timeSeries/0000755000176000001440000000000012633467257012432 5ustar ripleyuserstimeSeries/inst/0000755000176000001440000000000012620124746013374 5ustar ripleyuserstimeSeries/inst/COPYING0000644000176000001440000004310712620124746014434 0ustar ripleyusers GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License.timeSeries/inst/extensionsTests/0000755000176000001440000000000012620124746016616 5ustar ripleyuserstimeSeries/inst/extensionsTests/attributesExtension.R0000644000176000001440000002312012620124746023022 0ustar ripleyusers # Enhancing the Documentation Slot # Series: # @.Data # @ positions # @ format # @ FinCenter # @ units # @ recordIDs # @ title # @ documentation # attributes(@documentation, "Attributes") # inspect the Information use # slotNames(object) # slot(object, name) # Load Library: require(timeSeries) ############################################################################### # Data obj1 <- timeSeries(rnorm(12), timeCalendar()) getAttributes(obj1) setAttributes(obj1) <- list(series=series(obj1)[1:6, , drop=FALSE]) getAttributes(obj1) obj2 <- timeSeries(rnorm(12), timeCalendar()) getAttributes(obj2) setAttributes(obj2) <- list(series=as.matrix(obj2)[7:12, , drop=FALSE]) getAttributes(obj2) ############################################################################### # Base Functions: # base-apply.R getAttributes( apply(obj1, 1, mean) ) # ok # base-applySeries.R # should be deprecated, use generic apply() and aggregate() functions # base-cbind.R cbind(obj1, obj2) getAttributes( cbind(obj1, obj2) ) # ok getAttributes( rbind(obj1, obj2) ) # ok # ... more base-cbind.R # cbind ... getAttributes(cbind(obj1, obj2)) # ok getAttributes(cbind(obj1, as.matrix(obj2))) # ok getAttributes(cbind(as.matrix(obj1), obj2)) # ok getAttributes(cbind(obj1)) # ok # rbind ... getAttributes(rbind(obj1, obj2)) # ok getAttributes(rbind(obj1, as.matrix(obj2))) # ok getAttributes(rbind(as.matrix(obj1), obj2)) # ok getAttributes(rbind(obj1)) # ok # base-diff.R getAttributes( diff(obj1) ) # ok # base-merge.R getAttributes( merge(obj1, obj2) ) # ok # base-rank.R getAttributes( rank(obj1) ) # ok # base-rev.R getAttributes( rev(obj1) ) # ok # base-sample.R getAttributes( sample(obj1) ) # ok # base-scale.R getAttributes( scale(obj1) ) # ok # base-sort.R getAttributes( sort(obj1) ) # ok ################################################################################ # Subsetting: # base-subsetting.R # .subset_timeSeries # .findIndex # $,timeSeries Subsets a time series by column names # $<-,timeSeries Replaces subset by column names # [,timeSeries Subsets a time series object # [<-,timeSeries Assigns value to subsets of a time series # Should work by dafault ... getAttributes( obj1[3:4, 1] ) # ok getAttributes( head(obj1) ) # ok getAttributes( tail(obj1) ) # ok ################################################################################ # Methods: # methods-mathOps.R # here the multiplications "*", works also with "+", "=", "/". ... getAttributes( obj1 * 2) # ok getAttributes( obj1 * (1:12) ) # ok getAttributes( obj1 * matrix(1:12, ncol=1) ) # ok getAttributes( obj1 * as.ts(1:12) ) # ok getAttributes( obj1 * obj2 ) # ok ??? getAttributes( 2 * obj2 ) # ok getAttributes( (1:12) * obj2 ) # ok getAttributes( matrix(1:12, ncol=1) * obj2) # ok getAttributes( as.ts(1:12) * obj2) # ok getAttributes( obj2 * obj1) # ok ??? # More Math Functions getAttributes( abs(obj1) ) # ok getAttributes( exp(obj1) ) # ok getAttributes( obj1^2 ) # ok # ... # Round and Truncate: getAttributes( round(obj1, digits=2) ) # ok getAttributes( trunc(obj1, digits=2) ) # ok getAttributes( signif(obj1, digits=3) ) # ok getAttributes( ceiling(100*obj1) ) # ok getAttributes( floor(100*obj1) ) # ok ################################################################################ # Financial 'timeSeries' Functions # fin-align.R getAttributes( align(obj1) ) # ok # fin-cumulated.R getAttributes( cumulated(obj1) ) # ok # fin-daily.R # align(obj1) and alignDailySeries(obj1) are the same # deprecate align Daily Series getAttributes( alignDailySeries(obj1) ) # ok # Can we use the generic function aggregate ? getAttributes( rollDailySeries(obj1, FUN=mean) ) # ok # fin-drawdowns.R getAttributes( drawdowns(obj1) ) # ok # fin-durations.R getAttributes( durations(obj1) ) # ok # fin-monthly.R getAttributes( rollMonthlySeries(obj1, "3m", FUN=mean) ) # ok getAttributes( countMonthlyRecords(obj1) ) # ok # fin-periodical.R # todo .endOfPeriodSeries .endOfPeriodStats .endOfPeriodBenchmarks # fin-returns.R OBJ1 <- cumulated(obj1) getAttributes( returns(OBJ1) ) # ok # fin-runlengths.R getAttributes( runlengths(obj1) ) # ok # fin-splits.R getAttributes( outlier(obj1) ) # ok # fin-spreads.R SPREADS <- spreads(obj3, which=c(1, 2)) getAttributes( SPREADS) # ok fails MIDQUOTES <- midquotes(obj3, which=c(1,2)) getAttributes( MIDQUOTES ) # ok fails # fin-turns.R INDEX <- cumulated(obj1) getAttributes( turns(INDEX) ) # ok ################################################################################ # Statistics timeSeries Functions # statistics-colCumsums.R getAttributes( colCumsums(obj1) ) # ok # statistics-colSums.R # returns no timeSeries objects # statistics-orderColnames.R # returns no timeSeries objects # statistics-orderStatistics.R # returns no timeSeries objects # statistics-rollMean.R getAttributes( rollStats(obj1, k=1, FUN=mean) ) # ok getAttributes( rollMean(obj1, k=1) ) # ok getAttributes( rollMin(obj1, k=1) ) # FAILS getAttributes( rollMax(obj1, k=1) ) # FAILS getAttributes( rollMedian(obj1, k=1) ) # ok # statistics-rowCumsums.R # statistics-smoothLowess.R getAttributes( smoothLowess(obj1) ) # ok getAttributes( smoothSupsmu(obj1) ) # ok getAttributes( smoothSpline(obj1) ) # ok ################################################################################ # stats # stats-aggregate.R by1 <- time(obj1[3*(1:4),]) getAttributes( aggregate(obj1, by=by1, FUN=mean) ) # ok # stats-filter.R getAttributes( filter(obj1, filter=c(1,1)) ) # ok # stats-lag.R getAttributes( lag(obj1) ) # ok # stats-na.contiguous.R # returns no timeSeries objects # stats-na.omit.R obj3 <- obj1; obj3[4, 1] <- NA; obj3 getAttributes( na.omit(obj3) ) # ok # What about? - They should be deprecated. # removeNA # substituteNA # interp NA # stats-window.R Time <- time(obj1) getAttributes( window(obj1, Time[3], Time[6]) ) # ok ################################################################################ # Attributes Functions getAttributes <- function (obj) { # FUNCTION: # Check Argument: stopifnot(class(obj) == "timeSeries") # Extract Attributes: ans <- attr(obj@documentation, "Attributes") # return Value: ans } # ----------------------------------------------------------------------------- `setAttributes<-` <- function(obj, value) { # Example: # obj <- dummySeries(); getAttributes(obj) # setAttributes(obj) <- list(mat=matrix(1:4, ncol=2)); getAttributes(obj) # getAttributes(obj)$mat[[1]] # FUNCTION: # Check Arguments: stopifnot(class(obj) == "timeSeries") stopifnot(is.list(value)) stopifnot(length(value) == 1) stopifnot(!is.null(value)) # Compose New Attribute: name <- names(value) names(value) <- NULL A <- list(value) names(A) <- name # print(A) # Get Already Existing Attribute B <- getAttributes(obj) if(is.null(B)) B <- list() # print(B) # Join Attributes: JOINED <- sapply(unique(c(names(A), names(B))), function(x) list(c(A[[x]], B[[x]]))) # print(JOINED) # Assign Attribute: attr(obj@documentation, "Attributes") <- JOINED # Return Value: obj } ############################################################################### timeSeries/inst/extensionsTests/endpointsWrappers.R0000644000176000001440000001457112620124746022500 0ustar ripleyusers require(timeSeries) ############################################################################### # FUNCTION: # timeNdayInWeek # timeLastBizdayInWeek # FUNCTION: # timeLastDayInMonth # timeLastNdayInMonth # timeLastBizdayInMonth # timeNthNdayInMonth # FUNCTION: # timeLastDayInQuarter # timeLastNdayInQuarter # timeLastBizdayInQuarter # timeNthNdayInQuarter ############################################################################### ############################################################################### # endpoints # extract index values of a given time Series object corresponding to # the last calendarical observation in the specified period require(timeSeries) # Daily and Monthly Series in 2011: tD <- timeCurrentYear(2011) tM <- timeCalendar(2011) ############################################################################### # Weekly Endpoints # ----------------------------------------------------------------------------- # On Given nDay of Week: timeNdayInWeek <- function(x, nday=5) { X <- align(x) DOW <- c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat") X[dayOfWeek(X) == DOW[nday+1], ] } LastDayInWeek <- timeNdayInWeek(tD) LastDayInWeek dayOfWeek(LastDayInWeek) # ----------------------------------------------------------------------------- # Last Bizday In Week: timeLastBizdayInWeek <- function(x, holidays=holidayNYSE) { # Extend time Sequence: x <- timeSequence( from = timeDate(x[1]), to = timeDate(x[length(x)]), by = "day") # Bizdays Function: FUN <- function(x, holidays = holidays) { holidays <- holidayNYSE() posix <- as.POSIXct(x, zone = "", origin = "1970-01-01") check <- isBizday(as.timeDate(posix), holidays = holidays, wday = 1:5) ans <- rev(x[check])[1] ans } # Create Periods from: by <- timeDayInWeek(x, nday=5) bySec <- as.numeric(by, "sec") xSec <- as.numeric(x, "sec") # Compute Index: INDEX <- findInterval(xSec, bySec + 1) INDEX <- INDEX + 1 is.na(INDEX) <- !(INDEX <= length(by)) dates <- matrix(apply(matrix(xSec, ncol=1), 2, tapply, INDEX, FUN), ncol=1) dates <- as.timeDate(as.POSIXct(dates, zone="GMT", origin="1970-01-01")) # Return Value: dates } LastNYBizdayInWeek <- timeLastBizdayInWeek(tD, holidays=holidayNYSE) LastNYBizdayInWeek dayOfWeek(LastNYBizdayInWeek) # Can we attribute the day of week? ans <- timeSeries( data = rnorm(length(LastBizdayInWeek)), charvec = timeLastBizdayInWeek(tD), recordIDs = data.frame(DOW=dayOfWeek(LastBizdayInWeek))) ############################################################################### # Monthly Endpoints # ----------------------------------------------------------------------------- # Last Calendar Day in Month: LastDayInMonth <- timeLastDayInMonth(tX, unique=TRUE) LastDayInMonth dayOfWeek(LastDayInMonth) # ----------------------------------------------------------------------------- # Last Friday in Month: LastFridayInMonth <- timeLastNdayInMonth(tX, nday=5, unique=TRUE) LastFridayInMonth dayOfWeek(LastFridayInMonth) # ----------------------------------------------------------------------------- # Last New-York Bizday in Month holidayNYSE(2011) LastNYBizdayInMonth <- timeLastBizdayInMonth(tD, holidays=holidayNYSE(), unique=TRUE) LastNYBizdayInMonth dayOfWeek(LastNYBizdayInMonth) # ----------------------------------------------------------------------------- # 2nd Tuesday in Month: SecondTuesdayInMonth <- timeNthNdayInMonth(tX, nth=2, nday=2, unique=TRUE) SecondTuesdayInMonth dayOfWeek(SecondTuesdayInMonth) ############################################################################### # Quarterly Endpoints # ----------------------------------------------------------------------------- # Last Day in Quarter: timeLastDayInQuarter <- function(charvec, format="%Y-%m-%d", zone="", FinCenter="", unique = FALSE) { # Description: # Returns Last Nday in Quarter ans <- timeLastDayInMonth(charvec, format, zone = "", FinCenter, unique) INDEX <- which ( atoms(ans)[, 2] %in% c(3, 6, 9, 12) ) ans[INDEX] } LastDayInQuarter <- timeLastDayInQuarter(tD, unique=TRUE) LastDayInQuarter dayOfWeek(LastDayInQuarter) # ----------------------------------------------------------------------------- # Last Friday in Quarter: timeLastNdayInQuarter <- function(charvec, nday = 1, format = "%Y-%m-%d", zone = "", FinCenter = "", unique = FALSE) { # Description: # Returns Last Nday first/mid/last inMonths of Quarters ans <- timeLastNdayInMonth(charvec, nday, format, zone, FinCenter,unique) INDEX <- which ( atoms(ans)[, 2] %in% c(3, 6, 9, 12) ) ans[INDEX] } LastFridayInQuarter <- timeLastNdayInQuarter(tD, nday=5, unique=TRUE) LastFridayInQuarter dayOfWeek(LastFridayInQuarter) # ----------------------------------------------------------------------------- # Last Bizday in Quarter: timeLastBizdayInQuarter <- function(charvec, holidays = holidayNYSE(), format = "%Y-%m-%d", zone = "", FinCenter = "", unique = FALSE) { ans <- timeLastBizdayInMonth(charvec, holidays, format, zone, FinCenter, unique) INDEX <- which ( atoms(ans)[, 2] %in% c(3, 6, 9, 12) ) ans[INDEX] } LastNYBizdayInQuarter <- timeLastBizdayInQuarter(tD, holidayNYSE(), unique=TRUE) LastNYBizdayInQuarter dayOfWeek(LastNYBizdayInQuarter) # ----------------------------------------------------------------------------- # nth-of Mar/Jun/Sep/Dec Nday in Quarter: timeNthNdayInQuarter <- function(charvec, nday = 1, nth = 1, inMonths = c(3, 6, 9, 12), format = "%Y-%m-%d", zone = "", FinCenter = "", unique = FALSE) { ans <- timeNthNdayInMonth(charvec, nday, nth, format, zone, FinCenter, unique) INDEX <- which ( atoms(ans)[, 2] %in% inMonths) ans[INDEX] } # 2nd Tuesday in (last) Months 3/6/9/12: SecondTuesdayInLastQuarterMonth <- timeNthNdayInQuarter(tD, nth=2, nday=2, unique=TRUE) SecondTuesdayInLastQuarterMonth dayOfWeek(SecondTuesdayInLastQuarterMonth) # 2nd Tuesday in (first) Months 1/4/7/10: SecondTuesdayInFirstQuarterMonth <- timeNthNdayInQuarter(tD, nth=2, nday=2, inMonths=c(1, 3, 7, 10), unique=TRUE) SecondTuesdayInFirstQuarterMonth dayOfWeek(SecondTuesdayInFirstQuarterMonth) # IMM Dates: # The dates are the third Wednesday of March, June, September and December datesIMM <- timeNthNdayInQuarter(tD, nth=3, nday=3, inMonths=c(3, 6, 9, 12), unique=TRUE) datesIMM dayOfWeek(datesIMM) ############################################################################### timeSeries/inst/extensionsTests/chicPlots.R0000644000176000001440000002521312620124746020674 0ustar ripleyusers x = tS1 FinCenter = NULL type = NULL plot.type = c("multiple", "single") format = "auto" at = c("pretty", "chic") main <- xlab <- ylab <- ""; nm = colnames(x); log = "" col = 1; pch = 19; cex = 1; lty = 1; lwd = 1 grid = TRUE; frame.plot = TRUE xlim = NULL; ylim = NULL axes = TRUE; ann = TRUE; cex.axis = 1, cex.lab =1, yax.flip = FALSE mar.multi = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1) oma.multi = c(7.75, 1.1, 6.1, 1.1) # Plot Function Extensions written by Diethel Wuertz # ... first Version 2014-05-12 ############################################################################### # 1 Standard Plots # 1.1 Single Plots # 1.2 Multiple Plots # 1.2 Scatter Plots # 2 Time Axis Layout # 2.1 Pretty Axis Layout # 2.2 Chic Axis Layout # 2.3 Tailored Axis Layout # 3 Annotations # 3.1 Adding Title and Labels # 3.2 Removing Annotations # 3.3 Changing Font Size # 3.4 Flipping Value Axes # 4 Decorations # 4.1 Modifying Types # 4.2 Changing Colors # 4.3 Changing Line Styles # 4.4 Changing Plot Symbols # 4.5 Modifying Line Widths # 4.6 Modifying Plot Symbol Sizes ############################################################################### # First let us see what plot.ts can do in the multiple plot mode: require(timeSeries) tS1 <- 100 * cumulated(LPP2005REC[, 2]) tS2 <- 100 * cumulated(LPP2005REC[, 2:3]) tS3 <- 100 * cumulated(LPP2005REC[, 1:3]) tS6 <- 100 * cumulated(LPP2005REC[, 1:6]) tS7 <- 100 * cumulated(LPP2005REC[, 1:7]) # ----------------------------------------------------------------------------- # 1.3 Scatter Plots: mat <- getDataPart(tS2) par(mfrow=c(2,2)) plot(mat[, 1], mat[, 2]) plot(mat[, 1], mat[, 2], pch=19, cex=0.2) ################################################################################ # 2. Time Axis Layout: # Changing Time-Axis Size: # One Column Multiple Plots - Each curve in its own Graph: par(mfrow=c(1, 1)) plot(tS3, at="chic", plot.type="m", cex.axis=0.8) par(mfrow=c(1, 1)) plot(tS3, at="chic", plot.type="m", cex.axis=1.1) # Two Columns Multiple Plots - Each curve in its own Graph: par(mfrow=c(1, 1)) plot(tS6, at="chic", plot.type="m", cex.axis=0.8) par(mfrow=c(1, 1)) plot(tS6, at="chic", plot.type="m", cex.axis=1.1) ################################################################################ # 3 Annotations # ------------------------------------------------------------------------------ # 3.1 Adding Title and Labels # Single Plot - All Curves in one Graph: par(mfrow=c(2, 2)) plot(tS1); title(main = "Index") plot(tS3, plot.type="s"); title(main = "Index") plot(tS3, plot.type="s"); title(main = "Index", xlab = "Date") plot(tS6, plot.type="s"); title(main = "Index", xlab = "Date") # One Column Multiple Plots - Each curve in its own Graph: par(mfrow=c(1, 1)) plot(tS3, plot.type="m"); title(main = "Index", xlab = "Date") # Two Column Multiple Plots: par(mfrow=c(1, 1)) plot(tS6, plot.type="m"); title(main = "Index", xlab = "Date") # One Column Multiple Plots - User designed Title par(mfrow=c(1, 1)) plot(tS3, plot.type="m", at = "chic") mtext("Swiss Market", side=3, line=1, adj=-0.025) # Two Column Multiple Plots - User designed Title par(mfrow=c(1, 1)) plot(tS6, plot.type="m", at = "chic") mtext("Swiss Market", side=3, line=1, adj=-0.3) mtext("Foreign Market", side=3, line=1, adj=0.7) # ------------------------------------------------------------------------------ # 3.2 Remove all Annotations: # Two Column Multiple Plots - Each curve in its own Graph: par(mfrow=c(1, 1)) plot(tS6, plot.type="m", ann=FALSE) # Single Plot - All Curves in one Graph: par(mfrow=c(2, 1), mar = c(4, 4, 1, 2) + 0.1) plot(tS1, at="chic", ann=FALSE) title(ylab = colnames(tS1), cex.axis=0.8, cex.lab=0.8) plot(tS1, at="chic", ann=FALSE) title(ylab = colnames(tS1), cex.axis=1.2, cex.lab=1.2) ################################################################################ # 4 Decorations # ------------------------------------------------------------------------------ # 4.1 Modifying Types # "type" par(mfrow=c(1,1)) plot(tS3, type = c("l", "p", "h"), plot.type="m") # ------------------------------------------------------------------------------ # 4.2 Changing Colors # Selecting Colors: par(mfrow=c(2, 2)) plot(tS3, col = 1, plot.type="s") plot(tS3, col = 1:3, plot.type="s") plot(tS3, col = c("blue", "orange", "brown"), plot.type="s") # ------------------------------------------------------------------------------ # 4.3 Changing Line Styles # Single Plot: par(mfrow=c(1,1)) plot(tS3, lty = 3:1, plot.type="s") # One Column Multiple Plot: par(mfrow=c(1,1)) plot(tS3, lty = 3:1, plot.type="m") # ------------------------------------------------------------------------------ # 4.4 Changing Plot Symbols par(mfrow=c(1,1)) plot(tS3, pch = c(17, 18, 19), plot.type="m") # 4.5 Modifying Line Widths par(mfrow=c(1,1)) plot(tS3, lwd = c(17, 18, 19), plot.type="m") par(mfrow=c(2, 2)) plot(tS3, type=rep("p", 3), cex = rep(1.2, 3), plot.type="s") plot(tS3, type = rep("p", 3), pch = 1:3, col = c("blue", "orange", "brown"), plot.type="s") plot(tS3, type = "p", pch = 19, col = c("blue", "orange", "brown"), plot.type="s") # ----------------------------------------------------------------------------- chart.TimeSeries function (R, auto.grid = TRUE, xaxis = TRUE, yaxis = TRUE, yaxis.right = FALSE, type = "l", lty = 1, lwd = 2, main = NULL, ylab = NULL, xlab = "Date", date.format.in = "%Y-%m-%d", date.format = NULL, xlim = NULL, ylim = NULL, element.color = "darkgray", event.lines = NULL, event.labels = NULL, period.areas = NULL, event.color = "darkgray", period.color = "aliceblue", colorset = (1:12), pch = (1:12), legend.loc = NULL, ylog = FALSE, cex.axis = 0.8, cex.legend = 0.8, cex.lab = 1, cex.labels = 0.8, cex.main = 1, major.ticks = "auto", minor.ticks = TRUE, grid.color = "lightgray", grid.lty = "dotted", xaxis.labels = NULL, ...) { y = checkData(R) columns = ncol(y) rows = nrow(y) columnnames = colnames(y) if (is.null(date.format)) { freq = periodicity(y) yr_eq <- ifelse(format(index(first(y)), format = "%Y") == format(index(last(y)), format = "%Y"), TRUE, FALSE) switch(freq$scale, seconds = { date.format = "%H:%M" }, minute = { date.format = "%H:%M" }, hourly = { date.format = "%d %H" }, daily = { if (yr_eq) date.format = "%b %d" else date.format = "%Y-%m-%d" }, weekly = { if (yr_eq) date.format = "%b %d" else date.format = "%Y-%m-%d" }, monthly = { if (yr_eq) date.format = "%b" else date.format = "%b %y" }, quarterly = { if (yr_eq) date.format = "%b" else date.format = "%b %y" }, yearly = { date.format = "%Y" }) } rownames = as.Date(xts:::time.xts(y)) rownames = format(strptime(rownames, format = date.format.in), date.format) time.scale = periodicity(y)$scale ep = axTicksByTime(y, major.ticks, format.labels = date.format) logaxis = "" if (ylog) { logaxis = "y" } plot.new() if (is.null(xlim[1])) xlim = c(1, rows) if (is.null(ylim[1])) { ylim = as.numeric(range(y, na.rm = TRUE)) } plot.window(xlim, ylim, xaxs = "r", log = logaxis) if (is.null(ylab)) { if (ylog) ylab = "ln(Value)" else ylab = "Value" } if (ylog) dimensions = 10^par("usr") else dimensions = par("usr") if (!is.null(period.areas)) { period.dat = lapply(period.areas, function(x, y) c(first(index(y[x])), last(index(y[x]))), y = y) period.ind = NULL for (period in 1:length(period.dat)) { if (!is.na(period.dat[[period]][1])) { period.ind = list(grep(period.dat[[period]][1], index(y)), grep(period.dat[[period]][2], index(y))) rect(period.ind[1], dimensions[3], period.ind[2], dimensions[4], col = period.color, border = NA) } } } if (auto.grid) { abline(v = ep, col = grid.color, lty = grid.lty) grid(NA, NULL, col = grid.color) } abline(h = 0, col = element.color) if (!is.null(event.lines)) { event.ind = NULL for (event in 1:length(event.lines)) { event.ind = c(event.ind, grep(event.lines[event], rownames)) } number.event.labels = ((length(event.labels) - length(event.ind) + 1):length(event.labels)) abline(v = event.ind, col = event.color, lty = 2) if (!is.null(event.labels)) { text(x = event.ind, y = ylim[2], label = event.labels[number.event.labels], offset = 0.2, pos = 2, cex = cex.labels, srt = 90, col = event.color) } } if (length(lwd) < columns) lwd = rep(lwd, columns) if (length(lty) < columns) lty = rep(lty, columns) if (length(pch) < columns) pch = rep(pch, columns) for (column in columns:1) { lines(1:rows, y[, column], col = colorset[column], lwd = lwd[column], pch = pch[column], lty = lty[column], type = type, ...) } if (xaxis) { if (minor.ticks) axis(1, at = 1:NROW(y), labels = FALSE, col = "#BBBBBB") label.height = cex.axis * (0.5 + apply(t(names(ep)), 1, function(X) max(strheight(X, units = "in")/par("cin")[2]))) if (is.null(xaxis.labels)) xaxis.labels = names(ep) else ep = 1:length(xaxis.labels) axis(1, at = ep, labels = xaxis.labels, las = 1, lwd = 1, mgp = c(3, label.height, 0), cex.axis = cex.axis) title(xlab = xlab, cex = cex.lab) } if (yaxis) if (yaxis.right) axis(4, cex.axis = cex.axis, col = element.color, ylog = ylog) else axis(2, cex.axis = cex.axis, col = element.color, ylog = ylog) box(col = element.color) if (!is.null(legend.loc)) { legend(legend.loc, inset = 0.02, text.col = colorset, col = colorset, cex = cex.legend, border.col = element.color, lty = lty, lwd = 2, bg = "white", legend = columnnames, pch = pch) } if (is.null(main)) main = columnnames[1] title(ylab = ylab, cex = cex.lab) title(main = main, cex = cex.main) } timeSeries/inst/extensionsTests/aggregateWrappers.R0000644000176000001440000002151212620124746022414 0ustar ripleyusers require(timeSeries) X <- cumulated(LPP2005REC)[, 1:3] for (i in 1:3) X[, i] <- 100*X[, i]/as.vector(X[1,i]) Data <- alignDailySeries(X) # add: startDate Index <- time(Data) # Generate time Series: tS <- timeSeries(data=Data, charvec=format(Index)) tR <- returns(tS) ############################################################################### # aggregate: # from stats Package: The function aggregate splits the data into subsets, # computes summary statistics for each, and returns the result in a # convenient form. # AGGREGATION OVER NON-OVEWRLAPPING PERIODS # starting point: aligned daily Data # Aggregation Function: # function (x, by, FUN, ...) # Aggregation Levels: # weekly/biweekly: endOfWeek, onTuesdays, lastBusinessDay # monthly: endOMonth, lastFriday, lastBusinessDay # quarterly: 3-monthly # half-annually: 6-monthly # yearly: 12-monthly # Aggregation Statistics: # mean, sd, var, median, ... open <- function(x) as.vector(x)[1] close <- function(x) rev(as.vector(x))[1] high <- function(x) max(x) low <- function(x) min(x) spread <- function(x) max(x) - min(x) # ----------------------------------------------------------------------------- # Weekly # End-of-week: by <- timeLastDayInMonth(time(tS)) mean.tR <- aggregate(tR[, "SPI"], by, mean) sd.tR <- aggregate(tR[, "SPI"], by, sd) plot(cbind(mean.tR, sd.tR), type="h") # Weekly - Last Zurich Business Day In Week by <- timeLastBizdayInMonth(time(tS), holidays = holidayZURICH()) mean.tR <- aggregate(tR[, "SPI"], by, mean) sd.tR <- aggregate(tR[, "SPI"], by, sd) plot(cbind(mean.tR, sd.tR), type="h") # Weekly on Tuesdays by <- timeSequence(from=start(tD), to=end(tD), by = "week") mean.tR <- aggregate(tR[, "SPI"], by, mean) sd.tR <- aggregate(tR[, "SPI"], by, sd) plot(cbind(mean.tR, sd.tR), type="h") # ----------------------------------------------------------------------------- # Monthly # ----------------------------------------------------------------------------- # Quarterly ############################################################################### # ----------------------------------------------------------------------------- # End-of-Month Statistics # ----------------------------------------------------------------------------- # Monthly Open-High-Low-Close open <- function(x) as.vector(x)[1] close <- function(x) rev(as.vector(x))[1] high <- function(x) max(x) low <- function(x) min(x) SPI <- tS[, "SPI"] by <- timeLastDayInMonth(time(tS)) OHLC <- cbind( aggregate(SPI, by, open), aggregate(SPI, by, high), aggregate(SPI, by, low), aggregate(SPI, by, close)) OHLC # ----------------------------------------------------------------------------- # Monthly Spread / Percentual Spread spread <- function(x) max(x) - min(x) pspread <- function(x) (max(x) - min(x)) / (0.5 * (max(x) + min(x))) SPI <- tS[, "SPI"] by <- timeLastDayInMonth(time(tS)) SPREAD <- cbind( Points=aggregate(SPI, by, spread), Percent=100*aggregate(SPI, by, pspread)) SPREAD <- round(SPREAD, 2) SPREAD ################################################################################ # Rolling: Aggregation with Overlappinng Periods # ----------------------------------------------------------------------------- # rolling 52-weekly-highs and lows # xts: Mean on weekly Periods ep <- xts::endpoints(x.xts, on='weeks', k=1) by1 <- index(x.xts)[ep[-1]] period1 <- xts::period.apply(x.xts, INDEX=ep, FUN=mean) ############################################################################### # xts::apply.monthly FUN <- mean x <- x.xts apply.daily(x, FUN) apply.weekly(x, FUN) apply.monthly(x, FUN) apply.quarterly(x, FUN) apply.yearly(x, FUN) # timeDate::align FUN <- mean x <- unique(time(x.tS)) alignDaily(x, include.weekends=FALSE) by1 <- unique(alignMonthly(x, include.weekends=FALSE)) x1 <- timeSeries::aggregate(x.tS, by1, FUN) by2 <- unique(alignMonthly(x, include.weekends=TRUE)) x2 <- timeSeries::aggregate(x.tS, by2, FUN) by1 <- unique(alignQuarterly(x, include.weekends=FALSE)) x1 <- timeSeries::aggregate(x.tS, by1, FUN) by2 <- unique(alignQuarterly(x, include.weekends=TRUE)) x2 <- timeSeries::aggregate(x.tS, by2, FUN) cbind(x1,x2) ############################################################################### xts::first(x.xts) xts::last(x.xts) first2 <- function(x) x[start(x), ] last2 <- function(x) x[end(x), ] first2(x.tS) last2(x.tS) # ----------------------------------------------------------------------------- INDEX <- seq(1, nrow(xts), by=21) INDEX .period.apply(tS, INDEX, FUN=max) .period.max <- function(x, INDEX, FUN=max) .period.apply(x, INDEX, max) .period.max(tS[, 1], INDEX) .period.min <- function(x, INDEX) .period.apply(x, INDEX, min) .period.min(tS[, 1], INDEX) xts::period.apply(xts[, 1], INDEX, FUN=max) xts::period.max(xts[, 1], INDEX) xts::period.min(xts[, 1], INDEX) xts::period.prod(xts[, 1], INDEX) xts::period.sum(xts[, 1], INDEX) # ----------------------------------------------------------------------------- # timeBased is.timeBased <- function (x) { if (!any(sapply(c( "Date", "POSIXt", "chron", "dates", "times", "timeDate", "yearmon", "yearqtr", "xtime"), function(xx) inherits(x, xx)))) { ans <- FALSE } else { ans <- TRUE } ans } timeBased <- function(x) { is.timeBased(x) } # ----------------------------------------------------------------------------- alignDaily(x=time(tS), include.weekends=FALSE) alignMonthly(x=time(tS), include.weekends=FALSE) # error alignQuarterly(x=time(tS), include.weekends=FALSE) # error tD <- Sys.timeDate() + 1:1000 timeDate::align(tD, by="10s") timeDate::align(tD, by="60s") timeDate::align(tD, by="10m") # error td <- as.xts(Sys.time()) + 1:1000 xts::align.time(td, n=10) # every 10 seconds xts::align.time(td, n=60) # align to next whole minute xts::align.time(td, n=10*60) # align to next whole 10 min interval xts::shift.time(td, n=10) xts::shift.time(td, n=60) xts::shift.time(td) # ----------------------------------------------------------------------------- xts::to.minutes(x,k,name,...) xts::to.minutes3(x,name,...) xts::to.minutes5(x,name,...) xts::to.minutes10(x,name,...) xts::to.minutes15(x,name,...) xts::to.minutes30(x,name,...) xts::to.hourly(x,name,...) xts::to.daily(x,drop.time=TRUE,name,...) xts::to.weekly(x, drop.time=TRUE, name,...) xts::to.monthly(x, indexAt='yearmon', drop.time=TRUE,name,...) xts::to.quarterly(x, indexAt='yearqtr', drop.time=TRUE,name,...) xts::to.yearly(x,drop.time=TRUE,name,...) xts::to.period( x, period = 'months', k = 1, indexAt, name=NULL, OHLC = TRUE, ...) # ----------------------------------------------------------------------------- Convert an object to a specified periodicity lower than the given data object. For example, convert a daily series to a monthly series, or a monthly series to a yearly one, or a one minute series to an hourly series. data(sample_matrix) xts <- as.xts(sample_matrix) # is daily to.weekly(xts) to.monthly(xts) to.quarterly(xts) to.yearly(xts) tS <- as.timeSeries(sample_matrix) % ----------------------------------------------------------------------------- as.numeric(as.POSIXct(time(tS))) getFinCenter(tS) indexTZ(xts, ) tzone(xts, ) tzone(xts) <- "GMT" .index(xts, ) indexClass(xts) class(time(tS)) % ----------------------------------------------------------------------------- .index <- function(x) as.numeric(as.POSIXct(time(x))) .indexDate <- function(x) .index(x)%/%86400L .indexday <- function(x) .index(x)%/%86400L .indexmday <- function(x) as.POSIXlt(.POSIXct(.index(x)))$mday .indexwday <- function(x) as.POSIXlt(.POSIXct(.index(x)))$wday .indexweek <- function(x) .indexmon <- function(x) .indexyday <- function(x) .indexyear <- function(x) .indexhour <- function(x) .indexmin <- function(x) .indexsec <- function(x) atoms # Roll over fixed periods of length k point by point ... # Functions borrowed from zoo timeSeries::rollMin( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollMax( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollMean( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollMedian( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollStats( x, k, FUN = mean, na.pad = FALSE, align = c("center", "left", "right"), ...) # Roll over Calendarical periods: rollDailySeries(x, period="7d", FUN, ...) rollMonthlySeries(x, period="12m", by="1m", FUN, ...) # e.g. rollQuarterlySeries(x, period="12m", by="3m", FUN) # e.g. rollYearlySeries rollMonthlyWindows(x, period="12m", by="1m") apply applySeries # period.apply # Apply a specified function to data over a given interval, where the # interval is taken to be the data from INDEX[k] to INDEX[k+1], for # k=1:(length(INDEX)-1). timeSeries/inst/extensionsTests/alignWrappers.R0000644000176000001440000001720712620124746021566 0ustar ripleyusers # artificial 1 sec data with missing Data tX <- timeSequence("2014-03-07 00:00:00", "2014-03-07 23:59:59", by="sec") s <- sample(1:length(tX))[1:length(tX)/10] tX <- tX[-s] ############################################################################### # align # extract index values of a given xts object corresponding to the last # observations given a period specified by on require(timeSeries) # Random Seed: set.seed(1953) # Create a day of 1s time stamps: tX <- timeSequence("2014-03-07 09:03:17", "2014-03-07 15:53:16", by="sec") # Remove randomly 10% of the data: s <- sample(1:length(tX))[1:length(tX)/10] tX <- sort(tX[-s]) tS <- 201.7*cumulated(timeSeries(data=rnorm(length(tX))/(24*3600), charvec=tX)) plot(tS) head(tS) tZ <- align(tS, by="1min", method="fillNA", offset="42s") head(tZ) tZ <- align(tS, by="3min", method="fillNA", offset="162s") head(tZ) tZ <- align(tS, by="5min", method="fillNA", offset="102") head(tZ) tZ <- align(tS, by="15min", method="fillNA", offset="702s") head(tZ) tZ <- align(tS, by="30min", method="fillNA", offset="1602s") head(tZ) tZ <- align(tS, by="60min", method="fillNA", offset="3402") head(tZ) toPeriod <- function(x, by, method, offset="0s"") { open <- function(x) as.vector(x)[1] high <- function(x) max(x) low <- function(x) min(x) close <- function(x) rev(as.vector(x))[1] cbind( aggregate(SPI, by, open), aggregate(SPI, by, high), aggregate(SPI, by, low), aggregate(SPI, by, close)) } A1 <- timeSeries::align(tS, by="60min") A2 <- xts::to.period(as.xts(tS), period = "minutes", k = 2) open <- function(x) as.vector(x)[1] close <- function(x) rev(as.vector(x))[1] high <- function(x) max(x) low <- function(x) min(x) SPI <- tS[, "SPI"] by <- timeLastDayInMonth(time(tS)) OHLC <- cbind( aggregate(SPI, by, open), aggregate(SPI, by, high), aggregate(SPI, by, low), aggregate(SPI, by, close)) OHLC xts::to.minutes(x,k,name,...) xts::to.minutes3(x,name,...) xts::to.minutes5(x,name,...) xts::to.minutes10(x,name,...) xts::to.minutes15(x,name,...) xts::to.minutes30(x,name,...) xts::to.hourly(x,name,...) # ----------------------------------------------------------------------------- # Time alignment: alignDaily(x=time(tS), include.weekends=FALSE) alignMonthly(x=time(tS), include.weekends=FALSE) # error alignQuarterly(x=time(tS), include.weekends=FALSE) # error tD <- Sys.timeDate() + 1:1000 timeDate::align(tD, by="10s") timeDate::align(tD, by="60s") timeDate::align(tD, by="10m") # error td <- as.xts(Sys.time()) + 1:1000 xts::align.time(td, n=10) # every 10 seconds xts::align.time(td, n=60) # align to next whole minute xts::align.time(td, n=10*60) # align to next whole 10 min interval xts::shift.time(td, n=10) xts::shift.time(td, n=60) xts::shift.time(td) # ----------------------------------------------------------------------------- xts::to.daily(x,drop.time=TRUE,name,...) xts::to.weekly(x,drop.time=TRUE,name,...) xts::to.monthly(x,indexAt='yearmon',drop.time=TRUE,name,...) xts::to.quarterly(x,indexAt='yearqtr',drop.time=TRUE,name,...) xts::to.yearly(x,drop.time=TRUE,name,...) xts::to.period( x, period = 'months', k = 1, indexAt, name=NULL, OHLC = TRUE, ...) # ----------------------------------------------------------------------------- Convert an object to a specified periodicity lower than the given data object. For example, convert a daily series to a monthly series, or a monthly series to a yearly one, or a one minute series to an hourly series. data(sample_matrix) xts <- as.xts(sample_matrix) # is daily to.weekly(xts) to.monthly(xts) to.quarterly(xts) to.yearly(xts) tS <- as.timeSeries(sample_matrix) % ----------------------------------------------------------------------------- as.numeric(as.POSIXct(time(tS))) getFinCenter(tS) indexTZ(xts, ) tzone(xts, ) tzone(xts) <- "GMT" .index(xts, ) indexClass(xts) class(time(tS)) % ----------------------------------------------------------------------------- .index <- function(x) as.numeric(as.POSIXct(time(x))) .indexDate <- function(x) .index(x)%/%86400L .indexday <- function(x) .index(x)%/%86400L .indexmday <- function(x) as.POSIXlt(.POSIXct(.index(x)))$mday .indexwday <- function(x) as.POSIXlt(.POSIXct(.index(x)))$wday .indexweek <- function(x) .indexmon <- function(x) .indexyday <- function(x) .indexyear <- function(x) .indexhour <- function(x) .indexmin <- function(x) .indexsec <- function(x) atoms # Roll over fixed periods of length k point by point ... # Functions borrowed from zoo timeSeries::rollMin( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollMax( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollMean( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollMedian( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollStats( x, k, FUN = mean, na.pad = FALSE, align = c("center", "left", "right"), ...) # Roll over Calendarical periods: rollDailySeries(x, period="7d", FUN, ...) rollMonthlySeries(x, period="12m", by="1m", FUN, ...) # e.g. rollQuarterlySeries(x, period="12m", by="3m", FUN) # e.g. rollYearlySeries rollMonthlyWindows(x, period="12m", by="1m") apply applySeries # period.apply # Apply a specified function to data over a given interval, where the # interval is taken to be the data from INDEX[k] to INDEX[k+1], for # k=1:(length(INDEX)-1). x1 <- xts(matrix(1:(9*6),nc=6), order.by=as.Date(13000,origin="1970-01-01")+1:9) x2 <- x1 xtsAttributes(x1) <- list(series1="1") xtsAttributes(x2) <- list(series2="2") xtsAttributes(x1) xtsAttributes(x2) x3 <- x1+x2 xtsAttributes(x3) x33 <- cbind(x1, x2) xtsAttributes(x33) x33 <- rbind(x2, x1) xtsAttributes(x33) ############################################################################### appendList <- function (x, value) { stopifnot(is.list(x), is.list(value)) xnames <- names(x) for (v in names(value)) { x[[v]] <- if (v %in% xnames && is.list(x[[v]]) && is.list(value[[v]])) appendList(x[[v]], value[[v]]) else c(x[[v]], value[[v]]) } x } "setAttributes<-" <- function(obj, value) { stopifnot(is.list(value)) ATTRIBUTES <- getAttributes(obj) VALUE <- appendList(ATTRIBUTES, value) attr(obj@documentation, "Attributes") <- VALUE obj } getAttributes <- function(obj) { attr(obj@documentation, "Attributes") } obj1 <- dummySeries() getAttributes(obj1) setAttributes(obj1) <- list(series="obj1") getAttributes(obj1) obj2 <- dummySeries() getAttributes(obj2) setAttributes(obj2) <- list(series="obj2") getAttributes(obj2) getAttributes(obj1+obj2) # returns the attributes only for the first getAttributes(obj1-obj2) # returns the attributes only for the first getAttributes(cbind(obj1, obj2)) getAttributes(cbind(obj1, as.matrix(obj2))) # matrix fails getAttributes(rbind(obj1, obj2)) getAttributes(rbind(obj1, as.matrix(obj2))) # matrix fails getAttributes( rev(obj) ) getAttributes( obj[, 1] ) getAttributes( sample(obj) ) getAttributes( sort(sample(obj)) ) getAttributes( scale(obj) ) getAttributes( returns(obj) ) getAttributes( cumulated(returns(obj)) ) BIND(# Add another Attribute: ATTRIBUTES <- attr(obj@documentation, "Attributes") ATTRIBUTES ATTRIBUTES <- appendList(ATTRIBUTES, list(say="hello")) ATTRIBUTES attr(obj@documentation, "Attributes") <- ATTRIBUTES cbind(obj, obj, documentation = obj@documentation) # Documentation # Series: # dim(@.Data) # @units # @positions # @format # @FinCenter # @recordIDs # @title # @documentation # attributes(@documentation, "attributes) timeSeries/inst/extensionsTests/xtsWrappers.R0000644000176000001440000002451012620124746021305 0ustar ripleyusers require(xts) require(timeSeries) X <- cumulated(LPP2005REC)[, 1:3] for (i in 1:3) X[, i] <- 100*X[, i]/as.vector(X[1,i]) Data <- alignDailySeries(X) # add: startDate Index <- time(Data) # Generate time Series: x.tS <- timeSeries(data=Data, charvec=format(Index)) x.xts <- xts(x=Data, order.by=strptime(Index, format="%Y-%m-%d"), tzone="GMT") ############################################################################### # Class: class(x.xts) class(x.tS) # ----------------------------------------------------------------------------- # coredata # "coredata" methods for time series objects strip off the index/time # attributes and return only the observations. # xts/zoo: COREDATA <- zoo::coredata(x=x.xts) class(COREDATA) head(COREDATA) dimnames(COREDATA) # timeSeries: coredata2 <- function(x) methods::getDataPart(x) COREDATA <- coredata2(tS) class(COREDATA) head(COREDATA) dimnames(COREDATA) # timeSeries: SERIES <- series(tS) class(SERIES) head(SERIES) dimnames(SERIES) # Extractor Function # getDataPart # setDataPart # ----------------------------------------------------------------------------- # index # Generic functions for extracting the index of an object and replacing it. # xts/zoo: INDEX <- zoo::index(x=x.xts) class(INDEX) head(INDEX) # xts/zoo: TIME <- stats::time(x=x.xts) class(TIME) head(TIME) # xts/zoo: INDEX <- index(x=x.tS) class(INDEX) head(INDEX) TIME <- stats::time(x=x.tS) class(TIME) head(TIME) # Extractor Function: # getTime # setTime # ----------------------------------------------------------------------------- # indexClass # The specified value for indexClass<- must be a character string # containing one of the following: Date, POSIXct, chron, yearmon, # yearqtr or timeDate. indexClass(x.xts) tclass(x.xts) indexClass <- function(x) class(time(x)) tclass <- function(x) class(time(x)) class(x.tS) indexClass(x.tS) tclass(x.tS) # ----------------------------------------------------------------------------- # indexFormat # Functions to extract, replace, and format the class of the index of # an xts object. FORMAT <- indexFormat(x.xts) FORMAT indexFormat <- function(x) getSlot(x, "format") indexFormat(x.tS) indexFormat <- function(x) slot(x, "format") indexFormat(x.tS) indexFormat <- function(x) x.tS@format indexFormat(x.tS) # Extractor Function # getFormat # setFormat # ----------------------------------------------------------------------------- # indexTZ xts::indexTZ(x.xts) xts::tzone(x.xts) indexTZ <- function(x) getSlot(x.tS, "FinCenter") tzone(x.xts) getFinCenter(x.tS) x.tS@FinCenter getSlot(x.tS, "FinCenter") ############################################################################### # endpoints # extract index values of a given xts object corresponding to the last # observations given a period specified by on require(timeSeries) tD <- timeCurrentYear(2011) tM <- timeCalendar(2011) ############################################################################### # aggregate: # from stats Package: The function aggregate splits the data into subsets, # computes summary statistics for each, and returns the result in a # convenient form. # AGGREGATION OVER NON-OVEWRLAPPING PERIODS # starting point: aligned daily Data # Aggregation Statistics: open <- function(x) as.vector(x)[1] close <- function(x) rev(as.vector(x))[1] high <- function(x) max(x) low <- function(x) min(x) spread <- function(x) max(x) - min(x) # Aggregation Levels: # weekly/biweekly: endOfWeek, onTuesdays, lastBusinessDay # monthly: endOMonth, lastFriday, lastBusinessDay # quarterly: 3-monthly # half-annually: 6-monthly # yearly: 12-monthly # timeSeries: Weekly - end of week tD <- time(x.tS) tD <- tD[dayOfWeek(tD) == "Fri"] by <- timeSequence(from=start(tD), to=end(tD), by = "week") endOfWeek <- aggregate(x.tS, by, mean) endOfWeek # timeSeries: Weekly on Tuesdays tD <- time(x.tS[-(1:5), ]) by <- timeSequence(from=start(tD), to=end(tD), by = "week") tuesdays.period <- aggregate(x.tS, by, last) dayOfWeek(time(tuesdays.period)) cbind( open=aggregate(x.tS[, 1], by, open), high=aggregate(x.tS[, 1], by, high), low=aggregate(x.tS[, 1], by, low), close=aggregate(x.tS[, 1], by, close)) period1 <- as.timeSeries(period1) cbind(period1, period2, period3) # Aggregate to Last Friday of Month - tD <- timeSequence(from=start(tD), to=end(tD), by = "week") by <- unique(timeLastNdayInMonth(tD, nday=5)) aggregate(x.tS, by, mean) # Aggregate to Last Day of Quarter - by <- unique(timeLastDayInQuarter(tD)) aggregate(x.tS, by, mean) # ----------------------------------------------------------------------------- # rolling 52-weekly-highs and lows # xts: Mean on weekly Periods ep <- xts::endpoints(x.xts, on='weeks', k=1) by1 <- index(x.xts)[ep[-1]] period1 <- xts::period.apply(x.xts, INDEX=ep, FUN=mean) ############################################################################### # xts::apply.monthly FUN <- mean x <- x.xts apply.daily(x, FUN) apply.weekly(x, FUN) apply.monthly(x, FUN) apply.quarterly(x, FUN) apply.yearly(x, FUN) # timeDate::align FUN <- mean x <- unique(time(x.tS)) alignDaily(x, include.weekends=FALSE) by1 <- unique(alignMonthly(x, include.weekends=FALSE)) x1 <- timeSeries::aggregate(x.tS, by1, FUN) by2 <- unique(alignMonthly(x, include.weekends=TRUE)) x2 <- timeSeries::aggregate(x.tS, by2, FUN) by1 <- unique(alignQuarterly(x, include.weekends=FALSE)) x1 <- timeSeries::aggregate(x.tS, by1, FUN) by2 <- unique(alignQuarterly(x, include.weekends=TRUE)) x2 <- timeSeries::aggregate(x.tS, by2, FUN) cbind(x1,x2) ############################################################################### xts::first(x.xts) xts::last(x.xts) first2 <- function(x) x[start(x), ] last2 <- function(x) x[end(x), ] first2(x.tS) last2(x.tS) # ----------------------------------------------------------------------------- INDEX <- seq(1, nrow(xts), by=21) INDEX .period.apply(tS, INDEX, FUN=max) .period.max <- function(x, INDEX, FUN=max) .period.apply(x, INDEX, max) .period.max(tS[, 1], INDEX) .period.min <- function(x, INDEX) .period.apply(x, INDEX, min) .period.min(tS[, 1], INDEX) xts::period.apply(xts[, 1], INDEX, FUN=max) xts::period.max(xts[, 1], INDEX) xts::period.min(xts[, 1], INDEX) xts::period.prod(xts[, 1], INDEX) xts::period.sum(xts[, 1], INDEX) # ----------------------------------------------------------------------------- # timeBased is.timeBased <- function (x) { if (!any(sapply(c( "Date", "POSIXt", "chron", "dates", "times", "timeDate", "yearmon", "yearqtr", "xtime"), function(xx) inherits(x, xx)))) { ans <- FALSE } else { ans <- TRUE } ans } timeBased <- function(x) { is.timeBased(x) } # ----------------------------------------------------------------------------- alignDaily(x=time(tS), include.weekends=FALSE) alignMonthly(x=time(tS), include.weekends=FALSE) # error alignQuarterly(x=time(tS), include.weekends=FALSE) # error tD <- Sys.timeDate() + 1:1000 timeDate::align(tD, by="10s") timeDate::align(tD, by="60s") timeDate::align(tD, by="10m") # error td <- as.xts(Sys.time()) + 1:1000 xts::align.time(td, n=10) # every 10 seconds xts::align.time(td, n=60) # align to next whole minute xts::align.time(td, n=10*60) # align to next whole 10 min interval xts::shift.time(td, n=10) xts::shift.time(td, n=60) xts::shift.time(td) # ----------------------------------------------------------------------------- xts::to.minutes(x,k,name,...) xts::to.minutes3(x,name,...) xts::to.minutes5(x,name,...) xts::to.minutes10(x,name,...) xts::to.minutes15(x,name,...) xts::to.minutes30(x,name,...) xts::to.hourly(x,name,...) xts::to.daily(x,drop.time=TRUE,name,...) xts::to.weekly(x,drop.time=TRUE,name,...) xts::to.monthly(x,indexAt='yearmon',drop.time=TRUE,name,...) xts::to.quarterly(x,indexAt='yearqtr',drop.time=TRUE,name,...) xts::to.yearly(x,drop.time=TRUE,name,...) xts::to.period( x, period = 'months', k = 1, indexAt, name=NULL, OHLC = TRUE, ...) # ----------------------------------------------------------------------------- # Convert an object to a specified periodicity lower than the given data # object. For example, convert a daily series to a monthly series, or a # monthly series to a yearly one, or a one minute series to an hourly # series. data(sample_matrix) xts <- as.xts(sample_matrix) # is daily to.weekly(xts) to.monthly(xts) to.quarterly(xts) to.yearly(xts) tS <- as.timeSeries(sample_matrix) % ----------------------------------------------------------------------------- as.numeric(as.POSIXct(time(tS))) getFinCenter(tS) indexTZ(xts, ) tzone(xts, ) tzone(xts) <- "GMT" .index(xts, ) indexClass(xts) class(time(tS)) % ----------------------------------------------------------------------------- .index <- function(x) as.numeric(as.POSIXct(time(x))) .indexDate <- function(x) .index(x)%/%86400L .indexday <- function(x) .index(x)%/%86400L .indexmday <- function(x) as.POSIXlt(.POSIXct(.index(x)))$mday .indexwday <- function(x) as.POSIXlt(.POSIXct(.index(x)))$wday .indexweek <- function(x) .indexmon <- function(x) .indexyday <- function(x) .indexyear <- function(x) .indexhour <- function(x) .indexmin <- function(x) .indexsec <- function(x) # Atoms # atoms # Roll over fixed periods of length k point by point ... # Functions borrowed from zoo timeSeries::rollMin( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollMax( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollMean( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollMedian( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollStats( x, k, FUN = mean, na.pad = FALSE, align = c("center", "left", "right"), ...) # Roll over Calendarical periods: rollDailySeries(x, period="7d", FUN, ...) rollMonthlySeries(x, period="12m", by="1m", FUN, ...) # e.g. rollQuarterlySeries(x, period="12m", by="3m", FUN) # e.g. rollYearlySeries rollMonthlyWindows(x, period="12m", by="1m") # apply # applySeries # period.apply # Apply a specified function to data over a given interval, where the # interval is taken to be the data from INDEX[k] to INDEX[k+1], for # k=1:(length(INDEX)-1). # ----------------------------------------------------------------------------- timeSeries/inst/README0000644000176000001440000000012012620124746014245 0ustar ripleyusersintroduction of timeSeries package in the Rmetrics suite after svn revision 3319timeSeries/inst/THANKS0000644000176000001440000000000112620124746014276 0ustar ripleyusers timeSeries/inst/COPYRIGHTS0000644000176000001440000000770512620124746015023 0ustar ripleyusers________________________________________________________________________________ Copyrights (C) for R: see R's copyright and license file Version R 2.0.0 claims: - The stub packages from 1.9.x have been removed. - All the datasets formerly in packages 'base' and 'stats' have been moved to a new package 'datasets'. - Package 'graphics' has been split into 'grDevices' (the graphics devices shared between base and grid graphics) and 'graphics' (base graphics). - Packages must have been re-installed for this version, and library() will enforce this. - Package names must now be given exactly in library() and require(), regardless of whether the underlying file system is case-sensitive or not. ________________________________________________________________________________ for Rmetrics: (C) 1999-2005, Diethelm Wuertz, GPL Diethelm Wuertz www.rmetrics.org info@rmetrics.org ________________________________________________________________________________ for non default loaded basic packages part of R's basic distribution MASS: Main Package of Venables and Ripley's MASS. We assume that MASS is available. Package 'lqs' has been returned to 'MASS'. S original by Venables & Ripley. R port by Brian Ripley . Earlier work by Kurt Hornik and Albrecht Gebhardt. methods: Formally defined methods and classes for R objects, plus other programming tools, as described in the reference "Programming with Data" (1998), John M. Chambers, Springer NY. R Development Core Team. mgcv: Routines for GAMs and other generalized ridge regression with multiple smoothing parameter selection by GCV or UBRE. Also GAMMs by REML or PQL. Includes a gam() function. Simon Wood nnet: Feed-forward Neural Networks and Multinomial Log-Linear Models Original by Venables & Ripley. R port by Brian Ripley . Earlier work by Kurt Hornik and Albrecht Gebhardt. ________________________________________________________________________________ for the code partly included as builtin functions from other R ports: fSeries:bdstest.c C Program to compute the BDS Test. Blake LeBaron fSeries:fracdiff R functions, help pages and the Fortran Code for the 'fracdiff' function are included. S original by Chris Fraley R-port by Fritz Leisch since 2003-12: Martin Maechler fSeries:lmtest R functions and help pages for the linear modelling tests are included . Compiled by Torsten Hothorn , Achim Zeileis , and David Mitchell fSeries:mda R functions, help pages and the Fortran Code for the 'mars' function are implemeted. S original by Trevor Hastie & Robert Tibshirani, R port by Friedrich Leisch, Kurt Hornik and Brian D. Ripley fSeries:modreg Brian Ripley and the R Core Team fSeries:polspline R functions, help pages and the C/Fortran Code for the 'polymars' function are implemented Charles Kooperberg fSeries:systemfit Simultaneous Equation Estimation Package. R port by Jeff D. Hamann and Arne Henningsen fSeries:tseries Functions for time series analysis and computational finance. Compiled by Adrian Trapletti fSeries:UnitrootDistribution: The program uses the Fortran routine and the tables from J.G. McKinnon. fSeries:urca Unit root and cointegration tests for time series data. R port by Bernhard Pfaff . timeSeries/inst/doc/0000755000176000001440000000000012620124760014135 5ustar ripleyuserstimeSeries/inst/doc/timeSeriesPlot.Rnw0000644000176000001440000015272612620124760017612 0ustar ripleyusers%\VignetteIndexEntry{Plotting 'timeSeries' Objects} \documentclass[10pt,a4paper]{article} \usepackage{hyperref} \hypersetup{colorlinks,% citecolor=black,% linkcolor=blue,% urlcolor=darkgreen,% } \title{\bf Plotting 'timeSeries' Objects} \author{Diethelm W\"urtz and Tobias Setz\\ETH Zurich and Rmetrics Association Zurich} \date{May 12, 2014} \begin{document} \SweaveOpts{concordance=TRUE} \maketitle \tableofcontents \setlength{\parskip}{20pt} %\SweaveOpts{strip.white=FALSE} \setkeys{Gin}{width=0.9\textwidth} % plot.ts <- function ( % x, y = NULL, plot.type = c("multiple", "single"), % xy.labels, xy.lines, panel = lines, nc, % yax.flip = FALSE, % mar.multi = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1), % oma.multi = c(6, 0, 5, 0), axes = TRUE, ...) % plot.zoo <- function ( % x, y = NULL, screens, plot.type, panel = lines, % xlab = "Index", ylab = NULL, main = NULL, % xlim = NULL, ylim = NULL, % xy.labels = FALSE, xy.lines = NULL, % yax.flip = FALSE, % oma = c(6, 0, 5, 0), % mar = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1), % col = 1, lty = 1, lwd = 1, pch = 1, type = "l", log = "", % nc, widths = 1, heights = 1, ...) % plot.xts <- function ( % x, y = NULL, type = "l", auto.grid = TRUE, % major.ticks = "auto", minor.ticks = TRUE, major.format = TRUE, % bar.col = "grey", candle.col = "white", % ann = TRUE, axes = TRUE, ...) % .plot.timeSeries <-function( % x, y, FinCenter = NULL, type = NULL, plot.type = c("multiple", "single"), % format = "auto", at = c("chic", "pretty"), % col, pch, cex, lty, lwd, % grid = FALSE, frame.plot = TRUE, panel = lines, % axes = TRUE, ann = TRUE, cex.axis = 1, cex.lab = 1, % yax.flip = FALSE, % mar.multi = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1), % oma.multi = c(7.75, 1.1, 6.1, 1.1), % ...) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 1 \newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Introduction} The Rmetrics \texttt{timeDate} and \texttt{timeSeries} packages are workhorses to deal with chronological objects. Since their inception 2009 under their original names \texttt{fCalendar} and \texttt{fSeries} they have been only slightly modified. With version R 3.1. we have essentially improved the \texttt{plot} function, but we also took care that the functionality is almost upward compatible. In this vignette we show how to work with the recently updated S4 generic plot function \texttt{plot}. The function is written to display Rmetrics S4 \texttt{timeSeries} objects. The basic functionality of the \texttt{plot} function is to display single and multiple views on univariae and multivariate \texttt{timeSeries} objects. The function \texttt{plot.ts} from R's base environment, which displays basic \texttt{ts} time series objects, served as a model for our design of the generic S4 \texttt{plot} function for \texttt{timeSeries} objects. Similarily, \texttt{plot.ts} can be considered as the prototype for the S3 \texttt{plot.zoo} method. The \texttt{xts} plot function was build to display univariate \texttt{xts} time series objects which inherit from \texttt{zoo}'s objects for ordered time series objects. The generic S4 time series plotting function can dispay \emph{univariate} and \emph{multivariate} time series in \emph{single} and \emph{multiple} frames. The plots can be tailored with respect to several viewing components: colors (col), line types (lty), plot symbols (pch), line widths (lwd), symbol sizes (cex), axis layout (pretty, chic, tailored), minor tick mark appearence, font styles and font sizes, frame positioning (mar, oma), as well as tailored panel functions (panel). \noindent\emph{General Plot Settings and Design Apects}: \noindent\emph{Plot Type}: Univariate time series are displayed by default in \texttt{plot.type="single"} frames, multivariate time series are displayed by default in \texttt{plot.type="multiple"} frames. The default line style for a plot is \texttt{type ="l"} is drawn with "lines". \noindent\emph{Time Axis Layout}: For the time axis layout the function \texttt{pretty} determines in an automative way the \texttt{at="pretty"} positions of the ticks. The \texttt{format="auto"} is extracted from the time stamps of the time series object or can be overwritten by the user with a POSIX format string. Alternatively, one can select \texttt{"chic"} to generate time axis styles. We called this method "chic" to give reference to the underlying function \texttt{axTicksByTime} from the Chicago \texttt{xts} package which generates tick positions and axis labels. Furthermore, a "tailored" method can be applied which allows for fully arbitrary user defined positions and formatted labels. Minor ticks can be added in several fashions. \noindent\emph{Annotations}: The annotations of the plots are reduced to the y-label. These are taken by default from the column names of the time series object. This gives the user the freedom to have full control about his views how the plot should be look like. Note, multivariate time series in single plots show the string \texttt{"Values"} as label on the y-axis. Main title, sub title, and the x-label on the time axis are not shown by default. We prefer and recommend to add these decorations calling the function \texttt{title}. This allows also much more flexibility compared to passing the arguments through the plot functions. All default annotations (including the y-label) can be suppressed setting the plot function argument to \texttt{ann=FALSE}. The argument \texttt{axes=FALSE} suppresses to draw both axes on the plot frame. \noindent\emph{Decorations}: There are several options to decorate the plot: These include colors (col), plotting symbols (pch), scaling factor of plotting characters and symbols (cex), line types (lty), and lindwidths (lwd). Note, all these parameters may be vectors of the same length as the number of time series, so that each series can be addressed to its own individual style, color, and size. A grid and the plot frame (box) can be added or suppresse specifying the arguments \texttt{grid} and \texttt{frame.plot} in the argument list of the \texttt{plot} function. \noindent\emph{Panel Function}: In the case of multiple plots the plot frames, are also called \emph{panels}. By default in each panel the appropriate curve is drawn calling R's \texttt{lines} function \texttt{panel=lines}. This function can be replaced by a user defined function. This offers a wide range of new views on your time series. So for example yo can show zero or any other reference lines on the panels, or you can add rugs to (return) charts, or you can add for an example an EMA indicator (or any other kind of indicator) to curves shown in individual panels. \noindent\emph{Example "timeSeries" Objects}: To demonstrate the wide range of options to dispaly S4 \texttt{timeSeries} objects, we use the the daily index values from the Swiss Pension Fund Benchmark \emph{LPP2005}. The time series is part of the \texttt{timeSeries} package. For this we have introduced some abbreviations: <>= Sys.setlocale("LC_ALL", "C") @ <>= require(timeSeries) require(xts) require(PerformanceAnalytics) require(fTrading) tS1 <- 100 * cumulated(LPP2005REC[, 1]) # SBI (univariate) tS2 <- 100 * cumulated(LPP2005REC[, 1:2]) # SBI & SPI (bivariate) tS3 <- 100 * cumulated(LPP2005REC[, 1:3]) # SBI, SPI, SWIIT (Swiss Market) tS6 <- 100 * cumulated(LPP2005REC[, 1:6]) # Swiss and Foreign Market Indexes @ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 2 \newpage\thispagestyle{empty}\mbox{} \newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Standard Time Series Plots} The \texttt{plot} function from the \texttt{timeSeries} package allows for five different views on standard plot layouts. These include \begin{itemize} \item Univeriate single plots \item Multivariate single plots \item One column multiple plots \item Two column multiple plots \item Scatter plots \end{itemize} \noindent The only argument we have to set is the \texttt{plot.type} parameter to determine the layout of the plot. The default value is \texttt{"multiple"}, and the alternative value is \texttt{"single"}. The arguments can be abbreviated as \texttt{"m"} or \texttt{"s"}, respectively. \noindent \emph{Univariate Single Plots} were designed to plot univariate \texttt{timeSeries} objects in one single graph frame. Nothing then the \texttt{timeSeries} object has to be specified, the \texttt{plot.type} is forced to \texttt{"s"}. \noindent \emph{Multivariate Single Plots} will be used when a set of multivariate \texttt{timeSeries} objects should be drawn in one common data frame. For this argument the vlue \texttt{plot.type="s"} has to be specified. \noindent \emph{One Column Multiple Plots} display multivariate \texttt{timeSeries} objects, such that each series is plotted in its own frame. Up to four series, the frames are displayed in one column, for more series the frames are arranged in a two colum column display. \noindent \emph{Two Column Multiple Plots} handel the case of more than four \texttt{timeSeries} objects. Then the the series are displayed in two colums. In total, the number of rows is not restricted. % ---------------------------------------------------------------------------- \pagebreak \subsection{Univariate Single Plots} The most simple time series plot shows an univariate curve in a single plot. The axis is designed from "pretty" positions calculated from R's base function \texttt{pretty}. The labels are printed in the ISO 8601 standard date/time format. <>= par(mfrow=c(1, 1)) plot(tS1) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The chart shows an univariate time series (here the Swiss Bond Index) in a single frame. For all plot options default values have been chosen. You can decorate the plot, making it more conveniant to your needs, e.g.: change the color (col), add a main title and x-label calling the function \texttt{title}, or remove the grid lines setting the argument \texttt{grid=FALSE}. You can also design the minor tick marks, setting instead of the value \texttt{"auto"} oe of the following spreads: \texttt{"day"}, the default, \texttt{"week"}, or \texttt{"month"}. } \end{figure} \end{center} % ---------------------------------------------------------------------------- \pagebreak \subsection*{} Tow other plot function implementations for \texttt{xts} time series objects can be found in the contributesd R packages \texttt{xts} and \texttt{PerformanceAnalytics}. Let us compare how they generate plot positions and time label formats. \vspace{-0.3cm} <>= require(PerformanceAnalytics) par(mfrow=c(3, 1)) xts::plot.xts(as.xts(tS1)) PerformanceAnalytics::chart.TimeSeries(as.xts(tS1)) plot(tS1) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The group of the three charts shows an univariate time series in a single frame for the plot functions as implemented in the packages \texttt{xts}, \texttt{PerformanceAnalytics}, and \texttt{timeSeries}. For example in the case of daily time series records \texttt{xts} uses U.S. style labels whereas \texttt{PerformanceAnalytics} and \texttt{timeSeries} use ISO standard date labels \texttt{YYYY-mm-dd}. The plot decorations are those from default settings.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Multivariate Single Plots} Multivariate time series plots in a single panel are constructed by default in the way that the first curve is plotted calling the function \texttt{plot} and the remaining curves by calling the function \texttt{lines}. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="s") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This chart shows a multivariate time series in a single frame. Note, we have to set the argument \texttt{plot.type="s"}. Again, for all plot options the default settings have been used. You can decorate the plot, making it more conveniant to your needs, e.g.: change the color vector (col), add a main title and x-label calling the function \texttt{title}, or remove grid lines setting the argument \texttt{grid=FALSE}. Note, to change the color settings you can set the argument \texttt{col=1:3} which would result in "black", "red", "green" for the three curves, or you can just set the colors by name, or selecting them from a color palette.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection*{} Now let us compare the plot function from the \texttt{timeSeries} package with the \texttt{chart.TimeSeries} plotting function from the \texttt{PerformanceAnalytics} function. (Note, the \texttt(xts) has no multivariate plot function implemented.) <>= par(mfrow=c(2, 1)) require(PerformanceAnalytics) PerformanceAnalytics::chart.TimeSeries(as.xts(tS3)) plot(tS3, plot.type="s") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The two charts show a multivariate time series plotted in a single frame. We use for the plot the functions as implemented in the packages \texttt{PerformanceAnalytics}, and \texttt{timeSeries}.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Multiple Plots} Multiple plots enormously simplify the display of different curves in multiple panels. These are the ideal plots when it comes to the task to create a quick overview over several time series. Multiple plotting is exclusive to \texttt{timeSeries} objects, \texttt(xts) and \texttt{PerformanceAnalytics} offer no multiple plotting tool. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m") @ \begin{center} \begin{figure}[h] <>= <> @ \caption{As long as we plot less than 4 time series in a multivariate frame, we get a one column layout. Annotations show by default only the y-labels which are taken from the colmun names of the time series to be drawn. Feel free to add main title, sub title, and x-label calling the function \texttt{title}}. \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection*{} For more than four curves the frames of the plot design are arranged in two columns. <>= par(mfrow=c(1, 1)) plot(tS6, plot.type="m") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The graph shows the layout how it is created for six curves. There are two columns with three panels to the left and also three panels to the right. Note, it is easily possible to adapt the margin sizes and the gap between the two columns of plots calling the function \texttt{mar} and \texttt{oma}.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection*{} If you like a design with a small gap between the panel rows, you can modify the \texttt{mar} parameter to introduce a small gap, here with a width of 0.3. Feel free to modify it. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", mar=c(gap=0.3, 5.1, gap=0.3, 2.1)) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{One can use in a multiple plot the \texttt{mar} parameter setting to create a small gap between the rows of the individual charts. This lets a plot look more elegant.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Combining Single Plots} You can also create your own multiple panel plots. Just combine single panels in an array of rows and columns using the parameter settings for \texttt{mfrow}, \texttt{mfcol}, and \texttt{mar}. <>= par(mfrow=c(2, 1)) par(mar = c(bottom=1.5, 5.1, top=4, 2.1)) plot(tS2[, 1]) par(mar = c(bottom=4, 5.1, top=1.5, 2.1)) plot(tS2[, 2]) @ \begin{center} \begin{figure}[h] <>= <> @ \caption{One can use in single plots the \texttt{mfrow} and \texttt{mar} parameter settings to place single plots either row by row or column by column. Here, \texttt{mfrow} and \texttt{mfcol} to the job. In this case a vector of the form \texttt{c(nr, nc)} draws subsequent figures in an nr-by-nc array on the device by columns (mfcol) or rows (mfrow), respectively.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Layout of Single Plots} There is another option in R to create panel layouts, not necessarilly in an rectangular array. Have a look to the help page of the function \texttt{layout}, her comes a simple example. <>= nf <- layout(mat=matrix(c(1, 1, 2, 3), byrow = TRUE, nrow=2)) par(mar = c(bottom=2, 5.1, top=3, 2.1)) plot(tS3[, 1]) par(mar = c(bottom=3, 5.1, top=2, 1.1)) plot(tS3[, 2]) par(mar = c(bottom=3, 4.1, top=2, 2.1)) plot(tS3[, 3]) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{With the function \texttt{layout} you can devide the plot device in rows and columns expressed in matrix form defined by the argument \texttt{mat}. } \end{figure} \end{center} %To be more specific, the graph \texttt{i} is allocated a region composed %from a subset of these rows and columns, based on the rows and columns %in which \texttt{i} occurs in the matrix \texttt{mat}. %The argument \texttt{layout.show(n)} plots (part of) the current layout, %namely the outlines of the next \texttt{n} figures. % ----------------------------------------------------------------------------- \pagebreak \subsection*{} In addition widths and heights of the layout can be different from row to row, and/or from column to column. The sizes are expressed by the arguments \texttt{widths} and \texttt{heights} of the function \texttt{layout}. <>= nf <- layout(mat=matrix(c(1, 1, 2, 3), byrow=TRUE, nrow=2), heights=c(2.5,1)) par(mar = c(bottom=2, 5.1, top=3, 2.1)) plot(tS3[, 1]) par(mar = c(bottom=3, 5.1, top=1.5, 1.1)) plot(tS3[, 2]) par(mar = c(bottom=3, 4.1, top=1.5, 2.1)) plot(tS3[, 3]) @ \begin{center} \begin{figure}[h] <>= <> @ \caption{With the function \texttt{layout} one can also define the widths and heights of the columns and rows.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Bivariate Scatter Plots} For historical reasons, like in the function \texttt{plot.ts}, there is also the option to create an scatter plot from two univariaye time series. Since this is not a "true" time series plot, we will not go in further detail for this display. <>= par(mfrow=c(1,1)) plot(tS2[, 1], tS2[, 2]) @ \begin{center} \begin{figure}[h] <>= <> @ \caption{If \texttt(x) and \texttt(y) are univariate time series, then the plot function will display a scatter plot.} \end{figure} \end{center} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 3 \newpage\thispagestyle{empty}\mbox{} \newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Time Axis Layout} The function \texttt{plot} comes with three options to design the time axis layout: \texttt{"pretty"}, \texttt{"chic"}, and \emph{} (note this not a string argument. \emph{} should just abbreviate that we have to input character strings of fully arbitray \texttt{at} positions. For the first two options the style of the axis annotation is generated in a fully automated way, whereas in the tailored case each tick on the axis to be user defined. \noindent The \emph{"pretty"} time axis layout is the default setting for the argument \texttt{at}. Internally the function \texttt{pretty} is used to compute a sequence of about \texttt{n+1} equally spaced round values which cover the range of the values in the time stamps \texttt{time(x)} of the series \texttt{x}. The values are chosen so that they are 1, 2 or 5 times a power of 10. \noindent The \emph{"chic"} time axis layout is the alternative setting for the argument \texttt{at}. Internally the function \texttt{axTicksByTime} from the package \texttt{xts} is used to compute the sequence of axis positions and the format labels. \noindent The \emph{} time axis layout leaves it to the user to specify by himself the positions (at), the time label formatting (format), and the minor tick marks (minor.ticks). % ----------------------------------------------------------------------------- \pagebreak \subsection{Time Axis: "pretty" or "chic"?} Our plotting function comes with two axis-styles. The first is called \texttt{"pretty"}, which is the default style, and calculates positions from R's base function \texttt{pretty}. The other is called \texttt{"chic"} to remember its origin, arising from the "Chicago" \texttt{xts} package. \vspace{-0.7cm} <>= par(mfcol = c(2, 1)) plot(tS1, at = "pretty") plot(tS1, at = "chic") @ \vspace{-0.3cm} \begin{center} \begin{figure}[h] <>= <> @ \caption{The graph shows the two flavours from the \texttt{at="pretty"} and the \texttt{"chic"} axis designs. The first style uses the function \texttt{pretty} from R's \texttt{base} environment to compute the positions for the major ticks. The second style uses the function \texttt{axTicksByTime} from the \texttt{xts} package to compute x-axis tick mark locations by time. In the upper graph the minor ticks are calendar days, whereas in the lower graph weekdays are drawn (therefore the small gaps between the minor ticks become visible). Note, the time series is in both cases an object of class \texttt{timeSeries}.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection*{} Now let us plot a multivariate 3-column time series in a single panel. Again we compare the outcome of the \texttt{"pretty"} and the \texttt{"chic"} axis style. <>= par(mfcol=c(2, 1)) plot(tS3, plot.type="s", at="pretty") plot(tS3, plot.type="s", at="chic") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The only difference of this graph compared to the previous is the fact that we consider here a multivariate time series. Three curves are shown in a common plot. Note, when using the \texttt{"chic"} style, then the vertical gridlines are narrower compared to the \texttt{"pretty"} style.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Time Axis - Selecting Minor Tick Marks} The \texttt{"pretty"} style allows to draw the minor tick marks on different time scales. These are: \texttt{"day"}, \texttt{"week"}, and \texttt{"month"}. <>= par(mfrow=c(3, 1)) plot(tS1, minor.ticks="day", at="pretty") plot(tS1, minor.ticks="week", at="pretty") plot(tS1, minor.ticks="month", at="pretty") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{It is worth to note that a good selection of minor tick marks makes a plot much better readable.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Time Axis - One Column Multiple Plot Layout} In the multiple plot layout the axis are drawn along the same principles as they are drawn in the case of the single plot layout. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", at="pretty") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This graph shows a one column multiple plot layout. The one column layout is generated for up to four time series. When the multivariate time series has more then four time series then a two column layout is displayed. It is up to you which axis style you prefer, \texttt{at="pretty"} or \texttt{at="chic".}} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Time Axis - Two Column Multiple Plot Layout} Concerning the style of the axis, there is now difference between the one and two column plot designs. <>= par(mfrow=c(1, 1)) plot(tS6, plot.type="m", at="chic") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{When we have more then four time series, then the display will be generated in two columns. Note, it is possible to modify the width of the gap between the two columns.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Tick and Format Layout: The axis style} The third alternative to style the axis offers the users to define format positions according to his preferences. Here comes an example: <>= par(mfrow=c(2, 1)) at <- paste0("200", c("6-01", "6-04", "6-07", "6-10", "7-01", "7-04"), "-01") plot(tS3, plot.type="s", format="%B\n%Y", at=at) plot(tS3, plot.type="s", format="%b/%y", at=at) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This graph shows plots with user tailored positions and formatted axis labels.} \end{figure} \end{center} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 4 \newpage\thispagestyle{empty}\mbox{} %\newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Annotations} Plot annotations are elelents which can be added to plots or completely discarded. To discard all annotations you have to set \texttt{ann=FALSE} in the argument list of the timSeries \texttt{plot} function. To display annotation you can call the function \texttt{title}. This allows to add the main title, the sub title, and the x- and y-labels to a plot. Together with the appropriate character strings, you can also specify the placement of these annotations by the arguments \texttt{line} and \texttt{outer}. There are additional functions to add annotations to a plot. These are \texttt{text} and \texttt{mtext}. % ----------------------------------------------------------------------------- \pagebreak \subsection{Discarding all Annotations} In a default plot we display only the value-label(s) which are taken from the units or column names of the time time series object. Title, sub title, and time-label are not shown. To discard the appearance of all annotations on a plot you have to set the plot argument \texttt{ann=FALSE}. <>= par(mfrow=c(2, 2)) plot(tS1, ann=FALSE) plot(tS3, plot.type="s", ann=FALSE, at="pretty") plot(tS6, plot.type="s", ann=FALSE, at="pretty") @ \begin{center} \begin{figure}[h] <>= <> @ \caption{This graph shows a plot where all annotations have been discarded. Now feel free to add your own annotations.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Adding Title and Labels} To add a main title, a sub, title, and x- and y-labels you can call the function \texttt{title}. <>= par(mfrow=c(2, 2)) plot(tS1); title(main = "Index") plot(tS3, plot.type="s"); title(main = "Index") plot(tS3, plot.type="s"); title(main = "Index", xlab = "Date") plot(tS6, plot.type="s"); title(main = "Index", xlab = "Date") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This graph displays in a two by two array four single plots. We have added title and x-lable annotations.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Changing Axis Font Size} Sometimes the axis font size may be considered as too small or too large. Then you can use the plot argument \texttt{cex.axis} to upsize or downsize the font. <>= par(mfrow=c(3, 1)) plot(tS3, at="chic", plot.type="s", cex.axis=0.75) plot(tS3, at="chic", plot.type="s", cex.axis=1.00) plot(tS3, at="chic", plot.type="s", cex.axis=1.25) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This is an example how to change the size of the axis labels relatively to its default value. The upper graph shows a font size decreased by 20\%, the lower graph a font size increased by 25\%. You can proceed in the same way when using the \texttt{"pretty"} axis style.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Flipping Value Axes} Flipping every second axis label in a multiple plot from left to rigth might be meaningful in the case when axis labels overwrite themselves. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", yax.flip = TRUE) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The graph shows an one column multiple plot, where the axis of the middle panel is flipped from the left to the right. Note, the same procedure can also be applied two two column multiple plots.} \end{figure} \end{center} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 5 \newpage\thispagestyle{empty}\mbox{} %\newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Decorations} There exist several options to decorate plots in different ways. Plot types (lines, points, horizontal bars, etc.) can be modified, colors can be changed, lines can be modified by style and seize, points can be selected by symbol and size. \noindent In the following we will give some examples \begin{itemize} \item Modifying Types \item Changing Colors by Names \item Changing Colors by Color Palettes \item Changing Line Styles \item Modifying Line Widths \item Changing Plot Symbols \item Modifying Plot Symbol Sizes \item Discarding Grid Lines \item Drawing a Box \end{itemize} \noindent to show a few of the many types of cdecorations. Play around to achieve your perfect layout. % ----------------------------------------------------------------------------- \pagebreak \subsection{Modifying Types} <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", type=c("l", "p", "h"), at="pretty") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{If we like to consider in a multiple plot for each panel its own plot style then we can set the parameter \texttt{type}.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Changing Colors by Names} Colors can be changed in several ways. Just by their numbers, e.g. 1 (black), 2 (red), 3 (green) etc., or by name, e.g. "black", "red", "green", etc. or by using well designed color palettes. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", col=c("blue", "orange", "darkgreen")) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This graph shows how to assign colors by name in the case of a multiple plot. You can do it in the same way setting \texttt{plot.type="s"} if you like to display all three curves in a common single plot.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Changing Colors by Color Palettes} When the number of curves increases, then it can become quite difficult to find a set of nice colors. In such cases it is convenient to select the colors from color palettes. <>= par(mfrow=c(1, 1)) plot(tS6, plot.type="s", col=heat.colors(n=6, alpha = 1), at="chic", format = "%B\n%Y") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This graph shows an example of six curves diplayed in a sequence of reds. For this we called the function \texttt{seqPalette}.} \end{figure} \end{center} \pagebreak \begin{verbatim} FUNCTION: COLOUR PALETTE rainbowPalette Contiguous rainbow colour palette heatPalette Contiguous heat colour palette terrainPalette Contiguous terrain colour palette topoPalette Contiguous topo colour palette cmPalette Contiguous cm colour palette greyPalette R's gamma-corrected gray palette timPalette Tim's MATLAB-like colour palette rampPalette Colour ramp palettes seqPalette Sequential colour brewer palettes divPalette Diverging colour brewer palettes qualiPalette Qualified colour brewer palettes focusPalette Red, green and blue focus palettes monoPalette Red, green and blue mono palettes \end{verbatim} % ----------------------------------------------------------------------------- \pagebreak \subsection{Changing Line Styles} In multiple plot to each curve an own line style \texttt{lty} can be assigned: 0 "blank", 1 "solid", 2 "dashed", 3 "dotted", 4 "dotdash", 5 "longdash", or 6 "twodash". <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", col=1, lty=1:3, at="chic") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{When we like to print plots in black and white, then its makes much sense to use different line types so that we can distinguish the curves one from each other.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Modifying Line Widths} Not only the line type, but also the line width can be modified for each curve in an individual kind. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", col=1, lwd=3:1, at="chic") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The graph shows three line widths, the upper's curve width is thick, the middle's curve width is medium, and the lowest's curve width is the thinnest one.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Changing Plot Symbols} To use different plot symbols we can assign them by the parameter \texttt{pch}. Don't forget also to set \texttt{type="p"}. %<>= %par(mfrow=c(1, 1)) %tS3weekly <- align(tS3, by="1w") %plot(tS3weekly, plot.type="s", type="p", col=1:3, pch=21:23, at="chic") %@ \medskip %\begin{center} %\begin{figure}[h] %<>= %<> %@ %\caption{This plot shows how to assign different plot symbols to the curves %in a single plot.} %\end{figure} %\end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Modifying Plot Symbol Sizes} The argument \texttt{cex.pch} allows to increase or decrease plot symbol sizes with respect to the current plot symbol size. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="s", type="p", col=1:3, pch=21:23, cex.pch=c(0.2, 0.2, 0.2), at="pretty") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This plot show how to change the size of plot symbols in a single plot setting the argument \texttt{cex.pch}. Note, for each curve its own size can be set. The same approach can be used also for multiple plots.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Discarding Grid Lines} By default grid lines are displayed. To discard the grid lines from the plot set the arguments \texttt{grid=FALSE}. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="s", grid=FALSE) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{By default a grid is drawn on top of the plot. You can remove it by setting the argument \texttt{grid=FALSE}} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Drawing a Box} <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="s", frame.plot=FALSE, grid=FALSE) box() box(bty = "7", col = "white") # boxL grid(NA, NULL, col = "darkgrey") # hgrid @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{By default the plots are displayed as frame plots. This means that the graphs are surrounded by a box. This box can be discarded setting the plot argument \texttt{frame.plot=FALSE}.} \end{figure} \end{center} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 6 \newpage\thispagestyle{empty}\mbox{} %\newpage\thispagestyle{empty}\mbox{} \pagebreak \section{The Panel Function} Multiple plots are very powerful plotting designs. Each panel in a graph can individually tailored by the user. By default each curve in a panel is generated by the function \texttt{lines}. You can define your own panel function(s) by setting the plot argument \texttt{panel} to a user dfined functions. In the following we will show three examples. % ----------------------------------------------------------------------------- \pagebreak \subsection{Adding a Horizental Zero Line} In this example we show how to write a panel function which allows to add a horizontal zero line to each plot panel. <>= par(mfrow=c(1, 1)) lines2 <- function(X, Y, type, xlab, ylab, col, pch, lty, lwd, cex) { lines(x=X, y=Y, col=col) abline(h=0, col = "brown", lwd=2)} plot(returns(tS3), plot.type="m", col = .colorwheelPalette(3), panel=lines2, at="pretty") @ \begin{center} \begin{figure}[h] <>= <> @ \caption{This multiple plot shows panels with curves having a horizontal zero reference line.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Adding an Rug to Multiple Return Plots} This example shows how to add in each panel rugs to the righ Y-axis. <>= par(mfrow=c(1, 1)) lines2 <- function(X, Y, type, xlab, ylab, col, pch, lty, lwd, cex) { lines(x=X, y=Y, type="h", col=col) rug(Y, side=4, col="steelblue") } plot(returns(tS6), plot.type="m", col = .colorwheelPalette(6), panel=lines2, at="pretty") @ \begin{center} \begin{figure}[h] <>= <> @ \caption{This multiple plot shows panels with rugs on the right Y-axis.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Adding an EMA to Multiple Index Plots} This example shows how to add an EMA indicator to each plot panel. The \texttt{emaTA()} function is provided by the \texttt{fTrading} package. <>= par(mfrow=c(1, 1)) lines2 <- function(X, Y, type, xlab, ylab, col, pch, lty, lwd, cex) { lines(x=X, y=Y, type="l", col=col) lines(x=X, y=emaTA(Y), col="black") } plot(tS3, plot.type="m", col = .colorwheelPalette(3), panel=lines2, grid=TRUE, at="pretty") @ \begin{center} \begin{figure}[h] <>= <> @ \caption{A multiple graph with EMA indicators in each panel.} \end{figure} \end{center} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 7 \newpage\thispagestyle{empty}\mbox{} \newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Conclusions} The \texttt{plot} function in the \texttt{timeSeries} package is a very powerful tool to create plots from time series objects. This includes to display univariate and multivariate time series in single and multiple panels, to select from two styles for the time-axis or even to tailor positions and formats according to his own needs, and to modifiy annotations and decorations of plots. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 8 \newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Appendix} In the appendix we have summarized graphs and tables which are useful tools to create plots. We have reprinted the default color table from R, we have summarized several color palettes as available in the \texttt{fBasics} package and other contributed R packages, and two tables with font characters and plot symbols. % ----------------------------------------------------------------------------- \pagebreak \subsection{Margins: mar and oma} <>= # Plot: # - oma stands for 'Outer Margin Area' # - mar represents the 'figure Margins' # - The default size is c(5,4,4,2) + 0.1 # - The axes tick marks will go in the first lines par(mfrow=c(1, 1)) par(oma=c(3,3,3,3)) # all sides have 3 lines of space par(mar=c(5,4,4,2) + 0.1) plot(x=1:10, y=1:10, type="n", xlab="X", ylab="Y") # Add Text tot the Plot Part - red text(5,5, "Plot", col="red", cex=2) text(5,4, "text(5,5, \"Plot\", col=\"red\", cex=2)", col="red", cex=1) box("plot", col="red", lwd=2) # Add text to thebThe Figure Part - grey mtext("Margins", side=3, line=2, cex=1.5, col="grey") mtext("par(mar=c(5,4,4,2) + 0.1)", side=3, line=1, cex=1, col="grey") mtext("Line 0", side=3, line=0, adj=1.0, cex=1, col="grey") mtext(" 1", side=3, line=1, adj=1.0, cex=1, col="grey") mtext("Line 2", side=3, line=2, adj=1.0, cex=1, col="grey") mtext("Line 3", side=3, line=3, adj=1.0, cex=1, col="grey") mtext("Line 0", side=2, line=0, adj=1.0, cex=1, col="grey") mtext("Line 1", side=2, line=1, adj=1.0, cex=1, col="grey") mtext("Line 2", side=2, line=2, adj=1.0, cex=1, col="grey") mtext("Line 3", side=2, line=3, adj=1.0, cex=1, col="grey") box("figure", col="grey") # The title will fit in the third line on the top of the graph. title("Ttitle - Third Line") # Note 'outer=TRUE' moves us from the figure to the outer margins. mtext("Outer Margin Area", side=1, line=1, cex=1.8, col="brown", outer=TRUE) mtext("par(oma=c(3,3,3,3))", side=1, line=2, cex=1, col="orange", outer=TRUE) mtext("Line 0", side=1, line=0, adj=0.0, cex=0.8, col="orange", outer=TRUE) mtext("Line 1", side=1, line=1, adj=0.0, cex=1, col="orange", outer=TRUE) mtext("Line 2", side=1, line=2, adj=0.0, cex=1, col="orange", outer=TRUE) box("outer", col="orange") @ \pagebreak \subsection*{} \begin{center} <>= <> @ \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Character Table} \begin{center} \begin{figure}[h] \includegraphics[width=\textwidth]{characterTableFig.pdf} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Color Table} \begin{center} \begin{figure}[h] \includegraphics[width=\textwidth]{colorTableFig.pdf} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Color Palettes I} \medskip \begin{center} \begin{figure}[h] \includegraphics[width=\textwidth]{colorPalettes1Fig.pdf} \end{figure} \end{center} \pagebreak \subsection{Color Palettes II} \medskip \begin{center} \begin{figure}[h] \includegraphics[width=\textwidth]{colorPalettes2Fig.pdf} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Symbol Table} \begin{center} \begin{figure}[h] \includegraphics[width=\textwidth]{symbolTableFig.pdf} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Axis Style "pretty"} <>= FORMAT <- tS1@format FORMAT POSITIONS <- pretty(tS1) POSITIONS LABELS <- pretty(tS1) LABELS @ % ----------------------------------------------------------------------------- \pagebreak \subsection{Axis Style "chic"} <>= axTicksByTime <- function (x, ticks.on = "auto", k = 1, labels = TRUE, format.labels = TRUE, ends = TRUE, gt = 2, lt = 30) { if (timeBased(x)) x <- xts(rep(1, length(x)), x) tick.opts <- c("years", "months", "weeks", "days", "hours", "minutes", "seconds") tick.k.opts <- c(10, 5, 2, 1, 6, 1, 1, 1, 4, 2, 1, 30, 15, 1, 1) if (ticks.on %in% tick.opts) { cl <- ticks.on[1] ck <- k } else { tick.opts <- paste(rep(tick.opts, c(4, 2, 1, 1, 3, 3, 1)), tick.k.opts) is <- structure(rep(0, length(tick.opts)), .Names = tick.opts) for (i in 1:length(tick.opts)) { y <- strsplit(tick.opts[i], " ")[[1]] ep <- endpoints(x, y[1], as.numeric(y[2])) is[i] <- length(ep) - 1 if (is[i] > lt) break } nms <- rev(names(is)[which(is > gt & is < lt)])[1] cl <- strsplit(nms, " ")[[1]][1] ck <- as.numeric(strsplit(nms, " ")[[1]][2]) } if (is.null(cl)) ep <- NULL else ep <- endpoints(x, cl, ck) if (ends) ep <- ep + c(rep(1, length(ep) - 1), 0) if (labels) { if (is.logical(format.labels) || is.character(format.labels)) { unix <- ifelse(.Platform$OS.type == "unix", TRUE, FALSE) time.scale <- periodicity(x)$scale fmt <- ifelse(unix, "%n%b%n%Y", "%b %Y") if (time.scale == "weekly" | time.scale == "daily") fmt <- ifelse(unix, "%b %d%n%Y", "%b %d %Y") if (time.scale == "minute" | time.scale == "hourly") fmt <- ifelse(unix, "%b %d%n%H:%M", "%b %d %H:%M") if (time.scale == "seconds") fmt <- ifelse(unix, "%b %d%n%H:%M:%S", "%b %d %H:%M:%S") if (is.character(format.labels)) fmt <- format.labels names(ep) <- format(index(x)[ep], fmt) } else { names(ep) <- as.character(index(x)[ep]) } ep } } @ <>= ticks <- axTicksByTime(as.xts(tS1)) ticks @ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \pagebreak \section*{About the Authors} % ----------------------------------------------------------------------------- % Diethelm Wuertz \noindent\textbf{Diethelm W\"urtz} is professor at the Institute for Theoretical Physics, ITP, and for the Curriculum Computational Science and Engineering, CSE, at the Swiss Federal Institute of Technology in Zurich. He teaches Econophysics at ITP and supervises seminars in Financial Engineering. Diethelm is senior partner of Finance Online, an ETH spin-off company in Zurich, and co-founder of the Rmetrics Association in Zurich.\\ % ----------------------------------------------------------------------------- % Tobias Setz \noindent \textbf{Tobias Setz} has a Bachelor and Master in Computational Science from ETH in Zurich and has contributed with his Thesis projects on wavelet analytics and Bayesian change point analytics to this handbook. He is now a PhD student in the Econophysics group at ETH Zurich at the Institute for Theoretical Physics.\\ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \pagebreak \section*{About Rmetrics} \noindent\emph{Rmetrics Open Source Project} With hundreds of functions built on modern methods, the Rmetrics open source software combines exploratory data analysis, statistical modelling and rapid model prototyping. The R/Rmetrics packages are embedded in R, building an environment which creates a first class system for applications in teaching statistics and finance. Rmetrics covers Time Series Econometrics, Hypothesis Testing, GARCH Modelling and Volatility Forecasting, Extreme Value Theory and Copulae, Pricing of Derivatives, Portfolio Analysis, Design and Optimization, and much more. \noindent\emph{The Rmetrics Association}\\ is a non-profit taking association working in the public interest. The Rmetrics Association provides support for innovations in financial computing. We believe that the Rmetrics Open Source software has become a valuable educational tool and that it is worth ensuring its continued development and the development of future innovations in software for statistical and computational research in finance. Rmetrics provides a reference point for individuals and institutions that want to support or interact with the Rmetrics development community. Rmetrics encourages students to participate in Rmetrics' activities in the context of Student Internships. \noindent\emph{Rmetrics Software Evalution}\\ If you like to get an impression of the size and quality of the Open Source Rmetrics Program have a look on the Ohloh Rmetrics Software Evaluation. The Evalutions gives an overview about the Software Development (Code Analysis, Estimated Cost), the people behind it, and its community. \noindent\emph{Contributions to Rmetrics}\\ are coming from several educuational institutions world wide. These include the Rmetrics web site and documentation project supported by ITP/CSE ETH Zurich, the organization of Summerschools and Workshops supported by ITP/CSE ETH Zurich, the R-sig-Finance Help and Mailing List, supported by SfS ETH Zurich, the R-forge development server, supported by University of Economics in Vienna, CRAN Test and Distribution Server for R software, supported by University of Economics Vienna, the Debian Linux integration supported by the Debian Association. Many thanks to all behind these projects who gave us continuous support over the last years.\\ \noindent Rmetrics Association\\ www.rmetrics.org % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \pagebreak % References \begin{thebibliography}{99} \bibitem{zoo} Achim Zeileis and Gabor Grothendieck (2005): \emph{ zoo: S3 Infrastructure for Regular and Irregular Time Series.} Journal of Statistical Software, 14(6), 1-27. URL http://www.jstatsoft.org/v14/i06/ \bibitem{tseries} Adrian Trapletti and Kurt Hornik (2007): \emph{tseries: Time Series Analysis and Computational Finance.} R package version 0.10-11. \bibitem{rmetrics} Diethelm W\"urtz et al. (2007): \emph{Rmetrics: Rmetrics - Financial Engineering and Computational Finance.} R package version 260.72. http://www.rmetrics.org \bibitem{ISO} International Organization for Standardization (2004): \emph{ISO 8601: Data elements and interchage formats --- Information interchange --- Representation of dates and time} URL http://www.iso.org \bibitem{R} R Development Core Team: \emph{R: A Language and Environment for Statistical Computing}, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org \bibitem{quantmod} Jeffrey A. Ryan (2008): \emph{quantmod: Quantitative Financial Modelling Framework.} R package version 0.3-5. URL http://www.quantmod.com URL http://r-forge.r-project.org/projects/quantmod \end{thebibliography} \end{document} timeSeries/inst/doc/timeSeriesPlot.R0000644000176000001440000006274112620124760017242 0ustar ripleyusers### R code from vignette source 'timeSeriesPlot.Rnw' ################################################### ### code chunk number 1: environment ################################################### Sys.setlocale("LC_ALL", "C") ################################################### ### code chunk number 2: library ################################################### require(timeSeries) require(xts) require(PerformanceAnalytics) require(fTrading) tS1 <- 100 * cumulated(LPP2005REC[, 1]) # SBI (univariate) tS2 <- 100 * cumulated(LPP2005REC[, 1:2]) # SBI & SPI (bivariate) tS3 <- 100 * cumulated(LPP2005REC[, 1:3]) # SBI, SPI, SWIIT (Swiss Market) tS6 <- 100 * cumulated(LPP2005REC[, 1:6]) # Swiss and Foreign Market Indexes ################################################### ### code chunk number 3: univariateSingle ################################################### par(mfrow=c(1, 1)) plot(tS1) ################################################### ### code chunk number 4: univariateSinglePlot ################################################### par(mfrow=c(1, 1)) plot(tS1) ################################################### ### code chunk number 5: univariateSingle2 ################################################### require(PerformanceAnalytics) par(mfrow=c(3, 1)) xts::plot.xts(as.xts(tS1)) PerformanceAnalytics::chart.TimeSeries(as.xts(tS1)) plot(tS1) ################################################### ### code chunk number 6: univariateSingle2Plot ################################################### require(PerformanceAnalytics) par(mfrow=c(3, 1)) xts::plot.xts(as.xts(tS1)) PerformanceAnalytics::chart.TimeSeries(as.xts(tS1)) plot(tS1) ################################################### ### code chunk number 7: multivariateSingle ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="s") ################################################### ### code chunk number 8: multivariateSinglePlot ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="s") ################################################### ### code chunk number 9: multivariateSingle2 ################################################### par(mfrow=c(2, 1)) require(PerformanceAnalytics) PerformanceAnalytics::chart.TimeSeries(as.xts(tS3)) plot(tS3, plot.type="s") ################################################### ### code chunk number 10: multivariateSingle2Plot ################################################### par(mfrow=c(2, 1)) require(PerformanceAnalytics) PerformanceAnalytics::chart.TimeSeries(as.xts(tS3)) plot(tS3, plot.type="s") ################################################### ### code chunk number 11: oneColMultiple ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m") ################################################### ### code chunk number 12: oneColMultiplePlot ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m") ################################################### ### code chunk number 13: twoColMultiple ################################################### par(mfrow=c(1, 1)) plot(tS6, plot.type="m") ################################################### ### code chunk number 14: twoColMultiplePlot ################################################### par(mfrow=c(1, 1)) plot(tS6, plot.type="m") ################################################### ### code chunk number 15: gapMultiple ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", mar=c(gap=0.3, 5.1, gap=0.3, 2.1)) ################################################### ### code chunk number 16: gapMultiplePlot ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", mar=c(gap=0.3, 5.1, gap=0.3, 2.1)) ################################################### ### code chunk number 17: combineSingle ################################################### par(mfrow=c(2, 1)) par(mar = c(bottom=1.5, 5.1, top=4, 2.1)) plot(tS2[, 1]) par(mar = c(bottom=4, 5.1, top=1.5, 2.1)) plot(tS2[, 2]) ################################################### ### code chunk number 18: combineSinglePlot ################################################### par(mfrow=c(2, 1)) par(mar = c(bottom=1.5, 5.1, top=4, 2.1)) plot(tS2[, 1]) par(mar = c(bottom=4, 5.1, top=1.5, 2.1)) plot(tS2[, 2]) ################################################### ### code chunk number 19: layoutSingle ################################################### nf <- layout(mat=matrix(c(1, 1, 2, 3), byrow = TRUE, nrow=2)) par(mar = c(bottom=2, 5.1, top=3, 2.1)) plot(tS3[, 1]) par(mar = c(bottom=3, 5.1, top=2, 1.1)) plot(tS3[, 2]) par(mar = c(bottom=3, 4.1, top=2, 2.1)) plot(tS3[, 3]) ################################################### ### code chunk number 20: layoutSinglePlot ################################################### nf <- layout(mat=matrix(c(1, 1, 2, 3), byrow = TRUE, nrow=2)) par(mar = c(bottom=2, 5.1, top=3, 2.1)) plot(tS3[, 1]) par(mar = c(bottom=3, 5.1, top=2, 1.1)) plot(tS3[, 2]) par(mar = c(bottom=3, 4.1, top=2, 2.1)) plot(tS3[, 3]) ################################################### ### code chunk number 21: layout2Single ################################################### nf <- layout(mat=matrix(c(1, 1, 2, 3), byrow=TRUE, nrow=2), heights=c(2.5,1)) par(mar = c(bottom=2, 5.1, top=3, 2.1)) plot(tS3[, 1]) par(mar = c(bottom=3, 5.1, top=1.5, 1.1)) plot(tS3[, 2]) par(mar = c(bottom=3, 4.1, top=1.5, 2.1)) plot(tS3[, 3]) ################################################### ### code chunk number 22: layout2SinglePlot ################################################### nf <- layout(mat=matrix(c(1, 1, 2, 3), byrow=TRUE, nrow=2), heights=c(2.5,1)) par(mar = c(bottom=2, 5.1, top=3, 2.1)) plot(tS3[, 1]) par(mar = c(bottom=3, 5.1, top=1.5, 1.1)) plot(tS3[, 2]) par(mar = c(bottom=3, 4.1, top=1.5, 2.1)) plot(tS3[, 3]) ################################################### ### code chunk number 23: scatter ################################################### par(mfrow=c(1,1)) plot(tS2[, 1], tS2[, 2]) ################################################### ### code chunk number 24: scatterPlot ################################################### par(mfrow=c(1,1)) plot(tS2[, 1], tS2[, 2]) ################################################### ### code chunk number 25: pretty ################################################### par(mfcol = c(2, 1)) plot(tS1, at = "pretty") plot(tS1, at = "chic") ################################################### ### code chunk number 26: prettyPlot ################################################### par(mfcol = c(2, 1)) plot(tS1, at = "pretty") plot(tS1, at = "chic") ################################################### ### code chunk number 27: chicUnivariateSingle ################################################### par(mfcol=c(2, 1)) plot(tS3, plot.type="s", at="pretty") plot(tS3, plot.type="s", at="chic") ################################################### ### code chunk number 28: chicUnivariateSinglePlot ################################################### par(mfcol=c(2, 1)) plot(tS3, plot.type="s", at="pretty") plot(tS3, plot.type="s", at="chic") ################################################### ### code chunk number 29: minorTicks ################################################### par(mfrow=c(3, 1)) plot(tS1, minor.ticks="day", at="pretty") plot(tS1, minor.ticks="week", at="pretty") plot(tS1, minor.ticks="month", at="pretty") ################################################### ### code chunk number 30: minorTicksPlot ################################################### par(mfrow=c(3, 1)) plot(tS1, minor.ticks="day", at="pretty") plot(tS1, minor.ticks="week", at="pretty") plot(tS1, minor.ticks="month", at="pretty") ################################################### ### code chunk number 31: chicOneColMultiple ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", at="pretty") ################################################### ### code chunk number 32: chicOneColMultiplePlot ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", at="pretty") ################################################### ### code chunk number 33: chicTwoColMultiple ################################################### par(mfrow=c(1, 1)) plot(tS6, plot.type="m", at="chic") ################################################### ### code chunk number 34: chicTwoColMultiplePlot ################################################### par(mfrow=c(1, 1)) plot(tS6, plot.type="m", at="chic") ################################################### ### code chunk number 35: tailoredAxis ################################################### par(mfrow=c(2, 1)) at <- paste0("200", c("6-01", "6-04", "6-07", "6-10", "7-01", "7-04"), "-01") plot(tS3, plot.type="s", format="%B\n%Y", at=at) plot(tS3, plot.type="s", format="%b/%y", at=at) ################################################### ### code chunk number 36: tailoredAxisPlot ################################################### par(mfrow=c(2, 1)) at <- paste0("200", c("6-01", "6-04", "6-07", "6-10", "7-01", "7-04"), "-01") plot(tS3, plot.type="s", format="%B\n%Y", at=at) plot(tS3, plot.type="s", format="%b/%y", at=at) ################################################### ### code chunk number 37: annSingle ################################################### par(mfrow=c(2, 2)) plot(tS1, ann=FALSE) plot(tS3, plot.type="s", ann=FALSE, at="pretty") plot(tS6, plot.type="s", ann=FALSE, at="pretty") ################################################### ### code chunk number 38: annSinglePlot ################################################### par(mfrow=c(2, 2)) plot(tS1, ann=FALSE) plot(tS3, plot.type="s", ann=FALSE, at="pretty") plot(tS6, plot.type="s", ann=FALSE, at="pretty") ################################################### ### code chunk number 39: titleSingle ################################################### par(mfrow=c(2, 2)) plot(tS1); title(main = "Index") plot(tS3, plot.type="s"); title(main = "Index") plot(tS3, plot.type="s"); title(main = "Index", xlab = "Date") plot(tS6, plot.type="s"); title(main = "Index", xlab = "Date") ################################################### ### code chunk number 40: titleSinglePlot ################################################### par(mfrow=c(2, 2)) plot(tS1); title(main = "Index") plot(tS3, plot.type="s"); title(main = "Index") plot(tS3, plot.type="s"); title(main = "Index", xlab = "Date") plot(tS6, plot.type="s"); title(main = "Index", xlab = "Date") ################################################### ### code chunk number 41: axisFontSize ################################################### par(mfrow=c(3, 1)) plot(tS3, at="chic", plot.type="s", cex.axis=0.75) plot(tS3, at="chic", plot.type="s", cex.axis=1.00) plot(tS3, at="chic", plot.type="s", cex.axis=1.25) ################################################### ### code chunk number 42: axisFontSizePlot ################################################### par(mfrow=c(3, 1)) plot(tS3, at="chic", plot.type="s", cex.axis=0.75) plot(tS3, at="chic", plot.type="s", cex.axis=1.00) plot(tS3, at="chic", plot.type="s", cex.axis=1.25) ################################################### ### code chunk number 43: flipAxisOne ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", yax.flip = TRUE) ################################################### ### code chunk number 44: flipAxisOnePlot ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", yax.flip = TRUE) ################################################### ### code chunk number 45: typeMultiple ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", type=c("l", "p", "h"), at="pretty") ################################################### ### code chunk number 46: typeMultiplePlot ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", type=c("l", "p", "h"), at="pretty") ################################################### ### code chunk number 47: colorNamesMultiple ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", col=c("blue", "orange", "darkgreen")) ################################################### ### code chunk number 48: colorNamesMultiplePlot ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", col=c("blue", "orange", "darkgreen")) ################################################### ### code chunk number 49: palettesMultiple ################################################### par(mfrow=c(1, 1)) plot(tS6, plot.type="s", col=heat.colors(n=6, alpha = 1), at="chic", format = "%B\n%Y") ################################################### ### code chunk number 50: palettesMultiplePlot ################################################### par(mfrow=c(1, 1)) plot(tS6, plot.type="s", col=heat.colors(n=6, alpha = 1), at="chic", format = "%B\n%Y") ################################################### ### code chunk number 51: ltyMultiple ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", col=1, lty=1:3, at="chic") ################################################### ### code chunk number 52: ltyMultiplePlot ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", col=1, lty=1:3, at="chic") ################################################### ### code chunk number 53: lwdMultiple ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", col=1, lwd=3:1, at="chic") ################################################### ### code chunk number 54: lwdMultiplePlot ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="m", col=1, lwd=3:1, at="chic") ################################################### ### code chunk number 55: symbolsSizeMultiple ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="s", type="p", col=1:3, pch=21:23, cex.pch=c(0.2, 0.2, 0.2), at="pretty") ################################################### ### code chunk number 56: symbolsSizeMultiplePlot ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="s", type="p", col=1:3, pch=21:23, cex.pch=c(0.2, 0.2, 0.2), at="pretty") ################################################### ### code chunk number 57: gridSingle ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="s", grid=FALSE) ################################################### ### code chunk number 58: gridSinglePlot ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="s", grid=FALSE) ################################################### ### code chunk number 59: noBoxSingle ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="s", frame.plot=FALSE, grid=FALSE) box() box(bty = "7", col = "white") # boxL grid(NA, NULL, col = "darkgrey") # hgrid ################################################### ### code chunk number 60: gridSinglePlot ################################################### par(mfrow=c(1, 1)) plot(tS3, plot.type="s", grid=FALSE) ################################################### ### code chunk number 61: horizMultiple ################################################### par(mfrow=c(1, 1)) lines2 <- function(X, Y, type, xlab, ylab, col, pch, lty, lwd, cex) { lines(x=X, y=Y, col=col) abline(h=0, col = "brown", lwd=2)} plot(returns(tS3), plot.type="m", col = .colorwheelPalette(3), panel=lines2, at="pretty") ################################################### ### code chunk number 62: horizMultiplePlot ################################################### par(mfrow=c(1, 1)) lines2 <- function(X, Y, type, xlab, ylab, col, pch, lty, lwd, cex) { lines(x=X, y=Y, col=col) abline(h=0, col = "brown", lwd=2)} plot(returns(tS3), plot.type="m", col = .colorwheelPalette(3), panel=lines2, at="pretty") ################################################### ### code chunk number 63: rugMultiple ################################################### par(mfrow=c(1, 1)) lines2 <- function(X, Y, type, xlab, ylab, col, pch, lty, lwd, cex) { lines(x=X, y=Y, type="h", col=col) rug(Y, side=4, col="steelblue") } plot(returns(tS6), plot.type="m", col = .colorwheelPalette(6), panel=lines2, at="pretty") ################################################### ### code chunk number 64: rugMultiplePlot ################################################### par(mfrow=c(1, 1)) lines2 <- function(X, Y, type, xlab, ylab, col, pch, lty, lwd, cex) { lines(x=X, y=Y, type="h", col=col) rug(Y, side=4, col="steelblue") } plot(returns(tS6), plot.type="m", col = .colorwheelPalette(6), panel=lines2, at="pretty") ################################################### ### code chunk number 65: emaMultiple ################################################### par(mfrow=c(1, 1)) lines2 <- function(X, Y, type, xlab, ylab, col, pch, lty, lwd, cex) { lines(x=X, y=Y, type="l", col=col) lines(x=X, y=emaTA(Y), col="black") } plot(tS3, plot.type="m", col = .colorwheelPalette(3), panel=lines2, grid=TRUE, at="pretty") ################################################### ### code chunk number 66: emaMultiplePlot ################################################### par(mfrow=c(1, 1)) lines2 <- function(X, Y, type, xlab, ylab, col, pch, lty, lwd, cex) { lines(x=X, y=Y, type="l", col=col) lines(x=X, y=emaTA(Y), col="black") } plot(tS3, plot.type="m", col = .colorwheelPalette(3), panel=lines2, grid=TRUE, at="pretty") ################################################### ### code chunk number 67: margins ################################################### # Plot: # - oma stands for 'Outer Margin Area' # - mar represents the 'figure Margins' # - The default size is c(5,4,4,2) + 0.1 # - The axes tick marks will go in the first lines par(mfrow=c(1, 1)) par(oma=c(3,3,3,3)) # all sides have 3 lines of space par(mar=c(5,4,4,2) + 0.1) plot(x=1:10, y=1:10, type="n", xlab="X", ylab="Y") # Add Text tot the Plot Part - red text(5,5, "Plot", col="red", cex=2) text(5,4, "text(5,5, \"Plot\", col=\"red\", cex=2)", col="red", cex=1) box("plot", col="red", lwd=2) # Add text to thebThe Figure Part - grey mtext("Margins", side=3, line=2, cex=1.5, col="grey") mtext("par(mar=c(5,4,4,2) + 0.1)", side=3, line=1, cex=1, col="grey") mtext("Line 0", side=3, line=0, adj=1.0, cex=1, col="grey") mtext(" 1", side=3, line=1, adj=1.0, cex=1, col="grey") mtext("Line 2", side=3, line=2, adj=1.0, cex=1, col="grey") mtext("Line 3", side=3, line=3, adj=1.0, cex=1, col="grey") mtext("Line 0", side=2, line=0, adj=1.0, cex=1, col="grey") mtext("Line 1", side=2, line=1, adj=1.0, cex=1, col="grey") mtext("Line 2", side=2, line=2, adj=1.0, cex=1, col="grey") mtext("Line 3", side=2, line=3, adj=1.0, cex=1, col="grey") box("figure", col="grey") # The title will fit in the third line on the top of the graph. title("Ttitle - Third Line") # Note 'outer=TRUE' moves us from the figure to the outer margins. mtext("Outer Margin Area", side=1, line=1, cex=1.8, col="brown", outer=TRUE) mtext("par(oma=c(3,3,3,3))", side=1, line=2, cex=1, col="orange", outer=TRUE) mtext("Line 0", side=1, line=0, adj=0.0, cex=0.8, col="orange", outer=TRUE) mtext("Line 1", side=1, line=1, adj=0.0, cex=1, col="orange", outer=TRUE) mtext("Line 2", side=1, line=2, adj=0.0, cex=1, col="orange", outer=TRUE) box("outer", col="orange") ################################################### ### code chunk number 68: marginsPlot ################################################### # Plot: # - oma stands for 'Outer Margin Area' # - mar represents the 'figure Margins' # - The default size is c(5,4,4,2) + 0.1 # - The axes tick marks will go in the first lines par(mfrow=c(1, 1)) par(oma=c(3,3,3,3)) # all sides have 3 lines of space par(mar=c(5,4,4,2) + 0.1) plot(x=1:10, y=1:10, type="n", xlab="X", ylab="Y") # Add Text tot the Plot Part - red text(5,5, "Plot", col="red", cex=2) text(5,4, "text(5,5, \"Plot\", col=\"red\", cex=2)", col="red", cex=1) box("plot", col="red", lwd=2) # Add text to thebThe Figure Part - grey mtext("Margins", side=3, line=2, cex=1.5, col="grey") mtext("par(mar=c(5,4,4,2) + 0.1)", side=3, line=1, cex=1, col="grey") mtext("Line 0", side=3, line=0, adj=1.0, cex=1, col="grey") mtext(" 1", side=3, line=1, adj=1.0, cex=1, col="grey") mtext("Line 2", side=3, line=2, adj=1.0, cex=1, col="grey") mtext("Line 3", side=3, line=3, adj=1.0, cex=1, col="grey") mtext("Line 0", side=2, line=0, adj=1.0, cex=1, col="grey") mtext("Line 1", side=2, line=1, adj=1.0, cex=1, col="grey") mtext("Line 2", side=2, line=2, adj=1.0, cex=1, col="grey") mtext("Line 3", side=2, line=3, adj=1.0, cex=1, col="grey") box("figure", col="grey") # The title will fit in the third line on the top of the graph. title("Ttitle - Third Line") # Note 'outer=TRUE' moves us from the figure to the outer margins. mtext("Outer Margin Area", side=1, line=1, cex=1.8, col="brown", outer=TRUE) mtext("par(oma=c(3,3,3,3))", side=1, line=2, cex=1, col="orange", outer=TRUE) mtext("Line 0", side=1, line=0, adj=0.0, cex=0.8, col="orange", outer=TRUE) mtext("Line 1", side=1, line=1, adj=0.0, cex=1, col="orange", outer=TRUE) mtext("Line 2", side=1, line=2, adj=0.0, cex=1, col="orange", outer=TRUE) box("outer", col="orange") ################################################### ### code chunk number 69: prettyAppendix ################################################### FORMAT <- tS1@format FORMAT POSITIONS <- pretty(tS1) POSITIONS LABELS <- pretty(tS1) LABELS ################################################### ### code chunk number 70: axTicks ################################################### axTicksByTime <- function (x, ticks.on = "auto", k = 1, labels = TRUE, format.labels = TRUE, ends = TRUE, gt = 2, lt = 30) { if (timeBased(x)) x <- xts(rep(1, length(x)), x) tick.opts <- c("years", "months", "weeks", "days", "hours", "minutes", "seconds") tick.k.opts <- c(10, 5, 2, 1, 6, 1, 1, 1, 4, 2, 1, 30, 15, 1, 1) if (ticks.on %in% tick.opts) { cl <- ticks.on[1] ck <- k } else { tick.opts <- paste(rep(tick.opts, c(4, 2, 1, 1, 3, 3, 1)), tick.k.opts) is <- structure(rep(0, length(tick.opts)), .Names = tick.opts) for (i in 1:length(tick.opts)) { y <- strsplit(tick.opts[i], " ")[[1]] ep <- endpoints(x, y[1], as.numeric(y[2])) is[i] <- length(ep) - 1 if (is[i] > lt) break } nms <- rev(names(is)[which(is > gt & is < lt)])[1] cl <- strsplit(nms, " ")[[1]][1] ck <- as.numeric(strsplit(nms, " ")[[1]][2]) } if (is.null(cl)) ep <- NULL else ep <- endpoints(x, cl, ck) if (ends) ep <- ep + c(rep(1, length(ep) - 1), 0) if (labels) { if (is.logical(format.labels) || is.character(format.labels)) { unix <- ifelse(.Platform$OS.type == "unix", TRUE, FALSE) time.scale <- periodicity(x)$scale fmt <- ifelse(unix, "%n%b%n%Y", "%b %Y") if (time.scale == "weekly" | time.scale == "daily") fmt <- ifelse(unix, "%b %d%n%Y", "%b %d %Y") if (time.scale == "minute" | time.scale == "hourly") fmt <- ifelse(unix, "%b %d%n%H:%M", "%b %d %H:%M") if (time.scale == "seconds") fmt <- ifelse(unix, "%b %d%n%H:%M:%S", "%b %d %H:%M:%S") if (is.character(format.labels)) fmt <- format.labels names(ep) <- format(index(x)[ep], fmt) } else { names(ep) <- as.character(index(x)[ep]) } ep } } ################################################### ### code chunk number 71: axTicks2 ################################################### ticks <- axTicksByTime(as.xts(tS1)) ticks timeSeries/inst/doc/timeSeriesPlot.pdf0000644000176000001440000302312112620124761017603 0ustar ripleyusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 3914 /Filter /FlateDecode /N 92 /First 737 >> stream xœí[[sÛ¶~?