýútý–XA¤)]çêµpЬq«&ÃD®) ŽÝßq«/Ii–‰\[š-Í)¹Jüg‰wÜ Dš)°HB@×M™ D¶È¤Dô#áÈùþá—¨î÷Õýþ!–û‡î›ûýÃßÙü ZˆlIŽH H ð#žÂ¿{V_2$ÁAóÕÑê»hõ%[¦­ iJ@&þà“ÇÌwò˜ùN3ßÉcø;yÌ|'™ïT:“ÇÌý›Ž\K†1Æä1ü<†¿óÿHÇÌï²Õ—0PÁcøÞ±2‘‹÷J(ŸP¡›%”O°Œ]¬Þà1ü ¥‘©4’Çð7y ÿ.[} ªû]ühó[¶ ¹Bš”f™È…g‹ü–­Hä*i®®ƒg‹Ü§¬‚ ¹¦4SšI¹Rš%‚²zUV{ÙJ®Òk•4(«÷°ºßÃ'ѼËV_ Ó8JãðI4½ce"×’†ù>—ç·lErI˜ÆÑÝrt·Ÿ-ru°z‹ÇÌ·”NV¯NVoñÙ+·xÌ|‹ÇÌ·øp‘ÿþ×1‘«¤)ipÌü[¶"‘†i\>jå·lÂ4®Ò¸<†ÿ-[0gÙ „ù\¥q•ÎYóï·lErI†4“ ä ]Wof‰l‚# Oè…ÃÀ/¿§ð"S@’IIÂ`ã{ ÿCPò üd„ˆ4S¤ ëÿûbÂIŠ,¹–®¼õ~މ\% Ó(¥%Ö‡0«40nõ#Ò„HÊ•Ò0«4®î–«B¦ÂúŽ[} êûTa*¬S…õ·‘+äJ¹–4ÛD®#Í‘¦D®\(¬S…uª°ÎÁ7=n%Â4ÔXßq«/aƒõý·ú¦1”ÆàÝÒSVßþƒßße+K"ÓäUÑÖÞ]«/I™¶€$G@’Ñ{a,ñý›«’L‘$ ¤X"›àÈSW¼³T(© ¾ƒV? Il’"Ò0 ±þˆ\G¤ä*i.4Xbý‘M2¤™&r…4Lc) ,±þˆ4LãV?" ÓXÿGš­4¶ÒÀ¸ÕC˜ÏV[wËV>¿² rHx·l¥%Ö‡”®\Ò\,±þˆ4CdÊ5¥ ‘”+¥a>Xbý¹Ž4Lã( ,±þGJi”ÒÀëHÃ4°Äú#EÂ4Ji”î–úþ]ć ¬ÎÒÝRÊGeuª¬N•Õ©²:UV§ÊjOY™È•Ò,¹¶4Ì粺ÏËê>/?ÚüÆ­þ%ñÇ4âmzÜJdÊ5¥ iÒD®%Í6‘ëHS)rI®\ÌK¬)"Í ¹BšYr-i¶4ÇD.æ3¾ßÿ¸°Äú¦1•–XD¦%Ö‘†iL¥%Ö‡0©4¦î–ɾ¡4BwK(ÕÖ`m ÕÖ^²1ÙG@ž"ÐOÄð&ª{¨¶kkÏU È£×a&*­‘Œ3¬aÉ °Ãú†À_²¼‡új,¦°tk,梶j«±xk,–±PY •ÕPY •ÕPY •ÕPY •ÕPYíU+‘+¤a<›Õ=6«{¨¬†Êjl¥±ùѦ‡¬Là:ühGù¥qXÝCe5ŽÒ8Jãèf9,c¡²GwËQ>*«¡²*«¡²*«¡²ÚCV&r…4!MŠ,¹˜O±ºG±º‡ÊêoÚ Äià£MO[‰0Ëêþ›¶a*«¿i+¦q•†ÊjY™ÈÅ»Ee5TVSe5UVSe5UVSeµ§­DR®”fI³Mä:Ò”‰\(«=deR$Cæ3”Æ`u§­¾„i¨¬rÚê!Lc( •ÕTYå´ÕàÊ*«©²š*«©²ÚCV&r¥4)ÍÙrmi˜†Êjª¬ö´ˆÊ*§­Â|Bi«;§­Â4Bi„î–P¡4‚mzÈÊD.´5¾½T©(ØY“5ÕY¹jõI–È䈔€$L¿dgý ‘) I¤€<[@’CPò\H¶RøÕÕþskª®rÍê!! SŠ ­rÏê![šc¢+—4×.µÕ±2‘kJ3¥aj«©¶ÚÃV"LCmµ‡­D˜Æág.[ýGJi»;—­Â4ÔV¹lõ¦QJCmµw¬LäâÝ¢¶šj«©¶šj«©¶šj«©¶ÚËV"!WH“Ò0 µÕ¼Êç²»sÙê!% Ó¸LƒËV?"Í™rMiÐÆ¸lõ#r-´Õ¥¶ºÔV¹lõ#r¡Ÿ-µÕ¥¶ºÔV{ÇÊD®†ù¨­®Áî¾ÔV—ÚêR[]ƒñ½l%â4ÐV×oˆõŸ?dÞe+"™Ò„‰\)ÍJ¹¶\[´Õ¥¶ºÔV¹lõQ[]j«½l%2åšÒ„HÊ•Ò,i¶‰\G¦¡¶º‚ñ½cerI†4Ì'•F²»sÙê!L#•Fò³M/[‰0ÔÝ’ÊG­uñ—ìkœµzÈ)L.IJ#°$9% Þ ^E¥umœÂ¯Í.Ï1«‡„€$Ì`3UÖÞ²9’Cн‹ª¬.•U¬Y= äI]7¥a ªªKUu©ª.UÕ¥ªÚƒV ªªKUµ7­D¦\Sš†i¨ª®â[ýˆ\G¦QJ£XÜ9lõ¹Jãê^¹ÊGU•ÃV?"ÓPU]ªªKU•ÃV?"Ë™ªêRUݪª=ce"×”fJ")WJ³D¶\[š#Rr•4ȇÃV?rH˜ÏPCi ~°é«‘kÉÅ|TU·ªêVUݪª[Uu«ªö°•Šûž“މ\[¦1•Æä1|ÏX™Àü`³Cù„Ò¥ü`Ãa«‡0à›¶a¡»%”ªêVUå°ÕDUu«ªnUÕž±2‘+¤ iRdɵ¤Ù"G®# ÓH÷<†ç°ÕC˜ÆbqßKù,¥¡ºÊa«‡0¥4?ØlÖ½ÆÒͲÏÆ/YY÷Ö²ÑͶ*ëfeݪ¬[•u³²nU֭ʺYY·*kÏW‰èGBgåŸbÅ}÷ÍʺYY÷Q‡ðX²ú‘M 7ËZ;‡¬Â`)ݪª²ú™B&4Õ­¦ºÕT·šêVSÝ¿¦úÏQÈVSÝjª[Mµ×«L6Ɇñ\öö­¦ºÕT·šê¾Jãò¾'­DŽ\Gæsÿ4ÐÛÏóy7­@äšÒ ‰?¦qþx·œ?æsÔTšêQS=jªGMõ¨©ö¦ˆšêQS=jªGMõ¨©5Õ^°2‘kIÃ4†Ò<‚?Cù ¥1ØÛÏP>SiL¥1ù¹æÝ´ú¦¡¦zÔTßM+óù]âèPõ¨©5Õ3u·¨©5Õ£¦Ú V&rMi¦4LCMõ¨©5Õ£¦zÔT{ÓJ¤ä*i˜O*doç¦ÕC˜F*äçš^°2‘ ÝŒ›Va©»EMõ¨©rÓêGpåÅ6vÔTšêQS=jªGMõ¨©5Õ£¦zÔT{ÁÊD®’†ù,ööwÓ D¦±•ÆæçšwÓêK˜Ææçš³•ÏV,¬g+ž­0¶ÂPcí«õýMë7ð%#I&/z¥$b‰l‚# O\xàPi=Åâ~XZJk¯V‰¤€$ ¡Bñó̳c ©äA,ü¥BPYíÙ*¹B`“°‹©«þ–¬@¶\G®#M‰\¹ÐUK]µÔUK]µÔU{ÀÊD®”f™Èµ¥ÙÒ‘’«¤aCi ~²ùmZ0 uÕRWýmZ‘èÊK®m¢×:ºrÉUr]iÐUK]µÔUK]µÔUK]µ&Ïà{ÓJ„iL~²éM+‘#ב†ùL¥1•Fð“ÍoÓŠD®) Ó~¢‚_‡ømZÁÅ4ÔUK]µÔU›V$Ò ‹•ºj©«–ºj©«–ºj©«–ºj©«Vò ¾¬Lä:Ò0ŸTꪥ®Ú›V"Lcñ“MoZ‰0ÅO6µ”ºj-6÷wÓêK˜†ºj©«ö‚• ^K]µ6ëYýºê—Ì‘&DR.tÕÞ´Ùz‡[š# ÓPY­­|ŽÒ8lîÜ´zÈ4¹$!MšÈµ¤YÒ™ŽL%‚­àáEU|ÚÌ»gõ%ø KµÔY‹µÔYKµ  ©âhzºJD?SI‚’¿ä3ëâÑ‘˜±úy‚ ä1a—7ÇU(—ÄŠÕ|M÷1Ü?>ðþñy‰÷OÄ”ÕÈ”2-½-Í1Ñk•4% x—x—x‡Â cðq‰œ´zÓ|\âÊg(ÁÇ%rÓê!Lc(Á‡GÞ©4¦Ò˜ºY¦Ò˜|Úù|¾÷ÕPÀ|öûï÷ ]G¼SiL>.ñ?R"xxä|\â >.ñyƒK¼ÁÇ%ÞàÃoðá‘7ø¸Äž°2‘kKÃ|BiÉQ«‡0dwç¨ÕC˜F²»¿£V_Â|ÔV¯Úê;jõ%[®-žïÝV&Er¥Áïú.Œ>d„ˆ4S$ä iRdɵ¤ÙÒ0 ,°>„ù,¥±”XÂ4¶ÒØ|\âÝÊg+Íg¿ß­|6ÛG­~D®#x7 ÚÝJãð‰€÷°£]µÕ«¶zÕV¯ÚêU[½j«Wmµ'¬L¾}úª®^ÕÕ«ºzyyÕX¯ë-><ò?Â4JiŸ™xKù”Ò(Ý-¥|TZ¯–®–þ#,h°¨¶^ÖÖËÚzU[/këem½ª­—µµ‡ª$9’”ˆ~æo(ãïsEM†€$S$ôJI Åùœ:ŽgÈŠ`‘Á€gà—8†o26É”kâí³«6ùvÕ‡H³D¶\[š#Rr•4?ÅüÓ˜8gn2¤aß ix?SiL¥1ÑÜ" Ó`WSùL¥Ö&ÐÜÇÆX2¥ùv±‡æÃ®ú¹¶4ÇD®ïÉêC¤¹ `ýi†È”kJÃ40Àú#Ò0ŸT`}óI4÷ñ—J¬ÿ‘¥4–Ò`W¿U+¦±t·°«6IüηÐÜÇoÕ dËõ=Y}ˆ4%Í5kã¾É0‘kJ&r¥4ËD®- óÙJc+søñ[µú£4Îá›0£4ÎáÇoÕ „iÝ-çðM¶‰\¼[ΙrI®4šÂ9s“‘"ÒL‘+¤ù6÷&+E¤ÙÒ¹˜O)RçðM˜ÆUß ïªÕ—0‹oÐŒwÕêK–ï–˶vñŸhÆ;j" úÚøcAë +$™2…€$)b ² Ž€ÇÃM¦Èwbt N°ŽÁ Ö&ËD®-Í1‘«¤¹&p%F5Çàëœ`ƒ¬9$!Â48ÁÚdɵõ·4Gš2‘ëB³”'X› i¦‰\! óáëœ`ƒ¬M˜'XÇàëø-Z8 ÍV£šcp‚u N°ŽÁ Ö‡IêÊËD¯µ¥9&z­’¦¤¹ œ`}ˆ4CdÊ5¥aœ`}ˆ4̇¬cp‚µ ó9Jƒ¬cp‚uô~•I‘ðnák“yIB.æSJã)«$º2Ó(¥ñ”UÒ•¯ \OY&rMiÂD®”&¥aOY%‘†i\¥ñ´U¤ñ[´"‘fH3Mä iÒD®% >ÈÌ¿ïyóIÉôýoMpàŒc°9þg$“ ø*ÿÓE¤X"[@†€éÕH ðóp{µÉ‘iJòý·¹G«‰À䔀®‚zö[±úàŠ˜OY%Ù$S$$I‘¥—ZÒliÐܧºêTWêªS]u>ë« C]uª«ÎT<©4ÔU§ºjZ‰0gÐ „i¤ÒHÝ,\_S«S«“ë«cr}õ!r…®œrásÞäúj“m¢×:ÒiJäÊ…cø¹•×W" ÓàúêC¤Ii˜×W›0Ÿ­4¸¾:&×W›0 ®¯ŽÉõÕ1¹¾Úd _æúj“+CD¦ÁõÕ‡Èu¤)¹.4…/ˆ<¤H†4ÓD®†ù”Ò(|æ!Ò0R…/Ð4aõ¤q¡¹Êç*«»å*Ÿ«4®Ò¸º[.™çå1ó¼jg\_mräb=»ªg_ÁõÕ‡H3D¦\SšI¹Rš%Í6‘ëHS&r]h†ÒàúêÖàúꮯŽàúꮯŽwÐêK˜×W›ERº.J+þ`•ÖPi –ÖPiíá*‘D` HrJ@dø¥2|œ‰P(¡ âº.C eÌ ø¦¬DŽ€$Epõ3ñÞÀ?±d‹ä7""YÎ~#V2¥L)ÍÙrmiŽHÉUÒàÄ=¾êýi†šj,|ñ½IHÃ4ÔTcñ¿H¼kV ri˜ÆRKwÊR>[ilÝ,[ù¨©†šj¨©ÆVjª¡¦jª¡¦jª¡¦jª¡¦jª½]e"×”†ù¥qØÛãðë3¡¦ú®YHÃ4ŽÒ8ü\ó®YýKJi{{¨©¾kV rñn)6±PS 5ÕwÍêK¶\G®#M‰\¹ÐT{ÍJ„i¨©†šj¨©†šj¨©ÆU—½ý]³ú¦q•ÆåçšÞ®2ùºÞ5+i†È” Ýì]³ú’”+¥Yºšjª©¾kV_Rr•\hª©¦šjª©¦ÚÛU&r…4!MŠ,¹˜ÏPƒ½ý]³ú¦1þ4ð¹æ]³ú¦1ÙÛß5«/aSi¨°öv•\LcênaeMVÖwË ×Åí¥Îšì¬½Q% .’0VÖTeMUÖdeMUÖ^¬a¬¬øä™É’Åý·`õ! ^G fø0ÓsUò”€®ÂøKÝ*ª©¢š*ªÿý¯I¹Rš%Í6‘ëHS&r¡¨öj•É&Ò0Ÿ­46kû;dõ%Lc+Í5=d%Â46?Ö¼CV_â4PÛSEõ²‘‹wËaKÕTQ}‡¬¾dɵåÚÒ‘’«¤AmOÕTQÍb‘OÕTQMÕž­2‘kIÃ4Ji?Ö¼CV_Â4еý²ú—\¥¡¢š*ªïÕ—0 Õ²Yz-Þ-*ª©¢š*ª©¢š*ª©¢ºTT{¶ÊD®)Í”&DR®”f‰l¹¶4G¤ä*iÏ;dòýÚ§†¬††¬rIð=ïÅu€¡!«&K®¥+o‘£+iJäêµð=ï²Á7™gW›Li˜gW›¤4Lc* ή69&r•4̇³«CCVCCVCCVã²ú÷ ~¬y‡¬¾è²ú’¥+o‘#  —L¥—B_ëÕ*‘! É I’@Š%² Ž€QäèlU{VC{VMR®Ô•—4ÛD®#M™Èu¥ÁW—W›à¤ùpyµÉ ¹B¦1•Æäóg—W‡ö¬†ö¬š0îY íYwÏêß»å·gR$SšïsÎÇáFÀ8ÜÚ³j‚6v‚'Íç×V¿äˆ”\% Nš—W"ÍfšÈÒ¤‰\KšNãß Ë«_r¤9Ò0 .¯>îY íY íY5aܳÚ³j‚6¯=«¡=«¡=«&G×)Ið„œI.¯6S@ž HyôÞ¶$G@f€ÙÕ¡«ñŽX}É„1ÆÀ«Á«Á«¡«&[oæÈTWWÁY3+æŒU“A ?sŠK<_m’r¥4K„Ap|µ oñÂDÑC¤a8_}È&Ò0 ޝ6 i˜­†­" Óà ÕРÕРÕРÕРÕèA«C‚²ªA«¡A«&!WèÊ)Í2‘kKsLä*iJš ÂñÕ‡H3D¦\S¦ÁñÕ‡HÃ|8h54hÕ„ùpÐê!Er¡™JƒƒVMPVKeUƒVCƒV‘+E–^kI³EŽ\Gš’æšÀÅñÕ&Lƒã«M¦4a"WJÃ48¾:4h54h54hÕ„ipÐjhÐj”ʪ­š0 Z=ä’„®Ì48ÐdɵMôZ¼[’Õ½TVKeµTVKeµTVKeµTVKeµTV{ÐJ„i¨¬–Êjq|uhÐjhÐjhÐê!pqЪ Óàøê(ޝŽâøê(ޝ6Ai-–VíY íY59% ëòVQk-µÖbk-µÖRk-¶ÖRkíå*‘Mpä)‚+Å 8½:8cÕ äII kqzu¼3V_¢ ­g¬@ÔW‹û«M†4ìcê«¥¾Zê«¥¾Z꫽^e"בæHÃ4ÔWK}µ­DÆU_íE+‘+¤Ii–‰\[šcrHJšk‚×R_½ê«W3W3W}õª¯^õÕ«¾Ú“V"[®-Í‘¦LäB_½ê«W}õr€µÉ4‘+¤a>`¿ÿE" ÓàëC¤Áo——¬+”†úêU_½ê«—¬‘+åZ&rmiމ\% óQ_½`}ˆ4LC}õr€µ ÓP_Õ¤UæÃI«¡I«qÕWßI+¹ð馬R¤Hx·p€µ úØU_½ê«W3W}õª¯ÞÅö~ÕW¯úêU_½ê«W}õª¯^õÕ«¾zÕW{ÀÊD®”&¥a*¬—¬ã´ú¦¡ÊÚ“V `—¬ã´ú¦qt·å£ÒzYZ¯V®V.[ëUkíù*½=ÔVþ®ÂÚzU[/këem½ª­—µõ? ÅÙ’0–Ö’0„¤ÆÚ+V"S@’ HyØÆÔV/'zµJ@¶3vÕùÇE€&ß®ú¹¦HÈҤȒkI³¥9&r•4×®O6M˜»êÔ¤ÕC¤aÍ}¾“V_Â4†Ò¸Wš|»Ø|'­@äb>ìª9$C¦Á®Ú$äJ¹–4ÛD®# ó™hîM®\vÕ&L#pß„i°«ÎwÒêK˜O(@sŸï¤Õ—0Pœ´jÂ4Bip~u¾“V_òíbM¾]uþq~µIÈ•r¥4Kd˵¥9Ò”‰\š…æþ"Ò0…æÞ$¤a>ìªM–\Ìg) NZMMZ5aœ´šš´šìªS“VS“VS“VMB×ùvÕ©I«&K®%×–fKsDJ®’æ‚°«>Dš!2åšÒ0ƒæþi˜ËêCä:Ò0 NZMMZͰ2¹$Cš) o.Z5Y&2™J@’ ‚—aim2D¦€$!’’lIA Èóý¡Ç~É 8aõI¦HH’""hcܰšÚ°šÜ°jpõ3¡«uÕ¡®:ÔU‡ºjW™È•Ò¤4KdËÅt›ûPWÕšU¦ÁùÕ‡HÃ4ÔUçW›0Ÿ©4¦Ò˜üdó.ZÈu¤aSiLÝ-Sù¨«uÕߢÈ”+ä iRdɵ¤ÙÒ¹Jšk—ºjïW™È5¥a>©4’Í}¤òI¥‘J#ùɦ­D˜†ºêPWý-Z‘’!×4)Þ-‹]l¨«uÕ¡®:ÔU‡ºêPWêªC]u¨«ö¢•ÓPWꪃó«sp~uuÕÁùՇȵ¥aœ_ƒó«M˜çWçPWœ_ƒó«sp~õ!—$D˜çW›,¹¶Þá–æHS&r¡«uÕ¡®:ÔU{¿ÊD®†ù›ûoÑŠD¦QJ£øÉ¦­Dœ>٠ίÎÁùÕ&S@†ÁõÕ&ìkWõŒë«sp}µÉ!(]÷{Ùù‡_²µN¶Ö^©'$I‘-r$)†À4h[s0.¯Î9Ë`\^Ë«ó·b ²õ^Ž€L%°IPŦªêTUªªSUuªªö’•HÊ•Ò,i˜…ªêTUªªSUuªªöz•É&Ò0ŸPÁâþ´a¡4‚lzÐJ„i¨ªNUÕß  ®¬ª:UU§ªêoÐ $ä ¹Rš”f‰l¹¶4LCUu&á{Ð DUuªªÎ¥|‹û;hõ%Ìg)¥4~ƒV_Â4–ÒXü`óZ} ªêTU}­þ%[i¨ªNUÕ´a7±IЬ‘fKsLä*i® \S³É0ÁÏ®ª:ò9,îSUuªªö •È–kKsDJ.Þ-Gw‹ªê;hõ%¼[Ji¨ªNUÕYJ£”†ªêTUªªSUuªªNUÕ©ª:UU{ÐJUu^ÂOuÕ©®:ÕUçå!ü;h"×–†i\¥qùÁæ´ú¤ñZH3dš2…:k°³†:ë;gõ%G@¦Ñ›Agíé*‘! É I’@ æ0p ¬­¡Ú¬­½Z%þIO…2•Áäí1ŠëoÆ @&† Â*¬¡Âú[² -ÔWC}5ÔW{¼ÊD®†é¨¯†új¨¯†új¨¯Fð ¾­Dœúj¤òI¥‘lÚ#V&r¥4L#•FêfI壾ê«ï¬Õ—0 õÕP_íY+¦¡¾ê«¡¾ê«¡¾ê«¡¾ê«=be"â{ÄÊä i˜ÏVê«ï¬Õ—0­46?Ýô¬•ÓØº[¶òÑÑê;kõ/9Êç°…új¨¯ÆQê«¡¾ê«¡¾ê«¡¾ê«¡¾ê«=kRü M¨¯†új¨¯F±½Gñ >ÔWC}õµú¦QJ£xÿÎZ} Ó(Ý-¥|ÔWßY+¹XÈÔWC}5ÔWC}5ÔWC}5ÔWC}5ÔW{ÄÊäëJõÕT_Í?¶÷TaMÖTaÍ?¦‘<ˆg­¾d˵¥9Ò”‰\Èçµ¹$C¦Áµ€™\ h‚‚–¬­©Úš hrd*]½$öV•ÿ“gJÒÕýŸc„|j+€$Kd HrDJ@o±~ÉòþÛ²ú‚) .›òˆ Œ¥Êê»eõ%%ו õ,“Õ=UVSe5UVSe5UVSe5UVSe5¹ÁÚä˜l’’¦¤¹ Ü`}ˆ4CdÊ5¥ ‘”+¥YÒ0…GH6a> ô~ˆ\.•ÕTYM•Õܺ7TVSe5UVSe5UVSe5UVSe5UV{ÚJäÊ…²š*«y”ÆauÏãøTY}§­¾„¿¥q”ÆáG›wÚêK˜ÆauO•ÕTY}§­@É e5UVSe5UVSe5UVSe5UVSeµ‡¬Lêûo 7X 7X§¦­¦¦­šL‘+¤I‘%×’fKsLäb>—Õý¶ú‡,•ÕwÚ D®) êÙRY]*«ï´Õ—,¹¾<È%9"%WIsA¸Áúi†4ÓD®&MäZÒ0 n°69Ò0n°ÎÅ Ö¹¸Á:ßi«/aóûÄïÈÄ08ÁÚäûÌï&ËD.Æ3ñŒï&% É üOün2¦€<ºl È#°$9’0,°NÍYMÍYMÎYMÍYMÍYMÎY=`“$.»C…u©°jÐjrЪÁ• }u©¯.õÕ¥¾ºÔW—úêR_]ê«K}µg­¾í}©¯.õÕÞµ)¹JæÃ)Ö‡l’! Óà¸ÕÔ¸U¦Áq«©q«¹8Å:§XçâëCI‰8 Þ-€o2¦ˆ4Sš0‘+¥Y&rmiމ\% óáëÔ¸ÕÔ¸U¦Á)Ö©q«&LƒãV‘†ùû˜Æ­¦Æ­¦Æ­R$è«‹sSãVM†\è«K}u©¯.õÕ¥¾ºÔW—új[‰¹Ž4%Ó@{ßœb·š·š·j&ß.úŽ[}É2‘kK³¥9"%WIƒö¾u¸ºu¸º907ç"WèÊi¢+/i¶‰^ëHS&r]ip¿9ÅÚGÍ›S¬ó·ú¦Á)Ö&)Â4&?ÝlN±6aœb›S¬ó·‹S¬M˜O[·N[ßm«/a:oÝYœ¯•Õ£²zTVÊêQY=*«Geõ¨¬•ÕµYr-iÊê9¬îçð/´jØjjØjžâG›^²2ù~óëݶ‘&DR®”f‰l¹¶4]ƾä;­ùi.®|1­ùC2¤™&r…4i"×’f›Èu¤AY=—Õý\V÷sù-m[Mm[=äû~zÛJihÛjjÛjjÛjjÛª ê™¶­¦¶­¦¶­š\]eµTVµmÕdÈ5åšÒ„HÊ•Ò,¦¡²Z*«¥²ªm«&Ìg* ±Nm[5abmÒ0n[Mm[Mm[Mm[Mm[=ä’0 n[Mm[ÍRY-•Um[Mm[5 ¹PVKeµ—¬LäÚÒli˜†Êj©¬–ʪ¶­"Í™rMi˜‡X" óQ[Õ¶U“# Óà¶ÕÔ¶Õ,nLm[Mm[5™2ñfáT@“% ² ŽÀ÷ ¸XZK¥µTZÑçJ¥µTZ‹¥µTZ{ÀJ$$лے‚ÿ

ܵšÚµšÚµšÚµj‚®zÕU¯¶´kõ¹ÐήºêÕVÀUW½êªW]õª«þ÷¿ÒD®%Í’†i¨«^î°6aêªW]µw­D˜†ºªv­š0 îZMíZMíZMíZMíZMíZ=ä’”4Lƒ»Vóª«^uUíZÍw×êŸßý~IˆdŠH³D¶\[š#M™Èu¡ùuUK2¤™&r…4Ìg)ß®ˆ4hîÚµšÚµjR"Nãâµ´ ]«&“¦¹HB&4÷«ÒÚ#V"[@’CPòà½àj­—­µ§ªä I˜KëUií1+ýG†p?Ðð·’b³š³š³zÀ&I]W—e*«=^e¢—ÒT’°‹©«^uÕ«®zÕU¯ºjOZ‰0 n°6YÒ0 uÕ«®Ú+V&ß^¬]«è+“M2¤ÒL‘+¤I‘oW íZ5Ù"G¯õmgMJWvWfWm2LÉ”&LäJiRš%²åÚÒ0 vÕ‡HsA¸kÚµ íZ5aܵ íZ…v­B»V¡]«&ß.ö"9r1vÕ&WW¾Ðp+ É¹¦HÈҤȒkIÃ|ØU"WIÃ4ØUã¬M˜»jh×ê!Ò0 îZ…v­B»V¡]«Ð®U“o íZ…v­B»VñÇsÕ‡\’! ÓàÁj“+MäZÒ,i¶È‘‹ù°«6¹r]h¶Ò`W}ˆ4S¦Á²Ú„ùp×*´kÚµjÂ4¸kÚµ íZ…v­B»V¡]«&S`‘„€®’2ˆl‘# I‰èÍ\H å½Éç$ï‹dŠ„€$ÉÒ+3¬°÷¬B{VÁ=«W8gš³ ÎY…欚°±°†ö¬š0Ö‡èʬh—9p‡µ ÚP_ê«C}µW¬Lä iBšYr-i¶È‘ëHS"N}UÛV¡m«Ð¶UhÛ*´mÚ¶ m[5YSD®-óQ_ê«C}UÛV1ÔW‡újo[‰L¹¦4!MšÈÅ|¸Ãú¹Ž4Lƒ;¬M.4¡4ÔWµmõi˜·­BÛV¡m«Ð¶UhÛª ú˜¶­BÛV¡m«&ècC}u¨¯õÕ¡¾:ÔW{ÉÊD®”&¥Y"ßGÀ?¤HŽ\¥×*i˜wX" óQ_Õ¶UæÃm«Ð¶UhÛªÉ6‘ëHƒ†¦m«Ð¶UhÛ*†úêP_꫽m%r…4)Í2‘kKsLä*i® \ê«C}up‡µÉ”‹ù¨±î°>D¦Ám«Ð¶U¦Ám«Ð¶UÔ5m[…¶­BÛVM¦®2¥L"›àÈSú‰î·R‹_¢¹Ëæþ[´$ðÖ0´ Z5Ù’0„û¿â›éÏ4UÏ_°|É÷§îA«Ï/Ÿîþ%ƒ` È©«|¿¿A+‘-ÓÑ…4%råºÐŒ§¹É"û“ïø¾w“0Ñ•Ïxš;ˆ\[¦1”Æo‡D¦ñ·‘fˆ0‰o¿Ç;nõ%Lcêf™Oû’NãßSwËT>êªS]uª«NuÕ©®:ÕU{ÊÊ?EàûÞ‘&E–\Ì'ØÜ§ºªÆ­š0 î°>Ž[…Æ­BãVM˜Ç­R$)Í2Ñk¡M­jÜ*4nõ¹ÐŦºªÆ­š ¹¦\Sš&MäZÒ0 uÕ©®ÚSV&r]i˜wXCãV¡q«Ð¸U¦ÁÖxÇ­¾„ip‡5&wXcr‡õ!—ílr, &wXcª«ö”•É%áÝ¢®:ÕU§ºêTWêªS]uª«NuÕ©®:ÕU{Ü D]uª«NuÕÉÖиUhܪ Óàkhܪ Óà¸UhÜ*4n·j‚æ®q«Ð¸UhܪÉ$%¢ë¦4Kd HrDJ@$ø%œ;¬ÁQ«È) ÀäHR"W.Z5Áñª&­â´ú§*pÒê›$ua]w‰l™Ž‰^ª¤¹&pqõ!Ò ‘)×”†apõ!Ò,¦Áq«&Lƒk¬¡u«ÐºUhÝ*´nZ· ­[…Ö­BëVM˜×­š¬)rH˜"W‰\½ï–d! ÖPa ÖPa ®±6Ii˜† kpµÉ1‘«¤a>\c ­[…Ö­BëVM˜×­š iÝ*´nZ·j‚B*¬Z· ­[=D.T´Þ²2)’!ÍfŠ„\ÌG…5TXC…µ×­DŽ\Gš’Æi °ÆQ>\·ŠwÝêß?cTX{ËÊD¯•Ò0 ®[…Ö­BëVMPÈB…UëV¡u«ÖPaíu+¦¡Â*¬¡Â*¬¡Â*¬¡Â*¬½ee"ו…5TXC…5¸ÆÚ„i\¥¡Êúa\·zˆ4̇ëV‘‹ù¨´æ~É[¥‡¬D¦¯Š¶¦a«&)“À䔀äëÒ¸U“a"×”&LäJiRš%²åÚÒ‘’ w ÀâR@,.Äâ ktÖÅκÔY—:ëbg]ꬽb%r$)ýLh­øÝ}a†õtüOž' ¤`½}M…2•ÁDq_awÍê_‚·ÏÖ& !‡bcQW]êª+˜‹ªêRU]ªª½_e"וUu©ª.UÕ¥ªºTU—ªêRUíQ+þ{ËÖXªªKUu%‹ûJå“J#•Æâ›^±2‘kJƒr¶8ﮈ4K×AU]\ hrä*¹JTÕ¥ªºTU—ªêRU]ªªKUµW¬Läâof[ip‡µÉ‘†ùp‡µ‰ÓÀ›w×êK˜wX›0 î°>¤H˜§bq‡µ ÊÙRU]œ ˆÅ©€&W.TÕ¥ªºTU—ªêRU]ªªKUu©ª.UÕÞµaªªKUuq‡5Þ]«/a>Wi\¥qùÁ¦W¬Lä i˜ÏUªªï®Õ—0«4TU{×JÄiànÙªª[Uu«ªnUÕ­ªºUU·ªj¯X™Èµ¥ÙÒ‘’«¤Aq×®Uhת ¾½žCÚµjÂ4¸kõi˜w­B»V¡]«Ð®Uhת ÚÚæT@h×*´kÕd„€^‰éÌÿI²D6Á§$axûj­[­•sV¡9«&L!Ðݵf\³ ®Y=@’CPòàŸÞ§¬š  mÕUmY·¬ SŠ,½oŽdÛj«[mu«­nµÕ­¶ºÕV·ÚêV[Ýj«=be"WJÃ|¸ÂÚµ íZ5aKipØ*4l¶ [5a¶zÈ!a>¶ [5Y“d›ÈÅ»e³mµÕ­¶ºÕV·ÚêV[Ýj«[mu«­îÃcø¶aj«û(ŸÃî®a«Ð°U¦q”‡­š0 […†­BÃVMÐÆ4l¶ [5áj«»”‡­"úÙV[Ýj«[mu«­nµÕ­¶Ú3V&r-i–4LCmu_ÃkØ*4l¶Š¶A¶ […†­BÃV¡a«&hc¶ […†­rIJW¾r1 µÕ£¶z»ûìîGmõ¨­µÕ£¶ÚÃV"[®-Í‘†i¨­®°††­BÃV¡a«&LƒÃV¡a«Ð°UhØ*4l¶jrdâÍ2†*+ï8UVZ5™2…É%Ii–È䔀ܵzˆ\̇»V‘ õìj+àj+àr×ê!—¤Dx·h+બ^•Õ«²Ú»V"!WH“Ò0 •Õ«²zUVµkÕ¤¤¹&pq×*´kÕ„ipƒ5.7Xãrƒ5.7Xãrƒ5Þ]«/aì¬WS—¬q9ÁÚuíª´^M\M\µÖËÖzÕZ{ÃJÄ@dyŠ@?sÀ«l4÷ËÖ¸l­W­õr€µI H 63à–U†°Ǭ‚cVJ¢1«&(hWuUsVÁ9«)ÚêU[½j«Wmõª­^µÕ«¶zÕV¯Úê-v÷«¶zÕV¯Úêå kh×*´kÕ„ip…54l¶ [5)i˜—­BËV¡e«Ð²UhÙê!‡„ih(@ËVMØÆÔV¯Úª–­š°©­^¶Õüc[}È!ÒL¹Bš&E–\Kš-rä:Ò”ˆÓ¸ÐpÙ*µl•Z¶J-[¥–­R$ß~Ö„ip٪ɖkëÊG¤tå’æ‚°­>Dš!2åšÒ„4LƒmµÉ’†i°­69Ò”‰\WæÃÖÔ²UjÙ*µl•Z¶J-[¥–­š|ÛêC. óá²ÕCä*]ùšàý°­6&—dJ&r¥4) Ó`[}ˆ4Lƒuõ!Ò\.[¥–­RËVM˜—­RËV©e«Ô²UjÙª Ó@cM [¥†­RÃVM¾5¿Þ¦V­R«VM&Aðeþ§‹¤$KDïnKrDJ@¦€pYZ› ‚) O¤€<[@½}†Âºšœ²JMY¥¦¬šŒ!²I˜C1–Õ&© /¹¶4ÇD®’æûð÷‡ÀŲڄa°¬6™ÒLi˜ËêC¤a\µJ­Z5aœaMÍZ¥f­R³V©Y«Ô¬UjÖê!‡õlü1 ÍZ5Yr-]y‹]ùHS"W¯…²Ú³V"(«Ceu¨¬•ÕÁÖ&) ÓPYœamrLä*i˜gXS³V©Y«Ô¬UjÖ*5kÕel¨¬•UÍZ5Ùrm¹Ž4e"ÊjX™ÉfH3EB.棲:8Ãúi˜†Êêà kæÃY«Ô¬UjÖ*5k•šµJÍZ¥f­R³V©Y«&(cCeup* §š¹JW.i˜†ÊêPYíY+‘)×”&¤I¹˜ÊêøÍ°þóçéøµÕ/)½ÖÕ•Qæ5k•šµJÍZ¥f­R³V©Y«&Lƒ³V©Y«Ô¬UjÖ*5k•šµj‚‚Æß0ÕZwšL™‚@Iy¶€$zÿ% Ï€D­uºû(œÃ§¦¬’SV„1cà”UrÊ*9e•š²JNY%§¬rp y묕ա²:.CPWêªC]u¨«uÕ¡®:ÔU‡ºêPWí9«/™êªS]uª«NuÕÉ Ö&!MšÈµ¤Ù&riŽ4%råb>Cip# ''X› ‹MuÕ©®:9ÐdɵäÚÒ¹Jšk—ºêTWêªS]uª«ö¬•HÊ•Ò0 N°>DæÃY«Ô¬UjÖ*5k•šµj‚v¦Y«œœ`ÍÉ Ö‡IŠðnáJ@“-×Ñ;<Ҕȕ í¬g­D˜†ºêTWꪚµj’Ò,¹¶4Lƒ¬MJ森ªY«‡HÃ48k•šµjÂ48k•šµj‚v¦Y«Ô¬UjÖªIé:èªS]µG¬L.ÉfH3EB®&E˜†ºjÏZ‰¹Ž4̇¬‹³V©Y«Ô¬U“) Óà¬UjÖ*5k•šµJÍZ5921 ®Z%ïnUÖÉʪE«&S¦$E D¶È¤D˜K+ïóË.‹;—¬’KV©%«&I 3ÀŽUjÇ*µc•ܱz€.ƒ ¾;V©«&èb¡®ª%«ä’Uƒ”)uá%Í6‘ëHS&rá>¸ÀšÁÖ .°>Dš)r…4)²äZÒliމ\% ÓàkƯª~ ÓàkXrHB$åb> £M¶Þá–æˆ”\%Í…&”Ưª~ÉU5TUCUµç«LäZÒl¹Ž4Gš¹rჭš ªjЪ Óà ÕCŠ$ue¦Á‘€&[®c¢×*i® \ªª¡ªªª¡ªªª´úÿ{—]I’,¹vž_‘ÃêAªî­[uJ€ Ð3vÀÁA_@“`³þ>]Í,3­|Ü‹‹[gµˆ¹ «(1 w“C˜†ªê´aªªCUup54h´ Z…­BƒV‡0 Z…­BƒV¡A«CPU‡ªª­BƒV‘k‰l½ªêPUªªCUu¨ªUÕ¡ª:TUÏ|•‰\Sš) ÓPWꪃ ¬¡A«Ð UhÐê¦ÁA«C˜­BƒV¡A«Ð Õ!%$ ƒ‡°®mõ3¶VÍYÒ †€«ƒH‘"“ ò×XûúvÙC–€$ûMâ ?žP@šHdˆ„€$S@’"X:Ê~ƒ†•ÁÕUI& C8‹2…Hê¥Rš)Rr•4Kšm×µ½ Â0ºÂ¸ª*È0‘‹]ùt¥qíY‘HÃ4ºÒè:QºÒ¸ª*‰4Lc(«ª‚ ™i ¥qUUi¢×*i–‰\[š ÍUUAZ‘†i„Ò¸¶WAB„i\U„ù„Ò¸ö¬@˜O(P©³%O#‘«ËÅ|îªÚâú÷ú‡œª "Í)îo2åšr•È’kI³¡¹«*È"iÒtüUU0‘+¥Ii¦HÉUÒ,‘-ׯï^J£”ƽgõ&ÌçÞ³‘‹gË]UA6É”¦tœ’ íì¬W™¼ûZ¨ª†ªj¨ª†ªj¨ª†ªj¨ª†ªêÙ³™rMiJ¦¡®Ü^ íY…ö¬B{V‡0 îY…ö¬B{V¡=«ÐžUhÏêH™†î³æ~d×–Õ!ýuRæ}›õM†HH’zí) I,yÞ±àînrxõIº€›û¼Ëê› ‘+¤Iž¾wY}“’f™ÈÅp‚Õ}ÞeõMš4Lã_ý~×iïÂßsV !’r¥4S¤ä*i˜Fü$ \ÚL•ÕgÎ D.棲:UVŸ9«7I¹R®)Í”¦D–\K”Õ©²:UVÏœ•H—«KÃ|&«ûœ¬îϜ՛0©4&/mž9+¹pisÆ«LŠõlª¬>sVoÂ4TV§ÊêTY}æ¬ÞdÊUr•4Kšm—ÊêTY*«SeõŒW™ÈÒ0ŸÅêþÌYHÃ4–ÒX¼´9sV œ³ ÍY…æ¬BsVÙ$Cš0Ñk±žm•±»¬¾IéÈ% Û˜ÊêTY-•ÕRY-•Õ3g%2äÒ„4i"×”¦LäZÒl¸8gš³ ÍY…æ¬BsV¡9«CpŸUsV¡9«ÐœÕ!E°äY:.nÂWç çê¸á\Ÿù®Î;Î…éÕ HÂ$ú‘IPò,‚-Þý@s¯Áæ~¯XH2DBàýi“{Ä d HR"K@‡ÁÇF*ð#?@SÁÏŒTð3¥¶z Y„L!SJ“ÒL‘’«¤aá$ø‘‘J~@äž³"‘†ñ$«û=hÂ|Ri¤ÒH~€æ´"‘kIÃ|RiL~$â´aSiL~$â Z‰„^‹gËäDjò"5ùššüÈHM~@¤&?@S“©RÅÐTñ4g¾ÊD®! ó)~€æ´"‘†i”Ò(~€æ Z‰8 |€æ´Áhê*« Ìg)«¬‚„Žœ&ïê^*«¥²Z*«¥²Z*«¥²Z›Õ½®²úz‡›Õ½6«{mÞ‡¯Í2ÿ ZÈ•Ò0­46/mÎ|•‰\[äó Z½ .mžA«7Á]÷u—U¹B$åJyJSz‡%×’ eu©¬.•Õ3_e"W—f˜ÈÒ„4)2åšÒ”È’kIÃ4:ÿUâ´z“&M7‘‹gKçýægÐêMx¶t¼Óºt§uñNë3gõ&¸ÓŠÿ²-v֥κØYÏJ•€ü´ÁGhÖâ}øµxþ´‘‹ù,¥¡²ú Z½ ÓXJcñ>üRY}­¾“­³e+•Õ¥²ú Z½ ˘ÊêRY]*«Keu©¬.•Õ¥²ºTV—Ê꙯2Y$Mš&Mr ipŸys}õ"ÒL‘’«ôZKÄi º?ƒVoÂ4šÒh<[vc{­Þ$äJ¹PÝwc=ÛwY}“Yr-i6ˆÊêVYý&ÒåêÒ0Ÿ{}D.棲º»Òèü͇0 ÕÕÝù¢Ý•ÏPƒÕý´z¦1”Æ=hõ&Lc(¡³e(ÕÖÍÚúìY½ ³áøê!M¤ H2B@) I,y¶$\±:¤ HÂ’)pÄ*4b± X¸  «àŠÕ[¿¨ùæÍõÕCº4ÃD®&¤I‘)×”¦D–\Kþîœ_½ˆ4xèʳg2I†4a"WJ3Mä*iJš%rN•u_‰üF Y|ÄÊ^Jcñ4Òå]Dš&MäšÒ”‰\Kšm׿#höV>÷üê›t¹˜ÏV[iÜó«oÂ4¶ÒØ| ÏÞÊg+»­¾É;Ÿ|­@Šäô³7éru¹†4c‘„HêµRš)Rr•4Kd˵¡iWw¦q·Õ7éÒ ¹B¦Ñ”Æ=hõÇ߇”É"YÒ,i6È=h"Mér~ö&C®+¤9ýìM¦‰^‹ùÜmD® ͸º;È&iÒ4iNßÿLï¶ "Mˆ¤\)Í)¹Jš%Í6ë´z“f"W—†i„Ò¸Kë›È4uà"X:îÂq!¸;ë›4IºÈ„)$S¸;ë›L‘„1\Ó«LüȦR¸V¬Þ`ÈR0ƒ‰‚–ÏŠÕ›0„É“c¢Ÿ²Améä(T±Cz‘fH&r¥4L‚Uõ’f™Èµ¥a8ëOVÕübU=„i,¥±ðìÈC˜ÆR ÏŽÌgÎêM˜ÆBqÏgÎêM˜ÆR¬ªùÌYÈÕÛû`XU"¡× iRdÊuªêûÕKäTUiö[Óîª R$Mšn"×&LÞ¿û3gõ&ÓD®Ò‘KïU왳«)»ª‚,¦Ñ”†ªjSUmªªMUµÝUõMÊD®%Í6KUµ©ª6UÕ¦ªÚîíÕ7"!WH“"S®)MI³LäÚШª>sVo³e(ÁâÞîª " Ó,îí®ªo2E˜Æ]Ußd‰l½Ö†&”O°¸·`qowU}¦JãÞ^}¦J#xaÓBù„Ò^غ¯Úu_õÙ³z“”+åšÒ”‰\KšmWò.s¿Ëê›4‘.W—†iÜÛ« Ò0TÉ»ðÛ«Ù¹½šÏžÕ›0Ÿ©4¦Ò˜¼ Ö«LäâÙ2•+ë3g"S è0ïëÇ>ÙÜ»:+ÿ&Tgíꬵ«³vuÖÎÎÚÕYÏj•ÈD¿Áá¡ÊzX½AgH Ï¥PTWï +™–L[¿û™ÚjW[íj«]mõ W™ÈÒ¤‰\Sš2‘kIÃ|ÔVÇÓ_¼?ÔV‡ÚêøâµÍY´ ¹Bš”fšÈUÒ,¹p¶œ«.R$M棶:ÔV‡ÚêP[j«ƒë«‡L‘÷HÑE¤YÒl¸¸¾zH3‘ Ÿ9V&r…ŽÒ0 ®¯æàúj>“VoÂ4:fya\_ÍÁõÕCÞÏ9¤›àÏ“V‡„\±HRši"WISÒ0 ®¯^®¯¦&­."Mr i˜×W/" ó | ŸI«7YÒl¸Ÿ÷>¤ ¹º4ïO82DB®÷“ñÉM2CDšYr-i64W[%Ù$ ‰]mš.×&LäJi˜ÏT×ú*‰4Lcþ$ M)kÒŠDæSJãš´y?fä÷w6sp' ïI+¸JÇY–àíÀ²ðœ‘CAg„€<"S¤$aë3À„Óçï(ŰÃÆˆÓ!Ìa3‡§C‚@ æ°ñt‘CJ@¦E°u”÷³E2¾0U”Z³:¤ÉÕåêÒ ‘+¤I‘)×”¦¤Y&r!Ÿ³be2Iš4L£)†'Ѥ†­RÃV©a«Ô°UjØ*5lu‘"a¶J [et<[äf"óéx¶ÈEŠ$¤I¹¦4S¦Ññ$š‹H³A8luišH—«KÃ|†ÒxMjØ*5l•¶J [¥†­.²HPÑ"ðåÕ n°‚Â*¬¡Â\ ¸ˆ4!’z­÷c™ø½SE‘fI³Màº6XAš‰\]ša"WHҤȔ‹ù¤ÒH¥‘:[Ri¨°ÞÃV Ìg* ÖPaÕ°UjØê”kšèµJš’f‰l¹PXC…5Šõ= _×<¤‹ ¹†4!Mšèý0ŸR¥4Š—7÷° \KgËR>l­÷®‰LC½5Ø[ïY+fÁÞz«t\ž)ê­±ñ°‘Cš€$]dH""“ äY[àí9sV¯‘A~1®Y¥Ö¬RkVÉ5«ÔšU>kVo2õnÞÏ9¤äZ2m¸áa+™Ü8¤IÓM&É&LäJiR†Ñð0š‹HÃ4ÚOÒØÐt<>5n•·J[Â4¸n•Z·J­[¥Ö­RëV©u«‹Éê":2Ólh9ðx‘CšÓx¼È!C$ôZ!MŠL¹¦4% Ó¸†XA64ê«J#ð0šCº‰\CæJ#ð0š|Ö­Þ„ipÝ*µnuÈZ$hïZ·J­[‚¬©¬©¬Z·ºˆ\!WšÈ5¥™Ò”È’‹ù$o7'‡X/" Ó˜Jcâa4‡ i˜×­RëV©u«ÔºUjÝê¦Áu«ÔºUjÝ*µn•Z·J­[‚¾šê«©¾ªu«CR®”kJS&r-i¶ \‹ÿ8q¶¬LäêÒ0¥4Û{.<~%µn•Z·ºˆ4Lc)…‡ÑÂ4¸n•Z·J­[¥Ö­òY·zæ£Öšl­©Öš[a°¶¦jk²¶&kkª¶Î/üˆÚ:U['kë¬'$I‘) I‰,I~g5V.Z%­R‹VÉE«ä¢UjÑ*¹hu€ßÊêTYÕ¤Õ!K®-êÙTY*«SeõŒZ‰ ¹†4!MšÈÅ|TV'§XYÒ0 •ÕÉ)ÖC˜×­RëV©u«ÔºUjÝ*µn•Z·J­[¥Ö­A›*«Z·J­[åTY*«SeUëV‘kÈ&r¥4)Í)¹˜O°ºON±^šTœb½ˆ4]¦Áu«C˜×­RëV©u«C˜×­RëVY$LƒëV©u«CPƦÊêTY=ëV"!WH“ÒL¹Jše"ÊêÙ²2Y$MæÃ)ÖC†\ÌGeUëV‘†ipÝ*µnuÓàºUjÝ*§ÊªÖ­RëV©u«C†Žƒ²:UVÏ–•‰\Sš)M‰,¹–4(«Seuª¬žu+‘.W—†ùl¥Á)ÖœœbÍ©¶:9ÅzHIÃ48ŚϺÈ[ó¬[½ ª{±´÷²¸ϸ՛¤€‰LS.¹–€$¨­è9¥ÚzV¬Dº€$ƒ 䘒Ág @ÂÖ,ì°fq‡5‹;¬Y)¨±ò^´™: ÿ 9Õúj©¯–új©¯–új©¯ž+¹Bš&E¦\Œg°½×X³ÔWϸ×X/" óQ_½÷­@˜O(PÁ«›3ge"OõÕâf@7²¸Æš¥¾Zê«¥¾z®D†\Cš&MäšÒ”‰\Kšm—új©¯×Xér1Ÿ©4¸Æzi˜×X³¸ÆšÅ5Ö,®±^d‘ ¡7²¸pH“«›,’!M˜È•Ò¤4S¤ä*i˜†új©¯ž+¦¡¾Zê«Å5Ö,®±fq5ï+¹¦4LƒW©«ÔÀUjà*K}µÔW5p•¸ºˆ\,d꫸:$¥a#S_-õÕR_-õÕR_=sV&›¤IÓ¤é"C®!Mˆ¤\)Í)¹Jš%Ó@{®Þ„i°µ>ûVoÂ0šÂPo]ì­‹‹¹¸pH,‡Å/¤ÖºØZ—ZëRk]l­«óV¼f­1™"% SèJõßpÕ*µj•\µJ®Z]`’ŽÊ TV—ʪV­’«V ]l©«.uÕ3l%ÒåêÒ iÂD®”†a¨«.uÕ³fe"×–†ù¤Òà¾Ujß*µo•Ú·Jí[Â4¸o•Ú·Jí[¥ö­.R$ü{ûV©}«\êªÒLФKÓ¥"!WH“"S®) ÓPW]“wâ×d—×¾UjßêæSJƒûV©}«Ô¾ÕEäJiÐÅ´o•Ú·Jí[‚.¶ÔU—ºªö­AW]êªgßJdÈ5¤ iÒD.森ºÔU—ºêY³2‹c¬‘†i¨«.ޱ¦ö­RûV©}«C˜÷­RûV©}«Ô¾Ujß*µo•[]u««jßên"×Б‡4Hc««nuÕ­®ºÕU·ºêÙ·Ùr¡«nuÕ­®º›ûVYÝc½È& iÒD®)Í”†ipß*µo•Ú·Jí[¥ö­é2ñdé:5TZ7KëViÕºÕ!% ÓÑ›Ai=KV"M@’N0ä )ÆX(y–€$Lo[¬ùŒZ½IlCàkî`,ê«[}u«¯Þ»V2¡ +“IÒ¤iÒt‘!ÃQ]ݪ«[uõl[‰0 Ფq¨«›s¬¹9Çš›s¬ù \½ ÓàÀUjà*5p•¸J \¥®Á#Föä#Fö]Wßdã8ÅGŒìâwÏÀ•H—«K3¤ ¹Rši"WIÃ4JiH³‹`ÙKi,>f/å³”ÆR‹¤ù¦±”Æâiöâ#FöRKgËR>‹\Ù‹\y®Þß_Ý›ß_Ý›¤Ù›ßhÝ›ß_Ý›¤Ù›ßhÝ›\Ù[il>æ \‰,¹–4ï|æ×=Ç ²Hš4ÝD®!M˜È•Ò¤4S¤ä*i–Èûa’SWó \í·ë®« ‹„ù°®^DGiÒD®)M™Èµ¤Ù&pÝuDš&ÒåêÒ0®4î9Ö7a]it”÷C˜OW÷ÀÕ›0Ÿ¡4†Ò:[Ö6ç3põ&<[†ò?t˜™% Ï"Ð oxð^9ÅzHé’ ½RH‚!pŒu~c †À1ÖC þï\b_Xb=  È3& 3Hžb=dê0¥·Çs#±6zÈ–kC3±?zH3‘«K3Lä iÒD®) Óàë!KæÃ}«ùUx–äE¤i"]®.Í ¹Bšì$S®)WI³tœU$<[ž%y‘"iÒ4iºÈè|­Q$!’r¥4S¤ä*i–4Û.–ÕCš‰\]¦±•ÆÆ¥Í|&®Þ„i°¬ÎgâêM˜ÆV,«‡¼«ûl*«ÏÄÕ›4iº‰Ž<¤ ¹Rši"WISÒ,‘-ói¬îÏĈ4L£)†K›C˜FSÕý™¸z¦¡²úL\½ ÓhJCeõ Z™ÈųEeµ©¬6•Õ¦²z&®D¦\S¦¡²ÚTV›ÊjSYm*«Meõ Z™È5¤aCi ^Ú<WoÂ4«û3qõ&Lcü$ \Úœ‰+¦ÁÒÚTZŸ…+8äJ‘) —LK@¼üßU[kkcmmª­µõÌX Èc 2EJ@fÊ€W4Ϭ՛4I˜Ãdj¬÷®Õè ÌA}µ©¯6õÕ{Ùê ¶L(ï­XÞÛ]Wߤ‰t¹º4Œ¢XÞ[áNó!)Â0Š7­O±¼? WoÂ|–ÒXJcñâæLZ™È5¤a>Ki¨®>#WoÂ4–ÒP]m wšç3r‚#«®6ÕÕ¦ºÚTW›êjS]mª«gÒÊD®)Í”†i¨®¶­|6Ëû3r"Mérui†4a"WJƒ:ÖUWŸ‘«7Y&r¡ I+“"iÒ  uÕÕ®ºÚUW»êjW]íª«gäJ¤ä*i–4NuµwåÓ•†êjW]=“V&r…4̧+®³¥+ÕÕgä D.¦¡ºÚUW»êjçlÀEär…‰\)Í4‘«¤a>ª«]uµ«®vÕÕ®ºÚƒwâÏÈ•ÓP_í¡|BiË{Wa}F®@äZÒ0P©³%•kkWm}6®Þ„a¨¸v×3_% I,yôVP[»jkgmíª­]µµ³¶öÉ[ñÂØ[»zkŸ f2†ÉúÞÙZÏ’•<8h1ƒRÅ“£ŠújW_}¦­Þ„!¨¯võÕ³m%²$AA몫]uµ«®vÕÕ®ºÚUWÏ¢•‰\)MJÃ0TWûRª«ÏÊÕ›ðdÙJCuµ«®vÕÕgåꪫCuu¨®ÕÕ¡ºzV®DB®&E¦\Sš’f™È…{ñÏÊH‘4i˜FSåýY¹z¦Ñx¶håêÔ1­\M­\²äB]ª«Cuu¨®ÕÕ¡º:TW‡êêP]=›V&rMi˜Ogyª«Z¹:„i ¥1x/þ¬\‰0Á‹›1”W®¦V®¦V®¦V®¦V®¦V®a\¹šZ¹šZ¹šCuu¨®jåê.×kH")WJ3¥)¹–4Û.ÕÕ³ie"W—†i¨¯Ždy©|Ri¤ÒH^ÜÜ+W L#yqsV®@¦Ò˜:[¦òQkl­÷ÈHÈd 2EJ@’E _ µ•ÿÀÚ:T[këÙ­'$a…æ>J¡”2`g½‡­@,‹W4×°@g„ŽÂOÅ26TV‡ÊêPY*«Ceu¨¬•Õ¡²:TVϸ•ÈkHÃx6«ûPY*«Ceul¥±y'þ^¸"y»î…+f"W—¦K3DB®&E¦\S”±PY •ÕPY •ÕPY •ÕPY •ÕPY={V&r¥4)Í)¹˜OSœd½4]ip’õ"Ò0Ÿ®48É:ƒ“¬ó^¸"‘ õììYÉÅ48Éz‘E‚2*«ÁIÖCš\]®.Í ¹Bš”†i¨¬†Êj¨¬†Êj¨¬ž=+“EÒ¤a>÷ÂÕ· 'Y§®¦®¦®fp’uÞ W LCe5BiÄOÒàÙ¢²*«¡²©³Ee5TVCeõCÒD®)Í”†i¨¬†Êj¨¬†Êj¨¬ž…+‘.W—†ùL¥1YÝï…+¦1•Æä¥ÍÙ³2‘ eí^¸z‘R¥³…­5ØZŸ}+7D¦€$%²$a°¨µ~Hé’ ‚G` HRú…˜ÁÂõ̽jõ"[)lt÷gÕêM˜Âf ê«ÏªÕ›ˆ°Ž©®†êj¨®†êj¨®¦êjª®¦êjª®ž1+¹Bš&E¦\SšYr-i˜FS7ÏÀÕ›0Æòþ \½ ÓhJCu5›ÒhJ£ñlIÕÕT]MÕÕgàê;Q]MÕÕT]=W"C®!MHÃ4:ëjvÞ‰OÕÕT]MÕÕ3ge×àÅMª®>WoÒåb>ª«ÏÀˆ\LCu5UWSuõ¸‘ -UW“ƒ¬‡4iºÉ"ï¯Cž9+¹B®”&¥aª«¼Ÿª«©ºšª«gàJ„i$Ë{ª®f²¼?WoÂ|Ri¤ÒH-©4TWSuõ¸z¦¡ºšª«©ºú \H3DB¯Òœºúý»ë*È&)i–‰\šºÒÙ$Mš&Mr iB„iÜWo‚òþ \HóEõ¸úN–ΖÅòž¬­©Úúì[è¥B.) I,yðVø#[k²µžÉ*y†€$Œ€¥5UZϨ•H H¶BàéqV­^?²=³VßÎÕ{Öê †ÀäQBÇå;a Seuª¬N•Õ©²:UV§ÊêTY*«gÛJ¤ËÕ¥Ò0 •ÕÙx'~ª¬N•Õ©²zæ¬LäÚÒ0Ÿ®4ºN•®|ºÒèJ£ëdéJãúO$EÂ|ºÒPY*«Seõ¸úNTVÏœ•I‘tiº4C$ä i˜Æ`uŸƒw⟫7aƒ—6gà $”†Êê3põ&L#”FðÒæ¸‘‹gK°ŒM•Õgà DG^rmõlª¬N•Õ©²z®D†\Cš&Mäb>*«3YÝgòNü™³2kòÒfNå3•†Êê3põ&Lc*ÉK›3p%Â4¦Î–©|toõ¸zæS,cS÷V§î­ÎRÅê>uwuêîê,V÷Y¼Ó<‹wâ§ÊêTY*«gàJdË…²:UV§Êê\¼´™‹wâ§ÚêT[}®Þ„i,¥±x'þ¸z¦±t¶,åÃÅÖ©ÂÎ:ÕY';ëÜ Bu²³NuÖ©Î:ÙY§:ëTgì¬SõÌX‰4I:Á'¤H‘IPò,I˜~ã¦Pš2hÌ ñì8›V“$ôR!3eš2ùwX&r¡¬ž+“IÒ¤iÒt‘!ãQY=SVr¥4LCeµ:/mª+Ÿþ“4PVŸu«7aCi ^Ú<ëV rñdÊGeõY·‘«äBY-•ÕRY-•ÕRY=ëV"]®.Í&LäJi¦‰\% Ó¥¼´©P>©4’ÕýY·z<™çY·Y$!WÊ•ÒÌAR&r-yË…Ö]Vߤ™ÈÕ¥éÒ0»¬‚H“"Lã.«oR"K®% ó)V÷*V÷gÝêMº‰\Cš0‘+¥Ii¦HÉ…zV*«Ïº޼ØÇJeµTVŸu«7r ¹Bš4‘kJS&r-i¶ \ê«¥¾Z[ilV÷gÝêM˜ÆV›—6gÝJ„ilV÷gÝêM˜ÆÖÙ¢Òú¬[l’&M×q†€%:°$)2 J@žE f ?²¶.ÕÖÅÚºT[Ï„•HH®1Öoã­{ŒõMŠ` Èóþçü/õ³iõ&hh«3„®:O µÕ¥¶zoZˆL™Jo¯¤Y"[.”Õ5øàÄu—UIÒ¥&r…4i"×”†i ¥1XÝŸy«7aÁêþÌ[½Iér¡¬®Ð©¬îϼ՛ ¬.•ÕgÞêM˜ÊêRY]*«gÌʤHš4M¦‘¬î+y~%«ûJ¥‘¼´9óV"%WIÃ|ò'i º?óVoÂ4¦Ò˜¼´9cV&‹$¤a>SièÎêÒÕŽ€¹¸p¹PÆ–ÊêRY]*«Keu©¬.•Õ¥²ºTV—Êê3o"WISÒ0 •Õ¥²º–ÒXJcñ>ü3oõ&LcélYJCeõ™·zæ³”†ÊêRY]Ü ˜‹{s©¬ž1+“M³Eeu©¬.•Õ¥²ºTV—ÊêRY=óV"LCeum–ù­²ºUV·Êê³2‘kH&r¥4)Í)¹Jš%‚ÊŠÒ²5°5°YY·*ëVeÕ´Õ!!MŠLIJd H‚7ƒßH¥uwÜ…ßì¬[u³³~þSÈc  :.gvW(]te “c(Ý]ݺ»º5poZÈ:pšèÀSš2Ñk-iø_õÕ­¾ºÕW·úêV_ÝÁ[ñ[}u«¯nõÕ³n%Â4ÔW·úê¥lïϾÕw’J#•FêdI¥¡¾úì[èÈLC}u«¯nMlMlõÕ³o%¿/ÔW·úêV_Ýê«[}u«¯îÉö¾ÕWÏš•‰\Sš) ÓP_Õ¾Õ!LƒûVSûVSûVSûVSûVSûVSûVSûVSûV‡ mõÕ­¾ª}«‹È…†vÖ¬LI“¦IÓE†\CšI¹R¦¡¾ºÛû^üö­¦ö­æÞʇûVSûVSûV‡0 î[Mí[Mí[Mí[Mí[Mí[Â>¦¾ºÕW7'ê‹}õ"›¤IÓMäÒ„‰\)Í4‘«¤)i–È–kCÃÊZÚ·ºˆ4LƒûV¥}«Ò¾Uiߪ´oUÚ·*í[•ö­JûV‡¼ Z½ÿR­/ÖÖÒ¸Õ!2u™†€Ž2 LIŠ` È£·ÂTX[i’0†Á®ja ƒ1°´7­Š›V¥M«â¦UqÓª´iUü[#ÐÆ.2IºŠ2vHèÀ! S`Y½ˆ\%²äZÒlhXV/2IËêEäÒ0 –ÕCRš”†i°¬^D¦Á}«Ò¾U}+¦Á}«Ò¾Uiߪ´oUÚ·:$»H‘Li˜Ëê!K®%ÍaY½ˆ4M¤ËÕ¥"!WHÃ48ÆziJ¦Á1ÖC64KipŒµ¾8ÆzÓàkißê"‹„ip0 ´ouÈÔqjˆH³D¶\¬g,«‡4¹º4ÃD®&MäšÒ0ޱ²äb>*«Ú·ºÈëßi"ïÏ•ö­JûV¥}«Ò¾Õ!¨gÚ·*í[•ö­Y:ʪö­JûVÕTV›ÊjSYm*«Meµ©¬ž}+¦¡²ÚTV›Êªö­a>c½\Ü·*í[]D®. Ó¸ë³àõì[H“"S®iÉ´ øñª¬ ´\Ù¼I—K’„ˆÈ)I~¥Oiµ¯­–‹~üw:>`È£× IRd HR"K@†ÀÏÉÒIi„Ž“$¥™&r•4Ÿªz?*dÿF–ȧª’@sUUÖD¤é"C®ßb*Ÿ©4®)Vsaóý,¿«*È$YÒl¸îm«7i&ruiz‘ ¹B®&uœSUA¤)‘%×’fCsWU"iÒt¹†4a"WJÃ|–Ò¸§XA¤aë'ilh¶ÒØJãÞ¶z法Æ]Uß$ ÓØJ㮪oR&z-ž-ªªMUµ«ªö/Ü…?Uµ«ªö/|üý!z­Ðk¥4ÓD®’f™È…ªªm«‹,’&M“¦‹ ¹†4LCUUÛV¥m«Ò¶ÕE6Éq<[TU»ªjWUíªª]Uµëæjçë!L£³¸wN±^D¦Á)Ö‹Hƒâ®m«Ò¶Õ!LƒS¬¥m«Ò¶UiÛª´mUÚ¶*m[R’0 N[‚û¬ü8PÚµ:¤ ¾ÌDŠ™’”È„!ðGÞ‚ÿ&Ò$! O¾ÿòÍ÷ßë³z“"XòlHî1«7yàû"ø3â.@qÍê2…n2÷É›ÌgÎJ¤ä*i–4Û.î°ÒLäêÒ ¹BæÃÖÒ®Uiת´kuÓà°Õ!LƒÃV¥a«Ò°UiØê"E‚Ûª¶* [’rM½Ïî°²D¶ŽŒ›ð}ó&sçëE¤aÜa½ˆ4! Óàë!Ìg󖻆­JÃV‡0 î°–†­JÃV¥a«Ò°UiØêt±¡®ªa«Ò°Õ!S®©#—4KïpÉ…v6ÔU‡ºêPW=3V&r i˜†ºêàëE¤aꪃ;¬¥a«Ò°Uiتΰ•Óà°Uiت4lU¶* [‚.¦a«Ò°Õ!LC]u¨«uU [ÕPWêªC]u¨«uÕ3l%r…4ÌG]up‡õ’†i¨¬î°Ö™±2Ù$MæÃa«Ò°Uiت4lU¶* [R2ñdá®Õ!û}ƒzðGÞ„F­Þ¤ Èäë(!‰À¤–€<ï[ð¸Ë7¦2¸öWß  È3$a“Lþ3Ä3dõ&% ÉÒ/Étj਺­:t[uè¶ê½e SÈ”&|w¼Ç<î¦ú&%²äb4Å{Ìcñó¸›ê›0Œ¥0î Ö7Ò0Å{Ìc)Ÿ¥4–ÒX¼6¬LäÚÒ0Ÿ­4¶N–­|6ï1ÝU}V­Þ„iè®êÐ]Õ±yþYµ‘kɵMÞ®øâ=ø³ae"W—¦K3DB®&E¦\SšYr-i˜FS÷àŸU«7aMi4ž-ÑxÇýYµz“”kÊ5IISÒ,‘-׆ænªo‚»©¾Ir i˜O¿z;ˆ\̧+®4î Ö7a]iÜ«V Ò0{Õ D¦1”ƽjõ&ø8ijj"óü©4Ri$?<©4Ri$?<óùOL#•FêlIå3ñ#Kë3iõ&]@¦AòˆL‘d‰è7Bi=ÓU"M@’N0ä )Cá‚æ W ȳt¦ËR(j«¡¶úLY½É ÷UC÷Ucñ.|pƒõ"r•4ËD.Ü…?ûU&“¤IÓ¤é"ïgÐÔ³iõ&!’r¥4S¤ä*i–4ÛäízF­Öº>Êþf"×û‰<‡¼x‘" ¹R®”kJ3¥)‘%×’fƒÜm¤Þi´«»¿Éi« Ò iÂD®O>³Ýwð2MФ¤Y&rm½Ÿ÷Ó•ÆÝVA¤a]iÜmõMB$åJyêý”‰Ž¼¤Ù&pÝmõM˜ÆÝVߤKÓ¥aw[yÿ íµy?>²žQ«7)‘%×’fCx˜æEI“¦›È5¤ ¹ÞÃ<Ù$L#t¶Ümõ­Y"[¯µqä¼ Ù÷#ßmDš<Î0Ù$! ÓH¥‘˜q:¤ôKïpI³MàºG­@¤a÷+ˆ4C$ä iRdÊU’,DÈM«Cð)‰,~J"¯Ö $]¦! ‰Ž"EŠL‚glxàX ea¬¨î!+I˜Áb÷ŽÕ›0„Å?BsY½~¥¥£ þ¨6??s†«Lä“$DRNi¦HÉUÒ0uÕTW_xzd=ƒV rui†‰\!MšÈ5¥)¹–4K¦¡®úlZ½ ÓhJ£ááÞ‡ ¦Ñx¶ÌÆ.?›ûllîóêª ËD® MWwW}“&M“†it^ÙÌ®|:u^Ϧˆ4L£+Î+›gÓêMœ®lžM«7A{6­Þ¤ËÅ4?ë=ÛÙTW}6­ÞdÊ5å*‘%×’]lª«NuÕ©®:ÕU§ºêTWêªS]uÞ¬oÂ4ÔUgàÁø‘†i›ûTW}6­Þ„i$¿ðlZ½ ÓàLÀ!LC]uª«>›VoÂ4’Í}&ëÙL6÷ywÕïdbrôf"W—¦K3DB®×äèßÿò¯~ù¿´¯ºž3ö¼¾ˆ?öý0úžãúÞÀ?þõ×ýëûå<ù­>Lÿë—öëß~þ¿ÿúËׯÿò—ûzN}ŒûÃÿðûËüFÎËXõ;éûúzÉQõvßJøCõ;ù®Zçùù]õù¦‘×÷ÄÿPýN¾©¢µëáÓßÞýoä» ¿Ñ·ßñ›êë×ÿt…ùëùŸÿß¿ÿ‡_ÿù_~ùg÷ù_òó³s7õ/ÿñ“Ý%ùµ{§ç+‚çÛ*Ÿ×üË?üòoþôõ7Þí¬7´?µ¯Ïÿó7^_ç¿UûOýÛ-ÿ4~ÿñ<~ãOñþ¿æõã¿ýËßþò/þòùSnãÞëŠ8æ˜çà!Ü·ùûŸªÆõý’ßÈKõ|ßï›ê÷o~S=ßæû¦úýû}¨~»ü‡ê{ÃßTÏ=Óoªßï¢~S=ç÷7Õ·3þwÕs©õMõûÅ×ß+?Tßóúÿûã>Ô>æí|*ù|¥õ|6âó_ÖëÏ»ýÍŸÇç·ø€?õç?~}þp¯ÿxžð§øCÐù‡¶þ ë'âÏI;²_Omk^›ÿÇ¿þß~ñëy(rÿtÀoçk¯ëeó|ñó÷ÄçíÿéŸþñßýû¿þúßÿã¯ÿôýë¯ÿù¯ÿå?ýçúŸó—ÿªÎçç*íÏý|ÜþÓ(þò>î£ü#žó½èëš>W?ŸÿM=Ç¿xd×/uýuõÿüÅþO]}NºüõÜ\î¿^vø»ç¯¯ÏߤßÎø<_ŸßÎø‹Œo'÷²‰|ÿêêE^_í½H™Èµ¤Ù&p]Ói&ruiº4C$ä i˜F(xÑù"L#”Æõ„"¦q=þ¤H˜O*ëqš CG½Ÿ”fšèµJš’f‰l¹64Si\Ó$‘†iL¥q=N„ùL¥q=¡„ùL¥1•Æõ„"¦1•Fél)åSWsx“.ó©÷ÿÜ]$†ˆ4Lãzœ&‰\%Í2‘kCs=N“d‘4iº‰\Cæ³”Æõ8Mi˜ÆR׊@˜ÆúIš­|¶ÒØ:[¶ò¹ ‰\<[ö÷JõÙ$S¦q=Ndɵ¤ÙoÒ¯Çi’HÓDº\]š!r…4)Í4‘«¤Y&rmhšÒhJãzB‰4L£ñléMù4¥Ñ”FãÙr¾Ò-$K@ÇÝ0uüø~êÊEšˆL]’!’LIŠ` ȃl~TãG„Œ:.CÊ`0ƒñ~"ÏEÂ`CçÆ`,j«]m•ÿåWUíªª]Uõ|§ÛD®&MäšÒLiJdɵ¤aÉâÞ¯‡i‚0 UÕž,î=•O* UÕžÊ'•F*ä…Íù†·‰\ã‹iŒ/ž-CUõþÖ7HÈÒ¤Žƒª:TUïo}ƒ,¹–\¨ªCUu¨ªUÕóo¹†4CšI¹˜OSÅ}4^ØŒ¦4ÚOÒÀ…Íèʧ+Îâ>ºòéJ£+ 5Öû[ß$rñlagì¬CõþÎ÷‹àôRi,­ç»Üòè°C¦ÀÎ:ÔY‡:ë`gê¬ç›Ý" ×3ç‹Ý"M@’N0ä )ƒëõ-o™–À$Aã›M¥¢²:TV‡ÊêHV÷¡²:TV‡ÊêPY*«Ceu¨¬•Õ¡²zþõÁd’4i˜ÏT“Õ}L売:¦Ò˜¼´SiL¥1yi3¦ò™?Iƒ§ŠÊêý½o¹x¶ËØPY*«Ceu¨¬•Õ¡²:TV‡Ê긧 ‚ê>TV‡ÊêX,óc±º•Õ¡²:–ÒXJcñÒf,¥±”Æâ¥Íù§L“E²¥a>[i¨¬•Õ±•ÆV*«c«Œ©¬•Õ¡²:TV‡ÊêPY*«Ce5TVÏ×¼MäêÒti†HÈҤȔkJS"K®% ò‰¦4«{4åÓ”†Êj¨¬Þ_ü&Ñk¥\©#O‘Ò‘Kš%²õZ(«ÑYÝCe5TVCe5TVCe5:ï‡Êj¨¬†Êêùš·‰\KæÓ•Æ`u¡|†ÒJcèlJC¥5XZïï}ƒ0 –ÖPi •Öûkß h­¡Öl­¡ÖÁú¬­¡Ú¬­ÁÚª­¸l­¡Öl­ç»ÜððG…’Ê ÑÜ#J*ƒd©Ó#‚*ë!ÒÁ˜$¨hè‹÷÷¼A-lc¡¶j«¡¶j«¡¶j«¡¶j«¡¶SQ¨­†ÚjÛ|¨­†Új¨­F)RÅk›(¥QJ£t¢”òQ[bw¿¿õ Â4ÔVCmõþâ7ÓP[=_ü ½VH“ÒL¹Jše"Úêùš·I‘4iš4LCmõi˜ÆV›×6ç‹ß"LcëlÙÊgÿ$ t÷üb>©¶šj«©¶zñ›D®+¤I‘)×”¦D–\Kt÷T[MµÕT[MµÕlìîÙx#>ÕVSm5¯m²)¦4ÔV³)Ÿ¦4»{6åÓ•FW]gKgKµÕT[Í®|ÔVSm5ÕVSm5ÕVSmõ|ÍÛ.µÕìî©¶šj«©¶šj«9ØÝsðF|ª®¦êj^Ûœ/~‹0 õÕÊ'”F°»g(ŸP¡4BgK°œ%+ëý½o¸t˜% £ ´&DoOuÖdgMuÖTgMvÖTgMuÖóínI˜;k&/iÎw»ß/£Êz¾×MÐä! 3˜<5¦BQYM•ÕTY½¿ä ‚²š*«©²š*«©²š*«©²š*«©²z¾Øm"×’†i¨¬æbuÏÅñ©²š*«¹xi“Ki,¥±xis¾ñ-Â4«{.å³”ÆÒÙ²”Êjª¬¦ÊêýÅo¹XÏTVSe5UVSe5UVSe5UVÏ7¿E¶\(«Seu~1ùÅê>¿x#~ª¬Î/¦1¿xi3¿˜Æübó‹—6ó‹ùÌ/¦1¿XݧÊêüRMi4ž-³±ŒM•Õû›ß ÌGeuª¬N•Õ©²:UV§Êêùž·‰\[”Õ©²:UV§Êêì¬î³³ºÏÎK›Ù•FW—6ç›ß"L£³ºÏ®|ºÒèJCeõþæ7‰\<[ËØTY½¿ùM¢#§\SGžÒ”È’kIƒê>UV§ÊêTY*«Seuª¬žïy›È•Ò0PÁK›ÊG}u«ûõÕ7I¥‘J#yis¾ù-Â4Rg ž‘×35o²I¦4hh“µuª¶ÎdyÇÿ¶OõÖÉÞ:Ù[§zëdoì­S½u²·~€ÞÛ”¤.¨y‘MCQkïjÞ IºÈ„gÃû‘š7Л™z7% Ã,…lª°NÖ¹Xß§ ëTa*¬Õ¼H4iR„Yà!ð)‘%×’fC³ßÄ¿É$a>ûýÑ›È5¤a[iì÷#ño" ÓÀCàoR$Lcÿ$ýÖÔ×û!çy=äü&r!Ÿúz?äü&:rHƒÂZ*¬¥Âú!¥ã”^kI³¤Ù *¬¥ÂZõ½ðø›èÈL£±¾‘Ô‘™Fc}¯ÆË›j¬ï…‡À_­ºÒèJC…µ: Y©°V×Ù‚‡À_$DrˆH3EJ®’†ià!ð7Áo1x/¾Æû‘ø7Y$]ša¢× ½VšÈ5¥™Ò”È’kIÃ4TX+xyó!M„g‹ k©°V(`}/Ö ²ÂCà/Rr-½Ã- k©°– k©°– k©°– 뇄ÓH^ÞT²ÐW*d}/<þ"L#•ÆÔÙ2•[kÍ÷ño²I†úZÍzÁ澂Í}…ÎÌÝd‘4¹˜O²Œ- ÝDšÐqR®”kŠ”\%Í’f›À¥®ºÔU×ds_“·â?d˜èµ"H˜ÆTj«‡èý0©4&¯l>Í}•Ò(^Ù¬B;;@¦.ã)Þq^õÃ@dê0øËP¥õC–È€§íÂýæµx¿y­`à÷Y¸ÿR0ƒ…ûðkñ>üZü·ˆµp·ùI˜þ 7ïÂHé’ –ê~ßÉ–1•Õ)‚% Ë™ªêþbqߪª[Uu«ªnUÕ­ªú!!’r¥4Sš2‘kI³Màj¼°ùÜrßÿ$±UU?d˜ÈÒ„4)2åšÒàS[·U‘ ÿ@³u[u«ªîÎO|n¹ïΛÌ[·U·ªêVUݪª2MŠï§ôKG^"[.|jd«ª~Ó¼°ù.2äÒ„4i‚ßb(ŸÁâ~ˆ\KT±Cà -¡|t[uë¶êބߪª[Uu«ª~HŠL¹¦4¸ ¿UU·ªêþ“ÄNÞrßÉ›Ì;yaó!L#•Fò34;•O*dq?D¦‘,î‡HÃ4ò'iàÂfcLó"(î‡àÈSù¨ªîÉ›Ì{òS#{ò&óVUݪª{²¸oUÕ­ªºç{iô"¨ª»xa³KùÔ{wõ"èª[]õC˜F)âMø]ÊGeõ½æSJ£”FñÂæóLc)õÞ¥½H‰'ËR<,­[¥õ™J@¦%|{¸ÝÌÓD¥u«´îÍTZ?dˆ„€$S@’â{YIòúC›__ø…õ& I“$d2™:Léý•\‹`Ë´qà†ÏÏÒL&I—f4™Y°¬’&z­©#3ž†ê~ÈÒ‘—4L££º_Dš&ÒåêÒ ¼Ÿ®4:ªû!©#3®4ºN–Ž2v¹x¶tå3PÝi]Dš.2äÒ„HÊ•ÒLiÊD.æ3pÏý"pîÂÂ4Bi>?si˜FàÒæ"Ò0P»ð‡0P»Ì‡¼ëÙüâRÀEФÉÕMÉ&L🟹ˆŽ¤ i˜ÆÄçg." ó™¨î‘kêÈe¢w¸¤Ù&p±¬^d“4¼ÃÒÙ²zÈy—Õ‹èÈ)×Ô;œz‡%Í2Ñ‘7ÞÏÂ]æ‹àµXVé&›Ç:òБC$u䔆i,¥±pisÓX?IcC³u¶l¥ÎzI†É&aaÛêg[al,¨­,÷}Øö…Y[këty†€$!b 2EÞÿ·/\ѲD¶$ —0‡4ILcj¬) ‚†ö!e"×ЛAkw]ý}·ë&“¤É…ºÚTW?„Qt|Dä"Ò¤4 Cuµ©®žÙ8¹PWÛ`y?d’4i˜ÏPƒ7‡ çq¥ñ&ÙD¤™"%×)hor Ú›l¹6ެºÚTW›êê=l2är…4!MŠL¹¦4%²äZÒ ¼ßÃV$Ò0Ÿdy¿‡­@˜O*TÉ‹›3c5Dä*¹˜F²¼·dAk¼·:ïa+ÔÕ¦ºÚ&>"rÈkH")WJÃ|TW›êjS]mª«MuõÌX ¦QJ£ðš‹HÃ4®a+i˜F)kØêõ7@]i¼ Ó(-¥|xoõ"û}äk-¤›È5‚$LIêý ¡µ»®¾]¥#—4Kd˵¡ÙJ㮫 Òti˜†úê¶ ¦¡¾ÚÔWÏŒ•‰\Kš%ÍûEó¶"‘¦ ¤ˆLC$ä˜z{% £,½— Ic}?{U’0öÖ$ )Rd”€<‹` Àƒ?è®P®5«ïgýµfE ÙµfE SŠÌ&¢—4‹¿êjW]íª«]uµ«®ž +¹†4CšI¹R†¡ºÚ¯V%²åÂÅMåJ#XÞ»êê=nE"WHÃ4Bi/nîq+ÔÕ®ºÚUWïq«Q]íª«gÜJ„ÿuS]=ãV"!WH“ÒL¹J¦qí°¾Îk‡õEæ•H‘4iš4Lc²¼ßãV Lc*É‹›3n%Â4¦Î–©|TW»êê=n‚ºÚUW»ê꙲2‘+¤ iRd¾Ë`W]íª«ý®« Òlk‡•Dš&M7Áo±”ÏRKi,^Üœ)+¹Jš’f‰ðlY:[¶êØÖÙ²u¶lõ1Ý^íª«]uµ«®vÕÕ®ºÚUW»êjW]=SV&o×P]=SV&ruiº4C$ä iRdÊ5¥)‘%×’ùÜãV$›„ù¨´ÞãV C®Ë@d”À»å«¶¾Á€§ãÇM€ŽòtI†HH’"È óVü´Y’ –¯îþ&  ȣÆ€<"èªC]õ´Yr¡¹uÕ³h%ÒðZwW}“.Í0‘+¤I¹ÐUÏŠ•\%×’f›À•lî#•O²¹ßÛV$Ò ‘+¤I\æÝÛVÐ”ŽŒ.6’ÍýÞ¶z‘É.6tkuLÞh>KV&r i†4!’r¥4S¤ä*i˜Æä§hÆäø¡®:Ji¯lF)ŸR×¶ÕëO¹xes–¬LôZhg÷¶Ó(-ºµ:Š]ìÞ¶")’&šûPWêªC]u¨«uÕ¡®:ÔU‡ºêY²2‘kKÃ|6?Eso[½þ”ï®ú&]„ÿcvm[„HÊ•ÒL‘’ 7šïm+mò>rÜ]õMš‰\¸²9KVrMÒ «†ºj¨«†ºj¨«†ºj¨«žm+uÕPW uÕhlî¡®êªgÉÊD®”†i4¥Ñxeso[0Ææ~o[½HW]it܈®0ºÂè¼°‰Î*Í=ØZïe+ô³è¨îq·Ö7Awœíª­ÁÚ¬­¡Ú¬­ÁÚª­ÁÚzö«Þ¿ñ`s¿­$Y"[’à÷kÏŠ@’.2& O†øa 2õnÊD/µ¶Lè«‘ü͇4¹º4]š!r…4)2åšÒ”È’kIƒ>SiL~¨è^·z¥:ÙÞïu+!M˜È•¯Î|¦Ò˜:YÔWC}õ^·"Áû)ö±P_ õÕP_ õÕ(¶÷P_ õÕP_âø³ee"×’†ùÛ{¨¯†úêY·a‹W7÷ºÓX¼º¹×­@ÐWC}õ^·aê«¡¾z¶¬LФIÓMÉfH")WJÃ46Û{lÞi>ëV"Ní=¿˜Ï½nõý¿¹÷º4]®a"WèÈi²H¦4S´÷{ÝŠD.´÷llïÙøÁ‘llï÷º‰\CG¹Rši"úêÙ²2Ù$[ôÕT_MõÕ켟*¬©Âš*¬gÝJ$åJi¦4L£³½ßëV L£+Á«›{Ý ¤ ¤ˆÌ0 [ŽS@’"Xòà­àTiM–ÖTiM•ÖdiÍàGhR¥5YZS¥õCB0„`{OvÖ3`%d©’§F2Ý\MÝ\MnÌ{Ñ dÊ5uäY’ ‹åäæœ¼Óœêª©®šêª©®šêª©®š“Ÿ9KV&r•4Œg* uÕTW=ãV"L£x'þŒ[‰0ÒÉRÊG]õ·a>¥4ÔUS]õ·"Ák©«¦ºj.~F$ï® "Í ¹Bš™rMiJdɵ¤Ághîq+’"iÒ0kÜ*¯û§ñ9W6o&r¥4)ÍéboRr•\ìbº·šº·:¿˜Æ¼»ê·#Ï»«¾I—wšçï4OuÕ©®:ÕU§ºê™²2‘kI³¤aŸ¡™Ÿ¡™êªS]u^K¬¯|ڕƛđ&¥™&r•4ËD® M¿ºÈ&iÒðl¹»ê› ¹†4!’r¥4S¤ä*i–4Ûä}Mp[4¹º4ÃD®&MäšÒLiJdɵ¤ÙÈ0t¶„ΖøÑ’dè¸!“È)I–ˆ~¥ <­@’N0ä )˜AžËI˜ÁUY$axkÎ „!L†0unLÆr·U™¦L~Ã%ÍiË´¡¹»ê›´&"Mr iB$åJiO)Œâ]øY¼ ïZ‘ÀµxþÞµ"‘«K3Lä iBtÕg×êûï¾t²,v±ywUixnÜ]¤Hš4ÝD®!M˜È•ÒL¹J法Æ5ÄJòÖ<»Vo‚4êbé"C®!MH“&r¡=»V ×Z×õùCÎÙò&Ÿ.6Û¸Æod½ÉÕUIФÉÕåêÒ ‘+¤I‘)×éªßÓ»«¾É2‘kCÓ¯æ²Hš4Ýäý÷|]C¬$Ò„HÊ•ÒL‘’ ]õÙµz“-׆f°‹Õ`s¯»«¾ ®ój°Õ`s¯»«¾IšÈuºê÷?‹q5wM²¤YÒl»«‚HÓDº\]š!r…4) Ó¸w­Þ„ù„Ò¥qÖï$•F*ÔÙÂÒZWi}{†ŽËt®Ö <î$(y–€$(­…—¹Kë÷÷v—Ö7é’ ‘à[ù! w7%yw—{Ì IÞ×u¸éöŒY½IÀ)÷kÌ &Ô³gÌêM D¦Sz%ÍÙr¡«–ºj©«–ºjÝ]õ{‹Í½ÔUK]õŒX™LgJÃ|–ÒXlîϮ՛0­46??sv­Dº\]š! ÓØlîuwÕ7a[il-›w™kó.smÞe~v­¾‘¥ûªë‹w™×ï¯/Þs_wW‘&DR®”fJS&r-i¶ \wáÏŠ•‰\]æÓ”Fã¿IÜ»V L£ñ.ójüDijkõ&L£ñ.ój¼ ¿:ï2?»VoÒ¤é&‹dH&r¥4L£+λð«ó.ü³kõ&NwáÏ®•Ó¼ v­D˜Æà¿IÜ»V Lcðß$î]+¦¡ûªK÷U×PCiï2¯àçgVð.ó³k"Í ½VH“"S®)MIÃ4‚w™Wð14Ï®È&iÒt¹†4Ì'•Fò.ü³kõ&L#•FêlI¥‘üÈ÷³kõLå3•ÆÄǾ×äǾïY+½TÈ•"S@’"Xòà½àª­‹µõš³"gH ØZ—Zë*ePÌ ø•€gÍêM‚Î¥ÔYŸE«7éC`’„Ž«Ã2Ö³`e¢—ZÒ,iXÈTX— ëRa]*¬K…õ [‰0 ÖµYè— ëRa]*¬gËÊD.\Þœ-+“IÒ¤iÒt‘!×&D²‹É”«ôZ%×Ò‘· Ž¬ÂºUX· ëVa=[V&r…4! Óh¬ï»ñC4[…u«°îÆË›³nÒ•† ëîʧ+Îú¾»òéJ£+®³E…u«°nÖÝ•† ëVaÝ*¬[…u«°n֭ºUX· ëY·I¹Ræ£ÂºëûüÍVaÝ*¬;xys¶¬LäêÒ0ŸPÁú~¯[0P¡³%Xȶ ë½nÂ|TX· ëVa½×­Här…‰\)MJ3EJ.æ£Âº“õ}«°>ëVoÂ4&/oöd¡ßj¬[õ^·aSiL^Þ<ëV rñl™Êg*ÒÙRʇÍu«¹n6×{Û $d˜’”€$KDïÅu«¸î…¿Õ[ÏŠ•È$¤H‘IPò,‚-[¡le°yrl…¢¾ºÕW·úêÞJA}u«¯nõÕ­¾ºÕW7ûj}±¯^d’4iº‰\Cš!Mˆ¤\)Í)¹Jš%â464Mù4¥ÑÐÞë¸aMi4œ-‡d)’)óa_=déÈKš ¾zišH—«K3DB®†ùt´÷‹ÈUÒ0®4:®nêÌY™I“†ù ¥1ÐÞ/²H˜ÆPCgË@;äÝWë‹‹õÅÅ€C¶\Gf_=¤™ÈÕ¥&r…4!MŠL¹˜O ½²äZÒ0T‰«›º®@˜F¢½×=pÂ4Ri$®na©4Rg ûjÝW <[Rù°¯òî«‘¦‹ ¹†4!MšÈ5¥)¹–4Û.öÕC˜F)B{¯{à „i”Ò(\ÝÔ=pÂ4 W7‡0R…ö~È»¯Õ=pE²I˜kë!C@’1™% Ï"ÐoÄ Ø?š?º€$Ì`ÿI˜Áf5‡0„Í6.jê^µúΪÕëG”÷CÐÐîY+™Aè(h«÷¬€È”©tà’f‰l¹PVϰ•£PYm*«Meµ©¬6•ÕÖXÝ[cuo*«Ïºˆ\K¦Ñ”ç­JóVõÌ[½ ÓPYm\ ¨gÞêÏ Õ3oõ&ïO5òþÔw=óVoR:ò’kéÈšÏÀ_¤Hš4ÝD®!Í&DR.æ3ðøCJ®’†iŒŸ¤±¡ åJ#ðøC˜O(À§šë™·z¦J#ðø‹èÈL#t¶>ç|ȹË*ˆ4M¤ËÕ¥Ò„‰\) ÓH¥‘øÔ÷!ËD®- ó™JcâÛ½õÌ[½ Ó˜Jcêl™JcâSßõÌ[½ Ó˜Jcâ3ð‡,™iL¥Qø†â!Íd“ti†‰\!MH“"S®) Ó(¥q—Õ7Ù Ki,|Gàæ³”ÆÂ·{ë™·z¦±”ÆÒÙ²”ÆR ßî­gÞêM˜†*+®Pžm«ï–­(öN0RDÇ iRd HR"K@’÷Gà«¿KkWií_èòõÙ´z¹œ+y¦€$% ÉÙ4|{õ÷w6ë™´zæÐ˜CÃW6 %E¦ÞM™èÀKšm×ÝVß„Yt|õ.M—†a¨­vµÕ3n%Â4ÔVϸ•Óèø~o=ëVßÉPßï­gÝêM˜†Úê³nõ&Lc( µÕ®¶ú¬[½ ϵծ¶ÚÕV»ÚêY·A[íj«]mµ«­ö`wïj«]mµ«­öàµÍÙ²2‘kIÃ|Bi$»û³nõ&L#•FêlI¶±gÝ D.棶ÚÕV»Úê³n"úÙÙ²2Y$Mšn"׆ù¨­öÉîÞÕV»ÚjW[í÷ë›0 µÕ®¶ÚKù”Ò(v÷gÝêM˜F)âµÍÙ² ¹x¶”òQ[íj«]mõY·úNÔV»ÚêY·érui†4a"óQ[íj«]mõlY™Èµ¥A›ï*¬]…µo峕ÆV›•õ¬[‰0Ík›gÝêM˜ÆÖÙ²•JëøÂCi öögÛê; ¥J#t®›Ø³m"óQSjªCMõÙ¶‘kɵMàRSjªCMu¨©5Õ‘ìíCMu¨©žm+¦‘¼ ¶­D˜F²·T>SiL¥1y]ól[ÈÅ¿¡&›Ø³mõ&<[¦òQSjªCMu¨©5Õ¡¦z¶­DÐT‡šêPSjªCMu¨©ž%+¹¦4L£”Fñ.ü³mõ&Lc±·¥|–ÒXJcñºæl[‰0Åëš¡¦úl[ÈÅ|ÔT‡šê³mõl•15Õ¡¦:ÔT‡šêýŸH¤ ¦¡¦úùOS¤ä*i˜Ïfo›½=TVCe5¾˜F|ñºæÙ¶‘+¤I¹¦4% Ó’ ' þ70TYŸ]«7é2 IBÄ@dŠ”€$KD¿:+þ×0:Š{t÷`e VÖè ¡ãü™®™’0ƒŽÚþlY½ 3ÀÛ:7»Ø=f “ŽË³PM5ÔTCM5ÔTCMõÌW™Èµ¥AS 5ÕPS 5Õ3i%2äÒ0PÁ;ðϨ՛0`oP>¡4Bi$¯k"•F*äu͇0T©³%•šj¨©†šj¨©†šj¨©~z{¨©†šj¨©†šj¨©†šêÙ°2‘+¥aSiLÞV­Þ„iLöö˜Ê§”F)âuÍYµajª¡¦ú¬ZèÈS®2Ñkñl)6±PS 5ÕPS 5ÕPS 5ÕPS 5ÕPS=«V"LCM5ÔTc±·?«VoÂ|¶ÒØJcóºæYµ‘kHÃ|¶ÒPS}V­Þ„il¥¡¦zV­DœΖ³jµIÐTSM5ÕTSM5ÕTSM5ÕTSM5ÕTφ•‰\Kš% zû³j" ÓhJ£ñºæ¬Z‰0ÆëšgÕêM˜ ë3jõ& £) 5Ö3ae²Ix²°µ&[kªµ&[k²µ¦Zk²µž­*y–€$Œï^¥õLY‰tIÂ`ƒ4÷’ÕLIŠ` ȃ?f¼³P*«©²š\¨ žꪩ®šêªÉY€C¦\%WI³D¶\誩®šêª©®šêª©®šêª©®z&¬Läúßl[¶äV®$g¤uöÀü'ÖïjÑLJ+€qÒÅ’Œ[Ìð«æs”Æ¡¹¿­V_Â4®Ò¸|²éV+¦!W=rÕÞ€x[­¾ähëšè³x·\ºØ‘«¹ê‘«¹ê‘«¹ê‘«¹ê žÁw«•Ó«žP>As[­¾„ù„Ò¥‘|²é+mMÍ0¹ê‘«¾­V_Â4äªG®Ú­V"LC®zäªG®zäªG®zäªG®Ú­VšarÕS<ƒï+m…f˜O) ¹ê‘«v«•ÒP«U“)²´µ4³5ƒ ^¹êeS@¼­V ÚJ]¹LðÊU/X›ÀU¯\õÊU¯\õÊU¯\µ[­D®¶®fB3LC²z‡òa«U¨Õ*ÔjÕ„i°Õ*Ôjjµ µZ…Z­B­VMB@K¼Y¦Â²ò”²^¶4™ZZ"ºÊÖȹ ‚ÐbÁ&g½Gðì± õX{¬èsj¬B5V¡«`U¨Æ*Tc¬± ÕXÅ=ŠA¶ze«W¶Ê.«hiké˜hëj&L´•šIÍ@V¯dõJV¯dõJVïå1|wZ‰0Ë?Ñ{/ÿëÛj¢-æs•k­BµVÑ%V&—„7 k­š@Æ®dUµV¡Z«&G[GW¾"LC²zƒß(rƒß¯rƒß?s“߸r“߯rYÁÚdjf™hkkfkæˆ\m]Í0 ɪj­š@ÝUkªµ ÕZ…j­BµV¡Z«&øF‘·ÖêKÎ$¹ÚÂ7ŠÜâ7Št‰•‰¶J3øF‘øã÷«Ä¿_%þøý3ñÇïW V°>D3[ähëhæj&L´•š)l±‚µ Ó`k+XãWkÂ4ï–_­¾Q$XÁª€&¡-|£H ~£H ~ãJL~£HLª{L~£HL~¿JL~¿JüdõK¶‰¶Žf˜Ïä÷«Ää÷ϼµV_Â4æ¤ïŸyk­¾„i°‚µ óak+X#XÁÁ ÖV°F°‚5ÞZ+mñnakð"›V3ØÐd hi胶v®€FB@#)¢ßþ oÅpðGVãðëgºËJd hdhâˆ\‚ÐN”vð)W¡\~£H\~£H° ÉÒÖÖÖÖ̹ںš ͤ‰¶ð+ü~•~¿J¿¦;¬L´µ4Ã|BiÕ=Bù°×*Ôkêµ õZ…z­B½V¡^«P¯U¨×*‚¬M «êµ õZ59Ú‚¬†d5$«‘ü2ÀHª{$¿,1’êEuâ—%v¯•ÈÔÖÔÌÙÚÚša>¥4Ji¿:R½V¡^«P¯Ut‹•I@ÏÔkêµ õZ=$I¶ÈÑÖÑ•¯¶B?ah&5S&Ø’¬¦d5%«)Yí+mmÍ0ŸAuW¯U¨×ª ÓJƒ½VM˜{­¢æÃ^«P¯U¨×*Ôkêµj=S¯U¨×*Ôkõ"I‘Òg1ÉjJVS²Ú½V"K[K3[3LC²š’Õ”¬ª×*ÔkÕ„i,ª»z­š0 öZ5™ša>ìµ õZ…z­B½V¡^«&! %†ÁZ«&ðµ”µ&­U­VM¦––€F¶ˆÈ%í$A `Ÿr™Á¥¹³Ë*ÔeÕ„\˜»ª¬BUVÁ*«P•U†p‚Œ•]V+«Ëª ü,e«j³ ¶Y5ØZ‚¬¦d5%«)YMÉjJVS²š’Õ”¬v¡•ì¦d5“ê®J«P¥U¦‘JƒV¡N«P§U¨Óª Ó`§U¨Ó*Ôiê´ uZ=$H–Ó`G@ʘd5%«)YMÉjJVS²Z’Õ’¬KX›Lm-Í,Íl‘£­£™+Ú Í¤ˆÓÀ£:­š@ÆÔiê´ uZ=$I¶®Ì4ÔP’Õ’¬–dµ$«%Y-ÉjIVK²ú¿¿"S[S3K3LC²Ú¥¦!Y-ÉêÿþŠi°ÓªIi†ù°Ó*Ôiê´ uZ…:­BV¡N«&Õ’¬–:Ôiõm¥®\&Ø’¬–dµ$«%Yí+mmÍlÍ0 Éj±„5Ôiê´zˆf˜;­BV¡N«&LƒV¡N«P§U¨Ó*ÔiÕ„iÐXKƪJ«P¥U8+þ\tVÕY5™K€Ÿò.²5rDôÃ]0*k±~µ C@¶rÖ Æ AÆÊ«[@;W@#úñŠl•%V¡«P‰UÈjIVÕbl±z€–¶ÈÑGÍ\Í„‰¶R3e‚-¹j—W™hkjfj†iÈUÕgÕ„i°Ï*ÔgÕ„i°Ï*Ôgê³Ê?ºjªÏ*Õg•ê³zH,]ykk볎¶Ž®|EB[¡™)mf̽ɘ"š™šaì_m²5Ã4èªM®f˜û¬R}V©>«TŸUªÏ*Õg•ê³JõY¥ú¬š|]¬É×U¢æCW}ˆ¶B3i¢­ÂÌ‚¹?$I†f¦‰¶–f˜]µÉÑÖÑ Ó «>D3Lƒ}V©>«TŸUªÏ*Õg•ê³JõY¥ú¬R}VM¾.ö"¹ša>tÕ&©­ÔLÐU¢™!2µ55³4³M´Å|èªÑVh†iPV›”f˜û¬R}V©>«TŸUªÏ*ÕgÕ„i°Ï*Õg•ê³jòõ³TŸUªÏªIa ÿ0¤µ¦Ê¬šL--]dkGà hD? h1aƒÊÚdh„$#`UªÀ*Y`•*°jÂ’!°Á*Ù`Õ€:Æ>€äÿ'誹$´³b TÕ&”3ªj“#rµu5"©­ÔÌWÜs°zõ!šš™&ÚZšÙ&Ú:š¹&Ú Í„fR¤´Å|Øf•j³JµY5Š ©êªªÍªÉÑÖÑÖÕL˜h+5S&Ø’ª©êª©ªÚ¬š0 V¯>D3LƒÕ«Ñ Ó`õjV¯æ`õjV¯æ`õjÈÙÛf¢-Þ-‹*6¤ªCª:X½Úäj+´šI‘ÒTµÛ¬D˜†TuHU‡TuHU‡Tµ»«L´u5Ã4X½Ú$5Ã|X½šƒÕ«9X½šo›Õ—0 ©ê8JƒÕ«9X½Úr6¤ªƒÕ«9X½Ú$µ•ú ¡ªÝ]eR$C3C3LCª:¤ªCª:¤ªCªÚmV"¡­Ð óaõêC°ÅêÕ²ÕÁêÕ¬^Í·Í D[[3LƒÕ«9X½Ú$´Ä0ؼšü€¤uPZ»¤J@;K@#[Ä@䊄€FR„!ÐYù·ºkWsc¡±¾V_² 4Á Pºšƒ¥«9Xºš¥«ÐeÁ·À*U`Õ*6¥ªSª:Q»Ú`kikéhæšh+4“&Ú*ÍÀT§LuÊT§Lµ{¬D–¶–f˜{W¢æÃÞÕœì]ÍÉÞÕœì]ÍÉÞÕœ2Õ·É D[¼Y&MlÊTß&+]ùhëêÊW3!’ÚJÍÀÛ§LuÊTçâü”©N™ê”©vo•‰¶Žf˜ÆR‹Ï5o“Õ—0Eo›¬þM¶Ò©N™êÜJc+ ™ê”©N™ªš¬š|¿Í¡I˜$Ij¦L°ÅÞÕ‡àw!S2Õyx?eªS¦:eªÝd%rµu5šImá¹æm²IÞ-WiÈTß&+]™iÈT§Lõm²ú¦!Sí&+‘ÒgÁT»ÉJ¦:eªS¦:eªS¦:eªS¦:eªS¦Ú½U&ÚJÍ0ŸPIo›¬¾„i¤ÒHÝ-©4$¬o“Õ—0ŸT4Ö)c}‹¬@ôQÔµ’ŸÑZgáK›L‚% ÍËêƒÈ%^5ô9) ¤°þðK†ÒV"S@#Kd hDà hä ¬pI¾_*’‹¿Ä×Ï4š—dŠ,l‘£:š¹"¡­Ð “`ëêC0ÃÖÕT“UªÉªÉÔ cf—UªËª Ó˜Jƒ]V©.«T—UªË*Õe•ê²Êµð…" ¦Á.«‡hkéÊÛDW>š¹&ú¬ÐLšh«4S˜aëj“1E4Ã4غúÍl¦!WU—U¦Á.«T—UªË*Õe•ê²j2–H’Lm1¶®6ÙºòÖ Ó`ëêC´"©­Ô \~±uõ!IÂ|غúm-Í0 ¶®69šaì²JuY¥º¬R]V©.«T—UªË*Õe•ê²jòý.À&k‹h‹ù°uõ!ºòÕ Ó`ëj“ÔV™`‹­«ÑÌ™Úb>‰oFl²µµ5Ã4غúÍ„f˜»¬š0vY=¤H†f˜»¬ò÷W§*ºü*šû*šû*>Ù¬‚¹/³.ž³®¢¸/)ëþÃ/©¬[ʺ©¬[ʺ¥¬›Êº¥¬]Y%r4òý‡ð¦³n–®6ùþmƒ'©Áª‰F¦€vÁÐŽÈ àœyëdõ-°ú7™ºt²ºu²ºu²úk±Ðÿ&L3ïÉcæ=yÌܵU&ÚJÍ0žÉcæ½øúÌ^<†ˬ¾„a,Ãw›•ÈÖÖÖ óYJcñ?J¼uV_Â4–ÒXºY6™·Vß:+K2µµt奦ñ“Um]‘ÐVh&5S&Ø:ÊçPÝ7‹W›Lm1£4á÷á1ü[gõ%W[Ìç(£4áß:«“«4®î–Ëcæ·Î D[Ìçò˜yë`u_ÃïËcæ­ƒÕ­ƒÕ.¯2ÑduKVwð˜y™w(Ÿà¡û3¿uV_Â4Biáß:«/aÁ×gv(Ÿà¡û[gõoÂ:«&Ã$I¦f gª³JÕY¥ê¬š@ƶVwò…‘®³Im¥fp ¿%«[²º%«[²º%«»øhÓåU&Ú:š9š¹"¡­ÐLŠ”¶ðh£:«TUªÎ*Ug•ª³JÕY5°©Î*Ug•ª³jºN h©°4ðKjë¡¶jë‘¶jë¡¶ië¡¶vg•€FB@#)Ra‡U“! Æ0;¬’VÉ«T‡U“«&´”¥«àpÿHK¬¾2v$«G²z$«G²z$«]c%rµu5šImAV»¼Êä’ Í0­46ß yû¬¾„ilªûÙÊg+­46mÞ>«/qx´9’Õ·Ï 7šàœùž3ŸÃsøn¯2ÑÖÕÌÕLˆ¤~_Õ#Y=’Õ#Yí>+‘©­©™%²µµ5s4sM´ša’Õ·Ïêß$”F( Éꑬ¾}V_²t奭-²IV»ÏJ$´šIÍ” ¶’T©4’ïŒt{•‰¶¶f˜O*¤º¿}V_Â4Ri¤î–T¥4Š6oŸÕ—0â;G'«‡ùöY}ÉÑÖ5Ñgñn)ÊüÑÙê)ªû)¾3rÿø†Èýã4÷ïŒtŸ•ÈÒÖÒÌÖÌ1ÑÖÕL˜h+5S&Ø|ƒ¦Û«L´55Ã|†Ò™!lÞl±jY ÉjHVUcÕ²’Õî±YÚZšÙ"G[G3ŒG²’Õ¬†d5$«qyßýU&Úšša>l´J5Z¥­RV©F«T£UȘ­RV©F« ÉjHVC²ªF«‡|O¾ƒõ«M¶‰¶ŽfŽf®~ÂÐOÈ|‚ï¿Gðï¬v£•Ó`ýj“©™e¢­­™c¢-üw‰î¯2 ’Ô ÞqÖ¯f°~5ƒõ«MðZDHVÕhÕ„2&Y ÉjHVC²’Õ¬†d5$«!Yíþ*“$š™&ÚZšYšÙ"G[G3W$´šI¼Rô6Zý›°Ñ*Õh•j´J5Z5Œ¥dUVM޶޶®f®fB$µ•š¬¦d5%«Ýhõ•Þ”¬¦d5%«ÉúÕ‡h‹ùÈV“õ«MB3LC¾ªF«‡`†V©F«T£UªÑ*Õh•j´jr´Ä›……VMB×I@[Ÿ´µ««D¦€F>hkGà h$R@;Èÿ»Œ•VÐ#8Œ€V© «d…UªÂª C8 áð‰æ×aõxƒ&ß Iþ’R3/߉ÈËw"º´ÊD[[3[3Gäjëj&DR[þ2ŠàŸ[Í_÷ê—0ŸPÁ?Ö›¡|Bi„ÒþIÖ.¯2ÑžkR¦ª:«TU¾uVÿ¾rÒÄ2ùº÷[gõ%S[K[K3[3ÇD[W3a¢­ÔL™`K¦š2Õ,¾üžÅ?©ùÖY} Ó(¥Q|®y묾„iß'ê:+ܬ³zH’à^uV©:«&p³’©ªÎ*UgÕdk ¦Z2Õ’©–Lµdª%S-™j±{õ!˜ôvÕY=D3̇ݫ©:«TU¦ÁîÕTU¦Á:«TUªÎ*Ug•%S-ÖY5a¬³zH‘,¦¡Š€’©–Lµdª%S-™jÉTK¦ÚåU&E‚CøZ4ùZ|ù½~¦ ¢™-r´u4Ã4ؽšª³JÕYå[gõ½2þ“Ä[gõ%Lc+Í—ßß:+ü„2ÖREÀ[gõ½ÎÕ•ƒ Ž®‹Ã·¾ëà¾Kªð¢³–œµä¬Eg-9kÉYÙb•j±j’"%€‘‹_Â܋ūÉ«d‰UªÄ*YbÕ@Ì@«¥ƒU•X%K¬ %þ®ƒ§Ìê±j2´5µ55³4³M´u4Ã0X¾ÚßBÓåUÚb²ÕbùjËWS}V©>«&L#éîo¡Õ—l¦ÁB«T¡UªÐê!AÂ|Ô B«¬’ŸO™Uh•*´jB+ž2Wñ”¹Š¯ŒËW›\m]Í0 Ùj±|µÉ÷̽ÞB«ÿÿ÷ë!A243M´µ4óMã!úyŽf®‰¶B3¡™¯5ùÚj©ÐªThÕd,‘$™"kŠhfëÊÇD[W3a¢­Ô Ó ­ÖËW¢¦A[}ˆf˜mµThÕ„i°ÐªThU*´*Z• ­J…VõG[-Z• ­J…V)’¥+/Í0 ¬>D[W$´šI‘ÒVafÃÝ›Œ-¢™©¦A[m²5Ã4XhU*´jÂ4XhU*´*ZÕ[hõïú±ÐªThU*´*Z• ­š0 Zk]˜aÀZ Ë¤ˆ~˜ÂÈ…ž5™K@;›@Gä„€vR@#LW¥³6añþ•øƒ¬MB0ÖXk¬Ü!rIô;Hí®›÷R—U“¡™qI¦ÈÒÖÒÌ9Ú:šaÔÕ‡h†iPW‚ö¯–:­JV¥N«&L£”K­š0 –Z•J­J¥VM¨c,µ*•Z•J­jðpõ!A2DÆàáj“¥+omÍ\m…fÒD[¥èê®ö¯>D3LCºªR«&Lƒ¥V¥R«zK­þõO¬·Ô $HR3ß—"ê-µú7™|¸é «%’$S3S3ÐÕ!]ß,Òäˆ\m]]9DR[©èêXøž•‡$g†¶˜ûW›,m1 éªJ­š0 –Z•J­J¥V¥R«R©U©ÔªTjU*µ*•Z5Ž éꮪԪÉÑÖÑÖÕL˜h+5S&Ø’®éê®éªJ­š0ƒï¡yH‘‘«­«+3–Z•J­J¥V¥R«R©U©Ôª Ó`U@©ÔªTjÕä˜h)´”º¬•ÿêµYë@÷ê4²D¶€F˜ÚWðõã_•Õ¤€vpëa#ñ_#êWdõS@;‹` à7œÿè"Gäû^Dýz¬´”Z*ý– 3¥ /‰SiLšû[kõ%Lc*‰—ßë­µú7aU@MV4Á?‡§\uÊUUkÕ.6åªS®:åªS®:åª]be¢­Ò \uÊUUkUªµjÂ4XÀZªµjÂ4XkõÍ0°ÖdkM°Ö[k‚-¹êD3Kdë³¶fŽÈÕÖÕLh†i°‰µ ã·tuKW7›X›Lm-Í06±Öfkm6±Ö[nõ%LƒM¬M ï[ºº7¾[¤6›X›@Þ7›X›LÍ,mmÍm]Í\Í„Hj‹ù¥Á&Ö‡h†i°‰õ!šÎ«ÜªTnU*·*•[•Ê­JåVõ–[}¦Ár«R¹Uméêfkm6±6™ÚZ_¡ÞÁÃx•[59Ú:Úº"¡­ÐLj¦Lð»H>ÜìäÑûN¾F³“‡ñ]ee¢­­™­¦Ár«R¹U©ÜªTnU*·j‚—ŠÞr+Í0Ÿâ™óf_@½åV_²µe÷*Úû¦¶ni릶një–¶ž?üÚz¤­‡ÚÚ}UßßàA k¶°69"W@#!’aø=³ÐªXhU,´*Z ­Š…V¥B«b¡Uƒ«OÆIóD3Cdjkj†ù°‰õ!Úb>²ÕÃ&Ö&¡¦Á&Ö:lb­Ã&Öºlb­Ë&Ö&S@KKKK3G@ä 躡¥Ð¬bxe­Ýa%24²¶€v®€F‚ ´ƒ¿øÝ°ƒµ.:X벃µ.;XëNF £Õ·ÌêK D cW²zÙÂZw2¬^¬ÞÅcø»xÌ|™¯V»ÂÊD[[3[3G„7ðâ1|·Z‰¤¶R3Lc+Ícø·ÙêK˜Ææ”x›­¾„il¥!W½ì (5[•š­$)RÚ“͕«^¹ê•«v³•ÈÒÖÒÌÖ Ó84÷{ø§Yߣ4äªÝce‚-¹êÛlõᅢ—ÿQâ^>Ù¼ÍV_²D¶¶¶fŽÌým¶ú’I}ììê`õm¶ ’¡­i’$K3ÛD[G3G3W$´šarÕ+Wíf«¯ï«ÙªÔlUj¶j²L´µ5sL´u5&E’šI]ÏyW®z媗eõ6[h‹2&W½rÕ+W½rÕ+W½rÕ+W½rÕ+Wí+“"šš™"K[K3[ähëh抄¶B3©§sW³U©ÙªÉ8$ c( Ik×X‰\]8R@—Åς߬5h­]V% % f@i Ik×Y‰„€FÂT|žÁ? YgUoÕ—L]¶²ÕX a)ÉjHVC²Ê>«h®rÕ«v¥•ÈÔÖÔÌÒ ³«Ææ+#o¯ˆ¶B3i¢­Ò ó9JãÐÜßb«/aGiÝ+Giè\õ-¶úæs”†ÎUãÐ΂]ì ¨¸´³®±2 ’©™e¢­­™­™#rµu5Ã4äªqùM[ÈUC®ú[} Ó`±U©ØªTlU*¶*[5¹¿ÅV_ÂC„ò‘«†\5äªÁº€&0÷йj[‰,m-ÍlÍm1Ÿ¤¹GÒÜ#ùÊH×X™`«x ÅSx[UÈU£”O)RÅ'›.¶aÅ'›·ØêK˜Fén)æ“rÕ”«¦\õ-¶ÑÖÒÖÒÌ9Ú:š¹"¡­ÐLŠ”¶àª]l%Â4ØÂÚdj†iHVsðÉæ-¶ÑÖÕ Ó` k%[X+ÙÂZo±Õ¿ÉÔÝ2•¥5%­o¯Õ—0 YkÒZSÖúÖZ}Ih©­õmÓy‰~XkWX‰ L‚% M  ưðDÓíUÚI0üh[¡le°™ÁÖí±id)c} ­¾DàjéꡙР­K¬L.ÉÐÌÐÌYÚb:òÕ<´÷”¯v³•Ã8|¸éj+§_Í«|XoUª·*Õ[•ê­JõV¥z«&ð1Õ[•ê­JõVMàc)_Mùªê­*å«)_íz+‘©­©™¥™m¢-æ´÷”¯¦|µË¬L´UšÏ«ÞªToõÍ0 Ö[•ê­š0 Ö[•ê­šÀÐToUª·*Õ[5¡ÉWS¾ÚeV&Ú¢¡ÉW»ÞJdkkkæˆ0 ùj×[‰¤¶R3ȧþ˜FýÑÞßz«/™&ÚZšÙ&Ú:š¹&Ú ÍÀÐÞz«/q¸[J¾ZòÕ·ÞêK¦¶–¶–f¶fðú{±ˆµÉÕL˜h+5S&Øb½ÕC43D¦¶¦f–ÈÖÖÖ Ó`½ÕC4Ã|XoõüÝ‘³¾õV E»eÑÏŠÖªv«R»U]åˆ\‚ÐN胙~VYkÉZ‹ÖZ,am²D¶€FŽÈÐH¤€vpSág kjXë×h E°ufÀn5Z5Á[uøVD¾ï]‡o¿×á[uøVD]¾ý^—ï{×åûÞuù¾w]¾ý^—ï{×U<—o¿×åûÞê¶jÂ4®Ò¸|û]åV¥r«R¹ÕC4s/V±V±ŠµÉÙÚÚšÁ[#*·*•[U±ŠµIê:x‡¦‚ot••I Í ÍL‘¥­¥™-Â4’ïÐt¹•Hh+4Ã|XÅúl±ÜªTnõmMÍ0R,·*•[•Ê­šà­ˆ*¾ï­r«R¹ÕC´õy+bþýý}¿gåG‚dhkjkjfif›hëhæšh+4“&Ú*Í0T±>d,Í0¡4Æ÷Éæ![äcî?¢™«™0)’ÔL™à³àª&I»®ú%²uå­™#rµu5Ã4æ÷¤ùG4S¸òR¨b}óY_sÿm-Í0¥4Pnõ#ša(·úͤÈÇÎ~3[il¥±?Âö‡„alÝ,8j}ȹ ‘Уà/ÿ1S@;‹` hGep>4? fðm´ú|ôý>Â* J¿©ÂR|OšD3Cdjkj†YÀWD3Gäjëj&4“&Úb>©4Riä÷$þ!L#•ÊXD3Lg«?$L#•ÎV’"¥ÏâÝRß“ø‡ “ ™šY&ÚÚša¥4ê{ÿ0ÑVj†ùÔ÷Ü}þ?¦1PÆú!2µ55³D¶¶¶fŽfàcg« m¥‰¶`hÝee$C3#I¦ÈÒÖÒÌ9Ú:šaòÕ1¾'ñIÍ8 øê˜Êg*©4Ðnõ¦1•ÆüžÄÿˆf˜ÆÔÝ2•|uÈWÇÔÝ2•ÎV¤H†f˜ÆúžÄ?dik›hëhæšh+4Ã|í}¬ï{4?‚™­4¶ÒØß÷hÂ4¶ÒØß£æ‡0­4ö÷=š‡0Ÿ­4¶Òغ[ö÷¼ùG°ut·¥qþ™‡d è“¶–®€F‚ ´£…ÁH[µuÜïQüCµuÜï[4a —1\>ÔŒË`.c¸Ô÷AiýuZ` ÙÛiõ%S@#ð±!_òÕJA¾:ä«Ýj%’ÚJÍÀW‡|uÈW‡|uÈW‡|uÈW»ÍÊD[G3G3LC¾:Rù¤ÒÈÿH¾Ú W"L£øtÓ W"L£t·”ò‘¯ùê(Ý-¥4ä«C¾Ú}V&ߟpÊW§|uÊW§|uÊW§|uÊW'ÚXr´uµu5“×I}Vaf|ÏÞ$H†f¦‰¶–f–f˜ÚXD38m~®@Ø MùꔯÎÉÓø9yÚ6—î–¥»eÓǦ|uÊW§|uÊW§|uÊW§|uÊW§|µ®DB[¡æ³iïS¾:å«S¾:Ò8ß·àÂ4d¬óðéfås”Æ¡½¿ W_Â4ŽÒ8|ºé†+«4®î–«|ä­“Þú\}ÉÖ’È $~KWþ[3 ïSÞ:é­]Z% - fp÷ %”A0´Z=gïø‘lµzÈçõ‘‡Lü(É\¤«SºŠ^«\-]-…fB3)RÚ¢ŸÉV§luÊV§luÊV§lµË­D޶Žf˜lu–Ò(>Û°ßêG¾[ì·zÈ0ÑÖÔÌÔÌÙÚÚš­®?¦Á~«‡„¶àîëgÍë6¿Ý}étu žÅ¯Aw_ƒî¾Ïâ»ÍÊD[G3ÌgÐÝ×àY3û­Â4Ƥ³øî·a“Ï6k*ŸIw_²Õ·ßêKŽIÀV»ÍÊD[©+§~Øê’­.Ùê’­.Ùê’­v¿•ÈÖÖÖÌÑÌ5ÑVh&M´[í6+“$ša›oÒ¬Íg›µu·l¾W´6ŸmÖæ³ÍÛoõ%¼[6ßX[÷Ææ{Eì·ú9|wd¾±Î÷­ï‡àIoýlD[[3ÇD[W3W3L}¬?¢¼)Â~«Ñ Ó¸|“†ýVa>Wi\¾IÃ~«‡0«4.ߤé6+mÁÖplñ–[} o•€­­ÀÛ"+¾¯~ÿˆ®«‘#r4") ¦€9k—Z‰L,‚- + ‘ Ðoˆ$^¢áßžREm_¥PJ3¨ïKߡм}•î’‰ÉT—LuÉT—LuÉT·LuËT·LuËT»ÆÊD[[3[3Gäjëj&DR[©¦1”Æàs «­Â4dª¬¶zÓJC¦ÚEV&Ú ]9ôó¤HéÊ0Õ-SÝ2Õ-Síj+˜êž2UV[ýˆ®Ì4½}/ºÙ^Jc)E7Û‹n¶7½}o¾ó½7Oá÷¦‰m™ê–©v‘•‰¶ŽfŽf˜†LuožÂo™ê–©n™jW[‰0Ãÿ&±eªû(CoßGù¥q”ÆÑÝr”†LuËT÷Q>GiÈT·LuËT·LuËT»ÚJdkkkæhæšh+4Ã4dªûò ø.²2)’¡æJÕV?¢¦J#ø\Ãj«‡0ÐÝÊGÆÊÿ#§ÂIEAcÝ2Ö.±2)’­™#r4ú=¥vð³ð—”Ö]xù½«ª´³4 êfPÌ ø8ÓeV"ú]ãæè6«Ï/iîçïûç52 –€v¶®{LøÃñå÷£SÕó÷ýÓšIm¥f d|ÿ´æh†YŒïŸ]ýÍ,Í0ñí*zóJc(Á?Ð=V&Ú*Í0Ÿ©4¦î•©|&߈`³Õh‹i<E¢+_Í0 ¹ê‘«¹ê‘«¹j÷X™hkjf™hkkfk†i,¥±¾šõ!LC®Êf«‡0­46ÍÍVa[wËV>[il¥±u·lºØ‘«¹*›­’Ú*mÁÎŽ\õÈU\µ›­D–¶–f¶fމ¶˜\õšû9|¦{¬L°uùds®ò¹JãÒÜÙlõ¦q•Æå“M7[‰0«»å*¹ê‘«²ÙêD®zäªG®Ú=V&ÚZšYšÙ"G[G3W$´šaAs?Á3øn¶aIs?©|RiÈWOòÉæm¶ÑÖÕ ÓH¥‘º[Rùð—ºUJáPZ¤õPZè*[K"W$4’"úa ­Ý_%242 –€v6&ŽÈ%í¤€F˜~ÇC¡HWmVZZZÚú¨­™£ÿ€W[¡™4Ñlµ[¬L.ÉÐ ã™t÷+[½²Õ+[í"+mÍ0 Ùê|¶éj+§w¿Kù,¥±”Æâ³ÍÛm¢-Þ-«ÿŠ$H®f˜lõÊV¯lõÊV¯lõÊV»ÛJdjkjfif›h‹ùl¥±éîw󾛬L´Uša>Giº;»­Â4ŽÒ­v·•¶˜ÆÑÝ"[½²Õ+[e·ÕCJ[°Õ+[í&+mMÍLÍ0 Ùê•­^Ùê•­^Ùjw[‰¤¶R3Ì'”FÐÝßn«/a¡4‚Ï6o·ˆ¶àg7”F(ÐÝ"[½²Õ·Û W–­^Ùê•­v·•ÈÒÖÒÌÖ Ó­^Ùê•­²Ûê!©™2Á–„õJXo)¢»¿ÝV_Â4JiŸmºÛJ„iÐYßj«/a¥›EÒ’Ö·ÚêKp³t‘•¶–€FtM‘KÚIý†ÃÀ/•Ê ¹­5d­]_%²4ÂC|¦ùõY}A h±à÷3‚lõWh ¥E°u¸j÷Wi†±ÈUC®rÕ«†\5䪱hî!W ¹jÈUC®rÕ«v‘•‰¶®f˜ÆR‹O6o·Õ—0Ms»­¾„il¥!W­4¶Òغ[äª!W ¹jlå#W ¹jÈU»ÉÊ$H†f†f˜†\5ÏáC®rÕ«v·•ÿÿødrÕ8ÿ‘Ì=®ò¹Jã*Ë'›·Û $I`go·Õ—0 ¹jÈUC®úv[h.rÕ«v·•ÈÔÖÔÌÒ Ó«Fð>äª!W ¹j7Y™h«4Ã|Ri$Í=Rù¤ÒH¥‘º[RiÈU#ùd©|RiÈUC®úv[à³äªÝdeR$S3S3Kdkkkæˆ\m]Í0 ÉjHV£èòo·H‘ ÍLm-ÍlmÍÍ„€–BK)eÅ¿·ß^«/aTÖ”²¦”5©¬)eM)kRYSÊÚV") ƀߑ¤5'á“ΚrÖ¤³vy•€v®€FB@#Ì`ÂÛß2«“¥¤«)]Í¥s­¦l5e«o¡Õ—\Í„‰>‹wý¢»§l5e«)[MÙjÊVsó>e«)[MÙj÷Z‰0Íg›”­æV›îþ6[ý›¥q”ÆÑÍr”†l5e«o³Õ—0 ÙjÊVS¶šGiÈV»ÙJ¤ôY°Õ”­¦l5e«)[MÙj^º{^žÃ¿ÍV Úºš mñ•Wù\¥J#øló6[} ÓÝ-AKÙêÛlõ%ÌG¶š²Õ”­f( ÙjÊV»ÇÊ$I†f†f¦ÈÒó‘­fÒÝS¶ÚÍV"L#ùl“I›OÙjÊVßf«/a¥4ŠÏ6Ýce¢-Þ-¥|d«Yº[JùÈVS¶š²ÕT[@ÉVK¶Z²Õ’­–lµd«%[-ÙjÉV»ÇÊD[¡™ÐLŠ”¶p_2Ö’±Öà³ÍÛlõ%LcðÙ¦›­D˜ÆàÝÂf«‡0¡4ï–’µâ_C%k-Uµµ¤­Em-jkI[û¯®€F‚ ´S‘µÖ‚»×â1|IZ‹ÒZ‹Ï4ÿ#Œa19ë¯Íê B@;IPØÁß²M+ÉjIVYgõ¥­­­­™#rµu5"©­Ô dµ$«%Y-ÉjIVëPÝëð žÍV?¢­£æs”†d•ÕVaç?ÒÀ£ «­Â4®î–K+É*«­Â|$«%Y-É*«­~D[©-þ3S²Z’Õ’¬–dµ$«%Yíj+‘­­­¦J#øhSA™gµÕh‹ù¤ÒH¥‘|´é"+mñn‘¬²Úê!¼[RùHVK²Z’Õ®¶)mQÏ$«%Y-ÉjIVK²Z’Õ’¬v‘•‰¶®f˜O)¢º³Úê!ß4†ª­¢™!2µ55³4³M´õÕ³¡j«¡j«¡j«&©ë|eµIaf@ÝR$C3C3Sdikif‹0 Êj“+Ú Í0Ÿñi¶Xm5TmõmMÍ0 V[ U[ U[ U[ U[5 -1Œ©›÷u¨Öj¨ÖªÉÔ–.¼4²E D®Hh$ ô[*ìàw¸¿æþn|h,íèsÊVßÖÐ3ØÌ€¾:Ôe5x+°ËªÉ$ÓD[‹`ki_’£™k¢­ÐLšh«4S˜¡«6atÕ&Sdiki†i\¥Ö‡0ºêøC ëC˜ÏUWi †õ!L#”Fèf¡«Ž·ÖêKx·„ò¡«6¹SD3!’ÚJÍfèª ’¡™i¢­¥™m¢­£æ“J5¬?¢¦‘ÿ‘Fa¦”]uü¡†õ!̧”]µ í¬”F) ºjº]µIj&5WrÕ!WrÕ!WrÕ®µÙÚÚš9š¹&Ú Í¤‰¶ 3Ci°†u Ö°6a¬aƒ5¬ã­µú¦!WrÕÁš€ñÖZh+EJŸÅ»E®:äªC®:äªC®:äªC®Ú%V&Úºš¹ša’Õ!YíZ+Ö°Ž!_íZ+¦ÁÖ1XÃ:kXÇ` ë¬ao­Õ—„À!alam]ã]@gl`m2 –?å]DGä h„!PYÇÆ)üRÖÁ_RY»ÈJd hdlí\A è*¸1ð¿_E QÕ·ÅêK–€–¶ÈÑGÍ\‘ÐVh&5S&Ø’§yê§yj—W™hkk†ù„ÒZû[gõ%L#”FèF ¥!O}묾„ù¤Ò§yê[g¢Ï:Úº&ú¬ÐLh&EJ[ðÔ!OEkòÔ®³a…ø&[3LCž:Jù”Ò(¥Q|ªyë¬@¾[oˆf†ÈÔÖÔ ö+°À®*WrÕ)WÁ¤ªSªÚU&Úºš¹š ‘Ô£‘ªÎ¤¸O©jY‰0ŒäüLªü”ªN©êLå“J#•FòÁ¦›«L´Uša>¥4Ø0Þ.«/á-&URÕ·ËêK޶(gRÕ)URÕ)URÕ)U]RÕn®2ÑÖÔÌ2ÑÖÖÌÖ̹ںš ‘ÔVj†i°yu,6¯6œ-6¯ŽÅæÕ±Ø¼Údë:PÕÅæÕ&W[W[¡™ÐLŠ”¶ ªKªº¤ªKªÚ]V"K[K3ÌgRÜ›h‹ùHU›W›¤f˜»¬†º¬ÆÛeõ%LcQÜ—Tõí²ú¦±t·,ªØ’ª.6Œ·ËêKR[©+CU—TuIU—Tµ›«L´µ4³4³E޶˜Ï¦¸¯MqW—U¦±ÿ# <Øt—•Ó`—UæÃ.«¡.«¡.«¡.«¡.«¡.«&3uY uY uY HÔ’´.J뢴.I뢴vC•€v D®Hh$E˜µ+«D†€F&ÁÐÎ&Ðc@…UƒÐN è*L+l°j[’Õ%Yí +‘­­­™£™k¢­ÐLšh ²ÚÕU&—dh†ù”Ò(ª»Ú¬Æ’¬®RÅGÕY·Î D3L£þ# ¨û–¬nŒÍ‚€ñÖY}ÉÒu «›M޶޶®f®fB$µ•š¬nÉê–¬v•ÈÔÖÔ óT÷=¨î[²úÖYh+4Ã4†Ò|´yë¬þM¦Ò¬¾uV_Â4Xgõ$Ù"GŸÅ»E²º%«[²º%«[²º%«[²ÚåU&Úšš™ša’Õ-Yí:+¦!Yí:+¦Á:«¡:«¡:«¡:«¡:«¡:«‡ÉÒ Ó`UèY—W™h‹w‹duKV·duKV·duKV·dµë¬D–¶–f¶f˜†duKV»¼ÊD[©¦ÁâÕ¡:«¡:«¡:«¡:«¡:«¡:«¡:«¡:«&LƒuVMBà0 64¯mY릵nYkWW‰,lM‘KÚI‚À6d­›½«ƒ-VC-VC-VM¶€FB2–X –X –X=@W¢ñ¾d‹UúYÉÆd«ì±j@“¬nÉê–¬nÉê–¬nÉê–¬nÉê–¬ž?ª»Ú¬†Ú¬šLÍ,mmÍm]Í„‰¶R3©¦!YUŸÕPŸÕPŸÕC‚d‰l}ÖÖ•f®‰®šIm}»WG·W™ÉÐÌÐÌYÚZšÙ"G[G3W$´šIÍ8ÂÖR>?YI’©-¦ÁîÕ&[WÞša?YÑVˆ¤¶R3ò“UÍ0Ÿ¬‚hfi†il¥ñë^ý¦±•ÆOV¿„il¥ñë³ÁÌQGwËQ>?Yý¦qt·¥ñ“U]ùj†iüdõKR[e‚­Ÿ¬~É0ÑÖÔ óùÉê—lmmÍ0«4~Ý«_Â4®ÒøÙê—0ŸP¿>«/a>¡4Biüú¬¾¤Õ D[¼[Bù<Ê   §€®RXÂJ¶¶pãŸ) ‘%²4rD®€F˜B2…_ñê—0ÄôsÖ/S@;‹` hGà h$4’ºLéw„TÞ«/Cä’L‘% ‘­ m]Í„‰¶R3e‚­_ù*ˆfÆOVA4Ã4†ÒøÉê—0¡4~uV_Â|†Ò¼YÞ:«Éꕬ¾uV_Â4$«W²z%«oÕ—mm]‘ÐVh&EJ[Õ+Y½‹ê~ÕýJV¯dõ.¥ñ+_ý¦!Y}묾„i,¥±¨îoÕ—0­4¶îÉê[g¢­¥-Èꕬ^Éꕬ^Éꕬ^Éꕬ^Éj—W™$ÉÐ ó9T÷+Y½’Õ+Y½GiüÊW¿„iHVß:«/a>ç?Ò€º¿uV_Â4®Ò¸|´éòª-¢-Þ-WùHV¯dõJV¯dõJV¯dµë¬@$«W²z%«W²z%«W²ÚåU&Ú:ša¡4~å« šaAu¿¡|Ri¤ÒH>Ú¼uV_Â4’6]g%Â4RwK*Y륵¾mV_B?ÃçÈZ»¸Jd hdlí\A üo'ûû”Çÿ‘øŽ¼V_242E–€F¶ˆÈ%í$Aé·T¸.Æ#c \yô D3Kdkkkæˆ\m]Í„Hj+5Ãp~Ý« —„ùL¥1•Ư{õK˜ÆTóy´Ñ ÓøõYh†iÌÿHƒ·ÊzdìK˜ÆÒݲû’–UÍlÍm]Í„‰¶R3e‚­Ÿ¬‚hfˆLm1Ÿ­4¶Òøu¯~ ÓØJã×gõ%Ìg+_ŸÕ—0Ÿ£4ŽÒ¬v{Õ ’¥èYHVC²úöY}ÉÕVh+4“"¥-ÈjHVC²’Õ¬v{•‰¶¶f˜Æ¥º¿}V ša—êþöY} Ó¥|´yû¬¾„iHVC²úöYèÊG[×DŸÅ»%hc!Y Éj·W™ÉÐÌÐ Ó¬†d5$«!Y Éj÷Y‰„¶B3Ì'ÿ# ¨ûÛgõ%L£”FñÑ&Ji”Ò³¾}V_Â4Jw ­5h­o›È÷ºù‡_ÒÜóçÍùG•Ï?š{òœ5ÿxŸŒ!ÿþ1¹"! ‘$`| ÁAdwV pÏ3]Y% - f ÃÕ·ÄêKÂ`:[í+üަn¬¦Vsò˜9®ú%ÛD[G3Lbò˜9'™»¹ÊD[¥†³hî)WM¹j—Y‰,m-Íl‘£­£™«™0ÑVj¦L†VsëÞØüo›H,‘­Ïâݲéb¹yÌœ›ÇðÝfõ5Ê”«¦\5åª)WÍÃcæüu¯~g¦I,Ílmá>åªo›Õ—„¶B3p±·Í [WiÈUS®šrÕ·Í ä{D‘?Wý’c¢­«™0ÑVj&5S ?WÑ̙ښša¡4~®ú%L#”ƯÍêK˜O(P¿6«“T©4~mV_Â4~®ú%mg º2Ó«¦\5åªo›ˆfhcrÕ”«¦\5åª)WM¹jÊUS®šÅcøî®2ÑÖÕ ó)¥![MÛj1·Í D3CdjkjfivVTÖ·ÌêK®Hè2i¢ŸÒ e)JkIZ‹ÒZ”Ö’´¥µ ªD®€F•µ†RÊ¿)ëÿC˜ aòyæ„)L¦0usLæ"_­©&oŽÉd«%[ÅaÑÛ`õ%ƒ+”³Z÷Z÷Z|c¤U¬Žßé+‘ÐVh&5£(¨ªµùþLIUKªZRÕn®2ÑÖÖ óÙJcëFÙÊg+­4¶n•­4Žt¬úvY}É4ÑTµ¤ªo—Õ—Í\}Vh&4“"¥-Â×U—â^—‡ðo—Õ—0ËCøºÊç*ËCø·ËêK˜ÆU—6o—¶‚6o—Õ—@UKªúvY}ÉÒÖÖÖÖ̹ںš ‘ÔVjªZRÕ’ª–Tµ¤ª•÷ú¯~ ÓªVòÁ¦Rù¤ÒHŠûÛeõ%L#ÿ# <Øt—•Ó(Ý-¥|ŠâþvY} óù©*H‘ÐΊâ^RÕ’ªÖOU¿W®™?UÑÌ™Úúªj“%ò÷‡hæhæšh+4“&Ú*Ì ˆû|»¬¾dhfh†i ˆû|»¬¾ähéh)t™ÐHLü¶Ödˆhijd‰l‘+ ‘ Hí Ü…_*„õ}œi0´£Ë2”¥ ï¥P–2XÌ`éÞX°±&¥ßSa˨ªá TµÉ2ÑÖÖÌ1ÑÖÕÌÕLˆ¤¶UuþˆûC4Ã4ŽÒ8x°iÂ|ŽÒ8÷ùVY} Ó8JãàÁf¾UV Úâ­r”OU›Œ)¢­©­¥­¥™-r´u4s5&ÚJÍ” ¶âþƒ5”FàÅ÷&S3L#”Fà¿HÚºú ¯fB3i¢-¨êª©êªvq•‰¶–f˜Ï ¸¹ê«Ž¡4†Òx°™o•Õ—8ÂÌTSiLŠû[eõ%Lc* )ë[e¢-Þ-“z6(­CÒú6Yý›àΕµZë µYë µv?•€v D®Hh„!¬˜hÆV ›1l>Òü:¬¾` hgh‚1ÈXÇf [1lÞòÕ!_òÕ·ÆêK†¶¦¶¦f–ÈÖÖÖÌÑ ³¯ùê¯ùê¯v•É%ša>Wi\Úû[iõ%Lã*˧›·ÒêK˜†|u\¥qÿ# Þ-òÕ!_}+­¾„w‹|uÈW‡|µ ¬L´u5s5Ã4ä«#ð5›ÀW‡|uÈW»ÒJdjkj†ù¤ÒHÚû[iõ%L#•Fòé¦ ¬L’¤4Ã|JiÈW‡|õ­´ú¦QôÕ®´9ú¬£™«™0ÑVj¦L¾[óo{7&Úšš™šY"[[[3Gäjëj&DR[©ä3å«o¥Õ—0Ÿ¡4ä«S¾úVZ賎¶®‰>+4šI‘Ò|uÊW§|uÊW»ÒJ„iÈWçäAü”¯Nùꔯv•‰¶R3Lc*¥»e)Ÿ¥4íý­´ú¦!oôÖ¹ÆRôÖ)oòÖ·ÐêK ®Sâ:)®SâÚíU"K@#›@Gä„€v’ °Ã_*”£ äým²úfp˜ÁÑíq‚”uJYUV_Ú¢M ë[gõ%C3Óä’,ÍlmÍÍ0 ë¼<ŽŸÖ)aÖÔ÷·× D3Ì'”FPßßb«/a¡4B÷J( ë[l¢+3 ë”°¾ÅV_Â4$¬]l%²õY[3G3×D[¡™4Ñ„µk¬L‚dhfh†i…õ-¶ú¦QJ£øxÓÅV"L£t·”ò‘°¾ÅVÿ"o±Õ—@È–„uIXßb+mmmmÍ‘«­«™Im¥f ïkPß—„µ‹­D˜Æ ¾¯Áãø%a]Ö5øxó[h+4Ã4†Ò¼[Þb«“©4¦î–©|$¬Kº$¬k* ë’°. ë’°. ë’°. ë’°. k×X™hkj†ùHX×¢¾¯Åãø%c]2ÖµøxÓÅV"LCÊú[ý›l¥±©ïo±Õ—0­4¶î–M?[´Ö%k}{­¾$´”º´uñ—0÷%k]´Ö%k]_¶Òd häˆ\„H h¤@ð9_B3eV_0´³¶€v®>ùêÇ ]&µTºpa&”Cà¥æ‡hkŠ,m1óÀ7¯49&ÚbÚt±•Ó˜|´y‹­¾Äi@Ý·du³+`nvÌ·ØêK–®YÝì ˜›]M޶®®|5"©­Ô Ô}KV·duKV·duKV·dµk¬L´u4Ã4¶ÒØ|´y‹­¾„ilªû[lõor”ÆQ”Öͪ€ùöZhæ˜h‰éªûæYë><Šß‡îŽ£Î­ƒÖ.°™Y[@;úá®F‚ ´S ¥x¦y»¬¾„)SžÄovÌ_™€ÈÕOZJ‚ÒUp¶º“'ñÝ_e¢­©™©™%²µÅÛ3yÒ¼SY$Oâ»ÔJ$µ•ša>¥4Š'ño³Õ—0RÅ“ø·Ú D[G3̧”Fñ$~KW7ËæfYÀ|«­þEºÚ*H «GºÚÕV"K[K3[3ÇD[W3a¢­ÔL™`Kºz¤«g(Ay«­¾„i ¥1øpÓÕV"Lcðáæ­¶ú¦!]=ÒUU[MU[5Úš&I»Eºz¤«Gºz¤«Gºz¤«GºÚÕV"Nºzu^ÕVSÕVM˜Ï¢¼«ÚjªÚª ÓXJƒÕVSÕVSÕVSÕVSÕVSÕVóHWtUÕVSÕVÑÖÒ•·‰®|4sMôY¡™4Ñtµ‹¬LŠdhfh†iÈW|µ«­D˜†„µ«­D˜«­¦ª­¦ª­¦ª­¦ª­¦ª­šL0 6[5¯j«Š­¦Š­šA 躸,.!i=”Ö#i=’ÖCi=’VZ51¹"ú„F’€!PÞù­d¬³š¬³j°.ÉÐe™dõHVUg5Ygõ-ÑÅäªG®zäªG®zäªÝi¥™m¢­£†!W=rÕ®±2ÑViùÜ?¦¡b«©b«©b«&K[K3[ähëhæj&L‚v¦f«©f«yåªÝce$¸[®\õÊU¯\õÊU¯\õÊU¯\µ›­D˜ÆàAüe ëT³ÕT³Uæ3iîj¶šj¶jÂ4XÃ:Õl5Õl5Õl5Õl5ÕlÕ.våªj¶šw) ¹ê•«^¹ê•«^¹ê•«^¹ê•«^¹j÷X™h+5Ã|䪗5¬Ñ Ó«^Ö°N5[M5[M5[5al¶šj¶šj¶šj¶šj¶šj¶šW®zåªj¶jÂ4äªW®zåªj¶jr´u´uEB[¡™)mÁU¯\õÊU/kX›LÍ0 Éêe k¦![U³ÕT³ÕT³ÕT³ÕT³ÕT³ÕT³ÕT³U“) %Þ,ì h?»”Ö+iU¯U“ø¾ßÐ%V"%€‘Ä/ñ®È•µ^Z륵^v°6Ùš`¨`}€FB$4sçMÆ2«©2«É2«©2«&ô±b l˜l³j@“­^Ù*û¬ %èY×W™\’¡™¡™)²´µ4³E޶Žf®Hh+4“šqÕ` ë|›­@´55Ã4XÃ:ƒ5¬3XÃ:ƒ5¬3Ø0ƒ5¬M c!Y V4a’Õ¬†d5Øðm-mmmÍ\m…f˜kX›”¶ «!Y Ö°>D3Lƒ5¬3XÃ:ƒ5¬3XÃ:ƒ5¬M gÁÖ¬aÁÖ&¥ë@VƒmM c!Y ÉjHVC²’Õ¬†d5$«!Yíf+‘ÔVj†ù°†õ!IÂ|$«ÁÖ&K3LC²ªf«‡h†i°ÙjªÙjªÙjªÙjªÙjv³U‘0 ¶L5[5Y[DWÞš9&Úºš m¥fR3Õ¬†dµ›­D¦¶¦f˜kX¢æ#]U³UæÃf«©f«©f«©f«©f«©f«&S@K¼YXlÕäˆ\‚ÐNèƒ!­¼µ$­!i JkHZ»½Jd h„!C`ëd›Õd›Õ´óý]ˬ¦Ê¬&ˬLí,K²µd ru™ÐÚJm•¶`g)WM¹jÊUS®šrÕ”«¦\µ;¬L´u5Ã|Í=Í]µVSµV3§Ò˜|²éf+¦Áf«©f«©f«©f«©f«©f«©f«©f«&p±”«ªÙjªÙj¦\5åª)WM¹jÊUS®ÚÍV"G[G3W3a¢-æ³hî¹hîj¶jÂ4¶ÒØ<†ï+mmÍ06[5«ªÙj¾ÍV_Â4äªÝlº€©f«&°³”«¦\5åª)WM¹jÊU»ÇÊD[¡™Ð Ó«¦\5/Í=åª)Wí6¦ÁÖ&̇-¬Ñó¹Jƒ-¬MR3Lƒ-¬3åª)WM¶°Îd ëC´µD¶>kkæˆ\m]Í„fÒD[pÕ”«¦\5åªÝce¢­¥æÃÖ©f«©f«©f«&LƒÍVSÍVSÍVSÍV³›­D˜¥5%­*¶š*¶jBc“µ&­U½VMègÔÖ”¶&µµþðKjkQ[‹ÚZÒÖ¢¶v{•€v D®Hh$E˜Ÿhj(†ÁXh5Yh5Yhõ€Kòý³¬¿B+}ÎÕÏ&ÚJý0°±’­–lµd«%[-Ùj·Z‰lmmÍÍ0 ÙjÉV‹=¬SÍVSÍV³«¬L.ÉÐ óa¹ÕT¹ÕT¹ÕT¹Uتʭ¦Ê­¦Ê­$)â4x·ÈVK¶Z²Õ’­–lµd«%[í*+m]Í\Í0 Ùjmå³éî*·š%[ír+¦qøló–[} Ó8t÷bkØX±‡u{X›0 ÙjÉVK¶Zj (ÙjÉVK¶Z²Õ’­v¹•ÈÑÖÑ ó‘­–lµd«%[-ÙjÏá»ÊÊD[S3Ì'”FÐÝßr«/a¡4‚Ï6]nU$LCo¹Õ¿‰lµd«%[-5”lµd«]ee¢­£™k¢­Ð ó‘­–lµd«%[-Ùj±‡µ Ó(¥QÔÕbë,ö°ÎbëT¹U¦Ár«©r«&Lƒ=¬ëë=¬M¦ÀÑÒÙÚ¸úñB@WIý,…jk“! o}€F6&ŽÈ%í$A `£YiµTiµXiµTiÕd]’=D´Å(¬Ñ•¿_.²~­V—¤°´ðM+¹$C3ÓD[K3ÛD[G3G3W„a,|Ízë­¾Äif¶ÒØJcã›hÖÛpõ%Lcã›hÖÛpõ%ßzÍõ6\}ÉÕÓØ¨×l’¸é«K Wë¾ú "S[S3Kdkkkæhæšh+4Ã4ŽÒ88‹_Ýge$C3̇ WK WK WK WK WK WM˜®–®–®šÔÁ?‡é«M†‰¶¦f–‰¶¶f¶fŽÈÕÖÕLˆ¤¶R3L#•Fâ,¾ Ó ¯>D3̇ WK WK WK WK WK WM˜–®–®Ö}µÉØ"Ú¢ÑW¢™-r´u4CI£¯>D[©™2ùn©áªÉ0ÑÖÔÌÔÌÙÚÚš9"W[W3!’ÚJÍ 5\-5\-5\5 ©áj©áªÉÖ–È%í$~8x+þ]Ò­UÜøG;L…M¬M¶€F˜Ádlb]jµZlµZjµjÂ~I{g«Õb«ÕR«Õb«Uƒ­«0…Å[cQÝOW›„fB3)RÚ‚Ÿ³æ&cˆhfŠ,m-Í0ö±>D[Ìg+ ö±6IÍ0 Ùªú­¢¦Á~«¥~«¥~«¥~«¥~«&LƒeKýVKýVM`cC¶ª~«5d«C¶:d«Ýfe¢­¥™¥™-r´u4sEB[¡¦Á>Ö‡`†ýVKýVÑóa¿ÕR¿ÕR¿ÕR¿ÕR¿UøY·Yi‹i°ßê!I²Uõ[5ÚšÚššY"[[[3G3LC¶:d«C¶ª~«&°Õn³2Iþ{I¶:ØÇÚdi‹ù°ßj©ßj©ßª Ó`¿ÕCŠ„ù°.`©ßjMÙê”­ªßj©ßªÉÒluÊV§luÊV§luÊV§luÊV§lµû­@d«S¶:e«“}¬KýVKýVM˜ûX—ú­–ú­–ú­–ú­–ú­–ú­š@ÖÔoµÔoµÔoÕd,í¬Ï mrD®€FB$4R ¿Ä7~7"S@#ºîÐŽÀÐH¤€vJ#[)ìïŸé]o£Õ—0…Ítº:·b@9ÀR¥UÚ”®Né*K­”–`«S¶Ú5V&Úšš™šY"[[8‰Ÿ‡'ÍoµˆfB$µ•šÁIü[n‚ßË­–Ê­–Ê­–Ê­–Ê­–Ê­šÀϦlUåVKåVÑVŠ”>‹wKÐÆ¦luÊV»ÜJdikifk†iÈV'ÛX›„‰¶R3Lƒm¬KåVKåVM˜ÛX—Ê­–Ê­–Ê­–Ê­š0 Ùê”­ªÜj©Üê!Ú‚ŸM٪ʭš ÍÐÆd«S¶:e«S¶:e«S¶:e«S¶:ÙÆÚ„iÈV§lu±u©Üj©Üj©ÜªÉ2ÑÖÖÌ1ÑÖÕÌÕ llÉVUnµTnµ–luÉV»ÜJ„iÈV—luÉV—luÉV—luÉV—lµ«¬L´…“殲2)’¡æÃr«¥r«¥r«&LƒåVKåVM˜Ë­–Ê­–Ê­šÀÝUnµTnµTnÕd †Áº€&[[W@#AÚÁ‚Ÿ•5¬M†€FjX f@iU£U†°­­­–­ØÃØhµØhÕ` \’­ë2–4¹Úººrˆ¤€Fàb‹E¬ÑÌÐÌ4ÑÖÒ Ã«.±®·Ú D[¡™4ÑVi†ù°ˆu-±®Å"Öõv[} Ó`k¦!W]rÕŪ€µXÄúm¥®\&øyäªÝde$S3S3Kdkkk†i°ˆõ!šarÕÅ"Ö&̇E¬ æSJƒÝVM–f˜»­šðna·Uº»­¢-º˜\uÉU7ËšÀU·\uËU·\uËU·\uËU·\uËU»ÉÊD[©™Ô Ó`ëC4Ã4äªê¶Zê¶Zê¶Zê¶jÂ4ØmµÔmµÔmÕ.¦n«¥n«µåª[®ºåª›eÑÖÒÖÒÌ9Ú:š¹"¡­ÐLŠ”¶àªê¶jÂ4XÄÚdj†iHV7‹X›0 v[-u[-u[-u[-u[-u[-u[-u[-u[5™‡d èº[K"W$4’"ú-ÁZù³ÑZ·¬••V –€v6&˜ÁÁãÌ> …}V‹}VK}VK}V ޤ>«¥>«Å>«¥>«&K†®né*­\-]-…fÒD[°Õî°2¹$C3C3Sdi‹ñÈVwÐÝwð­‘.¶aÁG›ʇÕVKÕVKÕVKÕVKÕVKÕVM˜Ë–ª­–ª­šÀÆTmµTmõÿØú£,IŽYQ¯r3›ÿÄÞ†gÜõè"ç%­ðÌÒ’±‹)CJWX«¡µÔìÐZ ­ÕÐZ ­ÕÐZµ•2a¢«£Lšèª”a?4±¹ºÂçðR[m©­¶ÔV[j«-µÕKš$”9&z2öÙÑZ•ÚjKm5äê kõh­ŽÈÊDWK™¥ ÛÐZ=Z«Gkõh­ž¿µúŸÿÝmÔV"½E”¹Èü™XAðýPmµ¥¶ÚR[ Ùʰ ª­¶ÔV[j«-µÕ–Úê%—¤uÅW ÕV{ÔV—kõh­Jm5dëjë*”9&ºJeÊDW­L+ƒµ*µÕ–ÚjÛ ‰uKm5„mPmõeØÕV[j«-µÕ–ÚjKm5sMj«-µÕ–ÚjÈ"ØúJl‡»õh·îÖQV è¦ ô…Y¾ŠVëÑj¥ÐêаhX·|VCXB²zX7}V›>«-ŸÕ¦Ïjó_hôY Á@;Åè³ÚôY½ IBDOa+ÚªG[õh«ŽÐJäê ëìh«mÕ£­z´U¶ªÄVCB™c¢«T†ýPÃ:¤uÅ~´U¥¶ÚR[ aT[m©­¶ÔV[j«-µÕ®3ʶÔV[j«!ÜbÚªG[Uj«Úª©­šÚª©­šÚªI ë9º:ʤH骔ie® ®¨¶ÚR[m©­†,e؆¶ªÔV[j«-µÕlÕÔ'«R[m©­^¢+l±\\î©­šÚª©­šÚª©­šÚª©­š[õ?ÛyDVºbÚªI ë–ÚjKmõd¶Ú ÚjKm5„mPmµ¥¶ÚR[m©­¶ÔV[j«-µÕK. ÖYÒ°¥¶Ú©­šÚª©­*µÕK”Ù"¡¯Ê‘ÔU*Sʰ mÕ¤†uKmµ¥¶ò(³Ltµ•a?Ô°n©­¶ÔV[j«-µÕ–ÚjKm5“ÿ:Kª¶¼VC–ŸÊÉ*­ÕPæˆèûKEJ¤Á7ƒ*k´&$¬›>«èf„€n DØlV;©`Ý?›Õ—°½8Z5h°Êhµi´Ú4Z½ IBÏÕcY„Öê¬Lô¥Z™V†kLk5µVSk5µVSkUb«!,Ck5)bÝR[m©­¶ÔVCØÝV[n«-·Õ–ÛjËmµå¶‚µ*·Õ–ÛjËm5kµ´Vå¶Úr[½DW-rõµ°VKkµ´VKkµ´VKkµ(bʰ ­Õ¢ˆõ%ʰ ­Õ¢ˆuÛ ÛjËm5„mPĺå¶Úr[m¹­¶ÜV[n«!Xc¥µZZ«E_ÀKtuu…}VZ«¥µZZ«¥µZZ«¥µ:n+‘£«£ ûÑZ-ŠX‡´2lCkµ(bÝr[m¹­¶ÜV[n«-·Õ–ÛjËmµå¶Úr[m¹­†`•Öji­ÊmµKkµ´VKkµ´VKkµ´VÇde¢«£Lšèª”a?Z«EëKÑ`- Ö¢ˆuÛ ÛjËmµå¶Úr[m¹­¶ÜV[n«-·Õ–ÛjæÿáLYÀ–ØjÈàS±Ö¤µ:HEô(EZDß kÑj­Æx/ÖX‰lE‚@‰#’% ›&¸¸A€B«-¡Õ¦ÐjKh5„cLcµ4Ve´’ºâ<ÓX-ÕÒX-ÕÖXmÕÖX‘•‰®¶2a¢«£ÌQ&EJW¥L‹¸ ¼µ¹•Û ÜjKnµ%·Ú’[mÉ­†`ŒµÆjk¬6m/ÑU몕ÁXmÕÖXmÕÖXmÕ‘[‰„®BöCëKtUʰ Ê­†à­Í¨¬LŠäQ†ýPnµ%·zI“° ê¶äVCRÏÁX•ÜjKn5äê cµ5V[cµ5V[cuTV&º eB™#’ºb?±i]µ2lƒ"Ö—(Ã6(·Ú’[mÉ­¶äV[r«!˜g’[mÉ­¶äVCZÏÁX•ÜjKnµ[cµ5V[cµ5V[cµ5VGn%Â64V[cµ5V[cµ5VGee‚+íÕQY™èj)Ã~´X%·Ú’[mÉ­¶äV[r«!lƒr«-¹Õì5É­¶äV[r«!KÏÙŠ„ˆH”€nš@¿#ö€ÀÅtoÍV*­¶”VCØ<¬[F«-£Õ¦Ñêа„Ëh´‚¾J«-¥ÕL4:­¶œV›N«¡§`®^ÍÕqX™èª”)eZäê sõj®^ÍÕ«¹:b+‘­«­ û¡‹õ%ºb?š«—.Ö!­ Û ÝjËnµe·Ú²[mÙ­^R$lC²Ù­†=sUv«-»ÕÖUëɘ«Wsõj®^ÍÕqY™èj+³• ‘£+ö³9Þ/]¬[v«-»Õ·77²[mÙ­¶ìV[v«-»ÕKšMv«-»ÕÔU™èkñÕ¢¹z5W¯æêÕ\½š«Wsõj®ŽÝJ„mh®^ºX·ìV/Ñû9üóï²[mÙ­ö¸¬LšäQ†ýÐnµe·Ú²[mÙ­†`®Ên5„mÐnõ’KÒz²Ûà«Esõj®^ÍÕ«¹:.+]…2¡ÌI]¥2lCsõj®ŽÝ DsUv«-»Õ¶A»Õ–ÝjËnµe·Ú²[mÙ­¶ìV[v«-»Õ–Ýj~Jà”óùå[Å—$uõgC¾ó,¤¶z‰®.®8V_Ò$2ËDW[™­Lˆ]eØÇêK”a«!µUHmR[…ÔV!µUHmR[…ÔVC¾c,¤¶ ©­Bj«!ß16¤õäV†mp¬¾ä’<"KWK™­L˜èŠýp¬¾DW¥ ÛàXr‘¹jƒj«Úê%ʰ«6.ÞÚ„ÔV!µUHm5¤tÄ ÍVC¾´Æó¿Ä­!­Õ% £-¢§„") H´€n¾=}?<‡Ö!Š<аX_ ;xØUVCXÂÃè² º¬‚.«Ë*üyý‹âçªA™Õ€- ›ÐsC¶@ëKtU"­«Væ‚l|ÆüeØÎÆgÌ/ÑÕV†mlµ±ñ|Èj²Z…¬VCØ­V!«UÈj²Z…¬V!«ÕU${‰èŠmðSÕ—èÉ© Û|Æ<¤uuMpEëþ½Dë¥ û¡ƒuHè*”at°¾D¶¡¡*«Õ ùŸÕ ¤He–‰®¶2˜í?«Õ—]e¾?ceHéÉ¥L‹\]]dêí_òle–2ÛDWì§ðß­¾DW© Û(µQø >~V«/aŸAóeØF«?«Õ—°VV«/9—³]V«Õj–Ø£¡úh¨>ª†ê£¡:+]me¶2!rtu”I‘ÒU)Ã6è`}É7#«UÈjõ]-e¶‰®B™c¢«T¦tÔ:B=XK“UF«!K@G[@‘1I‘P¤Eô[ÂfÅ¿Cü«/àkád]Ô¯ %Ø쫱h_Eûj,ØW_ Ç°|û´¯Á[›%Ð0dëSuiª.MÕ¥©º4U—¦êÒT]šªKSuäU&Iò(Ãz(`²uÅ~4U¬/Q†mhªÊh5„ýPiRZ…”V!¥UHiRZ Áp—Ò*¤´ŠEëLÕ¥©º4U—¦êÒT]šª£´¡€õ%Ê<Êð:Éá¾(`&º:ʰ X‡”2ì‡J«Òê%ÈPiRZ…”V!¥UHiõ’&ÁgªRZ…”VCRWe¢¯ÕÊ\\QÀ:ä1ÑÿñLë¶AëK”9"lCSu”V"lƒJ«Ò*¤´zI“°*­BJ«ÒjÛ ÒjÇ™¦ª”V!¥ÕKtÅ-¦©*¥UŒÒê’`ªnMÕ­©º5U·¦êÖTÝšª[SukªŽÀÊDW­L+ƒá.¥UHiRZ aTZ aTZ…”V!¥UHi5¤a4Z Á\•É%á‹…³us¶nÍÖÍÙº9[·fëælQ•€nš@¿¶€o^£uo.wj¬B«!ì`³Z¬†°„ͨ± j¬‚«è)¨ß5VC0ÏÆZe¢«-$!rôà£LŠ”®J¡­ºµU·¶êÖVÝÚª[[uüU&º eØÆQ4Z…ŒV!£ÕÖû¡Ò*¤´ )­†°TÚª[[UJ«ÒjÈÑUšèkñÕ’\î[[uk«nmÕ­­ºµU·¶êÖVÝÚª›úÕ!!Â6´UGi%Rº*eØ•V/Á•VC°Å¤´ )­†° mÕ­­ºµU¥´’ºJ]•H몕áÓVÝÚª[[uk«nmÕù+e؆¶ê¦~uÛÐVÝÚª›úÕ!lƒJ«—|3£´ARZ Y"[W[™P[,´U¥´ )­^¢«Ö“¯ ¾CmÕÐV mÕÐV mÕÐV mÕÐV¥•Hê*•)e؆ÆjP¿RZ…”V!¥Õ¶A¥UHi5„mPiRZ…”VCJàˆèˆeh³ò•»ña³lVC–ÊÉœ¬¡Éš¬ÁÉš¬#®iEP ¾7mÖÖ,A‹•«ú:ì«Ã*ä° :¬B«!˜ctX…VG5h­†Öjh­Rdõ…ŽŽ‰®R™2ÑU+Ãv4VCc54VCc54V‡(Ã64V%´Â~h´ ­BF«Ñ*d´ ­büUK$Iøb)µ¡±«2Z…ŒVCŽ®Žžœ"¥«R¦E®®0VCc5è_}‰®–2lƒþÕ!¡ ÛÐX úW_¢ Û Ñ*d´Â6h´ ­†° ­BF«Ñjÿ•¦±*£ÕŽ1ÕÐX•‰®®2˜gGcõh¬Õ£±z4Ve´"GWG™T¦LtÕÊ\\Ñh2Z…ŒV!£UÈh2Z…ŒV!£ÕŒ1­âÐ0¤t…±z4VÆêÑX=«Gcõh¬Õ£±z4VÆêÑX•‰®Jö£µzè_} 24Z…ŒV!£Õ¶A£UÈh2Z…ŒV!£UÈh5ûLF«Ñj¿´fëál=œ­G³õp¶ÎÖ£Ùz8[ÇR% H (‚ÿXóþcÍŸÆê¿äð?Ö<¯|@‘%² %ŽH”€nš/*KY«!2XgÒX Ùº ]…2þ~RW©L)Ó&ºÂV=´¯¾$IeØí«C¶2lC[õоúeØV!£UÈh2Z…ŒV1F+¶A£UÈh5[ìh«Êh5äèêè*•)]µ2­ ¶êÑV=ÚªG[õh«mÕ1Z‰„®BöCûêKtÅ~h´ ­BF«•I‘`Éh?£Õþö3Z4Iˆ]=9u…?ëÿøg½óÿ¬wþãŸ|Ïü³Þ©­šÚª©­šÚªã¯2ÑU(Ê‘ÔU*S"­«VË]F«ÑjÛ Ñê%—„ýÐh2Z ÁDJmU­BF«!­«Öwx•ÁVMmÕÔVMmÕÔVMmÕÔV£•ÛÐVMmÕ¤}5d´ ­†° ÚWCF«!lƒF«!KöC£UÈh2Z…ŒV!£ÕÐË "`öZê³Ö<ØîòY Y:ÚŠ„ˆH”€nšà à_%ÙÝ«A‘UHdY EØA²z¬B« Çêz [@µY Á@KÍÕÔ\¥Êj@è(tt”I]•2¥ ›ÐZM­ÕÔZ•Îê%ʰ úWCB«ÐjÛ 5d´ ­BF«ÑjÛ Ñ*RkUF«Ñ*d´zI‘l¶AIÀ£«ÔwȸÖjj­¦Öjj­–Öji­ý«C–‰®¶2[™9º:ʤH骔i·÷62Z ÁZ-­U­BF«—è*ôd¶AIÀÔU™èkµ2­ Öji­–Öji­–ÖjÑ¿:„mh­–Öj-~/£UÈh2Z a4Z…ŒV1þ*“&á«…F«!Xc2Z…ŒV!£Õ¬ÕÒZ-JBF«—èªõäk‚+­ÕÒZ-­ÕÒZ•‰®B™P†mh­ý«!£UÈh2Z a4Z…ŒV!£UÈh2Z…ŒV!£UÈh2Z…ŒVCJàˆèÁ,C£ÿ&/ŽVɬ†,‚-À¯òzˆGDß[*Â8Y‹êÕÆ*øï'MÖÿ‘Gd |?ùþÓX}AèF )‚ÐSð³«ÿ’æÿQÍŸXÍŸ•XÍŸŒø§±P$D޾ÔQ&•)]µ2,£ùƒ#ëòG%޽ÊDWKÖsÕÆåJü ­¾„m\µA¡Õ¶qÕÆÕ‹å²ŸþÇŸ)òZ}É£«eR$[O]…¾ÖÑÕÑ“S¤tUÊ´ÈÕ~Tâ­DðVúáJ¡•Ûxøƒ#ûáŽü ­@t•ʰGm<üÁ‘£¯2ÁÕÒ«e©ŸÅŸ)òZèjë ?S¤?‡ï¥6ÂJ/~ß‹ŸÃ÷â§î½øVzñsøÞü +½ùVzó'ÐŒ¾ÊDW[ö³Õí«/i’)]•2-ru…w6Z…„V!¡UHhZ…„V!¡Õl±ÖVmmU ­†”®ZW­ ¶jk«¶¶ê­D–®–2[™0ÑûÑVmÚW‡”2lCcµi_ÿ½jÙ…VCeØO¾mü÷ï‚?¡ˆ2!rtu”)CÒz.æÿµT\k]üƒ"]øaç­Ñ:â*‘PD Ño tƒnq¡ÅÚ?=Ó­R(° ¬B«À*(° ¬†¤H (ÒødU «àßH—2·>Vm}¬:Ê*…ŽB™#’ºJeJ¤uÕÊà3æKõêK”y”Y&ºÚÊ„‰®Ž2i¢«R¦Mtu•a??c–Ë*ä²²t…OUïÃϘï£6ô©êÕ§ª—êÕ!e¢«VæšàŠêÕ!‰®–2ì‡êÕ!¡«P†mÐeõeØ]V!—UÈerY…\VC°Íä² ¹¬B.«!¡çàSÕ«¥*—ÕÔU骔i‘«+,ÕqY‰° -Õ«¥zµTå² ¹¬†° ªWC.«Ë*ä²Òʰº¬B.«Ë*ä² ¹¬^rIØ]V!—Õ£ç`©^-U¹¬†´®ZWXªWKõj©^-Õ1W™èj+³• ‘£+ö“jƒêÕËjÛ zõ%ÈÐerY…\V!—UÈerY ÁX»ÒÈerY )‚Ð ÛÁIóÃæÛø~ UºÙаNÖ«Éz5Y/'ëÕd_•Kàdåëã²ZWã^ÖrYÂU ®ÆŸ¿ @$a—/ ÕKÀù÷¿ÄKcÈw‰ ù.Õ—(³EBW¡ÌQ&MtUÊ´‰®.2vûK’äQ†ýк:dëŠýp©ž´®¾D¶AëêùGëêùGëêùGëêùGëêùÇ¥zþÑpþÑpþѺ:dë9ߥ:$”a?üLuÈ÷æ—(S"­«Væ‚l|Âüee–‰®¶2a¢«£ Û ÈjH)Ã~(²:Y‰¬ŽDVC¾Ÿ0¿¤I^ ô¼¤I¾ÛlÈ1Ñ“S™2Ñ×je® ®¸T‡<&ºZÊ,eØ—êKÐóÁO|?YŸÈêKJ¤uÕÊ\dÿ{Äù‰¬¾„¯–Äÿñ’K²ƒ$tÅ6ø™êKôä)=¹”i‘«¯u‘)¨4‡aʰRKõKÊDW­ û)µñ'²Q†m´Úh½ZZm4>h>?‘Õ—°ŸVý% ³ŒV”®ž±V‰<Š,‚- › Pâˆ$A è¦ ®À÷æù‡_²“‡ÒÕó@ºzJWÏÏ_õ%! ÈIEŠ ô”8©(]²L’d+³• ‘£«£LŠ”®JVAëêK¡uõ<´®ž‡ÖÕ!ìg© ZWÏCëêL÷gqºKfu$³:’YɬŽdVG2«óðcÕ—É£«õˆèjëÉa¢'eÒD_«”i]]e.2¡6¿D¶¡±úßÚŒÌJ„mh¬ŽÌJ„mPfu$³:’YɬŽdVC0VÕGcõ¡!à%º ]…2G$u•Ê”H몕Áth]}‰2ì'ÕFrº?´®žŸÌ DWG¶Aëêyh]=­«ç¡uõ<´®ž‡ÖÕó“Y} Û uuÈ÷Cæ!;DtÅ~ø±êKôäT†mк:ûlÔU&ß±òh¬>«Æê£±úh¬>«­«/¹$lƒÖÕ—(SÊ´‰®.2”YɬŽdVG2«#™Õ‘ÌjÈ÷Ãæ#™Õ‘ÌêHf5¤ôàÐSðIëú‡_~?m~/¾Ÿ6¿@‘-Š‘P¤DZ@‘o-ØRX Qd èf„€n DØtG«!XcK­.}´º¨‚V—>Z]úhu-~м¨^Ê]¥2e¢«V†ýh­.ªW_¢ ÛÐZ]T¯ù¬Ž|VG>«#ŸÕ‘ÏêÈguä³:òYù¬Ž|VgìUK¤Høj¡"à%ºÚzòV†mh­.­Õ¥µº´V—Öêø¬D®®°V—Öê¢zõ%ºZʰ ªW‡„2lƒ>«#ŸÕ‘ÏêÈguä³zI“° ú¬Ž|VC°Æ–Öª|VG>«!¡«Ð“2i¢«R¦Mtu•ÁZ]Z«Kkui­ŽÏJdëj+Ã6JmßÛÈguä³:òYù¬Ž|VG>«óóYíùC_ëÿ#I“,efŸ}ÉÖUè*”9zάUeJ¤uÕÊ\¿µ ¢Ì£Ì2ÑÕV&Ltu”aWmü©WA”a>+oæç³ú´ñóY}ÉÙºÚÊÌbû’£«£«T¦ôœPä‚<øå»×¾D‘% ›MºHEJ@vðzWYja±…?õê—°†Åþ$V_J‘Ô7S:j‚«§\4Žo«–¿±ú%ëQf‹„®B™#Â"þÆê—”H몕a9òU$y”a¡6þä«_Â6Bmü ­@”aB+"añÿhƒ/•óޱ/y–ˆ®ØÏßXÑ“C™c¢«T¦LtÕÊ´2äo¬‚(óˆ,]-eØFª?ùê—°ŸTB«/a?©6þÆê—\dJm”Ú(γ]œg?¡Õ—ðÕRœg»8ÆößXQ&EJW¥L+sMp¥±º5V·ÆêÖX}•‰®BöÓjãOh¢ ÛhµÑzµ´Ú¸jãOhõ%l㪠խ±º¯Ú¸jCcuk¬nÕ­±ú?Ò&ººÊ`¬†Æjh¬†Æjh¬†Æjh¬ŽÐJäèê(“Ê”‰®Z™k‚«‡omF_e¢«¥ ûyÔ†Fkp´þ|V_Â2¸ZGU% ç¶ž‹ÕZ­ÁÕZ­¡Õ\­¡Õ:æ*‘$(Ý4ÁÀ ¾ûͶ:ØxGóóX} ;ØXî?Õ—°-ÖŸÈêKØÂf ¬#²Ñ`ýɬ¾äQf™èÉ[™0ÑÕQ†eh°†k}h°†kh°ŽÓJ„mh°ŽÓJ„m¾½ùI­¾„mÎ÷ŸÔêK؆ëOjõ%l㨠ÖÐ`ýI­¾„¯ ÖÐ` ÖÐ`©•Hê*•)eÚDW¬¡Á¬Q|{3 +]meØO©?©ˆ2l£ÔFéÕRd?©®Zýh°†kh°þ¤V ºâ?Ñ›ó=4XCƒuV&ºjeØkh°†kh°†küX¿„mh°†k\õsÕÆå|ÿI­¾„m\µqùöfV!Ò$®e0ÈŽëÑ`ýI­¾äèêè*EJW¥L+sMp¥Áz4XëÑ`…•‰®B™P†mh±žGýg­ƒOáÇS% ›- K8ÿg ’"% K8*Ãcëýy¬xÁZ’%¤JH| ÿç±I}/©o—%$_Úª¥­ZÚª?—Õ—<ºZºZÊl‘ÐU(s”aÚª¥­ZÚª¥­ZÚª#°2I’GöÓj£¹ÜN«/a­6šïlÆi%Â6´UK[õç´Á“µUK[µ´UN«/áÓV-mÕÒV-mÕÒV-mÕÒV-mÕºü~œV_ÒÚª­­ÚÿØOÿãrÿ9­¾d+&º:ʤ‰®J™R[¬µUN«ÿ’Gmh«¶¶ê8­D؆¶jk«¶¶jk«¶¶jk«¶¶jk«ŽÁÊW‹ÃÁÊDWKö³Ô†¶jk«ŽÓJ„m,¾³§•ÛXzµ,õ£­ÚÚª?§Õ—° mÕÖVƒ•I“eŽžœ"¥«R¦E®®°UÇi%‚­ÚÁá[cµ5V[cµCý„ÚÐXmÕ1X™èª•a?¡6Ž^-Gýp³þ”V :b­ÍÑÚ­?£Õ—”€ŽZDß Fk'×Ys·¶vks·6wkk·6wks·¶vk'þM'[Ðjm®Öÿ+€k­ÕÖZm­Õ±W™èj+Ãr´V[kµµV[kµµV»ù9ü(­DÜÖj_õsÕÆåvo­Õ±X™è*”aWm\½V®úÑZm­ÕŸ×êKÐÆÕZ½Z«ãµAWkõj­^­Õ«µzµV¯ÖêÕZ½Z«c±2Ñ~Íýǽ"¯Õü šûðÑÈkuäµ:òZ ‘£«£LŠ”®Jö£µúóZý—,½Z´V¯ÖêÕZýß_m]áÑÜŽ2i‘ÔUêÉ%Òú~Zl÷»¹ÝïæçÌWkõj­ÞÍí~·úÙÜîWkõçµú’4ÑU)Ã~¶ÚØzµlõ£µúóZèjé kõj­^­Õ«µzµV¯ÖêÕZ½Z«Wku,V&¸ÒZ½Z«÷p»_ÍÕ«¹z5WïQ‡ŸÃÿ¼V_Â6ßÛÜ£~ŽÚ8Üî?¯ÕIªTÉ÷6?¯ˆ®øjIî³ËÕzµZZ«/)5‚ÙÊĆûÕj½\­W«õ—ûåj½Z­W«õ¦û-~?2+‘Pµà¢¹ÝÿdV_°t³ B@7"cWcõ'³ú’ÖÕÕçÙåt¿«Wcõj¬^Õ«±z5V¯ÆêÕX½«#±2ÑU+Ã~8Vóß?L÷—(óˆ,]-e¶Hè*”9ʤ‰®J™ïËŸÚêK.®Œ±—É£ Ûx0݇l]meBäèê(“"¥«R¦E®®.2«CØÆÂ[›!K¶±ÔÆÂ[›!lc© ~´š?µÕ—°¥W Çê ²ÕÆÖ«ecŒ Y[D™­L˜èê(Ã68V‡”2m¢«« û L÷üDZšÿ8V‡°P·6CØF¨ÀñùS[} ÛL÷ü©­¾„m„ÚàXÍŸÚ DW|µp¬Ù"¡¯Å~8V‡¤®R™i]µ2„cõ%Ê<Ê,]meØFbºçOmõ%l#ÕFbºçOmõ%l#1Ýó§¶ú/)µQj£õ:b¥ Wë#’zp騹 8álò,Ýl‚Ð@ (Rаƒþ¿+€ÈU —-\¼§Â.kàbÍ?Õè!|qp¯á»*âòÕq5Ç4WÍÕGsõÑ\}4WÍÕGsõÑ\}4WGk%’ºJeJ¤uÕÊ ŸçQÚxðæ&ÍÕŸÜêK¶2lãQš«?¹Õ—°‡/–Gsõ'·ú·ÁWËâ{4WÍÕGsõÑ\}4WÍÕg©Å¹ú,|?¤LtÕÊ´2ïæê£¹:r+¶±ùæfäV"lcóÍÍOnõ%˜c?¹Õ—°Ÿ­64WÍÕ'ÔF¨ ÍÕGsõÑ\}4WÍÕGsõÑ\}4WGn%Rº*eZ·¹ú|Ÿæê£¹úh®ŽÊÊDW¡ Û8jãèÕrÔÏQGmP?¹Õ3š«æê“j#Õ†æê£¹úh®þäV_r”I}­R¦Mtu•Á\}4WÍÕ§ðI|>Ú«öꣽ:r+¶Q|sóh°>¥6Šãý'·ú¶Qj£õjiµÁÕúhµ>´äÏmõ%¡+Ð7S- Çê[Ál}4[ÎÖG³õÑl}8[(¸[íÖ粘Ë´Z®Ö粆ËÆhõù%:ø­¾dl$ =öˆ¤¾™ÔƒKW- #Œ±¥±º4V—ÆêÒX]«Kcui¬.Õõð“æY™èª”)e؆ÆêÒX·•ÛX|k3n+¶±ôZYêçý+]±Ÿ¥64V—Æê¢+ ]¹4V—ÆêÒX]«Kcui¬.Õ¥±:n+‘ÔU*SʰÍé¾6?‰_«KcußÚŒÉÊDW[öj#ôj õj#ÔuC0Ý—ÆêÒXý¹­¾cui¬.Õ¥±º4V—ÆêÒX]«KcuLV&ºjeØÆêJN÷•ü$~i¬.Õ•|k3n+¶¡±ús[} ÛHN÷ŸÛêKØuùs[ý—ÇØÒX]«‹º€!KW[W[™9º:ʤH骔ie® ®4V—ÆêjN÷Õü$~LV&º eØÝV)·UÊm•r[¥ÜV)·UÊm•r[¥ÜV)·ÕlV¹­Rn«!h­K£Uj«!% £&Ðw‡Õºÿá—X­[«usµn®ÖýÃ}sµŽ¬J@$)‘P„à·LÕ–ð°ú¬’>«¡¯:Ha­n­Õý°Õ­±º5V·ÆêÖXÝ«[cuk¬nÕ‘Z‰]eXÆê^œî{ñsx‰­Rb«Ü›omÆde¢«¥ û¡Û*å¶J¹­Rn«”Û*å¶‚1¶5V·ÆªÜV¹5V·ÆêÖXÝ«[cuk¬ŽÉÊDWG™£LŠ”®ØO¨àtßÁÏáå¶J¹­^¢ Û Û*å¶J¹­Rn«”Ûjæ™ÜV)·UÊm5äê9«r[¥ÜVC]a¬nÕ­±º5V·Æê¸­D؆ÆêÖXÝ«r[ a?Å龋Ó]n«!l£ÔFñ­ÜV)·UÊm•r[¥ÜV)·ÕK. Û Û*å¶Ê­±º5Vå¶J¹­†l]a¬nÕ1Y™è*•Ie؆ÆêÖXÝ«[cuk¬ŽÛJdéj)Ã~(b}‰®ØÖªÜV)·UÊm•r[¥ÜVT¤ÜV)·Õ% £­£­ÌI‚ÐM (‚ÕŠ}Z­¡Õ\­¡Õ:+‘PD )‚Ð þÿßeVI™UJf•’Y%eV/Hv°ØÁÒKcqŒ…Æjh¬Rg5àê[5´UC[5´UC[uV&ºâkQ[5´Ueµz‰2,ƒÖ”Ö*¥µJi­^¢ û¡Ö*¥µJi­RZ«”ÖjÈY$lƒ¢€”ÖjHë9تÒZ¥´VÚª¡­Úª¡­Úª¡­:Z+¶¡­ô°)]±ŸÃåô°¦´VCØ=¬C–2ì‡Z«”Ö*¥µJi­†`«†¶jPÒZ½DWXg¡­*­ÕG™eÒ$[™0ÑÕQæ(Ã6´UƒÖ”ÖjˆÛÀV­•ÛÐV•ÖjÛ Ö*¥µJi­RZ«”Ö*¥µzÉ%ieصVÚª¡­*­UJkõ]qŒi«†¶êh­DRW©L)Ó&ºÂV•Öê%—äQf™èj+³• ‘£«£LŠ”®J™qxg#­UJk5d –ASÀÐÕIEŠ tƒï¿!­ÖÃÕ:¦*ÝlEØÁú?v°Ø]VCXÂR |CƒÑe•rY%]VI—Õ ’$ô\=–%h¬Õ£±J›Õ Á;ÚªG[u„V"KWKv¡­z´U¬)©UJj5¤”i]a«ŽÄÊ$IeصV)­UJk•ÒZ áß½Úªç¨ j­^¢«Ö“¯ ž¬­z´U¶êÑV‰•‰®B™P†mPÁúe؆¶ê¡‚u–»´V)­UJk5„mPk•ÒZ¥´V)­UJk5[ìh«Jk•ÒZ i]]=ëLZ«!تG[u´V"[W[™P†ÿˆ×V=ÚªG[õPÁ:¤•aÚª‡ Ö!lC[UZ«”Ö*¥µJi­RZ«”Ö*¥µJi­†p‹Qk•ÒZ¥´V™Úª©­šÚªÒZ½DW[Wa¢«£ÌQ&EJW¥L‹\]a«ŽÖJ„mPÁ:d)Ã64V“ Ö”Ö*¥µJi­†° j­RZ«”Ö*¥µJi­RZ«!Kàl=%td ’"% H‹è›Áh•È# È"غ %X¬ù'³ÐM\Üà;£5“ÖÌ`4°ÁKíÕ¤`[Ð^MíÕÔ^Í`š«©¹šš«©¹šš«£°2ÑÕV†õh®&-¬/Q†eh®&-¬CØ-¬)±UJl•[¥ÄV)±UJl•[¥ÄVCÎ)¾Xè Rºj=¹•aš«©¹:b+‘¥«¥ÌV&LtÅ~Šã=iaRʰ ZX‡\e0ç%¶J‰­Rb«”Ø*%¶J‰­Rb«”Ø*%¶‚9&±UJl•[ áÓ\MÍÕÔ\MÍÕÔ\•‰®B™P戤®ØÏåxOÍU‰­† ¢…õ%Ê<Ê,]meÂDWG™4ÑU)ƒ&±UJl•[ei®–æji®ŽØJdëj+Ê]¥2e¢«VæšàJsµ4W‹Ö!KWìGƒµ–ÚX|s#±UJl•[¥ÄV)±UJl5sMb«”Ø*%¶²ôœ- £Ð‘H”€nš@¿#ö€ï50ÜK«•:«(²Eô…XŠFk;¾¥™•H (‚Zð§Í*i³JÚ¬R6«¤Íj@è)«´Y¥lVCRG¥—2-ru…uVÉå^Úª¥­ZÚª¥­ZÚª¥­:+]¥2lƒÖ!­ ûÑV•Øê%ʰ Š­Rb«”Ø*%¶J‰­†œEÂ6( H‰­†´žƒ­ZÚª£±2)’G™e¢«­ÌV&D؆¶êˆ­DJW¥ Û „õ%ÈPl•[¥ÄVCØÅV)±UJl5„mPl5„ëL[Ub«”Øê%ºÂkmÕÖV±•ÈÒÕRf+&º:ʤ‰®J™6ÑÕU†ýPš[¥ÄV)±Õ¶A±Õ¶A±UJl•[¥ÄV/¹$Xg[¥ÄVÙÚª£±2¹$|µh«¶¶jk«¶¶êˆ­DRW© ÛÐVmmÕ[h«Jl5„ýPš[¥ÄV)±ÕKtu”a[¥ÄV)±UJl5‹Ub«”Ø*%¶²¶ÀÑsC™#’Š”H (Â&øKÎÖæl¥ÐêºÙ! P¤ñoñ B›ÕLV鬆°‡dZ¬­ÅJ¡UJh5$uT&úR­Ì5Á•kk°¶kk°¶«ÄVCX†똭D؆똭DØÝV)·UÊm•r[¥ÜV)·UÊm•r[ at[ 9K¤HØu/ÑU‹\}-¾Z.ç{k°¶kk°¶kk°¶kk°¶kÓÄ:¤LtÕʰšXSn«”Û*å¶²tµ”Á “Û*å¶J¹­†`] Ö«Á*·ÕKt…‰6&+“&y”y”Y"[WìGƒõj°^ Öq[‰° šX‡´2nƒõÒÄ:„mÐm5d)Ã6è¶ʰ¥6¤ ¸t[ Á »¬Wº€+]ÀÕ`½¬ã¶a¬Wƒõj°^ Ö«Áz5X¯ëÕ`“•‰®®2¬r[ Á`½4±¦ÜV)·UÊm5„mÐm•r[¥ÜV)·UÊm•r[ Á>Ó/õR9ª‚«õjµ^®Vi­†„ŽR@‘"hÝè[a Z­Ö(Â8Z/%¬)ŸUÒg•òY I‚ÐM\Üà¡Å5&ŸUÒg5` $I蹡 KÐV½ÚªW[õj«^mÕ1Zh«^mÕ«­zµU¯¶êÕV½ÚªW[õÒÃ:„mh«JmõeØÕV)µUJm•R[¥ÔVC¸Å¨¶J©­Rj«!g‰èÉ© ÛÐV½Úª#²2ù\Õ?nÕ—(óˆ,]-e¶Hè*”9"©«T¦”i]]d¨¶*©­Jj«!lƒj«’Úê%MÂ6è (©­†¤žóݪ%µÕÖÕÕÕEfa¹y¶ˆ2K™m¢«Pæ˜è*•aô°ieØ·jý£‡õ%ʰ nÕ’ÚjÛ Úª¤¶*©­Jj«’Úª¤¶òÝb%µUImU#² ‘Kò(ó(³D¶®¶2!rtu”I‘ÒU)Ã~èa} ®8W‡° zX‡,eØkImõeØÕV%µUImUR[•ÔVõýnÉkUòZ•¼VC¾›uÈP$D DR¤iý–.nðP8X_À‹ÿ[[@7A +€Ëêа‚btY•\VÅ`Òe5„%4K  (³H’eÒDW¥L›èê*s‘áTò<"Ê,‘­«­ Û …õ%ʰNÕ—èŠýPkUÒZ•´VC]-e0Τµ*i­JZ«!GÏÁT•ÖjHéªuÕÊ`ª>šª¦ê£©úhª>šª¦êH¬Ltu”a?´°)]±ZX‡¸ ¼±‘Öª¤µ*i­†° j­^Ò$ìg©¥64UMUi­JZ«!WW˜ª¦ê£©úhª>šª¦ê£©úhª>šª£µašª¦êC kIkUÒZÕH¬LšäQ†mPkUÒZ•´V%­ÕLUi­JZ«’Öê%—¤EÜ_-šª¦ê£©úhª>šª¦ê£©:+]¥2© ÛÐT}4UZXKZ«’ÖjÛ …µ¤µ*i­JZ«—èŠýPkUÒZ•´V%­UIk5sí¡) ¤µ*i­†,‚- ¯Ä× wë£Ýúp·Ž®J@7- {À‰fë£ÙJ›UÉf5„-@ÂZ’YeVE™Õ )ýŽXdVÅ—Z«Öꣵúh­.­Õ¥µº´V—Öê8¬LtÊ„2G$u•Ê”H몕aôZ•¼V%¯UÉkõ’"a?”¼VCÎ"I]•žÜºj}‡W¬Õ¥µº´V—ÖêÒZ]Z«‹Ö!!Â6×ꢄuH™èŠý,µA kÉk5„mÐkUòZ•¼VC°Æ–Öª¼V%¯ÕÔUêÉ%Â6´V—ÖêÒZ]Z«Kkui­.­Õ¥µ:+]eŽ2lCkuQÂZòZ•¼V%¯U×J„mÐkUòZ•¼V%¯UÉk5kL^«’תäµzÉ%i=¹•aZ«Kkui­.­Õ¥µ:^+‘ÐU(sDRW©L)Ã6´V%¬%¯UÉkUòZ aôZ•¼V%¯UÉkUòZ•¼V%¯UÉkUòZ aÚ¬üÛŸž€’ÔjÈàS¹Y7ëÒf•H (Rú-µnP ÉѺ _°t³aY•DVCØÁeY a W%ðµñ5YÕÖXÝ«TYUV/ÐMè¹Ç„ß§êÖTÝšª[SukªnMÕ­©º5UÇh%²tµ”ašª[SuSÁZ’Z•¤V%©Õ¶A«UÉjUã°2I¾Vhµ‚)&«UÉjU²Z 9KDON¶¡©º5U·¦êÖTÝšª[SukªnMÕqX™è*” eج/Q†mhªÊj5„mÐjU²Z•¬V%«UÉjU²Z Á“Õªdµ’ºÂTÝšª[SukªnMÕý7Už˜—üMÕ/™© ¢ÌÙºÂTÝšª› Ö—èŠýhªn*X‡´2lCSuSÁ:ä1ÑÕRf)Ã6hµ*Y­JV«’Õªdµ‚)¶5U·¦ª¬Vµ5U·¦êÖTÝšª[SukªŽÃÊDWG™£LŠ”®Ø¦ê¦‚õ%È´ÚÐZÝT°a?´Z•¬V%«UÉjU²Z•¬VCØM%«UÉjUüö´Y¥´²t´ B@7")RŠ´ˆ~Gج£®yY[@7A ÄI‚ÐM\Üà7L‘ÕŒ1ЬJ"«![GþR¡ [ÐV mÕÐV mÕøÛªÿù7^h«†¶jh«†¶ê¬Ltµ•a?Úª£°ÒÕQ†mh«Jj5¤EÜÞÙÈjU²Z•¬V%«Õl1Y­JV«!GWت¡­Úª¡­Úª¡­Úª¡­ÚªcµYºZʰX_¢+öjƒÖ!¥ Û ÕjÈU†ýÐjU²Z•¬V%«UÉjõ’&a4”¬VCRÏÁV mUY­†\]a«†¶jh«†¶jh«ŽÃÊDW¡L(sDRWì'Õ ¬%«Õ¶A«ÕK”a?´Z•¬V%«UÉjU²Z Á: šJV«’Õê%—¤Eøj¡) B[5´UC[u¬V"[W[™P†mh«†¶jh«Êj5¤•¹&¸¢ÕªdµÂ6h`-Y­JV«’Õªdµ*Y­JV«!% Ë ÔjæÚÑf•Ôª$µ²tµ ‘$(Ý4~GìáÁ/ÿÏ€X­RY aЯ–LV%“UÑdU2Y a KÐÇ«TYþ'•Õ 4º¬J.«¢Ëj@è)«£®Ræ(“"¥«R†=h¬Õ³9ÝÆêÑX=«‡ Ö’Ôª$µÂ6¨`-Y­†° Z­†´2ì‡Z«’Öª¤µ*i­JZ«— Û & ¤µÂ×®ÆêÑX•ÖjHëªu…±:+“"y”Y&ºÚÊleB„mh¬ŽÖJ¤tUʰ j­^‚ µV%­UIkUÒZ•´V/i̳CO@Ik5$u•zr‰ðÕ¢±z4VÆêÑX­•ÈÒÕRf+Ã64V¬%­UIk5¤”i]]eج%­UIkUÒZ•´V%­Õ¶¡±z4V¥µ*i­^¢«Ö“¯ ¾Õ‘X™\’¥ÌRf‹„®B¶¡±z¨`-i­†° ­ÕÑZ}‰´V%­UIk5d™èj+&º:ʤH 8¢·&+þm/¥UIi5dl~™ÿÓCB‘#’Š”H (ÂðÒfMèW‹&«’ɪh²ºHEJ@‘Öc®Žè±‚µšZ«I'@Ñdõ…|LtÅ—¯Æjj¬¦ÆêØ«Lp¥±š«©±š«IkÉiUrZ½D¶A§UÉi5„mÐÁZ’Z•¤V%©UIjU’Z•¤V/)̳¤' $µrtuôäá«Ec55VSc55VGj%‚±š«©±š«IëP†mh¬&¬CÊDW­ û¡ƒµ$µ*I­JR«’Ôª$µ‚1–«©±*©ÕÔUꪔi]a¬ŽÂʤIee–ÈÖûÑXM:X_¢ ÛÐXM:X‡°J­JR«’Ôª$µ*I­JR«’Ôª~R«ÿüï­?©Õ—pŒi¬JjU’Z áÓXMUI­ª4VKcu¤V"KWK™­L˜èê(“&º*eÚDWWŒyI­JR«’Ôª$µ*I­JR«!lƒR«’Ôª$µ‚}&©UIj5 ÿ¸.­Ö¢%`ˆŽ–Ž6ºHEŠ tsÑj-ØW_ [àh-êWK"«¢Èª$²*ЬŠ"«’Ȫ(²*ЬJ"«âßnÁ1V«¥±ZÁ´UK[µ´UK[µ´UK[µ´UK[µ´UGf¢­ZÚª¥­ZÚªEë­ ÛÐV- X‡° J­JR«’Ôª$µ*I­JR«’Ôª$µ*I­†`‹•¶ª¤V%©Õ£«£'§2ü‡Ÿ¶ji«ŽÂÊWÚª¥­ZÚª¥­ZÚª#µ ]…2lƒÖ—(Ã~(µ*I­JR«’Ôª$µ‚u&©UIjU’Z½¤IB„¯:†¤®Jßa)Ó"WW\g—˽´UK[µ´UK[µ(`Ê]¥2lƒÖ!­ ûÑV•Ôª$µ*I­JR«’ÔjÈ ]…2Xg’Z•¤V%©ÕÖs°U[[uV&—äQæQf‰l]meB„mh«ŽÔJ¤tUʰ X_‚+J­JR«’ÔjÈR†mPjU’Z•¤V%©UIj5¤tÄ2è´*ü½Õš¬ÍÉ*ŸÕ¥#=w+"")RŠ´[àheqÁh_-z¬Š«’Çjˆ¾Žì«’Ūd±*Z¬^ Ç°þR¯Ã-ÖÚªòX=VBG¡eÒDW¥L›|ÿè{ÿMUdþ¦ê—`ª¶¦êȬD¶®¶2lƒþÕ—(Ã~¨³*é¬J:«’Ϊ¤³ªÖTm J:«’Îê%E²Eøj¡"`ÈÑUê;LeJ¤uÕÊ`ª¶¦jkª6ý«C–‰®¶2a¢«£ Û uH)Ã~¨³*é¬^‚ uVC0U¥³Â6¨³zI“pœQPÒY á8ÓTmMÕÖTy•É÷êjª^MÕ«©z5U¯¦ªtVCBW¡ÌI]¥2¥L›è ýHgUÒY•tVCØuV%UIgUÒY ÁT½šªÒY•tV/ÑU‹\}-LÕ«©z5U¯¦êÕT½šªWSõjªÎ_™è*•Ie؆¶êÕV½ô¯–tV%UIg5„mPgUÒY•tV%UIgUÒY )CÂ2h³‚¹6î*‘G HÁÐcõ%ŽH”€nZ@¶À_ª”ÃåN‹UÉb5„%–@‹UÑbU´X•,VE‹UÑbõ= óL«!O8Ï®Æ*%V/P$D޾ÔQ&EJW¥L+£&¸U/Õ«%™ÕKtµ”Ù&º eØÕ«%UIgUÒY•tV%UIgUW[U:«’Ϊ¤³zI‘l=™mÈpµU¯¶êÕV½Úª#¯2ÑÕU[õj«^ªW_¢ ÛÐV½T¯ ¶¡­*Õ¶AUIgUÒY•tV-Õïké¬Z:«–ÎjÈw‹ =9”9zNê*uU"­«Væ"íú’&a?ܪ/ÑÕV†mp«9ÊeØ·êK”aÔYµtV-UKgÕÒYµtV-UKgÕÒY ùn±—\’T†mp«i]µ2„[õ%Ê<"KWK™-º eØ·êK”)eØÇê‹ uV-UKg5„mPgÕÒYµtV-UKgÕÒY )#¢#–ÁÍÚÿøËÿ3aج/ÐÑÑSB‘#ò¿E?ñ þ?pHŠ ts¿_åo³~ÉC°t³ vìàOaõ%­ßäÕïéâ ý« I²”Ù: ]¥2©L‰´®ØÍßVý/ùS¯‚(Ã2ZeP½:„m´ÚøÛª_Â~Zm´ÚøóY} ÛhµÑz¥Üw‹à÷EA@Ëg5„[Œ[õ%Ê„žsôýœ"I‘ÒU)ÓÊ\“ïÕ£­:ö*“"YÊl]…2¡ÌI]¥2%Òºje°Üå³jù¬†`ÉgÕòYµ|VCBÏÁV}´UÇ^eòý×Èó·UA”i‘««‹ÌßVý’g‹(³D¶®¶2¡Ì1ÑU*Ã6–ÚøS¯~ ÛXjãÏgõ%lc«?ŸÈ%aüù¬¾äè9³UAtUºj]µ2™¿­ rIe–‰®¶2a¢«£ ûùS¯~IéŠý„ÚˆÿG™£6ŽÚøóY} û9jãÏgõ%ì稣6Ž^-‡ëìáfýé¬@ðàÄ/9ZŽÖ‡£õÑh}8ZGR% ‘)EZ„p²Ž²JäPdlݬ¡ð~æOa ›&¸ú ±œ´JÑV}´UŸ¿­ú%[$tÊ‘ÔU*SÊ´‰®XÎår.—ûOfõ%lãª?÷*ˆ2lãr¹?Wý\µqÕÆå;›±Y‰¸ ¼³Yÿ¸å6+]-e¶ž³‹$”9&ºJeR™i]µ2XîëQ[õK‘¥«¥ ûyÔÆŸ{õKØÏ£6µñðÍÏf¢«« ûYjC[ui«þlV_Â6´UÇf%rôµøjYÜbK[ui«.mÕ¥­º´U—¶êÒV]ÚªK[uÜU&º eØÏærÿÙ¬@”al¾³›H¨à;›ŸÍêK؆¶êÏfõ%l#Ô†¶ê¸«LôµøjÑV]ÚªK[ui«.mÕ¥­º´UÇf%²uµ• e؆¶êج”)]µ2lã¨ä;›ŸÍêKØFr¹ÿlV_Â6´Y6«/a©68Z—FëOf¢c¯-­ÖÅÕº´ZÇ\%²aÜ­K»uq·.î֥ݺ¸[GZ%€\4;huÐXî?‰Õ—°ƒÆtÿI¬¾„4;h¾§‰•ˆ~K­Ç`£ñå|õÚÐ\]š«KsõOdõ¡£ÐÑQæ(“"¥«R†Mh­.­ÕýÛ}k­n­Õ­µºÿq»ÿ„V_Ê]¥2e¢«V¦•aZ«[kõ'´ú¶¡µ:B+‘Ð× =ù(“&zr)Ó&ºÂZ}•I‘<Ê,]meØÏâvÿ ­@”aKm,¾·¡•ˆÛÀvÿ ­¾klk­þ„V_Â6´V·Öêè«Lô¦2©'—H몕ÁZÝZ«[ku„V"KWK™­ ÛÐZÝ¡~Bm„ÚÐZ}•‰®®2ì稣WËQ?Z«[kõ'´ú¶¡µºµVGh¥ ÛÐZÝZ«[kuk­n­ÕÑW™èj)Ã~´Vwr»o­Õ­µºµV÷Ÿ{õK؆æêÖ\¡H©âvÿ ­¾„m”Ú(½Z4XB«/á«¥Ô'ëÖdÝœ¬?Õ—`³ò¥ÌͺµY77ëXªtŠ‘P„%p²îæÇðÿ#,-i²îËZ.K¸õOb P¤áÓXÝ«?‰Õ—`¬†ÆêX¬D¶®¶2¡Ì1ÑU*S&ß?ncõÿÿ ¹&ù%öUe‘¥«¥Ì ]…2G$u•Ê”۠ѪF«ÿ’¿± R$®ØÆßXý’­'‡I’eŽžœ"¥«R¦E®®.2[müÙWA”Yʰ?ûê—°Ÿ­6¶Úø3Z} ÛØjãÏh¢ Û½ZBýì¢ý3ZèjëêûÓ_¢ÌQ&MtUÊ´‰®.2çî Mò(Ã~h_²uÅ~ŽÚ8jãϾú%lã¨?£Õ—°Ÿóÿhãâ*ÕOªTF«/™1¢+¾Zòc —$•IeJ¤uÕÊ\¿± ¢Ì#²tµ”Á÷ÚW_rIŽ2i¢«R¦Mtu•Á £UËhÕ2ZµŒVý3Zý·Ÿ?£Õ—„_-­WKëÕÒüÓïÑßÿVñŠà¿óÿ3”¯yD–€"› t#€AÿíÖ/)Þ´€{ùû}ìOcõ%€"Kd (""©ï¦tÔWOÁ`=<\cGkõh­Ž·ÊDW¡L(sDX„ÖêÑZ=Z«GkudV ‹Ûý,n÷£µz´VÏâv?Ký,µ¡µúSZ} ÛXjãOi¢ ÛXz©,õ£µúSZ|ßGÒªHðšÏæø>›àûпú}?X«Gkõh­­ÕX™àJkõh­žàv?Z«Gku”V"¡«P†m„Ú¾·9¡~Bmh­þ”Vÿ%Gmµ¡µ:+]m=ûìh­­Õ£µz´VÖêÑZ¥•ÈÕÖê(­D؆ÖêÑZ=Éí~´V¥´rLš$•)]µ2­ þÃU)­ZJ«–Òª¥´zÉ%ÙºÂvÿ)­¾ûìר)n÷ŸÒêKZW­«‹Ls»Ÿæv?kD™%²uµ• ¶¡µ:J+‘ÒU)Ã~úÿÑÞÛü”V_Â6®Ú ÒjÈ6¹$­‡£UF«–ÑjH´€ž‹76ù¿ärÏߟ?óE–ÈP$D DR¤i¶Àw4‰ßôÃè^mz¬š«–Ǫé± ;Ð\ýy¬¾¤DZ I°Æð¯öŸÇêKžpª¦¦jjª¦¦jjª¦¦jjª¦¦jjªŽ¼ÊDWW–³9ÜSSõç³ú¶±ÕÆæ›Z‰°Í76?¡Õ—° MÕŸÐêKØÆVšªj#Ô/)’-‚ážÁÿR3ƒÿ¥fÒ¾úeJ¤uÕÊ\dh_}I‘<Ê,]meØí«-¡Õ¶qÔÆápÿ ­¾Sõ'´ÁUr¸§¦jjªfr¸ÿ„V ß ¦¦jjª¦¦jjª¦¦jjª¦¦êè«Lp¥©ššª©©ššªIûjKhÕZµ„VCØ…V-¡UKhÕZµ„V-¡UKhÕZµ„VC؆>XÍæ8“Ъ%´rtuôä)]•2\c´¯¾ÚW‡<&ºZʰ MÕ¤}µ%´j ­†¤2ì‡B«–Ъ%´‚6$´j ­ZB«–Ъ%´²E0Y‹“U>«–ÏjH è1m¢ï›uäU"€"‹` è&”8"IPºiEØ~;ÔX a‹Pc5„%,–@UÓc5o,$²jЬš"«$ÉÅs7~BbËd5äQ­ÖæÏY©Ÿ™øeBäèê(“"¥«R¦•qW°¶œV-§UËi5„mPjÕ’Zµ¤V-©UKjÕ’Z Á^•Ôª%µjI­º´WK{µ( hI­^¢«­'‡‰®Ž2i¢+þ͸ދÖ!Wüä•¢€uÖ{QÀÚ’Zµ¤V/Q†mPjÕ’Zµ¤V-©UKjÕ’Zµ¤V-©UKj5{¬´WK{UR«![W¡«P戤®R™i]µ2Ø«¥½ZÚ«’Z a°Ùʰ íÕ¢€õ%ʰ J­ZR«–Ôª%µjI­ZR«–Ôª%µjI­†`¯–öª¤VC8È´WK{uV&ºje¸Ñ´W[{µµW[{µµW[{µµW›Ö—(sDRW©L)Ó&ºÂ»I­ZR«–ÔjÛ Ôª%µjI­†±ÎÖÖlmÎÖ¦&`f+þ9Üš­­ÙÚœ­­ÙÚš­ÍÙÚš­£®IEŠ tƒZ6~©`²°t£Ç²Ьš"«–ÈjæEV-‘ÕÖÑÕï û¬µV[kµµV[kµµV[kµµVÇ_e¢«T†õPÁ:¤uÅ~´V› Ö—(Ã6´V› Ö!lƒ^«–ת^«ÿ| ùóZ$I)Ó&ºÂgñc±Z"Eò(ƒÏâ[Ÿ®¶>]íäéäi­ÕÖZ¯•®J_«”ie® ®Jý·{SÁ:d)³MtÊ„2l£ø‡h~^«/a¥6ŠŸÅ× W­6Z¯–ægñÝüC"?¯Õ—ðÕÒücÝüc­µ:+“&)eJ™¹ºÂZm­Uy­^¢ÌÙºÚÊ„2lƒ ֖תåµjy­Z^«–תåµê«µzå תåµzÉ%Ù"¡«Ð“®Rßa*S"­«Vkõj­^­Õ«µzµV¯ÖêÕZ‹•‰®Ž2ì‡ Ö!¥+ö£Á*¯UËkÕÿû+¶A¯ÕK”a?ôZ½DWXlóWºbrüï¯JÏiEð\¼pµ[/wëån½Ú­—»u\Uº1I‘P„luÀ·4’Y5eV/PdlݬAƒ•6«–ͪi³põÌÕ«¹*¡ÕGWKWK™-º eŽ»8ï—Ö!m¢+ö“j#9Þe¶Â6h¶²•a?T[µÔV-µUKmÕR[½¤HØÕV-µU_}¸z5W¥¶j©­†l]a®^ÍÕY™è*•IeØ5¬/Q5Kmõe‘¥«¥ û¡†õ%ºb?T[µÔV-µUKmõ’&á¿W¨¶j©­†p i®^ÍU©­^¢ ç˜æêÕ\µ•H骔ieØçêýG ë•Úê%ºZÊl]…2¡ÌI]¥2%ÒºjeØçê•ÚêJmu¥¶zÉ%Ùz2Û .`ÈÑUš|þŒõïŸù~‰¾Ÿ¹zòE†suÈ"ʰ ÎÕ—(ʰ…¹z¥¶R&ºjeØÕVWj«+µÕ% #ÖC³Õïlb #vÙú=¦EôÜ‹gëG@‘%²aÁ"8\‡$A è¦ ®nøKv@ë¥ÏêÊgu峺ôY]ù¬®|VCRßM& [8l{uÈѹWï?šX‡<Ê,“$ÙÊ„‰®Ž2G–Á½úeØ÷êK)¬÷û*Öû{õþã^Â6¨b½ÿ¨b½?½ˆ®øb)µÁ½:¤—ˆžÌ6¸W_R$Ûà^²EB_+”9ʤ‰®J¶Aë‹ÌUÜ«Ce–‰®¶2ì‡*Öû*Öû*ÖûÓ[} Û Šu÷÷êýGë•ÞjöØ£½úh¯Joõ]…®Ž‰®R™T¦DZW­ öêCëK”aÚ«U¬C¶2lC{Uz«+½Õ}¨b½U¬CØU¬÷¡Šõ>T±ÞG{õ¡Šõ>T±YºÂ^}´WŸ¥6÷ê]¥2e¢«VæšàJ{udV&ºZʰ Ö‡*Ö—(Ã6´XªXïOoõ%lƒ*Ö!lƒ*ÖûPÅzªXïCë}¨b½U¬C0ЮÖG«õ •ÁÙúh¶>œ­gë£Ùúð—˜­fëÃÙ:Æ*Ý„€"ìà`¹P„p´>‡ïiþGX¾ŽëŸÒê –€n6AèF õ•Sßn è1­£«c=Úª¶ê£­:R+‘­«­L(sLtÅz´UŸâr ŸÄßŸÛ WÍw6O«ŸVÚªU¬÷§·ú¶Ñ|góÓ[} Ûh½Xš[ìÑVýé­¾„ýh«>Úª¶êOo¢+®³Ëåþh«>Úª¶ê£­úh«>Úª£·¹ºÂV½•ÚXT±YÊl]…2ÇDW©L™èª•Á:[T±ÞEë]T±Á[ÚªK[uôV"¡«Pæ(“&º*eÚDWت#³2i’Gö³ðs$‡|Íýé­¾$DŽ®Ž2)Rº*eZ™k‚«Ÿ.rz+]ñÕ²¹Å–¶êÒV™•‰®R™Tæû³V†´~_­Ì µøY4C‘¥+lÕ¥­ºþT¬ß«Ð“2i¢«R†m„Úü,šûÓ[ý—µqð³h†,±Œ£ËÁ<[­?¹Õ—ðµ¢Õº¸Z—VëÒjÅŠXZ­£±YŠl‚Ѐ¾¹T¤Z@7W‘R …íþ3Z} [(¶ Åú3Z}‰Hê»)]5ÁÕöêÒ^•‰®–2ÛDW¡L(sDX†ö긭DZW­ Û¸jãr½ÿüV_Â6.×ûø­”aWm\¾»•‰®øbÑ^ý ®¾„¯–Ë~¶öêÖ^ÝÚ«#¸ÙºÚÊ„2ÇDW©L™èª•¹&¸Ò^ÝÚ«ûQ×ûOpõ%lãQßÝŒàJ„m<|wó\} ÛÐ^ÝÚ«?ÁH‘<ºZ&M²•ÙÊ„ÈÑÕQ&EJW¥ ÛXÿ6ðIó®DØÆæzßÚ«{«­66ßÝüW ºJeØÆV›ïn~‚«/aúluë³ÕŸàêK؆öê®DB_‹¯–àžßúpu×û~¿ƒŸ4ïà'Í;øIüè¬L.ɣ̣ ÛÐ`ݬ#¸aZ¬û¨£6?‰ÿ ®¾Ämà“øŸàêKØWëÖjÝ©2Reh·nîÖÍÝú³[}I´€‹oÐhÝ­[£uk´nŽÖ]ü ~k´nŽÖ­Ñ:R+ýJ¶Pjëÿ°k¶Ðj¡ùÚh– µú'µú=•h«nmÕM;ÀÝÍ׆¦êÖTÝšª[SõäYºZÊleÂDWG–¡©º5UÿGÚDWWôÿØÆOo¢ÌÙºÚÊ„ÈÑÕQ&•)“"Á8ûé­@ðµ4UGfeR$xµ„¦jhª†¦jhª†¦jhª†¦êè­DØÆÃâãá”MÕÐT¥~‡ûOoõ%[¶±ÔÆûW ˜b?½Õ—”®Ø¦jhª†¦êOoõ%˜ª¡©:z+‘­«­L(sLtÅ~4UCS54UGfe‚«àñœò¡©šªê'ÔF¨ MÕÑ[‰°à›ŸÞêKØFèÕêGS54Uz«/ašª¡©šª?½Õ—]]¥H骔i‘«+LÕÐT MÕH÷Hþ¡‘ÐV mÕH¾±ùé­@t•ʰŸTÉáþÓ[} Û(µQzµÆYh³}CX†Fkp´†F«äVCJ@G-¢o£uDV"€"‹` è&”` w4£°ÐM (ÂPVWN«K§Õ•ÓjÙe ô\J­pi¯†ö*µV/ÐÚX¬L’äQæQf‰l]meBäèê(“"¥«R¦•q˜«çQ?ÚxÔ†æêÏo¢«P†ýV꫚µºšµj²åÚºò)IPÐJuµTWKuµTWKuµTW{ÍÊD®%Í’†a¨®÷X¯®®®®®n/\‰0 .\]-\]-\]-\]-\5YSD.Þ,©4TWKuµTWµpuKuµTWKuµTWKuµ®DR®”†ùpõ!ri˜÷X›à,þ]¸9$C¦Á=Ö[Üc½Å=Ö[Üc½Z¸ºZ¸j‚:VÜc½ÅÉ€&%êj©®–êj©®–êj©®–êj©®–êjïY™Èµ¥a>ÜcmRr1ÕÕâëC¤aª«Å=Ö&̇{¬·¸ÇzµpuµpuµpuµpÕ„ip2àjáêjáê–êj©®–êj©®–êj©®ö•ȒkI³¥9&r•4×äëÒÂU“a"×”fJ")WJ³D¶\[š#Rr•4LC“Z¸ºZ¸j‚‚vÙZ5pÕ$e2Ù"G@’"Єڊÿ]ÖÖ«ÚzY[ÿû_! O H °ÅúI˜;ëå¨U†€ïŸ«V—«V—«VW«V—«V RWa Üè+™PV¯ÊêUY½*«Weõª¬^•Õ«²zUV{ÙJ$ä içX"óQY½œcmRÒ0 •Uí[=D¦Á}««}««}««}««}«&(cÚ·ºÚ·jräBY½*«Weõª¬^•Õ«²zUV¯ÊêUYí5+¹–4Ìg³º_•Uí[5aû¤“øÞ·aœcmÂ|¸ouµouµouµouµoÕõ¬×¬äbÚ ¸*«Weõª¬jߪÉkÊ5¥ ‘”+¥YÒ0 •Õ«²zUVµouµou{ÍʤH†4̇ûVMB.æÃ}««}««}««}««}«‡\Ö3ípß*þþPV2L.ÉçnyHÈr¥4ËD®-͖戔\%ÍJeõ!Ls¬?" óJs¬a>Ci ¥9Ö‡0¡4ÐXš©4¦î–ok}@ÈÃ{eþßÙ’‘„AàûGk}È™’èº) À䔀„i,¥y«‡0­40Çú法æ­Â|¶ÒØJuõ!Lc+­»uõ!%rõZÌuõ!cŠH3EB®&¥a¨«ÙÒ¹J¦9Öÿæ­~D¦9Ö‘†i”ÒÀ¼ÕC˜êê ó)¥ºú‹+£®þH‘ iXÇPWÒ„4)²äZÒ0 ÔÕ‘†iÜÿ‘êjÏ[‰ Î[=dJ&r¥4ËD®-Í1¹$(hœ·zÓP]ª«Cu•óV?"Mˆ¤^+¥YÒl¹Ž4LCuu`Žõ?2•†êêP]SùL¥¡ÂÊy«‡0©4&ßÜô¼•Ó˜º[¦òQgå¼Õ$”O( ÖÖ¡ÚÚ[V&z©”F` HrJ@|+øÕZ[ëPkj­ƒ­u¤RQkl­Ü´zCH†|OÓ›V"LA÷¿d!ãªÕC&Al’ÔuuY¦ ¶:ÔV‡ÚêP[j«Cmu¨­µÕž¶™rMiB†¡¶:0Æú¦¡¶:ÔV{ÎÊD®+ ó9JãèV9Êç(£4Žn–£4ÔV‡Ú*®Â4ÔV‡ÚêP[åÀÕDmµç¬LÉ”fJ")WJÃ4ŠÝ}`Œõ!LCmußÛŒR>Wi\vw\=„i\¥qùÞ†W?"ï–«6¦¶:ÔV9põ¶1µÕ¡¶:ÕV§ÚêT[í+‘+¤Ii–‰\[šc"WIsMà|o3‡òJCm•WaCi ¾·é+¦1x·pàê!hc¸zóQ[j«SmuN¥¡¶:ÕV§ÚêT[í9+¹–4[äÈu¤)‘+ÚêT[j«3ØÝgð(žW?"WJÃ4BißÛpàê!L#t·„ò EêVIt³©Î:ÙYg*uÖÉÎ:ÕY§:ëdgê¬Su²³NuÖž±’L‚' ¤` ohzÂJ@ž„)àe¶BÙÊ`3ƒ­»c³MµÕ©¶ŠU«l™¶LGš2‘ eµw¬L6ÉfHÃLUV¹mõ†qXÝçáA|[‰0÷6ó(Ÿó?Ò@YåºÕC˜F)â[®[ýˆ\¼YJù¨¬rÝêGä:r¡¬N•Õ^·QY*«½n%2åšÒ„4i"×’f›Èu¤aWi\V÷y™×­‚êÎu«‡L‘ õ¬×­äZr-iPÏBe•ëV)]ùÊ…²*«½ee"×”fJÃ4TVCe5TVCe5TV{ÝJ¤ä*i˜ÏT“ÕëVaSiL¾µé-+¹–4Ìg*©»Ee•ëVq¼[‚},TVCe5TVCe5TVCe5TVCe5TV{ËÊD®’æšÀ¥¾Êu«‡0TÉ·6\·zÓH¾µéu+¦‘¬î\·zÓHV÷PiåºÕ\Þ-‹-X[Cµ•ãV‘d‰l‚# Oè…™^Eµ5T[ƒµ•£VaÝ›Va›!l¾©Á¨ÕJ@Ä‚K… ¾‡!…pxk¨­†Ú*F­~@dËtôíiJäÊ…²*«¡²*«¡²*«·zHJ³LäÚÒ0RÅêÎ}«‡0«4.ßÚpßê!LCe5®Ò¸JãêfQY •Uî[=„ù¨¬†Êj¨¬öš•É!Ò i¦HÈҤȒkI³EŽ\Gš’Æi ºsßê!Lc(Á·6½feR$) óJCe5UV¹oõ¦¡²ÚûV *«©²š*«©²š*«©²š*«©²ÚûVÒ0 •ÕTYÍÉ2Ï}«‡\¹˜O(PÁ·6Ü·zÓÝ-¡4TV¹oõæJCe5UV¹oõ#x-•Õ^³2¹$Sš)Mˆ¤\)ÍÙrmi˜†Êjª¬f²ÌsßêG. óYJc)Å·6½fe"ï–¥|–ÒX¬îÜ·zÓPeÅs+Š­(XYS•5UY¹mõ”f‰èûÛ’‘ß þTVi̓Sødgå¨ÕC‚ ä1açÿôý3”£ Ž2ÐÍQŠA…5UX±iõ€'uÝe¢ïfKsLôZ%Í5Ku5UWSu5UWóò$žãVaª«½n%Â4TW9oõ¦qYÞ¹oÜ·ú‘M2¤™&‡$¤ ]9EÖÑ•·\G¯uä*‘«×B]]ª«Kuu©®.ÕÕ¥ººËûR]í5+¹¶4[¦¡ºÊ}«‡0©4&ßÜpßê!Lcên™ÊGu•ûVa>ª«Kuu©®rßêGäºr¡ -ÕÕ¥ººTW—êêR]]ª«KuuËûR]í}+¦,ï+xÏ}«+ùæ†ûV?"×”†i¤ÒHÝ-©|Ri¤î–T>ª«Kuu©®®Tª«Kuu©®.ÕÕ¥ººTW—êêR]]ª«½fe"ב†ù¨®®Åò¾Oâ¹oõ¦±ùæ¦÷­D˜†*+÷­Â46Ë;÷­Â4¶Òغ[6ûÿH?ºUŽÂam]ª­‹µ•ÓVI™¶€$úŽ$%¢ï…±¨¶®B{_Ńx®Z=$$aÅÔZ1jõ€# O\x ¸ªcª«µú^UmLmu©­rÕê![.ö³Ëî¾ÔV—ÚêR[Ýj«[mu«­nµÕýÇî¾ÕV{ÍÊD®%Í’f‹¹Ž4%â4ðÞ¦®D˜ÆàÍ«‡0Á»…WYSäli˜†ÚêV[Ýj«[mu«­nµÕ­¶ºÕV·Új\‰¤\) ó™Jc²»ïÉ£x\ýˆ\xoë9$C¦J#ØÝ·Ú*®Â4Bw‹ÚêV[Ýj«=p%råB?Ûj«[mu«­nµÕ­¶ºÕV·ÚjÏY™Èµ¥a>©4’ÝWaKi,¾·é+¦±øÞ†Wa‹Ý}«­ràêGäâÝ²ØÆ¶Ú*®~WV[Ýj«[mu«­nµÕ­¶ÚW"LCmu«­nµU\=„ùlv÷½ÙÝ9põ¦q”Æá{\=„ivw\=„i¥ÁÒÊ}«‡0Œ£›÷…*+Ç­ÂlÔY7;ëVgÝ꬛u«³ö•ÈD?¥~$”V¼oì +:ÐY{¯J@ž„\ôö}ÊU—\¾£éE«/ùLZõ—¼9ŽÊ*6­~@¦ H]Uõ¨ªö†•‰\Gš#M‰\¹PUªêQU=ªª=l%r…4Ìg(ÁâÎm«‡0¡4ߨpÜêGàš|cÃq«‡0Éâ~TU9nõ¦1u·LV±£ªzTU{ÜJ¤ä*iPUªêQU=ªªGUõ¨ªUÕž²2‘kIÃ|Bi‹;Ç­Â4â¤76=n%Â4’ol8nõ¦¡ªzTU9nõ#z­-×1ÑkñnQU=ªªGUõ¨ªUÕ£ªzTU{ÜJ„i¨ªžÅ*Ïq«‘‹ù,wŽ[=Uµ§¬LŠdHÃ|¶ÒØ,î·zÓPU=ªª·zÓPU=ªª·ú\YUõ¨ªUÕ£ªÚSV&r¥4LCUõ¨ªžÃcxŽ[=„i¨«ö¸H) ÕÕ·aÅâÎq«‡0bqç¸ÕC˜ +·­Â0Ja¨²2Ñ«$®îvÖÃÎzÔY;k/V ˆlIŽH H‚ê_²²þG†È$R@- É!(y®$C)¨¬–Ê*ç¬2¥ÈÒK-]xKsLtå’æšÀ¥®Ú+V&rMiÂD®”†ùL6w[ýˆ4Lc*Éw6½lJ#ØÜ¹lõ¦¡®Zêª\¶ú½Ö’k›èµx·¨«–ºj©«–ºj©«–ºj©«ö²•ÓHÂW²ËsÙêGäb>ÉæÎe«‡”4L#•Æâ;.[=„i,6w.[=]¬ÔU¹lõ¦¡®Zꪥ®Êe«‘ í¬ÔUK]µÔU{ÇÊD®†ù¨«Öfs¯ÍCx.[=„il¾³á²ÕCœºj/[‰0ÃæÎe«‡0£4ŽîuÕRWå²ÕC˜†ºj©«–º*—­þ#ꪥ®Zꪥ®Zꪽl%’r¥4ÌG]µŠÍ½TVKeµTV«xß;V&—dHÃ|®Ò¸lî\¶zÓ¸Jãên¹lgWa\Ý,Wñ¨´Þ?|ɺÆU«‡L™BDWIIþ;ž_°$9% Ïý‚/Ÿ ¾D’!É IRÄ@„! Üœ²zH‰\HðY]õª«^uÕË]€«ªzUUû™Èµ¥ÙÒ‘’«¤AU½ªªWUµ7­DFðþ«©4R7K*UÕ«ªÊ]«‡0 UÕ«ªzUU¹kõ#r•\ü×BUõªªöŠ•‰\Sæ³XÜïbq¿ªªÜµzÓX|cÃ]«‡0Å76ܵúl¥±Yܹkõ¦±•ÆÖݲYÅ®ª*w­²åÚriŽ4%råB9»ªªWUõªªö®•HÈÒ0ŸÃâ~‹;w­Â4ŽÒ8<„ï+¸Šoln)ŸRÅâÎ]«‡0R¥»¥XŸkõ#r1UÕ«ªzUU¯ªêUU½ªª½be"WHҤȒ‹ù\÷«®Ê]«‡0û?ÒøÂíZ íZ íZ5™Ò„‰\)Í2‘kKsd*™ š/QÜ›H2ä ‚Ç@d‹IJ„ ²Žž®’L‚' ¤` ˜²jpä)]…)à»ç’U“±Iæ‘+äJ¹Rš%Í6‘ëHS&r]hòÿøo »j“! óÁëCB.æÃ®Ú„i`ƒõ!Lƒ]uhÔjhÔjhÔjhÔjhÔjhÔjhÔjhÔªIL¹x·pÔªÉ:$[WÞÒ‘’«¤¹ 쪑fˆL¹¦4̬?"×’†il¥ Ö‡0 ŽZ Z=ŽZ5!" Óà¨ÕCŠ$E˜gšl}?ÇDW.i® \ìªM˜»j“)Í”†i°«>Dš%Â4ØU›0RµµµµµµµµjÂ48jÕ„íŒ]uhÔjhÔê!r±Œ±«Zµº$èªC]u¨«uÕ¡®:ÔU‡ºêPWêª=ae"WIsMàâ¨ÕШÕШU¦ÁQ«¡Q«¡Q«¡Q«&Lƒ£VMŽÀ"aÜ´j‚¾6ÔZ[«&­šL™B@]EŠ%² Ž€Ò”‰\èª=`erH†4C¦¡®:8ÀÚ$E˜†ºjOZ‰0 NZ MZ MZ=.NZ5៸œ´š´jÂ4ÔU‡ºêPWÕ¤U“-ז눔\% »˜ºêPWêªC]u¨«uÕ¡®:ÔUX‡&­†&­†&­" Óà¤ÕФÕФÕФÕФÕФÕФÕФU“AWꪚ´š´zˆ\¥+_¸ÔU{ÀÊD®)Í”&DR®”†i¨«N°6a*«Seur€uhÒjhÒjhÒª Óà¤ÕФU¦ÁI«¡I«¡I«&G`‰ÈÄ0ÔYñçAOU $ÉàEYY'+ëTeª¬“•uª²öp•H H‚X𽩳Îd,ÉÔX¹cÕ@¯Ã 0c54c54c58c54cÕuŒ3VC3VC3VMÐV§Úêä"ÀàÕdJ]x™Èµ¥9&r•4×.î¯>D†¡²:¹¿:´h5´h5´hÕ„ipÒjhÒjhÒjhÒjhÒjhÒjL•UMZ MZ5a*«Seuª¬jҪɒkɵEŽ\Gš¹r¡¬N•ÕÉýÕ‡È5¥aÜ_m’Ò0 •ÕÉýÕ‡HÃ48i54i54i54i54i54i54i54i54iÕeuª¬jÒª ˘ÊêTYí+¹PV{ÀʤH†4Cš)r…4)²äZÒl‘#ב¦¤q¨îš´š´š´š´jÂ4¸04i54iÕe,TV5iÕäÈUr•4¨î¡²*«¡²*«¡²*«ñ+«Uϵþ¹$Kšm"בæHS"W® ÍoÒêKFŠH3EB®†ù„ÒøMZ} óù•V¹J® ¿Úú%ƒ` Èz”G` Hr$)‘+ÉR ‹)üÆW¿„1¬ïÃïã±ú’1ÙG@ž"ø>ò?Þ« ^f?m Dš)Í”ÆWN¹Rš%²åÚÒ‘’«¤a8¿VM2p—üÚ*È& iÒD®%Í’f‹¹Ž4%råºÐÔ“Æ—0g"`?Þæÿ#ÿý ÿµ1’C’r-¹–\[šc"WISÒ\§­’H3D¦\S¦ñ °’HÃ|®ÒxXA˜ÏUWi<›Vÿ’wÓêŸ;áÝ´ú’$S®)WHÓýìKRdɵtå-×Ñwx¤)‘+×…æ×V¿„iüÚê—LiÂD®”f™Èµ¥a>CiüXA¤aSiü6­¾„iL¥1ÙÏÞM«/aSw‹Újª­¾›V_»e²¥Újª­¦Újª­¦Újª­¦Újª­¦ÚjoZ‰0 µÕT[Í`wOµÕT[ÍP¡4~›V_Â4Riü6­@¤aÉîþnZ} ÓH¥ÁÚúNZ} ÃHÝ, _²´&Kk>¥õóGóSZAB@’1Ù"G@’"¸ðl|É6›û3dOðUþ{GC 3è+}/G¤6 ÞÁ$n°£{C]5ÕUS]õ·dõ)ÿ ö^“z×äƒÞ=fõý÷¯TUKUµÇ¬D¦\Sš&MäZÒl¹Ž4e"ו†ùüƬþù•‘zª*I‘L¹: ¹RŽ’gÌ•<ƒ/ªVòŒ¹’gð•¿¶ú%©×Ji˜F)ßôê—0R¿¾ú%Ìç*ßžÕ— i¦‰\¼[.?_äÞÿ3‰ñ\|ÀȽü€‘{ñ#ï˜Õ—|?`dþýáËïÄèèø¿) Iˆ¤€$Kd HrDJ@’ûø™¹¼:ÿc ëóëó7b 3ß[c¾#V_R›äêGºÐLåÀ²ú¹¦HÈÒ¤4ËD®-Í1‘«¤a,«³ç«†ˆ4Lƒeõ!Ò0À_KÌwÐêK˜F(ÀAü|­¾¤LäºÐ$šrH†4S×™r…\!MŠ,¹–4[äÈu¤)‘+×…f)Ÿ¥4â›Li˜ÆR ñM˜ÆR ñó´ú¦±pÿ"a[ilÝ-ÍM¾Õ}¾ƒV_Â|x´ú]yI³Mä:ÒþgYmr¡9¨î)’!ÍfŠ„\!MŠ,¹–4[äÈu¤a>ç¤qá*åSJ£”Fá­M“H‘K’r1ž­6ùž­>Dš#Rr•4äâ ù!Ò i¦‰\!MšÈµ¤aWi\ÄÏwÐêßœÙWç;hòÕ¼ƒV_ò­îó´ú’)r…4hlï ˆ\[šïs“ä‚ |ɾ6Ø[{ëPoì­ƒ½u¨·öÖ^­äF0¾§ðó±ú—Lœ7Ï߈€$S$$I‘­ïæÈTWWù>1GàÁ‘&¼cGÍM¦4SšI¹Rš%Â,ÔW{ÍJ¤ä*i˜O*Äc4óÝ´ú¦‘J#ñM¦‘J#ñÍ|G­¾„i$ÛûP_}G­¾ÄiðnYìcC}õµú棾:ÔWÇÂQ|“erH¶4ÇD®’¦¤¹ GÍ‘fˆL¹¦4!Â46Žâ›0­46þbb¾£V_Â4ÔWßQ«ÉQGi¨¯ö„•‰\¡+£¯õÕ¡¾:ÔW‡úêP_ê«=j%råB_ê«C}u¨¯õÕž°2‘+¥a¥4ŠïnÞQ«/9"%WIsAÔWßQ«/"x¯7ÔW‡úê;j¢+/¹¶ :Û¯¯~I™Èu¥A_ê«S}uª¯NõÕ©¾:ÕW{ÔJdɵ¤ÙÒ¹Jšk×àÝòŽZ\’)Í”&DPØ&{ë»iõ% ƒÅu9ÏÁ#çwÑê_2ñ%»ûœèîsò(~N–÷9QÞçäQüœlïs2…ÉSçÿÈ9’CàßGàÄß’xKÓ»Uò¤€$Ì@Ç«3ðäÈ|—¬¾¤dÂYóLž5¿kV_2¤™&ºrH“&r-iF*ŒäYüLžÅ¿›V_råb>‹'ï行4Lc)ųøwÕêK˜ÆâYü»jõ%LCmõ]µú¦±”†ÚêT[Ü ˜ïªˆ\!‚³æ¹y?7ÏšçæYóÜj­ÁÖj­ï¨Õ—™JDßj+Þ·GàÈ9‚GÎßG¿„€Ÿ‚Ó¤RD4’ŇF²øˆHÿR"KùÉâ#4©²ÚV&rMi¦4Lãòš¼Êç*«4.¡yW­¾„i\>4’—¼«V ‡dÈ5MŠ$tå”+åZÒl¹Ž4G”Õ¥²ºTV—ʪV­¦V­šL‘+¤Ii–‰\Ìg(¡4€ï +¸t°ºt°ú®Z} אַÉcæ5y̬U«&K®-×–æHS&rá~…Ò¥<†ï +¹Bæ|„æ]µ‘†i„ÒÃ÷ª•ª»V­¦V­¦V­šà‰T<©0Ra$Oá{ÂÊD.Þ,‰cø•xJb%OáW➯«ÚºX[{©J@ž Hy D¶È¤D®$[1lÆÀ-«É-«É-«©-«É-«É-«©-«&[ßË©6 ÊØ:|‚f>3²Ÿ‰X¿² "Mˆ¤\)Í’f›Èu¤)¹PV{ÃÊd“ i˜O)buÿÍZ0RÅ¿•èY+¦¡²ºTVßY+\Yeu©¬.•ÕwÖêKXÆTV—ÊêRY]*«‹¬9$G¤ä*ipάY«©Y«&CdÊ5¥ iÆþcï¬Õ—l¹Ž^«LŠeU³VS³VMPV·ÊêVY݃Ï{ïÁsøžµYr-i¶4GßáÑ÷SÒ0 N°ÎÍ Ö&Lƒ³VM¦4̇³VS³VS³VM–È–kKÃ48k55k55k5·NV·NV5k55kõ¹BWN“"YÒ,]y‹¹Ž4%råBYíY+”Õ|fd«­nµÕ­¶º“omÞY+¹¶4ÇD®’æšÀµøÖæµú’) Ó”‰a,V÷½þÏ@&f±ÐÜ÷â4{±ºïõº. Ù›Ï7ïG¿÷æ£ß½_%’$KdyŠà Àƒ‹…r”ÁáíqŠëoÌ @&”÷}XÞ÷áYó>üEîY=@&ÅïâQó.5ïâQ|OX™ÈÒ„4)²äZÒ0 ΰ>äóqáó·kòݤ}4Ï +È0‘kJ&r¥4ËD®-Í19$ß=Ÿ¿m+¤qž¾JrHÐWµmõiBO‰œ?>Es8ÃÚd›Èu¤)ý\¥ŸëB3ØÞµmÕdHÃ|¸m5ßm«þx·­¾$E–\Kš-rä:Ò”48\=:\}·­¾ïG‡«G‡«½de"WJ“Ò,‘-ז戔\% Ó>Es‚OѼÛV_Â4‚1qBù„Ò¥|wóÛ¶ú܇œa¿m+¸˜O(ÐÝÊ'ÙÇæá`@“)úêQ_= h²äZrmiމ\%Í5K}µ—¬LäšÒ0Ö³ØÞÏâQ¼¶­¦¶­¦¶­š0¥4âßm«ÉV[wËV>›gÎÚ¶šÚ¶j’r-^x‰l‚# OñuôÍá̧N½W%@œ'X›„H H 38üUÖÞ³)^·ôJˆîYMîYMîYMíYMîYMîYMíYMîYMíY5AW=ꪴjRr]¹pß‹V"hî‡3¬M¦HÈÒ¤4ËD®- Óàk“’†ipÙjwX"Í™rMiB$åJi–È–kKs¤Á٪ƭ¦Æ­f©«Öàc5xßSV&r…4! š{q‡õ!Òl‘#ב¦D®\8iÖ¸U“a"×”&LäJi˜Ç­š|—5§Æ­¦Æ­¦Æ­R$$ø>ï7n2äš!"MH“&r-i˜wX›iÊD® Mbgô!E2¤a>Üam‚‡hÞq«/I‘%×’f‹¹Ž4%Í5kñ$^ãVSãV³¸ÃÚ$Rä’¤4)ÍÙrmiŽHÉUÒ\§«’H3¤™&r1Ÿ­4¶ÒxÆ­@˜Ç­šàï%ŠãVMJäÊ…¿—иÕÔ¸U“) SÈÒ ±•ÎZëàÑoM[592•€$èîø­Rm-ÖÖbm-ÕÖbm-ÖVMZMNZ5Øßžþ[´úý<Œ#¬S{VS{V“{VS{Vóݳú÷›¹øËˆº<ˆ/®ÌÂ:À|­¾OŽÔå“Åy€Y˜hÀ:¦ºzÿøàHX™l’)Í”&DR®”f‰l¹¶4G¤ä*iðàÈJcð1­[M­[M­[M­[5a\·j‚£U­[M­[M­[=䔈ÓàÝ2yÐ|UW¯êêU]½ª«Wuõª®^ÕÕ;YÞïäA|oY™ÈUÒ”4(ï—[¬ór‹µ Óàë¼ÜbïºÕ—0 n±6a:Z½Üb—[¬ór‹õ!E‚‚v5p5p“­·¬LŠ$¤ iRdɵ¤Ù"G®# ÓP]½ª«—[¬óª®^ÕU­[5a\·šZ·jÂ4¸n5µn5µnÕuLëVSëVó]·ú—l–÷»YЮÞu+¹BWN¹–4ÛD®#M™Èu¥A]½ª«Wuõr‹u^õÕ«¾zÕW{ÝJ„ip‹u^ÖË-Öy¹Å:/·Xçåë¼Üb—[¬SëVM¦À"aœbm’r l]÷”€.‹o…_²´^–Ö«Òz9ÂÚ$$a—p…µÉ9’~êoy¿?|ù !þ¸ÂXam›$uÝÔu—È–kžfhrDJ@’ 2ðˆÈC¤ÒL¹Bš4‘kI³Mä:Ò0ž¡4¡‰ß¸Õ‡L¥1•ÆÄ#4ñ·aÐÄoÜ dM¹˜ÏT\amRr1ŸP\a}ˆ4Lƒ+¬ñÛµú÷OâÉÖ˜\aÉÖ&8X\ ˆÉ¥€˜\amRºŽ™gò˜yr+ &WX›à˜y.<2ÒdŠ„\!MŠ0Åcø¹x ?‰w×êK˜ÏR ÐÄ»kõ%Lc+Ícøw×êK˜w­B»V¡]«&èªS]U»V¡]«‡È…v6ÕUµkÕdH3MŠ$¤I¹–4LC]uª«ÎƒhB»V¡]«‡@SlîÚµ íZ5a¥4¸kÚµ íZÅä k¼»V_rL. Vgñ}Þ»kõ/ÑÁêÔÁêäV@Ln©“ÕÔÉjêdõ]¶‘+äJ¹–4Kš-rä:Ò”Èý¶¥üã9|/[‰Œ‘fJ&r¥4ËD®-Í1‘«¤¹K®É¿•ø-[Lo¯J¶jתIÊ$°$9’”ˆ¾ÔÖTmMÖÖTmí+‘$ ¤X"›àÈSW|gܳ íY÷¬B{VMÐWS}5ÕW3•‚újª¯¦újª¯¦újª¯¦újª¯¦újïX™ÈÒ0.±6Yr-i˜†újr‰54n· […Æ­BãV¡q«Ð¸UhÜ*4n·j‚>–ê«·jÂ4ÔWS}5ÕW5n©¾šê«©¾šê«©¾ÚãV")WJÃ|¸Äú¹Ž4LƒK¬Mð¬LɆùpÜ*4nÉ%ÖxÇ­¾„ip‰µ úX>i%~ãV øu‰,|ÒÊC¾gKyñÙ+M†‰\Sš0‘+¥Ii–È–kKsDJ®’í}ý±½¯?žÅ¿ãV_2Mä iÒD®%Í6‘ëHƒ¾ªq«Ð¸UhÜ*Ö`{_:]]ƒÏô¸•HÈ…¾ÚãV"è«K}u©¯.õÕ¥¾ºÔW{ÊÊ.õÕž²2‘kJ3¥a“í}Må3•ÆTŸËÓ„iL¥1ùLÑšìóï¸Õ¿ÿLCw —X› ¡-ÖÖ¥ÚÚKV""›àÈSú‰Ð[ñ³¬è@m]ª­‹3¬MôB E­u%3àk† C¬±’±àÿç¢U44NZ…&­‚“V ðëˆK§«Ï¦È–éèÂGš¹rá÷{ÕJ¿­¹6[³g­DB®†ñlþîêÚümÍß´ÓØJãYba[iþnïoÜ „i<ãV$Ò0£4Žn–ƒŒß¸‰\Ìç°Œ­ƒI´UWsV Œa3µÕž³ÑU–ÈÖwsLtá’æšÀ¥²Ú#V&rMi¦4 Ceu«¬ö°•ÓPYía+¦qøÖæ·lõ!¥4ŠÕý·lÂ4JißÚôŽ•‰\8YÝ:YÕ²UhÙê!r•ÈÕkṑ^¶Á9ó¾¿þxÊ\ªª¥ªZam’r¥4Kd˵¥9"%WIƒ|4lÅÖ(ްÆ;l"WHÃ48l¶ [5A+«jتIÉuåB9ëa+÷šªª=c"Ò0PÁ76=l%Â4‚olJUµ¸ÅÖø [”®ƒªZ\ ˆž±J‘K2¤ÒL‘+¤I¦‘<…ïa+‘#ב†i$‹{%‹»†­š0¥4ߨü†­HäJi˜GX£8ÂÅÖ(.ÄoØŠš/gšLE’¤ˆÈ9ߊ÷)‘+ÉÁ—hî¥ÎZì¬ÅÎZ`m’R0,Y=@’#R’à/"øÇ,—¬šàifNY…¦¬â7eõo,ªª¥ªZªª¥ªZªª¥ªÚëU&r]iPUKUµTUKUµ.‹{©ªjÒª Ó¸Jãòó#µiÚ´zˆ\Ìç*Ë44jµ Z…F­š„‰\)MJƒâ~ÿXÜ5jÕäÈUr¡ªö¨ˆªêUU½ªªWUõªª^UÕ«ªzUU¯ªjOX™Èu¤9Ò0 n°>ŽZ…F­B£VM˜G­R$øxïwÔ äl¹ŽI‘ðn™ü\‘;ù¹"7øù‘7øaç7ø¹"7ø¹"7øù‘7øaç7”FðÃÎ{ÔJ„i?ìü†ò ~Øù;jõ%Ì'•F*äGã¿£V ¸8jµ Z5A9Ó¨UhÔ*4jõKR"W.¼±éQ«ou¹‹Ÿ²r?ìü.~îÊýUU¹R¦¡ªzUU{ÂÊD®’†ù,wZ…F­š ‘)×”&DR®”†ùpÔ*4jµ Z…F­š ®ÝÃC÷ߨÈf¯z¥$b‰l‚# O HÂ`Qkí)+üÁ]<…ïá*‘D` HrJ@ß?n~© .Ÿ{¿—]^SVÁ)«È”"K/Å›ãòˆ«sÕ{ùkš=f%råúþbbþýá×4› ¹¦4ß²šµJZ5Y&rmi¶4G¤ä*i˜ÆP¿ÔÛ„i ¥Á²š¿U+¦1p·4ùÖ³&ÛäœARr•\Wš Íćy7SDš)r…4)Â4XV›0Ÿ‰;Ïߪó™Jc*ÀGã7a¡4Ÿ¿U+oYmò-«ù®Z} Ó`Y}ˆ®|D˜Ëj“‹+³¬>¤H†4ÓD®†i$ª{“% ÓàªU“# óáªUjÕ*µj•½j%Â4¸jÕ„ipÕ*ÿ¸Àš\`mò} "«V ßß“ÈߪÉ%)]ùÊuñZõì!—dˆL¹¾eµIˆ|ËêC¤Y"[®-Í‘¦LäºÐT÷üãkþqµÉ4‘+¤a>\`Í?.°æX›™ŽL ƒ•5ÿp/³²æGšL™BDWII–ÈäèG*yp§óK<ñÝdLy‚ ä1Ù"G@’Ñý}°*Çcx˜ù!›d„€<©ë.}7[šc¢×*iJš ÂÖ‡HÃ,¸Àúi˜X" óák.°æàk¦ÁÖ\`Íž°ú¶éwÔêK†4ßcø&èbC]U£V©Q«&K®¥+o4÷¡®:ÔU‡ºêPWêªC]u¨«uÕž°2‘+¥Ii˜F°¹P>¡4ÔU5jÕ„ipÔ*5jÕ„ipÔ*5j•µj‚®ªQ«Ô¨U“-ºêPW©4ÔU‡ºêPWêªC]u¨«uÕ¡®:¸ÀÚ$E–\KæÃÖ‡ÈUÒ0 ŽZ¥F­š0 ŽZ¥F­R£V9¸Àšƒ ¬9¸ÀÚäûaç9¸Àšƒ ¬MŽ\ß;ˆ4̇ ¬¹$Cši"WH“&r-i˜X›¹˜ÏQ\`}4¥4¸Àúi˜Xsp5Xsp5Xsp5£V$rñn)<'’ü¡.žùÎÁ•€&ßê>xÐÚ$R@- ɤD®ÀW2ÿøfþ}gõ’L‘$ ¤X"›àÈSWüIJj‚ƒUY¥†¬š„L©—Ji–È–kKs¤)¹.4êªS]ur€µÉ4Ù$!MH“"K®%Í9riJäÊu¡ <@““¬ùŽZ} óQW}G­¾$åZr¡«NuÕJC]uª«NuÕ©®:ÕU§ºêTWêªS]µG­DR®”†ùp€õ!ri˜Xsr€5{ÂÊä i˜Xsr€õ!EÂ48Àš“¬M¶®ƒ®:ÕU§ºêTWêªS]uª«Îg½›Ì ¹Rš”f‰l¹¶4Lƒ¬©Q«&„£V‘æûK¬ùµ")’&MôZ8WÕ¨UjÔ*5jõKR"W¯Å|8ÀÚg«³ðÈH“)r…4)Â4Š§Ì³x ?‹ÇÌ“¬ùŽZ} Ó(<@“ï¨Õ—0 °6™Ò0Ÿ«48j•µJZ¥F­š™J¦’U>þØÝƒ+\ h‚‚l­¡ÖÚV""›àÈSú‰P[ñ·ö=\%@Z«–¬š0̯fp~5CV [@†0‚*k Æ‚hêÞP] ÕÕß–H¤Lh«¡¶j«¡¶j«¡¶j«¡¶j«ýç½ÃP[ýL‘+¤a>¡4Bi~oÂ4Bi~oÂ4Bi$»û;jõ%L#u³¨­¾£V_Â4RwK²…Új¨­¾£V_Rr•\h«¡¶j«¡¶ÚV&r…4!MŠ,¹˜ÏR‹Ýýµú¦±þGxoóŽZ} Úê;jõ%Ìg+ ¬†NVc+­4t²:Y µÕØìî±y›Ý=»{žÃ÷¨•È”kJÒ »‡Újp‚55j•µjr¤)¹.4Åîœ`MZå;jõïOZJ£”Fén)žº‡NVC'«Qº78Áú¹JW¾&¸2'X› “K2¥ ¹Rš”†i¨­'X›0 ÕÕP]ýïáÔ=9ÁšÉ ÖLN°6™&r…4i"×’f‹%¢ —º;þ«ø´aãûÐwƒø6ÉdgMuÖTgMvÖTgMuÖdgÍÁsøß–Õ‡L|Éçœÿ‡ &CPeMVÖ^­G` HrJ@W¹¸l°¹§Êjª¬¾3V_2¥ÈÒK-i¶4ÇD®’æšÀ¥®ÚëU&rá¯2’¬©A«Ô UjЪÉÙrmiŽHÉÅ{%•ºê;hõ%Ìg±¹§ºjª«æbs­¾dɵtå-rä:Ҕȕ ]µ­DþŒák“)M˜ÈÅ?½8h•´j²¥9&r•4%Íá UjÐ*5h•´J Z5Á9sª«¦ºj¥¡®šêª©®šêª©®šêª©®šêª©®ÚóU&r…4̇¬M–\K¦ÁÖ‡HÃ48ÀšÉÖL°fr€5“¬™`Íß ‰\¼[.Ï™óòœ99ÀšÉÖ&G®Ò•K¤±8ÀúK2D¦\Sš&MäZÒl¹Ž4e"וçðK}u©¯¾ƒV_2EB®&E˜ÆàÝò´Ag]ÜÈÅ€&(­øC~©´.4‘iÊ"ºJJ"°$9% r |© °¼úI˜&¬RV© «ä„Ujª C†À «ä†UrÃ*µa•¼+“O3¯ä4K]u%SPU]ªªKǪ+YÜW²¸¯ä!üJ÷•,îKUµw¬@‹ûRU]ªªKUu-¯ÅCø¥ªºTU×⛯2‘ëHƒ*¿¸½š‹Û«¹¸½š¿9+Þ,Ü^m‚*¶TU—ªêâöjþ)¦ªºTU—ªêRU]ªª=^e—ªjW™È5¥a>Ü^m’ráþ7g‚¿’X‡olzÎJ¤ä*iðÆæ7gE‚ŸBUõ7gE"ï–b[ªª‹ ¹¸ÐdËutå#M‰\¹XÎ.‹ûRU]ªªëWUG>D÷’0)’”f™Èµ¥9&r•4%Íý’ßœ‰4CdÊ5¥ ‘”+¥éÿ ~É6‘ëèÊ%WWÕ/¹ÐŒ§¸ƒ\’!ÍfŠ„\!MŠ0_Uý’-rä:Ò0ñ?Ò¸ÐLå3•ÆTÏö*Ó˜Jã7gõ%Lc*©»åi¬2ñf™Š÷ׯ³~É ˜òè²!IŠˆl‘# I‰0„§³þK[2„ßîê—L‚G¯#3x¬$aÏ‚€.à ø¥nõT±/™CDš H™R¦%Í6‘ëHS&r]i.4¿¦ú%cˆHÃ0žáUi˜ÆVÏð*ÓØJãÙ²a>[il¥ñkª_Â4ŽÒ8ºYÎÓÄ@ ï–£|~MõK¶®¼¥9"%WIsAJiüšê— i¦‰\̧žÞ"×’†i”Òx†WI¤a¿-+h®Òø5U"aWi¨©n5ÕwËêýÉÿGIÿwñKŽI‘”4×äë:¿¦ "Í™rMiB$åJi–È–kKs¤)¹Ï»eR$C¦ñkª_Ò0¡4~MDWfCiüšê—”ÈÕk]hæÓÛ¿d¤ˆ4Sš0‘+¥ÁÃ!gòá™3ù¸H/W™ÈUÒ”4xxæÝ²‘fˆL¹¦4!Â4~[V_Â|~[V_ÍX$%Ã>"ÑÃU¸ÎÓZ’d/z¡$b‰l‚# O HÂø%Ÿé +‘) CX aññ™ß‚ÕlIA è*x$‡Õš°j2háó"gó™V$EîÂ_Wý’-rä:Ò0‰í$ž®ú¯ëÙ]&rá ¾§«L6IJ³LäÚÒliø™cV©1«|Ǭþý¹~]®Ò­Á1«‡<<£1«Ô˜U“%×6ÑkiÊD®+ ž9—ÏœËÇÞÏåƒÞ³jÂ4.{ï1+¦Á1«Ô˜U¦qyÿŽY} Ó¸Lã³ú<ö^|ù³Ñ•C®Ô•Sš¥ël¹¶\G¤ä*iðK¬5øØ{ >ö^Cù >ö^ƒz×àƒÞ5”ÆPƒ?ÓÓU&ri˜ÏP㤽ß1«/aSwËd{Ǭ@äb>ꪥ®ZêªÅ…€‡ÈUr¡¹×ds¯_W‘]µÔUK]µÔU+ø wé1+¦ñÛ]ý’# ÓPY­à¯¼cV —dHÃ4RiüƬ@¤a©»%•+k©²+ë;eõ%¨¬Å/ÙÖJ•µXYK•µTY‹•µTY{³Jd HrJ@Ä‚WQe-¬®6˜òA Èc Â6ÞÔÕæ›ºúµÕ/¹C®Ã7u¥¶Zj«¥¶Ê«l’”i™Èµ¥9&úK?o.¯fqyõ!Ò †ÁåÕ&LCeUsV©9«ÔœUjÎ*5g•ïœÕ¿ipÎ*5g•=^5EÉ‹ù¨¬öx•®Ò0 •ÕRYí9+‘#ב¦¤¹&ßïßÚÜ?V÷û,¯B3å “Ã뤮œÒ,‘­+o}?G¤ôZ¥+£º¿sVÿ^ç7gõ%8f~ç¬@äb>:X½:X½¿²ú%ÛD®#M™v”Õ;x '™ïä1óUYí9+”Õ«²ÚsV"K®%Í–æ˜ÈUÒ0 ÎY¥æ¬š ¹p ƒÇðš³JÍY¥æ¬š Œ]•UÍY59r•\% ÊêUY½*«Weõª¬^•Õ«²ÚãU&rá/%®ÊêMV÷›¬îïœÕ—0üià^sVùÎYýû.þ¥Ä;gõ%a"W.¦±øW4ïœÕ—]§dB?ÃqÚݬkwã þnœ¸_ÕÖûÔÖ¯$ô:úÞ¶$G@’¹¨´ÞÃ~ë_2EB@’$b‰l‚# O\ýDŒ–R*êªW]õª«^uÕ«®zÕU{ÄJd˵¥9Ò”‰\èª=]e²I†4LƒÓ«MB森z9½úi˜§Wórz5ß5«/á­ÂéÕõǃÕõÇéÕõÇéÕõÇéÕ&¡ë|»j“”f™Èµ¥9&r•4%ÍJcàM“!2åšÒ0ßôêÿÿOç!‡dI³MteæÃ5«¥5«¥5«ÕÛU&‡äÛÎR$Lƒ ‘+E–^‹wËDkrä:Ò”4×.vÕ&Lƒ]µÉ”&LäJi˜§W—Ö¬–Ö¬–Ö¬š0 ®Y5a‰hÖ»fõ%CširI¾]uiÍjiͪɒk›\Þ-ìªMJäêÊvÕ&#E¤™"LƒÓ«MR„i,4÷&Ìg¡¹¯ßšHIÃ4–ÒØxgÓäÛÜ×oÍ dJÃ|¶Ò`g]ïšÕ—,‘­×:¼pQQò”®{ñݰµ6ëûÚå½IH’""›àÈSW8êÿ†ÿ7$aØ]]Ü]]ïˆÕ—lIB1Ö&?%bâ @ö3¶Õ‡l’&MäZÒ,i¶È‘ëHÃ(®£`[í5+¤1ÔV{ÍJ$ä iRše"×–æ˜ÈUÒ\¸ÔV‡ÚêoÏ wËP[j«c°»ÿö¬@–\[®-Í‘¦LäB[j«Cmup{µÉ4‘+¤a>Ü^]Ú³ZÚ³ZÚ³jÂ4¸gÕ„ipÏjiÏjiϪ ÚêP[ÕžÕz÷¬þùÓP[j«½^e"×–æ{ßäˆ|Ïá"ÍáöêCŠdÈ5åšr…4LCmup{uiÏjiÏjiϪI™È…÷6½^eR$¼[¸gÕml¨­jÏjiϪɒkéÊ[„i¨­µÕ¡¶:ÔV‡ÚêØìîc³»sø&LCmulœÃ?D¦±ÙÝÇV>ܳZÚ³ZÚ³jÂ4¸gµ´gµ´gµ´gµ´gµ´gÕåL{VK{VM˜;ëPgì¬Z³j‚ÒÊXZ‡Jë`ií‘*yR@’%²$a쬣ðÍÒˆÕâ}¯Î:.c¹ á²¹ÿ6¬¾ ä`» áòÖ¸Ìàâ š&ߣՇ|5ïˆÕ—|Ÿ yÈ÷ÒTY*«óWV¿×I‘¥×ZÒliމ¾ŸÒ÷sMðZO¿7aÏ5™ÒLi˜ÆoÐ D¦1x¯¼ƒV_Â4¡Yï Õ—àn™*«Seõ´úº˜ÆÄCMPÏz¾J¯…ê>UV§ÊêTY*«Seuª¬N•Õ©²ÚƒV"¨î“ã«M¦4a"óá ÕÒ ÕÒ U¦ÁA«¥A«‡ Óà ÕÒ Uü·hêhõ´ú’ euª¬ö Uñ:[¯µ¥9Ò”‰\šÅƒæ¹xÐ<š{¾ÊD®&¤IT÷ÉñÕ¥A«¥A«¥A«&¼78hµ4hµÞA«¿CN¬wÐê«™Ò ŒMN¬É‰€&K.”Õ©²:UV§ÊêTY*«Seuª¬N•Õ´™rMi˜ÇW"óQY_mr¤aª«“㫆ã«kr|uMޝ®wÐêK˜ÇW›,™x³p{µÉÑuJ@´Vþj­½\%2$ ‘D` HrJ@žïø’Äš{ü1”wÁêKB@’1Ù"G@’"¸ú™p´ŠÂƒ§Ì¡sÕйjoV™È•Ò¤4Kd˵¥9"%WIÃ(&ž yˆ4̇cV‘‹ùpÍj½kVÿü‡ê]³ú¦Á5«¥5«¥5«¥5«¥5«¥5«ªª¡ªª5«&S®+¤Iið„H>T¤É–ëÈuä*i® \ªª½]erH¦4̇۫MðM$Ÿ ÑšÕÒšÕÒšU“#Rr¡œiÍj½kVÿ~?\³j‚ªªªïšÕ—„®œr¡ªÆÂ³ï‘f‹¹PUCU5TUCUµ×¬DPUcóM¨ªÆæ™û»fõï÷¼•ÏV[ipͪÉ1‘«¤a>›'ñ®YH3Dx·>AGi¥qt·<ßÜd›èµŽ4e"×…¦ðk«¹$Cš! ÓøUUiR„iŸé5+¦Qø@ž&L£þG®Y5&—OÐüþ?½ž ‰«4®Ò¸º[îÿ‚Ð+!ü×ÓUò„€$)b ²EŽ€$%ÂøŽê'ÔFÐÝ·¾XÝ¡6BmÈV·luËV·lu¿†ßAwß²Õü¾×«Lp%[ݲÕ-[ݲÕü~ËV·luËV{ÏJ„m$?Ûüö¬¾„m¤ž–T?²ÕßžÕ—ði¹jC¶ºe«ûª«6d«[¶ºe«[¶ºe«[¶ºe«[¶Ú{V"p÷]t÷-[ݲÕ-[Ý…aâÙ²Õ-[ݲÕ^¯2ÑÕU†ýÛøíY(3D¦®¦2KÖzh­¿9«/ ‘ÐË\ý4ÐÖÞ®ŠL‚% ›M Ä ‚ÐÍP„-à·#ií+MEXÂd SÇd-2Ö#c}g¬¾à è†ÖÃU&‡d(3M‚d)³”Ù"GWGv!_= ÿš&lC¾zä«g«Ÿ­6ä«G¾ÚV&ºÚʰ­6¶ž•­~ä«¿Q+]± ùꑯž£6ŽÚ¯ùꑯùꑯùꑯùjOX™èª”¯ùê Úû ü{hΑ¯ùêoÔêKØF¨à§›ß¨Õ—°ÐÓêG¾úµú7I=-I;òÕ#_ýZ}ÉÒÕÖÕV戄®B™¹ººÊÀÞÏ¥½ùꑯùê¹´÷sù‡hŽ|õÈWÏå§›ž°2ÑU*Ã~®Ú¸zZ®ú)µQj£ô´”|L¾zä«¿Q«/¡ÉW|õÈW|õÈW{ÂÊä{òÕ¯†|5ä«!_ ùjüÑÞãßÅ÷¨•Hè*”Ie®‰®ÐÏoÔ ¤H†2lƒSç7j¢ÌÐë¡¶†´5¨­½V%€›‰_RÖBÖ´Öµ†¬5h­!kíå*‘P$ ®€nPËÂ/UÂÂç™wÈ @7zÙ- ÈX,VÀU€&WG¥ßì,¸ ЮrÕ«†\5äª!W ¹jÈUC®ÚûU&ººÊ°¹jš{~rÕ«þV­¾„mµqøÉæ7kõ%lãèa9ê稣6Žž– ‹…\5äª!W ¹jÈUC®rÕ«†\µg­DRW©ÌU¦Lp%WT©6’ßÄÿf­@tµ•a?©6’æþ›µú¶‘jC®ú›µú7áTÀùÍZ} \,äª!WýÍZ}ÉÖÕÖÕQ†«†\µG¬LtUÊÀUC®rÕ«ö¬•ÈÒÕR†m”Ú(~²Ñ¬ÕѬÕѬÕѬÕѬÕѬÕI¹jþ± ÍZÍZ=¤H–ÈÖÕÖ+]…~ÂP&E®®®2pÕ”«¦\5åª)WÕ¬U“¥Ì6ÑÕQ†ý µ1hîšµ:šµ:šµ:šµ:šµ:šµj2a\µjaë +]ña™´¤µ¦¬µ'¬@ðàJ[“ÚšÔÖ”¶&µ5©­)mMjkOW (’аƒsÿMYý›HZ9eõEXÃf ›iÞ-«/P‚O‡„õ³ÐÑ%(½ t5¥«¿=«/ºšºšÊ,‘­«­ÌaÒÕ”®¦t5¥«)]í+“ ʰPÁ7¿e«/a\¶:Z¶:Z¶:Z¶zH’° n-[”®¦t5¥«¿e«/YºZºÚÊ]…2i¢««ÌUºªe«‡(Ã6.åý·lõ%lãªKyÿ-[} Û¸”÷ß²Õ—° éjJW³ÔF© éjJWSºú[¶Q†:&]Méj/[‰ðï—ÒÕ”®¦t5¥«—+¬çJW¯tõJW{ÇÊDW[™­Ì ]…2)ruu•aÒÕ+]½\a=—+¬ÑÕÒ+³ Ž49º ½W*“Ê\‘ÒtõJW¯tõr…õü–­¾„mÈW{ÙJ„mLúꕯީ6¦Ú˜üp£e«£e«£e«&lƒÒú¶Ñ ³ i륶þv­¾„]Ð[{²J@¯«—…¶^i륶^ië•¶^jë•¶ö€•ˆH¤€n.A à†¿dG>G¥up î—Óç7gõ%¡Ÿ†v9 pîa ÒÕ+]½ÒÕ+]½ÒÕ+]½ÒÕ+]í+]eŽ2,Cºz9Äz4mu4mõdRmpÚêhÚª ÛHµ‘”÷ß¶Õ—°T©‡%Õ†tõJW/ÇÎåë¹ÒÕ+]½ÒÕß¶ˆ2Kdë½¶2G$tʤ2lãRÞïåwñWºz¥«·øá¦—¬Ltµ”a?¥6Þm+eØF©ÒÓRÒ1骶­Ž¶­š@ÇJºZÒUm[=DW[WÇDW¡L(“"WWWèj Ê{ ~¯m«&lcðÃM ê¼¶­Ž¶­Ž¶­Ž¶­Ž¶­Ž¶­Ž¶­ÎoÛêKð´üóŸ c%]-n[=ä’L]-½òR†mLêjÿ']…Hê*•¹Ê” ®¤«%]­Ey/ùj/Y™èj+³•aÖZêg©¥6?Üô¶ÈVËV?[mh/à·mõ%´¢µ–¬µ¶Ê ¶–´µ¨­Em-i«~ m-ikQ[{®J@7[@vp`îuøU¼ö¬÷¬ ×xîYîYîYßžÕ—,‚- Ð;‡~ÜTæ è¨tÄäª%W-¹jÉUK®ZrÕÞ´9º:ʰ¹jq‡µÉU†mÈUëò“M/Y™èj*Ã~®Ú¸4÷ß¶Õ—°«6®–K+¹êoÛêKØ\µäª%Wým[èŠvV4÷’«–\µäª%W-¹jÉU{ÛJ¤tõuÕèm+‘oQf*³Ltµ•9&º eÒDWW™¯5)î°ÆwX› ]}]õ!Ê,‘­«­Ì ]…2©Ì5ÑU!3aî¹$C¶1ÕÆ„¹ÇoÛêKØÆ„¹?D¶1ÕÆÄ'›&lcþG|ZèªñÛ¶Ñû¡«>¤H¶2ÇDW¡L(“"WWW™¡«>D™!2u5•a?[ml˜{üq‡5þ(«ñÛ¶ú’T†mlµ±ñÉ&~ÛVÿ&Gmp‡µÉÐËà k“#`¢#¶Ckmr)À/a­M†ÈPd‰lEôÓ…"Iptƒrñ\³ ®YÅ7Xã¬ñ‡ Ö ;HvÀÖ&¡—Iý||8’½ÐV‚¦­6&ºšÊ,]me¶2G$tÅz.ܽÉÕÕU†m”Ú¨ÿãÿ~JýÐVã·mõ%ì§ÔF©Âg›&l£ÔFéa¡­Æçâsñǹ€²Õ![²ÕÞ¶YºZÊleމ®B™4ÑÕU¦Lp%[í%+]MeØÏP\b}ˆ2lC¶úÛ¶ú¶1Ô†luÈVÛV I2t5M.ÉRf›èê(s” ‘ÔU*Ã6d«C¶ÚÛV"lC¶:d«c©Ewÿm[} ÛXjcéiYjƒÛV¡m«Ð¶UhÛ*†luÈVµmƒsÑÕÙz/>-²Õ![²Õ![²Õ![²Õ^²2)’¡ÌP†mHW‡tuºûoÛ D¶qÔÆág›Þ¶qp÷ß¶Õ—° :ë³þ¦­@ôV[WG$ôÂIpô²øYð²ÖAkí¹*Ý,EØ¥uHZ{ÏJD¿T„%¤JàþEᲄKu÷¬¾` É&Ы²¹ê«þö¬¾D¿£«#ª˜TuHU{ÒJdêj*³”Ù&º:ʰ ©êªöŽ•‰®Jô3ÿ؆–­â·lõ%Sdéj)³EÎQ&DRï9›RÕß²^Yª:¥ªSª:¥ª½ce¢«­ÌV戄®B¶!U_Ã7¸O©ê”ªÎ©~¦Úà²UhÙ*~ËV ºâÓ2©b¿e«/I]±©ê”ªN©êoÙêK ªSªÚËV"KWK™­Ì1Ñû‘ªN©ê”ªöŽ• ®6¿†Ÿ›*?¥ªZ¶zˆ2lc« ©ª–­BËV¡e«Ð²UhÙ*´lZ¶Š)URÕ)UÕ²ÕCtµtµMtu”9Ê„Hê*•¹"¥+¨j/[‰° ¸Ïà×ðS®:åª3ÔO¨P’ÕÞ±2ÑÕU†ý„ÚH=-©~è¬SÎ:¹ЄeHZ'¥uJZ'Çš¤€Ž®ˆ~HkoX‰ E&ÁÐÍ&P‚5\| éù*Ý\EØj*•Rê ØAéñ(™Œur ÞA«/QÑ$¬³Øƒ|uÊW{ÄÊ$H†2ÓDWK™¥Ì9º:Ê„Hê*•¹"n¾º¸Ä‹K¬±¸Ä‹K¬ñ›·ÑÕVæL]…®Ø|uÉW—|uq0 –|uÉW{ÞJdêj*³”Ù&ºb?“ö¾ä«K¾ÚcV&º*eàóK¾ú›·Q†m,µ±øé¦ç­DØç­šÀÐ4oš· Í[5)½|uq0  ì}ÉW—|uÉW—|uÉW—|uÉW—|uÉW{ÞJäêê*Ã6¸ÄúeØ|uq‰µÉR†mpÞ*4oÕ„mpÞ*4oõ"aGOËQ?òÕ%_] h2uµtµ”ÙÊ]…2i¢««L™àJ¾ºä«+iï+iïš·jÂ6Rm$?Ýô¼•Ûà¼UhÞ*4oš· Í[…æ­BóV¡y«&ð3Í[…æ­BóVMô2G$R@7—@o måO&m]ÒÖEm]ÒÖUt÷UpwZ5a ÅŠßÄ÷¦•ÈPäûÛþnZ…6­‚›VÁM«Ð¦UpÓªÁÖ«lˆÀƶluËV·luËV·luºû–­nÙê–­nÙê–­nÙjoY™è*”aCm ~¿9Æ›c¬¡y«‡ Ûà¼UhÞª Ûà¼Uhުə$lƒc¡y«&W¯[Õ¼Uô˜ÕI’¡ÌPfŠ,]-e¶Û­ö¼•Hê*•a?c}®d«š·zˆ®¦2lƒóV¡y«Ð¼UhÞª ülËV5oš·zˆ®`c[¶ªy«&CWSWS™¥Ì6ÑÕQ†mÈV·lµÇ¬LtUʰŸ »kÞ*4oÕ„m„Úà¼U¶Áy«Ð¼UhÞ*4oõ"a?œ Í[Å–­ö˜•‰®ø´ÈV·luËV·luËV·luËV{ÞJäêê*[Õ¼ÕCŠ„ý\º»æ­BóVMØÇXCóV¡y«Ð¼UhÞ*4oš· Í[…æ­BóV¡y«&Sà° ®4¡±I[7µuK[·´uS[·´µ—¬¾äüá—ôÖCo=ôÖ#o=ôÖÞ°Ð@(’Š\‘@„“VÁI«Ð¤UÖ0XƒŒõÈX9jµj:J½Õ%(ÁÞ|õÈW|õÈW|õÈW|õÈW{ÛJ„eÈW|õpŽ54oš· Í[=$H†2lƒóV¡y«Ð¼Uhުə"ʰ Î[=$I®ˆÛàÓ"_=òÕ#_=òÕ#_=òÕ#_í1+]…2i¢«« ûákhÞ*4oÕ„mpŽ54oÕ„mpÞ*4oš·j;òUÍ[…æ­¢+ZY™$ÉP†vä«G¾zä«G¾zä«G¾ÚóV"©«Tæ*ã6ેs¬¡y«Ð¼UhÞª Ûà¼UhÞ*4oš· Í[…æ­šÀÇ4oš· Í[Å‘¯ùꑯjÞê!ºZºÚ&º:Ê„‰®Rö#_=òÕ#_=òÕ#_=œc Í[…æ­BóVMØç­BóV¡y«Ð¼UhÞ*4oÕ„vÆy«Ð¼U“!2ÉÐ;m „€"Ipt£Å„´5¨­!m ikP[ƒS¬MXµ5¤­1XÌ` µ ŽZG­B£V¿Á÷„•/ølpÓª t,¤«µ Z5 ]…^9E®€"ð³­†l5d«![ ÙjÈV{ÌÊDWG™£ Ë­ÇXCW¡«ÐÀUôÀ•ÛàÀU¶Á«ÐÀUhàªÉ™"I‡…WÑÕÕ+— ~BÙjÈVC¶²Õ­†l5d«![í+þO›c¬MR¶Á1Ö&ì‡W¡«ÐÀU¶Á«ÐÀUhà*4p¸ \5ià*4pÕäê ¶²Õ­†l5d«![ ÙjÈVC¶ÚsV&º eØÇX›\]±ÙjpŒõ!ʰ Ùª®š°\…®BW¡«ÐÀUhઠlLW¡«è9«-R$ô3ÙjÈVC¶²Õ­†l5d«=p%’ºJeØÇXò½ÒÀU“a¢«©Ì2ÑÕVf+sDBW¡LŠ\]]eØBW¡«&´¤µjߪÉÖ‘Hˆ¤€"—@¿%h+þJÔÖ”¶rתÁÐÍP„`‰õа:«F­B£V¿iÔ*8jµ ZG­l½ l•«V BG¡£Tæšèª”ž¥d5%«)YMÉjJVS²ÚÓV"GWGö#YM®±6a?œ· Í[…æ­š° Î[…æ­BóV¡y«Ð¼UhÞª dLóV¡y«&©+ÈjJVS²š’Õ”¬¦d5%«)YMÉjY™èê(Ã~¸ÆÚ„ ”¬ö¼•ˆÛÀñ=o%Â68oÕ„ýpÞê!—„ýpÞ*4oÕz¦y«Ð¼UhÞê!úy «)YÕ¼U“¡«©«© Û¬¦dµç­D؆d5%«É5ÖмUhÞ*zÌÊä’ eØç­š,eØç­BóV¡y«Ð¼UhÞê!EÂ6¸š·Š+Y½’Õ+YÕ¼U“¥«¥«­Ì1ÑU(ʤÈÕÕU²ªy«Ð¼U¶Á5ÖмUhÞª ÛàkhÞ*4oš· Í[5aœ·jYÓ¼UhÞ*4oÕd,#¢×U䈄€")raøùe­=k%2a c ­ZW­„€"IptƒÿBð“qѪ M“V¡I«à¤Õ‚d‹èUøplÚØ•­^Ùê•­^Ùê•­^Ùê•­^Ùê•­ö’•‰®¶2¬‡c¬¡q«Ð¸U¶Á1ÖкU¶Áu«ÐºUhÝ*´nZ· ­[…Ö­BëVMÎ$a ­[=$I®H齨lõÊV¯lµ×­D–®–2[¶![½cm’&ººÊ° ޱ†Ö­š° ®[5™Ê°ÙªÖ­BëV¡u«&°Õ+[½\ ­[=DWð³+[½²Õ+[½²Õ+[½²ÕÞ²2ÑÕQæ(Ã6d«—c¬¡u«ÐºÕC¾™^·AZ· ­[5Y&ºÚÊ]…2iR$øû«Ö­BëVQ²Õ’­–lUëVQf‰l½×Væ(&ºJe؆lµ8ÆÅu«‡ÉP†ýpݪÉÒûák¶1ùÙ¦¸nÕ„mpݪ Û²âJš¶ M[5™|U*«–­šleŽH(’W@7øYð;”´fXLÝ,EØ•U{VMØÁfܳj¶JÐÃÁ_ÒÆ´h\´ .Z= H¶^W/ˤª%U-©jIUKªZRÕ’ª–Tµg­D¦®¦2K–!U-±†¶­BÛV¡m«&lƒãV¡q«Ð¸UhÜ*4n· […Æ­BãV¡q«&gŠ$ ÛÐZ@IUKªZRÕ’ª–Tµ¤ª%U-©jOY™èj+³•ab}ˆ2lCªZbmÂ68n· [5a· […Æ­BãV¡q«&T1©jIU5nÕ„*&U-ªjþQU›|Uõ!ÊL‘¥«¥ÌVæ˜è*”I]]eÊWb}ˆ2lƒªš·J[¥Æ­RãV©q«Ô¸UjÜ*5nÕ䫪)öCU}H‘ eØUµÉÒÕ6ÑÕQæ("©«T†mpˆõ!È,µA[}ˆ2S¶A]M[¥Æ­RãV©q«&lƒãV©q«Ô¸UòÁàV@jÙªÉ8$K@¯²ud ") ÈÑSˆ¸{“! È$XºÙJ°̰6HÝ\EØÞ†{V©=«äžUjϪÉÒ ï!¢Œ^&t:Je®‰® ™„º?$H†2ÓDWKÖCYmrtu”a”Õ‡(Ã6¸m•Ú¶Jm[¥¶­RÛV©m«Ô¶UjÛ*µmÕäL‘$ eØeµÉÕÕU¦@(«QfˆL]Me–2ÛDWì§Ô—X›¤2lƒK¬MJô£m«Ô¶UjÛ*µm•Ú¶zÈ%Ùº:º:Ê@φdUÛV©m«&¥+Èê¬ö’•‰®¦2S¶!Y’Õ!YÕ¶ÕC”I‘««« ÛàëC”a?’Um[¥¶­RÛV©m«&гÁÁ€Ô¶UjÛê!EÂ68Ú¶Ê!Y’Õ!Yím+‘¥«¥ÌV†mHV‡duHV‡duHV{ÉÊWòUm[5a\bMm[¥¶­RÛVQ†mpÛ*µm•Ú¶Jm[¥¶­š@×´m•Ú¶Jm[5™z%àˆ^X‘#) ›K 7fxië¶rÒ*5iÕ„%`†5µh•Z´J.Z=@¶l“VÉI«äß>9iÕŠÆM«Ô¦UrÓªÁÖ«@W‡tU£VMBW©«T抔® «ãRÞ‡tuHW‡tuHW5nÕ„ý\µÁ)ÖÔ¼U¶Á)Ö&WöÃ}«Ô¾Ujß*µo•Ú·zH’° ®¤ö­šœI&ºb?ÒÕ!]ÒÕ^³2I’¡ÌPfŠ,]-e¶ÈÑÕQ&DRW©ÌUÆm@Þµo•Ú·Jí[¥ö­RûV¹$[¶Á}«&´)]Õ¾Ujßê!º‚ŽMéê”®ö¾•ÈÔÕTf)³Mtu”aÒÕ)]í5+]•2ì‡S¬©}«Ô¾Ujß*µo•Ú·jÂ6¤«Ú·Jí[¥ö­R$W¯Ì6¸SºÚkV&E2•™Ê,‘­«­Ì ]…2lCº:¥«“S¬©}«Ô¾Ujߪ Ûà¾Ujß*µo•Ú·Jí[¥ö­š¤€ŽXç­šÀYñµ ¶­RÛVM&ÁàÛè9‘³N9뤳N9딳N:딳öŠÚ•´Nì°&7­R›VMÁÐ@(¢Ÿ¥pÐ*9h•´J Z5®Néêä8@rÒê:Úzác¢eÒDïu•)\ÉV§luÊV§lur5µm•Ú¶zˆ2G„mÈV5nÕ„mpÝ*µn•Z·J­[¥Ö­RëVI’¥ÌÒ+o‘3EôÊ¡«Ô{¥®®Hé½`«K¶ºd«K¶ºd«K¶º¸ÆÚd+Ã6d«‹k¬MÒDWWöÃ5ÖÔºUjÝ*µn•Z·J­[5-ÙªÖ­RëVMBW¡WNe؆luÉV{ËÊä’ e†2SdéŠýÈV×X¢ Û­.®±6¹Ê¸ ØêâkjÝ*µn•Z·jÂ6¸n•Z·J­[¥Ö­RëV©u«&б%[]²U­[å’­.Ùê’­.Ùê’­.Ùê’­.Ùê’­ö–•‰®Rö#]]\c}22V­[=D¶Áu«ÔºU¶Áu«ÔºUjÝ*µn•Z·J­[5 ño²Öű€&S@G‹@/²u#Šè翺)Dd­ 3¬P„-PZwX›°†Ë䬴JZ¥­’ƒVÉA«Ô UòÑ-ɘd•ƒV©A«&t1¹ê’«jѪIèŠvV4÷%W]rÕ%WÝrÕ-WÝrÕ-WÝ\bm²”Ù&º:ÊeB$u•Ê\·O6Ú¶Jm[¥¶­šÀŶ\UÛV©m«&GWG¯ʰ ¹ê–«ö’• ®äª[®ºåª[®ºåª½m%²uµ•a\b}ˆ2© Ûà¶UöÃm«Ô¶UjÛª Ûà¶UjÛê!—„mp+ µmÕ$ô:pÕ-Wím+‘ÒìlËU·\uËU·\uËU·\uËU{ÉÊDW¡ ûák“«+ö#WÕ¶ÕC”aܶJm[¥¶­RÛV©m«&°3m[¥¶­RÛVM®^®ªm«ì%«-R$C™¡ÌYºZÊl¶!Wím+‘ÔU*Ã~¸Äú\qÛ*µmõ]MeØ·­RÛV©m«Ô¶UjÛªI èˆepÚ*ùœJYµk•Úµj2uµÙ""!’Šèw©ß¤•ÿÄ}s„59gÕ` èf (Â0f•³JY%ǬRcV©1«üŽY¥Æ¬š@ÏŽdUsVÉ9«[GpÕ#Wíý*]¥2×DW¥ \õÈU\õÈU{ÔJdéj)Ã6¸ÃúeØ\U³VMØw­R»V©]«&lƒ»V©]«‡$ ÛàP@jתÉÑëÀU\µw­D®®®2pÕ#W=rÕ#W=rÕ#W=rÕ^±2ÑÕQ†ýp‡µIêŠýpת‰ÛÀ'›ÞµaܵJíZ¥v­rI`gÚµJíZ5 ]¥‰Þ‹O‹\õÈU\õÈU\õÈU\µw­D؆\µw­D؆\õÈUwXS»V©]«Ô®ÕC.ÉP†mp×*µk•ÚµJíZ5«¹ªv­R»VÑÕ)½Ÿ¹ê‘«¹ê‘«¹ê‘«¹j¯X™è*” e؆dõHV{× „»V©]«&lƒ;¬©]«Ô®Uj×*µk•ÚµJíZ5IEXg­šP×àJ@jÓªÉ$X|›ÿÓ‹(qDB@‘¹Š „øÃ/é¬=e%2Y"[@P$ ®€^åûß3´O;VM†23 Y%‡¬ £-rôVG™I]¥2W™2Á•L5dª!S ™jX™èj+Ã~¦Úà¤UjÒ*5iÕ„mpÓª Ûà¦UjÓ*µi•Ú´zH’ÀÍ´i•Ú´jrt&z/>-2Õ©†L5dª!S ™jÈT{ÓJ„mpµÉV†mÈTƒ ¬MÒDWW¶ÁÖÔ¦U¶ÁM«Ô¦UjÓª L,dª!SÕ¦U“ÐUè*E®®®20Õ©†L5dª!S ™jÈT{ÁÊDWG™£ Û©XS›V©M«Ô¦Uö¦•Ûà¦UjÓ*µi•Ú´JmZ5‰…LU›VM؆L5dª!SÕ¦U†L5dª!S ™jÈT{ÓJdëj+Ã~dªÁÖ&© ÛªXS›V©M«Ô¦UjÓ*µi•Ú´JmZ¥6­R›V©M«&) #>,¥2¤¬ù‡_R×´gÕd èh‰èU¶"G$I‚+ ›o-øxÊYÛ« ¦€n–€"ì#V©«ÔˆUrÄ*5bÕ>ƫԊUâïä)WM¹jÊU¹cõm]…2¡LŠ\]±©jJUSªÚkV",ƒó«M–2lCªšœ_M-Z¥­R‹V©E«Ô¢UjÑ*µh•Z´J-Z¥­š@ÅRªšRU-Z59º:º >àRÕ”ª¦T5¥ª)UM©jJUSªÚûU&ºÚÊleØçW¢ Ûà¢UjѪ Ûà¢UjѪ äL‹V©E«Ô¢U“­×ªjѪIè*t•ʤ2W¤t9K©jJUSªÚ‹V"KWKöÃùÕ‡èŠýHU“ó«M®2lCªªE«‡(Ã6¸h•Z´J-Z¥­R‹VM bZ´J-Z¥­š@USªšRÕ”ª¦T5¥ª½_e¢«¥Ì6ÑÕQ†ýp~µIê*•aœ_}È7Ó‹V"hC‹VM¦2ËDW[™c¢«Pr¦E«Ô¢UjÑ*ñ7î+i½”ÖKi½’ÖKií*݈„H (rEصW«D†€"“` èf(Á°bÕ tsô*l?=G¬š@Æ®dU+VM–®¶®¶2G™0ÑU*Ãg^²z%«=^e$C¶ÁùÕ&Kö#Y½œ_}ˆ2lƒƒV©A«&lƒƒV©A«¼’U Z¥­RƒVM–^²ªA«&GWGW¡L(“"WWWÈꕬÞGV÷þ{:ø‘!ò¬’(³”Ù&º:Ê„‰®R™k¢«R¦IµñÈ*‰2l#ÕÆ#« [„m<+ ¡Ÿ'MôÊW™2ÁÕ#« lã‘U©ÌT†m<²J¢Ìa¬‚°«6žA+¶Qjã´a?¥6Jm<ƒV l£ÔÆ#« a¢+>-¬‚\‘Ò+×7S¬‚Œ-¢ÌYºZÊleމ®B™4ÑÕU¦Lpõ Z‘(Ã6žùUeØÆPÏ Ûj£¥•à°ŒÁ‡¥kýÇZA†À&™:ZŠèU”8"Aº¹%€üðK¥<Ó« S@v°ØÁ3cÂKxf¬@ØÂb ±‚ ül[-<¶ 2Mtµ¶ŽveŽ2!’ºJeXÄ#«$ÈœVw–ñü'Ö󬯒èŠýµqÔÆ3iÂ6ŽÚx&­H”a¬’(Ã6BmHV{ÒJ„m„žÉjIVK²Z’Õ’¬–dµ$«=`e’$C™¡ Û¬VªŸ¤º—dµ$«=i%Â6žI+ö“ÿÑÔý´Œ½“V SWlC²Z’Õ°2Ñ{…2¡WN‘««« dµ$«%YíI+‘©«©ÌR†mHV«ÔO© ÉjIV{ÀÊDWü[m¡ŸûNZ|Ÿ–ûNZ|e쾓V$ºÚ"_Y}ˆ^9”I½WêêêªLpEYm2Lt5•a?”Õ&[W[¶AY}ˆ2lƒ¶zÿh«MØÏTê~ÿ¨«MØÆTmî;iE¢+>-Sý@YpDtÄ2(­÷OÜúzû}׬@&^dñ]þO/²9"! [€²>@–€ŽÎÚdLÝ,½KØÿ'ФÀ?‘èÔ°þGÚÆ¾¤mWÏŒÈ"A2E–€"[/|Ltʤ‰®®2,ã•Õ“g•D–ñÊ*ˆ2l#ÔÆ+«_Â6Bm<“V ì'ÔFèa õóÊ*HðaIµñÊê—,½òR†m¼² ¢«I]¥2W¤tUÈÜGÝ¿dLe¦2ÝÆ}WNÿG’d+sLtʤ‰®®2W™y&­H”iû’©«©«¥«–UeŽ2a¢«Tæšèª¾™°2¹$C™¡ÌYºZÊl‘þ#4c?ÿ¾¿ÿ‘K"©«Tæ*S&¸z'­¾d˜èj*³Ltµ•ÙÊôŠø’þC ºJ]]]]e äÝ_Qf(3Mtµ”Ù&º:ʰwõKR¶1ÕÆ»¿ ‚ÌRKm¼“V_Â6–Úx'­¾äûŠ®&­®&­®&­š|ÿ”D“+ £ÂJ¢É™Š,½ÑÖ@(’W@7%€·W› EØÂa \±jÂkàŠÕåŠÕåŠÕÕŠÕåŠUƒÒo‰=àm(â!ÊLe¦2Kdëj+sDBW¡LŠ\]]eX÷W$ì‡û«ÑÕR†mpÐêjÐê!ʰ Z] Z] Z] Z] Z] Z] Z] Z5™I²¦ˆ2ì‡û«ÑU(“&ººÊ” ®¸¿úe†ÈÔû)µÁýÕ‡(Ã68hõeØ­®­®­®­®­š|ÿ¼w“©«©«¥Ì÷O87Ù"GïuôÊ¡«ÔU*sEJW… ÷W›° î¯6™Ê,]meØ÷W¯­®­š° î¯^ Z] Z] Z] Z] Z] Z=¤HØ'®­š@Ïæ¤ŒÍ‰?ï}5hÕäêêêªYøÓï)’¡ÌP†mpõ!Êl¶!YíA+‘ÔU*Ã~¸¿ú\qÐêjÐêjÐêjЪ Ûà UÈš­®­®­š$ÁÐ Ÿü(rÖIgrÖ)gtÖ)grÖIgrÖHˆ¤€"—€%<ÎëùG9øe—À‹þ<óK@7[@‘#¢.I‘:¸÷ñêÿ éþM¿|ž/i9û’i$‹`ëhëè(&ºJe®‰®J™L5Æzþ:úÇTAþ)ƒD™)²tµ”Ù"GWG™P&Mtu•)\=¦ Â6Jm”–×T¿äSÅÕÖ{ñiyMõKÚTA”I‘«««L}3ë5U$ß¿^¬×TA’d)³õ^[ïutuôÊ!’ºJe®HéªO_2–È%a?Cm¼¦ú%[¯|Lôó„2i¢÷ºß¿²­×T¿¤@^SQ†m¼¦ ¢ Û˜jã5Õ/9"lã³ú’Ôï‚m¼cVß«Â+¿cV —„OËR¯©~ÉÚ"ze¶ñš*ˆ^9Dø´¼¦ú%W¤ô^…Ìkª_2Lt5•a¯©~ÉV†mlµñš*ˆ2lãuUeØÆQï˜Õ—°£6Žž–£~Ýì7fõ%ìç¨ÇXôÂ,㨠9ë üκ䬋κè¬Kκè¬=P% ¢Ÿ-a ²(ÂPí«¬_Â’%¼ V_Â’-¤žŽd/ÉR-$Ÿd ¯­~Iá¿hœ\•ð~© $SdéŠÝ£ª GWG™I]¥2WUñ|Åüoòî®~ Û(µñªê—°Rï–ˆ2lãݲQ†m”Ú(=*Å6ö«ª I‚~~[V ºZzåm¢Ÿç(&z¯T&•¹"¥+¨ê–ªîAqßïîê—° ©ê~wW¿„ý µ!UýmY} Ûjãݲú¶1ÔÆÔÓ2©b[ªúÛ²Ñ+/]m½òV†mHU·Tµ·¬D®®®2PÕ-UÝRÕ-UÝRÕ½(îûÝ]ý¶!UÝ‹lö¢Êÿ¶¬¾$uÅ~–ÚXÿÑF!³ÕÆVËV?RÕß–Õ—°©ê–ªn©êÞjCªº¥ª[ªº¥ª[ªº¥ª[ªº¥ª[ªÚ[V"[W[ö#U}ÿ¼ H*Ã6äªûðƒÍoË ¤H†2ì'ÔFèi õj#ÔFèi ÈÙ–³n:ëu!gÝxU9ë–³n:ë–³n9릳n9kOV‰„€"ú\ÝÔç»}ñK~×¼ŸÑÕ/˜ºYŠl‘IEð=ó¾üžy¿ºúo‚šŠß¸ï×U¿d*³Ltµ•9&º eB™¹ºb9Å*λ» ¢Ì™ºšÊ,e¶‰®Ž2a¢«Tæšèª”a?ƒ_2ÿ¶¬@t5uµ¦ˆ2lãuU]…Hê*•¹Ê” ®&¿„ïå*]MeØÆT“_ŸÉ/á[V_ºb?SmLµ1ù%soYáj©¥§åuÕ/aKOËR?¯«‚\’£L˜è*•IeØÆëª Èl~å~¶Úx]õK¦ÈÒÕR†ýlµñî®~ ûÙjc«Í/á{¹ÊW‡ÿ/‰ß–Õ—°wË ¤HØÆQGOËy\ìKÚUA”a?¯«‚èªy]¤H†2ÓDWK™m¢«£ û µñ(Ã6â?Ú(dRm¤Úx·¬¾„ý¤Úx·¬¾ºöÛ²Ñ>ÙôrÕ!¹Ž|eŸ®¾i=_Ÿ s?—æ~.¾„ï*݈„H (žÕUDJ5k(~¤y7¬¾` èf(Áôíê)ÖPª¡øpè»Õ£ïV{ÃêóK¶üš9ôÅjüñkø±ÙºÚÊeÂDW©Ì5Ѿ†ïí*“ ʰ¡6¿†ÿÍY} dõ7g¢Lˆ°Á¯ác¨ñmðQÑ«¿9+]±ŸÉ¯™còkæ˜üš9&¿f}±“_3Çä×ð1ù5sL~Í“_ÃÇä×Ì±ÔÆâ×ð=g%2u5•a?Km¼Ã«_Â~–ÚXjcñkø¯2¹$¥ ûÙjC_¬†¾XýÍY} ÛЫ=g%rô^G™P&Mtu•)\~ ßãU&ºšÊLeØÆá×Ì¿9«/aGm~ ÿ›³ú¶qô´µ¡/VsV_Â~Bm¿X }±ú›³Ñ{]…‰Þ‹OKðkøÐW«üš9‚_ÃGòkæH~Íɯ™{ÎJ„m$¿fŽä×ð¿9+]±Ÿä—î¿9«/¹Ê°TWOËU?Wm\þ?%~sV_Â6$­Ai«2®Ê ´†¤5$­¿1«/µ†¬5h­!kíå*‘% È&PâˆA èæ”À÷&ÿðK–’ìà]±Pd‰lEŽ”õ7cõ%)r‚Ž–ü¥z®¦t5¥«)]íå*]eŽ2!âßE*Ã*¤«)]ÍIyOéjJWSºšSmLÊûoÒêKØÆTSOÊTÒÕߤˆ^™mHWSºú›´ú¶!]íI+‘­÷ÚÊeÂDW©Ì5Ñtµ¬L’d(3”aÒÕߤ՗°­66?Üü&­¾„ml=-[ýìÿhòþ›´úèXJWSºú›´ÑÕÖÕ1ÑU(ʤÈÕÕUºšAyOéjOZ‰° ¼gðÏФt5¥«ê'ÔF¨ éjX™èª”a?©6ROKªéjJW“V_Â6¤«)]MéjJWSºšÒÕ”®¦t5¥«=`e¢«© û‘®æ¥¼çåŸIùjÊWóòÃMOZ‰° ëoÒêߤÔFQÞ“V_Â6Jm”ž–’ÑY‹V záÐË\½ ¬õþá—÷+i½”Öž©ÐÍP䈄€")ra ø=KYß«/˜ºY[@7¡w†­¾3Vz™«£Ò CÏ~;V_Y½’Õ²YºZÊleމ®XdõNªû•¬öz• ®¿‰¿‹2%«W²z—úYjc©Å6=i%Â6––¥~–ÚXzZ–ú‘¬^Éꕬþ&­@tµtµ”Ù"GWG™I]¥2W¤tYíI+¶q¨î÷ð›ø+YýMZ}ÉV†mµqøÑ¦¬Ltu•žý&­þMBOK¨Éꕬ6ÑÕÒÕÖÕVæ(&ºJe®‰® «=`erI†2ì'©î7©îW²z%«7ÕFò£MOZ‰°äG›wÒ Äm@ݯdõ´"ÑŸ–Ûÿ‰¤Hø´\õ#Y½’Õ+Y½’Õ+Y½’Õž´‘¬^Éꕬ^ÉꕬÞR?Eu¿Eu¿²ÕwÒŠDW© Û¯¾“V$ßÌ;i‚6ÞI+)²tµ”9&: ½pêê (mÅß’KÚÚÛU"S@‘E°t#Š$ÁÐM "i­ y¯©Z¦Z˜laòCÍ?„5LÖ0õxÈXk²‡©§c²ùjÉWK¾ÚÓU&ºšÊLe–ÈÖÕV戰 ùjïY‰\]]eØÏV›öþŽZ°­66?ݼ«V$º:ʰ­66í½ä«ïªˆÛàÓ"_-ùê»j2uµtµ”ÙÊ]…2i¢«« þ|þ¡ïwÕŠD™!{W­Y"[ï…O7½j%Â6‚ŸnÞU+¶!_-ùê»jE’$CWÓä’ði‘¯–|µä«%_-ùjÉWK¾Ú«V"n¾Z—>_òÕ’¯–|µ7¬Ltµ•aWm\~ºyW­@ØÆ¥½¿«V lC¾ú®Z°RòÕ^µa¥§E¾ZòÕ’¯–|µä«%_-újõ†•I‘ e†2Sdéj)³EŽ®Ž2!’ºJe®2n£p5ÔÏPÖzG­@XÆPÔÖ&: ½p\½.^¿!Jk“!ðùóûM¦ÈPd‹ˆ„H (r J7øñ×÷Ÿ\}/¾ÿ,k=CVºÙаƒ…Bñ!AÂKXø›ÈÆ?®Yï˜ÈPfšè•—2ÛDWG–AWm’ƒäšèª”)d̽ÞM+e¦ÈÒÕRf‹]eB¶AWmr' Û8jƒß­6&I2‡ˆ2Kdë•·2G$tʰ ºêC”)dèªIö“0÷zG­@–2l#ÕFâ“M½£V l#aîõŽZÜKòuÕzG­>äª ºêC.ÉT†mÐU›l]]…2i¢«« û¡«Ö_ÁÜ¢ Û «>D¶AW­?ºj¶Qj£`îõŽZ°RŧeÈUßQ+¡«iR$K¯¼”Ùz¯£«£«I]¥2W¤tWrÕ!Wƒæ>$«C²:$«cà›ø&lC¶:d«càg­ß¨Õ—|ÿáÞúZ}ILüýõµú’) £©£¥ Ì}à›Öˆ„^&ÉÑkýþÓî5h­CÖ:h­ƒÖ:¾nn²Ñ«‘P„ÐYÇR)Kàg“°þv¬¾d (²DôN[ØêØT÷±ñ/©wÊ @G…£CuÿmY}ÉPfÉYºZÊl‘£«£ Ë8*ãàßDÓä*ã6ðÑf„ú µj#øÑ¦'¬Ltõý¾~£V_rDBW¡ dlHV£V_u’Õ!Y’Õߨˆ®–®¶‰®Ž2a¢«T†ý$Õ}$Õ}HV‡du\µqùÑæ7jõ%lãò£Í¸êçªKuÿZ} Û¸jãêi¹’±«6JOKIÆ$«C²:$«C²:$«C²:$«C²:$«=j%ruu•A?óê>%«S²:%«ómÌ?| ßd›èê(s” ‘ÔU*sEÜ>Úô¨U‘° NÔoÔêK «S²:%«S²:%«S²ÚV&ººÊ\e îsRÝçT?“ê>'Õý7jõ%lcªÉ¯á£V_Â6&?ÚÌ©~¦Ú˜jcò£ÍoÔ ¤H†2S@G|X–êYP÷¹¨î“CMR@G—@/R¸Á»ù5üÜø£"M¦€"KDï´a ûûgh H\Ý üßJ8øÿEôl•€n–@°ƒÃG㨔C›úfur ÉÕUé z6f¤É0ÑÕTf™èj+sLtʰŸÀŸ iruÅ~$«3ÕFò{øžµaÉïágªŸTIuÿíZ} ÛHµ‘zZ’26¹P“KõîZ}ˆduJV§duJV§duJV{×Jäèê("©«T†ý\ªû”¬NÉj¯X™èj*Ã6JmÕ}–ú)µQT÷߮՗°R’ÕÞµú’ű€Z h=[’Õ%Y]’Õ%Y]’Õ%Yí+]¥2©Ì)]±ŸAu×®Uiת Ûjƒ»V¥]«Ò®ÕCtÅ~¸kUÚµªß®Õ—°¡6$«K²ª]«Ò®ÕCtµD¶Þ‹OˤŽ-Éê’¬.Éê’¬.Éê’¬.Éê’¬.Éj¯X™èj)Ã6Õ]»V¥]«Ò®U¶Á]«Ò®Uiת´kU½k%Â6(­šµ*ÍZ•f­šÀØ–¬U³V¥Y«&©«+ ^ÿwy뢷.zë’·.zkOU èÆ@$DR@vpÔ?Ò¬P Á8gUœ³*ÎY= H6^•5ÈW{½ÊDWW@? tlIW—tuIW—tuIW{ÓJdëj+s”aÒÕ%]]Iy×°UiتzÉÊ$H†2lƒÛV¥m«Ò¶UiÛª´mUÚ¶*m[•¶­’$WÄmði‘®.éê’®.éjÿ']meމ®B™P†mHWW©Ÿ¢¼kÛª´mÕdˆL]Me–2ÛDWG蘶­JÛVM®É%)½2MÛVM «[ºº¥«[ºº¥«½m%rtu”a?ÒÕ-]ÝÒÕ-]ÝÒÕ=ùM¼¶­JÛVM¦2ì‡ÛV¥m«Ò¶U¶Ám«Ò¶UiÛª´mUÚ¶jÂ6¤«[ºªm«Ò¶ÕCtµôÊÛD?ÏQ&Lô^©L*sEJWÐÕ-]ÝÒÕÍÖ&lC¾ºå«›3¬¥m«Ò¶UiÛª Ûà¶UiÛª Ûà¶UiÛª´mÕd ± y릷öj•€~¼Ы\ý,ÐÖ-mÝÔÖ-mí +‘% È&PâˆA èæ”nð¢´* Z­JƒVM d´* Z•­šÀW·|us 8iõAжtuKW·tuKW·tuKW{ÇÊDWG™£ Ë®nN±ÖoÛêKÜtu—ÚàkmN±Öækýæ­@tÅ~¤«›S¬µ9ЄmHW·tuKW7çêHWtõHW¢ÌÙz¯­ÌQ&Lt•Ê\]á»ø³2I’¡ ûákN±Öák¶Á)Ö:œb­ß¼Õ—° N±Öákèê‘®.4Žéê‘®ö˜•‰®¶2ÇDW¡L(“"WWW¶Á)Ö‡(Ã6¤«‡S¬MاXëHW§Xë7o¢«T†mp1 §XëpеŽtõHWšL]-]-e¶ÈÑÕQ&”I]]eÊWÒÕ³2ÑÕT†ýÈW§X¢ Û±N±6aœb­Ã)Ö:œb­ÃÅ€:œb­Ã)Ö&ð³ÃÅ€:\ h²ue ) ›K ÚÊ¿š'ÌýÈZ­µ«t³aÉ ¸ÂZZ´*.Z•­š°œpѪ¸hU\´*-Z­Š‹V¥E«â¢UƒÐ;ÃU\U“VM®®JW´3¹ê‘«¹jZ‰,]-e¶2ÇDWìG®zŠæ~Š_Ä÷•É÷*þøÉ&þØÖ­JëV¥u«ÒºUiݪ´nÕ䈄®B™T.rU­[UÈUC®rÕÞ²2ÑÕRf)³EŽ®Ž2!’ºJeØÆ ¹Çàñ½n%Â6&Í=¦úáºUiݪ´nUZ·*­[5õ–•®Ø×­rIàb!WÕºU“¡«©«©ÌÙºÚÊe؆\5äª!WÕºU¸joY™\üÃiZ·jÂ66Í]ëV¥u«ÒºUiݪ ÛàºÕCŠ„ýpݪ´nU!W ¹ªÖ­JëVM–®àª!W ¹jÈUC®rÕ«†\5䪽n"W ¹jÈU{ËÊDWì'ÔF¨ ®[•Ö­JëVMR¶Áu«ÒºUiݪ´nUZ·j2tÄ28nÕ䈄€^7utµò޲Ö±™Š,‚- P$ ôb˜a- Z•­ŠƒV¥A«Ò UqÐêAŠ5pѪ M¾òUnZ5 ŽIWSºÚ+V&ºšÊLe–ÈÖÕV戄®B™¹ººÊ ŸäëC‚„ýpݪ´nUZ·*­[•Ö­š@Ð’{¥u«ÒºÕC’䊸 >-ÒÕ”®¦tµ×­D–®–2[¶!]Mޱ6I]]eÊW\·*­[5ac-­[•Ö­JëV¥u«&lCºšÒU­[•Ö­¢+ZJWµnÕd(3M.ÉRf)³EŽ®Ž2lCºšcmÂ6¤«)]Mޱ–Ö­JëV¥u«&lƒëV¥u«ÒºUiݪ´nUZ·j]ÕºUiݪ´nU)]MéªÖ­JëVÑÕÙz¯­ÌQ&Lt•Ê\]AW{ËʤH†2C¶!_Mùj¯[‰° ®[5a\·*­[•Ö­JëV¥u«ÒºUiݪÉ8$,ƒ{M¶®B@‘$¸ºÁÂ_RZ“Òš’Ö”´ö‚•€"ì€Òš’ÖK(–ÀI«â¤Uý®!ïßE«â¢UiѪ¸hU\´z@l½îÖë‘ÐUè•Sä (»rÕ+WíY+‘©«©ÌR†eÈU/—XKÛV¥m«&©Ì5ÑU)Ã~¸ÄZ·*[•Æ­JãV¥q«&lC®ªq«Ò¸UiÜê!IrõÊlƒcuåª=ee’$S™©ÌÙºÚÊ‘ÐU(Ã6䪗K¬Màò·*[•Æ­š° Ž[•Æ­š° Ž[•Æ­JãVMàb·*[5¹º‚«^¹ªÆ­šÀU¯\õÊU¯\õÊU¯\õÊU¯\õÊU{ÊÊDWWö#W½\b}ˆ2lC®ÚD¶Áq«‡(Ã68nõeØÇ­¢+>-rÕ+W½rÕ˱€‡èjéj)³EŽ®Ž2!’ºJe®Hé ®ªq«&lƒK¬M¦2lC²z¹ÄÚ„mpܪ4nU·*[•Æ­JãV¥q«Ò¸UiܪÉ8$K@¯K=£´^Ië•´^Jë•´öŒ•ˆ~K°ÖúÃ/a­%k-ZkÑZ‹;¬M6G$I‘+ ;Ào™{V¥=«âžUiϪ t¬¤«Z´*.Z5…^8•¹:âo|RÝK²Z’Õ’¬–dµ$«%Y-Éjq‰õ!ʰ Éjq‰µÉUÆm@VµlUZ¶*-[•–­š° .[•–­JËV¥e«Ò²UiÙª d¬$«%Y­¥6$«%Y-ÉjIVK²Z’Õ’¬–dµ$«½ce¢«T†ýp‰µIé _ÃkÙª´lõeØ—­JËV¥e«Ò²UiÙª ôLËV¥e«Ò²U“Òë@VK²Ú;V&ºšÊLe–ÈÖÕV戰 Éj/[‰\]]eØ—XrIØdUËVM–2lã]¶úןÎù-[("©+ü;¾µlUZ¶*-[U/[ dµ$«Z¶j²tµtµ•9&º eÒDWW™« dUËVQ†mp‰µ´lUZ¶jÂ6¸ÄZZ¶*-[•–­JËV¥e«Ò²U“­í?.[½¤H†2“` èféuõÑ HÝ\½1køåWZ2D¦€"Kd (ÂKÀ ëC’à èµà÷3UÂwÎêºa“O\õ!ì`òɘ*ªúÔ—Ê\‘ÒU!U}È0ÑÕTf™èj+sLtʰŸ¥60ÂúeØÆVa}ÛØj#¬a?[m`„õ!g’°­6¶ž–ýU±—$I)Ã~ ªSD™)²tµ”Ù"lªúI]¥2ìç¨ó÷†­Â6BmÄ÷ƒÍCØTõ![öjªú½2ÛµU}H@U_’$C™i¢W^Êl]eØFª Œ°¾D¶U} 2÷+îa¶zÛ¸jãêi¹êçª [=„ý\µU}ÈÝ$l㪒œ•ä ªú>-PÕ‡PÆ ª/Q戄®B™T†m@URß ‡­^R$C™i¢«¥Ì6ÑÕQæ("©«TæŠÀX9lõjc¨ Jë´r×ê%zá­«#ФÈP? ~GÒÖAmÔÖ!mÔÖ^¯Ð;˜0÷ߜ՗°ƒ©ô|,Õ gýMZ}É$XA²õºzY!aí +½ÕUæ*!Ö!aÖ!aÖ^¶aÖ±)ôCÂ:$¬CÂ:¶ÚØjcóãÍoÜ $Hø¨µqÔÆ¡¾£~ŽÚ° ë8j㨠k[‰”Þ‹O‹„uHX‡„uHX‡„uõ}HX{ÊÊDW¡L(Ã6$¬#ÔOPß9nõeØFªäÇŽ[=„m$õãV +Ç­Â6$¬CÂ:$¬CÂ:$¬CÂ:$¬CÂ:$¬=n%rtu”a?Öq©ïK¬aÖQüxÃq«—èj*Ã~JmõãVa¥6JOKIÈ$¬·zÚ˜Ö)aVŽ[½DWKWÛDWG™0ÑU*“Ê\‘Ò„•ãVaƒozÜJ„mÈX9nõ¶1¨ï·zÛjcðié)«¯ÿà/\¶zI‘èhòUakܵzÈÖ‘@(’Š\ý,¬EÖ:ä}JZ{ÁJd (² ”8"Aº¹%€üd[¥lu°ùpl•"Y’Õ)Yå¢ÕCBW¡«¹ººÊ@V§duJV§duJV§duJV{ÉÊDWG™£ ۬Σ~ŽÚ8ÿÑdµÇ­DØFð£ Ç­Â6BOK¨ÉꔬrÜê!lC²:%«S²:%«S²:%«S²:%«S²ÚãV"[W[ö“T÷™T÷)Yå¸ÕKt…6=ee’$CösÕÆ¥ºOÉ*Ç­Â6®ž–K›’UŽ[=„ýHV§duJV§duJV§dµ§¬Ltµ•9&º eØOQÝgQÝ9nõ´±þØÆúãG›·™ºšÊ,e¶‰®Ž2a¢«T2¶$«·z ^Y²º$«K²º$«K²º$«=n%rtu” eÒDWìgPÝ× ºsÜê!lcªÉïâ9nõ¶1©îkªŸ©6¦Ú˜ühÓãV"lcêi‘µrÜê%EÂ~¤­‹Úº¤­½d%b ) ›K ß{ÀopCÝ—´uQ[{®J@7zv"i]›l~¦ážÕC®€",¿¤¼/ù*­^ £E°õ*m«ÿß|È!hÑQ*“Ê@V—duIV—duIV—dµW­D–®–2¬'¨î+¨î\¶zHšèê*Ã6Bm$?ÚpÚê!l#©îK²Êi«‡°äG›ž¶Òë@V9mõö#Y]’Õ%Y]’Õ%Y]’Õ²2ÑÕRf)³EŽ®ØÏ¥º¯Kuç´ÕCØÆý6ðÑæŸÿÄ6JmÕ}•ú)µQ”ÕUüh³Jm”Ú¬þóŸ(c¥6JO‹duIV·duKV·duKV·dµ§­D¶®¶2G™0ÑU*sMtYí!+“K2”a?Cm ª;§­Â6$«œ¶zÛjC²º%«œ¶z ^Y²º%«[²º%«=de¢«­ÌV戄®B¶!YÝ’Õž¶‘¬rÚê!ìg©Euç´ÕCØÆRKOËRKm,~´é!+]ÁÖøãmU±UuÓY·œ•«VQ䈄€")ra ü%õ2D¦€"‹` èF I‚+ ›@$Ô‚tuKW¹fõ% £-rôV|>d«[¶ºe«[¶ºe«[¶ºe«=be¢«©ÌT†mÈV·lµ‡­D؆lµ‡­DØFò³ —­þ!Wm\º;—­Â6d«\¶zÛ¸jC¶Ú;V&ºâÓ"[ݲÕ-[ݲÕ-[ݲÕ-[íe+‘¥«¥ÌV†mÈVw©Ÿ¢»sÙê!W¶QlƒËV/QfˆL]Me`c\¶z‰®ŽlõÈVl•ËV/ÑüìÈVlõÈV{ÇÊDWKö#[=ƒî~d«G¶zd«gð‹ø^¶q°Õ3ÕÏT“îÎe«‡°©6&?ÛôŽÕÑŸ–©~d«G¶zd«\¶ú‡ÈVlµ—­D¦®¦2Kdëj+Ã~d«G¶zd«G¶zd«gñ‹øÞ±2)’¡ ûÙjËV/Q†mlµ±ùÙ¦—­DØÆÖÓ²Õ¬õð—ô5ÎZ=d èh™ÉVF I‚+ ü(xIë | ‚.Ï1«‡,EØA°)koY‰¤€"—€%èÙÀ‹JVdkVXºÙzÝ­ [ª©ê‘ª©ê‘ªö ˆTõHU{ÓJdêj*³”aRÕsùÁ†ÃV/ÑU*Ã6®Ú¸w[ýCJm”ž•R?RU[½DWlCªz¤ªGªÊa«—èŠr&U=RÕªöŒ•‰®¦2S™%²uµ•9"¡«P&E®®®2è‡ÃV/Iö3ÔÆPƒlzÆj‰èêèŠýHUCªRÕª†T5¤ª=l%U ©jHUCªRժƤ¸‡T•ÃVaSmL~ ß3V&¸Z÷Xêg©¥6?ØpØê!lcñƒM[‰°¥§e©©jHU9lõ‘ª†T5¤ª=ce¢«¥ÌRf‹]eB$u•ʰMqͯá9lõ¶q(îqÔÏQÒU[=„mµqøÁ&(¬Üµz–£z¿¤²rÔê!S@GK@‘-b ") ÈÑo ÎÊ¿‹%Ä=’âTÖ ²Fª„Ä—ðX²zHè‡e kçÕCXN® ©*†¬^ £¥#˜jÈTC¦2Õ©†L5dª!S ™j¯W™ÉP†õ½½÷«tÅ~dªQj£ø|OZ‰°âçš(õSÿѼ›V&ºšÊÀĸiõ­«­ L,eª)SM™jÊTS¦Ú›V 2Õ”©¦L5eª)SM™j/X™èê(Ã6†Úü ž›VaƒÞžCýLµ1ÕÆäçnZ=„mÈTS¦ÊM«—è•CWi¢÷âÓ"SM™jÊT{ÁÊDWS™© Û©¦L5eªÜ´z‰2lcÑÛ¹iõö³ÕƦ·sÓê!lc«ÍÏ5½`e¢+¸7­Â6¶ž™jÊT¹iõ¼ò¡¥L5eª)SM™jÊTS¦š2Õ”©¦Lµ¬Ltu•a?‡ÞÎM«—(Ã6Bm?×pÓê!l#ø¹†›VaVNZ=„e„ʱö€•I‘ða¡µ&­5e­IkMZkÊZ“Öš´Ö”µ&­µwªpƒ Ik^Š{RZ¹cõvpÙÁå癞± E’@¿¥«ÔÂ_ªÉjÏV™èj  ]L®Ê%«‡„®RW©Ì)]ÁU¯\õÊU¯\õÊU{ÀÊDW[™c¢«P&”I‘««« Ûjcð“ 7­Â6äªW®ÊM«—è•®ÂDï•zå««««R®zåªW®zåªW®zåªwò;øÞ´arÕÞ´I]¥2ìgª©6?