¿oM¦â~;ÓéLâÔ‰›¸ic·M/y%ÚV#K®(7mýù€$Z’+äéSglÁŇÝÅîâ"ÅÓL‹È 3Ö2ËœÌ1o%ó,"˜(D&JR0©Q”ø³Ť3•Lúˆ§a2$–)ñtL)*{¦4•SÖà»È” HSAã)™Š/ÓRã PxÁ”aÚh<-Ó6(|Ä´×xz¦•3‚Ê€ #ahާdÆPY1㨬™ñc˜‘ˆ`¨Âƒ¨cQfÆ®­ö(Gf ðªµÀe$³/b(¢^ƒQÔ™aN<Á8MeÇœ¡²gÎQ90ç©™‹([Á¼@™Ø«¨¬ð߬Ë@<¢ð È,DáÁë™`† ÌG³‘áѹ`A:€ ”ÅÀN0,I`X°`:^ ðαà´gÁS90 ߃^Ä 0ô(Á'‰«PŠE |^³hžÏOÐ4C ¡ÚG Dƃ}ÈK©‰>¤ tcFÏPå bXjxà(©… ô2b  l‚'œÈDO@¡^#Ž lXI5x†‘#Cà@ÙZ©ÿóÅŒ?žNg‹†ýMì54R›R—RŸÒÒ˜RèyzÈüPù‘¿—™€Ìd&!3 ™‰ÈLEe**SQ™ŠÊTT¦¢2•©¨LEe**SÑ™ŠÎTÞ2~0›.ê)F3 ~\ƃ'³?1Djk£­$ ¨À,|ñí`ŽH«Sû×u3»™kPÈýòÓ¿®kjvQ³/¿ÌLc”>ešz¸Ϧ•|Èø ãÏf§3´aüÉl>ªç¥K‘p¡ —…çŒQOÃÕ*]¹¦U¥M{”i!”„ÚŸÜœ-ˆ—ãé»% $¹;©>IQ‘AS> Œ 'c¥ Å=Ýœ­@uc”Ô×DWÁnA-t•¦»ð•º¨:1«  ¦²ÆÙƒTÕ@Ï´éÄ+Ý* ±°ŸJ¹Jݺ"Ø•é••à•³U€5^V^¦*Û**gH¯´>ÑÆÊ„N¼r= Âé¤ìB€UÆWVíͪ‚¨“F£`¤©fŸˆ•DL¯<@!Ö×J€u¶ ª¦ŸŠÞ…b*øôh,m·XWI @kÛÁPÙ>¼ -ølŠñÀ+x… ±BT=ž2"Zà<3EÅ‚´««| <‚K[[xbæI8f;±*ô€Êy„Rd>ce5¡ xvâUì•Ë Œ:bàŠv7ÉçÚZ¤È*tˆ‡]FÝAÑÂa£`¨ @ X÷dÕSÉÛiüÍO?ƒûXaéè¥K+¶éÍdB¥ñ“ASΦ P:úæÕ×GŸ?y#ã‡ãy³8¸Ìi_˜S“§u3œ¯³9íR&ú/¥Äd\C#Pr‰-SÿqîîüÕáñ§Çèüõí¾á¯¶úÖŸÚwh÷}0»Á;Çø‹ñ¨Y‰Ë–GÙ„ÍÛ.sÌåŽ×û•!o‡¶v'›ke^ÝÁÐiMÇ^½§íûJú½çJÔÉ“â AGdŒU ‘9xvŠ7> Q'_°D„§U“pQ´Éå4V3±ÃJ6ôb夬,E‡4¼(•BÙ¨ú°r¨hÝH<ÂÓI¸sÕ‰W=h¹%ÉÑÂqXÏ Eh{'^õ»Z ƒŽš1”.ŲPõ»ZĬŽVŽFj 4)–퀪‡ØÕb¡æÅ÷Z®€R¥X¶ª‚W‹°'H:·Eœ[e±R£`¶ª‚W‹•Z°´¡kÓÞ¥ çxO^%—2˜'ºx¤Ã@GÅÙÛÁ3ÍgÓš:„“?•úÏÅ:üX?fß§³›ÓÙšìûLvø&71夲4Ég„&;K“!˜Ü½ÉþÞŠ¥ë\Ê[t8´rÓÿ.Ç´1â·k§¿ê=vî]ßÕûZ$š6,‹H,MÍe>•ï-ª5ü(:÷wÁ_Ge?žœ~uðQÙééí°lW<ê>1õ~wHøìÙÑ““¨ó£wn·:7÷ëܵ;_ î.a¡ÒÉN‚“?.¸ï_þôøxwòò>¢3[ܳ÷ãžmsïã“.ª®ƒwêÓ§|ÔûõîÜVïæ®Þ7W®ÜßÈ âË ±|– åªÆ½Vûd\ì §j‰¤³¶Æ²ê:F8º¯“Ú|5ÎFãé]äÉ ×+@Œ5 þIFA—À4NQçTü¯%Y¾’‚!unaådIsMp1y@5š8‚$9Þ’ýÂ`tã=ñ=}…¬L:ð¡ÙéAMB´Ô0çÌ]Z§qj‘Ÿ;–2±£ H©OjŸ‘»V~sT«§L4[¿’au­,_äÚ%bØâeM´É×ä/W­s “|±)5äkÚo3¯r>§ÅŽÓY¡ÃÛÂÈ–B²HW’Ù·%Ò ¨lRÙ´Z¬ßéU.¿é’Š95ŠžvÓ$ioJ©LÄ{#ivjKRÄd HDÉõBŽÔ:ƒdL# ˜¤ôC †HáH¹A€JÇä¹mÉM± ÍtOw-èשu,%ý¼ esê‚_¡¦~ÚÜhÈš$²ÐдôÌ.*ïK{ª]Ž?ÕF”l-•ôݪm~OXéZkʯ[¥w™C9_Ò4UÓž\3L!yÄbý`pý¼_\¢\^<ÑÒàÌøS~ÈøKþ-?á§üG>àg|ÈG|4FPÞŒ^óô-?ÿQósöü’ù„_ñ)ŸŽ§5ŸñÒk>ç oê?ê)oÆò_\Îëš/ÞÏø ÿ“ÿÅÿ~ˆ`¿Î¸Ñ(?œ .fn­ÎYÇ)2©Ò™dLË*íp<©ö/W;¨É«°SÇ£Å`2>ž^ 5Š'‹úêÐ2íåVkç‚¿)¬ñ[ígÞwO÷¾ÿžñ片Çüþ œ|xù=ÿüü¹pt8›Ì¦àëŠ-†^€¥—]_‚ucþ·‹»×õ|<ñßoê†ö‘™-êÑÙdž¨¥RÎ~H ð÷{‰B“(èÇPô{—-Q¨MQlœ>ï…ˆ=ˆBX_ówˆã ÿ©ˆäl>¾«“ú|±Ìg.e5œ]] vÎ~NcžþHˆ“=äHkåÔiÊå.!\çJÈ{‹¹™ šË»„Íÿ®ç³ûI܈2ùè~ê¶Äõ¦ÄoŸºï¸û¸¼µÜ”7Ú·äŠ;å½{âe9øà mÓ4ĸæ,HöwfÙÙ`ž¤_¯ô ð÷þê1›L@d©õï7ƒÉÆì¾˜×t¿­“ºi²ŠÜ\éøbº—¢\Onš¤-YIŠR\3«ÇÍt„‡³yýM¡›‘»5E‘¦hZ»bí›ï ·Ål*ÊÖ~r[WÅNÊòã°6 YUHQ¾[©Ênë\_ˆcEŒwÌëMÓ¼1Y“0î6Á{ÌJm—.Qír‰v“Ù·XMž°ð:ü?'æ³d†×Só»–þi?ü¡©ÕÌ'›Ûݳè#t©bòL±z×Lq›ÂÛ82ënSóÉ‚^-”C‘²]«–?Û,'#ºœ1èõï1—‡)aëàhu¸ðr|5NgÀžÎ†Nƒùâ!{0/êjÑ€Íuó(Ñ7[鬿¹ñÑÉ«‡LúvÕkªp­ ¨Átq5Q½oÕϯHƒ† Õ›Vý €ôË XuaHÙ—åb›,—Ód¹!'Ë…1V§-»‡{>¾¸™×tùa«‡ò«Û°<Û.§á¥[|'åÍ +ú=ýNöÖ¼Ìäe¤ü꺞>NŸbqQÎ ^Ý,&˜% jÊy óx6"KÝÔ«×EÆ+ÁŸ¼¯Ô³)ÜÆh0Ö@~붨ëlµUÿøfq ­|€yr@> žÂblÿUBbéŠ> stream xÚÕZKoÛF¾ûW½„J†ûä²(ZØNœ¶°Û V A²$;j$ÒäÆö¥½3;Kz%R¶Ä¸…tµ\’³³ß¼¾9 ®‚4xs®ù>ê¼<<`Y™’Aï†2á* ´†o£ƒÞ0ø¾D,,ð?ãâ*ŠE&Ãöj F磎Gðgþ‚îþã‹(Ö<ü §‹yôgï——'< Kr¥8®'L’2ÄÜ$&ç´Ü+…RQþ'àúSËUø¥š'F¨ N™zë{fç7ïΜê÷(C‡ýÆC’׋ Ë ·d7@WÜ“à\&†1I.è×½ŸèÙðXµŠD<Ííþbïì>œÜúa·àá/£ÞTú,Ü „OAB>´¬„žHfJ‘þ¤áY?â&¼£‡¾¥1OaÌà#É*è2R[«À.³D=b @›œ„£E$ˬUÁ£ÀªÁ Ý ïÞ€cIäI®¹F‰)èVg9Å9hñ3Èàábf7‹p" ‹1현“»c®Óœ‡bÍšõ*­Âi´ä™ 9{Æ'§#º¶6'OF£€gëGÞFk]˜QÚ„ÙÚýoû€mxÄÖó]TñÄš f)áïêñw¤4)HÆGµ ó±Å‚…W¨á[NlP64 WÅ2Ï›_*M×ÞÛü‘g¶Š§f:4K³í&¦ôáȈgè=“*MžÊÇó½s7W<@ʽ<ׄ”©çÃä?0Å*–Œe!K»€)Öy½ê|kÁâyº›(m-¬ «Æ4ÚVé`=.§˜²«‚SÔ¡íürËPÏßip[T]TÀÓ>âw‡u­¼YPà–—Ýe&Å>¸f+ˆº ˆÚxäU›åÔ ìÍ ÓØ ⥖{ÎO•œ&WµÜç3‚˜F¯&ÄÄ'o]˜ÏéúÔRL MwÈ{JGvüÉ3x˜[z°5»pæ>»èÕ$–=¼%Xøà"eøMÄ@÷kÇ*GÄó-mdp/æ)Dšózt€w?ýdnîÇFÅÌÌ®dÿ6³ó³¸öåj/b—ÇG.^Fƒª~zYþÌ£0šfôV¯æòŸiâÌ2ÕÏ­±Qû¿s .·L7ÂçOÂ…‡ÅÂÝ?.·›©;ñ8¸0P&5Á‹Òf/–ŠC[hiñ õ²ÕŸT€ä¦õ¾àÆJºpá+…s—çnOµ&H „$‘·ç¥ö!Ý!å#äGH}®†žDFb, ýöMºdrlC½ŒùITe‰É3PÂ.þ==â§Ù,cµ»ûcË,f®P[„ ‘°\U/ýД ûMU^=Ð÷ëìk^çáI¥µ«‘üë­’mYþ8—Ô{ñ럤úwX¸>£¶.d‰!Úò>w+FíQ‘F‹WÙ¤¡—ÎÙ>œ-7®¸b[¤ü<½&Ë%,g.Ï\®vükÚŠ«¡æÇ®Wµ¬ Z¢3ZÕ-w¸À;ý‰cxödÜíH_H˜.xÉÇñ:µ<Êk/óÒ– ö½É+Ó.0ªÍ3ßéØ;ò¾;¾jñlþÒ”²tﺼ’mI”ß \ãˆK‡}tÄ»)z"qѲ•ˆš\ï]sWò.Þ—mî}Oáø@MñðQ ¨;]b¥è‚ŸÙìù¹Ô¸j>ð:’Û|ñ}å Rv0÷ œÙÌ—ÕS8}•xó¶ÁÝ3¾¿¿®?ÉÕæ »Í”L$gA¬M¯þ7Âöuïà_…4iÑendstream endobj 95 0 obj << /Type /ObjStm /Length 2275 /Filter /FlateDecode /N 92 /First 803 >> stream xœíZÛ’Û¸}ÏWàqT)÷[jk«ì™uìÊ:vÙ®¬ã­} %Î IœHÔÆë¯Ïi’ ¥ñxfRµâ¥ÑhœnM@Ñ1Á¢gR(“Ƴ™òÁ´Œ¸K¦KF’\3ãî†YA5-³Öà®„̘¹hqÌŤÌØ“’ {R±`6£"¹’SEÔ¨£Oµ¨(”Š U0(ý¬£7&5 I…¦´%1^4uMœ1TË&R*XMEøÙ€rËNÃ!q>1&=Õ ©÷d¿@-kØ D‰FÍHœhèE"S‚Xu%ˆ˜’ć¯Ê†Li;F2eIS–0¥²Ô–1Lê®±LEIÇ´ à"MŠdT+ꊉLC„®Àeš¸µð™ ¨…ö´ó©»Lû€&€IGBh-<€ƒ>#,Ú²6¤ðàH™1d}3–èu’¼êÀmQˆ?ÃLp0ˆŸ‰ä8pdtžYBGF­JdGf5BGzÁ¬AŒH/ñ±Ž€"7! ­#7y„Zj p­Ožeï©–y>³Á“¯"sš¢½uŽ‚$Hæ<F’T¤™O£^ETQê’c™w©ºgh!þé»ïÞ,[–½Q-Ø[¼ ú0hºgML÷Ïð`wÏpR§òý÷Œ¿Y5ÓwUË~ÆãÅsÆßWŸ[ö ŠR+«®Ú‡~¤.F·ºˆðßr3Ÿï•Ÿ•ë*Áâçï?||ùúÏç¯Þ"NøózµnϯË<׿¨ÖÓU}Ó6«DN²ÿcÙ+Ñàï6ŸÚßn*àÁUv·¾Óü§zÖ^¯¿]/vPAö«ó"m ˱¦Ž‰¡º2…uã]»­îE1ò”Œ…Cl©‡¯%ƒUÌ:ʘÂÄQë÷Áž©{YG³+höQWò^Ø3u ùQi€’£¼«x/ì™:xeTá0BFÔ·1ÿ•Ø3u`w†°‹ƒpLÓ\¦î1”•˜Qã&æÚB§)£ˆ~Ô¸µÃžÂ(ÍT^Š£<º, u¡1 bú.àÛmŸÇ À|© îzT=ÈCuy‚µ9ÃBk˜’àÇA'¤YOS°s©–CÒ=ÆÖ˜Sê1‡NKö ,úºÆ4Œ¥3®~=œIÚ˜\Û`"?Å`ÉIG{šGÖ£+L Gí2b³>åSïÀ—h“cS’õñ€€8ŽÝ{`ý¤Sm4¹SM<…݉ñ!å ë.GS(šÛ@WLJË]•áDÈ85ôjv£Ö¥QìjÀ»ãíëû,`¸ØÍÏ?¼þô¯jÚÕ~¹@ºè¼ØVê­ŸÃzµl×(êÙ|UÍêòYóÖHÙF pŽ#1G‘Õ7å 5åôÎ}[­›ÍjZ­Sþ™DÝRþ¦¼ªví¬ª²­›åEÙVììâ/Xi0Z(L—ÒNz$ goñòª™UDgg›iEš U(ÈÞ×í¼"Á_WåÍu=]³×›öfÓNnç-/ªù¯U[OKÆXN›Y½¼JpÂý÷rA)ˆ:™œ7ùäY3Ÿ°«ï² ¾>OŒ@ŠqgìûË›Ë Ðû©D§·A)¿1س8¿Óø ?áñ3:~ðh·›$xØ&×÷Ù0 øC':G:ðPÐA<´;:Þ÷ •éðÉ©Ó÷cú÷Ó Õý@Ó†å-ÐöèÌÚlPÓÂßê \Ú÷$UÙÊ>¡ßÛ×![ßl†m§¡o¤@?·PÿÞ ï™ Žî?´F@ÓçŸôÛ’´å¢(dûZW7ºN}µºTÅè騶u¡ Mù¯UÇ]› ã‡é´w*W˜ôdB,܃®deûóN’Ü)Xï®ÄkÖ5½ _@Ïø"`îpxv:B+:ii«!£³ªIl"Xˆ©–ÞÚëjö¶•ÀÕšmÒ¢­A!ÜîÅÆu8Ú¿‘£-AØ=©‹ayª‘dV:€£÷ ûº;­®LÃt%¸Ý󾬃Û=w×®½ÎFôûV‡×.ÓxºNK¼‹ÈÎË›U}uݦY€Ó¾? ¾3þ”_ðø þŠ¿åïø{þÿÈKþ‰Où´Y,J>Ûe¼â—Püš×|Î|ÉŽ€¯øš·¼ýoÃ7ü7þ…©V ²A:r æŸHjÿù¼¼Z³þ4âY7ŒŸ€ó' Ùj ´-hSñói¤ÛîV‘¤ËºòCŽ—m9¯§O—WPHÇÚjñ† zˆ N=ø‡¾ûFËíˆø±^Ô-MÖgÓº­Š/ `Ÿ]ÖW›UUH=!8Ôð†ìwvš:.Í$b’Ž23™œ¤cÍL¦&é„3“éI:ììÖŠ[@·Zf€4æH*tXš·“tnšÉÜ$¡f2?I§©™,LÒÁj&‹“tÆz¬ÚcUf+ñ òæq¨rq¨rÕU9‡Š8T>—*ÜÕî±êq¨D¡Ê)TD¡Î)TD¡>èQ¨s Q¨u&#øâ.VµØCu£PIƒŽ§3ÓD¡Î)ÔD¡Î)$¶D®F9©Ôoï "În°â¦!0“ˆ’9QÄ“Ìy"šú=àÞÚ„þ³0x§Þög"ûöè Gàu:j‡ÎçèvÅô'‡Ñä7”$®ÂP’†YL™\Ǔ䀻mîØO}tMwÓç\¦Ï%MŸÎ˜}Nyœu¦4ð?µTwÍendstream endobj 188 0 obj << /Filter /FlateDecode /Length 703 >> stream xÚÝ–ßOÛ0ÇßûWD<9 þ{o¬Æ4¤ ò4´‡ÐfP©4( ö×ïÎv¡M…ŒNÝRÇg;¾~|÷õÑè*¢Ññ€>µ4bQ|9;|ÎûGRF6µšë(ÿ1.SCy”Q2n£|]'–+’ÇŒ\ÃSƉ0‚ŒbÁH1Gà -œÅV‘{0 q¼˜Âoåz?ò¯O^D g–JÊÂPÓ±ý#³ê”L-x™0–Z¥‚O),gqÂ(ä`2î7¿W„ …o¾TuøU:OxFðR Ç‚“ïh­+?ùÛ4¸^6¶Š‘4N¤µ›EéLéšÙp‰1¦‰4kæ6GhÛÔøËÔæËb°-Ü)º×S4ÏàAÛô6tJ?xV†ûÚatá„ ­w­ 0òÏ¡¼6¥˜}+0½Llv¶Óƒ60ĘacVú5'j¤öàgÐn^Bé¿`ŠnàÕd™ª²Ì3̼| ŸäÄavïþ#PYšÚ¢,UD9þÝ*‡å62~#ã7:¸u¤AIéø­´•Æí zëYÕ!èc/KF”~gr™U5âÕRÔÅ8ÈH`å1Ü5Å¥Oœæ¶”³-ÿÝ-°{EŸÔ{ݬêÓ°rò±nÖu¡i¡vÃãÑö);aްr(ËÅ2@h9å>iî/á»{=ÃSÓ>DU/¢ ·¸Æw4µ7OéÊúÕèù#tnã%àÒ¤šµ$³+ù•¯$v({û~¬)ïƒ4[–xX,ÜyŽç‹˜ò¸^çîÅ j ,1êçØ ÓöZ¨µøBó ™/úÜíæTÇ8ruÓ¸‹f¦þ³P• ¨a˜)™JÎ"¨i ¡'ºׇùà7±Z6‘endstream endobj 189 0 obj << /Filter /FlateDecode /Length 19 >> stream xÚ3PHW0Ppç2ÀAc(áendstream endobj 190 0 obj << /Filter /FlateDecode /Length 3285 >> stream xÚ¥Z[ãD~çWDó‚["Æ®*—m¤}`±bµzÅJË>x’t:‰£Ø™žæ×ï¹ÕÅI¥§‡îØu=·úÎ¥\ÌÖ³böÝg…ü~}ÿÙ—ï´š•&ׯªÙýìT&o 5« ›—ªÝ/gÿÍÊ»y Ù÷wev¸Óe6žà©¿›Ããò¼áeÛSßÿîÿñå»fÖæ­U×+fsSæµÖ¼Òý†­`"Ìüi¿Â™¸ÔþÏ®t4ݪÜÖ5¬B³Gº§EÊì[øëào¤÷«½M•ÖOî0j™Ø£l{}kŸåב‰ÏÃõ^U•WEã9"a‹;Ugw•ͺõj`ž»“ã_eOwªÉúÓ#´ TúÓ€}2pø%6w;n2Æ Ò0›—Ê«¶‚‡2o+ËÛÓÎ!º?ô;üY“qcMÖ¿¿›W&û Ù!ùݼ1ñ‹# ¦ÔØŠˆ!ÅmiMj£18yu li3îUEÑòÓÇ 'Þ™Ãm·ÒГh×nA¦°âç}$î‰Ò á¸bŽ`Ø7b ;Ñë›ÛN y¡›×XGò-Â>¯´Ý‚b&¦K\?ƒ KâìPMðߊA'Êf+&žZúÃ.ÌAûØáŽë šÎ(¼JïÌ–Z U¿¥Á…– W£Mö ¶³"iø\bu"ÚñøÊ†?‰Y Ú©ŒuKZβñ"Ùe1áÅ7’Tfºœt»˜ê–Ú‘áį°ä>ov)µX“WZÇެœlñJJÃc+ñ|p†/f[f_ á&{¦5ˆ‚'¯œ–)zæNŽ'ôöÜÇ¥;­¦”w£;¥ ÀC9•g`N¶NRE{ÒqG¹<3lIg4‡ú÷ý C ÄÁD:ÁÍ’{À~ìÜêïÝQɉFð­13à.oš’)üÂ(O©ÛÙhP¿®‘bÂñQX1*ˆ ž‡Óí7lâs°¢‡Cxœ£9<4ƒ”°é@‡ÀÙ ;éü,»QNå’§üløw½:0‰ÃÝã±jÈœz1‚‡³ƒÃQNʵ9VMÞ6æµÖXˆe°(ïÁº.v\ÕeÐ zr|Œ£¼Ø6qør+çû¸sgô™ýDÈJþ—e!ë2¼™‹ dú‹~r®ÚŽB=•wÒÙÚx©  ¶˜Zj s©94į%öü+¦””ÚæÊ´¯U!M-’€BÛm‡°mÏT³NÜú]D#ñvXï„eĜÒTe®J;•Úçže!ÚùèÝßÜ(ëéê ÉP“gqÛž8u2Oœ!=ïñ”w‘-œ*š3Þ@hUè\ëú¯ÆU67A+I;©• vmÌExU›×½F_ÑTÊÖs°Ó´-”Y.¿ rM‘Û¶íâÔïQïàY?øá}78£®Åœ¢NdÀû‰×üñ“x£7<Õyú [šì²]¤¸RÅ$8X¬Z{¥=!{ˆt5ˆœ[›7•ýÔÑ&†ªŒbƒ“„ ln@vGäƒ}ñëÞûÙ劸¤Î‡þÄýYRx^2%J¤÷#G‹k®I¼«}4è&ìY›·µ}-.@Ê¡ô'pA8¸Þ‹À±û™Dó># IòàýÏnå-Y[“½j£Áú®ÉlLüÀ8›ÒŽ Ì\5‹zùeA'€pé˜ÄxûÐ6ðweâ3‡Ž#ÿ£ ãŸ9Ç8àR+qõ5¸é²½†©¦&éêÓÒó"$ü.ï}Ln½Ä¼çÝ„ˆ]´q+ÜkÑýx[Æ%šå$¥8F5Õ¨y¦Ð‹¥[“›=;ƒ É[î6iÔ±èÁp 2ö?à#æe¥ó²¸€Œ—؃l¬Ð)TÒR™ F2ý*ûÍÅcèzÚ00¦bËöà¬ÁGWÜá <•‰Ô \¯›¬ ¬rk½ }þ* ê´Æ,yéÈ¢ü𯀠ðno€r¡È—}2Þº•8ת¬N@'¶2tÒc¬|¿$ £ýâaÍÃÓ€‰s-à!„O:±FÌ$ÛÈEfÏF‰Ç™*Õ¹Ò*Y0Óiq/§eGÊ€C—u^×8ó!Æ×$ZçÆ&].ž­kQ6® sM$àEUz^† f 4±³ª!}©_Ãz”¸LY?îÒE8Ýäå4õ>ud³ìê`_ÀއՑø3ÎIrµ†¢éœ›êƒ‹¨¸<ƈî¿(/²»“‹œ£ {›+­=ÐÁã°ò±É kR`Ù‡-OÞj1³†´š|ù.ÉKÑJ¿‚sÙbÿNê{4ü×¢*$åêwðRr§*Eü­9èÒŽâ |Ya Xï éøêá™pBÕâj‰†‡‹2š,Ìú*".ÅÝf.µ:8ÔiXKçEnt¢>–4\ÿLYë´§ÊfÍ>ÿ÷ÕÕ‹ÕÇ {¸F÷1ªFÀÐ(“Â]',rt¡ÄdV%ËyN·‹°G02¶° ' Ùí\±£’—Ô¡ âYB€Gн¬W\æ‚êÜýЋ%ÑÌÁkzçÊĸ„dj4žá’væ)A¢nÉ“UéMŒvØNC1Á52áIÆû}kGQ$'®rÁoÒqq~W¡HE¸NÆ%S\ªy„»œjÝxo$yºŠ©SûΕL8Ƭ\åx®«:ûÑWªÚGÛãè÷Ç´ù°ä!ßú€CjbR‹®·G\{ug{ñBTSƒë©}ùè«ýs7†Ùà?Š#…#_e÷wuX[¥œ[ Éxv˜kˆÿ…kÖ»F¥¦.H•×ñrWøLÁáe½I*º¸À{)cº±¸ÌCJÔû´iRnòÚÚO%ÏrÜqí¿Áß›H3ÑŽ»"x“*PUBÒršƒÅ~ !ÖèDõ墘ò¢ 'Ž\Ié’%»©k!ßn¬´îìåWÞ–Ÿà¹6F~ÞÕGHqü”e»«{šØÿƒï£xÄ|ЯœŽ¾DÃPAçpYaý€ðÄP8ODðM•×E^AóJi/‡]š×ªÈu˜Õç—âvHO‹ÑM  «*rýom) ›ct[j÷8ÙeàþßÂãG>‹ð®²ážQÕçDÕ¢nsj=_¡^Êì¦ÿìËšPWí4ëRÎXµ·œ± ‰;ŽJ†ú©²l_âz?.†Èºº:!ß.<Ú-ã§SçýôJèõçe†!$ìÖLm–3HÏîél3jòuvòu‹;›¶y¡Ð\qeÍÝ_;Ks˜4;[PEW`)o>05X S¶;HŸÿ>® ¡nW!JÈ`K3){÷Bî>ºŠw¬t‚£ŒK¢D]å±S´cB‚W®@ÇhÝì`¯/°^ñÖ^¤¢wRà±?†å“rIϽHcÛË$šå|â_IWÛ¨¸…3Â'.npÜõÙ!_9§©í¤”©år} ¼¹2\±TBÅŒfþ…eÃïÿà “lÆÜ2ÄWAä#sd­ÈÞ:À'zΫm}f´óat­ÀÚVL qï¦ÈLʉ²Z©rÝø¢àIŒ6>vN››vUÉë™”èªÏùalcœ„÷ tÁûeb°eö 2)Sèžw·‹neÝM´ÎÞ!Î&Ô¯¹‡=$Èã (ê@¾ÎÖ1¼à´“sŒ«(O{÷)»™”½ çÃeÕÀŠËc¿èü4$uÞw׉¯¹Tö(1ÌײËý¤„}í€jc¯oM&ßß8A/ºuŸ*M—yêï/ëi{ú½ï>)Ї(òºTSI_Yš-®3@hãšCï"ÒÑ']4§ >Çæi¥Ü*ˆ²“"~«½Cû<ŸüñwžŽW<¶f8p‘E*¹E3Ô6Qž&ºñL'ÁIð /•»£ ·®L‰Õ^glõákŠ| àï´¹ÚéL1þTW?ÉW [ïN¡—¡¯ƒðœ>~ã²<¡æ¦›ÔrßÊû“XöGæå„yñS^\Dr*Á¨öŸ.œséè¯ïC|È@ ½AŒøUÇÒSÉŠ·’Pb-gÅÈP‡Â¥Ét7¾‰øy9 fúßÞ)þÎêÐÝèf^‡·ò®&KCG#BpÕ®¢Û…{xt“µa[뉋…fW¡’q:ä‘Ð)%=®¸W‡â\í?"£æçù]y¥ e\r1„•e:ËÂ×hv„¼Rpö9«U©„ ŽUU8 Q2«¤Ä‡lì<ôà¾h£~Ž>¦s¦¡‡JWЯê÷ÄnÁJÙ† "?2L¶þýW ³ÒBüo+0*ok„™ŒùûýgÿÓ½ÿendstream endobj 191 0 obj << /Filter /FlateDecode /Length 2801 >> stream xÚÍZÝoã¸ß¿"HV.Ö:‘¢(kÑØk7Å»mpôö…â¯äb[>ËÎÇýõOв•½ ½‡}P,’Ãáp8ó›*ÙÙò,;ûû«L~¿½zõÍÅä¬J+oýÙÕâÌX—N2{Vf>5¶:»š}N#“´óÝhl‹I²‡ÆÍß«dï;xæóümÖÜ‹ ¿ÞÔ#[&÷#;I¢)‡üYq{ŠÄ¤Ú ³FFêkøõIƒ«ï…¼Þ¢0Ü¼Çæþ<´Ýxƒ¼pjƲ¢|<¼Åe›=ï£%bd¾šq®W*íJ6Q&ÍÝèÇ«€ºÆÆ¤UQ°NV"Ê݈æ˜$]Y%ÿlpÑùëÑ8we²ÆQZƒ6SîG…OêÌ®÷,]î †g-퇔pÞb§Kn7ü‹ƒðn’åªã°•…H„V¸Ä:Ñenº9Èh¯«CÜí7EY…T©Ï ÐíýÈþÒËzbgˆ×9OmʩթuKÊç9ÚYqªÓZO-ÄWhôf™%Oð:®Õ"PýÖ&‘o%LÂæ~%2ÂÁ؉%Q×G4²9ÑŸÍlpe\sŒ´b¡stÒ ª´ïµ´ëGµ_lì: ZlfžUžÀó žwÈëÓjâ:kgèuèÒöuz¥¾—çCrž ç‹43>–í1Š/”Ü·°F™ÀÇ引¿€¥ÛœÔñ Kr“è‹ACæÑ}Ùât…û\®2ÿ Ï¢«Í2öšW8’sEãÓ#;í3PâËÇ žß”ëmj'‚þ,®u«ß{:á_fÄÇAëå+=†{ˆß‚Ûe$çBÎg'ûФx*4o¥­g÷í{ú›I„R\E…ö¬÷éôWWØ‹ò 7ÿDŸéM £‡š䟩H²–ß•,»õ\ìƒè ˜™¤€ç;ºgÃúÜ+›]÷©ÄTÉï:GAÀ|ÏMYBU³‚:2¡Xª*Á~5Jx#ä2LÉɰ2~ßõ^ž¨èúQTOþU©'z¤N7½®ï¥ë=9Q¬¶OT~i¡X‚£#-ÞEXýBó_•ý58°ûºK`°yà\¨—œ³?¯+zu%MÈÂ?åоJs_@Ä)Ó‰eõ=úwW¯þ Xn_endstream endobj 192 0 obj << /Filter /FlateDecode /Length 19 >> stream xÚ3PHW0Ppç2ÀAc(áendstream endobj 193 0 obj << /Filter /FlateDecode /Length 19 >> stream xÚ3PHW0Ppç2ÀAc(áendstream endobj 194 0 obj << /Type /ObjStm /Length 1402 /Filter /FlateDecode /N 92 /First 814 >> stream xœÕšmoÛ6ÇßïSÜËC"ññÈ¡(Ð$ó¬Yƒ¤èºy¡Úª£Á±Kºo¿ÿIrš9VÅM!°u¤Ç»ãO$EEEG)©èIi|"“v×@ÆH9’qtš’5rUä¬ÁU“·WCÌR¶œ”Ekqõ½”™TZ+RÊ‹f”žP£Ð­‰¨QŠ”e©ÑгVðÀ±–”¢ãHqqJI ‹wR#nô©¢EN¥VEÚÀE­5i _´FÁÁ­ÑÀ_‡º9ô‚–|b­Œ,¤Ò©IÉ(ô¬"£%P£‘(ia  7µ±ŒÔ8ä®Vöd¼¸€ZÃÒRi‚ƒ°ñ;¼#›ŠSVAŒYMVÆD#ßV¾¤?k, ZGÖ²({²ÎI C`$À²Þ‰ɲdÕÁrH‰ÃØ¥’§!Ä´i§uí,„(‚#§e0˜A`r¨‚ÈùZ9B0’¿”+`9 ÚÃrFÚ§’oÉ+/:޼®užY~‚å !£à£€‹hY¥Òœ‰ëÑCŒƒ!`ˆ0ÂÄV†2(b'ÈMì…‹ ,#[0q¨•¤D&ì~xñ‚’ƒ¬ÌG‹yEÉù£Óƒ÷?žœædT,Ëêð2["t” r”—ãeq]-–µ‰”Î(y“­•4,¬>Uÿ\甼÷j.MSJ~/&ÕeY;! _¾¬{?\æYU,æGY•Ó³£ŸpGbÓˆo“¦Ï[tøì …“ŤSñt¹˜¬Æ¹h’Ù×ûuïŠj–KÅ/Ëìú²—ôvU]¯ªçëî¿ÿ:ŸýWÅ8£äçùx1)æÓzº¨ƒü-»’8î&?Rr|x(F'Ì&C7ÝØE.æ¯æeñµâ¨øü9_æóq^ÒG OÉU1_•t±îáFµu¼î±znÜA»,·d›é:9ãó¼‚íäôh£ù—JŒxûé¯|ÜX:¾ÒBàºÍz€ÐQ>¯JüÔ˜KNòI‘,¾ÀXŠ?ݾ ¬ÚQŒžfˆ¤ßþY^.VK‰L¦Ýºª‰é4›æƒà@¦ÿ^t˜Ü;XÌ&÷Ø5ýøŠß…/Yüš¯oǦ½˜v²Õî¬ñ0YÃ’ôø9'ê¡Í9Xõ°iêäÀîÌ2å çÚóÐ9gÃn¿9'º!Ï9²±òݬq?Öd¾ ›î^à+á“’_‹‰äC6ó¢*›ñúÚ,;ãæÚÖ»6å7ý†;[9 ¢5? Ñv{†6czy<袘×[¬(Ü2}À6ìöŒS54Àð´™ênÀÌî€7LÀ¬zÀ6ìöÌyMÀuÃæw‡ÍêÂÖs¹ü/> stream xÚÅXÉŽÛF½ÏW>Q€Õî•MrI àÄÀÈ';Z¤–D¢¢4Âü}ªª«¹‰cǘ,QÝÍ^^m¯ª)g›™œýt'ùÿûåÝ›·FÏ”Ʀz¶\Ï”¶"“zæe*”ÎgËrö1Ñó…‚Éý¹˜«¤.ñy*ç ã]²„öî*ô龜TðhpÄ&ï÷Ð>žià÷å/oÞf³\ä©Nñ<9[X%¼1á¤å–v¢iÎôæi)œ…Ù4ë&Ѧð;ßî "hïãä5LºÔðX!„.«˜•É‘¡ƒ/·S'û\d^ÇÝâAb•Üóÿ‰Ç«i1.Ïûø‹Õ\ûäϹK“bƒº³0¶oƒw׆aâÀ)Ìø$•…îã\g¤px]â±0n>j\}†·&O#¨+¡š-T&…Î2h(‘»4"4(^Ê* ”mlL§ïs˜†íyÂÇñBf¹Å|a­a#6ì°~G À¸ðRF·~ï+ Ü1·Ž#³ìŸ´’£5ý%ÔŠêý€gíXG <¾8wp¶U½ÙÇA< ½ô9l‹pÒBÁ¿vߎíj`Ï Û‘)ÑFÁÿÀßð\>ru$ƒ¡»³ƒÐàüä/€˜~;Äå•Ü.s…GÌy ˜ìµ-Ò}ç=þ—õ‰±"Ë’uO¬)<¿;|¶ÎÊ¥ú<“áBg#4 ~Â>z̆ìÒw'ÕT¡½¥\#gâÚ°©xÅ.0u|=ÉÊ;¡2?Í¿*üÿÄþPÝ µz@€§‚H4ªe„¯ì½9#…°:i< ´§­©±•ú,•K!y¥°ÿÿurfíb»3P˜û,ƒ&è%!A.Øñi4ÄmŒšjX—Óús²Õß+N 7Ê}4꫉$¢…–m|GæÀÖ%ËÓª„ºÅ¾s9P]Ññ §Ž ƒëËÀºôÂ+5Ô峂I!¥îËÕ’+ü6_–ÚÊ3H!J)m(°«qŸ¹ªÀ¸/˜’>ƒG¤íŠÏ0ã3.«H`Õ2L.¦­cEªÍØ:ˆU&rŸÅ‰”'6ÓBåv¬‘©½œH;šxðòæ!ˆ´¤ ŠëÈ™}…ÃmŸ¬´7Bƒ( <’©a>TA¡A)U¨îCžiI<åÚD£$Ô‰®…|N¸RÙ¤¤â7ÜÔQç0ÌAm”kãŒÆ/ì%;N{Mi¹Ñå/¯ÄLkž#8³ÉU,›€380…ƒ‘J87 ‡c¤"§F™G6¡x؆ޚ1‡ ]\¥É¯Ç«¬|šÇäK9¬×Ÿr×\ÈܽT¢ü=Ðùˆ¯h:,ÈË®n${ÏS¹ µ¸Gùš¹Ä¸M¸¡òÜ}#›Pƽ Ï8)LGH»Ž/¸Šù"¡n18 %ïþn«Ž¿&âQ¸NùQô“Àû‡]1tžüpS¾Ãà»¶0 u;ÍÍ 3‘œS¾¯µ°]fB+íšXòs L®Gƒž÷òâ­Ö3 Ü"ñh>Ÿy°à»ˆŽ¾ ldò¡âÌ„š¦Â?¼½Wø-!ÃùÚ¦º-&ŒD´~xQœSs3F´mˆ@gäì'?<„71?À ëz§ 8 ëÚ~±:Ú™’Eø-}áh"ô®¤ì¨y[ª¢A®ŠŒípOä»,á0`ø5}XLv8žº¹M,›£q°__C—Òz¸Áð„¢·µI¨zSñ‡n±„]QÁtAaœ1hÖªÂNzzf'“‘!Þp®p¦Í3 ûtߊʹy¶¹ÿR…h ýêlÀ&5ÝŸ0 e®¯D ÷½Ñ w(ÏÀœÖ´ ì:kv¬‰,“Íøü?Ê2èý™‚« —kƺX®Ý´›öTü$jÓÎUлÓƒ‡âº ÛìÚcÀUÚï6}ÿÐtòsÅ:ÝòÐém>ðd˜SGN$rdª? ¼-~&\ó-%ÐBW\õꬺ÷¾FÒ7ŨøsŽ Ú~@æÂ¤X)š\¸ŒÌ“~\ÞýÎýWÑendstream endobj 288 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-univariateSinglePlot.pdf) /PTEX.InfoDict 196 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 198 0 R >> /ExtGState << >> /Font << /F2 197 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 2746 >> stream xœ¥YMÏG¼?¿bpÈf¦{>¯Ž $°%§$¢8RÈ¿OUõìξ&¬H‰ízgç«»ºº{Þ||}äãûã§×_ŽŸŽ:ÏTŽîg)‡;»6çYíø÷wÇߎ__þü×?¼;¾zÿJgJéxþùþ«?ã§½ÿy}ó÷#ÿxåãküÿý+óƒãO¯žÏv¶y||u;½VÆiýøp¦³%B?+`žg΄õôz˜õs¤€³æùôIØÎ ˜ËY5ÚÏ hùÌ5`ï€õ4A\hÎsŽtf@Oç;`tBí`°E^pNøïpǼœ“Wå,„°Ÿ>®gÊ€ƒFl€5¯}Ûi€‡k„ø Ö.õì9`ƒ­ªŸ“7ó4ÂÎía; çÎD‡Yµ¸Â4^”gn% 6´æaɉÓÖqVÁr&ت§ð`kòQÖRئƒçœÇ˜ýLýò `:³iž¤é` ˆãpßF˜Sâ,kØ¡ gÑÚ ·ã®Ç&lô¦ÑÕI a윰O~âJ¢Í츃žÆ™ËÂ=ðÚ¿ŸîÀ•t žüð îÄFöƒÆNœÏ2ž8…rÎg…aa”™…ýôöXx¶ç|°µ+¾¦Î“ë™ûáøqŸ ƒ¶Žc·Ø¿s!ç1c?\lê{ c¢[;S¬7I]Ç1»æ›Âp¯‡ðY矚ovØsÖesÑLÌcáFûf•#öŠîËAJ„W “ÂðO؇AS6—ˆGyøß†XŒõ¦ü‡ˆ$‡Eøã`†˜ {"øËlb2â*ü Üh__û!Jq0C°X¬ð$Î4s`²0b¿&~"Öº-<€ß–þM'72оØÂä'ü[´”­æÇþ%3 yþ˜x´§…òä‚‹Á~#-þ•B Úö¦œBO<Ö¯ÒS¨@œÊ’«$DIÜ«”Íu>/%Çh¦¦ÂÍR \fˆj¦.s£.,u#ž”UÑ€ØÄç=„uòÇ©¬X_j‘+cJ-×ú|¾µ•x‰kðâGusì?hí“üä>ïñ–è£Ìh¿&âæ™CC‰±S6ˆŽÉàÒ~*/wÉvàFg&ª¾0t6CIkì×(´¹K†ˆ! ¸GV"Ÿ3â«Ä÷“Z›¡_®óc!ƒÇ¶p{ƒ|~`i¼vðzK36Ù§6Cžã<ÀV¹9p£ã3øQåÔ]´ <‰ÓŠ76&J6t~a™…A\ògò™a¯Ä“ØÐÛœÍ¸× ð9#m݆áˆC¯€‘99?î‹À÷öœßÈç)«vú )ºÆ(¢uÓVpbՌ䗛º%¸Z ÒÀéLµ-ŒJjh%HÔhË´|±O0¸¹m…Ëܨµ ¡à2’&*„d;ŠŠëû$ÛAT µÛWÀã9¸curóò½1‰Õ·"yïoÈ­Vµ^ò…ÉM„œr‡%an=bßDP.ÜÜ'ä®1ĉ{pyD)`IAÊXÊiá6v,’T™›Ër¹Ök<ó ÷}-µö¶/1¹ í)1^ÄeË¡…R@ô”R듸‡ $—3%ž¸SD˜R•;(2³¯ý&Âùʽ"~(÷c#¦|iKQ¯õ ‚¹½ÅäòÅmŠ(Δ«\H<{ÄŽöLJ0#Ä}YòÚÖŠ6µ¨ZÈ[‘Ô6KËÜCkóº0µ|ð˜?BksðŸ]ù S¼¨khÒZ•¼LjKk[[XZ›"7±6&?!Y=ÖSuk71j×Ç÷UZ‹0­²Oiä'èû¬mQ›Í˜?T»^-‡!ÐX»"߸ç•”Ù ”(¬‰Y;\Ý“:{1l#mSR÷Ý–¨OðÝK±g퀿J̯äçݰs`³uòl,jݵ:»Õ«£ VíP£V5äZg›P£5äRÔ®wSAÌ– |¨ú¾©(amïžì ƺOSÇÚGµ f۵׫ê»À—ã*bUkêü€ÞÞµ 1kø+ÎÜ >{¶µ_—caïÞ€Ej±]kó`Éw­¬&…½€G-l]Âs×þlZÀg‡lÙ…[ÕzJF,r­ªO:?rij»6'f†´2bþ¤c÷}€ȬÍCŸATöi‘b‰M­ØHË~À#jÙ8 Uæî• i‘|î5jE➢¶×ýKY»^m¡!™²v¥ÙóÂä3ÜçÇÁàÈÇ÷Jû|H¯¬]‘ÃßS‰Ë¡—¡gSE§Û\çCž®Ä#j1†½šµÈÇ\ˆ½â-òò+œùM÷á2q^þî1®Ú›Ž?üŽû ŸâàŽx|ŒÄæˆé ‰àc¯'b ×*jñˆ37¾ç“(ZgØÄ÷E½Ø“Ÿˆ—ßë <ô…˜½ÂJúíH4T§>OaÒc½A½õÚCI<í^?+Ñó{å3•|¾¿G  vuÈìMÇ@o÷}€Égè—ê5¡Mþʱ^£a¹l¿pëŠ?å_gâì»w%±ùÙ:ß ÞÞñêȧìÅ®x ÞÌ‘_kÚ½º£(Íi÷ÚÄêÕú:òiÍO\ã­àõV`?$ùÌrq.<}÷þ$¦Þ n<ã­àÉç«w—0nû¸žªî^Ô‘_磷uäWöb½Dü;òkî;¾ˆ¥·KOù–z{éµ#ŸæÇK qŸ[ïùÕñOL½í%ê':šz{õÖ$¾Þ V¯Ì·B¾\½1q‹^·Ç¸ë­€%|^xØîm½Ôx+H˾‘èÞ`½Œk½oëmÈ‹ÞØx¾ãzÜ»ß2Hd¾\zã,\Úƒ?ÀKoU1Щ·5é5o×[qóS8ÆÖ7b½¬^ßùR7ö«*üî· b¾}íõ¦ôöÞ«·‚¥çÄÔÛK¿ÂË·/ʘìÅDÿxû"îþàzYéíXþ&Ÿïx±Èg”¹%¾ïLÜ ûà'°Þ¾®xƒcjØ[ùÝ›ç¶9û#Yèõývâȯù©]ÄÖã/l$æ~k!&Ÿ¯·gâJÿ£LéÁO†Iñf±ß >_˜ŽxÆ;p³ýVçpô>óAözËqü£‘%ò»ãVv>%&Ÿ¯·KÇB|”½ãmèï»Þ¾6Ö£Ë=ûP"cÙ"}|Ï×ü×»ë½þÛŸá½þço|}ù{éLJ¢³8×@ü˜mŸ ­þáãñ›ÿúøÝoß¿~÷A«_Ós¾x,•CŲ²8ÿý»?^ÓyÀ_õÛõê¾~Yññ ÉÓ8Þ:¾ ˆmk¼é¡í¸Çyù¾Ç|ŒcÄã÷øÊ ÷ù>ÆŸ¾Ï¿Çµ÷º8VÔ2Òø–Rû"eü÷K.üå52ìÿ³Hÿ¬E†é““ô·'‰_<±_E?óqýŠYŠåŒñé¸Ê•÷8Ÿ-@¸k|ÁÇxä“{|¥—{|mx?öÿ?ÈŽ”ÈÞ•ixË9>#TÖì©ÇOÍžŸ=›íT“³sJŸ=ÝM¢Ó?ñÌbé«$}º¢ì‚”kսˌoáõ1Déõ_Tã‹=endstream endobj 289 0 obj << /Filter /FlateDecode /Length 1229 >> stream xÚ…VYoã6~ϯòR ˆ:h.º)¶(Ð#îCÑöA±å‘,ײ7›ß¹(ɱ‚BH‡Ã™ß ©ƒM ƒo´´7÷Îƨ2Mm°XÆ&ªÐ6Èu¦Œ-ƒÅ*ø+´‘ •‰b³áû ¿D™ +èáßaçÅ.OÃGÔØošQò+ö;Té£?Ý?A©ÊÌf¸§bW(§3Þm±åuI’‡mדiôh¶…ÿÐŒh“ä2îktjG ¸ ²= ²°Gû]dóðE¦«=·gt›£K³°"+ÕiÜk Ýó‘æmá…»=›­°)BôD&ÜLœ< á+ #&ÌßDìrØï«ÔóxÒ]¡°Á êŠu¸Fº–un#cÓð SŸ=pö5¹آ3ÐdaG†ó±Ð]Pï)iȹ?£Â…ÝÙëPÎOusI97Ts]L1Nt9‰’%¯0µªgØÃŠ;¹‘4^OÇÑÞ²£Rò%’ÂC7I%åeرãî+Š; #¨œ×—ø^6¯)PØVQÓ2ñä$W¦1ÔsA/; æˆ5?ñCŒºFÒÿaWÂ$P«°I¡2 _PæOö$øÔ¬SíÇexeÅCÙ…£kXNGÒ4ži !.žÒ†H»Ë+cö¾°©S¥K|é¿vìê®°ðˆÑÃ]!{LŽpÛMÙçãHc[h¥]v‰ìæ(¯˜xC|’Ó”]ÓKŒÓŒ'¦7 &㑪RËÄ&¦\Çm\¦¬.}_C„/Xë±À}ÿÏRœ?]c‘Z0’LîML¾¹ bÇøÚ$¾â˜ÒÙ¿=æ"iýûbqÚá ¦gÓ…JŒ»¼kZBàYhï²ü tB— Œ½iV+–vklµ?6êO«Ìžiª\6ÐâV®Ô³˜îè©týîHT9¬éäyñ® kJ¿fxiÈÖÃQ‚€á‡9áK³|êãJü|÷¸îF®æ^%> stream xÚ31Ô35R0P0Bc3cs…C®B.c46K$çr9yré‡+pé{E¹ô=}JŠJS¹ôœ ¹ô]¢  b¹<]ä00üÿÃÀøÿûÿÿ üÿÿÿÿÿýÿÿ@¸þÿÿ0üÿÿÿ?Ä`d=0s@f‚ÌÙ² d'Èn.WO®@.Æsudendstream endobj 291 0 obj << /Filter /FlateDecode /Length1 1952 /Length2 14521 /Length3 0 /Length 15725 >> stream xÚ÷PœÛÒ cÁÝ 6¸»»»»;ƒëà®!¸»»» <¸w‚Kà\¶œ³÷ùþ¿êÞšª™÷i}ºW÷zk(H”ÕDÌM’Ž® ,ŒÌ¼1Qmf33#33+<…ºµ«ð?rx M ÈÅÚÑ÷_b  ‰ë»LÜÄõÝPÁÑ ëf`a°pò²pñ23X™™yþcè∛¸[›²Ž@x 1G'/µ¥•ë{žÿ<¨Íh,<<\ôºDì k3€‚‰«Ðþ=£™‰@ÍÑÌèêõ?!¨ù­\]x™˜<<<Mì]A–‚4ôkW+€*Ðršþ( hbü»4Fx €º•µË_ 5G Wð.°³6:¸¼»¸9˜A€÷ì5y€’Ðá/cù¿ è7ÀÂÈòßp{ÿÈÚáOg33G{'/kK€…µ $)ÏèêéJ0q0ÿÃÐÄÎÅñÝßÄÝÄÚÎÄôÝàOê&I€É{…×çb²vruat±¶û£F¦?¼·YÂÁ\ÌÑÞèàêÿ?qkÐì½ï^L®­ƒ£‡ƒÏ…µƒ¹Åe˜»91i8X;»eÄÿ¶yÁÿ#³º8˜™™¹8¹@gÐÓÌŠéê^NÀ?•,ˆßkðóqrtX¼—ô³¶¾ÿÀû¸˜¸® 7 ŸÏ¿ÿ‹àYXæÖf®S ¥µü?ÑßÅ@‹¿ðûùƒ¬=zÌïãÇ`þãóß'ƒ÷ 3wt°óúÇüÏ#fRWÔÕÖ û»äÿ*EE=> œVf ';€ëýÁïã(›XÿÍã_¾2Žž¿è¾÷é?”Ýÿžê¿„ð¿±ß' þgÐõ™9˜ÍÞ¿Xþ?ûŸ.ÿÿ¦ü(ÿ¯ƒþIºÙÙý©§þËàÿGobomçõ·Åû亹¾o‚ãû.8ü_S-à_«+êhgþu2®&ï» â`i÷ß6Z»HZ{Í•­]ͬþ—¿ä,šµPÙÑÅú«ÀÀÂÌütïÛefû~}¸¼ÏäŸ*àûòüoJ 3Gó?¶Œõý„M@ /ø÷C~G–÷u4zþ9Å&FG×wÀ{q~ Gü'ÊÉ`ùCôâ0‰ýƒ¸LâÿE\Ì&É€IæÄ `’ÿ/â~·Tþ½[ªýƒØLêÿ ÷|ZÿE<ïÈäôžÝôÄ`2û/ú£SLæÿ@ÖwOsk èò~³ücÄ`þ¾·‡é¯£û¯ä™…µû¿LXߎn …x§kõ/øÞ-ëÁwŠvÿ‚ïíÿïKÈäðOìwŠïGú/ý;=ÇÿBöwgÇÿQ¿“qú|gò/b,ïLþ)•ãtþ+Ý»¹ËûòÃ{ùÿ*ý=·«ø¯ÚßÙºz8þËá°Û¿Zü®ÿW8Ö÷^ÿ‚ïd½ÿ„ÿ3fn Ðûýçýñ>ºÿÁ¾€@O üò¢£_¨Mch×}½¾Ãþ¤ÀžV: ƒÏ2è«Û#2L M]vð&èN$e´umW‚úVx…øÅ礽æsG’Jç“ï³Q‚êÌ~'üi졩⑦AB8uáßg_Í [ÈvðYŠ|g7ndåBŒ{)ϦÁÊÕñ°Å}•ƒ:N9„çÊY†hý ²yŠÓœ\RhWBXZôKO”ùÛ»9ô¼©7bÙ:x¿Ó¶Ý-ÖØ‡ïõjuV—^zƒoŒ¥¿l m>û–ºÚëoð xrã(O>™*7&]œ½”ôÄ[êµÔcÞb…L£uó„ïN»²¾²%}Ạ¥—aÅE>«Êá‘Mßd^À´w!ЀКVy4×>%!˜Bž{Éé>«ZU9G?e?ªFIÇ ÌE2f8MOeíqŸçò:ñ¶j|t+OÒÕ³Ï0d1i™[;XdOƒm±»aI\ÀÞw•ç÷§$ÖÊüTí!oÂc‰® Ûçlµ­˜9™Ýkã^;CóéÂÀ¥ÁY•ôeºnøÙs<ð¼—°5åá僮\€²ôeH2‹ÿ·„laãS&þÖ £¢ÿIE æ\½3¬¼,Ñ ¬Í\ó¼ë«Ž»Ür!ñW ¾l†ü¥Šs,¿f¢ŒÈâ§Ç<&]0FT”Ç’â­Ìã¼èq0½å³›Ï†^;é2™„¦šwO©ÂðÍ)ø'Ued†e#W3Z;Zª«îæ”>ˆ0À—#E¡¬ƒ´)˜¶»¥‡ðt嘿>z2E<6º‰¾SþÚ†.9át¬ûkÏw𻓼ÑROæþßVdU›nzÂ+~ۇˤ‹!ð£æ2 ´pô›žƒƒAwÆ>WÏvX¬ ¸‹D[‰>»ÂºR?óÏŒ @Y„ŸM÷bñ)0¥Är»Ø-âH6u2¤^˜ÚŸñ×Ä¿øÞSv„»µ<´Îéê_>EÃÄð¬>1mwëÂ/ ›iHÐg\h¶»äx÷¦<!t"IÍ!ñ›ÙU ]L}!òV“n5‡l)ç„ÊIwì%Ö‡X3˜Öα³œ‡ûj›h C³Z¾ýÀMuÑ!¸¹Å%—ßi > Ó@5ð… ß±óe6¶)Ojt±¢¤R×?Kìg|”#’D”Xç6[Þ¿E+ Cê@ÙŽFB5ÉCسžçø„g­C¿˜3Y ™ºu#êõ½ÖÓ•õ>mˆœñÊhnÁêò þ›ß‘%ßdOB#Ju’pñ×hÁEéºÀ꾓§‡‹ŠU{žq–ŒG†Ï¿÷óŸ°*ôP!À«Ï‘¾!þtµáB€eTX÷Úñ. = ßÒ½l>xTÅTµ¼Þ›>)¹8]u×”\б²mpLÿRûa 5›Š"ê₺gˆ0BQ棊{;„wç[ûÒoû €7 ¡xÎñ¦©Áðr.ÌÿÅ„µåþí‡ êbc%Ö´¨ö—bÜUoS¶Ì»ßopÕ5ë}ºêàî¤/⣠?ëu1ìD‡wvÒb ŸÙ£¯>özñÛ{€yel*IÓ ™TÌ^3›g¸y±d·²°ZfØÍõp|.ý§Oè®—µkxl1Éıß&»ð~t@ᔣô/úê©fn7rÉÄ`„Væ€Zo=Q­j­¼Hvm5¿«Ôr}–A¸W·1QOºÅ\w< úK]‹¨eî¢!s/pað8—ªà;÷!3Á\ö^_§R¹JÊ+¥•ÝœuS1n— Í‡ÛîA?``;RË­ Ÿq~q)r! 0uºhîÜÑîÛ{ÞRWüЫ'yxÍÿ&ú%×”;pº}Fi1C¡¢þkst ú²tkx§Ø­ô(šaÐEb¾ÿÞ:Ëu&BÿR\& ?_€9}ágɾE½r¯Ód¹ïe­m—*wWË ‘ 5B8tø— À°'´);Gq¶@¸³Þ ý0ǸNOTòs÷½<ż½Av×!F³(0°‹–¼žØÁÑs›M€zÛ­IÞ­W¨×ýò)ÝBƒý5*¦1OÚ¦ý:ñ1´)!Ú²ó3±eÚ¦ãÆ ¡ÆGÌÞ.«ˆ’ŠÎ5êùëíaûR^SOCHa=`»y+ã«®Þtx⤑¾P¬–ëwþ‘OL|í1ˆ-¤ª5öëýµyY4µw˜Y±ú -ľ¹™DÇä’i 0¯ÝňeÑñÈKýnáË £è)Y!{€„³órrè 7»áâÌØJÏŒxÞ“g.ÄÝâ¶ÞiŸšÑ²,ô*]’f#cЊÝríE§3xpnîÁrÇÈWD(y1pËYx^SY¸ðGùŽç¸ÉàŸ6†<•ŠªšM²(?k¸€X[¿â)N·§ê1t†RÜF\R‰V¡Âq؇ڢvùIµ\Eõù DÊï?<} j¼Å·Àõðòò•Æ,ð9ÓðÇæ·ë7yU¸"üŽÖˆvÔþc Åh¦kàirAPr2j -Ò=Qåó¨ JÞ+ÚGˆÄÇÚN,Š\³@H²âaÿ–x„´ÈïJ ³ Ÿ©L–ÕX2M?ú%Ü\ ­IqŽ?y5{ÄÓ'·„øÃ‰]–$úï¨%wÑã¿Ø†Ð-TËÙÆ ©pàDdÉ„TÚ|–»2U§9G©CÉ' klñ8ZwjÚö%Çad?N¢žsZ…·¾Ÿrk6ÜÑÁÅð ‹T}ÛÒåp§«ƒ®“ÛëL™¤+'\冈ÃL%xðŠbô›]Ê£ îÑ(Oñ[Ö—Ùÿ"Î{ѵÄGÌéÝæ=XÂýX1H„¡Îúõ­1õ”#F[јiõñk¹ q-÷J\ÔÎÀŠ$º8¥|ð¸¯ÑÂ+ãhu~¢»Éñ–Ú~—Ÿ-ä®<¢¨¨ñ¹«m±œDÿ>JK ~¸´*ÒЩdÆñ™6jýgß5¯© 7ÿ}4«*ÛwvM˜¹â|p¬#t9­ŽÉî«òä€~6ŒXð'´gà gŠËÔ~é„~ IŒ× ZÖUX&ų¡øà!eBUýdzu!Ù«çç-Ѝ‚ž|È£ðeþáÙfLùÒ‡SUtD±ã¢öG_¸¦±sÕ2Y/^Âh¯%’‡‰øzÂ:§˜Ðb;8õÊåQÏQÛúð[Õ­ÁVHF$7 t¡^ýà¾üIŸ›g¾EIÆL<ãxŸìê¦×<§21þ$¡1LB€;ø]Ÿx#ÞÃCâíú¾ºnù”³£Jk)! C…鬉‘ÂÓŽ2¿ ~ñ¦õÜ_ÔjG`K²¹p“”U¿Ý€~/`®A¤.G¶“üI;©Ãõ¼³òø¡ÁIMˆ¢ÍÚ÷{Ôƒ«/˜ìolSþ|.‡ìY.—Ñi‡–ÁÓ¨_f*=XÙ7P—>õš3™ž‹ûëÑÔ=ÀX²—°¾¬KQ‚19)†ôS ¤.óÕt¹& §ñ‚Gã:#c>ôûy(db¡1ùÀ•LU13šV¤íÚèîÆ óG ß½z{-ÚÍÓ¼½6V/oå 0¦vCz×5ìg3Îa—Y‹ÁÌ Òühsvz'mñâñ£5ü¾¸] •| †Ëwì¿ A­ÈÝ;”’GñS_áúÅ/±z±óÚë¡å/Ö\ø`¯ƒw-ð¸ËhNñˆxÀ,øVÊ·‰Ñ×ÚJ¾we8 ‘/H¯“ÍH(ù´–\ ž™Gž,õ §Ó¦›žì[ƒrR­º’å8?º*]­f²[·­ÿ)2ãd}ŠÎŠ›ñ3&ÉhY³P»ߺÁñÑ›‚ô s±ñž»"©îú¢Àâ¡A]2‘æD܂Ц‹YT ³D» Dª|%\ðk Üarßeq­šŒ¨¹&eÅ&hÃé6Zf¹Û½ £—µ¡V¿9ÈZÙ#KÒYrŽGî+£nË*1V±.z¹œ<”…\!ØÉÎÉ)šüƒ”pö ÄGä52ð~ÇŽªÔöV,bm³åß?ü#ZYEG°&¿‚÷ KÙ_°F9 ç’il•JWL°&H†Ž^/1†ùU³”<›i·°?‡«( {øù=vÊl…’'!W_m„«•} lï°Ø‹$_OÃ\ühµ_¾ý+µ)˸6s2ðÏàæïÞïKgûRdӾϚó9˜"œ‡Kqò’ÜÛ?Þ°¿/BÐ^þ›¼â.Ïo¯ˆ“¦>¼°SX0€É ô±Æ38£ÐÄ"Ø"OWN»êkåEìŒv{û8¬Š‘ª7>¬î¸óö–àãù–ÍjWít3ë§2ÖšøØ`¢'4 7ìÜélÅbZÿ~¼Šÿ¼ãÀ¸Åt”ÿ¢E–€sö×VLÙªjqÝÕî9qüÑY³¾ßÇÔûü…Ú¸Ãñ¸Œ9‡ÄÓÒGíHlÒØáÃ`Ÿ*dãnû!•¹îSȾũҵ™ilWª«oƒSçÒy–34_¥hî%ýõªÅ(7X™GéËåüÙcAêïGÖc.ù–fÄŒbA÷W;ûYNgV}™°€­´èŽ5°‰žÓbÒpa6šø|pE®CY®&b¨ùm®ŠýE¹foZ >Ü͇± \4cG "ŒQU!J l¯>œðJm­4Íåz?±Š‰â‰ï9–=‡”ô#ú?/®·øõ™NW›µ ±j„8§Î¿mK½næ?/Ú_&Þ5tž*Ú‘PÏ-ç¤^¨>Í‹/tå0|ÿ½§|mACuêþÌ9UÕ'!«0©ÇÓc_Â~ ŠGAÄO'Nùš= gÏCÖCÒÇ3Žªl¸´Jɲšf¡ç`’—ÆšF‡;D5¥¨¶¬÷pôödÊ´Dø…Ûw³ê9ï„ê0Ž,ÁТɑÔǤ*NÐ ‚˜]ä9n—Á&䉯Ý"bÁ9-Ü!àåK$êÚ† ýehšåHØ´¯&=¾¢#€É«üÞG÷ùÝ—î: LfÄ¿3Òg€-ÉIï£cS@Åð]oÜ]W8Ý4¸`ar˱¤?yÑZ2%_ ”¯pU«ù­1õlF’Í^´ÜåJàðFVk<µµ‡È d?qE!ÄöÞ­¡-l#”ËšíðŽÒ©õ„tBSÒLÊ6¡HOG\ (ÓêVw ²m¯ÏúÕšå/¼N7Œ^mî¿§«.}á¿Øüo_€1µVõádYÂô­yînÈÑcÅ÷;br¨I#‘Éå¡àèQ".Uãܘ "æã}øÅÇŸeÞNŒ õ­qsgHd™êˆŽ€[ØËKEíÄm í"yJÛû5×þh™Ísé&ÂZŽ$¦ÆÅ-j:Ñ<ªiY„+Ö -tm×’2® eîµ¾Ê!‹ß4sh»vÂ|2s ÖÑi¥¶.×¾CÓ†õ!(pé±òcDJ‹]›é¶Ë%~ý«ø ¯ŒO³1%@Íéua±¼0=¡Vgò R§â÷ôu 4aAÂ[´„å±å€L¼Â‡Òž8y”ƒË²Œí‡RLp;NƒbkäF¥ˆS/™€4ëE_/OWUkŸ’›à=±e/ºÆ\SƒMõ[æcãO]=ká?N¨iBLFÅ9:Ý 6¿Yr‹DÁ\™:cƒÜuk-Òj*Å)Ô¸®,Ò«]ZÁ´ä3Ь=fÓ^¸÷n:¤“òM„-°0JHH%¬nš8¯fÇZÆ—ÙÃ-´(8½¥ÁºS׋725߬țV¡E-™ï\,«Öð­Je ™È~ÓTGÙ~õ2<\­ykµ,²÷ßÊ4nÔe>Üž÷ú0í³'"k–¦¢z_Œèì`N½²ší•ñ«õÎQ|ÂX½RV,jíZú³·ªÉÚÍð¡òsãKÑR2êÒqĘçP¶˜pçkt’‚Ó$¿^\ ó”Pù p˜BWýø&ŽîS…ª^¡í½åàTYÌ&VÈ N²É‡O=¤•ÎȆ ¦‹—õÝ›Ë#p´»Ïx¯§ ß§ËW¾µ¼¼­¨šãE•ú4¼‘GפM/M¤êÄ¥‘ëÎÈ9ÉÙ]å»ZPëdMÁ[à»dÎepų[Lå2Ðè‡jŽàíR`¹¨rí-’(›ÇX·+x?X¿Î~ª@Ûw#lD²ï[*N‚çe@³ðDEŸN±Îýt© æqð•1ØzÁ-"ö`+oì=ž¼ T7nõ$ùÉ3Ã:;nË. 2n–/¶ðØ÷Ö5ÅDEƒ*ä>yN°¸UTãQ볎íêîuë2έÁK ý^ßÁ:~̉nvûò…û …mË)õ™MÜ™>i¨›ò~EMñfÛzÀu‘ cª²¯M‘ïçyâÓ1>¬dqñ7æu˜"Ä…b•g=ïÀ×±åZ91 çDÛ|°ä]²)L¡Ÿ¶íõH4 pWgORªDõÃZ2HĤª:\—eZ¯k³`sÇ‹Cõ'»Ìt“M êëŠêÃB78ÑÅ«çA&²Už^þíÜx#nN-…¾HBõxoäz4./Šæü9d±uÓ[GU óÔÜÓHD¦=*'ÒèûШ®Œýœ??ž.|ÓÀß`«Ä0)2ìðGÅÛ5x¹Þ+$fÅ!u€+ß5 ß•”åžyùö2>ÊêsÓSªg†ŠÆ5 g®=Ñ–‚^¸íÓSs(³ò ]²pn¬œY*'»7|ûP©¨A·Ít¡#4¤Em-·4׈š;——רÓKS—?/á j=ÒRrþËϵ¬à+Si½Ìé ¢+’FÇÀõ,R0jvû+d,¾Õë}A¨U‰àOZ‡|PG·ƒtLD¹5¹¾üü©w/„´ÖŸìwa¾’gb~óQ”_Ì©¡Õ' AeAb˜°÷¯æ6eã «;=™é·RFXî¢.ÔÜ…µ˜æ"éÈÆĦˆ¨à›´\›Pty KÙ6lÍå|;W¹§ÊcIí²T§Ë݈WV=~ýY)Y– ¶ã%ì-OæX–¯qh^ûË£# jSÓ€à^kgê+h3ðßA.+@+“QÜ:tJßÊœ5ŽÞ?'¡yãÖ}®l=÷,Ï÷ »I¢ 4 г vèï'Æ~€IúŠVê¢Óë2ù±–fpl(ÔG!¤ÿA3¦±Û±ÈºGÕÿü€BYŒLÖ „œè)¿à%hd €ûÌæ-u>j÷b2]·vâ×ß„œ.ªæJø±'JíÓo†6ÿýë/*%W‘#Iÿ¸Úô–Fï$E©WÍŸ/èÚ8\Û÷†û%´x#§ G¼åè[ÉÐmPM¾› ”cëG¡Ñ×jÝuK*GCßñl6#¼ú‡A uâ§LÖÅ9(™ºf•òÄäÞ@Éå2PO?FÝTBš:¨foŠ„@6E‘“6áér§Ë­F[©FOï£ZÙ섬m‰¿d.жrwtXÂÜ ‘Ã[>lôO"»:2¢Ž]jºFbS—þn¨*sí,ÿ„ ûœ%þÎùrÝFÄlSy@:ƒË‰^YfåFžHH¬ÀÓ·n•ïÃ4ϱzè<­É äT¤1AQ1O€eJË f¥â錒]ëQߣVruèzÔtQXUá¬B ÖË>{ù^Gð`‰žâ©Ó¥úBTr½\ÓeéQ*ýÒžÁíhb5€2cõ©$âêMi}ÆŸÂS¡äÒ1^Ö¤Oª;úTO ‘óëÞ:Ì”Î.5ò9™$4™<ÝÒO­‡ObŠ‚qÖû9¤œ—0£[ï´gt#° ƒ± …·üýãèÙ•QNç4ÆG•%ŒG¸—7y¸|ZÊJ ôÉÚƒMLPí­30%?DóÒ‰Çcr7PLQCâ-¡Ð ݯæcëÝ·áôƒÞÝ´” e$ m›…]ç:ÔÌú5AÉ]­ã÷ùÜÌ¡V2·¬ï±Ê÷ng¼ÇÛÔ}ÂD1%“A%°;¢ùນ¬9 „¬ëg~_z{J%2Ͼ WXI]X´ãY€' b'aÙø÷8J(Ê¡ÖÖu„{å'þ4˜X‚ÝË<³~0¹³B-ðÈ\IÌa¢Ú÷ÄðŽ‚F‰¤:éüãÑqÅV\*_–NÕ€¢ë£è­Þ†š £ ½PdC-‡ˆL=#¿ åŠTI8åV>>£áC:&÷–ç}—(á jµÓùæƒÌ5£3ÿ&6!{GþÊÙJ׫á/À¨•uÍ”ºÑ¬f¦£è¶qOS6±ˆ½ŽóÙ—r†Ã‹6FêÂ7FOîK7SŸÛ3—ïõ°Šc·5¼eHGÊéÛÂá3Ã2zÖ!W.TæœuDjÀF/½ŒÀˆÄ­V=‰GWº°CŸó››‹ð¨kyƒ`ò²ÇÅÁ¡ÕÒ‹NqÄB{â°Ù¤XÁEE“'äãóÔ~™\}aCtJU«Ä(;|¢ ÚdŒ™25LjF)'—æÈVcŸtbPžTº,ñ'“šœâçæ)£”D,ˆ'¼Ë~bxäïù$žÅ0†ÀÉ\‚öÕVÙ¼ºgÉ} ÷é[:ÂH/”76‚нÑAï3qɤ ÿÆÂ5jÜ —¨ÅeôñyÉÊ•õ¤èÚUSÚ1`Ô¦©âu•4äYµ “µžÊnhãµ::ÛÁ?iéT°†­èü‰%÷¥j4â ÷¢m4Þõ+I6\¾oZ3M06MPXD5=lU¼õ³ž,|âþçwvùÈ9°=ä+V‡@àÖ9Kl}lp0‘þ•é`µ6Ú:œ=´ÑU™­p`NFw†Ùc"zpµj NTÄÆ ú#c)Gð­6¿æAö[ߦgìcS2TÇQA~ŽÁK@áÈ+ß9‚á½×ó·™ ®0‰°‘—Ž1ÁR„íPÜßgÜMØÔl¿™ÊkÔD7-„&yé|®ÂÙü÷îÚe© #¿Á{L:x•ÌHÓ+K<4yÔî?>O±8P¸,C(Ò3©Æò/¶Q•¯‹uLç£ÉªvHõBP°º$‹Ò©ÍûF“€×A¹ \}5ìÍÁüÁ•Juz=£P©×8p·ƒƒ>J¥äÆÚ3ÕßVõ©Ýâ×= +*+Gœ÷—ëë¸ÕõÁrod~ÿŠ÷K·®‘ákk®º÷ùÞ¡ßÆ¼» ÿ9Þ7¹ožŠ™§hZ ØÈ% ¦G$ 6ÜcNêølZ‰ÞGíj/™õL6—û¹£JÏãßÿ š¹åuÝ™ê÷Q¹Ì¡¤¨¬ü•±,OÁ¿¶ŸHP¤$º(Û«äU㬙c…ªØíPZ–úT"löMN–㦟6Ç (|Ñä ú&X$nIdu[5Âö¬‡‚’Ž åWÐé A’¥Ü®ËueœÀÜeC ?™Ç’× 1ÒÁ3\lþÞ=N.‡…ôàí*VËz¥Qfüƒ¦EÖFãš{ƒfs6[qBòžæ) tR¡?ã±@)&‹1…‰pÆm1«ÄVtCŸÏPb³Š®]Îd[=ÐQò3¢ÂÆ9^”4ºµ½=w ¢û=NÒòïa _þðÌ&Sƒ R/¥ýéQ–=}¢ˆ¥³:þE]·$ýä:fø±àƒÉ]ÕH¹:˜OªlÐ6I{Då@¿jñNjKÙ¨§K:(ÔhU¨FáIׄ¼Uoƒ*3&ç—gÛJ z½%³}R×ßnE'2=9ÌÞWßÙDÐç|¾3x_AÒÑMD­iâÝJ!»4+͇ùKüà²ÿbSe‡â—Ò^bôôD™J‰„Ò9¸eÏ*Þ»4œ¼)†6ÁpœJÅ_úk×<ä¡\æëÔ ÇN(±0\÷Q@)v½ÉÊù¦u©3ø?9‰ýœÛíÓ …Óàâ‡Qs" È4Ù'ŽbÀ±?ºâîµ´ËL¶+áy…óµì}ÈQ˹<{Ú"sâÔ͈]“åµçb VÛÜlª»•)Í ×T4áÄÒ®¾‚KÄZÛ—‡F>í/~dž¶¬©qòÛ•r²äâÄDä”ÜÆúÄ ,Tþò,6É%3-–Nɨ˜q*¥Ê7ÝŸK*O¯éSZ<1·õ1Z–‚;²ÍùÒf;7ìjL´-«¾…‘祚û+ˆÉxëðÊIÚ¼•1Þ £Œ Sð­+…30HÂjýÈhñÆ„ü9+†=4Bœ]‹¥þØÔ&9Æ„/ öAc”‡Ô~‘¡é¾ª!}„üÒ‚$?)7S\Q’5n5=ZuÒ‹ðñ•yñ•¥ˆt‘à»è-ó:,Wrb:‰6“t=J¾æ/Kð2µãgIÔÈï{ôÜ~Ë+ÄüÒ•É ,y.võm’gOYÚÖ¡ýã˜ÄóF×èÐ9l1ø W(ÙcMC7ü;m)¯8Z³Î{d åQí϶¿ûå¶ëR*¸ŸXxôgl§‘{Èm|Õã#¤…X-¼]>Ÿá}$ýÝæÍ~«‘=#ËeÌðR˃¸gØ/© ;ÏK˜&ˆ¾° }>Ê[§" ÕGÕÿæïË®TS›bŠú”k®;ÿY³¹§z*ÂH:Œsæ—ÞFæf¡ >rØ(‚³ýéüõ¹§ž*j¦ídH ötçìñÑ:coNajSÔcM/Ðûšx­jÖuÁ4¹¿éÖ.3³U.}ðEœ¡ƒŒ‹÷e#ÐR•}X@ŠN(ÚŠüÊ3(†wB[‚w8éXÜÓˆ\P"…€ëÞ‡u캺h^pK Ç5"„_Ólïs¡ó:‰ÄIÅÔþ;Ä€Á°Âü¤Hó6u·Ž/1é—cF’—D…é¤`ÿ“þnÅûµ£põËf&ç®4„?.ÿÆ¢±M裌`LzÙköëÑv´¬Œ–žõCMú¦LÜGÔ_'WÜe†8º6õÄØ‡8’‘>“Ot÷KQè½éXü–èSª™ðm®•‘úõ{ Ó©üÔÑýD+I£=SÓ¢ 3Ô )UBÑdgп ’ïø7Êž6ÁÄ"îÎ9Õy!V +ägÁdä"¾ó-–”»§¢›'— CÿXÕ+ Âw9 ãl“@oçÕAÑF^²;N GéÇxùRó«\6(%‰ºÇ~ýx=$êpméHèT¼î×Ö{ît=l<©é›Äqß`¡0û­žîàQ¯Õе Ü'öèØw‰ÏMÓÉ7±<7Í»PX¼&ý»‡Ì¦›ë§ë˜/šKÊð%ªÞ‰.Lì^ÅÂP7Eã¡_°½[>YÃHö ¨š€ÒçÒ¯{6äöú[à%¦¿\ébyê£?Ø÷‰ô¥üõt©°xµ ?6øÕ,Æ¢Q°.0ìÅà‹01oÚc‡ïs¡Ž>GüÊ£nT‡‡½,~¹¥ Rwïœo`Q³ÀsnU’(ÃÏ'ß‘Áaa”a ZC5‚¡ÛÓÜøŠèj%WNrÉöÙ0ó„íTM»³\XµCë6>^C lN_ÈK؜ބËÅ<Ìlk‰H]]hK„0"¬$k–¼4C{‡A:RÞ¹¼K¹[.YŧIÝü±Ô) £Säù59ïøÙ©…{ú$Ru=âÜng#ˆqµÇw£rLVSžd>xdHA|"ËùÎà+•òPSØ,MxÞï3l‚ǯ ɼû€²Ã´F¦àŒ%‚ïÉ»ðæy‡ HD…s54¯%Þh'Ã$'Þ¸lƒ“ßGñå {˜¤ì¶ #hoœ˜)˜Ïûå?ÆÒo܈‚ƒìJOuN(]´ruÓ4“`9D1•C»ñ°Ê19fÃudÌ?Ûàë¯Ù ù¦]R °†9÷ê>Ö),ö¥q„ÜXÎ#•:´Ê.ûe!æå}šŒ–b+óáŒ{‚ò8U)ýÁ¯#Íe·uŸ £5´Ù wòÞØî˜Ðåò öÇ x#s°G‚F˜Ùµey÷e+:­… Òu…ŸŒq g”l¶TçïºûÝl­«ì‡ÊEã#¯À"3b0-x´½·{Ç3 ô¬“N}v·›rJè~÷Þ(¤ùQ—y¡&!e4ž ÔÍŸ¹Ô^½Çµlp£É;ñ°ý¨™¹dI786ŒWDœ¹!ýŒ×p1qgã´zö9^ßÖo« *&ŠE´÷o’|À<,ŸˆÇ:Kk[;[èŠÛÏ•tÚ³OÀqMÕÉñüîÆ§Ñ NÇ“S¬–«³FÈo?rQTKÆOGîŸú΃{_Ž ¬9žD"¡Ç‹¢p'äÚ†ŸÔ5yÓP§³àñ€¬qè[ù¢®=ÀŽXгÕN¢wšäé†HÝlØs½ŒîÂQc“ÉìúÍÅ|¡ ì@@©2ªxd>®Uw•4J¢‹¢8GV°ÜM›I”r4v?C²PÙŽ™˜zS^×¶Bð­ïé£zÌøvê­EwMñZO¿OƒEÖ/ÙéŒð‡2¤-}‘³ÚøÊü@¡ÂÂ,{]Në$|Ýv~(7í-,xÀ%‚›F¹ÄÄY0¤ímY/9/¢BÈ1”l³®Ý NþÈV“kqXcž0÷ó§BˆÏŸööŸîy€AÆ:ØÚŸ¯#ŒÍ=úüm¿yñýÄÞ®ÚC ³æ±þFÓÜ™f^ 68'áS™|5ÑmÊW€±Ðf,ÈQó)k®áwNwÈ—Öù–§0ŽÒ:ž­e¤*i%ÇIÔ牭gI¯qùu*Êáù_ñßk2JÁ]bÃ<ü¬íSIÙ©¢ìVëfجie 6wÝe=D€£—§à@œ@|¢&.šÀ0jp¸bñ ™Ž£kš°îl¾:ªÉ÷£^Þʧ¡jÚjî,(\w\°X>ÜGa‰¬ רº^3¢Z`ö8I5Õ‡»@¾3MgýhFgkßz4i=\º:ã(; {cSl½Ü­Ž¯¼sì̘Óë4äò–(ý¹IÇJ7Æœ¨ ¤~deÚäq«“úÐÔˆŽNó{8â†ØŽudOâUwf˜šhÓk“=#°/Fリ׼ò‡)Ïýpý9X’eÚýºÏ×új! úÌF] f¸p¡*óe•MÌIffS^®÷’nQZëh_½TÛüÜÀr変O'ϰè‰#â¸p½'?비E¨cy²sQ8‰·ñÅÂFGíû>KoHdPjÓýȹü™( õùA1\iV“âGþ<.ñ{ÄIÈ1RCºk[ðˆÖ‡çc cäqâŒryÇÈï½Ú +z~N¡;¹Q¼’€>õ÷û®®»+­ÂïõZ‘øo²b†1 S©• Î’~_'ÎS€Wœ‘ð§S¥û²¥)VKZM–V¸|i[‘b&—#)~ØüÚeÙƒƒ‚ÆX0ÕÚ­ÎBÛÈÇ3ð+ÅŠÜ« ì–E0Îûæ9î!.gÎ5–,à¼Ä V—Ÿèq$/Ú£ø+0KN«J)˜äÕcz8D’)/›?|7‰´ { NGFä@P_Ž x }T­„kœ×]AÔKŒ¬ ×íˆ͆’ÚAâÀõ< ÀB EÿÖž›ì'ÕÕuf—XïÝžPdH»²±nú½ºI$­õº¡ªš¿ .Ý( 00å)—qlÙ=ÚÒfYf šÚÈü€æ4§D˺„'‚øñ²2Æø¥x–«qYïÝTZ.¨‘ÝIZ5Ó Uf®ä“èÃô¹G½ƒbcÚ0í&Љk÷ìX»eqÅìùÐ7"_ÛèPßîyíRµ;˜QzbŸˆZ¹ã_e´¹Ï,Æöª¤•·EAôy úêÖ]ZV¯lªË&M6ö3™á¡cͺ¢û6Mu}ã™ææœ’¤"å|~Üçªæ·RRI;lø­yZÓØl­Ö™:õηßÕrßäríóÃ"ðkW£ã¢Ö5o I’4âtöÛ1õð•‚Ü:Àf ~ðeZð‚L9lï4¬à&uf Np!ÒJúJ^–f×[- †F-Ø×[À`üðê4%$¶S$qhE‹—HR¥ê”þù¹÷_T¤ôm—?Ck•ÍÇã“22²(õÃÙ}KmQÊ?BmX6^Åð2Y¬J½ë~¸o/œ }]’"ßòwiÓQ3û4ŒÍ¥¿Ït\Ï}:Øg"ΉQÀ¹]º¥üI³Öà‹@×a‡K‚윴=qüZGµ³T’ *; FnöL0î!ýËù-êçà Ì=  5¬r2ú&g]Yñ‘¿ú m#¦;’àƒ}-Â9dûL´¿ _`kÜ|ÆÁ:ïr—Ëó퉣í²¾6ª6AõaÜ;Ü^©oÆMuU†¾AìÚËÞ6{iðŒ² Ÿ›Ì/l]u]¶C¿Öê¥Ñ™ý:ö”l~^t"¡»’(z-ªëþiÜ$]Mõk?ªâšùFèúF¾ÂJâ‘tØnR¿D¶®© ÷)¿Îå,/f¸jÙoð÷:+ÂÃK»ž4õ؃þ[•Æ¡b~aUÝU|*‰N¥ë@V™ëÛ¡|„5#YÀP5¶wFcpYóFyòÓ6‰6¼s€.o“Ú«0 ‡­ Ýõðj~Cø{‚ibjÈ[-×u:Ù†ãI€‡–ˆ©ªðýy`ñ*Ç9œ4²“¡‰µ£ŽarÇð²ôÆ ø”ÍzSèah+¹1E|ÎÂ$S¦¢µ6 é÷ö#¾I¦…ˆn4žþá[<[Ë\ÊØ®òÝrí@Ï{óÂЄ™ÄÇXÊ«0<ØÆtê€@Û®ôK¡Ý’pŦÔßÜÔßO³§{‘–pú!¹ (n£WhD8àAn¿ø;ž{ý]§hókK#Š02œÒù cŒM åBË•±~Ý`êeækØ{ÂÞƒóPO.E3²¥˜šמìÎãÎK¬QxÇ!ç>šÂ/ò ñyAº=ØYûКµ Ý݆BÂcÓÔ±­ St©)äiÜà³sA/<_­²§1Y²‰Hl·£{šÛÇÓn¥QÀ¹ç+j© œÈÞô`þôÿè9åÃ(“nPM“,Kõä×’El3bÆ¢„h™Ñ+Uiß¶ÞU«‹*óŒˆÚ6ø|š·‘ŽßQô«)=­«eè#½«xìLºzqÃîCÎÀÙ åV<±ËAÑOZ·^ÿº—¼T™Õò«ð—7qRÍÐÇŒ³s¥2†tÁ€ O6o|Ê!¿Jg¯ È“bØ\R°§)¼Î¹ "¯WÚÔà¸p–,£¬ä~MdŸ1‚ä’˜ ­/U¿ÚXÍ9Çw–ÈŠµÉ¹X9Än³îð4ň¾©*äýZø>F>;C4üE·¹è*/»çJŒ(®ƒ{)뢺ªîJy‹çˆüŒ¯A›O„ñwˆ`y]æºðÔ‘1~¢Zl"¦n/R-,3/LñÈØ+ap9UÌP?‘¸tÿ·uŽ«;̤]ÉËÕ“®Ä–F¤° »ýð-GHî8m¢÷Ô–çw^Šñ6õÆÎûßR†Ÿoßú;vÐ`îfÑ?ÿx¨4>Ü+?4}ºü¾}>Í9 U”Asöp‘©´×ç¢Ô¬2 WÌíÔíÝ—üå»ÜI>‹ ®"Ì¥·(òõð7åJºxáp[ r³z$ö¢Ì÷êþžfµ»m—hä²!UØë0Z žà!|pçàõpÖC§½RD #R 5uK”È¡"c~!-<è6Èú59É›u+¯rP°Ñ*X…C±«vfwfÀY­å9p*ÎõøU} zÚà V^In]l¢‚ê*|}d! ÛÉŽ/©{„nÿF`˜ƒendstream endobj 292 0 obj << /Filter /FlateDecode /Length1 2300 /Length2 16344 /Length3 0 /Length 17699 >> stream xÚŒöp¤k× ÇÉÄ6:¶mÛIǶÉd‚‰1±mÛ¶=q&žØ9ÙûÅì÷ûÿªsª«ºŸkùZ÷Z÷ÓäÄŠ*ô¦öÆ@ {;zf&€¨¼ˆ&3 €‰‰•‰‰–œ\ÕÒÅø9,¹:ÐÉÙÒÞŽç¢N@#—™˜‘ˇ¡¼½@ÆÕÀÌ `æàaæäab°01qÿÇÐÞ‰ fäfi gÈØÛaÉEí<,Í-\>òüç@eB `æææ¤ûÛ l t²41²È¹Xm?2šÙTìM,.žÿ‚ŠÏÂÅŇ‘ÑÝÝÁÈÖ™ÁÞÉ\€šànébP:Ü€¦€¿(Œlÿ¦ÆKPµ°tþ—BÅÞÌÅÝÈ øØXšíœ?\\íLN€ìi9Àg Ý¿Œåþe@øwsÌ Ìÿ ÷oï¿YÚýíldbboë`dçiig0³´>KÈ1¸x¸ÐŒìLÿ24²q¶ÿð7r3²´12þ0ø»t#€„°Àèƒá¿ù9›8Y:¸838[ÚüÅ‘ñ¯0m·3µ·µÚ¹8ÃþUŸ˜¥Ðä£ïžŒÿ>\k;{w;ïÿ 3K;S³¿h˜º:0ªÙY:º¥Åþmó!‚ý#3ºØ™˜˜89¸@GÐÃÄ‚ñ¯ªžÀ¿•̉?8øz;Ø;Ì>h}-Í€?°ÞÎFn@€‹“+Ð×ûŸŠÿE°ÌÌSK€1ÐÜÒöOô1Ðì_øãü,=:LãÇ `úëóß'½ 3µ·³ñücþ÷3ªJ+|–‘¦ý7åÿ*EDì=Þôì¬zvf33+7€“ àû¿q,ÿ]Ó_i;3{÷¿ÊýèÓJvû÷ Pý{A¨ÿKÁþcrª?ƒ®ËÄÎdòñÅüÿyÜÿvùÿ7åEùôÿ[‘„«Íßzªüÿèl-m<ÿmñ1¹®.[ oÿ± vÿ×Tø¯Õ±·1ý¿:i£]¶3·ùo-%,=€¦Š–.&ÿ—ÉÕþZ4K; ¢½³å_W €ž™‰éÿè>¶ËÄúãúpþ˜É¿UÀåùß”âv&ö¦m ;ÀÈÉÉÈ–éc”XØÙÞÌëh ôø{ŠŒ vö..€r¾3{'Ø¿N”ƒÀ(ü—è_ˆÀ(òqEÿ .£ØÄ `ÿ/âd0JüAÌFÉ?ˆÀ(õ±¥ÿ |rÐG>ù?è#ŸÂô‘ïó×G>Å?è#ƒòô‘AåbûXŒ?胭Úô‘]ýúÈ®ñ_Äý‘AûúÐýA•ÿA•™ü±èLìm>Žó?’¿N•Ñôð£;À?ö5ük þ|Ð1ûcðAÇÌÒí©í]þáðabþøAÙâ¿íƒ²…§ƒðŸ}È,ÿ?j°úü kýøÁÈæðƒ®íÈüAîOdöW»¹ý‡þƒ­ýŸb>œíÿGýAÆáú£‡;ÁþO»8>¸}ÜÌÎoÈ„¬l í]€¦Æ6NÿÓ¼»í_šÿ33xü£cÌ pþSõ_èö±˜;\À>*ûîãct±pþãP>Úàânÿ‡N¸þ~4Ñíð£L÷?åÃûÉX>Â{þ~ôÈëoø?›oâêäôñþûûnþ¸þƒÿ~Ù@Ø•E{Þ«Úö‡ja/ß•göÛ`—§1§òO„ë>áÓ« ø¼:ú¨Zƒ·€vÉg;ºr!*æ¢=¸÷KzÔ ”®‡-î+TqȽ”ÎÒG©}Ó ,š'Ï1ÎXÀ&r¡'€¡A½ô@š¿½›CÍšz'’ùN ë{ÅZà­ý“%úqÁk£\•ʇ G›üu|†Â[ä(IkÉ»¸0F&,²ÐŒ@±I ÉÈ‘­†¸k…¯tlj{ û—A h)ÒîLXŒ‰Ò¹ÈÈ/•¬NlÔì:΢ÙWfƒ%eQÉ­ÖI8È1F/— ²©å¬*62ÊOŠÈ¥Äm7¿)ºW$à™¬Ÿ)™ý÷Ë´JÄ4ÎgFºtú¯;‚a|úºK†“c©rž€/EG~䔤A Ä › §\!h#3 ~'˜4] IÛªçÎ"w¤6Eíͽêý÷.ìK=Yì^ßôŽî¶†ƒh•ú¬î…ÂÁ~vGo3+ "ä¼°à•²sO‰|˜bÓ})\g´§™Šgñöb—ñO”‰>CnW‡èÁ;ÅáØjW§Ej9~W‹’è… Ùa±É•œÖÅùHý"_ì¦f"ÈîîyØ=úâI/5š‰5BÖòC¿»]©w¬`¯}%°…è6"ÄÅí †„ ÖRÌ<7ìäR\ª´ T>m¾¯Ëiì²kóiu s´^/(’9L ÔÝþNZåñ_y–ªÐGLrA1EJr8¥Õ_!÷³5Þ[Ò•õ~p÷Cjk§Øú˜`Ù‡„×ÄŽIëÚ†)€„ùÙ¥&ïŸÁßeã0é⼚ÉÁ§;A,/B$¶~î÷ƒYݘ8‹N¯èFç ¡¥\= Lî1« Fxa,0ÑHKzÅ)æ }R¤ÒE*iDË…è_™íJ{!s¸D‹'ž&!X¿æ®û¦ àçÔ¾ò-ù±«G{â ÅV‡ÖIý„ eÛ@ßI³µÛý“­l%A]L›¾*©§2u^cU6É¡¡ þ<·¹1ÇOÕõ¾àrñóI3Æ÷râÇ@|?£t N¶üàCÈo¿Ög» éø[iÇJÕ%°LXX«Çp†¸¬à,N Ï lÚ0…í`b·ŒÒö‚šîº‡æ»x.sŠtRÉ&²Ly¦-M0S­^EŸåYö ÇÙ*åb®yò°÷êò‡Ÿ~VtNøý|3ÉF]’7üTü3ØŒÛ@@ñ¸ÊF"¿ä®Brù -±1z†-¾€Ë ¦C+ƒ}ùˆc‚Ï'@'åW©_6 ª&P凂ºéG Á•$™EnB;5•ÌòÐk›fyð8™Á âT“Xrz3  ]v>¾)8=Áµ£¨ j{ Ej S¼™I+þÂÑŠ÷=á‘»ÐßB¼Û@“jÐ36Lá!šŠ·èË”}‘/wS“­²8æ^S4ªZœPæ.º¬³ Ywy^O3»5‰°¾2ýeņ¦y~G ¿^ßa„ó.±Y®õ¹~hY;sHÔ¯nÈæöñ¶ü+j›i*sþcàÀœ˜}¶cÝ7*Qi’öš›UÝЙ¨e³x"YÙиƒÀ BÌKêéH»}PöaV¦>Ñ_øêÓÛ½£ÓôÂê`mEdj¶j³EÚÏš_\üìI:1ÊÚd|Ù¢›î)D¿ŸÙ…ÑÜ-Œ»ü¥Y-Å}C‚t lO½î•1Èæ^ÀuijټÑBû¼”5!Òj ,62†ð÷ÛöðKÖ®”îéȯUÉž Ç)!›}õ,„è-ñý¾Ò4›õX"¢Sž‚iŸ F@!ÛÙ’Q_xvkŒÅ³ÕõB˜gÕ/é‚IÂeí%˜Lcp[OqÞdz6ÍØ$õÇ˭㨼û&xÖaaRÞ6õè2MËÆ¸‰c& ‚5Y/ã#÷䨓¹þ_Ÿ œÓ3Uj±2ŽèŒ\Š=-Ak~ÏŒ;½µ×_I°â¼˜#dlFRäÊû.¯³f‰Y[Féf9¹š lýæ½·lÆ3è<À€µ—0˜I5±¾UHŸ| ²3Ì}r[ÂX fIK\KÛ##=Càxœñ~»€y);Ü©lÔ•p»U;Õ €ë °9‡%÷€Ô1¯ŸG> µâð+@…›ÇX'‰‹Ó·¶­½ðDj]'Ç#¢ž&·kÔXøñ™]9Õ³Â}þÐïZÛ±ã¬d•ÈR:74¬0KtL5Æ#¸t@ï¹ô0‰ú†È2 Ô…M;=Id^Ïv?"P}äûêççøÀ€ÊÛvjsË·Ø+rz0µÁl³jUMÎyFÜP“pÌÈ@5ˆ/t÷œ\ò¹lSÇøŸ¼Ž¸yvÇë¶­ÞlÜnÓo¢Iâ²aŒ<®Úv îÛ Çäúšû³à<ËÂJルo¦Ø‘f”…½ÍN”Dû–™Žvà /Ýù-ï:Õý"®gk{Íš‰½mûf¦˜gßtÐ%?G«OI—‚xÎaÀ¸¦ám±<1r1Â1“v0lÛ®‚&x÷*-‡ë+Ѻ’«jÆqs#<Å9 $0_AŸ¢ÈUÚçö1„ö}‘©¤Ž4ÖKú²¢¬—£RÍýö3‰øÒ³?ÁôåÕ ¿DLß Q6ÒŒI¨:Êî+\ê­¶·wPTßÍ&C6üרe£ö§úž #rsS¿6ÿXãÝ#Yù²µl¯°+лÜÈQ…Œ°Ü;:iÀ4ðÜòÓ!˜@ãËaŶÉn^X7$-£HöŒ:¸Wè=ýA6\§ä 4 “6§˜i´_¡Xßý{ÕéL@uÉx Ë]ðU•»ÉÑå¹zÄNý›§å²œµ¼#ÄêIÙà‚żJt­x›Èì MG³('&dÅá“(â÷áæïÖ DQ°@™M_F_ŒÄÅ×ÙHº ùtŽGÊ}!98É—[S¬Y¤­#(+ŠÜÁùÆEQï|†xµv¾ÃUvÙtKx/—ÒaÜý8(à†E£¤¶9ÁÏÓvtª6ÄŒÀF¬>§CäÀYõ¹RÃ9ªÕa*ñ~hß?ð¾1¨Ãÿú1Ü6í:ÝT·)ëâ廡±?(êe‰˜\~Q—Ä"›]Þ.Ì_s&BEÛÌØ¥É»ïkòý€óAèzÈi¾ÜtÇf!måñ›nçØÌYb“z¬.˜·vúí'"]`{3ÿ;Í­"¢Ê˜®W'Í£4(p{Y+T¨)å§¾VS7åëa0§hŒŸ&­ÁAJ§2©äž°z¿‹ÞW±MS„ÎzâO‹L;4®[k^7Æ{XÕA)Õx'eNZ3g…µ _«³ɯgpÌa@®†qÕ4),&¾pÄ.î<¼~ú9¯1ÉR£¿Šý Šè%Yuö°TÈž,{}õ4ë0Py'Yxf07¼Ãá<„}>I$|6Õ^)¡”³É©ò 3¾IÑBsò`Õ­å5M-ϲ”« {õ¢žCOÿ>áRz¼¯½<>Ø)”&M™¯gëj§‘䂇üÄo2õ†¢â9l¥AõSˆžw¤?­Ñd‡QãÓRXU=ì;løèÜ»w©EóÔðÁNž]Ç,9œ¬ßú˜GÊŽ«§‘éo%,®i»G²$ƒÂ ÞŠÖ7÷°5yÓó¥ÎÔ·M³úèéwž Ò1D ½#ùVÞtš&Žï·/;úò½³žÏ’¦-·røEĵ䄲›?¿Ó¥íÚ9ô`ÊùiˆÑú8šjHrTÖz2C—¡Ck²AÊJÔ’öŸsβ.Ð;a"#g#±C˜N’¹^AŃJÜ&Âàeð“][·Ò.œæÍs7ö¸n?Á &~ éÕ`´MìíÄKÿÙÎìr‰.Šå¦Ë)¿pI«Ïq¿I×CŽpFHŠdOE¢–3¶ L“××±Áh˜ˆ í3ÚÃì„ ‚Êë÷eÛž»¤PöA$çíy?ð™!ú]äJÔ]A&¬X4ë…ã$†{B~³ò®­¦·Y”CD¦™Mž$i¦Ë˜†WAS§íŠïjÖˆ)mñÕ?Dëì"ÆW5“8Ÿ¹‘ZvI‘aD@Ýöd&ÅÉ¢û÷NÍýcOˆ7ùå©«N²Cí„2lC;{žŸ!ë ³€ÃÖ™ÑI…Õ³©½êäÐq*ŲÞÏ.á·ê £¡¡. R .ËÝOúÜé|ñß@CÜg ´9ôE6M"9¦?ÒÝÐ.öDJ cY¶ uH°0¯±­æ·×à$vTâ&ì‹Ã'Œ2f_¿rç<‘07-¬g¥J牆‘pó%¾“ñpQœË$½GŽC²óôÑcÈïâðÀ]Î:/,dó–©ï ÙyÈrG!‚–hï­õ¢Ëo rñÄ‚ýyÓ±›¶ÙóàzmÿðŠõ›Yª1é« ™–ü)o­ý¶åÉs–QÿZ<0‘<£hê1_Š~VSªP=¼K2IIæT…Ñ{hVó2§ÒEbÏJb6+xZ%39Ä@ÚäW쌞`=³w—¥yx»^îUʯ¡«¡LŽÞPøep~[ŸáySO…KZ8Ò/I+!Á¤ ÷Úl"‹íÞüyÂQÕÞ熗J~%ˆÐ1vGÂ|w´E5Z[ìFÚw£½G-µò<ö޹Á"\Òp5ç}CÃnÄfAk(›=ð¢x{»¯½ç ašÃóðRZ÷h˜Ëû#¼Ì€D#ÍI9ðÃ>VÐÑ'[36bRµy¶ìØèÉvT‚]ók³­ní£„§.>†“àX”ÕëkYΨ‘ž½ÂjW ÿ€ÂÎsôu-`ˆ› »j¬Qñ$ã|´f/«2"8`„˜µ¨4©!ÀÈOo­Î&ÇÂÞ ÃŠ„X”¿<·189R™ü¡ƒŒch™d\i+Pᡊâ5Ç›ús y04ÇÑ,RkMâ¬Êh pâYë®BÊÒûk‡Òu /_Uñ†„–ìÍ"Ìngó®-:‹Ô2}–ç·…á0h*´ÅöŽ¢w©HGúcðM°¾ˆ²i ¦lt ²²»‹Å…Xõ»Æ´šJ×Dù¸!†ž‚v&ÝϬeîÌìd!Ÿ³Îº›Fs‡eUÚaê£gqÔÍ s‡uPœee*ç]kž²ß=‹œD Õ:¾W4‘v/ô;º¼y–2Ç1 ÃœÇZP¯ÂæaÖ3+ƒÙ9“DI©À\k­äÙIP^ïŽàè*èjÿúÚÅb‘ôB}ÍÍ1*P©`: µ@Õ‚>ÄXÉ%“•&h¦h({±£‘´:fyìþÀì=iºñ†*ÍØÖ½ìx(¬yž“ó å¦=«ÍûŠæö#îq$Šoô§×Š¸È»û¸þƒ e^âu'lPáÓ»’<ÒEÛï[Ž&èä,a¡šy9°OÅ 4²´w_ £ùVëwÛ ³k/¢ãí†cv±úr惜!]Ê#d¸íÔù|3øÊ¼f7‘dÏ”’+¦óÅY¨ð7ëãU¯w6Ô`’Ñ9œÐ?o¿¢bt­HwÌT0Dç'È"öªp|¦Æ?Šiç#´RàžWlc&ÿ^ož9ÚFöDüŠ—ëÌ«*iÒp*ä Ó B<ª¶@8D+átŸDp “ª{»*|!/ˆn•Õö0mNd3ý")UqŸð£s(Ã*ï§TçÖð'ÕQ¥¦D )ÉêoÁåN<4"H/¯òU‚» ÛêWøÖ’¯±f )~È{mšjŸl‚ßȯW÷FKžó‘+<ÏOl:ÊsÒ ‹˜SÔee”8ê­xÇD©¿@°ºYT&ÕÃ,Ê­&ÞËäņ‰N_çÒÛÁÔõ4îsâ½; ¼)P × ŒZdö©j=µ•m“²®¨;óÌë­&±™zw¯š‚é­<ðE˜¼çØ&µ”!ö=%*ÆøO#Rì$ ?¾Îb€„˜sï—í“f7ñˆ¬Ë3 stœÇ!Ö£Ë&ÉY^•7 -äðºp~JçÌO´±ÂÀØäž æÙ $D W≮}rsäA¯8Bƒ»}K,þýðÖŠOhÁÞ‡döÕ³˜ú¶$ZZS òN÷ä)±cUß_^± ÷Õ_rÂ(EâÓW€¨ñ ºËÞ'Ç/’r‚¡~ðQš«úã;î±ÍÊY’MSYõs’¬uf§8èÆÚ{0Ìi +kâF?=“ Œ~å½n÷®„°À¡è$4a>²øP–ƒtŸ@.Äÿh ¹0ÓÄf ¨y2øÕŠò^›Ÿmü+d÷.äpKMôã‚—ÌPسfwíW mÍ8§ âú:4IâTøgS%—ÎÉ"1…x¿¥ÏVUg[DÀôNíÒÕýl'yôuÅ='}>ÒÚnßú6;–»!¡  9†Ÿµpt˜‘“’îX¡©C·ûIIKbWöÑËûè8TÛâJøvÇñf…áøGOŠ×:œÒøžÙÊKö +niÈi7é:V¹ªÚ¹‰Û-ºAG8`syê¾#u0U-"u ·.­y`ÿ¸¿ø4t÷Àp’S¸qôÆPI RÝò{¡6\üÍÝÖ9Íá)¼º¼ÑŽ1¤5ô»}¯Á ¹ÎðiQ\¹jÓ#)_f;ð¢ßHga 3wDO¢ôº-‰>âXž¸Vêâþß¶ÝÇ“-c4Uíz¾ï xšg±ÔDàïPɺRïC¼ù£÷.jìƒ~ïÑX5‘[cØÇ:&EsKÁ‘ln(RÑ¿¿ãWëOvõÉ_g›¹³0í3›#‚¶R% †•ª¢ ì*ö¿¥J[„§è\·¨˜‡)—È×ï¥Ôk×Ú¥^ãÄÞ²ÞãÂhÿ¤®1Ï 4Û&îq§À)çÅg[ßøt+õ ¨ŸÑÞR¯\C޽ë÷K\ËäÂ%c°ƒha07œU«×`F™¨vëÂôJŽrG¹Ü?o»÷±ai޹&o¿½b‡~MÈ2JÕª 4«Å“×¾Ø9°P•Ù¥¼Ý“Ks‹±=²½KDHg¤IÆý„cw]M,fQ¾rUB³&8Ûb7= Þ[ÀUb7æ–Ÿ"ô}RI_Vù zô$=í{rg$öN„òÛoÅ¢G%!ÁØgßгÍÛ¼óA_)¢x7¢ý3§¼Ý˜ÕÃ×+š¸@>©„O_T'äopNqÖà·›ÍöâüQJÃNÞ¸Kp˾“ËFû#ŠZŸôSðe—,ÄKÐ=âçûŠNÄ ~òpšf•ú!ó³ÿºlàxŠO¢‡Q®jwT·¤3ã£Ê' ì±isHæ£d|‚ÍvHát2Þ©ÛxÚ•ÿâ½6#8‰OÛ¯èúõg“l¸„‚új3´òBol½ƒØäšØ:ç‚Z.4©VªCÆT4%Â/óù)^4ÞÕ†7dîò‡s¶k¥õ£ÃX¸–þ¸IˆvO–ë†!B½ïX,,Ô”¢=±0ý˜¾}EؖΟ¥æH¬ö-[°÷W|ˆÉ~%(^0¾·¶Êcøù;9øºß[ƒÙzáz=ÆXúR¡i Wxߥȭ(¿ØnUkî.ËDA]Bæt8Pv“SíPÜo½K1Ìê·<¨,Õ;H3‘i8)Š~+'ç[ø>éÌàÞZu1ûCðͶD·~ëC¦,*p˜‡Þ༟ù⛞T€-«‹݇˜òÅ2ºà(Kx,²ç¸Òº­Ïu7"~¥—|¦Ø¯Eç“/V¾²ý6œzu1YvÜ©›t¶W¾)þr³,}Á¦o‡õû½€£ë ;±’%sñY?bßñÒ/£šæƒä : Ê–ù/Ü=„µÞƒÈÆ‘ oÁž7  DßaÑY^~ ¾SŽ×¼õèSl%-gt‚òù _EÁøõÛë@¡é0:Àòk|¬å9ª§bý†,1q~Eð*¿8Õ†çŸ÷Ømkï±­ÌZ”ù•§mÀoñ·Ä O*áÐ=ó=nþ¬ñŽÙ0oP ùÚÎM†ÊåX½[(BÚ“Ù–ÖC"ù [ܰAQQ(Ú––‰©‚MÞ¾Qý7ÿùôipŒOÌèiE4ÔC%9—ÛŒsò™½`BŒ ‚)`Õˆ KB£È™ b¿QÛî ¬N ·@è´SƒœaÃÃïãh]OùÎXåö}Ž í페D2¹RÓ¢ä1ÁåÑé»v6æ ú<€›½Vj§Ï8½\畞ÜNJÞaJŸ-•ùñÊ^ÁÆù Žˆ(׿§°ì壓µ°TŸÒx»4—¿ŽT£`—.¯æ>‡C‘ʘecÉËcð¼qú=^ƒhݱ Ì%X6G‰0*úcçHѺ‚–´ÖÖ„Û/ž aÍ±Ž‚¢L¿`G³Œt ‹^¹U9Ï‘Œ­Í½Sán9]å^ iÐ3¶ês³’’›?aY8ËY¯:ª£Fë/>¡6žã•ê5û'Rç À¤!f|]ÜÐlÔ`È N„Óì-mMÛù4vK “/†ÑÉ4Gz˜›¤Í6¯Ød>‚}1TÉqšup¥‹Oí‹^±•‹rÍœ/½tijkRš°~rKŠ!¯2½«x )µGÁs'MOWô°äY8­Ä—/š[¡ ë¯CŒB2êH\­SS>S**ä¥^ÇŸˆE]ZI‚¢ã-‡ f:©ðÍãaOˆ»G0Š žm„Dã‡mú^“OÃ~?_7ÝÚü„|®²Pc‚€›»Ü~ü≱òc<Þ¬ê0M ¬ µm¿ÁÊO‹>#fC‡Æ1sÀõª7D[xvBžó¢Ý€êtÔ|wQ!Õôzü¾AOÊ‚XÖÊ›wjÈ8ÿ“T‰ÛVUoV¿Õ¥¶'DƒÒ¥7é³±ïuŒ¡‚ónñ–oš UBý'èxÂ/3¹tóðe=4/Óú.ÝÕùþÔLøŸiD:F—©ßÁI/úŸX‚zuš$tÀK}f)¡ÊaÕ^\éw1öÎÉa>µ”¦´è¢¼á“E"ŸÁdžÍ7h•Ðm¬.feRö[YŒ4/]¥Ö©æÇSãÊz.S:R‡‚æØh$á¬1)nÙæv„ÕÜ”§<~ ˜‘îæéõ•Ýq†…³3ü™®Î?ÁhQf@{ƒô®Ã¡ÖnôÆpÊ-KÔf†¥~꓌ÚHˆ_Ç “ºåC?Aˆd8Õ‚f 1!±>³#C—”«U‘âѧqOÉïϽúÞ–­Æ¯?ö{\c–sõ+“P”éúÞ2Ìbµ2çnÄK ~qÅQ¸p³¡_)¤p=&n]òĺÖHTÈìrË_ü¾x®¤v‘羆Ž[)±ºÍÒp·A©ÏK+Ö1dRSJÚ;ôŸ|û~@‰ê²Ï¹—]Wצòkßs­8í+ îäÁ0'—TŠàø´¿€=CdøáBµ÷¯_…ÁÈCê‚\Y“îâÀÀ/`å5(mðÕ&Ɇhü'ãkpÜ‘#È.åS[ì’ÔBA²~¼jÏ g©ŒÍ†1e”ñʲOªA&Ý­ùòyNU_ªIFg~óV“¸ðnü¶WÁ‘ØjÂûbÝá\„÷¾ 7¿7¶BÞ…ò ¿wÍ$Ò7IµH\’²´¨”cWÓÝä’ygÙLÍdçДÔàÉ#ü½Ë:1>ô‹Q;‰ÍÿÔÙÅè{œÓÂR‹vuÕ¯sØ“ [wo:,'G¾JeÕ.»ß럌MUóÜÎØ†QÛ¡:²«¾j~M© Œ ²ÃÁ¯+¿ðéÁ[r®š2Ñð·Ÿï2(tr"-’{r©­FQ=õùÎMîY5n4•íIØ ­°nßZÓÝÊ÷mý™pÀqK^ D)ÐhÝ ŠÅ«ºvüšù.ÒLü@ Ç”÷œïÞ¯%ÕÚ@¸ŒŽ¯ßTÑélí­y”˜bž±Ûn‡Ó §‡ã¶Ý°T½F©J€k6£ÆZëx'%¦l ½¶°Õ^¤¿;pïuŽð)Gýfqµ¨_qÚÃö~ëæQÑe;h·Dù`Oéú»mˆÂ%ð¦ñ9@4,Ê¢G׈T{mñ§hàþª%„ÿåEË9Ê4ÔÀMB#´X¡ÅñYÖÀ+ë5k7«A”…ÑUišÌÇ+ÖÖx&7¤õ#«ƒ/F€ræÅÖîR¹Ök.ñr¯s¿Ñ©¶âƒñI`ê,ÕçÈʉ|ë@ f´c¦|Y&µÂd^Mä c†ÍûL”"囿%„!™Å*&‹qÑXq] ¯œFb©#-ÂÆ¸KÚ­\J«c¯Z“ ¼ì§Ù÷l×L£Êhäí9¼âߊ$ž" O×|!¯=ŸFÿvqû޳Ìê_øÍxßá¬Þf’T®>íH¼ 5S|)ŸvƬ²gŠGñµïêB™å…Yp{ ÷@CR“»Šß4¡å³܉< »?-ÇçsmÐ)¶ˆürkävO‰G–˜l#!Ðn$=è”rM!݂ۛ ˆgo%0<õõŸÜŽÔw饙øú£«!›{”^W<®KOëTccïV‡¡XüZa1ì×€6aª‰_ÎmwÍܨ» *üéÒrÔÔ Hc»þ˜®ì4ÖטìÐ'þ‘”WXÏj º@»| œõž`Hå}×H,)yêq(¶¥ƒ[¯AA›¬GÑã8o02³+ßZ‹ã`æÕ_:Öp7ßEQúYG®Q{%r±7ç6©.VÖoØfÝ4sÛ< rénï¶2ºò#@ØÊÑSdÜû3iÖÇ~mšyF]8ûUœdâ,,„@àßR`6™¼ò-yOŽËÔ½´`Ãíü û}²¬V9ªi€QñØRã?š2+=Ì©xÕß £ÜNw-äQ7HtAxF.ƒÅß%:å’±šû„ªÈÖøIÞUªöó‰»t{žï’>豸l÷Üž=Ê“c9ãÐ*Æ £U´0\”DÜIv§Æ1qx)È¢¨ì ‹fi߉¶A…%Ê$(ª1ˆ ­³"×à­l°™õJ1œWy¸ðôkòñãD[ätNL #¾A‡8Ä/Ýœ˶›tzmÕûæ2í]Š ®È…-D<ÔäÍyñ¡wAd™+ë™ LŒØ0¨WfN[q…±³ô% "øðƒ ¦j«ݹ?Éí7]l§”Y, TéÒNÇô‡[[¿›ýdQF)•çry¹&èÌÝ›[®Å RúɇÈÄdˆ×ý`Ó@w=‰‘ß®îWˆ:FˆºëöÉÔ|G3ÌÁJ(ó‹Uèá奃 Q ™kª¼‡¼µoU›`â`ýC÷ˆXîd¯)1oFÙæÂ5½Nùš_`|±é[V£$rXE>QúÓ ^[­y“îóz߯çá눀o—]Ô ³ä}Ó²«8ÉÐÖ¥ÚÈP³‡óÒцÑiÂ!jìGªŽ¹ièu°f^Lî㉙)¢è†ˆC×Ãç·J8ë*€‰BEâÃO›ýõW[ËwX Æf.‡² ãèfø¥¨7dQjÅdÝOÝM§lÕ˜ÃʈI™ù-4]WsßJزa#Kôb$pÞ)÷»ñÆ]T£ýç %û¨X¢vIáõãxX‚[Å`UâúÍ;¢y´ù;”·Ú›ÌL¬Z{´OS¬z€Nn_ö!cv LY"Þ7Ù˜zbÀƒèr%‡Ý~œŽ{04ŠÐ`"âµ²½åeÕ裱k:BWn­Êm_&Ÿ G Ì:+|ó÷…ûBôaÏ[öC_¸/n¤È#ÕÜrÆ—]?þèŠ~YÒüžARޟϳ™ú¾råÃç“ Í‹Ÿ#Y ¹1$Ž”æÖ^df/ß>éTÖz©©¸“¤ý¦œm¨ ‚yÀÏ^ýÜGœ5.¨¾ËTš–¥²U÷i^JeÖ9øgºK$[„9}×—|çÜ„žÆ´íu\Ã,0|Süœ‘Ì"‚¥o°uª°©]šã™›Eˆ«. {'‘'\·aüT›ƒòÚ¦9ZŒÁ~ˆÄ%ïFáæ›­ÊåLÖT>þ°'þµ]8²–”žÒ¤›ØüS´s¼AÔ ý˜Ç$ ×£Wl²L—¯v¡ dZ‚1Þ=â:Bå¤ê¦çæâb9c"1Ê)–ÚFðlÖ¤Rk_ Ž©ágÆ~|'²V_=fw_ÃpÅfÝkQª«kÔ ·žéá ¸DÓ9Ô3‰±ÌXÁ9Ý[IZûfßUh•يϳýÁ¬1=êœçb§Jñ·|‘›u„BsÐÂdë–ÝF?hîïµ¶ÅVä”0Í„5ÔoÍþ õHßÓÍÙ ¤ÝcŽ„±­ÜoÆáö :Î5üëtÿÝR>q: 7›«Qè¸øZwñ¬…ƒIO~SÉp ‚¢UMÿéPip¡ò±S Õú÷îõÙ%‰ç[7*K¯ÖÎEba‚ËÇšÌ&6p*îN0KÞ´¨ˆ’< 1·8¾•/^ŒeÉEpY\Ð2oÕ¯JÕÑXMn¬U©¦˜+ÙÆ§Ä|ãKþœ_§î]~=Æðòp «N¥C¾&ÖÉÂ!m^%ù½{¹pt¶ãeõ•â-Žø 1ÐØþ‚%6—²‡|Yø)é9¶œPöÅ_z—¹?­à" žï2j¾ ™¡ÿàó¤:š´K̯ešÇ­¹@ÍÜSÁd¤rš‚¸°¥“E†EW“àl–Rv¹‡þÍ^[›x²G}sVŒÐóÈ´ £®p¿­V( ÝK‡ÄÙäŸZ9û–±M¹–}¹Â¢`0ÖI=类KaÓ²º‘f*=ü··l°†-gù­ÊöG—Fžàî?LrM-Ç üJTmê–Šp¾Ñéïשý ï±{6 ß@µÜ?ÐNjíóÈŽ¶Æ²ÿ´ „"Mb¿t*ýÁ`sÎ+Ö©;göÓ Wd螯Z|~[ê¨+ÿ¥žß lÁ{þ‡µeIˆq›Îl¢¥öó/®®lÂëøèÀ@Õ—Ö°ùÆŽk:\”åfX‹>ÓOS½#§€]G´¿²pø;=ƒ Á>ÑöšÃZŒ% ¯kxî§’úGó„±Ç)<Ô\Ó>çØšÏdIrÓ6µäf9hãtZßÑnת3Û˜ù…YNÛe:X¬©yÒñÝðu5Ɇ;Y¡LLð0û-¯äÓ˜µ”?7ßî›ï Aèðu;ºQc`Ù¥è54*m#›Äšº¬ÚŒ'*ÖÒ,7n#V¯âôŸŠô05"óïÃ[€s'émÕ‚oo$ß B9× ¿èiª÷O„¬ü;¥3±ô]†±í‡]qÅyU`ȧœM ô=ûÂBlÆ|¸ß¶vÅÚ^WHûÅ+Rƒ0νï9¡ÏÎÜiïE¿`ÜÓN|´ÃýêY‹`§VQÔà.ãݱü[#áèu‹$ º)´]Âëã˺˜¯  Éý¶ì&ãIñ‚µ9M?øI2}ÕÁoàQ¸,¢šÎGn¬|^B€º¶fÍgNOØ®QvÙ -ÌFòZIE78.6ò 0§4;Û6ï«C¿OÑPM~­ð+lˆ¾:zgh`F?Á&Ë)M-]Òò¦Í¥Fªþä7êù½ÏR‚³ÕmBD‰a$uqâü6è©ÅrîÒj¨NöââÒÀi¼ÛÖŽ^{¬Ž[‘‹N.烓Vg8Dg:øE9fÞ­rÖŸ+â=uÞ´…¨€Ks¯.‡w¢­ÃI$uŸrrl¼æÿöý1îAK ‰%¦% ÁRJšwBgW×'ºJÊ™o¡ßLkBÒf&Ø|æ?>ý™² ^wÆa¼Á _ŒA~:`¨f ï$íœ)îãÒ‡à”1ÙzC-ËY)ŽÈt^Ê‹£†a/q.o`à¥Oƒ°YKךi–(ØünÌKߨlÑEóI:9|¨° ?­ß~ß½ã¬{oÑÕq{›‡»RRnI ?q8yyË"ö,çOCɺ<£a n F§5¾é—0ʼ“JzagÞƒ•†¡ë Öƒ<¬eÉëé˜J¡‹³Tãn…Œè‚ƒt‰¼¨‡€ÁŠ tÚT†›ÂÈIeÏɪœàþ|¡¨µ÷2ãoøÉVzíüDkªìÇÔ~¢G[—=9ŒÁ›»Müä$Ô‚ž¤¼øêxÕ ™³êc°•ýŸÁ³Hbö=ïµMÈSÙ¶^)-w <ÏTÛnm–¼iÚcè僺ˆr—áÍCsæ/µ@û¨É Š“ÚFtMߘQR”ª8žfm/öBBÜÄLIq¨"%lzÝe‘ ûSîÊö]fÄ+³,Á<àñGíéù{˜Ö[[5=÷ÎÕHî{¶×ABz|p¯MÌ—x5ñÍ}ȯ7” ÷¦’*~NS>Ò·TT|ܺ]U¼ö&Ûl LîR[ Kýd˜\Pªu% lJ¢Äu Iõ¯™]v:£ú(Æöܬk×DMŠ9s:’–l…þCAmÓü½OŠ6;kGÛäÇK/gˆÓÎ÷æòª@ÂÉ ! Œ+ëlPûåä©¡ËY€[Šƒ8dúè)–·€ÄÇÏÈ“Pñ»í,Tû>ÄÚí|/¥¢+›P_Î áoBÆNÐÖO‹ì9:2œbfËsý$–e-:íÝÀñjÛÚÌ×  ‡Ìj8g“l…n½Œ?¹Îà ¦ñÂÎOéx”¿Ì™±ø+ñ¾ð=¢¯š€(*cs@Œr×Tut¢àf5=t¯xæ¶e£üâHój¸õz:pmlUn.q°¦ã•~O¶ùõ–s‰yRÿ2ŒCJ®þaØKgÙxçÌLåe|ÄÛJNƒÝ9œ>ñgÍÙž EäÚÉV;üù–¦]‡¦ ‚Pè Xh‡òÆTfg%JmŒ¦‡$œíÃÛöŽF¥Á:óÆål²V‚ÕïOTÈXˆ'Ÿe.ón(ƒ„žsðëfåù1ßhYn9•µº PPë.qW%=Êìy]}ÕÑ Šó¥RëìµÙ·µ€X„´ÿA>rñêéŽAx³³{endstream endobj 293 0 obj << /Filter /FlateDecode /Length1 2615 /Length2 23102 /Length3 0 /Length 24578 >> stream xÚŒöPX׊âNp·ÆÝÝÝ=¸kcÁÝÝ‚[w×àÜÝÝ B°·33ß$ó¿WuoQÕôÚ¶¶sš’TEQÔÜÁ(å`ïÊÈÊÄÂW|ËÊ`aagbaaC ¤T·vµþ#F Ô:»X;Øóýa î 4qÉ$L\AvŠö97[+;€•‹•›…ÀÆÂÂû?Cg>€„‰»µ9@‘ ç`tA wpôr¶¶´rÑüï+€ÆŒÀÊËËÍð—;@ÔèlmfbP4qµÚÍLljfÖ@W¯ÿ„ °ruuäcföðð`2±sarp¶¢exX»ZÞ]€Îî@sÀ¯‚J&vÀ¿+cB ¨[Y»ü-Ws°põ0q@[k3 ½ ÈÃÍÞè ‘ÔdÊŽ@û¿þ6`üÓ+ë¿áþñþÈÚþ/g33;G{/k{K€…µ- ,¥ÀäêéÊ0±7ÿehbëâò7q7±¶51ü•¹ @JT`*ðŸò\Ìœ­]]˜\¬m•Èü+ ¨Ë’öæâvv@{W„_ùIX;Í@m÷bþ{²ïì<ì}þÖö濊0wsdÖ°·vrÊJüc!ü–Y]œ,,,ܼì èifÅü+¼º—#ð/%ë/1¨?GG€¨ ŸµôÁÇÅÄpuvúùü©ø/B`e˜[›¹L–Öö¿£ƒÄ@‹¿1høÎÖž=Ðî±X~ýýûÍ´^æö¶^¿Íÿš/¨1ŠZêŠôWü¯NLÌÁàÃÈÁ`dãd°þZ2nпÿ†Q1±þ'?|eí-¼g jÓÿ2vÿghþ9´€ÿÆRrm-@ó{ÉõY8YÌ@¬ÿŸWý/—ÿþ+ÊÿÛ’ÿß„¤ÜlmÿRÓü¥ÿÿQ›ØYÛzýcZZ7WÐPtûÿkªüûÐ*Í­Ýìþ¯VÖÕtDí-mÿm£µ‹”µ'Ð\ÅÚÕÌêïmù[®ñë”ÙZÛU\¬]+FÐhþt´ÌÞ®ÐJþ¥‚NÎ)%íÍÌ16N.€‰³³‰hÈ Ä ðaEs ç_K `f²wp¹@åù,œ~M”‹À,úKô7â0‹ýFÜfñ߈À,ññ˜%ÿEÜ,f©ßˆÀ,ý±˜e~#v³ìoÄ`–û@¹ÈÿF \~#P.Š¿(¥ß”‹ò¿ˆ”‹ÊobûØÕ~#»úob×ø@ìš¿ˆ]ë7±kÿF v/ˆ]÷7ù™üF ?ÓßÔ%Sg³w@лcáú[Îþ¯üï³ó¯Ddö/â3s°íÍÿ$¿$vv¿ -³ùoÈJÇÜè tݾ¿@‰Çü/+ ¨‡¿!ÈÜâÈñ ZÿA¿!'û/èþ;>ë/íoý/s7ç?Ø@–@P|«ß5‚†dååh´ÿÃ$ûƒŸT€ÍTó»? ¨m¶@POíþ( ԯߑ9A®ö Sø‡T»Ãïd@ÎÿQƒŠqü­s=®öÿ/ë?Òÿ—Äåt=¢˜rý%³vøc„¿ÚçôûþBn@—¿îCqü:¸ÍMmÿ ï?šÿŠYÍð °‚ú{?8! ûç™»€^§óåîbkâbõGPê¿ @×>³«•3ð-õÆÕÃáP ·? hLî@Pâ¬ÈÛó ïõMÁûwr HÞ@ç¿©þsuš¹9ƒÆàú×ãºWÿ‡ÿú©zÍVÌøCmêC;îkE <¿N ÎQ~ÕJ£eôYqît{|û¶&3xËù‡è‡‘^Ôõ=Iš[‘U’gŸ“Ö؈¶dÕö'ߟF‰og¾¶#,OcNžˆ~ ‚'dT9ð}vòÕ zÙ Þ%G™ëäÆóF%ãÞ£_Úóó@ùÚxøâWÕƒ.yğ峌±1úA%ó”y¦Y ¸d0®ŒDptè—ž(ó·?æÐs¦^IäéüNcÙ‹|t·Ùâ¼7*ÕÙ\ºñ(ðtq‰ oÑÇg¨|ÄŽRåp–|J‹Ö—=[ŠHr>®3¢2±eÔX¿¶oî«s_ùºŸûJM0ˆ±Ÿ\WÖŒiäL¦ŒUÓnáZÇþHtôÅBl£ã‡f…ÍGÂUÞÙϯ€yd«“À–Ÿ§§‘ÑAÆ»ðm÷#Í£{=~Z%„–¬t’VzQëk|D¡Ë]' ºµ€²˜¨ «îx~B›„ ø_‰=â³î²°èò@÷žsæú^ÅùU5^*}ÙžG[²õ@7y áRz5íúxyYˆgÅ.iœN“—!Ùó>o3žZ•¿Ø8RÎ|¹]…Í$QæE¢´Ë¹|5DQÄ!+Ý÷u©z$J?ØËæ·€é\³J£=³@•tÿ4šqâ¨1hX,$¬Ÿ÷‡ùÑîŠ 1C¬c͇Ë*H±‘¸uîм÷_Þæt»(§K‹FCßí-ôÁ›’Ÿ©‹¹“Ú5Ç£h© >îMtÿô`(—• ¤.ZQ?ˆð]1X–(êë Á~ÛÈVß©|O†”‰ºG™y°InÔ9Ò¬yõ‚/F ¦~ŸOî½ Ö·4;±G:6³Gác[¥_ÂÑßàçŒI‡´M¤"]Ú üt³%HõbÕ²©á!Ú°JX—1?Ü:‡#‡ídgÁš<•–Qgn*Ñc¾.&gÛìzg‰<’Ä·V»è×obÞ „Uêwë€SlIGj|ƒŸ>øÉõ!gÖS:OÕ~¨‚àSÞ¾u åbJ6éÒ ‚N^ö'´ï{E´¤1aÚÁpfGhÑp`{ Ô˜Ãõñ©Wo1TØ%óHCùêШѶ_¦EßÈ¡Ô0A¯ô׋ËM‚ɹ–ƒQõùpÃ$pÕ!iN÷MwŸ,,Ê,$ßD3—¾‘Z²ô “âL‰÷¸R‹¤ð­y rP˜<œüˆˆ8cìß$EÌÊRæ —þ*Ð~lwÑÐü°œ¹9bu¹™ºUuרX[›!<‚g,|Ãz‚h4ž ­÷áË §ŠëÑ ëÔ½ Ø* 2?Wzk‹Ÿ³¼ë1ûÓ' q0hëOØ 2®Uõ3s~?¼p‰_ü͈)õ·œ.õÛÚ8”9ÜIõ2ŒîdÛòk/>×üÄ<0‹ÆgÙ"ª¸V”{PÌÑa©w÷áÚÂMYÔ¿ï@8ç8|"cǼƒLÉRŸÕ‘gZ—Çý6BÛÀ#=*ïc)®+&݉@LäµFó&Jž:¼M™eNóc5—¬ …íÓñce c2ζ^7îÉÜPõn1ÁHć‹_fKÅÄ}ÆOc˨6gsP·‚•˜®|(½&^‘~ÈÔ10œßg£|>¨J•ûHS“9¯c"rî 2zµ2“rö¶5COÅ"qÈi_x˜eŽ ¾à¶™Ôö£¼Ô½zžéSZâÍ 8[[ËꞬUÓÙªØ Ò–£ò…Ô…1ýçUVœÚq@ﮓfQKÉx ÉÅðÝY¾‹y\†ýïÄ8ت‚ÃB¾EB…lo<ƒ8´ËrgĨ¢üòw%‰/ÑŠÒܼ² Ö/Tɢ˖;ö¶\^àrðñRÊ×òð_OT& •ãDEqGÝÓ6gmó©ïu¾.5P¯L‚i­N ¡êÎg ’¼àa}b¶†·^™uƒ7ÍÆïGàê÷•)ZÈaGðbºÖËõlÝÝpeu«*ÏBrbÒã(P[f3õH¡7¸–ž+ñq­%Æë7ÈÒI‰ý÷+øé¹õ =<ñÐuv¥ 78%«'Ö’±Ð sŒÖ[S¥ïv.iˆE‘l›1fÎY×yܘnÜèÏ÷VÈo„ø/¼Gf(Úk¶r=!‡YÒ\‚чñеX¥<§Îç>n,_ìc=5½nWÑf²È Ƚýq?–8º_÷ g…'¦ÿX(erã}Oeߢ#^%ÎúØïZn.B~WÊ6ýN)b>Z¾¤{E&†º¾Q\WUdEveÛ•²`ÿ55³[¯”–»ŸêËÏ\«Iû,¤:¼cêù5“Þ&õ¾+jmç€ù­tf{#ûr y؈p4©"õ‡¹cÓŸª•ˆ|䥷Ö. ße˜nöÚóÇ>3V¨)0€[3)ÔÈoðù‰î¾{¡°µÞvÏ‘ü5"ÃÙNôõÜåfïà͵½î$]z»`ÙݨËí¥C¦©ˆO¢×""©¸8I´Ž“V€nÓéñ Ž=â¶©c˜¥‹Jš9ãŒþšÉù *Ç.(ô[ $ßVÿŒž£G¦‘þÔ&z‹É!o¯R÷’£z1ïêшœðïlÂîóp0ßn:n—"ú´ÁM Hyð íR×"p-=VHaàJÁëˆx©ø_…å@¤W=Ø:ˆ-W&Ó¤f¹“²<5GI¥#ml=ž—In™èE[Ü«xrÊ„åbù~ƒÕúÙÀ¿&M¼ˆ‰ªƒAÆ.ösåæçÁýŽŒ>Ù\…Ì=kêdú™§Ò=o¹£·\»ØóM£ 3äyT“%Í÷2O,U†7®BzÕ»<ÉÒ.-A|$o)x ¸0©"í¼ªi­ñ¢ÜGŽmzh•F+ô¿3$z+fbÛuâùÙ(wI'‹¯žS±¤jëà| ó" #®½ ¥‘  ô‰Ù¦0l{`%ÔoÓ8åüD‚J‹0p¸|QU»•Ff«äeÜU¶°ª>`xiE‡ðJdÙ«Â9Õèû©ýzP/òåŸ{®¢JÐŒ Èö©Ñ…¡6± ÂÖ,1“ý³±ãùc‰k§ÏJåÅ"6/¹€ýM=ë$5‰-B)G¶]ªŽ‰áøùs´ÝáMYE×̱ü°jxÔH†­·|û®Pru6"ß0=+>‡HÒ°HòO¶a­©:AÄ• ¥¼S§n½ÌFåÏHp"°_Þw rµUgMÖîpNàDpJ\êwš- ÞžöfW£ï&,Paíó'Ž@¨±M ²WÈ¥*®Ž†~°¥¹šk¤€#nލ~e¶sTâ”ç×zFùÒö­-ošDɤVmë¶ÎÕp¸Åjøu ôö}/…ÁÔÌŽ¥ê|8ýö@:. 7¯óµt.OžòȬH²¦å”ø)CPle\Ö€ P †õ@~3׆fõf\O5\Áª\‡ñk°¿šó‹— '@QEGºlašŸ˜*–ЪlG ;:L„30ick†á>3Q1«/¤yDBÆ&"uÏË+Øs=ဩWhuz±¦&oêÝÇêUÛ~~ªÔrÃÕOµ×ÀZ‹™})ï ãæ¡fáü=Y305ªTW莤s( »=FP–T0¡þžf]9ûÀI•(©—WÇßÕ=f¶iç%tj°é”âËâûf ?ö­ÔŒ“±â¡=2é²T´ªCj E—Øym-g¿Ÿ?›[túc ç—(m&†He¾\D+˼ÂLÄ‘=4EóEÔO^$îʵ¸ç½©2X'G X-GY£·âLUÃ}&j?«í¹I®ÂÍ‚ÿdRÙȈ™.`~lë Þ Hsã Ö\B¾f¼4m¯ãc³fÌîk áNTmÜF-k›û°]GúµágÞíœJïè©OJ>ŒdMڅणɑ!bвՉò;Hã¬æóŒ=ÇûG¤*7¯u çëÔ›n~fN}ôœ=^þ¤Ï Y÷ݧo4ªÀ¿¸æÒXóÉ\ç~Që_£©6*Ii~yqš†Áªt;Úîg”æ‹Ü¹ê÷ÉËÑÕ§Œ×8s_î#FžöÞ3ÄÝ‹õ¢ TRßmibÄ­Ö>Ùî°Ã”KºÇfœc½#²Þ[’YO²˜ y~×ò–é$ãöÙ:pÈŽ zBm¯W¢}|ÅÖë' .w2v>’Îí¢øçª»ãFæi7N#é ØûÆÖâ'Wæ˜yÄ—íØñÝK„mŽ÷u¬Uö‘FOB~Ž0ôå–¼VD¥à"ŠÆË†³­Òò?ø9+` =†NÚ¡öe.DKÙ-Dƒ·tЬÝ*{7öû®;g.NgÑuœQ‰$nðÅÇ®šþ-‚Ü$‹º¢!0–'0`Òî¶™”Ž´YíNñêÍ—¸½Â©âòÊ'á…¢õ«Ë—™hSì{XŽ$7)‡èíBxF8 …xAÉÒ¤¾vØ r*””Ëv›5úùZwS$zKìbhLõ&x´ëÄÒw>WêòM^öOd²v]7Ú¬» †ÀÝîE ð}¡*OI°×#> ®rœ3g{Í<›\æ¡#GéÕLF¡Ï~—Ì.èõÀï>5!&@Êó>°¾V0 ÅA÷³­=y*ˆúê7à‰rp¡Õ ›þÕ>Â%.ÅžîÏ›[aÝ2ï›è£èÑB-‡3MãìÆé®()iš[è”v°ð&]Æ>!¢­´J”›ìØG"ü­3›ë³âÀÐ÷—¯ÅOïxeµ¿'Y”eÎ@î¾N=?Ñc¬kKž–¤¢3}Û!ížî#£“[Sã~Ó½ªC\Gx}a³†LD5»"z$‡D_qÙÕÚ‡¾Š.x›ª”÷•‚˽^ _]í=ùnµÂÇWŽÉ’óCá °)ê§w}R8æšÒ ‹ ô‡Ø.X•Ò/…Û†Ì-eN }P#?À­bP*t‰+½C%Ê\EØï€èŸ2rŽ—E„lh´¬Œ÷;"…^—òG^ýw€Ûgšr ¾ÛÚ´QüfJÄ£†qÕ‡E‡-pŸ!Ò ’RTüø¡£Èæ:äÌ‘O&ªç6¿‘º{Ô?ľ3œO†$‡DäO‡ïöýö ¡ßŒ,ã6Ïõª:ðlÊïIÞGÂ~C¢6ÎWncŠv¶FÙâ*—Ë,4š§üzžI䬹Ô‹çiPÛ Ó!D»{‘ÓÓhh›õÉéðUï0oZŠ•A‰ª”ú,J¿NIµGöZf~âû4I·°:ߙȲÔΡÒ+"¬švÏK@%m»Õ¶Ö"LP'‡E«”D³UüÓòguZC5èFâ0{¿gÄH]¥I¬iqðï5wˆ:ˆ±o¡Þ½ó?.Ù;fõš–]Ï^^tv8ãq¤ü2<{bC 5²}£©µ“‡"B¥EP4Q¹dõIÒC×ýäÑ4z‚Z(楓eñÞkÔ'óYÆ‚»`×Xõ¼qÛ—Ê´€_) »UÙ*¥•LˆäA þ©Q”ùèA[}i‰5†å4Ï·mnC^ÔZ³Žië4„X”Ùáâ€ÌØ*’„ )Í¿GVå«:qPþø {ííâìWЯ°Ð †UÄhQ¾`×QÒ+Ê~¿x©†ÈÖ/ˆ—¸¨÷Ù¼y9ù§\¦þúglâ*Âkl³ÓUÜÀŸ(¾0c®_lXg3D_¢°ª»gª_ðÆåÜ{äI|Á᯦>hn&$d"¤ýÌP mÐ[ßÐèÑæ#„ ^]6£ÿA¹]¦Ô¾.¦ÆÉ~Òó<¶<›¬o±?ó³å‘úqÇÆ¾¡i™ÖÌM= Ʀòþˆ+*&y/ÌS‰Ô¹ªOÇ»H (œ Çù#¿¨¹¬81sd£ œË[Ìöeü9*SžŸn"HžoiC«Hí«JôDµh¹4uH?vÿú#ÎçéÙqÉ ¶åiîœâ3}­Æz©tIÅÄ%ƒOÃbïws(ÐÁ ®Ø(T[vý ­ wˆ÷ŽÇOk †ÈW‡|Ì‹=fB‰À¬­¿‘8Àñ:'OhøØ{ùq©Üªía½oTt¨ª;ª)½Õ+‰ºSv(|ÖRæ*g2Ü©Â!=\úx$jˆ_s(X½.ÞÌOéº>¾ÖÎ } FߢՃ¬×‚‘@>Az7)#Fn:Ç‚@â/ý€(ÉWN<œ¥ôqVª«ûû¾¹ÃýƒÕ€Ä²¸x³ »ªýîW„ñÀ}†ñ7VzØâTÈðM9`Ö9¾//7Àã×­÷äŒÑäÕ‘;Ä5‘»å‹b±Fç™ríÉAâGD©1„26ù—ç ã3?PæVû`R ¢Õ÷DlZ mUcTx´ºˆ`D‡ÜcšÓ t?Ówv6³}¬=Ǩ<×òBÍ|#ÈÒmùN±¢ÕHåFÜ$“رöF®ùÖ니|¾='CWV.Õº÷<@~¼-ùîÇClÙÄþ†˜˜ã¥K¬ÐI«!/9Ò{äêSY]ã©Xúni‹Kh˜3&;lýjüÍà~C¡©3%¨ÈŸ èâ¿y³q”™ÝýRà ¸b[“ªƒ©8ñX6Þ-Ýæ¦}SYaÔ·‚Ä’‹);}s±¬ÒnkÑšV³Áùåb[ÿèÌõÜ_Sy´ƒj ¾às·ž]3ãkQ"zÏ]ò€×ì˜Ûsë ôËöâÐ+ u ©AÈ/»¿ØÓÙ_uHµ¸nùØìäði;<{+À×™™ËEûur·\Ýi]ÀE·˜g)Þ¥ùjÃÃj²€Ò+]5¢W›ˆ»¥Š¦Ñ~\ÚÕ¢&ðÿÌ-̽.¯ÜÈx„LÔpE~u3w±-öPÃ^¡Ké•™r3]XÌl/¼Æ6Þ.Ó %*ŒŽŸÀK¦x(ÇÔA^‡k#C>RWÚú'°ûxG„97ßkQŒ/]Wô>åÝ.fedæ˜D/j—&¡3-q;6¶ß᧦ÒG;=äÑòHGCˆo;d!@ŒOt’S¥ uú:Zúïð’\"ÅúÎdU‘ë'uOYe·7RT© ÒÔ³8BMÐ;Œá§wbO5ƒHÁ ØÞÜXÊ4ñ#Ù©q¦“Q>Ê‹Ûê„4Í•M‘y½Mj +[ʲ/Šx¦KÁ,µéCZJ<Š¡­<1qSðÅòB8çÚvÓ'£¨¡ÑëØ¸¾­ ò]1)ATœ¥çibÊgžmq~wk^¹G{¦[áK÷d$üj¡Ç¯µ{ƒQàaH§ fËΧæµãáµÑõõ5úVÇOîDmpÚ㥣ôÎüÓuÅ+ºðÓ°jôF\?úŒcv&V={¦/h‡”ôNåcí×øÏâ">½O|’p"IJóge÷$¨7Žlñ;¡/>õqTbë‰,”ßS-À³ñåQ Z8Ÿ'HìŒÅ(=ç´¨nî©}Wìlõ?dººòtjýFÄÕ¾Â%{NÍİélrß}5èQÚ‹én‰d§³Lã´ÌP…,yíÁ#>WÓ$ÔÐç>bÍù–~$?#ºüN´€Ì >\É‹¸Ø.s~†åá…™?û§°åK?¸–¸Ldô7‚+ʸ¯M‡­ü. „Ŧjò¤àÝ)ÐP³¤ò,Vu`3w‚ï¡3aëh*“¤ÚóŠaîºR5«9ÊŽÃEE¿“(P«¸S宇v#ÒJoÂÒP}C&®‰~á]Ñx-Ms¯3X¡ú]ÈiŸjOX]Kè%ŸÀËIØÒcáÂ<†ÝÁé~ûçˆ- ¥©Â5Á7îMо[!ÿøn¿<ƒ¨Þ7ÃJÑqxF¬ÝÑi*UEŽ™¾¼2N.YÕO ”Ò-l›pÅ|Í˜Ž™)Cý\sô >·((EMWÓ¦\ø1¡YÒòëØB.ì9\õž]¸ØU`e¬¦@vžè¡a¾ÁxÈœõ^|áÕœ]Fâ8j774 ¸Üb<äøÂ—èê þÇFr,Â9‡ó÷qħ¥Œ ù±èqξ›¯džD†sw­n^X6yR._n± u<쀬úï }ìÄ‹EB„”Ý\¡È?ðÒ#~þª&³+Ô}‰Ú0DLÑñ²‚ZéÊ{ …?z™Œ]µ-ŽÄàÕÇ8ï’Ãæ…t–O5ÏBzQ†m‹!°ÝÓ”æÏQã^P:ývvßû#åñv""Öy¼íùð—ÁŠ–pùµøÐ~#öO2ù”Óí_«±ú-UȃO’¬+¿ä:†¼Éíë0¼V 7ßñæeóXoXrðó%†LôÞ°iÇŽ:³ójÒÁÂÓ­—9„±xTß]tõcXºR‚°mëÂp¦;G–SÈóRVú–C0yêÍîÈ>c2 úwËÅdu_´‰Ð8ír&ÌŠJ†vdÅͱ›Éœö5XŽJÜ¡¤ëƒá!¸Å•–" ~™ÌtoBECy[~;\Äß hðÚˆkÂC£)d)²Á-¦ÀD•ÊcwõŠl$i$së`‘ëûk×õ> ›b»6Ü%ž¸?˜ •döº»½N˜ìE;ê«c­~îÔˆÜØÙ²”ÐÆA7—MÙÁ<%Ñwbhܪ ñèL܃ïGª½×|/v…y×åÈ$õQ»]q9T~§}µCÚM?+ÝÀÃøƒfÞZèÅæyìœäœAN{c¾ÃYx]yÙ)„ª6’Ëæî[rv6ÒS~³SñÉ^sC½Z/h~þ¨óT¡îuÏ …¡«¶ž+¡T¬fáàÌõçž4á9ªœÙ{xñ—‰w™ùW½"º·±Gâý(…"Ô§ÄV\ÌØT¹Ó"ûy¢&¯]±öü)dëY¢Ÿ:EKªBê©'®0lJ`¹3©(q¿ˆÀãzüMgbß>­—Ì ðHñpøíÆCÊÂG!ó0L•ÜÓ²Lï Ó;{Ÿò¤…6.ÀWrókLÔF{«¾,B(4Kvišð%=Ã}ÆÆ½CP0¼YÿÓ õ ¼XFÏzÝ7þØ’Qb 5]4ñO†ñãöZæ€J…å­h}—¥¶Ÿú‘EÙFÛƒ½ŠÏm,®³SØ&|/¨\h'öæ|D—£Skq23CB€Ê masèà˜R‘—·Z|cËuÜ“ë^¦%]Ï{ê1NýéÝZŸ¤­Y\9•h :O&›ñ”µýØoC{ËyðC¾Å³Ñµ“4Q‚ ,'ɹ´wSÕƒh)#&ËØ2 v®æíì‡Þ5´¯Ó+OKášÏ?än4+XèÃxž¹«¸Š[ï ]ÆJ‚ùkÌËEîR”ê·ÉùÈÀOÐä|©#)Ò“Ð6ã¬R•mj‚•w™÷,„AZ•Cêb”’ÌÑÈ&RL¶ÁtTô99H m¿×,0Å« $¿Vž;eÕÆÙ&÷ ä=`àiÚL@Šñ(ÔÉ’ú^;»F·NøÎ³fp% ³rd9W¿7^Þ`Ó|IPoõ-«…'Ïâlç\B¦'–ðX¹^ôÙ˜sƒ>ìKÑÄÛµØ èª\6Q§Ðç¿ÑŸsX^Ú£I¡ƒß~øî%æXzY=ˆ:²èwB/®¢DzõšÈþP¦xóSâíNù¬T8© V»®¤PR(T@ô‚Gä— %‡i#ÝR#¾³¯x`û8–°û$–ùP 8•môMA ¸/-¹r–SEIÙþð"Ĩ慷3À)Ì¥%tIì Þ`Kœ°²°~ñS¿©Tö¨²s}¯E"¢ƒè_ÌþqüV+1ÜFÐvs*“›äCã]ð7l!#C"Â’n·õl.ûâ)Í™–ýM7{Gº‰Båfñ½¶dgËùH,gû³gçHoêÏ[ƹµùèÈÁçd+™z0:Gzïè»4ûî:ˆÙÎÝ^®aÛ£àK?ñŽp¯¢;%aÑ ;ª2›Æ¦_QK!Ã\ÂÕ=HƒÑ÷¼~!ü¡l¡AŸÝ{èL|÷ƒã±Ž/¡åsi¸ØÍ›•$úšq…D›B7zXÅ2®¤oRè<¯÷ezÕ?¼p\(‹‹>n{0ËSŒp‰ ØßïejÕˆðeñ)n\#_™Tª3qŒÞɱ|¿×ç^ö™õ’¬Oò駦íGƒŒDo¤®SÃËÝÒY%³YbV- »—×*¿ÛÃÙ\cΌǷçZµ:˜të§øMlñ`8 áð‚I‡.Ë;¬ììÕØ¦Bftº’@©cľ¦tzKO’üŽ;ï×CéUS9_–|š?ÓqªÙÖÄ‹@ËWêf²e;Ìø³ã}´Ñ-pOn²1ÙÜrn¬z aÖo‰¶¨¿ö¼˜h»kÖƒ#HùJï÷4 ½f'Y²"ͧf®ã}¼çkg`qL0•&Fá˧üñæÛƒ j:T@‰®Vt}ñ;¶4ÄÁ2þo¥Èü"sÂPð8ý¢ ’”©Úæboʺ¡ôˆŽ1N(×ÁG16ÜÁB£1šQùí×!Öòzë³;:4~9•î,)9 ×ÉÕÙü˳Ë\lH NWÍÝ\Òs[v‹ŸËŠŠVŸøz4¬YMV)¥Ìn–âUN«“TD+‰aÍ7q ÞuwfÏPš _ ÍNùïãë#ùi;T›™ø!wk8Ëþe4B£`¶%䋨wõO5R¢br'ËTz,Ϧd ëçnW_TÙ/úgj¯eà ðÔÞ³>Z¾Æ]›Ëă R•NòX[vxEÄbêÚ­ íÃ/5otoeÔ*UžÁ¯›C!c (´Ü:xò÷å+ïŒWR¹tâç·G7’YÙpQx‹…Qµ‡›V7}1ÞÖî;3|xý‘øÃ…Z|mrUR¢ú³l#¬ÚÜ]šÈâ6Õd䘧Hž!Eû%ƒî¤Åa>õ‡¤ñÆ]Ø„$ÒzÈw+\\LmÃÊ ¹Óv‘'¬aôv¼¦²•V&ªJ–!2á5äúð°T9DT“UVõS¾¾ž“N¯X.àë«äjúá>ì—HÏ-Ð?œÕ6º:ÖŵÐP`ÁC·?l[¨|sˆ”+®Xë¬òå>¾½…Fxãf_DAðÄ10Ð[Õú2„¹Ç™¾*‹óÖzFkÁz—ß¡¾ß†:a‹ý‹iM¡·fÚ•_‚ñ`i/“@n$Û ÍâMìƒÓ¨ŒõÁ•dN”DÃrƒrÚÁ^UP× ö².»ÍwŸ•ôwþñçÞé]HÔ9D>U8#Ó”´D&Rê8”¦˜Ö}è½·?®eJ¨zå™¶ôø!üÝÚƒ÷ íÁ2Š/83¸úž[ŨTÅr?³Ö8Ç<2ÈŸ¬ªGn1ÜÃ3•Û/ ¸VÉøaLl4Í¸ä‘ gÌSÆfØ=âé+Y¼‹}ÿåÎ~ûêâLºÞŠÑî‡É«ÇÖ0ت„þú¡“û«8Ÿcᤵ g´Ø¢Y‡AÆ1åþ‚:¡Àš nú¡}¹x"ñÉŽª@’Öæ›Ÿ)j—æðêËñý¶¦¦ØJ³ QÒ ÂlÞì‘܇²ÇDp6n_ŒDË·]éIŽ¥+µZ³Å±‡œÅ\ïâå5»HP8CŒd-8ýý¨Æ)ÉúÓfÐä¼Üv+>“º‡¸°Ååôc§A X°Ð®Yv‡rgÃëG¯D…ºäx-¦Ñ"µ+TŽZaO %çR`ƒœÀÊ4t‡?å:Ä”éÜéñl{¾Õ_éÄ}ŸNƒ<Ãðn§ÚðÉOœm|  ÷Žg‡“¬Û^£ñ-Õ‚ô'±½|~§öÈPÒ2Ë4)Çoõ>B³ÖEJ²ý£@|†Ðê™t-Úç"Jžô¸Ý’s_Ž+™dUhúàJý|Ì Ÿ#ʶ4)ÇC/¥¢õÔ’ƒ¯6}®ƒ[‡ G…š£“%bÖ‹YE™Ö5tQàÊØÝ§>†=CÃË¡Éɬïµ d®J)RÈŠÃ/†¾cì…âî6ò«MÊÀÁ¶&aÀÜ»Mk®ßý,uLvdÞÏs+¨yLw7òÁEjÂ*?I-ÿMÆmĄԓÆÙ+–ž…ϤD$A‹}$¾~+fáp-U«ßxáfêñØláÁä úÝ êA´·m°O•7b’‡méõöý$ÞŠs÷ž3=©éùía« âB•°†Á$—§¾HqNlæÊNÍ“Ÿ$3_üáÏë Àà÷–¦‚g¨¿ÂöµÁY“×°1›bÂ9i!|Þ%^ˆ{Sß|çÁvå¯xTƒFôÒ*õ=Vƒ@3ç8Àj•£èÒ5½åÞµTMŸÅ["}¿Ñ‘Ökž<Û UÙœ‚FÂþ£1 >Ü,Ó€‡rJC‚¶íÜ€ïÍ;˜Sqšˆ¾nð¯O¹ÏO´Ö¹Fð¨†Áúô7ïÅïc*ö< ‘‹`p.72wÙZ»ˆF7IKò)•QnlÑWp½È¹E!xêb·¾nvµ&*^ˆxÂ/n@^½1A¸äAàñܘ…©«àtñ8ûÂ(Z0&VSºM0ØDܧM}ØžÞµн$Š¡¨ S¶¡ìÝÓAá)"Õ›âFJ]R‡Â¯ÒiÙ§M §`Ð Jß5&"E„I £½G™Õ{džÏÒ){³ìÜ%~Û¢gLA›Ž.ÎH4‚Â5™z¶‰ÏRs±õ;Q¿ú©eFÜ‹ @°›Òù9.Pä¬U "4b_Ÿ·Ÿ «œ›;½Êwb„qöÜ–ƒM,ÚHÙ(Ùð¦ð5ŽŸ›€NN©µ‘B“"5ròsêU9X‹.5'0¼DÔÚÒè¬ûŽ¼Ñ œ37]¨…\üsìméSý8œ=»Bñ}ô´Û6^½ÆáaAÂ1I‡Êž®3“ʤ¢´­ÓEšŠ^x6ÞÔw+ýØÕ½–:.á@ûl[ƒÈQ¸e_ÿ­›òH'ã´y—⛀ŸÅqû”Z[>áZkd¶Ê>‚ošãÍš°š]õÛ{0ÌgèI,²f,ú¤)£ƒ20Ž ½ˆFÇ^¯Ñ‹©³_ìM¶_( °oQ¤˜Zs*ñòN‹†p‡ )«•“Š_¦j2LYÐýaÑq‡"5ì–l²=´uàÀ¯ªSžY:¾R`ç2~9ë“ wŸ´ð®Àˆ@Š$#µ‰gŠCY°I—^OÙ­ÁOÚÕßñÌ*RNÄõl%iVl|¬¹•Tœ ¨\y·ö“{žûâc}v¬À„Ï;Ûâ24¾v‘äŒ"ö\ b9;zÛe)áîès³@Þ«nÅmºÊ×€E¤ºò¥‹Î—§ Qbdˆœ&;m u”†Ñc%*ÏçÃú,K³­WwAÖU Û >áHtÿ}Ñ`Òë]þíÀœƒ7­ €¾ª0 ò¥¶~^‹2ª6 žãåƒñ%¬“EMŽӤÍf±Çm¯!’œŸ°†Yv²“÷1Ò9ø…Œö$k§{ºŽSŽ·GQÌsi'ï[Gգ𛩠ž!8ÛV8qܰMµ¯Ss ©—1Z>ú<´háâ—X5}µe¾iIÆüO6.á #¿„ÙÝ*ðÙ¾Èj‘1`‹«¶AámŸÆéOKö•¢šºmK Òûºc¿õ¿7ôCÿùn8K "¯x,íBEú@ Ÿéú ³DŒU´2\Ï«õÛ×ÃÞüm [†qY""{ë±îªÏb[¢É^2•™àÔ†‡Ó_ã£ùv È áÎnà¶Ôúú*«¡ì?fÃŽ^cÒñŠÑżÐ7žS‘ãÆ*šA—…8´wÆœe‡ øÖ̇ñþ;Ypɨž…@#©fYjÿd£êЋ¬à{6øí„cÔ}Jñƒb¶õš”E1z±¤Cð~ìnIG6Q…±¥9³, K¤eD(Š• uB¼N\)ù#„2³½P2œŽþÉÄÝíŒçv¸PF½rðzäj+Â×Ïn9tä}ô Oß™÷)}$”+U§?]j2öZ)µ#*”È€± ƒ")_n´ƒWAéw Màá$¬QÚDÙHJoìk6W®äÅš û˜ÍàHM¶7*Çp˜¾òj¦ºZôåì^\Ý’Ôë6ð­8•ËÓ]úiKëÁ¾c¬þQ|=fÕ]8g/³”}zù:¦,öIý¸ÿÒÙK¿>÷WC`–ˉ_DmOdµ*ÕŸÒ„¶ðÚÆ½iÁŽöÁjXèzȸ‘²ñ<¾>Û@Éÿ^•-‹–zÒ:~S^?N’vWNcDSb·U3È$ŠËd û9ÿM•ù—óõ@¤dß^I|lÚãŒÉ\ﺃ¡»·9£®£×Iŵˆ®œªo˜¼Õæ¿_¹¬çðdõŸÅ5¢X\ëxbÆ7hÞl­MCYQ2ÛpÃ:ïñHy:mßœ¤Ü0zlaýŠ÷^€nŠ>qªBIøøîkq6ZIÖ\ÅY1W0ü»—à“á­oé»båGxÒoùž>ÉÎðSÌmSbžA¥½E#,íÊxùVvÆ»?EI/:’ÝÞg:RÈ‘dÕ”âZê{@ôµwfí»¡,[×`³9dV~4€´Ò|\Í…k> ƒ¬|Â}ÿûÎv: 5%þ/}n²ƒÔ†lùjëý}æ ÙÒk[é®ßq#fd¬ꗱ`¡‡;Îáa]3*tÍŸw‘<&ŽV ‹"Ô¨KXH,ްú­J~?`åb‘\ÖhûgxÕ€cµoìbͧ³ÌÄBaCÕ@1vâ­_,+ïí: ALÎþLŠŒ ùÀËÃÏÇqÁGÛ¡‰®HVHíÞn«êV.~Kôÿ6Éáó³K–@Óû6jLÖÆÎïÛÅ/û9‹½Q"аæ?³@3ê¶j¼|ZoYûq&‹±àŒ)é}#…mÇ¢À:)Å›ïMyQÏÖ³­ä<÷Ö'7FÔV¸E• ©Þè.KÙ9f×Ö åû3ŠÚ÷8³âYQ‹L¨fÔDS¨ÊÞö[£á¥x¶ô9¯IÚ´yÊsí„ õ¼•`ØôΖÃGŠôˆï=ܱ%8WšíÓÁ}áÄ1—‘U{™}ÿ¼öÑÓpMao†¦§I"K©âMâúð6ƒQîDû†h: <7²À¡xß&C4%öðGÌq²7Ž[¹é“¬ç»å (r ;$´¾aÈ)b›ø\Óðhc£Ž%,Æ´îyîd6øª’r†özÎ]—Ôøº{6 x†ÌU 9‰‹œ»Âm£r! {&Ì^¢wg¤‡‰&{`bܧ&N½aÉÉrk9±Åh@dy4Ц‚­¾wŸƒ¡Ç‘C(šA£ò«¶ 7‡Ct‹-¿)ßÛ? /÷Çî¡7‡þmç>T½$”Þ('á:³à²QñDliK¼J>b>£ÔVßûj6 SS#õôoÝHÔµßLM@3dÒ[¶¬è4z#.̇Y‡\œx.³Rúë qH‡þ“u_7‹«,^ç«Þƒ0az†DDCv›l]ˆ düŒ{Î×:Œé Âx SÝúsœ>¸øïíÜÔ›¾Ô` ʘÚç¤jo |ß~xh\Õû—Y>`TÁŠ?òψ‚[kšk×Tµ¾ûgŠU¤§^Ã狘{t[ˆyœöC}¥éy‚÷úÓ‘•È…Ïã8ù®…(Ë–“÷îßþßÒôŽNvŠð›.Á áËðo†ðˬ™zäb¢Þ¬™Å¯>H»¢µ¦&=5€Ó±•s{5™ :ÅU Rk¹·°¿xn?.m†ý÷.kÁÂÃ̧ÀÊûýN›vôkik·pÅ^'-Ž«LÃä‚8&Ýd«mÙ"@Eöëîõˆ3=Žf=ލ?„ܦb%ÃÿÚÚã›6?ØD¨8mÖÊN¤4¶õp´otˆ.çtÜ ŽA¸e¿Ô¡¬ˆ,µ~”ƒ5Ã:㮹ò“hÎÿe3˜ØÁœÁăÖ/x¡4âº)‰×Œ¸zIªÓòè_‘®ëöɆ0¤Cãtº¢oþx©DnôÆd¸>³8·Žóù×d9™ÉÙø~Ù¶Mï™ùòûEš(3,Tù<̱‚w­‘”“K+úî™}D¥´5 T†Uʪ·hM¹š[oùNÆ®û¨]É€ËjV_'µdøç§½kÎÞw ̶ûñÕòÜ,¢Á¦ÐWfqŒP[G?€Ö Î3 #ÝêÎK_¢ ”7wúû©a¢ÁBu8¦%p?è=èt§‰"Œ½?J-j ”†¡ ûÊûN4óðæ{e 0âU¨^R~d¹ú‡¶lmm?>w­'¡AîÃÂ.ÖË ªŽë &1¥·ÒÙ–= ÕÞea€ø£ïˆt› *‹Ý(×A'PPÂØ‹Ê–Çò@¥û;ˆ–fS~LP÷Ú“rçÕZ€ÎÁvƒbéçYZ%üȘû òo …âASœTÀ1ˤ§¿]žªYC1U§ÿRÎ -€€¤~v ɺEGïm³ 긧ŽÅáýãw3Ɖêg&ðÃË]7"r}½ Ê7výäI*ëkUcÕ;^ÒyæI·»ÜúËDúŠJ{ƒ !ŒÂã¹yäš@Ì›¹‚×ðìG…‡‰£Á'…ŽëaLx“§‘:ä8Ç*âm–‚€¯Ý|#õ…¹ ¸s›Œ…áGçFÅØÇÏ›ü‡P* ÉÆ¸DDL¥þâù÷±­ÍâBîÙ™’àwúd§CÜJ³—½—Ä.„nüÓÁ8²ç„èí{t@Ú´'²fCp­!¸P)¿òˆÌA0§•mC'ÉCÀíc\]×Ëú SnŒ‘l…Œ2æy¡Ž¬Ÿcö…7îÈ¢á‘P@v„@ÛËÜŠ2¼þ¿Û¥fG½ðãxšùf#ç |”}O ÝÙã2å])ƒM?o;ðÅR–P×мØÿï¡¥ÿ4M´Qúš\»pJÂÀXÜÛ‹–P¶6cx‰ ×p¸¸FAi5ç¾î].ÿ!Íùã%´ænÊsº3Ý’èj}2—ò?›×K Ãüsæû2™å§Ï¿aÂè{ôœØJ’WÖÍ·¦†èï3ù+ß”ÙÀ‚„5æÌŒÒBáEùŸD܆‚»{øN(þ¦íù®ÎðR8‚åA<Øx†™m¼BmŸX¸o m=£õÏÇúô2ÔþlÄKÕÿ?9–óo6â®Ö°•E¤õŸÎº€üüF=ñZ8ñR°³ŠUEz°Åò£OÍ¥]ã@wo@´•‘»–JªÏé Ý(Ç “޹¥ïÙôñ,0J‹÷ö“èº÷¹ã¢èÚ…4!‚¬Š³#TŒ7¾µ¾È›‹‘N:`ñ»bOáÌÂΔ>¸ˆý‡´\…祩'ÚÏ;ûx&CômŠ•æö 8xÜÁy’ìåÐŬT2ÇÙ}ï ëï!Œy*±eÚÿD˜ÜÄnŸo"ÙàÖà ±m–©˜Úèx(™ÙBäôp-µþì϶m%—+½*Wî‡ñ­‹Öš8Ð`öªX€§Åöp.’ýX$i%:!!w•/³ç”I©øÈ³@Ø ïºc#à¥iÚš2v˜Y—wI~\iÑk[§1¦º˜Z°è$ø¢¢-1BmUüëÕ1–y`ëÖ5ãEt MRƒŠ.ñë%*¾¥÷ÌàÙê‚Uwp¶Z˜ë`%ÑÁ6› M§Î‡Q0h~&îžÎÄHK¡g]P«‹™’ ðëy#ÿò¤@òq; Õ€ñV€)VSÍ<±ŸX ª•ÿ†«­2„0]b<5"Ãë…¸{¹¬×E‹0aÉ{Žz[ÃlÝ“Q%©¥ÌØYº/kÖÎ‚ï¡ —ÜðkòP¦çÝ’Ù¶þzT£œÐáGð¬Þea¸Þ/ößÈJFù¦8ÕzÄHj%|Ë_¬ø«z;¾ä_©2ž]}ÃïSâõù/-½±pêcîHäľP~s]'ÂÐn¸Ú‚Ae#¯œ< ¡loÎÁIvž÷·C1,2>ß§9BùìFFÚåßÅeψX­Áo-%Ï—‡ŒƒúÖL8Qïô¸ÖÛÖ»³ŽùH).{Oçpúñ }°cy97â_›·çh„Þ”áô´5µ+l´SË©Nt¿l ŽÏ‡7PyuFŠmÙŸ‡e‰ŽKBë§Æãú²®ê\ÃÏÒ›‘ ZŸÈ¸z±Ôl ¡ÑÌTw‰c»Ê^x„òq:óñ9`at_00‚c£j»tÙVüÞ¬í²à1Ä|˜3©|†r ¼ãyÆ‚?À‘'¸êÃÝêo(@¡¯%‰‚Mf08Êl7ŽŒêÌr—ô-²2Eí‚X;ÓïÚ$IBU’ý/Êã!r±ýËÿÛO³ÊrÁ¥é ÝNrÁ‰Pó2ƒÉÇ@ï?Ý7´B|ø–xÑÞ¤32¨ÌáµkÃ2žj1ß¹rà@`¢`ˆ†ÏöSmƒõ@Tš0®![ãJ2>×\Wßx ‚8éû6s…vRLìŠL—Âøþ/{ΩÎË}ÀúÇJ&Ïÿ¿²­žƒÒðh¸Ñ«¨tì͆FK" Ÿ7tέ]ûŽ¿ŒîVý6zxù¨?/@ôìruøÀÜOöPGàÁˆÓè ì«ú*»XxNãúš†œVæ9Œ?÷ jÈqœZøÌô6ñâ‘´$ ùÆG*¦ði"íËÀb¢3.ùΈÎgg$Ä连ȯþZf›ü‰¯ŸÉ½¼t˜í±4E:7¾¦þ.¨4;ýKè[#ä…£V@nTR-`õ[j„•å\³Yn•¨·å®“m(âësÔçÕÔ*dOùä 퉢”¤©E Ï]­Li²*cã…‰…»Ÿï’&ðª›rŠÞ6ó†H:‚l«ì°´ÐÙW3£cou¡ïŸfàt²Wò6™ '8ü¹Â¿†6 .©±2?ÊñjÅtìɰzW®ñáÜnø¼4zÕ*„Ÿä¶ÁED,-ÖßaÞ¢µX¢ù ÊYžJzäp$zS{e瀑Ȃ™tÑ'„f*gaɲøúÜ4?óÏÈ 5 :œc™Ä™Œƒ4Œ#Š:ùäh÷g:ºŽK+/J 2?#åŒ \YÔlòÉëɤXNU³<¶Nvîy#–ÑÛB?ù´C½ŒÔK¼¥ŸO¯}ŽÉ»6-–i'V¯ÖìVhó2Úª_$uܹ%g,þlü‘üÃ<@^œ­ÜHám±Ã† «Â³¡5¿>µ–>h¡*ñ؉g‰þˆÙã–Õ)ª(M]jN£ÕÀÝàr¢,›³ß÷ÖEâÎI\kÌO€ücÛ›zZÀ÷㓨#/…8-êSÅóï°ê'cò­`o¢%‰T-¦:È_™Uáï "sãïq$í2ñ#ãýeìÛkœ-'÷é%ŠÀ Â"np҈ɋÖ«ÃËíÀÝ[9$éˆÁÍ|¹ óp`S+ê›´SÒ.×ÔV7LÔU>4ÿ5Kc Û#µ1Í8kÓGm’li  Ï)K‘»2¹`¬&n¨ƒ9J÷߯¼8´çB»TÌë½—>;x‘¬¿ëøÖO§ã4®ëì òxù¸úvÃîökÖ@-"X£Æ –!¸”›ñ”¼åDÃ(ë”,·½|S¢œb™b{^è‰F7\qdJ]T|È<Ü%‘²Ð'j»V0XbÊ¿­g¹«>)SǪO×m1¦ÁèÍ\V™Ò£‹×g¬‚D.6œL˜ñjê½6œ$]ÖVë È›~”¤00BDµ4µºå›¿*›ÔµIó…Ãmʺ;Q1±&ïûf·ÌßàýuTXå ¢» 3ù^ô»ÞÿÓuÞÕâßm |ä? ›‰úÙÀpj^;ÞªÞ3ôÁŸ›ò=“¯õ·Âêëë§•ŒV½ûÛ ç'¥ÈÛw¾/šßoRÔR< Žs9)ÈáRìT‡5ß§'q×/蜘)ˆ>⸾=‰YKOgûÖUçŒmÔWYÁÐrÍ´ªÒI‘(qË‹sD³äŸ¦¬Ü“¹¯a¨0$7L(‘ÊÌ×+Íññì‹)>ØjB?äo™àŠÂ|…#ÿó•4ðìÕÕV™%1 £]›ß¡#,}r1ž´J‚¯ðø{²Èµc±ŠNM9Íù;¦¯ûðR›È}WK)RÉ‚õ¶ÁõWZ&˜çGÝaîî_9f`°Œ~Î&ÄàlPlð‚Žôö¬8ð8Ö§¯kôàh ,baª%7JéÆ$”ZÌ{P'Fom„‡ö’°ŒþkâþL€RÛÏ|¤)ÛÂ(Ħ#, ÕEÖ;¸ýáà `С§»ŽÑjY½4ú-œŒ{WÓ‰>Hôáíü-C ºæÞoÞ/.@Ô¬Ðoî±…h°iÃúGP{f³™#¾õÊŸÙsg-É÷M:ýÇyÛ6‹3éµtB4ðà¨f ù¾ø2·Ê{´ÙvaKQ$«'ÚÐ+š%€E¬šúHM„M¢tM[uW½jqXÈõ2m$…žž®Ù_)e˜Ö•›|ð-™Û¨² ¿ÝÑSËXÊko|QzòŸc! Nýé{¸‘pÑ…¡&™XµaR¯ÒvTÙæÊ¯”oÌoµ.üîNšÆ1‹ì#g‰õ™­Sø R>Êmë#4OÝòQ•ÛD.éšRã¦bx:\W<"Ub}æBÕaöz‚…{íØÎO‚«‘ˆŒÆ6]ÎéØ@¿´6+£¢ÝòœbºÖu éÞMÌa¯dH¶ù`c…k¨¾K´Ýñl4ÁÒ09Z‘_¯†3iüµfa'Àø[³<<=ñƒ!°1±Þ„2§ëRê½îÀ^£ —è×$*xÄÍ Ô $*¦GXóýHrô|»œÄ”7yÅÍû]í2 SññêÑqúç¸ÊLÍRó>÷˜6À>¦(:08|zq…”¦NïÖ–RòÏ 0ç‡`¥<ÛPœÖßOÓˆÉÃðq:z¡ÞÅφG·ÿ’™ð{ƳŠÅñ?~Ówö®½_H¹+E™’Ñ> stream xÚŒ·eT\ÛJwKçÐÝ ÒÝÝ9„C7HHJ‡„tJwJ ÒÝÝÝg|ãÑ÷;çÇY¬5Ìuwš\EYÔd”Ù»0³³° ÄÕ44ØÙllœ,llHÔÔ6.¶À?$j- “³ È^à/q' © ˜&aêUÙä\mìœvv^66ÿAN S7 €" @dtF¢9x:ÙXY»€=ý÷+€ÎœÀÎÏÏËô/u€¨ÐÉÆÜÔ hêb ´{47µ¨ƒÌm€.žÿc‚î­µ‹‹ƒ+«»»;‹©3 ÈÉJ˜ž ànãb P:Ü€€ßi”Lí€ÿ$Ç‚D а¶qþ7Kdéânê€ ¶6æ@{g°’«½Ð öP—U(;íÿ-¬ðo&ÀÊ`gaÿÇÜ´²±ÿ—²©¹9ÈÎÁÔÞÓÆÞ `ic (K)°¸x¸0Lí-~ šÚ:ƒÀú¦n¦6¶¦f`o U˜‚süO†ÎæN6.Î,Î6¶¿³dým\hI{ qÐÞÅéw|6N@spå=Yÿiñ{»½÷licoaù; WVM{GW ¬Ä¤À$¤?4+  €›ÜX #èanÍúÛ‰†§ð_Lößdp¾Þ €%8 ¯%üÉÛÙÔ pqrúzÿÍø_„Äΰ°1w˜­lì‘þX“–ÿÆà)p²ñ資ÀöûïŸo†à9³ÙÛzþÿW£Y5Õ¤tE•ÿIú¶˜ÈàÍÌÁ`æàäð°óxøy¾ÿkHÅÔæ?ü¥*ko ðÿ;^p¡þ³Ûî?{Bø_[J ðtæÝ€›ÍüÁþÿ{êÿ¥òÿ5ì¿­üÿ˜÷ÿ“”«­í¿$èþ+òÿ’0µ³±õü x„]]Àë /…ýÿÕþ{‹6®vÿ—+ëb ^ Q{+ðh3ó³pñü›lã,eã´P±q1·þטü›¬ù{ílmì* g›ßG €™íÿðÀ»fþ|œ8ƒ§ó_, x•þ׫¤½9Èâ÷ÎqpóLœL=‘ØÀCÅÁÍ ðf/§Ðã_ó `e±¹€Uà }– '¤ß­åá°Šþ&ýñXÅþ ^«øÄ`•øƒø¬’ÿ ^6«ÔÄ`•ùƒ8¬²؃Âö ø=(ýA`Êÿ >°•?ìAí{Pÿƒ¸¬8?Í?ìOûûÓùƒÀþtÿAü`IÓ'XÒÔÎ<ÿ¿Ï²ÿR¹ÀQ˜:ƒÇÅÆù߀ݛºü±Ö4ûƒÀf¦æœmM­ÿ¡²spý&;ýEgdædj´ZºüEæþùßÛõUö“?]þGžŸóúÿQ§jþâ‡h²Oà?‰qý¦ØÙý)ÀïÑdý“9'¸‹ [Û¿cT¬À?FÁÀÿqÊó›ïè ^õ?*àrXþQ‡kiãö—ßlëß>À"V,‚ùV¿ï_àß"àØÿ”– \1kOk ý_`šÍ_éû¿ ¸ñþ‚àâü‰˜\Ûßëø‡.¥Ý>€Yÿ¸â{²wµ3û}nZýø.`ý‰lüfø‹ ÎËálÒ|iÛÿOo¹ØÿCýßÎr‚£)ørþK”ç_4Ð_“ ®£ƒ­ë_y€Ÿ6¬ŽÌ€‹èè rZ˜ýÕ.v0õ¯J³ƒ³ûcœ…3ÐÎæ'‰û· Ðí¯òsƒ8ƒo¹BGüÖðŸðÁ—«‹µð¯¹WÄÅô—؆ëŸéûü×£ÆÙäôwYÁ­tû ‚vÿk·ÀF=þ‚`¯žApK¼þÄ ¶ätúwÿs›»:{âò¯›|Vÿÿë=zÍ‘fA悟Þ×|j½¯%rgÞåüÁ£yûêJÆ…e ¹ÅÕ­„ÿ¡˜ˆ+ç†/)CBeÈZ¸BZ2$–H2Š×ý¿X <Ö›`,(™pÂc–Ú·J(çtãl?ã"ñ“³Ä=Êœ‘—ÞêR ‹`©‡€p>’Üëíí;*Ñ–æ•#*ïÏÒóã>ž*ËØú© ÀM´K°½ MF–ëh˜x •ÓCn8¾{SÞ†e23Û#†Êýq:DÉ¥æÜŒH·˜W }¤ƒãѺMþ];d'SAD6íÞSÁÀÝ‚t¼%•¯*î÷€kwb¡„ÔìÉGËl”²¡ƒ»ðØ4Ã'Y””÷ˆ–îGÖ2§Ñ^™¼ÅGþÍ$ö¹¬£!õûkÈi•îaž™a •%º¦LäMõóˆO|ÇéÒ†öå7f±ý$¥4ôùZÙ›M=·hòfÌ{&Ý õλÊv+’ºqŠ–¼|§ŠÇ5Ÿ‡Ü#˜Î%}¼˜’£–w£aàØì‡ÕoþÐ`?:9Cé’ômÖë‚x-¦ól…®@6O.CbÙ}˜„±X¢¥1Ÿ×Ç6 ´Xy?ÀÐ Jæ3cÓ!*^d›Á¼J]pw\;b¡Äõ¡;Y‚,ª„>ËÃ-C@E«gÁ‡…ß|ƒêy¨áC^Uæaü³Ž¬-ˆ™¡€¼ž–x)̧nƒ£ m@E‰p¼'Ü}7ɃýæZLNœÄiÈ\{²DÜ3Î~|–ÀLD™ØŸ{McëlkW6§fqJÌÝ—ÿ³Á ÒæP¶²]m_cûò8¬Öuº ÚC…¬á!H( üSó†ÕpjºŸ…€_ÅbÚÖ¹O*¥½= í北œ´tˆ>ì¦0„kgÝËê+'÷Y+…¡ƒ`¼f<‘ÓóÛš«;ÉpEÞÐÜøˆÇO¬Ò½Izz´ª†âŠhÙÞpéÉ0Ê_ÓylrbKœ‡èZÐà>4‰’Ò+² ÞwÕªéMѼ_ó¨Àº3üòkZIüÇm«õ‡¨¾˜sQOàÜFæ–‘+b\îÊ+#’K2NŠÆ‘Ï@€[ÒÞ‹hÐLœÌ7‹jȨpmü6·‚ ¸ñ±¹2P«ô6'¯àkÍ}Ⱦœoé&aЋ”EÎÉR8¯§J ûR!¬¸Xû§°ÉÈZÕ¾öD›˜"äTõ€³Ý†÷'EůWJmÍ­Äé" /%]Ü…a‘Δ)NB¬9–mvÃÖŸÑœôG¦,VæìŸÐ‡ÃÞ\ÕÔÖi°E}âgb8 &#’S1u8óJ^ÌEÀ‡r¦Öa‚³2ä%þåyƒÑð–‹;ÃOŸö¤²»tõöã/˜j6g”«îS[‡vâ°x|O¥À¥/~]i^˜Imnh/Cæï¥ÈX‡j–S¤žôõi öb騱¨Í ŸGŒ%¾TŠS¸½SźIóì7.¼]N¡”%g™ìÂ_ÐÔëaªzŠ—Éì¸'­Q°âå”hè˜C´bXÄi˜GZFû‡’fy±”fæÊ¾“…1š¨i7þþÍ¥ž«ZºÃ™¬õi3HáE½Œ?áðˆ‹å¤¨ütß<_´‹Š"K-Î-"nE²­Ë¡_+ ¨7+¯±ÍzŠç-É Ÿé&›ãÈ{ã`‚zá‡'¨^\QŽjBûTÕ)Ú=m®Xîï*æ´8ø×Y¤„é á#»8,K•~Þå ºE—a¸ýÁ¤HK=D¼}gTl$ó/O'JâátSvùSÃÝiÕl^—gùv_"&ºôÅlªŸ4òYjš¾ àˆìG¹}i';TLçlºÊ¤®;›ù)f»Ë’Ü5ÃØÈÕ3BóæüµÍ­…£sæ-R=ñ¥ÙГ¶éùìå°¦±ƒFT…%<_CÉdŸÄÃüaŸ”4ɧf •!#ŽY†ÔñcãÝ)Œ\ñVjœ*³ü1ÓüŸT´µnÏjœ¨•Lذ|ÆšÛöïªÙ>†Í<¹ÚK¢‡\ÖxN8¬{tÉrS0š.zv 0ä;.›EÏËC/bz)*›ؽáB3 «ZV`es1oVŸd¢š¬üjšVÁœ}꘭¡+<ö±÷níĬáFðæìeƒ0ûqÃâ†î¤ª'á™¶"w_¾F@3ü²Ë² @Xã°)ø*3¹eV«€ ´®|YÈQ`IþЀIãÃøÙã!@òjh¬«<©§V®(÷†? ,œ-f±¾ÇéBÕpW§ÞkÂ+=r^y?…¬—!s¤==#úJ˜"qMFB¨‚£cߌ_“i^2€|£S¹N툘y?þMcë }áÇKrçél}¶µ'Æ/¬!ÎBÕá ‡’ è9:˜ßü‡Hs,WÂk¡Ò#(ç3E"µy¾rN}‹Ê9Qì2ÃØGá£1â«SìÇ—`tÀ ³pÖÑB]­Âm Ÿ½ói>Ã4Yl0!lžJµ¸dÕ¿;Ó-Dö}6ˆ9~n¿i¤Z6žœMä )T_ËäÜ´“Ã=箇 óŠÔ¦–m Î,³º4×ú¡V­ƒ˜ûö –¶ Õ]˜,Úçc—ݶÄc¿Rô»ÉYY ^¯Y¯ûfjoÉeä ªq>üh0 ƒoô·ˆõ*3ÛÆù4}³çabÏ·=FmáqÀáÃM*}ÜE¿Ù‚+³(ìQ¼§‰ÜÉÅRï£ÇM¥obÃÿL&bË‚ƒ¼;é÷&Cf¦#I íùlˆ>êØoœ9ãÉî£]PËö!c¼Œ1×Hit_ “õ<>ч¤)îëg}k#cGZ³ÒüŽ/ÍR‰×+D±Ûc\±˜rðÒ䨋NÅÛ¥*©fÅj7‚G¥]MŒˆ\d™ 93+ú˜ì!¬øïïJUìÑó6'çUuÌ]“³¡E⬈8x9y‘´9ã Rجv÷ŠŽQï/Ã-¦„$KSŸÂ§Fyôz¬NDºÖI ŒWŠã;ÅÙ½ÒÈ Ú÷Îfs,Ü«Òdßu§xè5™× ïÆÛY¿4êu`*1ä)ËÙj¼¹‚í|yfHÃ`>ðbv[äBÒŒÒSd,¿Ê+P‚+ux¼L¹Íÿ>àJä[ƒÏfiô0<õk…!‰éIZ]„Æ™žPN¤òœIzÝÀ›WWYa¸¦ÑHŠ&I‹Õb[s“É*ÃÁèûa¨jä!òåÊÔä\ßi™>‰ï¥2¤¡ G„Ÿ±“¶˜> ~óuéc][öÂ}ÁU%k3%yQKÿu°ï½>ÕÑòD”?IOŒ•§j&É$‹ÃÂéãÎĵ%¢QöR;4ÀuôJ49í½¢IrSá$ß Ðì·ÎIòóxN9Á<NÐG›#ô”‡M´CUK Hÿ:Ní‰èÍ[¯ò«9•(@¡Åk²eEàÅ%nÉåÉ8µË£Mv9‘/¡ß¿Ð?Yï*È=†·Õu»úPd08 ›Fvky[v-Ûû˜zŠqÉüé š/þEJÊ…;*<îyÀ*”žk f3RÂîM'5ø­çž}“›Í-W&áû§ÀsÔC“L<ÙÍñÙ-Áà {c`þüK—QÇe‚‚õ½ŽN#l¦—÷0pû×Q^Q¹:Ì×áÑ‘“H-«× aÄ–JT!½Ÿ­È®È7œý¡Ú™š3Çz7¿ìá4Ž(3•ü0}õ ‰›.VÇ{îE­ñtó …À …˜½Ç ª÷ÕºMŘø¸ÖcŒð(B¿ò_?ŠD|ä©]œO›ëÙ[ P šJ¢ Þ%û¢r‘XF”2ò¬w 4ÿÎ+ÏÍ¢½Ùr(7ù¢˜£_«mÝ÷TÙs>J]à£ÓŽyñz‘ˆÌëv(ó›i¢°hHÎ_Xï·’MŸatßÇìäåÄLH³µ\¤æ-g+¾°†cXŒ|¬Þ`ºí² áààü)ÞÛÙŠŸ‚3ëK¦µ$3S|×°² ;"Œ²Aüît5²rÕ˜EÓj¹wµYÛ¯lÄæåüºÖV:á{Ú¹ÏÉ $†íi !-'^·Ö/ÁAüÁÁ³Ò´š8ª0{¥kþÉr]ÊlÀa±q1µYäž²NÏ…ç·ÄüD ¯füÒÀ‹ã1›yU³§ßwõ+sÇ>3»<€/ûÑCpŠ9~M)šEûÈØ?¯õ<˜Muü#lŽJŽæ69øVã%oºÎöeT¼x_<¸“¡@éV>t°—íÔê)š§‹áœX©UÓ6±×Þ!Xt}Fp½ 8Ú"[\@zK·^"ùÍenM°Òz-IxP=຾ã§ý¥éd³êñÅ ˆwÎîªu *jÖ„G¿Ö°Lã•7G±‹±•ímÀ sÁïxªÂØ‹ã~Hé(:Gb>ï9‚cWùÊ0Ka˜sÔ¥Å*Ël&â6õb—¨å£F àņ¨#pz­­Í±tœQÞÑŒ5€õäQÆvn?^_ô6p<ŸwgÖ«vËäÛG»H`$R¼…r“º·¹µuM-Y‹/%­®rr¤STm‡è?l e ÀlºLÎ!†20ËF+é~CŠOýSæo³C¹b|Ù÷£ùµ’Ÿxf.(…Yb~bmJYzX(U“f~&ìË‚¿©6æí“w.z™¨º‘5»/¼_r!ú¿6r¶O°’‰E¤ÃÔâa©lw¹úÿá§âàÌ9NNòÃÅœúóÃà§Þzµ¢êàˆÜ…ã$+Ÿ*ƒ/µž³En+ôð¡k86‹G”ÞL÷¡ê0äü ó°peÂîÞâ8 gi°ßö G,\oƒHíJ*ÃÙ:^ÃUJR,!FØ ê}DÛÍñ %Î;;ñTÍQƒk¢T<ö5Ç! ’¬ƒ0{5ÓùÖù´’Ès?ûSš&ƒè9*%¥"ÿ¶kdŸgÂ=µe‡¹Å:8Ó’Ú»^6B% (8¤Í‚VSqIy»4é´ðv©=ÀˆGÈ/¼O³n|G‚Õ0R½£â×­Çé«ó[Ä ˜«ÌeJôê ÷xÓÇ>"ó-³|Ûäzö{áK™™"éêéf\•k¬…. ¼f|X`¶PÂÍbnõ¶•ªÊT”9§Öçg¶½#q›’©Ïª*]c%€Ø…QéÓžÑgƒ÷É4Åzn¨Bããp…¦¸h,àψÓÉñ[ÐUµPæîbO[å5 G^xæâ—HÌF2»ú9 ˹p„æÕói“©¢¹»áD©9Gfrž¼©ä(aíоjbò\rgöç F´íˆHŠ(sÑô%auÙ9a¡RÆ´íRIwêÓð“Z_ˆ3G*8ä )“ ÷굚hãÆuL°ü•è…¼ÿ)}YZY÷Áâ¾W˜8 jë„#…Ëx†½·È|q%<$JcÄà,SĈF$ ‰,…‚Y2ñ½¹ì-!wÉð»N’Ÿ£ùÀÃ:þà ±;<&&Álw ‡é§÷êïTm›®Z)(ÉRÆ=9Ôv÷KgÚ˜Þ_ ¬ÜyKS{¼vƤA²RÕ£F cñ,È\ H³ýZ«»áèš¶IâäîÓ1 \|™šªƒ.¯Õ^¾Lö/á_ ’ICÊ_~ÀÇð:¹š~3Ñy¾u‰žpæÉœlFL'³r ŽžïzÆ+”Ž?‚(£ß0cœÆõÀ°ž\n\U:¤c-6ÇônŸÂ{Çê§!¯ç©EϬ--2¿ñAÞJͶhc »vA ^µx‡›Ñx·®du6ÑE†²8P…x¿~ R66R ÒN%vG‚rü™²-õÙÏ8ϕӫçíË]úry!†z@”~»Hãç‰`´–;rit%9§ÎƒxÖ€ö®ð¤ÝÅòP~o>©lßÇÞå˜^jö@n£p·Ÿ› &ŽšÃ™à×eiêîˆP±û¹*¤ÿZó^ÇüpøvÞz?>úgšcJn´P< \R‘f ãR wœuQ&è6“JÙêëE­mb6ÒÐ$ðRVÉ÷ÒÁªŠbÈ ögËĤû)ACéåì*†d—³Ã¨ïí¨/? 6âi˜,Lˆ±+1‰|[Ê«%¿W"·M¢Î…y`börÑæüPópPÑÁÓû>ÂÉý…s):a"%ôºÝ³JßAÌe_¹ 3Úy[ñÃVûÞ¬C˜8dp[ÛÍì˾íŒZ™É«¾9ÛI±½ªÜó|¿­ÁŒç5ÂÆ&]¤Ð¤5-µj Û÷×?ûçÁXL@_W¦Úk -îoXyþgÇ|¡ QÖO]GЙÖ'×#$½ÂÚÅxÛɲQ¤DËËár‡\¯¡î ÈwíÝ×uØžWÜ“¤ è˜-To9˜2b¦·r-Øð?H¼ƒ)±Ý!ØA9Ôˆ¿ÎÐ&jH~?„ée¹ì5öü”°ùòÈŒkIíÌló |ùQå£aì{–cƒQ¯‚NÄ'tá™Ô+õm$¾øp¨3FÎZÕx®+³jo¨˜RõÙ &Q$çŸãZˆ(¿ŠÅïÊ/Ç¡¡•–$vúM5û‰•+žíx*¿Žh>žž†÷7U¶F~å:òL\°¤Šös…lÝBÉ׌µ³ã ~S{gÓ*ͪéZÍslÕýi\[V5DÆæÅܤ„ÆËÕ·ü»ÁKl¯±§|’ÓƒêØÅûÍ͵€Mª¤ =‹­¹+8Îï°‚ºPÈ~Ë‹É7ö] —MïgU!—ÂSÉJ6Íue“Ñ´Â2&ào–µŒùf†¤% °¯P‹ÞÚ¢¶$ÔêEŽ×jZ®®S”+h§c¥~m©‚òÄSK•‚_)éÃf_›‰ç‚ˆv6ÕãÈÁ}·ð”TÕEx1M^@M÷­°‘“I³ßÄ`d°¯6¡y±e­!êf çÓ…âõuÒ‚_{¥.§^øÑï³Ó¼4–T]@»úm/U9¿`†”ÐCÏ%› ›‹òÛ¶§Ÿ­œaD#μ >J7•ï‹—nªËCäa—¹¯xjn󘱎qàP4k´e©jãÛ_Ž¡;˜!}Ôî9xbtÅ> ú'foA¤Ÿ‡Ó›ÒpÄ2É£¯aÕ¥ih{ ÷›ÛÓ§quÂw°ÓÎId„N³÷§)‘M„> Ô£ØisRËgõ…«r¼µŸÌ Á9±™Žäþ~Ï*lÇ9\Ësâ+½2M,6àK‘c-Åõ ñ‡Cª³çMMYÁOüW}^—NM*´«Ÿ,¬ß0<Q9ðgĸ™Ð`cå´ NEv³®×zˆs7Üš~⸠ș¾uŸcLuħ¢ªªEá_·ƒi<ˆQÄÂ:ò_±ŽtÞ”„½Bq¹KìBTçˆX+7ŒéÌ÷^Â'–> .šûÖì·Ê=èb~9B ™-…‰›ç^¸¬mø•eûuõ,y¡¹û|o0ÔÉ«aãÝs£ Ä(2Œäh,bo%îŠ[ Fvwî:êáò/C…F™@nEÖW²ë‘X™QCEÕªbGý"Úï´Ñ¬÷Ää¹A+,OÎ IæÆ_bGŒÙú%)‡…‰ë/ü! Ò)˜HÜ)rÞ­-̡Р]áñO5,¬3À¬à)Ú«jîК òæ âžMÁZ•4MílõøKc™üpª<¨U„;†·úehÙò•^.«ïè‚ÂHw?û ɤõ³ñ»ÝEµjnSgŸXP”‘€.EwÄ÷¡Ç ‡ Ч¤Àô®g.þÁÊŸß Þ¤‹|Lí(X·Ãªð¯__ÿ¬HgÐ--Ÿ>¼¼ÈÊBɪ9µ¸(xá ƒ­Ö|e›¯ -éõv$I—ä NùÔu DÊOŽ• Ñ€êÝ *byÝ Þ*M­B #¬‘KJòb»Ÿ’©º‹¤Bg);„øÐì…„â­‘3Hizª~Ê 11“ZÉO ©ãÍ#¨ID¯ T#ÛnBõZ”ç:UŽWQ‘vшI™[È©mµÚ7åî6Ý£7å@¡K·.ÌÆ+´ÇaÌ,ÂV¹ƒò 6I< 2GACÅ ˜€I+ ¸ù¾š¼¶i½2ò×ù«èŒò™*[ŠÓo  4ϤžÙŒQØdûî­4ÑïÏ™æ¿Òe!¯VÃôí²œoš9e§Âi?mSBYdU˺k™u¾§JÖÉx+;Ó)L)JÕfã¬á$å(âð¡ºoWÊ®TÄlõv<8¡Æ þÚ&ÿñêùƒäìÐ Á*^·§L&ˆ³Å[†l`üCÖ]“íís½ËjÏìV/wô`²;Vn½êü‹DÇ}RÖÞaÃ| ’Tõ¢’€þ³Ó;"ªì5§r>±Yù¡Ð:€ewšòK¥‚Æ==G´‘B/Úëg5Uï †Ô¹f{矗T„¢X£ZuM†/t4 ÐiSų^'nä°v}âÙÓ«ßÏ8¹öó̪£ÔïK±§à–l¡xñ.Ρ莫ÏéÅsÆkÞhèׯ´êóZ¸÷²ß°òÜ^u“ç’åzèLúBY™¹ƒ¾-!ö½›é{JCâyux¿R%yå%%·çЄO™–²ÞKýeë嬭8 ¥D%Ïbù‘”1^Ù+)ÔŸK’ =#A¿¥?¾~Òù%énª†¢}×âKŸŸ×k©u¢0QÑ6àø:7’U}´òÀ¯/±ÊUØxã>Ì EkðžÔ#kŠÁúZòçìTï:+ÙÐíý[jódêÎ %5Ä1#Òe?F)CîÎô§ãÔ·ÇÅxœtݨªÇRù{®Š‚͆’  Óº³Àèé±®L³ÂÛ‹©‚ÎL”2Ù_›«Mb©ûtâ#ÐZ¬ ÷¹ÌÔxj®²pý*‹ Â+VI‚ÞŸ Å÷Ö»ÂébT«ötØRØké?=´)Ö˜6§ä¹òÌaªYßÎVdŽi*LˆäEye=ÉI6=jâšÕžò$¾å.Z¶u*tÊÌ£¶A›wåìªl§†3×ê'©=^®ó9wÅß~¶6Þ¨Eâ“2*'«ÿ™¨Ž‘³‹@°’±ç sy¬y=“-ŒS‹©|FÁ”Ë Òy£?V°úËbŠê<=`ö;Eúx„j²o. ÌÒ~Q™Ÿ€lQÜxL¿èX2ЉÒc>[:šŸs´ñµ³©aÚSÎh‹Ö”+¥åªŠ4Mj‘.ÔûCˆÛó‚tdïìN>›%À˜[þZOFé/¹€ˆï!g´¯Åz”-%}‡ÃfɘÂ܆¿P>aw oPÓR,Bùµ‡ERMà—qà×y£æÅz'bè¥ì”wÀÆ÷£Wàµjñ´ñvd×N0%v§ëR¥!È]‡ l=ä¯å×Ó+ƒØL_"_\·]‰ SÅ]g®r3*°xä9È‚Vqóz té­ÀÓ<âiÇâ68ßRÙˆ$ÇH•GŽ’¹&oŽ°Ê“ò£3átž•ÞÐ5Ц9È—·=nÛo¢jöìu]Ù#QŸÚuÃÍæÃÄÏ<5¿ßÔId¸”3 òv–Ò¼cã#óD÷öÀí'òÎí€Í6ÆJ!ÝV ý¼ièê5 Âòy+OFn¸$Ÿ,ÿ,ˆÅ×îꀵj@»gPÑQ&C~˜úû ÒyFŸØSf7Õ™“øòú¼øzÒŒb€‹_N\>•¼ÍAŽÏ£ù>ö÷×üMdýŽzû`³PD2¢ãvjùrž.ÅªØ _Q÷€½ZTÝŒz½–ó:ƒ{q úM„¼K¸³êâè…Ù¯îD~O;Ô º•ºäç¶o2Üy¬IEª>ê²C0ïý&ßÊî¡êk-r-¾?`Þ0|ƒ—/Ý$F,5˜ñþ¹»yvØÿ±޾ŒöDœÙ—r¤Ï.4,ªO¨4·ñÙèéx0¹ !Ðáå4JiøkªˆÖ»«ä+…¦§ ½—ã¾pA˜]Wª–›…*»ê²$ÌâDX¦€%¢BÚ.·‚·nþÞÙã/ §©þCêhÁ®<§{þÛÎü7)Q÷Ô€ :øâ1;ö„`t¬a&®3¤¾M³Ñž¡ùJ}–Æ´qúxÒÒ§/9gÝÞÞ%½AzxØ»‘,8ÝwœÓŒ«_ª›û.nw™‚$÷ÆØhyÓªG‡ª­¥n\;àŸµˆE—,{3®>ÚÐnš²œâ Ó¿Q°DÞ¤"õá@«õålß/Ÿg±’H?ñÁ–̺»´!‘š×öJù¤¤ãú,@"èȪСáx²Ì,î ( ȬD?ÿRnÓ¶Õ³¤Îeë´÷p}®`¥ˆÚV#Uð BL$¨ìA{4ŒGv³!ý¡%RGRè-=Æ©o·Õ”ê&¬Øé§°(Mž@lG ¬{ˆ;VUÒ›­gŸ¯-ȳ6èX —z·Fæ\7f™ ®®÷p„¾Š‘®Èùòü8:Ðo÷#{OòÚz8˜áí5î+ŠIΆéCM¿Û/út{£mZÇ@gµnŸ{0îQy"äHv·†šò6×dl•  ¿<ùvx#¶)ºÑ²¡¦Â_æ@n~RlЃßôJjuRùú^Ûþ¸Š%5GÆén>ÏåHKú—‚,eçÉGVv¿× îÛ n.„ñÝj T˜Ÿ¦z(™Dže*g“‚ŠP.û2U'IB~;ã¥þÈP _uUD>N'ÏÀ4÷F>B ©Í|+Ï I¾¬sú½ÛhÅ•ýÜÂò0¾žB2çEMÕ»öUzËÞ“i PŽ:i(Ä‚j’Rùjp盓ؼ WÖ ž —F¸ÀMtÏïI­ÊWKì—¸c][ņü1Á+M'ffòEFü]B%Ú$‰ÐãÕú¤|}/‰ èìÜýÈNI>ÿˤËoådã}¥ 3=r’8æÆp ¯È„'6»“¤Ô`¸µkÛ¦È)¥c'Cßs©¨j­³û~2?RÝ &GƒöÝÇÌÁÇôš@€ó‡Æâ —†¯‘ßÚÑÐWB÷ÏI~!ì[Êc[ƒÊ-„yOÇ謴Öï@ýøÒ'Ê<ͳî„(³ÂÿšÙ…s°wð>O17¯ÕïPj~¨ ‡zIÞÇy»JU?7k:HÝ„é[5{·Í»Ig[2ûâÞíjùË÷9tŒƒvªD×B(ÎoaLi˜@}øøù§·ÕÝ©+áKP7b«ÄbïÃ5ž/bÝíîݨ:£²¹&$ÂÌÁárÃoUÓ‚ ¼ä?Vý:‹{?‚#úShö24w kVéSWGæ) „c­ºç'hš]š¼@þ4-âÕȬòíMóAœŠožœ8°ïK—âÔWÑxÊNŠþŽz(¿Ãºè>‚Ä“wŽi|£ ÙÚ\Ÿ'ºÝ-D ±BïÂA?†¤CöU×N_}ч]f0½B‹ÖF¯”ÀM`2q’©“‹¸Û¿Þ’}l÷LŽ)hjVF õ°¼å‰‚.šÙ•Ÿúöè,§;aYéj]X£øÑE|ÁÈ.ìXœuA¨`Llºþ¶Ç„ÄxôÊØ³’é Ó„¤9¬9‰ú³EÃb!*ZDö Kn¹÷´ܸpˆçñ Ùô£H!¢öxñZo‡ÄÕ€%Á{«ê0÷µ!ÝÆÀ’iWõ©š;›»¬Ai"GoN#✹¢×½P>Ÿb’´f¹…1Mަñ+XŒã'/È\ìãTˆØ]9–BÓYûáE^;dѼø6íÒ/y_cç~xm°M;€É!¢ˆ:ìîV¿oB¡j¿…&FIÚ‹îÚ£ÛÚ“—ô3.ÂÔåÜAǺ‰¤¯-ËDe*?gfyvΚäða½¹}1|ŸëƒïíÚxûtæ®é,2î€Â}GOCAªKoyˆˆ8¯A`–ñHï%ÛNã“$Ú¾!;ÖÈW&‡Ã>ìÍÒv'›z°×T^בVóÖÅáhÛg sÿ¥ý ê.EE¯rNmÜ ö½i#fÉ]çhî—ùbð©ºI¢‹#•ŒoŒ£(à-W ½^ŸÓ¶_7'vኞßH‰ÍXå —å\Tâ\9Qò‘C˜ôìðH8uÞ´X:{ àÞo(ž²™âè_^Žÿh{½Êµj¥ëá„Hˆ€ÙçÈ»š ;ÀÄgC®+¼dxtEÄåžnKMµûÙ:¹‰{‘Jã O!þ]ʪx\W, ~«*²ÒséÉSV±¡Ï•çî{ù¿bMzÃèE‡°ÌS²06M£m6Ê1tKp’Ïxg”}JŽ‚6È>/šD_|™Í{»}. kú̱ÿTQ ‡4ãîµµ% aÄí‰Òp;Pj+e© ÍZ—;Xu-g•Rt~—ÊÑÛ:“ÃÄj$N÷Ü„ByK@%ç×Èî§Ž…Ý\ä…<3_®žŒâP(’‡LÛm‚ ’ÉŠ=Ø–´Du—V¬m×8¯téQIdUe¯>Xà}ô—(# íµ0‡(~\§!2ƒÝXÈ´ºmÚ„‚Mc²@`úŒ¡å.ãôþØÎ (Cøù›Föܲ:š¥*ѯNìÚRiMº ܉úeªÑE}¤tHg}`›m…?²,)¨ïZhêf¨sN͉)~Í5Âh ÉÌñ†pðP5{‹=Ýwʷ쌤}åG°ë‘!ÿEÕíìª2þµ—O…ÿ8ߢ5¯¥J«öYið‡fðêØ§ƒ6¥Ô èÒõ†xFš¶ÿýÜ£wÈ'&×(sX§­K _þÄP²N±ÖK©3Y¬ÞCûvÅ䓋°埇6ïÛ-°ªŸ)¿>RM%Üpg焾äöá‹PÍãè2²,à™áë'›g á²+ A!«­:c9¦ÅÊC¡¬èŒVÅF¹çú‹éc7†#žBtÖqÝ7Wóšíë¯þu+7lœ¨—"úÍTæS%·šøœt¡¢.a½4ñZóy]›Õn“ÓýE×¾„¤"· |Ø‘°4µp@¦•¨â0ÄWÙØÂA¢ÁT®U»†z;”…3mo­·²IÊË Õ' n~ª5÷xvÑwóAkMâáŸbÆ@æ0¯B5¯ ðZhâ¾µ|—¢ƒ€ÜG#{™æ›&»˜&Õð÷C8ýÜ—ˆ|˯ŠéZÛ>rïFiJ{X¾kdVé…yî}s¹Q7(·RðVqRÊö¡‹»5KH)‚Üžù«µB$ºÒK%x°éQn›i…èZãÀxÚ~h®\•ÂN70Øçª]Ge™ˆÜŠBæ$T@°-yë™ÄbqP͸dN¤\Kl;9ícxm=‡Óì··Ÿ?Ú –![A¦ÁD_â¿Igé&ÃÖVä‘bÄ C󪱩ó…ò;Ú&^Ï&°´«£ð(ó¤² /ÏþÌíJ¦º¾ä}ß:D `®:) ïA,¡Â§â’‘áÎñ1Ù1z•€$Ú;\UoÔ¿ÓO˜ûlÇ·Ó öi¢UGò¹Šb}.w¤ÙaÇŽhò(æZ? þЖÎÇù+˰ ®”<îÝ«–±kIØó¹Ý¨¥¦ÛFÞ°†´ÑpbcÍ‚n•þ{”¡#ù¾pÇAÕs’:;£>)ÙÕ'R'h¤ê°os7|ŠþýŒQrœ ½÷6ª¹9²÷8º÷Ð_EÓâÓoÙölqE]¥ßõÀæ¯"¨©=¸îñîW§oC|Çuãè¬YìëŸÿ¹ ýíJ:å þÙlsHl:œ¢g”-0Q8͇<|ó>•LbÎmHìX·z²ì­ÉÖÿáëN‡J¢ä‘ð.C¼aÿè)½MwA[ÙGdoäË‰Ñ Ö9=wV‡-´Hã¾ù)‡¬ÕDâëh½WSö*Ž]oÂÁWëAÌÆy1¬ÝÃnÛ†áµìuÐ\BcX!“º¤o2Ãòy®åV.Ê_2biOˆ“yÑ€É7Ýñç(}8ò„†ö+û‡T)q^pu‘„¶Ïšªb8c/€UPì¬u2tªÑÐéé÷­½hæf»R Î÷Ç 8‰!®´M6eλÏ"MýW£Eç±)ô=Ùr8ºL[ÉŠ°ÃoEêLž5¼P’#ðn•gñÇVŠ`\Ìîçï~PúÑ0¤¨ Ñvßq2Ö纬M_5õˆˆ|¬“ðm€®šŸ³±1)yå¸'LAž˜s¸ÉsÎ#Ÿ…Ǹ«˜9ekÓ: z2ãßxí»Ÿ+¼òr|¶¢Ë(¹GA7ÂY‹ÔÓ îl×£kŒi†›IÕ{âŽg#³ ­Žõ•#Ë—Åq8º¸œ²¼}úð–_öãD®¾X*÷ÉæC•pþf¼€°ƒS 4žf èÞy®‘耯6ø…²*4ñ©º™žØÙÒ?Çœa…œ«²Ú¥ÃnxLr‡ËæMÈœõ®ƒïé‰^롦3_ŽÝ÷Ù}åÚ­™{븹o-¡÷õ1È( èGm&}$Ä=ÆÆFþS«éÓsR÷©ª¼“7 C2ÉLö(‡Åèzö×óuʤi‚¨@ýä4¯–“—Ïgò‰…µÙ<2½3 ò«CÚdÇD<ˆôͺ>mçúÛ¬…ÄzBbFòZ$ÑÒ‘ 5~&€ÙôiÔ‹Ú‹B3‹šDœÆãaû1^çÞsÖiNåAÎfí¦;'úôÚ¼¯p³£ïL¬åÏI‰ÒÓËQ¶&;¤÷)8ÒGÄF…ì³&õ=–J}RøaWÝôÕE«÷Äob?²/TP‰ïÂVlÇ"#—S,J Gœ±/Ý)I|.!Ó ¿öÐJðIZ êy– ‚2ñÙ%Œrd@l££‰1¶ knawbh‚¨Ó{üX8Õ²*â"ÓjøâwÁÆÒ¬úœ•~›'©¶W è©¢;bÎl½Å±“ìÌYqw¸ùÖ©ýøëÑz]œjzKAÓw|» 7¥Î0º;¼Ö{føµÔG¯F•U]LK©GjL$™Ø†)ÜEIþT÷qrVmfh¿Åçɱ‹?]’ÄtgB()™V¶|ò ÷×üx‹"}¹•’HIðo{Ÿ–Õª+z†ˆ IwÖ²Îï\W¡œ¤ÝyÏ‹?Ùcý¥÷×’†ìz+ufÊÛEB-œÖg #ImëÈ~žÓ8}>æHAL‘¸÷Ÿå¼ M;ØøÉLLØñÍRVšD¥/5u`gÕ6d¤Ô^þ`[M!À…U} íûÖ÷8ŽGí>–mÃWõ·s6FèßÒÊIªÍRaeh[ + é®^Z#¾Öˆc\°b·¾ž”´±øñ.µf¡NȈ‹«Ö ­û†¤y`ÍnDDÃ4l5 5&íÅ4ï?9ÔÓ;•¢³…ˆFb¾½rF€3@âè”xv=£d®"J¾›ÑV#¯–P<µ [¥± +\݃«—~# ʤZd?/««·Úè@Ë™<‡59ß};q]:¿+Èk=îaÄÜŠ~žHåñteƒà‡wuW'‚ñ]iIq¿\ßþ¨Ø-z ‰–Ïv…w¿uøŒòÝ:EsÁîsɵd‹ÞЭ²û°É3;Òªª,m¹êmgÂÏ,¹¹›%9œ ì縞ïC·âƆTÓ‘™Ú9­p;¡ý«ðõ¾»oT\‹X‘.^T÷޶8[Z£ßЕbÖíAÄòž-"b~ÉD ±x7böpG2¶3Œai½‡ÖÆË–ª#²¼ù>Å”VE£fe%úkjy· RÃ!Hãqq úU}A,±“úU úe¾Ÿò"Û-6¹Éëò!uÞõ¦ïf“dô’ñ¹DnÏý•÷ú™²ƒÓ¡ƒQ¦ïr޾ãDëœ÷N±[*{+„aÑð‘úD2µ¥ ±˜8…Ez%¯WÛ¨ã—dc{Å#ÄŒÝÛÏËJ‰WcÜN‘ɺթ·k\Ò|ì?IŽû¶’ß‚ŒÌsC•`”x|&­|(ÎZ$LÍ$؆/ûõ~¹M=3"‘ïÌôU¢ah…&0 cú¢Šg¸ ª£-’Ƶôv?I›±ÎN›¶»îšŸ•<0êY•]Å)°ºv@ ¬>jõÅîøa½Éÿ¨F=«•Éæ”/áFç¿Qäõp¹_œ 3›<ëÝìIY§Ñb\>œ*ý.çC^`#F%éK©½‹í¤:ëL…ã$‰†ø*DÒi"Ïzí·Ñ6óµUt„_2ÅÅw™?ÈÂgwKæ¾.iŽ2O›¯²xG _Ð ebÛïu0zt2šÑŒÚßõîךá]ІƒÞí˜äx!Êz‹Áá1Âæt€Í%=ðÿö õÀâÊÁh39üK±+Âß:–Z5.ï‹Õ¼1¨"H=Á¨üÏA·›ýCe¨^õM{Ã@úŠ[”Þ‚Ç µ˜róµß^­Òx6J:ÙP×ÉÆ{Ní+—²8{ïÃP¦Ùˆ¦e³Û ¨8bwyRH“hk¥5Ù,ܧÍutK.ED !^úñgrßù¬ì"ýŠaµÔÂáZ‚ÎP #Å¡ŠÐ—²¡wÌ+ÄÎSÛ°$˜B@åÈvfå|"²Ãt‰ó¹+»6bÔ µ“Y:LîrQå(ˆzJmÖ¿Ü|ÚPS”.ÙVjЮ¾œØÃÚÁ˜äåúV×ø %s!FöblÅ- &§ÞÚoà2[ÿØr°î¾€)Â,2>Hð‘¿~TUÍ¥³]Ú¢¤{HQ÷µãÐÎ:Áê¹ €[Zn\Àp@@À”d­=Œ°O8 :'uD’>jƒCš‰7ÎfJñ÷’&ë‚1ýâ ‘™ë>×SJF®³¤³'A¢Ô×Ã,℃ý¾¯@FþÍ—¦ QNù÷?ïbiU6Ô´ÐÉkÖÅ©¶|ùl«±(]ڷцÏ×¢0ùFÉ{>7‘ÖCi»­¾2u×u³4L|?›…;e`¹«8±={YL´ÜO{×ÍþG=’õ(Å«\÷+D"¦EÕ\¼»(§ïä_]ß`wûü3…ß(¿óÞÏ%«É­€3€”ÒŸ¼^B¼—)Å"w¢–F¼çF«ä9þ"9_wj—pœtB ÕbMicȼ«]€øÙÊ™ÌíÃ3]<$w!ÜŸ”g­´PkÖN‚®(›jƒ:-„"&¿î…Ü>dWÉßb\I<LëÌãtˆß“ØU܈ÒíÕdSjXWÑÀˆÏf?¡U6v‰H³4õÆéÇ +4ÈoK0²Ýs¹âEa\-1Ä)Þ]c’ÃOq>ZsUáj^P?Q‚T…/>ÒñIL x¯Å{Ä.Ww‡Ñ ¶/ƒ‡o±÷×âAòøT“ñ‰ÙÙ[HÀè"ö" #M\ñ5…eÙ±¥CÀx (Æòøá3M=f—œ[†*åFyŽìÚÎò^ LSÚ+½e~•„/,Tü~¤n†_ »9#`ØVñE!q]1I *|æ ôŒoâ©vS÷w©fêuM…X™çù˜T .\JYiéçýܸÄG3í»>k€2ɱڭ™ž*dIÇ)´¹Ç5##Ô’ù™?Õ$pž¯úJ$Êél”² âñ ×óàäÌ^eþ«}@,˜æwË.•”C†‡Í„.e ªY‘>ûzÁcCþ†íÕÆ®a —çͽ2ÕÇLrAWƒØ³5„ϧK˜jf`d?sÌ(hÉ= ]neàVUkfÈÑ,vÁõACË/Tw"Zbe;Òµ5`ã{_u3ª*ÿPTØËž5!h¨ÈÔ1,3,awóÃSýI_b.ÈG²Š·¦”ÂzªG:#es‰a<‰ÁÓˆœÓhí$ñƒ:ÆÃS,ƒ’ypN]pº4ÑùwLBž ^–?ßÎcšóTÞÎ9 ×Dm-Wã‡J±N²Œ_³nˆsRÀR¯ösËb~•ðúÄAðN°>gtÒ]-Fî`½\A‰w&QÃÿ°Cmq3u!ðùòŒùþ}­ÐÅY^,]ت««Ÿ$¨h®`–*±,!qË*"h¿Ðà`¢Õ6Ü¢¹WÒ®xMŒÍhžE`« ¤UÖ.kÏ×N¡*ÆaRUj,±Ì¤‘ësÀ€·ÀùÛ,$/ "¸_Ì–ãÑK†Ž­÷QP;³’@sGqsSŒèέ'›l÷v;7ó*I‘ëIýºÎ¶Üe"­(Rááú·?ý‚bb/4œ^Sý8©ÖÙ-÷à£Qêz[ƒÉøY©ÓµÊD}f)Ûô´YÌœÅ@3â®§ åŸjP(GÁ¶MSYµ›,;WÕÛ\¾î&öœÇq¡úRY=MAñÖÞÌIÃ\Ø%m å ¿ŸÚ÷5±‹j8MeûÊô]d8Mè- -8„’0|ëwâ9½/ ÕñÕ3V'ÏÄtMÇÞtŠ9í‹,?Uø{ZßèÒ8Ò<«`. ¾E´SËðû.”ñó¼9-_µvn˜ R÷'2¸Õ§aÓp‰ïE~1ô·B@¿…YoÉù¨\ŽÒN~©ü ©’ÿ ÚÏÛ³x¿¡kõr®&2ël˜RÉ8lîÌr^e6‘šºÄ·´ßICèצ,YÄ¡ÀÅz­nN`™o\Ô€77Ä|RËY«xAù¹mñ­S‹8K¿9ìþj&”Í“ó×ÅF”˜@Ñ)Òh,ai*:%³›|Z7¶íMD•ã²K%UѬ2Aam¤šê2 ›ÿ}7IŠÎâá£ÕÉö‹£$‘ŸP÷³ŸëÜÌäre€kÕ똦Լ ÖHªˆ {þB8þë“Ó3;Êãvø`‚ÀEIc…»ŸÚ§éFå ×8×/âG—t¦ï,´FjßU2³¶ë«%i¯ ;|ê…Ó£ÏTú'±H ÜÖÈþ’Ò „A ¾ί¦L¦ Û\ãçÄëü[ß@·«l“@,âeè°Ú2n® äAX¶û0‚Ù‹È´qu÷0[UoÓ²‹¥!;V/»èáOå k¼õzO²ã­ï7•kºÐÓ­ù,q¹·Oø²‘q íµ¼ªÓ¤“ÿØ!oüz¦©Ýªtã0ï›Ç›¼ˆcÐ.|»xpðœ‚ÙeòÁ·tzÝ99è Û×&3ßrh-45½+µçú{Z¦;ô™çNéj¹²åhýGVýñ Ý8úä[T‡¤›ÿ9PÁí-f?äºý7¯ðëQLLÞ¸JIhîì2šz§6ª1öS6¥ˆ:Ì×»`I©(ÁÚu\!¬f ³Á§éFÁÅ%f[ÂÆ·òŸ,¸ð©ÏnÏÈsϬ@›ŒÎæù> ߘÈödY+Á2µÑljëä ó±¢~Ê‹° ôjªNJ}k–ÈM‡ýÒ’s*1{ë²@æÒ¥Òv/¤è{ DFë+=‚³@„Ð%ÝQxý™”!õyÊFÌëeð>Õ|¡;J®/ÆwÞ–&~h¾5îÕЃ×&ÁÐŒ¡ÔÊ8Ö¥<¦S¿'5 h‘n„ÓC —xø+ìÿ.‘Dõà»Éiù•àk7V ä±ËEàQuB¯®B‘XTAq$:]WEæW^œØ.€¤mãŒ ÛÆFv3ds"Y]ÏkMË-â½½ ƒ†'çb\ 6¬r\»óò“=EùÌM½…[Ç"Eu´¯âVaˣȥ(¬s,$æÑÁ¯xI»Ðâ–A­!xó¬Ñ]š\ ƒØÃ:-ß+Ýý©=I ©4•E/«¼øO¢/Ý‚(þʦ~|dSc— ¬Zu9e#ï®…5>[Õªô¿g1ûÎ_É b—xv§¯"XW e YžÎnXx‹»G;¤q CSAf|Ýíåk\õáQ¦…iôjYIñq0eŠø*"ŽKß§ö±ã#&æÀ)Þ¬³OÏ©Ì ¬½|´Ú™MC·ÜKt‘À;z\bJPp1HxÊ?bá0ãPãêùŽÁendstream endobj 295 0 obj << /Filter /FlateDecode /Length1 2193 /Length2 17715 /Length3 0 /Length 19035 >> stream xÚŒöPœ[Ö ãîî4îîîÜ!h 4îîÁ%KpOp îAƒ;Á‚»_Μ™É™ïÿ«î­®ê~ŸåÏÚkí·i(Ô4Y$,Í@²Žn,¬ì‚)e-v;;+;;' ØÍô9ÈÅìè ø )ÐíM& t{3Tvt¼s·pp8x9øÙÙœììÿ1ttH=ÀeVÀ;G+”£“· ØÊÚí-Ïôæ >æ¹$ìA.`s @èf ²Ëh´h:šƒAnÞÿ‚^ØÚÍÍIÍÓÓ“hïÊêèb%ÊÀ ð»Y4@® à/Ê =èßÔX‘hZÖ`׿šŽ–nž@àM`69¸¾¹¸;X€\oÙš JU'Ã߯J0þÝ+ÇÃýÛû¯@`‡9ÍÍí€Þ`+€%ØP•Ubuórc,þ2Ú¹:¾ù=€`; Ù›Á¿Jd%ÔÀ7†ÿæçjîvrseuÛýÅ‘í¯0om–q°r´·9¸¹"ýUŸ4ØdþÖwo¶®­ƒ£§ƒï%ØÁÂò/îNlÚ`gw‚ô¿mÞDHdV 7;;;?'?ä y™[³ý•@ËÛ ô/%Ç_â7þ¾NŽNË7 °%èíÉ×踹¸ƒü}ÿ©ø_„ÄÁ°›»Ì@V`¤?ÑßÄ Ë¿ñÛù»€½ìoãÇ`ÿëóß'£· ³pt°óþcþ¯#f““SÔÔaú7åÿ*%%½¾,\<Nv'7€ïíÁÿã¨Áÿ®ã¾ –Ž¿Ë}ëÓJöø÷ Ðÿ{AÿKÅñmrAú?ƒnÈÎÃnþöÅñÿyÜÿåòÿoÊÿŠòÿ:èÿ·"Yw;»ééÿ6øÿÑíÁvÞÿ¶x›\w··-Pv|Û‡ÿkª ú{u•A`wûÿ«Up¾mƒ„ƒÕÛD³pp³²sÿ-»Ê‚½@j`7së¿§æo¹ö_ûfv©9º‚ÿºaÞ¼ØÙÿîmÉÌmßn×·Ñü— ô¶Cÿ›WÆÁÜÑâ¯eãäá]\€ÞHogý†x¾o[iòú×0ØXÝÞ\oý–Ž.H,/€Mâ/Ñ߈À&õñؤÿ ›Ì;€Möâx›Â?ˆ À¦ðñØ”þ · ÊÐ[LÕÿ"þ·˜jÐ[Lõ?ˆÀ¦ñ½eÐüƒ¸lZÐ#íÿ"·|À?è‘Ùô–Ýü¿ˆçMgîh÷vÿ‘üulÿ€oþØ¿ñú{"þkð¶`l {  «õ?œÞ ·üãôV¸%Øôý›Äêð-Äoî7.ÖÞNÖ õ&ÿ¾•aóøÆ×öð”Ý?àcû?ðí¶`ûGä·û‰ÍñOî7Û·7Ø?ÔoLœþ¨ßò:½­±ã?ôöZdsþ/äz£âìîè²0³sùßFq¼©\þß(¹þéÑ›Òõíü£~KõÇùí*as³výã$Þh¸y:þÃá­ îÿ€oMðø|#æùC{óþG2ηðÞÿ€o¤}þ~‹ärù;Õÿ졹»‹ËÛKé_æÛ’þÿë yÌ‘çÍ…ÂljÃÚîª%ˆ=Yv'8¹Q.b®twd=öÔC¤„ï/¹ >,HtÍþúp¿uÄYúÚd«‡Çnk¼î—ñAo±¾ ÖÒl›Ùï–ÈÑ«’;ç/ÅÎÎ÷¦\Vx§ÍCžWâ3 øÌÎç»sÙr´Íßn¿ZŸÂÓ5þfEšˆûOÀÏÏ…Ö.‘ÝþM²Fbf¶CÚõB|â8…Töà>£”“gk`©œ¼™A|xˆê¤x•}(úi¿‡—HÑô`†f§G†à1‘>äª-,˜ÞÌuLSŒJ(GaçÇ…üÅNœ‚†U³üàt:´ÔF"åÙ¢Ä/3º-c!ÆNéÒï1‹iZE>\öÈÖFÇÖ2„•ÌvQsB8Økñë8Ïq9Ч;úÁD.ªo©'ús ÅC‰Ò ­ùð‘¥´„ ßj¯1Òßí¢uSÜ—6­ì‡þÌuŽi´R¨ßr¾+æØræ¹e›d4Òè5¬N*ŠÀç©æ7ø5ë£]Ιnúk8©v͘eR r…ÿdžsœ±9s¸xešoTÝ(oOÀéºXÌ;ÍÎÚò¾:kêÔº+p%õy­j,R~&ùEõ$±#ˆÕ}Nˆ‹ŠJ.Þr÷BÈÒÑ S¬Z÷€‚Ú6ˆ-²¯Û®;w{k¨Æ•EJá-YͰ.f†*¶‰[QåÈfPšŽÊ~ïçÍR*’c-=|)Ï2 Uê;öÏÔs—¡q„ú三à0p°ÙßÓSOÌéy1êÆºÆ©Á¼,:|C´Ö{Ñ"*bí’óé Nó@ùÀ+gøìÉ wjm¢§]Û§‰á÷=’nfÂ#Í)YýVü¨à†çA š‚߯¡íØc–Pk¼C׸>û­â- PÞÜþ±·/e‰£îEi.›²´ bý5††ýÔt)RúëîSd¼óÉù’ŠPÛù^Cni¶2ÄwÏ÷Õ`®Ó¿(™¨éyæÐüXS5nOâMä *p½&H”\iùœiE~6^Ѥ<AGðI.xÇ%+As$žh›?M¾q9mÁUaôÙê²/8„sôf°XØð1šf=ÅaR—>‡Ç]ovzÍ¢@±ÐR·ºÍ­Â(ýÞ¶ã‹“üÊìâ ì3¬TÔf@êuÙ·Ô}ÚTÓçë =W9 ʺmš=ô¤ñtÊ)ë“Vá׆x>>¬oÖT¹iTÄðZ““1yn(0JRdV9³ß54ž¹ò—ý•ÍýM{.>&>gÈ•U²YO9¸Í{Õ PAæ€ñmü“~ôSßÙéCFì¼±(û¡³iô­±¬@¿TôŒ±$6™{" jÔÚTЊXÝ*³p零ñqH€²…ªRšñœz°¼-kËÛÛ0P*  Q(ƒáëM™˜£.áyÅv>U Î%bžOÿžYÑÈËË#/¦„áBÅÙt ŽˆÏtitÜÑ?âWQ»~´Ð×ý¢#b„¢†Ï06±³‡X¾¸ãޤ„ âÙ"½Äël²YØ~úÂt·Ðâ˜Cña¯¼„Á;™ÕXaêðË묱•ŠŽàùa˜<òÊ}!Îù” 5kâ}¶Ô2þ°èô…Ëf—~žOWê¸4‘1%9ýãj¹wr™XyÕòƒkD„«tÛ7n2xE’»»Ù'gó¢ü¢OMGþkƒ}jË£ t/2Ö+ß¡ÉHZƒ (œN üÁ­±vÎòt…É¢1Pœ×h;j—$T'íRÂ8+U…T)p(­Ä£™®]äŽù(ˆß¥Ý.€;ФAé‚þ‹ílÊ‹F–Ç­pz‹v–,²~ €^}²ÇA„ú@z5ç ?@÷ s·µìÍ8}ÆBGÁ8ŒYøÎ§®Y>•=Á=g7¨æ‡fÓ²c,›¾)<ÎHù auˆ5úýT¹vŠ´o€@ÍœK¯5¤yÎ~=°ÁʧüÛº#áä'jñ(#~äüÊ/{2WjWõçºÖõ} ãí>F²¸ y>Ëuû¿”&ü(¥dª=ý%e÷·|cÿÆEëtéέ.è>¨øÉ³ýŠÉAj6À£ófÞÍâs]ˆ`:°ŽÕ;„ÜžPŸ€ÿ¤] àº[Û}69Y…€o1Ú…Ú–ÔãT,â0"'MŽ’´#"Úx0e¹è“§Âó…ˆETˆ‚6}É™Üþ7«ÁaTFEŠuÜõ£bÓì«tð׋ÃÊ .üaÜ Q ý剸#Vå(õZ¸‰469‹ºÍo«=L/’{+P¸U÷º„´¡ ç§!+$ ×N9×%ØÖŒ-e€^f]ØêÞ}Lâ‹ôÂjLmÛR]Îy9ÚÝ87Ûb&kaê2-«¥£…F÷g˜+s±Sãúï§z¡Ê<Κ•ãë1–…»¾¯øýF×Áã‡._KhÕÓ~²tdMI(}¶œÓû%ÖèeDöÜr—ñëÌA[ôá48…f¤ù™~ªKK,‰04cœÈ¡ÃZïÙ8F„¯É­x9¸¥’Šc1µ!‡ÿf¹Ê€¤•R+#ø‰ÊRp—Á u“%¶BžáÉèv(OJ¨G£ºú!§ïÒB=Ÿ÷ púåRi§«ÿ§?ÅZðȆŒ˜-½kNÉoKÂzwbw\Õƒîg燉™„RVÇVq·’)D—AÏ©f$Œ¸ép;S3{‡dgØ'õ´´!X¶›MçÇ2ãâŽ;Ï Ú•.I%a>ÊDOŽ×r-¥£瓤Ýõ±çó¤9/ òø*šÀHa@…ƒ|rjdâ„ Ø8ìtfz'Ô’9µñ޳ápÚÛˆ•ãa‚”KǾ·aXzˆ¥Üî&H’lÕµ>0°/Ëdrè’Ê5W[Æˆãæ¦§Hì®­Dž ;q2ZZÔ/9Ë ¹ ?¦f‘Óg ²Ûyé4øj&0Ò¼v¯¢QæÖŠ@îH´q:ȺÝÿÛŒ¿O+?CÊ7†Y ×ýX††©c ‹k¼oá;æ•qˆ¢6¦Â²OKé—ÅËûÍZ×=<ˆNº² Y°§-çˆY¡´°^úõù‰ÛNhÙ™ dQ½tîˆ âþYÚMJ7#m®‹aç¼–žDíÆûd32ÎûÀ³{y›hççÖ 5N<¿U ÿï¢á€¨Ñ1ÛZµÍnÇûb“£½HŒß$[""»˜¸qˆ—EY³I‘—q—ÃëËãüwÚ<-&3h‡ÈÝS W 8û‘͇‘Á×çfŽÙ8 ³&(Tébg|ÿQYÓHèùÎ¯ì·æ{M;ù+¡] 7QNõÞ`M±1gPJ¦…óÅ+è 󊪞óN‡7~³0CÔÑ퉇–óüü(¯­é½î$õK§²º ÚdÛX—áIׄgñM+Û¥‡¸M³ÈÄ놉RšxDÑm¹g¯Êt3\˜¿ìŠ…žBKÒH̉ç‡Á_§4ßʥ潹Glù'$çffdŠL¸YYœÎk––˜ê!ñaݦ°0”Hû8Jè?Ùb"è<ãö*u±óSµ¥EÙQÑŽç1›¤hi©èv'œ„ õ´ ìÜP¦…úðÛ«—‚¬(äçװÊZ«zÔ :Ë^1ç:ÏÖh·ŸÙŠùïçÝn¯ia§ r™…© ž¶ô?1û|ºï÷ùð£3þWq EZ!Ä`ncu]„.¥“ûä Õþ ¨áÂQº¾íòôT-.IlœÓ„êÖ¸ùªaÌ^ña\Ñ ëÔw®ÝJ²î‘rn½äöTÚòŽbc]ÄïCr™úO$èmÁ§óúNDƒ˜Þ€R9Ì8W2›ÀŒ‘Û 5d+’m¶3‚:¸yôË›D#m²ÜÆî4ŸCò­Sfj²)L›ñ“å÷ë W ¯¤¯Ø<[ëM%nas£êÎcߎ3¦ålÍ'n6O| sýJ4¾ßC=+Ab ïãáxHIXïS Óóäy ˆòIðó;¢sŒÞ¢U—EGçiލ¡Hxˆ‰}HOÍ]oƒÚnIÒ±u±ó0[›,€„âö«ê5l7¡ñ=›.­¥¥õ!Q€Ç;®FÓ}Ði×|kKÄê0­BÌ$SIû'£´]Ë]?íç€D,•üÐLÇ ŽrŒeLošÊ›V<’±vˆOøNƒ,1Ûê˜\[ó¤}r9]ÏûaK_¹™º;:¢wE%´Øæ›iõ^ãg‡‹Vó–µâ™ÅµBÃ…<+_nËf ¿œT—û µÍ”làMú€æn Wm“ÍE|Ï®;÷ò¦s¦Ôøo¸û0Б&?l`É/Êg³Ñ¹!è¾ê>O<íM¸“ð0šõCÃ<©l CÇÕÓÎVù/5Qå0"¬ Íó=DˆìE²ù=4HéqfÍŽêâuQxJ¤ÿ&¶¦ÓRל ‹ûÖn«ÆoIXÑ"*V±ù5| °«Á¤ÈÖ°¹×©Øiˆ*ºNG>»8ósá¸FIS•§GVd!z€‚ê'?$ÈoxaߨãTâ0î„î˜+q€2ŽãßÀá ï:«ø´uS,ìÝäud±û¤Õ™GïõìêP±i>°ØŒ¿£[5‡ûé9‡®÷ùg[Æø!HµûgÈÇ1Ùí Š¬>$—"〇ø“¶GººßÑ)öbë…$Ài"ÏèGzRò|Ç|ïïÇ@ šƒßÍÜn±Üæ˜Ýbz2!›ÕŽ¿3zígr'âŽ4÷£Éøï㪞0À÷œõ=Kçëµá3Ѽ²Àd­=Š|8‰nçwÃ0UK;Ì·ÄñmyÇ„å~{;[¸×º½ xz3|“Úí_¯Mºa5Né†L/ Vd*ÝåòåO•&-^a—ZíÉŽ ^Çï'.—ßM™ß;öÀAÈùsùP÷N.%}¨É”ÑzXSñy%È0ƒÕ²¢]qÇ‘8º“ ÷Ñl‚®¤‡{_‡Âj«"¾ïË•˱‡žªT: ð3)ðxêÉ{`¯Ô¶ iS~"¿ ݈U!$è^Åj9ã¾ÈŠ˜\e\…ë»ñ}Ÿó[›7Á‘I‰f|Uä¹úð™¶µÎc8ÓÝ¿ÂÙµ:¤«”Y}«Z¶JL£CΘ Ûy·Þ Úý,æâýtdêõÃR_)1ASý¶P=B{……÷hù`±å;“^Ý@šÛ…®%¡çÀI“½„ÊX[ÒæÕv ôóû9ý)¥eÕóâÂ[ïw•ê) $]jМÔÂzƒmÖtRˆªdÕ0?ѲOÈ_ëð$ à¦"»’ø§…¶iVØ¿œÉŽÒa£*¬%yOëŒmZ–H¼bgDÍÄBj*“UùQÖ®¶Tß•žÝÞÔ½ìŹ¤ÏÎHCG F ò“Ù¶¼pŠEheÀœ0?¨ëï!*´<„ÕIÊÀ¾ë ui{o†ˆ7R­ª9 4à,+`>DuW\anžNø}>£ÃBi°ÐŒ}àãh'æ‡Ì5ëþ÷?Ïj5BqÞ• DgåÊ‘e ·}…¤è@v æzöLæì…HÞüù Ú­|ûôKB˜8V ¹í×q‰PmyÄ`ág†.©’¢Pz |Ùàª(´Wbý#Å=n~ü *²ò¸ÄuƬPÕíÂ`Œ?šÙë6jG>çrB”+ƒ1vé Ì ø¦ìãÚ‡l\þ…ký$AÿÇoƒ$ IÍûäVÜäSµÜvlÝýzÐL?ü,ÍÂ|ó¬'Pdò¢BŒxB ˜³üøÈª¤r™ñÛ$ç u†)UBŠÞÏ6 §[¥V­1šÖ‹=-'Âç©EÄH!K…µ~¾¸dPš“‘^ÂèY™>%ÒÔœ€p$rS5‹F,7Ì„×a[|¼z ršê¿îï"ÿpÓèV!&U\§f)‹_r“9Š¸Â <þH/E±°)mÖ}@2–'SæE´hCsÜ<¥Üßsª¨ûœÌq‘·öq/MßÖM¼#—U çâÞS¸WÌb® è÷’âωQå®m’0f^Ú×û•І^¾ûR¨RððTÊ^>ƒ°±Kºµ2Ÿ¸Ç>åm’þvVÚ·o©†0˜Àx bçs ¦(šüÌ¡l‡yß’Š4®ÔÙÚ<˜üÀ5eêl;¬1 6 j²ê=¿ojªâ{ekâö2·rNzŸgso¶sM„Z‰vÜIñÙÜLh;‘Ûj¿n‡¤çæˆf¿vd¥¼X–{›‰ú™¾>‘dŽ ËºîÉÝ6J/ÍæøîøüÈÅkvJ˜#< äÁŸr47&rŠm'_ùp³Õ€k£‚rmj¶åDú 3`zÎ¥û«KæQôêE&Í,ÜmØÁ×´µA˲5ð&˜Þæ3|øçÉh·PIܱºÃAÉÎiá¼"ø'ÛÖ‡‡D*匲eaW€˜kÆÄ–g¬Qsš‡Ñ”ÉPÀ&z! Tý·q1ÉDêÝ<î¸ÁæJámâõ»$^þ…ÐŒs‹»¬¸’.qU[ÆÄ'ÑB³åžœÇR4þôˆÜÓ†…à£d£Ž\,èO˜‡]Nº-˜qO"§­•Ž>1ö3ÚT·¾÷¨ .ÇDÛ=fùpÊ¿‚¦…2XÝ¥½ÇyÓ <ð$2seH ë35 70ç¤oú¡(¾€}Ñ/ W3ŠïOh ÂÒwatƨkO–$*ÔÛªä°Îb¯˜ü^CÐRš¬¾ïGÔý;X{ýtdðüÑŽw3o}Ô€¨.®Ý•VºpZóî%¾›EdGWêwÜX­(ÆS('SÌ£ x©¼Mw®ßñ‡?Œä2IÅeÌ”ÿR=+g?yGÃ08 C!Úþei×o6$_þ…O…NIÙ=ôZßX7 UPX ©ƒC-‚´…ÜwúNjñ’†‰ò– ˆZÔ_Í;<Ù‡EDxöœ›Š}:ørZ*QK'svsä ²@¦4åÈZ±âÞy/“¦—PöŠ©ÁÓÊ¥Õ¶öœ¡*šlëFå¨[-0=‹Ð`·Á­‘úî”môÆXñRĹ^Ü8Òˆ££A™§ÀÎþ‹äshz?’⯜å™Ö¬£5”ÑÏq:>C‚› ú:§úÈšy‡qô{¢¿V1%Ï“©‹àø ⪘u×h?,·Md>ÑŽpƒ%1Ô  ™ÙAý8mÔk’ˆ˜ÂSѨ—‹X=²™‘AiòäÑ«Þ7’« ÔekÇöó Ug<>eYúù_Ô÷8ŽêÖÌmâUjÐÔpÞ™²}ój±ž»þæÕ¥¨õ%¯˜ª„(6ÖcZiÙ¥€¬èR4hv#y¡&yˈ ®,ÑÿnKà›56¹‰áì&Öa?¯/É%ä^ãl÷s4#Asăj–Ï,¾öA{É72é!ËT´)Þ3Ãik/Îg$¹ßáÓÛ¿y8[ãnÒ<…–›I»ý/#Jœöx»E®u׫ön>ßqÈíÙYï’„m·§†O ü'Ã4÷ЛwQÍ·ë^v~æÀ‚XÊ'ÉñL?ûn“µ9~Öh¹FêÇAt¤çˆšiEð¸ñkfÙŽJº¬yøð°.&gÜ##앫Ȥ»°ðWõ~öR$Sß7äVÞ–°DÖ?C· Ó¯L_XÊëÔ-`-lâ{Òìø&°j„¤íLÝ7 YNåX““†½°I—;Ún…—ttÇ÷©‰ˆ…õìó 펫@wS•ྎηÊû[bõJGš[å@²|irA%äw‘³Ýÿ‰Â¢©Þ&—r¸ \tv 1].º‹1žL夻£pÁêè! 0p›†;ŽÒ“ø½wа«µo,žUñ ¬ž€³XLÙfrßΕ¹ú.q-F^óz€B§;“@§¥ÖªþÚ[¡gQÿ÷Q,† x‚KUü{†«ÉHT aoxšýÁRýÓfë‹âºãŽa¶e)ºè‹ý/>ô·˜ö,.YUÀˆ÷¼a›…ßEª;½Æf†r åsç–u†e¶äó^7D‹o¼Cúv(CùHª®mˆ¬“ÂN"­‚h?Fi7‡¼g5;”jæ@áåa£]ÛÇ.PàBN¸œ3ÝÓ:AÀƒøârØÙÅ€ícŒY6ÈH c@Új£"¨nŸmÉ׎üõuFùìÀ4IyÊ2Ê~(¨‹(èÓtÂE…ZÙú>&8¡oøëìp½±Ãƒ†í& fšüT3¸×+r¢_‹mø+¹ä! EöA§ï泿7SÕ c¦ýØ0cž[ɃÆbÕJ‹ªÏxí'Ú1I%û¢àúl§ÏdŸp¾Và®ïÝËÐ?*^†ÒíþÄð‚V+µòíÿZÙ“àPõ}Öxgù=5¥HhêÚôÝ"[ÑÒðí°:ïÄ&u¾QŠ\u¶VÔû´hØÔ©g;¡`p¾~Iž“”§å[g@H`©6Ü™[ºRw…Ƴ(ä#çÊþ•ZáÝÑì§Ù<ѵ¥%QÊÆlE_¥Ý»€Ø&*¸˜Ø—B³ æX;ÝW‚ªë»u+W¸.®äÆW¸*avã﮾óZ¾r°w9Ø\Ö­ | ûYÀ '|Ë©P„áú”>öxHLoÛ×õ²}s_Ý›`þÙÇ ¤5ŽÞ"þØ…”Õ(RúAXÖXJÉg-!…ïÛt¾ÂWz1ÍHÊ&ɶ¼‰¸šsô3©A«¾€‹–Wã>b«)µŸIÉV ðÜEmÍGS«xTÙjlÌ": “r•ˆÙ*™³“,7vŽà|ÒHdi</BVÇ„t§î¼@¤=–˜÷m³}ÚÒ´j°c9ÃVÝìl «Íïw_Gª>ùR]Kº ó63;ò~ÿ©<­48ªD’gÁ”ñ•lòÁÏ(@(3×@]ŠIAÏC‘¨KÕ)2ž7ü~œ\ꛑ÷ùáI¡,Öv„ä¬ÓíÔÏá9â‡BhÐÓœN.1ŠãÍ*UU&ûM:Xz ŽCxx»ñE 7UŠ ³#zÀ â²<5˜Õ»3Ú>· +kTàÃÚñÆpÎ0AÎd?–dø0il Ì9hg£ަÓUr®Üˆ×~#óD°«½~ªxõF®ÙíhE ¥bmÑëÙžöˆãè^ÁÁ•ÿÎ?î€rñªÍö)ÊÈþ‹ÐB%JÍS¶SÉ O¡º>;bT:ÃoËþÑ{ˆƒ$9*—1)O&Ö)ažh̺ÍLü »äߺçûŸôŸ¸_¹(5'ã¦z+D"üÕrú¬BÉV¾HØľݎûYVà‰¦‰`섨îyö®Œ³¨´“;D²RÝaåݨï9·Qt †æÇ%¼·"6ß=ñ/| tÎqmà48 PýQŽô…{‚GN»µLó–3¤¢+hÎeLÂfª#Ÿ¾á$t»9' —®„1í«’ŽøÈîó|_ÚWµ£Ó_>ˆ“(„O¤Wfâ-…?©FÑ­ÄÎâì§}×_‚dglŠ‚¨Vb´"ƒÃ»Ênw\¸o5 ’¶_¤6ôèpëC®Që¦Ì|¡e¼À¯A¸ÌZÎG|ÎC ØG˜Æà>C½Sl÷˜œÈª÷û!7Ý·Žqö8Àèó±áÌX ­fÇ’áó]'±[']³¨Ž‘wé#Û3zÃDÔ—ª&Hve®9Åæˆ-Hb³ýlxߨ£^+ª‹F„oÃÆ«‡W•×uïŸg’Ä(õù@Â2ßt %Ä!W‰À4M`›é'%À…ŒÛp°ñÆÍÝÒ¼ú^2㽡¢+®YºžÒ”¦¥Edæ²M*ÆC›6åï9vƒºÞª_%ûüÑ©ŽzŸy^۷ꮎœ=y¥ÔùÔôÒ¨‹LÏiÝÁjü1ãŸá0ž³¤K£áo$.K4-œ¬ÏZb'\‰¬&¨&~µÙC%Å3/0†¸x˜xm4:qÿ½ŠÌ-Êé+Û¼w¡/ !$Ú4§üÜ”’Ü[læÕ²qd5›Äùbë½£_ HQ†×+yro(#ïÊuW>Òî¼k!%Ä¢w€/Å“2Ý¿ÅÊÑ¢Ù²ãó%6~oce,‹a—xzp/!í:¥Ò–á&Ïië5{»`)°B5­&ÜtÉ£@ÅF§PBvýK>—’ßà±É}FTryújšx2uŒ°"6‘¯U(/s{·ìö=̇=5˜ñêßh¿Äa蕌5cöœtcuÁ ôübÍÚt’dï„ïºn]ðåæ—ÎôxháËë¬!„ô(á¼_çiDŒa˜ ðÖçK~/'ÉŠŒâ1íá†7ýt¯k¡”x]êlη+½À<ÔI¯R´k©Âƒ¬™tïI—Þ•‘™vô8>Á{¨ÔϵÁQ>Pú$¥U“ë±x®$*N8ƒ®.°%+­ìãbQx±bÂýšðÍ>EìñKÖŠxÝ}Y'Æ{¦…÷CÞ²xq¸¶j¶ýk0ÕOà}êðÑòì´rÑ Î¹mº ûÑ1‡æzûÞ³€U&– {6¤¿Š»ÿmÁ÷þßÒS£ tºöÕË* ¾’6•K‡—éfò¥l^Fs­õ»ˆ]£ÏPGCøa¥ügöÅYîÍ”‘WÙâWD[Ôâ¦/,&áÙl%2X~ŽÐ7¨)ƒ‹p‹gÓi PO$ZUw–{Å_ïP¥ˆN¯ŒdQP…˜„P.ŽuÃráö=B–ænÊ‹8Ĥh©Ö”&k½y=WÔÌТzF‰î°³E4IkMúü,R¹»0²ŠTúª!으!“ ^EÌ—µ¥šŠËZ=üL®HÛŸU%|Þ¾¤°­ÊNYh›Ùõîtͧ­*áÓÄà4l¿~Ð.¸6ô ¿>& w™æ <¶®1И_Ð>û±Ä:c'h·Uùg ÿ’~12¼F«ÓnæzPoíD=ÇKÃy$Œ¬_pº£ŽÜSX8ýd¼6N€!»­ãáÑýu1@ê5ùV‘µ[½Dð‚•õËQç1C{éO…J‚Þd; å¾%5rco›ƒ´)ãDŽZÒ¨xqW‰›9EÐ…ÌåPK¤®ƒ º°‹yÉG“Bè~¡µk¤¼¿]u*Ÿ6 u¸ƒ €)®VýÄ"#Áî;r5±Çz¯|6Y çbŽd›»äI2]™ÇƒºDi‘@0vh³Ð;¡8ÍKšbÚ…|w]^LDAk(ÓÛo˜Ùg¬Pë|['þÝ;„¶~šO”„‚mÌ`° ž¡„Gmç˜SÄßwËÍ+Ƙ®z÷VFrìà ûm»ÚÜd2.9Ì1å„r Z• ÄAÒOÂ'(}G™²féWM1ž‚æ‚'™*AÞé"Déļ?±~*£ñYý=»>öóþõ+5f¿0åX¨rÿ到ß=ÿ½K¤ýwKr@×äcsrc¹ƒ6&Ï¡ùó™HŽS²Øê¤úŽ4㨸ä‚gËüíeú·nŒH|™še‰£i sà 5Êð ¨^C ^>F0 â˼ ´ÚEc'Æ_2Èf|ò¼Ä¤n­ß ³ ‘ ®PVm’† =‰ŽP•}Ò—Y L³Žv礯5| ¨œgÊ"·-n§ã¤Ø—yãŒS^Ê’ðTzËÜò*$&‰FvW­ ›q˜L Ýw²aõ=Þù •ŸQ7)fÞOlnä6㬠ÅvÑꃹZß´fsW¥`ú¯fæó;’¾‡ÅÃu§€àqË ¢fé.Ïw$“_CŽÉ ¦ „KG^ ×YFƒÜX©Íåð€ðóÝ…°RÎdv÷•| E«]Y¤®‡ôœWA¿N¶r‹`û–=ºË²ç@BlK¿?÷éž²tE}ºQ+‚ŠtÆË/·à8%gcùÎRKáÃö¢¨þI g¥(±»qCL,±c}(p¼:W~ž8‹qñh\>~õ•¹I|óª-Ã%eV•v¨AùèŠ?GLTΖkëµ×®@ß³râªU{ «ñþaWez JŒNÌBJ–M_lüúeCúÃp5Nf“—±ºÿDD"˜"Ù7;/iØé?ð)×±¿]ÈdÞ$$Ø“€â›{d-Fyr,ÍÈ…áS‹£‰Êàûh$÷ã½ ×€|ç $¿Òv“ñ¸òÕÕ­XD­©“—¿Ñ›VòÉ÷ñ‘—™?Ƈj¥ž…¼¸£ú‹qrtnÝ>º?`$KÕž’æZ46Lùiƒ õ/qg$¬Ÿ÷dD‡µlM¡÷ýWÀ3)õ*¤Ó6ÐÓcâ‰ÑöÄeËËû¦¥«³ÁŽ…g¾–XyZ !ê9j°²K›Ôa\>ˆ®U¦i¤? >-È'FÎfex—%a*:yŒ‹ÀTîCyü°cØ€“íÆÌ°6‰,Ü‹ïíö?|^;Ìjà©ke9ƒYŽ’¹Bv™n>š¦åÀ9š²Ì£!EOPjß” íf’yŠåPQZnŸlg/ÜûW ¯„Å3Gî{™Å3)¼Öø!1 ðXD+h,eQÎM'Ó£ÜKŒZo¡gtØ\!+ÊÏcN=1œ÷ÝV„¸iÜ’ì§Sp¹’L” ’É®?õr2©ãmБ™ú*™©¾WÓz¢ÿø ÄýÈ™³rí_БÓÅ"¨"÷µ†œ²p¨1ò=0J7Úûdã@äà°vuLjàÀ—lyókfëi8žã°^wÿ^™7䯡µ8ŠO ¿D Q[}0`s·Ø2­“ü%Fl~=,‚”ÆeœÃÁÔÈßsˆÚ…ßÙŠ·‘­ào‚ —ЫLr}jÏKPuÅ)ˆ•ûŸQ8o¹6Ø-‘f÷^КPÈžê¸)Ø#0l¹Þúpqü1 îòU¸”æ%U(¶kp?=4Ø Éî¶Øënmn—¸?b%Õ—.„˹¸!-Àݽ¬èž—‘/¡L‡ëP½ãÒL®Þ¾÷3©Ù1 ohñiƒF¡µ&Y¯Âξ³.ßrf•ZR{æÈÍ»CrNÌiè¬ÄPA ø.&â=]JBÛÍøX3Eæôí•á¦×˜ÿšÜf?GœÈ$¯ài~û½ΆUl´’0uKšo*¨S¹!5«XïlLN±q¡±js\ Ÿ?í#Î@ƒ!./ò¦÷}i„S‹Ñiå¦÷t ç–‚4òž©¾zßÛQ¿hø­’Z£&„8÷¡öšøþZi΋¡é2¡Ð ±þ7lÀs»J!4>/žH‘ßÒÃ-ºÇéá'Läw3½‚h%ÅígyÌ]ÿæƒX7râU,¯6¿Bòw¸!Ÿ³±¥F¸ÒŽÕ–"$í­“iù·Úò‚²×R”›!|í‰ã¾Ê£‘–pį—™Åv 7RLiV;´dtwKÐX¾‹!*ªé3ŰA\PŠi8èYÜ;lu3¶È¡˜$kªn› HƒK0<Ãs=S§ýR±Õ,¤9ö3§¬µ§uü€yn¹Oe"°é G*0í_ó+sOlon õãx‚u€ûpòµÈ)ØJiamÐQ/þFì›”ÔgóâLÃs­³_Jõ,éE©Õ9UÐW®¼0UÊØý l¯`m‹¨; Ê~à5æèÝg›·Ó{ {Å¥·ðŠNe™yŒPv®lˆÔÈ Ï´ŸºE(ûÜÅ’ÀÊ:jÒ)å Ü­º=ƒ’%z½€u`H”eîsh0É '7¼uªÆÃÞz¡Y"TÓ0§Ã{ò"$»˜‘˜^ÙR±Vd3`„ÇÙøîïøl\Hó}íéÛÇûEg;ÇŽùέšÇa¢®Yø’1-3Wد¦ð©4ÃÛKCæO!z4€ð:z– ¡¸£ÂÝ~a~!?¿oˆK8'ÆÿD…g‡ÝæËaó˜"æÝ©Ë•…‰HÃ"]–4Þú e?X#;;6{ý ÑÝó«?É»ìw–oר<ÝWGë–—ä¦À\wˆsóRŠ)¸²˜¢:¾ã}¢²×ª¶¯ ½Ô]1–¼MjÓ·r¤õì´éšënGb$>“ü›ˆúùÇ͉ÁŸ“Yï¨3›ã³Ô>p¼wFß8ŒÇ†xdå7’g÷–—^Ʊ²ßï«úò´ÃÊÝwkcñøÞ3|¯¾Ÿ0ÿ) ó+å´Ù¬ågTîWv¨®’>þàÜËêßuG öñ’wÇt[æŠ:Ä?Q} dçõhÐ „3J"m;DKW–_-ÓZ=³{¹)¾¢ äºz–_ÁÏvLtþ>½úÝßf†Ö°9îu%®Wr ™nš{0`áάRHï}7á±ß씣¼ÞƒT6t ÿMö{k¼ÉS|ïcË—G7Xåñm"²wçÎ-JÛ7.Ψ©›w×,’3NÒÚžKñ?Q$#ÍU±ŠÖùŒMaŽÂôñô'M#¯‹0ìiç‘Qå|Ù¶þZ ?Ây”ßæ,‡Î鉇'|ÏâÅ"( Á¯Ô/áþ¸:Ô¾A›aåêëæZ×)D·yHx[Žñ½`#ò{s—*ìÍ´qc_ðoR‰˜üŸ1ô…§0Ù¯ºÆ°ÉÅÄ)÷Z`1¶.˳ò_íÂ>å~÷@ùÚûmÜ5;»cI±É4••iœ±EùUÚ¿W޽ºß^›Æð$Îû—ÔËäܪIo¥ZDIß4¡´ßlÅç-÷§™{Z›a Ò²“m(rÝ®åñ|B§ãY3µÍ ½ŽûZv» Ÿ¢Í/«Ù@C|~=Ž¿=ÈžÌÏ„ÕÐùAQë³’’w} Bö"4,©´Û«ß~°Õ‡MðøMytô«Ý`ÄÙK®j[W ÞÓ9'8ü뜸C@.NØó§ŸœÉöÅ[Y EG-÷òÂöƒM\P>ïõÇè£1á܈ÉJO¢‘§ùšBeä 5ù´ÒðL§÷æL0Û|åpºuۿܸ"¬¨f÷•=«}½˜¬QpÝç½D|ŸOvãËlbùÀY´vÅŠ§`*— ᛕ߇N`i`Ñ)¢Øà·÷=mýHœÌç aÝhßö•ŠF0SÊÑ–Osž³ZH¿ 'i´å"îã.\ÁzMÑš¤^Ø™*Ð<ÑÚO§f5g>³eÚó·åµìÂæÒ¢OâªR:¸«¬ëš),íg1!o5ºö„Ýú³­B«.WØû¤x Í- f‡ ˃ΟŒŽÅð,º~*‘H·UE%OQ LpR²?í¬÷-²|E£ãNdÖ+…êq~ÀµýnnNt•¶KÀû°NN_dl Þ[+~@Í=¦Áó½Jz˜,eâY~ϬMw>bÅžšRÓ¹k!ažÎh.{æ‡F!ÉgŒEô<}ïð7ò-=(Pg‚í&ÔÖ‹L3$!KGvy‚—û‹­\%œ_½-#«¼YÐÀÿÃú º´ðÑ‚WÉ©ÓR¾öÛ^>' u“e œMC¨W•{7DŽ8ôdæx^yúDÁƒS1nïÉÂÁá%MOBZ!à'®üZ|öë=šYCÂAlÎÓ&;"œm=îHk`Ý5Ô]Í‹ŠùGê©é’ê«‘æûqEÑÏ}ãÉ–Pè’Î&ú1;æÒýndULc% Ũ+ðO«žªöH̽Ÿ·6`«¿ Õ’Ÿé1Ñr§ñ±½z<3•ÛϽNM»Lö·{:Ôm~Tý2UÈ»î»ùFôåG¯ïÛ¿KòõÏB¸{¾¤p'ðSZØŸâc8ÜB%¡pHõ 50Ì8Ù'@3ê+@Ò¡'¶ÈÏ ,Ú‚9b%ƒ@æÝë•g…©TÛ¿‹Éhw‚.BrRk-yÙùˆzµ9ÊýŒ›Fš·XÒÏö²Är&îú•»äÍ=‚ìs-SMlÔ¹ƒÉ¦æ6 4œÜV¯þ٣ܡ¯þ¶êahWäÈã3Çž*Ï¢(þÓƒ{fê³ ¦s±œÐlŠÈ9ÂUƒgˆ$î¾˜Ý ·¾¤[,v‚ÜIßžÇ&ˆHŒÛ“Â$øá¶ÇíøšÔtÜ[‹ˆƒþ“•Xx”Ã.*ùéŠtá÷B•÷ì¨×ùâÔˆÄqe×>¡ËÑžH}œ.`:^ç—IÑ‚ñoo–GŸZ º`BYÄ Lí‹"”ùÞò¼íºoMêä“Fª 5(†Ø#ÒR9VLP³<ÏGÐbø8ÎÔ(a/ (ûiê. ‚ÖàL-h÷×ÑÓäQhÙëq#·O/T<ƒ 9Èý3¼5—côWQ´üø†0¿k~*<µ}qšîVn_B Ïé2ÊVÄÏ] A|7ý²`2¡\ ]I¡Ìá‰tÜOÆ¡±A8Y© iý¦ŠjšŒM®ïeÐ'èèIœO‹™¾Ùr¥üKÄ$i"P0· FM ¹n½m˜*Þµ×Ú‡¤ƒ&gÁQ´;VkÃx{aRïÕË5;©r÷~ázcš¹ïK©íè4A3dTâ©¥Ü8ºRiz­#Ö ð^årenÇ àIÌO)Œ:€f+¡B´RݤM³oLdŒ…Þ!û•vfßýñ忾¤MÀ¦3vÆI¢¡¥M  5aׯq±IªÔöÌ`˯¼ô··mM­ËÑgZ G7èýxï*èÚžb\-Es´õnwƒNîñgÊ¥_{clXe¢Ùž… wâí„1Ah3ÇS~.oS©0v|ŸC}L[–I›ÊWB¾ìBÆ£|‡àéƒ>Z¤So ¢<¹LQº¡ªøãñ• òÕôNë„­ ?>ÌÆ)—`Äëbÿh]Rá3U‡HÂ,ﬖ Ç—0Ü•˜Ãp]|·ö»ž¨ƒ³‹‘ç[·u»úßLmâV¢AÇéÓŸÀ…ža<]i p–“¯\Œí»é#2è=¡Ð“å¡Õ÷ÎÒWY*Jô‹{C3lPru4_UM.Å/'Ò)UæÀOˆªù’ðDãß­­I‡$˜è¶«¬ñ±˜së~àµêNŸ7WP~/;Ϯ¶þQ}ý4s)QlÌIÎöñyE?f}?á‘§ÿÊf;o5\Ýþ]A¿JçÆ¯ VÙz[7 ù•gÓa6âct,ž»/‡˜¬3Ótu_ò z‚Lø3‘8?vÖ9&²“l8„ôBû|+ ýû eCÀÀ»…FW6Hû¡rWò™µ@³þ'EОþð %¼îidësÚ#FµO’v_ø!‚Úh#±Òƒµ²lìaNºÈýRóî…/ à•@w_^~Ì›Nw:iV†Dpìàš‡ ´$‡5™}åáèôÜ®wB’“8G ÎôRPFö‘eÅÆT9™‘Xp¹ƒÜ|S†Þ‘AeJ_ÑÇM¶Ù-‚„ì@ìü¦Ú­b 3LŒ §oMk1çJ› ¦Æ‘ïÖ¤Ì',9ZÎ áòŽB ½Ê>‚Ö?Ôó:p\ì¶ÞèQ§49¯G¯}I÷”PÿãJÐ[aÑ@ÒX5pÎqÊ“³¬¿€@Ú8˜¼Ç!Ëϯ‰…“@UJœÝç8.²*C §óýöÿ Ï0÷á>ÙjZ.ß7çº>l Ó[½FzÌ/Á+ö¬"ÊsZCÔŽ;¡ü-xè lOúÃ.ýìJ{•£-’”&تìJz(½kÐàÜø RŒ†‹ ßbÐÌ¥™t Uƒ¹ÃÉð™=’ì+¡G‹öd_‰*wRQÆŸTCÌ©º}ž½·Õq„F:¢â/Ç?—ùP!| ½}ñ7 ÄÊÆ³_!ÑORhµ†â€`F–¾g4Ò9txÏÌW®Š-÷*ã.W/fBêiO], &K½ÖVIò5+KOÙ i~]×­(ÿõ½[p^V$_M§:üM¿f|œµ;®XRÞjVÚž·RMÄç³§}jÀíM UìbQQ«!Њ؇µW¾YAÄ{ )”€>ÃØ(t‰’ŽÚþ~÷VüB[ß™OKgêáÖ06Ð<ö²ä這ü"d és¿sO›Ä¦@[ •ýÊJ’[Ý…DéRÈxüDUƒ¨m­y>hÿ¹÷žf¯V\ãÊrÄ—án¸Nø ¬’Ù(W¨õ×y>^a«SïVÁ"6Œ*u½êÌ å<Ûç”Xh¡ #ÿ7÷§âÊ€wLçØ.yÌ“ÔZw+2^·EãáÖ¾CUGöhÚȱMPˆ@Žz}€åv?Ÿå·'xÐ(Aë[{ö³Â ˜ifâs·ý•øN#Ÿ%h?“FÃR‚"ÿ› Ï¿L5ù3#FÍìÙùâ²:õ›&Jkde­¾=–#a£œ˜ÒÇÁÞÏ`úþZ$eŽ]£TÔ5”÷|Ï ‘æ÷©ø’;„ðçv ¦ä˜/"Îç&ÁBTWèø‰©xQ$¢DÊUÆR²æû°•=Œv²çàB}¯Ê1¤×¹›¶ŸmŽžý§ýijM×<¬“ÜýCÜuæTšÊ…È*9TIS¼Àµ‹…–;d·¥žÆ\!¢¡u¿ž£M°êçi›ŽÞáVëô«Òßp¤ß¾¡9(c¨ìÖXÖ ƒà¾íª­îî?}Çžlê§2v5<´XE25¦Ž ÿo,KGà¤[2 â%ôÌBþ.èÎEÅÉ~‘°©wÃ6ðtŸxØÈ{]îV†Šìþœ†õ6š"¿íÓ¢µГ¾=Rí·ðÂðV`$w8W·¿·àÊÌÌ0ÜlÙ#ðKqà,J'úªPwâeÒ¯ñµ±]Ót %~0{†âÛ à`Þ-sµÿ 9ú1jWÀóóNcf' »õæe±Ž9ª VTàÌsçà-?‚ÁFxR—‹ê†+˜xwtñ†—{nÀw>j¬®¾. ¦‡;I¨½´+ Ý;FŸ‡¶¨” yî5‰ð@Jh  wõZŒÖVltºJ~w}x ü%xÞÆÊ&¶¬z¼€°›?-k@Q>mtÐV¬×K3@®oÌkâ¸é²¯@É‘gtBû»]€—CyÓw»¶$仵Þ^Æzbã_nOüÐ(½ ·¹ÿ£y!¡Kn‘Ö¤e`-®Uµx€J\α˜•9…[̪ˆV‡<‹£•ô=1ýÇ=Æú5m—yŽÚJ [còxÔZ!DóÁ›•Ÿ¬XÁð@ºòñÈ$éï­¹L˜1ÌùâÑÏ%w~X}¶\û>ÕD^µùA¸èa,Ñý-ž„†V Â~׫eý>+ Ûµ•éÝ*× -šÌÏOøÜ?« ³å&.ºí¬çTÇD—ñzþ|x°":<º¯˜)ð;ÊpˆBvÕöÁ’_$å^.)¥©Ñ…£çkºä°0ü ö¦QcœÔÀ7F«Hî[æpZjå’îs¬×!é#-¦d†Ë­º¼*žÐ.sßÙ‡ έÔnKhƒղ𛽮o:½â²Ri~&N»vFýXͧ°YpnÅŽU'¹:À)'~È¿õì×üÑ0ðh  d;Ø1…yÃŒë fý¨Ñ#¯×7ȳÃçņ‹3 ð„ Ê‹©}ä¤ËŒÔ‰-è1A<“¶‚;S»u#Î Jêu‡ñ}àêÝqø Ì]q®˜-U¦ Ê–´2;Ö6iáì@O3_¡»\‹‚ïÝ¥Ÿ=A°»ø×½0È#ýŠU;K )%ˆ¥¬”ÌË—½ÏŪ­úõŽö æ†a¨ åÕ-Z|¡®š"#¯®ëŸf_jº¹dÓ³(ÅJbhM!„Gk”é>,ÑÕ2â̆'Æ|!ª»½ÿ/û±£]Í’“ÏzM°}ÒpüÅ>ÿrOˆT¿–N¯£è `Á-BðC·{/¨Ä•$&lŸ[R@8vit ].¶S“ZÂ3JGÈõGZéNnƒ'"ôH9xûg—§õ¾éã÷ÚâøAU©™ã`]öå¦,zCÕL]©ÎpêFšÊw½y´ÂNôÒ>6O±®—µ£qFµ'œ[¤ÒebX:Æ"àÙÐ?B šU‰¿5ªÜ¥Ø©cŽ:æ=¹(UÌ{ï/l T†P°×¼=¼½ðÒœÝáÔ;ÚjD…:`Žòð°P:O©p_ò¯~cÆIÁ}ê‡ùq ùü:-ô‡§(÷l¨õd„sx}虩¬PùŸÍNq¶³ß·M>DÛÊ®ÂÞ3•YX™XÝO°pvÕ!XþH§Å–{v.¥è`£¯°¡áãlP.«.^¿.!uúŸ'…ðœ$²âQ`òŽÒçCvܵTÈĨ”0?u(Üb ûØš&ãrVŽõ€v‡KZ¦›l}´RÚ[ˆ'÷‹ºÔum·4¿]Ö,ê£×Aî¸% VPÂE#³žÙ,ßÖmºâÆ5Oö©v`ÏpOùïSßðvþ5ß¡ï ã\m åhÃ+Á¯áO˜¢pöU½Ã0Æ”w o2ñú:²Ê~o°^Š–¬endstream endobj 296 0 obj << /Filter /FlateDecode /Length1 2434 /Length2 17322 /Length3 0 /Length 18739 >> stream xÚŒöPÚÒ cÁwÜÝÝ]ƒKpwî®Á‚»»»»œàà.oι’s¿ÿ¯z¯¦Š™Õ¶º{wï 9±’ ½°‰PÂÎÖ™ž™‰ *¯ªÊÌ`bbe`bb''Wµp¶þGO®tt²°³åù‡…¨#ÐÐ$3tÊÛÙd\¬̬ffN&& ÷ íyb†®&y€Œ-Ð ž\ÔÎþ«£…™¹3ˆç??TÆÔfnnNº¿ÝÂ6@G cC[€¼¡³9ÐÄhlh P±3¶:ýŸT|æÎÎö<ŒŒnnn †6N vŽfÔt7 gs€2Ð èè 4üU2@ÁÐøïÒàɪæNÿR¨Ø™:»: µ…1ÐÖ äâbkt€Ø*ÒrE{ í¿Œåþe@øwsÌ Ìÿ ÷oï¿YØþílhllgcohûÕÂÖ `ja (JÈ18»;Ó mMþ24´v²ùºZX þNÝ !ü`ªðßõ9;ZØ;;18YXÿU#ã_a@m·5µ³±Ú:;Áÿ•Ÿ˜…#ÐÔ÷¯Œÿ>\+[;7[Ïÿ S [Ó¿Ê0q±gT³µppJ‹ýÛ$‚ÿ#3:Ø™˜˜¸XY@ÐÝØœñ/Õ¯öÀ¿•̉A5x{ÚÛÙLAe½-L /xO'CW ÀÙÑèíùOÅÿ"xff€‰…±3Àhfa ÿ':H 4ý¿£…;@‡ 4~̦¿>ÿý¥ š0;[ë¯Ìÿ>bF UqQ)Ú—ü_¥ˆˆ;À“ž @ÏÂÊ `gåpps¼ÿ7Š’¡Å¿³ø‡§´­©€û_É‚ºôŸ„]ÿ=Tÿ^jÀÿÆR°Í-@õgÌ¿0±3ƒþ0ÿö¿]þÿÍø_Qþ_Çüÿf$ábmý·žê_ÿ?zC ë¯ÿ¶Í­‹3häí@›`ûM5€ÿZ\y ‰…‹ÍÿÕJ;‚vAØÖÌú¿´p’°pš(Y8›ÿ=ÿ«ýµgÖ¶@%;'‹¿n=3ÓÿÑ–ËØ t{8Fòo´;ÿË(nklgò×’±°s  ¿Â3&‰…àÉ ÚF ûßC `d°µs¹@ÕyLíáÿ:Rv£ð_¢!£ÈÄ `ýƒ¸Œb7€Qü¿ˆ“ À(ñ1%ÿ V£ôÄ`”ùƒ@|rˆOþñ)üA >Åÿ".ŸÒâûü±•ÿ »ÊbWýƒ@µ«ýA \Ôÿ ŸÖ7(3Ã?”™Ñb7r44¶‚ÞSç?rÖÿÊÿµÿU€Bÿ±ƒ‚ÛYƒÎÿ?6¶¿$66ÿ F“@%ðOPâÀÿaàøKïàÚ¦?. ®˜þqåfjáú©í\ÿá21û%eþ'EPç̿ڛmÿa’Yü‚Zfõ*óŸé€z`ó‚®+Æ?¡ØA®¶ éÿ‡TÝv³Ýÿ¨AÙÛÿQƒ‚Ùƒž5Ûÿ96æKÿ÷0@·!£=Ðô|ýÔão™…ÝŸ–³ºaoíâôNÄáOP{\ìœ&Fÿ¨’$ýGK™Aúý/týG ÙAæN [ÿ(‘?inOFgsGà?N T©³›Ý?@Õ¸ü‚šîúê›ÛÈòþ (ü×@PO=þÔŠätüÕÿ\@Æ.Ž ¦:ÿýF€n§ÿ࿟| Ðh ¿ºdgÌdYÔñP#ŒçF¿?Å?O¾¯‘JMï¹êØéò„“D]°åx'œ4Ú‡¼¾'Nu+´FôêyÚÚÚ–ð¹ýÙëE?^yv¿~eshºàT¸~Ÿ^UèÀëÕÁKÝß ²¼[†<×Á… Ié;ÚƒÛ€¤{ý`Ù‰¥ýÏÕ²_Êæè£Õ¢¾ø/çe-b“@;ÓÀÒ ^¸Z¸½›GÍ™~'’‰§…÷>‹f-ôÔÞf‰y\ôبPeqêÁ!ÃÑÆ&€¼E˜¥ð9J–ÁZö,)ŠÚâ_Îf¢fÛš$òï&>çÑ‘“FÅb²v\å–œ ón¯gô×ìG€ËÜW1°§©³?EZƦ5us“ü®ØR4 w0 wæHk"ï £ðÕó`gêVëôVöô¼nZÇcLÇt~c½YdCì5ÔÁ]ÿ怫ǫÀ2£”¬Ö³ßrúÌ~ÞýÀ]¥s¨\ü— {¸¹á7~µNœ.’f7Bm&²4Ž?ׯ¨€@J‹ KàÌ)X-“­åy ’ùaR%4Û.q>)zxß«_–÷l‚BjF[÷tÊß|$pµ jèÛÒœ¢¡p‹!ŮŸ¶Ç§]7TpT:˜Ž‰'>Y¨3>E‘-ý±íhñþ1ê'tò'ls{+Óæ0ÊLrL‘—ѱ«j‰>A3å4ÙÒzÝðÉ8>•y¥€–ž÷O±…ü·e»:øý «º5¤>©Úó½Ú+_ÇÜGª£êBk‡ý5(ÄtâçÁ2(P÷ÛyI¸ñÛƒ•¼½»â·ºûg o—,ô_§¢sׯ¥ˆ7l¢õN†ÜbGçå›çiÜmZ1´ªRÐ'ÎÖ÷Ñ*âìM=™Äz¼8„Ês޳xuO«»Ì½¦gŠ•…¡6Gkd m2­ïôÖ)4Öý°"7†= ›¿_¼ÚH ànü.'ÈjHéÆ[[Le“õ‘Æ )äÂTå^—VTBŠ`àÙˆ‹’£µÑ¬Íæõ®ûö~`9¨¥y+¾ìRNÔ‘Ï>Ünÿ#NDº£h'/B€ùRšËiÿ¹3šÉ\*ma‘íÂEç ÑM«³?9={?‹¥CÇyfnt,y-?ª!SÐü&-¢Å(sçf•‚ÌÞd¨Ð ‚  ŒœÎãL{YJSê¥6û{¨ô4Ê ú±M¬±ÀùyÁ$¥¯8—¿"#“}òºÃ—¯©à—%g/ù©…Ð{ æ.Ú 5ølظ*#ØŒC®ÚúŒÄqí}\+s¢³øtÀ\óÆw!ÄÙï~XÌ8ýùuzÊ‚ÉôYIYW}E˜A0z™ÄÏQ4Ìfn÷‡,=ylŒE¹9-¬ÝBå»_j8=~zœÌ2ãS‡73l§]\ûGŠ»hQ¶”ÝŸ°‡IûòÛZv±ìv.B/£Ź1#D¿¨Â“Pœá{QaËò0ˆžYLÊrïv—¤GsÝY`s×g' ÛÍ]m{‰H »É.6Ùµf§47Úp K–ºc(&Ôq îÀ)(ØÞkH^}€qp™$l®]’O„èºé5{>^0a„„`€±;÷¡èLFÝiëú4Ö D·o„gþUçm÷ÉOìŒ*ù·§0ü !»qÜÙ õ* µDon­˜êy¹Û5G\óeEØ2ŽXê:Њÿdˆ"C+ïÌ‚pÕí:dÜ «;+ÄU´:R è±'U»}l ¸+£HÜSþæ1”7ÜŸ/Î@Í•/œél@›2ew²z’[U‰èènp@ìõæ[iHS5ir¨ö1 †šÁYßÜ!~ù-Œ† 2×á—_[­_µÀaưÜ ëÑHì6ç§?nEç&V¯è vG&ÈëVû¡•·ç.˜­$T|1¹ÁÎŽÏõsƒ:ô„·D<¯å DI™wÆæÌ#)Ê.m² ðU°´ù©®è‚í˜Ø!m䉰ðX>Î-Ïj9ûM”þ{ujr4Ô#«±uÖÀ ³4U»‚Q[o6fíwÇ‘ÏvG¬^5íwnñ²œ¥ɪ—x6î5m;‡®IÆ€‚Ÿc$÷ÝäX•`¯LSn¢å ÁÍK—wSI#ñ7 Þçà4;º8¬B9++ÙFOnSX3³:pëc¯rŠ<¿9l$ùCšü²»p‚nWÒõ&3Nµ3ãcßÉþ&˜r0ÊfôPÛ…O3iSÌQé‡E›Cåo0%«ïê륩 .дÜïkŸØ8Q"¿J~¢ší{ÛÚB,ñGìë‰ ©ôÛE²SìÓOôª0Ö~Ã÷)8jÖö&ÚèzÜ2̺'ïã Æ La$¿Âhõÿþ•¹„~¬Zd&Ò` …¶Í­ö*q"S-H‚ªc¯Û÷qíØý”yÔJoîTÏ·’Ë5.¿éżÃÍ.¹Áz¿'ˆ¬BÙHÞªÛ§É,(B¥¨ã‘žœ öŒm™S§<‰!@ZÒ?à œ)q¸Þz¸Ä ÂEÂY¸7m8þ@¥pì9ÄGD’>;Fʼn]kÕ@õGdV9Q1ùp†½¯Eö+Ø€º ¯òvv{™çCæ¯î$Ýʨº3ÒUªVî–fFÙR &° T<𽻿Ë3ñ¢f RÈ ìºËn0}+ôŽ=ÜéÖ<õ¾Më:fìrØU5‡4¶ÞælV8K%¨®‹¾N/’ygvýu¹Éп¶4‹„ÙÉ9"úyò›ö4UQ$½inÉi"‘PŸÊžœMœ¾cfˆ‚+x7µ§?°KúLú®ôµd',‘ &åø¨à{ºFN”Ý#<ûÓ† eilØ´ð¯Eì.[ü2„ªWO• Raà\%Z;͘¶-h3Óž/µôþŸ:ž`³ß缕^Î0¾˸×'q-Ì+ãÿØaÀúâ9fà²ñ®ƒ†GÔX|C~ÜÊÚûÌÙ÷eÑÑ6 DA†¨ñä-rú*í5W¢Òª¢îcý‡«.EËî”Nܪ­µÚ îâŒS©ü¢zJ$uÙCjòuï6L™Ì¥–úåxWÃYsï+´ ©Œ3¦ š|È É`†QñÄç^$üß]­¦ÆÍ3ó9Ž Õù̬}¢§Ä³kUËNóû«ì_êžšÀ …øéð/J9m<ß®c 0^í¶ENX©ão¸˜ýôM|Í‹\ú…ìMÉf4“¸/ôXÝ­¯(½Õʉ“1Íè§åñ•ÞÄqÛÑ/¯s‚è •Sfkvéò!hy¾ç¾A%«t2ÏçõÔ¨±pÞØJÉÖgÈlž)¯¶¯ÿ¡hÒoOz¾’8Q5°%R¹Œlž®0 äŒ1÷H¬àlןB<š«·>møEÎMí>óŒ-eem€.sÛ¢(TË`«•¸¢«Eíp#_@ÓœåÓ†×ã±ÞÆ·ùÕ_í@tF($E+?/GL·m|ËÆ%+dŠãÙ[ñGœAÕ¨Qe±Õ'EŸ5Bý{Ã/œ\è<6åc’XÌ‚º™Æ“‹$$ÄR»™”^ŠnŒV/ mªÇ “)9¸Q¡ƒÐ)NÅþüƒ± ÈÃø+œêõJ¬l',rWBy¾ hÂÔ¯ÇË»–Ü Ò_>¤±G›/n|¢ÿ’ñøSŽÐh£—®ÚLÑ–’ côe¤¬²Š W|!„’—à-˜º’9æK‰sm¨=°>Ä/™¯¸ã|$É›2òSJ&ùŒ—èf?e™‘°h®É|_ÏKy[2ó¡A¯Èáß4Õïkß§^vÉžA@.dý8Ã)½xDúp&)´Öåª$ž„5ú®ŽêŠ?0¿‡À‚Ç™B'æ”™n™1¦¹·çÕ(̞ͫ±^™‰þBÿì_ŽNjï­% #«ð8F×5/œú[Yi‚FÉÊ‚ï^C|?¡ qûÔ ÌyJ1ì›ÒPºõDìª'Í&Õ“„ä#"kû¹ ¹u‚˜SìqÞÏßä.5j×6Å  ÷ ýQ;Ø–…pMºÊRz]«ÙÑë!NÚ2Ùb¦Ê´ÍÆüJïNå?4ã¹ÞÒfll"ýÒðŠWVË èfJyUª$ôÕÔ†6HoGºaº‹/Æ Š÷kzÚ‡>•Y"ÝÖá=¦íFîK®‚T80#.€¿z»‰YÁý`E´TÍS¡ × k½1UóT S§ÂÂrʧ!L12ÌrŠÚÞ.4‹ôi™óX¨…—<·J~ï.×䯗—x(Ñ|/MQYVÞ7¡!:´V8ÇZ‰5B³ -E‡pëtÑ,†ÄÆgÚÂf-Ôï¶éç‡d<Úòý|ySïbz³ûþ’RNê{û®à(šƒeÙe5üXÌiú|mvSž0êð,ÁŒã÷ÝöR ©™DQî%Ç^ýœŽu¨×’ä<¡W2ŽoM|›Tåf’z} õ>ÕîJÇÐz~²»› 8X½ÛZOZÁbã $-‰d肦͜„)ké[Þ(­ß4ÇÚ…²¾dRîÒª½8o}rܸ%º¾-A%’Ð]à'~§&ZìÁšƒÁs+8£à| æhw±0>pšü)ãço¬íÕÔ‹þLtDg–Ð"bxøqŽäì¹n»kˆ—ÕK8ÞCbG‹íNfE_j,Uf§8û˜Úç<³ØH§EQ°ÿr#GÙ-t«uX¼’=_$[cßËw±JšãW4D¢&哈#ÙÇ'o–(ÏÏÂÔn¸2'Î0šÛ1¬.Qʨ¬ªìñF^„>§OßøŽYž{8qŒ„½ƒýsÒp å49Ÿ‘)! xˆ¦.;!ºâKÛÀ1.¹Ì¢¤ÁÉn%é’Þ'ä ¾zKžeb R[ÿ°yœþι#û‘˜Kd¬3Æ|”aÂî–p³qÑ%Ì^¶9HEp’I›¯Œ ãJ^/ÛNbgéw""Ÿf˜‰!PQÏgx»ÙŽ©k›ÏF²Õ5ú«·@q !óqÑù—JàT…t‚Šʨˆ´jsÔâ‚ëê*ð¨1N¹ÝÊ՚̫ÒâþŒÉÁþ¢þ³;ج£ÝžÔÓç°ú4WËÃŒÁÀ `Øê%[¬AÉð°Ôè>µM°\²ÚÐýƒ¡fgn8¼Ý'R~_Tôæ{xUâ-Ó‰c:žSÆ”ŠhÕßÜ×1„g…ç=>bú"f²v¹ÄMyiz7ÌÅDé_`Ì¡&¤™¨2Ü¿(Ò¤c!ƒIkÓƒf1[MÆ4í"(à´%•ë¶&!òÞÓÊZ.iFJÍ•®é‡Æ‚úfòVìÚvvè?ñKrêçLsC }°¶Î%û^VO'Ãèrs+R÷̬Fu!ĹК!SsV à 졋?Ní³°X@–<9ÃQ1ê íyñŠmé:rì-jÞ"i´ÐAtˆFF€)bÞ…> ×2(94Ñ©Þ&4/^p¸TçPBîÊð[–±˜²À+|käaãUDs%áóÅ©äæï^5ü6=â‰þô$?ÞÑtGá-w`ë’Uä‹]Èö#G]gb›–á»~°ÑI ™ó]yó C“÷èÒð|¯ñìKµçÏr>¾ ׳ûõ–-Ì ¥›P¾§“`—É#3ù`܎ЛØþ$™FÎMic©d_gÊ–òÔϺÉØ}Ks ù{LÙ(·¾DJ"ßš5h´EG‡2"³OTüýàN™êý c±Ú¦–zÚ ÷U‚jÙ§’îé½9Ã`†0Wé{3h°Z¤E«b=™GZC„#R·´ëÂTá8*ÆSIÂ~ĵMEåØ#BïˆýÎm±Ç¾e„"öªp_GDHé&ׇˆ¾O‡ZgI’t ¦áZÿU~ÊÈÔ5£µàŸ‚n1D ¦*$y¶©CR'À4ø|ƒ"¡T©Ç½¥B;=íý´ Ö‚ŸêÓxJî‘O€Ž7 ìäI` jV·!ïPÚÚµê«ÒÍê‹IÔ¼!d€3J›Ç¬ÛOÞYs0ãBîäêcM®3TϬx¤Å,­ 6+ §Ö J2GÚ çô×ÐNê ê-ŠH9‰Ï ˆ{rœ Ô•õfw~Íþ!Ë×ñ“ñM$ a=呂0dñŒWš]øO5Xòcw<œøÕ·–¸6©eÄ”EPÝ謭îèx|:Ž€_?Ë¡~…çâœÚÆmè¥9µòäè¥È{ös‹' 6£ÏâCLpÍnˆì9ó­ižÖk8ý€cýæÝ‡ìà£;­ ü:ëN\„pnšxAþ6—60üPãÖ·ŠèwvÚ?^O·Òýyi/ªA£¿"² |<çC\¹:ažs4Ëï~ˆú‰X3{T( T÷3 vtnr³kYV)hGÔ±•}i‚h¸m>/¿ÚUtrÍÀÝù3£×5ÉÛ¦bê Ì…¯iZjÇÇ‹¨##Ž!ž²HƘ>L¿E¤ðK%"¶*ªT½ ¿YÂÏjÉO ó?gk¨]C¢«†óe…]繊#’­38Âñˆ§(XèQÒJ²f FÌ ŒR~Wwåî¿çÛôoq‘6³lÍšËÀ¬nanœ ÅKýú 6÷uv«)Y>Ž"tðkl —^Œ•7qñ£ðK8:-!¾ÐîÕàíÐ&õ±Âš•‡ù·IÜW~«ÿmç³É“š§CúÀô"?44û»¡- ©–ö³WµœüÚ}~Ì w Å µ¯¹4ÏãKRg£›Zж±ô“E¿ ÚÚX”&dH½Jü¾MHua§uÕ‡ ºTüf,‡së‰xÔÛÉ'wK};†9˜´ÜíDÄèjlT údkõ‚†¤j³ ‹­Öù{š $j%âËPSNˆÓåá;/ «j¼7Ÿ`‘Á´…ƒ®ª7Ïïñ1o5HvË“…êayª¢ÞܸâÕµFÉ»8,³Õæøã/U2cnÔèÜRjï*Ì^°éúøM³^?‡G£=îÍkn¨ªO!Ñ#Ç:ñ²Í†b­¢–8X7¬Š°Õ<ÍRïF i?GJýž,@£—Jž,cŠ~ÛbÎ9)HvƒŸ…ô-1ÿæ†ïDã4™Gû6økFλ»<vì’0lI*7 wgžGôëŠçÒD~Õuuç’ÞìNΊŸ-xHÙæZ5 ?7Ç9r- r¤ B—#¾uœhÃjGNÓIT!z÷£ºlÇd³¿!Ÿ1taÈÅ? N¹{OB¡’n— “*Íø*Xéo^©¦’­BA³,b¥¹µ*·›ŸÄ幩D“¬\ŒYï•AUÄ·{Fg¸¼üà­çßîÆ€§Ñïϵµ¹ÏÛ*aѯ˜°m›5<ò‚ìJO.FŠ¢™7]{a—´rlÕ,¬÷ùA^òñ*W„ÿó)µ{.¬Ø±]CšâOÑi)¾åè 62ÝœAé ßÝòŽ×›d#1†W-O³>/~vŸr¨ âÌ!Žà MŠîú/?¨çC;Vʹ§n;”è[#3ýó,•9HÁ‡é~²U^JkògèЮˆ7>l 7ßy!78¹•fw¼ëÅfj<±C›,A ßñIJ bgÞXr뱘1ïH®Œ9º¡GÅ›X½°˜‚%Ÿ´{=-Oì s'< Yæî§äЕRá'G QÍ]ö4ŸÑ®^ÅDÜèåæÜêu׸GFÌn ‰ê„ ÒšRߪœã¸¡Ìƒ£DzòìÉêvï·+ÐÙÇÐ,Ug€7^»xÎëúU°éĽ éá9ŽÎª­þc?[F) ÃcI*+‡VmCâe–‚GáÌÉXç0ÆŠ—°V¤ŽVÝ9Ù­dë$9Y®µ4¦É®Çí´'*0œÈSçݰS°£ÞÝ6gd°(Q™ç þÄ-•ó’Á,oSš1À1šÖ šÉÒª¯’°¯&¬Ù ‡š}ê‰ÈÐ}¢ ÷ZÑ“s›ÓÞ×qáéGìÜ¢‘r’LÅúÜÖcVŽ[Rûx×,¶”cDî…»zï²|î—!3ì5”Ò€ +ÚR<lâo+«éåÈCoï’Ý£¿Š ÖœæmÔðÆß@nâDu=ŸhÀ9Õ y8ne Q\Å(9ý™®#¶4"Œè;çþËßh²º|ÅôF ‹–!Ë3ÌdRº‚ÚgÃVÝÄ/7>³«[~*±™-ýwÂË«½H°gîNãÛN΄‘hÙΑ¸ÝJqêO-/ªùÚ2pui#ñi˜•®¼5ÎçÕ» Î8z™x‘ƒí­Ñ Ú«´f­ùqÊvƒ[Îá-êòŒh¬fÝ…p~Ckš¹c:a±À}/_Û1Kg¸Ä&þú-û”{”ßJöPkGÊð.rçK|eF[žª¯&OKO§©y.ékà|8%i×Gö‰º1hÂi匒ž^Šu%•cÈ-­Ê_F¡~\vqNæûM@5fTŸé7À÷´Œ55٭ε¢aêWzÁ¾oØ¥½LÊ`Šs‹wm(_s¸Ebë<úo «™_ ôÑõ³~x® žEÌSú¹%^xÞc‰‹Ž¯Ïv¯‘žkësù­/Á­×rZíc7R¨÷Étv0ðZ&¼„P[ôÈ¡M6o%‰áˆãG!R-Üç’<õïäæK$‹O˜J|ë—›oL³\noªIµàH­¿Ì2‘Za§âµ˜rªÞö»ÎmÆÛG†, öVí¾pànɾ[ìrQ2äm¸žôJz»²i1¬òÔÛ/èlÌÚÓ—ÍS¡)¦7™„¸ÀñÂ0DºV¿ó<1õ6i¨–¯ø©1ª?]¯Q*9irI¨26ª{À,åŒà0sÀ¤ s!˜IöQ’*|_e4¬R6ÈʯºRE9CS¾Tm¤¤%$3"é …õ!õ›Nf֑źɞhFý‚(Ì å—NÝu–W§]âW°ý>`)µæ­ñ­páHš—¶×'Íâ®ÕxÙó£Nô‘ë“8ÕUÍ'8¶½Ç)’‡õîS3óÁ4˜ý‡”ýûPGïCɓޚ››Î•³Ùä¤Éñmž$.—*éPdR¿®ØEtãßNÆi_“â|zbõ"~ e‹(uPõ‘©É9›ed×5ȼèòuôºÕe×ÔŠß# wö[ŠÂD´pC»R¤>ÛÎJª,0¾ Uéàân”>øòXÏûêæU«òõò$””íáb5{vV$’ä9Õ¤ž2;§œÑŽ…; ²_ù åßñ¢”ª¦sÆÕ¨¸·;2U×W/¹Bìòo)‰ÏÒ½Bww¼|ÅVƒ½DãúÄÍ”d·ê=øÉÓaUè=#µiŸ¤ŽŒ¬’>/[Í~ËAz÷î^Þ²‘\#FÏUˆ ¯Òâ<,®%ñ‹ÔÏ9¼"¿7 ŸÊÞ¹dôĨÙ†sv¤ÙO|‹¡\#Úº• éŠÍ™Ý8¬P%ž‘N4†s©µ¬’©0¸SI>›9jí•ÿ{”•”7ŽÞçYèþZ´ê_qV¢üS?ÀOÓtZsI§WðãÏtø¨);ä,%}‡aÔ¦k݉‘ù~úøøšíÃ/²¡‹JRç"—øP`cÿµÝ0+ee€VeÃÇ+–¤~;'ú…&ˆ-uì{ó¸j©¿¿¼ï!vìF`ÜK‹Y«s{\Ê÷ _'&ù¼­6°Åñ÷ƒ&\d¬¨{sq˜‘1èxîâù%?!“mYIZº”š÷€âlSzöúk ÑQƒ|pu³lE J–à:ßžRQqyŠRþ*Á @”˜ïmžíμ”üìÃô]Äv°jÖŠ¾ÎòVþ$rÍã¡Ã'}ä®+_W:c K¼É*kÙ.M>úQó‘3!þh£”€_x5ÕõîB\¡ÑUvÇÓ,2i=Nùê¶‘÷¶·ï Ú‘´×žÉŸªÞ¿ó—Û­&›VŒ?EÃÇ9Ì0þjšs$C½¶|wéï.Jƒ¸©’ܰ¥´K–¸ª5ÿĸ‹L*Vl¶KÄ •Û^8ŸµW\nÔ\úVxÛõ«å‰ZaJDewD'Æ>1¢K\çMþÛRëêéµ!ž¢Q€Ð›°‰¢N;*¨ŠÌ‚QÇÀÝo9Æa×VñÒ¶…ܛʓ€¢pýÔØmƒ-Ù.õã‡ÚÖóÁ®ñ±hC÷ÈѸ„â9÷„%j±oYGw¹&´/ÐpéE8’(‹;8™sgøYfÏÑï&ºI_:Iv]ðˆV÷WUñÉÚ^TäÖµŠï©Ì§q+žãËÅ‘VÎÎ?@bovõ1&Åý©ë³7%yi(+(Ó2å° ÀhŸ,âP«ù®÷9gT9‹ÛÜ´×€öÙ.¦iqÙv¦ã r¥æçíÅrJ¦aîÇù¢·lÔeˆ–Æ¡õì³ÖšéU“Q´ ±? ä­dþŽ ˜_.èÌ7ÂýH*¢sS³m¬]‘äÕ×ÖÉW±Òëeú*]T~¿é¿nêׂ!$_úz·ƒ“ ²6Ê{ë+§½¤aš‘9>!"Œ 6I´¥ÖåÝ[Bk¤cz%jRýp¾ƒMZ‹kÁäluf{*„ô@ GbYkl@-ícZ?nsõªŠu¸·ˆS ²‰Ùöÿ8Œé/Ï*¡/é6/6Pyó ¹àO>¶f^n±%ÓþFIŒ»ßt¸4¤à,<Ø”Ì87‰ùÃÃ׫…¦}Ck“Ên}ósò—¯&™:÷\O>kSzþo;¦‘ím¹"ô'«ÁšNà°yÐf\šPùDÊÓúp|¢ \À-*uvgóüdà,²H,@Bk'1Dàg­ÜðåÜÅš.¬ÄïŸëôdÆl“½ûù&ãFAftÊÝ0 Ijž{Ù]þêÔB¬,^ãæê»U†¹Æ®g¯&WÊ‚\ü8]Ø%i»¯±)š|#«¦—G¼ mFÙV¶;-/&³©¦´b¸›´­Š~²3t¹ö# Õô—<+¸EšúD'¥T#ÓVô#Õ,X±PöGI—?Î:9¥(ºf¸Fô=ÇVçÒÔG± |Mtd2©ê§Ù^´1åìëùùc¥Dó(?!-g—Êž’°üÛ]g=‰YÔöŠá4OÛÔ—‚*w® ~YÓïҭĸt;o:qíœâÃú q,/£(Á7]yÉñ=ºr·µsêvï a^kµZPò²ÙXYYªy#£~#åx9¸sÛ®M½˜Ô,1Ë>òHK1Mñ’ŸLám~Ľ¿VÎm @ÒÝwʯg%–”äK줽M­º4ù©\‰–íQx@À¬ß®Oö-ê«2ì¦ÈçpD¡ ‰©b\’lè§!‘„6£pÚY¹2~à ;OþïÎlÏ/Bæßb„«ŸqƯ\î»Uûl[àL öO&¤} 6-1Rò.†ÃØû¬~.J…S%,Ž£‹TÝq£`.¡›™¸l|X¼M€G÷žÈþ”ðKöL¨—¬i-$¿™ñƒ/‡%Šhú4÷÷ßølZ€0ƒ±×œÔýOyXY9šQÅÊ…^ªýJ9ãL\|á·kSœ§f‹ÑC¢ð¡ªdàè±lU0ôG'£ÛlÜ[s\qdÂ~@´i?E¯¯2®Zqx±×ÝêHw¦ki&¾ÈmB +4rn!šnþ\y7È’Q‚!cÑ‹¡»ç[D`ÿ&|^T‘¨ 38CG%x=?´gà›^OF_{`aÇX¨ümï ÍÁŽš!8¤îa·;;Œ‘ ?žŽC*øTXD; C³‚;~˜“¸¾|‹qÕX¥*ÇWNªa[ §Ú˜•;Cÿ àµ-•¦aÛúùåëݸ©sšÕ!y‰euhsË(»ÐnJr¬à<Ÿô4F…sʹ¯™<0ËHúµæ3ZÄ“Þ'¼ ìqSD4¨Ãîü¾Æ¯ïnÆFÀ‡Ê#¥Â>æ(åëÈÈ¡]˼v÷¢ŒsÙà’S[¼×«¾r £í¶–%¶šO˜ÜGonšI(œMÖ-–ýZ©Y·öGyòu4r¢¦qÆíìŽU!HªYþ¶C£é¼7NLj2>;¶Ø3ÉõÓÃzlT(„ªï_T#ìšùàZ®yu[#¼A‡ü«ê'®ŒìF"쉚Åe-¬âšœ#ëÕ‘“æætQWFH)%C[7‡nwO÷‰†Cä[ÃSÏd~jï—L짘–ŸŒsõßW•t¼Ò1ΧÅZLXLa%S–U·bÙœù‹Ë M‚‚u£“Õ¥q>·ûöœ¹^õ4Oø;à8Ï>kDBûYÈòN† ‚åÑÑ—0»:°a’ÚgÒ¹g¬®5 H Ð8S¨ÛgìtïmYÔw¾­]€´WàŽÌõÚî0û•ñ­Œp¼¾υsrcïO~sÿªù:ûå˜È;8±?< ’ëa:x‰ßjÁ„ŠŽÏR¹Êüe«!¡zÔžÅæ¬Öi]Ô¥Pñ¦hëûâ¶Ó¯õÚ¼3ó ¶ÓÍ·„er\»ÀxaÀƒ“ªðÕ%sMà4Ú>¥éšß]ȯû .ÈÜÈUÁ_c ´lP`†ŽéÐÏYuu^yoÑVƒÏŸ6¯rGG“éâÜ´"ïÍuÖýÎ9“93T"}S ré¸\ߥ{î#¦V!«=Öä<]¢ƒK›TQˆºr#‡½PRM“beºò„ì™.³á56Î< 6ç]ûʵñ?ëj¾ôâíqX'j²¡”/^…uI"íÖVŠ8µù+õÁrÐS€Å@C­vH$º%x3\Y è|®7:Ùp¥+ºæÂo ÞùPÕ\¸t&MM«öPɇ#ø‚,â^Z üíšf©ßFÉÆtŸ^ÅC‰_ðÝs«ÛE \FlV+vÝMwXMšj$Ø:šX4Êê &\_§é6¢Ü‚A\±2×ÏÓN^JIC”;ÌŸÜC‚þå©ÍÇ!©Pšèúv„‘\Xk¤ûAaÖT: Ô„åk3Ë31î©ÄµÙ¬ô0èSjÝ%©öH¦7âÖ£F­"Ø’ ¥Ïñã>ðeq#wbqÙVÈt®Tãé•Á¦j'ús<œÁ´D¶ˆ'QXÉå$÷â–Э÷W U}Ñ_9ê9 õ9ººób†&³3P…ï>¤uEŸR4!Þ«V'Vš%0`¨Ú$zœö±Kð€g/%tz®Mï&ªuâH2 ”¨q嫊þˆZ·¬ÚØÜñ¬¦ˆZp¦f–ëfy]†ª%8˜ø78K B ¤õð˜—h>O7£†ot@þæLw“¼~’“÷èsG @Wð̪n¥Ogî60üIXS—Å0 ³ä¼jÃsðÐs8˜ˆ[ÙÌ%Ù~‹’îÍ&ö}³éÍøæ³&_‹«Ug-™à§ß w ±«Ð—òºæÃC9]2Ê:êη‚©çëwä'œUè"Ù¤Ýà# ·uÌ™­ØZ°êÌC­Òªª°†Cc‚~=¶ÊñÒ,1üê‹·v8 Sy‰Õ¬¸ò2+Ú2ãs¸%RXïg2øŸ‰=>„äMö$Í6»= EÊ lÉS,˜‘ŒÅ+ƒ/SÐK¸ó9™É\Êס¢¾v¸X`EöéPw¾dîH%Å5y¿†âص.·a _UuCÆÖ^¡v1áå(z¨8ùz |aEq4N†»dsÔªµ-H£h`;¥ÿjòùª÷¸@èEñ¡ îdÊ+†\¦-’>{9¦ löÜy£+zxè¸R ùŽÑi1N§´RÝ·Z?$룩)Fƒö%ÌtBr”™‡YÒ7&̉<ífAÄýÂG­Nªà™h%hi>¹µîÐ?]|éÇóÉHyëd¹p c ˜Ù6ÁzdEÊ’E³«n’C6-Ë"«•Tšïçîô³ÛD„BvÈ>Ùü>¡ùaÝIL£‹mÚ…{hž ^±ápù©s>¬´3¶e¢™êÕ]Ó ˜|‹Ò$t‡'Ù͸ìœEWÖ¿a’xÜ,Z@€Ÿå”I˜VuÜV‘BÑ1¦(ý˜8: †ÐÕgi€…ÕX£DMRÆ’ L¼áq›qÌ’ßSÇÙåúKÕÚÃx×ܺ&-¯Œ \étošË$ãõc ¡Ñ5¤ÿ•mà/:œ´]…+,ÆLzc˜HðJg}¥U=%°˜Ý 8c{õ&«LôIËù´OT}6®…$ ~o…ÈOÝ»O7ѸL?k°±4ìPâyZ,ðê…Ì©ÇGƒ øbð…~•y _ 3 4ªæVŒ¨P^½8ds1pí¾+#n;â7謘tœÕ(¤ðRìßt¹œ‰¹eCž¨-¯å£Ã2|o Å43ÌG¼(}Ûº^ú7ÏËCØvKCîÅrñày–¢Ë¢Þv@~x«£{±è1Ò þ:P¶ïJüÊŸe` ^¹jÜ4ãÓ #ÐÐ&ZÉó¼k²²ÜÏë\­nñØvhJÄå°ÕïTWO6Pj:[ž‰A±m3"Ò‰øRh.“—“)[ÕyP—àóT(@÷ [A þñGŠ%¦ªA-”FÄœѤÕnibîóÅÅie8¥l=ñB¤ÇOu™Ó4‚š\îh!:4#Æ8¡M÷‡˜V1½êEƒÂíT°SéT‡r _(³J»u÷F+‡êAÎM ž|'Âè²üôÖD,[2á.p5Ž©,ýR›ê£d2ÛÐÜÎeofÕLYú˜4æ¡<ú|Õlo‘)¶¡Mäûìv¯öVgü‚5çŸ3Ü!nq|VÛ>sD·)–óî™™É ¤MðoB×c•[\Üw!È&q .†Š,kÞâPI=·àÄ»3‹Ïð–½dSòıÝv3I4=(“¿/ð¿3ëÑòøÏ¢¶÷Ü¡"fwG­ã6µc4v„Én¢À—˜&N†Ô-¶Ç”n›RRÄøøA‹Wâ0!NÆñ;<‘×¾ãyÑ0ÒµëmÖtx…ɱ­‘‚tA=´¨ ÙnÿÆÓÇ·\ K &cñɺ³kÅ?³¦&Л ¼’d¼UM+*ø×`k·áKË•Ü} 8úE[ÏbèúÁ5M„•ÉPŸLå¸gJR?É_M]Øô?¡ÙÊÐà=¯,ìÎËñcK N\ê²CðFL·ˆ!L°‡±ñª¿x ¾°Ú|ñ-°?Å_š|ö°§e?©ý¼4ÿѱ«÷þèþ 1P’(}†n«ÿñìøY:I-.Ù³qÉ3ƒgˆ$fì rúËg¥Î<”èk|e.çcõß¾h4Ä!u8Ÿ}Y¿«s¨9j!ih+`Îreª¯3#9iÍÄU›?`î-!òÏß¶V¤oWÌ%%l;¢~Vh=ÔŒ,IÈy9:Î)ì,V£µOÞŸ¹Âg—shC-™6 µÕÃo,¡Ôú'g3pVDr\=`¢«:ßbWòœü-ðñgK楳”‘P™™…¬žéø ˜ôœtÓ/h,Oˆ´»w=7ÜñʺÞwUZ úiÓÏšK‰ÀM‰ñQåS#Ò1ðWïkV(4“VtItã\uO¿·Ü¾´øÙÜmt“ž__zE³³ÊûH€›¾mŒ“Ô·E±ò S—¬ ka[TÍ1MÐ]ÃÙ¢k¿•¹^uN:ã½–“ΚºiUCB‹$[öc{k­è³Öb=UÅ>.Šå`7q´pË×QÕü]‹à{½ÈYˆÃPyº¸Ž¢OjŽezXC¡ØvÅ÷á#ª¥(ðÕq"fÖnuzz’Y·ýzz¦&9!Ô=mJ|]íŒçûsÀ?— ¦j”EÞ4˜×kSÕ{7/rÅwAí\cK:éùÙ"<ý2ü[­úÏDéjÛLT<Œ©ó5Ö{"wíVš­õjóA¿Ì­ŽüY˜Þå/qµ¢¿×ô>ìA_1˜±ô àv¡¸ÿN\û8Ì ÎÉKDÀ<€Á¿âb[œéºõ‰\þ÷ÎC:•wÇŽ{ÿ÷¹ùlußøåj8¬èÊW“Oû™k˜Çiüé1¼HR­W?y9¶d…”‰j Áå Œ6çp¢Šï¾íé¦0¿ûsÉiÅ9ER¼Cx¥†ˆÙÊ[ É `¸ ­ýRÉ;#ë¾GYy£HL.7V<*!Í4$­âÙ™YiVÏî¾ô†ÞÿÔ³Ù…šÅ@Ž¡nàá<Ñ´’ã/îÇn½Ã›Ùjq¹y€—AE¦ôo6fjňi;š8ùm¯§:~KåÏ9Vàsoœy9ëiBècG!$½t;ÀBè 1!÷/<¯½×Ž‘§Ö÷)6¥…3z¯Ó¢r5¿Ž…‡;@miJ¨f³¾ÍK`aíÝN³AaÂg:ýmä9Ád¯ñSõ]y£š môÖt$ïKë×Czýt†M*Ÿ!^úc[‰ÿµ.ƒÈêTÐ(?!…vMÁ~¾ic4‡¥:Í\S0Ii©9–¦˜ÚK±¡oPù«rúŠ–v.[[‘¼øf¤›CѶšecñÏcyê8Ü~ûÉåɼ˜yTø²äëx?œN~=ÑC¼tšK¶¦ú§ªf¸_× ƒ–&c¨w¼%†ÏdÂi¾ á¾f‹ª÷–]+^ˆ[Œ5£×(Dlî´J•ØÜP™ù©¢ç±XãìzªWäû™Œb¥Òæ¥ë» Æ¹-~½ã›2ì‡g9¨@t홹{ZÿµÖ÷6˜/Ì3¸Œñkm›—¿K¥8:~õ,$"ŒšëyOÊ`Z:ÑdŸúË3Q_¿œæ$§EÝâÈË.é†J¾ y=UŠö7™–Péq1H{mNUÀY·ïÅ å}Ê_²,Ë’3nùç1›é‰÷µÔª,hÕ¯"X2” h«€Ö®,E¬é2?\sÕÛÜÎOeý!OYO"QZ·BXiK¼[œL(Äv‚ÄmþfGytù¦¨ˆâž=ô£×USà·våš{ä›!V£H0 ÛNòu}ˆ/›·3h ["oØIÉzxg¹_ÍÊ&HßZˆ™×^©tDe ¡ïæ‰Þ¯ËØa#ì‘k¿ÓiI~À©-“ 9þ¥ ᅦ©|‡·ïG®ó®Ö‹Å‡I¨aEGç;›5 ?ŸK¢Ú!¦Ñ3½XÍÐS}šÎ¢[§lý{ÜC[wû6“ öù)* ‘9´jâC|2% ?ð´é"'ÿJ&ðœ Ûü”‡ûi0¬»bÒƒK¨2oúøX¹û•&zÃ'„€1„þ¬L0=§:cIñ9E¿²ëLº##é;Ö¸öM™õ¸“›^$’¹åÙd³ÐGd>“^óÓ5È‘¾{Ú'&îˆQg„ÐÕþéãÉJ‹“ª–/ëÉügiââ×gLVÉ—ÂÐ×ð{b‡ZdŽ×ÛEB´¥v‡^øIDáØ «ŒõÌZ¥®òW>8+ 4 ¢¡±PÀ\8C"Ášy ˆ~Åi ôLÅ¿¸@Ã-eÎð>µÀ˜…9¼ˆîQC¬ðk<¤5²ÜCb}N'ad¤*V,;ÊH?«QµÏpeÜÀjŸ9r|ô´­ñfN×p~­’À„¹XÏ­âÅñ3ÜŽ˜`ƒ¥9WnWut­ZÌWšSïe´Y—Ìô¥¦Gwc”g…¤¸õ/ º¸Êï¨jY¶¹,!äêÂn¢ÿHûÔQŸÐ-°p…瘟ȵŸ»îWß8$¿j¹]àŸOÁ³ÔcØt©l/†Ñ±¨j:u€´^ço°n˜#©6¯ Z@LéôÄD­N¼£]–·’­¼òš{õPˆ Ø]²à΋#Êv 6ÿ£;w®­}-îÃâÙÉ ƒ©¢½6(¦ÿŸÃë4žIQ5hééñX£†¾à/Kå:y:L¸§Üÿó4C@Ýi{Ìc~ϧÔO¡ûûzíèo›ù¬¶þw¥}öÅ{,¯]”aϧñЏ3%׌ á§éÎI¬=™˜®8}ª%ñóã‰W7(@¯?}êlà(DÉ[ÿe÷(è8“—HžØùI1îk‘EЪH¿ù­wé&E|RaƒÊRFs,µÄS.ädδÐy1ÅõÞãuÜß,ËQVV'M®QÞbŸz5&•Mðª~t GÊm›-ìäBÂda)3ûLª#uôR´XÁ3 M–EÅÒl=Ÿ_Iµðäã"á[ÓB!ùé(œ–·L!d%ç´“ 0èT¨O}…X¬JA—w,UënêQUû_«·¡R $)¬ ’Š6œ©°ó-j{t?tN²# cIs¼ÑoÂ÷E“ßÄCêO(%]²¢IðÁÀ†úR;µ_¡®êèä*»!*»+qz¡§ i%ˆfӹ܈Ž*æ(lWü -b%‘}Û~žŸ~Þ#±ë dup¯#*Þˆ@L¢‰ÞDˆ{^Œ4ÖëNdú]:ŸÓ'¹¸˜Ò`¼¡Krf¾ËsýÍ%´˜.é]™ðþå$‡ZUïÄ©ãO™€ügí#òo¢ö¹½À²ª¤ª?ÖkºÅýkIÅqõm¿Â™,»òC1TOŠŒöÍáÛ|žw‡ûÉ¿àÂoŽ·kŒß„¼rðlACz!ÍG­Q惔Ã4Ø£ƒí™½ð ‰µóÍÍ€M5à;áõØ)ôˆÇÿÁ÷åX ↭­(ÃGŽrÙkCæÎ%gWµèŸ,†úo×2ͬò³ž‹×ÒòÇ-ãºÎûU†ñºµ¦Ô¢=ÞSÍôòêÅs~]@,ôžåï!Ž©×/]ñL®1õLë•? t¼_^ Fvf®TÑï\͹ô€å ]BžÈzªƒÊá«Ãkn{GFÛÙxO}†B_ùRÁEdøJ†s6Cp%DÄÿ Ýï7ü¥€·Å@êO¼Å1ì˜d%U‚Äuå©C”‡‡ägø¹}øgg¯fdéÅV›©‡8Òä><ŸÞ”Iš«m¡ ‚1ø°ÆŠ•Н}.­>| j1xnKü‰…LbDò„›jœûΪªmGË xæÕ·@)¢FÈÁ×÷„Í©'ÒÖèšbœìâƒ]MãOzÄ8±•2gIFñIsÄÙV Råq/µôlTå-꿯.|”ö{¹ÔìÆqôÊÕ*Wg&F0· ×¨8æø”/ÚDÊ¡·äD\©u‰'×Î\Š5li®1Ê%´¤n¬¯Yæ º¬¥èá>F1¹ä‹–rS[²À¥.¤Vß$*w8YÍ¿Ñfì[„©d°]c,ÜëÏT°¨•C'Ò-Ôþrn…YȦæ?Z’¦øãÙ >9Tß5f]Vœ«›â)¿òÒ¢fÕdz¢\™vrÛòfßôêÍ»¨ñÕz4¾7M}èçÏC-×a«:+õWðÈ"ļ¼+³]Ò¶Ð#kçü÷džd°7î[<ÃëKÊ{8ŸZë<;À¯šÎTÄÞGy¸CÅI‘ú0ê–Øm˜YÊePÚ'¤‡…tè•endstream endobj 297 0 obj << /Type /ObjStm /Length 1572 /Filter /FlateDecode /N 92 /First 814 >> stream xœÕYmOGþÞ_1UàÛ—Ù—*B PRÔÒ ˆÚ¨.ö®ùÎUúïûÌÞ9ãKì\H°à¼ã½Ýy}fwv­c ŒtŒ22YF &SxtzlfÐb#ï-9%ß™œa´Ž¼’ÖS0Ò(6’Êœ%£ÀPYô(ÂEš”¶BR†1YYR–¥‡Iqp )—{ʨ@Ê{!À9D¨¢EÕZ‘Vø0Z“ÖÚkCÚé± zi&mEAí@0ôÑž4;H;#³"ioa4 ÕÁAXè(Vq…ƒªÂBE#‚½ô°ÌC½ò LŽ5‡dcÁ4À7ÆBpY"/*éç(ƒ­%«”¼b²Z첎¬»àGkÅ.|±Vì‚Ñ‚àŒ¬9¬ÈzaÆ]ðˆqPGz,q&’átΜô8b•{B9kñ3âÁI(ÁÌ œÅ, &v övÁG'ðG™î¹ŒeŒ‘Æ@‡…ˆä´L/g`……Wˆ§ñ‘¼VÉÇ $hA‘Ä™ Al‚!o6Á’÷¾ BB äyŸ^sPBd…„: =”ñ?¼xAƒý¼*~'£r|Iƒ?ËñËqUÞu–ïßÓb<,*úÑ¡ÁM9žUtAƒ7ÿÝ4ø8to/ñ;šŒkJ„hìg Y|;§áCÕÒ¢p"÷öhp: Ï‹r§‡GP|¨EÐÛ×ïþ)† ×ãXⵟOj¥@j1®+$Ö'ŨÌ÷'À-ÃGÞÕpv°jæƒëi³ê´8¤ gE5™MÅNY>RWcái~YÜÉ™aŽ£Á¯åH"KŒ •%#µXš¶a!Ú´Zwrƒ_–Q}2-òºœŒóº g‡?éL±RYÄ'´}Þ˜LéÙ¾œLFáÑÑlXÈH2»zW£ïMY_Òñjšß^•Ê^ÏêÛYý|.^‘¢8ø¥¸þ·¨Ëa¾fY,“â¿ç7PüHÓà|ö®NVˆ-jnRb–ˆæñÁ0!:[.¶zÈ-“uBϨÞГ-¨ zOJõ@ÂõÍQÑ X\éF‚í¥· ¾ø»"µ€Tb_ lµ-ã•°ð_¡ wq9}uv~|øãÁÉÉñ> ˆÁQ9­êƒ«|Šâ¥qÃaQ §å­€ÄÌw¢ßòù OÇ ‘ÕWUª0K·•ÚöAexDT.!ëblbØhî‚ÍçwÍuáÒ6û J?¨‘¾ÝV*ܪÎL¶zCëÌ ëÖ¯2ۢô ˆœªRËmkµs¾N•©×ÍWýHùjúT™Ölu•‰s_à•ÐãþÐ3_Ve~wTÌÓn]Tt°ÜÙŸ\>Á×l†6·ÍhC¹ãm÷qÚnzœ^¶6·m¡ÏôNº=‘ Ès÷é–7=Ý®BB÷–÷¤‘ÀîFë®;K|7[wø1OÍŸ¯JÙôÇwîCäbŸª”7=˜¯Rºóöø‹µ† Ü¢nCëœ~`ËÖ®J[KL¹ËNmh¸²oú9ðRU*7ÑO¾,ý+¿}ˆŒx—õó U_˜ù‹Iïú\´HÚÖbÃÀ‚ÐßMº«ðÛ™OY+Qá7¼ Xw‹Yâ»ÙÓ.ÛŠ6 ºÏðnÓ3ü ´ùÎk•§¶õXƒÜ·9^/"A~­¦ÏÎï6ÝùWD;¨Îh_åSѤJ?À¦A ÎnEß]ÚØºß(¢<éô’î¢ys’×Ó2)¹›)Ù¤ì"}±pa+ìÚHÂQ ¯¨äÐ{?¹h)êfå5¯k·÷ÖÒûɹ‰Ýá”—ÞÍKà(D»kXn©E/«¡8ÝE _æ·¿åå¾׸Vô6¸”Œ)¦ƒë¢ªr‡-“v”Ì:ºÎ/+²÷üº£˜v4Î4JË6œÍ½{T"{¼›¯9èiÜ·|q~\ç×åðåøÃw˜Ÿ×ÅͤÔ=W-\¦Þ¶ª[kï×MÆ,Nm›Ö© ®½èu­¿T[),NPÕRy?ŠiïþæÅÖŃYÿÿKV•endstream endobj 390 0 obj << /Type /ObjStm /Length 1349 /Filter /FlateDecode /N 92 /First 802 >> stream xœ•˜KÜ6„ïùo©)žÍ=µÎü‘º(´rê:¥ÀNG[ÓhÐ/’J®°Z`0³gôZJ$þÐB³´Tj¡¡Ž ƒj ,h͸0èÖÂñAZEÊMQB¨P6Œ]+” ƒ× e(W({‡2,•†_Z¡Ü”ʪ J eò > stream xœ•XËŽÛ6Ý÷+ˆYe™yyù‚Óé¢y¡™} g¢6Br¢´&/arðì‘gìà9@?ÆzA’]vð%îyXIÜ!’žñÔV)£²ZdñÈYé<’U~X²Ú£DG¤%–ïFè$þ†~xúT]¾P¶õMÛ¬Wú\]¾W—?¯¯×êÙ³4{…¬—*úU]¾©¿·©~ÒݻŦ^µ Iº¿nÚe”ïnwo÷|›qß®{ûùúÎ;uù²ÙlÛTŽiâÕw’ø$×G!¼ÛÔßR¹Åc@w˜Æ¿P)È—|üþÇŸ(4{!ìµ»¨ÕÕÝr©>ô9„¾>ÑÀôêàH{ÙÁyôÛªù¶Ø4‹¶Vï›Õ?˜}·\·ÛóQ #ò PS…¤xÖGÆ‘v2î°ÇÍܯï–mrš@nJ4Ž®Ÿ•9‰Ü‘Ç!ò¯§áÚ ¸–æÃ•æß‡ëNÂì{¸Ï×·›ž¡2OÁŽ%°í Ìª°1ØÃöد÷ë»V­ÿžÛMÀvÉÁÕ©D>¨¿ª ð§‡,¾Y´m½9Fºƒ9’ÁWiëí·.Þ·.Ùo{­‹ú5'Ü©Ö5èÞWÓ­‹¦Z—ñ\ DÜ #~h´{éb|ÝÜÖêê{³}¢Î¾nê¶½?Së:»ùÜÜœý8kšja´/–y€Ã°ÜE^#ot_=Vïë¥@D•½nVàpÝÜ|Q¯›/£)KSýŒv0†d… §h˜jHƒGi¼]Õêùzyw»Rƒ6§ºrç2ÑìH—4;3èÍdNr±C.q”Ëõ¿ër.tI¤‰ Ø¡¶j¢z$ÍbõI½\on{ OÔõçZ=mÍr½©?=S á·mï—uÖdFBq•¾ŒûMÆš …^“ñ>öBàÃQM樨½?TE.ªj2D%5Kƒ±GÓð{Í›!Y¬ ²¼§¾Þ/ÖIAÃoWo³¥­»t2çÙ²tæ³S3™Ïß;ó2ï{©æ™³/òÎaö®”ÌcUŽEarU‘w7¿³'s]æ}~¯Mæ¦(Åœ)Šª£2s[Fuþ7t2ç2sW¤Œ¦Ùÿœ’¹-J`ͦȼ»+ò¾3~Ù´x~Üλ%þxï 5m,r0ÑuÈû¯µº|{×.›U½Ý¿ûª¹mÚ-V8ìbá<ÿ_‚5ß,nëc;9ßÙr9’Ë'ðõ(gqù§C¸|;*ï*=Ã$Çn2ña„ÊÑÿ“ì+cÀçÈXÎêŽLŸêr—O˜ót—O€”¼åBÊäl09bûRiSï?`1A*3å Ú„rì6a·¹î6a·&›à´Æn§Í€±)–U‡Â$)î º‘Äœ-'ymž°œ‚nsøÂŸ§ƒÄ|"åþœHñE’ '"•Œ™sy]’—sy]’—ó¼tIÎõ «œmÆ»&všT8ŽT8©dÌ.O¦"år¶!EÊå¥R¤\.CH‘r¹ ˜œ½HýÒ|Ú¦ïŸnmÞ}oòîãñÃÜÝц×ÿs gendstream endobj 576 0 obj << /Length 279 /Filter /FlateDecode >> stream xœµT[ ¼ ¨),ê)ŒžÀT>L´M´‰ß…ÒdiºfL`a˜a_íÇ¡Ÿ×ËÐÇÃt{Äs|Þâëx§Ý?ë­Óð>h¥Aá Z¥Ï+£Z¿´p„tжß@†“›­&ßÇ«@`–‡µ26K`ÀÂtǰÍiøü ÒdÉV0¯¶­5iÔ<ï§c`2ÌŒJœrôý†—4"X¥ù#ÔA¦À‰DaÏÀªxTd|E 5…ÕaeÝR‘–Ž7ãael2˜‘¨4ó´á7²¹ýÚÀU­^w„ùºTWÀ~lË ¨¥Y–µn©QfGÜ›3×äªAkoWøB™»êV‘Óäœöô¬Si}endstream endobj 577 0 obj << /Type /ObjStm /Length 1456 /Filter /FlateDecode /N 92 /First 814 >> stream xœÕYKoÛF¾÷WÌ19TÚ÷£ ÔvÝ­ëÀ6ТA´DÇ,lÉ•¨ ù÷ýfI¿$ÑEÙ±ö—³óüvg–²> ë#IÈAJ)Œ’´‰ÍÏšŒ5ñ§y´ä ÖGÞð³§à%Æ@1ñEŠÞ‘‚¤°LH(Є"©´¡ Ð IcyÆ’´R¢#é ÊFOÒ§ådHÌ04€Ç Hކ IJØB‘’NƒÐpš0U‚Ü? þiþµ¤OÔÿûèìß|PI}…Ĉ«íì$­{КÊ)^™Jôa>,²ÝñWH¼…£í)l¹`d»R?d¬€‰ªZpœOÇ³É ŸÂÒʦþé·ëœ?ç·z&yVãÑ~Væôfÿ'%¤•RDü×B¿­ÆzsŒ‡Ãñ°‘Îgƒœ9I÷TOaî´(/sžøu’]_ƒ)ÍÊëYùöFýn6ÍS€û¿å—_ò²dÔÿe4‹Ñçt %»ÿÌ®`÷¢þÉì¬LN°+òÆ£$"è÷{{,tˆÀÙ´øÓ­¢[¹ý¿ŠÑÏ£iq7±_œŸçGë#öõ¯ŠÑlÊa­4ܲֆ7 ¢#Nëš‘à»#!˜-EBì‚„ðòH¸w>¬‚„ÅdÇvÉæB;Ÿì(“=ža£þïÅýäzͬ\œyä*[¾+s¸F¦PÞ,,œ-ÓÕCÓuà q¢qÃ܈îCýê7Ì?Ùõù>y–Áé›"ŸÚ!+lºØeÓÕ‡Ï÷Út]‘àAsQv-‹òdqGûÚ‘µ Ü\w@Åw(Ê/‡ ·T¸&TÌ™¸¤f¸– ÂRý­â3:º-·ÒóôifÇFxÑÎ#¾].x¤V-Ý|IM¥Y‰z¬¼äa5Ö%½ö~µÒýº :A^nÛ½WÒàU3Þôð·³)Ó f›‹‘–ðÀ6£¢e1Z† e·ZtA…FT<]Ä}Ëz¸,oZ®ßDø–Ï¥ú/MÏÔD„ ”\Ýö§ƒZÞ4ù{ë‚~¿rɯ#Äßh«±nL]úëω®¾oê¶¾^jT÷Иýšrþ`ÝѶõu™ÍýÜE6aK¦éûsbº;Èn:úƒb2-™“ ;9½[‚ú§ø²Š-à7‡Y9)’‘=!•0ÉØû4øþÈOIêžÅKpš»wSˆæNTýàDÅ99,/¦é{ì¹\­Sía«]°ÈÑ–V;+ÛU»‘?îŽ/‡ÈÕ­ªhp/Þ[­ƒ* K}3ªÚÖâ%¨²Í;U" ­,Àbž@Õã}T©^èÉ5QµÐMrÎ.‹ÿfù#¢M;Ñ'ß®ÎÆ—wgת«_'  Öü=!¶mn–¡°Íý¥BþÕÞšÇ϶‡ŒQ(ÕÚ0|P[^ðVEöœÜ•‘½IÍ÷u²Fެ+‘¬ÏY÷qÒÝ<›û:˜¡{È}u ?4K¦c³yü2Ô? =õ?… endstream endobj 670 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./colorPalettes1Fig.pdf) /PTEX.InfoDict 139 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 142 0 R >> /ExtGState << >> /Font << /F2 140 0 R /F3 141 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 37256 >> stream xœ¼½K-9z$¸Ï_ËÌ…îøû±­Æ´€zZ#Ð A‹’”£n¡¼TÊRAп’öøèÇÏ ô㋾[¤~ö™‘´öí·oíÛ¿¾ýûÿïÛ¿¿ßÖæ­Ÿæoýð6Ï߆ùm\¾ÍãÛ/?¿ý¯·?þðýùoÿú7oÿôçÚoMÓ¼5Õ¿þ'ýŸÿÛßýÐ|ø?ÿÝûÒÿoú/ýçÿoÍÛ?ÿоý6ý¿ý¡Í_ðö?~˜¦oCúÙëômîÞ¶<ì×4L¿Äòö‡2ÓpùÖ vK®+†mþâ5ÿ„2læ·¡i¾M¦¿ªKÖß;æ¯ÊÃuÁpœÒ°Ë?· û> ûo¿¸YÓpøÖNy8|[º2\f Çýßÿ®¬O™«~*ÿc)6wùçúüæw±D× ,ÑïÒrÿîÿ{[¾ñÿÿ”aZ÷y*óÖ6o¿ÛÞ~lzûÝ¿þðÿîKØ›î2lÔS·åaY”†²ÜiŠ–2\V Ó:Íúmló°ý6§/Nÿ©¶Ã°oËp.ÿ×æÛ’‡mÆSvk.yÉÆµLH›–dÆ0¯o–”þü´4CÛg¤–a3”aÁƘ¦(ÿ_‡o}þ¹ã„4äÿb¶ ¢í˜ÿGŽHmÁâ#l¤‰èËOnÛ<é·æ/²Ü…6c<ÏÛÒlt_ÇFûþÿlì¦nûaLÍ© ×ü±IÃ6a£°¾cÒZ†å38vÀÆ”ý2lòÏ\”•© ‡ •±É‹’‡SÆÆ°æoÊåǰÍ_\&+ —oCW†m†è¾i.Ã.ÿ—‡ôÛ2ì' ù½CùOyñÊp6Êpy„ô{usùEæ!O@úäåËçõ&l¤¹`f¸oô_ÁvŒK±±›ºí‡¡ÏŸ—˜Ø>o 1íåS‹Ò~›ÚjÉàJ Úè{Ër÷ë·~ 0ôË*ý\ €”†]0ë'a²€°…ɉö ÷pEx÷=6¨£}#ý^MØH¿×Üß‹ô 7øcìÃ×°qù¾±›º-Û66ä¾Ë¿Œ·ë¾-¥\›y_¨„·ú>í c‚4,ÛËD·bƒbé gq‰éü  .AeŽò”†CU¼Ò°©J[W0âÂ×䲨¥Hòô{ucÔ”®|Hn­)]«ÉsÆÆøë±‘÷_ÝÔmy˜K¹ˆ\æõÍë°&’À4¦ ˆiØV2ýÉëô2 ç.ÈgŽ}PÓ4ÌHÄ5OW´¶+,Ȥ7› Ä]—w殀Ñtº+«l0|ÄFÿmê‚‹¦/ÏÅÿN.š7 pøT¿36¦_‹öš}c7u›'6ýFS5ícÞâcQ&ÆjÉÒì®^Ð~툫²Üy¨ïóªÍxTúµ1TÖ± KÌúeå6R@Ø/‹19çáLLça»`˜àݧ5® øûeÄu€ü{¥¿EØÈ¿ÈÒÞŠüûÏØ7æ¯c£f휺r¶«·ë~2AÓfÞ/=J9¶ú<ì;‚~érÅV™ÈCl#åSÞ/-öv”˜·rÑ~.sÆÆúõ>åRlì¦nc[ÚØöÒ<Æ¢”Ö2–l®´ «¾wˆ¦Õ`@Kk¨ á5Ðfh– B´Ò†(mm¸á&ýxß@kl ‡½èa+l´Í¯¿.Çnî6*GÞ‘¡+y¿†êäÝš”÷z(V®г\' v¹Š@ sRæ Íõ *›«48×6(t®|Ðï\¡îˆ_.*¿n-*¿2ÖWÑöW)£v*»¹Û(9›ÊA6у\m1Û$R·)$„pLÈ䦟ÑMN!±›ºB€7±•²zN#¦K‹ubêÜʸ«Üž6µ3ce÷´©çX*1=ÛJko{Šž”âÛ¨”úmóX6@ÛÖKÇMåû´© ì+ã§MÝöX9?Keý!ö~ &ýFSåþäñúÁþy5brCzlFL"Z—!f7ƒy~š ˜a©óZnÉ¢R¬P7• Ôv3§Nµ{¬Œ ´=~›+'(wêÊfËjZeµÐ¡iÜÖîÚ\á]ÄéÆmå=@L–û*O(ۦЫ“~ÍáØ:˜ Ïìg0ÍO[ÊMìâi¢–ÊÊã®ò†Z,uT‰ü7VîP›–n¨ì¡¶ÅñW¡4îë*ÕøyªbùUQ›P]ÛBx¢J¶EƒŽ*ÚžU¶ípjå˜Ç¤ßhªœ¢ò}°Š^˜ô÷LÇfÑiÄLiú 1»ÌóÓ^`¦˜ÆCeåq[9Fm oÙL4Çš©¦q_™F-–:˜nššµ²òx®|£2u•q”ÇCʹ󸲎ò¸¯¼£<îj&߬hàˆGˆISSùGmÛúÁ@z9bz5,¤Óˆ™Óœ]…˜Ý n1Ãlz½쉽Bl™½‚쨹Ân¸‰÷ãDˆÛu"ÈÝ<æfŸ´@„Z* ‚­$áø °ÁOˆ%žCĸ'bÞ5ò÷ æÈX:˜e¾®WÚÍà¦]ÜwyKl¬VàX%,бŠX¿c•±¼Ç*dõUÊâ «˜µCV9K‹¬‚VY%-L²ŠZ·d•µ¬É*lÅø°*YdUz§ ÞS•Žì¦“ˆ¹ô|Ë~71EKòd’VìÉ4-蓉Zï'Sµ@&k·€L×f™°½2e[dÒv*È´md‰Ûç S· B&o—D‘ÿtÈ|í2ù¾³îa¾G&ÔÓ¦?àª^É6»Ñj†K·Z­@éfc…ÐíÆ ¢ŽF·@7A·B7C·D7E·†‡ZŸ¨ Ïöt×t×7#Ýõ¡5õEÈ\b?ì§p“äÛ8$±Øæ!™E€¤e’[”HrQfè…º AÒ‹2É/Ê$Á(s £ BRŒ2 É1Ê($É(³,ŸHxQ– áÝ\– áV_„ÌÒ_±Ëì¦p“®\º{pIèòÁ5¡Û…®\ºpYøÁuᆯ\¾CpiùâÚò-ÄÅåkŒñýsÍåw¾ÈCÈÀ'î Ÿàfî ŸàK6V¡ ]åcýø¿þýÔ€kÓ0Ͻúî}øû¦ë¤å®‡îs},.>1™Ç•}•ÇMe_u=ŽdÅqLÈDqZsÁQOæ\Ê9ý8ë¹à°§‚.E–‹“¢s‘yâ éŒ#š:gšÆ}e_åqSÙW].e•}•Ç]e_uY‘|wÎoÁIVí!„í›øv¼_vžkhp?ë±u3©Xå6þ:©p?‡y†F¬‘N`§ñPXy¼;¿ÒXïNã¶2°ºD°¦ÊÀÊã¦>;.û@GËû2ñqòó¸¯ ¬G˜é`‰éPyßÛR[îÃLo‰ô‘ƒu3]úp^*ýìç0ŸËµ? ø]Wj¶þ<î* KMËX]G1vÖÁï•ÁÐuƒe@ti¯ž+ «ë`›ËÀÈ㮲°ºÜ¯TV—õ¹²°ºô¿¬•…•Ç]ea#¶°`&ŸŠ®,¬<î?XX/ÇLno=¬3˜挙åºV~?‡i†2–zŽi!x FÜ.ô °|¼†=0§5Nϵ2±ò¸­L¬.Ë{5†ÚÂ¥cøEƒ3£ik § s­L¬<î*«KEj¬L¬˜É[`ebåñøÁÄz9fÒï¹»Xg033ò™Ý¦JÄ`­l¬<î*«k˜<ªi\_gí2©l¬®éliÜ×לÞ»U­Êħ¾è” ú\ßtjxõV6V"RKmc­E Ä+l¬4žš§|&ý†M}á©iaßZ›Ú—Ó|¬3˜Y “Y/´>ws¸•qWYëŒ;2²Òx¬¬測ô·®µ‘•£6²V˜ç6²Ò¸¯¬tld幫¬uÄåY+î_ØÈJã¹6²Òxª¬<®Œ¬˜É?q¨¬ôý#ëå˜I½írìdÂL[¬¬¥ˆ†iǼ3õn1ÇjµjµFjŸµ†j¯±ÆÑ~Ñž#ѾCÑÞcÑþƒ!£!Ã!/ã!?à3ò>#V€1í<0ó®¿ 3G^Ö9ÌÜfüo¦Ëö™€V^g’ʆ½>T8Ô‚¸*ÕðhºîJ¡–Äe)Ôš¸-Õðtº®K¡VYEd-³ÊÈZg’µÐ*%k¥ULÖR«œ¬µVAY‹-4Ö¦¸8…ÚôN5¼©6¹Y§0SމNkÆÌ0]°Ïìçpg´˜ONi±ŸœÓf9©ÍrV› ä´6ÈymFÛ¬ g¶™ANm³ƒœÛf9¹Írv›)äô6[„ÙY‡Øæ9ð;sâ&|ägÂL‚~^„‘Çs®ê›lh±7­æ¸ô®Õ”Þ6Ö½o¬!zãXcôÎôÖôÞ!