ÙpÓê%ºšÊ° ¹ê•«rÓê!lC®zåªW®ÊM«—(»rÕ+W½rÕ+W½rÕ+W½rÕ+W½›ßÁ÷‚•‰®Rö³Õ†\•›Vÿ£6ŽÚ8üdÓ›V"lãèi9êG®ÊM«‡°Ÿ£6äªW®Ú V&x/¹ê•«^¹ê•«^¹ê•«^¹ê•«ö¦•Hè*”Ie؆dõ†úIµ!Yå¦ÕCØFª lZ=„m¤ÚH=-©~h¬œ´z‰ŽX†œ•ÿÛºj⪠:땳^9륳^9땳^:땳öt•ˆ~OWü&ùKJë-|«|ÿ!ËwÆê ¶€nÎÿãý‰ÿDBGÉŸ…¥ÈW±bõ‚ïQý±†’®–tµ¤«ÅQ€’­–lµd«³zH(“&z¯«ÌU¶Z²Õ’­–lµd«5ø=<'­Â6d«5ÔÏPƒîÎM«‡Üï?æËQ«‡à³ G­^$|X¦Ú­–l•£Va²Õ’­–l•£V/QæŠ”Þ ¶Z²Õ’­–lµd«%[­Ew¯Åïá{ÂÊDW¡ ûYjC¶ÊQ«‡°­66?Ûô¨•ÛØzZ¶ú‘­–l•£V ]…®R™k¢«R~V²Õ’­–lµd«%[-ÙjZ‰]eØlµݽŽú9jC¶ÊQ«‡°PÁÏ6µzÛ=-¡~d«µz‰®RW°Õ’­––J¶Z²Õ’­–lµd«%[-ÙjÉVK¶ÚV&ºJeØtµ’î^Éïá9jõ¶qùÙ¦G­DØÆågŽZ=„m\=-WýHZ9jõ>-W‚†ikQ[‹ÚZú¦µ×«¶€nB@‘PäŠè÷ü-eüÑZ› E¦ÈPd(qD‚ ts J7øsȪÉ’©+¶BWm²uµ•9"¡«P&E®®®2… ]õ!A2”a`}ÈR†mÐU›eØW­†V­†V­†V­†V­†V­F¯Z‰° ®Z ­Z5ùºØC’„ý¼®úÿþxH’„2i¢««ÌU¦@^WQfˆL]Me–ÈÖÕV†ýlµñ°~ ûÙjc«wÕêß䨣6^WQ†m¼«V —d‹°£§å|'5’ú S™«L™àêuÕ/a¯«~ÉTf™èj+sLtʰŸP¡6ÞU«/a©6ÞÖ/a©6ÞU«/a?©6ROËëª_&ºâÓ’‹I)Sȼ®ú%c‹(3E–®–2[„m¼®ú%ìç`Ñû¹jãªwÕêKØF©w€D¶ñ®Z(Ã6Jm<Ò  #–QzX^ký¯µ~ÉØ$SGK@‘-b ) ›KP¸Áoy°ƒw~õK&ÁÐÍP„ V0ðEüøíX}ÉÐ˰ü†¦×V¿dšèjlí 9Ê„‰®R™T†M¼²ºÞ/sÿGâK^Yý’1D”™"KWK™­Ì1ÑU(“&ººÊ°¥6^YQ†m¼‹V I²DØÆ;ð%GW¡Ÿ0”Ie®‰® ™£6^Yý’¡Ì4ÑÕR†ý¼¬_rtÅ~ŽÚ8jã]´ú¶qþ£B&ÔÆ+« ʰŸP¯¬~ÉÖ+½W(“&z¯«ÌU¦@^YQfˆL]MeØFªWV¿„ý¤ÚxeõKØOªTï¢Õ¿ÉUWm\=-Wý¼²ú%KWìçªWVAôÊlãªWV¿äê•ËW¯¬~É0ÑÕTf™èj+³•a¯¬‚(Ã6Jm¼¶ú%hã·h¢ÌPfšèj)³Mtu” ‘8$WGWoU¸øåÿl’I°ø.ÿ§Q∄€",áQVEØ~?¯²~ÉÑÑTdlÝ„€"Ipô*гߊտÉR ’Õ)Y’ÕwÆ @‘-rôVG™P&Mtu•arÕù®¯~ Ë«N¹êܪg« ¹ê”«ö •Ûx­¾„mlµ±õ°lõ#WrÕß Õ—° ¹ê”«þ­@‚äè*Lô^©L*sEJWpÕ)WAsŸrÕ´aAsŸïúê—° ¹ê õj#ÔFð“MÏW™à*õ´¤ú‘«þ­@tµtWrÕ™jC®:åªS®:åªS®:åªS®:åªS®ÚóU&ºZʰ¹ê¼4÷ù®¯~ Û«ÎËO6=h%â6ðÉæ7hõ%l£ô´”ú)µQj£ô´”\L®:媿A«/I]QÏäªS®ºäªK®ÚƒV"SWS™%²uµ•9Ê„‰®R™k¢+|²éù*“"ʰŸ¡6Íý7hõ%lc¨Á§¥ÇªÉÐëBÏð7†%i]’ÖEi]’Ö®ÙŠ„€"Iptƒn~©>ά¥R–: °þ¬¾„,v°ø¦¬DR@‘KPú=ñÙÀcRÕ%U]RÕwÄ @G[G[™#º eRäêê*o_‡Þ¾¿cî)+–qèíëð;ø%S]2Õuø¹æ·f¢«T†mµqô¤õj#ô°„ú‘©.™ê’©®P2Õ%S]2Õ%S]2Õ%S]2Õ%S]2ÕÞ®2ÑÕT†ý¤ÚHzûJ~¿dª¿5+eØFªäçšßšÕ¿ÉU—Þ¾dª¿5+]ñi¹4±%S]2ÕßšÕ—„®RW©Ì)]ÁTWÑÛ—LuÉT—LuÉT—LuÉTW©¢·¯âçšUj£ÔFñsÍ?„mÛø­Y(3D¦®àf¿5«/ÙºÚʽLuËTkV_ruuuSÝ2Õ-SÝ2ÕÞ®2ÑÕRf)³EŽ®ØÏPƒÞþ[³ú¶1þ£ |®ù­Y} Û˜ôößšÕ—°©6$¬½]¥+¶1õ´PY7•õ·e‚×Åã%gÝtÖÞ¨Ð^v)¨¬[ʺ¥¬›Êº¥¬½X%¨¬øä¹7KØ÷wÁê –€nô>J°ƒ3=W% ›+ Waü¥ž ‰ê–¨n‰jX‰l]meŽ2a¢«Tæšè ¢Ú«U&ñÿ²unYr¹ÛÑeðûߨ5Sõ¡!³[œ².·$fxŸÖ5šÚþ Y} ¯ÑºFóËš Y‰ðÍ/k~!«/ñ5 í)Qý…¬@´ÅW˦ˆ¥D5%ª¿Õ—”¶Z[­™-r´u4mO‰jJTóPäS¢šÕ”¨N¶ÊD[¥^ãè‡_ÖüBV_Âkj»BVBVC¾&ñ%‡di F"/þLâ¨þBV_Òš¡ˆITS¢šÕ”¨–Du²U&ÚZšYš ‘ÔVj¦DZ[­™-r´u4ƒûüBV ‡„÷yt ‰jITëÑ5]C¢ZÕ’¨þBV š9"W ¢:!+ˆjITK¢ZÕ’¨Öâ𿈶Z3ÛD[G3¼ÏÒ5‚Úþ Y} ¯ºFèÕº†„õ²úÞ't kÉX+}(øÚT«D,‘ÐHh¢Dš` hç\ìð—:Jésÿõ«¾„7(Þ ôú(¡x„â4ûU_pô(\ð°ú’‡+´±’­–lµd«%[-ÙjÉVK¶Z²Õ’­NÄJD§ ­Ö¦Í—lµd«%[r•‰¶R3¼ÆÖ56¿¶ùµ¬¾„רt÷_ËêKx ÙjÉV-«/á5d«%[-Ùê¯eõ%¥™6ÑÇÚš9&ÚºšÍ×Õ5.ݽ.ß„ÿµ¬¾„׸üÚfZV"¼†luZV"¼Æ¥»ÿZV_Âk\^ãײúØXËV[¶Úx–­¶lµe«¿–Õ—´¶Z[[ähëhîÞ²Õ–­¶lµe«ýÐÝûá›ð-[mÙj?üÚfÊU&ÚÚšá}]ã¡»ÿZVÿ’¥k,]céÕ²hc-[ýµ¬¾„÷Y´±!zrk†×­¶luÊU&Ø’­¶lµe«-[mÙjËV;èî-[–•¯üÚ¦ƒ6ßÒÕ–®vè>©k¤®‘üÚæ×²Ñ_-I7ûµ¬¾„¯–Ô}è¬-gm:ë¯dõ%Öæ/áí-gm:kËY[ÎÚtÖ–³¶œµé¬-gb•ÈÐ΂#gíæYšGh¡ñÕÌ䪴c Â4_­£ÈV[¶Ú²ÕÞºƒlµe«-[mÙjËV[¶Ú²Õ–­¶luÂU&Ú:šá}d«}èî}øN|ËV[¶Ú‡_ÛüzV_ÂkÈV=«/á5Ýý׳ú^ãèG¯–+“­þzV_ÂkÈV[¶Ú²Õ_ÏêKJ[ô3ÙjËV[¶:=+‘«-Øê–­î?t÷ý‡î¾ÿðø-[Ýxý‡_ÛL½ÊD[­™ÖÌ9Ú‚ŸýzVÿ’G×xøj™žÕ!­þzV_ÂûÈV·luËV·luËV·luêU&Úºš­nÙê–­nÙêô¬DB[¡^cé‹ïÄÿzV_Âk,ºû^ºÏÒ5–®üÚæ×³Ñ_-²Õ_ÏêKøj ÝG¶ºe«[¶:=+‘£­£¸û–­nÙê–­nÙê–­nÙêÔ«L´Ušá5R×Hºû¯gõ%¼FÒÝwê>¥k”®QüÚfzV"¼Fñk›-kýõ¬@´ÅûH[7µuK['^Òø%}mÓ[7½uË[7½uÓ[·¼uÓ['Z% ‘- Þ ¡î¿ˆÕ¿DÖº7¯°ùEÍ4¬DB@#I ‰i}2[@K‡àê)ðUþ£øè,’Õ-YÝ’Õ-YÝ’Õ-Y•!Y’•ÈÑÖÑ s©îûRÝ·duKV÷Õ5.¿´™|•‰¶J3¼ÏÕ5.Õý´ú^ãþ?×ÀKe‚V›²ú Z} îs$«G²z$«G²z$«G²:ù*mÍÍ@VdõHV'h%²´µ4Ãk<ºÆÃ7âA«/á5ªûytŸG׬þ‚Vÿ’¥k,]C²z$«¿ Õ—ðÕ"Y=’ÕÉWéc•fZdkkkæhæš`K²z$«G²z$«“¯2ÑVj†×]#¨î¿ Õ—ð¡k„^-¡kHVA«/á5R׬Éê/h¢'—¶ÚD‹¯–¤ºÉꑬÉꑬÉꑬÉꑬÉê­Dx Éꑬž¢ºÿ‚V_Âû”®QºFëÕÒºFëÍ/m†h†×´Jëi£u Zëàè¹|©ÈZ¬õÐZ¬õÈZ­õÈZ§\%b Ò[@;‡à `‡78ºÁÁW4­ÐN h„'°þ2V_Â#A¾:+ùê/eõ%fècòÕ#_=òÕ#_=òÕ©W™hkkfk†×¯ùê­Dp+_¢•Hh+4“š)mµf¶É&9š¹&øXòÕ+_ý%­¾¯–+_½òÕ+_½òÕIZ‰´¶Z3[3ÇD[ðÕ+_½òÕ»øÕ͵L´šá}–®ñþ‰fx¥k,½Z}ì®ÿçøêf’V"ðÕ+_½òÕ_Ò D[©­2ÑVkf›hëh†÷‘¯Þ¤½_ùꕯ^ùêM¾?I+^C¾zS÷I]#iïW¾úKZh _ÝLÀ*E _-¥ûÈW¯|õÊWI«/)m•¶Zdkkkæhæš`K¾zå«W¾zå«°2ÑVj&5ÃkHXoë>­k´®!e¤ÈÖ56¿ºù%­¾„רzµlÝGÒz)­¿¢Õ—ð´Ö+k|•ˆ>=h+ÿ©Bm½ÒÖKm½ÔÖ+m½ÔÖ‰T ˆ´€FxJë=:ÊÑ p$ëT¬D–€F‚ ´#@“­þíX}ÁÐ팮º~«/ùºêK´µDB[¡™)m•fZ3ÛD[G3×[¾²ÂkÐU׺êK4Ãk<0÷õKZ} ¯ñè^+C¾.¶~I+mñ>tÕ—l’G3¼]uHh+M´UšimmÍð> æ>äjëb†®:„×¼?„× «®_ÒêKxŸÐ5æ¾~I«/á5B×|e3„×]ƒ•€õKZ}É×ņ|]uýa%`Hh+µ•š)‘ÖVkfkæ˜hëb¦`î/9$fx‚¹ Íð>tÕ!¥-Þ§tÒ5 _Ù á5êÿ¹ÆÅ ]uýa%`ý’V_ÂûÐU_rIøjiÈØK´ÕšiÍl‘£­£™ BW}‰f‘¥­¥^cÃÜ_¢Þ‡²úmmÍð[רøÊfMÀÊä’<šYZâ‹åè<Ö˜hi héhä‚àÃPZ‡<"K@#!’hl‚# ïoúùƒ_òVY"! ‘1=(¬‡E€õ·aõW¿'¸ê#W}äª\õ‘«N¸ÊD[©™ÔL‰´¶x‡æþÈU¹êÔ¬@–®±ð.ü^C®ú,šû³tŸ¥k,]cñ+›_Ñ D[[3¼#KE«¥¢Õzäª\UE«!K[¡­ÐLŠ”¶J3­™m¢­£™k‚-¹êô«L´µ4Ãû°h5$µÅû°hµT´Z*Z á5X´zÉ!©hµT´òhk™¾ZŠ.öÈU¹ê#W}äª\õ‘«>rÕG®úÈU§h%ÂkÈU¹êÓ4w­–ŠVKE«—h«5Ãk°hµT´Âk°hµ¹ªŠVKE«¥¢ÕK.Iˆð¬ )mµ>ÃÖÌÖÌ1Ñ\õ‘«>rÕG®:ý*m…fxŸCsWÑj©h5„×8º‹VCx ­–ŠVKE«¥¢Õ% ƒA«!ôµ+=c$`)h5d=÷ûØõ¿¤µ.ZëTª´I‘Ù9"<¿ m±bõnð,ÀŠÕbÅj±bµT±Òú\¶€–Ž@“@Å–TuIU—TuIU—TuJV"©­ÔLi†·ª.©ê’ªªgµÔ³ZS¯2i’G3¼{VCB[¼ƒVKA«¥ Õ^ƒA«—lÈ™‚VKA«µ¤ªKªº¤ª Z m…¶R3©™imµfx ©êb|uÄ]A«¥ ÕÞ‡ñÕ¥ ÕRÐj¯ÁøêRÐj)hµ´Z Z-­†@U—TUA«¥ Õ¨ê’ªNÐJ„תNÐJ¤ô±J3­™m¢­£^Cªº_ÂkHU—Tu1¾º´Z Z-­†ð Z-­†ð Z-­–‚VkIU´Z Z-­^rIBOæ5˜ RÚ*=¹E¶¶¶fŽÈÕTu‚V"PÕÅøê¥^C®º_] Z-­–‚VCx ­–‚VKA«¥ ÕRÐj)h5d hii)Dà¬Ag 9«rVC¶€–Žˆ>8뤫D,‘ÐHh‚w@}u±cµÔ±ZìX ¸ØÁÿÓÌX-e¬3VK«!02f¬–2VCx kHXCÂÊ’Õ ´C ùjÈWC¾:ñ*m…fxùjÈWC¾òÕ¯¬Cx ùjÈWƒÖ¥ªÕRÕj©j5„×`Öj)k5„×`Öj)kµ”µ ùª²VKY«òÕ¯NÖJ„ׯ†|5ä«!_ ùjÈWC¾òÕ‰X™h oÄOÄÊd“<šá}˜µZÊZ-e­†ðÌZ-e­†ðÌZ-e­–²VCàcÊZ-e­†ÀÇB¾òÕ`-à%ÚJm¥fJ¤µÕšÙ"G[G3°÷`€õ%šá}ä«ÁëÐ ¯!_UÖj¯Á¬ÕRÖj)kµ”µZÊZ-e­VÈW•µZÊZ ¡ÉWC¾òÕ¯†|5ä«!_ ùjÈW'beòÝJùjÊW“Ö!K[K3!’ÚJÍ”Hk«5³5sL´…û(kµ”µZÊZ-e­–²VKY«!´¤¶¦´UU«![@K‡@·â_‰ÓªàÆÿ´³4") ùÕh„G µ&û«Cp–À/)ïlY-¶¬–ZV‹-«) ÈXJVÕ²r´uµ=ˤº§d5%«)YMÉjJVS²š’Õ”¬¦du"V&Ú:šá}$«ÉëK4ÃkHV•¶ZJ[-¥­–ÒVKi«¥´ÕRÚj)m52¦´ÕRÚj¥d5%«)YMÆ^¢­ÐVh&EJ[¥™ÙÚÚš9"W[U¥­†ðl°Yšá5˜¶ZJ[ á5˜¶ZJ[-¥­–ÒVKi«—ȘÒVKi«!¶ «)YMÉjJVS²š’Õ”¬¦d5%«²2ÑÖÕ ïÃëJÉjJV'm%Âk°Áº~i«/á5Ø`]J[-¥­–ÒVKi«¥´ÕRÚj•dUi«¥´ÕRÚê%—$DR+õäÒVk«5³E޶Žf î%Y-ÉjIVK²ª´ÕRÚj¯ÁëRÚj¯Á´Õ­Þ‡i«¥´ÕRÚj)mµ”¶²´Äc°l5Æ6+mñ<ÒÖ¢¶–´u2V x¹Ë[‹ÞZôÖ’·½µè­*Z hlð(°.嬖rV‹9«¥œÕRÎj1gõ‚&I=„¯ kIX´Z Z ¸Z‚¯–|µä«%_-ùjÉWK¾ZòÕ’¯NÖJ„ǯN×Jähëh†÷aŠõ%Mòh†×`Üj)n5„×`Üj)nµ·ZŠ[-Å­^²IŽˆ¯ÁW˦•|µä«%_-ùjÉWK¾ZòÕ’¯–|uRV&Ú:šá}˜b]Š[-Å­†ðL±.Å­†ðŒ[½D3¼|Uq«¥¸ÕRÜê%‡†VÌ,Å­†ÐÐä«%_-ùjÉWK¾ZòÕ’¯NÜJdkkkæhÆ×€¯6S¬Kq«¥¸ÕRÜjH˜h+5S&ÚjÍ´f¶ÈÑÖÑ ¯!_mùj3°·z‰¶BON=¹4Ó&úX[3ÇD[W3ðÕ–¯¶|µ™b]Š[-Å­^¢™á5…Uq«!¼ãVKq«¥¸ÕRÜj)n5„× µ¶¬Um«¥¶ÕÔ–@ è“ÙG@Õ§mmikS[[ÚÚÒÖ¦¶6+¬KQ«!"M°´s®vøKÞ€E«Å¢Õ€h’ÐcyÙjËVU´Z,Z½@K±–¬¶dµ%«-YmÉjKV[²Ú’Õ–¬NÈÊD[[3[3¼†dUm«5m+^ƒm«!¼ÛVKm«¥¶ÕZ"Úâ}ضzÉ&9z2¯ÁVÀjÉjKV[²Ú’Õ–¬¶dµ%«-Y¶•Hk«5³5Ãk°Ä:oÅ«mµÔ¶òh†×`Ûj©mµÔ¶Âk°mµÔ¶Zj[-µ­Ö¯mÕ¿áGFƾddä;³™ YÝ’Õ-YÝ’Õ-YÝ’Õ-YÝ’Õ-Y’•‰¶ŽfŽf «›%Ö—h†×¬n–X‡ðl[-µ­–ÚVKm«¥¶ÕRÛj©mµÔ¶Zj[­)Y¥È%y4ÃûHV·duKV·duJVÚ*Í´ÈÖÖÖÌÑÌ5Á–duKV7K¬C–fx Ùêf‰õ%šá5ä«j[-µ­–ÚVKm«¥¶ÕRÛj©mµÔ¶gUÛj©m5$µe ÂcÐZ·¬u:V"úô ­|µuK[7µuS[7;¬C’@¼2¬/Ј?ÿ# Þ‡=«! ±¹ÚÂûðj[-µ­^¢™%Ú Í¤fÊD[Ð3µ­–ÚVKm«!WϬɪÚVCm-m-Í„Hj+5S"¼†dõHVdUm«!¼ÏÒ5b]j[ á5bšá}ضZj[-µ­–ÚVKm«—\^ƒm«¥¶Õ:’Õ#YUÛj©m5$´Y=’Õ)Y™h«5Óšá5$«G²z$«j[½D3ÈÒÖÒ ¯ÁëK4ÃûÈVÕ¶²5Ãk°mµÔ¶Z‡­€¥¶ÕRÛjÈÐ_,L )‘&ØÚ9´Â玤õHZ¥õHZ'`%’Ðg×ÙG@;øÿ`Ìj1fµ³ZŠY-Ƭ^Ð$¼Áæ ³ÒzÌÖç·5s®–àªçðmø#W=rÕ#W†•‰¶R3©™imñ<ì°9Úâß ìZ-u­^¢^ƒ]«¥®ÕR×j©kµÔµR‹„×`)`©k5„.&WU×j©kµ®\õÊU¯\õÊU¯\õÊU§k%RÚ*Í´f¶‰¶Žf® ¶ØµÂk°Ã:di†÷a×j©kµÔµZêZ «^¹êU+@]«—h vvåªW­€+W½rÕ+W½rÕÿþ*M´Uš)ÍðrÕËë^C®zåªÓµá5äªêZ á5صZêZ-u­–ºVK]«¥®ÕK.ÉÑ ¯Á®ÕºrÕ+WU×j©kõm…Hêc¥fJ¤µÕšÙš9&Ú‚«ªkõ’Kòhf™h+4Ãû°ÃºÔµZêZ-u­–ºVK]«!¼»VK]«¥®ÕR×jÈ(C©€+iˆ•H hdíàsÁ#d­—Ö:©*í„€FxJë•´NÌJD¿­aëü‚†ÿ(9<cV‹1«Å˜Õ š$õ\=–G¬N¼ÊDJ¿¥£º˜\õÊU¯\õÊU¯\u’V"¼…\õ²ÁºTµZªZ áy.Í]]«¥®ULÅʤIÍ<šY"¡­ÐLŠÔÑL‹l}¬¯ 9z²¯qñdºêÇd“,Í„‰¶R3©™imµfx ºêK4sAص u­B]«!¼»V¡®U¨kêZ…ºVC¾.ö’C²µÅûÐU‡\=ùb†­€!Oˆhk‰„¶B3)RÚ*Íð>tÕ—hëh†× «Æ6X‡ðtÕP×ê%šá5ص u­B]«P×*Ôµòu±P×*Ôµ u­â]õ%—äÑ ¯AWÚJm•fJ3-²µÅûÐU‡\m]Ì´®AW}‰f–fx ÊêÞ‡]«P×*ÔµÂk°kêZ…ºV¡®U¨kêZ YEzJjÉ@¤E¶€FŽˆ>™‹‘yòh„‡8<+¬C’@¼*¬ÁžU¨gìY ¸ØÁsV¡œU0gÊY ¡QXC=«!¼…õ%z2íòôÕ!0´G¾úÈWùêT¬Lúßï5ˆžœ"¥'—fZdkkkæˆøðUµ­â×¶ú÷÷õ·mõ%¼ÛV¡¶U¨m5¤–ˆ¶Z[¼|õ‘¯>òUµ­â‘¯>òÕi[‰,m-Í„fÒD[¼;¬/ÑÖÖ ¯Áë‹™Ð5ä«j[½D3¼ÛV¡¶U¨mj[…ÚVCàcj[…ÚV¡¶ÕøØ#_}ä«|õ‘¯>òÕ)Y™h+5“š)‘Öï“´÷G¾ª¶Õ^ƒÖ—h†÷‘¯ªm5„÷aÛ*Ô¶ µ­†ðl[…ÚV/¹$¼ƒ¡¶U<òÕG¾úÈW§m%Ú Í¤fÊD[­™m¢­£™k‚-ùê#_}Øa²´ÅûÈXvX_¢^ƒm«PÛj¯Á¶U¨m5º¦¶U¨mj[ YzNh)µd Ò[@;‡@¿#ÞæþÈZY´zFB$4Â\Þ€Ö!<UA«`Ð*¾A«PÐ*´ ­BA«`Ðj@ê)U­BA«!­¥­oÍ‘«-ØÙzhî‹Ö—hfi&L´Åó<4÷%WUÚj¯Áë£ÞG®ª¸U(nŠ[…âV¡¸U(nŠ[…âVCàbŠ[…âV¡¸Õ¸Ø’«.¹ê’«.¹ê’«NÊÊD[¡™ÐLŠ”¶xŸ ¹/¹ªâVCx vX_‚Æ­Bq«PÜjïøÕKIj†×`ÜjìlÉU· Å­^¢-¸Ø’«*n5äÑÖÒÖÒLh&M´Ušá5äªK®:)+m]Íð>ì°†âV¡¸U(n5„×`Ü*· Å­Bq«PÜ*·zÉ%)nŠ[Å’«NÊÊä’ðÕ"W]rÕ%W]rÕ%W]rÕ%W]rÕ%W]rÕ‰[ÈU—\uÉU;¬¡¸U(n5„×`‡5·Âk0nŠ[…âV¡¸Õ«âV¡¸U(n5d„@‰è¹©ú­uÉZ—¬uÑZ—¬u2V_ðKjkP[µzv‚ ´#ÐÙ9"W#,Z ²*iJZ“V/h’Ôƒõ”i-m}¨£™k‚- kHXCÂÖ°ªm5„ǰNÜJ„×°NÜJ„×`Ý*T· Õ­Bu«PÝ*T· Õ­Bu«!¼ëVCj‰l^ƒÁ€—hëˆ\},¾Z’BÖ°†„5$¬ÁëÔ ¯!a ÖX‡lmÍð>¬±†êV¡ºU¨n5„×`Ýj„Lu«PÝ*T·! «êV¡ºÕK´E›–•É!y4óhf‰„¶x kHXCÂ:u+‘­­­™£_¬±†êV¡ºU¨n5„×`Ý*T·Âk°nª[…êVC d!aUÝ*T·Š°†„uêV"¼†„5$¬!a kHXCÂÖ°NËÊD[W3VÕ­†@Xƒ5ÖPÝ*T· Õ­†ð¬[…êV¡ºU¨nª[…êVCàgù¿äKeBV"K€O…­)l5$µ$ÐÙG@;úTxYk¢Ãúð ”Öd‡5T´ ­BE«!M°´s®vðÿó¢©h,Z &I=75Ã#ÈUS®šrÕ”«¦\ušV rÕ”«¦\5åª)WM¹jÊUS®š,±á5䪊[½D3¼ãV¡¸U(nŠ[…âVCx Æ­Bq«PÜjH-‘MÂû°ðm=ùš`K®šrÕ”«¦\5媷áߥrÕ‰[‰´¶Z3[3¼K¬CxÆ­Bq«PÜj¯Á¸U(nõ’CÂk0nŠ[ i=®ª¸Õ£­«-ØÙÄ­Dàª)WM¹jÊUS®šrÕ”«¦\5媓²2ÑÖÑ ï#WM–X_¢^C®ª¸Õ^ƒq«PÜjìLq«PÜ*·rô¸ªâV1)«¹$4¹jÊUS®šrÕ”«¦\5媷ÙÚÚšá}Xb}ÉwKq«!‰¶–fÂD[©™ÔL‰´¶Z3[äh ¯€ÊV¡²U¨l5ÎZtÖ’³–œµè¬%gŠ•ÈÐÈÑï ÖŠº2¬/àÆÿ´ÚIMðˆ°¾@#¼jV¡šU¨føgºjVCx„àæ¬ÀÅJ®ÊžÕ€ÖRkikæ˜hëjªZRÕ’ª–Tµ¤ª%UUÔjÁëK4ÃûHU‹Ö!¼»V¡®U¨k5„×`×*ÔµzÉ&á5ص u­†”žUU×jÈÖÖÑÖÑ Tµ¤ª%U-©jIUKªZRÕ©X™h‹ÿ0k]ƒÖ![3¼»VC| |a£®U¨kêZ á5صzÉ!á}˜ u­†@ÎJªª®U¨k5äj ªZRÕ’ª–Tµ¤ª%U-©jIUKª:]+^CªZRÕb‡5Ôµ u­b*V&‡äÑ ¯Á®U¨kêZ…ºVC ªêZ…ºV¡®ÕK. UŒ]«P×*ZªÚRÕ–ª¶Tµ¥ª-Um©êT¬L´ÕšiÍl‘£­£ˆ»ºV¡®Õ^ƒÖP×j¯Á®ÕK4Ãû°kêZ…ºV¡®U¨k5¶ÖL„ºV¡®ÕEúH¼ÎúŸFJ¤ ¶€vŽ€Fx|ú²Ö–µ2gÊY áPa Õ¬‚5«`ÍêÙG@;øÿŸSVC h-]UË*زz–R¤ô¡øâHÚXËV[¶Ú²Õ–­¶lµe«-[mÙjËV'be¢­Ô ïà k¨kêZ á5Xa …­Ba«PØ*¶Âk0lõ’MÂû0l [ ©EÒ&Úâ«¥ic-[mÙjËV[¶Ú²Õ–­¶lµe«Í ëá5d«Í ëm¢-Þg묰†ÂVCx †­Ba«PØjlLa«PØ*¶ÂÈV›­€PØê%Ú‚Ÿµlµe«-[mÙjËV[¶:+m•fJ3¼†lµYa_ØêK| Øê„­Dp …­Ba«PØ*¶ …­†Àƶ …­Ba«—\’£'_mñ²Õ-[ݲÕ-[ݲÕ-[ݲÕ-[°•Hk«5³5ÃkÈV7+¬¡°U(l [ á5¶ …­Ba«PØ*¶ …­†l-ñŲt )+_qRVE­†,-…É%IÍ”H hdíàsÁïPÒºÑ_°´á P² •¬†ðɰd*YKV¡’Uð’Õ-YeÊ*˜²zvRÏ-}6­™m¢u4s4UÝRÕ-UÝRÕ-UÝl°á5¤ª[ªºÙ` U­BU«PÕj¯Á¬U(k±2i¾V˜µSÖ*”µ e­†ÔÑ“y –^¢­£'_lIU·TuKU·Tu"V&ÚJͤfx 6X_¢^Cªª¬Õ^ƒY«PÖ*”µ e­BY«PÖjUŒY«PÖjULªº¥ª[ªº¥ª[ªº¥ªGªz¤ªGª:Y+‘ÐVh&EJ[¥™ÖÌ6ÑÖÑÌ5Á³VCx f­BY«PÖ*”µ e­BY«PÖ*”µ e­†ÀÅŽTõHU•µŠ#U=RÕ#U=RÕ#U=RÕ‰X™h«4Sši‘­-ÞG®zØ`} fB×®6X‡ð>ÌZ…²V¡¬U(kÊZ…²VCx ¦BY«PÖ*8 gUÓjÈÐRè¥v DZd häˆèwgv•È# ÞÚzX`’šàв ¶¬B-«`ËjÀÀ> SVCÍ,-…– «G²z˜ÒÚjmmÍmAVdõHVduV&Ú Íð>’ÕÃëK4ÃkHV•µÂk°kêZ…ºV¡®U¨kêZ Œ©kêZ )mAVdõHVdõHVdõHVdõHV§k%²´µ4Ãû°Áúmñ>l°¾D[[3¼»VCð¥ÍT¬L6É£™G3K$´=S×*Ôµ u­†´žY½’Uu­†\mAV¯dõJV¯dõJV§be¢­ÔLj¦DZ[¼Ï£k°ÁêZ á5صz‰fxv­^¢-Þ‡]«—h zvÕ ¸j\v­^rIŽ_-j\Éꕬ^Éêt­DB[¡™Ô ¯!Y½’Õ+YU×jÈÑÌ5Á»V¡®Õ^ƒ ÖP×*Ôµ u­B]«P×*Ôµ²´Äc0k5ºv%­ÊZ…²VC–¶B@#)RŸ}¥­—Úz©­WÚz©­—Úz¥­p“iW pÖª˜ÕÞÖPË*Ô² ¶¬B-«!rÕG®úÈU¹ê#W}䪓³ú’%W]rÕ%W]rÕõ‡æ¾þàmøTÕ*UµRšimmÍlÍ‘«-Þ‡Y«TÖ*•µ[rÕ%WUÖjHi«´ÕšÙ&Ú:š¹&Ø’«.¹ê’«.¹ê’«NÖJ$µ•šá5˜`}‰fxf­RY«TÖ*•µJe­†ÀΔµJe­RY«—’á«…•€!­­­Ïpkæˆ\mÁÎ&k%ÂkÈU—\uÉU•µ’š)mµfx &X‡Íð>rUe­^¢^ƒY«TÖj¯Á¬U*k5v¦¬U*k•ÊZ 9z\uÉU'berIÍ<šY"¡­ÐLŠðrÕÉZ‰lmmÍð>L°¾[ÌZ¥²V©¬Õ¥^ƒY«TÖ*•µJe­RY«![@K<«VÉW·”uQYU´²´I‘Ù9"¼¥•¯óË+°¿š,Y%KV©’Õ$Ðo€ŽUªc•êX%;V/ÐcpƒoÇ*Õ± ¹ªJVÉ’Õ€ÔRêÁ¥™6ÑÖÖÌ1ÑÖÕ T5¤ªÊY½D3K$´šá5X`}‰fx­RA«TÐ*´J­2¤ªÁD@*h• Z½d“„_-Œ )mµ>ÃÖÌ9Ú:šª†T5¤ªÁëe¢­ÐLšh«4Ãk°À:dk†÷aÐ*´z f´UUÐj¯Á ÕKIêɼ#CZ[ÛDëhæš`KªRÕª†T5¤ª Z á5¤ª´á5¤ª!U XSA«TÐ*´J­RA«!¼ƒV© U*h• Z ª†TUA«TÐê%Ú:"W ªRÕª†T5¤ª!U ©jHU'_e¢­ÖLk†×«†\5X`M­RA«TÐj¯Á Õ^ƒA«TÐ*´J­†l"á1ØB]»ò3Z«rVCAè±zˆ&J¤ ¶€vŽ€Fp…oÇ*SÒ:+‘% ‘I|þ<@þíXhd=å~Áƒ_¾7ø’G3O“,m…€–R¤ô¡J3-²µµ5s4sM°õ·½ú%<ÆÒ1þªê—„‰¶øÅÒ}–®ÁžUªg•êY¥zV©žUªg•)UUÏjÈ#qO©jJUÕ³Jõ¬†Œœý{ ©jJUSª:õ*m]Í@USªšl¯¾D3¼†T5Ù^’"¥­Ò ïÃöjªg•êY¥zV©žUªg5*¦žUªg•êY Š¥T5¥ªêY imµ¶¶ÈÑÖÑ T5¥ª)UM©jJUSªšRÕ©W™h«4Sšá5¤ªÉöjªg•êY¥zV©žUªg•êY¥zV©žUªg•êY Š¥T5¥ªêY½D[cgÿþ3j¿â‚'ÿUUÍ<"K[K3PÕ”ª¦TuzV"¼Û«C¶fމ¶ð…zV©žUªg5d™h+4Ãû°g•êY¥zVC¶@‰àÿœ¿€/²Öü’ʪ–Õ% ¥ÑSR#%ÒÙG@;ßëâýÌbxuˆF–€vB@#¼V©†Uªa•lX¥VCàclX¥V‰ÿ—ÞV-½­Zz[•«h)µÄÿOßc.©êd«L´u4ÃÓHU‹éÕ—h†ÇªÓ«Cx ©ªrVCxö¬R=«TÏ*Õ³Jõ¬R=«œzÕi¾X+©jIUÕ³—ªTuzV"[[[3G3×[RÕ©W™hki†×`zuHj&5Ãk°gõÍðìY¥zVCx ö¬R=«!3õ¬R=«TÏjHê9PÕ’ªN½ÊD[[3[3Gäj ªZRÕ’ª–TuzV"¡­Ð ¯ÁôêK4ÃûHU‹éÕ!G3¼{V©žÕ^ƒ=«TÏê%—„×`Ï*Õ³RzTU=«![[G[G3PÕ’ª–Tµ¤ª%U-©jIU§^e¢­Ò ïÃôê­-Þ‡=«!¾ÞƒŸž•®¡žUªg•êY¥zV©žUªg•êY¥zVC gMeUÎ*•³JüÛ¾å¬Mgm:kËY›Î:‘*툴ÈÐÈá ¨¬“¬y4Â;PZ±’šàаJ6¬R «dÃjÀÕïˆgÀgÏ ÀÈXKV[²Ú’Õ–¬¶du*V"|ùJV[²Ú’Õ–¬¶duÚU&Mòh†×`|uHh†÷‘¬*gõÍðÌY¥rVCx æ¬R9«lɪrV©œU*g5$ôȪrVCJ[¥­ÖLkf‹mÍ@V[²Ú’ÕÉY‰,m-Íð>Œ¯¾D[¼sV/ÑÖÖ ¯ÁœU*g•¯2ùþ7–¬¶dU9«TÎê%ÚJ‘ÒÇâ«eSÆZ²Ú’Õ–¬¶dµ%«-YmÉjKV[²:ñ*m¥fxÆWS9«TÎj¯Áøj*g5„×`Î*•³Jå¬R9«—\Þ‡€TÎjõìJÆ$«ÊY½D3´1ÉjKV·duKV·durV"¡­ÐLj¦L´ÕšÙ&Ú:šÁ“Øøß$~9+Í<"K[K3!’%¢™i}¬Mp´ƒ×Ê–µnY릵nYë–µnZë–µN¸JÄ@¤ ¶€vÁÀ>ûà ^MV¬R«TÅjH h„7Þ€«!L”rV/ÑVêÉe¢­ÖÌ6ÑÖÑÌ5Á–Tõ‘ª>RÕGªú°½ZÊY•rV¥œÕ^ƒ9«RΪ”³*å¬J9«RΪ©ªrV¥œÕ^CªúHU©ªrVC ªOàœ‡´ÈÍ‘«U}¤ªTõ‘ª>RÕGªúHU¶WK9«RÎjHk¦5³E޶Žfx æ¬J9«RΪ”³*嬆ðRևʪšU©f5d è1ÇDŸ œuÒU"€FAh' 4Q"M°´s4Â+à©’Ö‰X‰,ð›G`ŪX±#Sƪ˜±*f¬^Ð$04þË‚E€!W¨gdõ‘¬>’ÕG²úHVÉêt¬D¶¶¶fŽft ÊêÃöj)gUÊY•rVCx«k°gUêY•zV¥žU©g5„2ÆžU©gUêYÕ’¬®?ø³‰C¾ÿ…¦~=+m}¿ÁyHšh«4Ó&ÚÚš9&Úºš¹˜‘¬.¶W_¢™%Ú Í¤Hi«4ÓšÙ&Ú:š¹&Øb$`dlIV—dU=«!¡­ÔVj¦DZ[­™-r´u4Y]l¯¾äð>’ÕÅöêÐ ¯!Y]l¯¾D3¼{V¥žU©gUêY•zV¥žU©gUêY•zVC «K²ªžÕÒVi«5³M´u4sM°Uø“š/¹$¶ «K²º$«‹íÕ—h†×­.¶W‡ð>ìY•zV¥žU©gUêY•zVCx ö¬J=«RÏjH h‰ç¡³.9뢳.†ÀYùOB9ë’³.:ë’³.9뢳.9ëT«DZ@#úíà,ز2b5` h'êûwÜÁ7Õ߆€H7ÉÐÒÑÒ}D0sñ=#CüŸ$[]²Õ%[]²ÕIW™h«5³M´u4s4[ ÖW_¢™Gdiki&DR[©™ÒL›hkkæ˜h _ÛLÀj‰l’G3¼l5d«![ ÙjÈVC¶:I+‘­­­™£™k‚-Ùê¬L´µ4Ãk0i5$5Ãû,]ƒI«RÒª”´*%­^rHx vJI«!ð³­*iUJZ ImÁVC¶:+mmÍ|ÿ(ë#rC3‰?¸Z¿¤ˆf–Hh+4“"¥­ÒLk†×`Òª”´*%­JI« ½µì”’V¥¤ÕK.IˆðÕÂNÀÒVë3lÍl‘£­£ØjÈVC¶²Õ­†l5d«°2ÑVi†÷a}uÈÖï#aUÒª”´ªIZ‰ðLZ•’V¥¤U)i5Ö²V%­JI«![[GÀ#x0V$®Aq ŠkH\ƒâ:*툴ÈЀöj)dõß_ê —g`~uïpy‡Ë¯jâò2—w`Éj%íò  92 kJXU³òhkiki&DR[©™imµf¶fމ¶pŸ©X™4É£^ƒ Ö!¡Þ‡ ÖJ6X+Ù`­_ØêKx k2PÉk%¬•Ö”°&c•Œ mAXSšï_‘h«5Óšá5$¬Éë«ÂV/ÑÌ#²´µ4Ãû°Áúmñ> [•ÂV¥°U)lõ’CEKÖJa«!¶ h™|³Ya«—h&EJ«4Ó"[[[3G3¾„5Ù`-…­^¢­¥™0ÑVj†÷aƒµ¶*…­Ja«Rت¶ÂkHX¶*…­Ja«—\’Гy Ö†”¶ÚDkkfkæˆ\mAXSšÖ”°NØJ„×°&¬¥°U)lU [ á5¶ªdƒµ~a+l±ÁZÉë% %ž‡]«!ðÖ¤·*kUÊZ ÙG@Ïå+EÞšòÖ¤·¦¼5å­IoMyë¬D Dš` hç\ïÎ7gU¯à^ªY•jVÅšU©fUªY i}6P´b Ø³z–`h%_UÓjÈ£™eÒ$¡™4ÑVi¦4ÃcÈWëáÛñ [ ñ5૵hïŠ[•âV¥¸Õ^ƒu«RݪT·*Õ­Ju«RÝê%›†ö«[ýóÖÛ¯nõ/ üdÀ—àÉòUÕ­^¢™¯–|uêV"­­ÖÌÖ ¯Áë|+êV/Ù$f–‰¶B3¼C¬¥ºU©nUª[•êV¥ºÕøXÉWU·*Õ­†ÀÇJ¾ZòUÕ­^¢­ÔV™h«5ÓšÙ"G[¼|µb}‰fx ùj1Ä:$4ÃkÈWU·*Õ­Ju«RÝj¯ÁºU©nUª[•êV¥ºU©n5BVòÕ’¯ªn5¤´UÚjÍlmÍ\lÉW§ee¢­¥^CÂZ ±¾D3¼†Œµb-Õ­Ju«RÝj¯ÁºU©nUª[•êV¥ºU©n5„‚Fk-Yk]üø![ HÁøîôüòûã_Àï¢ÚI”H hd‹|ÿFlFX‡ÀÝá;*Z‹VÅ¢U©hU,Z‹V¥¢U±h5ÀŸ¾‘¦ü˜ïú%­¾ähëj zÖ ?ke¾“¦¿Óy¢V"¡­ÐLj²Ú’Õ–¬¶dµ™br4sM°ÅëÇD[K3K3!’ÚJÍð¬[•êVC c-YUݪT·ª–¬¶dµ%«ª[½D[¡­4ÑVi¦4Ó"[[¼ORÝ›)Ö—`¦t ¦X_¢™¥^ƒu«!¼ëV¥ºU©n5„×`ݪT·zÉ!ÁŸ hêW·ú|§H7~èùK4"©­ÔLi¦M´µ5sL´…酪–•É!¬ªn5„רüNš_ÝêKRÏ)}¬ÒL‹lmmÍðµÁºU©nU-YUݪT·*Õ­†„žYmÉê´¬L´ÕšiÍl‘£­£ÈjKV[²:u+‘¥­¥Þ‡)Ö—h‹÷aݪT·²5Ãk°nUª[•êV¥ºU©n5d h)´š)-µ¼µu4m…çliëT¬D–€F‚ ´#ÐÙG@;W#,Z‹V¥¢U©hU,Z½ Ix†Å3,½<…lKXÕ´*6­\-ÁW·|uËW·|uËW§ce¢­ÔLj¦D¾?;ñ%M²E޶Žfx ÖX_¢|uóë[4Ih&M´Uú|ÚDŸ!_,òU®J«Rશ|uËW·|uW"¡­ÐLj¦L´ÕšÙ&ÚŸjœ•É×E¸z‰f‘¥­¥™á5Xc­_àêKx ÖXK«Ràê%‡†¦ÀU)p5äÑÖ29$¡™4ÑVi¦4Ó"[[[3¼†|uËW'p%ÂkÈW·|u³ÆZ›5ÖÚ¬±Ö/p¢­Ö ¯ÁkmÖXk³P›5ÖÚòÕ-_ÝlÔf3à%Ú¢ÉW¸Rš¡‘ÉW·|uËW·|uËW'gerIÍ<šY"¡­ÐLŠ”¶J3-²µµ5s4ãkÀÞ¸*®†,ðì[ °z«òV¥¼ÕMpô\<¿!Y롵Y둵Zëa‡µ”µb Ò"[@#çû.ôYøï¿ªÕ¿$ðKü÷ˆ_ÕêK‚7›ÿV­¾@O-‘ÖçÒzîÖÖÐÞw?É?Áz’ïÄOØJdiki&4“&Ú*Íð©c$ÿ»ÄÔ¬L´u5Ãû”®Q4÷_ßêKxÒ5J/•Ò5c­ÃkÆXë0Æúü=¤÷VÕ·*õ­ê4íljV&›difi&DR[©™imµfx ¹êaŒuÞ‰WߪԷÂû0ÆZê[•úV¥¾ÕK´Uš‹©oUê[•úVCàbG®zäªê[ «¹êô­DB[¡™ÔL™h‹÷‘«¹ê‘«NÍÊ[—ßDs.]^}«Rßê%šá5Ø·*õ­†ðì[•úV¥¾U©oUê[•úVuåªW®ª¾Õe¢­Ð“C3¸Æ•«^¹ê•«^¹ê•«NßJäj ®zåªW®zc²4ÃkHV/c¬¥¾U©oUê[•úV¥¾U©oUê[•úVuÙ·z‰f–€–øbY:†¤õRZ¯¤õªp)­WÒzÕý®ÿé“Á{ÎS²y4²B@;I  ž1Ö[@;G@#¼>5¶Xëµú’% ¼×ü·j %¼·zõÞêÕ{«ìZ½@K´ÉX™4É£™G3K$´Åãßv¿Ì±¾D3<s¬/ÑÌÑŒ¯]½Ì±Öe޵.s¬u™c­_à D[©Þ‡9Öº*\æX‡@Ç®tõJW¯’Wºz¥«¸YÚZš ͤ‰¶J3m¢­­^ƒ9Ö!W3ø6®†@Þ/s¬¥ÀU)pU \ á5¸*®†@и*®J«!Ô1éªWC¨cÒÕ+]½ÒÕ+]½ÒÕ{ùm4÷ò®ÜËo£¹—ßF3+‘£­£™ï·ÑôŸ?ø6š—’G3ËD[¡™4ÑVi¦4Ó"[[[3GÄ׸˜y cC¾ºÚ \µWCB[¡'§fÊD[­™m¢­£™k‚-êêKî÷bs¬_²RD3!’ÚJÍ”Hk«5³5sL´u1øÑšý \}É£™os´«/ mñ>x»õõý?Ú:` hç\ìà5Akòˆ,„ˆ>Rj„GH!ñF|3kÕÌZµ²VCpüï¬Z5«V–€vB IxZQ«!­Çl}z|mÔ}ÈÕÖÅ euÈc¢­¥™0ÑVj¦L´Õšá5ê>äh†÷¡¬öŸ­kl|iÓJ\µW­ÄÕ^ƒ‰«VâjH-^ƒ‰«VâjÈÑsÎ&á«å@Æ^²IÍ<šY"¡­ÐLŠð”Õ!-²µµ5Ãû°ÆúlQV‡ð¬±Yšá5®®ÁÄU+qÕJ\ éÑ ¯ÁÄÕKÉWÝûùƒwš[‰«!f–‰žšIm•fÚD[[3[3Gäj‹÷aµ•¸j%®†ð®ÁÄÕ^ƒ‰«V⪕¸j%®^rIŽfx &®ú‘¬NÐÊD[|µðÍÕ!!’zrj¦DZ[­^ƒ5Ö—h2¯ÄÕK. ïx«¹•¸j%®†ð¡k¿´yXcí‡5Ö![[¼O謱¶W=‰+^ƒÒú$]þW¸¹$©­i=xkéhŸ þ÷¿Úú%ÁÐN¤€v DZd h„7(ÝßBÓ¿¬Õ—<ášwh|oDÿíZ}{ä«|õ‘¯²l5àj ºúHWéê#]}¤«tõ‘®>ÒÕGº:y+CºúHWY[…«Váª'ieÒ$fx F®Z‘«V䪹]U䪹jE®^²IŽˆ¯ÁW‹tõ‘®>ÒÕGºúHWéê#]¤•‰¶Z3­^Cºú°È:òþ‹\ýó·²"WC‘¥­¥™ÐLšh ÷YÒÕ¥÷V¹jE®^¢-¼·:I+“Mòhæ9$Kºº¤«Kºº¤«Kº:‘+‘­­­™£™k‚-Y[‘«V䪹Âk0rÕŠ\µ"W­ÈU+rÕŠ\ Ž)rÕŠ\ á5¤«Kºº¤«Š\½D[¡­4ÑVi¦M´µ5ÃûHW—tuIW—tuIW‹¬Cx F®Z‘«!¼#W­ÈU+rÕŠ\µ"W­ÈU+rÕŠ\õb6 ‹¬C–@‰h‰ÇÐÛ­‹o·N¾J@#›àhGŸ Þˆ_¬±y4Â; Çúð Í3È[Wó0Í3°mÕl[ ¸ØÁC7oÀ²U³lÕ*[ -ùªÒV­´ÕÖVëÉ[äh‚¶¤«Kºº¤«Kºº¤«Kº:E+m•fJ3<†tu±ÉÚ¿ÊÕ—øÐÕ©\‰ð¬\µ*W­ÊU«rÕª\ ¡Ž±rÕª\µ*W/Ù$GO>šÁ5‚MÖ—l’Gdiki&DR[©™imµf¶fމ¶ð^¼*W­ÊU«r5„×`åªU¹jU®úW¹úGr•+mAÇT¹jU®†mAWCºÒÕ®†t5¤«!] éjHW§ie¢­Ö ïÃ&ë£-ÞGºl²¾D3¼†t5ØdÂû°rÕª\µ*W­ÊU«rÕª\ á5 è`4 ƒMÖéjHWƒÑ€!K[¡­ÐLŠ”¶J3­™m¢­£™k‚-éê4­L´µ4ÃkÈWƒMÖ—h†×`åªU¹jU®Z•«Våj¯Áh@«rÕª\  ­U‘«!©%‘Ù9ú-A[ùïjkH[ƒÚ:Ý*í¤€FxôX_ ¼óþ7l ¼óX9|#þoØê –€v‚6¦²U³l5 µY ÉjHVC²’Õ`’uþêÈóˆhf‰„¶B3©™2ÑVk†×`’uÈÑ ¯!YUájÈc¢­¥™¥™Im¥fJ¤µÕšŒ¥d5%«)YMÉjJVS²š’Õ”¬¦duzV&Ú*Í”fZdk‹÷yt &Y_‚™¥k°põÍð>,\µ W­ÂU«pÕ*\ žMÏJ[¼‹/9$±”¬ªp5äÑÖÒÖÒLˆ¤¶R3¥^C²š’Õ”¬ªpÕ*\õô¬LÉ£Þ‡…«!¡-Þ‡…«VáªU¸j®Z…«—\^ƒÅ€VáªS²š’Õ”¬ªp5$´ÚJÍ”‰¶Z3­^C²š’Õ”¬ªpõÍðL²¶ W­ÂÕ^ƒIÖVáªU¸j®Z…«!¼ WC`¬*\µ W­ÂÕEÚákeCÏRÖš´Ö”µ&s¬CŽ€Fx¬0Ç:äY ‚ÐŽ@ hdè7Ä ÆÚªZµªVͪU«jÕªZ5«V/hžáò ì ¡ŽIWSºšÒÕ”®¦tµ¤«%]-éjIW'fe¢­ÔLj¦DZ[­™-r´u4Ãk0põÍð> \µW­ÀU+pÕ \ ©EÂk0pÕ \½d“‘«ÅûHWKºZÒÕ \‰„¶B3©^cQW‹AÖ!ÛD[G3¼ƒ¬] ²¶W­ÀÕ¥-ÞGºªÀU+pÕ \ ®–tµ¤« \½D[´’®*p5äÑÌ29$¡™4ÑVi¦4ÃkHW‹AÖVસz fŠò®ÀU+pÕ \ á5¸j®Z«VસÂkHWKºªÀU+pÕ%]-éjIW¸z‰fB$õ±R3¥™6ÑÖÖ ¯!]-Y{rV&—äÑ ïÃÀU+pÕ \ á5¸j®†ð \µW­ÀÕè™W­ÀU+p5d  ÁdÀÔ–@ hdíàSá/i­Ekd•€vB@#<¥UQ«!¼Áå ØbÂ#\/þƒ_ÒÇš5ÖnúoÖ  IRÏÕcK¤µÔzð9Ú:šŒµdµ%«Ó¶YÚZš Íð’Õfµ¸ê–¬¶durV&Úºšá}Xcífµ›5Öþ®¾„×`.`¯ñþÉ÷['~«/Ù&ÚÂw9÷Â=ïfµ›5Ö!É&YšYš ‘Ôdµ%«ÍëK4³E޶Žf î \µW­ÀÕe¢­ÐLšh‹¯–¤ŒµdU«VàjÈÑÖÕ“¡g-YmÉjKV'p%Ú Í¤fÊD[¼dµYcr4ÃkHV›5Ö—h†×¬6k¬ý \} ¯Áë^ƒ5ÖnÖX»Yckº è–¬¶dµ%«Í`ÀK´Ú ͤHi«4Ó"[[[3Gäj ²ªÀÕ^ƒ5Ö!K3¼†lU«Vસj®Z«Vસj®ša- U·²Š$ô”Ô’H‹l}2pÖÉX‰<Y! $ÐD‰4ÁÐÎЯ€ß1›V­¦U³iÕjZ mÙê–­²j5 µÔZòïá˜h ²:+“&y4óhf‰„¶xÉ꤬´Ušá5·z‰fxÖ­Zu«Vݪu«”òW·ú’¥™0ÑVj&5uWݪU·Û’Õ-YÝ’Õ-YÝ’Õ©[‰,m-Í„fÒD[¥™6ÑÖÖ ¯Áë«Þ‡u«VݪU·jÕ­Zu«—^ƒu«VÝjôlKVU·êÍbÀ«-Èê–¬NËÊD[K3K3¼†duKV·duKV·duêV"G[G3¼ÏÖ56Õ]u«VݪU·jÕ­Zu«VݪU·jÕ­Zu«VÝê%—äˆø|µúØ–¬nɪêVCB[¡­ÔL™h«5³M´u4sM°%_UÝj¯Ák«nÕª[µêV/Ñ ¯ÁºU«nÕª[µêV­ºÕèšêV­ºU«n5dé9!à=X#%Ò[@;‡@˜wxðKjë‘¶2jõðh±¶šVCx„‡G`ŒµÙ´j6­ZM«fÓªño"5­†ÀWÏâØ´j6­^Ð$)¢§ð*’Õ#Y=’Õ‰Z‰\mAVdõ0Åúm-Í„‰¶R3e¢­Ö ¯ºFPÝy«/á5˜bíÃkÿòV_ÂkHVcýË[h¦I›h‹÷‘¬ž¿²úðŸäûð³2Ù$Õ#Y=’Õ#Y=L±I^C²:y+‘­­­Þ§¨î§¨îÊ[µòV­¼U+o5„׬þòVÿ^¾ù‡Yy«/ùþÌó—’­­£u´…Ÿé}6ÍÙü™çgó'ќ͟y~6ÍÙü™çgógžŸÍŸy~6æù/o¢­­™­^cóçòüòVÿ’£k]ãðçòüòV_Âk0o5$E «Ê[µòV­¼ÕK.?:~Ê÷/o‚ßÅåOùž˜>CɪòV/¹|Nˆ¤žœzr‰´¶Z3[ähëh2¯¼U+o5äÑÌ2ÑVh&M´Uš)Í´ÈÖÖÖ̲BZ®bj[ Y|*•Ui«!©™il‘# |2øIZ/B¬´Ã+ÐYÿû«ÐŽo€¢Õ 4Â,Ý@/­†@X¯„õ†<„|õÊW¯|UU«!­™m¢u4ÿä«W¾zå«—9Ö!x«ù2ÇÚ¿¸Õ—¤¶R3%ÒÚjÍlÍm]Ìâ´}™cíËë^£ø]"—9ÖVߪշ_½òUõ­Z}«—hëˆðŸòÕ+_½òÕ+_½òÕ+_½Ì±IÍð̱iÍ´fx ö­Z}«!¼ûV­¾U«oÕê[µúV­¾U«oÕê[õ¯oõïkL¾zå«W¾úë[h †65+“CòhæÑÌ m…fà«—9Ö—h¦E¶¶¶fŽf® ¶˜cmõ­Z}«VßjH˜h+5Ãû0ÇÚWÉ€Ëëú˜|õÊWï…½ï?`ï/¹$f¾¾ú’KšIm•fÚD[[3[3Gäjëb†ÊºÕ·z‰fx ö­¶úV[}«­¾ÕVßj«oµÕ·Úê[mõ­†|mÿ¡ºÿP[÷¶X‡hii)ô”Ô’@ hdíèSáU¨­Cð Á3°Ä:„gžÒºÙ´ÚlZm5­6›V›M«­¦ÕþƒWOBÝ_Ò$K€O…Œ I=85Ã+°Åúmm‘£­£™‹ÆX_Ò$RÕ‡)Ö—h«5³M´u4sM°Å¶ÕÇD[K33µ­¶ÚV[m«!¥ç@U©ê´­D޶Žf ªTõ‘ª>RÕGªúHU©ê”¬L´Ušá}˜b²µÅû°m5Ä×À6Ó¶á5ضÚj[mµ­^rH ªj[mµ­†´¶¶‰>_-RÕGªº¤ªKªº¤ªKªº¤ªÓ¶Im¥fJ3m¢­­™c¢-|aók[’G3¼S¬[m«­¶ÕVÛjÞWUÛj«mµÕ¶zÉ%9"¾_-RÕ%U]RÕ%U]RÕ%U]RÕ)Y™h«5Óšá5äªK®:m+¶­¶ÚVCx ¦X·ÚV[m«­¶ÕVÛj«mµÕ¶²4Âc0m5ÊÊßC[]«!‹ øaþ§‡h¢DZ@#[äh„Gà/ùõÌäY ‚ÐŽ@ hdí\Œ0f5z¶ô¾ªjV›5«h)EJª4Ó"[[[3G3×[rÕ%W]rÕ%WŠ•‰¶R3¼;¬[]«­®ÕV×j¯Á°Õ^ƒa«­°ÕVØj+lõ’M;SØj+l5¤´Õ&úX|µÈU—\uÉU—\uÉU—\uÉU'l%Âk\¾ ¿ØaÝ [½D[¼Ï¥¹+lµ¶Âk°Ãº¶Ú [m…­¶ÂV[a«!p±«*lµ¶‚·UCo«†ÞV vX_¢-¼­ì°¾ä<šY&Ú Í¤‰¶J3¥^C®ì°n…­¶ÂV[a«=a+|¬¥k,|7Ñþ…­¾„×Xøn¢ý [} Þdþ…­¾„¯–¥×Æâ›Ì±ø&s,¾ ÿ [ýK‚ß?Á7á#ø–{üuUÍ„Hj+5Ãûßr¿Ö/Ùšá5B×øÛaý—¤®‘ºFò?IDê>©k$ÿ“Ä/lõ%¼FêÉÿ$1Ñ*-ñŮոYð—Ô5E­†,-Å÷×x­@#zJ hdí|­æRÖ@uÀÐNh$E Dxƒæ ²rô›äôÒÀS¥ª!U ©*[V/ÐRj©LøÙÑTC¦2Õ©†L5dª!S ™ê­Dx &X‡„fx ™j0ÁºUµÚªZmU­†ð¬ZmU­v0Áºƒ Ö!|±0Á:„&&S¢-^C¦2Õ©3/ÑÖÑÖ5ùn¥LuV&ÚZšYš ‘ÔVj¦DZ[­™-r´u4Ãk°jµUµÚªZmU­¶ªV[U«!ðvU­¶ªVCZ[xW5eª)SM™jÊTS¦š‹ï1§L5eªSµ m…fR3e¢­ÖÌ6ÑÞƒŸ†• ¶‚_×dÐäU«/YÚâ}B×]#øuÍT­¾ÿžTÕj«jµUµK½­šÁoÉä{Ì©wVSï¬NÃÊD[¡™ÐLŠ”¶xŸä;îÉëVÕj¯ÁëK0êÕVÕj«j5„÷aÕj«jµUµÚªZmU­¶ªVCx f¶ªV[U« ¦¤UI«!K@KAÚ1i‘- ‘#¢ß¤uÒU"€FAh' 4Á3 e5` hçè)¼VX²KÙªRVCB[©-¾4¿&¿&¿&¿&þ”æK´…~•I“ÀVS¶š—î>+mñ>²Õ¼t÷¼|^Q«­¨ÕVÔj+jµµú¿Â®e»mäˆî¹÷^»4rD@£»ï<²Æ±Ï(Ç‘˜•g ËHøp@hfüÉù‹TUd³®<9^˜,Tu7êÕ€€Ô*©UR«¤VH­X¢Ð˜´ ¤V,q`åÀʃŽ’¬jÐQhÕZu€V™Ô $%X• £ý£9XEVÚ?xCs°²$€Žö†&µ @j%¥£I­X¢îˆR«¤VH­DRkIí²Es°²$ F®A§A‰²Ò¬,ÑÞЬ,)A§í @«Ð*“Z㕇‘µ74kR«¤VH­DRk‰ö&µ @j€Ô*©UR+–(|æ­©UR+‘€U õ+óDj•JœdЪ´ê­:@«Ъ´ê­:@«Ъ´ ¤VH­XÒ DYiR«¤VH­X¢½¡I­Z µ @jÅí MjÅ’PÑÎМV,QxÍjuµ¥KJ0² 4H¼€M­ ”²Ôê4ÿjÐDVˆ¬X¢}Pkh+–h'ÔÚ šÈ*h"« ‰¬D£(·è¯à«L\…°² ðZRÄÁÀt “oè+Åõ91Û¶CöËêŸ>­(i(ô«?2ùëlYò[lóÚ¬»8§+LôTh3͘|”S}b;f3ívÇXQžÑ7æì§vL¼9p„e6J,Zy«}(×2¯ÇÓ ý*.ò¤Û ÇY¥±ÿo¾ùä*rÁb½Ø ?gó xsØOƒS\ÆÔõɺÊW›yí$ÿ=ãG]IiÎKa>¶8N2EšGK ûì[råûù)å7I½´c{#j|_UAWpK¾÷© <´ÚP¡}r¿P¬ù•³”i7ô™o)£\y{x>EkM¡­žQ­¼9;E´+±|÷œ-ðueM¿Ý&¡žm)->Ü,ïg£˜¹•3i²_Ú$?6“…³æöæcÆoçÏ‹g§žE¨—s tÃH‡äj”–{1C¿‹õQ6&MêÝ|"”ü;™£Z£µµ©éº›}ãi˜¯çùè¥@èÂ6§=pyªv÷±%ÓÓ™mUX~@´ñ\»'qßÎò˜œ»55 ¯'Ÿã´mÇž³Nô)Yv‡˜ö•§ìž‡1ëvØØ{üð`æÆLEamÚ/ü·–4ãgTéÛÐÍSÔì†k>ÄÍØ™Û»lYpÌëÂ<ÜÝ¿IÆx{w}>Ó$Ò4ï§*¥¾NUÚÿL(k>füØAîjÑñToÛ³ξIÎ#õuw= GÁãÔ­'©&bR¹}¸{L·š-¨S¼á‰þv5Õ¿“³”Xò’§¬ã%Ë/EV’ÿcu.OùÂMå´çÆòôIy~  Yþ*Ø_/ÊÐòŸQ)”?fLàaÉ7CßmN^صçräÀó›>i÷IæŒ}L}RR_ò…ç¢\k“ýªMÒwœ£D5R÷¼cP{>ÆLd™ æøBÖOÍð@äp¸=á—<:âMÆp5…7û}»¥æoi$ÞÚ­¯e‘#%ÿqì×Çi¸K˜!/)¤Ópþû@c î¹um›Â4"eরÆ%¦Yyó¢U%]¼.^ùƒÊ-mƒM%ñåœM ^ t3Å9$q~LƒeùöWª”wG1~¥N˜D”“–ïõ콉Ÿób6¸hÖ|]u?†ðÀÛoôa×µ½¨š–]ʃqËÐmÛß“îÎé+{o7ä¡O Ròñ8­0/SD‘&ƒØÒö|š#~FÌL{Æfön·´|óCËÝúœ7ßÎi{¼èòظ«)@”Ñãa˜úkÉxT…ä_É.Péõ»öé{¹\ð{mr7'ßû»»;nœ…4õUÆoy¨ÌÉwiCk÷ÇvÍs1Êñ»ÊÄü«íjÛqì†}<Èý6)vûíØÏv ÷·Í¤WXs/½®)«@È £ÍêK¿ï¦qic›:[ôç~ì¶Ü,hv[RÕ>uûõi…Ý‹Ufùi¦ÚÇ¥l K„eÅ÷*6…ªÿ:”Å«P§nh©HêꋤNŠäö†Ûa)ÕOÙÖ}“è:ÂÆÝ ±3Šè˜ßg쌎—ÌÖJÛ·Ç1«QòÐÎÜO{¨“-T¬(·¼‡ÎÓj°Ý&ø³›‡Län²¥%mûˆ×-E·íÓT=Äý´¦3:$éEÈ™å’7—±:×Á‹ÍTî¯kæ¼=ì¾>ýž‘wwŽÇuÃ+è”_‡ÌØ‘R'v>~8¶ÖïÜré2¬âÌ tüqÈ8eG%fKέEŽRƒì^ø´¡•pQ‹]¼`³´ñK7 iS)m—z¸:ßB³=~#<%v–æ;öÏ;±•tŠû»ê=%öð¹]G»Â~7—™×Ö¥;Æ´kM/£žøJ$nôÞÎg3ìyUx;c€"ݬÜV^L¹]—Sr7˜ÜÔµ$±bÙx­XZÙ\Tÿ/åøÒÜÝ\ÂóÒÆ+¤U’܇/:ëÍt-BÛM2Î^œÚj{¹‘?MÓQT^º$EÇÛHõ5'û˜ÕE'Þ‹N\Ìo=µùxê•›I,‡4B[­§d¾ÚÅFï¦ "Þ«"^%N^wçÏ´W1 ®ø-H´ŽäZçs7t©Íw¶ƒR˜K¦Äúpxö2ï*MÜU*¯¶$qå@6ù]7ô1ëF°À¤Óœj2öùʧâ+bÇßNƒÓ娛ãñpjèë>zé¥R(ù¼¼IJ¡²±C4ùë&o^5e~=%7Sk6——=œüî†7ƒ2—ûa—üØBcåXåùÀô“Ñÿ#‚È!endstream endobj 291 0 obj << /Filter /FlateDecode /Length 61659 >> stream xœ¬½M¯9r¸¯_ñàUõ`ú9™ß¹™…À0[x!i!H-?ÙêñÀ‚ýŒ8ÌŒˆsãÖ ¹º^óf’çÄü—¯é»|Míÿé?ÿîç—éëù—_Jÿë—þãï~¾þÝo¿üÛÿ´m_¥|_Û6ýö¿ÈòuÌ_GýóñõÛÏ/õëÿñ‡?neýž¶ã×ÿþ‡?NßÓ:Ÿçzüú_õ_–cýoò/Ë5mç¯ÿCþ¥œû²ÿú׿>ýéù/ÿúüóìïç¿ü—ç¿üç¿üõ¿ô7¿ýÅ/óô½MÛõõÛÿùËoÿ›yu3þߟ¯þý|u3æÏ/?ÃüËÿmÞïí·Ëýùöÿ]¿mÞý7Ï¿ÿ<ÿåo_Îð¿aóØÿ­Íã¿ÿí—ÿØ”f™–ïëúZ}þÞÖ¯R_ö{¿¾Ê±MßËöõç?}ýç¯þe®tç×ÿ¬ôõÿþ©êÜø¥¬G}æüµ­çò½¯_?¿Ì嘿÷ú—½>nß¾þë/þÖ¤®ò=í˹·ß!ó§Ÿúbûú½—ú—íøÞJòû oÐuÌGÿÛ|mßëÑ~ï<«ÔQÇÍë· Ù?½x§ðâîÑý¥Î©|/Ë×zžç÷º¼’ SåÇ5©¾"S•l+²Ö_?¾Êu^uݾæùX¾Ë‰ÉL¾ÎÐú},û¼7“¯›®é8+`¬eoüãø_ã¿ÍËö½Õ?¬×õ½Ÿkƒ…_ÿµüá·=áË?Oeûžë\嬿׾|o_¾}m¥>§~mŸÅ½jØÞþvÎßõLjÞêÿÚú_Ê÷)+ôæë¶S¿nݧs>ÛGç±^_÷?õ¿”­|oõ‡ëÿëWÈ·ÍãÛÊ^'¸­CýÀïC”ª¾éq|mMfy›²MSçe_¾*TÖ¦AWýËv}—å÷|ÄR×¹D™ë–ö×5OëöõøúßʲV¯oÐ~÷¼úgü¯û+Öeù^ª~móÙ­gÛÚ’ìe9ñ.ÝzÊZÿVêÓ*Uÿ²6³ßËtµÉJùû`¢T­|¡+å¨ί}ª«p^bpõCêëLóü]U¯jA9+S-í/uJÏþ—}û¾Ú¨y«ü¿~ùw¿´?·Õm«80 î˜Ç³¡s] ¦\õ/å{ßï‡õ!GZ'£[ù\?¶~|ýK–­ïêP¶VÀ>åaE°Î¾+{¹ÔÅ«êß¶ÜÏ:ª>õ«K+e_•½Fü=}Xµ9ù‰Y´Ü¿*y¹ÔgLWûÃÞf<ë:Û‹×?þú°fÛýU¯†xlýËëêÆsûóŰß;)¾¼>¬=¤ÈÃê:ý„ïf5—jÛkÿÁÕLYµ´¹ ­¶0¢²æÃÙGŷׇ5kC§Šö¢öÃÙGÅ·—‡MWæþ°£aÐOøpöQót6èêÏšŽñ¬ú°ï«È³fYÌf~úÝ2eqyÃLÀ07Yõi¯X+*k&‘MPœ ¨léX4MÕ’ÅÊí$² Š3¡SV E>sk ý&‘LÐ<í{ÇÇöòûSÿ—öóõÏ«òž›D6Aq&€§àT}Ø$*k'‘MPœ }X}ÈÒ¶¨/â&‘MPœ ÕŒ6´Êâ®îtè[E3¢®ø©Ðùß.ý¨ú°>ývAØlW¼º¿×žUÎ0îß§7—¢?êÉ—ud%Ôê²]Ãé®›ë8©Àë­9·õY§¸$~=Ø\ÇIÕ «ôUá³?l$«ß´­ò0q4™»IÕ Û¯ÆýaB¾nqÙÂ…Y‘œí›ê³Žáa˜µeëfUß«Æ+Ç*ÏÚûŒÙ¥eë6OÀïú¬òÀ±ué1I{Ö$+i×–-\\!pRý¸>tÿ^”“Ìâ²…‹“ªKY¹yío¶µyú ‹Ë.Î* gnSÛ&pí—,\˜Õ‡K&O*‚ìþÄ#|ŸýWà¾][¶nqtò«RªþyQÞ÷:d‘µÝúº1Ër HœÚ*õ‡ î[=a:×¼Û?º?K€ßé Ó¸Dúb5žjñ[{XQH4zB” .ÑíÖþb5:.ìЦqú£$ÜŸåQkwœ¢0%(×qé,?^ª²ÕÖŸTÚ„ÿ-a—¾ÀÙ¦?l_Àj Ó€¸<ÀÖY£4^ýñZÂ4 ®Îí¤÷·˜šfþ%a –G_K‚þ¬U\D«#LâòÀ¯¨0Ð^¬®§ ˜U¦qT'ZF¨<žåµ$h@¹ªÅ®þAó¼Õ_ZäABj-«´ëRH”ÌlÝ­4__©uXucª–`/y“–€‘ ÁiÓ¤¸ÎptVYŽóÔØÔiS¥¸Ðw8³öù:ZÄþãÕ¨RXf]ªÇ}eÇ“œ¶1MŠË ¯é’ɨèrÚÆT).¾Ù&_„gym#ÊT®ª¹åðªŠ2ɲ{Ë›þ…cÊÛÒþµ?lâ¸õèR\gÆÚèÜÔ%wêÆT),3|/|M}–P†Õ6¦Iq¡ï¸o:äaeFÜ÷Ð6¢KqASOT÷gí}­¾1]Š ­«X¡wéß´jÖ{®KPTßÄ lø• •öìþ0M{XåeŠé–Z¿±NlGq<Éi.SËrÍ«þüóYUåúB×?W%23šË´2ê ¼ËIôgÙ>5—ifÔ›;°íÆQŸ¥þ¥Ñ^¢™Qkà^žÍu|<Êi/Ǫ́6 ³©§ç¯úã#F~(/Ó̸кŽu2Ê¥ÏZ…ÌŒö2Í k >S ? 2Vy™bÆÅ†§ºèš œòÅ +­_XªE´÷Z–Ó]¦˜åªèߺsúÏUyÄC«¬·ÊË3h <Þ£:ú£&T«»L1£ÚÜY€µkÀ„ä´U^¦šQoÀŽ“ @{˜ØU_¦šQotÆš2´é8zn¤ÍXz¨úŠÓFÍ+¨vn_ݶŸBµO[`zõF¿²ÂÓ¶?žåmèyTä:¶öâýYE©ÖØÓó :pÇ7Ys‰œ5z#x6—±ýàq6\ù ¦ÀÔ¼zçGûxyØÃ¯?Û$õg-šc5–@Ô<ª û«å.ú³4÷kM©yTAðvQ80´¦ÀÔS¯ô‡‰g謓Y^Tæ»ú{ʳ´'3¼ ÇwøXÖÇs¼m2»‹Ê oIS‚›?Á6™Ýe†·$[Û³Ô­iÓ º¬zºò“õQs÷­u2Ë‹º|'iûŸë3÷‘¤}X'3½¨ˆDgÕ®Cã=gžÌö¢êW YëÃV!4cŸÄöê˜Iز>êscyRwT­u2Ó‹šŒˆöè¯}ûñæÉLϪ2ÂÙUž¢¡žµKfsQ‘árÍHÔ‡-šÆ1vÉl.*ò]¸ï^PU‹sGáþ¶KbwQÏn’Ë­ïUVijÛdv4ièMâË–C´¦IÌ.*2|®¢³³Á­i»‹z¬ßXçuÕ÷Z:œ:Ûd†ôX)cžäuw”´—*7mò,™jÂ"N•fã-V$^¬3ŽªŒ8{Ó0Û˜93á¨Ðò¬£•JgyV§koæÌˆë(õwS·ï›ºyØ,®øÓЙGÛ@ÄÞK¸[{íKÒ—ÖÒ½»xëòFS‘Xý¶sfÃÑ(dßÚ÷’8Êš93áhð' +k'[ú™3#ŽV`}ïi£}ÿÛÛ9±áhˆÕIô´÷Òò³±sfÄQ“«Ï½ÌVŸ¥{´¬3#Žš¬ß8÷}©ýaÝ÷†NŒ8*2<ÁE¨eŸaÖÖЉ{=FÐ( Ì‚™3Žz|Gý½â°)©:3g&ì”Y-úМE}P7hgâÌ|ë ©AéÏzlG˜·Mç½À ­‰3Ž–qïéÁî>6$X#'F ãN Ì«¼˜Úµ1tfÇÑ0?¨ RÿÚö´È7Sgfí5‰"š´aµ3ufÆÑ0@ÐMû$[™©3;Žv¡J_anÝŸ¹l¥¥´ú‹]]U»9Ã@2Bj»4vÀÁ@!Ú’ f–3¸Á0!X†Î×tbâµ¶R=@ƒ!B´1dH6ù¼˜G  ÁÆ!éêÙ_l“4¨Á !Z2$sR‡nZÑs°Á !˜2$»¤ô·ìoQƒAB´ ‰ª…E¾QB ‡ ¢]Àá$™R¦aQƒ!B´Œ;I"ó³«WoQƒ@B´ ÕûVŠ4r°Á !Ò-§$ô·]7[Ô`˜þn‘_¨ÿ¹Œ30Ü`˜­9—UÒõaŠ7,DãÐ [tÛ[{oA Ê1_jîýlƽÑ?o+ÎæXì ¸ì É”mÆ4  ¢!}³µ¼Z¯KÓ7:,D;SZOÉÔgIn}iOŸÅDûdPêu†6jgíoc÷Œ!†0ÑÊR+ÝpøÅ¡A˜`dHíRÜVM#8b­ ‰ ¾ñºä¡5¸'1€ Vo\Ý„FK&Èb×he#$˜¹éÉ#A a¢•© UrÙõ#ûÑBa‚•Á!ŸÆ:îš[2 Ä&šÊy³l˜ªúXt7»A!†0ÑÐîìÒ¤yHž×¢ƒ˜hh:cm+×&ëÛ^= 1)Çt‰Çß,í±¹dêSëŸ'u1”‰¶†\•*c;0 5v‹D e¢­!YµIÝu+rVÔ#ƒ™hmðð' œürPÄ`&XüY4h›p’æD e¢­!Uµê4Nß²ÕÛA™hiÈTõíÍý' ‡,1”‰–vïª:Ny/9wäˆÀL45-u?Ñ:6UY(b0MíÎWAYWÝ\b ˆÁL45²ª`§~eÏÁx("8- n¾låªJ%óe‘ˆ¡L´3¤¿–Væ©Ï:²HÄP&Ò_« m³ô׈ÈD;SjÔwɳ¤~¶´Ú°Ñ*TéÜÛ™¼Ø~éäׇÉ_‡j ±Ê~êFÝvFö±¿¤I·£uÇu‹j ²œÕ"-·vs«’ÌÒ\E«EZn“]NM)Äq²Æà*š-¢Ev‡×‡IÙÄA«hµ(Ñ.½ÕL+´Ñ`E«Ebn•¡k?›ýãA!V4Zäæ6I±Ôg]â XTcˆáÇ"±>wÈ=PAV´[$çVÉñ×çÉ¢C¬h¶Hέ²¾¾˜†kÕbE»Õ)›µ^]&{Ѫ1ÈŠ¦†_¹"ŒÂƒ¬hhHõ­¢?ë‚ă¬hlHõ­3°Jk ²¢­!Y9ë³&@ ¬1ÈŠ¶¦ v@ù÷– ú °Æ «ìû!¦¼s¸mÇ›- ~¬ÈŠv‹¤áý$9ÓiaAV0[d ׿ØvÅßÅ­°¨Æ+š-™M¿gSÚ¡ƒ¬h¶Hv˜±}ß`ëh³wÒP”n•ƒ>Ó`E›Eâp•S)MÍ„Ö,¨1ÀŠ6‹Rù&5›ú•›†3Ô`y›Eê°w©-ÓÒ\E“EæP,é`ò ÁU0Y5ÇcשÖÃ˵ÊÀñ…ÌÉp«s¯½§ºÚK.Æ¢#C¾h±w _fzÒ&öE‹ENsS5Ÿ$úóøÈ°/-rš«äÌêȾWÞÃ#þhµ(âëÖâÅ’`°øÈ°/Z­¢á¦G\ådÖOÀG†}õ6ýÁÓ4žXu—_UX ²,>2ø (€©nÆjÊ/»-Bø‹ € )”l–¾"üEÀŽ€£ÇPõ½¤ ì’¡_ĤH7qK—C‰í‰ þÜéÑM¡B7ð[„dè!ùQè¦Þ!$C¿h·Ød ÓµàX­È~Ñh‘ ÕZÐÆÏ$C¿h´HêªjÝ’OvIÐ/­ävªÜ¤‘ŒEH†~ÑfÕÏY’Å@ ý¢ÍÞ›ºß]'›ÉÐ/Ú,ò­›ÄûuúqP,Bô‹6‹„ë"[‹ëHA‡ ý¢Ñb÷ÃÕbàúb—2®CH†~Ñjuþ—"nd}˜$ÎB2ô+û¬gcžFÙZ_µíÈu[t$Èç¬ÿÎÛöœl}£"5? ÷¢ù#o«èÛvJÞÖ`#ýhþÈÜjê¹~¢º:îEóGâVý«ÖGØÖb#¾hÿÈÛ®º†§VÍ<2è‹ö¯ÚÕŽò°®õët Ða€‹|úx/‡´ E£ý#| ®ÕGèQ~ƒ´ G£ù#¼+NŒò­ÅZ†£Ñü‘Ö=@|µ H£ý#ò+bXõaÒPÆ-CÒhÿjÛ-á*Šm[´eHíÿÞ1Ò'wA[‡¶ I# §¬¾ßÒÿóO@[¥Už%=Õ §HVÙÀ-ƒÒˆÿ&É€.›¦Ü2( 8 ó?]2ÛË. G[‚¤uÐ,"­ÓÏ3C}ˆ‚ΗVÙžh 4¢É#7=Ë8Ùäà–Ai„ä¦Kë×'«(q¤…[¥Gö#Ouheõp˰4`²Ó‡äd—qzÛÂ-ÃÒˆÈN/­ù_ÿJœ¤4x˰4bBÉEU÷Ðâ-ÁÒˆðœ.1úñ^o–F¸7Çt ¬3¶ëñ!ƒ· L# ?½ËΗ:T;FYÀe` êYv_.«”½=à20€PR·_. öÇXÀe`®Óù­KÙ+ o–F@¶ûÒ?Ï£ñÁ[†¥ëÞ$‚j­s%Õm°–áh事ڑvñXËp4‚âÈY |¾» ¬%81@^l;w‰ akÖQ“¨‰ùʪè§ìÜ›qˆØ-ƒÓˆ(wâ¼èŸ÷q,ö¹ N#¢È›­íÌë&“pµÍÍ‚Ì=³ˆgì’cË,åRß š#¤ È-‚‰ó1[ø&ÐYøCLµŽ\tíoÍQ…×m¾õ+u¿­Ao†ÌPænbßEËl¼4G<+¦sl wðÍ 9 ÂÜI´Æß š#  ¿Kê¿eÐ$ oЛ!sÄ$âµïËR$§ïÑ›!sÄ„¹«ÔªÚ¹!=ïiЛ!sÄÿ²+*b³¹Eo†ÌSÔ¿$d™ÏÑìÌ w@æ(wV_`l’ ½2G<3vÉŽ´eRHtèÍ9b"ÝEÀ¢þVÑS¨½4G P°®·¨9Ën3ß šË¶²ü‹m´Ÿ}ÏcÛc(91‹Þ ™#  F°ˆ^×ošWÔèÍ9"Šªk+¡y˜0¸Co‚ÌQ°ïàP Ã6x‡Þ ™#¢ p–k!zƒ'qí,z3hŽˆ‚"Áñýd7Þ ™#¢ H ûCc½2G@ÁÖ©CÕó”E½2G<ÑÙ_7ÙUŸµIØfÑ›!sÀDÍEŽEÏ—–´x3`Žx‚ÁÖÓgó´0ØÍp9 ;9äÛöR~ýàf áÛ°´qU]˜KOàf áD¡âZ¤P?q¿Î7Cå'™'Qžyì_·ÈÍ€9âÉ]pèûëÃŽÑBíÞ ™#ž¨_W pÞäa¢kÕ±ÝISjÌÓsx‚݇ Í—:*`0[Ä4W.)Oz*`0EW³¹ñ×sÎ0˜/[ƒ/y±gSÃõTœÐÔÐ0CùN¨…ÌŠû;NY&`(À ý$Ú8oš¶pDÀP>€vjl²¡fÖÞÈGpBD¿¨.·,0è„ZÈ!F^¿]šoY"` Ð ¥IÖ¤~¤ìdp<À@>”Î~9%’­Ñ8"`(J§^ú¢Ì*ÖÈGxB8?+ol“±DÀ@> "ÚE©¾Ÿîý0D@P>‚v~覡yÆÆ'0”h¢H±k¥:ÚÏ2Cùˆ&ŠGžWí¾á˜€¡|DÄó“¢Ñ8Ûh™€¡|€”VÔiýÛV”VDÀ@> ÂùE¦l^à"Z"` ñI44/šhpDÀ@>Š.fÙdÇIµêK:ìZ"` E³åªF)î¾å‚ñuÌ<>òÙi©ªå®>›æ,0Ø„:M‘„/ÑóÁøˆMH ™¯¶Ks†ÆGhºw¤Èìh_0Ï ã#6)ðìZµšÑ…ÓñÃøN¨Òìʸ-Ø„)§šó˜|Ë ã=8!/0IUG]}Ë á#8¡D£í æ¢NË â#6!/åÙ¿ÇÍ1`¡ÉÕiÚÅgz†À°ÃøˆMŠ;í…úüLp77Í@Ϋf(˜ê° ›ev±"á¤'F›PôÑ“ ýFØŽ;–VeDl‚»yJboÖ»Ž<­0ʈà„<ƒî-—^?VeDpBiÖ™œ¤Öïi…QFD'äôte»)…ñEY+íòR¦­ó½ìí˜õWG)Œ/"Îa¯Ò!+^NMp:Na|ÙU.FjW]JòãA)Œ."ÎÁ >¥ñI»4V2O–R]DœÓE¬rbÅõ¹–R]œCL—¬ _¥cFçöYNí½`½Ý€¾*r÷N‰Ô/v0‡je×5=1ò‰0‡TÊÜ+å5hsüĸ'¢œ"Ø¦Ý  Y~bÜQN!ìPg­Ý¶¤Í ?1ò‰0‡bÛ,ùÁ2ë¾ËOŒ{"Ê!‘2 |H-ù'ð㞈r(¶ùʶ{T÷Q~bÜQ‰”I ·Lhßkù‰qOD9]ËInò*Ú?ÑÑ¡‡q¨ÙéÙ¤U½CÏMŒw"Èa;Ö¥8ºsZnb¼AN¬a֎Ζšíx»÷bõ¶mß»˜%&F:äP´SeÚ.Ýꈉ‘ND9¥¡Ué£,Ú<Ùá:¦Œ÷2íjY›vb°ÔÄh'&*€z¦¢lšquÔÄh'‚œjýµIÛú¶åJ< CMŒx"Èak×Ú]ø¢='=71â ‡ ž[8pͪã&Â;âPÿÓóáÓoÚrãˆqHÈèIÍŠ òb–›ïDˆCùO=~驉ÑND8¤c–ž–Ð~Ç2cˆoºŒØMSU31Ú §¶i¬Ìhx`™‰±N9ÿ&FìF±ÌÄX'br1z|˜#&F:ãàH_âB"ŽñÄÄH'¢R1E hçè—cˆ‰‘ND98ÒÚÙ°5@éáš%¦@;áPDÄNÅCoÕtÌÄX'bœ.ãtˆNÔEÙoÃLŒu"Æé:Ηi×»krèIqŒ¿"TÂל²eè'pᯀ”ºŒ‹Vºš~꽆â}E´Ôu\4‰4&8Šcüѹ¡E–wZµg»å8Æ_- ×]~A.þ Çè+&2C³pljs3Žâ}EÀT0Üô2¶I»¤zŠ#ñ5Ri3¾ôãË1 x‰©vŸ.u}É1‹‡ÜP¯ãmí!=#üä8BaàTï¯YÒ-–s.–æ…ˆC‰ôê××·Ì–¬¢%9F`ãîiǦúºrúÌcˆqÈ )µÝ}¾3Ö‰‡ i‘ °Ó®—£;fb¬@Nl“V§ÜÈþˆ‰NÀ8xäjÓ&½/1Ö‰‡êho«»«»ö㙉±NÄ8TGµuG}]¹Ë1aqªõ—6-´M§g&Æ:â¿Ú Šã¡Ž˜ëDˆÓeœôj±zxÙ0£q _§ø¢š·:f"´©!Móïðr51Ú‰‡ê讟´¡Ìm©‰ÑNÄ8¤†Öœ—TÕ<3Ú §ëØ xϨÖ3cˆqH -í“÷IwõYZb”!¹&W¦E0Ž–çx?þ®³jÚ§¾µ”,/Ήh©Hxê SѫѶ 省٘îÑ5ÛY~tÂ5ðŽäE¸D–Iv‘7xXuãÏ“ä…E¸„K~Ê–ÜIÛ/xš#ð5Û³qÞÞ¶kœfXŽ1X€Ë»d+ß³éþGrŒÀ"\"ÉTÑ^GrŒÁ"^Â'?bf½ Ó±a°€—ºŒK×̶ ê’[Ž#ÑRW±,RXœôˆž'9Æ`.Q°í|°·ž.z¡!9Æ`. WEHYПÀrŒÂ"\*]Á:îÒ’ÀÒ¡°— †Û*æ žæ‡EÀT0lm.Ûüìc‡¹¡9Fa2á“_ãŤE§¥9Æa1Q±=õ ´4u´$Ç,À%ªµ«”«Ö£³„á8Æ_âdZ°Ôe,Øtb8ŽX8xä½ÖVÿŠkÛÇ1þЇ4S»üyŸ.lìxR£¯ow©ví@»¢¥‡%%F9ßê·HvH¸Ä·´Ä('âüñK’+rKâO %F9ß*½wp[Et6´Ä8'Bœ.ä*ÍWºe«Knx‰N„8k{+¤½Ý­"ÍÃ1Ö‰‡Z­œSlk©-˜,31Ö‰‡ÜÐ¢Š Ï1cqŠ_§ûÛŒIqÇL„v"Ä¡V{}ë)|ìy2£ˆppÉûF8YqYHKMŒvÂéBÎzUì¹Høè˜‰±NÄ8Tkw1Þ ‡31Ö‰ §¶µ¶p]ϵ;½%&Æ:ãP®í·Åu.˜Ž˜éD”S«6³4%>‘³²ÄÄHÇ¡œ®â²ªríÚjı£ïÈßÅÚ£Ã}S€Y\ò-ʉx)Ÿ×b9áMýËmîCÇqL˜‹îðeߢ`uj5Úq㯈—ª“¤jÎ:ÝÒLÅR!°ˆ–Š„íæÚM>R÷:X’cÑY¦.íeÅ!FKr„Ã"XÞeßœ´„&™,Ï1‹h©H¸vEX½$ÉdxŽqXDK]É–F¿ž3æxŽqXDK¤™æ™mUNqå,Ï1 x©K9ËñÐÛp4Ç8,â%J¿}sÞÞË»†–ç‰ÀT0Üz™¦¿¯n]±<Ç8,&2MÒP¬Í˜&š Í1 ‹€‰Ò/f_õÂÓã°ˆ˜H5õ¸ûTv,Ï1 €©x¸÷>åý½$ŠqyÛ¼Ótjæ«94bÐTæ¤;ÌDÙøtÈq ÇpŒ½"d"ǤÏ:ÑŸÇ2㯀˜Š†ç¬º´üe)ŽÑWLÕˆ¹ƒà>ëq|Ão„¾"V¢ä+yôS:”þXŠcô‘ ¦žµo–¤„¡8F_(uÛ[]2SÚcÚR£¯” ‚{¿,««Ö! h)ŽñWJ¸â‡~%0;Žcü¡5ß«iRe´ ®¸å8Æ_*÷Þʽ›â¢WÞ?9ŽñW„J$˜&QºF+â‹[Žcü EßI'[BZÏpŒ½"V"¿Ôõ¢‚6E9†#ô¡RqPÏl´÷’J‡£8F_+Qõµÿ¤ÖVÃ1úŠP‰¢¯^ÈRÁA«÷–â}„C‚iëûºÛÊ Ñ:†#ôN×±íј寛hz2c¯pH/-Í"÷réùOpŒ½Æ¡N{ µ|§ë·œÄ(DzB½b×”¾ó!$F6༶ÞYíéÁY>bd ¡¢Ë…¶7ŽÛD|ƒ7.%y½ùï'0£›ˆoº†S߇º÷ßoüAIŒp"¸Ý%Ú¶½òlg"„‚,)1Î à†|d8ÛÙÙ>nY‰QNÄ6hçfm[ëD-¹KGKŒr"º)rµùý¢¦=-1Ê‰è¦ ÙÞL^L.Ÿv¬Ä'¢j´{›ë½­ž^.oY‰1N„7i»ùöÙ–$´c%F9Þ’ÃÏç¡[¿=-ʉð¦àµîâW5½m䆖å|SÅoïÝ€©þä¡7DVb”θ\kïµ£LZb”ã]øaH—´:×—}Zb”ÑRÁpà>g=·²mÒ]¼MlñÏb¿d3J©—X~#ÜS5b‘¾1g»à[|qËo„¼"^¢â;õ ÏýÏ’^²GØ+â%²Kýþó]/mú GØËÁ%*¾õçŽv;¥T{ µÚŠ8‰Ô’jòY´•Ò“ÚoE”D™wUÝXÇ-÷†ÛoE”D^©ôEnª~ê5†ÛqE”ÔÕ[yöPÙ±gÉW„I…ÀúFÍZçkÑ2œ#7Æ]&ïBoÿÕù«Õ<¿îŠ(‰Ä’¾ï¡Ç¿1îŠ 7üìÍmÛOȵڎßw”Ô¥l­=[2«Í¾Ôy-½1êŠ0 ?ü£>¥[¶c7Æ\$QçÕëÉ΂ÛG-»1æ ‰:ï"3=rªŽÜqElCZI:Ø´ëÀôLKnŒ¹"¸éJÎ}'^*•qÇn„º"¸)rýÀôÞþ©Ç_,½1êŠè†dÐÔ¡c»TÅ#1º‰(‡|4\jº/Ò-%¾q0§¶ï±të¸!$Æ6ætÛÑ…n¸œqËHŒn"Ì)„µ#Ê«|à!Ç9-%1¾‰0‡tP7½½Ü}å8)NÄ8”gûöù­õ·•¦çRbœñ ù ¥]Ü"S#¾¸å%Æ;àP™-â|4“E´ÔÄh'òA³ÜU>aw©£&F;áàŠŸýÔAûJa2ÔÄh'@ÒA“,Ù‚ÆŽ™ëDˆCiöè{¹Ú?ç ¥Ù31Ú‰§k9ªøèHí¨‰ñNÄ8ům•,Á±ëÇM„w"Ä!!Ô¯ÚܧMœKOMŒv"Ä)µ¾EÞKpÕRãïÀßµÙÞw;®§,7Þ‰h©H¸Içņ:’XÝŽE€â¸4[I¼s –jG×5˜T7ÑZšc©%µæcÒs4ŽåƒEÀ„7~ôcíÇöËÉ1‹x©XX5¾RÚÜŽ Z’cáÙ%QêýÜÅ•ö$ÇÌ"¦ZÐuI´tà4”#¸@_.Qì]ùÔ»÷Çø+â¥Úϵë¼ïÚ…Úq㯈—ºˆkï¹Õ¿Q::ŽcüñÕÞ~u_VTâÇ1 ‹€‰j¯4!:V4et4Çh,&rLbÛ õ€µ¥:Bc/ O¹S¦«…œÌµTÇh,â%rL˸xP.±qTÇh,"¦¢¡ÆˆÇ‚헖鋼D±·oÇÛ§rg˜ Ñ1‹x‰jï"ÉV°‘b¯á9ÆaäÁÎCV|GwMÇsŒÃ"Ê¡Ü+ÝXÚPÉ:žc$a9¦Ò÷_•ÖOJRLOžcQN¬þVƒ£vÒªZÃMŒx"ÊÝY¡é’Ù—‚•#'Â<èÇÚ¥|E&CîMtìD˜'BCrŠäܵý¡g'Æ<êÆÚâŸò‘ c†óD¤Ó…lÑo]·eÒº%'F<çP©•ÙÙ[;‰®,9y≇ôP‹ ų̂Ö[nbÔ!…Ú©olmZ¿èh†žõDŒSü:¤åßÈ{zbÔ1NW±l‚_ð˲cžˆqŠ`GO ×5ZpWƒe'Æ<åî:mÿÕi•Ý„žóD˜C†¨;0Uñ÷–ÿ ìĨ'œBØ>ë×Oz"ÍÑ£žsÈÉ›]׊‚‡¥'F=çà™Ÿ¢ŽuêÝ5ùd'B=Þ›¿ µ{ßCÒ.ŸsôĨ'B¦Âá!W‚7Ø‘¼ïv©z68$¾ºƒL”}¥;Eû3.4rã±™Š‡{?À³µ¦èGj¸ŽñXÄLU‹©wÝo) GuŒÆd"ÝTŠT¿9`ËtŒÆd*îÒŒp;u¿g:Æb2‘l:zÛ™6;y;¦c4qõßE§qÁá(KuŒÇ"n"å4‹6×”“á:Æc7á Kó¡gÓ=×1"‹À©kYz½5½Ð¦¤†ì“EÜD ¸Ÿ;ß›÷'5|KvŒÌ"l"ïTdÛfýMº= ‘YDMUý–yV«‘FŽð™EÔTDÜîÓJ²ÅÀ#³ˆš ‰—–w\„m ‘Y@M…ÄjsÛ+ÖÚ¬ËæËwŒË"l¢¼‰æµ®£üà;Æeéu’>wÝ‚d¸ŽñX„98çgTvDñŽêE˜ÓeœzKÂNQ¸üÏP¡±s(ØöMâÛ^ôăc'Æ<æî,QÿpЭ#'F<åP²•û²oØ‘cžˆrŠ`5â›pé«e'Æ<åÁÎIöéí«ìåsìD˜'bж½'[UéYòïžõˆÓul>|ã¢yÖ“ÖŽóDŒC¦è”5©ÄwìĘ'`Üsé Ò±PÒ –œñDŒC®¨HžkÇ1GNŒx"ÆéB¶©*ò•ÒäÜ‘#ž€q¨ß6ö¨«´¢·¬¥&Æ;ãP¾{»‹câ[nb¼!‰¢"éõ]»qìĘ'‚üòK_l×Ó”ŽóDÓµl'&Ú¦×Sû9rbÌ@Ü~½iÛ¢»’,7Þ‰§ðÕ7Î2;ÒiÓq#žq(àN²#¤j¾Vã-91â‰(‡ QÑ]/ræ–œñD˜S*ªSÕO…4”–þä–œóxg~àau:´Ô¸à¡e'F=3åa{ÑÉÝV=/½·BÀ) ÐUý…§n@áY¨²jëtÇuŒÇj"áT”Žp#º£º@c3U+f¹Ñ¬}á>d>˜Ž°X€L”‚géܱc°˜(KçËU²@?äE¼¼“MÓ“†<É‹p‰:ð<¦XZZ’c áɦE ©N·ôÏ1$Ç,¢¥"¡6Lh#õÀ»e9Æa-Q¾œÖ%Fî×ñ#±—º’­Åd[ɹè¶|GtŒÄ"`"Ý´÷ãÿ:c8žcS—RÝgR/!44Ç(,â¥bá¹Ë1­ Ý-Í1 ‹p©KÙzî7­hiF©è[šcáÅàC:å×ÿ,ôaiŽPXË»ÜË¢”XšcáM×±jX¯i¬—úMŽç‡E|Süªÿ*Ö¬·yžc1ɦÒ[¶†áâ—[šcqå[Ù±ºa{¿¡%F9åš%3ÒŽ' YZb”aN²5 ë›¢Ç¹7KK„r"Ì!;Td»Wõ²f½ØÐasª÷UE{ ¼Mè‚d‰‰°ND9”n·ÞÞk-pËÄDH'ê¶ýbà圤fkH‰1N7ä†VÁ õT€p¬Ä('¢›"ת‘N©K;èZb”á É!ÍÕ,v8ZbœÐMWPï¬éi‰QND7Tl7i%Ð*$’(·´Ä(' *¶G·³¶+wÑ.n†•ãxCjh×ÙÁ-F–”áDtƒ?~J¶šµäD-)1‰à¦Àµ‹âÝ^Ž#%Æ8ÝàŽý°Êzà”“á$Æ7Þ…¿ ¶R±i¢Ök %1‰P©¾ø¢{Ž×Þß«Á`¹U'_Nº1ïÜA%Š¿kïUÙܵi Çè+B¥jEу…ë¦íà,Ã1öŠP üÒ¯DŸ:ÇpŒ½"X"Ѥ—'I¼óãޱ—CK”Ï~º§Å\ZxУ®ˆ—H1Ír }Ýô@ž£7F]/Qý•K9ÚPYDËnŒº"\"Ç4éÎÒI9z#ÜÐR¡°åÿT¤æèqW„K…­_XYéLïjtüÆø+¢%ª¿{çŽåÀý°Žcü¡¦Müìq~Ûq㯀•¨ü.²i=p!¸¥8F_+‘_*RZ4Þð Gè+B¥®b3žC¿QzPXŠcôÁRðš¤qÿ¾iOkGq„¾"X¢ð+Wµµ3°Ò××Q¡¯oÈ0í ]‹„´žâE|SìÚå mw¥Žå8F`ß»VíæÔ6±i CrŒÀ¾éì7uh•ŸyÖîë–˜é8„»óAýsp+Ÿ#%F8àt‹|Ç.JKJŒp"©â7´O}Ñ#N–”áD€Óe¬^Ç´ÊWîê‹Rb„!åZ9rtË·¦… ' ð†Z­Ü ¹\zöÚQc‹nÈÉ^6Qš·ŒÄØ&¢›B/µ[ÈeÓŠa$Æ6ÝtmàÔr’š2ŒDè&¢›B×Ú@±ã"Èe‰±MD7Ti%×£5¤ŸÀHŒn"ºé*Êí’Õ¦Šn8u”Ä('ÂòA›låm»[d#™¥%B9ÞTç‘8ZgÝêîh‰PND7äƒäüþO %Æ9ÝÔ—ziÿHÉÚ;^bœc]ø»J»÷×=š É&>ËJŒrR*nzv¼18ã»Ü·Ú˜Dˆ–¸ç-QòÝ:o»^Žá)ŽñWDKd—äz¢ÖÙ^Îr[ŠcôÀR•bQ­ÊŸ²…Ï2c¯–ª³œ-i]m%·d ŽWÄJ¤–¤UòÖÙè'ð[ ¯–wf©gÙ™d–n‚cäñõÞY"À-ÉÁ1ò x©Xx2ÍÕ¡-RðµüÆÈ+â%¼qÕ†"á”e7Æ\.QðÝ{¿¾v^Lë½Or#ܱå^  ÛÑ—^Ùõä7Ï]&‘YZDo—]O)8~cÜa•ÞY¢ú:TrpŽßyEœÔ%l‹ßÞlÛŽ,Á1öŠ@ W\’®ã3Ã1öŠ8‰Jï*7^,z;“g8Æ^)Qëí`·íu±ôê5ËpŒ½"º!¹´ÉÖ5UÇpŒ¾"¼)v³¦ ŽâE|Czi’Ó È9zŽcüÚµ¿]“ÆŽ—çD€CJ¨Èo.ÚõÉó㜀qº”ó%±DY´É‰£%F9ãÚu)Q7¶´D('Bœ.d‘ûèÏeì›|pã›qºŠížvžúÔΖ’ß„CVú$¯«^Œá(‰1N@¸G>¨Þ¢‡~)1Ɖ(§¶+oÀ#ô¬D'‚œXkß6žðâ,+1Ɖ §¶iì5ÊgOVbŒNÑK/ÇÛÑ$Õrcœˆo¨ÍöV*=e'•3ÇJŒv"¾!!´è2ÎcË‘¡&F;ßt§CœãvZêì–šíD|S­o À¶Fó¢ºê¨‰ÑNÄ7õÆ›î®ú™z–ÉPãïà <õÐ@ t¤Õ–ã&Æ;- [ó”OèÙ„y¿&9gºl «ÄE÷p‰j¯l"m.=økˆŽ‘XÄK¤˜ô,ÏRЄÂ#±€— †ë.ù¥àê(ËsŒÃ"f¢Ú{‰‰³ºžç‡ÐÔµœåXP5kɬ:šc@9¦Y)åR²u4G(,‚&ª½@΢þ‰£9Fa4‘cÚD¡p`ÎÓ#±ˆšŠˆ cºÝLš:y#1™H/MýšÖÖa]–Ða°€˜£ØÛølÒ~––à{E°¼óK]×ê œëÈ/Ý ÇØ+‚%j½swÛÜmÚ@Ç0£¯–H0m²Û¶ÂlìqÇè+‚¥.߼ʯ™ðG,b%нzëBEá]ïx²£°•(öÊÕêûvà€¥9FaÝ`Zd"g©„z–c Á Õ^µaXµg9Æ`ݹ*¨ôŒü2kÓ{ÇrŒÁ"º¡F{t§ï˜õ$ÇKŒsº!+Ô/£o-ߥ*äX‰1ND7Th•¾*„)YVbŒá I¡U&cÞõàc%Â8ÝP¡:ö·ìsœÄøÆaг‡tŸ9qáå#Â5Ýt§~uë]&e -®‰w§„ú–ƒ#1²‰§øuèök„AžÙDŒCRh똵Y'$F6ãà_rK뼡+¯%¤À7àPŸí…ó:'³–Æ-'Æ ø†êléŽc+ ëà7)1ƉØvg…d¦VéWäY‰1N7]âýÚù<©ÎRb„± I¡~¡ÄÖ\a ËIŒo"´Á?$ìÅGzNb„ãø»<»Ê·Ï‡Ägž”ãD T¼t‚Z”>ý­ñBGÞùPË&ι‡J…ÁCîkyïU›4Šcô¡¦E¢ÌúfZ%4Çè+"¥Â`Ã^4¡ ´Çè+‚¥baÛª°  &KqŒ¾"`¢Ú»örÈÞBÃSª½OŠ#ô &Õì'î,Å1úŠ€‰zï2ÚÑ.z.×P£¯˜H0i_Y»‰:†côñR±ðZ岪:‹Ü8ð¤¸@_* Ûís½Yû‰+o Åþ X‰b¯¬W¿FK*U–âY´¼³K=òžQòrüƸ+¢%ª½³Zñ¥eUÇoŒ»"\"½4KÛÞ2úÀY~cÜñRWp‘ö†­¡³d—,½1öŠp©«¸,bTGõ^Ãp„¿"Z¢Ü+é£}GWÇqŒÃ"À!Å4Ëј‚mãŽç‡€C¹·ºÔO’“a9Æ`Þ_š%Õ*n²o̰c°ˆnŠ\G'Ð:8ï刉‘N@7$„´—„÷?—çxC¶tDm­]&¹¥ÎÒ£œoÈÍíÅ„„,-1Ήøgüêš_N‰ÿ=-1Êñð†lC}½MMRb„ÚÒþÚ®ÈÓKÜ-%1‰‡tÐ"¦Ê¡YGJŒq"Ì)„rg›E½Þ²cœsÈõ¯<åþØOJŒp"È)€ízµ9lR೤ÄX'¢œ"XkPÒ†¶«ÌÁ,3Þ‰ ‡B­lßÙÛGJ>Ár“çˆpÈ Í]çʦ‰*GMŒv"Àé*λ”0ê$.Z¨5ÔÄh'@²B“LYt›c&Æ:ât§U6Ƚ+Õ#ïÇßeÚÛ’ E11Ö‰p)ë;wttÅl¸5í‚ÚÒ`Šùè/ ÏÕWèÓ;t=Í1 ‹€‰“žv®o&;Í ‹x©X¸¯º(jŽæ‡E¼D†i’#SsÑÛRÏ1‹ˆ‰Š¯8E{kG$¹%:Bb2‘b’ ˜º^H~Â!±ˆ˜(ù®’‹šW ¸Ñ1‹ˆ‰“îG¼þ DÇH,@¦®dý±M”bÒóOš‹á9¦I Ý<Í ‹hy}{[°iÅMȆæ…E´D–I?»Œ´–æ…EÈDÕW3Hmà¤V-Í1 ‹‰,“b+þè¾CsŒÃ"dÂ-¿ÑnÊñã°€™(üžºk}ÓàÊÑã°ˆ™º”UmÚ ï­û–ì ·<Çx,²M³œÃoÝ%å\®á:ÆcåPù„ÙÊè|d¹ŽðX@9]Ⱥ€]¡ê?tÕ‹ ‡J­ø1G«÷KÙÝÒ£žrHé‰È‚‹¨=1ê‰(‡J­\qœ›\ñçé‰QO„9¤‡´ƒü„jš£'Æ=æÖSÔ³~æ®·Š~bä€Nal=åãgœRpüĸ'BJµk7ü½.¦‘¥'Æ=êÒ¶ÜÓ© =1î‰P§ºßî ?Ÿ>°ã'Æ=êt)'iGßv\jçËO„{Ò)Šý–œ®EÒÐcŸt(×bªmA¿~A1ö‰@‡ŠíÚuso‡@ ª¶†bôîNõS®­O«ì%·Åè'.ä¢- ʦ`C1ö‰@§0†;`уÝ3£Ÿuº”ÈãMª–¢ýx¯~,嬄iÁ‰&KQŒ~"nªƒ¾ì⎷kRúÃŽvPRHEÎK2ÝÁ&JÀ¥3j«Jà’^CwŒÊ"l"éTdUÚ‹IÎɰ£²ˆšŠˆ­Ú¢6)äféŽpYMEÄsW}Ýu«ã;Ff5w¹Rþ),GxŒÌ"l"ïÔ_bÓÒ‡c;Æd4•ÛZê­(ηY¶cLAY§I&v VÇvŒÉ"hêJâŒW»ÎZÒN–í“ÔÔ…œîê‚KáÃr㱈šwx_¤T´Ü“ëE̼³Ný7¥©óOà:Æc3Q^Ôègôöµ\Çx,‚¦"ÎNEo[t\Gˆ,b¦â᪹‡iÕý¢Žì“EÌT@ÜõÔrë% 5DÃvŒÉ"f*†Éîˆn[º¯Ü²c²ˆswê©kKSÀ ¹§Û&‹8‡jð$åÙŠ;kY¶cLqN—r×Ý?í“E C WzB¶;e4@² ÅØ'FZy™Š6Bt Åè'bJ¸rj¼õТ¥(F?ë0Ò» §2zn?)ŠÑO„:…1qo»bHk?GQŒ"Ô)µvlå©eŽ£ÿD´C W s¿ô°Åø' 2FZÑ®JXtWÒMQŒ~"Ö¡‚«¯?¸1ÀR£Ÿˆuº­ýÏ!Ê?I7KQŒ~"Ö)iÓêi’Ë®ŠÑOº;cÔÖö¸ÐCÇQ£ŸtŠbë.wÓS£ŸˆtŠb»\ w\£ý—¥(Æ?éà¡÷kiD+ÄC·ÅøÇûõw)÷”KeÚ7)„XŽbaS!q“¾6­¡†¤ÐklÕ[NµÌhWNâ³;ÐDYXÚ…¶¶ô²ÏÉÒ£²ˆ™È>•î7´×Â=o†î—ÌT<<;-t“SŽî•EÌDþiù>E+$óêØŽ1Y„LÔ…7a‡Uw{8²cDé§~kHWŠU²O†ë9ÄT4¬Šyªý]Z6DÇH,"¦¢áÞ/Èn/5ëÆ$ÃsŒÄ"`Â;¿ZIµ«Ä$ûY,Ñ1‹ˆ‰ÔS鵯®Ú†Â#±™( ˾ïcZˆ–ç‡EÌDêiÕeÜt›†ã9Fc3Q^8§EOÉ:ªc41©'ѧ’É ŽêEÌT<Ô á0#GuŒÇ"d¢.¬ºjAËa±—( ÷hÒ¹O‹ÂO¦c,1î‘xÚd¶Î‘xz0c±ˆq( O:ÇQÓ1‹ ‡ÌÓÒñ½múÖƒS–é‹E”Ó¹/R÷=žK5×pãˆrHõkÓ7Ý9ü㹉OD9swiÂØÚ_I-÷ÉMŒw"Ì!U$•ÂþZâ™[n"¼aN!lÛ%eòÜÄx'ÂrE‚l}!µÅ“›ïD”SÛä’c>ô#-71Þ‰(‡LÑÞOÝW‘VgŽ›ïDˆC·È…kQ?›ïDˆSøZÍ(Mr;®ã&Æ;Ὢ*L—|¡6D²ÜÄx' J¹§èƒ@,/Ήw×qû+´k'ä´€å%F:á&Z¿7™+q0-1ʉ§àµ¢7už¥9™£%F9à%’;ÑØÂ±cœˆoºŠ³ô:.\6êX‰QŽ÷ä¶^ӭɉ>ÙOZbœ¡Rað”žÂíI²Ë¬} ´Dzu0ÝB% Â[÷DmÒ ã8F`+‘nêÉ·öZÇ8÷ 8F_*ënWç¥w:Šcô±é¦ÞE³ŸÞ׋p Ã1ö P‰dÓ$³rëµå7Æ](‘iº¾WQTI½;vcÔpRap»¾ûÊ®Z÷°äƘ+¥‚`Ó©íùZŽÝu Ô5œoÎтŲc®”Š‚›\8ÕÖp– ¢e7F],Q –ÞGU¾] zcÜÑi¦Þiª½˜:pôÆè+Â%JÁ›ªáªû¦Å1úŠp‰DSoÉÙc°E/^6Çø+â¥bá.¬ÛgîºQÓpᯗ …×:ìQC«Ç1sX‰:ðÒ[ÑÚðÉ!¯ˆnw’©#UÉS·%= Ž‘W„7T¥ïHSûetÓy#¯oÈ1Í‚Ï笠j Ž‘W„7d…${×PaÑ þ†“å€SôÚ{±ø8±Ï‘!œpŠ^b›[»ØLº9R"„9!¹ë ½–œæ²œÄø&œ¢×¾Iß±sý–Í–’ÝD€SðºNYÜv‰¸¤„žŒDØ&¢*¶ß£…¾e$B7ÛºôйÃR¡›m(Ø.=ÏÖþ¬»Ë %1¾‰È†„tií¯%õZËI„o"°éNræ¸=KÝpËIŒo"°é".jxî`³”ÄèÆªµúüµ`W¬å#Æ5Ü’ ½Wµ´ÿ0|ĸ&€›×.ý Ú<ë•u–ŽÕDpC2h‘©8ÐÌÂÑ£šnÊ=Ë&Æ^mBÖ86bTã½÷;4IXJËÏFl"J¢T{ôÛ˜ µKHŒm"´ÝÉ Ž•u¶ö‘ z0£›nºŒ­)¤ºzB?–ÙDpSúY#Z8!›,!1¶ è¦_ãÜ65[%²„DÈ& ›²žq8ŽSòY>bdÐ 5Ú¢Ët² 見8É©„û­1²‰è¦ÐµœôU#Ä´„ÄÈ&¢›"×±É-€ÇŽ ­!$F7ݼĉþŠá‰ñMÄ7äN±âÆ*zRÍpcœ€oºŽÓ.Z¿¡&a9‰NÄ7d‚ðR’2„ÄØ&b›W»Øsûº“ŒŽÙDlC¨oü?ŽMËY> \qí®Íö«¡±{ÒóãšmÈm½2sÚLÁÓᚈl(Í–nÁ‡Þ½êéˆQM„6$úFÍ#ÒXÆÑ¡šˆl [«v9íÖí„DD6Ô?{²Bà%{8<‰0†ˆ€t§[:” ³îH„D$›cÓùÚÆÅ'‰0‚x¤S_úÉú­µ¿ÖÍ÷†B=4R¤9•<Û5}Þ-vˆ`¤|1Ϻú}¢}nˆ@„Ò§.ι!ÕbùƒCD"¤ZWä¥{0fˆP7WA¶$©¸ßŽ=5D,B¢¥ôKÆŽq ÜÑã†F¨{n"·º§¡F Žf9¥g»D[Ïú ÔáH±æ¸Ä`ÁÔŽ>5DƒôˆDw*£¿Æ¾Ž}-ö¤$R”i»ÇDÁÝ–g@Ÿ z"d2´ÖöçÈ…‡õ¢$Bp—EŠï@Ÿz€"ÔîáÎCÏÛ{Ìgx!ˆCç^{†yÌg€î0Dg¾HóÔC¶3ýxÄgp¡DqbךÂ>?Z < ŸzÄ{PgsùÅ¥´ O=‚‰ÅÙ{ÕÊ‹uÔ±¨Ï@=b *w“|Ò1iÕÇ?õˆ%È?Ì¢‡ã½ð{\@¢Hßâ¿EUN›ì'¸î|б€ ”ú<ݱàz„#íú:zó•~êŒ|ØÅÚÆWm—l€Ÿz#]¾yU“.ÚIË?õFŠ4õŽãëqfÜ?õˆF¨ÙòÕ¢çq)÷øªG8B¥Mîøi«&zò3Tx„ôÃ$ŸÙú ýð~êl¶~iQ›09ŒeqŸz€#d&5ôSóè÷ ¦G4R¤9&…ÀI:;Ü'˜Á29pϼÃ}†éA8Øäa- —<³Åý€é?à ê^•M[ÑzÜg n1DbÕ¼}óÄ´ Ï=¢êck74¹1õ'`>ô$ ²ýϲÓÐb>ôˆ#¨-òû$µWú ÑŽè¶„Óòx/‡ù Ó#Ž ¢ujìÀ…‰°G¹«Z+&L0âØ #ˆÜÑ~ŸŠvQ–î©0ˆÍÐ8¢ˆBÄ¥Ád}-½+Ô"6Ãã€#÷q‹5Ú´xͰ8¢ˆÎ|Ÿ@dF³Àl-X¸fP11ú.‘n…M)z[¸fX!DááÒèt=uS¦Ãk†ÆB¦K[öbzg¼El†ÆFPù9Å<䆹Ÿ€Ø Œ Z³Jݾ©Ä¸LàØ Œ£õ+±–áh4~µì¶(‡(D‘]JkŽFëG<; .»f—Ö2Ö¯SVf²]7æ9xdÐÍ¥„M¬=LlÛÂ#þhÿØNrHpÁÎ.‡ û‚Í"|œ… ”@<2ì‹F«6YsÇöÃ<è V‹ôÿ.éøv)’´1èÈ/Zî=ödÔ‚öñòE˽w“ôUZFµÑ #¾h¸ˆu_Óx/ ý¢á¢°‰r.º9Ü#$CÀ`¸:û³ô˜¸Ì‚$Àh·ˆ!W9x´=®æ@’!`´[õvŽS |&Z”dè}¤aà›rÖR¬J2Œ €B€‚g]KmfQ’A`lä8ÆœíÚ,ÜÀ$ƒÀˆ"w1ÊI»–:”dA@ ¼mÑ“#·%F¸Ó÷‡¾™ÞfQ’!`Äl¿8äÏó¥Ç§J –«f¹Ë-ªÇ¸Õ$ÀhºH»ë¡ÕeÖƒ­$ FÃU«lï5Ë| ‡8”d,W­r•¿3ŽW:Œdø û/Û Pö_<0’!`4\5ÊëjV+o& I€Ñn‘x¿d—IO9$Í{&´?ù,‡é=F2ŒV‹P+-ó†ëw-H2Œf‹˜m’ýIíab’×fE³E¶ü’Úuk1 A³Å5†YÑl±Oá•j=?¤£ªÅ5†YÑl´Í2t^q—ÜÖdE³U“¬^|§®ú^Ê”Öd³Õ k}¾ä­Â,¨1ÀŠf‹­Òå®Ý¯[ã-¨ÄЦ†8K®ci;A9ÆkQ!V´5µ£«ˆñλ6§t¨Æ0+Ú¶\’Uš©£x\#˜ áVï¦QŸUp‡¨Á5†YÑÖ°¿à}»õY—̾Å5†YÞ!FÙzXÌò0i´`qaV´[ýº„EæK¯´°Æ0+š-¶ÈÙ‘yBà``AV4Z5Èöç¶¼­Õ¹Ö ¬1È V‹M[ë8{*€èP!V´Z$§g)˵VçÒ–Ø¢C¬h·¨åŸý.ƒö0Í)[TcˆíV²µîovêq‹j ²¢Ýb³Õ&S[.…}k²¢Ù"³\d¿l9qnÂÀƒ¬hµ(Â:a‡ôËò°Æ0+š¶H’k¬Ð.×Ý9\c˜L éàMr8r±úO€5YÑ֞Ƌz„ÓÀì`lú=•GÙtÇ©C5YÑÖ°·é’ßl?õ@”A"3ÑØÀ•ËJÚ›IYÌ C™hj(xkZ\¤D f¢¥!žYT[5a硈ÀL0´{7RW»q›C"†2ÑÐîôm¨²håÕ!C™`i¨Që9™zR,µ@Ä@&Zâ™EÖ¤ «ï€ˆ¡L´4¤]U‡Ë¢M=1˜‰¦†Ô«n¡io¦Ê 1œ‰¦†óþ­Ï’¦ÄŠÌxÖ¿£E ÷eBšÚB™hjÈ–ªbm8⡈ÁL°5dK‹˜DÑCC‰ÊSS3ª–ÚûÖwU«PO b - ;väê¬ö,=´oˆL´5¤Jw™×é”" "†2ÑÔPÖŽõ“FmˆÊDSÓ kûGJ ‰ÌDKÃF›YJíß±ÓæE f¢¥!WºéJîz¿¬ƒ"3ÑÐîbn9šŽ;(b0-M§•òÛÔN›lÙõPÄ`&Z¶ÈHgåöf’`sPÄ`&šœš…ž6=Eä ˆÁL´5lF9äÏ­/’œ`µðÁ°!ZòˆºWkZÑòÀâÁ†` È"êO n4±ðA°!¼ý­…uõY³L˜ÇÑ@°E÷M´˜Q¶¢ü`Ø Iij‡ŠvÒ9ø`ØíeÎ~N;X£YW ¢yÀÕ_%À˜¦ïqÿË=4DëÀ’M< Ýœ|0hˆÖ$âÞ]ýaº“ÁÂÆh(QöXlkLå&D‡ Qß¾¾Ü¸´ãR ¢¥©m=gÙ¦œkáƒAC´4¤þD[úâË”Yø`Ðm zéÓÑZ5âô Ñ@TùÛãU¦GQ-|lˆ‚l]?ôiµŸ€ ‚…ÀE—í%mW€ÞbàƒAC´{‡ÅTäY»^”ý„ Ñ@îlÝ¢Ò-©Oô`ÈÍeÀ³o$kÏêûÃz0hˆÖ¡ª¿õë·zÓÚ2'ÞðÁ !Zru=tíÏšõ†! ¢u W×Ó#Û.ðàƒAC´lA;ªúµ¡êS“gæ­I±¾„ýa›­4&ÏÌ9Z²b‹šÑ¬‡ºœÉ3sŽæm‚Äû5©_íLž™sÐé;•uy–„ÍÎâ™9¥F& 6‰ÑÎâ‰5†'¼õ2ò~^ºµÎ<3æ ÒØ10÷Ìe{”d?œ½3cŽ*­êÚ¢o»|œÁ3kŽ¢Ö.7ÉÍÂ?Áâ™9{B¼á¥gÏöѩؙ<³çh(ôOr-äx˜³yfÏÑ-”™ŸÕæ;ë!³U°=Òš'3½¨Í(6\²àíð¶ô“°æÉL/ª3ê’s'øýn)fÍ“™_ÔB$+ä¶¥ö0½bÀš(³¿¨…jD³„-,Ó^·Y1“‰ˆä‚„OíAz¤Ôš3™¨‚ÈèËžÀ] 0?Á¬˜ÉDTõÚú¥û¾£Œn­ŠXLP@d$-Ûµëá cTÌ`¢ê7¶ÿ”‡IÒÚ³—¨ƒHH¥¤ulÃiƦ¼ÁDýC.@MHîŽý FÅ &êß6ï‚õaÚœÂ3Ïw‰MŽeì;îQrFÅ &ê BøE0³ÝØ#™nkTÌ`¢Âkšdh;¡ç³ŒQ1£‰JˆþHÙq³–3,f4Q ‘ë>TÅŠ:‡Î°˜ÑD=D9K¼È}»°óß±š¨…ˆà{ÿƒþ(ñ(¬a1£‰Š¨JÖÊq»kÖƒöΘªGݹ#Ü]6K>ƘSõ¨:w¾µ¯’„ Θ¢{P¾Ë)só­ëPDkΘ¢G%T[í6Ý]ï)zTBÄ‘{ÏÚ´oÕ«ž¬10Ešƒ8RN¬·‡­òfÖ˜¢GÍAÕbîZÑýÞQô¨9$¥IS{ɧ10EŠƒœæ"_„òÞˆžGÕA)¹Ï}øv¶Àô<ª"ÉY¶>Ž/=l)zT¤ôU‹áXfêUAÛÖ7—ímc³žd6*ÌÔ3ª­žø¬+¨?Yfê–9: ;W4—tÌ´3®7’ðGÿ‰åÂ1«ÀL;ãz#Öº:Õ·†›bV‰vÆÕF¤5Ƀ´bdÕ—é¦Á½;i>I`Ak]§¼L1£Ò Æ*}³–6¯ù ÊË3**ľˆÒ-#kk•—)fT„FÒª»=LRðNy™bF­A@³I˜¸`«ŸS^¢˜q¥‘½ÚÄc[´u©W^¦˜qµ‘N¾ôaEoµÊË3®7bš£oílÏ:´ÀùT^¦™q¹‘»-bkÕ~µ%U;¦Rq¹±ßæ’Ù¨ÿiyÀ/+[²8£ðÅäV¹vEB‘<ʽªlÅâ„"’<ºÆmmSƒ¸afQÙ‚¹ù„&Wc´úzåÅcEÙjÅÉDà×?µ>i°¶]Q¶`Þàž^SéÓ´~QÙ‚Å•§³õmz7ÌOXT¶`qFáéÈn‰í*8Àl•­™›S±d G{–xÌ¢†‹ó §_ܲµ–Ršê³‹ÊÖ,Î'|‰U&þ<4kî–‚MsœOÐi'?·s“}•~%Ø,‡Yù÷_ßÚÑ‹ör0 f9Î"I°´'IÌçV‚Í´×î'ó÷ß8 Þ®›é8¥`k¹=§`Åí`f5ØLÇ9½³ï-/²µ†xÂdf5ÈLljÃʹ÷­¾Í!¤] 6Ùq"@ŠRùïÍ] Hñ1‡l~âDÜ[¥ÚÖ± 7Bù9dó&)ÛYVx?À?v ÙymSV_£Eç›\bô&‘MPœ Px/›l8ý “È&(Θ£ôCÛŽ{¯Ü$’ Š3”Þûa¤MðË}4û øæ€è"ïPã|ýDûÑìƒâ›Ã“»|·mÖó®î£Ùùõ¿±gÁë‹H>¾š}Q|uäN¶ïþ MÏ@»fß%DÙж-èÜêÞ“½FüA0‘\a½-»^«a_•½†ŸäÛ"û…H[ë®7ØWe¯~oĽáßÖÿé¶+ót2ÒŒ>믾¦¯¶z©ò7õÿ}{Viصžm_ø+sÇÔ½µSìò—áoûγ— övÈy¡¥¾hý´½5~ßÊ‹GýÇ_þå—Òö Tws]ÛeÌ_5û6¶ž¹¯Öûç?}ýç¯þeúúÇ.ûÕþŸþãï~¾þÝo¿üÛÿÔòDÕ ê¯üö¿‘øšûÕV×Wë~}më×o?¿üúõ¿¾~þô·ÿü‡ßþé—ÿ[ýqòóËutÒu?_ÃðŠâç×ÿ¬Ïÿ‹úÿT_è?ü²lÒyy—Á¬»ô~[G¯ð¿$R÷_m¸\¥Î¥PzH¿ÜRk‹h*?=~qüå!Õ/b½žRã/)÷®Ï·¿¥Ò‰¯/W™;ŸßÚ"žÇùµ¶.ÞsŸø¿úõëþ¸¶P`>ýã\ÿ÷ÕNo.¿Nøã6·ýÒû¯³þÏ*±þáo~û Y¢¥mµoG2ÚÆÄŽ‚øKô¤ó_R)Ñ?üÅH-Õ2ú>õ!¥1R=“p=¥ô/Fêš/Ù8¤ô/O)¼ë-õ|ûß5½mjÿØæxiÉÌfÍ­Û`ý²1¿õm»kŸß­ÝȲËüîývª>¿íâ‘iÎo3¥5ªoùÿ³.íÂÃú_øWÍÿåÿùÛþÿå¿þéëïÿË?üÃ×_ÿú§?ÿù-öÙ—ë×ÿöç¿þC9÷õíߣ:lEݹÖoÿ˯ÿZš%ßÓÜæžþoPzu‹ÿ×Ù;Ö*_véÒÑãèŠØøÔª´cÜW}ìŸÿ±k%ä6¬Òmåõß\êû­UÓK©Ã~ù‡‡P5µ(©Ð)§áÐæeš[´¼yÐUº'ýFhïÇ:S¡­mS_Þ¼w5§¾ÛòÐÕªe·•u}ó”¶=êzóeÛÜZ:¼xé¶ŒG[Ǫ„f·ùè·Jç^Z,ýfú·Öàí—¬í”Ö»/YkSÞèÖÖξOÛ;¡µ§•Þ]}ë@.Ô·&¼{ñ¶k{÷â­ûÀúîÅÛõQË»?Kï×—*×Ùnx÷Þ—ty#´uòP;Jñæ½÷¶Gl£N{ë|¹¥ß¶—Öàã-ïåè÷0äB‚ʻמ¿{íÞìüL»:æÝ{¯S¿sò8¶o„j²¾xï€ïKË'Íß×kvOB7¾¿zàûÚ¼Ìï¯ôÀ÷DèÆ÷—BO|O„n|O„n|õqß_?å﯅ø„"¾Q7¾¿~ôß¡ß_ =ð=ºñýµÐߡߡß_ =ð=ºñýµÐß¡ß_ =ðý¥r=ðýõƒøžÝøžÝøþRè‰ï‰ÐÀ÷WßöÄ÷×Ïyàûk¡¾'B7¾¿ºñ=‘¹ñýµÐߡߡß)0X|oiŸãÿ>„2ÿB™ÿ>d2ÿB©ÿ>„2ÿ]…rÿ}eþûJüwȼö߇Dæ¿Cè3ÿ}ŒÊüw¥þûÊüw¥þûÊüw¥þûÊü÷!”ùïJý÷!”ùïJý÷!”ùïÊü÷!“ùïJý÷!”ùïC(óßU(÷߇Ðkÿ"©ÿ>„2ÿB©ÿ>„2ÿB™ÿ>d2ÿB©ÿ>„2ÿ}}ä¿_½qôÿB©ÿ®B©ÿ™ÔW¡Ü‡Pê¿‹ÐÿB©ÿ¡ÌW™Ä‡D꿫Їþ;F¥þ» åþ;„Rÿ]…rÿB©ÿ®B¹ÿ¡Ô‡Pê¿«Pî¿C(õßU(÷ß!”úï*”úïIýwÊýw¥þ;„Rÿ]„ÞøïJüwÉýw¥þ» åþ;„Rÿ]…Rÿ2©ÿ®B¹ÿ¡Ô‡Ð'þ{»øãz—ŸB¾C(Ã÷!“á;„R|B¾«PŽïC(Ã÷!”à;d^ãûÈðBŸáû•á;„R|B¾C(Å÷!”á;„R|B¾¡ ß!”âûÊðB)¾¡ ß!”áûÉðB)¾¡ ߇P†ï*”ãûzïIñ}eø¡߇P†ïÊð}Èdø¡߇P†ïCè#|?û5·y~feùeù™!“åg ”æg†P–ŸQ¡ÉÏl­]íþÆB™ÿ¡Ì2™ÿ¡ÔB™ÿ®B¹ÿ>„2ÿ}%þ;d^ûïC"óß!ô™ÿ>Feþ;„Rÿ}eþ;„Rÿ}eþ;„Rÿ}eþûÊüw¥þûÊüw¥þûÊüweþûÉüw¥þûÊü÷!”ùï*”ûïCèµÿ‘ÔB™ÿ¡ÔB™ÿ¡Ì2™ÿ¡ÔB™ÿ>„>ñßÛ~æ³¼ñ߇Pæ¿C(ó߇Læ¿C(õ߇Pæ¿«Pî¿¡ÌB‰ÿ™×þûÈüw}æ¿Q™ÿ¡ÔB™ÿ¡ÔB™ÿ¡ÔB™ÿ>„2ÿB©ÿ>„2ÿB©ÿ>„2ÿB™ÿ>d2ÿB©ÿ>„2ÿ}eþ» åþûzí¿C$õ߇Pæ¿C(õ߇Pæ¿C(ó߇Læ¿C(õ߇Pæ¿¡Oü÷}ê÷ÁåþûÊüweþûÉüw¥þûÊüwÊý÷!”ùïC(ñß!óÚ™ÿ¡Ïü÷1*óß!”úïC(óß!”úïC(óß!”úïC(ó߇Pæ¿C(õ߇Pæ¿C(õ߇Pæ¿C(ó߇Læ¿C(õ߇Pæ¿¡ÌW¡ÜB¯ýwˆ¤þûÊüw¥þûÊüweþûÉüw¥þûÊü÷!ô‰ÿ¾·ë¨·7þûÊüweþûÉüw¥þûÊüwÊý÷!”ùïC(ñß!óÚ™ÿ¡Ïü÷1*óß!”úïC(óß!”ùïídáÕ_òp/™:ôJú!”8ô¯')õð!”zøC(óð!”yø¯')uù!”¸ü¯?? ”ÆC(‹†P¨P ¡×1DÒ`e1„Ò`e1„²`Èd1„Ò`e1Àú(è 0Þ„*“F"“*’úÿ"“»ÿ*“zÿÒ×#wþU&õýU&sýE$ñüU qü‰=Ë ,2‰ÛO Håa€Ê¤Q€ÈdA@ýñmk?~ûãyP -Y’˜àåWå1‚ʤ!‚Èä‚ʤ‚ÈäñʤáȤъ$ÁÁKõʃ•Ic•IC….“F /`) D"T& ^MÍ›0BeÒ(BdÒ BEÒBdòBeÒBe> ކ>oÈ29¨LFÉÈAeRr€LF"““d2r€LB*òš ð9è ” ó9è Œ"¨cPÂuP{ù:h³ƒÞÐDZÑA }4MíJ|œvPšc‚LFIèãå§|™ŒOT&ã“—sœÌËÕLç¥Ú|FA:(¥ Èd™„‚^[ž¼‚Ìk R‰”‚ “e®T&cœWÓ—SÊd‘Œ‚T&¥ Èd™(èè×&æ9¬!”å° ”å°†L–ÂPšÃBYK…òÖÊrXC(ÉaAæukHd9,}–ã’•%µîaT’å"<¡£ò´W™û¨ËJ²^uÐZÑõûhªmFei°Öƒøè£v?*Í‹•önß7œcP’{ýSYžìõge‰³—3˜'ÒJû¥ýôï—åÑë¨<±æùƒ’ÄÚkÅÍ2m¯$M½ ¡$õö FóTÜzŠƒHšŠBY*BY*îå å¹9e¹¹!“åæ ”ææ†P–›BŸäæšž¾+ÏC& ¿T& ¿ ’…_*“†_ÉÂ/‘ÉÃ/Èdád’ðKE^‡_ÈŠò*óYMƒ> ¿tЛðË¡¥á—]“G_uR:“œnP}Íý“ŽÙýRžÍ›þKkqƒ’p¬ºÖ>ÈÍCŸ½ø¥,>«ƒ¶þM‹[Û,`«ƒ¦þKólåœ#oŒI8G:&ߜÄ1yüæˆQeñÛK³H:È|Ðɘ< ƒÌë€N%Ò€2Y@§2Ÿt”t*“tÉ:•I:Èdd> èÎvKÝõ& BY@¡, 2Y@¡4 BY@§By@7„’€®5Z—yÛì¼¥d^Fx¯V#ø ôYÄ7FåŸGõ&âs±Û•F|]uPðÍGr–ÃJ#¾eoŸuì~žóˆo]ú¨J_nTñ­Ï)ŒÊvB@(ð^½Pá-ÛÒ?Þ«nâ–Ũ4Æ{±¦yˆ×'l?g?(ñGì3F¥ã5í µª*‡™FW¯õãòR~ñ,íÿoäcF¦QdŸÇö÷…yé=‚1* $½§ƒQi(ùJ³ÞÄ’/´øM0é|Å1*‰&_[gºgE…>Û´2½Ž0!’†˜C(‹1!ôY9FeQ&„²0sÈdq&„Ò@se‘æú$Ô¼Ö~±jj¡,Ô„Pj™,Ô„Pj¡,ÔT¡<ÔB…šcTjBæ÷‡šcDj…ÕQobO •Çž.À¨<öôµ²1*=}tƒQyð¹n~T|vr4£òàSiñj«VæÍŽLЫœ˜‘ïÅL뎗¦¥Û:,çjFæ‘éUV8'¸ÌÈ4:½º^^“_õ<:Ýæ­Sx•F§¯V= O]®~Œù(:ŨϢÓ1ê£ètŒÊ¨P¾ÂŒ,:…H¡,:…ÐgÑé•E§Ê¢Ó!“E§J£Ó!”E§Cè£èôÜÚõfo¢S¥Ñ© ¥Ñ)dÒèT…òèBit*Bo¢S}bTªÌÑ)F|ê¨7Ñ©gTŒÊ£S——Ũ7Ñ©gTŒÊ£S®è¨<<]{п_œž«„™³•§ÊPç:ÖŒÌÔÎ5}_MµÅŽÌÔù¬¸û›oBÔA:uÊíOæ*mud¥n}ûPiGåQjWçcö¦•G©¶F:Æ|TðĨwOj£iÅs½)yRCþ0FÅ $FU‘ÚtÊ ÔºñcÔ»ôî3b¸åüiwêŒQoøÓ¦ïQ)ƒJÌuö¬_»=ø9ò ‹>xirs]¤‰-ªfdN¢>Ï«|Ï‘ïH4Ðï=2gQŸYãÞphÿ>x&÷ œBíÖ¤1*ß3d]»{Ð'‡>ƨ7úÂØß%z©µDªõ©Þƒ^’êÉHõJHu}Dª÷¨„T‡PBª·LBªC(#Õ[(!Õ[è#Rݯ>ÉYâ÷J¿C(IüÞ2Iâwe‰ß[(IüB(MüÞBŸ$~ïQ¯¿¯æúu"ø–H¿CèMž÷Å ¿Éóz[ÐQí1ºGåy^­:êMž÷•ÞcÒ,¯rêÖ …*Ï‘o2½N=ÜÀ<Ñ˘#óDoÛ¦«üØþÿçÈ7‰^Æã™'z%ïï<ÃéБo’½ŽU1(߉d·KQùV$[½åÉÞ &{»á?"Oô¾0·O¶!aPšø½…^&z‡H–è½…’Dïú(Ñ{J½C(IôÞ2I¢we‰Þ[(IôÞB$z×RÊ÷ò&Ñ{ ea)„²°tÈda)„Ò°tea© åaéú(,£>K1æuX:$òDï‹wIãTƒ cD£¡šÜ£òc*f7çô&$µEÒ{Ôï I{¼ÝÊ`Ï‘¿?$UúóTž±Oÿ“yHZ¹ê!ü& UƼ”Žž?ó. ]‘èéçÈâÐ1(?¹â£ò8Ô1æôQŠQiJmãM úÂ?9Ì‚Ai z ½Ž9!’ÆœC(‹9!ôYÌ9Fe1'„²˜sÈd1'„Ò˜se1çú$æ,[Ũw1çÊbNe1çÉbN¥1çÊbNÊcÎ!ôQÌ9F}sbÌë˜sHä›^¼K„ZTÀˆ$BoâM»ã•Ÿi±µÓ1êM¼iÏuÜ£~OÄÙãâ©ÂÀsäï8¥ºxü=§Õ‡ûÉßqöêä¥q#Fþ®ˆ³“õ‚ÇÈ7gØWÄþà›pÓBïQùÞ"—iÀ¨<ÞtI1è“îcÔ›ÍE/¬ëÝæ"jêYÈ ¡<ÄB¯CLˆ¤!æÊBL}bŽQYˆ ¡,Ä2Yˆ ¡4ÄBYˆ9„> 1¯Í&¡b¥!¦ ¥!&dÒS…òBiˆ)BoBL}bbÔ'!¦ŽIBLHd•O½©|¾xá7•OþÆo¢LW.£>Š2uЛ(³g=oàÄ |ç¤Jèw;‡N}¿ú>«øfãb¾J*×lG¾©yÆ,+Fþ¾CíC·i·#?Ý94F~t¾åõQÙ£òpÓî¿}²uhŒúdëÐ=(‰8o¡$À„Л€BI@©"y@ ¡Oº®ŽQY„y ¥¥ ¥%dÒ€R…ò€Bi@ ¡OʹšÝüæöä[( (!””C& (!””C( (U((‡PPÞB¯ãÇ!“V±ú8†dEK½)Z:ïyŒÊ‹–ŽÚ0êÍá³ÑñôQÍ£òr¹úñÐÃÏØ›³)ú›ÿ¬ßu6åydóù»Î¦´w]ªÎš‘¿ëlJ‹Yg3îã“)÷È4|ôÞFåÑ£åǨ¢GŒÊO¦píúèdÊõQk¼{T<ÞBŸÔ'uP<¡×Á#DÒàq%ÁãËO£É[( !”C& !”C( ‡Ð'Áã|\rr„PJŽ*”’#dRrT¡œ!”’£½!G¥ä¡ŒUæu2uH|rrsŒúèäæ=*'GW¨7ähϪߣ>cGõ†mœ{TÊŽÛybƒ•³£;ŸrÊ™Q˜¸]Ñ0sŒÌ™±h6VÒÏÏo¨‘Ô\ÇÈ”÷Nrçâ§3§ÆW‹ðf#t°(~>¢FŒùŒuÔ‡ÔˆQ)5Bè#j”Ao¨B 5ªHNúŒuTNJ©Q…Rj„LJ*”S#„Rj„Ð'Ô¸Ô™˜Ë›¼êÊòªÊòªC&Ë«B(Í«¡,¯ªBy^u}”W£>È«bÌë¼êøäŒæ•%Zo¡<¯ê£Þ$V]hŒÊ«¶!ø•gVÝ!ù{TšZuùX Ê3«®ÍÐ=*M«JEïÜè4¥z—^¿òtj'at;*M¥®{¯_~âó4ª;A{Êwí8/ £>:=2}”FŨzÎÞ£>9=2eyUÊóªCèu^"i^u}”WŨ4¯:„²¼*„²¼êÉòªJóªC(Ë«¡OòªË¾ô™HCÇ!”…ŽÊBÇ!“…ŽJCÇ!”…Ž*”‡ŽCè£:cÔu0æul9$²<+„²Pòʶâ@è³­8cÔ'ŠŒQo.±ÅÈ1(]ó1êM{Ù±ÆJãÄ­¬ˆí¨4Ftýrƨ7ýfÝVÞ1*ï7+ 7¿\o®q»OǨüNWĨ|׋óÆ vÝ`Ô»èZ`¡l“ åÁàz B$ ‡ÐGÁ F¥ÁàÊ‚AeÁàÉ‚A¥ÁàÊ‚Á!ôI0¸NÛwÙÞƒC( !”ƒC& !”ƒC( U(‡P ÞB¯c¿!ó:ÖÓÀ¨4ÖBÙÉ ½ í¨†¼»¾Ñyâõ曃ÒÀΧß0êÍ"®›ÁõÉ"÷¨4²[d›çâ½¹DÄ[cÔ'·ˆŒQo®q!Ú•ßé’ê•v/ãM`ç¨ £>Ú3eûc†PÇ©PÇ ¡×qDÒ8n}ÇaTÇ ¡,ŽƒPÇ ™,ŽƒPÇ ¡,ŽBŸÄqkµìò&ŒƒLÅ©LÄA$‹áT& á “Ep"“pÉJI**ò:8ƒ@›©Ìgçö1( ÕTæM¤Ætâ]œæÁGåašwá1( Ó|° ƒÞ\ûh›ù`L~é£|”„hysÅ#}™<{ñÕy4ÈGåÁ˜'”Çb|õ³P 2Ÿ•å0( ¼ óIQNÆäad^Gaÿ/eï²#¹Îƒíû)æ ¶%ù²Í&@^£ô:¯ó»rç?nÌâ`ÎÇ¢Hªº,K/âx=„™çŸÎ`ôz3ÏÛ LÚ/‹òÑ~[‘öÛr|´ßÖâ£ýãB¼¯\a_½9ÉôæÍ1Ó›7'yÞ¼9fzõæ$Ó›7GLïÞœdzóæ$Ó‹7Ç<ÿíÍIŽ7oŽ™^½9ÉôæÍ1Ó«7'™^¼9Éôæ¼)¦7_™^}5Éôæ«I¦7_™^}5Éôæ«1Ó«¯&™Þ¯¤,Qõæ¼IžçM2ýÓ…szóÝ$Ó?•ר+;ŸƒþûFÚ,ÿæÌÉQoÎ3½:s’éÍ™c¦7gNò¼9sÌôêÌI¦7gN2ý‹3g÷é7gN2½mØÍô¶gOž·m»™^wîÉô¶yÓûþ=™Þ¶ðÉô²‹7Ïoä“ãm/o¦×í|2½íèÍôº©O¦·}½™^·öÉô¶»7Óë?™ÞöøÉô¶Í7ÓëN?™Þ6ûfzõÝ$ÓûðÏ¥K£ÞvýÉó¶ñ7Ó«3'™Þ¶ûÉô¶ãÓû¦?™þ{ßo–׋ÝdzÛì›éu¿ŸLo[~3½íú“çmão¦×½2½mÿ“éŸN׉¿òû ÀL¯'1½žÌózÓû ÀL¯'2ýr0Óë ÀLo'ñ¼œÌñzÓû ÀL¯'1½ŸÌôzÓ/×·?×-zýß?È_Žfz="˜éõˆ ¦÷#‚™^ãZÿkúïg3½Ýïšéõˆ`ž×#‚˜^¯s“éõH`¦·ë\1½_ç&ÓËŽ_,¯1¨ÉôºÁÓûßL¯|1½nðÍóºÁÓûßL¯|3ýË?þóüeƒŸLo|3½mð“çmƒo¦× ~2½mðÅô¾ÁO¦· ~2½lðÍóßüäxÛà›éuƒŸLÿÔ%Ê£^wüÉô¶ã7ÓëŽ?™ÞvüfzÝñ'ÓÛŽ?™^³øþ÷ïÿ—˜Ñÿú"_fz=$Ó›ÓßLo'€äy;˜éõLo'€dz;ˆéýLÿ}0Ëë ™ÞNfz=$ÓÛ ÀLo'€äy;˜éõLo'€dú—Àqÿ„ÏöË ™ÞNfz;$ÏÛ ÀL¯'€dz;ˆéýLo'€dz9˜ç¿OÉñv0Óë ™~©@ýcÝÒ¨×#A2½ Ìôz)Lo—fzÝñ'ÓkîÛÿþi¿ŸÌôžêö__äë­™^OÉôv0ÓÛ yÞNfz=$ÓÛ ™ÞNbz?$ÓŸÌòzH¦·€™^OÉôv0ÓÛ yÞNfz=$ÓÛ ™þåpn¶½ž’éí`¦·@ò¼ÌôzH¦·€˜ÞOÉôvH¦—€yþûo'3½ž’éŸNõzH¦·€™^OÉôv0Óë ™^“Æþ÷OûýÀL¯wÉôž&ößöë ™ÞNfz;$ÏÛ ÀL¯'€dz;$ÓÛ @Lï'€dúï€Y^OÉôv0Óë ™ÞNfz;$ÏÛ ÀL¯'€dz;$Ó¿œÎ{’ÇoUù“éõ ¦×€y^_bz˜éõ@¦_^fz}˜éí ž—€9^_bz˜éíŽ×Lÿ°Ÿ£^_bz˜éõ ¦÷$âÿý«}w %Óë @Lï/3ýÛ @£Þ_fz}ˆéõ`ž×€˜Þ_fz}˜éõ@¦_^fzyˆåý`¦×€˜Þ_fz}ˆéõ`ž×€˜Þ_fz}˜é_^×rþ=~s%Ó› ÈLo. äys™éÕ”Lo. 1½»€’éÍ”L/. óü· (9Þ\@fzu%ÓÛ%°™^=>Éôæñ1Ó«Ç'™Þ<>fzõø$ÓÛo2½yxÌôzÇ›LÿtÇëQ¯ždzóð˜éÍÓi¦ÜÿÆ ¹·=¶†#zr-CÚHBÜgŽû “cêø|M”¿¼”°ÝÛÐuÒA#l…9ÒnIx΃“Ûî7Ï®ºñƒœ¶àÛ½\QŸ#¾ÉޫٱƓ³îøBósœÊjxâ~îMØõ§Æ·óo›äâÉ”~}žæiøÃ~>e£Ý¯€X/ï•øÂSV”+„ݸqEÝp:hñÎï…ï' Þúíœ8“„ÄЦl‘®^b}ÒA#lErØJIx΃“Û7œ1÷µã½÷=QÞ|moxáìÑ^|ïñUߊïMâß>1ô¦`L`ʆ½’4ü‘Kq ° æH«%à9 - ;N}÷®zуV”Ž@ŒõÞJà“[êc‰áÆñ|Ǫ¸ÍG̱$$^ô %e壙V>š©ƒ8FØ sØJKxÎÃ[‘¨ ¿ƒΚßåÞûœG¼æ÷Œ÷.`xÀ-!ŒÅŠE09îíÕ1 0¦ Œ0¥ãWœF4f™tc/B#’ÁVKÀsšZ<š¸¸½ ÌÌ„ %úÛy? ïÂïÄÀ„Cm,ÛÄ«É,Á*b@î½ËŸÜ{—I äË}žsôcœÔ±¸³û¡ç,)÷ö%“cÁ;éÆp µã~l{á[ëq¯m­ÍW8HJ‚1u`„) ÏIJ8Q?¹tÇ[aŽ´[žóЦÿ~ [Û[|Ýß3e×Mý€â8áÊ»ñïUcmÈÛ5qÜoÞqMoü#å>¶`3e ÷ï9^X©ƒ8FØŠä•–ðœ'w¿ °ÙîÝßýÈO”5ªVÿ¹1ˆóqìQ1wð©Œüýo[}›¥­F †l0¶Ø>æàóÞÙžWIŽR_6V&ã9vÿXÖÈ{ëp®}Ï”=ö77¾b›{ã{×øä±\øÖÚî_6º]˜ãâQ?%$Þøâ-ÊýÜÇ_7%´¿nê Ž¶Â¶Òžóð†øÔu‹=Ê÷LÙãÍoOWj/\3®÷†Ç^`moy0Gáû$!ñ¦Ã)q<ƒKMú%ŸtCÇ*78deJx΃ëcßO¬LǺð/7Qz|ï­ß’|ÄöåÆ#ÔßkW×·šáí“„Ä‹¶LI ÏcûSâµÕ&ÄÐ!+Ìa+-á9¹yîÃý”ˆvŃV”§û jÂ…ë¸áÇ'ü 7Úû‰ä¸ß½Ë,!1tÄSîíT¸£SBxèI1tÈ q¤•’ðcz³ieŠóÀ†[Ž8ÒÞ˜KY1îoèØñô Æ+g?êÃ{w´MC Ct° Çvïnpœ¤TÀ`µV}n£4ôa´ö»f}®8»L„waÜT]À'Þ…ç¡ÔâØücÿX)!ñŠãEb×ø§ÆÇ¦qRì¶@ŸÛ@~L@ûûû›D“©+N ßEˆMåÉ­w8U– @‹·Ä‘{uºe’aÀk“ã)?øMÀÃ_ÃnR>¡0À 6Xãök•¿OY¬ƒI¸àŸi÷ªŠÔÇ{é:/š¼qWÚ[oœ¤>¿Wöknñ`aůߣû)m”NìVŸ ²NÃÖkXuc‡3ï{¢¬¼Ü¯ xðr?Ìqgíý¸o×Äq¯zýœ$SF˜Òù»±:KqŒ°Éa»%á9y©b·WÜ÷jà ‘”û«€?(ö_hF„Íe»bÿu$–wéâˆ]â,Á˜:àÁ7¥ãÑK qÇ2ë Ž¶Âi·$<ç¡Õï€å>y®±…üž)gãÀ²»ÇkkÚýt…c©ºW‡ðYÇIE–:0B”X'ÿ”€{5»& €X6e‚>·…ýœ‚ž±ÏÆý#±«üž)v_÷r£ªÒn¶Zx(÷ÄØ5Ž0Gx=g ‰¡#LYãwTî}Q\ó§bìÖdErØJIxÎÃN<Á­ãù=zˆ¿!øð®Xƒ¢‡Zbø#pž8ŽøK•€Ä«@I‰ï¼ÿ) /áÒA#d„d¢Ç?¦ =Ô}ÊïäºGcVì¡’Òáhí£1Úd?bsãÞNáØß܇ÿqN;ÞH%!1t`„(qÛþ”„8Žm“âa+’CVZÂsZEâÀ1§q„‚ã(øußx¨Ýê Æ;€-1žðÆæ¸ßiÛ,!q“Ç£( )aÁN¨tÇ[‘¶RžóÐÖãìuˆÁ~‘EÁK鯇G6zR.^^_~©Ý”{Ù‰ãÄÙ"%$†Œ0o¦’/®1é Ž¶Âi¥$<硟e¸C‡¾ãJí{¦tü˜Ãû ·úŽkºïë™8~2¾ät¦„ÄЙ(cç×îÝÚ&ÄÐ!+Ìa+-á9MnÅ©p´ûÝyprIÁÍÍq޼ñçîÖ7®i¡x;b½.Ž{-¸öIBâÕ§SbKOŒ%Üïá}ÖA#l…9l¥%<ç!¿ÎvpÆG´^_') Ñã6dìÔz/kẟK|k×Äßò5IH¼ð)-ÊýìQ¦$Ü?ìkÖA ²Â¶ÒžóÐqúÞ:l(Ê>¼ï‰p¿tÀuï5:p¸ñ:|Ï»!î~úÂûóð=ïÓpã“NÉ0ȯá÷jŸÄ»Õûs›ËÑë½Ñêôîí»Öÿ¤tÅ_ûAïÞÑ:£º16Z8ÎO'NÈ)Á˜:0”M’0.b,ª²Âi·$<çÁÉÅ«„SåÐuàDËòÞ‡oø ï'.ûnŒëZãx¼X’£/²’PX÷u%.ôJÀŽWjØyX&èó´£LA[ÿ{Ó¢œFã©s"àÌØÃû5€OaÜ?¯ž0öä÷ž©çÇq„ÓèÂ<!â¿"ˆCÃc“;Ißxâ,íúÜÆyôÃz]pítb}á~ÓÄ#Üðà1#öÑï¿Æ–0nïŸøºÎ qWWã W†/$!âÐÎ?5ü>Þ,gÉ' ~`Ùçñûõh]ÞÚkÜÑà],½=¢⽿Æ-ͼcg |«]bÐ&Ž•Д¸q/Q”åÒIXèŠLÄ1ÂVRVRÂÏyèÑÚ6]Ï;¬¥(;BHÚýÕoÀŒZiÛ_³püò[SP€8Ú_fIHìÀ–¤ †¥¤„{ï°œ“âa+’CVZÂsö½áŽjÜ»ËØ`Ï”‹·Y·âû¶10$Q¶Äxf68ýÌq-ƒ‘—’PØ7 EYÞ§e Çeü¹-ÄèS¨[²-ü®÷n%oÉH8ò– nØ{»â[28j‰uKW®9bOJBâV·d „küOÏø¤P·d°@ŸÛ@~L@¿ÄØD^Áý2ä-YR:Ï Ø¯ó¬€ýJáø•Ä®éœ9N–«°cêÀSVm ¸_±qîOÄ1ÀF˜#ͦ€ç,t Žg -üéß3eëƒït6oÃëí^'àŒ&ŽÃî½ocæ`”bJH !Êzj„$¬ø[•âa+Ìa+-á9M.\þ(£-þDÁýÆ_jD¬@ìý̎¡8.®‰#‚¯IBbm¿‹²aƒ^6làKǦ-~Y‘²ÒžóðÕĈ¸‰û5‚èÉï‰r{cÐéwXÊq5±áæQ×;n‹ã¢SÎŒ©C—¤lºŠ„ûÒ±è×QV˜#í–„ç<ø—[:¸{ìF¶ÁE9  ¼5°á{`žÚã¥3^;"}KBâ&?bR]®)!"?ŽIqŒ°æ°•–ðœ‡Î/'_!{„`+R”“±váßÜw¼éoŒmã¼°ÅîÏØíìöÈt^N”™ÝÖžâ‰ãÜbÌ‘ÖQÀûùsÜ.Õ#¹ÿ¬8pawÿ ~Þo§ðÂ"!V¯†Ì}‹.}4¼ðÆK‡$,8‡Õøû·Mò?_¥ßŸË< Ú¯°±›†÷¡6 EˆË›E4Ö.Äl]ñP<Ô áõǼ[P›‚¤Œ‹ÛK÷—’/1cT_ŸÃ6Ú®MǸšpöøê¾gÊÁK·{­:ð›C˜%³ "V{‰c_~~Ä[²†B¾"ÁOAvŽ>TXÒ ?_¥Þ ižÆ?' ýýCŽ;ã¹þž(qy[óQ„7f Å}Èe8qì½W,Rű­Ìþ²cêˆIéXÞRâJ1tÈ s¤Ý’ðœGÅÒF8ã~‹—Ñ”€<"®Wº#³ËÁ8×£°bi÷1q4¸ÅJ‚1u –ÖÆ`¥„{ϤuC‡¬0GÚ- Ïyð/w@ %3Õó=Sz¬›=n0âzÅ6ÆŽö~sõub¸ç¸Oã H”„ˆúøS£Ãí-~8?õ'ƒìÓøç¼'øúÞ& ¼\÷ÖrcdÆýØœÀ;#1ˆc²0VñKÜ' ‰ÅÙ$EI)á~÷mÒA#l…9l¥%<ç!÷ÔÁ %¾o,!I9VìöÖøa,÷a5¶evx­‰Ãt{QýѰMé#Li! ;6‰¥ƒ˜á‘óǶXß3Ðß,|;ÑðÞÕmŒ9J óïFøNÇÓ{?­#üG{âø>ÃôÏ'žç”:0”ùl)a£S2ulv[¦æH+%á9-û÷RuéòKE9FPl¸†Ú#*tÝ™uº\‰ce¾,×5qÜ?§õš$SF˜ÒâgT½©c8Ä)­HÛ- Ïyhßq?!t>t¹@Š‚ÀžûÍŽ]óXãØ Üc—mŒ­ÁÉÞâhËÊ’P¸ë:¥(pš¤„å:àà°aè É‘VJÂszµé!ŽÓȤÜëí†y>ö+ê·ÂñÚ¹ë1qÜ»¶6K0¦Œ0e‹E.Ü™mÒˆ~™àÏm3G?§àUWüX^ÛÉUÄ”‹ ‰®çîšç‰xèGa- áë+Žé_)!ñÐ ¸(«FHÂGMé VÔô~Ni¥$<ç¡ÈÌýÂ÷…—(–È¢àþ©ï‘¿ |â‡+nøœ„#jòÄV»8ÎÆ˜KH¼*Ú/)÷Ê€XNKૺtÇ[a[i Ïyhr ç½qŸMµPeÇ2·ßGŸpFÇë#¶9UßÏÄ =ðÖLŽAßoJH¼i¡Lʽ{ˆ¥5%ÜßûzL:ˆc„­0‡­´„ç<¼–\ÌÒØã]& 6ž<%>°QÅ¡"n™…±2à´™8–œ%¡ðà9u¢¬!«$ÐOP:ˆ?_e…9ÒJJø1‡„,ÌÈÈÁSà0»q‹ÍÅ;üiˆÏˆ+ax¬Ì?5GlGf ‰¡#LYCWIèp³•bD…ÈŠä°•’ðœ‡c Ndý[†ˆ°ó.—å /Äm•!œp™C­k|âÍñ¦ìŒ©K ;cꬂP! ×ô¹ ôðÇôÛùŽrA”\Râ¢õˆïbcápF#ÍÈß?î ‹ãl! ÆÔ¦4‘¤„A.¥ƒ1YaŽ´[žóÐŽ‹{®ÿ†K\QÆßÚ?¸NßÊ87Dy ÇnèäC\T”ˆ­#LÈ‘”„o(W!ƵG+Ž´[žóÃø>6Fvìq!pú»(ç7C‹,÷+.x%n|1×8–…+Šcß™¿h ÂÒ¦`Üâ°—éÖ!#dEqØnIxÎقȾO‡¼Ii¼BŠwþL)N¸=1ö '\öÉq?Ü{Ÿ$S‡¶1¤ÐGšâG7ë þ|•æH»%á9?s;Ë´ÁØ‚‰rò‰Ù‘XxÓ7þºÃÅÑ+®íèÇý]³„ÄÎy*Ê;Ý’°zæ¤csÎSZaŽ´Ržóp^ÿ>¡8œÊë!ð‘\‹ãl_¹©ßvB¸s.ø¤’!—i¼aWDk¹‡4|Ã8åoÚ$—f°}ÿ°_NÊQªÀ÷DY—x–oÌ ”±¶X¸p]´\‰q´Ï3B;‡/Ž=.ÊÆ¦~/±¤taÜ7Qr¤Åþœ‡ ƒS{¿g rñŽí[cj0ƒÐÏĆ|®çÌÁÀÙ”xÓÌ’Âüá’ÀŒáÒAüù*+Ìa+-á9MîþpA½¿K¡WI‰g3^ò÷Ó~ÿRn¼#°*ã×–XôK›8î-ÉÖ& ÆÔSMa°nJX¬›:ˆ¡CV˜#í–„ç<Êc Cq}·dö;(q~ôØ àg56à½%–Ç®õ‰£1½#%S‡.•Ç¿ÅNgvrÜĈK ‰þ& *n¤„å~÷F½/ë†7…V‡­”„ç<”ŸvÁºî~' |±7†ûôƈÊk‘Ž;"a<GLª8îßÄh%¡ðÊÛÙ¢œLýJ '+ƒ¥ŽÓµÃÒ q¤•’ðcòG®\x£nTã °)‘Œ÷·—êM±^#g…?¼ç_މ£q#žŒ©Cwð›Ö;x-×¥#¯BÒ s¤Ý’ðœ‡ãÄ#t+pÖª4F½7ìöà|æ`Dk£b1â·w~£Éag7 Æn5@„;Á?öIüؽÕ<ˆÒ.ŒzZ-??Ïk™D¸Ä( ÂÕÛ¸_=0}F7æe¦p,W Þ%ű®a ‰Œ^zK³“JǪ€÷²Bi¥$ü˜‡\Yá?Ý…?ú÷L¹X i $ã^YáŒFj}ü±…+¿8Ž…? KH<ä­, ŠS¦„í^–Q:„íÿGZ) ÏyØ%Þ˜q~Û.ñöÈÁ·Ô”¢15Çšþ펣aqŒä°cªÀS:âYSB„hÌ:ˆá§fH«%à9 -ú7%‘Iµ!¾")ƒî‡ø94'›÷xSÇc?©‰a]³ÚÙ:cªˆIAO høÛ”bh â(«)àÇ,1سaîÎ!¦l¼,,äGlʵïWàÃZ­œS_×i´ Ń_„F²‡¯ ƒˆ! ¸­Ü§¹þ4ßQg<:¬®­¾gÊÎëþ•‡ n|&@ *{ÖDZHO£ 7×/!âùã¦ÈÃW¼ƒ%!gRžË8š/×U‡GrïL-üž( ôµ%oŒü>8‰za¸•m>q JWI0¦Œ0Y%!ŽqcÒA#l…9ÒnIxÎC?ÂueðÝX•ïY”Î{ˆ(ðdpR\ò¯‰Z´1ÐÛ`¸ $VRvQîcƒ$¡«7ܶ§xbœd€9Òd xNAñû ŒWT ø.¾ úîÆ ¬ '0vŒ¼Œ„B3“›9žòÁ.Üþäиì=S4Òר:?¶©íÏ»µ^DXV„T\ðvF„íq#…3÷Åg3rü„ý4¯3Ç+°`Lùa ŽÕ%!JFœ“bduÑ3Ð^žŒ÷^pGzÊÉêß…:‡UóäÃ×éGalïŽø %ƒ–$ (LJ2$¥) ‘ŽEƒÒ@üù*H™¬nÊ|ÌBSk¸ªÀÐÆ©%E‡¶¨¿Ñ3^Þ»µâ'áîÃÊTƒÍ)!±Öܿ͢³8¤„{ï‡Ëë †Ya[i Ïyè‘:Pÿe¯nàÚ=)+Î1}QMÏe…ãïÆ¨c†YÅ Ú$Á˜:0¸K²ù©ƒ8FØŠä°Ý’ðœ‡ýnñŒö¸çÆÜŠ€D±ÛÙƒy;àŽ<B¸ÑX±3b°Nã7D“ro8¢šAJØQ0?UÂïFô¹ Ôðç\¬†éCÌß3EõØ|`ïׯĝ««jÝæÔ°HçÅq?I¬{' …‡‹0'ßsIˆ0émÒAüù*+Ì‘VJÂsÚÏ÷·§GS DQp€¸ñÅûÖ{ئÆØlü›#JXôIBâ¦@‰¤ìØÄ–„}0r×:ˆc„­0‡­´„ç<\v)Ø#ÞÙ¬ŒWÞÜDUw¤ ¯ˆé¸wÏ+Ó‚‰ãïÀ¼œ‰‰9%!ñªÊxIYب%%¨ŒUêX¼»N+Ìa+-á9§óB1ÂQxY–”¨ë¨´`õGºô’ëgâ7Ìíœ8î‡iœ%À0À”®2ÐV\®¥ b'7ÅQVSÂYè02Ó²bÏwX²§ïqùÄ€ò¹eÆqo¼àåšá\j“€ÄCy½^’ÀÌÀÒÑ•u›F˜Á6süs .xÂbtá8f¶¢¨tìý¦¸T~á8YZä,v6ÀK†6¦Ñm¤p°–R@›BÛ˜¤”‚‰ƒÛª“C¦YÀÓx_µã 8vV[ýž)ºm0`aßQáãÆ hÆÅùÆŒsì¨LR7ùI“â²í–ÐQ° tã„#+’CVZÂs® Õ‘ð¿ñÝù=S°ݘîŸäí¨4Ç{ayŸq{•t9¥„ăn㉂¾?%oèÒqd-:[aŽ´RžóкÏÌ*TÁè¬Ê`JÛ˜ˆ‰5cÕñ|¬¬ÏKkò1 Q'¾å”`La ÊÏ—„ 7L¥cS¶]YaŽ´[žóp5…éëÁª EÙ‚rc4ôEðZ”Ô,¬b+âl•QŒ©#LA¼°²*xª Ž6"9l6_kMI8.å·Jñ竬HÛ- ÏyÈEÑ£îa‡aß3iP-BãÕÁ +0_Âá!»÷í‘ìgŽdD±mI(Üý\&eAM×”Ðv锎&SË s¤•’ðœ‡vúî«ic²? Ýx(α Ýx¨Î¼&Dìö¿ÓÄ€ †/Héà;¦~ S2å"Ö[˜Æjôd¹…'ÃZÎéKE¹ Ð#AÈ…ò:0ïN…ñ›âíjrì›JåI‚1u ßÖ¼“K†ÒA ²Âi·$<çQ…jâX•µTÖ6)ôF‰˜8Õ/ÛÂê±U‰?,T³‰cW¡>KHÜ\ÖÖ”åbQZKXP' t,ª$PV$‡¬´„çÂƤå¿Vú6/´¶ˆÃÙ ãÍ ‹!šøLã÷Ë;[p៣wÄ”ø]e@rØd xNÁÕQ76].NH;«¹š¶mGTˆÛ& ‰ÝÏ2)“7SÂÆ½cê Ž¶"9d¥%<çáb¬êº_¨Jô]”ØçEuÞ“Wß7F]"xÆzaùÒÐÐ* „¥þ:Sšú”QBìǤCWP´"9ÒnIxÎC¹Ã¡ ðoÏ´Pî;ƒ#²r¡Ç£q|«§CTÅÁ#gIHl¯zR8„J±K§töª§É!+-á9¸OÇG¸iù—+ŠŠw°ŠîWoü]¢ùPxI…ã[]àFHŽ“µ|SBáô›šÒéÛK ê´–:²[Za[) ?æá¶lÖÐ/wJ+ ûœó o|›£ÜÇŤsôMd,!±;¥%ådŸ³”p²Zê8Ý)-­0‡­´„ç<Üokå>©oªX¤÷ö…YŒ7¾PûÝÒ÷ĺ ¼ö‰c0¾;%$ÞT0)÷±•=¼$¡ìñµÆ¡AV$‡¬´„ç<|Àbצߥ¯l­r‘W±pÖï…åÎ’“É¡’”)Á˜:P‰ÃlûJBÃѳtk :Ö‰#í–„ç<ªøU„7D9Ïcuñ+RPìe§Îå·J_%¿y»q°Ô% á|–ãÒÞ&ès[¨áÏ)8'”ˆö†ï™r2VÛõ±wlÓ{„³µ–‰ž›²ÅoÕYBâ®|È¢°XJ؇P:ˆ‘*+’ÃVJÂs ‹Ü7¾ø+¾g ò“»5ÕÙò¶7vß0Ž»OÞ¢oÑK@b¨ÀR¢}zV,¡]pФaП3mLÏYøïve ¡¡¿›)ƒ9ÆQV˜u˜ƒ|ÿ Æ™8¾ÓûwÐωã>›ì³„Ä«³”MYf)[‚X÷Ò±(¾¬0‡­´„ç<ô¬­\7㾎yóE¹˜ú¶"w~H}[•%LŒä ÇÖuç' ‰};Xv%H ;\©¥c—³µ¬H[) Ïy8Ô‚ :£Dè¦P Sx‰µÅ]kxçµÅUëšaLJMޏž$–Gg¢¬h2jÑSnTcé¡ fH9þ9y´Ú¢FÞj~7QкMÐÙ‹­ínx`½F™…U½ÈÅÑ»:KBâî´„¤°ÐJJXXh%u,‡ËEØŠä°•’ðœ‡ë:6”Œ^7¶î.Š@Þ0NSQ"h³Ñ=zã0µ!,db8‘Õ”£ozn’²DPm X¢ÕE* nh×g2Lvë ³¬z3n*“RV%‰B}*Kr.ÚæÇ!ƒÛ×âXY72%$Þt—”q2ÖÉÞ¥ƒ'rY‘²ÒžóÐãÕXýâÞªkaLJ[ŒÅãÙ3Š…õ„ñÛïl‘ëÏ£çÄ4\ò?_E`­ÞXêÁÒ !]êÍküsò÷°ÉĈ®Æ+û¥™²¡>ußÙ–bDHG|­ûŽ cøb†gšã`¯ó”`La ÀKÂÊ åÔ±:¬9­0GÚ- Ïyèžž>š}[†jY?÷[ÅÖ·[jÜ‚íÃ6‘e±"‰ÇŸ+£ºJsQV$xüz1ëÇ „‘ùA ŠÃJÂs NÇS;ã8Ó\LÇ35ÞÚ¾ª§åñwçfdIˆÁ©Ûv~~ljšÉÑ Ý…&%UÈÕÓø ­»K14ÈsØ@KxNÁ]ÒºŒæ_¼ MBgŠÛŽžì#"Bâf4ê 'DŠN´ùù¶ñ5<ñÂ0¹$lè¡Pã7T™+›š9”æ°…–ð˜‚R ¼ë¢{ô¾³!•);®]£HLcµÉ¸• ³mM§\Õ÷(Ö÷H‰7íý’2‘¢8é˜t#x†F˜Á6ZÀs®‹Å.Óƒù7ß3¥£’ltežRˆÑ‰ô<»pÕYmJô¢„«[™²! ®èKñ竬HY) ?æáBœ›Ö1õ¶.ʽùd­K7•¾ììíÙzâû?ocâØvEJ‚ñ¦¾Ó…ÏTJØÐóºt¾ÊŠä°Ý’ðœ‡\ ›ú-GG^¦c$ådåíb5šèò‹\ˆ¦~Ì«ö‘±íG¯R Ûwµn-ʘ Xq °æH#)à9 mCV_A´/hLéxz[Üáá‹úP7”27Ž-Bî3¸)Á˜:>_¥G”GIh¬«’:ˆ±q‘æH»%á9]Š.ðyîQ¥š½;Š‚ÅªGq­ØÒEÒs$ÅÄõã±%Æ…å@ߌ ’xSïQFÃæˆÁ…1JÔãA+ŠƒV–„ç<ì—cyá«û\]”.¼¨ZzîÌ6í…áeëè Z[*ZBb¬“ÒgWƒ`R±.Æ>qØJKxÎCžpVM„gqþEa”~‚èk@¶b‹SÐÚ˜öî³äòoXBbßW%ec”~Jà®°tl¾¯J+Ìa+-á9¬£pî` –§/Ê`•±²ÿÄ tÿ…‘ˆv!Ë.9â]»O»¥yR:ý£)¡wöP±Žî–æi…9l¥%<çáj±+ÀN´nþž(b Ðô¸ÊCä—šàcÛF(Ž éá)À0À„#”€(p9« Ž6"9lµ$q0ò«$SGŒH ƒ’R†„•ÒA,Ç&¬0GÚ- Ïy8ZœEG–¡ÆMeWawx7šfŒß Ø/pœ3j@–„ÄŠR.J?U ^:SGNµæ°•–𜇻R]¼Í'S¼’ï•MÙ?QÐá‡ìŒaPl#±‚ ·1qt¼€JBbµ`(¨å[\.–bA²Ï°8ÒJIxÎÃn¦ÈÆ©VQI¹uÀ„€83ì`gÞ:1üò—"rÄq4&‡XBâ‘a¦¬Š„X!÷Iñ竬0GZ) Ïyh¥l¸Ø{lí°PšÀ(…A +ð@0ó\c ëðnæçcc-/7J‘/Bg$’ÇÇÞq’ùÒ¯ÏÓ^ د9Emõ Ös+ŸšhØeâÅN-¡–®ÿJ† {Ž/TwyuSß…I~æØ=O’P¸³ôÄDAéì’°*ä-Ĩ!+’ÃVRÂyhr=(#^þž‰r©#ß ŸCœ÷ÁJ [B•]§ÏÃç4 7T AVDpyt;ÙOÒ !]êÍæiüsnïtá—y1Il¨1§€’ÌCÅ[Ç‘øÃr¯ý˜8"ùà˜$$^3ÛXÞ–Þ–âa+Ìa+-á9§O¢»ëØ{SaÒ¢ wZY\h¼šŒ0FÜ«#rñ69¶ÁÆ–¸)M$)*ešTÊ4u4÷xM+’CVZÂs0FhçÀ PÍ‚LabÖÁŒàÑÔ0uM·ÄþEèýÄq!ì4%$Ù^È”U#$agbVê F`¸¬0GZ) ÏyÈo°)Ń­k¾' ÛÛôðžw¥lÄ%³JÖ#ç`Õst¶?K ÆÔ/€)¼vN êΛ:†+.¦æH»%á9ý,YlqG®–¦ŒfÙY~qG´ø°ü¢qüdXrâà¶"%SF˜‚"%a‡Ç tÇ[aŽ´[žópç ¹êÇ‘UœI8Ù4š‹Ú »½™ìgw çe¯‹áhì¿êñÆT€¦4V²„cQ gª Ìuµ>·Åþ˜€¶’.†F˜—öü&DJ@lјÐg¢ØaH­ĦpÁ=‹??q!–£ !ì&0¹'‡ŸÈv,ù§²Ës¤Á’𘀖þû‹ì~vUo(Š‚¹Ü’ýRo¥—?Ø:e3¯‡RBâ®ê EY¸[Âqh„tÛã¾Oi¥$<çᲸØ«¾qQXxßqS°£zñÁüv%VÊ~›¢fì4ÞÐÅMPebVá⟥Ӏäðœ‚V}žº™¦ÇU?)ØAßøÂzŠD½¨]x=ë–X!EË6qDvþV 7þ™‹þíãOIX©œ:VÇ2§âH+%áÇ<´êÇËüb±gx&…¡EXÊ KÖ݉ÂîÑaÉ ¤h °O 'Ú –€ÄNîIÊÆÂ< Ö<©!›÷¤ æ°ðœ…öýƒkÎØÕ’À„q»ˆ°‰ÃØ] Àé ¡£EÎ °ºNã©#LAÕ˜’À›³TAˆšŸËb L@ñ<'Ž{{\1é¢(Ž ËØ×´àŒ#Ú U“a]à¢K…‡‚%‹²b~ÐÙ§;5Cƒl0GÚ(ÏYèuMP™Ü5Ž“ÒY¡88^[B`ÓžÏÄñþ¼øe‰#ZF^gIHܲÆqRØ|'%l¬`œ:6×8N+Ì‘vKÂsòö\×_¥tÑÙcÌÈäè%œ³Æ†QÈ•ðÖ áZôçìZ]c¯tô$!<¨jñqGvM ˆ?_R¯mšF?,—7ŸW3]}¿'Ê„ÞØräÆÁ6þ"þ°ß â“ã`©0K0¦ŽÏ×DAÍš’°ãj¯tì.ñœV˜#í–„ç<4¹ !¬ûJßÄ÷DÙØØ+n¤V`vöŠ[±¥p(nƒ@Éq!¢%%SF˜Òá`H +ÚY•âa+Ì‘vKÂsÞU!Õ|çê‚ÍIL Úwµò:Yù`»06>HŸ8¶³„Ä-lÊqÐùj “R1*<È sØJKxÎC H”ÂqË$F™™²6–Zá#{cºm¢¥*Šk~މƒ GI0¦lòM,ßb ÛJ§ŽÅ§Ó s¤Ý’ðœ‡6ù+²ÊïU©ß3fZ¸Ý­d ð…î±Â± ~²ÆöU% q—/¶(È-H+CxSÃê ß´!9l£1%D•¯1é F•\‘ ²YãSЉe=T½êR…¹¤ÄGñŸ¹ãÉ•ªu”ˆËÎ2w9Ú°©ÙàDXÚr|D\“bhæH“%á9G´œñ7ÞRØ¿g‚ü,÷YmŪµYÏËÁ&qtÍ[›†0Y^(¶FrÐB׌eB¦tês›¤Á“ÊïÉ8¯®f EAÈÅ¡‘Ú(aÍ<AùÛéóˆ†v5JHr}ž¨Hlé‚pÎS}1Ø<N@ÞÞƒN…È©ÆÕl°;†ovQÞw¸ZÄD ¢ž+¯8üùÉŽžxûË@_â:b5>®Ë¯I±¼ÃË6sÈBKxL¡2£úq·Ûp¦ãŠˆbÝ!Ç!È¥QPïeK¬LG”€0KÒ”aéP¦#)8§„…ŒÒ!¬LǶNi·$<ç¡u}_ ñßåj<Úì¬.‡#tŽŽ}Ø™øSo‚äÐBœŒ©cZªãø¥°R¹é"Ä1ÂV$‡í–„ç<\7Ñx)!ªõGˆƒuC­HŽ´[žóPV®´±”íL 17ž}àaÕà‰FÂÈÖ87^Ašá~…bÿëñ‰›‚‡’Â,%aaC«X|ëiòsèá () PMŒYÖmlÐ"nÁ]~‹2ÎûHŒ#þ¢âˆÝë,Ø:0”¸à·€{c„»Vaüù²Å‘fSÀsåmÃZ¹øïVí GVÛ••p…a=^ýwCÙ>q\ƒ+º%$ößÍ”ƒmbSBŸ _:„ånÃå`rÐʔ𜇳E}6¹€‹nª°˜òc°Õšñ'‹ù›­¥€„›—RSÔŽ<œôa¤ bWýœp- "ÑZ(ê`¢ÞÎfDálŽÅ.vÛÌq²Ø¶%$Vt«)÷Oˆ‘Ñ’ÀŸÔHÆŸ/[Q´²$<çáÅdU—ð¡÷YQàùAÊP+–ß zìì…±4 n¥8¾M½Òвò¸f ýdi^ë芯.+’ÃVJÂså¯Â½n‹«ºï™ÏñÅzÌ7<¹h®@®*Ü"ã³¶±]¢Æ%Ô`îõüºþÔà­ýEoºLÅúÜfyøÃnåƒ 6 }³¿“W¹Ñ‘}°Íd|Uñ›BKöž8’5v6»,´- Æ«ËÐá;%aÅ{é Ž¶Âi·$<çáýê›!ÿ–wéEÁå=ÞíqÌXª{b/Ð cw€óäh¬Cž ;±))í’LIh¸î/ÄŸ¯²Â¶ÒžóЯ-úFš(8tE·èëJ‡Ëv²¥è:è!FQxC”HšÆ®:?š°"Y?G¯t¿¥xbˆ—æ°ðœ‚3Rq>Û£›Ó¶1%Õ”¡tø_4 Ø˜¿FVêÞódXW €Ä*ã^”ÁâI0:Þédƒ8ÒF ø1 yˆ7eøyfI ]ñÌÐC®ÌÆZùÂáÁm¸/Žhà¼M{bIYiWJXiwêX=3‘ 4ÑãSoçbÏ€Èýg“‘¢(+Ò¸¸5Œ°c\ŽǽÁºðžÑL%+‰Õ^IJß5B˜ÈQ:2yÄFˆ!m”€³›¸£‚ Üx V¢¨þcýáÈC}ˆÎ*1Âpú²ŽLr ´%+ ‰»Öœ¢¨þ%ôëT}ê0†›VL¶RžóÐ}Ò‚’dh‡¦>E9‘FÕã¶M¡ãÖ_2 ‰ãÏ€R"ÇÅVÖ–`La Ú•„¹T¥ƒ8YaŽ´[žóp‚óœ‚i9™ dÊ×aT ?q;™“‰b‚Gbpð?'G”œ%$îrB…9™)á>¬\礃a/²Âi¥$<çálÀ=¾Ctbó¢œtlD/ùe†ÚΪ²ÆÈí;а,9VtZ. ‰»» 'eA`JXÑé·t¬j]Vˆ£¬¤„óÐr²±;PTqg‚RRVÆŒF/¼ GS^x¨°²êj¦otúÇ}ÌDÍK0^TÃf¢°ñOJXSš:G¦Éa»%á9-('¼é=v@èSÞh³û9pÇž>j!ž…ãa¿”^÷·xm“cêÀSèöJ ;Ý^©ƒøóUV$‡í–„ç4B:ºŽe…9l¥%<ç!ÉPÞcUuâ@áOö¼;ýÞãš¿o‰Ã±«íor\ì³g ‰WU7LÊÎTÝ”&î“âa+Ìa+-á9]d‡)zbbFq|-k\i쬃©„¦^ sªâJo_k|b~ [¦G`øŠ¢(éÔ®Om¨Æ–ݵEŽrCŒü.B„³qõŠ"ˆ½k_kܶ‰cEèqŽ7̨Ģt¸çSÀ¶²¹Uk{<Š!-æøç¼ YñÅÆšäš¦ªIÐQ’0nDðºgÑual_˜ñܶI@á–% F.|,I ìÇQ:ö=KЈdðczM¯¥’âš±Ék™»êÍ£ÜqMå²JBbwKJCDvIhtΦŽf÷mZ‘²ÒžóЛ¹ó©XB’0–ûý×q"±¯ gSgÇÂxyÈÏ{Øp¬Aw}ª$°h|ޤÍ”TÌÏl£>l¶ugTÆr©`DRÔà..¸;ð¡V%ˆ!2†›ó`usl‹FH‚1u|¾& s“R¢ì&ë ÆîDV˜#í–„ç<œ¸2­+öÙ*®@JdúžQ.a‡cóÆÈçºñ‰›ca•?X'†ch€K˜Â⯩‘Ûo ÂÈì`[-ÏY(äjÕëƒÿ~ÏF‡Å!¯ÎõÞù¯q,Þ›’ ͱ±§hJH¼9HË”åd¶™%,(hU:ˆc„­HYi Ïyèïvᇊ'îDOQTt‚-K°.D8alVGKŒ ZxJ’ãbã””PxeÅš¢D™È¸¶±„†-`é Ž¿œ­HY) ?æá`¹…]L™Ëÿ=QÄxܸ±—*ë æìÚ# ž¨âØÛUŒ©#LaÏ”°³PCêØ]Ê!­HÛ- Ïyhku°hľ.ì“”Ž‚‡Q|+\-‘ê°ãÌkûžH3lǵ1|Ù¯:[%eÇåWIˆÎmû¤ƒ:d…9l¥%<ç¡Z”£Œãyo*hU”5JbsÅ*Fô¤ˆ×S”¼, âar¬l£—7¿MihœR:—ަŽÅeErÈJKxÎCþ⾫ù2Øï™Âl·½_jÇ|!at·­ÄáË/dͱ/,jd ‰½¬'%ò¨"%ØæË¥ŽÃ%›Ó sØJKxÎÃey¯,s}–å5…¢ .ÂQp%s÷±u=B.ŽÈ68' ‰Ýô+),•]Nl&Kñ竬0‡­´„ç<\Œò`˜$S·¿g ˽D‘T0ÛèÌT!Ic”:ùú4ǵÎ/ý 7Ýê$ea”_Jà ¹t«R¬0‡­´„ç<ä˜;6UÐXèÞ™(j"rÿöƒ7ðß²1œfM#Äqÿ÷YBâ…KPQ:\«%¡³‰Hê Ž¶"9d¥%<硳M°Æƒgxžm’‚Ú[-þÝ€/–¨Z.ÄÈDGMô‰ã@Ú^JH¼ù4$JüQ¤Jâ‡Ì|zꎲ"9deJxÎÃõ%à1AF>r&°j¬ÿAFT Žû‡„ñ,D§òubèìSœã7_¢šB·vIXÑ®/U"¿‹&øsèá ¸.;²(÷õòi´((.*éCÝA×Á*ê½%F@ºlj¾%!±O£EáYÒÖs—Nê†Z‘i¥$<ça'øE¹©)_Qv¹´Pt0q¶Er œÄø©,*XAŽøi°H%ÞTf#):S”„cÈ).Äp›Ë sØJIø1{F"§|bŽëJÏ ÷f‘ï!na®Í{„ªmkb¸.ä>q {g 0îŠfœ(QN³ôm’O?еã#[ÊQ»‰;6ìzY¦½Ä%s„'†×yA*$º¾#SñÀúœÑùz–ØA’I¹·*áÁN ǼÔÑ$™V˜ÃVZÂsN Gº=:•0äÑôe¬å`fbDì‘ø[YÛÎøÉq­A‚Ò€ÄpS:Â,`c}§T!üùJ#’#­–„ç,ì0nl¾rt]~7((élQbþŽèUX%iÑò%9NÖG“„Â=·ƒ¦0H2%ðæ¡tì*$YVˆ£¬¤„óÐÒ%£%ÃÂ\ê"àâ¾Eå4u@H‹Åº%Œ%«£~1 ¶HÉñ‰Wï3åDžHI8Ia þ\zøcö  ÷êSš”‘%µx@ÏS%µ»BN÷)Úµmâ8Ùq:%$^]yÈ”·}%áèìBjÄŸ¯²Â¶ÒžóГv¯A×Á87…Ov"Žæ«r…qé°0·^8n[—ÆPœä@~}J(¼iM «|¥UùJÄx8e„8ÒH ø1 G¿ôø[.l÷=:O +J&Þø@`@¤!´„VTŠßR1°Ôl H¼¨bCRVK l¿—*ù"Ì =þ1E«nh1¾« Û÷D¹²QÁòâÕ‘9„&‡{ÂðrÜ¿ò19ã5\Ðߊ€êe9š-ØRº;²•z3¤Áÿœ€;0ÑÀi˜LAe¨ÓçUB¤¬áXäâÚnbØèI‰‡oÞ’²†&ì§4JÃ~úâÍ6$‡m”€ç,|ªÖ…hô€»²HQ—Îy¦7™8NãÃמEiÊü–„cQf¸t¾öL+Ì‘vKÂsúË) ,:IÀ-|U¥×0I†M%™-À˜*>_EѰlz¤XO-lH[-ÏYhÕc¢Öˆ&“;OÐIÙá&Bª0 t%ƒX,6^¬ÅAOFJH¬®¹EÙñ². ;ÿÒ©cW_۲¶Ҟópœu#Þ \ M‰ü©øó‡1 7˜ËÆ2TÂ#cq°UJ–Œ01)!ÞScÒ!ŒŒ3Z‘i·$<ç¡“f4_…jU©«¢ ¥w”Öø„{6b%Ÿjü‘'Z–„ÄŽ¿1ŽÏ£:—ô««›ßP·‹°É!+SÂs® 4ømK„L¯Cí¢øÊêFM)Œ JxÔ’#.$×V ˉW”ûÇv¢L¤$¬p¨•ŽU¶²Â¶ÒžóÐ_.¶uѦu æ0!rb÷5*ùGK[‹ Æ÷Ɉõüœí›À]’ÀJ"9¸³’HJ'†/AêÍ‘¶IÂÃx—À>yûɬդ0C#Â#¾<¼|‘… –‘Ø¥"öâ8Üö¥„‹ówLY0²$,Ø×—b—æ°•–ðœ‡ÞÏ=ö]ûÊëh¡ˆ!yïl\¸ qNë'r³}ûÑázÔ§÷7vÔP¢•;‡Dl‘§u^)W/gê-Ù¨áe²œÀ¤¬Ý(çQ]ú®ÌQ‹G—¾ëΦÏÄ@Œðå䨔g ‰7m‡’r^Lç—„x(PžP:„áV¦œ9l¥%<çáX±Î˜Û®‚dÅ…¾åµ3„$²Kö–XÉc£Í'"ÁRBbU +JCM±’ÐPs¬tü]ͳ· ¿ëž[{¤:–»Ë]’»ž¦3N?ÜfÒ™Ôy3=8>Èzò‹2OO®$×iÿú⇒+=·} ¹$A½F%+Z…iiæõ°(›œ)àêYÛK”MÃH>‚nâ<—׺^bf¦a8E&™£‚ßòÅ¡À, ÙŒáàV…C”x.Y†À,Cµ0Ь¥r˜×£ÜÇ)%vÁÈü‰‘‰e*¢Í02Sõ~ìkŠÄA›2‡ ¢j…áû—…C›Ä3h2Ö{øcWQd-•üj9y€ùL.âLPw¿æm*.¾³»kÈ0Zµï´„RôŸ:sÈp§ë¤ŒñrXœ9x¾CPdxÍÎ]´ÈmKÌæõГ€Iø&½ÂXa¢D¥•SÎÜ3œäáÛ¤oÒ{xØbð4Ô2ì-®­aøÖva0‰Zk"Æ`qmM ¥ÈJ ƒ‹ZXÜù$~¸”Ô§”1£ÈCH öÜ|:6´ò€ÙàD‘ïRE'Ì5ƒ“½å-Ñ8sÐèÂYF´·¼Y £Èz+‡y=,È!Gv ðñ·ò”.czù2·’¿Šï"3yá­0Ç~h%’µQH(ÌÂ!Ú"ª`F¾QZ8Œ|…´È˜ÃªJ‘µTõPEËrÙ1ÓJÜŒ‘].Òá¥4<=F#„OaöÊŽ|e>S`Z‰‡ ÷–LÄ0~¯“qð²íÊ2fª…Q˜–Æa^+Gñ…ëa_c‚d¹Ÿäq·î$þÈXí$FÉT(p}¨8Xw&C²¢o ÉaVdŒƒÝ71-ŒÂ´4ózØÑNɤ$KGÆHÄVÜ £dN r¡U`>®5Ù»R(S8d¸×³€Œñ“& T´A„*C`–¡Z…iiæõ°˜.#¯¹‘õE\KÓy‰ú O)Ã*‹ã¯ Ö-ÌØ(àÏ*‹ ”ÈDÏ/ p‡ ’À Pô÷¬³”žWÁü²Â)u®aàéðê«ëåq¿êEœÙ³woÒ aJ!‘f ƒ{u²U›T8øIŠš ¯^°¢…Qd½•üöÔGR÷’ a_cdNÇ)bäõp’ÀŸšbLa¾(ù'2…¦-Ë2¬ÏA3ÆKІÌASd oY‹B!Zfózè×;9„J“>¨Î˜‘Ã=¼v½žø޽„{5+CÏq#CE‘x™P8,2ømœa?ÁΧ¶)2æ‡&ª…Qd½•üu ‘ßîJÐ5EHT7Z%°ç!ò«J†eG«0>­ô™æ 6F1Ê.9s0˜EpCàÃk¥9óaaÏ ˆM¾þžõš å¹Bô5¡Qß|ZØùƒ„Ò$º9§)0Ì}ÆΙGˆê`dŽ(e~X¼ip&Òc‡›TÇ·MÛÜ.°  "xù†äëW— 1¥V¦t“`$G¦I§Râc… DKŸ‚ôí3ñ}Š ªñ/Ís?—Æ8$ø…qʈ"ìZ¡Kçâ­5.ÕéèÛ‡/ÀHÿNí¼9”÷þù3E~&QUÿ“KA%N¢‰ãKE¨û#².Ì2ÒtHŠ\´Ãþº+dDz­ØUkB ë‚—ÄàÜYhø"ð*)Ñž¢n•°L ÅDÍÞ]ãSJý°øÛâ ÚïðcSï[¾Ò#" ­=2ïÒ"ë¸mþÞ<,ÚæÄmƒ?úŸÍ¾ùæfñ›×x¤ð1€†ææý¢’1»‡‘ÇçsÚ÷57û…ûÅ7¿ý]³‚O$õÃòæçÅoH D&íiBÿD…¿¥¿?“¸W ËFx@ó_L²grO†@ .P…¦¹m…ˆ5¢¶ì¢æKIoaŒ¤½è¢dXéq·“ac'ð†J ÒC¨(’&ø3'½!Y0ãåd¸´Æ°ÊP%T‹LaZ‡y=6Tɧ×7^ÙGÎPÛ´ ì±ÂŠD_óҩű¹¹]¸Žv—‡w'üŽÕ«ïHZ$$X?gC>j¶o¨|mµ9&SÔ6{Zu°67>Ò¥«Ñ&ÈÓ.+h’)¨“—â4[Œ1c ûWQdb_¢ah‡Y‹¡ïEÅNU !ôe0˜,ìÆùÜÃã–#î‚(Ò/q•—ˆSO×™†1RùªI_7#rjLc°YV+ŽZ’ŽÓ šÑ Ã:^à •ŸÜéKT¤}ÁD³˜‡_;¥ªiR m7ø¢£ÉJØPA8¼Ë!‚5œ£*š0ñ"™>:™>hŠäh984yÁN^åv„á8 lì¢Þ–õØ3Ñ µPÄ °q0Xd „a|Û”âmͽÖ&œ3͸Ô\ñ§Ï‰h­ƒ€P‘T¢ÖµÞ& Ú`J •³Nˆ‚<Äù„áçÆ•¡°o熚£*šÊPm6T’d•¡2F›GSe¨Ì.jD<žÊPÈiÚU†Êp6TÆ Ésñ¶æ.†ÊÂ¥FªJ](þ†âÛÞãÜP´§ï ŽSœ°µFÚ²=hå][«‡±&Z ˆ)çÆºù¶›f zä_â U5òù;ÄKN°—ÐfA|è5$uNÏC¹)Œ“ÊŸ™Š0l ›EÁÈû¡6zb‹J‘µTõxºõðB¯ ¤ökÝø¹a– ×u ³‘–Ÿl֙宿+º•s–—ïÊ%®¢ª¾+¢-LÇy+ðɃ†ΘÔIôWÉãGÕá»/ÆMÀ¤Ex_û]2+—â‹>éULŸô¤W½ø¬Ø$Œ¦‚`ŠŠÂá²_`7VÐq»\ayÛvÉùáÅr…;4C9ÿÕ-~ÁsƒÎmY®P&Nqr–+¤6£.áÂjšÜöaé©dGwÞ­ï•kÛ»Ûe.¹>¯•'IþXNÈgݹ³¢Çä>íÎ?)4Œî/"w¢o`çnž/ßÞ|‹¶Õ‘å£To2äw³Düü6 îðá…˜7Ò8#ÿ~ÉyÚüä§óö¸;­AzªiVý¸•zˆ&»Íy÷O.؇䶦ýäöÛõƒ5ÛàN«2Ç÷ëMEù> j'GU.„[VzåÑÁSlVô½x5uýme¼¯Ì.ªah?õ_ óŒ¤zÜší­©Q-T®-ôD:²ÎýõeÁ~oEIáãv+úÊAÚprÒ&1ön{¼_³Ü®óî_ø¿iˆÁm«ÞðkÒÚ'¶˜Ç}s8Ÿû—Väèc2;VŒwë»ãz¿_ŸwÓ8‘?ÔÆØžÐ.˜][ª:‘¬)¼;¼/å5ÍȱÄ2Ã$ hK¡É¹¡"w!4”T#¾ƒêß-n~ýƽéÚ·4Ú°lݸ±&j:jÃ2Ôvƒð  ѽÚ›žÞ‰©CèÜácFï¶GØ·,ÇÞ½>Fóäëæ9ÜWýz^;6F÷(A <$ÃSoxM- ¹#©\wšÜú¡àXóžg³õÇzPIߌ4MœMHt¿_ëãá95O‡¡Ü¹—Êln/½Š†w=¸îϻծíDK wØUÆ=¡0O nsÜñ=.h„i88z/ *#”öo®·e<‡ý®ªéî$-ÆjÒåú¸¾¿ßÞëOmpw÷‡wÕl˜¡ñZ™ä¼Ûïþm=â©SÔÅNÛ[)8…è2uÛWuÛžN»µýÖ'7ëüé=˜ô6ÛÓi{¢¦P®w®_–f2# ð¢h^w õýŠ»zž±¤«·­Ô¾Ó3™UМž:¥ ßò­­n`ÓªB·4Õ‡ï?DšLendstream endobj 292 0 obj << /Filter /FlateDecode /Length 3691 >> stream xœ¥ZMsÜÆ½óÎSR)ž’Ù*Á|ÏðfÊŠlÉ’’UŽcå-Áb,! eæ×§»g;ØÅRN¥tИϞׯ_÷à—³²àg%þ‹ÿ¯·'åÙæä—NOÏâëíÙåÍÉ_¯„>ã¼ðZ‹³›»“Ð…ŸYqfKW”JŸÝlO~b?qþ¯Õ¹r¾ðα«îÃê\èe8«ûÞ”¢ð^±Ë"ý6ìe_m«õãÊÁð†{V¬þuó g´³¥-L)aÖ›[˜Æ*aZᜲl“ÿñ)û#4_º+”.]èbu®ƒ…XöÕ ;o<»Ÿ~†!¤Ì‡e!üŒC\ÑŒš—ZŠÅE!w­?íf©Ö+a‹’kÉ~^iÛw¬ÚÔhY”¥`w]þ@k^VØjØã ­jŒdõÐT÷Ñ–šgëf]øíKÎ9ÆjlâåÎÓƒÅKè¤8{X¯wl¨·Í§¬c‡S}³¦C9çVŒqÎU¡”¶aKa\ë§IñgÛì~×ìCxX£Ó¬¯7}= ¸œð̰*[÷m|ªüœžÂ>7ÔžÓ>?á å‚µ”dc_ש·rlS=ä† šüú.€Ô—Ž­aaq@®Ù6¾AXÝfcÕí@jf'-%JGýª{èï«vu.t¸õî.þö’]ã‘ #XV¡·XÁ %9Œlx캻?ƒ±5ŽU¯–°¦d¡¬™À'+aˆ%îß3ÿ~ŸÀ¡˜øŽ &ÊÒ† s Y/Dæ'.žvkUîÜZ ˜Ï¸5‚Ìr˜Ž]ÁžÉ¬0ÖÇÌúÛ8ð«4ÃuÖfK=aõŸÃƲ®³Qpƒë<@•R°¥ÙÕÃî1ô Ï¥g¯›Üc6°ké Ø·R‚ãl?…Ͱqê*ï´®“-ØXSCÀ®ê¾ÉoŒ-Іu{Þt³r¸o0aùAÊh'ô¥lSÍšÀE1쪎+C—îðXÂñVZ8^%”˜à s²ëÿ‘ ùkØk²¥¤0±ÂM“Ig‹g#%¡xì¦6UæSi%"¸¾šðFËæÊN5yÂ[W¹¹nãsîy·Íé)÷ðqÉÄç“ Ð<áYfxþ¡x ;’€|pöM†¶aÌHlN®u0é`/Ïh8iì ¿¹bÏ«¾íÒXž Õ63J;ØnJ`Ø Á¤COjÎ2ìM…MZ{Sõ?S `ä.¸ 4ø5N6 ¨‚¦s¢ŸY/Îvp Õ±1ïY7}œ€Azä'Õ6ç ˜Oä¶Þ…'4õzUªFñDn—ªÜiXÓQœú¹Z¤E85å´_ Em/¼=oË|ƒ{[FøpX¯+ݪ ?7ˆ8'CO·ÝVñ…O–ÄÍÝÆ‡f¦8èd„IúMh4“4KpJÚæ®Èкç!­¡½W¨ÉHBYÍÚ`$©€SÑœ”Ûé? “uÛTš¶qÓ* £¾ß4÷54¡ €~Š­!¬U÷·ñ€Üð8@ÄØ½ª»FY²27î0ÄK¦Å?åöY"\Hö&"Y‚NçîÉ:Còó"¬IéÕj²œ5šŒ{ܹºû€uÉ©ë×ͰΉ*h=©@ø(Òˆá7¨‡œ÷êøØ m=î³½ú=7M†Ùs¥&jŸ—ë>n¤Ðåa ÒmÎy¡ÇSd‹ãA‹/“íqV¤ ƒœÑ v(”#ΊQ&üéwáƒxÄ·NÑã >å܆ó¹*,ú.'?¨œc×ñE©3Äw¡ƒ]Ò´ðd÷t\GÝJmغt? r­~ ¾$­/¢”­Ûqÿ³´}Ç´¾ÐêT|d$e1ûñ”ãL&ü;Uhžt€Kð7ü¿.®Ð<ÅÑWY<ª”•ܲ7ô-¢2šŽglx&Óf\ÕV™;„¡ÈÀ{ göÊ€ y—§ûÉÁR#»¬“úý8ó;CØ•ìÅê<íúOkt_ˆŒpFM`#bÞ,½'@.»ÕåA|l¶ÍBx DÉ}—ƒ+ü–óxÔ¼@Ål/BüJ~¢ Ô Ì­|8»ü1fÇ¥äïDéyJ>ÀÕ»dß" *Åîö¤2Ðă‡Ù¥\"†¥’½DÃÑ3­‚ÝÖž½û”k±A à¿@Ý\^(­OÁ䉽=ê°w”±ø–Þ°·ýB¹Å`P¹El_W¡™X²˾ÊSÛ¶~ŒÝ ûs7²êî‰zrfN#+ŸÌòæ¾þ¼[Ó˺ÝVK#Ƀĭ4”^ÍVz×õÓ;CŽ–(ØÛ<®W+ž":Ewt+#qG[͈{šá µ:çtRj(›”ÄXš+&Úyâm%=õuàmúàºXZÿ§lÍ}œWI8 ÓúÖŒê |ç«4‹a}÷°oñ`™,k«ÌÅÛ´`ð¬ÍR°ÎØe±ÎQÊB8›p|ƒ±Ai,šÀÁfÀ ÂRçt¦©É%šp.$MñœŽ8 ˜h#L0¹ù÷ %Ù˜ÍÍeŸï™x¿ºð}99ÐvNØ‘D‘{×,IÜy—˼ +IVí¨¿ØMò]ÀŽôÈÕÍ×lRÂi'B¬§D2êÁ”HF9x=ÆÂÆëGaÎ EÍ@P&H÷HV×bïÇæëôHQîü°ÂD9Ä c-˜ôæ¡#&®B°¿äÌó—*žª\³p‰.ѹ×$¨ñú¥N¯è€äÄAè.ô>»æÀÁJð]5Œih¶^ª‡›îW©?Æå$¬5ÏóˆYÉdÙ§([3ö@ +)ˆœhË Ÿ¬·úÉ¥ Æ„&œðúýÇÇ ½‹:#ž ôÉè‚_ðÒQÙŽO"ÚBD×r¹ì›b„˜]ORÍ-Hí¯‹XÝ„Èö¦ëûà/Ö{î—éÈò¯CmÒñn«Ð<&ˆ±ú»hu›ÓÿîTÂí&K¡;å³WY1úo4„r³ÂoWõ]Zž;Ë©H{·D—1y›*2ƒÆL®¥¢¶Šþ:+. Q£…¢Ÿ¦,ë/—œ!eoñR’x äŠÃìÒÆkLü„à^°PWSA‘ò3Ò'\‚éw…ÅÒY]‘†4ó4zª+Æù›•"óHÅúüHš g¡ðÍê]«±Ï‡îê´ƒJbŽÝ ‚É•ÒìNéÅ‹ÑEˆ™¬ÆÃ‡E’ qŽúa¨(‡¢·[Çó< àhù9ähÎI—ó}^²œßií«; $èìnûðb‰¨7]BÆk‚º¯“ÅðÚªŸ…I,áÏæ:ëí×ù !ÇÌñE©ÇxHàÓÖé ™ ©å)Òìvfªis- H“0#ŸÆ ø¢ 36DèL¼Ô(ÈÌ %–«¹¡ }FYÒ$“SeaéfÆš§/_^83ifroè–,îƒtø’Å}áìì>,~ÃW.!È }IÆã¥Ã>ÉÀ0ÓÁÌR´cáWÍj,Ká¼(´ßUy‘ÊPÒa ˜j5]ZÝg®›u–*C{Ú…/,Þý囼澩æð>ǯ¾ïgEÐyÔ†RvXì/…¨Y#S( =ÆM™å¸”ßw¹P·¥Â"nÞž k±¼Jí¨®tô{üŒ‰ äêú2B0¹=ø†Hâ7Dxé»ËÍò,­ŠÅçÒee¯c…TYˆr¡*<)PÚ¯p$¶è^^€LÙ¿Wì‘{èup§û8=])„±åÑk•œ…h†ü ã•1VSuDY Skëe€+`]¥r„å…á ôr9ë²BpBÔ»Ï!˜à!àÇI¢$ñ5¿,¦§ x~œElùÏüËYщnC°IþýÌ]ºÜ>àct¦úõzŒåzé°\¯A«ÙîÂiªôcª³Àr´jL}þw¦“ øÄÉÃk)-'ø’¬*¨ÉÈWuh‚ê‰*dÔL°!@ÂÞ'V3BYˆZfVÜÿjÖ8ÖuóD‘ò÷Ò-ù½~ÏÀ߯.¸Ô§\ÉðKS¹s…šX @¿C𨥌o#qc†¤¦H/nNþÿþ  ’[endstream endobj 293 0 obj << /Filter /FlateDecode /Length 3708 >> stream xœ¥ZKsÜ6¾ë®ë–NYÌ–‡K¼B7[v”ÈQìHª¸jè5â.gF!©8Ú_¿Ý €æµÙÚr¥2"ñhôãë¯üí,ÏøYŽÿüÿ«“ülyòÛ §§gþ‹ÕÙ›»“¿ß}Æyfµgw'n ?3âÌäe–+}v·:ùÌ>‹â×Ù\•6³eÉ®«n˜ x%{™ÍsXØÂ²õl.̬ìcû<Ÿ¯Vu÷ Þ•æöãô¦YÌD‘Y+,ûW´Ð‹[(—%{S÷Ã8ײ÷8 Æ+£Y5ß¹’’ µßÚJv±qkÂ:_Ûº§É ç°j=í|Dfa‹÷UWG¢ÿ‰M¨ûlöëÝè¬Ht&µÎtiAow÷ ªÅLÔ\lC¿87ì¾:ŸÍµ4¨1öáyxšqøY–œ=°¯Uð—éªö¥ozÚe.%Ï´ägs®2¥´q«Wk”ÛíÀî›j¹ÞôC³èé!{Øtþ-—ìúâú ¼edi3ø/Œú}á‚„ÊÀÎQJvƒo4ü4ì‰Ô®m™óXí`=<ãi‰ÀÛe¦Yö;Y¢($«»¾Ù¬ý­¸§œK§Ñ9/dÆ­9› • ÎG‚}&rºd— šäštõSãmi¬¥pا,Øw“½h´¢§Ÿfeîœì9Âó]·àNÄ‹ì[znÁ†œeWã‚  ‡.Ùs²¡1r®Øe=ï{ÖÍ…€‰UÙmfóà«‹ºïÃ5[ù7¥÷‰œ° cÀ­œ¹ý›ÕS$®Û_Y;uçO–¬ÿ@óI-¬FQÀ~VÁôºkVhÎB@<9/{äÚ”Þ î óµ½%¥a¿Eqºj›¡çÒ–¬ö~ÆYdº{÷\äà:N(͆°J .à׃EªÅ°é„§Àss¼ýnfPÁçSqÍëͪ:Œ£}¸P€kï ŸËRžJ[¼ò ±EÖ;¶ä0sŽ]”Á±Ëȱo6«âh^Œ>عÔì’"Q°›z ˜@qË-g¥Ñà#Óã®Lˆ‘ ‡å¯SwÅÉ€‹·ÓÓÇȇ6äÞõªúRƒ£ÀD£0r4ûÞÙÌ Oü<›æ"D †§ýÐU€Úx(e$[6uήœgéºjuÅNSµá\†}‰¶®†î÷Þ‡ &?\ „NJâ!aÕÃãø.D¢‘ˆIØ2Zr—íæKøu`Øæiz>4«æßíÙb¯ë‚a…àw@Jî°ÍCømÙ%n«À™´hWMúbžÂ^³yH8›‡cïO 2Ó¦ˆ¼\˜6 “æÆ™s.O¹Ô¯¼oè´2Ñ.ú¾Éfwÿ<™Êßr}¹þ–7BòA5ÞŽJ®Ú¡nÛE–¼ÿ=³¤Ô‹ÉDi2ÀÁAÛ¡‚ë+ÍÞe×ã*Eìû‹Í€T} háns`€Ep3¦ÓÛzÝ7€SÍð‚’ àqö:Ní;ŠÏA‘r„­0–<ÿj‡ãÚ¡ÐìSÓÖ/þ z<¾Cûûiг¸‡Ò(˜”¼™t×(ÆÑ’¹G±Ô”Á’2?hÉ@AöYRjÂìkÆÙM5 ›ñ±dwþy´`bÅaµÓ†‚àÛT ‡‚]T«ã@k›6޹¥ÛO[Rl¡Ôè6U×|q1¯1bÖѦM´å['*ô²JΫ\‡·U·1:5}¯X½ÚƒUʺ—fJ$&±Zq„Yy  ±ªÎ§L6lÚj¿Ûé…”Áëv@Ä‘L›ú³3,ZG 4ð‚yÇ>GÔÁ %»{¬½À/>"­èöº½È†cäöÄ;ÁõvÜž®‚×Ó‰!å}3¥ÜXÁ‰½ú4/—!/ §/¶=šôh¡(Cïz´{…¾Ñâu”¦îqDN)/±[XñÎqÓ2²› v›I#~Xû}ÍE™¾öëØwu;Ò-tÛÚï 0Ò„ (0™RvC š È›1»Œ“£1Q{Ž”<ÐÌ@ÃüT¨š µ’lUy¹H¡€²üì°ïï2`Ôàs,è yJOŠ.­B?ì¡fa*8Œ¿ÊÑ­û8v ¹ÀþIr)H”Éi$¤Wož0ÑE[W›€{…–ÄÊ3L‹Fÿä!DKöU{ ye¦íÈN¯6ÏÝ£B6QÎ…¢²yÀÀ˜¶¦„ø‚*šB—=ô“Ù-òe¬éeióúž‡]Ó”ðºï}É ÉuÑ8в/r5Ì.K¹Ã‡³æÜäâÔä6;áã0ªÀý¶âNì»ü¯®®|á¬o'!d´QQ×UÜPˆ½xéK}ióPκü–ÇV侀 (VÑnÈ‘- ‡šê÷™FŒ3q;d‹üõ~šxãX•+è&ôu‚wÕ1)o†P¢‡žJ¡‚6ÜÇ©rP;æP—cŒ^€ŒÏ®¼t¹ƒ}|„t@ýrº‡¬ž×±âé0!ð±Ç±$ãJŸ‹2?Ö„§ àȳD^dRž¥‚kɸo…ˆZX“ëøFÁYDù'×k«¤gB"¿ÍnÂj`„«$é1ÄáÊmJ3?Q?wê'ԭRl¤4Ò’‹\îN•6[žÿ û´¡ßÔ`áæB?¤¥´˜9¦[7õçÝh«®ãO-ÀKcî‰E]â\u82Hå‹ 7r¾ùC“+ª ‚ÆÜi\èqG¶ÆÈ@›LÖñmÞE'戽´}â¨Z¹Fïó}nʬÌG·ü±þŠæpˆ÷–¦Ša þ½n7O_†Þà¾a'µ+HžžÚÝHðk•¤×ð»þã °Ø·e†ÜA¯/I5×}Ý7Ë5]Ûñtaöáôv~Cõ­\Ê4e‚Šç[ ’TÓÍÈʶTy}^(öƒ{ᕳ"ŸìB÷Â2joì„îá<ìl:ÌͲ«"*òè—–3u׸A¸–\Œ¥ÕrÜòç§ð+l;65œŸ^ÇÔòUº`bÛC”Fæv;©©y.&5wusrEçzCî(ˆ@N4ªm°k“˸õe=…:öŠ:øÆ‹Ìÿ¶I´n‡´Ï0/¨¨FÖh‡&Òg;î\ÄŒ¯«ãê«A®7£_EȲbþžàÁÒOü6öX¦fS’N}B›dq½:ãVÖ;&QFDý5ÃhT@kl-Fú…rfì m%1Š·u¿èš¤“ã, q»–L®ÉC½p$MŒ'•ä~çÁŒ´³Ë¥bj…ÂŒÑT_šÖ÷wx·^6ëz¼‰€XX£æ§”ôMøÉn_€¿®¦y·Pç—åšÉŒðí!ˆìñ( ú…å }fVBª>Õj ¾¤ô:ÐLÐÇ¢Å-#(ZBîߎ–16MÀi1¡Æø®šåã¬Ä^#T c4ƒ¾B±Ù¹E]¤9T+(ÒÜNêH¤`Ëw®¨Šì"î/!…÷@[¸f„ÇÀ¤uж•Çf )±îº*õX<—6E¯„A¶õªŽ“õÑ<¦ß’îĶœn ˆàJäŽrÁu“µò¹»$¢ÃxQXA!ìºñ8 qgÙAÙ6­Hw(“æð@†ZÄ*+ÔŽðž[êhøkCåíÿDŸq¬#c-Ž€V轘Y¨Øv¤ê”=ÆÉ'wû|ÈL‚ƒ$ÜBæXÄ&¥ð*õ¬ƒÅA¦9r¥´q8„£Öÿq$6f!4cÄÑ#âÐ[¶oœs#ŠÈ BŽÌ„JøKnÁ¬:çFêSßͱ"3vÛ…¹)äX…ñ­L Aãu£L︇¬§Ap¤cCٟιO›Dš»NNÔ‹»Ã&GV¤ Ÿ¿öhðPkG¯b,é 6àÒœXÌ{¿ zäw‘PY‰o±®zÜÁ°Ë:¾J²o5I¿ÿL—€D¨9‰Gá‘øf»íÄQý£»ÀS< ÉÊ ðîmØÜã²kþ¯”¹ÉySÍÂÅÌËTûøÛVà ¸–SX5QèÜû:C ´Jˆ0«÷­µ”ETˆkß@‚?‘¾ìG!×aàtÎJ,¼8rUä/¢÷…€**ÍÁkN`êš³H­”d|ÍÏeiÇh" äV´©œ)Oÿ™`‹ïöߨ iØÏ¹f•ÓriK*=ñŽ­Ø¦Â0žŠ4ã×qn"¤«°–%0T}K‡&—Qêjââ‹Eˆ#’ñCjÊ´86ùxÝùe?orØ»¯ÒÝÄοô;ð‰Pê’¥Íñit`”»ý¢ºŸ6ô}NúzR‚¯‘²‰´EÕµ¡5±ÞÕÛ­¹PrMÏ—Ô‹äÓß'ß…Ÿ{sÔBZ—ãeÚ÷——78à€˜½þø~/#)süÕjüƒS³äb³~€bÕ]Zî­ýw8ÆÐ‡VPBþØwÓ×9‹ñC€zϯ{Hdûã±*‰Mt7­5ÇÛk"!¤BÉ ö>Œ¿l2즮’+)›Â+„•)··×d¯ÄUn›ãÕ?:V%ÛNJ¦jÖôç8õ)ƒÎƒ·.”°Ê€Ç‡nweüaÃ'd¥¥Ë[twM:ú‡š]èßÜFÍ7L*"§¤}–ð¬8,ñ&†ÕýŸá*Üõ$ÝLAY6bøÕÂe4­“‰½ß÷L?'¢5 JHJE¿mÔÂ{Ùëí,-H6 wÙU8–a×Í0~QGyݶN¨,K»K×Útºæ”NÝq»Ž(h×!7 K¬Qs´«ëC 6â}œC»äÖ|ß¡‹iŠ[ÎÆ|új*ºÔG{ûß~]WjüžiRw¸ìUzü  ¿:PUk•°üß_»]6Î$°T}*tÔ…‚˜ kŽºGÖŠ—nFSY­,ÖÕïîN~‚ÿt1‰Èendstream endobj 294 0 obj << /Type /XRef /Length 354 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 295 /ID [<75c256e100a09e1745d42006edd4ea29>] >> stream xœí”K+DqÆÏÿ˜AÌMgnMCE®»ÉÞB³UJ$%EY‰@Ù¸•ö$E͹”lÌÎBØ(rI±á<¿/`yfñëíyÿïµ÷ŒmégË Ã7Ë–`DßµXzƒE!Ö|1×´‚›“V§Eç\ìP‡&ßC?-bz\¬½3bò˜ØH-{ŒÍlQ‹yˆÙC+=ë[6ÅGqb‰—³b$AìµÑç˜h º©±Y¶q’T°¥S¶GžÀÛ^¤Ûˆh“æ¾IvîPö;=;¼ÏlµÛ¥o§KÞ×,±»d>±~2)F” endstream endobj startxref 878289 %%EOF tgp/inst/doc/tgp2.Rnw0000644000176200001440000032706413724172614014155 0ustar liggesusers\documentclass[12pt]{article} \usepackage{Sweave} %\SweaveOpts{eps=TRUE} %\usepackage[footnotesize]{caption} \usepackage{caption} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amscd} \usepackage{epsfig} \usepackage{fullpage} %\renewcommand{\baselinestretch}{1.5} \newcommand{\bm}[1]{\mbox{\boldmath $#1$}} \newcommand{\mb}[1]{\mathbf{#1}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mr}[1]{\mathrm{#1}} \newcommand{\mbb}[1]{\mathbb{#1}} %\VignetteIndexEntry{new features in tgp version 2.x} %\VignetteKeywords{tgp2} %\VignetteDepends{tgp,maptree,MASS} %\VignettePackage{tgp} \begin{document} \setkeys{Gin}{width=0.85\textwidth} <>= library(tgp) options(width=65) @ \title{Categorical inputs, sensitivity analysis,\\ optimization and importance tempering\\ with {\tt tgp} version 2, an {\sf R} package for\\ treed Gaussian process models} \author{ Robert B. Gramacy\\ Department of Statistics\\ Virginia Tech\\ rbg@vt.edu \and Matt Taddy\\ Amazon\\ mataddy@amazon.com } \maketitle \begin{abstract} This document describes the new features in version 2.x of the {\tt tgp} package for {\sf R}, implementing treed Gaussian process (GP) models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; %multiresolution (treed) Gaussian process modeling; sequential optimization of black-box functions; and a new Monte Carlo method for inference in multi-modal posterior distributions that combines simulated tempering and importance sampling. These additions extend the functionality of {\tt tgp} across all models in the hierarchy: from Bayesian linear models, to CART, to treed Gaussian processes with jumps to the limiting linear model. %, except in the case of multiresolution models which apply only %to the (treed) GP. It is assumed that the reader is familiar with the baseline functionality of the package, outlined in the first vignette \cite{gramacy:2007}. \end{abstract} \subsection*{Intended audience} \label{sec:discaimer} The {\tt tgp} package contains implementations of seven related Bayesian regression frameworks which combine treed partition models, linear models (LM), and stationary Gaussian process (GP) models. GPs are flexible (phenomenological) priors over functions which, when used for regression, are usually relegated to smaller applications for reasons of computational expense. Trees, by contrast, are a crude but efficient divide-and-conquer approach to non-stationary regression. When combined they are quite powerful, and provide a highly flexible nonparametric and non-stationary family of regression tools. These treed GP models have been successfully used in a variety of contexts, in particular in the sequential design and analysis of computer experiments. The models, and the (base) features of the package, are described the vignette for version 1.x of the package \cite{gramacy:2007}. This document is intended as a follow-on, describing four new features that have been added to the package in version 2.x. As such, it is divided into four essentially disjoint sections: on categorical inputs (Section \ref{sec:cat}), sensitivity analysis (Section \ref{sec:sens}), statistical optimization (Section \ref{sec:optim}), and importance tempering (Section \ref{sec:it}). The ability to deal with categorical inputs greatly expands the sorts of regression problems which {\tt tgp} can handle. It also enables the partition component of the model to more parsimoniously describe relationships that were previously left to the GP part of the model, at a great computational expense and interpretational disadvantage. The analysis of sensitivity to inputs via the predictive variance enables the user to inspect, and understand, the first-order and total effects of each of the inputs on the response. The section on statistical optimization expands the sequential design feature set described in the first vignette. We now provide a skeleton which automates the optimization of black-box functions by expected improvement, along with tools and suggestions for assessing convergence. Finally, the addition of tempering-based MCMC methods leads to more reliable inference via a more thorough exploration of the highly multi-modal posterior distributions that typically result from tree based models, which previously could only be addressed by random restarts. Taken all together, these four features have greatly expanded the capabilities of the package, and thus the variety of statistical problems which can be addressed with the {\tt tgp} family of methods. Each of the four sections to follow will begin with a short mathematical introduction to the new feature or methodology and commence with extensive examples in {\sf R} on synthetic and real data. This document has been authored in {\tt Sweave} (try {\tt help(Sweave)}). This means that the code quoted throughout is certified by {\sf R}, and the {\tt Stangle} command can be used to extract it. As with the first vignette, the {\sf R} code in each of the sections to follow is also available as a demo in the package. Note that this tutorial was not meant to serve as an instruction manual. For more detailed documentation of the functions contained in the package, see the package help--manuals. At an {\sf R} prompt, type {\tt help(package=tgp)}. PDF documentation is also available on the world-wide-web. \begin{center} \tt http://www.cran.r-project.org/doc/packages/tgp.pdf \end{center} Each section starts by seeding the random number generator with \verb!set.seed(0)!. This is done to make the results and analyses reproducible within this document (assuming identical architecture [64-bit Linux] and version of {\sf R} [2.10.1]), and in demo form. We recommend you try these examples with different seeds and see what happens. Usually the results will be similar, but sometimes (especially when the data ({\tt X},{\tt Z}) is generated randomly) they may be quite different. \section{Non--real--valued, categorical and other inputs} \label{sec:cat} <>= seed <- 1; set.seed(seed) ## seed zero problematic with null btlm map tree below @ Early versions of {\tt tgp} worked best with real--valued inputs $\mb{X}$. While it was possible to specify ordinal, integer--valued, or even binary inputs, {\tt tgp} would treat them the same as any other real--valued input. Two new arguments to {\tt tgp.default.params}, and thus the ellipses ({\tt ...}) argument to the {\tt b*} functions, provide a more natural way to model with non--real valued inputs. In this section we shall introduce these extensions, and thereby illustrate how the current version of the package can more gracefully handle categorical inputs. We argue that the careful application of this new feature can lead to reductions in computational demands, improved exploration of the posterior, increased predictive accuracy, and more transparent interpretation of the effects of categorical inputs. Classical treed methods, such as CART \cite{brei:1984}, can cope quite naturally with categorical, binary, and ordinal, inputs. Categorical inputs can be encoded in binary, and splits can be proposed with rules such as $x_i < 1$. Once a split is made on a binary input, no further process is needed, marginally, in that dimension. Ordinal inputs can also be coded in binary, and thus treated as categorical, or treated as real--valued and handled in a default way. GP regression, however, handles such non--real--valued inputs less naturally, unless (perhaps) a custom and non--standard form of the covariance function is used \cite{qian:wu:wu:2009}. When inputs are scaled to lie in $[0,1]$, binary--valued inputs $x_i$ are always a constant distance apart---at the largest possible distance in the range. A separable correlation function width parameter $d_i$ will tend to infinity (in the posterior) if the output does not vary with $x_i$, and will tend to zero if it does. Clearly, this functionality is more parsimoniously achieved by partitioning, e.g., using a tree. However, trees with fancy regression models at the leaves pose other problems, as discussed below. Consider as motivation, the following modification of the Friedman data \cite{freid:1991} (see also Section 3.5 of \cite{gramacy:2007}). Augment 10 real--valued covariates in the data ($\mb{x} = \{x_1,x_2,\dots,x_{10}\}$) with one categorical indicator $I\in\{1,2,3,4\}$ that can be encoded in binary as \begin{align*} 1& \equiv (0,0,0) & 2 &\equiv (0,0,1) & 3 &\equiv (0,1,0) & 4 &\equiv (1,0,0). \end{align*} Now let the function that describes the responses ($Z$), observed with standard Normal noise, have a mean \begin{equation} E(Z|\mb{x}, I) = \left\{ \begin{array}{cl} 10 \sin(\pi x_1 x_2) & \mbox{if } I = 1 \\ 20(x_3 - 0.5)^2 &\mbox{if } I = 2 \\ 10x_4 + 5 x_5 &\mbox{if } I = 3 \\ 5 x_1 + 10 x_2 + 20(x_3 - 0.5)^2 + 10 \sin(\pi x_4 x_5) &\mbox{if } I = 4 \label{eq:f1b} \end{array} \right. \end{equation} that depends on the indicator $I$. Notice that when $I=4$ the original Friedman data is recovered, but with the first five inputs in reverse order. Irrespective of $I$, the response depends only on $\{x_1,\dots,x_5\}$, thus combining nonlinear, linear, and irrelevant effects. When $I=3$ the response is linear $\mb{x}$. A new function has been included in the {\tt tgp} package which facilitates generating random realizations from (\ref{eq:f1b}). Below we obtain 500 such random realizations for training purposes, and a further 1000 for testing. <<>>= fb.train <- fried.bool(500) X <- fb.train[,1:13]; Z <- fb.train$Y fb.test <- fried.bool(1000) XX <- fb.test[,1:13]; ZZ <- fb.test$Ytrue @ A separation into training and testing sets will be useful for later comparisons by RMSE. The names of the data frame show that the first ten columns encode $\mb{x}$ and columns 11--13 encode the boolean representation of $I$. <<>>= names(X) @ One, na\"ive approach to fitting this data would be to fit a treed GP LLM model ignoring the categorical inputs. But this model can only account for the noise, giving high RMSE, and so is not illustrated here. Clearly, the indicators must be included. One simple way to do so would be to posit a Bayesian CART model. <<>>= fit1 <- bcart(X=X, Z=Z, XX=XX, verb=0) rmse1 <- sqrt(mean((fit1$ZZ.mean - ZZ)^2)) rmse1 @ In this case the indicators are treated appropriately (as indicators), but in some sense so are the real--valued inputs as only constant models are fit at the leaves of the tree. \begin{figure}[ht!] <>= tgp.trees(fit1, "map") @ <>= graphics.off() @ \centering \includegraphics[trim=0 100 0 25]{tgp2-cat-fbcart-mapt} \caption{Diagrammatic depiction of the maximum {\em a' posteriori} (MAP) tree for the boolean indicator version of the Friedman data in Eq.~(\ref{eq:f1b}) using Bayesian CART.} \label{f:fb:cart} \end{figure} Figure \ref{f:fb:cart} shows that the tree does indeed partition on the indicators, and the other inputs, as expected. One might expect a much better fit from a treed linear model to this data, since the response is linear in some of its inputs. <<>>= fit2 <- btlm(X=X, Z=Z, XX=XX, verb=0) rmse2 <- sqrt(mean((fit2$ZZ.mean - ZZ)^2)) rmse2 @ Unfortunately, this is not the case---the RMSE obtained is similar to the one for the CART model. \begin{figure}[ht!] <>= tgp.trees(fit2, "map") @ <>= graphics.off() @ \centering \includegraphics[trim=0 100 0 25]{tgp2-cat-fbtlm-mapt} \caption{Diagrammatic depiction of the maximum {\em a' posteriori} (MAP) tree for the boolean indicator version of the Friedman data in Eq.~(\ref{eq:f1b}) using a Bayesian treed linear model.} \label{f:fb:btlm:trees} \end{figure} Figure \ref{f:fb:btlm:trees} shows that the tree does indeed partition, but not on the indicator variables. When a linear model is used at the leaves of the tree the boolean indicators cannot be partitioned upon because doing so would cause the design matrix to become rank--deficient at the leaves of the tree (there would be a column of all zeros or all ones). A treed GP would have the same problem. A new feature in {\tt tgp} makes dealing with indicators such as these more natural, by including them as candidates for treed partitioning, but ignoring them when it comes to fitting the models at the leaves of the tree. The argument {\tt basemax} to {\tt tgp.default.params}, and thus the ellipses ({\tt ...}) argument to the {\tt b*} functions, allows for the specification of the last columns of {\tt X} to be considered under the base (LM or GP) model. In the context of our example, specifying {\tt basemax = 10} ensures that only the first 10 inputs, i.e., $\mb{X}$ only (excluding $I$), are used to predict the response under the GPs at the leaves. Both the columns of $\mb{X}$ and the columns of the boolean representation of the (categorical) indicators $I$ are (still) candidates for partitioning. This way, whenever the boolean indicators are partitioned upon, the design matrix (for the GP or LM) will not contain the corresponding column of zeros or ones, and therefore will be of full rank. Let us revisit the treed LM model with {\tt basemax = 10}. <<>>= fit3 <- btlm(X=X, Z=Z, XX=XX, basemax=10, verb=0) rmse3 <- sqrt(mean((fit3$ZZ.mean - ZZ)^2)) rmse3 @ \begin{figure}[ht!] <>= tgp.trees(fit3, "map") @ <>= graphics.off() @ \centering \includegraphics[trim=0 90 0 25,scale=0.75]{tgp2-cat-fbtlm-mapt} \caption{Diagrammatic depiction of the maximum {\em a' posteriori} (MAP) tree for the boolean indicator version of the Friedman data in Eq.~(\ref{eq:f1b}) using a Bayesian treed linear model with the setting {\tt basemax = 10}.} \label{f:fb:btlm:mapt} \end{figure} Figure \ref{f:fb:btlm:mapt} shows that the MAP tree does indeed partition on the indicators in an appropriate way---as well as on some other real--valued inputs---and the result is the lower RMSE we would expect. A more high--powered approach would clearly be to treat all inputs as real--valued by fitting a GP at the leaves of the tree. Binary partitions are allowed on all inputs, $\mb{X}$ and $I$, but treating the boolean indicators as real--valued in the GP is clearly inappropriate since it is known that the process does not vary smoothly over the $0$ and $1$ settings of the three boolean indicators representing the categorical input $I$. <<>>= fit4 <- btgpllm(X=X, Z=Z, XX=XX, verb=0) rmse4 <- sqrt(mean((fit4$ZZ.mean - ZZ)^2)) rmse4 @ Since the design matrices would become rank--deficient if the boolean indicators are partitioned upon, there was no partitioning in this example. <<>>= fit4$gpcs @ Since there are large covariance matrices to invert, the MCMC inference is {\em very} slow. Still, the resulting fit (obtained with much patience) is better that the Bayesian CART and treed LM (with {\tt basemax = 10}) ones, as indicated by the RMSE. We would expect to get the best of both worlds if the setting {\tt basemax = 10} were used when fitting the treed GP model, thus allowing partitioning on the indicators by guarding against rank deficient design matrices. <<>>= fit5 <- btgpllm(X=X, Z=Z, XX=XX, basemax=10, verb=0) rmse5 <- sqrt(mean((fit5$ZZ.mean - ZZ)^2)) rmse5 @ And indeed this is the case. The benefits go beyond producing full rank design matrices at the leaves of the tree. Loosely speaking, removing the boolean indicators from the GP part of the treed GP gives a more parsimonious model, without sacrificing any flexibility. The tree is able to capture all of the dependence in the response as a function of the indicator input, and the GP is the appropriate non--linear model for accounting for the remaining relationship between the real--valued inputs and outputs. \begin{figure}[ht!] <>= h <- fit1$post$height[which.max(fit1$posts$lpost)] tgp.trees(fit5, "map") @ <>= graphics.off() @ \centering \includegraphics[trim=0 100 0 25]{tgp2-cat-fb-mapt} \caption{Diagrammatic depiction of the maximum {\em a' posteriori} (MAP) tree for the boolean indicator version of the Friedman data in Eq.~(\ref{eq:f1b}) using {\tt basemax=10}.} \label{f:fb:mapt} \end{figure} We can look at the maximum {\em a' posteriori} (MAP) tree, to see that only (and all of) the indicators were partitioned upon in Figure \ref{f:fb:mapt}. Further advantages to this approach include speed (a partitioned model gives smaller covariance matrices to invert) and improved mixing in the Markov chain when a separable covariance function is used. Note that using a non--separable covariance function in the presence of indicators would result in a poor fit. Good range ($d$) settings for the indicators would not necessarily coincide with good range settings for the real--valued inputs. A complimentary setting, {\tt splitmin}, allows the user to specify the first column of the inputs {\tt X} upon which treed partitioning is allowed. From Section 3.5 of the first {\tt tgp} vignette \cite{gramacy:2007}, it was concluded that the original formulation of Friedman data was stationary, and thus treed partitioning is not required to obtain a good fit. The same would be true of the response in (\ref{eq:f1b}) after conditioning on the indicators. Therefore, the most parsimonious model would use {\tt splitmin = 11}, in addition to {\tt basemax = 10}, so that only $\mb{X}$ are under the GP, and only $I$ under the tree. Fewer viable candidate inputs for treed partitioning should yield improved mixing in the Markov chain, and thus lower RMSE. <<>>= fit6 <- btgpllm(X=X, Z=Z, XX=XX, basemax=10, splitmin=11, verb=0) rmse6 <- sqrt(mean((fit6$ZZ.mean - ZZ)^2)) rmse6 @ Needless to say, it is important that the input {\tt X} have columns which are ordered appropriately before the {\tt basemax} and {\tt splitmin} arguments can be properly applied. Future versions of {\tt tgp} will have a formula--based interface to handle categorical ({\tt factors}) and other inputs more like other {\sf R} regression routines, e.g., {\tt lm} and {\tt glm}. The tree and binary encodings represent a particularly thrifty way to handle categorical inputs in a GP regression framework, however it is by no means the only or best approach to doing so. A disadvantage to the binary coding is that it causes the introduction of several new variables for each categorical input. Although they only enter the tree part of the model, and not the GP (where the introduction of many new variables could cause serious problems), this may still be prohibitive if the number of categories is large. Another approach that may be worth considering in this case involves designing a GP correlation function which can explicitly handle a mixture of qualitative (categorical) and quantitative (real-valued) factors \cite{qian:wu:wu:2009}. An advantage of our treed approach is that it is straightforward to inspect the effect of the categorical inputs by, e.g., counting the number of trees (in the posterior) which contain a particular binary encoding. It is also easy to see how the categorical inputs interact with the real-valued ones by inspecting the (posterior) parameterizations of the correlation parameters in each partition on a binary encoding. Both of these are naturally facilitated by gathering traces ({\tt trace = TRUE}), as described in the 1.x vignette \cite{gramacy:2007}. In Section \ref{sec:sens} we discuss a third way of determining the sensitivity of the response to categorical and other inputs. \section{Analysis of sensitivity to inputs} \label{sec:sens} <>= seed <- 0; set.seed(seed) @ Methods for understanding how inputs, or explanatory variables, contribute to the outputs, or response, of simple statistical models are by now classic in the literature and frequently used in practical application. For example, in linear regression one can perform $F$--tests to ascertain the relevance of a predictor, or inspect the leverage of a particular input setting, or use Cooks' distance, to name a few. Unfortunately, such convenient statistics/methods are not available for more complicated models, such as those in the {\tt tgp} family of nonparametric models. A more advanced tool is needed. Sensitivity Analysis (SA) is a resolving of the sources of output variability by apportioning elements of this variation to different sets of input variables. It is applicable in wide generality. The edited volume by Saltelli et al.~\cite{SaltChanScot2000} provides an overview of the field. Valuable recent work on smoothing methods is found in \cite{StorHelt2008,VeigWahlGamb2009}, and Storlie, et al.~\cite{StorSwilHeltSall2009}, provide a nice overview of nonparametric regression methods for inference about sensitivity. The analysis of response variability is useful in a variety of different settings. For example, when there is a large number of input variables over which an objective function is to be optimized, typically only a small subset will be influential within the confines of their uncertainty distribution. SA can be used to reduce the input space of such optimizations \cite{TaddLeeGrayGrif2009}. Other authors have used SA to assess the risk associated with dynamic factors affecting the storage of nuclear waste \cite{HommSalt1996}, and to investigate the uncertainty characteristics of a remote sensing model for the reflection of light by surface vegetation \cite{MorrKottTaddFurfGana2008}. The {\tt sens} function adds to {\tt tgp} a suite of tools for global sensitivity analysis, and enables ``out-of-the-box'' estimation of valuable sensitivity indices for any regression relationship that may be modeled by a member of the {\tt tgp} family. The type of sensitivity analysis provided by {\tt tgp} falls within the paradigm of global sensitivity analysis, wherein the variability of the response is investigated with respect to a probability distribution over the entire input space. The recent book by Saltelli et al. \cite{SaltEtAl2008} serves as a primer on this field. Global SA is inherently a problem of statistical inference, as evidenced by the interpolation and estimation required in a study of the full range of inputs. This is in contrast with the analytical nature of local SA, which involves derivative--based investigation of the stability of the response over a small region of inputs. We will ignore local SA for the remainder of this document. The sensitivity of a response $z$ to a changing input $\mb{x}$ is always considered in relation to a specified {\it uncertainty distribution}, defined by the density $u(\mb{x})$, and the appropriate marginal densities $u_i(x_i)$. What is represented by the uncertainty distribution changes depending upon the context. The canonical setup has that $z$ is the response from a complicated physics or engineering simulation model, with tuning parameters $\mb{x}$, that is used to predict physical phenomena. In this situation, $u(\mb{x})$ represents the experimentalist's uncertainty about real--world values of $\mb{x}$. In optimization problems, the uncertainty distribution can be used to express prior information from experimentalists or modelers on where to look for solutions. Finally, in the case of observational systems (such as air-quality or smog levels), $u(\mb{x})$ may be an estimate of the density governing the natural occurrence of the $\mb{x}$ factors (e.g., air-pressure, temperature, wind, and cloud cover). In this setup, SA attempts to resolve the natural variability of $z$. The most common notion of sensitivity is tied to the relationship between conditional and marginal variance for $z$. Specifically, variance--based methods decompose the variance of the objective function, with respect to the uncertainty distribution on the inputs, into variances of conditional expectations. These are a natural measure of the output association with specific sets of variables and provide a basis upon which the importance of individual inputs may be judged. The other common component of global SA is an accounting of the main effects for each input variable, $\mathbb{E}_{u_j}[z|x_j]$, which can be obtained as a by-product of the variance analysis. Our variance--based approach to SA is a version of the method of Sobol', wherein a deterministic objective function is decomposed into summands of functions on lower dimensional subsets of the input space. Consider the function decomposition $ f(x_1, \ldots ,x_d) = f_0 + \sum_{j=1}^df_j(x_j) +\sum_{1 \leq i < j \leq d} f_{ij}(x_j,x_i) + \ldots + f_{1,\ldots,d}(x_1, \ldots ,x_d). $ When the response $f$ is modeled as a stochastic process $z$ conditional on inputs $\mb{x}$, we can develop a similar decomposition into the response distributions which arise when $z$ has been marginalized over one subset of covariates and the complement of this subset is allowed to vary according to a marginalized uncertainty distribution. In particular, we can obtain the marginal conditional expectation $\mbb{E}[z|\mb{x}_J=\{x_j:j\in J\}]$ $=$ $\int_{\mathbb{R}^{d-d_J}} \mbb{E}[z|\mb{x}]u(\mb{x}) d\mb{x}_{-J}$, where $J=\{j_1, \ldots, j_{d_J}\}$ indicates a subset of input variables, $\mb{x}_{-j} =\{x_j:j\notin J\}$, and the marginal uncertainty density is given by $u_J(\mb{x}_J) = \int_{\mathbb{R}^{d-d_J}} u(\mb{x}) d\{x_i:i \notin J \}$. SA concerns the variability of $\mbb{E}[z|\mb{x}_J]$ with respect to changes in $\mb{x}_J$ according to $u_J(\mb{x}_J)$ and, if $u$ is such that the inputs are uncorrelated, the variance decomposition is available as \begin{equation} \label{eqn:var_decomp} \mr{var}(\mbb{E}[z|\mb{x}]) = \sum_{j=1}^dV_j + \sum_{1 \leq i < j \leq d} V_{ij} + \ldots + V_{1,\ldots,d}, \end{equation} where $V_j = \mr{var}(\mbb{E}[z|x_j])$, $V_{ij}=\mr{var}(\mbb{E}[z|x_i, x_j]) - V_i - V_j$, and so on. Clearly, when the inputs are correlated this identity no longer holds (although a ``less-than-or-equal-to'' inequality is always true). But it is useful to retain an intuitive interpretation of the $V_J$'s as a portion of the overall marginal variance. Our global SA will focus on the related sensitivity indices $S_J = V_J/\mr{var}(z)$ which, as can be seen in the above equation, will sum to one over all possible $J$ and are bounded to $[0,1]$. These $S_J$'s provide a natural measure of the {\it importance} of a set $J$ of inputs and serve as the basis for an elegant analysis of sensitivity. The {\tt sens} function allows for easy calculation of two very important sensitivity indices associated with each input: the 1$^{\rm st}$ order for the $j$th input variable, \begin{equation} S_j = \frac{\mr{var}\left(\mbb{E}\left[z|x_j\right]\right)}{\mr{var}(z)}, \label{eq:S} \end{equation} and the total sensitivity for input $j$, \begin{equation} T_j = \label{eq:T} \frac{\mbb{E}\left[\mr{var}\left(z|\mb{x}_{-j}\right)\right]}{\mr{var}(z)}. \end{equation} The 1$^{\rm st}$ order indices measure the portion of variability that is due to variation in the main effects for each input variable, while the total effect indices measure the portion of variability that is due to total variation in each input. From the identity $\mbb{E}\left[\mr{var}\left(z|\mb{x}_{-j}\right)\right] = \mr{var}(z) - \mr{var}\left(\mbb{E}\left[z|\mb{x}_{-j}\right]\right)$, it can be seen that $T_j$ measures the {\it residual} variability remaining after variability in all other inputs has been apportioned and that, for a deterministic response and uncorrelated input variables, $T_j = \sum_{J:j \in J} S_J$. This implies that the difference between $T_j$ and $S_j$ provides a measure of the variability in $z$ due to interaction between input $j$ and the other input variables. A large difference may lead the investigator to consider other sensitivity indices to determine where this interaction is most influential, and this is often a key aspect of the dimension--reduction that SA provides for optimization problems. \subsection{Monte Carlo integration for sensitivity indices} Due to the many integrals involved, estimation of the sensitivity indices is not straightforward. The influential paper by Oakley \& O'Hagan \cite{OaklOhag2004} describes an empirical Bayes estimation procedure for the sensitivity indices, however some variability in the indices is lost due to plug-in estimation of GP model parameters and, more worryingly, the variance ratios are only possible in the form of a ratio of expected values. Marrel, et al.~\cite{MarrIoosLaurRous2009}, provide a more complete analysis of the GP approach to this problem, but their methods remain restricted to estimation of the first order Sobol indices. Likelihood based approaches have also been proposed \cite{WelcBuckSackWynnMitcMorr1992,MorrKottTaddFurfGana2008}. The technique implemented in {\tt tgp} is, in contrast, fully Bayesian and provides a complete accounting of the uncertainty involved. Briefly, at each iteration of an MCMC chain sampling from the treed GP posterior, output is predicted over a large (carefully chosen) set of input locations. Conditional on this predicted output, the sensitivity indices can be calculated via Monte Carlo integration. By conditioning on the predicted response (and working as though it were the observed response), we obtain a posterior sample of the indices, incorporating variability from both the integral estimation and uncertainty about the function output. In particular, the {\tt sens} function includes a {\tt model} argument which allows for SA based on any of the prediction models (the {\tt b*} functions) in {\tt tgp}. Our Monte Carlo integration is based upon Saltelli's \cite{Salt2002} efficient Latin hypercube sampling (LHS) scheme for estimation of both 1$^{\rm st}$ order and total effect indices. We note that the estimation is only valid for uncorrelated inputs, such that $u(\mb{x}) = \prod_{j=1}^d u_j(x_j)$. The {\tt sens} function only allows for uncertainty distributions of this type (in fact, the marginal distributions also need to be bounded), but this is a feature of nearly every ``out-of-the-box'' approach to SA. Studies which concern correlated inputs will inevitably require modeling for this correlation, whereas most regression models (including those in {\tt tgp}) condition on the inputs and ignore the joint density for $\mb{x}$. Refer to the work of Saltelli \& Tarantola \cite{SaltTara2002} for an example of SA with correlated inputs. We now briefly describe the integration scheme. The 2nd moment is a useful intermediate quantity in variance estimation, and we define \[ D_J = \mbb{E}\left[\mbb{E}^2\left[z|\mb{x}_{J}\right]\right] = \int_{\mbb{R}^{d_J}} \mbb{E}^2\left[z| {\mb{x}_J}\right]u_J(\mb{x}_J)d(\mb{x}_J). \] Making use of an auxiliary variable, \begin{eqnarray*} D_J &=& \int_{\mbb{R}^{d_J}} \left[\int_{\mbb{R}^{d_{-J}}} \!