ôæ1ôîAôöQôþahqhñ€¶ðlŸA¯˜A¯}7fÐk:Z§@SD½¥í ­¹4»IÜ$‚Åf‘,6{ˆhQ zÞ$S±€Å"]ºª.F=oG©XAŒb‘0ŠDÄ(†£XB„ŒkÇ)ãV2DÌ'„†¢^'ˆz7'Šz‡žÖ9Ðd=/þ½J Ž›ßPÛãN=Ôø¸rµ>näCÍ ûPûã>?Ü€¸î· z  ¸ Õc ^ ð[8nO ЭðKt3üPÝ¿c@7DÏìÜ’Ç )îA<÷àfL÷àk—³ËËÝk¸Zÿñó/ù~VºnÂÅí§ÆÖw¿èƒà®ë¯¿wÞÁBWƒÖ³È¨ .ãÊØÊã¡2¶ò¸¯šì<î*c+ÛÊØêSQ[+c«×û(lòóx¬Œ­<î*‘ ›ÊØêõF E†<*c+›ÊØê;>G!¨O?hÙ_DïðF˜šúü¬Œ­Ž·c_v=óccë føSÓt_†™z·2î*±­OÄg©Œ­<®Ïœ÷‰8­•˜—ÇcelåqS[}‹›_ {™ óx¨Œ­Êt¼¸ÔÎû™2™®Œ­/Velõiê¦ú¡³´økýZKyVϤµ0‚ýŠZ³êÕ9<²–Æmelõ u?ÑÖÀ0—éÑçÆ¥2¶ò¸­Œ­>m8}elõ¹é¯Œ-bÄÆÖÌäSÚ•±•Çócëå˜É tllÇÌrá>³›Ã­Œ›¥žcš ^¾Bé5âó^Ø“±•ŠV_[©¨µ±•Å¾ÚØJã¶6¶ÖI×”ÐBÜ ck„ÙIã¾6¶V¼£ec+ó¯ÊØúˆ™üvµ±•~£õƒ±õjÌäß»;6¶ÎbÆ÷ú.y›m7‡[÷µ±•çT[™ÖÆVb õ-Þ. ¥µ±ÎÆÖ‚ƒ;ñ~oû?¾í)ck™a¾ÊØZxëX‡<Ò¸~Ÿ¶[øØœ‰,¸ÿåC$iÜ4ÏøLþ†ÝK~3ìá[kS·ðÉÄÇÆÖÌ´W¿ºŸÃ •Æ]ý¤_nžë7ýæ>lµôX#ÆJã¶~Öo¡îÃ\hÖã°×‚ƒ;> –ç®~ÚoépH‡ÉÜþða³,Ô¯û¥qSV[ðt0ò38²çÃ]©¹Ÿ?[/Ç ”¯#cë f.;v?‡[̱Z`­Zd­‘Zh­¡Zl¬q´àÀ@´èÀH´ðÀP´øÀXHÀ`HÀhHÀpH ÀxHø „Dψu CÌDK̼kéoÂÌ‘±u3ë‹ö™Þ¢’Ö¶ð@iq¨¡Õ-<Î.-µ¤z}Å3€<Î.­µ*´D€#´FÔºÐ"Q C«D­ -µ4´NÔÚÐBQ‹-8Ö¦êEÀOAí´Ã›jÓ‘±õy̼àžÖ~7qÆõÁ)Côç S€†»MpÖ0ÀiÃtç Sœ8L pf›äÔ6=ȹmŠ“Û4!g·©BNoÓE‘±uÈä~gRÜÄŒ­³˜Aß”­‚ö²¾ÉÆ{ÓjŽG¼äç5˜ðŒ§×hÂíK¯!äçXãEß?T½µ1ÂÞ;Þ˜DoOP‚ Ç •èíãKôþñ¾%´xþÚA¼Ž máÉ>Ã^;^—D¯}3fØk[_͸}¾L ‰H!‚ÅÛ®ÉâéWˆhñ2l;¿{8v†-Ôè]Ù§6ôì,ÝU¿JÛò.‹E@3Š„.v] )2ºXR„t1¥HébKó ¡¡¨çâDQïæâDQïÐØúhÊaÒùŠn{?‰›Ôv³Fªñf•TëÍ:©æ›•Rí7k¥`VK·À¬—n‚Y1ݳfºfÕv+Ⱥíf•ÛíãûÇŠÕïÝ’'îY0݃›Y0݃/¾:8–ãÝ•±õoú·rýˆ»áO]­ï~ÑÃîìªs[¸èêÎVuÀe\¹ZE®©\­<ž«;§ÊÕÊã±rµò¸¯\­Ao¸°Ã/²GåjåñT)yA’ÆCóŒÏäß`©\­ò}pµ^Ž™‰¯=>vµÎ`&_£¸3õneÜT®V–!¦ÊÕÊã¾rµò¸©\­~Z±F:‰•Æcåjåq_¹ZyÜV®Vž«µrµÊÜU®VOõI² ×@|Ò,ÇÊÕÊã¡>©6áý÷f1“~£®rµòw´\­×c¦S/ñÈÕúŒ†~ ‡¾Œ‡þ€Ï@èøŒ„t„™èç™wýüM˜9rµÎc&*ÔUûLh@3¯SIh›ù6¡„8Ô‚êfžh—‡ZBjM3O´K(D­ !µ,„FÔº"Q C¨D­ !µ4„NÔÚBQ‹Cm>ªM!¢6½oªMG®Öy̾ŠÏ„Ø ÎŠ>8e(þàœáÐm·cÎŽ8mz5@œ–#NŽ8s8àÔáx€s‡#²ð-9&tVí¨€Ó‡ãBŒØÕ:âÀUþUáÀ8ð‘«u3Ñq_Õ7…«…Þ´šãïj ÐÛÆ­½R¤Ø[C{ö£w  ·Œ ÷®’Ó ±cè݃èí£èýÃÐŒqjþ P[x¶Ï ×Ì ×¾3èµ]­ó  iï*Æ E0oæɼÙSDs1 ÈæbAÎÅ„"‹ E<#Š|.V]Ì(ºØQDt1¤ÈèbIÒÅ”"¥‹-EÌ'„†¢ž‹E½›‹E½CWë  ¹î¬ú~7©ífTãÍ*ÙæšuRÍ7+¥ÚoÖJ7À¬–nY/ݳbº fÍt#̪íVuÛÍ +·Û1Æ÷¯«ß»%Oܳ`º7³`º_rµò'f¨Ã´~ü§íCH[¶¾Ž­ï|Iõ—õåÑ•ø÷×ç¸á3Ú hË‚óÒi݄ƘjÝ„¾™ñjÝŒ¶šákÝ 8Ü3ÏɬÛƒÛÒpeÊ[>¸ÑG¬[æ$}‹ ÉH¸^™xÏ7_ß'×÷ÌCØ\?@m`]"Auý¸K#Çß[å¸õ :wæ¸åèÚw‰ÓùDÙKÀÇ·4oœ«Ïc#UŒ·úß«2þ0u›Òû J³Ó°mL^ìÉ1˜Ë˜¯voNmì¨xÌtìù‡g5ú•‘žH„t´sblþAÌ’ZŒLšL æPªS*Ó°¨—̰Ìy²å‹‘p™†ãôM)Ù9º¶Èü‹,wagÜò-ÚÕ l,yLj¯ ÅÔmŠ]H&Ê: X_F¶>ƒ|¨6 WsMÈž;Œ0 › @$›†År`Ìì0±Þ!„v˜`X0¢v of€múÅîà“Îx7ù ¿ÍÃ9À0LôõßcƒÉ±é»Š³ÀäØô啱ðZl09v:QŸÇÆX®£Ç¿W¥ cê6Å5{bæìiGÔ³AÐ^2äxA}oSEL  TO- 1¼Z0c´µ@ÈàkA”±Ø0C³oFjîLœ6˜8}'6˜8WÍ?8NŸÇÆÔä]ñïUiäÚ7ó® ™!ðÚ®¯ÍœòÚê/¯BÀðy• ¦6¨ˆ0¸^%†±ö*@ ½WyJá*^âTÚºbOºðu`A*‹NÚò &Õ«¦0©þΚ¤ú~yè,ÀF9"ÿþúéõÔmy˜K¹ˆ\WÔÓ<ž× ì 7EÌÞT2ýɹM½äYA‘Ï4ÌÖƒ¨i‡^@ĵC’€hm$ÒÛ!þF”¸ëJÿ%ÂÌ(ÑéÏ} ±øâ¢2 îä¢Ù¢‡ä }s““ãß ^Ç©¦nóÄö¼Åiïõj¥Ó£"X²VoŽ`A=I‚ånü½ ùÌðPiC%É÷z³|@y ¶“1™!ÚŽÄ$ÜŽ¼x·qð·ý.Œü6Ú•w €vù7ýjl¤ßÿ‘St…iÄ¿W혺Mr¶kl×9·jŒÍ< }lõYé¢äÓ}”‰¶Ñµ§RDšU·®K‰ÉšÎ¨Yè¡<¥!O©—âÕÌ:Ä^J[3롊òƒš‰ÎÊb#ÁE3+~¹(k ÂÛ\Sò/2Ý„ Ö”ô>r„N`c-ïiùß«ø¦n‘Ë'Ú yi3$0+¯CPÄ4‡ Y§ƒ^æ'+ò™mWÔ´é!ñ“¸ú”.hmvkÞ†,ˆ”÷—L˜ó°Å0ï„Ms‚`h:*n\4}7ÝŸÂEóÁ„ñ&l€‹æËUœŸÏccIÓ^ÿ{UŸ‚©ÛÔzbÑzÚÑÓÇÚâÓ’ÌóaJf…ù¬%³Äâ(&ømœÔÄÕé8ȉ¬²8ç‰Çfã(²Îâ”(²Ðâ)«õSf©ù*³Ö|B•Yl>Àʬ6©>Ê.«Ïø!»Ì@™]¶ïá™]öº³\Ì.;°¯Îc¦].ÄL=‡›C}úš¡ƒ>œÍPBŸÝfh¡v3ÔÐ'¿zèƒá Eô¹q¹:VÎPEŸ:g袔G…2J™Th£”K…:JÙT裔O…BJ[~„„$ú@9C÷JáË1Ó[!}d`ÇL?]æGìçpsz©ô{¥›JßWú©ô¥£ÊPzªü¥«Ê_Púªü¥³ÊŸPz«ü ¥»ÊßPú«ü¥ÃÊQz¬ü¥ËÊ_Fä`=À ÓXåG(uïG¼3Lc=°°Îcf®ÃÌn7§$ÇÓAð e9Ö)̱†Éð3ÅÙ`ʳ1Âhcˆ)ÑÆS¤Aª™Æ(S¨a¦TãL±ög€)×Oö¦>3L}¾3L}>0±Îc&§>_…™ÝnNc÷^δvïõLsw-`Ú»kÓà]K˜ïZÃÀ×"¦Í»V1ÞµŒiõ®uL³·‹Å´{»X+p»X+ïPÉÅZñD×>Ãty×&¦Ëß[›”.`cÇÌÚ^Ægös¸•qWûXëŒó:ò±Òx¬}¬Šž}¬uÂÉÇÊ/-Ô>Ö EÐ>V÷µµ¢Ù·µâm~ûX+ø–}¬w/ìc¥ñ\ûX ±µâ -aä#fòOjkEZÀ½¸Í5ÇFÖç1ÓV˜¹ª›ßÍás¬îWk îXk¤îYk¨îZk¬î[PwNŒ¸{'†ÜÝcîþ‰A«ĨÕbØê1nõŸ«üŒH:ÆŒ»ybfßÍß…™+ë2º¾Š™LÁ/ ÚôãZL3õ³eL;õ«fLCõ£g|½Õo¢1MÕO¦1mÕ/ª1Õ®1­Õï±1ÍÕϵ1íU&ˆÒ`e’(-V&ŠÒde²(mV&Œ0"£ëf˜Îê—Ø˜Îº7-^ަ³]_ÅLnõ/Kô•Ñ¥Ôä˜cš ^\Ê5±† 0'£‹©Î6º˜úl£‹©Ð6º˜m£‹©Ò6º(vÚèb*µ.¦VÛèbªµ.¦^ï3J¶ÑÅè{1£è£ë«˜É’âeÉá6º˜În£‹éí6º˜în£‹éï6º˜o£‹éñ6º˜oùñ²óÃc,6º˜^o£‹éö>ô±L»·j»…ÏéÐÈÂë`:T’ÆMóŒÏ(m>^õËý÷Ö&¥Í]_ÅL¶.~=fvs˜gh(üÀ‡£–{txjéñ´€W-û|øjé±F:œ•ÆmýÄ߱Ї»ð~þZ øpØ‚çú}xlßòá²—A|ø,¿³_¿ôÇÜ^[ðŒ0ò3^µÖa¯÷rà¡GF×ç1³oñ/ÂL=‡[̱Zb­Zf­‘Zj­¡Zn­±Zra ‰ïŸë·ÿˆ!·üĘ%bÐ’1jI¶ä@Œ[’àgÀ’?#Ò…Ž1㟘ٷøwaæÀèú*f®©M»9ܼ—[{ã^om޵ÀÚk…µ=Ö’xµ&žD-²vÈZem‘µÌÚ#kµIÖBk—¬•Ö6YK­}²ÖZe-–}\›âu@Ô¦½–xWm:0º¾Š™K8ð~7sF‹üä”6È9m“ÚD gµÉ@Nk‚œ×&9±M rfç’SËç–I"N.Eœ]&‹8½LaDF×1¶iA¼7-nâÀGF×W1sM¯½›ÃͽiÌ1z×Xô¶±Fè}c ÑÇ/úþ¡î­…õÞ~o’½¹Ÿ£dïî×*ÙÛû1Köþ~ë’Ú€ŸÂ¤và—2©-ï3êµýÒ${í{1Ã^ûÐèú*h®õv“¸Yó;¯Éü ,E4¿K‘-‘…oÌB¤ó´r[õB-E>+‰€*f Uì$"ªJdT±”©b*‘RÅV"æ1¡‘¨§â$QïÞâ$QïÈèú*h.rêIܬ¶‹5J«”Z/Ö)5_¬Tj¿X«Ü§zëÙê%Ü‚µ2ºì65Ûh¤þÓ­ ë¶›AVn·£ï+V¿wKž¹bÁrîeÁr¾btu3.ŠÇí-ú\ÿòËÏ?ÿ±X\#Ëž;\ßý¢W^åRΗ:5倩VN˜ºe利›VΘºmå©WN™ºu嘩›WΙº}å I PNšÔå¨IMPΚÔå°IPN›Ô å¸Yb®Y`T¹fêî•k¶ïî™kö2Œ*×ìÀá:ƒ™8ïqqž!JuS ¡T9öN±D ¡T=JõS ¢TA&J5T ¢TE.JuT £TI6JµT £TM>JõT ¤TQFZyþˆ(JET€â^E|9f«§®3˜‰ƒe‡nJyV²©.&ŸÚáb2ª.&§Úáb²ª.&¯Úáb2«.&·Úáb²k¡ÖÚáb2¬Ý&ÇÚ=a²¬Ý&ÏÚ}!Fìp}ÀŒ’Zíp1©uïV¼3Jj=p¸Î`&°^œîk‡‹ Êžc¹ Z&0{˜Ðì5d‚³×˜ ÏÆ #•jØcˆ ÒÆ¦AªœÆ(ªa&XãL¸ög€ ØÇûŒ¡#Ÿ ‰Ð7c†‰Ð×ÌÄAù‹SÄí¤3©Ý§˜äîÓ Lz÷i&Áû4“â}Z‚Iò>MÁ¤yŸ¶`½Oc0©Þ§5˜dïÓLº÷i´Põ³½yÜUW?óª˜N“¤ñÐ<ã3Jž÷é &Ïß[›”<àpÁL\ȹ 3õneÜTWޱž*‡+ûÊáÊã¦r¸úiÅéTV•ÕÇ}åpåq[9\y®ÖÊá*sW9\y<Õ§Ê&\ñ©³4+‡+‡úÔÚ„§Ü§}ÄLúºÊáÊßÑ~p¸^™N½Ä#‡ë,f®=¸›Ã-æX½°Ö@½²ÖH½´ÖP½¶ÖX½¸0 ^q/O ¹×'ƬƒÖ ˆQk ݵbÜZ?Ö*ø± tˆ÷öÄ̾·¿ 3×ÙÚt-fvs¸y/·èƽޢkE;Ö ‹z¬%ýXk, ²Y4d­²¨ÈZfÑ‘µÎ¢$k¡EKÖJ‹š¬¥=Yk-в[y>¬MY›ö"â]µéÀá:Ë/ÆL=‡›9£Õ}rJ«ÿäœvÈIí³Ú] §0,p^»äÄv/È™ínSÛý ç¶;BNn÷D.«Ürz»/Ĉ®C¹XàÀ{·â&|äpíµ¯ÅÌn7÷¦1Çè]½ìm½Fì}½†ì½ÆìöÖÆ{ïHTConŒ±w7ÙÛ£ìýaj¸´}¤-<ÙgØk3ìµoÆ zíC‡ë¬¨w)hö“¸YÓf.‘L›½D4‰l*áTL$Ò©ØHÄS1’ȧb%PÅL"¡ŠDDC‰Œ*–!UL%RªØJÄ<&4õTœ$êÝ[œ$ê9\g݃‹ASOâfµ]¬Qj¼X¥Ôz±N©ùb¥RûÅZåˆÕÊ-ë•› Vl·¬ÙnYµÝ ²n»dåv;úøþµbõ{·ä™{ ,÷à^,÷àK[#ÎC<½ÊUÜ®Ýe.dºå+²‡F×w¾äá;šµøHEëòk“RÏÒÞÑ=b$ªuã€~yky¸2~­Í_<¢ÛFV[7NŒŒ+WÓ»qæ÷–¯ÊÕ¡pi¯èÆHK[Iö7~qI7)"°¼œ‡Š›ó°eÜ\ɦërR`ùâ’\—‡ˆŒ+J7õux9ÿÞˆ}Ë¿HièûÖ!ßpûÖN¯Á$bßò¼=2´NccÍÿíK«î¦ncØb—§»,wñðó°èojÌÇ õ@Œc—!Ò½)ä±Ãì*²›”X^âÈC$€–Ø.5E9¤é{‘üƒ°4]nó9̇c¦Ø@le6£KñC¨eQ‘—]j/ C fŽÓCl4¹’çŸ\BäE–_ä}°ý˰Q0žçí‘qu0<—îlì¦ncJkŽ-²Ëm{É- ¯yX>ƒxÚ6W›üÅ$ÕÈŽÍÃ!’eópŠÜÙ<,NRi»y`,™µyX| $Úæ!˜Z!JyX\<‡Å$AVnΆ<\aA³ù)†‚fó—W~Ãk±Á ÙSR4q¾bR–{Xü½ ‰:ð ”•|Ž  ùê/`–¨¶€0­«0™!šëßÎõoÁ0Ã;G]4±od{}x‚ô{áš°1Lã©_Œôû?2Îb#W“‹..ì¦nÓ†œ†íÛõÐð¶6ó~åå(lõýÊ»Q(¨Ø.ù ÂE$?³ÓD‰égºF(@‰XÀ4ByJCd/Å+‡×ÌQÚúQoYà 4ŒP{éÀ(š}"qTSòs@}Ô”~ú˜kÿâš’_z`Å¿dFzßÀÔm"rù€B4/O÷$0W‚"æ§µ† iH¯ÐËüWE>vdjÚ·PþI\}x´6cb ÒÛ“‘ç„%s¶æ0Ák­ú”<|ÆEÓwÓ*\༕‹¦Ïá#Cè,6r÷zÑÝ•ÝÔmj=±h=íh½(h-½dh<½ «¾w¨šV-­ Â†W@b;,˜±YÙJ ¢l´`¶á‚7›ôÃ}ƒ=¬°ÁöNl°‡ l쟳àà ¨+Â5ws·I9ÒŽL]Iû5U'íæÔ¤´×S±R% ž¥:AµKU„Z˜j •2U êhªOTÙT½¨Á©¶Q¡Så£~§ºHuïpPüRQ¡øugQ¡ø•°þÐà9ŽKíÝÜm’œEå(H‹èQ® ¤˜-’H©[’B¸&erÑOŠè"§”ØE])À‹ØRží•xOR,i¿õ÷ö¡ÞÙǪ¹Ø(Uó;Ù(UóÌFÏ9CþËK »‹JúË/úƒœ1gOœï}Í+o*1̽£ÃÜu2ZÌM)£Çܳ2šÌ--£ËÜñ2ÚÌ 1£ÏÜ/3Íí4£ÓÜm3ZÍÍ8£×Ü«3šÍ­<£ÛÜé3ÚÍB£ß,±0 ­B'£ÐÜH3 í]'Í(´—µKˆB;òuÎ fUU»ÈØÙÏà¦|BkXÌ/´ÄÅ|C+`Ì?´@Æ|DëgÌO´¼Æ|E«oÌ_´8Ç|FkwÌo´´Ç|G+Ì´0È|Hë†Ì´¬È|I ¶ƒ«–嘷øN—{5bËÜžˆÑs¡Ý³ŸÁM!¨VÄ’jÁœ!ªÖÓ²j¹!¬VãÒj±ž!®Öòòj©Ÿ!°vk£€!²ö2k›!´v!Rk“B‘ýó1uµÈÏP×w*ÿ«ÃP×èb`ÿ\hígpSÐrÌ0Õ¯‚šc…ä+ˆ çXaAAšd AÓ0Q))¡²#è:Ž ìø (ûÙƒàè@ ‚£oF ƒ£œ¡ˆ)t¡5´ŸÁMa#ì=vy„ÁG@X|T „ÉGAØ|T„'DBX}T)„ÙGCØ}T¹|¸«®‚m*¥*ÙB†vmÁ³\eÛ5æ˜Ç œ>ªÂéo®J§?ò‹N VÑ…†Ñ~óü´…˜)æøÊ3jqJ.˜f ÎL4¿8S3Õ¶A“$&‹SzÁt›¾ƒ˜pƒ^ÞL¹)¯ü“nÀ³Ì´›m–˜8NTSGÜH0ùfE×íB€wˆiò‰ä`¾M¹Vv3óÍçŸ]¤ˆt¡´ŸÁ-f˜}¯W€m±Wˆ]³VPMµVX=· –\QÇ.©¡ÂÔï ’„P©B°Ä!\Zƒ>’"ô ‘ÊsŒµòB̾—¿ 1ÞÒ ÄÀVºÐ\ÚÏàæ]\2švy©lªáT%¤Ñ©ŠHÂS•‘§*$PUJú ª˜äCU9©‹ª‚U%¥MªŠJºT•íͳP…%W%)ƒªJ{ið¦ªtà8@ ̦ -§ý nfŠRåÅ$%Ú‹iJÓ•ä/¦*G@LV†˜®ü1aÙ bÊL$“–Y!¦-/CL\V‡˜ºœ1y%Bˆ,¨cæ+£AÌwï4ÜÄ||¨ˆu¡µŸÁÍÝhÌ0ºÕXt³^!v»^AvÃ^avËF»i#„ݶÄnÜc·n²›7BÙíÁTŒpªþPMx²Ç°»6bØ]ß‹v×GîÔ ÈÀ˜ºÐžÚOáfÉËÛ8%1oó”Ì\(©¹LPrs¡$ç2#;Teˆ’žË%?—1J‚.s” ]))ºLRrt¥$é2KÉò ‘¡„ç²D ïÞ²D ïȳú4dà \jZí§p³®n®HÝÝ\’º¼¹&u{sQêúæªÔýÍeé ˜ëÒ70¦¯`®LßÁ\𾄹¶| qqùm|ÿ\sù/ò2ô Ì}éÜË}é|ÅÉZñ­¶²ÝHú/ü¯?ÿáÿ–þ·ñíÇÿÜ]ORâÙS{ë»_ôð.ÝU!äˆ ‹³¬>>U‰˜±8t‰²8“‰˜²êÈ&pœè\pÔ>ËMÌê<è‚¡ULZ[ù[ŒY«›–woã,*bÚâ¨*bÜâ$+bÞâ +bଠ1mw°Ä¢ÅAQÄ¢½ëò‹ö²3_ˆE;2¸NaÆÞÖe˜©çpS^aœÒFžaâFÞaœñFbG^bœGžb ïy9JçËÉØ|üyq:yŽÖ&™÷hí’yÖ6™ií“y’ÖF™7iõùf:hc:xŽüÅwZâË1Ó[C}dqÁL¸[Waf7‡›‚Q­ð38ÕƒUí0xÕƒYí00¸Õƒ]íP0øÕƒaíp08Öƒeí0xÖ ƒií°0¸ÖŒ0"ëfôjÇ‚A¯ï‹—c†A¯&×Ì„¿ufvs¸)€¹šc¨7±#n zxB^ØÓ# :0€éÀ¦C Œá Rï4FpFv`Ùñ@€ö³}ÒJßJØ\g0×U˜ÙÍᦠ÷ØË{=‚⣠H>j‚棖 ˆ>j ²¢5¼›«Z… û¨eMy:× Ü>×Ê»Vò¹Ö•æ˜Ï ¸>j‚ëo®M ®?2ºÎ`&<®«Îxíæp+ã®vºrþFít¥ñX;]+4?;]ë„5’Ó•Æsít­Ð ít¥q_;]+ä;]kyæ?œ®|ËN׊;vºÒx®.ä„ÓµŽèõº]4pÝ»å7cj§k-Á7sàvYÕK<²ºÎ`&\®Ë0SÏás¬þXk þYk¤þškèþ›kìþœpÿNŒ¸¿'†ÜÿcÖˆAëĨõbØú1n}‚ŸëüŒH":ÆŒû}bfßïß…™³ë fÂçºxŸ±FĽÜ2÷zËt¬¾NÅZáûT¬%¾PÅZãU¬E¾RÅZ%™QµL2¤jdJÕBɘª•’9UK%ƒªÖJ&U-–}\›|¹Šµi/+ÞU›ì®3˜ §ëb>#)ZœQj¿8¥ÜqN¹â¤rÄYå6ˆÓÊç•[!N,7CœÙ¹‰äÔrCĹ喈“ËMg—Û"N/7F‘ßuÌå^ˆïÝ‹»8ðáu3áu]Ü7ÉñRosŒÞ5Ö½­×ˆ½¯×½±×˜½³1ÀÞÚaïm ±77ÆØ»ƒìíQöþÆ0µcœÚ?Ôžì3ìµöÚ7c†½ö‘åu4áv],Ðx£¡æÍœ"™7{Šh.Ù\,(¹˜P¤s±‘íªbD‘ÏÅŠ" ‹EB;Šˆ.†],)Búj2EJß\¦ˆyLh$ê¹8QÔ»·8IÔ;2½>šÚïºX öípªí¾wO5Þ×ò©ÖûÖ>Õ|_ê§Úï;ÿtü$Ý‚x1nB<(·!Þ€Ïqùµº~Ì€n‡ß: ¢§vnÉcÐÀ=ðStîeÁr¾b{µóXvÿ¾×?Áìú¯ŸÞúô?~ÿÇnû=þþå§·¿*6Øÿã÷;ÿKAhOý¯ï~Q½í¥eKÿ&°]õ ?ÒÃÜÇ1]̽2ÓÇÜKó9{÷ÚL/s/Ît3÷êL?s/Ït4÷úLO³Àt5kL_³–Àt6k Lo³Át7kL³–Át8ëELK«ï´#-ͽ?ÓÒÞõþJK{Ù½v¤¥ù_g0³¤?ü/äˇÿ…üùð¿Oþ’ª§y{Ùoâ-û_KyX<ü¯…·—ud™vOÝv ß­ÓY’…÷ÈtÖ$›æŸaž}õ(àŒê}kmbžý‘ÿu3C9Ï¥q¹äù·Ýæð °ÎL-Ö\gª–üCg®h€>“•Æ}}f+Ûú…À¢Ï|¥ñ\¿¸@ð™±¥„Ä™²|ËgÎÜ"ñ™´ÜºÔ"$δ-xHy„™®œñö°¥ÄÜÌ»yR/ñÈÿ:ƒ™~ÌUiú·‹î¬ïçp‹9V§¬5P'­5R§Í5t'Î5v§N ¸“'FÜéCVˆ1+Ä •bÔJ1l%‚·RÁÏ€• ~F$cÆ?1³ïüïÂÌÿu3]a2ã”™ð<]Àgös¸y/·$ǽޒk%=Ö K~¬%ñ  ß ó‹‚</I‘µÊ’#k™%IÖ:K–¬…–4Y+-y²–Ze­µdÊZ,]ú¸6ÅエM{‰ñ®ÚtàÁL[8ð0Í¥Bu×ñËÒäŒÖþÉ)í sÚ; 'µ·@ÎjïœÖÞ9¯½ rb{äÌNU$§–7"Î-ïDœ\ÞŠ8»¼qzy3ˆü¯cl/ƒxïeÜÅü¯3˜i Zú9#gJ{îe}“ü/õ¦1Çè]c ÐÛÆ¡÷5Dok¼èû‡º·FÔ{û¹Jöæ~Í’½»»doï·0Ùûû©Lj~I“ÚÚ¤¶p¼Ï¨×öC•ìµïÅŒzí#ÿëhŠišv®\¢æ+@³›ÄÍ"˜Ÿ‰¥HæWd)¢ù‘YŠlñ-D¸x¢"_°• «n)ò©XIT1“H¨b'QÅP"£Š¥DHS‰”*¶1 D='‰z÷'‰zGþ×)ÐU¯MÓ’ .qêIܬ¶‹5J«”Z/Ö)5_¬Tj¿X«Üg…ëÕë)Ü‚µò¿ä6ˆ5Ë«–[!Öm7ƒ¬ÜnGß?V¬~ï–`†Ñ¯an!úõQñjÌ(úõÀÜ:ƒ™;L;£â‚Ú´ŸÃM‘Ì1Çk¼ˆtŽ5Bäs¬!"¡c@¤t•g5ì1„HêÀ"«ƒ8QD^†‰Gdv|©ýdŸaÄt•lU"¦ïÆ #¦Ì­3˜™ð”Ë(‹ëªXò0Ñý -!=%M)]-f^\ÖAŒOÃø Fš´±2·ò¸©zd°ÔAf>±§ƒ"3/é IÍ3>Ã(û8x(û›k£ìÌ­3˜¡tX8ð´^Àgös¸•qS™[}ÇT™[yÜWæV7•¹Õ'°Ìõ¬4+s+ûÊÜÊã¶2·ò\­•¹Uæ®2·òxª”M¸4âgiN–« ËzÌnê¶<,¥œD.§‡,Aóp|Ï$0 ‡)(b~&§"éO^Ç —8:hò™†cÔ´+=‰kW Lk;° ‘Þ®¤ê˜w]Þ!L˜‘b:Ý•G †Ø(òÍE»•p+mgqøGNÒ l  ‘5WD¨í¦nÓÄÎ+¯HaÚçUoàoYôIY²ôó¥’² ó¤‡LÊrgM¿ 0ä—;¦€Ê<*H¾æ ˜Í=·€pîŒÉ ѹ%&àì°/fxÏ qðOksþóÈ+QÀFöÚ{±1·£3Ø(:n“étÉEÝzê6mÈÓÊ«PØ®§…7“°™O3/Ba«ŸfÞƒB!È]`ebšt ª‘iÔ%ìRbr³:GÊÝéå) yh½¯©×™öRÚ¦^ïVàutˆP' ¿(šS‹"qTSÐD»¦ä_dº ¬)é7|ä ÀFqž»„ p«ø¦n‘ËmUkš—‡0… l§†Rçl4”Û ÌCºvEß@(òÙŽ«´üLMópjM\[ŸÖ-´6»Õ¤7q޲Pâ<,6s¶æp\`R ãBåí1ÍßM(#;y%èßÁE[´ˆ Øèò¾Ñ¢²Œô°»©ÛØÆÄ–}L{icQJkKVÏXÐUß;DÓj0 ¥5TÐðHh‡ 34Ë!ZiC¶Ì6\ðf“~¸o ‡56ÐÃÞŠ ô°6öNÏçÁ1”óq•iè/hTvs·I9ÒŽL]Iû5U'íæÔ¤´×S±R% ž¥:AµKU„Z˜j •2U êhªOTÙT½¨Á©¶Q¡Så£~§ºHuïpPüRQ¡øugQ¡ø55σ#Ÿ0ÐOî®P8vs·Ir•£ -¢G¹Z4b¶H"¥nQH á"˜”ÉE?)¢‹œRbu¥/bKy^´—â½H1¥}Qf ÿ"Ô;[àX5¥j~'¥jžÙèékI]Öeòs½ïŒ›¿ùËÇ ´çÎÍ÷¾æÈº. 6Ì sOÄ\1w›Ìs3Ê\2÷ªÌ-s+Ë\3wºÌ=s#Ì\4÷ÉÌMsÍ\5wÙÌ]sÎ\6÷èÌms Ï\7wøÌ}³À\8K+ÌI«PÉœ47ÐÌI{×A‹¯k““väçœ@̲âBRûvÑEý n /´vÅpCK[ ?´òÅpD c O´nÆpEËj _´êÆpF‹r o´fÇpGKz ´âÇpH ‚ ´^ÈpIˉ Ÿ´Pû1c´Ç0ÆwzÜ«3X~|äòœA ^L+‡x/y›f?ƒ›R­„+AUB¹V¥£+U2»Z¥Â+ÁU"½^¥á+V¿bå(AVfå(Vö‚jå>(ÁV愲eû<@ _%î+ñu¯î¿1L|=ð~N f.éd¸Œ4_q>j?ƒ›S˜=ÃLiö 0ÅÙ+Ä”g¯ S ½ÂL‰6˜"m„0eÚb µÆ”j#)ÖF(S®`¦`áHÉŽOR´Ÿí1L•6b˜*}/b˜*}à@ÌT:­¥÷žÛ+ö˜Ý nJz]Ið±Ë#)>ª’ä£J i>ª’è£Ê 7!ª’ì£J!é>ªX[ž *×öE|vl{T)UÉò³«h žå*Ûv¨1Ç<ÉõQ•\sUBrý‘Ot1|—®\Gê¯Øcv3˜ç§/Sl[¬¸˜$ŽÃÓl¡¿™‰æWej¦Ú68÷$&‹ãxÁt›6˜pƒÞL¹)JO0é<ËL»YÑ^‰‰§q_ÙF-’F‚É7+^5»„àb²øQ1ߦ¨X73ßzsì@ÌÐfe/¹î¸ŸÁÍ3¬~W+ vX+¤nY+¨fZ+¬^[P+.„¨S‚ÔÈ aêó…@ÉB¨T!X"‚.AŸIú„HÝ9FŒZx!fßÃß„˜Oébºò¾ôTÞó̇.Ûc¤ñh—|¦]^ꚪ€Ä7U isª"’îTe¤ì© IøS•’.¨*&ÙPUNª¢ª DGUIi’ª¢’,Ue'ó,Ta‰ÅÇUIŠ ªÒ^¼©*8M'Ó®xð ;ÍzÌn73E©ñd’ëÉ4­å“‰Zê'Sµ@&k£€L×>™°m2e»dÒ6)È´ía‰Ûâ S·B&oƒD‘õtÈ|m0ù¾sîa¾GþÓ Ä4Å–À|¯¸°ŸÁMÝh5Ã¥[­V t³±BèvcÑ Ç £[ ›„ Û¡„õt’…@tóPtû`¨pªþPMx²Ç »Ä »¾1è®]©3)§*ûBd¦+îÆî§p³äåmœ’˜·yJf.”Ô\&(¹¹ŒP’s™¡dç2DIÏeŠ’ŸË%A—9J†.ƒ”]&)9ºŒR’t™¥dù„ÈPÂsY¢„woY¢„wäUL9rÙå‚ì%»Ìn 7ëêæŠÔÝÍ%©Ë›kR·7¥®o®JÝß\–¾€¹.}saú æÊôÌ¥éK˜kÓ·0§¯a®NßÃ\~ç‹<„ }s_ú÷r_ú_q°2YÏ·™ß[XýÇßì,,&š=÷°¾ûEG&Ö¤‰1`q°%ÆG&#'*3.CVÇÍãš Îzú4gÙhªÃž N{V1hmeb1F­:I:㌦š"†-Ρ"¦-Ž©"Æ-N±"æÍâcÏvýeÕ)PÄž½kå{öº]ˆ=;r±Na¦+·N€œ+6´ýnÊ#Œ#ØÈ+ŒÚÈ3ŒÜÈ;ŒóÝÈCŒãßÈKŒÓá=o>éð8i™Ï–#1Žž#¯Ñ$ó-P2ïÑ&ó -p2/Ò(ó$-1?ÂLL§Ê‘¯øN0|9fz ¥|¬3˜YJù“‘uA;¿ŸÃMÁ§–ñŒ*™_Á©²¬*›@Á«²Ì*›AÁ­²!ì*›BÁ¯²1 +›CÁ±²A,+›DÁ³²QL+›EqŠ2²`†A®²%亷%^޹8Yg03—`޵œõ™¯ÚÏáæ€å˜c0Ç  9Öα†Îð3Ú`@´1ÂicˆÓƨAT£ °6†pmŒ#;>È~¶Ï00Ú˜a`ô͘a`ô—u3¼½R^™.Ùgvs¸)È=ör½Ç^ ø¨ŠZ ù¨%šZƒ„¨E /ÞªV!È>j‚î£Ö5¼{+3k]Q«df­Âmf­¼H%3k]PiŽù ‚é£6!˜þæÚÄ`ú#7ë fp«Acã%èn·2îj;+ƒ¡¶³Òx¬í¬ží¬üŽLmg¥ñ\ÛY+„AÛY<µµ¢ç·µ–÷úÃÎZÁ·lg­¸€a;+çÚÎBpHØY눃hÍ.ú·nÐò 0µµ–›9pžàåØÏ:ƒ™2s¹Ý0\bOìæpó» æ¸I湉æºÉæ» 'ܤ#nâ‰!7ùĘEbÐ"1j¶È@Œ[„àgÀ"?#ÒŽ1㦞˜Ù7õwaæÀÑ:ƒ¾«WjSÉÑœÝnÞË­µq¯·ÇZà»R¬¾,ÅZâÛR¬5¾.ÅZäûR¬UÒUˤ5ªÖI‹T-”V©Z)-SµTZ§j­´PÕbÉÍǵÉ7§X›öÚá]µéÀÓ:ƒ™vDÐXÆL·^N·›ÃÍœQ’>9¥%rN[䤶 ÈYm)ÓÚr çµ%ANlË‚œÙ–9µ-rn["ää¶LÈÙm©ÓÛrFdjr`[äÀï,Š›8ð‘«u3|W¯¼ ’¦ã²¾É¶{ÓjŽËÿ¡ZƒÒÛÆ¡÷5DokŒÞ90€Þ:0‚Þ;0„Þ<0ÖѸÑÛFÑû†¡ Æ©ø3@máÉ>ƒ^;0ƒ^ûnÌ ×>ôµN¦ü—ù®ÞÁûIÜ,‚y3§HæÍž"š‹E6 Šp.&é\l(â¹Qäs±¢èbF‘ÐÅŽ"¢‹!EFKоwL‘Ò×’)b‰z.Nõî-NõŽœ­ó ¹ð]½ý$nVÛ}©žj¼ïÜS­÷•|ªù¾±Oµßúéø¾?Ý‚xnB¼·!€o €qÅSp3⥸ñÜ¿s°sKƒîß  {p/ –{ð%okÅëμ­_~þù»Ô(æ•=w·¾ûEþ;Ûò·Õÿ^j7]]CÀÜ 3$Ì2CÄÜI3dÌ6CÈ܉3¤Ì:CÌÜÉ÷z%¥ 9+w‹!iV ¢f%¡×K)«BÕz¨AT"Òf¥‚!nVƒjV_GG¨™;{†š½ëìjöº+é5;r·>]ÏŠ¯ ³Ä´A+nL#´"Ç´B+vL3´¢Ç´C+~LC´"È´D+†LS´¢È´E+ŽLcŒw—ÖÏ2!ͱzµ ÊB<ꄾÜo>!-ÒªóÌ =Ñ "Óß)ˆ¯ÇŒ•ÓGîÖ)Ì"þ½*q3žÕB¬i9æñʱˆ_Ž5BÑ•Æsý¼ß‚Æß'–ò`œ[À·|¢lÁEŸ8Ë~×oü!9$N¬-xÀGy„™ïYë„×RÌ‚›9p—›Ôcwë fÆ>ï0ñçp󻿏Oæ¹æºÏæ»'ܧ#îã‰!÷ùĘubÐ:1j¶Î@Œ[‡àgÀ:?#ƒŽ1㾞˜Ù÷õwaæÀÝ:ƒ™üHSýïeûŒµ îåܸ×[c-°`ÇZaAµ$ÞD­‰Çy²]‚!k•EÖ2 ެu$Y -X²VZÐd-µàÉZkA”µXªóqmŠwQ›öâ]µéÀÝ:ƒ™¾\$Ž/ã3É­ìƒS†òÎÎ]w;à¬á,€Ó†óÎÎ8q8àÌv6È©í|sÛ!'·sBÎng…œÞ΋0"wë‡SüΩ¸‰¹[g0Ó•kçñïU}“Ý-ö¦Õ—ÞµZƒB «5*½oµ†Ð c}ÿPõÖÆ{ïxi½y+‰€*f Uì$"ªJdT±”©b*‘RÅV"æ1¡‘¨§â$QïÞâ$QïÈÝ:šG?ü %XŒFj»X£Ôx±J©õbRóÅJ¥ö‹µÊ p®·¬Â-X+wKnƒX³Ü±j¹bÝr3ÄÊåvˆµË «ß»%Ïܱ`¹÷²`¹_z{0ñö¬tÚÝúû°·~J8{ûñ¿þüÓ?¼ýî·ïrËž›\ßý¢w&— ‹îñ™a_nÖ憘aan˜&憚acn¸F憜aenØfæ†~Ðë.;kð: †¥Y0`˜š…A¯»¬Jä[! Q`X› †¹…(„p³ ¦ 7sƒÏp³w >ÃÍ^S†›™\ŸÇL.ùøêÚæz¸\qy?‡›R-¼1•ÐÂS -Ü1ÕÐÂS-ü1Ñ S-2UÑÂ"S-<2•ÑÂ$S-\2ÕÑÂ&S-|2ÒÂ(S#C|þˆ¤(ZHdŠâ;!ñå˜i, >2¹Îcf™.{õi?‡›âMÃäbü©M.Æ£Úäb|ªM.Æ«ÚäbüªM.ƳÚäb|«M.Æ»Fâ_mr1Ö ãcm 0^Ö ãgmÀ04Ñ&×Ì(®Õ&ãZ÷†Å«1£¸Ö“ëfÊå-¼Ì²^p@h?‡›c”=ÇŒYö0†ÙkĘf¯!cœ½ÆŒy6‘TÃCŒ‘6Æ3m 2†ÚeLµ1Ìkc1×ñ@ ö“}F±ÐN…Xè›1ÃXè“ëM8qàÌap€S‡Î 8y(4Zm°€Ó‡CŒØä:âÀU(VáÀï ‹›8ð‘Éu3h튙Þ4\/ÞÏá¦Þ´šãһƠ·5BïkˆÞ8Ö½s`½u`½w§ÉÕ[ie ƒèí£èýÃÐŒqiú H[x²Ï ×Ì ×¾3èµM®3  nË¿Í÷þö“¸YÓf.‘L›½D4‰l*áTL$Ò©ØHÄS1’ȧb%PÅL"¡ŠDDC‰Œ*–!UL%RªØJÄ<&4õTœ$êÝ[œ$ê™\g@3O´-GJ/M=‰›Õv±F©ñb•RëÅ:¥æ‹•Jík• V+·@¬Wn‚X±Ü±f¹bÕr+ĺåfˆ•Ëík—"V¿wKž¹bÁrîeÁr¾breU®&×ÿüå÷ü—ŸÞþªmÞ~üyïs•4·ÌTM®ç_ñÀá*Îu„3 ­YШ1+­YÑ 3I­mÐ*3g­mÐI3…-£†±k™ïæÇÄ™ï–Ϧ¹Æ÷"ß- W†Áå“m¤¿e–ÒŽ¨™LŽk ˆ·ÛÉ1sÆí̘9dÒ囨勑X—O oÎl×]h9þÞ*î-?a>FÜ[;|¦_–ö–x`e}ö±Jè%—(v·)b±k ¬1€1¿¾¾9ž±#ç`xc~¼{s´c¾Ë^þ¯8éÕ)Oot=s?7Ð ixgw<ÿ NÂŽwe7 «ì&T=FY¦aQ3tÙÍ nŒÁìf¬È(„,ÿä¢ 2%ìïANÀuÝCÃê2r¿…Þk¾âJÖnâ6%³v¤Ìmí¬.S]»Ÿ?>h›oÀs˜+dG.ͼØ4ª4Ù|=¾ÊšMÃb@0‰¶oXýSÛ7°/˜bÛ“E3ã¶o`~ðéç¾7Â|ܾuB(äáò —M¿Hñ.Û7µÍðRd0[¶[ÚRg‘ÑJ1¾*v·)ÏÙÓŠ´gO:² ½$HŠö‚!%ÄËÙè{›*ƒZP`Bµ€ÂüjÁˆéÖ³¯A&c  ÌÍ|™ª-p3sûpÏ`$µÁHê‘ÁDêô <2ŸN"cF õNî&nS ¼¶bfÄk£f‚¼¶qæËk“gú¼J³éU ˜ì òÁ\{¦Þ«ôt_T˜Òp¨ÊV‡µôëdVª’×ý¨ v8‚È3d¯j û« sìÓ÷Èb:‰Œ iÔWè1»‰Ûò0—pÑ·²¹ã1>Q¿4ÌR‡ˆažÜŠ6¦¿8·+"•ŒòàPÜêþŠÓw»‰Û<­3/JaÒ›Y?%«c,X3ê5’²œÍ ÇJÊb7ƒ¿7C!¿Ñ6Pò±.`ä˾žS3›ÆˆLÓ°®dAov׌´ó½ˆÆnM£¢éy) ¨ÈÏʵw¢"‹‹œ¢Ïƒ¢4$}1»ùŠWõ«iÛ¸ ç«(«wèü|ãèí{yªìíùáÄÎVj{W…uÐí§ü©^{ݽÎõdíi •b“áÑ•hítP=ü×VÇØs [[½TQ~BC+¨T¿Uo)ËŠJpP8Ò/À‹NySY»Qõ¯-é·{dþ|Ë”U5\Ui¯¸®]OÚF–¶¬t} …[Vz>…ßåÓƒÉ_ƒ™aё˴1šà”Ë,•>Î|ˬ5õ)ÜBU³µ³šÇ.d6 ¹iT¼0àÜ Ðz è+MݵÒÓÔ|+]M½¹Òפy(,©42õ¶J#Û7·5_Fv`°|/ùÄ›\·‹žÃÛÏßæ€@IJ ”⤀ÁΙ“x¦Az• %g)ÀPj—%†)QZ™%¥)@QJ›%Ä)€Q:%ã)ÀQ*Ÿ¥ž>À ¥’)ðp/“½/ƒEÁG¶Ëçñ²”g§qKh½BCÝÏßæ ÒΓÈ(•v­ SIÛÊ8•ò­ T ãÊH•n® UÉêÊX•ê® V‰òÊh•f¯ WIúÊx•⯠Xʈ•_ |ȇy€fªJoW¦ê^p1^©z`Æ|/s‰\š¬Ÿ-ëõh7›SŽ=¿ÔÊ=ÿLIöú0EÙëÇ”e¯/S˜½þLi6>˜âlü0åÙøb ´ñG…ÏødŠ´ñË”iã›)ÔÆ?SªŸì/Lm6^˜Ú|+^Ú|`Ñ|/î–ª´\q{?›sÔ½3gÝû;sؽÿ3§Ýõ9î®Ìyw}a`ësâ]Ÿ˜#ïúÅœy×7æÐ»þ1§Þõ‘9ö®ŸÌ¹w}mq¢ü a.¼ësáo­GŒ…?0n>NË€ó÷Ï^ ðÒ”³Àæ» ^ú¿•ïæFôØÎù<^í]žeÍ÷V=^vó·Åü²¿Õü«ýÕú¨;Öú©yÖúª·Öú«õ>Ô™ ?jÜ…/õõŸÚ~áSªñ+Í€ð– @ôKmà‡CÎ1VÔ® +û~ý¬˜<Ÿ‡J[¨Ëˆ×X¯x½l7{›vnicÜØ%œqß—ªÆ² ÉUCz‹ŠÄ:Ö)y,I’ùX±¤² I d½“zÈr(i‘ÕRº#‹éj.Uj­tÞÃÒ#…•g/ñÝRx¬ŸÏƒ£ÁCˆ%Šg¾$õ½ž»M4P:Y¢Ôu’HIïä˜ÒåIA%Ú“¡JÑ'•ÜO~+/€ô×у`ÇrHže1[Ë õ–9Af.ç‚htÈceÆî}€[Xì!t¥Ýéy¨äŠ$¸zî6õ”1³åó^:R¯ V¯úY¯(Ú]¯7ºa£Ͳ±‚^ÚHB«mœ¡7 Ѩ£èã`´ùÆ7T€';šbƒ=ñ­à@K|d@G‡Ã$åÚGWw“·I¡ò¦ Ë[6ô-o迼ÝCs1€xæRmÍ…Ò›Ë ”9!w.QÐõ\À û¹¼AtñƒhèÒMñ í€Ä溅íÖºíÈ<:³w,åPAþ÷×!v“·Iï6£ƒn¾µÜlbºÉ"Åv“IŠñ&›ëMF)曬Rì7™¥`²K³Àd˜f‚É2Í“i™"Û;³â!R(Þ› R¼¿• B¼ÿŠ¥”éK;|ô”þæ/¿ù˃”¯§¦Ò÷¾æ•®’‚±| Ž*®2X˧¼åÉ 抳‹Pqâh#îÇÉGÅÁH<ÚÚVÁ`må*)X,N]âÑWÊd0™Ïl2¸ÌG:læŸ >“*£ °úh‚À|b’A`û.›A`/;Ű[éÓˆ±¯Ô”û;—DYìfps>Ÿ*3¿Ï'™™ïçƒÎÌÿó9hæú˜4ó}Ššù‚>dM]ßg°™Oè#ÚÌ/”.¨|Cé†Ê?”®¨|DéŽÊO”.©|E龃¼AŸ¾fÞà^Ç{5bzË—Œ¥ˆYæâ”C4—¼s¹ŸÁÍ1 RÖ*å]1¢Ræ3*å^1¤RöS*å_1¦rs*ç@1¨r“*çA1ªr&³*çB1¬r6Ó*çC‘³ô1Œ5•S XÓ½SðjÄ0ÕôÀZ:¼;·Ât‰·´ŸÁÍaÃ1ÃÐöcV+„0ãXAÄLx…†l0,Ùa˜²İe#ŒaÌF µF#”aÎF0Þp†AûÀ°è'{ Ó†'ß‹f'˜K'3ÍíµîÒ~7Gš{gä¹wyF¢» 02ÝU‚‘ê®"Œ\w•a`€«#Û]¥éî*ÆÈwW9FÂÛ]bd¼Ý%FÊÛ]bä¼Ý%FÒ?á1ŒhwUbDû­UI íöÒ Ä kþÒ%RÎn·2îj)7jµ¿´Î dò—VøÕö—òK+µ¿”Æsí/­ð³í/åg kiÅyûK+^¶·¿´‚gÙ_ZyµIþRϵ¿Äˆ ûK+^œB>"&ÿÄ¡ö—V¼µ+óÍ/û-ÇÓ Äôp$Ë­€¥¹àøç~·˜a5½\7Å\!7Í\A7Õ\a7ÝD€›r"ÄM;䦞sÓOZ B-ÁÖp+À¿õ|<$õ£Å <ѲoàïAËÅt,-žÎqèá ûºž¿Mû·…4lï–Ù°ûû6Šƒ¯¡vø>J‹/¡òøF “¤AÖ- ‡,k’Yõ$:²(J’dÍ”`É’*9“WJñaòÝ"Àr¯ÞS~L¦ðhú"—wÜÇKt—zö6B©ðä‹ÒèI'¥à“mJß'•úO®*o€TVΙ®|aG‚'Ë“ –cA–-?ƒ$\n9º¼âA.Ó!£•‘@B»7îá³6Óx”ÿìPŽL W“Ýìmê0cnK3_úS¯ ÚW¯º[¯)š_¯8zc㭳тÎÚXw4ÒЗ‡hÛRtõÆ0š~#šÀ“Ý-²áù^x A>2šÎà£<‚²¿Â¤ÞMß&ÍÊ[3$-oÜP¼¼­Có¦½Ì%rš Ô6—ˆq.6Ðê\Š å¹PAésƒè"Ð÷i!#ú²-TÆcúAÑÍÕšÛ­Õ…’Û‘ÕtjÿÈmMWn.¦-ù2‘Ö™¡‚ûr8Dr߇†îk唨}霼ï¤S¢÷•uJøq£\x‡÷áaÄuy´¶q›C\¶‡wñiQèªþÎÂxŒHú¾îNIÿVªJIÿKfSúœ¯.0e³é¯ÿø vë©Ýô½¯©ÍM…ç.HæÂ%µPJ²R“ª¤+5±JÂR“«¤,5ÁJÒR“¬¤-5ÑJâR“­¤®¶Jê+»II_­ãÝðüªš|%…IP’˜D%IDP™d%sU7¯™Ì¥¦[É\û¦›É\/»Í`®»é bp©®²›ö3¸90OB˜õ$”)pOBšù$´)°OBœý$Ô)ðOBž%ô)0PB ý`ýž ã¹!4ýñÚf?VÄÀCIÁÃ@ { Ü {/GŒõÌGvÓ Äàé8<¶^q g?ƒ›s9ýÊs;ýs=ýFõ^Ìõ _Ì õ`Ìõû`ÌõóaÌ%õëbÌ-•¡\S™Ê=•™¡\T™ÊM•"„Ènz€æŒúá0æŒî̓W#†1£vÓÄàI¹r»{¹$¸f7ƒ›Óc†!öÇ àíÄX!¼9+ØÄÙnb:±í&¦Ûnbº±í&¦Ûnb:²í& ¶›˜®l»‰é˶›˜Îl»‰éÍÇ{ŒÒŒm71ÍøVÄ(ÌøÀn:\~ñìÜrA4À~7gŒÛnb¹í&f”Ûnb†¹í&fœÛnbºí&>ÝÏñr®_žÃƒ”¶›˜Án»‰í>tÁ wÊ`Æ»m0Þ‡:˜Ìc”™OÐá¡ù[«’"Óì¦3{ Ž•ãYÓ+žBÞÏ`žŸBðâ`R¨ß¢[zP2lZ`aûàS÷õÁ¨4në÷èXÜ>X•Æsý"Ý‚c4>˜µàyÜZÀ³|°káu,üJã¶~–Ža>8¶àñU!äb:<¼¬ƒV ^½¿•ùvù¹òc»é bJ=êËA«i¸BÜÍà3¬¾—+྘+ä¾™+辚+ì¾›p_N„¸o'‚Ü×aîû‰@ëD¨u زnÑø·$‡ôžc´¸‡'Zö=ü=h9°›Î´IHÃâ ¨W>õümÚ¿­¦a{·Ö†ÝßJŠƒu:ÔŽx¾®”–x¿ÇÇ¥¢0YDݲzˆ²fmUÏÊ#Š¢uIÔL«–(©Ö4Qq% xʮԟ½ xOù9°›NUŸò‚Uyâ!_”¼Š¯X/!´¾h©tÒB>ئe~Q›àª¶€@`º¶@„Æž,k‚4ZÆY¶l ’p™äè²DˆÙM‡ŒÖ~íÞO¸‡ÏØM'àÖ§)wgÓ‡÷²Hv;̘ÛÒ€ÆÌ—þ4Ö¥0’XµÒÝÆš.üÞ¡ê…¶Î~µßHDãíÑ—ûuE´í~z]½ßeDÓïGAƒŽw¶È~ò­ð`ƒ|d7ÀÇØÏþÑÝ!î¦o“få'F!iùýQ(^~œ‚X¼\Zô²xÖ´Èi~ój›D…§bC­N¥ˆRž •>•1 *rÔ U)#ª@Re<¦ÝT]¨¹ÝZ](¹ÙM'ð1» ?º½‚}ì¦o“ .nG‘\̺x¡$vÑFI𢕒èM _´T¿h«,ÑZY¢½²D‹e1ˆ6Ë‚­¶EAÚ½·0žIú¢ª’ôo¥ª”ô¿ô\^¢ÖëûMû÷òõÔlúÞ×Ôœ¸ˆ4ùVÞÿõÏ·21J ”¥Ô¢*qJ-¬©Ôâ*±J-°­Ô"+ñJ-´±Ôb+1«ubµÔ¢+qK-¼¹Ôâ+±K€½$(ñK‚Á,Ò0!+©„,µÜJÈÚ·ÜLÈz2u`6ALybðfÞ4y?ƒ›ƒë$ƒ)ØN2™‚ï:§!"O2›‚ó$Ã)XO2‚÷$ã)˜O2Ÿ‚û$*ØO2¡‚ÿ$#*P2£‚%C*XP2¥‚-D ƒø$ë)ˆo/ë½1ÕÌGfÓÄyRÍzÅ¥Þý nÎÇ´ÙÄüL›MÌ×´ÙÄüM›MÌç´ÙÄüN›MÌ÷´ÙÄüO›MÌ(TW›M̵UÁüQ[Ì'µÕÁüR[!DˆÍ¦ˆQÞ§Í&æ}î­ƒ#FqŸfÓ Ä ‡œmíËbm61…×3L©ß+À_¯S~½‚Lö 3%Ø`Šp¤ {1…ØcJ±HÙÑeʱÌd#œ)Éþ0EùxQªpä!Uø^Ä0TøÀl:ÜjšKmZ®¥ØÏàæ¬o`¸0+ÜG˜%î# Ì÷‘f‘ûH³Ê}äYæ>Á¬s™`ºT0+ÝG.˜¥î#ÌZ÷‘ f±ûH³ÚyŒ²Ë}‚Ùå·V%E—˜M'3•üŠilËAˆ+ú±Ý "í¾©Ì¦~np¨FÇ–æ”LÇšæ/+ëØÓ´‚ ëXT•Ù”Ç}e6åq[™MyªÖÊl*SW™My<ÕǺ&ÞÍÒ±¯œ$\™My<ÔÇÆ&¼5ëžì#bÒoÔUfSþŽöƒÙôrÄtj ™M'3–4¤q*öätÙÏà3¬®—+஘+ä®™+讚+ì®›pWN„¸k'‚ÜÕaîú‰@«D¨U Ø¢nÉø· ‡ÕžC´¸ƒ'Zöü=h90›N€¡YC¹Ö?_"÷Ôó·iÿ¶–†íÝJvëp(VéP;¬á¡´XáCå±þ‡ÂduuËÚ!Êš•ET=ëŽ(ŠV%Q3­Y¢¤ZÑDŵ\|T€,¢þìåÀ{ÊÏÙtÅGè kÉÑ)Wñ«Å „–âÁ-ÔƒNZÆÛ´È2j \5B” •µ}¦ksDØÖx² ÐhÛ`Ù65@Âmy€£Ûl61ÚÈS*„vï&ÜÃg̦ðÀC­]y+m¼B–ÛÍÞ¦3æ¶4 žyô§^´¯^5t·^S4¿^qôÆÆZçÈÜ*¿€±„ÆÛHC_n¢m7JÑÕ Ãlú…pjOv´È†:ä{áùÈl:ƒ"©$j–ñqÅÍÙÝômÒ¬´5SÒÒÆMÅKÛ:1múÔËT(§©`PmS9¡§bC­N¥ˆRž •>•1 *rÔ U)#ª@Re<¦ÝT]¨¹ÝZ](¹™M'ðÑ aFæG®iÅ>¨‚‹ÛQ$ó£†.^(‰]´Q¼h¥$zÑNIø¢¥’øE[eˆÖÊ"í•… Z,‹A´Y„hµ- Òî½…ñLÒU•¤+U¥¤ÿ³©Ÿdo0›~ùÓ~þóÇà¯'fÓÓ/8zEïŠK*ÈÎê'ôNÖêgô¦HÝJ^Ç„®4ÜxS^W¿¢ëE˜W¾&ưTm‡–ßWbÀòû¢Œ K[ÁaiŸzT=¤‹ Š‹+̃ƒÈZFŽè† âÌrá𦀸dyÓøû" ,§OŽŽK£÷‘ÂÍkІ °œ’ùÀ>ú”4sxÙ¸(3¶1noX h!Š/ŠÞ…˜¾l~cƒ†x¿4*J¢ÿFÅ•W!Ò1å9ú±ƒF3yìð58öÐ÷C˜Fˆ(.ÄŽ”CDŽ#ØbDZN£¯0Ðä›ßm8vÇ_…Rás`äCè¨ð7` ž±Ñ›#9b9Ç k‰ÈÎqÂç ¯§¦ÑÊQúeFr\Ä€æU‹ˆÐq†vøÐq†²hÑqaé*±£iT\D’Žd·ˆ+8 xL8Šß€˜ÓqU:æï0€¼Ðôó‹n¼Ð<Ùë-@\hž§ϧ1PNP³¿„¾V3¶1…׳Yz=Óå³ëU(ɾ^¡áÕkø}M¤kÕ‘$,D eXhA±„tb¡ ÉÅB R…N$ ¹HC>Ú, :ø> 98ýôG¦Íç1ÿ“SñøæK<¾jÆ6rkWEX·v\yk7FÈ·vj€kG8¸vx¼ð¯Ý¡âª WÕ@¹* ‚ÊUmb®J„€sU)„Ÿ«‚!ýˆ E\µ)â÷Õ„ˆç³Ø0ç00,åúÆxÅ‘ëjƶ—‘W¶ïü}iÕó.“Ñ7FDB‹/$u+w…‚²ôIæÓnÌtfwyÁ(!7§‘4Þò¿Ã!ò[ï«1Ð7‚_Šô{?òK>‹¥¸°m9…xÍK_ÕŒmÜUóÕÕ;n>à:z7ΫÖ{§Î«Ýyï:ÝÉÉBö×'ïþ]«Ë¿¹2¤Q3»jt -’RQòÙåÑÕ&'Í®DiÄgÊEÊ…öÞæ—6Zª[;×!òïkAúù¼†“÷Ž®ùþÒZ‘ðÀù,æòÎ[S^ŽÛ $«zÆ6²«ìµ·f^i;¤°²v¢4X[ƒÙ\;É£*·ó&Y!åˆÅ(m»¼p0Bø{ô©SÄŽÌÁ:[r0Òv„ضšG-FY¹ Ó3| Lõ¦ï¤ýQîµ¼ýzNˆxµÎÇg10Î}È–Wœâ©glc—åÙÄßšiÕ*àf·V¨tu^½•ß7D7¨UG§(D ‹ZÐa IÌî ÊЙ èZ…Nt´B.ºÝ£}½¡0€Þð>  7 ìíÏ‚`(®^o® …õ”m”[´­BŠÑ– ™FÛ1$mÕw´CúÑYHÛ?$#•ÈI*šTR C©Ü@¢R)‚|¥2iK% ²×!€H¤b‘è¾b‘¨{ŸAWzîW°ÂzÊ6ê®âWÐdŽ ×Š—AËgƒÎ+> X\ú°x ´cqDèÊâМÅ-©G“wR«&'¥Ž=úûúವþ}¤‹B-¾B-îæ/܃鲦‘ç¤6&þöŸÿf—ðÃD©'¶Äó¯xàKdº^ò1b˜Ô€0¥IýCœÔì1ãI # Ô&2!J=$¤Ô`2_JÝ'ã§§O•t*õ­ ¯RSËl+u¼L¾R;Ì\,õÊLÍR#ÍL-錙 è1eJ])C¦öm) ÷ªžSfÅYd“}™®xý¾ž¸M9oR{˜')ˆqƒ3Ë‘˜/'…‰és’Ÿ˜M'mŠÉu®˜k'U‹©w’¼˜‰'=Œ‰y˘§'%i{’Ù˜Å'Õò#2T'ÍŠIu{ÑêµÈ$Ì=²0>‰ {…¢\ópy=q›ò!Gç–ôH ÅÌ–”ŠÌäIIÌÌ¥”þÌÔJ‰ÓÌ´”rÍÄKÉÚÌÔæÍ´L âÌÒ”ZΤMIéÿoç®$ÇqQ__³ïÙuéÈ”-ŸòÔ2øÿ†vêdžîæn‘3ˆÞvD€«uoæ­®gsöP:ÂG i|U„Ë&Ú!\î#íŸU€ËÉ`ãve0Ù×s^?Ž ãnn)VÖeM$ÝEIë–¬uÃÀÙºÀnÝlP¸JP®B£«Œ€ì*2R6% W‚ïU¾À}7èßù™WeÆ=Spq'ãŽ;•ñ:~|9‚¾³[¸¥4jbXÕÔ¬=Æá\{ÈCÁ¶Àȶ@ðæ¼å¾¶Åú¶¥6·… r·e ®·E ê·%&¸bø¼Ï€§m5§}f5§=‚Ü© ž=;zº]¸¥{Û7 ÷6wܶ²õþÛ^_Ù´Ÿ?}^‡!\ô²åü\urýée‡ŒÕZ"ã;’M«û0à6Ÿ?}^g"Ðl¢†«¾QÆ5I\;ЇñRû™èõ®Út4r»2Æ'Ü?äM‘ÝÂ-.ke=v³[/Ú ‹QÍvÖÅf³kq#…úߥæ82ªsŽÈj«#Ázî´†<ò­[¸kå#ýF#3eÔG{c|†2&“Û•ñ441:ÐÇ#¾EÚ-ÜÒ£¸Sê¦Q9ÆUåoŽ•Ð+¢ XÊGã±—fg)= ÖR˜šº¥l5’KQk^—’×0/ñÑîg”Ë&§³jÒØ,ÕdŸ›QM&c”›•ñ>âS®†òÎÌná–¶oÍ£ÓÜ5¬Në×$;acî´ÍÀÓT6 OËÙô< i£õ´«’ÝhfʧÕmbŸF¸q~Úäfýi¢;(';s•YÚT=è>V?£ WnVF&l˜óp1t·pK-ߺ¬?3p­*×z¦2p­³‘ËÍÒ¸ZÕë{ A.G”“íÊ-͉<‹I‘<©É˜<ÇI <åɧ¬¤WV²-ëÉ—Õ…\ÌÚCjfe"S³n‘¸YÕÈã¬y¤uVD²¼y£AÔe9!ê:³œuÍ17KcûnÙU G¥ v„Ë6pD϶wÓ6ÄÖ¶†„Ú6ŽDÞ¶•â6Ä嶤„é6¬Dí¶³ âÛì&¦o+œÿuý½—M½|' òq{Pòñ3{Pòñ_Ï\›”Ï¿æ—ùÌ~ß}5R Ó_ hþæ—ü)‡oÈWyEŒ á;ÐG^ǃŒä]=þc½È7zÎõ–ßøFh½8¨LëýÀ̽l˜MÏ››…ù´^;ozz'^”¡Iy›Ö”W!Q59 œi{el°™¼7šiïCfú! Ì4Ñܪ ߯åëòvÀé´[º¥„4oäÂOóº.t5ïòÂ^ó¢/d6oÃmóŠ0T7ï'>ïåbˆpÞ<†×€.4¹ÆwaÍ5Ü ‰®Ñ_8u C±kÞú6ƃ_Þ+†ñ¶OÕ~XÏ¿ÒÜ¡ °HãNÑÛûï}o—n)]±AvØ‹¹Cflnc#òP ‡ùØx=DȆïáE6šM²Á}X“õC¢lèNeG¡Xv`ÆeÇ C§4_µ²Y|øû,þ‡µr2¦¹]¸dR”·§#nœn—n)˜u]X"t—}üc\7e _×-oú»¡àbÝn²Q  f• Z…Ä_O™‘÷)B·J®«¼çÎÏ Ð²j´ì©Ú€,;ÔÜ®ðîGÿzD¶¶[º¥LgdˆÏ×ð =Ì¡E{ÔÃ’¶@š¶Lð\»EJµ%†µµå þµ“èØNj`g;©¬í¤îö¼ß€JmMáËï3kJ Ô“QÍíÚxYüõ½°kÇwÄ|w»tKðÎjÀÅ;«&ï¬Ö¼³PôÎj Õ;«dÿ²áØ?of5ÃF;«ù¯‹;«ù]³š‘¼8«ùüée3«]à¬æc<T1|ÑFöÎj ÚŸÙ‹†g?ÖÜ®çñýÂõ>Èõ}Ÿ.®î–nqak3³ì5¡Ù”ZÔlY ,ª½e»5¿ˆAkŒT4ÎI[Ì4݈PKŽD5ìX;¼5ûˆ¿!ÊL:e´±wʧhc2®¹]Oϼôtýñùˆ×vK·ô@6â¸6»â0÷+Žz?s¡ø eÂ]("~éB‰iÞ–Ô4.å©Y]ŠW“¼”¶æ|)|MS›¦h6{Õ¿y¡¦ì¶SjÊd`s»6ê÷u|÷t9"ߨ.ÝÒF®¡vÚ¼FÞiˆ§El\ž²azÚËFíi>ħ5mLŸÆU8mm#þ4½¤%îx s‡i§;Z(m:›Y/Ú\>½è>—?¥ŒlnׯÃ81^^‡6žÈ7¶K·Ô® Ë‹‘.û0n ÖÒ-Ãxº¡ØR·Óª°´Jë°ÃÊ,ø‡Š+­D1Ú ®¼1éós«6ð°§j;ÚÜ!ŽñÇ>K"Ÿgëa‡É‘'2¹’ç5©“§9™”g=‰••€<Ë:AÚe! ³Æ”YÈѬO¤lV/28k Ÿw’ßùí'éÞ´áHøeQ!ü:³¨$üšmîÇÓe|Y{`2êGµDÎ~£L íÌÄÕ~ÝL˜í§ÏDÝ~MîGÓÄäëÕ#D_?·ûú-öà×µ‰çýŠ›ðÞO¼‰öýþ›à¿‡oÇߊc¤æ~iMj~f7šÔü—7c»þ<¸ù÷ÿù¿ï€F1¸ù›_2Ü1: ¨†(” :Í@„êCêK ‚¨6„¢:ÜŒêÃ7ª;þèeC?z]7'½HÈïcÖ•‡¼TÏ.S}¨Mõûa:5H æhó/”£šå@Žöf9Œ£’`G“ÁÍ­Ú#3þ­óüËv閲ƚP…DÖü*œ²¦[¡˜5û ã¬ÉXhÍÍÂGkªzZ3·°ÕšÈ…¼æ{2pÙ|ljÛúÍ0éë35Ãîú† ½7€ýª hi ÙBKÛ‡l?­&Šß nnׯûx5…¼ñzåné–r }j Š¡ï0Á8ô‘&^‡ô'øˆ>ï=Ñ·Ÿ`+ú0äE_‚Ëè“RP›ó‡éØ)@ˆ„Ù Bh‘/D Ü|Õ¤EŒ‚´¸çX€'ƒ›Ûµq˜Å÷Ñ_y&b»tK§ëÂ’¨»ì<ç¦ðV [ö0tÕÁ àU7`YÜ𖪃®n¾:¸!úsp,ÖÁ (Y7€fÜ€¡ž´:¸Òz¦6Âh nnׯëøÎ_žŽ#ø:¸Žìàv²ƒÈÊnà.;¸Êìàf³ƒž>_ŸãcOßã!A™ßCn I{ëδw P{cFµ÷ XOûð×GÆÆ{ÝgÖ”à'ƒ›ÛµÁSÅBŠß,ÝR´º7p¯{?,»·w ¶{·¨»7`¾{/$¼·† Æ{§ ¼7ŽàÍ{ ½·• Õ{— ˜½7Àxê}œ?¥ nîÐmŽšòötœOéà&p]X ¶.û0ë¦ k¹nÙ0žë†¾ç÷¾lLkÅKë+w^ŸÀÃû>^P }<+íËzmŸÝÆû&&}znÄÃúÀöLmÄÃÎ7÷Wq<Ž›©‡à[vk·49òíHr%–$uòÕI2©õIÊaP×÷*Gžåc–¤]¾tIÖ“¤¬(9ZëSR¶V¯dp­mIèZù’ßµ.&Ý›6 ¿ZT~YT~Í7·‹ãa Á¯Uåçvk·4rn+—@º^âê¶ ³Û$&ên ™ \ê-1yÛÏ„èmN±·uM߯¶ñ|ÚÞ†÷iŠí¿®¿÷um¨wcyjÞn4©ù™ÝhRó_zíS-Ÿÿß n~Û½‰V<Ð_Œnþæ—üä77êÔ…¹S¯$Ohˆ=õ©úÔņ÷SPphAõÇ ½È¬¡zë ˆê¼C*ª/Ǩ®=”£zú0êøCH2J´Š0Ì Úå ƒöv9Ä a€A“ÑÍ}Úpts9àìné–’»šQ…ëÕ+Ô¯¹oƒ Öô+İfcá‰59 m¬¹ZXdMÝB*k&ŽY»PΚç…Ö´/„´fá§5) ]Íö‹6`5f {l³ý°6š)~7º¹[#¤;äßíÒ-¥þ9º èèb £x‚Žn  :ºEèèR¡£8†Žn ®4QÝ@Ht?Ñ)tEg°0 G7ÖF¸…ŽnàîãùŸÕF°…“ÑÍ­ÚèWzïÃ]£ú£ –Žn†º°ÉÔ»ìÀFÝP¤n R7Œ©Û ät¥¿¼ì¤ U!OUf„Šôª̪€Á¶*o ®Ós#ÈÓ•3§§jâédts¯6.£¦<1ºÙ-ÝRÖ°³tHÄNÚá;‡‡bì”Ʊ3|ÈNøá#;ÿ‡žìíØÊÞ€¼ì͸ÌÞ;€Úì­˜ÎÞY€øìxÐÓ~#´d¯@K>³¦–<ÝÜ[SÞÞ®nùéáˆ(e»tKAåÞÁcî  çÞßîíéÞý îÍ ë/¾úã:º žÝ;GÐÛ½‘ÜÝûJ°ß½ÍÞ»Nã½ X^CôE Ö½FiýÌ^4œõÉèæŽscœ¯ã››ÇCÎíÒ-.lf–½>4›R—š-«‡eCu¸l·þ1莑ŠÞ!鬑™¾êÊ‘¨žëè‘·~ñ›¤L´¡YF{³|Š6&£›;´1Þ; Nàˆ^t·tKd#*Žk,sã-ŽzÃ/ ÑeÂàŒ"b¬F‰1t£ÉQž ì(^Æy”6Ã> ŸQ eÑ ¢i;©)¦lÔ”}ÊvJM™ŒnnׯûàÌ?7ð°j{ª6ð°³ÑÍíâH«1>õ}8âáˆÝÚ-MŽz"'WêyÔ©§y2©žõI¬Z ’gµN$íjIÖ“¤¬(9ZëSR¶V¯dp­mIèZù’ßµ.&Ý›6 ¿ZT~YT~ÍF7·‹ãeü±ãK΃ıY»¥‘s[¹ÒmôW· L˜Ý&1Qw[Èám0“·ýLˆÞæ4{[×ðmlϧímxŸ¦¸Ñþëú{?Ö†z7˜§æíF“šŸÙ&5ÿ•ÑÍóÛÀ}ÝüëßþPaÿø?° îèendstream endobj 671 0 obj << /Filter /FlateDecode /Length 188 >> stream xÚ]P¹ A íç+RΓÌÎÕz¢•Âtb!^Ëâñÿ8®®Èx9^Âã…à Eß<Îj4·̘œÈg`©1’@ , ò¶:ÖX›Š «'mé®o¸›Ê§×ÆŠÞ_Ëàô,ð<x|¨¥ÙåÕOn–—‚€2ÖF¤ZàШ›ÂœÝÆ_ÙQýÝw0Z6ÖÁ´U›4p5ÌýmÕ‹VªÝ "$L^üû’}ðk?þ=}¼ÂCmendstream endobj 672 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 673 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./colorPalettes2Fig.pdf) /PTEX.InfoDict 146 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 149 0 R >> /ExtGState << >> /Font << /F2 147 0 R /F3 148 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 30481 >> stream xœ½½K“&;v$¶¿¿"—ä‚¥x?–âHC³1“fD¶Ù6 NwŒTGSì&%Ó¿ ò‹¬Œº‘±˜š vfU&àŽwÞ¿ý§·þíŸßþõ—ÿãí_ßæo{÷6.ë·qz[×oÓú6oßÖùíO¿û¯oüåúóßþÍ_¿ýöÏ¿ôߺ®{ßݷ-ýùçßêþ÷KÇÿ!þü»ÿð¿§ÿkú›þß_þ´uo¿û¥ûOéÿýó/}þ‚·ÿí—eù6¥{_¾­ÃÛ‘‡ãž†é‡ØÞþP†sn߆ Ãa+Ã}ǰÏ_¼ç¡ »õmêºos—‡é·Ò°ç÷Îù«òpß0œ—4ò¿[†ã˜†ã·‰_Üíi8}ë—<œ¾mCn+†s¦¿‚áKÃôÕ/¿msî†éW™ºõÛ’ªiú¶Lú}ÿðËÏÿÔ‚$ý¦eÖ¾ —1ýïWÖ§ÌÕ¸”ÿo+¶ù¿¹>ý›X¢÷kP–è?i¹ó?Þ¶oü¿ã2Lë¾.eÞúîí7ÇÛ_ôùö›þåýÍO`£K¿ôœþ\Ò/ñë±QOÝ‘‡eQÊr§)ÚÊpÛ1LëO@þÌáÙžÂFŸ1žçm 6†ŸÁFBždltCúsžÇ_fêŽ_æôÑ\ÊpÏ›4ì6úë;' íeX>ƒól,ùÇ/Ã.ñÊEIPYÊpÊP™»¼(y¸dlL{þ¦<ÜF ûüÅe²Òpû6 eØgˆNé›Ö2òß<¥°/ÃqÁß;•¿j΋W†«ÁP†Û+l¤ŸkX˲Nyò¼–/_÷‡°‘þÉ 3Ã}cü5ØØÒoÓ¥™¸aßh¦îøeóç%&vÌ[BL{ù”Ç¢ôß–¾Z²¸Ò‚vúÞ²ÜãþmÜ ãÖ@e\KÒpèfã"L޳0¹pØwàq®ïqÄu¶o¤Ÿ«ëéçZÇg±‘~à¿l‡}cú5ØXûüwý |£™º#û>6äqÈ?Œ·ë±/¥\›ùX¨„·ú1í s‚4,ÛËİcƒb gq‰6üC,@C‚Êå) §ªx¥aW•¶¡`Ä…o(,Èeq˜K‘8åéçæ¨)CùãIP÷ÎPÙç2,0·ÛHá¸mÆäš‡+1Yœ‡ý†a‚÷˜Ö¸*à·Ô 6òÏ•~a#ÿ [ÿ(6òÏ¿bßXéL¨Øò¾Ñ§_â¦}ƒSwpCÎÃ~÷v=nS&hÚÌÇmD)ÇVŸ‡ãàB0nC®Ø*yˆm¤|ÊÇ­ÇÞŽ“‡Ýê4nþ!”§<ìf¯qÝ ”¶<,%…o\·ÜSýe1 BÑÓ´n/¹(jJþAR­šR~åÑš’Ân)ØØ~}ÆFŸ~ôgúï›ø§î ‘ËÃRÊAóò°¬/Hà¸.ø ‚"æá<™@æ!¥ÐË<ì‚|ŽkÁ¢¨i.½‰k–Z›‡ÃnÒ›‡…ça·™0—aaÞ ×)#Õ`Èøhþîµ3Í_¾ÌrÑq-¿sÆÆþsØØú\Sº1ë}ÂûM} §î`[ÚØöÒ<Æ¢”Ö2–l®´ »¾wЦÕ`@Kk¨ á5Ðfh– B´Ò†(mm¸á&ý|ß@kl ‡}èa+lôÝÏcÙÿËýrmæî r互÷k¨NÞÍ¡Iy¯‡båJ=Ëuj—«´0×(e®@ÐÑ\Ÿ ²¹zAƒsmƒBçÊýÎuêÞ9á€øå¢ñëÑ¢ñ+c}íJÍÄ}p¤ÏMʨ$gS9Ò&z«M!f›$Bê6…„n‚ ™Üô"ºÉ)$vSWð&¶’çI{%Þ“KÚŸý½cE¨[àT57…jþ(…j^ØhpXÍó? ²{V„¦Ì«?ÿþ_ßþêíïÿðŸÿô·¿«–frübŸùšêwÓ;7V[þY†Ä”>‡­roz õ›e\ù7y¼TNÏU3›ÇSeáäñXy8yÜW&NŸJ×^¹8y¼V6NOUžÇCeäôiûß+''—ÊÊÉã¡òrÒg·H‰WúÄ¢»—ù'ì*;§Ÿ!0µ=4ÐøuÒ\~ß3Gçb悘±ñùõˆifð(ã©R¯ò¸«\~‚¦*í+ûJë§òù³r–ÇCåìô‰6-•îÖKt§,×'ÒµTæNw•»Ó§gª4¿>³ßÊßÉã¡2xú š‰Å>Që½²x^ &ýDSeò”ßàËóÕˆ™,@¾òy. fíóî2-¥oh®Û<Êx¨¬ž>õ2såõô©áØ*%=ûJhïG*žÔáÓ E˜2}w•Šß§.l¬Ÿ~„s, aË"Èã®2}R/ ë‘CŸZí¹²}2"¶Ê÷!Blü¼@Lú‰–ÊúÉãý÷óÕˆÉÝè¹ûs1Û”±²ì¹ñžº;ªR3ƒy~²ÚSͰ¤y­À°eE)V(»Êê‡ˆÓ §Â=W.Pê¿­• ”Ç ‚†²Y²”V9A=ÄÄ@h÷5‚‡>—Ã@øÐqú ö´ó=&k}•!”Çý;Gè«3t08_{B³Ù*ÜŠ¸{ËAƒvÓüô¥ÜÄ.ž&j«|¡<*c¨ÇRG•È¿ce õié¦Êê{œMqJã±®Rý„OU,ÿC•?Ô種‚}!õ¥.@ÿêXÎ<Œwœ¼m§ðäÛ8$±Øæ!™E€¤e’[”HrQfh„º AÒ‹2É/Ê$Á(s £ BRŒ2 É1Ê($É(³,?"2ð¢,AÂ{¸,AÂ;u«.Cf€Ñ~õ»Tß`2ÐÕƒ+Bw. ]>¸&tûà¢Ðõƒ«B÷. _ ¸.|ƒàÂð‚+Ãw.-_B\[¾…¸¸|9¾­¹|㋼„ |‚à¾ð æ¾ð ~ÎÃJk›E±0±~÷OÿÏÛ_½ýõŸþúojØõiXäaýð‹jKb^ËQö³áŽ“}#üpíc‰ñ¡É<®L¬<î*kq*+NdB,Š›N{ú<çVŽêÇqÏ ç=}t+â\]‹ØgIWœÒÔQÓ4++»ÊÄrA«L¬<*kȺäwGý6fÕ9ÐrXÛÊ÷+@þeGº¦W´^»XW0³ÚÔ­ÅšXo Míæš±F:„ÆSecåqs„;Ѥ¹>áÆ}ec ‰f-••Ç]}|\&‚N—eâãðyÚp¦ÊÆFÞÕ…™¼¿‡€9 ‹$pÄ  y]Yy<¾3²¾3¹É=w²®`fÊÝǹÈÌý };‡i†2¶zŽi$x f\0ôM0~¼†#0§5NϽ²²ò¸¯¬¬!‹|5†ú¨cøAƒ5£iœk § s¯¬¬<*+kHEj®¬¬˜É[`eeåñüÎÊúr̤Ÿs;÷².a¦X¸ý¶ßqâ¸Ã4C‰ì•™•ÇCef Ý«Gµ ë­C&"•™5tƒ­ Çú¦SÇ«·ªU™øÔwRA_ëËNoßÊÌJDj«Í¬½áafx…™•ÆK÷!ŸI?aWßyêzÂÖ¦~Çýô7ëf¦bNdV³/7œ'lçð(ã¡¶³öÇvdg¥ñ\ÛY;,rÛYéwÝk;+/Fmgí°Ðmg¥ñXÛY;ŽéØÎÊsWÛYûŒû7²³v\Á°•Ækmg¥ñRÛYy\ÙYï1“ÿÅ©¶³ÒwŒïì¬/ÇLêp·s?ëf`e­åö-Òa3‡G̱š`­šd­‘šh­¡šl¬q4áÀ@4éÀH4ñÀP4ùÀXˆÀ`ˆÀhˆÀpˆ Àxˆø „Hψu SÌDSÌ|×Ô?„™3GëžVï3ù`×]ûLA;o4IkÃ^ZjAÜ–êx:]×¥PKâ¾jM\˜êx@]7¦P«¬%²–Ykd­³ÉZh­’µÒZ&k©µNÖZk¡¬Å–›OkSÜBmúN;|¨6yZW0³”£@Î4Ý 7·sxˆ3ZÒ'§´äOÎiK€œÔ–9«-rZ[ä¼¶$ȉmY3ÛÒ §¶åAÎmK„œÜ– 9»-rz[.ˆL­Sl‹‚ø;‹â!|æj]ÁÌT:&Üòî8˜ÞÎá¡Þ´šãÒ»VkPzÛX#ô¾±†ècÑ;Ð[FÐ{†Ð›ÆÐ»ÑÛFÑû†¡ Æ¡ÄgÚÂGû zíÀ zí§1ƒ^ûÔ׺š¡œ´€|Ëu¼v‰`±™C$‹Í"Zƒ‘—ÉT, ÂE1Hņު‹ÑÈ R*V£˜A$Œb1Š!DÆ(–!ãæ1Dʸ˜ óBCQ/ŠD½‡‹E½Sgë húbååˆn¿Ñ´“xHmkõPããÖ=Ôú¸”5?îìCí+ýpâÆ?Ü‚êA€â&Tïlx0ÀÏ àÐM¼6@·ÂÐÍð[t;ü”ݽtи%¯AS܃x)îÁÃ,˜îÁOÞÏZó6üÎÛú/ÿô÷·5,¸¾ý¡·õÃ/ª·´¹÷o9ÜqLu५GYgÔ—qåmåñTy[y‡OuzZ¢Ãazê}yÜUÞÖØã ˜ôÂQ¾õÄ<ž*ok„8ï.õkû,SæÓ•·•Ç]åm=”¿ù”ÿ‡ÊÛz™ô•·U~ƒwÞÖ×cƺé+oë f梡 .wôhíeÜUÞÖ˜«ò¶Æ4uKýÜYZü½~ ­§B«ÇÒzxÁ~K­ÛõöžZKã¾ò¶Æžºjëà™Ë÷sïRy[yÜWÞÖ˜6œ±ò¶ÆÜ÷WÞ1boëfòqíÊÛÊãõ·õå˜É tîm]Á .öÍxm½ÁÛjçð(ãn«ç˜¾‚×€oQzøˆ§×°æäm¥¢5ÖÞV*jsíme½¯ö¶Ò¸¯½­}Ñ}%ô€Ð7ÃÛJ”i¯½­4kokÇkZö¶2«¼­÷˜É?áP{[é'Úßy[_™üsçÞÖÌlèë—ìŠn·œ»hæð(ã±ö¶é\jo+“ÐÚÛÚ»æ:ïµÒÚÛíokÃÙxÅ×ýŒ_ø”·µ­ð_åmm¼~¬si\¿R;l|rNçD6\ó9’4îºøLþ‰¦æ=¿ñ£µiØøpâkoë förVg†7ü÷¯ÇL3‡y†¦Â|*‡úa¿Ü?×/ûmðÌ}Þj±F:•Æ}ý¸ßOÝç¹Ð¯Çy¯ gw|,Ï]ýÀß6àbΓm¸âófY¨ßøKã®>¯¶áaäf¼g­ó]©¿_ßy[_Žˆ_gÞÖ%Ì”÷ºöu$rnÀL=‡G̱º`­ºd­‘ºh­¡ºl¬qtáÀ@téÀHtñÀPtùÀX¨À`¨Àh¨Àp¨ Àx¨ø „Jψ¥ SÌDWÌ|×Õ?„™3oëŸ)Ï ì…Õ¬7î3¡m¼N%¹mã3’ãP B®Ûx®]rjIõ žüŠÇy®]r!jUȉGȨu!G¢†\‰Zr&jiȨµ!‡¢[s>­MÕ»€+„jäÇjÓ™·u½oÚʵ­ùÌ4sxˆ3†®Nº?8gøôÜ퀳†¯N¾8oøàÄá[€3Û× §¶ïAÎm_„œÜ¾ 9»}rzû.ˆ¼­S>8ðw>ÅCøÌÛº‚™±S—þ{º3íêM«9žñžŸ×`Ácž^£×0½†P c7}ÿTõÖÆ{ïxi½yEyPc‹ÃuKÊG;]=ÚÄ:£>¸Œ+o«ˆ6•·•ÇkÕgçñRy[y¯¶à9 whï1“~¢¡ò¶òwôï¼­¯ÇÌ ^â•·u 3pBË“§¹NýzÌ4sxÄ« Ö¨KÖ©‹ÖªËÆG D—ŒD E—Œ… †JŒ†Š ‡ÊŒ‡ Ï@¨øŒ„t†™èê™ïºú‡0sæm]ÁÌŠS:e·É޵τ´ò^•ä¶•OJŽC-¹nåÑvÉy¨%!÷¡Ö„¸òh»äBÔªQËBnD­ 9µ0äJÔÊ3QKCîD­ 9µ84ç³Úò!jÓwòáCµéÌÛºÔk—s¤K/äÜÅgBrg ]œ2tpÎðè¹Û7g _œ¶ Àš QË—'ßœ9| pêð=À¹ÃÙø –|ú«öUÀéÃw!Fìmqà* «pàï|Ї8ð™·uIÓ+ÓTþúåŽ^»ÃC½i5Ç=žÔ ·5ÚG%J±·†í5Fï@oAï]¥¨Ai5ÆÐ»ÑÛFÑû†¡ ãÔü ¶ðÑ>ƒ^;0ƒ^ûiÌ ×>õ¶®€fDÄ^I™ï¸TÜNâ!Ì›9E2oöÑ\ (²¹XP„s1¡HçbCÏň"Ÿ‹E@3Š„.v] )2ºXR„t1¥HébKóBCQÏʼn¢ÞÃʼn¢Þ©·u4ýñj·ÜŒi'ñÚnÖH5Þ¬’m®Y'Õ|³Rªýf­tÌjé˜õÒM0+¦Û`ÖL7¬ÚnY·Ý ²r»s|ÿ^±úÖ-ùÀ=0 ¦{ð0 ¦{ðSÞVÞž²¢ñÎÛú÷ÿü§wÁmùè̹³õƒ/©k`y! ¿aÇÙCFŸ Ú3£ÁÊtlÚ° Af¨Ú° fäÚ°¢½f Û°1ÏsZëôæ0·4Ü™ü–qŒõ–¹ÉØ£R2&nT žùÍ÷C×7GÌ#3å@7NPO—†È…CxÝ87 åø}«l·±CÏl·gû] u>_ö% d¶[š·WÖç±±”»âEÜ ÙLÝ¡DÅq¢Æ¼Å4,‚ÓGr f5æû¤Ã›“Ç jsGÅâqgÌ'²¦R!ýíœ"›ÿ!æKN=„F¦O¦aÁ³)§ÕŽÉ•iXTLæZæŒÙòÅH½LÃyy‰®”îgÛG(dþA¶§°oùZí §êóØ@šìXÔ᎛fêE±N$ j&¬/c\§ ŸA¾_›†;‡¹6NdÑ ˆf˜ŒÍ…  —MÃb=0zvZX÷L;-0.[;‘?3Ô6ýÅöàKÏxNù ÄÍÃ5À0-ô÷¿ÇÓdÓw‡i²éË+ƒák±Á4Ùi~éH};Èqyî–7Tš©;áì‰EÀ³§ñÏ^„C{É âíô½];-00”ZPadµ€Ä@kÁŒq×!ðQFe À Ò¼³}ºo0…ZØ` õ“Ø` 5;ç<]ÀFQõ í-·xõÔŠ~׆Ì`xm׌×fÎPymõŒœW!` ½ÊÃTDf¯è{ â‹ÊSNUñ Ò6›Ò…o RYpîþ”o0½^5…éõOÖ¦×ÛK‡é6Ê^¾ xÇ ÀfêŽ<Ì¥\Dn(ª‹iOa–:Dó 8L¿rnWD/yrPä3 ³!j: 'q0 Z;€‰ôHÅ%†Ò‡‰03áDtzÀû_Ã{là<¾¸è€¨ƒ'¹h¶ªÁá_9I°Qd—}ÖM©žË©¦îðÄŽ¼!ÅiõŒeÐ+#X²^`A;½Q‚åîü½ ùñPé7C%É·|³|\y ö‹1™!ÚÏÄ$œö à ï~"®þ~lÊßa£ßy# Øè·wÔ_ôó¿rŒ>µì¸­»ß!É5SwhCNÃ~í:ÇYͱ™gÁbŒ­>ë#C‚|ê`Œ2ÑwºUŠH·ëv)1YÛY£u]"”§4ä™õR¼ºUGÚKiëV=[Qþ¡n¡C„²ØIøEÑÌÊßK.Êš‚L7×”üƒ,aƒ5%ý„¯œ¡ úF9ƒ¹–>e»å­ˆzê¹|"¡š—†0…@³;ELÃy ™õÚ5èe~³±"ŸùwEM»R?‰«Oë‚Ö¦á°éíÈ‚H‰q›É„9{ óNØ 0)†n òvÂEÓwÓ*\4P˜Â¸h¾jõÊú<6†!×”ïƒN7¼CÜLݡЋöÐÓŽæÑ‹‚ÖÒK†ÆÓ ºë{§ªiØÒ *lx$¶Ã‚›e­´ ÊF[f.x³I?Ý7ØÃ ìaŸÄzØ ­ÓóypôeË@ðT~ÿ.C•#íÈÔ•´_SuÒnNMJ{=+UêYªT»TE¨…©ÆP)S¢Ž¦úD•MÕ‹œj:U>êwª‹T÷N Å/Š_OŠ_ÝôÚÑù<8ºr‡¶/]ì¸Ýpâ¶™»C’³¨i=ÊÕ¢³E)u‹BRÁ¤L.úI]äT;©«x[Éó¤½ïIŠ%íþÞ±"Ô-p®š‹R5’R5Ïlôò­$8°Ø;øùÛßýõ¿¿Ï0ûعùÑ×|¥u£Ü/õDÊS·©Ü05£ÊS¯ªÜ1µ²Ê%S§«Ü25ÂÊ5SŸ¬Ü3µÑÊES—­Ü45áÊUS®Ü5µðÊeS‡¯Ü6 Êu“´¢œ³@¥rÎÔ@+ç¬í Å¯k“˜svâç\@Ìí†N;ƒ‡Ã¥])œPÒ–Â GçYâ c ?”n¦pDÉj O”ê¦pE‰r _”f§pFIz o”â§pG ‚ ”^¨pHɉ ”Pû1 S”§0ÅVûjÄL–_¹<s»ÍÓÎàá„ÓÉq–H@•P®„TéèJP•Ì®„U©ðJ`•H¯„ViøJp•į„W9J€•A „XùJ•½ „Y¹J •9!„Èöy&¶JÜWbk«î5b˜Øzâý\@LkþÜ‘<ßÌàáeϰ„y­S˜½BLiö 2ÅÙ+Ì”g#€)ÐFS¢ ¦HaL™6)%¡L©6‚™bm„3åÚŸ¦`°Ç0Úˆa*ô³ˆa*ô‰#t1¥ÇZÑiÝñÌ^;ƒ‡“Ú½‹3ÉÝ»<“Þ]˜ï*Á¤xW&É»Ê0ÁUˆIô®RLªwc’½«“î]{<¿ï*ÙC~víÁ³\e{_ÿ€Ç0yÞU‰ÉóÏV%&ÏŸøDŸFŒ.¯ñ©½ñŽPèfóüô…˜)æPÊ+êyÎL³‡þf&š•©™j_d0YÇ3ÓMS³WŽQ¯•eT¦®òŒòxª™v‡à3q4ÙÁÔ"b&ßáq-!äbºrôØÌ·CšÀ³Ì7ë]çîÑ•=¦ä,ìå)Ï[ì£v˜aö»^¶Ã^!vË^A6Ó^aöÚF@ß¿W6’¤F^SŸ/JB¥Á„pi úH‚Ð'DêÎ9bÔ 1mÿbN<¥+Ì·\ÝŠDœÿ¼m‘Æ£]\ò™vy©kªßT%¤Í©ŠHºS•‘²§*$áOUJº ª˜dCU9©Šª‚U%¥IªŠJ²T•í̳P…%ŸW%)‚ªJ­$øPU:qš®t×ÅjŠ?oã1’ŒÅ¥Æ‹IJ¬Ó”–/&*©_LUN€˜¬Œ1]ùb²Ä”ƒH&-“BL[†˜¸,1u9 bò2H„YOçÌWƒ˜oë0<Ã|Ïü§+ ÞIóŸ·õJr ÔÆ £[@7ëb·ëd7ìf·l°›6BØmAìÆ0vëF »y#”ݾL5À§ZàOÕ„öv×F »ëgƒîúÔ•º™¡l/ñçm‚Œ7J^ÞÆ)‰y›§dæ2@IÍe‚’›Ë%9—Ù *C”ô\¦(ù¹ŒQt™£dè2HIÑe’’£Ë(%I—YJ–Jx.K”ðž-K”ðμª éËžñçmª¯™ uusEêîæ’ÔåÍ5©Û›‹R×7W¥îo.K_À\—¾¹°|qeùâÒò%ĵå[ˆ‹Ë×ãûךË7¾ÈKÈÐ'0÷¥Oð,÷¥Oð3V!ïã+ ëoþ¿ae{X?ü¢w÷¶ibÝqC _>ØÇã#“Ló‰J&ˆùÀ%Æâ<&hn×Ä=ê8͉³8ì‰÷gã,(Ðâ¨(Òâ$)Þ¯õAS&¬ù*Ø|L• m>ÅÊ7‰?J4«ú!Ņ̃@™hÖ¶òL4ûº]L4;q±®`­Y¿ì3wär4sx8jÐG°EèÚŒ*ônFú|7£}ü›Qˆ>ΨD—‰ ³åŒZôÑsF1J€TT£JE9JÀTÔ£NEAJUT¤$æW˜At¢O•3:± ¿3£…ÒW>ÖÌàTùXl‰á–\ßfgšJÆWæ©d~e¢ÊPfªleªÊFPæªle²Ê†Pf«l eºÊÆPæ«leÂÊQf¬leÊÊFQæ¬laDFÖ Ì0£U¶„2Z[[âË1ÃÃ'NÖ%Ìà– ,Ð;Þ>oçðpvrÌ1¯²—cÍkˆÜ ¯1³f?#̆6†˜mŒ1[Ú¤¨iŒ2›Úfvµ1Îlk˜}ýÁ>Ã,hc†YÐc†YÐ'^Ö%Ì”;,[?”–þÙ°ÃÃíÞË™áï®Ì€w­`F¼k 3ä]k˜àZÄ z×*fÔ»–1ÃÞµŽ÷6³v¼·o3k‡n3kçE*™Y;Þëú€Ï0sÞµ‰™óÏÖ&eΟ¸YŸÇLkgÝrԴ㌇ÚÎÚWÛ‘•ck;k‡°g;k_°F²³ò³ µµC´•Æcmgíèùmgíx®ßvÖ¾e;kÇ ÛYi¼ÖvsClgíxOKy™ü/Nµµ#@àYÜç ›s?ëÒ>ó³¼”¶-w³hæðˆ9V¬5P“¬5R­5T“­5V. ¨I'FÜÄCnò‰1‹Ä EbÔ"1l‘·ÁÏ€E ~F¤cÆM=1Ó6õOaæÄѺÔ7uåýN¼ÈxGf;‡‡÷rkmÜë­Å±ø®k…/K±–ø¶k¯K±ù¾k•´DÕ2iªuÒ"U ¥UªVJËT-•Ö©Z+-TµXróymòÍ)Ö¦V;|ª6xZ—ô™>øÌ-o1¶sx˜3JÒ§”ä/Î)K@œT–8«,qZYâ¼²$ĉeYˆ3;ÿœZ–‡8·,qrY&âì²TÄée¹#2µÎ9°, qàÖ¢xˆŸ¹ZW03•Ži³>³u7ØZíîMcŽÑ»Æ ·õ±÷õ²7ö³w6Ø[#ì½!öæÆ{wc½½1ÊÞߦ6`ŒS;ðg€ÚÂû {mc†½öØA¯}êk]ÍP®ïN4Ë-S3‰‡E0oæɼÙSDs1 ÈæbAÎÅ„"‹¼U#Š|.V]Ì(ºØQDt1¤ÈèbIÒ÷Ž)RúZ2EÌsB#QÏʼn¢Þ³ÅI¢Þ™³u4}鶇RæíÐ4“xXm÷¥zªñ¾sOµÞWò©æûÆ>Õ~_è§àûþt â9¸ ñZÝ?&@7Âo ЭðSt3üRÝ?d@7Dï4nÉkÐÀ=ð;tžeÁr~ÊÛÚ‡²»¾÷¶þþí-Æ•}ìnýð‹¾ÒÝRÆ—º4e€©VF˜:eeˆ©“VƘ:me©WF™:ue˜©“WÆ™:}e I PFÚè`<¼`+%AkR”Á&%BmR*”á&5H™fÕutfš©³W¦YÛÙ3Óì뮤3ÓìÄݺ‚™ÛÝ­v‡ JqS¡9…J±S˜¡=…JñS¢A…%J1T˜¢E…-JqT£ß]bX£Ÿeb˜c¼Úe!uB_î7Ÿ)Õùfž(Qቭ‚øõ˜±rúÊݺ‚™ÆÝïØgš9<œjê˘zê÷̘ŠêçÎø~«_CcªªKcêªßRc*«ŸZcj«_bcª«jcꫜ¥ÂÊQj¬œ¥ÊÊYQ꬜aDîÖ Ì0¥Õo°1¥µu*¾3Li=q·.a¦q·îÀL3‡‡Ó“cŽé,x p?ÖOÄvÀœÜ-¦;ÛÝbú³Ý-¦CÛÝbz´Ý-¦KÛÝ¢Âiw‹éÔv·˜^mw‹éÖv·˜~}¾Ï( ÚîÓ ŸÅŒÒ OÜ­K˜©Ý­;®ƒ¶sx8¥ÝîSÜín1åÝîSàín1%ÞîSäín1!^ñãd?ã‡gXìn1ÅÞîSî}Òc[šWj‡OÎé¤ÈÆ«`:I’Æ]÷ŸQê|¼ç‡7ûŸ­MJ?q·>™p·æÒØß¡5s˜gh*üÀ'¢¶ §ytbjñ¬€NTmPø|âj±F:‘•Æ}ý¸ß…Ð'ºð~œøÚÐøûD؆û}blßò‰² A|â,¿´_¿ñÇäŸXÛð€0ò 3Þ³Ö ¯ Ïrà±gîÖ5>SÞrã+¡w¨ÎÍ1ÇꃵꓵFꣵ†ê³µÆêÃ….¾­_ý#†ÜçcÖˆAëĨubØ:1n‚ŸëüŒH :ÇŒûzb¦íëŸẨ»u3ka¿ùÝPä§Þ¶ÏX â^nÁ{½9Ö v¬ôXKâ-@Ôšx µÈ‚!k•EÖ2 ެu$Y -X²VZÐd-µàÉZkA”µXªóymŠwQ›Zñ©Útân]ÁÌŒŒ±rÉoêîx9²™ÃÜÑÊ>9¥•rN;ä¤vÈYí,ÓÚy çµ3ANl炜٠ˆäÔr>Ĺ匈“Ë9g—³"N/çE‘»uÎíT·NÅCøÌݺ‚™±ä_®ýmoµsx¸79Fïk€Þ6Ö½o¬!zãXãMß?Õ½µ0¢ÞÛ/M²7÷C”ìÝýN%{{?cÉÞ߯\Rð#˜ÔüF&µ…ó}F½¶ß˜d¯ý,fØkŸº[W@Óm°(òß?Þñ´u;‰‡E0¿ðJ‘ÌÀRDóû°ÙâùXˆpñº,D:?>+‹UoÓRäS±’¨b&‘PÅN"¢Š¡DFK‰*¦)Ul%bž‰z*Nõž-NõÎÜ­K )óTNí ý i&ñ°Ú.Ö(5^¬Rj½X§Ô|±R©ýb­rœë­«·p öÊݲÛ@Öl7¢“úO·‚¬ÛnY¹ÝŽ1¾®X}ë–|äˆË=x–Ë=ø©·×"¿t·þæ/Ë>v·~øEµ»5àÉìi¸ãܪR¾Ô¥)L°RÂÔ)+EL´RÆÔi+…L¸RÊÔ©+ÅL¼RÎÔé+MJ€RÒ¤(EMJ‚RÖ¤4(…MJ„RÚ¤T(ÅÍjSÍŸJ5Sg¯T³¶³gªÙ—áS©f'îÖÌl3Cñ¸r”âmIxRƒ7(ÅMq„RäW8:Ãq†Rôw(ÅOqˆR—(ÅPqŠR·(ÅQqŒR$×(ÅRqŽR4÷(ÅSqRDiÕù=fŸ(Qñ‰­‚øå˜é¬œ¾r·®`FîV©ƒËyBÍÎ5µ»ÅÜS»[ÌEµ»ÅÜT»[ÌUµ»ÅÜU»[Ìeµ»ÅÜV»[Ìu"ÔY»[Ì…µ3ÂÜX;'Ì•µ³ÂÜY;/Ĉݭw˜QN«Ý-æ´¶NÅWcF9­'îÖ%ÌÐÝ*xßqw«ÃÃùÉžc9 Zæ/{˜Ïì5d~³×˜ùÎÆóŸ#‹jj1ÄühcŒùÒÆ Nc”ùÔÆ0ó«qæ[û3Àüëó}FyБJ…<è‡1Ã<èwëfèn-w¹[íÎi÷Iæ¸û$sÞ}Ò9ð> ÁœxŸ”`޼OR0gÞ'-˜Cï“Ì©÷I æØû$sî}Ò#-Tý\o•»5®¼¦“$i™ïînÝáT´sx”qW¹[9%v©Ü­<+w+»ÊÝ—k¤YiXk >Yk¤>Zk¨>[k¬>\PŸNŒ¸'†ÜçcÖˆAëĨubØ:1n‚ŸëüŒX :ÅŒûzb¦íëŸẨ»u­o*XY{ž÷;r›9<¼—[pã^oA޵À‚k…=Ö ~¬5Y‹,²VYPd-³àÈZgA’µÐ‚%k¥MÖR ž¬µDY‹­:ŸÖ& ˆ¬M­€øTm:q·®`fÆíÐ)gæ-w<ÅÝÎáaÎheŸœÒÊ?9§rR;ä¬vÈi# œ×Î9± rf;äÔv>ȹ팓Û9‘Ã*g…œÞÎ 1bwë”G8pëT<ÄÏÜ­+˜KÂâZq¿å.z;‡‡{Ó˜cô®^ö¶^#ö¾^CöÆ^cöÎÆ{kc„½w䨡77ÆØ»ƒìíQöþÆ0µa\Ú>Ò>ØgØk3ìµÆ zíSwë hp gîóß¿Þqd½ÄÃ"˜6s‰dÚì%¢©HdS±§b"‘NÅF"žŠ‘D>+‰€*f Uì$"ªJdT±”©b*‘RÅV"æ9¡‘¨§â$QïÙâ$QïÌݺ´Ó”cÍ2Þšz«íbRãÅ*¥Ö‹uJÍ+•Ú/Ö*7@¬VnX¯Ü±b» dÍv#ȪíVuÛÍ +·Û1Æ÷ï«oݒܱ`¹ϲ`¹?ãnËTÖè{wëïþïßÿößþôxß–/žº[?ø’æiÞÈ)ÏÿýëÞðøc~Zr@ÀYÚ0†yDŒð´ažÐ$#Z-w&­õù‹g´Øˆeæ…épåú0¯üÞòUy¸3ÿ-mÃoiÿȆæÄ/NÈ¥–ç~óPÉrsöL–+1tC,_\BêòépåW–±Î)çï où)]<ÞD¶ oýò5@DÂ[ž·W.Öç±±Ì%1´ì\Û¼º™ºƒ¹ŠCžî²ÜÅ´ÏÃ"º!“1Ÿ#(|‰C†Èð¦<dz«´ÇaQ`yo#öY2†Ôq¹.wn@ò?„¥roÏa> ³ìÀ*‡Ü¹—„Ê’_™‡EÉDºåzÊBÚ}™‡óò].ßù_.ª ¢!Ëò}†ý—a£`<ÏÛ+·êóØÀ݈e-™oÀF3uYó° ì‹CîÕKlh sÍÃòÄ;¶y¸sØå/&“FLlN"›‡KDÌæa±@;¬k_‰§ÍÃb^ ¼6AÏ ;ÊÃb}àÅç<,ÎbqËp 0äáö È”Í?Hq)›¿¼2¾Ì”Íóö•ú<6p½Õ| M®§î`sLl‰yŽi/!б(%":–¬®´ ¾·‹ðiƒÑÔ† ‚« $ÄZf½6‰mˆ"0ÛFœ¶á°íó}YÔÆ²¨Å³¨×ñ¥ûôYlØG(gKçáŽ[¿õÔ €÷†Œxxo×÷fŽhyoõžw!@,½ËB\DiïƒÀ{ ¡0.Oi8UÅkXQbtXz)¼T…o RYf‰3¾ {×dØ?ZSaŸ»W.Ó…š2—Ø¢¢Ì,à 5¥™º#s)‘Ë) [Ð<œá3 LÃi Š˜_©dîMæ —8?hò™†óÔt(}‰ëP‚Lk° ‘Þ¡¤ã˜§&iƒ0#éÄtz(ï€ ï±QN囋%òàQ.šÃvÀá_¹IŸÇÆP˜Æ\â­î¹]WOÝá‰íyOŠÓÞë9,J§×FÊ’%®ÀÇHÊ‚&®À·JÊrO›¿7ƒ!Q¾tR ’ $ßõÌuÀ6¦u&3Dsý[À¹þmfxç\‹.öì©O`#ý\¸lLËû$ê/ÆFúù_¹FzØ‚¾Ô”[ôÿfêmÈiØï±]O¯'a3wÞ†ÂV?î¼ …B€Ší2‘,QDòc:]”˜q¥U„”ˆœ"”§4äÉõR¼rRÍ¥mœõxþ¡‰.Êâ(ñEsQ$ÎjJ~ôgŒš2.ï#쿸¦ä·¥^¸C¸h¹ŠÐá¬Ëgêš©;Däò©„>h^žî%H`>£0EÌhMA ÓÎ]¡—ù¹­Š|"ÙÈÔtì!÷“¸úÄ.hmÆÄ¤w$ "%Îq[æ<ì1Ì;áØÁ¨ òð#.š¾›NPá¢ç£\4}_¹@øF ¤J™¼{ÜñNh3u‡@O,ÚCO;šG/ ZK/O/è®ïª¦U``K+¨°áØ fl–B¶Ò‚(m˜m¸àÍ&ýtß`+l°‡}ìa­ÛóypÌE¶ÏlÓ_~ÇÃÃÍÜRŽ´#SWÒ~MÕI»95)íõT¬T ¨g©NPíR¡¦C¥Lˆ:šêU6U/jpªmTèTù¨ß©.RÝ;%¿TT(~=YT(~%¬¿tu.0ŽòׯŸw)£b”œEå(H‹èQ® ¤˜-’H©[’B¸&erÑOŠè"§”ØE])À‹ØRží•xOR,i¿÷÷Ž¡nlsÕ\l”ªù“l”ªyf£—_Þ[³"TÞV®þõßÿñÿôöWoÿóoûû?þÛ‹<³Ý›}MíH—gpAiºåytd€¹/bF˜;Nfˆ¹!eƘûUf¹eF™»]f˜¹fÆ™{ef ¹•fFš;mf¨¹gÆšûtf°¹gF›»|f¸Y`Æ›åfžUÈdæ™›hfž}×E3óìËZ%džy:³•§Çu©ÿé_…˜fZ¿bP¡å-ZýbСÅ1!Z;cP¢¥5)ZycТ…91Z·cP£e=9ZõcУEAAZ3dP¤%EIZ¬}ܰ$Ç`Åï4¹¯FÌd ò•Ós1òq=·ßn°ˆÛ<”vj5œi¨Ë™–j-iª–Ú™¶j%ži¬ê™ÖjŸi®–ù™öj€i°6 ˜ki²¶˜6k‚i´6(„Y?/ƒôV üLoýNáÿjÄ0½õÄÿ¹€˜©¹øs¹£éngðP¢rÌ0•¯™c…Ø+ˆDçXa$>Abt ‰Ò0$N)'¡H¬#Ñ:ŽÄëø û£= Ñ$D?Œ&DŸ¸BWö˜1W¥¡áÍOŽÜ•){ RÛcGª{ìòH}*€Tø¨H*‚Tù¨2ˆGˆ*„Tú¨RH­*†Tû¨rH½*بRª’=$hWÑ<ËU¶PcÎy Rè£*!…þ᪄ú3¯è )»ËPªRÞi~=bšÌóÓ^`¦˜6*¿¨Ç±¸`š=483Ñü¼LÍTû ’˜,ŽåÓívxbÂúx3宼ãLºÏ2Óîv´Xbâ8BL"Áä»ýÛФý6ˆéòä`¾]¹Gö0ó͞ϤKU©XHå Û-r_;ƒGÌ0{^¯[b¯;f­ j­°úm!@í¸¢n]R3/„©×%¡R „` B¸t}$Cè"…ç1jã…˜¶1'¾ÒÄ@Dmêî0¤Û<¼‹KBÓ./…MU@œª„ô9UÉwª2R÷T…$þ©JIT“t¨*'eQUP£ª¤tIUQÉ–ª²£yª°ãóª$UPU©•ªJ'nÓÄàâNvýôÍ fŠRäÅ$%Ø‹iJÏ•Ü/¦*7@LVf˜®¼1aY bÊŽD$“–Q!¦-CL\6‡˜º\1y™$Bˆì§sæ+“AÌ·ub¾'Ôæ»åg…æòÌÞ->C;ƒ‡»Ñ˜at«±èf½Bìv½‚솽Âì–vÓF»m#ˆÝ¸ÆnÝd7o„²Û7‚©áT ü  šðÁÃîÚˆawý,bØ]Ÿ9SWˆÌ®w<ó•¤;ˆL3…‡%/oã”ļÍS2s ¤æ2AÉÍe„’œËŒ¬P•!Jz.S”ü\Æ( ºÌQ2t¤¤è2IÉÑe”’¤Ë,%ˈ %<—%JxÏ–%Jxg~ÕÈt7VíÖÕÍ©»›KR—7פno.J]ß\•º¿¹,}s]úæÂôÌ•é;˜KÓ—0×–o!.._£ï_k.ßø"/!CŸÀÜ—>Á³Ü—>ÁO¹XÝR>µïm¬ÿåÿô5ê±²Ë>´±~øEﮚ ¸u»åx¿â|«ŒON"0,V"P,Î]"p¬:– ¦§67ùô¡ÎrŲ:ó¹áÐgxÖW>Óª¥å1Û8oŠÀµ8ŽŠ@¶8­ŠÀ¶8ÌŠ@7ë? 8kÎû•€³8 Š€³ïºyœ}Ù¹.œYW0ÓŠçÈ·ñïx<¿™ÃCɃqÉ„qPÉ…qŽɆqÌɇq ɈqH|ä(!'3ós$/Æ t$3Zƒdr£5J&;ZÃdò£5N&CZer¤UæW˜ ép9’¿Ó ¿3£µÒWVÖ¥}¦\wÜÊ©žùŽçÒÚ9<qj%Ÿ¨Vú‘j'€ªv ±j'¬vÑj'‚®v*ñj'ƒ°v:k'„²vJ1k'…´vZ„yY/0ƒÈV;ŒlýΙørÌ0²õÄ̺‚™¡üÅ âêÖܬvE)Ws •&Ö`Æ-C¯ÑïÇk8sZcD=ATt`QÒ1ü AêšÆ(¢ªȲŒ#ê:>ˆÂþhŸA4t`ÑÐOc†ÑÐ'vÖÌ쥫_:üyŸiæðPd{ìåˆt½‘ïQ  µ‘ñQK)µQ‹:Þ¿U­Bd}Ô2DÚG­ëxW~Ö¾£VÉÏÚ¡…ÛÏÚyŸJ~Ö¾¡ÒœóDÐGmBýõ‰ôg†ÖÌà8rßeVÓ÷wôhÍe<ÔŽVÕ¨­4žkGk‡¶gGk_°Fr´Òx­­Ú ­4kGkGÛoGk/o÷‡£µƒoÙÑÚqÃŽV¯µ£…‘p´ö=ÝЄüÖ=Z~ ¦v´ö’&ð0î·]½Ä+KëÒ>S^¤Y'dŠßá‚6sxī֨OÖ©æºÏæ»'ܧ#îã‰!÷ùĘubÐ:1j¶Î@Œ[‡àgÀ:?#’‚Î1㾞˜iûú§0sbj}3º‚‹‡?î9ØÌáá½Ür÷zËq¬¾2ÅZá;S¬%¾4ÅZã[S¬E¾6ÅZ%9QµLr£jäHÕBÉ•ª•’3UK%wªÖJU-–â|^›|е©•ŸªM'¶Ö•}f-û »§;‚wÛ9<Ì¥ê‹SJõç”+ N*×@œU®‚8­\q^¹âÄr-Ä™†HN-×Cœ[®ˆ8¹\qv¹*âôr]„ùZçX.…8pëR<ÅOŒ­+˜™Ê¥»Ó &|[ß$gK½iÌ1z×Xô¶^#ö¾^CöÆ^cöÎÆ{kc„½·1ÄÞÜcïn ²·7FÙûÃÔŒqjþ P[ø`Ÿa¯m̰×~3ìµÏ¬­«ÅÉoßÒ85“xXófN‘Ì›=E4Šl.á\L(Ò¹ØÈ^U1¢ÈçbEÐÅŒ"¡‹EDCŠŒ.–!}ý˜"¥o'SÄ<'4õ\œ(ê=[œ$ê™[×T½Üg…÷wB§Ãç¢ÖiŸ ¡Õás!Ô:|.„^‡Ï…Pìö†D‡Ï…è‡1£èŸëf–²ÏŸë–ÚÔÎá¡ðöð¹î>ÂßÃçB8|ø\Ÿ áòás!¡zÖ·‘ý®Þe±Ï…pûð¹6ÞFÖ™miž­6¾A§3#ï…éLIwÝG|†aôÕ+ª÷£µ‰aôg>×%<3eŸ¹ã Èvó MxÑWg£¶ k®³SÛþ¡³U´>Ÿ½Jã±>›•Æ}ýÚß­Ðg»Òx­ßûÛ ølØV^ñ³cø–Ï–m¸â³g¹E©ýCœHœ]Ûð¢0ò 3C9³í³^[Éx˜ë¢^â•ÏõyÌøÙPÜ®XïØgš9×%Ì”û¡®»§×næðposŒÞ5Ö½m¬zßXCôƱƛ¾ª{kaD½·Ÿždoî—)Ù»ûáJöö~×’½¿Ÿ½¤6àW1©øÑLj çûŒzm?:É^ûY̨×>󹮚m͆ú~Ç¡Òv‹`~ò•"™_„¥ˆæc)²Å{²áâ¹Yˆt~Vf««¥È§b%PÅL"¡ŠDDC‰Œ*–!UL%RªØJÄ<'4õTœ$ê=[œ$êù\—všâpÅŸ·)Áb4RÛťƋUJ­딚/V*µ_¬Un€Ã¾õ‚õnÁ^ù\rÄšåFˆUË­ë¶›AVn·£ïŸ+Vߺ%¹bÁržeÁr~ÆçÊ :ï®ø\þ·ßÿ¡oŒ.š}htýð‹jºcݶÛÈ7SÀܰ1%ÌM1SÄÜ43eÌM5SÈÜt3¥ÌM9SÌÜ´3åÌM=SÐÜô3%Í¢SÔ,0eÍ¢SØ,:0¥Í¢SÜ,Z0å-„!¤žUPeê™›|¦ž}×ä+õì« ÊÔ³3£ëó˜qM,——醚ØÎá¡8B‹oŒ+´8Ç8C‹wŒ;´¸Ç8D‹ŒK´8È8E‹‡Œ[´¸È8F‹Œk´8É8G‹—Œ{´¸É8H‹ŸŒ‹´8Ê8É ßcñНø˜øå˜é,¢¾2º®ì3$ßźÈµÜÉiš¹§at!5Œ.䦆х\Õ0º»FrYÃèBnk]Èu £ ¹¯UDJ®.䯆I‚\Ù0Q;& riÄ!Flt½Ã s\ÃèBŽëw¦ÅWcF9®'F×Ì@zÞÊÁÄí–\úfå+ÇS¸ñ Ÿ9Öùͱ†ÈwŽ5Fþs`ùÐUNÕÔbùÒ1äO)v£È¯ #ß:0Žüëø ûƒ}†yÑUbUÉ‹~3Ì‹>1º.a’P÷áêÝÌá¡÷8´€œ÷8Ô€ø8ô€œø8ù84œù8Tú8t±ò²²e Ç>m ç>u¬¼¬¬C,õ¡•ÏçéÐÈÊ c:T’ÆS÷Ÿa.}Â@.ýõ‰¹ôgF×¥Ú„#;%)q»Ã´hçð(ã®2ºÆµÃšëðTKetåqW]cËZÎJã¹2ºòx¬Œ®<î+£+ÏÕ^]eî*£+—úpÙ‚‹">|–ÆsetåñT^[ðTÛµ÷˜I?ÑP]ù;úwF××cfP/ñÊ躄™rübÇñ;kçðˆ9VK¬5Pˬ5RKÍ5tËÍ5vKN ¸e'FÜÒCnù‰1KÄ %bÔ’1lÉ·$ÁÏ€% ~F¬ bÆ->1Ó¶øOaæÄèºÎ‘t” Þ¶ÏXâ^ní{½µ9Ökw¬ÖöXK¬ý±ÖXd-²vÈZem‘µÌÚ#kµIÖBk—¬•Ö6YK­}²ÖZe-¶}Z›¬%²6µZâSµéÄèºÞkïS®PËvÃã)íæŒùÉ)msÚ$ 'µ‰@Îj“œ6â±ÀymRÛÄ g¶ÉANm„œÛ& 9¹M™­2YÈémÂ#6ºN9p$e·¦ÅSøÄ躴ϔÐX¤ù8òm}“.ö¦1Çè]½ìm½Fì}½†ì½ÆìöÖÆ{ïÈXConŒ±w7ÙÛ£ìýaj¸´}¤-|°Ï°×6fØk?ŒöÚgFץƩÜÍÙæÒlßqC½ÄÃ"˜6s‰dÚì%¢©HdS±§b"‘NÅF"žŠ‘D>+‰€*f Uì$"ªJdT±”©b*‘RÅV"æ9¡‘¨§â$QïÙâ$QïÌèú …ÆÞ¦‹ÑHmk”/V)µ^¬Sj¾X©Ô~±V¹bµr Äzå&ˆËmk–!V-·B¬ÛnY¹ÝŽ>¾¯X}ë–|äˆË=x–Ë=ø£+3èéÇF×Ð]%ã-?&ynsýàKÞím7¾Ø‚”´~ëЫ!C­ßz´ÃHXë·Ý2ò×òpg[Ÿ¿xD¯ì¶>qŽ™¹o{Z‡DŠð½¥#ÏÃ!qi§è·H…KI¿­(›H”ë7E–÷€óPñsóPÞ§˜9òe»’ìòr¥³ÏWñª0sþ¾—ÒÎC|ÊÃï«ó“³_‚HÄÀåy{eg}Cy+aDSvYj¦î`øbŸQ‘×͘‡E}Cpc¿“x Ö±Ot¨”@„>æa‘ö ™ß5Ab`y£<äRAKAy§e}SØd–BK~ee䰛ʰ`1–ù=Rúr™‡EÒDf~ ¤°7dæá¼¼ÄF—ëxy@¦w~dùA¶§°Qt´¸ˆ ÷Þ%&ç˯Q€†¢Ä¸<¥áT¯aE‰Ñê%cÄ…o RYf‰3¾ {×Ý?ZStŸ»WvÓ.ZÞAË ™áެšfêŽ<,¥œD.Ç„lAóp®Ï$0 §%(b~'§"éWÞç —8Shò™†óÔt( ‚‰ëP’Lk° ‘Þ¡Äç˜CÞ!L˜…b:=”W †÷Ø('õÍE‡’‰ð(íWqøW¶Òg±!±w×úþuêTSwhb×w§0íë®ÇFð»lz‹¤,Yú‰ùTIYÐuÑK&e¹³ÀßÖYï ¨¬“¡’äû¿€Ù:r×Á˜Ì]{bÎvû†a†÷ÚWÿ²×Yæï±±Î¼+ld“ kÿÒ>úü¾±—Œ+H»9Mï®}SwhC^vÞ‘Âv½l¼²„Í|YyC [ý²ò‚ AîÇ(Ë¢ëQ¥ˆ,³ng—“›Õ5 PîNç(OiÈÓì¥x-£»—Ò¶ŒzÐÿÐ@»eq‘ Œ¢¹ô(g5M´kJþA–‡°Áš’~ÂW6Ñç±±”C/SIåìïà¢ÍÔ"r¹­êMóòQ!ýÒQ÷\€ŽÚ{!yH ¯èèE>ûy—°Ÿ©i.½‰k…Öæá°›ôæ!UJœ‡Åsa.ÃüÎ ‚aÞ(ýæ¢ù»i edç/¯Ôý'¸hñôylàEHpÑiºãàe=uÀ˜Øò¡i/Íc,Ji-cÉJã ºë{§hZ ´´† ^ í°a†fÙ D+mˆ¢Ñ6€Ù† ÞlÒO÷ ô°ÆzØG±¶ÂFkû\%Kù3[?w Ú8¨iG¦®¤ýšª“vsjRÚë©X©PÏR Ú¥*B-L5†J™*u4Õ'ªlª^ÔàTۨЩòQ¿S]¤ºwJ8(~©¨Püz²¨PüZº×öÎ…ªRã–'›¹;$9‹ÊQÑ£\-H1[$‘R·($…pLÊ䢟ÑEN)±‹ºR€±¥¯JÒU•ZQð¡ªtâ5]î®·b6 w¼ÓÎàa¦(=žLÒr=™¦Õ|2Q‹ýdªöÈdméÚI ¶Ñ@¦l‚LÚ6™¶] 2q›dêö@Èäm‘!2ŸN™¯-2ßï<†g˜ï™uau½n¹6Mw¸ í êF«.Ýjµ¥›B·+ˆn8VÝr Ýt Ýv Ýx l¤—,¢›„¢ÛC „S-ð'€jÂ{ ºë@ ºë‡ƒîúÔ—ºB}ËKåët[f|;…‡%/oã”ļÍS2s ¤æ2AÉÍe„’œË %;—!Jz.S”ü\Æ( ºÌQ2t¤¤è2IÉÑe”’¤Ë,%ˈ %<—%JxÏ–%JxgnÕ&S®wÄŸ·©¾f2ÔÕÍ©»›KR—7פno.J]ß\•º¿¹,}s]úæÂôÌ•é;˜KÓ—0צoa.N_Ã\¾‡¹|㋼„ }s_úÏr_ú?ãae²¾ž™XxÌX³]¬~Q-â5ýòúìºÝq¶Y`q¸EÆÇ&‘%§*‘5‡.‘EVÉÑ#›Î{úDgÙjªŸN|VYh}ec1K­:Mºâœ¦›"‹-΢"«-Žª"Ë-N²"ëÍò³ÏšÃ~޳ê$(²Ï¾kæ™}öu‡º}væc}3mÈâ-[Z;‡‡B ã6B ã”6B ã7BãŒ7Bã8Bã„øÈÛO:@NbæóåeŒãçm´ÉPGK” }´„ÉPHKœ ´ÊPI‹Ì¯03@ÓÉr„,~'~9fFK¥¯œ¬+û dæuØï’™Û9<”~j!_é¨ú•ž*#@éª2 ”¾*#Aé¬2”Þ*#Bé®2*”þ*#Cé°2:”+#Dé²2J”>+#Eé´2Z”©(+ëf˜æ*cBi®­1ñå˜ašë‰—u3H;œ uºåŒ`;‡‡S–cŽ‘Âk€”æX#¤8Ç"UÃkÌhc€)ÑÆS¤!¦LcL¡6™RmŒ2ÅÚfʵ1Žìø %û£}†©ÑÆ S£Æ S£OܬK|¦CÒøDVsWÒxì3Hs½iï±×# >jÒâ£V M>j Òæ£Ö !!jQÇË·ªUH³Z†´û¨uïßÊÎÚwÔ*ÙY;¤pÛY;/SÉÎÚ7Tšs>ƒtú¨MH§¸61þÌϺ´Ïìûù|ãú鰙㌇ÚÐÊ`¨ ­4žkCk‡´gC+?,SZi¼Ö†ÖiІVOmhíèúmhíå1ÿ0´vð-Z;.aØÐJãµ6´*†Ö>ã(Z×äÿÖ-Z~¦6´ö/ð0μ;Z—ø (/·æ¦;Úkçðð» æ¸Mæ¹æºÍæ» 'ܦ#nã‰!·ùĘebÐ21j¶Ì@Œ[†àgÀ2?#R‚Î1ã¶ž˜iÛú§0sâi]ã3Yj¾1í°ÃÃ{¹Õ6îõVãX |_е¦XK|cеÆW¦X‹|gеJj¢j™ÔFÕ:©‘ª…R+U+¥fª–JíT­•ªZ,Áù¼6ùökS«>U›N\­+˜ÙÊ+ñçm|Fг8£D}rJ‹þäœ6ÈIm³ÚT §µé@ÎkS‚œØ¦9³M rj›äÜ6EÈÉmš³ÛT!§·é"ŒÈÖ:åÀ6)È¿3)âÀg¾Ö¥ÚTôÎ^Å]}“-ö¦Õ—ÿ¡ZƒÒÛÆ¡÷5DokŒÞ90€Þ:0‚Þ;0„Þ<06кÑÛFÑû†¡ Æ©ø3@máƒ}½v`½öÓ˜A¯}êl]ÚhÊß¼#,þŽD©v‹`ÞÌ)’y³§ˆæb@‘ÍÅ‚"œ‹ E:Šx.Fù\¬(º˜Q$t±£ˆèbH‘ÑÅ’"¤ïS¤ôÕdŠ˜ç„F¢ž‹E½g‹“D½3o몌íÓüŽ×ÛI<¬¶ûb=Õxß»§ZïkùTó}kŸj¿/õÓ ðºñ$Ü„x1nC<(7"ÞãŠçàfÄkp;â1¸!~ë qK^ƒîß  {ð, –{ðSîÖŽ÷w^º[¯âæ?v·~øEÍ-ãÜÓwxg¯¿#ª `îÒ˜æN˜ bî”™0æNš dî´™PæNœ fîÔ™pæN~ÔK)UÚ\¹[LP³RÀ„5+ £^KÙ•¸6B ¢Á7+Lx³ÄijúJ:ÏÜÙ3ñì»Îž‰g_w-‰ggîÖ̤}ýͯ2ÞqÆ£ÃCQ„VÜUhEŽQ†VìuhEQˆVü•hEQŠV µhE‘QŒVÕo/!Ê1žfBÔcõr”…xØ }¹ß}B”¤Uç˜A´¢DF+~§ ~=f¬œ¾r·®`¦/×'úÒßç?ïŠãŒ§µy–1Õoš13ÕOžñAW¿ˆÆÌU?˜ÆLV¿§ÆÌV?·ÆLW¿ÆÆÌW?ÖÆLX9ÊŒ•3¢LY9'Êœ•³¢LZ9/JR”»õ3Ìpõ;lÌpmŠ/Ç 3\OÜ­+˜Ë3Bu¾eŸiæðp¶rÌ1²—c Ík„ìæXîDiØÝbö³Ý-fCÛÝbv´Ý-fKÛÝbö´Ý-fSÛÝbvµÝ-f[ÛÝBöu¸[ÈÆþ`ŸQV´Ý-fE?‹eEŸ¸[W03íp,¬&ÿyW¾x¸[Èpw ïán!>Ü-dć»… ùp·1îbª—üxÙOùá)»[ȸwkãdôØ–æ¥Úaã³s:)²ñ2˜N’¤qW¹[/0ƒLúêM¿ÕûÑÚÄLú3wëfàQà-¦õŽ­™ÃqO ¹Ï'ƬƒÖ ˆQëİubÜ:?Ö)ø‘tŽ÷õÄLÛ×?…™wë f–òXAüyÛ>c-ˆ{¹7îõäX ,رVXÐc-‰÷QkâA@žm—`ÈZeA‘µÌ‚#kIÖB –¬•4YK-x²ÖZe-–ê|^›âm@Ô¦V@|ª6¸[—ô™rú8þ¼ÏXt&g´²NÊ?8g8tÝ퀳†³NÎ8o8àÄá\€3ÛÙ §¶óAÎmg„œÜÎ 9»rz;/ˆܭSN8ðwNÅCøÌݺ‚™mÀÙ.ýyWßdw‹½i5Ç¥w­Ö PÃjJï[­!4èXãMß?U½µ1ÂÞ;^›DoQöô°õV%zûxʽ¼t m ¤vàw2©-œï3ìµãIôÚc†½ö©»u 4[9®ã?ohü)E0¿òJ‘ÌÀRDó±Ùâ YˆpñÂ,D:?@KÏïÓRäS±’¨b&‘PÅN"¢Š¡DFK‰*¦)Ul%bž‰z*Nõž-NõÎÜ­+ A¼aüy›,F#µ]¬Qj¼X¥Ôz±N©ùb¥RûÅZå8è[VOáì•»%·A¬Yn„XµÜ ±n¹bår;ÄÚ冈շnÉGîX°ÜƒgY°ÜƒŸzpE´–Ý­ø‹ÿñ—oé§ý‹ùí¿ÿùí¯Òø»êÿФI1Óìc¿ë‡_T{sIÿÀ[þw<ÿÄ 0÷m soÌ 1÷Î soÍ 2÷Þ *soÎ 3÷î :so?é©¡uxª…ÚƒÔ¬0hÍÚ¤§^v¥õíЇ¨M0ÈÍÚƒÞBBðY…XŸ¹×gðÙw½>ƒÏ¾ ± >;ó»®`¦/o0%f¼¿ƒƒ·sx(‘Ð ­Ñ1ÑЭñ1Ñ ­2QÑ"­12‘Ñ$­Q2ÑÑ&­q2Ò(#­‘2Q2tè÷˜A¢5E&,~§)~9f:k©¯ü®K˜)¹d}чRµ¸-•Ó:4£OÃïb4ªý.F§Úïb´ªý.F¯Úïb4«ý.F·Úïb´«ý.F¿F8¢aíw1:Ö^ £eí¥0zÖ^ £iíÅ0PÑ~×;Ì(ÊÕ~£\[ïâ«1£(׿ë fätÉõº-þ×~#–=ÇŒ`ö0¢ÙkÄg¯!#ž½ÆŒ€6 US‹!FLcŒ 6QmŒ2ÂÚfĵ1Žìø "ûƒ}F‘Ñ‘U…Èè‡1ÃÈè¿ë fðÈ2\¯©»ávz;‡‡¢Üãì¢Þãl¢àãì¢âãl¢äãì¢æãl¢èãìÅÊ›Ê:›(û8»¨û8Û±ò¦²Î~¤…ªŸðÍã¡ò»Æ•·Åt¶$§ÚïzDÓÇY DÓ?\›Mæw] .¹^7`¦žÃ£Œ»ÊïSû¶T~W•ß•Ç]åw©ý[ë3ZiÒ>ØgÐkfÐk?ôÚ§~×%ÐÜíwµ“xXÓf.‘L›½D4‰l*áTL$Ò©ØHÄS1’ȧb%PÅL"¡ŠDDC‰Œ*–!UL%RªØJÄ<'4õTœ$ê=[œ$êù]W@s»ßÕNâaµ]¬Qj¼X¥Ôz±N©ùb¥RûÅZåˆÕÊ-ë•› V,·A¬Yn„XµÜ ±n¹bår;ÄÚ冈շnÉGîX°ÜƒgY°ÜƒŸñ»Æ¹\£<÷»þÏ?ýþ÷|˜fß‹à·4Ü™—{ô —ùJ?£z2R®Wf žîçÏe@÷+óçV—¯g—/F”]>:0½9$°ß›4sü¾U\~Ù|ޏ~z—X ,~Y \~!à…©õyd”²×—«ÌÃzÃ>ÖLÜ¡ìÅ¡ƒÆÆdÆü<øþæÜÆìƒ©ŽùqðáÍ™ù‚{ù_qükP` ÞãF‚"…`˜ ÒÏ–yþ‡˜D Þ9•à d0ÅrXPÿ˜q™†E×dæ°‚Â1sXQºÞ#£P³ü/ñ‘¸uÿ 2p,n^ZWŸFF_nNôå]¹~ºAl&îPdë@’Á@×aÃê2îuØðùã;·ùZ<‡¹VdÕ ’MÃ©Š™Íwæ«Ú4,V#jÇŽu¶c#ƒñ¶#ù4ÃoÇ6_„;¸$ Î;˜(„Bn¯ÁÔÙôƒÇ©³cW_Š †ÎûKƒêÓȈ{Xù#xà ¾fâ={ZíIGH´—Ò^0„‡x9;}oW…S Œ®Pl-1öZ c(¶ ÈÈl”Ú‚/ã¶n†qŸî̪2˜Uý 2U~€W6Ôç‘ÁØ8QwÜí¬'îP<¼¶b†Çk£f´¼¶qÏk“g,½JCëU ø òÁÀ{—,¿Fé Ĩ0¥áT•­É*jéÇÉüT%oûQAp.ÿ”g0á^Õ„ ÷Vܧ_î•ÙôidÄ*øM¿þôz=qGæ.ú–óA¶ w<Û'ê—†Yô1Ì“[ÑÆôçÆE¤’ç {¿zQÌÒÝèꀑÙìGTw@nŽˆpžÓ1h23PD¢¼&(¼GNë‹Cxæ÷W–Ò§‘qÿý©zâOëÊÛS˜ônÕ##åWÉzÄ ÖÍz¢¤,g7铲ØÝäïÍPÈ·-”|€`ù0@†7Ö Á®3"@÷€,èÍ>û†Q‚v¾,ÑyÃÀUŠsTt#oJù­¹þITd™ñ…gôiPÜAªš¶ƒ›p¾Ÿ²{‡Îo:ÎÞ¾÷™£ÊÞž_S¼ñgÍvtUØ']‰ÊŸê}Ô…ì\Oö‘öP)6Yž]‰öA§×óÇïu¶=×°½×óå_èh •ê·Kê-¥qÛQ N Gúxû)o*ûð.ÃþkËFúé^Ù@Ÿ†ÁýP5iYÚ¶Óÿ)nÛéþ~—Ï!L&i4Of†iDo.ÓÆ4ê‚Sn«ôúL8óÕ³ÞlÔçq UÍ&Ïn»‘Ù€ä¦QqÀ€ó¨Ç(ýôiÉöh:¶…ªÚkf™¾•OFî¶ÔRý¼2e/œOÃàv[§ž´ƒmœ'´ÐOvi½¥;ô"•ÖÑ ¸óû¦h:µðèH ´« zY ®€†.X D‹,€¢xÑ\Ÿîh=tžÂgÀ 5k>ƒÆ©¹áXd=k…í¯P´÷B"Ò¾ ýH{6Ä%íçPž´×C–R€f¥AKõj—j ¤0ÕèdªIÑT¯ °©–A~;¥§T M=X M%<¿ô_>ƒÛÍ—zÖJÁ"\ЉEÆ "‹¨Qa‹£þ,ŽGuZ Úµø!•m±GêÞâ–TÅÅ<©™‹—RQk¥Þ.N+5žŒ·ÑêÏ¥lQFJÙRFHÙûþ3aP…rç‡ _ú+ÿý/Ó—¼ýÅþý÷g& ÒÉ>tY~ð%5k­ó; Vž—zå}©GT˜ZHå…©ÃTž˜På©?U™ÚWå•©»UžYï<3ä©7VšZg奩³Vžšoå­©/W›ÚvåµIQ~Y€Uùej{•_Öö½5F¿.¾ìÄ{ù<^ñÓ•‹hùáÅÛò(RPj“"%F)’ppJ%žu”¥HC)]Š<”¦HDédŠL”Œ¦HE©lŠ\”§HFitŠl”„§HG)|Š|”¨HH «/ðˆD hŠHl´/ÆËd½ð•#óy¼ ±7Íÿ¼-RSúªRKGT"ÕT²¶RO¥z+U¢¸RS¥™+UU’ºRW¥¸+•U‚¼R[¥×+ÕUr¾R_¥ö+Vf€Rcå(UVV‚ð!‹æ^˜Â*)^)¬­ÿÅxaë‰Oóy¼à±á¡/FÞW\Ûù;œ‹ìù¥Œîùg®²×‡¹Ë^?æ2{}™Ûìõg®³ñÁÜgã‡¹ÐÆs£?ŠÆ's§_æRßÌ­6þ™kýÁþœgã…9Ïâ…1Ï'îͼ”$ù—\Ç;øK3‡“×½3™Ýû;“Û½ÿ3ÙÝõÉï®L†w}aÀë“å]Ÿ˜<ïúÅdz×7&×»þ1ÙÞõ±5áü÷À¯\_{;ÿ€¿0IÞõˆIòÖ#ÉŸx:ð‚<ð)?è:öw„´4ó—g§Ü ~Ø÷8]"þÈClæ—=ì_óÏüjœµ~ꫵ¾j»µþêÊ…5íÂzzáK-¿ð'E@ø”`@üJN ¼¥5ý"øá¶sŽuòÂJÛÊ?‚•ÿç*T–Bxçᨙ½C;·d3nìÒÔ¸ïKpcYǪ!©ŽEE:kŽD>–$)€¬X’YФ²ÞIXd9”êÈj)I’Åt7—*µVði鑸ÇÊÓªžWè*8Ö îà}›È¬.]d–Wœl„q79ÎE"+,ŽMâ×¾Êë+cIYdq&ïÄúÈ&³Ì|¢“Yg>ðÉ,4ŸeVš„e‡Õçæó”Ìkmf‡}Ù©)F‡8KW³if+gôÇ;Ð53x8ÒÏ™ùçsÎŒô1hFú”4#}ˆš‘ƒ>cÍHBÁ¦´ïÚŒ4ônFJT$¢¤CE&JZT¤¢¤GE.JšT$£¤ßWˆAD¡Ïf3¢°•ò¾1£ÌWÞÒÄdƒ ³Ä|Èj¸ÃŒlgðpr¨Äu%‹J|Wò¨Äy%“J¼Wr©Ä}%›JüWò©Ì%£ÊÛ<Êx¨-¦Ü«ÕÓ¾‚’ÉbÚaYÛbÊ/²ÔS¯µÅ´ÃÒ¶Å”Ÿ7¬-¦Gfl1íx ßÓže‹içÅ'YLi¼ÖS9l1íx™Jy˜ü/NµÅ´ãyþG™o~p;÷˜. f)/`n¥6ÍÛ o´3xÄ «ïå ¸/æ ¹oæ º¯æ »ï&Ü—!îÛ‰ ÷õD˜û~"кjݶ¬€[tþ-Iàã!µç-îቖ¶‡-'.Ó°¬]œ(_îx³™¿Cû·µ4lïVÚ°ûû®Šƒ/¡vø¶J‹¯¡òø¾ “ÔAÖ-i‡,kRYõ¤;²(J•dÍ”fÉ’*E“WbñiòÍ#À²•Ÿ)?'>Óx/jñzǪföB ñä‹’éI'%â“mJâ'•@®*{€TVæ™®¬a§‚'Ë– –iA–-Kƒ$\†9ºìâAFÓ)£•—@BÛz ÏðÙ§é<¶Bñ^ §û YMì0cnK3_úS¯ ÚW¯º[¯)š_¯8zc㭳тÎÚXw4ÒЗ‡hÛRtõÆ0š~#šÀ»ZdÃò³ð@ƒ|æ5]ÀÎ_âTÝÞß'©xû€få­’–7n(^ÞÖ!ˆyÓ‡^æ’9Íj›Ë Ä8hu.Eò\¨ ô¹ŒAt‘ƒNèÛ¶}*ã9ý èæêÍíÑêBÉíÌmº‚¥à£œfØo¹ú^Oß!ÜWÇ!’û^94t_:§Äî+é”à}c½/´SÂûîøã:<,€¸-‹ .Ó£µ»ö°â*>,ˆ¸©O‹Bù ã5V éû2<%ýG©*%ýŸºÝ´uåöÃ;é<÷½åÄ´®-§}Mý‹Ž¹¶ ¥ÂÝÒF)àJm”°Ô¨* K¬´Ôè*`K°¸Ô(+ K´¼Ôh+૯¾æÊrR@XïT8<ÕªF_c@&¡@e`&©F^ÕÝlz©ñV WÛx3ÐëËnh3ÏëÄrº‚˜"ÕŒ8¸wK˜@3ƒ‡sö$†)‡Ob™rú$¦)ÇOb›rþ$Æ)Pbr%æ)GPbŸr%*‡ÐO 1§Ð/1Ç0$Bãï¡uösFÌI”ü1Ì ”¸§ÜÀVÜûrÄXÓ|e9]@ B‘¦Ò}¯wòlgðpœ§ßábܧŸéb¨_ñâ#¥~ä‹q¢~Œq£~"Œq¤~AŒq¥~`Œq¦~Œq§2$‡*ÃBq©24§*ÃCq«2D„YN/ÃxR?-ÆxÒÖ@øjÄ0ôÄrº€˜¡Ü5ÀcAëzǃ Í  ކà+€×c…ð*e¬`Wgˉ¡Æ¶œzlˉ¡È¶œšlˉ¡Ê¶œ(>Úrb(³-'†6Ûrb¨³-'†>Ÿï1 A¶åÄäG£ äËébÆòJÀRØÌÖßðºw;ƒ‡£Ém91ºÜ–£Ím91úÜ–£Ñm91:Ý–Ÿù§éxG×oÓáÉJ[NŒn·åÄhw¼`ô»f0Þ7–?ç1ŠZGêð(ý£UIIë'–ÓÄLå>6•á[Tfóü‚‡“rPDýZÝ6‚’épÓÛ‡ŸÒx¬G¥q_¿X·Áæöáª4^ë7ë6¥ñᬠïÑûðÖžåÃ]oeéðW÷õÃu Æðᱠϳ !¯3àif¶ÚðBþ£ÌwÈO›Ÿ[NƒC3ù°yÖ> stream xÚ]P» A ì÷+Rî“ìí«õ‰V Û‰…øjññÿOOäX˜Éf† Á f†¾<,f0u̘½(G`i0‘@¤€,ÊÖ6UlÑW5«jGWýßp¯j½]VNìö¬ÃSáyPx|¤¹)nÊâg:)†µ àŸ™s ©Ø]ÌÍ`Ì>Ävâ¯l¥nïÛÌ/.ÀøjVú¨w[Ÿ»Ýº3­ÿ\Û dÌAÂ;ÉŒ!È„KŸ‚ôïxšÔDšendstream endobj 675 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 676 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./symbolTableFig.pdf) /PTEX.InfoDict 153 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 157 0 R >> /ExtGState << >> /Font << /F1 154 0 R /F2 155 0 R /F3 156 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 3433 >> stream xœµ\i£Ý6ý~…ÙW3²6vÚB ¥ihZHÓ„^šÊÎ_G«g|Ó¤R4|ÈÍóµG>–ŽæèHW†åú˃åãÓøïÕ‹Ó+OßyãÕåÎÓ“Z•R ÿ|zçÑé•×u¼þâÞÛZO”r F­ܺ™åâáòÞ•‹«‹WË•Û^] þywy|oyûòñ'˵û·ŸÜ¾óÉÝ'ñŒY®<½úþrqýôÚE‚²˜°ªmqzݶEo¸:\0„Õàòäîòîò¨½vóϽyí­ß™åÓÓ{ï/jùèËõøïÁ 2Ö7OÁ®b¹aÕíê|ùˆEßìª,•àuA…by›_7›ªàŠºº\¼6åc(an­‰xÌ£3£Qµ+™x©2|˜ ʧÇË=+ö¸gÎæà™L­nÏ2zúܨOÇèôÞ¥÷#véÀmîõJ ;V¶ÅlËh=Z*ˆ–$žòðWåù1¿¾ëæZ§<Äì)šŸ:bõžÑŽÆ2èFcÉã¡U{/Ç0›]Uá‡V£±ä‹4°ØÏN0/.1Ñ DC“­r*qa¾Lj©£CªU£Q¢Å5jA"Ù ­ç!b20Ñô—¬øEˆäoô6 s‰ÑwTçú%ˆdd´‘ –vù² ÄX`kh; бQ­]¾"‘ ÔnbuU ¿*‘,ŠöóÝ%Š—Ô-•ø5ˆÉ®´†=ºø(}ëŠ F2*›’Á˜¦³ÊSߺ*ƒÑí³½›€¾$;`ãàÑå¿.‘üÊ6­/X K#®Tâ7d ’SÙô%J Äñ•+lü¦ Äæ˜ô%Õb´¾´Ë·d ’GÙ>ÇØ§q+ÄѦZ‚\Húˆâ¥Mgû€k›VҔѨTC÷ŠL=‘óÙ¦$ë0s0J"¸M+H†HnD†}¸µÍêGìª~ËŽ¨ù±I„&´+D3+"/-‘ 4³êQ!’¿Ûd &\˜hfÕ£BLkx\$›ƒH¾Ô̪G…HnÕÊ@¤ͬzˆÙÃq]m "_»œu'"yo/‘ 4³ÚR!’÷2S⬶l!»»Cü¶ D2ófV[*D³ êwd ’™7ê TZ…4¥»|W"™y+ .®,7Öñà÷d ’™·ê’ FÃ\þß—HfÞʨKòÞ¶<ôd ’™·ÓêÅ9hƒoÓs?È̼P—j½u)ñG2ÉË[u©Î»Ú‚We ÒŠ£P—¼Òg[C_“h÷Á˜V—ºÚh[CÿX"Yy;­.¾9ïÚЯÉ@¤G+ .6ž×[kè×e ’•wÓêâöeÄRâ2i]Ò ¨Kâ"ýŸÈ@$£ï¦Õ%”¥Ê}eå§2Éè»iu iþ0d»Ÿ ¼.‚&ܬ¶¸m7úå‘6‰Ðןûf(ݬ¶8“KÔ»¶ü\"}7«-±óOtwmySb2úÕPÎj‹+«â°kË[2Éè»Ym‰ë²tmè_È@$£ïfµ¥t »¶¼-‘-§ûYm)µ˜}y±7d ²™ƒYm)\L¾¼6ô;2iæÀÏjKmhZµ¿)‘ýxyV[b^L‹¹Ñ—×}!‘Œ¾P—ÔÐiÕ¾¬”þR"}?­.¥¡ÓïKCÿJ"}?­.:U_þp)ñ]ˆdô½€º4£_Jüµ D2ú^@]²/ßþoD 2£ï§ÕÅ”_ßÊ@$£¦ÕÅ£¿/Ú¿'‘Œ~˜V—‘Œþ­[2Éé‡iy)Ó¢}yê÷e ’Óòb“1ßÒ,c*ñˆäôô¼˜²hŸ7j¥'‘œ~˜–›'#Ò‚o±C¿—HKúaZ^J-¦] E¤oË@ZÇ™–—1óºú¡ DrúaZ^LZ̺¶;"iI?LŠ *H™-é4‡0mŠOÌ–ôAMªKÃ;t¥â]ŒdõAMÊ *,kðùë©È{2iQÔ¤¼´z—6×¥"ÿ ƒ‘Ì~ì:2Éíß—ÁHnÔ¤À¤íhÉb‘Ýÿ£Ff÷AM*LÃèMÚ‘Š| ƒ‘ü>¨I‰Im,7ü’ÁH†Ԥƴz$Ç)ƒ‘?¨I‘A¥²Ÿ6»>”ÁH–”ŒÎ¤ÅýºÅê‘ F¶ådt&ytWúÌcŒ|sñ´Î@[Þ÷¥ÿ,ƒ‘í3A€˨çcŒl?1Lë æx´é®`|"‚‘o.†iÉù1ÿ\¿`|*ƒ‘m+†iÁ}E¾ÐçŒlS1èLÚ™º/)÷/2Ùöb˜Ö™ÒÖf_Úù« F¶³¦u&ïJ›‹ë8üSŒl_1èLªÇèÕkÿ› F2ÿ€:“0¢Iÿ¥"ÿ.ƒ‘Öùt&a$ûÿŒ´Ð8­3%‡—·C¤"ÿ)ƒ‘ü? €Î„¼Z†ÿK"Û#€³*ƒQ±l~ÃWtü÷$D=0ŸÀY•AŸ1jß~úŒlgUF«²m;¤=ö©ÈÿÊ`¤}п¼3kÞ¿¼3ÏÜ¿¼s3Û¿¼3—yØ ÞÌìŸÆÑ`æË¨»‚™a:lmî fNFw¿h Óº"èî7 ´`Zñ=ʰÃK~FÆVÉ@2Œc·Q†±Ý °2Œü¶Q†ñÙ6Ê0¶·¶Q†ñ1Ì6Ê0¶´Û(øêo£ ãr¼2ŒfÊaë'XL:Ìô¬3i1ý«ÁlÖ×ô¬³œoú VƒYÎ7ý+Á<ç›~‚Õ`–óM?Áj0Ëù¦Ÿ`5˜å|ÓO°Ìr¾eÏùv”a<çÛQ†ñœoGÆs¾eÏùv”a<çÛQ†^T6Ê0¶Ìv”a<çÛQ†q{lGÆs¾e7”n”a<ç»Q†ñœïFÆÌ‘ë'˜?ߊ ®Ÿ`þ|“0¸~‚ù}ûîþ²º~‚ùóµàú æÏ·¼‚ë'˜§Í¨µ¥|?Áüù6Qðýó´³Âöýóç[+Á÷ÌŸoz?Ê0žóý(ÃxÎ÷£ ã9ß2Œç|?Ê0žóý(ÃxΣ ã9?Œ2Œçü0Ê0žóÃ(ïZeÏùa”a|œFÆ~Üa”a<ç‡Q†±q~è&XÊšxx=ªn‚µ`öŠ?ÕM°Lã|TÝkÁì%ª›`-˜½åOu¬³œª›`-˜r>ªn‚µ`Êù¨º Ö‚)ç£ê&X ¦œj”a,ç#Œ2Œ-#Œ2Œ­ë"Œ2Œå|„Q†±•P„Q†±œ0Ê0–óFÆævFÆr>Â(ÃXÎGeë-Ž2Œ¿¸Gvx;í(Ãø eq”aìµ°ØO°ô’|}Èùý¯umÁ,ç÷¿×µ³÷ºöÏç·`–óûçó[0Ëùýóù5˜çüþùüÌr~ÿ|~ f9¿>¿³œß?Ÿß‚YÎïŸÏoÁ,ç÷Ïç·`çcÿ|~ ¦q>öÏç·`–óûçók0çcÿ|~ f9¿>¿Ó|>öÏç·`–óûçó[0Ëùýóù-˜æó±>¿³œß?Ÿß‚iœýóù-˜åüþùüÌr~ÿ|~ ¦q>öÏçkò»Áù›¼û VƒYÎïŸÏoÁlœß?Ÿß‚YÎïŸÏoÁ,ç÷Ïç×`žói>ÿÆér Å>endstream endobj 677 0 obj << /Filter /FlateDecode /Length 184 >> stream xÚ]»Â0 E÷|…Çdˆ‰ã4ñlˆlˆòZZUŒü=¡´ª"ùZ¾±¯Ž'Ø 3è2‹Å†-aª* ùdFc!däœdT$Ñ+MÅ•Çw«ØÊZi&Ù5E‚“Y%–—ò­nJ¹«sÞO)ë,¨4hºÎŽ0Àµ/!U>ôþ_Û[ãÖ0XìZ°êÄ¡<3C™ë¸«ÇH=eöÔ&oý—Ù&B<$ƒŽãÙóœáXÏ@xendstream endobj 678 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 679 0 obj << /Filter /FlateDecode /Length 369 >> stream xÚí•MK1†ïû+BAH›æ;Y±…nQê6©=mE°Xtúïl¢lK«»àÁƒ‡‡L&™¼3³ËÐbhœ±´}Ö/¥@œÓBkü q¡¨cYf(ò 4ÃŽpL-É9œâÁì_I.­ÂÓŠHŽßÁó,ƒSãáBãÍKðTpAÔzdîÏû¥¶¨ …&¨1”KG%3Qç„äZH\Âí+฀GÇ`æÑ¬Àœ8VÀ3d×À=PÍ RWØF%æ(·sTœ:%cô,IÎã+P+>nëÄ¢½n؋Õ7_M9]§œB]gu>q ¾ËÚ¿Û…MªxYW ݾcš¥íg“ÀÅ·ú¡;jÿØ›qj¥ß'³Ó¸°K˜Ô4–®5í!ª{ˆíÂÓ¾Eˆý¶–½1íÞSûÞk5\“4äC`L~} L ½ÿ!ú«Côõ[è—®ñy¸1ÔY…ráU.}%£¶BF>ûm@H.endstream endobj 680 0 obj << /Filter /FlateDecode /Length 1237 >> stream xÚÍYKoÛ8¾çWF³ÑX%K–Û-ÐlQì¶Eã=Þ\?ÁNbØÎ6AÛÿ^’ŠCŠ¢D;Ûö@X¢†óøæÁ!z—^èýyÂïËÑÑéYy„Ã$‰¼ÑÂ#Q?ÈÂÈ„i@¢¡7šyc?ë?Ⱥ=B¿ú/îé[¾íöâAß?ßucâ?Йs6™ø.‰ʾ\åtzÚé^ŒÞœž%o Ó(e‚B¯gA¦…ˆçÝ^Åþ„’3þ#&ƒ-¥cIÇ–Ž—ÝB’øv]HdËþ =&„±åÖÛ§Å÷ý~GÇ °Ü‹[>ÇIþ “„Ÿ3;ƒºèYñC æšßkFÑ‘Œ– 1‘V°î·¤Àp«3[?Ðñ¯äÂÙ W¦¹¤D.Jɳ`°ÍÚêvÉuÁ„‘j±ú1¦3 xŠ?©Ñƒ‘}±éȼ´PܸSb¤ˆ øpÖ sáðÃÙÜ㸂™‚ëV®Ü³µœÒœ+À»„ÅWõbËu÷v0¸Ázhа\—JêêO¥ääÑ0Ù€U(b;Ý-è/t7}Ns”%É =˜?_ ;».9è"’ln&ž"õgˆth!&Ô W"Q. Ÿ§ÆYóc¿‰Y¬ g_’Z¦8Ò¶©e)‹ÇÈ]ÇæbZ…§_]¶÷$á,Vôíj n¹hb½¬°^Úâå[A#+m¹)YpÏà5*a"þë Q¼O*qÛ[Z˜UI]YkŸWÖåàåF€0(b£¿CÕ¶®Ü­CY‡€¾/^— o†­Y›3–ƒ#{œµyñ–Ë$eŠý^6nf­Åmu ‘f„m6nAâ ´Ù¹)8š ¼W”[¨?VªD}¥àêÑ£«Œ›¥5è‘£=t«îÿ Êƒ&øDöÂ¢Š‰O„Í —¸4;…’W Òj”GP½{"ÀÄ.´5*ò7ŽXÊ'”Çî{KR|³Åå [-)‚ÿÒÜ›JÝOŸ+á«+Ûˆ:çßdº–ZUqPÝzƒ[í›i'§,:hïuL‚a‰’`ÖÎÀ©¯Ê –®`ÉT¾ªÇs5z ‡³¿ø¨kS³’ Ñë²RU0æZçÞd*š}Zéj:§YÊ›¾¿‡{™j>¯7súÒÔ!Õ‡× z‰h¢†šû †è+}ûŠKX±PT@q꜠.M$ô¡ò]ÛTÝ—Ä-QÎ[³4SÓ¨Tš)÷)¸3ò„Žwtœý¶îµÌÈgôÝ,©*)Þš+˜3úøÿ>5õúIæáؘ%¸ßBΊ¨Ê‘…Õ‹'F% àÎÕ3:†èÂà¸<¨…ß?Vï ²ò˜û±ùZ¡¦ßq\ ýÊewDò)g wþâ¾&Wx[m̆áàó‚{æì ÙÏõUÝÍÕcùJ¿<³ú+ýéþz ‡Nöü·‹ïL ¤¸VüU°Ïç‡à®3q÷Á/Õ4øÆ]¨ ËɱÚd¶Pá)¢q.÷Wm«#)êI×øHi=C»Þt¦Q6ØÛìÉ~q²M=cÝýAœ¦`D Ê?VOÏ2ôW'IÓ ô½^< úa\,NeÅ«ÑÑw+Nûendstream endobj 681 0 obj << /Filter /FlateDecode /Length 437 >> stream xÚ•UKOÃ0 ¾ïWäØ µKÒ< !1Á&‡õÆ€ ñš` và¿ã$^úX»v+vüʼn?Ç %KBÉÅ€â8Σ‰ÔÄ$FqEò'¸H2ʉ¦*aÜüÜDGØS#£¿á]>……1c‰‘28%O Ÿ`I&Rï;ñ¾õEÏ /?} jìÕ9¨¿ ù’EcMÉ÷òrK%…aްC¬ÑF·5g ÌO…¡œ‰ê8-`¦´DS-Ï+€}€üøÔíçT*E‘~ê Ï¿èžb†ï˜ï‚•Ÿš`äû½‘|‰‘?û€OA]UÁiز*y©¨^Ù8tŠºYXÉ"zæu¡™tUc.º7…Þæ±é“‡¥ó»Jg7øµ#éÀ/ûDža¡V}À×x×WÀ2—R«´Î½=·EœJŸK°µ¯E°ßÞÙk`J¶(jÒ´e¿~P‡ôƒj퇰>¤ô!ý [û7wj‚O w¹EÓÌñêí´x‚í1…-j¶Þ_“Ú‘Y[~m×h»…C„d4É*¿‡LcpøFÍüJ¥*KÎóÁ?×LÈendstream endobj 682 0 obj << /Filter /FlateDecode /Length 1006 >> stream xÚ…VKÛF ¾ï¯ÐqTŠF£ç1Û¬›(ºÈ (°MЬµÝÚ’!ÉYl/ùëáGÎÈrâ¤kF|“I9ò6^äývÙó¶ºyµ2±§“Ð$YìUOžŽ“°ˆb/²PÇ¥W­½¿Õk_«O~`´êOy¢¦m‹KʼӴíéFÿcõû«U’xeXfqƒ‘$:ÌSoHn×NôÜÒ¯Ýü "õ4½ÌÏÜ ¢0 ‘ÿ ¢]z ú þè7ý'>‹…KJ¡LròÌ’;’ý 1©:B©‚ãÔ~=Qõ$'‡ÕÊý]P``:Ù—V,Á†Ó®HoíB¾©÷¼ßúq¡^àé0ú ±²H½«îý"¡7ΰÈûs·ï,KL¯åOÌÊó_îWêÍ‚W)4çõQÈ:F`Ϫ帇í7¸çjtû}ÝJœ¹‹Sâþù ¢šËÍ®‘ÛÑg(7ƒv¦,øs…Ó-ý µÎÂ΋Ÿ|¨Àåï7.•[³‹ ðï¯Λ`þçæé, ‹<Á*H¤ÐRŽ,¿º«n¾ªWb7endstream endobj 683 0 obj << /Filter /FlateDecode /Length 2465 >> stream xÚËrã6ò>_¡ÛRU#™o‰G¯ÇÏV&“²”IU²{ (êK¤–¤ìñ~ýömÊÎA"Øh4ºýýÑvä~úàËóŸËWŸ£pÄÓ(NÃÑr3 Âx:÷ÃÑÌO§A˜–ëÑŸÞõ8ðVãIxõ¹ƒç,öîeÐfE;þÏò_WŸ“x”M³4L‘?šÄÁtELâ~&ÞKøu üÑJøµ@0I½o§qÒl…€™·¨Ï¸Á8A4š"¼_XÃà¯gJÇ,Ì@ª,ŽGÀöt>˜ßecä}7žÄ!>™‡[Uk" ,®™­8 ½zÃXR!«÷u¥X œ³Ð=Ð,Á`žžÇz<fÙ°x&EìÆ(ˆÎ·a.Ž„;ÔñpOzë„;Ñ8ïq¢µ¬5PÀh¢BÁ4KºMÂ:¤…À6¬Ýtãpî=á_ÞÐ ÔGTÇJö©J‘Ö”?`|ë&ïèϼtMœ‘sTNŽ˜Ï­Ð"áà[B몃°‰ÎѪw?”øm%bêkØï‹Šüä§=MO"`ÄÕþA "ÕÿðÏ(—ÙaÊG°Ü•Làþê…úÕfaî”Hàaœ$^¾-íéêA­×lb4¿{Ç>2{Ö–q2$%­]„¸oÅO¶ØãQ–“”ñ^!—ã=íŒïòŽ(SSê¹”­æÇ¿ý nH¶@‰x(yË# }Ö³d‰ ¸ó€A '¢vCÚË{þƒ˜¢ Öëλ«„T¬ú‚É)d`Õj9›‘dä½%qeÂÄ—› ‹š <”/íX2ÍE© K‹q[Òë‹Aëb DMÙw´š$:éåxñ*_µE;ø÷¼\ß#£7w‰çÞמ­‹ÂÅTp^܆Æß‘p}0*<˜ÀHA8ŸÇó˜]¼¤c{ÍÃ-¼üP9KÕŽ’'ÿ? d©ÂÖÍ󤆹tîÝ Úé,"ä%î6K¼_Mø3R¥3ŠÐøü¤vÿ8†0c,ƒm•È`@ÝàûÐè´¸mÙx ™Ë;VNû˜¤fl‰´ÖY¨4 ܬ‰¯rÎ+Ç wÐÓhÕÿÂØ®½t¨ ‰½n[“·Š½™P†ìùij7B¯%ràl‹Ö~’ÀÐH¤ø†³,Ug•Pq­¼®Z‰†¢zùö˜cCð$Hó')h:£P”>Œ¡D¢CVÄO©,Ù—.ôŽÅ†•™'±ÆÃ g¾±Àeů „j•‚Om½Ñ¸Df@¹'vœƒhlÓ+ˆ&ó9?);DÜ|u°¤©Ð;SñaõÈ:š“|ž!Þ XYØ“>Ê€’>55„\gqÔÙñdI PK3cÔYh*TYZÔ’Àã=k‘‰ñÑPmvê%}ÄL˜cywÙ€ÀT ûR w¢9*ýà}Û´H4|}ªRïú¡±y»œå©`ôE8PòeÃîúȨ¾¸::ÆWb¬ª0Ôè¤ Ž¾“9T ½j<É$à_ÛÚ N}ªŒS›)7&ôTbìˆ$`¯‡‡d©ŒÂÁž-NÒÚ^^ÎdÛº‰%ŽõHŒÒ:ÕŒ„¥ ¡Ì5æ8Ìä|$dD\‡ý¸Eós>¼H9ӥܜJ´×…Ùxãá ®mb“K#årÇfp4mSÖ@=3yxÇ¢!9iÁAÉ”ø8Ѫ¬K7¡È¬žÈÚ:·t9™J›Q4f‡ñ+N0«üƒ§rÓz>:º×‚½OÇI†øê„êã.:8Ö"‹!ÑhæKÿ4É„¨Ÿ@‰Ú¿Q›¼{ °à¸ðñÀöü·ÔYB*§Œ%æû^mòãÕ̇cG“<ã‹-8“LÍp·eÇl«ðIµÜÉT ­ftœ«ec»0nµîÚÆ!aü_ÍAÄ„VÚ¯(ÙÅßL¯PÊ– ·•ÿû† q‡îMê-9á‘Aää¶Óa`΃Í~ñ¹ŽI­´8Fw„ºc€^ 9‘Á‹ Ñwº¥,„ù‚N׉ÚX™–cÒÊR'½÷RN¥ÞÖm’Wü|Ñã©O•O‚Æ%E}–â@n¥…¹OƒÊ¤ä‹³Äà{ÛA×|uò,Eùž[ Ò›Ø~äx"× 755ë°G LöÙÔ°jmÍ,%ßNK½¨è,!·WqKx}{Cרûv€ }T&2¬(eÙMRõVl^¢‰)Ðß ¦Úˆbºò²åB6ä*G~iíI6Zt€ \:”{)•â Ù× _’Ôb§¹9H¬  Và³8/hKÞžØ-6N¿‘Çñ`ýhÈ5Lui¹â—ÖáU–qéUÙÚ6hg·Rìõj€'UÐÜò/º:èΕ‚D´™69b³0¿B5<óøËÃÕÕÍâ–ßo±§½ò³uXω†zƒJ¹KÉ-Y,Eæ~[†³|†Ô{\ÇR/»ä†Ì¶-/!•ààw¾ yüùRËôp>ÙËžFÛÍ5ϯ$ü#÷ ĽàçK¼âIC— ]ÄÅk÷¨ë~¢÷ÛÉg§ÙεÔD¤;º]=áKàÜcÞ×|ÿòò ?›ú[öèXå0ÓÀ&ô§Ão—wC•öÀ)¢÷:úˆÅÚÐ^[…¦‡áÞo¨û¤V¼ú°PÓ {B8þ­Ú÷H´½»²„¿àÓ½´ßF/p1»%Þ÷=Yt<|et±¬Hš$:ôûA“`„ ‡¾køÎˆ¹8_¿Èü­å蘭8RÓÕ‰Iä&¨uÛ+r¾Ô;^ºª¨Ï¶Fö;¢Û«É,ë²ë!o-*Uõ%hkzº8šÎ£ô­Rxó®n@¨§'ÌÆÓF›Í>Í©~£¯æÛê(HÓé|SY,¤Òyévùáÿ2)iendstream endobj 684 0 obj << /Filter /FlateDecode /Length 1467 >> stream xÚWMsÛ6½çWð͘âƒôÍIìÔiÚL-µ©“+Q²b‹RdÊg:Ó¿ÞÝ ’–¬ú ‘ÂÇbwßÃÛ•Hæ‰H>¼áùvüfx‘©Djži«’ñ,‘Jó\¨Ä Ë¥*’ñ4¹fWÕl YµÁ¯zRÁã~ðuüqggx‘'/¬²hBó"—IšIžÃ“ \Ãùµ·'¹NuQ°³É@9vó‹å Í”dU øu‡g-è$U¬¬á}êW|(ÿ¤Ê²Õ&üFÇV |݇¸·V`;g·~Ña„ÂÀSÂÜ):3¼0ºã¸RŽçYî‘Ó?ÐêÀÀ×é Õ&c£ LiÇ.a¢ÆŒlp¶D'ñð;&ði¶~N± 7X6[Ñœ˜¤J*ž—¤Rò˜`4TáŽ9¬Ü†øKˆO‹ bŸú—ËMk8®í.û4¢)ø­Ø¡ÚP*(“’qv.iw&ýƒ&ÿ1ågl5óÏF‡ãÍ"Ä_‹Ig).YÍÌü#B[kN`²0Lj„l€áÄ'%øÐˉLØ–)öûÕ'|É_0Û„c×§ð5>>>b`ß" e\C/0b‰D‘l>|@êáBØaŸŠp>×¹‚'¤E™–³ê0g§h3¬Lµ”xˆË57º¸Ài„u?t7ŸøiEiFS·~EÈ0Õcªp(AkîÄÑ/‚Xk#)à³DR@úF{ q¢(Ã<èO!ƒ‹xÓ13Šk§ûQ\@fö“ŒÄ[ct§Çª&NË.Й®'ž½‡™€›Bƨ®<ækÜG*q;[å¼òãÈŠ…\]Õž+—ý|²Î¸pY@Ù¶(gQ~óC‚/w P¹µìOJ‰Ó\¡Î ®³Üû×çJpeAEÚñ¹I!Àz–w”xw¯^ðy‘·)Ì–ÑÏê$ÀZgGW¥¹.XŠÜÄچ0‚ßø­å@ž>üç霰­"¬Ñz=¤¤(âôQŠàº×R¤È¹Õ¶Cœ8DF:ÐÏ(KƒW°Ü ¤s :ïÉí2Ô< ÛŸë{«|L%ºØÜ{ÅØ) q©©bÝC^Þ”s_âpá,Êû2è>þã7_¢É™ŸÞU-Š—,×ÓÁÈU¤ãzߢÜÖ)Å'B`ARŸXŽõµìL±QhªÖÉ]Œä–¿Ÿû„9ÏÍN_S ci^q_÷ž³:<°°OGsލÂPÏÊß'mµnQ#¶Â¢œ½£+ÿƒjbU._R2-x!õî&Ÿb.T!xdìuVQ_¶-âN–×ÃÔŠa›UG¡«¿&4_ô>ê4/R®¿NgªOPÒ!ßÖÈ®|ÑÆz¾•U<—;¨°åK…ù3è¶QÛ@óiïîá<]W|i[,\±k±Pa|9- Í­ŽFÙœ‡ãþˆU«&á£gÛ]“…=_ð¹ø%úðöWO´,-´Í2…1áRq²ß’¹–ˆÏuò*]‡CWƒÔö ]›ôû²cjÙ©Òö =±_­¾™óžà"ggŸÀÝ'$,6i8þäÇÊkf¸»òò=´keÝ,ãŸ)µ€šùñ’x¶h ڃ穅æûp5¥©_vƼ¦FV!êY·u1p®ýËA—ï1&ñöp¹4–;Û­–VèƒÕÅÚ«–¸ƒje–îöør{Ê$?Õ˧û ˜b >öB=*soêuNm ü?φëÎ<ý=Œÿ†ß=Ê{®ö'5ô@xW@…¸uλj‹Þªóñ›ÿšÐ›Éendstream endobj 685 0 obj << /Filter /FlateDecode /Length1 1846 /Length2 11519 /Length3 0 /Length 12681 >> stream xÚ·PÚ¶-Š»whÜÝÝÝ5¸7ÐH»k€à\!¸;‚ww'à„GöÞ÷dŸûÕ{Eô˜:æZc®.h)5´Y%­-rÎ`wVN6!€´ª'€ƒƒ›ƒƒ …–VäîüÇŒB«„¸œÁBÿ †-Ü_l2î/qªÎ`€’‡#€“ÀÉ'ÄÉ/ÄÁàâàüŸ@gˆ@ÆÂd Pe(9ƒn(´ÒÎ.>­ûK›ÿù`°bp ò³ü•tB@V`€ª…»Ð饣•…#@ÛÙ t÷ù¯ "vîî.Bìì^^^lNnlÎ[1F€ÈÝ tB<Ö€ßÔ,œ€OƆB б¹ým×v¶q÷²€/Gìö’á¶B/ÍÚŠ*u øï`•¿Xÿœ €“ó?åþÉþ]þ+ÙÂÊÊÙÉÅìÛl@Ž@€ºœ ›»·; Àlý;ÐÂÑÍù%ßÂÓähaùðs €œ¤&ÀâeÀÆs³‚€\ÜÝØÜ@Ž¿Gdÿ]æå”eÁÖÒÎNN@°»Êo~2 ÐêåØ}Øÿ¾Y°³Øï`[ÛüÂÚÃ…] rõ*ÊüòbBùc³ºx988øy@WÐÛÊŽýwyà_NÎßæ— ü\œ]6/C@6À—?(~nž@€;Äà÷oÇ#NN€5ÈÊ` ´QþT1mþÆ/—yŒ8^´Ç àøýóŸO&/ò²v;úü ÿë~Ù¥uô Õ™ÿžø?>))go€+7€•‹— ( àçåüw Ð?,8þ¤*‚mœ‚“}9¥ÿ!ìùÏý3ü³Œ€ÿ®¥æü"Z €áÆ9x9¬^~qþ?+ý¯”ÿ?ÿ®òÓøÿ&$çáèø—›á/ÿÿÇmárôù'àE³î/úWu~Ùðÿ} ü{gUÖ §ÿíUt·xÙI°­ãŽä&òZk€Ü­ìþËßvÝßKæ5œÝ@¿_+'Çÿò½l–•ÃËËáö¢È¿\À—Åùï–²`+gë߯Å˰€@,|P8^„ÄÅË ðã|YEk ÷_°³Ý_R/ãlœ!(¿o”À.ùÛô7°ËüA‚vÙÿ ~.»ÂÄ`WýxñiýAÜví?ˆÀ®ó½ä½þä°þA/>‹?è…‹åôÂÅê?ˆç¥æËãâô'ú÷Ù±[ÿ\/µ¬A@ÐíåùÄ `þò¾°¶qö€üËÿR×î_ðåp@ÿ‚/Œÿ_(9ýœ/Àÿ‚/­œÿ~‰}ù ø—û¥Ó¿s¾túON>»ûž/•ݽœÿå~Îã_³¾´òù|Ë÷OçÒ¾@ÈßÙÿ%+äåñük¹_tõ?ø¯—ôZ¡,/8[ ‡ÛׇwÞÕJ’x±îOˆÎÒî¿Îddõ[†ty<` ¦1Öä„nBn%Ó¾|~µ¶+Ëp#±Bñä÷­­1ª=E³ã§ÿ£Y’Öô~ÊÒþàäûo’ dȤ¬:þO®þz!°mÐÝJ´®E8w^ýòÞ å«c‘ ûš5|ʨå3¬ñºqÆ!æh -sç ©ÜYɘ°Ï½1çnng±ó'Ÿ)”’˜QNâ¹Kü ·¸îç}×+u¸Üzˆhˆ É`o°Ç¦éü¤ŽÒ•ýÊJ6!cóø]ãÛN©œŽG ¾ûjZwãKS:ÚI!"BvX\Å7q›í ÉN(“xrÏ×”6½/ùÛ,ÝXÔ“AÏêŽü ¼Z¨‚û½ù ¾Gˆ xõúLQZvxi à>Þ(2èü:Œèâ}Û¡Çx‚ ã!«õ‘uܦVA sY²¶®àÛœz¯ãuÊ/kÞÊsJ¾3ўǻLޏç×VÙ΃ÝãnÖND¦Ði´MM¡¢Gµíiù2¨Ì$oðrÉ)Á{×  õ¬MžhNÚí ÖL»;ê>àùR–›ÐGAÄŠ3ÙPlÞù'ÎßN3É^Ë÷vKÀw a²}€§+±Åê·b}»Jyq ’ùŒy™QFýÈ•¸Ydº1}¢Oð>gñ„¼7x.©ç­Zùº?Z/qè†8:ÛËpCéÓY·²?Ö à¤M»+>Kz3ÓlS®ÙRhÁ*kC‘VkõêAênŸˆS:–Æ«.WNsÙ⨭²áFèôó§>4{M¦1Š·Á–H#m¤ëYâò›î8dç}¼Q®´BGQëIeºB_Ž—'í)}¿µìŸ<×G­ûþÙj¼z³èãK™ã\Ðv ߌ]¼2×òfÓT~"9…á–§îuÖŽc§†?-£ÞP+†ÓyûbE.6¶(]§Êa%þµRBŸ[f¸YñX}ò;xŸ„ eb?­Ð¢x¾þƼ‘ ©Œ·üöŠ?ˆC¢‚‡3¹2ˆŸ,pc?Т=gJðó J½ |Þ@–¨ëøUŠXÐâë¥ I±ÂÜÔÀcØËqè@¬N+çR`O)náÉÐZQ ìàýT5Œ°°¯Û„·È"Gê?δ‹SkA±ïƒA¦¦6eDIW“Hº?@ä?ÿÉFL§kÒ¡véâQk ¡ Žmñ˜xmN+NŒ©)@ví%ÏmKüK¸Õº¡uÍqÄyœ¸ë -EwûêÆ£‡o'Szá -ñ€Î ½Öuܱý T¾ó'™j98@å×[f¨ó!õ_Mìcæ?$Âgógöñ ð¾ð´&4V(¡`„K¡½¦©0°˜¯UÀC–L ²åÀWÔL%ºÙFÈøéé/rʇ8'¿¼'áïª'¶ýå­‹"Am-¹þµgÚÈg£ ´c…dòJu04_ RzºIJï+欇­:Ǥk3>¼+út¢oSÜkæL:hÍ ÕMòú0ùxµ–Xzd«N$•(¹Ý„àL’E_׊ÇÐà •˺5ªMÇ95ZM•_°±­Þ‹¡E}Žž½ÌÓ쎢k#Iò®Þÿ6Öæ ÎÄ莎t.«µq}ͺœöÆçãŒÈ”éÂÌvkkïhX!·s'y;!Î-ÄUâ¾|±ìCG"÷ŽÒKäÖ•â ã´¶CŽMuÃðã¶p–$øÁ2¹ZܳÇ@m‚Y)cp·g€®€æ$ûg¢ªöWjÌ“µ°`â°kûZ6½4T¨›(Â#º ¬(ý¹|ߺ\yçhÁž±9*S‚ªû`­Wïq¼£ü )M0?yÉZ,ÚÔÍ|ÿÒrzΉçá!a·¬V{>¡'~w «¼ú™{¿ ëâò¸.¤BÝnRIrè]VC§˜élAÏüÙD&DzE'÷ÖÙj!k5곌ÐâT•Y’ -ï‚>ʈGkÊ.-TèÔì è¬&¦‹„î=Áƒíêk‡¥>âdKšÚ½‹¡ÈrS÷tž;^`Ò†‚Z4¤_¡J±„E½‘~«„h{˱¨"2%ü9RMý+á µ·òˆºN’Þ>kC ¥RS‹á'ýMä®2J“ßÅ5‰E¶æà÷xh¼§1P“¬oSdTyÍ Ë ûÇU®¶¡jØÉ!‡B_ÙŽ×hЦ¼ñTZíNïñ.˜“|²ú69Ò>YXôh`½ÎÎ$”wçom]T$©ú aÉ ~Ÿu\ã—lBÝT3èhK÷eX–Q…y”nÉk3ͤ.‹Ì›ˆ^§«c÷@´îèÙ-ØAbÆ}?G4Fã"5øìóC«jò|çŠÆO½7Éê.…#CîVÒæíó;Ù ýõÁÕ¼•’ ôÇÉÑœJY¨ŒhÄ58©³¢#`qY—„„m W¬¢Xãšû¯ôŒ£f<ËdŸ” k˜›¬ÄL­6ôÞð bsȺ³ ?áâ1V‚naAuІªÙ|^0V) H@Š÷ÓÁ`x†÷¸K‚¢Wö'ŒŒÆ³X{WñfõÄ´¼ÜcjP.†wWXä@½Uí%ÞëÒ·Ýø<žÒ÷´íÞ”‹O¶ÚCiÆ èœí·†Ôû•ûþ–­Ð¿:Û¡¬ —¥6L»Û€¢oâöBÖp#eS—í9Ìû…G\¾²W[«ã–ˆVLжËÕ¤×ÄœA’T›`ý¢± Î&èžpRˆ2Y¯º4+¾šäÇmQA[^ÑÓצÞãc ðÞ!ýÏ+y²Aäµ½+î¯Ôò¯dFÂS“3cº+²J(º)C ¿ÀlÀS™@7Ëávô$-Ëêàp ;iDK?C¸-ð9†¾ P’Ûì$ÁwÄjçнÆóÓ#Y€ªFX5{F/ÇØêÿÐÄžñîµJú>gÊo¾O’@ ;Zû‚^ûn͇ëåm}—!¡¹¯˜Låˆ)¨ÅÑ4HZƒYÏÓ‰úíÏSs’‘äÆàëä è ªfä„kTÕ…šŸ¹ÌEšûÆùý¢ÏΉöF‹9ÃcÎJF%ù.⾘,¨–µÜ;¶é¨¨@V°î–Û'zæĬÛƒ#¸ zÏ©4Qþ‘)~±¶û£ŠÑ»–þx7&+Û‰¥@'Ï2iõ‘!œðHttAC‰·¦Xacƒ° @ü.-\Íi¡š* üõï]zÐ[ð­%µLzŸíÄWŒœ"\Ä©O¼‹38Xà¼Ä}.³[Öw<Ô¤0éO Îô^—ãÅQêóͳô;®ØƒÜî|Æs³NV9cN»8zöÜ–3£û~xÀÇ\Öº Ë£ûD¿'¾T‚*` ¡ÛìqR¡%Û-ëFÌ2†“ìî»äw‘®,(Vù€]¢$ÕÆqs‹u“­x_ìôÌ'–P…쩱È#_󸻯AH‹YocBûVÝ=$èmÛþ.¡£M§¤âN!¶Ø—…üˆí&Š€f‰h³É–úÝgøW¯qéËá©ï'ƒk³â~2Ð|Iä:™½û(•ëë wfNj"}ûW<p.žå(¾þŽB²xA.wÉ¡‘ÝÒøf÷¨ÞSqýÇÁ˜TØBMì ì«\h™º¹¯W?îÜÒ‹ìÄš³Ì#’ò-â?jÔ2ÚÓjTG¶ÃDi’혦2-ó.7j¯éü¾ôn=é#]o¬Ç ]¹$t$Í«¸Ðø9Ú‡A+c 4*yª ´òû§›¦Èíø/=½¸i3¯ |#àHãò3˜©Rö‚IZqWZÃÊõvbß%߬5ÅsʯäÿPðŽÝ1Àì<Ö©Ÿ©øí–ÈÚ碇PÑ+ÝP_à*„ +(è ´B0Ñšõ󕮃j÷Qo×^`;`ÞÒ¡64§Z„ :$å8pIf‹íÓ‘†™Ö¯iùN‹Ú`ŧ3ÞÙÚK®§Ð{GYJiX‹Ôì–˜Î$°ÌRbözÎï;-¡*Q&Õ1‰T×±k×à †U Ð'3ZÕâÞ~äbV ³þFµã %LJ,{“ltƆY81k¨¦*CB¶ûùÂŽ/®ØŸû\ùPŒwæ /ƒòöÞ¬3bd3O‡Ï¼DÞ|n”Ôüw#ŠÖÎÔäJ2VóG¬¸´˜Ô¤‹ñ$Ê’¬þo´ôT!|ÈÖ4Xöñ?*¼ªÄùíUñ§ ´læl·—èî=)(æ„ÃAÑyG·oÁœûvL°ïô*P+w+˜|ï´‡»¡^ ók9’Ðë³—º“ÚІ”·Ulî»g½â¹^ÁJ…Ï®µ\_ÞObq_M\^.Íg_…±…hg!0HÐavÅ&÷O›ôäZ¾Þ,¤,RÛ(qYƳèûΑló¶Óñí:¸cEV&­ÑñH"tQ{E†µ?w¢ù N´x*éwg,÷u ,¾€y’“´îR‹p‹¦û/’Ý\£êXÃÍrl,ûÁ¬FXMŠáiþãÑ0;-,èÑÁ¹µ»®·©ç-rU¡ -/ðl\Ø»©m…ª&ßUf0»Ìz¡rÊÍH¾ ezéí#s-pÝ-iEXÃV¹[Y„R‹hRÒ&aÅ鲘 ¢qt=jmOß43*‘4QAu‹m#pEµ?AÖ°i9à†T©BƒyÊÓ¦!¥3—i}C ‡T~¿~ʦõsÊÞ€`ß †Ðæ‰rsÙ|vû6GéY7äÙ}¬Î™¸G Ìíâ×;÷A¼!‰7½[Ö:…ž¯M’ã6;¢€q…°°³É˸6eD ªKFVÓWÈP\âÊó>@’{ýJ¹²ï Ò"´Ûp°l‡5˜7¥½êb4ñãsJÚS~t)aÛ£>Ëî2…D¥þja}ë÷wp“í!¸ t¥RŽœdh»B•m‹X¥Õè÷¾®+|§xr j’Ø žß ±;HZßi;[K0BȈyì·ûèn‰/åB8²OZ|{1Z¼•=uÙzaÖôÛ#Z×oO…‹Ì~êE‚pÁOsRAôÓ6HTšO2uƒÃ?Ó}Çæá¸ ?©×bàSÉQ®O/lr±‡bJšŒ0]çãL<£âåLs9©ÿÁy.ú˜|ƒw@°§Ÿ/Þ€cAÑ{iÌÀ_ Á»·ã6šÝ$!Âîé8:«6)ëA[X4Ž^‰PÆb¤ ªôŽ? S^È©Gk¿N@º »v¿@–€Uni^?wãcåë‘°§Ð/w23/õÙã*åži+kãŒÝUR¶Ÿª×©Mø:æ%c&ŸŠq÷µ;ï ÷ÑšÒºTûïȯE¿ÚlŠÄ YÞ‡/&hˆ>·L»nCÜ r¢?op•.D¢ V3 ò$¤ØÙå‹íŽêê婿`»æ,H«ÚŠ:Àkü,Q¡0zÿÅÓŠ6ýGʵþe.¯+W,‡7lñǾc",Y)‚ÑÐvÌðÍóšGØÂŸÐDä20–f“‰¿¿@‡“Ž2øÃcòv…±‰Vl9WßZ‡Ü“1Çv{‘ÞÙÁÉrÒÔ¢ä„ÂÏ.òt)tÍ訌.¿¡k(dä™IÎ$™ÓH74ˆCž4¦2Æ*×ùOŸR콱Ф*Üs’ehš6%%™4·¶FOq¡PpµÐô«ö ¨ýadH*´ ÏA]Ížž1txåI^¾°v÷¨f5Vß6&}ùvÃm†õÕM¬Ny‘{–̼$GŽv#JËå¤ êô¯2.\Qj¤æ7µ#/¾c¡• ˆ#¥*ó7ƒì¿Ýˆ {Óˆ«”ñÄ“{ïòÅžb fÔ¾¢Ý¿tÝö7U.¸!=]Zæ´•ßÑÙ –YmY-”ÆóÞZ\õº-÷¦×J¥4$¯ËŠ‚–]èëàìügÍa’)¶c­‡#«µÊXÃ%0VXH¹zs,êCõ¾¤eqqëÑÇR£4<éÑ@3«ûv5öŒ¸[ºâk»Ð³ :n7W,.kê›Q•Ù×â1YVL[D§Áà5-æÒTÞð.Úlw 4óæê˜–‹<(2Ç!¬Oò—â–{ëœPáà9À˜\î&m}XóMGBÒ€ºøzˆû4ˆRDø³íƒâ]í'-»S$Xª$ 9‰A$€!ó•^ACãÈp&E^âïgïIÅ4`ޏND•’œÇ ÛÈ”7S¿ÜCö¥‘$ êb,ÆÛ# âFLõj¹î5•LSHo>ÇÅÓ=Q®.uË~=ÕN«fÚÆd0½±H'<‘š*û!Õ7óI~!F†’)h”§giݰgà¼Ç¼VhêDã®q£Š?ÊÀ´=ž¯|%¡²(cÛ;¶ e=ó“dí+ÇF„ž¶¢êðíÒçˆyhrÒìá·(„zö™C^Ÿär^¶‘·_ÖGµÒ(™!S#Äï?©nä(3"ÍCpVU¸šóë×x@‹[û,coyŸßˆ`­N5µÊ@_³³p—|Q5Ým,— i9ŽËÉÍǺ~k½-…¼«Q|6wÉì~¤’Ÿ{Ê'§vúJüq¢Çuv×Ф#æ×U¯ðMå Õ°õì†ÜŽeœÙõk;G¸|güf–S©púü.ZÆÁ#ÉØÄ[5SÑ9Gh«wai×!±ƒn …BMkY~œõ{i^y³câbj>º ‚‰D9>R{×ÒÏÂn5†ldv7¤• ÍwSGximœï‰OÄS‹vp¤©Ù$pEu·æÐ‰¼¡¦¬hHf ƒäTïáwVñûyq`<Á‹…HЗ]Þ `P‘Zc•Ãk$¡ƒKü%ƧR©×«ïYÌ+žPŒC¬…¢ú_êf•†Ç¿oØTTÉâ1;ŠÝxf.uødÌ¢EúÚ·º Æçš™ÖAˆnOk,ŒÑfÁ!‰¤¶ã×÷™:ýOy¿ß-:m0â­GÏêî_QØÉèäƒÞÜ¥Žâþ¨_⛥äå •¨"‡ÅÉðˆ¿íÿ©;c©‹B+¸N‰^'€îž÷¡o T®&¼b=wŒ†AþzRòm{ižäy»°¿xÄcà <æQ•,±ä«6@æÒR²²{À©³ê¼’RžHG{V–7ÌÚò¿£C*ÎU³ñ]-M$4ëyPÇ7öEO1¡¼‡#‘]`âÑŠÕ59¡ÚrR ›k©¶N€¦ªv}§9ù¨V6¾´€Š²BB ¸yÍ?z€fh55_T˜JÈ€åE±ZsµØ-× Œ"K»ö?h£Ë$×s¥~–`“½®—ß”õ-¸ïÜ=Èå§§nÕ.èEBO<‰Áë—8Ðå| £KçoòTøF¥¨@÷‰»çÚ‹{ϯU)¢Ì¥Ç¡vÛA=T£Ú¥L—:ê´˜ýŧlñ©POˆ´‰­¦Uì`QSœ[A˜ßpÄ«žÎÿùjد^%ætÔHb0¨#SµhUUåSÄ*G9²äÛÑOhßL¤¨ýe¡N…-m½¥×ä\›åÕ]X’yøÈÞ¹…¶[ÞåﻹO\Ø«f^Œíb}%é Þww.èÎA„›ŒAQ~"Žšœ34×íE.¸o?5¬AàðÑ Á|¬Ýx¿BÌÞy‹ iMdFfFe»ü^X$«0}₵t~<¶­UëFÔ`¡„Ç"[3JÛÑ-æ‡ÂK½$œå|©"fqXÛ‘qpkLèXÄÚ2 +„¸ÃÏ2T:î–÷ã´ùLpТ©ñsíÅ1cýÏÒª÷ªß[íV2Ǜ⤇ehÑšÊit¯eØ"«rûФb§9ƒ\Ê›ˆ[é“W’Ï }U¥­}žòëHIÓ{Áqö¥³ bo=ϧñz¤°¨ÑìÞ}´YŠGS}‘é]]Ý>gj(EmBWÜ s‚ç¢áD© yØ#0"¿¬«9ÊåS†¥Æ­6”fÞ¨&èþñÙ íf¨Ý2ý‡ Û7)“­eØ^Œ±ŠB•°BÄþ ¦ã^ºÉÉWéJ—o c) —G79#ì…ðÉO)Þá>¸]­u:Ø|~¢ £›˜M¿tJ‹õ?¤Ü2*²PˆèÅ>øLw#*ñÕÜð·:Ñ Lõ}äÄ _rƒ…ówÊíFµOŠ €‡£wA6«×I¬ÜȜɷÁõö¶Ÿ…‹T~2µÄ,¡çéT›åHˆÇàÍ7/B,du‡KP2E[m«§˜°ï¡ü ؾϟÏÚô,\ЯŸ„+øêH¥gˆ8ðJûP G„Ô'%¤SºÌw†èJK7QÆ“n¸:y8y¶Lö]@õ [½ZÌ’…n¥©x'ÕÎÙ†©ðª²òækAÒ•—Q#¿7R?ñv™×õdÒ¶–0QÁ4ìc"^p¼OWøŠ\ÑüÇUÂ:‘H¥¾xEñH…1ß0Z4ˆ³B–1ùWA%ƒ­Í¿F/bîB;-F††ªC\œ¦÷ü5Ûo[Yg[š?OO(¯MЧ¢gdùC4ÆÔǘ³ÍíZèäà†G W„òÄs+{í¸”+kzûbŒºÈ“­Ô›uF=.­"ì^Ä\‡{ªjbND~Ãm¡íqðªó.ε[À7®½2lË¥7«Þ+·°b䊾¥M‘ñx¡u“ñJ³ºö³?é¯Q–ù¾…Z9CãSÌÈR‚ž ºýñ¨ÿFó-÷[ßuE2Þ—C‹i MÐm'Í6²mcš\L¢_2¥Tô œ†C¿Aêž±¶1Ú»lǵÀîÎ=]1„Ê:¬´Z« ßeCÇO÷#Ú‰²ÞS˜ŠXyä®4(b'¤l©Ø¢.×X5ö† ŸKÖèp$T¼¿|£«1Ùˆ•L• šÚq2ñ&tÜÎXʉŽMUŠÿ( ê”g‡ N#¬åAçžÝ“˜ »*»ŸŸ£~ÏbF?ÔøÆ7†–ºüÆÌ÷ôf!~ ¼zêc/¤©/³•WVœ®Ý†AˆgQÔ.›Û®þ~øë®v)LŽ- i&Zæh´ž›TMBøI»ËýÇ'a„ɯÔ4QFPm¿|Ò,2àƒ ù­,EjoÖßìQU{U¸·Q® RÝ+ñ<×É&êÛ™Õ*,÷r?ŽpÔÚ‡~ŽáO/›e§³!/Qhð?+  ÷s 3+t¨aKlAì‡[£[çàE÷Mp}ûÅ{ä™Â˜-ö=“³y•†#Ó Öfeì#«Í7jiÍ_ ­c‡Ò!MeåëCM ¿WÌc¥@adžæxè\J?Eå*½!òHÆ>¬+LÞìòm*%yWô˜Š4Ñ4Jc;b¶áAæRÙ”¦(]*”J—ýòvð'IV5LަŸJüZcâï8QËÜx<Ÿ²41Uô kí[‘¾Ú¨ ë5”†E¥2¶Ð-#PJ~œèž+Àmaó£Qä’vJ´l‡,èºÙLÃ2mô\]árΦë)+è:åý””X…Ë€õ7£©ê2g’ÝXPý쟔û}½\"Æ,í±ß{Eñ“°Yu™Æ£ÁÏBPÁØ¢~f 2­~ðÃÌÍЧ¯‚{–°©ß­0YÂ*ÆÊë;+pD>ûݳîK¸R¢‰|¿0¨œÚ“R.V4±„“"*,x§CqzÃ,ç®89gŒôÄÆêTR¢lzÑ¡°;öEÊø¬‚wžÐ&Ú0{Ùb¤>YÉä”RñŒÝý¸O=¹2Ë‘¨Àw“€r% &°^k|ý^À1€´øiÏVµqlB:ææª*=×Ìa»àÛê-q--ql47¼’ä¶BñC9óôÓêè…ÀegêE Êiø–<ÓÑ+ÞïÚŸ7<A»=TX.ê`÷bÚRŸYÜùU8'¶¶Oe¤;„ÊŠïª> Þ˜˜ p7æ7&`ƒ+R…‘‚ÙZƒòê°M4_;FéµRÓÀçk:à \ß³²ð(m‰é™Å?ëoÊ#î]"Mˆ; ã+ÝÜaøÊÞAàÄ0ÊD—Ò¸È, K‰ïD_5çùuÀ†…Û9£|U>7²‰ŠÅñ/=qí£9r*-[6#+ÞpÉÐtŠðµAÈY(Z(Œ‡ (¾P.¤÷kˆ`ä¬òNV h3ãBÛ„O¶ùɤþÀ¥ Jú%Y†سKR(@ÌÛN«u·2ß/"ó‹îö{¯GÝqŽ$B}íý„šÿUO¹’EÞ#«fåµðë˜@÷dZ§¹[µ¢«zs¾ˆÊFôе°¯”i„ âØ´ä v3)ÑL–In㪀¸±ÏF×~oΰO®7‚8 ó_%ÏœíŸw–ÂmOl7µ‡eÕá¶ }7ÿ¼wFFj¨bŒžðÖ£©$ ÿØ‚ë‹öüÌE~w^¡ß©µØJZl×åX¡Ñ[;¢²¨SDÜù†œìRâšknAP[ÓüE}<‡û]ã@̳º¨ñj©}˜æ½êÒÑ*¯‡™©Ð{à.¦¨Ø<è4âµ , GÈ/9+NÅtáÃÈ;! 9ÐЧԭ{òÜ™sªCBžFö3qçìàËÿ•þA÷¿ò® .ÝlЧµÞÔce î*$ Q:n˜§ó!éq-”¼é$È]"‡4Ñ@ Í£Zˆö/lLZZõ­%7UëMN¥n*}1oN›†ò .ªí­]­L)¦VòZ¸D„ź "D^àng©<ŽÎ–´¦ nSè‚ gèÑìSN¿å'G/ÈÏ'G›è·E,˜*ôe'!i$qõª@À´Ú®}åãE“P”“Ž ç’U—âëFl‡tT?¤i|éDc='ƒ‚êPžsÛn¹×´ó¥µIv(”îª90‘«S‹ÄíñnÚ©nâ-ýgE5“ŸØ÷›8lÏúpµjuš‘SˆŒÈ—¡Õª4J°vû¢°³YdÝ‚z ‰lÝAË{ é€‚%½/ËL D2=wl—œw²ÙˆVë#ò"Ï «¾p.µŒ–I¸ðxYÏŒ–ªg7fŠFè ü7CÅîÇ 4¦vÑ&ãdÊ¡¬÷¾êîØr^Fd$NîT¬µi¨„%½.9>öJGžC ࢢ¦ã^g0\¸A»:^úˆm)§2ƲE¥~‚c>s7ˆœYº¨wîðQ¤ˆÂb‰ƃÈÂRæ„äèçÆÏ4;ÃêLÖæ5…aõÃ%„ÕŒ¯f¶ZÏ•€¿*-}‘Åë›&&KÜ×Nïö‘Ì¡ “u…">-˜ÿ_aSeendstream endobj 686 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 687 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-univariateSingle2Plot.pdf) /PTEX.InfoDict 202 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 205 0 R >> /ExtGState << >> /Font << /F2 203 0 R /F3 204 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 12530 >> stream xœ­}K.ÉqÝþþŠ^’ ¶*ß™KS° ™{!iAË´a‚”ASòãß;ã}⛾Ó÷Š^p8gòt}õˆŒˆŒŒ:UÞ~õVÞ~÷öÇ/ûöÇ·¶ßÏzkm¾÷û«½?ûmÌ÷1ßþçoßþÓÛ?}ù‹?ý‡÷Ë·¿üõ—çýyž7üç¯ÿòoî]ãíù»x{ÞþË—òö«û¿ß})Dxûë/£¾¯}[éGþðe´÷ÞßÚ<ïý¼ýþËèïå¹p¿?]à=V›íýl‚ó}Õ Çû¬×{»‡šó½=ùˆ\ŠÀE‡êïm<ïmðß:ò,ï­òß>Eà‘CU:Ô¬ïSÎêÐßÞCÖÃgÕšÀ#‡t÷ÿJÈ÷VÉ¡&ó\ïµ]¸ÞǸï¡Öó^&ÁMÿ™~¨Ñåßÿ<*ÇNc•÷²˜Ì{ᾇZ|êVºg:«û î•¹Ñ‘× Û@çÜ«Àµø¶Wþ¡ûpåP2ºè!Ó³ž]àêLÞtE뼯£›F÷CwTŸà…üûôC§œ›Oc1¹¾79_à¾O£0[àët›l[].pß§±®Gà¡C ú¯òibÐß‹}_Ì>½É¬.ýÚk?lßó¡Û&ø>˜6tr–ñ°ƒö|Faû6n4ª÷ú;KÁ×0Û;:ÞÙÉ ³÷û/dßÃæÃÅ{ñ¸þßú{yÞ÷DÈÑÜÿ+ò÷‡=Í¥Éù^Lö}¶ñùÝ !_¸r´ ÜØÛܘ*öG7f0–ùwoL§ãrà„û›{äùÜE!sh!LöÝÙ Þ4ûRû¢ÀtwÓªŠÉ¾ï8ÇœrãÉ5ÀnZ×XH˜üMçÛH¸±}_¬üN?D|ŽèåN ž„bò7—?ùúGUøûÍö}ÍVÎO¼rk6ÉÿÓñIÊu”äoz3\Ù¾ïø<Š7_•ØVvcs¯¿óýÚü/íš™Üï¢È¾S õû½û›À›í{hD/7L=•ñ(Š)˜ ¦åÆ­†Ïëâsø÷8ª—Sy>øó¿¡‹íÝ1Ëøý‹œß‘ãÝèy˜/ö}û›kßUÎïpTuû¿˜ü͵_ö_õÆ/Š«Cýi} ý0ñ9~&có¡ÞxF¡Õì¹ÞøÅö^$Ô¿(¸Úõ^'îo}xb’}áo¶÷®þ¤ÞxEö~í£OÅäoºú»z“RÊ »&”õÆ3šwütÆÍìý1<åxKþ¾s|½ö±«bJ#»æ«µ Î#ãx‹ãkàÍþÇì›0Å×®Yi½ñŒrI›?µ>ìŸîüäù\oü"ÿÓÕ¿&{¿ãrý7~Q|íGÒ­Z;9àwžäù|n<#{7Qoü"{7û©7~±ÏÒSViþ§ÖÃóah<«7~±½«ýÔ¯(¾"^â?9^×Ö8µ$7Ì÷÷ƳGŽ'öpãÅסñ‘ð,¿ß8p“}•¡˜òË‹åú®# ÿ44I¬…ûïzãWÀ¿˜âë8’_Ôû ¯#¡øÂid½šæÃuËUøœøø"ƒð–ô¾ J|ÕøX¯£$ÿÝì.Š7äÿõ>(ޝGí{<_u!RéA<±z"Ìéæ#þ±ÞÃù¦fýõ^(ÅWKÝë½qä,;'LñÕÖõÞˆ&Ç{œ_ìñNôsbQï"{§… _ϽQœoÚó¾øHþÇñ¤Þeç›]ç÷_dï~¼¿ÈÞii3S<¶|³Râùa¥õ[á|LüÍä@Kùð0LñX%„ùÆù² Ò²lD¾M˜óMÍêÒÅë¡iCXV¯–üWºÃ¿ÇkNÂi‰ÄçK‰]áãs>X—¬`-?¯÷@,&ž£˜â±_Ï’Eì2»É75_©´0|]®ws"G|¹ÿ[²¶H"Ìùf—x_ïBb>‘ß׿Ɗ…`ݲ˜]Mý÷Å[óân<ù‡ã±ŸßWUòmÎo¹?‹wã×õŒøç»0£0ÖTLóãâ*Ç“x°ÍßÞøEó㞆øó¿(ÿ¼§Y–bšÛüãáÕq»§ÉöÜnü¢ù±5?n7^ÑüËÌë1=^»ë3^-ÉgÚg4?âïÙ±µÆ»ŒŽÏ9Ñ!Ìñ„0Íû{KÎgqü>:ÿÚ_Ÿ·Î÷V$øñ.>r<9¿Ï(_õã‰G ­H<~—ù¡þ¨ÝøÅ c»ž2e~hþNxËóÒãož”VÉñxâæç×nüÒùÁëÂKÊž>ß–T6ïøáßàq9_*¶AeŒð‘ûÛäøRûôû·¤¼éóqI<°ú Ò þaKýÓýÃý—‚þä:ú2¢ÞBxC½…QÇç×gískT×Ûä¸WE¼Å¾m¾_Gû´¨×q 8`Ï×qª}s®0Æe/ÍÇâ8%_0Î0Æe·ÍÇƸ#Wã²çã q|=i|åó“àæã }|fÃ4ˆãg§ñ“ÎO7ù|\aŒËbÉÇâøiüäó“àèã c\‚¥+ŒqYlù¸Bß'ï|~|}\¡ëf£ût…1.»>®ÇwKã;ßÇ1ÆeÃÒÇƸì`ú¸B_+¯|~²Çéã c\6=}\!ޝžÆW>?Ùõq…>®û¤6n0ÆeãÔÇâøÜi|¦óÓ­UWã=¹eƒ8~V?ùüd7ÖÇƸlÏú¸B?=Ÿ|~²ëã c\vt}\¡ë¯ç q|ï4¾Óùé&°+Œñs—mbWˆã»¦ñÏO6’}\aŒËβ+Œñü»A_3¯|~'%)}Üv§=W2œ«eÆj™Q““w ÙÓ†b`ô”‘9NŒ¹2c¾œ©ì„C10do<оc`Èþy0CvÔƒ¡810l8†îºG.]^<¿íã¾øþ¯åã™±gfìü\t÷>ý%‚Ø~~0æK °þ`(NŒ]2c¿œ©tC10¤/ Šƒ¡Î0œ˜.9†tC10ZZ98N LºCz‚¡3ÇÀ>…`(NŒ93c¾œéNáÅq0´»!VtÏK„°~däñµU!2d) ʼnÆ10z Ž!ÁP é­†âÄØ#3öË™®´æs éȆâ`h†3 'Æ:™±²iG0£¦äÌ10zJ¯'FІ!ý ÁP é †âÄHÈ00¤‹$Šqrl0œgfÆÉóE{O¢zñ¼äSÖŒò¾RÉŒódÆÉgª=,Áè/y•uµc¼ÆísAÆ~9Sé| †b`ì”^9ÆI –ãÄH±Áp0´ƒÆ†QÓ2Ú10ZJ´'FŠ †!8ÁP Œ‘³-ÃÀXiAí81Rl0 ŒÕŽqr¶e81Rl0Œ¯ÔáQÓâÚqb¤lË00ZŽ †!ýDÁP Œ™ÙŽ#e[†±r¶e;ÇÉ‘²-ÃÁÐÞ%gFÉÙ–a`Ô 'Æ~2cç3Õ¨`´×lK»¢‚1^VÞÖ'Œù´s ëåLWζ cçØ`8Úoå É‹pÇÀ(9Û2œÕœ‘Qs2 Œž£‡a`ŒœmNŒ”m†ôC10Vζ ã¤e¹ãÄHÙ–agX™1C:Ë‚¡810Ûr Œ–èŽÑSôp Œ‘éŽcÌX/g:Sr Œ¢‡c`œ='Æj™‘³-ë†s†a`”ããÝ“ÌÀµºc`ô´VwœggÆy9ӑлޱÒZÝ10vÊÇ'®Õã¤"¯ã`hOŸ3 #ïó8N ŒŽÑÒZÝ10¤$Š#c`Ì=c¥èá;­Õ'~ã¤ä8­¤èáïòe€£¥°c`ôTv Œ™ÖêŽcÎ̘/gºÒZÝqbœ•çåLwÊéC»)a%EljkuÇÀÈ{šŽÑRr Œ‘£‡áÄHÑÃ00fÞŸ5 Œ•Ö/Ž#E ÃÀ89z†ö„:Ã00JZ¿8N ,;ÆÇ;ÚÈèi­î#åcŽc=™±^Ît¦j±c`¬”Ó9ÆNù˜c`œ= C;[a81°"à%G ÃÀh9zFÏÑÃpbœ'3ÎË™Ž´~q Œ™#a`ì= 'Æî™±_Îô¤õ‹ã`h®3 'VããÎ däuÇÀè©Zì81ÖÈŒõr¦#çt†‘7Øcçèa81æÉŒùr¦y›Ýq0´Ë؆Qrô0 Œš£‡a`äívljëÇÀè9ÆÌÑÃ00ò¶»ãÄÀõ‹c`ìT-v Œ“*Žƒ¡½ÒÎ0œ)F­p¾ÒC„Œ–6ù'FŠQçG«¤ó²Â9?Záh_v0ækŒÒNí`¬—z²õn#ã%Fi7w0öKŒ²þnc8FI1Êqb`Œr Œšb”c`´££§å#Õ c¦å81ÎÌŒór¦+Õ㤚ã`”¼Âqœ££¤ªµc`|Ü ‡Œ¼Âqœ»gÆ~9Ó‘ªÖŽ1SŒrœ»dÆ~9Ó{à ã¤å8Úkï É1Ê10JŠQŽÑRŒr Œ¼ÂqœódÆ|9Ó‘b”c`ÌTwp Œ•jŽ‘W8ŽqRŒrœgdF®ZÛ;Îh¯«¤¯um"£¥å81°jí=Å(ÇÀ)9ÆJÑÃqbì–ûåLwÚÑt Œ“ªÖŽc?™‘ëö&„3 #¯p£¥ªµãÄÀªµc`ôTwp Œ™jŽ‘W8Žcî̘/gºSÕÚqb¤Ô_WIöö†3Æë ÇÞçFyú†G0êKÕúkÊÈh9ÆÈÑÃ00fîP6œ¸çé+U­c§ºƒã`è'Î0œ)zÌ×޽• ÅÀ¨©jí810§s Œžò1ÇÀÈ+ÇÀ˜©jí81VËŒõr¦y•äy…ã8úÞŒ3 'V­ãã>ùÌHh½v$Ûû7Áxí)¶7r‚Ñ_jöŽN0ÆËž§½µƒŒór¦¹5Ù10rs±c`äŽãÄØ33rÕÚÞrÆ~íQ¶7„‚Q^s:}g(í5Ó·ˆñ=ô½¢`ô—ªµ½iŒñRµ¶wñôm¤`(ÆÎ±Á00Nζ 'Fʶ Cßjr†a`|üÆGf`EÀ10Zζ £çØ`81NÏŒór¦3Õ“cålË00>~{%ë ýÙ/x|Ö@ÿYƒò74y¶OÛë>o9ú¼ÙãÓ ðoØ6ü|;æóõ祿O &ß°Ìü<}ÿ<¥ù<˜|ÃüÌlùƒ¾ÁôúÀ„ÿôÿôå/þª¾•·þëÛ~×ÿ.ÿ`Ø$5yØkÿð‡·¿ûÙßüŸ_yûÙÿz»¯>Ïøù?¼ýð«/ÿöþ©Ÿ:5ç¯t¬¿úù…o?ûíÖcÍo>÷ïµt°¿þíÿ~÷Áh›œfìßȱþå¿}ÿÁHˆëüä-ûöƒÑÂqœŸ¼gËöòÆ\z»M¢Bï¢+óµêtü«ïÓéøW_§Óñø}¼Ø¸Ä_ÄuW–X åÒ3èbvöÏß~øÝëú©¿¥v¹Å[žÇþ8‰]þዽç§NÚ±¾©hôhl~+PsóïwrS4¿>¦Ÿù-ó®Éõ”'?yÁÔs§r6ù º¢ßüéýÿüóŸþþgÿüëò÷?·k 1Oj(ê‹y~ ^tüž÷4?~åQÇmiÚ[Æüj² „ñÃñËÇÂ8¸ëò äý0#cðËïÁŒ rÆpšŠ‘AC ‚Q ¿mè Åȸgv!7? ‚‘±¸ò ÁÈ8œ‚!àð¡)FÙ82#cä§÷<†`dœüä'8`0FÛ9uqá{ÊPVzoX1êIï +B¯é½aÅ_Ï ¿*¬£n×È]×¾êpÜY¹ûF4rùMj,2Ü»4©µ F.5™F.™*½ÿ¹ܛG-G¬WDņÆk¹×ÙÒߺFî’î#ÕȽ±ŒÎÊ4rwá³\îå§C™Fî”C¹Fîdh¹}KOkänª‰QóhäÊ}è‡L#·v†®‘;™,¹b{×å‹F®¸z¿E5rOa²här³kä¾í¦‘;—t(ñè¢pKZ4r7e†D6\šáwÔ5r‡=AÅ­“H4r+-Ré4D#—ûɉl¹Oeè¹bb¦‘{Ã}½Áß4rÉT.\V’!_a¹³R5rY ‹Z=]#·tÆ®‘ûLæ»FîÙˆYÜ’œkänñÁª‘ËI3ùF×È3<)½5Ä£»Fn?ü÷ªËâCäâ]#·5g1›zÍH5gy€ZhU³–ß|¤†YÕÈe÷OX5p%*%4rwçÆ5r×äq×ȽNžš‰U#—˜Æ]#wTþ{×È%{’ÍYÑÄ%{*MÏ÷©ºx]¦¸<‘ó›h€9W§–i×Ƚ‚°kän:Þ \²§ëT#w²== 4r+' ®‘Kñ÷i¡‘Kø‘eö͹‹ºÊkÍ¿·ìpåüTÓÈe„*nO4qÉžž'4r9‰©¦‘;8?4ryõ¹‰ãïùí6jþ×ó;’öÐÈí‡[ÿC#·p“¾kä¶Ê㪑Ë¡r¶iäò{ðtý®‘Kù ‘ûdLöä÷{ó›b€ù½uºÿ¢‘KõJy^®‘;äy¹FîÀ祹÷ý=ÕÈe1±xþ§‹=íÐÈ-øü‹ËV\Þm#¾käR|.iäò›;aÿ‡ÅüÈ~]#—Bté¡‘;e>©Fn•|®†F.Ei³g2¼&×ï¹§ízéD)PÛý¥ŠÔ÷°®‘K¡ú)¦‘«Iñ¹lOOhäR´~JhäR¸~LTW.O Ü!öê¹}³}¨Fî xM·E5r'§wq¼Åù]àÍñÚì›Û#öï¹çÄüaG[x~ª†-ë’Ðýp\Êòž¹lO#4rÙžœÏt[]#—âµù N5{اb¯ª‘{8^›ÿá@ö°½¸F.ٓ٭óWŽ×å Ü%þÏ5r)^—Ç4rÇëRB#—âõÅ®‘KöTªiäò‚>F‡ãu©¡‘[ŸðßÔ‘]*ð»®‘FhäR¼.34r)^ÓËÂg14_dT§Û칯[här¼î¦‘»-^»Fn“uˆkä6XˆP/3Åk[=QY¸HüW\Y5[ÖOøøâK4sdçÔ“Ìñz†F.Ç빯whäŽËê%²$q\²§fÏ›tŒd%¡¹ü>;»Fne õó>’ÿ¨Fîü¯„F®æ®‘Ëù_7Ü%ùß \Š×m‡Fî|bYPE'ÈóíJb½=òe«1\ì¹’ê„åüo™Fîüo™FîäxM5µ¢øŒÈÏ© –âuë¡‘KñÚ¯Gtxhš¸F.ÙS+¡‘KöÔJhäR¼n-4r)^Û"‰zH)^S›ŽhäŽ×–ßS)Åk[R7(ç'4rÕž\#WíÉ5rwó;¬¡B×ã¹SÖ+¡‘»x=ã¹”ÿõÇ4rùÍbž¶¦‘KöÔNhä’=õ¹“_’PÜ-ÕóçHn¨=Ÿ#õ°n·,&Oã¡‘ Çk☠»F.ÙSü=‹›Ò´w\®•MÐÈŒU#wq¼&·!¹|ciÜ5r)ÿë#4r<^áDœ°käR¼öã[}kšF®T_‚/å—ÞA#·Ãõ)Àôj¹RéOhä6±ÿn¹UÖ«®‘Ë+ëe¹R…i;4rÌ×V¥có:ðv‰õuÓ-X©S¯]#wÈzÍ5ru}í¹º¾vÜ&ËuÑmR‘3ÂR±µ¿UëúÚ5rO‰õ8õ¡í÷§IUÆÖ£Tl§xmþŒ:Ê(^Ónˆiäba†zÁ:øSú¸CM`X›¡¾¯²ÃßóÇ!`þó„Ì×È==Ö×ô±.ÐtÓÈÕ M\Y_»Fî”õºjäj‘¦„F.Åk-1rOU[ˆ¥NSiäj¡æ1\­ÔÔÐÈ}zÔ3T<ßý ÷5m°Ÿ¡Õš¹\®©ªñ:´^ÓB#—í©€FîÿFDíÄzŸ>æÒ Ü¿)õ«o°˜þÀãi½¦…F.ÛS ÜS³¸~åëÜ©õš ¹ìO+Ï׌T#Wë5+4r9^ïÐÈ%{¢ÆFÐÈù¶ØqÐï«F®×k\#—ãµÍÇ¥õš ¹üÃ~,^»F.Û“Í—íõ×È5ê-Ü»‚Ïk½Æìsk½¦…Fn}{½&4r¡^G˜í©†Fî^Qϱº½ÈôˆFî*OµÄk–ÔÓ1Ì7ÑI,õšÀZ¯9I#—°jäþRî|ÝgP/û\EÚyxœ}YŒ „q11.ÆÙVb\ ŒsŠq0Î!)ÆÂøN\ aü¤…1.û>®Æ9¤Å¸À4~V'ãòb\ ŒsŒq0Î!1ÆÂø‰ „q™1.Æ—,ym\ ŒoYÛ¸@?Rb±q1.[ ±O*Æ9Ǹ@Ïv aü£}Ø<~J?éþʾJŒ „qé1.Æ9ÄǸ@çãaœS€ã'mÏ*ŒqÙ½ñq…0Î)CŒ „qN!b\ ŒsJãaœSŒ˜ÆqkX!Œs ãa|&ÿ¤ÆWòO aœS–ãœÂĸÀ—§ØÇãœâĸ@ç”'ÆÂøG}8Þ“Rã#ù'…iüÌ4~Òý•ý®ãœRŸ@ç+ÆÂøIÍ c\÷Ì¢ÿ@12JrQ†‘Q““2Œ ÎÜ€!œËC028-†`dÌÔå`83ÎÉŒs2c%‡e;¹,ÃÈ༂!;Ð}"¹ËÁ028Û†`d|Øã’œ‘C02Fr`†‘1“ 3Œ Îc!œÙCpfœ–'ßuÙ­†``Èþe0#ƒ3d`FFMÍ02Zri†‘Áy50#c¤nÃÈàÜ‚‘ÁÙ80#ƒós`FgìÀœgfFöpº }TÏ‹ûJ§Ubpæ ÁÈàµ0#ƒWÀŒ ^/C02x ÁÈXÙÓ)FÆÎžN12xŸ‚!;ÇÁPœggÆÉw]v—!¼ß ÁÈhÙÓ)FFÏžN12FötŠ‘1eŸÑ‚‘±dçÑ‚‘Á{ÛÀŒ Þ&†``Èþ7ôû FFÉžN12jötŠ3ヮÂÄà `F—0€!\¤†`dp‚‘ÁûñÀŒŒ=bdœìéCvñƒ¡¼¯ ÁÈà~`FïýCpfœ‘'Û‡ôC02FötŠ‘1³§SŒŒ•–ü†‘±Ó¢ß02NZö†ô"C12>ìmMŒšÿ†‘Ѳ§SŒŒž=âÌÀ€adŒT0ŒŒ™Ê†‘±R!À02v*FÆI´†aÆPŒŒ’=bdÔT0ŒŒ–І‘ÑSYÀ02F* FÆL¥Ù‘|#!1Zª*FFOUÃÈ©ª`3y:ÃÈXÉÓFÆNUÃÈ8ùÝ Å™UÃÀN£`(FFIUÃȨ©j-y:ÃÈèÉÓFÆHUÃȘ©ª`+U #c§ª‚adœTU0 éŽ †bd”äé gÆoÎ$FMUÃÈh©ª`=U #c¤ª‚adÌTU0ŒŒ•=bdììé#㤪‚a`HW0#£¤ª‚adÔTU0œXU0ŒŒ–ª †‘ѳ§SŒŒ‘=bdÌTU0ŒŒ•ª †‘±SUÁ02Nª*†tªC12Jª*FFÍžN12>|Kì…UÃÈ詪`#U #c¦ª‚ad¬TU0ŒŒª †‘q²§S é· †bd”TU0ŒŒšª †‘ÑRUÁ02zª*FÆHUÙqZfœ—3ÙÓ)FÆÊžN12vª*FÆIUÃÀ®Á`(FFIUÃÈøðmÆÄhÙÓ)FFÏžN12FötŠ‘1SUÁpf`UÁ02Vª*FÆNUÃÈ8©ª`Òû ÅÈ(ÙÓ)FFMUÃÈh©ª`=U #c¤ª‚adÌTU0ŒŒ•ª †3#y:ÅÈØÙÓ)FÆIUÃÀÎ`(FFIUÃÈøð½ÜÄh©ª`=U #cdO§3{:ÅÈX©ª`;U #㤪‚áÌÀª‚á`hª3 #£¤ª‚adÔäé #£%Og=U #c¤ª‚adÌTU0ŒŒ•ª †‘±SUÁ02NªŸ†ôÎCqf §3ŒŒ’ª †‘ñá扑¦ ##·LFFnš2ŒŒÜ6e¹qÊ02rë”adœü.¼b`ÔÜ>e¹Êpf`UÁ02r•adä6*ÃÈÈT†‘1RUÁ02r3•adäv*ÃÈÈ U†‘‘[ª £å¦*ÃÈÈmU†‘ñ¡ « †‘‘›« ##·WFFn°2ŒŒÜbe¹ÉÊ02r›•adäF+ÃÀnì`(FFn¶2ŒŒÜne¹áÊ02rË•áÌ8=3ÎË™æ¶+ÃÈÈW†‘±RUÁ02ró•adäö+ÃÀ¹Ë02r –adä&,ÃÈøPõ#1r#–adŒTU0œXU0ŒŒÜŽe¹!Ë02rK–adä¦,ÃÀ˜¹+Ë02rW–adÔTU0ŒŒÜ•e¹+Ë02rW–adä®,Ù‘<Ý|íÊÒN}`¼veiï>0öKUA»ùñÚ•¥ýýÁX¯]Y_ÑžIŒÜ•e¹+Ë02rW–adä®,ÃȘ©ª`¹+Ë02rW–áÌÀª‚adä®,ÃÀع+Ë02rW–adä®,ÃÈh©ª`¹+Ë02rW–adä®,ÃÈÈ]Y†‘‘»² ##weÎŒäéökW–¾k ÅÈøPE)1rW–adä®,ÃÈÈ]Y†‘‘»² ##weFFîÊ2ŒŒ¡€ñSÊ?ú3ÁôgŸ½àñYýg ÊßÐäùy{Ýç-GŸ7{ÐÐOn€öáçÛ1Ÿ—¨?/ýÏ &ß°Ìü<}ÿ<¥ù<˜|ÃüÌl¿C¹sfAùxø³ÈׂH>´:QÊ/žò‘¨âG‡Xüú{>ļÿ‹§~ë!¨Ï’nïë1ú/žöÍÇXÒWøzŒù—B{Ð#_±¿çôVùÑ1Êó÷ƒªog_Q¿ã lù¡ÎåË‹vsÒ+vñÏÏ_´{ÑëKÚzóx哯ÉùéøWÕütü«b~:¿ÿÓ0nï/âž‹0)»v~&jú•¿¥JØ–¿=ßû·ÔÅŠÉ@ÞuèÒw/Ú‡ßcH~Æä™Tòí"—€\ÄH=(ú=MßÍõïµìªò|Õû õÇEw×Ä;Å´ï“ÜC¥9ˆÝ]ùñæÇôŽ ?.}F¬ûøTú‘},t÷×Eõ±Òúow}¼¹ëý§k>N:¦I>Þ'·§+>ÞÕ½³÷º1c/×{^<‡ 0r»{ÀJ°‘ÏêŒ÷l/tqÆë†g mÆkÞô¾¿H3òÿl¡Ìxió aÆëŠÇ ]ÆK²†bxÍ[^LUÆkÀÙmmšŒ¬[,‘\$¯C3¯ym‚Œ¼E>vè1^3äïAâoyi7\,’d<¡ÅxMwÔb¼ÿp@îÁöߥÑ ¨Ê‹“žìì!¼Hæ=Mwñ°¯]$>¡ºxýózBtñúç¹Ls± yS;90-(È€[.–¸@ Œ;IMâ׼ǵÅÎV§b‹‡–šc†Öâ½ic†ÔâõÏc…ÒâærLXQ Øu'g—.³xýó}ú®²ø°©¨È"KXÄ¡–°K,ª…÷¿‹×?Û\ .çkÞw–©ü!¿þ3K¨+^žOˆ+^ï:Kh+Þ»äN>k(+Þ“·ÉÎ wa*, Æ®@e¹ÊüËÿv2U$ž¡¡H p±¯sEÅk3s„ âÇR=Eþ’ä\!§H¼BMñf¹s›˜"7Qƒœh)ò¿ÌRг¸¥Úº‚L¯jVòÞ®£H¹q ÅÚ)ZUSM¼qÙró*[»„†"ùçŠ×QïÇùŒ–=ÓÚŒú‰”`˜áÉ'|ˆ3(—IìÓgêK¤ì¹™H"¿êyši$ºZe‹Dâ¢;lY.œSµH|âǸ}BñáËwuÄkÀ{…8âä2´_Qð¸ÝgUFdIdËùÓÚÛ—IüíN·Ýe)HùsQÄ guø«nç IÄ{ÓîÝpEÄkœg† â}v,¦Â{>Ô·frˆ÷˜g„"´I-™¯ðð~Ù9&†ÈK=ÖÏai,yŠX)@zñ¸Šn’ð"˜’èZˆ”DŸBäoºË—yümâF3ÍE[ÌCþêðt‹çO _Øð÷„—¯`ùãÁÍ—¢¯s\þÖ„5Ô¯Myøû¸Õ½!ÁµÝÏò—o‡×$ø3·ûhþ¦íô)ͰeOêZ‡ä²M¯ÛšP•™³- ¹u…ëÊšPe¹d‹@þv,{9œÀª.[%eM8MáÍ`ï8ÝWõÔíA.ûyÃXôò7ZcýÌdeï/Ú|¢\f‚ëÄ9SwÆp'ÅQ}| Ì_L…z‘1[äSGEÃCñš0~ˆ/ͼ0Ò4 9üýR®³¸ ¡pèö°+ÙÓ;ÝÔ ›w 1ÃkÀôÙDþÝÅkÂÓ@ʰÇÄ¡z"?_2d…T¿W‹×„>­¿Úeåƒ&¹ˆÏnyÚg÷æ¬ÿfí^«5\Ûk ¼…ßâùnÞ½q«ÛÜê¶O¨® ׄ>aåë˜V‡ÒOaº‰Êw/­Š¡_Ø»Ðu É€g’-´Ò›~«Ò'Ž|˜2àTvÉÂÁé *î‚…P¬þs+è×¾'·ËrjF¥ïþû~ûÍßWÛº´jÏeó?¯ä}x)(õtÙ*½ö#÷ÑÓ°¢;àlì6l°ÅÞu¡„ÔÆ 6Üu¾ÓßÇ6Ü/q|ƒ wzýtãìÛ¿b÷£‡&â ¤ó=óì‡;}~)±ÊÇ _Ñ¿ç›U^±¾ã´¡o)çCÐÖé7‚Ó_.d}ß½ 7Z~|¼²¹CkÛØ¼s5mFú(ï ŠÑÕp'RPŒJ¸³Q ~>*¿d£ñ»ßøùÃ÷þµ_N\ç«NTÛ¶mA™¾kxXÜÌÐÈ×Á}ù£ˆÌ=endstream endobj 688 0 obj << /Filter /FlateDecode /Length 1118 >> stream xÚµWÝoã6 Ï_áG8«ú°eù€ ذu¸aÀ¾²‡aÛƒë¸i¶&ÎÙÉîúߤ(Ûi^1\(ú¢HêGФU²ITòÝBqÿõjquí“R–θdu›h“I¯Lâ\!½±Éjü!VKoE»4…ø°L³"íq©Å]]X8ÜÃVir ã´} Ç-îìÃŽwøCòf‡ öÈÙUøÇÄZôxÀ«¶[þµúþê:·=Êeá\‚4üˆ’è‘ú3J™) £Mõt \iF©íÍ2Í3ñ7.ÕǸž‹ºâ{À¾qp„%©1NjW$©Ö²Ì]CŠŸð&ëej3EB÷aHà‘DšÖpaãi•¹AøŽQ#>þK軪FÈþYæNT›¦ŸG;'U^¼]¡‰„UÐw†a)3©~bÕ:htMïP7º% Æ4_ñ¼b›?°*[¦™SIe`°2J“€¸ËÅ 8—µ¥8õu«¼,3Ϩç¸nQ‰CÕ1ºÖÐÑuq>€ÿ€s#6 ê×tÑùXtÒöÈ`ñB´=ë~œ:*ÒWÑÔ,bË€0;dU݆8ÓÛ–p#¹½dÜ‹  ¼ -”…ë} ni¬èÜ÷üζl\ûSå ºÏk#b« wu8ktàãݨÁŽ%w,ý´/˜#“Xhoe|RÔèÌZ¼å6‹÷$´)Ë«xza§¿B{¹.ŸåxŸš}4Bï´:s¬ m”?†°×»ïcœ/1C†ùvµÀà«=ä>ít–Ô»Åû…,´ ãˆ6â)^¸z·3É7íâgøÅ­4rL',/¦4£ éJŽÏ× ÙæÄ±"Ó^˜·Ë¸ˆÕݸ¶!>¬½Å>$¬;¦ˆ¥kÆS¢É„ÝJ¼C?†1±#+„ÁÃ.Åz|@3 ÷ý… ­•Öù(îw ›¶”õßñx="ðì#( ­îXiIˆsdÒÔôòøÛ%|d€¢Ëο ¦¥i vmÏ C½´ s’€‹ÕéžÌLU#=‹c4;óP<9÷RO¾•òBfçH%­'ìÿŒBwendstream endobj 689 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 690 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-multivariateSinglePlot.pdf) /PTEX.InfoDict 209 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 211 0 R >> /ExtGState << >> /Font << /F2 210 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 6680 >> stream xœ¥œMï.¹QÅ÷÷Sôyâ÷—m"@ŠÌH,PV!HŒ2‘Bðñ©Sç”ÛÿQ ‘’¹s®»Ýnw¹lÿ|žÉÏožüüðüéÛ??zúþ¤öÌúií©­|fyÊÞŸ^žÿúýó¯Ï¿ýòÏÿò¿z~ýÝ·ôI)=÷?¿ûõ?ÙßÎþü÷·û퓞ÿ–ŸßØÿø–qÁóßfþÌúäT>c>?~›åS›ÉôYíùä¦L²~z{öüì Õ?µ?{}V¢Ú㱆å5>}àʶ &þÖ®ÌjN¨Þ¡ìUîK¨e¥Ov•3Õ\öøüI2êöÖ”J¹7ꙨgU´ãw¶OsUÑšÕ?)C­B5²×Zü‘ãS²×:ý!듊˾(Gõ‹›_¼ñlÈ•)å@vÂG‚¬¸x—Oélï¢\Ý»º¢Û¾hgUhãnŸ4LÖOª”cð»øÅãÓ¦—f/ø új.Çb›½tᨹ'ʵø\\ŒËÆvݨ­#¨ý³BïäϪÛuA=ÐÚA½“ëöÙùÖÁ‰¿îÃõødèÁ@Á¿Léîz~juÝ©7â䋞ÔÙŸo¡[¥›ôî®uÆhÆ\®+¢à­Ïô÷ýÖÐé×oÖß?Ú‚wHÏé×Þ?Ð|ß¼Ð0¿>KOèÅÊy3l'>°éâCï­¯x0yûýù¥ "ïF¿¿TD/úÓcz°³?¿´O)ÞÿÃß§ „.=¨Ùße~J{c zµëû—Å(®Ó51ŒÇ ô®«×W3:êÒ…‘ìL=Ø¿÷¹6dèDmÿB§ô öä‘ë`|Z˜Méµ½|x{«õ7û³±½Ãå«Joö'߯%äˆ÷ù-#Ûxûýý,Çnö§ÛÜ*†ÊË:îí/Ó“I€ñÔ:ã3£Û -ûq ×ГšñÚ 0,ó’Þž-9üÚV*-ÞÚž1ŒM²³LnO¦Íëê±üʪtÊž3iC5³´cD[)ã¶û‹| É„ÊQЧgÔ¥F÷…Þ°f°m’²à<¥Ãay,ie¯jdtõîÌÛÃ%_pü½ÉÎ{*±ì8’äp¹½£#x‘;“¤µI1Sq/Ÿk‰p@Î!ik™uy?¸}ô›œ>ÉY’®Urܲ _éO4™CÚXÙ‰ ²!bwV×™´La’ñcsãÌ>Çe›k~8“Pn—™U-$S›…›Óÿ¥Þf› -_™©v1Å*ˆÈ55ŽMN—Lã6aZ`~ãÅ rHZ§ÙÅÓ?ŠM’u\÷|ÜÂÒ‰>´9×§Ÿlí© ¥Œw“ÛäÐpÙ>³böRôÃF)_}¸Ñ FÃÀnჶç [®üv¬…P»åðY?# '¦“•ÒÆHEUL’X€Ô÷£˜^êSNÁÞÎ÷-6ôSÿ"G?Ï-H”CQ—¹ø(–F,*,r&k¶ä6OVZYê)óTe__$BT[l´Äh²…ÜóŒ…Rº‡èæØ/6çYˆ"“¤ÍýVªf,OŒ‰y²”í‰ñ\¼=1&5æ¿‘Ï`/6Û•üƆI†hfiõĨ¼Ql*L.}”•êSÖ‰ ›èÚ-§#?JõÏ5¦·ÙfA&F~P›ä’gÂÖ%3¡÷FËJŒ+$##¶E]biÃ#"ÇBZ¾û4mCo°ÔW16ô<_A"1NNµÅ¦¶žÎÒ¿ØÔæ+ɤ÷7=ó™®JOÈŒ(ö…ôÎïÒ¼ôÂ…dR\Úôæ Ií w}73¥7NäYÒ;šZ›ñv{WÕŦ¼Þß…séëLäIZù Þ\hŒÓ6ÏùBR+|èÉU;»nxžÐnÒ› uÏ…eT.4«Þgt.$O}¾bÅõ [›ýFz~eL„ÊY˜A/.Œ¯ßÜMD¬i›ò|!9¹ç€^×B½Ø^±•wá[lNLõ]¸›æ…ºq!©…x±-bj^?sÐô9Àëcýƒ Í¡þ´¹/w¡ í{¢®ïa“a™×û˜^“ eO&eõÒÂÒß×fĶßK± -mn|šôLïB»XÚò…¤öheM.$‹Æ>²uñöb/÷õ‹ ÍhŸ¥_Hvt3tf<ûÚãÓ3*tAàßüо0.˜7ºkŽ,±¬ÿrÒt‚õ5““éIÍ$iÃñi3‡/¬Al5‰r¾ßö|‰rÏj­®·>hÄ'ökÓuFZ=÷×ä³î÷xª\aшÏ\ø½ªu vêØß5éÅòÌr\”ûôQíűYë[¾[ÇLÈû7òë[?˜ˆ®§ÎÏçz»;vL¬þ¾¶‘LýzŸ\Ï›kÕj³hü>Þ›(7–ìÓƒºPOƳ6’оqŸÌG5/nœ4^«Í–e¿ãz]¥Z27îÚ8WÛXæôn|¡µqšÞ?6eö|ë÷£µq/¼0ž;ãz×w#^mÕÆ]zÇÆýèÝÞqµ¥çÛè›Ys7†ÕæÒ}m4«M¦ÈÄã³Úlšç;¾ •o=ŸÖÚ™o•¯«Í ùÂ&Ðs¿ù¾ÖÅ|«ñ½©õf¾ÕF·Ú4ª»7Àº”ß*ôÐÆÓë·e(ÉÒ«¼ÍÚzlÜë„O—ÖÆ}QÏØ¸û*½¶Å|۸į6½®þ‚…jóio¾©=ÇÆñc:ò-Ë ã³qÁYm>M̧¾Œ€ëj¿Í¯Ê·Ÿ¦µqO¬oD¾eÿõÅ»@ôNw}›ñϳ]¦6g~ów… ª#­B×/ zÖ+þl«©|ëKuè]¯ñfóëd¼n–OnÜ'·ÐQocˆb| ‡£oÿÙüºç5g&ˆȨ6¿æ;?ÌBùÁæÛº®ñbóifÿ2ÞMOêM=<ßžïo[Í”®ø4=¨}ïYçŽx¦¶ù4ÝãÝô vpVmûù%žM/‚_/Õå'4Ûoó©@”ϧЋšùÚöˆNHc¼Ù|›¾èIuôb<û2 z3ßV‚•ï€Ó&RÏRw,u:vgÎɉԳ€7‘:˜¡¯ÉÔ=DÕ!½‡IÕ =àˆÕ!Yê\8Î_—`tÏ¿>É:àÞhG,AA¡uìt^´ž«¶xdëió…ëàfE<i®U3áu+ås‰×m×à‹áõ:ÅÓ‰×ð¼*âuKÔ[´D€vðz/œ„×AÀ.¼Ž¤äœx_xÝR ¯…×-úÐ^7é[áuì7Ösðº¥ã%žŽ´Ö’Ð<ñz è$¼Þ‚Ð ¯·Áº¯[K<‹^·òNÂë6ˆ҄×wḠ¼ŽÍq:ñº=ãAxÝê?¸étgîr¯ïÊxT,?/^"Þ'^G–êÏÁëù`QòuàAapìÀv3ô¦f¼±—¤]‚;  @¹Cö’ºú—”ÝQQ¹/ ô}9˜WHÖ=5–Ø•Š´ãz¶Ÿ¨ÏŸ¤éÎÚ¡o„íÐÂÜNÛAOÄíhë'o,ó9À½XZàñ‰»ÂúäDHöMæÍx#twÝžCÝÑ~]ïØïÇã(4”¯àðã‹vò~iQåǽ;ÐôïIøH9.úðÈþ'~—¼ù;Ú«ö8€G9ã‰÷jGð ž¿dð—vïÏóö‘ƒÎ2ÿÃn&‡ëäñA|Aš¹H<˜dºP<Êdñ~½oÂxÔŸ.ïñRžƒãÑåâñÞ,‚ñÌ|Ûu|K"nc¼É#LEÎ}¹Žü;C/æSæKRùKûDˆç1ÉåÑ ûóæK’yf¹“zô©"Q½ÏWÔÎê}¾%»÷í¾©i=Þ'_¸Þû—åÞ°ÌÅýö+8±G>%5#²G˜ ´'æÛÎ]¦ =Êù}Hí=Œûs°}&|;ÜÏ#å$¸Ç°õñ.rõHáóÝ# éy¾P@š#¥#¼÷aÏúÞk˜|ïñLpîüaN K€ïóMzÁ÷ùÈÛC„0$&Ã÷üÆú|û]/ŠiÇø³£±+²ú÷ò¦‡äcX¥ ûXºî¦þ'Ë÷0xÆ||Ñ| ~?â|„1ÛKž0 E%ÐÇgT¹ã]|6%8ÒÇg'&Ó÷|ß&v/ßÏúÐ<#Õ/\†ªÍïCªïaAJïTß?cP~äÛšuÎEª_jPLR}|6RcR}|ŽgR}|&RTR}ÔWBOæ_µÏ êç©>úƒ§¤úxÏVHõQ¾¨>Êy¶FªöÚ’ê—ºï¤ú Îê—& (ªïÝ–žCõ‹-£¤ú¤äNõ `N{Õ÷nc¹S}ï6RvŸ8JìDõñYtJàT_ŸéPýrò©~Á²‚Ú©>ôæýNõÑlŸEõQ-ó©>ªY¡ôæúTT¿Ì8$ÕÇc|=)ªú9žIõ½~Rx§ú^}Õ÷fyûHõQ Ç©>ž?Ós¨>Êõ<§úÓþzÕÇcÙ~R}¿ßŸOªnæ)©>ÚS}mRz§úh&ó%©>þHÕ¬g|’ê£ÎW¤úå@“ê—µ5^IõÑÌë×µE…Hõñ˜–žCõ]_Tõ“úêãù¤Ž\¨á5Heˆ#Ñ~R9R}oozÕGÿ’Ê‘ê#luªàTñ4çs¨>¾§žï ½‚e(©»S}†¤è¾‘@9߇ 1 3RYR} ƒCõå¢ú'>EõñýIµIõ&ì?R}ôgº¨>>©©~ ߨ~E>ßÏ¡úþÙXîT׋ê;¿JÏ¡úø>¢þŽã.í8쟉ک>žïùUTŸÙÇŸ¨þ¥êÑÈÞM¤òNõ¡ÙߤúèvROR}|FŸoDõñ™ØŸ¤úø¬¤¦¤úèQ|§ú5òµ¨>ªá© ©>Û/ªjHIõUí¡úøƒí!ÕÇc¤ú~}~Õ¯6-gR~§ú¨¶å·@ñn¡vÜZ-ÿó”‚T÷³ý¤úÐüÞ¤ú€ù:%ð`<ߟTß5©ºSýÚ5_‹ê¶çÐ:©}¤ú('¥&ÕÇ_³?Hõýzÿž¤ú¸~]T°¾\T¿Žø~¤úÐk>‡êãÝïT¯ÁïKª_9íªïïGªîTד’“êcX1‘ê#m¤ ø:N1HõQÎx%ÕG>â)©~ý·¨~µe4O%Hõ}Ø\T¿í/Dõ«­xj@ª´ÀïIªïi??‡ê×sJCªö²¿Iõ‘&JP~ÄsÉ_¨>†e'µwp‡°eþ$ÕG˜ª¾ñÌ|Ã…?Æû“TßÓHP|ç”Þ©>Æó©>îŸÔNõýùë9TÏgûIõæºÞ©þ¥ê_z1ž‹â•TßÃí{mïËâíeôAá²KPø½¸É „ßJ²µËÑ"[»Õdkol¼líBo²µË'+[{Œ§­½òhðÝZîC’ìðëj_ë€øM;œ×¼/m}ÈÝ× H v?Wúvh©ÓÝá”Â'#s_ƒBäÎ^â¾´Y$pÇ}Ø·ãî·¯ÁaJÚŽoãÀÜ“ ÉC°v¸©ú¨«WNÚ·ŽH Ú÷àV‡œÝÔW‡íHÛ|Rö&<ìÚ”{ ¹<ì;<îò°OAäð°OGÃÃ~´<ì²ZûôdÏ9<ñ„ìaÈ~ëI-ˆMÈ~ ;Ö*„ð„ìae8ö-höhÏëa§õ3<ì:ª;vAAöøµ„û-'FôJ^v"t9Ø‹ßë`çB8Ø«r8Øe¹ì9ŽXˆØ¡eš÷½R$!ÄîõóúMcÑV±¿í'bÇõõBì(g<±ãþH=ñw^žv?¤^¨ŸDì^?Ÿ?h<Úú¾Dìx^äŽx.# ö^ú_~tGìèïcu_´³ÒKûÜ/Äî‡ÅDྶÇóø>Dìo¼±¿ñFÄÍ#G"v\Ï÷%b÷x$‚wÄŽÓèuÙÜ/íˆÝ‡%¹ï%rß ±k˜ÄMDMÄÍ#,"vÔÇ#L"vG¼—ÝiƒGBœèÐ^9ëM@߈šG(Bì%ŽÔ„ØO±“\¾ˆÝÊ™…ØËÒ/h„ØÏ÷b5{©_{‰#Q!ö3¾…ØíyãFì1Þ±#?ÐÒNÄ~ëA½ÃòŽ|[Y±G~ Äní%‚b/á8b/áNbñˆÝ–ÔG{¾í2Ž ±[¾%ÂbÏúa ö¬Óÿ@ìi¿Z«!y"v¬&Â_i”eÿ±sQð"ö˜Ÿ±¿z…ñFS!öØ‚b#K öTdÄbOZSbOUÆR!ö0ŠbOZÂbÇ‘!íD쩪ÿ…Ø“¶<Øq$Êö±ÃHMDOÄŽ#Ð0̯tµOˆ=õ¯ˆ=bb?ÆU!öX- ±»’ȼÓÈ™B9ž4¾­/Vùëù‹ë‡%$'Äë›@ìIó‡»[ûó"öœßDì¾~¸;îç‘»¿¯ï4rƯˆØýƒõ9ˆýO"v_¹ïX½ö ±{|R¯\Í1†q~ÊXÆyÍ7Ç8¿ô ‡0ÎoeœÏYHRÆy&2ÖÓ8Æ—ŒóXÝÞÆùX_ãü#?ó9ëýÃ8¿¸Å>Æù¡#Ÿ0ÎëÈóçµ><Æù0އqþ\/ã|×û†q>Œã¯q^Ï—q~èˆ-ŒóMGfaœ—1öç…Lq>ÆSçѾ†ñG–aœ|ÆùFyç»Æoçëk”—‘“ýÆùª#•×8_ÂH¿®_¼ã|ŒÇ0ε/Œóñ+ž0Î@ô2·0Îw9„q>ú7ŒóÑË8ýÆyíŽq^ú2Îóˆ5ŒóCã'ŒóÑÿaœ×/‚q>ÚÆyí®Žq^â绎|Ã8?¹Ë8?4ã¼ÌvÇ8ß…(Ã8ßdÜ ã|Ò ã| ½0Îë‡`Ç8¯㼎`q> ¹…q^ùêç“×kœ'‚ ã¼Æï1Îgî?nã<‘:óØ&ÞÆù¢ò㼎TÂ8Ÿ·¦ŒóE?ƒ ã|¬/Â8õËiœ/úaIçK [ç«~:ÆùXO†qÞÖwDp2Îýð"Œó6í”@îˆgl+y?ó¯¦qþÖÈ·U–±0Î[{ömœÇ¡·WÆùWÓ8ëÍõ®:óXÏ¡Ó8ê—qÈŽÆyüÁûiœ¯%Œ÷4Î×¢ï)ã<¶ÅDú4ÎÇz:ŒóqdÆyôWyb÷ö°œÆùFnçq=‘7óUû‰0γšƒØÝÈù¶R•q¾É‚ÆyL‹ã9ˆšý'ã<,”|ó]¿­ ã¼MƒDÌ2Î÷¢ñ"ã|Û_{Ž#×0Î÷¤öÊ8ßÖWã|Ó "Œó]–®0ÎüÊúiœÇ¶›F~çÑmå9ˆÛx)È8ߦÞOÆyÓ,>aœï§q~h}Æyë¶Èñ<â‡52Î8¢‘qþÕ4οšÆù¡Ÿá†q~ˆ&Ò8ÿ«ïe‹ÿÝŸÿÂiæÏ¿ûã·_þ½½Äóýßÿðíï¾÷Úãöëž_\UåB£[Báþÿ‰›Ñ¼¿ê¿‚£¥7ðãƒO!ÿð|÷ÓrÉÁõʇ£ƒSNù–ãÕç[.y•Oÿç)§|Ë5#œöQ^åwƒOûßò¿úÛM°æXt}Iiü"eûß_ú€¹X­U?­dþ¬J°K?iÉüÚþºC»ßõcäLÆÖ?-ϱøÆæà-AN9å[ŽM§%™(—|Ë+å’W9tÊßöý†‚Ít“çPÓ;!§ô3ïåìC[ÙýìÛaÊzzùܾý|Ño¯?ÿvLi¶DôÛ[úúå5 ¾µä—j‡Ädà«H}†¯2.¶”÷í¾8¤üendstream endobj 691 0 obj << /Filter /FlateDecode /Length 1325 >> stream xÚWYÛ6~÷¯ò$+®HŠ:´@Šf‹MÑ"~)š>(²Vvc[[ÉÎ6ÿ¾sQ‡í´‹À9ÎñÍÅM‚6H‚V‰|¿[¯î¬ ´V¥s&X?Ú¤ªHL'™Ò¦ Ö›àÐD:T&Š5œ†ïÎûìwŸ£Ì†¬úü‡‹SÅ6OÃ÷»c Û=m]ø+®;<¢?×?Ý?A©ÊÌd¨/ b[(›d¬é°÷È‹*à÷9rYX± ¤¡Ìd:>Ð> ‡¦J30å ¥tÈ7ð<<òY…Bm÷“ä'ÔtÄý^˜{ÑQwHP$*;×bf³áó‘ÉÃ/¼Þ4pðXÑub#êNôã­mƒ` ÿ„¾øÿŒ2*/(Í™µ:Í6bjZ„öl£Açž@3…gÚ °|¢@œ¼ÙðÛðA]íÅP†ƒ©ÚQ:"P{ðЧ³³€[ª4)À1rèISü¯ÃÙfç%Ø77•÷hí¡âjR‡-›ÌªÜ‚£cQõY¢ÄP Öb„ Öš[>Ç\-l_è³¶ :µÞQ¨ |#í TT™\P"3ŸqÄÚ*IÕ‡1š9¿bg,'©xø!q ‚ƒ '$û~ß å‹†ß ÐL?7Rq¦j à( —ïág'™—œJ¾_"®ªF,zEð×+[ÒÛõJÃ" ôØŠŒKUêÒ >¬þ^©\gÌ0­èÀßÂý|ß­~ƒþ(öã™HêóÐŒj­QÎ Ò–êKúœ}Žçáz+§7¼Ól[õRøÀ‰în;,ëç)³õðÓñÁïI\ö<`ò-n’?øû™Vc¶¼$ãi@U»ß0¥çé3>Ú‰(c(MrìÏÆAc *ö‰û6Ð1ýàÛ޿Igg©œµôþ£®ò Š©0Ò¹AÙ<¿’ 9¾À´‹wñ ½ÎPâSŠï è¦(ÁCзV\ÿ…âü³^’cà`ík˜^˜>#øa°xZJˆŠòüŽ ”:–ÿ*i¨zëŘ˜=Pé1<½PûîÀW+1vJE >U{AöäŸýjñäúÚ7ÐY¦Š< bx‰¦Y‹¾z¯ý ‰¨Tendstream endobj 692 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 693 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-multivariateSingle2Plot.pdf) /PTEX.InfoDict 215 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 218 0 R >> /ExtGState << >> /Font << /F2 216 0 R /F3 217 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 15316 >> stream xœ¥MÏ.½RçûWÜCðÐmwûc J¢ %9Ga€DäD : Š’Ÿ×Z«ÊåÍ~ÙïÁyÎ^¯ëîÛ]¶/WWߟ¿øÜŸ¿ûüã·¿üüãç_×ó)c~=ϧ>嫗Ϩ_oùüÓï>õù‡oúÏÿí?ýÙçÏóíú¥òßßüù]ÿµ¿Ÿÿûí¯×º®O]þæs}þç·ûóë÷íÆÿ/ßúýÕ«Ÿçï?”µ—¯Ù>¿ÿüæÛ¼¾êµË)Sù}¯Ñ·t¶(ÝŠ¶u¶xž¯z' êlÑêq™ÒÙb\_-ƒ:Y”kÝrÙÒÙâ_ïHÔÙ¢¶ãJ¥³ÅûZSm êlÑëQÒÙb–¯+Ÿ…:YÔÕ|ùJ¥³EGÃIg‹§õtélÑž¯w& êl±ºäÝ’õa±:rÏÐÉB=}âìÿy®Õ›ëmPïöUÚ6NõY½?P'ƒ·~Õž ¨“Áêý³&j3X©ÕOþ›2>Z<È}—¯ûÙ‘æA®õÌ­gt™ñßvûë½öAô<®»¿Wm|[ÕdíÊk.c_ið°v~žce´çòÚ…÷ßyþéíÏþ±ôd{Ü_]Þ…íÁþRo«x´®§»hÜ­ÑþÔÝÚ÷S—¨§ìß0º-ýòüÝÛP¯†[cÊêÆ/?ÍÕÕmÙ¿žåX.èÞ¤§õy–û¹­ýM㩽×D¨ÙõÖøziþpI^ϤœÏtµ_AEáø¨5¾>Wº¾5¾Þeyá|fp<5­ù ·ÆÛ>ö|©¬ñVóÖÏ_Ÿ¶Çg_onÝ9Ÿ™ô×e¯×•Ï?8Ÿ™ô_e·mìùMYãë«þú[ãkåüí±Æ×¢ùuå|Fó=Ó“óöß5Þv^&»e·/ûc£nœÏLúòÆ×2Rÿ\ã«æ3¼þ¥'结ǟ>Ÿ)ïåó™ ×óÞœÏÀÍš.>Ÿ?/k|½y=…åÍgPþHk>sS¿>Ÿyp=k|}[z¾ÖøŠñìâ|«¬ñµ¼{~UÖøz³~èÞÉùÌÅñ±¬ñVíñ¤¬ñ¶q~Éúh˜`¾ˆó­ñµÞ{~X!žGÔï_Õþ²íBÐxüfÆz‚öÝç³oJƒ!~ëoÓç³åk|½t=Szòz°-¶\}Óó´ÆÛ¦öàïÉ:fWÿëX·?°%+ýCëÒjÿBÝì‡ûù·U«æ×<Þ°ñ Ï#î×Ö­i~]láÊûŸhO[¹>éy´¥+ï¿Q.¿§Žo‹W^O£~¬ýQÿ<Þkó¬Opÿk|½¯T¿¶€åõ°ÿ,v}áí¯ë…#†ÆïmKÿÀþb«Xµ5IQÔ¿­cy>Öç¬\‹ûõÚJ6­÷lYZ9ßg{ÚZ¶b¼áóe‹Ù­ãuŽgçë80çûôÇt,¯LãAzQŽÕ> x><¯øø|À_`bÌç±±¼r>s±?`âE…þc—Wþ‘åÍÇ3ø«ºÆ×¢õíç3çC¦ÇÜÏoµõ¬Ö;V_ÎÕÌ?4è›ó™BÿPm=Ëñüeyå|¦p}mzr¾_Qk¼Zð÷/ç3š_Ôz8¿,ïœÏ<¿ë=|>;x¾Éù ºõHó˺Æ[Ìg^úƒjëYÎgà¿«­g9¿„ÿ©¶ž}`_¨Îg’Fû‡~9Ÿiôwu·hÿÆþ\m=ËëÁóçrëÉöOzòzXß¶žÕ|å¶žéø¶žåýc}Rm=Ûø{\ß_ ç»XV[Ͼ´/Ò“×Óißl>óéZ;Û¿[5™v!¨/žo²ýŸ¿jëY^žoӓ׃ñµ®ñíßu½j¦1Ÿ¨Oeûw=¶žµëœT[ÏÚõL=nĺ)û·­g;ôäõé®nËþnëÙöQ76=ÍqY7f·õìƒr>¶žÄ˯ôj(+/ÔësNCMcâmšýëEG3ù}]ãkåõÜh[Ͼ(gÿ[ã«­Ï—æócëYÝ?7Øþ“ëÇjëÙ {öw[Ïòþá¿ê_ ¯‡çkX¨â÷]í¯ùBµõìKúñ¶i8ÿr}>9¿¬¶žåý_,ïlÿ(ï\ŸOÕïoÇÍãóücõv´Æ×—×Óñ{[Ï>ɾ®Ï‡ü­gyÿ˜Ï˜¼¶_ÇB íOû×ÛŸýw¯6ŸYíõ`í˜øš›’ýÀú|éû‘¶ùÌýèùê“í_åßm=[¡õ >skýUGaûûïµ_°4ûã_Ñþb©¦m}~¿ä]ÕÖ³šíeëÙšuŸÙz°ý_ÕŸvìxV?¿ùv‹Éï¿ÆäÂã1Û^­B ¯±Ë)<ˆÕ!)<Š ¼ˆî€€gSx {Ná1ªáÈÓ½?F Rx  á·¯e_Ay¸þ‡S/Rxó$˜™Â‡c!…·~„çŒÝ²ÑëkVI §ƒCuúüÎ9 )¼I,áHáÍãa„҆ᥛÞú_•4wß¼ Rx“sSøm h_° ׂ RƒÂ£ã·Sx» Ì+Háíá6Háqû¤à˜þÇS) _' ¯X?A᭜ԓ^T„>itO<¥Ô ð¸Xþž~=•¯S÷‹O1úŸï±n=éåÒ‰ÂÛSDÊ}ÓË¿¢t¢ðVž(<ž’Dáñ”òxŸò&êH o““FªÞèå»()¼MVH}Iá1™Áõ’ÂÛùDí1]«„ Aá­ü&%¿ý)¿IÅ ½ü㔼ò)DIIáíxÜU …Çù©Aáqý¤ê ðv½¤vÚ¡¾µª…7{îzÂÛd‹Ô”~kRxLÎHÝozù¡û%…·Éû)¼Ù“ŠÂ¯rRIá1àñç3¯êŸ>ÆsQx¬:x¾ÁùL÷óMÎg|ƒý™0ƒTÆ›çãŽG oã…¨>(<ü5(<4):£¼¶…ÇóGª?8ž)zDã ω#ÆS´7)¼i¶)<Æ–Ïj¢ð¦{¢ðv=ðW¢ðæ¿©9(|ø#Qxƒ'¤ª¤ðVÎö'…|¹>AáQÎócb M  o«Qx;þ(¼iQpܨù7R\Rxƒ5¢ú¤ðµž¾ú.)<ºHÙIáëÃù¯(<ŽÇßcà°óaüp ¿ÊIíIáíúØHáq>RpPx;>û)<ÊIÑñ &% oZ¿Ç?L—Dá ‘*“›æ®)¼Á§‘(¼é‚û!…7ØÄ]RxÓ3QxÀ'Ü)¼iîb(°ú®)¼i•ƒÂV½Ÿ ð€S¤ú ð¦Ù¤ð«X?¤ð§èIáMRpPxÀ)´?)¼iöoRx³Ÿ‰Âãø¸RxõA ŸŽÁŽÇ]LRxÀ/×6ž=Í oå¢ú ð¦õ{Pxƒeì?¤ðø=)8(¼ÿ"5g|æãþ˜öÔ ðv<ú_RxƒmôŸ¢ðë1¢ÿ…_åSwkÿ¥¹K& ¿Kî‰Â¿¾Ë$ oå¤è¤ðëøø½SxÓ¤Þ¤ð6vmó™WþÁ)ü{q½% o¿'å"…ë…GýrÞ`fÉþÑø& oõ)=½ý1w ÿý^þÑóèþQ0ŸSøGQNá§²¢ðÞœÂ?]õ# ÿLQEQø¥õ{Rø÷fû9…‹¨¬(¼âKƒÂ¿·¨˜(ü«ùŸSø¥–“¿ò×Ná³¶ößš~¯“ê“¿ÕËIáß*Ê( ¿5)|Ö6ŸYn—QþU”¢SøWQ%Ná_…–:…_Q]Qø÷Õ…·e‘kÏÌMãþEá[ñã“Â7§Ö¢ð­ø.)|ó]Qø¦¨ §ð­8õ&…oÞŸDá—=w Dá›·Ÿ(ü6&5)|“?t ßœzŠÂ›¦=)üHQEᛚSxÓ¤à¤ð6LàzEá›vEÂ7­ÇœÂ7íú:…oÞŸEá·=)|ST¥SxƒÓ¤ú¤ð¶Ì˾ù.›(|sª- ßšStRøÖ]“·î¾)JÉ)üÛO ÿ>NéIá—æ.—(ü«ù³Sø÷U…¯ëþÕøã~]6ý(üë÷' oݤܤðëúîLáÍãx¢ð¯Â£Â¿Û“¿ŠZq ÿjWÖ)|ÓzÃ)|{èÏ·Gõ# ¿ªí;i~ïþUŽSøUÎö…_𻤢ðö{§îÏÇ]Qx;?O ¿š¡‘Ê“ÂoM ¿õðö/™Â/ùþŽŒÿ1…ïv››Âw®"=¾±Ñ<¾ñ ß8…ðXøÆÉcáõ@z,|ãóâ±ðÓI…ol…—sôXxEy,|ãÒÜc᛽báŽì±ðÚMôXxa&…ï?y"4ŠÇ«=¾sÊè±ð"® ¯Ðcá;çà /<ã±ðz=¾³³{,¼"ª<^X ¯•ŸÇÂwvT…×¼Ècá;—õ ßE=¾;e¿#vŒ±ñÅcÇú ßE1<¾‹Šz,|hÅÂQf…¢z¤ðš\ý~ÇÂ;5óXøÐŠ…÷XqRxhRwŧòÅcÇËé±ð~<…ßG,¼¨}ÄÂó~<^±A ï±ã ?D<~²ËäXx”{,¼/ÅÂ' ±/ ?¾‹…W¬OÄÂwuW,|W¬«ÇÂ;µòXxõ¥ˆ…÷ö÷XøÎQ7báµÊŠXø!ªê±ð¡‹ÇŽ‘*z,¼béDá{Ãò—±cC±Á¤ð«# ±>¢ð¨^ÏðØ!^?)ü~·~¿+@ ¿ÏO ¿ß- …GýŠWÆŽuÅÂê­º¨/Rxøž¯ù»l/Rx<Ž‰Â£œ°ý}—†n2Qx¼ÚâÔý¢£d}“ÂÞ”¾°ýCWÆŽ5í²ÂÃ+“Ò¿ŒS,…(|øVQx8WêÎØ±æ»ƒí¯Uµ(ü.'…·ÅŸRx¼×Cê];öêy$…7ÍXp½£8ß#¯TQ¿l½S% ׈xüÎöE}Iáñ{ÚÆŽù.)<Œ5¿;öè]Rø¤ ®Ð•±cvEHáµ8 ošý“Þ4wHá¡Y oš÷G o‹ßáZ/s½)å¸~½Á¹5(<ÏÔ…í_=V½ú] ®¢ðx‡‹±ôO¼ÓEŠþ2vÌw½HáÓï;‡²¢þC ošþšå)ª_lÿâýæxV‚NX´*…·úâ.)ü¡ç›ê›>éÆY‹bÃDá¡Y>8oyô®)|´—¿ËÓ…ö…Oºpòò8%¯ÑþŒu8ž=NÍ_Î_§ø/Û_ý_ï'¦XxôoÆÞŽgNYHáãy…þ±ðš%G,¼ß¯Ç«~#^»˜ _Ò+¾ŠÚx,|Uì³ÇÂWݯÇÂ;ÕôXøê×£Xx§” ¯w#^ïE,¼ÏcáC+¾z,½bá[±ðz~"þáª-báÅ{,ü#ªé±ðÇÒ+Þí=þ9(|ø‹ˆ…÷þã±ðNµ=^þ'báEm"ÞûLJV,üsPxo~~¿cáÅþz,ü+ ë±ðz6báu±ð¯SzÅ¿œG,¼üwć½bá߃ÂãÅPÚ+¾éyðXx-;"¾«ÿ{,¼ÆÇˆ…o…AÄÂwݯÇÂki±ðZO‰Âïwô&»¯"^“yQø˜¯G,|÷ØxÅ‹jˆÂÞ”[±ðZXD,|çø±ðNq=¾«{,|×.€ÇÂÇñ^ŸÏòz,¼æ›)^±ù Oÿã±ð{¿cá#6^±ðÜ¥Ú±ðå Ïþï±ðéºbá5ÿXx÷fÇÂs×Écáý] O ì±ðÚåO±ð¼Ÿ Ïç×cᇞw…ïêO ?ôîÄŽ…¿Xø®ëõXxÕ÷Xx7ÇcáE…#>¨ûðö…ß×·cáÙ¾;~±ðz·9bá»±ðû¿cáÙ_Iá#V\~¿Õ÷~7fÇÂk`p>ã»Ö¤ðˆUgìûÅùŒŽ' ¨BRõÂñ,b×#þÎ~kRxÅ)¼¿kâÞÊIýIáýÝë ¯ã‘Â_Û7ÅÂóø)×ï±ðnO ûuê~ßé~HáãÝQx´õËùÌpûæëó‘(|¬_Eá¡y=Ó×ç?Ú~Dác}& ëuQøXo‹Â£Yq>RøCÏ’õËùŒ¢ÞDáãÝQøXÿ{†Ž­'Û?é©ûgìúÅùŒ×)|¬GEá߉ÂÇ»7¢ðñ|‰Â‡?…- ´F>ü½(|<ÿ¢ðÐ)>Ö×¢ð±^…õ±(<î×O ßóxgÜu!…wEá­wûÏßýÝ>RnRxŸ:Ÿ!å$…# ¿û)|ðQøx÷G>xˆ(ü¾~Røðo¢ð±Þ…ßõG |C>oÆ»]‰Â‡?…ÿ- û}>A჉Âïþ§l03bÙ_ÏDÕ›¿ÛÇþG çóú…ßÏ)<ê/Qø]¤ðûy$…~" ¿ý)üö¤ðûy!…Þ" ¼E~·?)üðhw>C=½ýù¼“¯…ßý™>xŽçÒ™cS÷+ñ2Qøà—¢ðûy#…Oºs>zø»}”™Çž;Þo,ïTN+Õ«åºÙÿeÆ›Ÿ$“:sÿXœf›²‰FQy9Ò¹ÜådþQ.¹Ë¹ å’»œ»Q.™ËmˆJ廜ûQ.¹Ë¹‘å’»œ; Q.¹Ë¹Õå’Q®½/w¹Ëï#Å•Ë\>ÚQ¹Ë¹]å’»œûQ.¹Ë¹¡å’»œ;Q.¹Ë¹åå’¹|–£|ž÷ÇM‘(—ÜåãHær—sÛ$Ê%£ü‡ÙÐr97V¢\2—Ïy”Ï£~´õå’»œ{1Q.¹Ë¹9å’»œ»5Q.¹Ë¹}å’»œû9Q.™Ëçu”ϳ~¸ãå’»|Ï¿Ë(÷=¡mN:Y܇ ,¸o´-¤‹ÙN‹ÙN‹z8‚ÐÉ‚»MÛB:Y¼‡3,¸#µ-¤“÷¨¶…t²‡K}Xü ƒßa1Lq¡·…öºÂÂu²àî×¶Nåp¡“wȶ…ôa1ëi1Ïþ¡]´m!,¸¯¶-¤“E;ÜDèdÑÏŒ†®“wã¶…t²àþܶ>,ÆsZŒ³Æ´‡·s/^ßy ßÕÛÒÉ‚û|ÛB:Ypço[H' în éÃ"»ŽÐÉ‚û…ÛB:Y´#_aèdñÃ\”‡w·…t²˜§ÿp}XÌ~Z̳ƴ7®“w+·…t²àþå¶Nõô®“÷8·…t²à®ç¶>,Æ8-ÆYcÚÝÒÉ¢ŸþÃu²àîé¶NÜOÝÒÛB;¬;Ϩôa1ŸÓbž5¦]Ømqï?´/»-¤“wj·…t²øaFÔÃâ=2o†Níô®‹ñžã»ãð¶Nãô®“÷‰·…ô¶ÐÎqX¸N÷‘E4ôa1ïÓbž5¦ýæmQ¾÷ÚÞÒÉâ9ý‡ëdÁ]êm!,¸o½-¤‹Ã¸NÜÛÞÒÉbœþÃu²àþ÷¶ÞÚ ×Éâ>ý‡ëdQR"c³>,ÿá:Yü0ûïaÁ½öm!,ÞÓ¸NÜßÒÉ¢ŸþÃõa1ßÓb~WcÜÅßÒÉbžþÃõ¶ÐNX¸NÜûßÒÉ¢KÉÐÉ¢YˆC‡ÿp,žcA:Y0ª`[H'‹v,*C' Fl éd1Nÿáú°˜å´˜ßÕã¶…ô¶øqêÂ1 ÛB:Y”Ó¸NõXd†>,æ8-æÙ?±-žïVš-±-¤“E;ý‡ëdÑåfèdÁ‹m!,æ±ä }XŒyZŒ³Æ™®“Å},,2¹ ,Êá?B'‹z«ÐÉâ9üGèdñ+ÏÐÉ¢ä*t²è§ÿp}XŒ~ZŒïjlä*t²˜ÇÊ3ô¶PœSX¸N÷é?\'‹r«Ð‡E&W¡“E=Vž¡“Ås«ÐÉâ=ý‡ëdñÃ/\ý W¡“Å8Vž¡‹ñœã»›§ÿp½-¿®“Å}«ÐÉ¢+ÏÐÉ¢ä*ôaqø×Éâ9Vž¡“Å{«ÐÉ¢+ÏÐÉ¢ä*t²§ÿp}XÌ~ZÌïjlä*ô¶P\ZX¸N÷A®B'‹rú×É¢+ÏÐÉâ9ÈUèÃ"¯Vž¡“Å¿ŸõÅá?\'‹z®<]'‹ç W¡“Å{®<]'‹v«ÐÉ¢ŸþÃõaq¬<]'‹q«ÐÉbž+O×aáÑ«n:Y܇ÿ,ʱò }Xdr:YÔcå:Y<¹ ,ÞÄNíXy†Ný W¡“Å8Vž¡‹1O‹ñ]Í3¢Êõ¶øñ—à‹û W¡“E9Vž¡“E=ÈUèÃ"ûÐÉâ9Vž¡“Å{«ÐÉ¢+ÏÐÉ¢ä*t²‡ÿ,æ±ò }Xdrz[(Ú8,\'‹û W¡“E9üGèdQ•gèdñä*ôa‘ýGèdñä*t²h‡ÿ,ú±ò ,~øÅÂÃbžþÃõa1çiq’+¢ ×Éâ>Vž¡“E9ÈUèdQOÿá:Y<¹ ,ÞÓ¸>,òÊ3t²h¹ ,úé?\'‹q«ÐÉbžþÃõ¶P,xX¸>,2¹ ,îÓ¸Nå W¡“E=ý‡ëdñ+ÏÐÉâ=ÈUèdÑNÿáú°Èä*t²øá×9‹q¬,f?-æw56r:YÌcåz[è„°p,îÓ¸NåXy†Nõ W¡‹¼ò ,žƒ\…Nïé?\'‹v¬ ï¨ìÎo¼Ü˜š®;úë?úïüé×çþÇïÿÏïþøo>¿ý‹¨šªgdÿ8ÓÂ:,Ù'_sµªùÍŸýçüpð•²ÙRä¼gWÒ³ñS›ôìühˆþ5oqŽ;².®ù«í} éb±¹Ùè˜s©ŒÆ)ëk*2.¶‡D$\|¡<ßâ Åt‹xKoèVï|k'[„b®EìXŽ;R-ÖieÌ´ˆw鯉ÇeÊó,>Pžfq mvÕºB;¦’,(æXÄ»RãÞ)Q/6ŠØ«‚ É>Ð:”P|â^†>‚¸†Ò‚z‰ìН•yrÅÊs+®ÚRMß;jPžYqÍWǽ+vµTC-yZÅ‚ZbVE¤Ç0KOª¸>î”SR)o[ÚI<£â  oÈȧ8ï$‘'m”Mñ†T2E¼ò1w*ÄÕ”}z&ÄÃÓ܉däA,,õ-÷Òý[[ µ°RÿôÐrcö[Ï8 #âê}î ˆ«†ûð‡pø["½ú–xy´ý°AFòé܇x±úp¤ù°B*ña·.ºþFÞÃUi½ï´‡7dd=\ÎgKxæÞwÎÃÕÁz÷”‡p§½ïŒ‡R _뢽ï|‡«ÛÛo=Ýamé·Íºh÷d™£[¯ëmç:\ÌJ=ÕáöÛÈtø¢4®^×=¯èÄða÷‹ºšx‰ªÕ°œrÜ»b'ÞÊÙ¹ÑúØ×üº+aÉÍÌV}ìü†WÝ2ñڌȳZ¯;™áõ²½q^ /”¯¤õºá‰ žûð¼†H9íýÙ䀌¬†ì¢‘Ôpuì>=§!ذwo ´~ftQ‹ªf„†ýŠ´ˆêºkÒ¤uѾ³vtÂHfXÑë”ËÑé½ïT†ê¢žÉðF'ŒD†“Ðó¾”8Q¹ÔE•Å“ËÞwÃúîC,Ö³d †ëÖº'x+ø”¥? CüâqŽô…sd/œ¨«H^øBFîÂ{&c|¯¾§ïµ;v ½-÷îµxõ´…O ¿a1¶d$-u÷ÚÔE#eá…N¨Œ…h¬>vÂBvQæ+|X¬Ï®°ÁõE¶B9Æ"IǨ܃E½N© ›º59F2ÆwûÜy ­×MOSˆÀ¹qí,…ï³u ÿäœ0rö;F+ ý¬ÊPxiÆ {Q’æ'´9áåé A$|áa±™»#9áýÄ4Ú¢.çóa ±|ߘôZ<¥Æn—»#/aå<›i1ð)¹ÉI +§áCrbvÝüCA/dd$¬3êÅåNù¯˜ÈYøa¹bºerpÚãÉ&6‘‹°`:©Çž][|àSbâjÁ€WɧÁ¿Áɶ§!|ž˜?[ÄÞI¦ˆ‘ƒ3F¥ šF Kß·Ðñy›ª1Ý ¾3Šg,ZµDòAÎ #÷à3cqa!pjR™ñV¡Ï _Dó…“Å©Ý;í dd¬%㉫â›bvGžrËe¼ÑëêN8øRz¾Á2Ò Ú²¥îlƒ6'¬;Ùà ©\ƒyGÝ©­×=žiÏõ¨;Ñ`‡Œ<ƒuÄ¡LN¬S”eψÿÖ§lNøìœ‚×)­×=;Ã`T‚A|UÝJ=¿ -[ž^ÐÈOÊ.HéÉŸºl쥞Zкè³3 >¨ºH,x½ûnÀØQwZÁ‚ªSVA¤#·&{$¹l‰œ‚ì¢J)ˆ\ò£xFÁ¡E pÙ 93º·>wç«„ï\±hµXûŠ…§I.j"w —-‘:P‹åÈ$‰+¤ò68ƲÓj±ìYë)çËR|ÂíݵQR|™fq,s¯ø,hå…cŒütŒJøÈ1Fö@:ÆâÉï$LöÙBHê~~ñ!4J~îë_iZœËJX´XÞY¹ô¤tŒÊXáï2‹åÈXN©Å²ç ÔbÙÓÒ1F¶ÀñÆß¾já(%ÑvßxowŒž)½N‰-–#O`ûš_|EÎ=’Iõ:&lî)‡Ë‘"Œ €W–ȸ%Þ÷‘þoÜ)û_‚Õ¿´-óëÑóýoGÏxq:ÐsålJèÙ?ÙCô¬ÜÙBÏú’…г>+#ô¬ê=+g¶ÐóäÌHèyУ =+»°Ðs^&zV&h’º©¯/=O9¢ç©1ƒèyM .©åº¦æeDÏþ5¢çu|!Œ×´TÛèy^ìDÏSߺ"zf ¹£ç©ï®=O}5˜è9,1¨Ï‡39¢ç©ïm=[™`óê7þ• ¢ç©Á—èyêa%z¶»%zöôòBÏñu¢çù8˜Æsߎ zžú ›Ðó–@Ïóq| ôßÙ z¶Ï„Dci:_ö*¡ç,—«ò, =Ïé¬èÙ3œ =O‡bDÏKbf)ôìéL…ž‘±ŽtìÙî»ÝŸ€Ï¦IÌIŸQ6ÄÏV(!þì٪şíðDÐSëCè9Å+  çà =³¸ô}9e$Æ©© qéý Ú.•@—ió…6{BLbh4*08ô¡W×6MŒKmÇã½Eß—w%²h³ç÷À £­\D4Ú4¿‡NëåñÁ£Ñ«¶nEÞE"m‰ß'’¶žD´F&mq(Õ¿äóÞ(§=©´ýž›0ÄÒVÎï…“KÛùxÿÓè©Ï'È´ýžß''š6=Fß/ôLp ie÷G\KîU^›bý‘^›âÞ ñµ•óúȯí÷Ãyöd9Ÿ7lû=û3©“•³‘a' ˆó¡¾H±å.c#Á#á3VÐfÏç û¾õ}Q‘lÓú=P6âg\Ï–í2íø¬_ÒìÝ_ˆ³Ms+<Ûüë—@C’ë>á/ø¼iû‡6„´Í]Їƒi{x1í-1gAÆPj@m{81]Õ¶£Ýα/:WÞ ¹¶i¢\‚m/‘íC7 RâÑ•¾VûKbÛvÉàdÛ³ v’mÛÈz}‚mÿBÙö¼œšƒmïïÿ M ôz°íé߈&ÛžÓ±mwŶ=õ·ØöÔ—ñĶmdMl{ú×Ùɶ§œ§Ø6ê“ÅÎÕ?»Cº çŸð6œ'Y1ø¶Ù¿ p›½>nÓ¹úǪ‰¸QÞ>Á¸Ñ¹¨:W¯qRnŒû<0÷Ô^š0·ÜÂÜSžZ˜û¾n?ÙdÏÕ7²ºÑséF"Yâj nŒ,‰ucäÁñ»mdà—¾I»áɨ»¡‰°Á»“ðÆ“–ˆ÷}ù7@ˆ¼1²'_ì¼Þ½‘Ö6QoŒ4ýØ#/A7Vs¦;ðm×ó¼Ÿ ßæ©°`úÏ#öms±Ò?¿1w£=è7¦vhâo”OðoèÀMg޹™7P¦ßÄÀÍ“e‚Û\÷K nšÝÜ4I(9¸Í ù%y‚pÌ©=«oÞ…Ûù¸‰Dn夔„áv}ÕµMRïî_ª•±ã³‡£Ç#WêÚ âHTë„|Ròt0q›žrO€PÜôtmý¹\þ{`qÓ…È\Ü&°wý7­/ÛƒŒÛ„–nDã¦Å¨á5‘À–€pÜôã8ÜúsñoNcLŽ!É´ð9¹M€_×ÖŸ‹¾"Dnš_²'#×8 ¹éêXÜúsñ牘Ç'Ü'ÇñQåûø$åv¼Ç¿Éc3ÕêûdåV®ã–#ù,Á;h9&ä —ÛüN¼¿ÇùÌíü"× æVÎ癋_ØSƒ™Ûñè| ÍmBOçIj޳ ›cÂß?ÁÍMsû‘àÜßr‡‚äÜʹËBtŽrbiT´Ÿ¤Žðš_º=·ß¿Ÿ›~?Çõ>Ÿèö{ò9ô¸^!ô»j(†Ž¤Ã _„èÖŸºëÁú”F·öïäÙûsÓï Ò±"I7Íë!J·ó GëÖŸ‰‰¦GÿM·ëeý§[ý݉§›ÖïÔíþI IÔ±à"%R·t¿Õõ˜žB8 :ìqŒnPÐ' DŸôðþ¬@z¤»¶úØÝc=ß¿s5€™‚›_³ÈÍûä‘›{è¹yלÈÍ»¨ ¹y—§"7÷èró>ÙjäæEnÞÕÂ俦@®ÁÍ{çìœÜ¼û÷íÁÍ»¾>FnÞÅéÉÍÃÜÜ#ŽÈÍ»¾"HnÞEÞÈÍ{ãèCnÞåëÉÍ=ª‰ÜÜ" ¤]µ„Q’ܼkÍBnÞµB&7ïz~ÈÍ»°*¹9kǹyŸ‰ÉÍ—š Ò.Ø-½À=ôNÎmípzÈva]xȶ>2ë!ÛE`W!ÛE P!Û!²­øÙË÷íGÜA!Û ²$·øH”²­OÅzȶV]²­HÙ®¢q ÙöˈmFbFÈvõn¾< Þõö@÷mÆÃ†ä.41õÙ&¥fÈö-HºC¶É¸²í¡ñ Ù¾Ïm;Vȶ)+dÛ¯Y!Ûź²íM¦m:WÈvUë+d[Q$²]Õ²]¢²íÔVȶ¾ì!Ûõ²dƒäf†B¶l…l?ÚžQÈö+Ä¥í¦ž£m&Uȶ\‚‡lëÉóí!´¬m}3ÕC¶õITÙîÎÁ²­¾zȶ֪²íA¬ Ù–ßðí.Ĭí."¯mE5zÈvÓ^‹B¶C2d»©Ç*d[S ÙnÚkQÈvÓ®B¶›ú•B¶›ƒw†lû>€B¶›¶ˆÁãšIÁ‡‡ô‚ßÙ"'I nM–B¶G0&MBþ=|;ƒø{4Eé’~}vXð{ þº„¾‡¾ù+ò½%À÷–˜f ÂÞC\Ô{ /ôŽŽDæ‰È{èÛ"ÞCŸvð¶n–B¶‡†;áî-A»‡–ä‚ÝóÒ‹dÝóÒë)t¶œéžšÞ tÏË96Zg8¦&æÓƒÁA¹‡P ÷ÐX.Æm·@„}ioûñí{îÛ'àZŠo}¸P|{ˆ© oGƒoo ¼=ºÇhãÙúF¥àv<¡dÛC˜WhÛX‘íál‹`;K ûЇ%×fNºÀÚîU„µ‡>­)¬=ºGk7…@kû3(¬=^!Qbí¡½Aaíñ(ò”XÛBÕžO`íQ/I¬=œÎkøà<°¶•‚­kG$&±ö(ÂÄÄÚ>jˆjo9öEŒC¦ío i{$ˆˆöPt€ö žÁ•ÄÙ3%šá“„Ùþ†žX¶¿Ð&–=´"–=n±T²ìˆð%Êö7ÕD²ãªHL<¢J{ÅácGè%)¶ON±­rȨÁ°}”ÂÞ{8P$ÀÞ翎 ‰¯}F!zm­ÏÐé[‘‰¬v²ëˆñ$ºŽ N’kë íàšsäàÖ£ ;[ÛeÔOPëèu Ù®ºf…lë}ZÙ®N˜²­ÙvþúzÀ®«æ„Åéõ„\fÈös°êá¨U!Ûþ¤(dûÙ1Ú÷3Ù®ŽÉ²íO!ÛÕ!ò­×øxû Ùöðg…l{$µB¶=„Y!ÛaÌmáÙöæÙÆ@°C¶ßĦǽc´ËêÜ!Û5éx4"d[¿­ ûb¿Rȶ?Î ÙV4ÆÙæ†B¶ýùmv…l;ÿíêxzì÷#=dÛ+…l½ ¡m…ûìí–C¶µ÷mç¼ ÙöšTȶâIVpy^b± ÙžB ÙùjNÒ‚Ì.qHreæ® ¬lS²²’!ÛINLY±DÊóRÅ’(Ç‘ ”§^-OžÚ^ñíéÑß ÉóRt°B¶}/,Ù§¦BÉóV.IòÔ;ôÉSo‹Š#Oß6 Fžz-Uyê­zAä©¡\ Ù&…§°“ ó[:=\Aüx>‰ÄÇóU&=žà gs‹9¹$0°úV$oäx•*κ(bzŒ6CØsˆ-B’Ôx¾Üd466Äß‚ÏGÏ‘ñôˆfã©hãù¨“χ>G¸xj7S´xV‡Á€Å³¬xj+S¨xV'Í Åæq¿Åv"–‚ïR`âáÞ ÄSSAbô#ž ã"cây†lÏGQçäÃ"> stream xÚ­VÝoÓ0ï_aí)‘ÏßI&‚!x˜@TâxˆÚ¬­h’®M)ü÷øìs’¶Ù@lªR_ì»ß}ûÂÈ‚0ònÂp}=\Ýd$§¹†LïŠfLcRš I¦sò5ºmb‘F‡8‘y­Ë˜G­§÷–Ü™E3K6ÕÆþ[ûWúÝÖ’ËðšF›5p¡ð¥ Ñv'u²ux§(ß§®n´,¸ )ÓÖg*°TåØyô×-î—Îb3t[ÊM⼘Ï?bm¢bæ¡]ú—ÇŒJ„Éh–’„sškãQg(P 9@í3ý?“3MS3´xÝ´ˆ Rµ}q"„> 4œC …Ñ]ˆ²êQ‡¸r–« îãÀD@o®Ð=P>CžWøûþß#gã®qf¨Q"hsö;È ×Ô.vV$’i*rƒ±Ö^äÓ̲ܺ”—6cR<ê ‚r ôyPÑqüB'v–•{t—Zh)¿'+(#ˆþ:ÿÓÕ”ËnÑboXù¾7ì˨Ëîd1v¼¥+˜:¾AÊ9Ö“3É{˜kRKÊI§™ÂÆ~'Ú–ÁfP•¹ 3»Åììó3†,Â>—€µ½v©£Œ ª-VÅ=Öä u”=îó×_-znu×ø<­Ý»hø ¢]ÕõÇ-"ÈÎÀmoPzèrœ“â ^oÐR¨‰ 4éb ¼›0o§n Fx7[74µÝ6«&÷šrãzÊ)ܸz_)ò¦™|²¿p”ÄdùàHã¹]òÁ¸Áh/ö8­”4‘ºŽ£mŠ–ý^ ýu€&n`#Ü\X†9çÓá Ë0)A´ðû ì׃RÁÈpxUÜ·wÙ–]Yì<ÓñM)˜{né÷ŠM´s[‹u¸òN ÂõwáR›q&£/q¦Ü}¤E´ßáݤ¥ï‹­ßw·(òcúƒc™³©ã?,³»)-—ë„PheU:'D:tØWõ¨ŽóA½¹Û¥°ÃKäcÃ+Á‚gáyæÁ–e4Ui0ÇRQÏǾk4UR=õ³FPÁ:zÔ˜­„Q•ÙPdŒjŽŸ.\œöôi§Wendstream endobj 695 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 696 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-oneColMultiplePlot.pdf) /PTEX.InfoDict 223 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 226 0 R >> /ExtGState << >> /Font << /F2 224 0 R /F3 225 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 6954 >> stream xœ­œMÏ&7V†÷ﯨ%,òLÙõa{›  ¤%ˆÕ0HD鑆,àçãû¾Ž]~»;:d‘NN»Êëøøöñ¹ª’¶ßoiû~ûóÛ?mÞö×¾o¹\¯ãØÎ#ËJ{{¥kû¯?nÿ²ýÉõu–qÕq¯«|rÕo~üç¿ûvûíwoêoßÖ?¿ûí?ô¿-×ößoÿúoÛ¾ýû[Ú~ßÿùþ-ùÇÿþíN¯vnÇyéªow~]u;ŽöÚÏ퇷þs9wó~å0ë½¹)Éì7éâ¤{ºy¿N]œ_µÉ,¯]߯r`–½›}ä·Ìú:úïû뾺YöW¾}ïq`¶Ýf¿§›ýNª™ù•ªGUwÌš=ŒÓæù*ºø|% CŽÓÅÇëvÏ÷k×ÅýoæÝ÷Ü_‡‡Q^‡~·¾ªÍÆã×WJ˜zü3½võ\÷×Õ/>3_Ó+6ûØ”szÏÅæáÇïcn¾÷ôãŸçë¼0[õ½EX¯×Ý÷´»yÛ9}Ž.·V?~o=L=>3ØÍö:åÉòjúݶ¿Òî1Ÿ7fáwí–yüëµëÛáÇ?»S¦c£O•ï=gÃí²s®>sîªøñSeæ·UÇÆ½ËƒÝlŽ|³nÊ9WŸ_Ý›öäçìl\U­ðèöIûáøè¶ý•öÓºúh¿í„§¿Û^xî/Ž‘~}-¶«ƒDÑ_Ö›úèEXê‹GžèÃ÷³¦”ìŠ~}ÚÃV ÜîVvv¤ôëK³}ØWO—ÝÑÇ“¯°í{Ü;Z®þ˜-l…K÷µ×CJ…xi£¿†?v9½ÛyÇ;î–]óA);:æ¼§œ šJþý|ÚWb•È–?ºÝ’íËq³ÚñîôÛ_×E´§. òÇu²Ú“Dá´][Øž›°L‡DíÉãïKÝþºY©ë„ýÑ4­²â§°ÈS×ÇO‰çëv[¿«ý•X«©/û£°X“`·ÿî=l¯¢á¯.LkÝÚ–úÈ_ý_—û?Cd÷ðÏ9U–x8§Ìß':Û{§ý´¿º[-xéDi»}ÓRÛ¯'^O´ö±Cl¯ˆïnË_ÝÍÍý]!·‡ÂBvèm(jºBpϘ ÅíÓXÜŸè“}øºÐܧÑíaÆü^¨nªáŸ ÙíaËóv[þê¶Å#]¯–‘ý{£¼}ñ<7Ò«e—ÃVüôeêí#õ]Mþê÷["Óújæ°å¾Œ26úÛ—™•.Ýp— üÕmù뱑àÇFƒ»ü{Þ/=6¶â§Ë”·ÆÔ÷7ù«ËØÎõèp·YŸÅBœ»ˆî·çvþ-Źëu*aw©ýð|‹ñb[sWpÖg±ç¾9´awÇÉÆß}§;ôû}y~ªõXöYÂnº>…?«õx¹ßzœû–H¼v»û+÷Ÿ9¸ßzœ{7èKµpfmtOµçÞmüžõ8÷ËðGµðeífî¿%üÑæ†mL=žþnèñjæ£q=zÜçËa‘G߆ˆ¿†ÏùjèñÞ×/í•ø‰ùÏ;z¼ÚŽŸøý¼£ÇÝvÚ•wô¸o[û°?Ì#ïèñˆÿ¼£Ç}q<Èöz*ämyGûz8¸ß?×CÞÑãϲ ãõþ–z<ž7§Dü„e;~rœ¬ÇšŸÊý'ñ³³eGüœÍöEüdüŸµ«ÛolëqfZ±?Ý>è¿?%ü“wâ§/…­ø™ýåÌzšöAüD|Ëvü¬×œ­Çsýä.ĉõÙü<=îÓèT¶ýQÇxÐã>í÷¶ãg^߈Ÿã9Ðã¡ùÈïãçÈ#~ÿù8ÞéOV.¼;^÷ Ç3~ôø±Cñ+»…þ+ñ³Ç|Ÿ¡Ç>ÂÈ=κ Ûz|°ç3ôøŒøîûüÕmâÿ =ýÎgèñ¼=îÓ˜SØÒã>'÷û+_äƒùŒœ8ùBûcÜ%ì²ìùBûc;ŸÈWæÐç€|‘w›x»ÈŒÇ$_¤Æã%;Þ³—ýÉþóEv(Ûùà^çùqè}.‘ñ<%òã8È.K¾ûþç|0òå\"?®äk²Û’ÿç‚ë¬ëç-èq·o·å¯îFæ·¢Ç#?ׯ%ôid>*z<Ÿ§¢Ç=,ðOߨ|žH䃹F~¼“ïÉŽü¸Ñùq–$\Š¥i9lÇOãAÇPBñÃzkiÄO¾ÃvüÌë3þãk‘_±4òã>?Ä[#?Ö4{üÍz,ûÈaÛ_eôO~¬ €ýÙÈ{ZâçõÆØ¯/‘¯Xo·;_”Ê_}Z|¿7Âìvçg²å>­;ד?ýYe·v©ëýäÇ=ÿ¸vÛèñj+~zìŒ=Vظ=Q­èíçi=V˜ [þ˜ý%ô¸Äþ !SüÌþ%‹~½ý«Äó~w=z\"“­ø™Ï“Ðã’‰g%Î>ÖøýŒ÷ùô|ËözÊšVÙèñ8¿=î²àýMvÙŸõêƒG~Öƒj<ŽŸ“ýFvœÏ}ž9rçó“þ¨`ôõåý^œö÷v9W=î÷[TÚù}Ç·ìû~Îÿ:¨\uµ£T±Øõ~Îãîk_üs”wçQ ùrÞõÁm÷úôþàòÑù¬/ô꣧jŸÏC¯-ÄçS£ÑBµ‡Þë?ê²þÕ±õ¸Ï§ý{F=#Î×j°?â¼,û^ÎÇ!zž+‡mýÉä7¦«>ç[5x*è«~È¥­Å.<ñu¡Ç£2¤‰±¿r<ïzõ Äó£7ò5~.ôxÔ t°¿ÐKŸG-Ü÷SñÄ-çs ×¢o lÇOœ÷Øyñßzõã¾ßûãFŸßC‡žÇB›ú}”¨WÜèñQÐãQý’]–z®â§ëv«Ëz+¡Çgèg =Î=žë­ Çý÷Ñ«R†¿ð_ic=±+z<ê'²ï{чŠO}¨Ô3æz©è±ŽñþýŠzËQÑã9ÿõõâ³Þ£¾Sè=^íV—õ^Û¨ï8_;z<ã¹QÏõœ£¡ÇJã<ž†ýôhçˆç²Ë¹¬·F=ã±ÑãÕnÔƒb<èñY˜ïTÈÿÿ•éßQ€o§RísØ? [ŽwÅŽË?1çÕß¿Ð8Ïíc0…¥â}û¼ý#Ã|Úµotía.íÆlýxÚùÁÙþüþ·Â]øñ îúñzûÍßæ-mþˆRõÇ7þÓvWÖ½ø×'üÃÇí¯ZýëíÃ÷oóÁ]ÿîÕžÚ7wßÛ¾ö^‡ŠïMûþµ7k•qsúÉ›9k}ÿø› oqëöï¾ýݸýIª]yïýHšL*.ú Lê纚Áž~1“R•¬«î`R2áJNUs0ädº6 “rÌ­V™ÞIaR®—•m0)™ÞaRª~Aެ**žÕ0›.®BaR©Km~˜”Z0»â¤.”€$ ŠêdÞP`R*“YŸaRªŠ ³«¯Z½xaRjµXäԳk0)Wät/LJ­ûäRäÈyŸÊk˜Nëdž“RqÍY Lê¹Ø9_â¨2˜”+w¾×Í´ &¥{½aÀ¤4 ï·0)W &å"¡~&å1ë‡`R2S *ÅFT&¥ÖãaRêÊÎI­faÞÖ`R¤LJµÄ¦Sñd0©ÅÎ8 ˜d0)•íÌ`R*5V“s<·s½s8Ûy›LJ¥J.˜Tb+šLJ¥Æs0*¹©ÛÔÈaR*=Rã„I©š:LJýQÇI©´ “Ii¼maR¶m2)Ùñ{žÙy0ªãõóÀ¤ôû0˜”ljÂ0)÷¶B¦OJ0&çxºæ“Rû Ã:ñGñÀ¤RìQƒI¹¿…I%Õ(aL7þŠšW0)•bÏÁ TÓÛ÷¨™Ã¤<^˜s<•ja€0)ÙÔ aR*Õò{0)•jë¤TŠ¥†“R{0+j {¨@0)•ra0)ýÞ5lÕ@U †‰QÕý0"j ûANLJ×Ï0)õ×`XÔ@÷ÁP`Rj‡¡À¤4žÆuãÏ“Ri†“’M¼Á¤dßö¿j¬'˜”JÏô“’}Á„,¸²/LJ÷Çõþ &¥ß#¾`R²a 0)ÆeÙÕýǰ¿3I©Ô sI©4N<äÔÎú‡IeÕÜaJ>sË>¹Þêk»l“Iùy¹þ"~j0H˜”Úë`Tᯰ+þ˜vÕ:˜”ÆG¼Â¤ôûÞ)ƒI©4>Á¤TÊ'žƒI¥ØÒ“R —þaRi0Ö`Riè]0©Ç†Ié÷Lj2¼`R/L&%Æ “J%˜K0©T8s &%£‚I¥¨! &Õû?W&5ã%˜Ô>ô©†·`œuê1Œ&%½ ÞaRúë•IIÑ“zœcý´©ÇÓ.èÌ&¥õ™&%ýÅ-ô¸„þ¶Ðãó“RÔÀ÷ÐãŶÇ™/˜”õF…w7Õa{ÿÚcBu´s &Ó8™”§‘vôX»kŒ0)§0²Æ^ÙX0)¹š/LjîÇÁ¤ì¿}›LÊûÌèÀ±ß“ÒýüLJÏs`_ì_ç`^7þ5Ñ4õ˜z0©=˜w0)ù7ÔB÷¨ñ¤Üîñ“Ú÷¨Yä¼ÛäöП`RÎ&¥ù»ƒûù¹M&¥çg¼0)ß?Uc¼0˜”ã&”Æþƒ9BÁ˜Bã LJÓ s„IYß`Z¡Çm0¬Ðãi‡ר١ǃñÀ¤¼ßÀ|Ðã=˜u0)Ùç½M&¥ëaj0)ïÇ~>˜”lüqN=†)À¤Fq?z,=ÊÛdR !LJíÔÄaRÖËÁ ¬ÇWøû =>cþ¯Ðãxç#˜”ljöWèñðïz<Uèq‹ç»Bk0=˜”Ú™/˜TVéxaR²ÿzÜЗ`RÒSâ&¥þabwžþ€9…·Á´Ðc-ƒ¶M&•Ç; Á¤ôû =Îñö]0)µÃd`RZ<L*ç;ü “Ò²áy`RZV<LJËf“Ò²€ÙÁ¤d0©œ‡?(Öëþ+m“IyÙa[u=ú“Ò²q¤dó|0)-#Ö3LJË$Ú-t²¯“Ò²€±Á¤´lî…IÉ&Þ`RîÛ{œ¬ÇîÿÜ&“Òý0B˜Tîi'ýäôûο‚I©ýŒJñÓm˜LJË–õ“ò²NÛdRùŒ&eY Þ8â¢`R–ƃ‹‰Á¬ÈU³w &•# &%›š&LÊ2±0)Ùöw0)·Óùñûe0)Ûu›LJýS£…IɆÀ¤2h`2)Ù'¶õØãõx`Rö/ =>â<LÊñDû1⦓Òüó<0)É|´£Çj§?ô¸Ûû¤4?ç¤,ÓÜßfüÀ€Ðc¡•¼M&%Y¦†“’?ó¤,»ç6™”d–š.LJ2{øÐcÍï±M&åëiGÏÈ7‚IÉ¿ø &õÎŽø =îÇLÊ2?lÇOä_Á¤=^mÅO—õ¼0)Ù0?˜”¶jö0)m#ο‚IiÛp>LJ6ñ“ò6°0©<y0)Év0%ôøŠbX0)µGè±l“ë’ù¼0)µÃ$`R¾Æ…ßñÎV0©<}0)mC¬O˜”Ú‰˜TŒ:˜”ûóxaRÚ6`¨0)mý£Ç²¹=î6ñ “Ò6±ïÛdR¹³X¿0)µÃ¬`RºŸø…I=×ät}ÆFïÈç‚IeUaVèqß–ˆ˜”ÚaÞ0)õÞÀ¤ôû•vêwL=î×SBÅ´&¥x:&¥ø.i›LJí¬'˜”Öó“Ê“‰À¤¿¬G˜”ÒŒ``Ô3®ØƒI9-ñý0)¦X=†…O†E=ã¬ÁaRºÀ¤Ô?ë &¥øGÏ`RNS¸žzÆ=˜L*O†“òúX˜”úçyaRjÇÿ0)Ùæ„_#`Rþ}z|ä«Á¤ÏÆD=ã±ÑãÕözŠòm0)Ù^Ï¿“ 0™TØ?|ΨÞC¨ww?L*Ýžó»ÞùÚ>o73 siWEøaVa.LKûNz˜æÒ® äé?Ì¥Íög|¿³R¨Ïã/cG>xJ_{³K/žòW߬bbØÇWßLúæó§oþ)äå£~yýã×UÆ×?M¼¸æ/¯Ÿéè³…T{èïÒÛ?çÄ]åùäªË|g«°«Ä{q°®»­Ÿ_ýÒuÑt•=®´”Ì¥?ãC¬.S÷ũȥ£×øîP|W­Ï¯®;N+®;ÎŽð­y¥I=³©šeëŽ*5p뎶uÇ[¨ ­;òkÈÖPGÀ–&ÆlÊ©¡~!¾­êO«íußՒʺÍI£J«ÓÒÁ0VÚï,C´J¼áÐ*‘‹Ã³ú3{œà,¶·A³jœ€Y5jª°,mʪqž‚déÐå>ü-VZUªlù Þ{qÅÒæR·±Úøî†õ˜®…=ÄÉ'ôv¼û¨ª%üüJ³|RUGõz5ðJÞ]¾§þÛ·‰®Ê¨ÔC®„Y—©V³AŸüÀHN‡'‚ZÍ €V5ÞK fUß#«2ˆÄJy;Sꃬ ¯Ò˜Ç'Sɳ_Lù4>&+`Uïõ‚U‰$.¨Š„a’*{­©\·É©ÚÀ,`*9Öc†RM(Gµa5ûtô@ºDÕ&qrÆ7?PµÁWàS ‘•OiÚùeø”&+-|JsÉLÀ§4]|ãŸÒíã*Õ‡Sœ/ƒO¥Qß >娀ñÀ>êÝð)óŸrh ^¥zúÞ†M=TeeúçM€}ð;øTêÇðkß&ŸZlê¡ûߘÁ§Ôž>%ÿ°zàSi|³|J‹êX¾™Òõ|óŸÒõðFø”lü ŸzÆŸR{|£Åkûõø”Úáð)Í'þƒOi¥ùå›JøT¢Œ?ùÔoð©'ÞàSÒ â>¥ëƒ/ñª@ŠóAð)IbŸZlÞP½“ññº@ßp6¤Ä|J6<>%;Û멃O¥žÒ´ñ”â'o áS)E=(ø”ìè÷Ò1ø| ½|øÔôGð©ñÍÅàSúFn|Ce1þàSs¾ƒO­¶ã'øLð)éë!øÔ\ßÁ§R<¬Œø ¾ŸÚGý7øÔjÛ;;ÐàSû¨/Ÿú4øTï‚O ž7ø”ÖûàUí|Öoð©ù qÚâ Ä Sý™)–§Äšø¾ !¯Ûƒ¦jäA¦Z$g¦”,ßJÕ2°’e¸Ž/M Rc (õ˜^<2¯m")m©‚@ªŽo$àQú$Ïc¦Î^óøÂÉê[ãå€Q5½û>ªÄQ7P”~h!QJÄò6ATÎCõ՘̲«b7?äãôJ›ô`NzüAP5*XA &ð@±L&ûnà§Ç´ÚÖxÙ$àÓó»Ž ­¨=%ÈSžZ¼¡Ü©ÍO§\ælã˨“L Ò ܽ0§ùÈ©¢qšQpªƒ·Á›&N7µø‚9hS^ŠóÀ¦ïók‰k ¦oFijûcöØ\,ß>MŒ fš+Ê4^’ È4r£`LB²e›ˆi~UaÒ,”çuð;øRWä/|.è’4•{É_çÅ#¥–((M²TãE‡KºNDþz lDþz…€*Õñ¡&Pi. ˜R-\@J;u›Di.g€’V|Éú©ƒÇÀKÍ©0´šÄAi¤µØ`I#_”T)…$Íe…[jä)Á‘j¼iR}(Ò|iˆT¯`8'¦'AH5þ_A¦cH#A~ÔM |¤MsÐ$d“ M?ÃŽê@] £9HÈÑ8Û8¢<7¹‘hãÓ&o+ûøtÉåœ_f5ê&Ej Q+ã»(‡Ôx…$Q»£¢1jñ‘_£o>/j±].Ò¦Mk áà‡€ECe‚µÍcSVxlôxµ×ŸpÔŸ×û¯†‰¨OJtÅK÷ŸA£÷Th½÷aD·–çg(dOÛgÍÞ ±žVÎ,£5N0³µ¹*7Z±¸Ô·sK˜K»ÔýKa.í¢£ÏSa®pËòÀ­ùd¿\<¿~Ù÷PÍ‚–Ê_‹¥²¡+7ß_{óe…ú„i%Þ‹Œ¨Ú†ÒýõIû0³dj¿ç³=ÌÙ®“t_w£}˜O{qXÍö0g{ìãs|a>í뀟ñÏöÕ9G7¿¥ÿ!^¶kò¾ßßìé›/1ö¥,¡Ÿwq~M]lú®ýiå+ºÐQ²o Ÿt‘ö¯èÂÙë'R¾Î‡8Ùç]ü”/~–FªÂÛÝ4òw¿ûÒíË-KO ±¦P•üëîÿùñïn?âöó“ÛmëÅÆ¾£Ÿû=XèÿLúö¿vZendstream endobj 697 0 obj << /Filter /FlateDecode /Length 1059 >> stream xÚuVYoÛF~ׯ òDâš»¼–ÀEë"¤¨Þš<Ðe9摘Rdÿûεm[dF'›14±W#*!-@àeÙ¡•f@€ƒ03‘¿#¿¶€ûgÙPD²GÍ{”+&‚µ¸0þ…¹É3KŽk‘—.ç– º|b8R+ïFÞÈqœ*ÂëHt º¸ü@¥g¶ÆÔ[}=~&¦ž·÷ÔQ„yïRK(v|j-Ô±Müš>f®×ËøúUöÔ ¥ù^ª¹ØŒ^âJ½eú€áÞOýnäAc[×õ÷¼yy›!¢We3ûòêfíó8µZŒáܹ%µ´2(“Beñõœ<Í¿ž®g"K,pP‹võ«ÕÓ Å<ñB›ÀXÕ,«ãë^÷?öU–Wendstream endobj 698 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 699 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-twoColMultiplePlot.pdf) /PTEX.InfoDict 230 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 233 0 R >> /ExtGState << >> /Font << /F2 231 0 R /F3 232 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 13714 >> stream xœ­Ë®nÇuûç)þ¦ÔÐöª{U32’@‚8!7 ·ˆ°iÀQ#yüÔ¸ÌZkêðlˆÔàºþµjÔe~Us§×_éõç×|úï¯ÿx]o×õÊ£½•òÊ©C¥k½¥öú?ÿöú§×¿ó¤:ßꈳRom|vÖßýåü×ß¿þþ»O¸ßõzþó»¿ÿoû¿Žöú¿Ÿþù_^×ë~J¯?îÿýùSâÃÿô©•·U_¥6œõçVßòõ*e½]õõYû–ý-[Žü*y¿R‚louí£é­MÉ}RòÛ\û¥}rE2-÷›wÉVöÉ×[oã­$^[Šäþ™ã’œ…oµä|»ßj^’¥ñ5*å~N®oiIœ\Þz‘ì8¹áy”k?·^¸Åû§~½%WÆiI^2Ζ+IÂ8 ã4Öã÷OSÆA‹Ð$aœÝ^ÐÎSÆÙ’-ÔqÔ@PÂ8ûhª’0üÞ)ãì/8xTÆQ{A ãlÉ_4eœó\g¿3=8qèÁ)ãì²ê(É)ãDáLçR{5mœ ÍÖ–6Î¥ÒØ²6PüÜ[®B³³ÆÎ¦mÛ-w!•ÜÔ|͉ Ù“dÕɬ„[²Q ¹Ø¨îæ‹5vÊ8»Q]¸Õ’qv[7³$Œ ã’qvÃÈb_2ÎnÌî¼dœ-Ys–ŒsŽÊ89é .'M•Æ’qÒÒ\2NZòþ’qRÆã)aœTô–Œ“’ßYÆÙÝ[þ%ãìkÙ¸-g_›²$Œ“šž-eœÝ“²Z2Î5\82Α2ÎC6œš$Œs54ˆ[N¸¼\U}Ùb‹X®]yòBÍ…¤Ë¶Üå÷I£Kî{äýøä“w£šw)$üüt]hUq¸Tëm‡¦wòþ©44Æûë­Ðû²>®ô®Ýź¨éèªçÑ@y_!t^Ïëi¡¼]Èê½=”Ñèzš(o[²•€ž8ªÁMm”·õü<ú(ïJ?ºuÇósÜŸNÊ»Xæ´î㣆—¢¬Ó%3=5Ü´õÒù²Ó~­Ò­á§] sXv, ¥à¨]ì×°Æ8%¾|Â@©}Ô©œço¡ бZc¬²_û’æh¡ìÛr”½_äÔ÷”ä¬Ô\’­54Æ‚¦·²:èõ°@JrWÔc襚›¤å¯ó{ v—o¢ÃP—îG‹áûÌËztÖ¡ßK“¡þÔe'ÏWù'Ú Ç»4}–ÕžH·I].ëí4Ô—­–wË6“uéÏûÑl4Ýõ;ÙnEV…¦ßÂ?Ù~›°™ô‚—“†‹i7q9ó¸Þgk dvýèÅ#™ûü̡̮_zŸ­Ç¼›Š” ÛäS¶.úªÿY]V4<Ðè³.ö¾Ðê´NýÉêµn­n ÕlX£ßÚ÷ɪ¥ÎWÏ•øÚÒèºP­ª5ü¶«QÑõòªQµ†ß¶VýÏò[4ØÐõÃùòÛ.æ¬ûÉo»˜j³æ¼ iü–ŠühÎ &^SšS÷€Ðœ R‘ßbÌ=5¤W}ÛsŠTîÉ4çžñ@cœ³Ììp¡9CðH=a"±îá64†:QëúªI‚ÇýÐUðÇ9Mh®?E]Z ý¡Ñ§Õ]-t½:µ=OÓ½Ú¦èû‡ýRÔ¯Ý÷SǶÏWû\Գŀ1um1®ƒ.Œª½.êÜz´÷…~ø׿‡~;CyhLb˜œ*ývƺÐKÃwÂRMš7xÀ]5ÌV{Rå7L¶ø¾U~ÃL-YÃo1´NU~Û#Q}*¿ßƒ‚í¸ª|jÑü!iœ—ð!/–ÏXÖSç/ošBxbözµŸ•>ãóTÏ« kømkù­Êoû1Y÷—ßîóå·ûýä·ýûÔTù óËÐðÛžpu½¿ü¶uÉÖð[¾“ß¶æ¨~ÛsýÞ&¿¯4ù s~Ÿ&¿aj‘¬á·}œc²Ôä·=¹¦5üvßO~Ãt*Y¯ô¼^~ÛãvYÃo·–ßöŒCíG“ßöûä8¿íã•å½ ®%¾OùÅ}¿Î ƈþq‹õ¼g{éË3‘çËo#ÆoM~»ü¶'—54ü¶¿Ÿü¦ïÝì· ›KÓožwBÓoÕý[—ߎ_»ý~èö[uÓå·˜]CÃo1ENýøMý}?~³–ßžÚ³uµGÝ~k®ß½|˜¯§n¿=ôìO-¿ÅLºÌGùtù-æ– !ühÏÓ?Õ? ¨QþÚã£Óž"¬Ñí5âõާ$}¨»½ïSíuø¿Ëo[·f ¿ÅD9 ù-&¿Ðð[Lw¡á·ý{ÔþùmÛBã›!¿Å¬~ÛÍ„Ú×!¿=uÑœ_õk¸sšùìß;ä·F@s*íͨ1—Wýò[Ìü¡9›/št¦!¿E4šóùóþòÛi߆üSxhNéOùÉo¥€nÊchVžÇÀÝž#è1í÷`(¿WíñÖh¯#RöúÔ¿ÁPRQnkD>ÖÃoS~ÛÇÕ~Nù­g×Çù™ß¦ýÖÝ^Mùí”ߔߎg‰à˜êó”ßNû0å·Ó>LùíøeÚoÃýÁ´ßAIÓý[|ÿ)¿ú9ß4Þ›öÛCÃoÇïS~‹[šòÛ©ÏS~‹MšòÛ>~-kú-úÓ)¿Eœ1!"’~CHd>ôbÃýAs|Ôý>˜øNú…ßã;ÝYHýCÄþ‡ýN­ßC—]ð »éôÏä9û»ø˜Ô׿eÛõýõ×Ç‹æs”÷q ¸wÇ-ÇÕ`œãn?îãzà9~?ÿ÷ß»¸þõ/_(®¿üë¿ú»ÿ’_éõýÿð˜øÇïøOêݲ^ Pìþý¯ß¬ùÛ×÷þôŸ¿ç­µˆCíÎ×®o½¶²½Åµéº¾õb¸¼øâô£k®õ;ýKÿ…½'Eºü»ßÿ!.¿¡úªÝ—ú~䓾ÂþÖ­NeO?›¡—Ú­\ð#vZ„/ 6 OÖa¬’‘^ñ#ô³¼‚A²'U ™Ç+ø»måÅÖ›b<˜¿%~æ˜æVäGìZn~äž øbBñ#´»Ý8i÷ŸhF³eÇÉõÈݬã(Í+~„£B3ŒåáÎÝ„('ޙ׊áèuó#´¯¢<Œã¡y”ä|Ž­åÍÐrÔ"~tŸÌ˜š^‘)† Ù…©ë¢L¯àG¸–†ø^ƒý­øÞyÝü?£wñ#¾ó|?JФ?ƒ8?b‡ró#öG¼–üè)ëÔO¨¯àGxIÁµ%- ªÅP,Iñ£§,:Y…‘δŠJRü(!Þe`´/âÑñ ~DI¼Â`]ZIo%~”¤¶Ü]#Ú÷jœ´.JŽ4Ä"Ëóüˆ Œ³œ?JË£*ñ£¤Àzð#Êò ~©1b™“²_2¿‚á¹É„¨dJ†Åð’Årâäi$$ã,ÇNÄp”Cañ#Ê›%wDæG¼ÕÍÂd"2ÎrTKü(_žTˆA"/飈€_Ž8ˆAЧ(þ}™J‹eD­o~”/çÅp4èbß—Ý-~”/Woñ#<¨Q*ð½¯e Jüˆ×ú(ÂÞWÑ0Sü'³ŠŠáVt™ø~/ÇTâG8Ê“øQV =øQ¾¦ãù ÈÅp@V”<ød·ÜÆÁµ´†øQÞ½ï,~É¡“$_Rü×êdG«qÒì|kŽød20*So•^Ápm±\z.› ñ£œ’Úñ£Œ8<_ƒÆÁQúWü(#\ž^Á ‰¿Å(Ç+ø Ñå_d`”õ‹¦¶úŠk?$ÂÚ ýüoÅJ(~„ç²k?ÊÅS*¤ "¶^‡%w@æG¸'!žb~d~”ÜB?ºµ¼ƒg%k O¼Öüo< ö–Ò>"!l¼¯ž ¥ˆ÷˜¥<È&ùÑ5C«ÿÙ?Sñ%ñ#´9š?©ÚÃüšo^î‚>ò#´œŠŸ‹¡5L~ôAצçé÷ÚN—ç/âGh>]~4žŸÄçè(hÍ?Åp?Å«Å>hŒTVÌÏÄØ<OÂXe7S:©Í½‚q¾Ïi—ø†º¤Ýžê{ aZâ8:%tÂ˽ºlñuKÓ#'ó#tžŠÏŠÞÓüˆå|É]“Ê+¹ori~„ëý<÷N¶¯ùË·X7u9ššíj©øŒùÑ•â}ÝE-í‚ÁÙºt×ûÊl8þàG숂ÁnW G¿±ð#|?ÍÿÅØ‹wp¾ßo~Âù>¯ž4ô¾æ'œ°>ë1ÙQäàCl“Kð ¢F9æÛÙ]VÌ׳û¬%4o~Ä6=YÓoG»Ûšöov¿<&»ãŽgäÓs‰/gw]U-¬ùÎ7ÿrçÕ]žÙ½×)ûm¹½?Bû5B£KͼSüˆÓb+ž&~Äæ2øPI:<© ×÷?Âñ¼èRû§x—øžW‚%œÿàIç/ÿ>ñ#?Âq}/ñ£¼«Azð#h¿U{½Ü¾ˆ¡=Íq|èùæWîÒºÛ[ñ#>ïÁò®¦ò“øQŽÅæGx~ ^¿e¯j3?Âqó õl»Zø÷ÈoøìÓ}[®ñ{ä·]-Sð!ôn»˜¯ÉoøìÁ—пm­ú!~”s”‡ø®oâ?âµ9x§øΟÁ—¶ßòþ â‘âGÐú}âG¹„ŸÅréq\~+Ýë-Är‰þJü(ïbé~­ú&~Äû/ÂHkƒ.k …JÄÅp½âçâGYÅôüϯÓ~C±êzùmkó7ù Å(-¿íë]~ò[ ž)~„竾‹ñüb ¿ÕX/"~”Á¯²5ü†øz³†ßÏ?‚VüQü(ïÏPüZå-~ÄãÍ~«Ñ_*K| ~«%øü¶µyü¶ÏO?‚®¡«ß7Y—¯Þ—ñì\<Ì7?b}Òq6Løžú~âGøþþ=Œgg4+:Îx6ë¦úx=ø¾O}ð#|ó2ùíÔOñ#¼ï•­á·mù]üå™ü(×Çä·êy©ùQ®Q¿Åø}‹uõùq~«1Þ?Bùª¼ÄZ~{jø­N×'ñ#<¿…†ßjŒ¿Ä>èÙŸZ~ÛÕ"?øt‰ãðÛ®væ]Œgç]Í5þ?ÊX~| ÓðsÖñ£Œx÷ƒåóÅò.Æ+4ÚëæÀ•ùŽû~òô°†ßv±å?Âñ|¨øüjÝt~¾¿ž.~”[ÄÃÅp<‚ßO?âý–5ü¶‹m_‚ßz¬ß?¢^ÖðÛÖªŸâGYœ÷àGy«ü+~„ãæKò[Ákä·û|ù­/÷'âGÐóÁò¸<~?Êûg«>ˆá¸úOñ#Üß<‹üÏ×üBQC¾Ê‡/ŠóKð$´×­¸}?B}*~„ú­þJüÇå§i¿ÕàöÛ¼uUýíÁ—à·Ý¬h>&~­ï-~„ú©ú,~„÷ÿ›ö[ñx|ÚoÞ4õü¼~Û׫<ÄpùiÚoÃí™øêÏ ž¿õèoÅòámÓ~[Á«ì·X?5í·üÌ~[‰A«>ˆñùÁ“è·âñªøê³æâG·?ú 1>:ë'Ä éç_9bø‘õû_ñ¤Ï€Ñ‡«o~„viÎ~­ÏzýõqòËÇñ=A{ð%Ë€6ÝüIòqÈ}ËÇq½Ð9~¿ß¯Ã—Ð/ízþó8gdžDé[/fèÅ(óÅØlâ×.ß|±*)/®?~ñá)Älv›H<õ_ÀSÁø¿M§tÎWàÔ߸Ñ_iîªÿml p=hjÜ[™¶ÿw/ E b ¯a—êë¹­)ú Q©nú.(5.ŸI&=À˜78í‡Áǽ¡i«zó¨î_8 Ã&㼸{¶"Õ=w‹zœ¹;ba£ QÝÑg¨î1 8T÷ŠQa¨îñµ(T´ŽºÚj2†ñß¼giw¼Xwt½‚@¡•õ±ý[0´ºùS_± ? ¯/}^'ø4<{Ú Ûåc}—îð›qZ4= xšŽ§Š;í†9ߨiz>%ê„N„÷ä(ó¡ös©²Úßx]Gh¼J4_œVìîaØü¡ö7>ˆˆó¤Už›•VR™‰5!ø}oUšŽ{Š4ÅÓšÐuÞû”@è®W`¦á0¼(Ó¾NE`ÀQ_˜â·‹0Ū¦é5£âKó^ëlGÚÝ% åpi¿Ù¼ÙÞÓªñ;¨$8­‰¯"°4½ßM\ ñ•ô&¥í€­8ZTkð±]ÃV`:%8^A”‚˜ (=ÔvÀîÑú“V": 6o&-ó±$DÌ,‰íñ –„xnºYÃË<*‹°{KBðõòæ#Á“'bI)bvbI¸U÷n#DÀ/G°Å’÷ž&MK'³lÅ’µ¶Dô{ŸÜ¼ù(ãä kŠ}_MkÇÄ’n©È7þ÷^$Æïo–Äp}KJ±MB, p¡Ü{‘p2ƒPbI8™øO, 2!âï,–DÎ_Á’pT FánP Ã#D»=‚%á5´7G±îËs±$\ËÆ^,‰?„Kî«Ë†bIø éÞ‹DP^Á’P°–tKA؇l:YÛšᾦ"îbIxа,ý®HbI§"‰%xkR×ÉânŠm§Ë‹%!d¯¹–XÒCkb“Á–04̱öZÅŠ·Ù‹Ö0äXÛ%–äù{°$ÜÏ,KÚÃ{h!oÉ3KrÐHø²‰"ötõÇ^$üz­}4KŠÒ–tö2˜%a·YìM‚•R‰÷——ÒÙ;%3=5Ý,E, M€bfIaÜ`I)GùÛQ‡E‰%]«5Kzj°$°¼iíT}ìE:mN°¤ý/•‡YÒaofI(ö`G´VöBo­1BI+Vö‰$mhâ..$Io­Xæ)Œ4=&0EZWÜ™ÞBþ؃4G¼½5c‡Rt%H·T'4§©*A§Ô  <š+;ÂV7½3½5=Æ19š^fap4Ó‡}G#¦¥ÂFxЃíV_JŽØo¥Â3Ú]–>›‘&þïAŒÎ[ ¡— >´Û݃…‹fD›D‹œ,ÂB½ý¨QÑ-é¦éåE÷sé¥ý òÀD1º0%Z±Whyå“Ñ:[’h£+°Eˆöµ@4Ñ ^->t¶§ ¡k–ûN­šk:èShh]÷ɓކf¬“ŠA¦±Ðô’S¡uÝã”{x3;ÈSHè8ED(V ÅÇ<ÝiÅh% Aø ÙÆ ÖVÂ8WlÊ÷ˆÌ$ËÂt­ŒsN–qZ`/§º%š±(A×ÓqÊx*G—jµ…6fl€:ÖÿÙ/¹øGA­÷ ?Ç΂?pY° Á—ôVž0Î 9ØŒÇÆ¡qSqŸdûÌ š¢>ÇV‚>³SaLlzEŽ‘Ï!ð">ð+ò®0Ù{ðžS’Â=ÓùL{NÁ öÄÛ¬gË(gW] -ƒülãÌ# ôÜå,ã,E㜗å‰éˆ!Ï®ÀÞƒ"ãŒØ²ân纷mç¬Øñ$³¥7ÐÐ9+ø²øÎYî!¼³º£¢;+6Ï î,¯(4ÛYÑ] ílo’SÙ¬Ø(4ÊÝÊˆë  zl µ± è*· u0Ô–ÏÕ!_/ë¦êÙ"45êTEÒVTH‡£ƒÒ¹»ùæA]uÓÛ<ªËFB:F)xX}‘Î=¬ÒaÇ9¬±d!Mé £y"œï-D4ÒCÓI4Æþ»3b¢—ÐŽÇ– ¼Ÿ¼&¤óAcükú ×ËB:ìD[‚÷gˆ™t LòåGH½½3!öïÙó€ä´7F:÷°VH=`{l byé| ë€àñd ƒg  ërl!ÒA÷›â8†uyÜ[†à¯|Іugˬû‘@8X˜YcI‹ŽÛÎ÷@:Ðz?!7yïtÐöäÒA+§¾^H'D-¤“ÎT!Þ_ïK«áüü@:hÚÛcK®O¤ƒã~>í†NfÄ–ø­„?„tÐù¹¼8øC—µH‡\·Æ´ D×.¤ƒës L Jò&Òvyé@§@8˜”X‚'¤ƒû{ËŠüv—ßJ¤(ÒÁýÔ4 éàzµzêýÐ_Ÿ->ׇóå·r¶üÈoeÝ~ÛÚÏ“ßj d#¿¡S2’ßÚÏ—ßZ»·ÁoÍá>#h•—Æhp}ù­Ä%¿¡™ Ä¿Ý×Ëog‹–šÇá·Ý¬©é°Ù É÷ÑB:tÑùªŸš†à~ôû¯†tç>D§y1ûç€ç3‚ó¼öæ9ëo~8Û;4zzýÕaö…R÷QÍYâ¨g0çèbp-ŽJ=@Ðî6êI>ŽïjwÝ Èòq$óÞˆdùQü)7ˆ:¿ì×AèìÚÏÛg´Ø !åoEH™€T÷o½¸±ÆÆŸ:ûwW*2ªÅõñ°Uæ|l]œkÆQ«s}÷¼î{[ÞÇ+—Ÿã–÷quáç¸å}üù²÷»ŸãÏr¹ ã.¡ª$ç Tòuõß]éw_Þ„õ¥; 7Ç>÷H×Üâo‚2ÄvOAPö‡?|éòÇ%;a„‡µ7L"…«¿ÿß?üÛ“³å^¿–ü§ ¯}-“àO¸Û¹ô9¬¹`ê޳~ø„5L=ãH44¶zb©è²ÆVÂË¡K¬ÉpªØ¡™ªÇá‰<²RõõCÐLÕã9 4r "Pªç¥êéñìÐù.?ú-Ç6gh,ýœîO¡™ÊÐq8hl™NÚ‰ŽŒ© ãeÇݘêNõEkØpœ8¨hDŽø";ÞÂ̪ßY~ƒšuW*6ßO~»Œ#K–ß.G ±T?RÓ¡!ÂR}ÏÀ¨±T?vã²áj|~×qúÍvhŽ.ÅÑaéðòvGh,^]ý"ƒší4Sº¿EÃsy|V¬‘zæªñ>òÛå­ÐE©ðz¶ÆÒÏíQ¦ßØLëùô»‘ÐXú9½u†IP/Õ‡i ¿!V~›ÞJÆúbêJù±ÈoÓKÑpÃo‘Úš~+êo ›Rª}.ö›· AÃoðcµf*ÃKœƒ)¨/¦Ê\Ý~›NÅ…FÒýÙÿAWùÓï#¿-Ç)¡:Tõ½ôHeè÷é\:¼¼µ ¦2¬n¶®:_ý‰ræ•ØZ‡y—Rº¼§R:‹sä1b².jÿTŸ‹ú·Ëä š© ½¬‡‹¥T•Éz*õ¡Úתþ 3’iíT†òouÿæ]ð¥º+q?÷o^Vªû·ÇÝ¿y£8tÕüBï«»©ÐìߜʯT÷oN¥ä´Ùl¶’5ü–¼83¤z‘MÖEÑU+›¶f=5Þ?«üVwcŽ¿¡Ôˆ:>5>2ìd¢nOÔ^Õ©\ç^ ÃUJ ®ú]™Ã ÇGh¦;÷ÖæØIzÞ²®ïȯ  ³<šÆ“ûzÕ·¦ñdñø—9}2Ç×54Ɠũ"¡›Çëü>MãÉâÄÌé4ù¾~?'±JϧßÎø›9¤”úGýO£ßð}ÏF¿‡¨»R ù÷¶È®þ¯u%@®Ÿ~c>iÝŸ~ãñnÍTOÑ~6ù­z>Åg×Z~«^o„Oœ¬(_ù­Äø°-%tžî_°>«|øüΜX%¶r9§Siò~=Å|DþÄi•/ç¯Ð]©ÏÔ?wù­„¿ºü†¸x³^NÅÉòïòlW¬k{”_—ߪsLCW¥þRÑå·æå2¥ËoÍË ‹Öä£Új<Ðå·Èï ]”zLõ¡ËoÍ™§¡§R)ª½íòRSVkø­yþŠ}L~ÊK~kÑtù qîjÍÔjÑÞwù Ÿ¡ZÃoÝK‹Ëßzòû ù­_÷qø-ç"R«uo=†Æ|¤·¸>s>Ò½• ó‘íÿÈJeX<þÕÿÁ¿4>òÛðÂOh¦2¼ü½‡üÖ½º(õ™µüÖ½Bº*Gþ*Ö]ç8ß©CUÿ†ü†j:­™Z-æC~kžoBW¥&äJh§•Ÿ†ü©G¡™ZÍiË‘ÓÑ© Sh¦2l®H0U^³žJÔ¯òŸòê×e=•úPã™"µšÆ[S~k1Þ›ò[lÕ)3+µZóüaf¥Vó¢ è¥öLå¥EhoÔÌ¢ùôŸ“ -S¡Më¦T§ªÿˆ—túIýÇ´ßœúš© ½š¦ho³.éN½Ýt¾Ú›)¿¡›cùNù­zë\ÑD£ÄÖТœâhõ½¦üV£=ÐR$êj½ô¾šßLù ‹ºµSª½]ò¢ÐźÊïj¯×© 5Zò, k§2Ôï]ò[‹þiÙoN}\´šÀÍ.´üÖc|®œ¬ÿ—5ÆGÝ[c˪Jeã‹Åå²ü{z.½ƒUŸ‘=©NÍi¡»R¹ªþ,6ú]Ïg`…¶MÖðÛðÒá²ä·ýÒ߀S—5ü6,K~NÖðô³~-ùmø¯­@Ão‘ª~ŽAÃoÃܶ^òÛÙùtÉoÃq¦^ò[¤¦….óNÅ ¿ §’¬—ü6Ì«rz£™æ÷‡æŸüp<ª^%þæGÏÖü£þ/õ’ßÔ­HÃo‘zèüª÷åÄšÝ\·Æø¨{üéé }1f+m~󾶸:¯{W܃¯»ÿÊß Dãjø4ˆhù膽÷ðAâ_=Áõÿð§?|›}-}b€²¯$Pü wûÌcéç`3®òY76KÃÓNc3¬¢™¡‡2þTib3¬21æ"6ƒV^Ø «JJ`²¬¼ƒÂ&Âf'§Ÿ±õ|lF_›¥Ødl–â/|›y•ÅÁf)–è›1ƒP`4f†Ë¹šRÕÀx]¹áÎû0¬˜ÖÁl +"ãÎͼŠËØJØ ¡Ö|l––ÿb€±Ž·À`X~´jœÏùŽ6Ãó„™„Íø¾Éš~ßõÀf¸>&c†«ìç ›áz}_a³ÑÂØŒ;nçë`3dHJqœÙË}ŒÍ ˆÍAè‰Í …EÔXç+ÅóˆÍ åÍñOŒÍ˜oOçk?räÁ36cƦþ:ØŒ›âü©ŒNÂ@ÂfùòjJc3d Ř;®* jl–VVüŒ®8Ÿéãz`K…/¯!56ËW`4a3fdº^›Ýå#lÆ aɘ᪠›áûª¾ ›aUOίƒÍr`c3dHšÅVLÎ`íøÞÉJglÆŒmºž~Ãïmýu°µî×”¡È;êÍp\XQ،Ͽ^›1¡žîO¿ñ}Òë`3¦ã LÆ EáWa3êÀdÃËúë`3dTZl†mÑÆh 㧃-ÆO^®fl†ŒGOlÆŒDÂ> ãg/W3¯a†$a&…ñ³—?›åÀÚÆfx_…á„Íð~ã͘1*[#ƒCr}56ãñb]õüõÀf9–£›åø‹(Æfx?…5…Íx~±†ßb¹©±´ÂˆÂfÈØÔ£5e`JÑà·Ü£¼ä·ì ØÆfÈèôÄf|^³.:?‡îÊÕ«-e€RX]Ø œü¾òÛ>&Ë:_agc³}¾±ÂøyfRC•i=ô¾)03\EÒØ,0n`³ìþ3°YŠ0ˆ±–IÄqg¸ºžØ,ÏÀd ãg/ l–#Ìal†úX®zü~…ñcYH`³åel–†§‰ÆfÚPô~°YŠ0¹±4…^Ê0æò•ßr‰çÉo±Ü8°Yv{Ø ~ ÌÆŒrþ{uÍb—X`³Ø%flÆ4¸l†þz=°û·6cZäÀdX^;[`,ú ù=„ÍØ¿F«Ê,ëûÓoL<›¬«Æ'šv ›á}4m6KË)ÍØ»” yF+Jz¬öCØìd=66ãª^½ÏÐø(cÃÏUÆ:*ƒãeÌ$lÆUàÓËkmzlÆûëùKc€°ÙÉ+ml–¦ÿ‚‚±ÙIÚll†U¹*a³»¼„Í0þ;˜ ýÛl­²28z¹¹±ÙɈhžÀñU³nʈ¨ò6c}Ðýè7ö§lÆñV`0l‡XíÆbUý±1[Óø(»½6ãûêùÈÏÀ˜ÂfÌð­ó‡2Q;#ޱê›Ú{a3¬:ö6cùTk,Ï^›1—sè¢ßçë=ž¬ñ>OŽÀDOF®Ov߯ÚoÞ›dl––÷ ›¥ƒëOêû ›ñû<°Ç«ÂFòÛ¾_ ]•õ`±È˜ºº}HÖ£Ýã7c3´'+42\E2`c³»¿Í˜³8Ž7e¨Tý6c†Ié¡ñQ„õ„Í8þSy1¬ÈñR`²¢óîO3NR`8†Ðÿ«½6Ë)ÂÀÂf?åÀdU¿oFŸ©½6Ãû=±Ço:®þ-9G†±´±ú·ä ¥Æfh¿V6ËgYMóx2úOa³œœaÉØŒ ¥‹%?ó›q¼sY3AqÔ?a3f |`3ŽgšõòùÅ0ÁFÝa]ÕãÑo?&»4~?„Írööc³¬fî=°t ŒÖ”‘Ñå¿”Á± ›1bµvGµ?Šßâ|…‘…Í•…͘!PØIãÉ2<6CFEc¨UþÂfÐ%0Æ“¥y<#l–c™£±´¾¯°2ûÉoÅÛÃŒÍr,{46CFGÕga3<_ãa3èX ~+± MñMÜOí»°Y>XYØ ×Ë_ÂfÈl4£1ƒãy_ù­úo›1ãå›1Ã¥°’üVb°ž¯ß'l†Œ‹Â"Âf9þþ®±3š +eepŒñ¶°ÇŸl†ú§÷6c}ÖÌà˜\Âf¼Ÿ®—߀ŋ538æÀ\ò[‰e&Âf,ß8¿•ØN~«QŸ…Í¡q=°22jY’°ÙɰilÆŒsËšcÙ”°οØ ßOõQØŒ3‹9ƒã í ŽÆ|ò[uØÛØ ZÏ6Ãù*_a3dÈ3Æ’ßš³N›1Cž0RVÇX l†ëG`µ¥óŸØ QIõÂfÈ §e ÂfȘXØ îú›1㣰•ü†f­ZÃoÍÙ[ŒÍp?Õwa³Û›ŒÍ˜q1°üÖÎï“ß"Cž±´±žüÖ“ÛOa3dØ;Ç™Á±ö“ßz`Na3èúÀf<. $¿¡y`3d@”¿„Í Õß ›!Œªú(l†äd>?GGc!ù­O÷ÂfÐõͨ‡uSÆÇúÀfÌ )Mlv2>›ázµïÂfÐ_ ›!ÃâLÆ Ž30^SÇX¦(l?ä6C{ìçÛo^†ml†óK`µáú¨ëå·–\?„͘q4°ýæ?&`l–Ï2Œe¿yûµ±YŽí‡Æfð{ɯƒÍru<ÊØ ~à÷36CÆÕ^›¡>Na-ù­9׃±Îg}36ÃïIz¾ýÖåc³‘ÌØìd¬46cÓëu°YŽ¿@jlÆŒŽãu°t×ûuepñ{º28ÚoÆfÌø‰ïñëa³“ÂјìÞÒ÷Fû“}¼þͰux­›1 j~âªû á*ëçÈñkÖOôvq…åÞ¤Ÿghý}†×Ü?ΨÎÝgH?ÏлßgÜ¿åWkÜxž.C@ãJßœô1®Ö–¸¯e}üQº…á¶“/þé¿D·¾’}Ñ8ë+ù¿~¯/þq°oD[€ý­HKìcLl–›\Mf®¦óŠãˆS̓Æ›3(à 3ö* RÍ[¿h¼y ¨ÌÌ5õ±±kÖ.4N¤Œ1ŸšWìšJÎÞX‚>]:y½œR™6I(¦¹}©•â­ØÇ_Ò1—ZžöK­|oÖBš—rK¤y)Á°š9®ü:Hj•¸3ƒ$G µߢqpr~µÝ3Z/£3PGi¼³$³J-'þÜ™AÔ20‡Z1¬†bμeìY…Z9¡ã‹£ûÿ¬X9&µ"â,µ" %µa™Î6~böÝKáðË¡ñÓŠM9¢O)è­éSVk¦uŒÙžèÏÖEÉkòƒ>1‡\h§v4 Êí‹ÒDŸ˜ÚO÷S4<’ã˜>!UŸé˜¢á—é¸éSŠ¿cúÄÔ}M['+§éSÿ=èÏÐ'hEDŸ˜J0ôPæJÍ&EŸÒ‹ôDŸ˜4[7§˜äÇ}Zþ;a†OéºnåÜ@Þ³¤`xìy6|zW0<þRžáŸb‚áWìI|ZÎqkö„GÈÅlK‡$eVÃñدµbû†~ËØÝØ‰õN?TË*b‚±sH†Î:߻ߎ»‚BM¦˜òÞ©Ë©éÖc«uRRjº· “W© 8ÍÛªø©¦3‘7Mçb6mŠZ†M3JD¬iÅŠl¡¦³AI¤iFàK )þf¥9þFgµD†-ÿ(S¦é?ƒdÈþÒŒiFÈ\ˆi–{#ÖÅ4`úÆL3j¬øÒÁAÂKX-tYözÒ€.ÍØ¢)¶=œÑÒôßB3Yš^Ha°4ûÍ»C}2a¥y¨º¥(;5]­W™©˜lÌŬµˆÒ & ôäMè–J¼‡iÒÙ)˜ Ô,iå@ctÏŠ <"IøÜ±ß C–œ‰óþ9CqÚ?ç½kY"# !ÒŠVW ¿·[þ"o<㌼°4x‘³^²qD'dÿù,ãUƒ…¨WŠBG ?q´«£Ñþ"õJ±\_ÜhÅ2 ÅW¬‚5:XÐh›e¶F*Ñ'y#”û¤ˆ`ÔÓ'ù­Eh/ÿ "£ø“jFhi\´Wn#hÚëŠ_"@‹P±o ظ³5°.QÀ(ÝÀ‹5vq`Ä.$[/%]V«+`Äã—5æéÈ;ܬ±€Mq÷F¸¿ºèæ.)Xs—Éæ.©`q—4ãþ%Ò÷0âõÃ:Ǿª¤ì%<OÎÀ(]›û¤ÀÇ}’0aÞé}Q´)ÖÕ á¸¶F<ÉùêúcŸ2å0J7 M]!ìº(¿]‹}XMùß\~ ¨¥´Œ˜nYOo””¯.Ý€¨<òñ¥ÈËa`”âO¦Q?öY!_œ’mŽ};F¸_ @”•–ùŠ}UX‘Xñ÷<€߯Xg¥y±oÊùê b¾ºï+¿åøFÌyûØgÅû-ëé´Ð±o ~Ë8Œ/Ç>,ø-G'`ÄòPùÈoH}ûFÈÀTÀÚûˆä·³@HÀˆ×?öY¥u#¼ÿsŸÎ÷>$°ù= µG~?#æÓíÖð[Ž}.FÌ'¨çÉoTÙ~Ë-€Žü–@50‚Ö‚Eœ8÷=€òåùýä·Èg`Ĥµˆà·¼b”üVR1ù­Ä÷0‚6 ’ßJìs0Âõí±Ï ùëJ"æ«;@N~+íÞW¿Ç( Œ¯Ä>*ø­Ä>#×÷0âù@ `§DŒ×sd|ƒ’FHzå}J `§È c`”âOÞ1gl³F{}€€QŠ?ag`ää®ïŒ å_#äcL±¯ ~«þ¸F̬¦ß'¿Uç50bר7¿Ýûºä·VÀ¹WsìË‚ßZn£~C?üÖ¼ ×Àùþt#÷>$ù­}F¼>öUÁoÍy› Œ$M퇀ó €ÈoÍ d Œßï 5=ÊCÀèä40B~Àû¨’ÎÏ¡Ñ^£/Ö]‰î¼ŠÀ(}oFÌŸ9­²Æ¾*øír#äÃTÿ£©þÉÇi`„ç¹|ä·zömÉoñ'ö ŒÒY€ `„û¯Ø—5õü!€"¿Eý40Âó­å·Ø'm`Ä<¿±ïŠù!ó½Šù!Ý¡üj`”b_µŽÐÌé?f`Äû§×F¬?à·Öc²ãX¥Vc_ÑÉ7i`ä4¾úøë£Hi>9?ÇGŸã¡W?h‘þzÏEÌëÛŸæœ ã¿tŸ]™ }\ò‰’Rú€p¬Ÿg”®lq†ô`Å·z«ó–¿ÂþîŸMæur>~;JJ%ô­ú+®Î'9á·üí¯¸ºqböÙÿbr;ñ"¬ô!iägÇCžÄŒLÎqç y/ù™82ä}¼õgâÈ÷qõíç¸å9þá…ï÷ÿɉ#³à/Éé|¿0s¤1ÃaLùÏ¿ùOÿð[Lj^¿ùþ·ÿòúþ?-‡$³•ýXI^^|yýìòªU=\•À&OÕüÿÖøéÿ ¸æendstream endobj 700 0 obj << /Filter /FlateDecode /Length 721 >> stream xÚuTÁnœ0½ïWX9±Rpl*µ‡ªMÕ*UáÖö@€…•XØHš~}gÆì&­¼ŒÇÏoÆãçQ¢J|Ù(þ~Ì67·‰HejÙNhÊDam,ˆ¬?½ÛmzýÃÖMèÀÐ^å&cvÞ¹Éì~bX“ ‘[“xÕÀxp4Õ G@~˜WûÝkÔì‰G7/+˜ {ø«9l¾ä9›H»¥ƒ ¼sˆÓy¿~û;ûUðµ–idÝQ‹ƒM0’º¹â“Á–PË$äê|Øú‘ (Ñœ£ÿR‘B ó){O0ÞÃ(Vˆ†qí´ó.ŸÓì¢W¡ZæW.4ï`Ø•ó%Rò÷Æ‘Êæ2ºâl¯N‚/"ùœm4JèE&2Ò†±(›?kë«E ó.vÜ|=Xñ©ßü€ß¼äÏŒþ 囪4’±IgUjºØzb©òì;8x”xK}5 Û8ÇÐPILì= ÎCŠ[YZºKX&¡L ½ I½Æíq˜=•’üh2QA¹ä#×¶t^zÑÝÆbbu<"qåç[yeãvA³æ/ŠŽáHä` ã}vƒs¡òö#W@Yw^â`’£{Çàhù0ĬgαY"¢Úññ,ïJ6ÚaÞ‘,%}¥bQ¾Œ’œ]¬àÖ}Ýàùœx/Tâ{Oµ¾æ‡Ž]2á •«jNEoIø´~ÜúX¯aî%÷-÷54órVθ®5+Kœ?Ôs{bbûW­á©¨åÅÝ50“qÙXJttÃŽY1#7à G?¿ø  ¾Ò·kór^ìªA`¼#·Q^0^‘·\•=Âk?½˜â=O¸\ŒüÞúŽ{bpúB%SBŠ”Úai†={ˉLãÈå¹@˜Êº.ÃzîOù¾HZj:”gë­¯ðm"U]G«P††›¿_ö½ÿ8L§ùendstream endobj 701 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 702 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-gapMultiplePlot.pdf) /PTEX.InfoDict 237 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 240 0 R >> /ExtGState << >> /Font << /F2 238 0 R /F3 239 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 7005 >> stream xœ­œMÏ&¹U†÷ﯨ%,æIÙUå²·J$Ð#±@¬BMG ³€Ÿïû:vùíî™ÐÃ,Ò3þxÊ®ãÛÇç*wÚ~¿¥íûíÏoÿ´ýyÛ_û¾åûzÇvYVÚÛ+]Ûýqû—íO®tÖ×y÷Zõ•êv”ãuݽÖñ:g­ßüøÏ÷íöÛoêoßÖ??üöú½¯í¿ßþõß¶}û÷·´ý¾ÿïû·äÿû·’^íÜŽó|µcûøVòëê?sÔ×U¶ÞúÏåÜÍëÕf-Û‘û#5™×ëVåfyªœ_÷!ó~íª\^mǼ÷n¶W¶Y_GÿÝcõ|ï¯\ÜÖ¥Ýìd^—ÌôºT¹iÔÝÌž‹£ÿÞ‰Y³ãÈ2Ï×­ÊÇ«Ý2ûôV›T.¯íf)î¹úwï×±{ø‡Ft7†¿JÅÔðÏýué™kÿ»W>û êwkz¥Ó¦ÛvS“Ó+'=s=<üþÌÅ•Oÿ<^¥a6UîÓcÔKµŽ³¼’ÞB-žœþŽnw…+ôÒ+cjø¼ÁnöI*~æK]µ]]ê1jÁ¼ùݪÉiÙÃïm³ºj‡‡^¯š0í÷ëtW§}£;dréåÉ9»Ãº«›á?¦†%=M7«}ãꪷК}£›gÆÔä\}ÚU9íÉãìì ¸úOä°åWÑóÉ>ìݾšíÓ3tuÿL¶‹'áé¯xžö·}¤Û'õ«¤Øí°5M½=ýõÅ£™èÏï¥ä©èõé¿Ûr”¾>ÎÃv¶§”=ž?ž«§¿‹éèu‡íù¸´Fe{Ë•_ǶݥñSºñ—úÊÕvó|ôòÃÏŸw<¦¾Z »æÇƒRö[šï=åŒÓT^^ʧçãê‹ôÛóщòË~³Úrœþò+ýæëŒñwÑ|\‡†-»1GÌg·oê·«„½§/t¯/uÏ×¥aÉΞ«ûÀ®QÿÄ Þ'»­¿ßÕÀþã×*ûf>º‚ñû•ùh1_Ýö*óÕåÃÓXÜ©¯6‹LÓcɑݥô²Ceûjðû;CfËcËú°wÚŸž¯lí’Òöi®ωÔQl‹Í´Cl/T]¶æ«O³¥9]!·G<ÿzŠš®Ü®a-lùOü~ŸÈ“}!a£¹O9¢ÛÝêØÃ–ÿt7Å.d·Û¼ïnk¾p[Ùo_6§ç§ ¼éŒõSÞ¾Ìð¿‚ööexû÷ú®¦ùê틟§ ¾½=ë« ¿}U¯ ¿}™U¿¯‚÷½(ÞÓ ~l4x¯±þnD¸ËŽ%Z¶ü§ÛÔïû›æ«ËÖ‰wÿºâ}gkI·•8wõΓnKq·°û|å.ºa[ŒÛjœ[aSH·å8÷ÝÀ[¦ì>q²½9§¾Óõ¨¾÷²T­Ç²ñçj=Îíˆ÷_­ÇK{ëqÖ_GØ}¾ro¶Sn=V9þR­Ç¹oVø_µç¾-â¯ÕzœûV×üüýÿúý3ü»¡Ç}a>züØè±æ›úèñjËö+Þ_C»íÝ:5ô¸×Goz<ßWCµy¼}âí?ñþ󎯶ý'~?ïèq· åèqߦü{²å?}²?ç=þŸwô8]ìo²å?©¢wyGûzÈÍöíùë!ïèñðgÙ7Ïë@ 'ôxŒ7'ôxÌofáÉ+õ-,z?·Ÿ'øOFOd‡ÿ\Կ📰3÷…(ÿéåå¶m=–]¯°å? _²më±üƒþ³õ8w7 ¿nËf9³ž¦}°žÂ¿e{=]ècÎÖã¹~râÄú¼h÷×TZØöŸ®Çü>z¬×Z¶ÿÌú ÿ9 ó½ÈG~ï?Gþãý=Ç;ýɇ;’¿à_z<ýç=žvèq¿‡÷þodÐWï¯ù =ÎáogèñÁþ/Ûz|¢çù =¾ÂOoÄ*þBC¿óz<ë£Çý5ZÿeKûk´^ç¾ÿi¾–P1q6ò…÷aäaßËþ˜/ôXÓàþú~·/ç€|¡ÇÝæý_DÆã@’/BãqŠ’‡h_89DôŸ/¢ãÂç‹ðxDé²ïý9Kä²szHñüÝv.– Ù…dD‰õ%!Ì>ï~Ÿø¸Û¼ÏF|Ü_£×ƒ„PþÃ)[þs{Úd'ÏWc.ʉuпÂÖ|t7°Køä?Oèqw3¯wÙš¯§=z,7¡=^mùOw¯gm„òŸþ<^¿JÍW/÷þ&áÓ|ôr¯OÙšÙ_B妴Ggÿ‰”E·Ÿ)ð,ïê£Ç SØòŸ9ž„+‰Âó·PBÆýeô¸ûÿYÃÖ|tÛz)á<—óë‘Ñã¾óö½?ëUÂêóU¬Lì?q>‹œÏ<¯ùçsï>(p^s¼-aŽóù´ïsµÑcŽ ²Ñcd»”çüèñc£Ç«úÃóeœÏ™Ÿã~wÕAm_λ²½žnÖ“vç³¾d[CO%Ô>Ÿ‡^{ažOŽF ­Ç¡÷²ë²þ£#Ù>Ÿ:1´?çk ÞŸó²ì²œ-ÌœwóvœÏy|çùÖB¶[ÿ­çjèÜÎbߌÏñ©…#?™!'.Šû/ÔŸzìøR/2üÇz£ýήÐãÈXøÑKç–ä¨gyò!rÔõ|.û^ôMYSûOœ÷ùŒ1%ô8òZ8ïæ£ ÇÏï…‡ž%ò)ÆsG¾âb?EºËùÙ÷’ÒB–ÿè±kØ­.ëí=>8?YO¯×ä÷w£Çs½ÝèñuÆøî{Ìów·‘ïbýTôxäOd—²èCE§>Tòs½Tôxä[ŽŠ|ËQÑãùþ+z<ý³’ÏPÁþSÑãÕnuYï=ùº£¡ÇÓŸùŒ‘Ï9z¬4‡ÇÓÐ㱟íþÃüpPyÖ[#ŸñØèñj7òAßGûzq|÷A‰üÿ_šþøøv*4?‡ýðõb¼"©þ‰9kåœC?c8 ñÖöyy_ïy˜K¹ÎIå)Ç\ÊŒYúñ”óƒ³üùýo¿‹éúÃ_˜®ÿð§·ßümÞÒöÝQªþøÆÚîÊÚ#Å-÷±}÷qû«Vÿzûîû·¿ùÎ]ÿÚjOíÁ²Û¶¯m«Dàí¶iß¿¶±TàŠÆé''ã¢oø‹ÿRá-15ÿðíïFó$)7µ_I“I)ÁÕßô_`R?×Õtöô‹™TRxS&“RÌ»%L*uóf “’é³7L* W‡I%þÁ¤”³°Â¤d:΀I¥2“Rò˪Kt)Ó›:LJ=;F€I©t˜]q”³"¤”÷¢Ôz’$‹îÊÇqeÁ¼}¤Tjz“R©£0)õ|çm0)õì£LJ¥P'~ʧù`“ŠtÙ`R2½íÁ¤ROGý0©§²c>¥ÞއIÉtH“’éˆ&%Ó*LJCh“Ò3[ÎaR*u¶&ågÃw.&¥žj„I©²g&¥Ê~*˜ÔjÞ<¤g&%Ó».LJõ19ä¼aR‹í¨R‹0˜T9«`R²É¤G«É¤d{Š‚I)õè3S0)¥õã)µhºLJv[˜TÒ(`BΪü¨ÛdRJe¸`Rê?˜“c<=O0¬‹é8G{ç@e'Ú¼åíý‚ÔÌ&¥ß?a^ù¸Ú™ó“Òó¯LJåÁˆ2ó¤6˜Ô;Ûó1Y0)ÙgÝ&“Rª&“’MN&¥Ô«‘s0)§b÷m2)=9m˜”R±FäOv”;†Ë{äÀ‚I)[ƒRt3b0)•; &¥Ô.9˜”S¹ƒA)ÚïJÛdR*¿&åö¶aRyæ¨aR²›Ÿ&¥þ`¢0)ÿve|7õÉî%Þ/L*ïuô35˜LJ6Œ&%;˜Xe¾ZøLJ©fŸ™‚IɆ!À¤d_ƒQ‰)ôö0/˜”ÊY0)ýÌ&¥Ô÷dT…çÅ¿9lª¿6lÏW‹÷“Rª»,LJ¿Çú†Iå¾ÌrÛ&“’ÍüÁ¤d·Á Žó½Ýë&åñÁ°,À*g}¤Û¼Ø ÿ©1˜”~/˜UX©zÞLJ©ù{aRNÝ»Q&Lª—£/Á¤ºÍü“RNØã &õØ0©Œ`0)ÉØ±=LJ©–•IuYÂÿ‚IuÙáý“RTD}˜”d †“Rý{{˜Tÿ=ÖC0©é/Á¤ÄDƒ²ÿìÁ˜kèqŒ¬¡?5ÆßBãc™`RÖ_˜Qèñ`”-ôx±oô & “Òúä}µÐã‹Ý,˜”~Ÿ÷ßBÇú„I©?r ÷ïlëñ‰“ò~äœLÊÃÎÛdR &¥ò ÃB{R&¥×DÎ&å}aR3t &¥i%‡¿‡2LÊû1Œ(±‘“&x©0‘&¥öiaRõ/ö¯k0¯ÂþÕbü»„7ô*˜”–L¤„f“ÒïcB•ºæ÷Ðc¥¶Ó6™”–Á¹0©œÀIy¹&%{‡9YUŸõ“Ò²€™À¤dgÒÉ|Õx^˜”–Œ&%;˜õXË ሪeƒ…IÉF`RZVmaR¹‡‰÷`Pò-£Á¨ä? &¥ræ&%;/LÊË–râcõïñÁ¤–þ•íx4˜”–!Œ&¥ß‡Â¤T~[þsŒùƒIå¶²¿À¤Ü¾n“II6õ‰•º Jþs܃Aæ+ÎÁ¤¼¬)Gψg‚II¼Ÿ“’`@ÎJ6Ȥ,#÷6™”ì†D||ƒaYmçm2)õ¿ó{ÄÇg̉ø¸Û­l“I©}^˜”Ÿ×ýÁ¤<¿ƒAy>ö¯`Rö§…Iéýz>ƒI©~^˜”꓇I¹|aRò—sß&“Òûñú &¥÷±ó{íÿ“Òó:>&eÙ†A¡Ç}>w˜z|žÁ `R²™˜TÈðdR~¿ç6™”ëc£Ç]Æa0)Íï BW;ü'lô¸ÿÞ #B…fò6™”úf„?6z¼ÚòŸ+¾Á&e›þoü§EN&•Ï8?“ò¶cBu¬:¶É¤ò̩ä¼-PŽë˜3Bņ-ÿѶ³B¯øT:˜”dÆ“R¹÷ÿ`R®ãBËó “Ò¶ÂøHÞ{[‚ ¡ÇÚ†`V豎]Ç6™Tæ6™”·ê;Ÿ¡m$-Lʶß?L*¶™É¤²ˆ “Ò¶ÄóäTƒI©= &åúu›LJõï…IiË0-ç3´mñ>aRÞÆ¨—Á aRê?˜z\"þ&åñ-LJóžÀ¤VÀaR S`®0)Ùè#LJþ„^Á¤´`²0)ÕOØè±ŽñƒQÙB¿ƒIÉÿXß0)•{ÿ &¥ç;‡=ôfzyÁ`Rú}LJaï&%ÿÇ_`Rò¯}Øá?è L*‹yÑ=Ö7!÷6™”×åèqïÿ…I©üZ˜”lÖ;LJ6z“òï/LJ¿Ïú„I9Œ²ÿ¤=^mûÏÌD›üÅÏÿ«1© “I…ýÃè2+h@¨wæ¬=˜óÇdR Ë´ŸmŸ—;æRÞ|We–c>å`Û,s)?ýö,Ç\Êy Yþ<߯ì ú—±#§òO§¯mG7Î_Ýøð·Yn||ucœÒÏŸnüSÈËGý òúÇ/ /m)?quj¯¾ »Úüàõ3}¶jwý¯ã]Õ‘ãÀ]w|« íêb»ŸÛ€]:Š˜fY²îˆ@A]½ìŒëV}jzY‹»X]Üïq3ËRÖkZyÁ\Z–q«Ë”ê›.ù¯­Å5­½êyßâ*ïA¸Æî à*q_¾5k:,'û:tK›Ý·Ê‰&¶ÔËsÝJß”=·­JD¯€­±%\K¿ gko¡ ZÚ%m9hÔÑQÏÓº## Òê㲞C´ú¸=´îÈ}óîA¨(Þ㦓ÃÀ_γjÜÛ€eµÀ ¬ß\C²jDO€¬Åê£Õïø×}Pß6C±Ú×½¶ø.6Öc:eªÄã ZýÕOàÀjyð(ǃm\_iSæ}·xÕˆû`Uý¥‰`¶m¢+%p¹ÍäH¯O‰YÀÕjö¡ð‚'¶3ÔJ¸s\œê£¯w|dzR¦w ªÃëŒ!@¬ê5.M9IäN—ã;E\yrz´ÖA—|/+`U÷=`U:/¨J^ro“Tµ}´õA¼Å¹>8Õø4>0ÕÈB¥’ã (Õ‡¿šrŒ‹h ª6n-@¨”æÒ“º´KBª4˜¨Ò~‘à @¥·Å¨ô2O€–g]ï«ÐŸ¢zCû¨ÒLø¨¤µ÷¨Ô_\jâ+€=¨äZ •êçP©¾ðTöL.Uñ)@o_@¥ñèT‹MB´/.ͨT~-—¦´.Ú¨TŸ„?€JóÉxTªPP¹ÚóQ€–ݨžçP©=@@¥òkØß Æ—Zä#>  ÄæÛ€=6“T^ç  Ry\²âó€þ{Ǩô¾z*Í?@嵿oP-6ß<6 (á `â+}\jP¥y© @õø€êñ7•ŧ)¨Tÿ^•4ƒ Zl>P^)ùO €ÊÊò\ÒÀzP©üÀÊë)è¨d_ã’”ü' P¥¡@*Ûü ¤c´çƒ>~æ3ÕœT½>€ª——åÒ”ÊË ¨æû@µÚöŸØLPI/Шæú@•ò»KSÏzPYP|0°ÚžbP Sž‡ÿ`Êød€ª—“ @µGÂlª±~PµàËÁ§Z|þxJ_?,tªO ÉMàTŸAXlJÑs›hª›dN!S- d®ñDp©ZãS°Ô؈‚J=¦«ÕÈ™“ªñf ©:n¡@¤jøO)£)µüÖ¸¢8J¥ƒNUWÎ Œªñ=l°(…eôlå­ãö$ª÷\xb—†À¡z[F†šO…Ò.ÍÅ$kn_ 0”®‚Œ¬¸#Þ U@Í;ið§Ç´ÚöÊu¹õü®ßN‹o‚= %ГÖÓ½MòÔòSÖYqÈ…;)F£²UVks¡N *)µÆªçc›ÌI™z¾#‚Ãë Nm^BÚcøÁwöˆàVÜTã_\ÚT븠ô.r ÖÔÆõ6P“HêrûIù À–›íw«j ?«N»+lÿîY·É˜ž‰˜Ú>J-¨5š˜êà/ð¥ÐEÞÍœté©<X¦¶TãSœ@KõzwÛ©XÒ¹cáJõß+ ¶,Ti.  Rï’ƒ)Õq é,Ë¢¤åLWÖO<Ú6y’Ö/x‡6¾@ š4.èL{°$½}PS—sYA’j|Ø I» •-›õWî8×à P¤ZIJlΙ„!ÕHÑBš Az¤ùØàG:Ò ³1íП+tãXà‘\eaGó!AGóö(äh€õGã;¼àF «ãî‘ó”úÌŒcÝleP ëæøH$ ‘vBLëf›×|Þoq 4ˆ‘ÊÖÍ6ø ¼¨MüÔB8ÈÆB‹†Ê,ß+jG¤îÓÐÍ GÖMË6AQ‹Pƒi%š"L=#šf˜wŸ*aý18Va}w•fÌ»J„©iä±áD)¼0œÈaĽMN¤0íX8Ñ ë‚ùl˜¶É‰6a{¥*Œ‹ßçK×ÿ$Np¢w¶ÃŒi¦jƒ ),ÓgÚu›œHaþrD˜:íS»v†m9uX Gâ›×§ÿ¦r÷N$û†»¦¦pöàD*ßN”ÆÝñàD3¬ N¤CmMÛäD*»PV?܈ï^{9ÜNäúm›œ(åcÜ"LÍe´·º¦|‡¯Â‰tôÅáD:Ý2p"6ˉŸèON¤ÓçzwI§O8œH§Éà@„©g„ÉÁ‰tºåùàDéLƒ3ñÝëß!'Òi¹.œHíY™p"Õ‡{Á‰|z¦œï^ø·‚ÅÑr¢4þ­ŽàDéˆïãƒÉÞN$î'Òi_î.¹¿´MN$;î:YvMX8‘lžN¤lAp%ÒO9ßQõeÂû‚9Áï“VP{ú'mpŒ»Mp¢§>œÈÉÿœHó…¿Ã‰4ŸpL8‘æûXî.éý¶…éổtz‡sÁ‰dG{ÒW›‚¥q×78‘l¸œH§ÿT¶É‰žöp¢¤‹»I¤ t7®d5N×X¿p"•ó|p¢ÅFW»Qî'R6ÁÄ_‘<Ÿ˜ó‡‡…þ,ôΕ„)>Ö|œ÷P²µ}û¬Øˆë)åÌ2Jã3Kùþ|”Æ×è]ÒçXϦ0—ò®þí¡Ca.å§wÇY޹”3”YþŒìסKÅÁá/ºŇ‚p©üµ\*ûË×6¾œHøj%>ä¯Ú´LÒ05_Ÿ”óò.¬òË~>ËÜå:I÷u7ʇù”ß~ªYæ,}|>_˜OùúÀÏóÏòuržy¦I÷ŽÒÖU*ÀYÞ÷òÍž¾ùò•±/õ ÉOŸwq~MÍQݧ]Ü_ÑEæRò']¤ý+º8ø&ü]÷×Í…®ÞŸwñSsñ³8ÒZî‡ßýîKÍ—&KOr±¦/¤´ªõwÿùñïšÑüü¤¹m}©ØÏcçžFûÿ™(ôíßÂendstream endobj 703 0 obj << /Filter /FlateDecode /Length 732 >> stream xÚUKoÛ0 ¾çW;É@­J²-۶ðeè.ðܶÜÄIƒÚuæ8 òïGŠTì¤ëP®(’âãã#Zl„ŸgšÏ‹Ùí¼¥*ub±ƦªÐV8—«Â&b±?äÝ:Š“¼”§È²;à¥Í62ò95I+:VÀ®÷(Ü<çôv€ô’÷mÕ³!æ¦Úû>Š­“õ€–‘Íe]ƒ›"+&¸ÜUOxa=о8îo€SêiÀ¥\‚¸b;­WAw…‘®á;E¿_”ØUfŽ2ýðvž%S¨r¥ /¼&Z¬àëIóÓB•¶ Š;Tì+Ô¯Ñ|ÝCHÈ@!%ñÖ'̼~ ¨Ã’³·„#{ï:@i J#oèò€èõ5ù8¢åP‰Ñ‚/ÐêRÔ­é‰VÀKT§©•ó¨He 飫=:"NœÒ&c³@Ì*Id;fá1?!