\!\!\mbb{E}\left[ z | \mb{x}_J, \mb{x}_{-J} \right]u_{-J}(\mb{x}_{-J})d\mb{x}_{-J} \int_{\mbb{R}^{d_{-J}}} \!\!\!\mbb{E}\left[ z | \mb{x}_J, \mb{x}'_{-J} \right] u_{-J}(\mb{x}'_{-J})d\mb{x}'_{-J}\right]u_J(\mb{x}_J)\mb{x}_{J}\\ &=& \int_{\mbb{R}^{d + d_{-J}}} \!\!\mbb{E}\left[ z | \mb{x}_J, \mb{x}_{-J} \right]\mbb{E}\left[ z | \mb{x}_J, \mb{x}'_{-J} \right] u_{-J}(\mb{x}_{-J})u_{-J}(\mb{x}'_{-J})u_{J}(\mb{x}_{J})d\mb{x}d\mb{x}'_{J}. \end{eqnarray*} Thus, in the case of independent inputs, \[ D_J = \int_{\mbb{R}^{d+d_{-J}}} \mbb{E}\left[ z |\mb{x} \right]\mbb{E}\left[ z | \mb{x}_J, \mb{x}'_{-J} \right] u_{-J}(\mb{x}'_{-J})u({\bf x})d\mb{x}'_{-J}d\mb{x}. \] Note that at this point, if the inputs had been correlated, the integral would have been instead with respect to the joint density $u(\mb{x})u(\mb{x}_{-J}' | \mb{x}_J)$, leading to a more difficult integral estimation problem. Recognizing that $S_j = (D_j-\mbb{E}^2[z])/\mr{var}(z)$ and $T_j = 1- \left( \left(D_{-j} - \mbb{E}^2[z]\right)\right)/\mr{var}(z)$, we need estimates of $\mr{var}(z)$, $\mbb{E}^2[z]$, and $\{ (D_j, D_{-j}) : j=1,\ldots,d \}$ to calculate the sensitivity indices. Given a LHS $M$ proportional to $u(\mb{x})$, \begin{equation*} M = \left[ \begin{array}{c} s_{1_1} ~ \cdots ~ s_{1_d}\\ \vdots \\ s_{m_1} ~ \cdots ~ s_{m_d}\\ \end{array} \right], \end{equation*} it is possible to estimate $\widehat{\mbb{E}[z]} = \frac{1}{m} \sum_{k=1}^m\mbb{E}[z|{\bf s}_k]$ and $\widehat{\mr{var}[z]} = \frac{1}{m} \mbb{E}^T[z|M]\mbb{E}[z|M] - \widehat{\mbb{E}[z]}\widehat{\mbb{E}[z]}$, where the convenient notation $\mbb{E}[z|M]$ is taken to mean $\left[\mbb{E}[z|\mb{s}_1] \cdots \mbb{E}[z|\mb{s}_m]\right]^T$. All that remains is to estimate the $D$'s. Define a second LHS $M'$ proportional to $u$ of the same size as $M$ and say that $N_J$ is $M'$ with the $J$ columns replaced by the corresponding columns of $M$. Hence, \begin{equation*} N_j = \left[ \begin{array}{c} s'_{1_1} \cdots s_{1_j} \cdots s'_{1_d}\\ \vdots \\ s'_{m_1} \cdots s_{m_j} \cdots s'_{m_d} \end{array}\right]~~~\mr{and}~~~ N_{-j} = \left[ \begin{array}{c} s_{1_1} \cdots s'_{1_j} \cdots s_{1_d}\\ \vdots \\ s_{m_1} \cdots s'_{m_j} \cdots s_{m_d} \end{array}\right]. \end{equation*} The estimates are then $\hat D_j = \mbb{E}^T[z|M]\mbb{E}[z|N_{j}]/(m-1)$ and $\hat D_{-j}$ $=$ $\mbb{E}^T[z|M']\mbb{E}[z|N_{j}]/(m-1)$ $\approx$ $ \mbb{E}^T[z|M]\mbb{E}[z|N_{-j}]/(m-1)$. Along with the variance and expectation estimates, these can be plugged into equations for $S_j$ and $T_j$ in (\ref{eq:S}--\ref{eq:T}) to obtain $\hat S_j$ and $\hat T_j$. Note that Saltelli recommends the use of the alternative estimate $\widehat{\mbb{E}^2[z]} = \frac{1}{n-1}\mbb{E}^T[z|M]\mbb{E}[z|M']$ in calculating 1$^{\rm st}$ order indices, as this brings the index closer to zero for non-influential variables. However, it has been our experience that these biased estimates can be unstable, and so {\tt tgp} uses the standard $\widehat{\mbb{E}^2[z]} = \widehat{\mbb{E}[z]}\widehat{\mbb{E}[z]}$ throughout. As a final point, we note that identical MCMC sampling-based integration schemes can be used to estimate other Sobol indices (e.g., second order, etc) for particular combinations of inputs, but that this would require customization of the {\tt tgp} software. The set of input locations which need to be evaluated for each calculation of the indices is $\{ M, M', N_1,\ldots,N_d \}$, and if $m$ is the sample size for the Monte Carlo estimate this scheme requires $m(d+2)$ function evaluations. Hence, at each MCMC iteration of the model fitting, the $m(d+2)$ locations are drawn randomly according the LHS scheme, creating a random prediction matrix, {\tt XX}. By allowing random draws of the input locations, the Monte Carlo error of the integral estimates will be included in the posterior variability of the indices and the posterior moments will not be dependent upon any single estimation input set. Using predicted output over this input set, a single realization of the sensitivity indices is calculated through Saltelli's scheme. At the conclusion of the MCMC, we have a representative sample from the posterior for ${\bf S}$ and ${\bf T}$. The averages for these samples are unbiased estimates of the posterior mean, and the variability of the sample is representative of the complete uncertainty about model sensitivity. Since a subset of the predictive locations ($M$ and $M'$) are actually a LHS proportional to the uncertainty distribution, we can also estimate the main effects at little extra computational cost. At each MCMC iteration, a one--dimensional nonparametric regression is fit through the scatterplot of $[s_{1_j}, \ldots, s_{m_j},s'_{1_j}, \ldots, s'_{m_j}]$ vs. $[\mbb{E}[z|M],\mbb{E}[z|M']]$ for each of the $j=1,\ldots,d$ input variables. The resultant regression estimate provides a realization of $\mbb{E}[z|x_j]$ over a grid of $x_j$ values, and therefore a posterior draw of the main effect curve. Thus, at the end of the MCMC, we have not only unbiased estimates of the main effects through posterior expectation, but also a full accounting of our uncertainty about the main effect curve. This technique is not very sensitive to the method of non-parametric regression, since $2m$ will typically represent a very large sample in one--dimension. The estimation in {\tt tgp} uses a moving average with squared distance weights and a window containing the {\tt span}$*2m$ nearest points (the {\tt span} argument defaults to 0.3). \subsection{Examples} We illustrate the capabilities of the {\tt sens} function by looking at the Friedman function considered earlier in this vignette. The function that describes the responses ($Z$), observed with standard Normal noise, has mean \begin{equation} E(Z|\mb{x}) = 10 \sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5 x_5. \label{eq:f1} \end{equation} A sensitivity analysis can be based upon any of the available regression models (e.g., {\tt btlm}, {\tt bgp}, or {\tt btgp}); we choose to specify {\tt model=btgpllm} for this example. The size of each LHS used in the integration scheme is specified through {\tt nn.lhs}, such that this is equivalent to $m$ in the above algorithm description. Thus the number of locations used for prediction---the size of the random {\tt XX} prediction matrix---is {\tt nn.lhs*(ncol(X)+2)}. In addition, the window for moving average estimation of the main effects is {\tt span*2*nn.lhs} (independent of this, an {\tt ngrid} argument with a default setting of {\tt ngrid=100} dictates the number of grid points in each input dimension upon which main effects will be estimated). <<>>= f <- friedman.1.data(250) @ This function actually generates 10 covariates, the last five of which are completely un-influential. We'll include one of these ($x_6$) to show what the sensitivity analysis looks like for unrelated variables. <<>>= Xf <- f[, 1:6] Zf <- f$Y sf <- sens(X=Xf, Z=Zf, nn.lhs=600, model=bgpllm, verb=0) @ The progress indicators printed to the screen (for {\tt verb > 0}) are the same as would be obtained under the specified regression {\tt model}---{\tt bgpllm} in this case---so we suppress them here. All of the same options (e.g., {\tt BTE}, {\tt R}, etc.) apply, although if using the {\tt trace} capabilities one should be aware that the {\tt XX} matrix is changing throughout the MCMC. The {\tt sens} function returns a \verb!"tgp"!-class object, and all of the SA related material is included in the {\tt sens} list within this object. <<>>= names(sf$sens) @ The object provides the SA parameters ({\tt par}), the grid of locations for main effect prediction ({\tt Xgrid}), the mean and interval estimates for these main effects ({\tt ZZ.mean}, {\tt ZZ.q1}, and {\tt ZZ.q2}), and full posterior via samples of the sensitivity indices ({\tt S} and {\tt T}). The plot function for \verb!"tgp"!-class objects now provides a variety of ways to visualize the results of a sensitivity analysis. This capability is accessed by specifying {\tt layout="sens"} in the standard {\tt plot} command. By default, the mean posterior main effects are plotted next to boxplot summaries of the posterior sample for each $S_j$ and $T_j$ index, as in Figure \ref{full}. \begin{figure}[ht!] <>= plot(sf, layout="sens", legendloc="topleft") @ <>= graphics.off() @ \includegraphics[width=6.5in,trim=0 10 0 10]{tgp2-sens-full} \caption{Full sensitivity analysis results for the Friedman function.} \label{full} \end{figure} A further note on the role played by {\tt nn.lhs}: As always, the quality of the regression model estimate depends on the length of the MCMC. But now, the quality of sensitivity analysis is directly influenced by the size of the LHS used for integral approximation; as with any Monte Carlo integration scheme, the sample size (i.e., {\tt nn.lhs}) must increase with the dimensionality of the problem. In particular, it can be seen in the estimation procedure described above that the total sensitivity indices (the $T_j$'s) are not forced to be non-negative. If negative values occur it is necessary to increase {\tt nn.lhs}. In any case, the {\tt plot.tgp} function changes any of the negative values to zero for purposes of illustration. The {\tt maineff} argument can be used to plot either selected main effects (Figure \ref{mains}), \begin{figure}[ht!] <>= par(mar=c(4,2,4,2), mfrow=c(2,3)) plot(sf, layout="sens", maineff=t(1:6)) @ <>= graphics.off() @ \centering \includegraphics[width=6.6in]{tgp2-sens-mains} \caption{Friedman function main effects, with posterior 90\% intervals.} \label{mains} \end{figure} or just the sensitivity indices (Figure \ref{indices}). \begin{figure}[ht!] <>= plot(sf, layout="sens", maineff=FALSE) @ <>= graphics.off() @ \centering \includegraphics[width=6.5in,trim=0 15 0 15]{tgp2-sens-indices} \caption{Sensitivity indices for the Friedman function.} \label{indices} \end{figure} Note that the posterior intervals shown in these plots represent uncertainty about both the function response and the integration estimates; this full quantification of uncertainty is not presently available in any alternative SA procedures. These plots may be compared to what we know about the Friedman function (refer to Eq.~(\ref{eq:f1})) to evaluate the analysis. The main effects correspond to what we would expect: sine waves for $x_1$ and $x_2$, a parabola for $x_3$, and linear effects for $x_4$ and $x_5$. The sensitivity indices show $x_1$ and $x_2$ contributing roughly equivalent amounts of variation, while $x_4$ is relatively more influential than $x_5$. Full effect sensitivity indices for $x_3$, $x_4$, and $x_5$ are roughly the same as the first order indices, but (due to the interaction in the Friedman function) the sensitivity indices for the total effect of $x_1$ and $x_2$ are significantly larger than the corresponding first order indices. Finally, our SA is able to determine that $x_6$ is unrelated to the response. This analysis assumes the default uncertainty distribution, which is uniform over the range of input data. In other scenarios, it is useful to specify an informative $u(\mb{x})$. In the {\tt sens} function, properties of $u$ are defined through the {\tt rect}, {\tt shape}, and {\tt mode} arguments. To guarantee integrability of our indices, we have restricted ourselves to bounded uncertainty distributions. Hence, {\tt rect} defines these bounds. In particular, this defines the domain from which the LHSs are to be taken. We then use independent scaled beta distributions, parameterized by the {\tt shape} parameter and distribution {\tt mode}, to define an informative uncertainty distribution over this domain. As an example of sensitivity analysis under an informative uncertainty distribution, consider the {\tt airquality} data available with the base distribution of {\sf R}. This data set contains daily readings of mean ozone in parts per billion ({\it Ozone}), solar radiation ({\it Solar.R}), wind speed ({\it Wind}), and maximum temperature ({\it Temp}) for New York City, between May 1 and September 30, 1973. Suppose that we are interested in the sensitivity of air quality to natural changes in {\it Solar.R},{\it Wind}, and {\it Temp}. For convenience, we will build our uncertainty distribution while assuming independence between these inputs. Hence, for each variable, the input uncertainty distribution will be a scaled beta with {\tt shape=2}, and {\tt mode} equal to the data mean. <<>>= X <- airquality[,2:4] Z <- airquality$Ozone rect <- t(apply(X, 2, range, na.rm=TRUE)) mode <- apply(X , 2, mean, na.rm=TRUE) shape <- rep(2,3) @ LHS samples from the uncertainty distribution are shown in Figure (\ref{udraw}) \begin{figure}[ht!] <>= Udraw <- lhs(300, rect=rect, mode=mode, shape=shape) par(mfrow=c(1,3), mar=c(4,2,4,2)) for(i in 1:3){ hist(Udraw[,i], breaks=10,xlab=names(X)[i], main="",ylab="", border=grey(.9), col=8) } @ <>= graphics.off() @ \centering \includegraphics[width=6in,trim=0 0 0 30]{tgp2-sens-udraw} \caption{A sample from the marginal uncertainty distribution for the airquality data.} \label{udraw} \end{figure} Due to missing data (discarded in the current version of {\tt tgp}), we suppress warnings for the sensitivity analysis. We shall use the default {\tt model=btgp}. <<>>= s.air <- suppressWarnings(sens(X=X, Z=Z, nn.lhs=300, rect=rect, shape=shape, mode=mode, verb=0)) @ Figure (\ref{air1}) shows the results from this analysis. \begin{figure}[ht!] <>= plot(s.air, layout="sens") @ <>= graphics.off() @ \centering \includegraphics[width=6.5in,trim=0 15 0 15]{tgp2-sens-air1} \caption{Sensitivity of NYC airquality to natural variation in wind, sun, and temperature.} \label{air1} \end{figure} Through use of {\tt predict.tgp}, it is possible to quickly re-analyze with respect to a new uncertainty distribution without running new MCMC. We can, for example, look at sensitivity for air quality on only low--wind days. We thus alter the uncertainty distribution (assuming that things remain the same for the other variables) <<>>= rect[2,] <- c(0,5) mode[2] <- 2 shape[2] <- 2 @ and build a set of parameters {\tt sens.p} with the {\tt sens} function by setting {\tt model=NULL}. <<>>= sens.p <- suppressWarnings(sens(X=X,Z=Z,nn.lhs=300, model=NULL, rect=rect, shape=shape, mode=mode)) @ \begin{figure}[ht!] <>= s.air2 <- predict(s.air, BTE=c(1,1000,1), sens.p=sens.p, verb=0) plot(s.air2, layout="sens") @ <>= graphics.off() @ \includegraphics[width=6.5in,trim=0 15 0 15]{tgp2-sens-air2} \caption{Air quality sensitivity on low-wind days.} \label{air2} \end{figure} Figures (\ref{air1}) and (\ref{air2}) both show total effect indices which are much larger than the respective first order sensitivities. As one would expect, the effect on airquality is manifest largely through an interaction between variables. Finally, it is also possible to perform SA with binary covariates, included in the regression model as described in Section 1. In this case, the uncertainty distribution is naturally characterized by a Bernoulli density. Setting {\tt shape[i]=0} informs {\tt sens} that the relevant variable is binary (perhaps encoding a categorical input as in Section \ref{sec:cat}), and that the Bernoulli uncertainty distribution should be used. In this case, the {\tt mode[i]} parameter dictates the probability parameter for the Bernoulli, and we must have {\tt rect[i,] = c(0,1)}. As an example, we re-analyze the original air quality data with temperature included as an indicator variable (set to one if temperature > 79, the median, and zero otherwise). <<>>= X$Temp[X$Temp >70] <- 1 X$Temp[X$Temp >1] <- 0 rect <- t(apply(X, 2, range, na.rm=TRUE)) mode <- apply(X , 2, mean, na.rm=TRUE) shape <- c(2,2,0) s.air <- suppressWarnings(sens(X=X, Z=Z, nn.lhs=300, rect=rect, shape=shape, mode=mode, verb=0, basemax=2)) @ \begin{figure}[ht!] <>= plot(s.air, layout="sens") @ <>= graphics.off() @ \centering \includegraphics[width=6.5in,trim=0 15 0 15]{tgp2-sens-air3} \caption{Sensitivity of NYC airquality to natural variation in wind, sun, and a binary temperature variable (for a threshold of 79 degrees).} \label{air3} \end{figure} Figure (\ref{air3}) shows the results from this analysis. \section{Statistical search for optimization} \label{sec:optim} <>= seed <- 0; set.seed(seed) @ There has been considerable recent interest in the use of statistically generated search patterns (i.e., locations of relatively likely optima) for optimization. A popular approach is to estimate a statistical (surrogate) model, and use it to design a set of well-chosen candidates for further evaluation by a direct optimization routine. Such statistically designed search patterns can be used either to direct the optimization completely (e.g., \cite{JoneSchoWelc1998} or \cite{RommShoe2007}) or to work in hybrid with local pattern search optimization (as in \cite{TaddLeeGrayGrif2009}). An bonus feature of the statistical surrogate approach is that it may be used to tackle problems of optimization under uncertainty, wherein the function being optimized is observed with noise. In this case the search is for input configurations which optimize the response with high probability. Direct-search methods would not apply in this scenario without modification. However, a sensible hybrid could involve inverting the relationship between the two approaches so that direct-search is used on deterministic predictive surfaces from the statistical surrogate model. This search can be used to find promising candidates to compliment space-filling ones at which some statistical improvement criterion is evaluated. Towards situating {\tt tgp} as a promising statistical surrogate model for optimization (in both contexts) the approach developed by Taddy, et al.~\cite{TaddLeeGrayGrif2009}, has been implemented to produce a list of input locations that is ordered by a measure of the potential for new optima. The procedure uses samples from the posterior predictive distribution of treed GP regression models to estimate improvement statistics and build an ordered list of search locations which maximize expected improvement. The single location improvement is defined $I(\mb{x}) = \mathrm{max}\{f_{min}-f(\mb{x}),0\}$, where $f_{min}$ is the minimum evaluated response in the search (refer to \cite{SchoWelcJone1998} for extensive discussion on general improvement statistics and initial vignette~\cite{gramacy:2007} for details of a base implementation in {\tt tgp}). Thus, a high improvement corresponds to an input location that is expected to be much lower than the current minimum. The criterion is easily changed to a search for maximum values through negation of the response. The improvement is always non-negative, as points which do not turn out to be new minimum points still provide valuable information about the output surface. Thus, in the expectation, candidate locations will be rewarded for high response uncertainty (indicating a poorly explored region of the input space), as well as for low mean predicted response. Our {\tt tgp} generated search pattern will consist of $m$ locations that recursively maximize (over a discrete candidate set) a sequential version of the expected multi-location improvement developed by Schonlau, et al.~\cite{SchoWelcJone1998}, defined as $\mbb{E}\left[I^g(\mb{x}_1, \ldots, \mb{x}_m)\right]$ where \begin{equation} \label{eqn:imult} I^g(\mb{x}_1, \ldots, \mb{x}_m) = \left(\mathrm{max}\{(f_{min}-f(\mb{x}_1)), \ldots, (f_{min}-f(\mb{x}_m)), 0 \}\right)^g. \end{equation} Increasing $g \in \{0,1,2,3,\ldots\}$ increases the global scope of the criteria by rewarding in the expectation extra variability at $\mb{x}$. For example, $g=0$ leads to $\mbb{E}[I^0(\mb{x})] = \Pr(I(\mb{x})>0)$ (assuming the convention $0^0=0$), $g=1$ yields the standard statistic, and $g=2$ explicitly rewards the improvement variance since $\mbb{E}[I^2(\mb{x})] = \mr{var}[I(\mb{x})] + \mbb{E}[I(\mb{x})]^2$. For further discussion on the role of $g$, see \cite{SchoWelcJone1998} . Finding the maximum expectation of (\ref{eqn:imult}) is practically impossible for the full posterior distribution of $I^g(\mb{x}_1, \ldots, \mb{x}_m)$, and would require conditioning on a single fit for the model parameters (for example, static imputation of predictive GP means can be used to recursively build the improvement set \cite{GinsLe-RCarr2009}). However, {\tt tgp} just seeks to maximize over a discrete list of predictive locations. In fact, the default is to return an ordering for the entire {\tt XX} matrix, thus defining a ranking of predictive locations by order of decreasing expected improvement. There is no restriction on the form for {\tt XX}.\footnote{A full optimization routine would require that the search pattern is placed within an algorithm iterating towards convergence, as in \cite{TaddLeeGrayGrif2009}. However, we concentrate here on the statistical problem of choosing the next samples optimally. We shall touch on issues of convergence in Section \ref{sec:optimskel} where we describe a skeleton scheme for optimization extending {\sf R}'s internal {\tt optim} functionality.} The structure of this scheme will dictate the form for {\tt XX}. If it is the case that we seek simply to explore the input space and map a list of potential locations for improvement, using LHS to choose {\tt XX} will suffice. The discretization of decision space allows for a fast iterative solution to the optimization of $\mbb{E}\left[I^g(\mb{x}_1, \ldots, \mb{x}_m)\right]$. This begins with evaluation of the simple improvement $I^g(\tilde{\mb{x}}_i)$ over $\tilde{\mb{x}}_i \in {\bf \tilde X}$ at each of $T=$ {\tt BTE[2]-BTE[1]} MCMC iterations (each corresponding to a single posterior realization of {\tt tgp} parameters and predicted response after burn-in) to obtain the posterior sample \begin{equation*} \mathcal{I} = \left\{ \begin{array}{rcl} I^g( \tilde{\mb{x}}_1)_1& \ldots& I^g(\tilde{\mb{x}}_m)_1\\ &\vdots& \\ I^g( \tilde{\mb{x}}_1)_T& \ldots& I^g(\tilde{\mb{x}}_m)_T \end{array}\right\}. \end{equation*} Recall that in {\tt tgp} parlance, and as input to the {\tt b*} functions: $\tilde{\mb{X}}\equiv $ {\tt XX}. We then proceed iteratively to build an {\it ordered} collection of $m$ locations according to an iteratively refined improvement: Designate $\mb{x}_1 = \mathrm{argmax}_{\tilde{\mb{x}} \in {\bf \tilde X}} \mbb{E}\left[I^g( \tilde{\mb{x}})\right]$, and for $j=2,\ldots,m$, given that $\mb{x}_1, \ldots, \mb{x}_{j-1}$ are already included in the collection, the next member is \begin{eqnarray*} \mb{x}_j &=& \mathrm{argmax}_{\tilde{\mb{x}} \in {\bf \tilde X}} \mbb{E}\left[ \mathrm{max}\{I^g( \mb{x}_1, \ldots, \mb{x}_{j-1}), I^g(\tilde{\mb{x}}) \} \right]\\ &=& \mathrm{argmax}_{\tilde{\mb{x}} \in {\bf \tilde X}} \mbb{E}[\left(\mathrm{max}\{(f_{min}-f(\mb{x}_1)), \ldots, (f_{min}-f(\mb{x}_{j-1})), (f_{min}-f(\tilde{\mb{x}})), 0\}\right)^g ] \\ &=& \mathrm{argmax}_{\tilde{\mb{x}} \in {\bf \tilde X}} \mbb{E}\left[I^g(\mb{x}_1, \ldots, \mb{x}_{j-1},\tilde{\mb{x}})\right]. \end{eqnarray*} Thus, after each $j^{\rm th}$ additional point is added to the set, we have the maximum expected $j$--location improvement conditional on the first $j-1$ locations. This is not necessarily the unconditionally maximal expected $j$--location improvement; instead, point $\mb{x}_j$ is the location which will cause the greatest increase in expected improvement over the given $(j-1)$--location expected improvement. The posterior sample $\mathcal{I}$ acts as a discrete approximation to the true posterior distribution for improvement at locations within the candidate set {\tt XX}. Based upon this approximation, iterative selection of the point set is possible without any re-fitting of the {\tt tgp} model. Conditional on the inclusion of $\tilde{\mb{x}}_{i_1},\ldots,\tilde{\mb{x}}_{i_{l-1}}$ in the collection, a posterior sample of the $l$--location improvement statistics is calculated as \begin{equation*} \mathcal{I}_l = \left\{ \begin{array}{rcl} I^g( \tilde{\mb{x}}_{i_1},\ldots,\tilde{\mb{x}}_{i_{l-1}}, \tilde{\mb{x}}_1)_1 & \ldots& I^g( \tilde{\mb{x}}_{i_1},\ldots,\tilde{\mb{x}}_{i_{l-1}}, \tilde{\mb{x}}_m)_1\\ &\vdots& \\ I^g(\tilde{\mb{x}}_{i_1},\ldots,\tilde{\mb{x}}_{i_{l-1}}, {\tilde x}_1)_T& \ldots& I^g(\tilde{\mb{x}}_{i_1},\ldots,\tilde{\mb{x}}_{i_{l-1}},\tilde{\mb{x}}_m)_T \end{array}\right\}, \end{equation*} where the element in the $t^{\rm th}$ row and $j^{\rm th}$ column of this matrix is calculated as max$\{I^g(\tilde{\mb{x}}_{i_1}$, $\ldots,$ $\tilde{\mb{x}}_{i_{l-1}})_t$, $I^g(\tilde{\mb{x}}_j)_t\}$ and the $l^{\rm th}$ location included in the collection corresponds to the column of this matrix with maximum average. Since the multi-location improvement is always at least as high as the improvement at any subset of those locations, the same points will not be chosen twice for inclusion. In practice, very few iterations (about 10\% of the total candidate size under the default inference and regression model(s)) through this ordering process can be performed before the iteratively updated improvement statistics become essentially zero. Increasing the number of MCMC iterations ({\tt BTE[2]-BTE[1]}) can mitigate this to a large extent.\footnote{Once a zero (maximal) iterative improvement is attained the rest of the ranking is essentially arbitrary, at which point {\tt tgp} cuts off the process prematurely.} We refer the reader to \cite{TaddLeeGrayGrif2009} for further details on this approach to multi-location improvement search. \subsection{A simple example} We shall use the Rosenbrock function to illustrate the production of an ordered collection of (possible) adaptive samples to maximize the expected improvement within {\tt tgp}. Specifically, the two dimensional Rosenbrock function is defined as <<>>= rosenbrock <- function(x){ x <- matrix(x, ncol=2) 100*(x[,1]^2 - x[,2])^2 + (x[,1] - 1)^2 } @ and we shall bound the search space for adaptive samples to the rectangle: $-1\le x_i \le 5$ for $i=1,2$. The single global minimum of the Rosenbrock function is at $(1,1)$. <<>>= rosenbrock(c(1,1)) @ This function involves a long steep valley with a gradually sloping floor, and is considered to be a difficult problem for local optimization routines. We begin by drawing an LHS of 40 input locations within the bounding rectangle, and evaluating the function at these locations. <<>>= rect <- cbind(c(-1,-1),c(5,5)) X <- lhs(40, rect) Z <- rosenbrock(X) @ We will fit a {\tt bgp} model to this data to predict the Rosenbrock response at unobserved (candidate) input locations in {\tt XX}. The {\tt improv} argument may be used to obtain an ordered list of places where we should be looking for new minima. In particular, specifying {\tt improv=c(1,10)} will return the 10 locations which maximize the iterative multi-location expected improvement function, with $g=1$ (i.e., Eq.~(\ref{eqn:imult})). Note that {\tt improv=TRUE} is also possible, in which case {\tt g} defaults to one and the entire list of locations is ranked. Our candidate set is just a space filling LHS design. In other situations, it may be useful to build an informative LHS design (i.e., to specify {\tt shape} and {\tt mode} arguments for the {\tt lhs} function) to reflect what is already known about the location of optima. <<>>= XX <- lhs(200, rect) rfit <- bgp(X,Z,XX,improv=c(1,10), verb=0) @ Upon return, the \verb!"tgp"!-class object {\tt rfit} includes the matrix {\tt improv}, which is a list of the expected single location improvement for the 200 {\tt XX} locations, and the top 10 ranks. Note that the {\tt rank}s for those points which are not included in the top 10 are set to {\tt nrow(XX)=}\Sexpr{nrow(XX)}. Here are the top 10: <<>>= cbind(rfit$improv,XX)[rfit$improv$rank <= 10,] @ This iterative algorithm may produce ranks that differ significantly from a straightforward ordering of expected improvement. This leads to a list that better explores the input space, since the expected improvement is naturally balanced against a desire to search the domain. We plot the results with the usual function, by setting {\tt as="improv"}, in Figure \ref{optim-fit1}. \begin{figure}[htb!] <>= plot(rfit, as="improv") @ <>= graphics.off() @ \centering \includegraphics[width=6.5in,trim=0 25 0 25]{tgp2-optim-fit1} \caption{The {\em left} panel shows the mean predicted Rosenbrock function response, and on the {\em right} we have expected single location improvement with the top 10 points (labelled by rank) plotted on top.} \label{optim-fit1} \end{figure} The banana--shaped region of higher expected improvement corresponds to the true valley floor for the Rosenbrock function, indicating the that {\tt bgp} model is doing a good job of prediction. Also, we note that the ordered input points are well dispersed throughout the valley---a very desirable property for adaptive sampling candidates. It is straightforward, with {\tt predict.tgp}, to obtain a new ordering for the more global {\tt g=5} (or any new {\tt g}). Figure \ref{optim-fit2} shows a more diffuse expected improvement surface and a substantially different point ordering. In practice, we have found that {\tt g=2} provides a good compromise between local and global search. \begin{figure}[htb!] <>= rfit2 <- predict(rfit, XX=XX, BTE=c(1,1000,1), improv=c(5,20), verb=0) plot(rfit2, layout="as", as="improv") @ <>= graphics.off() @ \centering \includegraphics[width=3.25in,trim=0 25 0 25]{tgp2-optim-fit2} \caption{The expected improvement surface and top 20 ordered locations, for {\tt g=5}.} \label{optim-fit2} \end{figure} \subsection{A skeleton optimization scheme} \label{sec:optimskel} %% The nature of global optimization demands that a fine balance be %% struck between global and local search. Therefore, designing a %% one--size--fits--all approach would be a daunting task. For one %% thing, assessing convergence in any formal sense would be quite %% difficult, although in practice it would be straightforward to %% ``force'' convergence by (eventually) focusing the method on finding a %% local solution. In the case where the function evaluations are %% deterministic, final convergence to a the local solution is always %% possible through the use of {\tt R}'s {\tt optim} function, for %% example. A method using {\tt tgp} based on a similar, but more %% formalized approach, using a direct/pattern search (in place of {\tt %% optim}) has been recently demonstrated in the context of %% sequentially designing computer experiments to solve an optimization %% problem \cite{TaddLeeGrayGrif2009}. Generally speaking, the result is %% a sensible compromise between local and global search. When the %% function evaluations are noisy one can always create a deterministic %% approximation, i.e., via the MAP predictive distribution (i.e., a %% kriging surrogate), for use with {\tt optim} in order to obtain %% convergence to a local optima. %% %% It may be possible to base assessments of convergence on the %% improvement statistic, which would naturally tend to zero as more %% points are added into the design. But any such assessments would hinge %% upon being able to drive the (Monte Carlo) method used to infer the %% model parameters---on which the improvement statistic is based---to a %% fixed point. In the context of MCMC this is only guaranteed as the %% number of samples gathered tends to infinity. Even if obtaining %% asymptotic convergence in this way is clearly a pipe dream, the %% practical application of this idea, and those based on local %% optimization mentioned above, can still bear fruit. Insight into %% convergence in practice is still a very tangible concept. Moreover, %% for many applications the considerations of convergence may even take %% a back seat to other budgetary constraints where the efficient %% allocation of an available resource (say computer cycles) is more %% important than a bottom--line based upon convergence which may only be %% achieved at all costs in the best of scenarios. The capabilities outlined above are useful in their own right, as a search list or candidate set ranked by expected improvement gain provides concrete information about potential optima. However, a full optimization framework requires that the production of these sets of search locations are nested within an iterative search scheme. The approach taken by Taddy, et al.~\cite{TaddLeeGrayGrif2009}, achieves this by taking the {\tt tgp} generated sets of locations and using them to augment a local optimization search algorithm. In this way, the authors are able to achieve robust solutions which balance the convergence properties of the local methods with the global scope provided by {\tt tgp}. Indeed, any optimization routine capable of evaluating points provided by an outside source could benefit from a {\tt tgp} generated list of search locations. In the absence of this sort of formal hybrid search algorithm, it is still possible to devise robust optimization algorithms based around {\tt tgp}. A basic algorithm is as follows: first, use a LHS to explore the input space (see the {\tt lhs} function included in {\tt tgp}). Repeatedly fit one of the {\tt b*} models with {\tt improv!=FALSE} to the evaluated iterates to produce a search set, then evaluate the objective function over this search set, as described earlier. Then evaluate the objective function over the highest ranked locations in the search set. Continue until you are confident that the search has narrowed to a neighborhood around the true optimum (a good indicator of this is when all of the top-ranked points are in the same area). At this point, the optimization may be completed by {\tt optim}, {\sf R}'s general purpose local optimization algorithm in order to guarentee convergence. The {\tt optim} routine may be initialized to the best input location (i.e. corresponding the most optimal function evaluation) found thus far by {\tt tgp}. Note that this approach is actually an extreme version of a template proposed by Taddy, et al.~\cite{TaddLeeGrayGrif2009}, where the influence of global (i.e. {\tt tgp}) search is downweighted over time rather than cut off. In either case, a drawback to such approaches is that they do not apply when the function being optimized is deterministic. An alternative scheme is to employ both {\tt tgp} search and a local optimization at each iteration. The idea is that a mix of local and global information is provided throughout the entire optimization, but with an added twist. Rather than apply {\tt optim} on the stochastic function directly, which would not converge due to the noise, it can be applied on a deterministic (MAP) kriging surface provided by {\tt tgp}. The local optima obtained can be used to augment the candidate set of locations where the improvement statistic is gathered---which would otherwise be simple LHS. That way the search pattern produced on output is likely to have a candidate with high improvement. To fix ideas, and for the sake of demonstration, the {\tt tgp} package includes a skeleton function for performing a single iteration in the derivative--free optimization of noisy black--box functions. The function is called {\tt optim.step.tgp}, and the name is intended to emphasize that it performs a single step in an optimization by trading off local {\tt optim}--based search of {\tt tgp} predictive (kriging surrogate) surfaces, with the expected posterior improvement. In other words, it is loosely based on some the techniques alluded to above, but is designed to be augmented/adjusted as needed. Given $N$ pairs of inputs and responses $(\mb{X}, \mb{Z})$, {\tt optim.step.tgp} suggests new points at which the function being optimized should be evaluated. It also returns information that can be used to assess convergence. An outline follows. The {\tt optim.step.tgp} function begins by constructing a set of candidate locations, either as a space filling LHS over the input space (the default) or from a treed $D$--optimal design, based on a previously obtained \verb!"tgp"!-class model. {\sf R}'s {\tt optim} command is used on the MAP predictive surface contained within the object to obtain an estimate of the current best guess $\mb{x}$-location of the optimal solution. A standalone subroutine called {\tt optim.ptgpf} is provided for this specific task, to be used within {\tt optim.step.tgp} or otherwise. Within {\tt optim.step.tgp}, {\tt optim.ptgpf} is initialized with the data location currently predicted to be the best guess of the minimum. The optimal $x$-location found is then added into the set of candidates as it is likely that the expected improvement would be high there. Then, a new \verb!"tgp"!-class object is obtained by applying a {\tt b*} function to $(\mb{X}, \mb{Z})$ whilst sampling from the posterior distribution of the improvement statistic. The best one, two, or several locations with highest improvement ranks are suggested for addition into the design. The values of the maximum improvement statistic are also returned in order to track progress in future iterations. The \verb!"tgp"!-class object returned is used to construct candidates and initialize the {\tt optim.ptgpf} function in future rounds. To illustrate, consider the 2-d exponential data from the initial vignette \cite{gramacy:2007} as our noisy function $f$. <<>>= f <- function(x) { exp2d.Z(x)$Z } @ Recall that this data is characterized by a mean value of \[ f(\mb{x}) = x_1 \exp(-x_1^2 - x_2^2) \] which is observed with a small amount of Gaussian noise (with sd $=0.001$). Elementary calculus gives that the minimum of $f$ is obtained at $\mb{x} = (-\sqrt{1/2},0)$. The {\tt optim.step.tgp} function requires that the search domain be defined by a bounding rectangle, and we require an initial design to start things off. Here we shall use $[-2,6]^2$ with an LHS design therein. <<>>= rect <- rbind(c(-2,6), c(-2,6)) X <- lhs(20, rect) Z <- f(X) @ The following code proceeds with several rounds of sequential design towards finding the minimum of {\tt f}. <>= out <- progress <- NULL for(i in 1:20) { ## get recommendations for the next point to sample out <- optim.step.tgp(f, X=X, Z=Z, rect=rect, prev=out, verb=0) ## add in the inputs, and newly sampled outputs X <- rbind(X, out$X) Z <- c(Z, f(out$X)) ## keep track of progress and best optimum progress <- rbind(progress, out$progress) } @ The {\tt progress} can be tracked through the rows of a {\tt data.frame}, as constructed above, containing a listing of the input location of the current best guess of the minimum for each round, together with the value of the objective at that point, as well as the maximum of the improvement statistic. \begin{figure}[ht!] \centering <>= par(mfrow=c(1,2)) matplot(progress[,1:2], main="x progress", xlab="rounds", ylab="x[,1:2]", type="l", lwd=2) legend("topright", c("x1", "x2"), lwd=2, col=1:2, lty=1:2) plot(log(progress$improv), type="l", main="max log improv", xlab="rounds", ylab="max log(improv)") @ <>= graphics.off() @ \includegraphics[trim=40 20 0 0]{tgp2-optim-progress} %\vspace{-0.5cm} \caption{Progress in iterations of {\tt optim.step.tgp} shown by tracking the $\mb{x}$--locations of the best guess of the minimum ({\em left}) and the logarithm of the maximum of the improvement statistics at the candidate locations ({\em right})} \label{f:optim:progress} \end{figure} In addition to printing this data to the screen, plots such as the ones in Figure \ref{f:optim:progress} can be valuable for assessing convergence. As can be seen in the figure, the final iteration gives an $\mb{x}$-value that is very close to the correct result, and is (in some loose sense) close to convergence. <<>>= out$progress[1:2] @ As mentioned above, if it is known that the function evaluations are deterministic then, at any time, {\sf R}'s {\tt optim} routine can be invoked---perhaps initialized by the $\bm{x}$-location in \verb!out$progress!---and convergence to a local optimum thus guaranteed. Otherwise, the quantities in \verb!out$progress! will converge, in some sense, as long as the number of MCMC rounds used in each round, above, ($T=$ {\tt BTE[2]-BTE[1]}) tends to infinity. Such arguments to the {\tt b*} functions can be set via the ellipses ({\tt ...}) arguments to {\tt optim.step.tgp}.\footnote{This runs contrary to how the ellipses are used by {\tt optim} in order to specify static arguments to {\tt f}. If setting static arguments to {\tt f} is required within {\tt optim.step.tgp}, then they must be set in advance by adjusting the default arguments via {\tt formals}.} A heuristic stopping criterion can be based on the maximum improvement statistic obtained in each round as long as the candidate locations become dense in the region as $T\rightarrow \infty$. This can be adjusted by increasing the {\tt NN} argument to {\tt optim.step.tgp}. The internal use of {\tt optim} within {\tt optim.step.tgp} on the posterior predictive (kriging surrogate) surface via {\tt optim.ptgpf} may proceed with any of the usual method arguments. I.e., <<>>= formals(optim)$method @ however the default ordering is switched in {\tt optim.ptgpf} and includes one extra method. <<>>= formals(optim.ptgpf)$method @ Placing \verb!"L-BFGS-B"! in the default position is sensible since this method enforces a rectangle of constraints as specified by {\tt rect}. This guarentees that the additional candidate found by {\tt optim.ptfpf} will be valid. However, the other {\tt optim} methods generally work well despite that they do not enforce this constraint. The final method, \verb!"optimize"!, applies only when the inputs to {\tt f} are 1-d. In this case, the documentation for {\tt optim} suggests using the {\tt optimize} function instead. \section{Importance tempering} \label{sec:it} <>= seed <- 0; set.seed(seed) @ It is well--known that MCMC inference in Bayesian treed methods suffers from poor mixing. For example, Chipman et al.~\cite{chip:geor:mccu:1998,chip:geor:mccu:2002} recommend periodically restarting the MCMC to avoid chains becoming stuck in local modes of the posterior distribution (particularly in tree space). The treed GP models are or no exception, although it is worth remarking that using flexible GP models at the leaves of the tree typically results in shallower trees, and thus less pathalogical mixing in tree space. Version 1.x provided some crude tools to help mitigate the effects of poor mixing in tree space. For example, the {\tt R} argument to the {\tt b*} functions facilitates the restarts suggested by Chipman et al. A modern Monte Carlo technique for dealing with poor mixing in Markov chain methods is to employ {\em tempering} to flatten the peaks and raise the troughs in the posterior distribution so that movements between modes is more fluid. One such method, called {\em simulated tempering} (ST) \cite{geyer:1995}, is essentially the MCMC analogue of the popular simulated annealing algorithm for optimization. The ST algorithm helps obtain samples from a multimodal density $\pi(\theta)$ where standard methods, such as Metropolis--Hastings (MH) \cite{met:1953,hast:1970} and Gibbs Sampling (GS) \cite{geman:1984}, fail. As will be shown in our examples, ST can guard against becoming stuck in local modes of the {\tt tgp} posterior by encouraging better mixing {\em between modes} via in increase in the acceptance rate of tree modification proposals, particularly {\em prunes}. However, as we will see, ST suffers from inefficiency because it discards the lions share of the samples it collects. The discarded samples can be recycled if they are given appropriate importance sampling (IS) \cite{liu:2001} weights. These weights, if combined carefully, can be used to construct meta-estimators of expectations under the {\tt tgp} posterior that have much lower variance compared to ST alone. This combined application of ST and IT is dubbed {\em importance tempering} \cite{gra:samw:king:2009}. \subsection{Simulated Tempering and related methods} \label{sec:st} ST is an application of the MH algorithm on the product space of parameters and inverse temperatures $k\in [0,1]$. That is, ST uses MH to sample from the joint chain $\pi(\theta,k) \propto \pi(\theta)^k p(k)$. The inverse temperature is allowed to take on a discrete set of values $k \in \{k_1,\dots,k_m: k_1 = 1, \; k_i > k_{i+1} \geq 0\}$, called the {\em temperature ladder}. Typically, ST calls for sampling $(\theta,k)^{(t+1)}$ by first updating $\theta^{(t+1)}$ conditional on $k^{(t)}$ and (possibly) on $\theta^{(t)}$, using MH or GS. Then, for a proposed $k' \sim q(k^{(t)} \rightarrow k')$, usually giving equal probability to the nearest inverse temperatures greater and less than $k^{(t)}$, an acceptance ratio is calculated: \[ A^{(t+1)} = \frac{\pi(\theta^{(t+1)})^{k'} p(k') q(k' \rightarrow k^{(t)})}{\pi(\theta^{(t+1)})^{k^{(t)}} p(k^{(t)}) q(k^{(t)}\rightarrow k')}. \] Finally, $k^{(t+1)}$ is determined according to the MH accept/reject rule: set $k^{(t+1)} = k'$ with probability $\alpha^{(t+1)} = \min\{1,A^{(t+1)}\}$, or $k^{(t+1)} = k^{(t)}$ otherwise. Standard theory for MH and GS gives that samples from the marginals $\pi_{k_i}$ can be obtained by collecting samples $\theta^{(t)}$ where $k^{(t)} = k_i$. Samples from $\pi(\theta)$ are obtained when $k^{(t)} = 1$. The success of ST depends crucially on the ability of the Markov chain frequently to: (a) visit high temperatures (low $k$) where the probability of escaping local modes is increased; (b) visit $k=1$ to obtain samples from $\pi$. The algorithm can be tuned by: (i.)~adjusting the number and location of the rungs of the temperature ladder; or (ii.)~setting the pseudo-prior $p(k)$ for the inverse temperature. Geyer \& Thompson \cite{geyer:1995} give ways of adjusting the spacing of the rungs of the ladder so that the ST algorithm achieves between--temperature acceptance rates of 20--40\%. More recently, authors have preferred to rely on defaults, e.g., \begin{equation} \;\;\;\;\; k_i = \left\{ \begin{array}{cl} (1+\Delta_k)^{1-i} & \mbox{geometric spacing}\\ \{1+\Delta_k (i-1)\}^{-1} & \mbox{harmonic spacing} \end{array} \right. \;\;\;\;\ i=1,\dots,m. \label{eq:ladder} \end{equation} Motivation for such default spacings is outlined by Liu \cite{liu:2001}. Geometric spacing, or uniform spacing of $\log(k_i)$, is also advocated by Neal \cite{neal:1996,neal:2001} to encourage the Markov chain to rapidly traverse the breadth of the temperature ladder. Harmonic spacing is more often used by a related method called Metropolis coupled Markov chain Monte Carlo (MC$^3$) \cite{geyer:1991}. Both defaults are implemented in the {\tt tgp} package, through the provided {\tt default.itemps} function. A new ``sigmoidal'' option is also implemented, as discussed below. The rate parameter $\Delta_k>0$ can be problem specific. Rather than work with $\Delta_k$ the {\tt default.itemps} function allows the ladder to be specified via $m$ and the hottest temperature $k_m$, thus fixing $\Delta_k$ implicitly. I.e., for the geometric ladder $\Delta_k = (k_m)^{1/(1-m)}-1$, and for the harmonic ladder $\Delta_k = \frac{(k_m)^{-1}-1}{m-1}$. A sigmoidal ladder can provide a higher concentration of temperatures near $k=1$ without sacrificing the other nice properties of the geometric and harmonic ladders. It is specified by first situating $m$ indices $j_i\in \mathbb{R}$ so that $k_1 = k(j_1) = 1$ and $k_m = k(j_m) = k_{\mbox{\tiny m}}$ under \[ k(j_i) = 1.01 - \frac{1}{1+e^{j_i}}. \] The remaining $j_i, i=2,\dots,(m-1)$ are spaced evenly between $j_1$ and $j_m$ to fill out the ladder $k_i = k(j_i), i=1,\dots,(m-1)$. By way of comparison, consider generating the three different types of ladder with identical minimum inverse temperature $k_{\mbox{\tiny m}} = 0.1$, the default setting in {\tt tgp}. <<>>= geo <- default.itemps(type="geometric") har <- default.itemps(type="harmonic") sig <- default.itemps(type="sigmoidal") @ The plots in Figure \ref{f:itemps} show the resulting inverse temperature ladders, and their logarithms. \begin{figure}[ht!] <>= par(mfrow=c(2,1)) all <- cbind(geo$k, har$k, sig$k) matplot(all, pch=21:23, main="inv-temp ladders", xlab="indx", ylab="itemp") legend("topright", pch=21:23, c("geometric","harmonic","sigmoidal"), col=1:3) matplot(log(all), pch=21:23, main="log(inv-temp) ladders", xlab="indx", ylab="itemp") @ <>= graphics.off() @ \centering \includegraphics[height=5.9in,width=4.5in,trim=0 20 0 20]{tgp2-it-itemps} \caption{Three different inverse temperature ladders, each with $m=40$ temperatures starting at $k_1=1$ and ending at $k_m=0.1$} \label{f:itemps} \end{figure} Observe how, relative to the geometric ladder, the harmonic ladder has a higher concentration of inverse temperatures near zero, whereas the sigmoidal ladder has a higher concentration near one. Once a suitable ladder has been chosen, the {\tt tgp} package implementation of ST follows the suggestions of Geyer \& Thompson \cite{geyer:1995} in setting the pseudo--prior, starting from a uniform $p_0$. First, $p_0$ is adjusted by {\em stochastic approximation}: add $c_0/[m(t+n_0)]$ to $\log p_0(k)$ for each $k_i \ne k^{(t)}$ and subtract $c_0/(t+n_0)$ from $\log p_0(k^{(t)})$ over $t=1,\dots,B$ {\em burn--in} MCMC rounds sampling from the joint posterior of $(\theta, k)$. Then, $p_0$ is normalized to obtain $p_1$. Before subsequent runs, specified via an {\tt R >= 2} argument, {\em occupation numbers} $o(k_i) = \sum_{t=1}^B 1_{\{k^{(t)} = k_i\}}$, are used update $p(k_i) \propto p_1(k_i)/o(k_i)$. Note that, in this setting, the {\tt R} argument is used to update the pseudo--prior only, not to restart the Markov chain. \subsection{Importance sampling from tempered distributions} \label{sec:temp} ST provides us with $\{(\theta^{(t)},k^{(t)}): t = 1,\ldots,T\}$, where $\theta^{(t)}$ is an observation from $\pi_{k^{(t)}}$. It is convenient to write $\mathcal{T}_i = \{t: k^{(t)} = k_i\}$ for the index set of observations at the $i^{\mbox{\tiny th}}$ temperature, and let $T_i = |\mathcal{T}_i|$. Let the vector of observations at the $i^{\mbox{\tiny th}}$ temperature collect in $\bm{\theta}_i = (\theta_{i1},\dots,\theta_{iT_i})$, so that $\{\theta_{ij}\}_{j=1}^{T_i}\sim \pi_{k_i}$. Each vector $\bm{\theta}_i$ can be used to construct an IS estimator of $E_{\pi}\{h(\theta)\}$ by setting \[ \hat{h}_i = \frac{\sum_{j=1}^{T_i} w_i(\theta_{ij}) h(\theta_{ij})} {\sum_{j=1}^{T_i} w_i(\theta_{ij})} \equiv \frac{\sum_{j=1}^{T_i} w_{ij}h(\theta_{ij})}{W_i}, \] say. That is, rather than obtain one estimator from ST (at the cold temperature), we can obtain $m$ estimators (one at each temperature) via IS. The efficiency of each estimator, $i=1,\dots,m$ can be measured through its variance, but unfortunately this can be difficult to calculate in general. As a result, the notion of {\em effective sample size} \cite{liu:2001} (ESS) plays an important role in the study of IS estimators. Denote the vector of IS weights at the $i^{\mbox{\tiny th}}$ temperature as $\mathbf{w}_i = \mathbf{w}_i(\bm{\theta}_i) = (w_i(\theta_{i1}),\ldots,w_i(\theta_{iT_i}))$, where $w_i(\theta) = \pi(\theta)/\pi_{k_i}(\theta)$. The ESS of $\hat{h}_i$ is defined by \begin{equation} \mathrm{ESS}(\mb{w}_i) = \frac{T}{1 + \mathrm{cv^2}(\mathbf{w}_i)}, \label{eq:essw} \end{equation} where $\mathrm{cv}(\mathbf{w}_i)$ is the \emph{coefficient of variation} of the weights (in the $i^{\mbox{\tiny th}}$ temperature), given by \begin{align*} \mathrm{cv^2}(\mathbf{w}_i) &= \frac{\sum_{t=1}^T(w(\theta^{(t)}) - \bar{w})^2}{(T-1) \bar{w}^2}, &\mbox{where} && \bar{w} &= T^{-1} \sum_{t=1}^T w(\theta^{(t)}). \end{align*} In {\sf R}: <<>>= ESS <- function(w) { mw <- mean(w) cv2 <- sum((w-mw)^2)/((length(w)-1)*mw^2) ess <- length(w)/(1+cv2) return(ess) } @ This should not be confused with the concept of \emph{effective sample size due to autocorrelation} \cite{kass:1998} (due to serially correlated samples coming from a Markov chain as in MCMC) as implemented by the {\tt effectiveSize} function in the {\tt coda} package \cite{coda:R} for {\sf R}. Before attempting to combine $m$ IS estimators it is fruitful backtrack briefly to obtain some perspective on the topic of applying IS with a {\em single} tempered proposal distribution. Jennison \cite{jennison:1993} put this idea forward more than a decade ago, although the question of how to choose the best temperature was neither posed or resolved. It is clear that larger $k$ leads to lower variance estimators (and larger ESS), but at the expense of poorer mixing in the Markov chain. It can be shown that the optimal inverse temperature $k^*$ for IS, in the sense of constructing a minimum variance estimator, may be significantly lower than one \cite{gra:samw:king:2009}. However, the variance of such an estimator will indeed become unbounded as $k\rightarrow 0$, just as ESS~$\rightarrow 0$. Needless to say, the choice of how to best pick the best temperatures (for ST or IS) is still an open problem. But in the context of the family of tempered distributions used by ST for mixing considerations, this means that the discarded samples obtained when $k^{(t)} < 1$ may actually lead to more efficient estimators than the ones saved from the cold distribution. So ST is wastefull indeed. However, when combining IS estimators from the multiple temperatures used in ST, the deleterious effect of the high variance ones obtained at high temperature must be mitigated. The possible strategies involved in developing such a meta-estimator comprise the {\em importance tempering} (IT) family of methods. The idea is that small ESS will indicate high variance IS estimators which should be relegated to having only a small influence on the overall estimator. \subsection{An optimal way to combine IS estimators} \label{sec:lambdas} It is natural to consider an overall meta-estimator of $E_{\pi}\{h(\theta)\}$ defined by a convex combination: \begin{align} \label{eq:hhatlambda} \hat{h}_{\lambda} &= \sum_{i=1}^m \lambda_i \hat{h}_i,& \mbox{where} && 0 \leq \lambda_i \leq \sum_{i=1}^m \lambda_i = 1. \end{align} Unfortunately, if $\lambda_1,\dots,\lambda_m$ are not chosen carefully, $\mbox{Var}(\hat{h}_\lambda)$, can be nearly as large as the largest $\mbox{Var}(\hat{h}_i)$ \cite{owen:2000}, due to the considerations alluded to in Section \ref{sec:temp}. Notice that ST is recovered as a special case when $\lambda_1=1$ and $\lambda_2,\dots,\lambda_m = 0$. It may be tempting to choose $\lambda_i = W_i/W$, where $W = \sum_{i=1}^m W_i$. The resulting estimator is equivalent to \begin{align} \label{Eq:hath} \hat{h} &= W^{-1} \sum_{t=1}^T w(\theta^{(t)},k^{(t)})h(\theta^{(t)}), & \mbox{where} && W = \sum_{t=1}^T w(\theta^{(t)},k^{(t)}), \end{align} and $w(\theta,k) = \pi(\theta)/\pi(\theta)^k = \pi(\theta)^{1-k}$. It can lead to a very poor estimator, even compared to ST, as will be demonstrated empirically in the examples to follow shortly. Observe that we can equivalently write \begin{align} \hat{h}_{\lambda} &= \sum_{i=1}^m \sum_{j=1}^{T_i} w_{ij}^{\lambda}h(\theta_{ij}), && \mbox{where} & w_{ij}^{\lambda} &= \lambda_iw_{ij}/W_i. \label{eq:wlambda} \end{align} Let $\mathbf{w}^{\lambda} = (w_{11}^\lambda,\ldots,w_{1T_1}^\lambda,w_{21}^\lambda,\ldots,w_{2T_2}^\lambda, \ldots,w_{m1}^\lambda,\ldots,w_{mT_m}^\lambda)$. Attempting to choose $\lambda_1,\dots,\lambda_m$ to minimize $\mbox{Var}(\hat{h}_\lambda)$ directly can be difficult. Moreover, for the applications that we have in mind, it is important that our estimator can be constructed without knowledge of the normalizing constants of $\pi_{k_1},\ldots,\pi_{k_m}$, and without evaluating the MH transition kernels $\mathcal{K}_{\pi_{k_i}}(\cdot,\cdot)$. It is for this reason that methods like the \emph{balance heuristic} \cite{veach:1995}, MCV \cite{owen:2000}, or population Monte Carlo (PMC) \cite{douc:etal:2007} cannot be applied. Instead, we seek maximize the effective sample size of $\hat{h}_\lambda$ in (\ref{eq:hhatlambda}), and look for an $O(T)$ operation to determine the optimal $\lambda^*$. %\begin{thm} %\label{thm:lambdastar} Among estimators of the form~(\ref{eq:hhatlambda}), it can be shown \cite{gra:samw:king:2009} that $\mathrm{ESS}(\mathbf{w}^{\lambda})$ is maximized by $\lambda = \lambda^*$, where, for $i=1,\ldots,m$, \begin{align*} \lambda_i^* &= \frac{\ell_i}{\sum_{i=1}^m \ell_i}, & \mbox{and} && \ell_i &= \frac{W_i^2}{\sum_{j=1}^{T_i} w_{ij}^2}. \end{align*} The efficiency of each IS estimator $\hat{h}_i$ can be measured through $\mathrm{ESS}(\mathbf{w}_i)$. Intuitively, we hope that with a good choice of $\lambda$, the ESS (\ref{eq:essw}) of $\hat{h}_{\lambda}$, would be close to the sum over $i$ of the effective sample sizes each of $\hat{h}_i$. This is indeed the case for $\hat{h}_{\lambda^*}$, because it can be shown \cite{gra:samw:king:2009} that \[ \mathrm{ESS}(\mathbf{w}^{\lambda^*}) \geq \sum_{i=1}^m \mathrm{ESS}(\mathbf{w}_i) - \frac{1}{4} - \frac{1}{T}. \] In practice we have found that this bound is conservative and that in fact $\mathrm{ESS}(\mathbf{w}^{\lambda^*}) \geq \sum_{i=1}^m \mathrm{ESS}(\mathbf{w}_i)$, as will be shown empirically in the examples that follow. Thus our optimally--combined IS estimator has a highly desirable and intuitive property in terms of its effective sample size: that the whole is greater than the sum of its parts. $\mathrm{ESS}(\mathbf{w}^{\lambda^*})$ depends on $\mathrm{ESS}(\mathbf{w}_i)$ which in turn depend on the $k_i$. Smaller $k_i$ will lead to better mixing in the Markov chain, but lower $\mathrm{ESS}(\mathbf{w}_i)$. Therefore, we can expect that the geometric and sigmoidal ladders will fare better than the harmonic ones, so long as the desired improvements in mixing are achieved. In the examples to follow, we shall see that the sigmoidal ladder does indeed leader to higher $\mathrm{ESS}(\mathbf{w}^{\lambda^*})$. \subsection{Examples} \label{sec:examples} Here the IT method is shown in action for {\tt tgp} models. IT is controlled in {\tt b*} functions via the {\tt itemps} argument: a {\tt data.frame} coinciding with the output of the {\tt default.itemps} function. The {\tt lambda} argument to {\tt default.itemps} can be used to base posterior predictive inference the other IT heuristics: ST and the na\"ive approach (\ref{Eq:hath}). Whenever the argument {\tt m = 1} is used with {\tt k.min != 1} the resulting estimator is constructed via tempered importance sampling at the single inverse temperature {\tt k.min}, in the style of Jennison~\cite{jennison:1993} as outlined in Section \ref{sec:temp}. The parameters $c_0$ and $n_0$ for stochastic approximation of the pseudo--prior can be specified as a 2--vector {\tt c0n0} argument to {\tt default.itemps}. In the examples which follow we simply use the default configuration of the IT method, adjusting only the minimum inverse temperature via the {\tt k.min} argument. Before delving into more involved examples, we illustrate the stages involved in a small run of importance tempering (IT) on the exponential data from Section 3.3 of \cite{gramacy:2007}. The data can be obtained as: <<>>= exp2d.data<-exp2d.rand() X<-exp2d.data$X Z<-exp2d.data$Z @ Now, consider applying IT to the Bayesian treed LM with a small geometric ladder. A warning will be given if the default setting of \verb!bprior="bflat"! is used, as this (numerically) improper prior can lead to improper posterior inference at high temperatures. <<>>= its <- default.itemps(m=10) exp.btlm <- btlm(X=X,Z=Z, bprior="b0", R=2, itemps=its, pred.n=FALSE, BTE=c(1000,3000,2)) @ Notice how the MCMC inference procedure starts with $B+T=\Sexpr{exp.btlm$BTE[1] + exp.btlm$BTE[2]}$ rounds of stochastic approximation (initial adjustment of the pseudo--prior) in place of typical (default) the $B=\Sexpr{exp.btlm$BTE[1]}$ burn--in rounds. Then, the first round of sampling from the posterior commences, over $T=\Sexpr{exp.btlm$BTE[2]-exp.btlm$BTE[1]}$ rounds, during which the observation counts in each temperature are tallied. The progress meter shows the current temperature the chain is in, say {\tt k=0.629961}, after each of 1000 sampling rounds. The first repeat starts with a pseudo--prior that has been adjusted by the observation counts, which continue to be accumulated throughout the entire procedure (i.e., they are never reset). Any subsequent repeats begin after a similar (re-)adjustment. Before finishing, the routine summarizes the sample size and effective sample sizes in each rung of the temperature ladder. The number of samples is given by {\tt len}, and the ESS by {\tt ess}. These quantities can also be recovered via {\tt traces}, as shown later. The ESS of the optimal combined IT sample is the last quantity printed. This, along with the ESS and total numbers of samples in each temperature, can also be obtained via the {\tt tgp}-class output object. <<>>= exp.btlm$ess @ \subsubsection{Motorcycle accident data} \label{sec:moto} Recall the motorcycle accident data of Section 3.4 of the first {\tt tgp} vignette \cite{gramacy:2007}. Consider using IT to sample from the posterior distribution of the treed GP LLM model using the geometric temperature ladder. <<>>= library(MASS) moto.it <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10), bprior="b0", R=3, itemps=geo, trace=TRUE, pred.n=FALSE, verb=0) @ Out of a total of $\Sexpr{moto.it$R*moto.it$BTE[2]/moto.it$BTE[3]}$ samples from the joint chain, the resulting (optimally combined) ESS was: <<>>= moto.it$ess$combined @ Alternatively, $\mb{w}^{\lambda^*}$ can be extracted from the traces, and used to make the ESS calculation directly. <<>>= p <- moto.it$trace$post ESS(p$wlambda) @ The unadjusted weights $\mb{w}$ are also available from {\tt trace}. We can see that the na\"{i}ve choice of $\lambda_i = W_i/W$, leading to the estimator in (\ref{Eq:hath}), has a clearly inferior effective sample size. <<>>= ESS(p$w) @ To see the benefit of IT over ST we can simply count the number of samples obtained when $k^{(t)} = 1$. This can be accomplished in several ways: either via the traces or through the output object. <<>>= as.numeric(c(sum(p$itemp == 1), moto.it$ess$each[1,2:3])) @ That is, (optimal) IT gives effectively $\Sexpr{signif(moto.it$ess$combined/sum(p$itemp==1), 3)}$ times more samples. The na\"{i}ve combination, leading to the estimator in (\ref{Eq:hath}), yields an estimator with an effective sample size that is $\Sexpr{round(100*ESS(p$w)/sum(p$itemp==1))}$\% of the number of samples obtained under ST. Now, we should like to compare to the MCMC samples obtained under the same model, without IT. <<>>= moto.reg <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10), R=3, bprior="b0", trace=TRUE, pred.n=FALSE, verb=0) @ The easiest comparison to make is to look at the heights explored under the three chains: the regular one, the chain of heights visited at all temperatures (combined), and those obtained after applying IT via re-weighting under the optimal combination $\lambda^*$. <<>>= L <- length(p$height) hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE)) b <- hist2bar(cbind(moto.reg$trace$post$height, p$height, hw)) @ \begin{figure}[ht!] <>= barplot(b, beside=TRUE, col=1:3, xlab="tree height", ylab="counts", main="tree heights encountered") legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3) @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-moto-height} \caption{Barplots indicating the counts of the number of times the Markov chains (for regular MCMC, combining all temperatures in the inverse temperature ladder, and those re-weighted via IT) were in trees of various heights for the motorcycle data.} \label{f:moto:it:heights} \end{figure} Figure \ref{f:moto:it:heights} shows barplots indicating the count of the number of times the Markov chains were in trees of various heights after burn--in. Notice how the tempered chain (denoted ``All Temps'' in the figure) frequently visits trees of height one, whereas the non--tempered chain (denoted ``reg MCMC'') never does. The result is that the non--tempered chain underestimates the probability of height two trees and produces a corresponding overestimate of height four trees---which are clearly not supported by the data---even visiting trees of height five. The IT estimator appropriately down--weights height one trees and provides correspondingly more realistic estimates of the probability of height two and four trees. Whenever introducing another parameter into the model, like the inverse temperature $k$, it is important to check that the marginal posterior chain for that parameter is mixing well. For ST it is crucial that the chain makes rapid excursions between the cold temperature, the hottest temperatures, and visits each temperature roughly the same number of times. \begin{figure}[ht!] <>= plot(log(moto.it$trace$post$itemp), type="l", ylab="log(k)", xlab="samples", main="trace of log(k)") @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-moto-ktrace} \caption{A trace of the MCMC samples from the marginal posterior distribution of the inverse temperature parameter, $k$, in the motorcycle experiment} \label{f:ktrace} \end{figure} Figure \ref{f:ktrace} shows a trace of the posterior samples for $k$ in the motorcycle experiment. Arguably, the mixing in $k$--space leaves something to be desired. Since it can be very difficult to tune the pseudo--prior and MH proposal mechanism to get good mixing in $k$--space, it is fortunate that the IT methodology does not rely on the same mixing properties as ST does. Since samples can be obtained from the posterior distribution of the parameters of interest by re-weighting samples obtained when $k < 1$ it is only important that the chain frequently visit low temperatures to obtain good sampling, and high temperatures to obtain good mixing. The actual time spent in specific temperatures, i.e., $k=1$ is less important. %%ylim <- c(0, 1.25*max(c(b[,1], moto.it$itemps$counts))) %, ylim=ylim) \begin{figure}[ht!] <>= b <- itemps.barplot(moto.it, plot.it=FALSE) barplot(t(cbind(moto.it$itemps$counts, b)), col=1:2, beside=TRUE, ylab="counts", xlab="itemps", main="inv-temp observation counts") legend("topleft", c("observation counts", "posterior samples"), fill=1:2) @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-moto-khist} \caption{Comparing (thinned) samples from the posterior distribution for the inverse temperature parameter, $k$, (posterior samples), to the observation counts used to update the pseudo--prior, in the motorcycle experiment} \label{f:khist} \end{figure} Figure \ref{f:khist} shows the histogram of the inverse temperatures visited in the Markov chain for the motorcycle experiment. Also plotted is a histogram of the {\em observation counts} in each temperature. The two histograms should have similar shape but different totals. Observation counts are tallied during every MCMC sample after burn--in, whereas the posterior samples of $k$ are thinned (at a rate specified in {\tt BTE[3]}). When the default {\tt trace=FALSE} argument is used only the observation counts will be available in the {\tt tgp}--class object, and these can be used as a surrogate for a trace of $k$. The compromise IT approach obtained using the sigmoidal ladder can yield an increase in ESS. <<>>= moto.it.sig <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10), R=3, bprior="b0", krige=FALSE, itemps=sig, verb=0) @ Compare the resulting ESS to the one given for the geometric ladder above. <<>>= moto.it.sig$ess$combined @ \begin{figure}[ht!] <>= plot(moto.it.sig) @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-moto-pred} \caption{Posterior predictive surface for the motorcycle data, with 90\% quantile errorbars, obtained under IT with the sigmoidal ladder.} \label{f:moto:pred} \end{figure} Plots of the resulting predictive surface is shown in Figure \ref{f:moto:pred} for comparison with those in Section 1.1 of the first {\tt tgp} vignette \cite{gramacy:2007}. In particular, observe that the transition from the middle region to the right one is much less stark in this tempered version than than in the original---which very likely spent a disproportionate amount of time stuck in a posterior mode with trees of depth three or greater. \subsubsection{Synthetic 2--d Exponential Data} \label{sec:exp} Recall the synthetic 2--d exponential data of Section 3.4 of the tgp vignette \cite{gramacy:2007}, where the true response is given by \[ z(\mb{x}) = x_1 \exp(-x_1^2 - x_2^2). \] Here, we will take $\mb{x} \in [-6,6]\times [-6,6]$ with a $D$--optimal design <<>>= Xcand <- lhs(10000, rbind(c(-6,6),c(-6,6))) X <- dopt.gp(400, X=NULL, Xcand)$XX Z <- exp2d.Z(X)$Z @ Consider a treed GP LLM model fit to this data using the standard MCMC. <<>>= exp.reg <- btgpllm(X=X, Z=Z, BTE=c(2000,52000,10), bprior="b0", trace=TRUE, krige=FALSE, R=10, verb=0) @ \begin{figure}[ht!] <>= plot(exp.reg) @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-exp-pred} \caption{Posterior predictive surface for the 2--d exponential data: mean surface {\em (left)} and 90\% quantile difference {\em (right)}} \label{f:exp:pred} \end{figure} Figure \ref{f:exp:pred} shows the resulting posterior predictive surface. The maximum {\em a' posteriori} (MAP) tree is drawn over the error surface in the {\em right--hand} plot. The height of this tree can be obtained from the {\tt tgp}-class object. <<>>= h <- exp.reg$post$height[which.max(exp.reg$posts$lpost)] h @ It is easy to see that many fewer partitions are actually necessary to separate the interesting, central, region from the surrounding flat region. \begin{figure}[ht!] <>= tgp.trees(exp.reg, "map") @ <>= graphics.off() @ \centering \includegraphics[trim=0 100 0 25]{tgp2-it-exp-mapt} \caption{Diagrammatic depiction of the maximum {\em a' posteriori} (MAP) tree for the 2--d exponential data under standard MCMC sampling } \label{f:exp:mapt} \end{figure} Figure \ref{f:exp:mapt} shows a diagrammatic representation of the MAP tree. Given the apparent over--partitioning in this height \Sexpr{h} tree it would be surprising to find much posterior support for trees of greater height. One might indeed suspect that there are trees with fewer partitions which would have higher posterior probability, and thus guess that the Markov chain for the trees plotted in these figures possibly became stuck in a local mode of tree space while on an excursion into deeper trees. Now consider using IT. It will be important in this case to have a $k_{\mbox{\tiny m}}$ small enough to ensure that the tree occasionally prunes back to the root. We shall therefore use a smaller $k_{\mbox{\tiny m}}$. % with an extra 10 rungs. Generally speaking, some pilot tuning may be necessary to choose an appropriate $k_{\mbox{\tiny m}}$ and number of rungs $m$, although the defaults should give adequate performance in most cases. <<>>= its <- default.itemps(k.min=0.02) exp.it <- btgpllm(X=X, Z=Z, BTE=c(2000,52000,10), bprior="b0", trace=TRUE, krige=FALSE, itemps=its, R=10, verb=0) @ As expected, the tempered chain moves more rapidly throughout tree space by accepting more tree proposals. The acceptance rates of tree operations can be accessed from the {\tt tgp}--class object. <<>>= exp.it$gpcs exp.reg$gpcs @ The increased rate of {\em prune} operations explains how the tempered distributions helped the chain escape the local modes of deep trees. We can quickly compare the effective sample sizes of the three possible estimators: ST, na\"{i}ve IT, and optimal IT. <<>>= p <- exp.it$trace$post data.frame(ST=sum(p$itemp == 1), nIT=ESS(p$w), oIT=exp.it$ess$combined) @ Due to the thinning in the Markov chain ({\tt BTE[3] = 10}) and the traversal between $m=10$ temperatures in the ladder, we can be reasonably certain that the \Sexpr{round(exp.it$ess$combined)} samples obtained via IT from the total of \Sexpr{round(exp.it$R*(exp.it$BTE[2]-exp.it$BTE[1])/exp.it$BTE[3])} samples obtained from the posterior are far less correlated than the ones obtained via standard MCMC. As with the motorcycle data, we can compare the tree heights visited by the two chains. <<>>= L <- length(p$height) hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE)) b <- hist2bar(cbind(exp.reg$trace$post$height, p$height, hw)) @ \begin{figure}[ht!] <>= barplot(b, beside=TRUE, col=1:3, xlab="tree height", ylab="counts", main="tree heights encountered") legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3) @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-exp-height} \caption{Barplots indicating the counts of the number of times the Markov chains (for regular MCMC, combining all temperatures in the inverse temperature ladder, and those re-weighted via IT) were in trees of various heights for the 2--d exponential data.} \label{f:exp:it:heights} \end{figure} Figure \ref{f:exp:it:heights} shows a barplot of {\tt b}, which illustrates that the tempered chain frequently visited shallow trees. IT with the optimal weights shows that the standard MCMC chain missed many trees of height three and four with considerable posterior support. \begin{figure}[ht!] <>= ylim <- range(p$height, exp.reg$trace$post$height) plot(p$height, type="l", main="trace of tree heights", xlab="t", ylab="height", ylim=ylim) lines(exp.reg$trace$post$height, col=2) legend("topright", c("tempered", "reg MCMC"), lty=c(1,1), col=1:2) @ <>= graphics.off() @ \centering \includegraphics[trim=0 25 0 25]{tgp2-it-exp-trace-height} \caption{Traces of the tree heights obtained under the two Markov chains (for regular MCMC, combining all temperatures in the inverse temperature ladder) on the 2--d exponential data.} \label{f:exp:trace:height} \end{figure} To more directly compare the mixing in tree space between the ST and tempered chains, consider the trace plots of the heights of the trees explored by the chains shown in Figure \ref{f:exp:trace:height}. Despite being restarted \Sexpr{exp.reg$R} times, the regular MCMC chain (almost) never visits trees of height less than five after burn--in and instead makes rather lengthy excursions into deeper trees, exploring a local mode in the posterior. In contrast, the tempered chain frequently prunes back to the tree root, and consequently discovers posterior modes in tree heights three and four. \begin{figure}[ht!] <>= plot(exp.it) @ \vspace{-0.7cm} <>= tgp.trees(exp.it, "map") @ <>= graphics.off() @ \centering \includegraphics[trim=0 15 0 0]{tgp2-it-expit-pred} \includegraphics[trim=0 100 0 0]{tgp2-it-expit-trees} \caption{2--d exponential data fit with IT. {\em Top:} Posterior predictive mean surface for the 2d--exponential, with the MAP tree overlayed. {\em Bottom:} diagrammatic representation of the MAP tree. } \label{f:exp-it:pred} \end{figure} To conclude, a plot of the posterior predictive surface is given in Figure \ref{f:exp-it:pred}, where the MAP tree is shown both graphically and diagrammatically. %\iffalse \subsection*{Acknowledgments} This work was partially supported by research subaward 08008-002-011-000 from the Universities Space Research Association and NASA, NASA/University Affiliated Research Center grant SC 2003028 NAS2-03144, Sandia National Laboratories grant 496420, National Science Foundation grants DMS 0233710 and 0504851, and Engineering and Physical Sciences Research Council Grant EP/D065704/1. The authors would like to thank their Ph.D.~advisor, Herbie Lee, whose contributions and guidance in this project have been invaluable throughout. Finally, we would like to thank two anonymous referees whose many helpful comments improved the paper. %\fi \bibliography{tgp} \bibliographystyle{plain} \end{document} tgp/build/0000755000176200001440000000000014661702175012154 5ustar liggesuserstgp/build/vignette.rds0000644000176200001440000000041414661702175014512 0ustar liggesusers‹•¿NÃ0ÆÝ:IÿHHHÝXðdè U]¢ ¬§æ¬¶Že»6ž¼á’Ø(®Xrwßùç|_ò¶dŒMY’Rå4ò•ŒžÛaÏÔg®Òù‹j¼œ“\÷:Æî@TgY pµpïÔ*-4ìP¡'î6¢DpgƒVHÕ#h¬¬•XçŸùꢌ|;ciÏ‹lGÓªG”ûSN§áå'ÐÎ`ˆ–<=ìvÿ¦Ç“ñ­x•t¡¨MG»TÁ ­³nå1x¤¯Òý þ¼Ùúq>u¶Aª°á÷<âWSÒ±ÑÂÔMÌnºÀßTÚ¶½\'ÚÁÚ«èË䥡û¤.?àìð‚0tgp/build/partial.rdb0000644000176200001440000000007414661666156014312 0ustar liggesusers‹‹àb```b`a’Ì ¦0°0 FN Íš—˜›Z d@$þž/ÕÛ7tgp/man/0000755000176200001440000000000014277222105011621 5ustar liggesuserstgp/man/plot.tgp.Rd0000644000176200001440000002010513723731552013663 0ustar liggesusers\name{plot.tgp} \alias{plot.tgp} \title{ Plotting for Treed Gaussian Process Models } \description{ A generic function for plotting of \code{"tgp"}-class objects. 1-d posterior mean and error plots, 2-d posterior mean and error image and perspective plots, and 3+-dimensional mean and error image and perspective plots are supported via projection and slicing. } \usage{ \method{plot}{tgp}(x, pparts = TRUE, proj = NULL, slice = NULL, map = NULL, as = NULL, center = "mean", layout = "both", main = NULL, xlab = NULL, ylab = NULL, zlab = NULL, pc = "pc", gridlen = c(40,40), span = 0.1, pXX = TRUE, legendloc = "topright", maineff = TRUE, mrlayout="both", rankmax = 20, ...) } \arguments{ \item{x}{ \code{"tgp"}-class object that is the output of one of the \code{b*} functions: \code{\link{blm}}, \code{\link{btlm}} \code{\link{bgp}}, \code{\link{bgpllm}}, \code{\link{btgp}}, or \code{\link{btgpllm}}} \item{pparts}{If \code{TRUE}, partition-regions are plotted (default), otherwise they are not} \item{proj}{1-or-2-Vector describing the dimensions to be shown in a projection. The argument is ignored for 1-d data, i.e., if \code{x$d == 1}. For 2-d data, no projection needs be specified--- the default argument (\code{proj = NULL}) will result in a 2-d perspective or image plot. 1-d projections of 2-d or higher data are are supported, e.g., \code{proj = c(2)} would show the second variable projection. For 3-d data or higher, \code{proj=NULL} defaults to \code{proj = c(1,2)} which plots a 2-d projection for the first two variables. Slices have priority over the projections--- see next argument (\code{slice})--- when non-null arguments are provided for both.} \item{slice}{\code{list} object with \code{x} and \code{z} fields, which are vectors of equal length describing the slice to be plotted, i.e., which z-values of the \code{x$d - 2} inputs \code{x$X} and \code{x$XX} should be fixed to in order to obtain a 2-d visualization. For example, for 4-d data, \code{slice = list(x=(2,4), z=c(0.2, 1.5)} will result in a 2-d plot of the first and third dimensions which have the second and fourth slice fixed at 0.5 and 1.5. The default is \code{NULL}, yielding to the \code{proj} argument. Argument is ignored for 1-d data, i.e., if \code{x$d == 1}} \item{map}{Optional 2-d map (longitude and latitude) from \pkg{maps} to be shown on top of image plots} \item{center}{Default \code{center = "mean"} causes the posterior predictive mean to be plotted as the centering statistic. Otherwise the median can be used with \code{center = "med"}, or the kriging mean with \code{center = "km"}} \item{as}{Optional string indicator for plotting of adaptive sampling statistics: specifying \code{as = "alm"} for ALM, \code{as = "s2"} for predictive variance, \code{as = "ks2"} for expected kriging variance, \code{as = "alc"} for ALC, and \code{as = "improv"} for expected improvement (about the minimum, see the \code{rankmax} argument below). The default \code{as = NULL} plots error-bars (1d-plots) or error magnitudes (2d-plots), which is essentially the same as \code{as = "alm"}} \item{layout}{Specify whether to plot the mean predictive surface (\code{layout = "surf"}), the error or adaptive sampling statistics (\code{layout = "as"}), or default (\code{layout = "both"}) which shows both. If \code{layout = "sens"}, plot the results of a sensitivity analysis (see \code{\link{sens}}) in a format determined by the argument \code{maineff} below. } \item{main}{Optional \code{character} string to add to the main title of the plot} \item{xlab}{Optional \code{character} string to add to the x label of the plots} \item{ylab}{Optional \code{character} string to add to the y label of the plots} \item{zlab}{Optional \code{character} string to add to the z label of the plots; ignored unless \code{pc = "p"}} \item{pc}{ Selects perspective-posterior mean and image-error plots (\code{pc = "pc"}, the default) or a double--image plot (\code{pc = "c"})} (only valid for 2-d plots) \item{gridlen}{ Number of regular grid points for 2-d slices and projections in x and y. The default of \code{gridlen = c(40,40)} causes a \code{40 * 40} grid of \code{X}, \code{Y}, and \code{Z} values to be computed. Ignored for 1-d plots and projections} \item{span}{ Span for \code{\link[stats]{loess}} kernel. The \pkg{tgp} package default (\code{span = 0.1}) is set lower than the \code{\link[stats]{loess}} default. Smaller spans can lead to warnings from \code{\link[stats]{loess}} when the data or predictive locations are sparse and ugly plots may result. In this case, try increasing the span} \item{pXX}{ scalar logical indicating if \code{XX} locations should be plotted } \item{legendloc}{ Location of the \code{\link{legend}} included in the plots of sensitivity analyses produced with \code{layout = "sens"}, or 1-d plots of multi-resolution models (with \code{corr = "mrexpsep"}) and option \code{mrlayout = "both"}; otherwise the argument is ignored} \item{maineff}{ Format for the plots of sensitivity analyses produced with \code{layout = "sens"}; otherwise the argument is ignored. If \code{maineff=TRUE} main effect plots are produced alongside boxplots for posterior samples of the sensitivity indices, and if \code{FALSE} only the boxplots are produced. Alternatively, \code{maineff} can be a matrix containing input dimensions in the configuration that the corresponding main effects are to be plotted; that is, \code{mfrow=dim(maineff)}. In this case, a 90 percent interval is plotted with each main effect and the sensitivity index boxplots are not plotted.} \item{mrlayout}{ The plot layout for double resolution tgp objects with \code{params$corr == "mrexpsep"}. For the default \code{mrlayout="both"}, the coarse and fine fidelity are plotted together, either on the same plot for 1D inputs or through side-by-side image plots of the predicted \code{center} with axis determined by \code{proj} for inputs of greater dimension. Note that many of the standard arguments -- such as \code{slice}, \code{pc}, and \code{map} -- are either non-applicable or unsupported for \code{mrlayout="both"}. If \code{mrlayout="coarse"} or \code{mrlayout="fine"}, prediction for the respective fidelity is plotted as usual and all of the standard options apply.} \item{rankmax}{ When \code{as = "improv"} is provided, the posterior expected improvements are plotted according the the first column of the \code{improv} field of the \code{"tgp"}-class object. Text is added to the plot near the \code{XX} positions of the first \code{1:rankmax} predictive locations with the highest ranks in the second column of the \code{improv} field. } \item{\dots}{ Extra arguments to 1-d (\code{\link[graphics]{plot}}) and 2-d plotting functions \code{persp} and \code{image}} } \value{ The only output of this function is beautiful plots } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \references{ \url{https://bobby.gramacy.com/r_packages/tgp/} } \note{ This plotting function is provided with the intention that it will be used as an aid in the visualization of \code{"tgp"}-class objects. Users are encouraged to use the source code for this function in order to develop custom plotting functions. 1-d projections for 3-d or higher data are also available by specifying a 1-d projection argument (e.g. \code{proj=c(1)} for projecting onto the first input variable). For examples, see \code{vignette("tgp")} and the help files of those functions in "See Also", below } \seealso{ \code{\link[graphics]{plot}}, \code{\link{bgpllm}}, \code{\link{btlm}}, \code{\link{blm}}, \code{\link{bgp}}, \code{\link{btgpllm}}, \code{\link{predict.tgp}}, \code{\link{tgp.trees}}, \code{\link{mapT}}, \code{\link{loess}}, \code{\link{sens}}} \keyword{ hplot } \keyword{ tree } tgp/man/friedman.1.data.Rd0000644000176200001440000000776314277221642014766 0ustar liggesusers\name{friedman.1.data} \alias{friedman.1.data} \alias{fried.bool} \title{ First Friedman Dataset and a variation } \description{ Generate X and Y values from the 10-dim \dQuote{first} Friedman data set used to validate the Multivariate Adaptive Regression Splines (MARS) model, and a variation involving boolean indicators. This test function has three non-linear and interacting variables, along with two linear, and five which are irrelevant. The version with indicators has parts of the response turned on based on the setting of the indicators } \usage{ friedman.1.data(n = 100) fried.bool(n = 100) } \arguments{ \item{n}{Number of samples desired} } \details{ In the original formulation, as implemented by \code{friedman.1.data} the function has 10-dim inputs \code{X} are drawn from Unif(0,1), and responses are \eqn{N(m(X),1)}{N(m(X),1)} where \eqn{m(\mathbf{x}) = E[f(\mathbf{x})]}{m(X) = E[f(X)]} and \deqn{m(\mathbf{x}) = 10\sin(\pi x_1 x_2) + 20(x_3-0.5)^2 + 10x_4 + 5x_5}{m(X) = 10*sin(pi*X[,1]*X[,2]) + 20*(X[,3]-0.5)^2 + 10*X[,4] + 5*X[,5]} The variation \code{fried.bool} uses indicators \eqn{I\in \{1,2,3,4\}}{I in 1:4}. The function also has 10-dim inputs \code{X} with columns distributed as Unif(0,1) and responses are \eqn{N(m(\mathbf{x},I), 1)}{N(m(X,I), 1)} where \eqn{m(\mathbf{x},I) = E(f(\mathbf{x},I)}{m(X,I) = E[f(X,I)]} and \deqn{m(\mathbf{x},I) = f_1(\mathbf{x})_{[I=1]} + f_2(\mathbf{x})_{[I=2]} + f_3(\mathbf{x})_{[I=3]} + m([x_{10},\cdots,x_1])_{[I=4]}}{m(X,I) = fI(X) if I in 1:3 else m(X[,10:1])} where \deqn{f_1(\mathbf{x}) = 10\sin(\pi x_1 x_2), \; f_2(\mathbf{x}) = 20(x_3-0.5)^2, \; \mbox{and } f_3(\mathbf{x}) = 10x_4 + 5x_5.}{f1(X)=10*sin(pi*X[,1]*X[,2]), f2(X)=20*(X[,3]-0.5)^2, f3(X)=10*X[,4]+5*X[,5] } The indicator I is coded in binary in the output data frame as: \code{c(0,0,0)} for \code{I=1}, \code{c(0,0,1)} for \code{I=2}, \code{c(0,1,0)} for \code{I=3}, and \code{c(1,0,0)} for \code{I=4}. } \value{ Output is a \code{data.frame} with columns \item{X.1, \dots, X.10 }{describing the 10-d randomly sampled inputs} \item{I.1, \dots, I.3}{boolean version of the indicators provided only for \code{fried.bool}, as described above} \item{Y}{sample responses (with N(0,1) noise)} \item{Ytrue}{true responses (without noise)} } \references{ Gramacy, R. B. (2007). \emph{\pkg{tgp}: An \R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models.} Journal of Statistical Software, \bold{19}(9). \url{https://www.jstatsoft.org/v19/i09} \doi{10.18637/jss.v019.i09} Robert B. Gramacy, Matthew Taddy (2010). \emph{Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with \pkg{tgp} Version 2, an \R Package for Treed Gaussian Process Models.} Journal of Statistical Software, \bold{33}(6), 1--48. \url{https://www.jstatsoft.org/v33/i06/}. \doi{10.18637/jss.v033.i06} Friedman, J. H. (1991). \emph{Multivariate adaptive regression splines.} \dQuote{Annals of Statistics}, \bold{19}, No. 1, 1--67. Gramacy, R. B., Lee, H. K. H. (2008). \emph{Bayesian treed Gaussian process models with an application to computer modeling}. Journal of the American Statistical Association, 103(483), pp. 1119-1130. Also available as ArXiv article 0710.4536 \url{https://arxiv.org/abs/0710.4536} Chipman, H., George, E., & McCulloch, R. (2002). \emph{Bayesian treed models.} Machine Learning, \bold{48}, 303--324. \url{https://bobby.gramacy.com/r_packages/tgp/} } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \note{An example using the original version of the data (\code{friedman.1.data}) is contained in the first package vignette: \code{vignette("tgp")}. The boolean version \code{fried.bool} is used in second vignette \code{vignette("tgp2")} } \seealso{ \code{\link{bgpllm}}, \code{\link{btlm}}, \code{\link{blm}}, \code{\link{bgp}}, \code{\link{btgpllm}}, \code{\link{bgp}}} \keyword{ datagen } tgp/man/exp2d.Rd0000644000176200001440000000455214222045500013130 0ustar liggesusers\name{exp2d} \alias{exp2d} \docType{data} \title{ 2-d Exponential Data } \description{ A 2-dimensional data set that can be used to validate non-stationary models. } \usage{data(exp2d)} \format{ A \code{data frame} with 441 observations on the following 4 variables. \describe{ \item{\code{X1}}{Numeric vector describing the first dimension of \code{X} inputs} \item{\code{X2}}{Numeric vector describing the second dimension of \code{X} inputs} \item{\code{Z}}{Numeric vector describing the response \code{Z(X)+N(0,sd=0.001)}} \item{\code{Ztrue}}{Numeric vector describing the true response \code{Z(X)}, without noise} } } \details{ The true response is evaluated as \deqn{Z(X)=x_1 * \exp(x_1^2-x_2^2).}{Z(X) = X1 * exp(-X1^2 -X2^2).} Zero-mean normal noise with \code{sd=0.001} has been added to the true response } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \references{ Gramacy, R. B. (2020) \emph{Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences}. Boca Raton, Florida: Chapman Hall/CRC. \url{https://bobby.gramacy.com/surrogates/} Gramacy, R. B. (2007). \emph{\pkg{tgp}: An \R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models.} Journal of Statistical Software, \bold{19}(9). \url{https://www.jstatsoft.org/v19/i09} \doi{10.18637/jss.v019.i09} Robert B. Gramacy, Matthew Taddy (2010). \emph{Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with \pkg{tgp} Version 2, an \R Package for Treed Gaussian Process Models.} Journal of Statistical Software, \bold{33}(6), 1--48. \url{https://www.jstatsoft.org/v33/i06/}. \doi{10.18637/jss.v033.i06} Gramacy, R. B., Lee, H. K. H. (2008). \emph{Bayesian treed Gaussian process models with an application to computer modeling}. Journal of the American Statistical Association, 103(483), pp. 1119-1130. Also available as ArXiv article 0710.4536 \url{https://arxiv.org/abs/0710.4536} \url{https://bobby.gramacy.com/r_packages/tgp/} } \note{This data is used in the examples of the functions listed below in the \dQuote{See Also} section via the \code{\link{exp2d.rand}} function} \seealso{ \code{\link{exp2d.rand}}, \code{\link{exp2d.Z}}, \code{\link{btgp}}, and other \code{b*} functions} \keyword{datasets} \keyword{datagen} tgp/man/default.itemps.Rd0000644000176200001440000001546714277221634015057 0ustar liggesusers\name{default.itemps} \alias{default.itemps} \title{ Default Sigmoidal, Harmonic and Geometric Temperature Ladders } \description{ Parameterized by the minimum desired \emph{inverse} temperature, this function generates a ladder of inverse temperatures \code{k[1:m]} starting at \code{k[1] = 1}, with \code{m} steps down to the final temperature \code{k[m] = k.min} progressing sigmoidally, harmonically or geometrically. The output is in a format convenient for the \code{b*} functions in the \pkg{tgp} package (e.g. \code{\link{btgp}}), including stochastic approximation parameters \eqn{c_0}{c0} and \eqn{n_0}{n0} for tuning the uniform pseudo-prior output by this function } \usage{ default.itemps(m = 40, type = c("geometric", "harmonic","sigmoidal"), k.min = 0.1, c0n0 = c(100, 1000), lambda = c("opt", "naive", "st")) } \arguments{ \item{m}{ Number of temperatures in the ladder; \code{m=1} corresponds to \emph{importance sampling} at the temperature specified by \code{k.min} (in this case all other arguments are ignored) } \item{type}{ Choose from amongst two common defaults for simulated tempering and Metropolis-coupled MCMC, i.e., geometric (default) or harmonic, or a sigmoidal ladder (default) that concentrates more inverse temperatures near 1} \item{k.min}{ Minimum inverse temperature desired } \item{c0n0}{ Stochastic approximation parameters used to tune the simulated tempering pseudo-prior (\code{$pk}) to get a uniform posterior over the inverse temperatures; must be a 2-vector of positive integers \code{c(c0, n0)}; see the Geyer & Thompson reference below } \item{lambda}{ Method for combining the importance samplers at each temperature. Optimal combination (\code{"opt"}) is the default, weighting the IS at each temperature \eqn{k}{k} by \deqn{\lambda_k \propto (\sum_i w_{ki})^2/\sum_i w_{ki}^2.}{lambda[k] = sum(w[k,]))^2/sum(w[k,]^2).} Setting \code{lambda = "naive"} allows each temperature to contribute equally (\eqn{\lambda_k \propto 1}{\lambda[k] = 1}, or equivalently ignores delineations due to temperature when using importance weights. Setting \code{lambda = "st"} allows only the first (cold) temperature to contribute to the estimator, thereby implementing \emph{simulated tempering}} } \details{ The geometric and harmonic inverse temperature ladders are usually defined by an index \eqn{i=1,\dots,m}{i = 1:m} and a parameter \eqn{\Delta_k > 0}{delta > 0}. The geometric ladder is defined by \deqn{k_i = (1+\Delta_k)^{1-i},}{k[i] = (1 + delta)^(1-i),} and the harmonic ladder by \deqn{k_i = (1+\Delta_k(i-1))^{-1}.}{k[i] = (1 + delta*(i-1))^(-1).} Alternatively, specifying the minimum temperature \eqn{k_{\mbox{\tiny min}}}{k.min} in the ladder can be used to uniquely determine \eqn{\Delta_k}{delta}. E.g., for the geometric ladder \deqn{\Delta_k = k_{\mbox{\tiny min}}^{1/(1-m)}-1,}{delta = k.min^(1/(1-m))-1,} and for the harmonic \deqn{\Delta_k = \frac{k_{\mbox{\tiny min}}^{-1}-1}{m-1}.}{delta = (k.min^(-1)-1)/(m-1).} In a similar spirit, the sigmoidal ladder is specified by first situating \eqn{m}{m} indices \eqn{j_i\in \Re}{j[i] in Re} so that \eqn{k_1 = k(j_1) = 1}{k[1] = k(j[1]) = 1} and \eqn{k_m = k(j_m) = k_{\mbox{\tiny min}}}{k[m] = k(j[m]) = k.min} under \deqn{k(j_i) = 1.01 - \frac{1}{1+e^{j_i}}.}{k(j[i]) = 1.01 - 1/(1+exp(-j[i])).} The remaining \eqn{j_i, i=2,\dots,(m-1)}{j[2:(m-1)]} are spaced evenly between \eqn{j_1}{j[i]} and \eqn{j_m}{j[m]} to fill out the ladder \eqn{k_i = k(j_i), i=1,\dots,(m-1)}{k[2:(m-1)] = k(j[2:(m-1)])}. For more details, see the \emph{Importance tempering} paper cited below and a full demonstration in \code{vignette("tgp2")} } \value{ The return value is a \code{list} which is compatible with the input argument \code{itemps} to the \code{b*} functions (e.g. \code{\link{btgp}}), containing the following entries: \item{c0n0 }{ A copy of the \code{c0n0} input argument } \item{k }{ The generated inverse temperature ladder; a vector with \code{length(k) = m} containing a decreasing sequence from \code{1} down to \code{k.min}} \item{pk }{ A vector with \code{length(pk) = m} containing an initial pseudo-prior for the temperature ladder of \code{1/m} for each inverse temperature} \item{lambda}{ IT method, as specified by the input argument} } \references{ Gramacy, R.B., Samworth, R.J., and King, R. (2010) \emph{Importance Tempering.} ArXiV article 0707.4242 Statistics and Computing, 20(1), pp. 1-7; \url{https://arxiv.org/abs/0707.4242}. For stochastic approximation and simulated tempering (ST): Geyer, C.~and Thompson, E.~(1995). \emph{Annealing Markov chain Monte Carlo with applications to ancestral inference.} Journal of the American Statistical Association, \bold{90}, 909--920. For the geometric temperature ladder: Neal, R.M.~(2001) \emph{Annealed importance sampling.} Statistics and Computing, \bold{11}, 125--129 Justifying geometric and harmonic defaults: Liu, J.S.~(1002) \emph{Monte Carlo Strategies in Scientific Computing.