ÛÊ’bˆó rPÔ¨"å>|Å™MAFæ§Î4-‘À2>£wð-GC˜ CÜó1-|öÌUÃ6‡Ñ’ß—Ñæµ¦âóßÎ׌"zÃѾŸ¶“|®‚Þ°hÇ"Í–'Ž3fMò{Å+;yuÅy9|ZÌ Z˜óZ°©V®´bÙÎ~ÏTn)Œ”„W̸½ksñ±›}ƒ¿ ŠƒÅxbòÅmda„ò<¥Ò̹6‡žg:3 ê¬üêGçÌ^úâ¼=3·¼O€¬èhqØ\ÁíïšÑޝn7à…§äŸ¡ÌUfÒ׬„RéÜþw%¤>`ðâyòý‚ä> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 705 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-combineSinglePlot.pdf) /PTEX.InfoDict 244 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 246 0 R >> /ExtGState << >> /Font << /F2 245 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 4981 >> stream xœµ›M¯.7±…çûWôð2 ñ÷Ç4H à鮈8HŸZk•Ý~7A7' R’“wÛn»\U®çM¼~uÅë«ëïo¿»þ~õ|—r¥ÜﮜÆÓs»G¸þñ§ë¯¿½ýäëßÿâ‹ë§ÞÂB¸Î~øéoì¿özýóíÿþp…ëoñú•ýýÕ[ÄׯßFU¿õíúô6ÚÇ•c¿K½þ Ù›É|OÊ~ç|åPî˜!çºÉqÇ ÙªÉy÷br†;%“éYÒ¦œCÅ;&ãm ÐîÉÖ|ÇÈwC‘l“²FÈr'(Ž»%ÉaÅ‚ñLÖ»`Výì¹ßsæ”6lßÛØj hÅt÷!9l hãNÈy—ÎÏO(†x'›tlw®íµœlñÔžîlc¥ˆ^¤g¡ŽÒù®‰Ý×J]酪ázØÔ“}_¦nw±Ù¥¤†ž¯ß5PÛ¿4îVSû¼s`ûì®m |7MÛW—ÊùŽo‹2ç_¦ë9~ÑóùÎ…š»=ûÒÉiÞ±PÛnÚürЦBÃrÄ2B›ÁÌWm͹h_£íhµñJ¹»æcÛx¥®ñÌ–l¼’ý{ma±Õ6ã²ù—xÏéºNêÎïIfV:M×0†0 ´™Î8û³…jçû ÐAÚ ãul›tŸœPÿ“ûmóO|Þ&>ß‚ëfãÕäûe “ŸŸÍõ(GÙìG󯜯-\ÄúN·/ÓÝæ—+º…®´‡œ`FÒCû“5~Ç Â~tµtŠëÞ{²r=ößôÌì¯òy›XkOö\:ʘöÒ#:Ë ÌZšö0ü<ÙBØÄ²¹·Æù¼lÓÎÉõh|¾Kw8G<ŸÕ;ÂúµO8¿¬aM×@fûŸ«ë©Ÿ¯ãß6 öy, 3˜ya:“X ½˜­ß,®ç¹^µÞ5Óq ×èæÌ¬õ=µs¿aæšßÀÄñ¼ÏwÂKÃ_h?MWyMù‹èëBðóÞ舠é(cKôgp+œoËð¯/ö`ǼpýZ¡¿³ö@{i•û¹LÐ w»ÚØ: ¾VþÀtë ²÷6èïÌ 6ÍoÒŸíöàÏ’ypÆ—ØÙQ²àÀmöfÂ6C'ä„h¡ç : Æië8YP›ê¿"œ¥‘±íÒv°ÓˆîßzÃÆâ}ù×>àÈ eÿ¦ÍŸ%‹]‘ßß'>áçÇô°ùõáö6ìáÐ ŽæE›?K½»ÿµ‰ÙÄ“MKûeÚ %Ùg0üF›ˆù»dŸ-{ExnÔ#º¶…J¶-šïàAI¶­=¸¶…Hf6ò/6qÛx´ëû£ã«6CLf6òˆÒ6^eH•6COfÆó·©Aì7´ö‘:ó}Ù3Bu<߯pÜÉŽ½ìq6ø»dnCç ÑÚæ_šÛ?µ­¯CFþˆxmóƒ?F{2Ç=X{®[ä÷Ó§À…Lf–¹»žéÔ†°×;™¡†ñªÖ?Ë';(öaÐs¸žÏGͧ#ðïýJH•4^[šöàûŸ¯Ë©#âÛ3¾é:©éO“¥1ã5Å hówḚ́fꂃ½í?!^Ãþ»ü7t+´ï,ÝøÀþCv {Xç!!^çÇžâu¤½Î¥Û8¾× [øg}MØkÐùLˆ×ûÃó6ìCý!^Ë~èß’%&YûÙ³kówÉܦ¾ñ:Qg½ßáÏð~[ºc¼$“Nc¼Še“žùèñºšrÛ7ôHüú·„Àžóm†‘ÓèBfn/HWú³Öäï ÎçÄgB7ÙÃ~¾#¾%s‹Œ· °=þ"!^çÃ~¯#í“ù_*Lü¶ÿIHl:í%I'Ä·Ç~8Ç«ž°~&t!Á¢Þ¯´¸=®âu¥ýUéN6Šïâµüu ®+Ækn/¿áïàö¸>¯±ß˧ÊÄòyñº2>0ÞB[þ–Ì­4éL{0·!ûB¼.Ï-†À|½ùy®MñÍã#îUù +Õç~CA|3-ÿ€xÝž› %–çzÝóqù'8ÒðÜà˜™¯{>}æëÉâuœÏý÷5ëoª½*Ÿ¯¾ˆ×ã¹_@#_·cÔ>00òOÓãÑ-COæoÖÎx CD¾¾ûC¼|^þñz<ù&C}òA&òù<}}¯‘ï6?Oˆ×ȇ‡Ûâõq?€žáÉ·iØãÉ—â5ò»äëÕ§òuÏÿaØYãÉþL#³þªtT>Ÿ}ý¯Û“ŸC#ËLs ™¨=ßÇ9™Ÿ3‚¡#Ÿ7·Ð¸~ˆ×Ê×cwÍ|½)¿A¢QÚs_Jƒ÷cÜ¿FqÍ|>¸¿@¼®Ïýù›íoèH¤ªì+HgÙÃ~>¯|^ó³øÌ|}¸ý#^wÞg´ßˆ×6ž#ųÉhW\¾m=pìÔ>™¯Û±ä÷ QE¾Ž|%¹F5¢Ý¿³Ý·aÖN|Þü%ý+Käëæo»Ú óu3{Ήf9û«¬IØ1ãúB#ŸÞïÌ×Íìy^XÚˆ¯u ‹N=Y˜@Zœ]ÃÚ”ý#1F¾Þªî‹(; _ßý!^c¼.û„£ÉñèßôÐxô·p<Øïçyn–F}bîß6òŸázj²ô¤?C~ÅùÁUjžhÜßÖý…x{w ·Î+ ïo~èÈæs?ƒý¹¯ÃðPŸX÷m*ü/­âu;õ ?;5ê¸vrÓÔý­«ºã…‰}ÿ‡#ñÔ‰÷·SÏã>NGUŽõÁý;=÷QìÓŸáCáÏlZ/Äëøœ/hØÃò§X¨xøk8Žžz îoËß³QŸóÝ4ã">÷k8®Yžû2®÷c|(ê¹)^B£>aïË^àës¿…!ÀŸa[ø=pÌýÔ, áûFpÝÓSÊ5Èßå[p!?õ èÇOû1Ýz ¹Ò¿õ×Tòz4ýÙš?âu~üôðzƒú/õ 8î·×7 ßvæHÒ9îßíñç8ˆ¬O¸ÿæAíü^Ö ¡YŸðúëËþZU|›ºÁÑ”ó¼!^'¶û|†â[w{hSñm7Ü¿+×ùoîLìžõC¼>ê_ЬGyý$#^§Ã?t’Ç?˜®§?A¼ŽO½z̧ޒ{W|[ûûw9ì³Å7¦-¦GÐ~šõ¨uÞ¯ãS¯Ë–ˆ†yسévÔs2âu æ}zŽ'žfÄ룞™‘ˆžç ÷ïxj&F‡žŒo¸†,íU|æXág%W-û£˜é<Ê ü_|ôÿ—_Cÿë/ÿöö“Ÿ§+^ÿ|E¾ö?¤qO²  ü`vüñÓõ?ÿòéO?º>~õö³ì~½¼ô㣯Ä8‚poæ‰÷?|ñËõº}Â÷CQ¦.ÄñéÊȪÒÒ½>üÛ[ÆE<KíÇKï'bM{žØúyÖ–'–ÞOxüxfºôóÄËÜoÙO|ïÍ,Æ д—)„öãí¯oÚÑoî•Ü„ß÷Ò?«—4™½öÒ_çâüª±äóÉq-2v[wíögÚòhŸ¼BïvɧÝCÐj_éi×€»ýÿ[XUÕ­1YÅWÎñgÇßž¬™óíùÙo#që:y1„Ͻ0!ÓëïwÆMõ­zýuì–†Ogòé ù*÷ÓXYÿ3«üVý@³±‚¸x¦Ý…3-{fôÍl]¹›`f›ªœŠe¶©¸ ”Ù¦nM"™«F#‰ 9¦ÊÔ cšêŽ-Í ÷ ÜXnŠO’aöîm<⨪<³'¥˜ø1Å/qÍ}𥵕E+-Ìô#/M¶Å*ͧ[DVé\è•‘F–8Ç—&Å-Ä-Gu,"lù<ÌòÉÈJ‚ZެœÀ™å.É YÊMnbiÓà°„#.׿•øxáLÆqÌ9^›VšÌ¬ÉY…X刎¢„*GXä‘%êSNÎJœPœrø5Õ1åh¾Î¢”¶‚¬‚”$£4c¢4«q‚ÈU2)à"@9£×÷Å'gTºìxrL¯¦‹Nš‘½KŸh–T«´o1Ù49»/ŽÈä¬* 8˜gW$—œÅ±©°¤MÃ&•„TW„’@ýÚL%e!K"I›dî×&’—_$ 97¿d!q.< isžêŠ4RÌ`ÃH;š¤X¤ˆÁF‘ÓoÚN"çWÊhí¼ˆË‰CNO³CFу!¡Ë!mš'…ÄùbÀ)$NTÐë¤8RNI!qLD=E!qNDmD!qÈ´±¢1§,¢QðaSHŒ/ + ÉC**I ‰÷E¥E!¡çA!ñ¼öWó……Œ›2ŠB¢]Zó—Å‹Bâ('Q@RÈ(½)$Aº6…„®…ÄawÊI cr / ‰vQ-QH´—E%›ÆÓ)…ÄóN-I!1^Å#…Œa,*H Éöqm Iç#*H÷õ>q Ýϼ6…Ä|œ"’BÂi>¢ð@ò—¢ôHÒ¤1.*( Éï•&…Ä÷éĉBb<ÍWòФ/º¾ïT‘’þréñšâSH8AýÊC>Rö) ‰ùv=ÏòÚõ=¢ô©êÈš¯‡(ä‹îSã‰ò/b}òúÍùŠ’Bâyõ/ ?¬_ˆBÂóºæÂ£]>X%ª¸µ)$úwªIŸB{צ Uj'…œSîÀ!¤u—´e˜^q‰%Š×&˜±$äôçüñ”©:.€s™„K F>Ng§ÎçBBs.’HòøH‚G•“7wœ¾Ž‡gUNG_ÐÑŒlŠI’9v7.G޽¾Ç‘TÀpà8ü÷T·ÇcUëEWduØh‹å,¬q.´%Ô¸b§“FëJ…yF|‚$9#ªãKÚ|æðÕe„¿UÕ\”ѪMçÔqqȈÇãçðcd²&fGÆk×FŒh.bDXï×&ŒÓ]¡Æé¿Çp¾h­ò¿ðâôj´ÓÅ9|ua¨j%[D”pö8µŠ~+äl‘Q†[D˜[¤×âób‹ôâÒyy©­gã©›[d”“®ŠZÓÍLlã;+$[„– ‹-âù¶4£V÷c*¶¯ïì0(jEg[b‹ðZb›b‹ô2åÚl¥ˆ ö—µ†t±EzA±Àº¼”³É¦¨5Tks¶ˆdR¬TlÚY# ㉅‰-«‰]Š-F°tm¶ˆŒRß#¶ˆv­‡Ø"’H±.±Å¸Ù Þ—Š-ÂKÖƒ-¢ÝÙ#‹r˜_\Q+gb‹Hi}¾´;ÎGí<š_†/¶“çwÎ㪥9[Œvä Äãªå9[Df+ ¶ˆþæÒˆZÈ^5^ÓM´.É"'´ö[l7Õ“-âýү͙þl®X¯Øb,ÁÙ¹Øb\µPg‹HTeOb‹ÈEuu½ò\t³E&›b“d‹HFe¯b‹x^îQl‘ý‹’-²½O¶xôO¶ˆþ²Øƒ“Ùpm¶ˆñå·ÄÑ®ñÄ£ŽÙf‹HvÓb‰Yó»[Œvìu~Ä™k/–}¼ym¶ˆþ´~b‹HvËb‰ÈÂ몋-"9¦q¶¶ˆäÚÙ Ù"ôÉ£Äf‹QÈa³EO®7[DÿÎ"ɡŠÄ1_ÕŠÅ¡»æG¶Èùl‘ë+È›,®.ªÝ‹-žúÒ=sý˜‡8[Äþ×¥áï²ßœ-²]ì‘a×*û“¶û¨áÚlqÛ³Eì—X‡Ø".3qi¶ºØŠÒ/ìWZ¬þδ¾Gl1®ßþ8[äþ¶k³E>/H¨ËŒÖ_lë;Å.ÉM¶ø¢-3ÃåÆÙè”=øo-jñr$–ÇKû¡™n¾hÄ·V}?Å©ÅÉqùÑ~Š-úåi³E\–æÁ¡S»6[Äå&ŠEòê‹Ë‹÷O¶ˆË‡X©Ø".+z^l‘—“ym¶H­v²Åhnðd‹h×z‰-ƾìWl—g—¼äãýv°ÅØób—Lpêb‡d‹¼ü,–ˆøÖ‡Û§Ø".3Mìl—½/¶H¯Í£¹Id\^´¾b‹¸ü8;$[D»X›:û;Ø"Ÿ»$[Äób[b‹¸üˆý‰-âòÃ[œ³Å8ÖoÄñ¼Þ[ôËÙf‹˜¿ì]l‘óû#[Äóqiø3 Ãú^±E¿œo¶ô<ËY°7Ù«Ø"΃χlçAìYl‘—óƒ-ÂÞÒÁ¡å?Äyùž×f‹¼Ì‹5’-²˜!vH¶ˆñ´¾b‹˜¯ìUlß§õ[DÿÎÉqY—}ˆ-Â~æÁqyVÿb‹qD-ò|ˆ’-¢­·Ø"Úe_b‹ÐÌoœ-B;{$[Œ«ŽëlãË‹-FFçOlñÐCû½5Ù"ö_ö*¶ýž-†ÿ:Yü~\7ÿÅûƒsÅúŠâê{ªX_¡b}Ïë+R¬ï‰b}Šõ=O¬¯8±¾§‰õ&Ö÷,ñýüh’˜ø¾“ïÄóÿ‹+“•Eãd!ñ¡|«YOêiÕÿ5°Zýÿ!Ø­¸xØ«ÙåÑ^yðw»äÑ®ÉìögnßÓNø»B>9~¾?ÿmœÁ⯧ïðz™Pæïðúàe”¯—ðnÏ_ùd}Å“(î<ò¬|ûý/Ùendstream endobj 706 0 obj << /Filter /FlateDecode /Length 1007 >> stream xÚ½VKoÛF¾ëWð¸Ìõ>ÉeôЇÛäÒÑ¥Hr hZq!‘e9пïÌÎð¡G[ CÞÙÙy~;;C•¬•ü²P¼þ°\ÜÞY“h-KïM²|H´q2(“*—Ú”Éò>ù(Lª…ti¦áTüØÁn›Z-V@µí:ÍláĤ´Ø4¸õâ=Ò(û¼K?/ßÝÞ…¤”enrt£’ÌiUNþHƒÝ½uÕQm@{×1·‡MS=ãâRS ’=1:d|cå-nð û´™ÔŸÀ l6¼cÉEw2ͼòâÐû]Ô§ºhuÅÖZ¶´‹ø­Gó.<€E„³ŽPsÖ¤–YeDLYFiVèå@œî$O îF-ñýì·mô¹˜ýñž¿pˆ@Ç£¿mC¸”p„IGÞ€\»f£誧õvv¥&Yê’ŒÉmAî!ĸµøv^J Jn.Øô2X}j±f‹›«,B¡9˜kÆÞÓ£wîR—ÒúbYœùÒ^æùœdSÅLê@*’Ìi©‚!Áï¡´ Õ[Åð|R^Å7uŠ˜o8_Á‡xC4qÇe^_þWÄŠoh™9Zq C t¬„ñ K ??㙥'Ö õÄZn:23éëSØÌBâ(‘üÀ°|<†æóÿ‹{P¼—ü?àbNpçÀÏ˲JôØÿ1Ò—6©·‹¯ Yèœ&* Z̸}» ÉOÝâwø޲Áb63ÏÑcÜ*%ó‚ïéŽ{ÏzßsÓr¹ߥ™+´ø­x41€ˆÍ:2‹±»û¼AÃùqÇ'’Ô /4èoF¯éo¥ôS+ù§ŽãJMÇ)¥ž î]m‡NÝôœìåÖ 'T‚±'¯¤ ùñ»ˆˆT5AäLyŽ2£Ôš3A4ìì ”šÆíW)H.Ÿu=ªy„ÑÅjÌ8Ñ…5â׆4?LYHSºWÜ™\Š¿³Ìš õd¨\3¡J ã¤ÉLig¥[#þìV”¤³J¼m‰9È<øÈª«kT´¼ dMýLcXô ÕgöiŒo/Öyz„`ÖüZ†ŽÛI;Í&}ž¨+e(Ã`åU«áóÀ2ÝcŽ;¼Á¯¸k¢ƒÏŠ4/d'RÚM=+Þ:¯1Ø,¶ìø1¥EF“T?t NÇz³{Àí=õ‚˜×s5èaYΊ–£†I,…x!"7=©õü¨õØã€éð¸¹4)Èb õðæ_Ræ ÷~]Ë£Žÿwk¢ó\†Â%Yn¤ÓìIç§ãâ/XÄÊJendstream endobj 707 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 708 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-layoutSinglePlot.pdf) /PTEX.InfoDict 250 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 252 0 R >> /ExtGState << >> /Font << /F2 251 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 7266 >> stream xœµ\KÏm¹Qß_q†0ȉß.OJ$Ð-1@ŒBˆúF ð÷©µVÕÞûûHº;Hý¸ë–]öö£\åZ>õõËW}ýæõ»/ÿôúÝk•÷Y¯ÖÏû”Wó}æ«Îõnãõ_¿~ýËë·_~úûþ»Ÿ½~þÍ—ò.¥¼žÿýæçÿà»çë¿¿ü뿽Êëß¿Ô×/ýßß|©(ðúû/»¿÷v½^ª¾¾~ÙãÝíÕ{}×òúðœWo;à|O‡u¾íî÷h.-ïÑí]ºÃönGp /Ü߃ð¼Ût¸ð9„¶žwÔê{y»­ª°QT•.ˆïí=`ÏÊ^ôÊÆ»ªšCÔÛ¸ÞÓjýÝ ýSü{Û|ï€ø|×|6 éóËÛÐÐ) š7ÔÇ»PZñݽ/htØð×½Ïw¸¼ÝûŠNžñh×¢ð|4dÑÐ|¯CUüÀ³Þ“ÝÞÓOåIjïí þ®ð¼ûÈ$äçµ[Ká÷{§ç&®_O¬]KÇB^#ðªl»LâñnþÑÃûŸØ:âlÄ“£06&x¿ÛúˆÍÛ›KØÞÿ|µwïÄ\À«ÞÞŸUÑ-ǵ¢¡nïêí̓ÿ c4¦a=ûDObéwì ®ûŽ9lßï>O}>æåY¿K%.‰1Ë×¼ÊÇÃëOê÷eç…þ«¾ãµX>äõÝüû·/ðØðý=qÃ’èó¨ö5^Ž·7}UKNÅ}Vü5°/?L¿/, ìûó³… ‹óÑ… ö±Þ6cË8¶êøÀl7t¼¹ÑmÂgRñÒ»á|à ż`雟Jc^À=ì“¢>Í@­¿ÍS­ùù¨ýáØh¯Äþñ?ø@´ÝÃ;v{ßü³hþ«+ò‰m>l<,ªqaA~¸>¼aoè oð©þÄ™×|Ú´^û¡×Ü>…þ{ß|Ø‹ä†Ük`[¬?…ÇãªïñðmAؾ6x7ŽæÛ„~Bõ‰ò‰l¾,ÕǾPÚ¬±~}â0ØÏ%0ÇcÄy懧ÂæÓ¢ýy6 É&þoÇnïøÀÞcüio›/Ô28_œO`7(ß%o04×|ûBB{!ï8ÿ®ùo~~úÀ}ÀÞÐÕ~ÃF6µ·9^þÂ3ÍÏϹïõßÜÑ«XïÜ6°÷îTá {òªï†¥<öCóóÓë½Õ…լɾ·Ê¼¿×±Ÿ×ø6ßø ó¿´ ÍáüœÄ»p}Ðkîb<Ü,”ã3€õÚ72ä\oÍÏϾˆéߟÍõ·…;ì=ÖԿб›)®à}žú|¶'öýÙïõ ìößÓTß°¯ýÓü<-‹û“çSƒ/‰õ·býtº¸ë{`ø å?õY¾cá`þ5ž~~ÖyÛ à=ëÇ}È®õ×O`ŒGÚŸæç+ÆÃ×ËöýYëÇýÈÒ>b·÷Í]Ú׿çi“½ãy Œñ€oÌõ2èØ`= a÷eoiß}ãc}5é›8ÿ`¿—Ê/ $pWùŽ\ö†cŽgùÃóÏÝR­gÇ8ÿ|[ðüi~¾òü«0;À öþ <€ÝÞÃå×úqǃçßJ?´·¼­)ÜoôŸqåR´ÿ/¯vǯ¼Îéܶ#ÞÉýŠ{–µïý€›ÆwŸc<2^‡aÅxd¼wKØ_¦þ(¾»±â» »¡…½w}#ñÖ~¤C‹ñÈø†²žØÊœW<C {OWü—ñ( ç3ÞÅÆb¼;´ß€×¾÷ q³Ûž3þ { Án÷} ɧ½>ýCŒñðö4¾Cñ_Æ×¼!´;^Fà{Ÿñ1 ì½í0ì=ŽIÕ7ŽGÆ·4Å·–ñÝéó3øý>ñ8ÿò~˜ö¾dùÁx7ï3hhªìMbŒÇµ~¼ã¼/ !ü^ÚwLäÞ÷}F·gÿí}Ú7\ ÌG¼OC_ã·ß]÷\xŸ c>Ú[CçßNÌøï²ß}1¾C·µ¿ƒëþ«»ã8ŸëÏÏSžûÆ<ÿr¿m>¨¦õéñiÕ}“ö÷nyþi<}ãw­×füwßf|wïǽdïãþ¤ï­óoÜöþ²›ñß½_ŒñÝuߌ«Í¼o!îÏù‡#[ëSÖ§Ö1¾û€Ïs¿Ãð¯û¾†·îÇz6Æ×} )ï7Oöçè~3ÎSâÇ}& ;ï7s¿ÆLGäßqsÿ"Òýý¡ox©ÏËw„Fþ¿ÑÛÅþϾký_ýþ\ëÿþW¿ýòÓ¿m¯úúö?^ºÉ¿ÿ#Œ8Èçá°›Ûo¿¾þêÛÿüúë¿~}û›/ó-ÕgýG¥ŸAÑRÿƒ¹4¾%Î#c ³®ýkLÍk>ŒTšyÉ5Ãn*%åI †'8¹~u¾ãYš‘ØšöWw0;ò—ÀI˜ìŸÖ+œ¶B{׳<õ÷¤:’£ŒbaÈaf“šIýñ¢˜ú“Z}ÈÑÁúÑù{x#m¢ý|ºä—¾.ýö÷,Ò¯ñäÏî^½¿å?:ï6u€0ýƒÓn ûOJjùƒ|Yç}]¦Ë°9qêßé¬G6‹è–n&=R*tKáò»ÄòI¶ö%|ÈÕ™K~÷í{$Ãÿ¡Ù,y.¬]¿mÞçiðkûÕo¥X½ÿ€êJ °ú(Ÿæ\KW,ñÜhß% ƒûÝ5 `–jJgü‰<ÜŸ.õ£¬ ÈŸ~,rÕ¾N^+uQ1 n5á^‘ ¸éGÌDHd¹¶œ 6J#vtÍsèÞp²nK¸yÙ%²8¥x c7³~;¥…)Aº’—€^wÄõ>è¥m¾FOÍd+ªëYÀ=…Eèˆô ê&sLJ‡„´Ý!4÷ìÆ¦æ™ßKNH`# ¤HN©(Äzj9F0¨7©eòîA]Äž¬«D ^ýŒ€±éì[á±6åæ,àd"MÔf,ô‰›11CqÄÎO@lâ N¼p£—ºOÒ`I£Ý'X¢6BzA—ZËN’C†¿LÍ‘ÙÕœ‰#iœ£®½—‹ßvL™‘h‘„ÜÌÙÄhlJ[PÙO/în °Wƒ9à{Æ!™tp§ª5it"׌ÙGbì|€®yY,Q#‡íÀm×`œ#‰tp•-‚õaNp·äçò½ÁŠyÒ™ñkYXu5ƒ‡Ÿ†>¯€jWTîÃÜê5e‡~àNâºþV³.‰G J@IG èš15ªË…-*WpŽ9 =)Çš£–ŒcHp3ç¦-yHôƈIÊb§Æ¤à‚”©ÙÙ: ãµSö$Å»óî*Žã/Óä2w§zqŽŽ×¸—¹u^ˆõÄÐ_kpó or˜‘¼¦¼'¦|+`fûqA‚ õ—à—¦þ/å²Ánª\è.yrISÿå½Ä-.Cõ‡`Ê{pQQy³RSÉö§ôÇ[BàÐßUI·åÀçCÿwêwÔq|Ÿ¸“¸©Uýèçïœ,®é+ᯥýšªŸT¿%ß8 v·Èn%†¼ö¤fó©†&>Ê~‰ŠîóØÚGüQÞ$1ITqÉ£½&ý#–KeŽåZn¤Ž·ÇrC6mëþVú¹ËÑßÐ?Ôÿ ¿³~p‡ó]EP•TX|«ð^Ý‘èõzÙ"íÉ7tXâ{ɹ²|±2V¢]²®,ÞߎqyF|w@Í3 K³ÈîÂ%U, hY] ñâÛ׆¶ÕHòUŒÙWºCþŽï:Ƹ Ï|/±è'ï8w<Âåk ²È´êfºú@½}Ûù‚k¶®PškBiŽç#=fA#9y¸¯Ç #4k;OÍQDc€â½­”Ø4°“ lÇ·Ä„Ñߨå­ó9_'—$!XW¹­ô˜xç“=ñ´’ŸORÖÞ±÷'Ó…;’8€¨Ï'ùNÃ#ÉÜÛž9)dfÝKjVºçx£QyÙÓJª5¹˜6Þ;VΪ¡y'\ìUMxúÝIýhCF6€ ™Y>q5+x¬€bGéÁÑ5+ÞçóáJ”1_#H_#_Ó’Ôä ê•7~àõMs´’3(ÒœÅz^š£Ël­ ÆÉŠ.F‡—‘Y$JØŒcb‘•eKAàh÷\<àmÅ„.|v>:IÙ’Wµ‚’䡾ƒ’UãÑJVÍ=%9Q–| ¿Nyýr ¼y›”,fñ…Åɪ5œjý`¼,y}[œ¬Ë«Ûâd!«¯ðš²<ô·È÷-N¨I'0垟äSú-܆M" ³ô)?òúäuí%ù”oé_áõêW§ /ÆgÒoùý1¾¢Ôµó³=EãGòÊ+ÈÚdÿ@./ÓŠäéÕ™05žwèÓâxi;X‘þ^¼Õ¬?óå'æËÈBØòõ1ú{°f€Q?\ó¥ìbÖ<úÃt5nõ¢?¤&ïÀÐwê=0êÏ“ßKƲ0+ñR–KëÓ¦ôG–ˆ®Pÿú¾%ý×÷oÉ{¬_Û’§[i[íg”`[ú3J0SýøAàø~­OÓüôêMó²GbêψâÕB.?VT&Ô—ü.Br ÛïXQÁ+h ˜õsÿè—®¬x×}Sd©ð`,ôk>O¿êç2Êã €Gy–ÒL0`ÞêöÔO:æK&÷LÉwbºåSTsÈèBV-úKú “×Yþ(K¦ýx¶ä;Û«k¯ì¯X];£°#V×N{tìS}±ºv<½†<³¸ÀÐoñ£ˆÕeaï€QÿÆõ“¼¦œëuÈ03™|gõ"‰÷ÿ›×[ð[øiñÂî¹Ä®=çèÕùÈì}’¼sg|new}Á‡¼ýNWÈr¡Î-|Èeö/¹àCþìðÕÿ¿`n¿Ó~dr!53Dÿ{r/R.ƒ¿õ5305¼ÌħøÁ­ð!WàyÉ#½å‡ÞÊ%|È«nG®Ÿ%#Ü»„𳄜ª»„𳄾ë.qçŸóæt²ôà½É÷~uµÏÃïŸiŒêq;«úãÔ×A¨úöid¾/Ú…wðJð]ƒù?2~_þÁ'mþendstream endobj 709 0 obj << /Filter /FlateDecode /Length 852 >> stream xÚÅVKoÛ0 ¾çWøhµª‡_Ö†µ{`‡­Í°CÛƒë8i±ÄΜ¤?R¤c;IX1Ž(ê£ø‘¢EKoæIïãHòø~<:>3ÚSJØ8ÖÞxê)‰Lj/•‰PÚzã‰wéë@ù"B«þ×<0Ú¿ô›uš4vò”Ä‹;«ÙþKÒ|qŽˆõ*¸9>Ë<+l¢t)½ÐdÂÈ„œoÑ®!ã(•>î¶"1¯ê5ÌF‰õë%jSWžÅsQ£¨üD·w¾î<,óÊM€$)zèÂÔ™_o»: ÂXF>B…s^¡MQ®p9o˜ÏŸÐã> tŒÖ¥›£u\ÔÚq˜mÐ8ÇØÀ{Þ4‘,òE¦ÚúŸœæÿJâ`gˆõ/ÔdÛÈY¼-I¾mÃ]’ý2ŸñJ=í¡9C0âI#Á¢—mw’±é¥¶Jè4 ]p”FäÕ Æ¹_F £ukiŽbGO SªˆmÆ™‹ WÔ ä•a sŒ¿Bj‹%†VÒBùˆ$H…xÁ´ÓaFRà €¿ƒsÖÆó”Ä· †$IùW2–èš—Qu²3oë㱃¨à9"=Qw¢!loñ†y4ÌåÔ'4ŒAsÏxN;£j`@,u·µÔ)'eÉñ4û!7ï½ÈnØÛšŸšZÏL,ÆKf˜ˆ½d´&¦E?G=Þ£>ïQav(^ðÞ—Ã3¸þ»Mÿe>Ì‹ò¡‡|_3ú¿ç#zQ>^»>ÌN>¶=õt³ wV£¤oßÀ] wäÏ;ô–ô½Ëß(E—?6²‚aw/ôk^~ùG"RYkÄý–hÐ0A.÷Á¤¬hæšï„ºŠ3‘Úh·ÛÌ9†EEß#Øn°G=.ÛOŠ~”ê;­+@¹7ÀuºþÝú´n\;„#{%U䌺Mn¨õ;¹/˜¸ÏÙÆõÀ*pû@?N¤H¥m³Ûu£½cP±H\5: ”ôs#dHZÙÄ %®4•î¾¼„Såendstream endobj 710 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 711 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-layout2SinglePlot.pdf) /PTEX.InfoDict 256 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 258 0 R >> /ExtGState << >> /Font << /F2 257 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 7192 >> stream xœµ\KÏ%IqÝ÷¯¸K{Á%ß-ȶ@²e»GòÂò cÉh ³ðßwœGVÕ× ˜f°Ó}:*#_‘‘'o~ýò•_¿yýîÓ¿¼~÷é½Ç+·ù®õU[ïþ*m½W~ýϯ_ÿöúí§Ÿþþ_ÿág¯Ÿþ”Þ)¥×ó¿ŸþOñ¯³¿þ÷Ó¿ÿÇ+½þóS~ý2þÿ›O¼þñÓ¬ï9_5Í÷š¯/Ÿf{×õ*»¼û|}¸÷«¬ñΰ¿{À±ÞµÎw+¯‚€ëjÀõîMp´ø¸½{Üï-ŸQo\#`}7À•ß#ê ªVy—MU9 î­jïf¬ •eEõhäjï¬fdªÒ…FÖmÖ••Þ…ÒùÎ3`{§!Ý/»«ÍkîSÕŽBQQüÑ WT´§Tíün1%)¡Ÿ zVö~×)8¢{¼+Úmo“m^„ýV”mŒžÕ”߉e£PzÕ˜£Õwæ©ë=[H³F¶3ƒ„è~´5•€9š‡þG¡´‰3 ¦þ®’WBMÿ,ÊG7GÇјñ2^¨¯ÀÍŽGø‹"yå.öÑÆ6wãNG㎔XŸë`ŒÜŽðäxäæþÆx„ïïª? 9ê‹õYù}LLL\IÉö8ü}û‘þç…ØÉ´>bï Ç“Ãþ õÅæ†úÀ±>Sàâõ†›µå ‡¡'Éü}Žý¥ /ÞËx¡þ 3Þ»<6¦õÊa¯ãàp<4Ca.d˜…üß®ð÷6Gà0T˜…ÚñÀ°eŒñˆfN}‰ñŽmMûMìÞ±p˜uwàð÷¼á8J¬®‡‚=:Æ?WÙ0öùøžþ¹¤‚ýïš/àØÿPÛƒ¿´ÇülÄù#Þå®¿ÄÆÜ…·êŸ’§ÆxÂþÂìÔž£Ûeÿlì}ɇ¿/áæŠp†¿/á_'뎦Çz@G×ÃÞa¨ ýïZøKêþŽºÆ+˜ÿ-^2"ç°n؇ëÛ˜e>x~¯ú Æf \°p`¦©ïIûãú(8x,ÚG¦b.£ƒç~êØØxb¡\ö þý) þþZ?%66ø{³(‰X°¿áïc ÛæúÕüicÇ´s½Çþ÷ø¾bÿôáNüðìûÁÁAöG ãqùŸR9è¶úeÎm?Çþ¾,ë‹ý´ÈßÉž¯F¹æ? kÈþ6û²hOicÿ ¼¥-4Sóû)ü}tkH>¡èòߨz{~¿9ñÏ3ø ö?lƒÄ±¿bÿIç›û'üý <€áïwÖyŠS¹÷G(ÂxÄ|÷mŒñ81A ÇÕ1ß%ziÞÁ ðxDT%öWøûpCãàîH †\ÇylìüÎy}»ã °ÿ…Ûây¯„㌉Áy^í á®Ð¢ Æp5ÜÒœï­o`ßÃðú¸ƒC2ã;š™ðT¤){Ü<8>¾Wüwµo+¾«IçS\ß5ïÏ0<ŒG˜i>ãÇBùû­øf/¬ø.–‰ìw+¾›ÞŸ>#Þ™öÇÀˆwæ>ÆcewMŠï¦ý=0â»iŒŽÆ@>ôñ`X§ÏÀˆwîòŠï–ÏO¸òc<ÖÐy #íáùA:â?L£°â»åóâ»K_,4Œî0ª1ÆãÒŸÿ-ŸÏx!¾»¿W|7½"C¼sõ'0â8öÕ¯ø¯owQ|׺â ,LÄwp»Åx”;~­±Ÿ–ÊõØ‹1â³^Ø!¾;ë)ã;ÇgÀ¯ÃÐ1'ÞÆ‡ˆÿb}5¶·(¾»±â» Wô1þÆxà3Éÿ9þÇÂG|÷ĈïnܰÑ]ñ8ÃòŸªøïÄ£¨Øñîf|‡iÓxÌ{}!-ëö§ÀŒÿì¯Ñ1Äw羆#¼럎ª±¾¢òŒÿ_³ÿñÝ/sáî;>ÆÄÅÛ«Ã߇¿áýDýãqâÛÚ“âÝìñèŒï8cÿ«:vl ×ý0ü}iî_ìŸ=Ý÷µ3¾»ü 0ö¿Ë~à8ê}_¼ï?ä:ã»ë>„Žh=ÛÏÀüòop\ýïב5güã»ë~x<âýû)üýU_`ø{øs•ïò÷ößu0¾ƒÙñþûý¹ÿÂBíOûC ýÇ0'ãYëm2¾Ã°k}ëbÓ¬ñ™EûßYo±¿VÙƒìsVÇ¿Éøî^“ñÝuGÃýïø‡Àð÷—˜Œÿîõ²ß]÷-Àcß÷-pœõ9ÿ±ÿ]ö¹Šö¿uô1¾û€÷s½/Þ>_÷up¤y>ìy1þ»îsêb|7¦õµ¶î7½Ÿ¯Ç}fÅA¯>ÖÛfü÷ÀŒï˜¶Ígì§ð÷¸¶þÌK}^¾çhc¨nµèvaùNÿgßùZÿW¿ÿ#×ú¿ÿÕo?ýôï#Jy}÷_/ÝäßÿF„¸=qx¿ûòú›ïþû˯ÿöõÝo>ýÝwTÊ? ýä¡«(ù/–ÿü³_œâÑ…—uÈ™»¼³_^U×Æß¿>ÿÁ¦{çƒKðþâàë )íþâÂ÷“ײ÷__xÿ¸[zðýҶ?úr}ñ£'sqÏÅÕoL)æ"ÂÇñ“”ãlFÿ¸ÜœÄNõZæ7iáy*¥e~l‹RVqcI|q«.DŒÇWòÎPÔð!ÇN0n¹à-÷tägGºåªð’ßõÿëw^—I¶þ½¾aí¨4BÏðÁ,½¿¹4"´ØøQ:§ôíÅqÛ\ü«™9¦ú©E”¸ïewpÝC‡äGx}ýù‘Ÿ ÷‹[¿ÆSÑ`,nOöC¾ùQ¾,Ìèî G–¢gÌy~!vBÑŒˆìèé ±ó\2x¿Ðм~lÊ…åxç(t⢣¡\ÓýGô2ßvb³Î@Ý2éd$6X¶ª{ „É!ãÊ” i™h”u.ÍôdMñå0R}D+Y'Ï¿û—BgOš?]­·­H/*êÃA!ëYYšÅK¥^ƒâ.3dEshJÆd5ç¨ AV¬…ó€ 'jiÔ鼯âµk÷©-=± uÏm Èšn sÉQϯ‹çºÙj&ò£¾íÔ8dE‘+nd)£õ,Æ/”DŸÔÙ´:Ö´Nž8q ÚhYq}³Ò²ÝNÞ ®í>ðähPÆy×}ÚY–…6e´]\p„l:ÍžYÎÙU$î)cí$Fjçô—йtJÝÜÔá2§d¾Qˆ= d#imÎÃÈn  ¸ qŽ_åhgÊé¤sûî®}‡G]ñŒ¸yäF¹,{NßšÍ=!fMl^&öåÌ?¯F£¼Ùˆ2SFÛ „rY·›I_¤âšdE6±y³<Šû°¡s”Ã`ö@wŠ‚Vç¶tÉ=|5Ø(‡i ÅJDã$J©ò‚©œj«áf{Í:¨nðEJfåÀ¥£š€»­6õÒæ„SÀM©òSºгbÙ¯‹¾PÙÔ4,½ êU.1Ó£b¨)sŽÌÌúã³.ôeðT-s?| áÙ8I¬Äh3ö+åèqù?/ʤÝêL*6¾lØXVsPe•Dº§|€’*p³UåâZÌ—"\A”Îüf†X UCH—ó¦™yD·Ýp—ÇÇÍš•ÄÌ$9\ÆÁ˜Çj†f¬øÃàÍp#Ã0Êö“?ÎƒÒ“Ž i³Õe:Špk­Bó¢ì<Ý_®w$CH«¶»¬¨W<ˆ¼±FúIKf¦Uút–µ$JÒê¿8#½y`†ÆN*S-±ÕhIFtØ÷ØÁÂø×6žNľ(L[âãn¨²âBà’b "ÙdaN¦§ÃLi®×äEÆ*¢ÍÅ4å‹ÎNi:ìÔœ½èp9>8’Ëe‡Ç7‚ƒ®yBêûL@höuà¦4i`™æìÃ+—‰’ÒTÊö,È˶f1 w?ž7Nœ#å¡kr¹YÆD÷‹å’q€è‡TUy[ÍÐZ¨¼¬‰ r ÃÃkÊ*3 }»û•™÷‘_†‰Ža6é6‰Iñöo8yhé¡y/€Ò<$e&qâLí–ÊåV&0Æ¡=TÒ¤°/é`«.ˆ²ùpv¸åy!v×HEwº‘eÍ>IÕæMéqn-m†ÒlîM²f™hKÖ¬í©eK5es„ë¶lÍÛƒsE)ê`â£,È‹Ù0”Lç8É!j€ræ¹´±m±:òõ Q*ŸKÒé¡Óʇ½×º5k#hÝš÷ÅM i>T&æA`醒֋¨Òj#Œã04·ÓHÒ"pyÈYiñ”}³ññj†ÐÜM)ÂYzŠAÔxÕ= 5áILÒïÉwÊ,›ý š}Ò„æåqÆ-蔿¥'¥ëP¥BŠ3» Y› &%ÃЬëEÁA©6Í^-•öz47Ck¾8Võ¡™$Ym¾'£ RœI¸¢t¾Õ T«»3‚AÍ,{6x JÝ}r=°tCi–ƒÂÆDÍ2Á»QÙEi÷ü„tØ]‡·É”ŠD¥KóÕÏh㵚?'i³åŒt¤Åp±¬úNš‡»0òÑ,UåÔ» %Õñc·YÔ88.Je„£zœû!’…4b;ÍÂà1¼ ¡9y#ÌÚÏ}Hke§9Bƒ›ø<® `xÌ*Ë«ïå#8`ø–«a”½lc0.YÅ[Ì`š lãCV Íëp½ÀU+/1”QvØ• XNÔdù¢5¯nSóÙb†Ÿ¯‹5e t’pÃüQJ7¾–a2fô0”f­Ðð ’^ðƒ´Bóvò04VÃAi‘æÆz·Í¾¨Ê¹ÁÛP*–ÇØ¦aBsµ3Ÿœ£}\Ðäíc9“s´G š9¿¸ó é4Á1`w·óYô}Ì“<Ä=‰LföÙ€&ÉoonK5eâ¼ï©L(HÐìD!I!už7Éwàõç<-× éÁû~‹Áû“\±Ä“JÇk…£°\Ž ŽCúÍó«ÒŸ½õˆ×À(ŽA òЬ&ù ŽV?ò|x…ꞌ{õ«ùG¼Ü=u‡·˜û°šaçQ:+D&{,Ãbw7 Ýë,ØÅ”~XŽ{Î)[¾jËJ­³/^ísÊ]ä€dX ãø·OH»“¥Úp7I;{±oŽ%:ž Cóòc‰Œ{‹ÄFnCÕ«³Ùf>lŸM,CÒ!asûØÎy¢ìÙ%7s{ø¸…EÑaüù"¥Yc¾$¥íHQölåñIµBq‡¡z«!4O{°FæH»Æ&ç†ó£tBÊ îÆàŠþñ!/¦ôSÙ·gÅþdVkЇ1©õϽ¤Ö"EA·Ü_Ȱ±Af÷úü•X¨ˆ•‡lx,õ.-øƒ—8n¹àC.Ü%|Èå·/¹àCþlîÕú[þ£sX[Af6÷/Na‘›?*ÉérO•ì“z⛕üL Yį̀—´óöH…nédàw¤B·tMŸ¤B·Ô 9âG»~xRiaÞÿÒ¬‚=—.ß^ÙTé–¾pÙèÎÇÊ¿?·l«†’^š“©Ü‹T¬k46þÄ÷CdU½jƦaw?óD›…!«U©«a¨²Z ›oûyr³2Tú˜É·kÊ63½ÛÚõ¾¤û tX•Øý»Yš§áfÞHÜÜÍ$X÷¹ŒÔYÎB;LYI5ì žpre„ )ºƒ!¿9)wbÿ¾6™°0Åá¡ãËqâx/Z_cŸÑX,»Ÿ—ÿ>“éÕ›™ÞéèlÜÐ|ŸBóÖàBó2u±‡¤ÛR?4T½âE%òJÇÖÕ, ÊÚÁê-,»·¡z4„æÜLÚt©j,ëT"àfYñÁ‰µÃô~À¶®DÙÁ,ëVõ£Y\`’–‡ p?Û<­YÄ@0@)o-ÍSVõ.×[—áä ŠÔ—4Gít[ó†É"1 cÛ*LËðö‚̳‰ ½¤ÑÜ%¸™–Q@š)ài±æµ ¥b¶fRò§#8¿<†D^s¹ )sË›•H—cYMY&;}úÙ5 ÊÖÓ fºžRG0dîMÜ ^|ihveçÑ<-•Åf¾Ò˜~k(Í¢rŠJ=ëavórâ ò?l³?&pfåû[ŽT£áîo—•1”t¤ÛÍbFw!9äšÐÂÿ Ñ,mšà5†·AJºyš³WhW¡ùZ°¥º¬ì¹´#=PõÊàÝ¥õÐÀCóñ*d³ÍXä(5$egtSÚ 9;×,Ã1š;HÖÎÈžÐBÚÎHŠn«ÞuçIeÚM>§¹Ó}£F·’rê9.ØÊ‹!¤ýhæ¡¥;ù ‚rÉ×®A¾ûxÀ|¤Õ°1Y$Nmådàfb77UOY»ïqý’ääÙÀ7,L4‰Þ«çÖ=ö{5aE–S«Y)·]Ôy•Ú¬ÙäõX÷Ã(@inÃÐÔ©æ­Ìai;Í £çð>‡Sæ»oyÁ/éÚ%[ÿ'Sgé|¼Ÿõ’ØÓ}£¸ïãí¨^ ]#·§ m8Y¯‰îd÷ôÃómÙõî7Ëjí·bͲÉ&†Ïy£ÒDñ9Vת¥b€7ÍQ÷ÒhÕšÅoo¤—Z yàâȈ­ßMhI‡Ü/–ŒÞº´nšÌ>‹cb(²ÏyøÑ†¥Z)mZª]£‰ï³Î+~¦rUœ+¤Tïr½2•¶Ì’=7‘~šc;¬-º¶M%½½'s—ô±¬±ûZpó 'óî¢þ˜fŧ*+Xé<<´©5gCiÖÒèÕ³ G5½šUTo;š§aãÁUž¡7kîGª²í¼ge§x-€ Påd:ù&çt &P÷[„.*ÐYV:¢÷óÒD/ a9ÙpS*kWZ»·S/ù@¾Ìà«Õë‘Ü–Š#ßI º–¡ß9NWùÞÔÔï²ë•mŒlÍç‘­yžÇj³©ß 8‘à&/ŠÑ1^b€_sÔ8œ uADõó̳ê0<üŠp°¬V÷hfù F·fFwÙ¢zYKÆ0[Kçº1LÉÒF0È êËiL“²Òõø£ÚpÞ~€â{몳ñµ‡ø&ë ìrY0”©ÇTÆáiYMq‚Î^6Å òÍ4 ¸9z4É ºvöIN'Óp—+ÉÌ÷&û¾&E?0»²¬x]’GµINЬ§"r‚p(ª†Ð<½pfsY­ÁINÐ ûG)=ä4‰p𨑜¼˜ý¼Q!'è ?HÉ Â¥Ç4l:"6Ú—û»ÎëI5Ý“|“ÙO«È7QÛ›¤çe ¤çhºÈ šç•~€c:±Íã¼bɧì6„t*”ÆH—ã…ENÐJGsh+Ÿ8ä-ÿÞBÚ¼‰,r‚ÖõÚ†œ u5’œ µí 9Aû˜Ê"'h›~(©fpÑfN>„ïvÆkŸˆ`£Y="'h­óhgZš,ëј֬èi‘´¦×þZî¯,vqŽ–i\€Ðì_/,›ÏÇ›Rí¡Høt”ÕÆ·y¼NºÉ7YÇÌ6ù&«{+ß䛜ŸÀ3"H§=úõ¨§𛣉]­Yºë)+HNÞ¨zûÐìçЀ›Y)-ØÍ£Ô2©0¤x›()íw/Ó°1w$/ª—Àûò79A]Ñ´tCIµïo:Ld´–aSrÈ]Z ósï3:Ì_©G`¼jH¦Q´DZ§Ý¸¥'Î_Éó%OÆÔï¾§V‚êÿ7YÅ+:[™­úÅ_/[… Å~'|0h¹?ÒU_É ï„.4<9år<ÌÍ·\ð!ïdÆ^rÁ‡\Nû’ >äÏ_íÿ+&¬ðË ­üÈŒ"_ä¹ÿDÆÊ¹ŒÆèÿËIm07䙸êÜòVÇ\!â%wÄxËõC—\ð!Ÿ¤×\rÁ‡\o.¹àC¾ùC—\ð!w®=ü!Ï{:ùÏúí²\zð·^”> stream xÚÅVKÓ@ ¾÷Wä˜H›i<™LÄr@ì¢å[ÄaÙCßEÚ&%mÕ…_=vš¤PA€ªtœñgý3žÈ›{‘÷¶ÉøzÐëßf^®r«­7˜y Ê"íY›ªLÇÞ`â=øwEÆIê'ø“/ø·Á‡ÆR4;z™ˆb±xá&¼@qJ ù"Щƒ ªœñè, ůO( úþÊ­ó뇲è(µ­ñ.¬ÏÄS+ú+x!g3£ÉrÉЊ'åNV.篂ÇÁ;$(Pyb™N§_VAhrðg¾¤íKŠ—‚\<³qÎŽ•ૠ̵ö”ï”k¢ó;%¿æ‰aÅL<}FyE 8a§ŽaÄ9y³hLœù|»¤¤!¾1©þm·¶»N1áw²­ûlÌÚEe Ú¶h9ár…¬Ö0ŽŽÝÏÅõæŒû\ejCW1J|‘<#2‹q·#À6ÆÖޏ¢ù¢á ÙœXT¬um¤ÄmÚB„kErh@eF>’WA˜èØ'6f,¾D1dñôÚT°IDu!jšº>x¯$Ãç>nDÀçŠ×h‰ºcƶ”#‰£’Xv²(ä|>âsÓÀ‹P}äôüö²E+dí¾ðgÍ)ˆ37´?½¤ÃíJh©Ž™«qÍCkµ‘„¾‘§£: ‰?‘ Z)Õè• ã.¿êâПZ¡Ht$Þ‹ï‡îV>þ{>â‹ø€Î>îãþ/öxÑÿó[¼üíz‰xÙ÷÷›AÒȃ}g‡Üª wa¼ì}í©,É)j+™èß-!òÞ”½÷ø«uaí2lù<{£€Ô¨<Î9ËÛú¨ØJ£Ó™õ!zí rÿi¹ÿ "i_ GÍ|KÇÒø§§?èLi“]züiÓ|ŠfYwï p†äj]ò,µÊ)Þ;Œ»qìÁ!ÝœŸbÂBçr„ÍÚõDdÕj…tt¿›SíP.T®Åš§œošKÍZuJãÜèÅÍL¦Z%FʲúúmFÃendstream endobj 713 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 714 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-scatterPlot.pdf) /PTEX.InfoDict 263 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 266 0 R >> /ExtGState << >> /Font << /F1 264 0 R /F2 265 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 3153 >> stream xœÕ\ËŽ·Ý߯èe²0Ūâsk#1 Àä ‹ +Å^’I‹8Ÿ:EökÁQ2ç²ðØížš&‹õ8õ¢/9Þ.¯ŽG)—£[*å°¢©ë¡s¦ªÇÇŸ¿ï//>ýôý·Çw—œrÎÇíχï~ôÿÛëñË_ÿväãï9^ú?o.‚_8~¸|ûxyñgñÏ=þ‚žÊðßÌë?´÷¤ù’f9ßxûÇãñ¿}üxùÓ㤮-‰ÃRŸuéÉÊ1-©ÔªØøÔÔ˜o›SË1cuK#¨ë ¨%þ5k™ÙwM’ÙRaö­3õqHn©6fã5åêä颸æg òÉ|ªâG>R5FÜ&'¹$NbÄ×.–³ö’Óô¯KM“úº/Þï¢S+óõ’Š/^3·÷–“š}$c8_kª%¾ÎYƒçQ·¦©v'/i0‹on!ÁyI"¯PTÑÑ%È%ß»«-wîæä”s¯$þÚ$UÆØ8ëFáï^ɰw7¶Œƒè-5ȼ?12?4•äÂì}9VÑé!dÞýš¿v'G¹˜æ.Ù9/ F‡:÷›Ì¹æ^`#Cæ™Å T½êàêRÇ&!ïÁ:ukÃÜ”¤Ø»àüþ÷ä#{ïÄÁ™ŸX³ÚLØ:sh¢0~îçÍ7ÝýàÌÝÁù{Éݵ6»Ø¦äÙ­MáP9.îeŠ##†u¢i®¯÷;XçäŒÔ]÷žS¡8_CæÝW1ÖÆ˜©+lå@¥Á̸ÊÔsOɼ¸ÔpuÄâ]ÑýÜÝÜ3ÐÈüÄJ=’RJa;©B™Ê“u.iîŠ9ã"ÍC\÷P™BxË‚¨U<â¦)[a.T0áÀ( ¡Í ¹» +Z¥ÜDN 2ßÐÐÈÃ1a ñöï¾øÁpÞYç!¾NE³¤¾ϸ õÀ»j·ûÈ3cërF²HN,÷°6ˆˆ;àë5eмâÀ¥*š°<ä!´•ñ°Ù…ˆÇ$¶ñøÏ]šC#fñîaa¨»PxÞ<öõM‹‡4ƒ2•%ôݯ2^fŸ{¯çuVhªt2Ñ7J$< j žŸ^±(³øm¬œó <@ʪ­½3*ƒÄ‹Ç@âUaÜD“4G3àDë;ß"CM$FØ:7•a¢ £8ï2lÓ' $.£Q†‹Gü>ø½y¡¬–ˆ}AN9)¤L\hÝÑ*³x›H•‰ƒ jñ;Ñ:&h5¯O&ùàq?"©AV4 <ßîùºq ›5")'gÂqTÙuIa¬dÇÞ;/î&tI]!ö.ÝC(Góp/äJ ­ôÈÊá0¬sï/3;|ñu‹·“3*ÿ€”È ¡…®´¥°07$™ý¯(³xwRVCßKûµÉT ^†)¬ p[W©Š˜¸ƒF¦tFaŒ 7­:°VFaKhª®8üùäê&ÖmÝœµqCí*,&Ã:Qð ä“Z¼¢¤Î1Øæ^réˆ}ãà˜s÷8.÷0÷L$Õß¼„–aD’R}Â+iØ´J¦Ò>Ø»Kúñ3ÁÈÞ»z0É\\#Ö^ ‘w ÄǬ î#b@ âÐÝ/ê ;ÇœùXIÒfT]amX*+0H–š:q³€âV©d×Ii¸Ø&IN –ÜKÞÝDºiRî)²ÚÈ1u¬]îäŒqË=Al˜ê3®·¨ 02{zö¦TAç^òóÜRä]VA‡Z¼F²K¹ö*˜ ÀQã"¸Ékã ¸Û*¡ïTz9bn¹øAЮ}S2¿îÖm0l™cË ¢×&Ùu*¬5ª*qZÚ"¢“9”“λ—™¶J¨ çs‰.#´ç1_Ï ^*CB‡3U–¥e„Öu‰ý–9S™|#Bh* ñ½#íàèˆI­Ï‚ÐKšP™6ñàIÊÖ¨ ê•sBޯ䳔 JÃÞ2EÈ褬ñu*i±‚˜¨ÛSþ9G[ #³P•UúfR¤^3þÊ$ÁE]UÄBuñž‹w±aŠÏa"[ b¦#òÌ:ÀUQù‰Ê9Ò}¤—#ê9LOâ5a#\0Ñ"fŽÜ6sîÚÌÌùç{ÉG8Xâ:up=âÏε0þGrºRµkT^£ŠXÉ k‰òo'Ã8§ƒÐŽ‚†‚|¬¼~æR&«t*C¹ r'§š2M…{ñÈóQ˜t6²È÷0µ,GF‰LEEéEüª ³Æ-v]†(À9|êUYe@3 ‹äŒü.×p±ÛöÁyÖ¼ãÜl±÷Hj£ŒËhÜžlR@†Ü-­K+jÐL0±ûî1(Ô [·{ÏuuuR_o3È…Ý# `ã"µ´w!ÉÉ£œ¯\ßýY€ÐR#m=cÓqpTç{.På¢@uK s!!ªóÝÄ`°ŽZ¬ÓŠrjñ¶*àFµùDG¤ZáºþÑ—çúnœÆ¡;¬×0÷ 7ÌçHô]0ͤ††{×8T]`·íká&œv´¥nwk1JlL¢ª±çãòhœ–æÜ5ª"ŠÆyªÚ#š9pMÕž’™-ÛíÛJf¸Í=³–°×lC%Tͤ„“2‡T0mp󔳄¡F7(Eý|X<ã"±ø¹8Ï ê=圧¼L˜™à<Õ­ë`5W·Æò´+‡*{xfm“CÔø,¾.\ïù¹xm©s€ÅtÊ@ã7ÍiÈË/|F}}ÍçhkTžÕʈž_|aô£M£…Ôt«jÌR­ë}5\¸è3i^CŠ´ÀbÖz´ `ì‚jßvdUft23iká1Ëäë¬G ìî£æY׸ٲ¶ºEÐxpÏÞ•*Œ˜¸,`͘Ê+y¡¦x t2Oáº9êZæÜåÀ»pƒqnçÝÄ¢>Y‡¹:Šu‚ª<,…ë6ç+—)ÅâN+w_¹xÿ:AÛšÓ@î‰éIŠQ˜Î£&ÛVÊ #¥Ôl U_zËGRˆ„¹ëU"Չ󣯝W’Ùheâ¸u; κ‘h%Ø‘ý¡¤Vü{MUFÎäÜn„p6 ëö/bQjzáÆâ©¯d\Ì*'ó6€£5ª­r¢â–*{0"i(0VWòÊU{Üâ䌵Y×êX)\vNÀ ä ˜æõ}WDSБx±J¢‹…m¬’^fMí[á.sÂE*ñuNaî¬cæêN™Çâ¡]3,ž)¨íÉu«•ô°ËÖ¡¯•**ÅUV'WDÞ¬óÅSw׸»&¹O>Gmì¥>¢ˆ>#ëÇ_dµg¬ÍÆu0:ÔÅ6 •ŠÛEÉ(2±ÉÝaRáæsáî%÷@‡L†|b°˜$vxp"“ ÿ·­s\Ç…¢$ÉÈü¾äcC:{0”Zà‚¶`=Œ@hT7”Hà3êvÜP²â1 ×mÿŽ;©ËÛª4î’bL;¸òýIž¹dãj°Šh‚â|ܾ™§b™ ‰•›ÞÞwÀœ98H«Èª£ó¥Lœ;w±M\ÖƒK5 í@ w~Sø×%ÏI•IÖ £ªEÁß;÷WLJûî=ǵnÃ×µêïk[o‡ÏßïÇUÛÄ{ôÚ¼¾ß7ïѪUŸÞ¯Ç§÷¿ùàõûOïÁŸØßëO¿³¿O¯ß;ût³/ÚvóõÇz·ÒOƒ98xåý‰cè^n‰ç3ˆ×uBOÄ’óOm58qK-'õ¾ ?Ðö»}1>ê Á³Ï^Gai==½Åx€>½ÞOïU£Aì|¿oÞϰ¦×÷ëñéý^Îùþfu·[¿Ùï77l@‡UÃöŽ&þ ã¾Hé‹Mˆ<Ÿ-©ÛI‰䣟!°ØóÉ í© )ù³c_ªr)9~u«êùhkÞãíy ¿}<ù! Çݺ aÒá >~}ÆN%V†Î]2þçIüêò/ endstream endobj 715 0 obj << /Filter /FlateDecode /Length 754 >> stream xÚ…UMoÛ0 ½çW=É@­Z’%Û¶C±uèNš[׃‘&m°Äîâd]ÿýø%'iS …+‰|â#)’)Ôƒ*Ô×I!ëåtrqå²Ö4!85](ëJSNUE4Ö5jz¯nµË¬61Ë-hõåN²èu»Ý²…[øæYî« ofI°oPTêï+8õ(²»é·‹«Z5¦‰."a¡r__D¦ºÊêR÷x1:ýˆö1×ox_»b5ÒÏÛ¡ïÐò9ÊTˆû•¹š\ܲÕ­<Šlû^œmå˜!ç‚?ðÎÖÑÔu/É»'ÀQ0â“‘õD\>šPútQ¼,»Ž2OÜ;Õ¢í¡çá·ý“‰£# Gb•;çM ¯•ÓKJ*gLùÚ¢tÛñ:P·éá6,¥àà™àPê^î׬Ùf®ÒϘQôÍF½eÇu"Ôn[½¤´Ó-ðw-Â¥¹8ˆù@éËK_ë‘u³=˜¢ùÀ¢qt—ÜlYu–YÇ„h‡AŸQf IIà”¤®‘Åû7.Ðé§±\ÏYðŒ‘Ég¯¨ H×1–t=¯ «;ñéàå s„(l—{c *s¼N€Ü¡v %ßÐ.F ·:n«Òš*ÿ”åÁyzâV<úY„SßBDXÖàGi4XJ¯ — >à9ì1„[|lœ'·œ_D£Á»ýñ”T¢§Ø—éĦPvœ^.Da°ÍÖ“ßSÙÈ€ýŽé–.®×ÖªÏýäü%]žLæ6in6ûÈëKà(Ó(ã×{Ø¥n÷…¶ö}éôõâĸ ±M•†eíÍ` ƹ„ø›ò‘{×@{ߟ°é­©|ù›6A^ŽnÄsêy Ú>ÈøO“DPÇV¼î°ó= ‹{Þ1É8ë@7ÖΖuÔB4Ž Ÿ—]ñ´…5¾rÇy²i¨ÛZ™o‡áÑ0GÅöÞªl„_Šªrl»m^—ê?öý¶ endstream endobj 716 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 717 0 obj << /Filter /FlateDecode /Length 19 >> stream xÚ3PHW0Ppç2ÀAc(áendstream endobj 718 0 obj << /Filter /FlateDecode /Length 19 >> stream xÚ3PHW0Ppç2ÀAc(áendstream endobj 719 0 obj << /Filter /FlateDecode /Length 1618 >> stream xÚÅXI³ÛD¾çW¨r’ <ÑlZ(Š*RE((޾=?y!¶äX~yÏÿžÞF‹¥À˶GšžÞûë§Ñ.J£Ÿß¤òû~ýæÝk"í”u™‰ÖÛH§ŠÔDyš)mÊhýýÛd¥a#^N‰ŽëdesÿË—|uøìâß`Y%ÖÄ·Ä긅§§kòçú×wЍTef2äŸF+§Un-s^ï™!H·x¤¯Í¾sÛ0oG2£R­18Ù1ay âŒW®Èñ¦%ý;–÷ŒRPÔŸñ8,/H µç„ß².Ý@ÖâÒÆÌ v Ÿ"6õ@|†{Õ‹‹ Gò™ÉÁgðÕ>‰¼ïÌ^¹reA$Té36è-£’¤µÆÏ >oçÞ@Ïg6xãÛ)à.çrßXéÍ2W«•5#®+“•q…|dbˆÖ("N¥i¨¿܈"W¹ëã{­!—ģ•Þ,ò-JNý0×R§Êdy ø#õ)ðlÚ+ÇxËâc¼‹Ñ ¡íŠº«øÉšì]v»Æ ÁP"‘ZÐR;« gþ{óWÖzÕ§gºÍ¥¬;>‚!ÖÆa v”EðìâêÖø¹ iŸQ™*¸ ¶ƒËª+FÛeorûsbŠñ–—ä¿3ÃÞ Ý¾BßV›«dô…‰;Iì Âjëx£Ýò/r¤ô'†ÄêᎵ6Ï{k­2}vTË`²ª‰ϘïqÛî°ã¿r6‹?$…Ãè­¬Ö½ÃCu i¨êIEÏWt9±åíy„… µ÷\´8NÞŽkt ±‰«z¼Æ‡F²[B*BˆãˆlW#Y}é#OÙ‡8>ö‡ee½Ç:±>ã€%yo²®=^ôþ•—Ø!Äfiü¼‚ëªc‘˜±@™1ª•ù¦ê™N³x0°üü®ó—Scئ½vÉ” xr-íjŒº5Ü'0Ö¨>fõ£  n‹BOšáLª²3–Ø÷‚ûúKØœ›e°÷„Jº\ìêøaÜ‹ @LI—õf»bâr8ðˆ’·Ó##¾íÆ}è@¥Ê§·"šp*¸PA”~](QãœÊró/5 0ïøÄ,òøa*é´"çc¢Ó 2 "*\±ØÂƒž¯ŸP ­|QŒ'”yžGÊ©Òö]4x„S2ËpÑò†™³€ÞUô«ø‡BðéId6›`€eP£*ÌÕ~à˜[ ó Öý €&½àï±W»þ$UTù·àh£r_Üõž3áõ_ Î¥UÚO&=ôüztÅù˜ðHõ^.RëI¥Î¬Ê5 `ß–P‹ \3 k^Ÿ+™2pžØÕ šåÜŒFÅÉç»EÌM³â¾U€ xè`D Ö†ÊÄ©KÆm±#‚¢€V·ý™Çƒ_¡v¸›„Šï»‰µ}õ c%<œ¹³tár=™]q(oD?kï%mÃèv"„°r?æ^…Â]¸VýS¥N¯›)ôxÿ?\7áRl—¯,½«öôKÕîËøXO¯Qrà0P\[~5©ÛTƆ˔¦£ÿ ‚;7Èe{c’Oë}øÛ¢«Q³­0Ù‰IŸ¿ö&· <´·êJÍMãŒÿ Œ[°-¦]N+ªü<É)ŒáqÂT§c‰®Ï?d×°>#AÚn9Þ ˆ‚úÓǾãÜ5t~ 7Ôö¢F* #8+êP÷ÿÄE:ËT‘;Ä@£ŠRþx3fBõÓúÍßFÒ¥£endstream endobj 720 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-prettyPlot.pdf) /PTEX.InfoDict 276 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 278 0 R >> /ExtGState << >> /Font << /F2 277 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 9944 >> stream xœµMÏ$ËQ…÷ó+zy½ ©ÊªÊ%Fa Kæ^‰b˜…elKð÷ÉøÈÈsBïø+ɾ3ÏœÓÕÕÝYQQ‘Yçëç¯óõë×ï¿üòõû×ñ>ŽW9«üq_è¿zýóëwjzÆû¸_¥÷}¿®»¼[yõëý”eúë?þÓßÿôõ·ß‘Í/üï÷û‹ù¯íyýï—ù××ñú/çëçóÿ¿þrê{ÿã—v¾Û57{½¯ëõÛ/­¼¯ù.WŸãõÁ!8÷éœo+8_[Ÿ÷õL,ﻎ:ñr¬ïgbéïÖÛû¬úÚzξ®ÓÕñ~º¾VߨïÓpîbëºWã<ß×нÒ7š8†î†™¯w?&Þ®Î? mËÏû8'>n~ÞUpØçíõ]N}#3Ï?ËÄæ›ê²ïbnòñç/Rä«;|¯Æ»Þò‰Æ¡¿×4ëkGy—G÷¹Ãþè¯yÉ·1æw&xÊO=ñ–/øºoWïw­úéNŽ*ï êÜõ‰í}´õ *Ö®û¬pôwéºWú‰&ö®ï«;yóç6ªªòù.C·­;"í÷œ‡ßuè÷i¿Ïäa߯}Ÿó¸xNxÿyž§~>狎wû<ó({.Õç@ºàûši"ôp;ïÇâéðãg¾ð|”5 ·GŽó‹º,L\·³ÆÔsñXAU#ð9?ø5¿Ïù³â<,¬Þºÿóƒ>Ä—ÖÇ®°FÖyØë÷7æ34Z:WÏ+¶ {pun]Å]ÇskûCÇsèuFÅù}–Ç÷¿ža‹†ãjlŸ§±s˜_ú}Vý¢¯yØË¹ ÷ÅŽç©_ÕYâì<©úö«Úé?tÿê UÙý]Çó< Ý?4ÖÎôêþ·Cƒí æŸ\‰õ\<×ùýÍ0Ó†³ÄÛsúyÚ­ãy†©q;K¼aÌõxNe×ç›,a²9ËxžaÖ¹k¼=ôm…‡Æ[ Óç™t~QÀ§Žç¶‹ÆÛö¯îÜŒm{]ÏȲý¡û7ÏŸ2žçë]d ‹ß·W5Þî×WÏežÑн¾Éø,ótøèï7O¢óEïÅyùY'ϳê#üÈ×.|Êø,ó´fû3Yâí^ê4Î=.ø½&K¼ï§¯/ó|«ãÓÿ2wôx˜ë³ß¿Ì/º÷ÃYÆçYlûåÐÇ5OKîŸñ±íñ/Ü…‡eϧç2wLâíôëø–x»Ž‡2ßø{<—ó´ñ\ä4cÜŽýyË.ø~…e<ÏÝ®öú[Çóü˜ýT~$ÐËø(·ó0v½Úx.öû–¹£o%-1îš Êרû??ècãUÇG™îÏ2>l{EO<×üt|–ùEH¼íÍ@sVfÏ>¾Ë<¿J¼=®õú[ãí:~Ê loç×üØû5Ï×1üû@=Twîoç÷e¿oÑDüCã­¤9úyf ®çŽefIXcü\ÅÆó)?«ð¥ñvÅŸ"ipÑñbû7O’´Æø‘œš¸Y¼­ëõÍâíí¿ÿ(órõ.;ß.MûÈ—Ë<¿v»Ðü®Ìó©ä¯+ÿ/M9y½æóÂo'_ºÿó|+ñvþLΚhE~.,ãy¿¡ñ6>Ïd‰·s™¿v­Öü÷›çS½kþ}wÝqñÛ÷7ϯo×õRéxä÷±íOnÇÎïË<Ÿjþê—†ežOOc¿¦ãyŽ×»ÆÛíï–ß®ý›çWÉ_çç±ïkžOõz¬ú÷14ð\3Óë=q?º½y¾=_óüª×cc鿝’†éþÏó«ÄÛ™Æ]‡s3ÝYk¦e‡½ÿÐüUÒºæ,ùëVê—À.ñvmOXÆçdõkb2öë%Kþ:‡áù(ßš¿"Ëø¬Zž~4ÞÖ¾ôGãmk{dÚ¥¬'BØ^×x;_ïúÐxÛ—²Œ±íÿ ä2žÃ?½ä¯óûqÖ‚Éþ<“e<ÏÃÖõ[ãíü=t¼K •üuŽ÷Þ«]ßžöúfãÙ¯_…%Þ>Í~ Üo×ñ*‰±ä¯ëxîp}æ‰t\¯Kbûz[د×ìýæùTÆóægÕ ‚µ^pÙõá5¯ge<Ï÷w½j¼]×ÿZ}º‘‡Õ €Ç½¯ÇåBåyàû™' ‰·ëzT.„\ßJ…JÆóýØñ*FgÛÇ—pk;žjÝ©íx­'¨ÖÈ_ÚØñ^NÿZ3v}X¼õëk Ì^/Ðø":Î}},¬ñöðïîX±úŒÆ+á^öõ­~0»¾µ÷›§$îv¾¶ýfõ‚g±~Qò‡í¿\h?»ž!;"ùëŠ7ú— ãGv¼îzüpÅâ«}>¹Ðﻢ¥ÃþÏÒã­í¯ü°c_ïË@öxëÜ5]õ áqàöƪØûÍËë¶?r ;~_ó|*ùëü¶ýy`®ú×b·küÕÛâmóñ9y\p¼Õjã¹[|ÕÀ÷¨~?Îo×ñ6Çcß·ïïÐxßß<¿JþÇã<¿>m×O®VVý˶7¹uˆó|{u8^æùTë_eù«y½åšç×û€ß^¿ŒÏÉ2žŸcíß°ñ¼¸ë‰eï“%Þ®zÝ5¯giX×tc뎡ÛôKè Qo¬7Öu‚f뎨ÖëE²´­;ný’«Š­;¢ÞYï¬ëœÐÖ·®“D[wD½²^Y×i¤­;¢>ϲ¨+n½ÉUÎÖ·®á뎨׋ôJÇŸÍ\mÝõÎz'Ýæ¶B_¸õ¦,§îˆze½²®“e[wD½³ÞY×é´­;n]ç×¶îˆze½²þHV½uGÔ{#½Óñg3x[wÜzƒ€:uGÔk'½Òñg“~[wD½³ÞY×òÂÖC—iÃÐ`rÔä¨É¡Sàp&Ç8Ø1vè¼8œÁ¡”àp&G;ÙÑNvh5ÎäÉ1’C+îàp‡N‚Ù-9Zrèô)8œÉ1’c$G—œÎàÐIYp8“£%Gc‡MÜnÇbrŒ‡ãa‡Nî‚Ã…`r´ÊŽVÙ¡SÆàp&ÇHŽ‘:­ gphE ÎähÉÑ’£êäÉv8“c$ÇHŽF©A08´– gr´ähÉ1(AÞ›ߎÅä¨ÉQ“ã¤4!˜ýdGçãÖ&àÁá Ž‹’…`rÔÂŽÊÇ­MۃÙ=9zrn¯KŠàp&GOŽž7²ƒÁ¡K+ÀáLŽš59*Ÿ³“£'GO‹‡38:Ÿ³“£%GK­ ‚ÙtÎ^¼¶8d;ƒC—‹€Ã™tÎ^ Ž"µp8“c$ÇHŽ‹ÏÙ‹Á¡ UÀáLŽ–-9>g/&ÇHŽ‘•.݃ÁÑøœ½˜-9Zrtº€&³ƒcÐE|ðvHU ‹ÉAçìÅà8éR>˜#9FrÎ.ƒã¢ ú`r´ähÉqsv±˜xY އ.ìƒÁQ9»XL¼¸G£Ëû`ptÎ.“/ñƒÁ1è"?˜=9RvaË¡¶c18NºÔ&GMŽ”]Ø"*p”t½/ÿÒ“£'ÇÅÙÅbpÜtÑLŽš59Î.“/ýƒÁQéâ?³‹ÅäÀ@08:•‚ÉÑ“#e¶¸ #Õ|¹Ùv,&GMŽ”]´“ŠÁäèÉÑ“£pv±W“£&GªØb8pÜ9»°åqäHöpE`18*g‹ÉAÅàh\XLŽ‘)»°¥zàè¹"`‹÷À1rE`þKKŽ”]ôƒ+‹É1’#Ul‘ 8Μ]ôÂÅähÉ‘*¶´WÎ.úÅÅู"°g‹ÉAÅà¨\XLŽ‘)»ð…ÛÑò9»w®,&GKŽ”]ôÁçìÅäÉ‘*¾ä2‹Áqò9{19Zr¤ŠÀ(\X Ž‹ÏÙ‹ÉQ“#Ulù'8î\°¡äHçl[" Ž'WlÑ(8j®ŒÊçìÅàh\XLŽž©"`‹SÁÑó9Û–«‚c䊀-`%W|Ik8‚ÉÑ“£'ÇI`p:g“£&GMŽ‹*ÁäÀsv08nªƒã¡Š@09jrÔä¨T&GOŽž²‹`ptª“£&GMŽAÙE09°"¼¶Èx;ƒã¤ì"˜XG¡Š@09FrŒä¸¨" Ž›*ÁähÉђ㡊@09FrŒä¨”]ƒ£QE ˜-9ZrtÊ.‚É`p ªo‡/âÇbr`E 'U‚É1’c$G¡Š@08.ª“£%GKŽ›*ÁäÉ1’ã¡ì"•*ÁähÉÑ’£QvL¬ƒ£SE ƒ²‹`r`E x;®ƒ*Áà8)»&V‚ÁQ¨"LŽž=9.ªƒã¦Š@09jrÔäx¨"LŽž=9*eÁàhT&GMŽš³‹ÅäÀŠ@08U‚·Ãn[ØŽÅä söbpœT&GOŽ”]غOp”|ξ/ª“£&GMŽ›ÏÙ‹ÉÑ“£'ÇC`pT>g/&GMŽš*Áä söbptªƒcPE ˜tÎ^¼v£Èv,&ÇHŽ‘'Ÿ³ƒ£PE ˜-9Zr\|Î^LŽ‘#9nªƒãásöbr´ähÉQ©"LŽ‘)»°hÀÑREÀo©GO¿É†)»°ÛnÀ1RE@þe$WŠÜCŽÅà8©"LŽ–-9 g‹É`p\TÇÍÙÅbr`E U‚É1’#ev;8jªø Jàh©"à·,‘#eµSE ƒ*Áä¨É‘² »5j;“£'GOŽ“³‹Åà(T&GMŽThg‹ÉAÅู"°g‹ÉAÅà¨\XLŽž)»h+‹Áѹ"°˜59Rva7šc䊀ÝzFŽT°›Ñ¶c18N®,&GMŽT¿’£ä좮,ÇÅÅà¸9»XLª,ÇÃÅäÉ‘² »5Wì–r¤ŠÀ”(»X¼ãàŠÀbr´äH»agÎ.ìBr¤s¶ÝTŽ’+v›!8®œ]Ì¡söbpÜ\XLŽ‘©"`·3‚ãÉçl»Á5Wì–Gr¤Š€Ý Ž–ÏÙó_Fr¤ŠÀè\X ŽÁçìÅähÉÁ¿ý2ÁäÀsv08Nªƒ£PE ˜xÎÇE`pÜT&ž³ƒÁñPE ˜=9zrT:gƒ£QE ˜59jrt:g“£'GOŽAàí°Û[·c19°" Ž“*ÁäèÉÑ“£PE U‚ÉQ“£&ÇM`rôäèÉñPv ŽJ`rÔä¨ÉÑ(»&V‚ÁÑ©" ŽAÙE09°"¼vÃñv,&GOŽž'U‚ÁQ¨"LŽ–-9.ª“c$ÇHŽ›²‹`pV‚ÉÑ“#ev>8ÎTðóÁQREÀoÕ'GÊ.ìæ}p\©"à·ó“£'ÇÍÙÅbp<|Î^LŽš59*g‹ÉAçìÅàhTG§Š@09蜽ƒ*ÁäèÉÁ¨Áv,ÇI`rÔä¨ÉQøœ½˜=9zr\TÇÍçìÅä¨ÉQ“㡊@09蜽•*ÁàhT&³ƒ£SE ˜#9Fr >g/Þ{hÄv,&GKŽ–'Ÿ³“c$ÇHŽB`p\œ],&= `18nª“c$GÊ.êC`pTª“£%GÊ.ìaàh©"à× ÇHŽÎÙÅbp ª“£%Wä±”],&V‚ÁqRE …³‹ÅäÀŠ@08.®,&ÇHŽ”]´›+‹ÁñpE`19Zr¤ìÂMŽš+ö°p´\°Ç—#e­sE`19zr¤Š€=#gö˜”íXLŽš©"`RÇ™³ {¸ 9RE`þ•*‹Áqqv±˜TX Ž›+‹ÉÑ“#eö p<¹"`~GÍ^9»X ŽÆÅäèÉ‘*öˆpôœ]ôÁÅáøøAñùÎoþmäußpoø§w’|ê²Oç¾áJñÓqõ#ž±ÏÕÇí4CU*Ø)ÇQÿê8çÿÖ“vä=þôFd…ºìWÞJûQ[‘ºó‘÷¥ñ¾X}òè1¿ǪCï#ëöà9CÐË#ÿº!èöd°ÐýAa[·7 }¿?~ʯ<ÔHî¬öðV{¨Ñè}GúÕ—.Ø•WŸÇÁ_Î-_îã„3ðoËémÈc¥ü³0†ûûݶ¡VyøÒþ/>‚Év^Öºü0¦¯“kç¾~L‚ã+Ç$:>>&Áñ•c“àHcp}í_„ËðÕQ¸ _†Ë°ÇáþíæGüÊOñ:¾¡sÇ×7óhÜ!w×Cãy<4îЧ&ìÆòØ hÜ!O€Æò¨hÜ¡OÂØ;äµÐ¸ÃŸ>±wÈk¡q‡ 4ƲWиCS¡f}LÓiuãÕ¸Cwè“"î×jÜ!R€ÆòFиCç;Îraãy„4î„Æb†Æút‰Ý¸CŒ;äY иCh;ä7‚Æ¢BãÿWãÙghÜ!{;ä}±q‡06îmcãy,6îÆÆòÈlܬϧч@ã¹ÑwÈMóظCoÕ‡ÆÄíÖ›ý±q‡06îÇ`ãalܱ·gÏX×ëUÄ;ä–}lÜ!¯ÇƲÿظCüظCn¤ÇƧ• £qÇÞž=9Äw;ä ظCÜ€;äظC¾lÜ¡¤€ÆÂظ#Æ’?ecÿþöL ñcãŽÓ-Gã}\…úíÉÀú ùwÈc%°q‡>ˆwÈ?cãùwˆw¨ wÈظClظCwì÷·'/ÈÇÀÆúàý<öDѱqÇþ¾ìiú3AãalÜá?[4îŸwȰÀÆ2ì°q‡UlÜ!Ãwˆw_X5îwÈ°ÅÆ[ý.yѱq‡6ظC+lܱu»3]clÜ!awcã иCÃ4î°„;DÇÆæ°q‡ø±q‡06îа;$¬aãŽÑ©oÇF½Ÿy£Þ¼<5í•zvŒ‡ZvH¨‡Ž²TÄT½3xœÔ¯cžq°]GoÔ­£jÖ±Qo»íZuÈš%èÔ!gIhÔÑõéÓ"´éèu騝ջU¥2=:$+€R•€òFý¼vwèü ØŸ£jÏ!×ÅÐcjÎØÏýÅÚ}–õ¦ÊñPcŽñP_ŽqS[ŽøQì&ÆQ¨)Çú}ýÖBÄù—õ¾~Ó ì4ä•úqŒAí8bTû]zròÅv2j±‡ø±GŒr¿3ntêÆ1ß›q¬Oé7¸­¯Óïfë:qÈ£'¡GìgôÊúCm8d\@Y M8z¥ý¡½PŽ~SŽØ”Ý0…(ã´S÷ Ð|c~“ÓbØzc\ÔycªØxcê»±ÍzѸ©ëÆ:âý¾ž vÏx¨åÆ ~{ÎÔp#ˆÝ4³±Y”<¨ÝÆèÔmCs?è¶!ûmÈpÁnžûE· ~ØmC»mDÐõÛ>À¯7yHPÇnrRÀnrRÃnq­à7VH®„Ý6â¤æ7MˆŽÝ6"÷›„±ÛF\Oø qä·%ÈI»mDòî· Dî7D’í·Ä¥€/ü—\ »mˆ»mèÕtÛÆn’”`· yì¶!I vÛ€íéwñc· Éå°ÛF$q¾T]’,ì¶!¹vÛÐÜ ºmDRïËÃ#IöÅà‘äú²m}‚tÛˆ¤Ý—dËë±Û†ævÐmC’>ì¶Iµ/ƒ–¤»mìÏcKœ% ÄnšËB· aì¶!~ì¶9¾ˆX~ì¶I¹/îë9_Ê+ŒÝ6d<`· ðë¢Ü½¶|Vsgè¶!¿vÛ8mc· aì¶¡¹.tÛ§NiaÊŸj® Ý6DÇn’{b· É]±Û†æ®Ðm#¶ç‹9…±ÛF¼ÞYj. Ý6ˆe|>uÛýÁn¢c· Ùì¶ÛÓ%Šòzì¶±·oË…±ÛÆöÛ²@}jtÛØŸÇ–üéµtÛÐk‰ûÝ6d¼c· ù}±ÛF\tú¢:9±ÛF¯¾Ø-Ž_ÚU¾-.²}ÙZ\$û"59¾°Ûð³.ò±Û†¼»mÈûc·¸h÷’ð°‹üJÝ6â"Ú—^íïÇZÅE¤/‰Šxæ  ôYÐm#Ž/_ÜñÔ—2E¼öEGQbñ%Fï}AQÿ¾|H»mÄE±/뉋\_ĵ¾dG>vÛ×c·¸(õ…3zíÝ6ˆ»¯°ÛFu|Á‹l»mD¢D¼ñe'{üØ"“¸È÷%%¢c·(bøR½ÿ¶°#â›/㈋t_´±¿?[^E _LÛë"»mD<÷e¿}ƒ|>ì¶¡E+趱ǟ-EÐg2ޯ趱7[" µì¶!:vÛØÇ›MöËûc·ýýÙ$ü>mÊ=Š>Á¾ãƒM§ïø`“çûx±iî(’ø¤vI| {ÿþ6a½Ç§MOËïÝ66Û´ñ>Þm’8Šl>%¼Ç³MGƧjEÇnq>õiØ(:ú¤ë>ÞlŠX'C5Qã»mçn_/Ôÿ¥zmhéáÿ«×†Í!ÄT®¡ÌV°l4G­ÏqÚ¤@¨J¤R©:eª¨:ƒª©R@Øê$Pu~!T%Puº!T%R[Cu¨:ªÒVmnb©F¤6R©:sª©ƒÔAªÎk„ªªNs„ªªÎz„ªDj%µ’ªs"¡*ªS$¡*‘Z/T+Ž+›@ U‰ÔNjGÕ¦W–jªÎ¶„ªDj'µ“ªs1¡*ªS3¡*‘ZI­¤j‚ª¨m“«Y©µ£Zq\Ù,O¨J¤vR;ª>´dGÔuNh늬ƒôq®uƒ­+¢®sH[WD]ç”¶®ˆºÖ·®ˆºÎ9m]‘õÆzc]¯ë·®ˆºÎQm]‘õÆz#Ýæ°B7d}<¤‡tãÚº"ê:çµuEÖëƒuÛº"ê:G¶uEÖëõ†áÖuSÛº"ëõÆúÀ ëºÍÁ…nˆºÎÉm]u£Ûº"ê_GÖk!½Òø³9½­+¢®u’­+²^Y¯¬ëàÖYï¬wÖ;†bGÐmÎ0tCÖ{%½Óø³9Å­+¢^0$;²^镯ŸÍAn]u-Én]‘õÊze½Rü4d½³ÞY×9Í­+¢®sœ[Wdã§!è6º!ê:'ºuEÔuŽt늨ëœéÖQ×9Ô­+²ÞXo¬?? Q×9×­+²ÞXo¬wLRYÇøiˆúÀDÕt›Ã ÝõÁú`½P|6Dý„ՑõÆzc]ç„·®ˆz¥ølÈ:$®Ž¨7L]QïŸ QŸ A·9çÐ Q?1…ud½²ÎñÙæ¨·^8õ9ë­+²^Y¯¬?Ÿ Y‡tÖõŠ ­#ê:¾uEÖ;ëŸmŽ|ëƒóZŸ3ÝõÊ:Çg›UßzIñ٦ٷ®Èzeó[›ˆßúâ³ÍÌ£Îù­MÕo]u»ßº"ëƒuŽÏ6»¿õžò[›îßúHù­Íÿ‡nˆúIñÙõBù­!ëuÎom ÁÖ¯ŸmQÁÖŸŸm•êÆŸ-;ØzMù­¯Cã³/L½¥øé+BWd}°>H÷µ K7Dý¤øiÈzcó[[þ°uEÔu=ÄÖYÇøiˆúCù­!ê•ò[CÔuMÅÖQ×E[WD}P~kÈzeò[_—±tGÔu¡ÆÖY¯¬WÖ/ÌoY‡øéˆúù­#êUÊç[Wd½³ÞYoŸQï˜ß:²^Y§üÖW“„nˆú‰ñÙ‘uÈoQ/˜ß:²>X¬ßŸQ×:ûÖY¬Ö+ÆgGÔæ·Ž¨w, :¢>°„꺭Œ ÝuÈoQ?1¿uDýÂRª#ëõÆúù­#ëƒõÁúƒñÙõ†ñÙ‘u(«:¢Þ1¿uD}`|vdò[GÐm^*tCÔ XYï¬wÖ/ÌoQ¿1¿uDýÁB«#êã³#ê ó[GÖ+ë•õNñÙt[žº!ëPtuDýÄüÖ‘õÎ:Çg[Þ´õ’â§-wÚúÍÕW_þ„zgýÁüÖõJñÓõÊze½cýÕõõWGÖ1~‚nË­B7d}°>X/XuDýÂú«#ëƒõÁúù­#êÅOCÔ+ÅgCÔÖ_Qï˜ß:²ÞXçølËö>8¿õåb¡²ÞXo¬ŠÏ†¬C~ëˆú…ù­#êÖ_Y¬s|®ó[GÔæ·Ž¬wÖ9>Ûr¶­Ÿmy[膬wÖ;ë'ÅgCÔ æ·Ž¨_XuD]—Ëm]õ‡â³!ë˜ß¢^)¿5D½cýÕ‘õÊ:Çg[Ž·õ‘ò[[ž‡:ç·¶\/tCÔ ÅgCÖ¡þêˆúEù­!ê7ÅgCÖ1¿5D½býÕõ†õWGÖëŸmùàÖ{Êom9!êœßÚòÂÐ Q?)>²ŽñÓõBù­!êÅgCÔoœsDýÁú«#ê•ò[CÖëœßÚrÇ­·?mùãÖ×_}9$êTõå‘Kwdâ§#ê'æ·Ž¨_XuDýÆú«#ë?Q0¿ud½³ÞYoXuD½cýÕ‘õÎzg}`~ëº-ï Ýõã³#ê믎¨_˜ß:²^Y¯¬ß˜ß:¢^±þêÈze½²Þ0>;²ù­#êó[GÐm9j膬wÖ;ë'æ·Ž¨ÌoYo¬7ÖoŒÏލ?Xud½±ÞX¯ŸY‡üÖõŽõWGÔÖ_Y¬S|ö嵡¢~b~ëˆzÁú«#êÆgGÔoÌoYo¬7ÖŒÏލ7ŒÏެCýÕõŽù­#ëƒuŽÏ¶Žtëƒó[_º!ê믎¬WÖ9>Ûrâ­_œßúòbÔ;ëÖ_Q¯Ÿ YÇøiˆzÃüÖõŽù­#êçÇA·åÌ¡¢~b~ëÈze½²^(~¢~cýÕ‘õÊzeýÁüÖ‘uŒŸ†¨WÌoQïXud}°>X? A·åØ¡²ÞXo¬¬¿:¢~Q|6dׯ¢~c~ëÈú`ãs­Ÿ QoXud}°>XïŸ Q˜ß:‚nËÉC7DýÄú«#ê…â³!ëß:¢~Q~kˆúƒõWGÖëŸmùúÖkÊom9ûÖ[Êomy;êŸm¹ûÖGŠÏ¶ü=tCÖ+ëœßÚòø­Ÿ)>ÛryÔ9¿µåó[¿¸þêËé·®Èzgã³-·ßú“ò[[~¿õšò[[Ž¿õÆõW_ž¿õžâ3.fµí[ÿø©8Ö‚ø?½4ùÓ¡Ÿ-¸ûlAÔg J>›ðÿlÂô³ ©Ï&>+¨¶O ZŸ >½ û,!þ,¡ø,àz@ýéùg?2îÒ æ¥ç±~ûú—ï~ñ_?yÍœû»ÿyÉßãùÉ¿¾~øù7>:îÒù¾ØÚwóßxÉ󵎣þˆGÇ]¸·òý¯þÛwæGlE®mçP…Oö³ŸÌ ò×w¿ú7ßX‹OfOÅ’ñ÷sètm>â+d½&7Úª™ð:GÐ펹Ðýº­ÛÛ…¾ßý›Ÿ#×ï?ã!túŒ«¯<„ÎGßzæœG¶…²ž9—p™¿í)f¡Ð}q×~}%ä‚üqÌEÇA F]4|vÑðaÜEÇ G^4|zÑðaìEÇÁ F_0|~ÑðaüEÇ F`4|‚ÉðQ Ç?,¾ ÖaóÕ± _ ˰cÄ/¿üCE†wendstream endobj 721 0 obj << /Filter /FlateDecode /Length 1414 >> stream xÚ­WKoÛF¾ûW¾„Âõ¾IH‹¦­‹äТ©nM4MɪEQåGþ}gvfIêáÀ Aärvfw^ûͬL–‰L~½ü~?¿¸º6:QJ”Îéd¾H”¶¢:É¥J—Éü6ù+53• 5Ë̦óU ŸÍ,3¹K„áó =ü¿›eNÊôr¦´K·;äÚÃc?3*ýƒËY¦L»ÊZæ«qönUÓ׳¿ç¯®‹¤¥×5’If a¤']~‡…pS¤[¯;ÚC¥¨ÆþK˜´2] #’ê8ßmH¬îÚ&¨ _eú´âù;úÞÏt‘>ᣣ…ªg^¼ÏðæÑœ5Ø‹Yf½Jçw -þY*»#¾ð½wBEªuƒÿ-™êÌÄV]–BØlŸw,-%gžxÊ*‘{…ß"C‚@pu’… ³Ÿîؤz¦s4ÜY5u`òþŽBŒä[¢3+ôæzO}P„OÀÿ-Ì•&­6Á¼ M6ãó¹ª=³ö4½…”ÈÓ®gub˜†ù[ßµôýéÍ8wƒëõÍÈø€‚uLXæÔÁ’ýàÈç{âX£„Ñ::"ž+G·Ú¤%¬²#;‡uµŽþ9ï²€pO£]óR+Ÿ‰²qÂY…pï÷²dHKpê ¸Öè´õêvHXÆ#³Ö§Õ.fz˜Xï"?‚­ ¥–òNHë]Jçø§ÁˆjÙ]ž±Ü:áM­x´;1W¢ÌaÀª´÷3 /Á‹ç™Ì[áUždZ oľ‡D öÏÒIx¡Ïìð.„+p¾£W=2jÎq *¢/tˆ<åPµ'¦ü°drè÷`œ wÛB¶bšæœ¥øn·C+‚¢Ë]ÄÚ3ü‚Õ&&"nÄm*ØÑ¥Ú54 æª )V1ûmâ/=U7í-´»˜a»&4ŒçòŒú ¸gøƒ”ƒÏõP ð–Á 7±¿h§ïG 87V¼â-ƒNàyÚ> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 723 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-chicUnivariateSinglePlot.pdf) /PTEX.InfoDict 282 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 284 0 R >> /ExtGState << >> /Font << /F2 283 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 18164 >> stream xœ­Aïí8rÝ÷ý)î²gágI”Èâ26âÄ€Ó gaxá8“…1ãØ8ùúQÕ9U¬bޛד `÷ôéSW]]Š,ýX"Ïϯ?ççŸ>ÿúÃß|þõs|9ŽÏuvýŸ»]IýÛo>ÿõóÏôÌ/Çý¹d~¹ïO»¯/ãúHûò\ôç¿ÿ/ÿé/>ùÓz¸ã“ÿùÓ_þõû_Çóùß?üÝߎÏÿáüüúýÿúá´¿ýŸç—Ñ>×_žùùÝãúÒn“‡|~«rªì_d¨|ÿ,äeòùÒ“Ï 9»ÉnòýÏç­r|9![ƒÃämîüò¥G–ãË ÙÈ!vVç£òüÒ¦¹ó„œ·/r˜æÞ_nÈnG~¾'¾ÑÙOY¿¯¼ß ò°`ùr\'dǵºôœß_ä‚l¤Pjð<ô›Y°ÉëË…k5/Hy̽§Êöå†l]åýåè&û„잤^³arØ¡ìdù šì¸tÓ¤|¹pé®)ö“Ç¡Ât3}~¹ {§žþÖ4}éEV-éö儞øü­¿IÒ6Ôëý³çeºë¿¨7õ ÆßÚôFXÿ>¿œÐô¥Ê®ïnÚ°ìúAß_Ζ®×«Ùžö÷îÇûSü^·uav;^ÔÚ:ÉóïRçAÍ>¿ÿ=½Sµê|N½0¦;õd·jíë¹ÐžC7ïXå¦ÐÍ~ßçÑ^ÄzKèŽö̾Uµw®ÐÃ{×-hÏíý¼äL~?ô‡ºæÃû¥ŸèaÞo¯îÔö}ú…>öÁ@pöÛÃWãû¾ºCŸÐÚóƒ[µõ³7Û{ïèhŒogííó'µ@£=õ‰¾öa{:Ûƒ‹ê^ô…öú½_§éþPwhÜßãF{¾Ù>_mýí­ÍFµb¦áÛè¢ßïÕÖžû“!èo†ŠóWOh±óGÒÙ²>Ñž›6[ÕúÛÆöòêݬý¾ƒkƒFÿùŽŸÖžÛË«GÇçq¼Žþ6>ßÑž/¶hŸûëwm¿SO±Ï_ÿŽª|Œ?óDûl¼ß^= q}õÄp=O|þÖ-gºÞúÃÝÑßÞ¼Ú^ÐðE¿¨Å[{y;ú£¥ßëÕÚÚ×õŽ·Ö>ùû_ïxzjÃïs½ã+Û³õªÚ«ÝÏ×;Þ¶'ïjÈR“f{¶ö}]7úÛ¦?+ôëþ¹®íùÖf z =ßh¿ª'®ß-èooŒ×5Ñž#~¢¿½‘T^ïøÚÏÕ_\ïxz©ý¼ÚÛ³okèoÙÿ\ïx{@ËeúAÒêíçOï¢úÛùƒêm™éõŽ·lÏ–]ïxz°½¨;úÓÃâßñÕûÛ‹šýí ÿòöiùøõާ—¬þ[µHŽÐß>l_wGû|øý^Ý1~á~¸ù+;®w®ÞÔð/ô·Ì—¯w|>/Øý3nä¯Ìÿ¯÷õ€¶ñOuG>kÏ7×;Þ2¿Eûâùë8¨;4úçw|½Fú>¯hÜ¿ïx{Cã~ÇS>Ž¡=½šù«åƒ—4ô·|^ºÞ§××çûêÁç/û>Ò‘¿òÑðzÇÓÚžÁUè¾ ¿xAëç÷ޝ׿ï;žòyÌòÕÖ>'¿¿ÜÔö÷´£…FûFÇaþƒüuê×VÝÑßNö¯šXÒ‡Ú>Ûqðþ| Ë_'ïÏ÷_´]O l²Ž§zâùËž7Ûû<ûÌõùvØÀ£a6>´Ã:æ¢ß ©Úο½Ï³ôÑ©…~3m7‚ù—i{PIdz†gþÔ†³Ž¯X†¾ÿ;¾¾'ºâßñôÆõœÐ ý­ŸWwèÿF;‘Ÿ´³#ïþ¯Y~ÑÞñ”ÏcÔOð×äÖ?¶÷y¶Aãû½z²?Àß—àÐ3xëÉþÀŽÿ>Ï’àú¼ãí mýk{Ç×™žo[khÏãM{ÇWö·v©fkýi{Ç[ö·<Þðç±ézÌÕß·w|méþWÍþÖðU{Ÿg;®ŸåíOÉ ,S\H^`ý½jö·–¶÷y–ý­åkª…<þã¼×ÿO¯M;/ÀßÁ  ÅûÛÓÎÿ_…<ÆþÞ;ž’XÓÞçWö·h?¯öþúòöiù~{ÇSòËTwIçÿޝ—¬þMµ·O;¿w¼õþZœàþ}5ù7½}âï½Ï³ìoq¼zœ«ÿnïxJþeùF{ÇÓÌ¿T³¿Eû{Ÿg­¿ÈU³=ã~{Ç×þí¯ä¯^ Úù—]Ÿ÷y–í¹á|'ú[¿~ïø:Gºßñ•ü«C_οÐ?¼zHêÞñ¶Iº_ÆãüëÔÚøA¼Àÿ÷ù•ü íóÕlÏ>?½=CËüÕï÷WwöÐgmϯ\??š4ä¯~ÒÞñ”ü ×Wnoϖ϶÷y–`÷Û;ÞE䯡íypüyŸ_ gíùà§àí–7,Þ>‘_··ã"3·ÇX•ûûcë˜e¼]¥ÝËàíl§Þ®ÒZ&x»ŽWÏâí6¼éy·«´a¼] ¢n¼]]KÊÀÛu¨»oWiCx»t6"€·ë8wPÚxÊ| ¼]]K—ÀÛõP—|œ·Û˜ºx{ÓGÚþqÞ®Ÿè6Þ®¦µtðv“÷Çy»Jk·àí+Øx»¾–å·«´N ¼Ý\öcØgíÄO­§a#.x»~A»Á8Ù×ÿ6ÞÞ0û¼Ý>-Ÿàíê“ÇoW|¼]5øx{ÒÒôóäåÆÛídÏOðvM#ÀGÀÛÕàùÆÛ‹ªy#x{{ÓÉ×·«o7üÜx»jË?ÉÛ5-¯o×4|¼]ÓŽ~~‚·«Æ|x»¦!6þ“·«o|„¼]ÿžÀ7Þ®ÇOoWóàí¦o×ó›ÐÆÛU÷ÄÛõxà¥àíö÷¡·ÛùOðv=_ðjðvÕÁß5¿;y,x{{Oûß>ÐŒ“–n|¼]‡ï ÞÞ.o_àí?Àï·«O^n Tµåïäív¾8¾ñvõgâíšÖÇ·kwàïoo—ó?ðöv9oWñàíúyÌG·«ßÁ÷ëßÃ÷oW|¼]?ƒ×oW-Î×ß]õL¼]ÇxãíúýÀ›ÁÛÕo‰·ëùãþo·4Ôùû„ßoW}ŸoWë Þni+ø¸ñvÕâ|ý„F{ooo3±|€¼]ý3ñv‹‡¶ŽÂþ>x¶ýЪÉË·›ÿ|‚·ëçÁ‹ÁÛíü ·ëß—ñ Þ®º9_×ö|±·'oWöÞnixâíEk{¾:çŸÀÛUƒÏƒ·[Z}‚·'}¡=‡¶†¥ßOo׿‡ùðvMûqýÀÛ5íÇüx»ú8?ðvý¼8Ÿðq¿·ëçÑžÁÛÕGûoOÚx»ý=»^àíz=Ÿç¼]ÿî/ðvÇýÞÞP+¼]5?o¼]õåzö?Ð>…×¼}µðvÕ˜¿o×þ×¼]û«ÐÖß ïðv/ðy™Ú_’×ßèooößàíIwô·~}ñ`e™Ö~Zôx§óõý+¾x»=¦Ïo·ã%Þ^tÇxE>ÞÐßr¾Œ¼ÝRãàíúýÀWÁÛm¼=>ÁÛ Þx»æ,äùv¢6¾OðöHbÈÛuüOo×ñº%Þã1y»]¿þ Þnã|ãí6Þ&Þ®Çïo·ï>ß‘?tòUðvðyãí6$Þný)xõüaò|ÀÛ5Þîoòvóíú‚·›ß?ÁÛ­½Aßèoýúƒ·[>€ã=È8?HÞã9y»~ðZðvû<Ž?Ñž'oðvkω·ëøÑÀË·Ûx“x»Gv<ðvÃÆëÀÛ­ƒ6ÞnüÜx{ÒýíSx»‡8A¼ÛÀ˜§ã¼]õ™x»?ã¼ÝÆcðõ ýíñ†¼]Ïç~>ÁÛµÿ²çAòöèÈÛ“\ã¼Ý0 âíÁÏ0‹ý>àíæË'x»éÄÛUgÞn|Ýx»ê'ñvíßÀCÁÛËàû‚·«F{oW ž Þ®˜FÀã­#6l-èo}> ¼]ÿæ·ÀÛÕßo×ók®5Õ¿n¼]öÞn¾¼]1x,x»jqþ>¡/ðzã튅0ÿÞn˜Èµ¶çÖýóÆÛU_àׯÛ#í¼]5Úx{»Î‚·«&ï6Þ®ñ˜oW};_×ö|~ÁÛ5žÇ3Þž´=­ýíÓ0^’·«¦o¼]5ø*x{ÒÆÛ‹Ööü°°“¼Ý4ø¶ýðªÞ®X|¼]1n/7 óàíŠm;´ñvŶà³àíŠey|ãí­Ÿäàíê7ד<Þx»b[¯ÈÛÕ¾~@£=·k<ø.x»jòyãíŠ'´ñvýÁÛM#Þx»báçc¼]1ð…xãí¦ÁÇ·«/oWLŒß¼Ý03|kxê[JÞnع}‚·§x˜4÷+x»jI¼]14~ðvÕø>àíªÁ¿ÁÛõøwâíú÷Chü>àíþÞО#Þx»ž6ù¸ñvÕàÅàíöµàw´çÓy¿&mÏÓõD{%Ÿ´çÉþ¼]µ$Þ®ÚžÉÛõüNçëÖž·€·Ûß/oèoo7Þ®ŸÇ| x»^FË7ÉÛõ2áû‚·ë×Äüx»j\ðv»Œ¦ÁÛíþ8>ÁÛígO?ÑžOþþàíª1ÞnŸ7Þnßù»@óøÆÛÛ›æ`þ¼=iãíI‹·gÎoWmùþO©¾ým7‹·wŒO^ßþàÏ{}û€½¡øÊ~\¯o';ñúvvM^ßÎJ¯oðCy};ë²¼¾?«×·7Œ‚^ßÞ”{}{c:ëÛni¯o'ç÷úvf};럼¾½áçðúvÒ8¯o¿0øx};ûz¯og©•×·7ô$^ßÎÒëÛùÜâõí|löúvÞE^ßNèêõíËÝYßþ`Höúö'éõí_ÁëÛ9žD};ç;£¾]py¢¾}âKE}»ÿz}»'z}{hÖ·³"êÛ9à¼]ëð÷†Ïï÷z}{Òœß"oWŒq|~»êÛù<æ¼Ýë ¢¾}’ßy}»ŸÏªoG½éªoo^ïÎ×2Èχ¿—1¼žõÀ¡9_ ¾êÛÁ·Yß>ÈWS};ø8ëÛýý¯o[}»×c{}»×o{}»Ÿ¿×·‹×¿³¾ÝO¯o÷z}¯oŸl^ßÎz•¨oŸl/^ß>ɳ¼¾}²žÖëÛ'Ûyûá|¼=ëùòöã 'o5æÈÛ‘V/Þ®XK>‹·^?KÞ~°gqÞ~ð®uÞ~ÜäÕä횆ƒƒ·¿¿yûÑœ¯ƒ·틼ýàó®óöÃëwÉÛv@ÎÛ_=2o×Û¼¼ý`½¦óöãâ|yûÒàíÇÅöMÞ~0ŸrÞ®ØÏ¾y»Æ§úv›€…ÞL¸xûáó äíÇÅù òö8òöÃë›ÉÛŸO#o×Ï{=ûÁßTßnç^Þ~\ü½ÈÛŸ?!o?.Ö+“·ëß»>‹··×˃·jœ·óäíKƒ·/ Þ~p0rÞ~ppÞ~ÜG{#oöFÞþêÇõ„FÿBÞ®í1Õ·ëc!x0yûÒàíŸÿ·+¶½>‹·¿ï‘·¿úɼý`>é¼ýèÎÓÁÛçåäíÇãõóàíù’óöƒ)…óvý>àé‡ÏËß^Ï~Ît=ÈÛ>:oW¼ý ÏsÞ¿7yûÒàíGózvðö£ñýòö¸¿ÉÛòfçí~¿;o?œ¯‘·g­ÏËÇÍz`òvm®¥¯þÉy»þþ8>xûѼ^ž¼ýb}§óvÞ¿ÎÛßþ|Öy;ç/·kë|ý@}à¼?¿]õí“õ ^ßî¼ØëÛw{}û$ïñúv¯7õúv!¿öúvñ¿ÇúöÐâõiàK^ßÎ÷½¢¾}x}úáõÀàY^ß¼œõí^?êõí|~ˆúv¯õúöáõé¬o盉QßÎùŸ¨oä½^ßîõÎ^ßÎ÷ £¾ÝÏÏëÛYïõíÂzd¯o÷úR¯og¾õíÂëãõퟣ¾=4ëÛz}{ü}Ö·;ßôúvñúrÖ·Oòy¯o÷zV¯o÷zV¯o÷ù'¯oŸl¿^ß>Ƀ½¾}’—z}ûDõíÞ>½¾}òü½¾]Ƚ¾}:g};Ës¢¾Ýù±×·O¯Oož¿^Îß'4ù8xûqTÞ~8/öúv¿¿ÈÛ½þ5êÛ§óxÖ·Oçýàí^õíÓyøéïgâzx}»×‡{}»×›{}»×w{}{ij¾ü#êÛ½¾{Õ·Ûx“êÛŸÄÛí~ðzö+Õ¯¦úö–xûºŸV};?ß¼> íÏëÛ½?ðúvÖŸ¤úvÌÏx}»ßÿ«¾ó^ßî|{Õ·7çï’Þ‡úv¿½¾]ø¾‰×·³þ)Õ·÷RßN^õíγ½¾Ý¯¯×·³ž&êÛýz{}»ŸïªoÇûI«¾ýòzvÖ·?¥¾Ý¯¿×·³ž!êÛý|W};¾y»bqð{ðöw¼ÁýEÞþj/êÛ‡óõÏèÉÛu¼ïo?ŽUï>1~¡œ¼ýà|tªoG=øªo/o·û|üAë¼ ¼=ÕËÕ·ƒ§‚·Çý›êÛÁóR};ø6ëÛ/ôÎÛ5Ÿ…Þ~\ä»äí‡óXòöƒïc9o÷üÂy»æKðÁÛ¾Ïç¼iÇâíëkœ·{>é¼ýÕ-óv¤)‹·|š¼]/+4xûÒ篡tòYòö£—úvË7S}{ÒàíYO䳸ÞäíGçõ&oã“·|¿ØyûÁù'çíh‹·k<>Þ~ø| y»çÓÎÛƒÀo?¸:ƒóöƒï ;o?|~…¼ýàûÉÎÛ.Øà¼ý`>á¼Ý‹S·^ÿOÞ~LÞäí^ïá¼]± êã‡W™¢½“·Ÿ>@Þ~^ίÁÛµžõç§Wšâû·¿>ëÑ/¯'™^ÏÎz´/òv­E?o?OÌÏ:o?¶?òv`¤ÅÛ¯÷&o?Xá¼ýG{'o×Ûöþ,Þ~r>Øy»~ñàíǬ¼ýà|°óöc:¯oW fߟ¼]ÿ|ðö僷QÞ~0ŸqÞîõµÎÛÖW;oxòö£Ö·ÛõF=;x»×÷8o×ß?Õ·Ûï Þ®àñàí§ónòv­ÇÁñ§×?™·+¶“Ïâí§Ïÿ·{½óöõyðöW£=’·Ÿd©ÎÛ½ÞÉy»ÖçâóàíKƒ·/ Þ~²žÄy»O¯ÏO¿lY›¿ø™‹Öüã￲hÍïÿñŸøó¿º>çççÿcvŒ?Ãÿø™¨Ãz›ÿÏ¿ûüÝû«ÏÛÓþø¿ý÷ßüþWÿùù×?üÇŸõlòò8ãm{ùŸ¿xy,¾ó»×óCÿöóÓàò²ú õ1á>eögõgõ1%>åòíÍáåSfTTsáSf_ròM.³ áS.Ó"áSfŒâ›\¾en˧Ìþ¬þ¬>&^§ Ÿ31î»Ìþ¨þ¨>æj§Ìþ¬þ¬¾Í´-ŸrùFN—O™}©¾TÓCáS.óEáSf¿W¿W3JáSf_p’orùö&òò)—)ªð)³ß[ñ{¹ÿ8‰>eö¥úR|Ns¹ïrùgZëõ)³ß«ß«y³ð)³/Õ—êcf-|Êåcª-|Êì÷ê÷êÛH±|ÊìË(¾”û“yáS.¤õõ)³ß¥ø½Üœÿ Ÿ2ûR}©¾‘ºåS†bª&B—ˆ¾Eô-³Ž+‚ºDÌ£FÌ£F`frEP§ÌU®ê1Î1Îa M¤ê1·ˆ¹E`NtEP§Ì’®ê1¶ˆ±E`&uEP—ˆ¹EÌ-ÂRuŠÀü슠.c‹5‚k”E„ë1Ÿ1ŸuÌVuЏJ"ºDŒ^#F¯˜=^Ô%bns‹À óŠ N˜s^Ô%blc‹°ÏA]"æ1·ˆQRƒÐ)³Ý+‚ºDŒ-bl³$¡WçÈ#Âu‰è[Dß"Î’&„.rÖ©÷-çâWuŠh%Y]"úU#z½o9ƒ¿"¨K„l²EØòE)‚:E .`EP—ˆ¾Eô-µ+‚ºDÈ![„”ô!tаWùRu‰è[D¯¬Zˆ×%Bzzß²²aEP§ˆ«¤¡KD5¢×û¶Y1QŠ .²EÈq—!;tŠÀ*‚+‚ºDô-¢o½ŽÙ®K„l²EXÙaŠ NRÇl×%blc‹À‡+‚ºD”1ÛõŠà:ˆá:E`eÄA]"ʘí:EXYmŠ .s‹˜[D«c¶ë5Wu‰[ÄØ"ž:f».s‹˜[D/î¡SĨc¶ë1¶ˆ±EHy€]"ʘí:EÌòzEt‰˜[ÄÜ"®š]¸N­<Ї.c‹[Ä]³ ×%"?Ö‡NOy°"zÍ.\—ˆüp:EŒòx:EHÍ.\—ˆüˆ:EÌòºDȱe\ù3"\§ˆ³<ê‡.}‹Ø² ®º"®íyÿDi}‰-¢ÕìÂuЏËCèÑ·ˆ¾E<5»p]"ò£èÑËÃè1jváºDd:EHA¡K„l[vÁuTWÄÜ8€¯¬®KDß"¶ìbœ„.²EÈqÕìÂuŠh•¸.}‹Øˆ×}]÷ž]p%رñT"à:Eôš]¸.…¸N£×%bn[vÁUiW„ìD€ëÔ®ˆ¹1kvázEÈQ‰€ë1·ˆp=ÜqîÙ…\•¸.c‹ØˆWÑ]mÏ.ÞÿRˆ€ëqW"à:E<5»p]" p"z%®KÄÜ"¶ì‚kü®ˆ±Ù"•¸.c‹Ø² ™uÌv]"æ±®.®SÄYÇl×%bl˜W%®SD«c¶ëÑ·ˆp¥ãqïD€kçˆmÌæjÈ+âÙ‰×G^}'ú*ÆU#¶1‹¡§ˆ±®ºœ#6"€:Õ!û˜Í•™WÄ܉×jΕøêͺDÈ![ÄYˆ@èq•1;t‰è[Dß"Z!¡KD³C§ˆ»Ð)â)D t‰è[Dß"z!¡K„l²EŒ’]„NRˆ@èÑ·ˆ¾EÌ’]„.™„^\O;"\§ˆ³d¡KD&¡SÄUˆ@è1·ˆ¹E´BB§ˆ»Ð%blc‹x ]"æ1·ˆ^²‹Ð)b"ºDŒ-blR²‹Ð%"Ð)b"zE°ž;"\—ˆLB§ˆ³Ð%bns‹¸ "Z!¡KÄØ"Æq"ºDÌ-bnOÉ.B§ˆ^ˆ@è1¶ˆ±EŒ’]„.™„NRˆ@è1KvºDd"zE´£Ð)â,ÙE葉@èq"ºDÈ![D+D tЏ ]"úÑ·ˆ§Ð%B¶Ù"zÉ.B§ˆQˆ@èÑ·ˆ¾EHÍ.\—ˆLB§ˆYˆ@èÁ7"Âu‰(c¶ëq"ºDȱe|bE\û˜}·BB—ˆ¾Eô-â®c¶ë![„lO!¡SD¯c¶ëÑ·ˆ¾EŒBB—ˆ2f»NRˆ@è1 ]"ʘízEð‘ˆp]"æ1·ˆ³ŽÙ®SÄUˆ@è1¶ˆ±E´:f».s‹˜[Ä]ˆ@èñÔ1Ûu‰[ÄØ"z!¡KÄÜ"¶ì‚{E¬ˆ±»fEÈFü}›±eÜabEÌè™[D%W?jvá:Eœ…„.c‹[ÄU³ ×%"Ð)¢":EÜ5»p]"2"žBB—ˆ¹ElÙßLZ}#þ®ÒŠð·—rÄ–]èÂ.ùÎv"f!¡KDß"¶ì‚oIE„ë![„lgÍ.\§ˆ«Ð%¢o­f®KD!®SÄ]‰€ëñÔìÂu‰(DÀuŠè•¸.²ElÙÅ•¸NR‰€ëÑ·ˆ-»à;g+bîD€o¡åˆð½´ˆp"ÎJ\—ˆ¾ElD@ÿµD\{v!W%®SD«DÀuЏkváºD"à:E<•¸.s‹Ø² ¾‹·"úNøvÞŠ;àûz9bË.øߊð¾±™5»p½"æQ‰€ë1¶ˆðÝÁqîÙß&ÌÛ˜Í÷ Wĵ¾q¸"Úž]è:AOØÆll—"îð=Ʊîܳ"ž}Ìæ^>+¢ïD€»ûäˆà}È1ö1¯Ò–ˆ`q™!;à.B+bîc6÷Ê•øNCºDä1;tŠ8 "®BB—ˆ—.tóþþ\O*-ñÔ».î´þ™—xÂÉk-ý×{úÆ=ï'÷í{>E|ãžÏ_¿çSÄ7îùñõ{>Elm܆o6rÿ]¾ÙÊ=à›ÍܾÙÎ㧆¾~ÜѾõÛÆ‚bÇ7—û%‡IMäkÂ/YLlvÆ÷Á|±o!òæ¶€Öç.¯‰Õ´„‹ùcí,Í>LÙJYÂ…r±.–p.¬‚%\„kV ·pÁ UÂé°•p»,¬>%ŸÃZSú¹µM·paQ¬%Ü&«>ÉE‡±Æ“Óö±„ Þaý%ávÒXmIlVÂ÷ ný%¶’’p#<¬›$\Æ« -ÅšF¯‡}El#á‚ÝX¯HgÞ×F!ú;ØÆ ¶–pë¬$Üë —QĪ@rbÑ;¬¤‘ØÛ–ëÁ‹^±CˆœÜ` ñÈÉý°êŽfØÛ–Ø‘“»#c-œ%mṸ×4V¹‘‹K³cIñ°~\¾q·-4“å0ù¤m¸…«¤r½ñM°8ŒpMt®â‡Â’-ë³¶>‹\¾a·-ÆòJ|¬¼"·gÀ)*q([E¸Ø!?Ñ%Êì b¥¹¸u–5‰Caýñȱ؈ø> XYD®² tì"§oòa‹{ÈÉ5þ±’‡œk‹íëŽfÂ5:â÷Å‚ÂýÓ¸rÆûw±]–Éßkb,iÿ"¾7V»xeK[Èå;iÛ*ÓÆâûF`u uÓ6Ûrù.ݶæƒþ‚ø»¶ÀƒøXÍA.n€¥âïb¹¸ TÓ÷±Õ„ÛÍq©„¸8XANn¦€E„{aqµ<+ÅVêÚŠu„ §rÑ9øûb…9¸ –®êÍ÷þ5›n[³_²±Ä–9x}_îxƒ÷ìµgƒ´—ê½äôÚ Bvƒ-í¦-0^bo¬ë{§ØºÃ^O\™œï¢nÀÏ×mçâ¯ÌÛzŒé»pØ»ßcrÓd¼è=|x¼Õ=&·xÁë×úYßáCLÞiíÁõßùõ{(l׃W¦—´w›—´™×îæ[˃K¡óåá;á}äáãÅáÁu¶ù–°VŸØÆãý'º¼ÿ;¸É_öU×Îoå.i=óXq›ïÛjåÙù‰ <׿›´ƒËŸó•×ÁÝø~«~‡²—Y×gíÍÕá[©ã5U¦lÎGìåÑ1¸¯ ޱ͵Ý#cø.Õ6|è÷µk…—5÷å›™Yʹ.,Þ¹\Ò^°¯7!‡ SàkÃwCÂ;Žñ£à…FýCØÛÚÚ¹ÿ¾|Í0ËþÄßå „ÃשÇÛ‚C|k{5Pñ ‚í>oÏ|aoLßc{°‰bK¼Š7&w<Å{wÞ¼ù‚œ7Q¾ §ß7m‡í_ï¹ù•äKmÃ÷ÂÀÛgcøVöªÙ\iï•¡¢16æƒ_oŒÁmðj×~ö×øøÒRºØ“cpËD¾Ž‡Â{SY¢‰vßãýj*Û'¶ãð{ï:é]i/% ß›o áVÂxÝhˆïäaï­`{‘hÔ}¯ýfçë=Ñ6ð.ÏðMðâŽ÷|Kgøx&ÚÞYÒ^”Rö»¾}^¾ÛÞU¾™^LÜK‘o¡ 3‰­7Æô°/¶ºqØ‹ ÞÇò­l¯xŒYv¹Ö*Óë›nרæ[ž­ó• M‘ŸOì¸á£_–º¿µçÓ|…AN~A¼¯àù<_N𾉠\:œ¯xÍ÷<æËžô²òßóq–ùËÉ]NPÓ/§oba €§ä¬´.yβzÍ(ä;lh ®­`^Nî§Êöu(+cßí5ëžÈ±@ÝÓ-V£ · `Ù¸øÎߨ×\Ô7Ú•]³úÛW–z{òÉšl‰M©­ÛógV[KlQm¥Õ†YG-ÜPŒϞ岺Y¸}K™ã+ nYS5lvaEʽi àÙ¥›¾•5rÂ+í¤á, –Ž}4þ°ìËØ–e[r•]1üù—¸lÉéËiK ,eMT\ @ùc+•¼ bY’ÞVØíâfLjÅõQpä]«‹¼Se# Öüx‡Ì¿YÍ£2mƒáOš¬±ñ‡GÔHÚƒ#–øG©Œ\ÜÑu1þÄÇퟱ?u'à ɇeüÝáËÂŽñÄ^Vâð,ñŽ‚uÑ6Päáˬè‹ÛN ôÂÿYg猢 ï‘XAá¼,—ˆk…º¢gÃ:Ôd«;ÓöÒÞå²ÁûX è´¦‚ ç9,ˆv…¹pÙØè"nÌÈ« iÓïÂ],9×7&Öåâž)˜Ek…é0·í¬€ÙqwcÖ:înLQGãÇ\²ƒN;Xà,qü¾˜ŽV‡ù_¹¸‘ &jCbV6nXLÁ:tâ|k4QÜŽ,8 ªÒ·ŒÏÁ•Äü¦37Nfƃ™Ë%mŠqI›OÄ{=±™…œÈ®}o±%Jû6d2ľÜwØ·##ö±‹´v!·#±oÇûv´7b߉¬„Ø—;ßû †?bßA´ ìË=Â@É&wìö„aÀ¾“ý5°¯..Dõv“9°ïä¾­À¾óÄ®Y8',eïØwø=€}cggKŠçƒ– ì;üu`ßÉ3}#ÒÔy#‹öÜCØwrGZ`ßùàFöø€}'o`ßé;¡ûΛyûN¦ľóv(l÷Àë‚_ûÎÆçj`ß% ûÎÛÑ­a_ßù›Øwú£À¾¯;” ûfùv“»ûêfxíØw:Töõ­òˆ}}'Jb_ßHØW¯€¸¯~ï~~üª­ùµ ¡ ýªo@€ì×÷#ûÕÃÿþN>›þÎIVø»6i6øë{øþž‡>Ð_ûÓІOßSüWO0Xua¹-øŒ={Á€‹~›¶j TP`=¾+0ðyxS¶ÅõÁ” «Ošk$˜Kë ¶óÅñ[«J0X›Xh°6¤#í­- X 6t¶›Ÿ6|>}ƒofõqA˜mÜÇñ 1ÇþÃ@Ì>p1OöÔDÌçqú›h¹¿. óé»w’2Ÿ¾û$1³,‰3ÛÈcÇh>}÷F’fëÉ  5›>6Öœ´Áf»Óm¶‘ç#h¼Á}4^oΪÏDœOßMÈÙFÞ´Û³êãtÖó¹ŸOPgí©:vg~гޅ;k.†Ý{žOßýäÙR;ìmèÙ|ù{6à³êLŸ-÷K»=«~Öž ZsAî}£ge·gÕ’v{ÖÜ»9„¶\Ñww¶žÕ'N€¡õïaZ}B€h=¿æZ“Tý{ÆFDôøh`Ñæc·fƒÑšœi·gÕâtzB_i·gMOÁã¤UO×Úž¯Ã?oHZõÜkLZXì.(­z¦Ýž5¡Åd°´jòaë55\`Zõí(ZÛóuûñ M[ úlC’j¢kƒÓç廯ƒNÛ†"¾»óÛÐTËøŸf€Zus$­íùòû ˆÚްlŒÚŽo×z”ZGòl)©&Ø#qjõy|ÕêwßÝùí8,!O¨Zð3±jûnj\5vK·þŸ7 ®íyºžh¯¤æ‚öܨ߀„«–„ÂUc÷w°pi·gëŽ[;ØþÃí|€kþzût€¸¶Ë7Iĵ}=¾»³ö··냉«Æõ·€ÒnÏvŸÀâd@¾O´ç‡¿?À¸jðzñic qûûŽÊšÇ7£€“ ãIOZ¼=_i·gÕ–ïÿ´ £ßf„üÀèB®_ÙH·r/°!‚ß„|€öI ä^ãB®G±òj#ä^fB>ø[‚«2Fm„\?M5Qe4Ûù¸‡Aȉ<yD!÷ºr-Ü!?¬^È΄|tŒ3 䃽:¹×kK¡/« ²ñ„|ðé„|ðY„|ðN!¨ ä¸:NÈÇĘ B>&ÎŒ…ÑΚ…Ñ-¼0šóˆ^}áZxatÃ×ðÂè‹—…Ñ‘ £C¢0šU^Mjï…Ñ7  £ ¼0:IL¤±0ú&Êaa4Ÿ¯¼0šóñ^ÝÈÝXí§…ѨwŒÂèæuÒ(Ñ'ï¬Ñ^ ªÓ˜ë^…ÑàÑ(Œ>‰CWa4h6 £½…Ñg-Œöê^F{)0 £ýœY}yÙ4 £ý'ca´×v³0ºñ×ga4k5¼0º±1°0º9±0º±‚“…Ñ튅юïXd7‰i FßdÕ,Œ¾9ÃÂè‡0‹…Ñ-‡…Ñ^²ÉÂhv ^Í;Ï £…™…ÑÂú]F F'Þ(Œl9,ŒæS©F{©( £Ùoxaô Lfaô {ga4k½0ºsV……Ñ!QÝÙbYÍdÇ £;gUXÝ9ÿÃÂèÎvÅÂèÑNüYÝ9Áàç Þ-^8 Ü->‡Ú f°[²T­§Tn¨[{Zù韸èÖ³òJèË.în`n¯±6H#¹±Ýx0î% q/i …pˆ àöàäÛ"îÞŽ†º p[„w(ض{ mmf©0Z8Ül/i\[øðM¬=–ãƒjσ/ ³U´œ˜öd"G¤='Ööëˆim™^rm<[uˆ³…c9i¶~ÀꃳطWBŸs}} láóI¶oIl!=#ÈŽ {IÙ2¼ÚîM½ÙÆŽ;[t ±ý†%çX@ØYjq•°ê[#¶÷*ØúûâÈö¤)Ãk¬°; °ý$ÀÖ•:û'¶p[nÖw`kAØý €-U‰Øâ[œ!`«k;ê°å"ÀöQƒüzIaq€ 赿·Cxíõd×Â:¢k òlä:J®½2‰Ü:Š­ý=8RkmŒÔZ8aBj-'©)¨uÔÑZûû`dÖqV`#^·Db-«]¬£À¼Ú“âj½8 ÑF«}”$¬^ÒXµ8:ª^×Hµ8¨öŒ‚œZ}(Ÿ¬ÿÃe¥ŽJJ@ê(£ÖÆÐ?¨‘#¡–FÀ@- Ý—F{«catã9³0šoúzats–ŒÂh£xa´“ÖÇßèdqscNx9§ž&‰‘Q}*-UYíw £ïU }>‘Éxats ŽÂhçu,ŒnŽ‹O¾,‡¯ÏÂh/2fa´×+³0Ú …YÁ(Œ&ðÂh/ŽÂhVaô“(´œ«úZ¥“«0º%·FFó³ÅUhW,ŒöÛ™…Ѭ»X…ј¬`a´ß¿Q ”ÎÂh'½QÝDËz Ñ £ý¶baôÅ÷ XÍžUÝsa4Ù½0Ú‰. £ýJ²0š•#^í–…Ñ~’Q—O¢0úòJhF?¹0Ú¯3 £9eï…Ñ~’Q¯ÀÂè›? £Þ),Œ~üP^=)Ÿ–N£ÛdaôãåË(Œ¾Wô´1UÅ,Œætë*ŒFUqFƒ °0šó«^íd†…ÑQcÂhN:¯Âh`CFó\…Ñ€V«0 …Ñw·FwpFwLF;oda4ß®ñÂhŽì^-„…,Œæ›W^=ˆ¦€’'kD¼0š©šFOr>F úXbäyº²0z*²0:äÜ0¤–“$Ž È:ž £'‹#Y…ÑINKqa5ELì8Ž t<ù'ÉñäDŠFO¯±6n<Öà²0Úg @=5%4ž'«]ÁŒ'ßT'2ž|'“Äxú€ñäËŸäÅ“ï®Oå¤Å^IX<½L¬x66o b/L )ž7Á!@±ÖøA'žŽ½‰gwêj9¹– |ùd­#¾ñ벚ùbÉÃôJh5 åk-$x¯ñá÷³6H<¬lŸ5:¬k'8<½nlx²n€hxÞlÀ ÃóFŸC0<9oI.¬ŸE°aáÙ žœ´$žÍ™²1aííû ë‚kDx¹„gUžL!ˆƒ½¤“4x²`—08‚Á‚g-Œž7k»A‚½Ò„ XßT=Ùå¿¿/‹ªO‡°€ÀZ‚#OÖßœ ë"æò <}BØ OÈ×g ÿê£ è°ÑßIìGøë•6d¿ZŠÏú]Òú±%­kš¬k ÷ÕCéÕøé—¬ÉñG¬9ôEfNô0C›ôÏ¿ûüÝû«ÏÛ/þø¿ý÷ßüþWÿùù׺ÜÌ{*ymÑtá—õÏ_º¶‰¤ u‰’jC½m”++x‡kª¸³¸³¸ âîšJ.¹»¦Š«Ä|¹¯J.º»¦’ ¢î®©âŽ‘ÝW%ÄÝ]SË%§ UÜQÜQ\zwMwwß]SÉÑw×TrAøÝ5UÜ^Ü^\̸k*¹˜p×Tq{ËnÏíŠ3îš*®W²ËºPÉÅ ƒ»¦Š+Å•âbÂ]SÉÅŒ„»¦ŠÛ‹Û‹‹ wM%w¬{òw¬Ê+n—ìöÜ®0î©âJq%»œq›2û6%²|“ÕŸGñçQ|õË7™}›EY¾ÉìÛ´ÊòMfßæY–o2û6ñ²|“ÕÕÕ7.½|“Ù·¹šå›¬þ¨þ(>fs‡¬þ|Š?ŸâÛ|ÏòMfß&€–o²ú³ú³ú6E´|“Ù·9£å›¬þ¨þ¨þÈÝ-eö-X¾ÉêêêÏÜéR&3SáCfߦª–o2û6wµ|“Ùo¹ó¥¬~¿ŠßKûÃt×òMfßRî囬~¯~¯¾Í-ßdõ¥úR}É]1eò1©>dõ¥_JûôÛòMfÿÊ]2eõû(~/í3uË7™}›º[¾Éê÷ê÷ê÷ÒBV_ª/Õ·é¿å›Ì¾Í.ßdõsÿ ™|̆™}›B\¾Éì¾\¾ÉìÛ$ãòMfßf—o²ú£ú£úOé?!³o•Ë7YýQýQ}ÉI*eõsÿ ™ý™UÊäcö3|ÈêÏêÏê_¥†Ì~Ë +eõGõGõmJuù&³ßKÿ Yý”¸RfäÔ•2ûRúgÈìÏÒ?C&Ÿ+Z¹™ý3§°”ÕïÕ¯ý3Á ÿªy¬¯Š¾Éê÷ê÷ê?¥†¬~Jg)³ßsBK™},µ¾ÉêKõkÿÌŸŸ5¯õչ܇¬~¯~ퟹ~Wø×Ö?cÞzù&«ß«_ó[.ùþ½õÏ\,ù5¿å¢`á›Ì>V ßdõgõkÿÌuÄ—-¿åÂbáÏ-¿åJcîCfÿ,ý3dö¯’ßBVT¿æ·\­,ü¶õÏ\¾,üg럹žYòGi\à,ü¾å·\ñ,ùµæhá­ÿäšh᛬þ¬þ,>WMs2ûgé?!«?ª_ó[.´¾ÉìcåµðMV?÷ŸÙJ~ ™ý^ò[Èìcõ¶ðMf˹…o2û³ä·ÕïÕ/ù­¯GŸ2ûX.|“ÕïÕïÕo9¿¥¬~ê?)³çü–2ûÝÖ™ ßdõ¥úRý‘ûgÊìKÎo)«ß«_ò[_¼Î}È쟹¦¬~Êo)³åü–²ú³ú³úwîŸ)³%òÂ7YýYýYýžûgÊìœßRf_2@¥ÌþÌ•2ù\ˆÏ}Èê§ü–2ûgÎo)³ß2J¥¬þ¨þ¨þó[ÊêÏêÏê?¹¦ÌþÈý3eõV¥Ì¾äü–2û3÷Ï”ÕOù-eò¹Ê ûÙ¿2`¥¬¾T_ªßr~K™ý;ç·”Ù2h¥Ì~Ïý3eöGÎo)«ß«ß«/¥†L>×Ct²ú ºRfÿÌù-eõ¥úµ暊á_[ÿÉEÿ+}õU“/Õr~K™ý^úOÈê÷ê÷êK比ٟ™¿RV?÷ŸÉGMSøÕŸÕŸÕ¿2¥Ì~Ëü•²ú³ú³úwÎo)³ÿ”þ2û½ôÏÙ™¿Rf_r~KYýQýÚ?£kù³æ·¬Ï ²ú£ú£úWéŸ!«Ÿò[Êì·œßRfÿÉü•²ú³úµî=ç·”Ù9¿¥¬¾T¿öϨ$[þÜúg”–…Y}©¾Tÿ,ý3dö¯œßRf¿eþJ™}›Î_¾Éì?¥†¬~Îo!³ßK~ ™}Éü•²ú½úµFUÜòç–ߢL.û5¿EÝ\øÙ¿Jÿ YýÄ_)³ßJ~ ™ý»ôÏÕÏù-dö{比Ù™¿RVT¿öÏ(è[¾lù-*ü²_ó[”ü…™ý³ôÏÕÏý'dö¯’ßBf¿•þ2ûwž£Ìþ“ù+eö{Éo!«?ª_ó[Ô".lý'Š—?+eµbö eù¢û”ÕOý'eöÏœßRf¿eþJ™ý;óWÊê§þ“2ûOÎo)«/Õ—êÌ_)³/™¿RV_ª/ÕŸ9¿¥L>J1ÇÌþ™ûgÊì_™¿Rf¿åü–²ú½ú½úwÎo)³ß3¥¬~¯~¯þÈý3eõS~K™}Éù-eòQE>dõ¥úRý3ç·”Ù¿r~KYýQýQý;÷Ï”Ù2¥¬þ¨þ¨~Ïý3eõS~K™}Éü•2û3óWÊêÏê—þ™%²áCfÿÌù-eö¯Ì_)³ßrÿL™ý;ç·”ÕÕÕrÿL™ý‘ûgÊê'þJ™}Éù-eõgõkÿŒêÞåÏšß²Ü7|Èì_™¿RV¿W¿öϨ^~«ù-K†³/Õ2¥Ì~/ý3dõsÿ ™ý‘ó[ÊìKÎo)³?óüeòQ©>döÏœßRV¿W¿Wÿ*ý'döïÌ_)«ß«ß«ÿäü–²ú¹ÿ„Ì~Ïù-eö%óWÊêÏêÏêÏÒB&U×áCVTTÿÊü•2û­ôÏÕϵ±Ù¿s~KYýYýÚ?÷^úgÈìÌ_)«?«?«/¥†ÌþÌù-eòQA>döÏÌ_)³•þ²ú)¿¥Ì~+ù-döŸÌ_)«?ª_ûg®/¿où-*Ù—?¶ü¥íÙ¯ý3jÝ—?·þÅïáCV¿W¿æ·(_þ¹õϨ—Ï~ÍoQ@¿üVù++ê—o²úRýÚ?£æ~ùϖߢù}ËoQ•¿üQù+Ëô—/[ÿœ‹Ù£¶}ù_ß óO*ˆÿÃ¥Éß-ý^ÁÝ÷ ¢¾WPò½ ÿïM˜~oBê{ߪã;@ë;Àà»dßKˆ¿—P|¯Ãÿî õ‡䟼Qu3‚Ùl³wFþúþêóæÜ?þ¯Ï›ù]ÇñÄ‹#¿`Ãêfó}q´ÿÿüÛGwÝ=ŽþGlX}YUà:ÊO¿ùžÌq}¶}›júfõ«÷üóãoþ6â›a+\¼)ï»_kmZÙý:ì“oø–mµÔ=í}M™üSòÞ×”ÉÇzásE½åãtÂ_g÷‹wŸ矲õµ®Éú'l}­¥”ßÚúš­ÛwºfÏéR‹üÒN×›ôà_¶5òÿ§m¯¿Ö£ûy}£KOö×ûôðÕN=|µWÏ_íÖsÀWûõðÕŽ=|½gÏ_íÚsÀWûöðÕÎ=|µwO_ïÞsÀWû÷ðÕ>|µ‡Ï_íâKÀ×úøPûÞßì€ü¶ùfäßì‚<à›}PÜ™Ñ ýÍÿbl0endstream endobj 724 0 obj << /Filter /FlateDecode /Length 773 >> stream xÚÍUÉnÔ@½ÏWX9ÙRÜéÍË  Ap@BÌp°<«äeò÷t-m{&dµzñ«¥«ª_É`ÈàÃLòüv1»¹Ëƒ¹˜§: ë@i+r©ƒ4ÍD®M°XßÂÏm¤³ð1ŠVa©p寶2ì;š÷pÞòaAÐ:ÒyØWVá·(IÂâÀ»âˆºkb·.[÷nÔ i:®a,Q|èè0͉厎T¸©FÙ=˜l@E[+Ã7›b"þ]Eߟ\xb¥Ä¯‡ÑÏ=Þ/fPz2Poh+Eêr\Ö³3‘©”ã x)>¸ùX+¼kg_ÜçÿÅ^e<Ñù"_i•‹,³¸;v|ÓókµÊˆyÅ©LÂÅv> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 726 0 obj << /Filter /FlateDecode /Length1 1416 /Length2 6052 /Length3 0 /Length 7019 >> stream xÚwT“ÛÒ6Ò„ RE:QCHè½÷*¥† ”$$‘Š ½IïU©*½ƒH‘* H¥ƒ)*J/_PϽ÷Üÿ_ëûVÖJÞ™yföÌÞϳ×Λwøí‘v05$ËI•uu5Á $, 89áXWØß~§) #RÿPFà X¼O‚Åu‘ ÖW X“‹K@@!Hòo -TxÀíº@-$†p*#QÞh¸£¿Îß@n(,))~çW:PÑ ††C! .ësï…¸P8 ëýÜ2NX,JJPÐÓÓSâ†@¢åxî=áX' ! C{Àì#õ n°?£ 8ÆNpÌï€Òë AÀx‡+ C`ð)ö04¿:ÐHS¨‚!~ƒu~îÿl,þW¹?Ù…àˆ_É(醂 ¼áG ÜÔWÓÀzaï!û ăÄçC< pWˆð«uPMÑÁOøg>  Ga1¸ëÅŒ‚eðÛ¬Š°WFº¹ÁX à¢?8Åï»·àŸÃuA =>[p„½ÃÅöP‚&¸û˜¦Ê Þø·Ï†Š‚$Ä…%D0w Ì ê$x±€±7 ö+¾pãgðóA!Q@ü0?¸ ÿðÁ@<`@,úÌÏç?ÿ´`0ÐÅí`ŽpàßÕñn˜Ãoþh¸Ð„§ºøüëÉ Ï0{$ÂÕûßð_G,htOí®’)ߟ‘ÿTRBz}ø……€üB¢ $"Ç?øý³Î]üOÿ‘«‰p@/Š]ô‹ß¨¿{öøCî? áþ³˜O]ûßL·‰‚ ø/ðÿ™ï¿Rþ4¿¨ò¿2ý¿;R{àêú+ÎýðÿÄ!npWï??»Úš#»]ÜÄùþ¥ñDŸ–[”OÌR”ؤŠÑÝwY£¨ÚÉåí»8)}ÿªîü˜èÉEW¢&®Ò¢×Ú^Y’¥CÏ"iúå“!¶É®ÏxEt—á¯ÜOn±AKÑ–©z·´eZ žT ½ý}3Ô]¬QZV¾s„b©U¥ûXTD.W˜Î<½ö3·Øc3ƒÆÇNVaÓ¾ûÅ8‘³§;­­J\SîQˆšhÜBÍŒoFÁ“ã-°à›ZhzU´2ÎÓmqß·ÂkÑJ§× YèW†kqýºðúq4R Èžól£-28†A 9âVÙôRWø[)aœ=A‰^Þ‹ãÝ@ú·=Èa€GI`ôñ&ît“0¨@ÕâHžß½.m:Úæ(Öû´›‚PnòÎù¹æTý-7EÐà©¡pýD/]ŸO+ßSúæeIêÅøƒ•aݤe}J'?~ÚiîÇWÑô­'ÄF·(.ì6åFñŒU1½ÒR"H& ùìsÖæ®°#3ÓN–ì5v‹Vös»s¤ÍõïJ,¦óÇ=.×o›ÝbÿÊH¸\Ÿùz²½Ž¼¯†Ñç N*àܲÚnòŒÖ{Y6¦!·§â·÷l:;¾û^òµ–¯µU`çûåAŽ%×HÛÀv­MYZÏ!¾¶­N1Åvy:<ïmA-¸@ÎIß«Í Ä½´iNŒF !O¹HúÑ ÎøG7&¬“ @7³«Ît}g a¸³ÐÆjS¨¨á%Äù¦Ä'›Á$y÷¦g*…=žÇÇÆºäÝ±Ž¶KÈøŽh"ƒP „ˆØ(‘.mÐ’ÐÌœô ƒ·øF¦¨Ç.Q~1««êG!³TN²^DµzÉõ;|Ш9¶`·2VÝïpÎ0ì‹ôä;¡X^¦ßf¤QͺJ,ãÌgPÕ»¹™Ù7MfíëoÖHÛ‹<Í7.¤œ•º³tìAwªË;3!͇¾~Ù<º‚wÕx£À`lÞ³[âÞc'¶ŽÑïi™èyßç¨MùØ¿lq ýô5¯Ì'Bgt“+¼½Ðož-¹Ô_´p|ð­n^N>vj¹Ö8ïcò›¡gÆØ¢ Œ-Ö´Ü&h^ceé` ÷>ùÚxÍ/8/ »:eþ4¨ù–xÀ¶;6xÁáØ¯fu$‰§2T‚ØÈpÌ<ÙûL¦VÈ9Yߺe1¨™Š³ýJ¬IvsÈ‚ÜxŒ`^iÅ3e7äü hˆ³Ôï jú†ýg'z¹HšÈËÖž*Eß`»ö׺ˆ6 pû{#Ö muòd¨+pai–ê@¥î&EVØÉ [ïîÞ¢‘[eÚÐõU`Wî盟ÆÈÙ^ÚÆ7ÇÞ“·Q´¤é&C,¢€ê€lQ¡ûÂR Ù Ì}2÷ÔG|À‡çPSMÆJ"1n´î­Ãlˆ}@@Ðìs½ÍP!+(²¸/²s.»ÅúþÒÃ{ºÂÉš·CC{²Ê×r÷ã½OÚ:&ÝÍ|á;¼u]‘¢~Ï %‹nTæÞƒ´ÔR_ƒÝ[Ïð‹#{&ä§úfcZI?ô2úòô `±X»ÿ@hÛE)!¼çÌõ›œgœù†Ì'{1•=Ä^4¯hý–Õø92oeÚÑÝä®Ã¹¨Úa¥kz¯­;4ve»P,ë1î‹”‘Š¥ïÎ×Ìœ;+òfÚ:ކ<¯ª&ç.ú,=XipÕ„=Xe·öVAú°S™@¶Î¥fÁxú3ä(î¨H~ˆ!Mù5­¥Ùf·<ä2õ¨ƒ>™ÙÜ;Â¥’Ü’G ÙƒøÁ„r® ѽ+oFKŽêÞ$¬âŸ×¹gzÿ¹Ýó‹AЃAgz9Õq—ê€ê›æÝí:q­õ‡OzãMR+÷3—€ºa®ÇÆ,}ˆÑ3ïÌ.˜IOÏùOLˆ"ñLV$2D˜}È׊Xa•¾¼ÊŒk œÕ+çJfJRoV¨ ”$”îѼ´1¬†Kâ(j 0ù(¨MHäúÁAÌË}!•ÜPíéWõHCC°†—óxÚ.Ù%±âç½*o¤×»zçòo©^ùÕF¯Òˆ,½ëx7ä›sL×iÕ3²‘ò±÷1»@Bò,èq3ƒiU4©4yg-e uiè…Çx8[~<+§Jt^^¯ÏMÒfÉÿf4#[ΦV'@ƒ‡m°WÇj ºŸÿИÁNÇOPnHÔ…æ ìçSý3qzÑŸá·™¥’?ÜyjbC¯sW>¾®·ÿ†žrùª‘îþ{øÖû«SrÉר{†ÂW®¬üæýà|Û¬3[eCb-Šc{Ìw;çfƒZä|ÿ`dãÓú”N¢´ÍC€½AŠ–&G}sJç½>î ôn†îk´ùZ þTD’wR^ˆÕ|ºa>Îó÷R¼Ü|Æbt‡D+DF±3¡8Þ=ïíÊýhIçRÓ0öe;Ñ–IÍ·/käíŒ/ÜFyéOâŒé$ã¦U› Íôù§R&:¢)+5ÖQ« × ¤l·È,q§¯©GÇØ‚UMI|²Á;àÁ ãªdSÓQQo3m_\ÀèÎRêwß©zìåg%ûõSÙrܤðT»ñ„–˪EukÝÙ{aÛS¼3drE×Ôìyæ¾ÀgÚ{üصô´õʲj!\öûñÁ…a#1,¸ÎµkÖö¥]Æj$An3æ&ý« Oöýôq•ê5#ìÕB¨è—·Ê‹ QÝ¢T½^:*oÛÓ"ëžvë±¾3$êD}ÍrèñZRáNy4ˆÈ«žšÈš†ÏÄ<y¹Ú9ÙôéX=GVIĶ£jñŒŸ¨ô´áËÞµµ ’@Ü«”•Xt9 åÆÂ(G¡Òs BÁȸÏRJô{À‰¹\êÌ9£Càb +Œm a7Ù7£9‘»Š^$w¾˜{ý»Rõ)?µKË˦œž—ÂÅÝ“—ÚlånQ³ s6Š­~h¿ß<ÖNCv‡ÃFî6®bATÓƒòø^þ=‚‚Ô|&QñTÂM7¹÷9‹Ø¾UOúÖrº?éHBI+j¾e?õz#£²zѵ€D½w¹•»æ}¥Ú—¿‰Qµ+ÎŒ÷ÚÚ.·:K RÞ ¸_p~fRÄÉ{,Ælùq§^iu1q*^¦cån4ŠÈ¹, ½gݳÂ/™ƒ—h=Ïiø9|eRØ=ð³v¯9Û9Äï)Àò5VCyãòVÿ[º @eqø²ŸÜëZº’NT*󤂹ucøÔ÷µ€O*´2Ìõô8?œ»˜~ê¡2Yß··,,“÷ÏP@®TbÊZÕç j1n<ó7æ „IJ±ó†+ðLW§—ËÍSåt©ÉõÏ6Cü/ý\üuF>-}}u@]¶Ëú…ÓÇ —ŠÌ&8¹„ÝXü¡ÆúÆ¡—ú¹@|(å&ƒþAhÆý¨oÎKjtÆ3-ï®Þá€l1NWc’jó >Zº@]ÀÈ*¾Õ‡daƒ«óĪav[Qw”ËÝw:¹BOÍi75ó3{ÆÓˆÑ¯,§ë_?zsþéĆ´õHXlFÛß@É/¯Èrx¯*t|Ç…ôiÐPŸb;÷¤•î2ãjJr*ºý™8ëÀ²‘÷úÉU®³Ãï¼eYvK¬q¢ªÑŒ8޳GЯs £HTì+Åï„NÅh EÈ«p[­·‰g.Q-MƒêªNã\kò׃B€ù´ å̶ÉÙK ’Q7Ó– :‰ãT+C,ÅJ\[Å_L¼&Ò¡üª#L+!‰È—ÆvŸfÛD—+Ú~¾Jj•{ñEÛË]¸³pá ¶˜µ,s=îïˆÙÎpPþ ìªj¼BEs’À–õº¦P*—›UC®¶6uwp¶f\ºâàcï‡'Á~nfYëü?êt‡p[Œ_\Nôäi'¦QÎ&Ó"H˜š³¤ÞL©Ÿ úúEªë·¨9'Ku[»Kû6‰‚Œî¹í>kaÚ ÷ŒÚñ½­¥e’[/Î=Ú¢÷œÏ¨ bäÓrgYÇVEJ0R­V½ÌÒBå!¯ªå]Ûj«¡t4Ëgw voÂÈò§7ø±àÇ™{ãídB“gN]NW|æI×G’™Cy´Á±o{ˆ–¾J¨sRG †ZÞlö4èþK>Fœ¾æ€l2‹Þ|žÓ JŽü4¥r3¥ÞY…|ì¶„ô•‡O¶kÏw0Ĭ¹Ö•²ŽÊߟÆ×ÎÊ­m~À]–ޱ±JlAûãÿj$VDbRt)?Ww|Ü”vô†YŠòHIV’cïòÞMŽLÞ±ø½ã>'4åÞÍ rvX©ôÚÀµ€Q³n{ÿõ3jÚâ9AÁœx¹¾0Æ ^iúÜýJü`cÅ‹¤2ª ÔgǽKžÞVó–Y3!w·ogò9 µë÷¥}ööŒ›DQ…¶ç¾Ž-Ö{º5Nµ@Úê²¹Ðe¿àÕ¡é¤*ÛT^h•`…'´û]mþ¦ùèäk¦Ð,cùí«…aÄégÝä•©€÷ ЧÞM&†. Dqø7’ºþæoÛBƒ}[ÌïŽç™¾êæ^ÇÍl¸ùx¼zÜ©‡åÍü‘¥"PI¯dJ °‘ƺŒÏñgfoˆ°rד¨•m¥3^9œýZÍt‰HQ?—»<óÆ¡Š“{æ5¤2­qKˆ‹$I¡½å_a·´+|SöêŽÁzR*÷¦ŠŒtseWÃñü¤æÊ‘†Žõiýü‰b­c¨zâ[=£ÞHhÐøÏæhÐÙ%ñ÷Ê­••ò£Ö*édgÑq#¶)ÛtY®îeÜBV³méz0ælíµ$P ëùâQ8åà…uLÚö5ºëÔ¶wýÎÙeµgÏåUVµ™33¹jøv"òÑ–B䢽&P­›Ÿî™<)u"©ã%´ÍCŸ(R”%šHôôv#ãxQ˜+,GWU ÷]]Ší|;ƒÒ†ñшœ„!ïáÐ úàÉz?¶—kÚëµMƒn¿`ZŒÎIF©JµzögçŒÐ«Bi(s;K;e5÷Ö#еzm¿¿I2ç1ôÚšKX#êò"˜r*¹MÖ¬¢Á¸‘; ê#„Öùw4Ñk^Y mÜ ,”r'¦ïésòÖž­=S“–¹wžû.ä§§ïö‹†yòqjÚ]cAtÛi{Å–b—ÝFKo~íɲk)§+n”ñÇ|NT¹«¬'¢mY?»½*¯zû‡!bô ùÖÆ¢ËíÙÜÝ£¼c_- žó] KbfR:¿;I£&ò*2<)[V™§ß’_~O(ý4·®þ®—º#‘„ !ØcMSwÑ;Š C‚^DP—Õ·²¡ív®¬­S !I<ö*í„K?ü驌ÝQrVnÓ%ÀR.C8›´ìÕLbõé‡qTâFhWh5G„ËÞò[…%²º¢´(ˆn@øë”t·û«a¾'i»vŸØÒ)®`uÂ$Fª@©ýá¾Ãc­úl<óîïV¨Ô’±ä)ú¹„ù²^Õ…ÍÝ$QSW?Ù¬vËž'Rò¥VŒêK®„*ú 2<±¤Xô¶¦¼#ëeÝñ„äelûü1}²0g¥©% ùùàÏ+*$/câY,ïz«$M¶]v3+²¹`9Oñõä¡Ö´] ,ë„C ¾Ì+~­lcÔ-á>E®Uo…W_é?=$% !lOA îÇbG˜(¼(’wöøéyÅë·4†m dvÀý€¦ ãK5Ó.ïESíÍ1Ç)«‚ì]ÌPâ+îÞ†£2½l‹^²»üYáÄ?Õ‡éü*ï5}ÃAÓÇw+†ùyà„?ÜL'æ¹Ku2R–Ì£ž]:CÉ VQ¶qÕŒýT­~´?™/6âdáÒmôŽÉ¿§\Dnw´ÔXÃG®èy];pð ÈRŸEž¯*¶Ìêj†“!9;Ôí·a²2O÷ÿ+Í£‚õDÞÀà¼ò.§`1éaEš/%T‡Š8x·Ö˜˜:÷οšš0ëœYç˜)T|¼°Lï~û@®RtÕ|dÛ†l#/×` ±ø ÿ‡aq·ÓFzÚ\“_K°_¯g¯î~Õè¤uÒPÔ‘Çò”Û9æÜn…—^ÖÍ|:š¢é¹6lUÖ¾ÅȘ6{”ö‚G“ž°ó²Çª1m§ò—tN×Q?Ä!Eƒú g^ÔØ—Q©>L<éçê¤{ô‘´§¸àð¡N“€<¨v–ÿýÒ”‘­ò‚Gâî0ãŒúb»B  [Ý07Z‰56Ó· eý." ïÅá•àõ™úÇãCóFƼÒG mu:›o š›È]\‘YÐ÷Á¸T/©Y ß6qªvMKÛÏ cbÏÏÏ0îaÆ¥­NÄÐSÛ:‰\Rf÷"»ZÒãKŽÏ êtìå¢#µ/g^U8~oùÍHOJâI>ý_ŽÄëEód&òs<Ëã†vœ#'SÈ膀´5¹H±«K]½þ»v¦ÌXÎHIœò¤'ÀµŸj«gÄÒŸÑï:‡G'2E¥0}Ê1tžìÌ;ðh#o Â~峊½Æ»5¸_ŽË+w: š<´ä*êæ k?_ÿé.PÕÈÚ6û®0ìF×Páf¯k’©—ðžqöó+ûœ:v8&R;#ÜX­ R*î½Ñ+„𠸧ï]Ý÷'Qו™ e™\oáuF«Ã<.ëùølrNñ[D/åð§ñå6Ñ X¦Kœ”aªQ¹®_]ÞÈ’pëq@@äu£†U†¬¤²kˆØ#Œ$™Õ„`§X÷¼ø©cKptzy錔–åø AIBûζt36â ¸|²Eé[ý³ðîÏ>¡vî圱ý5GD-?\TÊu¶¼ Z$™É"ŸÝqr›Úç,ú8jLÄË­„ò®Å…K;J´2pœrÝ·»‡©¸\s~­¥ØË© a~ÅѲ$:©cNLJ”‘–à j³ux™L>¦µ Í‹³âŸyíÍÏ->”‘j©èÅynþ¤À¤c>áyR†ìX PHiød”{ëäG‹ %ŸÅºø¬ÍíQxz õqKʽø®ý¥w‡–ûÇŸÖ;V>|³F‘‘àúÙz`G¤®ÿaž¯…¸¸\³èx®¨æ•Âm‰è®ñËI6.ðrûÂø‘vèõ …kzÃ7ÙŒãÝ(IÉùþÚ(›^endstream endobj 727 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-minorTicksPlot.pdf) /PTEX.InfoDict 302 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 304 0 R >> /ExtGState << >> /Font << /F2 303 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 10209 >> stream xœµ}MÏæ8vݾ~Å»Œ~-‘â×vŒ$ˆpz€,Œ¬œx1˜1àÌ"?¼Ÿ®Ïëú(sÊ_O-ò×ý<ò×ÿùßÿãã_•TççµöÏgÿ5êç5?Zÿl=H÷×ÿþŸÿðñ÷?}‘Ã]øçOÿßö¿Žöñ¿üÓÿü¸>þ×—ûãöÿÿôåÖsÿ×/­|޹[ä$ùÒêçó|Ô¾>Ÿõñç/íù¼¯ ÷>÷±j¯Ÿk 쟣lØ>{8>ë>TïŸõ¨?ò}ìkÃç³ë³6ýí-Gî÷g-úÛë6¸ìPEÕËg¯zUK~»Y–^U­—ªÉeì¿—ÊÈûVÙ¡º\sŸE5>[38÷¡ÆõywSþYNT¥øûŸ[QxÉeŒûóJÖßn8÷¡†^ú†Eî™ÀK®j?¨]2!W9òhr䚟bp ½íEO´®Ê¢C²<ëþ’§”h¬ÏqktJt^rGý n¸Ï_ôDë6ا^ÆPrù¬v(-àÜOãVئÁÕõÈpꃭã±Îý4¦Âq\rÍMþuÃ} à’ZwÁšœw]Ÿej_ëXwQN…÷g« «\óªŸíøÈ黨½œ·B;r³v±¤`öÏ[®j~N¹íkjÎCÍÏÑá·»šÛ¡Š”÷¾v£ËÚ-1ð°ëj—â"E¼–⪕xßãeüGªoÝ·ñŽûиޓûjZËÏñ†Vä}þçq,5y_üc¿ßmF®oÈ#¼/´ë=îÃñ²4õx÷mµ¹IC\´:KÝÓ뽫´§¬9‚'<ïû~´¾ïã-;^·*ÝìfÞ÷°:½ïqs^ö+ý¿ï2‰pïŽRêûSíùw¼/ÇS®¯Ø»ížUÛÃ.ÿ£÷k¿°¤¾ïjf÷{¿¢¤¾#–î?ï÷ÔŽðÔöÐü~ï×”Ô÷ÛíXê{ó—é½ß[ÒÿçóZEûÿ}>}« îøü÷«Kë{âfõ=ο±ôÿM»Á]ûÿÍ·ú½†µ‡Gn«àeõ=êÿÆZ߇õ_åR¥"õ[ûÓrÝÚÿ7ÆöPöû ë{Ùï/­ï·½Ê~ÝP^Áîo¹º¶‡Go»à©õýñþ¤ì÷Õµ´~<ݱôÿ÷we‹Réÿ”e¿Ï.«OëQ\£¾_µ¾{VöûKúÿG«‰à&ÂMê“êUÁÚòx#ê»ã™õ}9^bU¥e¿Ï¤ÿöSÊeíaZ{.ûý%õýñþ]°Ô÷gzù÷ûKúÿoöûGûÿÃ×Q­[ܵ¾GQöûëúTöûë¶þ䮎¥ÿþ§íH¥¾X}Øï/­ï^Š 9ãaý§¾¯K­ÚÿK7¬÷w¿Ï.;žÕ‡ª7F꓾k}o~þýþªUë×Ýkÿß½|»#Ðöà"±HC¿Oÿ]öû« ào¬ýÿ2}QžbÚÞedÙº<ú~,Æo" r!Xê{÷öYöƒT}ïïDz;Ê{êûxÞŽg=ú¿Èƒº[ýÞJê{ DŠ<ˆrFO‚‡ ´,ûÁ¨ÌwÕ_vAUï¸t/ûÆI}u.xÜg Qö¨v<«¯»¡_v<«M/4‡‚UïÜ^ž~™Þ‰ç½ñ²1¥¾OÊv¹à·ö½ß_mÁñöûKõNµÑ’`Õ;ÞÿýèÁ"ã·¢zÌú›}£¤¾K7Xê» J¯þös –þª ܤ`r|ÕƒE„æ:ú¼ ÂÊ_Ëñ¸ <2èèª'­}í^v?T¯”iÃØ­¼» Ýô®Ýÿýþª×$ VýÿØû¾ÌÇô´‡icÙ–ýþ’ú.sݱêÿè¦ gi{ÈëÛï/©ïÃõ`©ïû²‡oÙvFÿ¼fÒÿËeuÇÒ6.v<ÕÎèo— k÷eX¾ß_Òÿï˼‡céÿgô{x&ía.«Ïõ²¡ít}\/}ñH\§«þ÷ãÕËF·s˜ž©û}&íáüþÑú¾.{ÿÔýþ’y…ƒm„».{Ÿ–þŸoØõ¨0”¸¶¿ºß_mh\Û{½m”›ÇÛxÚñìúöûl?èsü[”àfØFº‡ÿh}ŸÞÕ[;ÚSžÛ»Óõ»àaÏË?£¾?v¼eõý¶çW‹w}ü*XÇ»ÅÚWÝã³ íµî÷—ÖwoµØx7Æg‚û8#õºÇgÒÿÇp[ð²ñšêëZl¼{°w^ÚÿïïëxwXÿP÷øLÛƒýkõñnâjõðìg<^«wóþìñÙ=Ïx´î÷•Ô÷èÏëx÷1=(Böé§}‰Ð•þ?úS¾óô×u¿¿tþÌçfD¨xÿ¯ý½íÿ½ý Ökÿ«Âzœñµ •猗Eè_× îÖ?Ùõ>9ÞµçûØÔbŒoUxZ¢úV„E¿—èÿUªÐ¸ÏŒ…f××ß´¾Ç|† uúÁÆ÷"\ÌèÀÌÞ'ª‡åE¯“;>"x,¸þýþzÚéßDHÿã}Áæ't \Ïü†…Jdzñî9Ÿw£?áPa’Kç mòitÇ^ßu|¬Bàú'S‡—¶7»žq[{ˆö6l¼»ãKÏ?l¼;o¿^™l{ ½m¼ìùW;~·ö÷oØx7Û£LŒÀü‰¾Hè¦w³Øÿq7h/»£¿Ë™o<æ™o‘Žè©ðü÷øìZP?7öü­½ïŽ{Ä6ÞÍö>m¼óuú¢XPŸwÇYŸ3ŸSW‰únüeãÝxŸÖýþê0…Y×ó?ÖÞÖcí!qúîxX}¯Þ/ïÊc“ûýÓ¯›äÿÃ} ÿŸÿú•)ü¿þó¿~ù»ÿT>î?þ‹Kô·ú§cäíºôÇ¿|ü‡Ÿþð_þæãúòÿ(çÇå±k'þù«—lñá/QBÃþøéMxëˆ_â¶ q‡'n-ã1.Uâ O¼é&ãO¼ë+.ã1> Åž¸-jdÜቛD̸CŒK…¸Â·uŒ;Ìx7Iñ€—.â OÜV2îãkR|Qù|é%ãOÜÖb2îã«Q|qùLâfÜá‰7òȸCŒ¯BñÅå3Éœq‡'nëAwˆñ¹(>¹|Öú2îðÄU«ž¸CŒÏNñIåó%¨ˆ_½‹xÀ·å¼Œ;ÄxŸïT>_ð˸CŒ¯EñEÏ¿Ò;”/à‰Û bÆb|uŠ/zþ¾Æ˜q‡'nC²Œ;Äøª_ôüe,ˆåsxâS%mÆb|]_ôü}3ã3î Ÿˆñ9(>éùûÒhÆž¸ !3îãó¡ø¤çïk­wxâ6$͸CŒÏ›â“ž¿/ÏfÜá‰Û6ã1Žú"à‰ÒO|’¾ˆñÑ)>¸|‹ôEÀŒÇšqcTfŒÊŒ›DFb`’‰‰1.fŒ‹•¤Fb`<$6£fôWi ŽÄÄX“ëUZ@Ã10ÉŽÄÄXëUÚIÒ#10‰ÄÄX…¬?îû"’7IÄÄ@’…dHb`T"‰‰R$10#‰ÑHŽ$&Ƭ̘¯Òv’$‰1H”$&Ƽ˜1_¥$Lc‘4ILŒ1˜Áêä.É“ÄÀ¸I $&J”ÄÀ($R£’LIL *‰ñTI ŒFb%11údF•¶“`IL ”,‰1H´$Æ$Ù’˜(\c‘tI|î'IF`b |I Œ›Lb`’0‰‰±nf,.m­$cã!!“˜s2c¾JÛHÌ$F'9“˜³1c¾J;HÒ$Æ$Q“˜³0c¾J»HØ$> wç$#01ÆbÆàÒºƒç0î—¾ OÏa”—‘A‰“•DNb`<¬rƒTN``4V9ÑYå&©œÀÀ¬rc²Ê L R9±Xå&©œÀ‡áî§dÆÍ*'01HåFa••UN`bÊ Œ‡UN``4V9‰A*'00:«œÀÀ¬rƒTN``LV9±Xå&©œÀ‡á^²dÆÍ*'01HåFa••UN`bÊ Œ‡UN``4V9‰A*'00:«œÀÀ0ÿÜa8&©œÀÀ˜¬rÃV!Ã11Hå>Œq±Ê Œ[×òÃ11HåFa•˜k0cqiÝxõ­rÜ%xÏ[å [GAÆz•¶±Ê ŒÎ*'01HåÆ`•“UN`bÊ ŒÅ*'ðaÌ‹UN`bÊ Œ›UN``V9‰A*'00*«œÀÀxXå&©œÀÀh¬r£³Ê L R91XåÆd•˜¤rc±Ê |î*MF`bÊ Œ›UN``V9‰A*'00*«œÀÄ •«œÀÀh¬rƒTN``tV91Xå&©œÀÀ˜¬rc±Ê L R9“®Ý`$ÆM*'11På$F!•“U݇ᘨrã!•“æ)> ÇĘ3æ«´TNb`¨Eމ*'10&©œÄÀ0óa8&ªœÄ‡áèdÆM*'11På$F!•“•TNbb ÊI Œ‡TNb`4R9‰‰*'10:©œÄÄXƒëUÚA*'10&©œÄÄX3Ö«´‹TNâÃpGy2UNb`ܤr£ÊIL T9‰QIå$ÆC*'11fcÆ|•¶‘ÊI ŒN*'11faÆ|•vÊI ŒI*'11ÆbÆx•v‘ÊI|õ"•“˜¨rã&•“…TNbb ÊI ŒJ*'10R9‰‰1.fŒWi©œÄÀè¤r£fôWim—Âa8&ÆšÌX¯ÒNR9‰±Ôëwމ±3XåÄþˆd†í˜8 ÇÄ@•“…TNb`Ø>‹ÃpL T9‰ñ°Ê Û½qމA*'00:«œÀÀ¬rƒTN``LV9±Xå&©œÀ‡á»M’7«œÀÄ •…UN``TV9‰A*'00V9ÑXå&©œÀÀè¬rc°Ê L R91YåÆb•˜¤r†ïÝIF`bÊ Œ›UN``V9‰A*'00*«œÀÀxXå&©œÀÀh¬r£³Ê L R91XåÆd•˜¤rc±Ê |¾*‰A*'00nÝ=rŽQXå&©œÀÀ°=X‡álùML R9a;·Ã10Øø›˜¤rÃöƒ†c`°ý711Hå†í"; LJ1Ùœ˜¤rãf•˜¤ræÛ û×£¼UŽïh;ŒúV9“ Á‰Á–àÄÀh¬rƒTÎ|û‚c/Ýa¼Á±»î0Æ[åL6'Ûƒc±Ê L R9óí.‹M‰q³Ê L R9ëíŽÝ€‡ñö ÇþÀèo•³Ø.œlN ŒÆ*'01H嬷k8v&F«ß«xã­r[‡ƒÍɱXå&©œõvÇ.É`$ÆM*'11På$‰£’ÊIL T9‰ÁvâÄÄXƒëUÚF[ƒMʼn‰±f¬Wim/èa8[‹cÝÌX¯ÒÚÓÃp|7ŒUNb`ؾÔÃp ¶'&ªœÄÀ¨º»ï0ƒÍƉ‰1 3æ«´TNb`°å811ÆbÆx•vÊI 6'&Æè̯Ò.R9‰£°û811På$ÆM*'10Ø}œ˜¨r£’ÊI v'&FÌè¯Ò6R9‰‰*'10Ø}œƒTNbb ÊI v'Æ"•“˜¨rFe÷qb`ܤrUNb`°û810*©œÄÄ@•“ì>N ŒF*'11På$F'•“ƒTNbb ÊI v'Æ"•“˜´73ða<ì>N Œ›TNbbàÌÄÀ`÷qb`TR9‰‰1 3—öa÷qb`4V9‰Ñ3ú«´ì>N ŒÁ*'01zgF•–Ýlj‰A*'00«œÀ‡ÑØ}œ˜¤rãf•ì>NL R9íí>ŽïF}«œÆîãÄÄ •ÓÞîãøÁa´·Êiì>NL R9íí>ŽoÆx«œÆîãÄÄ •ÓÞîcýD•v½UNg÷qbbÊéo÷q|Oá0î·Êéì>NL R9ýí>–Ï’Ê v'&©œþvÇ·£½UNg÷qbbÊéo÷q|â0Æ[åtv'&©œþvÇw&c½UNg÷qâÃì>N Œ›UN`bÊo÷±~š K;ÞîcýX –601H匷û8¾‹qo÷q|)ã0Ú[åø·3±^¥e÷qb` V9‰13æ«´ì>N ŒÅ*'01æÃ Þõ_öHÆ|»ã[‡q¿Uμiëgb`°û810*«œÀÄ •ì>N ŒÆ*'01HåFg•ì>NL R9ÁîãÄÀ`÷qbbÊ |‹ÝljÁîãÄÄ •ì>NL R9ëí>Ž/´F}«œÅîãÄÄ •³Þî㺫œÀÀ`÷qbbÊYo÷q|-æ0Æ[å,v'NÆ×¿ðþÚãÍF~ö½MàßßFò+,eß]<úÃÄïVªßð­œóœóÕ±ÙOGÙoeùVN¹®þ·×½ÿŸÌ‘3üÒ!d›Ÿt•ïc<¿åS¿`ô³cŒßp 1ˆ,xã¾~Ã1d*ðz—eü¶û¡_ÃüÊ1ð~x ùê¥=’Â݃Êg-µËâø£¯MƒïjgȸAˆÛwÊ2îŸ-;q;aÆÏù±Œ_ýÄRÉ_M˸æ×îÏ/ýVö¢ ýí}]¯ãõýËsãDÛŸ¯jätú û§ßœ.¢wùÔù¿e/Sø_ÿ2Ô×û¿´_èSã[} 0¾Ñ§Æ·ú`|£O×¾¸é߬~Aøfý Â7+`N 2eˆÄ1e`´Ëî0L¢{Ò eˆ`L"|L¢R†S†ÀïuÈ+;üìúl{­ìÄ”!²¿S†È.:L¢ûÿ eˆìÔÔ!R~L¢»Î eaéþó~Û¦QÀºETî?¦ Œ)C„)CÎó²m™r>Lrž¿m—¬Äs~Û )S†S†s…dÊSÿmû¡Ô_L"õS†S†d{ð-YŸ}ƒŸ”S†dy}ó^Þ_ߪ'õS†Èi0eˆ\¦ Œ)C„)C$Ž)C$Ž)C$Ž)C¤~`ʹ-˜2Ž7¢¾cʬ߾éK0¦ Éöãºä6aʽ-2Dâ˜2Dâ˜2øºeª\R†dá[™²þøÆ%Ýÿ)C²ÿñMIr[1eHÖß,DxXÿ‰)Cä1aÊCÊyL˜2D0¦ ‘ú…)CcÊÁ˜2$ûoßðrø¶½E#¦ ‘÷ ¦ ÑÇ)Crá[Jäý‹)CòýèÛEô1@ÊÔÿ¾C0¦ ɈoÑÈÑ“oÈLj)CRõûF‰”î¾-"Õ¹o‚È1„oyŒ)C„)CrácÊÑ7˜2Dª ¦ ‘8¦ 9Ç3k¿ð1eHêM·í§t“¾TL"ÕS†H5À”!9,pc|êm·Á§^vÃz1ßG¦ Iñïft­†2D0¦ ‘ãcÊÔçn×j)CNyÌÜ-ÍS†ÈýÀ”!‚1eˆð1eH’Ü>-÷S†¤¾w[sÝÄ,ÏS†h·)C€¯väs}f–ò`ʹ?˜2Dš%¦ Ñf )CcÊÝë)Cd7¦ ‘fŠ)Ct·˜ÅÕR+ÍS†HS†h³†”!y<·± Æ”!ð{µ—J³Ç”!€m„+²R†Èù0eˆÄ1eˆÄ1eÈ9ž™3cÊs|3^j7)C€¯†H¹~LrÊcfGé1eˆ<L"Ïó”!‚1eHŽ_ÝN(íS†d{u›_¶7õåøÌ-|9RwÃ^·Ýž§¯ HØÇ»R†Èï1eˆœS†äØßç W«ïR†äxÜMgçþ˜Å,Ç£nËþÌ­_Ò1eH¶/·ueê&®ì¯Ýn•s3n®ÊþÞ­TÙþÝ8%S†äøÚ M9^vûRŽÝ¬$åÁ”!ò{L’ã[· ÉõcÊÀ%úL’3Bnõ‘ãcÊœÏp Nö7n¸9õÇì59_àf9¦ Éù7¹œë7KKöon`Éñ¾ÛUÎý3cIÎo¸ŽgãÝs>ïFî†ì¿Ýº¡{Ÿ!eHÎz¹-ãÔ?3aH{Ô!§½™9Bâ˜2Dâ˜2ä´7³9Èù1eȹf?8íÑÌ9âÖ‚Ó?˜‘àôf8íÅøs¾Å—ós¾ÅïÏó·¥úS?ma^î/¦ lãÝlï¶<žóu¾~ê³-}ç|Ž/R›¦É”!ù>õ蜳ôåæÓÞlqpúŽ)C¤=`ÊÁï”!¿4ÉÿCR†èØçß+eˆ/>ä2·cYëxÚƒÔ¸. œ¸Á·™þŒ;„¸Jž7xâ6'Ÿq‡WIrâOÜfÏ3îâZ·OÜ ÄužûÄ ž¸M^gÜ!Äõ}âOÜ瘓ÚR=ïMÇÈPÑ ÃÀ°Ñäa8FÆcóáÉ0Œ ñÃ00l wŽ‘¡£2`†³Ã12tä ÃÀ°±Ða8FưÙÜd†WÃ12t ÃÀ°1Åa8F†Ž€a‹DM``˜’? ÇÈPm ÃÀ0µ}Ž‘1I܆)bÐw†‘Šï(ÀÃø%#üL: _‡ø‚½YÖ8ÆŽü¦×g`ì0 ‰…ÀX1YÆ€W~Jr?ÄÆ(Éýÿµ1þì¿ÃÆø³cüãû¿ÇÆÈÇø}6ÆŸãç6F]›96F™J#㉫ÍÐ!Äï6F‡·¹“ŒûTÊ‰Û 3~Îÿ+­ˆ²xõ{mŒ²ðñ-cÔ÷°-FË ,|‹/˜ì_i†û¡6ÆWŸ—öí>ßèSñõ>ßèSñõ>\û⦳úá›õ/߬€ù\ËÏmŒÏü®‹ñúÆoæXçƒFÉj{ ŒóBÿâhh_Ý‹c¢yÑL{á]­‹c sqL4.ŠïáøeèØe†á¸Å1qL‹c¢gqL´,Ž…ŽEsF„aqÞèWœ7ÚgA·â¬hVœ½Š³ Uq^èT”¬ðǨ8+úÅ&xlŠ’_þ¸w LŠöŒÂ£8/´(JÞäãPcâ1(Îý‰âò8öD±ÝwâìhNœ½‰‰tŽFÖÆŽ3q4&JÇq|‰6‹¶ÄD:“# ÷˜מDq‡K¢ù8ó(:ß“¿S?âFhG\¹÷/ÑŒ¸ yW%+âêäDÜQ4"žC©qÝdC”Ä÷àB”¹W0!Ä}¿Ñ‚897DbT ÷Æótû¡<:pÎAæÃýØÐ{x .ÅÌIÎÃ}Íh<œ‹|‡¢íp]ä:”O½ƒéP¾ÂžÃ}ëÐr¸£è8\7ÏyuýE\F`7”ÉpŠ' ̆ysl{²nˆNCÙ’FCÙÃ>CÉ 6ÃÑÉe(yêÁd(ðʬX Ô:3 G'¡¬šƒ½0ºÂ^ÈFØ+¹ûE&¶ÈCØYÛ"áÚmµIþA{“§}°ur¶IæÁ6É;Ø:YÏou%¥…±Ñ*I»È7¸ßûhl\ƒ’ Lƒí!Ïà./ZûMŽA„»{Îk~ÁÕ.Ø+¹{%³`/ä̇bVÁ~“S0Ÿ¯Ô¹Ô<¯Ù{!—`È$hÖ›ôf}¶I×¾È!8.2öAþÀ¨ÞnŒ*ê³³¢cÀto`ÜI·¶IÎÀ6ÈØ:ù['[`ä lLb…O`ëd l9[#Cà9Ôð ŒvÀ¨±îl“Ì€ÑÜ (³E`ì79ûEFÀEà!« °rFc÷©æ¨î”î,€Ño¸°w2FÝð9i„Cû:tÿõFæ¿ÞÉû×Yÿ6Dç_Ÿdüë“|}’í/úXŸåN²™þvG„ž¿QÈò'] 8þB›ûtø¼Éïo+·ûIgn¿PÏnö“%oðú…zw«_ 3Üé'³Í`ô Ñì>¿P¿>Á×]~¡¾Ýä7 yüÄ ¿à>¿!üf'Ÿ|Pì};Šî¾<”MÙo2zûBȹµ/ä–;ûÖEƾUÉ×·²õ…¨vW_W7õ…øtOŸÍ¹§¥/ij;ú$u úV%?ŸŒªÁÎ*×W ÖEf¾,‚yùæ"+ßä䛃Œ|2c>¾Q¸ovrñ…Bv_ “|ýa6²ð͇|‡¬¾¼*óï­‹ì{ûn {ou2ïÉ˼{²õ¬{«‘sO†èÜ[‹Œ{FãÞm~¼4îI{·½^Ò¸‡sßÞZdÛƒ_kÑÚöëÐOD`Û“³¡mOâhÛ“8ÚöÎñ̶'m{çøfÛŒ¶=àÛ2Ìu‘mï”Çl{k’kou2í­Jž=qª€e/†yîØ“Ïª‚a/Ú¡ûõ¢ÆûÒN lÜ­#X7ëÅPÔ½z«Uï@¨F½u“Oo.²éÅpاÃÔÅ"„³çHÕ-zy7Ì¡#77èE¯ä«JÒÀÀžÇÝyѺ9/úY÷æÅœ„/?EíμhÒnÌ“¯†€//ŸnË‹ñ¤¯SÅÒMy2 ž¼9É’ƒ@wäÍF†¼‹wÙhÇ‹)wãÍIf¼ÕûÊWônÅ˺aN¼?»O¦QÀ‡3¾D–×l.¼è¤Ü„c`÷àå½2 ^ ò}-íJÇ„çDZ´è…Ý~Ý®»ïÖE滘Øqï]Ö+³Þ­‡œwÙpÌx'ö/ðÝ­J¶»l8æº[™îò^™ç.›•-ãÅô;î²u›á.[·ùí²ò›Ý.æ|½/æÜl—Ï×¼vYëÌj79íÔ1a6XóÙÅ<”Û첊šË.f1Üd7'yìâm绘zs‡]63Øؽ£½n_9ºëäãß/sݷ瞈µNèþ½œu6%ž+¯.ÂŽjºÚôÕQGµuˆ:ʨOÂE8à‰ÛÄSÆÖ×ÂlÆž¸ÍdÜá‰ÛÐ7ãëkY7âOÜF-wxâ&¾3î°¾…3îðÄÝÜ€÷×>9‡õµ¤œq‡'nÝtÆž¸uMwX_ ÒïšSÍzü7«ÛwªÌwùwÙwnùwoÙwŠüƒ>$ô¾#ô>#ô¾"ô>"ô¾!ô½µw™ 9Kï»w§•÷Œê¸¡—Ý ¨ ¤ˆº\ʨ)¢ç¼¿rÕ|+¥ß»à¾ßößZo÷ºËëÞ2sõýj´¼Î0È¿nÉö‡®µs×õÍ._ï3ðÕN_ï5ðÕn TÓü^«ªyø[uÍÃߪl>µí¿ü?”µîÊendstream endobj 728 0 obj << /Filter /FlateDecode /Length 705 >> stream xÚÕUKoÛ0 ¾çW=É@­êeË.°¶ÐCQßÖÔÄM‚Äñ–¸èöï'R´ã4Éi‡a[âÇO|‰”lÎ$û2‘ôþXM®nŒfJ‰2Ë4«ž™ÒVR3's¡tɪûÆM¢¸ÐIª‚”WË&,ë$5.ãÂç¯eøÛÁÚò4n?ÔkÀL;mæqóí6"+XM£ø*nÜù°±]!×÷êëÕMÁJQæ:³$KM!ŒÌ£AÕM@XfF8U g²GØE@ýVD+ÞÑó;<LJX+Lˆ)ïºD]Gu.¹_ÓºM´ã¯Ák•ÈÙFÀ Îò(Œ [A€6CzŇ °"„Šdh7Q0#ð£T¦F—6`awHÕÐA»©_“Û;¾²4·BŽ¥˜îƒHî(£Æp<½¾>[[ ]Äv†¾ž§%$‡x^ž Ì…tnÌøJ&ׂ¬F £G¬ÁjÍýfv‚^gÂ;æo0S!T ‹3gä"³¦WDíFˆT9+œ3,µJ‹È÷Išiƒ5ç©îe&éàgÚjÉÑw˜ù·ì2¨¸;¼ }’—µ&ÎnÏŸáQ{Ά dCh°DtI–Ī‹–'x ò¤ÖÃÎß±lÿq9ý>œ.Ù¿òcŸ«‰ ’©¡ñk]„êØ´™üœ§òØ¡ ×¢«ÛFYö©Ü‡_/K{Êtĉ#g|Õ†sÃÀ) œŠÇüeKɆ8Úë$µYÁo;ؼŸ;h»B„rjË ß´]OD-Ù‰¯9ôoÇãÿ,*aWŒƒl”#hÇ mŸ£f3$t»§_N¡5¯1îè Úøˆë~Ö½­+[1ÖUÛÅ×€Æ Ò.¢ø Ưû$×ÛĈy¼¹O@Pc³~îÍTràl0FZa5½­™?­y×úendstream endobj 729 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 730 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-chicOneColMultiplePlot.pdf) /PTEX.InfoDict 308 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 310 0 R >> /ExtGState << >> /Font << /F2 309 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 10339 >> stream xœ½]MÓ&¹Q¼Ï¯xŽpØÇ-µZ×uaG@`v#8œ ^Gøû¨*³¤*í¼™àÀâœìµºªZ©”ž7½~ýJ¯ß½þøé7¯?¾®÷u½r{Þ÷ý*w”®ñNÏë¿ÿóõ¯¯?èA¥¿K³£îz¿Ÿvõ‹?ýË?|ÿúåŸäz×Ëÿ÷‡_þÓü×ö¼þçÓ¿ýûëzýǧôúõü¿ß}JzóüTÓ{”×]9ê§O5¿Ÿþºïñ¾Êë÷Ÿæírž°¾3a¯¯;Ï&%ó$98É9Öw‘ƒó»í}ÉÁõÝnÀvM8[^ö÷=ï{_ïúLØ®w®zî}ŽKá ³ ¥sžù~åÜt%}þ³vÀÓåŸ%<&.ào‰µ¿ÒU´‡žÙ$ðU;a_¯j/ìó›ÆÈ<¾7Å]ƒD¢¿K7ÍÖßai&ôÄl¾>kJI»bŸ.b ”ª—œ5Ræñm(¾µ¯öõíŽÙžükT;¿j´<ó1±„Ëìk͇”âeØõúã’NŸ8_è Ý-¸çA)kt¬÷žrFÐÌPÒûç¢ýñ$d‰`é‰GRühÜx<ÐÞ ×¯Ú_σhO³€H<Ùž¤(Å}kðT„eºõA„OÚþ™êÚ_ ‘fÐþòZ߈Ÿ†$O³hü4>ßÄÃßVí¯„\M3y´?’5I¸´ÿêE¬Ydý5 Ó\×Ú–æÿþšÿïÑëÙ‹ýSV•E<”Ufßuv>ö¾hÍnÕ‚— *íÄ×C©Ç#^ jíÆ,¶ã{bé¯ÙÍC¯÷°ÜÞ‚YoYQÓÂ[ø>TÜù›^¾è‚ïâëAÍÝ<Šî 3¼ßU7uöσ²;ÃÏ;±ô×ÄZ<ÒƒÂ+i¤ý[Qygáy*J¯¤]&–ø™iªŸ4¿jÒ_ó|-‘©¢úJfbé™Fõw¦™VºTQ€g™@M,ýµ1JðƨÁ'½_C¾yl`‰ŸY¦ôÓ˜æ÷Múk–± Ç£OŒülZˆó,¢ çk%ΣÚõµçY¯S#žý%ü­ï£i1vX«qžùÙ´çùq†gÇ FÏ/Ý-÷Ÿi¤ï§k=\ñãû³k=vçk=Îó“ˆxxöWž·¹q¾ÖãŽG=žïK?„ yÏÏâo ¯÷5P¯™¿à;â‡ï?_¨ÇküðþùB=žX‡]ùB=žŸ­Ë°ÆÏÀÈ#_¨ÇÿùB=žŸÁšO ã¶|¡Ï|¸q¾þʇ|¡[< nh¯~ßrB=¶çÍ)!~Ø¿‚5~nŒArÒz,ï§ãü‚ø¹‚?e(~?ýŸ%»òXëqÆk–ø™øÆõâ§±ò…ø™íKÄ?ëz9#Ÿ¾?ŒoÁ?7ò5g­Ç+ò,Ä ù9ôy2êñ|:¬ýÑ­=¨Çóµ×›Xãg??™í¹Q­^ä;Çø¹³ÅƾïP²Œ…/—[¯£¯ø¹Q7f=Nˆ_ÁñÐpýŽø¹ø¾ ë±JÁ¬ÇYNÖz|ã{œ ëqa|Ïïô×ĈÿÂzÌú ëñ:õx¾Æœˆ¥Ï×Xp~ÓþÊƃ¹pLL±‘Ôãùµ7÷}Ìêñ|lOä'C4Päã‰oFÆ&Hòƒ¡±©(Áú=Î2p¹öè??Û>?Ë(½Ký1-‘ëõ0ã¿«|x?ãc“¹b|<»ùÁùÀ:¬|?óûÇñòYw=ŒçñZŸëxãÍ\G Öñ`E½ÎãcÖûÜ8>¾ù<ãcÊÁÍ·óüþéxãåÜ8>î¯ nüŸê±h]}Þ†z<1Ú;±ô×ìF¼ßŽzlãsùpIÌ׈÷ÑQ×ótÔãèŸù¡R=‘0Ìãã ã=ÁðS,Iá’ø‘aZ&ÖøÖÔc„RH?È·‘,~r%ÖøYÇgô—µop|üðû10>žïñ60>–׬íZß™Xû«Ùõ1>–íÏññ–èóê‡qß8^ÑBX•×ñ¢Bé¯ùZô|ýfåu|&Xúc¾Ö Çc|¼¯§õXðHÄ­ûó1>žãçRŒzì±ÄÏ ƒ íE=–°Q>a¶bò¥(F=–03,ý±®—P¿RÈ$~Öõ¦,æñÚ¿2ð¬áxÔãÆñ›`‰Ÿõ< õ¸eij œUvÞ?£Ï÷©ï[°æS–×*õØôëQgYÐï›àví|Uá‘w>ÈÆOÁ÷F0õ¹ê™;7Óç×à ÆÌ/ýÞKaNWÄ­xŒz<Ï×z$óBî¯ñ-¸Ö­ÿE¨<ÝcNU8ÜëÖãR¸ŸËõÏÝ‚ÕBîô® ·KóS¿:}Tv~©Ð뻞J¡V}Îz­…¸ì9IT­Ç¬÷ò?ºË¹°Öãù>µ ç3¨¯…Ðþ ^\>fáçy2±ÖŸŒñ¦§o}+„~Ÿê«ÜH§¶nx>Ä׃zl3Còb´¿2Ÿ÷a=æ|† ñ¼ër?ê±Íˆ°P/Ujá®{>D_œÓçZ¸\}“ÀÖø¡Þ×Àήÿ*ë1ç7îZcTÔã}?Ôc«çL´U¿ïÆùŠŠz|7Ôc›ýÜÜ|$®ÄÏlÖcxt—oõ¸°~6ÖãÌxl¨Ç+ßêñ¼?êUkÖ_è¿6,ŸõØæO×êêCG=^õ¡c>cåKG=¯÷ï¨Ç6ßrwÔãõþûcó;ˆÏ^m~§áú¨Çîò½›ßÑñÚ=PW<ÌgØ|Î=Pe§í¨Çö=½G±øÑñ…àV\¾ ÌglŒzìñÀ|Ûƒz\ÞÇ2‘ÿ›¦.ÀOŸŠ µ‹áß–Ž×;~ÀuôöÒÎòú‰ƒ„¥Äûëçü-I¸yùnÌi<¡ãQ0Ïú±yÜpñûþßÿÈîúíŸ>Ó]úí>ýâïó+½~ü/˜(]þóþWñ¬¬WS7_ø?½þfô¿}ýø»O÷£^ú/8W¾©óã®çޝ=WôPÓsÓu}íÉ’å7ONž ­õþþ¥ÃoÑ –ÓøþWvúWIu Sÿ_¡líüÏçcu>³¤«ë‹Ø¢q¾Þôh‚ì#€Ý"ùuŠˆGû#šNÊì#€Ý¬#lXàŽ:pÛG»#ÎD`Þ}œ LÄS|œ <`'Ã~y2ñ¨§Ï¼¼e(ò /ŠîRßÀP”)ÎùÉ4CQ LAÉ˦V"Šub†¢N_*«Ÿ: ‚¡¨“íe†¢@ÔÀP”©KØ~úI™ÏN8äàŽŠi~'ó6…½ g¬¥ù•ƒ ¨_™äÔÑ E™ãÔ+ E™Ò48?Âjå…¡(¬~ia(Ê•ub†¢N§Ê¹0…½¶¡˜ºÙ~:h—¹Q@“ ,ÛP”™QrÂPÜë€=Agš¡¨Ó®z®Ç¦—Šr®~ía(J3t°CQ§|·¡¨3¼r#ŠÚf¹ E‰þ¢ÄF§Ž¡(ì½ E¹”v E©cŠÒHu[a(ÊDp&ÔÎéèIŠgt eŠ2ï«ICQæ‰; B +ãu®8¿–¡(óÌÚ8Š ãˆe(Ê >L`_7 E9ñ CQ®7`@bû2 †¢ð0À`(J{* ÊŠþè|Šâ À…¡(ñCQp5¬ýÕ™O0Å7Àõa( ~`èá»;1Ú CQÎçñ7úË hŠr?Ä EÁ0ˆ`(jû`PjÙ•óoÃ÷‡áCQ| f0Å×@<ÃPùC1‹aCP'L¯ÕWq{-CQŸÇ?ˆŸN†¢ðÝ FöqG,<Ј†¢´ñ CQî¯_JŠâ« >ÁPñLC1ñ“f†¢LÀãú0“ä4“Õ;ŠÃP”û¡=0—KCQÚ C†¢TÀ0S£aFC15f3ÅÀ‚ÁC1qÐ Åyýâ Å/4/«OõxРî«à‡¡(õñCQþÙŠRQOëqfþŒUn¨W0|a(J~fg(JýEÿ ÖãÆú;Xß E¹ Œ‹õØa­Çì4µ¾Ã`D=žÝÔ ë÷ë2ƒõXt¹N ÃPäk\†¢¾Fð¨Çòa× bŠ: €Á9ð-çhŒ†¢t;&ìa(®ï1 Eí¿ëµ Eý^Áð»ÑüÞÒP”óq?Šò<7ðƒïW1ò¢¿lB;­z „†âÅ 4¥3 AÖã‹ô0•×öÒP„ðY†¢~¿î×6/ÖŠ:p†¢¼¿Ç Dûž—×2åùÑ^Šz¾Œí…¡CQã†^²ï ´›õø6ƒõ˜04å5Ã0†¡¨õ †$ëñ0’õxaÖãNÃåf=6ƒ†¢~o`Ø¡_\p@CQp©¯e(Êñ0Da(ê÷XŸ†¢`ôGYõ† E #žz,õ(¿–¡(aƒ†¢ð04`(j½4QëñÃþ~X ßÿÃzÌ;4ÃpyX­Öãe0²>ßÃzÜiÈÂPï †b–yg( FûÖãúBCQê)↢\†fÍ«?`²3$Q% ÆkŠÙðÐP”ûß0Q3—NÒP† EI< Åœ+û†¢¤ ž†¢¤ž†¢¤ WŠ’0\a( F|ÀPÌÙúN‹œÿ¤×25퀵Ëñ¨0%m`PÃPŒçƒ¡(i„|†¡(iB^ `¯ÓP”´€A CQÒ¦:CQ0â †¢^X/¬iÃPë±^¿¼–¡(çÃà…¡˜ç°ׇ¡(÷×ñ Eዌ?Ã…¡(i‹ü‚¡¨i^ËPÌ·Ü0µ,àúXàqsA E-h걚01>ÃE'`a(f3¸i( Æ„4 E-ÎP¬ýMCQy\ããÂï% EÅýµ E¹>&Øa( †C1Ã×Y†¢à¬õXÛ«í¡¨ý õø¦ ¡¨ñþ¶ø!CQÞ?ž†¢”yò¨ÇÂãz¨Ç_ÎP”÷Sœ¡¨eç?0ðPÅ˯e(JY†CQú3;CQËny-CQÊ,&äa(J™­0(QåýÞ¯e(êñàQ Ç4¥Ñ_0fü£OÙ†¢–yÃ?ÙLâÆ¨ÇKü̲ž¡(†- Eù Àp¡(ŸÑP”Ï†Ž‡h( F¼ÀPÔÏ€3³-p ¡(e›† êñÃÉ0ŠÂóz¨Ç‚aê|†”ùì Eáa(ÁPÔãaP¢W.¸£¡˜m Eù !?a( x€¡˜m E½ž¶†¢|6`€ÃP”ÏÆƒë£ Æñ¨Ç#>a(Êgâº^ËPÌSf!a( Æ¢œø…¡¸‡¡(Çg`ÔãÊñ Å,³Œ0Qçg ñCQx,X€¡(×G½¡(÷ïà1ŸQ›z¨Çóx‚¨ÇbH:CQâév†¢ÄwK¯e( |‚¡(ù€÷C1/C †¢Ä/ò†¢ 3h`b>ãá÷˜†¢Kô|ŠÒ>Â}×cx¬ÇË€Ä|Fé4„a(ÊùèŠr}ä E‰Ô3Š:LÁñ˜Ï¨fØÂPÌË€…¡¨ùá E¹>ž†¢ð节; CÔãÇ↢Þ#êq½1^¥¡(ñœab>ccÔc5Ÿ8}KCQ°æó73é,C‘ø÷?7£ƒÎÞ†bªúB~Z^ì½~ΫáGèx™Þ†#¡óa仓¶! èxù€ìë: Zünß·1ežh¾Ç¿ÎøSuL×0}íÉ:õB×0õɲ£‰Í¾¿úd©ž\>>ù#¿R¥~‡_ùÏŸñ+ÿBŸêø•– ¯è_:¿rüKçW®#¢éüÊ}Dð/_¹Žˆþ¥ó+÷Á¿ü\žYZ˜h<àãLc!ø8ÕxÀǹf¥d%Û~»O³Vû™8æ v柹Ð7p3ea^YffÛ»!çG|~zõ+³qÉ*œÌ:üÎH ÀǬ\l³]mãvø•‹oaW6*-¸•ó™µ0+1x1¯²SãÁªìœ1‡S)ÀmTvªeø”"©õš:´wh>­ÌC*Òi˜y%£”¡C™E9lK Ê u¦sû‰:ÿ2î°ßq$ôÝIy·Û±ÛÜ6¼Ik­Ié]·ÕQÌÝ뵌Éf> |I1ÑÝ>GgÌ—O“PùÖô$מX’KÆéHöhH6ócáGÊ(ë8x6²;7RÚl»“¾nfÔ¹{Y´";·ÒÒ‰ŸØ‘.R k®Éd-r˜‰R:VÛ rY®˜Kòp¾ŽHÕcù‰:ž_û¹`?sÏà>Jˆx÷Q^;î ÷Q^VrK¼ ¸òº°ý  Ë¶7ÊìâìÝÇd³·t56àb‰ÇenÜG 4¼¸ZæFŠ[r ØíÓ×Ç:ËÜY¸éz°¼”î£Ã˜í¾nnÿ„û(|rî£ô²îc²íTt%©n·QŽÇv4¸r<Üd¸‚Ñ¿pwûá> Ïí“XôqUº;p…‡»÷QÞ'ú¯î£`ô7ÜG9« à>êóh\Â}”û!‰á>ÊûNn;£ô?Ün¸ÒßÞ}t @6Æ Ë¶GÂ}”÷‹íÎpLšå>îxƒû¸ã î£Ô Ä7ÜG9žî!‚$ª?ºR2P,à>:Œµ 2›öa1H¶íÕ°­¤ ¾à> Æj¸‚³aͧA÷îcšÖaÛ%~’mÿ…û˜gûè> æõ°$Ýæ~Â}D½Üîã꺶ÊÜGÙ¾jÛµ?n¶Ÿîãzßt=Öø¡ûF÷QêòîãÊoº)›ÛÙ,~è^Â}¼lvŸî£ÇÚ¾@æ>^6{L÷Ñꓹ³½ÜE¸æÖšû(ùnnä(;é>®ÝuˆÓÁÅÁôç3à õ(N"¶¢ÛNã úŽƒƒ3ÚŽ2*pÛ{3ÓPËp·M`ðí;DËqCMÏkŽ´å7vÚݶ/Ám”ݲÚf¸(=ÛæC­¾K{h5ö¶.6NdÐh”9ŸQbùµlÆÙ*t\Æ™=4AµìŠ•édÉj,FùH›£(o†2 ÆÎùIú‹ËÎ…½ˆ4Yî¢}wi.n¨Õ¶s)­Å}_ É(g,Ú…¾â°}Y°×ßÑUkW£NbÛtOQ˜° àªs×Wгð á'®¨ƒØÍM…›¸Ìr˜‰ƒ?.@/q>/¬X‰Kíé$ÚÀ•FbçºúˆãÚpƆ” ·-q™ä0W¦ÀC´%p´mlDQ ÷öZâÚð ÿPÞìBónî,ÜÃÎÝ+4mªLÀtWÛ%ˆiƒu>Ú‰6[}´yÖE;Ñf›v¢ÍvíDžuÑN´Ùá£h±ð3%ò¬‹v¢Í&íD›Í>Ú‰<ë¢h³·v"Ϻh'ÚlñÑN´ÙÇG;‘g]´m¶úh'ÚlóÑNäYíD›í>Ú‰6;|´yÖE;Ñb¶,m0ð.à :>ù7èøìƒÞ`à]Øtüíß ã‹}ƒï9ð=¶ïñáoÐñÕ'€ÁÀ·øÛ×|t|÷i`0ðµ¾Æö Ÿ ?JàC6Ðq_<¡ã“Oƒw)aÐñÙ'…AÇß>- ¾õÀ·Ø¾âSàãŸß®ÀÇüÀBÍ×#?°rÀó1?°”`óíÈÔC~Þç¡ãGÈÂÍc±Ââ ïóƒÐñ)ä¡ãsÈÂÀûü tüòƒÐñ%äaà}~:þ ùAxŸ„ޝ!?ßB~Þç¡ã{ÈBÇ„÷ùA¸y,üX<¡ãSÈÂÀûü t|ùAxŸ„Ž¿C~:¾„ü ¼ÏBÇ?!?_C~Þç¡ã[ÈBÇ÷„÷ùAèøòƒpóX+³xÂÀûü t| ùAxŸåPÊ\‹³ùC+smÎæµÌµ:žùQ‚`6èø ™ ÞçG9T3×mþÐÍ\´ùC9s­çc~” ž ÞçG9ôs*A@Üü$´ÁÀûüx͵J›?t4×.mþPÒ\Ëäù˜OÓä´ÁÀûüxEÍÙ×Íššk§6¨j®¥ò|Ì'kƒ÷ùñÚš+·7¨kY›åóã9ô5×ny>æG Û ãƒÈ6xŸõÐÙ\ûµùCi§¤¶ÁÀûü¨‡ÚæZ²Íz›kË<ó£ÉmÐñAt ¼ÏzènYÉîó£Ê[Ö®ùü¨‡öæÚ6ÏÇü¨A~Ü| Ü`à}~´CƒsmÜæžZáïó£Jœkí6hq®½ó|Ìä¸AÇAn0ð>?Ú¡Éå'·|~´C•ËÚ>ŸíÐå\ûçù˜-HsƒŽâÜ`à}~´SŸ÷¨Ïû©Ï{ÔçýÔç=êó~êóõy?õyú¼Ÿú¼G}ÞO}Þ£>ï§>ïQŸ÷SŸ÷¨Ïû©Ï{ÔçýÔç=êó~êóõy?õyú¼Ÿú¼G}ÞO}Þ£>ï§>ïQŸ÷SŸ¨ÏÇ©ÏGÔçãÔç#êóqêóõù8õùˆú|œú|D}>N}>¢>§>QŸSŸ¨ÏÇ©ÏGÔçãÔç#êóqêóõù8õùˆú|œú|D}>N}>¢>‡>çZVã Þå‡AÇ}nÐñAŸ ¼ËƒŽúÜ ãƒ>7øZ_cû‚>7øQ?bû‚>7èø Ï ¾×À÷ؾ Ï :>èsƒo=ð!?¸xñéÐç\ ¼ùCŸsŰçC~èOˆ¹ö¥CŸëOxõÀؾ Ï :>èsƒWàGl_Ðçô¹ÁÀûüH‡>ןðòí;ô9×EoþÐç\(íù˜)èsƒ›ÏAŸ ¼Ï|èsý ×¾|èsùŸùÐç\¬½ùCŸsõöæ}ÎåÜžù‘ƒ>7èø Ï ÞçG>ô¹üÏ|ès® ßü¡Ï¹¤Üó1?rÐçïó#úœ«Ð7èó|}n0ð>?îCŸsYûæ}Îuî›?ô9¾{>æÇô¹AÇ}n0ð>?îCŸËO¼øü¸}εö›?ô9ß{>æÇô¹ÁÀûü¸}Îõú›?ô¹þäoß¡Ïå|~܇>ç€Å—CŸsGÀæ}Î-žùQ‚>7èø Ï ÞçG9ô¹ì:ðùQ}Î] žùQ‚>7èø Ï ÞçG9ô9w6lþÐç¹}n0ð>?ʡϹUbó‡>çÞ‰Å?‡>çf ÏÇüx‚>7èø Ï ÞçÇsèsÙŸáóã9ô9÷ox>æÇô¹AÇ}n0ð>?žCŸsÈæ}®?9äÛwèsùŸϡϹ©dó‡>ç.“ÍúœÛN<ó£}n0ð>?ê¡Ïå'Š|~ÔCŸëO$¹öÕCŸs§‹çc~Ô Ï :>èsƒ÷ùQ}ÎÝ2›?ô¹ü„ÏzèsýÉ£ø˜5èsƒŽúÜ`à}~ÔCŸsÇÎæ}Î-<žùÑ‚>7èø Ï ÞçG;ô97 mþÐçÜ5´ùCŸs‘çc~´ Ï :>èsƒ÷ùÑ}ÎJ›?ô9w.y>æG úÜ ãƒ>7xŸíÐçò7A}~´SŸ÷¨Ïû©Ï{ÔçýÔç=êó~êóõy?õyú¼Ÿú¼G}ÞO}Þ£>ï§>ïQŸ÷SŸ÷¨Ïû©Ï{ÔçýÔç=êó~êóõy?õyú¼Ÿú¼G}ÞO}Þ£>ï§>ïQŸ÷SŸ¨ÏÇ©ÏGÔçãÔç#êóqêóõù8õùˆú|œú|D}>N}>¢>§>QŸSŸ¨ÏÇ©ÏGÔçãÔç#êóqêóõù8õùˆú|œú|D}>N}>¢>‡>çž=ã Þå‡AÇ}n0ð~úuèsù›«.? :>èsƒï5ð=¶/èsƒŽúÜ`à[|‹í úÜ ãƒ>7øv¾Åö}n0ð£~Äö}npó)èsƒwùaÐñAŸt|Ðçïòàãƒ>7èø Ï ¾•À·Ø¾ Ï :>èsƒ÷ù‘}ÎMŸ›?ô97z>æG úÜ ãƒ>7xŸéÐçòç«|~äCŸsÓéæ}ÎM¨žù‘ƒ>7èø Ï ÞçG>ôùƒ>7xŸùÐçÜ»ùCŸsSìæ}ÎM²žù‘ƒ>7èø Ï ÞçG>ôùƒ>7¸ù;èsƒ÷ùqúœ›v7èsnâÝü¡Ï¹©×ó1?î Ï ÞçÇ}èsnÞü¡Ï¹ixó‡>ç&bÏÇü¸ƒ>7èø Ï ÞçÇ}èsù›Ö>?îCŸsÓòæ}ÎMÌžùQ‚>7xŸåÐçÜô¼ùCŸËߨöùQ}.ÿàó£úœ›¨7èsnªÞü¡Ï¹ÉÚó1?JÐçô¹ÁÀûü(‡>—¿+çó£úœ›º7èsnòö|Ìô¹ÁÀûü(‡>ç¦ðÅ?‡>—¿Ùéóã9ô¹üƒÏçÐçÜd¾ùCŸsÓùæ}ÎMèžùñ}nÐñAŸ ¼ÏçÐçú7R}û}ÎMïžùñ}nÐñAŸ ¼ÏçÐçÜ4¿ùCŸëßPwí«‡>׿›ó£}nÐñAŸ ¼ÏzèsnÚßü¡Ï¹‰ó‡>—ðùQ}~× Ï ÞçG=ô9$`ó‡>çlþÐçüÏÇü¨AŸt|Ðçïó£úœ?R°øvèsþhÁæ}Î1ð|Ìô¹ÁÀûüh‡>—¿ ïó£ú\~ÁçG;ô94Áó1?ZÐçô¹ÁÀûüh‡>ç.lþÐçò7ã}~´CŸË?øüh‡>ç8lþÔç=êó~êóõy?õyú¼Ÿú¼G}ÞO}Þ£>ï§>ïQŸ÷SŸ÷¨Ïû©Ï{ÔçýÔç=êó~êóõy?õyú¼Ÿú¼G}ÞO}Þ£>ï§>ïQŸ÷SŸ÷¨Ïû©Ï{ÔçýÔç#êóqêóõù8õùˆú|œú|D}>N}>¢>§>QŸSŸ¨ÏÇ©ÏGÔçãÔç#êóqêóõù8õùˆú|œú|D}>N}>¢>§>QŸCŸþWBŽ]¥á%ÈY_Üuú…Uõ_\ô×⋪ê QãÏ¿}²ÿÜTLµ2²þžE¾®úÝ•¾ûü_àþü5d±©üÙøã"í«."3vÏÑ’öqKþìoëËîÚ™úÛú¿úÌo룿þ~Zÿû ™#ÇðùÐñ|6vÜŸÀg£Çpüv ~çïýá¯×€þøçkø«;ÿ~ øølxÀÇ¿`c?ì³~Âæ7ŸþÿÕò×endstream endobj 731 0 obj << /Filter /FlateDecode /Length 822 >> stream xÚUY‹Û0~ϯ0y’a­ÕaÙN¡…^[¶´´¥>´}0‰s@l§‰ÝÝüûÎH#Ë›d¡Esiæ›Ñh,¢u$¢Aû›ùäöN«HJ>3FEóU$UÊ ¡¢\d\ªY4_F?™Ž%ã:N$hÙ|[[ʼnΠ{ äãþŽÈ§,qâ/ iÈäm Ì®ÇC“|îwÀtxl¿#«¯h„–ã?YÆZ±þµ}ÿž¼½+¢Ÿe*C¨"JtÁµÈÈ{ô.ÐdB(«cU0–‹éµ@Û°S¶³1U1á¯í ͹O0RFæ˃wñ@hJtÚ6둲=¢iíq\³x‚ÒÇ8žá8a9°öꨭÙȃCB…áÖ“* zQ‰jWÎpœ/°Gn½ B[:L®sgw¾t…/4»5“?½¶Tò"Õô«81Êy+3¬_ÂذcV$ÂÎÀD^ÂZ ëÆ9N:lãú˜‹P;òÙ_H~‡¥ƒÏsKNû)vS¢)¡†£%™zõž©HîÝLGx‡wù~>‘@ˆHïQų4õäÏ„ç2s² Š·÷µ4Ñ»vò ~^—x—ÉȧãÇ5ÄÕ‚ç~ÜQ¬{ê4ðÀ¤y'©Ðl¾¡WÒõ¡ÜÛ&²Üqc«ˆÝHú7 /Ã;Òö^[,w_7Îèù·‹Ú½ï>dÆo×7 \2\!Fˆmï‚áÝ5×ÚåÜ%F*2¶Å Šœ­+7äܽ–RK§Â®mŽî÷îX׎t=)}Z8LJVùQPmË%)DÿashÂ)Ÿ°5bì©U­Ç¿±ÉÜ4ØZhÞ¶ƒè<æ•J`0;‚ÌÌžl8L4Ž’óJŸòç‚‡Šæð¥‹ÒaÉìvrº¬:X^Î+ö“È¥£©k‚yµt…5J°ûËcpcWjÐÙ¶“ÏÇ´ N%Ûø ô¿q³°|¤44@m>'º£êÂr€jåKtCƒSŸ¤Ñ\˜€¹iÿßæâË™Á›N•wz%˜âröl¬Ýû–詟õÃ{n $13.e•)O}ÇTv> ÿ¨wëendstream endobj 732 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 733 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-chicTwoColMultiplePlot.pdf) /PTEX.InfoDict 314 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 316 0 R >> /ExtGState << >> /Font << /F2 315 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 19393 >> stream xœµ}K¯.9rܾÅ·ì^è¨ø&—–`hÉÓ€-Ù^÷JÉߌŒÌªLÎ9}úv·szâ&ëù1Y >Òëw¯ôú§×¿~÷w¯}]o×õÊ£½•òÊ©¥k½¥öú·ÿýúŸ¯–Bu¾Õa¥Rom¥þüßÿÇÿ‹×_þá;œïzù¿øË¿Ùÿ:Úëÿ~÷Ç¿]¯ÿõ]zýnÿKrñß×ÊÛª¯RJ}ý®Õ·|½JYoW}}¬}Ãþ–Žü*yßRlouíhzk“pŸ£”ü6à~ ´ ÷·QóØpßy'le¾Þzo%ɱ¥îÇá,rWkηkÉ]Í‹°4¹*p_…ë[Z„…Ë[/„…®'píëÖ §øò]¿Þ®;ߦÂÕ&îé-£pÂåî_¦ÔÌÇßp?(à• ×’3ûQ†Üó’cËÛ…Âûý6¼äØ1Û¾îþ±¯N8“üFM¢õ­-‰ÖB8›ý‚6Ül)ãmeÂ2äžk'ì¼®¼ÞñKâØ+öýs×ýŸE¸ÏQv ,rìxKsÃ¥oc_לv½e9Õ|Ë9Àº ·Ìßwñ ï:åT µ¯ìw$Õlü¯‹ÇŽ ÿìaÙ…÷ÏÜ3aë«Fg(ïjìS⺕@àôgÎo)»cwucá9;nrÿ“p]rÏõjì4åžå‰³ '‰’8û¥”Iâ N,Bç>Õþ%ùD¹Üd×c;jPÙÌl‹0Oy±Rù7lU~žj_¯½fÂÆÂòb7œõ©*ƒÄ±ßw8ûTU®Kâ´D. gÕAAœ&õøËw“ÄA‹ÐAœÝ^'‰³¡´ “Äa!ÄÙÑT A4xÞIâì_pH”Äa{!ÄÙPžh’8÷uIœ}ÏÂÁyG88Iœý®:Þä$qìåL%ÎÅöj*q.4[*q.¾ ûJ~î W²KMÚ:i76Ü/©äÆækNT(Àž+ K%ÜPUƒKÕÝ|I$ÎnTNµHœÝÖÍLâXøHœÝ0Êk_$ÎnÌμHœ ¥æ,玒89ñ\$Nš|‹ÄI‹¸Hœ´ÈýEâ¤ŒË qRá#,'%½ggË“´ü‹ÄÙÇJã¶Hœ}lÊ„ Nhz6$q¶’JµHœkèË!qnHâ8ØX85Bçjh7œ`y¹*µlI‹X®]¥ðBÍ–m¸ßwÞ…F'ÜçÈûòI ïF5ï·ðøéºÐª"\ªâM‡…;y?ª ùÀþõ–á}O™?.ñ®Ý¯u þW^O”÷ï+¯8/¼P(oJuÞÊh x¼(oZJ+¡~Ÿy)]êÇàó ÉPêRœ§”çûOB3Ä;±ð,³=!nSp¹o¦¡~èûªåݲͤ¸t>![ÀÂ6«ßIéVHU`á›ñ'+ß&hF¼ÀåÄt1í&.g‰ó~6F"³ëG/Š‘É<峤2»~ñ~6ói*R.Ò&ßõgãÂ߃õ?S²¬á†f]¢¾À­»þdªÖƒ)[¨fC1tkŸo$Å.TK–§r%¹mbHªUU ¾íjTx<ù†jTƒo³þgòÍlàÊ“oû5gž|Û¯©6Åò]И¿¥B¾Ù‡°|LÜ&±|¨Ë·Á`~ ùf9;ðdJÏú¶¿)Ry>€åû@¿x€‘çì„YX¾4SOøXOº ŒT5¯üHм¸2Ÿ—Ï„¦õ§PÒ,õ†¦Õ]-xò ŸSIñJþxòmçíR ¾=˜|Û_l?ù¶ï'[|Ûñ*ï{¿¸–ä~ºa|_<çëò1LÐo±üù»´×ø’÷‹/‘Pž|–¿5òíyòm\VÃàÛþ}ôú7ßø{7å[͉…oúÝ ,|«ªo|»ùÚ•oƇ®|«ª7|³¯k`ðÍ>‘S¿ùF½ï7ß“oë×:Û£®|kZ¿{ ßë©+ßžÝcò;¤Ëtï§“oöm™Ð¥‘]{†> ò“ú€Nêøµ+>ò£»=E·Fwí5ú5êÓŸ’øC=í}Ÿl¯ÿ|Û¸5Åà›}(§A¾ÙÇ/0øfŸ»ÀàÛ~¶ÿƒ|Û´`~3È7ûjßv3Áöuo~ó³~ Õ7íÅ–ù¬Ï;È7댖OykoFµoyÖŸA¾Ù—?°|Í~t¦A¾Yo°|Ïß÷O¾ÝíÛ ßìX>éï÷G¾Y/p ïcð«þ¾ž$O{ŽNáÚï!]©x^¶Ç£½¶ž*`´×wýÒ•TØ ·1z>–ãÛ$ßvœíç$ßzÖú8¾Må[×öj’o÷û›äÛÍÇY¬sŒõy’owû0É·»}˜äÛÍ—©|ªSù¦=(iª¾Ùï?É·»~ΛoÌ÷¦òÍaðíæû$߬-Mòí®Ï“|³>š4É·¿–bá›éé$߬Ÿ1¡G$;¾¡Kd:¼¤áXò£®÷ƒß)|‘ßãètÿu]ê¡Çþ뾂| *þb¸ì/Ýn,~À»ôìðAR__Õ(›ö¨ï¯?~Ï |âH¸wiq….ÎãŽkûñÄyÁ;þ\ÿ/~Ô×õÿþÎëú÷üçïþü¿åWzýøhxLüù3ù+x·¬;(öþã××÷kþðúñŸ¾û¯?Ê©Ʊè‡Úâ.Ç®o=¶J{‹cÓu}ëÁ`yуӇó[ëÏøþ‹¨›|ñð?üÅ_Ùáßlúôý}çÿúªw»ÿü”ýcuõ¥nÖÅýãÒÔ¸ãêqqë.³ŠC dW‚íJhÅ]‚Ø—àG÷SB?Â] ~&>%ô³Ñ•à‡ÏSB?„| IÝ] ¦ò®“ϧ„&£®Ó©§„¦W®€§„&¾„Hœ+AÉs%ØH?%´Ñv%ج>%´™}JÍ–µ’¶[Öl~ØpY[.+ð4]Õî´ù]ªÝV­úĪý©SýV-ÂP˜U+ù¡øœÒ¯‡ô‹ªt늩B«É×,/³j%ie2 ˜ÇˬZÉÜ4ÚŠÔªb½Hž¥9¦ZÄbÕJ÷Xµšt™U‹œGüUZµHqº:·;UEÆ’v®7ÜŒBTt’V-¢tA…÷8sW36'9³K«Ñë±j‘ÊÐP•.sd"„Òu"‰ÉcÕ¢ŠË­Ú§°tß!Ë¡ ,½w€’-2K˜^fÕâXÉÍhÕâ6$µ¥U‹{^U‹”eZµrÏóeVmbƒiV-.$_´j%w{¬ZIýäX±j=¬“P_fÕâ&éc/ Öâ÷+­Z¼ y“lð=,,L¯RL…´[my“´jº–Õ›ÝIt¼Ìª(N¦ô‹§•xW´jü …; £«:·ë(I=­Úg¾Ìªú« â,õÁhÕ¦¥0´j=,³j–—Yµ€¼tÎfun³Þd~™U‹ë&5cK(N ­ZÜdQ8QxªûJâ,í¦¤U‹¨|uÒªøXµIÛNµjåTU›Ðã/ö#‰³´™Vm¾ôûV-`Q3ÄÁMjéÀ¥{´ji]Òjºt­Ú ƒè±jó¥>­ZDÍÈ…Ít)»iÕæK«7­Z\¨ dÖ°•>aZµr¬Fá0]…_t´jQXª(­ZœJXF«Ï+Ÿ/´j•Þ]Zµ™ž•YµùšúÒõ–/ó“)ß4¤Ìªì 7qp¬PƒVmÞê g¦U (_)tãå&iÕâXâ ZÕ¹].$5‡V-`Ro¶LÞUz™U‹c‹ÂÅëJ¤éVJlshÕfX^rBD…¿´j3œ©ô2«PFšÐª8^fÕʪ7{é©7›ùDS£­:ÈüÌA¤0úúˬZÜ•TBZµ¸®H­Ú ×K Ý#˜Ïëu[µIH­ZxêÜÂ:JÖ¡VmÒÊrÏ“;¸VRŒç¶FԪŚu úÀú#&Ò0+’‚CfÖ,kЬ[P(YתZµ)™õª$Ѫ½¦aêÏ~LvåÒªE›Ã® V{Ÿ];—JP´jÑrÒª¢U‹Ö09«6àÚx=>¯ÒéÒ®Zµh>õý ¡pýD+\Ì®Zµ8­!Zµ#SYÖB«Všg³n‘«ì&`'¶¹—Y¯Òµ&=´)I»=åïIO=>Åâ%ˆðR U‚dÓú¤,M͜Ԫ…xÒ ¡U{«§ZµòþÌÊUiâûJªM*‘jÕâx½žª“ÒW­Zy¿Eq£ä°ëG¿ƒvµdW¨ZµW²ûU‰ZÌí̪ ²âÒçý’lˆ;«V„ȬYÐíJf} ßDÅU‹ß]m´jE‹i-Jמ_­JéZ“ãͺ¼_µ*å\êóP<¦E6+VÚäbÖka£l][Y%˺ƲjÖâ(µj¥MOŠ…o7VÙšÊ߬ºeÖgVáÚu˜oåâPެÒUÙªU‹òj5«xu}ŸYÕë~Ê·¥í ­Z´_Ã0,5Z@«V>wŠâ<$ήkZµÒ\š[ãfݶ!qþþ´jïfÍ^lÿصL«×+f½&”wÖmAù¥ÏG«qZÝú žŒŸ´jó®ÉYµÀzÿ•íõÒö…V-ÚÓlñÁë«U¬’Öµ½¥U+×sVmÞÕ”|¢U›m”Zµ¸~1k|Ë:€T­ZÄÕz¥²íj¡ÏC¾ágŸŠ¡m¹Úóo»Z&³b¡n»¨•M¾ág7+ú¶1ë­Úœí}hÅ>¾ÑjåЈlC hÕ¢ü4+wó-ïŸÖ?­Z`>­Ú\ŒÏ´jsé'ßJסM´js1½¢U›÷kéΪf}£U+ç7k™†á]Š‘ ëê§U‹ãiUѪÍ|M_̪ÅõëT ¾áµòxòmcµºÉ7¼Fbòm¯ï|+6t@û{ŠŽU«VÊÅà[µ¡Y´j3¬â¬|ƒ•Õƒo÷ÐZµÀìê§U›÷ÏPU Ì÷M«VâM1øVM/é™6+|«Å¬VòmcµVÉ·]žChÕWÃUï7)ú~y¿bå¢i¾ZµRŸ—† ¿'?ZµøýõyØ[†f…q±Ž$>7ÖÇËYµø}ª³jñû¨5M¾Ýõ“V-î÷ÊŠÁ·MòV-ÞgvVm®·K¾Uý.U«6W«ß´jå÷-Š«–·8øV-ß U‹÷Ë÷E«ÖaòÍcð­N­O´jqýf|«–iߢdz{L¾íj‘U \,¾íj§Ö²XGyWsæ_´j3F:›•‹Ï U‘úB«6ÃZrVm¾‡ŽÐªÍû5^†Ñ^7í¸R«q=ù<ƒoûµegÕ"ÞÍŠ-Z¾*n,ßÍÊßî¡+´js3ë‰V-âÙ¬XðíºA«Vηƒoûµ-³rÁ·nCåhÕ ^ŠÁ·Y?iÕföà|1«6ï×JþÒªE\­\ò­³FÉ·§<ùÖ—ê ­Zàé¬Ú<.Í_hÕæýج´j§~ÒªÅùÕ:«×ç÷{ å~ø~äFQ¾˜u‹öºmiÕ¢>gÕ¢~S¯hÕ"N>Må[5ëPù6\Y»Y¹àÛnVø=F«˜¿7­ZÔOÖgZµ¸?ZíSùV4ŸÊ7gíN^š5 ¾íãù>hÕâüäÓT¾ mÏhÕ¢þ,³nÁ·nzK«6ßÖöT¾-³†•o6Tq*ß–YÕÊ·¥ùºÍê­Z¹¾Y·Â·¢ù*­ZÔg~?Ъ}0­Ú€‘ÝC•ÔSèƒ|þͬZí±¿­ZÅ_þĺ=¼ÙpôcÕ¢]Ú?È×ÛÅãPÈןÆÅJUèâûÍY¹ g‚„6=V/¡‹C@žó+tqÞÐîï·±r¡K»žÿ2KU¾ŽÕMßz°t½¨›¿ù`ÌëÒÛ.ß|0+©\?>ø#'}6»M'øoßq‚¦§ôë`£Â+Ã|ǃ1ü8Áw<ÃüĽ1ü8Áw<Ã|ǃ1ìœà»@t†ìJxgØ9ÁO‰à ;'ø)œaç?%‚3ìœà§Dp†ìJxgØ9ÁO‰à ;'ø)œaç?%‚3ìœ`WÂ;ÃÎ ~JgØ9ÁO‰à ¿Ó*ÞðGÍ¢ø°]´fûÃ†Ñ |Ø2Þ ÿÝ4>\lbŒý´SÌ2ŸÅ?q¢ßÀ'F2To›x<3x·i¥CqèÐmzÄ}ùÙ¼–»Ñ!î:èŒñ¸´¤øÃ–õцI­óz÷ÃáCà™Ç»Q}¼á®Ù­a|ÂHLú¨ºöÐîÚC_Ø•Üô¢…k®pW'ˆ¦p×ï1zÂ]'JÐîú­ËæÌ2ž y“ø£Ò-Ó©º; ÆpÛëen02ígÁgÎã÷ůGZÁC§ÕÐ :FðÐïbúÀ›—ÆvK>†Þ™tQLý"§ <ÕÛ ¼é• xjß`$trNùâsh_½ÆŠöo¼.æôüv€c;_fþ.›Ô*M¼Cû7¾íZé³XÅÏÑ]‰ïŒ¾/Œ¨g†îT‚®¯]¦/ÒØgz.Üòëe–ïPKŒŽïz`H€ä¿¾Ìîµg§Ûk“ÝhöN*A¯w«w¬{îN]‘°——½ûÎæãóâ>5ùø&DöìW¡É;uš7=^$ÅÅ o@çænl$™; ^ø~Û5l™e) À/swͽ¦¹ëÐfÀnEûcí.3k…6g‘ÆîR¯’¾.Ü+ç늹4^æëÂ[I¯+VD9 X™¯ #äÒ9·È’vàÐ×MÖN_§ê:ÉnÔ¥n}]xPS]ßÅÂònéëŠâ+„µ 7s›QØ\núPWãiúºdó홂+^ÚãëŠõV_æë&›H_F_y¦à¢°tÓ×Ea±âéë&µjá>Ù=Ó×Ï/¿Ì×E”¦(­'8ˆjä"y¢i¾.nƒSRé;]Úï@_ÇJcO_WAÜfšNW' éëâMÏ\qæÊË|]¼Xçë>Ù–ƒ…9›— ã5é~Ñ×Å…†ÂÒŸŠD_÷®HôuÅÓ¹…éÓgJö]M_öû=4“|0Á'0ŸùH¶)G|­°›Ôåx¢lCšéëª]õÅ|]œO}e2h ,›r+Ò™èêëÂþãWé¥$²~àëfQwSpñôò¯¾®½ óuï)|êëb’µMÉ•R±û'—Ò=e˜dòXØd¾&}]4ôÔ×5⚯›²½eÔí Ó×½Ì7Q_×cøºðÕ§bÍ ª›‚{·9æëîÿð}¨¯{ûàêëâµ›+ÔÊæƒ ·î¡´u— h§«»yÀN4šºðh …[Ëf7ÐÒš¨£».;³p î¦ÞÎa·!Üš6q‘n®I‰š¹¤ ³¶©BÅœbÊó4r§õ[ÒÇÅ oÞ³pkjŽ£.îÔ!OjâΦÛë"¢…‹ 9w·ú4ŒÉˆ}W|9ôo·dñg£}ËN¸/æÞÞwEó*k^ínwo«žÖí´ž_:··QNãƒÖxÂ'Pý¤{ °iêP+5mŸë —ö…гl-»PÇvÙܶKG!ª_»î™¸B£eèÖîcÕŒ-;B¯öž•M«Ò4î¸kÚiýžôiïa´i×õž’x°œ&í´é!ôh-ÉT‹vêð!uh×õ@ä)Ŧ®Ê—ð=ü€öìͺ³6PÍYËqÔ›…œZÙJÎ,~…¬Ä1ß»q.›1›ŸŒL]Y Ñä±$Î]˜ÄifA“8U[:²ÓÑű毂8å±[«d—lµi3N›÷O3ö¦½Ø}“ËY±ì`þbNìMg±`™ù²CnRg°q–Á!MÁpóe§yô`-ÉV vÚ:°7­hÀÎnþ¦ôOO§öë=†îë=؆.»¬¿˜÷z¿IZ¯S—)Rçõ~±4^-ÃVßuÃl¶ê®ºH-Í…Ýę֥ˮ”ç=“8·E,Ĺo’Ž«}ލáº+°N½$q†ÍÔTÙ¹ž™°›9Ë&úÒmÝPç s–õ ×z½¢ÕººöÄÓi]6gœFëÒѽê³.“kÚ¬›·«Z¥-X6?v”§•¡ÇŠ6È͆ű6ùõ* i°"Õ ›\—Ñh¯Júz)nÌPï™±“Y'+"íU`Ú´W%;pöê#óM“ºªMoÓ¬.«H{UÒÚ{šÖ™Ñ^}Ò:Ú«"œC1†ÙFµW!4Þ^Ey9+DrX˜0rÿ-cj÷ — ÃÍ„Åý‘kÚaç1òÿ Ÿp%ß j´oÉ·vÙõÉ·Öž™±à[Óî>µWù¾˜ ÁÕó“oí¶›É74“f·‚oÏñäÛ=3™ö*šdqðm7kjo‹½*Í–a||ߘöjÀ…åY?­£^‡¿þfö*û¹owµéÄ’Ól=ÜTìã­v ÷õ¶Å˜=½þ$,ZHôDùÍbQý‚¹£K:×,Jä܇-Õ™²„.¾«Ýõ˜² ]£ žù· ½ý!ò˜Â÷“ý6¦,Ä®ý²éµK$Ú¹ù[íÜ,ƒxpÿÖƒ›ÔøÃ ÞU®Àà|þ¢"ÒôЪf&“ÖžýcXQ–¯4Då#ýŽùèæ¥‹ùèþ½\艊§rG‰|tÓÇEž¨|ƒÜQ"ÍÃG|të¹(Е.…;Jä£møh1:‹ÎpféѾ£D>Zš–ð¼Òã}G‰|´,-+F{óÑ~œy%]þyéYT‘®æ£ËŸ™žÒ%òÑ:|´ŽÅGG‰Ñµ|tùç¥'uG‰ž¨t0ÞQ"ÍËGóŠÑÖ|´µÉGgx^éH¹£D>:›Îpféf¹£D>Z†–£½øhÏ+Ÿ–w”ÈG{÷ÑÞcte]žÝôØî(‘Öê£Õ·9ôàî(‘Öé£uÆè¨>:™×cA})òÑÜ}4û祧gQE>Z.-WŒ¶î£í8óÌ>:ýóÒ¼£D>:»Îpfé¾½£D>Z¦–£½úh¯1º.]áy¥ã÷Žù¨Sœq(Ί3ÅAqÆ¡8#(Î8‡æ%òÑÑ}t„3KGÙ%òÑ<}4ÏmÕG[x^éU»£D>Ú¦¶£³úè gŠ3ÅAqÆ¡8#(Î8gŇ⌠8ãPœgŠ3ƒâÌCqfPœy(Î Š3Å™Aqæ¡83(Î<gÅ™‡âÌ 8óPœgŠ3ƒâÌCqfPœy(Î Š3Å™Aqæ¡83(Î<gÅ™‡âÌ 8óPœgŠ3ƒâÌCqèT»h1ºŠ®pfù¾£D>Z›Öð¼Ò/zG‰|ÔeªŠ|ÔeªŠžèò™ª"uŠ3ÅYAqÖ¡8+(Î:gÅY‡â¬ 8ëPœgг‚â¬CqVPœu(Î Š³ÅYAqÖ¡8+(Î:gÅY‡â¬ 8ëPœgг‚â¬CqVPœu(Î Š³ÅYAqÖ¡8+(Î:gÅY‡â¬ 8ëPœgг‚â¬CqVPœu(G"ÜQ"-ÝGKx^éÓ¾£D>Z/­WŒºLU‘ºLUÑÕ16âNt ºxƒ!î„Ç`ˆ;é1âN| ºxƒ.È`ˆçâyñÖB¼µ#>SˆÏøüAˆ †øl!>ãùƒ ñ2B¼Œ#ÞKˆ÷øüA’ †x!ÞÇ_%ÄW<&ƒ!^[ˆ×øüAœ †x]!^×-ÄG<(ƒ!žGˆçðüƒrdž¸ëR1â®SÅ`ˆ»nƒ.ž|šk0ÄçñÏ$Ë`ˆ;Ñ2âN¶ †¸.ƒ.¤Ë`ˆûþ»t¨—Ž£yâ‡~éÀ ¦#m||Äç"f0ÄGñÏ„Ì`ˆçâyñVC¼Åçrf0ÄÛ ñ6ø¬!>ãùƒ¨ ñÒC¼ÄçÂf0Äëâõ:⽇x?Ï¿rˆG}ËQßò©oyäã+œŸC‘žxŠý1:6ÉÇë<â®KÆ ‹gß)c0ÄÇ ñÏ_|šl0ÄËâå:â^ßò©o9ê[>õ-G}˧¾å¨oùÔ·õ-Ÿú–£¾åSßrÔ·|ê[Žú–O}ËQßò©o9ê[>õ-G}˧¾å¨oùÔ·õ-Ÿú–£¾åSßrÔ·|ê[Žú–O}ËQßò©o%ê[9õ­D}+§¾•¨oåÔ·õ­œúV¢¾•SßJÔ·rê¢=ñûrtdš—uÄ{ ñÞŽøJ!¾âóË`'Nâ>¿Vèâ5ä× CÜç× CÜç× ]<ê[9õ­D}+§¾•¨oåÔ·õ­œúV¢¾•SßJÔ·rê[‰úVN}+QßÊ©o%ê[9õ­D}+§¾•¨oåÔ·õ­œúV¢¾•SßJÔ·rê[úVO}«Qßê©o5ê[=õ­F}«§¾Õ¨oõÔ·õ­žúV£¾ÕSßjÔ·zê[úVO}ã¨oýˆÏâ3>¿ yâ„!>{ˆÏxþòk…!îók…!îók….õ­žúV£¾ÕSßjÔ·zê[úVO}«Qßê©o5ê[=õ­F}«§¾Õ¨oõÔ·õ­žúV£¾ÕSßZÔ·vê[‹úÖN}kQßÚ©o-ê[;õ­E}k§¾µ¨oíÔ·õ­úÖ¢¾µSßZÔ·vê[‹úÖN}kQßÚ©o-ê[;õ­E}k§¾µ¨oíÔ·õ­úÆq¬Oœ0Ä}ÿ‘Bï¡ÿHaˆûþ#…!îók…..ƒõž8aˆ{}k§¾µ¨oíÔ·õ­úÖ¢¾µSßZÔ·vê[‹úÖN}kQßÚ©o-ê[;õ­G}ë§¾õ¨oýÔ·õ­ŸúÖ£¾õSßzÔ·~ê[úÖO}ëQßú©o=ê[?õ­G}ë§¾õ¨oýÔ·õ­ŸúÖ£¾õSßzÔ·~ê[úÖO}ëQßú©o=ê[?õƒ•Ÿ8aˆûþ#…!îûºøýG CÜ÷)tqŒùÄ CÜç× CÜç× ]<ê[?õ­G}ë§¾¨oãÔ·õmœú6¢¾SßFÔ·qêÛˆú6N}Q߯©o#êÛ8õmD}§¾¨oãÔ·õmœú6¢¾SßFÔ·qêÛˆú6N}Q߯©o#êÛ8õmD}§¾¨oãÔ·õmœú6¢¾SßFÔ·qêÛˆú6N}ãàtýG¬îã±ÿˆƒ×Ÿø<ú8˜ÝÇcÿ·?qÂ÷ùµÂ÷ùµÂ÷ùµÂ'ÎÁñw\aˆ{}›§¾Í¨oóÔ·õmžú6£¾ÍSßfÔ·yêÛŒú6O}›Qßæ©o3êÛ<õmF}›§¾Í¨oóÔ·õmžú6£¾ÍSßfÔ·yêÛŒú6O}›Qßæ©o3êÛ<õmF}›§¾Í¨oóÔ·õmžú6£¾ÍSßfÔ·yêÛŒú6O}›Qßæ©oœœðÄ CÜ÷)|✼pdž¸ï?Râ>¿VxÇߟÝð«•ÿôðÞOZþä·Ÿ¸ôÓƒD>7ú?1J?3¢>3>ëHý´#듎‚Ï>Ä>K„?M$>kè?!Ò'ÑOà4šçq–å‹ÌÒùñëëßÿÍ¿ü°Ÿóõý¾d¿‰«ýð÷¯wγxÿd˜?üÉ~÷Ã>Åëûÿøò’½;®þ '“^ wkßÿþþMïi|ó’x"‘;—Äû«w–Äãüÿ¿"^¤·MOú€ß.üÁ}ø†»ð{wá÷8îÂï“<xå¾À»4÷Þå¹/ð.Ñ}w™ ¼Gu_à]®ûï’Ýx—í¡À{t÷Þå»/ð.á]8sMgÅ}4uMÃÍ]Óð‡“×lÎ݇³×¬À‡Ó׬À‡ó×îi}÷6p6÷úÙŽ†RŒ+æi±×ÏûgûUó±¤1öAäî<_¿Ã’ÅØ´Ô—Ʀ¥Ø‰a)Ʀ˜—®F„%±)÷¥sð±“ߥ+Žä!¯·`i§¥89¿,CÜŠ”O¼^‘M‚1jk)F³tê'06 ÆÎŒËyì‹9 —}}Ûö/›cÆPŒM‚sâB4ÀØ0ëÂÀØÍp“|ñþd‹‰’;W Æ®‹–-p¾y)–½ü.NmÆ>’¶Óðâõ;Ÿ²Ið~YÞ$Y`DöþбI0¦–'ÅØ1ë’À3ÉóËTݼ?§߇,=<ù||ŸSVŠ,YWnÆ&ÁY§öw\pê{ž²„~ɺÉ504yã«)ƦÜûxYÉ'OYEâSqŦ҉S™ó”¥œ€eY•ÌmKÑ-¬€±IpÑ/2×ç(p‰‡â­•ˆÞw:nбIpÑ¥ €7¹ÖóuÙ$+Õ3>p£À))†°Ãµc|Ê&Áeqª006 ÆTrÃØ$.áT¼¸ivãõ7宜,›rw.*”¹6éæï±È·ª+±Ë&µºr{^‰›'åÓJÜ”[§Ög¬o‘å}²¾qÃ6üz¼ìž Üy=Ù2ApQŒÝ+óâò3ÀØÇ4ß÷K¾a§Ž¥|³¥ ò"ßžó+ߺݯò­qj>ðbýºxüÍ·¾/-ϸò­ré¼”o•ˉ ߺþ¾‹|+Æ÷E¾]‰>/ò­èš—ÀàÛ®om(ߊñg‘oY7 ,ù–ue~àÉò²9Já›îä,|ÓU<¥!eûTˆÉ·¤[2cSîÔ¹¢0v(MZÿµa®YqEû§ ™ áÎEÚOYê@r”×ëË›h/ËËš ¸þ4 ¾=ç'ßÒà dÀà[ªv~ò-U»òíÁäÛnŸzR ¾Yû%Bå~õ}o—®D ¾]º|0øvéN<"d(‘OÀ¢oº3”¼ˆKôKÚk`¬ô¾til*­;g.¥,zŒ•ÞW£Þ•$|Ú\бÒ;š•ª;á —ƒå…oÚlcà•X_E¸ªà¸,Á“mA/`ì̱´½Âƒ9°$ÎTŒ9¦®ÙŒ9ÐŒfÅØ™cêò;¨X‰××û¾¡™šÄÂ7à:#™ºJ«W‘óK1vzÃóñúÂ7”×÷'|˶‹(0vV˜ª§ÀXÝyêÒ:ÀØy ½„r¿Yˆ•mÙ&î]~Y}áJÈˆË o…[e[2H„·Èܬߙ|šbðÍÈß.]a°dòíÒ|;áìfeñxá[Ö¼T0v±Í.¥ájrýθðMšmÃ’]\ væXº› 0væXz$‰È,í0ò£Kõ Ï¥ùYQ<ùÃû!ß.ÝÙXøV©?ÒWáGµ8¶QD3Íë ßDF c5õ©;S¡!ÄÎ Sw^’†õ±*ß ù6u§*i¨‘ëÎnÀàÛÔDÐpƒoCõ XøV¨7ÀÂ7]ZB(|Ó¸€Á7ð±*ßvýª<ž|³­iÁ7È>ÏG¾a°¥¸’Ÿz?äÛÒ¥‡€—¶|^囵Øb‡í"7Žú‘ W–§žlŒüÈv®+E–’Àï«ï{¢!¾X~I{}]v½%íõ¥+DCß.]Œú†fZž¿Rß.Ýúvér‹’ˆ$©?ÔJ}ì‡K±è›n2[ªê[±ó©¾éÊÎ¥ª¾e‹«¾é>¬À•ß¼_&V"S†Eß.å{U}ëú¼õÖ7ò·’oI×ûFbv!ß(Z«ðMò‘©¸1_nMñd¾A~Vò­èR:Àà[±÷¿¿!%?Òõ ó¶WU'T êi•¥R%ßäõ#ćaäGEw¾*í’ü¨èÎlÀ•ùùÚ¤aAµfûÙ˜OîãYßóÉ¢ùoišOêžÁÀÈ' —‹Ü4_—ß§1Ÿ,ºï50òÉ}¿zÌ'±Ó¯/|»óoà‚|vªþ4á.Ãß³ ߊv# Æ÷H»ŸWø&Ç3.|ÃÏÀúÙ„oÀ‹ç¾I¼+Æ÷H³ö³‘oU¿§J#ßPÍšbð­êÂ¥‘oeÙû%ߊå‡M6¶`by¶ÜÂå™?ödß#ä'v áû•ïW`äGÅô¹“oÅøÕÉ7,uÕƒoÅøÐÉ7Ю(ßî÷×É·:5ßèä[3½èä[ÓpK'ßš®l^¸å ª-óN¾UÝY|³„€Á7T›¡|kMÛÛN¾íëñ÷ìä[Óï×ÒÉ·v¿/ò­Y{ÐÉ7,]UƒoÍÚûN¾ág¨ŠÁ·®»”A¾õ¤÷7È·~=qðÍÖÛ/C6v–×^ã{d¿=>Ë÷H×â€ñ=Ò­ý²`aA7‰ü>ü?øó³A¾ ]Ë|—þÞƒ|ëºÄ/0ø†LˆÉ·®‹^ƒo¶ÓpgùaåÁ·®;%—A¾¡šNÅà[·ïA¾5ýÞߺ.þ ¾qT0ùÖŒƒ|ÃïIL¾ukoù†ú–ƒo»½`{4È·¦ý e’o¨_—bð­éN¶e’oÍò­I¾5Ë÷&ùf;aô—dÁü~@É”úÅú6凗û‘矲¥ ÚêÁ,üþ7ýœÒЂoü}¸ +Ú;Öô—táõc*ß.­ï“|kº@náÊ¢ò¼M±ð-©ÞNå[Òöf’o9y¿“|«º3]á‡F±Ë$ßvûÈßk’oÕÚ®.,¸*^¼_~ßLò £.»bð­™þ,ò ÌEq%ßÙ^/ò­é¢¯e‘oû}3[ä[³ï‰E¾5Ó§¥|»ôù¸@¨6»Àä[·üœ[öJý¿#?êºódY²Æ#ê+ëó’ðÁoêWÓYŸ7F{=téE`´×þ/—¬™'|çõ¥cEh›ƒoCw(‹|¦‹|è’¥|ÚÿXù†QCC1ø†=:¤~-òmÏú³È·©;ƒoCûÇ€Á·¡K1Ö‹|»7»È·}ƒ˜|Ãý'Å…×—||ÛͦäËõ"߆.õ ¾uýþߺöGÕ‹|³ö€Á7Œ¢[‚É7Ê 1ø¶Û»Õ–¯¼_ù°™ëŠ‘u͇ê%[X¢>4ÃÈl7`´×¶ão°a´ ¾~WSŽ[»—©›°hùßåÿpÿ †BÀ[¹àæ3¯wJ´ÅϺiÙ1I:^ïŠ}‰Ò¸;’• ö%š´O b_‚wö”xîô×®1ˆ= ± Ú”~PYepýìÅþô`|­´ùÍÛÆÙÑy=›Î¥o>ÿÉ߼ơ žÚ"‡åœnlm `6+ïý¯¬îo3º~Ù­–—ñãe˜ÖÔ"š6O 5q\‰é·Küú2•`ÇùSB;ÒŸÚ5|—°®b_b¹­ß¾¾¬sÓ•Ð±/¡Lw b_B»Hîľ?úŸÚ àKL·õÛ×—}¶ºüðzJ臘+ÁO‡§„~J¸L~Ÿš »LçžšÞùÓmý†LH\ JìSB%÷)¡"q—0Ñð%ºÛú %ØÌ»úq´˜ÖJÜbZ»ýq‹i%>n1­ÄÇ-æ­w‹éØùS›3:S[‹}fjÿÌ­±©-C»×cj§¡Bjjcèñ4Œ•h‡®®¦6†¦ª -¦60M2šÚZZÌÄ΃CUëë6µ1ô2ÑÄ•ÞQÁóu›Ú‚óë6µ“mÿ¥¦6†.ªi,½µ:ð6µ“퉡¦vZÙ®'&[²í¯ÔÔNØž‚÷'&¶Ôû‘V#­Û—Nÿ´t«5µ1T‘¦2Ûô´“]MíÄ\ò6µofRc½ï}=-/_ÿˆgjãz4ijËýš‰Ýø|—3µq|6£†«›Éõ¾—6®O”¦¶l«8_·©°À‘ÅÑi{éúÚjj«©+¦v†iàLm`š–¤yæÒ@·© ¬¦¹¸(ãýuŒ¸šÜT—+é  šÚÀ4MijO+í”q<ŸGL¶|éöjjçËÞ7Mí|Ušjjç{ÐÝ©|i®¦6â:¨€ºté¦ jjçËLnšÚii'˜šÚÏû¡©ø0ë}ãÛª½nS¿/ë+MmŒ·Éùu›ÚÙL>5µó¥¦—šÚ9]:È„½ïùRÅ´9hjãy[ݦ¶`žOø†òÓLëÂò4ýijËõ¯×mj£¼>ðMî'½nS÷s™‰ “-_ij 6{è ¡þºM휌4µ±'°šÜ4ÙÒ=¨€&[ÒõáÕÔÎiS»ˆ²¦vκ>¼º©(?i3sɺ߀šÚÙ¨©ûe'9MmÜßp¦6ðÊŠ¡¸I뫚Ú/Š+¯¿œ©mÿ5µùÑNS÷GÓ¦¶”/ŠÁ7ÛßAMm`vòÓÔÎ9k'Mm¼d&7ø–»½/ò ÞÛP ¾åLm¹^S\X>ßr³Aäâ¼ò Kadŋ嗙ؙåi ©©½Ë«©J“-/3i²áCb*¼ßd&6L¶l&šÚ6ÈÂLí¬úi¦v²NJ5µ1ˆÉâ“÷{yS;O3±i²eÄe¦v¶NH5µQÍô†É†¥K,¾x¿Š5ÿ°÷¥YrÚ‰£¦6—Öùr›ÚÉL,5µ÷ñÙ0ø–ÍtSS;»ùfû{˜©µ½0S|4|ÛÕpš‰ ¾Ù¶lfjÛ¶ljj£ý«ÎÔ†^/gj‹¾9SSW²™ØØÏb63™…oÀìt£©-ún&7¶¹ƒ©Íó ߀Մ®Ì†v ÑÔÆý°S‹ß‰K/~1S[ôØLjì‡2­S™÷Ãöƒ¦všÖ©ES[¦úð~ó£l&µ4ü2Õ‰å…oÈ÷²™ØØÏS§bìgÁ¾à/fjËùy}á[š6H‡¦6ðe¦5ô‹¿~1S[Þ§3µ1u…öó¾hj#ÿ»MlèÛlf* ßð¾øþijK>g¦5Æ(/3!ij£~ð}ÒÔ–úÀó ßDO©-ù–™ÔØhµÇ´®Ôc5Áó£¬í-Mm¹_^Ÿ‰ü´A4µñ~ØéOS[¦BÆ~(si{OS#Š9(ƒ¦¶¼Ÿªû¡,Í¿ÔÔÆýVÅϧÇk>Yí~4Ÿfâj>iƒ<ªæ“]ÏW•oº˜šÚiéjj§Û´¯w>Éß—¦¶ü>ÎÔ–|•¦.ù¶ÏW ߯cZg™“ õ—¦¶´I1ôÍò75µÑž,ûâ!©fbc‰m·ª¦6âÝâDré~,jj#¿£ HSå/Ãs0ÿãû’NÉ—ÌÄ.,ãÎ|J°· %3ÉåsúÏö‚¦vNfÒÐÔFþ”ÍÄ®|¾a&÷`~Æö’¦6îϛڒ¿1N}Kº)µšÚÀjÚRß°-©3µÑ~Óô¢©ïAoMóIÓOšÚ™2õÅLm<2Ó:1ÿÌÎÔ–|çR }KVÿhjCŸ†3µ%ŸiŠ—–7Óß#˜Ê0W걚ìÂ7ÉÌľ˜?4µsÖýˆÔÔÎl澘© œÌäF~TlMíŒA 4‘Ù+S»*ž,Ïö‡î ÊÓä¡©>Cò‘¦60ë+Ýœù Mí\Ìô§©m¿*5µ‹™ÜÈ'KÓ|†¦v¶AÈjjó÷Õž©’Í”'ßÐL'Åà› JVS;WÝÞTMm\ŸùMmài¦7øVl(Ýœí;Mí|ú ©ãÉ/šÚ¹&mèväzß/ùV/Í¿hjã}Ugjã|¼_šÚ¸5MÉ·bù%Mí\Ì´¤©úÄ|†¦60õ‚¦6ʳ}£©-ù§3µQÿx?4µ¥¾ ÅàdÔ™Úr>O¾aÐJQ ¾•l&4ùVlMmy¿ßÊ0S|«VŸijçjƒ ij窃ÌÕÔÎ5›IN¾Õj¦=ùVmP#Mm”¿œ©ßõ‘¦6Ê73­Á·j¦3Mí¼›a5áÉ·ª¦”õ‚¢Y_Š'ËóýÒÔÎu™ÉL¾5ÝæYMm\zCS¸š‰ï‘}ü0Ó{±¼7µáPijg,%Ãë³ÿ´MÍWijçÝ,ugj“/4µõxò­évéjjã|¬ï4µ³í'¦¦vî6(‚¦6Ê73±Á·¶Ì$'ßšñ‹¦vîIÛOšÚ¹_O|ÃR&C1øÖmMmàêLm‰Ó¤%ßÐŒ8S;£ŠÁ·nzKSݨ¬4µ3š –'ß°´ÆT ¾õ©úAS¸:S[ðPŒï‘nõƒ¦6°šì•Î… ‚¡©ãÙ¾ÓÔf~MS;7¤HSõEMvö¸WDLS|ÈÎÔF{¬×W¾é$ 5µQ¾˜é=´>òxò­%­4µQßoÓZø–5ß^ªo6Hj)ßt¿S5µ³í÷§¦6ø^òë6µsÕþ(5µÁùýÔÔÎMõWMmÔÇIÓ™|kº¹²šÚ(/õMMm$™7½sãaó_iE¾©Nôh6;\Œ±Ñl2¹´ £Ú…¤›~4{é¥6L ãÐL=è1l^´äºC‡Ý«=ºüÒA?tR¥úÏ`pçX8ÌM©÷ ii€†æ6ê=öÀ]wG7§Uz mô¥ÏãöYÅwË.$ùçÔ©Dê:ÏÛÓ™ËUÝžóÌvfy-ÓC:Î8? [1œg1¿X:"È•ªMá÷kÞæ»˜_³Øã‹÷5‹Í¿–>m|ð™ó¼3ß©þj4c\Ãõº}æyÛÆÒ ?§¹ÜÒ=8m&0Mæ9lbµwnò¾Û©Ã(ÕažÕ S!ά6iXúçes’¥;pfsg¥7…×ë6—ùNnoyh-ÃyqÎòJvW"´‡á|å¥Ýj+#jS¡wå¼9ÐT^ŰH—È`un3CËÎðM¡ÍI³k5|±Þe)M²Æ—†¯ì6#¥¹ i¾²·ØR--¬Üç/*§ú4¶–±VðgAü#nð^Ü\;®0ÄÝ.CÜíâlÐÅ“ßeÎ`ˆ»¥ ºxöËb q· Áo%Ä[ ñâwá1âm„xG|–ŸñüÕïÂc0ÄK ñŸ¿ù]x †xY!^Öï-Äûyþ•B|Åç—ü'Nâ«…øŠç~ƒ!^Gˆ×qÄG ñQŽøZ!¾âóO¿ A_~ƒ!žWˆçuÄ[ ñÖŽøL!vqVÓîŽ+ q·¨»AO~Yzƒ!îvá1ângƒ.žý.<CÜí2g0ÄÝ.s]¼ø]æ †x­!^CûE{ñ‰×¸ ú>^ç5ÄG<{Ìø¯¶žgŒçâ9>÷› ñr…x¹Žxë!ÞÎóÏâ3>¿˜6Oœ0ÄgñÏ?ý.<C¼Ì/óˆ÷â½ñu…øŠÏ¿ü¾ CÜëÛ<õmE}[§¾­¨oëÔ·õmúFËö‰§¸ z¸>>âù¥Ç¸Û…Ç`ˆ»]œ ºxñ»F ñ6C¼Í#>kˆÏxþ¨oëÔ·õmú¶¢¾­SßVÔ·uêÛŠú¶N}[QßÖ©o+êÛ:õmE}[§¾­¨oëÔ·õmú¶¢¾­SßVÔ·uêÛŠú¶N}[QßÖ©o+êÛ:õmE}[§¾­¨oëÐ7õÖ-n0ľtñ oCÜé›ÁwúfÐѾ ñ>B¼#¾Jˆ¯xþâw™3âµ…xÏ_ý.ÎC¼®¯ëˆâ#ž¿ùüÚ`ˆ;}3èâAß †¸Ó7ƒ!Þzˆ·óüNß ºxÐ7ƒ!>{ˆÏxþ oC¼Ì/óˆ÷â½ñu…øŠÏôÍ`ˆ¯âAßtPÄO‡¾é ú¦ƒ&|<蛢xâ‡¾é  ñüAß †¸Ó7ƒ!îôÍ ‹}3âm†x›G|ÖŸñüÕïâl0ÄKñŸ¿ù]œ †x½B¼^G¼÷ïçùWñŸ¿ûüÚ`ˆ;}3èâAß †¸Ó7ƒ!îôÍ`ˆ;}3èâAß ºxÐ7ƒ!žWˆçuÄ[ ñÖŽøL!õ-G}˧¾å¨oùÔ·õ-Ÿú–£¾åSßrÔ·|ê[Žú–O}ËQßò©o9ê[>õ-G}˧¾å¨oùÔ·õ-Ÿú–£¾åSßrÔ·|ê[Žú–O}ãXÏñù»ßÅÙ`ˆ—â%ñ6B¼çŸ%Äg|þáókƒ!>GˆÏxþ¨oùÔ·õ-Ÿú–£¾åSßrÔ·|ê[Žú–O}ËQßò©o%ê[9õ­D}+§¾•¨oåÔ·õ­œúV¢¾•SßJÔ·rê[‰úVN}+QßÊ©o%ê[9õ­D}+§¾•¨oåÔ·õ­œúV¢¾•SßJÔ·rê[‰úVN}+QßÊ©o%ê[9õ­D}+§¾qh—¯xþáû †x!^ç5ÄG|þéû †ø˜!>âùWȯ†¸Ï¯†¸×·rê[‰úVN}«Qßê©o5ê[=õ­F}«§¾Õ¨oõÔ·õ­žúV£¾ÕSßjÔ·zê[úVO}«Qßê©o5ê[=õ­F}«§¾Õ¨oõÔ·õ­žúV£¾ÕSßjÔ·zê[úVO}«Qßê©o5ê[=õ­F}«§¾Õ¨oõÔ·õ­žúÆ~O|Æþ#ñçãeñÞB¼·#¾Rˆ¯øü2‚≆¸Ï¯>qŽ ¼ã CÜç× CÜç× ]<ê[;õ­E}k§¾µ¨oíÔ·õ­úÖ¢¾µSßZÔ·vê[‹úÖN}kQßÚ©o-ê[;õ­E}k§¾µ¨oíÔ·õ­úÖ¢¾µSßZÔ·vê[‹úÖN}kQßÚ©o-ê[;õ­E}k§¾µ¨oíÔ·õ­úÖ¢¾µSßZÔ·vê[‹úÖN}ãOýGñéã±ÿˆ#@ï¸Â÷ýG ]<…üZaˆûüZaˆûüZ¡‹G}ë§¾õ¨oýÔ·õ­ŸúÖ£¾õSßzÔ·~ê[úÖO}ëQßú©o=ê[?õ­G}ë§¾õ¨oýÔ·õ­ŸúÖ£¾õSßzÔ·~ê[úÖO}ëQßú©o=ê[?õ­G}ë§¾õ¨oýÔ·õ­ŸúÖ£¾õSßzÔ·~ê[úÖO}Q߯©o#êÛ8õmD}§¾q„ï' qߤÐÅsè?Râ¾ÿHaˆûüZ¡‹ËÆ'Nâ^߯©o#êÛ8õmD}§¾¨oãÔ·õmœú6¢¾SßFÔ·qêÛˆú6N}Q߯©o#êÛ8õmD}§¾¨oãÔ·õmœú6¢¾SßFÔ·qêÛˆú6N}Q߯©o#êÛ8õmD}§¾Í¨oóÔ·õmžú6£¾ÍSßfÔ·yêÛŒú6O}ãî'Nâ¾ÿHaˆûþ#….^Bÿ‘Â÷ýG ]\F¨>qÂ÷ùµÂ÷ùµBú6O}›Qßæ©o3êÛ<õmF}›§¾Í¨oóÔ·õmžú6£¾ÍSßfÔ·yêÛŒú6O}›Qßæ©o3êÛ<õmF}›§¾Í¨oóÔ·õmžú¶¢¾­SßVÔ·uêÛŠú¶N}[QßÖ©o+êÛ:õmE}[§¾­¨oëÔ·õmú¶¢¾­Sß8bßÇcÿGðûxì?âˆþ'^þ#Žð÷ñØÄÿOœ0Ä}~­0Ä}~­0Ä}~­ÐÅ{ȯ†¸×·uêÛŠú¶N}[QßÖ©o+êÛ:õmE}[§¾­¨oëÔ·õmú¶¢¾­SßVÔ·uêÛŠú¶}Ó7âNß ºxÐ7ƒ!îôÍ`ˆ;}3èâAß †xŸ!Þçã»}ÓOüÐ7qáã5>Ð7ƒ!Þ®o×=ÄG<¿ÌØxâ„!žgˆçøü2£ã‰†xÉ!^òo3ÄC~ýþ”_?ªþ“QËŸ ýdÔÝ磢>Uò™ëÿ™kú™+õ©+ðI¯êg½ZŸõ|öUöiVüIVñI«ÿ9«~ºVú™"œhôü!Æ¢Øßö‚\ýøõõÇïÿæ_~xmiûþ?_²ÄúÕ~øû׿;ç¼6 ‹ÂnªÏÙ~÷Ã>Çëûÿøòºd÷þ-gë2Èê>Û÷¿ÿ‡Ó›ß¾¢,;ÒyWÿå¯Àäñ×÷?Þ·óÍk¡ýË"¼·Ù\ßx—ù¾À»ÔwÞç~(ðù}wÙï ¼K_à]þûï6¡À{-€/ðnà ¼Ûøï6¾À»­@(ð^3à ¼Û¸ï7¡À{-¯q¾ŸN(üp¾ŸÆ?žïg3?žïg%>žïwÏj¼çûýÝwÿ£z:ðendstream endobj 734 0 obj << /Filter /FlateDecode /Length 690 >> stream xÚuTÛŽÓ0}ïWX}r¤7¶'A Š@€@Dâxè¶éEj’²Iéîß3ã±ãÐÝUÕx<žŸ¹'lËö~–¸õM5»^hŤe–)Vm˜T©(ÅòÄ©JV­ÙO®#ÉEÅNyµo`[G±Î3þÄû=|zܧ<&uuŽ´âmnà¸;ÀçÔ´¤ù|Âí€~ÇCMž_QÕ ´ùò2Ò’?Pð¢ßÕÇëEÁJQekÂb]ByÓµ`¸ªás‡†o·°,øò®&¹"U@dÉ.Pv\K2 ê¥KNò«(NeÎï‚‘ÏÜñÞ.R9?Ó~ípüJ¤v.jå}K~ÅÊðÚB:£#Ôíu°µùy`í ‚5°Ýs5q°øZó•-þ ¾¶øPÍãXhØ ¾ÓÛo1x/¨ÊYþ™S)ŠTÓ¯¢8Sšm‹ Ô6»,Áà¿q*ìÙþ/±%ÁDR%1€$í¸L³É]up1‡ Åïð7!楥p+6û誈æí<¸.©?^¹Úï<Ÿà ô®šI&Gâ¨L “ælÕÌþÌD. Éx/§¸þÐHÃÞv³oðóg±ObZÊNI0Þ«‘{Â.ðíÉ©)¹4/ U˜áDD:8ãÐ8£m+ÌÏ_FP¼é&aÆ¡lépÓlÏíÆrº ƽeãÞ•¾¿Bzçž#€éœ›@šÞ¶Ó¢y ðç½kðöÈDùÄìlëÖÓt‰ñë5ÞЫ€¢¼ (Vî™B“ÞŽOœeÿÒÙ¾ ÙNò¸ë-—n'oKNcånh:‹Øf¸±ƒ9Z삃Msy½ÕÙê±évy|*ûçŸ ýàýá}ðÅø`<ªÁtàŸ[™4FyŠ(ŒÐ…$*¿¤Ë?'{Hendstream endobj 735 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 736 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-tailoredAxisPlot.pdf) /PTEX.InfoDict 321 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 323 0 R >> /ExtGState << >> /Font << /F2 322 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 11663 >> stream xœµMÏ/ÇqÝ÷÷SÌ’\øQ¿ÌtW/cà 1ÈÂðÂQdÀ©Ä’…$ß>}êTõT]Н®½ ÁÞ·ÿLM¿üªæ<õúõU¯ß]ÿòé¿^ÿr=ë£ÜW“õqßW¿ÛÇl—ô§]øíõ߯ßúÕÿÛúëëo¾ûT>J)Wü÷wó_öÿÏõ>ýý?\åúŸŸêõëýÏï>UlpýçO³~Ì~µ5?žuýøi¶~«,rý¹ LJLÈ}ZʦòùèʧR®¡r¨Üÿ›²Þó£RöN9§Ê[[×Ç#<Ž,å£RŽB9E¯ª>õ£/m]•rQ>ºqÿ¢rjëýqS=òóQ*Q¡•GÆï•ýË(‹n,¥QVÊÁ{ÕpÍû‰4ÊþPŠIl¼ ~™n¬²}4Þ«Õ(åÑÖ{Aö›²Èû£ •cQʉ{6UN=”^¬=A•ƒ·n©”Æ[×¥Pê#«¥àª»êúѨÇ0½ ϵT7ÜdhyT÷J½¸ÿgôƒ@mû´µ©øèy›ž¦y¾‰ð€Ö§UËBô$=©5Nêãnz˜^µž¿Ö‡úf{Ç~·õqÿV­×[ŸJÍß³õ¤žEõdÜ þ7ôþ¡‹ÛWÓz1dj] Ýý´½ékø¯U4èùuûÖ>nê›íá«§¡ŒÐE}4jÑßÓÆGaP®Ç´…°†amË'– åÏ¿‰G± ôj/ c}1¨…÷¯èö½âFÝÉÂ7zðþi/Pû~;yÿÛt<ª—éAÝõþöÁø¼zÔB}ózôFêóåù÷ý¦¾§ée÷Wïç]ð"¼ç¿ëG¥.Ô 7Jïïî,½Ô÷Gíá~mmÝiÕóÝ÷§|^·vaú:6Ó“Z;Éz‹w©«˜¶>•Ïÿ^Þ©jUŸŠ£z˜^Ö­j|=ñ|t÷ŽUnÓ“ºëó}ô"Ú[RƳõ­ÐÞ¹ROï];µ0ž‡Åû¼¤†öQð Úzì}•=ìcïÛÖôþžÑØÇ>ê¸u0Üš¿wëA]©ÆóÃZûÙÛâ} v´Ç·:ý¢î_M 5ãi,öµÅë,ìlo.Ð#éÆx>z¿¯KõxLj¾ßóf<ߟ[k{#l uSÍv] ùû¶ÖxîÖŸLaÛ9TÔ=®VjÑëß#éêQWÆsGØB7ö·ÝâeëIÝ5~÷àÚ©ÙîñSã¹[¼l=÷çñûÛ³ÿ`<7‹™ŒÏfýõD»°}˜^¢û7Ý~ªÛ9þ¬Êøìö¾m=©yqa¼Ÿ•ûß8PÒRÃýƃOz°¿½í~ #lÔlüPÝ^ãewô¥‡çµõ Öøj{¼Õø´çßöxZž¬Çóž¿íñµ™~Lk|ÞÿÚoojáö:5;ñ-Ô:ü·=¾Z<ëóiEØß>ìï ‡¼ïCÛãé½Þxn{<µxÖy ô,ïïmµ±¿µû ­ñÜñšBߌçÎ÷»íñ´3>ïbz™fû8ñÌãOö·ïKÛãë²xåõ,ÎP;ŸOÛã«Å³öГñªïsÛãmÂñZç,5h‹gïÖnö·•zÍ÷ýiía<ßèÉx¾¿Ð‹÷¯P ûÛ›ãck‹ñ|¶_ìooN*Û_G}û‹¶ÇÓVCülíñ¬×Û;û[ëÚo µ4Õ'­?{<½“žìooΠµÎLÛo-žu~ÔöxZ¬m¦ûÓ¢ÛïñÕûÛfÚúÛÊöæñ©óñ¶ÇÓ&oÿ -·Øß>_÷`|>öû¶¿ø>ÜÂù«-;ÚOmþÊøßzÖw|lOa;Ð QÛü–Ç{ç¯Ó~ïÓ9µ¥ ôâ| pÿÛç:ßh{¼­œ0~÷øº¨êÉù«Í×Û#gþàÚæÛ/ö·ºÛÖ{<­\èÂzRëøÖöøÚm-!¦×ŒïÑÙßê4úáüõïa-6ãñãY8_m{ß=žÚzLçÿПË~?nÓz>t´ÔŒovªÙþpþºð³¡ûÛeý+&–ÖN=Ÿ½{?wƒÎ_—½Ÿû?&µÞOlØå=ôâúK×›}¯gŸõîß‹<ØLLJ^´cNzßHh½þ¾×³º Óbí]µ¾ÚÞTëB%OO5Ûç=>°Œµëõïñu_è»ýOoÞÏEÝÙßúïÙzP¶ßìoç'½Î_Å·¾SÀÓ÷øjñ¼ªiáú‹÷w·¶^Óøë{<µõ˜Æ´„õYßãëÃ÷]Çï¾×³Õô0më5_ô=žÚzÌôsxkãÚ?ö½žíÔü}[/ëx~9¼€z^àzY ÇßëYã¼?{¼­ÔÚ¿ö=¾®°¾í½3ž'Ç›¾ÇWëoõý‚¶þVûÓ¾Ç[ëoíxÓ×cËõ\oß÷øÚÃûmý­â«¾×³ƒ÷Oç}§Æ t>\h¼@û{hëou>Ø÷zÖú[¯A‹ñ¶?Î xÿ÷xÚ>ÓÎ xþyxµx[õú÷ø*Æcô|{<5^ ýMßëWëo?[{KÝ<>u¾ß÷xj¼@çÐCÂõïñµÉÛ¿A{|êõíñÖû[jq^À÷wkã_v¼åñÉóíõ¬õ·|?¶žõí¿ûOé|£ïñ4ò/hëo{=«ýíâüÚâ™ïÛ_'ûWÆß˜œ¿ y´ó/½?{=kñÜy½‹ý­ß¿=¾®ÞÇ=¾ÿÔÍùû‡­§„þa·]Âû2ç_÷4=©•ô9È üùïõ«ñ/ÆçÖÏû/gj)œ¿úû¾õ°þ€ºæxÞZxÿtüèÒ9ò“¾ÇSã_¼¿r{<ë|¶ïõ¬Y¾o{¼-IOÎ_Æó´ñg¯_ Îêúà;%úd~èŠËuƒeDÿ˰ý ì¯Ó—û/Nóˆý{i†îu5 YŒóï˜ÃЩï±?¤v)ÄþØXï±?¤¾ Äþ6Ÿûë(‹ÛCì©£?±?ŽL°¯Ø­:7$öLj{¿ØRGFbŒ·:0ûc¸-&uX·i#±?ZuÖFìC5¹ûëÐþbÿŽ•õ¸ûc_òvÅþ·õ…#öWy_Žý!õõ!ö7Vì9€N6‰ý!µ/%ö×Vãüeê¾Ú0âp:ðûãê{Îù›þ|bxÅþÑp°¿î-×Áþh·´€b´3ûCsû­<û¶Wì¯[¯ƒý1›!¦!öGûdZA±Òºö$öïõq̯ØšXØ_Û‰ñûCë4ذ?fGÄFÄþ˜ ³ûcö3êu°?4ÓÄþ˜ é4İ?ÚÓöÇù„íŠýq|b]b´3-Bì¯:`\ߢVì=öÇñˆm‰ýõüÔŠýõúçu°?®—ØœØú¤0ͬӰ0±ß—]‰Ù Ã8hª‰É‰ýq<þ^bÿÞ<¾ˆý±ýdA±?Ú Û+…Öe„a½^_±?ÚWÀþ˜] ûc6Yx~Åþ½9†$öïͱ±?Ú¹=±?ögZŒØíƒX^±?ÎÇßOìvbBbì3m ØZóïùô Ødzíûã÷{û£½ìëçûC쯳aO,jbfbèFŒ¯Øš÷›Ø_gÏÄôŠý¡Å1¥f¼û÷&:-1ìö°¿nO­…žŸX]4´a{ÅþÚþ\ûcbkb½>jÅþ8¿Ìë`èî˜ñܬ·7ìÍø'ö×Õ@ÀþI#žÛ°4±?4ÓÄþººh×ÁþA7ÆóÑXø}°?ÎÇ4±?V¼ÄþX}0MFìv^±?öO,¶ó}#öÇþŒgb´3¾ˆýƒVì¯çÓûEìûù<×Áþ8ß/blÏ÷Ø¿sîr°?´í¯Øº¹^#n?Ÿb÷—Øÿbh¦Q‰ýÑðþû£¿:Zû[±÷…Ø_Ç î¯<ý¥¥ nö··õßÄþAö·~¹¾ÓÕ®Æ/yŽWóö¯ü=ÄþºZV¬Bì¯Ç Ø?éÁñÊ0}gki;Ãþ:PlBìßGÌKì¯ãm¹öW:ÁíûcÎbi½Pßçu°ÿ™ÄöÇøK¬GìñºìÆcÃþzÿÆu°¿ŽWlWì¯ãmÀþ8±±¿þ¦ çÃ0/±¿Ž?Ü_±¿ŽûkJl^8Xv=ÄþØ^ßoÃþÚ®÷—Ø_ÛÇu°¿ÆõÍþÖï?±¿Îx¼‡óKSö?ã¹aü~bcbÝŸÇ_ŒçeÏ›Ø_ã9`ŒØ^±¿Ž7ûëx¤Ç#öW𢨨_û7jÅþª‰ñû=Ùß> ûëxÈëö·»+ŸÓñt^ûC×€ýuü™×Áþ:ó7ö·7ÇÃþ¸žû¹öGÿ¥ËRÃþ§?2ìZÓæu°¿Òn¯ëO¥=ú|ˆýµ]®ƒýUì±¿Ò b~]ŽA?û£#–%öâï%ö‡f<ûCëûƒ ÓÚ+=¢ö·žÖ"öÇù˜f#öG;1+±?®¯»Æüç#–Wìã3>ˆýµ]GìZE,Lì-žXÔiÅþ SLƒû+­rxîÃ÷Wì݈ÑûƒfÕ~ìÍø#öïw±´$±?´awÅþØžibèÛ1?âù.~<() #ÖWìmiå{Ó¾ƒý•†éï!ö‡–yì¯4ŒX^±?twÌx¾ý}"ö×ãÓ+ö×ãëý öOìãÆWìÚ6öG»_ùÚy½ÄþJçö«ûëþz>bœß°»b´ó}&ö×í©5°q<ö¿Äþ {ì?‰ýAó"öWú7¯ƒý¡™–5ì×’ÇSìv¦‘ˆýµ]±?ŽOLHì¯Z±±?ö'ö3ìÿXÿàØ×{_/öªaAÃþ~½Žýo[:ö¿oú†ýoßûßkbÿýü'±;±ÿÞžûö¿í}4ìÍë!öÇùÄÓσó/Ãþ'~ ûãzyˆýqÿjÀþж¿bü~bOb£¯ûwt{®…÷[ÁaÝ^Gì}Ëu°?¶·ã)öZÆI£¿}:ÇKÃþÐؚ֮˜—Ø?hÅþI#ž«/5쯚˜]<4·'ö]&f%öMÄö  ™!ö=ÔŠýA‰‰‰ýA‡íøŠýû¨†A‰ýÑÞ]/ÓL (ö=Öñʰ?Úæ/ÔŒ'blOÌLìmiÅþ ×‹Z±?ögÚØ_÷—ë`ÕÜ^±?ètåõ(önÜ^±¿jbzÅþÐĶÄþ Õ|žÄþJ»Ù®‡víO û+ýî×Áþa{˜°=ßWbh Ø4œÏ‡Øš¿‡ØšžØÇ¿öÇùžÔ|>Äþº=Óñ|¶WìË6L¯ØšØšØ_Ûã¹zÚAAây¹^ŒWKãyYCì-ûCëzѰ?®¯:æ×x.––!ö×óÛwö··o¯Øû3-DìÛ¨óMÃþ¸Mü½Äþø™LcûCóþûëmTMì¯ïG¹ö×ÇD¬_ÏÕž?±?4ÓÄþº?±¼b=¿§„ÚŽ¯Ø¿ïiÓ ÄþA+öZ<ž-M¡ØZçûoi¾ì×âeôoñýަ—ÂŽZ^|ÿð¢¼øþ9ؽ³2L¹ßQñâ{ë°¼øÞÊp¼øþáãóâ{+óâ{{Ø^|ß96zñ}çTÝ‹ï»Ð[ñ}ç‹îÅ÷Fÿ½øÞ7¶â{+Îòâû·äÅ÷Æè¼ø¾qHòâ{¼øÞêÀ¼ø¾³ñâ{>½øÞV3^|o‹i/¾·wË‹ï ÅzñýcµøV|ÿp öâû‡éÅ÷ƒ?Á‹ïm”9Å÷–Œ=Å÷ÂÛsŠïÔ)¾£Â^|/F½øþh+¾·bS|o9§ð(Vàù¦'I½ø>hK>’J…Ü(×oñ½­ÒœÂ{1Ä)¾_Fõ¼øÞ¯ç-¾g1ì[|߽߾1ª>ý£‘éÅöV¬|´%ÓI½Cñ=©·ßO£®¡øžÔÜŠïýã/¾ŸŸß{±¸ß{q¹ßûõ{ñ½xq¾ßûóôâ{ÿ˜À‹ï—Ňß[1Í)¾_/^|¿Œryñý²b_/¾_Fá‹SC£ðQjfMŒÂ—b”Ü(üÖÌ …çdû¥ð€]r½¾xq¯Qøb=‹Søbo­SørÅ6 É9©8)üÖ|>FáKwêN _ºÅ—Qøb«`§ðÅ‹‹Â뀜Âo=#…ÇkG N _¬˜Ô)|i–å1 ÿjRøÒ,¾Â›e9… ÔßcÛ‡â{M˲žðð¥ðųFáK³¬‡QøsýFá‹_…/že3 ý½Ø¾X8ßëõâ“—fÏË(|ñ¬ŠQøÒ¬˜Ú(<Î×®——ۋùIá‹ 5NáK·,†QøW“¿š¾Ø`侨 á¾ÜÞN âÍ(ü‰7£ð[?®5û£ðˆÇP|Å")±QøW“£NásÛõRø­ùñ’Qø­ŸHá‹Í2—ᔾ8E7 _/î'…/FœÂ›R8…Çï!e/ž­¿½Ø¾®p?ŒÂ[•:…G;5)|1ÊçþF;Å÷Ó‹ç‹+“ryñý¡èV|ïÅ­^|o«ŠS|ïÅ«^|?½xÞŠïí³ÉS|oY¡S|?{ñ½c{ñ½} yŠïýú¼øÞŠÑNñ½X±´ß{ñ«ßÛ|éß‹Ý/¾·ñùßmÅ÷NE½øþœßŠïzzñ½xñ»ß/£ö^|ïŶ^|ïŶ^|ïY)/¾_¿^|¿Œ{ñý2ŠêÅ÷‹ýá)¾÷øôâûe×ïÅ÷b”Ћï—Ss+¾·¢S|ïTÙ‹ï—ÏwŸ¿6§ò‹Ú¨9)|)™Â§È^|ïï—Qx/Î=Å÷Ë)½ß/ÏÂ{qð)¾_NÉ«<ÊûáÅ÷^¼îÅ÷^ ïÅ÷^|îÅ÷g{+¾7*rŠï½øü-¾×ñ&ß?ÂëûàÅö-׆âû(üû>½Å÷¶÷â9ÆŸß{àÅ÷V•Šï™µñâ{ÿßâ{f¼øÞ©÷[|ßÊKøX÷ßûûèÅ÷bÃxñ½UE…âû‘Šïbœâ{§Ü^|ï÷׋ï­Êæßûýöâ{¿Þ·øžO½Å÷Í‹í­øþIÅ÷~ÿ½øÞªNñ½_ï[|Ïßc°œTŸ~7|¿ŒÂomÇ;Å÷Ó©{åz€ý±QxŒW¤à¤ð¥¼Åø‹ã‹ÕÂËR‡â{«¿Å÷¤(¤ðú>’š?ìob‘‡bþÉõ˜eíCñ=)+)üyCñ=)_(¾'õ¶âûÆþÁ)<æ³l'…/ͨ¯Qøâ”Ö(|±ÅœÂûüÂ)<æKl'…/ö±¡SxN;^ _¬êÆ)¼Ï'ÂoÝ#…ç4å¥ðeµ6 ÛJM ÿêÇç¯G+/Fm—‘Šïu¾Šïƒ&…zq>Ëûm¾ »ßFáÏñÂûøÙ)|±¬”Sx†ÅKá±=÷'…/ž…1 ïói§ðÀ l'…/fá¾ØÇÌNá‹g]ŒÂûxÚ)|17 §ðÅæNá½dÕ)|ñŒÂ—eïƒQx¯q ìÂâýéµ§Œw£ðÕ³ FáksªM *ÇW¯?åï1 ¿Û­X¾y•Éòb{«"a|…G…*©:)|­ÌÚ:…¯ÅâÏ(<1ÒKá‹£…/V¥á~oÏx7 ×ö¾^ _-Kìûs{Rø²2…/–%v _–S|Rx`0ýýFáq>¶“¿í¤ðåï“›Ï8…÷ª[§ðŪ®ÂŸí—\|¯÷›Åö¤ð^õãÏ?ßëó¥&…Dz€”ž¾:7 *yUTØN®—ÂWÏ …÷* §ðïþ¤ð[3ÂWc©Ná½ Ê)<ªv¹?)ü«Iá_M _­ÊÄ)<އûó ‹ïÿú{+­ÿÍÿŒ£ÎóûO¿úíª×÷ÿtUݽœU;¡p×uó÷?^ß|ÿÏ?þöÛëûß}úÛïõð¾Øé¯Â±*û9Vßaÿÿë;ïðuv?/WõÏ ~¼ºpÎIýÃõÝO¶8ºi­¶üäláúl;0ÂG¿[LQœ-\Ÿ-tôˆWêúÝ"]{ø-g‹¯~”¢ ±6µ‡ÞOâï¿ùõ·×~(ßüãï¿ÝwæúæOÿø‡o¯¿Ú½Ö7ÿïÛ¸¾ÿõçOøÏ–‰ß3@Z)ãÏÈŸß½>L„Ëúÿ×±»¡oþù‡/¸ MLÑÿÒ+Òøé úÓ_rC€Rú×\Ç£Sµ÷:¾ù»ßüëÿú¿ý×B§‘ñ%è´áß!VÐ}õσe~ÁuM~’ùõÁbéòŸ¹û^‰°æGû| Cæzû]ü¼½úZk‰ÓŽ9ñîü½Ýdhï O;ehgIÊi· •·tÚßëûýòžßGaYÇ~¹–òÝ:wÇ,{OOu÷öì>ª‡x½Ëg7ßzÂOw±+5òa%-~/’<[¾?›ýç>?û%Ûü8ÓIÆt[_º=ÿ¶tR¢+”hJ‡™ÊëI'%ZÒI‰ŽtR¢!”èG'%ÚÑIntR¢ö{?J“­è¤D':ü†×ˆÇ|}è¤F:©Ñ…s­÷k4©ÑƒNj´ “è¤DºÝüç¤Fû¹­‚ûžÃk>'5zÏIÖsR¢óœÔh<‡-ƒï 'ó-5¹ÎIM¦s˜MÏ9©ÉrôF*%Î1“rRÞÒ’Ýœ´ä6åT½æ¤%«9iÉiNZ2š;‡bªûÝW3ÝҒ˦/ÁdNZò˜ƒ sÒ’ÃÜ´h0'-ùËC1Ã--¹ËIKærÒRz›}²ÛR“³Zƒ±œÔä+çab™íó|™Ø–šLåöy£§œ´d)÷JýiÉPnËè''-ÙÉIKnrÒ’™œ´ä%'-YÉá '9ñÜ-sÙÒ’Ü9/3ÙÒ’‹œÔd"'5yÈ›Ã,¶Ôä '5Èq¥uRØh öqR’{º´¿–’¼ã¤$ë8lœã^Ù­Œ¾qR’mz¶àç å­¥$Ï8쾓’ãN+sÖ»7Ž~qs%»¸¹’[Ü\É,n®”®ž+YÅ¡58ÅMÿ"’¹j´†ưo°‰Ãú8|.6W2‰›’<â^©YêWj’zJ2ˆ›’üá¦WÄ0C=ý37&¨§$s8Póà ·ÿ­áæLÎps&c¸WjÏÖòÉïÆšNž+}Ó…œ^pr“’ŒÜ|¶n©dL‘ƒ›V–H–ü5—ϧ-,5Y¸ù|ޒȾð°²ÔäßæÓhË û|ØÈ>éµü±ÏÇ-},5Y·IMÎm>%·Ü±ÔäÛ†E°mÃ"¸¶IM¦mï¡4m,5Y¶ùDÎ’Æ>ݲœ±´ä×&-Ùµa.ÜÚ|vmùbŸ¸ZºØ'Ÿ–-––œÚ|þl¹biɧMZ²i“–\Ú|–kybiÉ£íüf‰1U mÒ’AîFðgÃÿ b_\X‚˜˜ûä‡}†léa_8YvXjrf“šŒÙÞõ9WÅ̰´äʆk yañg™† –lÒ“#›ôdȆujø0Kz²c“žÜØð«ƒ›ôäÅ&=Y±ù¡,,=±ù¾– –;Ù°E‰¨»“ ›ÜɃMîdÁ&wr`{¥9`Èà¿vŽÌ 0ZƒûÚÙ˜ù_üÀà½v~³¿Ò“óžB0^Ã# ¾káû+_ÓYâWZ2]ó—ÎÒ¾Þ–õõUŒ%}}Ñj9__xZÊoJ°[{åã‹å`¶&-y­IKÙ^_ÿZ²÷•ËË!ÕëËRËôž»ÁD¯/Ó,Ïë]¥yñZ‹5S,Éë]Ÿåx½Sµ¯# Ëðz‡l ^-¿ Ò»¾Ò´ì®/-¹+-«á'_5iÉVÍW|–ØEÿLÕ¢´År°TsúaI]9ªùÞRºÞQXF÷ĺ¾X¶|®´ä¥æËËæžkf2×{$Ëåú‚×R¹ç^1“ë+zK侇ZuÑCÍ»\ËâzkI\iÉ@ÍyŽ¥pO\1ƒ»_ºèžv^æoѼӤ%ë´óâ0y+-§{ÅÔíy­˜¹uV`‰Ûóv3o{Þn¦mOð3kë`Á’¶,g{ž/S¶'꘱•–ÜÒŽd¾ö¼°L×:t²lí Q¾Ž,,W |Ò|h³L­37KÔž‡yÚWjšö•š¥Ex‡4©?1H+¿Àí ç¿ÜMz4GÃÈõ~•%#Z£ÉˆÎh2£1šÌè‹&#ڢɈ®h²¢)šHôD‰–hX%¿Žh"ÑmÕ臶j´C[-º¡áËª× mµè…æ†ëDÏû(Á m«`„¶JôA;_MéÄ|=Ñm=Ñm=Ñíl©ƒúº£Úº£Úº£ÿ™ÿ!¢çÕ£ûÙjÑülõä}æ܆ž=Ñóº“ñÙ±×'z^=Ùž½RÑóº“éÙùSDÏk$Ë3ü!„àxåîªüïÐzF¡i°;sHCÏ^†jèÙ«¼ ={‘¢¡gÜ…hu†ß­Î £Õ™Þ~t¥øíÑêÌkîŒ?ãðÑél­dt¶Vò9{?€Ríõ± k)ÉåLO\Ϊ×+ƒÆ¥F—3èèr†í£ËY=ßÃC'½C:ºœáxÑå¬%²hl]ÎÐ]Π£Ë™^op9Ó¨ @a]ÎHÑå ‘]ÎP°]ÎÐ]ΰt9«nlh\ç‹.g©Áå ûG—3èèr]Îp¼èrVÏ÷ÄÓh.g¸þèr¦ïBp9ƒŽ.gÐÑå :ºœU¯/3J ]Ϊ׫§Æë]ÎÐ]Îj-ÉåLÏ\Π£Ë™¶—3ì]Îôú‚ËÎ]Π£ËY­-¹œAG—3èèr–4â¹–är]δw ßW­ä:hE×ø}Ñå ç‹.g耢Ëz èr†öèr†ý£ËÚ£Ëö.gh.gA+Ä®^Ïfۺ˃±q¾èr†í£ËY­ç{*%ÙÐÑå :ºœ…ídâøÑåìâlèèr†þ#ºœé\ÎÐ_D—3ÿ[†´Ñ]F“3¯æ7¦ýJ³àdÑâ /g´8ÃÑ¢ÅY=s’kWÿ8ÑÀ¶/í¤‡RÑáL‡¡àp†Kæ§Qʶ×LþfëNöf²’»Ù*ÉÜìý)bSƒhm¶žäl†OîÛöqר¶»#Û>õödÛYÛ^#yš­™,Íô~²y²síÉÒL;ÿ€·µó –fØ>ZšUÿ8Ï·¶K3mSUÿxÎ 7Ú£¥™ŽûÁÒì|ÛCÌí·aî%ÉϬ–šüÌp²ègV½2ÞHwõÊnCÝ:²Ö­#Oð3«^m´[{²àgVÝ×xwÐ ¼õM Ä[G¾àg¦#Kð3«^¹mÐ:ú™U¯Ô5ì­#oø’ :ú™áz¢Ÿzªègvzcߘ‹E?³züõH¿ujüÌ´=ø™©:ðêþ³†À«ûåGOýÌ0Œ~fÐñK*èèg†¹aô3Ó¹bð3Óã?3œ/ú™¡=ú™áú¢Ÿ™ž/ø™áøÑÏLÛƒŸ&§ÑÏ :ú™AG?3LO£ŸYuÿV£â˜ÜF?3èèg† lô3ƒŽ~f˜ÐF?3èèg†í£ŸYu?[£ãØ>ú™é8ø™AG?3L€£ŸYm+ù™AG?3›Hý̰}ô3Óã?3=~ð3{ORŽãE?3L°£ŸÚ£ŸÚ£Ÿ™NÈ.¯Ç¼\÷~f8ô3C{ô3Óí©•™ãxÑÏ úèg† |Äæ:á~fÐÑϬöžüÌÐýÌ´=ø™áøÑÏLuð3ÃþÑÏ :ú™éõ?3ìýÌÎõB¯½&?3,¢ŸYuH£è¸ŸÑÏ Ï?ú™aûèg¦ °àgýÌp¾ègV{I~f'~Œ¦ãz£Ÿî_ô3ƒŽ~føýÑÏL\ÁϬö™üÌôù†/©tûàgý̰}ô3 Z;Ú¤Ñßö™üÌ £Ÿtô3 ZézÒˆç»$?3ÕáK*èèg†eô3Ã2ú™é3ø™aÁý̰`Œ~fõ>~iÊÙ±@Œ~fh~fªƒŸŒÑÏ íÑÏ :ú™aûègý̰`~fØ?ú™éþÁÏLuð3C}ô3Ã4ú™©&+WìýÌêñË#xÇñ¢ŸÚ£ŸY=þ…dïa{…ïØ>ú™AG?3,x£Ÿtô3ƒŽ~f8~ô3Ãù£Ÿ™^Oø’J·~f ñK*ÄSô3ƒŽ~fÐÑÏLû#î¯(ñý̯ÑÏ ñýÌ £Ÿtô3SྤÒþ8ø™éù‚Ÿ™^oð3ÃþÑÏ ñýÌ_ÑÏ @#ú™AG?3Ä_ô3Ó÷#ø™) ~fh~fÐÑϬÞOò3Óó?³ê~œèX¢ŸYЊèƒçègý ṳ̈F;3)ÑÍ 7â53óÒró)ÑÊl®èd6%™yõ ¹ù\ÑÆÌ  ÈÍçŒ&fP¯‡ÙœÑÂlÎè`6g40›#ú—-•›{ŹùœÑ¼lÎè]6G´.›3:—yU¹ùœÑ·lÎh[6gt-›3š–Í=˦DË2ÞçæsEò¹¢_™”hW&%¹•y†ÓK¶[ò*“ž¬Ê¤%§2iɨì•,Ùö?¦`%Û=¹”ÉLÊ<ëî%ÛA2ÅÊäNeÒ“?™W xÉvOîdç2NÉvô&óÜš—l—äLæuÿ^²$³ÐÑ–ìÜ +ٮɔÌÓ’^²]“%Ù©¶’í– ÉN‘²•l·dGæÙQ/ÙnɌ̋w¼d»'+2¯"ñ’힌Ȥ'2éɆLzr!“;™E9TF 2¹“™ÜÉ€Lžä?&#ÙÉHîc2“ù˜Ìä=&’¬ÇD’ó˜H2“™|Çd&Û1™ÉuLf2“™<Çø‰ÑAâ2“ã˜Ìd8&#ù½’%Û#¹ÉHfc2’טŒd5 aã`4&#ùŒ†›±sͤà2’ɘÌä1F’z¸ŒT²Ëcèiƒ¿˜Œd/&#¹‹ÉLæb"É[Lf²“™œÅ^©àû•:Í™lÅd&W1‘d*v‰Ìû‘·HrI†b"ÉOLV²{¥ÒnYÉLl•ä%¶J²[%9‰­’ŒÄ–ÿõ>YÉFLVrI&b"ÉCL$Yˆ‰×³“pŸŸOÀ-’üÃD’}˜Hr;”xû•Š·e&ë0™É9켡dÛ"É7Ì_X#Û2“kX”(û’ä&3Y†y¯bX[$†ÉL~a2’]˜¿ƒ†µ÷£‰faò$¯0¹“U˜ôä&=…IO>aÒ“M˜ôäv*1‰µ¥%05Œj¿R¬ì+„ùE†´½Ĉ¶Ôä&5™ƒâJâl¯™2š}Ê' ³ý =cÙþA›±liÉLjr;¾DÙþ¥š‘ìsU$&^Qeu@Áì”^’bûäÄ 6nµ2l% a¿R ¶ôdöžWùµôdæ3 £×Ò“ Ø©ñ$»>5žD×§¨“äZz²“žÀ¤'0\Fðÿ:Qg%Û=¹IKæ_rþbK¶{²þç¯üDã/éÉ÷KÎË`ÉöXµÜÉôë¼)V²}'Ë/ŸÉxɶZÉöü¾pÁîë)[ÉvKf_§’ÚJ¶[²úz7fÉvKF_§„ù”lG›/iÉåKj2ùò¢Î·d;Z|Wã”lGƒ/¯Äô’íšì½¤&w//Fó’íš¼½¼BÐK¶kröò™ê[²}½Îke%Û-¹zIO¦^h%Û-Yzyy—l·dèåå“^²Ý’×¹ÈS²ͼ¤%//ìK¶[rò’–Œ¼ÎEž’íh㵯<ºxÉ“L¼°6 ^r' /¹“ƒ—<ÉÀKîäßì»äNî]Á¼ /Nðî’ž¬»¤'ç®·ú›%Û=ùvÉl»ü|K¶£iשﶒí‘,»d$Ç.ɰKFòë’™ìº|d÷’mIf]"É«Kf²êZ%9uùTÍK¶WòéI6]«$—.Yɤë•Í £EfYÁ¡ ™ñX²½’?×+Y²½’;×*Éœk•äÍuŽL ¼JræZ%sÉJ¾\«$[.Yɕ˧¦†’WMž\«$K®U’#×*Ék•äǵj²ãZ5¹qyÁ¤!äÕ’—ÛÍ@örãÇî¶oøx=ɇk=Ɇk䵞dÂ…ê…àÁå¶þŽ×¸Ö ¸Öü·`6ì·ÖÜ·ÖÌ·VKÞ[«'ë­u'ç­u'ã­u'ß-ìl·ÜšßXñêÉtkõä¹åNýŠ×·ÞVÅÄ«'¿­Õ“Ý–z#^=™mIˆW.Ù^wrÚòúÃÃx¾¡d{=Éf Ò=¸l¿8M4Œ¢‘à±uþž8ÁðùsâäÂk&ƒ­óǺI…ß} Ÿ?¥M&¼V2×òú#Ânj@ø•Ú½R»&÷e5¼ÖOlµ~¾dûßÊT«ÊWyjY­×¿‹§kÑ epÔòv“c|æ§uÚ)ßvsÏòv“¡ÞY§òm7ç¬s}”¡=^ð¹þ·ý«ŸÝÒ(¾§Ùc¤_•ñEnUFÆs ýêËìª0üôJþô×] û¾Wòw¿ù×/º5qü¹{2¿È”Ikb>»'Ÿ¹2q™ì¦L@É”é4W›Þ'K&€ÿ`Éd2´W‰–L&C;³ê§Ý’ìo;/ç´¿W÷‹M‘fýG&¼_áÈ„¨ü9G&{§Ü€Éú— ¬Á€é3éïþõÓÿ¼«{endstream endobj 737 0 obj << /Filter /FlateDecode /Length 759 >> stream xÚÕUÉnÛ0½û+ˆ$ ¢¹H¢T$=­» —¢ºMŒå -×ršäï3C-ÉqÒ^ cDr–7Cz(Ø‚ öa$h¼¬Fã‰VLJ^f™bÕœI•òB(fDÎ¥*YU³‘Žeij8‘`ªÕ4Ö2ú'Ú¤‘Ó¦ÆyMâRG (vkø eï _ÜR«è?ÍíÖoâ$"ª`ºœÅ?«ÏãI>`¢`®eD‡sïsÄVð¼8¸ ¬]ÁçÆ‘˜Á§>…œf\(¢Þžθ42¸àVîAV­ßtë¶ExÀdľ`%/s•cx¢ ÅeY²D\‹ÜÃTKpŸÅ‰* Ç—HwW£ÎDöÆá‚Ï«Š»ÁÕêO¬ gœ¹ñíõŽÂS\r·÷˜ õ‹æJHí°ÛlIž·mHŒk¬#D¦›vÞ ãè¹å†> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 739 0 obj << /Filter /FlateDecode /Length 19 >> stream xÚ3PHW0Ppç2ÀAc(áendstream endobj 740 0 obj << /Filter /FlateDecode /Length 856 >> stream xÚVKo›@¾çWp)Þì8ôJI¥ª‡Jõ­ê6–l°ŒÝÄÿ¾3;³×6™êÔO‘öƒ¢Ž…Êóaî õðN©Ê…I†fÁ¡qñï6‹+1£µHR „Y¦ènÝøÑ…0%ÃôtÅßÝlò{ºÞ°#mÉÞìÜuO·~êzˆö“30h]£×XØ‚¾™äsãómàŒ„ldÉtÌ`ÄÞ–Ç®‹P¦ßuáfå0ÉÈú²2üùÀLD•à$øóCLFθžÖw\-Åendstream endobj 741 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-annSinglePlot.pdf) /PTEX.InfoDict 332 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 334 0 R >> /ExtGState << >> /Font << /F2 333 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 25317 >> stream xœ¤½MÏîÈr¸ï_ñ.Ç ±¾+·llÀ¾ðÂðJ¶BK€­…ÿþ°2"HVV_É3ºOwždeÄC“Å`2™~þÝOúùûŸÿùÛüùŸ?Õ~]×Oý—õŸTÓ/»~ÒÕ]õçý÷Ÿÿüó¿ýõ?ý§û7?û§ß®{ËëçûçŸþö?Ü;ÚÏÿþí¿üןëç¿ý–~þÝýïßÿ–Ö?ÿþ·VåþSjûUÆÏ?,³¥ŸRæ¯Ù~~_渽¥ÿJu™í×u{óüÕ L÷¦_=-³»·ä_sÀ\‘s_ŒÝ\‘³ýÊ ¦½Ù¹w7ÿ*¦{ó¯nËœˆlëoÝÌ`Õ'L›~Uë¥Tr¶_íºÍò«_0Çò¶_ymÜ}7”zýJ¦¿úú =¹·Œ_Ö`.ï½ñ¤¹"×ü+̹ún3+r0·ÿšë'ôïM2ÁôÈ™D¾`…é‘Û¯ä@Þ±B¸IoqÎMœÍ V9ÁlÀçoýÕLâæ Ó#ß?ßÇp¾wNécïê»nÂûšËÛî½0a®Èkw7˜+òÚÝÊçx¹²Žc$sàÝsÂçÕmæê¦ÏÛ¬æ¦ÏœÛËÛÕEc$x*Á«±÷Ù„±i±Ù#߇ª^09¶¹Yà½ñÌå½7ÎæŠ|ï²b0Wä{cŸ9£‚³BUá6Õàm8nÓqó/›0óÛ`®±÷Q˜ŽÛÝ{ïv?ËVš07›ÿÞá‘5UnsEÖñ½MŽ…w÷žÞ ¦ã¦_¥ÁtÎ2 œï}TaúØ{.®Ÿ?yŒî’`Òëçþä1ºgl…é‘ ²ÊLÚs¼wC¹Or['ÎÌkʬãë9gú³L0GùàfŒM¿’{‹{ï½ÑL÷^˜¢³zdíœÛ\‘ïœc¦½~•µ¯fsïmösyïÛ„¹"—ŽÃ=»G¾s]ê0רìò6‡{oÓwûm:îÅ3ù5=rÃÙ='ƦÊmº÷þnpÎ…Û¬ðbOšG¾“ù4˜kìm:I»6ïmº7#YòÈéÆ+0Wät ˜>öZYû6qŒRù• ÌåMg™á%žtVùžfær-ª®³m™žŸoÓ½Gá6ÇòÞ»Þ{R”k"ó[ó±sóvx™dnsE¾¯³~M¹Íùº³g†éc w΀—Óû6oo6fB›+r¾ÿ»n®ÈÙ˜osÀëÙÛ Þ×tï}ý½`z䌫Fº.„æ%gÙ>ú>±¦Û þ›v§]1Þ'ñ²Ç6>yüûĸ°½'·|Ÿ sÒ¦À.ðŽÝ²Wüû\ñ¸ìÿUh;Ï•ËÆ»˜q–}OÍÝÖUëÙÏË®}·Gò?ßáo˜ÃË?mÏ•î£íñ/œ‰Ëöñ<êéžîÿØ;þþ5hÆøÍÇ'^æ–½üšëi9–¿aþ.{Å¿çó¬´Wü{{¿Š,ÛÇsú§û,q|Îáe~?Ž×=0§Ïï]Àßý{Û÷ø5?.Øeù×ññÓzÙîO¯mÝçùÖÍeÌÇuNÃOþ þ{>eÚô×I{ÅŸ\m.Ûã'ΗûLöñO¼¾vÄǾßõ™ß·]›ó™…ö¸ÞÓgÙ>žËtç¯Û_..R–MC|[ñË}Z´BûŽÿÙÞ0žW®”/ø™&–í~ÍŸìËu½m÷+¿7?ñŸ{ÎtOì¿sep"½ç뺱Ÿóá¶—_wZË^ñug½ì_·Çé>Q}¼½¶ûÛ‚ßò|[à÷D›ñý^=Ý'6ñ{÷'ü>ÞE/{Û?kÇŒ÷¾2u¿'Ÿu¿{Úá|^‰+}ίî‰àͧ·]Ó'_÷ê~i)Ëv¿òým÷þ9ÿoÛãß¿~?QŸ›äe/¿n|Ó}â¹_ëµÛ^ñ›Ö—·½â·Äù|Û>žw¬ 'úºeE¾éø=ñû´þ¹í ~½Òîà—ýxu>…ˆe÷þÉ7·mé3Æþ¼ë_¶Ï\ß¿óo©1_þ·íñ•ß–“ÞÛ÷t'†mÿ¬ß|2püÞxEø&›ñqü—*“>ù{¸îµ®¸-]æ£R¥ûDNí3ÿ–2sùù†õ÷m¯ñÏùv'÷WæÓÛv^j-lû(Yi¸ð´ö/Ö‹KŸ¹¾ûo¯óq)4׫…,›øÈK£¹>ùáN|©}ΗaÀ§x’î»Ô^õdÙ_Çÿ¶{ûÌÏ¥Ô\~¼‘Og‚ÿcÓÏøYü]_[¶Ç×|¾mO}&Ý7–ôc~Ýöò?×Ó¥Ø|4Ætßh¦ö9ߦk »?Ž_õÛDاçƒ?¹àîjc¾o5ŽÿPo¿7ú¿ÓÜ»¯W(éÿÃÏúY7MÚ¿ÿü)n Ó5˜å7×Ä¿ÌÇ¿nÄÖÕƒ ûÝ¢øœz·ýnäün!ûÝbãýùÏógû§?ØQÿôwÿøÛ_ÿ›ü“~þü?~°oÞ?`WOø¹ùºôÏÿðóÿäëêu¥ûŸõóç¿ÿí_ÿÙ1þù ë¶ûž1Jº>Qø”eÝù¥û§À, ùû—DYg8Í×_²'$ùi~üÈÌŸ‰úõðñ¿øß_ùùiõùÅÅ/F~óÞüWÚü£}ôÏŽv)íÂhûÿ>z­ß§N×v-gÉoÉ<‰h¶Ë.³`‘Ä=±›ÏÖ8E3rüsÅ|³?:‰sùÿ$ÚÿÕé¾NˆûúšçX²Û?¸Ý–ìѱL_öèn»l—ïËàµü —Åe»¿á6!¯õ3Æ_v†¿Ênïi|Ùï²I¾/ƒÄwÙgÙĿொï²à²3üU~Æ÷eSþŒiù=.{å«eÚþ ?ÄŠ?is|Gü!¿/ÖMÿl´=>Ÿj,›ñ ã§ÆÏL›~îÌ©éw7°=þ€LµlƯ…ö€üïË üƒ6ý.«æ™þ¶ømŽÏØ> ßo£—­øò3¾ß6fœËÆü˜Eãý6é¯ô?6ý6h{ü‰eí²=þäñ˜8æÄ²Â'RûÚ]~þ>_?¹]hWƒ}Ñð»,à?̾ñ†ü?–ëÛÃ?ŸÏ©Üÿ@<þ¼hÓo“ö¨¯L½þ‡ñý¶9Û¥ñˆg—ü v’ßoK–Íø8ÿ,!þÀ²ÔõRÃññý³žxÀ?:mú}³Rv®Ÿùdñuü¡—{<ø«ü8Ösøí¢Íø´›øã|·&þ¾ì]ú(ý8_í9~8Ÿí9~˜ßÖµøgÿ4Úk=2'ó›ùS*?l™v…¿Ê?ÊbüÀ²ÓŸ¤ÌÿL›~Ÿ¿KÏÎåÝ_Ëöøû{Ù>¾c~,=—~χ˦ßeˆeüÎw齿á6gÙ>ž2àÒé/6ý>üùCÙmÆ÷ýåú<ãÚô'ø›ü–i“´¿wÚü¾=ø»üöÇ@üŠùµl_µ?ÆWäחῌ6ý9Ó6úaâÔ,›‰\Vu=;Ãn´éw™iÙþ*›¡:l<æúÚ»?Ëï×þ¿ç÷eø‹¶çxìßTäω¶û3çWªˆŸ‘/üÑ&üØ©b|Æü]Ï{èlú1SS|ŸÔ?!/›ã øá“ÿû? ÄÆãåm'ÄŸÛc>¬K?¶7ác>$?ÊXËf|¿M]6ù»l°ôþ>¿í]özÌóÚ^œòîïõ¤ïö€?#^–ßó‘?Oàxù­ŽW.ˆŸqý]6Çãøç*üÇÞñëßh3~^Óxœß±žùŸñë¶q¾çŽø×óeø]–ð’©þ9Öcô™Ïë1?øMáó÷NÄöïÄx*­rúÓ¤íþ„륗Àï×·õ<†ûÏ×+Ëæx¿í_ô#”ôø+mÆ÷ëý²=~âñ(ù?h¯Çp¯íÏCÞù½ƒÀŸå×çü)E㑯J•ߌ¶üˆ×ßd3>·o_PD´ž¹_ù¢tù1 S΂õÜÒóõÉ?eh<®'÷mý˜?eÊÿØŒï2Ô²ßeçUvÂñVh»¿rÿ× þŠë«?Ÿ‚ó»^ˆ_y~ÕKã3Ƨ?Ñ–ÛgÅŸ…¶ÇoÑ–íãÏ×ZäÇõ·òøuþžÊã§ëãz bn·B»ÖŸçþ€z®Û“6ý¸^¬Ç ðãú·ô^øq~ÔŽñ¼X¶a=E¾Cþ,›ñg¦ÍøØÿuh|ÿ ?ï/–M?ΗjŠë]5Ä\OTÓx_O{)XýÄ[ú)ü˜íR|\ŸZR|»hW®×ü÷· ÿäñ…ÞêëíF»s½=iÛg½íÏÓ>ëåeÓõG«ò×D›øØÿ­*>ög«ëIóÇXÏú|Ù†õ"æßz 2¿¿ÇŸ·ûzwÒî\OúñiþÁó¯ ÅÇõp=×Ëõã{¢ÍñûÇäG~m&É´‰ëS3ÅÇöýÒxðë×óûœOú}8ÿ{B|ãúú/o{`üX¿®Ç ðc>­Ç K½âc[~¿uÚ•þD{·‹ù­Wùñ{Öcø1ÿz>ãùcÊå¿ í}|—çsïò?6ã#?ô.þ8¿ûÐxœßÝc9ìŒõ‰ç7"ngÚ}|ãOÇüí&?·7ù1ÿÖcñù=K¶CÙÖSÊé4žªædmݲÝÏjºeü¸Léçã Íñ8_G_çÃz ¿ßŸ-›ñý~}ÙŒ|:ªÆÙôÓnÁßûs4ÅÇzw´'¾ŸOë1ÈØíÝ?vÚûþõ×Àñ{òÙÀñ[ùQ~KŸók=éŸ|:ü1×›¯ç?õše×ôÉ÷Ó'Ö{þ¯Ç ðãz3ÆóþzÙ†²&\?°~î—]áO²ßd3>îg‘¿6ÚôÓ®Ïɿڊïûc …äWh÷þÉ7³‰?æÏìâõÀìõÛ£‡,»nü‡ð‘ßæxâÞaÿ=Çoâ÷=ÇñìÁï´ù|šÆ#›?Æòßk´í£KþÜâ™Kß¹ü|?KóÍòãï´å—m}¬XQ|\¬`¼öŸUùq>Z•ùÌê_~ÆG~°öð7Úô#ÿ[—÷+ÖÇßú³mŽÇúІüM?Îw›OüI»^Ÿùlã©ç³ÇŸiÓë)êóý²^âó|[6ÇÓNÁŸä÷õƲ¿â1ߣÈûBëUä× 2ùU¸Åмe)ÞPä­RÑ¢"o•Š'y+Úмñ)ò&…мu¬¥Èß6_*òÆBW)òÖ©R‘7¾ CEÞ…0)ôëõ‹‹²©È/¡‹O\Ñ]6i(ò^èøUä×’âÎø—úÿc{ü‚$y/Ô-?"¿ìñQä]زŸG‘ÿl—x®"þ¦ñP ¡È{!nÿyy/´„BŒyî߃' Pä]¬?"ïûÛgø‹âeø3](òöE~ùñÄм ‡_ålÆ·ôó(ò‹o‘bïñõÄR Eþcóøñ)y/$•½€qq…HEÞýØ/†,;ÿ<Šüò èâÒ±„5(¸P8{ùeO)îî/zâ`òûyù…×êϣȯøS üómRè üá$ÿW‘_ö%Þã'dh*ò.üAAÎð³Ð‚ŠüâKÅïú¤J¾Pä—ÿ’b?àïRàÝÿ±é'¼ð“ªr¼ñ“Ÿ°A‘wa¿ÇOÇŠü²Sûyyç+ßàÇ0(ò. ΟG‘_ÂÎã{#X*òKh+²ý ã(ò. "¾é "…Þý,¤ "ïB ìŠñSŠ=ã)ðßH¨È¯xT°ñ„ÏߥȻЙh;¾™GE~ }¸„"ïÂ`¡íü3WPPä—ù5žO *üœTäÝþ(òˆÂE~Ç м Rà‰Ï'ýy½ãùNPæù5Š9yç‡xS¯F{à"¬0 È/a‘ûoåç ‰ïøç]M*ònK¡w? ߨȻ:iüXñ@‘ßìÝŸá/ü½Pä^’ßãÌG*òKȤ¢_àŸ¯Bï~)"Pä—¿È®ߤØ3>öùÍf|Ì(òkRaïÚ?é£ÈûË­RØ—¿ðÅ*ò¥< 9ÞºmÜ!@‘_öõQäW|þž |Í(ò.lwÚþ"”žð@‘÷W®mÃkT8Ÿ È¯i‡Yæ‹%‰óŠüš6TÌ^ù؃/®@áÆ‹%«´bÒxñ…Ûg½¸‚ãEž‡ñw)ò+ñªcÛñŠ-ùçzDEÞ×°ùâÐâÞà/T˜¨È›î0¨È›ªü¾8ôQäŸõ yÑ(Ñæ‹?PôòóâVÀy>ûO6_ܱ"ÿ\o©È¯ñý¢íñ¥H–K/áü,|q¨r~A‘_Ó wTPä=ŸÚ<~TôñâPâz’ŠüòSñÆ‹%©óx¾X *òËOE¿àÅÌüTøâÉÅóм_Ï?Šüúýé£ÈûiŸh{ü¦ßÃO ïȡȼÏó»y¿ÞtÚ+~æú†ŠüšÆPd È{>Çø å5ùÍ(÷Â|†"ï×CðÇ‹CùáoøýÆ;(òËÆõŠŠüšÖIÛ3~“ßÁ~¼XRôD§šâSñç‹C…ù½òÅ¡Ê'4Pä×´Äï‡"¿l\Ï È{_(ôxqh54˜´ùâR’âîþþ*ô|±×ó–õbÑõQäý-(Ð|q(ñø@‘÷i‡ø8~UŠn{^‚BÖøâž¸·ª—¡Èûa”mxñ…ø]/Æ A‘_»mJ±÷ñ&>C/ÎPáOü"¿üE ¼âùó ŠüÚ­Pœ¡Èû‹OòóÅŸ)¿áÅüž~i|•M?®ÏPäýMòN›ñ?ã_Rè}|âü„"¿vÎG(òO!:y?,vÅ‹M˜Pä×a­Ràùb(òî7Ú|qO˜ È»-…žñ¿Šü²±^ƒ"ï| mòG¾„"Ïiô»ù§PŸŠ¼7´Àöx±¤êzEÞ_¤í/n4>‘…"¿¶‡âEÞý“¶ûu¾A‘_ÇçQè=¾î/ È¿óŠüÓcŠü:­†zË3Y ¼¿øÒ™/_<ÑõмOSÙô㉠yßþ¢mðc=E~í__(ò»Ó‹7] <_¬a¼ö¼Øƒí»ü½ûñâPÏ⋇ºž¸C‘÷iǯSO "¿ü—üëÅ‹®',Pä×´Äü€"ï/¦Iaw¿q=E~Mäg(òË_å÷øÆû(òë°Q¡NòSÁÏŠ_?ŠüÚùŠüš&8_¡È¯iŒ| EÞ§Y¡mýEÞm)ô¿Š?ꥇ*Ê Èû‹rm÷k= E~íöK |Âxì_(ò~ØÀoÈO}(þ%¿Ç×(òËæïËCc¾¶ûõ Òw¬÷»yqpÒ)øÆßÅ/– ÿ¬ïE t‹#Z/A‘_ö%»Ã<Ëzq¥|yQFŠ=_Œù*òk¾á‰yïÞ/–ôöÚõz_|¥"¿òòù…‡ãEÞ/C6_—âîñ«}¾8¤|E~Íä(ò+Íàz E~Í_îÏøÏ†)þx‚ E~ù‡ü>~nŠ<ÓðïRä?Ñ&¾Ïw*ò+m Ùkük§àÇñ[ó] ½Ço¸^|yψŸùF…U5ò•5 ª‘§¢òÔÈ)ÚYþ¢šùL¿ý¼Š¼jbžùÊlÕÈóU®§F>#ƒ=5òùUà3üPØT#Ï=øÔÈ'Õ°³F>©¦ž5ÖÏö¬±fÍÔS#ŸõDbÈßd3>ÿ¡øPTU#ŸQãðÔÈg=‘˜Âçï1ù³wÆ7)ö þ±Õȳé©‘—¯y® žù¦šwÖÈ7Õh'½C@›5ò|fúÔÈÏW¡÷ø¦špÖÈ›í¢ñS5ï¬aìŒñ˜_ª‘7)Ú¨‘·‹5ˬ‘·K|šüI5ñô? üª‘VÁS#oÚ_¨±VÍÂS#/Å[5òŸ·F¿wª;ùŒ ãȿïh¨FþcÖ4}ùwÿ¨Fžê[#E:Éߤ¸3þ°ŸG‘÷g€²Å_5ñ¬1gMz–ß>Šü{ÇïQè«í6ŸÉöøIO$P#Û|¢€ùÕŠG ûª‘6¾ö¤ùÛæþGµ5ýÔX¯'‚E~ùùD5òÖy`¼©&Ž5òhŠôûS#o•W8ÖÈ[ã‡5òV¥H'á³&5ò«•L§]á§âŒùõ„ÔhÓIgüÇ6üþ&žûÇT3OÿâN?Ÿ4í?(J¬‘·¢šö¦ñX1²FÞʦÈøÅoßy{ýñŒÿ(òÙø*²j䟋6ñ¹í‰/»¢U®È¬‘7)œéiõÔU3?Ðêé©©7´™Â ‚5ò_{÷gù›jàÙ¦ +TÖÈ›Þa`¼æ›jäŸùÆùÛÆŠ‘5òÖTCŽyëªÁ¯oRÜélöÉ2ÕÌ{|Õ<±FÞ…5ò¦ ÖÈ/¿jâÙh LJ5òKÖö?î€X#¿žÈy·UOù(òþû+mþ¾K >ÇW)ðßN_ª‘7­HY#ÿoÖÈí ì_Öȯ§ª‘·ÊÖÈ›ž¸°Fþ9ßY#o¼>«FþkÓùÊykoͼõ7?©FÞô„Š5ò˯x¶ŠÂy¿¬‘·¼×Èßù”O0†ZU}y¿lÁÏycMjäMO0X#oªá7ù‡xµªÚjä§jÈ/ŧÂ|i<íôø¥ÀWÖDI¡é­YyjäÙÚç©‘ç;bOü b¥yÕ„©F^wx婱òs½ =Ç'Õ¼ÓŸ>Šüâ7¤À«_ ¾jüáj䑯Þy¾ðÔÈ—P#ÏýûÔÈW)øª‘Çö¬‘/zbÁy=¡U|‘bŽyÓ;|¬‘GÏÖߟùg}ÁyÜvýþÔÈ[ãz†5òk}"»b½—¾5òÏz’5òêʪyc+4ÕÈ›žØ³FþÞù‚5ò¯Ý‚¿ ×gÖÈ›jY#oC5ÿÚ»5ò¦ùÎy{jøGˆ?åÿ*òÙž}ÔXklU#oRtY#o|G]5òÏzš5ò¦Š Öȯý¥šz?9Y#o:ÿX#¿¶ÇxÔÈ›*¨È_z§‚м*Z¥È«bUŠü•wEþ©¡"é‰.ù«ªŠüÅÖµRä/=á¤"Û›"VÌP‘¿Ç÷O¼Ç_(ò—Þá¤"U)èCøU5óŒ'`Tä/­©È_‰ç/ùKOЩÈ_zbEEþÒý'ù‹­&¥È_z‡™ŠüE=SŠü¥w0©È_l-EþÒ;¤TäWÅÌ ýÆŠ[(àå‰o´5^5ðô)ðÄçöUñû§FÞ÷7m(òOyUK‘¿Ï/*ò—ÖËTä¯ÉýMEþÒz‚Šü²'mú“x¯'rT䟊 *òïx“9TäÓ¥' PäU%E>ñ+)ò¯‚?=þëçUä/Ãùý§ØåjܧÉ÷Ïÿó¶7j¥2ü·ÍUÜⱟRz ðÝ¢¥¸Å1FˆGï´·-véà‘tðHG:xäÀ#G>åCÙïno[TÛ·¨·!Æ8bXˆa!Æ<ÆÁcãà1qðÇ8xÌÀcµ#ŸZȧväS ùÔŽ|j!ŸÊþlò©ùÔB>µ#Ÿè·p{ÛÂæ¾…Í} u¼[ÐÞ¶¨sߢ1FˆyÌÀc<,𰃇vð°ÀÃxXà¡"mñØÛ_½m1BŒqİ#òHG:x¤À#UÙÕw‹Èc1Ÿª4ë»EäaĢ*ßúnQGÜbü|·p{ÛÂB Ûc°(ìÙBö¶ÅÆCö¶Å1ÆÃBŒÈ#éà‘tðHG:x¤À#MG>M!Ÿ¦#ŸæOó‘Osȧùȧ9äÓ|äS–v~·°¾obÁw ÚÛµï[Ô#Æ1ÆÃBŒÈ#ùà‘|ðÈG>xäÀ#-G>-(þn1®¸…µ} kû(· ½mQÛ¾E=bŒ#ò(G9xÔÀ£mG>m!Ÿ¶#Ÿ¶OÛ‘O[ȧíȧ-äÓväÓòi;ò)_ûnÑgÜÂʾ…íO5øÙ»ím‹Zö-꣇‘G<úÁcãà1qðÇ8xŒÀcíG>í!Ÿö#ŸöOû‘O{ȧ²?[„|Ú|Úñºáw‹šãßÏÅ?ö¶……bà%Ôw ÚÛ;yð˜ÇG>!ŸŽ#ŸòUòï¶?ÕàËåï´·-jÚ·¨GŒbô#†…_b¶½m±ñ½mÑCŒ~İ#òHG:x¤À#G>!ŸÎ#ŸZȧväS ùÔŽ|Ê3~·è-na×¾…íOFøÇw ÚÛõÚ·¨GŒbD)ðHxäƒG<òÁ#ùà‘|ð(G9x”À£tª-{ÛâËã±·-zˆÑbD)ðˆùTŸXýny¤À#æÓÕ½àúùþ¹zÊÄ7¿÷c³ÆýËï†ÿ¼Iò/W•ýËÏþå;Åq^ýÍŸÙcçïþéöÇ?ýÝ?þö×ÿ&ÿ¤Ÿ?ÿ´Õyÿ€nñ¼çÏÿðóÿäëêu¥ûŸõóç¿ÿí_ÿÙAþù(«´³§#Jº>QrÇküè0zïvØ~ßa80q‹æÍNÕ“ôÝb½¹q¥w Úß-J]}åÞ-`·hþõèw Øß-ÀìÝâeúÝ#ŸÝðWŸ½“ïël5pZ»$]×íÑ~¼—ÄŒÏÿÆÿ$†¯W<œX÷ÉöMù¿Ë.SÝĵGvûÙÞ»=ý웪/oÒåŒÿ×ÿùÏ?ÿømÕûjõþùm…Ÿ°ÀþBk¨?>…Åï/ŸÂß-þøþnñǧðw‹?>…¿[üñ)üÙ"Îz‹¿<ëutþò¬×yÖk‹¿<ëŸ9ðÌúuŒñ…ªõÄì/áµÑg¦þùÏg“1Îg¦üQšÿç[‡5ïó´Tæõ-æ=Æ…ÎxÍ¿(1؇·ù;¿ët[·ï¶ü»î­Óç×·—Üçýøšiè¶¼Ûfëç½ ï” Ÿw&¼-ø¼/hóoÔßèÞe´y÷ñq¡çd›çãš÷üXó~?Ýp¾5ßæöyoÏî¿zÅ4Xç}4{¢Ï»ÂõDŸ÷hëÞ3ç¶¼{OŒéè=sœwÃë™>ïÕÛ }F 1½/^÷¾3#¡Kd÷3ƒ_™ëU¾ >ï'ˆÉ7Ø=´7Æô§w¾ëÞ³jðËl½3f¢1½Ç`÷¾S#¡C_çýaû¤O|Þ ¯{§ÁN†Ýû9-Ëñ|Þ~WÇJÖ¸èóޤÃ{}¬l«Ú¾¿3¼‡ÇÈèM9}ˆ’èÃ8ï¡1ø­‘Óyެq¥ÐçýNG¡Ï»oïM±ž2ÐBLÿvÙ¨‡(Uxë8ŒFŸ÷¬Þóa°ãâðþƒßÞËa$þ†.-øüK Ã{)hŒÁ˜~üÆà8Ÿ»cÒçǤÏûŽÉ˜°Œ1½·ò0þvÿrƼèó¾ÓóbLïÊ=u¼Gä¼ÓÏÔ™øÛ½ÿâôwï»YN?ƒ_[žþNýȘóø¢ÍƒçïÊ„3nú¼çã,ôù׃´'¦¿—>Øwú;èëlôq>ïŠ/ ~ }ú;à˜{·å‹‡•— ¬{\7Ì¥9èó<8}Þ­yú»Õ 1½ó™`™ó\0>Ï!ÓÈÓ× ÓÓϪiçÝFíúúð ”Îo¯š÷VèüNŒy…Îïî™÷Lèì1m~:;dZ¦Ï¾£Ñùõóþ·5iÝÙ¿OÌów\—UaÁçóÚüÝU}% ½†ï(`æï¤~¬¯¯Óçßj0'ô¶ QöfíI¢ìš¯(»~­3sQvòN ¢ìä½ DÙ9øký¿“7ïe×Óßg“x²²K´ÀÓ?g QvR¶‡(;'fä'YŸŒR9„1}¢¬qí Qvù(Ã._A–@Ò²<œxÆÕDYk˜»e×gM)Ã._Ç2 ¢ìúïø‘(»>Øj?e×ç,§‹²ÆLQÖ2Î`ˆ²–ñ!#ˆ²Æ¼QVy…(k É ¢ìjË;~$ÊZ§ì뢬 Ìdˆ²Fa¢¬ñÃÌe—E¾úв«Y.eØ“l„(»>çä""Ž?oQÖø©Kˆ²úPDÙ%Z½¢ìÒ¥>ª¬ëR¯,»´%ßù8‰– tÑ;àõTe–ª•¤Ù¥-¥W›]@àTÙs*ÔÙ„’ɳ˛^}6]ÌÇh]K£÷޼¾SEM6Ù_‰v±ð ÖUªü#‘v™~@¥]f¢×àõKtZ—´Ê„Ú¥RI¥×—5j]Ò?Òj—×ψµË„"{ ÷¢xkØÍ“ -9û… ‚­KiùGŠmºøÙZã!âWŒ‡h`yawtŸIAEwÙö‘t×çæä¾ÃëkÆ”t×Çáõ£µ¾å*ó¾1[‡»\hZý@Òýš÷/4¦Jº6yI×tW I×Û/‘Ö%4Ž­I÷k.¯îå°§1 —¤;‡6vI×.±2z±…¤{g3Ê”.éÞæüHºkãFsíTˆpDõLJºëôFäL\ÜØCÒ5ÝAÒÕ7‘)éZ¢ÚIwòi8%]ãƒeJºúž:%ÝUÄ'ÑvyZ $Ý5 ‹l¤¤­Wh㪚®ÍMÓ]^ðpMw`£YÝ;>šîºþJ^cu³MWWRjºÆ%*5]ãz‡š®=º»kºkŽJĽ½ ½—¨ëׄªë— lïëâ5—¡9@×õ(é6£Š#”ÝÍöøRØ¡í&} â®_:mâãÖòî²›\Ï5)^¿ZfÚ>¾r6@â]|p ñ®ÙØ¤ê®ø)ñ® *¯Ï8£=àïØ~ÀÏò ½îÿ(½Ënøý.#®x”œý<\6ˆ½>¥¶û+ïl ÷®©–$üã#ø.?ð¡ø®É‡ÙÉwÙ8žÐ|=^£íñ Oq¨¾+>nY!û.~ÔP3üsÂïŠ_%3~“íãõLÚïšÂ¸c„øë§ƒìMKðwùwM; Í ãM2m¾Î+(Àkš%ùWü\ô{;âžÒ—Û{¨ÀküW^6æ tà5Íp‚ìÓæ¢íãyOH)xM ŠÎ®ûaûˆÁË®5ØËG^6Ò(ôàµ=ŽaŸi+þGþÄÏŠŸ¤»?3]B^þ!¸Ãß´½ÇÏÒ˜+ƪCP†}<¶÷‰ëÓ:Ó&ÿ)5˜¿çÔá¯}äaÆß¥¯Ã„‡ˆ—ŸBõ@ü¶IÄ>¤ÓOA}>~‰ÆŒÏýgˆ?ä7ŸÒ~‰ýÙxüºÄÑKüí£¿|!ûþ´ï¼íiª¦ËÅ>Ÿ*í{G®ýGÔEuüqÉ‚b¼¶‡ê ÉØýFÛýƒDcOC…¶Ç×Ųñ; /¾X0@8öÓzÒ^ñÑlðwIÇ~Z}´ãušPð›~߀hÿÄŸâ3_+2Èk{ä(ÈÛ‚ß'¢Ÿvyáãü†Š¼l<[‡Œ¼Ù»ßeQ?Mm_xü!%¯ÓnJ-v¿¤*ˆÉËü 5yÙ”u]ª\Óžº®k•kZSouAyM+ Û~c~€¤ìÓ°Ò^ñ›úATöiViÓ?>²²oÿÑ•}Ú?qi eÙO#üÞ!?žw@[^ãq½‡¸ì¶Äfߘ!/¯i3¤ »Ÿ¨¥À¼¦æ;fŸ&ÐX/Ä×£uhÌkš`þCd^þ)™ñ¯Ì¼¶ÏyÙ¸þAhöiTh»ß8ß!5¯í)yý>ì_ˆÍ ÷P›ý÷A«u¹™§ÙïÒ›WšR˜ï ÛšO˜ÏPœ×üÆþ„ä¼üó¡9{>ê´Ý¯§ÍP=Í#Þ@üÁùÝÙÓ*ì µå ~ÈOž=WÚ~Tª ã5¡>ûeÄãA~^ñ©_ˆ¯üzÍŸ!¹z¿ÓÖW =íÚ_ç;DèçTèå7Ùùzùq>@ˆv| ÓħœìRôJ£˜¯Ð¢?v ~¿Ö%ƒãø5®/=ÚׯңW š«Ì®G÷‰mY$Ìr óÃç,ægÑY$<¨£Hx²„·3¦Ï/ œí,æÚzôJéGzôªRù 7–»Ý©L°H¸á =Z[Bî\mBVÅ ôèÎ;èѽá·C^•Y¯½ÆQ¾¼ŠpžÇ,ôIsFL{‹„;g:ôèU;âJ²ëѪ!ôè>1‡ G/µ×~¤GwC¾†Ý™-ž"aà©Hx²dxí–ðíza‘pÆžg‘ðke—?EÂToY$\±¶a‘0Ÿ³H˜‹„ùEÂ|‚À"a~âE•ŷ‰>'ô¶­HØWŽ,¦Â"aê‹,¦ªÉ"á×(b¡rÍ"agVÓçËS$ .>¿Î°Høbq±Š„¥\³¸ØñºŠo¯Ÿ§HX÷P¡ó§HX¥ÍCÅÌŸ"aéô“¾‹>sß|õèeÕŸ§H˜õ§ŽC¢:½|¯…ãЩU›û|Í"á< ÷Go^½<‹Y$Œ—:T$<±–d‘ð„´Æ"a¾hÀ"aƒlÇ"aÃ5€EÂ{‰E¾X$<1ÏX$<)þ6á½ôº¼¤)Ðc°|yЗX _gñŠùZæ>ÏŸ¯uОoË3¤çñ ÑÕ÷™J†³P•Æ8_qBvרÎâ ÑyðY4çÁ:7HÎzU Šóz¶ø •Ôf?ÙE1ëÔæÅ…¥¿÷\;BkFt/‡Š’ýú;&Ë{]hþX__§/QV®îû >4€Æ¬‰Y3 óú<4åì¾ü Ã5òò¼p? uùc-_ÂÓhËSʤåÉ—ÊòÔƒlËS#tå©çË•WàLÓ•¢´§†õXV&¼P¤ )ßô§j†ñk @QÖ§¢UÁðâ^†Eºua‘p‘ò­Ô)!™¥­Ò…“=ËA «Š’EÂ…ef,®œ*,®Ü,Ö™Â"aÝÀ±H¸¼z2"WÉɈœ¤à 1ŒE™Ï^X$œ9sX$œ_%¹¿ï…©HøÙ¸ÒûÈÈ(†êõ ã&þ)F’a‘pâ¹ð óªHøú ëÔxŠ„YQ<è}Ô_F–ɲg£‰Âf¤\ ëšÂ"á¤êkcÁm‘Œ‚[Ìv gú^,š¥H™è­ªFùñ”dŒb]L Kpb‘°®ƒO‘0åX O©¿ˆœ?b°ÖÂ*–tÅ"aU=EÂEÂ/"³Þ¸©dºÐDd’T‘pû Wj,nÚu(Ö‹6,n"9YÊkÒƒáÅå˜E³ŽE”E•“á)FúzŠ„‹¼,?–ÌÂfÔÁ&–Ïì;¤ºUÁɽHægŸJ¨³ïØB/µ`×fM/ž@š}*_ Ìš–Lf_³íÞ&ï ¹"s1öeïÌøéÜ€‚^un¨Ÿ"á‹Âk£¯°>X$ÌWX$|±Ô¸sœz5ÐÇ>£?7,f¹ ;7¤§«CKÏëìÜÀÕ DY½¤ÔÔ1ࢠËno‘ð#7¦M|Lô¥Oç¦fvn`!=;7ð1;7$Ü5±s“;7ð•vnà›WOç†I–*K†ùÜ׳Q†ÍŸn 1eXø$öðÚÕIÁeæ?e)êQ”-܃e û8@”…´;)¼–M”ž–([7Q¶Qx…x}DÙúC D¹mú …(‹ÒßDñÑçEY¾»DQ¶R2-›\èk´€WY2Œ˜.Q”eEY–ïP”•¯I<~‹„×q D áu¾EÂËÞ;§G”mìÕ@Q¶þ<¢,¯‡eeÒ×(Ñ"&ʳMBoûùtn€¤¨*f·‹úóéÜP?¢,(ÊJ‘eË·Dx°È›¢,k )Êò¾˜¢lƺ’¢,_ü (Ë~вù‘hÑ "}:7ðAEY¾CQVEÄMÝ >¢,ßݤ(ËEEYŠñeùúEYÞüP”e§(«˜S>·Œ¾Ê‚_ĬQöµ0"éE¤Ö‹¾ëíÜ ìMQöbáoR× ’éƒÔšéKQ–0عÁˆ‡>ƘèÜÀvnàãdvnx‹ƒÍ»: d·±ãƒçHvn˜”™;cæ·ôW4عAâ*:7®@ìÜ`È/ìÜ@¹Ÿ&‹œ';LLvu`LgÄó¬ÁÎ †ãÎÎ Zú±sÃdu;7LõuHôBbç†GwLlk1Tú‹ÈÐعaª°5ÓÛ?¢ìz{[u½Œœh~vƒ:7¨’“¢ìÅEÙk+óÕ%]¢ìE„ØIl+óízöÌÎ TŒÎ ¦Èc<‰{IvEäG…Eä¡Á™R±íœÞú)ó‰‘)ʪ&˜Œ·AìÜ`< ìÜ ê/vn0.£Ø¹A‡›¦4Ktn˜*‚-ôRà,ò~;7L)Ç•‘¡°sÃä~ìÜ0%p6zÇG”í“wcìÜ0õº8;7ðQç{[5 +îÆØ¹ÁÔôìmÕ/Ö§ìÜ Bvn°·¬·¢£€Ñ„Ü‹[(в×Ö¹A·$Ê^¼ ¢({IàL;$»Âûh´ðÎOç†q©Cfäñ)î*§(«×[)Êê&˜¢ì³q¥ÌœÔæ‘7QöÚªzñ›¢¬j()ʪ¤‘¢¬îã)ÊJlxDY$ в™OQ¶K£…”hêÍQöúvn÷ˆ²I’-dW†^û4r°÷Q¹DÙ"5T¢,NÉG”}jz1¶ì¢lVE/¼¸+¢([¨âP”}Êc‹ä^õf¨oG.‰²ÏO¨Œ<¾¢lU¥/DÙªBdˆ²ímäPñHúÛ¹A*EÙgì`dTíS”­j1%oK…®É‹ÈãÛ¹¡j_E»üíÜ ±Ÿ¢l¡ DQV¿÷e‘¾(ʪ¢lQmRdˆ”Y‘¿¢¬PP”•œOQV§(ÊUÈŠ£l·P)RnTnDQ¶í¢¬$в|O¢l•6ܹ¯ØP¡S:MjÕ€Èxæ@Q¶Q8DÙñ©Ê§Õ#ÊRí–([¥Â’³*t9‚ßEïSo ¯}ÊqUë QV]y(ʪßEY•^R”•äCQ–½«$Ê>u¿™²kR«ˆ²¬:•( %æe©ïJ”e¨ÊÈY½à­Òhám_Q¶«¼¶3òõe‡Šñع¡©vxÐ;Ôª¡ÃûeßP“cqÙ¹A‡ŒžÈÆÈUE¶ˆœ´1Æn¯¡ìÜÐÔ!12'ìÜ ìÜÀZ2unx4ËLoùÔÚ>4عA‰‚*/ìÜPßFðšZ5t÷NUåš{qµb熪šØFÜ,Ù5õ§GåOvn¨¼Ò±sCU÷…A/V¹ìÜ GìÜPU;;Éù11Ö$»7ËìΪ¨‘87•Ñ‚sS•íw,;74‰…IûêÛ¹¡ñŠÃÎ š*ìÜðÔ‹ê±GŽ‘&!;7°°OšjyѹA½¾Ø¹•MêÜÀ×ËÕ¹aðzÄÎ ã-«íîŃ/vnàËÅêÜ ñ›$~³sƒÚY±sã¤Nz³Lx»4ZDêëÀÈßÎ CʱÑ[¤Â‹ÉÏÎ âÌÎ j¢ÆÎ ]’m⾢ΚèÅõ—ºÔ_tnÐ+fìÜÐ7QvtÜzËG”ì¨Î ·r,ÍFï£ÂÂ{©‘"{RýÓÛN·}DY6q¡(KaëéÜ0(Ñ¢sC¥ {yIŠÓ:7-tn˜”hjh\NUçYð©îsò‹øŠëÓ¹ÁãÓ¹¡Ò:;7pQôtn˜¬›E‡¿d>Ð66±#‚ªhº:”ŸOç†öвëY‹ý<ø';7°#;7°J™(0²sCek¥ïÓNwòmvn¨¬èmü ™}СSx…o¼¢ìä;0e·7e!ÊšÚ»(kjæ‹Î †YÀÎ ¼ù†(k…عÁX lìê0)¼Â7>.ì]ˆ²“MâØ¹7ÒìÜð6ÐEç†ñVÊo3عAõ¶Y^QÖòÓÇaùX1QvÎG¾5{~;DÙI9¢ìl”’ýB5yša6Y{ˆ þ´§«ƒ9—Æ^ èÜ>*›ëvŸø´Ó5 ă&ŒÂ+»O”Ÿ§s}³sç5;7ðÂÉÎ |o’* sgùÓ¹Í Ð¹AU­‰Ý Ê[)kL¿eo&©mÃõí§k”Eþb×h“ܵ÷ÉêÚ æ¾1jfm|›êw²e׫fm°D߃A&6p ×—~êØ@¹Txk®Ž lÜ£Ž ,»Tdžü´h`§ˆÄ¢ZÌ{ul`JSÇÖ=¨cµ_ulàbGøüC*kA³zPL*·ô&ÖÓ·¾j­ku¯\ë}Þ¿ØQT õbvl`þVǾ¦Ž åÛnרd] X;§† TÔ°) ô^56¬×´¿ xßΆ k#Ù°áâÝ&Ä[£& ñvu5I?O»†‹…j×@Y›³Ýì-±õÀ‰wjìÖpI§`·†Õqä¢íÑU– ×ôn $Üûà@‹€„kI¼.áš^$‚„;»„e?SuypçÓ‹WÅÎäéî”> wê•(H¸3K”nì\@\—p§Þú‡„;Ù+›îTY"$Üõ¨?Ѭý}˜ w¦·5Cío $\,ê~$\uÌ¥„+I“®Öº„ .û©®V¯Ð±®vªÞ3±ž$YW;TК‰kŸN O™$ÜyIw-ìÁP¨«•F w^êò[¹¯X¢ëî¬o!mö‚‹¢ÊÙê…lcÔ^½'(;»„;«´S_åN½‘ WM¯(áΪ>¾.N½~ͺZ¾÷£ºZ㊔uµ&V.áά½áîT]%\)çp'¯—”p§ÚCÂZcCÂ}J9 áN-õ!áNõi†„»Î”Bs¼‹äO¯/é íŽ6SÜ?h»ÊÖíwÅÇjm’)Ú.¤©ßƒ¶ I×C¶]¸Ô›ŒmR~¥âÄ6Vƒ¶ÿ¥]â§x¼Î‡&Û÷ú-³íBÖù϶ k¾OÚîO²Ñv!iõǶ Y/å°íBfušÚ.d5—cÛ…¬'Jl»UžÍ¶ YíæØv!³q¨Ú.d½áȶ ·|ö ™ëŸ ßû¯?¾~öSLNOãß -‚ÓÏ#&ó™)Åd.ë(&·§Þ·¹]éx]Ó£@Lž¯}>÷Þ6À¯˜¦¯þ|ÚwÊÎh-Œf ™‚1$Û¬¶Ã1™õ¢“YˆO1™Â#&'ÊÇð·ÂwòE1™+Ч 0x6ŠÐŒá›”–Ûõ¼QÀ6À”Cؘw»llO3Í…‚1„æJ«¹/³Þw Þ™EhYð¡ÚK0Îõ©…gàëiÉ1y°¦÷+ CLÎXKPLæ›GOàFi™¢)cˆ¦W(P÷·Â×ø•,ŠÉj­PÉ8ÄdJ¨“¹Ža`}­Qø…ÞØêw¼mÖÍEûyÄd6‘£˜Ì,ŠÉ’¹!&³\‹b2û;BLvÔ~5™µˆT“¥ê¶·ï‚îtž>ÀƒJóðqù-ñ5>  šÌ¤G5Yý ²Zê¶·Æ÷JÁ²ÐdÓ\”Á5 Eeo‘œy½Ý\ózÛ/¸"Fµ™]€%SFÍì¹@  "gñvE†pÝÕ4w•;n¼ß6Àö•ùÁ ‰Êìó#Q™tÞ6À…¾w3‰µ½7…EÁkýNÙ>·J•¹²¨ÌSŠÊ‰¯qQTNœ!•_?¡¨¼z;¾]ü‡-Œ· ìÄq‡‚v •Ÿ÷PTNTÊ$*³»…DåÉ*ݧ ðx»3ø½Ý+*û­;2P®î¬þeäL™m€/V Ûø µn_Uyà™ŠTe>Ù•ªÜž½Q‘Fó“ôÛߢ`Ÿ9É5—j\õ)µK|’PÌŸ\eW0ËŸ~ o×O¶¾T6¡6À— o3…ççSmKZ€ÑXŠ ›—Wi6÷>]ј•¶hœ÷&ÀêöÇ&ÀEz0úËîßu3Õ½M€e¢½ðWZ¶úvpÀØKj1Z?ÅÂÀeéôdäoàGŠc`½4iÙòV<'…6ž’Ò² Ï®îXz¿Ü††ÉÔV39™Ë^ h¬ûuH˦.\l¬oÿ° p—J­&À—ÄcôñåçåpŒLÝpŒL=)žÀR`’ìèFû42F`Sh5 ¦² 6n\¢² °Vèl¬0›«`ƒM€Ñ^M€«ÄdxíSlªB‡¶lê2mùkVü¤ù—½ð§@Øu=©Íl0ÜT1lí}\ø4Ö'bÔøSÌøE*²«lx`<+ƒ« ³apSƒ`JÖh|éÙ_l¦ÀWýl ¼5¾TžÆÀ×xµhÃxî/4½tgÍÀ—>ÀÈÀ×xh÷ëÅ6¾Æ«H»Òi<´j¬)¦À—:°°ÞDV`Õh³𥆑j¬;c6¾tüÕ˜«»§pV6~º°p}k†Ý¯×™ÕX§aàÕãÑ8=-&šâ›;8_ÉÎl°œ%R³Á±Éfã,Ý™ ŒÓ§˜Ø$Þò_Ÿrb¿3—Pí €/u¦˜j`ÜTBì zŸã%:'CÉÌê§B%:gµM€’™›Ú@‰¾í.ÛýJ„T¢×´‡² %:W)­P¢sUg (ÑyìJt¯RÍÃIµÈV>Ê•èü4T¨Â/jì@ÿ”MþIÈü&mŽÿ~Îïä'm÷«á2•èÜ߆ÀŒ_>í<ð§ü[ଋ.•è¬ÔI%úQ¨Dg)#T¢óPÃ^?=÷ ý(UT¢óÜjŽßÎjܤܲ°ò •謰oà¦:d6¦òÊÀj ¥À¦è§0ùC‰Îú’%•è¬'1j¬ç6j¬oLªðÓ ˜ €‹ºF°p“rÏÀ}û|ÜÚ>«(™ †ŸïɱÁ0 ³°ò»?í0ظ©—†©ÁpWG6žRªÙ`ØT~,¢ÍÀUÇÞXÍÀ¨D)óT¢‹I©Íj€Ìf6~Ƴ°fª°Pª0ëM¤DW•ΰžŒS‰®êE@%ºê|¦}Oë¢ZeCá,eÙýS~6Ö“*5Ö“*ÑM ÜÕøéWÁÀª Q`=YRàòÚlËÏÏ= €› €ó§PyMƒ¢Òd6àeƒ[6ÖõômÜ>$¼á¯Š—;ü¦O¹rjZñ©°Þ-{³÷Ž_×zˆJtW/*Ñ]Ç—Jt×÷רDwuO Ýžб¬>H À¦ÇlÜUBÜÕ ˜øl¬Þj¬'j<·òeOcRž‰Ïý3Õ øR 6 ªhöøªQ`Ýš©°æ§ç7•è¦ë½ëÉ¡Wþ>5ÖúJôm—O-ó§Á/”è¦'Ÿj¬†ÿT¢›>РÀjý¡Àü¸ÔÓøñ³° ÜÕxªj› €§”u6æíÈŸ~û?ÿó·¿þ§ÿôoÿæçoÿôÛºÍ,?ß?ÿô·ÿá7/oýß¿ý—ÿúsýü·ßÒÏ¿»ÿýûß’‹uÿžRv÷[±ø!Ìßþܰ^]€w5ò}½·µyÇ6vlcÑX^·6ï·ܶᶀÛ6Üpû†Ûnßp{Àín¸}Ãíwl¸#àŽ wܱᎀ;6Üpç†;îÜpgÀî ¸®\¼·õñú9úxÝÚ¼¹}½9ŒmÛØÆŽmì†Ë&ÑôÂÚ¼\X›·mc[;¶±;nÚpSÀMn ¸iÃM7m¸)àæ 7Ü¼áæ€›7Üpó†›nÙpKÀ-n ¸eÃ-·l¸%àÖ ·ܺáÖ€[7Üpë†[nÛp[Àmn ¸mÃm·m¸-àö ·ܾáö€Û7Üpû†ÛîØpGÀî¸cÃwl¸#àÎ wܹá΀;7Üp·|ÕC¾ê[¾ê!_õ-_õ¯ú–¯zÈW}ËW=䫱å«òžò}¼·µyïû´÷¶6ïØÆŽ0Ö¶±¶Mn ¸iÃM7m¸)ঠ7Ü¼áæ€›7Üpó†›nÞpsÀ-n ¸eÃ-·l¸%à– ·ܺáÖ€[7Üpë†[nÝpkÀmn ¸mÃm·m¸-à¶ ·ܾáö€Û7Üpû†Ûnßp{Àî¸cÃwl¸#àŽ wܹá΀;7Üpç†;îÜpgÀµ ×®m¸pmõ€k®í¸sËW3䫹å«òÕÜòÕ ùjnùj†|5·|5C¾š[¾š!_MúðñÞÖæ½ÿïã½­×Ô?^·6o_o cÇ6v„±¶Ýqˆ[nÙpKÀ-n ¸eÃ-·n¸5àÖ ·ܺáÖ€[7ÜpÛ†ÛnÛp[Àmn ¸mÃm·o¸=àö ·ܾáö€Û7Üpdž;îØpGÀî¸cÃwn¸3àÎ wܹá΀;7Üpmõ€k®\Ûp-àÚ†k;®]_\X›÷ƒ kóŽmìcm»ã¦ 7ܴᦀ»å+ ùʶ|e!_Ù–¯,ä+Ûò•…|e[¾²¯lËWò•mùÊB¾b¼×{[›w5`{½·µymkÛXôÓ“×­ÍûÅ­·n¸5àÖ ·ܶᶀÛ6ÜpÛ†ÛnÛp[Àín¸}Ãí·o¸=àö ·ܱᎀ;6Üpdž;îØpGÀî ¸sÃwn¸3àÎ w\Ûp-àÚ†k×6\ ¸¶áÚŽ«‰tÓÜýhš»ìãGoûø€ŸvüñÓŽŸ"~ÚñSÄO;~ŠøyÇÏ?ïø9âç?Gü¼ãçˆ_vüñËŽ_"~ÙñKÄ/;~‰øuǯ¿îø5â׿Füº<_¿õÍn‰ßÍÝ_ûæ¯qüØÇ8Þöñ¿ïø=â÷¿Gü¾ã÷ˆßwüñÇŽ?"þØñGÄ;þˆøcÇîø3âÏFü¹ãψ?wüñmÇ·ˆo;¾E|Ûñ-âÛŽo†æîÿâÃÜýc?âxÛÇü´ã§ˆŸvüñÓŽŸ"~ÚñSÄÏ;~ŽøyÇÏ?ïø9âç?Gü²ã—ˆ_vüñËŽ_"~ÙñKį;~øuǯ¿îø5âïù/Åü—öü—bþK{þK1ÿ¥=ÿ¥˜ÿÒžÿRÌiÏ)æ¿´ç¿ó_ò Ư\Áomó[ÛüèiûøÝÜýµmþÇ}üˆãmðçŽ?#þÜñgÄŸ;þŒøsÇŸßv|‹ø¶ã[Ä·ß"¾íøðóµáÃÜý_|˜»ìãGoûø€ŸvüñÓŽŸ"~ÚñSÄO;~ŠøyÇÏ?ïø9âç?Gü¼ãçˆ_vüñËŽ_"~ÙñKÄ/;~‰øuǯ¿îø5â׿Füºã׈ßvüñÛŽß"~Ûñ[Äo;~‹ø}Çï¿ïø=âïù/Çü—÷ü—cþË{þË1ÿå=ÿå˜ÿòžÿrÌyÏ9æ?T¿~7w­›¿ÖàïûøÇÛ>Þöñ¶ã[Ä·ß"¾íøñmÇ·€ ÷Çs÷ñaîþ¾ïq¼íã~ÚñSÄO;~ŠøiÇO?íø)âç?Gü¼ã爟wüñóŽŸ#~ÙñKÄ/;~‰øeÇ/¿ìø%â׿Füºã׈_wüñëŽ_#~Ûñ[Äo;~‹ømÇo¿íø-â÷¿Gü¾ã÷ˆßwüñûŽß#þØñGÄ;þˆøcÇìø#âïù¯ÄüWöüWbþ+{þ+1ÿ•=ÿ•˜ÿÊžÿJÌeÏ%æ?¼òõ÷üV6¿}•r¾!òøaîþZ6ãû>¾Çñ¶øiÇO?íø)â§?Eü´ã§ˆŸwüñóŽŸ#~ÞñsÄÏ;~ŽøeÇ/¿ìø%â—¿Dü²ã—ˆ_wüñëŽ_#~Ýñkį;~ømÇo¿íø-â·¿Eü¶ã·ˆßwüñûŽß#~ßñ{Äï;~øcÇìø#âDü±ãˆ?wüñçŽ?#þÜñgÄŸ;þŒø¶ã[Ä·ß"þžÿjÌuÏ5æ¿¶ç¿ó_Ûó_‹ù¯íù¯Åü×öü×bþk{þk1ÿ5•ãë¯9øûØü}¿íãmïo€½~7wÿ†Ÿ#~ÞñsÄÏ;~ŽøeÇ/¿ìø%â—¿Dü²ã—ˆ_wüñëŽ_#~Ýñkį;~ømÇo¿íø-â·¿Eü¶ã·ˆßwüñûŽß#~ßñ{Äï;~øcÇìø#âDü±ãˆ?wüñçŽ?#þÜñgÄŸ;þŒø¶ã[Ä·ß"¾íøñmÇ·€ß¯ æîÿâÃÜý}ßãxÛÇü´ã§ˆ¿ç¿ó_ßó_ù¯ïù¯Çü×÷ü×cþë{þë1ÿõ=ÿõ˜ÿðÆå×o›¾Ž70_¿›»¿¦Í_ãø¾ïq¼íã~Ýñkį;~øuǯ¿îø5â·¿Eü¶ã·ˆßvüñÛŽß"~ßñ{Äï;~ø}Çï¿ïø=âDü±ãˆ?vüñÇŽ?"þÜñgÄŸ;þŒøsÇŸîø3âÛŽoßv|‹ø¶ã[Ä·ß>Þà}ü0wÿæîïûøÇÛ>>à§?Eü´ã§ˆŸvüñÓŽŸ"~ÞñsÄÏ;~ŽøyÇÏÏ#濱ç¿óߨó߈ùoìùoÄü7öü7bþ{þ1ÿ=ÿ˜ÿðõ×ß[ðÛµùmÓçñ†õëws÷×kó×8¾ïã{oûø€ßwüñûŽß#~ßñ{Äï;~øcÇìø#âDü±ãˆ?wüñçŽ?#þÜñgÄŸ;þŒø¶ã[Ä·ß"¾íøñmÇ·€7à?ÌÝÿŇ¹ûû>¾Çñ¶øiÇO?íø)â§?Eü´ã§ˆŸwüñóŽŸ#~ÞñsÄÏ;~ŽøeÇ/¿ìø%â—¿Dü²ã—ˆ_wüñëŽ_#þžÿfÌsÏ3濹ç¿óßÜóߌùoîùo†ü·^ü;»ša|÷)rܲVgÁë`» {Ùcz˜ï³IRé ¤¿¤6i"”ÚO¼5ñùÊhŒQùøeùƒøêAµ ‹Ú‚ª’0mù¦5áü:-ÍéÖý¢l Ég\aÑ>ƒžáÐ ¡Z!·ëúÝ\5>¢Ü`Ê}'R°Nˆrƒ‚Î@®®tc#‰I‘Ü¡$éÜlE†÷øªô8‰ §Áx<ŒûÏœnY,zZa±ÿ¥©è­ñÿ Ö¼ûÃ|@ºB4?‹8ì6{9²·óljRYªWˆHtÊÈün®›Ý6ß'<`ád"J‘Ðr2;ò­IÓŠ¤JÒ ,S“ N%WHV%WH–%WHÖ%Sˆ3Ú†:—ÒÎæ´›©lR;…lVû¹öi}o~ö´*’endstream endobj 742 0 obj << /Filter /FlateDecode /Length 838 >> stream xÚÕUÝoÓ0ï_íÉ‘/v¾$@[ÑBBô xÈ’´´IiSªþ÷ÜùÎIÖmBhO¨rŸ÷éŸÏ¡·òBïý,äùÝbv5´§”Ì“D{‹¥§t,M¨½,L¥Ò¹·¨¼¯"ö•ÊìŠëû=,ËþvÕ=ü·+?ˆ²D dm‡]¾Å­¶ëa¡]»÷¿/>\Í—Ë<Õ)º ½ 22 SrvÛúA¬Ðœªô–Å÷$Ýâ²³‹X}‰šáèÜ®­cØ9ÑNײ ^c` kýö“T¸y@wÕ½óŠ¿¿…IˆvaV¤qDmôU¢‹†CÞ Í?}mDÍ -±bÝfâÝ¢¡X{\L¶½·Ùb2ÎsÑíh.±Œ6Ò ¢Hظ¨tIóècX¢ÑÍ3k¬Z½cá` ªÄâ–¥D ñGZ,\xJ} G&bß=´~Ž)Ú †6ìàA ªÁpx´–T¨ä*ŒßxžHgbyvxÇv¤o"Zt…hcD3š,WÛÁ©Em9¨´†¸²&ßEË‘ÖeD'…–A´´¬tAŸÝá©ìGÞßÌíÒémŽð‰}Mw¿'9àrËïzÒ*v«2Ò¬õt“hrU¤¥ ¬óÂ"i¼†1‡·ù#Œ/0nßá8•¹‰É² "PY.3Àý¥‰#B¾viŠÙ6”ñ®!3–,ê`9˜r„h—d@“T¹é‰’N\­Ùf?Úê975Úü{^ê,#%Ï'KHeéˆA\p{»ø·8'Ð~biË®Yî<^¼8µôHmxo3¡§†PëPfiæ•›Ù¯™ÌTJ€ñËn8-\Ýn”ñ®»Ùgø¹½À™ &6íÓ;½A¤r׃Þ9·“Õaç.8PÔ¼‚öC{k¨§4«m^ a°Ž õCzBPXд»C(ŽM=Š@î Ço[ûóÎ6l\‹2N›ßLê5VR±ÞÞõ]ðTY<Á­O²mdxûëÚE Ý ví{aQQ?GÙ õ»ƒEZ{¨žwjJF>àÂs³§ÒTš XžÊØ=ÕÑ#"ýf9"}endstream endobj 743 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 744 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-titleSinglePlot.pdf) /PTEX.InfoDict 338 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 341 0 R >> /ExtGState << >> /Font << /F2 339 0 R /F3 340 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 25188 >> stream xœ­½KÏ&9r¥¹Ï_ñ-¥…¢çe«¾ $`èQ³´hHj …H=j`ôóÇiç9t¾ÑU¥Te™‘ai/Íot:yìðXúúë¯ôõO_ÿó§ÿúõ?¿êüv]_¹·o³}¥š¾Íë+]íÛU¿þßüú¾þù§ÿð/ÿ÷ÿñ—_ÿño~ºž_^_çŸóÿ¯çÿöûëÿûéoÿîëúú‡ŸÒ×_?ÿþÓOiýàëÿüé®ßrû*õþVú×/˼ÓW)ãÛ¸¿¾/³?ÞÒ¾¥ºÌûÛõxóøv™áMßZZf oÉßF—¹"ç¶Î8Ì9Ïoù–mŸ³ o×qó·Rd†7ks™C‘çú¿afU2£múV£m¡”Ê9Ïo÷õ˜å[»dö彿åõã·¡Ôë[Ê2£íøÖÖ%´ÞÒ¿Í[æò>?˜+rÍßò”¹"×øÏcfG®Cf·}ëZ‘÷9É$3"g~\ù¹À*3"ßßR¨ÊÛWˆ0ñ–8çÛçÜ1³Î*'™·Ž«snòÖoí–Éqó‘ŸË¶]çüÜœ"3Ú>74nÝ÷5—÷~î¹"¯Û}Ë\‘×íŽPÑÇËólâ‘5=#›]Ïèéѯ3×0£oßßKfDÎúj¤ëRh>9ËŽÖÏ‹5ÂNò?§Ý°«ÚG'^vÿhŸ"þób\ú} nùyAÇÀÆßeù§žÝ²Wüç]‰›¸ì.ÿU°ãüc¬\¶ØÅˆ³ì§kö½¾Zû>/»¶O»§¸ñCÇoòßêÃËîjßvÄçA¥çiGüKoâ²£=O==#ü‡ýyüáã_{ª}—FûÄgnÙË゙–cùoõße¯øO{Å~_‘eG{ºzÞ’8>}xÙSׯçõ4Ìé¸Þuàóþ>öÓ~õKvYþõ|âµ^vøÓkÏý‡ó­+þêËêë–Ÿó¿åúSÆÆ_öŠ?˜m.;â'úËó&Gû¯­qØÏó»ŽþýØõŽó»_ïë³ìhÏÇ2=ã×ã/“”eã¿®øåy-î‚ýÄ?~?Õž/WÊ—ü Ë¿ûOŽéÀzØIñt–½Ú'fIén—÷ŸÇÆ¿íÿyì1^vÄðS.jŸôZöò?ýŽþ™«ü1•‘ñ Ïã±#~Õ¼{ÙѾê3—òíã—ŒŸß·ˆÿ\öm{ÅÏñ½Ú?Ͳ®?žß^,{ùËðùÅóÛ_¿´>V3溜ÏX³‘=_OÏw1üC_že‡¿ù~Í5Ü«eÏ“eõ¿õÅžï,}Ùágªž/+þË—½â{οìÿ‰wû÷ÑÞýSë›=í_vøã±-»(~ç~=vÕñgÆnòs>Uþ¯Ê3Þ>ö<&‹©ÄŠbÏé–]5yÖø¿Ö}këþóØUdÝßu#ç;_ö<¦È©tÅgž»ìå_ë7žŸ'ëËŽø‰çµÖaНþúØSÓhõ·g¾ÕÆ;­^ö,1ÏŒéPZ˺q\Ïz0š&ÛM3ÀXѬÕuø/úcMòîOMŠï÷ÿ¹Ñ+þ3¯7öjï¹yzdøY¸-;ü¯{ůoõ—ã÷Uç¿Ï¯êøþ¾­ޏ_ÃöŠß˜-{Å_+µ‰½Ú7&H©6ùýý±—¿WÍ\ÒÓ±Vüžµ@Xv•_ããc¯ö½ñ}]7B~~?ägj»ìˆ¿ãMÇWÿ~ìö·ž_gNºìðv“_ÇìˆäÖÄù'ßçÇ~^œå×ó|ä³08âåÕ˳.j»õ3~Vû¡Éxº‹üû÷Eþ›þñtĈ¿¯§*~ÒcÙ«}뼯σ]þæñô±Ãïñýޝ9ÓÓ±WüÆÌ:éEzß×µ°íÇûðØËï•Ö²W|¯¬—½â{yœž5ÚÏ×ÿ¶çþ©øƒ÷m9tü–°‰kõô¼ØÛŸþ¤ëc½ìû³nLו©éùíñ¬éù=ÝNïó¸Òñ~µÞñô±k:ÆëVÃo,eÙá÷xÿØ­ïÿcGüçúåu/’—½ü^ø¦çÅ ¿çk½âßž_>öŠ'úócG{V¬I/úZ²j¼i]ÇßöÐõyþóØUç×*vÓùåx^mêøËnío{¦£ÿôKçϪÙÑ>3::ׯþ·Ð˜óü;â{|[xLz—ïé>î_Ͼ~']ÏïW|üi›øzþ •IÇøÝ÷Zß}.s Téy‘Ó}ô¿…Ì\ñ¾iþýØ«ý~ßž%ü•ñô±ÃŸZ+{HVê<­û«ùâÂg®óþ ùý>.„æz±es| £¹ŽñáøÒ}¼/}êø€'éYØ¥ûEO–ñýü»ÝGÿ\HÍÏ[ãéHò6~âgŸàkËŽøîÏíÁgÒ³°Ä¯þõØË¿¿§ ±90Æô,4Ó}¼o#0…þðëùÕX&Ên8c<ø›ÜmÌÏRãûxû_þ äþ÷ÿò; ÷ùûþé?ü—ü•¾~þï_BÙß?޵€ÉÏtðùŽþüËןýü?~ùÇ?ÿúùŸ~úÏ?Gx·?ýEú³àñŸ³Õþoþò¯Üü¹„ß–h1›"áðË׺éÏMÄþþõ7?þÀf DË?±Û~›Û¿–‰kÙ·`ûýE‰ÿþÂöû }:Þ_Ø~ñqÞÇuì_üæçXãs”ï˜5¯Ç¯«ýÅ•ž~×Ãü}a®·åÇ(é:¢ZëÒô\ŠÌÒµÌx®äGYãæë/9†Kû1¿¾ÛÏgäõë€ÛÿÿWtÙŸÊ€î¸Ê9þ^­è»Ôzþû[¯ÕňÖéº~¸µô’ŸÒŒ!νÝvES8îħ¹ý'@ }&ÿÐg².±®_½b}ø\ÑßþÙ_ýó?<#ÈÓÁÿì_ÿüï¾~þk†‚¯¬|ÐÊþÊŸý¦Ae½vÏ#¾ Ç_¾ôÓ´TYvoat™Ÿ©Àµü·¦Ëÿ­¥R^kµ¿v–¿Ú¾Õ>>e˦}@Gù™ pü€¾–Íñ/ù«ã4ºì,µŸø1uÌ=òlËŸ’e¯Qqٻ˟åW¿Xñ6í›âwûc*ºlüãÆŽødv–Mü©öÃíGÆÆÏýQϱ“ñ» ºe¿ì.¿Îÿ™ Øß±ñ´œGÚçcûü'6í³~Ÿ}ü€–íøö?–ÎYoà²Õ?Fqû€:ÛøgÇŽøCSûeGüÁózÆÐÔ*:Ò}ÚÍ~®/æaì:e_Ø]þ€FâÂæ¯ÛOû¾0éø½üCñÉÕ…Cþ®xÓÇ6þ9°{}¡úõâtçåöŠ7/ûoÙÉþXš-›øzÿfRü®©y`ÆSÏ'îÏÊúÈß6þ˜Ê­C®GšEñýü•3ˆxòWûõ>¬ÜüóÂ&>öíó×û>oŸLýFŒ_ïëÜÏOïóÜÏOý{6ߟ¤óïûþÜØkÖ3ãÛŒL]<¶Œ]å¯ö÷r¨}×Ô;²IEý?cãþ»0ý\Þûµìˆßt¿—í›úÇ´ñÇx¸lüÅ,{Êç»0ïˆk©·ìhº0pü¥aãþ9˜òi?îWä(ˆß±ñ'ùoûgÆæüSÇ&~kØSÇ¿u¾í³ÿÒýèŠ_Õ¿–ñ«ïGWûªñ!0vù¯‰?gì‰_öTü".ŲI•´˜~–}cã¨mÙ]þj›T\“­Tßiú³ýñ=‰”ü1¾/»Ë_ü{Úëþ¦bNØáÏô¯T?k¼ˆô®üº©ª}Vÿ]9/üÛÆ¯þ›nÇ×óIMñ“ÆïeÓ¾èü»ÏùwûuÿSWüÝ^IÚÇNŠ?