} New York: Springer. Chapter 10 (pages 213 & 233) \url{https://bobby.gramacy.com/r_packages/tgp/} } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \seealso{ \code{\link{btgp}} } \examples{ ## comparing the different ladders geo <- default.itemps(type="geometric") har <- default.itemps(type="harmonic") sig <- default.itemps(type="sigmoidal") par(mfrow=c(2,1)) matplot(cbind(geo$k, har$k, sig$k), pch=21:23, main="inv-temp ladders", xlab="indx", ylab="itemp") legend("topright", pch=21:23, c("geometric","harmonic","sigmoidal"), col=1:3) matplot(log(cbind(sig$k, geo$k, har$k)), pch=21:23, main="log(inv-temp) ladders", xlab="indx", ylab="itemp") \dontrun{ ## using Importance Tempering (IT) to improve mixing ## on the motorcycle accident dataset library(MASS) out.it <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,22000,2), R=3, itemps=default.itemps(), bprior="b0", trace=TRUE, pred.n=FALSE) ## compare to regular tgp w/o IT out.reg <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,22000,2), R=3, bprior="b0", trace=TRUE, pred.n=FALSE) ## compare the heights explored by the three chains: ## REG, combining all temperatures, and IT p <- out.it$trace$post L <- length(p$height) hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE)) b <- hist2bar(cbind(out.reg$trace$post$height, p$height, hw)) par(mfrow=c(1,1)) barplot(b, beside=TRUE, xlab="tree height", ylab="counts", col=1:3, main="tree heights encountered") legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3) } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ misc } tgp/man/exp2d.rand.Rd0000644000176200001440000001372414222045500014054 0ustar liggesusers \name{exp2d.rand} \alias{exp2d.rand} \title{ Random 2-d Exponential Data } \description{ A Random subsample of \code{data(\link{exp2d})}, or Latin Hypercube sampled data evaluated with \code{\link{exp2d.Z}} } \usage{exp2d.rand(n1 = 50, n2 = 30, lh = NULL, dopt = 1)} \arguments{ \item{n1}{Number of samples from the first, interesting, quadrant} \item{n2}{Number of samples from the other three, uninteresting, quadrants} \item{lh}{If \code{!is.null(lh)} then Latin Hypercube (LH) sampling (\code{\link{lhs}}) is used instead of subsampling from \code{data(\link{exp2d})}; \code{lh} should be a single nonnegative integer specifying the desired number of predictive locations, \code{XX}; or, it should be a vector of length 4, specifying the number of predictive locations desired from each of the four quadrants (interesting quadrant first, then counter-clockwise)} \item{dopt}{If \code{dopt >= 2} then d-optimal subsampling from LH candidates of the multiple indicated by the value of \code{dopt} will be used. This argument only makes sense when \code{!is.null(lh)}} } \value{ Output is a \code{list} with entries: \item{X}{2-d \code{data.frame} with \code{n1 + n2} input locations} \item{Z}{Numeric vector describing the responses (with noise) at the \code{X} input locations} \item{Ztrue}{Numeric vector describing the true responses (without noise) at the \code{X} input locations} \item{XX}{2-d \code{data.frame} containing the remaining \code{441 - (n1 + n2)} input locations} \item{ZZ}{Numeric vector describing the responses (with noise) at the \code{XX} predictive locations} \item{ZZtrue}{Numeric vector describing the responses (without noise) at the \code{XX} predictive locations} } \details{ When \code{is.null(lh)}, data is subsampled without replacement from \code{data(\link{exp2d})}. Of the \code{n1 + n2 <= 441} input/response pairs \code{X,Z}, there are \code{n1} are taken from the first quadrant, i.e., where the response is interesting, and the remaining \code{n2} are taken from the other three quadrants. The remaining \code{441 - (n1 + n2)} are treated as predictive locations Otherwise, when \code{!is.null(lh)}, Latin Hypercube Sampling (\code{\link{lhs}}) is used If \code{dopt >= 2} then \code{n1*dopt} LH candidates are used for to get a D-optimal subsample of size \code{n1} from the first (interesting) quadrant. Similarly \code{n2*dopt} in the rest of the un-interesting region. A total of \code{lh*dopt} candidates will be used for sequential D-optimal subsampling for predictive locations \code{XX} in all four quadrants assuming the already-sampled \code{X} locations will be in the design. In all three cases, the response is evaluated as \deqn{Z(X)=x_1 * \exp(x_1^2-x_2^2).}{Z(X) = X1 * exp(-X1^2-X2^2),} thus creating the outputs \code{Ztrue} and \code{ZZtrue}. Zero-mean normal noise with \code{sd=0.001} is added to the responses \code{Z} and \code{ZZ} } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \references{ Gramacy, R. B. (2007). \emph{\pkg{tgp}: An \R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models.} Journal of Statistical Software, \bold{19}(9). \url{https://www.jstatsoft.org/v19/i09} \doi{10.18637/jss.v019.i09} Robert B. Gramacy, Matthew Taddy (2010). \emph{Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with \pkg{tgp} Version 2, an \R Package for Treed Gaussian Process Models.} Journal of Statistical Software, \bold{33}(6), 1--48. \url{https://www.jstatsoft.org/v33/i06/} \doi{10.18637/jss.v033.i06} Gramacy, R. B., Lee, H. K. H. (2008). \emph{Bayesian treed Gaussian process models with an application to computer modeling}. Journal of the American Statistical Association, 103(483), pp. 1119-1130. Also available as ArXiv article 0710.4536 \url{https://arxiv.org/abs/0710.4536} \url{https://bobby.gramacy.com/r_packages/tgp/} } \seealso{\code{\link{lhs}}, \code{\link{exp2d}}, \code{\link{exp2d.Z}}, \code{\link{btgp}}, and other \code{b*} functions} \examples{ ## randomly subsampled data ## ------------------------ eds <- exp2d.rand() # higher span = 0.5 required because the data is sparse # and was generated randomly eds.g <- interp.loess(eds$X[,1], eds$X[,2], eds$Z, span=0.5) # perspective plot, and plot of the input (X & XX) locations par(mfrow=c(1,2), bty="n") persp(eds.g, main="loess surface", theta=-30, phi=20, xlab="X[,1]", ylab="X[,2]", zlab="Z") plot(eds$X, main="Randomly Subsampled Inputs") points(eds$XX, pch=19, cex=0.5) ## Latin Hypercube sampled data ## ---------------------------- edlh <- exp2d.rand(lh=c(20, 15, 10, 5)) # higher span = 0.5 required because the data is sparse # and was generated randomly edlh.g <- interp.loess(edlh$X[,1], edlh$X[,2], edlh$Z, span=0.5) # perspective plot, and plot of the input (X & XX) locations par(mfrow=c(1,2), bty="n") persp(edlh.g, main="loess surface", theta=-30, phi=20, xlab="X[,1]", ylab="X[,2]", zlab="Z") plot(edlh$X, main="Latin Hypercube Sampled Inputs") points(edlh$XX, pch=19, cex=0.5) # show the quadrants abline(h=2, col=2, lty=2, lwd=2) abline(v=2, col=2, lty=2, lwd=2) \dontrun{ ## D-optimal subsample with a factor of 10 (more) candidates ## --------------------------------------------------------- edlhd <- exp2d.rand(lh=c(20, 15, 10, 5), dopt=10) # higher span = 0.5 required because the data is sparse # and was generated randomly edlhd.g <- interp.loess(edlhd$X[,1], edlhd$X[,2], edlhd$Z, span=0.5) # perspective plot, and plot of the input (X & XX) locations par(mfrow=c(1,2), bty="n") persp(edlhd.g, main="loess surface", theta=-30, phi=20, xlab="X[,1]", ylab="X[,2]", zlab="Z") plot(edlhd$X, main="D-optimally Sampled Inputs") points(edlhd$XX, pch=19, cex=0.5) # show the quadrants abline(h=2, col=2, lty=2, lwd=2) abline(v=2, col=2, lty=2, lwd=2) } } \keyword{datasets} \keyword{datagen} tgp/man/tgp-internal.Rd0000644000176200001440000000257413723712726014534 0ustar liggesusers\name{tgp-internal} %% Part of the sensible export list but (currently?) documented as %% internal (or waiting for documentation to be written): %% \alias{tgp} \alias{tree2c} \alias{tgp.postprocess} \alias{print.tgptraces} \alias{tgp.read.XX.traces} \alias{tgp.read.traces} \alias{tgp.cleanup} \alias{tgp.choose.as} \alias{tgp.choose.center} \alias{tgp.check.params} \alias{tgp.partition} \alias{tgp.get.trees} \alias{tgp.plot.tree} \alias{tgp.plot.parts.1d} \alias{tgp.plot.parts.2d} \alias{tgp.plot.slice} \alias{tgp.plot.proj} \alias{tgp.cands} \alias{framify.X} \alias{slice.interp} \alias{slice.image} \alias{slice.image.contour} \alias{slice.contour} \alias{slice.persp} \alias{mean0.range1} \alias{undo.mean0.range1} \alias{check.matrix} \alias{mr.checkrez} \alias{check.itemps} \alias{check.slice} \alias{check.proj} \alias{check.sens} \alias{getlocs} \alias{print.tgp} \alias{sens.plot} \alias{mr.plot} \alias{mr.checkres} %% %% Currently (?) exported as used in the grid.layout.Rd \example ... %% \alias{layout.torture} %% \title{Internal Treed Gaussian Process Model Functions} \description{ Internal Treed Gaussian Process Model functions } \details{ These are not to be called by the user (or in some cases are just waiting for proper documentation to be written :)). } \references{ \url{https://bobby.gramacy.com/r_packages/tgp/} } \keyword{ internal } tgp/man/itemps.Rd0000644000176200001440000000522213723713504013415 0ustar liggesusers\name{itemps} \alias{itemps.barplot} \alias{hist2bar} \title{ Functions to plot summary information about the sampled inverse temperatures, tree heights, etc., stored in the traces of a "tgp"-class object} \description{ Functions for making barplots summarizing the progress of importance tempering. The \code{itemps.barplot} function can be used to make a histogram of the inverse temperatures visited in the trans-temporal Markov chain. The \code{hist2bar} function is useful for making a histogram of integer-valued samples (e.g., tree heights) encountered in one or several Markov chains } \usage{ itemps.barplot(obj, main = NULL, xlab = "itemps", ylab = "counts", plot.it = TRUE, ...) hist2bar(x) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{obj}{ \code{"tgp"}-class object } \item{main}{ Main plot label to be augmented by \code{itemps.barplot} } \item{xlab}{ Label for the x-axis } \item{ylab}{ Label for the y-axis } \item{plot.it}{ whether to plot the \code{\link{barplot}} in addition to returning the \code{data.frame} for later use in a \code{\link{barplot}} call } \item{\dots}{ other arguments passed to \code{\link{barplot}} if \code{plot.it = TRUE} } \item{x}{ \code{matrix} of integers whose columns are treated as different realizations of similar processes producing where each row represents a sample (e.g., tree height) under that process } } \details{ \code{itemps.barplot} specifically works with the \code{$trace} field of a \code{"tgp"}-class object. An error will be produced if this field is \code{NULL}, i.e., if the \code{b*} function used the create the object was not run with the argument \code{trace=TRUE} The \code{hist2bar} function can be used on any integer (or discrete) valued matrix. The columns are interpreted as different realizations of similar processes for comparison with one another via a histogram. The histogram is obtained with the \code{\link{barplot}} command used with the argument \code{beside=TRUE}. See the examples section of \code{\link{default.itemps}} } \value{ Both functions return a \code{data.frame} that can be used within the \code{\link{barplot}} function with argument \code{beside=TRUE} } \references{ Gramacy, R.B., Samworth, R.J., and King, R. (2007) \emph{Importance Tempering.} ArXiv article 0707.4242 \url{https://arxiv.org/abs/0707.4242} \url{https://bobby.gramacy.com/r_packages/tgp/} } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \seealso{ \code{\link{default.itemps}}, \code{vignette(tgp2)}, \code{\link{barplot}} } \keyword{ hplot } tgp/man/lhs.Rd0000644000176200001440000000476313723731514012714 0ustar liggesusers\name{lhs} \alias{lhs} \title{Latin Hypercube sampling} \description{ Draw a (random) Latin Hypercube (LH) sample of size \code{n} from in the region outlined by the provided rectangle } \usage{ lhs(n, rect, shape=NULL, mode=NULL) } \arguments{ \item{n}{ Size of the LH sample } \item{rect}{ Rectangle describing the domain from which the LH sample is to be taken. The rectangle should be a \code{matrix} or \code{data.frame} with \code{ncol(rect) = 2}, and number of rows equal to the dimension of the domain. For 1-d data, a vector of length 2 is allowed} \item{shape}{ Optional vector of shape parameters for the Beta distribution. Vector of length equal to the dimension of the domain, with elements > 1. If this is specified, the LH sample is proportional to a joint pdf formed by independent Beta distributions in each dimension of the domain, scaled and shifted to have support defined by \code{rect}. Only concave Beta distributions with \code{shape} > 1 are supported. } \item{mode}{ Optional vector of mode values for the Beta distribution. Vector of length equal to the dimension of the domain, with elements within the support defined by \code{rect}. If \code{shape} is specified, but this is not, then the scaled Beta distributions will be symmetric } } \value{ The output is a \code{matrix} with \code{n} rows and \code{nrow(rect)} columns. Each of the \code{n} rows represents a sample point. } \references{ Gramacy, R. B. (2020) \emph{Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences}. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 4.) \url{https://bobby.gramacy.com/surrogates/} McKay, M. D., W. J. Conover and R. J. Beckman. (1979). \emph{A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code}, Technometrics 21: (pp. 239--245). } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \note{The domain bounds specified by the rows of \code{rect} can be specified backwards with no change in effect.} \seealso{ \code{\link{tgp.design}}, \code{\link{dopt.gp}}, \code{\link{sens}} } \examples{ # get and plot a 2-d LH design s1 <- lhs(10, rbind(c(-2,3), c(0.5, 0.8))) plot(s1) # plot a grid to show that there is one sample # in each grid location abline(v=seq(-2,3,length=11), lty=2, col=3) abline(h=seq(0.5,0.8,length=11), lty=2, col=3) } \keyword{ design } \keyword{ spatial } tgp/man/exp2d.Z.Rd0000644000176200001440000000512214222045500013332 0ustar liggesusers\name{exp2d.Z} \alias{exp2d.Z} \title{ Random Z-values for 2-d Exponential Data } \description{ Evaluate the functional (mean) response for the 2-d exponential data (truth) at the \code{X} inputs, and randomly sample noisy \code{Z}--values having normal error with standard deviation provided. } \usage{exp2d.Z(X, sd=0.001)} \arguments{ \item{X}{Must be a \code{matrix} or a \code{data.frame} with two columns describing input locations} \item{sd}{Standard deviation of iid normal noise added to the responses} } \value{ Output is a \code{data.frame} with columns: \item{Z}{Numeric vector describing the responses (with noise) at the \code{X} input locations} \item{Ztrue}{Numeric vector describing the true responses (without noise) at the \code{X} input locations} } \details{ The response is evaluated as \deqn{Z(X)=x_1 * \exp(x_1^2-x_2^2).}{Z(X) = X1 * exp(-X1^2-X2^2),} thus creating the outputs \code{Z} and \code{Ztrue}. Zero-mean normal noise with \code{sd=0.001} is added to the responses \code{Z} and \code{ZZ} } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \references{ Gramacy, R. B. (2020) \emph{Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences}. Boca Raton, Florida: Chapman Hall/CRC. \url{https://bobby.gramacy.com/surrogates/} Gramacy, R. B. (2007). \emph{\pkg{tgp}: An \R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models.} Journal of Statistical Software, \bold{19}(9). \url{https://www.jstatsoft.org/v19/i09} \doi{10.18637/jss.v019.i09} Robert B. Gramacy, Matthew Taddy (2010). \emph{Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with \pkg{tgp} Version 2, an \R Package for Treed Gaussian Process Models.} Journal of Statistical Software, \bold{33}(6), 1--48. \url{https://www.jstatsoft.org/v33/i06/} \doi{10.18637/jss.v033.i06} Gramacy, R. B., Lee, H. K. H. (2008). \emph{Bayesian treed Gaussian process models with an application to computer modeling}. Journal of the American Statistical Association, 103(483), pp. 1119-1130. Also available as ArXiv article 0710.4536 \url{https://arxiv.org/abs/0710.4536} \url{https://bobby.gramacy.com/r_packages/tgp/} } \seealso{\code{\link{exp2d}}, \code{\link{exp2d.rand}}} \examples{ N <- 20 x <- seq(-2,6,length=N) X <- expand.grid(x, x) Zdata <- exp2d.Z(X) persp(x,x,matrix(Zdata$Ztrue, nrow=N), theta=-30, phi=20, main="Z true", xlab="x1", ylab="x2", zlab="Ztrue") } \keyword{datagen} tgp/man/partition.Rd0000644000176200001440000000277113723731544014137 0ustar liggesusers\name{partition} \alias{partition} \title{ Partition data according to the MAP tree } \description{ Partition data according to the maximum a' posteriori (MAP) tree contained in a \code{"tgp"}-class object. } \usage{ partition(X, out) } \arguments{ \item{X}{\code{data.frame}, \code{matrix}, or vector of inputs \code{X} with the same dimension of \code{out$X}, i.e., \code{ncol(X) == ncol(out$X)}} \item{out}{ \code{"tgp"}-class object which is the output of one the model functions with tree support (e.g. \code{\link{btgpllm}}, \code{\link{btgp}}, \code{\link{btlm}}) } } \value{ Output is a list of \code{data.frame}s populated with the inputs \code{X} contained in each region of the partition of the MAP tree in the \code{"tgp"}-class object \code{out} } \references{ \url{https://bobby.gramacy.com/r_packages/tgp/} } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \seealso{ \code{\link{tgp.design}}, \code{\link{tgp.trees}} } \examples{ # # 2-d Exponential data # (This example is based on random data. # It might be fun to run it a few times) # # get the data exp2d.data <- exp2d.rand() X <- exp2d.data$X; Z <- exp2d.data$Z Xcand <- exp2d.data$XX # fit treed GP LLM model to data w/o prediction # basically just to get MAP tree (and plot it) out <- btgpllm(X=X, Z=Z, pred.n=FALSE, BTE=c(2000,3000,2)) tgp.trees(out) # find a treed sequential D-Optimal design # with 10 more points Xcand.parts <- partition(Xcand, out) } \keyword{ tree } tgp/man/interp.loess.Rd0000644000176200001440000000663613723713475014562 0ustar liggesusers\name{interp.loess} \alias{interp.loess} \title{ Lowess 2-d interpolation onto a uniform grid } \description{ Use the \code{\link[stats]{loess}} function to interpolate the two-dimensional \code{x}, \code{y}, and \code{z} data onto a uniform grid. The output produced is an object directly usable by the plotting functions \code{\link[graphics]{persp}}, \code{\link[graphics]{image}}, and \code{\link[graphics]{contour}}, etc. This function is designed as an alternative to the \code{\link[akima]{interp}} functions from the \pkg{akima} library. } \usage{ interp.loess(x, y, z, gridlen = c(40,40), span = 0.1, ...) } \arguments{ \item{x}{ Vector of \code{X} spatial input locations } \item{y}{ Vector of \code{Y} spatial input locations } \item{z}{ Vector of \code{Z} responses interpreted as \code{Z = f(X,Y)}} \item{gridlen}{ Size of the interpolated grid to be produced in x and y. The default of \code{gridlen = c(40,40)} causes a \code{40 * 40} grid of \code{X}, \code{Y}, and \code{Z} values to be computed.} \item{span}{ Kernel span argument to the \code{\link[stats]{loess}} function with default setting \code{span = 0.1} set significantly lower than the the \code{\link[stats]{loess}} default -- see note below. } \item{\dots}{ Further arguments to be passed to the \code{\link[stats]{loess}} function} } \details{ Uses \code{\link[base]{expand.grid}} function to produce a uniform grid of size \code{gridlen} with domain equal to the rectangle implied by \code{X} and \code{Y}. Then, a \code{\link[stats]{loess}} a smoother is fit to the data \code{Z = f(X,Y)}. Finally, \code{\link[stats]{predict.loess}} is used to predict onto the grid. } \value{ The output is a list compatible with the 2-d plotting functions \code{\link[graphics]{persp}}, \code{\link[graphics]{image}}, and \code{\link[graphics]{contour}}, etc. The list contains... \item{x }{Vector of with \code{length(x) == gridlen} of increasing \code{X} grid locations} \item{y }{Vector of with \code{length(y) == gridlen} of increasing \code{Y} grid locations} \item{z }{\code{matrix} of interpolated responses \code{Z = f(X,Y)} where \code{z[i,j]} contains an estimate of \code{f(x[i],y[j])}} } \references{ \url{https://bobby.gramacy.com/r_packages/tgp/} } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \note{ As mentioned above, the default \code{span = 0.1} parameter is significantly smaller that the default \code{\link[stats]{loess}} setting. This asserts a tacit assumption that the input is densely packed and that the noise in \code{z}'s is small. Such should be the case when the data are output from a \pkg{tgp} regression -- this function was designed specifically for this situation. For data that is random or sparse, simply choose higher setting, e.g., the default \code{\link[stats]{loess}} setting of \code{span = 0.75}, or a more intermediate setting of \code{span = 0.5} as in the example below} \seealso{ \code{\link[akima]{interp}}, \code{\link[stats]{loess}}, \code{\link{persp}}, \code{\link{image}}, \code{\link{contour}} } \examples{ # random data ed <- exp2d.rand() # higher span = 0.5 required because the data is sparse # and was generated randomly ed.g <- interp.loess(ed$X[,1], ed$X[,2], ed$Z, span=0.5) # perspective plot persp(ed.g) } \keyword{ smooth } \keyword{ loess } tgp/man/tgp-package.Rd0000644000176200001440000000671314222045500014272 0ustar liggesusers\name{tgp-package} \alias{tgp-package} \docType{package} \title{ The Treed Gaussian Process Model Package } \description{ A Bayesian nonstationary nonparametric regression and design package implementing an array of models of varying flexibility and complexity. } \details{ This package implements Bayesian nonstationary, semiparametric nonlinear regression with \dQuote{treed Gaussian process models} with jumps to the limiting linear model (LLM). The package contains functions which facilitate inference for seven regression models of varying complexity using Markov chain Monte Carlo (MCMC): linear model, CART (Classification and Regression Tree), treed linear model, Gaussian process (GP), GP with jumps to the LLM, GP single-index models, treed GPs, treed GP LLMs, and treed GP single-index models. R provides an interface to the C/C++ backbone, and a serves as mechanism for graphically visualizing the results of inference and posterior predictive surfaces under the models. A Bayesian Monte Carlo based sensitivity analysis is implemented, and multi-resolution models are also supported. Sequential experimental design and adaptive sampling functions are also provided, including ALM, ALC, and expected improvement. The latter supports derivative-free optimization of noisy black-box functions. For a fuller overview including a complete list of functions, demos and vignettes, please use \code{help(package="tgp")}. } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \references{ Gramacy, R. B. (2020) \emph{Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences}. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 9.) \url{https://bobby.gramacy.com/surrogates/} Gramacy, R. B. (2007). \emph{\pkg{tgp}: An \R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models.} Journal of Statistical Software, \bold{19}(9). \url{https://www.jstatsoft.org/v19/i09} \doi{10.18637/jss.v019.i09} Robert B. Gramacy, Matthew Taddy (2010). \emph{Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with \pkg{tgp} Version 2, an \R Package for Treed Gaussian Process Models.} Journal of Statistical Software, \bold{33}(6), 1--48. \url{https://www.jstatsoft.org/v33/i06/} \doi{10.18637/jss.v033.i06} Gramacy, R. B., Lee, H. K. H. (2008). \emph{Bayesian treed Gaussian process models with an application to computer modeling}. Journal of the American Statistical Association, 103(483), pp. 1119-1130. Also available as ArXiv article 0710.4536 \url{https://arxiv.org/abs/0710.4536} Robert B. Gramacy, Heng Lian (2011). \emph{Gaussian process single-index models as emulators for computer experiments}. Available as ArXiv article 1009.4241 \url{https://arxiv.org/abs/1009.4241} Gramacy, R. B., Lee, H. K. H. (2006). \emph{Adaptive design of supercomputer experiments.} Available as UCSC Technical Report ams2006-02. Gramacy, R.B., Samworth, R.J., and King, R. (2007) \emph{Importance Tempering.} ArXiV article 0707.4242 \url{https://arxiv.org/abs/0707.4242} Gray, G.A., Martinez-Canales, M., Taddy, M.A., Lee, H.K.H., and Gramacy, R.B. (2007) \emph{Enhancing Parallel Pattern Search Optimization with a Gaussian Process Oracle}, SAND2006-7946C, Proceedings of the NECDC \url{https://bobby.gramacy.com/r_packages/tgp/} } \keyword{ nonparametric } \keyword{ smooth } \keyword{ models } \keyword{ spatial } \keyword{ tree } \keyword{ hplot } tgp/man/tgp.default.params.Rd0000644000176200001440000002117514277222102015612 0ustar liggesusers\name{tgp.default.params} \alias{tgp.default.params} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Default Treed Gaussian Process Model Parameters } \description{ Construct a default list of parameters to the \code{b*} functions-- the interfaces to treed Gaussian process modeling } \usage{ tgp.default.params(d, meanfn = c("linear", "constant"), corr = c("expsep", "exp", "mrexpsep", "matern", "sim", "twovar"), splitmin = 1, basemax = d, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{d}{ number of input dimensions \code{ncol(X)}} \item{meanfn}{ A choice of mean function for the process. When \code{meanfn = "linear"} (default), then we have the process \deqn{Z = (\mathbf{1} \;\; \mathbf{X}) \beta + W(\mathbf{X})}{Z = cbind(rep(1,nrow(X), X)) \%*\% beta + W(X),} where \eqn{W(\mathbf{X})}{W(X)} represents the Gaussian process part of the model (if present). Otherwise, when \code{meanfn = "constant"}, then\deqn{Z = \beta_0 + W(\mathbf{X})}{ Z = beta0 + W(X)}} \item{corr}{ Gaussian process correlation model. Choose between the isotropic power exponential family (\code{"exp"}) or the separable power exponential family (\code{"expsep"}, default); the current version also supports the isotropic Matern (\code{"matern"}) and single-index model (\code{"sim"}) and \code{"twovar"} as \dQuote{beta} functionality. The option \code{"mrexpsep"} uses a multi-resolution GP model, a depricated feature in the package (docs removed)} \item{splitmin}{ Indicates which column of the inputs \code{X} should be the first to allow splits via treed partitioning. This is useful for excluding certain input directions from the partitioning mechanism} \item{basemax}{ Indicates which column of the inputs \code{X} should be the last be fit under the base model (e.g., LM or GP). This is useful for allowing some input directions (e.g., binary indicators) to only influence the tree partitioning mechanism, and not the base model(s) at the leaves of the tree} \item{...}{ These ellipses arguments are interpreted as augmentations to the prior specification. You may use these to specify a custom setting of any of default parameters in the output list detailed below} } \value{ The output is the following list of \code{params}... \item{col}{dimension of regression coefficients \eqn{ \beta}{beta}: 1 for input \code{meanfn = "constant"}, or \code{ncol(X)+1} for \code{meanfn = "linear"}} \item{meanfn}{ copied from the inputs } \item{corr}{ copied from the inputs } \item{bprior}{Linear (beta) prior, default is \code{"bflat"} which gives an \dQuote{improper} prior which can perform badly when the signal-to-noise ratio is low. In these cases the \dQuote{proper} hierarchical specification \code{"b0"}, \code{"bmzt"}, or \code{"bmznot"} prior may perform better } \item{beta}{\code{rep(0,col)} starting values for beta linear parameters} \item{tree}{\code{c(0.5,2,max(c(10,col+1)),1,d)} indicating the tree prior process parameters \eqn{\alpha}{alpha}, \eqn{\beta}{beta}, \emph{minpart}, \emph{splitmin} and \emph{basemax}: \deqn{p_{\mbox{\tiny split}}(\eta, \mathcal{T}) = \alpha*(1+\eta)^\beta}{p(split leaf eta) = alpha*(1+depth(eta))^(-beta)} with zero probability given to trees with partitions containing less than \code{nmin} data points; \emph{splitmin} indicates the first column of \code{X} which where treed partitioning is allowed; \emph{basemax} gives the last column where the base model is used} \item{s2.p}{\code{c(5,10)} \eqn{\sigma^2}{s2} inverse-gamma prior parameters \code{c(a0, g0)} where \code{g0} is rate parameter} \item{tau2.p}{\code{c(5,10)} \eqn{\tau^2}{tau2} inverse-gamma prior parameters \code{c(a0, g0)} where \code{g0} is rate parameter} \item{d.p}{c(1.0,20.0,10.0,10.0) Mixture of gamma prior parameter (initial values) for the range parameter(s) \code{c(a1,g1,a2,g2)} where \code{g1} and \code{g2} are rate parameters. If \code{corr="mrexpsep"}, then this is a vector of length 8: The first four parameters remain the same and correspond to the "coarse" process, and the second set of four values, which default to \code{c(1,10,1,10)}, are the equivalent prior parameters for the range parameter(s) in the residual "fine" process.} \item{nug.p}{\code{c(1,1,1,1)} Mixture of gamma prior parameter (initial values) for the nugget parameter \code{c(a1,g1,a2,g2)} where \code{g1} and \code{g2} are rate parameters; default reduces to simple exponential prior; specifying \code{nug.p = 0} fixes the nugget parameter to the \dQuote{starting} value in \code{gd[1]}, i.e., it is excluded from the MCMC} \item{gamma}{\code{c(10,0.2,10)} LLM parameters c(g, t1, t2), with growth parameter \code{g > 0} minimum parameter \code{t1 >= 0} and maximum parameter \code{t1 >= 0}, where \code{t1 + t2 <= 1} specifies \deqn{p(b|d)=t_1 + \exp\left\{\frac{-g(t_2-t_1)}{d-0.5}\right\}}{p(b|d)= t1 + exp(-g*(t2-t1)/(d-0.5))}} \item{d.lam}{\code{"fixed"} Hierarchical exponential distribution parameters to \code{a1}, \code{g1}, \code{a2}, and \code{g2} of the prior distribution for the range parameter \code{d.p}; \code{"fixed"} indicates that the hierarchical prior is \dQuote{turned off}} \item{nug.lam}{\code{"fixed"} Hierarchical exponential distribution parameters to \code{a1}, \code{g1}, \code{a2}, and \code{g2} of the prior distribution for the nug parameter \code{nug.p}; \code{"fixed"} indicates that the hierarchical prior is \dQuote{turned off}} \item{s2.lam}{\code{c(0.2,10)} Hierarchical exponential distribution prior for \code{a0} and \code{g0} of the prior distribution for the s2 parameter \code{s2.p}; \code{"fixed"} indicates that the hierarchical prior is \dQuote{turned off}} \item{tau2.lam}{\code{c(0.2,0.1)} Hierarchical exponential distribution prior for \code{a0} and \code{g0} of the prior distribution for the s2 parameter \code{tau2.p}; \code{"fixed"} indicates that the hierarchical prior is \dQuote{turned off}} \item{delta.p}{\code{c(1,1,1,1)} Parameters in the mixture of gammas prior on the delta scaling parameter for \code{corr="mrexpsep"}: \code{c(a1,g1,a2,g2)} where \code{g1} and \code{g2} are rate parameters; default reduces to simple exponential prior. Delta scales the variance of the residual "fine" process with respect to the variance of the underlying "coarse" process. } \item{nugf.p}{\code{c(1,1,1,1)} Parameters in the mixture of gammas prior on the residual \dQuote{fine} process nugget parameter for \code{corr="mrexpsep"}: \code{c(a1,g1,a2,g2)} where \code{g1} and \code{g2} are rate parameters; default reduces to simple exponential prior.} \item{dp.sim}{\code{basemax * basemax} RW-MVN proposal covariance matrix for GP-SIM models; only appears when \code{corr="sim"}, the default is \code{diag(rep(0.2, basemax))}} } \references{ Gramacy, R. B. (2007). \emph{\pkg{tgp}: An \R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models.} Journal of Statistical Software, \bold{19}(9). \url{https://www.jstatsoft.org/v19/i09} \doi{10.18637/jss.v019.i09} Robert B. Gramacy, Matthew Taddy (2010). \emph{Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with \pkg{tgp} Version 2, an \R Package for Treed Gaussian Process Models.} Journal of Statistical Software, \bold{33}(6), 1--48. \url{https://www.jstatsoft.org/v33/i06/} \doi{10.18637/jss.v033.i06} Gramacy, R. B., Lee, H. K. H. (2008). \emph{Bayesian treed Gaussian process models with an application to computer modeling}. Journal of the American Statistical Association, 103(483), pp. 1119-1130. Also available as ArXiv article 0710.4536 \url{https://arxiv.org/abs/0710.4536} Robert B. Gramacy, Heng Lian (2011). \emph{Gaussian process single-index models as emulators for computer experiments}. Available as ArXiv article 1009.4241 \url{https://arxiv.org/abs/1009.4241} \url{https://bobby.gramacy.com/r_packages/tgp/} } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \note{Please refer to the examples for the functions in "See Also" below, \code{vignette("tgp")} and \code{vignette(tgp2)} } \seealso{ \code{\link{blm}}, \code{\link{btlm}}, \code{\link{bgp}}, \code{\link{btgp}}, \code{\link{bgpllm}}, \code{\link{btgpllm}} } \keyword{ nonparametric } \keyword{ smooth } \keyword{ models } \keyword{ spatial } \keyword{ tree } tgp/man/tgp.trees.Rd0000644000176200001440000000433513723731650014035 0ustar liggesusers\name{tgp.trees} \alias{tgp.trees} \title{ Plot the MAP Tree for each height encountered by the Markov Chain} \description{ Plot the maximum a' posteriori (MAP) tree as a function of tree height, and show the log posterior probabilities for comparison. } \usage{ tgp.trees(out, heights = NULL, main = NULL, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{out}{ \code{"tgp"}-class object which is the output of one the model functions with tree support (e.g. \code{\link{btgpllm}})} \item{heights}{ Index vector of length less than \code{length(out$trees)} describing trees to plot by their height. Default (\code{NULL}) is to plot all trees, one for each height encountered when sampling from the Markov chain of the tree posterior. This is equivalent to \code{heights = out$posts$height}. Specifying \code{heights = "map"} causes (only) the maximum a' posteriori (MAP) height tree to be plotted } \item{main}{ Optional character string to add to the main title of the plot} \item{\dots}{ Extra arguments to the \code{\link[maptree]{draw.tree}} function from \pkg{maptree}} } \details{ The maximum a' posteriori (MAP) tree encountered at each height (in the MCMC chain) is plotted, and the log posterior probabilities are shown for comparison. The text at the branches in the tree show the splitting variable and value. The text at the leaves show the number of input data points (\code{X} and \code{Z}) that fall into the region(s) along with an estimate of the variability therein. } \value{ The only output of this function is beautiful tree diagrams. } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \references{ \url{https://bobby.gramacy.com/r_packages/tgp/} } \note{ Plotting trees that the \pkg{maptree} library is installed, which itself requires that the \pkg{combinat} library also be installed. See \code{vignette("tgp")} and the examples sections of the functions under \dQuote{See Also}, below} \seealso{ \code{\link{bgpllm}}, \code{\link{btlm}}, \code{\link{blm}}, \code{\link{bgp}}, \code{\link{btgpllm}}, \code{\link{plot.tgp}}, \code{\link{mapT}}, \code{vignette("tgp")}} \keyword{ hplot } \keyword{ tree } tgp/man/dopt.gp.Rd0000644000176200001440000000725413723731365013503 0ustar liggesusers\name{dopt.gp} \alias{dopt.gp} \title{Sequential D-Optimal Design for a Stationary Gaussian Process} \description{ Create sequential D-Optimal design for a stationary Gaussian process model of fixed parameterization by subsampling from a list of candidates } \usage{ dopt.gp(nn, X=NULL, Xcand, iter=5000, verb=0) } \arguments{ \item{nn}{ Number of new points in the design. Must be less than or equal to the number of candidates contained in \code{Xcand}, i.e., \code{nn <= nrow(Xcand)}} \item{X}{ \code{data.frame}, \code{matrix} or vector of input locations which are forced into (already in) the design} \item{Xcand}{ \code{data.frame}, \code{matrix} or vector of candidates from which new design points are subsampled. Must have the same dimension as \code{X}, i.e., \code{ncol(X) == ncol(Xcand)}} \item{iter}{number of iterations of stochastic accent algorithm, default \code{5000}} \item{verb}{positive integer indicating after how many rounds of stochastic approximation to print each progress statement; default \code{verb=0} results in no printing} } \details{ Design is based on a stationary Gaussian process model with stationary isotropic exponential correlation function with parameterization fixed as a function of the dimension of the inputs. The algorithm implemented is a simple stochastic ascent which maximizes \code{det(K)}-- the covariance matrix constructed with locations \code{X} and a subset of \code{Xcand} of size \code{nn}. The selected design is \emph{locally} optimal } \value{ The output is a list which contains the inputs to, and outputs of, the C code used to find the optimal design. The chosen design locations can be accessed as list members \code{XX} or equivalently \code{Xcand[fi,]}. \item{X}{Input argument: \code{data.frame} of inputs \code{X}, can be \code{NULL}} \item{nn}{Input argument: number new points in the design} \item{Xcand}{Input argument: \code{data.frame} of candidate locations \code{Xcand}} \item{ncand}{Number of rows in \code{Xcand}, i.e., \code{nncand = dim(Xcand)[1]}} \item{fi}{Vector of length \code{nn} describing the selected new design locations as indices into \code{Xcand}} \item{XX}{\code{data.frame} of selected new design locations, i.e., \code{XX = Xcand[fi,]}} } \references{ Gramacy, R. B. (2020) \emph{Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences}. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 6.) \url{https://bobby.gramacy.com/surrogates/} Chaloner, K. and Verdinelli, I. (1995). \emph{Bayesian experimental design: A review.} Statist. Sci., 10, (pp. 273--304). } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \note{ Inputs \code{X, Xcand} containing \code{NaN, NA, Inf} are discarded with non-fatal warnings. If \code{nn > dim(Xcand)[1]} then a non-fatal warning is displayed and execution commences with \code{nn = dim(Xcand)[1]} In the current version there is no progress indicator. You will have to be patient. Creating D-optimal designs is no speedy task } \seealso{ \code{\link{tgp.design}}, \code{\link{lhs}}} \examples{ # # 2-d Exponential data # (This example is based on random data. # It might be fun to run it a few times) # # get the data exp2d.data <- exp2d.rand() X <- exp2d.data$X; Z <- exp2d.data$Z Xcand <- exp2d.data$XX # find a treed sequential D-Optimal design # with 10 more points dgp <- dopt.gp(10, X, Xcand) # plot the d-optimally chosen locations # Contrast with locations chosen via # the tgp.design function plot(X, pch=19, xlim=c(-2,6), ylim=c(-2,6)) points(dgp$XX) } \keyword{ design } \keyword{ spatial } \keyword{ optimize } tgp/man/mapT.Rd0000644000176200001440000000542013723713521013014 0ustar liggesusers\name{mapT} \alias{mapT} \title{ Plot the MAP partition, or add one to an existing plot } \description{ Plot the maximum a' posteriori (MAP) tree from a \code{"tgp"}-class object, or add one on top of an existing plot. Like \code{plot.tgp}, projections and slices of trees can be plotted as specified } \usage{ mapT(out, proj = NULL, slice = NULL, add = FALSE, lwd = 2, ...) } \arguments{ \item{out}{ \code{"tgp"}-class object which is the output of one the model functions with tree support (e.g. \code{\link{btgpllm}})} \item{proj}{1-or-2-Vector describing the dimensions to be shown in a projection. The argument is ignored for 1-d data, i.e., if \code{x$d == 1}. For 2-d data, no projection needs to be specified--- the default argument (\code{proj = NULL}) will result in a 2-d plot. 1-d projections of 2-d or higher trees are are supported, e.g., \code{proj = c(2)} would show the second variable projection. For 3-d data or higher, \code{proj=NULL} defaults to \code{proj = c(1,2)} which plots a 2-d projection of the trees for the first two variables. Slices have priority over projections--- see next argument (\code{slice})--- when non-null arguments are provided for both.} \item{slice}{\code{list} object with \code{x} and \code{z} fields, which are vectors of equal length describing the slice to be plotted, i.e., which z-values of the treed partitions in the \code{x$d - 2} inputs \code{x$X} and \code{x$XX} should be fixed to in order to obtain a 2-d visualization. For example, for 4-d data, \code{slice = list(x=(2,4), z=c(0.2, 1.5)} will result in a 2-d plot of the first and third dimensions which have the second and fourth slice fixed at 0.5 and 1.5. The default is \code{NULL}, yielding to the \code{proj} argument. Argument is ignored for 1-d data, i.e., if \code{x$d == 1}} \item{add}{ Specify whether the to add partitions to an existing plot (\code{add = TRUE}) or to make a new plot showing the data \code{out$X} along with the partitions (default \code{add = FALSE})} \item{lwd}{ Plotting argument specifying the width of the lines used to depict the partitions} \item{...}{ Additional arguments to \code{plot} used when \code{add = FALSE}} } \value{ The only output of this function is a beautiful region-representation of the MAP tree. } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \references{ \url{https://bobby.gramacy.com/r_packages/tgp/} } \note{ For examples, see \code{vignette("tgp")} and the examples provided in the documentation for the \code{\link{tgp.design}} function } \seealso{ \code{\link{plot.tgp}}, \code{\link{tgp.trees}}, \code{\link{tgp.design}}, \code{vignette("tgp")}} \keyword{ hplot } \keyword{ tree } tgp/man/sens.Rd0000644000176200001440000002300613724020524013056 0ustar liggesusers\name{sens} \alias{sens} \title{Monte Carlo Bayesian Sensitivity Analysis} \description{Fully Bayesian Monte Carlo sensitivity analysis scheme, based upon any of the regression models contained in the \pkg{tgp} package. Random Latin hypercube samples are drawn at each MCMC iteration in order to estimate main effects as well as 1st order and total sensitivity indices.} \usage{ sens(X, Z, nn.lhs, model = btgp, ngrid = 100, span = 0.3, BTE = c(3000,8000,10), rect = NULL, shape = NULL, mode = NULL, ...) } \arguments{ \item{X}{\code{data.frame}, \code{matrix}, or vector of inputs \code{X} } \item{Z}{ Vector of output responses \code{Z} of length equal to the leading dimension (rows) of \code{X}, i.e., \code{length(Z) == nrow(X)}} \item{nn.lhs}{Size of each Latin hypercube drawn for use in the Monte Carlo integration scheme. Total number of locations for prediction is \code{nn.lhs*(ncol(X)+2)}} \item{model}{Either the regression model used for prediction, or \code{NULL}. If \code{model=NULL}, then the function just returns the \code{sens.p} vector of parameters to be passed with a regression model call. This can be used to perform sensitivity analysis through the \code{\link{predict.tgp}} framework} \item{ngrid}{The number of grid points in each input dimension upon which main effects will be estimated.} \item{span}{Smoothing parameter for main effects integration: the fraction of \code{nn.lhs} points that will be included in a moving average window that is used to estimate main effects at the \code{ngrid} locations in each input dimension.} \item{BTE}{ 3-vector of Monte-Carlo parameters (B)urn in, (T)otal, and (E)very. Predictive samples are saved every E MCMC rounds starting at round B, stopping at T } \item{rect}{ Rectangle describing the domain of the uncertainty distribution with respect to which the sensitivity is to be determined. This defines the domain from which the LH sample is to be taken. The rectangle should be a \code{matrix} or \code{data.frame} with \code{ncol(rect) = 2}, and number of rows equal to the dimension of the domain. For 1-d data, a vector of length 2 is allowed. Defaults to the input data range (\code{X}).} \item{shape}{ Optional vector of shape parameters for the Beta distribution. Vector of length equal to the dimension of the domain, with elements > 1. If specified, the uncertainty distribution (i.e. the LH sample) is proportional to a joint pdf formed by independent Beta distributions in each dimension of the domain, scaled and shifted to have support defined by \code{rect}. Only concave Beta distributions with \code{shape} > 1 are supported. If unspecified, the uncertainty distribution is uniform over \code{rect}. The specification \code{shape[i]=0} instructs \code{sens} to treat the i'th dimension as a binary variable. In this case, \code{mode[i]} is the probability parameter for a bernoulli uncertainty distribution, and we must also have \code{rect[i,]=c(0,1)}. } \item{mode}{ Optional vector of mode values for the Beta uncertainty distribution. Vector of length equal to the dimension of the domain, with elements within the support defined by \code{rect}. If \code{shape} is specified, but this is not, then the scaled Beta distributions will be symmetric. } \item{\dots}{Extra arguments to the \pkg{tgp} \code{model}. } } \details{ Saltelli (2002) describes a Latin Hypercube sampling based method for estimation of the 'Sobal' sensitivity indices: 1st Order for input \eqn{i}{i}, \deqn{S(i) = \mbox{Var}(E[f|x_i])/\mbox{Var}(f),}{S(i) = var(E[f|x[i]])/var(f),} where \eqn{x_i}{x[i]} is the \eqn{i}{i}-th input. Total Effect for input \eqn{i}{i}, \deqn{T(i) = E[\mbox{Var}(f|x_{-i})]/\mbox{Var}(f),}{T(i) = E[var(f|x[-i])]/var(f),} where \eqn{x_{-i}}{x[-i]} is all inputs except for the \eqn{i}{i}-th. All moments are with respect to the appropriate marginals of the uncertainty distribution \eqn{U}{U} -- that is, the probability distribution on the inputs with respect to which sensitivity is being investigated. Under this approach, the integrals involved are approximated through averages over properly chosen samples based on two LH samples proportional to U. If \code{nn.lhs} is the sample size for the Monte Carlo estimate, this scheme requires \code{nn.lhs*(ncol(X)+2)} function evaluations. The \code{sens} function implements the method for unknown functions \eqn{f}, through prediction via one of the \pkg{tgp} regression models conditional on an observed set of \code{X} locations. At each MCMC iteration of the \pkg{tgp} model fitting, the \code{nn.lhs*(ncol(X)+2)} locations are drawn randomly from the LHS scheme and realizations of the sensitivity indices are calculated. Thus we obtain a posterior sample of the indices, incorporating variability from both the Monte Carlo estimation and uncertainty about the function output. Since a subset of the predictive locations are actually an LHS proportional to the uncertainty distribution, we can also estimate the main effects through simple non-parametric regression (a moving average). Please see \code{vignette("tgp2")} for a detailed illustration } \value{ The output is a \code{"tgp"}-class object. The details for \code{\link{btgp}} contain a complete description of this output. The list entry that is relevance to sensitivity analysis is \code{sens}, which itself has entries: \item{par}{ This contains a \code{list} of the input parameters used in the sensitivity analysis, as outlined above.} \item{Xgrid}{A \code{matrix} containing a grid in each input dimension (by column) over which the main effects are estimated.} \item{ZZ.mean}{A \code{matrix}, where each column contains the mean main effects over the corresponding column of \code{sens.Xgrid}.} \item{ZZ.q1}{A \code{matrix}, where each column contains the 5th percentile main effects over the corresponding column of \code{sens.Xgrid}.} \item{ZZ.q2}{A \code{matrix}, where each column contains the 5th percentile main effects over the corresponding column of \code{sens.Xgrid}.} \item{S}{A \code{matrix}, where each column contains the posterior sample of 1st order sensitivity indices for the corresponding input dimension.} \item{T}{A \code{matrix}, where each column contains the posterior sample of total sensitivity indices for the corresponding input dimension.} } \references{ Gramacy, R. B. (2020) \emph{Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences}. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 8.) \url{https://bobby.gramacy.com/surrogates/} R.D. Morris, A. Kottas, M. Taddy, R. Furfaro, and B. Ganapol. (2009) \emph{A statistical framework for the sensitivity analysis of radiative transfer models.} IEEE Transactions on Geoscience and Remote Sensing, to appear. Saltelli, A. (2002) \emph{Making best use of model evaluations to compute sensitivity indices.} Computer Physics Communications, 145, 280-297. } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \note{ The quality of sensitivity analysis is dependent on the size of the LH samples used for integral approximation; as with any Monte Carlo integration scheme, the sample size (\code{nn.lhs}) must increase with the dimensionality of the problem. The total sensitivity indices \eqn{T}{T} are forced non-negative, and if negative values occur it is necessary to increase \code{nn.lhs}. The \code{plot.tgp} function replaces negative values with zero for illustration. } \seealso{ \code{\link{btgp}}, \code{\link{plot.tgp}}, \code{\link{predict.tgp}}, \code{\link{lhs}} } \examples{ # Take a look at the air quality in New York: Sensitivity of # ozone levels with respect to solar radiation, wind, and # temperature. See help(airquality) for details. X <- airquality[,2:4] Z <- airquality$Ozone # Uncertainty distribution is the default: uniform over range(X) # There is missing data, which is removed automatically by tgp # range(X). \donttest{ s <- suppressWarnings(sens(X=X, Z=Z, nn.lhs=300, model=btgp, ngrid=100, span=0.3, BTE=c(5000,10000,10))) # plot the results plot(s, layout="sens", ylab="Ozone", main="main effects") # plot only the sensitivity indices plot(s, layout="sens", ylab="Ozone", maineff=FALSE) # plot only the main effects, side by side plot(s, layout="sens", ylab="Ozone", main="", maineff=t(1:3)) } # build a 'sens.p' parameter vector for a data-dependent # informative uncertainty distribution. For each variable, # the input distribution will be a scaled Beta with shape=2, # and mode equal to the data mean rect <- t(apply(X, 2, range, na.rm=TRUE)) mode <- apply(X , 2, mean, na.rm=TRUE) shape <- rep(2,3) # plot a sample from the marginal uncertainty distribution. Udraw <- lhs(300, rect=rect, mode=mode, shape=shape) par(mfrow=c(1,3)) for(i in 1:3) hist(Udraw[,i], breaks=15,xlab=names(X)[i]) # build sens.p with the 'sens' function. sens.p <- suppressWarnings(sens(X=X, Z=Z, nn.lhs=300, model=NULL, ngrid=100, rect=rect, shape=shape, mode=mode)) # Use predict.tgp to quickly analyze with respect to this new # uncertainty distribution without re-running the MCMC, then # plot the results. \donttest{ s.new <- predict(s, BTE=c(1,1000,1), sens.p=sens.p, verb=1) plot(s.new, layout="sens", ylab="Ozone", main="main effects") } } \keyword{ htest } \keyword{ multivariate } \keyword{ regression } \keyword{ spatial } \keyword{ tree } tgp/man/optim.tgp.Rd0000644000176200001440000001653613724023333014042 0ustar liggesusers\name{optim.tgp} \alias{optim.step.tgp} \alias{optim.ptgpf} \title{ Surrogate-based optimization of noisy black-box function } \description{ Optimize (minimize) a noisy black-box function (i.e., a function which may not be differentiable, and may not execute deterministically). A \code{b*} \pkg{tgp} model is used as a surrogate for adaptive sampling via improvement (and other) statistics. Note that this function is intended as a skeleton to be tailored as required for a particular application } \usage{ optim.step.tgp(f, rect, model = btgp, prev = NULL, X = NULL, Z = NULL, NN = 20 * length(rect), improv = c(1, 5), cands = c("lhs", "tdopt"), method = c("L-BFGS-B", "Nelder-Mead", "BFGS", "CG", "SANN", "optimize"), ...) optim.ptgpf(start, rect, tgp.obj, method=c("L-BFGS-B", "Nelder-Mead", "BFGS", "CG", "SANN", "optimize")) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{f}{ A function to be optimized, having only one free argument } \item{rect}{ \code{matrix} indicating the domain of the argument of \code{f} over which an optimal should be searched; must have \code{ncol(rect) = 2} and \code{nrow} agreeing with the argument of \code{f} indicating the dimension of the data. For 1-d data, a vector of length 2 is allowed} \item{model}{ The \code{b*} regression model used as a surrogate for optimization; see \code{\link{btgp}}, and others, for more detail } \item{prev}{ The output from a previous call to \code{optim.step.tgp}; this should be a \code{list} with entries as described the \dQuote{Value} section below } \item{X}{\code{data.frame}, \code{matrix}, or vector of current inputs \code{X}, to be augmented } \item{Z}{ Vector of current output responses \code{Z} of length equal to the leading dimension (rows) of \code{X}, i.e., \code{length(Z) == nrow(X)}, to be augmented} \item{NN}{ Number of candidate locations (\code{XX}) at which to sample from the improvement statistic } \item{improv}{ Indicates the \code{improv} argument provided to a \code{b*} \code{model} function for sampling from the improvement statistic at the \code{NN} candidate locations (\code{XX}); see \code{\link{btgp}}, and others, for more detail} \item{cands}{ The type of candidates (\code{XX}) at which samples from the improvement statistics are gathered. The default setting of \code{"lhs"} is recommended. However, a sequential treed D-optimal design can be used with \code{"tdopt"} for a more global exploration; see \code{\link{tgp.design}} for more details } \item{method}{ A method from \code{\link{optim}}, or \code{"optimize"} which uses \code{\link{optimize}} as appropriate (when the input-space is 1-d)} \item{\dots}{ Further arguments to the \code{b*} \code{model} function} \item{start}{ A starting value for optimization of the MAP predictive (kriging) surface of a \code{"tgp"}-class object. A good starting value is the \code{X} or \code{XX} location found to be a minimum in the mean predictive surface contained in \code{"tgp"}-class object } \item{tgp.obj}{ A \code{"tgp"}-class object that is the output of one of the \code{b*} functions: \code{\link{blm}}, \code{\link{btlm}} \code{\link{bgp}}, \code{\link{bgpllm}}, \code{\link{btgp}}, or \code{\link{btgpllm}}, as can be used by \code{\link{predict.tgp}} for optimizing on the MAP predictive (surrogate) kriging surface } } \details{ \code{optim.step.tgp} executes one step in a search for the global optimum (minimum) of a noisy function (\code{Z~f(X)}) in a bounded rectangle (\code{rect}). The procedure essentially fits a tgp \code{model} and samples from the posterior distribution of improvement statistics at \code{NN+1} candidates locations. \code{NN} of the candidates come from \code{cands}, i.e., \code{"lhs"} or \code{"tdopt"}, plus one which is the location of the minima found in a previous run via \code{prev} by using \code{\link{optim}} (with a particular \code{method} or \code{\link{optimize}} instead) on the MAP \code{model} predictive surface using the \code{"tgp"}-class object contained therein. The \code{improv[2]} with the the highest expected improvement are recommended for adding into the design on output. \code{optim.ptgpf} is the subroutine used by \code{optim.step.tgp} to find optimize on the MAP (surrogate) predictive surface for the \code{"tgp"}-class object contained in \code{prev}. Please see \code{vignette("tgp2")} for a detailed illustration } \value{ The \code{list} return has the following components. \item{X }{ A \code{matrix} with \code{nrow(rect)} columns whose rows contain recommendations for input locations to add into the design } \item{progress }{ A one-row \code{data.frame} indicating the the \code{X}-location and objective value of the current best guess of the solution to the (kriging) surrogate optimization along with the maximum values of the improvement statistic } \item{obj }{ the \code{"tgp"}-class object output from the \code{model} function } } \references{ Gramacy, R. B. (2020) \emph{Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences}. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 7.) \url{https://bobby.gramacy.com/surrogates/} Matthew Taddy, Herbert K.H. Lee, Genetha A. Gray, and Joshua D. Griffin. (2009) \emph{Bayesian guided pattern search for robust local optimization.} Technometrics, 51(4), pp. 389-401 \url{https://bobby.gramacy.com/r_packages/tgp/} } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \note{ The ellipses (\code{\dots}) argument is used differently here, as compared to \code{\link{optim}}, and \code{\link{optimize}}. It allows further arguments to be passed to the \code{b*} \code{model} function, whereas for \code{\link{optim}} it would describe further (static) arguments to the function \code{f} to be optimized. If static arguments need to be set for \code{f}, then we recommend setting defaults via the \code{\link{formals}} of \code{f} } \seealso{ \code{\link{btgp}}, etc., \code{\link{optim}}, \code{\link{optimize}}, \code{\link{tgp.design}}, \code{\link{predict.tgp}}, \code{\link{dopt.gp}} } \examples{ \donttest{ ## optimize the simple exponential function f <- function(x) { exp2d.Z(x)$Z } ## create the initial design with D-optimal candidates rect <- rbind(c(-2,6), c(-2,6)) Xcand <- lhs(500, rect) X <- dopt.gp(50, X=NULL, Xcand)$XX Z <- f(X) ## do 10 rounds of adaptive sampling out <- progress <- NULL for(i in 1:10) { ## get recommendations for the next point to sample out <- optim.step.tgp(f, X=X, Z=Z, rect=rect, prev=out) ## add in the inputs, and newly sampled outputs X <- rbind(X, out$X) Z <- c(Z, f(out$X)) ## keep track of progress and best optimum progress <- rbind(progress, out$progress) print(progress[i,]) } ## plot the progress so far par(mfrow=c(2,2)) plot(out$obj, layout="surf") plot(out$obj, layout="as", as="improv") matplot(progress[,1:nrow(rect)], main="optim results", xlab="rounds", ylab="x[,1:2]", type="l", lwd=2) plot(log(progress$improv), type="l", main="max log improv", xlab="rounds", ylab="max log(improv)") } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ optimize } \keyword{ design } tgp/man/btgp.Rd0000644000176200001440000006072114277222043013053 0ustar liggesusers\name{btgp} \title{Bayesian Nonparametric & Nonstationary Regression Models} \alias{blm} \alias{btlm} \alias{bcart} \alias{bgp} \alias{bgpllm} \alias{btgp} \alias{btgpllm} \description{ The seven functions described below implement Bayesian regression models of varying complexity: linear model, linear CART, Gaussian process (GP), GP with jumps to the limiting linear model (LLM), treed GP, and treed GP LLM. } \usage{ blm(X, Z, XX = NULL, meanfn = "linear", bprior = "bflat", BTE = c(1000, 4000, 3), R = 1, m0r1 = TRUE, itemps = NULL, pred.n = TRUE, krige = TRUE, zcov = FALSE, Ds2x = FALSE, improv = FALSE, sens.p = NULL, trace = FALSE, verb = 1, ...) btlm(X, Z, XX = NULL, meanfn = "linear", bprior = "bflat", tree = c(0.5, 2), BTE = c(2000, 7000, 2), R = 1, m0r1 = TRUE, itemps = NULL, pred.n = TRUE, krige = TRUE, zcov = FALSE, Ds2x = FALSE, improv = FALSE, sens.p = NULL, trace = FALSE, verb = 1, ...) bcart(X, Z, XX = NULL, bprior = "bflat", tree = c(0.5, 2), BTE = c(2000, 7000, 2), R = 1, m0r1 = TRUE, itemps = NULL, pred.n = TRUE, krige = TRUE, zcov = FALSE, Ds2x = FALSE, improv=FALSE, sens.p = NULL, trace = FALSE, verb = 1, ...) bgp(X, Z, XX = NULL, meanfn = "linear", bprior = "bflat", corr = "expsep", BTE = c(1000, 4000, 2), R = 1, m0r1 = TRUE, itemps = NULL, pred.n = TRUE, krige = TRUE, zcov = FALSE, Ds2x = FALSE, improv = FALSE, sens.p = NULL, nu = 1.5, trace = FALSE, verb = 1, ...) bgpllm(X, Z, XX = NULL, meanfn = "linear", bprior = "bflat", corr = "expsep", gamma=c(10,0.2,0.7), BTE = c(1000, 4000, 2), R = 1, m0r1 = TRUE, itemps = NULL, pred.n = TRUE, krige = TRUE, zcov = FALSE, Ds2x = FALSE, improv = FALSE, sens.p = NULL, nu = 1.5, trace = FALSE, verb = 1, ...) btgp(X, Z, XX = NULL, meanfn = "linear", bprior = "bflat", corr = "expsep", tree = c(0.5, 2), BTE = c(2000, 7000, 2), R = 1, m0r1 = TRUE, linburn = FALSE, itemps = NULL, pred.n = TRUE, krige = TRUE, zcov = FALSE, Ds2x = FALSE, improv = FALSE, sens.p = NULL, nu = 1.5, trace = FALSE, verb = 1, ...) btgpllm(X, Z, XX = NULL, meanfn = "linear", bprior = "bflat", corr = "expsep", tree = c(0.5, 2), gamma=c(10,0.2,0.7), BTE = c(2000, 7000, 2), R = 1, m0r1 = TRUE, linburn = FALSE, itemps = NULL, pred.n = TRUE, krige = TRUE, zcov = FALSE, Ds2x = FALSE, improv = FALSE, sens.p = NULL, nu = 1.5, trace = FALSE, verb = 1, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ Each of the above functions takes some subset of the following arguments... \item{X}{\code{data.frame}, \code{matrix}, or vector of inputs \code{X} } \item{Z}{ Vector of output responses \code{Z} of length equal to the leading dimension (rows) of \code{X}, i.e., \code{length(Z) == nrow(X)}} \item{XX}{ Optional \code{data.frame}, \code{matrix}, or vector of predictive input locations with the same number of columns as \code{X}, i.e., \code{ncol(XX) == ncol(X)}} \item{meanfn}{ A choice of mean function for the process. When \code{meanfn = "linear"} (default), then we have the process \deqn{Z = (\mathbf{1} \;\; \mathbf{X}) \beta + W(\mathbf{X})}{Z = cbind(rep(1,nrow(X), X)) \%*\% beta + W(X),} where \eqn{W(\mathbf{X})}{W(X)} represents the Gaussian process part of the model (if present). Otherwise, when \code{meanfn = "constant"}, then \deqn{Z = \beta_0 + W(\mathbf{X})}{Z = beta0 + W(X).}} \item{bprior}{Linear (beta) prior, default is \code{"bflat"}; alternates include \code{"b0"} hierarchical Normal prior, \code{"bmle"} empirical Bayes Normal prior, \code{"b0not"} Bayesian treed LM-style prior from Chipman et al. (same as \code{"b0"} but without \code{tau2}), \code{"bmzt"} a independent Normal prior (mean zero) with inverse-gamma variance (\code{tau2}), and \code{"bmznot"} is the same as \code{"bmznot"} without \code{tau2}. The default \code{"bflat"} gives an \dQuote{improper} prior which can perform badly when the signal-to-noise ratio is low. In these cases the \dQuote{proper} hierarchical specification \code{"b0"} or independent \code{"bmzt"} or \code{"bmznot"} priors may perform better} \item{tree}{ a 2-vector containing the tree process prior parameterization \code{c(alpha, beta)} specifying \deqn{p_{\mbox{\tiny split}}(\eta, \mathcal{T}) = \alpha*(1+\eta)^\beta}{p(split leaf eta) = alpha*(1+depth(eta))^(-beta)} automatically giving zero probability to trees with partitions containing less than \code{min(c(10,nrow(X)+1))} data points. You may also specify a longer vector, writing over more of the components of the \code{$tree} output from \code{\link{tgp.default.params}}} \item{gamma}{Limiting linear model parameters \code{c(g, t1, t2)}, with growth parameter \code{g > 0} minimum parameter \code{t1 >= 0} and maximum parameter \code{t1 >= 0}, where \code{t1 + t2 <= 1} specifies \deqn{p(b|d)=t_1 +\exp\left\{\frac{-g(t_2-t_1)}{d-0.5}\right\}}{p(b|d)= t1 + exp(-g*(t2-t1)/(d-0.5))}} \item{corr}{ Gaussian process correlation model. Choose between the isotropic power exponential family (\code{"exp"}) or the separable power exponential family (\code{"expsep"}, default); the current version also supports the isotropic Matern (\code{"matern"}) and single-index Model (\code{"sim"}) as \dQuote{beta} functionality. % The option \code{"mrexpsep"} assumes % within each partition a version of % the multi-resolution stationary GP model described in Kennedy and O'Hagan % (2000). To use this option, the first column of the design % matrices \code{X} and \code{XX} must contain an indicator for % 'fine' (1) or 'coarse' (0) fidelity. \code{"mrexpsep"} is only % available with the \code{btgp} and \code{bgp} models, and % \code{linburn=TRUE} is not allowed. % See details below. } \item{BTE}{ 3-vector of Monte-carlo parameters (B)urn in, (T)otal, and (E)very. Predictive samples are saved every E MCMC rounds starting at round B, stopping at T. } \item{R}{ Number of repeats or restarts of \code{BTE} MCMC rounds, default \code{R=1} is no restarts} \item{m0r1}{If \code{TRUE} (default) the responses \code{Z} will be scaled to have a mean of zero and a range of 1} \item{linburn}{If \code{TRUE} initializes MCMC with \code{B} (additional) rounds of Bayesian Linear CART (\code{btlm}); default is \code{FALSE} } \item{itemps}{ Importance tempering (IT) inverse temperature ladder, or powers to improve mixing. See \code{\link{default.itemps}}. The default is no IT \code{itemps = NULL}} \item{pred.n}{\code{TRUE} (default) value results in prediction at the inputs \code{X}; \code{FALSE} skips prediction at \code{X} resulting in a faster implementation} \item{krige}{\code{TRUE} (default) value results in collection of kriging means and variances at predictive (and/or data) locations; \code{FALSE} skips the gathering of kriging statistics giving a savings in storage} \item{zcov}{If \code{TRUE} then the predictive covariance matrix is calculated-- can be computationally (and memory) intensive if \code{X} or \code{XX} is large. Otherwise only the variances (diagonal of covariance matrices) are calculated (default). See outputs \code{Zp.s2}, \code{ZZ.s2}, etc., below} \item{Ds2x}{\code{TRUE} results in ALC (Active Learning--Cohn) computation of expected reduction in uncertainty calculations at the \code{XX} locations, which can be used for adaptive sampling; \code{FALSE} (default) skips this computation, resulting in a faster implementation} \item{improv}{\code{TRUE} results in samples from the improvement at locations \code{XX} with respect to the observed data minimum. These samples are used to calculate the expected improvement over \code{XX}, as well as to rank all of the points in \code{XX} in the order that they should be sampled to minimize the expected multivariate improvement (refer to Schonlau et al, 1998). Alternatively, \code{improv} can be set to any positive integer 'g', in which case the ranking is performed with respect to the expectation for improvement raised to the power 'g'. Increasing 'g' leads to rankings that are more oriented towards a global optimization. The option \code{FALSE} (default) skips these computations, resulting in a faster implementation. Optionally, a two-vector can be supplied where \code{improv[2]} is interpreted as the (maximum) number of points to rank by improvement. See the note below. If not specified, the entire \code{XX} matrix is ranked. } \item{sens.p}{ Either \code{NULL} or a vector of parameters for sensitivity analysis, built by the function \code{\link{sens}}. Refer there for details} \item{nu}{ \dQuote{beta} functionality: fixed smoothness parameter for the Matern correlation function; \code{nu + 0.5} times differentiable predictive surfaces result} \item{trace}{ \code{TRUE} results in a saving of samples from the posterior distribution for most of the parameters in the model. The default is \code{FALSE} for speed/storage reasons. See note below } \item{verb}{ Level of verbosity of R-console print statements: from 0 (none); 1 (default) which shows the \dQuote{progress meter}; 2 includes an echo of initialization parameters; up to 3 and 4 (max) with more info about successful tree operations} \item{...}{ These ellipses arguments are interpreted as augmentations to the prior specification generated by \code{params <- \link{tgp.default.params}(ncol(X)+1)}. You may use these to specify a custom setting of any of default parameters in the output list \code{params} except those for which a specific argument is already provided (e.g., \code{params$corr} or \code{params$bprior}) or those which contradict the type of \code{b*} function being called (e.g., \code{params$tree} or \code{params$gamma}); these redundant or possibly conflicting specifications will be ignored. Refer to \code{tgp.default.params} for details on the prior specification} } \details{ The functions and their arguments can be categorized by whether or not they use treed partitioning (T), GP models, and jumps to the LLM (or LM) \tabular{lll}{ blm \tab LM \tab Linear Model \cr btlm \tab T, LM \tab Treed Linear Model \cr bcart \tab T \tab Treed Constant Model \cr bgp \tab GP \tab GP Regression \cr bgpllm \tab GP, LLM \tab GP with jumps to the LLM \cr btgp \tab T, GP \tab treed GP Regression \cr btgpllm \tab T, GP, LLM \tab treed GP with jumps to the LLM } Each function implements a special case of the generic function \code{tgp} which is an interface to C/C++ code for treed Gaussian process modeling of varying parameterization. Documentation for \code{tgp} has been declared redundant, and has subsequently been removed. To see how the \code{b*} functions use \code{tgp} simply examine the function. In the latest version, with the addition of the ellipses \dQuote{...} argument, there is nothing that can be done with the direct \code{tgp} function that cannot also be done with a \code{b*} function Only functions in the T (tree) category take the \code{tree} argument; GP category functions take the \code{corr} argument; and LLM category functions take the \code{gamma} argument. Non-tree class functions omit the \code{parts} output, see below \code{bcart} is the same as \code{btlm} except that only the intercept term in the LM is estimated; the others are zero, thereby implementing a Bayesian version of the original CART model The \code{sens.p} argument contains a vector of parameters for sensitivity analysis. It should be \code{NULL} unless created by the \code{sens} function. Refer to \code{help(sens)} for details. % If \code{corr="mrexpsep"} and the matrices X and XX are properly % formatted with an indicator first column (0='coarse', 1='fine'), % the stationary GP model fit within each partition has: % \deqn{ % Z_{\mbox{\tiny coarse}} \sim m(x) + \mbox{GP}(\sigma^2 + K_c) % }{ % Z[coarse] ~ 'meanfn' + GP(sigma^2 * K[c]) % } and % \deqn{ % Z_{\mbox{\tiny fine}} \sim Z_{\mbox{\tiny coarse}} + % \mbox{GP}(\sigma^2 \delta + K_f) % }{ % Z[fine] ~ Z_coarse + GP(sigma^2 * delta * K[f]) % } % Where each matrix \eqn{K_c}{K[c]} and \eqn{K_f}{K[f]} are based on the % same separable power exponential family plus a nugget effect that is % used for \code{corr="expsep"}. If \code{itemps =! NULL} then importance tempering (IT) is performed to get better mixing. After each restart (when \code{R > 1}) the observation counts are used to update the pseudo-prior. Stochastic approximation is performed in the first burn-in rounds (for \code{B-T} rounds, not \code{B}) when \code{c0} and \code{n0} are positive. Every subsequent burn-in after the first restart is for \code{B} rounds in order to settle-in after using the observation counts. See \code{\link{default.itemps}} for more details and an example Please see \code{vignette("tgp")} for a detailed illustration } \value{ \code{bgp} returns an object of class \code{"tgp"}. The function \code{\link{plot.tgp}} can be used to help visualize results. An object of class \code{"tgp"} is a list containing at least the following components... The \code{parts} output is unique to the T (tree) category functions. Tree viewing is supported by \code{\link{tgp.trees}} \item{X}{Input argument: \code{data.frame} of inputs \code{X}} \item{n}{Number of rows in \code{X}, i.e., \code{nrow(X)}} \item{d}{Number of cols in \code{X}, i.e., \code{ncol(X)}} \item{Z}{Vector of output responses \code{Z}} \item{XX}{Input argument: \code{data.frame} of predictive locations \code{XX}} \item{nn}{Number of rows in \code{XX}, i.e., \code{nrow(XX)}} \item{BTE}{Input argument: Monte-carlo parameters} \item{R}{Input argument: restarts} \item{linburn}{Input argument: initialize MCMC with linear CART} \item{params}{\code{list} of model parameters generated by \code{\link{tgp.default.params}} and subsequently modified according to the calling \code{b*} function and its arguments} \item{dparams}{Double-representation of model input parameters used by the C-code} \item{itemps}{\code{data.frame} containing the importance tempering ladders and pseudo-prior: \code{$k} has inverse inverse temperatures (from the input argument), \code{$k} has an \emph{updated} pseudo-prior based on observation counts and (possibly) stochastic approximation during burn-in and (input) stochastic approximation parameters \eqn{c_0}{c0} and \eqn{n_0}{n0}. See \code{\link{default.itemps}} for more info} \item{Zp.mean}{Vector of mean predictive estimates at \code{X} locations} \item{Zp.q1}{Vector of 5\% predictive quantiles at \code{X} locations} \item{Zp.q2}{Vector of 95\% predictive quantiles at \code{X} locations} \item{Zp.q}{Vector of quantile norms \code{Zp.q2-Zp.q1}} \item{Zp.s2}{If input \code{zcov = TRUE}, then this is a predictive covariance matrix for the inputs at locations \code{X}; otherwise then this is a vector of predictive variances at the \code{X} locations (diagonal of the predictive covariance matrix). Only appears when input \code{pred.n = TRUE}} \item{Zp.km}{Vector of (expected) kriging means at \code{X} locations} \item{Zp.vark}{Vector of posterior variance for kriging surface (no additive noise) at \code{X} locations} \item{Zp.ks2}{Vector of (expected) predictive kriging variances at \code{X} locations} \item{ZZ.mean}{Vector of mean predictive estimates at \code{XX} locations} \item{ZZ.q1}{Vector of 5\% predictive quantiles at \code{XX} locations} \item{ZZ.q2}{Vector of 95\% predictive quantiles at \code{XX} locations} \item{ZZ.q}{Vector of quantile norms \code{ZZ.q2-ZZ.q1}, used by the ALM adaptive sampling algorithm} \item{ZZ.s2}{If input \code{zcov = TRUE}, then this is a predictive covariance matrix for predictive locations \code{XX}; otherwise then this is a vector of predictive variances at the \code{XX} locations (diagonal of the predictive covariance matrix). Only appears when input \code{XX != NULL}} \item{ZpZZ.s2}{If input \code{zcov = TRUE}, then this is a predictive \code{n * nn} covariance matrix between locations in \code{X} and \code{XX}; Only appears when \code{zcov = TRUE} and both \code{pred.n = TRUE} and \code{XX != NULL}} \item{ZZ.km}{Vector of (expected) kriging means at \code{XX} locations} \item{ZZ.vark}{Vector of posterior variance for kriging surface (no additive noise) at \code{XX} locations} \item{ZZ.ks2}{Vector of (expected) predictive kriging variances at \code{XX} locations} \item{Ds2x}{If argument \code{Ds2x=TRUE}, this vector contains ALC statistics for \code{XX} locations} \item{improv}{If argument \code{improv} is \code{TRUE} or a positive integer, this is a 'matrix' with first column set to the expected improvement statistics for \code{XX} locations, and the second column set to a ranking in the order that they should be sampled to minimize the expected multivariate improvement raised to a power determined by the argument \code{improv}} \item{response}{Name of response \code{Z} if supplied by \code{data.frame} in argument, or "z" if none provided} \item{parts}{Internal representation of the regions depicted by partitions of the maximum a' posteriori (MAP) tree} \item{trees}{\code{list} of trees (\pkg{maptree} representation) which were MAP as a function of each tree height sampled between MCMC rounds \code{B} and \code{T}} \item{trace}{If \code{trace==TRUE}, this \code{list} contains traces of most of the model parameters and posterior predictive distributions at input locations \code{XX}. Otherwise the entry is \code{FALSE}. See note below} \item{ess}{Importance tempering effective sample size (ESS). If \code{itemps==NULL} this corresponds to the total number of samples collected, i.e.. \code{R*(BTE[2]-BTE[1])/BTE[3]}. Otherwise the ESS will be lower due to a non-zero coefficient of variation of the calculated importance tempering weights} \item{sens}{ See \code{\link{sens}} documentation for more details} } \references{ Gramacy, R. B. (2020) \emph{Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences}. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 9.) \url{https://bobby.gramacy.com/surrogates/} Gramacy, R. B. (2007). \emph{\pkg{tgp}: An \R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models.} Journal of Statistical Software, \bold{19}(9). \url{https://www.jstatsoft.org/v19/i09} \doi{10.18637/jss.v019.i09} Robert B. Gramacy, Matthew Taddy (2010). \emph{Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with \pkg{tgp} Version 2, an \R Package for Treed Gaussian Process Models.} Journal of Statistical Software, \bold{33}(6), 1--48. \url{https://www.jstatsoft.org/v33/i06/} \doi{10.18637/jss.v033.i06} Gramacy, R. B., Lee, H. K. H. (2007). \emph{Bayesian treed Gaussian process models with an application to computer modeling}. Journal of the American Statistical Association, 103(483), pp. 1119-1130. Also available as ArXiv article 0710.4536 \url{https://arxiv.org/abs/0710.4536} Gramacy, R. B. and Lee, K.H. (2008). \emph{Gaussian Processes and Limiting Linear Models.} Computational Statistics and Data Analysis, 53, pp. 123-136. Also available as ArXiv article 0804.4685 \url{https://arxiv.org/abs/0804.4685} Gramacy, R. B., Lee, H. K. H. (2009). \emph{Adaptive design and analysis of supercomputer experiments.} Technometrics, 51(2), pp. 130-145. Also avaliable on ArXiv article 0805.4359 \url{https://arxiv.org/abs/0805.4359} Robert B. Gramacy, Heng Lian (2011). \emph{Gaussian process single-index models as emulators for computer experiments}. Available as ArXiv article 1009.4241 \url{https://arxiv.org/abs/1009.4241} Chipman, H., George, E., & McCulloch, R. (1998). \emph{Bayesian CART model search (with discussion).} Journal of the American Statistical Association, \bold{93}, 935--960. Chipman, H., George, E., & McCulloch, R. (2002). \emph{Bayesian treed models.} Machine Learning, \bold{48}, 303--324. M. Schonlau and Jones, D.R. and Welch, W.J. (1998). \emph{Global versus local search in constrained optimization of computer models.} In "New Developments and applications in experimental design", IMS Lecture Notes - Monograph Series 34. 11--25. \url{https://bobby.gramacy.com/r_packages/tgp/} } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \note{ Inputs \code{X, XX, Z} containing \code{NaN, NA}, or \code{Inf} are discarded with non-fatal warnings Upon execution, MCMC reports are made every 1,000 rounds to indicate progress Stationary (non-treed) processes on larger inputs (e.g., \code{X,Z}) of size greater than 500, *might* be slow in execution, especially on older machines. Once the C code starts executing, it can be interrupted in the usual way: either via Ctrl-C (Unix-alikes) or pressing the Stop button in the \R-GUI. When this happens, interrupt messages will indicate which required cleanup measures completed before returning control to \R. Whereas most of the \pkg{tgp} models will work reasonably well with little or no change to the default prior specification, GP's with the \code{"mrexpsep"} correlation imply a very specific relationship between fine and coarse data, and a careful prior specification is usually required. The ranks provided in the second column of the \code{improv} field of a \code{tgp} object are based on the expectation of a multivariate improvement that may or may not be raised to a positive integer power. They can thus differ significantly from a simple ranking of the first column of expected univariate improvement values. Regarding \code{trace=TRUE}: Samples from the posterior will be collected for all parameters in the model. GP parameters are collected with reference to the locations in \code{XX}, resulting \code{nn=nrow{XX}} traces of \code{d,g,s2,tau2}, etc. Therefore, it is recommended that \code{nn} is chosen to be a small, representative, set of input locations. Besides GP parameters, traces are saved for the tree partitions, areas under the LLM, log posterior (as a function of tree height), and samples from the posterior predictive distributions. Note that since some traces are stored in files, multiple \code{tgp}/\R sessions in the same working directory can clobber the trace files of other sessions } \seealso{ \code{\link{plot.tgp}}, \code{\link{tgp.trees}}, \code{\link{predict.tgp}}, \code{\link{sens}}, \code{\link{default.itemps}}} \examples{ \donttest{ ## ## Many of the examples below illustrate the above ## function(s) on random data. Thus it can be fun ## (and informative) to run them several times. ## # # simple linear response # # input and predictive data X <- seq(0,1,length=50) XX <- seq(0,1,length=99) Z <- 1 + 2*X + rnorm(length(X),sd=0.25) out <- blm(X=X, Z=Z, XX=XX) # try Linear Model plot(out) # plot the surface # # 1-d Example # # construct some 1-d nonstationary data X <- seq(0,20,length=100) XX <- seq(0,20,length=99) Z <- (sin(pi*X/5) + 0.2*cos(4*pi*X/5)) * (X <= 9.6) lin <- X>9.6; Z[lin] <- -1 + X[lin]/10 Z <- Z + rnorm(length(Z), sd=0.1) out <- btlm(X=X, Z=Z, XX=XX) # try Linear CART plot(out) # plot the surface tgp.trees(out) # plot the MAP trees out <- btgp(X=X, Z=Z, XX=XX) # use a treed GP plot(out) # plot the surface tgp.trees(out) # plot the MAP trees # # 2-d example # (using the isotropic correlation function) # # construct some 2-d nonstationary data exp2d.data <- exp2d.rand() X <- exp2d.data$X; Z <- exp2d.data$Z XX <- exp2d.data$XX # try a GP out <- bgp(X=X, Z=Z, XX=XX, corr="exp") plot(out) # plot the surface # try a treed GP LLM out <- btgpllm(X=X, Z=Z, XX=XX, corr="exp") plot(out) # plot the surface tgp.trees(out) # plot the MAP trees # # Motorcycle Accident Data # # get the data require(MASS) # try a GP out <- bgp(X=mcycle[,1], Z=mcycle[,2]) plot(out) # plot the surface # try a treed GP LLM # best to use the "b0" beta linear prior to capture common # common linear process throughout all regions (using the # ellipses "...") out <- btgpllm(X=mcycle[,1], Z=mcycle[,2], bprior="b0") plot(out) # plot the surface tgp.trees(out) # plot the MAP trees } } \keyword{ nonparametric } \keyword{ nonlinear } \keyword{ smooth } \keyword{ models } \keyword{ regression } \keyword{ spatial } \keyword{ tree } \keyword{ optimize } tgp/man/tgp.design.Rd0000644000176200001440000001175514277221654014173 0ustar liggesusers\name{tgp.design} \alias{tgp.design} \title{ Sequential Treed D-Optimal Design for Treed Gaussian Process Models } \description{ Based on the maximum a' posteriori (MAP) treed partition extracted from a \code{"tgp"}-class object, calculate independent sequential treed D-Optimal designs in each of the regions. } \usage{ tgp.design(howmany, Xcand, out, iter = 5000, verb = 0) } \arguments{ \item{howmany}{Number of new points in the design. Must be less than the number of candidates contained in \code{Xcand}, i.e., \code{howmany <= nrow(Xcand)}} \item{Xcand}{ \code{data.frame}, \code{matrix} or vector of candidates from which new design points are subsampled. Must have \code{nrow(Xcand) == nrow(out$X)} } \item{out}{ \code{"tgp"}-class object output from one of the model functions which has tree support, e.g., \code{\link{btgpllm}}, \code{\link{btgp}}, \code{\link{btlm}}} \item{iter}{number of iterations of stochastic accent algorithm, default \code{5000}} \item{verb}{positive integer indicating after how many rounds of stochastic approximation in \code{\link{dopt.gp}} to print each progress statement; default \code{verb=0} results in no printing} } \details{ This function partitions \code{Xcand} and \code{out$X} based on the MAP tree (obtained on \code{"tgp"}-class \code{out} with \code{\link{partition}}) and calls \code{\link{dopt.gp}} in order to obtain a D-optimal design under independent stationary Gaussian processes models defined in each region. The aim is to obtain a design where new points from \code{Xcand} are spaced out relative to themselves, and relative to the existing locations (\code{out$X}) in the region. The number of new points from each region of the partition is proportional to the number of candidates \code{Xcand} in the region. } \value{ Output is a list of \code{data.frame}s containing \code{XX} design points for each region of the MAP tree in \code{out} } \references{ Gramacy, R. B. (2020) \emph{Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences}. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 9.) \url{https://bobby.gramacy.com/surrogates/} Gramacy, R. B. (2007). \emph{\pkg{tgp}: An \R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models.} Journal of Statistical Software, \bold{19}(9). \url{https://www.jstatsoft.org/v19/i09} \doi{10.18637/jss.v019.i09} Robert B. Gramacy, Matthew Taddy (2010). \emph{Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with \pkg{tgp} Version 2, an \R Package for Treed Gaussian Process Models.} Journal of Statistical Software, \bold{33}(6), 1--48. \url{https://www.jstatsoft.org/v33/i06/} \doi{10.18637/jss.v033.i06} Gramacy, R. B., Lee, H. K. H. (2006). \emph{Adaptive design and analysis of supercomputer experiments.} Technometrics, 51(2), pp. 130-145. Also avaliable on ArXiv article 0805.4359 \url{https://arxiv.org/abs/0805.4359} Gramacy, R. B., Lee, H. K. H., & Macready, W. (2004). \emph{Parameter space exploration with Gaussian process trees.} ICML (pp. 353--360). Omnipress & ACM Digital Library. \url{https://bobby.gramacy.com/r_packages/tgp/} } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \note{ Input \code{Xcand} containing \code{NaN, NA, Inf} are discarded with non-fatal warnings D-Optimal computation in each region is preceded by a print statement indicated the number of new locations to be chosen and the number of candidates in the region. Other than that, there are no other indicators of progress. You will have to be patient. Creating treed sequential D-optimal designs is no speedy task. At least it faster than the non-treed version (see \code{\link{dopt.gp}}). The example below is also part of \code{vignette("tgp")}. Please see \code{vignette("tgp2")} for a similar example based on optimization using the \code{\link{optim.step.tgp}} } \seealso{ \code{\link{bgpllm}}, \code{\link{btlm}}, \code{\link{blm}}, \code{\link{bgp}}, \code{\link{btgpllm}}, \code{\link{plot.tgp}}, \code{\link{dopt.gp}}, \code{\link{lhs}}, \code{\link{partition}}, \code{\link{optim.step.tgp}}} \examples{ \donttest{ # # 2-d Exponential data # (This example is based on random data. # It might be fun to run it a few times) # # get the data exp2d.data <- exp2d.rand() X <- exp2d.data$X; Z <- exp2d.data$Z Xcand <- exp2d.data$XX # fit treed GP LLM model to data w/o prediction # basically just to get MAP tree (and plot it) out <- btgpllm(X=X, Z=Z, pred.n=FALSE, corr="exp") tgp.trees(out) # find a treed sequential D-Optimal design # with 10 more points. It is interesting to # contrast this design with one obtained via # the dopt.gp function XX <- tgp.design(10, Xcand, out) # now fit the model again in order to assess # the predictive surface at those new design points dout <- btgpllm(X=X, Z=Z, XX=XX, corr="exp") plot(dout) } } \keyword{ design } \keyword{ optimize } \keyword{ spatial } \keyword{ tree } tgp/man/predict.tgp.Rd0000644000176200001440000002074413724021575014346 0ustar liggesusers\name{predict.tgp} \alias{predict.tgp} \title{ Predict method for Treed Gaussian process models } \description{ This generic prediction method was designed to obtain samples from the posterior predictive distribution after the \code{b*} functions have finished. Samples, or kriging mean and variance estimates, can be obtained from the MAP model encoded in the \code{"tgp"}-class object, or this parameterization can be used as a jumping-off point in obtaining further samples from the joint posterior and posterior predictive distributions } \usage{ \method{predict}{tgp}(object, XX = NULL, BTE = c(0, 1, 1), R = 1, MAP = TRUE, pred.n = TRUE, krige = TRUE, zcov = FALSE, Ds2x = FALSE, improv = FALSE, sens.p = NULL, trace = FALSE, verb = 0, ...) } \arguments{ \item{object}{ \code{"tgp"}-class object that is the output of one of the \code{b*} functions: \code{\link{blm}}, \code{\link{btlm}} \code{\link{bgp}}, \code{\link{bgpllm}}, \code{\link{btgp}}, or \code{\link{btgpllm}}} \item{XX}{ Optional \code{data.frame}, \code{matrix}, or vector of predictive input locations with \code{ncol(XX) == ncol(object$X)}} \item{BTE}{ 3-vector of Monte-carlo parameters (B)urn in, (T)otal, and (E)very. Predictive samples are saved every E MCMC rounds starting at round B, stopping at T. The default \code{BTE=c(0,1,1)} is specified to give the kriging means and variances as outputs, plus one sample from the posterior predictive distribution} \item{R}{ Number of repeats or restarts of \code{BTE} MCMC rounds, default \code{R=1} is no restarts} \item{MAP}{ When \code{TRUE} (default) predictive data (i.e., kriging mean and variance estimates, and samples from the posterior predictive distribution) are obtained for the \emph{fixed} MAP model encoded in \code{object}. Otherwise, when \code{MAP=FALSE} sampling from the joint posterior of the model parameters (i.e., tree and GPs) and the posterior predictive distribution are obtained starting from the MAP model and proceeding just as the \code{b*} functions} \item{pred.n}{\code{TRUE} (default) value results in prediction at the inputs \code{X}; \code{FALSE} skips prediction at \code{X} resulting in a faster implementation} \item{krige}{\code{TRUE} (default) value results in collection of kriging means and variances at predictive (and/or data) locations; \code{FALSE} skips the gathering of kriging statistics giving a savings in storage} \item{zcov}{If \code{TRUE} then the predictive covariance matrix is calculated-- can be computationally (and memory) intensive if \code{X} or \code{XX} is large. Otherwise only the variances (diagonal of covariance matrices) are calculated (default). See outputs \code{Zp.s2}, \code{ZZ.s2}, etc., below} \item{Ds2x}{\code{TRUE} results in ALC (Active Learning--Cohn) computation of expected reduction in uncertainty calculations at the \code{X} locations, which can be used for adaptive sampling; \code{FALSE} (default) skips this computation, resulting in a faster implementation} \item{improv}{\code{TRUE} results in samples from the improvement at locations \code{XX} with respect to the observed data minimum. These samples are used to calculate the expected improvement over \code{XX}, as well as to rank all of the points in \code{XX} in the order that they should be sampled to minimize the expected multivariate improvement (refer to Schonlau et al, 1998). Alternatively, \code{improv} can be set to any positive integer 'g', in which case the ranking is performed with respect to the expectation for improvement raised to the power 'g'. Increasing 'g' leads to rankings that are more oriented towards a global optimization. The option \code{FALSE} (default) skips these computations, resulting in a faster implementation. Optionally, a two-vector can be supplied where \code{improv[2]} is interpreted as the (maximum) number of points to rank by improvement. See the note in \code{\link{btgp}} documentation. If not specified, then the larger of 10\% of \code{nn = nrow(XX)} and \code{min(10, nn)} is taken by default } \item{sens.p}{ Either \code{NULL} or a vector of parameters for sensitivity analysis, built by the function \code{\link{sens}}. Refer there for details} \item{trace}{ \code{TRUE} results in a saving of samples from the posterior distribution for most of the parameters in the model. The default is \code{FALSE} for speed/storage reasons. See note below } \item{verb}{ Level of verbosity of R-console print statements: from 0 (default: none); 1 which shows the \dQuote{progress meter}; 2 includes an echo of initialization parameters; up to 3 and 4 (max) with more info about successful tree operations} \item{...}{ Ellipses are not used in the current version of \code{predict.tgp}. They are are only included in order to maintain S3 generic/method consistency } } \details{ While this function was designed with prediction in mind, it is actually far more general. It allows a continuation of MCMC sampling where the \code{b*} function left off (when \code{MAP=FALSE}) with a possibly new set of predictive locations \code{XX}. The intended use of this function is to obtain quick kriging-style predictions for a previously-fit MAP estimate (contained in a \code{"tgp"}-class object) on a new set of predictive locations \code{XX}. However, it can also be used simply to extend the search for an MAP model when \code{MAP=FALSE}, \code{pred.n=FALSE}, and \code{XX=NULL} } \note{ It is important to note that this function is not a replacement for supplying \code{XX} to the \code{b*} functions, which is the only way to get fully Bayesian samples from the posterior prediction at new inputs. It is only intended as a post-analysis (diagnostic) tool. Inputs \code{XX} containing \code{NaN, NA}, or \code{Inf} are discarded with non-fatal warnings. Upon execution, MCMC reports are made every 1,000 rounds to indicate progress. If \code{XX}s are provided which fall outside the range of \code{X} inputs provided to the original \code{b*} function, then those will not be extrapolated properly, due to the way that bounding rectangles are defined in the original run. For a workaround, supply \code{out$Xsplit <- rbind(X, XX)} before running \code{predict} on \code{out}. See note for \code{\link{btgp}} or another \code{b*} function regarding the handling and appropriate specification of \code{traces}. The \code{"tgp"} class output produced by \code{predict.tgp} can also be used as input to \code{predict.tgp}, as well as others (e.g., \code{\link{plot.tgp}}. } \value{ The output is the same, or a subset of, the output produced by the \code{b*} functions, for example see \code{\link{btgp}} } \references{ \url{https://bobby.gramacy.com/r_packages/tgp/} } \author{ Robert B. Gramacy, \email{rbg@vt.edu}, and Matt Taddy, \email{mataddy@amazon.com} } \seealso{ \code{\link{predict}}, \code{\link{blm}}, \code{\link{btlm}}, \code{\link{bgp}}, \code{\link{btgp}}, \code{\link{bgpllm}}, \code{\link{btgpllm}}, \code{\link{plot.tgp}} } \examples{ \donttest{ ## revisit the Motorcycle data require(MASS) ## fit a btgpllm without predictive sampling (for speed) out <- btgpllm(X=mcycle[,1], Z=mcycle[,2], bprior="b0", pred.n=FALSE) ## nothing to plot here because there is no predictive data ## save the "tgp" class output object for use later and save(out, file="out.Rsave") ## then remove it (for illustrative purposes) out <- NULL ## (now imagine emailing the out.Rsave file to a friend who ## then performs the following in order to use your fitted ## tgp model on his/her own predictive locations) ## load in the "tgp" class object we just saved load("out.Rsave") ## new predictive locations XX <- seq(2.4, 56.7, length=200) ## now obtain kriging estimates from the MAP model out.kp <- predict(out, XX=XX, pred.n=FALSE) plot(out.kp, center="km", as="ks2") ## actually obtain predictive samples from the MAP out.p <- predict(out, XX=XX, pred.n=FALSE, BTE=c(0,1000,1)) plot(out.p) ## use the MAP as a jumping-off point for more sampling out2 <- predict(out, XX, pred.n=FALSE, BTE=c(0,2000,2), MAP=FALSE, verb=1) plot(out2) ## (generally you would not want to remove the file) unlink("out.Rsave") } } \keyword{ nonparametric } \keyword{ nonlinear } \keyword{ smooth } \keyword{ models } \keyword{ spatial } \keyword{ tree } tgp/DESCRIPTION0000644000176200001440000000313314665616552012572 0ustar liggesusersPackage: tgp Title: Bayesian Treed Gaussian Process Models Version: 2.4-23 Date: 2024-08-22 Authors@R: c(person(given = c("Robert", "B."), family = "Gramacy", role = c("aut", "cre"), email = "rbg@vt.edu"), person(given = c("Matt", "A."), family = "Taddy", role = "aut")) Depends: R (>= 2.14.0) Imports: maptree Suggests: MASS Description: Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes (GPs) with jumps to the limiting linear model (LLM). Special cases also implemented include Bayesian linear models, CART, treed linear models, stationary separable and isotropic GPs, and GP single-index models. Provides 1-d and 2-d plotting functions (with projection and slice capabilities) and tree drawing, designed for visualization of tgp-class output. Sensitivity analysis and multi-resolution models are supported. Sequential experimental design and adaptive sampling functions are also provided, including ALM, ALC, and expected improvement. The latter supports derivative-free optimization of noisy black-box functions. For details and tutorials, see Gramacy (2007) and Gramacy & Taddy (2010) . Maintainer: Robert B. Gramacy License: LGPL URL: https://bobby.gramacy.com/r_packages/tgp/ NeedsCompilation: yes Packaged: 2024-08-22 18:33:39 UTC; bobby Author: Robert B. Gramacy [aut, cre], Matt A. Taddy [aut] Repository: CRAN Date/Publication: 2024-09-03 14:30:02 UTC