>R‘ÚÆ¯ßO_ý!ñü€ò–MüXª/›óèdå@¸¾Xú/{¥º^;:ïý^© öiwù³âeûc<Šœ ííŸíx^¹(~Ö÷wÙ´×óÏÕÇßöçñëŽ?±‰_u¼Ûíõ~g¥òvÿÏJå=¶Þ÷Ü¿ê{¾ì.@3AkÇû°RAéèÏ+Äõëü†ÏõÅß÷w¨=d­E™ÀŸvø“¾—A©?¾o+'Åý‹ùʲiÐÇ"Yà×xPÒöWlâÇ÷~Ù?ñ¿¿Õ¾ˆHµrhá÷xQšýê?E©ÚQ4Ÿ[j¾Žñ§t·×÷äYœáWÿ)Ãþm? ¸e? ÷E½¡ý,Øá¯ÜÿzÉ_õ}üêßõRüÊûU/·ÏjŸöñ¶ýú}vüQ°#þ-(qÙÑþæ}­Å~}+ϯq=•ççïãJͰï‚]ë×^€i‡=°ñë{±RAòëû·0oùõ~Ô¦ö¬–=5Ÿâ|»ýÙ6ñGÆ&¾îínŸuþC~ÖËÆ¯÷¥NÇ×÷®NÅïÌ'êtû˜O®ñ†,¿úã}9¾¾OwrüyaWækqýw–ð|…9Ç|ûÆnÌ·ö<æÛ‘S<æËËÆ¯ùÇ]í¯ ›ãëþßÕñu?ïêöúžÜ‘ÊÛóóeOÍÕÿV*hœ×œƒ˜ïìÆ|2žÏÝåï¼ww|}W*H~}/W*Hí[¦}Óý™ök|½§ý%cs|}Ÿîéøú}»Ü^ç×®}}qþ-ùúôþ·¤ø“ùƒ0p–=²§üš¿®TüêO+´02RבC“6ìŠ?a¯öób|kÕ~]ÏJɯþתO¼HÕ.ÿU°?Û7ûõ>·fÿ¶‰¯ñ¡5Ÿ¿ÞïÖÝ^ïw‹T^œîG¤òŽx± ;c·~Æn¯þÛ¦ýü~Ú¯þ·RAý¸žŠú¥ùT>;&ïGv:à.;ü0 —=å×÷¸Gª6ÞÇŽM{½¯½Èï÷a¥‚äõÙ²‰ëõe_ãi¯nßmãǾðߎ¯ûÙoÇ×|·ß;~¼O+Ô?íOwüѰ?ïOw{Í¿ºžßϺžßíŸéx¿V*¨ãiTß;^K~ðše×tŒ÷#:Öûþ¯TüúÞŒ¤ö¬¯—=EíÒ÷Cá½>^v•?Ù&þ´M|­G±¿ÞØø±ë¾¾Íù·‚íøq?PÈùìÖŽñfÜ>õŸÑ|þšŒæöš_h`ÛxȲëÇùw_ãÛè;¾ìñÃýÛÏoèúöó#ÞÜÇoØÄ×x>¦Ûküž‘Ê‹ëØóÀ¿ÊL‘Ùýoá;W¼o:¿™Ü^ïÛÌÛß°í·=|¬ÌâøúÌ¢ö¾³Ú¯÷qVû5žÍºãÛO|óÞç?±ñküŸÍ~­Wfs|=ÿÙöý¹±i¯ùáìöo¿Þ÷9vü]¯£?Ï¡öà9eÎíÏØøõ=Gqã—õºŸ÷mÙ´ÇN?ø“ý1ßX6ñë›êüIŠÏ\Å¿79~Kr æ|or`},f+9°x¤Ï•˜Ùà»’³®‘˜ð•äÀ,þ½’“-BNLƒ$fÓäÕÉÇøLr`Â;vr`6ÀI’“ýJ$“s²`톹àX˜ɉxË8®ä@ðNÏäÀê3ÿ‰9YpË¿íˆ_4™%9¼éòµ“ËîGr 0¶ùµ“Çïµ§ê*>ÿéö/•^tûÚÉའ¬Ö¾ªçz”ÜPr 0Êúµ“q?ôû,q¼,\VrŒq'–_É%ÃTûjÿ¶‰?Ó×N¬ó-ND|'o„&y$›çGZä@ðzí_ûa.&«$¯ßkŸÎ²ó×N,LQಾb ã8­¯ÞN,{üqòcÚ_æ×N¬ãÝõk'VüádÀjÿœïídÁÔùß§“ýgr`Ù—“?écAr 0HÙY~x/$Öù’|ÐÖ«T9_%–ÿrò Ëßœ ÿaãçüµÿ*UƒõÚ€•n’}JF©ëãùùù+9°ìtíä@œ¯“ S~%㔌r|íäÀÂõ>L¶ñ\ƒI,̯؎-3“d‘’Q*þô†›âdAøáµLÒvUûáäñ‹“ç~’+`ºöd ƒýîä@`® ;Ο’$æ¨Å¨’Qì8ÿÌdNÉekò¦äÀjOò¢ÊO 9ö‘X¶À6%V{M¶•ÌÓÉŽO2£íÝNjÏ­ÌâOÉÕ^དྷq~Š7¼Ã«ßØ][¼4ÙQr`aœÜomÔÊ;Y7~o%9¶“ᇇHr 0Ý=å×äKÉûÓŸå/\¯’ëxÉþˆßÕI,L•äB‘¼É‚ðœQr`ù‹íªö·“Ä×ýRràÃ&¾úƒ’ë~ö7ߟt$b¯±Áþå/ìó!9PÊëµë±µXQr`ÙבXñ¹ž¡ã»¿(9{ÃŽ}iN6)9;àöÔ®6½OJ¬n§ÉafŸO¢?(9°º à}Ò>žÃîì#Ø®}>k"7°»ö!ñûì}DzJð¿;9°âÎWïSÚv+9°¿G$b> ›}\Ýàÿ-ì"90½Ø!90 –åwבØó’±ï+a³KàbÞû¸4Ïcß?Û죚Gr`oI¬öíÂŽøGËå}^z? û¸*ýKÉÕ­´¸Sr ÆÓ‚Íó#¹ }\‰ù$Éå|×>ŸÔx^…}>]H,?É…¢}:™ñ©°èâ}Qr ¾çGr`]:’ñÚ'ìˆûzØT”(Ú^õÝÉøÞ4ì?3¿!9°º±À!%b(9°l’ÚT|•XÝDÏ[Ée |Ur âÉÕ­“OüÛÉ€¦óï}>ÅÉ¥:Ÿäû¸ ã{eW%Y¤äÀê–º~%–­ï™’!ó döq-}‰Í>²dð?üíM°ÏKßó;{Ÿ×u$BtA`8û¸ÏGÉèvНçW .ß{—Àº›}\NþßÕûÈ4þ*9ÑöÔ>$Žß¼OIã—’ë¶ '¢ýôùtïc"ÙÐwü#9°üÅÉÇ?’+žú›’ë¶ üVr ö¡ÙÏ>¬aÿÔ>,]O»Ü¾ÚƯﳒ±±¿aû‰9YíýSÉuÛô>*9°÷ˆÇrcWí3SÿSr`=ÖêdûÌî(9þ‰Í>.%»”ÛÉâŸÉek¾¦ä@œoÁæü5^*9@7úîäÀÞ7Ar ôEô{íó©þ^)9ûZlÇ>š›ä°’ë÷•ÿÀ¿ß7%ÖóÙÉ‚ˆïõ…’oÿTr`K^X¯Uw²`jSv2 ö!5ÆËÎ> •ˆnj¿’?JÄï/ì)¿æJ¬û«ç«äÀaß?øoïƒjN°Ï‰x÷Þg¥ß7û·ýé×>®–}¾ÚÇÕœüWr º½l=¿ž@r`ù/û×>˜æd’«[ª(9û ö‡2ŸRr`uÏJ,µ?âOÖ#J¬ÇXžì'™¿Éõ{·J¬n¢÷UÉÕ5^+9ݬ`Oµ×ýPr l' "~õù‹ ÞMnSr ö-^Øá÷|RÉuÛ/'’Úëþ*9Mç×íÌïŽÙñ¬Qr`Ù\ŸöqõñÚáw2L(|¬÷ÝÉØÇ9°}þN&L®Oà³öùt¿ÿÞ[1ž´Çó%%–}Ùnòëx3{Q9’±oÉÉö)ÉÕß”|Qr ÄtdkŸO»_»^ï>d’k¼Óø§äÀ:žžŸ’ñº±¹¾fð?âW'ØÇåñJÉÕ4>(9°†}/•Xý—ûÙ';†Ï_Éd%–¿ÛíÇGr€aø»“qü„Íñ£¿“XÃV·½Ú¿vúÁ¯ç·ú»“ÿÖ÷â¥ø§¿(þÆécœës±qúw‰Iü‡Ý!]8ý{LâgÜ:Iü©“ý·qxâ÷ùµqúHRÚöù›´ Ò|¶8ýûzLâŸ>ßýü6n_ç§Íó›¶#~ržB$þÇ&Ï ÿÒK2î¾HÜ“Ý_&ñ?6÷_$ðyûzD_y§_~ò"ñÏÆwÿ4i¿”«¾oÿ¬|÷ ñÏ›ï$þYS'ÒºHüKï§aWùÁ¡Eâ_yÓ‰ÿ2.OümO]ÿm\žû3MêÇßÃã'Opûþ g‚Ä?‹I÷·Ûk ‰–œþ8ÿîø÷IâŸçï»ýÓçÉ~q“ø×ù\ØŸû;w|ÛUzVúNCâŸÆ=ÓÖãj&õwéqmÒÿ”˜æøOûÓŸí¿MÒGKLóVHüÓ›, ñ»¿™Ä¿û$þÇÖ<ÿ¼Mr‰6o¨n?Ããß6bfÓ¤þˆoR$þ¹q‘ø§Iø—ߤ}ÔÐô| ñ/œØ¿Ÿòk]‰åéœ>l“öñ—§ë¯Ø\ße\ŸöÕ¸ü)Çfÿô<ÿ~ÞøO»‹7 û ‰ò=5‰VH4ø§ó0ø÷û‰ò}6‰ÿ´ñ«¿BâŸ÷KêŸíŸLâŸÎ[Aâ_~“ôÑóÒ:Ï8½ß_Hü3’øŸñ”¼F·žØ‰ÓÇgK~HüÒ’IüÓy HüÓ› ¦ýݸ¼õÄ>HüÃ$÷ËñÁ/·ÇNÛo\¾BÚ2nßÓKªÙ$~ô—6‰ŸMl›ÄßÁ±Lâ7iÍ$~¯ûÊ&wûi©ÿpž ÚΉßy$“ø;ß“ø÷ùAâô'“øg3‰úzÑ[c¾´IüÓö°Ÿ¼Hü§Ý5_Óx`ÿ>>$þ Žb¿óÔ&ñÏ׿øÓ8~×ñ³qûÉñõûäã7ãööë÷yÇ?pú˜ lÚ«šÄoR«Iü^›Ä>Î&ñ£F»IüÎ;™Ä?w¸MB/&ù7ùÛÓ)W¶HüZ¾ß$þý~AâŸè­˜ÄïùÕ&ñOú$þM26‰ß8IüÎó˜Äo¼Iü^÷›Ä¿qåËþÛ6þb›ø—qyâƒ#o¿Æ{“øûKҷ߸=ñ³mâçÿd~dÿÄïñÀ$~oº|Iüɸ=í!Éß›„o¼¾ç/‰_ï«IüƱMâ÷ûhÿpün¿pN“øCšÄ?x¾&ñ;ÏdÿøÀé_¬Iüû~ÏMÒ?pú—ôû’øÓ$þ§ï¿IülŠÞ$~ŸïKâ×øö’ø‡IúA‚÷&+“ø³qlHü‰ë5‰?1™ÄŸè¯ø'ç›ÄŸ^Üžöɤ|üéÀé×ùuãòÞ$`\ß›äß$~W/‰ŸM ›Ä_~ ñs7‰¿×7‰_¿‡Ä_œÇ€Äï¼­IüÅ8ºHüÓ› !ñKX÷û&ñïù$~-»¾oÿ¼™Ï@â_óÛUó½t’ø÷|¿¥sMâŸèÕ™Ä?LJÄÿü^ã$þ×¾ðß>¾¾Ïø§IÒøg7 _$þÓþô‹Ä?Ýß!ñϽɠÿØâôyîM"OHÀ&ñOã¼ø'›èMâßóiHüÓ< Hüë~™ôñýÿôû‰æ‡ø§ybàô—7}€Ó›çjœÞþn\žãóûêøí ñÇýÎ-œ~ó‚ÀéÍ6Nݼ_àô—çËàô×à~ƒÓ_žO€Ó/{`ãOÆå#¾ótàô›'Nÿ¶Ÿö‹§NŸ.ç„Ó›'eœ>± Ì8ýk§üiû¯¯§¿¦Þï_MâÿÍJWk¥ø›˲¸kŇÓ¿þÉËBäá$[·ýS±ìÇ_l{kÅ3?D˶ýþ¢\ªeÛ~q—Õ²m¿¿à²aûýÅǹ×ò§S-ËRý²e ø·d˼oDëÝ_¼¤ ’°Ì¿¸céíòû‹…]éýöù‹g1üÌrÞ_È>qÇf«÷²Ï_èÌÞ_¼gúkúø­ÏëúJ§uÆ~}û@YŠÚç?¦}´m´¯×ÏÂBgõjBgØ[Ùlß‘Oû©³?ÑØóÅ΂Æ÷ëÄÎDøi×”:û7ô'¨§Ô“dÎTN©³)WÕ”:,<SZSòòåZJL“J)uøª¤Ô@ETH©y©ŽÒÊ<¯/Œ”¶;…7TE©ÃRS¥~é[©J•½J(i9à JýÒ¬AêÚæV¨~ÒJ/ŸÊ'­˜ãËÕ“:¬-Oê¬=T;©”Nêð«U9©_šE©p’¹ª›ÔÉè©lROúþ«jÒŠ’¿\4©SJ5“: <•L2D“:lou솢zI¦´Ê%u毪–ԙͩXROZk©VÒcÅÊV¥’z:+%©ö %–|±¢R™¤•æÆZ1‘ðP‘¤ž57W$[*‘ÔáS¨BҲʗ $õL顨cÕ™1ª<ÒŽ’ð©]$ÿ:ZòªÔ T©ÃUe¤ÎîFê®^)¿^(©Tˆøšª"í(ßQ©#H1UDêdÍU©'a ª‡ÔaΫROZ©’{Š!ùù©R'³®RH€*!uTkUi[“óŒ7Net¯\É,áçoÕðsP9¡‹kA–ïþr¤NÍ Õ?êìœRù£žõv(Ï¿O ƒ½«öÑêŸùË¥Ö}YW+>…ï„ ‰ÊáºGë}ß/Fñ>ú¥l†ŠuÖ~ªy´zéürÉ£Ž)‘¿FÖwt|.ÔËi)¦îÄpÌþåbG¹¶jyS©£Ž¢JGY³ 5¸îªsdŸ2à ¼MU޳{9j¨ÆQƒ‘¥Š& aU8j¬â•]lpÁUߨQRMåëU7j°'TÜhõ˵ÚÐx-¦‘WP~ø°N_ç’H‘pký¬jÔLQQ£ÖuÏ„)´.$]%û“„O˜¨‚F­qµÁijdàTÎè°äS¥§I̸×Ô2j7RÔ*eÔ`tRɨ±aŠBFý8Ô1zÛÆhºÀ:Eެé"7L¼úqá¸*A FœT0j7Ü*`$Ùöï®_ÔšËE:í5#›æJñ¢Óìá•ôºJµîÊL ï.d4Û~Ô-jÍeˆ:mϪE§ùqÜáÈS‘¥ˆ­ŠE­»S$ÐÜw©WÔØC¹¢6\}'Dm¸8ÎE[i«V‘»%¥Šš+—¨RѾ@*ÚwRuŠÛ/)S$°õ»«5ÈÇ)j®ù¡E­QRE%Š^*5ˆ(j䃩OÔnäÕUžè1uÛUè ɲ׌\Ùî±*M´NÃÞ~íWÂD 1Xê5èÇ”%j*.ªJÔØ\JQ¢÷Ç11\Ï7¼*IäwœŠD»o¨ Që®'”#jHJPh÷ íÖÔ/_B\š¿EÔZÓÆ‚ùŒÌžíRyh™S^Õ1PÝ!/ (;´¾ªÑVU‡<É¥èg«Ôò””’Cž-Sq¨_Ügê‰úª7ä 3冖ÏWÕ†:É Š ­ã6Lµ¥ÔNÅK¨ŠWÝL…†< £Î§L”êÙU‹"kÙÙœE‘¡ÎÞ>j yL‰!Ï5©0äI#†z~ëÉK9¢Áq¹ÏƒÈܺA[ õª-äÉ)¥…º+e¨²Ð¾íÜé».PÔ¥éÀ¦”Zwcb*²>O**ä5…:)'J yvKE!/k((Ô]ßAõ„zry Bd~\iËYU_‘ÎùæŠôþª”Ð"ØfÌÙ…ÂTH¨Ã{¢ŽP‡VE¡K—*B²“ê•¡^5„ºK¢©„P¯¾„WýJ„ÞP‘¯ì.·¡òA»­ªõÊ+©âA§©È”î¹8g½¡ªÔ+o¨ uö›S7è ³ñ뙪AoäL[õIÕ z\ðª_©bÐ{ ¡hò\¯¦.ªÔ‘E \PGÒ“jAMõ ò:ŒZA½¸R£­^:U ÚÝ[¡×#Ô òò’2A^'R%hqR‘ ×œŸÞIdnÝ$2¦#Ç«¡¢§ùáMDVñ+ÚwCµ¼Ü¢4ЂT¨C̦0Ð~STh}* ´UU2`@Q = «&Ð~Uh(ž‚*y¹HA ¯©ä…å€zf¥j@=¹R#2µ‰:^Ju¼˜ÃW40uΪ»£:@Zðw ¯½©´ Ú}C5€¼ä¥Pßo’¯·aÖãœUÿgH*ÿãõ+Õö½ê~FªÕ×ýŒU|܆©È&*´Õ«º?´eŒºPõg÷+ýé®±¥š?ûÅQÉŸîŠrªøÓ³ ô4"««¨ÞÏ:nƬ×q¯^Š+ ¼‚Tëg¿Ý*õ³ßnUúÙ_…~ŒPçÇ0e~öóU•ŸÝëTäG©úï®ñsšòê…U…ƒDøÙ]Tõ} APÞG¤€ï®î³?m*îc\ŒÚ>ûÅQiŸ×¼?½7^}èU×GàÖGUŽßQšãB†ÿ•+á"+aäiA†C2,r‘áÎ^ ad… wø¶B†;»ö… P!ÃÇB†u9A†Ù-%dx\B=„ 2èB†:[B†lt!ô2áÁd^Èðâ½È°å?… ï_2l)6!ÃÞ2ì*B†½_CȰ%v… ö\ ¶œ½áužíËÈðhêØB†5<… [6WÈðhúì >,ÅŒFÈð`Ç¥ái~ríùE†m ž—$!Ñm!Ãfó žìéÕË3‘ïÖ[9"ô¡˜TÑÓÐ?Ùk+dxÂ@2<!Ôôq±¥ç—‘asÙ… ›¹.dxñìÁ‰gœg¼ìB†ÍQ2¼vd€¯˜Ô«2<)a dxRAÈð¤2©aór„ OÔk„ O8vB†K>g ÃxDÈð„K)dx²#VÈp`^€Á3]Æ2õ$` ^N¢OjŠð¼Ðád ˆàá…D%̺¼·ˆŠ€†âÄ"r‘U aÄë@¬«"ªÖWEf1%˜xy Èpx‹ vÅ+TL·„ñ*L/}+^§zÅ ãŠ>+´8±òe¸8Ð3~<å‰ãÕVèõ—Ç,È8Ì3^¦nÎTd§…¶PÌqU§ýòqcÍ.à8íêñÉ‘ó&GŽ ÆäÑQ&Ïhj¬z¼À4´§:/ü8 ¶€T@NÖ¡‚ç<¿ !§‹j£Â—7&'‘OóÃÛäeG³päd¢‹^þ…éE7’¼P;AÐ]Þ¼‘åðL^Þ‚YÕöj&²nΔ÷5‰[ˆòºu Ä—oG:0åfãÄá¯.ÿžäßhoRøÛ lҙ߆¬³ãCgŸN´hmÃ~âOr `ˋܘ0ŸÖ®1Øò¼ŒZ¶ÀåµMAh€ËÓU<.ÏìÄ3³ñÓ‚Œ;ÀåE¼»0Wdƒq—ge1 py¢Ù¸¼ºV0B—Ó[NÞ h:àåõ˜šeÝj!¹Â——[Fó„À¼Ü Ó^®Ï]Ã|ZOÊ€0OÈ@˜gö¡â”fóeÂ<§/#9Q‚a^Ÿ¢í1Ç—¡aÇy3•d^}T(†Pæ†Õ>ËÉœùÃŽøî¯Bš“Å:š£W'ìðÖ›—-Qh3/ÅwÃÍñÍÌØÑžÍòÎëø Ý8¯nÄõ䣌!è?¹Hª@çå×’Q¨s €Ûþ‰ñ½ðóÂ~VËÆšÃ_}¿¦ülÒ|^öYô~Ù‚¾?¯C‘õK~Ä} —-,PtÄ; èÕ›“OüÛ¨sÓùáÏò;E!zÅá.ŠßµD/¿B¢W¯Ôõ Š^¶`aÑ«›(ó$0zu å@£W7LœÃ½ðtøYªH¯Ç~ˆô² ’¦›|7&ÝNñõü²O¡Ò«[´Å~CíÙÄ0Ñö3Z·˜7`ϸÍv]þâ"ñ|.[ç#tzýž"îiÇ?ðéå/F¤ÿ@¨W<õ7AÔë¶‚Êû§ýqüjº(>¤l`jËwãÔ˯¯®€êÕ­ô R½âo?ñ/C×ѱÀêuÛô> ­^·E–àêT\Ô[xõ²ÕÿX¯ÇZ Q‡ŸE8uø'v’Wh¶Al⟰õ²A[y~lJ¸^¶ÆK!×t£ï†®“ÅÐÀ®×k¬ç)ðzõ§f0»æxžÕvë_ ß_¯ßSÔ½lÿÀ¿ß7AØëùlH;â³Ä~û§Pìxoìð#J޽îg6r½â?ÏKã¥ìewƒÕá?ÀküJGÌN•M9 ÙËÖ@pöº¿z¾Â³{þàŸŠŸ÷OÅ7š*L;^+¡É—ýÛþô'?âTàÚawìhs?…l'‹qm/ÿeÿó!\~ŸÀíÕ-Õ?„n¯nt±^þ»¸ˆ}•?»h}ÜÉbf Üa÷zl/…qG·Qüæøõ@¹×ï5Þ æ^Ý„"öMí[èŽnV°§Ús?†¿¡ïˆ?|þCí¡&v/[óÁÝë±\ö¯ø-¦½ßã‡ïÔœ¯äñnlâŸEï×ï5^ õ^¶®O°÷zlÛ¿37šS£2È÷º>~_öù(Ÿ\ŸPç¿×ïÛ~¯aM3^Áß1LÛ®WØ—í&?Ç <Æ£_ïÃFÈ#~ûÁWS>A(ø²õý ž,Ãô½âÏ…„¯ãéù ÏÐÍõ5ÃÝá§’høê_ÙèxÜ¿…‡¯aFßKâ«ÿR”^@ñmT_ø:%8…‰/·?ÚçTœaø»añ8~ÂæøêïÆ×°ÕmGûmß?øõü,Î8ÃÖ{®¾$õ$¸ºMÅ\ÝØ ‘d"s‡ÜðhÍY¾ùµ‰Ì±™Ùº#¸º±Upu£6šàêÖ6@ÃëDˆÌÜ;ÁÕ Ù5ÁÕy…àjÿRpµ™>‚«Í \ݨ$*¸ºÝzZ‚«›aàÀ%òzC—­YÇ‹³\ÝèS‚«Û$W7*± ®6sFpu3èpucf ¸ºMèÉW7êýBd€ÈLb"sÞàõ"ÌíCdóƒÈüZùÞ„ˆÌ¬I 2WHÜ"2SÙ"3Dæ ^DX¾\™¯‚ÈLJ"³!âéx`Í—‘™Dæ ŸˆÌß!2¿V¯›úú™Ø®‹ó Wo2öï’VÌøö¼Df,Îê²Â1+…È̘ ‘¹l€ZÄâÂuÜ¥Á})ÔòÅH‘¹ê»‘™’(™b~¯ë<-=‡‰µb" ‘ùo‘±ˆÌÔ/‡ÈÜA“Ed6AXDf6¡Bdæk-z ø Œz@³‚È<õ¤!2S?"3‚·™‡îDf¾§B§;’§;s aÓ‚¦—fP´bÚšq}7@´®}Bk–¯ƒ;Ë'0|r_â©“îŒì‚¤»áÜ ßHû<…Gw“€ç)$;¹Ý F÷¦§),zýú2Ý©è($zÅÄzf_Úïlºƒû †îˆV…îsSžg{G¸igëô5|7då*ßü2þÜ! ~vé"ðy ¼-ì¹óUô<aò< }x>¬å#‘-Øy˜;#Ôyd#¤:§ñ…9»ì1³«Î‚8/ Ô?žáÕJ@xó¸Ü6s-·™Ëò–llþlö…6„Ñ›×Ì蜑Ö L`³ `óiöÈC nxëAdî”kä Àšý‚5÷éëöDæ¥ixcöðn^ól{”kî$UÀšû0Ý¡{‰.¬ÙoXsoD掘8Xs¿?°æõ7°æN¥°æÎg°æNQ[°æn$OXs÷ÄPXsϦýV"ÃÅ®´Å¼í5´\ÛÞ"Ò¼ùBš-¯ Ðì}1Ík™bær¾^&‘pæM•J&Év{ÕVØ–`æžp¼\oÀÌÝ)ÁÌ=A-̼ÏJ0sGꔹ“ùdîË1{Ä܋͌ŠţÙcê|ðò{Ü@—;J߀˛R*l¹—×Ôq§‘ç~½ÌGËݼÃNnX¹%ªÜ â TîÆÜ„)ï^'Hyó!2{‘¹°þƒÈ\|ù&É ½€È\ ŽOȹÅ4çÞv@É™r™«i¿^½)™+O"s5ë9Yý "³é™™ !@dv"ó&_‘Íöî]3‘yÿ¸â-6ù2V¬ÈzË6‘d»AsÞTe¼Æ‘9ÛTä|™QR0‘9}™ý:Cd†Úó™“dµÕCÈì¼Df³¼7‘Y/Dæ¥^¦ý͹9–W@Dfã`™Ñ‚0‘ÙYˆÌù$Þ¤BˆÌ¾±™Í1„ÈlÖä&2§O"ó ïû ‘™&2ï“4‘Y#Ò&2S•WdoÈÜŒóŠÈ|ûEd¾MxÕ !2߯Ð'‘7D¬¶ÉÜdyÓ÷jüÒDæbøòµ¼&2kÙDf°P™Ë'‘Ywr™«cˆÌú±ˆÌݰ­ˆÌÎ BdîiEdöö&ˆÌƒñ "³¿ìB€µÌø¾‰ÌTR6‘y^øw.‘Ù5À߇ìw\†ÒúÎ ùTñø}ÍùéW_I¡¾Ã”R¾#™Œ˜ïi~xñîÀ|‡y Â{wdÁ½# ½Ãï¯ÀÞa¥°Þa¨PPï`;,Hïžš èÎå ç]7Ǭç9›}»­A_y5ûÆ;Š!×@g†YíBxÍ"à5U|w´xws„îZ1 p×f`»Ö ÚΔ ÙóØu…xpݰ®ëÕ‚êZÉPw c°‰ãVóšYÌ.½  kQmðÜáô«Ûál‡ÐÜÁ 0×U™Ár;1r-' ’;¼M@®Å¤Áq‡·Í Æ]ŒŠŽùƒwŠî¨sîŽ<1ikª²¼Ý€­ŽË‘ÛAdÞ(&ôv“BÞš v;&oŠ ÛéɧÛI• €ÛéO¹p[k9ÛNBm§“6m7GD˜íÛ¶àQCˆí°ݜáµÓ›T×¾æýé½í½0WärêýüDæß¬³VRÏ[œî?RêGÜ´µ.ú“+ý4!¸—´qÖ~îÌ¥Ñòé–uW çÌXdÛ+ëõ®õÔÚëéØ2 mÌí—yø5Äo¿ÌÞì>÷×ÿ›[UÍœù[D}Ö2ùù|ÿäCÓGy­1ŸØý\ÆîX޲tÜÞyKÊG^Y¯w-CÇGnÌÃ_³T|ðË<ü:™íÏíWôÝß¼Vþ8µpáÑï¡ù݇|Ϲ5á—Ÿ’„ßèù6SLõø0ýã?Ù òE{‚ŽÕŸnÞÿ hϯë’ÏwãþÓû_ÿx (•ú7Dþí_ý6 2UFY“„£0J‡àL]”IY”6íMHøt™ï®"ñ•DÐBµA&¡"Jsa`-ù½ƒ™z(Íå(T¥_oseø²MR|÷×®…Òá¶R ¥MW¹‘åIò6kè̯]¥S¾‹2(Ö=¢ Šw?SÅ #Ô@1 D ”Žb1P:¹c  t×sè.RÙo•?1 Dõ“ž\ìã²·}íÚ'z‚»ôI‡Få“g„Â'ÊuOzrÙ”Läd/rCñP†5Œ¨ùa£]ÒDÞmÒA<1XA½ï£ÜI§J1ÕN^³á-××®uÒ³Kš7+×Ü_»Ò‰! ¼¡ºsSók—9éÙUb†e}ê×.râ´5Nœ£ÄIß•Ë'ªdS‘Uç~ZP‡r$V͉©2ÕMº‹ï¨¸‰7RÛĈ ¥M TRÙ¤ÃÌ¥°‰7»S×dwí˜ÙÏW3=¤5Y+‚üµkšXXˆ’&¯éì`@F4ñ–Gê™xÓ*ººÞ]G5çm)fâÍvÔ2éÙ%Å;*BgÅqc&21 D“÷¸µ ½°ªbÒwqò‰—šbB»ô¸”x¨Èq!$Áa0±bõK:eèÑ!íó¨^bÁ4Š—8ÝMí’6]J¥à•2¶*—œæ|õ¨[²ËÑ©lIsuJU-ñÀHÑ%ª¿»fI³¼J–´é .íÓÛТNxG`ˆ[×QRDU+i÷V±’fmRÕ*±t¥Jš+o¨RIcE¡’6¨×«:%–ß LI®òq!5D±î ] ³–øi~x3^ ‘gô†¨Ó-*Ô0QŠëUu+—Pœ¤¹&£j“46úPš¤íŠßVâ‘0¯ “œ¦¼*g§²$– ¢*I»]ĤYÏH—Эµxù±´vŠks\è ›R¢"÷…ò¨­µCÝ kíèæHáÃk:ª~˜ŸHÑýÒ©æÇîÞÒ”ò*†Š^´Rðà Oê}X}„r¯yz­–¤i­j}Xó†R^ÿ"Ì~š^«%qsúçÝ莬®ˆ›3ðj¸V‰ý¦¨ÂÇúTàcªªïaP‚ò{@Vuýþª¸GOµ=¼Ò¤´‡Töðj‘ÂVj¡®GO> +ñh$ÖÚÑiXk³úŠ:f}™HTôèÉ:n«øLL)Qfû¶.ÁjIZÔ(íe޵<¼ü§”Ç{ÎVKÒVKRݬ1>‘FïágD¨éãLEÖ«{ŒÖÚ¡@„µv¨ç‘PÓÑY©|Gg#-Õ;ö‹£â=sΪÝa ¥;ö‹£Êæ±P¸cß+¥®ök¥²Æ ¨Ú±ßî¹Õ’ânL«%©ó«d‡*vX `Ç~¾ÓjI”ßh(in¦j§‰Wm­–D©Áu›h éÖM¼Ô7ŸÖ*˜óÅܨÒá‡"¯™>½ o$d©Ð±Ìu¯>Dòÿ°öп þcć PÇ`ûÔÅ(«ê¦û@Ý)› @Ý»QÖŒ\p'Ô¦6Pwä¨Ú–Ô}ƒÌï%³¹õ ºõ`_õ¢+̯ P¾}Ô•_ê3 €z¸N¯ê]ê@õ(/|½"ó vV€z—¸@=@i¨] €úýñD˜ˆ¼À¤-Õ¥/¼BþP»–õ¸]jÚ*J¾–<‘ %  ,ú¨ëVêAº€z4c°…{u ¯w›R)J6uÎÄ®h)Ó!€z ^@ýš ©"ŽÛÐùáüœÙÇ•š›â¨g1¶/ÍžäãÆã˜Ì|¨'2Ô“]BÔ? ž·“ã F@=Ù«@= ¨g6pšðªú»ê¹Ú„R:êy°Í()I$€z6#áÖY’-œ3e®‹õ„ô㊼ÑmDZÞzÔ =6"-e$å_P/‰#ý¸¡q”ŒHKäˆòßV\ªókÔsëîÖ@:ê ÈuèHÜ_£ û»ü@øÃí5òÌiI¢tàÔ¡‚"Lôr|ŠM_ŠŸŒ·^ŽŸ¬:]þâ\Èø\.fhõªfx:˸zŽj ¯ö|ÆFªéØ]þdÿ”_é«~h Z‡N’qiü ÂH2A,·É¢‚„Øtóñ/#Ùóe»N»ÖÚµ…™¸žW™I×3,‚T X£‚¤Yյř4»»Pgš¾^Iÿ\óE©C\ç°«Äw„)ÅŽë3æâ<^N[ÑÈö§_â>²@Ù±ëàÂî:þYk{Ñ^8^‘xÐåÚßÅâDÔîÞZMÔî®–6Ò‚Sˆv ôûÛ’KÛF ôüöùku›šõœºmK'Éî:>r€í)iØ]þfÿ”xR9°íˆêØqüû­¥Íý›¼=‡/?àí*m¯BÝV/Ä.›Ku§jðÞ6W xû4—ª_àí9ŒÑJíÇàíi°_ðödk)ðöÜ0³Ô~¡„)U¥|ÀÛ£ûÇ7DœÕmý"·¡}¤ÙºàíÅ=àm‹oJ#oﮂ·-ÿ¼í*ðöôÚTðö[¯{âò$x{Lßö‰ªÅ«ÞžlnÞ^svØ/¼½FÃb[)ù×S"SB¡37úÄ·—WÀràÛ“]wàÛ“M\àÛJðíiàBø¶¿ÈàÛ“é:øö¼?Êgïjö·W5 ºAɘµt}®äbßè5eÖ¶‚¸×*ü¥tëMÃØÖ-ØöÛF—h8wÚÅtǤas|}Ÿu/û6š]¥kT°{ë4v/[½Ap÷:=áÝk@ºp‡îQr1èl]#Ãä½üʲ ó^í•jèþõ^¶>ˆ‚½CF®`‡îüN€ïØb5±ÃÎÐwè(Ÿò÷üõ·Šn‘zƒàïeëy ÿŽx7v“.Óm¸œø—®O2ž, <Ž'ÿtüjPœø·í&]&=oáà‹§Ž€ðØŸe;tƒ.ÖnS†u¾¶YYgë.݆¿«t“’ýMºIÉhyÄ/¼ÒÄCW©b£»tBâ˦Øwµ®’>@ÅcgÓ…=¥‹¤E»`ñµ{ ]mÆ—]d<6Ðø²5ŒÞèú\Æ÷ûŽŸ±ÿ€ÇøÃñ“qt‘4\ÞÓþnL¼Éû÷è*U£âIºLF×Ç(”`òØ•±9ÿadœëÓûÔÐm*.Vå÷ýV¾ˆ¬šà4t›š¡ft›î¸<¶@ÇOqéºýЉ°nS·ÿvûaœãS̚燌.°yì›:póã|»ï?çÓ­[Dñoéú¬þT±«t‘ <_Ï_Ÿ,¡çë÷dæöOìð#Ú €æ vÄ÷ÇEúÛ„¡‡nWÆ5^nS5Ž,ݦâ ^G·i /Ö%†.ò»X½ ô­c–:Sú}u|/BÓûþÁ[W)€zèZ%lt“(ÞÝìßö§ݦ]ŒݦâDºMÙ©=¿ l°¾ü…¬/›âÚSºG^[_Û¶ÀžÑõA"t}íź ¾7ù)}IWÇ ÐîÇK!ìË߈=~`ì±çªcGüÄÔt Û4øþ fß:5à쫽¾÷£úø·wë*ÙŽöÍÅÀoù]˜{èéü‡u“¸ŸÃºEêï‚Ý×ïÿ§¯û;}}¤C¤Û´®O¸õÖõi¶C¨1OÒíqJSèûêߺŸ‚ß—_ 0áï15ìð;ó.>ö.*^QüN¿u‰ác ¢qöªóÓø$>ÆãŠ=u~ öè6¹? ‰Ý‘Š×ÇŽøƇN‘¡ûÐ*ųcaÇŽø~ßçp|½ݦéÅp{õaò˯÷A |ß =ÇZ—nÓ]Õ_Áå;ýà×ó»ÑÑšý‚+ÞïÓ=2RÓÚ”/ŸÐß ™¢*@7¡o&?êfg£Œd,\òGÝÌn4ޤ|…’)*7º?¦r3ù)_ŸÄôµ‘òÖ^àü~ë–”·Û´èÛ:Håk#åÚ×FÊMS)o·)äÝbHιH¹+±”[ ¤Ü'òÖ^,I¤ƒÊmÍ'r‹L”7ƒ”BÊÛ€¾*¤¼±í¤¼M3“‰í‚{MåÖq7•{˜Ù-q$xÐJuo_)ïcšÊ}˜HÊ'•{ÉÕ2H u£»4l긘 o7w[òg?£dà\JÛÔ3jÆÑ¥Ì¤TîÛÇíè(m<Ç6ôfSŠAÕ¨¹dˆ´›*7 ø¦r{s Tî D•!PS¹Ñ3•Û8ÛeU!ÞP¹‡Ñèäãàx&\[ýI_ AãÝL:!ãÝßIã§)U"!I‚Å»?²BÅ­n(ÞŒ\jG›Ù’sµÕ|W€xo|þ„˼ç܉ £¼[Ϫ`ÒV§18î}P¹»™ÎBÂ{3ÐnA(M+…ƒwŠSƒwOb…‚[¼›B. ÜÊO@à§ùáÍq2Þ-Å¥“ÊÝíúíŽø½;’°ïNÉ] o«þ€|÷iµµˆ´Ìî}šRH*fvK! P¾¡®tÙ”öt쀼‡ÁO!ÞÃ,Þ#ù¬Å% Ô•.›èHéÇ“+fvëŠ ÅOî—?¹š× ëîž ëîlÿëÞTX÷iJ])›¬]CåhƒÛý­ÖÝ)?Ö½_XaÝËTäj¯M ¸ZóÉзԕ”ÈÖ‹ÊfvË+\JXw? ïÚÞwPXwwVLX÷š±Xw7d'¬»ßÉR³)…¤bf·´—´\Öí†`Ý›¡)¬{sÇ„u÷ åJ/j›ÉÞŽ)í%á<‚ºÍêîɬðŒöR¶‰~’ ç‚öR6˜-…¤ËÈ·h¾…¶ù r÷Ę#¡o´úF{i3»‰|@ÝïY5´—Ôù…twvÃtoJ¦pnON€¹;U6A¹ý•ä>MEžæ}Ï󸓶 p{F¾m Hàí^Œ®^VHòuÎÃX¶¼êÀ‚¶-Ó²½"wLENöºMÀÚ›) •Û‹*¨ÜŘ¼iÂÃ7d#ÖÒÚ6…QoK©œTîJWÊ]}7Dåö›•ÛKK¨ÜåEºQW2ЭÈɸµ¼Àè.›ZMÖ†mPâ³Íöî4•Û?†Ê_€[Tn¨Í¦r ^ØTn 2P¹‘Ù|©ÜºÀMå¾N*·_Må†÷]\p׸4‘mBNŸ˜¢ŸkȽ]øŒø6Û¦hÑŵhÑêíP¹³ñsk?w¼ÕÌn‘ćÁlQªÕ r ƒÊíïà¦rs'M寥90µ§Ó¦rTƒÊmŽÞ¦rCÒŠ¬ûÜ\øV7§Y/J'¹©Ü÷Iå®Fo HÅÌni/%c×RWâ$+„ëi¤Z^}Ž¡rßæPßVWš˜¨+É4•ÜTîb/$qCÔÐÏu.|;@ºÚTîë¤rûÜTn;^*·~<Ñ^â¸í¥l²öŠì}9P¹g•{¦Mh/]F›&'SÚKÂ(¡rS)zø¥½§jú¶º ©Üæ?è> ïŸÐRÈ Ÿ_óþôÞÖ@2º’h©+é»/Üù4?¼U'½¡ÝzQâûgäáëM˜òjpà<ü¡Þ<Ø Ü<œ-Ú¼§¦›‡_vaÍ#¿P´"ƒ¬&ÚBÖNh/ågÙ°n&2¨p Å£8”´ˆê•{ ‘ ļ9 B˜KKfsýÀ—‡× ‚——Ó.[N pyx#ly©þ˜ÙMd!ã…¤if7 I®< œ+[! Ty8i+Pyø³(Ly܆ÄõŒÚËì–U9åaB“ðdW€Nž¸ MÞÀ'0yÜÆFmV³’$ùô*²fŒÂ‘‡· F6Ù•6‘ßK/ª²¶^Ô8äMJ€¬ÛûÝøñ†·¥5nzìÚ^€Çs3¬;^.¿ãÝÜmi/¼Ç!6GE¸ñÛv⥞($eƒÈRuЇf<™2¿fúô&{ûׯ‹'“±O]ô;àâgÀ<•? ?[ù£žÄêË€pÂ[L–W`#ÄjKP@¬¾ÌÑδÝRx-ÒÛ^)˜Xmj$ÊéÕ¹ÓÞ8bådäùFs"pñVèV•¨±z£|(&ºó§òø•?²±tËË'󬥢Ñ˛ͤVä«~m¸Ø;ê^åa|P×56‘»ñañOå g+pˆ•ü;ábÉÀÅ(€¾pq±ˆàbç \>áb=… ×O¸ø6 ,(ò:áâúÒ®EŠ5 \l rÃÅp¥;¨zpq5 {Ðá“ù SO¼·M·šg­ÈSé¸:O¸¸šhœ>½.Pbu§>È ƒX}šó]‘½pñm©àâúõÂÅ|j ïPïmô˜²:Û@ôýõÂÅÙçSùÃo Ê~éŠU%´NDùÃÒD(8í‚ò‡·3 üarÊó¥B×{—Æ1\l&pñõ¡üa­8ÃÅ—ñð]N¸øb.¾^ôXÞq(ôËwc¹„ènR=p±·G{ô.ö‹o(pñõ _Lè Ëû[\l(p±àbà .Ö@Q]^@9‹ 7£ÇÛ[Û ùSùÃᆋ“ÁdÂÁm·È|Y†‹‹A]ÃÅz%7\¼yÐj[>áâl´¼Z¯U—@d—8•? €~/¼ð/"÷.®fG»¼@7>œ¢NѩʰŸÊÆ‹wÛ⦼ÍbïÆ‡uÜi¯"÷Sù£¾ó©üá4pq1˜ÜМè§ò‡·—›< \\|ÜîȺ“ÑO¸Ø©àb'€‹8..fiOËÏ ¾€O?”? h.¾?ábƒÀÅì€4\\MoÎÜ+92 n²Ô‡"+\|éo¸¸Lf‹ñ¿p±†  WãܳYÍ´ÕqÞÍQ–wf37 [Õ ¸ØzQÀŦ«Œ.¶þpñæJád©ÁŠ冋…m¸^­ábh·‘³µ=ä­Få½O¸¸™’œ‰|pq7åöÝZùÃO¸ØûxPþØ¡*mõQþð#CùcG¾‰\MLVää«í‡òÇm¥“†·ZêC‘áhwŸ³Ñcµ…á=|ÜŠ)o9øÉïiHUÂÊÕšÞ-"ï´ÔG ï0“y†W_+”?ªyĉãf©mr‘•?n³™È·9ÊŠŒzGÁ«Y.ÊNŽ üQ ®VÎy›j; ë¸Ùfk»rœ•?nƒØs¾ÍLþhÛ}E“{u*Üf]w"SÚª‹?#‘;!ÊÍ*“ÈÃÞÞt*4³]¥üÑ[JU¢ó=Bù£¿Tä^¥äPþ`?·•? Ë£üaXåË¡¡ü±1ÞŠ7Û”·=Vän]"ŸÊÝÀì·–Wå}ÎÍWdîñjë½Ê(4#À¯¾¿(4ãÒRþð¶<”?Ú\Ü›IÊo9à⎨¤•?ðZùc› ïÆ‡å½,¢È1¨.N¿.Ú.¶,p±´­ÃÑK‡£¾‚H#mëpL›ÒáF»È?Âx­Ã±My·2ôÙÕá¬ÃÁÎáW‡ØÖ:ÕæïÐá`îôêp “¥-„66Jàòð½¸<·êr€ËžQ.OS*.¯Yˆ¼’FÙzÎoµÇ¼·àòôöaËfÃ.O ü.ÏÍ'pynþt¬Ÿgµ`u€ËÏd;Àåi`Kàòôþ˳Z »ù6Syj$Œ;Àå¹ñ7[1C‘5 \žíCOcR·py:ß#pyv#³.Ok%\žÞ¡$pynå‹—§ËÓrå——N˜‰ËS2hð‹%£qYVðòú¹L=% ‡#¢qm*³D4.C2ˆh\~MѸö¹IDã2ø‡ˆÆåMȈh\Ί!¢‘.³ƒ%¢‘.CåѸ,·„ˆF²H"—ÓĈh\Þ8„ˆFòPˆˆFò, d]SD4’y”ˆh,ÙKÛSç?Í9N:¿Û6×w"[E k Î>¾p9D4Ü-¢‘6ǹøü/Ó˜›®X4ƒûë¹:~>¸Ê¡Â%Ô["iSŒ%¢‘œ!BDc‹æ ¢‘Ì|GD#™z‡ˆÆs|xÕѸºs‰h\&ÿ#¢qÕ•®ùPqCDãj>ÿáö÷D¿ý ˘"—I‡ˆh¨ü÷-¢qY„Ë"ˆh\Nb#¢±û'"©š•+äY-"ÉÄrD4R5,t›ä+äëCD#•`:žŸìÛÇ0—ˆÆšð ìˆo|´u‰h<6òÑÍþa@:â{Ú…ˆF²J"©¿fŽÏýÐóK.´ˆFòà…ˆF¶5"ÙTlD4²¿ˆhäl˜W"B•E4²7ˆ ¢‘ͨGD#;›ˆˆF¶¨"yã·ÑÈþÆ!¢‘½ ÿ`8G)öƒâ¼lD($¢‘þ@D#[æ lì÷ÇF²["¹›—ˆF>D1ðo,¿È ˆhd‹¼ ¢‘MAD#›hƒˆFö^t¬W|”œ%¢‘\ö 䯈h$Ѹ¬4‡ˆFÊ/ˆ%ëØSç™×ÌñÓk¯÷á¶÷ÇJâˆhd¿ÿˆhdê&[D#'ÛÑHžý!¢‘½‘ l’"ÙRˆhdçºÑÈ@AÑÈà¢ÑÈÉZD#³+Ô"ãE42,ÿO1êßÅŠ~~}²¢9s§W_ú’uúzaîê‚€‚¹o‹3 æ¾_’ôyµ·k¬B æ†× ^¤›·Üôs÷i­fÁÜ»¶ `îdLüFzWKì‚“M¤ª­‹qIPÚ¸6ÞúõÂÜÙ<ïŽ5º [20÷mröŒ®'Ì]­]2  [bC0w2®-o?XÑcÓsWÔ¬©¡ÈÔøK@äÈ–wõ¾¯½ÃrÓÓüã‚(ô<`î1_] àÅ@¶@ðjóo6Iºk‚Nò"ߦ¼\‚å¦7ëÞ„`¹éë•ØÌÝMƒþ€ªsgÊ;Ðí8D4¦5S¶Üô.q(è–¶½¬èyYš{ —æžm̽‘\ÁÜV6Anz—L€ÑBê¹›CeD¡a'g c¤” ñ8XÑÓ¯075ÃÜÓ2ÎÑg‡_/Î=¬uq£( ‡ú¦ñ}¨hx)õêMw£à=Úæƒ=ÇçžFý…s£ïÃrÍ÷Á‹ÞpíV›®0îtC9ØH·EÔto8ö2\Û1 GmzƒÙÀ¹ÙÀÁÀ¹Iñ³YÏÙñAÖ³å˜?áîÆjÿ•›žp·+pî¶Z”án«ã½rÓ·¹ÑY ©d6tÕB§˜JݵÐh†¿ç¹P3Üí‰án³o»“÷Þw'S»“w w§üÂÛÿ¶Çd!dY¬…tuÁÝÉ51€»“!;ÃÝ–01Ü=LiÞrÓýÐÚˆ…æwÇÂÈòÀéÍ„iâgãÛÈM_æWÏ~¯XîúþÀ»;2švY& MÜiâãÛÊ6Õº«=lêËBÖp‘“…¨Ó%4}9kÐôÕ\—0[({ûªþš¾LéChúê/J>Õžj„*¾¼æGhúrÑS„¦¯þBãá÷f„¦¯þbåÁN U#4í.f¡iW°Ð´÷•[hÚ¼v„¦/ “ZhÚkv„¦/? M3MÜBÓÙ•𶆅…¦ë˳ÿV¢¸,dÝŽ¾F+¡édÌÐBÓéCª#Î×€8BÞÙð9BÚÓ6BÙÙˆ8BÙé `‡·ìjÿuP°30„BÓ—uFª…²oÓ®Cz K #ÏÉäia¬Ùê8`ä9û|…±fWî#ìf;üÁÈóm&·0òìÔ5y®Ö Fžû'Fžû‹¡#dÌßžåÀ¤ÀÈó–Ǹ|üb™üÃ6çŸÌÚnœßÀ¦ýY“10†~ {ƒ‘çö O¿bOǯöMgtÁȳ‡N0rcÆÈó¢n¾Õ"áwFŒ|ch`äy|ð´_¡p MߌošöxFž=|…¦os·š&€Ð´E¾,4mòÁ+4­ó#Ï® Fž#²Ðô.*ˆÐ´+‡Xhz Q#4]¬‚д+ÓXhº}”l\¿Ï&r#d½k8"dMåE„¦=¾[hÚÛ,4}[¸ù¶u³¾BÖÃ:BÖÓ”mû6BÓÕ,íš¶´yÙ9ƒn¡êzbäe˜ôÐônдӬšvêÔBÓfÆ€‘×M#FhÚ9{0òje 0òê÷Œü¦‹ùÝSBÕÙ˜wø‡ýMï …ÙBÖ·1t U #Fhz« 4m¶Š…¦ó²Ðtym„˜)ù¸…¦·Ðt>ÈÝKع˜ÎÐ3…,šö÷ôš¾=–6á»IH:ïe߇$HIlüÜo=¿¶¥ZôüšEÙÀÈ›Ÿ/yÛ5…‘·­…!ŒüÞE*vá MOWEDhº™v-D­ã[hÚBñšvÃBÓãƒòÂÍÆÄ9¾î…¦»1çj¡ënxÄ7;ÇBÓ^šYhÚýÓBÓ“þ F~û{o¡iç4-4]}}ÝBÐ`ðÝ÷¯üïCHZù휬…¦]XŒü6³ÍBÓ[È¡i* m¡iü[h¨d M³ôÞBÓè o¡i–#¿²ä_þL…Ç¿ÿ—©ýù/ÿÏ?ý‡ÿòŒB_?ÿ÷/u|ÿ½Ï ’b“ÄÏ¿|ýÙÏÿã—üó¯Ÿÿé§ÿüsDwó£Í_¡r‚ýš§=×½ü«[?ð–ŸüßOîW”Ÿ”òª[þòUT1Næ÷¯¿ùÑykËÊã_ðÎó×Ý^æá/1o¿ÌÃÇþ´í—yøõÍØ~™‡ÿ<á}þ¯ÿ7?¼|ÇG¨ÄT|Ýû|]í/®ôüó»áïë±…í‡ é:‚PfTŠ’¿¸êè»ÖÜe=‰~ðŒŠW±å럑@Ý~™‡?2ÒǰÏ_”x ß_È>¡³zñžå¯éÎw|F[ Žëf< àÏÛ æÁ¡}þcÚßoDûzýðèNψ# ¯ƒÍÔŒ%ûv|ÚþùŸp|)ô®üCïÊê]‘ôO#æÝÏýíŸýÕ?ÿÃ3Â> stream xÚíUKÓ0¾çWX{J$âú‘8 ¨H ¥hÑ^‘8‡´éc¥6)MËîþ{Æžqšm– {C(rf<óÍÛ²[3Á>‚èû2˜Ì´bRò"M+WLª„çB±L.UÁÊš} “H†\E±mø®®ï`߬£XgiXÚÍq ¿% *«¬‘¿Þîç°€EuÑòÓd–³‚FS°Xç\ ƒÑÊ(×a iVuM ’]åbãæ¬‹Ë%ð ä&uX# ’ Osø‘ØÁGØ6ãؘÂ5${´2kPA ÊøH§ò°=áfQQV Þº0}–›%ò+›’-`Aißµ ö#ÕOâFB Õ9n¡‚iÁÔpò™ 1AâDò<Ñ|Å©ÒážÆt€õ]¤ÈÖŠD-¬{XSX‹3Dak­…Ré „ï‹HG¡¶äóxöeÙ/°äÙÑ4ÿ$ÇŠÔ ¢§H®@rã¤v¸hd§{õâõ¹èK$'jÌž‚N)h7 þ¿¶¿©2{ t­\_“æHÆ/oŠù·›Ò¿Ê@#˜ìß% ÏrÅ»àgÀ3ipæœÂ[‘`r³“»nƒÏðy]ì]ÆŸîõ^b$  &Á)ͨ'ëÓÞ×Dñ:Š•…å†Ô*ÖTÙalPP{ý¾o˜=:¸ðͶÀ ÉÑÞé÷Ó"dîðÈ_(Áè@WdÕ£ðÚlONáöŸêÚ¿’àjï’HÇ¡­Â¯Qžøú6Þå/û[>wz+[Y½¤×K?w¶œ¸à4ÿ˜AK§ò~Ú¦sg|xHþD™4†çYÂâBñ$“˜¢V—'ì7ñOÝ›endstream endobj 746 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 747 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-axisFontSizePlot.pdf) /PTEX.InfoDict 345 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 347 0 R >> /ExtGState << >> /Font << /F2 346 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 25783 >> stream xœ­½M³-9r¸¯_q–U >e&_KJ3³6#Ǥj£2-šTKf´"5bOklþ½áîˆÃ{ë¾2jÑ·Ú_ÄÁÁÉ€‡8_¿{¯xýþý뼎oÇñºÆXÿ¹ËµþsÞ÷úÏ?ÿñõ_ÿdNe|›ýUJûv?ÿéåÛ1^µ}«MNÿæOÿáÿú·¯÷ó«¸ãÿþüïþæù×^_ÿßÿé?¿Ž×ùá|ýîùß?üpÚwÿõõúÖÇ«Üç·9_ÿøC-ßîÛ`»_¿üPïoça°€OY žÛ·~¼Ú‚ý[AQ¥,øü,uœ€mâ³fß Šº–µ=BQåœ,êZðúÖ j5,ß.U àdQuÁúm²(s~‹ê öoŠº+à@Qݪ1¾UÕVÉýøVQT[µêOÝ;œ+à@Qܯo7Šæ\¾øùݬõÛy¢Î7`GQsýÀþ¼\eÖ¾^r¹ŸÑ;ŠzÊ窬YÇúe|ƒ|ž7ê\ ~~_?\ß ‹Zµ÷·‚ZÍ 8J^Õõ[» Ú+íÛ…Z pƒ×ú O+žG€sµÐË*y럴jsõ4{Æxò­§zž'ZóµÚøÂšó…NvžOÇ9vËYx„÷}ž7ÚûSì MúZ/~áŽ6}­V<ŽˆÇ·›/õ™hôÖ3|j×w!î(ï¶ßsÙµßoÏëz;Ôÿf˯ÕpEã¾Ð{Ï«¡u_hû O>_Øûzïáûšÿ…Qç,‡·ð“XMÜžO±NµŸ×3d_.úA<Ѭµåiªì|ð¯hçÖ'~+²‹xp|…½£#«[.<ÑÖt×óù?'Ê;'qŸŸÍo+oý0 çh/+Ö`è(ƒ¸—=’žwõö¦!ý¼ˆ;ÊC{ºÚ»Û'Úû±z° ëßO=VÃ_ï§žèûì½lž(Ï•ó‰GåáýÔŠÁýàó{ð@y¾¯£½l¯OLª(Ïÿ J'ž/ÚãƒÊÃûnúƒã íÝqA{·Ø ¼Fù21ÊŸí¶aþÁÞÿªVx0Æ“'=¾ÙOâÕÞ\á?l¨_ÍÀÚo›ß”‡çóà†òn«Ï¡V{ߨ:êÂ蟞(ÏFôó‰YkÀ_þ·õ‡åܬ½Gë/Îüñ{<®=_¾ú…ö~±=<ñë®{òõ[³[¡-Ì鿯׳ »9‡½¯5£ÏϯÎ%ì…åïœÿã÷<+±ÒöüüzâÙÁçaõ\Æ^ìãB{¿8>?ñ«pþ\‰9ÿÇøø¬Ç8ÿ?Qž¯em!x=ñëByèïÃW³åûr–þýAõ›'Úûó{Nâù.Æ›É%má÷? ³5þ/܈­?¶§ÉUmYÃüÂ\ÖÌׯ'~(¿ra[°Þ¹žåÙòl|,—¶õ+O¼:P^¶ù?Ë+W·óòij㈟¿ÑÞ ÞwyâW+s…[Ð_ž(ÏÚWyÖg åYû,‡MÌÌnßwr•«ò^“9rn†‡÷ÖqÚîÿÖ®ð}Ïú¬àyà}ß{½kß÷Ä«ƒãS%nŸðù½ÞæøoóÇòijÉñÄʯ'Ú»ãËÇÿBÌñí­ô‡ ñº<ñ«²~(¿iüGû­Mã?ÚÏÏjà ʳ>ãøoT^i‡Èoæøú·Sã¿o¥]ÿm½´püDi·Ú»­ŸÊ¿J*¯iüç÷5ÿ6ž—g}VÉUžøÅöŽþÚ¦·wÃýÐøö×Oÿ¿f@ëEíí«ßjï¸jüGÿz098›”g}Æþ€çׇÚ;ý§Ú»ñ' ;Œãÿƒñá‰gìè/£¨½£=‚öN¾¥ ¬wýý?ë³c†öùàÎ÷ÜÕÞ‰‡Ú;úûÀz÷&_·p›¡=?ë3ö›–yy{¿ˆÙÞ-ž•'~µ@a–y;ÿs³?7oïÀ]íý°úΡùŽÅ¿Ÿ]/«Ýnv½à÷‰]¯è^b×o¼m±ëÁFìzÅ\FìzE×»^ÉÛ“]ï$½É®7ıë ÃŽØõŠY¨ØõæÐÚäÀ*vK,±ë\±‰]Ÿhb×'úØu.§Å®´±ëƒü9ç"%“]F(kÊdןªN_ÄKeú€ìze¾€ìº;ƒ]¯f9d׫ͅ]¯rLAÖÌ~5i²ëÕZ€Øu(b×'â?ÙuÕ™ìzåê†ìz=ìÈ®W®ÍÅ®OÔJìº ØõzàI’]¯äáÈ®WNóÉ®W®jÈ®;Äœc-MúËÙõÕ4×$»þ4\±È®/«‘í`×<_ή/ÖΜÁ®×OCìú õµÙõZÉ–]Ú=Øj²ëlÙõ§¼"¶½¡¼l8ØõZ0z‰]_¸¿6»^‹ØwÌ6*gWb×W}¯×f×kå÷‘]_õÆlãÁl7Øõ§þ`ÛÈ®c·ÙõÚðàÅ®o v}áòÚìú*ÏêCvýÀÖ‘]_‹@°ã`×|××f×1plv½VŒ/b×k'ÛDv½vÙÁ®/’³gl¹#»Ž ¼ÙõJ¶Gìúóy<²ëUìÙõõ}À`׫ØM²ëëóÂkô]‹\°ã`×+Ù$±ëkÒŒÙÆšT”wƒ]_$/Ê»þŒŽØqÌ6Ö"9²ëkÒaï—ìúƒÁ’]_“°Ý`×Sob×Wób×gb×1±ëMÙ²ëí»ÞĦ“]oË'»ŽEýf×WýÀ†ƒ]oœÍ‹]o6Ä®?ì&Ùõ' bÛWhÊv‘]oEŸÇl£)Bv½bãÁ®·“ý•ìúÆ`×7»Þ˜A»Þ”ý!»þüsìz»Å΃]_Û¾Úû*ì9fMãÙõv‹Í»¾H°å`×7Ælcù—×f×›²gd×s‘b×Û-6ìz«|>d×Ü"»þ`´/²ëkÒz¼6»Þ”M$»îí…ìzSö‡ìúOĶŒwÈÖ]¯ lØõªìÙõ5þޯͮ×ÂöDv}c°ëµcv$v}ObÛ;¢ Æc²ë«™ƒ]_õ¯Í®×ÎñŸìúÆUãÿ¶ñ_ñˆìúŠš`ÛÁ®?¿Ù ²ë+ȯÀ®w²b×;Ù²ë+ ×f×þÅ®Wö?±ëUlÙuEb±ëkÒˆòÀ®W¶7±ëµÝ$»^ÙÞÄ®W®žÅ®£[ovýyž-²ë«߯ͮ¯ñì7Øõµh;v½v¬&Ä®/;>v}Ùñ}`×kÇÔBìúƒÁv“]¯•Ù²ëõ&ÛLv}Ås±í6þsü»^+ëCv}Í£ûk³ë«ý |°ëÏïÛGv}śȮWfÏÄ®7f[Ä®k<»®ñ^ìzÄÿ»¾â!Øy°ë+ÞØï#»^gf×ëÄø&v½q+v½qn*v}‘¾`³Á®7JPÄ®·‚ñSìºÆ#±ë[Jv}Ù#»®ñRìú²Gv}a|ìúƒ›ðÀøÚ#»ÞņĮ7ö±ë‹Tž¯Í®¯E:ì`××’ì7Øõµ&Ûv½qþ$v}•‡Ïƒ]_ã)ì`×;ÚÙõv³}]oì&ÙõfÎ×f×—ìzë|>d×<Á¶ƒ]o]þ`×›²Md×A*lv½q~&v½ þ>²ë]ٲ닄ˆìz?2»Þ9Š]þì>Ùõ±ékü_$F{mv½kü"»Þɾ‰]_K7±é«½÷KX±ëF6Œìz×û »þ`d£È®¯¯µ÷Mv½‹}&»¾Ê/¯Í®{ùd××Úì9Ö²½fv?c³ë]í‘ìzç]ìú ãVÙõ^9~]ï\<‰]0Þ?Ùõå__›]_«Wرª}ú7Ùõ>˜]"»Þ9Ÿ»Þ;û7Ùõƒí"»¾¦Æ~]_¯éxmvý)ìÙõ>Ȇ‘]ïÿÅ®÷Nöˆìúª/ÊÇ wM["»®úŠ]×ó»ŽiÓf×W{:^›]_ïl;ØõÇìÙõNµ”Øõ^0~ˆ]ïbÛÈ®/ÒMlúÿ{%Kv]íGìz¯èOb××´ l8Ö»½c~)v}MÓŒ#»Þ©v»¾°ÝXïêýŠ]_þø<ØõNòAìúz_‘]ßëÝÁ®fwÅ®¯ï·çKvýÁhd×7»ñÿÅ„bׇ³ã`××4v°ëƒó+±ëƒ4ØõAµ©ØõÁù½Øõ§ƒ­%»¾x{>d× vìú ƒ&v}aØÁ®?ÃÚ3ÙõQÑ?Å®/ÿóµÙõÇŸåa½;Ä®óC±ëkÚÙõõy°ÝXï.<^›]†²ã`×Õb×7ÆzwL¾_²ëF$»>ÔþÈ®?vdÈ®¯aìzmvÝýÉ®/°ñXïÎCl8ØõÉù¯Øõy@½"v}bß±Þ}ÊÇó&»>8¿»>¨ö»¾ü×fׇØd²ëã@<»þà+²ën‘]_ãØq¬wù9±ëƒòW±ëƒl—Øõ…Áîc½;” $»>ÄN“]_㱕Gv}?»>¨Æ»>.öG²ëkYŒõî¸ù}d×çbׇÆs²ë£ÉŽõîê°c½;ŠØz°ëƒñOìúƒkd××çÛk³ëþýd×F7»¾–óµÙõ›Ú;q÷önïƒìú úëç ]ÆÅ¨]?#»~dí:µ$b×9Y»~àÙŠ]?ðjÅ®SG(v2D±ë\]/¤ÉÈ®Ž’d×—„h¼œ]—¢ìz!ÅEv½A#»îΘHíDv]â(²ëe ÷‘]/ƒÜ;æ"«(S˜_zá³`×ËÄÌ캾ˆìúú F¶7‰¼ÎÀ®¯ß[_[»NÉ´ëb¶´ë2¤]?0"Š]'3¿µëÖŸ¤]grsk×A¶S»^0ÙÙÚu‹·v}díúˆÚuʦgõ­åH»^ö¥]gN^ÚuAÏèGv]i× ê<=oZÚu®ï¥]W5\»vvk×oajy¡m•vý{^´ÃÙôƒZ£ûõËçÚõ“lwЮ××/Q»vNÚõs³éÔ®iÙ™Û„öwk×ïÈ®+´ëSZö´A®]û(íz‘ÖÚõBvWÚõÂç#íºØ*iש­pí:_»k×_Ò®@›-í:g“®]g´pí:W¿®]çêÆµëUl;µë\ýºv]윴ëMZrj×›´çÔ®7±ñÌå+Û"í:WÓ®]oÜK ízåó–v]Ùi×ß¿´ëUßOíºØ¹vñÙµëw”G­:µëú~i׋Øñ&í"Ø\i׋´éÔ®sµåÚuiU¥]çüÁµë…ïSÚõÂï—v½PëKvý*íºÚ§´ëÒÞJ».­´´ëþ}]Z.°çÒ®S»åÚuNˆ]».¶TÚõÂ솴ëó7×®¶_i×Õ¿¤]/ÒºS»®ç#íz{ß]Ë›´ëz?Ò®K‹½µë`“·vZr×®Ó¿h¯ý]»^…gØ[µë‘]¿¥5ßÚõëM»íùÖ®ƒ½ßÚu²á®]‡¶k×ñ{·vý›Ní"öâlí:Øá­]Ç^‰­]ÇûÝÚõ3²ëZí:Ú‡´ëê[»öxk×±×`k×›Øviyawí:ú‹´ëz¾[»žØuÞÒ®«ÿní:ÚÓÖ®ßíõKÔ®£=I»®ç/í:³ï®]W}·výk×Gd×oe¿¤]¿õyj×)œríúMöRÚõ[ÚôSóÿ+²ë÷M6MÚuª \»N5CЮ“=wízÛ>ƒ¶>h×Éö»vìÙÖ®;ÛNí:ü·vZ÷­]ûΕnûNíz%)íz%›'íz%{)í:³û®]çüµëmkÕÌOÀöJ»ÞÈ6I»ÞÅžS»Îù¤k×;ë+ízãï“vj"×®w²eÒ®;æz×1µëƒïKÚufû\»Þß´ëýM»Þß´ëZri×{f×wùÔ®‹m”v½“Í•v½CMàÚõ.öŸÚõ.-9µëœO‹]—.ÔµëCZuj×;ß—´ëó ×®»?µëƒ{9¤]'aåÚu’P®]§¶Ôµë“¿ŸìºÔb×#žT€»^Ϭ]¯ÌÞ‹]¯Ü+&v}©=`»¾–кƒ]÷òÉ®WªqÄ®¯jƒ]¯d/Å®/õI{mv}-;ÁÎs½;ÉÎ’]ìx¾d× ­=Ùõöáv}aiÕ êwFv}•ÙõzÝ•v]Ùi×§´íXïV2ª®]w;µë” ‹]¯Ü{*v]ê±ë•Ùh±ëÛŸÚuª Å®¯çµëRóˆ]¯Ü«.v½’/»^µ—ìz-|?d×k{v}a|?Ö»•ó+±ë GíºÔ=b×ýód×+¹A±ëõÎÚu©›Ä®K‹+v}c¬w7»^ŸÈ®WÎï~þ¾jþíïyüÌßÿéƒãgþô÷ÿôÿù«ëu¾~ÿ_Q–•ôö—¸Bòô¼”ßÿãë?ýø·?½žfúã~ùóÿôÓ~ýþw?üŸ¿_U‰§Üô§¡Æ¿ß}Ê ÎÐùÇ—~,ð/¯ŸßA^.;r n'ÜvÌÖÜNí«µ»ÁmG:Âí„ÛŽü„Û ·³=·FûjmÁnpÛ‘Òp;¡Û™ã]0ÚçHö™ê§,ˆì„Ûδˆì„Ñ>k²Ï\?&Nd'ÜvfRd'Üv¦Vd'Œö1“}äú1ù";¡Û•¡]pÛ™ž‘0ÚGIö‘ê§Žì„ÛÎŒŽì„ÛÎì„ÑÞ{²÷\?&d'Üvf…d'Œö~'{ÏõCÞÈí„ng"IvÁmGfÉí„ÑÞF²·T?æžÜN¸íHF¹0ÚWv*Ø n;ÒUn'ÜvÌîÝNí³$ûLÏŸ.·n;R^n't;s`² FûèÉ>Òóg–Ìí„ÛŽ´™Û ·« ·Fû8“}¤çÏL›Û ·«·nûHã»`´÷–ì=×Ù:·º]é;98N½d^²R|Ûƒ8x”4Ì;XmâäÑzöho5­)X8= ÷Ž“Ç¬Ùc¾Õ ®íAz¿öáfǣ؇¯ßüáa™aûð}¼=vŽ$?Üç¦í¿8ž<çDO!CycgúG;y¬†O¸‹3ì­lmíªÜãÞJT~ѧߵ˒Uû4ÆnûÇ1vÛ?‹±Áã“<>‰±Áã“<>‰±Ûã³<>‰±Áã“<>‰±Áã“»=>‹±Áã“<>‰±Áã“<>‰±Ñãã<òˆ¤®òé$‡OÇ$9|:(ÉáÓQÉ»«K»C®fóI‡ô½×ÜmýáÞëï*)tíæÍß³mzéçôVÄ%c–ˆ]0°º m(ÇfjuÀê‚e__¶ &€ýÈöY³Úöcûì²b·±}öxé€Uƒ×K¬Z­öõeV«òÒ«V”Õjƒí³ûú2ƒû€ÕíŒìò]ÐŽÀÁ¦^û";Õöðä}eg‡ó>`uA;. cAs¶ý·æ¼Xµ:ó6³Ž¢ì¨'l¦µÏîVÏɃ4°UÖœ×9ØkV;÷Ô’n|ƒ:`Õ¾h°jÕØ¬šó¾¾Ì`}é€U+ÙÎ[µ-ª Ú+ÃŽTƒí¥VOtQ°º¡m/]°ìëËìOƒv_™¥‡ÄÕg XEYâgÖöh\VîÈ\bÿ¥}¦ÚnKÃá€Õ…G8`u pq %öMšåW´r/¯£!^çƒVùp}Ù9y?w7Ú3n/?`ÕÞ<=ÑšøÃ>EÃ:Põ:vËáDßÜqhå…ëËìóá€U{©çËX Ør †QŸ‰F?tÀé©vë…°çÏ0®³ý~{^ØÏgva¶|\÷…½zö<íû±3Ïìáú2{¾°Û®»ðýÍðR쨳߯WÕÄëûyaoœu®ã嬶úbßÛ‰Ôº°jã‰T=9]/?`ÕÆHØ;:BãõFØf hì2bçYÀ§Fsȉ]ef×ue†\‡c>’rX°7 é8€{¿lˆ¬ûD{祔Üŵ0ÞölQï¬Ƨí½±ýa÷Õ ÞÛy wV-Œç‡}TfÇ÷u´w˜‰=RV«/vD-ŒöˆýO á€Õ€/´wÇí½é:±‚Q¾b”ç.¥…yýXE¨ûº²£Á~¾ü€Õ…k8`ua´_ì%²­ :pµ¡<ŠimÀÚ»®[Ä …q@-vü†ÿþPy}vó$H]³ÍÇt]Ù‰ùÓ¬Ú|ß?}â®/óù6ÕÇ>_&b°š²Ø'ÿÔÛ÷é:3Nÿq}4ÂV~¸¾ÌççÔÿZyºÎŒóüh{}~N%¯=\Æeì`ÿ€J×üqàªir}‘D®=à[ó<|-¯/³÷q¼ü€U³£|_ÎÎp}Ù®4°ö{Η°jÏv.i'¿jVÃí嬶÷7¹ª\WfÙq½ši3ÍŽS¹ÊUyÐ]Æuf¦²Ü僈3ŒÏs¥ëþ7ÚûÄ|‰êÈý{N.vy} •þ~¨s´÷‰ò§Ú;œ¼|½ë®r½‹¡OôþJ5¢÷j}}F¥¡/¯©+L˜ý¡‡ëËöõn×—ÙçÛËXµïèúÃH¬\ÔÞ㫾§Fo?(ò|=JýgTÛY ×—yÿ¢’ÎÇSêæ|¼¦Jιjâ|¼§Îû?õnûû nóõ5µl¾^¦rÍ×ÇÔ©ÙïÑueZï†ëË|}KÅ™Õ?\_ðåãyù«ÎQ)få‡VÏ  ÌÇj¾vûÂËù깬<\GvˆÜ¹Ã«»þPfùøF–¯÷©ºÚϯÝjï¸.ŠªP^ÓøÏïkÿyZWÀÈPBÙïÓ«jï¸>ìÐøÏROÿ3\_¶û[/jïh_ýV{áú²Ý¿ <²ïǪMý!°ü§Ú{?_~ÀêÆ!þg„VwöÇù*}œo¡®g¿¨xvû„fÇž/pW{'jïèïƒë]òuÔÚìö eó9L0¾^~ÀªÇSjdì}Â~;ÿ£ëÌØˆ›·wà®öŽtçÐ|ÇâßÏήÏÕn7»>ñûÀ®¯U˜u/°ëkÑfoìú²Z°»nK¶Í®/h]ìú‚àí]_ë9ÞÆ®_B»¾  ;`××gçf×ÍJ8«mÕ·1ìú‚s³ëk!xmv}A h`×´þvÝVÆŸ»¾Šª¤ÓŸ·²à Ù>ŠA+ìúZaZS»~¼XìºÁã%v}A[W]ßÎFW­¢l–v}A»UìºÁ}}Ùú¬-¡À®/«µ°ë¶.6JÜæöó7»îu»nŸ5ÞÞVÍ Z°»¾ ý^°ë«(\Œf”ô†Æ®ÛOØìúª¤ñp`××êÛ¦e`×—”¸±ëڜÖêûú²µ·v}-ÔmÄ»nV#Ûm¡`p__¶œ­;aZ¶¬¸ŒìúZÔƒ½»¾0ذë×3)[ v}ÙÁV]_åùuf­ëÐgׯƒ—a’]7¬ë̬%O±ï6L]gWd×­¾×ËÙuû~\?fìºÕ?\_¶0®»¾ê¶ ìú²ƒ»¾ì5°ë»n¸¼œ]·ò¬>`×é¶캑"`Ç]_ø®/g×.áú2«/°±ë˶ ìú´»¾HÔìú"QîÀ®_§®»¾ìÈN€]_ŸçudÆ® S^ήÛ÷Ûƒµòm¶aŸž'§;nì:Å@ή/b›m¬ò«ð@y¸. ìúúü@yÆ®/Rè×—­ß7»¾0¯ 3v}a°…`××çÁƒ]_¸‹m·öÎÕ<Ùõ…ñûÁ®/ÌëÐúƒ² `×íû]_˜×©ÙlÃìáú2’\ή[ýÀ†´wÎæÉ®/ vìúÂ`7Á®/ìÛnýAÙ.°ë†ñùö®lØõ…ÉÆ»¾0¯;Ð_hïŽ Ú»® »¾ê‡þv}} ×—-’îÐueêçl»µw^>Jv}a²ó6Û°Ï/g×[~¢½;¶Ù†ùë:³Ùủ³ëV_{`×—Ñue«½_§®#³ÙÆÂ-°ë £}]_íìú*ٰ뻽€]·çöÝØuOĶŒwÈÖ€]_ã®÷»NR×Ùuï—³ë6žâûŒ]x ?ð¸|²ë6>‰mïˆ&5\_¶ÊÇû»nõ/g×­<«/Øõ€«Æÿ)¼ÆG`×-j‚m7v}ý>d+À®[Õuf6›)dÿÀ®/<ÃõeÐÇËÙuÿd××÷Ằëëû±égÝ‘˜ìúª?ØI°ëö<Á¦Lkx£+ÙõõϸÎ~®;0þóòdÎõ<[`×-Ü/g×m<û}cü¿È]77]gfýáÒç;Ú;¯ÏdG°öØõ…Ávƒ]·ùØìã?ï•%»nñ\lûjïDzëöy]Wv"¾’M¿ÑtÝØõõ³Àö]¿@º8»nñè~9»¾ú®Ï»îã9ÙuïÉ®'Ìñ?²ëöØÀÎßèlØu‹§]_××]·øÓ_ή[<×—-Œë˜À®¯ïÛvÝÆÃóåìºGd×áú2³vÝÇK²ëfìºa|ÞØõ…›ðÀøÚ»¾0®7»¾Æ7”vÝš®3[ãÿ¥ëðÀ®/Œßv}5 \ÿv}á3\_fåáóÆ®Ûx {Çø±}]·çq½œ]·ï›}`ü/bÇ퇘Øö²ãù€]_x‚m¿1þùßÿ•m»~]¼®“ìújÖèÏ`×­Ù‹m_íýRvìúÂ-°ë Gv}u°É`×—ì>Øõ…‹Øô5þ_Ï ìúê&¿À®/Ü»¾ºÍ)6}µ÷rðº/°ë #v}u+”v}ad£À®/ô_°ë«üCו”‡ì Øõ]>ØõUêv}áÈ®[·¾^ή/Œöv}áØõÕÍÑ¿Á®Ûçï—³ëëûmþBv}a¼°ëæ__ή¯ò]»¾† ôo°ë ÷p}ÙVÐ_Á®/Œþ ka°]`׿uaö`mXÒufküÊ/áú²…Á†]_þ`“À®_…ש‘]·ú¢|¬p—Š;°ë^_²ëþ|É®¯÷éו]lOÇËÙu{Ÿ`Û]¿@;»¾üñ}`×Í>_ή/û×—-û›¾Æÿ¢ëšÀ®{û!»¾ì ×™»¾Þ׎õîóûp¹=Øõõûq=Øõ«Pí@v}a^g†õ®Þ/ÙuóÇç-, öƒ½¯À®ŒõîÆö ,Ì”—³ëöýáú²…Ñ>À®\ÐÞ^㡘ì:Ã’³ë ƒý»¾¾è:3kï¤iÈ®/|꺲5þÎïÉ®¯°¶ìú c`Á®[˜;nÃ…‡ØöE°- »±ë—®;'»naѾìºù‡ëË.]KvýÒuˆd×Wý&Ønc×/]çJvýÒõŒd× —³ë׺N츱ë—_§v=`¬wý:>°ë Ëή¯òP°ëËŽìØõK×[“]ßþ`×Íl<Ö»wnôâÂÈŽ]_x‚M7v}a²ïXï>åãyƒ]¿tý6Ùõ˯»nþáú²5Í©áú²Õž*Øñãcÿ»nÓ¨À®ÛxvëÝB~Žìú*× ‚]_ï×k]7 vëÝ¢l Øõõù®/³ñ8\_fß|ª? Ûv}}¾ë:³ÕÞ‹®Ã»nÓºÀ®¯iÆ°ë —p}Ùj_´c½{ŸºÞ ëÝ2ÅÖ»¾ìh`×®]·Ï·—³ëûûÁ®_ºn–ìúz¸. ìzÀMí¸{{ÇõiXïÞTý´ë­'íú¹Ùu?Eí:µ$Ò®s²,ízó•v½áÕJ»N¡´ë”!J»Îu´ë¤É¤]ç()ízŤ\Úuþ&i×IqI»NMÚu93Û/*žÉ~vi×oô>i×orïÌôW*Ì/ ½ðYj×+f~Ò®ó‹¤]¯$Û›D^gÔ®W²úLñS2$ízCÌ–vC†´ë¼TÚu2ó[»nýIÚu&7·vd;µë“­]·±xk×GÖ®¨]§ìazVßZŽ´ëa_Úuæä¥]ôŒ~`×] íúD§§ó­COj×¹¾ŸLæ«®];»µë·0µ¼Ð¶J»ÞÅžmÀp6ý Öè~ýò¹v½“íÚõúú%j×ÁÎI»Þ7›Níz‘–¹Mh·výìºçBƒv}JË>‚6ȵëb¥]ŸÒºS»>ÉîJ»>ù|¤][%í:µ®]çkwíºãKÚh³¥]çlRìúÁh!výàêWìúÁÕØõ“m»~põ+vý;Gvý¸¤%»~\Òžƒ]?.±ñ˜mʶ]?¸š»¾ì`ßÁ®¯t¤}?ÙõCÙ²ë?Þ?ÙõãÔ÷ƒ]?Äæ‘]?”M!»¾1ØõCì&ÙõãäÞ²ëWWb× ´ë ƒ&»~0š‰]_þA»nl<Øu¯?ÙõUŸÈ®/;Øs°ëg›bדÙ²ëÇÉöHv}ÕZs°ëÇ vEìºÿ²ëkQÌ6e›È®¯ç__›]_ï'h×»¾1Øõõ~êk³ëþ~É®ÊN‘]÷öFvÝÛÙõƒ—§‹]?x9¹ØõÕÛk³ëϰ„öCv}cÌ6®6Å®ƒTÝìúq“Í%»~(ÛCv}±µbÛ'ËÛvýàåØb×"6~¨?`oÙõãâxDvý¸8^’]?¸š»îσìúÁÙ¿³ëDzëWήë}‹]w<Ô¦´êÊÃ^²ëÞ¿É®¼ü]ìº÷w²ëÇÅöLv}ã*™@ ÚukÀd×5>‰]¿8¾Š]'ëì:³ή³ÿ:»~Ý»~ áìúAvWÚõIvLÚu^¦ìÚu&«]»ÎÕ¥k×§´òSÚhI¥]§V͵ëŒO®]w\¤]q̽KÐÆK»N-‰kץ͕v{·\».m¨´ëÔj¹v]Úbi×»´æ‡k¹ E¿¤]{'íú ›%íº´ÌÒ®sµïÚuÕOÚuÆs×®s5ãÚuiG¥]Ÿú~jׯ'×®3>»v=àŽò¨U§v]ß/íú;Þ¤]›+íú”6Úu®¶\».­ª´ëœ?¸v}ò}J»>ùýÒ®Oj}¥]*íºÚ§´ëÒÞJ».­´´ëþ}]Z.°çÒ®S»åÚuNˆ]».¶TÚõÉ솴ëó7×®O¶_i×Õ¿¤]ŸÒºS»®ç#íú{ß]Ë›´ëz?Ò®K‹½µë`“·vZr×®Ó¿h¯ý]»^…gØ[µë]·Ï£<×®_oÚuhÏ·vìýÖ®“ wí:´ý[»Žß»µë—Øtj±gk×Áoí:öJlí:ÞïÖ®Ÿ]÷õAЮ£}H»®þ¸µë`·v{ ¶v½‰m—–v×®£¿H»®ç»µë‘]ßÏ[Úuõß­]G{ÚÚõ»½~‰Úu´'i×õü¥]göݵëªïÖ®£ÿoíúˆìú¡ìÙõ5‡ìúAá”Øõ…ŦãÌiÓOÍÿ¯È®Ù4²ëÕbת‚vì¹k×›Øö´õA»N¶ßµë`϶vÝÙvj×῵ëÔºoí:ØwêÈN±ï`דl$ÙõeÚu‹ïóµÙõƒÙ}±ëš_ˆ]×|Iìúš/¯Í®¯ù‰ÕìúóÉžƒ]×|Rìúšßõ×f׋¿ìúA5‘Øõ£-#»¾1ÕdŽÁ®7ßÙõƒÙ>±ëGIÚõ€Á®GÙõƒj±ë«›ƒ]?È^Š]_ê“öÚìúƒÑ?É®•ì,ÙõÇŽçKvýÁÐÚ“]_Ó\øƒ]?xŒØõ£q¼"»¾Ê‹ìúÑÈî’]?”= »~TiÛ¹Þ%£*v}ÛÁ®K*,výàÞS±ëRψ]?˜»¾ýÁ®TŠ]_Ï+h×]Í#výà^u±ëù2±ë‡ö2]_j“ ]7õMd×Éú‘]?8¿»¾pЮ»ºG캞ìúAnPìúy$íº«›Ä®K‹+v}c¬w7»~*>‘]?8¿ûùû¨ù gÞYY¶Sí/†“EE¸mȳÏþö§W_çÔýòç?þÉ;{ªO¹ée]µÿ~ÿ)7W:WˆxŸé„x§fgnAvÀ`çlMvÀd·ìö/ìLGÈìÌOÈìœíɘì–ÁØöƒ) Ù·]9Ú “}ŽdŸ©~Ê‚ÈìL‹È˜ì³&ûÌõcâDvÀ`çìSvÀ`gjEvÀd3ÙG®g«²n»²1´;Ó3²&û(É>Rý”À‘0ؙё0Ø™â‘0Ù{OöžëÇÙ²ì€Áάì€ÉÞïdï¹~ÌɸíJ$ÑNìÌ,ɘìm${KõSîIvÀ`g2JvÀd·ìÔ¶/ìLWÉìœÝ˘ì³$ûLÏ_.Ùƒ)/Ù·]90Ú “}ôdéù+K&;`°3m&;`°3&;`²3ÙGzþÊ´ÉìL½Éì#ï„ÉÞ[²÷\?fëdÜvOßÑA8{ô’=zÉLñ¹pô(i˜ŽLºpöh={´·šÖ,„£GOýpö˜5{Ì·š2ÁèÀу)G÷ÎóÊ9nxZRÄÑãJC¿pô`êÒ=€³ÇhÙcäš*½é÷[ñ„§{´·à)P÷èoQÀ“¢Ác¼Õ”iR÷Ž3…áà¡Tª<ˆ³G ÂуéV÷ŽLÀºpöˆAE8zÔ„£GKA8{Ì™=f~/:–Ì=€£ÇHáE8xèè2yg"„£7sàèÁ àîœ=æ™=æ[My(š{Gš‚…pôàFr÷ΣfñVÓžBŽpô˜)hÀ&âìÑgö蹦:¤Í=ηµ…Ûæ×[ôñƒÜÜã~:Ú-x¼EöæõmáÇ¿¹G{[eøpÁã-éˆ8÷ïÑC‡Æ¹Ç|:F.xäÕ†,'âèqæD=JŽÄÙ#Eâèq§e‡pô¨iá!œ=R"Ž=Gâè1rô Ž3-@„³Ç(Ù#¯Aüxl·|øú;í$ûðí.i õýÎùöxõ‹ðJêaC=ŸB‚îíé×ñkkÞSn ›[[Û÷߸)•_¼ãwmOTÕ> NÁþap öO‚Sôø88EƒSôø88EƒSðø$8EƒSôø88EƒSôø88O‚Sôø88EƒSôø88EƒSòø08E<"y×ùlHR_útL’烒>•¼»ú°´;ä=>ë¾gùøtÇò÷ºõG“ÍïÙk¼´àÓ%}þâ^.Ë]Ö$}íÀÆž_ô*HZyV<öóVž¬ŠÝ»•'Y`¯n-8W;s+Ï|Å>Ü…®—Ž"­<ñ {lkÁy8ØQ»J±#Mmÿìúܾä«ê21ÛËvÂVž1Ž}¯•gV`—ëB¼Ðëìæ¹ ­<½ #ZåIàØZyrö¢®zò¦¯n¥Ø)HØgZycv•Vž0=¤•çc`Çè²Ùq –‹Â;Ò±£µàäAìý¬¼•;=+ï(¾ÎZpævqVžð=›ë ›§å*ÏâÇ~ÌÙYcØ}éÈöZVžÊ•«eðèÑgSyÿ9vMVÞ–ŽQÞ‘}SåYÊØÿèÈv;VžÔ½•·`'£—b¹ÿœíR\hÙ¸%ñ8ûë­óBm³á‚áxÑŽpºh­<Œ{ëÎÝEÙnÀzólý[×vUžBÏM}•‡Êsßzî8åÓ¶ë-+®Ô²¸Þ<óaP‚»îô>¹Ån®ëª7Ï‹Äæ¹zóx=ì”ÛЈõzóðPì«·Îò<ÙPq‘v·-ˆ{³Œ ¯7VľµÊSÀ¹I­òÒ<îH[ξÛÏ–5\ÑUož±Šeû{‡^•´'‰-c•×½pØú½áüP8ØùUyZ ·yÕ‚fÄ=] ÂÙ6pU^ÃÝZµè¤R#w+Éç>¬ íi`ÓÕ‚8ÖÓ8ÚåN Ýðäh‹3&±QjYu×a½÷¡a ”†<îwÚÖÆ!ÇÉb'S-l*ض´­¶G©ò~EnHz ÞvUžTÄ­F• qµ¸øñòsBXpŒ§õÓÊS¸=èxVØ Tu&,6þTùˆ]>U'tbKÏš µ—Z/ÝŽet߆涡m问²ѱž…¹Á¦êhW즩ç¾gë+Íç>™Öp.èÑ&±¦êTVlw©:ä3Ê í—V]ˆ]+U'ªb‹Ê‚p¶ž»œmóI„ÓŠ:Ã][û³6cZïq¼ü,Ъ‹ª°;¤êÞ@l©:øû>–u¼üÐeÅ1¢¶££ê”Wlߨ¼‰{5"ìm?Øa»06´éÚzκNë°¢†ÎíVªþR0¯ºŠqÚž¿Ø±¡ívðïÅÖ†Uö´} UçÊbÓÂj±øìdF{Æv„Õ&ÕZ•gÌr£AÕ=ØU æÍ-j¢Ü/POžg‡ÍúÜ  'IÙåa»ÔøWždOAåÅTïWžTF©~åAgÔåWž¢ÏKå1gTÜד§ôA^¿’w(Ê´ôU7Ð@8¿‹êlÀ„#6`êßÄ™Ø]}ÊöÕËtWÖeE5]¥5¬(Ü$zåÑÂT£og“žC¦ê{ª³ST®¶Ay=÷Z}ú¸AmxÕJ‚«mp%aGS ×e­¢p¾§E¢Êãf©ÔFFÓOó\ME‡w+ ¯‚ëqÔçàø )µÆXꦷõäøÜÂ%YõâJ?×K‡tšÖYss ›5=¦ŠYÑŠ’å1Cnáv¬ªËç <Öì2c-3¨)®Egq^œ&£V˜;iöKi°¦¸ÔköMÑoå±sTø.çpj§&àÔî.ˆ34N0x•©r×ðÔ„pÚüÛ‹‚¸¶ÞºLË”´šÈQ6«é5²+Vêæ«Óæ*#Õ¹&®øÞ©‰s¸KWŠX5ù$3Po¾nÈS5y¦µò†R O+o0¦Ê´Þ|’”j–Kýè*J·aaþŒŸe¨f¹”V^†LÍg½ÙÚ!ð¬<:jN­((ݬ<È:MÍ)ÊÔ2‰ ÌÊS´)·¬ºâph}7ÃW^+¨&×O8_~"gåådPÖ œÇYyy•Ž Ú;‚¬±VN cå,>¿êDè ü$Î6\3…µ^å9xV^ºGE¡Š¢|°VÒiZÁýYV^ïLà†Xòéú&èûÖá6+ó-+.ß2åÞ²â4M,ûT4yU71A€ç%ƒiª:9Òºíl«ªUgœÃi¢9ÿ PÈUÞ)G9œÞµoë•¡äÉŒ#/-ýN,q ôjêt§©yS‰¦U egZhRc!šwYm¨`×X­Ï¶—Ÿ³¹¾ÇbšâKk_Rp6àxƦ–¥TiùÓ€$KË4ê¯4QlUuœ%”UÕOç4•†>j¦4¨R %‚j( È”>©ÿRçä_Q“VšT0iñH¹’V‹Ô&­Ÿ ª¸ ViÅG‰Q½u@¦é‰6¼4>——§)¾ƒ² Ur8LSKx ~4PPÝãmR-–©Û©º…" ŒTäx!¿ÑˆD­¼Öø³‚ŠF+zJfvQã3¿¨q|æeWͧÛBæ²~‘ÓdÆÍPÇg}yr|žá^*ï8С,+n¡ºÙ€G¸”Ê{ ä$ë{q(fcóŽgfnçÉÜÏ—Ÿ˜é½zïÝwx㇒CÄe"¨Ñð÷ A†·:¨/Ö“ìlÀ„ƒ "ŠJÒ‰Š o¢Gˆ² ×½àõò32Ú¨r¨äÙ(iðŽý†M °³ãôSPæ•WSIN°ÆÍ²IÞŠ_„MåÁ¯§*/u%ÉÛHòvLHòòR’¼Ä1H^^FC’—GW“äåÁâ$yyì?IÞáèii&‚äm\‹€äm\Õ€äm¼ü$o;Ñ@ò6.,Aò¶ƒ×=ÙºñÊX¼²2Aò6è ’·ñòg¼´5HÞF¢$¯{ÉÛx HÞváÐ{¼ íË¥À\ˆä]ÂýÉÛH€ä]¿v“¼ª'HÞÆÕHÞ5Žl¿q} ’w½ CFò:2’wÕz“¼dHÞÆY2HÞÆUH^G6¼.¶e_&ÕxƒHÞÆãuAò6^-’w¡}‘Tã5 y›.ÉÛxG#IÞ‚Éû4ð§ y×Pˆ+¡,Æ·¶o”jV®ãÉÛx!IÞuÔjšU°ÅøÆI IÞÖȰ€ämºº $ïªs¸9ªé¢*¼×„‘ä å$oÓ-Z y74’·ñÎ’¼GÖ“ä}ÆzðM yø%ÉûÀ»¾œä]q"\Õx7&IÞÆÃÜIò"Š8ÉÛyq7IÞî7CÉÛuñHÞN.ƒ$o?tí“‘¼]DHÞõE€Fòv‘q y×gŸ!²ë#¼, IÞµš´ßx¼k1¾‹yÉÛukHÞ^tÉ’Åø äÝІʮ—@òv¥@òvÞÎI’·7ÄÖÍ×À-Î÷ùTçÕ$y»:;HÞõÙãå$o¯Xú’äÝÐb|ç-µ$y»Ò0xàù+’¼½‰6’·wÝád1¾w^Á’÷ù‹–’w­Ò—“¼]Y(¼Þ@òv¥@ò6]>’w=+$ïópHÞ¦4 HÞõï—“¼kèÃÉ»¡‘¼§Š“ä]£Š8ßn} w<­è h$oã =$yWQVI¼VŽÏSpÏ  y[áÉûü"ðã yW´ÓUO‹D˜¤®Hòê"¼í"’WÑ—$oc?"ÉÛÄ äU@$ÉÛ* 5¼ ‰$oã—$yIÞÆe$IÞÆ»dIò6^=M’·MrU y;V'É»X'ÄFò¶‰Y8IÞeÅgäm¼F$oÓ-8 yî$oëd±Aò6Þ­I’w…Tq¾Ïÿi7Hò¶Îj€ä}ªAV×–M·MäíºZ$/¨1'y».6ÉÛÉé“äÕK’W2IÞ1>G’·ó g’¼«ËÛ/ÉÛÏDòvÞÈG’·sfH’·_ºïÉHÞ5˜€]5’·SU@’·W^v’WÃIÞΫHò.k y5¸‘ä]Ö@ò.ˆÏÉûÀ&8l$ìäí¼ð”$ogÿ%É»†)ÝØ´Æg]ø’·ë¾,\»®7ÉÛ9W!É»ŠÂgí—vÞ}A’÷±¢å€äío$oçµË$yŸ’IÔÉÛu HÞ®[Õ@ò>WÞƒäíSÎFòå0Ðso $É;8 "É;þ"¼Cɼƒ·é‘äW"y‡/’¼ƒWß‘ä]‹±ºÏø< HÞ¡1$ï …D’÷áO±ºO—伓‚$ïÐcÉ;:3øá+àB$#y‡(Q¼£1’×KÉ;xu:IÞÑÉ»"Ëõr’w¨™ä\£’äº$ïúìýr’wp¡A’wðR’¼Ë¹¾œäºr $ïäI$y§_¨d$ïà”˜$ï˜ì¡ yo3#É;ür##yXt÷ÒÓ w®Zš™¼ƒã3IÞÁ{ŸHò®J¢d[ò­\ y‡_Âd$¯ž$I^¬äº¿$ïàUÈ$ygÞŸd$ï ®…$屮- $ïg’÷±N±ºÏëºJ$¯ÚIÞÇÚpÑ’‘¼ƒ÷ʑ䓗nƒä]KTܲd$ïdn›$ïyÇ’Åe½A’¼ËŸµ©ãäš›$ïz)äÝЀÉ;™ü#É;OÝUdcÂZ9ƒ]µà†FòFø¼ÙI IÞ™¯Qšºõ$ïäL†$ï$A’wRÀG’wêþz¼ºœ$ïº÷ÙpMœ@ÔÉ;I‘ä]V£,u×2IÞuõ¢}/HÞånNÒE•$yuI^°]NòêI’¼ºŽ$ï$)W]w˜©ÅæO¿Ã‹[=7ÆÆN¿ŒÛ81Ås¦w•‡šs‹æºÃ|-6dêN]m¿tn¶\þà†±µò¸DÒb#åÁ¹¥¶M®;[Añb“ä@ÛbKäS>ž37@êÎ_mwô;̸¹qù‡;“¦xOоóBÀ"íûÀ+оó9kK©ëà@ûNÒN¤}'Å…¤}' Ò¾º­ž´ïTn ´ï… ÚwèÞ6о“ìißIißç³]—&­&­;·@û®µ@ }'g¤}§aоsÈjKÂÕþaµ%á¬böŒP¤}gg2 ÕâÃi_ÿ^оºÈR;Ù±5_ÎûÜÔ¨‰»7j\ÌõôAÅÎÏ[àÛzøžû½’À—Òr¿œ’û½ð(Éý^xƒä~)ë"÷KE¹_N¶Éý’ "÷Ë‘ŽÜï‰/¾üø’Ê¡À—¾òDX,1ÀìøèNøä…‘ý=)ƽ(ÎÁç ðåUÛøò(ðåµßøR‡EïI®i_*@(ð½M)ðeǧÀ—WRàKÎØ¾Ö;(ðe‚̾`‚!ð­˜r¸ÀׯQøŽ$ðAàËÄ÷T¦×Ú¾±˜_æj)ðR–7p¿ÊSà[QÏ©¯õJ |¹ê¥ÀWß./xEøÞ‚ÐGB>Ho»[(;w²÷8·âóc¯îÞÞßúú%|Á;Qà[6Ù o‘Þé1ˆ)]à{îW¹´-ðÒûŽ-õÀWL¾Uj`|+9I |+Ÿ¾¢e(ðeZ]_¾V |^(@ÒJ/'oør0—À—+D |¹FÀ·‹ †À—+D |Å;Qà;¤»…ÀwH¤ ïQŒü®¨~ |¹Ø”ÀwPWMo烥ÀWä6¾ƒï—ß®ï…ÀW$¾"ó)ðu¯8: |;¥áørm"oÏßN•_† |;yE |; ¾ª3¾\(¾ïˆ_Ní$ðíÌ PàÛÙÌÐûV­ Ê…À·ƒ[ÀW?ß’J_¥6(ðdà)ðíbRàë_‡øvv |õ)ðU„_5$ |Õ(ðåÅÈøòÞa |‡8g|'Û¾‘ßåÒLßÉ|¸ßv„÷Û”b Àw²[Qà;±’À—·ÝJà;E6olu À—W·KàË›Ã%ðåä\_ý| |9£–Àwp( À—su |õB)ðu8ؼ§½‡µ7¾ê¡øòúf |Õa)ðl¢ø:¬Ì—(ðÙSà«Q…ßÁ‘_‰â~ÉÀ‹ûe”À·‘³¢À·—À·‘“¤À·’ÿ¡À—÷ŸJàˬ¦¾\‹Ià[¥$ž(@·G/Eø2jHàë°P à0 ¦À—º |%y¤À—N$ð•_*l$ð•L“ß"Uî!ý 4» `¥(ð½IÚPà+=(¾\Kà«ZQàË*/—øJ¨GoÕ÷Bà{cT‘À—QRß»EE/¾ú^ |«øÛFHH |«$¼øra"¯ø2vKà[ùÊ(ð­ü^ |+Õ“øŠÐ£ÀW­Ž_‰)ð•Ò”_ÿ¢Ný Ø] |)¸‘À—ÓK |E÷Qà[ɱSà[1G’À·²M‚ûõžBo•_= |«Xå.}døê-Pà+ « |A~ºÀ—º[ |é\¸ƒˆÎøVÁ¹·uoà~«T¹.ð½²À"]ø‚Uv/ [ |!wv/~  |/‘½a |ÁgºÀJqøâ ºÀ÷ ܯf×[à‹·O¯º• |ÁvºÀªkø6QÁÔGÂ*/?¾z’.ðܯ?X |Õ]à‹¦âß»½~ _4 |õœ)ðefV_UÒ¾è¿.ðû­Ê°PàÛôY|)|‘ÀWWSàÛ$á=9¾÷[" |™\–ÀWwJ»À—쮾MTðܲã-ð%-/¸ ø: /œ]àK5° |Á cé×Å CàÛIªQàÛÉIQàÛIÁQàËœ¯¾ŒìøŽ­è=lVŠ’ßA"…ß)v_NÕ$ð¬$¾ƒ¿Üo£8D_ÝM¯C,Z™íàK¡Àwêž{|gøÎ,ðYà;©»¥Àw&îw— ¯ˆ2 |'¹G |'’ËøN1ÒøNénûÕԔܯtxä~Û!E/¾“/Üïú¬}¸ßílÜïšÛî·‘ƒ!÷+‰¹_éøÈý. и_åôÉýF8‘ñQlÔo+IàÛ˜Õ%ñÛ¸³…¼ïbca5Ú·éŒõõ’Aú6 -Èù.M Q¾tߥ4h/'| ¾Ø€ë#€Fõ Ö…¶ÕÈp·m«‘ãnÚV›X¹(ZŸ¬ m«‘énr+ÈuY‰¢uŽh±V ßÝ ´­FÆ»(ZgÖ™jed½[¶ÕæwnÚVc°Ü ­cFëHµ²êV ·‚ü—•h[-àV h%ZG¬’nÚVK¸h[-™àV hí=Z{ª•MBÝ ´­ÆØ¹(Zû­=ÕÊ’nr+’²m«%/Ü ­mDk‹µBrí@ÛjÉ·Eë3¬ëBÛj3Y·m«Í”Ý ­³DëŒÏÉ·m«M¸Ü äV$Wd%ŠÖÑ£uÄçŒä‹[¶Õ’1nÚV›¡»(ZÇ­#>g$oÜ ´­6w+жŽ8EkoÑÚS­,ùãV ·2$³`²÷’ì½$»Mà¶0ØKˆƒÝÖÛ˜ì­'{Ëõ«q( ödÁdŸ5Ùg®Ÿ-R¶0Ø-mµí€É>¯dO£:[n' ö+΂Án©¯mLöÑ’}¤ú!9¶íwß™-Ûö–Gi¦Ï¶½çqšù´h¹~¶¾ÚvÀ`Ÿq Üv¤àÜN˜ìaÀ v›Ÿo;`°[ÖnÛ“= ù‚Á^ãÀ-ì-Ý‚É>g²Ïôü‘ ÜvÀ`qðÜv$ ÝN˜ìa vK'n;`°ÛòrÛ“}žÉ>sý,¹í€Á^ãp.ì¶DÝvÀd5ÙG®_A0ØgÖ·yN·&{ŸÉÞSý Ýö3ÏÍ™Ýö+ÇæJ·ý~ß‘<ö<¾#›ºí5ÏÑ™^Ýö–géÌ·F{ŽHÀnûxß‘‘Ýöù6¾#Eíi¶Îœ­Û ƒýLñ0ØKß “=Žï„Á~Çi»`°×8qLöƒ½§ñ0ØGß ƒ}Æ ¼`²’ìiÏt³Û ƒýJã;a°—4¾&{˜Ê û'ó‚Á^S| vKjo;`²Çñ0ØGœÔ »Ñ Û˜ì1>n;2ån' ö+ï„É>{²ÏT?$×·½ä>³íÛ~¿Å¤ß·½½ïÈÇG{ß‘ ßöžgúÌØoûÈs}¦ð£=ÇäôÝNìgß ƒýŠS~ÁdW²T?è¶½¼Å¶½¾ïPl{{ß!%ˆöžë×ãô_0ØGŠ„ÛõÛ “=Žï„Á~¦ù?a°_iþO˜ì1>ûÆwÂ`¯i|'Lö8ÿ' ö–æÿ„ÁÞS| ö™ÆwÂdã;¡Û©¤]0ØÏ8ÿLöƒ½Äñ]0Øï8¾ »‘ÃÛ˜ìãHö‘ë×b| öÇwÁ`7‰Ç¶&{˜ÿ n;D n' ö3ÆÁ`/q|Lö0¾ ûçÿ‚ÁnÊ’mLöƒ½Çñ]0ØGß“}ÞÉ>sýfœÿ n;ô+n' ö+Žï‚ÉÆwÁ`/qþ/ìwœÿ &û¨É>rýZ߃½Çñ]0ØGœÿ &{ŸÉÞsýfŒ‚ÛéÛ ƒýŠã»`²‡ù¿`°—8ÿ ö;ÆÁ`oq|LöÖ“½åú™âgÛ“}ŽdŸ¹~#ÆÁm‡HÈí„Ánª¡mLö0ÿ ö+ÎÿƒÝÒ£Ûì¦<ÚvÀdã;a°·8ÿ v+m;`²Çø@ì3ï„Û}“Û ƒÝOÛ˜ìaþ/ìWŠ„Á~§ñ0Økß “=Ìÿƒ½Åù¿`°÷ƒ}¦ñ0ÙãøN¸íf¹0ÙÃü_0ØÏƒ½¤ñ0Øï4¾&û<“}æúÕ8ÿ ö–âa°4¾&{ß ƒ}Æù¿à¶CUævÂdñ0د4¾» Ѷ0ØSòU0Ù{KöžëgÚµm v³m;`°§$¬`²÷#Ù{®Ÿéß¶pÛ!ˆs;a°§d¬`°_i|' vÓÐm;`²‡ù¿`°ß)>{JË {Oã;a²‡ù¿`°§ä¬`°Ï·Z>·&{ßç[Ž–j¿mËÒRþ·íåmþ=`´çø0SªV0ØS²V0Ø{šÿ&{œÿÏ·Œ-E†Û>r| êPvÁ`?ãø.˜ìaþ/ì)u+ì%ÆÁ`¿ãø.ì5ʃ=¥p“}ÞÉ>sýL¹í€ÁnúÈmÜö3¥r“=ÌÿƒÝ$•ÛìWŒ‚ÁžRº‚É>®d¹~¦hÚvÀ`O‰]Ádï3Ù{®_Jî ûŒã»à¶_)¿+˜ìaþ/ìgŒ‚Á^âø.ì)¿+˜ì­'{Ëõ«qþ/˜ì!>{Êï {Êï ûŒóÁdóÁm‡nÕí„Ážò»‚Á^âø.˜ìaþ/ì)¿+ì5ÆÁ`ïq|Lö0¾ ûˆóÁ`Ÿqþ/˜ìQ×F¸íܺ0ØS~W0ØKœÿ &{¿’½§úA¶»í÷[|¸S~W0Ø{ß “½µdo¹~)¿+˜ì1>n;ÄÁn' ö3ï„Ážò»‚Éæÿ‚Á^R| öšÆwÂ`Où]Ád5ÙG®Ÿ‰”·0ØGŠ„ÛÞR~W0ÙãøÞÞò»:oû™çÿT>oû[~—RèhÏñ¡¥ü®`°×4¾{Êï &{?’½çúõƒ}¦ñ0ÙãøÞÞò»”d»½¿åw©ÑÞö3Ïÿ)ÚŽözÊï {Êï {óÁdŸG²Ï\¿–âa°§ü®`°Ï4¾&û¸“}¤ú”ß ö3ÅÂ`/i|'Lö8¾{Êï {óÁdñ0Ø{ß ƒ=åwƒ=åw“½ÍdO:e áÝNì)¿+˜ìq|Ÿoù]jç·½¼ÍÿgÊï &{Œ„Ážò»‚ÁÞÓøNì)¿+èö_»üýCׇ~]ìþë²ã_€~)·ûJõ•œä«tÿéÒ/ÓQ_¥¾¢S¿¢³¾  ¾\Ž}5þj:ñÕpÿewúõæøö‚œ{[‰ý¾l·êuþÆû½?.l©iŸÑÞKûñ¯ÿðÏ~çõw-RʰÃ0B~÷ÓSÄëÇ?ÿòZwò~vö'?°Ù9ü¿ò Kik¾}•aÏBc;½®á^:át ·›oîtM7Þ¶ïàÚÖ>ã Ü@Û:Ïxÿ6ж²"2‡zý‹K°ñ‹ÿ"<\ƒ}ÛþЯîßþìÓýУûµ ¸?ûô´³›?¼›}Dnsôõû¸š.ÜÎPÎßwÛïÿÖÛ·sTP½> ÁüQ\æCtø02D‡CCtø06D‡ƒCpø8:D‡ÃCtø0>D‡Dtø0B‡CDtø0FD‡ƒDtø0JD‡ÃDrø(ND‡4ê°S|6ìÐüÙ¸CógÍŸŽ<Þ#}èù÷?ü/=Aý¸endstream endobj 748 0 obj << /Filter /FlateDecode /Length 890 >> stream xÚÝInÛ0ðîWH@Äp%¹@ tsÑÞŠèR´=ȫؖkÉI×wf8”å,}@ P$g_È*±J|)ž?”£ë‰5Bk9vΈr)´Ie¡ŒÈU&µ‹r.~Fi¬#iãD6úXW°Ý®né'6wÑ{Xÿ…qÛâ>&ñØF ÄVG'ºAއEü»üv=)ÄXŽ3“¡N%[H«2¯íȚ͢Cy06 ø¡\m"„Õ0¸ÕQÕë„ÍÙ¶±ÉIŸVQËú»©sô›iœ˜,™“öÄs½Çßœ°lÔÛSŽ4¤Ý¤ZÃoí)šý ”HS¡ÌÕBÆIj³¨$¶t‚Ï®cSDÍ8­fȹõ뚈[¯w(¾éüÆ«9l¼xÔùX;;¶¶™´ã4“ÆEÓgO¢ÂI ú“T¥NªBfv6¸k‘ñó@ 6o0ø÷xZ–ýÀ$ÃŒÂv˜D4ÈÛŸ,Ht¡eš"Iµ,Rë-y'ÎØhÇ` ~)§ðøÄþhìÉVMV¼…1;‘XW^€öÐ~æÈ=Qµf™ÝI.oÎeV F­¬¹æ0Ìvõ¼PÉó£Ë™ bÚsÖÿ'Ò³)Æå0ÜëtQ3NñxÅ.šGYìËúçr„WT Ý—sc ™Û\Ì6£?#™ëÌœV„\ ¸þº1J|jFßá ¸$ˆL2©‘ ëD¯ÚH¡¹LØ‘Õaïo¼ÉÁ õÊ"ʲîý$D¿TTD‘©ðFSÝ[xlÍÕ…Húú‹YXW[ª½'l}Ò=,F¸o–^â#²êï¹eTÒ§TäœjÆ_„Ýë Ðñ¹c*h¦ˆºÃ~ãÆÑå.«Kï<Å]ì2ßtíÄ•¡ÅOØ®7nï+´¬Ú‘_hkÒŒk=¤òÓy[Ί:P“œíù V-õJ ›† k£.¯:„òï×½ øƒÎ Á[k¿«pÊ{³°© ;Ëîé9‚w‘,³¨ŸjŠlG¿6î’®O’Á åG\Xj·ˆ íר½oãt#¼ZŽ YD'“7ä¿9žñüžßÔÁzN5ŧý;KÝwï ÎwÈF7¨4/tïÀ;<Õ¨´í|˜ü‘[ȳ’òÒ,œ‘™IER(é4¿b¬}\ŽþgTZ‰endstream endobj 749 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 750 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-flipAxisOnePlot.pdf) /PTEX.InfoDict 351 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 354 0 R >> /ExtGState << >> /Font << /F2 352 0 R /F3 353 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 7142 >> stream xœ­œKÏ&·q…÷ó+z™,ôš·æe+# d A àE•ã4-’ŸŸ:çT±ùÍŒå|¶ºœa“Íf‘Ud=/'_¿¹òõÃõÇÿrýñJ¯”®2îW­W«*§õÊ÷õß¿¿~{ýµùj#žªõ~¥þÙS¿úé_ÿáÛë×ß@{é:ÿýý¯ÿÉþtÜ×ÿ|ø·¿Òõòõû燙/ÿÇ=½æ¼j»ñÔ§=ãmµ®Wj×zÁëjí¯â²ßW-Ö¥ Ù^­Xi~ÝÒú–M–×\’=ÙÃý5*dåeÒzÞ%‡½·&´hr¾î›u+¶§åH’£²Wk˜éU {5“äÊìF£´N¢å†÷™¬¯‚/ª¯^%gç8V|°O°÷6kݰQNxï|MJ¾2óáñªö -¿Ò’\º¢Ïö ƒ2H~(ZÓ:YÙç…ºÓÆÌ>¡ñõ& Þ€ºcHÚw×60ú&ímt³”s¥­JÂ(² IÚªVë\‘œ•}nljÐdö^ŽÆ\4J£å(a”Ö_\6*ø¢ùª]rá½K£±2Mv§WAS«Ò(‡„Qî"û®öºí‹0ÛØÔ!¬6Û8ÍLÂd÷™4Ê–“F¹ç«Ië;$?­W)”+“﯌Ҝ89w[9ÙH§6ôè|~ꊙP» ùt½;^µ sfÏ‹êwàùœ\O|™MÕ\PöüXÔìçÑÞ¢}¬?ã”m]Â@w÷ú9sQÝõu/×XU6Ì\ 9Ypy{¹ÒH7›na%ŽtÎ7WVLh,­0yÎf´öšÞ?i©;k@ÓTæ…^\^§Æú²þ&¶_’lyk¢çRd®¦…M{59\*V1¾Ÿ3z-–gö¿4Ù³k-ds/Use4×°—Ù³ªþxÝ•Zßg¾+¿yÿ¤=­ÿ\¦ÙR›®Ól^% Ž_O®{?ÆË\T‘¡[ƒžúfûæ†z¦Öø˜ã)‰®LóÁ´ýüB×ûixøÅ´\›¡k¹åë²ù"ØËtW{K¾0ù|…̇FGýæ·œÜðb{ærèÍ-òý­Ò^áL³y zÄæöç@jÿ¦=ËôùÕèàŽòA{•ìö5g‚õgÓHãcëϦ¾ù¦¦ßÈfØË¦ùÝ]Ã^6Íõ=æ`°þlY¨ÿ7£OµeÄÈ‘m"žV¨½›ö²ú¹¸†½òÀg@w,ŒjË€N.ÛÄ1w^mk¼0‘ò©íujØËtæûl¡[Ç«¹Îþ›#°‚šš¢"´MÜjn&éy[è™ZëÓb¬9–²8LÒ6ñÊêÑþ Cs·y¸¶Ay¥=Ìõvê ÇUà€«k¸²’ûG µÛ¡5Þ¦ÞׂLŒŽ@7¾Ï¢­Ù«¬ìãizµ£¾Å[3t±x§ùj×,«êß°W™Åý‹…\³W™Óý·Y[ÅB ¿o` ‹Å1Ç ã,«xûg¾ga[#Ýó©3×ßïIÇ|è"{VÄvèöb „¦½ŠÏ¿©}Ù¶—é…ù’Ðmè.{†ýíÃÊ|«ç8ß¿¨¡¹ãÊ6 ïï¾¾Lw¼iÓ‘íÃ[>æ¿M„„õpû|X ˜ßܲe3\ÖzP|1=Ʊl¢Üí˜Ï‹ýÍ¡G9¾×&f=Ç×ôJœÜ~ØËºIÿU,Ó^Iëz6Ο¶¨ Æóÿ‚),ïÒ ö‚æF¢XÇ꤮Éõœ·žï˜ˆer[Í…y´7ÑÑC/ØkÏïbŽ$ë{¸^¡¹þ|ýx®?k†ß“«ì•µû„æú›Þ‹Ç¥r~ôêz–óù›öLÅûc†ƒ½Â_@Ã^1Jææ öàü‡^÷ãŠ9Ò[ó¥²}sÄ5?óz¥Só‰ó·XüMòo#»îƒþuêyëoã|J‹¿©R¯æºίªúæh1_›æ74¶Ø¦9ÿ‹¦{<þ»TÖçùʉSm[QØž*slݾ]cý•[ÛÁ‚}ÿzÎÅÖŸ…Ñ>\cýE|,ö?X¶}z_§=ãP¬ö2­ùVyÚg‘‚“SzPзΠŒÇ…ùlü‹¬c÷^pšhÚ ³¾Åc¬¿8F@cý5.èF{Z}Í‹¿i>' hØËªÝªoãß¹§ÏÓõ¼¹Ÿ‘}pÜÔþPëåæ@?홆½ìyúç‚ázö›ÐëØ‹Ç°§…Uúë‚öÓîï¡q.²°§ï±xŒƒQœ ÊÍ@¼÷ÛÐ8Å~¹Ü<Cs¿V,þ¦þìÿ¡q:êÙý‰ÅcpÎ-®±ÿ¶ÿȾÖ1Ø+öçûÉý«ìazœßÓ°ßÕø˜†=±mQy§½l|¸ß+S<¿ºk¬¿8'‹ÇXmºÿ´øK{úþ¾ØawÞÏY°X<¦½n_o±þlZ”îëïy¾Òž»—¾ñyØË†AóÍâ1ÖŸu‹û]h¬?ÓUåCöÑþ’½†ö‹Ð°—5«ïµxŒ³ìðý 4òVÎý"6 °§…uÕŸ „(çþ ö¶@Ï+ñ´§$Ĩ>ÿ¦²OýÁ3­uëN®q^z´ØF¨¿ÊD`›‘\cÿmåãSpb4?,pa½Û[ÊFŒˆKéˆÝ¾iØÓž×øâ(\Îç;í5|ÿ=ÏïYÊI˜™[hØù½É^EöFàñõw7×¾þ߈¸þšâíéëfë‰ë¯)Þ 0qýùaê~ÎÛØÈ§ïk¢¡ßèžN­ …Õ§?‚z?ç7EÏñ'··zÔS+Mçqè•ñÉJTÄyó| =å?¸±:Ö#68/…?…îõñ×\8ßFzç¥ð÷8(á¼ë-+sß®Çq¾®8×缌À{Åùzè{nµ×¹þÌß´ášöôó-nÌ& ùWK{«§òœ_¬­ú^¤ðæ“ÏÀA“örÍ|EÌŸêù Ï 0ÓžUçQ&ÐŽ|òNGÿëÎWÈžÕó~ÞG`¦=cüZVrÉóÐÌ.E{Íóñ¾æù ÷ç¬íðß ÄŠôÇ ìýI|qbÜÇükÊWØzóö•¯ØëMŽå«»f~©ø|¼•¯Øëíö|E—¿‚îý¿›÷g=ÚÀà|ùèžÿp+_±ýÃMGý¬ ´´×P<@ù=ùèQûßÊWìùy+_a¯å~ãör]d¯Xï]ùŠÈסcÌ/Å|î-ìÉøUqÖ|d~¡Z<†½"žB¯õ¤-Èæ±Þú|»þpn‡LôÀŒêÏP¾ÂÌH{|þ_—¡>}¨S'jéCWBŒ°ÿLî§¿?À¤]Ÿ/ Û˜ï×—åÜoº|Êá‡lF¹Ë£\c—»ÿxÊõÂ]þ¼ÿÛ>\¿ûé+ÃõÓïþðáW_®|}üOñ“‰}ÃSW% ìgÿøéú›5ÿöúøÃ‡¿ûȦÿuá³-¸³îzo]äÛëæ”Þ[¹s3¬ÊùOVÖYëýG¢¤rá$Fõï¿ý.ª? )Á̯3¤£ü¡?ƒ£~®©=Ùó_Œ£²­*óº£ …”ˆ£C%¢ÓeJ‰tŠ[Af”XÊ $#©pdÁBŽ‚d\ŽÊcé%…d“ÞËM sMí …TUypJ«KóhH,‰!qˆ¼ŠpTƶ֥¹3d•$y,D)¯pJ鬅£Ð2sÂQhYu¹óCizpòQt´ÂQyú>]8 ²=8 É(îZ„£ž‡‰£˜ÊBËÂQ aÂQ”ù …º ÂQèã­pú¼Å$_ÄágŸç8 RÀ‰[=¼ˆ[aá(&à…¦88ÂQ§¤QºÂšp:IV'…Ü[qI“M¤pÔ#§Œâ0R8 y6ޤpÒrÓé”…– /q{GÍt›pTFçÛµq³rÒÄQÈʵÀS~ •ŽBVNé7á(”+.…ö”¾ŽÊ+pŒpº»E-<Äí´Þ']OaU¡¿ÂMÄQx¿pp³ŠLw G¡¿J§ G1‹x_GååéÇQ(ïjÛ;êGeO£<+¹qT^+ðq´Ò§ÂQÈR¶umUtJÚ8*딵q³˜ÂGÄQÐJ? G!‹éïãöYËyà(d%•¾ŽB¹ã*â(d=…ß„£ÕŽŽÂûîÐH¯Z}¦³G±~¾6Ž*š6Gáù¤ö¹½C{«_Gáû…O„£P.|"…þtá-nïEÕ÷G!ËêøŒÛ;hÍ7á(hÙO8ŠYXá)nï…UûÂQÌÊêynï Õ_á(Ô÷çoÙ3ð¥pÞ§ù%Å,pà§<Ô¿|m…ú²‡p´p‰p²¾J¯ G!+¬ù,…òY¯£ ÒíÂI4,tÓóÄQÔãÚ8ʳÐGŠ7ŽBù ŽÂó³ÂQÐOá(ö7_Gq|…ˆ£àF„·…£8ŸÊµqì)û GÁþúá(¸-/¿e¯ªøê8 :8ŠnêÀQ°ð›pÔ3?…£è–„‡’ì•=}.…ñ,Ž‚½7ÙÓÏ·Ž£à6ºðV“½nÍÇQ|¾_GAWÕï²§—ã¨7šöÚš ¸¥R®£ð~áá(è,ᨲñp×ǣо¾W8Ša^øIù ÓS¸‰8 ZóA8Šï<…õ‡fÔžòݳ֎£Mõhá¨?ÇpÍõü‹á(G¹þñ <õzSýÙõi‘O×®¯|]_{BgVéó duÛñ„ôñ÷µùyÂõù"Éñ×çêÙóÄÓÓ¿]µ¤ÓtçßË¢ö$eíüîÚÌÄ8‚*ï¯ ÷å=¯ï¯­YËÚíO×þ5³8æ%É¿þù+üËÊý³øKÏüúõ3 }±´¦-ÿ÷Á¯Á ö5ž«Wö2[Îô["_Ã$'ðÕ×y +"ˆ°Ww¼/ê'1¯€^{ļ@Þx!‹M«]Ÿ X¦Ú¼ºÇñ.ôeÜ`ö¸Åíe÷Ó¤`×~’¬ ‘Ÿ—©ˆººç­Eººï ººÿ$Uœ«ûŽ[˜+ü¥(¼7ù7“=k/ ƇL.Å$ü®ß¿²mI¿uªàêK{Xñ­á?`Þþs?Ñ­á»sÁ-| ˘s´ÞêâwTÓÏ"[Ó³¬[+ÉÒâZÓOXÂZ¦èßEµe=œK¾^Lk%ODZÀPó ¢µüG'ÊNnÅ-bdÄ„³V=/W­¬1ÌÂâ¸Z5#*”ïw’…á:îUa,Óµ9Öˆ´½0pëq©ê”¶É0k*§)†ƒàk_0ÁšþûTXó-¿‘.¾Ò!nÓ«yë·K¯æW§š›bßœ²þ„œ\M¿²çàj.ÿ¿¸Ò–q«Êìd«æ.¿iŸ×†V+˜‹˜V7ž¸Ü„NÄê‘Ü®×È«ÖÆOÄUûòˆhÕ Ø"X»ž°*§o&¬ÂæVÁ²„`U0‰+Øâ.’¯Ù›«r$ûV¡=¿[ÅÍÊ•ü¬âth׆U>6¬Âó[#ùšzÀ2nþ0jÀ)ÀE›|wº6¬z´`æê}ÜBy>`ÆGðQ°*ﻂUX õ¸;…çu÷E° Ï > VAk|«žþ V¡ÜïjV¡\0@° å)àìxðŠö ¸ X­ñ¬B}ÁgÁ*~ç¥`Þ§E,X{çãîÆ_pTqã}ªC/Ùk¼Uк‹%Xû*™¯8‚÷УóM°ê™o‚UXÕ=îR!YØ#ØDX…çµî«°’å,«MX…å™^!Y^â.§`U.Ùç—`´à¸`t‰»R°—µ'"Xçà0IÛÚw «à‡²àa´·×µþüªsÀ*ÜK׫öx8¬Š»«£ˆ»T]ã©þ;¬ÚövXõè²í)¸Õd/l«öúvX•KÀ1Áª½ÞV¥¸ èÛúSÓ^É#êäÉÆ€UÛ?9¬ÊÙÇÃaÕ†{«Rõ»‰«öú¬Š«<ΪVܪ²H«Å%RµŠßë¨Zþ³TçTÓ·Ž©VŠKK¤TØw¦æÆDF5ãÆ‰UÄ!'T$ šCçkçS8É´kã©éÁéÔŒ»‚S°ªXÙÔô-“£©é¿q25ó›{RÃϽΥfynE™el>ˆ‚‰JY¯t'AP ©Ùqm&…L¬^D$µ{%"5o­yRÁGÍï%ŽÚôO4 ?ì\"ŒŠ¸ë,ê‘DQÓyâ$j¿W Ê^T{ÇP+.ˆB-ÿ¥–C¨µ¯P‘A­¸á#eu0‘@-â öu:ñ'ë†ã%⧘uNŸfÀ7Á§`«ÎžVЇ‰žæôL½ÈÓôßõ:xŠ=«s§¹{1¶Ò#m!­wŽ6SsŠ•âÈ)~1åÄ)öFœ´cÞ¼iß.nšË³÷¢M3`ž`ÓìÁ²¸(b?ç¨iv'S"Mûa¦éç!çL³ù- a¦é¿zpÊ4»CA¦Yƒ!‘1áè 1MßT8aÚKC€ XààK³8N^ÚËYtIG› —f‹«GÜšOO59Z²ºã¸è4=1ë`)öëΕf`Sa¥½¬D•¦ïS*MÿM3¥@üŽ”âN”æ@‡@i¤xÒô¿®ÂqÒXѤؠ;Lš·O$±$«+t.”4=óä$i³@Ò î%Ž´;)Œg§H«i_â ?®8á7¬¸,FÃüŠZBH8‘­k¤[gÂø=‰ó#àù~m|´â²ŸèÑò_@:dF8«æ¸Ò„Ÿ—WœÈŒ ÅlÄŒr\ñuf”k+T<„ãô¦ï3‚Ã3‚VÿÄŒpš#3Âé¬Ì§91 1£ Ü™QŽ+³ÎŒróíÌÏ—ƒùis3#ÔÏ3B¹¿_¿qÅiVW”˜Ä÷k¾ëE8k¼ÄŒ2˜ìÁŒ Õ1#h141#ž¶ûµ™Não1#žÎçµ™´˜¢˜Æ_óGÌí—`H8¶ìr1#žþÅd”6Àv¤]›¡¾˜¤˜N÷~%‰Ìèx^iƒº¯()mP×£aOÓþ¾!{å`BSöj>ŸÄŒ²uÓ߯´Á}?Wš`ÏÛ³‡ÎŒ 5^bFa\›Aû•"¥ Ð 1¥ žúdFy_)3ʸ‚U¯ÍŒpZ³3âéXZiƒG“=ZÌZóSÌíq½ÿbÌH逌nÿñýçé3DtÖ}î/uú„Oû:ŠvO×ÅŒ…RO©Î,Qê'˜]º˜•‹R©§a£=£\å@ù)—<ÊJŸ‹S.r}Ê.¾ì—¹Õy–ü‹îE-:$a©òκˆµyåþÞÊ7CÓgHk1Œù¤º°JÌËù<±áz[ìŠ+¥È•Ù"ˆâ»¼è/ÔˆòOùMâ¾Ë]îrâ»w.Ÿò³»Oïwù92ÏpýþMõêÕÛgÕ›~âÉ]nK=èÿnúáÿÞ\endstream endobj 751 0 obj << /Filter /FlateDecode /Length 722 >> stream xÚ}ÉnÓ@ôž¯õ4–ðtoA*ˆÁ 0\(“8‹Ç!vHû÷¼e¼…‚¬ñÌÛ÷§ÅFhñn¦ýý&ŸÝ.œƨy[‘¯…±‘Ê´©N”±s‘¯ÄwFª( Påb¿ðxÜ6AèÒH~ æN€ÛÃ9—ˆŒåkx?–ðk‚ù‡ÛE&æjžØmhºL9°ö…ÝQ/>ðÛ°žòw`3‰ŠNOl®A`Y#ÏŠyŠG"[£²âgÚD–{BêÁsóU6•goºíÌ#à# °nY~À©«ÁD¹&I‚QAÍÏ“wfƒ¸­7Fˆ-†â¢{)˜‚ä`>¨>XØe[³—¡s¶Ã9ÉêÙ]—E3¤•ï$CO3Ô£kÌ '£¸t¡´ƒæÞjEæP˜T\ë8;2*‹÷*cë(¹…Ï郎5\œ>ÍhΖz`1p^°ÃØþç1þËÔÞël]øüÇ :¯9•¿Ÿ|_–Þ£ïíÍ úäãyôbë®§I”XîøÊóÎW8÷#ïû¡¼ÏgZ˜~mlU¥bYÍ~ÍTjf^Dè¤<âö}ex[Ï>Á×ÑÂNe8ÒIk`< ½]§UÚ-E××ç“oã¤5/ƒ0r‘Ì»V4‘Ü Cqôí\Í–² Íui˜¥80…ÆØ‹a¡kÚ!•ï\@VØ\ç~F1ûÁ<½ë–ëàL:4þÉs´Œ ÷d @w½ñÒgºˆFw…§³«#y,Üý9¹kû M<ì1®S¨¯iwлïÉñ4Ü#:žÌ·­¿E°Ï(ó)þ ç²Ý^6EÕùKöiå`–KŒ§/#ЗÏ3±´jž|¿.üB9v•ر>ÚN-ºvÁ:×ݶ¸Bpq¡U–ùÿv£©Db£&³ò¯[˜$QYa8‰r™áx\t=iÅ×rendstream endobj 752 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 753 0 obj << /Filter /FlateDecode /Length 19 >> stream xÚ3PHW0Ppç2ÀAc(áendstream endobj 754 0 obj << /Filter /FlateDecode /Length 813 >> stream xÚÅVIo›@¾çWp)`†a½&i¢Vm)H=4=L 6–lˆl²þú¾m0´IÛDjr†7oùæ­:K'tÎBù•³S9*tœFN¹pTy9Y˜**œ²r¾»‰ç+ØpOêyç)wkàÕó¿vçý(?ÍNs§Š4JQKèø± 2­Y¾l€¯ÞâËó£µ0ìvrú„O¿‡¥õ³°x÷Š ëÈÝ ž_s´‘€3e*y¬Hq”:ÎôöŽé|:XLÐìj«~Î)õ4±Áذp·fºi+aPÖZyÎçÿ(–ÑBSózÑ­mÞ¢Þ;»dÓwT²^ ›˜\âÿ­'ñAÓÝFVThfc롦ZêvšŒ«Ú@'Tºy,¥{©ð™±­€N¼_9E-ày°!Ç(mYqöÿÏÚ}ß(}9žã†ÒoÉq0“›‡,ŸÄU»_Íæ¯ŽšKÞر-N ì9îŠi/à]0¦ɶ‹iuþW<ÿllßp³W5äâ·O½sJì-> /ExtGState << >> /Font << /F1 364 0 R /F2 365 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 12148 >> stream xœ½}K¯&Inݾ~Å]Ú‹¹ÊxGlG° °a¹ÐÂðJ¶ƒišYøï;ÈCf1UÓ¾ì©zÎ=_ä#’dò0ã‘>þñ#}üáãß¾ýÓÇ¿}<ŸÏó‘Gû,壖L(=ë3µ?ý¯þøWþQŸuè¯J/Ÿm\¿ú»?ÿ·ÿôû¿ÿéïù°ÿþô÷ÿeÿu´ÿóí¿ÿçã~Kÿ¸ÿÿߟü?ëésÕRýê—o=¶ùQÊú|êÇ¿íÓå¼aÿÌgÿ(y_R"¸ÑµÙ°Vúqþœ‹àø|èÇýsÀñl¸¯¼œŸeŸ·<Ÿ½m8žÏܹm)€ëa¸Ûl¸ÏPùªÖ ˜?Ó䫚àÌ|•aýôãú™è2¨ãèÇå³ó‘ûçC?ÞM€}Ÿ·>Ÿ…/c|:ïüœ n~¦H·_ÓçCGžÏgÛ?®·?Ógª ÷ Rçì#†…o_óâ¶•o¿ÖÏÚ×䶃np¶Ï¾Ï[¹7ìÜ9û5f'ßþfk¤ÛÇÜp}VêÉñ¹è¼ëùL_sí€çåÞX·ß>ºÁUøöëî”ȶ±·­lu¡7VãÎiûÉñ¡ß¾tû-ãù®É¶ÑêÁ ÛÆ6>6³ ©sÚ~¾Ô6=‰ïÿàÌÐ&ý˜Ìcã ¾°}lÌý•žÊ=Ôö%ïÜ çx{á´l#û÷s0žl$dýS0uÓ¾úB–¶óPOìËç{M)qWìß§G0JçÃÎl)û÷c1.ÜWçx»c_On‚¹?º¶ïl-mßæLæ²ûšý!¥{Yz¼…þx¨Ó7ÎúãAwžùXPÊlïsO9Ãh¶)ñùsåþh ^B˜úcã•7¶‹®÷Áñ;÷Wk°ö´õG«ðöDA¡2žK0O‡Y¦Â7B|âëß®ÎýÕáiÇ îE•pý 8yÚ±€ígÈým¼ìùw4àþJðÕ´‡ûcÀY€‡û¯?‚Ù‹´¿v`*ðuŽmiÿê¯ýŸÆÇ¯déŸúFYØC}Ã,ì»"ÎîÛ~ÀWî¯Ý­ðRE¤Ý¸ãxµû÷°×ŠX{°Û&ö½1õ×îæÅÇkn ™a‰·QS“€[åy4DÜý?èŠ÷ì«!æAw›žoCÔMSú§!ìn³ÅýnLýµ1Ôxɸ;"ïv#ÜOGè%·Ë‚É~¶›òë#í·õ×nÏ!2uD_rÃ,˜úc»QFüÝnÆ‘.uà&Ð_SŒ|0bðƉÏ7„ŸF· Lö³Ã¿Ó~¿Qí0öà÷ˆÃÃ?⼃è@{ŽÄyu=>‡â¼ãu‚w_øy Æs4Î;‚Ã?‡ã¼_Kñî8Âèïý¦+tþíFü|&ÇcÂu^ôû$ý99›öó~%Â^7Þý•÷i Ús<Îû0ˆ/“g¦_Ïäxœ÷aå|óþúcràËô6ã㯄þØf3s¼ñøíï…xlñÀóXø=âñ~^ü"LèȲ_C°¿…xü>¯…xülÿ?a?òüóƒxl1Ûœ??ˆÇsÚ•ÄãýÚz³ý,dùAó~Ì ñxß6ç¹eˆÑ¹!1ÞöÖ« É ©±ª(Â"ø}œ)qyNöŸ²cMásCzLYzLñGµDîÔöÿ*˜åCûéÈUNäŽüxwsC{äÇ•…0çƒ]žÏ~ÿIþA"kއüxÿžã3aÎ%ßÌ}¹|0çƒñ:É%Þç!ùq‘û’‹< òcªp.äÇ;-áûåãþý|…agžóE „Ô_û±p{~fæ9?#Lý±ëƒß#?>ÇãxLx%ÁcÚöÈwþÑƈÇ“ýl3xp½ˆÇd6Ì'T+6_+cÄc23ÅÔïñâñ÷2²Ÿ÷ø %‹ý{î_J<»û=âñü0ÙÏ{? ñxdØ3%άG§œ?#ïçÉÏ›0ûS¦ÇJñXõkɈÇ;,ðûðxŽ¿²ðÈǨÆÃöSñ¾!,úœõLÉCõyÅñPÁØþÅï{ ÌéñxT‹w{ŽGTzp~¶o½ýOB¥M‹¥TaðìGSànéŸ2œå@nô. ·‡ý“ß\>ªÇ¿XèÍO)P³>—x͸ž 9*Çc‰÷ô?¦ñ:0Çãý<¹«Ô3D_Áý!z™p7úXÝOË‚9þdä7˜Ú<ú–~? ÄW:—¶ ¸?ØWC<ÖÊ=î¯,÷Û$K=ƒ…x>ñ†¹µŸ†x¬õö ñ’õ(î~ê!üàŒ>çÀeâ6Ûè}6ìlú¯K<–úFéÝ÷GG<>çC<Öx.ŽöÆï2¤^ÑË@<ÖêáaêAä¸d?û²šâ5¿ ‰ÇUâçxœÅâñëoñxŸñj í/ôßXêOðljx¬õ½›ø0ßø0QÏxýe"“ŒçóOÄc­·”‰xü>ÿÙ´¾ûœ]ë;ÇG<¶xMãïsi}‡óµ²_{^¨gh=§,ÄcJãøzâ±¾O˪j?œ_ÕøÛB=ã`Äc‹êAr=ˆÇuàyüD…üßV¦w_~ùV)Õ®Šÿ¨˜:ž+vøùß_ÿ¤ ë¬¿È72K²÷¿ä u¤ÀÃÓ{cHåãå%~'|ùsþßÿ,Ýõ/þNwýù_þõÛßýÇü‘>~þßøˆ2éŸßñ¿Œwd} ¸ýÀþåãß­ùï?~þ÷ÿð3úÿ¡-½S÷ËÛ®¯¶%=4¸mzž¯6&//Ò8ý°1´Öïðüeâ{ 15ÿé÷ÿ Í¿ü!©oajÿµ*W»ÿù¾­î{&wUcý¬Ö¸ojì çÀæ$ù¹D$¿l1¸(s~l~!iÀû M Ì/'nçÀæ·#ˆßýØÄì òƒû‚üà8ÃyxTxäÄé;ïý (?ú•ŠíP¿æz¿%±!'rþøùOÛŽòÚ¿|ð?:—D¨€º3{2â?’ oöç?½nðWZo8¸õ¾„Hëý:¥bkZÖ™^Ôzßç×[s©‰ »=rîF‰µ‘^ã²µN%кSQ‰Z—ȹ¥`T~"OŒRÚéNèy/J·¨8žOlpœ¥R{Ê¡Ösð¹s Ïé{øfwš6R 5—mŠ_o]é-E%ÿ'ÖzЕ—XëF 1»ÔPëµøÜ9àcûQ-ôy‹<1N©ÏC÷½($Ñg™9÷úœô¼Y¤}¹59èyw2š¯·ÎvëðÐÉ>¥jÝÕWïiK•`kŠL4#rß,$¨u‹Ü÷@tht _o=) /™/Ù­Çb;Ÿ[[ˆLüØ¿Üz%D‡zb»µD‡èsúôX¸Ïsà]²õ(å-ô™4rî‚ÈTB‘ikÛYâ­;¢C£ÊÂ×[Î[&w‰´¦¼…>2ÂKdZw iñæ ×>½N¤(uY9Vy<Õ~æøÞjNáiñ`½@óÊ1b7Ï¡³sDNôÍ#`r4ö‹ò—í4=Øœª4kܼ27’i(—5§H±jèÍÀÃÞ?¸ˆ»Ò¨8Êb¿XCÍ'ŒvR(sGÑbqÍ5мr¸ØÍ[Äl æ)òàvó£$<~Pž{èÞ'ÂE£á#¡æF›#.Cƒéâ}ìÿzsûë³É‚Õˆ=÷œ.FÌßsA¸±X·›/\|$¯àažôÜgH^Ó(PVo!õ‹ÍÂÅŠ½ãvs+”‘ÑÕ*F:; £]OÄã2W°¨y<¸’(\Ð0²Ðƒ£Qøtñ%æ24—.ž•šóW6:{Èhi¬où !r‘A*<¦’ΑÔ|,~p%ÔœGdÓÙ#É8K¦Ï”Þ…Î>)XñèˆÑV®ÝRóH•‚Içñ!c!CÍ9·Y”£šsù–ÎÞ#F[¹hL1k¨ëÂň¹ ŽÑ°Î±ùÊ%\j^"¡²r —•†.~ X˜ª ábÆzß|¹yäâ×q©ù 5çB.Ý{ìâ3‚ՌźV.z,³já¢Å²ÊÆÅ\>{$X5>-Ý{è5AS ¬.tñ\Ï¥ÐO$Xµ…p±b)qãŠ.=¤ß;§4J;EÞï4Û"qóî\ÝãæïábÆÞ°½"·¡.¢Í'ÂÅ}²¢æ”Û¤`RÚ¹¸Ës"ÍO¦ ©¡ªÑàònÆ @s®ïÒÅ×Pó¹Mâ[¡æ+ñ½G¾Lót¡ÆgEÚÑ.¢ÍÂE 7çÜfÑ\¢@s.ó²Ñ†ºn!X•Ø;nr™—泄RâÉe^û2";¹ÌKÍC.3¹ÎÇÉ.è‹Bâž½&ðá-œœÌŽÜ&X5šRæ4"7Ðü-ó†bݨÛôX¥t¢Ì;g¬J¼¤Ì˳m̛ͥbZf½eÞXóŒºÍ$Ï 4—2"—”yƒ±nI™·‡Æ‰½ÐB¹ ÍblèºH°ZRæ6—2o¢1Î_nÎS*>ë̆šȈž°YØñ"Ïê=£rÀh¹X…W]äɳG ¿ê"Ù鿌OÀ‘J)ËÇ"eŽ×¡³£ÌK¬BÍ>`ÏPÍŠçÕ6¸!›§W«ÜÈÙSF¸ˆ}HådŸ°C.q™—]&Ô¼â›T‰¹ÌnÎÁj„ª…œ‘IÐ =8)ó>1£MŸ°gð¹Oä6+4Z”'Wã5²™3ÆèÒ\ñ@vAÍ—$f‘çžß2od„MOxOGÔÏ#/ÈQB]×~Ë'ìœ1R—Vм¤2†êb.h¨y‡ÇE$0O™Gn©åòèW¡'rïEʼ9öŽ+Ræ-±t‘2o %äÔ|àUW"fS¤Ì;CeŸ\¤Ìo¾ðšhX^ÙÔV$T–oR=ö~/Ræ-ôüBÍ'.>"iU†Š‹H!^ÄåýP¨¬ u›`¸¨E¿ E /´‚•y/ìjÎu^&ÐeÞTCxy "ã¬rE™—ò³ˆÑV)óšCh.eÞ{¿7)óÖX¸h<%‚šG¾ŒÐB\æ FÚVPæ±´°I™wÆ<®I™w„‰Ñ"% Ùaè%ÕP楥v"Áª¡Ì»“ËÍ7)óÎPå„\A¥4”ìæÏ=ò]&÷¤á"Rh¥Õ^8\ÌX¬ëRæ œàµe`´‘r¼Mc³‰L„Êe^ZÀ0Ôu\æåõ "¡²s™——ƒ u¿Ü(­…JZŽ¥°¤ ¹Ìà2/5¹Ìà2/‰ŠÈˆV^¨°*å6ƒË¼ ‹š«`¸œ±  õ<—y©y(P.óÒÅGÊû¼8RcM™öHk)5HšÇ .ó’& 5Ÿ\æ%U™ãCÍDEHAO.ó²*ˆídõIš¤E¢Íä2/+¢Èƒ›\æåž]<—y¹ç#±nr™7ÞóƒɹˆËLLã§uëB=Ѽ´,^Èh1šËÅ}½ùâ2/5Œ%æÅÀ 7i™…Ѽt_Í[jì»ÌÂh^,@jN¹ ]|¨ë‚ÕŠ¹ÌB™—V7 õ£ÌKkNE‚UF™·ÆV¦à¥$¿¤BÑ&g«ØŒÔ’Qæ­±Œšš/\|$= e0›\|èì(óÖØÀ j>ic÷Ž2o¸ùÒÜ&Ô¼ Ì[G(5âBñÜC‘¶$ä6±qV´O…‹ßÐ|¥ßÐe^ZÜ2b6eÞ–B£}xéÔÂuöjŽ2o¡qV¼â6¾1D†ëð:®…›‡’“‚2/¦Í|½yå%#r‹Í—¡Õ·)\Ð"¸Áæ.ZlØ/Y›¸Ò꺊2/5¤•—Œ ByDÓœ_#ᢢÌÛVLM`ºøÈ'-^Ìw?wZ<6Ôó<&‘¾¯DTdAœ ³‡Òƒ†2oO¡o²¢+7mC™—–·Ý;/A "µJ^{ yèâQæ¥O¡®C™Kš£ÌÛ[LÃ6^2‚7 ˆô|G™·Ç¦”Róñ.¾£ÌKÓ¥BÍQæí±!j¼x5=÷3ÚŽ2/m9ºx”yieÅ`sÊmz }Öá…·ñÜGä5Ñ‚UÅùŽ2o-âU°ì(!ˆ ˆ¥Eà †_„äÀ@™·Æ¾þór³ƒÏ’BeÞZBc‰i󌋽¤ʼ˜MhŽ2ïŽ×‘iV¼úzãæ¡ô@™³©CÍ9·I¡+x)x”y#ð©9—yGLL,AKDv¢Ì»=..&ʼ»çCþ>QæÝ/ÚPÉkVÍmBf3±dD%.e^Zò?òÜ'ʼm†æ¿óÿ #–"6?Qæ¥ý Bfƒ%#h»„H×-”y[0=X(óFŸûB™—ö†ˆôüB™·Ç{¦8·‰6G™7ÜeÞ[Ñ•¶iÈHÈ¿+ÿF›4ÈÊêï& ‚ÿø—›6ø]\ë³IMúß‘ý—wý~l‚öñ—JJ2Ø®Â'Æ2`·ìMÉó°zÒsNÞŽTH¤ÉLò¬J2è¼”ÇLÈüÑ ³˜‡ @·"‡­æaÐ.c’krƒžß–¼™ž’ ¨p%çìÆL:¯îÀä4``‹]ça ìOI$oˆª$ƒñîy³x7>!hÀëPò˜ vc2›‡ °ïvà>W1“¾…<1€6õ‚—­jbÀÄÖ¤D6c&“ó<&‡yØŽ<€”ÓÄ€}Ao„µLL E‘§’ÇL0c“ßzO2O[¥³yÞ‚VÒ÷ýáAÈèA­¤VH o{„…ëAwóÜa§Q¥Gµô¨¦KxekspF³éû+=Ó A›~/mË4æ{ié1 hŒ÷Ü)äé,M®‚Î&\:VB G$;™3ÝŒ-šØWèñXz£™5ŒñÊÌæàŒ¨¦2^zMKo„²èa hr ô²æD}.t~¬9ÍñS~LtÜ.ådBˆ É¯GÐÙÍõ×sWk@ØåOic@ÃôàÍ„A´nÌ|éL­¤q(ån hñÈ/ÐÓšÐâ5MA/k@žÓÒ-ÞÕ‰éò˜°"hÕ·SK²Æ´º¾hyeÝsp aÔKJ±æD!æ=zµÁˆÂ€Þy©6º‘³%m߬=‘¯ª§”aMˆÜ­Ëc+ÓÚ9Ô³^ÞD âµo˲!ˆòRuÅúX£âX"ǯ6ñD퇿ÚÜSP¢ªàmú)ˆCYyg€èø/_­e%,› Þæ¡‚8’êõÛTTm‡Ðž—7±Èñ6!Äo‰ñòƼ€¨}¾Ù´TÙ¾šÍLÑñÕé›MNÑK¬¤—7ˆŽ_ôüÅÚ¿Jÿ4›¥ "^í·ÙDUíÿfsUAÔ~fámº*ˆÚçþòƾ€¨ý£×o“VAäŸjÝæ­‚¨Ôý»M]¯öÝmö*ˆÎ/b%õlí ˆŸÄÍnsXA¼_ÆóòÆ>€xWéŸn3YA¼e…ÞŸMf‘}k|êÝÚãmJ+Èñ6«D|–ë6±Dþ›ž—7ñˆîo(Ÿ¬}Ùø6l†+ÈÆ·a“\A”ohü6ÏDÇA”†MuÑñõ½7šµ/ Þ:BìgØ„WãmÎ+ˆÒ}¾Ã¦½‚(1(ÏË›øD™Æ¯ùXû"~Èñ§K~ˆÏ‡7öD×§¥éÒ_ Ú}Bäï¯t*õŸY­}ÑÆIúwº ˆø÷ú\ DÏGŸït90ä›Ê›ødíc.k_@tþGžßri0µéå}ñ¾(rýË%Â@Ö¿—Ë„.ÞØP Ëà]. Dù…¾–K†ìû{¹lˆîOí¹tȾß×´öÄùú—sz/èâ}¢ë…Ä«ÀõÃ'ÄŸE£‡ÀÛœXÉŸxáýjy‰?b¼P›9~Åûiò&áÌÛ´XPÂ^ʯjùUíû—W 1÷Äxjù##’¾4£54{äµÐÌÑ‘7}yñZgÓ҃ŧT¼xÖsp …ýÛ™¶‰± ùB2‚´¡It¿…8ZŒ¢›ƒ3¢ò‚ôk²y± 9ÞnI6-D;ôik› ::‰ŠÖƨ€,msbAXNic@l mF,h¾ /ÆpîˆönŸ/mì ˆ6l”>Ï64ß²-feÌhfM&x­«niÝo®ÃsæÏ}QO:57kL@tcKh› š< _ic@ô±_oÌæÁ‚öÛHÝ0Û4XÍüÕ[Ö˜€L¯› "Ñ-W^l,;T*mB Ð\ï}› :å!šÿbŒ ¯Ð6ÿtt1O®í–îÝÑ6û4ç‹M~ÙûžÖ˜€è &½Vmê+èÔ`x-¢sp õhÕŒ§ NKSláo` mÞ+heMkyªÛ¹o •TõñôspFT•N­6éDëÉ­6ç´ž·S«Myínyô¾‡5& «MxQ SÎÝl¾+h¾¯c^+§Z==x³Ù® 95™§A7Ƙ€hTˆÜ溂NE—G~˜ƒW1‡Gn3]A»µ¡Ml¢tDž÷VnƘ€V}}¬Ù4Wy5›å ¢ëxi[šÖw%¡Ò&¶­G%,ýÁÐzkö4ªÃ˜y‰ØZ· ® <ºžÛæ·‚hìôÒ&¶z {4Æ4»&‡¼Ö‰98ê»æà6·4ßoV<¶[Ÿ4³é6³DQÊKcš]ó^^Käh‡ûª´MkÍ®Y;¯r4ߢýÁÄ óªÕÐäàÚ¦´‚öËB3Æa3ZAæõ>lB+ˆÞ‚ÒçÃæ³‚f}£âþƒ1& z =]6 „¯Z ]2 D…k9÷t¹,ЩçÓLlÚÝ¢oÿ}cL@æ57]" 4ß: ¯%Q-Mæ0߬gº4hvU¡yº4ˆÒ¹öÒÆ˜€&—’@»4ÈXêri,ÞíÒX cÈË¥±@§`OK1c²ˠ] D"¶¼´1‡¥i¬ÍåÒX cçË¥±@zž—6Æd:u¹4è|;âµÌÁ­ªu™òØ4VÐú¢¢?œØ"ˆÆ›Hh¢µŽ5 ZM]”fëgstF´ûzéÙ-Mïš¡Ÿñi²~3gDÊTÏmóXA«kňþp¬IÐjê4™~˜ƒ3ZM…Iyl+h½rž'ÃOKã]Ó´µÍcaõu¦“  èdE;èA»~›à ¢ó÷òòÆ>Š”q͈xë9>PÂúÊ›¸DÇ—¡¥Ú!‚¨½”¹yª©9>ʸ§LÌsIÍñQÆÍM³&ú‹‰=@l_z|›è ¢û“4šf‹û¢óOmoS]A|üöòÆ>€èvÒö6ÙDÛÕ>‡7ñˆxù Zš !ˆ>%«6›ï ¢¯Áò*çY‘çø@ô5TŸo³¯ ÞSÛÛ”WñÚÍŽˆD_C›Ø_³I¯ úÚ)îhꡱ úZZ´½M{Ñ×à~x€èkîÐû³Ã"ñõKÿv›ù ¢ãKžEôŒ}%”,”7ñ(a%ð6ùDíõþ»!ˆ¿†ëñmú+ˆž¿Æ÷nó_Aôµ^í«ÛX}­×÷_·° âµÿ» !ˆx͘†ÍÑù5> › âÑååMü"^íkØ4Xñ©¼¼±/ ²?Ã&‚èú³¶·™° ×ަ‚h0†Âé/&þÑõiê4ì0 At~Íú†Í†ñ¾Äòü§K‡ìñ§Ë‡èú4_ž."û6¼±/ âõþ¦Ëˆx4…ò.%"ÿÕø4]N D£ ôþ§KŠäk>x;LBñjÓ¥Å@¼]hyyc@´™é{ý.1JíE[–ËŒèk¿Æ·e‡I²ç_.7¢Ñ*H–KŽèk½Ú÷rÙ1Ï|ô€x4€òv˜„ Ç»üèâ}¯ñs¹üxÉ0ÿGßï£i6þβüã_Nºñ³jlÛ3Ǧó§È_Þéoõç¢Y[ß<”=_@À.µ¦ìzǰɩvZ]Íä@ÃSöy&ç4|å}Î^Ðð¸•39è½³¿ÍäœýÔe²òš_œã²Þ…·vúê´òW¥qÿjãö.Umæm“+4ÑåüK†ˆÙ bjjËb=»=-(ëW ŸY Ãr¡áe,» Ű„Ë1õeËõe,;¦e‡»*ަ/ tXþÐö²@–e‡»*ŽÃ/ dÙ5-»ÜUq ~Y —Åì eYv=–]öª0âeË6ú²@–Ù²Ó]Çí—:,G헲쨖îª8b¿,Ðaù³ÞËY¶wËvwUë_ȲÆÚvZktØe­]eµ zYÌàPVÐa“µvA–5Ö.è°ÙZ» Ãkí‚,k¬]Ða«µvA–5Ö.è°ÍZ» Ãvkí‚,k¬]Ða‡µvA‡ÖÚYÖX» Ã.kí‚^“H”dYcí‚›¬µ :l¶Ö.ȲÆÚ¶XkdYcí‚[­µ :l³Ö.ȲÆÚ¶[ktØa­]eµ :ì´Ö.è°ËZ» Ëkô²Tm7æ®ÐñÆà>Y“Whøl^¡ãÙ+4|±†¯ÐðÕš¾BÇÏìøé¯¯YóWhøn@¡ãGuüð×7¬(4ü´n Ðñ½;¾ûë[Ö:~UÇ;o9//ÐðÉ:„BÇ—PhølB¡á‹u …ŽÓñÃ__µ®¡ÐðÍ:‡BÇÇñÞ?0±çðýòÌì±¼÷Lí9ü¸ü#MçoýC á—ó‡Çä —èxë Ÿœ4|vþ!ÐñÖ?¾8ÿhøêüC ã­4|sþ!ÐñÖ?¾;ÿhøáüC ã­4ütþ!ÐðËù‡@Ç[ÿxxLTzy†OÎ?:Þú‡@ÃgçoýC á‹ó†¯Î?:Þú‡@Ã7ç ßt¼õ†Î?~:ÿèxë ¿œ<<æJ½¼@Ç[ÿhøäüC ã­ÔK)Ë\«Ã_ZYæZþRË2×ÊòÞ?ªÌ ï$³BÇ[ÿ¨—j–¹Z‡¿t³ÌÕ:ü¥œe®–å½T'ž:ÞúG½ôsªN@+<|sZ¡ã­´KEË\¯Ã_:ZæzþRÒ2×ËòÞ?šÓ ïä´BÇ[ÿh—¢–êòá/M-sÅ©j™+fyïÍ k…Ž·þÑ.m-k£þR×4—ÌúG»ôµÌ5³¼÷î$¶BÃ;‘­ÐñÖ?ú¥³e®Ùá/¥º“Ú oý£_j[æªþÒÛ2WÍòÞ?º“Ü ïD·BÇ[ÿè—b¬ôKyÓ\6ëýÒÞ2×ÍòÞ?º“ß ?œWèxëãÒà2×íð— OÃÉp…Ž·þ1.%.såiq™+gyïÃÉq…†w‚\¡ã­ŒK“§áD¹BÃ;Y®ÐñÖ?Æ¥Ìe®Ýá/m.sí©s™kgyïÓëóyëóéõù¼õùôú|Þú|z}>o}>½>Ÿ·>Ÿ^ŸÏ[ŸO¯Ïç­Ï§×çóÖçÓëóyëóéõù¼õùôú|Þú|z}>o}>½>Ÿ·>Ÿ^ŸÏ[ŸO¯Ïç­Ï§×çóÖçËëóuëóåõùºõùòú|Ýú|y}¾n}¾¼>_·>_^Ÿ¯[Ÿ/¯Ï×­Ï—×çëÖçËëóuëóåõùºõùòú|Ýú|y}¾n}¾¼>_·>_^Ÿ¯[Ÿ/¯Ï×¥Ïe®¢ò oüC¡á>Whx§Ï:Þø‡BÃ;}®ÐðNŸ+t|ïŽïþúœ>WèøU¿üõ9}®ÐðNŸ+tü쎟þúœ>Whx§Ï:~LÇ;ÿù’/Ÿ.}.&és™1iyç´—¸ñ…Ž7þ¡ÐðNŸ+4¼Óç ¿Ç/}NŸ+4¼Óç oý#]úœvv¶þ‘.}.ó6és™¸iyïÉés…‡ÏNŸ+t¼õ|ésZiÐúG¾ô9ýÁúG¾ô¹Lþ<ü¥Ïeöçá/}.Ó?-ïý#;}®ÐðNŸ+t¼õ|ésÚj×úG¾ô¹Ì =ü¥Ïe ©å½d§Ï:ÞúG¾ô¹Ì"=ü¥ÏiW6ëåÒçôëåÒç2 õð—>—y¨‡¿ô¹LDµ¼÷âô¹BÃ;}®ÐñÖ?Ê¥Ïik5ëåÒç2—õð—>—ɬ–÷þQœ>WèxëåÒç2Ÿõð—>§D­”KŸÓ¬”KŸË„Ø—¯—>—±‡¿ô¹L‰µ¼÷êô¹BÃ;}®ÐñÖ?ê¥Ïy‡5{}—>—Yµ–÷þQ>Whx§Ï:ÞúG½ô¹Ì¬=ü¥Ïi[ëõÒçôëõÒç25÷ð—>—¹¹/ß.}.“s-ïý£9}®ÐðNŸ+t¼õvésš¿ký£]ú\æ÷ZÞûGsú\¡á>WèxëíÒç2Ç÷ð—>§Ý¬´KŸÓ¬´KŸË$áÃ_ú\f þÒç2MØòÞ?ºÓç oý£_úœ“·þÑ/}N3‰­ôKŸËLcË{ÿèNŸ+4¼Óç oý£_ú\fþÒç´d»õ~ésÞ0¦:ÞûGwú\¡á>WèxëýÒç2cùð—>—)Ë–÷þ1œ>Whx§Ï:ÞúǸô¹Lz>ü¥ÏeÖóá/}.Óž-ïýc8}®ÐðNŸ+t¼õqés™8}øKŸËÌiË{ÿNŸ+4¼Óç oýc\ú<§Ï~z}>o}>½>Ÿ·>Ÿ^ŸÏ[ŸO¯Ïç­Ï§×çóÖçÓëóyëóéõù¼õùôú|Þú|z}>o}>½>Ÿ·>Ÿ^ŸÏ[ŸO¯Ïç­Ï§×çóÖçÓëóyëóéõù¼õùôú|Þú|y}¾n}¾¼>_·>_^Ÿ¯[Ÿ/¯Ï×­Ï—×çëÖçËëóuëóåõùºõùòú|Ýú|y}¾n}¾¼>_·>_^Ÿ¯[Ÿ/¯Ï×­Ï—×çëÖçËëóuëóåõùºô¹ÌIW^¡ã(4¼Óç oÇ¡?—>çýî§á/}.³Úés™Önùé¯Ïés…†wú\¡ãÇtüð×çô¹BÃ;}®Ðñãqüð×çô¹Bǯéøå¯Ïés…‡ONŸ+t¼ñ…†wú\¡á>Wèxã ïô¹BÃ;}®Ðñ£:~øësú\¡á>WèxëéÒç2Iÿð—>—Iú–÷þ‘œ>Whx§Ï:ÞúGºô9íÁný#_ú\&ùþÒç2ÉßòÞ?²Óç ïô¹BÇ[ÿÈ—>ç}Ôíõ]úœ7JŸŽ÷þ‘>Whx§Ï:ÞúG¾ô¹,pøKŸË"‡¿ô9ýÁúG¾ô9ïfn¯ïÒç²ÈÀË—KŸË"–÷þQœ>Whx§Ï:ÞúG¹ô9m)ný£\úœ·¯Ž÷þQœ>Whx§Ï:ÞúG¹ô¹,RpøKŸË"‡¿ô9o>ïý£8}®ÐðNŸ+t¼õrésYäàåë¥Ïe‘Ë{ÿ¨NŸ+4¼Óç oý£^ú\I8ü¥Ïe‘„Ã_ú\I°¼÷êô¹BÃ;}®ÐñÖ?ê¥Ïy‡m{}—>—EésYdÁòÞ?ªÓç oý£^ú\YxùvésÚæÚúG»ô9oƒÝïý£9}®ÐðNŸ+t¼õvésY¤áð—>—EésúƒõvésÞ«Ú^ߥÏe‘Ë{ÿhNŸ+4¼Óç oý£]ú\y8ü¥Ïy¿is}ýÒçôëýÒç²HÄá/}.‹DþÒç²H„å½t§ÏÞés…Ž·þÑ/}^ºÓç oý£_ú\™8ü¥Ïe‘‰Ã_ú\™°¼÷îô¹BÃ;}®ÐñÖ?ú¥Ïe‘Š——>—E*ésY¤ÂòÞ?†Óç oýc\úœ¶W¶þ1.}Îû'Ûë»ô¹,rayïÃés…†wú\¡ã­ŒKŸË"‡¿ô9mblýc\úœ79®Ž÷þ1œ>Wxøéõù¼õùôú|Þú|z}>o}>½>Ÿ·>Ÿ^ŸÏ[ŸO¯Ïç­Ï§×çóÖçÓëóyëóéõù¼õùôú|Þú|z}>o}>½>Ÿ·>Ÿ^ŸÏ[ŸO¯Ïç­Ï§×çóÖçÓëóyëóåõùºõùòú|Ýú|y}¾n}¾¼>_·>_^Ÿ¯[Ÿ/¯Ï×­Ï—×çëÖçËëóuëóåõùºõùòú|Ýú|y}¾n}¾¼>_·>_^Ÿ¯[Ÿ/¯ÏץϿ¿JÈ5«Ô=jõ«³NeTý¯Ž ú•¯¿ªª~ÅjìzXûäüï6ÿôíÿ……›zendstream endobj 756 0 obj << /Filter /FlateDecode /Length 497 >> stream xÚuSKÓ@ ¾çWŒrJ$2G'™ ÁAÑ"q@›pˆÚ´»¢iJ›Õjÿ=öØIf ¨rƲ?~V‰ƒPâs¢øýÐ$«5BkY;gD³Ú¬¥WFTª”ÚÔ¢Ù‰ï™Ëu&u^hðf_‡¼°:Û=‚qÿTN0V.krp¡ñ@h×ügóeµq•¨e]š³(QX/­*‰ÿ}^8c!Fg-Èä‡r ž“°iyy²] ä h²Î$ÆT¡½¿S™s\¸P½± ç-RòKMR‹XQÊÕ¦Kè¿`Qá)3G)£oLlâÞØÓr%Sö3Ï©cû”>Æ1¯þS“hP”ÐóÊar½vbÛ'¿Yé’‹SVw½1âã|ƒßä+&Ê"â Çæ£#˜@Ư¥3žö³áƒ:> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 758 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-colorNamesMultiplePlot.pdf) /PTEX.InfoDict 370 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 373 0 R >> /ExtGState << >> /Font << /F2 371 0 R /F3 372 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 6966 >> stream xœ­œM¯&·q…÷ó+z™,ôºÉþ ¹•‘6 ‰È"ÈÊq€ŽÉÏÏyŠlÞ™‘¬kh¡‘jØÍ—],ëéVÚ~¿¥íûíÏþeûó¶¿ö}ËåzÇvYVÚÛ+]Ûÿüqû·íO¾è¬¯³Œ«Žûx]峫~óã¿þ÷Ûo¿û þö?“ÿüî·ÿÔÿ¶\Ûÿ~ø÷ÿØöí??¤í÷ýŸï?$ÿø?~¸Ó«Ûq^ºêÓ‡;¿®ºG{íçöÇþs9wó~å0ë½¹)Éì7éâ¤{ºy¿N]œ_µÉ,¯]߯r`–½›}ä·Ìú:úïû뾺YöW¾}ïq`¶Ýf¿§›ýNª™ù•ªGUwÌš=ŒÓæù*ºø|% CŽÓÅÇëvÏ÷k×ÅýoæÝ÷Ü_‡‡Q^‡~·¾ªÍÆã×WJ˜zü³ûV=×ýuõ‹ÏÌã×ôJ§Íþ6åœÞs±yøñû˜›ï=ýøçù:/ÌV}oÑÖëu÷ß=íÁnÞvNŸ£Ë­Õß[ÏSÏ v³½Ny²¼š~·í¯´{ÌçYø]{£eÿzízÀvøñÏéØèSå{OÇÆÙðF»ìœ«Ïœ»*~üÅÔã_™ùmÕ±qïò`7›c£ŸÃ¬›rÎÕçW÷¦=ùù;ÛWÕ_c+<º}Ò~8>ºm¥ý´‡®>$Úo;áéï¶žû‹c¤__‹íê Qô×°å¦>úC–úâ‘'úðý¬)%»¢_Ÿö°(·»•)ýúÒlöÕÓßewôñä+lûã÷ߎ–«?f [áÒ}íõR!^Úè¯á]NïvÞñÇŽ»e×üDPÊŽŽ9ï)g‚¦‡’?ŸöÇ•X%²ån·dûrܬvc¼;ýßö×uí© ˆüq¬ö$Q8m×¶ƒç&,ÓáQ{òøûR·¿nDê:a4M«ìƒø),òÔµÀñSâùºÝÖßïj`%Öjê‹Çþ(,Ö$Øí¿{Û«hø« ÓÁZ·¶¥þòWÿ×åþÏÙ=üsN•%Î)³Ä÷‰ÎöÇÞi?í¯îV ^:QÚnßô‡Ôöë‰×­}ìÛ+â»ÛòWwssWÈí¡°zŠš®Ü3æãBqû4÷ß'úd_ ¾.4÷iGt{˜1¿ª›jøçBv{Øò¼Ý–¿ºmñH«edÿÞ(o_F<ÏôjÙå°?}™zûH}W“¿úý–Èt£¾Z†9lù£/£Œþöef¥K7Üeu[þzl$ø±Ñàn'ÿ^A„÷K­øé2å­1õýMþê2¶s=:ÜmÖg±ç.¢…û­Ä¹Ý£KqîzJØÝ_j?<Åb¼ØVãÜœõY,ǹomØÝq²ñwßéý~_FžŸj=–}–°›®OáÏj=^î·ç¾%¯ÝîþÊýgî·çÞ úR-œYÇS­Ç¹w¿g=Îý2üQ-|Y»™ûo ô°©aÛÓF§¿z¼Ú…ùh\÷ùòF˜päÑ·!⯡Çs¾z¼÷õK{%~bþ󎯶ã'~?ïèq·vå=îÛÖ>lÇO#óÈ;z<â?ïèqßF²½ž y[ÞÑã¾îwàÏõwôxijìÂx½¿å„çÍ)?á_ÙŽŸƒ$'ë±æ§rÿIüì¬GÙ?g³}?ÿg-ÄêöÛzœ™VlÅO·úoÄO ÿäøéãKa+~f9³ž¦}?ß²?ë5gëñ\?¹ qb}6?OFû4:•mÔ1ô¸Oû}„íø™×7â'ÇxôxèE>òÛø9òˆÇ>Ž7ú“• ÃýèñŒŸ=~ìÐãDüÊnÄC¡ÿJüì1ßgè±0²C³nöìÇù =>#¾û~'u›ø?CC¿óz<¯Gû4æ¶ô¸OãÉýÅþÊù`>#'ŽÃF¾Ðãþw »,ûc¾ÐãþØÎ'ò•94Ä9 _$ÆÝ&Þ.2ãq É©ñ8EÉŽƒƒ÷ã¬Äe²ÿ|‘>_¤ÇÊÒϰ¥?ã,‘ïÓCÿ3l®ˆŸ›üx'òM~ÜÝ|q?ùñ郶óÁ;æ§ï‘ÿ°^Hd—þÈûõÖgÙÎ#ßÌw{“Êv>x£×¹D~zŸKäÇGrØöWý“«`6òãž–øy½1öëKä+ÂÛíÎ%„òWŸßï0»Ýù™lù£OëÎõäÇOÖcÙ-…]êz?ùqÏ?®Ý6z¼ÚŠŸ;ãE6nOT+zûyÚFfÖ?f =.±?HÈ?³ÿDÉ¢_oÿ*ñ¼ß\—Èßd+~æó$ô¸dâY‰³Ï£5~?£Ç}>=ß²½ž²¦U6z<ίGF»,x“]ög½úà‘Ÿõ ãçd¿‘çsŸgŽ\Æùü¤?*}}y¿—0§ý­]ÎÕFûýÖ#Õ…v~ßñ-û¾Ÿó¿*W]í(U,v½Ÿó¸„ûÚÿåÍyÔB¾œw}pÛ½>½?¸|t>ë˽úè©„ÚçóÐk ñùÔh´P­Ç¡÷úº¬ul=îóiÿžQψóµì8/˾—óq‡žçÊa[2ù„éªÏùV ÞŸ úªrik± ÏG|]èñ¨ ibì¯Ï{…G=Ãñüè…|Ÿ =õì/ôÒçQ ÷ýÔCÀõ ÿøiû›Vÿvûøý‡¿ûè®Á½ÚSûæî{Û{ïÕy¨øÞ´ïï½Y«üˆ›ÓOÞÌYëþÅßTx‹ƒX·÷íïÆíHRíÊ{ïW@ÒdRqÑ_`R?×Õ öóv÷~i°Ã¤T%ëª;˜”L¸’“AÕÀÌ0)™® ä\s«•E¦wR˜”ëeeLJ¦÷E˜”ª_#«ŠŠg5̦‹+‡P˜TêR›&¥Ö#Ì®8© % É‚¢:™7˜”ÊdÖg˜”ªbÃìê«V/^˜”Z-Ö0)õìÚLÊ9Ý “Rëþ0©T9rÞ§ò¦Ó:™çäT\sÖ“z.vΗ8ª &åÊïuFg3mƒIé^o0) Ãû-LÊUÇI¹H¨‚IyÌú!˜”̈J±Q#†I©õx˜”º²s`R«Y¤·5˜”i`“R-1‡içT<Lj±3&LJ¥C;3˜”JÆäÏí\ïÎvÞ&“R©Òƒ &•ØŠ&“R©ñŒJnê65r˜”JÔ8aRj§¦“RÔðaR*mÂd`Ro[˜”íc›LJvüžg@vŒªÅxý<0)ý>Ì&%›š0LJã=†­é“ŒÉ9ž®‡yÀ¤Ô~ðNüQc<0©{Ô`RîoaRI5JÓ¿¢æLJ¥Øs0(Õôö=jæ0)æãO¥Z LJ65h˜”JµüLJ¥Úº0)•b©áäÔÌŠè*LJ¥\˜LJ¿w [5P•‚abÔ@u?Œˆè~““ÒõÄ3LJý55Ð}0˜”Úa(0)ç†qÝø£ÆóÀ¤TZ†¡Á¤do0)Ù÷°í¯ë &¥Ò3ýäd_0! ®lÆ “Òýqý¿ÄIé÷ˆ/˜”lLÊãƒqYvuÿ1ìÆïÃL`R*uÃ\`R*Ï0)µ³þaRY5w˜’ÏܲO®·úÚ.ÛdR~^®¿ˆŸ &¥ö:Uø+ìŠ?¦ÝðG%‡&¥ñ¯0)ý¾wÊ`R*Í£O0)•ò‰ç`R)¶´Á¤TÃ¥˜TŒ5˜TzLê±aRú=Æ“š /˜”Æ ‚I‰q`äR æL*Î\ƒI‰À¨`R)jHƒIõþÏ•IÍx &µ}ª¡Ç-gz ã…II/ˆw˜”þzeRÒ_ô¤…çX?mêñ´ z3„Ii}æ…IIñ_ =.¡¿-ô¸Ä|Á¤Ô5ð=ôx±­Çqæ &e}‡Q¡ÇÝMuØÞ¿öÁ˜Ðcí\ƒ…IÅ4N&åi¤=ÖÆî#LÊiŒ¬±—G6LJn§æ “šûq0)ûoß&“ò~3:ðGì·Á¤t?¿“ÒóØû×9˜×¿FM4M=¦†LjæLJþÍ0¥Ðã=j¼0)·{¼Á¤ö=jÖ0)ï_Çö0©=ô'˜”ó…Iiþ®Á Æ~~n“Iéù/LÊ÷FÕ/L&åx† ¥±?Á`ŽÐãc0¦Ðã8ÓÒ4ÃaRÖ7˜Vèq +ôxÚ¡Ç5jöGèñ`<0)ï70ôxfLJöyo“Iéz˜LÊû±Ÿ&%œSa 0)…QÜKò6™”ÂF“R;5q˜”õr0(ëñþ¾BϘÿ+ô8Þù&%›šýz<ü{…OFzÜâù®ÐãL&¥væ &•U:^˜”lÆ…7ô%˜”ô”x€I©˜Ø§?`N¡Çm0-ôXË m“IåñH0)ýþƒBs¼}LJí0˜”–Ï“Êù¤´lx˜”–Ï“Ò2ÙÁ¤´,`v0)ÙÄL*çáŠõºÿJÛdR^vØÖc]>À¤´l`œ0)Ù<LJˈõ “Ò2‰v lçëÁ¤´,`l0)-›{aR²‰7˜”ûÇvÇ^†0'ë±û?·É¤t?Œ&•{ÚIÿ0)ý¾ó¯`Rj?£Rüt¦“Ò²e}Á¤¼¬Ó6™T>#…IYèŸwŽx§(˜”e€ñ Çbb0+òcÕì]ÃIåÁHƒIɦ¦ “²L,LJ¶ýLÊíôG~|Æ~LÊvÝ&“RÿÔhaR²a0© ˜LJö‰m=öx=˜”ý B8“r<Ñ~Œø©À¤4ÿ<LJ2íè±Úé=îö¾0)ÍϹ0)Ë4÷·?0 ôXh%o“II–©¡Ã¤äϼ0)Ëî¹M&%™¥¦ “’ÌÞ0.ôXó{l“IùzÚÑã3ò`Rò/þ‚I½±#~ÂFû±“²ÌÛñùW0©ÅFW[ñÓe=/LJ6Ì&¥m€š=LJÛˆó¯`RÚ6œ“’M¼À¤¼ ,L*FLJ²L =¾¢LJíÑz,Æäz†d>/LJí0 ˜”¯‡q¡Çw¼³L*FLJÛë&¥vâ&•£&åþ<^˜”¶ *LJÛÆEÿè±l®G»M|¤´Mìû6™TîÇ,Ö/LJí0+˜”î'~aRÏõ0)]Ÿ±Ñã;ò¹`RYUF˜zÜ·%â&¥v˜7LJý£70)ý~¥zÆ]BûõÁ”Ðc1­…I)žŽ…I)¾KÚ&“R;ë &¥õÀüÀ¤òd"0)Å/ë&¥4#õŒ+öã`RNK|?LJãƒ)ÖGa@¡Ç“aQÏ8k0E˜”îÇ0)õÏz‚I)þÑ3˜”Ó®§žqæ“Ê“áÁ¤¼>&¥þy^˜”Úñ?LJv…9¡Ç׈˜”F…ßùj0)Ås†1QÏxlôxµ½ž¢|LJ¶×󝯤‚L&ö_2ª·êÍÝ“J·'äÓüî…w¾¶/ÛÍŒÂ\ÚU~˜U˜ ÓÒ¾“¦…¹´kyúsig@³ý߯ìT'êóø×±#ŸŽ<¥÷ÞìÒK€§üî›õQL ûx÷Í©o>úæŸB^>êW×?y]e|ÍñÓÄ‹kþðú™Ž¾XH}}¿“wéíŸsâ®ò|rÕe¾‹³U ØUâ½8X×ÝÖϯÆ~麃èºÊWZÊÆNæÒŸñ!V—©ûâÔäÒÑëa\w(>ˆ«ÖçW×§×gGøÖ¼Ò‰¤žÙTͲuG•¸uGÛºã-TÐÖù5dk¨#`Kc6åÔP¿ßVõ§ÕöºoƒjIeÝæ¤Q¥Õ‡ié` «?m‰w–!Z%Þðh•ÈÅáYý™=NpÛÛ Y5NÀ¬5UX–6ŠeÕ8OA²tèrŸNþ«?­*U¶|Pï½8€bis©Û€Xm|wÃzL×Ââäz;Þ|TÕ~ ~¥ÇY>©ª£ú ½ƒx%ï.ßS ÿíÛDWeTê!W¬ËÇT«Ùƒ O~`$§ÃA­æ‡@«ï¥³ªo‘UÄb¥<‹)õAÖ…WiÌã“©äÙ‰/¦|“°ªÆ÷zÁªDTEÂ0I•Š‹½ÖT®ÛäTm`0•ë1C©&”£Ú°š}:z Ý ¢j“89㛨Úà+ð)…Èʧ4íü2|J“•>¥¹d&àSš.¾qOi‚öñ •êÃ)ΗÁ§Ò¨ïŸrlÀ‹x `õnø”ùO9´¯R=}o檲2ýó&À>ø|*õcøµo“O-6õÐýˆoÌàSjO Ÿ’X=ð©4¾Ù>¥Eu,ßLéz¾yOézx#|J6þ…O=ã‡O©=¾Ñâµ€ýŽú?|Jíðø”æÿÁ§4¦>%çt?¼>åçq\§ô{,bø”æ;-ßLÉÿðPø”ü½ò©ÅæÇæ}|ƒŸÒüòM%|*QÆŸ|ê‰7øÔoð)éñ ŸÒõÁ—xU Åù ø”$±€O-6o ¨ÞÉøx] o8Râ >%Ÿ’‡íõÔ‚Á§ROiÚøFJñ“Æ7†ð©”¢|JvôÇûé| >…^>|jú#øÔøæbð)}#7¾¡²?Žð©9ßÁ§VÛñ|&ø”ô‚õ|j®ïàS)VFüß‚Oí£þ|jµíhð©}ÔƒO }|ª÷‚?Á§Ï|Jë}ðªv>ë7øÔü„‡8mñbЩþÌËSbM|ß„×íAS5òŒ S-’³SÊ –o¥jXÉ2\Ç—&P©±”zL/™×6‘6‰T A UÇ7ð(}’ç1Sg¯y|ádõ­ñòGÀ¨šÞ|Uâ¨(J?´(%by› ª çÀ¡úê LfÙU±›òqzŽ ¥Mz0'=þ@Ž ¨¬ Pø X&“?}7ðÓcZmk¼lðéù]G…VÔ‚žFŽä©?O-ÞÐ îÔæ§S.s¶ñeÔI &PéŠî^˜ÓüŒäÔ‡Q‚8ͨ8ÕÁÛàM§‚›Z|Á´©?/Åy`S÷yƒ5Ä5PS7#‚4µý1{lH.–oŸ&F3Í•e/Id¹Q0&!Ù²MÄ4¿*„0iJŽó:ø|©Æ+ò—F>tIšÊ½ä¯óâ‘¿‚Ò@K”&Yªñ¢C€%Ý '"=6"½ƒB@•êøP¨4—L©–@. %ºM¢4—3@I« ¾dýÔÁcà¥æTZMâ 4aRZl°¤‘¯Jªƒ”B’æ²Â-5ò”àH5^ Œ4©>i¾4DªW0ŽÓ“ ¤ÿ¯Š HÓ±¤‘ ?ê&>Ò¦9h²I¦ŸaGu .ÐÑ$ähœmQž›ÜH´ñi“·•}|ºärN‹/³‚u“"5Ш•ñ]”Cj¼BȨÝQQ„µøÈ/€Q‹7ƒµØ®iÓ¦µ…pðCÀ¢¡2ÁŠZ(Ǻ©{ùúhè&…T@‘‚e›œ¨ÿ.¯æ§™¦ò©A*c[Ÿ2ŶJ™L$›²*˜HÛrY0ÑÜæ9mÛ¦ö!ƒ5ÀDioãzÞqM£ì &ši]`"¥Y”IÁDi¼–˜H'ºézÊþ`¢7¶ÓŒi“¦öaƒ­ÀDJËòé’Æf8"Mv¤©‹]I;wú·œ:­\>]Zú'MMqÌ LäãìøTé íäS0‘®ã‰ÔöÍ´60‘N­×òé’ýÅõVýÞ 6âµ×<°"˜È×_ÛÄD:#§…?¹ŒO›¬®²ÓðÚëø´70‘N³m`!ùãŒ×dÉÛ‰d3>0‘N“`ø„NyÁD:]‚!ÀDi`ïÀDi|*˜ÈýƒyHS…½L”H&&ÒýiÁDj Äk¯:Ms=iê1Ö˜H§sü&Òé¼-˜H6ãÉF‘ÀDº?,$gøL$‰dƒÁDò?ñ&Rÿ`A0ÑÒÎkTGü¯©?¤‰:šîGõÀDé¸Ç§H” æõ`"õ—L$OÛþjñ{`"W°)ó‚¡xJÙÒø”Iñs]ãS&Ê W”ÉÆ_T}R³èŸ×¨®ÍÀD:½_É_ó~0QšŸ’‰t:OãS%ÅOO…Àt`"Ÿæ±)+<6z¼Úë‰O8êÏëýWÃDÔÎ'%ºâ¥û/ Ñ[*´Þû0¢ÛGËOó3²§í‹fï…XO+g–Ñ'˜ÙÚ\•­X \êÛÆ¹À%Ì¥]êþÀ¥0—vÑÑ烩0W¸åGyàÖ|²_. ž_Ý÷PÍ‚–ÊïÅRÙЕ›ï÷Þ|Y¡>cZ‰÷"#ª¶ƒáE t}Ö>Ìì#™Ú/Çùls¶ë$Ý×ÝhæÓ^V³=ÌÙûø_˜Oû:àgü³}uÎã‘ÇMůE鈗횼ï÷7{úæë_Œ}­Kè—]œï颋Mßµ?£ %ûÆðYiGÎ^?{ò>_âd_vñS¾øY© oWtÓÈßýîk·/·,=)Äš^@Uò¯»?þ÷§?¾¹ýˆÛÏÏn·­ûŽ~î÷`¡ÿ7Iè‡ÿ@nendstream endobj 759 0 obj << /Filter /FlateDecode /Length 859 >> stream xÚ•UKoÓ@¾çWX9­%¼õîú$8P(‚"ÜÄM¬ÚN±¢ü{æµ±Ó†ŠÏÎÎ7ïÇÁ&ˆƒ³XÞï–³›;gcô"Mm°|ŒMtÛ 3mì"X®ƒ* Ò6Œ ܪÛm ÇnSÓ¹†$qj›‚0TûÂ}æ ‚=š[_¹ߺç°J|Cöª_Té¼išRNÓ1¤Æ×Æb’*,H½é8iÄ^ùþ¢ÓÆÑøÔì ¢¹GÓü²I£‹Ä±±·PSë-E‘Ô·ð< 'âÏŒl‘²¡3’^W⚘jDç~Ô…ä7xܨ󹤖÷ ¼«Ä£¹x;¡+?Ë/F)_øƒh™ ç‚ì%#4×ÅÖ“¤=ŠX/¢•@ç/órÞ\–3D˜óƲI¬³… Víì÷Lç&c‘¢ ÆÍ§Öºàýnö~þ.ò*£‰NÚ•Ó•u¶k ç ê[ ã9p4ÐÈ eÝë0Ê` .q‡Ô¼Ô’¤€1(Ÿh­ÐiØRþ ƒGŸ÷t&²ü$@cÜ÷´èöSƒÂ2Í|!›ÑëÛŽ~ÒŽDl÷ †®õ#­¼ƒtj©}ÃáV6vì?n¾(q¹úNí(]EËÜp'ìT“2âÖr;ñ%†²4ì¥_цoåGx\0ÅnR7ëbøÐ…ò?“2ÐûÅÇ+õ@Ö4üäá kà#nÄ©GÞQ˜ÕÈÅFÛÂ^&Wªìœ£äÔhõ‰v­vVÙßDï·~z*YoXšþüÕX™ÿ$Yò‹F½mwÃx±bKùJ:Ù$RÆéþë˜,Ó¤#2q¢+0W<Ÿß¿:ëQendstream endobj 760 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 761 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-palettesMultiplePlot.pdf) /PTEX.InfoDict 377 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 379 0 R >> /ExtGState << >> /Font << /F2 378 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 15140 >> stream xœMÏ,Çu¤÷ï¯è%¹ð«ÊÊåH˜1@@dã… …,s` $Ç–ÆcÌ¿Ÿ<'"²N¾ºäµàå{ª»««²2³žŒŠN¯¯^éõÇ×¼ýÿ½îù~ÕW/ïµ¾JÍï=¿òœïw~ýéÛ×?½~xûÅŸÿñïùúÕ×oéýº®×þüúWÿðv½÷ûõ_o¿ýÝëzýË[z}µþûã[² ^¿~ëé½—Wºòû5_ß¿õü^ê’×{I¯ïLÎú²O¦Êû½T¿/S÷{¹_sØ \ÍfªMSíýn¶åÕLõ÷äª_P½Û–É•¿÷R·½Ë¸Þ“«FÕ‡ïÌmo3Ò{™¶3븚Ó6Íö£¼ËjW1Ußëeµa»=î÷+Y­¨–üM›¿i{Ϲ›ïWvyQ¶ârøÆó=›Lïù†þUæe§È6î¶ñ̶•ín‡·oÛí¥sNÈâ/­v¤ì,Ô Ù /—í½v—·};¬]§ÌeÃQºì¸Øœ r |®mìß{ºÐÉ ½™ŸFÓór݇ëlgÛþ7¡‹}YûŸ¯tÕ÷™¢¾­ešžÉu{O¦Ûû5¨;t*®»{ÙÀçÏ÷TOÝ¡«ïïj·…ºRÏÛu¹]§÷ÚÏIJå½´ð~KÏ__ßïŽ×cûõÂîû× uG}bûníÕ÷ß¿OZíxºnÒÝtþýÓ´Fkuo})ûu÷¼_N¶¡¾¿¼š€éj§Át±Æk:5ê†ã[ýxçúž¡/¼³¿˜.™ºAgèþžëÓ–LÎhÄ…ç«\ÖŠMßz4×~¦’Þë¡3ZrµÝ†nÝuóóSÖ¥9\ÿ>å¶2}'ê=üû—†öYÑ!™Ðï7¬W±ã‡ö]¦H?ÿ7õÄñõK6ÕË>èùüº.^´ßæßou°3ûñÀù¬Å”OÔ«5Üçx-ÝÑC4ß¿z«íÐÝvÄ{éï[‡÷¢S?¼íüvuz?Úøâ;Ù^,éŒÉé=éå‡êÎvŽY¼/v¼!×mïŒêºN½ûœÞ îfÍX½©Éá(.ú»{º:¼Ö?bÉŠ½š¶{»ÚV7˜_ófÒ’õK«GC³dóª÷l©eëQ—L¨Vû÷Õ9âd/Ù\zWÚmmwÉ”(W—j«·¼Ö¬K…'¶­ïÒLVÉÕn×nÜøÜi×Ï’hÝûûõVhôK¶(³ÃGëxgÂèb²¹DÕ«Ã%s¥\| hÎk`\íbIœ…5®oºÆ|Á%Wc]ƒÎôÆÐ‡õ¥K¢«YCåêJׯÞϧ5:®s÷Èd Õ,ßxdëGG·³ Ù]b'×p¹ZéÚmcøÕ²$ú„%W[û(œÖYZxm³&j/ÁÆÝZÝqùÚuý «¢ûYr5¡õ’áÇy}ñÛ«Í«ë(­ó¾ªý¦\± ÁþVvÞ/û‚>%;Y§é9°« Õ(›ù‰Íl5ÎÕHìã ×/¶1?×§ û¤ØÅèÒ{°lSƒºÏo¶a÷>äêØô¹ÙúYÈ›ÒZ]ÂYÈ«×Y­q5¤;»l6hª=›Þ&/¼Ugåk‡5¿µqn”mìæ×0¸öGM4¯QMÔ;)“ýÚ_0§l}¤Ž¤Éõïë°¼¶ZCoå§ÒÎr¥œ.;dS-.»ýŪ¾Ïk0œÞê6žö&Ö®¼º†Bk¢ ÓB“ët¬jLÖ1î·Zã^j‡´&Ê›×(¸:Fû ’³ïk!çÛ›èD—œ×·¾é:ü nI»QÞ1^osžÞ1î§wŒ÷y~-í‹=¯Á.§§m,‰&:Q-Þ1²ßÈk$´Ž1c Ïkà[“ÉÝ6Ö8W£ìÞ1úàÙ\ú•’× ˜]«5Æ]Þâ+TŸêZSñ/¸F‹äôÞt‡¾¡³µWŸeê9\£!µ‚Yf¶žÈôYä~¿ÛÚ¬Õ}ÜÌkìk×3ëË­[_¹ge¦fEè[ÚÄMPãÑîf‘-héféyÝ%ÖüÌzsϘerÖš×80+GgµF½ZŸYxî>Þû,xP·ÛuÆû7Ì2oÌòù®öÌ’M7Ì*qÝ­¡0÷ð}–˜ef?¿klô;¦ÂËg ~SäW 4g‘èM×xX'îZP¯Öü®§P÷ë™eçÕiù,’7hyõK :I÷„öãûg=SŽÛÌ2µÖ¡|?oOÖs?>~ãmÚÛçà%mýô]О;îSó¬¸+꼌×5¹æ‘v³„N}]”ÉŽçä)¥×ýû­ñÒÚçÒ¸v×…•†o¾Ë.´áu?Ÿåò¿ì÷3íísbÔ(—€ûõÅNÄ:ž)aòR.ômísiÿ¾Å¦ï ûÓ©êõîwE«~ãõÃoÔŸ÷~§¾ê¯ŸÖ»>ï/îÛ{}ýÅÚóÞ~ ‘v»ž.´ÿ²î"¯;|Ÿ¥´Ÿÿ’¼aùùJ®nÙ½S‡nÐ7tG{æ]¤é»Lo% Ü5ñz-k¬ä]‘·/Ó#Ü%•œp×λæ²î*ÓõÜõšæ]ÓD½¢=o}ã®=èó¹î*½=W š¦gyîÂËDy×N=u×¾õ¬Ï]qYw•÷ŽÏW½¿å]aY#é w™e ¥7 ŽÿKS®/Ó½?ýiYƒkéO]Öø™31ÝçÓß—5 –pý›f; 'ú[Þå–5ˆò®Ý§†éx×î÷q¦tÅöEwíh_KüÜe–5°6Üeâ|×ð4ïÚý~­¬»Ê =Qèo ¦xe ®ÇÓg€e §µ=ýMYw’¼kGûYšýmC=£}V¶ç5žò®×ÏÒm„ý_ã+û[\÷½Û'¶oèouüÖxZпÞz^ñý¦îÚñyë“wíÞŸ›îéé¿KË P7Ï÷OE¡&u/¡ý­Mïo;¯ÿ¥g ×Û_;úׄz·†ì×k¡&…Âõ¶î6oïÏŸèouüÖø:{¸×øJ …ö·Æ×û‡žABÕ?¬ñ¶Œp½ôŠÔÃt‡ÎÐÍûÛ}þ׿u…öÙ»Ú³ßN”5ž²=C XT×û¸@¡HÍʺù<ÚóÒÔýõ_Úc‡® POMèŒú <ªëm·×¡;(ÔÖí9c>R쮘ÄԎ׃ÆójFüîv¶ø=Ñ ¿øù¤ôÛ¤sàoãw7¥õP™3Jp£}Þ`@ÀMúùO«ôÓ n¨Îß <á6eSðÕeûÜ ܪÞõƒó™8xZý™OœÂ ‚UߨI¸1¯Px嬀(¼ò …¯®¾>È»¢ðR^IˆÂï ó3 p£YαÈÂoö¶dá«êƒ Yx%º ¯¼o ¯3y²ðUõ ,¼Üq’…¯Þ{Û¨ZyŽÄÂm§)…×Jj@¾> ,“,¼ŠU’…×ÍÆÁ ^ENÈÂ×΂…’…ÛÍ ê`áë¸d°q°ð¨­ºo±e°pë¼î×ÃÂ[ÆÍ¹Xx;% _šì,|u®À1dá­“u’…[çÔ^ ï™Çƒ,ÜØ.±m°p»¹û¶ö9@ɇÚ+Yøèü>dáSߟ,|ÃW²pƒr¾ÿdáFUÀ¾ÁÂíf¬,|}>X;Y¸ñŽûõ°ð1¸–A>6Ü Y bÃ`áv<@tíŽón\Ÿn¼$<Ü4®7q£}IÜ:V[^ì¯Ä³­…Aûí«A;"s‡âÎô¤Wçjk]ÀâY³JrqÛ>0nðÈdÜ4Ú/иï_zm6nHk€ãN±½Ÿhƒùzm<ž¯›¬|ÜÐ (y¾„LAÈ¢¿"w¹_¼Þ!¹Ð),~u¯“^ûíXÐ>= ÚA¹½ý+H¹í_¨Üèd ¬Üc °<'µÐò¬»@âr–uçå¦GæÆ7Ñß‚˜íc·}žßE“™ç½V hnû‹µPscžØ`s#•·ôêxŒMV°pç9gö§ çYS¢óŒéÇfçi¯þžÛñÃõzn_ +-ÀçvØ[ym~n‡™ˆÜ:›õ&èvšñþ@èÞ Q¿ÑßníÝ>×(ºFŸÅ£[³ÂÚ 8º}>Î@ºÖHº½x!Pú¡í.º‰T¦[ÿ^צtݧ§~Y:•O·n 8˺iP?uë†+êθ½[’öÙÃM¨¨n³ÿ¾¤êÖmxG¬îãqàêv™ÏñÚ`ÝŽgÁë¬ïñ–h=­›§Q^›­Û÷\·ãÛ]·Ë‚àÞñº7K|¾ãë/AýØí²ðë„Ýš5öˆÝê z`ìV¥d·óÓe·:>˜ÝÆWêó‡ŠöIÐnçó ¤Ý¾?¨P»Ï'õ'Ú³Ö Û­ý`%´Ý.œOàvoî׿ívšô·7Ñ>ˆ»7+yGîÞßCûíTÐýíŵPwÑÝ}¼ñ:¸»_¦åµÁ»iqÇUvÙÓ;z÷ñØ¿?Ø»]v r€ïvYäþÚôÝúC’|ÇïÖL@©Áß½YH[›šP¿xï/±?Žà­Žãoß ÞšÝ“÷þvˆÑÃŒ”&W»á­Y`ý>g½?(¼5¾Þ)¼5 P_Px;Í8¾ ð¦A-Aá³î“Há­@áíýA=Aámÿp=ƒÂ{3ôíAásÑâ&žVå…·ÏçöŽ»­¡¿…÷f(¼ŸFP{¨í4Ý÷kSxk6h¯ ðÖìHÁÂÛiËÂûiòï oº¡îÞNKU÷Û{=Vk@ásåü˜ÞN)½Sø ø²)¼F~žãe;lØPøÜ8¿ …÷¯Ñ_›ÂÛnàxƒÂûnƒz;…·íqÇÞ¾&úSPxÓYzš¦‘Þ^þÞNëH¯Má³î/Há}{P{§ðv˜j ð¶¤ìNáícnÔÂg» Þ4)¿ßˆÙaÂñ…·Ã€UPx;l—¨{1=0¾Â»v* o¯ æNáíó@9AámA€{Lƒ*‚Âg-ß“Âûñu* Ÿ[Åü‘ÞÚ_ïÞÎg Þ/Cß?Px»ìAmAá­ª Ÿ×øšAÍÂÛùE…÷Ë"PøÝ>Iáí²èÂç‘DéÂÛñ•…÷fÏ÷ŽÏš((¼Ö&*oíyjÞ·%w ïÍFTÞÚ³Á+lï`!hŸˆÚÍŸß>ký•Þš(3(|ÐNá½Ús±UPv§ðvIÅÂ[3 õöŸÍjSxkF~=—‹‹Ö¤ðvZpþAáí0‚š‚ÂÛ×jíµ)|±ÛzQ÷bºéý}`s(¼í6ö¾äÎó oÛãüƒÂÛ×%…·×o*¿:N;-(ºSx;Œø> ðvÒ|m ïÚ÷¾T®¢‘ÂÛÛ’Êû@Y*¤ð¦‡¨ûeš÷‡¤ðþ5üý@á­Žö o¯õ…÷í½}€Â¡3RxÛ PcPx{[R|LOéiZßÞ3®?Pxû|ô/ ðþý@ͽ!ØñÀ÷…·Ë~ oÝØu·þv½¿Sø"‹)|–Û„Þ®Ÿ/’Â[ûíÂÍ_Há­ý2ƒÂ—¤U-Pxë¦HÉÂ[GŠîÞ>Û;…·ýEÿ oÝXÞº!PrPxë&HñÂL[7…·Ë†ÛOµgl o×Ç-*¿úÛ¢ûWRxëFZ ðÞ€Ò;…·×ãxÂûç o—5Ž(¼_†x?§ðA;…z =®*€Â›ööóPø{}¿¤ð—5KQøÉ“HzÅtv8t g Gt óÃé@ÏÄñp L,é@/ôªÃ^pønt{¾ÄÞ—ª´œ÷§ùpò>8ùx·Ràî£ÑEîØ}oé·#£ÑÆîÐÝŽ¤ygîëß|änïâÞ‰ûÚò"®|(oMÀí£áû¶ˆØ>:Ž'Xûz¯€Ú'UAÚ'o†Ú—òKœ}rù ˜}ò6”}BhÎ9èlÃ9;­m8”“á¼É€NÃy#¤’á|k·ކó)ƒ9 {º}e84”á<èMC7 {J|Î'¬‚ì‰7}Ûp>è>[ØŸÇp,Ã9oš Ù à㜱ëÁ"ö(}ï"1 nspºÍy‡Üæ5öíö—ÛüBÓ nsjºÍ妖ۼ’@ÉmÞHŒä6×ɔۼ‘0ÊmÎ;Àí6çâÖv›Ë[,·ù¤{^nó)"O·ù$q$aOZ aÚˆOÊ"æ ìKÃ-Ožôt »höu’°âAÂn‡=öÌu_ö¼Ýå ìYvYöuAˆIØ3/zö,·= {&aaÏE„=':öÌš{&Aa70 禧ˆ»Ÿ¬ÆNÂþhö¤ö Ânõ»Õ{ ìÞŒûkvÓ$ê>!] ìVÇñ'aOêSö‹íK„ýâc,"ì¯gvçë!ì§T"ìŸDØ=äSÃñ%a¿d»'a—ïD„݈-ê ì¯Gö«h“°Ë×%Â~erv=)ÂnÛƒðƒ°_|¬E„ÝæL ü ìûv­xаïý#a¿x!Â~‰¨’°oŸ) »&K$ìî[ÄûÝð‰ƒ°ÝáSëqwŸÐþ|ö«‹hƒ°k~#Â~M™ÊAØ­½ä×CØÇcökr„ÝÚ |¶ ì>ôýa7óÂîóé6Cûa÷ɨL휼âû‚°{ûwÂî¾2iNnñˆ„lîßHØýóËë»Çç>HøésOìås_—®úÜ÷õEŸ»Mnaßó«ísçø,Ÿ{¢ÃcûÜyã±}î7Ÿ4‘Ïý¦ï[>wηÏ]>oùÜ÷öô¹k…L>wPùÜI‚Ïׇ|î¼ñÛ>wyùÜI·Ï]ד|îZa”Ï=KW=-‰þ@>÷LÂ/Ÿ{eû–ÏÄvûÜÕÿÊçÎÛÖísW)Ÿ;o·Ï]×£|î7Ï—|î]¾súÜ_¸_¸Ÿ;ǧís×ñ•Ï]+ºò¹ëxËç®ñE>wúbƒÏÄ_>÷›íW>wùÜùôîö¹kåsçÍÕö¹'^/ô¹¯aã‘|î?·Ï½°ÿ Ï݆•@Ø}¼±†ÏÝ ÷kvÓ ˜ô¹'PùÜ3}“ϾyúÜ/¹Çç¢MŸ»ú«às‡OU>÷‹>MúÜuýnŸ;Çès‡¯œ>w/ùÜÙÊç¾êðåÒç®@ùܳV ès×üB>w›Ânó‰»Ï_üxÒçnÃ7|îšOÊçžy¾åsÏì?äs/…¾eúÜ3çãò¹?úÖüukëo×ëq|és/t„Éç^tüès4|îQOè}î…÷Ûò¹ï÷§Ï½$ùÞás/I>tøÜ×Û4iëo ô“Ͻè|Óç®ù´|îæõïKŸ{aÿ#Ÿ{áý…|î…Ž ùÜKá }ÀÃç^´‚CŸ{éòÁÃç^Õ~és¯º>ès—ÃC>÷Jx%Ÿ{åüN>÷5lâûÐç~óþ]>w[!Q§·ŸOŸ{åSgò¹Ûûƒ˜Ãç^›|òð¹WŽ¿ò¹×)BŸ»yW£Ï½6OúÜ+mÁò¹WŽò¹W]ô¹×›ßŸ>÷*bMŸ{U{§Ï}é}îUç>wK‰>÷šÂî||îO>÷ÊXùÜk‘>÷º}èð¹W=W@ŸûÞž>÷Ê(ås¯|îrôÈç^é Ïý¾äc‡ÏýÞÄ>÷›8W>÷{²¦Ïý棡ò¹ßƒ+ ô¹ßjoô¹Ëá#ŸûózøÜÛÅúÜŸŽ–Ͻé¹úÜç3ò¹?>÷GÃçn^ì|îç÷!ì}}þ_vŸ=>÷„Q†>÷‹s‘±óyX2ö‰˜.÷+áüÑå®Çhèr¿x6èr¿h¢Ë]÷"t¹ëVGY/ èr¿*9|Òó73¸ÜmáÃånO{ø;ßzøÆ—UørósøÂ[¾<²aB"Êž1_ñ¯¯À—݇_n\ýt¹_\>Qâ˯¯Ä>r£Ä>ñ¨ÄRq%¾ðºQâ ]J|áÓ˜J|!„Pâ‹Ià›\éðÌMž÷Ä? àÅÄàðx¸à7Ðoº‡Aƒü^ €d²ðb|ð—ZàÇÀàáB/ºGÁ÷{<™ü<]îöúàýÙÂ@àý ÛÃåž’bÀàSb¼=+]î¦ÁÌÁàñµŸ®'áåÂ=b‰.÷«‘‰Á7%È4ݣ̃Á÷ÇÕNŸÅäÉàùydðçC ^ï/ßÄÀÉà›\çdðjObð P‰/ÛÏÄ—› .J|áõ¹_´¿J|ᘻ_†>Ÿ‰/\BÛ‰/Œ”Ú‰/d ;ñ¥ÓåªÄºÊvâKg{UâK#ƒVâ‹0”øRÅì™ø¢$%¾½ þRÈ ¼éùâ÷rµóÙEœ2ø‹.%1øKŒ” ~'ðÁ_…í ÞzZe½$h2{0ø«ðøÁ?zèÙ±]î{A Þö7Àøh#×{ãûHD"ƒ¿´†À "eÀh¹0SÀ0\WLçò3`è¿R ŸRLç1†f,eÀÜ|+fÀl0Ž õ‘Ì€‘1œ0MT0zŒˆ0\‚%s·•Õ#O(‰»í,ñܧúðöÙ€7ˆÛÍ? é´}ÒþFؾd¬}n³»ÏÙ&IIû¼em÷ñÑäõÚœ}*Ô ˜Ý–ÞeŸ·ÞÙ!ûú ;0ö©% v;!fvYÌØ/=2BÀ~ñÁm¥Àpz¢˜©÷F g‹J‚ýHár¾R`ú#›K’í‹í®°®uX¥ÀÈHÍúX”3 ‰˜Ã}S¿8ˆ©_Iu0õë’+A0ƒ…A0ŠÕ`L’_ÐNÁKÓ”íâ8}VÒÐô@˜ngUgéS((}Êû’>e=H·f‚`¦Œ—ÀèÖšà+wŠ>9õ#DŸUUgè–*LêSD]Wú_?WRñ¹q¼‚`áàùäs‡ ‚údÌ$©bÌ$(cŒœò ‚†fÌ$Å5ç]ë¦æò9‹šssSóDŸ«¨yÂå·©9g(›šgRZQóLÊ*jNʱ©ùÞ>ééZPVQóÄ,jÎצæYïGj^¸ #jÎþaSóJŸ¾¨ùMJûPó­;¦ìLg!5W«5ï¼8EÍÙÃj~ɧ>¡Ñ†”£U,¥ÃLRh¥Ã0Ýa§Ã ÜumjÞå{'5ï¤ÄJ‡ásq›š¥·škÕLÔ\íTÔ|ð¹Qs­ ˆš3spSsFƒmjÎOQs͘EÍS>©ybÆ ¨y*¢Ú æIiD¤æI¾wRó”x¾IÍÍe©yÒs#¤æIé*¤æö~¨ƒš§$Ÿ<¨¹õmÒ\:©ùä*‡¨¹¾¿¨¹zoQó)ªMjÎIƦ擫>¢æ\õßÔ\Ï1‰škUFÔœÏýnjΧ²EÍ•6"j¾©yÒs'¤æ‰Ï ‹šë¹9QóÄçEÍSU5OJ5/J›!5çs–›šWmOj¾}ê¤æZ¥5¿å'5¯˜=lj.Ÿ¨¨¹(¢¨¹|Õ¢æ|ÎjSó›”FÔœãÉN‡áªï¦æM¾vRsö;†ýͦæ”VÔ|~H‡™òçíú€O|Só*Šîíy¿¨ybò™¨y¢ËGÔ\.Qó$ Ijnß?RóÄUQótˇjž8!5O·Òd@ÍïÀDÍ“( ©ù>Ÿ¤æ‰³AQóÄ4%QóĈ1QóTDÙAÍ“Ò HͳDÍSåþ‘šãFý¡ææ«¥5OJ!5OJ?!5O¼c5W#jžä³&5O\Å5_¾YRó”åC5O\µ5G3x¨y*<ÿ¤æ©ˆrgõ·Ii0×?Ú©¹ž“5O—|ìMiGLiêoK¤æ¦‘jž”žCjžŠ¨6¨yª¢è æ©’‚’š§ÊU/Rs{=ê æ©ˆzW¹ì@MIÍñ¨yâ͆¨yºéû'5O·Òh@Í“V}HÍ×õë‘Ô÷.jžèÊ54¨¹µPrPóÔx>IÍ­Ûµö%jãÓ#5÷8€‡šƘgY)üK)†·€L‡IÌ/T:Ì…o t?(&a¾­tNwŸto}J‡‘+œé0ãH‡)œŠ+†~Œ'æú‰t>ž tr›'Æ;9¥ÃÈðÎtNI•Ãà'Æ;róÊ|N¥Ãܸ|ÉÍke¼9Óan¢ppó¹­ÒaÒ‘S&®,¥ÃÐN t˜‹n¾¾˜;ÓaŠÒV˜SNãzåÑ7¿Å5ÉÍ—†˜ÜüþÀÍo¥k›ßò’›ß|zn§Ãf)¦2Eé0JÂV: 3áÄÍï[é-àæw¥˜Ü\OÏït>í*nÞØÀw:L!g%7o·8;¸¹á;hpóVôzpó[ÔäæzzUÜ|ró;3 ‚ܼ&¥³€›W¥ß›W^õâæ7±‚¸y£÷g§Ã\J£7o|:h§ÃˆS’›·&/<¸ykFJ‡Ññ"7oœeŠ›¯Ï¯1FO'îtRqóƧÄÍ»(›ÒaˆkÄÍûdÚ ¹ùÒü|póÞ”ÔnÞÇÉÍ-m%ró¡äøK‡Q}H‡7WÜïN‡!@7ï|LܼóG#ÄÍ—†×—ÜíÃÍ{?½ë; ‡Ü|t塃›&Ž n>†ÑÁͽ‹âæc(õÜ|§d“›[RpäæSé"äæ«Kâûƒ›Ï®4¦Ãèz%7J‡R:ŒÚ3¹ù‡ètgœ ãUiYÚÓ týÓ»¾¶ßi1ÖÏNz‹”s)›é0WzÒb<­ ÊKïºÒä]ŸZ÷ w]kÉ»>ж‡wƒÁfèöþôšÃ»>瑤ž÷:½ëóf{¦w]9Çò®¯ãý¥w}j݃ÞõA¾)ïú¸”Æïú¸U‡w}§Ñ»n°é1ð®=+@ïúÌò¢Ã»>ô,½ëC^rz×ûÛ‡w½©ÿ£wýG´º5»Óa*3cå]/JÇ¢w½yÇé]ÏG¾ºusLs¡w}ðY"z×Ëo‡w}õßX0¡w½N¥ËÀ»^-ïzQû£wÝ&ð–û^•LïzÉââô®Ëë'ï:Ÿ½ÙÞuz§¶w]»äìioOÎÎó·9{yÒ`ü.Fiô®¯÷g ¼ëY”ŠÞõ¬¸oz׳¨ ½ëy’Ñ»žùð¼ëe¿Þu=›!ïz W‡w½Ò«%ïz½ænÝ,(½ëµ+$ÞõÊg›ä]¯lßò®Ry×k%…¢w½nï;¼ëõÒëá]·ýÅçÁ»žù ò®gÎGä]_Ïл^˜n%ïz)ô2Ó»n°Ô;í4ÃÀàmGL‡1ï(;(|庨(|åLZÞn–¡Aák;"Ù}Û^…_í?ãýAá+Î@¾*}ƒ¾VyÛAám²z¿ _•¹L ¯ô@Qø›O‹Âßôʉ·F ß²¼ó ðk˜e&…¿•®D ßîÇËޙƽëK7¥ÅXÛ¸, ß”¦A ßÚé]o|zYÞà44(|OŠ|…ïzö„¾“ ˆÂ7>Ý. ßn.þÂ7ý“·ÌöA ß/¥·€ÂÛ\{=¾o¯9(üàø/ ¿úof®ƒÂwe¦“Â÷~Rø.JL ßšV@áíûˆº{º!Ó9DáǦè ðCûK ?èû…‰Þ|Rø‘¯ú…´¾½ëSÇ—~êYRx-˜*æÒÏ0Æn‹¤ÒÎè-G:ŒQ³à]·n° Ÿ÷ª Óa½¬J‡¹ø,¡ÒaÒÅãÇt˜´½îH‡IýÈh÷4#|>Òa’Vm˜“´ Æt˜k°f:Ì^ua:Ì¥ô&¦Ã\´ (f¯b0&Mž/¦Ã¤~¦ÃØøÓaçJ‡IéÈh·ãÓ…·×ÃkÉt˜¬´ ¦ÃdQ9¦ÃlÊÅt¥A)&ñÙ\¥Ã$e3&1 Ié0;³™~Þ¢ò ð;½„é0J3T:Œìƒ¢ð“Ç+FÏ:)檤hL‡‘ÿNé0òI)ÆÎ(=ÒalØN¯Máýø‚Ê#&ñY”“åíd:LÊLG:Lž¢âH‡Éœ+f§“0&ïLw¤Ãä,ÊŽt˜,/.Óal˜­¯Má³ÆG¥Ãúp”“¹F­t˜¬4¦Ã”t¤ÃذØ…·a0Rxû<¤¡€Â›¾‚w݆Ñ(¼ÕA‰Aá9ìm ïÃTð®û°3_›ÂÛ0j oéV·¨ü„Žé0ùNJñ/æéYHgq oÛgikÏ·Òe@áså³j¤ð>Ì¡îÞß?Pxưj oÃ\Ìh·ak†tvZ ðž† îÞ‡%Pï¤4.zÍÒ¸”V oÃ3Ó} ²´$P_PxKgÚi0žÆÕ oÃV@áMƒ ƒÂ›®ò²Ûý˜Ám|žSx?Pí i\é¡òÖß¶&/ºSxÛÞ¦EÌxG:Lɼ˜“9^’ÂÛ4Ïž0æê¢òH‡ÉzÖÞ¶ÏÂ[{dzSx›Æáz…÷i_ð®Ûõ‹U¦Ãè72”“&÷‡é0‰¾@Rx»Þ³tGzúcPx»z ðž¼ëÖþ°* ïíé+Nám8¥-«èYPx»¾zð®Ûë™ÙîÞ§ äNámVEå½=s~C ïÓ.PyŸ¸˜®!ƦAW ðÖ>qü@áMûüú#…·Œ˜3f”ãJS ðúáRø‹V+Qx>ÞJ ¯§½HámsF Ÿž-íx”ɧ³¢ðQø¼#ۙюeF;îFžë-¢ðŒ±…ç})¼Ý¶·×¦ðºk&…/ü?Qxޱ¢ð\xy2Ú£{½rÂ( O^" Ïá¾Ð5- Ï‹SþÞfv»•)\À…çS?¤ðeÒ _è»…g7% / # ÏŸ3Ý^¿( ¯D QxzQ6…çZñ¦ðMntRøý~¤ð\mÙ^ ¢ð[ƒÂ7Eáõ㈢ðC™è¤ðJ8…—›þÉh¿¢{½É=, /Ëç“Ñ·¹(¼RDáyW* ¯»žMá•£ŒöÃŒöíV…¿/RcRxL ™Ñ.7½2Ú+©°2ÚùË›Âw%Ö0£]OÂ[gv½ ßÙËŠÂKT~¹ÇAá‡~é‘~pmV~p# ?²~o¾ó®tg´ï vPøu‰·Há‡2í•ÑλØM᧨=(ü¸é¦VF»(²2Ú›¨9(¼Q[Py§ðy»ÁIáç­í™ÑÞIUIá:ƒºƒÂOÎ:vFû­ÄPøYôû©ÌhŸg‚Ìö+ƒÂ?™á ðž±~¿6…Ïû÷OAámÖŠ Ÿ¯@ÃŒv=- Œö[TŸízzíI«(ÌhOZµbFûNø…·ígHqØG¹Sx» ÊÁ½n¯Çþ3£=ÉÍM ŸGÅŒö¤U f´kÐQF{"eÚíœåîŒvý†ƒ2Ú•£ŒvQde´ßúIQf´7¹ÍAáݵ3ÚI1wF;ï’•Ñ~M^¢ð]™îÈh¿t<™Ñ~iUŠí—(¶(ü”U~ÞJp…ŸIö¤öŒÏ'…ß¾|Rø©UHf´ëÙ6e´_ZEeFûÅ'è”Ñ®ŒeQøÙDåAᇞf!…ï¢Ü¤ð½}Èh×ï“Â7%r‘Â7þRáÎh×*Ÿ2ڕȤŒv=Ý¡ŒvR­Ñ®ß?&…ïU”g´“ÚƒÂ7R`Qø&ª¨ŒvþrÎÎhÏúSf´Ë‹«ŒöªíAáo®¢ŠÂ·ý»¥ ðÊt…¿•PA Ó»" ßè……oJ8!…oÛ– ß”˜B ß®ÃònÛÃk©Œö*Ê ßøt(|ão¾ˆÂã²}(|ß.yf´Ó® ¯UÑ.jJ ?v"Ì“ÑÊÎŒvyy•Ñ^*ï«JI™ï;£þxf´óAJQøÎ'ÒwF»¼³¤ð;ãXí4gìŒvQ0e´Ëë­ŒveR+£¿ì% ?”aN ?ôËŒ¤ð£ÉË ?Æé…œ¥‹Â%ÄÂkÕV~Lz™Iᇠ…J !…¢zÊhOúTf´“bˆÂO%JÂOy…™Ñ®gb•Ñn—ÑõÚ>ëi/Qø©Œuf´ïÄ f´ï„f´_éÉlgËÌvd´›í;¡‡íƒ•Ѿ ’íiSd´§*ï;2ÚSSB 2ÚÓ^@F»Ý%C#£Ý(/(93Ú•ØÁŒvór Ÿ“v˜Ñ®_áRF{.<žÌhÏ—^Œö¤ç6˜Ñž÷/µ"£=«ý2£=qþ£ŒöTŸÄ»‹NZeaF{.gF{nÊHGF»Q@hd´g%R1£=ËKÎŒö¢ë…íU«Ìh¯Ì”VF{½ÎŒöÊù¤(|¥+C¾ê—“Iáo%.‘ÂßzDˆÞš!¨:(¼îŸDᕸ ¯û-Qø¶½í ðíÒ*(¼M»ðþ ð¢^¢ð7ÇkQø›TWÞš±¨¼µÏ›÷¢ð7)QþÞ¿´ ®2’ÂïU4Rx¹–DáïûH±÷!AÆêÜPx¹¨Dá[‘·~SRø¶Y¾…Ę †Þæð²ƒÂ7Þ‰Â7þF“2Úo>P¸3Ú·÷ží{•€íI^tf´ó'ÕvF{;¼ðöùð+£]™â¤ðMTJííñ¾_øÍ€íoÐL …2ÜAáûT¢ (üw™Þ`U¤ð]Þ_RøA—†(üPF³2Ú9ŸÜí¢pÊhç*–(üØTíÊlVF»~Qí\ßí¼Ÿ…Ÿ¢n¤ðš¿‹ÂË$ /WŽ(üózPøÉñPí{•„íöSØí;áˆíiÿ2+2ÚóAíI™홫‚;£=s”Ñ.ï±2Ú/eª#£=7Qvf´w½2Ú ­´;£¿Ñ³3Úù.Êh/M”žíú e´Ë;¯ŒvºwFûxtƒn!AÆ>çOíJéW_¿ÙÈ^^ñOãÿ~?ô_o¿ýÝëzýË[z}µþûã[òOù5WºÿbÓ÷/~Èï^_(C5 t«úZ®º:ªó¨Î£ê@gW]…ª/<쪫£ºN¨.ª¾,±«®BÕ;¾]uuT{Õ¥BÕ×0vÕÕSÅ’†ªPGµÕ~T}ÁcW]ÕyTçQõå]uª¾:²«®BÕKvÕÕQmGµU_JÙUW¡ê++»êꨶ«-¶+¬»ìª«£:ŽêˆU¬Ê¨ ª¾H³«®Žê8ªã¨ú¸«®BÕWtvÕÕQmGµU‡‹»ê*TûsM~ÿ‚:ªmÄj‹í ‹C»êꨎ£:b•KG*Sƺ/%=u—g}^G}^GÝ—šžºËX÷¥§§î2Ö})ê©»ŒugœOÝe¬ûRÕSwyÖûYïgÝàSwë¾´õÔ]žõ~ÖûQÇÒ×®Cžõyõyu_{ê.cÝçÌOÝåYŸg}žu_J{ê.cÝ—ÖžºË³ÞÏz?ë=v·”±îKqOÝåYïg½Ÿõ;]ÊPÇÒÝ®Cƺ3„§î2Ö}iï©»Œõ;_ʳÞòQoGûÃRàSwë¾4øÔ]žõvÖÛY÷¥Ã§îò¬³>Îúˆ]1e¨c©q×!ÏúhG}íK‘OÝe¬çØ%SžõÖz;Ú–.ŸºËX÷¥Ì§îò¬·³ÞÎz;úOȳ>Îú8ë¾úÔ]ƺ/>u—g=öŸ¡Ž¥Ó]‡Œu_J}ê.cÝ—VŸºËX÷¥Ö§î2Ö}éõ©»<ëý¬÷³~ý'd¬ûRíSwyÖûYïg}ÄI*åYý'd¬Ï8Q¥ u,ýî:äYŸg}žõ|ôϱ^â„•ò¬÷³ÞϺ/%?u—±ÞŽþò¬‡‰+e¬÷8u¥Œõqôϱ>þ2Ô±T½ë±žâ–ò¬·³~öÏXÚ~êùœÇr©û©»<ëí¬·³~ý3äYÓYÊXoqBKë¾tþÔ]žõqÖÏþKëO}žóZ.µï:äYogý쟱ÿÔó‡þ¹ûÒüSwyÖÛY?ç·Xó{êõCÿŒ¥üX?ç·XÚê.cÝ—úŸºË³>ÏúÙ?à ðÔLJù-¬O}~˜ßÂ*°ë±žŽþ2Öó1¿…<ëý¬Ÿó[X žzùÐ?ÃzðÔïý3¬±ÞökÂSoæ·°*ÄúÙ?úðÔû‡þV†§îò¬Ï³>:¬»ëéè?!Ïz?ëçüÖˆ§î2Ö} ò©»<ë±ÿ„Œõû˜ßBÆz;æ·±îV‹§î2ÖÝzñÔ]Æú<æ·g½õc~K«†ê”±îÖ§îò¬·³ÞÎz‰ó[ʳúOÊX¯q~Kë͘æSwyÖÇYg½Çþ™2ÖGœßRžõvÖù-­%»ë)öÏ”g=Ìo)c=Çù-åYŸg}žõûgÊXwëÊSwyÖçYŸg½Åþ™2Ö{œßRÆúˆ•2ÖgD¨”¡kÌ®Cžõ0¿¥Œõç·”±^"J¥<ëý¬÷³^ãü–ò¬Ï³>ÏúûgÊXﱦ<ë«RÆúˆó[ÊXŸ±¦<ëa~Kê°úì:d¬çX)Ïú8ë㬗8¿¥Œõç·”±~GÐJë-öÏ”±Þãü–ò¬·³ÞÎú8úgÈP‡i×!Ïz€®”±žâü–ò¬³~öϰ2=õü¡ÿ„µé©×“¾Òêëã¬ßq~Këíè?!Ïz;ëí¬È_)c}FþJyÖcÿ ê°Ví:äYŸg}žõù+e¬—È_)Ïú<ëó¬×8¿¥Œõûè?!c½ý3d¬÷È_)c}Äù-åYïgýìŸa{êóœßÒ¶ëg½Ÿõ~ÖóÑ?Cžõ0¿¥Œõç·”±~GþJyÖçY?ûçÖâü–2Ö{œßRžõqÖÏþÖµ§>?ôϰ²í:äYg}œõtôϱžãü–2ÖK䯔±îÖ¸§î2Ö<ëq~ ëí˜ßBÆúˆü•ò¬·³~öϰÞ=õùa~ +^¬Ÿó[Xóv2ÖóÑ?CžõÀ_)c½ó[ÈX¯Gÿ yÖãü2Ö[䯔±Þ#¥<ëý¬Ÿý3¬‚O}|˜ßÂ:ëçüVÂ]‡ŒõtôÏg=öŸ±žù-d¬—£†Œõ×Ç(cýŽü•2ÖÛ1¿…<ëý¬Ÿó[XŸzÿÐÂêøÔçÉ_i}Œõƒ¿Ò ©:åYý'e¬§8¿¥Œõù+e¬×È_)Ïzè?)cýŽó[ʳ>Îú8ë=òWÊX‘¿RžõqÖÇYŸq~Kê°rî:d¬§Ø?SÆzŽü•2ÖKœßRžõvÖÛY¯q~Kë-òWʳÞÎz;ë=öÏ”g=Ìo)c}Äù-e¨Ãzºëg}œõqÖSœßRÆzŽó[ʳÞÏz?ë5öÏ”±~GþJyÖûYïg½Åþ™ò¬‡ù-e¬È_)c}FþJyÖçY?úgZiw2ÖSœßRÆzŽü•2ÖKìŸ)c½Æù-åYïg½Ÿõ;öÏ”±ÞcÿLyÖ¥Œõç·”g}žõ³†õ÷©Ïs~K+ð®CÆzŽü•ò¬·³~öϰ?õrÎoi%ŽõqÖïÈ_)c½ý3äYý'd¬÷8¿¥Œõç·”±>ãúe¨Ãº¼ë±žâü–ò¬·³ÞÎz>úOÈX¯‘¿RžõvÖÛY¿ãü–ò¬Çþ2Ö[œßRÆúˆü•ò¬Ï³>Ïú<úOÈP‡õz×!Ïz?ëý¬çÈ_)c½ý3äYÞXÈX¯q~KyÖçY?ûçÖŽþ2Ö{䯔g}žõyÖÇÑ?CÆúŒó[ÊP‡u|×!c=EþJëùèŸ!Ïz˜ßRÆz9æ·±~GþJyÖûY?ûgXÕŸzû0¿…uý©÷ó[XÙcýìŸamêóCÿ «û®CžõvÖÏù-¬ðO=}èŸaõs~ «üS/'¥uþ©»<ë㬟ý3¬õOýþ0¿…Õþ©·ó[XïŸz?ù+­øO}|蟣™}{ÛŸú_󟸜/‚´ý´!þ§­ÉŸ5„~Îp÷9CÔç %Ÿ[ðÿÜ‚éç¤>· ð9 Ú?´> >{Cö¹ ñç&Ÿëð?{AýtƒüO„'EÂ$=»þôGoü™‘øß_¾Öœû‹ÿûå:Ú¯/¾ýþŸ¿ýÓ~vÄ>î§ßïÆ³i>.®÷û"_×ýåë›?þu¯¶ö».Ƚ;_üú÷úÿþŒ×Hâøøö3^>|< Gã«u®×ÿù÷?ãØÛäù7ï…­J®Qç9_ûïÿçá¯êÎŽ¿u ŒÔëâ÷?¬Öaä÷kgþnµœ/þßÏ80öÈÚÇÖÑÆ^u·£‡½úoÿn»aÍõß¾û9ûѯ¿8A{?î‰_úskØ÷/HŸIf¿ä>ÖñÃT¡ÞÜz»ëOÝ–n×áS2Ôñ« »Î Ýuîêaÿâ×ÿ‘'Ŭq4{X¥úƒb_¤ëúÔYøÉWóG,üåé翜™€þòü7¼Üœ[^^~þËíÆlÝøËëužyöµoõJ«ýNÒ¦œžÒÅÓpJmìô½â¿Ù­²=¤<=ÄéOß¾þéõC| ¯5{ïù3>†‡=/ë¿æ<(íØÌ0BùÓSŒ¸Á'çqƒON2⟜eÄ >9͈|rž6øôD#nðÉ™FÜà“S¸Á'çqƒON6ŸžmÄ >9݈|r¾7øä„#nðÉDZÁ§¦aƒ /ŒïµÁvÜàÇû@mð£ .ΧüÍÛÿß¿Aendstream endobj 762 0 obj << /Filter /FlateDecode /Length 791 >> stream xÚuUÛnÛ0 }ÏWÈX­êbËö€î¡Ý:tO`Ö=¸Îpâ4NÖæïGŠ”í^†@MR$uD¨h©èëDñz9œ_[i-Ë,3Ñti“ÊB™(WNjSFÓYô[d±ÒƉ«¸ZUð¹]®ý'6ÏÄÈ-Œ§}‡ÊTÜÇV‹ÓÈ¡ÁiOÆÛØQ¡f~€é0‡©‹ÿL¿_Q)Kg–£¢ÄÒ*G…ü¯ºn!Š.ľ½¼M.Ž Ø p'Ɖùžlí‚Öí{чr‚¡þ00j4ΫgœÎÀltÈÃyÉýÀ!A¬¸LJaëvÃe=Àבü!&éfø}§´ÃÍÇfvð8ú`N1á AAü%1ú䢛‡­9щ-Æ®C®*aØá¬2NR[ˆ›-¹vGï %¯HQW]I>Ò‰uÇ- \ èùd„ hع?Øx@FFº1÷¬4ò_ Ün¸rß3`;D½™3¬Z8oŸ,Þ?©–EjiÛ§8ÉŒ¥ÝÜ w*S¾i´X° ›øÆ#É.šúhÒöËŽR5ó0ÄBñ 7Ä|é)y=ÁØ1ÌXÑ;­¼µÏ]Vì^B}Z>h7´å­£‚*öÞqÄŠÔ¯ 8{ëü€.²|¨!”^s´Ð¦£c,F¥múòÇIÑù=ŒKL®mÊ…£êÇ ÷ѓܗéDƒ "Ý“›1¥Ìò4ª7“‡‰Ìµ#‡Aò†°‹ç7“FŸÛÉwø[B&£˜žVÇ,ÖçU¹tá _3Ëã>¼V%LúߨÓÕ:< %–èQíVô…·¶jñÁ=²øGù;ªº]3Ä$f€}ñ‰dO#MÏ' /ŽÅèŠ8ÁŽoÃi© …ù‚:~,x†[u=¹¼þgÊŒ4* Aä³–ûß däd¦- ¢2i³’-_6ì?lYº“endstream endobj 763 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 764 0 obj << /Filter /FlateDecode /Length 551 >> stream xÚ½VKSÛ0¾çWè†3S)’,+·Ò’N;¥…`N ‡‡ÛiÒÊðïYYk# y8ÔÃá)Ú×·»Ò:œä„“/¾e=É:½AÃŒ–šd3"¤b)—¤Ï5ÒlB®£AWDW€€O€ ððÏŽ»T ãdöì;®ÖfØ¥‰Œ£sØ~DÑ)ºÈÊýMö$LJBeÌŒp ¿·€%àp޲9` X#¦]*’¾c±D»5úÈxn×{Çj{˜R<ÆŸsϲp¢ÕV6N¨Ì$Úeó •F¨´#ƒX¨ø B×í°Në5*¿P-ö`{˜Ö³±ö+\[ìAèºUÖÖÏb7Ûúå5dë\¶Ê2ÇÖYŧµZ'½N¼Ácàñë<—œF0šì0•&“c¤Âî) Ê¬ð˜k"š¼˜Wwî©IâÔ&L?|ÞUÁ÷4*Öº_Î<§ûº‚+¦¸9´g8Z3¯v‚u˜c¸?ŽÂ5 n˜ŽÓ°÷…×ÕïjCøÐÕFö>o¸Š÷(¼kЋKO÷÷þr¶ûŠvë]±Çz–½ý#ÿkÀþ³§[ÍÏÜÑù»2¯j8ò.ÝŽ ¤&ºØ`3ÃÕ{¤ï”Á Ýëq¹?ƒaÍTD‘2­/Ty<®L^ˆÏëkW½Ž`8Þ§`Ùh·—C»ÿúÏhoúÃP ¦E¨R)‹Eê’S<09Í:ϸžsÑendstream endobj 765 0 obj << /Filter /FlateDecode /Length 104 >> stream xÚ31Ö3µT0P04W0#S#…C®B. ‚‘)T&9—ËÉ“K?\Á’Kß(Ì¥ïé«PRTšÊ¥ïà¬`È¥ï¢m¨`Ëåé¢`ÇP„ÿþ7Ô3`‡v(P†ËÕ“+ L5*endstream endobj 766 0 obj << /Filter /FlateDecode /Length1 1366 /Length2 5993 /Length3 0 /Length 6927 >> stream xÚwT”íÖ6 ¢„HóРÀÌÐ ÝH‡t8LÀÀ0C‹€tJH‰( ¡4RÒR"!Ý ‚J}£¾ï9ç=ÿ¿Ö÷­g­yî½÷µëÞמµ>.#S8Ö¡‰Åx‰@DÁr€š¾¾Ž* €Áâ¢`°%ŸÊ ø—’ÏóDa1rÿQÃ! ^x:Ô ÔÇb€›Þh"@¤ä Òr`0 Ëþ Äâäu¨ è‹7±„'%ŸÖ݇rröÂ'úû„ˆ¬¬´ðow@Å CÁ @êåŒpÃg„AÑ€)†Bxùÿ#„ ¼³——»äëë+ uóÅ✅„_”—3`‚ðDà|pàWÓ€Ô ñwo¢”|€™3ÊóÅ‹ôò…â^FÁO¼7ŽÀøô€©Ž`èŽÀüëýÝ…ü+Ü_Þ¿¡0¿¡0ÖÍŠñGaœ$ 5õD½ü¼„(þ E{bñþP( uÄ~×4UŒ(¾Å¿ô„áPî^ž¢ž(ô¯&A¿ÂàïYWú¹!0^ž”¿êSGá0üÅûƒþž¯+ë‹ ø—ˆDaàÈ_À½ÝA·0(o„Žú_ ¼Šòß:'„ –‘—Âæ ú•ÂÌßñÛù¥ÆwàŽuøF($ÿ¢ ð„ú /œ7"0à? ÿ”(!Ž‚yŽ'†òßÑñjòŒ§åØ€ñ „à_Ï¿Nvx’Á±´ÿ¿á¿§ 2Ò21ÕQ¿þwÏÿ²ªªbý€ˆ$ "&  b)@üg #(ê¯BþÃWƒÄ2êÅ_Ôß5ûüEÁ¿–Døg,,ž½@ðßd·K‚aøÈÿ™ò¿]þLÿå'û—¤éFÿþ…øP7Úÿ/ž¾Þ^øUÐÇâóßP ÄŸVÅ¢áÿmÓñ‚âBã„'µDB,ñGòÔDù!àF(/˜óÚüÑC=ñÛãõ{ ¿d~?þPÃÂ-’˜¤Åá þ”ø!â%I ‚ß88Âï7M(ë…wð¥H,Žò×ĤÄÓ¯ÿ%|7xážž¿ÿÈóÆáðåüž7¾”¿åß;Œ@ø!`”“±°á.áß_©°úŠ, ˆIPuîÇPX,j0û¬‡ªÉÿø*þüþ„ÊÛÑåû?æè6Ä Ïk]-Á®ö³wÓïË1NV5’"¿ß¢Sø¹á©ç-¶¬ÛÒb}[wbÜ©3éö=Pº*ì±·4–µ¦%Ï_WvTê¼C.P³)z‰h þ>9“ŒŒø%¢ð&•¬¦2Õ×*#£Í:¼žûÊ[Ø5×~¤wôŠI.tN ¢æÓY×שÜu²Ö¯¶I±èÞFøÛ4˜ŽCÃC=ûŒRJuW3&Ž»ü÷'ÒÕ˜VØâ4®ªƒƒ]:(ü¡Þª5'̧ìpëâª]¹º5ûÒ1§ÁÅ:Vß'‚–ïööm½”‘ s÷%‹©>ÿ"+ˆ À†º×0ÉÃežÐ~˜€8Ž6úœºÀzT1J˜)k"‰£…jû4Æü—L9D‘ëÌ] '*l’ K"ŸE¥©º¿Y6ç•H“œ\zÙ¢áÔº+0 9& Ñ1…0=S_ºÅé7Q$%9óì(øžLϧ¨ÑïÊ&åÉšô¶T¢üOä ¥V¼Ð®nõÄ´)Òj=õ[lÔF›O†ë/ý¼¥¬‰NtÏ2®Ù°-M¬ÅÍr< k|FÜϘ®’´šw¶Bolµ>ÈiTÙ­£ùôh÷£¡C¡íÀ@P[a±+v.á½'‡J Í‘lqîðÌUåié =!Ö‚À…^>7„´GI™\ÎDæi»ìZûsÉ ~#fÕñÑ4§´šò±_BîäqqFfÙGè´°Wf\@–Rõ®½l¡(ŠÛGv³>œrÊz¬"§¸w“òª^S’‹鬨Í0~’æ~2ï‹v6n fo_%œbÒU_v³Ï°Êá 1|‘ûQ‹DR£f}ʸ†)YŠfëtÏö‰þûç8Ï»S4ˆÐZ½Ò;³OÍÃïåå§ÊJù;½ Áâ æâ‚Aéà«{­©ùž?FšMë5Éõu1‘7¿#oYÍÚX6¸—œ0ê’@:«'u]Ö^æÔárÑv<¬ÐðžJiÊ7hTè@¨9‚í©('mmÔ2xšϜÂÞ“hôÛ“Gt×äC͸º™!}«9 Õ“ƒ¨¶/[þõCÊôª»rSÛ*»´§v©¶‡¤ÆÞ9){~‘×KÁfÎ0Ý_õ?íî“%éîéÜÀQÞ:Ú–›-ö¿p­EO4“õúÛáº{¤]ßûç]ËÞ€âË’á:Àˆ¬íÍ23ÜÕ+ß›¤ÔƬõ¶õöî–´|17ôž4¸­Š»âÐÅ´þ£á£¡Ê½¥µä%Õ ¶•&šåê¡o} Û¹Ó£µ 9òY¯êØò…ßÖO÷îsÁgVö™—R¹ql2Á8ñüSúC(;ñ5ðÒŒ…ª× »b‡š°Ruý×ÇÍ ?›÷òVd}SY_Ü0jðO«ÕîÙl•D#I¦GS;ˆ/¬'°9{¾v{a÷E$»èÅèÁ˜`Dútf³¤ rýIž`"|ÎxÖuõ`€'¢#cí:h½&çF§È…Ýàc¡‡’n—ÝÌyn.ªÜº0hÙb ~oÄ¥€g>¦‰T¹°@{ñ’CçÉë• $v±¡ý$Q˜+s÷8 ™p_†íAÄ-Wɤ›o0éh ¼‰ÜèÀXxm›ÜM}ÝüVh”꫽Ê4{rcñŠUjˆqÿŠ:ÏÛd†‚/ÔDM¢ÍyÝ–˜IÅŸ<2á]šä¶ÆÁíB¨ƒH™^YÆÇ—„ÎÍeÝOžk…íç™Q×)„F¶î—}‚´ÿ(nyû\1"Å w}¼ðX Ѧ×?…Ý(lðãmê0tÔjTyºÄñóf’X{ÀE`Ñå/çâsäs‹v6IsD>‚´u©ßõ;UíËhκ»Kg v¿\ºyGߤ5|"øìÆ<Æî'¹¯9™&3å·é;·˜«¿%ÔäÖl×~ßÿ˜ðû…@׸EYÞg²„ãû”>ŸÖþøƒi¯Mºhƒ*Ã+âÛÈ€î¤v ¿ë'] ô_?xƒÉßl8PD­/ßcyI|Ê q&FÊFÜ-‹ ÕOf„äÞIÀ}-Výºª….ø ÔuWî¦ÕÌ–Ç´BÏÌ Âûó5óö³ãÞÂ&m„””R¼ˆË‹­³-s°Ñ gÙö¬O‘IŠd)[Ñ:Wh.iq\ Ix²­ë -_Í=lIåÓ_M~9ÓuÓ™T`8³“m]0=;(LŠ–2j’4›ýêé™z£ïôøn‡Ýàœ:Ëâ¼ôÅpÓ3u4Úœy‰TáëÀC‡¤N{£iÌ7{Cûwwh7e7±Ïù]Çw·™/nPHhºæÆ£+‚³¥Hê¦x–Îqå6€ŒXL \¶Ö¢÷Á“ÁàAªÌWÚWcÁ¼-4&Ë›ã°åX¥éz›afß)¹âvž ÞŽÁ`JÊóæAî¯ã VLk+CX« =\Í[^ @2{jÉ#Vôí*Iý6†æ*Õ0ÍåìÒÄ”¿VÎÚS­½ûéQé³>‡o.c¨–„Ç;çÍJÆ!î Ãîx­ÂÅ É3ïå]ûG˜Vû**./¸ÊŸÝàyᨌ2£ÏÍÌ“51™ä™ ¸Š|biMx ›ûA¢Í’žAf¯níQÈ‹—:Eß×7̯qFÉ^kŸ¬ ½5gàÊØÆ/“@¦Q:Ÿêd¿TùÿŒé|'šÃÑi?{Ô²isåéÅ×ʽ*ÇcIM ¿v öi¼.ûLxê8ÉÊèæÎÈ>óï8¬™&GRòú#½ Äb…[ÖNÕÒC€e‡yb–N¡öÌH5ßʸ!ÿkÉÂ@D-Ê£JÅ0¾”U¯ê‰©í{C Md4»}šLÓÈelè¬"xb^5 d¼—àXÒÞÂ"J×¹Û»îåD”ŒÅñß·ŸPEëBY(òª‘QÝk~~FMw”¾½ö´‹Ï«3dNxN÷Ôø¥ãUŒÊL_šóŒ¸ÄBÍFŒmU©œ_aO=ˆ¾ZàR gÔï…¼²(ÛÄüCDBàðöáô³Í|Ö(˜1®r«¯#›Æ]Å7D­ãT©³àÜÞ¾ïd°žªf$.áÏn)ÛÈjÿY§Êfý5°Üç»Ýµ)ê9Úù¢Ž™¹Öí9À£ÀÌK_ý8_ÿáç{m ì¢yþ$¦7±0‘Ï"m=ö¨÷ÖµacþÄ]IYÅ­Õ!ñžÝn‘VùŸB+E'³ÙrkëïKö:ÉŠ€Ç’«9¤Ï'Ú Ùß%.œ; }*uÓÝÜžx~ß*‹z,ähz‡êür¢¨Qó3oŸZaôFàKÖN•ÀtÄS?÷2W¶jÛn—(ÏWö]ú ÞÏ£FÙw:H1´ºwOÃåè"ÂqÉ´éoû/ö^t¬|'AO~ Îcãòø§q®ì¹úbǽ¢ÑTÿK¹ 9Ý€ƒ|²Ù4‰GËgÀ,j(ýèºé‹'ëíüúÆMª Ö‡ÓÔÓ*iœ'-„ƒ®G5ð„+0t7…³l0?%Ê"G˜xÏ›'Æx–/гnp«ÿàsF¸Ë4&ÝÙ ¿kS^(?˜~Ë:6láÎÄ%³iÅÉ6ÌÜ0Nƒ¤ö“úYmà塯å5S,UgŒb…²Ùìîr[›“¸}î5«‘¿7\(©üòiϧO;J¦¾X/üÌÆ„{KM %7„ ~ñ°½XwI´ßóòR…0ÛEˆÅDÇȲÚWÆg 7Ç“ÓrT§‰t`Üøð®ÜÛ÷ðÞg£øAVŽÆd€ïµä}{uiròmLYÊúÀ· KçOÓ‘¦" 2Žðh5†ê÷(’áÈÙ pÊQOÖá½)u(/N:¤p4G!EÔsÏ@^äÝ:/KÃtk‚HÁ¡]‘©ôÜéˆ~†¬)ÈcRU>ç!vž Ù*7ÅåÒz¢¤d²œOÈÚÞmKj‘¡åioʳ¡æ<×$£ô#ô…ܶµi°‹5ÐåÒ–_µ blZ”7U¨&,ÛNfR?~ éÈ Òí­×Š~¶T»|< g_MZP"\%®š1µíÈ}`²þ]mûbT‘»ž+ P˜·ŽÊÈé[%*¦±ŽRý$TÂñ£$cŒþVûh¨ßÆgùýC¥·Ò»ªò]ºÅ®çFc7ICwhºHW¹E¶“E)J~âr(x]xôݰ…UóÒ 1µ_YШvÏ”»Ç¼ô/)颴"û.7ì2§ªÎ*’{sU¾£ œ¦æDºú¬½#÷>“°JÜý8ua¥ªöÎЇéõƒÜ?T¯êØÙÑœÜeؤ–Éj¸dìÃb¢÷Öu%º×d·¨‡{2ãºn¬¬~aØ<±ôlÓœD+¢¬ˆCÓŽäë°¸âÞw'}gå­Ž ߨh3NRUÞJù1M[Èn=Õû`7ó]\+_ýä#¡Öê³62VytE´Åü‡xý­±Ì½+2Ðèg£«ä!f”Œ‘N@.wR¹S±ó~ºS²ÔÀ˜NwªC‰õÙ—úJÆ/÷W N ñ=0?¡fk;è dB~œŒµiàÞŠE|°!ë[²›ãI;Ö¦Á›Ò±,?ÒßSGWÔ=D« izì$@ ÂkÙÇ[xööùåßq„<Ò3òõ»Ì?ØùÒ­F¬Ûeyí‚5Ÿ{y){©TâY¼/¼y§MoH,|¢ LŽPd!X3{ålg>„ÌñøIÒN9'¬‘RývSÜ|·ô•ñÂã4M·LÖý¢¤›ò…œ§d ³öZÂçñ™èMÂgì?{aEj©ë÷³¤Î°JŒô×21?ÐÉvêûåSØËMpÊu÷Â¥GÚñÚrÁÛˇÍåÜ„!ÍGgKÉŒ4u€xŸ‰¡qÁÝgYƋ۾¦tBâ¼›£¡OÎf«È8…ìB®ÚgÿPþ…P «•9)ÄûŸ,Ý#)4„s¢´òŸQ€Rä3¾ ˆµ*áîÑu.ÿä! c¸.2ç&°B£ÔR;ýXÅÂrï*ßf¿Š>E&ݳó…2’¶•:í—ႦV"ߩ鰬2”Ø7'Ýæj“Š0Ó¹:ž5GÒOé#í™G û(÷å«ëô ʵ-ÏA^ßiçãì–ç9" [¼xœ4kå¶+Ýa7ÖL».Ouô†ÒL”ìeE¸.=º£þp.Ìu¿ýÝ÷·ÍQ ´åÈIÍ»/¹Ü_Z‹µÂm+6f½uÙCÕ¶(ÏÎ’ž“iœð©ÃÄü/Ç)úÅH§Kó!~.ÿ,‡>Cr5v]Uó.V\ñâòýÙ‘NrQ"äý0¾’Ý2špéÖÕo¤Nв,UŸE>ç6zä/{Áv®y°Ð¬Jì¼Ó¿y\âÃù¦ÿ$‹æZ˜ßèSM:C¿Q¸Ys Àí”^ñ "Û·ìl`ÃI5=rMI×ãA°0ç¡pöìWöNRÞBõ\cØ ¥¡—Ô9ÿ\Sx(_ªx•ÒÍ —¦j‡K³™6' })‘š=­ß.*8TŸçÑ M­¨½bѵ-^ûlK[ ÖS™#Pº½ïkØ1˜_L=pYåC¬IÑáñsý µC{A_¬‹ÅÄi4þ[R—ì@Æ•1üÀ Þe xHÒÜ»3=&½•ó]tlZüÑÝ]!½,jŸ<¦[ÀÛÿ¢­Üñòg¶¹â*±é° mãbb«+Óg*}~ H‚×.Â%fæ’ø°üŠÀÓ½ ”æVƒÍz²‡ÍÜ‚ˆƒ÷–¬ÚîµÏ…­Ü_zô2 î07¾´‡+œõ¼b«þR‰Ôà&™TPþiÑ/ý°HQ4q1ÔþTZãqý‡Qð®3©µîæøü—óšûД ¬ÒÛÓÅ…±˜XQÒ{Ô݃:zKö¶ˆaúìï%ŸÏ„t\Vìï~£ÈÄr[{•f`ç}¹âòÀÇRùø˜åhG»öø‰PfùÃËÄá´À#ø—˜§u:…Eâ—Ô£ AϪL½OÙïç´ñ™hÙÜZçws²½A]KS²ê¯;\¾ðY6;¡8±R¹ÀÆ0¹89Üø”6>Äv?O¹<‚'³aˆÀLúFwZ¢¦±ÖkO}Íþ›³ )²Ô,bSX% °! uä2°v©°ÚÿmÂ5flàFêZ¼Þn>Z¢ä[,>èxõst 6øE•XE1SYjbƒ)æý>®Zâ«èÝ`×®¦ÞXÚ|‘3à­ñä­n˜8-þ; ® ›®ûC<öv[EÈÌ962¢ÖòõÆÂ‘J Dt™Æ[ÇCâ–ãWlq´›]4Ð;øLÞ]~é’ϧ2A֌bà””4¼bò/àmûßnk'&¾÷c¯½ý‘¶«.®XåÜòÌíkŠ;Q´;ta¹rž8ÁȯOÅT¢yê½`!£3~u‘ÿ›HöQ?²£,ãÒ³ê¾þxRØ,#šmŽôJêîšSprfú´ÖW’|¢®ãƒ›{å}oHªX¯°j/…ZÑyŽÙA3.ÚÛ÷…”v®p§v—ç^‰5‹ÈNüÀEµwÅzïF ˜ ~Z7}¹òrÝ¡=P­úÃúVèæGYKÝû§QE—?<#ìÒÑ*%Ôð‰ˆåwhgnxJNS\<:ìM¼†«¯—oÉ‚q¤.Lu‡$Jɧµ¡)y’kLâç­ ª6ìz%Û¹>"2ÌÒÒfŽTÅ Š=W7)â•»ÄJ‘†1:æ-o2i®:JŒ çÒnú(Üý´ökä­aú¤Ã'Ó¹°·Ñ,Ü3˄̽¡U®'”3ÏÝò­R¶HsÞÛ Ø+sÑpTXÞù²x‰D“Üx§'ßÛ¨íePZvŠ9Çì¤MùÚq"†„öçpFðÖÂF7Oiär¨Ã^§šø˜f3s —ÛGNÆ%¼Nà(UÊH6¢übòˆòÕØgcE*7úçç¶£l3&¡'#<š«Šgßí'_‡oµAÆÉL¤ƒÏºÏøµìÛz•ƒ¥6x—©x¢Õ%ÔãÚߕ߯°$¬EŽïÒŒ?4n¾ÝoS×*AZTÕV¨“Ê õžT_ïÊ1ÌŠ¾è¡”R¹ –{ÒÒʱÿ¸úÇ´¸œ¡…¯œÐ³íN*+º‹ ˆf‚‡\Ê?cµmÍ ¶¾Jûû"yfúeO`S×k9|Ðj·¶«³~•üü®†s?endstream endobj 767 0 obj << /Type /ObjStm /Length 1311 /Filter /FlateDecode /N 85 /First 733 >> stream xœ}—ÛnÜ6†ïóƒ\%µyYܤNÄa-Ð;yWÈÒB«m½}úüCïAÜ¥8E‘3g†?¹…ó$¨p¤¥¢d ’œÆCá?þ4Iáð4$ÄÓ’tÜïH R*<žž´àÙ´Txï%s^‘±üÔdáµð†,ú oÉIØóŽ\Áó rß1Fó÷@^ y È É´Š‚WÐØNŸ`C€½Ep$¥ä!,Á“TŠÇ`Á =^4àÚUj§ÐPhÄ,Ü(Ã+‡ /`Ù*nÀ²ƒaÙi ¥‹=°Ìü^Âra/a™£æ%,³ /a9(¬GÂr@P=¢/"ê%G• b%J<Æ“’qV@Ñô˜©ð ‰†…/¼(ïVš*ƒ‡NYRÆaº‚eSp,[Á XvÀô –¯Tò³Àа\À³GTÁ„–9ç^ò·*&Cq&¼†åÀ„–b*îA1XõFæ2ò°¥z4Ž?iÒJó'ƒ{7 Î3ò«5ŠÍ› dÙT™‘ÜËYö–-âç‘NmñÆpÚIõæÝ×vè»åf1Ô]ûþÍ»û¡l—e¿¤‡ú¹¢ûª¯«5Ý6ݰÆÇØwõR¯é[¹í6º®Ú¶JžÌ>×ë&×í*›†’>Ðågz·Þ<®«èíÂ\¨÷tyO—_º‡Ž>~„µeœûPMEŸÇª™˜¬ÓÉ<ä*n=Awtù½zâF‹o·e_µY½ûzÛWÿ’EÀãÛ«?Þ¥üÊ ŸžÊö£ÄÕ^w˜{_ÿ_åALÄϸæ*»öâàúº©W+výgÙl8ÜÕhý;Ÿ6ëUm~ê6pøK Ëëº_Q>â‡o%Þx÷#Ä.Át~¡=ôS0?W‹®ŸÎ­½yF3NOcÄú—¸sw7ݲþg‹c»ª&\ª¼Ëbì2ȼË×´ø“õ†óŠøÔ5]¿¦Ç-}/Ÿ§HòµDBbfI|BÔIlÑmÙTÃ0…”¯Ò ¤biº=’=GúV·PaÛLQä+7¸qI 1KaR Ÿ©‘ˆñW½ž&0\#ÙBÏbc >Ï‚Á²I÷ÛçÇ./aö¢Èaðé:Æp3‡Xí1L&#ލb0>c˜0 £S˜£žŽ†/}½Œ šÀyŒ ¥Ø9NÔ”¯Ç}ù_<Žè·îåLG³eÀ—‘±Žê½Žò d¤£JŽ#£ÒÝœê艰ñåføðTaã¶UC×›vw Ÿ‡Ååå”/Gc-OƒtÐö½×£œîÚ’þèzTD;” ý]õ]LL +®|Aæ^³$mŠÎpZºÛü ¡£›M3Ô+Œº«†Mßîo 9®¬ÔòýoŽ$W¾ž“ü~s•|m—ÕË)ÈŽ"¿•NbSÌÈiªÔH[»vÑlÖéA»ó›ß²Ê%õëõ«Å¸~­œR&:ÊìÕjUµËú%—?Q§*QV*ë!4;_ú¨¥7e)]ÿJÏe/„Ýs™÷›/OH©vy¿¯+Ö©”꣔BÑûr1T==”Mvø‰:Ô‰|ê0 ʧ]Gãù>ã<{¸óOŒ‘s£f§jĉóýå‚¾æ ²;ÿ’ØY‚èI‚ „¼š›D"ŸC0é.4GÁÜŸ3)Èk€IôñdËzOõÑŒô‘…Äk½]õˆÂöm"/V̺MÅЪ¬ÛÅS½€ÓŸÞ!Rpendstream endobj 853 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-ltyMultiplePlot.pdf) /PTEX.InfoDict 580 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 582 0 R >> /ExtGState << >> /Font << /F2 581 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 9742 >> stream xœµOÏî¶qÅ÷÷Shi/òD¤$þÙ&h‹HÐÔº²(ÒvØ)’ í×/gÎr†~_¿¾‰»ÈMÎJD G‡üQ7éøêHÇ?úíñçã|ç‘ëóº®ã¾²¨töWzŽ¿üÇñ¯ÇŸ´ÑÝ^wµVW¹^OÝZýü¯ÿòO¿8~ùõ'9ßyø?¿þåoÆßÖçøßO¿ûýqÿþ)_ÿüñSÒÿõ§’^ý>®û‘Vß}*ùõ´ãºúë¼o?ŸËyÈòÊ”­W—”DŽƒ¤q’c†,¯[çWë"ëë”ÆåU/Èz9®¼ˆl¯küîu¾Ê3d=_¹è±×ÙO•ã˜!Ç/ÜzU½ŠÌ¯ÔôªÚ Ù²^Æ­ò~Ui|¿’\†tœ4¾^EÏ\^§4› ËøÝû|]zõuÉï¶WSÙqû핤Üþ^§œ¹¯g4¾3n¿¥WºUŽP)3Î\U^zûãš»{ëíß÷ë~ {Óc«Ü`{^eüî­=8dÑÎÏèÑhÓÛÑû‚”ÛDz¿néÉúêò»ý|¥S¯ù.¿«½Ñ3nÿyrƒýÒÛ¿G§tHÍñ¨ôØ[sãîèþhç<ãÉ驪޾“rûOÆóíMs£œÒƒCvÍ‘|šfCJç<ãùʱéLzÿKg퀧É_CKz }#~i~ ­ý•Î[{è—„xÑNXç+Ú ëøª92Ú·ªºi’Hö7jé¦qõ—dXƒGzb\¾ÞkJI»b´O'µ$JÑӊΚ)£}íª/í«u¾G»c\O~¨µ?Š_4[žq›ZÒeôµŽ‡”*ò¥Ûù:úã”N:ŸèÝ-ºå•A)kvÌçžrFÒŒTÒßÏ·öÇ“0JDK Ý“êGóÆëŽë=qþ¢ýõ<Èö4 ˆôÇsc´') ·êÖ©5y Ò2]z#Ozýc¨k ˆ4ê„öG—Ç*úBþT ò4jæOåý Ýýïj ý•0VÓ<Úƒ5I8µÿÊI­£Èúk¦ c]k[ÿCúkü×£ç¿YdOöÏ=«,òážeù}£ÎŽÛ>¿µ¿F·jÁK7*íÐçC©푯7jíÒ,¶ó{hé¯ÑÍ]Ï÷°Ü^’¢YoYQÓÂ{óy<¨¸ã1V=ÿxÐ7Þ È¯5wÅQtGšáù>¨º©±”Ý‘¶¸ß¡¥¿†Öâ‘^FÚ¿•w #ÜOAé•a—©%Æ0Õ×Go5é¯q¼–ÈTP}efjé1Œ24êïfZéRAeý5´ô×Ò(ÁK£ô÷*ŠðùÈmCKþŒ2¥¯Æ4ÞoÒ_£Œh:<4ÆgÕBœG­8^+qîÅί¥8z*õè/‰_ú<ªc§µçQÁ1>«–ã<^Ýôè8Ñèïñ¦»ä÷Ç0ÒçÓ´‹¾+u—ö‰ýÙ´»ãµçñJD¾=ú+Ÿ¹p¼Öãÿ|¢{­ùÃßÏ'êñÐj»ò‰z<^[§iÍŸç‘OÔcËÿ|¢׈æƒhO¾-Ÿ¨Çc<\8^އ|¢[>‹®¸^}¿å„zl÷›SBþ°Ekþ\ð 9i=–çÓpüü91E3î®úAþdô–Ø4^ µgTœ¿!N>ï›õX§0¢Y³­õøÂû8߬Ç7ó{¼ï¤¿†Fþ߬Ǭßùf=žíQÇc̉ZêñxŒ7ޝÚ_ùÌ7=1'ùA=·Q*uuïÇü ÛV?‘ŸŒIçù1ùöÀÛ„$?°Æ6‹͉ƒ¾³—s¹ÿüÀ›…Ï챸ô›ZêÍ%r91{ùSëôáaþøc›Nä<ºùÁñðÇ·N$ Õ>Ÿñþ£ÿÁx‘uçƒ?íµ>‹V?H¿™K~P´úÁ‚z+ý1ë}®ôÇï§Òsz º:¿ÇûOý ýr®ôÇ ~Mtwþ?WÔc™ëêýVÔã¡q½CKnÄóm¨ÇæÏåÅ%ý1#žGC=ž÷ÓPGZ Æ‹Jç ~07úã~O4ýqGœþ˜“%)\’?bÓ2µæO·ëA=¶ ¡RæÆ[O–?¹PkþÌöýe××é¾?:üñx>È·,Y¯¿k=}ejí¯jç‡?–íÏº×øÒ‰^[õT µÎÏY¯µßkFªÖcÖ{ùÍ9±Öãñ<µo®gp~-íΗE7?fáûy2µÖŸ #…éik~+}?UÔWù!]Úrºâþ_ê±­ ɃÑþʼ߇õ˜ë:Ï«Þh!÷ùó ÛzLìÔKjá.k=Dœ›ŸkárõM[ó‡ó}Mììú¯°s}ã*%öGA=^¿‡zlõœmÖï«r½¢ _õØV¿DW·$Wòg\Öcº77Þ*ëñÍúYY3ó±¢ÏñVQÇï£^Õjý…þ«ÝÆÆcC=¶õÑ¥¸úÐPg}hXϘ㥡Ë4^¿¡ÛzËÕPçóo­ï ?[±õŠó£{Ý›ï­ÛúŽúµ«£Ï|îXϰõœ«£‹Óëé¨Çö>½úmù£þBt½ÝxëXÏXõØëŽõ ^êñ]ñ<¾–…ü¿o™>P€ï>ÝbµoÓßš–Ž×;4ßälýµý…\ç}|GÆ i)ù~|?~IGR®¸¼7F´8¥‹£`Ì8ëÇŠãg|ýþ/¾awýá¯ot×_ÿð§O?ÿÇ|¤ã›ÿDiòÇÏôOÕ£²žU'pãóÝñEo_ßüñÓ?|£§þÇÊ;u¼ÜõØþ¹ÇÊ|¨ê±é×Åzµ`ñö-Z¼–ÛÕb/_¬–ï×/–Ï÷ ¼_ÁØ`•°5äd¹XíîCnb`6úÿЩ~äûåÈr £à>?4ze‰zXÂ"uu&& Ðú&©`@X—Ÿ5ª¯u‘jc„u±º„Eª)–¥g`[}¥Ëk”]7¬§‘æya‰^”#cÒ(, ¸šÈ²H­n@XÖ¨ÕË’´É1ú$ªoNa‰ªS–3뀰.‡Ë±Â=NͰ­NºdmRçT"ï„ee[§ «±N¸Ö ë²¹«Ó)•é0 ,Ǫ[–ËP³ ¬Kö ë ½ü€°^³ü€°ÈD>,¹Ñ8–èµ€°œJ;@ØËŠ‹TO ,©´@Xò3¥vNCOò àtFpC°¬ÛkgË:àÕ –ÆÑ^'Pªó1°p½8á8°¬ó߈¥›† –òÀ ,q-a9€°pQa¹Þêë˜@X4OŸ€èl€¸ózõ~„å÷L„EÈËõ^¦%eÆC!àÕ –´p–x@¾Ñ× œX` ëùNx ú‹ ÎÂÂAnÀbΓÀ @X¯ÀU'XÂIà„E 'Áï 'i @–81Þ–'«°pAaù½Ç´¼;…ÃH@Èñ´ç… !°´G>Ëù:2Äi@Xâ˜Âr=€¹ ?ï@X¸6€°h䀰èbZû«q< ÷Áù„E?²ZpEãz„åx¶¿Ð_¶@X~ù ,€@X¯€YË®™îø}Kz·1¬<„…K!Ÿ„%Žñ œxèê‚—èíµúª®ÇÂz¿hÿ 7K¼ fQ7ôÇÔýÑ0%–ëC¾Ëïë›’@X¸ê€°p4ä3pâ+Í€°œ@8ÙádõŽÎviaù=\€ðèÂr½²Â¡„S%ð$N „@'.àç¿=žùB |Z}j¬Ç Ú¬ÇØ` ,õù ,í°Ô_Ô“Îzœ9~ú¬ÇSWÔ+{aŸÙa©¿è¿Îz\Y;ëqåó–ó@¬ÇNk=æ‚ °ÖwbÔãÑMÍ´¾¿N¼¨Ç²®¢@˜qa}Œˆ£Ë‹]ø„ÕPw¼Ë鯄¥Û\„çû˜@Xûï<&Ö÷€í…þàû–@XŽÇïËý\ÐÞ_·ç‚þ2 ‘f=À">¹á„@Xú7貟,Â×ë%>O#a}]ÇÂ'ë°ú„åù=€í}~Ëýãz„õxÄ× ¬ù ›ìýz±_xY¹€F ,À@Xë€2ëq7€Ìz<5ëq#0»X °ëûÀõøä†aÑw9&–öÚÂú>Öûþ¸g=Ж4âñ¨ÇRò1°¤ =€°Ä¤„µ^Özü°¿Öã›Ïÿa=æ†+aÑfë±õïÃz<1ëqçý=¬Ç@3üdã@8 ·q@X4®ÿa=î¨/ÂRO‘Âr~é’gø²wʨÇ2 ú1p¶ XÂòû0êqæÖWa‰ˆË0Àýç\ØŸÂ2lp?Â2¬p?Â2LÌ„eX˜‹F~çlýÁõáNé˜@X‡4Öm2ý(° l0û–a„ñ ,Äq-t¢Õ¯˰à–aS|ÖóCë‰uøj=ÖóßÇÂr<=€p¶ç–ßWÿE ,ñÛ±äÏÐêÂ2l1¾„uX§cá|Ù®&]ÜàJ ¬í¯ca-¸ÔcÒÆðÇÌt@8ÛaÑ ÂZ&­ýM ¬qœþøæû’@Xu;&–ó‹€Îàr‹¾¡µëõêõkÿÀ¢_œk>!~YþhËóÇýp-n”yÆQ%Žó¡}: ,Ïçv@XË4Žï3`Q…kæca)ËXÂÒŸÙa-»÷1°”Ya)³€õXžïuL ¬íG=¾é7„¥Ñ_ÂA3¨QÇ´@X˼iÍú/[¹\õØkÉŸQÖ³¢Ü„å5` ,¯õ_ÂòÚP?D ,ù ¬¯„³mP!–²M ‹züp1Œ@Xâ<ê±h^]Ï2Ÿ–8€ €°¶`F=.Ü0I œmƒ °¼†0>„%Ž|ζA„@Xϧ×Ëu`áª8^‚¼6œõX4Ú£ü–×Äyç1ÍÂø–8€1€°ü^í„¥}†F=.ôsÂYVŒQÇk ù ,ql8–ó£ÞËï7ıžQªYÔãÑž@õX€²Â’O—Â’ß5Kã @XÆž€pž@@Xòã@Xl4Ö3¾ „Õ–èñÂr}úmÕcXÖã ±žq7}a9ý ,çÇx–üG=V›‚öXÏ(Ü„óèÂ:>–óã~„%ŽþÝ|QËaý}bÔãrÁ¯K>g^¬g,z쵎'.ß±ZÇóO„É&¦þöû€8àpô©èùn²Bl¸<¾W`Kéâ²"¼€1¥#2òÞI (Cº¸¼@Öù)]4ãëú~`,ëDã9þmàVgǤ¾ésÖ¥RßüÙËi¼ìë³F’êÁ÷û¿Ç›uªßÀ›ÿù Þü#‰ÕßÏ›m(?/Þ<ã?;Þ<Dþìxójø³ãÍ«EàÏŽ7¯?;Þ¼Zþìxójø³ãͳEäÏŽ7¯?;Þ¼Zþìxójø³ãÍ«EàÏŽ7Ï‘?;Þ¼Zþìxójø³ãÍ«EàÏŽ7¯?;ÞìZ´í:öêhÅøÝòÈï×G–ï÷ $¼_!í0Kä“OµÏßçÑhóŽþýXý£Æ¶lŒ½'Œ®ëkäa†uR]¹e$ºtÿe²¹9pèÂÍnÀÐõdK5æ¡åO~£~L¬ïF{XDÉŸ²“$ çw v~rdI(4Ö±&°¦“"wƒ €ÈÒ±zÍ`È™c-ÐËñ8F"ûäÁ:›ßSw£Ÿ Ç’"žËcÇ/ƒËÃJŽ˳ē=–Ç…Ï?Aåöy±¼ WH“­¾“kn€æÂðœF£@%Ñð|@5µŒ&‹ó8»iÐ >8?öéœF×AÓù`{7é±Ó çÅϯA%ž=–þÁè=Nö9#é± ªË}N,íñ9(è±´ÇnÐcÑè_Ðãuý ÇççËØ´sÒ9Ðc‰ƒNÒ‰ MƾÓhè±hô7è±Ý  Çz?š— Çò{Ä Çò¼“ûœXú»@¥¿==vx–ÆžÓ>O=–ç‹nô8²Mz¼ò ôxåè±Ô ä7è±´'ýÅFžÄÙ;é±”  úÔ¥±—Gh®›y²ýóÀŽR _ Ç¢±[ôXt6­ã©“^ƒ§ae»}>,ù“ìó{Ð㔸ZKz,šçÃnžt½=F½\ôxöé±}ŽhôX>·Ï‹µ?.^?éñ|Þ¤Ç^kþž’K½Àx =žã›ô8e£ÕÕò‡ôôø4:Czìµölj7ÑãÓVÿI­>=×û€ƒm7z,ãÝhr¿×ø%=ž_·"O;7ç“{Ê:îwû à¸Ñgwš3bcqî3âV újnö&˜±½‡ˆŒ—ÔÁ#ò9&0F¢M^ÜXˆ‹›}>Z,_«ë5ƒ‚µlÿjõmÜšETÜRøt¸r!Š X~Èqb1bù˜˜x\:”xŒBl-»‚¢ðCºØ5¯ ˆX^ÒF„åömCqãú2ùðÄñÀÃ&“Û{—Æ%µÚ6n#^¿«Y!#Êaó(äÂݾ‹îÜ?I*ÜçWÅ !º}ô &,È÷¡+ŽÏ/Ì„Çe€÷‚ϬnFÃAƒçfÀàÎ܃,xÜ/ÐPpã§.$Áf\ ‚÷-‘÷sÉ‘R.ÜgÁs“ ð)`À¶…‘ؼ °l˜¨ÇÀóƒ{ð_y À½šçÍè:èoã×c„¿æçÈ~¥¦âXø×ÙØü+@7À/–{'÷m܆Dì+Ç‚â¿^uá_ !˜o³ÃÈw ßV D±!ص“÷Îá Ü+£ ôWë§L< þvµÂØËÖ‹‰ÒD½¤„¤×ü:Ao³} à¼sX¡[} )oã&=BÞ¹çŒwnéâm +¦³'xÿ'òÝÙ±À»fÐIw‡D"îÊKÓX/Ê&’ 5³ŸAv›h€Ýy‘àº6·!ÖÅâù¤º2A³¯~õµrÚW½ºØÚùÑ2™î@H@º½Ú'ÚR¶Á‹@·®÷ƒçv~ÿNœÛ¹/™4·óuM˜+/mD; ~(ת InÏZµnʱø0×ê&00®Lë1)îø]|µ–¦MÅWx©Úku~åË×*  ®h@@\y-WqçkžWm  *lê¸d@G@ÜtvkèÉ  î´u„¸b³1q“mš$Ä•‡¸ÒP7hµSæŽËTÄÛXÝW½r}€€\\š6ÕéÛyâüXÆ[é¾êuç‡MMœæâêtÖ¾â½`;ñ•+ ®´dÄ•86%âN[Kˆ+³ÖÇ}Õ«ý…öZXå÷  .6¥gƒþ€¸Úþ9&Ä•9r2h+ù“«}õ«ÕU4!*6¥Û¿zAˆ+³ÙnÐVúãæ&6B\Ñ€ê\\½ù±!®Ì&-Aeö˜Ä•Ù% ! n²M)„¸Éþ B\=? ,lªlJq7Á2Lˆ+Ç'q%NH‹Mé2›F{ØÔËÆ ®ÌÎÑ_€¸2;ïâŠÆõâŠFEÄ•ã³A[éëfâŠFqéYÌÔuLˆ+ýüÄ•óÚâº869^üW†qå|(MXG“ãQõqÓUì+],Ìö€¸r¾ä ®ô÷ÔÚ_¿ˆ«« ÐX6M€ÄØä(nɾò•üyûÊË — qE£¿°ê“FšñüØäøÔÄ•ÙûcPWúkÏ…ûù•5 ®ÌΓ}Å«(ä$DïÉ4––F=öº£=òÓ07Ùþd«è“á>ü$æ{H72[ì"¸E§–ßMø÷t|/¬ïB¨ŜŢœÁÌh×U9‹B9¶1^·C¿..Õ}¡_J—½ ë[bJWôVzžwöÓ _ÙÚòümŸ w-H€Æùs¡qÖ-8¸|îÁV¨8”»£®?%R˜j†°˜=£c˜*ë,M¢yµþŽ$ÃEÕ¸Í(”ŽDqQQ+ª5cF¡VT+ÈŒB­¨N–gÊGë飢VTkÑŒBÍ(¸E©|´Ÿ>Úý™Á…fjE5WfÊG[öÑæïiF¡VT«ÙŒB­¨NágÊGKñÑîWëâŒB­h÷OŸÊGÝÓ§šQp+‹R­¨úÛ…òQ—9T+zù§Oµ¢·úT>Ú›öpfuÉ3 µ¢ÅgÕŠ6ÿô©|Ô=}ªÕ5Š…šQp6‹Rù¨ËªÍþéS­èåŸ>•ººAµ¢·¯T+úøÌ¡ZÑêŸ>•º§Oµ¢Í× ªí¾nPù¨Ëª%'´°IÏ>L†¸+&]üòåä‹ß>…Lºxñ‰`2Äëâ5ž¿ú2bÒÅ›/$&C¼”ÙD¢9ã”.ž|R˜ qWPLºxö%Ť‹_>­Lºøã“Ãdˆ×3Äc~¤®x‰µ…dÕÇ{¼ÿò‹ÒÅ{ÈÊŒqÊwEƤ‹'_fLºxùEéâwÈÊ÷ùAéâ/7&CÜ“.^B~Qºx ùAéâ=äeˆ×â¡ò,Ï8¥‹§_”.žC~PºøòƒÒÅïP(CÜ×JB~Qºx ùAéâ-äeˆûúCéâ=ÔÊ ŸqJFÖ¤‹+kÒŃ™5â¾þÜ›Ÿ%[_ñ{˯;XZ“.L­É÷õçÞ|-ÙüŠoΖ¬ÞÇc~=ÁÜštñ`oMºx0¸&CÜןgó¸dÿ+~mùõ›kÒŃÑ5â¾þ<›×åÞßÜ.÷øx̯'^“+^‚å5éâÁôš q_Êæ{¹7aÅó–_%X_“!îó£lî—{V|ó¿ÜÛ°â›æ^ùU‚ 6éâÁ›\ñŒ°É÷õ§n^˜{'V?êæˆ¹×bÅ7O̽+¾¹bîÅðñ˜_5c“.¬±IæØdˆûúSwŒ½3NéâÑ·Ý·èÛî[ôÇm÷Ç-úã¶ûcìññ˜_-úã¶ûãýqÛýq‹þ¸íþ¸EÜvŒ½'+Þ·üêÑ÷Ý÷èûî{ôÇ}÷Ç=úã¾ûcìeññ˜_=úã¾ûãýqßýqþ¸ïþ¸GÜwŒ½1+Þb~q¯ŒÅM†¸Ë“.ü±IþØdˆ»ü2éâÁ›tñàM†x¿C¼ÇólÒÅ«Ï/“.ü±É¯-ÄC~p¿ÏŒ§ÍsЊoþ˜;‚|<ä·­øæ¹ghÅ7ÌMD>Þãùƒ?6éâ%䥋l2Ä}~¤ÍsgÒŠoþ˜[•f?®Ís·×Šoþ˜Û¿|<ÖŸ«…ü¢\ñ;øc“.ü±É÷õçÞü1÷”­øæ¹Élů-¿îàMºxðÇ&]<øc“!îëϽùcî\[ñºå×ü±É‚?6â¾þ<›?æî·ßü1·Ã­xÞòë þؤ‹lÒŃ?6â¾þ<›?æ»/[~=Á›tñàM†¸¯?Ïæ¹OoÆËæ¹qÏÇc~•àMºxðÇ&]<øc“!îëOÙü1w®ø³åW þؤ‹l2Ä}ý)›?æŽÂßü1·úx̯ü±Iþؤ‹l2Ä}ý©›?æ¾Å¿·üªÁ› qŸuóÇÜê¸â›?æÞÇßý16Cúx̯ýqÛýq‹þ¸íþ¸EÜvÜ¢?n»?ÆË¿¶üjÑ·Ý·èÛî[ôÇm÷Ç-úã¶ûclÛôñ˜_-úã¶ûãýqßýqþ¸ïþ¸GÜwŒ½ +ž·üêÑ÷Ý÷èûî{ôÇ}÷Ç=úã¾ûcl0õñ˜_=úã¾ûãýqßü1÷¤ZÜdˆ»úcÒÅ“Ï/“.ü±Éo%Ä[<ðÇ&]<øc“!îòˤ‹lÒŃ?6â½…xçþØäЧ°µÂ¤‹l2Ä]~˜tñàMºxðÇ&CÜå—Iþؤ‹l2Äý>œ´ùcnú]ñÍsðŠoû-¸)xÆóæ¹IØÇc~äàMºxðÇ&CÜçWÞv^p“ñŠoþ˜›ŽW|óÇÜ„ìã=ž?øc“.¶`˜\ñ+øc“!îóãÚü175¯øæ¹ÉyÅ7ÌMÏ>óë þؤ‹l2Ä}ý¹6ÌMÓ+¾ùcn¢^ñm_7U¯øæ¹ÉÚÇc~ÜÁ› q_îÍsSöŠoû3¸I{Å7ÌMÛ+¾ùcnâöñXîàMºxØŸaÒŃ?6â>?îÍsSøŠoþ˜›Ä}<ÖŸ'ìÏ0éâÁ›tñàM†¸¯?Ïæ¹é|Å7ÌMè+¾íÏà¦ôßü17©¯øæ¹i}Å7ÌMì>ëÏög˜\ñü±IþØdˆûúS6ÌMñ+¾ùcn’_ñm7ͯøæ¹‰~Å7ÌMõ+¾ùcn²÷ñXJØŸarÅkðÇ&]<øc“!îëOÝü17í¯øæ¹‰ßÇc~ÕàMºxðÇ&]<øc“!îëOÝü1? Xñm?XñÝ·èÛî[ôÇm÷Ç-úã¶ûã÷!·m?:XñÝ·èÛî[ôÇm÷Ç-úã¶ûãög˜tñèÛî[ôÇm÷Ç-úã¶ûãýqßýqû3LºxôÇ}÷Ç=úã¾ûãýqßýqþ¸ïþ¸‡ý&]<úã¾ûãýqßýqþ¸oþøí¯0þ®Íï?¼ ùà ¡m¸ûhCÔGJ>þÓÔG@à£Õ´>X0øpBö‘!þÈP|Tð?P?œþS|ö³þ€–-|ò¾-_}óÝñ»/~ó__Žç||ñ?Ç™„@?_þþøæ«ý»·O&jK]gûâ×ÿöžæÍ¯KÞ9K×oÝ5}õå8ÅñÅ{œNöã¯IóÞáçœMÿ_ß¾ÃúÙÿz¡ìŸ—¦ÿzá¯Þø× ñXÿÿÿñÂX{ì¯wŠ ¿]}|ƒ7Ëoðfýñ Þ,@¾Á›È7x³¹o× ßàÍ"ä¼Y…|ƒ7Ëoðfr Þ.D¾Á›•È7x³ùoÖ"ßàÍb¼U\ƒí3@|bøîw€¿û! Âï Èßÿ Þÿ Þÿо‘œ_þöÓÿxv¾Bendstream endobj 854 0 obj << /Filter /FlateDecode /Length 750 >> stream xÚuTKoÛ0 ¾çW=Ù@­êeÙ)°öèÐa—¡vXwМ4’Ø]ì¬è¿Ÿ(R~´E²øñãC$Û2Á¾,íV‹«­˜”|™çŠ­˜T†—B±BX.Õ’­Öìg’§2á&ͤ—&kç?›í.ü§™.òä›?‡ï ~ßõ©VÉóÁ_mºô×êëÕMÉ–|i•#‚eºäZX¤¿m¼–Ì“cªŠäìu@¯'ÊÇ@‚€Gµ=|˜háh½X&®í°œüú›ªµmâTløD6}׌&º4žÉ‰ úžë‰óJ|)–>ˆà|ôõùu˜²ô©4X92ù;Í”ö\×Q ÛÂX_§™Ñ&èóE*h ;®Ùû¼»{,SÊòBj–…7¤„J¯¬5»ö@ÖåPSH]WCÔ/€*Ñ3`ÛSÌÁáмd صƒ ë2Ÿ"Áöَ.Ì í w;UéÃ+Âcù"ðÇ™ NïVÌ‹ÎH^9zŸf¹Ò¡¤˽ȅߎ~=ÐUëד_ïüªFˆôë $Þ¼Š çÈ_™:g?rÁñÎ/=r¾Dò¡ÆdmÈ£ òöbT­Hí@‰§‡ K]Ï ;‚Dr`«©z*º‹QSäój!ýA09L•+nMÁªãâÏÂ×§EÀx ‚¨EW·G•³Oíâ»ÿEY)³ g˜[³N‹vµàEœZ7±±Î'êo!•Cƒùªù¡A"äÉbÛø!ôïñ­Dl%)Ì“vÈõ)ôÚ´¶ÿ·3i-/ ¼–ëR"±yÕÿ\¾§úendstream endobj 855 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 856 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-lwdMultiplePlot.pdf) /PTEX.InfoDict 586 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 588 0 R >> /ExtGState << >> /Font << /F2 587 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 9741 >> stream xœµOÓî8qÅ÷÷Sx9³àÁ’mýÙB%)¦ *d¦* ŠEŠ$ j.) ’|ý¨ûœ–º5ï;/È‚ ç¶ìÇ–[í#ýäK:¾9ÒñûãŸ~}üñ8_çyäú¼®ë¸¯,*ý•žãOÿqüëñmt·×]­ÕU®×S·V?ýó¿üÓÏŽŸûIÎwþÏoþ«Où•Ÿã?ýæ·Çyüû§t|3þóûOIü—ŸJzõû¸îçUŸãó§’_O;®«¿ÎûøþÓø¹œ‡,¯LÙÊqåqIIä8H'9fÈòº¥q~µ.²¾Ni\^õ‚¬çãÊ‹ÈöºÆï^ç«”ÚÑùz£Ö.Íbû0¿‡–þÝÜõ|Ëí%i!šõ–5=,¸7ŸÇƒŠ;cÕó}ã½€üzPsWEw¤žïƒª›ûçAÙi‹ûZúkh-éAá•a¤ý[PyÇ0Âý”^v™Zòg S}}¤ñV“þÇk‰LÕW†a¦–þÃ(C£þŽa¦•.àQ&Ð_CK-¼4jðÐI¯¢ŸÜ6´äÏ(SújLãý&ý5ÊØ‰ö¨ÃCc|V-ÄyÑŠãµç^ìüZŠó¨×©Rþ’ø¥Ï£j1vZ«qã³j9ÎãåÐMŽþoºK~ #}>Më±è»RwiŸØŸMë±;^ëq¯DäëУ¿òø™ Çk=Îã4¨/M g–^OÓzœÇiù{Zóh†þhZø²¼Íôü=¡?FÚ4jí©QgwÔc¯+žGG{Ôãñ¼ôE˜Ð‘×x !ÿ:êñ|^õøãñ†üáóÏ'ê±×š?üý|¢­¶+Ÿ¨ÇãµušÖüépùD=¶üÏ'êñxh>ˆÖñTáÛò‰z<ÆÃ…ã5ñçxÈ'ê±å³èŠëÕ÷[N¨Çv¿9%äûW´æÏ’“Öcy> ÇßÈŸãQ4óçîªäOFÿgˆMãZëqÆc…–üúÂù;ò§²ò‰ü×—¨%æùrÆxšúBþ0¿Ekþ\¯9k=žã'Bœ0>»ÞOF=Q-¨híf׃z<{¹¨5fûŽüɼž õØêE¾rÌŸ+[þhþçë õ'‹>5_.=ÿ…z<óçB=^šõ8!EwäCÅùòçäó¾Yu #šõ8ËaÐZ/¼óÍz|3¿ÇûNúkhäÿÍzÌúoÖãÙõx<Æœ¨¥Çxãøªý•øÁ|Ós²‘Ôãq¥RW÷~Ìêñ¸mõùɘ4pã¡‘oœ±MHòkl³(Ñœ8èû8‹q9—ûÏܱYøüÀ‹K¿©¥þØ\"—³‡‘ÿ7µNæO?¶éD.ðÇ£›|ëDZý`áóï?úŒYw>øãÑ^ë³hõƒô›¹ôàE«,¨×¹Ò³ÞçJ|ñ~*ý1§¢«óÛy¼ÿÔÒ/çJÜà×DwçÿsE=–¹®ÞoE=×;´ô×èF<߆zlþ\^\Òã1ây4Ôãy? õx¤úg¼¨t>‘às£?>á÷DÓwÄé9Y’Â%ù#6-Skþt»Ôc›J!eþ`¼õdù“ µæÏlŸÑ_v}þøáû£Ãçƒ|ëðÇò˜õú»ÖcÑW¦Öþªv~øcYÐþìðÇÖèýê‹q´¯ô+Z‹ÆÕ/J!”þE×aÖ¸ú3ÑÒ㱞h¼Î§õXtOÔµùãá‡ÿxNÕ¨Ç^KþŒ48q½¨Ç’6OX­ñûVz,ifZúcž/¡W¾¤IþÌó',YŒöÚ¿b.…û9]ÿ\5ÌGµ»ù®NÜNŸú~Ðå£{/èµUO¥PëüœõZ ñ½Öhd j=f½—ÿÑÜø—k=ÏSû÷æzç×Ðþà|Ytqóc¹Ÿ'SkýÉð7R˜ž¶æ·Ð÷SE}•Ò¥-§+îùõ ÛÊ<í¯Ìû}X¹ž¡ñ¼êrŸ?ê±­ÈÄþA½Ôù¨î²ÖCôÁ¹ù¹.Wß$±58ß×Äήÿ ë1×7®RbÔãõ{¨ÇVÏ9Ðfý¾*×+ êñUQmõKtuëA2p%Æe=¦{sã­²߬Ÿ•õ83+êñoõxü>êU­Ö_è¿ÚmÿöØúò³[ß©8?ê±×½¹ñÞº­ï¨_»:êñÌçŽõ [Ϲ:ê±Ø8½žŽzlïÓ«ß–?ê/D×Û·ŽõŒ¥Q½îXâõ ßÏã[YÈÿh™^çBï.Ó ðùÓ-Vû6ý½iéx]±CóMÎÖßÚ_ÈuÞÇg2IKÉ÷ã‡ñK:’rÅå½1 ¤Å)]cÆY?V?8ãë÷ö»ëw~£»þü»?|úé?æ#ßý' J“?~¢ª•õ¬:ü»ÏÇW½}}|÷ûOÿðžú/8VÞ©ãå®Çö/=VæCUMçù¥Ë(¿xpz÷`̵~‚ÿÂß4ðMb9üÛŸýÂÿbTÆÄÔÿé3”W;þø1¤d¹z01ÇÃ(™qr“çòÿl`8ÀµÀöjÁm×K´«—l] ,*®\dt-¸l6[@ûXèY-¸ð³ZØR…µ ö-0ù^-8w-0]\-8}t-à W Nˆ\ XøÕ‚–~µ  -Ì”º°U«m–k#°ZиxÕ­|õ¹(Ö«‹·oÑâu°Ü®{ùbµ|¿~±|¾_ÀØàý Æ«„­!'ËÅjwßr³ÑøÇNõÁû%IÎ|€eazÃÀ"ruþ%ËÎúþ©8X5ª/s‘j^u‰º†Eª–gÀZ}‘Ë@k”]7¬û§‘Üya`‰^”#OÒ('`·š¾²4­XV¦ÕËB´É1æ$ªïK``‰ª?–3ër0°.‚˱ÀÀ=NÍ`­NµdERgR"ï…e=[' ÀÀ«±N³V ëb¹«“(•é0 ,ǪG–ËP‹ ¬ õ 뺼ü0°^³ü0°ÈD*,¹Ñ8û–èµ0°œJ;ØËŠ‹T' ,©ŒX–ï3¥vNCO²î;ÑÜ@ ,«õÚ™ÄÀ²ºß€uuZ¥q´×i“ê|L ,t@/Ž8ÁýM ,«û·aa馡¥€¥è+K XÎl ,4X®·; ¬ú:&ÍßÓ' :î¼^½``ù}`R``ÑÀ0ÀÀr½—iI™ñPˆuuZ%í%^€oôGãõ'–UÃÀz>‡“``Ý‚þâ231°ÐÛ°¯ƒó$¦ÖëfÕi•Ð`w``ÑÀ>ÀÀBGð{ÀÀBGšÃÀB?€Í€%NLŒwäÉ*@ ,ôX~ï1-oL¡/ÀÐÀr<°,°ÃyaH ,í‘ÏÀÀr¾l ìp¶–8°%0°\OV.èÆûšl ,ù ,º˜ÖþjOÀÀB{p~``Ñ0¬\Ѹ^``9ží/ô—m–ßC~‹ÖÖëVÖ²+Ç_¦;~˜’Žm +`N``¡QÈg``‰cügÁ\À¸ºÌ%úF{­¾ªë11°Þ/Ú?ÈŸFì ,ñfX˜ýEÝÐSwôGô•X®ù ,¿¯oJb`¡a¨OÀÀBÏÏÄÀ‰¯4ÃÀ‚Mp~`àdÛˆ“Õ;úÙ¥å÷p=ÀÀ›Ëõà V„N•˜“8U,sì, œ¸lkxœÿöxæ 1ðiõ©±wn+h³c[0°Ô ä;0°üµÇÀRQO:ëqæøé³O]Q¯€ée|f‡¥þ¢ÿ:ëqeýí¬Ç•Ï XÎìt²;­õ˜Ë,ÄÀZß…QG75Óúþ: ë¢ËjŠb``>Ɖõ1"Žz,/v]ÖV,Ýñ.§#–nfžïcb`í¿ó˜XßWÀ´úƒï[b`9¿ ,÷sA?x݆™ úË0DšõØŠøä6b`éß ŒËz|«k\¯—ø<‰‰€õýu Ÿ¬?ÄÀê–ç÷öµ÷ù}L ,÷ëÖã w\/0(0°æ30l²÷°çÅz|Öe=æ²1°ÿ‡õ˜Û¬ˆE“=¬ÇÖ¿ëñĬÇ÷÷°7btÎë“O`à,´Æa`Ѹþ‡õ¸£¾K=E>Ëù¡KžýÌËzÜ #£Ë0èÇÄÀÙ¶]Ëï_À¾¨Ç™^‰% ,Ã÷ œsa˰Áý˰ÂýË0&–aL ,ù œ³õWA„6¥cb`vÐX­Éô£ÄÀ2l°­X4îX†Æ30° ƵЉV¿N ,ÃXX†MqX4ò XÏ­'ÖaÌ«õXÏËñÀòÀÀyØNœX~_ý1°ÄoÃÂ’?C£Ë°ÅøÖaމóeÛ¸†tq[+1°¶¿Ž‰µ àzPCà &Óes`àlÛˆE#k™pX´ö71°Æq>øã›ïKb`Õí˜XÎ, ,Ø 8ƒÆM ,ú†Öz¬×«× ¬ý ìŠz|q>@ ¬ù„øeùŒ ,Ï÷øQæG=–8·z<ôé0°<ŸÛa`-Ó8¾ÏüvE=𙉥,[Kf‡µìÞÇÄÀRfQ€¥Ì`eÔcy¾×11°¶Gõø¦ß –þEÍü¡F=Ó`o``-ó¦5è¿l½riÔc¯%FYÏ‹f–×00°¼FÔËkCý1°hä 0°¾ζ-…XÊ61.êñÃÅ0b`‰ó|¨Ç¢uu=CÊ|vXâÀ€ÀÀÚXõ¸p›$1p¶m1ÄÀòÂø–8ò8Û¶b`=Ÿ^/W…¦âx5 òÚxp~ÔcÑhz<4òX^çyL œÇ4 ãXâÀÄÀÀr<òxµ–öõ¸ÐÏgYe&F=¯%ä0°Ä±ÍXÎz ,¿ßÇzF©†aQG{b\ÔcÁÈK>]K~×tL ,qŒ'``x>ÀÀybH``É_ŒG``±ÄÎXÏxø>&V[¢ÇËõã·U]Y'6ÆzÆÝˆñåxô0°œã Xòõ Xm Úc=£fΛëøpXÎû–8úXtæE=~,€õ÷…QË¿J ,ùœu±ž±4ê±×:ž¸|kœbhÏ7 L 010õ÷?Ä‘û†£NEÈçI±Íòøa\1-¥‹ËŠðÂÄ”ŽÃÈ{'-Œ éâòYç§tq\ÐŒ¯ëûû`bY'Ïñ¯Ãµ:;&ëM_z°.½õæ/>X¾Cãe__|0’T¾ß?ø=ʬSýÊüÏoPæ¿Sýí”ن ó¢Ì3 ³£Ì³A¤ÎŽ2¯:;ʼZêì(ój¨³£Ì«E ÎŽ2¯:;Ê<[Dêì(ój¨³£Ì«E ÎŽ2¯:;ʼZêì(ól©³£Ì«E ÎŽ2¯:;ʼZêì(ój¨³£Ì®EÛ®c¯ŽVŒß-lð~}dù~¿@²ÁûÒ^³D®1ùTû¨ñ} 6@è9ÑßôrÖM°÷DÐu}y<¬×0Lê +·‡ƒ?—î¿B6ú\¸± ð¹žl©öÂÜгüÉu(Vrže9dqçBì<®V×”@ W ×sÀœgK€rÏJºÕJ’#çÂyxsáÇÀÍ…s^”5s,€Íò`”ëtM~Ÿ»Ë{FšÅùhL'r‚;g–Åråq·•Ÿî€2Wntd®œƒ1{Öëb†å4ÂÜ83`näàËbÞ^n\ã]–…=§NÈœw+«ÇªtñlœE½=Ȳ êvXîöù-*ý’º>½(°®šõ+|[ÜúLYnÇ}YÜŒH€(ÛE(KïºÏŠÉŸÇÄÉÕèh²l}pß{9’`<|¢]šYO$Ïïë’?Ï Gn#W£è ÈâÝÑX_.ã"›cÈrÍöåpҧÇõh‹¹ñ³uòc¡ûÃÄOz, …Æ:ÖÑ´c²ãnèèX:V¯äx‚r¬z9ÇH¤â°qŸXgaóÛI@ãnÌÌXRÄ3cyìøe0cyXÉ1cy–x`Æò¸ð©'˜±< Ó>%–÷_âš™q²5w2cÍ 0\؜Ә±$ž˜±¦–1dñg7 F!¨çÇîœÓ˜:˜q:lå&3vŒâ¼ø©5˜±Ä“cÆÒ?=`ÆÉ>]$3–Au¹O‡¥=>ý3–öØf,ý f¼®ÌXâüT[uÎB&f,q0Iú/aè`ÂØ­sã3þ3–ã±ÌXïGóÌX~ƒÌXžwrŸKÿc˜±ô·gÆNcÛÎÒØ·sÚ§È`Æò|ñO €' µÉŒW¾¯|3–zü3–öd¾Ø¾“8g'3–’bAwº4vðƒÀõa O¶ʰQ*ò ÌX4ö¨€‹Î¦uÉíÃa~r#©õÇ.n[tjùy"7¸§ãa}B­(æ,å fF»®ÊYÊñÚ¸ð…tq©î øRº¸ìXXß Sz¤¢·²€ó¼³¿ð• -Ï_÷YpׂTœ¿g݃˗üh…Ú8óH¹KàéúS …©fàŠÙ3:1†©²ÎÒ$šWëÏ$.ªÆmF¡|t$Š‹ŠZQ­3 µ¢ZAfjEu²<£P>ZOµ¢Z‹fjFÁ},Jå£ýôÑîÏ .4£P+ª¹2£P>Ú²6¿àH3 µ¢ZÍfjEu ?£P>ZŠ–p¿ZgjE»úT>êž>ÕŒ‚[Y”jEÕßÎ(”ºÌ¡ZÑË?}ª½ýÓ§òÑÞ|´‡3«KžQ¨->s¨V´ù§Oå£îéS­¨®QÌ(ÔŒ‚³Y”ÊG]æP­höOŸjE/ÿô©|ÔÕ ª½}Ý ZÑÇgÕŠVÿô©|Ô=}ªm¾nP­h÷uƒÊG]æPÍ(9¡…Mºxö `2Ä]ñ0éâ—/&]üö)dÒÅ‹O“!^ï¯ñüÕ—“.Þ|!1⥄xÈ&ͧtñä“Âdˆ»‚bÒų/)&]üòieÒÅŸ&C¼ž!ó uÅK¬-$«>Þãý×_”.ÞC~P®8`ìŒS†¸+2&]<ù2cÒÅsÈ/J¿C~P†¸ÏJ|¹1â®à˜tñò‹ÒÅ[ÈJï!?(C¼¶•‡`yÆ)]<…ü¢tñòƒÒů”.~‡úCâ¾þPºøò‹ÒÅkÈJo!?(CÜ×Jï¡þP®8XøŒSºx0²&]óë æÖ¤‹{kÒŃÁ5â¾þ<›Ç%û_ñk˯'Ø\“.Œ®É÷õçÙ¼.÷¬øæv¹—ÀÇc~=Áðš\ñ,¯I¦×dˆûúS6ß˽ +ž·ü*Áúš qŸes¿Ü˰â›ÿåÞ†ß0÷:øx̯L°I6ØäŠ×`„M†¸¯?uóÂÜ;±âi˯ì°É÷ùQ7G̽+¾ybî½XñÍs/†ÇüªÁ›tñ`Mºx0Ç&CÜןºûcìí˜qJþ¸íþ¸EÜvÜ¢?n»?nÑ·Ýc¯ˆÇüjÑ·Ý·èÛî[ôÇm÷Ç-úã¶ûcì=Yñ¾åWþ¸ïþ¸GÜwÜ£?î»?îÑ÷Ýc/‹ÇüêÑ÷Ý÷èûî{ôÇ}÷Ç=úã¾ûcìYñó‹{e,n2Ä]~˜tñàMºxðÇ&CÜå—Iþؤ‹l2Äûâ=ž?øc“.^}~™tñàM†xm!òƒû}f?ò湇jÅ7ÌMU>Þãý÷_”+~lÒŃ?6â¾þ\›?æN­ßü1·n­ø½å×ü±É÷ùqmþ˜»½V|óÇÜþåã±þ\-äåŠßÁ›tñàM†¸¯?÷æ¹§lÅ7ÌMf+~mùulÒŃ?6éâÁ› q_îÍsçÚŠ×-¿îàM®øü±É÷õçÙü1w¿­øæ¹nÅó–_OðÇ&]<øc“.ü±É÷õçÙü1÷Ø­xÙòë þؤ‹l2Ä}ýy6Ì}z3^6Ì{>ó«lÒŃ?6éâÁ› q_Êæ¹pÅŸ-¿JðÇ&]<øc“!îëOÙü1w®øæ¹ÅÐÇc~ÕàMºxðÇ&]<øc“!îëOÝü1÷-®ø½åW þØdˆûü¨›?æVÇßü1÷>®øî±ÒÇc~µèÛî[ôÇm÷Ç-úã¶ûãýqÛý1vX®øµåW‹þ¸íþ¸EÜvÜ¢?n»?nÑ·ÝcÛ¦ÇüjÑ·Ý÷èûî{ôÇ}÷Ç=úã¾ûcì]ñ¼åWþ¸ïþ¸GÜwÜ£?î»?îÑ÷Ýcƒ©ÇüêÑ÷Ý÷èûæ¹'Õâ&CÜÕ“.ž|~™tñàM†x+!Þâùƒ?6éâÁ› q—_&]<øc“.ü±Éï-Ä{<ðÇ&W<…­&]<øc“!îòä‹lÒŃ?6â.¿LºxðÇ&]<øc“!î÷á¤ÍsÓïŠoþ˜›€W|ÛoÁMÁ3ž7ÌMÂ>ó#lÒŃ?6â>¿ò¶ó‚›ŒW|óÇÜt¼â›?æ&dïñüÁ›tñ°ÃäŠ_Á› qŸ׿¹©yÅ7ÌMÎ+¾ùcnzöñ˜_WðÇ&]<øc“!îëϵùcnš^ñÍsõŠoû2¸©zÅ7ÌMÖ>óãþØdˆûúsoþ˜›²W|ÛŸÁMÚ+¾ùcnÚ^ñÍs·ÇúslÒÅÃþ “.ü±É÷ùqoþ˜›ÂW|óÇÜ$îã±þó«lÒŃ?6éâÁ› q_êæùQÀŠoû3ø‘ÀŠïþ¸EÜvÜ¢?n»?nÑ·Ý·¸¹mû3øÑÁŠïþ¸EÜvÜ¢?n»?nÑ·Ý·°?ä‹GÜvÜ¢?n»?nÑ·Ý÷èûî{ØŸaÒÅ£?î»?îÑ÷Ý÷èûî{ôÇ}÷Ç=ìÏ0éâÑ÷Ý÷èûî{ôÇ}óÇo…ñ7m~ÿñmÈnýhÃÝG¢>ÚPòðÿ˜~¤>-¨~´ õÁ‚Á‡² ñG†â£‚ÿá€úñ„ôŸr೟õ´lá“ÿ£mùªè»ÏÇo¾úÕ}=žóñÕÿgý|ýÛã»oöïBÞ>™l¨-uí«_þÛŸxš7¿.yç,]¿9t×ôÍ×ãÇWÿýýq^8Ù_~M²œô¿älúÿ`üöÖ/þ7 eÿô¸4ý7 ñÆ¿YˆÇúÿÿOÆÚcßx½S|\øíêã¼Y~|ƒ7ëoðfò Þ¬@¾Á›%È5x»ùo!ßàÍ*ä¼Y†|ƒ7ëkðv!ò Þ¬D¾Á›¥È7x³ùo£Ðà­jälŸâÃw¿DøÝ~ÿK@~Àøþ§€lðþ·€lðþÇ€öäüðןþGuº¦endstream endobj 857 0 obj << /Filter /FlateDecode /Length 654 >> stream xÚuTKoÛ0 ¾çW½DjU[v l‡a˰a0,Àë©ã¦A¸Ë£Aÿ}I‘Ší´CÀHâããgŠ”K¡Åç‘æõÃlt5uV£&ynÅìN›©R[Qh¯ŒˆÙBü‘yb¤Ê“Ô€U~o“Ô¹Xòîþp³Y‚²Èå·x®éü{µØÃñ~—ü}½š–b¢&Þz̤EêJå´§?Ú=„øR¶›"žñ0‘!¤¦cÓ‡f[Jäð˜¤ÖËú³–ò4=yÍ1l×ökJÕ¬þˆg"LÕ|C–[§Ã l!LæF›¬Æ@²Þµ[ ®çÒ»'u…„¶ O ÄÖX,A(=—€Ø¤Î9ò:Kª˜è ×|Tð|ˆ%AŠÊœÃ:gF•™£$ï“4· ÌèFç–5^(«Z#È;ªs1 —`H{Zúß“¿JÕ0æ¾ÃÂí/×až{*^é†ñšˆÑ³½èB+kإǴáoY° ^]æœ(‚WÜv+Þ_ô¾ò4=Ÿf#-Ìijln•Ï Q­GÿFª0žº]0Ä(V\}YÃM}lG?ámi„L{˜a^û3tÊë´*â´N™øò°åÖ6FZ¤tÔ,4¿Ñr¹?r§ƒ}‡Û[ó¸#M½Â(ƒù3TÖБÑy‡hòÁÜ‚ßá‘g´wˆcNƒå=ð\”ÑŸñ„t¨êS£»ćpoô_„õYè˜@¥Ac‚Dã+Ö»á{€ŠU pr]DZ<¬©‘lQà܆‡!é768<Xðý¸Ãë¿e¤|^‡‡Wö±e7áM ÞªKÌjÐÌÿ[…ñ^•E†^¹ÒDfÏGá¿”m!endstream endobj 858 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 859 0 obj << /Filter /FlateDecode /Length 351 >> stream xÚeR»nÂ0ÝùŠ+–ÚCŒßއ.}P©S¥fk;„DRUü}ïMhË`ç¾NÎ9¶%Ô ái"Ó÷®˜ÌæFƒR":§¡XÒVäRC^(¡XÂs\1áy¦°Ëî×%¦M½éwž™àØ Æ[\ûŽrË^O;n4[`†Eê´ü£xžÍsˆ"zí‰JBfra¤H ž¶G„±ì«EH5ÄK 7ïR*ik¸ÎY7t¿™1' ’ã’ë0’÷½oŽ…ô×O,—Í—jÉO*Æë ·Ý/y¢ØŒ½3{IšÊ]Õõ’;NùeUG/dÑro•`$`}}(Ê ïõ8(xfm`d°¹Á½#žÞXp ²þæÒ®hêXWýÊӬܒ³ýEw ÛjüÕ?/Ý›‘'\‡äì×4åÓké5y{‘Žç—6ÑÈœwÂŽïÊš?CÅ䣚gendstream endobj 860 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-symbolsSizeMultiplePlot.pdf) /PTEX.InfoDict 595 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 598 0 R >> /ExtGState << >> /Font << /F1 596 0 R /F2 597 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 18105 >> stream xœ¥ËŽ-;n¦çû)rè8ºKS¶nÀ®ƒöÀð áË iÀUhøõ[üJ!†b»ºtÐ]û˜ëKrÅŠ‹D2(Ê}ü݇ûøÝÇýøþï#µÏ+~”ðãGˆþ³øßÚgò¿ÿ÷úøÏñ‡üÛ¿üø«ßþ¸>¯ëúXÿýí_ý¯þiIÿýãŸÿåãúø·îãïúÿ~÷ÃÉ|üý¿üåÇ_üë_ùËÈ?¿ÿpŸ©k÷ÿ‡ÿ£¸O?Üå?]úøåûãϾ~óñËï:ýå÷?þú—ÿí"Ú×gðÚþ3¤ù©ùH¹uåòO¾9~–üÑꧯÊé3@9Ç#åV>Zþl'¿9¦"¿9ŸüæòéŠö”ëg«¢Ûr¿ÂM”Ór½>]Ã-Öú‰vir‹w ì>ã…»äàŒÕðé(·“>+”ëÁ-Vãgtò›Ãu œ>/Ó®©íO.V˜´¯ƒ‡£âÎízräxœÝå>ýÉõjŸžÚîäViråÈËÁ‘7÷™1Š–ƒ“Öü§Ï8ðzp³tíJíppŸ¶>ãeL=éàálñó*œ¸NŽ<É]"Úùä»óg¬Ç“f¿¯ÊÛüä»ûèÏñ°Ü,Uîo\ïƒ#—ouÔÛ¡z¹pÞâÁ/Ç}æ ^Fµ¨¹qÔqŸŠz88ñîŠâ#ýõðŸëàQsWúL¢ž<ÑsTã›èÁMÌG¾‡»ºç~…z“ÇTNA>ºîMük¨x]®ûá!óª7ªûƒáݹN”óSçúÝZ~ÅoâìŠz<9ó.~¦Šƒo'÷¼KŸ®Ž{÷@=‹ë†{þä‘qEÜ]Q¯…s} æ­â ‰z僗ŽN]Ï÷øÔy'¾/îù“ëÞÕ«‡úÑo÷^bB*O\9ç=à 7ß‘zPw'ŒO’õxtæ³Ì˜eÕsÏï]½&žº£Û¦}æ õ“ÐÅ…‹®p8 ºD½–_¡îdŒ”›Ö©{zÃñÈw!ÐŽ"¨GÉ ˆz>q CЩ~’õLõxôíYemÜÉMªè‰ú‰?.ê…êáèÛ]ât”õæÏ¯{¼Ä©‘{þ$puÑË(%ÃE9yÞ»zãH¾=ÈÜxÿµëlT,Q\Þ®}ò6Ï•,o×>y'ÚÅË+£1µÉ¢ÊËš£³†¹·–3wµTÉ¡ÊwŸÜçõ’—$¿B»Aû(¥Q¸ºµœÅÕ¯9ºöQÚ¼k—„—sGG¥8 kŠ5‰›ÛÜŸÌD]»Ç%Ç¿;Kê´ÿÑüݵ´O^¹~¾úÞµ‚y6ÛG?‚£¸¨k·&/‚®G9w'ßÍÑ´_±£s.>‡“‘é(×ݵó¯ÐŽðrGdñÔü¹6’]»]±"~}×>J{IDí£l§Ô£Ä㙨¡îJ®ØÉó-Ño<¿ýåàåžj{ÉŒ^oÑÎÐ>y5à¯/×U—ˆ¶øŠþ¨>ÄË{¨zêŸ{¾üìÏéIŠT´û·¶x4*ú«ÀW G¯áü…Ùóл÷W‘¯S/×»KþÓµO¼{ïܯðE»©Þy™EúlpRå]”82—œÜk]»x\GGž$1ÚµO^âˆvƒöIfÑ»¬¾âÉ[O杖t²ëH»Aû¤HÁ»&9Ñî;œ¼)÷þ‚—›r¢]òñYóÈkã}Ù¡,ÚôrO"Iï£óa\"Ú­"<ºbYj;Åß<:k^n;¼[ªdD¥pïäùöˆ_¼‰×ÐÇÔ£»%8ñr3¢ÝÇâS¿%xdD¯£ÊiÑ®þ4ßâÞ¨7 údî=õ[ºvýÚ^®?›‰BAFÔ•‡Š63¢'•M*<ÞÓýéÚuÀ o.Ž´5#z¤í g>r×®Ð>òÏcP/÷$ì#Ê^Ž<"#šŽ2E>&x¹é(¿æcFF4‹p ]¤ºópyƒ•Å×ÙðÜܳ—s¢]¼hŸ”?øt±°ô¬jÞ'ÏÒÎëÌUíêÝÍ<\`áS¤èéú!QoT?`RdÀYñ»OY|ÝÓ*pQoù¸Û§"™ÑÓE>UV¸£÷l¢^X}œº|±²ólá€ÏŽ•îlëê…åûGÞ[öâ9ŠúI’RÔÕ™YÙyzê+;ý™ß›³x§å‰¢žÝq‘œÏeÔ•º£ƒo¬ìÌR/v¤ŽÊÎr´âÄ—K¥§5ô¢^Ãq9²/Žu¥g%¹¾.pJG¥Z¢^Óq»/(íC5óÉ…+I\`Q?ºi»:êJóÙPY +;Ïj©}©³²ódšè깜?2¥I.‹W޾½±®4œÅÕ±²3È‹×uÏÅNQ†¼#õv/¹ñ5ȰÜèd–©‘K­ÎêÈ}M\ìt¶<Î×ÌÊN/î:Ÿ2I•“ÛFr—þW|e]éá]×.VvF9ƒGêºØ©œ VÍÑ%®G½¢ÞÔÚ„‹‰Ö³Å!x.¡?Ky‰zc¢õÄ« !Ð%>‹¤BˆL´ž¥:E½Ôã$s™KèÏ¥„PØ9ê,Á.êõ<~¡ŽDëÉr¯\âÃõÀ!^p‰—Ԇ踄þlM¬4±C¢5J0y¤..q?ó'•[!&ZÏÖ…†˜¸„Þµ¥õükÔ3­þ(u]BR´ba¢5Uë‡Ø¸„þ¬qƒ¨×|œx éKè|›ä~ÍzQÏT?)Ò )Ð%>kZRäúÃ{¾«k¢õ(ŠLi$ZÓÑ©K#Ñz4Ö¥Â%ôg}Bª\Bzê*]âÓ ×Æú£6_L´žå¨Cv\BŸŽÒ¼!û_ÓU*ä@¯òЯëêH´–£Rô#­‡XÎì*UŽ^.ˆzáK¥#·0—ÑUê(Ëet•:ò¬r¥Wy8Ö”.‡­ïN;n„âFW©£ìAñô*³]½´ó`¤D©=mJbW©³v!¢^Ýùü^°¤ìØ«,…µñhñg(•]¥NÕÛè*u€×‹ÝIÏZ¡‰ºv•:r‰«.ñI±P¨at•:ºç»zNǯ2Cì*uÖ9QÔk:Äj]JÏÔ‹’þõJõxòÄÕJ—Ø¿wjq¯ýÄ Ûv ý þùý¿üVXeÞ¸ÿœ'Ó”tæÉ˜oî¬ßHO†>Ò¶­{OÆL±GïÍ'cØ£áïÎ$ÇË„ã“1ÐŒôÉÞº{ÄA;“ԫǫի̫zôKÜ™xˆK¿Ÿ èByÓ (ì íå:Tæ2#Þ5?•ïßÇ,dt/¿¯2ÅØõêþ}¥’!¿\wYy’ÐÉêåû˜ù ˜pžŒi½²æý·£VZætçìÁ¤–½€¥íú5fÛz4•¶ciL¥‰Íí~ièöç"–V<“`R¥»—–PÌ×YÚÓWéz;΂‰8b¡×Î$ñQ†ðdÌ*E,ùy0T/;žÐí¤¡U”Ç7îG*92™Ü"Ö¥lÙœnöÚ®!†–€vVq;X„âñ§y–N¿@É¢$¦nwÞìR3n·ôg•©ŒRâ böÓÙ #~)J|Ñd<_Ðuƒ cUy½*®àK#÷S DÚ%¼Œâ2¶KËËð!PÆ«â^Æé6*1pF™Þö!\Þ\äôv›xƯ^dtšÃËó'#µÄž[¼@‰,¥EËË%”ÈôÓ·Ò@SÆÂ>ýøýwzÆ|R’÷òŒèJ|»©=ã5ñA÷sëÆÃÒÞ®g`¬%óÚ~'t(‘T©o'!0Nªþe(•~“UTRo0"w]ãÛõ Œ`jxõežaQNßË1ú¨Èm±…¬ßÜŸl™š<šK\¯PFv»Ú θko¾ŒÐâÓ7dÍ^  Œ}²z9}Ñc`lˆ€7P®ÚÊË`éK÷£}‡"=e)!Û§,íé÷בm“°ãõ Ò‡•ª¼ý‹ôPÅéØO_ŸPÄ}c– 6øo ퟰü=Ö@·ý€ú¼ 5 ïºÐaa? Y®BØö“ «QØeàåîK€¤ @Û¯gÂ[]Ϝ³øqÒ ìW%Á£ò×ë`,k<̾œÛÔ$%?ew»6×ÛP“Ñúgh¿ÁdmEÂwºýh3 :å ½­ ´ ê‹Ù(ö¤“AÙJ‡ýSY°¿{¥2òám¢ËØNG–Û¿ 5ž_~J•’5ùù¶†«²»å:gÈõ û¹-(Èùô’Áø9ÌwüË“]°›Œ4DØýoÕaÝ¿Ûoj™æýXZ¿Á,—wåmë°œ¾ðbKüýk@'JÿTàî1cú‹è3ð2—õX©ß?ƒhBáéK¼ÀœÑìâÅYªXî‚Ó·_ÏŠ]L°„ÿÅl”Ñˤ¿Ÿ„>õU–’§ýªØbDV©¿ŒCÞ ˜}ã¥åTÃѾL=¢jÁüËïlâëÈ=TvÍÆÍ;ê[œ-®]’1yƒÜxCòw/f‘ÖA¯ÌýwvXè÷ùéÚ½ºY^ür; éL¶Ÿxé×áa¼8ÜÒ~5±gá~±7š(éÍ7im¸vuwD¹ýŽе]O¹V’.ÿ ô¨:Îéåb{¶F†“¿gBL¦Ñº&ŵKõe0–ñ[’Ðõ“̨å oÏŠ ]âÚ…·øZ ¸vñí±—‘ïÛx+s†¤v:*¾@)HX<´A”_ÊÝ·OtŵËoñ fÞ`û\&ƒž¼†Ïîe`(u§)¿xR2 ‹k—êÛ%“ÊE½û^4Ñ•X\õôr@ɵŠ5ÒlÈ®I’æå;qó ƒà~†üE×.½äVjîw¼ô,‘ › ûwz,»—;>¾h"Œözû=äÙJ^:T¾mÂ&ïÎöÓ×Zy‹œ‘áÚ âY4¶Ýï!Ïîåͧ(£LL/š )º’_BLé•!¹6i¶kvXìÉDét!£8ùûIаˆdÁ¤Ë\»ü’Ã6®]Û¯J‡íç0õ“Aå²™¸ŒÉ¯°äÈ6Ø00¶ðvßJþ«¾Ü·Ëž1x¾@”£;nïø%c×Úëw¢9ÆÇýôEdÄYòûïŒh‘ 'âE3ÁµëÌuHÛqíºæž‘¾½·—ûVÒuš/'>"m,0ìOvDsiÏôÉ&tã“£Ýg{YïßF<Ãûéë°&¶·Ù6¡±³—}2^Ì—çée—ꔌþ/{C–Ñw¿-VöŸÐ¼SàËÛÐ3YhËd»§ƒöv†*]»·· ²¶½ÿteÚ(cA4ÂÙÍJ5†tM‰o§Oj-Øçe.Ëø2yL÷À_VŒ÷§V¶—!5£&WÓ—ÛDj.\û2Hq»ZÑÜÃ=M—‡nG+kûô¸xYY(Y;i_¹màKy9‹»Ç˜‡‘Ó·»v²h¯«Èwî¹7%ðô½-ÞøÉ ¶çd9 Œî½BɽåørƒÉR8qí$|ù)ÈýȘüv@Ø~[¦—ýù”Ej’{ËåíÄ3›‚äEí«tØÝ`§Vžì}(®Ýë&+Ç$÷V¯—Œ‹,ì’±–—©C`åÚðýý§,Ê×®½k¢×ŸÜ¾{¤#ë±zp$·Ò>Ôútx*öëé±âf7ïM`æ6ðû;WYåy÷•M”‚þæŸCô¸“ö,p1Å‘’'qŸWdñOÛëÏa“Lnˆ=þ”e9áË­ÐüMîÐÝ“’%5±bíêîªË‚™>0÷zƒuاyydöÀB»ôS®œ{9 ôU ¯î¤¬s)\«³»Y² %ôLÚ6¾Âæ°Îf"eJ"|0º7ØSþæå$tϬ¦h¾ŒC=€J„» +K7\Àê•=Y/°»vò/?%bVÅ5I¦9Q{šB`IøÎ—sá Üãýÿ±¾šYÝ ¯“ösÛ¨>0¾{ Ü_Y¥*jÞw/U¸Š• »û!°—!å—w²~ _øÎ—‹ð®f÷)aÁƒ˜ÝßuÈav×%öûïLh%5è/ÏJÂl#æ{Ô!Eó}`DéýËw6¹XLòrúЄ)0Ò|ÂŒK8 ûï̈œÄìõ û ¸çëQIX§þ10ÆgIjÌc†æËðÖýe_0ïI2ý† ¯ï¥|c|‰W¤8[F0Í_ÎP•G:ø·l³Vdže¶/f  ™€_¤ ›ìÁŒ”<6:xq³ šì„ë­¼Cªû<%³óžï“bä>èÉx»§)6…§/~_AŒr/>˜Ä?kÐÞÛ…ÞnM&n1RïFE5¦îý€:Äöö:CjwaÞ¨Ç".ã;Ã+,¿s¤,VF°øVÁ!°¬&{™W*Ú¬ü ¢‰õÏ¡Œ/@E †Àí6%ªWs)T-l]Ù¯Æ7êOÄ®ö5)ª§ ^y§ÐýúêÕ>ÿ4 úߨWuºgÝ×`XéUÙ?Á2è©~‹4Üì°Ó©†!ök0Ô´B’,ƒì “ÛÃ>|~K¬‡ O†-$¡©ûo- z°ƒØºaHüFÍlо <öïݾŒžÚièÆ›ídìç3ÿ¶á—´HÉ×'ƒì •ÜpÖ¾Q‹‹£íÌ×`ØÛ šµ>ô`¾:)ìTØÉò-Êp‡C“{/¬L­ÂNA¯Þ;ÜQ9ç¯ÁP‚Ä]V=Øi2š4ìvô-5¿žûÐáØÉÐÑëëÓ/=±S‘ö®¨“€îW4–ýR&ïqƒj^F=µS 7¹î9†ÚxÈÚÅ+TáXVõ^G…²ôI¯’êvŽèRÅw:í¡ž¼jº'ƒžÚiØÙÇUÚéç”ÕZ_ƒ!ÑCM÷dЃ¤èkæ}(©Šð·d…÷a ºƒÃÊò¸+²ùoë¾¥ö¹OšùίÁ2ŸLFÓAv°†jþ.¤N汓߅×Ývÿ.¼#à·t;¨€«è!ö5f}ØiáÉôè~ M§¿vj»ÏY hr§‡•éÙBåvB*¾oÔqóìᡆùKjÃCz²Ä»vúHÑå€óƒ4O… û5X–ó ;-=ô`ï3*žeØi8Z‡sI†1š)=ôÔNÅßz±Ó<’o.üÛ:vxƒÄÝÃV=±#»ïàìõ»á[jÒÎì%«¬ò™®¨ x0èÁŽ—‘¢b-Ã7jÔ=Έ»²Â{­¡ŒàÁ §vjÒ]?¾QÏŽ_ÿVX“ñ ÷‹XYá5@%|ä>8?˜øbùk0tm‚f©O=ØÁ|T›þ.î‡ÒxFȸë4C}0ꩌq?²B E!_ƒaÁì´údžs-ªñcÑÙö[jìû_™XYVMTG<˜ÎÒ¨Îïב­æ`§uCAú×`YžOhöðÁÏìdìDìdüiÈßI¢Èóo3v N—j^O=ØÁ‹*ÙÑØÓNÃÞʸK•éÜPžñ`ÐS;2Û"=Öí +ØÿÅ쯬ñÚ6Tr<ôÄŽcÍ!Z†Ê„NÅì@ŠûòDïEÛ{ì<F,èòrŒ"·¹Rÿëæ‰ã#,øÇ –8án@·vT äîâ ~çÔ§E¼žÓÕb1°sJá¨8y嘉®$þ…ç1nÂ?‰N-ZÄSç\ŽÑÜj1±¿ÊÔP>-²fã‹ÅÄÕ땳 š#5È×VyãŒã%.Y¨á‹ZDôðùšœ5A´€¾ÆNýa±P£ñîÁЋ®qM5À=5Ðç7½pèÓ"^nÊ'W„Å:Ú“rÇ1‹}Ó ‡>-âèb±±£áÔP>-ÖÑýÍrc±ð¼TXtHE£ÝÜÐ(´èšÊWÞ9õaÑáÝ+zýáZ³c¡œ·KžüÉÑל¤îhãÐј©qEC#ÆþÁÝ¥÷£c±Ò“SŸñºAÏË7–×xíOˆ_9¸×±†}w®ç•kp°Ð¾ÊÃõÍe7­0à^øÅˆ•+¤B[Fn±WÍ™#·Xð/ü¹ÅÂ…ï¬E-f®F¬2y‰O-ø}Zt£9@ÂÓìýhòˆgráDvá…'z=\À…„F”o,ËÒ&7Ê5ó!Jxá:"qa×ÅQJj1³Er9“;F¿b!ÄýaQ{UeZŒÃ×C#³“Öu©Å_x`Ìñ[Z çTÙ$íZžµÁÕs )¾ð4çTŸÙ{ ÒGÄ:4žéÀcÊ£7AãyKì·÷äqøŠòIæµKx`|a¢wËàE[~á™wW¸ù¸øO¾ _„óÑàÃò™]ùžüöŸ|¡¯†Zb±Ò×ÈœÇ'/:Ï{–1n<3Úù-,Dj4<×¾ÑרÌMÞ˜£ ¥¼ð ày6‘)°.öã©êgÞèíË7b\{òÂ\-VžŽ=Á±EOÕ±eð¦cO`•åÆË{‚¾†ÃSüð5ð“ã?´Pê ‡>-úák\Ãb¡ÅL åc< ˜žwýa1Ó{‚î+ÔôŽV.†ÅÖvN}ZDbI]Œo,>tiôYþº9:#~áëõÂ/ÎÚ\¾x=,–¼j(ŸãðS-7³j`¤`ùŸLïzm•õCb§ê'÷Ó# H;É'±¨ÅF‹¼ÿŒEaÁ½pÏû“+58R¤ ÄaàH0xÔ‘" µó0G ¾²–)=ÐbCµ¯+¼&/ãn©ôSŸIXáWNžÕï HWí<Ž<3,8´¬ ñzYdÎ#ƒë¨/dôÚx˜~hDò ƒ=ÎcÄ;i ö­G¾²Œ^Os|ŒHcahæyÄ‹l ͸–ƒWf÷Ä‚ø©/#["\A‹Õ­”7fÅ‚8ª×o Eñ:|Ôû1╹üŠË«Fá•À[ ‘eôÚxœ÷cD’ ®F³ÈM—dbÇh5xä«,± ] 6}ZDºKþ"òîÁËy9ÇcPž4c‘ôÚyä»Z”ÆÞkN&"ÀY-(sD¤¿vîgN&"æX7ýÍåÁ2#«ÁõÄZ¼ˆsìU£Qƒ¹„ÄìØÆóð\4ŒÅÀçvj(_,ŠÇºñÅ"³c®i¬¸?”¿4Pî/³cONýa±P£ ÀL¨¼p¬øº¹gŒ × ¿x7qM·dǸBê+µ%ûàuþ|ÌÏ)Ž1ÛòkމÙ1‡Áž‘}hãÚ’ûKï¿ÄìØ“SX¬œyðVDaÊ_à­ÛäšÅÿÂëx; z¦1š¥:›,ñZ*w:&fÇ6~Í7iv¬i%U>·ê˜˜{rêÓ¢fÇšæ;2êVK1¿&—ê˪2<Ö§>,ffÇæsQìr?·ƒç:1;¶ñû¹ÎšCÏ(Z,ü•ŒM•gB,`Ì~pê‹™Œ4³gË)¯‘äàAýœÌìØÆÝŒ4³fÇšŽ¸™^¹ÆwȃûKŸ‘¬Ù±wmޏ™Ù1WùV û=%Œ ƒ7¾™—Å—!¿ð:ÞÎË'™ŸþjTýˆfošuÌš={òJŸƒ-µó0GÜÂ<SK´¯#ëH0xÑñ…T;Ï|Îi^Lj> w›ÑÅà#ú`IÕÎïè£0O6£‚ƒ¹£‹ÁGlÀâªßÑGažÌgV÷ˆÜø+Y^Õïf™ÕÎó¨òFÍØËɱëÄ×Í‹Žf,¸Úyš£YažÌõ¤ w“_I Êuöt,½Úy™žTažÌÃ-Š×ásǃv‹°6N}X¬Ì“M‹²˜Ë-ʧE–cm|µÈ]OÐ í½¾Ù%à/ô¼)Ñ/ ¸vøTÒbá™v˜¹*zÈÌWEƒ}ÃR®{ž6_¯#àü7û­ðLó9<¨—Ì¢®;ú¼´(^G¸t4ëÅë—z%ƒ÷Œ,ïÚù5G3–ÕÈSÅ)‹nÐD””OŠ…7;¯3GZ™'“Op¥3œ=×·©Ž%_;¯3Š«Ì“y¸ ´ˆ¯­æÉž<ß¿zæÉ+H¹À3­Ïˆò‘-l3fùÌŠOOU "«×7·“'V!º¦y²'£T:\iµè™‡˜ÊÕ¢×*´‹™¨ E{%þÊ64²f«£Zlå…§Q!Šæ…zíœZl©š_,°ÈVÏ#'?¹æì½V¡m|æìÑxgºfXLŒ¹ôÍìä…Çൠmã‰UÍìå ŽŽ2¼v-(œ©¼V¡m<Œ|¸|Rgþ>SI³…Q5*ãéêUÖ<šá#‚g§*äÉ4o&Í©\ºób“kÞÌ_3fùÌ›‰¼K·Eyn]Êõý´UhOžV‹x;Y·&í+I|ò'Ïü¨B{ò8êÖ¤‘VäÛ¹‚+#Å_ïÖP2yä{,?ªÐžÜ³r“ ¶.¾™E]ŠÈ…õT´0¸ãìéGÚ“_£.Xï—xŒlèí.½ÿ”»KŸ‘Q…öàÔ§EæÉ.­l¹±BK5”7®{ñZ…¶ñYá Ô€×,­)-â¼ ÎK»/<8õi‘y² o¿ÑDL÷SŽÔÐ<ÚÅÖßUh†_úF’mÈ«bT‹Mw-¥å…c¸UhOžÇ:Xà'-fnE’éN^èãúQ…öäydgÄ‚Vd`vEg¥ë®é˜\k>ü¨B{òYó!´¦hZ¬Æ¢òiQËО|±È<Ù…%üß즦u)³×Õ`ž…h;ϼ»Ø-q3 >3ò‚@·pâySÇ3SÇ®h–‡ùÌxݰ޳úÁs Äž¸£ŒUý¨G{r?ªÐÆŠ{f`Õ4ŠŠ´ÈÑkð çmÔ£=¹«ÄBà'ýgM‘VëO®•~Ô£=ù¬,@ƒ%ݘ÷£¬× :÷ ù«ü¨G{rϹ‘ ?‰Ä¨G{òkäÍ<“I8óY-Ž­[hAyÐvÔ£=¹›c¸gžl>3A78œÏD;”ê3£õhO~?3y² ßè%èy%pí&ÏzmG=Ú“GŽ$ìFèyíèSHÚe©4\+Qý¨G{ò4}ŠÀ<Ù…–÷ßhi¹¦oG&o|{âµmã…~9›"FÎè•LJ×ÁÑKù¨…÷w=šáw-<,h}­S‹…ó Ÿ‘Á+³3~Ô£=yÙô¯ wM:.º»æmr­‰ó£íɯÛ"ód·Eîìpk(_,–ü‹̓q¶¤Eõ:øÜ^™eÕvt;/ó¹Ì“Ý÷c¥×1ï7åó~džlãËýXG(j¹Dn¼ž“Ö£m|ÖrI›º+}ÌÚk´­[ÖÙL®µ×^ëÑ6>k¯å“¬ü¸#·¸¸ô=ÿàrÿ5µ¨«áÔ§EæÉ®!I“KÞÁ ”»!i=Ú“_w„™'£_-Qø}û݃;õs´mã׌]#ód\½ñ^›£Ž”Ç Üñ­“×z´_ce 4äô¬]Å;v‘u=Ÿ:åîbÆÒk=Ú“_u¼c—Oê<ÓßhÜ™Ö+¡Ü9¾WõZöäãJ±õgÔhƒÇ˜éuŒhC9û ©·sêÓ"ódâ¹gµXø”%ž7å#~Ñz´—±sà;æŠÅÆ\ÊïkË<Ù“/1W¬sµb.Ùä‡gï('oÌüz­GÛx•.°ÀhC¯L«áôÌ+¯Ìlx­GÛx¾¯L›1Ž1é®”Mg&åã~óZöäÔ‡Åt*x¬¹-gzòª¹­GÛxkÂaó1ª>¥C¥®Øcd9xUïNëÑ6žGÕ§´±,<Óx‡„®¬×ýä>G­G{ò{å£Xú+0+$îþrUÖfMÞø«¼Ö£m¼Œ·)ò‰VÁç ó:ã®ÕÛ^ëÑ6^G=…XHœëÏcb•±ã;¢É=3êbAG7ËÝx‡$W»¹¬‘+ñš1|DHZ¶qÏ:S6²Õ1›óŒô]s%ƒÏ^ëÑ6~çRód\ÝöÍž¶ü•-”±Žy‰Qöän¬Ä êuЗF¸ôèg®kü¨G{ò¹@>)i<ùb‘îÌ‘A¹»øÎÈk=Ú“‘ã·°t®ÃµÎÜ¥Ç9ÿ÷ê•h=ÚÆ¯™ÈÌ“]c¾!ë*Væ–#ƒÖ£m¼2÷L‹e®ŸûFsßH!;Õ(\ß…\²×z´§»f?VY3vÍax½בÀk=ÚÆÓŒ]³æÉtXÌôsP£>¹®ññZ¶ñ¹Æpuã^x)9ÒëÈ|1yÑhXëÑ6žf4œ5O6ufbþª4Ö½é¯Ö<Ù“/¿:H²µ˜y^8Z ®«Ö¼Ö£mfW­GÛø=»VÍ“éŠn‘¯g:óhŒ´mãsE7,è\Æ_݆W¢÷_oïj=ÚÆã̇7Í“!ðùf›{þ >ǃk ¯õhל>åjðMnó\Ÿ51¸ö òZ¶ñ4ßä67¼Î×Íó¹óñàc¾Öz´ßóuóc5>ú*HÿxõJ0&O>¼d­GÛx}Ä‚‹ËSØÂðJø” >žB­GÛøý¶™'ãì*ýþ5ž¦F}W8»j=Ú“ßHÄBÒxwOË#Òäs;xÐçZëÑ6îæsݘ'“Í“Z¯Ã%©×ÑÊk=ÚÆãôód.³&Nš½‹×áF´1¸®Î÷Z¶ñ¤K{ Å<42-úa±Õ»:Ö}ˆŸG2-jiàyS®ctÐz´‡1sIŸû«Üµ®"—xײN®s]Ðz´ÏZWùëÚŠŽá®°Ê¸ê=¸vX Z¶ñ2ÇpÇ<™ÏôšEn¬[Æ30¹®3 Z¶ñ<¼fù¤ò¼  ™lì’X«w‹ò¤3•Ö£m<Ž.db!reHâ3ƒ¶²rÄóW*ôƒÖ£mÜÿQ¶Œñ\=€l¡Èç óÆàceSÐz´'¿W6É'•Ÿð~ôÜ6è(?xpz?j=Ú“SŸ™'c§oìGãx%5”«'´mãy¼Ÿ… «€8sy´–•UBœ™÷ŸÖ£m<ΙË3Oæ›Î®ž›å]?xÐÕúAëўܷ9»zæÉn‹ yˆ[ƒü¶È<Ù“¯ÓX×6-c1uqj‘y²'· ×o]åæ×óRU£ð¼…¬ò_xäÌÆ­}$R”ZœÓ‡Ò¢ä!Ò¥ó³òä4"Òz´'§þ°(£—'aì‰Üø<ÍóF.‹Ê.ïœú´È…‰y2¹ix1 1-(o:>j=ÚÆëódÎ+7¹óÔˆM-Š×‘³¨“kw§ õh¿ÆÚ=ùDF/i ‡ç:±[mlê9)—K†·sêÓ"ód±¨·—°M3šÞá™\Ç¿ õh/ÓÛKÌ“EÇu"KB{ž'åžõàAëÑ6îÆºX¸0ÞZd·Ú˜ÆÝ¢<«W¢õhc-,85ÇžÌnµ±èØ2¸ö Z¶ñ2ÇžÌFv«½Aùâ@­GÛøÜ!M,$jp¾Îm<·œÙ­GÛxœóufž,ênN"ës˘jpÝÑ)h=ÚÆç®N²w¥äÉbÒ RÁ$w?#ƒk—ƒ õhO3ƒT˜'›¿º°[íüUƒ_­õh¿uaž,zöU¹òL#â™\ûó­GÛ¸}ä“ÂÙ‘Q\a·Ú¨;OMÞ4ŠÓz´×ÅæÉú'Ì5—8¼úÊÓ¥ï>´íÉ©O‹Ì“É\‡û±àÕ6´å¥üûçüÏø¤ß¤žU ¿|üóŸýïß|ôÉãÏþÏ×ÿý÷?üæ_>~ù»ý ¾ŒßôW²ño ²ðý¯lü‹—ÖÿýãŸÿåãúø·îãïúÿ~÷Ãá[þ^·ö•©°?;úk(~}üö)e‰Œm€'…dh3´ŠM &…´P¼L ÉÐbh1Žø¤ í'v¡]Z(bÏI!-.Õ¤ -e¥]Z(–7O ÉÐfh3±á¤nÊÍl¥dh1´ŠøkRH†6C›¡HN i¡ˆÃ&…dh5´ŠÝ<&…´PÄ:“B24š Ey㤠íØB»´PÄ/“BZ(b‘I!šÃJóúqÛÕI!Z ­+婃RZ(’¡“B24š …?)$C«¡ÕPøÖ“BZ(üäI!š ͆b‚I!ZËJëúq{ÒI!-´Ücß÷%Cs]i^Ÿ#n:)$C«¡ÕPlÔ6)¤›bËÏû1SÑòly¶k7‡hy» o—ápÐnqåè„|sˆ–gxq†Ã]»9DË›åÍr¸R7‡¸r8F7‡hy±¼XŽû7‡hy³¼Y޵ä7‡¸r¸07‡hy±¼έ"'§hyK†·d8ÕßâÊý:«hyɆ—l8ÚÖߢåÍòf9ZÊßâÊÑ þæ-/–˱¦ãæ-o–7ËË:9«¸rt"½9DË‹åÅò¶NÑ*.œ› NNÑòly¶Ü­µŠ–Wgx5Ï7¼9Ä•‡uºVÑòì Ïæùã}7‡hyµ¼ZŽ• 7‡¸r4"¿9D˳åÙr4 ¿9DË«åÕòºNà*®o)nÑòly6œÛÞMNÑò𠝿ùã–t7‡¸r¿Næ*Zž‹áÙ<ý5oÑòjyµ<®Ó§Š+G‹ë›C´<[ž-Ïfþ¤hyµ¼Z^$ïzsˆ+¯fþ¤hy±¼XŽ*Ñ›C´|?).œ›MNqåhÉ|sˆ–¯ó'Å•ãêÍ!ZÞ,o–3R\9š'ߢåÅòby2ó'EË›åÍò¼²*®¼˜ù“¢åÅòby]ÃY-_çOŠ+okH«âÂÓµµ*Z¾ÎŸWîÖÀVEË›åÍroæwŠ+kx«¢åÅòby4ó;EË— WÅ•§5ÌUqåÙÌï-_B]W^Ö`WÅ•W3¿S´| xU\y[C^-¯–ÛùÙàÉ)®Ü­¯Š–gËíüΑnîmô‹L°åÕò`æwŠ+k¬¢åÙòly2ó;EË—@XÅ•ç5VqåÅÌï-_ÂaW^×€XEË«åv~çF@7o6*Öm}&§hy¶ÜÎïÅ­¡±Š–WË«åÞÌïWL|LÑòl¹¹9ÎÍãc~çV7+·ñqI&>¦¸òlæwŠ–¯ñ1Å•S´¼Ynçwn1sóúˆ¹aÌÍÛ#>.ÍÌï^/S´¼Ynãcnss÷˜ß¹µËÍý#>æF-+·ñ1·]¹yxÌï5˜ø˜âÊ£‰)®<™ù¢åk|LqåÙÄÇ-o–Ûù›—ܼ<æÏZM|LÑòb¹ß¹•ÉÍÛcþäÆ$+·ñ1·™œâÊ™?)Z^,·ñqó&>¦¸ò`æOŠ–gËm|Ìí=nñ17ëX¹?¹õÆÍÓ#>æF7Ïø¸e3R\y1ñ1EË«å6>æ&7¯ù“[^ܼ=âcn`±rëvƒ«hyµ¼ZîÖøXÅ•ûuþTÑòly¶<¬ñ±Š–/ó§Š+k|¬âÊÓ«hy¶<[ž×øXEË«åÕò²Îï*®¼®ñ±Š–g˳åmßU´|‰U\87J˜œâÊÝ:¿«hù«¸r¿ÆÇ*ZÞ,o–‡5>VqåqU´¼X^,Ok|¬¢åÍòfy^çwW^ÖøXEË‹åÅòºÎï*Z¾ÄÇ*®¼­ñ±Š gCýÉ)Z¾ÄÇ*®Ü­ñ±Š–7Ë›å~U\yXãc-/–Ëã«hy³¼YžÖù]Å•ç5>VÑòby±¼¬ó»Š–/ñ±Š+¯k|¬âÊÛ:¿«hù«¸ðp­ñ±Š+wëü®¢åK|¬âÊý«hyµ¼ZÖøXÅ•Ç5>VÑòly¶<­ñ±Š–WË«åyßU\yYãc-Ï–gË«™ß)Z¾ÄÇ*®¼­ñ±Š gKðÉ)Z¾ÎŸWîÖøXEË«åv~g+í›ûÇü)µ¿+6>F#m˳åÑÌŸ-¯–WËÓ«¸òlæOŠ–g˳åeU´|?)®¼®ñ±Š+ok|¬¢åëüIqál=9EË›åÍrgæOŠ+÷k|¬¢åÅòby0ó'EË›åÍò¸ÆÇ*®<™ù“¢åÅòby^ãc-o–Ûùo^l|¬mŒo^m|¬M‰Wnçw¶¾y³ñ±|Ð,7ñ±4^çwŠ+wk|¬¢åÅòb¹7ó;EË—øXÅ•‡5>VqåÑÌï-_âcWžÖøXEË›åv~ÏyU\yYãc-¯–Ûù]–+,Ï'Å•·5>VÑòl¹ßÙÊvrŠ–WË«åÎÌïWî×øXE˳å6>.ÁÌï-_ãcŠ+&>¦¸òdæwŠ–¯ñ1Å•gS´¼Znç÷RL|LqåÕÄÇ-Ï–ÛùMRoÞñ1[ž®ÜÆÇl`:9Å•;S´<[nãc¶3½¹ÌïlNºr³ÕèÍÃ#>fãЛÇÇüÎ6 +·ñqM&>¦hy³ÜÎïl zóüˆÙâóæå³açÊíüÎö›7¯ø˜Í4WnããÚÌüNqáí2ñ1EË‹å6>f£Ì›»Çüζ—+·ó'›XÞÜ?âc¶¤¼yxÌïýƒuþ¤¸òhâcŠ–7Ëm|Ìv“7Où“Í#ožñ1[A®ÜÆÇlìxóò˜?ûÍrK[Ç•×G|Ì67où“MWnâcmÁ8¸Š–/ó§Š+wk|¬âÊý«hù2ª¸ò°ÆÇ*®<®ñ±Š–/ó§Š+Ok|¬¢åÕòjy^çOW^ÖøXE˳åÙòºÎŸ*Z^-¯–·5>VqálÕ79EË—øXÅ•»5>VÑòjyµÜ¯ñ±Š+k|¬¢åÙòly\ãc-¯–WËÓ:¿«¸ò¼ÆÇ*Zž-Ï–—u~WÑò%>VqåuU\y[çw-_âcÎ&r“S´¼Z^-wk|¬âÊý«hy±¼XÖøXEË›åÍò¸Îï*®<­ñ±Š–Ë‹åyßU´|‰U\yYãcW^×ù]EË—øXÅ•·5>VÑòf¹™ßµuØäWîÖøXEË‹åÅr¿ÆÇ*ZÞ,o–‡u~WqåqU´¼X^,Oëü®¢åK|¬âÊó«¸ò²Îï*Z¾ÄÇ*®¼®ñ±Š–7ËíüΦT7o6>F“«…S´¼Znçw¶¨º¹³ñ±6œº¹·ñ±¶Z¹ßÙ êæÁÆÇÚÚiåÕòhæwŠ+Ofþ¤hy¶<[žÍüNÑòuþ¤¸ò²ÆÇ*®¼®ñ±Š–¯ó'Å•·5>VÑòj¹‰µùÑäWîÖøXE˳åÙroæOŠ–WË«åaU\y4ó'E˳åÙò´ÆÇ*Z¾ÎŸWž×øXÅ•—5>VÑòuþ¤¸òºÆÇ*ZÞ,o–73R\8›äLNÑòby±Ü™ù“¢åÍòf¹_ãcWÌüNÑòu1Å•Ç5>VÑòf¹ßsZãcWž×øXEË‹åv~gS˜›k‹—•7Ë«™ß)®¼­ñ±Š–ËM|,­RÖù¢åK|¬âÊÝ«¸roæwŠ–/ñ±Š+&>¦hy³ÜÎï%šø˜âÊ“‰)Z^,·ó;ÛܦhyµÜÎïldqóôˆÙ–âæù×læwŠ+/&>¦hyµÜÆÇl9qóú˜ß×– ߣÃÍ÷öÒÔᱪÔ\Ñú£«NÿHUý­ *ÿó[‹?Uý‘»æOh ±4ÍXziÜ&»§ÿòýñgþºòŸ_®ÿÿß|üò;i!_ñ?ÛZß~TO#åO2" Óëq$ÅIw tƒ>Ùæãƒ"‡œŒ'×U!.<£òrrŠ7—Êiâ\Å›ë.,ƒ«¸pÐä÷ñ­'á'íLdUX–>ýÞ–“à®ëíþÚ²4%ó:÷§«£2J¿Ý¨7/ŽÔß®.~_7 /{åõ)ø/w»_C”MÓô2Xqü1úÎ|¬ŸI¤×/ $´û÷ûÿø§ÿ\{Åä,]bî×^1¼ŒCûéø²üÁû³þÁë³üÁû³þÁë³üÁã¹ÒóýóküÁOŸ,ýƒŸ?Zã’þôÙp?\ÿðãÿƒË_ endstream endobj 861 0 obj << /Filter /FlateDecode /Length 799 >> stream xÚ•UßoÓ0~ï_aí)ij'N&C @ëðµiW©mJ“1¶¿ž»ó9IÛUU®óýø|çû¬ÄR(ña¢x~;\Þ¤Fh-Ë,3bºÚXY(#œÊ¥6¥˜ÎÅ÷(‹u$]œhØ>7q’êh¾áâ þp±]‚ÐeÑWX¯øëü÷-*lbп#+ÜZóÚ=×müsúéò¦¥,s“#%’´©Ê}ôé=(ÖqbÓ,ªö°^> Óz›ây–Žìs'•uà†Ìgd­£?x;(»? l•,\ «5EÐÆE­GБ€–tpô† êª`6{œm4¯_ÜÞÇWk}– dÉäQ³f¹OüqðÇ¥–Á‹D+'K“Â+Èù¢p-4—Ë‘š>MSï¥öâ&t¿çDmÒ†?ÐçRGHÖ+¹ î° V˦à›8ÉLJ¾+ ã‡Êy†;Å"¼*0®¹^¬¢a¼ö´—ö¦Dq.²“PköÙ ¾py #|kJžŸøæÔŒè‚Šâg6=§¶ëÕ^ø º*sþ„ Ǿæc^Bó׫˜‘š9T=çOò©XÅ ÖÿqÊy§âOnR7JÞŨJ=½ŸN4,”Ð=ñh¼4b¶™üšH§s¯0¬h#X±àòãÆ8ñ®™|ƒ_ØK‚Ëdä“(oÜó}\]Hç¬¯Ê _çåÞ»VÙȸ+8rá> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 863 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-gridSinglePlot.pdf) /PTEX.InfoDict 602 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 604 0 R >> /ExtGState << >> /Font << /F2 603 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 6680 >> stream xœ¥œMï.¹QÅ÷÷Sôyâ÷—m"@ŠÌH,PV!HŒ2‘Bðñ©Sç”ÛÿQ ‘’¹s®»Ýnw¹lÿ|žÉÏožüüðüéÛ??zúþ¤öÌúií©­|fyÊÞŸ^žÿúýó¯Ï¿ýòÏÿò¿z~ýÝ·ôI)=÷?¿ûõ?ÙßÎþü÷·û퓞ÿ–ŸßØÿø–qÁóßfþÌúäT>c>?~›åS›ÉôYíùä¦L²~z{öüì Õ?µ?{}V¢Ú㱆å5>}àʶ &þÖ®ÌjN¨Þ¡ìUîK¨e¥Ov•3Õ\öøüI2êöÖ”J¹7ꙨgU´ãw¶OsUÑšÕ?)C­B5²×Zü‘ãS²×:ý!듊˾(Gõ‹›_¼ñlÈ•)å@vÂG‚¬¸x—Oélï¢\Ý»º¢Û¾hgUhãnŸ4LÖOª”cð»øÅãÓ¦—f/ø új.Çb›½tᨹ'ʵø\\ŒËÆvݨ­#¨ý³BïäϪÛuA=ÐÚA½“ëöÙùÖÁ‰¿îÃõødèÁ@Á¿Léîz~juÝ©7â䋞ÔÙŸo¡[¥›ôî®uÆhÆ\®+¢à­Ïô÷ýÖÐé×oÖß?Ú‚wHÏé×Þ?Ð|ß¼Ð0¿>KOèÅÊy3l'>°éâCï­¯x0yûýù¥ "ïF¿¿TD/úÓcz°³?¿´O)ÞÿÃß§ „.=¨Ùße~J{c zµëû—Å(®Ó51ŒÇ ô®«×W3:êÒ…‘ìL=Ø¿÷¹6dèDmÿB§ô öä‘ë`|Z˜Méµ½|x{«õ7û³±½Ãå«Joö'߯%äˆ÷ù-#Ûxûýý,Çnö§ÛÜ*†ÊË:îí/Ó“I€ñÔ:ã3£Û -ûq ×ГšñÚ 0,ó’Þž-9üÚV*-ÞÚž1ŒM²³LnO¦Íëê±üʪtÊž3iC5³´cD[)ã¶û‹| É„ÊQЧgÔ¥F÷…Þ°f°m’²à<¥Ãay,ie¯jdtõîÌÛÃ%_pü½ÉÎ{*±ì8’äp¹½£#x‘;“¤µI1Sq/Ÿk‰p@Î!ik™uy?¸}ô›œ>ÉY’®Urܲ _éO4™CÚXÙ‰ ²!bwV×™´La’ñcsãÌ>Çe›k~8“Pn—™U-$S›…›Óÿ¥Þf› -_™©v1Å*ˆÈ55ŽMN—Lã6aZ`~ãÅ rHZ§ÙÅÓ?ŠM’u\÷|ÜÂÒ‰>´9×§Ÿlí© ¥Œw“ÛäÐpÙ>³böRôÃF)_}¸Ñ FÃÀnჶç [®üv¬…P»åðY?# '¦“•ÒÆHEUL’X€Ô÷£˜^êSNÁÞÎ÷-6ôSÿ"G?Ï-H”CQ—¹ø(–F,*,r&k¶ä6OVZYê)óTe__$BT[l´Äh²…ÜóŒ…Rº‡èæØ/6çYˆ"“¤ÍýVªf,OŒ‰y²”í‰ñ\¼=1&5æ¿‘Ï`/6Û•üƆI†hfiõĨ¼Ql*L.}”•êSÖ‰ ›èÚ-§#?JõÏ5¦·ÙfA&F~P›ä’gÂÖ%3¡÷FËJŒ+$##¶E]biÃ#"ÇBZ¾û4mCo°ÔW16ô<_A"1NNµÅ¦¶žÎÒ¿ØÔæ+ɤ÷7=ó™®JOÈŒ(ö…ôÎïÒ¼ôÂ…dR\Úôæ Ií w}73¥7NäYÒ;šZ›ñv{WÕŦ¼Þß…séëLäIZù Þ\hŒÓ6ÏùBR+|èÉU;»nxžÐnÒ› uÏ…eT.4«Þgt.$O}¾bÅõ [›ýFz~eL„ÊY˜A/.Œ¯ßÜMD¬i›ò|!9¹ç€^×B½Ø^±•wá[lNLõ]¸›æ…ºq!©…x±-bj^?sÐô9Àëcýƒ Í¡þ´¹/w¡ í{¢®ïa“a™×û˜^“ eO&eõÒÂÒß×fĶßK± -mn|šôLïB»XÚò…¤öheM.$‹Æ>²uñöb/÷õ‹ ÍhŸ¥_Hvt3tf<ûÚãÓ3*tAàßüо0.˜7ºkŽ,±¬ÿrÒt‚õ5““éIÍ$iÃñi3‡/¬Al5‰r¾ßö|‰rÏj­®·>hÄ'ökÓuFZ=÷×ä³î÷xª\aшÏ\ø½ªu vêØß5éÅòÌr\”ûôQíűYë[¾[ÇLÈû7òë[?˜ˆ®§ÎÏçz»;vL¬þ¾¶‘LýzŸ\Ï›kÕj³hü>Þ›(7–ìÓƒºPOƳ6’оqŸÌG5/nœ4^«Í–e¿ãz]¥Z27îÚ8WÛXæôn|¡µqšÞ?6eö|ë÷£µq/¼0ž;ãz×w#^mÕÆ]zÇÆýèÝÞqµ¥çÛè›Ys7†ÕæÒ}m4«M¦ÈÄã³Úlšç;¾ •o=ŸÖÚ™o•¯«Í ùÂ&Ðs¿ù¾ÖÅ|«ñ½©õf¾ÕF·Ú4ª»7Àº”ß*ôÐÆÓë·e(ÉÒ«¼ÍÚzlÜë„O—ÖÆ}QÏØ¸û*½¶Å|۸į6½®þ‚…jóio¾©=ÇÆñc:ò-Ë ã³qÁYm>M̧¾Œ€ëj¿Í¯Ê·Ÿ¦µqO¬oD¾eÿõÅ»@ôNw}›ñϳ]¦6g~ów… ª#­B×/ zÖ+þl«©|ëKuè]¯ñfóëd¼n–OnÜ'·ÐQocˆb| ‡£oÿÙüºç5g&ˆȨ6¿æ;?ÌBùÁæÛº®ñbóifÿ2ÞMOêM=<ßžïo[Í”®ø4=¨}ïYçŽx¦¶ù4ÝãÝô vpVmûù%žM/‚_/Õå'4Ûoó©@”ϧЋšùÚöˆNHc¼Ù|›¾èIuôb<û2 z3ßV‚•ï€Ó&RÏRw,u:vgÎɉԳ€7‘:˜¡¯ÉÔ=DÕ!½‡IÕ =àˆÕ!Yê\8Î_—`tÏ¿>É:àÞhG,AA¡uìt^´ž«¶xdëió…ëàfE<i®U3áu+ås‰×m×à‹áõ:ÅÓ‰×ð¼*âuKÔ[´D€vðz/œ„×AÀ.¼Ž¤äœx_xÝR ¯…×-úÐ^7é[áuì7Ösðº¥ã%žŽ´Ö’Ð<ñz è$¼Þ‚Ð ¯·Áº¯[K<‹^·òNÂë6ˆ҄×wḠ¼ŽÍq:ñº=ãAxÝê?¸étgîr¯ïÊxT,?/^"Þ'^G–êÏÁëù`QòuàAapìÀv3ô¦f¼±—¤]‚;  @¹Cö’ºú—”ÝQQ¹/ ô}9˜WHÖ=5–Ø•Š´ãz¶Ÿ¨ÏŸ¤éÎÚ¡o„íÐÂÜNÛAOÄíhë'o,ó9À½XZàñ‰»ÂúäDHöMæÍx#twÝžCÝÑ~]ïØïÇã(4”¯àðã‹vò~iQåǽ;ÐôïIøH9.úðÈþ'~—¼ù;Ú«ö8€G9ã‰÷jGð ž¿dð—vïÏóö‘ƒÎ2ÿÃn&‡ëäñA|Aš¹H<˜dºP<Êdñ~½oÂxÔŸ.ïñRžƒãÑåâñÞ,‚ñÌ|Ûu|K"nc¼É#LEÎ}¹Žü;C/æSæKRùKûDˆç1ÉåÑ ûóæK’yf¹“zô©"Q½ÏWÔÎê}¾%»÷í¾©i=Þ'_¸Þû—åÞ°ÌÅýö+8±G>%5#²G˜ ´'æÛÎ]¦ =Êù}Hí=Œûs°}&|;ÜÏ#å$¸Ç°õñ.rõHáóÝ# éy¾P@š#¥#¼÷aÏúÞk˜|ïñLpîüaN K€ïóMzÁ÷ùÈÛC„0$&Ã÷üÆú|û]/ŠiÇø³£±+²ú÷ò¦‡äcX¥ ûXºî¦þ'Ë÷0xÆ||Ñ| ~?â|„1ÛKž0 E%ÐÇgT¹ã]|6%8ÒÇg'&Ó÷|ß&v/ßÏúÐ<#Õ/\†ªÍïCªïaAJïTß?cP~äÛšuÎEª_jPLR}|6RcR}|ŽgR}|&RTR}ÔWBOæ_µÏ êç©>úƒ§¤úxÏVHõQ¾¨>Êy¶FªöÚ’ê—ºï¤ú Îê—& (ªïÝ–žCõ‹-£¤ú¤äNõ `N{Õ÷nc¹S}ï6RvŸ8JìDõñYtJàT_ŸéPýrò©~Á²‚Ú©>ôæýNõÑlŸEõQ-ó©>ªY¡ôæúTT¿Ì8$ÕÇc|=)ªú9žIõ½~Rx§ú^}Õ÷fyûHõQ Ç©>ž?Ós¨>Êõ<§úÓþzÕÇcÙ~R}¿ßŸOªnæ)©>ÚS}mRz§úh&ó%©>þHÕ¬g|’ê£ÎW¤úå@“ê—µ5^IõÑÌë×µE…Hõñ˜–žCõ]_Tõ“úêãù¤Ž\¨á5Heˆ#Ñ~R9R}oozÕGÿ’Ê‘ê#luªàTñ4çs¨>¾§žï ½‚e(©»S}†¤è¾‘@9߇ 1 3RYR} ƒCõå¢ú'>EõñýIµIõ&ì?R}ôgº¨>>©©~ ߨ~E>ßÏ¡úþÙXîT׋ê;¿JÏ¡úø>¢þŽã.í8쟉ک>žïùUTŸÙÇŸ¨þ¥êÑÈÞM¤òNõ¡ÙߤúèvROR}|FŸoDõñ™ØŸ¤úø¬¤¦¤úèQ|§ú5òµ¨>ªá© ©>Û/ªjHIõUí¡úøƒí!ÕÇc¤ú~}~Õ¯6-gR~§ú¨¶å·@ñn¡vÜZ-ÿó”‚T÷³ý¤úÐüÞ¤ú€ù:%ð`<ߟTß5©ºSýÚ5_‹ê¶çÐ:©}¤ú('¥&ÕÇ_³?Hõýzÿž¤ú¸~]T°¾\T¿Žø~¤úÐk>‡êãÝïT¯ÁïKª_9íªïïGªîTד’“êcX1‘ê#m¤ ø:N1HõQÎx%ÕG>â)©~ý·¨~µe4O%Hõ}Ø\T¿í/Dõ«­xj@ª´ÀïIªïi??‡ê×sJCªö²¿Iõ‘&JP~ÄsÉ_¨>†e'µwp‡°eþ$ÕG˜ª¾ñÌ|Ã…?Æû“TßÓHP|ç”Þ©>Æó©>îŸÔNõýùë9TÏgûIõæºÞ©þ¥ê_z1ž‹â•TßÃí{mïËâíeôAá²KPø½¸É „ßJ²µËÑ"[»Õdkol¼líBo²µË'+[{Œ§­½òhðÝZîC’ìðëj_ë€øM;œ×¼/m}ÈÝ× H v?Wúvh©ÓÝá”Â'#s_ƒBäÎ^â¾´Y$pÇ}Ø·ãî·¯ÁaJÚŽoãÀÜ“ ÉC°v¸©ú¨«WNÚ·ŽH Ú÷àV‡œÝÔW‡íHÛ|Rö&<ìÚ”{ ¹<ì;<îò°OAäð°OGÃÃ~´<ì²ZûôdÏ9<ñ„ìaÈ~ëI-ˆMÈ~ ;Ö*„ð„ìae8ö-höhÏëa§õ3<ì:ª;vAAöøµ„û-'FôJ^v"t9Ø‹ßë`çB8Ø«r8Øe¹ì9ŽXˆØ¡eš÷½R$!ÄîõóúMcÑV±¿í'bÇõõBì(g<±ãþH=ñw^žv?¤^¨ŸDì^?Ÿ?h<Úú¾Dìx^äŽx.# ö^ú_~tGìèïcu_´³ÒKûÜ/Äî‡ÅDྶÇóø>Dìo¼±¿ñFÄÍ#G"v\Ï÷%b÷x$‚wÄŽÓèuÙÜ/íˆÝ‡%¹ï%rß ±k˜ÄMDMÄÍ#,"vÔÇ#L"vG¼—ÝiƒGBœèÐ^9ëM@߈šG(Bì%ŽÔ„ØO±“\¾ˆÝÊ™…ØËÒ/h„ØÏ÷b5{©_{‰#Q!ö3¾…ØíyãFì1Þ±#?ÐÒNÄ~ëA½ÃòŽ|[Y±G~ Äní%‚b/á8b/áNbñˆÝ–ÔG{¾í2Ž ±[¾%ÂbÏúa ö¬Óÿ@ìi¿Z«!y"v¬&Â_i”eÿ±sQð"ö˜Ÿ±¿z…ñFS!öØ‚b#K öTdÄbOZSbOUÆR!ö0ŠbOZÂbÇ‘!íD쩪ÿ…Ø“¶<Øq$Êö±ÃHMDOÄŽ#Ð0̯tµOˆ=õ¯ˆ=bb?ÆU!öX- ±»’ȼÓÈ™B9ž4¾­/Vùëù‹ë‡%$'Äë›@ìIó‡»[ûó"öœßDì¾~¸;îç‘»¿¯ï4rƯˆØýƒõ9ˆýO"v_¹ïX½ö ±{|R¯\Í1†q~ÊXÆyÍ7Ç8¿ô ‡0ÎoeœÏYHRÆy&2ÖÓ8Æ—ŒóXÝÞÆùX_ãü#?ó9ëýÃ8¿¸Å>Æù¡#Ÿ0ÎëÈóçµ><Æù0އqþ\/ã|×û†q>Œã¯q^Ï—q~èˆ-ŒóMGfaœ—1öç…Lq>ÆSçѾ†ñG–aœ|ÆùFyç»Æoçëk”—‘“ýÆùª#•×8_ÂH¿®_¼ã|ŒÇ0ε/Œóñ+ž0Î@ô2·0Îw9„q>ú7ŒóÑË8ýÆyíŽq^ú2Îóˆ5ŒóCã'ŒóÑÿaœ×/‚q>ÚÆyí®Žq^â绎|Ã8?¹Ë8?4ã¼ÌvÇ8ß…(Ã8ßdÜ ã|Ò ã| ½0Îë‡`Ç8¯㼎`q> ¹…q^ùêç“×kœ'‚ ã¼Æï1Îgî?nã<‘:óØ&ÞÆù¢ò㼎TÂ8Ÿ·¦ŒóE?ƒ ã|¬/Â8õËiœ/úaIçK [ç«~:ÆùXO†qÞÖwDp2Îýð"Œó6í”@îˆgl+y?ó¯¦qþÖÈ·U–±0Î[{ömœÇ¡·WÆùWÓ8ëÍõ®:óXÏ¡Ó8ê—qÈŽÆyüÁûiœ¯%Œ÷4Î×¢ï)ã<¶ÅDú4ÎÇz:ŒóqdÆyôWyb÷ö°œÆùFnçq=‘7óUû‰0γšƒØÝÈù¶R•q¾É‚ÆyL‹ã9ˆšý'ã<,”|ó]¿­ ã¼MƒDÌ2Î÷¢ñ"ã|Û_{Ž#×0Î÷¤öÊ8ßÖWã|Ó "Œó]–®0ÎüÊúiœÇ¶›F~çÑmå9ˆÛx)È8ߦÞOÆyÓ,>aœï§q~h}Æyë¶Èñ<â‡52Î8¢‘qþÕ4οšÆù¡Ÿá†q~ˆ&Ò8ÿ«ïe‹ÿÝŸÿÂiæÏ¿ûã·_þ½½Äóýßÿðíï¾÷Úãöëž_\UåB£[Báþÿ‰›Ñ¼¿ê¿‚£¥7ðãƒO!ÿð|÷ÓrÉÁõʇ£ƒSNù–ãÕç[.y•Oÿç)§|Ë5#œöQ^åwƒOûßò¿úÛM°æXt}Iiü"eûß_ú€¹X­U?­dþ¬J°K?iÉüÚþºC»ßõcäLÆÖ?-ϱøÆæà-AN9å[ŽM§%™(—|Ë+å’W9tÊßöý†‚Ít“çPÓ;!§ô3ïåìC[ÙýìÛaÊzzùܾý|Ño¯?ÿvLi¶DôÛ[úúå5 ¾µä—j‡Ädà«H}†¯2.¶”÷í¾8¤üendstream endobj 864 0 obj << /Filter /FlateDecode /Length 593 >> stream xÚ•TÛŽÓ0}ÏWX<9q}‰sA‰ÕnW ^yAÀChÓl¥&)iʪÏŒ=¹°[(²ÇgŽ}"YÍ$»$Ù›"X­fJ‰ÜZÍŠS:™Ô,•‰P:gÅ–}á6T\da¤`•ßîO0Ý”ÐõÛ=ômF&µü=èØúùîÛ úSø­x¿Zg,y¢¬#Yd2adâ+Ü\`O¢a«âÕºò|€~ðÞzJ “ƒK‹q'ï(ûŠ6cÔ鯔¡Nù%Ô¯0«#kb^„™áÆWŒÓù ÔTüÓûiKûyù@S:˜ó!à¾k®îátƒŸc½j@BǶ_ÅÎLœendstream endobj 865 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 866 0 obj << /Filter /FlateDecode /Length 635 >> stream xÚ¥UÛŽÓ@ }ÏWŒ–—D"ӹ䊴HT»E  ž€‡l“¦½,m*º¿'I/¬@¨r'ñØÇÇ{"XÃ{ï ZÇ…7šhŤäy+VÌ™TÏ„b©H¸T9+*öÍéó<%ìúw»2ÐÊÿ ºå¦ BF~i—1è¶–þ1øQ|Mâ”åDõ•ˆ™×¯T±éßð¬ÝøÄ…©éð¯r^ -àÝÍØ}áIxLv³¥RÁãŒÍÖÞ/§2±ûýn8'RŒ>¬UÆî¶Þgø¹½Ð!†=$Ît6˜».j”ñ$Q¶ŒâÚlz¡N”¯ò7‘þøÉ(l9jÓÑåa…'‡Zs€‹Ú>?bO·8ˆQð* ²Çæ/•BU†Õ¬È|oqæ83krì†9ÒÂ/°È~]—›>hKíU¶×ZÆípH®Ù•±·¯aag ‚WÏÁD¨YaÈ?‘›SAé¡™àFZû…Á_?²JœjL B ¢ÐÕ -vx^øûº¥ñ1ì:ØPç º3¹R L¶9àÅ´1Ù´tQëAÃD7a]þïBCôa7fšÇ*uàüdTþ´2øn¤y ©èˆkYß(9Ÿ³g•‚ endstream endobj 867 0 obj << /Filter /FlateDecode /Length 19 >> stream xÚ3PHW0Ppç2ÀAc(áendstream endobj 868 0 obj << /Filter /FlateDecode /Length 605 >> stream xÚmTKo›@¾ûWìq9°a,pG©T©.UÓÃc\‰€eLRÿûÎcql×ö5³ß|óÍ,™èD&žWYœëÕÃÚ¡²ÎQo…6N•™Eæ•6•¨7â—ôIªÁ ë]›¤¶ÈåÄ-‡¶ç“uR99ÍñœŽCò»þö°.E¥*o<g"uZÖ2äwp›{Žðá=nÞe9¯G´L|Ñò‘˜R¶°œ¢k’šBŽ Ÿ8´`Bóv†¡¿…[‚ Z¼Ü`Ì)v®T’zoäSh0Ô."„=#!DbŒÓ£w(LYkUåžS¦k›ìgÜ ÏÐ÷œ‘Y‘c@—~<$h‚ÅÊ7dtâõ‘‘b¸E”‰tþÎ9ù¸ZNr‹¨¤É‘à .æX ktk̨¡Æ|SÅeà ó CËê..cv-É„  ¶›+rÖáœFU]¥[d9#F³Tji¥Ü^ôRh` ®_jÅšþï=½ =/`…–?“ÒÊqæÀ eÅkÒë5ÓŽúÏ.pAÚq» ¼ùê ÜÝÍ@Ë×,ÏÌšßãÄkì»ö¦?Q¸´*U¦Íµ|7•ßS§Ä¢”¾Ã2¿C)€òñŽz¥QÚå£z^È×ß‘¯RNWËŒ?^µÄ> /ExtGState << >> /Font << /F2 616 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 10518 >> stream xœ½K%9r÷õ+ri/ú*É|ÜŽ` `Ãr7 …à•l/ÓäYèï›qNy¢ºjzhh1U}êäÍ›ÉG0_ærüÃQŽ?ÿöå;ÎÏyµ=Ÿë:*çø”çøÿçø§ã_qÐÝ?w‹£®÷ú<í«£þæÏÿóïþpüí_ÎÏè÷<ëû6;÷èÇûßç¿¶çø÷/ÿü¿Žóøß_ÊñóüRðåÿíË[>ã>ê¸>¥?yëçéÇUžÏÙŽ?}™_WëQû;Ïiòù”û¸æ%½²Íƒ¯n3åû¹çÁãýœp›ãºïÏí²•yðøÔbr|Þy?÷ù©væ6ÿžÏF'嘷bŸ™²|žg^ÕtíT­~êy\çù¹n“·]ûu¿Ÿç¥lïqÕöyíªfÃÝ'¿r^ݼ…g6`¡œ·rÕú¹!çÍï­ó_qÃ>tÝÍÏ<>}àŠ5N??ÏÅ/2·ûç«^Ö_Sε‹œŸ¹)ÛüÞyéï0y.ûÞbM9Û{ÞÂsûÁWÙÐ)wùTÈþ©?;({CõËäø<óžÙív ã´Î±.{ì‹FE§ÌvîƒÒ:Å_ŸëyÛ¹®û3å;oášýj÷;ÐÞ×u~:nè”ÙÝ×CÙí~_¯SÎQlMWx‘c6¡ÝÂ͆-gùœÏ>—éÙLÖ–O…®ýuX×Rkëþiô¯Ï;Û¯>ì·r>ŸçÆ@•óýïæîºWvuûÜó^Þ9ìx¾ŽÎ+·}lj›-óû¯ç3†ë·¡GÜŸ}QÐïízÞÞ¡{^6–ªb [ãç׽̘z3Ò[Ú4>½á{ëømíñ¸ö~ÁŸëÙü‹OŒ?¶¾Ý˜¿œ_ ±¯¯]âgŒ/[âÄö—­q6ž/¶È]˜÷ßùº¾¹®Y|˜ÓšóÇÖ9ÏÍ‚éaÇâ–2Óƒãƒ÷?×6ôW±aeÌúó¡1ž7ï/[í,i6¬Mß6‘l| ôß\¬,žß ºië¯Ù-'îg®x/ïŸãÉ–¼y?sX±§žyÂõt÷s X<ŸÍÈø9Þ­÷?×9‹ç³}8mݻտf@VPƃx¾úcêñ ?Ù^㕺aIžíÁøo«_Ãücü Åóø¾:SÄó‡íQmýë»}M7¦4˜ïÕÖ¿‹:æG cñüöõÑ´Åó{ÄçÆó‹ëM=è®yšZ]÷‡óõ‚îˆçók ¯o >ÌeŠç³õïÝãÕt³ù|²ÿ«­7R¿—úBÕ›ñÛ´õ—-S¸Ÿ‚…ßÏãçücf…äÁt¿8^q½sà žŽÿZ:ú+Æ[µ_ˆßèÓæý£?ª-$ëÛÃ:RúßtïhïŽïcâùŒûµõïeüi®»­÷—]¶éñÜú£C7ø˜¯Ôñ|Æ#ö—M´gŸjëŸß?ÆÃ¼Q‹çvüéÚâyŒÏzÁ@ü£!1·ñ1\7Þ?¯64’ï_óD—Ä3Óƒßõ³ÚúÇñÜèãÆ1p¾™!¢¿š5 5âÃkËœéÂxîó§Î±}û•9º¯gu®wˆç…ñ¬Î…Çúë9¹›öøÀþœeñáö\»Úú÷p½âõ EÇú×][µ‡ñ±Úú÷ìmN} ãCáü6øàëwmñÜÚãs.ˆç¾m0mñÜ–q|Ÿ­lÿ‹ç" ¯¶LØ9×ÍóÜ¿­ó h[ÿó£îë36Q¦+âyiÌ«íÛ:3÷îñüõþx‘x#¿ÂýÌõÎÖçkp'WçfÍâùŒœß¶ykü>~¾#ž?˜¦ów_M[þþ4Ÿ¯sgýÅeÙte¾ã·UƇÇã‹­÷Þ.Ô†…ù8?ÿ¢¿ìþ^×Ö_‘?W[ÿüûq½¶þ];ß7ýr¯ÆùÑOÆóÂýWít¶þp~ôÂõÙóÓÚ+ó÷Ûï×Ö¿wç“Õös}çߦÏ»÷¯­/¿ŸçoXŸ-ÿ¼]¿’¿VÛÔ5ú8ß\ïj‘ñiëß³·„–xa»Õ™V[ÿ.Ì×7â9Ó0j‹çïà&¹Úúw£ÚÀþ²õÏïí5^î·^î±ëÜÞY<·öå÷ć~r½6mñ|ö/ò!Ûº#¸ûÇÂÃùŒ|çšû¹Ó¯®_î€ õøpú.Þ´åï×ÍxqØÚýŸÔ ýõÜìo›XEòL´‚xŒöÄBòpÌ°Žøkqui›Øû Œ8Ö_Û^Óƒe±‹ûGTH.êÛ5âƒÇ[Èßï[¨<žS߈ço÷ñ5uóxŠñmëŸìßíF-><ã!çŠü™ýcåÝûi Ô•ùÇÏ*4®×Ö¿Îøû*óóÊ|ۭǘ~Ǯ؅"ǶŸÚús¶/âšë7Û{b‹çø}õ˜bÍBmù»ÍW´‡­¯\ï[˜Ÿ{|¶@†øp{<°õÏÇ3Î7—åïÖ,Å5òw·×‹¾ŸŸ#ß{ùy$6hßî:ê1ho븛ù>oû»ý×pÿs½CU?_+,yýÈ6*Èß_î§M[þni-?#žßÿl7ØüüËõùõùkë_Ûõk®OÒšåUÓƒ•[Æ‹¨_î78¿mý{%>L=¸}©/Äói¦éñ<Ö«k®wÏëåíoëß#ý×_æï^ß¹æ~î’ú…é¡ãy®^a{ÙD½QæõØú×¥ÿæz׋\Ï \žï!¿¹lýã~ãÝÖ?–TOlýÓø4ósÑ#ÄnUJ­ÿÞV„/s>ðO+Å~«Ïꕟôçã¶Ù·7%ÇVþ×âþ9‡”þùëÅýÄ~þâßàúO¡Ñ{ÖL~AY®£\ÿ€dög'6¨,)=~é£:árû6jæd ߥø«AèïöH_¸üýýøÉ›ë_þüæúó¿üë—¿ù¯õ(ÇOÿ—èE‘ð'ôbQY,úéçã?ý`ÿ|ÿçã§?~ù/?áôÅçmT7~_ü[?~cRÆÇëw?^Œ~à_ü—Î]:';ÁøûøøoFIïœIú§Ž6¿ÞùÇ·Ç]±ü®¬w¸Ž‘5»ªEjL¤hárÆÔ£ì2ˆ­|€}1‘¢UWæ)ZñèÞHÑ.I‘b=‘¢U²²)ZkðÌ@Š8•]$‘¢]ö/ŽçŒ)š$¼R´šg"Åì‡HÑ*b‚q°3DcÞÕ CDŠuæØ7)ÚUaÙ&R´±ª4‘¢]$Š@DŠÖƒØS)Ú™‘B9R\çr¤h'kD„@ŠÕJZ÷±¢] R~GŠ•;…í| E«DÖûXHÑ*SŽ‘›[åì¡ßÙy¾…w¤ˆÊ\=R´óA)Úx­õØHñŠó)Vî$R´ó³dÎ\ÕæKÖDŠÖ/¼_"E«Äùç11ìüߤè•È…m´±¤O¤hÜHˆH±òŸR¬Qâq¤ˆþ ³¿º#;"E»ÞW"*‘D˜@Šæ~ì Æ–Ý‘båNs!E›w¼?6¼ ""E„"Fìe­?Pâs¤h×Ü‘¢µO¡Ú6ú‹>jé6ýØ>DЏ~ž7f•õJ‰cã…Ï‘â¿D DŠÖþDÞŒTÖ¿/!¢"V"E‹~D@Ž/JŽqÿD‚¨…ZÿßDˆoD÷ã´—)VîÜ7R´‰M$x²¿*·tŽaB[\˜÷sB¼\¯#A EëO?þŽxMdæHq!{"Eë¿;c—…Ä‘"*ñè/GŠ÷ɾ#Eë/Ž"Eë_žŸHÑ®—íÃÚ¥Ý?ç+³D»¿AˆÚ’‘G†@Š9¾)^¾¥s¤¸ã‘¢èÁø}:¢'R´ñ‚-¦#EÄv,¤ˆùK$ˆÚ†ÍwÎ?"EŒ/"À›Q<.‘"ÖVú@ŠÖ>DúDŠûúˆm|™)b|ÓÇ`~^ÇBŠV©çý)¢¿ˆø€=kXH±Æ£8«¯ßެ1þ)‚lc!E»>ö7‘¢} 瑢Ň!H 3‘¢†ñH•xú@ŠFÂù)îö!R´Ê·#C EÌçÐ3žId{) !ò%RÄø;…mür<)®ïs¤h—Q‰ ãyçzæHÑšq dK¤hO¤híGÄ@¤X¸ö/¤hóû¥F­ÛH‚Hã…ŸR´øB„G¤hã•%r"E¤I‚m9?‰üˆm¾ R´ó7AŠˆ@ˆ?øy E#9#t·ÔªÆñ@Šõ¾ù)Úý•@ˆÏËçŒ)Öx„Ç‘¢ùM¢ýEDI¤hó–H±F Å‘¢Ý6‘"òj E¿Œ…ñz‰­½‰(ˆí2YòçBnã ¯#E;Œˆ†H±F‰Ê‘"î7#úóñë%R´Ï³‰÷x$R¬Q"v¤hÝÜ)Úx)Ú0aÿ)¢ÿ)ÖxÊÏ‘¢ÝŸ#Àʽ0Yt¤ˆö„hýõ\Ž8ˆÑèO"E»MGŒ@Šu!""EÄóЈçþÈŽ#Eä‡Ô@ŠO‚×úéH±.ÄE¤hͲ£ï¢1>\Ÿ_¿_"E| DçDŠv=…ÈHÑÆ¯‡Hц=Ç‘¢u“#@ EÿD²DŠÖ,=ôà‰ýM¤hísS?\Ÿ›"E6DÀDŠØ®ðû-gû)ÚñDzDŠ6í9~ˆíóœŸDŠÖ-DdDŠØ¤áûˆm}ãü RÄ–‡þËüüôë!RD R´õÊ¿lɆ)Ç ‘¢ÿ!ÂRÜíC¤hñ†•HÑŽg<"RDþ)HÑæ¿#B EÓì/"Åœ8R´óAŠ•iîBŠ˜Öüü`ž‰±_ ÄØy¿"EPƒëXHë%"úƒˆðd=Æ‘v¤ˆz ®—Hë‘âŽ'DŠˆoõXH±Æ#[Žwü RLýåõ!GЍw™þ-HÑOºa…Éï‡,¤èúO¿DŒ™!¦Oo¤hÅy?ëËç_ú@~.Å(.ŸRèMÁ.d!IJñWƒÑßíåþYº|JñyÁËß×ÿû I+þ<×B’×oDŠØë?ëãå·~|þ5™Éïú{@ÒrÔ9$ÿÇ7€ä_ ¢~ ÃöÈ€R€ä>"J’ëˆ (Hî#  ¹ŽÈ€R€ä>"ÊoM ŸßŸ~À÷'…ÏÙïÏŠ_„‘¯§…ðýyá쉱»ÿA¢ô—‰&ù ùN$Ã虫Þ6à™3ÚÿÕ<³ƒ¯Îl¦I3g¬Æ¦“0sFz,d™f@ïÈ2ÇC.F”Y¢\J”iéÙ(ÓF)ž/%ÊlNI2 H!¦’dŽÎ}A¦-n›c‹â¡à˜Ã1¦]BßÓ¸4bLÃL}c̹èur&Óv}<³k!Å4¢…T‰Ó®+?)¦‘¿zÄ4…´ŒsøsÑd˜†–—3·1’ƒ-%¦&Jd.…½ Ó°ð ë˜ÖH?É0Ké¼D2Lc H–È0 Þ›aÁ†9¼PN„ixu"Ìrú›oD˜%ª”D˜%Þ›!´›/û­ÈáÁ9Á\§r‚iWÅ 7 f‰‡Òœ`Žxg޳Ø;B0g£‘×_¢“Ú±øå!ÄmÄ—ˆ“<ørÓKèåðäÈáå¾TÂËR¼µ^sBrçðÒF._WÄÜ’ãḥ¾Þ¾ºìþ°¬“K‚$!$—v”¿œ r9üy—ÖÕw$”˜jõXàr ç\ä–ö%ää–»ÕÉ-ѺåXÜÒ>Ö„[zë/n9‹[®.wl¹[ŽØ²DÙÙ±%&±!ê9%žÔtl‰«’7!íüM°¥]ÞKØÒþ™o’[ÎÎQAj‰›æÇA-íëüÅKPK‹gè¹$Ì Ï»!´^“qfi££ ³ì¾¥tdiƒƒH—ÈrÍ`G–=^Ê$±´ïæKu$–ãò1H`¹[’ÀrO$¯´éà<ðd?>DÉ+‡?¡í¸røæN+1ÆÚ±hå‚O„•6Hø~.a¥5#á?a弓ìa ;Ë"«ì‚ˆ*Ç똤Ҭ“GJÌPúØ’¢•ƒ\ކˆäŸ¿‡Ï’JŒú •ãòéEP¹¸9ånVrJÑ(!X]Çâ”»—È)K<–âœÒ>ï\œr0rJ\=_E§Íg+1%f3±%êKe½©ML¹/˜ÒzÂß”¦´Æêñ¦cõ0oBŽŠÆfOSÚåðÍNbÊXRZÇ/j9wÍßîqH9â™2J»8mòžâä&£Ž\Qbî ¢DSQŽxbƒ„ÒZž_NB98ånÊy Eø¤SÞ(ù¤å2‚'K”OÎO7¡“Hh£L¾¾,èdñ_%p:i—rvÏðgœM–x]ßÙd· ‰&›¿üìdr~˜`‹`²_þj¹¤Íó*\²wÇÄ’½e•>1JÚkÓd–`’¶ò5+2IëýŒrvPoñ$¤u¯#N Ik„"o9îF"’Äðà·IÆK´N$mb–cIkrH·°®ñÅÊPÝ8íHbE§Dâï4ÄË|²L4òdòH[-Ù®ä‘#Þ€"Ž´”ì:´ÐNzEYX_4rŸ4Ò†¶¿Ðiþ%/8Úè$!ì·¿¿Gik/ßG#ŒÜ-K9_ÿ$‹´¹Ê·!"Kô8ûiÔ …ÈrÁhƒDZC;Y¬L²GC”ÜÐ1|ù$rø6ÀA¤-Dw‘‘ 8‡^Öw ‰œ A 9nQŒÒ$ß<¹à¶xr£!ƒ´.çø%ƒDÂD¦9ü‘"G¯üøÃ„Ûƒt‰l–Ç#Åë%ÉÎP]|À’@ÆÈ¤˜v,þˆŒœ6øc¿ã EàÇîë±ÓÇ•ž:}D^ɳá[0ëI+ã´èÖTƒ>FÎèð]0ÒRïrûÄ}„{Äh}Ň?Úæè)$5+¤ŒÔ@ÍÂÉ£E’0’GÛ¾óÝG€Gë´ òÅòÍWÉíÓäÄäŽÑ;®õÓ±£]:±,±#¶}‚{OÔ› RMPÇø ‡Žs΀/‘.ÌqÄ[ÔDŽ˜H÷±£orñÒ$‰#ö1$’ Ž6šý¥HÇCH‡ÿ&ŠGëCÿ¶—™÷〘ÀÑV8ö£e~:ì“­×P±9EÁ™ÀÑ6»|¥¼›²óX¼Ñ¦¦¿òÞ8¿ô 9^=¸qøÓuN×6Ài£Í¥z,Ø8š³4†YÌsakOâ¬Ñw„‹5Z·±öOÖˆÙ5ŽÅmLñu ²F,-d—(Š—·:« kD†ZÅG”º‰q9<¨Ñö|ÛŠ¨±ÄÛóŽ-î°mˆG¼|DÒ8 õ–%„4ö¯¾­ïx•qFëi_ò梥à~6`Æ×_|vʸ§Œ¢Am—µ¨cÇ>ïé2ÿÙ£¨îO£Â“tóÌãÁ-¢*c\É©3ÆÈŽˆÕŸ@Š˜„‚„-A„qÄ;©ŒÖêM#ö·cMu¾h#’'^Da@ð"®EÞXÄl$Î^\ ¾ãÅrn"^´¨wñ EàÅÎ;^´-$ß $^\©¶ãET9îcáÅRü‰/b)¤^ñB!éb‹ @¸h±€C¸8‚Õ“-ŽSD‹Øç†¶jIñ­©£ÅáOR:YŒ*¢ƒÅ7¸¹¢…)åŠh¸xu™wafå\år@,R#†cE{Ó¿ +z-iaÅ¿üãX±œþf·cÅ©9VìþÃ$Nåã Š(ððë"JüðSE«‹É{Š#™¢7‰ø€­ŒÀGˆ‘žË[Šöe|‹–HÑÖ¾NĈ«°ÉʰE¤h%Þ ‘¢…Éo%^ ÂD†DŠÃŸ¨r¢ˆÝ !ˆ¢õ »™DÑúUÞQ´Þ(–«ø(ŠVèÇâ‰È2qóä‰;V'&=X§"ÿ&O´}šÉß‚ýœ›$øwü~8‘•ûE)ÿôK¸˜é¡~v³ÄŽZy D+Ô¤¹–‚•@“u«‰ûNݯÈ—O)>¿nùûÛø"Š®WŸßHòlèß‹äíƒ7¬¶ÿ´ž#÷ð¾9|ysÏ;ʶ«íIL²\ªí›,—JÝ™/Škj»xbl¹TÛ‚Y.•º­«ÛÒUÐ,—j»hÂåR©;ƒŒ¸¦¶‹»—K¥îÌwÄ5µ]° åR-—h(\WꎢîЫ"9Z.ÕvQÌ\.•ºýV·k;7<º\ªí‚J-—JÝöªÛ´÷ ­–KµÝwÇéR©ûvußtU€dË¥Rw4uGjgбåRm´l¹Têö¡n×Þ'K ×Õv‘R,—JÝ^ÔízU?Ž·\ªíbÛ³\*uÛ­nÓv&Ä[.Õv‘.—JÝ÷U÷MWõZz¸\*u%"¹ÚnÓˆäj» ‡Ë¥R·7u{jg°ÅåR-—¨1\Wê¶¡nÓÞ(.—j»U#’+u%"¹Ú.ʆ˥Úûχ+uß[ÝWÛÙ¶»]©;ªºC{Ÿôt¹TÛm‘\©+ÉÕvZ—Kµ]×åR©ÛšºMÛÙŸ% ;¤øà¸Û§Lþ;’ÿŽäW L!“/¡)¤øØöoŸR|<‚º}Êä3ùãL>ÊÛ§ùÚö)“ßkò{¾¾¦*¤ø]CUÈä·;ù-_~Ueû”Û'ë^¾Ëä¿-ùoj@·O™üñ$¤ñÁzØö)Å¿4t…L~oÉïùú@ß·O)>övÛ§L~?“ßSû“×oŸR|ðûíS&¿Õä·|}]CYHñ‡³ÉŸä¿©ýùÀÀò]&\É©ýùDÁö)ů¶_Ý>eòû“üž¯ïÒÐRü[ƒ[ÈäKRRüGÓââã ‡íS&¿Éo©ý+xÃö)“?zòG¾¾žâ›KñGŠo.“?JòS–ì\,ߥøx~aû”ÉïWò{j>±}JññHÇö)“ßžä·|}wŠo.ÅR|s™|I›CŠG¶O™üñ&¤öç3&Û§rû”Éï=ù=_ßHñÍåöï3Å7—É—4:¤øxÊeû”âã©—íS&¿]Éo©ýùXÌö)ÅÇc2Û§L¾Æ7—â?)¾¹L¾¤Õ!Å5±)~ÓÍ~Èä÷7ù=·× Hñ‡nùC&_ã›ËíóI å»¿hš2ù’h‡¿êæ?dòeûRüK !ÅÇ+ØÛ§L¾Æ7—â?)¾¹ÿÕ´;dò%ñ)~Ób@Hñ»–B&_ !ÅZ¹}>?µ|—É×øæRü’â›ËäkþíRüªÅâ_Z™|)„ÿÖAHñ-„L¾Æ7—â¿)¾¹¿¥üÛeò5ÿv)~×rAHññ\Æö)“/%ƒÛçhËw™|o.Å/)¾¹¿¦üÛeò5ÿv)þ¥åƒâßZ@™|)!„ÿÑ"BHñßß\&_ã›Kñ[Ê¿]ŠßSþí2ùïü7·ÿЂBÈäKI!äö­h&×çRü’â›Ëäk|s)~Mù·Kñ¯”»L¾”BЧú‚KñŸT_p™|­/¸ÿMõ—É×øæRü–â›Kñ{Ê¿]&_ë .Å©¾àrûVR“ñá2ùZ_p)~Iõ—â×ß\&_ã›Kñ¯”»ÿNù·Ëäk}Á¥øOª/¸L¾Ö\Šÿ¦ú‚Kñ[Šo.“¯ñÍ¥ø=åß.Å)ÿv™|­/¸\¾?[~Hñ‹ÖB&_ê !ůßBŠi| ™|É¿CŠkþ2ùR_)þ£õ…â¿Z_™üþ$¿çëkßBŠß5¾…L~ëÉo¹ý‡æß!·Ïgr—ï2ùR_)~ÑúBÈäK}!¤øUë !Å¿4¾…Lþ8“?òõÝš‡ÿÑúBÈäK}!¤ø¯ÖBŠß´¾2ùíI~Ë××5¾…h| ™ü·'?åßþ`óò]&_ê !Å/Z_)~ÕúBÈäK}!¤ø—Æ·âßßB&_òïâ?š‡ÿÕúBÈäK}!¤øMë !ÅïZ_™|o.Å)¾¹Lþ¸“ŸòïÊ×–ïRü¢õ…É—úBHñ«ÖBŠi}!dò5¾¹ÿNñÍ¥øæß!“/ùwHñ_­/„L¾ÔBŠß´¾R|<¯»}Êä’ü‘¯o¤øærû|Ü~ù.“/ùwHñ‹ÖBŠ_µ¾2ùR_)þ¥õ…âßZ_™|o.ÅR|s™|É¿CŠÿjþRü¦õ…Éï#ù=·×úBHñ‡ÖB&_ã›Ëíó¥…廿hþ2ù’‡¿j}!¤ø—9Û§L¾ÔBŠk}!dò5¾¹ÿIñÍ¥ø¯æß!“/ùwHñ›ÖBŠßµ¾2ùR_)þÐúBÈíóEå»L¾Æ7—â—”»¿¦üÛeò¥¾RüKë !“/õ…âßZ_)þ£õ…É×øæRü7Å7—â·”»L~kÉo¹ý»ÖBŠ?´¾2ùR_¹ývj}!dò5¾¹¿¤øæRüšòo—É×üÛ¥ø—ÖBŠk}!dò¥¾RüGë !ÅS|s™|o.Åo)ÿv)~Où·Ëä¿-ùonÿ¡õ…É—úBÈíó¤å»¿¤øæ2ùß\Š_SþíRü+åß.“/õ…âß©¾àRü'Õ\&_ë .ÅS|s)~KñÍeò5ÿv)~Où·Ëäk}Á¥ø#Õ\nŸ¯q-ßeòµ¾àRü’ê .ů)¾¹L¾Æ7—â_)ÿv)þê .“¯õ—â?©¾à2ùZ_p)þ›ê .Åo)¾¹L¾Æ7—â÷”»¤üÛeòµ¾àrùþ"\ø!Å/Z_™|©/„¿j| )þ¥ñ-dò%ÿ)þ­ùwÈäK}!¤øÖBŠÿj}!dò{O~Ï××4¾…¿k| ™ü^’ßsûÍ¿CnŸo.ßeò¥¾Rü¢õ…âW­/„L¾Ä·â_ßB&_ßcp)þ­ùwHñ­/„L¾ÔBŠÿj}!¤øMë !“ßzò[¾¾®ñ-¤øCã[Èä·’ü”ûÿKìò]&_ê !Å/Z_)>þsû”É—úBHñ/o!Å¿5¾…L¾äß!Å4ÿ)þ«õ…É—úBHñ›ÖBŠßµ¾2ùß\Š?R|s™üÑ’ŸòoÇuù.Å/Z_™|©/„¿j}!¤ø—ÖB&_ã›Kñïß\Šÿhþ2ù’‡ÿÕúBHñálŸ2ùR_)~×úBÈäk|s)þHñÍåöùZðò]&_òïâ­/„¿j}!dò¥¾RüKë !Å¿µ¾2ùß\Šÿ¤øæRüWóïÉ—úBHñ›ÖB&_ê !ÅïZ_)þÐúBÈäk|s¹}¾Z½|—âÍ¿C&_òïâW­/„ÿÒúBÈäK}!¤ø·ÖB&_ã›KñŸß\Šÿjþ2ù’‡¿i}!¤ø]ë !“/õ…â­/„Üþ{¦øæ2ùß\Š_RþíRüšòo—É—úBHñ/­/„L¾ÔBŠk}!¤øOŠo.“¯ñÍ¥øoÊ¿]ŠßRþí2ùýL~Ïíßµ¾Rü¡õ…Éo5ù©¾àoü/ߥø%Å7—É×øæRüšòo—É—úBHñ/­/„ÿÖúBÈäK}!¤øÖBŠÿ¦øæ2ùß\ŠßRþíRüžòo—Éogò[nÿ¡õ…É—úBÈíóW–ïRü’â›Ëäk|s)~Mù·Kñ¯”»L¾ÔBЧú‚KñŸT_p™|­/¸ÿMñÍ¥ø-Å7—É×üÛ¥ø=åß.“¯õ—âT_p¹}þÎÄò]&_ë .Å/)¾¹¿¦øæ2ùš»ÿJù·KñïT_p™|­/¸ÿIõ—â¿©¾à2ùZ_p)~KñÍeò5¾¹¿§üÛåò¿ý³_½Uš:Á>õ«oþÊSõ¿úTЯP‹_ÝUýʨÑ_¬àì?¨Þs½FüâE=Ï÷‡³üðí_ ÿö9ìaRû?šÿê$í7Ä*röÿ¯'iß¿’¿ø[øþv-~ ÿï¿ñ[øl¯ÿ€ŸÂÿjàĪ|wäÈß:zÀ7ÇŽðíÁ£|sôÈ_ý˜ (æû¿æò‹®ùúç\ü€ïÿž‹ð¬tùÇ/ÿô!Æ endstream endobj 870 0 obj << /Filter /FlateDecode /Length 790 >> stream xÚ}UKoÛ0 ¾çW=ÉX­Zò{XlغuØaÃrh÷8x‰pb/:Ͱÿ>R¢üÜ¢P%‘4ùñ##zlÅ<öaâÑþv6¹ºö“R¤a¨Ølɤ Dâ){‘*e³ûÁ#Gr!W‚–¿Y,îá¾Y9®‡<Ã-àATmáßý)ß8¾ä{8g°JcöŽ9ê+sÿŒ¦è&w~Í>]]',i¤"Äà1×O„ïE&úÍ?‰µÇ¿Ùá=á9e]cœÜX5ŽŠyn,vøE…‚Æ  »ï- „7[B„2ú>3ºÏ6¹M&æË"Ÿ“ñ}E›‚\Ì1Da„YY¶Aw]"5[,È iÀÌu-(s w‹OxÚ Í+âð?!¦-ºò}^ZF ?ˆl 8æ€J4(¸iÂP¹7ŽêL…"aêÆÃ‚R$o`½vÜP'Xa$î§z°­a-ITÁj`M5!­‰„uiH#m·>á Ô07© «Œê]sÄȲj‹CH6‚ÛÁ]wDãGX5… ñ‘˜ÂDwâÇqñœ¢•¨&0E'* ÛãP„d-†¾l‹kz´ôïK/à§Ær”&JúH•¸怢»qü¶nöþT‰lpKÅ9PKo,š¾NÍvA~ú=„¾.ÆÙšêVhéß3]Ôv=ñOȶtOí³¥€=öPõ –ߺ÷)zµµ­4%ôëaãé‹3Ú+BÔ‡9-Ô}iߨ.ƒýöâgªgÌ›žû©#Ÿøåµ9dѦXŸñi©¸è5P;~ÞÏ&“íØQÊq³ùzòg"bƒî¤ö+\ݬaR½«&_áÏê\ëÒíùÔ¯?j¬‘LxßhÜ]SΫƒIÅUiÌ}ï¥ã*â³ÞBÅ_åQ¥Ÿœº-‰6¨íK«ÒˆïŠþ4Ðêîí%IcÇPaîØÊ>á9YºbàèÁÖg… =µ¬S=Cp€$íA›S7•GzCg¿´&¹~Vs30ʶ'Ä ¤OíLF‘H‹i$;ß‚ô¼þr/ëÿendstream endobj 871 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 872 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-rugMultiplePlot.pdf) /PTEX.InfoDict 621 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 623 0 R >> /ExtGState << >> /Font << /F2 622 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 38552 >> stream xœìýMïîÊråÎï§ØÃö@ÛÌ÷Ìiºe؆«% †GÕåAA*@Ö ¿¾ŒÈȵ"ÏÑ9ûZe·Ò>wqýþ|øð!‘ÉÌŒôã¿û‘~üçÿø—ÿãüøK+?WýQÊós>?þá‡Ê¼ÊÏ”üý¿ýK«?ó¾ÊÔ~>cûµ“ÿÊ<û{ê·Ÿ÷¯òýR}n¿=ärÊ÷3tò_™×{²ìïßÿ•ÁWYßÃp?Oò?¹~æ¤þøùàþUÖçgîÛ/™üOæŸëÙ~›ä‹éçðýÏJ¾Èôþ½ßûMñû«|žŸ¥nNòEÖþ³Ùñ½Wî_e?{Û~}È)ßÏýÞÉ)»IÛ_™|‘9ÿ¬ê÷÷ò‚ý›ÌïïÿluòEÊe¬ÇßÓÏ ûßòýü±ý:É)ßÏÿ~TòEæ"7ÍççŸ ÷¯ò½fÝþXä‹ùg_ê—ŸO_eN?ËÜ~Iä‹|oƒ½ÿ"7,ú"åü™_ܿʚä61¿'òEÊç¯íÏAþ+åþ›Eýö3ðU¶ïg2¿,òE¾÷g³ï×å—8¾Éüs®í×B¾H¹¾ží÷E¾HòW#ÿ“õç²ßoÈz|“ßmjþZäùùS®ô㫬ßi6¿%òEŽ.?“ùcÿÉäçwý|ðû«ÌÕ¯ï÷JKä)þxäIê¾É÷úmyû¥/2/y šßù"ó{˜þ÷³‘/2·}¾OªŽûWù>_ìúz7ÌE¾H¹~õúxûW)÷§û5‘/Ryû}’/2ÕŸÉþ¾P|Ù²ÉÏlþÈä‹|ïŸó÷k’/ò½?»Þ_£R|R™×ò㯟LÊ÷·Ïo_L¦õ³ôí·J¾ÈüÈcØüù?5¾îãïŸL¾É‚Ý?ïŒO&ßçƒ=ŸÇ ø²¥ß?ï†ÒÉ)×ÿ}Ïä‹|?ß ødRžÿöûNŠO&ßë«öíc|1)Ï?½¿Æ’O:¾Éâ×Ï’')úGšñiË!qó1>™”çƒ^ó¡øbRîoýû™$:¾I?¾wCîäòýüº}ŒO&ßëÃî¿wØ䋔ãÓó33Å“š4š? ù"ÓËôó߀÷÷–Y~Fó1>™|ó»~Þ ŸLÊõ©×Ϭ_L¾ñw•í÷F¾ÈÚöõûnX‰|‘ÏôãkŸTæåÏwƧ-=~ÍNñeKôë _¤üþiû£/Rò»±}ŒO*åøûþƒâ“ɧïø;'Å“òü¯ÛÏ‹|‘ošiùû»¡5ò4ã“É7 *öýÅ'•y ?¿‹â‹É–% =’Iºoò½þRÝ~ä‹|;¿ïŒO&Ÿ´Ÿ¯ïŒO&ßçOÓßo½ ÷oòm¿¤í¯Bþ+óû;?+SûÇdJ’&šñi˲ÿwƧ-_(¾¨Ìëñã/ÔþÙrîûK®$ܿʴüüVŠO&ßë·ºñÉdÍûù¼Å—-ó~¾½°ýcò¯Ö>{7`ûǤ|¾>?ß–Æ'•ù½Í-ÿ7`|"ùùƒâ Ió±ýcR®¶}lÿ˜|ã{ñ¿ÇødòÍŸ,ÿY“â“ÉìñëÝ€ñeËsþµL>þüz7`ûÇä›ìûkQ|2™ÊÎÿÒóP€Úú«:!†µIªß,Õ¢l)¢Ÿ!£M´ÎDÓLÃZr²CÕÖï³Ä®…ôd 6®_°;Í¡­ßûµí}jmýf¬m9!Ët~SƒröAkë÷©¶’•ÂÎÖo»×Úý²¥/&D÷ïÞÄjLˆ~ÿóìOi¼¶nmßݲ¥&D·¹óÿô†šLŸ¢ZõC´ÄDK|}tj$mý^csŸÓAaŒõ&òbâÓ}÷D¤7è?ô)¦ý^’-¥0ñµ–ò¹ '5—\—Ýž-³1!ú½‚ú>§‹BÚÖÒuœ˜‹‰I­Ò”j6mýÞ×û z·`ÃÉõ¹Öß-Ú¶~skË d ·­ßÖ¿EŸ$,#¡ºzûS¶`jëºÎqdjBmýîÃÚH²ƒÜÖïÍ™³æ\·'¥÷‘ÖèST¿‰ô81&¾¶T=GZ©1µõyZË–’™ýž¸ýüx·´ÉÄ«¥G²o¢QÈÚ:×ÓË–ž™èµŸêÄœL|Úû]“4Áè|˜^»gC¶Ô‡‰/öùJJ ^®ÓŽ.²¥V&j¥§å»e½EŠb¦ëwsnb%&>}žÉïÅ”èSTKþù8A‘д<ƒ– M˳ßEÒEúÓçYøn…‰ÁñåݲŸ^»%œÞ¤Ž"¡iy$>NP$4-qniç(¶õ{cu'ZcâÓ]Þ›˜‰‰™(ν·E­aƒ#¡éÓnLoâEQÌ´€M”Á„èöì¶»lé… ÑÝ{×d EBÓÕûçS^ MK °;AQÌ´´Qí—{­„Ÿbz4Ïqß-µ1Q¾Ç’-#1!Zz¢–k0±¨/<½$E±­“¤Jdj®m}Þ§Èl°mýž1ÿ¶™#¡i!† MŸ^ýT G±­§ßÙï–Y™°–Û~•JM·­%a:E­ÇnÊŠ„¦ßì¢Û5ö†<Šb¦¥ëq¢w&>]=×–îâÌ„èÖýŽ*#¡ié‡kNP$Üzí7•éýZÅL?Ùs‡wKLTÍ¥zvbT&DËû¤ý»LŽ„[{‹_¶P$4-¯÷q,Žb¦{ò¼PÂÄÃD±Oyœ öœé÷ŽÚ¹Ô»…"áÖþî$Õ‡#¡éä­ÙBQlë*)„‰Ûs¦O»l¡öœi9Ù Š„¦Ï[ ÙB‘Ðt>1ªfŽb[§ý&P¶P{ÎôÛžÛ1ê½…©=·µ÷'}p!ZÎØ!(š>=²©VŽb¦OŸ¿l¡öœiy~ì3Ö¸=g:ÏÞ- MKÏou‚"áÖÞ÷œä5}ŠjÙGr‚Ús[Ÿg²$€‰Ù𠪌© H¸õÜ}¨²…"¡é7919Š™~Ÿ0þëOnÏ™îk¿‰—-Ôž3ݽ¯P¶P$4-¿Ü¾ GBÓò>¦9AQÌ´\ëv>ÞŸñSLÏÇ{Þ-u1!Z: MËE`÷mK M¿—«õ|ÉŠb¦SóöKËÜž3-€CP{Îôããd E­«g9Ò™]™øôô¶é›þS3ý>µÛ!¨=GZ‰Êí¹­‹_É2¶æaâkÏ=ÞJ’ך‰®-­ý<Õ®! T§æ=y2ÂæaB´œÓäµçLçáy²Œ²¡óaº{D~·P$4-Wò¾ÆG1Óù´³e¬Mf¢é»É³ß-Ôž3ýæ0»÷«MŽ„¦ñJž M?Ë3Ƕ8Š©Î«í>fÙR*Ÿö·$²¥?Lt{˜œ˜‰ioÂíœöG.ûC˜–wÁÝ Šbªe´×Î-߀Ús¦%?NP{δ\&‡ HhúŒY- M¿qçÒ™FŸ’c{îÝBí9ÒJnÏ™–óQ Hhúmí;ûÝB‘Ðtíž]ôÊQŒô&¨=GZ‰Æí9Óïoçë½q$Üú\AªåMÒŽ/½s3-¹Cq‚Ús¦SÙo{e µçL ±ÏéàH¸õÉÆß- M?ÍŸ}r3--‹CP{δüg9Aí9Ó’Ig'(š†B@¶P{Ît:=yãáHh:­=J!Ä‘Ðt~¼M8G1Óò&ß¾­ŒÝ¡OA½ jÏ™>£=d EBÓò>ÿ M·äÊ(ÅL¿)ľFáöœiÉaö·­Üž3¿‡Õ&(n=½åÝB‘Ð4žõÆQlë“ó¿[¨=gZî¹}>:·ç¶.ž¼[(š®s¿#—- MC6.ãzèSTËùÈNP{ÎtîÞƒÛs¦ëØïBÓ˜ MËh¦îEBÓ5ù›áCŸ¢ú½oGs¢L&D¿i™é’(">í£Æd EBÓµïqéMw)šNÓïÊw E1Óõä§2Ú?Å´\AË jÏ™~ºÇ}ñS˜4‚G¶P$4}Æ¥™9Š™~SÅœdÜ}ŠééYλ…Ús¦åŒM'(n}r˜w EBÓ2q•£˜é§Hâ¶ jÏm}Z2ˆ>Eu.~¿¼[(n}îÛw EBÓg\V’‘@ô)¨7Aí¹­Ï“_F&D×v®ÂÁ‘Ðôóœ368š†ûVÆѧ˜†36¹=gZ® æÄhL ëµÞDZ8š–'ÌãDLýo²BQŒô&¨=g>e=ÜžÛÚGÿûÿˆS&òû=^ät2&ºÛ”‰÷šþÝ)IfÔ= @>â»p€€:ŒågX‹ßD |âo²AÄN>ŒÐïò⽋ˆØ¯ï6‘öé2"SnÄ7%Ÿ"Ä{ڈ؆M|ÃÞ€ðap@¤ÉD ûøšU@œfÖ&¾É!@ød ú`¢óï¢Ü€×q|C„ð!ÃFØ$'`RïmLľ­7ñ½Þâ¼î>DéL”ÎÄ÷šˆóÚým0Ñ߈ó@ÞÄ7,ˆ3Låi2‘®}̇‰¾í×Hâ46ñ ‡R±+é7öˆ3Œi3鼎ô{ ÂD¾ˆˆp¤_'§Óá)1‘R$êÃD}"1+³Fb…O‰gì{'ÇD¹ˆð)‹?EY]l"Ñóê‡à}¤ßØG¯Lô ºÆà09ù"V ø Ò†9Þ/:Èš‰‰5˜Xã"f øÓ¦;§)DDŸrJÑ@@”@”‹¨¨11.bbFbv&fø¶ïJx‰ü+DjL¤v=×qðwi×wù3D.Lä‰ò0Qž¿‚ÈÈŽ£\Ç1Ã9×9áÛÎëÛÒs †Ûm¢‡3Ö¯3öM½!"?‘q}Ê¥1QÂõ1ÂÝ0®»a„#ב~H&æ¯|NÇuNgø.óú.+<ƒÎ@¸CPŒ€ûˆçcq>9¿D´@\ß…ò±3 ‰Ž :ìà0 ˆˆq+÷§ü!A¹¼Tÿ%"|J Ÿ’øÃ1…À¶LÐEbâ:Ž?&øÛ¦ëÛþ)""]DD¾ˆp>êu>j D½ˆ¾NuØ49fÁ:M‚ˆðä×MDÄoû§ˆˆz#ã"f æE„o¯ÓÂQ ÒQQ"ÁGZ®#ý:m‰hÏ_A¤@¤‹ߥ]ߥ…ïÒÂw©á~©×ýRÃ/W¯_î›ÄD‹—z}—¾K½¾K¥>˜¾‰DDD˜èᬷpµëkaí7öA=Ð5º‰~—~ý.=|Û~}ÛNýA0]>Ò~é÷Ò‡‰üWá»ôë»ü "|Û~}Û>î¹ÎǸÎÇŸ!ø8Æuƒúú` $F ®#í3ó¯ Âwé×w¡0 íØÄ ße^ßå{JÄHÿUˆˆ|%å"j ÂSjbýuDDÿEâtj+ãÿJü+ñ#"Ñ[ üKD Dý¯B´@´‹èèÿUˆŽ :ˆü×3óÿ"bbýÿ+±&Ös9ùÿ ¢„ïR®ïR¸/^Ýÿ‘qÇÿID D¹ˆˆñWᜮûœþQÑÖëH¿éLô‹11•hüVã,´D D¹ˆˆ >ŽöÇÁg½]gý‰¾K¿¾K—ÁbLÜûøC"…OI×§ü1Áç£_çã›BÄ™RòKD D»ˆˆþW3×wIaá͈Íb^ר ר¼®±~¹yýr3ü.óú]&¿õ‚)%@´@´Häð)ùú”¾Kß%ôž—«÷¼„ÞórõžëD7&ÚEŒ@\ÇÁße]ßeñû˜ž{ˆöQ®}”p¤¡÷\—<ÄYŽð׈ˆûSz ø:ÕI@¤xéT&òEÌ@ÌHä°|íƒú×ëÕ¿® R2Q/bbE¢"ô°ê òu™{­ÏBE@Pï(Lg""œÂW2L bbF¢„}”k%ì£\û¨aõÚŸÓrÓÐÓ[¯žÞzzëÕÓ«‹0q)ª€Å6Q¹oü,a‡D Ľˆ êƒ= ;ÑÂ]Ù®»2¼­®×Ûj Éĵz«q´C"|J½>¥…}´k-GèµÖÍ@ôëH{¸ ûuvîç?‹ƒAo½`z á8â}ÛÃwé¿ñ]¨ º9¹‚Å?61ÂqŒë8F¸‚Æup¤ã:ÒÁù,û´‰îìyÝÙ3üúóúõg¸³çugÏpßÎë¾ý3DD¿ê©å0€XX‘ Ña°<Ù&¿M€Ió@”@”HP/ ,bd„N29L:9õŸ¥” ö,˜Äĸˆ>c:9 ˆtiâ70Åf™ã,µv:§0Éâ3ì#ô)éâ8@œÅr6Q9ç?ËA1 ¦Ö‚"ÐYâˆÑ˜-311ÓEä@ä‹ÇzuÎ--¾ÕÉ”DŒ ºç`JÚ&z8Ž~Gç>Xcƒ³Ï³¬(3ñ|Œp}Œëú˜ü®§;Ä Dèckal»ÆÁê’Ó‡8KP;‘ø®„å06‘ù|À‡ ÖÉYH‰ˆ‰öÞzõÐ/Õ¯~)]Fˆ³¬à!è~é×ý¢“)˜1·ÔÅ €X± ¤…q #8‘9w€…Aï+ÏâüN4ްðÏ&: > ¼oB—78ÄYî@¦}DÓQÃtúo}C×öámîÇbô¿ñ¶&/£ô¿ A}“àï÷4Q_?Ðýóùÿæïl Íü§ß8=ÿôÿË_þÛÿWþ‘~üÝÿªEN¾5jþæûW—ý¬Êýëþ»øñÿøÙ\ÿ›÷Ÿÿòÿü»o÷âïe,Ùпÿ>øWÿ¼~>ûÏóïþ¹ ¼~ÿ^ÿ£[æž^ûžpÙÁßþ›·ÿü—‹¶ô7¢â¿xuÙñ¾ÿüö\¤÷Žkͯ»*÷uõã[~øÍ<ÝW ¾, ØûL#QyB5:åý6ˆ9äuÕ@„ ÚïŸß»¢÷ õ»—´wýÞ5 ±Å.êóÃÉ´ö·9ÿ›?œî1è ÷üs»ÂÂ=EJöä7v>?Óû¿ÿlážœm‰ÉRvµVê9¾Ê7ãµÑV©üO÷¿J=ÇW)+EyaŸöÿɵ[±V©üOú­Ôs|•ÅÇ j¥ôEê:2Ÿÿõߤ÷~i¥ô‹îùß·I¾Èä½ÍZ©}‘Òge…s¾J=ÇWY׎Z©}‘ïïcýfZ©çø*KöïÿÍÓA_d©þû|•zÐïz~wa¥¯Rú"ß¿·ßG+õ¸o2åij¥ôEω´RÏñMæh¥ôE¾—õ3P+õ_å{ýìÂDš³‚/2Í}ýk¥ô—>ŸíÝ…Uêq_e9Ç_)>™ÔÕš?¿Q|Ùríø©•zÐÿ¤ÏÕJ=èÒ[ÙZ©çø*köÏïŸL¿¿µRÏñUw£•zÐYü-ƒVêA¿ëó&Ÿ¶|üûMŠO&Ï›C­Ôƒþ–ö÷_¥žã»´÷yZ©ýªçw¦ZŸL¾Ï/­•zÐ_š¿Xß’Vêqßäó¢•zŽïòñÂ<¹“/2ùï§•zÐÙž?h¥ôEïÇÓJ=ÇWùÞ6ºL+õ /RÞeZa—¯RÏñUÊØ€¶}ŒO&ÓôÂD…âÓ–u_?Z©çø*‹ÖJ=è‹|Ö~›¢•zÐù>_vašFñi˼û)´Rú"uEÝÏï_¶ô>_­Ôƒ¾È÷ù± ;}•zÐÿdÚ=V©|‘Åó+­Ôs|•íÙÏ­Ôs|•ò¾Ò óäE¾Éó÷­‘ÿI颕zПúýwá¡EñÉdi;ÿÕJ=è[|±™DZ©Çý#_ù"KÚí­Ôƒ~×ó» ç<ŸL–âûÿ*õ_eò·1V©üOúh÷•©ýc²øü´•)>™<íéÊärìüÀ*õ¸¯RÞñ{alÿléñG+õ_å{ÿv÷1>™,>L+õ ÿɵã«Vê9¾Kë9ÕJ=èíÓ­•zÐÿ¤^[â“ÉâïJW§øDòóÅ’æcûgËg¿õÑJ=è‹”w‚^Øã“Éâ=éZ©çø*‹¿1ÔJ=è²ïø§•zŽ¿vûÇFi¥ô«îvZŸL–ç”Ôy(@¹®>êJ õq´_¡ TËJÝɉò0!ú9ãn´PM3ýÆA õ!ºo®…z€P]Ö)e“©9´õéϰB=@˜>3“¬PŸ>#È´P¯NëÌÑÕB=@¨~ú)eS©a´õ{N÷¨+-ÔCÄ«eÕ­=Ò@ õ¡ZVg Â=DT}¾z‰¡NÈ´¬!µG÷h¡"D÷çœÓN¤­¥’Ì>ŽAaŒõ&òbBôHXtç¡OQ]ΚZ¨‡é8]ý\A“šK[׳~ƒê!â‹hg®.Ž„êzfWk¡"&µJ­PÏ!TËKƒ=J õa-§½ž…ê!âÕ²ÚjN`pÛº.¿ÆtÉ T¿?à¾ÖµP¯–U·ö8-Ô„ê’}Ρê!Bt?׺ê!ÂâœG¡@µuͧ M¡¦ÔÖÅû ¬PªKõyÏZ¨‡Ñ5ù{/+ÔƒDÓß~·ª…z€0]ý:ÕB=Dˆ~³’ýV\ bj¿ßÝ£…z€PÝ’¿ÔB=Dˆ†wïZ¨Õµø=§…zˆ¨úÛz¹¤A ¬­S=G:(n]óÒ>‹#áÖP¶iqÛúÌÄ)_¡žC˜.g]Àò]ÔD˜n‡‰ Ñò¤£Â=D,½ ½ÜIâ(fæj¡ T—‰¥}°Á¶µ<ùOiŠ„[wÿõµPSßúì'®¾àBu9ã:µP¦w¦¤…z€PÖ9c•#¡é÷ñ¾Ÿ–Z¨‡ˆ¯qœr8£˜é7¾ìÚZ¨‡ˆ¯ wÆéë "¾V\ñ§ƒêÂtñwÏZ¨‡ˆ/Ji¡ T˼£åDL|ºú]©…zˆøÞgÍsMŽ„¦õ´l‚"¡iM‡”XŶ>1[ õQô½än7h¡"šæRû9¦…zˆ˜úîtÇ(-ÔsÓòvk9AQlëÇϘêÂôò±]Z¨‡ˆ¯rùùÐB=Dˆ®§ý¢…zˆ]žýà õ¡®1-ÔC„èZ|ªêBuyí-ÔC„ètÆük¡"DK_Òt‚"¡éRÏo»8š.g= -ÔC„èzF²i¡žC˜.gM?-ÔC„ètæré "†¾WÙ­-Ô„ézÊÐ$Žb¦ËY“K õaú¬T£…zˆøÞ-o#k¡"¬=·9-ÔCħOÏ„êBõyKc…zˆ˜ú¤Û¿œêBuyN™¢Ê‘pëêÙ–ê!BôsÚ :HÕOóV’ê!âkÏù‚Z¨‡ÑòÎbŸÓΑÐtª§8TçHh:ÍS@hp3]Îh|-ÔCDÓ+È‹C nÏ™–çú>Òɑд´÷— ·®‡XÅL—å}Z¨‡ˆ¢ŸâÇñê!¢ëµî¥Ÿ¾IDˆ®Íû.´PÏ!L—ä--+ÔƒÄźÏ)ÓB=@¨Nçù¡…zˆ°7j~‰#¡iI¹Ï>(n}â­ê"Çöœê!‚G~X¡ T×+µP Û!(n=|ž¯Z<êMP{Ž´Ûs¦¥¥• H¸õò«Ð õ ñé3[ õa~¹Îí9ÓåÜQZ¨‡ˆOŸ¶‡êBuƒ«pp$4 ™´êB5všÜžÛºyn©…zˆøÚs'?ÕB=Dl½?eq$4}F‡X¡žCl<i¡"L?‡ öœé2½GQ õa£Dö·ÕB=@¨NÅ{‹µP6qÏœ×B=@äý.nÿ.Z¨‡Ó~¤™#¡éZNYžÌ‘Ð4ôÂi¡ \¯CP{Îty<3ÐB=@¨~3¶Ý_¨…zˆ-mS*ÜCÄ7vdß¶qÛ:{¤…zˆÚÒÚ+oh¡ TW!h…zˆÈÚ«°3-ÔCDÓöíÎÆµPªËyg¡…zˆøôYóQ õ!:es¦…z€P]šgJZ¨‡ˆ¢ãuöL-Ô„i¸’¿B=D¼ú»±NñŸ^™ýœ÷Z¨‡ˆ¥OþÝ®ÔB=‡0]²¯¦¦…zˆý@¹“Äí9Óuxk^ õ!ºNÒi¡"†Ž¬çS(níc¨­P¦‹¯ ¨…z€P|œê!âÕ²«9j¡"D·â1J õ1µ}»×ÒÓB=@¨nÙŸZ¨‡ˆ¯=w*8h¡ TË“n8A‘Ðt;ÕJ´PÝúO÷>:G1Ó©{4ÕB=Dt·;/ÔB=DˆNÙßh¡ T×SGD õQµ?yçÚZ¨ÓÝÛZ¨‡ˆº(SÒB=D }+º[IZ¨Õ°îŠê!âèÐB=‡ ½ jÏ™.ë̾¸=·µ¯îò/U¸Ç8ÿ°§záÈ}Uxu\o§M|¯s8¯w7Ñù8àÕý&MÇ—·Fè‹çCÀ‹èMtZÎ_ªo‚—,Çá6'”ÉWù{x XS•ˆP„H_^Ñcá†AÄ ûX4ñ_àÃÁFö!ðׇAHŒ@Œ‹˜à,ƒ.AE™R\F1‡b&ù*fb/8‰à)ï6¤ˆ&’[¢@D."ì£_ûÀ)Í0шU™Xá»*‚I2##|NËuN+-Ì/ÄÁg¬^g¬Ò”Uì@9ÄŸ2§ð"#Øá¸‰Î%¹ è¢&j‰Ä ļˆˆ^² &Q‘39G¢T&JD ŸR¯O酉ޔÓÂÎ1 j j$Ja¢\ŸÂ¿m\”Ø^¤ïÊÉO:hÞb…OY×§¬p¤ñ—ãE½°#ˆˆ ¾N¯è‘B©´K¥Ùà†CÀ`‡CàòR0Q\R_ª¢‡Oé×§Ðó4_Ïd}Å[}uDŠHI&f$R ÒEðùˆËmåP$"_E"¬³ƒˆPJ/s+¾ =µÏz'r8ù:™ËžA´@Ðu õCä@ä‹((ÁWP,#aƒ’ˆ9LæeXaBœ…–ªÀW^@”@”‹èè‘ §%¼?D ÇÑ®ãhá8ÚuTH¦‡XaëÚÇZç´Ò“8ˆˆy+×§Pl€×3@ô@ôHPIÐ3Ê.ò•]è‹4&®#máÛ¶ëÛRÆv«°îe&êE„oŸt•Ÿëgò1#|—øüà¥m±ƒ ˆð)+|Ê×y ÄéL>ßQíº£Z¸£b¹5›ºJD¼>-=ˆ¯îGÚ®#íá8âYoœ;ÀëÿCð‹ËãZ4ý:c[Igâ9ù"øyÚ¯çéŸ!Zø”xN{ˆb±ÜIÅLpÊÀ!f83œA Æâ‹$ f f$ø‹ ×ÚôE&V$r bÜ!Î+Îp>Æu>F¸³c[(‚ˆQ.¢â:§3œÓySŽ¦ãŠ¦“i6‰ˆz--œÍ+›ÜÞÏ3¶÷ó Oþy=ùgÈØæ•±MZ¤Èt ZØGŒÙ3ä0óÊa&·Õá5Ñ!fø”y}Ê çc^çã_‰ÿÛá š×´&Ösánˆwö wöºîìÐ×—¯¾>}ÍÎÄŠD û(×>j â}ûgê™ÈqiJëögâ:Ò>e\ŸÂ÷íºîÛò±uåc+<“×õL^á·]×oËå¢aQ$§¬ûSþyB‡£†§‚r˜³x ôëà- J ÊE´@´‹˜˜±±"QÃw©×w©á»Ôë»´pÆÚuÆZø.íú.=œ~ˆq”óŸE™çc]çãˆoà g 9ù"z z$¨5_âî6(š‰ëHs8Ž|G D¼NS¸ÆbT›ID¼‚R¸‚báQ,ÆD‰D ŸÒ®OiaíÚµMËõVC§Ã0qý.Ô3/€1Â>Ƶ~¹qýr3|—y}—®u]+i|ÒåðË×s,‡k,_×XO˜|=arømóõÛæðËåë—ËT¾§’‚Ïz¾Îzá¸SÀ… –V¹úÇt8¹\D Dõö”¸Ä¿Mþ!¢^GÊ÷\¹î¹~—rý.%<µËõÔæüa™4 zø¶ñž+´ð5É:Ä Gï†Â¹%L²ø%bbEb…# ŠN¨¢^WPå>i˜’vˆöŸü¡¿°\ý…ºh#%ì£\ûà+èêQÔiÒL\ß…ŸÚõzj‡¾¾rõõéÒ„DĸzËÕø'ˆÆ=LÒ:õÓ•«ŸN'D0Q."|J¾>…#r,a»ˆˆñ¶…;ª]wTãœÿ,Ÿ†Äĸˆˆ êý‚II@´@´H¬p¤ë:RÎúÚ•õµ Û [ÈúbÑ.[ ˆßé$W"âõÑC>Çåü9‚ïÛXxÃï31"A=5%–i¶å‚ˆˆw%—Ä€n((>%>“{øõãRò†àòbù*/–Ci°|•³é§DÄ_„ e\ —G†%Ï€á8âõgz/Sã61Cûe^í—Ð÷Y®¾O]t„ˆt} · çÕ&œá)5¯§TïP®ñ%ô(–«GQ'RŸ0¡?¨\ýAºxý¯ f f$8¿Æ•0~¬\ãÇJèu*W¯“V'"æt¡O©\}JºX*×qŒð]âo»x¼L¾=Ä GÊãmHü!êգ˦ò zYêÕË¢KÁ¥}lZ0!ÇÕ fL„O }õê3¨¡Ï ^}: ™‰q++µ1Q¯#máHÛu¤=ì#~Û02£^#3tá&j$rØG¾öAw, tˆˆzÔ©×(F]ˆs:ÐMD¤Óa˜h‘ ¶G½Úºd5¾Kª\ì—)ÙDãŒ&‚"P½²¾²¾ze}‚#ë51”õÊWY/›ÀÌĈÄhLŒ‰Ž#d:ðˆqõ®Âq]…\ìª8e°0ad3Ü óºf¸³çugÏð»Ìëw™á8æuas½F0ëRöD„wZL€ˆÐâ«áM@½Þè‚©‡8 ¨"ÑÑ.bbF‚zN'Boq»z‹u’ ó"è*„%½6Áå´òUNË&Ì0¾máØÓtA­˜Ž D Dø”Æ1û,ÜïDȃڕõðÛöë·Õ%«ˆ×z=$ýê!a$äYxðÏî±*^¸Çôߟ±Ò<¡Rýõ)ÜóÍ[“ïe¸7À"$ÇÿV=7 ¾|j?¾ÊãËØøoÜŒþI>PÑüý·â"ëàWëß0¿z÷°ûçøÿe ÿÈ|ÜV¼ðOùÅÂ=ùù†nî?O¿úçïÚ³ëþüþ_ÿ^Ù™Cñ>_¾²?ÿÓo”ýù“%_þ—ýÙWíª$?Óúêü¸¿° Ðwïh™¸ ÐGh™ŸCP Ð ó‡ 2@¡e~Ae€~ãvØwßïÞøÝb߯¿{Glàwo H~~ûžð'“ßç§—*4ùê)óeƒþ™]—PjR;¨Œò§«ÉŠ´ßl •2WÓŠö|U‚ŽýÉáÍW-„ö+eed+9ôÕ:ö'WÛÝ'Z"m‘©îfš–Bÿ•ïŸÛ¨B­tl“>¯J+¡ÿIÏ7µBÐñM>»Ð¹VBÿ•ÃÞBû“~)k ô_ùž=¡õŽýɹvTË¡ýÉá{ÿÊÿ“Ë{aµ:ÚU¯­‰Å‚ÐÿdÙy£VB_ä{M,ä¾ÊUöÀS-„öÒSk»×â@ÇWy&šiq ôE&Œ¡ÅÐÿ¤wýkq ãrÕÝzÓÚ@h‹L>NTkÿ“kz¥ž¯4Ú"ó³‡Ëki ôEfŸ£¥Ž¯R–u¿'òEêkþäÒ«ýji ã›ô.G- „¾H™¶„•‚ޝRY}ûµÿI¯Ó¨¥ÐYW Bÿ•ËÇÑhe c›ôQZý#?ÿ« t|•gî—VB_äí•©•Ð)séìï¿Ê@Çÿä{uìkï+ „ö‘âka ÷·Ì^'å;è‹L>ü\ ¡ÿÊåヴ.Ú"SÙ-1­ tüOα_½hY ´E¦Ç«È|mŽÿÉQ½ËWíOzÏ›VBÿ•ï/X°Fб?¹|ä›ÖBûHó×$_dò _k_åØ-¹Ðš@è¿r¤0´$бU–*µJ~ûbir{>d¿R¦ßc} c«ÌÞµ¡Ð™ü…—:þ'—·ÀµÚ"ÓÜïC´úŸìû¡¢õ€Ðå»{›H å€Ž­R¦†¦íc@Ù2su ã›,PݧVòEfO¹´úŸô;-„þú®,Ë´Û&Ï=¯Õ€ŽÒüÜÉyf k5 ô?ÙvÖªÕ€Ð)- +þ’)¤˜ÌuÏfÖj@è‹|`q ã«Ì>J«¡/RFR¸!Iåïwí˜JÅdö¡+Z }‘ï׳G¾Bÿ“kw.k1 ãRÖqq’ÊåSWµбU¦gw´i) ô_9}Ì¿VB[dòx¤•€Ð_ õV:þ'çÚ¯÷´бM~Ë´šŸù¯\ÅË.}u€Ð>Ò| G*—Ò2@ÇV™Ê~™¢e€Ðÿ䳩ZÈ}•oƒh¹]Ù¯\^‹[‹¡Ý5ÖY¦ E€ÐåYBkÛdÞ-­„¾È\öÍ•©u£r®ýÀ^™¢‘Éäõa¥)“ÿÊé«ih crõý@Ö@hÒoY-t|“Ãë!UŠF&Ó³iZýO&ÿüFñĤ,”ß¶í“ŧžj ô¥}Sv8[‘ÊuNN§pDòóÅ’æcgËäÕv5p¶ô»JËÿ /òL‹Ôò?Çw™ÜÇxbò<Ñ´üÏñMúR-ÿƒþ+רÑV«ÿ ýÅ£é£8µø['(òPHa­ÄWüÕ¹øÛz-þC„hYw¤;Ñ:¢Ó¯®Åˆøô™¨Å€0}fŸkñ"^}Ú›VûÓ«aˆ2½ÎØZ+ýƒ@ÿš%^µ¦R”½_O=•>®Ï ß§RÓÇô:#9´ð¦Ï V-üC„ètÞ‘ZáŸC|za|é ŠS ÷h-ôCÄ«e©ÅáÀxª“«3°´·Ð‹úLŠv®»SÐ2?@˜þæ^Ëü‘õÒ©‡h™‰¦AÕ”Å1Oõ'¼RÎÃ!Ï4,ê£U~ˆ½[تüñéUÀÆ”é÷Òð:(‰žé÷~Ü“´ÆSûý¡¢…+Óxœ™U[§3YDkü¡úÝG9Å<Óiø­ñCÄ«ßÜÁ¤%~P-«$'Fabp,Ñ?D¬/–ì…0´ÂŸžÅßêkDà Q-ðħ×Y6F× @töne«ïCħû©Ä38æm½NÁ1oëâÓ·ò䈥zùk+ïC@ÑFÝN†ò¤v—éÓbÕ}–×YµL‹û ZP› €¥úÝÅ^Hkû@µÙÚ¨Ú“»O…–ö!b|­Û=„F+ûðéäOzå„ê´üÖÊ>@|zõÈ´°ÖÛckµ°¢ó™s¥…}ˆ-½ÒûS -Õoëõ† 5ȶ~w±äZ׈OŸ7jVÖ‡€ò½rÛAM«ú :Mbè¬ >-=B§ Pï ¼zzŸ€Õô!àÓgø¦ÖôBuÊž‰kM">}öÔš>@˜&¢N&>MĨL¼úô¹ZILŸyaZÒ‡ë9ÜÍ-éħeÉÕP#Í´<Å»ÔHS½ÎŠZЇ€iݳ»`ÉÃAÏtNž·iA"^=ª/"¥õ|0 M·ÑTËëõá=Ó‰JQÐS½Î”0­æ€éé Íh5"¬FÅ}P ­s-æCDÕÀú‚bžé”O)£ÊKõœ¡¶Cóþ“4n¤©^§@Ç4ðéáíQ-åCÄ«Tê¯T˵5 6ÚÖÝ[´Zȇˆ©ÝÃ{v‹òâÓËßxZ>ÝNm Ékë3ýVëøQ9_Ò:>Dh#m7﵌¢¥…²¿ëâ ·uóymZƇѲ®Ï.Bòõ\´dou1Qµ¿wè€G"DËKì]<(qØS=“OœÕñŽ|:ûͨU|€PƩ뒹©¦úýaË(êmMBaOõ:“É´†¦ýå‹Õð!B^n5Ðk >½†?Ƶ‚ÖÉ}ˆ°!;{Ô >@˜>K‚i"†6¢¼žSã¦ÚÖÏ©ÅÔ9îmíƒv¬‚UÇžìÞ ­à„êž=áÑ >D4ë½ÎNPSMõ:kËhL—S6hrà3]Î:°ZÀÕÚßD©LÍÌüúú øÑ¿±.ãìbv^-ï2vy’oñÒ˜îgå-ßCÄ«å-â©ÄC-µ­—U­ÞCÄ«ß]@A |¦ÛYWF‹÷ñê¾ü ÕÚ=äØPÓÚ=Dðà «Ý„ê7‘ô:…Ÿjé!ïPàS-/86P9h‘ÞµÔH+Ѹ¥fZ’úîE>Ó)…J>D4íÞQI+÷ñéuÖÓÂ=tÌã¿k禚ê÷áµÓ­Û€é…•~(ò©^>4ÁÊö :gÏtµl¢só9Z¶‡ˆWC^«öðjy ïÃ\÷L§³j¯í9ÄÖÃã‰í!âk«õAµh_[ítŠhÑ"¦Ž®Û7-Ú„jY 99AQË4¬R«E{€Pý&Š{މí!ÂôŽáZ´‡Õ±»o´hSχ—Æ)¸LKùÔ`S½Î®Z³€Or´d6¼cßlZ²‡é¤<ËukÅ>½ÎóO ö0´y¼{GçÖšétÖ×Ђ=D¼z…´^2òЇ¼Z¹>ÝÏ„?­ÖC€è7ýãê=DXå'Z­ÓÉûµZŸîç„/Zª×y¸Y±Šff~ _¯ŸÎþšI‹õ±ôÍß¾_µXÏ!¶~ü¹¢ÅzˆXúäÙ_E‹õñi)j“ æÚÖp‰#ŸéÔü—×Z=D|Ã@†Ÿs­ÕħßKx÷˜i©>½N:c•zWj ‹ÿPà3]ϺÎð„WAæWº~à…•û8?xÆIÙÚ£>/? shÐÇ×i…6á>Î>ž±H“&Îè×ø÷äãzx0LÀ}\ FL˜?hN:¼ÝtŸö?âþ­ï÷ÝÇÕÎõíóÍ3.Ѭ«ÑçŦuÄù3ø¸ª:ô»š¿hµ/xqüÉþ >ÎR…þ|÷qmŠ33üÁþþàÏñóq½™3ÕüÅõUV,¯²xÔ—A]¼‚éŠ ˜jÿú¼¨Îâ/V\ðbñócÅ燾CŸ—Y¼Ê⊋,.®²bùTpüžÏ‹×\q9ÁÅ«ø­¸ˆŸŽðE?œŸB×÷x þd¯oK÷ç}>¾oñ÷[ñû-Þ?ßß‹WÓ[q1=oA~þdW‡×çî7ö[ô18“ËÀ_ì¯à/þûÿ~ñ÷ã2:ÚÁsü–Ñ·ºès1†?ãóþóµÿÁþ~ç¿ïñïqåH—Ïûï×þûë}z>ÄìWÕX±¨ÆâÕëV\¼NßZ¿‡üBÇW¡Ïùéâø¿bü×äèóRÚ4 W¯€¡ˆÇçýϸÿÅûç’"úVìø#,z¤ÃñÐ÷7×[±ü›¾|!W’€AŒÇŸìÇãÇüí Í>>ÿXîB[<è‡ç#¯æ¶âbnú¾™üýÆ~‹þdF±~Ÿ®œ·bá<}Lþˆ>_ŽÇ‡ë%Â+A÷+Ÿ¿Ï_ãó×âù£øóC©þŒÇ?ùøg<þÅç‡Ûg‹óÇóÇÅ•øÎl&ðû+øt~c¹Ñ?áÓùEüô} ú5ú¯Çã£û'.ô'üÅÇÏÏ›ÈïLì‚Êí>WÙß)bâ:ÒŽ´^GŠ3 DDÿ+ˆˆ‰¾Ë¸¾Ë ße†ï’h 9˜³ƒDDÿ¶éúm~ÅAÂ@¬@¬H`Š„£HH‘(á»”ë»ü1Që×k‰Ö~áSÆõ)#鸎t…ó±ÂùÈ´ÎÐ9Dz˜HÏEŒ@ŒHä°øËe °z-i»ŽtN&漈ˆõëÄ Gº®#ýD8c+œ±®Âr]…¼¸=bbbF¢'&zºˆˆüW%%ü”*×SªPøÇù@@¬@„_®†+¹^Wr¥$—zÚÿ•øWâ_ˆhƒ‰6þ b"ÜÙ\r',ÑÑÿ bbE¢&J‰D GÚ®#åXÙ®XÙh™u|åxˆŽt\GÊOív=µ{È”ú•)õpÖûuÖ;½¦Á7ü‡àXËvÚ" D´|áHÛu¤-G»Žc„O×§ÌðmãS{P£2"&r‰D D¼‚Fˆ•㊕#ÄÊØ;a#!‰¨ù"ÂqĬoÐ+¡ D D»ˆˆp%Ïp}Ìëú˜! Ž}6ºžˆ:"Á×Xl¯Û<"âõ1CöÛܶ¢뺣Vh­Åv±­!@Dy~à_?´™~L´‹¾K½¾K¯LôzáSúõ)#|Ûx.êJ„eè€XáSB~ªoÿq–Wù%_iã- Z ÚEô@ôHäð)ùúºÆÒÕ#¸ !¬|‡ÄÄuÆð.Épˆ>¥_Ÿ2Â9×9á|Ìp>øEŽ=µçÒÕVO¡­ž®¶ºÎr#‚ûÓmv-õ"(3€Éw@„# ™R íÛtµoShߦ«}û§¾>âù¶ å× þ¶ù7¾-å…).²o“x˜X‘˜áÛÎëÛÎðmgø¶%œõXÎV4"¢´HP¼Mñ¬-¢Gĸ‰ˆp>*gl05ˆˆk)é"òb"¯HPJ±H˜­ÃÊDåÉ0hx:¹q¼$==#ìc\û ~˜ÞqŠ/)’²uô˜g¬‡èѯèñgêu‚éÒ‡às‹×Û¢nD„ßQ㺣¿ €ÅÅ6±h¨.*s¾£âÛt[EøgUa'•UÃÉ›È|Öa2Å& g(g5G èۖ뽇Nâ¢^û¨œÁÜÎMðàœ²{ÊØJ,œd“ZQcñi›*D‰í]úˆŠëتç@ôøÎ³ñ@œPkD±¡_±AgNá3©ÿ|É­ákTþýù+I*Ôàßžz5ÓÊïÜü‘ìïñ2½6ŸáûDës›Ÿ§¶ÄÍW ~³'²ùçÓÿeŠÍôo­Ï],æi¿X-FªêÕbΟ¿¿I‘êç_ù¥´ †ý6?l6Œî÷±m*ïó©å6ÜU…îÛ WºïÉWºk¢+ê¸_¡wU¡ÛtÛÃîèè:ª.ÛÝU…nžèæÉn«è¶Êî|ÐtTßðCwU¡[2º%³Û&ºm²;+º“Žê+ëá®*tKG·tv{F·gvçDwÒQ}õ@ÜU…n}Э»½£Û;»+£»ð¨diƒsT¦Ð­ÝZÙºãawut•VqWºu¢['»£¢;è¨ò©Ñó• yvsG7wv[F·evÇBWÔq¿¢#îªB÷mn+ Ý6Ð…î›Fƒ+ê¸UšXîªB·4tKc·'t{bwt'ÕW¥Ä]Uè–…nYìö†no쮄úª›¸« ÝZЭ…ݾÐí‹ÝÕÐ]tT_YwU¡[ºu°; º£°»º‹Žê+‡â®*t[B·%vÇ@wÐQ}/ÓÜU…n^èæÅnkè¶ÆîLèN<*­ ²]Sè–‚n)ì¶…n[ìΆîÄ£I:3ÝU…nè–Án/èöÂî\èN:ª¯æŠ»ªÐ­ ÝšØíÝ>Ù…lÄÔq f#¦Ð…lĺ˜B²SÇ­˜˜B²SèB6bê¸ ³SèB6b ]ÈFL¡ Ùˆ©ãvÌFL¡ Ùˆ)t!1….d#¦Ž;01….d#¦Ð…lĺ˜:îÄlĺ˜B²SèB6bê¸ ³SèB6b ]ÈFL¡ Ùˆ)wçƒÙˆ)t!1….d#¦Ž›01….d#¦Ð…lĺc¢;è¨òiS~åežÊ.d#¦Ð…lĺ˜:nÁlĺ˜B²SèB6b긳SèB6b ]ÈFL¡ Ùˆ©ã6ÌFL¡ Ùˆ)t!1….d#¦ŽÛ11….d#¦Ð…lĺ˜:îÀlĺ˜B²Sǘ˜B²SèB6b ]ÈFLwa6b ]ÈFL¡ Ùˆ)t!1å®VÞÙ®)t!1….d#¦Ð…lÄÔqf#¦Ð…lĺ} Û»« »è¨2f#¦Ð…lĺ˜B²SÇ-˜˜B²SèB6b긳SèB6b ]ÈFL¡ Ùˆ©ã6ÌFL¡ Ùˆ)t!1….d#¦ŽÛ11….d#¦Ð…lĺ˜:îÀlĺ˜B²SèB6b긳SèB6b ]ÈFL¡ Ùˆ©ã.ÌFL¡ Ùˆ)t!1å®UÚö–äCB²%ù’lI>$%[‚Ÿ0-Ù’üò_žà·N~ëÁ‡ädKð3¦'[’ Ê–äCв%ù¤l ~Á4eKòË"¿¬à÷F~oÁ_‰üÅÇW1]Ù’üZȯ%ø}‘ßWðW#ññ5L[¶$¿òëþ(äüµÈ_||Ó—-Éo‰ü–‚?ùƒo`³%ùy‘ŸWð[#¿µàÏDþä㛘ÌlI~)ä—ü¶Èo+ø³‘?ùø&5[’_ùe¿ò{ þ\äSncãÝ7I>¤7[’ ΖäCг%øß8×ã«$¿6òk >$:[’©Î–àgLv¶$Ò-ɇ„gKð ¦<[’Ÿ'ùy¿Uò[ þ|ÈŸ||SŸ-É/™ü’ƒß&ùmVò'_ÃhKòK'¿ôà÷L~ÏÁŸ“üÉÇ×1Ú’üú_Ÿà÷N~ïÁ_™üÅÇ70%Ú’üZɯ5øã!<Á_üÅÇ715Ú’ü:ɯ3ø£’Ïù‘V¹:þ ù‘Ö¸BŸó#­p…>çGZß }δ¼•û&ÉÇüÈ$ù˜™$fò'Ÿ–Æ:¾Jò1?2I>æG&ÉÇüÈ$ø™ò#“äc~d’|ÌL’ù‘Ið åG&ÉÇüÈ$ù˜™$ó#“àWÊL’ù‘Iò1?2I>æG&Áo”™$ó#“äc~düNù‘Iò1?2I>æG&ÉÇüÈ$øƒò#“äc~d’|ÌL’ù‘Ið'åG&ÉÇüÈ$ù˜™$ó#“à/ÊL’ù‘Iò1?2I>æG&¯%ÃÜ7I>æG&ɉü‘‚¿ù‹Ž¯$ÊL’ù‘Iò1?2 ~¦üÈ$ù˜™$ó#“äc~düBù‘Iò1?2I>æG&ÉÇüÈ$ø•ò#“äc~d’|ÌL’ù‘IðåG&ÉÇüÈ$ù˜™$ó#“àwÊL’ù‘Iò1?2I>æG&Á”™$ó#“äc~düIù‘Iò1?2I>æG&ÉÇüÈ$ø‹ò#“äc~d’|ÌL’ù‘Éãk5÷M’_*ù¥¿?ä÷'ø˜™?Q~d’|ÌL’ù‘Iò1?2 ~¦üÈ$ù˜™$ó#“äc~düBù‘Iò1?2I>æG&ÉÇüÈ$ø•ò#“äc~d’|ÌL‚ß(?2I>æG&ÉÇüÈ$ù˜™¿S~d’|ÌL’ù‘Iò1?2 þ üÈ$ù˜™$ó#“äc~düIù‘Iò1?2I>æG&ÉÇüÈ$ø‹ò#“äc~d’|ÌL’ù‘Éãke:÷M’_ùuó#“à'ÊL’ù‘Iò1?2I>æG&ÁÏ”™$ó#“äc~d’|ÌL‚_(?2I>æG&ÉÇüÈ$ù˜™¿R~d’|ÌL’ù‘Iò1?2 ~£üÈ$ù˜™$ó#“äc~düNù‘Iò1?2I>æG&Á”™$ó#“äc~d’|ÌL‚?)?2I>æG&ÉÇüÈ$ù˜™Q~d’|ÌL’ù‘Iòg'Òñi¥>÷M’ù‘Iò1?2I>æG&ÁO”™$ó#“äc~d’|ÌL‚Ÿ)?2I>æG&ÉÇüÈ$ù˜™¿P~d’|ÌL’ù‘Ið+åG&ÉÇüÈ$ù˜™$ó#“à7ÊL’ù‘Iò1?2I>æG&Áï”™$ó#“äc~d’|ÌL‚?(?2I>æG&ÉÇüÈ$ù˜™R~d’|ÌL’ù‘Iò1?2 þ¢üÈ$ù˜™$4òŸÖ?tß$ù˜™$ó#“äc~düDù‘Iò1?2I>æG&ÉÇüÈ$ø™ò#“äc~d’|ÌL’ù‘Ið åG&ÉÇüÈ$ù˜™$ó#“àWÊL’ù‘Iò1?2I>æG&Áo”™$ó#“äc~düNù‘Iò1?2I>æG&ÉÇüÈ$øƒò#“äc~d’|ÌL’ù‘Ið'åG&ÉÇüÈ$ù˜™$ó#“à/ÊL’_&ùe¿Wò{ >æG&¯Õ Ý7I>æG&ÉÇüÈ$ù˜™?Q~d’|ÌL’ù‘Iò1?2 ~¦üÈ$ù˜™$ó#“àÊL’ù‘Iò1?2I>æG&Á¯”™$ó#“äc~d’|ÌL‚ß(?2I>æG&ÉÇüÈ$ù˜™¿S~d’|ÌL’ù‘Iò1?2 þ üÈ$ù˜™$ó#“äc~düIù‘Iò1?2I>æG&Á_”™$?òó~+ä·|ÌL_ lºo’|ÌL’ù‘I÷{ñžkI¿üÑ??óŸÿ‡‚þè…Å5¨þà‚Á%týÏóêú=‚ËÚK@äçéó¤÷ÿ~kˆßÞÇ7Î-Ǥçwv¢óMÿýn™»¸ê›“È^þößý»ýçÿþÇ?þÀ•9¤g¹ Ù~üoÿéÇøñ_°Šjï²æÄù×±µ+Þ~»žêoýÞ{yßùÁÁþí_ßüÉøÍßßüÑàEIlÁ“ß]•d/ˆò»Ë’ø¢=¿·.‰¯üâ “Èï•û7z&¯‘þ›¿Ø‡¥/I5ÌÔo`¼7øýË{fd­…*µtßæ^#&þêùý¡WýQòÐp¶N^Ñ%Kk𴬋™œ¨ ÑÉ+ËäñˆBuñEuõu‡dK}˜ø´¯%[zgBtË{eDÙ²2¢ |Ûo¼Gbu&–ü¶k¯Œ˜Ç7æÓ^¯E¶ÔÉ„è÷ëg£2ñi_?>o䪟zÎØ”õ9ˆÝ殑”Ç·Œ"ªÏ ¯²åý™‰Ý|Å[ÙòÞçD¼:ÏåûxŸk?ÅtIûi&[zbBtñuBeËLˆnk¯šç7ÓÝÏéüÆ!º¬]%Ïïm>ªKÝ«ÃË–Z˜øtÙësÊ–¾˜ý>al­/Ù²¢kÝõFóüÞ꡺úzr²e-&>=÷Zpy~oæP]ËÙÇ÷nžÑÅWÞ•-c0ñé²× Ïó{?„êâÕidËLL˜ö³þ½cBuÉþü˜ß[v"D·~~ýï=;¢‹×(•-³1ñé~ÎÇ÷®ÕÅkWÉ–¹˜ýx%Å<¿÷å@¨~c¦­I'[jb¢êÕ–}2!ºz-¹¹(ŠmÝöj“²ed&D_¯T¶¬Éħ½ J–Êø RW÷ó!ÙûÃħ}UüG1Ó%íÚw²¥U&>í+EÊ–ù0ñj9ù¶¾o^™#¡ê¼Ú^oP¶P$ÜÚ+2äU8ŠÝQ:¢eÍÂäDÏLˆ~–?VáH¸uÝkf- DÝ‘p?µµð._Ë»=$_<ѧ¨NÙ¯õ½W&âÓy¯&([(š®^Õ9kY"D§µWD–K…¢˜é´<ÞJ‘UúÓu¯,[rgâÓ^#k¡S"D—æwåúÞ!Z Sbr3]ª?O¥\fabÚ“KæR¡ºúºí²…"¡é§ì Œ²…"áÖ^¢<E±­SÛylé ÑÒ$8ÄJLˆ–ÉfÓˆD‘д\®öÄ-ZÒÑ)íUÈË“)Šm¼$[ê`âÓ^ù\¶ŒÂħŸ}ïË–µ˜°HX6Q(n­S•¨Ŷ–u¹'òbBt÷*²¥5&D'¯/[fbB´.)¨D£H¸µLB›NÌÆ„hÉa†ßQ T?ðëïD‰ø´¯˜-[zabëîÄ\Lˆn¾¢©ÅNŸbºŸ_î{·IÄ«¿sǤöÜÖøËMŠ„[§¼['E‹î1ìiYXŶ>UeËèL|ºîè!?3¶ç¶.ݯB-™B„è'í<èK+¢Ïúäæ*ô)¦ËŽ ²¥M&DË0ÙéĬLˆNÍϺïâÓ’†ääFB×m? ¥ÉèSÊŽbÏr¢>LT/í½3ÑõÉŸ³+3±4ªï»A M¡º¤³eËêLˆ.¾&¿œšLŸòé/QYNÔÉ„èSGG¶ŒÊ„è÷¾õsÚ)n-‹†>NŒÉ„èÔw{_X}Ši_©Z¶”‡ Ñòë¢u&D§¾WDþ‹… ÑÕëÅ•4)Šm¼,[°=çºø}û‰>ÅužNP$4-S¶« M§¼ûƒŠ.XÓÍ×K—-ØžÛº?þëç‡Ús[?^yHEBÓòòù M—zŽ#s3=†t‚m¢%&D·r¾m¦öœiI‡,·¦ªõRÛEBÓ2QvGå(vô¾÷s¥öœëêÑ#WjÏm­Ë%l‚"¡i™0nwCn MO¯Uý5˜Ÿ~v XÂU¢OQýÌÝ‘-51ñé¹3é¯ b0!Z†~žO¡Hhºt&¿E1Óeú½Ÿµç¶îÉï—<©=gZÒö¡H÷ÁÃD{´ëàìƒ"¡é´v×µ¤ÅL'_^¶Ì‡ ѯd^ÊCí9×i÷ŸÊŠ„¦Ÿ´sí¢ËÑ!úñþÓ¯Š>Euš~­¿[zf¢káþõß-s21õ™l}}_óÏ‡éæµw¿ŽŽ‡‰/zí;éN¡(f: Ï Þ-µ2!úýÏêNŒ‡‰ñhÇÀ!(š®Ù3zé¢ó¡ºŸ;êmtQÛºú3èÝ’;¢ëÚílÙÒ2Ÿö¾à¯i7™]ç®8(·EBÓmúuún™™‰©Ÿâ×Çf;ªáÞ—NðÆ„èVýI÷n¡HhºVÏaÊàHhZxïcrÛ~ÛÉí9Óv•XÜž3­Ó#7A‘ÐôûŸž Hhº®ÝO÷uR৘.Ù3ƒúp{îè|jÏ™–ŸØŽãMf)šN}¿¡‘- MË`e»£Þ‹š¢˜éâÕÏd µçL—Óž{·P{Ît:ùÇ›ÌR$4Æ9c…#¡éôø='Ý~ô)u·çv.õn¡öœéþì~ÙBí9Ó=ûoûn¡HhºxŸ´¤w MKbs‚¢˜é:vå¡R»„< T×o‘®MÔÆÄ§½F£l‰ ÑòÀkN¬Á„hù”ý]G1Óïo»³‹÷QBí9ÓÉßàÉjÏ™®m×j’- M¿Oþý z·P$4]ÚùõG±­óùõ·çL?Ã[¯íáöœé”<£oGBÓ¥ïJ;²…"¡éâoyJKŶö÷s²…Ús[W¿Nß-Ôž3]ýmÂ÷2ÏÇÖÇyÅ]™¨úþvçR­p3­K=m‚Ús¦e2Ps‚Ús¦ëãíJ t>T×åO©V9šî㣘iT¶ jÏm]wíÙBí9ÓizÊ»…"¡ixžJÕiœ3Ö9Š™.ÙûÚàöÜÖùéàöœé–öû[ÙB‘Ðtòšê²…"¡éçÙµ»% (¶uñŒíÝBí9Õ_gí>‹Ûs¦S߽Ų…"¡érrþ¶8š–®;Òþp3]ŠÿúRqb01´Õ¸ãœ JÀO1-ËJaÖ!¨=g: oEÏ‘Ðt~ΑÐôÓ<ÿ*ô)ª¥×:9Aí9ÓÅkËjÏmÝü‰;+G­ç®YfãHhºœÜAÆѧ¨–Ñ Õ jÏ™NýüúÛs[7oÌΑPõ÷_ƒ#¡iyÒU'(Š™Nýœ±Éí9ÓÒµtjÏ™ÖÅ06A‘ðh¿Æ&GBÓeùót.Žb¦k?WÐâöœé2ý·]·çLKW[q‚"áÖÓŸÚëáHhúþ¤[‰£˜é4ý ³·ç¶þ+‘¹=gº-jËŠþ ÑÐZ[™#¡iè…“1Eô)¦›¿“ú;¢ßký9µçL—ó&@Vê§ó¡:%ï°*GBÓuz/¾Œ)¢OQÝNŸ¬¼?™-éòÙG¯Lt…ÔÎ>(½G¬Î‘Ðô{íwI«s3 ™ÒÜžÛúô*¬Áí9Óå¼;Yƒ#áÖÍGU¬Á‘Pµ<ü:ÅLÃ[óµ¸=gº.1³·çL—q¾íâHh:%ÏaÖâH¸õ™¿ð<Ŷ–×ÚÉ lÏm-}[‰Ús[—¶¯ Ù‚‘pë”vï—lÁH¸µ ­)FdŠb®½ÏQ¶ôÁ„èÔöÝ [VaâÓ>2´>…"¡k# [jc¢Z/þÞG¥(æÚ{jdK]LT=ëÏ!FcBtñèQŸF‘pë´v¾.[ò`ÂtÛç£SÛ:å e ¶ç@ç³lϹîû Þ¿ÿñ8a$¿ßC:@d.Òx?M'Œ¼”ß0RÓ7ÆÇÉG|· 0Ú„¾à<ÄyáéÄ÷ÀÂ@N|Ãc€ðá2N|Í ¼YÄW¶k"!ÑÁÇ¡ÃRq†©8ñ âÂõ9Ñ´@´þ˜b5&ì5€_coÜ:ñ½Â_‹±&‹R„wÐ;ñ :¡Q2ûf9DLÔ‰¯=–òaÍ' yƒDDÄx˜áS¾à@ø q æbb.&¾ñ^@ø@8'¾s |«_³o†Q ¥Dbb¢Ñ=ÃC€è‰Þ"1:£Gb†O™áS¾‰@øÅ_ ¾ @ø@ øw×ï2è:…ˆQ˜áœNº_àE#µ0Q¯}´°ví£­@¬HŒÆÄh¿J,€é„wÓ 11#‘ ¹D¢6&êu=|J¿>åí@:ÄéPB¢¢DŸ¸0íˆöÑ®}´ˆëH1zÀh FØÇ¸ö±Â>VØGâßö¤¯@¤ÉDš‘ kËC”ÎD鑃‰1"1&æsáHçu¤|>Òu>¾!Ï@øh j êMä@äHð/—¯_.óSûL:A¢"œõŽ´\GZø~9Á¿@TÊÇ`Ú#åa¢„_îK½8©8++©0‘J$Je¢Ô‹‘à{¿]÷þ×x#b¤Hð•Ü®+ùë.»Ϙ˜‘(aåÚG}˜¨×q´ÄDK‘胉>"1‘Æký{ENļŽôOá8æu3G|:|ƒo‰Xáú!zŒ+zŒp}ÄlÜ^÷b¶¾°!¢—‹¨¸Ž”—qý._'6#G‚¯Óq]§ƒsº3”ˆ5™Xá¬OÎéÎ øù1¯ç·_`€5ì#^ë“[§[‰ˆ‰ž˜è)|7Ìën˜á*œ×U¸B¼m1HÌĈD û¨×>Z â·]á:]×uºÂ=·â=§Sòq¦è!‘‘"‘Ã>òµìw€‰oH¬@¬HPKë ¤¢†#­×‘þ ¢¢Fb†ï2ÃwI|7œß@PÛºàÑÂ>ÚµÙ˜˜|ßê‹V rlßê<&j$è¾=Ë?ÑmD‚Z¯gz.Ôž;/ÕXáSVø”®Ór]§ß,&ÊEÌ@ÌH¤°tí㉎´\GÊg½\gý›,ÇÄŠ=?ÎTt (ç?¯îXỬ뻬ˆp7T΃Τh ø®¬×]Y¹=w¦Ø ±±"ÑÃ>úµê—:ÓÙ‘ße\ß…¯Óz]§-\§íºNgôg1$F ®Oáçi»ž§-\…íº [x¶ëYظ•t–n@"ì#´’rȤó•Iëd["bôèÜ_xºß Œí,¨Äû×>(Û:‹n QQ."G<ƒ[ZyÄ––¾~ "ÆÛÎXìçÿ¶Ì@̋ǯ Áí¹óÚˆŽ´]GJY_1ëË!×ÎW®-[·í׷ỄÞb}ÄŒ-`¨ADê‘àx;¯xrí|åÚ:䈉 >ëó:ë“{{Î"@Ôð)õújyž%yÇãË q^q†ç鼞§“Û•gR´+< ×õ,ü^’1øHKè•,W¯d ùi¹òSŒLDˆÙ%ô(–«GQž:@ˆŸ:)œˆ”"A÷þR]cg‘+ (ƒ-W««™h‘Xá8BÛTƒ"ÇÞQ]‰ >ù:ß@b&î}Ì@\GJ=Wg¢Ô3q†¢‡ãè×qP†r†ì!±±"1Ã9 }9:ØóKÿúåúõ ¿±:˜˜‘ hzìb…O ù©9¢Æ|L‡_¯oˆã"f f$r8Žø ªáT¯gPå§öYøˆˆq%%+3±òE„}¬{á|Ä{¿…sÚ®súÍ6`bE¢g&z¾ˆ°øLn£ÎN$J J$ÖÃÄz."Gx3¢¼è1CÑɶL\ûàsÚ¯sz­ËÕk­‹Á0Ñ/"|J|vÎ?Îpn Z ÚEŒp¤ñwÜ·u!‘‘.¢¢D‚ïìqÝÙƒßhž¡é@”på:j‹Å>háSÚõ)|7ŒënÜ:K1ÃqÄ'îäw'gà9ü›×sl†«p^Wáäþõ³„„+üúëúõy$Lø%‚ŸÚëzj¯pÖ×uÖç¸g,$V V$Vø¶ñ ³h¬LyÞ„Ð<İùKe[g*)Ô[¯~\]$ˆÐ·UÃ;ñz½×ÉP@äØÛ£“ˆ­]2‚ˆðLÖEñ€(±ßA‚"¢]û ¬ï æG"ì£_û ž‰³<*áSÂ}« sQ㸜²œze9º ¡\CfP¯Ì@4Ñâ}û§ÊØÎtv (O>Ë>Áçô/¥S€èñÞ¯¶³”ôF¢]#wtá#"BDÖås€¨1VêB D„{®…N»Z8:…•ˆÐ÷© sÑcJ ­‚vµ tù>"B?®.bMÄ g,Œˆh׈ò ÄŒQ½…ÞÑvõŽê²ðD„ÜA—Ëb]gì› EÄ‘ào»â·Õéü‡8Óû Œ¾_ošuq>"Âý¢‹ã²],ˆˆÐÎÖ‚@x ¨¿°_ý…=Œ/ì×øB]bˆ3z]š€ˆx>2gÒgá'*–;“´œí¨~µ£tá"³P<<ÄYщÁcHÎò†›˜á×?Ëùýví .*ÂEJþaïÕôߟO©_ôÜ|ÔÎÿ­oy‰oÍþ‹á}ÔÑ¾ÅØM#±¦ö¹mB52ŠñËzŒ0ÄžP³ ÕH¼ÙøƒûPD³·‚›hþV¿Ý!η•:B߬ÿøO¿ñ‹üÓü/¡ÌÐüª M/2”Û·HÖWïd|U†þF¶—ß­Sô;;°¡e²ƒï£ùïß”³œ¿Ï¿P')KO¨®Šø^Þ²‡ÿþ BI¿V*çÿH©$)·Ðš_ï?Lïëùý½dØüû`sÂ4ÒÞPÄ{ôÕHètûCØôûCÈ„¸uî̦ˆ÷Ѿwÿ>ÚÄïßGû~ÿýûh¿A«÷wî#ˆõ¿sùóÏï#¸N¬pÔh2ì 4ýs{ƒ«NïÙZ–üû>ƒÿt¦œ­gô.±¡™aZeoÆÑÕû~¬ ªåýDs¢=L˜†N£3!ºä¿YA& LO/9¢™ˆ-WÁ>ŽïåG'Jf¢Ø§œ}´É„héåžNÌÊ„èâoÈwA¦C¨.ë”Nú 2!ú¼Ï³‚L@¨.>:Æ 2!ºxÉ1+ÈD„èâ}aV‰Ñïo»ïp-È„jYµ› 4!ZÞ´Q& L§SHì+ÈD„èæ£–¬ ¢K÷’Z ÓÏ9ëSºNˆøt?ßö+È„êâ9 d"B´®·¾ )È„„èòÕ'ø-Ètˆ­ë)Yôd"BtÍ^jL 2!ZFMï‚3_A& T¿Çáåu¾ážDˆ.ÉŸÞZ ×ý”_ª… ÑÕGÆYA&"D×vŠ }™ˆ]/z¥™€P]’­Ñ‚LD,ý.ûúЂL@¨–¤á”_j‰‰Oû¬>+ÈD„hyƒqÊ/=t>LŸk] 2!úý¶»HœdÂô<%‹¾‚LDˆ.§À›d"¢éµî¥“¾‚LDˆ.ÞGi™€P]Ó)6õ O"âÓí\§_A& TË[¡äDMLˆ–œ.;Ñ'ŸöñˆV Óc÷cYA&"D§åÅê´ ¢ŸáE­ “¦uÑMP$4þ÷ÖΞ×r9¹Å„»Áâ7:5lÀ ,àÀpèlaÀþÿÕÍîªæÌÎܓ̠PÏÕÑёĦD²²#%nÅT?6¿L™ˆhr§Ṅ‰­÷¨ƒCdn U×éaB™[BÕmzxNáVLu}üx¼LD¼ºž'ÈDÄÖÅæûk ¯~H´ÅD“Zjù§PK¨ºzÜ¡2¡Úc%‰ˆ­Ÿbõ‡2¡ú±»ƒ2ñêfw\ d"bëT¬¦“@&"–Ô–'œ-nÅT'_Ô7êÏ©NŸný.“ús O…¢LHl=àü˜ÜªÞ£@Ï6·bª÷,ƒdÄ|˜xµ/^/LN¨Þ£‡ÔªÞ½µÇj Uï;ÿ‰ùIÜŠ©Þ#ó=©g&¶NÉõçŽ.-4!z¯ Ÿ –ðèæá9…[1ÕÕzZÈDD•ç§°ñ0ñ>ÙœU¸%T Q–È„èOcfA@[1Õ5[e LDdéEŸ«A™ˆxu=s~5‰ˆNk9ѹ%T½×>éFÌÌÄÖ%û/÷2aúT[ÈDÄÖ­[E/LDt¹;L'¨%Tý,߯äVLu÷ÅÚ%‰ˆ%wþsíK ¢Kò£¾¸%<ÚÃ?%‰ˆ®ýÛóp+vô°() d"âÕÍ–—@&"Þþ\µ%Œ% Ñå±»ƒ2ñj_Š]™€ 1¥òµˆÐþÜéJ ¯žvJ ¢a¹n d"âÕÝ‚^$ ÑÅ[–@&"Š|Êòø%êÏ©þÓ鵄ª÷MÂã—¨%T]<2Q™ˆxûsð&L@ˆ®ÝîcÈDÄ«½^—@&"†í¾2±uÉ%5¸;zØBÚÈ„èb3z5‰ˆ¬Oi=‰ZBÕʼnäQ*ï“M ’@& D—â¡W‹ûsª}~ˆ29¡:û]$‰ˆ­“÷÷%‰ˆ÷Éæ²k_™€²-‚-LDl]‡ÕtÈD„öçN?J™€PÝíš“@&"¶®-.L@¨ö€Y d"âÕ¾¶2ñ¾ŸËÖJ ¢K²å˜%‰ˆN{UæsÔ·bª #5îÏ©Þ'£G8QNõç¶zî§ÈDÄ”sýT°È„è]†x„µbªSÇø%êÏm3¾5‰ˆ÷Éæ´kN™ˆØz÷’ªÔª.ٹɭ˜ê’<°jrNõ~{ÎÓÅý¹£½g!LD¼ý¹d zK [W[Q™œP]Šõ’$‰ˆ!GýTÒÈ„èÏæ÷ dBôn=<\é¡OQ QRûsG{¿A™ˆØº=áD-¡êäO®$ ÑûÁb2‚Z1Õå±· È„hèÍK Eú·§W LDhîÔüÈDÄœÔ+@& TOŠZÜŸs}‚Ä$ɉ£=°J™ˆ¨rç?çº21ªè% ˆtús9Aý9Õ> I™€½WHðø%j öçAÈDÄ«‡­˜ësÔ%‰ˆÖé#LDLõ{ÎS dBtU¹%Tü·•@& DÎSû.o ö lßF¯Ll²UŸÈDÄÖiY%L@ˆN^ãJ ½ûÙH4¸?§¢N%‰ˆ*Ï”,kpK¨zwb}Ôª.þÖ\™€P 1P‹ûsª%LD|ôþ¶'tS™ˆØz–ëFPK¨:Y«®LFýéöŸ#$‰ˆ)½è³ò¯2!ºùjýÈDDøH™ˆèÒ‹¶È¢L­˜ébk}H ¯Î6#O™ˆÐ'›g›2!ºz~Ž2±µCÑ@& TûêJÈDÄÖûQ›oc4&¶ÞOO0R£–д¯"LDlíOX5 Ñ{ _Âþœéî^ús¦­vø]Mzñ)}p2¢ÓFx©~y5í„¿ª6bÒ’50ÈÀˆE±áÕì!ä–ä„ߢ€ÀɺpYËÀãD#8”^› Mr;1n/Fp` è5¢ÐD}x©n// ƒƒ€èèA‘VO\KYÑÂQב@Ø@I#Ç@ù i#xÑE訋É@g߈ÅQR>ˆˆð)Òì9áÍ ô]|h8ýšc p©xÈNøÅ[¥+|ʺ>e…= ç˜ ¡¢„%&u¢ ©Fb„mŒk¼åÚJWü@à¢%0ȈU™XaO[ømÛõÛrLG¾b:ôU=አðð‰ˆ‰5˜Xa?xù.xpD­LÔ‰¶Ñ¯m̰ym§ŒÃ„"#&-ƒ>h‰Ö#Ñ3=Gb†O™áS-ôS9€(å‰DÍLÔ‰ˆq33|½¬x½d^® †sAg¡?’D¢¢D‚B¯p}4LD8bò œˆp/ÌzCäÀ6¦aAçi¾ÚÛÌK=Àãw$V V$èŠòW<@´°vmc„ý×~üŒÈá×ÏׯŸÃ/—¯_.Ó‚šðø ˆÑ˜-+lc]Û €Hè‚£ `+==éa"=‘ȉ‰œ."ìG¾öƒÏ rA%\ åº GYú`~ êb¢®H´ÆDk‘áSÆõ)#|—xŽ…Ò|…fŽ„8HŒ@Œ‹˜˜‘àûX½îc•ïë>°ˆö4_{J5îà“L˜¨‘‰‰q±¾Kü]*×ü>5ˆ>e^Ÿ2Ãñ˜áxpPLŒD¢¢ÿbbE""]D{¯ÛF}SD ŸR®Oiƒ‰6"Ñ[ É›¯H^y½MD¼æxé>xÙð%‚[ÂK¡ƒø€ˆËíê` &f$Rb"¥HP_Ì_X ö#_ûѧÄ6ªÓÒ}0Ȉ¶Ñ¯müœˆWvç^´O›6bГ ˜ø†Ä ÄŒ_/ãº^B ö¡“Ó‰QÉò‰‰k?~NPܲ D¢¢Fb†mÌk¿@„O‰WÃwËqÝ-9b†Ë|‰Xa?Öµ+ür+ür3œó:?~…àÖ4.a¬/ž‰h×~ðÝr^w˪ଯ¸ˆè×~ðo;¯ßv†_n^¿Ü侩OWF""]Dø”ð”%¯p?]×ýt…:(yè "âï²B}º®út…ûéºî§+ôpÖÕÃY¡­\W[ÉÑ|ðùkÄ ÄŒ×Aq‘Rv@D¬ƒ~‰G}^G}†ï2¯ï2ÃQgá¢X=ÕXáÛÆ»Ã ga\âZ_.8/¾D¬@¬HÐ4`„DØFº¶Aý(_î:ƒJ\üQ_æ1nbbD‚î0¾| áSæõ)ôËùË[#_û>aˆˆôºöýÕý׈ˆ‰Ò™(=ôFÂ'­!¾K½¾ õ´|Ñ zø”~} µ/ð’ðKDø¶ýú¶+¡Í–×Û@äØÓ 1?0Y ‰ˆëS¨õðÁ–H„OI×§¤ð)ñÊÎá,Ì×Y˜¹ò¡Ç_#Â~äk?rØ|íG Ç£\Ç£>LÔç"Â6꽈‰¾K»¾Ëωö´_{ÚÃ9¯†ÌýŸ  Ä Ÿï…™Û98 Ä Dl£JhÊÕ•p5”ëj(á\/×¹^™\®39<§+×s:ZKDüõKøõËõë—ð»”ëw)ü„Õ'‹!±±"AoE}Ð8+|Jü]jø]êõ»ÔpÍÕëš«¡U¯W«^)z þ¢&j‰D{˜hÏE´@\ß¶‡O‰ÕE復Ob†#6¯#ö3‚Ã`!5$z z$èùX¹žÉ¢4LÔ‹XX‘(añ—ká~Ú®ûi WT»®¨~Ûvý¶-œÉí:“‰˜çiw‡~Ýzh_b””.|ÄD½õòa@ð™Ü¯39<ý*×Ó/Yî’ˆXÃôp‡é׿çÄçé¸ÎSv…i @Pϳ\#D~‰àês\ÕgxrU®'W²4#±úütÃ'Á}n÷b…#¶®#¶r òE”@„;Ý ÷ y݃fè7Ä`W]¤‡‰ þåæõË…'FåzbôKß×çu_ŸüDÀ'ñ!¾m¬r¿5÷Ez‘¨¨‘à;Ì5Î@¦²0qíÓëI,DDxz.“™¸>¥¢_ÄŸkKŽø‚é‡Á¦NÀàS z z$¨þ¨×S…Æ*Ôk¬‚,UÉĵ§5|J½>…Þ$útT ¨ºð‰Ä@Ìð)3|Jâ~”O{Dbb\Ä ÄŠµs¾,áSÊõ)-ìi<‰ßœù_ èºõ…)‘¨Ç4ó8ŸŒŒD D»ˆˆ‰>%þ.¡×X¯^cÍáˆÅ¸!]0„‰kO©ïQ¯>¡, ÍÄõ]èì#§‹Ò1¯ý 6Ê—Ô@"|ÛÐFÉ h J¬ k«P¯± 5Œ”­×HYY(Œ‰|55T[Öýª“:¸Þ¼Ë¢šD´‹Xˆß–ƒ‘`I/$V V$hL/+ßqûuÇ cë5FQ‚ˆï’j¨aêUÃÔPÃÔ«†‘Åטh‘ÈaùÚ=—ò"€èè7±±"1Ã~„ç02©ˆŸUŽå„h Fg‚£×tJží=(“Lˆ£dR)^Q-Üq}Š/ô|¬]ÏÇZSÓ®152¥ˆÛ9YnŠˆPóË$$ lR’ñ•¯ˆ/]*›ˆPÓõ0Ö©_cdÉ*"BÜ9,–<Äí¾/N÷…€& )±€&Õ÷OѦÈÄM{ÎÈ{F¿ØßžBaœP#ÕH¬*Wé!D‘S’7G'ÂI4gBÍ!D#ñ¹Óa¸’j$dßðïò›â—öñûÜ]NüÒ—Ó—ö|“OEpþ>}ùïË<ÙIÿðÏ÷ÙðÝð¥¼'Íwÿöïß _úŜ߾tÎåoÆ´- [2‚Ø^B–œ 0¦—°%'(Œé%d*½Æô^»¶d‡1}ï9×寑Cüø9×ò¯‘Cüøjá×Þýd?à,hï0©Ÿ%+ õ³`¥°-8¡Z݉JãÓ î´†ñë¹J)Ÿ ¯£óy]¬9JN¨öG‹š£DÄÖÕÖiŽ¢K³lÉQ"âÕö°Ms”ˆØºO<ÊïArBt±Nªæ(±5¤ZHŽª‹'ë¼ãž‰xu¶LÉQ"Bõðä¥Y™Øz?Ž;ÇãÍQB´çØkޝ^žïôæ(!ºôS†jŽ[›l¥9JD¼:yZÑ›£DÄ’£>Î1}s”€Êîª9JDl½¿íÙÆ›£„è½”ö0¢N&ªü¶ç!9JD¼z Jš£„èd¹íš£DÄÖÉaiŽª­‹¡9JDl’_/oŽ[—fi#’£äÄÑöh@s”ˆØz/RK¹JDl½'lüž7G Ñ{?²e1ñên7wÉQÂt­FÔÂÄÖÕÒ{5G‰ˆ­= ]s”ˆxuÅÔ¤LÇCôâÉKk1±u±Ò^s”€PÝÏ*ÍQ"âÕÅÎBÉQ"bëOiaQoŽ®³31ñêáùNoŽ¢ÓÀä¥R˜xµM<Õ%"^-õDr”ˆPmICï¼< DW›œ¨9JD¼ºú™üæ(!z¿.îFÔÄÄÖõñóãÍQ"âÕé<Ñ% TÛTÍQ"bë§y¾Ó›£DÄÖOöTœ‡[BÕŸãq2%G‰ˆWC²NâVLô²·’£DÀÖÅ+‰Q"bëê7‰QBô~3ñA ¡ê‡}¶Q¸S]l‹Æ(ñêéßåQ"bë}QR¬¯~üVnUš¨óÃIŒo#æÍ¾Ä(¡zZù!1JDlý)Ï)&1JD 9™Õ¸!<ÚfPkŒ¢oÄ$F ÑÕf–iŒ¯~¬@‘%"^½Î³Q"bëäqy£„èdcŒ5F‰ˆ­kµ€A‰QBtµÙ¾£DÄÖû}7‚BÕ²æ·ô”jÄŽþlã,É'1JDl½ÁjÄJL,i^ 4 £ӴÅñ%F‰ˆ­wæÈ øÉÔˆ½ßÁ:Q5|Ê£DÄÖ©zÐP¦†ðèjc5F ÑÕcb$F Õy#1JD¼:Ù¢9£DÄÖÅ3’%"¶NÕ–)“% D¶qì”%"¦”RDõöd€½ï«DD‘‚ÍŽi§†ðèÒm K‰Q"âÕÏyo©1J@¨ö…e%F‰ˆ­ÓtbRwîè:la¦gRCxô瘞…îöÓ·ÌÄÖÅ®}Qbî\IFŒÎÄÖÉÖÑ%'T—Çe“%"¶ÞÝŠU"âÕÝÎ1‰QBômnF´ÉÄÖŸC{ÎB‰Q"bJ'zœ ¡L-¡inK™ZBÓé“å+€xõjžDT¨7wt-¶’•¤(±uñuC%E‰ˆ·!LöÃIŠ¢÷rN¬ÎÄÖéñ ©F½¹£%¦ãu2QåSÎJx’¢DÄÖiú6:5„G§â½S#vtòuº%E ÑÞ‡Ö%"^m= MQ"âÕÝV\“%"Þ†ð±D5IQBt­¶Zš¤(ñöæšÿ.‹zsG'_YTº±Dlý9Õ-©jqC(z¯»v"qnÃT?ÍZ[ Q"bëT-lBB”ˆØúñ¥Ï%D ÑŸ‹æ,-)!JDT¹#Ÿ;¡†(9ñê IE™úrGKLÃ!Æ`âÕÅÎAYÑ{@íc5ƒªÛ°5eî9ªm)‰“¡„ÄÖŸúÁz¥¾œéa+Ê\k"^½Î@VÍPBôˆF™JDLypÖG– % DïÅš51ñêÇV¨“ %"¶þœb° jUïëéüøƒ›°£³•8š¡„ÄGïuÏW™Ô•;:­óHJ#”ˆØºçÓ«Ð%"^½,À!/nÁŽžvóÈ‹úrGïëéâ<Ô—3]ì—%"¶®]Oro&âÕÅ–Y•)5@ˆ†S]&ª±õ¾cv#ædBjÚwÉÜ ª®6cP#”ˆxj>vªK„¢?7õ³DªD(Qå¶?|ãabÈmÿ\.¡DÄÒ çxTnUï•›Î~4nÂTC€ƒD(±õçî–7•%"^=­)Õ%$>zyˆ$( úóÃR¥7EÄÖŸÝ8í¤$(¡zzžÖ ®ÜÑÅצ”%"ºÜÿjU?6ÔQ”€]íY³&(ñvåŠÕ/’ „êêÉN‹›AÐÍjU—b«¬J‚’ª?×ĹÁH‚¯N¶¬$(ñêi ¶$(¡zX×E”ˆhú´‘•€|ítçE„êóëK‚¯îÖÉ’% DËirjU'c¨r¦ºd[ \”ˆÐ®Ü©³%A‰ˆWOûõ%A‰ˆ­}B©&(¡ºZJ”ˆx»rÅ÷ô]{ Ñ>èN”ˆxu:Oø5A‰ˆ!­möm¬ÁÄ«—ÛÁØÑ^H‚¢Kõ”ªÉ]¹£m¢ž&(ÑäÙ)å5[ûÔFMPBôž› ®œjŸ § JN¨Nž’) JDlš]s’ DÄûP³[ÏD”€½;(ž¹D}9Õ ( JD,ytzÎdIP"Ÿ¾Ü©,%A‰ˆ­«çWJ‚¢“ÿú’ DDÕgïÙêË©öÉš „è=Û3—¨!TýdKS“% TgË}“%"Š¼ë¶¬£Æ}9ÕûѺç6QK¨z?L<¿Kç–PµOJÕ%"¦¼½9½pIPBô~îiHÔ—S½Dßµ„ª«g”I‚¯†o;¹;:yÒäΜêbCÈ4A ÕÉúY’ DD•‡xÍ·A-¡êϽð1IPrâhÿ.’ DÄÖO·sL”€ iò’ DÄÛ+Ø$A‰ˆ÷¡f² E”€½³dõæ@w#¨7wtõO)Ü=C¢[ï¥zϧTnÅŽžv‡‘%"ªü¶ç©„$(ñjÏã“%"ô¡æI3‘% Dï—DËjÅTC $ J@˜¶4¤7A‰ˆ*µÔÉo%"Þ‡šž¤( J@¨öTIP"âÕÓ“¿&wçTK©{êΩö鳚 D„jص„ª?­Ø¹²%A ÕÞJ‚[ïi4'§èáîÜÑÕîü’ DÄ«sHT"¢K{{Öø—% D?ÞÍ–%"^í×­$(±uõW ’ „jÞ( JD¼O5‡½j% DWÏG–%"šœA§“%"†t¢íxTn öÄ IP"âÕ~O–% DïICž—T*E~Ûóˆ_”ˆØºx+ JDLy mGìmœ]üù™$(±]·’ „è§zâÖàþœê=b«A-áÑÉž¾K‚KGœý˜ÜŠíY$A‰ˆwŒJ²ŒIPBtõÇ«’ DÄÖÅóp$A‰Õ–îòp+v´§–K‚SÚ[KJÜŸS½§›?FPK¨z?–®FPKxtòlŸÌ­˜êýB”•ˆxǨØ`MP"bÊÓÓó\\”€]ýå$(Qå%¢%UnÅTã~TîÏíOq%A‰ˆ!ííyÝ) JD,éßž»¶$(!z?8GìMPBuµ—ˆ’ DD–žÅéH‚[·Ç3¨:·„ª?} K˜Ümv5A‰ˆ)#O- krNõ5: þœêä2’ DD—¢ç=’$(1ånyžåH‚®“ÔŸS½Ÿ^zõçTCO”ˆPmù/·„G'»^$A Ñé}(xêÏ©.ÞÎI‚¢K²3Y”ˆÈòTÁ²Ž2·„G?ž˜S¸S ‰Ž’ DÄÛŸót9IP"âÕÝZ1IPB´/X  JDyUp®(IPBtòœ3MPB⣻‡¸K€] ¶s+”%"¶ÞÉ ç«tnU?«JH|ô€£Á½9ÕÍï/’ŸDÄ«§eK~[7 -ùID,}öEyJ@ˆÞ¯g±¸7§ú)žë´¸7'ús²€²ÅÍ êæã`$>‰ˆw„Š=Ñø$#Ž®¾°Ä'1¥ }æGI|¢÷‹ýÇl†¹¢ŸDD—‡§g&—Ä'!:ùŒT‰O"‚G¨h|[?¾¾¥Ä'!ºúDŸDÄÖe`XR¦O1}Öø$"¶.vzh|[—ì¿K£fðhk¥ñIDd9gµ‰OBtµW·ŸDD‘±xg¯Ä'Ñä›^׿+N©óŠ€=.8x Š— +Ç|¿ŽÏkœÌ¸Ä‰¼}5ß_ÆŸWêYq¡,ƒ>O¸”q î÷°üÅâÕ/V\üBH´¸¼£7"ÓÕ𜾠ã‹(Hå÷4#*-âOu€h•‰V#KlÀ[|#M^‡±Ò@ð6Úw¶ÁG¬]G¬ÓRRðÄΈAÓSað8µƼÑÑÁ‹´@³ .ƒ·½Cð"-ðæˆ’™(9Áƒƒ‘xQ›eDâ³Ðg§Ëa¨) 0 ÷‘i‰/ÀD{˜haO -å ç3€À Î0üˆ^™è5#lc\Û óÃßå!1ÁWvª´D Û‚®9hž˜¸>¥®@¬H´°vmc†m̰ƑwþĈT™H5¹1‘[$Jg¢ôHð»îRRD1nbbD‚¯¹v]so ëQÁ¿\¿~¹ÎÂ~…–ú€ù^Fðbý0kˆ’˜(é"z z$êÃD}¾NŒÊĨ¾Ëß%/¦+x1ñ"ð®j|ø ü]æõ]f8 çuþ¢…ýˆ÷Ó®ìy]Ù¼ /—>q@F¬pLãÒó:z„ˆÐfKÿ™ˆü\Ä ÄŒUlþl‰ˆ >êë:ê¼°<ô둾K¿¾ËŸ2®Oá¨Ç»Ã ÷1ÎÄ Ÿ2¯OYáw UŽŒ/qÂÇ› 11#AÁ­>á ‰ˆv=ý"F ÆE¬@¬HŒ°ãÚ¾mh÷¥3DŠU޼i "]Û(…‰Rþ>¥\ŸBw:rˆD DŠD Ûh×6ZD¾ˆˆ~á»´ë»ôpÔãoû+Äßv\ßv„ï2®ï2žŽkOg8bó:b+l#´û2{ˆ½ÒñXD¤q++åa"ô¢e†1õ"Â~”k?èn™c­Nð"b\Ÿ2z z$f8bó:b+lc…mîñùZ@P;çCˆ‘è¸>…ï§1Pg-¯†ÐÊWH†”Gèá䫇#o;‰Xù«D gr½Îdøƒ@PØß°#>%þr•{žþ† ˆˆr|/Œ ‡§ð«ÁWC½®†JËPÂXf ¨7ïïñhg¨:Ôoð·[Hä@䋟RîOé葨•‰Zÿö£^ûÑÃw‰Jxú•¯§_òfŽ‰ë»Œ°X]4Zh_5ƒ3vèè‘ >P¾žÂÉ:L\ûÁw©¸0£Î«#"V(¿D„O‰5L§É0 ‰ð)õú® úUðòä0þˆˆxÍ ~äãöàÖ#.`®ã˜¸>…¯Û«¿ŸC_=_}u¥@D»¶ñ Dø¶±¦ãø>GÄŸë1^À&­#ÑÑ."ÓøË…§ ùzª “¼˜è‘ çc>¯îiÍ«§5ù>¯s}†{á¼î…“ŸKùhE zb¢§¯ãab<¾K¬¤'÷‘}3|ÛØr`;Œ™5bñ3%{_•׳‹_#j j$JØØš®p/\×½p…;ݺît+œë:?V8?Öu~¬pÔ×uÔW8êq1ö¢æ`-4$F ¸*¼|,ŒÏBbbE‚ZBŸ¥D D½‰°õÚ¶Ñ®mPEïóë ŠÞ×ÊC"l£_Û «ÒW~b†ï2¯ï²ÂwYá»$ …9]@ð/—®_.q½îcî ¾©¯†D ĵ§ô¼ÐÇfAï^}‘ Zø”øÛ¾³‰#3ó"VØÐ7•µÏ€È±’…˜˜˜±±"Á¿\ K!À æÊ‘Ã6òµˆr5|—z}—¶1®müœ ·€>÷ª?|A$Â1 ÕE OÊõTAÆ 21"‘Ã6òµ j|þTùtð¯993lc^Ûà£~½{•õä˜è‘ öåŠ#ӥ̀¨±Í–QÖD„êSÆ?¿K ߥ^ߥ†ûi½î§•Ÿ¡øL˜¯-áx´pÿh×ý£qÿÅ—L¢"Þ-[h£ÚÕFqÄ=,_·qlÐ/5õ"Â~Œk?ø®}õÕe&!áÛöp?í×ý´‡k¿_×~ç'о8ÜVư±"¼Òᥠ*¯†j‡~Õ=þãAo#}õž/k‘&Òs33ô„Äg±AO¿|ö;5ìG½öƒFwøj Zø”v}J ß%Ö–áÝ|¹ÞÍ˲uL\Ÿ2§ŒëSø^8®{áWÔ¸®¨®—-¯³U‰ˆG}RxÎ"l#ÓZÂyµ„3\Q1¨CgFú Çt^ÇtñÓ@F ÄĈDÛˆ-á ½¤uõ’0óù@ðÿz'^Âïr½ñ–ÙˆD„óCÖ‘uÂו‚ê _8‰ˆ z£é3é€èáSúõ)ô<¹^o¼+‡‹Ã  ¨òUÈXàû‡Ì"Å_¿†q°õ[Cÿ¥^ý—ßDP¨^} ™CDŽ=¾{•®Ø«b¯Ò{¥Kgª>Ysˆ¯9Y╈xžn|m@ øÛ–ëÛ~¾îë¡ÑÃ6úµ >ƒÊuÕð]êõ]*?ûôec g(W0–®ŸÇD»ˆˆkOilO¡¼:G˜ˆøm?Sòù¾@Pÿ¦‡8AïÄ}m è©ÂÐ¥ëPzZ’êDoEk¨ƒêUÉb£DÄï2Â1×1åP«t…Z¥H•®@*]4 ˆÇŽÊlD'|v¢áyP»žµpe·ëÊn¡—Ô®^’,ªMD¨×[¨ÛU9ʲsNø2t_O’ ËNùwÿ FŠQIôלԖT‘‡ßg‚.ýI# þÔBêO_Ï]·øyÒzb•D#q¦ÍB4²WNø^þ¦H¤ú®5ÿ‡‘Ö»däDzëª~"íµÄv4‘ÿ»Ï MˆÑóà›Î5Òö=fä™-!AòcÌWIþggÐß’ü}"€¿%ùk’¿%øoöŒû"Éoùí þèäÞ¿¼÷E’Ÿ'ùy¿Uò[ þ|ÈŸ¼obû"É/™ü’ƒß&ùmVò'ïßÛP»/’üÒÉ/=ø=“ßsðç$òþ½SÜI~}ȯOð{'¿÷à¯Lþâý{oyî‹$¿Vòk þxÈOðW'ñþ½©û"ɯ“ü:ƒ?*ùƒ÷ozl•àRI>ÖG*ÉÇúH%ùX©?S}¤’|¬T’õ‘Jò±>R ~¡úH%ùX©$ë#•äc}¤üJõ‘Jò±>RI>ÖG*ÉÇúH%øê#•äc}¤’|¬T’õ‘Jð;ÕG*ÉÇúH%ùX©P}¤’|¬T’õ‘JòÇ$ðþMï˜K¦ÒSƒõ‘Jò±>RI>ÖG*Á_T©$ë#•äc}¤’|¬Tš¿ƒ— >:’|¨Ž$ê£#ɇúèHðÖGG’_ ùµ¿/òû þjä/Þ¿ŒõÑ‘ä×A~Á…üQ‚¿ù‹÷¯`}t$ù-‘ßRðÇ ðþU¬Ž$?/òó ~kä·ü™ÈŸ¼ ë£#É/…üR‚ßùm6ò'ï_ÇúèHòË ¿Œà÷B~/ÁŸ‹üÉû7°>:’üšÈ¯)ø}ßGðW!ñþM¬Ž$ê£#ɇúèHò¡>:ü…õё䷇üötò©>Ò˜+óU’õÑ‘äC}t$ùP ~ÂúèHòK&¿äà·I~›ÁŸ•üÉû—±>:’üÒÉ/=ø=“ßsðç$òþ¬Ž$¿>ä×'ø½“ß{ðW&ñþU¬Ž$¿Vòk þxÈOðW'ñþ5¬Ž$¿Nòë þ¨äÞ¿ŽõÑ‘äçN~îÁo™ü–ƒ?&ùƒ÷o`}t$ùå!¿<ÁoüÖƒõÑ‘àO¬Ž$ê£#ɇúèHò¡>:üEõ‘Jò±>RI>ÖG*ÉÇúH¥ûù¡úH%ùX©$ë#•äc}¤üDõ‘Jò±>RI>ÖG*ÉÇúH%ø™ê#•äc}¤’|¬T‚_¨>RI>ÖG*ÉÇúH%ùX©¿R}¤’|¬T’õ‘Jò±>R ~£úH%ùX©$ë#•äc}¤üNõ‘Jò±>RI>ÖG*ÉÇúH%øïb=î‹$¿6òk >ÖG*ÉÇúH%ø“ê#•äc}¤’|¬T‚¿¨>RI>ÖG*ÉÇúH%ùX©t_ÂÓÌWI>ÖG*ÉÇúH%ùX©?Q}¤’|¬T’õ‘Jò±>R ~¦úH%ùX©$ë#•äc}¤üBõ‘Jò±>RI>ÖG*ÉÇúH%ø•ê#•äc}¤’|¬T‚ߨ>RI>ÖG*ÉÇúH%ùX©¿S}¤’|¬T’õ‘Jòg&òþ=È}‘äc}¤’|¬T’õ‘Jð'ÕG*ÉÇúH%ùX©$ë#•à/ªT’õ‘Jò±>RI>ÖG*ݯÕG*ÉÇúH%ùX©$ë#•à'ªT’õ‘Jò±>R ~¦úH%ùX©$ë#•äc}¤üBõ‘Jò±>RI>ÖG*ÉÇúH%ø•ê#•äc}¤’|¬T’õ‘JðÕG*ÉÇúH%ùX©$ë#•àwªT’õ‘JòG"¤à¯AþâýT©$ë#•äc}¤üIõ‘Jò±>RI>ÖG*ÉÇúH%ø‹ê#•äc}¤’|¬T’õ‘J÷%Ï|•äc}¤’|¬T’õ‘JðÕG*ÉÇúH%ùX©$ë#•àgªT’õ‘Jò±>RI>ÖG*Á/T©$ë#•äc}¤üJõ‘Jò±>RI>ÖG*ÉÇúH%øê#•äc}¤’|¬T’õ‘Jð;ÕG*É/•üRƒßòû|¬T‚?¨>RI>ÖG*ÉÇúH%ùX©R}¤’|¬T’õ‘Jò±>R þ¢úH%ùX©$ë#•äc}¤ÒýþP}¤’|¬T’õ‘JðÕG*ÉÇúH%ùX©$ë#•àgªT’õ‘Jò±>RI>ÖG*Á/T©$ë#•äc}¤’|¬T‚_©>RI>ÖG*ÉÇúH%ùX©¿Q}¤’|¬T’õ‘Jò±>R þ›»è¾Hòë"¿®àc}¤üAõ‘Jò±>RI>ÖG*ÉÇúH%ø“ê#•äc}¤’|¬T’õ‘JðÕG*ÉÇúH%ùX©$ë#•îK£ù*ÉÇúH%ùX©$ë#•à'ªT’õ‘Jò±>RI>ÖG*ÁÏT©$ë#•äc}¤üBõ‘Jò±>RI>ÖG*ÉÇúH%ø•ê#•äc}¤’|¬T’õ‘JðÕG*ÉÇúH%ùX©$vò'ï߻؂û"ÉÇúH%ùX©$ë#•àªT’õ‘Jò±>RI>ÖG*ÁŸT©$ë#•äc}¤’|¬T‚¿¨>RI>ÖG*ÉÇúH¥û{À?ìŸJò±>RI>ÖG*ÉÇúH%ø‰ê#•äc}¤’|¬T’õ‘Jð3ÕG*ÉÇúH%ùX©$ë#•àªT’õ‘Jò±>RI>ÖG*Á¯T©$ë#•äc}¤’|¬T‚ߨ>RI>ÖG*ÉüÁû÷fyº/’|¬T’õ‘Jò±>R þ úH%ùX©$ë#•äc}¤üIõ‘Jò±>RI>ÖG*ÉÇúH%ø‹ê#•äc}¤’|¬T’õ‘J÷%3Ô|•äc}¤’|¬T’õ‘JðÕG*ÉÇúH%ùX©?S}¤’|¬T’õ‘Jò±>R ~¡úH%ùX©$ë#•äc}¤üJõ‘Jò±>RI>ÖG*ÉÇúH%øê#•ä—I~™Áï•ü^ƒõ‘Jð;ÕG*ÉÇúH%ùX©$ë#•àªT’õ‘Jò±>RI>ÖG*ÁŸT©$ë#•äc}¤üEõ‘Jò±>RI>ÖG*ÉÇúH¥ù;ê£#ɇúèHò¡>:’|¨Ž?a}t$ùe_Fð{!¿—àÏEþäýËXI~Mä×ü>Èï#ø«¿xÿ ÖGG’_ùµ$òG þä/Þ¿ŠõÑ‘ä×E~]ÁüÁû×°>:’ü<ÈÏ#ø­ßJð¡>:üŽõÑ‘äC}t$ùPiþ÷× ³JéGØõ³Y§?Uÿ³QA?{kñ“^ÕÏÎ\*C2oýŸ¤ke¼7âò–K{©Œü<ý/OúË÷×ÛøþFÞÑn9n$=?؈üå[ üEþ“])õÍþ\úù]¶ã?ÿôÏÿúçâùíOûó}ûÛ¿ì ýõÛÿ~£eWö²%mH¢hûöÿýí?¾ý¦÷¾×ùðq ùàý(éûùÀßÿýÏò/?<øî€ÀwO¾{ðý“€°æÌYãæGkΨÿã5gΪ8?^sæ?^s×L’5gþúOÿÈt›endstream endobj 873 0 obj << /Filter /FlateDecode /Length 705 >> stream xÚ…UÛŽÚ0}ç+,žuc|ɪR©UKÕ•*mÛ<ìªíKX@ „B"@Uÿ½{;,l…ŒÇ3ã™3g›‘aäSáü>ï &RÎé(IÉŸ12A2–R.F$/È y@Eqe ÞÅJ­7‹0’YLA6â·Fëâ ®Ìü¥)ke^mKõ?G§9¨šÛvÖ ´ûðW~;˜ ɈŽR‘F"9¤’¥I¾„xÚ5’Ró£’§kõ׿PÚ½—U(²àà\a'êôºÖk-N‹¡#o02žÿÒØ¶Ó d(Í ð7‹½Yx¡@\ÎÑÂ-pûC4=ZìÔÔ™dÝBcN‡±4…¾ £DÈ` (Ô€t?YÂÔÅ>¡ªRJ«1s.\€m;©ÄJw<í¤*®RÓÆaLo”27èkÜU¡Ü;Nçô S x)±ÐG§>]VÏ0[éT[³tª±º* «èÆ GKÖþé°”–^©ãŸdü"MXô;qß­T/æ>‚ï_.Ó¶×®Ÿuò ã›´pØ<{¬ ðÄ×÷±ÈÝçh{ĹA]¿ÃáßKø¼C]b–ÚAÜa ƒîea0}W#u§úærLêõÿœéõ5¦õrl&zÆy…ˆØ*ŸŠ;<¥¥W¥ ‘w¿Ð:ûÁo¼ðã_ù:Û¦˜Ñ–¸=ãÓRÑ÷NOû |Ì{\ ŒðöúRÐL2[÷~÷hÆSãà$m°»P1ø¼–Œ|¨z_ÕÏ·>‘ y±õä_÷\¦t˜ÆDp¦œcÃÍk_4;wÇKþ:ŒâX>{Öpg7H™½žüס=*µ¹™÷îeØ;{Û·q+Œ‡úNah¬6î%XºT€w¥^1 ê+Ï@KÔÿfÂE À$£2ÅÛ[®³^þß{¼yendstream endobj 874 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 875 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-emaMultiplePlot.pdf) /PTEX.InfoDict 627 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 629 0 R >> /ExtGState << >> /Font << /F2 628 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 16064 >> stream xœ½Í®-9rç÷)öÐè(Éü#§-؆Ø°Ü h`x$ÛƒF—¹~}3b­EF°î­ê¤['rçÎÍ$#ßb0Ëç>åóÇÏ¿~ûÇÏ¿~ޝãøÔ÷þ:ÏÏuV³ÊÑ¿Êýù?ÿëóOŸñƒ®öu½:ê|ίûÝŽúÛ?ÿ·ÿô»ÏßýþÛñÕÛ5Îú<¯»·Ïïÿ¿¾÷çÿ~ûïÿãs|þç·òù‡ñÿüVüËÿó·§|õës^·õÓ·§~Ýísžýë¸>ú6¾®Öa>_•f{>g—T̲ƒ‹}f˜Ï×eׯÖÍ|¿;øùzO˜ï1Ìqå™íëß{Ž«½‡ù_õñÏž'Ì~¸9>3Ìñ —_Uͬ_¥ùUµf«~—›××k__Å.ÃÎ>¿?óóuØÁã¯æ3¾÷:¾N¿Œ÷ë´ïm_ÍÍŽŸß¾Ji?ÿ*£m‡Ùޝ{|UüüV¾Êåæø7­qÆ™_7Oÿùãš»öòŸ]_× ³7ÿìk?°Ý_ÏøÞË[p˜7θG·{›ÿüá½N˜öóq‡Ù¿.kÉ÷«Û÷öã«~Í×óÅ÷zkôŠŸöûé?ÿÒazß·Ê?{y߸:Z£ßÞ8÷¸s~ª×~0íçß÷·7ïÏa-8Ìî}ct>ïfôƹÇýµÏ–£øï_võ¸›ý¶ua_ðŸÞ?†ííUŽË[è—ÿã°Î÷x+¬Ï¿ÞGÆñíu»y'±Þßh[3«?­‡•1x¬%Æåûo-¥xSŒãËAÛ:Êã§5»zOÇ¿ÝíÓÛjïöæ×SoÚÞ>ÿxo¹ÇÏì´­»Œ¶öñPÊ‹þÒu¾Žö8¬Ñ‡]´Çæ6»ÕÕƒJõÞ1ï{©ft%ÿþzy{Ü£Älka÷âöíý&Ú×{àü·×}£·—@¬=î £½XP¸Ün¶wžݲœþCÌ_üúÇP÷öz0 ʈÞÝn«Ù'úÏ‹A^F,ðþóò÷ »ÇïÑÀÛ«`¬–1x¼=^ Öbàðö{Ú>ŠÔ^#0ëÛÊøÖ^ã?·Ÿÿb=Ø>׌²è× ³èßâìy Д1\­½F³zÀ+"í°œ¡vþz!Ö.›Áöfÿ¶µ×hæîç»nOëf3Þ2¢–›÷âý¸qÇm|ýüãF_x. ݈¹Ë ;ºîï¨[ÛçFØÝ¿wØÖ^ÃöàQn^FÞ¾"ïFø=B¯ »JÛúϦþø(ã©fí5>ï!²<ˆ¾6 +mk1Œ*lÄß1Ì<Ò•x„ ´×°­½–¼lÄàaÿ¾Aø¸ígöþ3”?Ëx¾Y{0vàxÄáac|¾ˆë¢/>öGç÷P\G¼./íÑ^æ?ý~¼ŒƒíѸŽŽñùz8®ãáÐe†3í=žt§}ÿF~šÇc³¯—v·ã Û³y<Ÿ÷x\Ç#ýuØ£½êøšŸ÷x\Çi_šÎj:¿žæñ¸ŽÓòû<×qÚ£yà«ö4óó÷‚öݦÑöö˜6âñlïŽxí÷£ãxÄãq¿üAXÐçx ¡ÿuÄãy¿:âñ1Æ/ü ý‡÷¿ˆÇÑöþÃï¯âñ°}ÚUÄãñØ:d{ÿé˜yÔñXý¿ˆÇã1âýÁlO/æmõ@<ãáÄç½ãÏñPÄcõg³_\¯?ßjA<Öï­¥ ÿ°}ÍöþsbR‹Çc»? Ÿ¿ÐŒG³Ù®îöþSÑþÕbsÿÛãqÅm…mýgØ'ÎßÑ^¶O=ÐÆõÚÖæùjÅxšö‰þÃþm¶÷ŸãµVÇsüÔˆ Æg÷ßSÇmô)¨ÙÞM׃x¼¿œ~þñxöŸñxÙŒÇý×ìŽþðâü ýçàý¾=…1›ñ¸ÚÇ`{<>ñ<®ãñÅþ=žwÖ^ÃFÿ¿¿ëÅxQy@½116úÛ™±’zcj¬,Êl&þ<®6q9Öì¿Þ˜k _oLm–~Ѷø£\¢>²‡Ñÿ/Úž>Üì?æÇJ'êƒùñhæŸÇüøòD¶ÏÞŸñüãüãÙp>ÌÇñŸÍöù ç›õéi>h¶ÏÄëúr~Ìx__ÎOþž—óc¦f¿a¾]ÇóÏ烜/×—óã†ùšÙ=Ìÿë‹xl¹®ÿÞñxظÞa[{fÄýmˆÇšŸÛƒËÚcÜF܆x<OC<Ýí3TžOÌkãüøÀ|ÏlÎ;üœ3Y²ÀeýǦi•¶÷Ÿ®ëAç›òQä!ßõÄíðñéÏÇG×_žèµO-P{~ÎxíøZŒÆªÇcÆ{û-Œ;±Çãq?½}/ò æ×æðö`¾löòcû=w¥íñ§b~cén+¿5‡?Ÿ^ÄWû"G[Á~ñûпnÄc‘!»1Þ^•¿÷f<&ÏðD¼®xã<öŸñX¼ÀûñÒóQÜÏâ!~ãB~î+Ä7ëØÞ˜ï{Ç®¡ýÆcòóyr{<ˆÇëûÏ9Ðfü>_òŠñø|E¿Ì~²kýg\Ö-»·0Þ^Æã‹ñóe<®ì/âño/âñø~Ä«÷U{¡ýÞ®ñ„ñØÅOÌ~žâñŒ žÜn’½_˜ñ½<à$ŠÓнW¤‹½ûÝZì&YЉg‹Øû‰©Ø;g–bï(½;™'{ç4‰ìý¼xf²÷ (öÎ9-ÙûÉ)ÙûÜŽµÉÞG@ìÝÒ‡ídï/†ÙûɧÙûIEö¤·ØûÔFìýÀH{/¸Gdïâ|bïÄ´bïQHì½ “‹½WŒY±÷Š)ö~""’½Ûsýx^]ÌÉÞíqä&³ ª dï¦+Ñ|ÁzÁNÄÞ<‹&{/˜ëLö^ÉbÅÞÙ™&{‹:泪]ŸÀÞ/²j±÷‹lŒì}Œõ»~{·g[dï;ÜOönsýöYìýæ\Mì}Ø`QdïÃÆõ.öþ´O`ï¬ZìýkŸ¹Eì}\ؔػX«ØûMKö~_xvнÛ#¬¾ª½ÀÚê|VA[{'™ì],J콊¥óYvò~‰½Ÿˆ¥“½‹]‰½Ÿl±w²ÉÞÅ‚ÅÞùìšìý³n²÷[ìþÒ³ZØ»X(ÙûM0Ùû ö önÏnØ]¹Úì}²z±÷Ö"önS$??Ù»i!²$1|Ùû¥ûCö~Ië {¿È²&{ïdÏbïÏF±wc~¿ÄÞ9œì]ýëžbg¿>‹½¬•ìÝMØŒ¹O÷ ºgdïã6’ý3ìÔÈÞG7Àø"{SøæíGö>ºú Ùûè–],ÞúO=1w{·ìÑwt{°²wKQÀΫîÙ»!½ó³Ø»!@ÿ=dïcB{!{7d(Ö^ÈBËg±wcM`åÈ- ŸbïÆ²Êg²wKù õ€½[JXÁÒŠGCÿ{7V‹ñ ön)(´4°wKYOÁÞýöÏdï–#^‚½›í¹.Ù»¥ÌÐöÄÞ;r¥ÉÞÛì½?¼ßdï]ã‘ì½KK!{ïŠ?dï† Êg±w±×ÉÞ µ±w=ÄÞOþ^°wg«~=`ïv=èï`ïŽpü vú`îKö^Ç3î¾?“½Ûïåñ/Xsc{·öË{7lCì¹ødï‡Ø8ÙûA¶"ö^ÈÆÈÞM €x<þLVx|Ü:â±±üÈÞí±›ìýÙØûÃë{ÈrÁÞq\ŸÉÞ‰€­#'¿ìÝ®¬ìÝûŽG<¿lMì]ìX콑…‰½K+ {ïœ ‹½wŽÇÉÞoþ±w.Șìý&ë{¿Ù^½ãü·úÏ…ó¿Ð"±ùWý§‚­7ôµ'Ø»]?´°w³á{¯˜DMöníA¶^1ž:ž“½sEÉdïœ"NöÎ\d²÷Šø*ön,ÿùö~±’½›ÖxlñůŸì}ôgCbïÖŸüüdï¯ÀÆÁz±l²÷aß`íˆÇs{±wC`õ³Ø{áüPì½Hë!{/œˆ½x ­€ì}t#h d€¥’½×Šx*önÓ"xlÓ °sÄãªûKö^źÉÞ«´ ²wiÝbï§Ø'Ùû9Ù9âñ¸­ø>²÷ñüÅï'{·çsdïöü ÇüØ²ó³Ø»-9òûAönóدÖàþ‹½¼dðý]y´ ²÷KíEön¬Øï;Y´²÷qÛp}dï·âØ»â…Ø{Á’©ÉÞ+æ7bïã¶8ßb=×g±÷ûbü"{¿ïŸ±w|^ì]ý]ì}?YOk'ûòçïdïµK±÷‹¿¯MÖóFönóe|_×Â&ôG²÷ùûÉÞo.{7Ä6OöÎùÍdïÔÎÅÞÇù¡‘½ßÒRÉÞí÷>ŸÅÞï‡ÚÙûÍùˆØûÝÅÞEŸÅÞ5OÖöIöþPë{·ilÌmZ†Ïƒõ½w¶/ÙûhO´ÙûÃì^ìÝî·xü0>Mö~‘Mн3ìý"+#{ÇÂÓÅÞX{v…ÿÒÚ8bï†lßObïü¾GkãxþWkã:ü]ìôÍü¼‰µ3?¿ÅâÉš¡…½ßb§dïÊÅÞŸÅÞí±ÖŽx|ÓLö^8~ÄÞ+Ù¸Ø;µûÉÞ«®w²w|^ì½fönß6O^QȆÉÞoæbï7µøÉÞ§Ÿñ˜ko&{¯bïùÌdï\k5Ù{¥6!ö®û/ö^9¾ÄÞ+æ‹“½s•ìdïñi²wÆÓÉÞ™oLö^ÙÅÞÕß{ÇñbïÔªÅÞÝ·Ïbï÷%Îx|³¿½ß\û%ö~s¾"öný ¬þÑZÓGv«¡?нS‹žìýË&¯x9þÉÞoiŸdïÆ¯êg±÷›ó¥ÉÞɳ&{— öÞø{ÅÞµC±÷—ñLìùÕdï“íOöŽx.öþðzÄÞ<ÿ'{§6-ö.6ÙûÅûEö>µ ²÷©½½ß§Xþ;µ,¿~²÷›Zÿïm}\"ÿ=ÿËKäÓ üŸ¾]†.Ù’m ï3 ¾™óèßëÝ'Ø?q}¿uKÿŸŸû}"Bsùí¹1ÐòÓ ~ˆuÓOínùñ…Ó¿¾ÿw`sýóŸ¿Ó\þçùö·ÿ±~Êçÿ Íþùÿ×mƒð¯'øãýá§Ï¿ëíßþðÇoÿá~ê¿à³öLƒÝ?Ûëg-zý³å8~ë‡í©xòÃ凯:§¿Áð—†Zìã¿ÿÝßë㿹ˆã1þ{(¯vüóý¾Zü©³~h«7ŽÛ[n ëØáKù}y& xeæ°ÃœÌ#4-Gt$ÒóØáˆ} pÜýx$p þx(ð€°úyKûþÍ›Å<<èWŠy~éT¡\޻ʘÚ:Úþóâ±]‚¢™(Èñ™¼LDÍ„ÜèÏÇ—îõÇ‚™>íÄôÒaçû‘ h¦?” (º,T«üâ{!(øôÅñ³p*Šæ=i޾V§ rBAô‡1κECš2Ç£Ó¼y!(š×3ŠvfŸ˜APtœêžçæ=V1Oi*¹ñI»±Q˜>'7óZÅë4‚¢]†OÖ (:ò]ÅKS ô º]oÅA7Î^ƒ höEãì-ŠÆÙ[(æ1ŽŽâŠæg±ŒÃ ˆ°&Ü㣘Û>û8)ÀAP´ãÑŸ!(Úù P@P´ßO{ø)`Ûâm’Ú£ñ÷@P4]ÅG sfS À6€+ÛÛ«qô/Šf£8‚¢_Šƒ<ìÚçOÙßbЦS`EÓ5П!(š¿I`4A¨H€‚ hvÝ~?SPôß‹ãoôŸ–Eó7÷°½h7´Ç´;Ú£Q0‡ h×÷AѾ.EÓUŸ (šƒþÌbžÂGšŠy ¿ŠyŠŠÓXÌSïX̳lóØ÷ázPÌ3‹ŸXÌc׋bó˜ Å<å¥ JA±¼ø (ZñGŠå• A±ç@Pœý…‚â¡øÔ;‹ÃÚŒÇÔ!(Z¼@‡ hŽÅ<O:ãqåøé3OûE¼¢ ‰¹ëqð~vÆcµ_g<~“ èÿ`éÁÎ÷A1Ù¹`ƒ‚¢Çw÷ fj²ýùu¨8ñ¸Q`§ ÈÛ8E¿ð#7 ‚}A³ãYÎÙEkv,–‡ 8ŸÇ½ýŽÏýy…b›íÁç-Eû<¾‚¢ýjŠÞ¾(zÐ^ZL^f<†HAñ`± EkßEKlêg Šî÷률ˆÄg ŠþüŠ‚âQ$ø]è?Šqnô Šþ<¿>SP´ßOÁ“_û¼Š{:® EïÏ(¦)z>¡x…‚âqª8‡ñ˜‹)(Úm†€ AÑãCÆã®âÆãi3O“ñøN‚¢?o ",ö£ h6VŠvüEC€<ñüR{\3£‚¢u#~ñØâQ­›@€‚ h~@P¬ZÀAAÑý*îñx|ñþߌÇ,–¥ h6ŠnÆcµïÍx<‹{;ßÍxÜX AÑü¸_«qÿPÌc6®ÿf<îÀÆã—ý‚¢êSg{ X‡ñX  (ú0èŸ)(VÏRP´ï‡ A‘Ãd Šæƒ hÿ‚b­Û‚¢ üŠ6¬(èaÇ&° (Ú°@±E³Ñ? (Öªö€ hŸ¿Ëg Š>ì`cGå|”‚¢ ›E³ñû (V­I¥ hÄ~tfw ŒÖN>¯((Ú°yB1Ùèoýü°ýÄ> !Hz<®ZÀEAÑ>‚bÓNœ‚¢}?KŠæ¿TÜcýgØX Aц-ÆEÖå3Åzª¸ ‚¢‡œ <´þ•‚¢‡\â±A€ÄüØV—B C@AÑûü§ú>Švÿ»Fï?E~Äcóã|ˆÇÃ>B1ÝŸ+óx˜‚âìŸízú™‚¢…å'ŠU ‰)(zؽ>SP´0 €AÑÂì#±âx:ýxø/Î7((Zû¢½ (&›ý‡6âñ%‚¢‡yÙÞ8ÿI\6âq´­ÿ˜ ŠyÌF±E{ @ † h ”ˆÇ–6ùç!(šþAÑ¡˜§NA‚¢…mã ß„aÍÏó!› AÐy†…ùEóCÀ èÇCàD<~XìNA±ª¸‘‚¢=†0>¡¬™ý‚bUqE?FÄcÓåðyŸ(Øcã‚¢Û8ñxØ=Šö˜€`A±>\àFAÑüx (ÚçÑ!(®ã!(ÚñŒ (šÝB1O5ʈbÄãñXB€ h~¢íüˆ7íû!`AP¬sE;žÅ8ˆÇ&H…bëOg(æ±þý–ÏÍñAÑÆîÅ:‹I (ZÿÅx„ hÓ gÜ|SPôi ;Äc»ÍAPôx ñxÿ€g\ÅXíó  ñX â)(ú4ǃg<ì (ÖYüAÑÇG(æ±óã÷BP4?Ú‚¢Ù Å:ˆÇ·úEÿ~‚ˆÇÏ)Añø!º¦ lÄãhûx"¾¥ h¶ç_.æ±l|ܽÅޙŊ½¿³¶ÇÙûƒE¾bï¥Ø; ¥Ø;+ÄÞ¹ÀAìý™Õ;•g.ŸÅÞ¹zv±wy²÷"²÷÷Å<ö‹<°‘½¿ä„dï/×’½¿¤Lbï ŠbïA=ÙûMZìQì œØ;¸‰½W<>ÄÞI‹ÅÞOLÞÅÞ¹ù—Øû‰Ð&öΙØû…‰Øû…q.öÎu‹½û,Jì«hÄÞõY²w"i±÷ =z±÷7³wÄÅÞ/\³ØûÑ#öÎd_ìý&»{çÆ!“½kñ>Ù{ë {oœk‹½–áFX`﹉Ø{ãâj±wÒ‰½,N{?ðc&{/bãdïucï“•OÖ³ØûŠyJgìŒìödï(v{—Ö ö~²x@ìýT±Î!-‚,œ¬gnd5YÙ8ÙûE–+ö~§´Ì~T¼sB[èbñlá i9kûohW{õXH{?™½ƒmƒõtmœs’õhñ<Ø»³l„EÖ£b°w³¡mˆ½:?Ùû¡â!²wm ´Ø;Ú÷œ¬çÅ<ÎÊÁÎÉz ٪ػŠÏÄÞ¹˜}²wÎ…{'›'{¯*Æ!{¯©˜'°²wmŒ%öNÁq²wêd“½sãÉÞµQ—ػƣØûÃb¸{²ž'ó¸­âÇCÛ{g´Ÿì‹'{gá¶ØûÔÈÞ‘½Ò~ÈÞÎeÄÞåûï%{?˜;öÎâ ²÷Îþ¾Ø;Øíbï<~²w²ü.-â iUmT#önZØ7Y´±wnœ2Ù;Nö^¸ñ—Ø»Š“ÄÞU\&ö®ÌÄÞÕÅÞ¹N`ï=n¤UÏÄÞ«6²"ëábãÉÞUŒ'ö~!÷›ìµbïsc3²÷"í‘Å<ãzÐ>,æ9¸¸TÅ<7ÆQ1ÏA±ZÅ<ÖŸÁÖ«Xá‹y¬˜©}&{wÄãÉÞ¹ØOÅ<ö˜êŸÉÞ]ŒÅ<†ÔÃFZ®­£˜ç`±êdïbCbï=óx¼«ŸÀÞ©Uˆ½÷‡¬›ì}Äï'²wû™¡˜‡Í°Ø»5“Šw ´i²}Æc±g²÷>‹oµ1‹Ø{!û^ìl–ì]¯Mö®sÄÞ‹ŠÈÞ+‹9ÀÞí÷€µ‚½—µqW—–vön·Ú€Ø;?*ºvŽbœSZúØûÔz{Gñ‡ØûC–&öþ¤´Ø{çÆˆ“½kc"±wÝO°÷¢b2²÷©í½Oí›ìÝúÚWì=NöÎâÅÉÞ 7{¯:ÿ«ç´±wæf“½ŸÚȪh<ݲ_­Fì{ÝNö~©çÒó íMön Ç?ÒÒßÈÞõ|{·çŽŸZ(Úï^ñ8l¤eÝšeÍx ¶)ö®þ/öÎñ?Ù{e{ˆ½Ÿi#-`ídïÙù=µÐ.Ö~@[¸C1³°lÆcnœ2Ù»ŠÅ{¯¡˜Çì'²÷•0“½¿ú&ö~2{7mì¬çäø{?»6Æ"{g<›ì]ìQìÏ“ÉÞ‹ÎOö^R1‡©çØ»Š ÄÞ+Ù<ÙûÅbt±w {í³ØûÅüq²÷®â²÷N¶%öÞÈFÅÞ™ßLöÎâ¨ÉÞ¹v%°w°#±wùÅÞņÈÞ-¬ûõ’½ŸZlOö~òù!ö>ìŠy¼½qü£ö(²;Ú,Mì]Å!bïÜ6}²÷ªb²÷J–*ö.mFìýLÅÜàæÃí `>ÔÒ!`>œC¿|¸ òåÃUyP/瑞&ØovUÔJ5H—*(—7F‡pù0»„n)ݲåòc¨–óRˆ–šeA³4Ôà>Ÿ+ØŒjU =Ì× X¾ÜZzåKö ¹òå*'¨•/7ÉXù2«Ö˜ÃCªl\­¥Ò¦K¨l\©²qc2È”Á¿¶1Ï„HÙ¹Å4J›:´$Ê®Wá@¡\¦ñUËãü¥Ÿé=?½®CœâÄɦuåIt”&›”6(“VXu|¦0ùªºä«=Ï Dst‚qóY ã“ü67ô9þ|×$ÉF"IE²åb ·§ÍÛ™äHSsC%]3Ä>‡ßm¾ÄÇY‹n¥È&%Jd“!ÓÁ©C6îACÒ(vûL²«€"d“‡9Ë AFsÜè¡ø§ÏZŸÏÏ÷˜@~ìª\¡ú¨­¶¤>Ü!”êcm¤úh÷wi¼Ý®Gj£Ñ֠>šM5´[+§©>zß@%–xª$€úh ÷ê£w-Uí>ºlÐn p~¬ó8Tõ±¤iTƒ Ú}p+ªe©Xìq\=P‹^#BõÑÕ)5ҞݦÞàó Ý‡*ñ >šö…ú¸®êc™ê(ÔGó× >š«ÆÚýDûA}´ëÁí‡úh6ÚÓ~ûü¶ôßÔGû> b¨v¿ùZ¬þ8¸R–ꣵw¬ü 6€,+@½ê£Ý_lUõ±©ÕPWƒú¸úÔG‹Ü*óžRT¹ƒ… …+¯¨>ZÈ@°€úl¬)¤KT-œA}´H€þõÑìW[Z{T©ŸPËÜjêcVVæ`5H‘ õ±Òaªf× >ÚïaåVƒ©¬ü™íÁʽD•?¦Ž–ÏTí|¸~VþÌûÍÊŸh{ÿaå e#‹T±dŽoVþ”ªJ£Wý‡•C¨ü9´²ž•?Ñöö8´•ÔÇC+·©>*>I},Eê!ÔGUJI}´ñ®J ~­ñKõq¾Uý´sSlj&ÕÝŸ)=öªmýˆƒÐhO)Î3¨;vNÎ(;v®Þ¢êØ^ìxnzù 4G=‡(9.Ó™÷g ŽíT-‘GàÆ€@¹±éµP›Ä!ˆ­ê¥;}›öÍ‚ÔØJzeÏÛ%:H±/ 5>6«Ÿ)3¶S[zܵÅkïgŠŒ&eà‹œ¡Ì«‚ÄhiUóØÏ— ±qm0õÅYJyÃdª‹zîR\\¦GÛÆ2^J‹ë{½W´ž„EÍQ¨+v½²bgí;UÅ>ßæã»ëe3Ðm‚ Éðæî Õ<óÍNµ>Œzâìu›*™ &ÎB5ˆ‰]Z+´ÄFTJ)±IY»ÓÄ•BbÓ&vÐû±ÌÑ7¦Šq¨ADœ#¢ÊÏ)!jnD±*®ñz¾è úaãÞ¿”›*£ ¶)>^œÀá2 6IA×Áš¿¢H ¡–R7l\–FÙ°Iu‚jØ$2C4lÚ0šaӻà ΡŰ½ô ¶šôÂ9œ!6­6€Zh‰‡ wºO…©ÅaþzRÊ„TظÊJ¡æë ›jРÎa…fiœ§P%l,°¦H8ë%¡ÎrLH„MÛµ"˜- °]Ú\¯prhï¿÷˜tªƒøS´‡¦êt6Ñ ! Îv†2ØTDap^$tAå6”_§*Ø_‰zX¤a…èç°Nk © ÚDí÷gcãÕ«z¼KiÁA­?¤عG?å@måJ5°óqM1ÐÚðvJy3?¼2J`¯*’ñ¸iŸu®]7¹GŸÿò^U±ã‰×oeNS!Ê•WÕùv>V±€" Ù-ˆ€öX~CÎ|ÌSôi D:LSm‘WØÑ¯]ÇcsÑ‚vˆ€sZGЦY1MUÁ;E@ËèbŽ‚ ˆ€ÉöiÆ´1M­\PMЦY ÚõqÇ=NS§Íij°¦Ø1" O+q>,h^çÇ4µ0Í£èélmÚ‰á ÚñqG?óCt8§µ-k厀˜¦Víо"#5WlAôãïÏ-G.*¸±þS_‰ˆ]ÍîA,zÛE@Ëf» n¬=..‚¡h6 ¢ šëƒhÙäD@Ëk(À±ì2Š€E…‹ÞÞFÐÏQÓÔ¹h"`¹´#'DÀ2E{ˆ€æg 5[6ã1M=5> öYvŽö‚hÙy8fãú!šÍõ°HîÔÛ_ zö~¦h6Ú "`Ñ»P(½Á„" ¢+DÀàÇ"¹S;6B´óµ°£Ÿ}¾°œÞŽl0‡hç+¡ÇÚ{ÚÞ^ßÐil`Ý!êa‘œÍ–úgŠ€ÌÖ§h6Ú"`™¢5¨O¹/‹än$A´ìýVA޵×üÕ²nŸ‰¬¹ ‘Èš‹¦ˆ¬)QY?,&²V)õÃy õèdý4Ó@Ö/·²~ùô²~9˲~¹¹ µÞ›dýr‚ dý¶ø‚ú—cȺ1BY7hY[vuÓ’l ëÆíf‰¬µ‘uãzB!k-÷²nªæ84å~!²fB@dݸԌȺÝëôÕ'ª@{ES~ÖÝ`Ê©¬Sþ¹ÃÕÍl¸Fd­fY·s•Ô`ÊÏ×ç¼l "k™ÈúRù ¦üÜéBÈú:Ö”Ÿû\]Ìxcˆ¬UIQ5åGKYϺ& ëÆ-ˆ¬-ÏÆe8)is¬N-ƒPSþ®wÃY«Â€Èš‘ugí1‰µ¶!°îLÈ«µØ™¸º‹ƒVwn«"X}Hü¬Ö{8«ùζ «õžÁês½c¾þfXÍ’µ «/–&Vßìç V£[,X X,X­ XÍm9¬ÆÝ¬Ö÷ V_zÍ„Õw(•1›ï¨'¬¾ôÞÂêy<³fùV_*ÍaÀmN&¬¾ôžÂj½\°úDJ`uÛ`5”-Áj ÂêCÛ¾ V æ Vß*!¬–€%XÍ¥ÌV?¼?‚Õܧ]°ÚBŒž°úxµ­`õA2'X}ð¯‚Õs›0Âê£ë=;·ÄÀsÁêƒðY°ºèû˜T½³YÀ„å„ÕE!‹°º¨ÔJ°z¾Ç†°Zï ¬æ¶VßzOaõ­wÐV3—°úRi aµ”¬«Ñ‚Õz¯`µ"°`5ß 3aõ©ÒdE¥‡‚Õáó'Än‹5a5~aua]¬`µJ«‹€¨`µÞAX]ôNdÂê¢Ò†«±4š°º°¬[°ºhÁê.˜ý¨ÿ~# 88 W©Œú¯JeÎzU*sœzÇ;²•ö©T?k1k­$³îÚÌÚfž¡N¦ÏwêxÐ9i!³î—NÕˆžÀ¬;ï™u׊t0k#éÀЕ\/7!³¦$³ÖÎC`ÖíUñ ˜õ³ õø ™õ#8ÞÈžÀaɬõ 2k½¿~1k`h0k.z³¾õrø“\|ÌZß fÝôö"0립fȬµµ™µ¨4™õK°>™õÜw "³nªä³nº¿`Ö6Ý Ìº5•Íx¬mÚA̺©Hl2ë3ÔÀLHý}fÝÉÁ¬mb v\È%ÏȬ»ˆ¶‡Ø¦Í&³&w¾Ù7ÀŽÁ¬­ç„]§ú!„­èÀdÖ* !³ÖИÌúÌšo©$³¶ƒ𱿂¥úbÖ\€/f­½¯È¬;ËÝȬEÿɬµñ™µ™õ+°ÞÙ7p0™µºÊ«5%Ô¹4•u‘YÏ×̓Y«ÈŒÌšûÁŠY«?¿ZsÆ!³æSWÌúfkYë]UmN`ý`2ë`¾“YÏwÊc{‹hß”søY1kÐÿɬ‹¶˜j˜ 㳘Àò %bÖ:3™õÍÆ™Ìš¯v³~"³ž/Ž¿øó‰¿o%78ÕøñÈDã@³¶Ô&¤>î:If­M‚ɬ54ˆ¬[ÏÈúI²o$².¬± ²®, ²ÖŠx"k±"kjŠ Y÷ˆ¬«vv²¦<½50ÍDÖ|'<µ^«1‘õ‘õ<RŸÈ9ˆµv4&°îzÛ8xµ^pF\Ýõþ ÐêNø X}‚Çœ¦êõ+‚Õ.V‚iuNSQDX=Û¬™k*û«ínCX­Ýa'¬ž¯w!¬>XÁsÎ5hdÂêÂ&¬ì¬VE€`5SNÁjMë«‹VÐV[E *TÀø¹{Ô ¸Þ§O߯}ZÆ5#Vs¦!X=lÀXÂê2_íÎijS… `µ­ñÀ÷V—®ŠNS¹ûè„ÕÇ«]/auán[„ÕÖ BÅJ©z] auÕî?„ÕU»‘VWU<VW½®ˆ°Úf€á˜¦žóõ7„ÕÚ=ްúä4Z°ú¼õ*wÂju~ÂêS»“VŸÔX«OU<V¿Ü K°š»kOX­þ,X=ý„Õ^‡CXýp·:ÁjU¼V«ÿV?„í‚Õ*T«5'¬|¬æiÂê[-„Õº_‚ÕL‹&¬ælnÂê;½~ÆÛp˜°Zí-XÍ5W‚Õó÷VË€ X}6ÁhÀêëP…Ê#±£…Ý¢œNÈv±ƒi¹`õu¯W½[ÿ¹t¿ «/Vt V_ÜÝP°úâ‚Õ77¬ž¯"¬¶Š1T¼Üz=aµ^_-Xm“7kÿ¿ZÅ zÏ‚•›Ç?«_É*ñ³«\åñÔò§Yi€{ýù™Û?°– läår›éÅsF^>uÖòûâ…[³ÎfðŸþÖÝé‡üv×KohÆõÿþSVÍüe:—Çë^ÿMï´AÅ*dêo­AôŇŸßúáÛ#ÔV^3ºÜi5#ëß%¡°«}Ø—Ù{F#f7-¼‡Ë¼uý—ݯOÙ¦VôŽŽ¼f-¯Ç”é…µ¼a¦Vô¾-zßtU}¦Öòz†=½°¢÷=¢÷MWåqlzaEooÑÛÓUyŒ›^XÓ ¥I^ZÑÛèíñª DM/¬åõ>:½°¢·Õèméª<®N/¬åõ(;½°¢÷½¢÷MWåxza-¯ó†é…½Ï½Oº*åÓ +zCo§µ¼-övZËÛco§½¡·Óš^(tòÒZÞ{;­è ½ÖòÖØÛi-ï{;­è ½Öò^±·ÓŠÞÐÛi-ï{;­å}bo§½¡·ÓZÞ7övZËÛbo§½¡·ÓZÞ{;­é…’)/­è ½Öò–ØÛi-o½Vô†ÞNkyÏØÛiEoèí´–÷нÖòÞ±·ÓŠÞÐÛi-ï{;­å}co§½¡·ÓZÞ{;­åí±·ÓŠÞÐÛiMoÁ»mä–™ü¡ÃË þ»¼Ì௱ÓËLþÐíeÿ;¾Ìà¿b×—™ü­&Ë×wÇî/3øŸ8d&ÿ{%ÿ›¯ïƒ@fð·8 d&ÿó$ÿ“¯¯Ç¡ 3ùû•üi4PkŸ~šÁ_’üaHÈ þ…Ìà?ã°™üoKþ7_߇†Ìà¿ãà™üï‘üy|`‰Àò?ÛøÀšèÏã‹–ÿÝÆGii|ÐLþ8>hOãƒæòc™ÂôÓLþ8>hIãƒfð×4>h&4ƒÿLãƒfð_i|ÐLþ8>hÿÆÍäãƒfð?i|Ð þ7šÉÇÍàoi|Ð þžÆÍäãƒæòcÉÇôÓ þ’ÆÍäãƒfð×4>h&4ƒÿLãƒfð_i|ÐLþ8>hÿÆÍàÒø ™üq|Ð þ7šÁßÒø ™üq|Ð þžÆÍåÇZ™é§™üq|Ð þ’ÆÍäããÚ2e®ÅYþ-WæÚœåß²e®Õ‰þ<>®”0Ë þ”2ËLþ8>®-kæZ åßòf® Zþ-sæZ¡èÏããJɳÌäããÚòg£{q|\[m´/Ž{Ë¡¹6)úóø¸S-3øS"-3ùãø¸·\šk›–˦6Æñqoù´ý!Ž{˨¹Vjù·œšk§–˪¹–*úóø¸Sb-3ùãø¸·ÜšÛŒ,ÿ–]ÛÚ¬8>î-¿æÚ­èÏããI)¶ÌàOI¶ÌäããÙòl®ýZþ-Ó.OJµe&Ï–ms-Ùòoù6×–EOJ¹eJºe&Ï–wÛ¶+q|<[æmk×âøx¶Ü›kÛ¢?'¥ß2—ÿM ¸ÌäããÝrp®[þ- /oJÃe&ï–‰s­Ýòo¹8×ÞEoJÇeJÈe&ï–“û«&âõmY9_c±ü[^εÑŸÇÇ›Rs™ÁŸ’s™ÉÇÇ»çç-ççmÏÏ[ÎÏÛžŸ·œŸ·=?o9?o{~Þr~Þöü¼åü¼íùyËùyÛóó–óó¶çç-ççmÏÏ[ÎÏÛžŸ·œŸ·=?o9?o{~Þr~Þöü¼åü¼íùyËùyÛóó–óó¶çç=çç}ÏÏ{ÎÏûžŸ÷œŸ÷=?ï9?ï{~Þs~Þ÷ü¼çü¼ïùyÏùyßóóžóó¾çç=çç}ÏÏ{ÎÏûžŸ÷œŸ÷=?ï9?ï{~Þs~Þ÷ü¼çü¼ïùyÏùyßòs®e•_fò‡ñ!3øS~.3øS~.3ùÃøü)?—ü)?—™üÏ“üO¾¾”ŸËLþ~%Ï×—òs™ÁŸòs™ÉßžäoùúR~.3øS~.3ùß–üi|p-ðô—-?çÚàåßòs®Žþ4>|ÿñp}eËÏý]Ï-ù{¾¾”ŸË þ”ŸËLþ~$Ï×—òs™ÁŸòs™ÉÇGÙòs×s¼¾-?ç‚èåßòs®Žþ<>JÊÏe.Mù¹Ìäã£nù¹ï®¯nù¹ý!Žºåç\¥½ü[~ÎeÛË¿åç\Çýy|Ô”ŸË þ”ŸËLþ8>ê–ŸÛ~ëq|Ô-?çÒñåßòs®%þ<>jÊÏe&uËϹü|ù·üÜö{ããÜòsûCç–Ÿs=ûòoù9¸/ÿ–ŸsÅ{ôçñq¦ü\fð§ü\fòÇñqnù¹íÇǹåç\d¿ü[~ÎU÷ÑŸÇÇ™òs™ÉÇǹåç\¨¿ü[~îûÏÇëÛòsßÿüIþ<>®”ŸË þ”ŸËLþ8>®-?g±Àòoù9«–ËÏ}¿ô#ùóø¸R~.3ùãø¸¶üœõ Ë¿åç,XXþ-?gCôçñq¥ü\fð§ü\fòÇñqmù9k$–ËÏY41ý÷–Ÿ³Š"úóø¸S~.3øS~.3ùãø¸·üÜ 3âø¸·üœ…ÑŸÇÇòs™ÁŸòs™ÉÇǽåç,þXþ-?÷ý»ãõmù¹ïoÞ’?;åç2ƒ?åç2“?Ž{ËÏY€2ýÏ–Ÿ³"%úóøxR~.3øS~.3ùãøx¶üœ5/Ë¿åç,‚Yþ-?gULôçññ¤ü\fð§ü\fòÇññlù9ën–ËÏYˆ³ü[~ÎÊœèÏããIù¹ÌäããÙòóú¦ü\fð§ü\fòÇññnù9«ƒ–ËÏY.´ü[~Îú¡èÏããMù¹ÌàOù¹ÌäããÝòsV(-ÿ–Ÿ³d)úóøxS~.3øS~.3ùãøx·ü¼¾)?—¹ü-ççmÏÏ[ÎÏÛžŸ·œŸ·=?o9?o{~Þr~Þöü¼åü¼íùyËùyÛóó–óó¶çç-ççmÏÏ[ÎÏÛžŸ·œŸ·=?o9?o{~Þr~Þöü¼åü¼íùyËùyÛóó–óó¶çç=çç}ÏÏ{ÎÏûžŸ÷œŸ÷=?ï9?ï{~Þs~Þ÷ü¼çü¼ïùyÏùyßóóžóó¾çç=çç}ÏÏ{ÎÏûžŸ÷œŸ÷=?ï9?ï{~Þs~Þ÷ü¼çü¼ïùyÏùyßòsëÉ/3ùÃøü)?—™üqú±åçç‘òs™ÁŸòs™ÉßžäoùúR~.3øS~.3ùß–üo¾¾”ŸË þ”ŸËLþ÷Hþ7__ÊÏe&oÉßóõ¥ü\æò—”ŸËLþ0>dÊÏeÊÏe&2ƒ?åç2ƒ?åç2“ÿ½’ÿÍ×—òs™ÁŸòs™ÉÇGÙòsÖ{.ÿ–Ÿ³4úóø()?—ü)?—™üq|”-??kÊÏeÊÏe&uËÏY”ºü[~Î"Õåßòs­F5åç2“?Žºåç,‚]þ-?gQìòoù9‹d£?šòs™ÁŸòs™ÉÇGÝòó³¦ü\æòŸ)?—™üq|œ[~΢Ýåßòsñ.ÿ–Ÿ³¨7úóø8S~.3ùãø8·üœEÂË¿åç,^þ-?gqôçñq¦ü\fð§ü\fòÇñqnùùy¦ü\fð§ü\fòÇñqnù9‹š§ÿÚòs9GWÊÏeÊÏe&×–Ÿ³ˆzù·üœEÕË¿åç,²Žþ<>®”ŸË þ”ŸËLþ8>®-??¯”ŸË þ”ŸËLþ8>®-?gÑ÷òoù9‹À£?;åç2ƒ?åç2“?Ž{ËÏYd¾ü[~΢óåßòs¡GwÊÏeÊÏe&÷–Ÿ[Q{÷–Ÿ³è=úóø¸S~.3øS~.3ùãø¸·üœEóË¿åçç“òs™ÉÇdzåç,Â_þ-?gQþòoù9‹ô£?'åç2ƒ?åç2“?ŽgËÏÏ'åç2“?ŽgËϹIÀòoù97 Xþ-?ç&ÑŸÇÇ“òs™ÁŸòs™ÉÇdzåçܤ`úß-?ç¦Ë¿åçÜÄ úóøxS~.3ùãøx·üü|S~.3øS~.3ùãøx·üœ›(,ÿ–ŸsS…åßòsn²ýy|¼)?—ü)?—™üq|¼[~ÎM–ÏÏ[ÎÏÛžŸ·œŸ·=?o9?o{~Þr~Þöü¼åü¼íùyËùyÛóó–óó¶çç-ççmÏÏ[ÎÏÛžŸ·œŸ·=?o9?o{~Þr~Þöü¼åü¼íùyËùyÛóó–óó¶çç-ççmÏÏ{ÎÏûžŸ÷œŸ÷=?ï9?ï{~Þs~Þ÷ü¼çü¼ïùyÏùyßóóžóó¾çç=çç}ÏÏ{ÎÏûžŸ÷œŸ÷=?ï9?ï{~Þs~Þ÷ü¼çü¼ïùyÏùyßòóïï²U•¦›`ŸúÕªÓ_YUÿ««‚~EµøÕ¬êWzMÜÏ{Ÿ¬`¿žœ¾µígQãù›£ŒÿûÞžß?‡-6e?Éû›NbÄîÞ®äýñ•üâ‹`}ÇÚ/‚ýûï¼íõÿá=°[ÇÑ2?ì9á€ïwxÀwûN8àû'ðÝÞØö®Á¾8?ܼîî^÷·¯á®;?Þ¿†üxðãl´±ÏÜÂæ¿ý?$sendstream endobj 876 0 obj << /Filter /FlateDecode /Length 824 >> stream xÚ¥VëoÓ0ÿÞ¿ÂÚ§DÏ<D‘†èH“ið¡k²¶ZÛ„­¥­ÿ;wö¹I×Påø|w¾Çïìs1ÁÞwÍoûóK­˜” ~QÂwí×@¢Zµ€ÏSø£ÿñüÒ°œç©J1"Á"m¸©‹¥?µ‰UâXåèÁ̺€Oé¸O@Ž«PeÁ õtîWn®*§9( ÇÌ£²+n9™] Ï!:²;¨eó ÑÃØY«)%·@éu¦<Œ²4vY”.ÙDïfk«AÙâÌ QîÛ dð]$ÂMr-s“‚»ûÔ–ÿpA UX*­‚É“›ëG›Äý‹4li ”êà.T&Ø8M´0>±T‚“´}b¤uAv1ŒÑ~¼qÂ…‘~s½…ñ!LÒ`0*9yÌZ{"%n€ŽbÉM¬ÝÞ7a”(íLB ¼'Vc£‹¨4*ÆKg@zlˆ·UIv\M[©•öDÊ@9Ñk #GÚ"zÜ–‚xÁMÁmC¢òÏ6¹ öšî &z×°7‡ÙCò6mX53nXSŠm³ËZQ [¶Üå%x,÷÷!”^@ÃH2y&JzM•¸ÙÍY'@@ñåsv8M_^¿>VÉÿ‹ñÄí¼mNÑ‘ðΨH¾`( ~ƒìŸç¯ö“*G®‘üCï–»­É[µ~ŽêìªvÙu†oE×kEgª¤²kJpJ¼² Yï¡å¯ñ¼e¨Ê#w·¨îˆ¢›ÐYîR½>Ãø £×øPpš¶¶ß´«n·ïi¯ßÁV&˜Ü¾£ ºc–fl8ëüìðL¦N¡¡¬Àï"Æù‡™–ì]Õù?oÜëDÞtÔ²m_òv_•IÂ3e˜Ì ´HzÇ/ ƒÑÒ¥d›¼V¯ð Óøàáz†íwIPûfåßVTÙÖ^ÛJ[}²ðkÿÜó‰2_+ûŸaèŸOûz7b»«ÄÆo¼ÍÖ“iÏkæÍLê„籨„á±”.ûýbý¤ýöendstream endobj 877 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 878 0 obj << /Filter /FlateDecode /Length 19 >> stream xÚ3PHW0Ppç2ÀAc(áendstream endobj 879 0 obj << /Filter /FlateDecode /Length 19 >> stream xÚ3PHW0Ppç2ÀAc(áendstream endobj 880 0 obj << /Filter /FlateDecode /Length 595 >> stream xÚmTM“Ó0 ½ï¯ðÑ™ÙdýÛé†e†+¹Ó¤ÐÆ;›¶Ð%ÙiJsh-ËOò{²Á¶L°ÏO"­Ú§—W­˜¬+][ÅÚ “ª®¡˜¶’jÅÚŽ}ã®(e<àC!ù°>œÇ¸îq3?Ú//¯ [U+«,¤¬¬eå´¦àvq=ÁŒžá”¨jшz‹ CüAÒÓcÎÈJ6xAç!þ­O@†¢ÔšìdÂÑné^ë*ë¦\9ÃYJþ5­ïÉö‚Hc*#š9{¿.”ã¿ c¹ßö‰ÎH«§åL~‡ˆqeôpÿ™ÎâosÆrL:áî=Z+¾†ˆò§\eVʨ°‘M4dµ2vVàpB5e-j¾‹Â6æV…žGdrÓ ð³(MÍõ¹òcU”Ö¬x ¥Þ߀ô / RºY–ÄÌ®ÀIþ@¸Òý4@š Ö#IÄs?td!蜚U”X‘ÔR¿˜Æý'ÛqàÒ#j"ìrOáyV¶=¤»ŽìG.YZc› ú7=G¯Š )yŸBûXÜè±ó'®ª¡.Éxô\sPb ³Þ—j€Ad”»Ó.yéÿÒ[Ä# ñ¸ö¸¡'ý9&ÜL¿ÏS› Ÿc8– ó‡ê‡øf`ÅcîÚ‘zèåuÉÝTæ‡kwsš87mÞ÷ÐQãó’úüPZëÛi~¤ÑêR1¾ Y_i´0`À‰ñ³Ï ò…ÈyÂ_ e-bÆrb3„4:‘äô%fÒÚªq5+Š^툴©ïPŸÚ§)_ªendstream endobj 881 0 obj << /Filter /FlateDecode /Length 19 >> stream xÚ3PHW0Ppç2ÀAc(áendstream endobj 882 0 obj << /Filter /FlateDecode /Length 551 >> stream xÚ]TËnÛ0¼û+x¤€˜I‘’Ž Ðí10ÐCÑã7b[‚$Çi¿¾œ]Òµsp$-gwgf—)ÅV”âÛ¬LϧÅìñÙ¡+e+oÄb#´©TSQ—^iÓŠÅJü’M1×ñ@~éûbnµ\ŸVûBËâ÷âÇãs#ZÕzã‘^Šy¥Um-'~?E¼/åÑ»ø[óg@ãc[Åßþ#¸V^ SgÐ.àã½0MŽŒy>Æ?Ç0 é/*®øl‹HèÑgLM¸øµx=-ಃˆ%ìRÊ9ÆF½ÁÛá.R¯ew BÑhÖZµÎ³æ„©¼—Kª&®ŠHOµ"±Qó¦²ògÑT pŸT#…j 4Ÿp2%áH kSòŠø†sj2%èGM°¥¼ JwG>}yà`žb˜Ý-±[ÙŽeèzÄtÂ_ópL||çzQG8pøŽ˜© ¹hJÑ/#CC~2 çdØ'•W%8Gðį/­¨³7;jŒW.N«dâ›{"}š6Œ—" ÷~»m«ŒÓ9‘Ø.Aè­p^†íšUäʼn.Óƒiqë]¼_õ½wËî:V2³Xakä Vöö,ØÒ6?0àºï5Cìr •LEÆR§ÀШ±6ðÅ +–Sº:Ø›%Z´Ð]J}ŽÈ{½½$Z*ˆ¿þÛÚ{ÕÔ•˜;Û¨²5ì‚ów¨¯‹Ù?ö]‹endstream endobj 883 0 obj << /Filter /FlateDecode /Length 1114 >> stream xÚåYYo7~÷¯XØ‘Š&¹»ÜU€h¸@‘£(T AœÙ+Énu–œÚýõá1ä’÷°Vv”ôâCÎ7ß ‡ÜŽfŽ~;ÂÐÿ:::=‹iD¦)FÓˆÐå˜FfˆÐa4*¢½¼Ozˆô„¿í½ó»›ÿ¹^®ùï‹þ Ÿ·à—òMg©¼\êzůãþ§Ñï§gi ÑQ&”áhç(ÆL©ù™ÏDãÞ‰êþà£æ¼‰Ñ©‡O †H´Á!ÕI}޼]Ãookõj óß(pŒYà"ÆÀJÓ³þÑRàŸçTMBÅà éIÒ$ ùêx<‘"ÛòeIV`@qŒN”´†Ë?âVëýlaXC¿+€$qy%_HŠ1JIkަ@À ¸Rškx ¶µf1Â9k &G9mCÌȘ'o a xn! 7e0 hÿ•#®Kª.ùå9N1ïRÞ~â-ñzªDˆð\ubâ81þÔéq£q›€&0ýãÇ€xd$ÿɹlòÑL. cÞÒ³z®aºuIÑÜòÞD{°Â¨Ï" näßÀÚè^‚ B$—r¢é„îAªÊD±¥"w…z[߀à$Ó¾»$êX)\Ç\Æ/%“qs&ŸMË)µ!—zMV$Å nõ#Ïàãµívuw€€ÈÌ®z\ºõ¾þµ˜è¨˜€è1w\ŠÝnaò…%öÞ»¯û}ƒ…'e6/d3 t†nJÔ+÷ÖZMî~giwmœå¯SvQƒkã ØrtZ Œô·[‹ŸKx<·¸)l‰N,÷Òfú`&.ÌöF“8p¾mÖ« - ÛÒðÀ Áûb°Å»€ÙïJ>Žaqt÷èRpQçQÖbAlª„·Ôôö·³êƒCõ"™YVÝ×𷨎+ADõÉÄ!ÊÏö/Í®ÌíšË·#7 CNsMl•®¬}Ê]£+¤ž¿'åíµƒÏØÛÍ@kËÃÈ¿½ÁÃÁ€22ìíÕ«‡otÐñtŸ™áqÀ:rwæ þîã E ?Pr@:sð¿ÈôÐóAúøù€z>`mŽÝáWãñ{'œKAºî³“Ê"ÏÔH6zô­.ö!'™REõ+y¾ôkž &b ‡Ñ+éÛúïG×^Ç#x Ä+¥yÖ½öB°½CÞZ]¡¢iÂÐ0OZMW[…e5÷Ÿ¼ýÅÛ«€š”"ŠkÕŒ’T ,õ·øtëVËoLÙ¬®"øL ~ë™PÎ5Ÿ]*¸ ”³l— ÕµZߘÌH§O‘Ìòú„qáÕH½ÚW»¨y„¯Å=U»’KwÞVVòYB LöD,{üÓ$Ùù4‰›wPÜ..“Â'8Œ’£¸ó!ä©£û\•ß3uǾÐìÇ»cÖ Ìõ§g¹½s3†ò,ásÊ·ÀD!L3gÈ«ÑÑW4~ÁOendstream endobj 884 0 obj << /BBox [ 0 0 432 432 ] /Filter /FlateDecode /FormType 1 /PTEX.FileName (./timeSeriesPlot-marginsPlot.pdf) /PTEX.InfoDict 647 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 650 0 R >> /ExtGState << >> /Font << /F2 648 0 R /F3 649 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 836 >> stream xœ­WÛnÚ@}÷WŒò*™ìýò‡&j+EMoXj«DhK¤ªöó;‹×xm‚ƒÕ€XsÈ™ñì™Ë:®€Ã=üÊ>ÒçlýéÍ\3†Œ1H×áå;úÕjø“Ý܃»ŒÃ}î3pqé3àÜ Q°©<2[â9 ÷%fUdx†N%Œˆ+†Pµ¯%NÞ ” #âŠQ¬Š´b\äQ‹Éú-Ö“evöZpù7à㊥À\*´(|+ _@Oô!¿Ï^å[×OØ:‹š'¶êx[¡ Øš¶^ ÷‰­;ÞV*2µå¬4æL  *ƒÊ„œX ŽÎYo0¼F¶ƒ)ÜK^ ˜©Î+¦ëU"L1ª’™jlü4ÑÃ)ô†â–È[’Þnì zw8ë­ÆBR·ÈÃio7¶ ;œ÷VcÉ5r ñ±Í2©j³%–£¥,U)¨ãfº‚ÅU*fwYMá3,ÿ¿w… Âc`8ú"_:è¡M(9Á}ˆ/-Cðõ- "KAämÁ<>o_¨zøæ4ï49gm‘’ó‡M‡ñCUD…¦í„ìoz›i$ƒÞßͨ§z'ÁåÉ&óó“Õô.|-9çbÔïßB~7]*ûÛ § GÍZN•g/¢z}X¥!]ëõá¹B`êCRÐq¾¯¾Ï–ë‰ÒRáÚ0e‚‹ŸãÕ¨·¯Î'AbEo’^'9ŸÃB‡%¥Û ŽßΖS`ô6œìí:´Å†‡Gu8àÁ²PšM]…8Mv:ì—ïþcZ:/©}œCWÂy ãeÉ X’ŸqþʘýÆ+0·Ehe¶(ßÌ6ó)œBþc¶êÓlƒÞ-jƒ¦~g£lè£ãZº+0§ºÓ›EQœ„ïo¦+(Ú^®¦ã$wå4+îsìs¡èhä£sUÛ?,Æ¡íå`ûõ4> stream xÚuŒ½ A „û<Å”Z\.Ù]s›VüA;!X)Zâû7ê©H†ÉÌ'¸@°&ùsuØ…e¯ŽlÎ%9Ž=݈;µgࣱõ2ÚMŸWÚ óKnFtóÅžµ« g·dˆ3’+[gpá’+â„ýdV§‡Ø¾Ë ;<(¡endstream endobj 886 0 obj << /Alternate /DeviceRGB /Filter /FlateDecode /N 3 /Length 2596 >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 887 0 obj << /BBox [ 0 0 432 432 ] /FormType 1 /PTEX.FileName (./characterTableFig.pdf) /PTEX.InfoDict 654 0 R /PTEX.PageNumber 1 /Resources << /ExtGState << >> /Font << /F3 655 0 R /F4 656 0 R /F6 657 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 2528 /Filter /FlateDecode >> stream xœ½ÝÕ—%·ð÷ù+:l'q»EÝêpìØaØdX;»vCví033“ÃÌÌÌÌÌÌÌœ*}¥î¾÷!¹}Nò½ÌÏñoGWR©$µÔsdï@sdï„ý½®íº®Y~=zÆÞñ'‡Æ5û‡[ûys\ùЏÁ·cnÂ8´15ûç4Çì<íìCÍy‡›Ïûºv¾ÇJí#,r÷Ž•”I÷¢Ì7¤X]ÃúººÇjí—vŸb5s\Ús¬Ì‹­G߸ ÇJ ÖXÀšýŠÕ9pçÑT°7åX‰ÁÛa¬»ÇJ jŸœË|sŠÕ5¬ÎÄXÃÞ‚c%‡ÊXm¶ÍúS9¸ll”ú–+Yt„u˜ÞŠc± å‡^¿©½5ÅÚ.”O£NZÔÞ†cI6ëc 9V»wÅ:DÿikO|Ÿª=cuYF»>´Ax[ŠÕU¬f3m#ôÉCËɵö”ï0ÇJ Ž=Úö ŠÕ”Õ³OI“šÚ39VW±ƒIwXåÜŽcÇ¡–9avvÅÖ”2Û¬ðö‹]dŸ$—a×ülŠ-Û©ê cÎ9k1˜Ê¦Ús96µŒuçQ¬í"û˜ê®Ì86¡®b¬±„c-‡Æ¾íûG)VcPc?–ojÏçXýFXÄà[cP-úä9Vw¡Ré6é¿ÇÊ*Vwû溺3Å–9p(]Äž¦Þ…ce«eÖ‡›cïʱz Ã#¥!öïF±åF.ßêêî;D},¡6#öïA±åÆF™ïɱxŠ[,æÞ÷âØ\N%ø0´ ¹ìÞë|9eãý ‡²ÕÞ‡c{·eï˱ã¸eïG±Ú8›öþ;¤-ûŠ n»o”c-gû0Š­18Û‡s¬ÅàlA±5gûHŽMÛ}ãQ›·ûÆ£)¶Æ`W¦¤jñƒ³},ÇZ Îöq[cp¶çX‹ÁÙ>bk Îö‰›¶ûÆ“86o÷'S¬Å vM{jýŽE .ìS91¸°O£X‹Á…}:Ç"ök1¸°Ï䨴Ý7.䨼Ý7žE±zŠJmê3Ügslõ ¯Ë}½uñ޳sq9¶#öŸK±ö HëÊN#>c‡¨§¶KÁ>ŸbõÕŠí1'|Çâ‘ڹ셫§¨FXì}½ˆbË)H±C®§Š^̱)O}ã%;ö“Eßx)ÅúÚ`±Gñ2Ž$§¤¥}9Å–[ZWåp ÚWpl¶ÊüJŽÅ--³Åà«(V/âë·¾×÷z¨}5Ǧ²Wïú¬‡0Õ¾†cÇrÖÅõ©ÞÆ{-ÅÖªeFî~Çâ †Úˆ±îõ[sh_.]ª}Çj•¹Y?å²7r,’¶–Ùn?¼‰bí †¦4»mùf޵T‹¹÷[8g0ö­[cP-bÿm;`M×wõ¬ÚÛ)¶æÐ$U†\öŽØ+Ð#¶ˆ…wr¬.æ†:5Tû.ŠÕ9p5]œúÆ»9g0ÔZßxÇÊ8úbí¬ø{)VçÀ:7K]=»õ>޼NBµÌv¦èý«9´ZŒuàXAÖ'-‡~cq‹Èé”ùCk·]”a ûaŽMå¬Z±è“áX¼‰N­­­>J±åïF™?Ʊƒ›öã[çÀs]}‚cãÜ7 ŸäØŒ¾1¿áðS[cÐËÔs†Os¬Å Ø„±ý3«94k¹û³«1X-ƺÏq¬Ä`§vZK~žb55—i™ÑF_àXœÔ2g´Ñ96—I™ ååj¿D±å-©eVûeŽÕg@cù'F”ù+‹;Dj3ÖV_¥Øº‡¬uõ5޵=dm*Äà×)¶®a4Êü ޵=ä¹®¾É±¶‡,e¶;ߢØ|²¦ÓïbÎðmŽÅ@'Mes³ïp¬åP)³=[ü.ÅÖªK;Äþ÷8Vrh”ÿ¡“¾9Ò÷)¶Îµ®CÀ±ºIÐÃbÌù!ÇJíPWv†êG[ž©uu¬û1Çö¨«®«osü ÇŽyËþ”bõ²Ô¦ýÇâ¾ZÛN±å¬=ùÇÚ3 µcɱ8l²(ó¯(ÖÎ@ޱ¾2ä׊ :ºvý …Jü%)pW‡¹ß2¨fOABLöG¡xûœPÛ"ø=ƒ–wW¡À¨¦?P(ò¦t »îÿG EÖÔcòù'µœ™ËÉ ¥¦PdÌìê…ì¿P(òåLÿÊ –-gú7 E®TŠPÿ;ƒZ¦ÌÓìŠ<™§?ÐðO Å)åë¦ø¿þW4þ—5jÈ2ÎL{ÝîVY;÷ãv·x[ãÂú­½`Qæ°»•θù{ãÎÖ^ °=¦6ínã¸Uæ~w›§º²s¨ÃÎ6ãã꣇°òãVÚÕÛê»Z£óFÞîÖ(^±±ò³ºé…ÔÖwï˰åe¸¨b·{_6+‰Ë&$n÷¾lv~Ù¢Û½/›íC½VèV4.l õ¨‘[Ѻ°1ÖÊ»Í ¦W[¹µíë}ª/Òõ«Û×¥úO¿º}»¾>6ôkÛ·œ¬Fûúµí[®q }ýÚöuà;ÛÅ®m_=fXÿÌÚöÕ'€örg¿¶}Ëñ ÔsXÛ¾úˆÕŽ6‡µí[“¢o„Õí+#¥“°º}eaaïÂêöí¦?2Ö¶¯¬)l×2¬mÞ<½Š>L­{`ïßGè2endstream endobj 888 0 obj << /Filter /FlateDecode /Length 185 >> stream xÚ]»Â0 E÷|…Çd¨'iR¯<R6Äå5P!*þ_¤¥-¨Šäë\Ûº:n a-t¯³(ò•5@„\âÈ8,µ =’aˆgØËR‘D£2JS9¿Ó·iKõNåÒ¨Ì'£b+[÷ôh]uˆÛ1h¥FÖ9LRÕâ%0páC·ð×v£á¬7òMm-,žb—žžàLu¸Í†ÌìÚ¡—ÀÈÞøÜ0¡X£³å—»à)Åö2AÖendstream endobj 889 0 obj << /BBox [ 0 0 432 432 ] /FormType 1 /PTEX.FileName (./colorTableFig.pdf) /PTEX.InfoDict 661 0 R /PTEX.PageNumber 1 /Resources << /ExtGState << >> /Font << /F2 662 0 R /F3 663 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 2447 /Filter /FlateDecode >> stream xœ­›MoÉDïü}”ÛîªêÏ« ïao ØÃ–ÖXh-Xþÿ€»YŒhràœQ×ACL€É|šî©‡œ$S÷S—ºß»ÿ<ý¼ÿûóóÓÐÃÐùã·ßžþôcÙ¿ëùs—Æy÷ÃËc Ò<ôséʶôãÔ=ÿÑýúáùc·݇¿ÿãc—ö¯_>u_?wùúåë·ýñŸŸþûñoÝóOO}>úvÓÖc·”~»2æ~É]Þ¶~ÊÝ·OÝ/Ý¿ÿX®`ë®—çkîÇ­+%õãpP}>vÏ¿M»nžû²éøÆ?ö`Yúô|QR¿Ö% þÕ}>¸îBJ?m/‰éÖÿ‡MòþZ䟈+¯û+¿×k®ï~½ò2õëËUü ˳î—é=ì8õSqØìôòËà2ì¸ö¹^ÜòöxLï`Ór\>ƒ­Á浟ýŠ¿—aóЗzŒgØt6mÃqM‹À`‡ý¢œnWaÓ¶¿+ìtëž};çã‹ÁÖ@°i¿‰“߯ÁeØy:ž°ó6õ7ß`©ŒÇ55Øì~~¼—aËÒçú[t,ûÉé;ÌÇ55Øì~Ï~¼—a‡íx/°ëÛÓsÙŽÞªÏEµnýæ—›Ï89×—Ãöè¾ç6õiíÊþ^]*S¦~{M¾XR6O(bðý/Öñ2¥ì®ICpx¢· D<)ˆ‰„¢7ºlfJÁZ{›š€gnb"9¡èºœlvJ98DÑ[z"žüÄD‚BÑuAX†J%8HÑ[Š"žÅD’BÑuIX–Jcp˜ÖÞ¦)à™§,Qøº¨übªzD¥)8P,UX®b"Y¡èº¬,[¥Y‡*ÚÈL$‘š˜ÈM(zã¦û0v%\èå®ÓÕDD™ˆ‰T„¢ë*"°\”Ö»NW tR9ªV¼qÔ÷ÃÊ\i Ö”÷Ó±œÜµ_òµœÜ…DîbUyí7Â6»¼ò­lnö Ù ‰ìŪú²ô•oNVï‘Ý_Ðý…DþbUUd¯rp¼²¹ €f0$2«( ÈRX.ÁËææ0šÃÈa¬j 1 KbyÔ‹>.¬Êâ„Eº7ƺ Ää”oÎQï/·Û tf'$²«è ÈÒSžƒc–ÍMZ4i!‘´Xu}¢"²T–—ûN[wÍeHä2V5%³¼ÞwÚšÍ*ŸÙ¬²Jè¬âJgùæ$æ´Sî×ó(6—~>bHLg¨j ³}Ú\“ë¬ ÑA‹æ¦3šÎ˜ÎPÕ@g@Þu6Ï9Emmî:«€®3$¦3T5ÐYE>t¶ÕÛ¸d;hÑÇÌ33ªÞ˜ë>û$ðæœõþr»¤Àb’Bb’BUIy—ÔˆË=Fmmîæª€n. ›¹€Ü`֪Ȧ³2E-Mg@6!1¡ªÎ€,•9:hÑÜt@ÓÓªè ÈÇ'„¸1nNf7Mg4!1¡ªÎ€,•õ¾ÓÖtVùLg50Õ’:«¸ÒYÙ¢ƒvÿÞå<ío‚éMg£í±ØÇÌ33ªÚeD3×m³ÐÇ%UY\RHLR¨j ©Šl3×í´ØÜÌ@33ªÌ\@–ÎÆh³Åæ¦3šÎ˜ÎPÕ@g@¶õV´ßBs×YtÙtä:«È¦³1ÚrÙtdÓÓªè ÈÒÙíºØÜt@ÓÓªè ÈšÎÆhãÅæ¦3šÎ˜ÎPÕ@g@–ÎÆõÝikæª(f®˜¹jÉC»/@HRc´ýÊiè§ÓÌ•sêËiæb"I±êº¤ò>nN§™kŠö_l.sPæb"s±êúÌEdÍ\S´CsÓMgL¤3V]×m暢›Kg”ΘHg¬º®3"KgS´cs錀ÒéŒU×uFdMgS´CsÓMgD–Έ|]g@ößÙˆ6aD–Έ,1‘ÎXu]gD–Î&Û…±ÌE™‹‰ÌŪ‡¶aÙ%Ur‰¶aì#I‘E’b"I±êº¤ˆ,IMÑ> Íe.ðÉ\d.”\Ÿ¹€+MÑF,ïFóIgÓÐç|ÒÓªèl*}9Í\s´csÓMgHLg¨j 3 Kgs´Cs×Yt!1¡ªÎ*²élŽ6bln: é ‰é U tdélŽ6bln: é ‰é U tdél¶ú¸¹*‹› tf.Ð=´ˆÍ\s´#I t&)$&)T5í× £››¹hæBbæBÕõ™‹ÈúqŽ6bln: é ‰é U tdélŽ6bhn:«|¦³˜ÎjIU\élŽ6by^óÔu¶ƒËIgHLg¨j ³5÷ù4-ÑFŒÍMg4!1¡ªÎ€¬—h#†æ®³ è:Cb:CUUdû°q±û˜¹ÀbæBbæBÕC1‚HRK´c“XLRHLR¨j ) ë#Ä%Úˆ¡¹›«º¹€lærƒ™«"Û̵D1"›Î€l:Cb:CUY:[¢››Îh:Cb:CUÙ~g>Úˆ±¹é €¦3$¦3T5Ð¥³%Úˆ¡¹é¬ò™Îj`:«% tVq¥³%ÚˆåmyùÝqé¬ K¿¦3&¦3T]×Ù¡—á4­¶c™‹,23ªÚˆD3×mÄÐÇ$““ª®K È6s­ÑFŒÍe.Ê\LÌ\¨º>sY:[£›Kg”Θ˜ÎPu]gDÖ̵F147ÐtFdÓ¯ë È6­ÑFŒÈÒ‘¥3&¦3T]ב¥³5Úˆ±¹tF@錉é U×uFdMgk´cs錀ÒÓª®ëŒÈö‡`ë»ÓVæŠÌ…ÀÌUKÚˆB’Z£XÉû wš¹J™ûå4s1‘¤XÕ@RûØ—ÔmÄØÜÌ@3™‹U×g."Kg[´Cs×Yt!‘ÎXÕ@gÙt¶E167Ðt†D:cUY:Û¢››Îh:C"±ªÎ€,mÑF Í]gÐudéŒÈ tV‘Mg[´#²é Ȧ3$Ò«è ÈÒÙf1ö1sÅÌ…DæbÕC1‚HR[´c“XLRH$)V5%©-Úˆ¡¹™«ò™¹j s¡äúÌ\ûëæWýüô?Èú¡endstream endobj 890 0 obj << /Filter /FlateDecode /Length 180 >> stream xÚ]¹Â0 †÷<…Çd¨k'iŽ•S°!eC ÜK« Þ -mA•%ÿ>âüúž@°4è"‰rc40c¬* é¬-ÒàÉ!ëéGK4ªà¼•Ë6wu—Þª0¾’IE#Ϲ¿Ô9ÝÕ)í'‡uœ ž~6Öb–k#^}¬œïü•ýj<å®1V­8ä Ç\ÇÛbô,~¦=s€ˆÑi×ëÈ較HhMø;šS|•ò?Áendstream endobj 891 0 obj << /Filter /FlateDecode /Length 119 >> stream xÚ31Ö3µT0P02Q02W06U05RH1ä*ä24PA#S¨Tr.—“'—~¸‚¡—¾PœKßÓW¡¤¨4•Kß)ÀYÁKßE!ÚPÁ –ËÓEŸÁ¾Ô¨o€B¬Â@ø €a—«'W $o&|endstream endobj 892 0 obj << /Type /XRef /Length 562 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 93 0 R /Root 92 0 R /Size 893 /ID [<2188fa7a24396506c091e4124e5ec379>] >> stream xœí—ÏKTQÇïÆ36³2ÁifVæ0³4Ò²¦E¢ -"È…¨T a Õ&¨‹($¦EÐL³hÓ¢.Fü‘+ňBBAn´ÆÞù>˜óPäýÞY|¸Î=÷Þ7Ÿ{ß}JÐOI!à¦P††Gr_Š9«]™&g~_3κ;Ù>lé%žŒkÚ9B”bn×eènÔå_8…NÁ¢ ÑSG”?‰ÉbÇ+‹23Líž«Äô"EÒyË´ÒjÁ˜fèjš:³ž³lù1jl1t·%~žlùÖhl1t·¥ù½Åd†ÞG‹ÓÆCwgÚ®“3/ÖpÛñ}ÏèV3:„He9"ü ˆHލ Ü”p÷V%â‰6¢÷±Õšÿ"‚š-7‘Sà ÁÈ)çˆä¢~È9§_b”!ÎiÅXºžgšC¤sj¿b¬ \'\DÎŽ„î#§ƒ{ù?!§søkºf‰Ñ&Ìy‰×Õu½zëZ&ƈ{¹~l#>â¾Ý˜³Þã¾Mˆ¤¸—Äèú-qq=ÆkïÇÿ¢&¹Â`-F™á aÌMÕ¤' Ïâ–«.:žyÞq~â)ò3Žÿ.ê|DþcëÌÙ9W2gÎqå~õ—ç¬vã˜ÓJ^ÙæDoÖïsptÆ`Ô-Ç®¹‡Èk¶NÏòîÓybß_ºwÐøï2»N*„9<9h»]Ge9b;ìçž÷È¡*í:>Ü»¬Rû3ÚÿÀ)ñ.Å„5 endstream endobj startxref 795402 %%EOF timeSeries/inst/doc/timeSeriesRefCard.pdf0000644000176000001440000032713212620124746020204 0ustar ripleyusers%PDF-1.3 %Äåòåë§ó ÐÄÆ 4 0 obj << /Length 5 0 R /Filter /FlateDecode >> stream xí]kwä¸qýÞ¿‚¶F³’WÓÃg“mgÄëÝØNr'“äƒ×'GÖhÖræaK3Nüïs UxAªeÇ9Þ=gZÝ$‹`áÖ­B¡þ®úyõ»ªëöÝ¡êÛf˜ªvöS_u}[ÝßVÿQ½¯^~ùÐT7U½¦º;¶-þj›f<ô#ýE?5‡Ýà $ák_Õô?ýÑ û¡©ë¢Ç}[ݼ«~ô Gê"^ÝTS§N•W流_7û¦jv¯ÞT¿¨.¾óÝËêE[]œ=»¬šêâüùe…oŸ}s¡¾~s©>¾sö=õyv~öùggòãÕ ¾b¹ûeõêgÕW¯Ôcúk»ã~j½×¸T“ªWov$ýÕoX©­™ª¦­†ñPÐÛ\Yus<Ô“zF(§kŽÐVòÐîÇ–”¼Ãuo¸â' •Š[‘{Ø÷ãñ8±p¨ÿGú§ï»}?ÔÇjì{´ÔvPÓS5ÒzùÜ©.j©‹ ÝEèš3t>ž?Cát}ýì²J«8 ¯G}ïß;¸cåßñ‚ú~©v®Zó3Xîu]Uw<îуö±Ç‰»¬ñ?Ìú›K†Ã’š4TŸ_V}uqõb¯@ú˪SjÀo/•2^|v¹zåìZ 5á8´„|‹lÔr*ŸôB¾ñi߻ܱ–ÍårêÇ}Y ·ˆÿv—&šÖïÐznu«îËçzmp˜ëè©ù@§®kFñóñÑž¿x×qÛøN¬‚žÆ<æÏQó nu`¼ü1ñ‡\Êêt»S s9ª.“ XÁ¬X¾X° ø:~ÄgJ?7ûûÒn>ëK‘ëõ5d ü¨,žoøRÉRýš6’¾öM?s¤v%Hý·%ÃD[_@ŸÔÖ‰uŒÑV:%Ó1<}PÓUs3ÄÙûc?ùmòlÆ7ÛÝŬՆ¶ØŽûcwè|iä#ÊžPMô¯bsîý(gÎcË_d ô\÷ǃßRï¹®˜Ñü,.o÷ÓXµp]$Ÿ;÷ìhwpY¡£y7íÝq:‚³&ò+B¦Åcúà¶)ÿJäí9³°S¬¸Ã´ï~œÈoïúFÉ•ë·Å)¼„6Á €ù‹@G^– «°ÎÐ`;>ã hS¤Èg°½µŸÃJp& <ò‰Ýç„K\×»¤ÂŒ˜6š®[£øƒš/ž%ÒèN{2²íVÖ9F÷ƒ«ªæH®¤=*UɇRU/wÝ©‡l’Ì@JOýü»y·‰'ª‡fh[é»y÷ànÖ÷`ƒÖvóXÃ÷,ÙÈRÁÙ¼åT´\;A0yš¾FD<`/÷ÙÆ^9Ý ô‰Y,6ûÖd}w7ìâ ö5E˜¯*{ƒPýënZ2IÈÐ(iå~¼{wû¯·÷w·iù±Ç„~sÄ{Ê`Ò´B3mmZÉ„ØÉ–mëAC]âj2E(Û ðÃßÏ•9òïl…bw|X¾È-.ÔÑ·º`ÀOrÚ¼¥ýC¦/|Âs;ßhï¶CN0M0ØÚ…ýÕ6ÐKFîà ¢Póä–w¼ƒæ°Ç^4ê *iÆJ®ŒT^>ri¨Bf½(EYkã~^ƒâÌÍÛ€ØýpD4îöj䉊 bͤ÷½&Á,F¹ìY;Ù øõ§wïþ¶"·¾‡?ì\ÙWA šÖ™t…ÿÒ è´=`·A´RÂ]45ã†ÎÞ¶ªÂƬ½]‚݌݀1Z8c ›­RSÆwU›¦Š®S—ß… ä·«3pd5Ÿ+¾ðNá#«YÒpbŸ« ¦éƒ@hÆMÍTšb&ØmÕ»µÂ¶Þ#Õpón'nÙ«CD¯C·‚à¯ïÞþa‡-Hi@v¨SO ·Ùª‡a£ÿt8ìÄ»±oú#¢ašcƒhOÑŒ£®­Ê·`lZÄeë“cCë6þööã¯?^ÿóõýÇ4ß;HbìÞa«", ]iÊ7"NŒí.NH ë˜›xà®™…ò2v”¶Äç^ð„@ ¿] ½ñ؆ , Ì…r‘¾XÎPqLè3 ¢è*>AQÔ&¤è_ùntÝþx@6ð$Š·¬À®`‚Ö!¯—üP‚@ë<€Ž0Â.ãïû 0÷µ„ጀ„æ`Ègx`¼bIŒÉ%ÿjCy…3› `'Ø,Þ*DvÜöÈitŽî¶v„d{¤ˆn-"Ó„e(q‹à»‡úÉ?|™ ?G¤÷ûCÝ#½à4ûñJ˜0Kó4qr»AôžõVòÔc¢jDbÇ“¾U Æ+xÒŠ½Â4ÝZß`ìP'¹€ó¨Eñ‰,€@@á$SYáî¢97b)°¥Œ'~Á#›”m€¥Á¨eQ]ÆÙ]ü0­üæH`iJ]‡ûk ꙸÜqqd¤±z{ÐÝ,ƒóH7ÏÛé·˜ì<Òùª”zJ® õÿFÈëosšnÛd>v¢éX‹9£6oql¢²ÅiY»2"‘¦4MAslpbäÒà³2W.È„Ñ9¸â0TS1ÇNLƒ¨¥ä«¦‰©ÿcfY ~•uKƒÈò/òÖj|¤gˆ#ã#V™›¥(ŠÚ¹èÅD¡PÏ¿§[®Óy,ýTÃ"OÚÿKêQ‘V—nõ¸Òž–z\¥(B¡]Sf–z\iOE=î=¼o¢WÚvêÉðJ9› ϼv3¯!¤EaÃÐ÷´b„üÈR¢“¨&Òüå.YNriªö(%F¸sª'ÉDx1ªDµ;Í1ó®sbLó– L1ûƒìy 8æL,ãÞ=üËí·ŸÞ^ß§åÛ˜LÉO[º•šQƒÉ\iªKFê‰ÉÒcmqžÖŸî¤â"´™¹¹éA=|¿qaGÏés 9=`o§æF) ô‡ù9§9çfÀD_ëª1b\Eb±‰ž§Å#Ú[+ùîAå3Kéߪ LGØŸ—áè›ÆÝî Dp+°‰b±;—£Œ@“‹§Ì£ˆ€¸¡ ÑÑÖVÕ[ø È ®²—…Œë%ß=üã‡÷ý63»e’˜­#~«,aþœÏ ÑÐwPÓL3ÞÝB„=*RQÙzŠ.°@ì!õ‰ˆpƒè»‡ŸB6ýö>F“ÏlÝ;<®´?8~Ù‹æh@ghˆY†¤\Ì2C’צ(Ò%S…—S1ÝT2›wËr‰¢qy‘‡E(*±º,LuKvú‘r(–)ãÊÑa€úæþöwŸnßß‘¥+ßÃg(U+"’B±léJ3øŒE½fœʹã=‡e”&‘îD×ó¡†çÃ…¨Ü ðeÏŸgœx1î•Às5Ë ’ÓõƒCºa48\VwÐt0ÖÆ pÞ-ªZ¥¼G†ô“(XVûït|gG6ß=üÛû»ß_ßß]¼Mß)Ͼ?öÈyº·ð@i’_jŒg­3 JWše¬vÐåÓ n ƒÈÄD¢5ˆy”¹»èõúŒ¯xJTÆ7<Œ‘ *6€$C@RuÐ@´®â¶vƒd3¡2÷iÊ ¢Q~zûq”MÓï±ìÚpo²U–)]idP¦¹¨!.:¢ Þ{Xj’=ËS§//°*–;©ü7@H{——´â€³ã$ ~B¾çb®ÿ¢–Èœ ÇI ^ºšO%Ìã›]é//P²Œ+-à‹œÍ§Á µ'ø×4‚ÎâŸø\8”´2ZäÌFÔ)‰2–ƒ…”SSïQÞd†|:šùÞŒóµÄs¾6q{ýz©FÉäâ•üGú'ÇH .”¤œ$T8ï¼ð€r=äÎÛýx¾Žƒïâó™9¢9~~ÖÉ_1èp€P0gwp’(–ž*áem8olåq‡%λê1Î i§jù·ÆÌÜ,HÍÃ#¢ZÜiÁ+Šïî¾}ýöËŸÞÌuÛ€@Ýâ‘Ð3š@U>Ò%.ô²áºÔ¶çtaêc¶ˆÞ—)£hmBåÝÃŖèÈ“¦Ñ©KÙ¶ð.Ì&Ã9“àÞ޶ÎÂozjߤޕíˆçµùos²ºæH'w|ŒkÉèïÝ…¶uÍãDÏn¥l¤|·ZÎúGÈnwñ¯È¾õˆãY£Ëî‚¢×]jñˆëä¯ÂH¸aPºž.ñÍ’ÔaÞ~øøõÝû/oß#ó‘f“÷°7ðŠÍ´Õj`iÅtà0—ˆ«Ì\•èuLðFk!ÓvC\{O›lÕ•V4®*¨ô\&V}‹u²“;gêùL¶3§Í‡³õŒ‰/ÌVdª©@uÑΔsZS]x¦¤,Ÿˆªuäób0õx±ÄÚUQÇä@ –YÎ\«Ò9ý½&ÿS 9´)4m f HTpÞ¨ØøQ•"- {ÒG‰»FŸ¦„Y*)–1HvªÇv ]¿<®YWꛤç´Κ“µ 9›áo¼®KSÑ/Éb;”Š*²ö©äõìèÌÀpŒïg Œ$IËG\‹¬²BEóxD”☄g_!\3½f]À¡Þ¯2•y€˜ä¼ ¤¾ÈbŸ;<4t‡[È(¯ö`0žÄgÆ8ïáÓ!j¯¾.ËÿX[ˆšé D9(šJî B3tmGÎ=òØÏñµN”5Z‹T›ËÞ²´§el¡[¦7”ž:kCòdîpc&6r :Cæ$LÈ: s8Ùã dN’䔀ÌIRh,ôÜF&!*ïjÔôz}±µg-©c2óIÖI5Óø¦4æÉ¼0í3­^QæÜ6ˆ~XZhOK娣q…oÕ‚ul®´§ñlÿ‡ÖŠelªÑi6Õ뺔yžyßµÚ° WV ¤;­mcêhý‚Ÿ2Po͠θBSWÙ¸Ò³¨Î¸B1/Vû¹M#AóN=vÉxBì·D~1±Ò-弨“‰[“ÑK~ðA’Ìà#ã¯0R±™•nÙél‡p$"Sz]ÎוMï44±çšm4·¼{ùµ„),)‚ª,95S6çŠ÷€ -Âj¨…ùäΜ¼r‰*çeD.›ÛúÉUy¦È0XGN¸[yäDH¤ÌE4ÊßÑtd†çQB¯Vþ&ÕnÆ!hSé:Šèg™R?ŸõfYRTr~¬€Qƒ/û6cD-/%gh×fŒJ…•AÙ¶ì/¬{:Öu êÑÁ=ì©tGƒùÁùj‹%à§sfn3.x÷J¼Â–U¹hÆDªá%¸Ï@ÕD]˜×¬iï;g´Yèç+¸¸q›pÚ»+­ç‘º¶? „gQVóÈ{šÅ,yj€—¦åÓÎi@ŽhÎAÎàô‚$j匥(ÉÜEEIË«cæ¾I•Êd|ª€º¶éNÕ+ŸØú¸ïŸ ŸÛ„>3þÉlHÏ4ã¢&=z^#/cúfüÈ{"G5C¼™.𯰎CØð“ Š-ü+g°ˆ5Š«Ì€@IâÙHм py@`C²yj¸§¥ëC[i]. „Œâõö˜j¬ ö‹£ìÐíÎã爩8)F}‹J3³ò=à‡RK€È3Ìó©nfcÅà@…Þ„¸Hi–‡Ó3œjf&ÀцçNN89~Å©¹Q‰òá:5”2³Öâ©"ÚÉ{v?Mä°M8†Ñ 9ë *ïA4 v2ÜlFÂkä•@>÷n†„ÃeøinÖº<7c°ÝÂÍiæ4c‡2Ñ!‡ÒDKäÊ" 7ûwˆ1¨“dJ·Ø8*LÜ=Ýøa›p8ª%mÈοü, ”Xm Ï8*TÉüRê¨fÀ¬Ù`Wäyþ’Êhé¸ÿ¾ig‹“3ƒ‚ÓT‡®«´^b‚9£g:$ÂjÃö`ö|Îei+-|݈®G.ã{Œ³î…]ÎùèµOkäeÔk¼'r>™y¬Ð ØIΘLÃ]…ó\³äÁ¯á³ ¦Òž‚53.1E„3ß9´ã½ ˜… ´é]cúj€“*f3hÇ4§ ¤·¸@õ!¤ÌPPdßpgˆ¯êô*šâ— ÅvõïhÃï–vDÆ^4£ùå¨aRûÅûï"PêL>°GÛ1?,.¤UäuæÝ X: ©¿j]^y@!¹ŠíåõøÐ‡¸®Ž^Àë€Ô!¾š:_ç¯?ТV¾þ ÇÎÅã0AñôdÌ‚±w6`¿•ÁT¯Ñjʾþ@uK°bÙv‹y‰@„XÏ ÷r)f& ‹=݃÷tó©vjF(:dÏcx$ªÒ6Óám*Ý„ñ³}ßA¼©0zšÐ ÞÕz 7Œï:hªÅ뢬¬s±ËqÛZô§¦/)Šë5KSº­ÉcؾröÌWqÃãÞÐá}6ä/ß¹þÚ¶v¦YÌvŽ-Ö3ºÛàs#³É6†üíos{t´9A«7ùOœ•—ñ_جj?DGÎ ˜Ç`ß—Ì“|HÙ:¥œXÇŒÐó˜ßwXÌ,â‰8¡ Y¦3oa>ÃÏkÉÄ´„pìÓXÞ׊ߜpo§'³¹ Â|ºaÞíü›ó„i[©ãˆ:øÜëüIê ¤ ×ã=gxƒOÈùó,DÌ€Àßì‘J(®ù®4ý|¼ùñãõͯ3*èÉib»ÎNÉ>ø]iåèg¸ð¿²w6ÜEa±7 xñ•“3[Œ¡ô¾žß¸ ææŽSgìsº »€P Ȧ!'‹P±`©:Á± ¦ñ’‘c…M'éKæäÖt+¦ÓÆ@fd‡Å J'±A04¼ž9ñö³¥dBªË— uxKÞ%Š0u.zqƒÖû˜!€]j)Ù'c;WÚcaFsª€™ÀÆñ´Hç{>6/B”‚—v«›á¥2œfgÃ2(«ñbB 2ü΋۱DÓ97jüsÓØM…T6GYš ,•Eç=ê͇wï°š4#Ý¢Œš}:”9ÒŠQ–ߣˆ к+ö_šÒصɪeñ_ˆWôj>Z†Å° S|$ÍÇh2žø>ž@þ‰-@nÉ?yf —8@"é0ÖHˆtª§ÙÖ·¢üeíËuÊ|ëÁ¯ï޼ɠ±¯`o»Î7I‹gLÒºVWšBcv›t8õþ„z(‘™u§zøoZ¼k¾x]ϫڥçA€8K$ú®Ô_ÔkÏŠ iVy޳E²äad5¿ù–ñ²xè~)• Ôó²3žÊtæ¿eAó2±a=:¦“A³æ¼4³y\Ãl.Å…À_†ÒP¢|8±×‘‹Š¸ŠWøXz¿ûê!pd:‹J΃ËÌatzЪ$—p:úWgÁfy%í­‹…•У+ŒðŠî9õ’Y×à Øp¦ÌYuf’?2èõâʤÏ6â ² «rÿ³òè&³ÊÁ¢|6q>4#’²´ã¥ƒË8ȯ[ïjˆõ'¥åL×÷»4£•vYrÈüùûëw¹—⪋³É®tO ¡Ì"l†MŠY¬;(ÎÇ‘äˆ;‰†Á¥HLüx¦«Jc°I¢1γ‰rŽL‡Rƒ†/1œ°‡6B·øðôœÎ>Ìk‚D¼ûÿ泊¾\¬ÔÉN[´ˆ¡±n®xO¡Ð"¼¹Ò Æ€ ¸ÜÞ*kbC5ˆa®q hØ*K†J’ Hòâº4M¾K sôÎÓC—4&_O—;É/æƒì}9Õô2$WÙ^×mIï´Ã“¥w"¢Ó;7Þ3¦jyIlPaWÚ ãOy‡9EÇ I “N*’Ë&+à_#0<\ŠAUØ©SFܺÜÕûq¢×f¹Hñp·‚2,u _H1Êp&å ©S‰`¨®Œ.tä’f -î?üw9î¨å§Ã#털£ à#IÆMx#—Ï›g=o<î/ã9xjÔ`ðã"ÄÃÛ&žC =*#VN–~梋y.7ÂÞ#ž™»;q¨Ĺ1ЈYÕ–´Z,­ˆ5]iÆñÇf J¿zqüAaPvÌ27Ã_hLtý§oä˜ÕqО@aV–!–¡†DNøl<ÝcuLYO{ô¼Mɨïù7—ÔTÔÿ â é lC,Sžôñì›Kùͤ¨Md¼ø†Ç£Ñ>F9§Î³5J€úéúÙ²5Þ½êo‰»L©¥îÑš­K¬Çÿxë)–Vd=®´'²ñ ¬Àð‰hØFþ¼ùŠä®ƒ†‡éP»(y0ÛÌmÀ„Šãa‘®³ý›é‹s*%vk½HÕè6ˆ^ ILbË•½U &ñߺÒ–É:<—ÔóéBÓæPxž—µà|th²20Ãë&'Ëý#6‹„}:‹° #á˜ä|Œ­ —ãÕÕ£í¶žG«K¢à\T‚}‰»v„BK…eŒØâ×öD¬zò˜d}š–XµtÌÇDŸaZ•Á³Ó_0V‰‹ ?œÈ)L¼¡N}¨;ÁKÌdü™»ˆ>“xCÂB0ï‹¥¼[f†@—±¶ËrCS|w{ÿmfµª)=uE{ Ì´ÓB Sù:3Å’hV¬ö®¥`…¨°b»ÅlÊ•eSÍzéŽ2ÑD3RÎ,Ϧ3’ʰ”)i ޱ”:y¸¹ÎcUªóYö#íÕbU©Àµ×¢7ø0v¼·ê°³µÊ€{ë³îgŠçì‹y,@x”Æçê¸&@%žÑ$Žx4i‡Z8BÐŒKK8}KÄKPlâ #^â$\·r†…âá€å¹n?œŠ77~øpŸ+­ÖmãŠÞª‹DWšñì~’e2î Uè»G-OÈ ¤|†TteHÂâ*†4§{8Å]sî<ã²kTN#½ƒÀ¼•'•Y™˜ù"¼¡ñæÝŠúÓ¢¡z£¯ÃôÃG¼;CÝz™¨'ûñØ›µ´Äcçv•"?ëùk|I÷lõ@ÊØ$_ú¢ÂëÈšcb¢Ò oŸƒ!Õ4ÕsB4îLe‰«üüœ*“VÔ,™´z)çÊIò-=Æwp&ÂÔ< \¶i" IÀzÄ’Ï“ô¥eRliP?ÍA³AômÑ’;Oòãá¢Q¿òdñ’L\“ëPÉÞc¿”J?ÚJg33{²c?Ô;Í7…Y¾ɲ)i-|*÷xsä럾}û?èè·à†N  Ó”L8ü=9RDâe‰“ñÞß”ݢΕ,,}è 9 úšÝN¢G)øØa ¢ e[ŸÔx»‘ÊN¼×ª)€ „gû‹L7ëÔÿy¾4 È;!C,gS‹˜{¬Ý•·û–Vúá˜#,9£|Í`WÞ§q.Û„ÿ"Wµ¢³Jè,UH§^Ö;u¦`¼òLÔµ”©Ê­¥™—Ô~¥Æñò^@„ßÂCä¥xpÅ>Í/ü#7¸£`ΖCÆ5*ÏÆ''VÓPºÀq›`Jo€çÊæ4\Ú…¢Ù™÷) XOÛú±ÒÚyJg.†WXÁ€Ä YÈS”1ϬÎ|ež2îA5 ý¤£y„3´^{¼¨ò _ÆÈ¥<¢"ØX¾ Àl†ÈaàuŠ p)àâB½/†ž™š¯]Ld†¦S‰4£ÞôXƉ•2Ý¥v JŒ§òÅÛ„?+aØ@´[ÇÆÔ|g î‘WÛˆ^KXRä"µ+²w£Ñ›–bÚŠ„[D5 ¢"ë4-E“´ ,±;"ø)ψµ[@™Á»Y¢³¸É ¦õ&’kä•à&gènÉ3/G±³Õk¤;·Ç¡u?öØ«–»C¢:jöà +çóZÏd´!@–|:mhöUÙvµž„ôñ“Ø79ýÂt¾‘e„Pô€;™%-|è!ýÌØrußLMkžy%ÏÒ.Å ¦@`(qSålK¼»yP»×´ÏmG5&U7µ´´/X±Û2Þ¿(›ÒÐuo–N¢=ÕIØòQ•s Ù@s˜ï3Õ³ûÈÆÊ"K'#†o2`SdÚò×mï\ÎÒY¦Áôèj¥œ}rÞÆÙ{nÌRÓ;9|õ°¢IÉóŒ<è@‹%‰ÆïowÐ!kÉi=œ×$}†{+Ñ€'ÉìQÍ'Ò:j¥LsºLë)}¿=%wCOVòDVÖú´?’ýÐ?ôÀ¢Õ4¿ŠÇÁÿü¯ÚÛÄ]*°×!âÏÿ7Š× endstream endobj 5 0 obj 8638 endobj 2 0 obj << /Type /Page /Parent 3 0 R /Resources 6 0 R /Contents 4 0 R /MediaBox [0 0 612 792] >> endobj 6 0 obj << /ProcSet [ /PDF /Text ] /ColorSpace << /Cs1 7 0 R >> /Font << /F2.1 11 0 R /F3.1 13 0 R /F6.1 18 0 R /F7.1 20 0 R /F1.1 9 0 R /F5.0 16 0 R /F4.1 15 0 R >> >> endobj 21 0 obj << /Length 22 0 R /N 3 /Alternate /DeviceRGB /Filter /FlateDecode >> stream x–wTSهϽ7½Ð" %ôz Ò;HQ‰I€P†„&vDF)VdTÀG‡"cE ƒ‚b× òPÆÁQDEåÝŒk ï­5óÞšýÇYßÙç·×Ùgï}׺Pü‚ÂtX€4¡XîëÁ\ËÄ÷XÀáffGøDÔü½=™™¨HƳöî.€d»Û,¿P&sÖÿ‘"7C$ EÕ6<~&å”S³Å2ÿÊô•)2†12¡ ¢¬"ãįlö§æ+»É˜—&ä¡Yμ4žŒ»PÞš%ᣌ¡\˜%àg£|e½TIšå÷(ÓÓøœL0™_Ìç&¡l‰2Eî‰ò”Ä9¼r‹ù9hžx¦g䊉Ib¦טiåèÈfúñ³Sùb1+”ÃMáˆxLÏô´ Ž0€¯o–E%Ym™h‘í­ííYÖæhù¿Ùß~Sý=ÈzûUñ&ìÏžAŒžYßlì¬/½ö$Z›³¾•U´m@åá¬Oï ò´Þœó†l^’Äâ ' ‹ììlsŸk.+è7ûŸ‚oÊ¿†9÷™ËîûV;¦?#I3eE妧¦KDÌÌ —Ïdý÷ÿãÀ9iÍÉÃ,œŸÀñ…èUQè” „‰h»…Ø A1ØvƒjpÔzÐN‚6p\WÀ p €G@ †ÁK0Þi‚ð¢Aª¤™BÖZyCAP8ÅC‰’@ùÐ&¨*ƒª¡CP=ô#tº]ƒú Ð 4ý}„˜Óa ض€Ù°;GÂËàDxœÀÛáJ¸>·Âáð,…_“@ÈÑFXñDBX$!k‘"¤©Eš¤¹H‘q䇡a˜Æã‡YŒábVaÖbJ0Õ˜c˜VLæ6f3ù‚¥bÕ±¦X'¬?v 6›-ÄV``[°—±Øaì;ÇÀâp~¸\2n5®·׌»€ëà á&ñx¼*Þï‚Ásðb|!¾ ߯¿' Zk‚!– $l$Tçý„Â4Q¨Ot"†yÄ\b)±ŽØA¼I&N“I†$R$)™´TIj"]&=&½!“É:dGrY@^O®$Ÿ _%’?P”(&OJEBÙN9J¹@y@yC¥R ¨nÔXª˜ºZO½D}J}/G“3—ó—ãÉ­“«‘k•ë—{%O”×—w—_.Ÿ'_!Jþ¦ü¸QÁ@ÁS£°V¡Fá´Â=…IEš¢•bˆbšb‰bƒâ5ÅQ%¼’’·O©@é°Ò%¥!BÓ¥yÒ¸´M´:ÚeÚ0G7¤ûÓ“éÅôè½ô e%e[å(ååå³ÊRÂ0`ø3R¥Œ“Œ»Œó4æ¹ÏãÏÛ6¯i^ÿ¼)•ù*n*|•"•f••ªLUoÕÕªmªOÔ0j&jajÙjûÕ.«Ï§ÏwžÏ_4ÿäü‡ê°º‰z¸újõÃê=ꓚ¾U—4Æ5šnšÉšåšç4Ç´hZ µZåZçµ^0•™îÌTf%³‹9¡­®í§-Ñ>¤Ý«=­c¨³Xg£N³Î]’.[7A·\·SwBOK/X/_¯Qï¡>QŸ­Ÿ¤¿G¿[ÊÀÐ Ú`‹A›Á¨¡Š¡¿aža£ác#ª‘«Ñ*£Z£;Æ8c¶qŠñ>ã[&°‰I’IÉMSØÔÞT`ºÏ´Ï kæh&4«5»Ç¢°ÜYY¬FÖ 9Ã<È|£y›ù+ =‹X‹Ý_,í,S-ë,Y)YXm´ê°úÃÚÄšk]c}džjãc³Î¦Ýæµ­©-ßv¿í};š]°Ý»N»Ïöö"û&û1=‡x‡½÷Øtv(»„}Õëèá¸ÎñŒã'{'±ÓI§ßYÎ)ΠΣ ðÔ-rÑqá¸r‘.d.Œ_xp¡ÔUÛ•ãZëúÌM×çvÄmÄÝØ=Ùý¸û+K‘G‹Ç”§“çÏ ^ˆ—¯W‘W¯·’÷bïjï§>:>‰>>¾v¾«}/øaýývúÝó×ðçú×ûO8¬ è ¤FV> 2 uÃÁÁ»‚/Ò_$\ÔBüCv…< 5 ]ús.,4¬&ìy¸Ux~xw-bEDCÄ»HÈÒÈG‹KwFÉGÅEÕGME{E—EK—X,Y³äFŒZŒ ¦={$vr©÷ÒÝK‡ãìâ ãî.3\–³ìÚrµå©ËÏ®_ÁYq*ßÿ‰©åL®ô_¹wåד»‡û’çÆ+çñ]øeü‘—„²„ÑD—Ä]‰cI®IIãOAµàu²_òä©””£)3©Ñ©Íi„´ø´ÓB%aа+]3='½/Ã4£0CºÊiÕîU¢@Ñ‘L(sYf»˜ŽþLõHŒ$›%ƒY ³j²ÞgGeŸÊQÌæôäšänËÉóÉû~5f5wug¾vþ†üÁ5îk­…Ö®\Û¹Nw]Áºáõ¾ëm mHÙðËFËeßnŠÞÔQ Q°¾`h³ïæÆB¹BQá½-Î[lÅllíÝf³­jÛ—"^ÑõbËâŠâO%Ü’ëßY}WùÝÌö„í½¥ö¥ûwàvwÜÝéºóX™bY^ÙЮà]­åÌò¢ò·»Wì¾Va[q`id´2¨²½J¯jGÕ§ê¤êšæ½ê{·íÚÇÛ׿ßmÓÅ>¼È÷Pk­AmÅaÜá¬ÃÏë¢êº¿g_DíHñ‘ÏG…G¥ÇÂuÕ;Ô×7¨7”6’ƱãqÇoýàõC{«éP3£¹ø8!9ñâÇøïž <ÙyŠ}ªé'ýŸö¶ÐZŠZ¡ÖÜÖ‰¶¤6i{L{ßé€ÓÎ-?›ÿ|ôŒö™š³ÊgKϑΜ›9Ÿw~òBÆ…ñ‹‰‡:Wt>º´äÒ®°®ÞË—¯^ñ¹r©Û½ûüU—«g®9];}}½í†ýÖ»ž–_ì~iéµïm½ép³ý–ã­Ž¾}çú]û/Þöº}åŽÿ‹úî.¾{ÿ^Ü=é}ÞýÑ©^?Ìz8ýhýcìã¢' O*žª?­ýÕø×f©½ôì ×`ϳˆg†¸C/ÿ•ù¯OÃÏ©Ï+F´FêG­GÏŒùŒÝz±ôÅðËŒ—Óã…¿)þ¶÷•Ñ«Ÿ~wû½gbÉÄðkÑë™?JÞ¨¾9úÖömçdèäÓwi獵ŠÞ«¾?öý¡ûcôÇ‘éìOøO•Ÿ?w| üòx&mfæß÷„óû endstream endobj 22 0 obj 2612 endobj 7 0 obj [ /ICCBased 21 0 R ] endobj 24 0 obj << /Length 25 0 R /Filter /FlateDecode >> stream xí]iwäÆuýÞ¿Šiqz;ZÎÄ‘eÍI+^4‰?DþÀáfèps‰’üúÜWïÕ  4è%ÎÌ9$@_ªn½­^=ü1ûMöǬ,·MVÕõ¶.²¢é¶]VîÚmÓe÷—Ùï²ÛìÕWyvñí¶u·+÷E¿ŠÊS‘R˜”VAÃÉTšFf1e|þ°…” IÀ¶À|¯¡áÚ1ä11e‘·ï.¿?º~ £Û‰Eè"¦ŸZ˜"å¨Ö1tƒÖù¹™.`Dzã×t ~abâMð!çëd²Ð4¡ _WB¢qõšwûmµk@"§iKŸÓÒh×m÷º×å]*@§iôö1"» ´…qÔºÈK{× h-™F?aæ u mA’¶ùFËeC*ÇÇB¤_*©T3ÉŽ¿Qßão ¢#Š7'|y„üÝ39ª‘ù¨ÕÉN¶/”Ö`|¹ E”7Ŷ,öº¿Ç„b_ÆDD—Ãæ`ûR1.a’ÙLÐó¬ b3^P.6¸ÍvÐn>ö»óÇóí÷÷ç7—áäy·­j°Ø»Á ¬î77E8þm±Úá¡×ßKXÝìóíþyXÍÐ3Y½}Hbõì‹ç÷ç—÷1RWÛUæá{<ðF"hÚ–öÐHT)æô?À";ùÎ2ýþŒ'}>:ÝÐg9,GYŒjé.ßñΟøIX’ëí•#cå†r‰¾ü–Û½³r­œäAF“™w?!©Ãþ|Q—[µtôZ2ºéÊ-úÖÄ'Ør]EF3ôL6§™®K ·ÿswf̹]Õ噇|8Uïº]ðü²ù_—ÎÎ<ƒB9Irí "×Þ|5ïR\°;1Ixºiš&ÑFŒlŸüÊ’ã– æÙ èhåìúV üáHûHø}®‡olrøRhs’bÀ4ˆätƒÉáG»*$\µ Y¯sxjÖ…Ùk¼E¼Að2Ñ€]ôŸ—w)¿‡¨º¶•†»„žŽ>ÅœÑ|—o›z‡S]-À‡Ï;MuC™à0gG_kA r‚ÆGô¢1^p¥:"ºãBþ*Ÿã¯Ê >ÄT'c|££:–ýøzߎ'…àÁ;'H‡¨¶‘ò0îj»œâÖðwLL„.fl•Û®­Ö ã4MúÌ#M¢°|¿9¼¿ú¯ˆ3°oá ìÜönåe$äbYîöD-"EŒ?ëµíyY>Ÿª ë»T¥£TeE%üw'‹¡?Åj° \aoÙ zR¾ª›Ç´À@Z‡eª¥o=ÛÀ¦Åöš1ä¸yoŸnݾˆ°×òn"T£ä•P¹jm Xw–ýµS÷¨ò„·¡mVlhµk’¶U±Ý•”¸tè ‡Í«76 é`ËÚj¿x©S¦KRDºCžd­Äˆ›ko’qu¼E58,Ò¯Vè:-ûk'néJ[þûÅWãâBðòqáq)Œå•Ý‹€š'dŠöéŒuô¹tÆŠ¾eªß§ ÏT¢š 1üø!r·ÃòeÓR'8àÑ^ˆ0ÙÄÃÓÑÒ¨ì´í¯Ël¡°ÍáósãgfRHÚ¾Œš1+Á÷3ã+n(ÅG³ò¶„ º'€HR šÝ·@˜ ×wï¯.ίÃFNžcÜkdW4Î=â²<‰Y͸¡Ïæ­l™‚:yˆÇáç¦$Y°ìß±&giÈç I`y¼m÷¥×³19˜’{‘úÔ‹×ù¸}.¤Òl½_eµ¢4»¾zxŒ¹ø6v ðWÓÃ.Ú_•ðr)&Üb±ÅTæÓ䯓§3žw@2¬.;¸§î˜¨³®–¼CK_VˆÁþš xá8/¡q¡û-Mµn­梩ÑWiu.OÓÈøÕw1‡E~­&¹îèÀ2?Ü”]‡I¬î殹‹ Í„ú9¯‘dØ 'σSÍO‰ KBÃk^-8fÄÏ‚§ˆ„Gó®Ø6X~”û†Už~ŒÍÉo":æHYwp³ÝAðºž9¢Ð”¢ûm ­ålœ4aÜ·14$cís=`Ñ'4"@pÀ°Ö—·e¯ãÔ€ ãâC¾55+™ËŠí‘ê¶+4)¸Éc*XNœÕ²ÂR¾éN­‚óa~£3L”Њò£ïNÉÒGš&xEQxظ*O¿6'Ÿ~w*Ç!±bjD”o½Î:‰Œ©Jë¢|h¼ðZY·Ã‚ÿ ¸?ÖñVÝÅücÜ×Àºç’/înn.o#yU­ÎNhzX9 w‚•£.šâuÈ­2ìK>a¡a +É ó•g;µ éGDŽøJãmâ[¢øÎŽhú±»ør’id…a¥”¾À×1†|ëØ>óá.žn®nijÊÃÅ>œq.š‘™cNþBÊ©¼bK9’m,ÎÊE¬l5èºÝ>ãuìEOÆcïn;¿;Å>aÊM6Q¸Ç$¯¿;yõéržqŠŒpÎw´ŽË§¢1øÌ#1žžÑæë¦Á¶Q Þ€²v< mY‹ ð6uM"x‰ëuôk?Þß½ óÖ,Ízè^7ô1“$å ­$*ÿ”¼}-°¬\_ÒXà$wµ¤$9{f%%ÒÂT<Ðd·– pÈŒÁöEdæAVº=äõ·¡¦GxôÚ!Ðû<Ëj5{ГËj–O7áv[õ¬À׊rS)„ý×ÓR(® Io†ôPZ2¿´*ï±È1ÐËËØFPÆìŒ° Vå¾kK°ÍDm3f·e[Ï=§E´;„¡€® ¼üñéüöñêú2Â7Ù>højtsÑŒröײ‡KÓtcÚ‹D’å2mqn¾ªŽü¸ÛŒÞ5ϧ£D‡0O×’Vu)r8á°R‡b½¬1ubY£›#hàk¯ï" ¨÷ÑU%¶¢Ô z5®¹hÄ5ì˜mo™gl:±2ãm`Vq#ÚÃBƒ¯^ð-;*´‡&BŒ6sèî–1w‘ÞC $L÷ˆáOÁ„Kôp‡Ð“zïúê6VµÃ: {5n¸hŠ)K¥_”<|òËÑUÙÏ'þ%Ù论Áß"†˜:Â96°œHU‘(#Z)öص-B2!”8wºyõàA‡«ØC«÷=¾æçp¦„ÚܹorÕØ²È÷]‹³°þ°êY8;=ÉÙwW·Ñb:”Á×"­‡¶ ie|5™XB^}n¬=L^½çω¯L‘Lv&ŽškÄ~+~#\+ÑÈðFð`½Yuز?—ia3ʨÍQܸ:~øp÷CÙhM…¼Çèñ,]g²‰î ?ád ¨’qøÍG{4Ñ'Ì -„\Õ¹9AåÀ¨í§jä0â‘ÃãvºÇ ˆ¼Ô4cÂWítœb¡âžB÷BazÅÉØ«ñCuÂÿ‚¸c:ÂzSú[§3 ‡>\i0ZÇ­BÍxS#Ç離 b¿6ô¹©ƒˆÍ2ºâfN!ÄÑæ¡JN^ÃçBˆ2ºS…ƒÙ¥C(V»Ž$LàUÃylxÚ˜Õœ¶ƒ€îxÉ¿ /*6ž0ë?Õ%œpHK%øˆÀY\|9Œ¦—¨¥(ŠL®ØÉGN'ÂR¾¥¯`].Ì ­‰ägnCÄòƒAÄU%Œ*73X˯ÂÞƒ²EWUg S–\‘©~ØSI!2—SÎ B¿~#*_Ž»AnýÆÏP¹ý)’™?°-Š3$ÐùC Ã%ÕxÛïPw,XÈ‘¦¹³÷̃%Ö…K*cæÂChL™`¤°%r,+,ãv-FÉí¶¾dÀ^&ƒL¶Š%5šc…Íh˜2‰Ôî„4Á˜O^æ vH!õÕ_LD½¸»þJ#‹ûHø: dXô‘~p¢¶#G _ ¼7qƒ´ ":¦CÅÙ ïŒå8k„üÐÓÜ~G/ÏðwGB¢ÄCÜCûeîk¸pâùßwÎp†dö€ÊTqœÌ`\ÇñÑ3|Ðm8 O¦ºBÓ¦†6Z<†N%»DæÄW^Ê¢Â~lZÜy‰ÈÌI¬QÇ8‰mÞûþ¥‹¿¸„•ýN8—&?oÇX‡y)¤â Ìr5ÑRÎhš=¿VìâË…GQÚÙ©2‹vƒ¨ŠCÝÄjkLÒ¦ÉC<üÌ)GLǬS™§  5AÈ õ®n“¨çÞàPî¹Xjžü͑ؑz(ðPC!K]HaÌâ^Gw³¡» à_2ÿúÅù¦©Íü£eç[˜ÉísÝÆ/î ~.ÖŸ“€´ø QwfŸÉÊ\(êÉѰ6;®a ¥nw0˺‰ÀxÄæÑ\ãÂv‚ftá„ Ü–ÔÌK–u÷—O÷Qqϸni›°*~x`ü d¶yXÿÏ6f›Ço:¢I)l[TÝ/¬} S6ÐØïIrí[¸tµû¦ÑUÜVbÙ ßZJ5à:(Á5â:°U†ŸF¿múžQUc™¶,PšÀ7½åq‘Ç“ª(<ÔäØ-îÁÑL+"}Àñ¸È_Ú¤ÀšŒŸ•x9n¨‡ý É ùʯw ý‚$±qÑN¢¶Ù±Ìq!Œ.%jæúu G:džÁé›3BØîf5 R.…ð ò\ÒÄøæò<*µ÷íµ|q?ˆü45 î°¢Ð™^ª@:׺Æ×ñ)tÄV¥ÿAXS2m˜q`Ñ¿ìÅzÌþ>?84Î96<Érçcc¹j‡œàuªØÎÕšóEÞÀÂHycÈñIçßÎïc¦4a aÇ5ÑV²–•œawL8f‹¾šµ=óB(ÆÜ⢉"¹ŽU ýˆÅ“÷•ƒÃ„¨°ËÉ pž}ñÄ5Tê—@›1©Òk>2¨ôí\þ€¼¡´·¼F)8í¾ôÛº–öL¤_öF©H&Í—l¢áB$sø<ÿN'اÅn óì+Щ_†lE>͇¡þùéþñî!¶mkw~Y¥"›aT¿µ3)åøƒBeUŽ’A•Èv+Ò‘âM+ Š‘3>9‹êR!ù É>l5¡ÜhÏÏåÄ=|ñ 98üéÈÀéTÿÁ¹!”‰³µ|M¹„&_—{D½† UJ”½'=œ¦ª¦Ù¼PrªØ[ š~_1*ÔE_Ü â3¸X«Zm¢8Y=š2¡äLÊ‚‡•{"ñ’|¶Óˆ¤ÖN‹TSªs$_ìè]ª3Æ"ƒ¾—¾!'W¯ ÷}þ!•ª«QbhM¹¸\60Œf²-¼Â`w©½çÖcèÉü$bk|AŰխëv([]¬ç`«¡-ôþ%25w-ôµ;d#ª3&˜ZoËŽ‚1h3™ŠÌü©šsK™:„Naê¯'–^L0FÁ¯äœ¸X«Ru¸–B’Nä£ïƲðe×…ªË6ψ1!ÑÙBû`è½¶ž½–×£0“CSXEƒÂ¶h¶»ïê4ÕÑh3㉺â¡awSMƒä]¶Éä=žÇrÒM6Ï:u¬Ä64u¦ùÊ‘öe`ÚeÐŽk€vuAâòÅBf¾Ì ü˜Ø …sÜÓ"¸Ùåæ2é#)!,\ðK °&´Ì¡vS^xì5ÒÚçæòLýuñ‰`y”-6çîÝý»Ëû¯î®oñ¾»¯{ÚRÌ2K͵uö¨ª7:âaÌ(ÄgÀ8þ[§ŠÙð1NikTGx»áh²WOÈ Ñ 7éNÂj¾¡Úàƒb‹ª ÄTÓ05Â<·}‡„NoH=æ ôh‚%I…±VÝm¬G‘ãÌ{¸»L!,¼;Ř_#Ù“/ι µ"íXöù\8‡uÄÔ볈u*­t›Ã:,‘4%ök:ágèW­[ÕÝ쪪5ðŒœå'S(¯H¹ºˆzÊš~ê.‡ÎEÑà.–¢ßZñrW0ÜVý⃈5—,­Ÿ‹«ôiÒÞáLÏuQ‚mà5M ;mƒÚ²ÔÈ3wãb…Uð†øŠnw-žù†‡Ø)¾s·»&$cGµ»Î¼Åk_fßß]_S†adþè/~q/M]‹€Ì?Y­c*#.BKØâiC¦#lPav$E7È1-ÑÆ9&®·±?†Aìv<69­£Á“uÆ@Ø”n8VìW.ÞcUízÒ†T,‹Õø,õ_­ÐW’r.ÖªRn&É4å·È&m¦ µB¬ s§B…Éš6Ë{Fš–·aJƒBRæ†.¯ê ø4VìsÄ ¡¢S°ž]Rx²a‘¦.›6(®²Ž§­ …_ŠÓEн±’È{©ák±×Áús²—…c/ï‚‹ÛŠ`0”®§é=Ñ ¹IB’gÔ ÝœcÃùfµË•Ù‡Žñ¦–R¢ÊÙ¸ÞcÈqJ³n~wÕÎz£3¥ž¬Å<êÏI<í^°ÁÆŽ²^T IË)®Q䈸† 3ì@8@µ2سì8œjÐüÃ0Oœ©áD=_ÈM- 7Z¬ŠÅ­KpÐÖ?µ%¨TT…‘V}—Z8ÃŽ3o†ì#´¾ìÓ|œå—PÕª‚ »}çÒØŒÀŸ°)Ë,/¡nWA3YfÕ m:t”¨h£‚T{9K€ïï~H/câÝ`i¯ÊÒ ‡µª,ej’Ễ]®[­¥'rlq†Éª/§OfKÖ"Q*´gؘ ‡¼•kýô 1¡%1.Cw¤ <ùFy‡ŠÓÜQ'É%üøÞGKÑ®Ùâ=ÜÑ §f"iç+f7MîÛÅ7ww~y÷C|·‚V÷•s‹ qíYOa逷òBùSȪÞVÖÜ šŽ†¡ˆìx)ƒ‹@úK¤~ƒ*üòÉâØ(Š# 1”5xKp,·ø ]¥;½ÏŠ¿ø÷Å/qjƒS.¾`bþàßþK÷«¸ ùæhØ‘²[1 qc”3òz…úa®FPƒ­¸Òg‡ú Úù¯Zl}ž8ûhfö·Onž"\l%1ûšâwÐ)+•[QÒgòv¾|ÀX‚ VhêZ¼tP‡€ ÒhÈA?sˆO‹Ô²Ž/à—ÐÐTb_XÉÛ”¤•œäxT%ÛÀŒuB·áuÏßoÞþbü­”H7ãrîÖiÑ™¶FYá­4ŽV´{_Â%¯#Гñ%¡ØG*B1ÕúC§›OKõÄ_6ÅúÜþF±•é'õð…ÁØ,¦øÌåWS8h”÷X€ˆkU‘U‡3É*kº„æf·Eb›*§HXíŽ\l“®1RKÒh¥V”ZƒéA%4Q{‘ª©Ã9ƒ·“õ‹fêÒ}¨Yˆ«Z¬HìEõTü«å¯nWS±Íﳉ‹\]D·" zuNgAÔùM‰’ž•½S‡ø^Þ»­Ê~jUõ“[…¶ðm$KÁ´8궘«¸ÅSW™&ãᩊª‹Ú§/w-<\²ÑNu+Ü+ÌÝ|œðEŒÔà^tÍXÿ¨gGygÓî ÓêaÕƒ¦-½”¡Ò…Sù>‘ôîD]hn…ÆJÿ¹÷òzÙ‹ØUÀš&?.ñÈ_nËEÅP™€F†MÛškò/–ʦªRWÚ¦SõcñVÉ,G-x„ÜÛª³6µûwÙmö꫇<»x°m£ù—çmƒìá¯eä7£ÅcRî»}V¡<'ÊqsÛp-µŽÅÚÖß—@àPJ;O¬­áxÒÈŒ7 {3‡EaW˜}ë~)¿?ã£/¿àj²PÔªd¬ vò)ÈÄé’±ô-ØÎnH©8ˆ’± Kߎ F.ù rŠ4?S3l>¢Èò+iª.}Vbð_~©R±­.›{‚­z°ÃŠð‚IÓ1ÀlES´.„†¤m«Ú梑~ ¾¾Ìâ¾@B…€º¼\àh3©/ƒpPEQïÁQ;9î¶ØvªJ±!äs±í°²7@¾:É"“/Œ7î€ðlôùáh,–c…gÍt‚lg;ö}ZÙÂö.ðH{íæ„ó0ZCÞåx Nå¢ Pã»c&Qìúê}dšwW¡î¶mh$€ÚJ¨×„íDƒ†ye ˆ§/ 0ýÅãl‘(HI¤3l•i7"Ä^N&\ Ï| ø):CÂóS ¬ÑŒ=Ü©P³ø«*y_’W5<,Ä ¤à=‡˜€jDYŽ'›‡}¶­PîåµF: q`’…¡1Ï‹­#öøt}þxù.Lló²@ÿ`öyhjš¬]_dJ²Ö·) ·<þ±»ËWé’Rž'LÓ_=âp§r‹ÍzÃôÁò%Fâ1A+>D¹sf‚B%Þ¸•y¸tH,3¹ËW Œ[f.~w~uýßaV™XºØ‡wAÛÚ´ÒDáÀö¯},`ö̇>'Åðsê‰o/ï¯bÛÖrl9mjT–÷n³´?ŒŽðТ¶Ç_´ŽÅM»XO™)óWf»Žƒ9ªK”ŽQu±é‰1/áv¯3vz"J1Ý*¶re¹¹šrÒ¨‰zˆ(‡ˆîpïr85]45USÂ[?§ü;˜üÓîå1 ~sÎ$“¼Z3¸œYe³ìpHYG£ŒÙ ¢Ù‚R_еPç¼6kX±U¸dõдpca¸p‡‹êuø –´ÿà9¹î¬2\& ¢ˆ!jÕC#À3,¢w÷ç?¼»û!VÒ. ÿÀ ª‰.ZTE¸"ñTþÅJž DÛÇ >-–¬2ؼH)cÉLeÃ{1_å1ÖUé–€¥ÛŽåÙ—Ð,d³…±¾V3ˆÿæã@Ð/r*Pt¤q>p,É™¬œ&@3!ÃÓȼý¸\žOdÀäHväNvá½9ßw:#SÓ’ÝESd_ËJ±N¹všuÌZqÝëøo5ÔÚ+d¢sH×L÷Ø1ÚÍ£)èáxSÌÊö‘i!>b•ȶÀK®Ü^\:&–øˆ 6³‰f¦•à €ß=Ýc§È]švñ—vƒ¥¦‹¶.5Å ÓòY[ü3»©‰$h€ZÄ&C-ºn!µHá£À\„aXš)wçW1¦éýY_CÕ‘¶qp/p=¢Xqb6 7!nîn?Ä\Aóž@nöjú¥hŸÍÜ^}q÷tûø ÷Åo//°KËnÍìÍé=cu PÝišvgàH’“r.Ú´ÉMuß1Œ¿ûœ¦‡¶…Yl³a£ÄÚ»lÖxR]{q®«¦SDxŸñ¼ËÙØ7=MOUr‰í§qC¸Qò->„7ÇŦf#¼FAÇÔ!Hœšp¦†Fø!yàÖ BO¦7¨Dp&åï®na[R6å%–îê ~ ºÑóÔ’ÒE›&%ÅÛ'II aJ0ƒd)ø…cþémÎ¥ìiež8tÚˆ’j)bs3ƒ<_T\@/˜U˜ /Ù$ç[? Žâ~!^ˆR”Hð@uYJ"\eœáá"i7Gãýnþ=–*{kóäó_I”—[íÐ~˜ëe}äH2éê ÞºÏj¢ØE›f½Åã–f'ÿÄK3!™iÅôÈ‹²ÁM&¥5”]ÙM‚Ü»—APƒWXœ!O)8A¥U Á®n±Ì5³ß™¹Æ4ÂZÉÝQýÙ¥•™kM£à¾ÍõAá»wWç×aëŽvê¾R¢‰i¸7û¨CÎÌÇ 6¯!É¢V¦åVGû3âôrp¹º0„}x§H€îOañ •FÖó}Vã˜jµ ­N3æJbIOŒ3õ6'êY•‘¤Q¯W>Ðð#Ù›Eƒt¸©dÞ zìëe„"–}p'Õ{=W+‹jÙ§ ÝqŒè¨;Ê qÙ÷³ËÛ‹7ç÷ÿ¡ìµ—C¡tuÛf…û^¯8sGÝBõʸÚ3F¶‡6EAV{“F6ñ£a‰&ùã¹8nbn¿Q«1>墶'vÞvvCZ[tOÆ Ñ) ¤6áÇÈh¡e¢û‹6~Z,+¾ðÄ·¬!ÂH×ù+€!´ˆ= 3i“°‰ã™æFRþd9XË™r#ÃÖ˜1ãÀq>ù&G<:òŸ$íÓì™&õøÆKjÕ î|\+¸Q¹™ÛL!'¯ƒÇœ.„•àts©dÙçHj×ð†wvC¥P¶\Á¦ß—ÏÓZz×îÊk5ŸË›gâV Âé7±Ï E®ÊÆ=xX¬®÷HÕv‡eZLÆ´¿åæàû§ÛëËÛ÷´ÌÑDÚÄ†è± ?œ.Ú”Èem1)r]ky)2,°ÜAT囡ƒfo¿ ºêˆcm|¹Ä2øNyœKH¶+ 8«t¢Ã%¶~Ž”¦ùžs° (VോŠrx<ð¥D²}@ks§SlBYƒf>òÝÓãõÕå}X“˜UûÂ_ÚVÔ;`j.uj× øGf1èk„9,þæ%{Ï0á‹Dvú³É ŽJX²%óÛ^|†ãdÒ˹ñ˼œûXBÔ²`'«q²æHòïä"Vê](8'«x»7Q9íú Øèî÷;}`DFˆ¡å$ïøuDÛ›°Ìì0À´ +ʸï#Í”ÙáíKNœW×±¸p ’´M2Jjÿ|XìXÓyzjxXÔδ©!‹»ò‹é¤ˆ3ºåÏ9½ÍdgKŽÏ²%D0Tã94â ÏN"©±b…rŒ]¯‘”=\ϰ6ò†ûÉÍùL”Þôºz¼¥y¥Ñ0ì†Ý¼æÖËîÀ×çïcLß#äX–^.m›7 tt±Ô´YkAÚ¸;D?ù+åyØuîk%5÷ÈM!„#ø`6²ú9ïFVà Æ¯"b[Öá ±¿XWçXÊB™°•zÝÐ[óMqüDq[ ³´[|{¾½@F=6þß=EÂK¥~mÑ7?”€.–ꈩh|M8-ÿ*bãÈ_O ¹‡UbïLL!á‹-vnôÆ*&£u-+”¾V‘Ï‹tó©w¤—®ÆÓ>*L®}…ÚÔSfíäïÃó¿ê—³/zhÔeiEe©Ë࣡?À|þ)‡¸z+æ%Í t®ÂTÄL-üD¯šB¯è þvضRo$Ûjê©ÓÔ¦™1y¼ê„™‹ùrwsõª²ÂÀ7 R ðC'Š¥ž¿!ç~Ô óä§,JÀFÞÇ9å/‡ðdáŸ"#ýÝ!à¾Ë¨Œ©’{ôÆX™%ú«ò‘/—˜aD3ÀFB*œaüŒí'‘CÛ£Š IØEžË¹]ßîõ{|`OÇ4®®ˆMéóPPûœbtÓ†ªAöx1heŠ ¹öš8É éR 1(žlaJj#B±ôÕ±yÙçgùëËZÏVÕ_“eb"ØrDeLn#ŠcëE:yÈ¢| O!z5´#•SÏtV<òjäÒ}LeÈÔáŒFÃF QšÛÁyl´|ŠEšØÊ VaàvÎêÖápˆz•rdfC›/Þq÷w â‘à B²(c‰Ÿü7òpÎô 'ÎćB+ï…ñˆÁQoS[CÐA°Á@!ö×RÞ² Fje$nÉsÝÆÖ>yÑb:‘áï*zjÚkgú2 ‡MD*xpÔR@ND+¡UUJÌ_Š.†'pI¥‰ñOnöôm'Ì 0•}‘ÒÝ+Åàþüòáâþê#Pˆtº~¹{oç$·°Jq¡T • ƒ9‰á§mD‹ 1™¼:÷ÇôÊ|âëÄÐÔeÖ=¬^D¡°êx-WÓ'räk|=Ÿó®'C(L!*)¿C2ÒÔìX/î23×K-’W¥Í\Ô÷—_Þ¿¹†ÚàE„gOšñ%tAW^ܘòL)dé8KÝ:Ç é™¨|å`„~ ›c«Â=³BUnÂhÃÄ¡“z ZÚÐ>ˆá¢Mq"±ñ=U•Çöµ59Vè}Ã<¬ÊÍ/ý)Úú-@zdÒ»TéON“O=¡ß •) Œ×°ëþò wùt¬Ã`~Œ!@/Å@&QŒ^D?¹ÍYÓŠƒEY ‚³±×e & ½âŒ‡,lqèyßd˜& ·»MùUÑà—~¯ ª­÷¡»°t“³“GÔºŒpK¯0ôJ²M5Óe<¹X*QAuV“š,pä“å™I|½ïŸ3Ý<¥¨ÅX€g‡gÈð“Õä+tØ0î _o^½±ƒs³ ÏðÇšÎLˆµŽçT=ìèÄ7ÕèáÔkQT/Ú[I/º.}hof{ÚÜÍ…rºHÄ\†g›Š Êy‘I¥^ž’cû‰6x/Oϱ ¤I8l¡×±‹)´HÆ›n\…%a7ã`^0Ä`‡|BP’#+ãpдGžDÍ4"!تºÜÎyUÌá­C¥H$!îðþšª;ЄºOŸ4²kRÒÝO¸´îHò\÷9Ùa±8 œ}*Xû’ •d‡î@| ªA8¨ŽÆ¬YaÝBÂv¸ëezc;äÅ+Äé ¼ ˆXëà«Ð8 Æ× ç!¬òb•¥²Þ…CÅÜ’˜W’€wzÅÔM“™Q åœŸþ™¥È2E·à©¨¿ðˆè/ôaL>GÜ«@QŸ4ÊHÅ÷ðÔÜ©ø6¼È³ãUy» ê5Õ{ö^ÓfòÍŠÊöªH`G‡1ä4Y¶ð÷ñÔãù.;ùõ E„qìgêo ?a‡êõyƒ ö^ƒ’Ÿð7ÿ ÌMN endstream endobj 25 0 obj 12480 endobj 23 0 obj << /Type /Page /Parent 3 0 R /Resources 26 0 R /Contents 24 0 R /MediaBox [0 0 612 792] >> endobj 26 0 obj << /ProcSet [ /PDF /Text ] /ColorSpace << /Cs1 7 0 R >> /Font << /F2.1 11 0 R /F6.1 18 0 R /F7.1 20 0 R /F1.1 9 0 R /F5.0 16 0 R /F4.1 15 0 R /F8.1 28 0 R >> >> endobj 3 0 obj << /Type /Pages /MediaBox [0 0 612 792] /Count 2 /Kids [ 2 0 R 23 0 R ] >> endobj 29 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 30 0 obj << /Length 31 0 R /Length1 17180 /Filter /FlateDecode >> stream xí{y`S×™ï9÷^í’%KÖfy‘,K²-Û²,ÛX Û×¶lŒmÀ6f±±†°†%KCpÄ$$$¡4KÚ@è¤}’)tÒÔɤ’6i:™6]YZš„@2ÝHƒ<¿s%±µ}ïýñÞü5²¾å¬÷œo;‹®7Ý´y9ÑÂ“Š¡5ƒë‰ôñ}Ò=´e“3™6ÞBˆò‰Ö¯X“L;l„h{V¬¾õ†dºåÙ;†—Æ’iò%hÍ02’iZZ8¼fê±o5Ð-«× ¥Ê‹j‘®_3xKêùä—H;×®YŠOëϹþ¦å©rÚKHf¾™0Âí,‘x–g”øŒdF™ ed?‘ŽH€`ĪþÌ|Ì—J dî.•ˆ/ÕGþ@JÖ 9þ›¯Õ1z¢.gçï«>é°|f;¤ =$?x¨âÑD˜ëÂßW]:hùLê)U(‘¼ãÄIÏ©l´ÝyŒ~‘f.¦™?§™?¥™?¦™ iæ|šù4ÍœK3Ÿ¤™ÓÌoÒ̇iæƒ4ó~šy/ÍœI3§ÓÌ[iæ'iæÍ4óã4ó£4s*ÍœL3ÒÌýifOšK3»ÒÌÎ4swšéO3 ÓL_šéM3=i¦+Ít¦™Ž4ÓžfjÒLE𠤙²4SšfTiF‘fd⤤¹ßKøs &á >/ásþDÂIøC  á÷%|F¿–ð;þ™„ß’ð) Ÿ”ðë~MÂ'$üª„_‘ðËžð$ü} •𸄟•ð! ”ð ï‘ð}¾W»%<&á{$<*áÞ,Ö·;G¤Ô6 ß!á­^&á9î’p›„›$œÁ°¾qHh$ù€ 0°°° p?àIÀ³€~ Б¥üGp¥þ÷äÀ@0xpp D¯!ôB¯!ôB¯!ôB¯!ôB¯!ô"jŒ¡ µ«P» µ«P» µ«P»Š(ðT7ypÀ=p> °ð¤àݲ ïÑø¥‰KÜÄ¥7.¾tá’$üÄä“§'/L ëÕ‚Þ~ppAðˆZáô‹^ä$¤oÌ\èØÅ¢׋ÚzàÓU³´ |Žê½TßèRZ¼³Ju'ùÜã$hÌ,ÈÉ»Àç“Üãâ\þÝÓkÎOÿè+·[_¹ÝþæOÀo¹hÍz Õë€n\kqܸvÛMÙ›6g™sV¬ºa%Ðòá,ÇòáÑ Ùö–Ûší®[öÆ ÷ yÀ‘àRÆqpr-w·‡»tŒÛÍÝK´ÄÁ=Bv0%à'ÿ ø@à¡Îa¢ãžDÛo€>޶OÝäYnÏ‘,wø8˜GÓ˜ÍÝÅm…ŠýÜÜíDzw@·¦èmÜ)ÿfn…DWp ŽÈüÎcÜú#gøûÜM(gõ×"_`ù ŽCaUc#·ØÏ ™¨³©wÀðÜîVHÔÏ€²öÛ@Ù8¾’¢·ró¥ò[8¶êù¹- ¬|sŠnLÑRõ6²zSt7ÿˆÂ_ÜØ…4%w3Ì-æ–pK!Â9\77t7›ë‚(5Ü,À¢æ“iàûÀolFú1¤Ÿý9¨š[‰7B Cèi9èzZº’D¸!À`1`` ÊE$©5s™P”ŸSéz¤Ù¬ë¸LH­µÑŒ|JZ_pÜ4”+PeRš’ªïB}“rèˆÉn´pTAyŠ–25–¦Òþ-AC™zcҔȀ8L7D:1¤6®‰3Hne=5€²¡OMåצhMŠV§¨3E«@Y»`ŠV¤ò‹S´ˆ3` ck‘¦$ø8W‰)[9g‡R4œ–Ó*9§–”£„r4¾£UB9(GåX¡%”c…r”(w£…ÊÈEOù Ùè)Ô Eä²V€ $:—Îd3£³Rt>]Ä”Bç¥èPVþý)b›Ÿþ,E?¤§Ù é™=M?–ÒçAYýOèǵx D¥†³MPáH0˜bà4Ç&'žû×|g5ø#¥¥áïQžíŽŽä¸3öèD^ž;™››ÎÌɹœép¤3³²S܈ƔâD•GéQ±k78ŠרF&!³I>Ëb##GºæI##GÝn6"òÝܼ°xÖá†ùÛBOxþ1ªMôW?“ù§½Ýñ6'Æ5ºðK2?æ!NyÒd ‹*Â?Jý=*ó?ºWðÿÃ#‚ÿ‘y¿øÃÒ`øÁ½¼×Þ¯íåTC¶¡âC:=:¿ðÜô|OøßŽQµ˜C¿¶ú§x‰÷KJ§N‚N6E¥ú'}>F¿{Òš~ù#ŠY«Ž¼#=X }äñ„ßýˆŠ¯8rÃGÇeþq(Fœ¨« O<+øßzVæv+Âõ;FKø‡ß§Î=Ô°‡²!쮩•ºÞíóKC©Ü¾ï½Oæ¿oLðß3&óAŽ¿?Ïû??/ó6Âù/üç!ñ“ʪ°ø žÆº90§;I[¦'imDêNsŠ÷=€–¬ÞðPñ§#ÏÛ¨ÿŒj+qð³mtÛ¨'×(õïìÀS¶ŠGã3FùFië(­¥ÞQê˜b¶Õ˜ÍÕfc•Y2k+ͪ Y^aæfRn¾ø…Þy±â"çõeùô%þŒR¿¾ÀQèÖçåg8q€‘d\¤.CÙy$Âë ™Z•Z£•+”Z^i±@hå|,} Õ—P¾CH1DùMü·É/ôr Ñðý42MÕÇ÷«¶ð‘ÇTèN´Ç©†jŽƒæêlŠlÙ`Õ…,]à⺋O^@/ ÐètÚ5€ @P(¨ €L\û}ìóØg± ±ó±s±ObÅ>Œ}{?v&öëØ;±ŸÅÞŠŠŒ½{-v"öjì•ØË±‰ØbßÇžŠŒˆí‰Ý»7¶;6»'6ÛÛ‰m‹ÝÛ[›늵Śb±ëóÿ' ×ûïøÙ}ØÀÙ<ÜÉø¥"XÁ§>ü IÇ«¯2y!Ÿè¾Â£õ8ÑñuDÇzáÌ“¸ÓÄ0yàêévW(:É»ëa °dÙÊ>CIš¼kb{ø¿ÿyùïýÝ’‘×È?“íRù ä(ùNªæwÈód”¼L^ É[²>lˆvÀ=ÈYHfyd Y‰ÚÈAr(Õj Aüáþ Kå¾NÎ’¢_¢Þc©œ+ä!<å&r OzŒ´£¿z²³}˜|›A ùvî¸þsýXÐb·l¹'Põ¯Çk¿ïê±À/“Çá_[aCÏÁ×_"’½©ð ýäÁž†-`¬—?²…$¬`X’Aù—T|BšŸ`ù“oNžb¥I̸ĞËü¿Ã›îB¬øŸÏÿHà¿QœâË÷eïr3dzüXxF!$úé0€Cðø‡€¿‚¿{@ü%þ¬ìÙÉOeßK4É2e…‰ ‰Û±–ýù9ù1ù!yŸ¼Eþ¼N~ËWð?äÏ🠂\vJöMò¼PNn&_½¾Wa­0,Ì …r™”Cf"®.ÀZ5@–‘׈ìEPxP6_ã?ç¿} }¬FÜ»±é!D2".\[ºdñ¢þ…}½ózºgvv´Ïh›Þmnjêë"Ó¦†k§ÔTW…*ƒò²RIq‘Ïë)t¸œùy¹9Žl»Íj1g™Œ™}†N«Q«” ¹LàqáQJmq[so˪¸½y{ç¨ÛàŒkg]˜ˆ£ÃåÎt†}e©Zq™?NLñ¬®Þq"ÖöÅåþë«ÌŠóÃç.4žép¶Ä¾îöÁX¼¨»×å6¼í¸\Þ‡nãÙͽ.—#Îyð"|Û±¸¡ ù(rfÄIW/ƒc“ïÕ"“Ôºú€»{ãyédë-9•«y±iâºa΢c†q­½9'YãDû^œ˜Yµ µØODâE8z à¤ÞH N³>SSœšgbJ×>‚5;]û7dÐ[ån‰­„DcWdz!)Q—sÌ9ÖÝ›r¸\Ò qr™Ó;®Q7»›—«1 -‘AÆÕähXÔ²~œjë©ÄpÚ–©ãQê >#n ƒUqq÷wrC‰éJ nˆ Y²A5‰£Ò3ãòæ¸"9çʸ8'»ã¥c÷3e~mÌ\Ôç1¨qÂ{Z†{â9] ‘…A†LÝQ 1å9[†cH³ºÀî(š^›^>ÀÌ„¸£(S5÷îtM8pïÝÙÏôÇuh®»í?Öb[édɱ±Îø9½W—ºX­¬Ô9ÖâÆÓÐY˪&¦±ÀeµIÖ8#&)GÜ=èŒ,[™á;xoÚþ]c†¸ö.húAKæLÀ b«ØTV¡¥âÛ½\šê½ÒÔ`¯Î–UQ¬!¬ŸÌCë…½-ÃîÈ3õ@íyÏõm]®¸ÝÏ޵°!Æ0z&|í8cÉ|Âá§Os\ì‘é‘t€'ŠƒÑ¾TVªJè!.Dûúؤ’ ˆ+<;eånçëTá‰gù ®WP6QVÚÑÝÛeÖ‰š\soÝ9›ãøŽ®ËÙÔ†:csLH¬d®»cNÒ †™|èI:0¤–Ò<ª¦êK½ž²9N%Ÿ°¨·ÕÝ:06Öêv¶Ž Œ ›YævÜcãZíØú–§äþùßÛ툷ÞÛ7 Ó©’†Øã19ÞÓŠÓ¿iN?SU«sx9ø6¸]µWæå:ˆ"»8ås°~øó¹1Ã'˜½ÑÉále¡7²µŽ¸¡–¹,4¯>1„G´Ä$_ÁÅç`^Ã÷yZVÎM ËáÂ#%ãa1pN*¸\ÌŸvÉ2$â#sz“i'Yæ8BÄ€z`%éó&lbI ,Û]O✻~œrrm\í^Þ׸›X~ËoHæËY¾ÂÝó‡s8ÁÕÇÜpà^â }Ì„™•sç±ÉIDÐSˆ¼®¸Ü³€«ò÷9ã2O;êMg0€ìéñ‘¡A6f¦h«ðÌê‹+/wˆ*3â*ô Jõ€­R,ϬÑŒuÐ-±È†sŒôÅûü졽+ÙˆœNì‡ÚÜSãror2/{P oÌè®”–¹'®öìD <£] „RŽI<Œ­Gø*´ùµ†œÐ€@†æÂ/ûª™Þ³«ºàÅ¢ PÑ¥B¼wÁ_£SÇUåè_ÆkÊÑ!¾Š>…M^JíLUÀ³ q Fä½J”©Šf°±à»ƒgU_bÝÌ9FºÝ·Ä©$QéQ ÇužƒØ,$ÛkãÆ¾/Ù})=,‹õñJ2WÁf®•6´=Ç&»oeN’þ”•ºã¤§—&Áï D$}c×gÄû8•×çê¤ì±1¥îo7HÊK©»LY/Ζ•°UâÄš1ʽ3w׫ÊdQò"e'ú/‰\!7Ën"›…?“[ù?“õ‹¤‰?Kº„ARÁï$+…õd%ÿ[2Ì­&³ùßãÍ‘UDäÂd.WJäß"s…› ¨·‘Ìàg“¹üz²„{žx„É AILô ±Öpß¹†À÷’÷ZühEÚEr‰ðª˱ö–‰‚èñ Ž˜pöÊ"™x+PI²ñÖŸ’9XŠƒ˜Ñ*ƒä =ûlÁßyºˆžäp§ùiüEaµðެ_vRÞ¨(W<¯Ô(ÛTaÕ u¶úUóm-¯½Y{Z§ÕêšÐZ /Ý-ë!E¤”T*Ò!z̪¢âRRš« –W•jÊË5¥UBu )öW„Œ&S†ÍVäIéʾ ¿zûTe¦‘ZÃ| § §2C†S•†_½¬ ÕUõÜ”z¾ºÊë.ÈàîêššPegÎB"ƒ7›­fw5Íte2à¦È-%…V¯CßXï¬(´«"÷4·Õçè #¥N¯Ya|€~yIÎ~YKk±xJª}ö@(ìîèÎ*¬Ì»+¯<7ÔZì­¯k-s•úŠräk¿ñÄ£¹AøÓßÁ!=9æú;Ùr’O ÈV1ªT¹ dµ³ £Àn+pº xY†,;?¿0ÃjRj ²œj^½WÔ;g;¹LÞé´iVŸiÌ|:J,r‡ÌX`HC(` ù3‰5”i Û8­fŸógI8\ x(d e­áÌPȰsbb‚AÐU]ÏA*>ŸK!—›³,V³ ²™BC4³š©‹çs*ƒ6ƒÞ“(/È6Ô5$æÕÎõÑoc¯h5åÉyùÞ¼º{xºshÉ·$_î¤òêTV›øxÁŠÒ{çþå•ÄÇ÷nJ¼g·Ó^:ïmŠ81³Í“_ÈxÜTV‘f±°Èãõ<¬^ƒ®²ªòéhNFoá+¯TÖ8rªxçHiàŒµC·†Î@gLc¡-ðj%c0Z‹ÅòrÕÕU圯Úe†qfº©×ës[ŒfsSФ²Ìd9ÿxa0['S*Ížr:\æ±j·^z«ªÔ”©«ÌÅ則êKtj«·œ†¹ÜÈÂÚ:zãƒ?i ̺`P›ågüåIþé]¾™‰5'N6×Ú´Á Á×Öζ4¸Q‰Ùê­°Õ?c~!ËÅê  Ü+2MQ¨’+äOG]^E–ééhÖ4~ÚÞ,¾$?ßáõà>õŽ)Sê=AºM8SÈ ÎdÂø .¼­w?o2«”¦/lÚZ™Æþjž•¸;‘+ÌŽUâ+çÝ|f¨R²_¸5}Fcñ–'¦g|þ£³û÷×-¨^è«Z‘øØuõ…üÁàÚ V/šÒ¸cýBnNâ;m.&Œ«'ýÌÑ{&j”öÅ˶u)ƒÕ·5îlËÕpߺôöÖ­ýKïh‚Ö×O^à÷Áž+Ȩ¨0{”O4‚…™s9lÑæ´Ø„ ÞfËÑ 9e/ìËL¦>g¯I°œm¥Vk‘óœ^_QtN¡¨$+$Ófæ ÃLÒ¶ÍÜ™IProcîrÐ`…)ƒmÓ½¾r84 okÊò™_[ 7íܾ̟fEWÏÛ¼µjË­›w5¯ü·í{× Y[—t4®ˆ„V¯¹ovÓæ§¿~ŠNé½!xÛæŽF¦®»kæúC 9‰Ï{—ù*›§/ë©×Þ·dåÞþâjŠ7¬)îö‰p;ìÄIæ‰ezc¦ñéh&¯Ï§:>??Se'vޛṃ|†:ßÖ”Ðét©·Ùl.6 i¶~jøüLÒ‹á ©i†IÏ0¹0Þí¾lBuf2˜7 S—YüS¦lÓ9ʃ‰)ˆÀ&ͺ*¿iH6/qp~¬Êò%™ÖZlÕƒ ƒµ°>"cxe¬» zŒó§ˆ—T’ßà•ƒÉ³Ïé øÁ÷ØäYQÍ8®œæ E8fˆQ•¾­H£ññ¾¯Šë5#š¸fB#AÓ¥y@s@#Óò½‚– å|ù¢`ñŽzÌNS…é€)n*€8{ÇÄç+mLYHÙuæ\s™™WñfƒÝÀ¾f7˜²²”y£Tãå+ÙCUz:³²²ªdT‰ÔQ$”?“•áä³ È aoƒñ††Tda%%Á ̵HÈJÁ ¿ßãcáÏë­®*ô0ƒAlÄ‚Xû±XÌ.ÃK‹.«¹§ô ™ß¹©?縊æ·ÍZjÛ>02Ò4tK„SgùJŸjÿíõòÖŠèºúû…¾öi7¶>ø¤®qø–Úîî»*ކ»¶'¶×Uå[´Az‚^n²7Ý€êHdQ¶;ˆr²Dô”ÒbY1_¼_”ŒæL‹AçÖ¹y÷>QgɶŽf“ªÚîeòÓ1½x½†òòœQb‹1Ì$?¹PÞWµNz3&3],´.švã#s‡^ÚѾ½­µ…×Y}¡Ï§e¸fUÜrû†›Â]³=|>Ñä^óÎOÙè(¨3 ÕyFU•ú/oÎìTš^yåÕu··•Ã/Vb–ݰ0¹YŒ:ñãÇëmù#¦éNb4F^•o¤z#µóFÑ[ÜfÔÛô¼~¿h³äcáÛ'æ µÑi2¹ñÆœ[½Ý!E…S˜q¶Ø ÉU/µö½ÍÔ|û¹l›áÔâ ˜¼9¹"HQb VV@*JðíÛ2+›‚­«lS¦·Ü,†C³ú„¾býë;ºwó‡ÞlìÈ[xltÞ}±ÚšhSm]±é/çþðv[07Á ²B,Ï|Æ`ÐŽÌ¡¬€-ÀØ$ Šóó¡U6…üpTA”T=jÌ*àÝL•̼ÝîÚR6«”U_¯Å”mL·†1›+ŠÃb¨pOñ±¨–ž•釥A¨æ…”þäYþšO"Z}Ãâ•‘ƒG6ýð+M«Ã®ÚæÀÈÝk×—N­êȸJ‹·Íj.²kªÔ…ææ¢‹üp½Ù–ŸµD,Í:51qBïšZQ/­ŽÃÐîÃЮú½Elrš,y®L>ó«¢Ë¥±éÎwíçí±ìNû;¶5v‹`á-û4y|Þ>Qƒ«‘¸Œ†íÙÙnã…$‡ÏŒá·3ÃÐozK“V.t‹7²Ï]·`z®’–G‹÷°é)¼´ñQð#â#3ô“_½sùžyþÒXõ­ƒÝÛo”—ôDW|EóLs§ÿOŸíûàvqÝ?ì2nùF] ·úž‡aq}6ý[ÙãØ•¯j…Rq8ª4ŒP³…~ê×§ÁétN8ßpÊt<z¢­ÀÓæÌs ù¯æbEä\‡œ~nÔ¦GáQ©øCŸUþ”é[ZÙ˜™2£m8ªdÁ+îé•@Ï#ÐW× Ø¿‡*±Qg‹íÙCÜÐy½¸,±¢ÔkVßêµ[3u‚ªnóèÂÙS†L¡rW™×¡;Ï/¸ôTsÔmVcÇc)[¸Å!¹"#;T¾f×€Oóü´ Ñ+.íÄk8H$ù÷ ËJÒHæ’ â‚&W·Ï§V”5¼rßD Õ×ä×jxUMM@ßM»Eb fÄ"½!ß0œ7LdnÞ`´QtÁ“OÅJ½½oÛ'Ús |þ€Á§Öt2!C……y®¦¦Î§ÁD;[òòz8UQP(™¶Cf€[ÈdfüÀ;¯“­=jtšÍóB;J$9å‡ôغ‰Å;z,~¶·ƒ‚S••W¶ ——SÉf˜ý 6œÂ¦!á‘P†cùX²°6ø¤CHZ¤€)m)¦°%£FÂ,˜Z]Tò1v|`kˆIZ2Ø›í]Ýîþ½ãªüÂ׎Ïtæ6G/¬º;¼úä®å‡on왨ç´u„—uµM§Ë.µß0j+3Wί]³‡B÷?´ðÎh†¯mê¾9ü…&ÿÆú§ÆÍSk=^CÓºö%uÛ‹[VøLí•á¥u%,š¿mnqfâ­»|Ѿ`ï–)w|yÎ;¯fἊ…‘œê;l{U¡qj*Y%Fx&]®ˆ2D2˜ü|QqÑᨱØì¤¹²\>—­CµSGkI˜jGm¶qV¤L¸rg{ø«—¶oHÀØ*‹—þ¤5'x¶ýbÛv²$+¬3—w1,/¹Ñ5¬þ¾Ð”ùÅYzß´Ä_Uç˜=½Hìñ+²Šý‰MÌÎ¥pöY+ÐìgvõÌ»;4¸ 0o£³9Jå£÷µæ´uúwF§úìØðHVÏ·¤(Dí¹pëßáöGÔš/–X»p8j7§£·žZÏS=ÿ.Ïéù¥ 0NÓáh1ãŒêRƒÑ%7Ò AßœÛV$vvNuZqDMYú¼uMÞƒ³sfUâ¡kKúÖGK,Okgiâžp¤ÀlbÑÿc¶ h8B¶ˆuåLe,”2ägÈžÁô6ŸÔ\üLQ‘ïp´H_jÔW° Z…¡fT©¬/-É-86ùÓèÄs†LÚY$u‘܃^¿¤Œ¤è]iÑ¥ÅyUœHŠSq%†`aÉ  49<>_kWr¡´G}T§Éhï_\U3¯±Ä¬ÌòÒ‚j½iFqnf~g{EbwÒÞ¯ÆSB‡è¶WÍ\=7±³¥ŠJííø·±ê°?Ÿ!æìjö‰Ä¢Èæ³÷) ƒ†Î´lW;µð u^¬ðyädlç™Ý"“‡?²E øÊb¬]Þ©a¥‘_»‚pYoüb㉑·¹öõÄ®í·5/™–ݸ¾íÖ; ¸pèƒu÷ôè?úUãÚ½³z¹ÿ'ˆd3Ý‚,"µdD,a—Øb:ˆ·Ü‹CØ>Ñk©É凸Ð~l?­Ï`y;µè ¶S‘ Ç xO08•زùÚQ¶IUÈÑ3{ÀVÅŸ¼­%)º¼!eŒtÐHÅ›Ë×3Wb:ôÇ‹Í{T>¹ÿ®6$ëUVEb¸°Ì¦´V_ÙÇu:}}ÛÌéE‡Æc?ØÑ~K¥­nnôÖÛ>¬ÓåÊ{«QôØ`ÆjsqëT~a[]Q¶QU­zJh{ úôЙ vºt`¸ÑùÚ+t—{ÖŒ’”…óeСÄÄ<‹Ý†s”ÍÌÎ¥ÞgLY²¦ej`ƒ­&P8½Én …k®òy ß<³Dþ›š`IWkEâ›ý-N\(^m®UxQ˜’%Øw«1³ yD´²²ggó?ÈÆ¿k²°Ðlo.ešl3ZÚ8nQ™W»E{·–óh«µO´­¨íÒhe*™6·ÜŒõ~Ÿh¶”ã&o_¹!ûÝ^RIñN­Ò0ZPRŽ&w]ì:æ ÛuI^ÚYÁ ‰¥‹! v[œ¼”Y|6TÉc×5·/^_uˆmΓ·VWÝÕp“–Hç”®¥Þ®å7¬k¨Y¶³«ç‰ŽeŽU‹ [jœE=«ú×6ô}kCÓWsg"-9å‘*iû²èìÕÑ<{Ö›‹æêÝ‘²X]æm[ÖÜ}«¨319yðôËÂQøð|1h5ðYN“è ´™D­¾ÍdØoµpj½œjy¹BT“ÃQ‡úS…Þ”¥Rå)dšQܱ†™Òßf× Ø›§µn¸ô¶ßã »xªç§„Ì.³‹-ìÐa•L[vOe½;K³‡6'¾o(­--j-(›¾-zçócÊ¢†¥ýZžhÜØ˜ãʯi©ä)/~S2'JÞ÷ÆkõbAî399ŽÃÑ3În¯Ø/º-¦RZŠÕŸê-£ÎžÎQJ;5[âÚŒ÷ÌuÄ-åG&t¢Jצ“+tܸF£ÏÜæÕW+IÀŸýI°Â#ÅD…ùVgT¬\T*ÏRœm¶nÚØRW1¿&´3‹X4ýòÄ*ªùøGŸå8™tÃ@ö9ôÅ~¼™òúÙ³gYýÕô%.Â-B}§hä(Ï='JÍ<d”ME´Jý6uU»¸H¢‚¾A_z ?B¡µÀ>rü²EzôõôÍð7®YvÓÊÁÿͯ endstream endobj 31 0 obj 11010 endobj 32 0 obj << /Type /FontDescriptor /Ascent 950 /CapHeight 674 /Descent -222 /Flags 4 /FontBBox [-1475 -2463 2867 3117] /FontName /TWYTYI+Cambria /ItalicAngle 0 /StemV 0 /AvgWidth 615 /MaxWidth 2919 /XHeight 475 /FontFile2 30 0 R >> endobj 33 0 obj [ 338 278 832 488 496 414 430 220 593 552 303 552 558 441 531 271 555 488 504 547 563 621 623 681 205 556 332 494 205 ] endobj 34 0 obj << /Length 35 0 R /Filter /FlateDecode >> stream x]“ÍnÛ0„ïz ÓC i[1 (Rð¡?¨Û È•+ ¦Z>øí;ø)šÃø¸»Ük]?>Ò´šú[žÃQW3N)f½Ì×Ô zšRÕX§°Þ©Ü…³_ªÅÇÛeÕó!³éºÊ˜ú;J.k¾™‡qôï¾æ¨yJ'óðóùXnŽ×eù­gM«‘ªïMÔÏ}öËVS—ÒÇCD|Zo¨ú—ñ㶨ÁD¨h^G sÔËâƒfŸNZu"}÷òÒWšâ»Ð½`Ã/Ÿ«Î>õ‘=ˆÃ /¦ÔÞ³ÞÕ¸¡ÔX¦ûh¬4ÿ§ÛÝëPÃxŸÆ6}G‰´›=-Ùí‰#q„€[â‰lql‰­%î¢åe„PûÄ(¥€;bB¨-/G „¨2ª@X@8"êðƒRÀ@„ Ⱦn(`C„ Ø×Á …(gvpC‰lØÈÁ % s®Ü”§ð}„déà•Âw*cÀ«+~[aæ(4j‰0G!µX…¿„[Áí}Û¶pÍ‹VV¼ì wkJúö/Xæ…ý¾¡Ü¹ endstream endobj 35 0 obj 430 endobj 11 0 obj << /Type /Font /Subtype /TrueType /BaseFont /TWYTYI+Cambria /FontDescriptor 32 0 R /Widths 33 0 R /FirstChar 33 /LastChar 61 /ToUnicode 34 0 R >> endobj 36 0 obj << /Length 37 0 R /Length1 5168 /Filter /FlateDecode >> stream xX{p[W™ÿΕ,YÖÓ²e˾I|•k9®¯¹vœØ©b«–äÔ)¶ãÌÜ›*Er*›$ ‰[ÚÒ‡ ÎÞ„X(%–2Ã;»wwvþfèLy…˜] C`ØÙ¡3™NJÍïÜ+©I&áúž×ïûÎ9ßù^çÊ˧^ /­ƒ‹' §Èz¿FÓY|dY±ÇΑ¤;õà {ìz†È·ÿÁã³Ç-h˜T^(€ÏzÞF½³ À²h»Ë'–µÇ១m<þP±JßÀØu¢ðhuû+' 'lþV'ÚþS§ªt¦9|A€ eEZ½Kð‰¾ÀÂV?`§Fú*¹H¢%K“¾ý8/³&4¼ñ/}ú##“o·3‰.ÿáó{Dûòê7>ùV×ß¾èu5æÁïÁ öƒÜÏ¿3Fäíx«ëíÏx]´LÏU©¢‘Rgs­­}ÓÏ~Žê£O´É}¢ã'?Eÿ‘ :q Õñ‡P}èd›ü¡“OŸî\~¸5²éÁ%TÇQ-”[å…ò¹wvœi{<Ý{ ÅýrûËÒ©++W¤UÎþøLK=Ï/¥.ñKë—œŸþIK}–yŠÑâËE‡RôÇ*×ÿsoW|¬Â|©>Ï´]ÿÊ>÷¬¤EŸ»«oÌý\ûsRèÙ‰ÔØÿ>˾ú,;û4Óž|ªA{ê™­]çÏ1må™s ÚÇQÏyvQZÞ‰îŒDF"á‘àpÄ7ñÜq F‰mTXSj8=ëÙèÝ ö±ÞÚ?ß|+ðú‰×oH¯³>-Я·ªn5¸¥+ t+ë©ÙOÓX0Ôìó4y}.w£ÏálðÁ|.G©ËÌ%/ÝCÇ1ϲcÕóïô5ϯ‚/yÞà=tÇpö<âX~¾à¹¼ìù%.3? ¤ÂA™möGÝþH¨Ýv¶ú»î 0¿°:êJeåË(ßbþT«?Ù—ìMö$»“[“JrKRNF“‘d8Lz’®¤#IÉ™áyÆÃ9ÊÍOò†öÀ$Ör‡2LJ´÷ÌÖ×ûg(—ÎWÍsçùŠ„&œ>tX¯°A>'_&ƈçòç>ihÚf^ÊÐùÊfƒ‰Î§6”ãC³\V'µÛŸ3Ërfùá[(gÎð׳üFv±Ào¨þfvƒ<SͶ3¼/Ëû³Þ ¬ÇÆêÓY­GX«‹ –ÏhgÄ‹>ò œ³ÆTk×<âÀ3s“\JÉñÒ\ŽË3‡ó¼SÌñïb´sæ0÷©“ &!"þ4«&çúÕÇqÍîo\ßøÑÆu‹ú9»_ã³[דrìÙ¸.aÖÆ àh¾•~瑈kQD¡o‰êOž>|Ô†NÒ7è÷¤¾'} Ðo默ýqÖÁÌI¯ feC¬—®Ô'>EÓè/ôoôz’ÊpÑ×è} yð¿èdë$=M“ø#:DMu”Øöjÿ¿ßÅê½—¬žÈ§„,µŸ>‡õ 2‰çÿ±Ç“¾X‡kk¾@Ÿ €r*awûÙWm«ë 5J˰ÏYØå}Ÿ^„ìi¼ÆÅv³>¶ºø,¬û?t‘N¿óаqÊXxàƒ8rø¡œŸÛÿ¾Ü¾éûöNeÒ“÷¦&Æ÷$ïÙ=6ºkçÈŽá¡»Ûúµ¾»z·õĻխ1¥kËæMrgG´½-ÒÚn~Ÿ·ÉÓèv58£~åÑ´ž]âé<|1£†î»ÿúþ§°S›•á„1Påâ §–oÑ×(5jp—v;ËýܽÃäý²’åÎ8^u_¡Ä{çô˜ú…\§X–w¦õXLæRï4Hx÷”ÍÁB¦9Íè¢T6~7 Fcê9o© ±š}”›„¼Œ@Y¿MÌû™Zóu¤3œZ×È÷;NÁv}†Kò^¤¤x=k5JpÖúg-œEöãH·n!¦]½ƒ²¥%5[Z„FKùwuzÝÖhL1sNo–c1Khd‚Y}ÍÛ”VÓ M8ÒZkòñ f9µÆ|ãÌêH¾ìî5‰ýP_Xˆ›e‰§.äÑQ3Ð(-ïRp…\¼™D˜f3ج³öä®4wÛB(‹7㚘hšY!b¡é…fðvà†ö1!k ò¤yjÞjhÞ²vL2Fª2€â„x*Ÿ1 q(ÛÜ_mØ®*¦XÔç­Z(öhëý¹9=›Þ N)­ïy5*¿Š~n¦³(xÌÄ«BI‚r@ÍÍÚ^PúU~Þ`h­jy°Vù­U¯Få«öGô)u*ošSª2eæÍBec娪„TsÍç3OeóŠþ ø7/È|ê¢ÁCù2ÛmYHlÃ9âS¸M[f SM)å¼jlTŽ5×yEîL®Æ¼1 bÎ ý §÷!;ÉÊ”H5øV•yhT„,:¨#&ŠØ"[²*Ä >J$YDÈgT•%ǰ¥å<"ÎVQ,‹‰xºPIÑQ øÊ¬n:*¿H©„;æe½F‰”•¥>=¯ÂnQñQdùÇ{ù7r{Ý·Íf5¬Œ‰ÄéðN—øú<Îxc”7Bc–é[ÒºC– z’ì½& ×C’·kÖD¡dL3¤*?VyHã i}]NJ¨É’ç>0 O ýXýy”ZCœ%9k8!¯B{Èûí£ ÖIÉšùªÞ|,° îR¹J¶ðˆ]q6œ>¤"te[ ÍaUœð‡ÂákC|JÄLb)jŸÁâ¾ã?Yä•Óº‚L„ȵ:JV) cs%Ÿ±R‚! z ®l\ËgD Ôáƒ`‘«.G·U{«+ôÿ£Ž¾G?{Ñ(ï†L©>œ@Á¶Bééy½n–¬ À^Óâ(·ÒëZ¬ñ ±!œc|°ó{Q8jgÔŠj;vëÌ0ÂÞ¤.Lr¯:)ð OظKànuîàP*u3¯"ü‘€u’™!\Xx¹W*È W‘ycÜ?‚‚ëÑ …7Ä÷o¯(yÀ{ùJ± änйîøtÑàõÁ2Í=XÁS]SÖ\ÏbRÎZP­.`ÇŠÁ Mlª/ ‰ßC÷©»¹«Ç²¡Gl”0̰:d]'®8oНböØg%B ‘1Äfâ>ÂëöAò¢ ®b^œT<gtöˆ·IØ Ènug.U”&²E$q,GÜëoâžíX¯è{·cA¼nJ‡·F«Uìâ^HÔs“*« ¦…,xW!¼`ý¶Xf¶Bs꣜Yµ¶rƒÌýñé>ìù^ *¾ûìÉX«1. ±ÆK6ê'÷Y´ó•¯«‰ ©=ý*§y]8&á7.¥È0oøa$ÎÆÛQ¿›f£ÿÎl}5úë­X…Ü&P «gºpa4¼cÛ6dè û:„@ÀO)<>üÿLJ6VGˆÎâOü$į0ç'æ©—úivP!ÕÒÚØêr¨_ÓÑèàŽTñ”’i84, oööõi-­C­š×1<0°sp8q5<–·]MàoLT”øÀÕÎW:~µy,ñʚǚ‡1¸{ì—v;Fvô¨[’[Ù¹sxh‹iÅ àˆDÚ#êkŽ5‹"írµõu·÷ÈÁ{Ç•ÁîO>ùOé©âø¦`w²_鉸ßboÿÍå(¼=ÊþØÖïÙÖ‘Sss­ÝC[>¶eûæá©»zÆ÷L Äú·õnrüÊWÞù½óù¿s¾õ—ÿÀ±­‡áŸf¶¦\ÔAôþyã}{§´táÄÑÓ‹…ɇޗ¦— Ç‹ôw?0  endstream endobj 37 0 obj 3262 endobj 38 0 obj << /Type /FontDescriptor /Ascent 950 /CapHeight 674 /Descent -222 /Flags 68 /FontBBox [-1110 -299 1378 1047] /FontName /OTYLGF+Cambria-BoldItalic /ItalicAngle -6 /StemV 0 /AvgWidth 585 /MaxWidth 1387 /XHeight 492 /FontFile2 36 0 R >> endobj 39 0 obj [ 220 ] endobj 40 0 obj << /Length 41 0 R /Filter /FlateDecode >> stream x]ÏjÄ Æï>Å·‡%&·‚eËBýCÓ>€ÑIVhT&æ·ïhÃzð¿™ßø9Í¥îƒÏмS´f˜|p„kÜÈ"Œ8û Úœ·ù¸UÏ.&‰†áa_3.}˜"(%šFÖL;œž\ñ¡xoä|˜áôuª3l)}ã‚!ƒZƒÃ‰Ç½˜ôj„¦¢çÞqÝçýÌÔ_Ççž8ío$®ÉX$fJJ­®W-0¸¥'{3$T×jRÊÇ"Ž¥“,FBe®2¥üöžÎnD¬®¤f.Y|ÀûÖRLåíz~–q¥ endstream endobj 41 0 obj 234 endobj 13 0 obj << /Type /Font /Subtype /TrueType /BaseFont /OTYLGF+Cambria-BoldItalic /FontDescriptor 38 0 R /Widths 39 0 R /FirstChar 33 /LastChar 33 /ToUnicode 40 0 R >> endobj 42 0 obj << /Length 43 0 R /Length1 27520 /Filter /FlateDecode >> stream xÕ½y|TÕý>~î½³ïûšdf2ÉL’ÉB²°$Ù °*û*»ˆJÕJµ¸ÛÖ­X AZ¥-­ÝPk]ºZýtѪ´ÚME“|ŸsÏœÔ~¾¿×ë÷O¿‘gžç,÷Î=ﳿÏv˦­Ë‰žì'™4°¶‘ÿÊv€ lÛdáìU„(ÓVlX¹–…ó¢õ­¼òª,<ùJB&ÿ}ÕòþA&Ÿ‚ËW!‚……2pÖªµ[è}ñWú>~yåúTzÍ¿nmÿŽÔ÷“ß"\׿v9Wôá#¸aÓòTºÐÛŸ€ýâõ¹ YÓ8›¬M,¢\ ù>Q\DpGë­Â¢@vz±ò¾áÃþÔºÔ<í_Ä«A!gÞÝý3ÊÏ]ÿèMŸ\¹Iûžú)µ¸ûÃuêûF~MˆîO.^|@ûž|§T¢LåI­žÐz„ˆk¸8ÀÅÕ\ìçb{¹ØÃÅn.vq±“‹«¸ØÁÅv.¶q±•‹-\læb#¸XÏÅ:.Örq%Wp±†‹Õ\¬âb%+¸XÎÅ \,㢟‹>.–r±„‹^.s±ˆ‹…\ôpÑÍÅ.æsÑÅE'ó¸˜ËEs¸hçb6³¸h㢕‹.š¹h⢑‹.깨㢖‹™\Ìà"ÎE Õ\LçbS¹˜ÂE•\TpQÎÅd.ʸ(墄‹b.&qQÄE!\äsã"‹\.r¸ˆrá"›‹,.Â\drâ"ÈE€‹ .Ò¹HãÂÏ… /.Ü\¸¸práàÂÎ… +.Ì\˜¸0raàBÏ…Ž -.Ô\¨¸Pr¡àBâBäBà‚¤„0ÆÅ(#\|ÊÅ'\\äâc.>ââC.þÍÅ¿¸ø'ÿàâï\|ÀÅû\ü‹¿rq‹÷¸x—‹w¸ø osñæâO\ü‘‹?pñ?\¼ÉÅ\üž‹×¹ø¿åâ7\üš‹_qñK.^ãâU.^áâe.~ÁÅK\üœ‹¹x‹ç¹8ÏÅϸø)?áâÇ\üˆ‹ç¸ø!?àâßçâ{\|—‹³\<ËÅ3\|‡‹osq†‹§¹8ÍÅ0§¸xŠ‹“\œàâ8I.†¸Hpñ$Opñ-.çâßäâ1.åâ.æâ!.¾ÁÅ×¹ørñ÷sq÷rqwsqG¹ø*wrq_áâ·sñe.nãâV.náâK\æâf.nââ7rq×sq×rq‹k¸8ÀÅÕ\ìçb{¹ØÃÅn.vq±“‹«¸ØÁÅv.¶q±•‹-\læb¹ØÀÅz.Öq±–‹+¹¸‚‹5\¬æb+¹XÁÅr.¹àbý\ôq±”‹%\ôr±˜‹E\,䢇‹n.p1Ÿ‹..:¹˜ÇÅ\.æpÑÎÅl.Ú¸h墅‹f.š¸h䢋z.긨=NWËX5'3ªX3'3œ ,tu2c BûYh£½É "÷°ÐnF»ídtU2}²ìH¦×‚¶3ÚÆh+KÛÂB›mb‘“é3qÁFë­cYÖ2º’ÑÉ´zä\Ãh5£UŒV2Z‘L«C–å,4Èh€Ñ2FýŒú-e´„]×ËB‹-b´Q£nF ÍgÔŨ“ÑFÜGˆûø7ð/àŸˆÿðw¤}€ðûÀ߀¿ÿð.ÒÞAø/ÀÛÀ[ÀŸM+2­ üøð?À›ˆ{ü{àuàwÿüà×À¯€_¯¼f,¼ ~Åxeàec$ð à%èŸc€ç‘~q?3® üú'Ð?†þ‘qMà9ãêÀ«?0® œÃµßÇý¾|ˆÅç³À3Àw ß6l œ1l¶©‹lš³iÿ¦Ä&ÅÔĦ76‰d“ ;{|“?£ß½ÉhiØØµ¾kñõ]ëV¬íZƒ\]¹²kÕ±•]+*»–ì¨\ÖÕ_Ù×µ´²·kɱޮŕ »[ØÕSÙݵùçWvvuëìšWÙÑ5÷XGW{åì®ÙˆŸUÙÚÕv¬µ«¥²©«ùXSWceCW= OÒ,iÁ4ÉB`vž„ø…™“üqÿþ÷ý âOøÏú%›Ùð‰¹f¯PÛîÖ{÷yoñJfÏ 1îÉÍo0»_pÿÞý7·Âwç6—ÅtINZ6׬NZ¶ã®š:ÆÅ“å²Îr…# f§`vœb}À)ëÖ÷­’óYË ÑlÌæ1³7#»Ù0‰ôcÌ$ÅMÅ fcÀ(Ò1£äŠC>j˜ÓÙ`ÖôbW¾]/Æõ5µ q}Á¤" A'?¤¡O#8 Ã9î”°pëPç¼X¬uXCæ¶&4s%„Ùóèg¼caBuC‚t-\Ô=$_êÄÚ΄£µc! _{ø0™™ÞšHŸ×x ½§5±"NÅIr‘™=±%›·nŽÅ¶,ÁÇ’Í[bò?„„­4„?$àßæ-Óÿ@šòŸÿX6ä[ºòmØÝÿó%ÿ¤ÿ<ãù#4ÑîcâA2(^®öû€½À`7° Ø \ì¶Û€­À`3°جÖk++€5Àj`°X,`ÐôK%@/°X,z€n`0è:yÀ\ ˜´³Y@Ð ´Í@Ð4õ@P Ìfq ¨¦Ó€©À  ¨*€r`2P”%@10 (  ˆy@.D da A dé@à|€ðnÀ8`l€°fÀ t€Ðj@(ÅŒ1|J€!ƒâ„Q`øø¸| ||üøðOàÀ߀÷¿.ïïïÞÞþ ü ø#ðà€77€ß¯¿~ üø5ð+à—ÀkÀ«À+ÀËÀ/€—€Ÿ//ÏçŸ?~üøððCàÀ9àûÀ÷€ïggg€ïßÎO§aàðp8’Àžž¾<¾ << << <|ø:ð5àAàà~à>à^àànà.à(ðUàNàà+ÀàvàËÀmÀ­À-À—€ÃÀÍÀMÀ!àFààzà:àZ28c¿pêàp5°Øìö»]ÀNà*`°Øl¶›MÀF`°X¬®®Ö«UÀJ`°€e@?Ð,–½Àb`°èºÀ|  èæs9@;0hZ h ¨jÉàù0ýßþx=ÿíø_þ|ž¥KèC„ŒÞ>ñ%!2‡¬!›É~üw9Ln'Ï’ße䨣äò0yŒ$ÈwÉÉk—]õÿ30z•r-1H§ˆŠØ »8vaôa`Xišs;BvEðR̘e쯟‰ûëèíc–Ña•èäkâK¸Û?„‘±‹˜_UÄ8VNÃâõÐx- úõ}£OŽ>rYæ²,"‹I/é#ý(ÿ YEVÃ2W+ÉZ²N­CÚJè-E.Œ%²¾”k=Ù@Ö“Md ÙJ¶á¿ ЛS!š¶Qo%ÛñßrÙIv‘ÝdOês»³);åØHÙKö¡f®&dÅ™Å\C’kQkדȨ±ÿºq<×!r¹õü%r ùOúðe)·’[ÉmäËhGÈWÈä«hw“{>{§¹Ü6C¯ø bî—ÕäNòmòCr’”*÷ØïÀ„+¶¥ìH­w rRëJս˞T ·Ä­(Ó—ÊImDËpËeåäWüßbi‰©î½¸e¨Íî@Ü]Ÿ‹˜c¢¾ƒÜ‹ø >©U©ú4S÷Ëzbü}ãyÓ¾N¾AB]ÜÐLDúŠH¸©©€†ÃýˆèŸÑ—"ªáò<‰ ½®I—åŒ#çŠÏ䌳œññœ‚%8L+ÈÖ‡ƒ‰óuáà°°°£úp]¸'˜¸ ëY²VDä€PWë=«ê‚ ¡/XŸhضêP}_]A¾0¤×Õ†k—ë òÉN©‡Jä„7 9Õ‚,Äœú)C"Ñé×&¤ìúþÁÄœŽîú:(Ô#Ç‘Zù^ UmB-ß+¸:g&7‡òϺyØB–õÅ ƒáÁþÅÝ ©’êº>a%rÃu‰ÜôÀ€ËùáºúD,Œk;þBB™m ý‹àáÃÞÃSOˆéOŨ²-ÿ"4‘qÜL ¡Ÿk‚gâ|¡}–›†ãd‰ýÝ,$ËüI/Šõ$Ä>šr–§8»hÊ~ž2~y_–­×÷¥þm[åIì_,ÈGÍÊÿ²Šl¤R¤oÙÀ*ÊýË…ëPBØ’tÂiSïO³~hRò÷÷¡«©:ºEá Gx&³6"p“ìúÕóºåKXl}ÂQ› }©«Eõ¸M¤þ­ú€ô^áŽîÓ¤t졲 ÿx))#=ô9®ZTJ¤þP÷àŠD Ï?ˆö¹"Øí%â=0_O¸{y­¥°%‘û¾¨@ù*”í3¹yf;¡ÎÖ»E¿ÔCk Á|„gNC‚%¡bAZ£3§»?áÙð-©T]v¤ìÚ&\ Æ¥µMþ·ü÷¿<’Ÿ‘ÐŒ?“¡¼ôLì{þ㣱ÜôrƒõËë&<àe7E@~ÀÔݾø9Ej‹”1ðZM´ ù"tÉš„ˆrÊQ´=Á™ì/÷„цâsºiåP[ËõÛ:/Lƒrm§ZIçe!–^ÉÒ$ÔÚÙÍÔg“hˆÉõJ«U7Êáñ`Óg’›yrð&Ü:ïýòpê†$ˆ„ÊQEšûoª´•¡³6`  7ô‡ƒ–`áþá±ýË Åã‡6Ô÷­š‚np(Ük”£Ò¿øf/qœé]‚õ˜kQП±¼~„ ÉãŠ:Ò¯x<.½ |‹<®4EŠOÉã¢á^ò¸ê5Äåmd@‘‰üÝr¾FéÏĬ8D2¥WÈbE9*-# Á}Ò'¤WÜH²¥sd2‡ÏíZá±W¤¯Ëú¨j¥ñŠJ9?Õ}âOp}ˆtˆOÂG¤{I¦r˜L–¶“\é~|G.é³Èxñf OräzéSrüq7Áˆì÷7„°?Ü‚pˆL&âg‰’r¤ L$Vâ%.âGks“’Oœ$×ňˆŸû˜H˜”â÷9z’‡=m~ç“K2ð‹&%î]Bt¸o) FRH&a†-ÆnT…"áOâ2ñ©U:¡X¤øDÙ <¢š¡ú­ºS}^³CÛ¢Ò…u/é¯Ðhø’±È˜4Ýo›ï±„-߱뛶Mvb¿Ó1Éñ˜s½ó]×.w‰Gç¹Ë3æ]â}Øû#ïG¾\_‡o‹ïEßÇø6%<›¥—°[–ðUd™M}›áÖr‘)Âɓκ:Mú¸¬D:aA¨›¢ñ”ÏW>5YuX²6 'jÔ‡áέy}äù¢‘×/تŠ.E¿{óõ7-ó×jkºÓ•nÓhlé.gºU=ò¥éâß•¦OjW~rDRM]\“%}U§*Õp†Ç›75Ô<ßl·(ôv‹Õ¥QÛ¬†œºÅ#×9Óè=ÒœNv¯‘Y0Kxì¢b¯Ò6!÷ž&YcoŸ0X„¶ðpJD†ÇÞ?¡GŒž œ«¾÷Ѩl ý4ÊŸù3ž#dÓä|½0++Éþ§Aoðd¦‡uFÁ¥0ƒÅ >~6üBX Â[ú\[—²‹ÔÔÔØªªŠŠz{­î*+¤µÔr¡ÄZ ‹Çz™/ 'vÙ.—J6yT I&)œ‰”WÌÎnuX )¶jKv m×*Öüy¤³‡Óҳ͂FH*ŒÞhF0ÏgRì~/|oºËoRHjƒV˜:úc­Q«Pšü.ERoÒH’Ƭ?<²‹ M=ŽqB@ëÊ@¿¨$?Šû‹0+`1Ó#><|QV¼åWÏñ9ãHwÆ‘îtêóiæ|š9ŸfΧ™óiæü§ÅøoΞ„&‘RXú8r‚ß?ŽÌ2#?øßÇq‰œŽœ¥Ã¢%n|@V/ê}Ñ«³†¼}ÑQ6,è‡Ô¤æBÜn«„¢Þ7e«•¼cÍ9«bFu˜áPfd²µ¬¼4„Vé¤í9CÊ ÅpØJ³ý’TÊöÍ£O¸ssÝBdË‘WlFÞäÅõ9£#¾Ê…-Ésµs˽³³¯èxþâÔîÚˆ°yúʹÕyÎ@Tq ÈïÜ9«°³±Ò¦›¸÷ÁOŸ\ì æùMvŸÍ‘f×F‹¢õ×}w÷®ïì›)Ѝ¬è´•Ý‚VfÃȼ=ž^ì´åØi˱;Pf» ¶{PZûÚrˆµ_Ê62#Xn1à·#·ï η´°!iêð ‘!%k%Ü/óÑ‹&!^Ö$ÔÀ-ózÿáÑ¿ÊÕŸýèÛ÷vœ,[ÿÍëžÚýÍMUâ]~òÐ\VÑ ¾þöÑÕ'¶|j­Þÿ]:¡dÒn”,ŸlòES5 –kTf<5X~j9O­q­Ö´ñð¾aA7îg#‹!Qy‡QcG4¤oõ½7¡Š‹äaÄŠU"×óåÅ’+:då>̤´[¡3jFn§%WhŒ¥£*!©ÁРÐBÏQ§h´ùmVZÍï°ù­šÑ5ZKšÝ注G‹5V¿\R'Ê%‹‡ÔöT¹Ár¹e¦µš*·œNëå>iL'éjí¸ÝîU 9Ç3;¼t€LÍHE笩nŒÒ±J›X>ÛðŽ-u¢`êQXO‡—u\ãú<™ ŠÚ Çž³§¡Mj‹ßi÷[µ#RÕJ%>OD˜rh‰ýU±C$5äkñô´4³‡¶Pm¡:¶yth¡ Jᡵg$ÏF…`4í‹JQsªü`¹ü`¹'ƒåž,§ãJó°Xr¢¨L(ó º™™UEÕgæx›¬šçò‡ŠÐŸåÞŒI‚NЩqîåÞÞs¬Î²Ëe½¹¼ÂJÇ;ÚÛ媷ÒNÞ¬ÿ+;ƒÚP¹äš…W|s[MýÎÇ–OÛ5yôe«U¡Åq·ÞeÓÙ¦,^6X|Ç{_ŸßûØ…[[,¯÷éKìévM¤02ûÐ3ëwŸ=X—ž.\•™3j4–4Û¨ÝIÏôzÿÈ]ý¾p®/“ö ̹s0ç‘á5ÅBØ2X6‘Ì0+Xîr:Ld ÆMsgé©õõÔúzj}=µ¾žŽz:G¸I܉‰%n§«ÐFâH'núr(?…4wÞ\L ùqóYƒð¢A0\>õn¼P#`Öx™Î$©u©cõbe ,‰Æ%³¦èD—Š9GÈã :4#Ç¡¼´åi™oÈ¡gÉmÊë£É4bõÈ÷¸Vüš«‘‹¢ŠëTÿºa?'™sªÆÝî~Ò-‘” Á² e†mÀ² åtXˆ<1Q7vö,¡³Ì•(æø@x©\¼B7n­3ä¦Ï=þ´—žv­x*i:MœlˆÆ{ZòãÈŒÇË–‡h'jôÑšç:‡…Xj8ŠÎóÇ‘Ÿ†ÍÔlB‚i骲c’väœ;—›Rx‘.bZ~»£ÓÜXŸ<¨µ¦¥,¦ŠaDšF[úª7T‹ÆI“ÜEEºBGž.РäimJf<+X~V9¦óÑÖ—‘Ul0èhûÓÑö§£íOGÛŸŽ¶?µ.V6q/5uVy‡Þã6yŠ UœŽ@_ìÕØ°Ì+Eóâë¬õxÛ²–Z«¦•–ÒÕß„V芯PŒ á í®¼3D·PJ—T:U1#àu‡ìq´TÒ;ÓÎ ‡^mÐÖ¼ž ]ï_œ”åÑ Û•Âuz_ â]köÛ —*uå'GÔ:µ¤ÀdŽåõQnKÅÃyY_ŽÿÓÒÃy^½ÖžîLõå½J+™N®=5›©v(3 $3l~Ÿ®[ä0Œã™¡+,,¡Æ,ñ o‰K,ÈUBYB³XHFå\]¡9ªðÒ™€NxX,»«¨ñR½ò’íŠ`3¹É0KE"ѰËåü{eHîÒ]ÿ¥Z•b¯Ñé3Vø¢á°stUpFš(Š{Àã Ø4ù¾¹éÑ@ºU˜’^^Rì0Ú^WЦit`?¡O/‰ŠoTí™ÚtG˧ÿŸ:¾™“©sçF~T6Ð×[Ô~¬]|«mÌ¥láa» x[Âî2JvÇ}jmPºàqЃÚf*kƒØgîÇz<#e\°Ü«ÀòT–§9WeœÁ¢PG¼˜8Ìó´g)å‰c|ørjâ¸4W¤fQ^÷LX*Þn¹ýõ#_~妺–#¯¹ååÃõ'£‹¾ºaÃW—æFÞ¹iã]KrÄ;îýth邇ÿýÀÑ‹O.ÿÐ?[÷›fwÞ|f妳7Íê¼åÛt‡ÁsèiØIïÊR¥ – "3 –»œœŽ‚¨hp[Ó©yÒ©yÒ-£Ð–Nwé˜/“ÄšÙò¸Je@1õdž ‹Ö@xÇJ•õòîƒÑD1a©'=ßþ­·kí!/èò|‚3oÖêµm¹'§.èÍ¿ÿîÙ+²¤ÛûïY7m´p¼_ ªÕîšÅW-h_Sfù8§q€Ö0ãô(q9©#·Å3,…Ö žº‚–¢B.E-U­å Ôò©\ºwÊ­±R“@ÉŒ¼2Ã4`Ù4`yä´Â4É´B Ö‡Omˆ ñ¸{:,p2ÔáNí(銩÷6C©nÂÇ,S½„'R¡„-Ï¥Œnˆ\î )µ%rÛ].¡,DR#…^åÈÊð…zÅvgAuçÔÍÜXØÙ‹gøZ7ÏŽ†g.® –ä8¶˜4£#us¼5¥·=Z703€AFƒ>€.^\¶ &<ò«q#b©¥”Œ•ó××ÎXÙ>ÅaŠM›]<ú‡¬téÚ¶Õnµj´-4uF›Æ± ÒúM3yë4™-ºðÔd0‘Ì0ÌèA`ÙT3†Åüx¬$nwm%q+væ%Y%¿‡^맸߂«ütàñÓêð?÷ò0Š÷ËóçÙãÞ;?e¦‹ Cá!J*°<‹ÄõÖ`…Pׄ6ÔÏÙ¸Žª k…Õ5 kÙ“3üÊÜy®a!7ÕQ¬tËõZ.XÐ-'¬2ä%<_rŒwPï ÌÕR¨J…?»uSIµÛì±~ÁT·‹:©tÎÆ–ÊÞÚ¬’¹«×­š[:uõm±³¦ÙU QRéÕú¢ºÞ)åsÊ|%óÖ¬[3¯T¸bÑ—°Á fz²ð¹¨3sÂsJ+fO-.­îÜØÞ±o~Ù°ë­» ;º´pzú¤™Ùå³§•”NŸ·udF_ -?“,?å‰Ã¼+VgO@¹cÃØr‡Gë– àË;>H­p ͪ²Ñ@zªo—`¹ò¼½ÿAÌr.–²Ð„UXˆ/lå¥Âkòöå_ÃŒáÛé ¼¹‘WÿŸÜ7Þ—i¬iv;sÑ•C&úñ*¬j²ÈºxzíÂ9Y‚rÄ'äÀ`ò½B¾Gð¢µÉÍQt˜òð*â6åõx=‘ìÀ\ÒÆÖ^¶ª«M`m!†ÂÞ^¡··nŸlyÂWD±ç+/Ÿ0Í—À ¤O)LÞhº+ä±ÔÒhF°åd¦…lZ…°YVKtÒ@–QÒdP—Ž Pb»®HÊNlã>yVQCã©Ó‡ŽU‹Ñ«j¤ŸÀç'‰xÐ<30³h¦¤×ºË èe´‹”ÑŽQf¡]þ–ãØÜEÍD0:ž‘)´"+ømÚeÆ”e›L5q‡ÕýRf)§ž-v:e…3ò†Üüb¦™©H§°eúo ³¤(åËé½@7:½—ôò©ë\lIoUÓK0-Á‰zÅ0›OfÞ1¹c”N¦û÷qwdµB^©™ÃUZR^!ÕXÒü¾€iêm›; ª·<ºz·«xvÕôþæbƒSµÚ?sþвþ:#ß8\783Ð3gÆúéƒsaaMCvÊmZ²ÊæLö§‡Ó5¯Ù›î §Ûó»övžsÔä6Ì›Yë…u_Qn„/k¤“55‚.Tžjî`yäË# Ëö*>Šû1ºˆaѵŒÎ1jñذ¨‹k‰SW>9¤PN”OEZü –¶*È!å,ºM¤›f7ÆÿÔ:é’͘·ƒŽþÜïsi%deþD¾ P[]°Vµ(½R:pko¬¹¡!Š}¿ •Úôx± ÊimjÊYvÓ‚œ'œeóãÁêx}´nwmuw…Wxk뙃 ÖÈ”Üuè^ ö7ÊJyÀÇÈŸr+ÖÙ×$¶ÖœnË›Y2ztÞ‚i»ÐçÂbAéÇpbÝ8”FÇ:!‚ß m‹îdNÀDv˜ Av¤À&`ytÉ‘2ö½}ÜXdLÞ·q±)€}ŸxÂÞ"½[LÇ%­±©8XP ia¶‘—ctƒ»´¹>‡±†¹R>ã2“ƒáLŒÀã3)(*ÕÞi­ÝEýw,Ÿó󩵘‹ZßÐ>>YûFL¤Îד´·•)R,·19ŒËÀl€SPû…BùÏíWܪÏ*„‚B‘VôÛH‹ç>Ó“hÒ¾“&7°^æ§f;Ù˜%¿‹±9;:  ƒªÂ¡ Í ýtbãÑrÙ jéhÔ;’ÌhØÐl.2¨õ*I”ÔúòùãëÙ4eÚÆÖ|¥¯àaéªíÓWgb[ µî˜_èô9Õ&¯Íh7ô^½zçðÎ-§¯®¯Û|w·ýÀ‘¶åtîËÆ›—×)w`×<˜tYh”;ž?5jQ–G+yöËÃ|­''åá$äŸz`²uÊ}‘ “š‚m–&º…»PRƒ.;W*Oåçb¥ðJËþ< KrSqÊ#6ì0auŠažîòÆM!^‡™M¥vfäú³Ë‚¦kôZ¥Íüc †&lu5û,ºÚnZÛž™eÀŒg¶»MJ­^ë)혲LmõÙ³‚Ÿ¾K'GêЖœÁ,»Ïªî]rýü\£Ù`‡7S"“Go—n”~Dªqº¶”¼wÚ i/kÔ ñ4-v¡­±´fxì#:‚åþ~ã)šT£n‡ŒÍ6¡­Ý¯0O’JÕjÚšÐa¯³q#DA©ÚïW—(¨ãehX¤›~EwЂ˺ó²ãzp¶y’ZªlùµaÞÛNg_¥ô—iMyÁ™¿ªlYô«`{êø£Fž1/¼Ê†þXéùXì\Ì¥&]lZ1XÎÇð/Æ?¨Õacl“å=@$ªÂxær§vÜGXégzô“ÞåÆ&Û‚ñ锘D¢Q¶ lº¸Ñn¾:œVÒ»vŀ߿žQþn톹…eW<¼qíÑeù–Pq°¸¨$;U¶øê¶ÜÆ€`±ZGG—÷Nj,r/_TÜTäž·´ã/Á\öà¶ÖåÕ~iK8µ höŽyùé.[aF¸PÔ‰¡é=S«7tgÇ{ÊBÕ•¥^o[þô¾HvïÌY;; ´šÐè‹W+›szV*šF–L©5Þ‚ÜçŒÚôIÕ´}ÅJõÌÌ%äª5eBÞ%WtªaOðQËó´NËî æp¤/ó:ÊÆž¦é˜¯þlÌT§ Z²¼mòðIgcLÆ)W›Œ/;­òŠE¥ž°Ky'¬lýç”ÐØØœë)lžT½»A٥çâÆ[›îj yy{ͳ–ÔeuwÜÄc&ο­ÍÓWÜØOGÊkÇ. Ê"øCäæS5áöðú°ä¢EË[Ão –/Xnér„NÍ ç{¦Sk4>-¬3êe—„¤6j…¿?ßM>}Iئ3j%LªZƒÇ2úôh¶Õ™;„jØÌIâ²~½ìƒ—Ûþ„¶‘jãmDøè„ÎÒ 7øTøÂVþù–=Þ /õàÔS(_Ägy'î·Ñ(ùœ4b¡ˆ¨‡~n˜+4LÇä'BXv2ÉŒ*Ë­Zß22\èö%̯M‡9æÜ–‡9Ú÷©9Ô‹2§+m¹LXqË·EXdÆåÑ3ø ` ±ªdk ߪ¸qFKuCAesAÛøðˆú§kL¾¾¬Jù«ðòIêt‚Ž–ò—'Œ t±pÙù¹ˆÔêLí¡ÙöÆ©|‘ ¥v#¿®°js=í=ðš«]ùµ…U[ÆGV•-ÍíJ·¨Ûni®ì©›d)èhmÌZ°­90^b¸ê3cìçcàjУ iõší]í¾¢9Åuyv ¾m|B –#q3«AZ©éè³µ”š…˜ÙQk©Ú¤›Å =]ÿ³1ºv˜x*&|t*51Ñi)®+hÉóf5sÓós3§ü¥)kÿo¶¾Ü´ÿyz7â³þ/ÓÓe†‚úèìDwƒ¯ÃBÔWþh<­&Wȱ ¹Vêy‰„ˆFˆ¨…çW—^Ÿ²ù[›Ö?´®¼jóã›ÁOø«×´7¯® ùkÖ´7­© ZwúºÖ™{Ol·€w7XVU¶ôÀ¬–ýUeKÀ6GGH¯À6Ô·°ŸúBåôõ$:oƒåÎIÃò !7ô`,bœÌ­ ;dO(ó0|¡_¡ÙÒþý _äVøü(íüÏn…//É©›ÏâC5‹Ãé·©sÛfu,;DÝ ¥²[¡!Z·³¶º§Â'üeÛ·¯i´d–…G«¹7Añt.¼º¤×^•Wël;øäÖú«§Ùsk‹GïÂ{ǃ»iKꃵîIY뺸æ èct|‹Ñý33€<ÈÅèÞ9ïÑËͦ4ÕœÀò( æo,ÉÅ›IØ;;³›õÓc…S¾2ék©¤{gË,:çñÞ™º¯Æ]1“­ì|·7ÎÏïµtp¨s[šš£ÔD%·-Íi¨oÌ£/·9Ò¬êÏíŸGOpK çs«Âf¾‡¶fOÍ]ËM7ú/¶‰fl¢å•ø,VJNl˜,DÌ©F–‹f‹ ÚêÌ´qÙR‡ï˜$íVć6—ׯZ"fg°ÙIÝ òp/Oø¬M4ÝW|Á:˜5"•øˆ¨Òj4îô,§wÒä)á -G«³gL©J7†²Ò I–¹2¬Z­Vã(l«Ið þÒ@sMy]Ô,it:­I~w¥cì‚øÙªœpÈ w+9Œa|ö8–ÅrcÌÀg ¿ØImb~ÚÄR HöÓ!Úÿ4~O‹uCñXBGp¿ÓÑPø» Ý»Ö9Ö>ë«Ä~COZ\o3'ÌÈŽR x]pÂAOQÊYÃ| &úÆÂÿçƒñùÒ%fOZP?É¥SЃ‚XÍüʼº4>§«#Í»knVÓ”\§ZÂêH§Òf–7åÅs9ñ¹]óâQÁT%êÛíudìXúƒ~[¸<;R–ÈŒUÏŸ6¹¿9ß`sZ f—Å굨]^—=<)-:9'˜™7­“®nBc×*¾E¦Å'r‰5\êˆ2æ`¹.Àr‡”F, Ðà6\7¥/¸›Šéê[-{E/œ§“]iêPìü9æÚcoÃX?ë`Ýòšœº%ĵK0·ÐÝ0Oßk¶Ñ—¥öð=Ø[Ôwl3¿UÑèÎJsh”Z¥bQz¦Å¤UeãhL41ëü0øUæƒÕõ.Õê´J“‡–ûõóI߯šàËðò• ú(mAQÚ‚¢ôä!*RQºNÀk`?EèrŒR],[ü‘<ðSA·04÷4Ø€}×Ú š£z¥· 3å%gíŸ|-6Þ¤h'_pg߸—Ï*{¬ð®?V‡›Ï–ît§[U³î§~µƒ9fÜEM“ªwÕÃ݇ý«M;¾˜ÚÞ5{ÚÊ—‰™|½4òÏö¥µÙÝ]âVCíƒ3iì“Oþp/ðb6£ Ý€†~f„ &2y‹Š‚ËoŸ€ùË|ádKbV&^ XUX…¨EÈQ ™9ˆ˜ž)de !*ñ^bVHʱA!+(DͶ¢N.­ÕÙ ¢×"ôv\‹a D—¦!º]¿7࡜æÞ׬g ì+oqH¬W^9Äè¹OoŒžÿ¤Þú¥ç@1º”P¿þ1þÒ–è¶»+ìl^•v ¢$ŽžW}99^“bôy…’¾¨àNãmàQ…ô‰ï®ßaUK÷+´:ƒúÓÇèBcÒI 6­„-²ˆíˆÏ`ÿ¬…³LÔ詵']T„µëÉë§q{6>Eƒ§Õ•BåìB!"A!"B$]ˆ¦ 9 !W¦L¦N¦ÓòK/á JvP†3AÜÁ‚ùCަÇIÙ,36Ïh–óQcÖXÚ-ë-û, KÜæj²”6g7O¹5_ȧiùtÔ´Ø]M+ó·ç‹õˆu·i©‘_¡–ì=WSs–dö–m.´±£6¶`c†Æ2õšUËïXÓ7n¸Û oÚ\2ù©<¨PŽ~(Ý9<¯AúŽ(>)}¹(B£+Ø]¸Ó2méW¢øœ¨µ¡ÙãÍñ5QxUÄù¹Ïƒ—Ú¥ûÕó¥Jkµ#›/U‘Ù¡ÖêQCØ©Žø´ZÔ/vó#5X² $½£õUD®;MŠa+Z^7 éˆ1µPÀyäûOA–y¼ ' ´«ÈQ.AK[k’ ½f*ÃB¹^Ðéö‚ÖŠ^_<)·9¬·¦7óÝ;-è9¦ì¾–Ï0avú6äl—|DGß6¸ôÞú¥cM»Üˆé©¦ ÕjìÑ@FØ©Wüò5…Þ™‰××­‚VðŒ~¨ìÑ`zØ¡SœQ¡³üéÙ6Q;úq¾ÉnPbw®–Þ ’”»I8%:%Oñ ÞJðT¯höêìͺVE;i¥^l¬bjÐuQJvhÛ Iì²ÂŽ·„HÙøÑ­]vœºj±t‡ª¸Ä´ŠªÝZ‹4ú¬Æ’•‘‘éÐ*AúHeÍ ¦eYU£'-V¥Áaª6´Øé1)ñb¾q¤P|Õ®Wbž°¡$=XÔ¾†ÿå…™zšXP=cŽÈo—!½L[§µÙVlZŽ{›Ì˜+°yÁƒSç;ŽÑ{ÏcÜAõPÇ}ÉŽ.9+„Ë^•_èAºøšJcÒŒ¼êôÓ!C8<ºÏb§oበ=Ž iÜèVáa©«ðú§:-”ir¹¼qM(o «U&—5hò¸}–‘;ð¦-]ŸûP8,}EÞ×ù‡^uÚuJ—ƮԌ#‚ó5çé4Í_óågúx’ñÝEjšk½9`ú''Èñj?–‚Á|¿^ïÏfP.É ±ün Ã?ŒÈxžuä üêÇ=D_T8ûÚºJ+aÁ£Ä¾Kßš™à|\WT=­bmcQa=@ïq³´Ux'&~¢Mª\¸öñSVj_ù‡1.´¡ÍàÉòz³Üz•Ém½ÍÖk³á EÃ>ЪRYƒþŒ²ÂBÏóšþTÿ_B~÷´UØœº¿Þº?Ôlܪ°ó}ƒ°™ÝÖh÷Ú­n ¸VïÉòѯSF¥EžçÕxs@þ ˆ}Ÿ/hS©lAú Âè[’Nù üZš!‹’á}bwêÞ)O›úQ…Ñ‘îô†l •Ø«0Ú3œ8³S(?0š5 µÑnTí2šµ¸³ÃˆûÕ 'ÄBq:~#e:AÔú 8ÜÇú‹šÆ”Ûû †Xh³Ž.±áOøZ‘Rø8šˆD2TVîrŸx´@yÆ4OÜ”‘ˆ¹Õf‹J§ëñˆ8ÖÀý0€¨TѨÝE+©Â®VÑ×–**ðû¤Šòr·[Âï”J\j©¢Üåv¹Ôj©Ù$ºÝé†WÒ¤`aaPJ{Ùáv ¦>0 8ÿ0¼Ìã_1¤»Ý¢ééU8šcÓÞ=zÑlÁò]u·Ö– «®X£G£6í]‚Ò‚¿ÑOîB|$¬^ƒç¾IZ!T)·ÂšÚ¤Òr©¾äƒ)Õ€ÕB¦Úì±Ù¼&µ[‡wl=!§V®ß±½@•„ǹøðK AV*üòƒ4Ím«íìˆÕö_¹zÙ¦ÕÿØ endstream endobj 43 0 obj 15298 endobj 44 0 obj << /Type /FontDescriptor /Ascent 952 /CapHeight 644 /Descent -269 /Flags 4 /FontBBox [-503 -307 1240 964] /FontName /HRLCTQ+Calibri /ItalicAngle 0 /StemV 0 /AvgWidth 521 /MaxWidth 1328 /XHeight 476 /FontFile2 42 0 R >> endobj 45 0 obj [ 631 498 525 349 479 335 391 226 229 471 229 527 799 459 305 423 525 533 525 525 453 525 239 488 433 579 487 662 525 306 623 420 715 567 525 543 452 455 544 615 855 386 252 221 252 395 646 268 250 498 250 517 459 ] endobj 46 0 obj << /Length 47 0 R /Filter /FlateDecode >> stream x]”ËnÛ0E÷ú .ÓE`Z¤í)xÑêöô µ,ÈòÂßsÇnÚfq\ g8wDjñ¼û´úÙ-¾M§fŸf×õC;¥óé25ÉÕéÐÙ2wmßÌweïšc5f ’÷×󜎻¡;¹¢Èœ[|'å> endobj 48 0 obj << /Length 49 0 R /Length1 5472 /Filter /FlateDecode >> stream xX l[×yþÏåKŸ’H‰ÒµåK_Q–u%S–dY´i‰IÙ2ãD’eà^ÛYI“²i×N][Î’4©•¥®\ÚÝ’µy´ÞÚt@÷@7à0¹X3-m‘v˜‹nØŠ[Ь(¶!k'[—´qÍ}ç^J~,-†]ÝsÎþÇ9ÿù_çR gÏÏ“‡ÉFÅÓ…3d>¡ †Žâà Š5wDˆ¤9~Úš»–‰¼ûŸzô˜5 1©<_(Ysº‰q¤ „5g SWùôÂ#Ö<Ô€±áÔÇŠuz¨sçéÂ#õýéŸ1W*œž·øÃ£{Μ¯Ó™NdûFH†¶(-m|¸fö[‰¾@ ô'ä"‰‚'h,}Õ»Ÿì`ŽŸ}sD~Ð÷‘@ògäj]û×v‰ñµ¥?¾òÞæ_~ÛýZCÒn4ëœë‹·Dî¿yoóÍçܯѵמ¯SÅ ¥f~ôfkÛºøGtŸx¼UþÄãí÷÷€þMt§Ï ;õ1t}¨UþèCÎv,œ…×?‰îØ tóå<_¾øñŽös­¥Û£¢-×n¼|µ3šÀ˜jý=EM(?ðú¯¿Âîñ%RßîÛ ÒÊË/·´˜,oÈë<#i™÷/=séžyáÇò;Ì]Œ_+Ú”¢/ Ø^Þ³!f²o~ac,±ýKì¹g%-òüæÞDÛó,øìx*ñÃgÙÛoIZê­P["õPHl’R«Øå3ÚâI{òÓ>yÁ¡Ý|JÒ>}Ѧ½~]¸Û°»ƒíg÷Ñ m`Y–1ÇílÄÓlÂw±¤9޳1sfC©L»t‘iKhŸÂO¡5\to§tj«;˜·‡##áð¶póp80ö†Ý[Ãΰ-¦-áÝs± 0s’ŸÙ˜0cùiœ14šƒRÅqQM¬`eðàÚ ÕÈ|©Sé±h÷&Ϧ@ w GêÕü}Z`£êïRüʆ9‚)lòº=^§«Ák³;¼È ¯ÓVÚÐI=<\@òÐNÊØl_£ 8=ä±y;i§Û°v?l»JWÝ_ü¼×˜ŸRÍ™­÷E\¾p°Í×lùh·›ù)Ž6Žö;hvØ«;Ù—ìMö$»“]ÉI%Ù™”“‘d8Ùœ $ÝIgÒ–¤äôÐãÍ9ÊÍMð†ñÀÒrË6e–j9îž>¬WûmX.]Zf4Çí—–% ÍéC‡õeÖ.Èåkƒð\þâg M[ÏK¹:_\oðA<½Þ œá²:¡ý¯çœ‰9·p¾N±æÚ9Þ›å}ÙïÉæy·šõÜÂ=Âì®ùTZÐ0ˆ…ºµ*ðqœñ.1LªnqØéÙ .¥äxi6Ç;§çy‡:‘ãßÁldú0÷ªH`Çg©‘4ÇAÔ Íq¹Oö6‹äFíùK ®Ý¨ý>Qí†À£§[³vGW¡ÿ_ÑГô»tÕù¦×þÓQ%Ÿ´Þl€¦‰[¯ßzUøúÿù P”º)tvû:s¼OnW7ª¢Ê¦ˆ:ÄP£óqj²ÏÔ~îx¾ös_"ºlµÿ°O×~‘2æ?ò9|ÈÐÎÍî¿/·ojïžÉLzbwj|lWrçŽÄèö‘mÃCƒ[â[úû´ÞÍ=›ºc]êÆ¨²¡sý:¹£=ÒÖµ47~Ÿ×Óènp9v›Ä¨Ex$­gOòötéQƒ ÷ÞcœS³U›”¡¸Ñ_çâSKއ¦õ*¥F îÔîe¹ŸÛbÁw£Þ/+YnáU÷J¼gVªÁÈktËòŽ´Ê\Šá ツRâÁiàA01Sœ¦uÑ–k?’F£úYw®N ±šu”;”¼C®Ü£æý¬¬zÛÓN¡*yÌ),ØnŒ"X’¼1d®FqÎBïrÖÂYx?Žt÷BìÍѱA¶tRÍ–NÀ¢¥üm›Þ°,U*JeVo’£QSi£½êiL«éùFœUª6z€ñÜr¦Ê¼cÌ$ovGU¢Ì×,ÔÍŠv’§.ç¨Ø ”–Û\áWî$Ä,&› 1sOîLs—¥„r‚§ œ.+Õ¾•Ê•å ÍkÞ’Z*ѹ­¥ªd‹eËs|]núPP-_V„»3f'œ§dËJsÁ›G¯f z7¾TžÏ‹0ay5š;­/EWdÜDúR–7iÜqßc?‘m•lä„"¦•Ê’Â_œÑï¤F‚ Òß§T²*vÃbÙ“Âcñ5·™Ñ8U2“º\PøâÑ“°ÞÂ•ÕøV‚ÜûßQxþ¤Èa`ÑJù“â('!iÇ T.Ï›G½b ñªdOfD‚ˆ~:éCz¶¬faÏú†0äm±{e£QÞ® ÁJ%+T,” ½° ÞvÍTÚ 'dAŸ4O͙͙>ÀŽ©Bƨ£ê  ØážÊg CÊrwÅ–[T¥"–wÅxH F¿ÚJ_nVÏfDt‚SJë»ÞŽÈoÎM¯¡Y<•øÛÂH‚r@ÍÍXQPö]~ÎJ`X­îy°ÖùÍU¯GäëÖGôIu2_©LªÊd%_),תJP­T½ÞÊ™l^1ÓŸÿõË2Ÿ¼bð`¾Ìv˜Ûãp¶Ø$.ô–™ÃÂU“J¹ Þq5:*G›ÖxPE>œ\Ï9D?r@ä\%øSœÞ‹ê$+“¢ÔàëyTæÁQ‘²Pè Žœ(b‹lÉì+ø&’d‘56#–=q n,9Š-Íà5p¦ŽÅ"ѨȧËË):Š _œÑ­¹BGå—(×àǼ ¬¬RÂeq•²&žWá·ˆø&3ããWÅ7jûZlWšÔf%! ;´Ã;Uâ+s8ãû£¼3]ß’Öm²$XI²M@®‡$oÓLAaTÌJPU¾¯ò Æi}ENJ° Å’g/E¤¿¯~—‰:J¡ gIÎZžPWa=Ôý¶Q×IÉVòõ¼óX`Ü¥òZ*YÊ#wÅÙpú ŠÔ•-345«â„+~õbˆMм‚KLCí3¸_ÜwÜÿS³ƒ¾rZWP‰¹3& d•²p6Wò³$² ¯¢—koæ3¢êˆA°ÈõG [¦½;ûûþ¯¾ˆ@òŠQÞR½8² Û £§çôzº™~2“{M‰£ÜM_³â* Ò9Ê:¾A vD̬¶rwN˜ÃiÖpçf&m5<„&|÷¿ULÍøsnž]÷ÞCžZ%£|\dU•]𩦨¥‡ôkA"åÒœþ’Ĥt~¨v¦_SˆR&VX,Š˜PŽaµ—¤“_¾–¿LªÝD˜ó"~ã˜8‹ 8FEüà1qÁU> 8»…K™8Ü'P1)£¼é*œ^â©iýq£\ÉÂØÔj "[#.©cU&9½¼QŸàuBàÇ~ÜÂ;Þ¥N ü‘Ê2R½’W‘þ(À:ÉÌ!,¢\Š)˵*èuTÞ(wÆŽ ¡Àº5CáŽØ>ðí-ô¾X,=D˜BÖ›*¼amA°Lq7Vp×WǤ)ƒëY¬ÕFr,ÜÐĦú ¡‘¢à{h¯ºƒ;»-%Ýb£¸QiVÍëÄã±%H`}f!412¦ØLÜGx]^h^TÁUÌ+ð€ŠŒönñ6 ¿3[ÝÞK­‰lIËóø¹{ Ä+`Ï,ˆ×eÀ(âðæl©Î€½ƒÜºï0e]ÖiJè‚w Ê Ö¿ËÌ,Ó¬úg¦EÍ­\ s_lª€KÞŒŠï>Kk5ÄJ¬ñ- ë'÷š´s˵?RI²úô÷©œæt˜„ŸØøu`TîEðÃ(œ ÷b}&ºRið}¸€e¯ßÚ(V!· èìž*\mîÇ¶Ž ½Â¾ €âÿbø9Ñ¿WV1„_FOc§WÐ}Ú1G=ø :@ÃTHµ„BþN§Ÿú4mÀ‰ §âȧ”<@CÁ!ih½§‡¨Wk †4m¨¿d`(~½9onK\ã/!:Š?x½ã¿Þ”ˆ¿ñ½¦DÓ&[ضá1iû˜mÛp·ºÑ/¹Ôm##CƒR8„‰ß·…Õm¬)Ú$š´ÝÙÚÛÕÖ-v)]íî|ò3éÉâØº@W²O黚Ÿf7é´n޲kmõnÛÔJ¨¹ÙP×`çounY?4¹¹{l×d´oSÏ:çC_ùÊ­ŸØ¿øÁ1û{¿øSÛ|þÑhYÊIa¢æŒûöLjéÂé£gOú§ §Né¿dC, endstream endobj 49 0 obj 3462 endobj 50 0 obj << /Type /FontDescriptor /Ascent 950 /CapHeight 674 /Descent -222 /Flags 68 /FontBBox [-1105 -279 1222 1047] /FontName /OTYLGF+Cambria-Italic /ItalicAngle -6 /StemV 0 /AvgWidth 542 /MaxWidth 1224 /XHeight 475 /FontFile2 48 0 R >> endobj 51 0 obj [ 220 ] endobj 52 0 obj << /Length 53 0 R /Filter /FlateDecode >> stream x]ÏjÄ Æï>Å·‡%&·‚eËBýCÓ>€ÑIVhT&æ·ïhÃzð¿™ßø9Í¥îƒÏмS´f˜|p„kÜÈ"Œ8û Úœ·ù¸UÏ.&‰†áa_3.}˜"(%šFÖL;œž\ñ¡xoä|˜áôuª3l)}ã‚!ƒZƒÃ‰Ç½˜ôj„¦¢çÞqÝçýÌÔ_Ççž8ío$®ÉX$fJJ­®W-0¸¥'{3$T×jRÊÇ"Ž¥“,FBe®2¥üöžÎnD¬®¤f.Y|ÀûÖRLåíz~–q¥ endstream endobj 53 0 obj 234 endobj 20 0 obj << /Type /Font /Subtype /TrueType /BaseFont /OTYLGF+Cambria-Italic /FontDescriptor 50 0 R /Widths 51 0 R /FirstChar 33 /LastChar 33 /ToUnicode 52 0 R >> endobj 54 0 obj << /Length 55 0 R /Length1 20348 /Filter /FlateDecode >> stream xåœy`ÅõøgvuX·dY—eëðZò![²åûˆ½qlÇGÛ±Eì$Nì\„«9MH  0(g9CÒÒ‘•R B)„RH)g ”¶\†”³$Øþ½Ù'9NJoÛßïûÇOñÛÏα³³ofÞ¼™]ذnxÑ­„'EËÎZC¤Ÿÿ6À¢egoð`Øú9!Š”•kN= Ãߢ2Ÿz榕Î ÉM]µbh9† ¤“òUaZ Ì^uÖ†s0ì7¯b â<ĹˆÍˆMˆsg#†ëëkk«céeP‰ï ÎBœ‰8q:â4Ä*Ä©ˆ•ˆˆåˆeˆ¥ˆ!Ä b b1b±±±ÑsT@Íúó§ "ˆ^Db¢Ñ…èDÌEt æ ÚmˆVD b6¢Ñ„hDÌB4 f"DD=¢1Q‹¨AT#ªbö*x¾JD¢Q†(E” ˆbD‘žÆìA(%„‘AD!¢@ä#ò¹ˆ„á‹Ùj °l„³±ž³U¼éA¸.D&"áD¤#;†°",x‡4¼ƒ#S&„a@è:„¡A¨*,3¡ÄHBŽ!x‡ "N"&ãˆoÇG_#þŠøJº-ýRz"úF~Žø ñ)â/ˆ#ˆO#Æ!>D|€xñâÏx¿?Ŭ‚;Nÿˆx7f…‘Cÿ€x'f­„ÐÛˆ·bÖYú}ÌÚøâMÄ1kD¾³6^C¼Šx‹þ-âe,ì7XØaÄKˆ±°_ãu/ ~…xqñâY¼î—Xô3ˆ_`åŸF<…÷ûyÌÚ5;ˆ<‰7zký3,ìqÄcˆG?E@<‚x‹ÞEDZ臰è}ˆ½ˆ=x£ÝˆboEìB<ˆE?€¸±ñÄ}1 X}úã˜e&àGˆ{c–ý0f™ ¸'féܳÌܳˆ€`–;1ËÌrf¹ÓnÜ·bèÌy3âûxÁMˆc–.(ó¼üzÄuˆk±JßÜ×`ΫWÅ,ÝpÝvÌy%â ÄH,­Ò.¥õ.‹¥-l‹¥ .¥µ.‰¥-|Ó.Æœa– Å]õˆ¡Éý‰¾Åý–v®û Ÿ<ò˜æw d$ ² äA@îÙ òû@~ ò#{A~rÈÝ wüäN w¨W¹o¹äû 7ÜrÈõ ×\ ò=kT«ÜWƒ\²äJ™*îî(9…¸¹cÀUÄM/ˆ™ÁdÒóc©ln@¬™X¯]‡X‹XƒXøâ,Ä™ˆ3§#j51#+¬Q…¨DT ÊeˆRD "Çi1¢‘Š0!ŒBÐÅ QâT‹Ð Ô"¡ŒéXS+Ä…ÀAÆ@>ùä÷¡9ò;7AÞyä5W¡Y^ù-È£ ?9òÈà ·CSܧ[QÓ›c&686¡rÎAlDœFÌB4 f"DD=¢1Ù‚HC˜öó<ÏÅD÷=òÙr„ç Öå\D¶ú<¬Y7¢ щ˜‹è@ÌA´#Ú­ˆÄlD3¢ шÈBx±ò„áBd"2ND:°ãcÚVñVxÜqo@ŽùúÀ_A¾ùä ÏA>ƒVýä/ ùÈAÞùÈ; oCëyäY_‚<ò §Ažù9ÈA'Aâ A‹ïÙ ²d7È­¬õ¹qÔñÄyˆÓb&p…è*Ä©¨–•ˆˆåˆeˆ¥ˆ!Ä b b1b±±±ÑèCÌGœ‚ˆ z!DU]ˆ(@ùˆÌ§ ÷/Þ0|ýðaˆPÞ3¼gøà0Ÿ|\L®¬iÞ:|Í0—é¦íÖè›7´¬‹¬ß¹."[WºŽ«ù|}kåŠÖÑ®uƒë8ȵ{]vn3Ë]¶ÎšÞl\W´N\ǯmYY³su¤sõêÕ¬Þ±ú±Õò V_½šÛgœ¸Z¥kþNËY‘ߟEÉn’Aç&c¼zõ#Üìz|ÂMˆ“ô PÀé ˆÓ‚§FVí<5²2¸<²bçòȲàÒÈPp0²$8Y¼s ²(¸ ²pç‚H°/2òŸìDvöFz‚Ý‘y;»#Á¹‘¹ßlÌÙÙi ¶DZw¶DºZèì`s¤‰/wà B\ð·ÆµÕuÄ%Ó f®ÉäÖd¾•y$“_“q$ƒ»ÀI é¤_ÎàÀáÁáv\íØáØå¤^»&uk*·Æ´ÕÄ™DÓ ¦·L2bºÓÄ®6ì0ì2ð†%†O “Ù.Ý¥Lÿ+=ß©_¢_­ç zæ¢>XÜlйuâ쎯 éêu:þjuÁp³¨ËÎi®×vj—hùZ*jýyÍŸ¨'Õœ¨†„OT“*nRE O=ö¡Œ>…µµ¸›ã”ì¶R9ÓkF{{ö¸rr^{4¥ka”^õõ°£Ø½ ª¸,J" öRzUÿ(åfõFÓÚ»`ø’íÛICf{4³§/zgf{t+œˆìdNH樕4ô¯^¿~C`} ‹×C̆aø“@áçÃp`g²þÎå€DÈ-eZ?¼dÊ€ÌÍJ†`YþNÿo£YÝþ×~ôíÎÿßߨ¾d1Û½%dâºi¶’ Émd'ÙK&?#¿$/‘ϨöŠ/!‘?ȧä S%µÐ *í5O»ö?8¸X~Ññ±2ytòý‰û&߇Miý´˜ë d“ùÇL¦NŽ7qÝD|ây…†¥kܳPÚ:6y”«‡+“å,ÌmcçÒŽ(ï˜Ø5±ã„ʯ!ëÈ09‡l"›É¹d 9Ÿ\@.&—’mä2r9èâ8¿‚\I¶“«ÈÕäò=r-¹Ž\On 7’›È÷ÉÍär+èñvrÙ‘Hcá;àßR*K¹‹ÜKî#÷ï&÷’‘Cø' ýûɃ‡1~bî$?€Ø{!Ëu?y€ì‚Q2Jbd7Ùm†ád(N'ûÈC$NöCk>BÀîÿ£ÐŽCË>!ű˜døïçÄüO’ƒäçä)ò4ùyzƳä9rˆ1ÕÇ[ééï·$©7¦éðäO’f˜v_‘t÷Æ4í1-¿ d­ÀÊ8Q·ïÀµØ:ìZ¦s¦Óä5,í5¿Öá#Ð4ã‡RK|Hþ‡ð—sBŸÀñÄØ“c¾"_‘¿’¯ÉQhÁoÈø´Ðôs–2N&  ¥”£<™8~v<–¥P¸ °i)TEÕTKuTO àŠ(OJÑL¥˜þ&åøUÇÓTR9©ÔLÓÀ^Ú¨¦S'ØÍLê¢nê¥Yôxšc*Å)ͦ¾ÄuVéJÇÔµnp‘l‰RXÞ£àù‚@å…± ÖÓb†1 Ÿñ ÂÙ#N©)J‡’çê5„çózY]®ˆ‹d)¢[»û0ì!K1"†ýQn¥<žL±DXÊÖdÊÔåƒh¶IhLü½ÊݺÔSX-+ýù¢2¤{¢¼pé²UŒC+F„FxBÐ%éï¼NÄ¡„2›F‹Bhâ4¦†î¾hHXMPÛ…øšNëé“.ÁئhÚ¬(\–¸*j‚k¡‹4°†ade Ý}ûIÉä[£¥çîRJúY=¢ÖYÐ(þ¦‘¾å+£îAçrèŸ+=}NoTìõõ }+úY+ ÆhÞ[p;øAJWÁ³”;™;ªô¥xú8'ßÏZ "<Ípj!ÁU`µhC­§:I2Ü%‘ƒPx߬¸—Îjqz¡sK¿P%'>T#š2U'TB~¼NxŸ¿[5ÌÍ*”çiZÑ8­‚' ©‚‰Ò¾½žÓEBP…Öœ-ì 88÷@rJ”ƒç”¢X+Ú=QÒåéVýô!±«5ÓµÔ¾í=[J­è%½'„0½Ó¢ÄÛÞÛ— Àú±/ÚÚ•5«ž-…§‚-'%·&“=#)B{Ï»¹(x`Aã(ü­CWT¦–Â`mC)4 £§yd(>¹uéȨ(ެi\U Ã`Dh]>"ôôÕB[Jã~‹s3»u*i§í½ …`{FzY÷¨H/ëYз|YÏe½}1V¿ƒ ý£ÙÖ·ßCˆ(År,–E²,`%̓@Д߹_„ÏG¤T™!…—Á\ŠÃLGɲ8‡qÆd>âd'Jqýðƒf_Mv¸É³œ5Ïyý«FûÙà"VhJø£Q*Ô‘('ÔÁš]¡ª… QÐÀâëY|=Æ+X¼RhˆR+åÄÁ& `§ Ëõ'í‡Þad½Ÿóyâ““½}ÞCα~/ ‰E ú¢ªÌr_ä›Íd¢gG·.bõ êld¶.뇱,²´FUP‚*Qäh–®aÝ.Zm (]¿Ñ­ýÑþ»ißi¬F1JZ„jhv,Sîg7 õ¤ aÖ±!kTíÛÆ ‚ºØbœ„›ÁeO¤ÔBÍ— ´lÐ- #Ëz «£-U³vƒ˜`eþ’¨‰D‹÷itê¨*Â;ס@øSöƒRØÃK¡m‰ pocT5òOSeâÐ$µ²ºÀß6¨<Ëú3VLwœÌÎÓÈ*-ÝJ ÉQ¯uŒ?^¯¡2y1”•âcQ¬Œƒ«dO®½ó¾Þøä„MÌ$…›XÇ$ÎýбIÿÈÉх‚”“cuRôÈHŠîÛ/@}¥è¦¥ûlêW„È^…5çyd»¬–tò÷“íŠ 8¿lçAêù/‰V^E®ä?#³eíä|¾Ÿ´ÛeJÒÆ]Fü³ÄÉâéWä ó‘óYXÖAZ¸W 1iåž‚òÛÉ&ù—DàI¬\¹“ȸÈõ ð <ö|²ëÖ¹@/É‚/¹,ð™W:±3Ñä0+t ÑÃ7Z)DNœ°švÁmZb‚ëRIq5É$É€ë=P ûÁª”vÐO¸‹xÿ¦ì*y›ü>…Y1©üAJEÊKªê»§±1¥Pù(9â¡ÏBý(½]4Ë8ÓY/”)®ä»M­õÊ+¹^R?þ»7Ÿ‚áԪÐ!zsìå1ãøS¦ªÐØá±â"jòš$IÓsJ¥B!d¹²yII¸Ž++õ YzNŠ+-¯¨ãKÂ.އœSDZ0å_ÿ¦“oÏæ6ykzŠå4à³¹Í))¼Û¥ó•x íBynº\–¢àå)Êœò!²±-ëyµ='#3Ç®ffÇŸë~*×›/k§.Ï:u†êÇ¿.œ]”>q­p³?“Ê´rFö¨¿X <Ê= ÆÆN‡À”øÚòÇé`ÌÜ#ƒeØCeE’ÊŠâtiLT"©l¶éÏL^8\OC‡Ç¦#;˜ªf„JJL% Ë½ÿÝ»`ÅÉÇ$Pfê‚\NÐ(›’l´„Ù?vjQ¬Õdù²‹2´ÜÄå²TwQVV‘;•Ÿ¸‘Ó¸BŸ©)/¼?ØPäÑR»ŒféÜy•¾QgŽC—­6ª 8È2½«3©y9ÓvƱ?LÅ_XRnªò¿çi~u¶AW˜} ×Ê: ÊI#¹[b1hÊS?î !Ü­±¼zSœƒ¯_ƒÆ¤U4‚UÜ-жɈ`÷‰Þn[r®a–ÙÆ€dÃì óN3Žÿ^)Ó´™Ãy°…'vL«ÍÅ'l¥ÍfµÒRŽßŸ°˜²ŽWu8?œ©•m°ä‹ùót.©ÃjÁhv–48çn™ôŠ‹k3K sÍgÔT7¤•ž}ieoeF–Æ –É4&-õÏ)IŸ0Oiô¦‚¯)Ÿ¿±cæ½uf}nUkpÒ/ðËžT¹bâ{ÎâFfê'ß篔ûH+yõ»ŸÌänÚ›Îklö!Ú ëÚDM ÷™*àŸµ6©ØÚ8-µ3ò¼«dO­qÚåhOa ­ŽLUU¡qÌvõðÄ„Bl:@‚ÿ¥b“–!+(++E£ŠWP‘Ÿl|ü•s.zpÙ¬õ}5é™Ê Ö—t­n-šS–QÔ±tÕÒŽ¢¦áýÁE]uiJ9Ç+uMQ󢊀°„:—¯Z>·ˆ~wå-§–ZÝYéÅAw~ºÆ›ëµå×ù ê‹E3"º¶õvWšÞ&¤gæ¦k3¼N‹¯43€éëAïZ°Ç@ÏÎ"‘„=& °Ç»í&EjR½©’•ÍìÖNYÙ0 ?Ä:ê?Ì•ÔÈ4éeÎ(Ó³žpgµA5q@ç*ñ3Ó8q@­WËåpà¯m€‰ÌÌshMu&³Ö‘—éÊwh˜y„Ú_9ù¾ìð d>Öþñp×Àˆ´r׉ZµžqžSêÎ8]4½C€y“|e§¨ù™’õgu6%šÔbJLšÇcd4_ö‹‹6?qélÉÆ‡]:ÿìe3ê–6ú´ìÁŠ]ZúÎÆ5Î8oÿyüÔÈ—u¬móù[Ïhä5Éd¶f6Œ„³ùß’"Ò<|ª˜ÊVçî!99¤:Î5‰Fo£ŸÙ¨-®-¥ß”ÒRöµ†ŠM›¥¥Á™ùqjoeQ~KÖö,NÌêÊÌâ Yî,N+ËÊ’eÂ4*êµàªeÚ´#óh°Ù(ðàhÇŒwEm‡ŒØCIß(ð„– 0ë ¬X ê;Xƒ)̬•hø_®d÷˜Ãì÷—•%<¬¹Jʘ8µÜ©“IÓ‡]kI¸¼‚?;-_˜gªØ~Êìó‹flÚ³q¾)gfQý²9%FI£Pg4/^]sÚ ƒ_ Î8¥Ü1»¾¬?èÖ•J£~vMƒ¯õÌ–¹ëÛ³ËóëóÓ2²2ôé~›;;Sp™ó"—.z-5»Ä[)–ÃÔÄ‘ó¡¯ù’Ofíªö–? Â25À}WT‹º¼Ì+“%¸…í¢Îßæl6Ω’úqUœ¶A?îHúÖõÌ»¶ÁôqìšÔûþÝ2¦uöœ¤“x¼›pñ!O(Ti²‚þê8)]zõ¹³›²aHºÜyµæf_Q¦6«±±%wÙÈü܉c¦üY%Ž¢’rWÙPYqcaýh㣗¶˜üÕyCÒ¼¡6h䂽õ„fs}祻‡«NŸW¬Ï*Ïx¥qv¸k%Œ÷–Éx/ÿ2)KÎÂàcç<Êm|løägj)+wÌÜ&{˜¶bp ‹ $Äi3øÚ¨Bp³SÎöAæ,2gû?+IêI¯[šÀîKN¸g®)—E®´W·ÍžºãÌŠYçܳ4·cV™U%çÓŒ&iKxéªô’Ž’ÒöJ¿N¥UÊ¢é‚Ý`ó¦Å-{6\úäÖ:0íVƒ]pT‡ ëÝtmËwÚ|n¿[íÛÈ‘v°#ÏÁW~X‘ÜèogÕ#|Ö@BÜ:Qmö6kªrœ2}~²ÃåhUö¶©…\ëQß!ŸÃVÆÉµœ­ '}Õ¿[j =¿éc6lµM™Z¼“iË” þ9µ=ÏåÉuhšnZ´r{nÉÒk—´o®eî ÜÁ£åËÊ‹g,©y¥éÅ%åtK {-k›=jëv3j(ø{’§­/ml)ž·¢¬òôž°!«"—é­ ô¶ìo€”R9êm·Ùì-ˆs³bRYœi΢ 8gÁ“2fxm:ÚAdF7§K6(ãî”EeœL–­²Õ £è<¡wýmö/‰Þ¨çL¼^e×Ò•2¨¾3’Ý1pŒíŒjfwÖ.Œ-`Kç7Áe 1c«ú{oÉ,(ï´~ Ö!±¦”z7gÉ)—ÚIÉïËËÛY30³ayk‘A¥Má9YŠ®zÁ††»Ï©©;û¾Ó×ìXYô9¿pIÑ샣GƒU3³Ì6³2Õë°º­½ÝfªÝüð–]ÒÜ0|çbÏ雲gô„`ì;à •ïËϵÐúD«X\Ã%»‹ò}ê8ÍÜ]>;ÝŸìɰÈvï‹ZsMKýît·Y±bQÕÜ¢4~°(hŸá»©'`Ñë²­™>.Þ.®m>%œ-ö—yk+Â6[g¨f(GXÚ:÷ÜH¡ZU0ñuK—#Pånì´çWŒŸRXÄÉÍ‚Çe —Úü!æ Ÿžü‹à_„ÉYØö ·$ÎO‹sƒ»Áiž¾0íUba[v³cw©‰u(4eì_Ë?ÝŠ›$ßzüñEgÂ>˜¤­'ο¨Í(ÎöghÍÙUþ¢¥eI_!É™ÛZnéÈÊJvz:>³­,³yÖø®dÌt?A¬¯]uÅ2f³Ï˜pÀ†*’+穉 ¦ªÚU—¯ä¦"&Rš¥™ŽëNŽpxnaò¨ü%xî&rS¢—dd¦ Œù°J5™ÆJ½QÆWWkã\@Ô‰¼qfkI«±Hch©ŽO¾°Xõì¤ÚÈÛ|­¶9*ÉÈ%^CÕ×Ãkwûa˜ÜR«ðÊ4e7²m{G¨ l±a`e~ËÕõõÒÈS(ùÄë$>çøiÒë‡7Jf[…ƒi§ò—)ËÞÅÅu‚Qv#ÇÈ ÙuÅáúH%ýùrÃ~”ãîåué!Ÿ/èÔð1žû Çœ _È©æïÔx\ß¼j²her­ÅȹTªñw’!>'Ó«]o™LmÒŽ¯Õj¹«µ&µŒ­ÇÏÔ$Bð.´l¸ßZÎ&«PËû¨J¥'é°èmØ'f§{Ôéö8·^4ˆútw«CmnU·Ë:I»´Þ…wÓT˜n|3”ãíÚ‹ÚoÍjóò¸}Zaöûs¨¿4á?™KḬ̀ZÓ”ÜÅgªº:r‹ìœr£Î"Ÿ8¤³Ã¦p8C¯|‘\a.¨T9S&:¬J£ÝD ‡ž/|–^ë°ïä†ÒM))VŸôVíÎÉÏèÃü.iÖwŽX§ÄR»pn -¤þPý!0ìîÉóóÔ#1_Ó‡õÞò¼¼r¯V‹ÔŸæ­ù•ÙCve~ :ÛhÌ®oɯbUùù5Œ5Ì'Ûõ¹—æÂ÷Aª˜ŠŸU(.òM÷úïÙÛ+ÎŒôˆ× ˆõ}‹Åz¶ö¨ð2¼¹2ÃŽÑÓØNûIáäãû \)¤is7ÀGsXT³0¡žx(5qâÌíLPxGÑ+ê =>;L|p€i¾Z‰L{mÁ¾¥\6ÃÁª` àSá*U©)—F9V>+¹ÿã‚q‘Å~›GvwêƒÿrxíÞ‹/ype^ÉÚ½]²keîÄWj‹» 2«¦£0Õj+Í©-t™•Ü•·.^¸ó«Ûn9&ñ¾EÛWµÀÖÖºŸ¬Ù{FÀž³ü|Ðüõ„ðQ¹É^Ô ¨SåQU.MÉ¡ðÀ†8¼Þý‰Eð*äŹkw»ìS|òw{!Òd†T[D•0/Ï`¤9xʘ¨H|®‡®8;?Тà  ›NÑž—Kóà>ÓnÅî𯔽rÉ–30À¾²€/’¯¶J`2Q ¡©ð%–ðU ¼ïŠ*à³€ñò=Ì5pö—l™&—¢×R«Ü`ÏqûCvø¢ v×gä°o ¤ï©4|Ûzܔﷻ­ú”=29OaîW{IcÏÝÁ×oüèu45¡;½¬€ÊTUMUUT#‚ò¤¾(Rkœûx_‰þ‘ª‡¹‰fòì–è6Øü=mŸ©²Êã©ú¶.tš¨+±*‚=Æ©7ýǵã;VxÉ Æº V×R=„¯\YO%°sZwÂmÓk/¹ üóάa$îvbÃTÀçn'½RàNûPNz!y@¯âÆíVOšJat¤½5k^Ðdɫ˯YØÔ©t)røHÆ1kéÙ⊛–Û猬»‰N€Wœ‘™—®I±ÞO°i^¿¤+Û[SàpùÜÚŒP–Ím3Ù}‚½dá––úÍÛw®½^d‚—À¬N*û)À‚¦¹ó›ºff yÚÒu§6¬>“ýòþå¿˜Ú endstream endobj 55 0 obj 11244 endobj 56 0 obj << /Type /FontDescriptor /Ascent 952 /CapHeight 646 /Descent -269 /Flags 4 /FontBBox [-519 -306 1240 971] /FontName /ENWEPA+Calibri-Bold /ItalicAngle 0 /StemV 0 /AvgWidth 536 /MaxWidth 1328 /XHeight 483 /FontFile2 54 0 R >> endobj 57 0 obj [ 563 813 503 347 355 246 418 399 226 316 537 529 494 537 495 473 459 537 538 276 561 537 474 874 537 246 267 653 474 606 745 507 507 507 ] endobj 58 0 obj << /Length 59 0 R /Filter /FlateDecode >> stream x]“ÍŽ›0F÷<…—ÓÅçg"!¤jª‘²èšöÀ6¤CyûžÏ‰¦Réà{ÍýÀ”¯‡/‡qXLù#MþÓcHñ2]“¦‹§a,V• ƒ_–ïùs;%ÍÇÛe‰çÃØO¦® cÊŸ´\–t3OŸÃÔÅOº÷=…˜†ñdž~¿óãužÿÄsc‹¦1!öl÷µ¿µçhÊÜú|¬Ëí™®¿ns4LDÇê>’ŸB¼Ì­©O±¨­mê··¦ˆcøoéÑÐõþ½ME]í›ÚXk÷º.•åÒZ“{U®º?¥ëÛW«¦Önª†M*¬Ý©CÝH×(X»[K7( ¹w‹Å{­îP@ôг¶(°ºÕj‡¥k×¹8 ÀêJ«4Ñ£@©ã… T½Žp‚­ô G8ÁJä'ت—NXëZ)á½ è'(ÎJ8w¸Ó*áÅzuŽÏ!(~‘’U ^JVÁWR^GVÁÌy*²ºœw§7éÈ*ØYñYôÜ5Y3k*Jj¦•ÚÇ—¿j ôƒé¯)q&óß«Žá0Æfžf»Ì_ xâË endstream endobj 59 0 obj 447 endobj 9 0 obj << /Type /Font /Subtype /TrueType /BaseFont /ENWEPA+Calibri-Bold /FontDescriptor 56 0 R /Widths 57 0 R /FirstChar 33 /LastChar 66 /ToUnicode 58 0 R >> endobj 60 0 obj << /Length 61 0 R /Length1 20776 /Filter /FlateDecode >> stream xÕ|y`TÕ½ÿ9÷ÞY’LfŸL&³¯wÖÌ’} €ˆÈ"DWTdQ¤Öò”ZÄH-ÑZD*hY´ n5hm¡êõÑbE›Zû:ÍZ*> “ß眙`Ìë{ÿ¿ ß³ßsÏùžïùnç\–ߺb)%ß#"™zÅü[þו%Dj¾zÉü[òyÝÄ¿½zårO>_ò!ÂßrÍ’|^ûÄ=×ܸªð¼!EH“æÚEóæëÉâÚkQÏÓjÄk—,¿=Ÿ×•#þo¾ºP¯ ù›–Ì¿½ð~r yÏMó—,BŒ¿®£<·Ü¼l9Ï’®fÄ?¼åÖE…öt!ÅŠÒZú )"wˆž´!ªÏ‹ŠùR^6ëÞ½©ï*]ó?©AÍ»{bM>~ÝÑpËù7^RºÔ/¢BÉÛ³xF©Î¡‘rÓù7ÎÿRéºXßGPÛ:(|¶i Ñ MrGñ°‘ŒFº¼„°ž—Ôñt-éFI Ù„°š—Wñò Yˆ’/Ið0Nˆ4Êsrêä¡ÌÓ!þÎ ¯e-Eêç½z¨›øðœ‡—±´H]¼­“:Èe¨qòv,-R;éBXÁÓ6þD9µ"VðP¤eäuž3ó:¿‘tàÕ“óhgà5,-ROkxXÂÃbZDœhÅB‘ªÉ?H1rj¬“HUäßÑ“qrJÞ^ÁC©ÐNâ9‘‡Ç(%•hKØ È ÊµXu³6@ìy-r,-‚&Ñš|ÍëÏ“ÿ"w¢þ<ϱ´H¾"F„çÈ—ä!Ôœã5çÈkDBÉ?É|”±á÷PöOrý)xHþÙ:Z“PÆçÄëDžÉbÁSÿ÷×OþFJðT?ϱ´H²ä3bEY–—ý•ü'oñWžci‘ü…¸~Nv"ü3i@øùQãö¤ÈÓ"é#Ï1|"fø#?eF>áéÓ¨ÉÇ<ýþž‡¿#f”Ÿ$ÿÁ1r’—±´H>ä5ð’÷É~ÒŠÞßç¹<<ž_3rœ¯[?‘¼ÇkÞåá;¤%¿å½ã飼ü7ä×l­ÉoxŽ¥Eò6ùÚ)³Ñ³´HÞ"oò2Šä£tÒËvyƒü’×¼A‚,7ÈVé—…ù³‘SªH^!/“ûÑë+¼×Wøj¾L“Ù(c5"B¶š‡Ñke¬FDÈÖ’•ˆäPaÞ‡H¹ƒ/¿à½½ÈÃø¼`ýóø9ÀK ¾‹X‰Hö‘½| ûxÍ>>†½äy>V#¢žáy²‡ÕˆÈ±1ì)̉Ո<-Òñ$ ªoc!y–¯éÏyÏÏððiîuˆä)žþwòpy‚íSŠd;ۧ䧤áãä'Œ føei‘<ÆŸy”lã”ÁB‘l%[Pªà¡H6ó?æ5c6¢æ!ÞßFÆeÈxýƒä‡œ¦Y(’ lï’H‰ õ|W²´\°µ_ÏÃûx¸Žü­dK‹ä^^ó}NÙk9MÜCîF™‚‡"ù7^¿cWpzyÈ%1_ øx[§ '°(G¡ÌÁ[Ûï0z³óK‹ÄVxƒ—±·‰l¼e<äÒšˆ‘KŠÐ‚ôÀ´‚‡"(W I¯@Ìö?K‹ ­üî-å}h°þlG±Pî‹Ð·‚‡"úceªB{Ç{VD‹ü|œ°´ˆkM9Ý.a)-_ÛCcÿ‡ÿÈÿ­±;óZêfȲ+ Ykï$Å‚]˜@VƒŽ÷#¿–S^²Z±ºÖ2á=²Œ‡­U»c4ø»kcÚ jQ)’Ä=ú=BpâÂ=-—Îòüj¶7‘õèUž=dêžÒUž_ N%Ù³÷({Ä zôò?U~’ˆwNåù7¾­Ðíøym(¼lÞ€¬¯ß–ÀȤcd1€ÅoÞ“0GÄ[oGÜ&Ì!ž˜X˜[ˆ_A<ÐÐ&fâ&Ĭí(€  Ïmè¯é{è›Ì°gØÖv®*¼Ÿ¥¯Œ°q°1î°gÙ"h—E< ÀÆó¦–·{ (F Ý“´MüO(Ä,x¸rXÙȤêbÒ òõK =´uà°·ÁåMàýÈ +d• ¼?ÿg/ÄÄNH?7Æâ…†æ‡´ ¢,DdH¸‰BòÆ¡óT’$I‘44ï*HðšÂÓ>ð§Ü&•ö«/nUFØ )ykP)~¥˜ýj_˼Q-͵U éXetò@j1•5NŠN—Št¤¥ã`eCÔyPGÊh™D¦k*&ɵÍSÒžÀ$Õä"ÉOÓÏÄ*é3ªØÏ«ž‘<ªæKU?'ÏDñä¥ôÒI*£¬˜®?Û›íí>Ñ›Éöé{ûõýŸéû3ú~cƒaèØØ{{»{³³½ùJÖ¦ÁÐ`´òÚ54RA•–ú}¡Q´®’Ê…dumUÆZfuѪLmMu(I+iMuí:eNªrQk!iVú}rH®DJ‹¹ÌM]ÔbV =!öº4‘.Y볆+ÁÆ •ÂòÈ´+—MëynÑíû~"‰!¯/  vxu.£ÏðeJÉ|ãÄEwtMzíGëÞhû< EŸª¼vkYMåú@å”ò¢à¨Yí£/I7ùrõšÇ4]‘HЯ™ZlÓ ÁÄê óª'k[:k’µ™p(æ(7ÄúCÎôã¬åL-­Í =-ïÓ’^•ŠÈA›ßQnÔª%} •Hœ®ô§©¤g*ie]Pç°”èô§z3½ͽÝKAäPO $ΣÆ:•º—öåúØr¸BÂÈ~ø~†Ó:æÎ•¨aŒü \1y¯A¸Rކ¾œÉ“Þ1cºbŸ¸Âç÷û¢® ŸPµ#àqÚ}Gî«oÀ úƒž<ÙGä\ûdò†Üs3¡h.ÊLtæÆ7 €›ë›v²ªe‚ïàøÏªÑp0VÞ7®FGu³ª*Ñ\+U§ÆŠ¥°_WTn”ôO”‰´„ëÛüº†TuµSª÷]µES­Ïtèú2Gšû2ú¾L#‚áÀ¸j¿U,èÂGL(ð¿!R8šbjiž4],ÉcðâñÒÛÆ5¥¢¿N%ïMÕv&èÇm éĬ·`´¶\ßv½si¼zb:çíñ#îoˆÆ {r;è\8%J½«‡x&}œñŠW€+-på#u-nþ •Q‹R«¶$]‰§BI$§ØàÕ™Kt~ý©¾ °Ÿ7æ›Í`O¤‚……/Lç"ÑSïЄ â¦É±Øä ?MBñÉŸ~ÚY %„«’`¢óÓg˜,ÏÍ‚þ@ â`†-Æ6cÛˆ±M /¶´—tÄ:"UÁšX¦ÍÛæ›îî+ Wy;&HÄñ¹±¼Ñò¾ZŒ}”Ê—©ªÝÚ¡ª$©~Â™Ê•Þ :Pwr¢~ÊwæÄ‰Þný—Ílùتeò«Æ²yqØ 1WK:vàåU,0ƒÀR€ j&ðR”©ôÒ€*«ÈêUÚì€R›Õ+²³SiÒý¿í ³T@‡ÉLpÄ…a ®¾Ë*º•QBSn·Ï/'=--]Q¿ÎhŠ2Rø©¦,‡v#ûÉfmîΙ۟6ŽFýÜN^u¾Ü 9p9[©Ê;Ê[[rp”ÔW²‹¥½ sÀEZ©Â,oq8µêfM“CgSm µÍµM¥£F‡té15î±ú³}ÙLßÙ¾>ýgúÏúY Ž™×¿òœ"ó¦‘éØÝÔtQËŽ -ÿEÍ©$¯wË%#U*ÓÞ2eVáÚµéÊo¤Nï°¶BsÈý¹1šéˆYÞÔÅãѸömcž‚>Ïl-sêë¢>ÏŽÊt)Í ·<~oÈ9p«3 ™{áõ(ºÆ ì`”Ãû€3äõ{L¦NüDº[z:·•Œj‰kzEcoÑ>ñ@yÀ°Æ ±Ò¦ÒjSµµÉ°^½^º§øA£+%m–ReªZÃÙl^c`Ú'Õ“! €ÐŒ±¦ZনQº;÷îßþš{‡Vöÿ¦.üñ©×_j׫¯ Órý¹ŸÒyØ7fÚ{ü‚†ÒO?¥t°ïÓÜ ãüay¹¨Õ^Ù2Š$!*‡–ÜWVÔ« ùB9ª9â ªÄÕªÕ¢Úm+ÓKV“®H-„£u¹ÿ§Í^zCócãÝ3u¶Àcëß«éÜU\–˜WypÇ‘Þ'wôö :þ÷TM¯ÉmÎËesÏ ×•[“Á˜Ó=nì„T…}N|=ÿð1•rœƒ¹$&ÐÂ^ì}5ί~Ö2“-üÜf¶ô‹+WVªÍ4Ü\9¦(£#Œ© ½}IkQo­¾6U¶[ ^Éf®lŽ©…1 Iu˜ê‹}c¤RR¥( —ÖÃ$»Ì¶d+)ИúôýÀüÀTž\†„Kä’W“ _^% IÒŒ°’yÒTZ}æÔlÈ ¨®CD%ðW0†+Ty7sä|#*àÇ+!Mè½ïÜßsߺ÷ÛSÑÆÜ_ \émlìŒûýtç–‡«ÇMîùnEÄô¶·bi:©_kšU_ò@U4ýþ˜Ïá®Ðé5Pû‰»¾B–«cšz½.&U«I+¬ýæ¾^Xµy;‡o_†Ž¼«–y !àFᮀT÷0¾¨Í›‡\°ÿMÏçÖPÍ °ú cj{ÌRkÃÝ5Sj¢c?J‚ñFíÉßù«ddvSá/œºyQtTÛ3¯ uî×—=öýãÿø-Û‡ÚÁ³Ò+Àξ[’Óõ4,ëÃÞ€Û Å„ËU}OIÒ"@®<^}Xí,õê(™(E°æ'º¹ZÒ}qJØ*ØLÖ=¸AÏÄ~*ÀJt¼åÜ'wppQð1ßô70'-Ów“ô¶ÒLâ/Ù‰§n¢ÓiçÚd"ÚH}þhµ&·Ùp4Œ>L! ú6‹×ú¹ fZgðzvBÁá‰tón$ë[2¯úhGÅÌ Áç£á†X¹X|0cè“BNOmR+Ø*¢1ªn$¾¢b`B;ÉR;)ÙĦ>4ódó›Ürã³6“"̯r£‚#eËŸ”ð9Sœ4"Ã/Êf¯Wà Í?ïë/(sVûÈé‹|ú!hr…„8? Ÿ)²ºN[Ñ ­ŒEêé¸2_(¤y@4˜:¬åE'_S•Ù:Í&i³F–=VÚV‰%z€ˆƒÑ~a§h÷øC.Ùéó”»ÍF›°ç›Þä?óy]!WÈïax£Ûr=bx³’ƦLWBþ®ú¢ìﺾrº¤L϶ƒ .`ø’’rø9»aír‡8sƒC°½R “O†¼Ók;„§œŸ3÷w4ꦥN_ÀùÔW»Ór(t„¼°æ1†ÁþœSú8·^;C‹’âxKàÆ Nô¦¨Å[#}üµ.·qåJ&Çïü³t¯¸º| ¹»eæŠõŠG[-?V=­Ø¡Ú|:¼Ûr ø%÷!Ci…ÓVSš."š¨-"ž>sš¢ózÏWÎÓ¡súãѯÓ1C£ñQÄ OM¦7KÜ6"G¦*Ã~S-g¡¯3O4½lßö›‰3„º^‰•e'&Lÿ³æÙ ·g¬8oÒv¸þaž×aj‰mu×TmÝ{óŒ»Nª§½¾øÇ/þãTãÊÑ7-ŸòšÛúè™=ûÓ©pøQG@I ×Îj›µvÂ;“¦ì\ûس:½jÙMÓ“Á¦iûžË5¹`éø<ÀKN*ïÆ r <}'[/‡.Å9V)n ”áY)ΦËpÇÝIÁûþtH³[*ìœï4΃8nŒ£ì4jÎ!¹Aœú}8qì ÌAÌÎ%Ÿ„WõIœ@|±§‚´uâœÁsÁv ëŸÝ‘ ã´+“C#¹-/C›ihq)I×Ò×7ÀôêV™xfïïïËÁë4TÁè¬;ȱò™rI,fX !™“Û÷ ¾…m={öÝ·þùç^ÿÔõoSMîoo^·-c*{QU¶YLm™°¼Ùe_¿÷õû÷Ýÿ~aMû¤Üßu$×?©sª½œ;ñ„³³žÚK€öâduËÜµŽ º-þŸèÑn1¤;äß/Ʊ%¢Aº¤äª’›K:–;î*ùIÉs%;{\Å.ëù@‰á´=8žh3¶•M7N/ÛÚ>:VkÍ$íUM7‡åÌ¿ÈÔì‚;ç~ú\o7W$™ø-¿ÙÅ;Д꼦-Áª©æ®Ô!¸TB!»ìH­›½í—6Ž[Ukò´Ýrîý§Næ>¦žÿèÚ"Γ¼îTç¡`оô²_üèÇ/ƒ[ì¾äIZöî»ÔÊHaOaþ[AcÐЇ­3@c:¬¤4¦À=5èL:Sà‹´¦CèÀúpÞ\ ʱ±™ô8ãh­¥§Q~ùãÈ ‚z¾F ¦·R¦#žŽx7hz7¨çâCœ3Ïv £pÁÃÞ`DϬw ÚÅð6å3Qs9è<ŒóïŒÊ²gAe8QÊËíüžÆ¦fLô8…AÅÅl!@ëÈfÔTØÂ~šßî|ƒ‹-†æý×½zgÈáLYÓÕTuò#j$/Ô‡î¾íÁû1@Œö0d“ ½wCkVŸÝßy‘:;i<ˆQ㰭˨€²AP½)Q¦GGÀA1òü)‰;Û²¢7± {^F‰ ã$,‘èÅ™<ˆgÈÀüáð!b»#Ì æ,Hïò4¶0·˜pR¨Ì,ç5ˆ[#±ˆ|áVîÞIDÃýö³[n¨ ×¥—.  "±x(·sCÎÑáêRmžÈÔ¸ÃåWÝÔq _x”áE ksK¥µâcØ7uäo­ó±_£¸EèÁžâÌÀƒÛ±ÜŠ’ï ~ðÒ‡ííCš“ÄàüLÂQÆ¿G >à§–”0 Ÿm0:c÷-O£ÎH§?G’TÂYDpÝ*Žx:âû@9»!'vcU!>„¸½§po$‰wá].`¸ oÛ€üs0ø—AÃAR… {¶›¹apûËe9öáÜ¥Z f¿Ñ‹"¹:„Sãüá|žo‚Oæ78×Fa© ¸`ŸÄ¨0éî;ïþ·ŸýŒ¦¾ú_¯»õº*¿ýçCßõм—þ9phòÆN»óáp83Þ(ª·¯¹ë‰'îºkÇ…Äý+â“&ÇSî¤îO®êû_¯¾v¡¡q‚Åì÷‡=˜ýBÐçjðÍòvëК ŠÓ€;2ý1ŠbócºA™ŒÛžzàP §ìv&£Ó ðí@ÞÏœ–H—ã¹8Jæ€3v´8d8Sà 7ä««\NhB«™|=eÔ]†ü´†V³I#ä/Ø \…3œ¡k% `Î+ gýL|¨JÕ}‹/r?ÏEöxñŒ“3ÈÅUý¦6°ÈÍv×Ä “þy2‡s_&½‘ÿõ‹®yÄßõ&s_Êr²­'/zËL¹¦¶ÖÃ;sM^< '}|Åêûçæ±³_&¢­ïާ*æÖerGk¡øbߨQq·~Peðó5æoFʃÝ&5È—çJ<áD)ÁÝ9%iA åë$£íÂØó½¸²Á<¤ÿ1$?ÎfZò¾ìüÆ6 mê‚áSÀ7‰„b¹et8ØÚ"¤­rПø*ŽFiúH,¦A»[:|c}rÖŒHh Ô‹slvŸ°A™‰ñCþîMÞòT±½¯£ßv—×QºÇ[qP''§"32ùU»‹z½îx”êBáù¦’Ȃ̃tõŒX‹‡e9÷!½+w2œÊ+„Lz—™.T}+Q.—Ï×\,Ššø]¹…ì`ÅåµËX…ŽHìV§Ìnu“(‚œ¼H…yºS£F…*F“~TǨx*èŽX‰œ¯·{€£h¼Ht ¸af£aÁ þÝóÓ™NÂô!g’°c@d©'?¦€äI ï ü^ÉŸ¡{\B+Z¯Ç"õäÇÓF~Gž@z˜1%§µKÀùµõ(H–*ð#¦Í‰à\X=‚C2œœ"}ü?Êv!Z~ ûÁgƃ>±¾ÐÍÆšÉ"À €’ŒÁœ)ê:q˜6t–ÝÅ@e~Âvß(HovK^ Ü(!ÅZ]p.Úzðí…åLÂ]…Ú:äæâù™è‘íVÆ,©°_qò’ű-ؾ¿+.L’°}ÌðÊbv'ÙÌŽnÙñ6;ö2ø@Ï-ßbjŒGQCÞÖS é‡`~q˜xÉû óáGää+ž¬=i¦qTÄç¿+ænkJtÚƒÍQ_ <0˜l3Û«Âá-^‹¹²©}NYô¦Ž5·éGGþUáè¹ú{·äæ9a „Ç:éÎ)3kª/œd|.§°Æöû­ÁxtÔè1ÍOΛ‹)xlóüã.Ø2MäÖIàZð5V89˾`šúyìh.•°ž¬fkÁ¾’cò¨ ëÊøeØw@‡²áÙ*¾j¥è‡}Õ× }ÑW©´ •òVß\´ž‰öl…b¨ËK%3¤R=Ö‹9”g“færûW‚‰-Ñü Ù4L2Áýæ,Ü=f{sqoøö"æ櫾€dŠ&“ó¾MÉæZÑFH¦ÅÛ ™í/ÔF"L ³Ao™©mH0É^WTv}#˜¢.¶˜õÐç—‰{AV2¾¥šœÖ)O[Î鎗·©ÚJ:tºjzÉź۰Ûô¤õÉÒC†C¦Ö¥z1¬YX6Î(ç~®^36 ’]åÌÛÀ”Y¿yS‹·ysË–#½ÂÏr§þòyî |þ9 .{ãá‡yxó/éäÎPýP]Ž}9,±Ðï†~ÎÿÐ::` CtB dèNìvß7ˆ]åÀ,ô F*”Fitâ†oàž¿„‹r"< *”œÃúwÂÆë˜ƒxâ'¡“ïÝ@üb5øF}ЧœN<1^Èx^oõ!Å4&]|àfÔ3‹óRRÃî`0Më}Œ$ ~}în‚äo¬0bÁ®æ¡búÞ0í%O#0K`5‡äoawá™P(˜Ìu„#UãM¦ñU‘0œmO^õ6Õ’·®ßÛLk×ïÝwß}{ž$¸Pá @ß“´lÓ™-óÛÛsgŽÉu¶ Ï­ÿÁó{ÖÝ·‡á| p¾ëäÕäü4»1÷§1û'€ f}½„ô>¤•à¼6¬û§pЗ™æÂ¾0;|ØvbwÆÎ;ù)ÿ*âþkÀs‹ÌÎ+xƒ=9ŒBÃfž¬V «’F¿Nä˜Lgþ æ£aÖsx㌘`Aߌw2„¡ù ø?`œU >ÌF¦æ ,êá ÷·9fÕÀžõðÕ¬¿ÿ9aÙè½7É Rݯ¯ÜÑnw=¥Ç™˜¿&œkOÃ!úÖž}~Ýžß;ð,ÝÐÞ™;ò[ªkoŸo1ã”ËóõXƒ€¾1ŒŸâ[@Ü]¯‹‘»[“ ¦0(ÎÁ9d-£[Ì”ù%Í2¢ï‡€‰€ýö£SF¥f¬®@§yÚ4ƒ:KPg:b/ÄÅIáfÔîßÊ3®Tð[Rú_"·ùQ©JhÓ/Ü*‡#±gÛæ§äpŸÝqÕoo›}S׺$6åç×á.Ôzˆ+€~‹y÷mË'4FÝ|;æ¾wð/’so¡sZŒ+,般okjÀ÷MøÎ£`8ðU§‰¬­Ü^þ}´yõ¹`Gì  ~ êBý&Ôoun­üíž@»'ÐÏh·‹ïõR`/ú«U7ª+v€ô…EžfÓÀ½àEMÔ‰sZHômÄø˜ô(çü ëSoT‚øÒ% ªÒ´?'ʱj£QwœÜ‚µï@M+tÒj¼¡\†Ùñ%èW>ñ=ïׂÕ\„ïg½°2½äU¾¾^ì$J d\+Óbq1ˆ«ú…Ónx¾z³Ùnh²yn3$ˆ@ìuܶvPXÐLÁu`o"äw—‡_°ÏŸÛ2ŽÃ}Æ{½ÁH¹¾4ºãêë¿wÍuG?xïåÉK%£]>¯ÇÍ5·_z岕o¼ûÚ‰ý ÷_ïÏpþº7ª÷j[g´w4?pï=?ŠÉ™ÌŠšd•ߘŽ]Ö2¦VRÜÛsïv‹Íjeú:…ÿ®_Z Fom„UZJ–î<ØP€X)@ ~ãY¦uGeQâ&lªFéq¬bˆxÀÏ™¬`:®ˆ´Oã¦!~:”SîwÃÀ)XPü”©»CÞcRà+Œ_ùC8æDbŸ(@áR¬øÝp†^ñ¶t"ÍÝpù5sr.‡œnZðèø?‘͆ÝÑPõåKƒrÜ'.ôÁ~ÊíÝqíõa§7m•“üóºé ßu¬&ÉÌþ ÃÓ|³ ß^¥ÉS­ŒwAùiÐÓzÙ71(a>$%kÁ7|À„ \ºsN€ÂƒH™hûݵåød>¦—Z±ðó1ŽËä\Ò-nËîÑ6÷˜-£µ¼ÞÃÌMTeCs¦–<’ñò³2¯¡r"«^M—\¿lÉ#ëd(ú~È]™†¿ 6ù¼u]O>iiËÈ‘‡ývºô»Ëï»–>êõ‡Þ– Ó¨¦·;ù¤T–Q-Èqr™NzqÁÑ-—û%…tá)ºçœéÜ^Çž `CËðgÙS€?7TWÅöè®™BÀ‰„çò—˜F\{½¸ã.ú\­uyf>lOæù}tð½]ïÌÔ§krYW¸¶ÉLÛr¿Ô6&ª&«M×U«?–GâųSÞW6 ËC2”‹Z•`M¬†¿«*”å“Ûsrh­çPGÍòøêPùˆ¯$Ð3¹vMÇï09ÀyàIAÆ…Qð@ì? ¸| {O\ÊTh½žÝS†´“±{Ìdò«¯Z ¸éuH3ýs Ò[fºæ.¤ógUF`Ü 0ŒHá2l œÕN)cߘ°Ïd`Ö„•av‹ŒVÌ«yØS`%lX=pgà Õb«¨À>/Ek3Ö’I$%  ½9Š­À®´ Öc'†±ZÙ¾\$ÉÞ,ÂÌñË<š¯ò=„n°$Lí!ŒU2©“b—ù‚ÿwÈ;ˆê¨7ï)ú 9í¡_¿¾ê±ž¨o´U Í9Üú ÆM¬í‰DOõ x„v&äʸ=U)4UÍ„M´;"Weœ£‚Üå¸O±2Ÿ2ȸnþnŠÕ¢<¥dû¦krû¬KÚbãn^qëu‹n-Ô°êÓ€,`ˆÔ Ý(´OÚ èÌÜøà~À6À3€Ã€£€S€,`HЀ8 Ð˜ ¸ðÀý€m€g‡G§YÀ¤8q@3  0p#à;€ûÛÏŽN²€F÷ >XøÃ¼ÈÅ4~;Ï,ÕáõLSžÈÃ7þ­úÊùæùÖy&m†÷?nD¾mD¾}Dßc|ëù‰#ò#ò]#ò“Gä/‘Ÿ:"éˆ<;½>~¦;ÏO‘gžŒáõ3FägŽÈÏ‘¿jD~þˆü‚ù«GäŽÈ3î7|<‹G䯑g_a oÏ4ÈáùFäo‘‡ä[ío‘¿yDþ–ù¥#ò·ŽÈ/‘_>"Ï4®áãå¼iØ~¸mDýí#ò«Fäï`ùÿ’'°1 endstream endobj 61 0 obj 13670 endobj 62 0 obj << /Type /FontDescriptor /Ascent 754 /CapHeight 595 /Descent -246 /Flags 32 /FontBBox [-655 -409 764 1089] /FontName /LMFXOD+Courier /ItalicAngle 0 /StemV 0 /MaxWidth 823 /XHeight 462 /FontFile2 60 0 R >> endobj 63 0 obj [ 600 0 0 0 600 0 0 0 0 0 600 0 600 600 600 0 0 0 0 0 0 0 0 0 0 0 0 0 600 0 0 0 0 600 600 600 600 0 600 0 600 600 0 600 600 600 0 600 600 600 600 600 600 600 600 600 0 0 0 600 0 0 0 600 0 600 600 600 600 600 600 600 600 600 0 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 ] endobj 16 0 obj << /Type /Font /Subtype /TrueType /BaseFont /LMFXOD+Courier /FontDescriptor 62 0 R /Widths 63 0 R /FirstChar 32 /LastChar 122 /Encoding /MacRomanEncoding >> endobj 64 0 obj << /Length 65 0 R /Length1 15076 /Filter /FlateDecode >> stream xÕ{x\ŵÿÜ{w÷nïU«mºÒªìª—ݵU®ªÕlI–Ö^¹J–ä^e›b08b"Ó %…‰(ë5E”„^ŠC Ïä‘@H ¤¥CÀ`é¹gW–œä…|ïÿý¿ï­÷Üßœ3gæÎœ9s¦h½o|ÿÑC„#e#;†wéã mä¼}~äÍk‘[7îÞ´yè©,›¶_¸ùÀ!®U›Ç†G‘'ŸÖlòL`îæû.@Þ9àÐö]#éü@øŠÃ¤ßO~ ¼çðŽ1Ô_ô`Áîñ±t>“ ÄÄîÞµwæw×^·0_OR'ã'Fòs°” A˧™eD¹4_~çÔ1Ïy¿]o¨}Ÿ¸” äÉ÷.þÅßwätՙ﫭Êl(­Â”ãï<ó:!ê/®:­|ÂÜ–ÎCpSqSì”·Þ7Å^ˆpAÊ«î|„óRÞEÀíG؇*{SÞÅ Oykö ìFØ•òÖp'Â,°a[ÊÓy[¶¤A G¡ ‡‹À  ˜Y„„3Ræä>F8ð‡Cø åì÷M1ï#ü5åî/FøÂQå¿Gá4ÂïÞCø-ªüá׿¼w~‰ðÂÛ¨ò „Ÿ£ð-„Ÿ!¼‰ðFʱøS„Ÿ¤+{á¿Pøc„×Px á?^Eøª¼‚ÜËȽ„ð" ˆpáßGøj~á?PøÂwžG8‘²Cäc¾²7<‡ðlʾ¸gžFøÂ7žBxá ,÷8 CxᄇŽ#¤Ža¹$¶å!äDxUîG˜DøÂ×îÃr÷b{Pø5„»¾Šð„/#| á.„;S¶ Ðé;nOÙF€ûbÊ6 p[Ê6pkʶà„/ ÜŒpÂGnHÙ†¡ÀõXçuXçµXç5WcÕWa#¨ùyT¹2e‹C-‡±²ÏaeW \ŽšŸÅZ.ÃâŸA8„p)Â%.F¸á@Êks!¾á¬ú|„óð û±-ûöâûƱø„Ý»v"ì@ØŽ° »²ß·asÊVoß„°1e½ ¸±”•ΣєõR€‘”•š` ‡SV¸!®GẔõ®MY? °&e½`uÊk1³*eñ "$R5p+V¤,°Ú3ñ”–yf¡ayÊË<Ó—²À2Ïô"ô¤ÌÔXËRæ6€¥Ý(ìBèDaB;Â’”ÖM¦ UZQ؂М2-¼¦”‰†‹Æ”) ¦Lƒ )Ó*€z„º”‰ÎÍZ„Å‹b)Sò¢)S ’2ÅjªS&ÚÜ*|Q%BEÊDÍZŽP–2Q“—"”`[ŠÂؤ6©¡›T€"ä!ä"X 5Ø$?6‡ïó"xP3Áų\NÔt ر6+¶Ó‚/2#˜°œÁ€ GСŠ9MʸL NרRÆõJA GMjr(d"ÎBùY¨qð Ð'@ÙGðŠ!ý7 €Þú«aƒï/@6Œøþdõýè@¿šùï€Þƒ¼ßÿ _ý è]ÿèH¿ ø  ŸƒÞ[Àÿ èM 7€~ ô ×õ›|ÿ¥ßìû1Ðk@§€þd¯þè — ðE úÐ÷¾ô] ÿÐmó½ ÛîûŽ®È÷<à ]Ø÷m=égu;|âì3º­¾§u[|ßÒmö}ržÒ•ûžzèqíß”vÜ÷˜v¯ïQí>ß#@>x t’@=ôÐý@“@ßúºæß}š¾{5úîüšæbßÝšƒ¾¯‚ü+@_úÐ]@wÝt;ÐnÓûnºE}¯ï ê¯ùn¼ èF £@7¨7û®W_æ»NýEßµê;|רïò] ò«€®àò|—sQßg™¨ï²ø¡øg&Å/Œ_2y0®9Èhºv¼èàäÁŸÍ õÅññ‹&Ä/ŒŸ¿`òüøìçÉFöJ±6~Þäþ¸l¿uÿ¾ýÜ_÷3“û™–ýLÙ~†%ûûýû9í¾øx|ïäxœŒ÷ŽOŽË'ÇßgÉ8£žš}æø¸ÛÛ(^<®3¶í‰ïŠïžÜß¹qG|+4pKtS|ó䦸Æèh|lr4>ÝŽÅ×Gׯ×M®¯‰®Š¯ž\Œ&â+AEt Ÿˆ÷GûâË'ûâ=Ñeñe _íŠwOvÅ;£íñŽÉöø’h[¼:O²ÙþlÎH°,ZBÜLS™[t¿åþ£[FÜI÷3nÎlÈòe±…ÓÜãbv¹.u]ëâ άè, ·/:~æøƒCf…%mÄn´ûíœö;t€öí¸½¡±¼ZêëR»l3؃Ígc[}6†˜Þ2ýÑÄÙž6¾hd Æ`˜5°¢Ô zŸž¥Y='êË#mOÇÒÇ¬Ž³‹:ÐÆçk{Ú Ÿ†7hz4¬¨ihn5Åem„cü >œ’¶†±ùÚ¦rÜÎÈ™)æºcý¡P×?»¼+©ì]d®LæõÓ§Ø·*©¸2Iâ«V'Ž1Ì5ƒÇ¶y iíê[…üW_Mš<]IO"ù%Ï`Wò$Dš˜…ñ³“¦Áк½û÷†BûÖÁcÝÞ}!é ³Ÿrð øîÝ<ý<¡9ÿüƒj ·~/|¤j°ö^äÿró¹ñÿÚî\¿Ž^„ðw2stÁÍH/ÙJöÂ}Ó!ò9r59Jž&?!Èg!u+ù¹‡|$ɳä»äµ¥þ—ÌÌ…òDË=FÄBÈìéÙé™{€¦äúy’£ÀYdþ³’YãìïÏ‘ý~æè¬qfJa&j©¬Ž}jû sfö4Û%u³5”gCÚ ½éOü3ÍÜ» ¤› 8YAV’AÒC–õ’>²”¬%ëÉ0!£dŒl$›Èf²ìµl';ÈN dÙMöq°á>²Ÿœé}i ò Ér ^D.†ô…ð< ¥.!—‚å?C2xYš¿lžä³ä Ëáù9r˜\I>HŸ e ¹ r„\ãy ¹–dÒgSó¥4}¹ èzrŒú¾Æþ6òEr»$=Jn&_¸»ÈW ÿæº4ï¬þäNrøÍ—Aó«à=÷ž£K5ï"O‘o‚O}‡| ¼íiH=G‡ôsägä-òùù5ù bj˜%äÏä¯äE°þF°:µùn鹞›æ,~>ØöAË^¶œo© ÌC _&Y ­8AΛ†Ñ¸l^™ i¼è(Ѻ¨U3V?kQ´µÔYZîèœä¬=3ãpVrÓ›-´àm`õ›çY4cûù–Ÿþ2™ÏÍO•| ÆànxÒq8—ËÈïƒNéd’Ü)|žå3©ȃä!ˆÇÈqòy”ù!øÇËäˆZ?%o¦=è”äA"/‘—eAòc¹ž‘sÏçØeäà_co_'òwˆ^l[¿níšÕ«ñþå}½=Ë–vwuv´/ikminjêëj/ŠE#5Õ¥%Åá‚`^®ãsZMFƒN£V)y…\Ʊ · mCþdp() ííÅ”†A0¡™´‹sfJ2Ù4¶A ¡mË‘)‘l&y¨/¼Ÿlp§ˆXL²C4ç™LŽ-NseræŠ `ÙV¡u(ý=o³3yhƒ¿8 #+}ó’²<È÷'¹àІ‘͇Ç&„è!Ø’ Àæ°âpÚ˜­ÇÊJAx:±…š¡/‘,v'­BZPI^ë–þ„T¥­Iks’ ¤K%K[¡,¸HëÚ@Z—ЗxœTξu¬Êï>^IªÈ mGÒÞ ƒlHŒnLú†Ü£àŸý w )‚ù…ÄØ %Á˜,| ^@©ôííŒ2t;Éç)ý ÖÍ ÒÑ¿ BS-d“ déˆ6ÕúŒ›dÔà-i šZP0\^s;„¢Ííî8·ôùšäÆ@3’ʹ6É ò³mÂ÷üÓ¦¡6mP¡¿u¬e^T ŒÔÀtmÿ¸,µEÚÐ%ÎvÚ‡â0 i?d+“,ôSÑQtú“¤×ŸÆ„A|HìMÐÁ¡¶–Æ·«_ i´Ó^2°€Ãü(æ%I k ‘aàø’H¶…¤q¥Ã*ñK$~Žm?'»#“íŸP ]ýôåBºB⇃£v ‰š«`²¶A Ú†¿Ñß61<5{hÃÄ1QœØÝ:´yLƒ ¡ctBèOÔÂXJóþ û}µ™t1]MÅaˆ=MÇæÊ¾c"seÿªÄãFøÓ䕉 ‡¯¡¦Ác¹—xÜOˆ(IY*¥Bªâ§ ­i90JIßý¸HÈ!)W& $~Î’ •@Æ‘)eÆŒ 2ÊDI6˜aÎÍ0‡[ý£tx.Ü<14H'±ÃP—I2B=I²B=Ú¤ZkJj„&*o ò”+¨œš’ŒãLALš NË%à(>Þa¤ÞÏæù§fg“îéÁL‰5@«IUÖy^'è-¡4â%ÉC#ô$SÎÌŽ‘A˜ ™ A¥#©‚Té@£M*CÝ ÀØÀJå“<4˜ Ñ—&¶ÐùýÆ$iÁ°cò }Qéà„Y¨ Ž ªIuÞa *hð$q /ƒ€K{Äk¡å#d ùadd¤\c©šŽHÆ $Ê‚c©ÝéLB»Ååitꤪ*„/MkJ Bøòƒ`Úy‰;œV€w“hQpž)ÓÀ:ÕAÛßÃÐxªú,­¦oŠ,.€ÐH-½Š‡ì¤.¯c‚?–×€Dˆf C]Ê<*¢uœ@)O{®»syS³÷ Òù‡º8PÇ$îÇÁ±ÉàĹ‚äêPqXy®T'‰'&”º\í¥ÔÍ!ÔBdôOõ/"KåÜD&ó> :n€tÓ4÷ YÊî™­ƒts I1@(/s“eì·Hç!*öA²d»Ù\²ƒ•“Nv/iç>!@/ðoý„há\>@Ä ¿{Ð%üòÁHLÄaASÃl%j8¿ñ ­"p*„rø¹ÜÇ$Ø,ön7-›ä¯+ÎWüޝRòÊÛTJÕçÕõê_höj^Ð|¬-Ô>…äpÞ˽§Eê[,úz)¶Û•µjfštž…û™« 1 3*šel^DÁõ¹u¦Ý}L_ ÏBgßxóµo¾qð$SúÆô©iã™SÓæX¬´´¼Œ1LYõ,Ï+BN ‰ÔÔTVVÔ³ÕU%¬£ VWÕ³‘z®²ÂË2T5%)(S)÷ú'«¹ž3 ö"_ëÎe¹¬Ï­·jåŒ_îs(ëzJ,†@uAXêãÕ V®T( µä´¬[”5óÇkxµßnÏÒËe¼V©ò»,.½l¦M®?ýg¹þãfÙöoäÊ«6-¯‘ߢV²2…â)·#oq[Àò[ £V/·ØÍ ÞbÖë:ÏQ:²¼ZÍkj•ÓiWªÔ ­ñL µ|ö´,ö,'õäž'؃ì%$¢7añÄ£»R+/ S쀨«(ˆy¼QøWX M1Œ¨/ k ¼v•CÉ{=Gt/ãneå¼Z§Ôä× DêÖÔûòú–7ä·}æÑÝu[eq ^£SË–lhjÛÙU¬ïëï­Ï¯ÿÊhÙʶ ³Rv¿ÒæpY´Yž¬¼†ÞP¸©¦¬"Ö5,ÆoÚÕhó²\ {–˦óçùó›WU7×”ÐìÆž‰ÍµF‡Û T,éƒ1ø9÷=„ˆqõì¥ì¡9?®ò(½SÌC󃋕S̃C±pÁò)Ö+:,Dµ8ßTpŽ¢²:k>õK¹nÉÁ%Ó7˜`ìéWÁøoLWš*Áþ±˜\´Š‚`μLxAÏE+Ú4ÚPÿåƒA0´ -6Â…e¹EÖ,#´Gײv|qï–z‡­´këUƒƒ—VXdÁ«Û(c~Tº£¥fes¹.ÌkB‘]Cf—I/ã5ªoø»Å¢èš}uÑkn¼jWs{Ãj£žSjùßµ¶VlßZcBÝöÔju`µ—ä{H1i"·/´šhÖ˜<^Ÿ_ˆDcÙ±lsÌd†(á³KLêX4GÆW~”ß™m6idzG›¾»öC‘_šqWj²†iÉn¯N—š¨ÑÖŸÀ™‘¬—õék™óÉ`¾ƒc2Ñ€—’2)€Ãò¼Ý*ã^²—wn;²rÕ¡ 3›_P”-cÔ¬Êp9½fÓ+× cëÚÑÚµyVåjO¤¤f÷P—)Pº½¥j ¥"`b/¯½þè‘m-b¤7äQ¥‚Êî\tîÔ¤n+:Ú¥²Bò1j×§.úwóS–‰rKÚǘÌ•LኹÜ"[–QÎú¥ù¹xåâ<o/ëÚz$ꮯ²mdÔV¿Ëé3ËÙ™S0M«ã-å~cSÇüIz_ «¡ÐWÕÚÑé[tÝõG¶5Y%.f†×ñr9<Îlhm/_¾uÏÎ’áMµ[oX 3u)øÓßJHí¹–{´¨"¢Õ«U‚Iëå¬V¡tŠÕ‰6"(¾‰yM&mÅËEÚŸ‰Þ¹I a¬ÔË7¸Õ«¸ŒCdsHsÓò)JeQä^´RJ =h+ï‰ÖnXË3ÛË—Eë†iŠÝÛyÛµ—¬‹”$õuÞvÍ¥ë"¥‰C«*z#ÞPdž]û£½Qo¨sÃî}7Ø?Cß*Éö…=Õ&“ÇœM<ÙppvŠF±¸Óœm*ðä+9zºI„e…®)4:J“ïq¢ýêóz+m_æÆþœ9e‡–A|Ó)•‡×š3¸b‰©çl¢Q2=cŽ†Î¾|“àu(Üí2‡×ï6ój~ñækúgveÆûìl¸»°;–#çU ªÙiö=°@y`¡ž×?›™*Øû…ì‹á U¢»õÅ¿¼L.Êá*äE±ÓÿQ)2Á-CQ離û/è†fá­‚˜û¿© M(ÝÝP %}—³p§+5ÝwÓÛÖagßSh *m ¬¹$ÜRâ¬î]ÛSÙtêÒþæ2’gÒ-WNdy]¤§ÊUÕ³¦§ºjý}Á%µa†Û®øí§ÕŠx ª‹ ÷7´]¸²\owk•&­ÒN·.nŸÛ]\(ªÅúŦ=ý%Z³]£¦–Þ3ûöyÙ¤•L,´´XXEBMJU£ª1¢ …Ê"Žˆƒ”5µGk•á·U¡@M»áC10·ÁsNWœŒÅ`€gi)¡ñ$|â„®Éè4³|ŠÒO¸¾Óf#é½"[™Ù+J»KöyV¡ÖèUïŽÉ¡2wÇ®Tª`È+ýE¥Žèò¨›•˹±ƒ­BkÑ]b4ë¥E=ô®AÍUÙìv“zFm«2U–ªÔ* üjÏëäy½Fá¬\Z£õøýzæ´Î¢ÏóÛOñZ•L¦Òò§ì`ÇÝ~Á=§•ýçØ1Gã$åµåB®ËI4ÎÜr—P[¡’G:¼áEãÒôêOï^ðêv'èvÐ$MŸ¢ ˜,³L磌j"™dÇômËœ,̨Í›Õm³¸ØkYs©x¸7ÄuRÎìT(4ÒÞp¨ËÜÃh2bXSF/p¿žÓ%ä5VZ¶*³ªy%+êñ–çZë¶ß”`®Éˆ!bï˜ýówìûòIÙÓ£·Ãº•ÝA¼D`úS®n9ý¼¡½ c¿P\Ò záîM NÁ`Uæªú%…Åòyƒ†W˜³!•oen[¼!Ÿ/hQ(Ìž"¯?ßÌr~Ø­ÕºÃþ@1Åâ3…T Î*Îñ£€ÎˆNhgüîÇA|ðŸ Ùq¸Ú·À¯ôùîù ƒf•—åѳ̼å)’« ÎpNv®U)×…A`åoÕ rœZ¥Åm2æÚ’EßÓÎ<ÌÆØ:Ø:!óÛʳõÓ3êIè4­?¾¬TØÙ£PjÀ?×ê´ôlcÐ0_ÕkØl…Õ³Ynq8-z:ù€½{W~%¬ «ÅN^®)••iu…ÖlK¾Íc"NU~yA™,[kÕØÊÊ­Ù¶r[¶-»œ3†ÕO°±Ã]b¨ô¤#VWê”~¦˜ñ„ñÙ:ãóÆgÆÅЃ3c‡• E~>g¥÷* ¯€s]M$w55‘zÖîpлë ;ÏEjìÜ)£Â0óñk:E¶Ï§yÜ™.õ)úÞ3{ gø©”ð[ZƒÃlä“.&'\æ•÷ÿEŸ-;YP Ø²CÈ+4¨o9m0 ŒâV-7÷ÛÆdZ‹Ûbuª8þ&Fn„ÏÌÇ·«¬ø÷þŠCÿ'¿ÔØiléY±¤?Ô<¼}ˆñ-Åû 1Bþù&»N endstream endobj 65 0 obj 8690 endobj 66 0 obj << /Type /FontDescriptor /Ascent 952 /CapHeight 644 /Descent -269 /Flags 68 /FontBBox [-725 -276 1259 1014] /FontName /ADOVGS+Calibri-Italic /ItalicAngle -5 /StemV 0 /AvgWidth 521 /MaxWidth 1328 /XHeight 476 /FontFile2 64 0 R >> endobj 67 0 obj [ 335 229 791 478 452 343 389 306 498 252 543 226 514 514 268 514 513 514 416 305 514 514 229 ] endobj 68 0 obj << /Length 69 0 R /Filter /FlateDecode >> stream x]’ÍNÃ0„ïy ဲIhK¥(!õÀ(<€coJ$êDnzèÛ3ãFEp˜HŸ½ãÌÚ›?l7¡ŸLþ·ÕÉt}ðQÃ1:5­îú¥ñ½›fJknoÇ,‡y{:Lºß„n0u“¿Ãr˜âÉ\Ýû¡Õk®½F¯±;sõù°M+Ûã8~ë^Ãd$kãµÃqÏv|±{5y²Þl<öûét×oÅÇiTƒDpçHnðz­ÓhÃN³Z¤©ŸžšLƒÿ·5ÚÎ}Ù˜Õå]S‘Òãc½)¥“lsÁÿr—Êer¡§ÿz°–n¨íæ4eÑÔ”Èê¶Á?K $²\+ ôÄ[ \@HdQ—ÀqU×@A,Ñ! [ o*ö@''T ,XÜ!‘ŠGU¸A »wDħ€ñ) ;ªŸ2d…øpID| ÈTZ Ð¬Ð …]7ßüùÚøvœ±ËL¸cŒ‡4ˆiR8}ÐˬŽÃÈOúQ¤ÈÌ endstream endobj 69 0 obj 386 endobj 15 0 obj << /Type /Font /Subtype /TrueType /BaseFont /ADOVGS+Calibri-Italic /FontDescriptor 66 0 R /Widths 67 0 R /FirstChar 33 /LastChar 55 /ToUnicode 68 0 R >> endobj 70 0 obj << /Length 71 0 R /Length1 5940 /Filter /FlateDecode >> stream xX p[ÇqÞÃ/A€H$¨GŠzÅð‘"Mý˜”!"J,™¤ @T#@|”AÅú‰H¹²cI”-‰È4NSÛŠ’ÆÎt¦É¤?>¸ Ù™Èl¢‰åkê&®Çm]Wq4IëÆ3-«–#ö»@K{&ÓÇ·{{»{w»{»w˜8rt”œ4Ifj9:Lò©TÑ,ytB´xìD¦íû?| ×w\&rÅ~ä±}¹~e/Ú+éÑ”‘ëÓ§h×§ÁÈõÙZ´õéÇrýJÚ¢Gäå•AômRÇòëÓÛè«SFsúU.´‡Œæå,õšÃ‡Æa—x㟾[^JÄÀ5Ñ9*¢ódå¡V‚Åæ_¸bð—I¹õ£Ÿ™.nú›=îàGä,“ÑÜo.lí+S?œù¸î÷ß-¾U”„®3äÌk¿x»“ÈY ù·ŠoÉ™òBÙ˜æHe+þÞác[ÕYV[ j DU¨,墬@¸ DI(.ŽQT lÂZ ,¡ÿ–Ëß’ø‰ß“øºÄ¿–øW¿#ñ[ÿRâ«¿&ñ«_‘øç_–ø§ÏKü‰³¿(ñŒÄÓg$>/ñY‰ÏH|Zâ§$~RâSOJ|Râ—xPâ‰û%Þ"pë¦VÖ@Ý€‡{‡'ß<xð2àŸNªcõÔ è<Ø88 øàyÀ‹€—Nl¤:ÆþóZeUÍÿôµ'*•¯=QýÏ¿ýè8 ôÈ! ¯¬T¾rðä‘åG+¼5ïÚ74š®PFÓg¾º¼z¼òñpµÿ1€ý•ªWL¿ý/¦Oü«ºÄV½™¼tøÒä%Ë·/šôÐE¶ç[ì›jÒgBžÿQj;#¾‘WFÌêH‰»S0›7×:=?=Ñù½ Z﹆¦Îç.0}Ëöì3&ÝóLw¨ó_ŸaN®ðÓܼ©„Ù™™©3[¾µä[k¨?Cú4à< sƦŸ:Éôã'¬ú‰Ó+ëÎaúàô«þ@¹ßë[ïõ®ó–¯õº×x]í^Ç}^[›×Üê¥ÕÞY¦†&Ã]þ†U¥«Üî&ÖxsQ¿ù¿î—~øQiÛ¶›¦…›¬I/mÖÝ+µÒzͽ¢®T­s»=e.G±Óe³¹Ì«‹˜Ée3uNwÔmrÒÔkÞç˜0O9þŠþÒñïn‡“œf§ûzÀ‘0;5O¸¿Cßq|Û=çø7*c~¶2TîVXm‰Ï¾¼Äë©*)·T”Ôm*e~Q¨À@+ ð<àeæ5ØšƒMÁÆ`C°>¸2¨W• /è –ÝAGÐ4)8°&Æxy”¢±¾Œ¡ÝÑÃ×èÑY³:ÄÛõ(w dzŒýI\n:7Ë(Æ-çfMhÊû†ã³¬ZˆÏ(sÄñhòÌ׺^ËèŽ8Ÿ¬MðvA<]› (oäŠÖ£ßûŒOHÎøÄÑ;%ãüÿKñ›Z/¿C'Éoh½ãBkœ7Exs$ÅÁlÐz侀»zú8aÜ¢×Ç'ÆÅ}¼þÞ­­ëY‡p|`¨‡›Â»£ÜŠre`8É—k=Q~½õÃÜ¥õŒgÉŽeMÙ€†‡ã›jÙ 2X- P¨”Ên@  àl+ÀÚfÜ2>1Þ3®¿6~e¼c¼eüÒ¸j¼f¼j\1~n\6~jÌ?1²Æ‹ÆŒ1mdŒóÆYãŒqÚxÊxÒ8eL'ÆqcÐ0ú-ƽ~ýA}lÞÿã±f—“u'î#]b²´ƒÎ?æk9zqañω[àÛC9º —kmÇÉcÞ¸¸`¨Å Qv·üó{âž`âãô]ýMRí𦔤¯JHðÅ|ÖÅÖ³œªAçY ÕG3BüvÖH»4ò¥×é{ô]ú&SUû]£'!ßK—´„}=ø#Ú%Ý‘VÊVÓ‡¸ø‡–ô>#Þ ×°Z9ä¯Ó—ém§gé¾6Þ…J’ÞÃKk¤ÄØñ:_ü ¬xÎJ'«ýˆŽÐV)[B¶KTdšÀþœÂ¾\£7!8J;©« À6°&äÿ÷ëô=k²ÐÛìšÇ ¬œÃãkìÚe¶ÁÊgi…Ýoß~ëö,.Xúq”ÿÀ% í5ö|ùvïJÄwƆ¶=ÝÚ¿es_o¸gS¨»kcð ÷¯_·vMû}m­«[šõ¦/5®jÔk+ýjÝŠÚeyµ¯ªÒ[±¬¼Ìã.-q9‹Ev›Õb61jf>î Ç#ûyu8‰:îÕ<*wm_ØÖÊ©\ñkeêšÖDK^‹[uNË¢¼b ž¥PG‚Ûô{U¶ssÀóƒ·)j„[xµ­)ƒ7ÅýšçMeIžÀ´|y8î÷+ÜÀÛÞ­)Õàžð!œ~Nq³‹ïv€IþðPœ¯(tb¶œ+w9‡Êš¿ÇÌí,ãɺªÃ½œ*²äz—“W¨-t§ oıð€’³Q+gp¶Œ3ï6¸t÷bصŽÏ‰AÄØ¯EŒ1DÔH~Ó…\DýjFÍ ÅËÖ(~¿4§è`<ë,káÑbx« Ê;Áq ¶åp–¹º˜$L®È†¬‰ŠJ¾ranDÀ~šN‚Ðz7H–}&™]œŸ¹SD–S"¨IŠÉ5¹-Ìí9#Ô1JqšV³Íó™™YíMê.C3R»ãÜœ‚QY2"鯉ì F’iUlw¯DbóÔHZÍ /t“ÀZ/†ÞÍ7Ò£I‘&,©õBæǧüó ®ÓøT„—é¼ÃK¿®˜3ߘ*º™Ì”Ê_Œß)õ $¯¥YÍD4¬†É"û{ÄŽµ.m›ÌÆ~CnNh:¥òɽû3¼©™Bþû3îºáÇî`0RT‡°#¹_¸²#-hÔÌô¨tuFº†|U#û{ˆÈ~ډѻ⑴† »° ‚ñæÀ½cý~^­‹™LD˜˜2`½ˆ ÞjÜÎ0#×AM(:ƒ=aŠÉ†br°b(՛ȳò X°<”ìM$„S¹ àöÀ”uµ¦fĤö¯Ð=þËÍ·4G‡â‘^‘Ð4…ãß÷),±™:™Ö÷E„d‡ÌeAZÄG d,WÀˆZ~硚ח³^õ)Ws+ìŽ÷i}ÉL¦OSû2ÉLjvqr¯¦z´LÖåÊŽ$UYþ ü˜VxßL‚{’i¶AîXΙ}øY68,¶ªOM§ÀÁÛ­ù;Ù’N‘ÏçkÙ5—ñüÞ»p:)jŸ8jðIÞ¡pO‡(Y´3ŽšÁC"Ô >ìLЍs"Û‘–âÇ’2yÄ8˜çb¿_ÔÓôlˆö¢Ã'ã¹¾J{•—(Ôªc“B2_xw ÉdA²4<©aß|âÃRæÇå7Îö¥ÜΔiåj§8ØaÞ~ƒÏÇàãÍ^„ˆÉ­_Ž›“PeRÌ‚*Öq=y•.Š˜àÄÌx4õu{tn Çç•`Bõ”á°dÐÙE‘©ž×µW™8G©ÂÃY³JÁ'œ«ˆÎýª—Id’ù¼Ó-¨ m#½TJ9ãQ»Â7xïÑPºJ. eåšðð5‘ð…‹!Ð'ê ["µ5ÁKÅ}ÇK'ìUÂq'*wPjDM‹Íæj²W EÈ ìÙÅkÉ^qÆ‘ƒPQò)ŽDÏ…öîTliþC}‰~j&‘Þ›BMð@]‡eEÐñx¾Üä>É"ÀZý•»åKQ,èà`C9ûyÛòW}HÔå>YÕ¹Ú]RÆ&ÄàÍÒܹ˜”ÒCXÂûpÿçÎiß,ûÒw!Þr¸¿ Æñq\yz¸Èz²;7˜ ±s;vÅç𙬞‹Å_21S8Ù“ÈÖCŸSñ$¹øç"Ù#˜BEŠ2Ìö’©Hê+s!¢I)µH†ìà5ÉË)ÇhÿµIž§ gÏ’ã…$÷ LŒøÒ8Þâ6Ýà¡ø‰t&™Á¦Ê\"³µ.â&­+ËL6/ÖF{¸SëünÁïÎñm‚o×zþ(u¥žIj(ÀqRXB¤°ÈrS@]\Ä z'¯ŸÛ»8`zBåÖÀVèm{3ŸI ;Dšb¬=Ð?’àEKB¥Ÿ;0ƒ#?4úä\ÏbÐ’5¥IlÇd‚'t±h|LX¤ªøÚ¢mආœ‘Ö±Pk"S®µËëÄàÅ)ŒÀ[åA(9 ºXLÜGxí.X>¢Ak$©b,4²Éhio±Ø7pFq«[p©ŠQÈRHÂ-sÀYRÌ«1!^A;WcB¼ö‚"œ—½©¼Ööp',j¸#”ùˆDý¼S0^¨þ£˜fp–†´cœÉˆÊ¥ìó’@  ¹ñNp4|÷åc®¢€`‰9.ç¸vá¹K~ÐÆf =&Фð´4kœbq‘˜„ß (D‰Ì½ >Œƒ³è^n‰dg2E%Ÿ? ¯¢’¥VÌ¢FÆ«¤âNAm ý©éŽòµ-Ö^ºÄ~µ ~Gžd‰QrÂÿ>â_ ]:kQ#5S­¥Æ—N»«Ïú”g¼žçVº.X½•Öš•nêîîöüÆsÝsµ¾ßzý¾6¶nm—éþ.óºµ ÚÊR“][·~ýšö&o:¥f¯·Ê«­ceþ2¦ûm•MõU Š{S—ÚV_íHχûFºjÜõÁfµÁk/š}ú{›9õiûmee iݪêÖ5Zt¨¢¾}Å“+V×®éûRCׯ¾óªÆÛÁïÿöuËÅ[û,ò×°^øZž÷ÍFˈŠ%Üܧ‡SöKµôzD¸ûmÅ3 endstream endobj 71 0 obj 3653 endobj 72 0 obj << /Type /FontDescriptor /Ascent 950 /CapHeight 674 /Descent -222 /Flags 4 /FontBBox [-1110 -299 1372 1047] /FontName /OTYLGF+Cambria-Bold /ItalicAngle 0 /StemV 0 /AvgWidth 600 /MaxWidth 1380 /XHeight 492 /FontFile2 70 0 R >> endobj 73 0 obj [ 220 ] endobj 74 0 obj << /Length 75 0 R /Filter /FlateDecode >> stream x]ÏjÄ Æï>Å·‡%&·‚eËBýCÓ>€ÑIVhT&æ·ïhÃzð¿™ßø9Í¥îƒÏмS´f˜|p„kÜÈ"Œ8û Úœ·ù¸UÏ.&‰†áa_3.}˜"(%šFÖL;œž\ñ¡xoä|˜áôuª3l)}ã‚!ƒZƒÃ‰Ç½˜ôj„¦¢çÞqÝçýÌÔ_Ççž8ío$®ÉX$fJJ­®W-0¸¥'{3$T×jRÊÇ"Ž¥“,FBe®2¥üöžÎnD¬®¤f.Y|ÀûÖRLåíz~–q¥ endstream endobj 75 0 obj 234 endobj 28 0 obj << /Type /Font /Subtype /TrueType /BaseFont /OTYLGF+Cambria-Bold /FontDescriptor 72 0 R /Widths 73 0 R /FirstChar 33 /LastChar 33 /ToUnicode 74 0 R >> endobj 76 0 obj (Microsoft Word - timeSeriesRefCard2.docx) endobj 77 0 obj (Mac OS X 10.6.8 Quartz PDFContext) endobj 78 0 obj (Diethelm Wuertz) endobj 79 0 obj (Microsoft Word) endobj 80 0 obj (D:20120319140701Z00'00') endobj 81 0 obj () endobj 82 0 obj [ ] endobj 1 0 obj << /Title 76 0 R /Author 78 0 R /Producer 77 0 R /Creator 79 0 R /CreationDate 80 0 R /ModDate 80 0 R /Keywords 81 0 R /AAPL:Keywords 82 0 R >> endobj xref 0 83 0000000000 65535 f 0000103745 00000 n 0000008754 00000 n 0000024668 00000 n 0000000022 00000 n 0000008734 00000 n 0000008858 00000 n 0000011770 00000 n 0000000000 00000 n 0000074498 00000 n 0000000000 00000 n 0000036831 00000 n 0000000000 00000 n 0000040970 00000 n 0000000000 00000 n 0000098790 00000 n 0000088976 00000 n 0000000000 00000 n 0000057698 00000 n 0000000000 00000 n 0000062033 00000 n 0000009034 00000 n 0000011749 00000 n 0000024384 00000 n 0000011806 00000 n 0000024362 00000 n 0000024491 00000 n 0000000000 00000 n 0000103319 00000 n 0000024758 00000 n 0000024808 00000 n 0000035909 00000 n 0000035931 00000 n 0000036169 00000 n 0000036305 00000 n 0000036811 00000 n 0000036993 00000 n 0000040345 00000 n 0000040366 00000 n 0000040616 00000 n 0000040640 00000 n 0000040950 00000 n 0000041143 00000 n 0000056532 00000 n 0000056554 00000 n 0000056789 00000 n 0000057021 00000 n 0000057678 00000 n 0000057860 00000 n 0000061412 00000 n 0000061433 00000 n 0000061679 00000 n 0000061703 00000 n 0000062013 00000 n 0000062202 00000 n 0000073537 00000 n 0000073559 00000 n 0000073799 00000 n 0000073955 00000 n 0000074478 00000 n 0000074664 00000 n 0000088425 00000 n 0000088447 00000 n 0000088668 00000 n 0000089149 00000 n 0000097930 00000 n 0000097951 00000 n 0000098196 00000 n 0000098308 00000 n 0000098770 00000 n 0000098959 00000 n 0000102702 00000 n 0000102723 00000 n 0000102965 00000 n 0000102989 00000 n 0000103299 00000 n 0000103486 00000 n 0000103545 00000 n 0000103597 00000 n 0000103631 00000 n 0000103664 00000 n 0000103706 00000 n 0000103725 00000 n trailer << /Size 83 /Root 29 0 R /Info 1 0 R /ID [ ] >> startxref 103904 %%EOF 1 0 obj <> endobj 29 0 obj <> endobj 83 0 obj <>stream application/pdf Diethelm Wuertz Microsoft Word - timeSeriesRefCard2.docx 2012-03-19T14:07:01Z Microsoft Word 2012-03-19T15:07:25+01:00 2012-03-19T15:07:25+01:00 Mac OS X 10.6.8 Quartz PDFContext uuid:9be220ff-bcb7-1a48-8336-e3d0105b57a8 uuid:93a93106-32da-534b-b718-6c8847c64fa3 endstream endobj 84 0 obj <> endobj xref 0 2 0000000000 65535 f 0000105723 00000 n 29 1 0000105980 00000 n 83 2 0000106083 00000 n 0000109858 00000 n trailer <<6F42369626D0482CB77739AF2A8958FB>]/Prev 103904>> startxref 109899 %%EOF timeSeries/inst/unitTests/0000755000176000001440000000000012620124746015376 5ustar ripleyuserstimeSeries/inst/unitTests/runit.mathOps.R0000644000176000001440000000213512620124746020275 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.mathOps <- function() { # RUnit Test: tS = dummySeries(format = "counts") tS tS - 2 log(abs(tS)) diff(tS) scale(tS) tS = dummySeries() tS tS - 2 log(abs(tS)) diff(tS) scale(tS) } ################################################################################ timeSeries/inst/unitTests/runit.cor.R0000644000176000001440000000211712620124746017445 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.cor.timeSeries = function() { # RUnit Test: # Signal Series tS = dummySeries(format = "counts") tS cor(tS) cov(tS) # timeDate Series: tS = dummySeries() tS cor(tS) cov(tS) } ################################################################################ timeSeries/inst/unitTests/Makefile0000644000176000001440000000042412633465062017041 0ustar ripleyusersPKG=timeSeries TOP=../.. SUITE=doRUnit.R R=R all: inst test inst: # Install package -- but where ?? -- will that be in R_LIBS ? cd ${TOP}/..;\ ${R} CMD INSTALL ${PKG} test: # Run unit tests export RCMDCHECK=FALSE;\ cd ${TOP}/tests;\ ${R} --vanilla --slave < ${SUITE} timeSeries/inst/unitTests/runit.spreads.R0000644000176000001440000000177612620124746020335 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.spreads <- function() { # RUnit Test: tS = dummySeries(units = c("Bid", "Ask")) head(tS) midquotes(tS) spreads(tS) } ################################################################################ timeSeries/inst/unitTests/runit.TimeSeriesCoercion.R0000644000176000001440000001554112620124746022422 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.asTimeSeries = function() { # as.timeSeries.default - Returns the input # as.timeSeries.numeric - Transforms a numeric vector into a 'timeSeries' # as.timeSeries.data.frame - Transformas a 'data.frame' into a 'timeSeries' # as.timeSeries.matrix - Trasformas a 'matrix' into a 'timeSeries' # as.timeSeries.ts - Tranf orms a 'ts' object into a 'timeSeries' # as.timeSeries.character - Loads and transformas from a demo file # as.timeSeries.zoo - Transforms a 'zoo' object into a 'timeSeries' # Create timeSeries Object: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") data = round(rnorm(12), 3) charvec = timeCalendar(2006) uTS = timeSeries(data, charvec, units = "uTS") uTS checkTrue(inherits(uTS, "timeSeries")) checkTrue(is.timeSeries(uTS)) # Check Positions: positions = timeCalendar() class(positions) whichFormat(format(positions)) whichFormat(as.character(positions)) # Data Input is a Vector - Returns a timeSeries with dummy positions: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") x = rnorm(12) # as.numeric - add dummy dates: data = as.numeric(x) tS = as.timeSeries(data) head(tS) # as. numeric [as.vector] - add dummy dates: data = as.vector(x) tS = as.timeSeries(data) head(tS) # Data Inpiut is a data.frame: data(MSFT) x.df = as.data.frame(MSFT) head(x.df) # First Column holds Positions: tS = MSFT head(tS) # Missing Positions - return signal series # x.df = msft.dat[, -1] # head(x.df) # tS = as.timeSeries(x.df) # head(tS) # Data Input is a Matrix: data(MSFT) x.mat = as.matrix(MSFT) # tS = as.timeSeries(x.mat) # head(tS) # CHECK # Data Input is an Univariate/Muiltivariate timeSeries: x = MSFT class(x) tS = as.timeSeries(x) head(tS) # Note, data is a demo file ... tS = MSFT head(tS) # Return Value: return() } # ------------------------------------------------------------------------------ test.asTimeSeriesDJ1 = function() { # Load Data: # use instead dummy data set just for testing ... Data = matrix(exp(cumsum(rnorm(30*100, sd = 0.1))), ncol = 30) Positions = format(timeSequence("2006-01-01", length.out = 100)) DowJones30 = data.frame(Positions, Data) # Taking Dates from First Column: DJ = DowJones30[21:30, c(1, 11:15)] DJ class(DJ) as.timeSeries(DJ) # Adding Dates through Rownames Assignment: DJ = DowJones30[21:30, c(11:15)] rownames(DJ)<-DowJones30[21:30, 1] DJ as.timeSeries(DJ) # Missing Dates - Using Dummy Dates: DJ = DowJones30[21:30, c(11:15)] DJ class(DJ) as.timeSeries(DJ) # With recordIDs: if (FALSE) { DJ = DowJones30[21:30, c(1,11:15)] DJ = cbind(DJ, LETTERS[1:10]) class(DJ) tsDJ = as.timeSeries(DJ) tsDJ tsDJ@recordIDs } DJ = DowJones30[21:30, c(11:15)] rownames(DJ) = DowJones30[21:30, 1] DJ = cbind(DJ, LETTERS[1:10]) tsDJ = as.timeSeries(DJ) tsDJ tsDJ@recordIDs DJ = DowJones30[21:30, c(11:15)] DJ =cbind(DJ, LETTERS[1:10]) tsDJ = as.timeSeries(DJ) tsDJ tsDJ@recordIDs # Return Value: return() } # ------------------------------------------------------------------------------ test.fromTimeSeriesUV = function() { if (FALSE) { # DW has to be fixed ... # as.vector.timeSeries - Converts a univariate 'timeSeries' to a vector # as.matrix.timeSeries - Converts a 'timeSeries' to a 'matrix' # as.data.frame.timeSeries - Converts a 'timeSeries' to a 'data.frame' # as.ts.timeSeries - Converts a 'timeSeries' to a 'ts' # Univariate Case: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") data = round(rnorm(12), 3) charvec = timeCalendar(2006) uTS = timeSeries(data, charvec, units = "uTS") uTS # Vector: VEC = as.vector(uTS) head(VEC) class(VEC) checkIdentical(class(VEC), "numeric") # Numeric: # VEC = as.numeric(uTS) # Not implemented ! # head(VEC) # class(VEC) # checkIdentical(class(VEC), "numeric") # Matrix: MAT = as.matrix(uTS) head(MAT) class(MAT) checkIdentical(class(MAT), "matrix") # Data Frame: DF = as.data.frame(uTS) head(DF) checkIdentical(class(DF), "data.frame") # Time Series: TS = as.ts(uTS) head(TS) class(TS) checkIdentical(class(TS), "ts") } # Return Value: return() } # ------------------------------------------------------------------------------ test.fromTimeSeriesMV = function() { if (FALSE) { # DW has to be fixed ... # as.vector.timeSeries - Converts a univariate 'timeSeries' to a vector # as.matrix.timeSeries - Converts a 'timeSeries' to a 'matrix' # as.data.frame.timeSeries - Converts a 'timeSeries' to a 'data.frame' # as.ts.timeSeries - Converts a 'timeSeries' to a 'ts' # Multivariate Case: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") data = matrix(round(rnorm(24), 3), ncol = 2) charvec = timeCalendar(2006) mTS = timeSeries(data, charvec) mTS # Matrix: MAT = as.matrix(mTS) head(MAT) class(MAT) checkIdentical( target = class(MAT), current = "matrix") checkIdentical( target = as.vector(MAT[, 1]), current = as.numeric(MAT)[1:12]) # Data Frame: DF = as.data.frame(mTS) head(DF) class(DF) checkIdentical( target = class(DF), current = "data.frame") # Time Series: TS = as.ts(mTS) head(TS) class(TS) checkIdentical( target = class(TS), current = c("mts", "ts")) } # Return Value: return() } ################################################################################ timeSeries/inst/unitTests/runit.lag.R0000644000176000001440000000303412620124746017424 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.lag <- function() { # RUnit Test: tS = round(dummySeries(flormat = "counts"), 3)[, 1] tS lag(tS) lag(tS, k = -2:2) lag(tS, k = -2:2, trim = TRUE) tS = round(dummySeries(), 3)[, 1] tS lag(tS) lag(tS, k = -2:2) lag(tS, k = -2:2, trim = TRUE) # check colnames when using multiple lag indexes. data <- matrix(runif(12), ncol = 2) charvec <- rev(paste("2009-0", 1:6, "-01", sep = "")) S <- timeSeries(data, charvec) colnames(S) <- paste("S", 1:2, sep = ".") ts <- lag(S, -1:1) checkIdentical(colnames(ts), c("S.1[-1]", "S.1[0]", "S.1[1]", "S.2[-1]", "S.2[0]", "S.2[1]")) } ################################################################################ timeSeries/inst/unitTests/runit.durations.R0000644000176000001440000000233712620124746020676 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.durations <- function() { # RUnit Test: # Signal Series: tS = sort(sample(dummySeries())[1:6, ]) tS durations(tS) durations(tS, trim = TRUE) durations(tS, trim = TRUE)/(24*3600) # Time Series: tS = sort(sample(dummySeries(format = "counts"))[1:6, ]) tS # BUG !!! # durations(tS) # durations(tS, trim = TRUE) } ################################################################################ timeSeries/inst/unitTests/runit.TimeSeriesPositions.R0000644000176000001440000000513212620124746022643 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.time = function() { # Generate nivariate daily random sequence set.seed(4711) data = round(rnorm(12), 2) charvec = timeCalendar(2006) uTS = timeSeries(data, charvec, units = "uTS") uTS # Get Positions: POS = time(uTS) POS checkIdentical(charvec, POS) # Return Value: return() } # ------------------------------------------------------------------------------ "test.time<-" = function() { # Generate nivariate daily random sequence set.seed(4711) data = round(rnorm(12), 2) charvec = timeCalendar(2006) uTS = timeSeries(data, charvec, units = "uTS") uTS # Add one Day to Positions: POS = time(uTS) time(uTS) <- POS + 24*3600 uTS # Return Value: return() } # ------------------------------------------------------------------------------ test.timeSeriesOrdering = function() { # sample.timeSeries - Resamples a 'timeSeries' object in time # sort.timeSeries - Sorts reverts a 'timeSeries' object in time # rev.timeSeries - Reverts a 'timeSeries' object in time # start.timeSeries - Extracts start date of a 'timeSeries' object # end.timeSeries - Extracts end date of a 'timeSeries' object # Generate univariate monthly random sequence: set.seed(4711) data = cbind(1:12, round(rnorm(12), 2)) positions = timeCalendar(2006) uTS = timeSeries(data, positions) uTS # Sample/Sort: target = uTS target # current = sort(sample(uTS)) # current # checkIdentical(target, current) # Revert: target = uTS target current = rev(rev(uTS)) current checkTrue(!sum(target - current)) # Start/End date of Series: start(uTS) end(uTS) # Return Value: return() } ################################################################################ timeSeries/inst/unitTests/runit.Omit.R0000644000176000001440000000346712620124746017603 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.naOmitMatrix = function() { x = as.timeSeries(data(LPP2005REC))[1:20, 1:4] colnames(x) = abbreviate(colnames(x), 6) x[1, 1] = NA x[3:4, 2] = NA x[18:20, 4] = NA show(x) timeSeries:::.naOmitMatrix(as.matrix(x)) timeSeries:::.naOmitMatrix(as.matrix(x), "s") timeSeries:::.naOmitMatrix(as.matrix(x), "z") timeSeries:::.naOmitMatrix(as.matrix(x), "ir") timeSeries:::.naOmitMatrix(as.matrix(x), "iz") timeSeries:::.naOmitMatrix(as.matrix(x), "ie") # Return Value: return() } # ------------------------------------------------------------------------------ test.na.omit = function() { x = as.timeSeries(data(LPP2005REC))[1:20, 1:4] colnames(x) = abbreviate(colnames(x), 6) x[1, 1] = NA x[3:4, 2] = NA x[18:20, 4] = NA show(x) na.omit(x) na.omit(x, "s") na.omit(x, "z") na.omit(x, "ir") na.omit(x, "iz") na.omit(x, "ie") # Return Value: return() } ################################################################################ timeSeries/inst/unitTests/runit.periodical.R0000644000176000001440000000163412620124746021000 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.periodical <- function() { NA } ################################################################################ timeSeries/inst/unitTests/runit.cumulated.R0000644000176000001440000000211512620124746020643 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.cumulated = function() { # RUnit Test: # Signal Series: tS = dummySeries(format = "counts") # problem with Fincenter cumulated(tS) # timeDate Series: tS = dummySeries() cumulated(tS) } ################################################################################ timeSeries/inst/unitTests/runit.NA.R0000644000176000001440000000653612620124746017171 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.removeNA = function() { # Create matrix object: set.seed(1985) M = 5 N = 20 x = matrix(round(rnorm(M*N), 3), ncol = M) colnames(x) = 1:M rownames(x) = 1:N nNA = 10 nCol = trunc(runif(nNA, 1, M+1)) nRow = trunc(runif(nNA, 1, N+1)) for (i in 1:nNA) x[nRow[i], nCol[i]] = NA print(x) ans = removeNA(x) print(ans) # Create data.frame object: x.df = as.data.frame(x) class(x.df) ans = removeNA(x.df) print(ans) class(ans) # Create timeSeries object: tD = timeCalendar(m = 1, d = 1:N) x.tS = timeSeries(x, tD) print(x.tS) ans = removeNA(x.tS) print(ans) class(ans) # Return Value: return() } # ------------------------------------------------------------------------------ test.substituteNA = function() { # Create matrix object: set.seed(1985) M = 5 N = 20 x = matrix(round(rnorm(M*N), 3), ncol = M) colnames(x) = 1:M rownames(x) = 1:N nNA = 10 nCol = trunc(runif(nNA, 1, M+1)) nRow = trunc(runif(nNA, 1, N+1)) for (i in 1:nNA) x[nRow[i], nCol[i]] = NA print(x) # Substitute: ans = substituteNA(x) print(ans) ans = substituteNA(x, "mean") print(ans) ans = substituteNA(x, "median") print(ans) # Create data.frame object: x.df = as.data.frame(x) print(x.df) class(x.df) # Substitute: ans = substituteNA(x.df) print(ans) ans = substituteNA(x.df, "mean") print(ans) ans = substituteNA(x.df, "median") print(ans) # Create timeSeries object: tD = timeCalendar(m = 1, d = 1:N) x.tS = timeSeries(x, tD) print(x.tS) class(x.tS) # Substitute: ans = substituteNA(x.tS) print(ans) ans = substituteNA(x.tS, "mean") print(ans) ans = substituteNA(x.tS, "median") print(ans) # Return Value: return() } # ------------------------------------------------------------------------------ test.interpNA = function() { # Interpolate Column-by-Column # Create matrix object: set.seed(1985) M = 5 N = 20 x = matrix(round(rnorm(M*N), 3), ncol = M) colnames(x) = 1:M rownames(x) = 1:N nNA = 10 nCol = trunc(runif(nNA, 1, M+1)) nRow = trunc(runif(nNA, 1, N+1)) for (i in 1:nNA) x[nRow[i], nCol[i]] = NA print(x) # Interpolate: ans = interpNA(x, "linear") print(ans) ans = interpNA(x, "before") print(ans) ans = interpNA(x, "after") print(ans) # Return Value: return() } ################################################################################ timeSeries/inst/unitTests/runit.as.R0000644000176000001440000000252212620124746017265 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.as <- function() { # RUnit Test: # Note, you can also use ... is(timeSeries(), "timeSeries") # Series ts = dummySeries() x = timeSeries:::.signalSeries(as.matrix(ts)) y = timeSeries:::.timeSeries(as.matrix(ts), as.numeric(time(ts), "sec")) # A vector to a timeSeries as.vector(x) as.vector(x[,1]) as.vector(y) as.vector(y[,1]) # as.numeric: as.numeric(x) as.numeric(x[,1]) as.numeric(y) as.numeric(y[,1]) } ################################################################################ timeSeries/inst/unitTests/runit.bind.R0000644000176000001440000000511412620124746017576 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.bind <- function() { Documentation <- as.character(date()) Title <- "Dummy Series" ts <- dummySeries() ts@documentation <- Documentation ts@title <- Title # -------------------------------------------------------------------------- # if NULL are in args, result identical except @documentation !!! cts <- cbind(ts, NULL) rts <- rbind(ts, NULL) ##> checkTrue(!identical(slot(cts, "documentation")[[1]], Documentation)) ##> checkTrue(!identical(slot(rts, "documentation")[[1]], Documentation)) # ... DW [[1]] removes attributes, check this # ... also take care of the title! # check that the rest is identical cts@documentation <- Documentation rts@documentation <- Documentation cts@title <- Title rts@title <- Title checkIdentical(cts, ts) checkIdentical(rts, ts) # -------------------------------------------------------------------------- ts1 <- ts[seq(1, nrow(ts), by = 2),] ts0 <- ts[seq(2, nrow(ts), by = 2),] # test rbind checkTrue(all(time(rbind(ts1, ts0)) == c(time(ts1),time(ts0)))) # test cbind checkIdentical(as.vector(is.na(cbind(ts1, ts0))), c(rep(c(FALSE, TRUE), 12), rep(c(TRUE, FALSE), 12))) checkTrue(all(time(cbind(ts1, ts0)) == time(ts))) # -------------------------------------------------------------------------- # issues with single number element a <- timeSeries(1, as.Date(0, origin="2010-01-01") ) b <- timeSeries( 2:3, as.Date(1:2, origin="2010-01-01") ) d <- timeSeries( 2:10, as.Date(1:9, origin="2010-01-01") ) cbind(a, b) cbind(b, a) cbind(b, d) cbind(d, b) cbind(a, 1) cbind(b, 1) cbind(a, matrix(1)) cbind(b, matrix(1)) } ################################################################################ timeSeries/inst/unitTests/runit.monthly.R0000644000176000001440000000163112620124746020354 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.monthly <- function() { NA } ################################################################################ timeSeries/inst/unitTests/runit.returns.R0000644000176000001440000000163112620124746020364 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.returns <- function() { NA } ################################################################################ timeSeries/inst/unitTests/runit.methods-plot.R0000644000176000001440000000162612620124746021305 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.plot <- function() { NA } ################################################################################ timeSeries/inst/unitTests/runit.dim.R0000644000176000001440000000344512620124746017440 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.dim.timeSeries = function() { # RUnit Test: # Univariate Case: tS = timeSeries(format = "counts")[, 1] dim(tS) NCOL(tS) NROW(tS) ncol(tS) nrow(tS) dimnames(tS) colnames(tS) rownames(tS) # colnames<- # rownames<- is.array(tS) # Multivariate Case: tS = timeSeries(format = "counts") dim(tS) NCOL(tS) NROW(tS) ncol(tS) nrow(tS) dimnames(tS) colnames(tS) rownames(tS) # colnames<- # rownames<- is.array(tS) # Univariate Case: tS = timeSeries()[, 1] dim(tS) NCOL(tS) NROW(tS) ncol(tS) nrow(tS) dimnames(tS) colnames(tS) rownames(tS) # colnames<- # rownames<- is.array(tS) # Multivariate Case: tS = timeSeries() dim(tS) NCOL(tS) NROW(tS) ncol(tS) nrow(tS) dimnames(tS) colnames(tS) rownames(tS) # colnames<- # rownames<- is.array(tS) } ################################################################################ timeSeries/inst/unitTests/runit.timeSeries.R0000644000176000001440000000327612620124746021002 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.signalSeries.Internal <- function() { # RUnit Test: x = rnorm(12) y = rnorm(12) timeSeries:::.signalSeries(as.matrix(x), 1:12) timeSeries:::.signalSeries(as.matrix(cbind(x,y)), 1:12) } # ------------------------------------------------------------------------------ test.timeSeries.Internal <- function() { # this is to test the problem when a ts object is passed to # timeSeries. It seems that as.matrix does not convert the object # to a matrix !!! z <- ts(matrix(rnorm(300), 100, 3), start=c(1961, 1), frequency=12) # class(as.matrix(z)) #<< mts ts and not matrix in R 2.9.0 # Note that is is possible that a ts object is considered as a # matrix when timeSeries method as dispatched. Hence this check t <- timeSeries(z) checkTrue(identical(as(z, "matrix"), as(t, "matrix"))) } ################################################################################ timeSeries/inst/unitTests/runit.drawdowns.R0000644000176000001440000000234612620124746020676 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.drawdowns <- function() { # RUnit Test: tS = timeSeries( data = matrix(rnorm(200, sd = 1e-3), 100), charvec = format(timeSequence(length.out = 100)) ) tS drawdowns(tS) tS = timeSeries( data = matrix(rnorm(200, sd = 1e-3), 100), charvec = 1:100, format = "counts" ) tS drawdowns(tS) } ################################################################################ timeSeries/inst/unitTests/runit.aggregate.R0000644000176000001440000000447412620124746020620 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.aggregate.timeSeries <- function() { # RUnit Test: # aggregate.timeSeries(x, by = c("monthly", "quarterly"), FUN = colMeans, # units = NULL, ...) # A daily Series: charvec <- timeSequence(length.out = 365) x <- timeSeries(rnorm(365), charvec) # Aggregate Returns Monthly: by <- unique(timeFirstDayInMonth(charvec)) aggregate(x, by, sum, units = "MonthReturns") # Count Monthly Records: aggregate(sign(abs(x)), end(charvec), sum, units = "NoOfRecords") # Aggregate Returns Quarterly: by <- unique(timeLastDayInQuarter(charvec)) aggregate(x, by, sum, units = "QrtReturns") # Another example x <- as.timeSeries(data(LPP2005REC))[,1:4] by <- timeSequence(from = "2006-01-01", to = "2008-01-01", by = "quarter") aggregate(x, by, mean) x <- timeSeries(seq(12), timeCalendar()) # relative from and to to make test work for future years ... from <- timeCalendar(y=getRmetricsOptions("currentYear") - 1, m=1, d=1) to <- timeCalendar(y=getRmetricsOptions("currentYear") + 1, m=1, d=1) by <- timeSequence( from = from, to = to, by = "quarter") x a <- aggregate(x, by, sum) a ### DW here are mismatches - corrected above ... checkEquals(sum(x[1]), a[1]) checkEquals(sum(x[2:4]), a[2]) checkEquals(sum(x[5:7]), a[3]) checkEquals(sum(x[8:10]), a[4]) checkEquals(sum(x[11:12]), a[5]) } ################################################################################ timeSeries/inst/unitTests/runit.TimeSeriesClass.R0000644000176000001440000002602012620124746021720 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.timeSeries = function() { # timeSeries - Creates a 'timeSeries' object from scratch # Settings: setRmetricsOptions(myFinCenter = "GMT") set.seed(4711) data = matrix(round(rnorm(12), 3)) data class(data) charvec = format(timeCalendar(2006)) charvec class(charvec) # Compose Univariate daily random sequence setRmetricsOptions(myFinCenter = "GMT") uTS = timeSeries(data, charvec, units = "uTS") series(uTS) print(uTS) # FinCenter Functionality: timeSeries(data, charvec, units = "uTS", zone = "GMT", FinCenter = "GMT") timeSeries(data, charvec, units = "uTS", zone = "Zurich", FinCenter = "Zurich") timeSeries(data, charvec, units = "uTS", zone = "GMT", FinCenter = "Zurich") timeSeries(data, charvec, units = "uTS", zone = "Zurich", FinCenter = "GMT") # Return Value: return() } # ------------------------------------------------------------------------------ test.readSeries = function() { # readSeries - Reads from a spreadsheet and creates a 'timeSeries' # Load Microsoft Data: data(MSFT) MSFT.df = as.data.frame(MSFT) # Read Data Frame: write.table(MSFT.df, file = "msft.dat.csv", sep = ";") read.table("msft.dat.csv", sep = ";") # Read Time Series: # X = readSeries("msft.dat.csv") # X = X[1:12, ] # class(X) # Show Part of Series: # head(X)[, 1:5] # head(X[, 1:5]) # head(X[, 1:5], 2) # Return Value: return() } # ------------------------------------------------------------------------------ test.returns = function() { # returns - Computes returns from a 'timeSeries' object # Load Time Series: X = MSFT head(X) # returns : OPEN = X[, 1] print(OPEN) MSFT.RET = returns(OPEN) print(MSFT.RET) # Return Value: return() } # ------------------------------------------------------------------------------ test.applySeries = function() { # applySeries - Applies a function to blocks of a 'timeSeries' NA # Return Value: return() } # ------------------------------------------------------------------------------ test.orderStatistics = function() { # orderStatistics - Compute order statistic of a 'timeSeries' # Load Data: X = MSFT head(X) # returns: OPEN = X[, 1] print(OPEN) # ORDER STATISTICS: orderStatistics(OPEN) orderStatistics(X[, -5]) orderStatistics(X[, -5])$Open # Return Value: return() } # ------------------------------------------------------------------------------ test.series = function() { # series - Extracts data slot from 'timeSeries' object # Load Microsoft Data: X = MSFT X = X[1:12, ] class(X) # Return Series: OPEN = X[, 1] OPEN returns(OPEN) # Volatility Series: abs(returns(OPEN)) # Data Matrix: series(OPEN) Y = series(X) Y class(Y) # Position Vector: PO = time(OPEN) PO PX = time(X) PX class(PX) checkEquals( target = sum(as.integer(PO - PX)), current = 0) # Return Value: return() } # ------------------------------------------------------------------------------ test.isUnivariate = function() { # isUnivariate Tests if an object of class 'timeSeries' is univariate # Load Microsoft Data: X = MSFT OPEN = X[, 1] # Is Univariate? checkTrue(!isUnivariate(X)) checkTrue(isUnivariate(OPEN)) checkTrue(isMultivariate(X)) checkTrue(!isMultivariate(OPEN)) # Return Value: return() } # ------------------------------------------------------------------------------ test.isMultivariate = function() { # isMultivariate - Tests if an object of class 'timeSeries' is multivariate # Load Microsoft Data: X = MSFT OPEN = X[, 1] # Is Multivariate? checkTrue(isMultivariate(X)) checkTrue(!isMultivariate(OPEN)) # Return Value: return() } # ------------------------------------------------------------------------------ test.displayMethods = function() { # print.timeSeries Print method for a 'timeSeries' object # plot.timeSeries Plot method for a 'timeSeries' object # lines.timeSeries Lines method for a 'timeSeries' object # points.timeSeries Points method for a 'timeSeries' object ## FIXME(MM) - if we store this -- make it a package data set! ## Microsoft Data: ## MSFT.df = data.frame(matrix(c( ## 20010326, 57.1250, 57.5000, 55.5625, 56.0625, 31559300, ## 20010327, 56.0625, 58.5625, 55.8750, 58.2500, 47567800, ## 20010328, 57.3750, 57.9375, 55.3750, 55.5625, 39340800, ## 20010329, 55.3750, 57.1875, 54.5625, 55.3750, 43492500, ## 20010330, 55.7500, 56.1875, 53.8750, 54.6875, 45600800, ## 20010402, 54.8125, 56.9375, 54.6250, 55.8125, 37962000, ## 20010403, 55.3125, 55.3125, 52.7500, 53.3750, 47093800, ## 20010404, 53.3750, 55.0000, 51.0625, 51.9375, 52023300, ## 20010405, 53.7500, 57.3750, 53.5000, 56.7500, 56682000, ## 20010406, 56.3750, 57.1875, 55.0625, 56.1875, 46311000, ## 20010409, 56.5700, 57.4200, 55.6600, 57.1500, 28147800, ## 20010410, 57.9500, 60.0900, 57.7800, 59.6800, 54599700, ## 20010411, 60.6500, 61.5000, 59.7000, 60.0400, 54939800, ## 20010412, 59.5600, 62.3100, 59.3500, 62.1800, 43760000, ## 20010416, 61.4000, 61.5800, 60.1200, 60.7900, 32928700, ## 20010417, 60.5200, 62.1100, 60.0400, 61.4800, 42574600, ## 20010418, 63.3900, 66.3100, 63.0000, 65.4300, 78348200, ## 20010419, 65.8100, 69.0000, 65.7500, 68.0400, 79687800, ## 20010420, 70.3000, 71.1000, 68.5000, 69.0000, 96459800, ## 20010423, 68.1100, 68.4700, 66.9000, 68.2500, 46085600, ## 20010424, 68.2000, 69.9300, 67.1400, 67.5500, 44588300, ## 20010425, 67.5700, 69.7900, 67.2500, 69.6900, 38372000, ## 20010426, 70.0700, 71.0000, 68.2500, 69.1300, 59368800, ## 20010427, 69.5300, 69.6800, 66.2100, 67.1200, 60786200, ## 20010430, 68.5300, 69.0600, 67.6800, 67.7500, 37184100, ## 20010501, 67.6600, 70.3000, 67.6000, 70.1700, 41851400, ## 20010502, 71.0000, 71.1500, 69.3500, 69.7600, 46432200, ## 20010503, 69.2500, 70.1800, 68.1400, 68.5300, 33136700, ## 20010504, 68.0000, 71.0500, 67.9600, 70.7500, 59769200, ## 20010507, 70.8300, 72.1500, 70.7000, 71.3800, 54678100), ## byrow = TRUE, ncol = 6)) ## colnames(MSFT.df) = c("YYMMDD", "Open", "High", "Low", "Close", "Volume") # Data: X = MSFT X = X[1:12, ] OPEN = X[, 1] # Print: print(X) print(OPEN) # Plot: par(mfrow = c(1, 1)) plot(OPEN, type = "l") # GMT - Plot: tC = timeCalendar(2006, 1, 1, 0:23, 0, 0, zone = "GMT", FinCenter = "GMT") tS = timeSeries(data = matrix(rnorm(24), ncol = 1), charvec = tC) plot(tS) # Zurich - Plot: tC = timeCalendar(2006, 1, 1, 0:23, 0, 0, zone = "GMT", FinCenter = "Zurich") tS = timeSeries(data = matrix(rnorm(24), ncol = 1), charvec = tC, zone = "GMT", FinCenter = "Zurich") plot(tS) # New York - Plot: tC = timeCalendar(2006, 1, 1, 0:23, 0, 0, zone = "GMT", FinCenter = "NewYork") tS = timeSeries(data = matrix(rnorm(24), ncol = 1), charvec = tC, zone = "GMT", FinCenter = "NewYork") plot(tS, type = "h") lines (tS, col = "red", lty = 3) points(tS, col = "blue", pch = 19) abline(h=0, col = "grey") # Return Value: return() } # ------------------------------------------------------------------------------ test.dummyDailySeries = function() { # dummyDailySeries - Creates a dummy daily 'timeSeries' object # Create Dummy Time Series: setRmetricsOptions(myFinCenter = "GMT") tS = dummyDailySeries(matrix(rnorm(12))) print(tS) # Return Value: return() } # ------------------------------------------------------------------------------ test.alignDailySeries = function() { # alignDailySeries - Aligns a 'timeSeries' object to new positions # Time Series: setRmetricsOptions(myFinCenter = "GMT") tS = MSFT[1:25, ] print(tS) dim(tS) # Align Daily Series: alignDailySeries(tS, method = "interp") # Align Daily Series: alignDailySeries(tS, method = "fillNA") # Align Daily Series: alignDailySeries(tS, method = "fillNA", include.weekends = TRUE) # Return Value: return() } # ------------------------------------------------------------------------------ ## DW > ## test.ohlcDailyPlot = ## function() ## { ## # ohlcDailyPlot - Plots open–high–low–close bar chart ## ## # Price or Incdex Series: ## setRmetricsOptions(myFinCenter = "GMT") ## tS = MSFT[1:25, ] ## print(tS) ## dim(tS) ## colnames(tS) ## ## # Graph Frame: ## par(mfrow = c(2, 1), cex = 0.7) ## ohlcDailyPlot(tS) ## ## # Return Value: ## return() ## } # ------------------------------------------------------------------------------ test.modelSeries = function() { if (FALSE) { # Move to fArma ... # Undocumented Material: Matrix = cbind(X = rnorm(10), Y = rnorm(10)) Matrix = cbind(Matrix, Z = Matrix[, "Y"] - Matrix[, "X"]) TS = dummyDailySeries(Matrix, units = c("X", "Y", "Z") ) head(TS) .modelSeries(Y ~ ar(2), data = TS, lhs = TRUE) .modelSeries(log(abs(Z)) ~ lm(X + sin(Y)), data = TS, fake = TRUE) .modelSeries(log(abs(Z)) ~ lm(X + sin(Y)), data = TS, lhs = TRUE) .modelSeries(Y ~ ar(2), data = as.data.frame(TS), lhs = TRUE) .modelSeries(log(abs(Z)) ~ lm(X + sin(Y)), data = TS, fake = TRUE) .modelSeries(log(abs(Z)) ~ lm(X + sin(Y)), data = TS, lhs = TRUE) require(timeSeries) .modelSeries(Y ~ ar(2), data = rnorm(10)) .modelSeries(Y ~ ar(2), data = as.ts(rnorm(10))) .modelSeries(x ~ arima(2, 0, 1), data = armaSim(n=10)) .modelSeries(~ ar(2), rnorm(10)) # attach(TS) # CHECK # .modelSeries(Y ~ ar(2), lhs = TRUE) .modelSeries(Y ~ ar(2) + garch(1,1), data = rnorm(10)) .modelSeries(Y ~ ar(2) + garch(1,1), data = rnorm(10), lhs = TRUE) .modelSeries(Y ~ ar(2) + garch(1,1), data = TS, lhs = TRUE) } else { NA } # Return Value: return() } ################################################################################ timeSeries/inst/unitTests/runit.attach.R0000644000176000001440000000200212620124746020117 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.attach.timeSeries = function() { # RUnit Test: # Attach Signal Series tS = timeSeries() attach(tS) SS.1 detach(tS) } ################################################################################ timeSeries/inst/unitTests/runit.time.R0000644000176000001440000000162612620124746017624 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.time <- function() { NA } ################################################################################ timeSeries/inst/unitTests/runit.model.frame.R0000644000176000001440000000163512620124746021057 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.model.frame <- function() { NA } ################################################################################ timeSeries/inst/unitTests/runit.methods-summary.R0000644000176000001440000000163112620124746022020 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.summary <- function() { NA } ################################################################################ timeSeries/inst/unitTests/runit.merge.R0000644000176000001440000000316012620124746017760 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.merge.timeSeries = function() { # RUnit Test: # Time Stamps: x = timeSeries()[,1] x y = timeSeries() y merge(x, y) # Signal Counts: x = timeSeries(format = "counts")[,1] x y = timeSeries(format = "counts") y merge(x, y) x <- dummySeries()[,1] x y <- dummySeries() y merge(x, y) # check that merge method can deal with timeSeries that have # colnames that are invalid data.frame colnames. For example # "S[-1]". data <- matrix(runif(18), ncol = 3) charvec <- rev(paste("2009-0", 1:6, "-01", sep = "")) S <- timeSeries(data, charvec) colnames(S) <- paste("S", 1:3, sep = ".") ts <- merge(S[,2], lag(S[,1], -1:1)) checkIdentical(dim(ts), c(6L,4L)) } ################################################################################ timeSeries/inst/unitTests/runit.subset.R0000644000176000001440000001243112620124746020167 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.subset <- function() { ts <- dummySeries() mat <- as.matrix(ts) # we want the same subset-ting rules as for a matrix # but we always print result in vertical style ! # -------------------------------------------------------------------------- # index checkIdentical( ts[], ts) checkTrue(suppressWarnings(is.na(ts[""]))) checkTrue(is.na(mat[""])) checkIdentical( as.matrix(ts[seq(4),2]), mat[seq(4),2,drop=FALSE]) checkIdentical( as.matrix(ts[rep(FALSE, 3), 1]), mat[rep(FALSE, 3), 1,drop=FALSE]) checkIdentical( as.matrix(ts[FALSE, 1]), mat[FALSE, 1, drop = FALSE]) checkIdentical( as.matrix(ts[rep(TRUE), 2]), mat[rep(TRUE), 2, drop=FALSE]) charvec <- as.character(timeCalendar()[1:3]) checkIdentical( as.matrix(ts[charvec, 1]), mat[charvec, 1, drop = FALSE]) checkIdentical( as.matrix(ts[seq(4),]), mat[seq(4),,drop=FALSE]) checkIdentical( as.matrix(ts[rep(FALSE, 3), ]), mat[rep(FALSE, 3), ,drop=FALSE]) checkIdentical( as.matrix(ts[FALSE, ]), mat[FALSE, ,drop=FALSE]) checkIdentical( as.matrix(ts[rep(TRUE), ]), mat[rep(TRUE), ,drop=FALSE ]) dd <- as.character(time(ts)[1]) checkIdentical( as.matrix(ts[dd, ]), mat[dd, ,drop=FALSE]) checkIdentical( as.matrix(ts[,2]), mat[,2,drop=FALSE]) checkIdentical( as.matrix(ts[2,FALSE]), mat[2,FALSE, drop=FALSE]) # prefer to have an empty timeSeries instead of empty data with row names checkIdentical( as.matrix(ts[,FALSE]), mat[,FALSE, drop = FALSE]) checkIdentical( as.matrix(ts[,TRUE ]), mat[,TRUE ,drop=FALSE]) checkIdentical( as.matrix(ts[, "TS.1"]), mat[, "TS.1", drop = FALSE]) # -------------------------------------------------------------------------- # timeDate checkIdentical( ts[timeCalendar()[1:5], 2], ts[1:5,2]) checkIdentical( ts[timeCalendar()[1:5], ], ts[1:5,]) # -------------------------------------------------------------------------- # logical matrix and timeSeries i <- ts < 0.4 checkException(ts[series(i), ], silent = TRUE) checkException(ts[i, ], silent = TRUE) checkException(mat[series(i), ], silent = TRUE) # it fails as expected checkIdentical( as.matrix(ts[series(i)[,1], ]), mat[series(i)[,1], , drop=FALSE]) checkIdentical( as.matrix(ts[i[,1], ]), mat[series(i)[,1], , drop=FALSE]) checkIdentical( as.matrix(ts[series(i)[,1],1]), mat[series(i)[,1],1,drop=FALSE]) checkIdentical( as.matrix(ts[i[,1],1]), mat[series(i)[,1],1,drop=FALSE]) # this should fail checkException(ts[series(i), 2], silent = TRUE) checkException(ts[i, 2], silent = TRUE) checkException(ts[series(i), 1], silent = TRUE) checkException(ts[series(i),1], silent = TRUE) checkException(ts[i,1], silent = TRUE) checkException(mat[series(i),1], silent = TRUE) checkException(ts[series(i),], silent = TRUE) checkException(mat[series(i),], silent = TRUE) checkIdentical( ts[series(i)], mat[series(i)]) checkIdentical( ts[i], mat[series(i)]) # -------------------------------------------------------------------------- # $,timeSeries method df <- as.data.frame(ts) checkIdentical( ts$TS., df$TS.) checkIdentical( ts$TS.1, df$TS.1) checkIdentical( ts$a, df$a) colnames(ts) <- c("aa", "bb") colnames(df) <- c("aa", "bb") checkIdentical( ts$a, df$a) checkIdentical( ts$b, df$b) } ################################################################################ timeSeries/inst/unitTests/runit.apply.R0000644000176000001440000000243412620124746020011 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.apply <- function() { x = timeSeries(rnorm(90), timeSequence(length.out = 90)) fapply applySeries <- function(x, from = NULL, to = NULL, by = c("monthly", "quarterly"), FUN = colMeans, units = NULL, format = x@format, zone = x@FinCenter, FinCenter = x@FinCenter, recordIDs = data.frame(), title = x@title, documentation = x@documentation, ...) applySeries(x, from = start(x), to = end(x)) } ################################################################################ timeSeries/inst/unitTests/runit.colCum.R0000644000176000001440000000333212620124746020104 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.colCum <- function() { # RUnit Test: # Signal Series ts <- dummySeries(format = "counts") colCumsums(ts) colCummaxs(ts) colCummins(ts) colCumprods(ts) colCumreturns(ts) # Time Series: ts <- dummySeries() colCumsums(ts) colCummaxs(ts) colCummins(ts) colCumprods(ts) colCumreturns(ts) # check that timeSeries with one row still works ... t <- ts[1,] checkTrue(is(colCumsums(t), "timeSeries")) checkTrue(is(colCummaxs(t), "timeSeries")) checkTrue(is(colCummins(t), "timeSeries")) checkTrue(is(colCumprods(t), "timeSeries")) checkTrue(is(colCumreturns(t), "timeSeries")) checkEquals(nrow(colCumsums(t)), 1) checkEquals(nrow(colCummaxs(t)), 1) checkEquals(nrow(colCummins(t)), 1) checkEquals(nrow(colCumprods(t)), 1) checkEquals(nrow(colCumreturns(t)), 1) } ################################################################################ timeSeries/inst/unitTests/runit.align.R0000644000176000001440000000254712620124746017763 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.align.timeSeries <- function() { # RUnit Test: # .align.timeSeries(x, method = c("before", "after", "interp"), # startOn = "hours", by = "30 m") set.seed(1953) tD = timeCalendar( y = rep(2008, times = 6), m = rep(4, times = 6), d = rep(10:11, each = 3), h = sample(1:23)[1:6], min = sample(1:59)[1:6], s = sample(1:59)[1:6]) tS = timeSeries(rnorm(6), tD) align(tS) align(tS, method="interp") # Note, we should als add an argument to trim NAs } ################################################################################ timeSeries/inst/unitTests/runit.colStats.R0000644000176000001440000000264312620124746020462 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.colStats = function() { # RUnit Test: # Signal Series: tS = dummySeries(format = "counts") tS colStats(tS, mean) colSums(tS) colMeans(tS) colSds(tS) colVars(tS) colSkewness(tS) colKurtosis(tS) colMaxs(tS) colMins(tS) colProds(tS) colQuantiles(tS) # timDate Series: tS = dummySeries() tS colStats(tS, mean) colSums(tS) colMeans(tS) colSds(tS) colVars(tS) colSkewness(tS) colKurtosis(tS) colMaxs(tS) colMins(tS) colProds(tS) colQuantiles(tS) } ################################################################################ timeSeries/inst/unitTests/runit.daily.R0000644000176000001440000000162712620124746017771 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.daily <- function() { NA } ################################################################################ timeSeries/inst/unitTests/runit.signalCounts.R0000644000176000001440000000255712620124746021343 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.signalCounts <- function() { # RUnit Test: int = c(1, 10, 100, 21, 135) print(timeSeries:::.signalCounts(sample(int))) nc = timeSeries:::.signalCounts(int) nc ns = sample(nc) ns sorted = sort(ns) sorted as.integer(sorted) ns ordered = order(ns) ordered ns[ordered] as.integer(ns[ordered]) timeSeries:::.signalCounts(1:12) timeSeries:::.signalCounts(sample(1:12)) timeSeries:::.signalCounts(timeSeries:::.signalCounts(1:12)) } ################################################################################ timeSeries/inst/unitTests/runTests.R0000644000176000001440000000453312620124746017355 0ustar ripleyuserspkg <- "timeSeries" if(require("RUnit", quietly = TRUE)) { library(package=pkg, character.only = TRUE) if(!(exists("path") && file.exists(path))) path <- system.file("unitTests", package = pkg) ## --- Testing --- ## Define tests testSuite <- defineTestSuite(name = paste(pkg, "unit testing"), dirs = path) if(interactive()) { cat("Now have RUnit Test Suite 'testSuite' for package '", pkg, "' :\n", sep='') str(testSuite) cat('', "Consider doing", "\t tests <- runTestSuite(testSuite)", "\nand later", "\t printTextProtocol(tests)", '', sep = "\n") } else { ## run from shell / Rscript / R CMD Batch / ... ## Run tests <- runTestSuite(testSuite) if(file.access(path, 02) != 0) { ## cannot write to path -> use writable one tdir <- tempfile(paste(pkg, "unitTests", sep="_")) dir.create(tdir) pathReport <- file.path(tdir, "report") cat("RUnit reports are written into ", tdir, "/report.(txt|html)", sep = "") } else { pathReport <- file.path(path, "report") } ## Print Results: printTextProtocol(tests, showDetails = FALSE) printTextProtocol(tests, showDetails = FALSE, fileName = paste(pathReport, "Summary.txt", sep = "")) printTextProtocol(tests, showDetails = TRUE, fileName = paste(pathReport, ".txt", sep = "")) ## Print HTML Version to a File: ## printHTMLProtocol has problems on Mac OS X if (Sys.info()["sysname"] != "Darwin") printHTMLProtocol(tests, fileName = paste(pathReport, ".html", sep = "")) ## stop() if there are any failures i.e. FALSE to unit test. ## This will cause R CMD check to return error and stop tmp <- getErrors(tests) if(tmp$nFail > 0 | tmp$nErr > 0) { stop(paste("\n\nunit testing failed (#test failures: ", tmp$nFail, ", R errors: ", tmp$nErr, ")\n\n", sep="")) } } } else { cat("R package 'RUnit' cannot be loaded -- no unit tests run\n", "for package", pkg,"\n") } ################################################################################ timeSeries/inst/unitTests/runit.na.contiguous.R0000644000176000001440000000245212620124746021460 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.na.contiguous = function() { ## Dummy timeSeries with NAs entries data1 <- matrix(c(NA, 1), ncol = 2) data2 <- matrix(rep(2, 4), ncol = 2) data3 <- matrix(c(NA, 3), ncol = 2) data4 <- matrix(rep(4, 4), ncol = 2) data <- rbind(data1, data2, data3, data4) ts <- timeSeries(data, timeCalendar()[1:6]) ## Find the longest consecutive non-missing values ans <- na.contiguous(ts) check <- getDataPart(ans) dimnames(check) <- NULL checkIdentical(data2, getDataPart(check)) } timeSeries/inst/unitTests/runit.order.R0000644000176000001440000000266212620124746020002 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.order <- function() { # RUnit Test: tS = timeSeries(matrix(rnorm(500), 100), units = sample(LETTERS[1:5])) head(tS) colnames(tS) sortColnames(tS) sampleColnames(tS) orderColnames(tS) statsColnames(tS, FUN = colMeans) pcaColnames(tS) hclustColnames(tS) tS = timeSeries(matrix(rnorm(500), 100), units = sample(LETTERS[1:5]), format = "counts") head(tS) colnames(tS) sortColnames(tS) sampleColnames(tS) orderColnames(tS) statsColnames(tS, FUN = colMeans) pcaColnames(tS) hclustColnames(tS) } ################################################################################ timeSeries/inst/unitTests/runit.TimeSeriesData.R0000644000176000001440000002416512620124746021534 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.diffTimeSeries = function() { # diff.timeSeries - Differences a 'timeSeries' object # Univariate Series: # Multivariate Data Set: set.seed(4711) data = cbind(RNORM = round(rnorm(6), 2)) charvec = timeCalendar()[1:6] recordIDs = data.frame(IDs = LETTERS[1:6]) uTS = timeSeries(data, charvec, recordIDs = recordIDs) uTS uTS@recordIDs # Differencing over 1 lag X = diff(x = uTS, lag = 1, diff = 1, trim = FALSE, pad = NA) X X@recordIDs # X = diff(x = uTS, lag = 1, diff = 1, trim = TRUE, pad = NA) # X # X@recordIDs X = diff(x = uTS, lag = 1, diff = 1, trim = FALSE, pad = 0) X X@recordIDs # Differencing over 2 lags X = diff(x = uTS, lag = 2, diff = 1, trim = FALSE, pad = NA) X X@recordIDs # X = diff(x = uTS, lag = 2, diff = 1, trim = TRUE, pad = NA) # X # X@recordIDs X = diff(x = uTS, lag = 2, diff = 1, trim = FALSE, pad = 0) X X@recordIDs # Differencing twice: # X = diff(x = uTS, lag = 1, diff = 2, trim = FALSE, pad = NA) #ERROR # X # X@recordIDs # X = diff(x = uTS, lag = 2, diff = 2, trim = FALSE, pad = NA) # ERROR # X # X@recordIDs # X = diff(x = uTS, lag = 1, diff = 2, trim = TRUE, pad = NA) # X # X@recordIDs # X = diff(x = uTS, lag = 2, diff = 2, trim = TRUE, pad = NA) # X # X@recordIDs # Return Value: return() } # ------------------------------------------------------------------------------ test.lagTimeSeries = function() { # lag.timeSeries - Lags a 'timeSeries' object # Univariate Series: set.seed(4711) data = cbind(RNORM = round(rnorm(6), 2)) charvec = timeCalendar()[1:6] recordIDs = data.frame(IDs = LETTERS[1:6]) uTS = timeSeries(data, charvec, recordIDs = recordIDs) # Multivariate Data Set: set.seed(4711) data = cbind(round(rnorm(12), 2), round(rt(12, df = 4), 2) ) charvec = format(timeCalendar(2006)) mTS = timeSeries(data, charvec, units = c("RNORM", "RT")) mTS # Time Series Lags: X = lag(x = uTS, k = 1, trim = FALSE, units = NULL) X X@recordIDs X = lag(x = uTS, k = c(2,4), trim = FALSE, units = NULL) X X@recordIDs X = lag(x = uTS, k = c(2,4), trim = TRUE, units = NULL) X X@recordIDs X = lag(x = uTS, k = -1:1, trim = FALSE, units = LETTERS[1:3]) X X@recordIDs # Multivariaye Series: diff(mTS, 1, 1) lag(mTS, 1) # Return Value: return() } # ------------------------------------------------------------------------------ test.mergeTimeSeries = function() { # merge.timeSeries - Merges two 'timeSeries' objects # scale.timeSeries - Centers and/or scales a 'timeSeries' object # summary.timeSeries - Summarizes a 'timeDate' object # var.timeSeries - Returns variance for a 'timeSeries' object # Univariate Series: set.seed(4711) data = cbind(RNORM = round(rnorm(6), 2)) charvec = timeCalendar()[1:6] recordIDs = data.frame(IDs = LETTERS[1:6]) uTS = timeSeries(data, charvec, recordIDs = recordIDs) # Merge: X = uTS Y = log(abs(uTS)) merge(x = X, y = Y, units = "One column") colnames(Y) <- "log" merge(x = X, y = Y, units = c("RN", "logAbsRN")) merge(x = X[-6,], y = Y[-3,], units = c("RN", "logAbsRN")) merge(x = X[2:5,], y = Y[4:6,], units = c("RN", "logAbsRN")) # Return Value: return() } # ------------------------------------------------------------------------------ test.scaleTimeSeries = function() { # scale.timeSeries - Centers and/or scales a 'timeSeries' object # Univariate Series: set.seed(4711) data = cbind(RNORM = round(rnorm(6), 2)) charvec = timeCalendar()[1:6] recordIDs = data.frame(IDs = LETTERS[1:6]) uTS = timeSeries(data, charvec, recordIDs = recordIDs) # Multivariate Data Set: set.seed(4711) data = cbind(round(rnorm(12), 2), round(rt(12, df = 4), 2) ) charvec = format(timeCalendar(2006)) mTS = timeSeries(data, charvec, units = c("RNORM", "RT")) # Scale: scale(uTS) scale(mTS) # Return Value: return() } # ------------------------------------------------------------------------------ test.summaryTimeSeries = function() { # summary.timeSeries - Summarizes a 'timeDate' object # Univariate Series: set.seed(4711) data = cbind(RNORM = round(rnorm(6), 2)) charvec = timeCalendar()[1:6] recordIDs = data.frame(IDs = LETTERS[1:6]) uTS = timeSeries(data, charvec, recordIDs = recordIDs) # Multivariate Data Set: set.seed(4711) data = cbind(round(rnorm(12), 2), round(rt(12, df = 4), 2) ) charvec = format(timeCalendar(2006)) mTS = timeSeries(data, charvec, units = c("RNORM", "RT")) # Summary: summary(uTS) summary(mTS) # Return Value: return() } # ------------------------------------------------------------------------------ test.varTimeSeries = function() { # var.timeSeries - Returns variance for a 'timeSeries' object # Univariate Series: set.seed(4711) data = cbind(RNORM = round(rnorm(6), 2)) charvec = timeCalendar()[1:6] recordIDs = data.frame(IDs = LETTERS[1:6]) uTS = timeSeries(data, charvec, recordIDs = recordIDs) # Multivariate Data Set: set.seed(4711) data = cbind(round(rnorm(12), 2), round(rt(12, df = 4), 2) ) charvec = format(timeCalendar(2006)) mTS = timeSeries(data, charvec, units = c("RNORM", "RT")) # Covariance Matrix: var(x = uTS, y = NULL, na.rm = FALSE) var(x = mTS, y = NULL, na.rm = FALSE) # Note, using function cov() fails, since cov() requires an atomic # object as input. # Return Value: return() } # ------------------------------------------------------------------------------ test.mathOpsTimeSeries = function() { # Ops.timeSeries - Arith method for a 'timeSeries' object # abs.timeSeries - Returns abolute values of a 'timeSeries' object # sqrt.timeSeries - Returns sqrt values of a 'timeSeries' object # exp.timeSeries - Returns exponentials of a 'timeSeries' object # log.timeSeries - Returns logarithms of a 'timeSeries' object # quantile.timeSeries - produces sample quantiles of a 'timeSeries' object # Univariate Series: setRmetricsOptions(myFinCenter = "GMT") data = matrix(round(rnorm(12), 2)) charvec = format(timeCalendar(2006)) uTS = timeSeries(data, charvec, units = "RNORM") uTS # Multivariate Series: data = cbind(round(rnorm(12), 2), round(rt(12, df = 4), 2) ) charvec = format(timeCalendar(2006)) mTS = timeSeries(data, charvec, units = c("RNORM", "RT")) mTS # Univariate Ops: uTS < 0 uTS == abs(uTS) # Math Operations: uTS + 5 uTS - 5 100 * uTS uTS / 100 uTS^2 # mathematical Functions: log(abs(uTS)) sqrt(exp(uTS)) # Quantiles: quantile(uTS) quantile(uTS, probs = c(0.9, 0.95)) quantile(uTS, probs = c(0.9, 0.95), type = 5) # Logical Operations: mTS < 0 # Return Value: return() } # ------------------------------------------------------------------------------ test.subsetTimeSeries = function() { # [.timeSeries - subsets of a 'timeSeries' object # cut.timeSeries - cuts a block from a 'timeSeries' object # head.timeSeries - returns the head of a 'timeSeries' object # tail.timeSeries - returns the tail of a 'timeSeries' object # outlier.timeSeries - Removes outliers from a 'timeSeries' object # Univariate Series: setRmetricsOptions(myFinCenter = "GMT") data = matrix(round(rnorm(12), 2)) charvec = format(timeCalendar(2006)) uTS = timeSeries(data, charvec, units = "RNORM") uTS # Multivariate Series: data = cbind(round(rnorm(12), 2), round(rt(12, df = 4), 2) ) charvec = format(timeCalendar(2006)) mTS = timeSeries(data, charvec, units = c("RNORM", "RT")) mTS # Subsets: X = uTS[4:6, ] X X@recordIDs # Head and Tail: head(uTS) tail(uTS) head(mTS) tail(mTS) # Data Subsetting: mTS[, 1] # First Series mTS[4:6, 1] # Second Quarter # Return Value: return() } # ------------------------------------------------------------------------------ test.dimOpsTimeSeries = function() { # dim - Returns the dimension of a 'timeSeries' object # dimnames - Returns the dimension names of a 'timeSeries' object # colnames<-.timeS* - Assigns column names to a 'timeSeries' object # rownames<-.timeS* - Assigns row names to a 'timeSeries' object # is.array.timeSeries - Allows that NCOL and NROW work properly # Univariate Series: setRmetricsOptions(myFinCenter = "GMT") data = matrix(round(rnorm(12), 2)) charvec = format(timeCalendar(2006)) uTS = timeSeries(data, charvec, units = "RNORM") uTS # Multivariate Series: data = cbind(round(rnorm(12), 2), round(rt(12, df = 4), 2) ) charvec = format(timeCalendar(2006)) mTS = timeSeries(data, charvec, units = c("RNORM", "RT")) mTS # Dimension: dim(uTS) == c(12, 1) dimnames(uTS) # Column and Rownames: # X = uTS # colnames(X) = "X" # rownames(X) = as.character(timeCalendar()+24*3600) # X # series(X) # Array: is.array(uTS) # Number of Columns/Rows: NCOL(uTS) NROW(uTS) ncol(uTS) nrow(uTS) # Return Value: return() } ################################################################################ timeSeries/inst/unitTests/runit.rank.R0000644000176000001440000000162612620124746017621 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.rank <- function() { NA } ################################################################################ timeSeries/inst/unitTests/runit.methods-print.R0000644000176000001440000000162712620124746021464 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.print <- function() { NA } ################################################################################ timeSeries/inst/unitTests/runit.rowCum.R0000644000176000001440000000163012620124746020135 0ustar ripleyusers # Rmetrics is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # Rmetrics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ test.rowCum <- function() { NA } ################################################################################ timeSeries/tests/0000755000176000001440000000000012620124746013561 5ustar ripleyuserstimeSeries/tests/doRUnit.R0000644000176000001440000000164212620124746015273 0ustar ripleyusers#### doRUnit.R --- Run RUnit tests ####------------------------------------------------------------------------ ### Origianlly follows Gregor Gojanc's example in CRAN package 'gdata' ### and the corresponding section in the R Wiki: ### http://wiki.r-project.org/rwiki/doku.php?id=developers:runit ### MM: Vastly changed: This should also be "runnable" for *installed* ## package which has no ./tests/ ## ----> put the bulk of the code e.g. in ../inst/unitTests/runTests.R : if(require("RUnit", quietly = TRUE)) { ## --- Setup --- wd <- getwd() pkg <- sub("\\.Rcheck$", '', basename(dirname(wd))) library(package = pkg, character.only=TRUE) path <- system.file("unitTests", package = pkg) stopifnot(file.exists(path), file.info(path.expand(path))$isdir) source(file.path(path, "runTests.R"), echo = TRUE) } ################################################################################ timeSeries/tests/msft.dat.csv0000644000176000001440000003146412620124746016026 0ustar ripleyusers"X.Y..m..d";"Open";"High";"Low";"Close";"Volume" "1";"2000-09-27";63.4375;63.5625;59.8125;60.625;53077800 "2";"2000-09-28";60.8125;61.875;60.625;61.3125;26180200 "3";"2000-09-29";61;61.3125;58.625;60.3125;37026800 "4";"2000-10-02";60.5;60.8125;58.25;59.125;29281200 "5";"2000-10-03";59.5625;59.8125;56.5;56.5625;42687000 "6";"2000-10-04";56.375;56.5625;54.5;55.4375;68226700 "7";"2000-10-05";55.5;57.25;55.25;55.375;40549700 "8";"2000-10-06";55.8125;56.75;54.75;55.5625;30897000 "9";"2000-10-09";55.625;55.75;53;54.1875;29161800 "10";"2000-10-10";53.9375;55.5625;53.8125;54.5625;31033100 "11";"2000-10-11";54;56.9375;54;55.75;50602900 "12";"2000-10-12";56.3125;56.875;53.8125;54.375;45109800 "13";"2000-10-13";53.875;54.875;52.125;53.75;52260600 "14";"2000-10-16";53.5;53.8125;49.5625;50.375;59879500 "15";"2000-10-17";51.875;52.4375;50.25;50.4375;40638300 "16";"2000-10-18";49.625;53.25;48.4375;51.75;55268200 "17";"2000-10-19";58.4375;62.1875;58;61.875;128496600 "18";"2000-10-20";61.3125;66.125;61.125;65.1875;80189300 "19";"2000-10-23";64.625;66.25;60.6875;62.125;92585200 "20";"2000-10-24";62.625;62.9375;60.1875;61.5;47213700 "21";"2000-10-25";61.9375;63.4375;60.4375;61.25;83801900 "22";"2000-10-26";61;65.0625;60.8125;64.4375;57413300 "23";"2000-10-27";64.6875;69.1875;64.625;67.6875;62146200 "24";"2000-10-30";67.5;70.125;67.375;69.0625;55028800 "25";"2000-10-31";69;69.5;68;68.875;52237000 "26";"2000-11-01";68.5;70.0625;68.4375;69.625;40654700 "27";"2000-11-02";70.375;70.8438;69.625;70.3125;38992600 "28";"2000-11-03";69.25;69.625;68.0625;68.25;34355500 "29";"2000-11-06";68.6875;70.125;68.25;69.5;37425700 "30";"2000-11-07";69.75;71.875;69.5;70.5;52165600 "31";"2000-11-08";71.125;72.375;68;69.4375;103074700 "32";"2000-11-09";68.5;71.3125;68.4375;70.875;45529300 "33";"2000-11-10";69.9375;70.3125;66.8125;67.375;46872200 "34";"2000-11-13";66.6875;68.125;64.4062;66.4375;41682400 "35";"2000-11-14";68;69.8125;67.3125;68.8125;42109300 "36";"2000-11-15";69.0625;70.875;68.6875;70.0625;30211100 "37";"2000-11-16";69.4375;71.5;68.9375;68.9375;46064300 "38";"2000-11-17";69.4375;70;67.7969;69.0625;53262800 "39";"2000-11-20";68.125;68.5;65.5625;67.1875;40078600 "40";"2000-11-21";67.375;69.25;67.375;67.75;29743800 "41";"2000-11-22";66.0625;69.5;66;68.25;38171600 "42";"2000-11-24";69;70.4375;68.5;69.9375;17219600 "43";"2000-11-27";71.4375;72.25;70.625;70.6875;42653800 "44";"2000-11-28";69.375;69.75;66.8125;67;63723100 "45";"2000-11-29";66.8125;67.125;63.25;65.0625;49140200 "46";"2000-11-30";62;62.0625;57;57.375;98600400 "47";"2000-12-01";58.0625;60.625;56.0625;56.625;54904900 "48";"2000-12-04";57.25;59;55.1875;56.4375;40203600 "49";"2000-12-05";59.1875;60.5;58.25;59.875;50867200 "50";"2000-12-06";60;60.0625;56.0625;56.6875;45280400 "51";"2000-12-07";53.4375;54;52.25;53.125;72654200 "52";"2000-12-08";54.625;55.875;53.4375;54.4375;60469900 "53";"2000-12-11";55.5;58.75;55;58.0625;47788100 "54";"2000-12-12";57.8125;60;56.75;58.375;31553000 "55";"2000-12-13";60.5;60.5;56.8125;57.25;49180200 "56";"2000-12-14";57.9375;58.7344;55.375;55.5;35600700 "57";"2000-12-15";51.0469;52;47.75;49.1875;58449900 "58";"2000-12-18";49;50;47;47.8125;53593700 "59";"2000-12-19";47.4375;48;44.5;44.8125;60135900 "60";"2000-12-20";42.8125;44;41.375;41.5;74518900 "61";"2000-12-21";40.75;45.125;40.3125;43.4375;81586500 "62";"2000-12-22";44.75;47.125;44.75;46.4375;54775900 "63";"2000-12-26";46.875;48.5625;45.875;46.875;33470800 "64";"2000-12-27";46.125;46.8125;45;46.4375;34501900 "65";"2000-12-28";45.125;46.25;43.875;44.5625;38809600 "66";"2000-12-29";43.9375;45.8125;43;43.375;49988800 "67";"2001-01-02";44.125;45;42.875;43.375;41206600 "68";"2001-01-03";43.1875;48.875;43.125;47.9375;67981100 "69";"2001-01-04";47.8125;50.5;46.875;48.4375;56198500 "70";"2001-01-05";48.5;49.875;47.5625;49.125;46707300 "71";"2001-01-08";48.9375;49.75;46.6875;48.9375;39908800 "72";"2001-01-09";50;52.625;49.75;51.8125;57482700 "73";"2001-01-10";51;53.8125;50.75;52.875;45115100 "74";"2001-01-11";53;55.75;52.3125;55;50927400 "75";"2001-01-12";54.875;55;52.5;53.5;36856000 "76";"2001-01-16";53.375;53.5;51.125;52.5625;34231200 "77";"2001-01-17";53.625;54.875;52.5625;52.9375;36422100 "78";"2001-01-18";53.6875;56.1875;52.625;55.5;54894400 "79";"2001-01-19";60;61.4375;58.875;61;104674400 "80";"2001-01-22";60.75;61;59;60.125;38336500 "81";"2001-01-23";59.75;60.9375;58.9375;60.5625;35147600 "82";"2001-01-24";61;63.4375;60.75;62.9375;55227500 "83";"2001-01-25";62.75;64;61.5625;61.8125;42828700 "84";"2001-01-26";61;64.3125;61;64;46540000 "85";"2001-01-29";63.5625;64.625;63.5;64.5;42491900 "86";"2001-01-30";64.5;64.75;62.875;63.375;28638400 "87";"2001-01-31";63;63.75;61;61.0625;40949400 "88";"2001-02-01";60.8125;62.625;60.375;62.375;35896400 "89";"2001-02-02";62.5;63.375;60.75;60.8125;35550000 "90";"2001-02-05";60.75;62.0625;60.25;61.9375;25699600 "91";"2001-02-06";62.0625;63.8125;61.6875;62.5625;48221000 "92";"2001-02-07";62;65.0625;61.8125;64.6875;63030900 "93";"2001-02-08";63.75;64.5;62;62.25;44020600 "94";"2001-02-09";61.3125;61.5625;58.5;59.125;50287600 "95";"2001-02-12";58.8125;59.4375;57.1875;58.75;35644700 "96";"2001-02-13";59.625;61.0625;58.125;58.1875;38035300 "97";"2001-02-14";57.625;59;56.375;58.375;30864200 "98";"2001-02-15";59;60.1875;57.875;58.8125;32813900 "99";"2001-02-16";57;58.25;56.125;57.3125;33479200 "100";"2001-02-20";57.375;58.25;55.375;55.875;30365400 "101";"2001-02-21";55.25;58.0625;55.1875;56.25;31973600 "102";"2001-02-22";56.3125;56.8125;53.875;55.1875;50408200 "103";"2001-02-23";54.4375;57.5;54.3125;56.75;46310300 "104";"2001-02-26";57.625;59.9375;57.375;59.5625;43968400 "105";"2001-02-27";59.375;61.1875;58.6719;59.375;49574300 "106";"2001-02-28";59.5625;60.0781;58.1875;59;42304200 "107";"2001-03-01";58.5625;59.5;56.25;59.3594;40890800 "108";"2001-03-02";57.5;58.125;56.4375;56.6875;39900400 "109";"2001-03-05";57.25;58.625;56.5625;57.4375;24691800 "110";"2001-03-06";58.625;60;58.375;59.4375;33390900 "111";"2001-03-07";59.875;61.125;59.3125;60.6875;29871800 "112";"2001-03-08";60.3125;60.5938;58.4375;59.25;27313000 "113";"2001-03-09";57.9375;58.1875;54.875;56.6875;51897200 "114";"2001-03-12";54.6875;55;51.625;51.9375;57188000 "115";"2001-03-13";52.1875;54.75;52;54.1875;45517800 "116";"2001-03-14";52.5;55.25;52.1875;54;45343100 "117";"2001-03-15";55.3125;56.0781;53.5;53.6875;35819200 "118";"2001-03-16";52.5;55.125;52.4844;54.5625;56424400 "119";"2001-03-19";54.5;55.5;53.125;54.3125;30518200 "120";"2001-03-20";54.5625;56.125;52.625;52.6875;45911400 "121";"2001-03-21";52.25;53.25;49.75;50.0625;62494300 "122";"2001-03-22";50.5625;54.0625;50.5;54;63181600 "123";"2001-03-23";54.9375;57;54.375;56.5625;49759800 "124";"2001-03-26";57.125;57.5;55.5625;56.0625;31559300 "125";"2001-03-27";56.0625;58.5625;55.875;58.25;47567800 "126";"2001-03-28";57.375;57.9375;55.375;55.5625;39340800 "127";"2001-03-29";55.375;57.1875;54.5625;55.375;43492500 "128";"2001-03-30";55.75;56.1875;53.875;54.6875;45600800 "129";"2001-04-02";54.8125;56.9375;54.625;55.8125;37962000 "130";"2001-04-03";55.3125;55.3125;52.75;53.375;47093800 "131";"2001-04-04";53.375;55;51.0625;51.9375;52023300 "132";"2001-04-05";53.75;57.375;53.5;56.75;56682000 "133";"2001-04-06";56.375;57.1875;55.0625;56.1875;46311000 "134";"2001-04-09";56.57;57.42;55.66;57.15;28147800 "135";"2001-04-10";57.95;60.09;57.78;59.68;54599700 "136";"2001-04-11";60.65;61.5;59.7;60.04;54939800 "137";"2001-04-12";59.56;62.31;59.35;62.18;43760000 "138";"2001-04-16";61.4;61.58;60.12;60.79;32928700 "139";"2001-04-17";60.52;62.11;60.04;61.48;42574600 "140";"2001-04-18";63.39;66.31;63;65.43;78348200 "141";"2001-04-19";65.81;69;65.75;68.04;79687800 "142";"2001-04-20";70.3;71.1;68.5;69;96459800 "143";"2001-04-23";68.11;68.47;66.9;68.25;46085600 "144";"2001-04-24";68.2;69.93;67.14;67.55;44588300 "145";"2001-04-25";67.57;69.79;67.25;69.69;38372000 "146";"2001-04-26";70.07;71;68.25;69.13;59368800 "147";"2001-04-27";69.53;69.68;66.21;67.12;60786200 "148";"2001-04-30";68.53;69.06;67.68;67.75;37184100 "149";"2001-05-01";67.66;70.3;67.6;70.17;41851400 "150";"2001-05-02";71;71.15;69.35;69.76;46432200 "151";"2001-05-03";69.25;70.18;68.14;68.53;33136700 "152";"2001-05-04";68;71.05;67.96;70.75;59769200 "153";"2001-05-07";70.83;72.15;70.7;71.38;54678100 "154";"2001-05-08";71.75;72.1;70.75;72.06;37542000 "155";"2001-05-09";71.24;71.3;69.86;70.4;38338300 "156";"2001-05-10";71.13;71.24;69.96;70;32167300 "157";"2001-05-11";69.96;70;68.65;69.4;25564400 "158";"2001-05-14";69.13;69.2;68.3;68.72;22484000 "159";"2001-05-15";68.74;69.3;68;68.27;30692800 "160";"2001-05-16";67.7;69.88;67.33;69.16;45946900 "161";"2001-05-17";69.1;70.14;67.55;68.17;53492400 "162";"2001-05-18";67.69;69.2;67.25;68.09;45302700 "163";"2001-05-21";68.05;69.99;67.75;68.79;51745800 "164";"2001-05-22";69.45;70.35;69.18;70.31;41727800 "165";"2001-05-23";70.39;71.6;69.51;69.7;46818700 "166";"2001-05-24";69.94;71.78;69.27;71.72;40390800 "167";"2001-05-25";71.66;71.9;70.36;70.91;26373800 "168";"2001-05-29";70.8;71.75;70.05;70.34;35605400 "169";"2001-05-30";69.56;70.58;68.65;69.19;43250900 "170";"2001-05-31";69.49;70.38;68.4;69.18;35341300 "171";"2001-06-01";69.6;70.7;68.7;70.34;28793800 "172";"2001-06-04";70.55;71.02;69.8;70.78;21868300 "173";"2001-06-05";70.76;73.08;70.5;72.6;44727100 "174";"2001-06-06";72.89;73.48;71.55;72.36;40011400 "175";"2001-06-07";72.12;73.73;72.08;73.68;33480000 "176";"2001-06-08";73.7;73.75;72.05;73.19;25933500 "177";"2001-06-11";72.85;72.85;71.51;72.12;23672800 "178";"2001-06-12";71.02;72.41;70.81;72.08;33357300 "179";"2001-06-13";72.05;72.3;70.64;70.69;27651200 "180";"2001-06-14";70.22;70.55;68.4;68.9;35986200 "181";"2001-06-15";67.51;68.3;66.4;68.02;54177200 "182";"2001-06-18";67.95;67.96;66.01;66.88;28423400 "183";"2001-06-19";68.21;68.85;66.85;67.32;31728700 "184";"2001-06-20";67.14;69.59;67.1;69.41;32054200 "185";"2001-06-21";69.15;70.55;68.92;69.84;34801900 "186";"2001-06-22";70;70.61;68.58;68.83;25546000 "187";"2001-06-25";69.1;69.81;67.77;68.85;24607800 "188";"2001-06-26";67.82;70.21;67.7;70.14;31538500 "189";"2001-06-27";69.86;71.53;69.36;71.14;34599900 "190";"2001-06-28";71.55;76.15;70.53;72.74;64487800 "191";"2001-06-29";72.6;73.41;71.4;73;47141900 "192";"2001-07-02";72.05;73.15;70.15;70.6;36405100 "193";"2001-07-03";70.3;70.8;69.93;70.47;14018700 "194";"2001-07-05";70.22;70.72;68.44;68.51;24621300 "195";"2001-07-06";68.3;68.4;65.67;66.06;33733900 "196";"2001-07-09";66.2;66.91;65.04;65.69;33238300 "197";"2001-07-10";65.9;66.25;64.35;64.48;33281300 "198";"2001-07-11";64.21;66.75;64.2;66.5;36911300 "199";"2001-07-12";70.7;72.05;70.33;71.6;64039000 "200";"2001-07-13";71.4;72;70.94;71.34;29467300 "201";"2001-07-16";71.45;72.16;70.15;71.18;27995400 "202";"2001-07-17";70.66;72.01;70.14;71.82;31620500 "203";"2001-07-18";70.6;71.5;69.87;70.57;28795400 "204";"2001-07-19";71.22;73;71.22;72.57;38274700 "205";"2001-07-20";68.03;69.4;67.94;69.18;62101800 "206";"2001-07-23";69.24;69.24;66.35;67.09;39999700 "207";"2001-07-24";67;67.99;65.7;66.32;33765100 "208";"2001-07-25";66.26;67.52;65.61;67.48;37032700 "209";"2001-07-26";67.12;67.32;65.5;66.59;38987000 "210";"2001-07-27";66.05;66.25;65.05;65.47;32698000 "211";"2001-07-30";65.65;66.88;65.54;65.8;21098200 "212";"2001-07-31";66.01;67.39;65.85;66.19;29515800 "213";"2001-08-01";66.8;66.81;65.76;66.47;27839500 "214";"2001-08-02";67.21;67.54;66.26;67.45;27099200 "215";"2001-08-03";67.3;67.36;66;66.89;21630200 "216";"2001-08-06";66.53;67.12;65.68;66.13;13915800 "217";"2001-08-07";66.04;67.05;65.99;66.35;15673900 "218";"2001-08-08";66.51;67.24;64.49;64.86;27498200 "219";"2001-08-09";64.98;65.55;64.3;65.01;22768100 "220";"2001-08-10";64.77;65.86;62.9;65.52;25878200 "221";"2001-08-13";65.24;65.99;64.75;65.83;16337700 "222";"2001-08-14";65.75;66.09;64.45;64.69;18240600 "223";"2001-08-15";64.71;65.05;63.2;63.2;19751500 "224";"2001-08-16";62.84;64.71;62.7;64.62;21952800 "225";"2001-08-17";63.78;64.13;61.5;61.88;26117100 "226";"2001-08-20";61.66;62.75;61.1;62.7;24185600 "227";"2001-08-21";62.7;63.2;60.71;60.78;23555900 "228";"2001-08-22";61.13;61.15;59.08;60.66;39053600 "229";"2001-08-23";60.67;61.53;59;59.12;25906600 "230";"2001-08-24";59.6;62.28;59.23;62.05;31699500 "231";"2001-08-27";61.9;63.36;61.57;62.31;22281400 "232";"2001-08-28";62.34;62.95;60.58;60.74;23711400 "233";"2001-08-29";61.05;61.3;59.54;60.25;24085000 "234";"2001-08-30";59.04;59.66;56.52;56.94;48816000 "235";"2001-08-31";56.85;58.06;56.3;57.05;28950400 "236";"2001-09-04";57.19;59.08;56.07;56.1;33594600 "237";"2001-09-05";56.18;58.39;55.39;57.74;44735300 "238";"2001-09-06";56.56;58.39;55.9;56.02;56178400 "239";"2001-09-07";56.11;57.36;55.31;55.4;44931900 "240";"2001-09-10";54.92;57.95;54.7;57.58;42235900 "241";"2001-09-17";54.02;55.1;52.8;52.91;63751000 "242";"2001-09-18";53.41;55;53.17;54.32;41591300 "243";"2001-09-19";54.46;54.7;50.6;53.87;63475100 "244";"2001-09-20";52.35;52.61;50.67;50.76;58991600 "245";"2001-09-21";47.92;50.6;47.5;49.71;92488300 "246";"2001-09-24";50.65;52.45;49.87;52.01;42790100 "247";"2001-09-25";52.27;53;50.16;51.3;42470300 "248";"2001-09-26";51.51;51.8;49.55;50.27;29262200 "249";"2001-09-27";50.1;50.68;48;49.96;40595600 timeSeries/NAMESPACE0000644000176000001440000001570112620124746013642 0ustar ripleyusers ################################################ ## import name space ################################################ import("graphics") import("grDevices") import("methods") import("stats") import("utils") import("timeDate") ################################################ ## S4 classes ################################################ exportClasses("index_timeSeries", "timeSeries", "time_timeSeries" ) export("colCummaxs", "colCummins", "colCumprods", "colCumreturns", "colCumsums", "outlier", "returns", "rowCumsums", "series", "series<-", "timeSeries" ) exportMethods("$", "$<-", "+", "-", "Ops", "[", "[<-", "aggregate", "align", "apply", "as.data.frame", "as.list", "as.matrix", "as.ts", "attach", "cbind2", "coerce", "colMeans", "colSums", "colnames", "colnames<-", "comment", "comment<-", "cummax", "cummin", "cumprod", "cumsum", "cut", "diff", "dim", "dim<-", "dimnames", "dimnames<-", "end", "filter", "finCenter", "finCenter<-", "frequency", "getDataPart", "head", "initialize", "is.na", "is.unsorted", "isDaily", "isMonthly", "isQuarterly", "isRegular", "lag", "lines", "merge", "na.contiguous", "na.omit", "names", "names<-", "plot", "points", "print", "quantile", "rank", "rbind2", "rev", "rownames", "rownames<-", "sample", #"scale", "setDataPart", "show", "sort", "start", "str", "t", "tail", "time", "window" ) ################################################ ## S3 classes ################################################ S3method(".DollarNames", "timeSeries") S3method("aggregate", "timeSeries") S3method("as.data.frame", "timeSeries") S3method("as.list", "timeSeries") S3method("as.matrix", "timeSeries") S3method("as.timeSeries", "character") S3method("as.timeSeries", "data.frame") S3method("as.timeSeries", "default") S3method("as.timeSeries", "ts") S3method("as.timeSeries", "zoo") S3method("as.ts", "timeSeries") S3method("cbind", "timeSeries") S3method("cumulated", "default") S3method("cut", "timeSeries") S3method("diff", "timeSeries") S3method("end", "timeSeries") S3method("getUnits", "default") S3method("head", "timeSeries") S3method("lag", "timeSeries") S3method("lines", "timeSeries") S3method("merge", "timeSeries") S3method("na.omit", "timeSeries") S3method("plot", "timeSeries") S3method("points", "timeSeries") S3method("pretty", "timeSeries") S3method("rbind", "timeSeries") S3method("rev", "timeSeries") S3method("scale", "timeSeries") S3method("sort", "timeSeries") S3method("start", "timeSeries") S3method("str", "timeSeries") S3method("tail", "timeSeries") S3method("time", "timeSeries") S3method("time<-", "timeSeries") S3method("window", "timeSeries") ################################################ ## functions ################################################ export( # MODIFY - DELETE/ADD: # "plotOHLC", ".plotOHLC", # .endOfPeriod*, "endOfPeriodBenchmarks", "endOfPeriodSeries", "endOfPeriodStats", # ADD: "returns0", "index2wealth", "daily2monthly", "daily2weekly", "splits", # DELETE # ".plotTimeSeries", # ADD ".xtplot.timeSeries", ".xtsPlot", ".axTicksByTime2", ".endpoints2", ".periodicity2", ".colorwheelPalette", # ADD: "getAttributes", "setAttributes<-", ".appendList" ) export( ".DollarNames.timeSeries", ".aggregate.timeSeries", ".align.timeSeries", ".applySeries", ".as.data.frame.timeSeries", ".as.list.timeSeries", ".as.matrix.timeSeries", ".as.ts.timeSeries", ".cut.timeSeries", ".description", #".diff.timeSeries", ".dollar_assign", ".end.timeSeries", ".extract.turnpointsPastecs", ".fapply", ".findIndex", ".head.timeSeries", ".isOHLC", ".isOHLCV", ".lines.timeSeries", ".lowessSmoother", ".merge.timeSeries", ".na.omit.timeSeries", ".naOmitMatrix", ".old2newRda", ".old2newTimeSeries", ".plot.timeSeries", ".plot.turnpointsPastecs", ".points.timeSeries", ".print.timeSeries", ".rev.timeSeries", ".rollmax.timeSeries", ".rollmean.timeSeries", ".rollmedian.timeSeries", ".rollmin.timeSeries", ".scale.timeSeries", ".signalCounts", ".signalSeries", ".sort.timeSeries", ".splineSmoother", ".start.timeSeries", ".str.timeSeries", ".subset_timeSeries", ".summary.turnpointsPastecs", ".supsmuSmoother", ".tail.timeSeries", ".time.timeSeries", ".timeSeries", ".turnpoints2", ".turnpointsPastecs", ".turnpointsSeries", ".turnpointsStats", ".validity_timeSeries", ".window.timeSeries", "alignDailySeries", "applySeries", "as.timeSeries", "colAvgs", "colKurtosis", "colMaxs", "colMins", "colProds", "colQuantiles", "colSds", "colSkewness", "colStats", "colStdevs", "colVars", "countMonthlyRecords", "cumulated", "description", "drawdowns", "drawdownsStats", "dummyDailySeries", "dummySeries", "durationSeries", "durations", "fapply", "getFinCenter", "getReturns", "getTime", "getUnits", "getUnits.default", "hclustColnames", "interpNA", "is.signalSeries", "is.timeSeries", "isMultivariate", "isUnivariate", "midquoteSeries", "midquotes", "newPositions<-", ".ohlcDailyPlot", "orderColnames", "orderStatistics", "pcaColnames", "readSeries", "removeNA", "returnSeries", "rollDailySeries", "rollMax", "rollMean", "rollMedian", "rollMin", "rollMonthlySeries", "rollMonthlyWindows", "rollStats", "runlengths", "sampleColnames", "seriesData", "seriesPositions", "setFinCenter<-", "setTime<-", "setUnits<-", "smoothLowess", "smoothSpline", "smoothSupsmu", "sortColnames", "spreadSeries", "spreads", "statsColnames", "substituteNA", "time<-", "turns", "turnsStats" ) timeSeries/data/0000755000176000001440000000000012620124746013330 5ustar ripleyuserstimeSeries/data/USDCHF.rda0000644000176000001440000042737012620124746015011 0ustar ripleyusersý7zXZi"Þ6!ÏXÌåÞïþ])TW"änRÊŸãXl΀8[ï Ïp ñ5¡*jÊãŒã«ª×iÚ8-›=.@âo ©-·âsI±Jɬ…±\Ö¥-½GÛAe3ÊС6¶ÒÌ>ªBŒ¥¡á0, `±;ÙÐ(%/âÅ…âg:åJï Êw¦?tÙ?ú¢<_]Îá W‘K{˜wwÆÎt˜úWº ²ŸðvEu, kðz^!E+_kŸMµºí^­©ã'iÞ¦žê×ó\µ–(ñ] Ï,j O¿2öçŠ ß+ô¼—L$ÒÒÊ3k!ºŽ¦ºY¶µYÄ…á­D@¦ÙÙCû¢Q}ÊÞˆývPT\¶„ÀÁ–hójíÃ`\GBg ¨ö” äJKZÛ qõco†zÀôR3/¹Jßé7$Hª[ÆÝe£íœt~'ÈV‚où/-‚n<*©–¥DlmtžŠ€›{GC ¹m}K¤œDB,WÑ« œáãЦÄN!ê\/HhÖDMê¤WïE,udÿF/?:Ä4«™• Ûz Žz#°L ÄO˜!T&¹zg¾jë]\_ÐcJù¹¦ŠEJ«´$Ua?\Ó&Æ…Ž›bîÓxó*{¾`ÎßÎbå‹C>]Ï YS'æ?ôQ‰jœxdÆfض¢¾ C¿.¶`RÝP‡ÚžŸ;æ1ÃaÀ»S‚„¤*Š#,˜8WxbúÙPMÂV¨ƒ]ô§ŠúT`ÖÞô›å¥¹†Ê}b×ÜõÃ÷£S«¸7°M#ê,0‡| X8>EFE-éÛͶ4¯±öL­8=^Ê”ÓMÑU­ß·}¥#"_+HÄôm?&ÝåaËHƒÚìo ϼ¦p6© K¯[<”ü7Ÿ*%ÅuOñÒÞD£¥ XÄ3«ºv û^®R—ðìY*Xk|#£Ƭ‚=OO¼‹ò"ºS,OõÚ{÷9~.•4¶ÅOa ÉNkæöÌò mØòІFî§…ƒ«êÿL°\ú Þõm– «Rå0.ª†¿.• Ïö‰™5‘ŸÑƪabа×m¡.A(œ9u´•bӀljuJ¾÷WBÔµ®’¨i™’·Ì8í_ÙuÜÆŽ®åï]f}Ú)ÃUž„¶5Ï3ðlc@l.Kßü¹Þ\Á£û0 7(·ñRÐ:É™Pœ•˜{ô^ó ¯gåÄÆ(Œ™š8k~sŸ:N6…©eó}f±¢,XþÙ¾õ4r‡2¤à3rYFƒD-gYyžAà- ŠD[ø!ô˜èÎîl"2]R-AX:;W=þÜ%W>ðÚÈ;Óå¼…ÈY¢þÑ+ Øi‘|öOìG3dþÏùø’^;àVˆˆ^©ó§{(é²{¤¦EGý“3ñ%2´!oè~Ì‰ØæsV`“‡a‘S:цš.ÁB¸tyçç<ýrfOò%á9µu£õŸÖBãTÒãwÓ÷ ฬ…ð•œaVÖCÙþ»]¶ r»q9 W±,ª²¹;mƒÓýŒÿfYÞ )[Úöi®elÚsk%RO©mCòâî4zÖgã7ú~mñøÄ’Ó=˜BGçŠÔ%>]¾:èû¿¼í+;M5ï×MÍš¦€¡]Fb…ZΉ`È5&vN°bçE‚P•Á{ôÔ¢hùyN%â1€`Œ"º!üÓü§Ñußò}>M6 ís­‘1çðGÑÔ´§îÜõÚpišwÑœÁM+ìd_õÆì:’wÿ4W¦ùyFÖ¹°vŸCT.pÏŠ¶™e±!g¯,ÿé6Ú;º~gW}Ir´­`ÂEá2Jf·ù =N ’5à˜Ž’àîÆª¥m…áï08'­ÖÜÙ³KòçR+3üGœ¼n\Ô¶%òlÏ“#Dh¥Cˆ¥9…÷x±o;JÂûãLW|²Mñ‡NbbK~-…«IГB«èö7R1X©… y~͉2~ÝB¹~‰Å7‰#%EX-~Dàœ‘ð³FÓ¹e˜¯¬Ã¸Ë,×¾Ç›× Í†ë{á4Óxj:ÙKÑåõ«ïqAòbÎ;°kÂàmVWµ¼kºuÄè8ù.ÆÓ:{ÙjJÕ/Å!´ëÄÓSu›7Ž*BÀ—EpïuÛºãY¾4ÕË8C¤ënËZ«ëŒþc&éÛRCËdAÂŽ<Þ|ûÀÿ~ˆÞ2¡¨Ê–;¤¯è4ÉyâÕÕ^þÕz€Ъ7'á( _ç…Š’­‹P†žp¶hB9êÍÔ€¸ô·»¦ JÍÖ"SëÇ"CºÌüPý¿<úÓÁHç̧\õ¾ª{ÎŽø™ÅrÚ“ÈúïB(w˜ˆò´PŒH=·D7“T\»À†¤£Hä%Õ~u9ú »™•½=5ëÀ”VZ: ?edòŸMcœ.|ú 1²š+e (p78dK$Ê*^cò¾{«b–À‡”èüÁ…ÄzMJ”š±®Xìv·"Ø~ãéÀ„#Úá®F&›³¿;ÚaÉ O‹ÏÝ… ¦ìÄ\­GÄ.­Ò)ü£îˆ“-Aj¾F¾ïé–±Yp³9;ÖÙŸÈ3›,ÿy— ØwvÐ0–ššÖ²¢pHÕb·Hë½~1~Ke½1Få[|²E7á±Q¬¦,ƒB쉩®4£²dH).³õ%a‚ž¶õ17ç^_@ü¨°ö.Õ»Šä:ô[8‘ù®Ñ+—j׬6SȆ.Ô䩦"Ð*ªf`âu¬È¢±³•GžK€>Êw™zôΣQÕìçvý÷J¹èWâ¢>"m°ü]m8ÒÏÏ->™d-‰D×…ˆkÐ3Bmí‹büÅÔÖCqµ0ù“ÐäÀ+…Å„¯küÖ›Œ!ö©†‡1Žy™¥“âA‹üö!b;0ƒ]ç¥Ø¢D)¤í®å 4D&àÜ×­ŠÓ 4xˆ^Ë4™Öÿ¦ŸºÑàxÿVÄŸºPZ7$½FŠív&iEƒp!måBå ì9vaBôåcìlðP.[OÖ¦e‰`¹²R˜-må‹"üjCòv_&´ô,º¦n}Nõ b:!¿qÖñ¾jj5@)+©Ìšæoúg¸¼ŽÈ/‡Æ’)©ü£X2£Crê‘‹¦S0G¥}@mÜÁqç†å°!~ضH,,=Í]u4¬–d­>¤KOwp"¯ÎYA'ý<Ç¥Ž’¸ ñ¢ ¢çEu=›ýó]K(.©€q,‰“”Hœ‘MfïMÏ}<¢a3Cá0Ò*ƒÕÚÖˆ^Uhòßµ ÿ¹•Ü&À¨†¿Ð‘HQÀdk½Ggo¿+n⃋(W·E zþ‘/ø¬óß^zñìëR„Wk?{Œ j%®+h¿ê¢£Æ’œÁj™¼ò7£ ÛÑÏÎøK&Š‚‘glåqÏvX¤>!|jq)êº!‡ƒ|ÿ±ád@ljd&±ì€iCF§'ò.ègb›¦Ä¿¥Óí/\À+ÊüI÷&=Ù w@Öv'Gú‚®ã~Âß²ÌsÊ,=CaÔ?Rxà‰ƒªû¤Óÿ(ÆrÛ)0ï µÁèmö5pžàôµÓÕN !LÏZôs&æ0 îŽhïbª‹F?6XêY§ ©¤8… Ô{}LôP`þES€J9Œ gB‚1¹“ª“®*£DSypgޱÍÜÑ÷Aý*£ÎÁŸ‹]¨Ä®qc¼ŠzÞÃ["E}¶#yvÔ÷eª (9^4:÷8w¥]4Tlõ!Ô±¨ë‘÷©¶¡üÂ$Ü@ÚÏÆ¿ù6 ïÖõºQÌ^º}G§°{$û'µü˜£)ÝkÂuÖ?*)5²S¢¢§a9ïtýz•;RÊ™ÁÌSàž•Ò‚çèÀÜuúX0U>r*ØŸ¶'Z{%7*ÓmÚã[ÍýÿŸé´s–â–+};‘UôáãyÖ$»JL“CÅÖψìzìモX¿ "šU>#;·þÐ#j+ÇÜá=ø£¤¼°Ê<Ï~UEÉ“OÁ²å\}Ýq®L³}s¥åXmþð!ØÒ‡êùïü‰Í:ŒQvãÛ®þŒ ú‹¸F²(EÓmE´1xŸðÚöBA²(ÖÁqoáY©Ã´’‰3%– ËSGpO}q‰N8·F¹(pì{ØZ,ªf3DŽo;ñuÝ¢‡É}‹gå¼ÏsfÙ5í¢Ë@EÚóåÔñuAžÉnüæätS| ½O†·²6þÐ(DyÞšM¢¡‚êÐYj@ ‡Ƀ¸Ÿµ#=ØJp:&µ[4¦-Á;˜øÞ ŽuÏ•Ítñ…åeŒ’ï öG’êˆ ÇÃ[(8Ñ6=`W uÑß?”*¯tgŸ ë–lÃ^âí—4¦•÷”ÿ&1#ñ¬û`sÔ>*4;GWb ¡š{F'q«òˆ•5ØfPÙ¨3iJ~¹wBO!êß ‹v®Z\Ÿ r½õ¢a>•Ê.žEÿéaŸX"U'S‹lˆY-ŠH{\ŠSåbˆL"ÎëŸì¤iC€}+¬ê £Œ}´Kæ¦æ3,PeD3ÛîbeŒ>6ÞPÔǦÍf]\šI»Xéãé‹Þl*¿´BÁ\É&éš)¤–kÌÐUÚZš3(~ ^•ùáSØr901–"– ,Ü’ùg6z1"4~Ÿüat•{õºdX´ŒÁ®ÏxD™c”´§äëÎ=ùg^«6K‰jûÎo|7ñ{€Ñ-Âr÷J5NGoêQ” ‹õ†—$Ÿì§Œ^m¢ž 6ƒ›|XŽç¾`³Ú͈”þ”: ;sq0á.jçI¼Þ¤B© û|¸ddgƒ Ü³D »=sYscU‡C”~­DÚ\‹,b‡Ò¶ƒï¡ÜË‘Ê Ñ"V¶ÇÈL%›ñ™™˜·¶0† ã ){X!üpaÜÁá»a±sŠO89°ßŒÏ°ò…áêœÃ/ã¾Å#PýF,±œå{çŒôÊ•Š¯YŸˆ˜ðáqhÌvBAŸä|sQ%$’û*q¨ŠºÇTM³°`ËoDþzá5[Lì6sÉÂðS`deñ&XÊ7i9Q÷0Íòè?mÛ´vfXPž"¸ OªxÉsµScl.·ä½ÔAØi$A!uwwYýÊ^ O0?å>²ï¼îj%‘9¾ªVòkòJ_î*îl¨±là U^h8ÛÿÓ&Û_Ú‚áò¹ZhBÕœKE€µøB¡fôî¤T-4ª'÷´TÔ£êåTY5÷+¢ã²­™Ìq)»pø Þñ縦2V½!G™¯ý_Y«Ò¹Ä@¢ j_ol†Š×ç(Ú[í'0‡$vmÛI{–šß3[vd`|VˆÇÿW!à~­ÇRˆ&fÄ%É…žÃ5¢â4ãIç„È[’—$Ž+ˆ€RÕÀÊYÏt¯}­¢cm;mÖ&×ê7çú—ñÕcyL%ã£g)$­[9‘TË•‰ke µ9°úóZü£òð`‹Š˜žux%›§®$¬dŒBÙIP])?ddÕaB2ÐF-Ö uíDþôWÍ'´£«—Xtˆ¨¿’ûQ´ˆÝ»tÅŠâ¾÷[Úl2Ë|á{Ó%©.ï+áYv Ÿí Åf;9i¸V‰¢÷ö äWÚad½½x.Åa2?óRÛ—ßák¥yãÉy¨Ëq¾"<­0ÀÑÜù·Ó€¦tˆ€AÛ¥˜,¯RÐx’æ­·ìË21~Í2RR-  Œ,–õbºj–ÖLlYÂã–æuc#¶Võ¸®zkr)ʉËÇ«Klnš»™hÈï˜è &ã°>1Ö..¥T ZDÌY•}Æ<¬ºÀügñ¦‡ð¨'ôà›è‚² ƒÐný)Äay?´¶=Y+&تœa‡ýäð´‘î(| ·dC²Ìµ.ˆÅrÌûð^#R‡ öc,–öåé‚Ã^ÑïÍMu¬Gî†cb¬“m#A·¼Èù •ÙXøÌñÚ£¢!xr;æ&hOàgæì‹—$?ÈÈ•!)N—é…£ŸyŲd:·³ßAʪ÷§lê YËþ°ƒW†ÇÍ#ÅÐêµ°-\‹>~¦‘c$%,7ŤÔÊÅc¦Í™1íĬEÀݵݽ,'£„™¡†ø!ÃçgÒÑn%¿‹9̪¹#¯ûTT»\cI¯)¾f8\€ã$­y~£þN0ÇûßűëPÉ,Ÿ€)ÝÜ´©þ:O9 5&ÓâìêÌ…gúž‹V3‡òtsãZÊoøSûª;cv Ò@Ä©’¬ø.:Š‚´Ûœù~îõÿ׎xžgÚÚïÅÝ &àÏ eëŠÂ:JI^@¢i…!¼Zf´GÐzÚU**¶ýÚ o—`BE?ϪoØ3)õ4yä†4"Êë}u= H½ÝÄôÞݱ0d†€B]ª?®>µ– Ñlûc…h×,Ëç¸Ï6¾mC[‚v£}t_³–ã[²“Z#"£oOx½5äRnèºÉOuñx"öçC«–Wç*¥ëZ&—„…ÒÍrB%JF”K7Eß[‡µ>÷/ þÌÿ iÓÖ‰ãï±fv¡b{ͶŸãO·¦&‹o@¾Qü+{òßóïYCôaèßÈÙ^”ž)}UzR^ “M[¤þ]WÔë eqàb°€åb¥yºY‚9uYÁCÃÉl…\BÕwM¼º,xþ3ê Ýã‚ÍÈ€ŒX’t]Ÿä³Z¤aßA˜ÚÝû~$9)÷ßNÿ¥E>íà)&‘ëññYnk2ÍßKdÖWÃ3…¡žÃÀ»l%AÄæÚŒ¤_¬Ql¶;wþeÓNACúë(½!mà Æ}uŒMXÜ3¤É軂8£¹æ€R¦ªÖõúŠ K¸^ÀË×BT]ulÇÚ.ý´Áø`½Ù )\ÎRAáê% Å~ŽˆK4d©çެTrN·<ßîÃO,ºÞ6Zì,ÊäªZ–mŽV‚Ø*L—XÖ- Gk7þQÔ³zÌX‘+TBˆà#Åú¢r=Ú1Úœõ$²Æ†Ð~9hý¾L€Êæ÷ÑûÈÈcôì²]Xû÷%éë½w@Öøx1‡˜ŸPG^°MÓŸ(G¨ìµ‘‰ò}¸wSgVþ®‘ÓëþCHÖlz7¸páû± 0ŠœÒ¤?Ùù)@I–9—ÉÝù§I½i|ëZg-I …é:9šdŒ¶™Þå(Ú>Þ.v!®m½÷Oèþô}x´ÍyÔzÞD9,":…X¶§ÔuÑÿö3@ߤs .ÒŸÝ$ì“·/ÙãÔ3È.ÃãÓöÈØe r ‹ÐÆ3ÿ±mãÈË·bØU앸‚ùýºxŠôæ.Ù9yæ¯ ŠdÝj^!燩*] &uª?Îfx¨|Šœš[#…_hU)U¿rÊo›á/šº¾øKÅhD‘Æ7d†vhÌ“g¹·‡Qä¬%à æ¢DÀù_Sîÿ¥ŽAÄk|!J¾Ê^UŠ„âkàD6B’æ>G¯)I®Çvf§Žb›Iðª½p»›Ý¡·y;õ÷g Ìü±¨‡” ®¹Uÿ££øŽ¿1ŠÄ`bM$߯Ré)O¿A´+RáöÚćÜåœÔñA´}ú¿CxvoËfMŒ÷·þrØ:7hFÉÑ™3½†b'v¨+y—8_ShTEºjŒ‰Ä%!FVídx¡q^¦<ÿŽ"£ÅúÚ]f =Çc¨Ž Õ> ÅvØ$Ç• U‚ÜL¶äžðÌö—;SŸ¹Yåa÷–—ºÎ³^èÓ> ±—&þ(Ìy<Ù¼«ÔiÓ.Šá»†Â%SÛËVu³qdh5˜3ùíÉ'ý¤@ÕMsðU:»¿°~…Öò†fiË2O¬—ŽÜëÍHÑÉ ÈrîÓ¿Ùè€ÕýY Ôy5 åþˆ^‰Ç›-…ªbÛÐJ‡ <Ÿ’ ®¸œ’Ñ®LÊ…4yˆ6ê;¬¦šÈ«Û¾;HÍcþBïXPáIpðØor™ÕZàwOª†š¨Œ>XÀ·ç¾É¾x”vuݲèðp2¾Â]K»S¨¦€3[ÐM˜ß0ʶ¼Î/¥[6¦)Z™õDä¢ÉÊÈÆèÀÙv>R¡Oæ¾î&ò^¢ûV‘—¼ ¢ãm<½oÐMŸ¯qo¸ÞJDÚG!÷í :CC˜^i÷–aN0<õp–ÑØ‡¬-Uù\'Uœ¸hégôâR.Þ•PM´l[Å´¹¿çö>mUÆPÙŠÞùAƒ3æMÏPλÇTákêÁDºÛ€¥hhÇ7ÛL6AÆ‹Üñ0jB[¼°Ï3¢&©…m )’gâ[ó@.Ø«lïìÂe*›f“3û? ·Q-§œ;YÒJ‡Ç‘¹¿á¶w¬4¿$ý`5·ï)#ìüG²Ov, ´­êN"´÷Føþ*>«_N+ºfŠ‹˜k°WŸÎá1×t!µšUôVÔ}Ç:⇿‘b¼d:ÙüÛö<Òr8¡b,Ä!ÝÞ3f®Ý›¶vAL´öü–Óp±biõ*ýõºR#œŽ÷„ٚÊòñxšœ×쉧¨wÇÔ~:ì@Žæ'.(MÕ“‘ÙÑ© >½¹¥¦x<å©9|ÚoÂÿ£Ü”°ÉýÚQZÑ$Û:¦Þð*¦9žhÓÄÕà<žžÓÅ/lÊ0/š±b/A–éE4ÒÑX'ü·äNÞéÈi3VÌ~$ôÊÔ6”ú“dtdìC!Àêc2¬…€ýÿùV^FJ tÊv¸¡Ñéh@ž]Ù¿-bTbù¾X¦*ÉÚœ¸‰‹#G4<ýÔ<¢â™Éô|¬g¬‹¼¢såÝ$ÓÔgª)6!WÓxå©=w±(ú™&—**¹L{ŸL dg‡,^ÄR¥uvþ²ÓeqoêG¢|¤_;аg¢¦¹HûJŒ/Nɯ`ütΚ_ [Ùç[N°õJk&Âp6úzmo?qé†wYW¬¨ äl{¶¾áÕHÖš*®"ÛvÂõç7ʺzøAÖÅ<\FªlBë³MÂþ' eõ:Í…gg{ß®¦OP«¨‡ç¡n(Ô‹&&Ž¢i²¯¯ÕÚ¦ÝCãË]#<‘nº·~¹êk¯¥ ö‹ýõ|MóË´žƒ`ê­•2ë;½Â±\.\æ¾×Qs¼é”j‹“|ß"°êª:aïàš¥‚n]ˆÜBI‹I”òµKÓv»ìŒ pôí&˜€U[J¥Ž1øÑ\ìÁ¨Ä‹½þûú+2³°åË3K'ÿ#…а”3äŸÐ™‹KÚÍ%Ì#w Âµêƒ ÷²“¡Ú \î!F5AÒï×vàÈ;ö\«ÎrmozKÀ®";̆ó@W9? »arõµ¯™0ˆ"+žPcË9•¡Ùñ`óCÚ·—£åFtlÑ6\ÞºÕhì¾ï_ü1®¦³ì{/CN%ÕëÊ¥T€Õœ¶÷úï¹ÎÏÁD†~¨ÐðïÔ·Œ/§ ,T‡,ûkL@d.Ca…+ë•u¸¶¤prº“^mºUBúxìäȃÐTHûó÷î·0è¡ÎžXŒ‚n®ŠŽSò/HD¾`î,¬Õvy_±øªZ§±Ëåî*aUÈX XÇä­ñ€wÊ/à-÷€){Ï:PÂ9Õ÷Ä£ª(|nÛCö‰8ówû«ñ›»œJ•Æ@Ò‘ÛoOF#æà7YmÙ¶‰üGdc!؃y7¿uy½™s} &ᙃ?Éš29³Qøaø‰oñ3Ø¡›ÅfV·ì™À›§»ƒ9VÝÁžÃ÷8ÃYr ¤¹XÜLžQ5 u¨%ßs÷·x3½5VÊÙ‹XRiòÓïH¹`·¯r{P§\¢Õ!¢§,[b ÅAf4ôÁU×EfMàqÍRXqTe ‡¨nÆ=—Òó6ö $¨ uõȉyPYÌ£X”·[$*]ˆ¸ø¨Í³Ao0EŸ±K%vüït–£¬#ªŠí¸èœî-œò¹é¸êƒW#…ëÁ¨x–aS{Ï©æ:bmFúsák3 ÔÐ:À†¯1šINë׺|·uP|Ó3B¨H÷+6Á6„fæúhJô3u¿Úµ3å'û¤¯ $øOdtÍ»¤eŸ&k;çVLí›q3J,¡!Ô5Œ‡]jrSÄX厮#c"w¸h*¯X`Ab5|7sÕå‡ìÃÌî 6±jMÏ×ûçé­œ‰'amú—pcþ7‰sYÂ\»óòwE®áŠ'ÔR¬mÙýéǪKËOyîv³_- ¬=GòêëàVÐke)_ÀîCïÍcêW¿Ù=‚tvu%Ð"riÊ+Á‡\˜ÎzÀ¨Ñ~™Ý§¤V»AUâätSµ{ g©I¾5ÍO_ÉÅÖ,ìƒ ˜³C˜GÊÖ Ï~YIòÑÆ#øQqÔg›pžƒØi¨¿Gkb¥Þ™'ëÅpãöùШâMu@&Á ?~s=ÆÖÍg~zsb§1)õ°QüÑÔ´­üeù0²ãÕ\H[¿‰y¡1Ïæ”ð¢”?6EU FF:^)\óý5 ÒÜSPm‰R2 Æ£;™òÛn^ó:ä&^IR‹ŒêÃàÌpèãi$(ò$°‡»cNÁpîF ˜˜Uï+~”î1ýÌîÅp;_Ê϶( êîîx†TpêE}cè´¨/Ô ™{Á½ßƒ‚11÷Ò6aõKÄg˜uT¶¨#ε( Ñ áÖ}x¿¿/_é©6ŸÓN«Ñ—­Ç¦‰^„ò¤æ 3J@¹*|M³éãG9Í`ˆóbˆÓ'¸W…‚3;˜‚G€E.E‚n×ê‡HbÆ5Û´Ô:êü0 Ü;ÓŸR–‹n%úQÌë‘Ä 6i«êéÌ Þ“âñÖ›Õ‘¾>spp Þþ¸LËn’8Qº„À¸ä´·îVWifx™:Õ¾õ&¤Ø¶K—V¿¬àÌ`¿Vj;,ãÀeŽÉ579RÌ9I ehÍ™Íê®­ÜßÚXŽÉa–].VU€„á­FÁ5Ää~<ôbjKi–!“$Êï6)kÝN&Y ¡[§$xÊd\¶ÌÇL\¡ñ¾ B6–ŒÿK«³Á“¾¸‘Áa -¿½ˆïæå?Öù¡÷u[Òö‰…޵”·¯éˆ8”Å \¦ªÊ&ø7ÌC8H%r¹QvúÒ¿,Ãê±W·!niµRøW)D>ÖÞÓ^ÈAôÍžºn°W.ýj­Ä-îŠ|¡è„5D^º#°£©çfÀpU`U’xÙ}ÏFÃÒƒN”®±Ù¬x"'æo‰rÅ2ôsTEíQ`ÀÕJ¿›swó†›z×5jÆIGl˜Æ¨×)Zlâ1`V5à}ÒÊ™î§-Y"6H pH¥Ó-òâ½Í¥ØÆj|Cykr_š|\k™ÌLÅ ²Ø¦VW½L)öòÞ7Þaùø‡!^B5-ÉÛ= é7Ñr]„•çFÜF²† ŸnjèÒM/YþSAƒ?ÜÌü uÒR¾¯š€î2,‰$¢x½ذ“&q}M•Qÿ%QðÍõ–œá:1¬»µG*¤9aÕ……ÿÌÇ&åî<0–—´¸Ê²@ÐÊ#)¤——5Uêœ@“Ã&"1Š3ÎjÝIÅCŸc8p\ —Zížû\¶5ñ»êsx¾2bÞêçàÈ™GpSYÇæçÇ£f÷ÍÔ´ÍŽ´PDÂíc±éLÍpÇîï9˜,¹èeÏóWí¾ºbwæ§¾µ.¡¶NRUòŽ: Ý1¸e¨n½$¡™ªð^Z¯›$P†s|‹±Aü óÓ/™W]Wèúf%ÌãeLÐ"Ëèñ¯XÁë[Þh,âá´Q!_\)ÛI2!š=Ï+g dÜšúA4^²xŠ×D7-üëB•pXc…SNé‰ñ&Ëè<3Öá§•Z;Å·—QþÉ+úá '¦h Èao—Q9àÓ¨O¾ÍM•¤{wï)Ó¢SÜOêNÁ ­éK l·7ÉÈ#U`0þ0’y;bñÄbLSëð³, ;brN:RK ·U<Åvbê*uéâü£u~ºÄÇî˶™YP1³q˜H¼ËÇOš.;èº-[€Ù,t“A–å2‘ƒÜ‰¶4òL"ñgè™8¦¤[¡'+zø× £<›)Ñ-Œ,ŸñÖpžhþÇéí 4ϸ"†$qn¹ö8S¼®¾ŸöÙŠ2óYË+yàÉ¢¤×ñˆ—ù¥bP 6½–óyà¶$»× 3(¤‹.­*µe(`œa§À—Î9n{¹Žh€„‹Oy¥²óôy:Î>j(…dÏ©ý0Þ‹«±ÿoÌ q5øf‰º–JY•°f"ýlºÃàûUôV°CÛDàÄA÷o< Ô)÷ÄÇý vYcØ!ÙŠ,Áö7"­:FuÜX¯Hȃ’E6‡Iº1’eÃô«~‹¬ïÍŸJÚó—­-ñnøK€q¬±Ã+mLuÓ]d6 ÆáyLÁúß)å¡ÛãJvùœ-•Sýˆ„‰7¸£®p´úö"„pŽ\ŽÎ¥=ft;J<­Dæpò06/ûáùŸº¾Ý*êçPÝAÝi²¦äžd!žp÷5꽨µg¡Ì2É+¢Ê’hÚÚ>qðûÂ?•ѵ,ò1±šq®`·ný¼e}®ªê¹ßƒýȇSœ‘Õ_¿XpqøÔ¶Sã°,Øý»àLš@„T‰~½=Ùy›Wo èŽ)‚H8´…‰õºT1Cùç=y ¬ÉŠ‘-¢b|8bÓ¦6DÌç;ö0Ìx ¼‚6º£ºD4ɈÎȇºW|KmÛ“„6…{Gû„ö®¡¾!oSÅùq£ƒ¹¤$KŒ iìÆ]Az›À Æãþ¿_õt0ïOýã*¾OYˆDÝ£NÀí'zèǸ)1ƒ}κÀ²õn×>åûˆþþ¡í8¡ë„ƒõÑ ôÉ )9wûØ›šÕ| þZ†KêñîÂâèZñð:,h áèÎ3¬,CÊk9‚áF¸¦;¤ÚRÇùÍrªDËKÔò]m[ÂÖ5z¾œ¨ì±û§ª÷GÑÕrNØ’Ë)]Aŧ ýÂÇ+³Ð§ö+E‘;‘lƒPøI#›aâ-öÅÖUkñÝäˆò„k@S奟QÆüºH@θøzðAo0sˆÉÀÏ™‹¹¯î[¼iÄX¶ÅšWOŽ—Nz¤üOƸ–w=qh0 ,öµŠêgàÏR௎ =–rc^Ôk f½ ëø¥†`y»rÁU2â‰âª^A‡º­× : (+B`|‘MXØû¯/Bý® ïŠH_†‰ÿâ­°·Õ-s>÷’º„ Í!Û¿ö&θk*ü#3^=Ìg –_8ƒÇ†ÁþM/éàñ©ÂDm=ø~ó}Ž3ôѲÃLŒ3ØNJ†VW3¯byCJtÞÜ|«¨ŸGoj-ZÒC°m„Ÿ§'³x„©½,rbÒ†lèü!Þë;ã¤iþ_›ÌË^FIÙúÿ޲ †:<1 S«ž¨Ê`Ãu-¤—%ðš–@¨ïr¾>7#Ÿ´Ñ@”¥:¹…„*m?Б”R#h`*¶Î¶+I¶Í_.©YÂoãHzÒ¯yÐlQfITž–:Æ~.y÷ÕÃd•~†ïƒ˜FY Y»vÎtî@ÈÝ 7ºŽR$'Át‹<ȧH:8oFì^%+ÈU >>ÁLËJbY¤ôÊW³ög Ü?ðAÛ>k.™çaîr‘ lµãDãÕ%bJŸ3}yE™²Q¨ŸöL‰±Z…PƒÓøícôNš :ÇKëet*«Ñ/q2áÖo©¾ÿ1Ç #ß/(›U[0B×ÅœÛ:MhmÌj0QÔ×–ž`ÇWGýÝ>53 a€šU¶ùµ"ùÇ÷s7›<„ÄÃ-†Ls¡=Ê·HD8Ÿ¦-¬wq°fXýÒce{ªx/½0â¶z`>Äì²â¤:*¹Ìy SÄat.ÖæHPo„6?çùÝç—ÐlÅ~ÁŸwì1Sdeâ¹W¹!:1ñã3`“ i\û.úãfµ¾y°¶˜fuiÁ»Å³ØÅXÔ¬ø$Ù\ºÏÎÝê Mpa¬ª_‡3Ò™¥%Ø¢.`Kpô™–Sþöa¹¿Žlö`.Ø:È ³Ï¨¶ôõžþºJ)¡›êe^7L‹4× KÕ×H|ßËA ÿø‘#"ñ–<Ì€²eÕðŠ‹øõ9õü‡ÙÅáYV+¡‰žèËbª=§œÛç=M¨`¤)5¤v£mX;í;uЏQ`ÂxÓf#𤥉L¸é=S ±³Î\ %ËyU½}&ˆ¿ªíá<ž{#ˆøR}7òdµO1€]ðªpÕ7ŸE*ù¢ â Oצ8UY Å’*“ÌÅ60u/ç1ÁHà‘ÏãÐÁˆ§¹\ð¶TŽ ¼çD }`'œ©‚c³¶•pÌSºqíq6:zÃöŸ¥JyÖË.çÎDI[HM¿!µÌйo˜ÝPè+5lx|ÿšëã+Ñf*¼R•ßl™îˆU´ìúª?+öÒŠhëùœ€6/'D攡ŒpРÿE@|£2L/¶üž%@í<ýSÃ8h/”I®å±}QÖÐÒz¥:Ýòç½@?kTIОMåòoˆÓÉ¿‰E2ýd¼ç,vœ†9k¬IÝäûŽmí%Ÿ]ÉÀòK!X{—£i’•ˆüÐ!ŲòW3Æ~PÌd›Åðj7y Ükç(¢š³…u·jÕ°ÿ¡-*ù³u®¤–Þ ÿ>PÄp°TÆAAš=rŠWVw¶.óYÇŽ ëܯ‡Ôù¯R­ð&È£ä7Éå*Äg—p Jy^€àºÊmAF+4ªQlÀ9X÷ÿûÃ9:åY70/sÕ“׫°œŒÃ!£ƒè1¬6çõýòLÞ”¤4ؼǎû“A÷5w Ì„©‡Ýâ+@$+P!'.fÎÑé1ˆ’ˆ2W áîžö¹T`AîT•Ÿ&,!ä4ZI PyÃÚ&¡WVŠ8zÕc;- ÔF]cö{aÃ% Ëþ¸D}àvZšß‘,K µ€xbmÝÏòíUíÒ‘$òN;Ÿ*¿ò–tLâÔ|_/ÍÅÑ”IpV˜«±#•/e®I_ oå?Ä{Å÷½®Rdë¤ìäæÁQÉÛ8ð{1x:ŒŠÊiºû ˆ\ÿ‰~á»ê˜mröz®FÏm‹i)HpAp,² #KÔÙ.¿øØ@¦` ‹>5ÀÛY–@À‚Yèã¢t…3ÓûK¯áþªiZÊ??Æ1°©Äïó,õ‚óUKa‰ô¬´AŸú ±Ìl]]µšCUíjÔ •GÀ¤13Õ9ê5-|\ŽgÉ !ÅaSÖƒb@ ñK26«]ŠcEa“ðñU« â/ {SjàŒur©æ´@ãNgÓj"_!M¾¹^¿a™ÐŠI9…½N/ó{]¾QÄ;Œì*»½Y2']*QÐ(·h†4‡d6˜1}è¶ÑÀðàˆkÁ^"éǦZ·]h à¾4ð¹Ï:ÞaÌp ;Üz)Cd·õ±unŒj‡udæC‚ˆîâcdðz5w°VJBtñÍÍ( 6‰RêUžå á¤Õâµælq[5¶9¯„ËW“‹Mã¸&Ñ´œg#Eÿ±°kR3?eIi´¿CTÓ“OSá̪¢7X·•—d£›ÚÿP5[õV ¿Èa¬¢b§1=±ÀgfÔ§„4t³’zÀÜKV©åD¾‡ ´¾o”f›/¬íä0%øÎ¾ƒM¸/áö±x­öV:Þ¬4{&j›Z¨#ÁV8Ò=½[³à8ÔyLÁ¬þƒ4t=× 9”ùó €u6 ‡@eÛæ'þwm,‘Ø=`Rn jWr uKÍÖPÞ/ç¥öïÍøkàS≴©’ˆÔŒ]õ>Ø@}®÷1e ÷†ùù‡B]§sHQŽÆ0.aƒýÍ|Ðj„]Þ’qßY¼†ño¸Í‰¹ø¼ÅM **•…(r»7‰Éˆk)ø©¹î`æ“’Æ$®WÿÎyP>ÄÊ'nx1¬;(c°ÈQ ôäõΤPáñò(€¦á„ IMª€"õ ]§*j•¨uÅ}¢g¬7‡"qj= Õy AB îôÆ34àëŠI…7ý®†ìÌ`¬Ø;:ø¾öOiìÃØÝ>Fíy¬™ž$Œ¿;°ËòKªR›¢Pv1wŠìJ;Â?œÊmx€Vì—« ³Év<[Àçþ¸î*Æàº¦–^h¾JGHP‡èuXÆ„¿¶Èd ¿çÎkûXt†‘ÓŸùîÞè±7í^:ähB™Pž‘Óz4kꈼñËã’/7ž`àeU¡Õb¯,.¡ü»^¤yHÇþïLˆ¸/†ª?±Í„ÔVxÆ@6"x9æs3pb"JËôÛ åûo33²Æ…Q€mO™ìì-ö屫×»T)lU³t9R”·D‹KÏJŠ4%¬MÒFmz·wVZ€´žÐë+@øh¡YâýÓ?É•ãÝ/G {¼.Ng !ú§Õ°+$1¡ÂÚ#툌ùÌ ÈT˜B”ÕrC®.)þ™ú0ŸëzþêÿÅÍeBx?ÅG…uòºn“Õ'ëK?» 4]˜ \>Xªˆ˜Áb‰úâ¡…  D€úɲú¥É˜`"îš&o+–! ’Ç%ú)…É™XR,»ß¦ã¹ß;þî9'†Ç·²A1¹èf ì–¼&ànæã®CÑJ­­ •á‰ÝΓõB÷]Ýé½ð‡$|ºludùö¼„$%‡Ï|àøV8±¿% Q]-µ2ŒÓ‹¦4¨0ÿL:׉ýÆ¡ñ÷HYFu2cz‚ð“9¢üNKA*ë~?ê½sæà­\o§:wè\”›8£¦W ­ ;- ò÷ØWÓœ©­i7ùÒQ?ñ•´·‡æ?¹à]aò‚uRm‚‡UµÜd-Ìàv¡]Aà®iŒˆSæ±Äh²vga<õãx |®xnïêó3-9c¤j>Ô‰”ÕkºÉjµ”xšzB¼öhUWV²DíÕ{%oóºwÉôçvî°Ÿ>ZO½—Ý»¦¥I.›Í¾²ê %ffýMŸ~ÌJÞ¯¬Ó[»Op…ï"Š¢ï(Â1­À:ݘeÄu³T¼[o‚¬Dce“¡~9&<¾Éš5 `$ƒŒ'!ÌÐL=Øàüw®EìÕ5ìö­AtVGl³³º9™DRˆ×i9ñ©Ñ<¡³†<Ð5Ï©S²Ñ8Þ]БáÔ+lv™)V?¯U·Â²<¡U2A&•K¶ª%YS²‹pPX® ©` ƪ6oXk ½En“4滳œJ©€þKv7¾­ÇgÍϤžeÁPÃ"ûU {pâìå” Â;ÜÀ{|yú`î LoÚ募Õr5wc˜l¦3õ†G‡ °ëÄØqÒì›,æ;§3¨ïiµ?E ¦ý‹ZQ–TF·c÷Ô&5ª.ÿCËz÷tŽB-çŸàÃb‘×9Ó™ …DzñcªëzY”Í|ðe˜j“‘žÌ‹ÂÜ5ã:ù½“˜†%ÉQ)AR†®àRª1s¢»\ºlqÛkù!°˜/ÃÄã Ô¿(‡)‹þô~Ž¶Èš-mô™7 S[«½F˜6ø†ÀÊ^Öã¥QW½ÿýdÖò^a3ý,º®ö±I©ªÏùPÎ=0ü-¨«7Ô±_ úx>yL¯Æ÷•ì,›(ª†EÔS•dôú÷‰w'RœlS$ãïçs4ÂÐÛÀ¤}LûSî ÏçÑ”MÄâ÷ð)‚ýßO©¤×uû}iæêÏÖHùUÆ+àÞ©´ä%®)dÁ†+#E¨â0Ü#@O2#·r{WŒ‡œÞ†+3­ûJó¡yç0­4*ÓT(Cóƒ¶OC{¾6¼“ãICæ¾²i3gÞ=ºNÌ:f–þà1ó 1B;i*¶Q"š„!;ÔäÌûý½í¿®UH˾k[ÇïN ÎzQ,Š‘»åŒ¡ÅYR»T`ò)°þLÛR–tü ·ûÙ¸òžéfºmƒhøÛOñ&OÉf÷ÈGÕ[ÉC]꾚ǗÓàð/4ŽnÎY^°Íi¨uÒŸ„ÙSÿ…Ī%†¯ÿ­û>ب‚¡pÆIÞÓ¡GxiŒ`tNŒ^eþÞ"w:äÚY b`ûq޲ÿˆªâ*£¤¦,OÈï|TðÍyrØagÍÈ*T“59S§š8Ü“Úží²¥µ´ÐNàÚ%Ù«õIÈ8¶yr02GÍ× õÎt±—²Q’7¤ëÍj>ò”£/|OÞ·øðüúq–,§j_I‘ñ™ñ¶¾O€‚™ 5*°êMJs Øc½Î;cë“ñx—!ÅÔ2`q‘3?_®äy³‹*oÇHoÇ® S/¿†Ú}vÛ»Þ½£N¿16‡ßúl. Í«æª8¡9¯ûïUôh¦‘ç .·8™2„§‡3 ß.oáã™Ã@®ø²lµÚ°|§]†uHÏB‘n [²“‰!©tR kÍœ7+D‘, a¸=Tå ¤üõ_¡é¥cI}êjÏá$;«¼B ]}ÆÙa;!ÜMJ ñúq (2òmš9£2Û¿kÁÝX>$á0âI¥#øÇ·_ Æ-œÏM‘™”§ŒNû2ÈÖ⛓¯¦ògUpì»fi\Gjh1ñ°tï sé*Y^=g¦Bø+ÝR{WxÒZÈÔ@.¹à«þHAçÔ«£×G=ÆU3QFÎø=%}P+HËïºÇhß6ñ¢Ãxå{ôh-Yx6R !|: í‘‹ÓÉÑ:Ði'̃?êã’æ}77)Òf"^.qQ]ÆU pæº(²Ïk$jxŽ:‡W›Q:|G#)%nˆ8Õü9¯™Hº@u¯àY}¦ª†Ó²ŽzÄÑÑƒ{oÄO‰iÓÉâÙþ{Z¬ëhì°Ék<Ó;ÍK$~_õÓÅkø!I…‘5áˤb?†g0öhéÌlÖUýiúÁ¤Ù¯ØßL²82PøµH/tÿ°žò&72¼~›š½ó`Ä’¤žjûa{Ñ*&€D ½ƒÈ|Ì»¶,œÜÉÆLe— EEFɉT»i™ R˜ÊQSèŽô¨A†hv9@@Šô^ΙÅw°|V¿(NÀEøú ‡ú¶Ë©X") –ÿr™•}<Í3Qû¥8w©Ý„òÙ ŽÈ¡uFûÊ×ÈHÑWG¬lá6œx±J7çB@"É~õºbv ‹&¼X'ûÃGM{Ūhײã’D"-@ YÜ·ÎåÄ{”ËØ¶ÜäH¯èºVSldoRO¼N·¿Y©âX¤tBp ´4tWÁ0'{k0ÑæX²ÉBaýÑä÷?ðƒgŽ,6«M}7°» ã!pïdy©¾Ú´mFV–Tï€ ƒ= 'ÿè—_¦RYH~+nÄwê¡°Q<à»Â¶ºjéå­hÁ«ˆåÒDÏÆÑ·Ý,¿}J5K/²àoEtOÙáhý®E"Ÿ }‚§oî4TÜâ$Þ‘KŽFY­}mD:ýì*,4;W† CÎ,€œ‚Hs'f ¶ â`oB}qýÇtû:¹@SÄwÅ@gÅx]ņĸ0±  °Yø1*eP!Þ\’ª>#Rênž¬•¡;:$Ÿý¦÷ h:- SZ]½>^&:ÕíOt6QR¯Ÿç2ÉjETë*äH™ 6Èý ùKZsÇ%{4–dï—ÛÏ)!w½Rø¡ØfRÀ=·õ{ Óœÿ3ûGÓ-Ftõ"õ’̱ Î3¡÷Ή%§˜ãXŒ/ Ý^ç¶g7_¸ÎLœhæè:ð)%•X."ä œ )`b‰ïÕðhìvUÓwwtT^}“¼¬$›ÊºDio7+tä1€ÕÈ•ÏXz±¤Sà†­ÆYÐȆòß^åÇŠpC¯R£W¡†—%4À$^¶Œ!És·m|·4?@ÊëTÿ+#y¢ÞÑ2â±Tš#…‰ÏÂ(D%gèÇ4ã>Ÿ “J×WJÉxýÞº ~Suº§™Æ%&v/Ÿ¹µS'‘ B%ûÖY·''Ô]Ù^§ )š*‹ÊÉÔ€KY®?îZY· Y¼3lû¨fP8‚=$²ºzT‰·à”.²·9_½#P ±kZv½tª} XéHÆ$f•Ñ|}9丕» rgÑEñÎ$?9x³:÷ R»»Eê^f¬#ñLdamaXGr'B(P$ù„lñ•è˜Zay±ïÃ&ºåÃñÞDÀÈ^£°y9Ú[CTÙßĦÜoYnÎÖR,Œ°ÅVš ~?–V@‰€'ŠQÊ<¾‡ÆR #/UÄ2ªŽý Í'Ùâ vlp—¶bÃü¤D>Õ žRYzºm6]‘D'ŒˆŠoP75ÉY6HƒZÂüg_$ts‹;ž=.yÌ>¢ÒŒÒ5ºÝO¸Êð“ÊÒsd€6"ä×»–iŒ¡¸nÆ;ã‡æù²#äIÑi6µmº’ÑFG_ƒiA)ý™=†ˆ¯P· 5‡Là¤ÿpò…ñz;1ÕÖè´æ·—®4¡=&šÄôÀKЧ¥ßä†"@÷Ôð‘C³¾)¸–kÀ<æä5°å' E…ÐIlRE½xãÕ¶ªi‚èb’è 4%§ F}ÛŸI×ÙŽÄ™ýúžÿnë’CÓ‰zy}¸Æó—ÄWPÈV>Ý1#ÄJµJO¢«•3ŠÑÅfå)È:çÇ­ ¬ ÃàÜØ˜6—áÆ@•œ/>ð( QˆÚße%4in¯r7O{&Xí±¸k°mXÑoz|,äR¹Ö~ý[w”D*  ò‘,|…žó–çzõµ¶ôÏ6–ÏeaFý;,£ ëmêU<Ӏͣ'¸µáÔÅ:†2¾)šµ>…Ñ™“ûç°àGÀ©‹è½ëÎýÊ=_QÎxZw<5},˜6¶O!Ú ¢ ñ]º31B]ù-ˆ8•8AÈÓñr  pÆòØ“(Íéh¦Ôêh”Ú2Œuï´VOB>z¹ÜYvÓÀ”Lˆtàþʪô=ÃSÓ"ñûÇ#aÈ’Ã|;²Û)•Ö·ñl]8i1Úä€$x†Û Ø~ær½¾|¦±“ý„§Yä^ªSãòÇñ£o¤Ù9ÏC¡zMÚù P YB7G¦jhŸëàÇvÂüÑì1R¯Ð W½Ÿ+~9oÑ™ß9ãn~íݱ³”yh&ˇ:…D;-Ôw×™q£\z;ÆZ6ûÉÄIi×öáÂñöxCÚpî|›‡U•É;í“nøÍin\hmíòl^:(ëmkÖŽÞ ñZ1Ó¦ç…$_\ÉA½Jý'¡uÚ…TmÚ¾ ¿w‡~n"&êeÉv9øÔ¦ÊâîbŸN9Ö Í•ðîZÂì뇭º­ž²ämÖAGó&s å…3W5‹·}±¼šÊœ9_ý÷aé#WŸ¤®v渷¥JbnlÛªÇÙIì‰ã=ÝåH²•Û'8ƒ‹™ˆ}x?¿0:[ß, +ƒçnìèÌ÷ßaŠkr5Ý„ør»ÑŒÀºõZøÇÇâÌt玦–G¯yƒFøêMiØ"F bÖi…õþ›ƒÄv¶Ð^X½Æ{òjM«g£«¥#8”í×úó?ÌWBEŸÍ¹eœ?1ò<Òã7{D”æƒYàG+2 aªïãSý=oÔ.Æëì1Á²³ÎD ¸ëu­·"Õb¡ÿv`ÇMQ?h AšxïdÑÿæmY┥ š§ˆnZ¶´üEÌÙî40Њ;Ì7uÖdu—m§Ð~‚ë~$iò}boÅ¡R'¡ZÐ7ÏçЗI¸sùk¿£î¦VùóÎj£ªÚ—ŒY]‚ì¢ð™"ЙHçÏÌ>Ó·®:þj÷D±Kð}}„·‰JR}LæRÐë]Ó7ŒF1Ú–ÉUËɶÓ¡+iØ™rláÜq¥î+œ±HaJÒ˜åøÏµXFwéÏ}†¬)kÉkÞ?í¡¶„O7*qhr²†«l™Ñ;›Qr7@#ŽÝµ®}ÈWJŽi¨½:ÑûE:‹•fܯô]ùãà(j‹ºèäj*F®¢æ±¶+•ë–Ëûú@SlËÈöü–6J=U/XOTwoäxTý8Œc¤¥÷ÿ¿T¨eÙ^'}Ó,?NX«8 5í¿È}•ôÜñK`€2]i®!/À틦Ž98a·ñX½àgÚ“rÙͬ“ø¾A{àëäkª4Çíõï(‹÷%túá’fmõ-º/ËòVþôñˆ tEC”=1Ö× på_¢F¸Õÿzƒiúà¯íbÃ}:GôüVáÕÜþußnÎûã É~ Ÿc’å(läæ³Ä&`Óä& 3ï‹­¦Éˆ{­½!­47Jh6àéµp›Wp$µ3æÆ ñfɹ¤(i‡TóÖþP)aLî~´h‡W'¿[¶dß8î%ë8|QªÁÛæ–ä呆šF¾sŠ^"—^Xïb&?ZÄ™yŒKÐfiP%7å:h9»¬p-`cî={s`m¾<Ô×IÒŠh+ 10$ÔsëE"òÈ´leÉ®gp—{سª½‹)>§ k¨E¹Û—‡¹Äy¢i …NoQû< Xt 8A65ýširI^Òê•° Õ±¨¨.Ôé)°Ë|$/Ø^}p- H/Î’ilêõË‚b/èz|“™ÏóγRV 8²=7Òð‰¢é»ßòÌN½§*+-¥^ëbqÃ!ú-Xð°>jó×óæÝQ_åB‹õNR´XÚI/x ºЗÓÇ€¸×8žÊƒ¨>(´ºŠÉEÝ>Öyl¯¿gƒÑšRÞlz‘ø¶É#/ ¹FŪ‹Ðx¿!«µe†ç}˜ÐêÚEò¹¹Bùæ˜è¡«Í£|Kg™;\²Kk‡ÎŸ½Rð;¼cz•ÉæÑè iдíÂxá wŽïá1’ZÐJx4fßfuN6À¯ë¹² ^pÛM2•tjSÆgyôI·Ä€VÞ*.Èh2Àû]¾‚Ëþ’'nc¸·ô]®nûFê¦Ý_k§è?è±JãY]z,Mò㦟 ·­Pû|€HêˆùÐŽ‰Ï¢a뢣¾1Â;Qç)ÅðõôOZÿ'ÞkübOøâüQ´Å :l,-hÆ@‚ïG-¸¿†ÙúTö7ƒVmñcðÍ4ÉÓ¨T=ö}éµ´§yóvŒäÊ{+squM&"°xô'Òç;Jô³8þÜçŸ,,“©n°ò™@ÍH+˜ý´Ÿhf÷vXl™Ê3¹ãõ!©·œi[Є̣¾qãÓurÚÈ>U_߉^ÜuÃd ѧ/°p‹²ÕMÕ€:ÙWœÆÚP%IeÑ' Iü†÷ÎË ‘!rÃ!5”?NTŒ™…/ºtHB7 =ŸÓ !ñ±â$Wx¬íƒ‘17ŸÇñ !Tâ‘&[¯XÚ1YÒ Ù€±º‚زfãôœöGÞÇÑÌs£òM[اß<¿H.Qm±~í’ù™Ù ¶õ_YÆ9»&[i!ÕõËa`‘¬%¢œË±rØmˆBÛ¢LêkWæó£–Ÿ{kø×Q¸ ü9‰Õ»Ì/&lS(;¶¦¶ KQ…¶+«XæÕØÿ¤¾ßr®ø”Aª|Æ~v8¯5Ú4`ÓmƒOŠQëzO‘é¸" 2€»Ìˆ{ö-8:+aÏx?Éà› `±¿Ô­-•5ö+ê⫨­¶ŒMãbÚiöå®§ŸùK°íú‘Þ!¢ži;J @bÇ*÷X o!«Œˆ&Øçx¶LqÀºÃ[küë¾U@jjR'WìOþÆ€8 4©übz „ô;Ç=@ƒçÇfÓºçP}gÇ¢¯Ž‡Ø[>b Ep"ßâ¿£Á¤Âm¡G£2Õ|u…ÝñŠèk01û=‰$8Ê!äíƒt@‚ØXôZ8]ç… Ï ´m«ÇkÏwbCï‘Mõc8ÃA Ô”ËÄ0K(ý|ßGÖ¸h‰pLö’ãNq‘ç €Djš<æM™?bÕØ, Á­†:[œò#` r£°*ÿŃ¥b,¸p˜€Á8L-¨ Ü.ü$¡¶R®ñœÖвn`7>¨=Xæa¡Æ4 †ÄX!J+Äö.X䘲2ˆ!›JߢUù_žLžCøÝCê¹wE‹€L+ȽŒ¹\Æ&™S¸ dêä­ à—Ir4RŽd=ÄŒaùXÐ< FzW4û\Gäð½ES( ]Àx×–Î|SÕŽ·r׸ŸH8EѲ#ÞTkÏL[»|¡ ­¡5K5‚ÝΑ7(/y»ZüÔW⛨ù™"1T­/ø.Óé‡ù{ÎÿMa« ñsø¤tPA¦¼T»Wo»³(é•OIpºLº‡<ÄÂû®kYEûJL¯Îå~Áôñ•È Þëä¡AÒ/G²ÈØP]1ÒRF¡Çï!ƒ‚JNn†/»8«e9mÀ¸¬Üâçý©žŠçÑŸÎdq68å·±.FӪ˅\#¯*ÆÄÒ#àÏŸ TD¦ytä"œ×qÏÅ?Oe&{Ü|É0‘Ú|£º.îømû æAR£j-³€8q¢<»M ƒJ.ïHŽ|Q™GñÒ@ƒÜX`ÕʦjéPj0HiÚŠ …æ ¤07±Î³¹ÒÁâ Mbñ1.KÊJÛÕSuÿÎõFH½ÌÎ@D0]oײÇ[wA·Sê¨9%@ Ts:ãqBˆ¯æž;⎙²¢ÖMYëqkÜŒS³ ph°‰>ú¡Ä¯V ‘YH:„@ÂJ•‘é “ÜÇÞEUb‰;ƒ{ýLìu²Ê4×L;»œè[(tD)â Ñm?&gIÄ¢:ÌXëR }`$¨]v>‘¨o Æê D»Ía&¤û”¾'q‰ZÝMöÅR˜Ž7é.TÍIçgKÐâîlžƒ­­ð[qJùS“H¡Áå`˜1Ѐq>x;“Þ²¹wÒ ÆszåùÁŸ_ÑŒ¦uü¿kbæY¦ãä¯ þ © Þ±euoàêC„/T…ÅDi£‹ÈaMj=úâÈcÉ€áÎ'uD/Ýž]÷ûoq»ó(\Å2ŽjcFÖý´ebaŽ ø%سÀ(4¼KuhÍn{nÞ–^Vz턲ˆ¨ÐŽ»£bk2 ¨’.*Ôã\ý°R)›=d4 iÊ_n)Ã$Ó¨sfæµù‡µ.½ðÙ=7×G鄆ñeÆ*Iþ¯qL:`ïÞ?ë¶R¤Lä“cø’9Kþœ¯™Å!´~râê¤v_DÝY7ÎeMýTµq«‚s 0öi>O*SØŒ[dåk§°PIR­8¶— ÞÍÁ ¤;“¨>xÇ F†È›ª²Yê]™3÷ÁE,½#-åvɦ›µ½)žª™p‘ÆeÍOß_¿þôh-“ïç‚lýuœÞ¿ÄÍÒñh­pٛشápˆaMá",®LöÈÊ]Zg• èÇžBõ.|P?ônäó$âËMâèºÄà\r½Ç ýv3s”m&óŽ"ÞMOUa߉ÙsŒcèè) D”'°áÊA”Rç»kÊr“¿ÌÑæ;æ??þŽ\² ñ^v%‘K§ý‘Ç”­wÉgå“.$gu®ÔÃ4/þûËö°ÿ6ßé‹3ž¿œDj¯õ]‰—2zÙµzûÜ»ù.xðv<’A;8`rp’"òÙ¿q}ïÕÜ5Ör"kºß\›­3Ú0Ñ%q,!¶–r´©çâsßLRWë©s——hn=úû§ÉÎÛ¤›iw‘ð8¯,Ù ØÈà1ÞT VkÄœl¦àpÎ*"Cè?é~áš}èJ‚­áXÙ‚AR>(©@ë·ãšJ…ˆ¯Ê{úX`ö¬¡®8¹œÕHídGV¤îñ3ýû8E“~Ï:ÌÿŽŒ,vަÀá.ƒ €nu ‘.„aEž|4 W:–ðá„Öλ@¾an’ß(N®™OC§~k‘4íߨXˆq‹3Ò³ÁŸí²ö­F´,Õ÷hx"Ú£ù€‰ò-`ÞIA¿ýJ¨WÖs9s7j+¸ësVÊ%à¬Hd–|ç³~WÆYB®žéÄMjâÕ/× 3ŸTfÓÚøòþ´çæÉÃÛ Ð<€]‚‡wJ­ÆÎ_šú½•H¢`÷®ÁU±$$ˆI@*ªG‚Þ>-°ïííÂ!Σ®îÍ' 1þ)%è±Y®cI¡ ~¹½%ïŽWàjö`~Iðíô Õd®¬Œ«îq·&p8£Ö–ãb7{^ÕÅ‹6,ã¶sT∾f¶ö_ó+àã¸X]·ÛùÁÀó-ºuïÃE Å*Á-TÙÚyôïk}N‹ˆtŒ×ÙU}Û#°ÒåS›^4¿&V GÕAZwJNú‰¾´QeŸIŸ¸ab‹š¥‡ý2Û¶EÕã°‘_Ãaˆ_<”ð¼‹u¥çkÖaÖ’XÞëcï¦y[ITž'àòêôWû,Ñ$p áÏAæŠ/¢³Ó0Z0ÿ¿|#(\ÿOiÿË­¦­Tò³‹oa´gŽ”Ãì»eã$ùv¹˜þ%† mŒŠE1(c²o&ù´}”;hŽ G‰)ÓöÄ‘ƒr_æê&]ÑßÈLᤦˆ#Ie—ï°µ9ãh ×É”EšNòÚôe“ÿJzùÔL焯¢¿¥.šg XÊÍ„K®¡ÿ¼KEçq_Ÿ†×ð™+ž5áF¨<ÊRöÍ›NG4Òo'%øÉö_V’x<êç©K~v*W;&fþ : ÏÉ@7%«|>&å]FC¢lKûAÇþxw†ÑnÔ‚ñä5!„•äY=2_f»^R8is‘áA ÓI’¯E¨®=Y9 J.äý@<Üéî0˜åLê·ûô†ÐT.ò'jÚOçD É 6ÝÕ+Ôлe^Ž.ꃛÏ1f 4ò¡Ç.¶/nÊu5äùgîsÚs¥|…ˆ@©uö¡O#Nt$ ’èèsG¦±lŒ¹mÃÞæ´Å]û«ÀìEA ^¤Æs! ·{ŒÔCÙ‘Mâ–G•ÎΙ¬t„¶]Ú¹!‰Ã rô×D¹eOÝeÛ8}’ïèþt†ã1=˜fCÐoÔ{û¡i`Q[eçD§PõSgVRŒÏ¿?Ô¦y#ô¼ZD¨þÔMÇÆ4Ý z}‰Z<$æ´äE ’‚º; rÈðâÚýÐÕ“øIß÷¶c~ý°ø·¶¨ÌHé*6q1™Fª {ë%ÀhEÔUfvú¶qL¨¾õC¨„¬I^lœÄ5~è&$Ça¨Õ¯äCÌ8E=i/ÞÛD&'P ŸÂBçýèRÖö”RysÙË¢RølæYF \´è/†åÁ`qY<ÌJ˜2å…ñ·Ù2½Ôœ/¹Ñp…œ§§>jrˆ[„§„pÌ×ñÆÛøf(pËKævHˆ’rž¹À™$Óì•&MºæôJïÒð¤¤6â›M™†EýÊ– »ÄD[vØXÃÞtSº$©›úrã…"gÁñ">+…u†x#ï¬[ø°\Ä4ü¸R.N[óRtÄ0Fï(<3‡¿Ãî9t*Âpèˆeuv˜ÿ\ùCc FŸÄ‘ÿÀLJ{Š+4åt2Ðb±Ø\H¿âŽÉZuWøñl,;îãÌ„Ý U'yWƒtÕ¹dŸ”€€@œ¯Ý‡²FöC5ÈçþLbo™6ï¿€«È«óå®ßù¡ÿ{Ot{ŽsL·Ë÷yÐ~f: â༷‰i7 3W.8 $,»¸fG€nã+$Ûì>ÅLsy8û–á}öì>ÀÉüÀ§@ZuÉ.+TÌPƒ)Š ÉüÌôÅ38þ€$°7ÕTe]0{Vg¢kÚ™§ LÈ "bÕL­¢:* #žoqŠh´þ…YãN›ª´Ý© u• #•ò2-úüÇuöÝ,Â×B<»Ð›·\ pï9õ‡úø›ŽGtb½Âo½áU`ÀðØ®÷<ÝåŒ$Í' šøÌß*j‹à‡B·SôºF‡ cpbˆ‡œ À·ã•į~PÇèħ„Š$‘G¿è)u&½ÓÔœ”.©;,DJÊôìDÚÀ%y]vß­:‡<æ¥yDȸå«äâ;J^° ØÆË›>É–#k´y„·’ŸÉ!"¨Qˆ³»¡è1AÛÃKÿoÔàñI¡ñå—Ø÷ªÐ¦A±ù'3ä ÁeÍ­(êÿIRUËY6‡{=hÙsÚ ¼o“«=JH@/û}ÞÙ1=& È.Ã]– w^o “ó¥’ëIœ³7* i¬–ræÍŒ‘iMómöêp€v,¸ÄFŽ#Wk·Æc¡–¸ïÅß~¢ª>P³ÇBŸ!{Ͻ¾*ÓõÖVFüÈ0§„X›úƒs97Á^§E›b€Ea>ËÊOém’pPÌS’85èÞ/žãizIlf\âçyUTCSòî¤ÞŸäÊ«E’@N§Å\ 9Ë÷2a›x™Fë kÉ…zÓU99ö9F._tc-Þ)ËÄm¹3TW¬£ÚEdŽ·;efÇë?Fû•VÖ}ú ±l8]‹ Å8*/…1‰a@7¢äü ?â7†œJ$’ä´èä,j›“ƒ_áwV µF‘C‘pÂã0Q»·èÞÔt8H {Ç CScœ™»~Ý®Å|ÞúØ‘–¶™ê~ ‘˜5kºø7Õ B…ï{ç=3C‰zˆ Ìl—߯üZ÷ ýŸ"_ã®LO’Ah÷±¨×Ú"è ýC«º Sö^ú8'dí.¯Üè2ÍqX¿-ŠV0_žÚr –Ïž=˜¯žk-àÄÂ%“>´ëî1æÌ/ I=¢ä#”œª,¯ì pÁ4Æá¥™æŠïZõMfUÙØÚ†–Ãn5«.p­SnD”Ê£ï!¯ÄÀ´„ó»LŠì¼qÙJ‚ ÆÃ»öJ–Eðê¡¶ÿ^N|™cÇ[—[”ŸC•³kÓ)˾±I×ðemh.N̦?b! å ÚÉ‹ìWÜddÚpè|ƒXü VÔ5ø¹-·ï^FÒÔ§2]€n6}ª ÌÛç¶³K:¤eRæ›u'Dî:\¬''AF™Ë(›hݤL‘³fÇ h dÃgî­¦ÝÏ'~UiE¬˜¯dúüàw ‹e"ÿœ%Š=—.&מ>þYƒX?€àMFÛ¼ÖBJU˜`Œol¦‰™l¿6H‘M„Þ…ïK&Ùz›ƒ¢™XÆ }¿14ÚtpY™¢#›u„¹9Äxpý¯q (ê…­¶I Yä©F 5Oõ‰:ßêCúåÏ T騛LæRèEs'RŽdÀ®ß ÌJ] Ŧ·öq¡$ä"–”+Ž|Oi# |¢òÒ"ŸŒ ºSXÕl˜ÉZØHÊ„TE)éÍóW°4¹ ÈÊ¥òf‰MÃrS°=ÊTÔm;7 ¾;¿‡¿°r¸la‘ÁÉ-œ=žrÊ0L÷ƒ’U¿èªió}A4Û[SVú¨M³¾ÎéËÔ^†*dß¹? wâ~¼‘‡ztZC›¥¤ÓÄÙ•hS¯÷X€{³‘™¡˜ÌÉܨÿ¯éä™ÌY© ˆªã.Ÿv,&.C~é ëñ(2°ñ¸_%Üß@Ö¶ÀŠpÁ| ÞŽžþ$·ÝSÔ.±pˆ·(b‹€$•=7CS³Ì*“ŸúZl£Švrsi‡nIÀŠR“&P!×î^Ä]>D.Xz@f^G0 «;Í<ë¡ð´.ÅÒùñØÃiUSŽ¢£!ø½&#Y¥ èÆZû˜ÛÍ61•çW£ND3 dS–ME3QˆÓ‘uÒ©)†¥(ŠâšH@¾öçZØ£ÐpÉš×5"mDNÛ¾¯öYÊ£_þ‡ð0³£N•S—È>ª©Š1ŽË€o–J Õ53(ð{W›,ªôp€©úìßæªGh‘J\åœGõUb`Ø‹Z°sŠ ˆ ÿb18/–ë¼$Ÿ\˜ ¥ þÈÀ½Z­œxw_WVµä·¹»W»›’Ö¡gðoÓ—€Ã˜€2@ñÔè‘%Q(€Œ³†cºc [¨)ÔY‘¦ð.ú«©a[bӔä1¥3 ‹=¹‹ÐÄQ")™Î8°Ôí3ˆ½ÎQÔÁ&v¦;%h+ö„cXâPŽZоëN¯†Ý^ú²{`·%çÁçÔ:Ô…!ºïª=‘$ÒÈädÈðfó„ñƯŠüw‘ÀJ0ë'?÷ÍïÐjzò-!K‹°Û¶BG DRkºÏ5è·ßì3R®[|×iö¹eê,Ö´ÞEI“Å 1g®·®z3K89N ŠÛajS,ÿhívŒiS¢_”;¡Ûùk—>9nQh^¥ÞŸ‡.yâ·iãò@eÓ‰ñûØÕ‡óÚ“Ïéþ¹pïV\x°¬V6±;»Öñ/î–’ñÕ»àGWßã#‰ŒØ¿JcÓðˆ‘Œ]Î0yÔ¦ŽhüÎ*¥ƒ˜«‰»à¢[¥êòüò]sñZ¿>SÖ+ÑSÄ´í Ùœøös½Y}ÍGšØÁ þ”I¯£ZË£‡y6Q`‡¾³)êËÿ­eÿïfw"A1 LÖÏm_<Ít¹‘z.u|⎫¸½ {œšÞ â€[4*ß{]ë>–¸¨‰‡Së»S«;Ñ+ôÔÕMÒ`‚]>(ͬÍËznð"”ýR‡ž•F´Ê,}ÅWšåüX>9¼ç®ŠûLßAòOŸ <í4R[€ÝÉå?ôT¼f¦e‡¥àjJ1’#¼BÄÔ¯¥‹`=¤ªÿ•K+/ã•l, ðí°h^¯ãþiI©æ±£›bE ÞXV± +ˆÒêç¡ïºŽj~ÅNÍÀ‘3¡bpä§WÁyàFCêÿôésÑóÿ¹¡K¦ qÄ¿êJe]€?Ø:1Èò%­v<à2ÇYh¨hßà –˜7¨uì´9bÙ5´ÁÍ/°uÏv§Â'm¡>Ùf>ñ­i‰¨Ë€¶“ηeò¤óª]KŽÀšŽs/ >ð¹ytb½¼¢Ù,ØÈèf¸Ï®5ͧ%8ÅOxS‚fŸØ¨ìTƒº'tN»/Y Âeª]£ÝˆÓª*…òƒ${¡\#åw¹HÖW;Æ@AýjŸëßDÉ̉YßóçAÜ+#þgË´ŠpÕŠÃ΃¶(/å5óÙ—#J’îÀ\Ë4ü--Ò–âÞžVsÔ1í=׿å9ËWJj!-PO‰˜T\:+˜œér…DLWbj¬Ž‰.ŠÀ$A”N¥Ôk ºE=”æÏ9ó,ÇceÕÃ<ÿmÇdzq®i>Ãý]Ç»¸ÂîmteK±·!¨ÇÉûû„rƒ¥É]D,ßz’k¨WP!îi–áÅÁm-zäš# DJ ç —ú/yA”üç6ÌÁÛ/% S$$Ƕe8øiàh°ÿ‰˜<$ È41Ë@ê“\ÝT®ˆqŒë_,('u¦áÜ ïê‹4›.—>Ï‚Ça‰L‘ÅVó¨ØüýsVÃîöü\‰k#ªY¼éK£*”FdΖ©™ñ€Îu‘±õ.}—0 0ç Î"jž ŠÀè ìAd”AÞÓ¸ÎÙTÞ ÁôΦ· §ÎáC`AïcN:rì|¤š,ÏÞÎ÷¡ç8ªˆ3Û¼ŒÒ'Ñ‹åûí¸¤ÏT§ƒ»à;¢»‡N=®RHú8O_ê_D—z%è4žcÕŽ‚·é{âozæ<Óý¼ “ԫк¦Ê†™)ÉoAÜX3Ô*ìë)Ρò¹V¤Bè ÓÆ@Ï:Ù´tX ÒMë‘žÅøkb¡;À~0AåLjÃuɬa‚ðýøÙçÍ;R _Ák¼àSí®ú&Auò6Ðe¹›M×–Á—{²[ ÌñÔŠÐ,(F]#g”ZÞßüCg¾Þ%k!Á¾u†ô17Òš2N-Y,â©X²Ù*™}´ Š%k…’&ýd;!,¤Gzºðt|Ê“sÃ2JöÜ1…IË\úàÛ°À$<â¬f«o,5œM…ÔWÚÓŸj’‘«/m“º4¢^ˆ;»Ú2”+>ªÍ¦-a^­ÂÞÜ¢lìc¥ ô&ªv.á^q'd¤èWM† ?Ë\¤º•ÌE2KÉ;'c¾bku#t:Ku÷l§Rßw¦â‡91Qcg i¡—»F´Þ eË*ª!ëmCÖÁ¾r¦=gL·yøÈUUñÓ*­Ço©žÚƒgºy–ʨ#x:ež¦ªœ/í,d×4ʃTgS›¯‰ÆÆì£B°  ‘ª{g1ë¬É~¾™ëLbÒƒ'ï?+²¢˜ ¯±ÁÑMET¦‹U¬ùçàqŠëHmð̦ÁCÔ+&ÐÈ2—UÀO;w©ï1T*è-jà=ö›×T7œDŸ,=ÓVç}ÊuÉ a€ùûìᄜ7›ÚŸMè/•–´n)) ­Žÿ¡·;‚1\ƯnìÎKNb“”gç1Õ>Y"CâÌJ >µ#aò*éÌJµ-Ï8gTÖJ.ĦÞ.»³sùÉš¹)Ôg,ÁÕ”ÜV&Ý«´ÇÊöXËšž¢¼HÛµZei_}¼ r†l b}%uöÊ4ƒû¬Zîy}–kº^<åƒKmK¯|Ý A9eä9yÁ ˜:™-}²R?†%讬}OYªïÙ!Á5x#Â')aÞÒ%¦9¿ê÷m´RØ')0 ]˜²…wï8‡7¡{qû±„ p¿¼ž½B³ÄÛLÚ²ˆÅ•ð˜ %*›¯ ³V>&eRÒæ±ë6ç$+H§m©”e ngÀÄ›Œï¤ŠÇš9ëCz€Ü¶³è<3œmgw÷ HËN¸~ †t™xŸzÈ9eɇ•ôöþ›'8Ò‡œ 4QŸv×ûà Yán| ÔzÊl88eRÎÖ8®·ŒuCF_Ì 3´a!X§Ç91 <Ñ’Š©o2zúä`y/q?úæ"PÅw‹û»®=°‚¬AÕøó i¿èƆÙ8óð5éBϘ×¥¸à/w-L@BwÈy4.Þ1§“ºÂŒ¯oáó,U.{Ôg%ˆ&ÃR»˜t]ÿvªªtúQ0Ð¥úæÇg/à,™ (qËRí ô•|žŠÎóP󚎄´Ó¸ݳ.P³2T¹·u-0Ÿ ûP|ÿÐB†7fš6Î áçßsëÀCÑM+♾þ+·ïê¨/! ຂšà»`:¿ß¹ï]'Wwnµ—wÀ€¿ ”ÊÏ¡•lÅ+×XhÉØ¤à×Cw>Š‘+U5‰ {œ¤*£-‹¦õt?×.ºð^!åpÝOõ»ÀÔu· &æ+lƒ#ÇûA ;6wU7”Áh#Ì9¤½5Ùü]¶¯[7öüõÖàv­/'‹°,“‚_(]'ïÃÖ4Ç *ÿ5¸¡.°ÜÀiàt.í“ÛÅÂ:–蟴ª‚@;¨A3à Î 5šH22R Ú¡Å)C1Ð-Rݧuvƒo4Ü/"Áa&RLÝ6Z5¼Ò~ŒÍŽn'2÷˜°™m\fXè¼Òd<ê.[ðÐo\wºgÈ,îr‡öáç”Ð3)d‰µõ‹à¯3ô{¬m# ”"°õz=Ø^h{ÚŸs úë4˜>Ätz.$K..¥Møœâñ¾§Î]”<“÷ÉúÔŽ%K¶sõ¸ËÁ¼AMuæ…m_¸‘røal‘¯•‘.hü<ïúYåæ‹UEÅ~ÿý”¤d‘³lÆOåxUéhÁI8æè ÔsË,¹ÔÖ…dð­½Z^ }4>IÌã$áôÛ¦Î@¦p«zÐ&‘f%ËXmL_¤B0Jª`oíºö 9ë«=¾*#Bq+‚õµ‘¶;îŸÔBEN…1¹·£çþHO7Qœ`#cÙ±æ¯Äï1GÍN³àÛUÓŽÙ÷—åôç¢psäÜ$É·ûˆX2lUO`äÍ­|õp„ê-¯´ jnBà*îE‘ùÜc>¬Y Ž]nÈÖh݉û£Óþ°¡á½ñË2·£ÿ^ŒÇS÷ă0ËøØþû%¬B™}«»›ý/üég¶®ÅNxÒÆ¦•È[!šèé¶m³¡'®·®×æh›$/ž^Û«K²ÜP`”â5K™VøÈMn Û8Õ5`œqÜÓRœI÷Dïc¾ïqyxëAïר[·†æ/r…Ñ=¿¥ÏX3wÒ%L• Ki_Ó– H-p÷}â›æ¢:±IÝ(ï™=&ëôT½A0WŽ.I‹¦²‘ï§‹žváiRù´6ú~ýrZJ›Ô¼J:ëÙÍQÿ\Jõ»T3NÓã÷®­Qˆ)ÁªÑ5¿#‘jf§<_냋–QA2m½Í¦l¿‰ òõoNw ©¡³ÁÐî>´½Õ…Ï<÷¡<ŸBO:îL†T(ÂÌx)]ݦ…«zãÃYˆˆüJ”q3¤šº_ý+µ²¯ü+…ótó §“ÞH¶}x cm’(éÕ×)izÑÀ3ƒsV’î»Á’‹iô·ƒA®\ñrP,E‰,tR©‹ˆjH8–Þ7ÙƒÆ#ÄmÊ»Œù2:J®m„=)p²WÒu>íþBÕÝ%¡eûã¦+0*¯KùDO— •”!©*_•¯*µ]qu¡ÓvvQ­†fP2œVQ©KzAßgìä¸/H!D2Ý*QÄ•®(ÖÆ<ÀÔC»B”A‚±œ½:«t¸ñnKü‘]„™ÕJ¿×ùÜ¿¿¾¦ŸŽ`ÇJ±©x-‹IØn¸7hZj‡Ÿ.ªÃÖoßäÁ7côu+–/x€Ëqì6bœCk®=ê4ûvR”}¢êå¬Ú¨Ï^öPEqKnB“ŽpµÝÊx±š„ÞÑÊ7#Ñõ»¥CË%J1¨ƒ$LSG8hô}EJ·ËBÈhÿÜ&§à‡^NãGß¡æÿ¨–„åz4“ضHÿ@ 6¶djç£x0‹Kp’ÓY¤„(kÛ&ÝSŒ½ÎoŸ×ÞäÖRê ªYy$|(Eu|«‘c®F_V46\<-ÅæXYÃe2@WnõAêq™3ÝMãèàˆœ@•©I'1¸ºjrˆ]©S7d9˜Tüu$! Ñlrm4O)Ü‘êIrlXRÕ€ÿD&ß|d¿•t¸útÚ;m¨É+ Oü@ÕlŽWOàÈóKu[ÆûÀ ˆ3sð8 *QÙv‹°ìá,LÐ9Zdg÷š$a¼áÃm ÈîÙVO¼ª“¥Ê¸“?q@Oˆh‡ÆÇ÷ðò‚\ƒfˆøî+ÙFm…kçd&ë#~>±U€1×/à9Cž›`(»9k•"µ Lö,ú-Y‚¤/X®£A™Öb¦¬dr˜-t‘n‡ô)G“Z98³ ¤SmЊ|î„L)È«U•CŠ“JN¦UÕ±59 ¥Q—ãqH¨b\P6:AVr¿úíh ù ±ÿ_†…Ô™JxO-´W¡Òç69®O¦Ét²£ÿðbÑÖsÛ1ïàK柅Íñ´¼ùñPÆ|ØÇÆO§y B]ïKÌFækáÓÀÙfdëÖÌLŒÒõÆ£q0n%‰h,L¢ÿ d[f³w¤_%Y;—CaаiR¹Ü¡âhžÕõÕe߉Ô"º~®+´¤ÿPµE:±„Ÿ#IN¸œ6ã¯PxTkŠ4 ïVÈAW Uíln7Lû•múüÕá\SÔLÀWï¬LIï˜M}EJW·÷j6SC.2‘žôk54­§§¨r‰×Xm‚:œóÚhB­ÑO±þÔ¶<øØÓ¾ƒLJ/¹ Ô=¥¦“nñ}ˉ?ˬZ;GõdËÈ y† —Œú7² ÎöP Gê\% èTÞ‘HiHûŒ€Í‡ý–rç„ó—šJ¥¢ …Ò¯Põã1¤Â²'TõÿôÐkvÒÈñWØ\t e™Œð…¸Ãè•–Ö¾Ð~-ñ€KºUYò›Ëí°&ìÌ!œ]*=Èß(7Ö@R·øŒs`&¶¦YN!‰5ãîÖ·üÊG_Ͻ7îØÿÛPµú¹`°ÖW êÂ`ËÒ%'é#L²@h¢Ó *Âúl^4ü`ËÉƪuù+OGê¿`‹—™#Ì+¹OÇû®¹ÐA]â"ùS—¶`ù©I“[J÷š£>;Æ;¢X8@<æ{@eo„ôs"§Vp¡ÐoGû¤‚êÅ{^z0yù‚ºŒh¼¼æ«@ȉýí+Û—¤¨-Á®ä ±•#ÏÚ0Š FïU@ùôàkAW0-½…¢8 †šÌ@ô5´Äá£}ì“°FåG8ŸþAE/ùKD â‘Ü”xÁǨ±³NÂ.)\1ø»¼Ê]„4ç2BãÖ#T¼ßÈŒoª‘ÉSïò~'d†¿OøyÍ\Hе¦y¹’(l¬`ë…•mŸù ÿÚÒf†ˆB7§Ç³æè­gŠ!\CÏUÞÚËÿ°£šÃþµ\Q;×B51‰†p9!<3„ÅDZLL=ÓEsE/H°U‡)ó*½n;³|<™!ÿ38 ~6ô?~še •²ß¯žEÙC$*)¬Œ§&üý9­T¹Ï½• èþJr™L^‹¼i¼9·«/;³çáÛ‹GJ¿™CŠö]3Êžaò5]rp‚O¤=ûé4ˆ@ƒ«µ'žôØÝĚі:)Öx4ÌKÜ)y©2/jAZÖ©¿á(Õ\*©ä«K7"ûˆg„+4eóÒ€æ¶[[Éóâ°ÑÕÎ/Uxõ£PŽ?ÖgªÂò3¤=÷-á6%úqÌc¬6_ß•e-'Wø0¾¹aÀ`ÊyåjÁ—Ó–".$»Šû/’dâ £3^#'Ï ÌðtEVœÕÐÜ^ Bú ã?û¬l1³£»ƒã: A“?ã4'Ïô8¡¨³`%ÂsèË2ˆè3óß—bê FBç­÷J±\|úâËv\1ê†s7=âgjÖO‡´î^›±èèÞI½$å8"Â8{ÒR׋MOçÑ#ê‰2{> 9²¿Ú ¬7—¤ž–jm”œóúcý£ðâ^‰]s‹Ø®ËÂr'Ó"hU™‚/Ö6®2¦TŒúµ$ÒàG‹4ÂT}°)ýï[°´‹ùÂÈ¥3IOý•ƒ ¹â¾®6 ·EE˜ýQ^%€ýû- òu§9Úë Â&L²üK”C¡[s …nþ#ã?–Ší)¤p”‡žìžª>%o†cuþ5Í>TÉY€ÌÞDÙA¯3c3!å1«6t×DÕ°(\Ÿ|‰;ñ‘” º|÷†®‚Â:\“vÏtZã‘B×~0œcyZT:Ó*¥Óa— %Bß±¬ê0ïpGíQ"ì:1#o ¨³§ªlÏÈp/o—ÎyIv¹ÜѼ-„¶]·~¤Îëô¡‘(ÔGý¨TZC…J¡³æûÏ»ZÊ‚NööDjpá«_v-×ùV8ûr+ðNîŽïò-×7Vd”y*vœ¼öŸf/¥ÃÄGÙÒ4ÑN!'úYµáKžéâ/’¨Ð->C Šû¥|ÄŽw“À‹ ›(K/Ó-´øƒ·Á´ÐmŒ;ŸTÈ{ÂõÍ cР—4HT†+½EÛ6›·N*âÛØÀ§ªónXØÞÔµ;ò‰WÓú’­ß„ßQ‰ÝÑââ#"DV+¾•ö¿/2úþñw^šHëD@Zú WÓ›ˆ\'øTT{ãhæ+ÅMÀñldæ0A=1ÝAúF7b_fø-ÏwÑûðP^Ä|Î^m‚–žñżꋈÌO ‘Þž·PÇ@º!Ñ[õ¯-ì°—ÓEñK”5z7¦’Ôº† tvLqç•×@¬¬Û¦œîýGsŒ¼CÄG3öY•IäæcW:aÞ’þªöX4Z‡­Ü-Ìb3—x)é©Ö‘þ¾­?ü;²˜ˆKÀ½›©b¨YSø(¡,ðݱÃCÏç±£ðî\BZüeg$^:SáÞ!)ˆ¨»g˜Št¶-ÁneJ ³{¼L6.Ûü›=aXh‹E—޼w@lDCÀíŒã‹ŒO{ÁLã^}¾I[’Ñ$Wû&Þâ+͆ ḣËúˆé—©¦S^Ÿç¬°cwsoãiY¤»¶ÍÈ’Ÿé¹ÁÍ7Kк3rN ÛšÆsİÁäâ³–.Öç¿)ÕÀ?ºÇ‘~…r3˜ƒ}Th •g¼§ž‰•Óf—äÈðÓ®ôà5ßÔ2MI/bkÕMõîhTMÑjÀiw—­¨@óâ¼ï?Ám[ÿ¥ `"xðËG—#…[Ñzj†:Dw1G$H5¾¤é/-ÞÊ%ÚâúÒ—cÞ¤¨ÁÊÁv‰w‚¹ž¸€ÌÔ·ó„C€ëXÒ†„µÛàŸn±è ;#ç0˜ì4ÅIU;ç]r™7se¶ÿÇ(Á¿”¹\_rYÁýɇÊ2Âp=k­Œ!—»9ÙÖÓÈ!CÁêô: ·ÇÛÅÿ&vlÍ:“&Ùt‚ÕW½Å5·îoþ£þC ?íp½LÆÉ‰ÁôÆ|< ›[7Kã&c >zèRù:ÍÙ6K#¢|!Ñ—e÷Þ( ¼Úeœá­÷ĵ¸(é§mh‡¬e —aÁiùŸˆâDºªªCÙ¥YÕKíd|L>‰ê‚ù²éIÓ{LÖ„£¢ ü<lÊà~ È}çÀH€®ý§€ý@]ýÚˆ“ûa ÌÉ¥ˆ©¿g,ŸöØà{$H‡o ²lxõÌi“‚a™² ÍP:ß4u´_âMnE씦{K²3:%ø³ä¢®êBhR£r1

îÏá0ã³Áì§ßÛFð|ïG:^§"¿¸@©“±©H4?° øÂIÈã^Àðº|t{y·e¿Ææž dÁæ^ÿß.‡Âò6àG-H?ø»A«²ó°{¿ý=Æ":É;{£Té[UçRHóT©á/ C]¡ÌR¢„Ö¥åƒ Xâäw+FYfËhœ =´Ý‹› ’p’Û@´’ßCSu›P„<{I^8 …Dé/HÑmØ"Úô=¾ùZó=ö3Âéäs%N±ž=wVæ’þ‹“†§|žË¢‹jþ.¸‚ÔvšÿB§G\¥Â{½9Ì@ÐO ŽL²ëV Gˆ=õR› ÖòëöH%AöÛµn*H'ô@ ‹ï5Îå>ɘ>Ô7î:¼´ tbbq4þÌþM³}&õWÃ9jÄ_TbÂ4:x’ÝPhºªsK½¶Þ|')Nz®ÀÙŠšâ_A⎠·Vø›ÆK²Â÷øº¶OÜÕ§¬DûíÓÐùò,}R´–‹MÈj…¡gQ7›WqÐw€²yéÂ+‹Daª\×ai¡nÄl@f€pžOž òl\MÔ?‹eþ¢Ð5sF4ñ7LÙ§¦K­ý/9‰áÁiЬùý b•}»\4צÆ(nê_Àƒ•ã’ª¸hÊ“(WΞJ˜˜6ÁÁ¤&âÊ)ÅÕ÷lWÝ¿™Âás[¦ÉvžÐ¤©Ä–]Øm¿þs?cdŒ‹ÁK%ŠšhýÇ?Á„2ìd^éÖô b9¬²ña°êÅ~P…GP (1 Í'Ùî|ïñòê``v“Cq6)§ñG³ûX $?ÝE¸†9Œÿ=SâÚñW»ã²¨k*³´¹­¹G¥…Äù ‹þJ£×Áv¹‰§çÝ&ÅQËÝáñXß-PCœ–)"}¹œ8+|Þ=ßϲ î>oaH tIqìë‹x_$„ ñ©‰d˜™ª¥ý¦úâø_Vf³1pÂe_`ò  ‹RšÅÊøcƒëÀĽZVƒGu…B8§´î:h®€ÓîæTÝÊ'EŒW±OåW7ê|ÐL§‡"^ãÉBϹy¬å$zžm G0Ý-ÈÙ†ÈGå Ð]ò1k’¡7Zµ¤öð,WGºÒè;[8c\²Dî7áîg^3©»œj§ÿ1¨yX·8‡ß)ãxÏlƒ÷ò´éº4R* «ŠLÿˉ#S>áÆÓ@\…¡‘=Ù*â$‹W% è oãߺex2i0ÊG=ànµáa»ã(V?q< Ò«nÃféOP¿¶aYô¥Ÿ)Š«îW@Ý•ÆÞŠ—Åé_T*CJÏ—Y¸ù¢~K‹|j¹VZîæÕ!Rÿë]x´¦ ¿ÍAó…·Tí'2©¥æ»—ç1yìØæ×’bGB Ð S„êÒ.^@ŠlØ=šÇZ!¬J£s}±©Â™þiW %á…9vÓ0Ë XKÓOÌ¿]|F—³UÏ‚zŸ2ž¡ x½ý(ßT s—zð-OV 'á)Œ%²‰<~Ôö¸s\²+_!Dc |ô¢”¤Ÿzùo¢@*rP§_ì‡Ã¾6¦Z¿dMÜØûÞà Ş @"H}Ê=­«»å,ùÁÁ4޾WÒÒ[¶É ¶9þäº/úìí˜vųÊ_în9šT<!öÛÅÙ r³¹ ™ž)EâL®Ý§P“ÕŽYa ›ºêâäB¬Ø{E!;SòFPu¢{áRg«¯À:Ó=üäƒsfó*È‹†o»2abÆOPßÜ]‹¨gÄÓÄžmz &¦©ßÕ'q¶C' HŠã&Úq bíT§½ %4Z?ô±÷˜Ô]!×Ê7‰óBŸ9$óä  œ5û–çq0Ü8û\³W{.^c¯d)Þù!D_ª¯ˆ7™JçgCØ2év´§„ZCÁέb|nûK|Sö¢ES{0´!¯ÿ"Â𖸿xáP¯v3¸ô y¶_'ƒL"J_™MMÖh#Úi²Ü%C FÄ QBt•Q1¡üFàJ>±‚z¯’tkR^ÐË>7¿õ¨× ÅžBÙwD¸0ºÆÐÜ&ùáÂDÿeŠNüÒ_Ë„8Û¶Ï*šÑ‘ֵמ0{¬Ÿ>j± ¢-vëh-®e[ö‡€«30—Àá0|äVrJòfvº³Ø]Ì<›J-Èɦ ˆ5GºxYeãÌÓ¿´í~Š÷­ý>û·v=r4Ð*= &/òò'víœúIH”H}zOsií÷êpÄõÃs/:8½)Ý'/bQ,[™'ÈÀDòƒPyòFhƒÝ2.ïº h}Ë·œ¼èÉz®†{™ƒ¦Û»óÙÔj ®Î팂0­D/— ž#I#Vu)aóhº&WUæûœWÕÁ4LÛßÁ‡bÞ„ûü ×(²vé‘nßÓ¸¢/5GEÙ«™ÜW¸=±Ì2 Wci„uêJ%; ¤úA<½¨E“©'k¬•óÜjë뎤lòÞÉO¶éq¿„ybý±óC"øD/+b«Øô7ÁQnÆã¸P¶Â¶¼£÷§Ž¶QÓïk„Ú6Ë{¸öGšÃÞýkÝò¶6b8‹>Z!„­QD(Ú+.Z>è\ÅNÏ'sâóLÃk§ÜYÓö¡¢íqûí?ðdH%^þ<ö8eî%QÍÞ®?*þz Jã~OYëˉÇQàÙõènš+Z»wù>²Ÿ\ÏýÂ߬b«~¸Æ ôñ.F=3¿šñCbTÔµ½ É<Øh¡î`U×߬‡`Oèü5õ›`cŠÐ½‘Ÿ“Šz‚JØQÏztÀô, šJXõ}×QŽûpÆfhÑÃ… ÊÞ%¨íh:Íæˆž¦<£’”ö9({¿ªõðÖËû¼ˆ«V옷d2ÿÊ‚~­¼¦FÑŽÐ}¬é/ ùá¾z¤|#ž# æÎРZ6$b¯áüÉ×Yátб†¢Ôeõ0wsÊeNDÉ ”–w:"ÄŨfsɇ@#æ8³†Â=c¨5ä®g­8Þˆ»dÄÑ5Џ1Lí&4œôf¬wÜxë b›•É#¡·­?–xÅ{F›ŒÏVÜÆeK쪜ˆð1¹›‚hÉ´V$qöqÉWÏ:1ÃÞ Ÿäøà´V8è‹÷’ÌÐðw3šÔÐGÓ¬¶ô~—â}±é8Že­í q9»ªÀ@YßI¶eû™i:Céíÿ‡gžÜ\r ŠÔXuVfBtÔqOM?[/δ–ëbL›‘´u¢èf=ƒ(‘á4& q’ã8Mz4Í#Eÿz.ÉJ!¬°jkÌ» þÂÁ5V$6U²œ&¤©ÑòìŸc«J325:&7à…l @ÁËÀ7äÒ¸Zz°€Úã#Цw™¼©e¤é4 S»#ëïèÊyÓ¤„Š`žÓ+ƒ Šƒ 0œ@¿w#ñ…ø\þ6ÜE7¿Ni •°ß’„Ãân…éS!÷ÆL ñP Ü?(¶L]#G>{öNˆÈHUzß @ÔË-Óà¼?Ð zëþXSŸ’T»8ŠÄ¸u‚0Êa‰f­©—]àU ⳈDÛIBš³aÌp©¡%…’5ÄÅBÇ+#´Ô‘Y²Kª¹·ØyáñésŸüå%? P%xÛ8ÃnÍÁ¦+¿Ð=@ÖÆ*å)\UãL#¢P'ßcø‘IA×ÞóýÀ« øwOi§¦ïG2ßÁÕ,ã¸end þÞŸí”»ßz %Š7r¯G5ç*ˆéœ'û¥ÿénèÑüFªu¾TýëÊò©pˆù-=’U/–ãsHz¢Nö‹z4XZ¿Whœ¢%?׬×Òt‰QªÇu5Ä„AºhÊÁ!KŸ0&m_ÝÞQ  ²U¹æ ^¿1òk¶óJp(.ØJãßË-qAƒ±? Œ:f|Óy:.#kvXjù÷DüÄÔ ÃÓíS?‰íîR×Q$_ÿt¾ñŠXÝ„Eq6èNs‚¡V|ù L›§@ QšðX¿œ}BÑðÑ·¬Å3MkdYáI66#¼lWˆ¯ËgÚ-¯ÊRhš)þ ©Œ÷»\“ÄË?N•´2+^øÇZÃŽº¨u ¦<¤Ÿš „\8È(³±I¢ª¦ÁS„;RÓÓí˜ùa¼¨àÄ–îÑè8¼["QÕcÖš´LÝ-0C_ÿ'èpµ>ûl‡OžÁ¹ §)ìá¦!¬QÒMÌ‚<ûYušnµ_¿Yiê00¡á$°Â÷f.žgвØžëXmˆåå“ãŒâBåèàüÆ59C›í#ò»ô?ÍÎ\€n°“÷ôî{c”5Úrbƒ—g‹ RR,²}Â=k%W²OR2FF³0~Eâ~sYMÎ^eĈf[®D€–åz66'Õù¥r¿9‘½Îhw™¬u•bú¶ÆÓmsFPáR&´æ NÁŽ”ÂêEl!².ÊmÆR&}¥JöÔ::⹡šï‘Á–;8IÍÆ§ë|8Xo‘Íw ìÅMÇñ9Ïö¦…ܹq¯ô ÿÀÊ8x@õ‡^‹ªÖl8ÒÚpñâGBÝd w¢lë#·Ó{¶éãÚ†ôŸ^÷‹ NÍLj€÷^+îñ¾sŠeá®c=‹rîÍ#I¢@­Áàì?™ŽÀ)`A1XRr#}Ý]ù ý·Û|aÇÑq6xû¬g‰g¶¶É[>±Ô2C«—Pè€tåi<û–¨Ú`<ƒ'å<+©Ž[gy¦_7Ûà·™c€v"ÿ£–>»ž«)dÏΞ~߈9ÈÅkR†6m³¶>Š›ËÚ|8KáÇ8?ᎈš€ÄNèZÓõ¢(…ñáõ1¢Hµ=†¶ç«ÈKë<#àN9&àAZĄφ:ÈC.ZÙ½<4ž‰ä†\P¯Iü—äœÆS´+`q±ù€m3Ã_F7îÉFŽ7\ƒU  êµ_‹\fË StzÎgã¨~r[#lšçîÈI­ëþH¦T|=§fz¾¬3Õ™Ùhº/Þ¾ªþÇ9›kÇ0  Eù玄O#æGÚz©ñàÄÒ£º5y¯påd¹±³¨ ³¦?ÙJ:v¨Xœæê*OŽƒÎ0'r‚*‰ %+l»*>h\+zè3Y‹Ù:\E‹†P%€ø)¿:uK˜„ÓÎ|>%“àXNçYrwÄ…•ê¹ç|C)Y¸ oa˜¸(^Ÿd<(¤™ï5ƒù²ª‡Ûö“eó_®ŽÐxRêt~öÔ«"…Ög¤3&_ÞĤÏÑè1— R"šM¢K4¶n=Ö’“xµ<€~Í"Ѽå§MiáRU¹QsÜðÙ×!>|‹OЋ<„\v7Ý<¦×ÑJéøëžä<7ô¡®æÇxS{]x£¯¶o€éóüƹ¦Ð² ^ǹíxJ•ÙÝqh7Éc6Zm#@åðBÖþì´"¸Qâ4lÎ:Ýrfò›:"tyùfÎ&¡)Q¢%âu5hü&þéQÇ,³-åU›÷3º~°DïO‰ab ÖsˆŽÎ·þ3¼îïóÄÅÕ˜Zjý"ÿ(vS,¨®-&"è‹…õyÙ4Tà¥5´ŠdVL̸°þ͵ư9àÞ¥QZƒVÜF!¨½)Ƭ eî6nxÝyÊZ ݽà¤l€Ý Ï.DV=êÍŠú£@óäÚ‹¿ÂÃŒî™~tYø¾œ*ù7V_J™VJ–ý|µ H!@ó>Ñî#1»ž0ö÷Iò÷Å ‹É(J[Š’Þ79 ’ì¥{²µ–mêû‘àLûÉ ˜t^¸´ ;S_‰é5¢ˆ†µc*ÐÌÉeîv Ø÷}w ¶°þ=í*“ßì=w¬´>—“ª8|åãÇúõÔ¨!Žx™Ò€ AÕ'NKÑ®@r&ÆÜ‹KØ|#@ÉÞ¶aoáA ç?ëÔS8dæµ…•¥ëZ±0 #Ú6ØKN¾EZ¡Ñ †+{E§ßy—F‹4£›EÐ8È.½”UÀÁN kæ³'ùŸªp4ÎõN!u¿Y]ÈQ¯æ¢¼ÂFŽE­—VU2²~û :Ü¿³X·.fR9šŸ¢…’>yKj GŠ‰Ãž˜^j¸—ÚÆ"Ôc꬙UMÀ>»zë¿%Õ3$e=aøÀ ÁE×a¡â‘¾ÛÅÕÁ±˜«”"æ×z¿XÏYBç•>© ~+Õ®ØÕ7öc‰xûoŠ®˜$òÞoâjK–ˆéoí¿ÔBÑŸý¬ÏÀ Ž'Kõ‘üÓ%ùÏh»#mõ†eÆ[¦8kÓa5ºв¤RýFL˜¶ ½êÁ6¥h­c¢_ÂõbŒ£30]¤­˜WÚ_åÑÌv'„×Q–¿¸ ÷lÉãXÜ`y²´µêÒ‡|Ý"4 _º Œ?-ËݾÒ¾ÆÌîðãªdžÏR{yG .ò"+57ÑKÕ4½%usŒÔ›1H{ÿ§;ñyW+ÖfF*‚€Å [5X¾Xrl–šR>BK d,ñêZW?zµË»²¯8È•½íáú€Ågð¦Öµ¯ªA¦›6Ðê8qÙ˿Ջqé(aÍš“{ìõPÇ¥ï#Ýä©îUi"Ÿ ˆôÙ2ý\§2ÿ¸l›ž|Ù†ç¦åéJ¹¸zƒçƒ©«Å/âþ‰[LU0•Ûè­þăç;ád.¹¤T„e=z›(Æéˆi¶1?š8— DŽ "„lú}Á&fúýh*œ Ñnnňƒ`‡eº.Ý]…êµã "¬Ÿe?“¬o|)»c绲œª&óÍÃ3ƒìI}NHÀB[R ¦"íÛCZŸ 0iË[Z¸ißïͺi ·5k=+E±%\W”!'ÓèsÏiौÀh:ƒŸn3ÃÄúH¢0[ÛOªéÁä‘Ë}ýæ59G”‡?'%šÎ »Ñ›wJ+³?”T*Rš#‡Õ‡ü©/w•N ¼ì‡^²cfÙ=KÓØ±’6¡œ>fU½zƒåZ´näÃE ‘¿½"EE?VAµÌ|¥üVC *€-Á¤-ÔËasP$øeþ1Öx¯¦lF†möÚi‘mžêš+û]¸hoÙ*:ë7pn¯< ñðÒ)½—ËÁ©õKÄN4[D–?±‰ ˜ƒÖq`ø¹›ÕñÕÝ„¤æ¿M‡B™Sl@”Ž9£Ú=,Ö’3›·jR¦'ãòn)T~.žsÆö;MSÏwݘ¨§?íÁ`Ý*ó¤scè!Îg«õZâ0ã5ʈQöžæøøÌ«T'ÂÖQBšáRq¿SbºAÝKªÞŒçæ–m ûØ+ÌïòT¶É*øÞ45‰ã¾t˜ RçÉ|w‹8%ÉÃ<ÍbI €Ò.1ÍÒ@C—hâ0þXaÞS¸À'¾¦«)4æ²dˆsSî Wp„ÕÛºRïþ£¦A½<þ`AH o±SCÞƒ¥¹‡{¡¦aÇÞI¹±‚ÌSDººW@CæyŒÀ|W¡À>®+M…ì,>¡}­1šØ:‘ Òfë£ xwYkQ“ÒÓ –Ð7Œ 잦`y'Ë ü*Ó`ñöÙþäܪ»|‘Åe½èާ‹zŸkL`yªT{s¢L%Ç0"ùì((ÅÍ5¶”b½LoCÕþɼ䈥É@X˜Û˜è4ó€>dqg¤!y+¹‰qòçûg¼Ü¾‡u/j¦í2 ›"°’݆¦›F¹ %p˜4æ4nfFž'¡)öƼ¥D؜ٙE 7‹,Ä N½?‘sŸ·a½%æÖk™1 æ–ŸÆíÈ– æ¡°è¦uá§j¡¸â–z.OP¶ú[èóÐÌ¢\á~ÀÐSþ–Ç©×ú4ä–5“ ñ ›Ák©ûãm˜ •Uâ+<•Ê’._ôŸ- ¦ö x¬Å",9x:àÒh qÿW“.xšÖºk¹Âõ~>÷ÀEFçGÝ’ÆÆÓ¬>›9§¼ç:Ç5ìÇDuË¿8­•1œˆ·la7 -Û>ž)© ãp ¿Ú.ÿCÁð2¥Ä¸O_¯\ó7¿È&Ÿ7¼-èܰÅeDE§¥ª¶XþËNœe§U®>ÁnŠaBÎjÛ­Î%ö†H¾mÏ ø¦–{¦:ÿÐîVšýÖˆR…p“Y|Lò(í·*¸2—lÛËLKá,½¸“Tá­K{‡Š¥Ï.7Üo­áCò— ߸£r#q`¢.÷û-i5ˆ'"Ñ‚,ž²OßÛ§5èëµ\§ÚP쮜YT§;¬ºþ4ÃÒ¯cû Ú¬W­«õ*]Æ[Ñ7˜‰Jöÿ÷kV„–åLîpÓ€;5üq ÚªÇ P—’ruÃ8µ’ž$_5¾É´™úØêçCª c6ÂäZ0Z2±î0yÛ“+*VÏôðÂôRo1@õÍ–)ñ\œ 1 2«ºË‡ZÃQjtÁì¹(Reâß©h‡‰Ë§¼¦©‡G0ˆ{®8]"ž6¶HU£JëQî{øÈ OÓ6?ç^ Vec 0±^šÞƒ"‹PeÕ¸ —)u—›ë)~(@ÕQN%¢eo ÜŒhŸe¤ VÿJN£b0»Mî*p Ë1}™/Ä‹¯’Šs¹» ›ý9ƱŒèz€l‰¤¢œi5GE’/ÙŒYz’OȺ‚„$³‹»™ëˆy¦jçf$|ÐÒº×FSBLÏ·TÒýí)ZVœ–(Q£’ZB¹£Õ3¹ÓÞ¢—kÌ2&#ò‹€XNs¡&<¸$OlKgÏÈÚΦ3ˆæ7nû,†£ÊÕ‡yâì\É&bHªê£ŸèKçÒèçj‘¡™bï]DÙ9»2q§d“`` ¤ª¢ñ[ DYÂøéþ||œÃþ„)"Û©®œ`PáË0õK²ùŒß‚¥J+(•-K;h‹v&rg|¶h_•³ÆsÁ·aµ’J$ÊgÃ;4™õ^´–y¶–ªW—î:CU+µ¥ZVÃÛ}a' î½®)xÛz Ã=èdûLFêÈ[S>_Î@Bz~¤÷2óî²0åvÆWødµlqóPvÅX\©àŸú¡1Uü}¿¨ã¦}<Æ€`QäÏs2Fjýˆàj#Ñ:‹}*4;Ð1+~~# D©fÑùð æ ÙÌs®l²{r%DÙðä0ŠÓF¼¼V8Mt<±¿EÕúy§krÃI¼{’³ú”Y]G´³Ò+…vgP2KeÈñM{ºp~C£éÉúž'SÙ}¬ÃסÎÎ a1h&nP'LG¤ÒOî”_Ó,ཱིé›ýzàrÜO‚1vã­œ²¨¥»S®4ü•᣹[%è¡9bXŒÁÇåã§¢½„\?']m”ét¥e§KÓ$K.Lƒ¾=;~²á0Iƒæ=.86/óÿM°Pd?jxuû.¸Õãå3­œº~É÷oê8kòËÖ¼¿ Lw'Z›­ÕaÀøx…¼gñŽ©$¨g‰¡là˜øå¸O .yλÖhÂo—à)Tq¿ôèÓµŸ¦XÌ4ÉÞ·/_¸H ³×„/øà{@t @ž·:w¤kA›íPÖóìü"Žàކˆæñ6g¯òzFovY ¯EÈ&ME¨kg|‹Ú)mÛ3×YUÿDZsqõ‚G%X—¾ðà‡lnî« †ž,žÀ›—"ËEÕ•–né¦þY+‰-½í½8C2XRƒ­¸…@O»Ÿ©™IfÞ ö½£¹k°íÀ²3˾ «ˆôlÏ•àc®Qo{þðîqÏQ¬˜V¼£ThVºõ hoç$kÛ%v“ކ&2QŒ‚½lÇC1õO;o7‹èQ³OsÅ_·÷¯™y&¤OóG¦@ñ$žWÖo“Ì`X•ìû`WÆeryYäžã4™[àšF¿!*ÌÆ ݆íâ2è÷¦!| é/< O*K¬p; ‹Ò ±dj°Ýß^©ÎF3'Ä_o‹/Õ41ÏÅOÛÀÍÔæ;3™l Ô£¶d §Ò&Ê”‘2ÝÃfÁ…%êËí¸Ö4<õ«|ŠÕ}aT,±{ÁÆÙo1Öy2ñmb掖ífEöþƒá úy£„.ƒÜº2¿:3¶Ö Œf‰ûzÉ{L…X<|'10ø^+ © Ò~£€mU´UcWA&M­|—É|):Bä…2 ÏY%ê¼.òZõþ—gýÏœ™’á~ðܬâØTªývl¾é^®G †„}‹CÆBD‘`öå|½ê…øD’„ƒ«0æ8K0hôöïÅ…«ô@ÞÆÄ!:@¢pðq£ùÓØ¶¨jp‡•Ã]v‰ ¬2BÛ6E–ýiRåÅqc9?)°îcûþ_oÌŽ·/ÁɈp›Œ×“`;ݯt[&CTkv@re˜ÝKôŠ^±<ñ»-Ÿa™öýùë5´•S‹e`D¬mW¢ºƒ‡‚Ðû¤2Iy&ÐyLˆdš³UÎ_Üé\怼L9ÿzKýçÙQá¬4Ó0.Ÿ’Ô’ˆ·­&3$ð™~îÆš$—LZsÃx>÷R»Aßf˜P2X»¦i%¹[½oî…ž²kÔ7_GYaOc­äëÕHÑ'¼_1g`CenÙbC`à_{\îKEfÜB­H¼Í˜ÊE[ »"5Ø¥™ƒ—ÜŠè Ù¼ð¤¾æ{¹žE*Öbt»‡ó•L–ü Šc/ž?™q…“TYù‹cm ßm) ø4Ψšso}ÿCÔ® ø:›ì(¨Í:ÀqøK™Œ.å,.I{{æÇÊgKMþªÊ Oݦ`ㇰûÛi¾Èi#Ýþ’'iQ²á"X:¿òêù‡ 3'Õ˜ÔþŽÉK#“FPú!ð•úé¯[þ"»Ò3•É«t}Nà ÞVEûÕ,éøG¿º˜ò°®ÖrìQŸG8w®¿°xÿ= svÁIoõ·n?{ã3`°Ç4²’u•ÍÙêÀ»§,l9úÉ'ï·oÛ”«Nß]TÖBÓ%Ý´%I„…ú¸îާ&M›´üóLêc;r¥ð6ŸoÙTžDé. Š4íÎmƒ Yˆõx_¸ñÓÀ¤¸WòDðŸAffc"ð¨X³T»±TqG8A½|¯RHÔX/WMS3ŒÕJÒÿQ:¡*T…çY ^ûÄWdâg|ÞŽàÔN¶¿ë7‡ánùàıXš; g”ÊgèãfPF¸Jÿ\ ©>&ñ½%Ú1¯QxX}*Ì?:ZÝϾJRÒøhÞ¥¨šáh´¹±~!ZÓ¢<åXéŽ<"qàñr\ÚuzY#Á˯"tú?‚Ïw†SËWÓ+›š¹ðàáAcd¬ó8iŽ"0xõƒr'kãÊïþƒ>¿ß0J^µw4ŠN ±„-‰þÓÅ’ÂÅPpáâ©4 s:µéV.ŠÃô¤¨4…2¡iÖÈ&&jMƒñ€¿Ëf+rÛ½¸àÖ º A™¥Ó*ô»St.lý6xa»ä0Oí¢?íȶÒÛ8Ïf/\‰‡ãB¤Õ6‡ÝÓ–¾ÜaxÏW¥^Ω¦»ÌÙü+¤ð€çH•ìÏàûóAN¼õVPàÜñ亶\Ñ~<ö RÑк"ìxïºR¢À…¾]æ:¿æ©‚3ÎÀaR´ÖgöSro*Àò<ìC®‘1ª)Pã(û•~fì!;£(“ûxoá]§\cAM­ÒŒ;þ®„Ö¼'äx ïëçU$Þ´½.šÀþÍ—ñ÷ØÍùGÙ]h_AŸ—–ì(t—±:Lþgy iЍãøàRÌ©•/ÀˆöÄIߨÆÇì6|tÏ£<‚ÆMb¯+wû¬cOI²©Ò›“ÆÓ¯x“cK‡{l¡p+¿(…©‘ø}>R`r­BåÙL€IN…„‡"Xi¢ËËH‚)É÷’píDþ8x‚—)ô±ž#ŠÐîê¢GÂ4 †êÇ– Òx42ɬôæ§…¶•ÌqUð ,õ=a˜b–Ùµ`´¬¥-ÎóiâºßþÔi^Égn…ܧµVdé¸T«ê˜ò+»hË@&·à·lVO YóBZ!Ž£M=Naßi^ 1ÞY»>Âëé-€ä»Rß=ß`˜‘Ý—M½™:?pG~|;™^Ò §ý ›‘ŸÐšæÿ{NhÎø7èTë¬NöÎÑåEë¦S×>?ŒªÌ£5Í–úªœ7é%”¾"ÔÜ) BiM×c²<îª8²íôPb9HãíJK§R{az1‹Š6)æ`cÓ'*:4±¼eÃ'õ~É“Paãä°Lú¥/ŽZ¼øµ¨=±§ñûÐyĨ›)˜ÿáC÷a€–H®Y½ŒUE¦ ‡Á`áÅbÒsa‘V±OÞè Aù•8ÚïλZ5ÿé`ÚOŸ=oÙ 8xÛŠ×VZÿ·Ü°D8R˜oCxŒ_‡æÁƒÑœÓ¥ßvDvçÂ×Á²ptŠÎ»€(é÷@—ñSµJ6Xþ¹a‚.ÐIº¢Ï7^ZfþOÜlŽá$@|/]Ë{Ï"Uþ._Ç–¼Õéýr£ïYó`9Hû¢™ re™+€¶Ðe­oò#°Æ™ˆNIlºÍô"Æhnšõ\¯4Säð…/PªJÏ ñºÔ! y¹Ymñÿ2šÒÍ‘ŠÏûf}÷¿áÕvr´*?âN›žH«~±±þçé¡Êç ¥ø›Agž` #Ê!ð’:ýššœW°Ë‰àåóìY{usd\XYí¦ˆ ™…ü¥N¡æ4×FVXA7ìX(”'À«®dÃ|æ¯ÏÄN’ò¡WÉj‰øÀa”ŽmBù\€¶« ¤1˜ö€E›¦¡[Ég~އŸ®ëÔç>ƒ²«E/ù1Ïk4Gf³‚„™9]àõ‡=iÔ:0ñ_Á’9៮ұ´ºw©d=ÁGߚͯ~µþˆqOëQÿ!ä„e„åÕ`T;öÎJ?Cêëî¾Zù/‡S­Õ*¨ TmŽð‘žj’2\³ðëzm ~Xâdšgµ(”i\• ®Breß°T%…ë¤wh¥s_ÐÜ죘ë(…òÏå‚,t‘øôƒ`eÈ¡-àóªË" ¸?µÅn‚ÈÖ‘h^w-Ÿ!‘$Gk £û %¿Íµ¶ ƒö5ª;Ù™ÁF^Vœûö^ÀÃ!>6æp»¤û„ä-[«)„àß„‚úUƒì‰!4Z¾4«Ó/‘×|{¦àìÕÁ0,ÓáWÑzK ûèZ hKw}d]ç˜,%ypuþNP¿­ùkûH~à幘ˆ¿¸§šK’CÔ”Ovä÷ÐðßðŸYbÌȧÙãtE3æÞŽ£ÓĨo•Äb£H²RŠãß!]8âˆ`¤D€“hëÙÊ+‚ýËT^Ä$`–'ºD8*j«Š^œ Õ:KR0p¡©‚¿€ Fú×È´r~¼³ÉR˜^&Ÿâœt}¡Îvß ¢åë鄿„R™öOIÐDzêŠOU«ýÖH‹qe5ŸZŽÐGޥ؟ÿ¢®€Xƒº¨! Î4ùͧ?ªC»HIÜ B%+Öü؈x·!¯=g†H Øÿ×@æ±O”LšfP«e)²??&‹Z¥jA5#İ™9Ï:’L£kS ‚e­‘›[Âal'c¶·/´Xõc(ƒî,úí3ȳOV$@wL§†!€ Æèµ´z/ ‹©æÔÝ¥…‘Wâ`1<Z,ýÝ,¤³AZîÙ rºÀ„ÚÞÊsI•Ô¨Ã{ˆ&&»€mxªê#L¯UµÀ7ÄöíµùÈ9Dƒó-ÍQû_˽ØÈƒùpJ‹kçòE²Iýg–Ï\Ïâðë×q*³žÛÉŽi@é §?éØ_ ïã^PÔî­5øÝtÊXfÿ‚Œ­Á‡àLøQà¸cô²5«òV?ŠÌí®œY¬æ;IŒPšÏDïÂéÎèŽüìUE7Ÿ˜·ÑÝ@Ö3¢7«¤íÐdãGÕåÒZ¼…X-Ä/ªäp¡ºuH;Z ˜pèÌ\;+ QÀ< þÈ>” ÕþA7À¢·‡HÒ™_²Ú膓ïi´fíÜâ$¦ |ùbà ǘ âö¿êñÖ0¼YW6ð%¾{w†Š” o§B4NÞ“ î+?2žp>áz«úLÁ»Ê0ë'@±ªl–eD4ò_kœPì–(fÄЦ¶LchÌ[ÆË½¬ ñ‹+fE²•Ÿ®{ØTw<Ýî<'ö[ñ>›øs¹vE†wE f ØÌýÐnÉÙp²ýÓÃg/ù¤Ùœ„é€,‡‘Eä.³çãRæ”Na‹‡HAªáªP8·Ý‹ƒ4m }ôu6y6(ьŸ¢q™ 0 &-?^—:h²¯–‡ÙvÉÔ¦ªÍPæ \;+Å<Z»V½xÁHª­ž»VݾcÁ6+ô£¥ËŠFÙ‹@ÍЛQpšfjÝ@…†À6åo,©]S”ƒþ°ý†~ï’ƒeeÉ24BŠ&f¾¹™ˆ­¹SåÔ‹×yàb9¾’Žå«¦BK|Ésë6äÚ¿9ÖåqúÚVpýšÛçT•€P»n]µâ\Ð}(Øœ/Žœ,/YÛŸªxfch³¨Q7Ä´]eòlíÚÃGÕuápeî÷üü»¥l’•ÎB¨šjîÊu¦ã-D¡¤¥Ü|ÜRC_SN>ÚhÞB—p€ æú\Â;•ƃ•pfêÁ¦Ï*•VÇFS¸×Êk¬bÝ+„åæÉå+ /#g.ãÖ4fr`&+ðô|÷çmpψtkPZp«’“ÀC^VÇïÅ.%©OB¤òSÄ7VDMÖ\<[±tbèkÊ·-Z æêŠ :g®|3káwóv²w쬩òé=æ•zV7ªÈ£ÐÙ³òÖÀËÐûÇcùý‚úxë/ ;GÌCC G¯výþÌK{5ýQg3‚%«„¨„¡‚{›¼ÊõÿH å@éaPìU‡æú[Æ5)MÂ2´¦Ê»–üM ‘Ź{HTÙûl„ÚÉiÖ¬ÙÍFök1+·Wßî&.ÁÄõ8¨ô±Ô1= sAª_óÓãXÀ9̃W–lÕŽ¿Úï{'§NìþO®ÌœBîTãóü¯á}ñ…'Èb¾ÁÒŠÆ[]«Ì£E `ÄØ­ýøˆ31Ž ÜYâä%:—ȯ:š/À¥'£ïªyÖǘ­Ëx4Ö_r¢Õ(Ns Ÿs=ža©Ì‰ üŠ!Þ Ö(Ø@x4 ^´À¹‚Þb#ëò?_-P4›ßI¦ø ¶L࿨²—«iÐôNûTŽ‘Ý뾂Z“֮йRІÐQ,?Ÿí¤X¤~Ã鎟‹úž-Än- ¤‹IÍOZ+~“'ÕôÈ©ù{Âîà‹lhR·ÿns¹]Z)|ãvÓ7ÎÓ MfV‰7iÆ¡Z*]’³€˜ŽŠ¤ëÇyïs4¡I“ñi…‰QpC :ÅÙX9ö+»Nñ„GUåè…è>"'gL®¾`m¨$¥“Z‹•zî¶!ù³Ž+IÇ+s¬ç ·ö>ez~d!1°”MÖ€€,6æ¾+#ì`̆°åE£LŒè¨ãǼºaºi·üÒªw}ÔîŽþ§ù q'Ú‡ &/ɵø’ðõÅî)ÓÎ Ø‚¡ÀyDožÊ®‰™YûžjzÏÍ>Û ûDm„]GÀÀ¢p³w~eÜJÁ¡Äœ dÖè*< L”DgÕ±w”¢æ$ ½ê©ª@-$@g{ž×¬:aY‹ÕG\cãQùsJEQ> –÷ç«ìom• ëmi­$ÐIl#ÍC™Î_ѱU}(°xeaô ¨BMW^ç߃¤•ŸT„“ŠÚ}¨›O–¬'dò=a1-!Bèò³ŠØJ¾Î¤Ë©0_þ@ƒEêæT·d^ù‚„jO¥$èÃÞ÷Ó nª¶Âù׫S#6/ùg­jŒZa“ÏXϡ崥 7auÖöQ}ˆWÌô¤àÜÐðj’?Åk\Lrõ¦ŽDZA¤L€¿ûªÈSr-P¿ã®hl††·Iæù¶ý;¡ùŸðÉv!þIJ3>ØQ¤5ϼ.{5Þ>Ó82ÚÍQŒ¾Û߯P1àÞ)Љ`f¤X»lÂSÞõBÏø²ÏÜý6-îÃK›é³YíåZÀ*.Oã_´"Ä7©Û «‡¹b@Ü€®ÝE83\çYT™™o}F~£mT¢È´wd Ó.“mcBeÂÄ©k3®£ˆÍû&*¦}íèßÈ¢8c^/9¢`´pæÆŠp[Î%ô8]#-ýÍ4 7)pÛ³6UËÆú] .ý´¶z³†B”› ø ²û\}Ñ2 ˆ@oT¿‰êßqB¼6¥5³£ë|:„|fl–Y ¦á=ë[`† þu Mq¿#)c·áý&*§ºÉÏUÐH#ÿ§Ö–é]Šs*.Y¯ØHööä{8ÿH©a©çéN  Ç•‰]#÷PxËŠÎõ ä·^±¯ÄL-JE^tÇÔÆ8d=l\ aŸâ½>¯U3úo”6‚*À[‚{æÏûœ©ùÃf‰³s–ù-;ŸØ¤{” ‰zÀŽgVÿZ¡ö„lv,“ãx­7ó‰™Z6‡?ÍùÖ'‰‚_¢é#å¤,,–þ°ÓÏ$P¹Ìn T…õ÷}‡"$Ъ¿HÅTÚ±ÍG:<, ê¿ó09<y»Z3|™{HXʸ›ÿ­ó§ÊY4ƒ.M ¡Db_¨uÝ0„ jŒ]øÆéqy§rP°Ÿ™ßa‘. 3GÊþýù–ˆâÌ‹Ø*šÅ…2’øð¡Ð vD¬Ù°´¨¯´‡úìGcÒ·F-xÔñŒèœr%X y¶ûŒ6~ÁN—Üc2ò8ÿ¡õ.n¸ ˆÕq‹×óM¼òPýxP6Ùß·§Ï·"eøtÂ6zReNË!ø±9Ùò=^b*+IºkÏV.f‹_N0ë¤Fôü Ø7ø(‰ÜÎð¢îØYŒ½<}`…|ÐM ×ùØ8]¯Ý%‹1#Š^ʯ¤£SÜ’§>㽩W ÕäÝÐvç§2žòƒ´Ë|͵Î&˜¶Ï{ÂI·X¡áÏZé®28¾™`#W´R›×©HdMܬ|4°Ü^—¿õ\kÝÀwÇëiñüµ›VvöÞöM”eÅ—ˆáaBŽ‘ø­—_Ýæ#‰÷w½_Æ»’•îÅ,ÄCõ²Ü%ÞÜÜéÌuŸò>ö Gzçh'jÉI~\R#” G• y)áC˜¡´‡=c~H#,½—6®“g•ƒ¾£«oŸ(}ð÷EÈüº‘2<È2÷xçÑÖôgãO8öº’+¿É><# t…'?>Ã(z7¯6ÕýÖßZ“‚‹JAÃëM1ËJÐ TýÌW/&Žv[ öõwÍÈUâT–8÷é>·â¹¬r0Ì.XW¥ÔoÜÛ¹ÆÊÞûKü¡¦,J´A¥Ó9–hÄr‘új³˜ëÑÇ—¢WÁvþs H!¹ÃKJßioÁîè†K„r1ÿÜñæ¢K/'ö\Bègóç Žs×-½(_:r?Þ(ûCÀͲÝI˜Þ´­yXvrÁ„Œ#?íû팠4ÿ¹k íhš§G9ñÔ³ÿƒuòÜ_°šVÿÓÒç¢>Œa1õq2"„­Ñï_ÄžÉØ=Š‘MÆ.ÊnB 94ÎöygÍÜd¾~.·wwŒK4Å3tZò‹¤_u޾º.LV =|ˆs%RøqkÓkpTŽ¢ŒÇÄC½õÈå·V󸔶ñÅߪPôJ±4ÚÒ°³ØRoÇì¥&¸[WÈÔ² ‰Ö«¬·E㘬® 4ô[k£=š|GYEäì3œ„Ç|e|hÆl{„ùì@ïÀy3®¸rËÿ©|˜1µê;eƳš$è›Q%ÛþjòbjÌ €=ÌûBgýÞ¥ë e9¨6ÊU§ÀäÔÌ›±¶å B€ Ê1o˜¤]àµ@¤ê®%Qñ‡cÝgL€f+f°ŒMV렠näÛ)óíS.Ω“þôåRs!¼[« -o×eMým°UɽØä4ð×o½Eë”ÈU¸èRƒ(É(hÞJ̬ø#v^ ¬ bGÊy68oâÙàôâ<~uÜr9lžógPiRIÅ¡mÕmâ#«&Ê‚ó¦¨l=¨'áäø=ìÊhûBâ¢ÍˆPÀe}³í{h»Ã@ÓêrHÊHù†Ø>†×¡2=òÐŒàñEF.9³Å5ÍKvé>xÎïà%dÄ‚[dÁÙX“cìÜÛ·~+¥tt/“dõÕ%‰Ž°XïôøzhF+KÈ»/t²¬'}í‡ ñö´áéÆçŠo\\ßyÇîìÇ´2ƒÀ̾¹m3\ùñ+w§%€•4X¶$7á_Á e’Æ©;¹n»Z8°ã'@ÏJׇ«›ÁëÂ#V¶ vH'î"ð4BúXdˆL÷lyö÷ò3Ñ IÌ×j ]¦gÞ¦œÒG^z"±Æ'M¬|"ÊSQFô=çŒjDØ=$•ôˆ*Ø\¹žB²þ Ç'/,½NDÂ|z[,Ôhî(jiÿ~Í&éu+HÎ1ßBqSVÑžÈàܯÜJý s@{0÷À;}FÅéÆ.Ô§C6ÅTζÆü•‚ño‰Ìtc„B# y¢ ]:Á‰Þvõ» ‚ª`í/Éag`×M€Ü¶‚Ö r‰HÒ"qŽ×ùüßw§÷q‹Ea;¿QΣ~úôÇÞŒŒ5#U³,ˆê//E{üôRã$Ît¿\ï¼TMQ?›‹Ãb8¸´Äì«qŒF£Êh%I|ö|¨ð ÆâI6ñ°ýÏê+¬ôÊÑ,M»ÃôíQWhfölA™‚Zü¤èXÞwÿÍ$SBáˆÝqM÷[l׸¶]áì ¬ÙBKbŠÒfJ‹Nê`µèW1zj¦ÚF.ƒËËâ4ǘ¦Ï@¥9yo‰wñjרˆ¼¾ó¿  ‘L$¸l Áøü¾W¼¨ñêííô•°aLQ°är´ÄÇ®yÀÛøö‹qEû:¤Ò¶Ò­à&8Z=ìoÙh®–{„¤Ÿ­¬#Å; ÐÕ†9KѼ|  M0|Õö)Ý=L,}ü˜Ž3ÀÎ.nNFÍœÑ+ì€+¢BNfÜ®eÊAêÜÛ§N+ !à3š'°âq:fÈb6à ²ÐGš­ü@=È÷F^'¤W3 î xß4ÕŸÇj¬¶ÓèPNa>í´÷ik$²šM™{Ú°övh̲rü:ºWs Ù'ïG| §ŸŸãu¨<=øéʯS.Xð<æ«ÿÎ’I¹Vø…£‘~jB„ £K¾é˜KuÍÂûûmþFõ[êŰ3céÏ#}ºón,âÀJíF­4¤xíX‚ t>ˆîüuf ´/_ñ% Iê ‡ ŸÐaC]àª3¯ú°DDZLÇj$¡*o«Ï2,bp™uhŒNÐLD€°"³­5æ´Œé` %E´.ˆDOdêòÖŽÝD½`6ÆÁ“ªtO/õr1ü±N¬×ö)Pž0ï¡ÜÄl×;™ë†“qú‘é:ãÌRcXÖîlõ*o1ÈœˆÀ›£0¸º‰‘1=y–‹Âc¿äw&„"d#Š)þ‚z[O§ÎÚ§ˆîb÷DÐý—"0m÷œi˜DRù5Fg)0Õá±QtŽgVdŽò»Ïm£­ÈgDã|®¦šÊö ØÈðéÖ¿ M®éS nìy!)¤Eûy³5ïcH‹PD<ë_cø}K­Ñã•#þ¥tšOk³Ðžaé`eÒ-ܱa Üž6‚µäÎÛÿÛ™¹ àÛúÙ2å牞ŒI¶œU6§íâL國 n#’KJÎBA:ÚãJæ­Z¶ŠðI¡ìáÃ'ã9{înOŒ˜¾!xÀ냙~¨x¥*`b¦­ù!ËJYä>̲·‡Z(.ù6Þ@S’L–WeŒx DobóæEA4r·¦:O@”#Œôõá‡{Ï;&kC3hŽÙíÌ5K¶'¡°±T?óÒølÆ{ °ó¤§3 ¸ÑﻉO“Þ€q–!±™íc ë úª–<'k¨¤K†_§ \âÎ<‰7Á²H“ä”mF}¦›YËâj`ó­O¸ìµ¢ƒuON í| ­ûRfbõÍÛ&_nJÑ'¾«$ù¶&bSÃB3¶Ûp.°ÍCŒfëô{MgÚÅu#1”±}Å’uUw[°¿¼Vú!”¨"¤6oX ‚h¤O{@´¶ª«’_oà+u'¿"ÌëȲ|ÆÍ²äD͇äšIÿ*²‘×n?&Ç |fC=Õ*Ü+ öØ2Ï”¥Á…=xÄ5£C!‘2¸æL UÃ|‡~ ?2Ë\ˆl§'ê”Jýí,Vë>42ŽŠíÞUQ‘K‘À†“-* cõz½©:€sŽ/Õߎ^ ‰d¨ºS›keZÔhá–FpæèY°’Ð<ß?4°P¦ ô˹¢ìiÿù¬•,Jñã¯./¼ƒf½<«‚D–­I带O±8XçœŠnÍ‚«G}°™ÚÙ“)©í…\iþõÂ|]¡:>ÏØÏ5ÆwÒ°Ò#K¾ŽTµ6ê¯E8Ü`v>‘»wy‹+b_Š-e²¬ßšM-«ã4WÆUÒ`kžHHP‰¨ /|·±'¢„uÚ …1«ÌmÐW…¤Ä=1—§M\ˆ$xªn²2zÓœäábgaHVÌÔªUL>B«+âT«R…=Y>n½A6=LCàÞ8ìRH_؈ '#öÀè’ë6Û´‚˜.EnËÒŸð+¾Ù‡s††˜¸*r·TlÇÚ‘-£nþ„®Ð¾çY$“w¨ÙuäJþ»_JÕáJ­Ê@úÞO½×Øf´®üÇÇ·šë„“(åAt”ø ç—ôª>ÙZªg ‡y ΢ÂgŒ7‹šîÁ“6óyú4²¼§.n©î{wzáÙy@S÷H…–1­m¬*?©“T~O BZèÜ3^ÛLÔR"U4cYJ~sîÌ_äšÅKÆ_zÐX%Ùþg.>õ àSv«ý] –Ëgâ“éìñOõïe§Bžu¨3Zª´v~Øë«×ÐÜX-.éÓ×ÔštŒt–‰ÈˆÜÒ4FÀz^tl*hT-ÏVú'Ë—èë ÈñXcà9•£¹\Eèé.õ?¶ c¸Kéµ _]G'\©H ˆ—¡(ÓFî;Jº?1RÇÇ!¢¬Š'`Doòó²Žk8zû):«–›G¡Ï^—¸ï4¨BiZHãÞ$ÝI!XÏðÎ:An iÀM!wÉ!ãd?б'8Ìœî›õ®ø|2l ‘,¥àò»d+z›¡¢•&£QÅhÖLº*Õ«'‚6HÕ÷’B˜£›^zªÃNnPŒQšû'¸ÉœÅ.ääBôø­àÖô£$Â(¡Í¤ü}1ì·Ö<À®8é„7‚³<à$zæ:žN椅ì60÷ è¦}¨@æ ˆï{*FÅW„›wã]²ˆ¶¢:ë!ñœ>áj]\Áa”h6äfÁ%FiW¶þ*®§¡#Z¼i$Å®aaª ª òïµ k¢Ùò%ãÄ't!/…ÝÄÃ×f‹òÀöÈÞÐL3 ª.ÅØú„6œyœ›$]ª‘£J°Æ,[ç?ÃÌL¯4<ö=ËŽ@•g4Pe’Ý'˜Ã‚¬`—Œñ蜢?³™nþ‚ÛCq'U9Q¬Ûƒ(Ó e¥+²î<Ñ(oÕô/í–´ˆþ# ÷Wá1…€‹Ùa·vð¹'wlÁÐ`!¶u[HFÄ÷Vì5§2"[ÛlVÃ#ÅE‡QÍú~•®¤Á9?cvGò|©¥¦zSk\1Fºá¥.û`¢á'¾›˜DPÎúÝ•§Áøu˜+—ju³äýµã?ky³öra ‘ª à  Mòiw‰qÄ]﫤»âm¡ë±éZ’ãO'·Š ‚ã8éDàoÒYZlwt•+FqÂÚwøÎÃ|@"¯Éb†&ª]p[6¨ ~Àж zãsJÌÓH1(4f0U{uT}Ów±ø¦ MÇ(¤\{ö2‡­™¾ýÏé#'FD˜×Øé ·9Œ*Ãq,)H Gm²`N6afüÏR8Ålz‡stTGñ¡Ÿõ±ÌG¨×â%À tÃF˜KYÔÎÕE{ß³TÓü‰ø§ö Ò³å_U´XÔ «ºøºêÀÑL®|s¶ÞEVðŠ gí®‹ëùüÎe½ì¡qDëëzÝpòÀù ‰“4û‰}AS<×ɰ U9!#¼¦×-ÕùëÁ=U>Ž £tJžJ(Õ†ÚvÀ½hüœÁn %ð¿]’½î_K| E”·[VÃå@›à±4‡’Ë °xHX¾ø°ÆÅÊëw(ñcŧ5Þ·ŒSÕø"õ j\Ö:áÎPŠè$ â ¢8T“ ¹!ZÄWòº—¼-Îq…«?î *½(ËðÂÆ[!Z ÿkLtm•#αLo…üív“QßœÔNÁ/µn%jp»ÃÚõ÷Ø,_¦ÚwÿÍàŽ³¡2@T7V —Évá&ÿ ëi†B‡A°þÔ4tTêœÒ -8—š¦Á9±öÒFÕ'©¡ÚÓo‰¬“·òeTÛ™"ÿeÓ™«@:0èb*˜<NQÞÆŽ–­‚MŒA½øÉÓ×-:w‰“&üÍÕIU4¶+˜IcÀø¿ 9‹9’¯e!rnƒ›”ûʶN»úÕUU´»äŽ}²f‹5§®õ$Ö¾‚ D=uî¹[«‚´ìŠõBÍâ«ÌÉÕW! Ê=?ë=—)a.ÔÃ/@œ˜•Óc¸'iö ¨xêÉî®2Ye¬[9+îY"C´€³æl3x§7K *ɪIr‚릒©f.u@Yo‚EfœaÆ•†U·¨XÝ3Ž`mþ°Rm‹2O¿3~—·»”o *UñI1øY-vÜëíÉä2‹ž/™Ê¹Mæ…R]Yâ‡Y½è‰Ÿá'.˜ôfš×௴~¨sv ¡ÀbFèñµ*ïíBÒ§pÕb@€,Uj=6èô6ë}Ý…L½·›¶ QnhÍêM c ÈóYA’3:>¬Ð}„Iilÿ¡|L¿+ÅŒ*bz'†„æ=ZäÉL”õ$þHKŠq€)·Ä¡1n_O¦æ’]²nÀç"Ï ²A²ÌÍ¿~æ¹ÿQUXTD*±sB€Å“Sµ¹íǵÛ%Y—ˆrûBß»r CYwʈÂôpåÇkw~6 ¶p2ÕqÖ'½6]eTm¶’М‘]¼€GÁ5ÞÁÞ)^­ í,¨bÑÙDá ]¨~F˜Â´ÄKå™KØëÉ[?Sãkðy„ãÊë÷ Ÿ¼3¿ðê”äå2zBšˆ‘D·Eèû±§Ú³ÀÿrX¸í–\ÿÞßVŠqP}^#C…™‚ ”:Ž€X B~KFÄ´Ò‡Ièía'¯«|¤õ8p˜i1€ ›K¦9²»‚¬/æœOX3? ’&R»¹¬§´D}jàHnü¾²‡™÷æ284“ºšã,FïÌEÓ5T«ç‚Š_^£ëÀ9æF9ð02;‚¤-ã AÕIúë#a·ËõÜ*`Îo#5±cxl¤cVêf<öŠv'^”Kò%“†4ü¼S6mg–‹t·¶~ç™hù m¦_5ÑE-ê—Ÿ"ÂN¦ÔiiCH“†dGtL+~Ï寻 H¿Ãs¤dåb$ïNSíÓŸËGÆÑ¥Áýñ¬ûR+òT™yƒ×¼â@ß·t’‡3¢ª#`SØä†÷Z]À޾åX ¶é™£½ÞãÚ=1@ì[h¾Á8É–šwWäÙH¾µŠJ»vÒ/â”´pŽqRäü”jÑWîè)‹yuŸ5Þ“ì9da)h¦&0}èLÖO:‘2WÈr{õ?Gc8ñ æv.8áXÏÀò_J=ÞÏq\Ò®,žmŒtš Lýó"Ž«iæ. \ËtÒÊ[z­þëü¤Ý`QòE61Ðí@$èÏÈÅÚ»!GN5Ÿ4–¡™†!ä(uŸÿ³I'•ÎØû2G'‚ŒÍôWÙ釖õSŸyÌÙ€žJv¹<$4±Ú ‡sèqM°9ÅŽ¤NF}ª°_+c77z‡$gÆZ„jEnŽº<Ã"þ1J=:ýòf`øñ„é§H-`¬V*èG¾Ô”7¸^CÇù׳Œ»|BèÒÝp1%újî”·ê\:±±Et^¯‘²ÐÓuáåee±¾’r†á9mB”òê*ÓߊÖíË2Õ©‘Sío4»Ý+Ï-Ʊ¹ Ð=‹  >¦ÿ,B¹¼y7™­aŠ‹âI6ØÃI”Üáźá7®ÃŽá’7ã÷(3zi;äRb_Yš–´±£df’CLã‚‘ÕHw_WlKÒgv^ýuÏ»Ú X‡S ÏÄO0Å ˜”÷(üVÒmü-ýÁ/‡—3Jí ¤Áè<ƒ&*/ÅîzLäĶF«_å/sš´ÁÁ}§ËA©Ö}ððV3Nâ0ùpy,¾ë5¢½|ÈY‘¾Âøn¼N—‹Êwalö¥ÀšäâêSß ê—³ˆ¬¹'*Ch´Lr39p‡ZaDšé`––îj÷ f*…‚üùÔ5©ñÅ‹¨Îª©êïà6='£éU/T‹¬µÅÍ·Ò«!Šâ¼*6ï|º³{)Ù8DU ÄÞÛMÊ¿ak B§ j¨·ƒç„†©Ë2+ªgËôc@ƒ-Öfa…÷"7³|¿ùW_sNiû@‹rB:»´>­ó•±¸ÛP0b5Çb8ÔÍáð /ˆvÆ,÷ä^ró+‹ÎSªàË&ÏéñÂ(®õÄüdÀÙÿâ?¶_1qNø°°‘`-„ãXÒÿ‹À±éD{ò‡Ã×'U’@ë 0Uä?È\rôS>9¡óÃ>Ô—¥ÒôGîa,3V”PP”ÊØ g;¤ðaÕzQ—Û\€RÄúdøÑ„€4æ„á;¹ ^í]dƒõ].hG¯º£¿±Èd0sÏ@¥ZüñC:±ûÆâéÅ£paJõ½&B››”lÆl+[<$Ã_ùtYðcç@#aYÒ—ódþß²{ámñx¥ôk©D¦ŸåçR6Iëe0YðwþSÅ„6ަPÔw¾>¿À¶Vºô5“3“âKü»ç>1M­É»ðn•¦G.X_ÑÜêOî{£ 螺Õª‡NÎÌÒ÷üi7*/Ñc>©I:ýD¬ë*’’z(kûJ+: rz<˜Ø35„,õ¸¡1ÎQ@¥«§±I-ðÑKº=HÓ&Ák¶[/jXµiäY‘Ö'‰ þ‘¼€ÊFÀm×i"1/Ê$zÆoÃyŸ w VdUë‹·ÜF`jå0\¿$û< Ûðe{¿ A¥Õé»á$Ê"­˜×Yº9¥L)×$ZíâÐáG v/òÿ~64°o(m¤X’€ö0€ž> AEäá!jüž©å·q“ø ¸‡[99'°[¦×Šü’1‘ô dz·î=pæÍˆ‡ƒ \tt=©º.á¾MÑï…¼fé¯ËÌŠvJ¨F&˜ˆP$ímW,„T¾q˜PYÇ;"“’OÜ#Šnõô$FÀœŒŒ]­ÚZßbàêdi*rÓô‘:p{ÞMç¤ 4žý4]ÛìS¡h r€Vdï‘o"Šóøåð ãE¼ž³iÒÕ{‰¿-ÎèƒR—Û°ö43äuÞú¤lb 1?úÌ%NCdIuÙÏÛYÔ©xÖ9ñžT6–LÑ{_îý°ÎbÌâÔɺp‚qßí3}`Á½#›§âÛ>„a n*nú êÉb²‡Úl|ß$j¸¡l¹ÜßAXŒÌÌ®àãá7)°/_ÍöëK“ùg sÉg¢cosF׺Õü¨tpЗ[s ÙƒÝZ¸:-ä¢&yr²Ç.eWÊçy+á³3øÿé9—øÈ4­øI³_ ¨'Ç}Åt½?la neºÙn"¬ç©÷JZSRÊîÐ .Ñ,Á%×½ W¢ãèFK¶mÜPYÕÔðFÇç²UÎ@*ƒÞƒF’ŽEÌQÿQsò £÷µ³tœÐÈ›]œ—P8ŒŸq]†æŽ°ôYKÞ7Ã/ýA¹À:í}HòAZ˜%s{_Ð4¥ºèº=9 VKüXÚÔÖ7>¼!L˜øÕóVL‚ŽÃDZπ“ÑV…¨T§{‚ݳÁÉkŒ<ª&Ò8fdã"Ùd(É)äøåY”¨¦–.«#6#¹³ë€f+ÁlÑTìÅrVCCèҀĜ¡†ä]]80…_Ê”ù€ßK àBn^ KwüUÝ#º÷½ñëèZ+«èùrNCç ;„ÿ ì¶m+Ò%­“e5<ö"ÊœbüäžÆ³p*ŠB* }YâS»È¼(œTû²-°*Óˆ:n7F * RõuÊé»q!;ïæ¶oV!J.þ]šž‚rãÊ×@?™¾Õ‰ t«Xòr“ïë3Wgk:Æ>ðˆ£ Æú'›ØøF+dÝ#gšoÝXwíÅ¢±šPÿƒ§Â݃§lê’i:5þó>ÄÏa&á[a'òÂs°\æl‰™æ›=O¦']Á£/£^›³!’q¼÷Àr™¦Þ@D1·>žƒk¨×–”™8Õ·³œŒKóÕ Eí… …(?-Ù¹Ywë^Ó½ÅÍL{îöï¡„L‹ù•)·]H¨ý1€¸@­µ^65|PmGð §Ta»—“ì ¥¬~væîÑÛI¥ð¯W¶àó8T½l?º/ð³+²³É,!‚EY“7P"Âæ%eÖaû=‡;V ‘Ä(¨ øý8õ ¬£RÑp§vh+q k¨ê™Ñ±`v©ai!mïÀ!'9Ý‹ªcöîa6Lðw¼ã¹Ž<þ {gjx·}°ÜA¾~_Æt –-Y’OâÌãÔ\ÊI"e. ™s4“¦±·9ŒJKÖanœÓµq¹î 9-=ÞhóíÕ50år·‚Í›¹×° ܼ‡sW‹I“Öä«/)ÜrØöŠØ?sÚÐÒ.Qh)ºšì—\-±µø:ôÇåëÚ©±÷•9”Â:€£Îã Cf§ÌeþÅL‘üÕ¾o!û»^¢Î½/Ååû Ñ“lþzˆT?uަ9ü©è]ò˜¢©ÁüK[´GúãQ”ä5UMª£«µ(¦,8"Ö V„εÁµ“’$üâN‚éí™X'h`ðØŒü²P¶Èf‚ÕÚÚUvÚ¼< š–‰8.ßI”•ZûV’7 ›Òð¨Ë=©ü*—xÅb,½F§an‹«ü|ëÛk§ý©Êá¸OrxXz|tÓ­zO@Pü`/ £ÛÏæ…æÝzOo±Jòoµ§®Õ(´ 9V‚J׸xÕé8üß âìúÍÐ$:'ÙÈÎ|½äÌZjé cfð÷ÛóiëC ?€ubÙ#ªmE*u:6=œ5P|éá´Ètp2N–𓹬‘Ü·é쪱/ ãb$ÉEæ]r2°S¾¨÷ ?µß|öý…qαqŽC"ñ ™Â÷•grŠëŒ&vòVæ?p»v èrNàpÎ×RŸ6QÄRŠ\*ny‚/‹ô‹gPÔì"n qa—7D/Õh¾ü3;i(7sÆ®7h²ÅÔÝ™lDÕ€$2oþœºÒ]ê Mt7»èÉtœÀœ°ªýtÎîl׳Šÿu7H”9ÏÌpõG¼Ê=o¢•b€¹)zÓr«®¸òÙ—°è‰LÐà ½¦ß©fJÎQ¼9²´ò‚´+ï)É)(²_}äy’°<§±…2L(òû1c/pc¦úf,¢1¾û*å‹i—e”¼CFpGëýsæwîÈ þà²3Š*¡µÇ¸êi;ø&ìºÄ—T7ý£©åžŸ%¼åãŽL»Ö¡”iôغ4Š#«‘qb|Õ/ÈÌcÜ Tµû„׉ ”ížcŒ9,ñAæœôä›ýº ˜œ°MÀs½·Ž JôþH³™n!¢ô ±,QÝsœ™Á€V­"7¸3=•…ˆHdnÔ| å ¶˜›‚?-Ä9VùE €¹2â´f3n]¹ßõwÖ§ÆIV{"‡ï*gqE¼íÎkñ³Nó´„6OLFÄæbWÆÎÛîÚ¸®/ŸÂ8-mäb£'>ÀÉ_@‚ú¶†N÷˜cDL’µéÒ–—JsàanÙã€ò)0ýñAÜ;wú-y¾ôäîÊ@òÂ&¨6"T¤«Gõ8*‡îO/Z”žÆä#Öá+?Êé î§É#ôêA‘ïÉb ¡ à”0krCĺ¥ùŒAw=qC9f¸-0ªqŸÐ>WçÎÄ’5:…Ù0_åc™%1alðG ç{3ÈÝ·ð£ù*Ÿå V!>Éè-`7g¥=Œ4|‡štC³ÇCça†{1Á—g8mŽ#¸|»J3™ÆÔEʯÑdIY^ÀDÉŽð±øà|¿¿5¥˜TÈìZjª®p²nØc¨nÛ—ý—åØ{d·© O;å†=ÏЀ4|•nØoXG]ÀÕ1Çeq÷…Í ÷vG2ÔÝu¥äë}Õ±7ó"3€„løÒ¾£º|H*au­MU•À‚ÅXs/À3ÇI{µ©Ö&î9ýR«ãOü8º¤Žú,»w‰0ýå׊‚/,´oQ‡;žºy35÷ŒÚÆßËÚÌ·£«K»Fì›A#"Îuë¯äV¿ÓÖ¯jýCˆfˆÄ>¸™‹ªÜø| Ã9×bšD†ü霤Gà@§ömÁ€éøÌM‰—¨Ì‰Lô©¹ ΟƒÆCèÈÈÂüLCØòB@ßáâ­ÐUŒ+C;€¯YÚ ý%ú©?2†ìïþÔdL;—GA*¢ŽØn?>(@Hfëœh‰ñ¿*•"S¡,omŸVK?àLÃxU^’º‡Æ°`Q-ÇôÈÇ%²âuÖ^Bûþû¡%P"ŒÅŒº/ŒüUNÏÆðì¡6ð{R¢¸P¢æ«XuK ¯à×>—§Ž÷7P|~IÀß¶¹CÓ¢éJ¶>ˆ*•©²M›ž cdÑôšmÃFé­j:žü®‹Ü¬‚ÕõCÁ-K$"ø˜¹g9¯ô+û×èÃéæÝáçeÁ&éÚòLµÉù*YïQ§_“átôß# Q1±ù>»u&n1’¡'éRÐŽ+¯]Å[½Z!h:²¡L-™´BbÒV±ê@nœÖÄv¶bË´JÒý\‡ZÉO٠ƹ»ŠðÄ!vÅçàÅm αTçÇ“Úù>n«Œ€g¨f£Ô Ëס÷MÜ|ñ•„«ªã×9ç•T8®[ìI1@Ø1EAò)‘Ð_ÿé6)J…w™±O6[Ä×£ŠmF½¶+ë$^€Ùe‚¾o@¡–V£€PC‚³“Zú‹PáÈ<;Þvüפ7˜4FÿyíÍ$µÔq³SN«…™ wp¥ÄN©v°iº.¢fÐtÀ}‡ÆWÈtº?U¬+ƒx6|7b£~\2J‘; á¡˜áLÒÕ.v6ëI²\ö@‹E¬@[šš´ºfaŒh<—ÆhŠ@#÷c V«É¬žÔ¿¢IZñ_XÁSYMF΋}Ì#¨ÇM+À/a§­ºà@÷¯Jfè5Îêx8ᚥv3•-J˾ÄÄ˧u>"ÙBgÁ—ñ¥þˆZ´EržÇAkLa™é™`v7Âqxáo nJ6m[–Ð-+°ˆŸáN1ùGÝ‘0ß5SýƒRM“îŸõBUÒzu ˜« å+œ‹Ñ”éM¢(® Ý:`ÇVÔ¯Ô˜¢Ð‚™¤g˯áˆWw%²FØ™'n>ÄŒ?¥i¹"u^ó fô^VÚâ^èJ³¹BÍÕ‡ž¿‘ouj·Š—Z WÆÜÚ2Þ‰7dŸíb¢šAŠÎaïiúO¡›öCå0àÊB¸^ÐÞüß3JàÕzv7Jް<·‰¯SB1’_bêä1¹¯Šã×®d¸×ª•j®îâ•tž°ü-kîM eæ¼âܵ+ñGB0¬ ·½OÏýˆ¾†íüÏÏÃiÁª =êûb7‚ÊqýåÐ(ìÄeÄG ®Ù.? ÏelLhÕ=wê¶tðñZê‹9g$ýz®­¥Òö` øÑÚFSëü3®Pù“•Ëpqð·)÷öEñ¦Mf~_)Åt]µX­Ÿš-P µŒÈå…¹527 ÀU=_Õ³”ð(øð! áŽ\.‘Ýò(8xÃQ–gª=pÐԫdžùùù€]MÝ8`êË M%R7‹§1¼ÄêÁÑ¢ü ›Œ"‹ƒ9UHÎ ~Ž] r¹µÙª¢©šPfŒ-Ø—[¼*±/°õf|vr‘ô¬b‘ó,Ö²¥£Ï*Nˆ/4˜ð” y•+jæå¼÷4Ò™clÒj6/9XY*‡;/tq?yõ6'xŠ·-G€zP9Ÿ^W¨Ðm‹C‹µ“M?r-ýÁÌž½u”çk£Ð¦øÍbWÓ¥a¤Àd_¹_L¾·ÿ¨óÎ𿤾 f=¢ó–æg¢„&Ô?“Üs8ñ|c,Mptƒë 2ÜØ'•Qsx¼MWM¥Þ5hç‘ b’)¦Ž‰ßv‘íÎ/};áš7w aiHo ÇÐð©«z†?´ÈªN‡ ÐÚÁÕ„ÛÑZ*ÂÐK¤  :ŒÚ²1…]€«‚+ÓßÏ#bS›Wí…¢•ð’*ÞAeÃÞ î(sËáʶÝ5 “§±×ýTyšÂøÂ;îã°=ú@€mùßç|ûwä' …'o?Ãñç×î£ÒÞýâæái©ÉU"Gt© t‚XÏ´Tj¥+‡[ÂéL x[¢OÜ}ïrD‡\Ñâ´'4_¹È]¹WîF¹¸ÌÊØ[ÄÓkQ{‘Wïéïâ¤ùkÞ£AÎûGmenðäWì«` •·$5…‰O Z«ÛF¤â–"` 5îŽEöêÈKéãPnO5µaø‰bo„¡Ê²‡lµ§üD°Á=w 1ÚøÚZr­î›ú?>Pû–³mgƒPAFØãG£ÂT"uQ ùOÙóK2Íùòº„83ÛYå;ÑȉØõHÀ8Lp ¸ý?q“<`—1³às $—SÉ‹|KÁÆ'-EË" ÆkhÒ!\[,#~ÀøS+Ú,Çßèô'`ÓxƒÙRdR=r6Œš¨”„»_hañz˜ll$öU%KÏa&8£éáʇî‡!íÉjËÑÉEW?œLvõ–§1@æ5œþ 7óÖ¢Á«õ:ij>ÚûŽG¬v¨ZHd¥ô‚Ãd0‚f&Ä»ÄFTŽQ•%±ãy$Úl‚Éç˜ú8™¸¹Æ÷wñ7?B`Èw)Tk)q3v¶†Ã±u1+)Çs}ÇÐWufƒY½²õùýµ÷=œ[`h?úDų̈IMGdÁO ¯°Z ñFŠ›æ7ÈCM|¥·cBã‹ÿCdÃõMç-¯zÄëos,2ö´õF·8÷‡DA£`ëÛø(ÖJuΪñYJ,˜TCL5×vÚ=<Í‚»ó-q'~yJkâ“ÍD™cAbè "©$•"’Ô[cï]ÐññÃô[¾ycK¿ø—™Z{d†\‰N‹’KY—¡dO5¶ž9*I0›8Vè¡s VDeO‚3÷‚Í sMiF>´ì:k5ïb½g Üã´‡ áðpX$ê]~)eIŒèäe…¤M¯p N¥ÀzÙ.·ÅëO…Ìj¹;ZèîO@˜ø§&ÿµäÛyŽ™ËŒÅ'pêo_Šq¿{øŽikL¿²‹{ydˆ‘ÀZT²ÀÏ$™‘.¹[Æù¶Ÿ«'4}Ø'(‰zwY`~¾„×3 }§dh=@¾ž'Æÿ±B‘K× ¼–>‚JþÓ·­J€ »Æ†3ÏyHße¨¤ê¾‡l`S¤•P’6 æ›®ûñJ'ð #+¥ÇãîŽò$&4ÚªÎüÂ?¡÷I·Œ'löÚ¥M ªx´Œ^•Ž“!î u>ó<£³ëyfg*K9¢ð«SWŸ8|½ë¶¸Q戦ÚÝ ž§4•hÐóXJY ¨#A_Rz5Éß6°H_+à"â d±$r(+ÞJªÙ1ø¸IÚÝD£½ù-¹–Cí)dPj©mWŸ­Ú;uØæª07{À‰WýíçL: &fŽÄKyÆÅƦ'Ø‘ðãàvδç·"·òqÎD裙 Xæ9.Á•K—,"$¿e*n<DÇMãR¯Ã#N4×=*²Ùþ)Q—ÆPè]ÝŽ¢2ÿ)«f½¡|,뺎!6XžtûKÛýÇÉUÌ8w¾tí—ŸÚÇVÙ΄Æ»§Óù¶¯VzÜ6@@$”ªœfÝçœèý‰‹9µ« º»-maÁCÛsµN°K?U2~êíwWü#‰{L™Ñ4’mÏ+þφô$OG¶Xôã~¤ Fa€ñ¨‹‰H +N“ÁÒÒ? [§ÿ,'Pí¸ÎÓñÍž¥RG `3%ó Ò¥ºØÀ¢«Måxžsî‚ —…AëÁlåx•v9x4¾ ¡‰|$du­h׫_mU›yC½ÑépH¢øtÄÇrí ›ddš\­• öݘæwÛùÖ€5ô6C¯ØµÆÈèu¨3@ùÛŒdÖ€¬ƒð¹‡ÜçE¤lwɇ„Þ+Ïýß“Ûu:–jO m¯•}盥oçA,Œ‰KT$O®Ovc°*µßu£pS£ŸnÑEK†—”A¡ö”«A#§=–dT^êC°…wô¦ó\œ÷zoî?ì¹Â˜¦Ç°iG2µÜ7­aè”Ôùħ„4T ™˜¶þS.€D§Ú3Ezuqk8) éµtúo0M̱L—ýÙ÷ŒÁfˆíÙádÇÚþ´Ö’÷†'h“6½"O>ê…À´IàJ)3EѲeOxÍ|ÀÝdL´±C–Û7Ó" ¹öBwë_mjÿ®?š>õ ëþ‘…KH¯DVÎUu3ÊfrƧZqúq ÙïE ßg0A“é&£×±þ!ðãUy|HjB] û¸«W¡!L>3g€%Ýw%Kìõ¨{Ýh¶Ó•"£\rD%¿ÕØdo'øÐJĹ»ò±â_OЪx ÖúÓWRëì9ï¼±¹mRf«ÉU ¼Í¿x ¦¶Jœ¦õùØÖ£n>K?bt­OEJjù›[@œ÷¹\‹ª½Ö˜Q>á49‚£B#ECOLŽë½Ðs‚ªÉŸnpWS‘weT²½qLÛõú†¶3ï#y…Ê®õ˜ýh UÄ*ƒ)D}Dy—³Ì—+Î/VD?IXpK¿ÈÅ0äm³wBäH4Èî_ΧHk1ÈeE°¸e¥¬°få„M(àñÊ%ó”lËݧ0$íj÷’óßH0ܰ¤ÈüÉ*¡_Þs¬.Ý`ÿr´½˜È>j3’ š›Ï4øÂ9ïÝ=nÃ+5¤ 4îë´ôc•L*{à;ïL5_ͰÀzibÖqÈ“%¾M6!¼Mó¡ôÈ•ÐHÛIŸy<ûöEÞ»©êœÉ›{‰ }ŸÍèwŸCîYÀ€…½Œþe4BG\m…êX™@¨  , ”|0Öb-*Àóãê­ó܃pØÞüÉ ]ûIuî «üì9laïÞø6¼s:Ó’Ëx¼ ¼ ØŽõ60u‰#´æ«Ý=,ŽÛöRQ² Ÿœ7¶íé@þqìæ…¶qœèà3=¬ÚÀ')赦ökÍ5üW?Ôõé7×Ä>‡ v¡©•=–ɶÕ‡O!5ÛÇt¶é¡Ó>›'6Õáî][÷Zzžܶ[0.`±£ÕVJã|ßëx„ÌnÖ5âKé±iœ’ÂÁ¨%엤ݼ§¾+žTŠÔ¤˜F*eÕôÆc,aú=ÇX;*?èÿ…üƒqöÉ–§h¥èÁœ7¯O·£x«q?å¹!Ún@Cà#g8 Ò˜åmRB¢2'Ô°ò/áj)Ä9Û6Vh"°ÊVQ ¸ÈtiýžŸM.´ÑokkÚr–­'e³"6µÑ×CÐXŒ‚M éªÁ¨’uB¶l\â[ï)0;U°êGå=‘FGЭ-ÅN%üB:uÊŒ-*x'-¥  u7\ÁrW,„bgxZÛLˆô7"ÖÛó·ÅÜ‘<ˆ8ã¡´Ññ*„f=`k ˬ|Gذ/øP^Ua†Å¥Á;è3X Z8?w£Ísª995BUqœùsôCNI3 ºCNºA“;4Å'ÛÿA¯xÙ§8ûF Þº¦wRÜ8ø°dlÔ:Ÿ­C\;-ÜØþÅÛ–2ï¹Óɬ%.=#jq¶%ûàÉ™Ä ³õµVL%‹ÍÛ/ÉâÑBòGkS­$bOlÊœs+ÔÐc¢2Ù}¹±a%âŽéôËDî™hMÿˆHæUÿ 4»ëåºá?ôúº.°-AzÌ–™WÌz˜›yQC?oRêÞˆ+/QôÑ#¥svà¦ÑÕÃöåÌ•…¨x’ ?ýò —¾–<øî´mqF_"£ÓÑ}¼ñ$ýdOQüåUvý t±È6 ¢çËÁ>}éǯÊ"ûe`ÓÛ‚ø¬ü{¯fMè+C˜aäJ¤~Ì>ré9£_çmœ]È8œgÊ´aîhÜω²µðÒ¦Ë? —ôE›TÕ ¢€g¾_‘ÑÌö÷>Ðû#Ò ÅŠH’ÿŸÛÚ_› M!ðT_6­’Cv^‚”߬ï"aS­\8| gÂ6t”Üã¾ð:a«ñÃÀ“òêÏ4—«*ÓmMQõï°ZH±¹RD‹¸ll5Åèó²Wûÿû/sèvë`ÜOnî0ïw¯ˆ#¥7].öõ*þöûRÐEŽ05·'Á-á±Ì”R¹êQÉNõVyw|ycäÝêF íY²6ÅøH»ï÷kEaø´Ðj -¬Q‡ø:e/5øò y ·Ÿ ¹Èpþ¤0ªlÄÞ¿VA£BË–çóW?Þ§Ë0ÁÓØŽGZ¦Ô$=D§˜àg­h•<àÈ‹½‡T}°é(Ê–XY1Ù=ÐKO4®Ä1{-ÄO5pB˨Åé;>±Ø:[bK–<¬q9jª4qËvüÅT¶% ŽSÐg¼[®ä 'ÿló$Ï­UejNÙ±YOP9ñaø<&O‰¥}üawQ‹Tš5¥+·­DEk$뢻jy({¹ìâ[°Âq'Ë:œq2=zMQÅŽaû™º†hŽÅ€m‚£Þ²“µÜüòÛ•IЛÀÊfˆ'ãòî\×`â¿qùQÄÇ@F6Â8Ñßý¤˜ƒF²U@ùÏãûÑð"æNóu¹`VºNi»àØÔtÓe%€@¬ÀÌÑYLT™‘ ¾ETfÇC”"¿Òl’œÖ(±Ö«ÙgÞÃã†ðQ Rž‡aÈ„ò¹þ,ïMqHê(;HÞPOÃìÈ l”à e’§I²æÜß¿ª£HÓ)8²,b™je]T•_gJlAð+pYh(ÎÃûNÄŽRxL’v‚&lYû=3aŒ ŸöÛ3ü#‡ÅÛ3 sCoÑ3Ï$]{u®Ÿe´Ñ.”þŠÄá]?²†– ûÛ/à|ó|Û`€¤Y7ƒ\Ñv#)4Õ9Nß›põO©©–ª1ªæŒ«ýGíÇÿÇöƒ~Ôz2¿÷~0KV¨2¼õ±fãÂÔý¤¶,Ìþ{º¦&D´"¦á› âQ¦í–# Švzºˆ~R ÕåL¹šKØ}Hte–Œ 2Ž'Ÿ'*Þþ Âo"ö倘m‘y «°‰J6ÞÒsÉ®5:c‚ B«ù6Qéd‘‰ã†Õö'ÁʲÏQ²‘E¾àÞ)1ÈÆWH×ùèÌ×zÎëQofzJA,N›·-§Èpì}z‘ z2šþ)ð‰õ ý”£l¤ÿÏÙd„Ÿä°~(ž“í¶™të ó–÷ÐD˜cÿT –rh».Úþ™Æ^µHž’œ­¢ˆÍ•­™jb§km5ú‡c~H‚nVmB‹üçígo}˜PãtD™ØýáŽÆDЖlOð¾é©-Â?FGr+—ÏøŒž F«¹–îßò¤H©ˆ¿•-þiëiû$ ÃBF·iÍTÔ;Aþþž(œwÉ ËÙÌSÚ<åJø‡Õ±Dýl߈ò Æ>³/Fͬ7µJÒ ÍZ¾°þ”šQ#j #sÿÚî¶ÜøfÎu­B ¥‚Mr‡±ÜÏ-ܺÒǺ‰®±‚É¿_r™¸¸Fóúï‘”'ðÎØ!Ct;=öµÅ—¤îAŸÄpË‚ ß þAäß{¹o.Æi„¦G¦„v™(DþlMãÇàã¹ÛšÒõSÖQÀàÞû9·NÖõx¥ö B|ìõ™ƒª¦ºK‰iDzOïàƒ i«ñ¹ÓѹÞ×â²ÁÚ­?z¿·:¤Z7®Y´w˾]‚l~Ùûd7Ò7›Q$‘Üý¢Òì5P·L_â: ˆ×ªv¢×tjÝ^&Pÿo:ý6¹u%G(«6ŒŸÿþOíl‡Š˜gÓS+®§my=Æîm‘y9öM‘eoúµÆÞ®nsú~øÃïO­Š…ãúlEÿ«ÍˆµŸ É#™¯–É»"Ü‘¶+ÉɬÙõ³ ŽX” îøÊë·DxÎ û—-vz=£êªê]n2N!jä¿ò©Bvƒ°Ùþm¯ÑÑè f$|SÁKд¤êˆÆqÂŽß¡ò äºŠNÉñ”õ;i¿µ.ýö¥`ædÔE–X‹QÏÔßê±°ÄmÅ$•GlØ*Ɇ<¼%™ŽÞõ“ŸY³×Kæ®ü—ã­tÁ‘OëǶ¡*¦‡»÷¢Úĺˆ)´…ª"žÞ¢"emØ(Š:ïÓ'A¢ÇÚ„uŸ”8”@‰‡|2B>îÜÉÆ„§Ç0 _÷ªAûlÞ-Åç†ù÷N‹|øå­’}‡ð#lBÚÇÈCñàƒj—õ‡'D Ù+šFþŸ‹~Í¡‚{¨‹á üì’)“ñÚTÒ Gvy¡àØ5ºÒq•cÊÚe¿?€‡é<¹»UáÝÓ*6)ò¤aïxvÿ—óžÚ<ܧßàÛ Á3q¶\îͤžàвmIøÀÔŠAŒ7ä2QŸ2ºZä£òôú4¨À£{¸%¾`W¿-d”„6 „Fysoۼǯ ,@Ý®~0¥®Ü zhåœÉ 5nF²q$)\ÇŽe´§9-Ê•ñ'žEÕté©™Ýa¯jÈàhaiK¯˜ÌÜaP‰ÁbI6r7'%ÛB¨§y$‰ú«Ü¸·¢<sdQ(ºRÎÙÄ ¥ü_—?ŽÀ懧½R³d˜+r`i |DO¸µ+LÚ¿!8MIR5ïÄk±ó§‚¡¤@Õ^]àkcº•…ôJ<”D–‰ÛÌ}N/sÙК¾ÝUF¬÷ МYs©Œ[AÀ/®÷¿½&á«UåßÏš­S¡Sòã³ÕÑlºU?Ú²®Eùc&¤Y—4]³ ‰ÿ)e™šÐ]sˆœOÃéªLÁÈ© ¯ ±ufò‡†QšËÒ¿ vÚ‘èvƒÐA/5†EéöIóó{7NoŒ4ô ƒì…4î³×lZ»u=2àuý(K”Eû3AqU†}ÞZ†Cœ=ì/jOü܆@–ªnéÂúÿÑõ톸‹Y»J¬ió*›À/ø^Š–¿¼à?ð±î˜²sÏË€ƒQuJænõ¥_ÄéPÈÌ?JªÚ¿×H§b;Ò='áÞ„³aRfIôÁz;t“Þ1Ð|‰‰òlâìB¬zæ W+*›þÓÍà[Ž!Ùµ×BWì+ODù}áÖ·™!P^¨9VZú>·±.W'Âw§€0Ó¼VÈJÉJó +äàW1Êë1÷ñ'nb©Â„½Ñþ‹CÊ3fâ Þ.ˆŸ0ˆ@VïžýÉ<ÿ07áÔƒD5åg4Þöô;ÇÇ%ÏÌ©]õxíÞSß©i!ؼ)~ @HÍgèw1g_u´‹ª¹ D š§V«ß=J›¯_¬vß×µ âQ[á˜'Ìü¦áxR¹´m¬¿Á)MÖNäß0Û±È=žt¨#™nµ‚‘?Ñ[Æ{‹D…Ç"Ý>Ãw¡”)È™‡¯5œ:×,˜³/`q=У%hYJ)†â±bÇç ^¦ªÕ’pÕb@;hîv.F?ûDê B›–‡îå~$ÌÅ©ËþÊΧ}¶¨Ž™)½wÍäºOíY®«À\ÜÏöRDZÇàÊ&"Šs´è)àœÉzá™›uh®ÉÎ º"Û­ÈPÏК!¯±QHÂ÷N –‰—/†¨Ì ëè q_‘íè ‹Ô?iKn\O˜Z«6(áaX§WY A<öaM…Ï6º?ƒaU.ž=ᥒ 5ÊÄh\@£Ž¿ÎœP÷ê-e­#®÷j×ãIòñ sŸÀx ³_'ÃZsSƒ×d+–I^ÅD9ÊeÆh%ù—U̪ƒ.¢ QË–øûòúþWò=Ë÷˜¦fÎÀn‰Ã‘ =A^(ßÀ‚àé±:ãÌMko{Õ¶X>ùuîŒÃe«Aå¹áoèu,wó68ûp…‘… FUF‹¦<¥Ý ¡1ÿ@®>¼¬ò©T–†ÝÉX#îÈ®¡Ú¼ÕÕ’²ÄÕžµ½Ó_–6s&¸½r)Š«žË·8Ò´ åÆ8ó&£@Eÿ7¸\N9Èz‹˜ òc>‰Xò¥‘j,•‹¬kšˆpî±çki¢%ÒNø}€µMùµO7˜çK,†‚»Qѧ1\'ÜtÌ“µGÍQé@«vQ˜‘}ÌŒ^X^rmÂ!Ýä4ÖÍÉÞî Y û.P¤ßú/*Çﺼ¸¾1kJ¿&¬hÐ'lcæÝŒ‰–ÞzàâW¨¹ÅÜóhdâ€w ë¥^€ü:ÃÊì­ªºü?CCÓÁR.áä¦þyЭÓAJÖ{PÚõÛãgF×´+Åtíïf¸;Õ_×ÒêRd)VÐáD†¥Nö2û3î#t‰—ªªŸ¹úŸïŒµûÌ1ù“OCêÛ¸_üñg•›dm¹³‘ɵïÏòjý^Ü:C"Ó0|½2LÍø¸ˆ¼øÅ¢ê›n¡©%x”‰’ÔnG„yu_À2V)on±9öÔaOÁ´ ÛȦðámpœDF½“ú‡Â”©VÖí&3h@í7DÂËæbpÄw”"ï³·sâÚúéyL¬/iÏœJ›Ž€Zº¡¶7,ø†vóB¶„c˜x·þª]‚jƒ14â;õ3¦÷1sÕ£Ž‡Ê¦eJJVìý›Êf˜ïøjw½~Ô,J 󵨶·,¡ÖòpÄ‘’Tƒ¯9¡¿Y3ÄÖ5¹QÍ%G@ b3vÑ&Ÿ£vT³³Ao#;Á¾¿ë@ ¼´;¶»9<°M+5¯Ÿt úõ™y&ê, É 9µJ½Ã„ˆª )œ&F×_ˆTÕGK6cF+@˜`YÝÄvM—­¥ísä*G¸ <ïTUªîôp+f}tx†¾SAñÉv)RÒZ¨“£cöêåŠfn}^vù‰Ð¹ï6µš™meb*”NÚ<莸NwR×’J¦ù ‰K­&j§âfF7]÷fÓ× Ý§Š´žØ¦G'‘lïL-$/z;ÑSi<²¢¼¤í°!xy–#o~ì‰e¯¼pD¥©|âæ?Z‹ °"&ò™Ä«XÑÑÖ”Àâ–ƒEÐöv¤<^†Æ9*ÑŒeªëÛ 2h ¶©ºìµçmguHe?´ ±‘쪷‘NÝH–!Zóâ"µx}QQÖÐØÿdG‘1ßïñÁ éÑ_¿–¥Uioj®œ×õËÞLSXÁ#`ùÐ…uVèVŸ]·¯¢¾ØÚ¢†Dh‚oa§1bw½Ú â,b]pèÍ'ï"{@Ûdv—ÈS-MaŠé‡©P¤*a ú_{ýβìÇËrð·]8èðËUtÕw^hÓåyíʾ»¿Ø!úŠm³bR”o˜<7DúV<5ö…í„ÍËU?ëv°TÑš,0’>ËÒ—CCü’Ÿ@—®¼º¢“g„Q“/Oô‡tÙ‹ T¯§ÌÏç­î|œÂa@çïîM3çdÊŽo…©e dªO]Å—ON)MúdÁ_š¿»!ƒ™=Õp6Ùpwµü1Ö¡?“¸ù9ŽO‚ù‚ö<Á¨ÜÜï«þ8ØÛP}k9¸åì=Ú!ðÃú¹ç0Õ—µ± #[¹£ø[˯óîÀaÿœâD½ã ¶1Ï}QD ãþ¬ºð³ T1GÉYflMZ4Nz>[à›ãüL«™²òìwÍô'fÇÄI¦—ã+‘™.o½ÕfwÚØN"ùm6þ5Ùç€S[Ũý ŠÓñ“+ýr_§ƒ¤³¯ÉSNšFñÏÿÀ€S1D!…ðýÂÖÕÒ;Üšwµ.ƒWçLòÞ_¾“{6ß§š“â=”€„À´Ö¦ªÕ”×2Õ0õÂDC4e׿u~N}ŠdªÐûïhš®ÒLP†tš"žepbnd½p4°Áfgь܌BQÄ”¬Eµ‚ã*}.mR0Éúæ=Ož7qD¡!9–ñòB¨‘ ¼2DÆíR–];ÑY`ôìÍ)tH¦JÎÔºZßù[=óøMˆÀt ˆŸìœW}¾óþ,ªP˜«UðWOÕ*BÜ‚ÖÈôÚ¤DȶӸGúëµþž ê ‹.J×oð£ï»Ô”R6¦Õ±±w¬se—¦¸\VÛi$šnTB÷¸ÿÊ%EònÉÈé+n†ŽÅ`æÞƒ÷Ÿ$½_­ø.Zg¶ "­åû/éG_@¨7Äßsj‡]ÎÕ0±TTΣ{<P™–½’XP”#UpŠ.Ùr!ëðëKhÚúž(w"jAb3. ÈW\{TulÕøwrqG¦†ri)&|Ôw>ò”Þ¿ÍcZó$ÉDï)‹Ý\ȯq/k iYq ]c±”¦èJ§„‚Ü0 ]õ‘Ýú[à!¿ªš Òö®sóÙ OŽ$çbOz5™MÇËuâi‡Ýâß MЪܖ‘ë¢o–yÊÝ¡Î1xíbBBààXWÙ[뚌8RÈF‡6®Îô` ýëipƒK„y“X…ÙøÅB7(Œ2z0]ˆ~*ºÊöhÃO-“§ÏoÚâ‚t/{Óœ€ÉÔ8E½4@Œ3)ê>ßU¦hÅŒÚ>,¬Eö)ι¦O0NþðÛi ýPôFÔ9½…fù²¨êœh¤êrrC”›`«Ûi¶âÐÚ TøÚ >Ì9÷ré0ïgÑ=XšA©’äÈ: ‡¥rú½Ã£HåVp«. !À¯ý¢êÛBÄ8‡ƒ*'pýƧ¹k?9ÎÕ°NºõŒÊŠqV½‡ØN•ÅÚ‘{x’Fî#œaü'RM¯ÿÌ:²X^·Õ o+°Žò¢!hØD/¶1A‹aïžß(f¹¼S^îÁ¾àµà.ÈmÞiæ;9Âû®/kët!¼h¸F> æ«jõ4ú¼<¢\±ÇwIÅ"&—Èx—@”igË³Š™?þi& Ò Ðÿ¼kÚ•™75Ó»3´O'ËEX² fÂj­Ý­ôx¯È»øZÒppy¾ÐüYÖÑèv×½Jkt§;ýÉýÌÙt[™1YTMáGYÚî~Ó-TÊ3ÐÝšEv ‹ö„±-AOLÞDBˆw çï ^+Ì §rUf®$QÔíê.zØ™BIcñ¿<Ýù;B‹ËÍ„_ºØƒí F!Ê‚Yoæ‹Ä"vë¬&–x‡qÌe½ðF§BD‡VžÓ“$¨·O×õ×pi›)~ôéHg´È²>©*´­Öí¹Â ’‰í!YÁõCI† FLÌ*Ô~2<_¬c¥Æ4ÎLw1¯ÂÉ`›K!ÛÞ-9Û<—aþ çkí_²gTà4ÞÄ4¦„ÈdÕ Lµ÷ÝÄP¬éQ\l’)ƒßEŽ’•® )ؤúê| 1ïÈwpl:Yî—œ€{¾hÑÞóѺ ¯DªZóíR ÔèžF©qíæ(g±q’n ßÝÁkµT 1VÉaöqW®;úr)3«„ åTO2Óàÿ¨¤éi-ÝBE ±ËYP ñ&q€OhÛÎì³¶3¤ÄhAGb9ç­ÅV:²Çn0Ȭ8íB_ û{6Ø‘·=ÄËùˆx>PxY|nppâ›@ßóÏŠÿ›Ä™‰Œ°Ì;«à œliîL)Ã)M‚Ê[û?©ÚaøÙWß6¥V7ÃI °±çi#m=ðŠŒåJÅñ—ŽÄ©_Þ½BÜ ‹ò1•f,|ØÉ~“9’ “."²a¨˜Ÿ¡¾Rpé¢{6tµÍÆœ°Ž XönÏo–[÷Pö«¢X“¸|p¼-AÔÙv~4_×ÐêƒÅ¡Ì±é f›3’’Ü¡æÍœÏ™¤)p'…Æ¥W·º‘‰‰mQ6:{ƒ· Ù ^tc‰ÁVlø%NsŠ8»jwBYp´ò™×P%òg¾sÒŠ0­cŽtùÅñµ@ªfAÍ2\UK$»Yô.P‘©åm5¬pð™‘j(e‡šá4,O?4î^yˆì k¯ïÕU“_©=ü–Y?¤Ögâ©‘]œðŽD”úÍ ìÞïŸ+jVøéyÂwZ> bbÂÄ ×wÞûqÄZûä8'&½Õ¦&Ï1ø¾VEìH82éMi!=ýåšÏ{q:«~ƒ$|‚âYzTbœ‘¤UèašÑ(­ ˆø™Ì¾L"DP£áÁ’T:lÜ”¨á,M§Zìzu¬ü*•¾[ç±@Y"ÔÍž¡Ò ê ˜· ÅÚ ZµÍa%z¾5ù7äiôOÀ?àb-¬ÏDÆ!¹îâlÕoVáì^›³¤#†@cŒFÎõ£àíZVžÍÈe6Ú´.ˆp!íëdºþ\}¹5áúÌ&&Õ5Ô ôYð‰B·¿ƒÇ¡@œMVÖkh*ðËԈݚ5ž*qóe½f)øí$ƒIZ”bÄð‡¹9w‘@ûÓ{ÔM~nÚ=/ú%Z—ÌÉôëB.Yj0-3Ä¡·Jv+¥FðÎYoM×=J!bçÆP3̟҃JΉ=4íU{·ÿ$—8T¨Ÿ ‰do.g6BE5ì…có(\?I¢~„4M:È>y]éïS–a?äë¥w®¯¬° ±f€BAU5t”z|}Iñ­uÃÛÈ~uü!µV¤ìBN Ò‘Œ_¡!è¾'JãèL‰–ƒÜzÞ“Ì@,PzMHë¦ò'í%b׊Áó¿z¹ìu…rd³ Ô *hÉ:ͨV!Mw²ìÚ8éYÛg¹íñÒS‘¥Jb0ãÆb˧<Âð€¬;ÑøoJiû½}[sš…c=¼ ®úç„>þJÃìºeŽÜGv0š†?àùhîG›ˆxô—‘[½´ty°¡¥<³D6Ïð”¥Bþ­—C:˜I#Ü=8c¥‘Ç^¢õð˰È"ÚÃ$ãÄn¾rĦÞÚû¦üæd"ïR?pàp'—)Y:UÔ­«+–Õçm”žhj­Î/séÖ㟑œì§jø ;³Ä Ã^Ö¹ôu<¶ì´£ H.óŠÜ9:z0=‡ ïÆ=ô¥(îu|4t—êŠeÙÐâ€èQlõÇ0i”»î©¹ :5‘)0KìmûœMžN}"JÔ}¸›7Áïcþ8O[´˜Í]Ö»2C€hvnr™’C$ Ò€3rS‰[+MY[ìTåš"fž`ÿÒTøêsîÝà4s€ñ×IÛ˜×HgÈTa/ìXÖˆõ4j[y¼Ž[¨ÿ5yê=»D¨‚Ï‹æ™% õc…IÑfOí¹­`݇åÖâ•Ĝµ[$øüQlâêQ*Ñ&8Â÷°ø¦‰Ô€PÏè}<˜îG:`5eÔ“Ú5»¤|¼TuÑÎêùkcºPGn+WÞùÅ! ¯Ñ1*•¾Ôä3=攄ÿ¯6:ø]ÝÉZü‰e˜Ù 3Žuù·CfC·Ú׊môÏ“,-8çJU1¶\Û1-ôºÌÌØs4Þü³µhÜÑŒ-P°ì`£f GAý'éÙÜ#РWR I…S>@ªFÁCø˜àÓ"ù$±ä •ZHÔ:WݟѪ†ØB‹XêâcÃjqjfòŽ#b††X"ÀÝâ‚–ßÛ=¿ÝB:òV'´Ož¬6éÕzôcxÙó³uQ‰“}®Ç¼«æûï]Ò|c#ÖÖ/)_Š81ã{’æIüy L,ÔP„Hìö½xÜxÇE\¼í#'ŽpÍån™­ì€äÓ†ßnÑã' ôqg[àãjXÜ ~;4 ˦FLî㟔É&/ùz¿mý}9L*™]3²œa,‘o)¼] L ç Ÿµ•)(É]]¯Õ§3¾g»¯[Cè˜þÛM‰wkóO¹]ÚƒœSît‹zÞûðÊ •’œXát/nÌ\€ÉL2©Ä\âj lzØ8b‹PWN¬ß?ò EŸ(ņPꪛqU` ÎW,ž~F`,±ÎdÕ²ØA°ƒ{nÆ)ÿØÆmвVϾ:5\—ìV”~ÊÄÙþ% @GĵI‘Û þVs(87'¼_6Z»ïüùKí¾O8¸©;‹êr¿X›‚_¤Äm¸cÏoôÿmÈû$eùE@Ö—Fúç±he ïé}Ø8eG6n¢Ž[y´èôÅ£!õØðPHö÷„´ä¡K§/fI9ŠÔÿ¨ m”ÑÞÿ]s8“gi`ŽmôÞLv†‰8cÙo ‚;¾¶&Äqì̱úTH¯bÁô3ĉE¨˜WÕè{6ö0ùAx©zNY‹¨HÛËh¸œ¿>‰àÚü0©|]“º7Êkn˜y#­®Ç%î÷ó—­*æ(êç˦ù.]ÍâjðY³1Œf ‰´Ow Óc˜Ý_YÕЇEq ÏèQ@~Y^P}X‡32÷d.Y!yÞ‘¡$^‘#ͱ°â±Ã³%ÖîP'5²îù—íÚô8 e(_ìqOýsyaRóÜ#kpÞK+‰ŒûÊáaÎ1I[F›ýíx-¶N`%Å”Gs»I­¥‚»@„=¨cÔsðÙ.–!wL…o•8ÎìD)ŒJ°}ÚVŠ}·OG¸^a¢Ô$æ¹ €‚tIÿ‰V gtC°˜û‰·h•#yHþ¼ò¨‹áøÝ[ÁùÑ’ô“a-' }+V쮇²ù‘fOò;EƒEÚ)qîçBfˆ¸o„ªM<Ä,’­FUrïT®YHŽ‘^–5‘̨s¥ZŸ Líš6¶ S1n~ü‰(gMòMó»«°s8U(°½B©ÔßS¹¤AŸuR?óÛÝú“#v-Q‰`9^jc¨E íÂû•b8³=ç/nìí…x…;Ï´´ºuAÀlGÛ½›ÛÇI™(êŸ)Ö‡ú¿­ͬ¹2‘V-@ešÆl-Åh#k‚@™›–²oÞáêøœÌÊcG5+±rÁXýf¬|¥ß |ŸC‘XoL¾†(ç³¶®ê€¡™KŒ‚|îW<·ô¸éÓ#I(ô¿lØ}6:8á+¬¶€eòÎòŽw&õU¼¯g$‚[=Ÿd;g­Ýq'l¥g|ž[0Ë_á¼)ÞÊ! ÒÖ)¯ '%ì†Yý/Ï¢†@„ò9Ú«ñrÚ@ˆËÃ Õ G]¼pëɨ!4Òh¯kÕ5l"-;7©å®yF_‚mVv8[‚†Û¾-F—µ“…ôÓÇí²Öý׬ûµ ö–¡'a1cXla?—.®.OlŠ E´×¤gì UhÜZº‡Íî7Œ¨ŒƒDœˆp"úbúoEkÒ )¾È’I²/}<ñ÷ÅnšOEÿúÀS·OæÃº«”Ãeª\H#3ÁøPa”µã,ú'hоßà˜§sŠQ”îȼ9yR8Œ·qÅ)°eé×ôp|Ù·óçèðwv|¨’ÉruŸr6YK¥yèõÁ8'%Š¿<«&0¶îÈÑÎ E:/Té¹&d~pkch ¾ºÄßór;ï鳈ù+žœp…¦¢ü­–u&“¸èƒGb®Hh]Ühµ« âÄÚ$.l™×Q \p ®~7ûŽkþŠ<žþU¨@¤ÕVq­|¼Ïkm3d¨˜uNï^q l)Fœu}î³A;.‡·èÃ@ú{*‰ ’“øõÇàEñúAYç—”\`¯Xƒ#ûÛßéÿ{+ƒö\å žž2Øt£f‚åËÍ\³Ê{>ÆK¡±f–÷¿‹?¯¼uÁ}Rñ j;â¿Ö:°YÂR(¿¿½Ș›÷çC\ô%ÞƒO~‹ uÿ3‘tgÖa9ÔQ7hlµ8 qucWƒË&)–ƤX„Â18²,réà×Â=X˜å1µ÷ßÔèõ¡Òë¯6ûñy(ÝÖôC†.A›ì²ˆpƒmÃã PUªZk¯9̳Qðð¼¡Þì¿Û{#þãR`Û8„VoyÔðî^~»!u[@þ—ð'ð`¥—·8ôÚ·VçIp Ç]X=y=íIw–QGÿŸÖÕ§‹Áœn½¢1úÞ9–µ¿IÌÜ< Ž+5co8©îï\*¥jxz 0$d§]*V®9<-¿»ÂhŸ(Z&³g–=“&½ðç<r´xìê2²L…e€O€Ø“xzºa]v+ˆŽÿ‹ÕEÊ>è_UÓ·›¶}®Á¯mܵ®)^ÿ êôêç?íT.ºí'°™g>-kÙA`¨íä#ÒÒ«>ÆðSŒ»®Uê¾/ó'?osDâR„,ªl»a:‡‘%¸~qäsÁd“ ²]åðfK= ¯„€VµH³;jùˆ7§¼(B ,9q<§¾_˜2'wt †88ð×!R¯}ÎÑá/°!?Ýsßã²2M˜õ/£¬Ø‘)3jíN…¼Se@;¨ÿF£ÂU=åpý‚ûG@’Nâñ¶Øè ÎbmZ_mM1­‚{§ ¡¶X"Tœ¬‡èÖwY¥ÙÒháÓ–‹YU‰S€j3xdFí8Æ Ó5'nõ·Qø„ÞáÂð©ÿýY( wäÖ(¢ …û8Ùq†¨YC¾†ñ#ü6•ÛÊ)éL˜YÃ9KÐvËÖe5ªŸÙ2&{Ða JcËJýåzû¢¦<ùD[šÚŽÕUvàaåDÜ^9u·ÀUâmfçQ½ÇUÎ] ´¾u6²Ñ*+PßpÔæØW6iäÕŠ˜b_ž4ãaó³êó¿Lzì´~,/wœÂç=r,¹’jâ‰Ú£ù„ÚЪUÎîØIæü8× ¦››º\3ZÂo¡G(õ¥?h’`›ì?6?ŠåWTŽ›”:F1NNcLÂMj!ËÿмœÐ³é˜[vRO˜Ã÷¾?cÖ0$EW_çí¨!›ö›º O5Ó`L«=¹àê;œ²ð"-Tß“’[Fã?uëý&GÈ ëÛ'4kðùúy—DP¨1­‡ÁPÄ%hIuCRDztn½(«ÚñÙ‹¤§º¥ûB{9x…þñ´‡µº‡•-ÐjãÍ/ÕŽpcÿÛaTlî)¯[ù½$1õÎ Ò…vž‘áÝ0|îÅeå‘ å¿gr¹_51x)‰ŠßÀ©p¸{4‚ý3ŸÌðÒ¡9({ï²ü„|Ô+ÑZ”À^ !~J|5ÂËù×Êþ\KÂðÁ¢²Yƒíì^d`ýS+6™©¨zA›–þû.â¥Pñ åã?Ö}®ó3ùƒb‹ÍZèñ•À„(J¨9Ü Óì³5£¡§xâ ºN¡0¯ÕœûsùßÐM'¨¸ôH4„qÝ4‹…ÃSÏ)bezå%!óXVIšŠÖZI,Â0Runþ„´î›ú¿]íªÄ‰]€=Ë“üÃH-Xè–"žÇš¹Ð!ù®‹PÅA͈!q0õ½Iêx"?…L D‡“ð«_Ü}ôô²„ï©v«ÖoÛz°3¨å“f å2psúVÌ R ’R`k´;ôúÆ ÚÖ 1y°y  c‡Å”º«ñ[lãp£?Ð~‚é€èþEÐ÷'+h*ãdÝׯ<‡·`6„¼T@7q] eqS¢…}_›î”¾fAA~¬ñ*ÕÕîëÒŒ–®µF]„¤J.×äM¿îqÇ>Að×ñ¿ÐP~èÅ®ê%)âÂökGFI<ËÖÞ ƒö她ዢ ñÄ'Ì)&^áaý»z3Á–fŽ.J¦öÖá<¼Î—üŠ!íZ¼ÒrMÎRµ*–H/šç*#žÄz¨ƒ'ã÷àOŸ§s“ s –ä@£îHü­¶Œ·ÝÏnÄIZúŒ!åqÊ ²IЏЕIlƒbÙäߎX{îpTD$B~3,i ƒf=âLZœŠ€ ðl´êsê‹Ý']~[‡A‰a#£‡ñý)!çEÅuà×€±ýù Ž·ðúIþ€ômõR:ŽNÃIVÒ—=±CiDæ}žN¥}³U»ù9a‰°Ý©Àõpqع՟î‘îÐñÓ0¡øzÐÇ(îdy&ïQÛL¾=Œô™ûÓé=ˆ*=²µo4köù7 ®kuz|)¼ký &x”¿.'O"1òªV*˜LPUy3^rvh R‰cB…sÄ>{z וhŠÏþ!ûšOçt÷íÿBL.ê&t‘Ñ%=Í<32UnµrõÙêC^1¦öºj® ÀöÛþödç(0ÄÖ†§Ž£â­F«ÿ²lG(ãö¢^lˆÆ¿™’³[VÍÌ•r°Ã+³ÿ»üò/ÅvÀ(¹bAnÌp¢Z&Ç»aw­ÁÉ]G\šG#®B3—0Jádà bJìÜw×+ÎIï»ûjŽ>iË>ær–!Œ*GŒ‡ô( ë­H®×ÀK|Ís@ÅÀö´Æ.éi½“½ÖÏ‹ä»*ê€õ£ž#ØçRÔHSëÓ$´PE(<>mA>¶Ù—D‚¼ØÙNú$: SpÅ<££ªh iPòæU‚i5Ù 6jY ÷o,¢4g/Bð wh‰Ú~23qa ʪ·5¢NÂê8½à¢1”¯ÝûÕá ½6†ÏÀ#ñë”·zÀ–n&©"E¹Híi—ì\B‘¢¶ [ºWq °Ä“fËvá§6pg AÜxãøcÅ–^Žáév¶Q žî ÚqMÁ<ÎøØp¸ø¢l[´UÍ…¹ 5"É6Dmv2GÇRŠÍœŠ ¥?¸Þæj=÷HD·vx;ÒNÚ7;ê¿Þ×tƒSÊJœÖ:Ô’xèéêóqe²Ë¶žú F—×Ć¿' ÂÃBeZ:µp,ƒÝc䀺?:FgÒYÀÌŽ”z/Ëó;g€¬à%\Îé™ìˆÖŸå_æÉr6HÓ¼µ…ÙšTï‚94¯ÿ—àŒGÏŸu‚^¸^¾bÌiŸº"«æºkƒ#š‚Q´ ¾µý(€¼·I`?ÑÊ÷£ê}{—ë wä(­¥òȸg#~¦›njQñ ‚‰ú/Rs¡ÛU;ùâ¨ßÌ…OÆaNž4܆}šºJ0z¹I-°Œ )`ÖäX¼dBž¸ƒ÷ËrÓƒ=ëƯ‡³¦ 9f[ü0ål†r®FHûj4ÒF­ˆ`w?¦ÄÆÅÊsã’ l"½Eô|ýÐÄÖEFí§ ¾-žö–A@0w£%t·žonG;kÈ÷Í#©ÄjX° sdô6ÑÂþãEšÓÄ$ ÃÿØÈ°Ù(vx]B]îMªSÊy¿Š© RŒõ&_êY¼(é˰éøØÕwÛï$ éü¶g×|FüÏJ›ÍÍö“e— ﬦ=lÝ!sªÀš ?̲@öÐìE(hSˆöíît#ôG·êå<Ó=%³Ë1æ>ݱ˜½ˆÄëLRQ©™Ú±òÓNý¾i™¨A<ÿWgƒ'Ö+¡SÔAùiºÞ¨d¦âÆ&˜Ó(XsIº–=FžÄGþ–ŽÂzè¤2cÏxU`¼'–‚ž#oLfù#¯5]Œì û»Ð_ãcå lÛ¸p´9¹ã·3fö_ ›êí: 1‚<ËݨZ@ h(Ü¿¬ZmIÜüûyò+ës­p: 0zpÚ°…q`E$çU*{¢z˜¹1"´ï“%iõ?¤ZãRý›¶5 ä]NåéI8i_²š¢*P5ñUÓLüŠ–l¢q8¹+›Šý,¹êþkÃÈ6–&¨Ð7¶à«ùÓËÿí·ÓÄ\À8\¿Ã–¨LÛ;µìªgxÕÃÅödªÒ~ªtb6‘NZtë9:A†«ãûŒ7 )2Îföhɵ º³§>ó(xg¢ þÐ2‚q]ÎÏj85™…ÔAüêYŽÔ\Ù°§Þ¬Ê.èqT_Ž8B©L´^-ˆw„ZòÒу9nÛ9•µ£0¥à'¶[×½=; _4ë[„¹r‹™,À ]´üiüÒ¡ííרÿÌ¢­Yã Lö»µ|+Ú‰Z8Ç›†<fuU¢LsX—tÀ4Tƒ—¹Ê“«éDGòÊ ï«tn\`¦' £_my8©üüu—lÞ#ùÑL"½’Ÿ—Ä&“ö0`'m‹³[¸D¹Ù¶‹a®P¿³òc¡iq¹Ë$„ûBCˆ*q ^ßC~Ó¦ëâ €ó MFÒM¥“Gp2Ðõž€³›'aÀ’ðÇQdƘ¶¸Œ|ùõYóÄ¡í$H2’8«à!ùô Ý \5vÄ&TÅ@ÿÿÚc®aŸËR Üû0¤ã·¯DKÌ(JNŒÃħÛ.Ð@±¶³©}ÚRì(›n±dHS¾kÕß1‰²Xv~Õíô– —à§•t®âtYã¾G"â¦=gN¯-Rkó`z¢V;õ‹àùÌe™R8ŸU…©ÁÿÖéÐBXsP–—ì’ÉãêÃ-tNå‚_Y>è„#8®2übé4üÕ¼iåXKý•ÚÛã9³–”ìωͭ`! 'Ç|g°¼zµ çfzâ®6lCt]·»ºùé}-·¶&DW¹Dî¼~È(ÄWT@–"œ¥áÔO–OgšÜЯß3V£üÖÌe5¾…]ˆ‘ƒpA]Û{øÄ-ædŸŽÕ ¢}ºvtb62˜£›µýõ ±ª1SÒ Àäòž5z·¹DÞ*º¶þÂOÙùaõì%ÉTáç%YqšËk+´|Çàʱ)À$úÅiÔœ©1–]ºä–GØ4!Ø"«†ï´´¦¹Œ.@‡Ñ“Í«d.B¡þWaÍ%‘6VrE­B¨ìÚ&똰2Þ.ô2rO½}¬ºzæ$O¦éj ¿f¯3ǃÂG÷<*›\01¯½Œ7¿ÅAªç¥á]ÿj1ò†ÏТ‚©…¨÷—<¼ÜòçK!ƒ²\9»ÍQüpbBxœˆŸ ’™y…û…§²ôé¡Û‘ªCRð®]‡09[Í\h½ôâ;T)­L˜ÞÇÉÙ¶À#ÓÊ2ƒ=OÃÅoßÈÉUOCpÕI§|EK“¢8·´  ¡ÅÂñ:bá…,BÛô …hþ.]]žÌm7¦j%:™½¼cŽ*òKw­<Ú*.éù½/x9³þ,jN} óAõ&¢Z;(“ú}Ñ+÷·Æ8;ŸB^Må×Kc¬Ë¿®:¡]%Ãú)’bå)H`.¨ðŠ ʇígŸÔ¿›túéý1òœÖXu¬ÆY1Œ´ÌLá`†£é‰y’G„¾¢ü`ˆ@nÏæÇt)êlHúZ'5ØLõø?ãKV=åóÀr“gÞé‡C¦'<8*á}ò¡ñQJ€Ûغ;³“±iÏ@<Þ@zMŽOì3&‡”Ôhµ–“—<ŸCCZí$æ,K TËOäya*'ŒGS ëÄŒ\1£s€};RË&5ûÓ {z>Íg„*Ó@¯œ« ½ŽQùóRôò×'ï}s‘º»±›…UR÷ü ¦§2Tt¶¬Â×Äòö¼¿´OÔ켩xm0ß:¢CÎùdBÞŸ5 ÷2źÆò>ëPÌ´t¨6€Ý™»»*|~ç÷!u½+æ¢^"ö›r“Ÿ¬·Os„×왪rh›bÇ`ÓŠmRu¶ánüH±*6ã¹ÚRY,bš`Ô$˜MBä_Ac“¾þ6fpËpºg"(Émv)U'Ký%ÅÎÿ±ôâz¢!â°Ž`˜áãšüt‘ã—/ž}œÙD]"E{ï©ì>ýøš8·-Øs÷ 2<ÔM·ñ˜9uè !¸:É>—zý¬¸SöeØRèÍò WWî§f³Ý¢±˜Uv<Þ 8§öÙKøg=‚‰À‘âr3qÁʇkµ¦V÷@ÒŽ±C¨$1yès_•eÇ~ú]C[,x·_ž:Ø Dm>Iº[Rxç¼O(‹öó Ëͤ³£¤£u˜’\®xî_¸žy­i måÓ«"ø£ë@ñì&{ýÃþõÇ¢öÜf‘2›ÈæÌ.{i`=sÐ`rs¡â(íï¥3lÂv°g°¥›œ¤ƒ„%¶8pa—Æuˆ£=¬ÔBºûó!†xF>mqYJÂu›ˆ¿i·Ñwùj{‹ÕÛdN™Ìž¯¬°Õ³?ʽ¾[câ–ÐúIÚl0lˆØìè!Lù ¶0Ö‡1Ië™Eéðy@üÍÙ—âCn¤‘E%ŸÆèù¤Ì˜6,R¸¹»L¶bY„®µMÕÝ,"„¦äñ4bóð%(š´ëÜï ‡ù¦¨FNÞuÁ‡•ÜKà±ÿ{zß\ã;=Gß1AfF½j|íå‡fMëcÙÒÒ›Š•ú¢¶J-±Lh]Râ’ãb~] ApHïŽîá8û×¥ë&ê@»d€Î•î8y^šÅ­¯K”I?lÏL×–ϲHÇ³Ø ìWDàÀòü/ù2&Ïâ99Ž^o]3ñÿ±Iý,cWqanv™$1Âyæ¢fˆFÉHÖXµ6fß”ç†ßÃPIlŒ²a=” „hm{ž¸c5< ÿÔaË’fÞ¦’fOê†bÃ?Ë抷 ]0âÄQ ?Šd‘¹‹hûnh˜†0q”yªÿ›ï•µ§ Ú²¬¼‹Šñ‹ËÜÀã$ÕŦ øF¼‘~áÁfÕ¤Ÿ»Ñ©iîRÄgµ`Ç¡ýI}ãD—¹óö*,–pu~âs¦0 ç´J·>ÇWf·ýŒ– 4/͌䗉ÒÓ*ZJÍ«‘¯®¹GŠ»ž7ʾíÜÄ+zAQ3uÈô€•oݘÖÊ£y£|{í†dÿÇËM'g ‡QÁ ¦‡Õ%¢Gø®IÞu£÷)†,¢bY²‹zˆ¤íBµm’ÅÕ°+†£²öïú•’¦8ö:¢' ËÀ:Rõ{F¥ç‘rŸñ:ó÷ÁJ¢“Ko%gož%õâÑÉãânuå›`ÿTͶ0ùZ,ù*¸ØkZa8=Îà»ü¿©—áŽ_×Þ ‰jœíHE%ÿdtôŒ…Èd5?ÖûmM±%ˆ¿ ðŒ'Œ¨8É;¯»iø§¬RT… ò™kÅvÁà=­Ðã<²_ÉÄ€š (ký¾*£+ÓD‹{{Þõ¾ØJöÄÚ()ÇQÞÞÄA±½ûCøÀ£y­–½û¡€“J $îVC¤ºU¢Còn=m†Hèòê´í5yQžþƒþ›6uæ»xr ¤ŒO ˜¾õzðîIÃlÉ4Õ )µTL¾U¹×òɽ~¥®™PôjÒ;ü›©=õ)WÂù¥EÚ–úŠ(ÇÃq¨É¼Ä:ñ‡Ä4íװक़?H-'þ2¾`¥¡"Rª*(â%ë’}sľוǒÃ>Eáh™ zrÕDرŒCL¬ \Ù¿’.ø/mÃ^MSg^ô¬Ç¿g,‰™û[չ޶ÿÇ !µ*1ˆB8––ávÞ­†¥R}"ø—DÍ=¾w=˜ølª q 4Ç$zPüŽ¥ŒíÔe¼¨9Í›^ì” x~玼ÉcU¯‹„#Ñ«¶-ø%‹ú'–_¶ê­`±“±•j¹ôò¹Õƒ­47öŒ½×®þ³2Φe „»<‹B‹ZTZàìì>_gÕr"h–é ×£naùGm\¬á9JQÓvÚãî˜HB³E†Òý":ßgñüÊ^þ±•K©ßØÖ¤ÞЧ‹Y1“¸#½©‡Ìgujè7ääP#*)t›NŸFï¼Eâ9h¹ÞDŒmWVþøPÅ®ãÕ{EhTŒèžÀùt‰ÇSWûïÈÔ·h >;ßS@þðd›½qu™7ÌèãOî³WÞ¯^¦RÓmåߢ«x ád}ÜË5 ¿K¬”r ‰Ø2hõk_ õcâøDèéÒÝ•kˆýøæü.†Í>äs¯b{¦…XÈó5^PQÊf=‡l"¯9#Õ¹–‡yËhqOÀ)ØxtYGË«“8±¸Eb˜Ûµ-Æ;,¡ä;ص³Zâþ©DZãÄÙJ“MÖE²¢ÃÁ&ëÐ-:³mNîlê—P£Þ!ó©NM DV€×R —7ï2éŸRÔ¡)üʪ[¥’gÃdb1Ãóˆ Î♳@C™›ÂÏ×ÿ?ÁŒ‰¨\ly}Ùùe-`Æ–WdúáWÎÆ¥Ícã¶é!§!!ë \4ßžšÚùèk"×Yš#¯Àƒ½Þ^·—.ø#t |ÃÀŒ¤ôÆž6c¢ÈÂ<ˆ‡‰ZÔJÝ7kVzÞ<ÏI+©åž »ƒ&INÓþ „¶Ê¯ÃþåªÈEk­ƒžûÆ]¤à¤S¬ÀyG€VÃx_÷r/›ðdÕ¤9F(³Yƒ–-)ãB÷±DÓ÷±Ó|….Ö%¿cwäöGIm›{­ô$#1Îãz¤1 ¼"LD)AÎëvÂÜj‹dYY¶‹¥Ü÷~“6VŸœ9‘GÔ³+ý¯²Ž0öp&ý§`%Ü/öá C»:!c1yêÂWè9i`ˆ©¿Þò`){~ßÓ]¤íKNØfIï"qßL>|£ûÐêd•ù1óÏuòvåábˆS…ÝŽ¥íÃîfª¸ÿ.J.2×uHÑ6ÈM+Q»íVù&0áÐ'cæ©Fé0ÕC1Ï/Eņ Pè2¢ =°Ã&žv}eZ'XH•WÌ…4Ó»Þ…öéªúÄ»UÛ ><ÖXåßl„Û+Aù´ÐŠ™‘Ýj±â;´À%‰q½÷€;¨LذÖïÝHźvlâ‰É’/9ØHˆ™9½€šòÔB·ŸÒýÁî¡ íWÎù„™ƒ ”ÚÎþ¾à˜ß&£àÛá¤A¢E~Y(7ÞÀÅ üÖ ^PY¬Ë¯Øåž¶sÆ…c·»m*áÍNÏÝf̸ ÏëÀ]Ã)†T¿-Q ÷ŸOÈ>sAÿþï;t –ÐÛÁ”Û›B˜žÇµdÍ`à–¹* öÆ5â“>Ý0õ²Ð°²•¤@êìâì;g~ƒ:©Q$ĹÍÿÙïJÝÍ“¼»>É:Ò©ÍVQb”ë þ‚p-/o¡Ùêã-„¦` I=¥aâF°šqPÁç(;7ú}4ó$+?d¸u6)EäÊ‹ëž÷rfúù…P¥[êž°Ùø °J#míP±—GNßQèvÜÓ¿Šäot &×s¶ó ¦¶½9'ž1/Žl¨Ðl»7`Š-6–Ð ™´}Bpÿ yÎz¨$ïµV`E¾·X¬êVàHjϵ e#ä€8('­‹}ÐiÌ£JpEŒ>¤À ËÍ)‘º#Ϋ*渴Œ‚›Šû!áÏ42À p·p¼ìHF6» žÌÎE-â› ¬¤ºãBÅMmwÖÝòþX|‹ÒÕ(­Å´¨ÏµµšÔÆ%D#´Ü•ʶG]néŽ^ÜY5?òÊÊ'û™‡bü2] ÜfÏÜ5DsiGcîˆÊù2uXí¸£¯ &ÇæZV±B)/»Ø¼$B"EáÇø<}‰6³Ž•ýU'õÜoY–º·Æ;# Çnn0¦ï5ŒäT¹u—ïÆNÚÄ—?PI»ñ‘Ÿí pC¯%¨7]›êÅÇè Ã\#{!e³«þ ±D`MI=p¡‹‘ÕðÍHóÆÆ8Z& ;,CÑ'ÔoÖ„¿`šÝ';òËqp+ H?±„‡[.®—Ù×G4Xœˆ …wAa2s-­)4ÿ'IÁ¼ñ!#éTË¡è<¦ûøºÛH ZˆáÈ4° OM¼¤pÝð®…#bz…ÖÍ"vYЏçÕÞ_ëŽ{jQ¶™2ÓJn=GLôœ`$y7+Ñßè< îƒûAóA‰|Pûú@´jAänÒ6?ÃP©%QÎwan÷ðonáX÷6fs'%R¬Øt¢éêmQÉlp6?VÃç>¥H‹@mÐä¼–­“É×phÓëÿf·,‡²\Û{ÛKŠ-IsnX·B'ÛSCçë`®} ‹ý{s$Ûšî{·DyLéJ§,I‘36dó¹ÚD‚)®˜žP ÿ¿gYiNÝF탥ÅùÍrˆÒòò¦è1[ã«F¶ïãBÙÔI?Šo8à  Ø•GÐß·Å0†#`õµàmηì O—×Óüõ»ÈŒšè‡´&ÍøYeåô? Ó·®Ýðaèéøö»þ€É˜ÎN1›€Âcpl‚´Žj†Ó<5íkôA³Qb︄5~ä†÷p+­Ãû¿·¼°:¦HÅ‘QBƒlÕ@"?vÊþ±lÏîj[ì/ xjµÞXÊþQZ ¥rjûRv<·0ë&³ßøÖPl³±C_Ä 0— Q¨ŸÕ!Ï$¾J©^ê²Çè9E,Kcö{VñEK ýÐFeál!úyzZ„é« 0Õþ¾hH«Ëd–ùQ™×4íròh´Ò*ªgð$q ’Ådµ‹ã×ýD 3˜éPâcg‚Ò”é¸ä´($Ç’È¿°êƒΘ-«$]ˆ¹ÎðÊb  Z³MS·Y~õìyL÷WÖ(a¢S[v» ‹¬ÿ\Ü%;¨˜OG4äAxñÙ)aÿä$ó ÛFáã,ÁŸnVujß·t˜¯½:èK¬%‘dmäõÎRS-îOA—ÿÖKõüÅë}ìöÑrè@5ŽïtÖxR±r‘ǃ6Õ~ü~ cPÏöQ{IBŸ€\°Rá¾-¨ÉÈU$ÄBiÇb¾¡VÁÀ†V¿þS•7^´'ì :iÕÕöqoZ=^¼ÑÕb@Õ[ â¡³¯ìä²^¸°òç2űMt^M“kÛ~Îå‚CÇ-¢›1)ÊW¸îpJ"Ó¿hûëTÖUÍ›ä}Aæ8Îŵeß&{Ôþã@Â;Ú½ÃÛ¸" •O&Mƒ/ذ¢¦‹À"è·—d ›·kBÆJÇü4®~×Wû±þ4ô8¥qýi<ªšÖ\þèöåb߬jp»Ø£gE2+J¿2¨.Lö'i#úƒ¶ áØÿÓZ†¦f4b_pW«(ïþ.p¨`5µ6«'u …ƒtI¹ Š€‹ßrÖ{ ªSš<ÌSYú'ÉÒqð»ÈD“ª$=ÍéøTûÕ¯y¸`ŽÀƒ|£DBmû)1Y¨yÐÆÉÍ•‘«} ùñ f¶ìRÁ;k]2/R°ß?æ¥J€[@™ Oè«ýÊ í]…´ôéô| ±8b[÷!&ý tìp§D²%‰ß[æRZõýx.Ÿâ<Ñú\0¯˜”¾Ët¦œæ4ÔÁÁL7²ÐÏ|„œS…ö@àZvÃØÜ™?e¦’¢S¶ÞaÈܨ}a#’8#…Òz3Žõ#`Êé*Ì.bEcžx}šÚMk:‘9ˆÿ5ÍzŸW*\ÍÌ%þaÆ]sÒŽstÓ Õ.(…o;ºÜ÷,Šm¥]ÀãÌÙbëX¤Êk_𣬧ä)öð„Œ¡êÔÙ¦wæés㮵]s½r…­Î/IY%KÝi ZšÓ¼Û²øúòáa{¦=ë?8ßçR¾á‘S‹E¤»¦uûnA4"Í’Ðg„o&ßÞ(J|¯³š¬Ê@] ?Z¬¯\;†Fçï‘(”`77ò^êCßÚ’;›Eu‚,R˜¢û,Fd<É£®GA‘Z: äJ}õCø®F°¤¿È„ë~¥%(^o.Ü$÷ªÀ̆ØRÜÆØHÅO†eg€ž¢%IðÆøN[ %•EÇ©ùGÉ_¾rÜ3\0Óxª¶çxMPt“.ÐBÚrè;J ¼r:¿HÒfî>¹Þ`ð)µ†Ã[„ÎÞ‘õ¬¡ å3˘ßqðÞXNKY‘¾{§– ¢H>…9¨á4šÃ.™@\aÊKŽõ\QÉÁcÒlVÙYÛbk©lËѰí4þH¬¸KŸ-V+yà !¿‘ík¼Ébî8·ñ>b¼k¢S7üž+ºoOÞôؤ̸h¿’½÷®ç¢¯È‘8EYÄw.ÙÛjœ¶è³#$^§ŸærÄ&~¹5qŽé*3 X³ÿy§®ª†“èyåv’ÜÇñ} (7¼ìW? +BQ Û¦ÀiXÖ)Š\¯LÓ]Cu]µÔD£AÍg¥O´Õï›#i½¬òÓ+NqýD–äbù¸þjàcéøýÁ‘Î߈»Õûà”í]{b÷Þè™ Ê2ÿ(öo0û½Û˜Èk¤­÷òN¨Ê§òƒÇ¤Âg6á±çA1•ÃDB¬ïÓ›z3c>É£iF>ÀÛu›•$Yz-ÍëXUÌí\+┎ä‹.p[C¦ŽN¹.Þà‹L!8Ú]‡µtoŸK,8m”'/ñ¹îòB¿Ø°äRÚã7dq"eh ³T˜g®V™õ1/, 0ʯV¸}g¤œ›rd&ù‰”÷V_¾Ô ¨uÙåÀ¥ïuìÆ÷tŸ­4›$v“í²ŸG¥›!Ÿè¦]ªî‹&¿Ž;Døþ[!¾BÒÚªÿ¹k,ã^(Î3ðƼJ™)ç(Ú1ÕaˆÈ©•_sáÉ'‰å,§¶ó3xE/Ô\ôý¥ùi-ùIÈ-7wèîéó©¾pŽUç”]1šˆÖ…uýW¬ÃPvóhæ­º^ç¸?6$Òˆcgù·£ Ý¹´ø„Ϻ D*,¶~å9¤_q¢kÏ#BOب죢(Ñì#:‘>• Ù{ĸ[´y¾Ì:ìjm¯ 'èT^1¶C°'™9P0H4ë׿AÐCnˆ]4ŒÛôp‘¯Ù7>>f=:P%Õ#dd)Ù©âååLbX†`:UdÛÔÔ##8Rríb}”@ÖÀÃ'û^_“õî‚£‹ÃíUµžbä’ „/ {Ý »õ«Ÿ‘c€åˆÆtò‡»REsëOBòæE¨Ý#/Þ{‹¾³~£ †äL…¹¸PKoð–áÄ{crTuV=ë˜aMÌ_î ³‡n=Uªƒw¼ÜMœO“U§¬¤áUü²+ªµ!ó;ıBl5- rMÿ¶H(Ã)_9•µÛÄquØÔ¹¢dw¥säº×z¿¢%[צ¶0I¾âRv’˜ÍPW$?•Á(4×ù %ÿÇ-jö”ƒsãìÌ©„þ#•/†;K*ÙûÚÊ-¹‡•“ùBÝi´™ýu-ô£ºCQ)ÑN‚bÛmÅBÐ8¡!ñFKüãµôïiØ’æýdˆ«’·0œÏ¿t9Ô3™lðu‹Äç'ʈµp˜¿ÕX"·š}c€7mï­üƒï¢òJ¤À6wËnxÑÝ ´•À €*‚aÆ3”tAñÍ̸†Ÿ‹“Bg«®³ŸQóX…´I¢C//(O¯Céźv´caßö6eœƒÅ,ÅÞk{£º¼PΫ—œ‰ù¨ÑYY(¢]ÓIj­27A¬¶ß–;¹V_B›Ø A®˜ãMRæsrÈО„qIÊ‹еöj™64[¡ µŠ|sô´GBâXÑkph¨cåiôóóït%´éÜ´äš…®Fb‚) ¬ÝÊíjÔ‹ý£üù'Qï]|°Ý|öx;ÕUZ›l›»°„㬠ל16Gõ²6>|Š€o /¦¼óµ|¢¥G€mW†HÜ"ú8ˆUfµKá1ÝŸe¨ª¶@1pÍO®ò¡}ú µÉÃ,ø<'¼õÆI?öN‚±UúÚÀÑ?¹æ“µBg¥XŸ,‘Á5cÈ€\·Ž5d~A[¸¼îÓ³ŠÜr‰0s”­¿Î.³Ô’ÓŸ½²£9ÄE­M'ð6ð}ð¸*£½·°)Dìw·Å§q£AÆ=“ÖržÂ5ërúËhÞ@zZtr¨¨¿ÆmK_¿ˆ}Xb‘³l÷Þ 6ê×ÖKVŒIÝaûCgà{·kœûÀÃp?Ò :(jÉììLÛ§ùá(xšj±1ØÖN+úÛÚpÑþë¸-QN]ýžKcôÎÌ9u\+0©gÍa|l¥ê¹ì‘c ׎¯Ã‘¢Ç…þ‹-¹=;XD/áþ3‰dÃwã$ýo*')Â÷þáž[øy{ lgáÂùÁ'ˆ•Ûˆs°(Ä‹†»0#ß7Ã?¢ÎD7%Iœm˜7¼†5ï_±±5Ì8JŸ[µ3WJ{Z=#ÓÔ[[—êí/¶Qˆ wê_ðyI”©[dƒºÆ¯HŸ ö¿5Þ«µ°Œ—réó˜\Ü @=_â ÛÁ’?¾îÓvÞÂM§”ŒE?‚îÛ”Í7ÛF$P\7÷u}+…À•qZü x:‰u?¿“ˆúþEÆ7]8êÉÂ=¢Á¤¤Âë 3'¥I™81AF?N}V<vü-Ô§Ðõ|ñp’Y¸åÛdˆ¾¡£½¾¯XHòÌãiàˆ0:µ±c:qáÁI2ì6 ¸Úaôl¹Œ&®;¯Ú^õŽeçÕC_q$O^¸Ѭ¢˜­ÌGF§€ÀåÏ)°±Hþ•ZÑÃÃ25Ž’!—t¢¯´OêÝk v1ƒ+u6uífº]ËHK© á¹Ž:×¾g£»Û¥ÖXO^©+ÉÇ,¥5Š¢<èèšëz–ž#&k1Å[ŸWï”oÉ ºî&óõÀ;Ýp,¢9uÚSLfˆxÐ^sÇ„·4”h“‡étŸþa’‡q𱕋br^„C•aZ1}à)ñ¾²bËYÇñp¥O+.L¨«÷‰Ëþ.1'°r³ŽÛôVŒgQ†Ñ*ocíAŒ‰ï&?hY¾Êœà ©È7¶Ž). {ÄC–6j}$Qõ2u­ÎÊ"iío—Š8bnþy,%6 yãb|gpšŠÆÑFÄCþ"–ÎÀ§ê,œ‹œ›SˆÀîÇÇ!Ñ÷ÜYJŒ¨ÁõùÿË µç—5L§Mÿ÷`ÞI˜£²ÖókqÇ©-O•Â;b/ýœ”›–9ÊçiT›Æð²Km3?ShØOÀÊŠ‘Ò¤YÑQíwÐV¥Ð{Cø1 °^öyƒ†SQa¯˜ÆÐE{ÀÈpÓ¡ZÍ€‘U˨¿Þ^GÛeíix™KRG¨{ìjíg%á/Næ$£HYÙ—ïĺ܀ä¬\œNfŒóZ§gG·V2ÖݾÀJrNü½mÝýäýõƒÊ5Ó¹(s-?á*S$Üβ#@ù¡ë«CŠM‘„Ô¸fí“çeyñE1hjœñ¨x°¢õº@èðk ”Õ3P–‹·Xø)®«¥¥–\6T’ªw/’éIRAyïlCZPý /+§ÝŸ½ë]E>:gåžu…"%Äyl~…´þãc‘#²?t¢ÝãŸßÒ±¿ £,Ÿ^Ó°¯:[ÆÃ‰aRàô]béõò%o @ÞGqLŠOú¬W«MyÆúöðËg&, Ùz[/Æ~¤Ký™¬0ödì \3¬,iˆªn4’ È'¸ŽÌì0¬œ³¾ñެ¹H ß ¨ºžËÿ/½¹wï*lOtr]—ú÷[€é‰wƒHÿ ,ñŸšHQÖ‰'‡gDâ–‚aZä#†ãàQ7°<žl~¦×z¦¯ZöåNŸ¦+Ò™þGQ¥éXgƒ½¨# Í‹HÑ×#¿ÔeDÀÙ>î%)6Lj¹ÿS´¡ËÍ¡Ó;ílByÝÄw'ß·¶F°“Í@S8Õ$œ×9ÓMHòÇlñ{Q8¬Ýk+øìƒD‰ê‚Ý ¬·¢ôÙlÒòsƒ á#L.àŒEB¹ú‡ ‘¨‹žâ6–MPPÎx xdËb¾ušó·Ýÿ×| ©,‘žeNžñ‡À?™Ž·s=ú€ë½+8²ÛÃQDÕüÁôlñÜþ½ÆæÍ4D(UZ‰HcƒcéÞ×;÷-îÂøjÐL"˜CP’ëêÉu‰mÅPë~Âh#~ó.¢GO¹mxÅXÿÄzןvǤýäÞqèKšL&D¸7HQy_¬%O¾k"sé> xn•!I¤`–Ü>dVõÜ©< þtþ5¤w*ò;­º('s_‰å ðšîŸm÷”vÿ4Á<ì0›·”‡L6슓Ùð$tušÇ·F^YK^G? YíûAƒNsþ½)ØüCáÓ`±Æþ°R£½Àéæõª›!h2Za^‡è¿ûÓSR.Èí 'ÓFÔvÅ8§CæŸWX×8Ð, ¢Isc…¨/SÃH÷®†vIÁGÎxž¿¶0º7>Ü ±œäY'êޝ嬂~? ,p˜Z%{ÎauM4ÕYa…ýPP`±–ªûR14FÀÜØ˜çC·Ô úÖÉ€ÈÍuêþœ§ÚcHà ÑÈCÿW£fÈ&wÁà13~LÉ¢ò·GþCµï ¨ ÁˆÐ#¸¤ŽpNYô™òfߪÞ#¨•³fÊÖ5„¦Ú”ŽV¢qß;oãÈtA'ë\ÖE#Äž(Äv׊¥£$ö‚‰ÙÚ0“P,×î¤L2u-Æ^ü')ï=š-¶¸Èuà³S>€®í 9ŸÜß²!f-Ú†Î.`¥æ¶¦„cŠBÝeÓ¯ÓFA>š¯7”aNì™c¤ÓEò-Ü>–4ÍÑšÊèa¢vÆb¤ù Ë™7(m¿ýzŒ'³Çú¶ƒÂm–…Òli¾„oAf2ËÝÂë(9;éßDFSŒõ°LQÐaÕ þˆßuˆGOfÓ+}%>E®ù™‚°ŠoZ› ƒƒ+ÂÂàžô‡­/®¸Š“/¿Þ¬¸4½2ì—j7ŒŒk[fªdLÍ;µ! Þ‘w ¸ßŸ…<”žó½œ]IŸ-rÕGØ×ßÇ’#ç)egü®ù²v·¨¼'£õ ¼GxçA’<"5 ÿzÂ^F¦! =Ý ÆÄ.±‡H\ r”õMÓ[¶Í uŒ*Çk7š“ý§¶8ÖÝf~ú2ËÅlk¨*]z 3`óìí€ú]}Ôé'ò0WÙ‚Ü3…Þù¬îÚŠ:J#¹qÿu?x-KÈdãà|ßð l‘Ç l-2Z/Km,+&8î£b:=5OFA¦í•µ‰CÔRçD×”_Ž«"Ë™Å>ÌÍKE¬°§‘’Ø5¸Qífœ!k]áža«#0xÍkYíJŠè?9’çêdÙ‹z Oéè¨ÒÎE‹iO?]ß9ÏîÆHY@˜‹4>`o[íDÄå–Êí×Îçv¾C™7Ê"<Šñ>xmßÛØ±øKL.ª€sÿº:“LêÑÞ墱á}«ºyÇ‹|Ò™ñš£ŠËçFsrð¥éw(EÔe¤qÀyN"Ï MJåˆé7¨BK¹N¢ö!„O3ÍXÕ¸ÂvÔ„2êvà•¯U<83Z½‚Ze¥MK«7%óiµì-ÁAàgíVÛÝ®J%.~# ¼Ê8I‘CëšOĹÎHÚ…•X“œÉRR÷½ã¿ÌÏü6S•×B›K±er8~uȦï\=üña´ÜWÜŠEÓ›hÝŽÙ$¦¶‰½íà‚å)Í’a ¼å‘@RiódwWŠ¥¤@…Û5÷¯ 'Ñeœ±K¬áNxΰÁ«¿•ä¡mZÓ4&ßT¸]¦8ôôw6cÛ¼¤S]Äp¦ýØB©<¡gÅ¿n4çp3ÊY¦÷-w‚Ð0Xuó€x’çGÜ‚üÏ?(©yªë¾±9©>K$Ñ÷“±:țԅ. ME,äå†â—_!²É«¿›]%¤Yéµa°ƒÃ¦¿1hôT^‘½¾òËö7¢ffæàÞ$©+±ÂÈCÎÔõ˜&Õœ‘·*¶…çŸwáFÅÿØsoç <:<Ýù‡Tíø#Hï1‰Ž“‡“3GâßóJ;Ηéágâ5§CÏù'ŒÕz0¯-½€ìl{Ö¥8ñ"#£ûgQoãkÅ*°Mv°]ê€0ü^Ôä7íဂH”ý™Ž¸ú`â`»Ÿ‡(ùÉç(ŠÑ ªî}˜9X¶âŠ­Ú¬€ýÑ_ÍX-àŽ`­>=ƒÇKƒƒë“¯è'[•øs7°ÙK;ôËÁû&TÌÛ1"hŸmUÞ(4Ä›e¸ÆÄ^ˆ)áEæX‘«ëóÿñ+^ù[ó;¨?évü˜ƒmr_ØÊ˜¬òïELC|\.·”÷KÚ2L®}¬s bN¶Œq‘hðMÁÚw‰ P,$ûÒ‡§xºJ§çª²o¡õp– ò{2ͼÁ›XöJC7™Â¹‡¾Œ‰Z‘ÞN_·fñú1ŒŠŸ‘@—é Èø;SÙ“k¯ÊÊ ÆÏ‹A¨½º×oÑø%;à¤Â^ʽcöJ\~Nýh5g•èè´‘áV®ÿàï2ú“/Ðq^c[¯-pFBNE{ï£îfÿn3ûwZñvbŸ© àÈÄ—š _T‘ßÕЯçt#¥ÐmÄôé7’7 ]tê$•?™h.Žvw •­ßÓ0De\e:P!mRËZX¿Žž!6 »Æ$k—ƒeg‚3§NØKõÛÛr3–5^{cÉÔ6½x°¿±½×âä6 VR½žáõe2L‚Ò»ý4ÖgG 4Ðäê]\‘4²*À{ulųeøÿàˆ¶V¦K¾u,|z$søK™L,i ÛÏÌWÚ©2¶7é÷±3מ,t¦¨{ýN¯4à«í"í ­¤`“ Чӫž>¹aK ·|PBþ¬ùÛ¯X×1XÇäH/ö€¼"¶Uñó D€Ò¿r¡"C<ñX¼Ú"–1î»M7{Ã,š£æˆé êõ¥ýB? ꟯=¸òB%=jíÕ}2â‡#R×_ÇåÓ„Lcié&ª[îfkQuõK{Œ:æ0‹{NrñFñ¶>Ÿ„G˜#HY|<óÁÉî\~"+ÚôÞ§-•Ú m9o,”IªX…2¡Ä+ `P™fu(î5ZrÁ Ý&°wS`Ó3)A«Ç*ѳ—?Dô9jÞ6Àô Ží„ÂPHDMa·p±{M£ eÙngÆÁaX¾÷«ª÷/aí í¿åœp¸4÷JAÓq”Z%ò¹kîµùë;S¹ºó,z'R•ЬU÷"¼¯ç^~±ôI`C7. «ªÌ×mW_cD HšÁÖ,L°8‡—‰`¢ûk®¦ôWnîéÑSømVb‚ZfUHøâŽÉo֛ѮN™…Ysëáë«x[„÷M¥Q¯»Ó¼´æ%ìÂ==Í~NÕW ‘Õ žÍ*ø•DQ?:qG}µÖa2²GãŒòÇ1'6"Iòš’VàT;*ºŠ4YLÊå·ÝÙŠ(M~—ZBsr•ˆZ¦ƒ¬¿ð hê¢x'Ë™fsùí^›šsæ•Â[Š,èÃfë¿ïYÛöˆˆË&;ï†WL§/&{¤±\>¨©µNÇnF5PÀ´úäq’ÉœòóÆð3¶i+9­Û‹ërÂDÕµ® ­2ùÙ.SÅwh’þ¦Â–X¶×~4 ~Ï/9±Ï¿¸uT>Ú“«––¤#«?b/l×µöv]ÍqÏË_âxÀZ`[Ü–2._O%OND&Czø™Ådäñ¶q$ÐGèYˆŸW÷úi¿ÿü¦ëµ|H£ˆH?-’Nx5ÒÀà‡!:û»0LÅ;«]øÄæk…³û‰ÍÍ‚<ÊÁ˜i¥L~vßN7ý¼n±:À‚yvÁ]Š%ð™¼Áäç;4gtýïž9^±ÞÄ×HÁ„ùXÊuÜå\ÚyLqþñkúÔ¬Ê̪1!º_3xEßòº‡¨•&ñ h­)äÞ~dÈЃ»Þ,{u,O‰î>T,&“Sï¼ k&ί5p”B÷‡W +™¡g£s°ÖƒV÷{÷uôÃÄŽ™ÿ¢s]í[°Ó’™~s#ÝO!«ty"'‡¿çìëw.³z+Ó §Igsš>ßpælxX+ 5@?ò¬¬N~¢ÂÜ¢€@#?q¾:‰Âw©¡_ìÂHÝ÷mP ·_UÜï_h°Øpúãˆ[K€ed0*lþEú7¼Øï½p;{ĪÎèÙ¨ÊjoVŒy5BâH:“+bZ!ª/˜<ï~"˜‹¨üÅ8·|.W2KU8ˆl)›õµ(·EªþƒÆV;T8Ÿ:¯Õooá¾ÆpŠŠ´}Éû߆–Å€¯“¸+¯~ ôŒs¡Ù/6|p¿l{Zì|¿éøéÔ¦ÓëH¿sZXe‚¦ÖµLBüÁyn–~¢Ú°'¤Rcä7ÿ/ó/äNU-m€šGÓv§?‘žV[k W†òiݬ:) –& \½&Æí¥:ë}PŸDàVÕ®£“ZÚn…,„Ã"UÚí½/U¸ø?ÑuŒ‡ølqAÈ¥•«°½Á'5_ÊÒyl-­£¢9]¬×•eü-êõov’óø¯+‚Ä~ËgÈà `¦"Z[á É3 Œ‚ÇDéçw{t¡3v“r"-{q]{%JÍ}{‘žšÓÞ:yÄÍ´/; Š!}ÎxûäÉ㜠‹ªa7E W59áüKâ@cŽOÇ@k6<=Cš*žÝü“¥†ò$ùÇ"+Jhϸ-K&`uî@=…fö ûcNaëµ—S@ܱÑ[œÊ‘’›¾ˆÔFä]ôzü»@Ý ‰D>H†@Kó_ˆc ÂqŠòãåC¿ Çâ÷ÑÀ«4‡ ZL:±õ^è–Ô¬ÓäSŠï’iÇËó:øÑÙ³ÍÀ«¬˜Ë;G½€íãƒÁÓ03JKîir|ÐÏØÚ„2BÃgOƒ8‹µ×ö‚]¡4’¹ ÿ„ɤúŠ·‡÷ /o¸Õ_ÇmF]·%>Ÿ«Ç˜^@¹Gzr¾‡3k>G.ä®ß¾?®×idL¢(õÕQHÿÃqõY¯`ñl9™g› ^æ—À£ |¿}®%НD‹SiûÔF¢¤âÞò´´‰ L2àƒ\ñU(óK1;¨\Ðc…|vÓúÓZ't>,ç{ÕçÃÛÖÛþN\#Þy½Áü;ߺÙ/¦‡Ftiƒþ )žûÕÉãwÉ©{ó/BwMOgf§€P­(ЯL¡Ø»M¡ÂÀ€Ó”Hàó âo^·{€Rñ°Ìê[²•G1]W{#”âlôÅqa¬$ÞÞøMûs|«A ÔFð®üŸ–I~!Á…¶0ˆz+ŠGN8¯5ƒj»'jÀ„!¸/ÉpXsñ‹ô¸h²ù“ë_7sZÍL1Ï«¿ ’…úËð7{ô$|3Ö_]ž T§ ›·{‚õçŽ2ÎjEOÆLÅoXžì í¬µ:Í‹ aÊ6vL¸jØ\áPÝà4ñ+¸’Wò߯ †;‡K,%þ×f†•êÅê—9Sïð2Z‡‰Ýt5^ ߦ ZZ@ÃBÝR}Êó×-AAÑŒ=C ÙXÑ£³‡ÔtO›po·è‰l±+>páí:bh‰›)YÓêÄM¨uô”.Ò Oc…0.¥¼sTÜ·ŠA¥Íª¹~æ4»àsŰ[ûoÓ†«#WƒdWhéḛ̀ô`¯‚'Þ"äa8"@´{Aj`>nñ×âcV"¦Jˆ–!‡—°¤”0x†¸n ‹ß½‚+™v[ηĿDZ7ŒÓóB©äØy yŠG”±‘ŸÑiêiá¾6U:NžÁ!Ú§Ã Lš“¬fj®>$‘á(¥zø4¼E·JfCîô^¥A1þrL‡«¾~Ì¡›IyïM˜*` yz!â€bÈs!µ¤„ñ%1•‡wï߀%¯‘zèFÆáô˜ÿýîÜúž™$µ¿p:‚;`†•¾||«s“­+¬‰rƨ•K GžœíwMû2´H–Žc…$¦˜Ì9©p‚¼/m->mŸp£ÕbÏ¥zõÜÆ-\ØiÆ*Hj!±tf¬¼rÞiÆaÅo×ÇiHG`F–tõrVÈÒ3ÒæQŸHeL´$d“°kuE_g.wÂŒ^¨ÍsK·†Ï»È{án0ãŸitò5½Å<qþ°»­úƒi¯ß`‡Ì5ŒóÌ*³ã´§bŠW½£æôñ¿h—àCEñžžhùè,¡n§’À¼)¯•pQÞ«’ $QŒ™ä¢F(ó 0fh÷}-×a„.|âçÁ"zàu¹&UäŸaFÀ1^Áâ¼-à ±tQhó9Ö €qFGÎî9âÁ±×LÞ(D寃©¥­Å$ä-ÉQ O /g>t] ÇPz"ìz¡scÙ;™ÿtø}™jÕ†™qH‰y!lôš¬OÆÕÛŒ *»³yó­¿xÁžQSúÖf£D«Ù ÍÃ+@6¸D%¦G!—lõßåÜÚÓiÇ€S ,Ú*MyDV“æ„qtºP;}NBUXh›æˆòØîHÙ¢€åÒ Ê½`N[yÔxè¦Ú”5<ýh$?iëjíÅm5 RRú±Æ¸)—'g5ޏn&b»[%¡¶ëæÆ ø§-¦RìRÊØˆ7X«î!„ìVX[`ø2‹L%€$Úî>£·¦5‡@û^ÁõÀ½ÞOšÍ$¬ãN@nJ6LôÏ&vmÂØæÆU°U†fÖÙÆÆ5v2_Zˆp‡ú‡*ä ã)”ðŽê·éebŽz2 œéþë ÿºÛrî•+ôUlÄîÝ™/UJÕ VÂêÜÒ‚ë§|¥d:ysœ×7ÆU¢7o°Ü>›-xfqä·½™C.þÀ—m¨¨l×ëuf`x3h’ئíÜ=e;µ7Ug¦ª,àŽÑD13z‚¶ê•kM½R±g^¦ALǯlDt¾ùÎaoç‘EÕsUÆ¿}tµÒÓ|-Ywf&Ç4&o¬îrEZx6€K´•XÜ^…÷¦·›ì¼¡S“£káh'aTÔ\•FÛÂfI¢Ü J2wßT‹°†¤«™K+ÐùžÑ{2£<ýEÒW‘*ïÕTØ@lI–È(¥jÚ!¢:˜¶p„bË Ñ¡V$+®„JwþGeÐé 3«¶8R è¾àgUÂf£<#ÕÅêÁÄÆ¾¿ N¥KDãV¼ Ù<*(³¤‡[˜ÙØ„œlÑÚwƒ¡ÇL¦Ç=ËȾý‡£¹Á$ŠÏW{Áœ€uB-³MÅ$ç7åÈ\WÚúÆlâ£ëD¬?=êÏž„k-ENqüMŠzµtÓ v¯¦OÝ©^èO“œi¥IMàL#…ºÎ1›¶™@DwÊ¿{ÔßmžH›%FtÖQõ,ƒ&Ó;Û‹â‹™Êb7uhhüS³¬›ÑµI[ß(Ä”.Zj¿µx"%äME\omÎâh?Ð¥B‰2?ÂÛÖ†ô¥¨ò§©Øÿ¢ˆZ\7-Ê(Ù}ÆK”ÞE’•ø rˆÚÝÍ[ëYþ8ÆY?¦B×Rmn¸=-øgã–ƒäz™rµÄýgû¨’ÉùMŠº:‹nôr®]"3 õIk¿§Î»€_é=ŒÔ‘£ñç÷(tÞ²8È3±©hòËïè]?Àˆ.åæWí¨÷†˜X³Wtºº*9€·PÏ äe[þ8/»¹i‹g‚Ö|í‚Iú³û»ïÛìÿM]§KNŠ9yõ¿°âiÎï=8ªÍ&¡[ùÈ¥˜’µ5,û)-Iå}T_Ž,0Ü8ÝÈØ±—=ÌŸ@ <ÞÊAG áž°dXX¡^¹x™i‰²(€ðäQ}t#’ÆjÝ/…ï­øòÌÁª¤wóN¯ÀÆ•ñ-°_?í›cÎ0lhð‰=ÅGŒ˜†êB‘ oéûåµda¨q‘£k&}Såt“~Ô$¸Á½õ…¹m%4³þë•­Hèf”2Ä‘ÃDêeU†ôÄiUèL;Bó̆¹Æ§ÄÓž’EˆàdEõ˜³ŽÎ£Œ8ôÏ"¯@Me¼%Œ[f?r8EîÝ.êÕœEtÙM¢Ñô¹0»TV%¯ÐC¶4²ã9p-ÁÙß.<á·*³ç’1ó›sG'©éY,®ŒKè¾çWdqë<¦­-æò!+éÚ±ÍÕKÑQir@[ŠX É&q‘zÎüêw6 \/'¥5Þ»çh(*ö,ÊwqY)ET§’ŒOØŠê}|dõ¡¨ÉÓï*†²È:”¥ø5Á߬åŠQË%FAz v‚84åøãC Ä3ßfÏTÝvæ××£†ÅGîæ7³Š>ÇTLIΧ¼#ÿ—¢¤³®žì›0šr„bC?ËážNm>¾©6 Ü*ó®uD¶œÅlÌì1è»2Õ-V‰ ¿Tü@Btʳœ Äl¬ò'²uºaCC?KëÊZP*2c"ë™.éäÝ á<ó}·„ŠwpdòÃUÑr_¥.Ù"R©àÓ½H£<ˆà2^›âsÿž-ò•·Ç§k(óÒ9],BQ(g½ÄÉ17=Sè 5ÂiÞ³ö w"íAZ)@ƒñä—†c¿C;2ƒØ± ‹@+lÛhO•Ä'˜é­©Ã s•°¼ËT[ú7ö¬¬*üb-ÁqôÑ £Còû&AÌV÷Åø?ã’E `¨á(å±B™Š6:Êojå³:WPf¨`²:ä3šdî÷ΈYñ9‹·×£jÈŠI²b«cÅäí3]º!}À¦ZÉl"ß6×í{‰Â>!êÛGiˆ¬ÍyO­{ú†ÈX† &Vä_‚æ°Šå8¡Ð wª¿2¯c@ûN¸yaói†IßÝmÿèú±÷˜]iÂe³ì0î|+aÄÇþ„+3€x‘ -¤CÍ+¢tr TáNoMª]³õljQ˜Ê´¾xÈ8äN#ºL O ì_ôc–RQ¹XÔå!×úVµÇŸ¡o°î'6D¬‹YÆNÍ3Î,ÊEüÌQî-=UàÚ@°„[1(ÓvWu%è²0Ž‹ cºü'[“ï½þö0„¸çª•{²Ô9N‡ìg¥#­å“è}øE]Ú_·& ¢Ù ¯†iB 9Û÷Â]"úY¾Þeôi¸çSzÒt`w¢—`š‹;5²ÿ<%xë€ç_äÉ‚j‚9=Í|Z~Äà¢Ú?çÅ©uîW—g+ª±ªx,áZœU?»ÚŒïœ¿ uÒ;é|ì%’ÅÛòGÃÞhÎCâCë:ø}ã}×¥k«ÞÒŽ ‡8 =ÎݦILZpI Ä<—€à³«lt…hÏ([iÁ²‰ûÄ5O²2Vkám…TO²oýY2·fÕÏ`¨f*àœÝ~i·Œ–!xáÃÑuY9ªÉâYÓ 3B”À¥Eo'ëI½µ2´`E]ÉœT>Å…ËB}Rñ@ìgÓ8?•‘¡(9 ÛS|J}ôÆîÃ7Ì&ŽÊ}*ÉÞS¹£Ô‹­ûb³ÏÆ=WIÉLr2×ãsµPzê¬KG6æJYO«Ç2Ê]tÿfŽ™Âߢ¾ÜIû;Y_»Ù‡à“29üƒôýDÔ¬ÇM¿ÕTA›|Ï-·L©]Ý®{VÔåÓ%½‘¿CizYÓv¦…šãf²Â“W׃D¾ÜÇÿ§jÁ JziäÂîžáe¼÷‹ú]Z¼ÿ%â†Ò×Ò)‚¿W°´R^-`-F¥iD¬ÉÇÄ.?o0t(}@è•+^Hï9_€<ôûzЋ€Öƒž4wÝ DÖÌJC0ž¢`(n¥'òxú§"/Ó[Õî×¥…„—,9•ðNÉüP‘D»‘•Ö-¬—u†mŸ‡™%62äOħýÌ2VKhbe7f”àÇ·ÒK£þ¨à/Aúš‘üå»d AËÌv‰Ú–P‰"–?vÒü{±‘v$ÛH-·™×RTðÔùˆ:9N—À&ÌÅi–ä!^NŒÒº¬ÏvHîö¸>E"¼¢+Ý–LªWÊ|D“åþNK˶¬•éy ZДhƦ¸ñx†“¨nC¸íÎMT'O´K± [œêªzµäÕIŽ&MÐÅ÷ZtJâ¨Ì·É7 Á‹®™øXV/öøêûÛîc1±ì*û½.ÐF!:¬ ‚pÔb“²}wÒËГx—\ÜrþÚ!“„νu»êœ n[…¾(¶¡¤F?‡Â4­v0 [6SÞ®X ¬Z…–Ο «·ô¢À%NQV°Çx½; ”z…¶6ÙPbYâìé܉v“Á ú©!\ÖS†C ¸”ÝÜ•ìrÌmï'‚J ceÁÍ®ã.^ª/ÊÑX5»Š¨•WW $ž 4Ba3ײó¹YàsªXµì™B–_žPnÒm÷èš¿àX•«Ÿýf`̘׫jã‹n®JTs@ŽªWlHZ÷éAþ—>ÿfâ;Íó4ó»–i»È@Qù©†„ô¹³Ø¨ªm±?B%<¯ËÍ ší˜íih!CÖ·e¯ägeP/¶T2@D§n[N‚ÉA]q–VB*mOKnoÐühèm纟HÞlÍrùãès~ý Îަû˜ƒ`Ô—HÞ÷Ç€üèa> ²ätR;†»¢+`«b=å#‚H`åYùÖ(`,L©F+Þp!„È]¾ ëPF¦-mKê”T'¿µø%TÒí™õò0¦.)9¾`³žçaâúÖ‡9OG߇otÙ—yÌóÜ|±Æéx•* ÁaƒÏ¾×ÍW´Ã"Ÿ®:ìq2é·=œ´ýH¿iíQ¤Þ­i¾ç2;Š=\Š2%Œzv´+À&uîÙË2öªX5Þ˜6SA0éÙä˜æf¿cȾ%¿Â »QutA‘Þé¿n?Í÷¿¯Œ[ŠÊE'ÑO寱†Ö_Eïa´üxD‡†©9Ù£Ó^°%Eþr÷­Ÿ¢¶FÚJÿ‚aÞù­¬ÐÚµwÛÚ6=;R•Z\ËA°¾íÝPíï,àí$Qy'P.·8Òg®£Ä¥9˜ï ,Qã±j;ó+ r2Fž vcbw“ó?èôÖë5Xܘð›e³ü­“?ä,ÑêÅ3Ds‚ˆmDXó~Ý'3¤2ùˆŒázÃRgô{+È·SxóÕ2*„dj~ë0ãè\Eã»Ëâ:få.ÕÎYé!»üª©‹ÊÎññ&·„jøÆ•ãç=%$®duê.1íØª‚È";­÷ïîvèÌ7Ö±ªæº!ÇË5T©R¼°Š®6øòuoUŒ“äó56ö~œç9¾½°¦lK#±A¸)u Å7TÏû>ùVi:ЋâJÖõù½c„¸Äw~/aód8™hT·—ó.Dr4§Ã¢#=¸·ÚÄÄ…ñá¬ÎFÊ iGž'Qé!A]œ! '\$©ÀŒt1ƒèjX“›•³}!/Ò Ht›³ëó¼[Tëqè˜6 ÃÂ1„¶] æQ}×z˾ïÁ8y;wч¯ï0ã]Àx'ÆÄ¼´;ÒÂ%ÈSÈ· w¦uº 9ß’M=:Â>Íj„ïa¿*^Ù–œ•‡XÔåÝ 7í¡…±ÃÔìh”SuöœgQ¬]$»¬ßRv+ ¤hóÅÆS¯{ÏáÓXoL—×®ÀRˆò»-v²zÉì7‹­äN×1ã÷¡¸>¬ôêk1£)É'±±²Æê‘[Ó CfïíÙ+¬y^ãfí}=d ì"-ÌÄìŸøòÖè-{-õ*Vðàƒ…´.Vn•苨«ñŸßGvɬðð»‹ø|#·vk ×|&ýè†zßt׸O«PúË•ÏÆ(r—‡)h|@vúd× èóßßýË;&=YƒbM§-'ÛÑ.dÒŸxd¶z -ßó-²É‘ %yržI€Ì¥¢ŸÅ ®õÕ˜>—Ó^‚›€Å)2‚ëE¤ør½oçû.Ir’Ýø•˜SÅ´9~?¨8ºZ €ÝÙž†)¶ø4û–ý‡ËK‡aZ÷ë°2tòŽ2ÍÄÛreüÞ 3]Ç=tËå°…SŦQ®u ÿ$T)34 czº>*9—²ñt>ÅɰjˆÏx0['|ÝÆåùäv~¼8StF>Ïôïp¬‘Žu„D»út9?g&+öbί2ûYÔð˜²Dˆgÿ é™›ñòÝgÉ)t .’Ü®•zý Ôsuj”fŸ˜g,Ýhk­‡Üôؘcc&o”ÿèýðo¯I3)pO_|(¦4‡˜X°žo†nK VÔéMîɽÈs)ö›!SÖ¡F$·åxm~H;¡˜ÑË,ÌÄ‹G”bÞƒþÊïÇîëBR3ݨq†Uºµü)àîö¶—VltÃvX¦Û¯KÆÝe°/É/7ša@uçüVŒÍ…É&ù« Á¨cQÈ,“Cøb'+*¼9žâ)–vÙ¾Ò{ó¸bù »3{˜U¼GfË#\}D¦;ñ Æ°óÐP’ú£°ý|°Æ-z±Ì´ãVù"?†û×(¼2ñ6µœ¨‚óW­}ÔVT$Oîî¹(¹íPð­É¦—Q<ç?ß8–FiÒ¿]E”Üi4;r‚áJÝô1’„éûŽvólB3)bÂ1k ¯›ìn»¾Üù’7Ô(­Ä ÔX'ÿgfU=½A´çg/+ð³ÝÐBeŠÆ}ŠÞ}/oA´ôÔ¼fÜvÍÎïCrâ¢%aVÁC¤N3|Ú߆Èè„ýV­3 ~­Ìý 2¨›Lrƒ<”°]ÉEåërä¾µ|ÔØï\uDA¾9oƒˆÆ2ÞÊ*7î©Ò-“>ÑåðÉoðˆqŠcrŠÌÕ ±fPfZ ÇÖùV “6ü]LSu/Q T+™7ư€Ôœ¸ ž°|M©Å óZ’ù¼´®eˆ°ˆ'-ãš½Ó³Œ­Øîtt¬ŸËg4’íâ±ÀZêÚkÔ½üe”ûg)£p9º3ƒÐuÎÛvÈ©º.ÈDV-OLkÕûj ðNñY!êç¤ï¢±Ê¤P‹ìDU®‡‚#®³l×) _Á«Õß³í V8‰u4@e ‹d¤eÂ’´6:ÙÊ—\-œ5"ûþeƒ4¯Þ8±AYÐM¯íê­_k4B~h‰¼ZXÕ\…?€u†@î×ü-×4”éRHëÎâ­D$—àz ¥ý~/äI#ÙÏ tQщ.®¤*§¡~(˜ ÍSÔC[ÞÖíZèŽV³—këCÝ-1LcÁÛÆuT‰É9)ÞÛÕJµ)³ƒ%bVxL ãÜ8ÜsgMä›bÝÍB•ÇÚÊá?'­˜fcN<·º‡c™#/B,Ø%œ¡öZóÒŸ"Gc^Š(¶TQoH:“VçR–€úr̃51O_9ÞšS ápÝ¥+ç.jãÌŽ’zááµ_Dy%ȵl'.(pÍžßéqï•Κ1VÒÉ2 W|-I›v¨Ö]ÜûIz‹²OsÙÜc¼å\‰“¤…d^øJ¤+Òæ MÙ‡f‘8€î³ïÏg¹h{† TN4ÍÒªÐ&Ø?Ê*Wޝ‡7/ÝcÄar­U>^¤‹Ö‚¨×SÓáÒ.9z‹’@$»&WÑ%°«= šN¦†«Ç`VY±p÷Ý\;7¿7µ¡äç†ï® Ó² fžçf ÎL¦·‹ Iã]:Ïbqª—šéÇœø“¡?ak(£9^a´0žjå4ÈžR1y WÅ}â6ØRڟ_šH ©(ø¡¨ïCg†:îÔ¿c‘bæÚr@_ tÂì©Ì˜¹2ž ¸ÙGN¥”ˆÆ‰—¸ÒçÂKüiïÔ@N‰lØ9´2Êqn—´“ä¨Þ…­JÕSœ¼‚ÿ…y§Ížwº‘µzz›ƒ™ø§aȇm* Òû•[LTLå»G´§èñ´ ¹¯ì‡ƒÚ™ª»ḛ́1…m…] b|ô‘ËÉázùˆÌ‚Ó1‹ ÿ·HOyÞ=ð x PNN“hÞAJB4»š;üO$ž:bñ„$7l®14èJ~½+ÕùD8æ{5ÿiÐ|Á6R{Ԥ·ï0²îöV`ðéâ7ù¾ísvï¼oìŠ!ÒØ‚¢&­d(V³rÔðœãY ûXG8¶£ÁÊë÷lird®ÀBŒXT$Ì<ÙÓ~ðeÚÑ"ra œ— ·KÓÇÑ‹õîÒ¼ö™XVi«hRS,c­Ñ‹¾vÀj9!ݽîiÙlgUØÒ¹-£¿ú <¡ò /_c„¡ùf-æënˆC£'îe=0rQeåW‹œ¶ÝQ€;Nä«¶%9f5’báá¬LDà\½¹ÔWÛƒá{ Øå[¸ÄȲ³‡ZÏ3þÛQµÂûkPâU Û©0Z]ÍÕ\Jk쌖7w ._¦9ü6æ…è"f÷7í]…ŠM3ªM 2 *êê‰J„¼VÛ+#ò?÷ý¦6‚¶PôžÈµIáUéGОFå›È>4/Nˆ€’ÈÑLïν‡Øs»|°ü¾Ðé8‘F¼å8ª=]'.CL~Hxk©«¿ê+lÊw7u'Ü›ËP ^ª${„°¹A©þ0É>XИe}e%UáH…­B­ ŠuwBõØc˜—KiŽª×çYu¥2`gìãPËø³È}£GÍó¹ÂM$áÓ˜nÇãÆU~(iY…Ãtt[Ö„j¼ÀŒ>m‚2ŸNšñêt³ö›Êѽ׊³ùâãÈ*ß÷9WßÔÖ«—Øöá° MÛFB“Ÿ8ƒ»½ß\ÖP†áãú¸ï0£#Š@í® }ôÀ72£¶Ë|‚›´êÁ£×4,µG ’BlW°ö5s¨6©²0ëŸ4^9D¼ÿ¼œ«Bâ¥#w®|%p'> -‡Îøå»P†œ½ì‘_¾Áø8?ÓU9žúÁtÝ&F§âa«ÀÜaýýª Ï9‡_Ã, 䜛ñeÏ“j‚õ¤rðÖ£ªTËtlOYݶ¤jižMß÷Ï·Ñ{T6\Š}A²skÕü)ªW¯tàJ•UxÕÐî2‰XË—– ‡{ÊqaódÈ´ <þÒ¦þÔÆz~póÙ4ä6#ñ¡ÁŸàqWåQе‹ ÁÒtן¯p‰b ¼­ ú¹W¿ðêNȈñße“M=Ÿ/xÕ:ìYG a=þ'Þ£ Ù å]#CWæñþ9/ƒÿrH4£¹æÏ1·‚)»›†Hº¾¯“H \ÏXSŽÊ~{Hecb¸-¥Ü“¤Ö:š‰S  •ÀÒ{:ê**ÕÉÞaàç…9õö©Eªz{ÏMr>Q÷ªšL}LI(ü¼Uð¨G@ò'ŸÏœœž±~CìÔ4êf1†2Ú@R¿¢d l€ð<ÕÊC6?ÒV"Ú¡;¥»`o{È(IY4Qñ“üªG&„7‚º­ªØvCÔ[ïÖË þ0V.µïãgò»<ªÒvß¶ygÂ÷ ȃpÍ5ÑJåpãf»œgÀ“ÕÚ×Ý;†º®{OЄ‡É1gi´'°o?c €ôÔ,ÒœäÓÖ*_àÚsD÷4ö‚Í9©ŒžÔ%T1‹‰âö©¿ý}À|R ¤†9Š•ÚÆuØØ…ŸpŸ0­47 Œ{Ìt#ÆvKæÑ÷‡1Ád›°ÖãÊhVZ^i’(€ ôL‘Éññ]V\¡â .kê¯Ñšó>X ¹Q·DüøŒõ“—î3[R2?˜j.ªRÖ½’<pÀÛ)…â¸LºåÍ0šÁeÎ|H˜‘Ä Ëu!@Ôº‹èâí! Ø‹j®¯E ÙŽz™#è笹 ç›zeŽyŸûÜW¤Ôª»j$šáù?Ç^†¨d~QøýÏ…ëÉu›´x2^I~É—%GJÂÌÍ3‰&ÆwŸ {ÀQ-T ~ IªÓ„b~Û(Ak‡2²IóœÖ¯g£QCöe~†ïSèÐF(ûÓ:‰|Hïôì@áûœ mVz‹,´tr"KN©l>x³e…/p>r4q…¤ ðNËιQxR' ß—cøYa2’”‡v™á=ûŒ¯üwäd=Khÿ‘ŠÊãÔ$FêïÍ!àÆ[†×Ç—M½Ïúå½Göm%fh%da‹cÒD”3ö»GábC¦îv¶Qt šSúþI¶WŸ¦ï†Sh²)üÄ/Ñ&Fª~›‘ç7ýúGš\ÕåmÀsð8 înª‰b [ËÄî?±2Ÿ¤ñ‡A„ÁzÒ›q±+@qi0÷dYåí+€a²Wˆo7A!’–:áÚdú:å¸òÁ2Œl—ôÇ9’ãêxb.l¢-Â…Á_£Z^Ë­ëÂÕÏó¤K_D·4Õ¦9»‰‘îã>©E†T0H"™ÿ´sË6ûgù,gœÜ—ÈÊ㟗¬î[4±>%:–<÷ÐüpÄŸ¢ ¥÷ .ªj“NãO&NIÑòšBœ‡Æñ'‹®3B–l\Çå‚ÔÚRC}Ž‡Í·kõ²{•*PZvä{lË:¦©³57HûÑŽêGå ÖËV¯Þ¸v—½ˆ2Ì{‘ M[B%ô•Y“":¨­ñÅ¢Æ+·×­à ï–fSj~É \9Õû³ ÖnEáÚ1î'¦¼ÓW–µ¿·*¦žuNÄr<1lop eì%™%#›—‚’~äaHZ²²æÍtŸ—œX³ÜWXùÊõ)¿æÁ£†&~#™|X3^ éûÍEÅÖið-…KDtŸOèôÛnèíÛÛ7Av}¯~˜*q!3II(þü_¸æ?;Ç÷ϳ”=¿$6uuVH랤ƒç5î6á¢H1NâI= g"jòÂëÍ:5ƒt~°F‘_–¾9”-4éwPæñàúÝ;â!:i"oö™ÛÆ]!Š2MI›zLÁ"Ú&É'³*´¿D” sÜé.[R&é‰4;êtÿÓ«-/ñwõœÖ£â÷(žÕ›9„,ÉÅÒVäOä xظ‘8îaQ·3YVýî¿è¹%‘3f¿ÛÃèÆ€à\+Iù…Òxa±ú¼èš©—c‚+(Û—&¶…ƒï34yÏX3°„> +.[µ-_šV›Ì;Ü%é+`çÑ€Ù`k4¡"Ý¥\îçT[öb‰À*"|T=sÞtüÇGú[ >—sÁêVK˜«¹šÿç¹ú…˜MR±˜æp˜ÂSV!ùZ[î°o`/}pÅp{Sº¢^W2äkÞ¶W ‘A¼ÐµÓS':—ª×Š> V¶MS 1¿´‹×áß=7s-jeä«Ík<}žN§.ÃĬm.?6n-UA”ÏÍB.ãê_þu@6¦®v ©Çähg Æ:8ИFÑàÁÛÛ·ü-™›4ƒn½É«‰õNùøŠHj1,™‰óªFXbú:Ö$Âçx¤K¢6FXÆYgx)ˆMHtÓ¢Ž1ÈXS2ÍÿÖ ]=×½-ò| sÞ°†EÜZÛÛý Íùˆ)Þ¯»FBr}k˜Iåa­‡&ûYëP «J–¯Bî‘XVu€ì¤„§YO6‚í­·ß óùÓñŽ#òh£©³Ç=tÜÄšÉHg’•}ÐHœ{cÇÞðhØ“cÝŽK]pײiÙ’9maHî¤ÙNÊÄlmABFæ& H2Ž ¢Ã[—>r­þƒ;å˜÷ÆYp«˜;³[`¶ô}Móó¸ŠCþÙ¿e˜ ÝŸì#Ó},<½’³¾b4ÌÎ’ºNä6Uëi3Ô¦†l…,$’®ªÎ›ö¨kÁ¯HJ<«ý@ª³*Þë@Ìê1ôh…šíƒÝ×mÐÎë×ïnqÖ’!‡¡Q(«ùÓ2äVÍq>¦§ÝýfYs R-ÌŠ@o®þ¤P_-ä#Dw •ópÞƒßX¤’ˆ»U.NèŸßÈvéP‰%öêÌŽsöóR D'÷1{ÿØÝøv¦ØF‘±È¿˜÷Yîg(‰ì<FeùÿT©Z>A¯¾ÀÀç  "_Q.Yˆz0ÚC&a/Ôá¢Õ®¸d¸0ºÙH)“™°öø‡ÊÉ$jS&p*n…æ1‰O.JäÓÎø›_>iD:éßÓûÎÞuO¾±*·ÁL&0ŽÕúì4 üI¶àÏ\±G'tï¾Þ‚fë tE§ãX·;îf’¯óo-m#vÔª’PÚ|¶€ÓI„I€x_ØV_ÿt-è'ì)ð×qfJôÑŸÍ¿mÇY†èW,A8Óé7E0ö0‡˜½ˆOY„ÏoÂÀB}ÓÐ ³.¡jšÌŸb‰z¯€‚A;ë;qr‘>¦û½––™SÏrFñµYónjôôPøÞ‚ã^û½owg‰#s)÷òÂHEÎG››m°‡›x Cb˜ýÐ"Bén@ÑÉ@ÅQ¸¤ûí&ç³\꿪'«Ñ"ß½R/Au: ^û5*»¦K^î³)¥QÁªA_ç72Ç•Œž?Ï4œê+Щq#¾}&Ú¡–Ò!knŒŽiÙ=yÁpwq€è!èò-N?Ó=:Ô5»ÂÇ}ñ^ø˜v òz´e¶E™`J×òYziävlY˧9/ˆòt¤PtGŽ„í`Ùš»‚YÒ7ùu_·•n„n‚ßMCªp³Ûì45v‰d^[P« Ñ{}·ËÉÄN¶0$y…çÀ“0½—ËeSƒ2ᚃeÜ7(mç ÓJ8«&iÆCÃ" ç~í˜÷™Í¬¦¯ì^_Ëö¸¨þ&£H™wM‡C Zc­®=$ǕЦ7ÛÔCo$tT 6ßj€ ³p:1bOn"Ìûú¼Üß_®|W8­HrÑ"º R¢¦$]Á9qgœXB$ g//Ié³¶gÏduœ /‚µîídç6E¦K†ŽR𭃞ñV 0 ^dJ~÷H†Á9ºAc? £×S÷ Áñ@Sø'î,–óÍf6u4~b¥aN¤ßiAÆ3eüô¹!IK i›«.üÎ ¼‚ð‡Â“¯åUVvÚÓƒîÖ SŸÄ+µ¡ òT¯­”õNùÿg£2Á4p1>f¬FY÷ɵ7²Þqøk‚E£î¹¡'Ö´ßöÜ gêG8Þ&“@ÕÐÈ ð׬àÍö9;lñÄùÖ@ÜoKECœXF.õAJD¹Ù<@dKñ³ ¿tê 5Ôjú—ÆðY,oÞòÑäf¬={[žøkœ[Q)3câBûwßúÏG^v)ûa$¾ÙûQ‰l×}P{Â]Ñ©ø]‘'ï2Ä/¬d9ªÓˆDW F¾ù3›¸ã:Õ¡>•ŽßþjåÞuÉ>º2ᑳ@¯°Gižzråžé&Óv@„KøÐx2— "¸MR\®H¸½Œó8×Êuk”hëdü>È㾓8Áýá(Qý‚×ù–R&”Ÿ‘˜lO]Ó{Ÿ[Åø™*Æñ‹Îÿ½ž.deÀŠžxîR*ÿåÚšþˆˆ"Ç%ùW°´ˆf«3Ï ¼˜{ü²ëD9ƒÐç]‘WCÒÀ‡!å¢9LÓpôÆ»ufù<‡1,bLgxXŒçZ÷ÖoŒÂ_œ©,@ TZ1 &ìÝwTÿ­Ú•~Ø|»…[| "§fzŠ×øCY'ÅŽ¯Hí“ánßá/lìÜêWüò²H´$c†ª±Â$ fá5¦Aņ|¸ŽâmMûŤÏûÐaë\ÏX¨Ž9ÚeIÒºý+"0íÉñÃ8vŒk)æ%ù ƒŒ·{ƒ ¡ú£áÈѽcO×eg§hht‰ÏŽâ¥—eL®Ae-E‰aŽ’È„´Ý‹€ù,*."K4dæqþ”jå©÷»ïhÕM‚¶õõÇ­QKÂ"@j•FO/¨@ÍV* h0ºIY3êÿ,ø1 hs{|Ç…ëY½K^øÛÛ)­´9PÊ$¸í|ÂfòTã ¶z1úÝï Í¢§,«ZhpY›‰Œ[éI7Îî„€w¦¡ÖóLǵs#4Dq,füS3¶9ħ¤þ ÿM(y²zi­%þ’ÿ‘6[miìÒµ«€xˆõ&ýØ[ßtÓÏb¸,Òê‚ÓÚ cÕ"ÔŸô‰@èd깟0y¢³ÜŠ »žGïàÓæ¡5YémÚ;(êxÂeºÀÙŒõïû§`Dùeª pΜŠÂ—á Çoî0¹ùîúù­íľ_?Ùšøœí*M¶4ïØï–W`ú[!Ƚô8¸Ù‡°æ•{˜=–fÀýI ïˆòì¯ð41¡æßyg½aðakµrNMý%ÛuÎ\Ð  Î±[¾¹œ„ÙÃo]ÉX%Jxþ “MÿlñhÍ’£5c^3EoDˆ Ö<ÌJÊÇ*`ŒM‰oæ>ùÁÐr´;_ÑVkÛ‚JÚx†FëÉ_—¥ÿØL”rÆìEü›C`i»äwm4†9¹¾ÓX4ŽŠüY¿^GÁÐÂ…œ–,´h²•Ü®`¶ÐþBÔ’¥ŠI,ÚI¤XÞa6íT/qGS°™ö·„±c¨f5E§rG+ >B©VáßAtù[‹¥÷pÎ  H©¾øÿ Ú˜ÏUµðâêá®1à–‰D©”€è­Q MÈg¢ÑUÑmŽq}ÐìhA@ªÙ­fÐ+ÂæÏû´‘&£L]ØÂ(Î"nÎïuœÛq:[ÁU³˜ã€^6L´vV»…“û™­¯5æ5—ømªˆ¦©Sâ]&.PÍìR,F17ñŠþ\ÅQœŸ@Ÿë, í"ÿÇH2_¯‘ûã¶þ¼~/=ÍäûôýÙ|™èïd*è°ßi<)8WS÷ +wþÂ<·2§$æ‚;Ú?(›À-y `ÇþïšÅøha…ãöhLIsr®®˜´Ê!r?C¸V‰aVÎçÊQ>õi„À˜ž‘»}k—žF–„ù2UÃgXð²ž|~:¿ÿ¨šâžë®äÕ‡% 2Ã+Ï;˳£Í?àÓ;ÙrÑ-«kÛaë6_!)üoàŸ¦¸ ¾šï¸á¸øÉB¤"kÀ5ZÁ£1—§ùγ” z§Ð÷Áÿ^óF‰12N._ó–Ÿ å-É­Ab„à¨ñÕ` Áq'1ã©YÕÃ?ãìHQÅ÷®³¢ON„ü2µ¿= öŒOÒ “§p3dI<ÚŽ¢qŸi[Vä'çÐC»¢Ù¾3~šfÔÙ™N¢Aì´Üµ“"ù_ü÷ߘXE9Òcþá¼ÁŹ ¯%céžñ¥ñìo£Ï'!"o ÓXL>’l{Wω¶X¼j¹/V èœÑp˜°Úâ=/é¸Òm{Î`@ï 6Øf¦[Y¹aéru;|›Ž×¼'Ÿ¬ µÝØø~‚J`Ù<‰`É—Þ‹¢]Ú¡ä˜1œ޶£¾´zã}UÖFðo褻oE¸ÛbÊ<ŽÉ¹Þèsåå3§§óKÝ…›½ê-’çb¿/ÎK1Tò˜:˜Ë7hDWëâxÂÿ¡Àâܱö3ªŠ‹ÊÜ €³â%Å1¯ÏžK^58×£ÇÁNMHÅ|º<^“Af¯Ðæ]2*L}Ó<=…]Éhz ×È¥©ñË‚2\82°ÎñâDýDèüŒ¦M yéqW¼~¬@ÿÃø©š´vJû†9°Þ…áU±?jø98ƒ‹¡DØ·ÃþY{PjºÛ<8~Ã"9FuJ Dî!Ü“vÌË+ì4™²}Å)®ªÞS¾/ë ’ÍR|ÃRYB…íŒ*gÃ|h=´ÁtùÒ#úAjà[ ÈSqŠ´g‹>‡œS5ÿˆï²Û!Gnìü݆Kì”Qªnt•‡zªw¡J"38«ˆuèM® fY˜ŽÐ'×1̬HùCuá­7⪌†Z }œqãV•-Ÿå/xhHiÛˆ†ÍV4KÍ% £°á_Èð¶°„‰Ø÷ŒÜæ¡~:lémÁþêæ¡JæÝÜð>F_EFíÇaeeÒˆÊdzAsÂyðàܸåùE&&¦ûÊòõ3o‹æMÓŒçÁÚ¨#‡ ~³¹Ín &…ñYÒ³—œh•ÿÍGV÷0}Vïžp{µ8.Aó×ù¶Ö´Þv?$˜ƒy/{éc£‰UÈWVX+†—1µ79¤˜Yþs$6“vWž[¨n'¼¢…¶ù`:˜U déä|*¶(LùÞÁU¼­$†ÐÔ|¥LFòÌ«f³Á3j/sM%ÛþÁ lPÛºÅ8º˜APBOŒt]ÿü9ÒoŽ“Sšõ¯¹$‡Ó”Ë:íÈy—n½¾yÉX«KëÛ—Q „Õ¯C®a+‰ºë?ô)¨vqqxL¿èb,TƲÀñØÚYŸͯUìK¿<«l¥¦tðÚ¾ïq6— qÄâ4®÷ÿGâ¿Îã¹nƒ£Ò[Œ*øfþ[O§mçoÉ9Ì?Ègpß±­"ͦAC«ágëýµk¯ù=¢6Ü8­`q95êfKJ‰hOÈ'fCe‹à0Eˆz€r«3ï“ÿüÂ[ª{¤2¸¼ÌÚøw#³}˜:~¡¦œB¶¡¸â8E’Ê:æø–XÛÊ×5-Š•Ùø • ža»Î¯$“‘@FQRfÓKÎ…ß¶Éþ‰U.8[ÜKÕ«J¬:½ ¡c®£u¶; *`ù3NÅ&ÇËN7yÄ ª4„¦ZM½´+¾ì4»£iýlœ‹¡*óþÑ/h»€÷Wi嬂CÏÛBájý'R¤X›Ž'QâT·:“Ûvåe MD‚¼§¡Z4Ê€'r“.}9دzëOÄišPi±ãÖÂéq6©‡Ó–T8ðì†Ð N²“Ëo!ƒ•$'âzj½Ñx…é¹ Øq=Õecf=€ßÜã_! Ã?/¦çڢ׬Ң؉æ~Û¼è™Ï\š0‚?¡aƒT¶pæýã°Á±ª-À¥dƒ"Ð9Ò±ËB&û¼gyƒá0Ÿùg¿•ZŠíÒö¿…û ñï$+I¿&Åè(=°csž1}œiˆ66R•ëžrPß;wØ¥KI}xs!l:Øý×.Ó«_b\½g=H¸¡?èêÝ%UþâhÞ ˜Ï#a³#.¡avµ°S…ÉdWÜQ$ Çê˜8!=|`ö˺ï÷ÝlN© &È1¸â(»Œ•½–¼TŠ;Rj!•Τ‹²±o¿:$.ç£: ™Ú=~Ž•s-ù‡m‰¡V‰‹y[UéÇPÛÝCq$俱8Ùbri="æ™Müáüàå&çµu\?¦ÙšEäám+± j?—¤)µ˜¯Ì?Ë6§X ~WösvÒ`p›˜O¥a7´ÜÚÉ]òáö'ûLô~gq@— ÁÙãÖcDʯÀNOö1šºürViˆùÖqQ–°½·…þÕØJ#O{ùÖ¡³=:´ð?@ÏHâE[§*¯À¡±æ‹B¡¾èª;”h¾q<š h5˜¿Ÿ'ŽrHÕámf¥`CÈšñ‘ÛÉêéë_SýWêŸð.†NjzNÖ@j^2ÈÀZEÊ>1§ìŽå!¡óf_ǹò‡)?ig`CòK3AÎÙËü¡Ÿ ɳ¦1† Í Ã³™¢÷£C \|‡‡D>zð/Ãß wÏ‘¯5E¢ ò 2Å´I2ö26U óvLü†ïÿÒIÝ·[ >¢·¦BØYu¥²µ7@¿+æ7¹Îï=nñ–” œ®0¦’% .[Ø¡ë ›éçböþZy$ÄÇŒ]ÿ/ûGµïAaº+zzüm+HÑ®¥ž\öˆ˜È´A@î6gø½V”‘ͬðˆDÒÊÜè,;`íé.§Fú„|^ôz†E3÷žHœÆ¡“ƻۨÖÊ{1ï×DõöÌädNK Vþ Õ¼:»;) ~–âó}Âý!´ S½µü)$iƈhÌÜ Ÿéìáò  çØw ™œ|Ç1ßX_+ðÏD^åbXMƒð@Ñ1¼¦Í6Ì"ÂÓ¾«‰Ö™Ì¹à á'H_HOôh ~ٺ÷a¹?ÃfÏZ˜ƒGƒjÌ„$5õŒgÝcnQ/jÓŒ0厯¶3ÐIPŽ+…QQ^Èy_ôØA~ð^ˆ®À­sÿ›ÞÉjf—E6Eø˜A˜½6¾ìkz#`7ÊÎÆiÿ{2,ßDoCVŸÖ϶&«œ¦oPÛjWªŒ áÛ :ëe‚a¨ ’ëÿFä }„ÂÙwµ³×3±†¬+ΑǡŒ ÒÀą̀õ½Gºæ"#þOë;Ìœ8e ÐveÁ 5¿a›v|Arųá}Í×5„ÑÎ/Ö´ì×›×ñîÑ}£F{ócÿ‘醿’gP…3d‰“Ô¼O½`x¾T VOï,Ñ=ä¹âØ@{%´Fê‰ò(0[ÑÂTéêi&s@#ä¤!Cö ÷Jj°jOþÓIVbtq÷1Žðw2÷¾µÅ“=ÊOü²à‚á¢êú%î„á ¨p°¢ÌŽ%²èä W¾ò ÃC7’Ÿ;,ÝžÐc±·CðUÐBâCã(z¾g>êpñ݈úù÷!Øã8ô$/JÇõåÐŽŸh%ÂÅ"Z4c ¡òŸ»êDMDË>}ö°Ÿa‘˜—fä/‹¡« ¦L†Ëjhk´9éûK ŽB,B¥XÑ·SØ.–gñ .'y`3ï‘æŠÜ;9lÅ’¡ÕO˜»£èÚå«dáõ$䣸_×Dé m ڟƽ[‘¢4 V¼ñ%­«1„ oã…åÛ¹›aø0“lÔjÃ誰°²#{F ÙÝü’ìÛ"^¹<ÚX¬4o.8zü‘2õCh‡§aÙgðN€,÷f–1îœÇÿ ~×u^ÚLØÍ~Š(‰â7~Z†¿g{;|‡‡>Ý{MšË™2  ôý®ÎmO&ï9†<–z· Q9cffšæõ±äÌÿX)²ùXI8¯si{Žcr&òf”-ɺ»¾¦$¥g+ÿ˜'ËGF‚áAD¾³èµm³}k„Ó„ÕL~PFåýäz%¬Ù8ÞüŽ0¹ôi366µ+g­ “˜ ££«,Ìv³§$˜Ë1Bþ3-ÄSROBæP=1Œ] ü u’…‰ÁÐÍ+GO·Z ¶,a$¨øàËš4ÞËâ|o{¬¥ß/ì¨D¤‹uñ˜v¡0`»*±&ù²Cåü’̪ý ¾£¢†ÁU•Ðã?*À6kD î0é€<ÿ=˜M[§N[–¸ñLLe  †(yÙãÆäʸyZ%’^†`÷9{“ч&ñ±^à ûÓy7) §xØ0””PgœàÊŸG±ùvïffbヱ‹H2RÌÝÜW±~E±—z¹DGVv„té]#ßA¾²SDQÆt9¾Ô6±†­*ú²©iðΔž²çŸx¥r±‚øÅM]¤„ &> ³®3IýëoÔ}‚C¡±#Ôbâ?õ¸{Yƒ5#¶3… ýŒwwçoOdwtcãÐ%WMñ!ÃL»EQ«®YŒD‡,®¿ºã¶ƒ¼†áˆ~Ÿ£³– (鸽ËšÞ,3ÖñÍÃ+¨N‚°Ò%»X—dm9wÀ¯Í>æcnßÁÛž‚CÇhú,ë~±Ê‡;.wÑÁëÑ8x)xcxw¤Ä­ÏÚ—2è«É×1°Q~¶¾Ê6ÎCRðڮѢˆ¿Ñœ½çÿe}¾Ȩ¬'å™m«eÕw”²YøFÖ¶ÎWµPcWpµ1Ç~¨Þ{:€ßîúù%LZ›D(dz!9æ¿Ö–)ÊùL©TÚt÷]v~â®ÜàŽÕCÍ–á*è½|aþ¼ø¼/eỒSiwô6͈ü™*H@ò¾@ëÛ£©àÁ^¨#¶Ã¥H4´B›'²D:ïèÓo º†Fš{mÛPj#ôýúQmÎc¤Øt9éµ»ãe¶Uáò³= Žÿ—}÷-â7§¬ œ»ö  ¬÷ ÄåO~ø ÄkÍʶБqîXôJ¾cO9û§+$+*ƒ×hø±þ®Ç ±—3ý¼Õ]ÓËI'Cà»\=ÚõÂV2d„F#q™ÙL¾mãœGåß*Þ9r&bxÆÀÁ .Õ¸ÊÙAÍ ;œ•÷·Wüî"oodܤךúÇf!¢ÜҌ٬€ÂžY]7Yä&¢L§®’1¶×]¥’1<Œæ…§¯{.ÏX˜óÉï‰Å¥“m¾ðÐÉH ·27>xl¤·k ù °+Ù2;ݶ- ùÝCÅ€(«Ã_¤`‘†w­€t.D-Ãï\o¨cØ€Ú]izÚ‹TÍÜ©íÂó¸ëK0›ÇO”аûÍ—¾åGDMœcoÎlEGE~¯ÌèYH*Àà »ˆÂw%M­HÐkâ\. Äæ“Éhu¢žÇNÈÊl°ïÙŒÕpBŒ¥dØÇBˆBKãƒiðÀê¨ýqtOÎIílÙ-«— Îsò! $Õ£_ €*õ0ÜDù¡ü9]Àjš7$à ýkÕ Ú7~Ÿ”šÙŽž8„ks±ò¬ ºóa¹öªŽP(j”~5î—OH¯ŠÑvïúµ’µRü#€Â%—2¢£h¸h(_56ÊUþ´_£fX<ø¢O†½ebrcá4­A¥è~kàt€4ܤUìêò©!oLy4bSnÜ]œ%V¤Üg‚J”kg PzTÊ{ª}Žý|+w©¶½+‚Þ ½¤f4ΈØ|Í›ªÕ•€%}bÓ»ÖB(Ôݽî•¶h›'Y^Qâó[$¾ÇÝŠ³A“ÔMM\¼¥Ð;Å£ˆV AÚHÚ¹íd­f™÷pùIv-Ä$€[zt4°Q©+xöëçµÔÀ"òh‡KÌ3X:9ÕmÖôò¤1o­ÀĹÉÙ'6å9Öט$îû.âJØ IB; L(ë¶$£€ñ®ú1:ËpC„‹ïÄÎ~ŒT𮤠¸•—­5Šï:‚§Gž/Mت0TìX]4§±“Èœ‹!¥Â2ÜsãbqF¼ò@.œWÊTŸØ‹:¼QÈØ¿ëÕélRz+ŽÄX!m Ä?d<²nÈ,¥hIÑ//‡Î)Ûã&¶-ÒJ8ܾM[5îbo~O*àVù+éh‚v“ˆzd ˜TþˆÂ‘)5Ðß÷£œôLÏ~^¾óv ¤ç»%3EQLgV X;áà •Á0 hÍa7ú&‰z(Ô’„ø9— n£e\)—Zf–TÔ™|ŒÐâ˜cnš-)¿ùÃXµæïz×x¢çK®Ôã—>ÆCîîZ‰d¶…ŽE‰Ì€O4¡Í!\m›ëæ1}¶‹u4)øB8HÜAÌÆˆ?cŸ¿î3o<)§æƒiÖÎám1沌²K1Þ· ¹Œ¸Áã,Ÿœß|ŸÎͯ¨¯/@Ò2|r£š)nÔó½IYÜb/E¡içLtC]¯òž½ò`%ÅP<£Y°ÙAy…ffÏ+­AË»í½½¢P_ÄÿÉ÷d†Î¿íÔƒ.ÆÁ$ìÂLŒé£¤I4Kp‰û‡Õ(G8ÈêQ§îûÔ@BÇÏ–­äIþû­¬ÎŒ¯JxœcúØå7ŒÈù2ŠÛƒµåT´…ax¥è. ‹ðL4ð°’-HH˜† kj‘>Bônõ£/¨kb¼ŽõÆ+pÔ`Q€9lK²ZÅäFLP–œ›c_¡ŒÆÍjQ¸@T„ËàÛjÝ5q×)ÿŠléØéâ®’º ¡ Ì£¨-ò":JØC©Py/:†ž_˜ Y;~Eäî à úÔ#ôŽ:.Ükñ@€1³½ºÆ^£šÒ…`6ï:`…-ݨYøçWXŽ‚ˆVg‚Hºï\ýGJ¸¸F[)æUNëó»YÙÌÄòªÃ öwlAô/…€Ê˜":ÄæãK«Sá ¯8Ks —¯’$ìÎÍ òÑ¥½@´Â”lDóÍX0y¡O#•7‘U¸]ðÕ‹óÄ]âŠIùuD–á;ŠËÀK™o©·C“ˆ&ÅoXY3åL>œµ¾pnÃ2—ì~Ÿ{8ó z¿„RÃVzÝyªÍïÇZ¼Ì_±P–†ÒâÖUr¬ Dåò¥¸ d“ù ^”ï’ÐÄXq§œ’Ý´k LS$¢:Ê©ÂÒµ!óÁ §K…$áx[ ‡B2þaç7pm[”94Ö5.«´{¥­Ðw]Ú¾UØ Òaa„ƒW8hÚ'šÈüœÁÍ z!2Õþe·Áw5~yÃjѦ¡Öˆ 3fEI½¨±QÁe™¿аwI¥ÖÏÖnSmß}å{@ñ¦¸D £>Ü®¶z -¦ÝÅ-Ÿì ó7Þ¤ <Ü›DOÙ)¤ëj—¼XH‰ãêãêiN :2c×MiVf&•ÆæR;K­ólø'÷šŒõÒêøù„>R¨ô—ôþŽkRt|¢¦f±Î²m*O(~«%3˜ ¶Ç¶,lå×Dc68•>Á© t>øï£ŸM0$ZÀWo¶ê8¼mÏ0~/Ó>×ZiØ„ÎBëXGÊ&üµJﲉIŸæƒÅóàÀÂûibÐÏ]6ïÊfþ}Xr`ÁMF{úDÉæ:ª¥@OüÃwæ’ì>és$”Í')'ÚÅ•©o—j¤(gñör d#UF’òÞ/S†ŽñCßìxîH”Æë¦×͈ݯ¿*nîšUù;ç×0)B“àâŽ<«_–tù¶k)ë`‰FvQ +*Ÿ¦¹#N÷{ïaR˜Ö Y,¸l%ÃùH𲛢qôíY¨_Ŭx¿H¯[÷kðŸêhHO» Ù!!˜2ñê‡#ϵ^ ?ó#@ÑâÐ ”AoÑ+²Š~¹zúyP³dhÊÜ´_oã Éðõ_µXVðyþO˜ƒ$.£ß½qPRÀÔÅŽYÓþÆ«rœ“]Äj-½¶Î_;OiÇâ3Ê“Ÿ·TäÒ|€¡,œðÿ¢Î–šLKÒ‰§8>¹—‰0KìžuZêÎû•Ž'!BóYÞ¤Xº/Qߥ^þ±ÇÌç{ãÓ®(Îû‘XÞò½¸»Òb³;¯ÿ­ ?‚ò?€ý‡peˆŠ}WÞšBÛ$!Þ•òþ`«Îâî!¥’´[9ä †¢åiÀ·a×èÇ[­ß+ìZWë­Šì ËÈW\èÓ -³¬!IçÅ„´yóÖ/Qzžò*š‘3«nüîÌafÕ!7W°ê`vèi-•‹QÊ‘¨];ß³'¦„Y}ö8üˆzt¶M?W!byƒõ.;½ê©CAÎ"VQ9u‡^H ó˜¨O‹ègwóÛ-¯zÞ‡ú×í Oõ@Q\œÅ~µg’=…ˆžÇd:¦Ó:âQoé{—ƒÕ†Í~ÍO+C¼”O’¢Ù÷›}=uÖdÑOð7¤Ž1™«[W°¥4±¹øÐðB ‰ÜÜi>w{iC&t<ìp¶>;ÙæëÓºÔfè·VŒo¶$çõRË…~ÏÓžé2ùÖÊyÏ¥¡~±‚~Bhw—=ªî ª›ÍJq/Wï}‘ÿ>üÄ]âùñþÄШNùšRè7LåwLËžžÑXÁzå£âú¡k¼Ó®CëQͦӯ Œ¨Ë"Ç׳íVÒNÛLš·57D•áª,ÚÅϬNݬ>¼B”²¶* epf²>¤ø]|C‰Ð:<.ü-¡I 墖åò(]àPv`M°,H*ëÎÄé(žÑ/ò×5‰˜T§ L½,Ôq—j$œÜ¬[Ù›aëº4~ïSTžÌÚoΓCý†G Õ…"þîïjÎ0}æáü.ÎL†ýˆŸ¨øëRqü ÚnC¥K .f:J4s³Zë¿›ÅâO€6\˜ÿ2%J7Ó.©Ëo&fÙ`pPÇðWÈã%û…vAN‰tŒ'?„'îúÖA»w‰çèø¦ès;ꉴΪ Â1ÎÁ‹dÜ”"ó1Dôb>Ï+Y®WÍŒX¹>í°V|ÐB)NÜf /â&’Vòæ}C®4 ËUG°±âÌ`:CXHéy°O­Ã"} dp‚ÊïÎ0ÀÃîEØ™+Øÿ¥ošÍTr˃P¥–.~½šsFÙI¬Kƒâe¼Ð•üŸ˜zø´)Ê/h³¼0»9(¾ü`£9SH5Kü¾¹ëœpðEôºö¡ÄÍ6†j@G“S©çö7¤¶Ý,xö—îWPqa´„šò`ï>ø°Ü0à&3NSÄ®ˆ €€]¢å¡]£æ+[å ûâgœðÅÇ©d†N¯,´˜-ÍÐ^̰hE»9B TCLk³ÄÿÛçMë_ל;ù_Nð‰©°WÜ3}¥@ß ì”#¾ 63U-/žÔƒÍ…)·ˆ÷”.ˆ¥ÁôrTþ,©>=I/Ó!Êjå'׉ËÚVϰ ©ºý'«xÍóX…Pò˜÷l&~µ¶›6ÒM32y{¯Q>ôAô)¹ø½»#]²ŒãÁba-Ö³4Wåo 0Œ|2²¸àž`›_rzå}fµ¿)¾ú0C ¯ §ê">uÀáAÆX5Iî:D^ó0ÃÓÁ'z^™D­Îåï׬Z¯ÎL×:Õª$²;FÃnö™øÙþn–ðaãÆ”­"¯œf 4é@ö é^2*ðp}^`„ßw7P‚"]r&<ÚÿõOÔJÍ€’Z0Î,^gAžð  ì–¸7âI=×eGE|zÅSyQÄc­ ¿ÜíMdÐ3ˆ"én Ýáà† âÔ£„Ä0§=PÔké¢ m LJŒÄök±D>ðGøâä)¸Ty·9k±vxzO:B éCƒ)ݧǤ4±Òû5u£|YÔ¾çfýžÐJp€›Ùœâó±Acc…ípà×lû3NEPuaÂAâ‰6Ÿ9ÌÙp€À„‘þºi áR¸ü.)%3õ—aã@Cp<ØèpªuÇ*û@‡£òiÄIr3dxîßKYþ§‚O¸§D¬æÀ÷eŒÇ ¬›…NŠŠ2ïó×RªŽ±ÔÕW`ú|— ò{5öã4JÂòͪO9@×ôHÀ Y¢Øe"?ƘŠîNÕÍ‘v.° ‹ËiÿçÎî¹n÷ Ñß2 ûý„É *ªç^7Þ‹$yr½éÍìâ™eÊ]%‘4µžÅ.«: A¡¡¶† <3©ù‰ˆq¸Í­/OÚÍ›1ƒ–¬Œ@W$¨­a˜÷·m˜#o—&«Åó ,G±á‰¬×’”*í²©ZôùªP<)Ö%±}¿ˆ%;Y=yç(íCÐÕ÷ ÒÔ‡Åïy™UFdåª}.•ÊsÝzÃT„ä}^ ¤ÑævN¨z· íuÏ›E VÓU›^ ñ?j$Úí@ ¿Zšq*›•a ¾2D„iÏq´kV¹‘gWI«Qöá/1ëYMfîdÕgÏ“fÇáó/¡6ŒGÛÞúªUÃ"lG6·Às$H÷ÝAtLP›ûÑYFÞ5ÃYøcË}6ˆÔÚMÅ¡EÎôµ¿~öùÝË £®?oåß°¬]%1²Hü[© Bü_/ï(Bº¾Y£wû¢ÅQñï–€7“¤Œ ‚ÎZä@åuC•lüEVÔÉÙ.WÅÊk߈å¿ýXG)fW½J59I*î¼û47ï¹@ËOÌÝš—Þñšg°üŸsã3 $Š Äg Vò¶_¼q|/[+Ä,0ì³D¤ Ÿ}µÉžr­í/¿âgr]r?úXçEéšA—ÌëºkµÀ Dè$ rDërÕñÇ —¨â±Çlqñ%²áp|X—‘IFü5—ãV_ÅT†Õ´92âï/}¬á³Ç¢PôLåªü tíUªv_öŸÚk ½4¥ÿ{'N>± ÇÞíÛ•î!áTÉy€Ò^"™7ÒÃd<dž5ÃQªûŒߌ€Ã+9æ2x•ôriƒ|TªB;^º™YˆO½ÊÃ4Þ–†"h—d Dy‹Ò!©,O IÁw_áOÉ…¨˜hÙÓÄC3þ}’YÃñä~Ù%Ç8˜§YíKw³í[ü}YÔ¡©Í6 ÙAÓ«iHwáùwøM¿2Å>î÷Kž_±¡üÄ—&¸|€ÙÓ»ŒKy9rpñ¹j³÷žZü[¢é¨?Ñé¨ b«Se^0ɮ亻4*u¾ÌyîëeßIøOD³Âc¢²É$ÿ)‡“)vGü„Fp©,x›µ6} m’1Ö™ÂÞT¨¤“fõ-ŸåÆÒÿ¤Ë^ŒuqEé® Ëâø\.¨] ÁË5xŸQËÞÚÆ‡™É¡—ä»é9Þä£úßî~Ûã°‚;ØxÊd¡=]"mþ ,ŒSMa(6f`Õ©DWrGò¬^Onª™Ôd„àµÊ€´Ü%4Z"OÄLf†öÜj5ÚÝ×ÝæP9Ði§\ƒ¢Š3«/p´³+O(ª÷É:ŽS— Èõ¥sÄ1郣=J’²ËÛ©áE#t˜mƒN‡A~4ëié¶A‡é1£#ëð)À¾Gª%¾[níNQ…KK‘Ãÿæ;¿ECÛͨ ý릘ø:«ËbÏ:}zÓV\ÖùßPæ’áx>6 ½¾´ûЖÏY2ÿÃûŠ!±_x¸õ„¾kHç{a ˆýÆ¿ho[ÏW9ŸZ?0½ !…¥Ûe¢·ÚÒ@£XЇ],Ë| ù÷Zmn=Ôšß÷”Ò¶ÂáTÐ1í¬à<DŽ^ÿE,®åÌ~ßC4á'Š_ý §³%p¾Ø¹“¬öãáªÌIe¿.ÑM_TFÞRÝ.–²ñÕöó ³&«4!ÚÍa'E¿&¸)üîôʰí¬T@#KâK{ƒ€Ç8C;Ùwñ¼KeA‡ÞcÜ`hÇ‹¸áW –›'í·5hÍ5Ïì‘bJš»fâzn#~{¡ýÕv.”=d?‚Vµå‹!ÀC_Ú¯S¯öóŒÝdºJÆUÓöW|v@aàø—o±µaj§…¼6“vš¿®--ay»šêrÈÇøÄjˆâÛÜ=-ߌÍ'OMl‚œí‹þ»+‹«Ò ùG1R|6ÙlKÑ*ªÄÇuAäà{rdù(Ô7 lËT%LÑÈ;g5Àl˜ýA®`(ìá½âmœ—SúºÒI&æä”ÒDY0A¸{Û†C‘ÒÝZ®e±X„T±`ý¾S]žÇÔh6oÕ'Ã>@ÈF®hÀ©eRì˜&Üš<¿©ùwº”Ç9¼ë;nCh8uVA XÒÓ2§L€ËÒÛ¤¸å#sî.YŠùlžÛM°Ä÷=/î~(WyFÈGeÄæ&ÿ¹ôˆâ³G€‡`ŠË$,è*/íÈhIÔ‡’ãEii”m~Ýÿ\™|XJ¨sÎ)(·\È;òÀÃÉ ß=þÒMô±Ø‘ãž"™xËü…ÿy–ô‚zN³t¸“¥"&|r=GîPOí?cqÿŒÞÇ:žd°%LýZ±¾}Ó(êaùÑ‹*k¡ ‹)GìF‡gnÅZ×0ÒŽ$l…V cù†4)ZdcÑbçþaÙ¨ÈÈëW¾ÿÊisO@S)WÉÚ {Htþv\?µ„èª~{ô°;ðbñÉ\¬rÁ„ËE"7þ®ú™/xJªqC˜2€ÖîÑtÿ”uðJ1 i\¡?=4T©è4Ô‚³^¥æàI+ô5€#]¢7œfJý¿ÃãmOªñ-³ï˜(õí+N“?µ4Pu+ó|Ö„{çüÓäHÇÀ}sj5yöLÈãÎsa&6ˆ\E1üÇò?3v™cÔÎc ?ƒ ‰ˆm&þ¼uÓn‘ £jþ‹<ZÇÚ··߉Öv¶p Yd0­|iNiA»+âöÝT¢ ¬ŽÙ .­ÓáýX4ÏņQ¦BÛÉ^Èm°ð  ÐlÑ„;õ\†c)GúîqÞŠ¨B©–ˆ1NHnÿì+Ú<¤œd€–þì÷4ñ}À?#sÒ Ô±äáùŸ˜òÛàÈs‰iµ¦|±;–K-Úy;6 žGÊ:Rm¼Ýžáãã‹ÕSˆnÉÔÏrZÏÞJXúßR_oˆ§†ÏCÀŸRr'^·ŒìQŠÜë¶±"¡f])ìo;Q6_1UƵvAá|v× (Ãsêë_ñ‘´”0a Y$¤éìµ| YGùLèÑG§pˆ@u±¦Â'É2&ÓrÅBŽ.¯„²eÁ…ìx˜Ò]ñ±H}­îß2ïFc¨•X»Iþ@¼8Û/7^tåWE½ ŒÀ÷HöÙûtñ‡DÒgÌþ9Kð’Û’Áª=ȬÈrügÕR ;8·ˆÙ|b´»$°ÂÚ­uVÁÀpO‰lÚ¦§„¨r¼¾YmUKNÓ‰Ë8Êœt¸'lù#Õc’Àñ,ôõP§Ã"ƒ•¢P¯»R 1G´üCQ<Ð^°vêø6?Ò ß1sÆÂÈîÌ™XjÍG¾C2ù à¾I[ ȃ{P ‘>¸®?ɬ(ÿyʳåVïû§nO$@Ëî¿!Õ'cDlâË4&'¨C!˜µ8þ°Ðµ=J×@ë’hAh •ÛþɺÛï¦r¯´Û3˘*ªtƒi¢‚ŒÛWô¼Ž:®å,~_ù‡3<Æ­G¶'ãƒðæ/Ì‘ -up8÷¬Eÿä'®¾–/zåÑ9ë‹ÎIŒ[×mÒ›PéÜ*Ucúß[-wlánéð&=æ×M+«fÖYocFþ¯ÜAÔiUIšMòÿžl±€xYS‰ ¤¥åUC>ïdë^l¨ ñ°‹ÐÊ ¯É»Ž¯½½rR¾àQ-´èðIùÛz²f\AºŽÊxðð»Ù³ËCûQòóWŒSŽ*~¯3ÈŽ¡jÉöSOw_¸2ŸËd³Ì÷XJœw3Ýá8¾ Me;2K÷ßÊï™¶úÉõÇ÷(¨²Â>ˆÇÁn¿h~̋ך0ëÌ¢ˆ¥Ýœ§7 =ŽÝ"¾_KmR$çóåð ¹ Í@{gÈóÄJuñJÏçȘ]&I–ðä—K ÑU®z:àŽˆ$2ȃëAÁ¿Ô„L¬uX[¡«ÄŽÙß«0Ä3Cí} ¡’—=fTëÂlÔ|(S~=ŸÂßÚ„´Ê!TþcŽ–yH é¦Þóš”F¸dƒ´§¦6ñêÛûÉ;h¸%)aår…ë(Õ­ì…¦eµÔ]y=ÎàLhàëí|w¬×¡™B·ÂÖ¨)Þ?Å“×k6ñÔ>ñr{¯’úúî5tº[›v¨BWP¾ø`. žG5}f̯ uYÃ@m6¹¹² “ìH|.V^žÈó3¦cSg%‚mŒÐ«4Ë}Gói[‹ª/Ìpä~AØf§¦±wñƒ%‡W€™=õµ¸#ð7ß$OYO½3_î Óì>‚kûÝøöK‚;Üß×f¥Ï̈÷Áf+‡}Øï9„À"ú’µã3³—·7žÀâU¢(¸èiÖù§½My%øˆŠ ÑÓ2Lêã½ËzSìE‘¹Ù@çÔX?½OB¨u†ÀD³px0VÓȤ+«Àùvò`Œòsn²Ñ0ä‘M ;íÜX1Ø"è·Nõóð¤r1»Và="¡+Ûø©5“¨L–E@OYa‡óÈ•B’ƒàÀº­*ÊôûÎ'­šC¹¯}rô'¢[Aêt; ( ­ë/¸ƒ°ï+¢](,Ÿìêíßµ`d@†a)B7Ð×ÄÕ䔂r‚…}Ê8Ôõ‚³Þl­QþÅä;ÌÊ ÆÜý¨¾côþP–EìF¸ÿ˜iMAhòÁuÍnMs}§æCÒi¢Å¼Ôkª ¾ô2ˆ0NÞåóVm¨óÁ^Ï)²kE¼ÅG‘ÊÑuW|I øÞæ)oÖ§fÒ8·l_ÌÎóÁ©Æ%³Œëé_q& àØ/àÚ/„0ê Nì0˜CG{~`"©KÉ¥#ÙŪÌW7Þ³™7¨`ùÉb‹@¢ ðHÁèÂaDnÓŠ¸¢†IàZÎ0n”#ž.ìï—Se¬Æ}ð>º—R"¶Þ¥¤*JµÃù033V‘{ã§0ÎÉm|Á6ò]¨~¢Þ¬ Ϫãw…/«ÅIŽ b©){¿0 $9st±ÙrDÈíå·ÇsUy¦Í¦ˆœ ÀfBAÂk]ÛÒc±Ü4ÌUf«´¯þ±ˆ»Qòß©>;kQèæ»Îñæ¼%ȵ Ðp T$>©Ë_)çz#/&y2—„¿t“?5 3lÌ¥`o~¸ŠºUÚ[°&óm÷÷Ö+yIL_*%Ʀ‡ß͇8¼ùdpzÊ{J<ïB~ˆú«åWv;Üä€áX¨P6‘E1»¬˜Díš·‡é¨9ƒC¾_Cµ¡rõ¶˜A‘5+Ð+K·pôˆÆ‹¤t)÷“õ‰ ¸åº ÿÐmÏ+·vŒP®^'†ÛŠ9Ì\{¾9 .QMöÝ£œ3åÖ¡ÍvŽˆš€HÿÏ‘¯Tr•¶o•"§°‹j\QõE/È\èqQÈ\C÷“Ü^' «6¿DÄu´á*¢çÐHÿ«¨k ›éYz?QûÒ›:Z‡$ h-š(«+…y²;ûr¹‚Ñs®ŒÔC> Àñ£_,YÔ½õ5snFÏÏ2 ²iØ[í—H¥¿ÁY;’ñ_üéÊU¥tщH]ªv•? GEÎûHFD™  ®8…ámà̵A¦+š˜b:Ž™j>–VòªŒájq]z/i *YO6¶ÃOJÅQÎ "gÀ†]¤Ý±ò–Z»¸Ð”þ­i>й0Ä\¹@,¼½JÖ?žé8­z=‰ç—©vºU‚¬ú’hW«ÐO$çý™#fß„ÍLzZy|® c•7D¿Ø1t=>Huœ´áã.Þ|önüuºÙ¾•C@N×ßö¡›.vª+ÔcßϤQ(h gMKò ¦î—C6uã5†{ûŽRÙ‘ÿ@#¥ÉŒ÷U—ù´Às®it¼„ÊÁ»ÓNÅÀ©«È[x]x«R ˜>”Ë[ë~edPB5z”½ºA<ÿϸÐ!™V­pçÑ<÷öÿF¸Jsg,HW]hJ·Djdïë½x`GòóíCªê›(®ïh’u­GÇn¸âÄ·‹6ç>æá6fHè}{Ý< 7y3i_çRÂrmv¢‹/üð¡Ü²Dµø)“ã[«ÍGäDÚIÙ}ôp–Ù¬æV*GC³,(uÿß©‘!qƒ>ίš´†R3jNÑ¢¢ŸžE­ITÆç®™(TPõ‘±—Q#é…!@ÿ̸…Zéx¯‚“¬–dÊuÙ=RakzH[À7&¾Óc,=܌⬃ÂZµ oƒ¦£ê}Ríš”„:s u¢0.‹h©÷xýŒvçBZ|ÈbÓ',Ìr@—~Ooro‡‘ܶÎóÌü$ëð²t™·äÃÿL¾ eŒRkÛ[›øÌ=0Y˜VMv1R~&–z-ò4Ò\ ©“Ôl‡‡¯ìÁ/ hÜdØØõ/H½ÉgŽp˜kNdÖÙ9ßþ!Ë$ļÓïù¼oi0aØÖ«~Å&oìh2t`­z o*1[‡nW 3I»ýc,¹[ëLÛz ÖÒ/4ÎTÒkAiõKÒYºB:" |q'W§3n¹d¸GÉ'ýâÃ’ÈÙʧŮ`愎Â+¡ò¹Ã8æÝdé¡1–þªK…>ðäÿåaGoTvWm‚å‰@¦þ {ŒõÛ›rOõY¤e#Ô_Íè_úmŸ9zã‘¶™}ùááY3voé&û…ò.>R¼LcÖ“ÖÄåùor>ÓP‚þßÑÖÑÀ¯Öaó™ÍŹVÈÓ¦Q{ˆÃ á‘ÎQ!KžÄ]¢¼çìÜDiÞ¥J}'HL*ô®y6^:bOž^ýZfÏG— MB‘ªÁD(¯g–·fÃ^ÿ‘±ùìzUH´ƒÈŘcL2 JîTàÛW‡=Œ]·q`Àë6 ‘V“ˆ<ÖÝä¡bü-AÛ,•ÞrÒr¤ÄºôÄI(B•„/ˆ’÷¯ »Já!5i÷Þ †sÊl3<6ÕjØ£êT6tZÕÈ&œè_¥ Âúµ`_Ùµ¥È˜¶¯ç;¶íf€…G=ÂPÖØxï´ËsYÆWR¢a®¾°+½Ž „´m~Ã%Q½lãtwš ‹_ƳÕþ[ŽÑT·´/ewµ_}äãk©t*P;í‚™PÙ!i_'g-¾š`g—¯ˆG]–že½uÌ! góÅLugÁ˜Ü<6˜­;*öM j±ÙÀÙFI×÷½ ­ö¹™ ²½5n¤Wu(U×`0Å`SäÛrÈ oOãšÑÏn–ìH˜0E±¹i̵iÖ½¸Èù 9b™IÚ»d+¹Q_À$» ¤” d2µ Ç[À ·j5¯‚¿îCàC§#3‚NTºEº/L ým©•ïF²ŽQ¥ñ¡íh@ð­ š[M‹›AÔµ,9è|‹—OEí`¿(ª^- Bÿ—Ƕ²èŸöo>j#zwŠpÚ,0"ˆ5‘ë ‡)¥¡8(†Z¢<Çë•öÏØl¥(×¥M?CÝ_qkt»-`S-l±‚ГÃ%êF­ždbü»9ˆ·­4¨·f /©†¢,JÌn‡ÂRéý†ÿbÖz)o¬7ún‚]ûpHÀ&êú®¶v¨!¸8idˆ“<½W¡<O>šEõM?©àuT ~pêcŒ³>h†Þ“¬›¦èĪ–w?«# l6¥ßa¸ëdš_(K¤UôÜäÇQ/;I–o1,Ï z;ƒõ¼¯° ×YM÷z[0v´ q ªÔ|׺ Ý åiöq3š@ ù4ë›Î×~ôèDÕØ|3ÙÁaÒ,Å5S'-دÿí‰1Üqœ¼‘|’;…ãZÝA…úÁÇâ<ÑF¾5_€‡ÆÐ¥7aµc½÷¬ÛÅÃúF»öq ·À-xŒ4S\ÂïÄìêõIˆ’­¹ÈHhÂÅè‚ÑçàÎÊ]¡Ø&?ì\ßôûêÒ‰ˆ»á®À ÜN¿îÍx8)úͰ«(nr÷‹+½ÞµB[p»¦39ÚÿÝzTYyd2S&/+-Œ·žãŽ»ƒÞäQDͬÏX#kz]z)Œ­Ï˜HvA:“Ьǫq¾—“‚’Â?1óÔÀlŒFš®¥or¾Àg¹i2tf'›ø"Û°VZ=q[úçç ÔOƒÞy%«f!`l^ŠºóüŒtÔGº‚’kÍ{,µ@ÜÌ/1Z;¶2pE‰GsÙOgŽDŠ9ËE?ã83åé¡UÔNÕBs[¯\ZŒÍ°K×/ÃÓ(_•eóï3b9QËÎ|>Ïz·@†zI]èÆ2DëûèÍvš‘S%O«­¶¸p'¾Ôg4DcOÐA%;z LrŒåæ=L‘¼˜•W²!…µNCçÅô–Ü" 0ÊÊùK¸Õ©øÖƒú–²Ž:¾˜‡/– ÷8Ÿ,áÛ‰>_鹿'½Øüž÷¨â‚Pß_1äÙ5¦˜_ÐI`î›åêÁ`kWë(6Õ–ñähæPX¬ß6ö5¤Ü[kÒêµÛ"Z¼kŠ&ý'r’¡Š‡3p¥ÉzÒÇe{îÓÙƒgœ2vdA˜Ù%3z9ÛYö&6]­"Ìšy—ü9~'>’©¿G–!já'QKIHSÊõZø©Ëe*ð $‰Ô¯9×ùêâRñß?X¢B Dqˆ3*©WÞ«v3wñͽ•1×ÿ’ùDBƒŠ·%oʼnzwÈWg‹f~28û0}ÅÄQ¥pœ´ÂfÍ| ŸxÎ(paP@ ½ÝP}k}8ùø*Ú¿EÇÕ1—Ýc£ ÎèPE-Œ2£¹[œCþy®ŒuOs¶yä¬Z}OÊnØñ±ô¦fíy‰1ÒXÚf(?Boò¥‰ù'·",¹ïLÌTþ‚0ßœ”FïªrÌrê—±›iªó«–xCêO%+ÍVrÚÜ‹‡F ˆ3äiZ¼‰Øm«;ZœÛ>!'e¢PmÁq-7Ê´ .;* :¹ô7Y“0^z§Œ}+9qV¦6†ƒ5­|œ2µöæÃ1´z_Ùí3Ë…—µäâä ±vž6õÎ×vC92^y'Äì2S¬Ë ¤ß®Gƒ|úùæ7ƒ}R: &Ö[ úy¬e¬Óª“Ÿè÷w\Þ¹Ïéý˜™¢úeÕ„Ò;ÞÙõý‘ŽZºkñ^Äro«=̶Þ=}Zó¸^î5Ù¿ò%îêO«A÷áû4&w3ï˜ ¡ÄSãV¬®ŽW‡×ùö‰G :|W@>Ov^/¹Øg©uÕ˜#Ͱ@©âD+žAÍ{"Ãä*cÄ÷Ï¢‚jkíeRå+efš&ah@pk)„T©7øT“€‡PöÚÃ^ä­¶ox4P-6±¥f?â)#a‹)š£SRZ_¯Ð¿Qênͧº=X)ykxÿãiP›‚4§ÈÇ‹@ÕyÈ# HE>!³$1Õiû,u‚xK@ð·"åÇÕóÐ!Ž×0’Xätgͽ‘åù°ÐáZ§!ö==ሖœ°«LÖ,þÕÉ8‘4šn{Vé8ðÞ°íËÍ9ÒWž™¨ýÖsÊÃ}(+D6ô-Ÿjdñɽ ·AÇ ¾œ øÃÞäŸL„$Óe‡7‡~ƧyFüZô—Cgù3rƒ*>nÆ ôcDÆß 2¬r~ñÈâÚ3ˆ×µ/ÓÆà„{tdíetVæ$O3À ¸HK:Z„\5›¶—×—.+¬é3lt§4Ü*Ðxvú¨«[Á¤x5¸3:ñF˜¸ÿCE˜-Œ/&Œs›Öfƒ¸oÁE:dˆ)˜ÝÔ#ÚW¢–ÇpÜtIô[|ñœ„.îÑŽð‰kIØ¥>Ÿ'’‹“9$­ è2¤ö±¨ ãMpý¦:N@¦tÅ O!‡Š¤>5Ad‰Bù¦„ŠçÁÔö¹{Dн"××Tó&ÿºO3ÀÀkìé^ȆbµÝ?Sº²NHg§Le±ÜdsÒ¢#\w¤×CÑÆ6wŽÚÁoR™E2Ðhnc¤ƒ´ {îÑ=µ4uB§å¼Á$X~ ©E:T;N1ÒŽ-hÅP[)KgdJ‹f§.`TÑLéî¥_ ªËù§Ý /¹qK…älEþxlK3÷˜æGcAïÀe4sk13Š;¸ñ–ÒÌåË"†ÏÙÄÇ¥1ð& ý# ÝW*à Ë.Å ÖËvð ö°ˆàθbLï…}÷›…mÅË‚+Ò®`‘¯< ú¼õ¾œÃ:œ7ÿ ) ´‡ìö³CãµU[}Ñjeѹï2÷M×õGú$üŸi¨¦ÖTR³+¸ÞtOuÛJ…™‘B‰Í†½‡@û)/›< ‘q*èÓù>¤4¡ÔÚÖOeñ§uÉiÈ‚ÎcuetCñÍæoµt×qwÌ(¾ ¨( “UŒ³ FRùÍ6òϧx`eaȤéó!÷F+öQž½D”¸BßõsI÷4õM%uJ¬×3TÇ‹•ý—:ÒÌPD.g€HШ*Ø3RˆÎÒ¸Ú·pË‚m1=Ürï6L‹,ÍD4Nà2Oæ]’-ó^ê<‘§lš.îe ¢ow€–}”äfxŠ _„- 8êø“vé®Éžˆ/hÊ1£szc?àä ÿ±¦}ƒ¦ŒP§_Ú gÙ8Ð]¾ A&TÆ3‰Õç°Ó>Q35+òYJi`«ÖÂ’t“  db^’ÉrLp‘°x{ÔËV¨›ÇåÊGÑ-“ŽCòOs,:ú_Õ¿C\ ßñ1:z×3YÙçx³óod 'Uú÷p­Ú‚Ñ¢ sþ­mIE•ðRž,kn#Ò¦…½´Ö2a D"áÿþ£É×<ÑãÇà;fyçten¤—Ì|Mù 8®•hµ@áÁr¸½Ù¨ãàD Iø»g¦¥¦¯.w(ý1ëO× ‘ £ú½àXìŽRòPxÉL}8?L$Ýyx3}öKó,(o®£zÜ¿Í혳c° Ö×HãF`)êyR XšÙkåqýöø8¬Ë6e0ýÊû­ D¡Œa5_ú»g®ýsã¡Â†è“Ê>bÈ}ä0üµ|Âp®v±ÁJ1qƒ ýµYG¿ƒßv×Äí<\-×~ø‘_~üçN,Oª‘”3©£•Ýëµ •H·fLþ¼½ "ö©úÂóÞÿÍàpᩲ1"[½£òž=¼{Õ©«}97ïO’û ú‘ª;%‚|ÿ3©E>òrtâE°®NrÀC˜ÈÀŒ³±eÑpAÖ•¥ëYT}n¶Û³ ˜`Ì8p­1¢~àµ-½Oµµ®Gy;T†y…rÜd†H€¨'eMÚ˜úN­[ª+9O£z¸#Ö­ #-ßäo Mœ]À.§ííZ^ÃÖƒVÑ hð)Šè:KÓ¥éâ{5 ]ã ! V!ïb œõ¼ùz¿g–ü3Ðhë%‡%R;ÉTÅ }I±ëÆš_“b|Çôek@9d¨8Fjý»Cïéö©Ãíî’â w'õ$£êOø»#B4·oÿI ÷HŽ’Gû"Q™›0®:µ4\ ŠæTC³3#ÆB!é­ÅutH…ÈÑc ~¿Ê×>2ëð…U ¯ÍŽwüvôÏÂ}÷¨Ù¸(ë[7ú B©Ž%OîšžÁHѧ¿ÿ¼ˆbÂʰ~®—nøÿ©¢ò“ÛVºŠû·eí-Y]ã×S¶ä°÷é‚Òê 9´~FTKH‚† #Dαê¶k\S*7ƒÍUú£Ð XŽ>/›žŽ"zF²T Û¥Ï‰á@î=²¹µ?}ëÇJóg{>Rqšw…à­ Pœ¶-¢ífÙ6WŸb^ÜYóéVúšåõ[C¯øª9+gÙ¡èæ[Qåz÷øòyص4€àƒÝHóƒ9GÛ(8ôïñÂ,~1*%Û?å²R¬1S/úi×_Jœº˜Ö€uÁÐÜî¶FØetáê€}4õvðiî*þøo¾?§²û t–1ï×å"'ku]¯ï ÷ kÜíöò¯áã ‹tù>d”=OÝ×ç+ŸOfTi”\? GeéX.9c…HÛ^•s§Óm÷D‹9r¸¢ûX:_në°hbçÙëuŒC$êð{ûzœ)-dðBÍ‚öزLaûŽËf ›üMÇ´ °Ù]€¥tsEñ4ÆV³X{ó.¢ñã¹^2ý]„*ånhóñrÕ3Ê HâMËQ‘&}ìq…XÛÁÌœÛsã’^ª>5u–jé^°1o)Vžn‚€Ð¨¬‹ºOªÃëÄãÃ`…\2UH˜µU‰0iN%áè“Û¢FRÔ2œØ?ïôÐG}vlŒ„M d?l’ù¦]ƒŸ{ÍÓzµ•ÑÈîs×oÐÀA‘òü“´îWÄ!Þ‘2¬óLV×0Õåç±ÈW_v¦áËL(_gæÁDÄ k›ðá5Yb¨KÁB’ Ú‡ý7,5ªfŒ[f49è:Þ°’¬ ³ä<¡(høá ,Ë=/¤CQN¼`°_O–sdÌhw<ùíÑ/irä fV¤Þ>HBžw}!Ó–„¡Ÿ@ýî7úf–‹¬O”•—TåˆLÐêæ,ƒm4N¶íu~½fb+\'kÆâê)àXå”HzeåþõQ>-ÚýÔ£tý‡NùÞHã $6 ínD_/è#¡Žã©i¾k]Õ0ø§(Pf›&X×áëç“>©ðØ¢0Ýþ «jTy  ×{‚‰G@ªc£ä ñtâçIq6„Þç3ßvv<"Ù1Zµî ¶…'Mˆ"¢O³ü^3 kѳmýŸ-®œíÈü¥¨¤Êj±:ÕÝi›ëˆg ÇØy8Ð>ôÎ'ŸµbF6?pÈ„vêJçJÚ­Dà9ß·œátÅC c´×`ÈWË”y“ਡó9áïDuBË.:œ%ƒç÷·ð ïnY(¾0pwìµOK”ª5¸3¯7Cæ$¯–„âáë ÇèDòœ$œ¡ÿÃ|ÆPè!úñ­ùãÔ#õãJôLg·• åcY&•£ù¶`z¿w&ª›ÅùŒNËIX>.°¹"è³ÅEOüücì!·^/ !ÊÕçAhÚö¾§þ6m – ¡J®ÝqBôöÒ»,.ôÈ–]yºá ?EðÏQîÒì T7Ò4WѰ>’+ÏÚ·QFfwª$]Úõ»®­Ôý@ LÄ ;̽ƒÌ—Õ4gp§žØ²ŒêâqÐ3S¸=EШñêÿ´ºB°nxô FØ‹ý¡´%¹iµ¯¦žÿ ‚¨žØXÇ= xöÔj#Åzâ%Õzø–™œ(£K“ýS‚ÍÓš9`L‰¡%úÉKÌTŠm?›Žkˆœós¾:¥³·T¹’ú•»¶d´©€”*§`šßþk¡€KŠó‹ma“]…_ç×&V8È(,«þ¤Š êW3e’3t» ØnYˆçÍvAvDñì/Ñ+`uœnj™1¥wÌ>ˆÈ ³¯dÿ.#ä«kê½™9ˆÁ4{§6ê«É0€ÿã¿—%á}A!ìý=]–NH<µæ›÷ÛÜ;êX3žEXÉd÷Œ\ ÷>@/yZ¡»ÿ¥W—&úô=§ÜÁÚ&_‘¼Û• ŸÁ!umsÈ ¹lncwïC±‚·eS¸i,úùSÁõD·jr=$Î*Û1-zçZ3uüÆw¨„Éó½j¾ë|À™âI£­87=Ï’ä—>÷äèuÆ…dvR»2G|‹ ²»(³ß˜É˜uÞª÷ã˜t(-Hcó axo7ïgÁ_¬=›rAnû_‰ˆ]äéM(ë0ÈV›Uãd°ÒœüÿêÏì£Ô€;Ôtû ÕP•õ ·>µÝµÆ¢Dï‹ÜúÉø@:§}<×"üOÌzTIû­Ñà´f})ú@«îG…§"°4P´ûâzFS"³UOæL§þçê&ÂÉu_n³Íâ¶â„šŸËâÛ]?ÆŽLŽËV¯¼´¿÷T.Ññ  ¨f¸¿Œ^L ³ôP·b,–2K§iȵÁÉø¨#LôÁ‡Þ lö/u\D(-·'ŒÉgA"<ïm£7©3ZÁfÍß ³Í²Íkù°g}hCá©F{a,=§7 ClÖ~*XOá‚)Ôk[N±¿mXs±ˆ”¬| é]1œ+@°W¨OUhWc®«Loc5Å.w÷ö2xVîIa>BÈ×ÓÒœÔðÁDÞ3?fß{Å]©YÍ¡¸Pü|ǼTÿâu8w’4þ}C(Ô¾Y!„É 2xºŒFJj'x›)Ÿ3Ëw€ R”Ó#Òƒjà¸æÛ•.v§0º³ÔN–î W”ÈIÞöuиþ~ÝøÃx–,˜6A6BÔÒŒkÏ÷†&’05ãÏÈhkA^(y[:LÁLâŽH<ë¨ÞLµ*p`¿>e±êçSåq›€²ÚŸŸynWÏ߬¶öõÕÙBtfïùæ°ÄE^¤eªqLÌ£| Çx+ëE ÏØf[êÅÈ3ŪD‰ÎE°ÒŽê©¶L4Œl¥ã€a/—íîhSÇÎRÜðà£8|«çM•C^»Š¼Å.¹ Aá# ¥€Ö`”µÙÛpøT——sÁsOBÂm¾ÞI?›åÑŒVÐÍØ÷ß;Ûöchí$;«;Ò–þz)nˆü3pE¥üÌRLòÿÕä éM`z¬5DÝÑ‹Z{c¶€ÒÚQFÀ1{îö­L5ù-~_B ½ ÞÛ?J_¤ý³)y.“Å|[h(¤9)‚Ou˜(c³¶kxJn•”vip·EÀ’³¸ 2„ˆRêk!áåNeÛ}|\½1ñÒ¾£ÿ"<ŠW/ý¹œ¨WX’Q’¡‚hL¯ƒb†@ÒcÏÅ–#^Ú /×Ùv¿¿­«(ä€9ÑBa•¬s¶8ã.sn^VÅY?¥Ë÷¦SØú I—æH…K²Ý€—Î4ºÀ‘KÈ.cPç•ìA©¿2n\tB'øúY¡ÝâwíCœÖyI/ /ëêÏݳ"Ã.’ÈÔòãš1ïµ­ u5 ´_óÇgìT]`ýäç?q«£š-î2ñ&Õ] Ðoª}` â"ËÒpÖrLÄWš¦žÐŽ˜‚Õf ï8ã„•ýœö½f9åZ³NÐá0ß.ûõ‡ úÒê*⎺–ç¾fÒáý»1MçÅsß”è.`¿ýÔïpÛ8¤ÄÅ‹—抣•è&æGz—ð-F=HfrŸ&Ó›Ÿ<=9Ïœ14Bkʨ÷a©FoÑÀÖ͈£VÁmè-vÿ§])¥D»(6dvÚäíÚtŸëšh¸µP°••®%i¢ˆ˜“(šç@éjž¦eïÅüÇÒæ4ðDŸ›ºç¸³ÖaÜví¬ŽH±›=ew†¼´5Îуõ£üU@%­ö—€Þ×/ó7›5ƧŽuSšLòV¿‹b߯Ð× [ 3 E´þó 枩Ӓö:%œ ¥M7›L‰è‡¡'‚›A}±!gŠ÷¶o¿–‚ß¹1þ§H&ÎüYTÜ™» T¨|9u¯{u„&‘I àm‰ç_@C×Ït¤éïÅWâΛ“k™þ…ytA0x£MpYÞ¾DŒñ s[ª’¡”²OuÍ|[J0¯sMMÊÖIF¢!4¾)q€Òh‘Àé¥ûÇn1SX0”Y:à üœ,Ùƒ¼ ì[¯ñ"Ši€wpıжà”_—êµJ¯ ´ ³— ¬zëÉW[òb:VL¬šëîÏ™‚«Nâhº v•ÒâRê‡^„ bÃW–¬ÚÓØjv±øŽŠ½0·ùlC$¹…3Î]A¶8Mü m ´»dù\ˆÃ³D1—y9È”n;< 1o•w™Ç¦Ð.¢«œóUâò·ˆß;ìzésN; ù±îR̼¬ïÄ`Yv| dØÎ@nxZbê@Ò€ÎTw;£æƒ¬W¯º•˜-œ–dt[| …&¤2˜d}ÇŠ«™OÖ4Þ«Üêÿ•³ Þ \€:@ÿ)‹›¡[æÓiwfÓк‚=ärýä4 ¹= —FÙ:çúŒsKs¦zd}w,¦Öðõ¶Ÿâ l5Ê‰Ê ªOÍ 4Þ¿î „W8Õh}éA½f.ÀYiž„Ä7ãÜ—{•QbœFž©F‘¾°ÓƒÙ „d‡ÿ#›Ñ´‡¡ÉÁ'¼~ùÞ6 ªb¾à1ñª˜œµ>šåŽ•Í]¯~Ñ—£o>ÍC¶mô,2íåhÄŸjŒñ˜Ë&ÍfJÚôër^þøÍ{ϢͮS½_›@%ˆƒë0÷jQ\ ]—^‹V'СARjè­M¹|Õ'¨8°*ä^â‘õÞä¤8y(ó­¹uÞ-Æ] õld4ÃOd]±Û?¼=üywPÃq8á7ù-ü×ú_ó¥(5^….üïàMü‰†i•-,h‹×ðØ¼§=ižî\e5²ôÅv¾¯®» þ¢=ä1ç—5lРΦ´ŒçÛ>¤?êöÿµ“îÉ–À9ö?‚ßS^Í‘Z¨ï97áñU}¥fo} ž9§1qrŽ»êsŒÁŠÆvm‹=pŸ›ú‹L´°}¡—¢Xä¬%E‚MÒÙ†¿Ø3 *Cpvyàô±!§XÂ){YctÙãOˆu§¯`oMOúÅ$V‡üP‘ µ‡ßÇÅv1h!‘?Aýo“)ì5›iÃC°”ÌßBø[0ØÊaWÁAa²=ÚÇפðÜé:ÜÙ¿oR:6jUï J®§æ.rñ|šðžìêëôq+/'Î1xÐE†ö®"‰ãxÊëLâ,žZƦp’är7¶®ßÃÝþŸ1™"„®le÷‚þD&HX/î)‰E1 ! Ïd¬Oº –au^6ÜÆI?Xó}”F¡“ÑܨÂY:o‰‰ÄnÿÅoNA¨ 4ù økû}ÕuT‰êoXv@/ ÃÁK9DÆfÿ’7ǽ¶W »ÇsOc:î¡1Ú9µov`¤ö;™ CÀ"R™¶Õˆï5kô +0àÖ f5n¿ Ä2¦S Æ8`‰ ®Ù cÔ¡ióìˆBb—îJJWÕ·žnÙRbêθ1\<ûdÇ 37è. ­â‘VC·`6Fí·„(’GÑ[7 ¿ü´É8Ýbký’?…´‘ÛùÉ7ÞˆµåºSç>¹Oï–h×UÔÏž®=9†¼KˆWÈ-Zæˆ.VÚ¨™KÂösjÌg^áFý:»÷4ì»eø~¥Ð_lë×PGGBóë `ªÙÃh#|²„á²Ä»&ÅhMF$Ä)pø¹40GAÓ÷ŽÕ“Ú{=²º–Ó¶só¥±\óïgœ!¿ÝÔ´†„mNÊ’ r×\»è÷ƒÁ'óKmœ6•Ò¥jë˜3Æ­\øåOÖjH×÷ZçÞ|ýóîÙXcÊWš§ï²O¤8àíÑØBŸWäÍ©Ɣǩó‘Üý³t>fî v§ÐÞÀ3y€¢y8" SÌ'燕ÄT0¼[2Ôé•¶Ù ¸RÆÇ}Ñ—‚ž‡Ð†ÈA<µTNy —ËèªÏ®›ô)¡Ø ¦ráŠþÉй ظ3ý)ÝëÒäM/Ä|íóë æ±‘"YdhY'í çìM¥®7·˜Ã˜­ï£&cþä,²<“}R“&Jœ còñk‹FÔï"÷ ƒˆörs†ÂóQøKÅn"‘޶‘ù„;di/!Y¹J++ÖGVª©èqçknQ…?d)(·ÀxiP?Ã5@õng†¬ ª7¾õ²¹´f´=èÒ¾»¹à"@ûi³Êý¬&¤T™É¹—-’É#ëê_¤Þ9 ãA9Ú‡Ö`µ[pç¡{Å<úƒnq-ì6vã kvýC©U¿ƒ"näåÁ6z ¸ G]cÜÎú šˆGìcHov*[Ó,×{n¬×UÝœòBžoÕs·9æX˜þ1é»Aÿ£Âk¢{(ëɉ ¸ŽU¢Òý­@KH J•ÆÙÄH–¥*ÍÕ¸ùá)nžÿ51*R1†ÐLêb8fTÉê¡&ÙÉ#ä“…Ê ^ iC~£tø_bOGcc¿G]† vƒ(ón°»noÀ¥1¯ãv•ྼQ°K²ç"k'À¾µa.eÚ#®™²}W;€Z4ÝCßDÑ04³i[‹×É6å·Zr˜,}Ù)Pf*oü7Ûr@t¥LŸaª=<ÖkÎbZ2µ  “$Hvã“}e/“²™·Ý‹%_4¼ò=LÙĤïˆ{™ú@³sªOËé‹¶ .:Ð{·'ÇcS¸Rn¶â4êÚÑéús°XÅ07U¹Fz:3«' ~hÿAS;W×{Pª©âø~WÑÉ…ßäE0vPÑEM£yϼÌw[ctçG.èjQ±ØÈÀ.&ÏXIP Š‘¢ìR˜U†è¸\•öÓü ³É g x|–P'#êN·½»Õ-œ’p$¯=æß„óÖdWÒ¾‚‡¿ª-›%þ7ͧu6Q±åÄÓQÜ7 ¹°~@@–®Ëw 6?ÜtБ¤ehë‡&A*zÛK<ÆJ¹qd‡`j o_ìÊ>Lçºø8c®¼¶b›uùØÆ–; @–ü–ÃÈÂõˆ‘¤Öeš!Ù²…l4ã+ÄuŠÚ»ªsÍ7àáq ’Mo´&˜a_†¯vdÎC€séëÝ("ÚÿR9V½xÛô¥ßÝìÑ¡ªÀVKä7ômÓü¢U´èAgç1˜sUˆŠZXnª$RO»JÖ@4€å»Mí{ñë>Æ iÇËü;GÇ`„qbyÅ©‰ùÏ·è;×û£¸­Žo†sD´"xÿh ­×~Í.ÆÏ)5Ù¬¬ ¨­óA›¿:Ú•¦¾0[>EI¢ˆVëÿ ôŽíÔúo/¤‹>ëŽ#ÉEºý\aw܇ðG*äUœ§‚O¯ëNwá~²$wÜùðÉ´·¬âO%Ïœ™Ù8Ñ$€=‘¶FmOÕù¼2uJ¢¡àlîOy&úµcP¨~‹#9ÃVÉ•ðæ5ª«¶½¯X®½·³Yóÿ<ÎétÑlæºWk8ÃÐ<¨l G¯xäíž‘\¹Z/ÐA)L§L§U<±J´69IS÷Á"KžØÁå§=Õió:Wû|¡OIõg)ð÷Kdy´ TŸvW”ÛíØˆ‰#Y‡^IïZüL‹,·- äϾoŠÀȬ\9 °´&åu%\=¸bÔ(…Gö˜þW£.ݾ v6Îùi—uÞëeÈñI‹öýxYÅž´ÂK-?+ø:hLfõ·ì)RçãM¤:K/é¦AúABLÏÍ}¾ËÜÏÏ+|2 ŽÅ}ý•F$½,dÏÌñÇ¶Ø ••–æKTümXªF ýXùÅ¢ÈH؆œÁ_¾½ö ¶±ºËM¦:Ë)”þ4 b]dkÖ`¢XþÓºi¸r·t¿H±þJ¸Œ,`›(°›SN¶e,áf®ôE¹;},Ž·×Qg=íþå2«´+ßB´Bú7€YÜFðT¨ç!ÿ~öhsÆ½Ó žƒ “ER¥ÌQbUÛbr£µ‹Z8X[ÔØ_„ôØŒ>…®ÐÅù ó縶ßÚvµÔ¶¦Od­ÇéDñƒ“æ‹CpÑ<8¿Ýƒ^©^ÁS2J¶<8ƒŸ«b’=F—RF)u·©cn‘؆ù Ã<d›P—Ûf­±ÓHó~t¥Ö#H*Å¿ {µàÆ»·X‚c%puüLâ:!‚ Ó´ ´6@3¯ÏHBÍö(üJ®oFB‚f'è’+\‘Má²aÌ,¦ïþìqÜjKç<:9ÿø[û€-‰<3<”„ÏÌï®o„oç¶‚“–_ЧÁgÀ‚$KI¥Òê3wÈd;HTJÕúÃŒXÒŸg)q—4|œ¡ƒc‹@Ö³vÜè5†…ÅÞþºÐVCÛ¯\y\š¯&<¢î"yøŸaµ$h¥é>{<`P*ß dùÆÃÀm¶‘ÁfÁsÿï¬O HMïqX Ê3ôUʃ‚¢^¥r'L3o#´¦#Í%r"NÀX¶NÓ%žÏ‚«Iö"ÜnR;¾¬¦âË5´‘!ŒÕ™Œ‘¬«2z–E¾]ÜWPºnÞV²µrkt¬6ɤ÷"—Óë;*^¾&©ýX™¾´ut\¡-ADÑ;´SµòÍúQ¥vt¡ˆSSË,¸T×¶¿DÁäªhuU:ž¸’CÏ3hºóu.prumUŠÔlæ"¾Xýk—¥Ù¸]O–™XBÜ-u“hûêX îlž­U[BU×D·Ëd#ëW8„ áüéˆV#bêHþe:ƒ5l.ßXlýá"ý$ÕAȾ×ÃFÓHM°ä1P %Ú¸¿;þ¯êÜ‚CÔ(v:ª'« Eš—Öa^ŽÔè¼ÑêÙó© HÁV¯•Ÿ…¦ÊA¸[6j¯/Óôxa¨P‚ËGùÂo5’%ðJ©š“÷[µ§ BgÐqò´ f£óéÔnGÈaô}Yòà›YàÞªÄÀ8¥|™qÝÌ÷w•;VOGAž[Û.Íá>íU”MÎu¥Ë@êwm<<_¹¶!!M~K¤úC¾hH=ÎÑuÿfú"·mo)£©Y½ñ¯Ê0zËÌDàâôåŒdZ'gy¸*!©å}³Rëý´„|Ûæ.OöÐt³K‡eœj6¸a-ý¾)Æ¿×îtÿRÀõæâv"ÇG&Àß¼Ëoeà¤)ñÙµRÙáÃ\´þè ˆ}éØžXÐôŸò†¹Þ[ü"é~e¢¶.•Ùø¸uô‰'‰G°,Ë]˜%Ýy L C{˜±g0SŒKPÉ’Àà¶!§Ø¼D÷u׆¨çD|‹Ð”¥/aaÅÑN¾R+ÁJè } ¶¸aš1¸·\ö B`Uú-ñð¼d7*s_J'Û½ÊÑrßšsDÜúìÖ¨Õ§«á­(2†ßåßÄgIÓOMɘŒ}"[|Q1‚cÚN/_ð4é=ÏXäSq[د3Z*ÛÎXÌ^*¨1 Ý€&ý¦§>;”¿ mcÂÿèî 2ZBÀè×p¦½¬ö)µç)³ZÒ^ö!ºk9~Ä Z†yÜ;¿VvSýÆy¸Œ$ izÈ °ô C±œûpk<Â*Å·Yê†j|èÐc§ù)K”É݈J=„)~§Vê®Zæ$)€o5Ù|“æžï8'¸äñ4(ð5Þœ;ùdØôõs°è1À~Û‚ú™pÊ€ó4Ód+ù»Z8R5O**zôðF0ë'0·´}Êwĉ\k…ŸTð¾YÜ_ñãVðO°Âî­¼sIêïîPP»nã^)i‰¶r~Ãð`C‹q@˜Í¤_éºS0˜-蹫‡ƒGÕ-Õ­Ô˜ Z·|Œ‡3ž™P'«óG£]t·É@@5¡‰=’ÀwV¯t»fkl6AÓØG.É{#Dë¾ LÊ7õëFî™ÊCÀ“û x}eÍ\‡“li·)‹Õ”À-? $lÃÀÍOÙ`Dœ¼-þ¬Z 1þ”>ùÕ[Èbë§\­R1ëã‡3éÞœžÎlÐ q¬‘tjp5Õ.ù\ᇸº³^¸ÀUÇ9®l^oö¢ñD¯KÞ·˜!gÄ“ LUP1Õ;#Ê$먬çcÕN> ¨FTðÕ'Ðêfb·sî‘D§g„Gb’Å4¯êlµ(ÓmRÜF`>1ðªhf9±¤Ï“ðúŸ„0»F{µu2Ix"‡ªÅ„¸vÚ».ƒhñbŒSô€M˜,ðDÌø‰uJ´¹X!7ˆ×+Äz…µ#Ávä~¡0ÊàÄüp°oÄûù@àªV(æ%“s«ö†*›‰ž$<¶ç$úJJ¹§¢Œz¦Æ×åíYO²9#Sv¼ FN*uæðaŸ¾Ôª9ˆDAäï…áó5å'u1òË>ç~ÝÝ+?hPaßê½Z6²Ð›Š`ÒX3“•‰÷~ K…Ù¾ß ‡oäåéÑr˜J“åŽ «œtJ1úŽÉ»r1W÷&æfü_K™·Ï PV¸0ŒRžoEÙ<†Õ=ðSäæÑœ2bö.¸5ƒ¹nn”g`Õ¨Ûë_}¾'tÕ/Öäv4ÖÂBë¹»0X‡3°Ï ½Ççj¯‡””y+³;ÓŠ¨®Õx×ÙtÀIÖRc·"( ¸éÏÂ¥/'€•¹äoÊH=pÔËè"¿6φý‰L[ðøºn»D`vaçø4°a* `+}i80Û§ÜàÛ?u²1D=¼- H15œ2d2˜wÕiÚÀÓ„ñ©g¼ÑÆ9S—áUà0 ‹YZtimeSeries/data/MSFT.rda0000644000176000001440000001172612620124746014600 0ustar ripleyusers‹­[y|”EÒîC`#‡("D…AñB@޹ç}DÄ I Á$;„ ä¬(°ŠÈ"*Š(‡¢¬ÀA>tÕŠ‹ˆ ’©ç©÷ÛÌ·~ùý¤¨®§«««ûí§«ƒØ1ƒÛŽik³ÙšÚšF…þlúkó¦¡?šØšÛÚ„ïÈøQ¶&Í:„þú¹Ý¿Ãþ±û¦QRÚ!½ïAzAºwSÖS†týFÝF|_¶Ÿ¡d?'uûyïäx› öólÿ­q\FÊ&ã4£)WR²¿I¼™Aù^>Ÿþ6Sgüf,åøÙšøc”¥q|F9†öíœýzÙßSKñúhwq=ÜŒ_óía¾u]<Ì‹³ÜöÁ«]²;˜ŸöãzÆ&BÆS&0 Ql¯&žþâÙǸ8®ƒã:fs\Æëä¸.J7ý»¶R¦<Öxž>Æã=Aýý‰:×ˈ¦Îvݯ~{c~æWóíWÿÜ_^öó2.¥—~=*¿»–:÷¥ûΈ~Äéwâuо›’ý½åÆCºŽnî×Õ”œ—{S„®’㸘'u7×ÇSM©ûM磒yqO‹‡víúÝ{çö.ßÏî¹°*ôó¤Ý7rHøÇî}wKçܯvßKÐ}Ãï{nŸÝÿ·“e=vìFæÑ¶÷f­ïÚFùræÉ2»É¼š‡BÃï]úÎͰ»9'Üý^»é ~ ìÆ)ŒoÆO ÿ„ôpóx»ÙŒqާ}%æmæÓ®ñp¾æ$ÎïŽ;þÌõ´o ?ø~­¯@*ü†¿'!l°tüEà sèo\b<í1ã=ÆåÄz˜…œ¿Îçæ3‡ùþün„ݧ¦ñxf'èF×çqø78®¹™q|Êq?£þó²ó9HM¸ž~æëhTs^Ü?F ÇMáx…´3ÏFóþˆú_¸?Š±ßŒZâï o‡žvãVäÓÐq38îøñ?ênž²ûÿõó}Œ|ùâþf|¾Biîû«Ý[‡yúÎb|ÿÍèï+Ç|½e؇®«g%ö›§+òïIÀ<=w6üº›"~×vŒï¾;,òì®þð“p8'¿7× À;¹_œüŽôœôéùÂïYÏIo½~Ç”µ”‰çò½ž#Ì›u®Ó‹ç ‹~ü<·Œ ]_¶ÓÞ3 åU%ñ&ã0•O_¯™Ó"pòR´ZÒ?Ïy‹Ï9ÓC¾áyhÎ&¯WÕ^À~Ëéï;ÊŸÉG¼ÇX÷†gyà¹mñœòrì à—@eú+º!ò¨uP^ýƒ<ª¼ŸŒõ°pÉ×zoZHüWˆ{¤æi,ÇQþ×ûÈ®Ë5äÑ×ÓóØà~Pþp?ÚÒŸ ¼§çe@×¼hñxåWäYò§5ÎäÑ8†u1^Â|Œ¯É×G1O‹ÿ¹ ®·1‰:ï/×Ó(C¾Œ´“ÏÖOëÿ*ò8÷oÆ÷÷¢džü¼ßøxoñr^ÞÓ¼•È‹÷Vä_¥‡ýõ>ìæ}Éúþ™/—8'÷¥ë.¶çä¾t>ˆy*O[ü¢2šß/×êôÜà¼Õ¯užÛë®(HÏQ'ý:Èç^â­óu‰ž«>­×yŽZç:ë;ë^ÞRù»9%Ç·ø6¯õ²q ÎKCù]ëøa´ŸµMûŸ›íÆäÆãœ¿Åï›ûõ3_Öùª|ÍóÑÊ3Ûµ¾²êríÇø•O´®J8AI\¼2–öXæKëñø3”ÄÇQS=ƒ²š~©'pý¸>ÊçNúuéû Çw²¿KëFƒó¥?åO/yDëiå[«ßM™Ñ¸Ý7(¢_4¥ÖýÜÖ;ãR^RžµêMæAùѪ[‰×w%·ÖÑ´{Gã>¥|ìa­Û9/Çñê»ízÏqæ8Œ×ªË9×}¼·US7 ­uàüÜGïÕz´æ£ë¡íôãJ¤ŸŠÆãº©»yNyX¿xYyÉ[¾?á¼ôµo黉ÖAú}¯‘'XOœ·~§ùÇ8 ¾6”GGS¶f¿?"êCÎϪ?µïGQ~d~#ˆÓ`ªqÌ‹éæ}!‘üd‚wÌôÏúÑòOþ3YG™™´×ÒŸÖÃÌU³Þ6ÉWæ&Þ+”OWEÔ§¯°ÞÖ{ë7³çó3ùQßxΛ¬_­:z>¥Þ§ºã½Áxþ ¾«Wq<Ö}æ¼·¼Á÷ õ£÷¡ð˜ÖãÆ%úå½È`½jL%ÏrßYü:‘ãÎ">ƒóÖú]÷ï{O÷¤ä:û™½ÿÝY·2ŸVÝÍ}î#ŸúÆbþs<ïZì'÷­ÏEû;¬Ã™/ß;<ܧn¾K¹YÇ»7"?_óýÆõënò¶“ï ŒÏñæçìŒïÐÁõ׺MùÛªÃyNy«!õr+¯èy ç„ÖŠ;AÉüéûœ“º“ç—“íú`°Îöó{¶ò[«ë@yŠß…Öçôgñ·Ö×ôcñ7ýXïãZÿ)³ž6o£Ôú~XãñŒ:Ê3ãð}Þäû¼õ~Ä~V}cPê=†~<ú®Z ©ï·Z*è{ˆÖeòŒ¾Ç3±´Çqž ôgñ2õx®[ÜÖÆ2õ›Þ·ŒËzW×{ýEÖák½Çv‹‡£(‰Ó÷å_¤é?ÞÓ—ÖÑ~æÃú}ãõÓŸþþÅÏþºŸõ}Cy×âW­·µ.=Cý•Ïõ>e½£3.ë{ß¾Õõô0ÿÖ;Û½µ´Sw2~ë{âüõ÷Ö÷¥÷%í׺1Þz7Ó}£ñë÷Êxõ_?¦ïé‡uoÔû ë/ë!‹¯ùnèK†îÛEG~໡i‡‹¯Ékf*ù€ïÞVÅü›•ä)žçúÞnñö1ô 4#®ŠxgÖzp ëÍ+ÉÇ<‡Í¶ôß‚õí`Æ«ï äóGögjòÜ5=Œ_y_Ûy~[ïØÌS€ü`?ëù47Óë/³ yYëTÞ§LÖÕ&ßgÍÛÙ_ëuåUòN€¿O°êd}ÿ~ŠóŠ&O–°þåº=øNÍýj½Oá¸ïsÞúŽÿ d 7uæÅx‡õð2Öß_Ðï³lŸ@ÞWþ­âøŒÏàû½±ƒ÷¸ æCïwð^`ç<’˜·lÞoúßò¸¡ïHg€·x¿'ñb}½yóó½ÇzâûŠÖ¾ïxøÎîá½ÇÃyzø¸ùþááû•+‹ïé}1/—ò5ãwç;;÷“ëæäûºã¢Øcæûï ¯lÌìóÂ;?¦hã—"óNí ÇS:öðî°¬Ž½{PX–<ðC8ò˜99C;´L䜕‚«¸¾{xÅcÊŠ—ˆßŠ“9Ò^µ°8Qú'¾~",+Ç®ûSO’öšËåÏ ¾¼d²ŒSsñ³ð³ 1[ü.|ú6±WÞ;Q⫨_.~J&î?Å+>{aÒÑ‹Ž-?_~)ø•5ee/ïåmGÿ·`¾åÅ!&ÿÐñSv¾‹ø™Ÿ|PæYÒ}šàó~^ôâ!O‰ÌHm‚þ£÷‰}ÑÄm2Ïyi‹E_QÜUdåÀáOÉÍÏI¿Š˜DéW¶b²èKÙÒ¯êÈ2·ü@±àçv öy™3ÄOá…‚[ðEâ[4DpU›Jû’·ã$Ÿ5™ÏFɸ=Š¥½àä2^aæ&䫨PôyŸÜ(²dC7ñ_}û0É{eÝÍâ·<®q·Ú"¸Ó~”þe%CÅo…ã5éWTÓþkEMè ù¬ìùÿåä-á-i/Ü›+zåëÅ_ijwñW~ëMÈçðÑóüuˆ¯|»¬KÑu_K¿Â³«DÎ.–J+¦üòXä¿Ãñ_úÇjÁÏ»¸ø†¾â¯ø†ße>sÒo“ö7öUÁé§ÅOþ¹éÒ>wnÑ+ÚŒ¿å]_éùaXõUÐû_%ö’‚…Ò^Òr£Èœª8ø?ÖIìùù'EÏm‡ï§â­kE.ˆ='ã”mDpe뮿EgI{å?ßÜœn;E–}ó˜àÖaŸ-Š^…u|ýV™ÇÜ«ëï–µ¢ïƒ|îê-y){³Hôân­Å_yÖÁW,”¼,h5í]KÿÜc-°NmlXÏÁ¥Ò^ú9Ö¥`ê=нW‹Ÿ¥/\ÜÒ†=ßò† Yß² /bžÃëE/öt½Ê3ä¥AXß$Ž’_c½.‹,x²™Ø« ¯@<—Ê8Eßí½8Ἄ7÷¬×ì$y‘‰Éž1\䜸ñ¿~·ô›_tù|ò:‰§bs-ÖñÛ×dœò‘ý¥½dx©à¿ñ‘…Çc¾ë6ˆŸÂã=Eæe¿!ö¬ãgÄ^6òS‰§¤ómˆÿ´<øÅÌÞù˜ØgÕÌEþ})öÜ ráŠ)ê{Lìó`æ]+7à˜¹ÃG`}—`®Løfÿ@úåä s;},þ ž’ñí¾óÉ­|ѸßE>ºëJÁçäý ø.X—‚m¾`—)íE«öËz,š?\Úó»ýñn;ŒñnúTô¼YÑXûmâgášÈgGœ·…×¼Šñ7­¸ŠWÜ„q~/ñgõ8-ýóol"2·j·Ø?ÖöÚCÒþhåG¢OÿßWî]ÈSö+OaÝ_Àw–ÞçêŒdàf~Ò[üeý´ëPŸè9Q[EŸ5ë¬èÅ뜰o?ŽùÝsƒ´gßÿ¾è³Ö`Ìú óIðy«å"SØüŸG٨㒷ʯJ{Y*öCi¯·°.Sº‰ß’#QÈolª´W]ßSü.oßf«à§N‘ü•ÚÇ‹=¯¾«ØKÆÉ¾Œø7pÍ&§L‰ö¶ð?“³Ù.„þki‘–’•úK”ùoçüÉiúwGÊÔiêÏ“ž£ýF¤¦g&Si9:=5{zr„ë6é™)Y)éia÷áãóBL]ýIGÝ÷q6ÈÓ2íº“õÐOUC?}W!ä×Àÿ¸ö3eÐýgÐ|Ý¿ €?Ûös7@?÷>ô_³€?ßøóïÀ~á-è§AÿýJàøKa¿ü0ô†Ð¶>h{PðAaýlzz³õЛKá’¿ßb-ì­V@om‡ÞÛ>Øf ðmè(ØîsèíËïpíQ¢ß•¹Ð;ö®cp²aï’ýª«¡_…Ï)Ø5ø«;ÂÞ­ôn/C¿vðÝ[ßýEØ{üzÏôž¿ý ð×{`ïõdï•Àõ‰®ÏÀõ]Ùïvàú}ÜŸç׿ú3ÁøÜƒ󀿥7ì·¾ 98¸!×7×·àío@:úí¿ãàï|ö»‚~OSè÷<ü°‘À»û}¿B¿t<ˆ…$Žû` ®#Á5ÐcqMÆ~ |Ü"àã‡ÂîøÒY œëfà\ ‰ ç tot_Oà}ïùô@gè]ÀL~TØG·†>úoÐÄu)8¦ðcž‡}ìèã|ÐÇ~<è1ø0ŽÇà## ?r zâ2à“î>é;Ø'€>y>ôäÁÀ'~J ìÓæ@O¹zÊ!à üôk)÷—– \zàÒß„}Æè3“ g¶>sðYã`ŸõôY¸^s6?Ûüìß`Ïýô¼ÕÐócÏ? üœ'`/¨†^x'ô¯€/ª¾x쥠—~½l.ðå7_ŽkOp~&dewà*ßnè.¸p*ôEQÐá\Œò(XÝö¥- /}zÍhàk€_¶ öåOC_ᆾâ,ð+׿*öÕ÷C_kfpÍà×ÞüÚ¯a_÷ôÚ2è9 ÜÓh&ú³ ×à³ ×à†,øÝxìEù”ã'$Ÿ›ü󸾟ö¶Cßò0ôQŽ_ÜüÖaßfBßvúKëßî~û/°¿òôWW@ßa~Ç÷À¿†kDpgô7n‡þÆçÀï*þÍ[`ßÝúî¡ïÉ~o/à÷ÖÁþö~èï¤CßkupÿàßMýïí(_îý ÀÕµî`è¢L ~”ý£3°¼ýÄÀ~×øàÑo [ü§CmòÓˆè[NIŸ9=)̰QÿÑÚºÏCúLÐgräµ >%mDrZVò̈ͼ£"±3“'¥ÏœìŒ ]!šuú/C·HKšž¬×—Hc›™é9Ðþ¿õž”š”™FÛÉIYI§ÌL _hl—#»d¥d¥&Gté8*ezrôÈä™)É™Ñþ‰&OÊŠèÖ~rú¤Ð )-+)|!ŠèΰÚ6ØäÿeøßH²Bná5Â]«Œ¤I%MŒ£Q‡ÿzëÐmP³ÎeS`þn~âéò¿´ÃóŒ—1timeSeries/data/LPP2005REC.rda0000644000176000001440000006540112620124746015322 0ustar ripleyusers‹½ýe\UíÖ?ðŠtH‹Ò(Ý9èîîîîî¤Á@P Á*b'!((* ˆ”Ôa﹟ûùŸýœ×Ç\kÉwò›s®kÍk >‹µ,´ì$©í¨IHHÈHÈ·¾nÛº¹lë )Évª­‘ÚÈÌLR\\ÆB[“„t= :j±0Šê³ O­ƒAXÛw´˜Üoz҇鮆 ƒuB•yãñ ~‰¹-õs*z½7¼ýdBÌÂ<#þT¿-9'±&oAçzÌèû²Và•¸ÿŒô˜ø½Ij‡Ö¾+ÊÉUèa@“Ö”0 ¿vG†9¥£¨ŽTapÞMÐi3úá‘“ î$áçw÷¨ Ö–þ§${Qš1»]:¬4wüR? Z{çL·wGуAý£íÒ¨^Åx²# íElaîŒø z›L¨^AšXr›à4~Ù¾l·Ž/n ]yôwqé'±£N… ”‹³c€¯ñ¾G&\`;µÀzé0X;³ª±X:/{­Úçá] SÉã Ä:ef´šl ÍàðºÁÖTYØ’$wEüç˜é~—€Àä¥(ÚîÀü{&¥[ U~³Tp™”üCõŽ '­ d^¹JÉçŠ<«~û¬)MP~uîÑëH °¸q@KÙåj®„WÅÝE‘o INð`pŽÊøŠ–ó›Ÿ?+ùùK®'~¥€Þ칩ªàt6(¨vE=š Èw<Ý@Í…ÂC½B;Ñ0¦‹bÇC9Ô[»òÀ.h-î±åÊ%£yÎw{Õø$Ô)\ŒSbUæ4!ýïû—VîÒêUS4/ ÛîÙt¥™&™ªƒ}ÁâiË¥¡ò[ Oß;Q7Ø¢t“g}[#ÿ9~UMkû0Ódù÷\§Ü¥‹Üv¹2ÂFô ´Ýuzú Ú¼î¢IyáÂE}D£É2F‹ŠÐo;5‚úÓowlx3Ðp£åø¶Ã'QµØùkÝ2‘Qè¿üʼŽsN*;òÁqé–E¨ª&÷÷Eºya©”BØÏ\’ÿú‡Ò¾íÜŸÛ¸Q+àÀWf‹3¨»úÉ‹®uÖOˆÖ~ŽÞpÖퟯX£ë2Yv…mšÿ¢4¨`åD«Ì¯Ë3G>ƒõã™Cz’Qÿ;OçÂU-w™¢“bLã3Eä=Rrh&/ì›è3#F%çôÝç}”h»k‡»&ãоÈi¸rk C>YÓ3ú&6š,¼>ƒU]ê;ÏrZðœ_‰¸bŸ†nlNŠËMÀù¤ûµeÃApk“n¼É ~khÿmåŸÇÁú¦zNc Ù?÷Ž”ø3^åÞP*ʸìvÔ S d´ŽÑ‹Íω¶dãäß¿€§pÏß*_ÞŽÃ|ìqñ·h`‰H~<Ò–hb¤‚ÀN1ÐN†½LJ%é}CtÀæ ƒí³50IYÍ“åDw¡u†Þw íd–‰î¯éNËr£%ÙlÉæcÔY»´|Ð í ¼t~|s L$ÕÞp*Ôo]ÇÓNÞ6õ2æ»üQõ„‘…G¡ƒ×Íã;P½j\/tlj®|¸@yͬêv`éÝ¢¦yÁÕ=÷Ó„;¨ÏÎý0Xæh×At›ç¬žžz 6U1ïTœ÷€ÓÛ“,Ý E­.¼?ð#¸iLŸþ´Ë<º¹uWAsN{Át—7Z´ÅåÝýýϺ`¹¬»ÛL ¤þžR×çÊF½¿×ýTêÃÁM‘zå»q,ŠüÒŸN-Ý@õXW†®B;øŸõÂU¡›¤=YT6óGÖ®¢éÙ}§¿n]Ï«Gv /uýïÏŸnƒµžøœÂ±ZTϦ«”G{ºNÖzà¥/Y®=…ölg;yi€—õ\DVÕiÔ91•tX‡cë|¥îŸÚ/Oyü»oƒ«žk¹Ò—qðåò¼óúxþxÏt3Ýy¾PZeµ­¡ÔWé¿ÖLõ(2üVÐ÷Ñ~:àXøÀ -ª¾YstйKb‚üI0Fûâhq|îhe—è=~¬c`‹4 oœ¬©¡áPw1Ëå|ÝNi®5Û{tþ™"û\K ÈP¯gŸþDø_+¾Uš¯Ç´ì¯/ò‚ރŒ”PäÚmß¾? Ò¹ÞyÈjy ÜTL>¡ÔÓ¶ëùmihnw©N¿Uî¥1ð;’ ECGG:pœL;mt ½úÇÄú<žßÏ9Üþ|‘ïGY8A~Ú‘†auB忤(+Ð'~çéÅ›»Q‹,0@ÂHœ7~¿,¿ð?ë:ƈV\øçéû¿×iؼ]2îh{+ÿ•^Ëg°¸ý¨ô!Õ;°[õ žùÓj3oÚÑÏþòDŒ yaêºäm´6zûEî/Z[~4“ܓҬïðÞA¾'Ëñé©è„ßÄ×çÀ§ž\üáæ8 oð3þ¼ ®ÜÍÃÀ…±8vLu¬¶IK;E‡€È¦Ò[UZc4LhèôŠCÃ\—~óƒC¨OóVg×'n´)y½zúëÿ®7ÌFüŸGÍÀ¼XPͪÿØÓ™²ºØE€íý££Ï³QdóMôE™FÔÉH'}v_ Ô3 YyQ¡aÖå°6¿ÀB±4¢·­( ¯ó|žQFÝ\z×`­ë¨•¤ŒêYörKTͨsx¯‚w7Jÿg^ÿÇ£E_¥CªE8èÓØÍ`"§û=©Š²gÀA^Øï£r)Èÿ–íd[ت§®n›oÌDã©;åÕÀù:z-Ýéê¾ÙçÒOm•ʘÅ9àÛx³\¦Ì_è'+aØaÁ6|)(q |:• I_H×ÉM¢DÕÌœ™!øÆ^ØÙí‰Þ{©³#ÎbPžæÐÀÌè%™¯ŒW_BI¥}Çë-FÁFãú}•üLL~íA“t¶SX>üý wÂË©;)G‚ ʧz¡N¶î3¸Ü»Âá­–ÉRŠ{1øæaÉžYèaLsÿé¬÷?OÂ÷û¿cØÁ±À¶¦uÊR ¢¤Í».`˜~í³Ê·ÿ¸Äíä‰ýi? ï›ÒâûôèþYò&p뺯ư©fcˆüä8ªHã1¡8¢ÃÛSr²˜"­ÿ€¸½ýS7GƒVÍù¹fl¾ói+åŒ{™ÖKÏփɻ„lWŒB ŠÙræ®f¦¿£|´Ø¬œšq¼¯дWAúÕüg´ò9ùt¬û¤ï¢•û¶g"?Ô=ØÅ ¶n |7ƒÀ'€ô¹W:„{×|ËÇèàFraÕEˆÏ:X~ÁŸBuRÔ;„ã“)ÊmrýÚëÝ€ú…Þd4d=èÆ®`²‚fCK¼vä‚?É“®ÏeÁ¨öøÀOûú¿˜e—ÉfÝùQÖœl®:`M£êãøËÂýU…’ Bãâ¼Ò’DQ>4“Ǹ÷MÛ}Ñ'Eiv·xÄœz=tó’¾*|£KìÌԇ⶙¾§9°7MœîeeWG ‚ªõy²ç˜ôp4{xÐí˜D;ÿ€ ?Ücϼ!ß…b|2©Ò¾^ÑùÍ«ê‹J/=dÐiÉך§´ß_ºc²? Âã6ÚTNû5º+«>OQ’†m×{=°F^ƨ< oq¹LU8>ùÓ¤½V˜‘bmÂñuß÷ŠÅß‘ó 'Í7F¸ÒqšM"÷[>½¬Iá׿å4Тw¤[w%I:DÆV]ä-T{{þÄ+%_@­·ÛþQ‰êlïRmÇÏB̬šV ¼yý|Nò²hƒ069ÛÂî]ÿçùUuAqzò7ä˜úÆwp€p™—W›ô/AäsŽ„î?ºèØ£.¿íB*†sfNÞ„Hh¾~½æ-i­Ð,£ßÞ¸ïÖüéÿÌÓ®´IÁKÌ‹^_zó:ü®ò½MÛ¾rÉJ&ùu¸!ÞðýÞzð:uôEå!´¹îfá?¿æK¿/LçâÑÀ/ †½X\7µË¾EÇoÖºb [Ûð“€™ŸË,#.§ŸHžž<-(C_2Ç‚iË%¸30çþƒ]ïÎ<þgNÆ8žŸ¹Δ6jg±Ì¼ôq]ÞGÈäØ]Çâò ì%0pXùAÒÙ;«šÇ&ÿ9/ØBÔ/@,‡ìønu2¬¦²ðâ›±„ÃQ1 VotðHthðV–†^ÌẠ5Ç B›ÞúПè»Üïø6ê)¤õ±È&¹AhM¥ïZü#ì$µ4̓c΋·5¯ú熟Ù7Ð+XæOÙ &ítb5¢ŸŸs¼ÏåFÑ»?Ÿ^£‚³!Šf }ý‰`è73pcº9G[³3¨ž/±8(AÌãòöÓò‹Õ]¹sæ—^ÒÒ.Ý¡þCš%—˜!ÂŒ;-So[ÔŽ_ (ÁlUCšnô(é gÝêûc.Ú]3‡£Ãål/I4!-$°2ÕO £Gw_U뢆cm'J:V@óÓ.!êFv¿óñý‰‰ûÓkÜ#c ÙìP®?l™ñãNÐùÏy ]Ýfqð"æ”úÞ6ªGÈ̳y¾—ùæõ‘)që¼ ž´Ö+W!‡éXS™/F­v2Þ¡çÇÞÌ%éž= éÁý:Š‚¸5W©B„ÁfÆ¥J^ð}¸ÑóH º«®®C¿–§æ§+À¿õ¡5í—\<$¸4eö^ÜŠöß‹í'ì9åÇ™À9+‚6 ä îS‘0ïÝ&ð9ÁF Œv;2ížøþ5,Z/&å ¢Ùक़Ë*½Ú½˜vÎãDgUØk0ž´EëÄOˆªë)9&sÓ/Ýnôá†Ü³e §'Àoi’Cö·>,Š)(BŒbNÝÏ%Ýö£ÌáÈ8zSÕƒÃÌŽzóŽ&¦•åÖÓ¦Ï7¿¦Ûï@õI¶Ã‘\'ìU97!8­•ö‘Œ"èò*'O©=[öòmš;Û1*ó(Sûv®­>ëµ×ãáBHÔ6´H.ß É|N/åØÁìtڣą7à· l{šG2|+"_ƒyÂëåª"î‰2ÐŽrÆæ"˜]ºn”³5¿¼³£^°WBLÙ«®W.Ô럌ÃàkqcÃCú'j)äçžÓ}Þm/”Š‘§þŽÑóÝÀ´¾Y{[ƒ r¹SEgr‚XzÝêHu!®tãp,ä0ëzî+ù ¡m½ŸÄ0N»`ÕÐÛ5™·»“ïÿÞSLS‚ŸJÁn–lS\óÚjë³¼c„ijtýÌv…w~ŸÔ/bÄL€x­ã°¦Ÿ1ø>Ø ‚ŸßæÍQ‚ÑÀžƒîëèkÀÅ“Ð/‡yW6¦ïô(c!Ãd9UÚ&œ>ž}]ò“;ÞÁôŽ€é‡öb‚yvÄá¿Û á­æÇÒô¥¸74@1 Éuvëª %þ½­:ÿ(úŽûôÏSµC|ŒÇ ÿ¦S:~ßû 8DýìØÃ Yʶj‘k¹Œ¦‡«Ñ^—öCË ãËDÖÃ'À>BíåŸ8~0yþõö“ÅUDçpüšÅÿ©Ï³…&ßæß™@·¦˜­Ê¸-èɻܧüWä~ÿÜñÉàzðèïdÑôæ­åßf‡' Í `Ì‹f±ó#Ú±è}Ò¥H„‚j¡¨C[ó´««²KÒ.ŠÇœ/¸„ž‚òWtÍê 8õl™Ð’l5# =÷ jçïüñ_1BÏ>\çœ/ªÕ–¾=ûâZÊ4…ZKÐÉ]Lë+Cfžg³j¤…ÿ›;lÈà \Yæ×ÛŸœ¸s›sÆQ6ÈÛPB",¿ž˜¢P]¶lVÜøÆ“1Ü_ЀC¤w²³ Æý|uþ²ÁCH8#¾ë¹†=y´³ÖZ=ó™&ľ€¤mŠ{Ä •Áέ2ÿ{å&øÓ… «e€±YêÝú*= x´äZ†Yæ M£öéFZñû: êtfž¢ëÇ «®»oa±Õ·Ñº!Ì‹ 4¥¥¶C7Ú¨ø¹×Sàéª<ßßš…§Ì‹Uz ÷E€‰8»%äñ]?–ÂyAñ{‚§@¦zý:Y¡ÿÆÏã™Ï¦1uÈ˽ö¹*V‰>ŸEòá£`‘n+Rdw /9{l,È@8_2É¢¤„¶>}›êGªÙƒ_Ž€ã˱)¹kæ˜Êäë5w#㬱ӳdyÊä¼ýLE:1 jú?•¤¡mÐÞcl‰-\K’ÚÖ§õs!*ÑÛþb ßÿ™'ñӟبE¶úÓÝ¥$ìëƒÀ3ä@ó³ÃF(±¨£mbXÊ£2Ð"ö’ÔêvMt2 ÏÕÞªk”8ÌÍWÊЕ£éû€K>˜=›]s-çUàq¥´éA££Q™—¾_À¸±Ð–{wá cÝرÕ÷f³¾aŽþÛrhdE^‚–ëZD¾ÿtÏíù0ù,Z”·2ãnªA×pzÿqïÅIt1XÇ^K‡ºee¥îàDEòãa\ X9ÎÈ&Î^;}úvNt+hvrí: ^ýîãg7ZÐZ¢âˆ˜ôÌþkô³¢ ùÇ= hI,5™Í,5_f*ì{F‘,Ó¿b¯ƒ®?;Uí¥Ø­u…E`©P2hzc ”bQ1,À)ÑW ’j¾\ˆ¼„¾¯µÖN¦ï@mߡ֠}²ÿœOŸšÉš µj°;õDF • ¼vr%½Û€Öz¿Øý³J] ¨!}7J3ÂMãè{{×®*C/pûX/S½G«HbæÍÁjë,ž?5‚ñ†ñG´ÝDƒ½#«.˜šæÙc¿MëÝŠE-÷üoþU$Ït¤ ÿ¤5ƒ‰Ÿ?dGpšBŒe±‘†ó}z®ý  ø¶ MC$cq;©ß9ð|Ñ÷aúg š:KvRߎß4^‹“—Ê@¥îVs}¸4Ÿ|ðr'x{~ܵÜ;R]Ͻ®Äö O÷œÀ”)þPlDyrþN°Ì¡¹ìžNç sðb*[·ügÿÜ…¨†~hOÅßðëáZàÀñÒŸÿV„}¼Åw†º¼™ªr¬oBpòÐÍûYÌÏ•«ÜàîÒ-Ên A˜²rCúOpüׯËxN€é,¥æà÷­záĦËÇVh~¡[P)äX1\ sû²;Çé]âî­ùŽõWÓÀR{½DaïôËüËž¶û&˜Mú>¸4‚{9°,uóŸÇÇ£è~‹›¸4ÖMꡞ¤cõhÚSrq[ ¡ùÃZY‡Sàù¸“Q¶æšý¹s|ΕUØž8ó_}aÖ¾¹³¿™Ðà“JÏE*ðõ(–ï^—Æ 3ŸœšÑþ“Ïáƒ+ &v—ÍïuhS<Ø=ËVR“Ú«§ÈPýÁÕ½w-ý!@^öîÒã`ˆK1êWáGÊ)ƒ^Ÿ*t4Þ^`MùêxLj0p¸Òá*û¼¿Qû!UùK¥Ä·;ÿ缡z™¼úi ÚJL6©QK€ï±¡é+>àv›ÿ´}ã鯰ýW6Ïl$U>‰‹Ü«ò„yç 5 `&µO1¹5Öª#U®¢ûËݾﮯwФ 7][õ³í_Ð÷‹Ù¿q&@•ç«!×:v¡n~Yкôœ™“(ðˆn(7<’Gþ5ÉmK‹h_Ø?zXÍ ,JÚ½B¿þØ{z‚ÿ¬ƒòIÙñƒ"øÄÍù×ú½@ç+%%Ѻ¡µCëè%–* Ù~õ§@§îº¸ :QöÏqXŸÝîª2Ô‰öç±ïMåK´I°¿ ÌrBFïÔô“sbÈÎ=\ã7:1V°EkP²mÃã#Jô¦1‚š&õ´Ð°Þø«ˆ7ÄÍ/ƈèa$ÕÇGÜ3hmTéºc± íªuž]H  o²‚úQåpCÇ]4 rêí‘ÿeŒš4ö^Ëû×%÷1ýúg¿¨Í¯tnc4HGšŠ0 £ÅÑl…˜TÎZºªð±T^:Ý!µºâ<ü»Ð -•Í­¬µDn׳˜AOvÅù±ó]à{^ñ_•&|jöé+Bw§–Èï±:t2-iö4Øítëûlææ~4Uï-Û `Ü0L€µ|Æ.íçm‚@ÁÙâ}wÝÁg%¬TŒÊÃUEs_†-ÛÄÐòÊÿ=ÿÎ19F·-0<ÃVXø¾6D“d¦þá‰F¯iÑ…„×zk¶«dbö'‹í‹ Š}üÚ(,#øû¸º þ¬øëvœ³M„“ž4l]'z™ãž¡[ íÍ×[}¶WÖðÃ] ´èFÂùö÷É[èF¹ï~íuGðO®¼˜D“KæßN ¶÷nóÌ™ ðßi=&x·mŸ½ZêÚËN½AkÔÒm:Ì·Oì2{æh´3Ñ[}ÍÖ©äØv{¾ø“¶µní(>ÑÂΙTÚùÒà{¯A}BN ÃÉ–ßõ˜¿BÿÞ"œ¢šhà±çËó»“à´}3Õ£oHfÝ£žF#Ê Û²ž ½L¨ÖF3šzD‹ÎÌÙ£px¯Út–1¸M¿¿¸d+þU…×m9 Pýe•¨µZÕ>ˆiYåE©ç©ú2Å|ùÔòÏ7ï¾f¾!ÂÆ %.Ä §2I" ÄŸ¿UǺÝûÌ·®€å`t@¿Ò¸­³ØuîßÒ»i®ïù!àq”`Í{pê¯P˜ÓÙÖ_{›^Ñ‚ýψ¸\@wä4QùzÐàžy׬;‹N#ŽÞ6a«hužƒú®í%ãÙs½ö™681Nóé$X å`h´ÿB=ˆgz¦~¼Ù‡j™ß%§­€ƒßò‹EÑîõC+æÇà–fÄ?¤kR}†ór.i™=BüÒB µôìà{÷nܵV§n=xˆ‘×F76âÔQªäÔùZེºPžÊ‚V¶¶±‡.žE©ü/;eÐ)×f‡çvà9¶>ÛP‘…®;ŽvQåBÛkG'É»'P[_ý qH’|HB_y<ÏÝ3›¾¡Ç>+11W¢ûòô@F§ú*ÝÖÜç Ç[ÿ°bd£öôów™`ž©­eÛyø¯û…‘­>°`…%ú™&èAºzÓÿ­»Ö’e·17 Ù)—ñHJ]t;ûáSkîÌÿq–/òÒ¹É}Áf±O—ˆ56%Æ(y µ—º½Ñh)hUɽ²m©@×î¼ ;Ž€yTúÕ=º.hI½<'ñè„]¿8{ý/„ÿ¡|ö‘ä †¸êF…,ÿD—&‘Rt`í|Ž»‹¦´ Ww51^·²=O­!PØ»YÂ1ÌõIØøç¢-Ûìõ9‰7ïû!E iÛâ%´t€™ÏŸ›;êÛž`w·½ãŠÀŸrÎ<¶Ý;ò"oÕïÇèú†×_ú èÔ‹p±ýÃh5Üt”¥œ}Kt(Ÿ|[•ó†| ÷Áeæ^}ëEzt÷õâœT–GçÈùîỘáwÙä¶·2D^s›^M†@¹ùD~áç¨}{a;Uç^âã>±Jƒ>…á–ÞǾ£ütkãýS×P²mäÀ=nÔÒrgTÖFƒìsÿú „_cgúöÿgÔ2|e8GV>”ý‰YàýPÛîéÙ_h%'uþÁ:Ú:Ú(/gޡ߲ ¯Ô2#¤Á[/ýÌÀÀþ<»4é}ð´Ïá´¿ÖþÅâsÔoï+Âì» b›n>.m82fõÑVö] ©ÙQsÜÇÍ3ÒpBÕø©³šwÏ@ gÍ!út>Ï^ÅF­ j‘æÑ‡‚ 6¥ê$YòM´ïü}Ô¬:,†– ¬þϺÏ!É7½rt­ç¬.´ém …ðÚªŒœ/Zj©~Þvø&ši\ÌÚV…–uëgéz‚@®fVLÝt<Ùô+ЭÃF ¸÷7Øç ÎëÉm—¡ðÐ=#¨3пr„8 Þç²×ŠŸ.ƒKý ÃXúÉþÇ)tWÑáò:¦ž°{;Ïg0Z(ú4l׊ÒMÂ’|tõà¸ÿ³7ÇtìÚ9*õ[n_ª8ýÌì 3ºÉÏkɇ#Êm6º$ÙÁ£ž‡ò#Ýic¹»rÁèP§^w>ÖÜ«n%Й3¢)ó³Ñêbpê2ͯBô¡¹ì¬ýÆÄ?ˆ8çh¬‚VG«~ËlØV=Ýt2Žq™õQú^ùÚك̠²<§èÞÏŒÒ#_DLj­ÑòHòvVu:°¼Á*{Çâ3XÝTñáK¾ÏŸ¯WÍm[õ[<_ÐŽ¨Ó¨ÏÎòeB7y%WhßNnÕ-»/nVšs¢Þɫۮü¶«‰Ly÷§¨)óðê¨cáV]"äEwéÉíUººÔß‚ÐúÅÑ)2ÅE4÷S“yÔNg<¨ÏM‚Ç k¶Ä·ûèÒ;\® Æ«lóº½AíßO— êlȲÒp³Ÿ·G·Ùˆ™wV¨÷VQ½î‡8êÅU?|zÏ·¯ÁCiÏ%¿>@û3vO88jЂ»`š©BxzšÔdxQíEŸÞdž:ZW’ç“ðÙy‰Zp8eš©áš_#ÕÕ”ÅA_ð‘J€ä1ð”‚#†÷ÐCm{7eöoôë¡ÞA‰š|êd‚O¡erXˆ%ÚsuÊ–|3Eåêá÷GTÐ…ª4ß·­mÞàK=‰Zšº÷ø4‚.ÝUi*ê¨ß²Û(b(œ¨¦¥ýÁîWt§ÓÔ‰;)Ì: Ê‹BÓøo¡weòúðu0ÏúNª+àÑõÔŒ# EN*ó¨Â Ø-oò½Të´ OYÛ;í! O¨À=±‘JCî ªG|tÒ“Ú:Þϳå\à"qëÍfh"XLsJ œ]M­>µ Ú0Ÿ^Ê ƒZgyïäõ€|÷DzÏ(Ú }ŠØ&vSäY½U §ÞÂsêîí¿D¿Ág?}maG=¼eì˜Ãžu}ÏbA™ô¯¯Á |¼]J«µž¦sXU=B]­Øý·3›Ð’â^Ôµ;©h#ßéÝðx•r.Ú<—©¾ºFK€Ú)jzU 0Ú¥¤è×zlBùZtÜ‚½b.«å!êÎôý·×@1aÏ©9°—óÎÝšßv²F¿8MQ[ ãSg£$X®œ°þcÐÎê C'Ûo€& S§æù5”ïLªm=ˆ¶ñÀn©ºŽ¤óÉ=¢g@3êqÄC¯u0 ¡Ì~;u¥/ œ°º<†‹ïiq缋Äþ8+Ó"TËßÔò¾ôdòÓfvFëûö Ò#àrBßøÓ<#EþÑ<¬Þöæïw©ÎO€Ï¯Ùõ~'pð”øi~×rx8kP;æîi @½[_I^Au’Ž%¹½ ݺnǘQÆ·~èA`8¼zÑxU» ZgÉU;_¢ËLEM¿0JˆŽ_©%A7ã$íáï¨y¤F1° ÔE2¢á;Ó¦oAi<æî½Ýy vóù!‘íU ÄIæÚtMMR²ï.:0€„})YÐZ=R=ê÷DHÏìM`[‹‘F1kðH{¿Íçë]pm€Í‰¶)·B0ç´¯I¥A¦9}»‰H “¼·0êÚvûîTƒu˜N«û•ÛxpVˆo®ý.XÖœZ8‚¦S<‰®Åàγ¬òw¾\×Üô“)ž£”åwQ6é{xVê|Ža`é@Óoýž×ÙuÐ‘Ô A‹@óPùÔ­3ÛÂ|ÚEFÑZ—KV¹H-¿ëüYxZ†·ö{š)R¢ü3‹±“$e¨ÃñbŸ«0hñßÞ>2¦ Úc NÚ"“hQEË þJ°£À ÿÄʂʋ¡ókçVÑeÍà︦'Z< *K~öTNû¬½Üªëé>ù³i1ð‚îÔSð3£uº3ìõÌ ù,%ÑšZõ}ÀsV Ž gœ°BÍ/ïñv¢Î¥©ÃQ>´¨û®ñZ‡~Úmª¾Ä} ¶g^QQƒž“mO‰òˆýf¢æ düÍÇ%Æ@å>[A‰XhÄ>¼±? lã'"²ß#×±I4{± ݶ=M)cݪç†þ}a@ý1a¥ôs\ ó@ð[¦ÒG°ÿår.áöâŽOÿç¡¿½¬ù`-i"hÍzú›òw–¾vðèW†¼ªë±T†ï÷ø -ÍÐ×Lö6ÔHÛEë‰êäNÕQfUàa œã}Ñàà!©îQ ò]‰×Ë8š‘Ï·ƒê¹åGP¡nñ¾›âÇ:ÓZ˜›Ñ‚Ó!;xpl'þô­\O7=‡rëÐàÍ»}Càᔓû"‘· y{ÍôîG)’QÐ)Þ÷¢:ÀòYcKôp3ª41ßN û?·É²ÊQ ƒª¬uÝØ«ÏˆØsƒ‘¯ýÌ>°w Þ;`µu¶_EF´øÐb£öGæeä|^Õ9|jâ÷¶Ãë ñNÿ])¿(¨ ©·–­ÝE ¤|×Uô?Ý mg--ÙþH4d±Kª|û•ïÚ}à*5åßðX8ƒäÌ•w;|©›êŒõ¾=rã*+h>N}3NE‚Y–Wj¥\nO>ÞÛmˆfß]Y÷ç±#IæÐ=)Ö·ÈþJr÷ÐÆ °w¦þî.Ô²qéҟΖAvÆ1C«ÐÈýyë€-øH&²)Vöì ÛLujp¼1Ø65î‹üiòJ¿( eW•Æ5Ã^wÁJÍ]rB;3–%4] Z”ì;m#ĪÝHñ“TÇäI).¦Yʈèݸ .gÝüõú ¨ÿÖ³<^gÎjycÚµãs—ÿ‚ûÒ­Ø´D# üÉvfìNÔ¶žˆ”ƒðX¿¨¯Œ&­[çÛ¥ˆv¶WÞ:ËÛƒ3¯8†ìÝ‹¯Þ÷Ý—zþd®Æ _VÐ{¶†¦Œâ#¤æsÒô|À„´€?µyà{±|Ijìot7Ýs$®iP>R„ô§ædôCfé÷ög¾ó`Ü3J¢Ü`=~÷¥€>ØL{µFi—bô©cÑcñúhf9gµ~""s„ÚùÞc¸¿SÊ£g´ á¹n¯)Êl¿Ç>¨VÜöbc#,h+Û_¶ôòô{Ýx¸ÉU‘ÙoºÑ­œL‘b/D*º‹DÓ ‚Où˜;×Yôl§‰?}ü/ê‡ÇQ=4ÃØR¾§Ìs:xøèpêøš ä,=vçk)fÒ-sG§÷cñ—Âx·U!¿?ô\ÉM¼#©ähìW!ç5Õ‘ÛPÊœÁô]%$n~Ièˆ^³»_ÞŠðí)¬h/O¨¿ #'ß}U]š8ÞsY ¢Wƒÿ¬²HaYׯ~Æ8ôèùv•9°â⋾÷­m2º*Rsœ¿¬¾ëÙ5ÈHtdåMõ*†ª”sœ-ßòóG ü#¢ž¯yñæWøÁqZ·îèH•m›ª¾‚ö†ó›jZ!…ç5 O‘?$Úø<ùn’ó×h¤¬ fgl£Â¡s•ò¶·Æ0fnf÷A«J k‘;?—±¤º²îjc´+]ýÊW1ˆÎL‹Z,‡Ì]/†§ß@ØÕ9ZÞ”hU$ÖÙœ[ ¡Ç?ê³ÒœDï¯÷¾Ý ¯ J;ÿW}Êjç3Ú=àþq™rñà ÃÛ–'c[ÿAˆó¤)È'é{ 5œÀÀ ý‚ão^aÚ¸g#ëdçýe¿©‚vVƒêû:ßM‰Ù›û6ß V'ºEÜå'&0˜-Ë¥s€‰C’ðšÛqˆrüÜTpøXxðTú•Aósêi¯b̼fú#Ód½"9rȃÛà/®Dá‡ÏOÛjc!ƒö¦ÉKÈ|Dæ•Ö˜Qǽϗގ„$·¢ÛO€SõüvÉ÷n˜pîSË=ç›è­ÃâÇ—!Zqžç’Œ8Fš~}`‚G^}dYK ¦õRM_Hð*×g1€Žw•Üã_Aw†ò|~+”|ô´áÛRˆãë‹Ù±‘‡AÔ¼òÖ1ðÉJŽ"ÌõîzÑ´Ë+y^WbÄÎçE¢oGíåKÁ)x¤UžŒFT PýÃÚR$¤¿o¸Âc‡§žíÏ' |If$=;À2çëHÅÈaVîo“;QåÔoäÐLñ&ïö<¬. 5#í€4fÇu›wVÙ¶rºOþ¤¼¼¹ìý ßöÖXKÚcdh†Ë#tÿö7›íu3f|Ÿ‹Xþ~×¢XÜÁ Ž_žÑaÚx\-[›©&m«ÚS²­ò&T^¬“ò„p‰|Æë…`uqÕç˜Ä"z¼](:C ¢˜J@½^â7Uh>' %wá1àTÜ0rd›ÿÑeÁd&á/”EÞþÛeÙˆž1®‡Æ¥‹ ~–_S¦ý>sŒì>ƒqõ7)l·ê¸œ«÷\˜ú±øŠVn¤.Ÿ~)åÌŒ~ìÌ‹çК] ÇDKÏ/ε¼Rô• ‡Ÿ¢à{­°Ê®ËÓ§Ð|†¤OE¥ T{À<:i>? ø8LJOBªz„‘ËDêÆÚßËkG–ßL¸Ð…««Í`,¯¢ôR/ ¯ØùÓxºØv$CPÇ—ƒÁÇ)P[;¬ÔÜÛR;XŠv›‘¢3Ó³uJ!ˆ;¹ýã©ß-Ƹ˜°R¿FÏÂ_ xë)ß¿¯AûÞ¼8ØÐ™dg\έ€,’=Qš]i¦wûFô1PÕŽ9ú½x'¸gú}ÈGÙ^«¤ˆaˆ¸.6zÄU= èý4À?€œéôy*ˆÞ¨¢Õ©JσàÑ¢¢aº‡Oý¸Œé¯ƒúµXû1VùÓNEˆS~y‰K3‹{»ú!{vϦ]ë¤ÑØ­ԋΦ37?“AºBZ³î#t£¨˜9Z1…AoFúz_ƒë«ýr‚¦[õKÖn,ÛÃsc¬"ÏÝí¥, †‹§½µtÐ?3‘"Çwn?‹Ûá_s1©ù¨ÇÓ÷¨wÃŽÜ´–r ˜>×/Òßx<‘´‡«ñ{Óž€åÁûQM>C ÍÚv{.4°‹5¬ãgƒdµ¦¨;«÷#x†Y ¼H…¯>|‰)i›OœNAL²VGìÛnŒ;ÓÛ¯ òäÆ ^/k %‹1Ì»²\oQÖÛDWƒ“IÍ3¿ ÔkX¡dá:…)-]o$¨cø‡OûÓòÐîÌ÷ͰÀ&tÛ).q±~å^<©õú¹uüïªê 9ä™Jq,è)Øâ+lŽ—´’5Û`TN8íßQŒ8×ûjó x¿ù&p¿£âƒÈû_l˜ATð-<ªNÝþÁ—ÞbÔxõJke'idGõ¨²¤xcô äî—[~ŽWÄ5íïÅÜWÏì×g0OÑÖ®J) YšÃ#¤x Àq°g;m F®ýŽTµÆDnÖîâ~ÈÈ*ðJhÏ;_Ëüvƒz7·XÁRp§O{õAmZÎ^¢â;©œQ9µ¯ÚF0!âȤ „žÔã;fù÷GG¿§CìÝiÖÃþ gyõ±ËL*jNdS‡àXïzû=rèMCmÑ÷æ ú&ZÝ:Ç)òI—Öîƒà]Oj Ý!w²ë–D~zý¬ä%€¾ÃC7»®€l°â:“!;¸°¦jâ=á:ÚGÈ»Á5xûHz¿†+n[<Ž¢7Ï“gïIߎ«¿N° »õ©1döû$ÄŠšBü“'~@¤SmRÿ$:|‘r÷ÍG‹½†Jspè|!AQ¾Û”îr´¢7ÓΔ‰è÷ÞíH‰©ä¥í}‡b¥˜~ClHpkþØD-.ý**£Šm´<[!ÀܼþÊÎ_haýy±þÄÉ×:$¯B¤0Ý®û‹^(Krná9ùiPJøñ½%ò{í·=œºÇ[HÄúÁ’e†EA¶ƒöšçJlÕo=¬šRâYöwž–vâ9jËøu/lõ­º}¯®=<»¹Èû[ê¶ÎÃíÓ9Ψå<-\­»"¼oµÈÄÀ¸ç/ân ³ƒ™jfùýÊcxFO—Ügl3ë)¿k—õbŒŠÉ|A+)f®<륋GµGh•=ƒ’•Ð`.ÕIpÐéáéb†’ô|QõÖçs‚ê; )º%TÎôÍ~Å’Óý7ŒŸ¯`éd¸VéÈy-Ú¤ „qËnT7NCñ»ó7i8!Õ?Òë’Öe1v…(zŸ¢êˆ÷Y“VÆ Ú5íµû1Xt¡,ê‘ fºøì|{òX„ª£&·êƒˆýýÚÑ?|æÞ%½fȧǷ V“;ÂOvõ/z S7€ªRI½ÑÖuôŽ’ä£>K´õiî¯ÐÈC3å#K­êèÍüM¿°W -Ú•Y$/ATÆ•¿;N»Bfà',ô„Hû ™’‰=`¸|é‡')g~‰ñL[ÏwN±«ôVýkJøŒªšŽ‹HŸ>€¶é?*ÞHŸ¡½O¨Œ"o@Ìç¶^~sˆáy’³a÷Üu_îï)‚èKéµ\L_!è´ì­öTt$7¡ ’^,ùYâYnsúì+¦™§½Yz+¾œDz4§6 ;hÁiê6¸[ç³8Ž^úâ÷žG™îZ¹P6jž8ª¹U/•ëÌ.U=ƒÈÈvÜ©´kçÎþ´U·“½%„¡ émÛe Ò¿òeJ­1¨LJÒIJ„U=H?”ñ‡t[3ó¬ŽbH?Ü©Åv¡å:vç=Û:“:®¤Þà¿ÿJ5µœ2(kúõžåýƒ¦ÛºÏçþ‡ð¯XtŸöíž.½aå·F`9MõóŠs †„)Ó»šf€³ü»ŸûÅÍÐÆ*:N@”Ùh>l–Ç,@Fw㆟n;j†¼¹)x1B?Óå¢ ‰'÷ËvIs¡Óé™l­v.49fût"’ 3ªw^1¨ÇìÃ/D¿“ü‚Œ%šë§Œv ÇèÆ=[¶·X0ïXUû§z«nØQazç¤L ~+«€¸§µ_+.ÔAÁç0ù¼àQ+»@nó`l™¼dǃ¿jqªøjt?ùØž5]<ɘbtÎÕC0Ÿ“…ó- °îøÓCÛÞƒ±k»)F(~CøòJ3ÍY[´|D7Nu “:K؆ ­Ê:y«‹B÷ýÍóõ|®à¢¡w9&n½÷¸¢Õz…¾±£Î¿úk!ý…¨n)=d½i`?Å 3÷”kÜk`ëì¬Á`(D¶{¬RMÃ\‡{7NéÕÏwozî¦ôÿ Ko®÷#^ï«3™Ö‚Xé ‰‰/è?Ì~†6£F>ñg¾ž†Tf‹Zt´„4‹xu’ù£`© ¸Ö~Y0‹]„Øo/¹Òó\02]+iÑ«â0_³äåGK÷Gü®'Íý4o´ ÂåéÈÛ D©ßd­§¤A÷Äè…+\ìè(ëE[jm€~Ï¡^”ýdEnÄŒYæcë¦kþ¯Çðôß)q?0¾ò¤'õj<ÆÍvÒ°8¯‘{Ò“W5!ȸ‘yC=€>/óÛ^Œñ ü*7Ù€éÛ/ð³IGK¥ÕšÃôèvæŒH¹˜?0SrÍÆ‚KÒöo íJ¤MíRˆ¿Â³²C|œJTЊ ×öø+ש1‘ÿñXF"xÖÿl9‚^¿ÞqÐqÖ£¿ yÈæ-Œö¹ý‰¾û(ÆOúý¶RQÚz^Žíu/¾*_7Më€ÌTu·z$“›5†Q‰CúHw¹^—2FäåÕE¯ÎyËõk˜6ÜU“y t{©Z“v`†²MfSúFixqQ¤ôaZEé²&?ÆÅ-L]Î)ƒHG ¶·šXÚÜU6–i/÷|÷÷@Ž6Ú›2òsv—ªY3¾?ÃLFÑîA‹G%Ævböòê’Â!0Ó_•XI—ÚÖ Ò UVë˘iú.dH ÝÃøk|#u0ÓjÿBü*$³ÚL& 7¢ù É|‡ó¢X´Ø¥:ú ½ú[4o˜C©¤Ùʰ¿28¿æälì/+OÞ•“}¥ó1é¼ ê$ <íZ< ‰£åÎŽ4|¨Mçü[­B¾F ÆàÁ¸¬«*ŒàJk»÷NR#ä88—,dOÕÒZVˆ —•ƒhÍ+¨d/ƒZjå§®÷hÚk½¿ÁøFÔˆ= 7¤*nÝ)†Ïpâ¹–±¨%ØGÛPÈ…Â<‹Gª‡~axû"ÝÐ!ôýÞ>^¾±¶ºJ…š~BÜTè‘eö%ˆÑ=3r;St./d¸<‡,{n5^=·Ì}]aE=sòã­Rýº³,é/„,¿æ­2g?æÞEÚÕ7è$P~´J›¬·ŸµÊ« Ãô³¬ÍçÁ²¢çîk¥Çè+õñœêm þý¨Ð6pÔLEŠ[db¢ïC)x'¿Ùu¡ê Îx"OÕ;§§‚\ š9¾B²?O ”ák}¾»žóæ”ÓÀ¤1…-êÿ@{¦¾ð«“èI{ùOÚ¥}àöñ”ìi70%Ùi·IþÂLp®GÛò„ˆ,3ˆéÒ jbz~}çLdbÀ+ïgŸbÛ:ܰaæÐù€2+x¡áFR½¹vù(D—ŸJÚ­g€aÚ'ŽÊ=ƒÄ*F-9¬ ;ô¹ë z q²˜ýie×¼÷3cðù¯®‹T#èqÁ×£øì·ì˜’ ņÄ1/1»í,Cø<´á unx´¢¯îUK`„øŸéû´) òšËü“îMð?*ÅÜpƒ’VÙ ¸„üX¾ˆÄZ~ÛÖšÔz5låyàôm=ýø×|tp³®«Pƒ8ëì•¥%tþrø<—UÄuž™m»î©×‹èSÎg€Ó¦<ö/k˜>Ú¾Â4¯ÃòÕ‹SuýnˆÓëE>x7ɼù°?ÒÎëqê¨N÷ŒêK4÷eÌÿ‚C¡g f¦‰U¾Húö¶*áÐÙª‰^×¼ÌÖ]µÚÐ?3X³ ]üu­Z&~º@øÏ}wÎ*Í„K?=7Øe8l7½eŠÑç×Ç{ÞDÏM«Òï¾mÎõ‘ú£j+ܼÕ_íízRüÄyÏäHé”`ø ’¨áu°2a{”IÚ ‰Â“ѿӣêÎ\ª–hsö)¯œ— FjËEó+˜üãoqrç$ê“Ë÷ú&@†®º$o@jw¬Ê˜|‰A®îä‹­¡QâÉÞ¼~5D’~…!8ÍS¶~Ií¹½g"Ñùsüsu–#äÅýÖÒyÓ Æ%í†ÐÎ*®ß¤¯ žÞQKZbÌ…zß„k]ÖºOæË^Ì Vä·èÔ€˜7‡[}Žè¡+ɰÞK² h 2€Ú¤µF³#fR¾ýš+~z̬Hœõ¶_@‡â¢‰Ùé!\;ì+ÉnöÍÍFµç†} {ѧöå鳓 ——nÏ€2 Ë£mýÝZ'î›|΀Ȃ֧aÀk;ÿhÏÙchöîÒ’Ò{H^®w¿ñ ’†V¬ìin>³çä7¶P™ô{º Õç?çZžêˆ“YïëÐÙÖ9îÁKc w¹y°&Lb%‚;3z‚/gàl´˜µYÈWJñ »ãëßš;*Áß-áÝËíò~§Åç—è½2êJ,…èƒ,».©˜¢Ï—ë'ßjd¢÷¿_®çާv¼Ì|Ì/†á«!N Žg1擾jÀº¦|tÿ-öZ˯qóñ~~ ½Îá‹;ËÁ^©ogÛ&äé´'–UBÛÛaŸ¢Ðëã%—‹þo1ëCAC‰8eÖ‹Þ4 ƒÃ—Î6lwÐÅà ÖË-¶QnSÁ qýö“*1_XÑ´Ãéo4sßý¸ÞgÚoe>[Ç(ßÃ]²&[£œB·vÐeLéùÓü!U-Ñ÷LÄê¤÷”Ü‚k9+WÞqBÂïôÍÊ7ÀÿÖñïŽ÷ºÐ,%;ˆq?:ÑYŒQ¬ˆAÊóÃê©{¯ƒË­'Fs÷jеMfF·Ò¹©íäü¼?¢}93¥Í™Q°W?´Rò® ”_GÅ:ù”¹Qr`þ,?“=Úx=]ßs½ÌSöujÏp‚ÿ¬UÈB{*ôí¹D¢úgd¤Bï’:¸œ<}ä45X6ÞåaP‰ź„‘)¿­>»$ÕôÅ0“´ˆísAi1EÉ[ó“$Ú‚AJ@ÆLì8zq³·XÆ‘€Þìíój h4(l\LQ¡ßšfb\zÁ,ìo¾– 7+Á3ÿlï¢m­ß–¬š·M7nÙŠƒÿó+¥iÁE. zÐä)Z­•7› €iÒ3‰Þàõ±ù¸á9W´¤\g˜{Ü B^±a:މhýmØ‚ïëÖñç¿8˜XŽ4eÎ2IÑçdˆðëéôe¼uËÛ숟–߸« 5__ h‰Ú÷†¶×!ðÉü!ÃÂ`}*ê8 /ˆ(R>.}”\YŠuô2ÚfSGn~¼v¿¿ŽÍáVý®Yœ·Tu æãg¡f³ÈŒšÝ_p-íX}Ø^‹VíÝà@ãCÛíOâ 8¹7.ÌŸBõ[܇w^£Ïæ…½œ^`j˜¯Aw7´…jœõ²ÓÀ²›iBiø=xß­¦\ñC”{qb›(ˆ¼Ý ¶æQEeçd’Ð+ZB_yå4è¿:ê·|óX·µ±ßÜêî:DË–à.#R7 31´ºq°Rùõ tÝÉÀìÝüÔžíË3îV[Cþ&®ý`þIèä-0ê  {´Ôöžøõв 4'×NÁíbî?ÆÁÈ×;‘UÜ•z”§Ó.Ç€•íøß ‹ÎÀÖVÛ4|Td‚¯ÚÆmóG3/gŠMz^ô+š&÷¡V‡ËÅ.Õ;JÛгéÌ6€ü½ï¶o ÊÎѳ7 ®¢•÷àf«w Îj©Ýsá*¨tï?Äï:Üm÷¿”Eå'_Ô¶úCëŒË’÷Ð2þß/”CgϘ+~ªºÑùaWÑ›>d•tì Øë¾Scë§b§)j•Àþ’ˆÔû’]À«åP÷ùš—Ûsì¯A7Ñf½‚pûÞGÄ •28KÚ-}iºIÿN¡EœÂÌd‚#d—?ðC—ëSâºLÈwYòÑßáe°9š¦!@Žý\z¹wÐfÈ£)ÿÌ)4\ºiÞ2Žá4]¾NI«/ŵ`¥Œ6k ÇRfÁ¬˜Oò\ãÆþ*Tš’/B댻'Âr³Á»!¶º-D£ŽG2Ð<‡ ‘7Ù%oZÐÔZCÚŸl«wý\ª'Î/ÇžÁ½³ƒZc1>Ž‚sïvpþLvf0~d_VOv¥ïB¶á_ãèZúšc2ø7LÜC–Žn¥Šè7öT^vcø¦;8¿r ]ï2„p^èÓ1ê(>¿ºÃ/Ü Â§7;ç;AÎ] «¶%Շϫë>D;¹Wû#,A&¶vÑAatîv~ÌfAóOê A!ñ·7ÁÍoÿYjtûP7{{@GÈKÿÉâ ˆjÌ:\¯ 1ÃËž¿À±Áòå¡!Ðd4ª<0ù}º•Äo?šKõ7Ù>h(.ÉýEô!¸ŽìÎo;{¦®Z}†‡"hû—|¼1t›Ú‡…¨Õëõ3K]rk†ìô-ŸíùsìL„ß5ç–÷ͫÔ¬7gâÑeâö†i¤DÇOd¶M:‚õçˆÒWôÕ ¬É.ŽS–çý@ÝJ`úYèMÐ^ zû€Ç 9þóúçÝÒÝ}ÁxÅ0ˆËà#Ø)úÒ^ÝÛ€âÔô†ýÂI _ÉÏún¯x{ó¸îÊzÆ­‰´ó5P¦GÑfz•«*¨ü!Êùe\ Rö¼'N¹ÑBO®<e ¶¦¹c‡s!¥®Rm­ïcožä«î‰3©¯€îç3 E¥)(Uù±7ÿiZåí#sh÷C·óŸŽèÌÁ`ó3—òÞGã\Kë3øû.8u}C{z›;%BÑüýWߌޭÇÁù8oJäÞM7+)AŠê»ã¢† ðŽ¹¿¦ùæ4ŸÔÀjoË'ÛÙ§`¡–´êø‘ ÔTÛ¾j³¦—ƒ|ÅP¾8 ÞRfEsè­aLBÏ”EÉ׺+`×/#öaû Ð9û®Ýž-K>2§üˆA6r>²_}AŸ9/K´}ëzáP¦‹æï ^òÓÜž'^×úÏëâ5jöŸ}Ú >tëÞäã…½QŒè©î|ߪá/Z:Ÿ¸°È^ê›×ýâ{ªÐ"F•¾F-|êÏrvñØ7íc=ÎM?°ç˜&úàŸ¿“THY8Pî |ïÖ¬˜Á˸uhî5ì/vˆøx 5™&^yB ÞÓ‰¿u= Ð#«rVMJ õrêÝó ¶öë AÀ8^ÖÞËZ|¹¦çC©¤‚ÀäéÝýžOjòûã©Àüó%~Å+ CIs kò(àp·tñµg n}CÉÚ}†õû%ѦM¤oz®$i;;ão-‚ÛeÅêP½}`”ÎÊì‘熛¦”Íö ¨#ÃÆ«µ´§Ô™§>ÅÃ6q— êqcPYŸãz÷Ö¥7$ÖÅÛvŲ?l0a(@?êzf¸¶5…¡ai‹ØÒ{1tI&wlšiÄÐ’8îcG!€ÜÖöõÅ 6vô…õúxoÏlâÅ­:ì¶CÏîAÈ'9í!‹¾§D7«ßÝÆèPª*ÇK Ôÿ¤qäy545¹ ¾'®|¼|{=žÙ?¥&®FŸohi;m×ù-ÜŒT|; EѶÞBpÿ£åWiÒ)ÆQtVò(su~)öã_ðv=šµw㘽ìiaÜšÿ N9ï¼Ï ³‹¿fIVmÕÇv©?€ œ”…ìOIÛ‘£C+O@CåfUdËC°ŠI˜¾F…Áï\“ ›ÕgTNôèDóçõkWˆ;“©;ŸN”]—ªõГڒ¶è9 ˜»½ßédŒR÷Øßí?€îf»ï×™°É…jîY³ß(ÓAû&p± ܨ»ÊÛÄÑŸëOrÓ0˜ýü<ßhàkDó­ø^¤¬óž]¿þ‚ÓÙÓˆöʲ·H×À]0w¦}«¯ð/¬“ýC‹–—‚‹í„ïŸêòPùÇ~ô15ÆpŠ«×ëîAÐî=Oø£wcð‰Æsúþ³ÕçÙXF V;øÆ&¥@ÕÌt1ü I?<ô¼ôÄvCÅŽ7ƒànÿèrä:p'DŠsö™€Á+Q7ÿèÖ§.òîk$8´Ž[|ÈU—!Jæ 4™ˆÚu¬­wå€OXÂI²†æÛëÄëüÐAX}üFøe*Sïñ,BsÎ0¡™Á»àÛãPAª¬ê.Ú,½ª`Ûó=*Æ~àÑðüÁ‡û Œûj8g·(jJ¬šš Ûî¢^í®qpoÖY²½ª„‘sۦͭÁå0{…þå?´MõÀªí9tIR½¦¡é¯ºÞWÊsÑ" íÎéËzo´ñn ßq®u4¬äè?N_ă|âuÚÑ_Á”÷‰HûÖõOk¾èïób#Ø[*¾ÖW ÎJúï^ÉõPÖ5±4íx£9Pºí6M¼ã¿aÐõÆ„ƒöôàs,¸è`ÖoTbg)Ù % Aj^jeЖÛù³êíÖóø=­Dì;o0y´!·(9V|÷ߘ%–€ÄË»F©O%QíD†ÿŸÜ‡è_¯Úd÷FmÞÊ(ð…BKÒk¼¬M=âѬFÊÉÿØ3ò|’øiºY€ï šg¿N&ƒ'ÝáÔC& ¡^{@¾áº/ÞIôDçÌu²—ÜW *Ã#Þlõãû ]¹î‡~)sŒG»9х߃¯VjêöÕ{ÖÒL™~èaôÞog#/a ªÊ¯£_߯bV)ð¿ÛdzrÓì©ÍY0ð„´µH€1 ®Õ§rcæ ¬ž°5DIh™¨K‹£Å¦ê½R&oúkí‰atCi™K ùn~aJŸƒ$noõ} ֧߀=çhòYí“àóbÛÌÎô³Ù¬NPÇèmŸ²™´£Pô¼1%÷F—Ž«F¾gƒª†ZݶSèÏû©‚Õ0ýTî÷ÙxS”fL™ˆ¸» i1gnå±€^gg5'Ýþ]$‚aè°”;îfÛ †³Ó¥Ý|‰à^Ô$DϦ‰:wjzn€²ôƒ„´Cè›.Ö,µ–Z?§ö¼é‡TëSÑÛ^‚ÅËщàópTlñhØüÍ•&áÏFžÒ¥á9`EÒ®Îõ³Ý•ÂÃÄnB€øßí<×Ìа£OÁò r÷h>”ü ŒS[¢»¨¿EnÙlOýöà û0šY^ª~²ü âç¨Cî¿£æwãÌ>‹´Ô#Ë"0iÔiýõ™Eàî¡4›¡õ4KŸVòÕT€v¤ø\Χ×tNÛ|ÉH´iú iZP·øìG{ZP¯¤r–‘@û_ã,‹_ÀeA&„Ãî#úšlN<,‹£×Zºã}À4ÂÿjÊã@pù媴Û&é9þ]¡‚“lpAÖ÷Ý™lÏ\´ ^G„ÛWdLÁÖø9µï^0éNÐ~‘iƒî$æ+2Ïd ’òjûy ´á‘ŠØVtT “y—EàÏî·æ ;1ê“,WÎNT§î½~Åó}Æ,àTô'á x¾;*0¦ù¬Ž=6‰Hã{êýJ‘ܵ8¥ÛŠg¹}/Ò„‘¢ïçdÙ0ŒcóM/„«ñ–Œ¿ ~‡H&Þ:œDëÓ ¬5Ý xTü+{ÀI´³ªèÌmCP5Îu箟¤¹ûü£`·¯~³” #-ã¿ù¿ë¯"\úgò!"á2Iñ{:p§õ±/§ÉûU#­æëK û7{ñ*zÛÞz˸UO ÷$…C›>DIeÜyIB ÿt/¸ ”û¶-‘g'‚Ô×ëû%ì·êd‘µ*^eNåR˜œ-žLࢯøXçU9¨8m! Á€Ö§;Ž•€ÿoþ:jô`T}rÉæ7è»5ØmÕ^áU½;™µ‡O±dÂnhç6ÎÇ.r&—|VÓãÇèPí0êW‚Ê7nêQíYQÿOýdeÇm%_„ ׿%ÄÉ‚ eêÍÃ3aºn]y ·•R ¸Ï#Wí•Lf´rð$É›ÉA“zn7ë¼ç "(—/Ÿ#ž_ïuÊO€Ý=qúýµp(ìVƒ\(:Kê;pAŽ7ʲhÞl®ª†N£z¢ENG©.Úg¼\}ºCü 쯻bt†ÀC‘ŸT(y´xQe¶¢âÎvPÚ,»(Œ}áAwí¹&*‰þï?ÿ—CÑU£Þø xÓ§þ€(èfT]y¦&€Vo‚zÆÒBÁû¬DÜÞ½{À¢ýôón?:°½´ÖàáIÇÙÀs2ÛÚÿÛ+T°øRuâV/†˜{O‘ì÷Ò™“sOøoÿþø¦l  ¶æm6íͽQȧ57Ò]®–?g­]!bçoéFÎ|Ô/Éž”FY{–UšùÿÔñ†4of¥ÎWB°Ø(Mö׌­ú.0«N8 ½˜ýY]C›¯y XÀ¾ dxÙš­Ñº0ŒBøõ_µ–eQ`©ÿÞ9ó‚GäªÛIqз֠]]æ¡êºuiXÐøÆ®c) C+¿–bÏ¢’zŠªçÁÏhîOVÚ“4w}Ú8– ¿ÏžñQhàµ?:>¬Âþšc®7™ué@z:Të£ãÔzz<ŸÕwÜÿoq#e+ ôÝØÁxÐñNŽÊ¯I—â¾];`wÁÈë_;TÛŸzÛ»úݺýv›€yÓí1¾]^#¥Ÿ½dl@?ñÃéÄ G”¹{å÷å`]ÜÛç|"û$ ˜|3f¾V‰JqÒ܃ GÁŽ|~*îP9Zn[z̾mÄÉìB>ãÍ×9§²0äýLJÔot¾ö¦*ãÂô»“•(SZ‰)Ÿyø; ÎÞŽfÛwN°f)‹{q±ÛiýÁi«Z)ü5ò^\u{%V1zÈ™©#n˜Þ–-Þžã ±ÏK¬WÈ¿ SiÔâ'Þ}T©ý{AøO³¼î|;ºý^ÒAÈ{9¹ö °šüÝBÖNîÇ<ì•rФv#½, Cw¾ó%•w‚°¹Î™S>¥[Ç÷ŒéE@j 8Ï\X¼ á7RÍöUýõAÿuõƒ¨0ÔÅ8ýœùÞX±´×?ÿJõXPœ³³ ê@Mé3v%‹3`Gîn[W‰ªý÷Ö¾N@liûo®×ù¼ŸJ³¶ ü.{0Iž±Ã\O|dVA¤­Édt.Ìú(nŒ³KBâtÃØ&%4eÜ¿+ñ?ë ˜Ùv=XãÜêcüœÄíýa—UJì­¶ƒkpÓïÉFðv×2yt¶Üö~í‹_«úç÷ .•ÇÞf‹.btIˆÖ› àv˜{]øs&ú<ÿNïa W?’=z·.½Mô^È+pšO…C“~hŠáv–Ãïðíǰï±}fçž‚“c·ú(ošŒ|Ÿcþy ´¹Ç ŸÁ°ðÙ} Ö`þ”¶8ém8„}]—Œ{ ÃêU;yù!ü’Pg*ïÄ´«.iâDᬂ­¼|`"Ü”ñîN*XX¥ÏW½º{ŸŠqIƒìÊïaVRtbix®Ú¤úƧ@…k›1å·&ÕÏÿ©[ý¸œØêhÑ|:T’óÈ:X —P´´Ÿ…ðkMêfÕ,覼gT¨p‚ïäÅûÛÐC(ÇûÂÝ›hEÝ:e\ìB×dåN§`„ˆ³zþã˜$ KOÕ±1B¬_¯Å¨íÏ-ëúþ`jXƒ »£xl°Ž¾4q‡Ò„&ò» óñØÎ÷c‹>÷­ž,_ üõ[e¾HÉ×9RWp’¼|ªéÔô}ÔÖzíˆ'¸0”ÉFì¾Þd‹¯]¦O£ £k Û\º3¹è½#Ë€Pùà;£ßXQønÈ=îYôÐ{¼iF ªîl+AçûÛèÕù!ÂcãÂù,`íGn¦Ó€š+‹w¬©h ¸§©+6¶bN\rt=Q‚Ú¤ º¯Uƒ÷“µyG¾éAÚµÒú«/œü(jΫ‚å«ÅÒP .¦:âö:ë¢v:ïÀ}AѰ®k(^^®<ûÇMTk]©ÆXnm¶ô_Ñi§òå}yx¨UŠúÆ-àµÜFàŒÉŽߥ!¬£åSuÃ&Dxkî.ÙêÃ;îÀb hܸòSe(ƒ>¡@DG#:1¾½]iSÖâ.oŸ¢«s×Ͼ^Œ¾ÈóûäGônšvã¨cƒàÄ› «Öyè5ùsˆÁá& §ZU˜_ý ±÷.÷2_‡ˆö%†ÂÑytK»?ƒ§'\îÙ€Íwνó^Ò³ÞzYw"ëàèÉFt>²o“½ôŸ÷)ÈÒJ-xnÿÃÍkõiQš“úzIz1é}HfÓ„Œ. ¹ålp[”÷•y톱LN·Úg/@®îÎþ’"UðW -æK“”ÊñÌjøðG¼ Jóù?ŸÕAû–´Ó94¯Zô(»·tËŸÖ–—£ÃEZòUup¡x’‘j„‘IÚݘ€õ_‹»¿žX‚G\BðµßàÓX$üû»"ì*>2@*»$­‡ !¾þÖ¿ÞÁ|_høÝ —‡Úkäl´`ÈÕ°ÁFU5§÷Mbgm×SÞ@§ãm÷g>mƒm†²®r5k`{†%`°-dè¬h/?,¿±•+¿[QÂóÇGýuðâe¾ðgkðW˜[®z»g~nï‡o«­7ÏÓc${úUë ³¾;²¾£†˜ù¼³È0z¬¢àYçHй8à˜tBR²šY«Ž Ó+Ï›®ž}š6ÇÉ] måmm»¡'Õã»sttãÐÌëû àœ_€È1mˆò7}ÄA°R^ʤ †ß”ÌC‡K øêã—ý[õŠý“;é)í`sC¢­j§†TÏËÝ\çõs­±–jŒw“×èµtÄŒs”>}¥ Z6VÕ ]2™gáÉÙï¾ @ÕóoJ|=¥ ì}¸ÄÁwàßDÊ_r Z+M¦Ë0Æš5j‘‘¢B\¨…·íDŸÀc3"lŽ`¡åÝQþ"ÔJŽG…4ÿ ˜TÏ›V†‚r… Åai | F—lÖnï^h¼ˆV-ûôæÚ€©Åbßïy T—z|Ó¼Õ*õªBì'·FA0¬nm®<ʈ,ÿé+½¶½~’½÷¯ÎÂ2˜¯ß¹´ªQr(ìS ~4¥ïsz@¶%ÈšwûúÉ4×&ëßFÞ„cËq©à±—5ç·Vj°]£}§Œn2Œ«ºÖK×ZÿC{9S úÍ¢‘>ͧ#æW!(xvïCoc]/.ÍZ ’rÝÚãyˆ;šèD~q«Î&êH°•ˆezéy ìoØô%ÞCûír²ŒKQ¤s‚Üsl¤* 7ôÀíõš}ÔHÜZ좇# ã`Œ#¨·½¡êq£-ä<´ ¾tƒû†½8QG]¼68þõ×Õ>v(îFêÿþÃ#pê=iתK ‰OÃìÿR¢Ú£¿öuÑàKS˜8–¨ŽÏׄ³”˃Eòså½Ê ²ðÛólçA¨nìZn×1ôÚpš5)îFG2•ðÕ0ðyÛ#RsMµ$þü„„ˆ“pD¼mæÿnï@£‚ÑôÞŸøöß £ÏÌo€™ç\ƒt½„ÛÎvøŽ~GËaS#t˜¦†SkT"ôéãW §õ~ÂSGžºð4{O»‹È§ &<í=ÂÓ±ž.€ðô~D>ýMÂ30žÁ›ð Ý„gì$òwÒ~§+áw¶ž‰’ðÌäD>³=ᙯž…Œð,6„gµ$òYϺFx6s³#<{‘ϾHxCÂsœ&<ÇÂïš#ò9µ Ïy‚𜿿[ƒð{€ÈßSFø=S„ß«Lø½¥„ßWDäïûDøýr„ß_@øý Ï5BäsKž;›ðÜ@”ð<‰|ž4Âó¼"<¯ áy“ Ï—@äó žŸ‡ðü±„çLx~"_p/áà /ØKx!N ³ù„¾Cøƒ,„?èOøC>Dþ¡ë„¡'¼ˆ'áE®^´È£"¼˜3áÅZ /¾ƒðÛˆ| [ÂK\"¼$ á%­/eAäK'¼Ô_ÂK›^ºžð2µD¾Ìáeõ /[CxÙß„—›!òå5 /_IxùiÂ+¨^Q…ÈW‘ïð‘ðŽR„wÌ%¼ã0áÞùÎ"„wÎ ¼ó»ÞU€ÈwM"¼ë3»ñÞ-žðî1D¾û#Â{ì'¼G$á=ú ïù€È÷ÚEx¯`Â{Ý#¼7á}˜‰|?ÂûÜ$¼/#á}½ ïçAäûuÞŸ†ðþ®„÷o#|@+‘HNø@{Â^!|áƒ6‰ü`+Â7>xð!æ„5!òCëºDø0C‡&|x5‘>GømÂGœ$|Ä/ÂGþ ò£€ðQe„š"|´ ác‰ü˜"ÂÇ|"|¬ác —GäÇ>^‚ðñÙ„ÿ@ø„·D~âAÂ'¦>ñá“ ŸÌOä''>yð)<„O‰%|j‘Ÿúði{ ŸNø´^§ß'ò3Ø ŸDøŒ;„Ïd!|ÖN"?ˇðY× ŸÍ@ølOÂç¸ù9í„Ï¥ú—ÿ¯B‡OhD°û¿>§’ñÿù_J>{¾`>¯ÿn tüC4½C¢¼#þkƒmºÆVÿm#¼=C#¼ôµ¶ZˆmÌ$ÿ7š<Ä=Øû:ÿþ&UDh¬èÿºÿ_[{¹GFþ×nP{¹G¹‹úDlm·uoã¿7‰ò òþ¯M˜¬üƒ½¹,½#ü½#¹L=¼=£þk3:¯PÏèà­£vÿWCô_›sXùEs©GûrIÊqIÈ)JÊ)JÈpIŠ‹+?„z“äßü¿{µG¤ýW E˜»g »ïïßÿ×ÿç(·Êÿ9Kÿ:Çd„ùÿ{óøïÐÿ­É^¨+ytimeSeries/R/0000755000176000001440000000000012633117102012610 5ustar ripleyuserstimeSeries/R/base-merge.R0000644000176000001440000001371712620124746014763 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # merge,timeSeries,ANY Merges 'timeSeries' object and ANY # merge,timeSeries,missing Merges 'timeSeries' object and missing # merge,timeSeries,timeSeries Merges two 'timeSeries' objects # merge,ANY,timeSeries Merges ANY and 'timeSeries' object ################################################################################ setMethod("merge", c("timeSeries", "ANY"), function(x, y, ...) { callGeneric(x, as(y, "timeSeries"), ...) } ) # ------------------------------------------------------------------------------ setMethod("merge", c("timeSeries", "missing"), function(x, y, ...) { x } ) # ------------------------------------------------------------------------------ setMethod("merge", c("timeSeries", "numeric"), function(x, y, ...) { # Deal with names of numeric vectors units <- names(y) if (is.null(units)) units <- paste((substitute(x)), collapse = ".") if (length(y) == 1) { y <- rep(y, times = nrow(x)) return(merge(x, timeSeries(y, time(x), units = units), ...)) } else if (length(y) == nrow(x)) { return(merge(x, timeSeries(y, time(x), units = units), ...)) } else { stop("number of rows must match") } } ) # ------------------------------------------------------------------------------ setMethod("merge", c("timeSeries", "matrix"), function(x, y, ...) { # deal with names of matrix units <- colnames(y) if (is.null(units)) { units <- paste((substitute(y)), collapse = ".") if ((nc <- ncol(y)) > 1) units <- paste(units, seq(nc), sep = ".") } if (nrow(y) != nrow(x)) stop("number of rows must match") else merge(x, timeSeries(y, time(x), units = units), ...) }) # ------------------------------------------------------------------------------' .merge.timeSeries <- function(x, y, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Merges two objects of class 'timeSeries' # Arguments: # x, y - two objects of class 'timeSeries' # FUNCTION: # Compose Attributes - Documentation : xAttributes <- getAttributes(x) yAttributes <- getAttributes(y) Attributes <- .appendList(xAttributes, yAttributes) Documentation <- as.character(date()) attr(Documentation, "Attributes") <- Attributes # Merge: if (is.signalSeries(x) | is.signalSeries(y)) { data <- merge(getDataPart(x), getDataPart(x)) return(timeSeries(data = data, units = colnames(data))) } # Convert to Data Frame tx <- as.numeric(time(x), "sec") ty <- as.numeric(time(y), "sec") df.x <- if (prod(dim(rec.x <- x@recordIDs))) data.frame(positions = tx, getDataPart(x), rec.x) else data.frame(positions = tx, getDataPart(x)) df.y <- if (prod(dim(rec.y <- y@recordIDs))) data.frame(positions = ty, getDataPart(y), rec.y) else data.frame(positions = ty, getDataPart(y)) # Merge as Data Frame: df <- merge(df.x, df.y, all = TRUE) #-> To avoid problems when using invalid data.frame colnames nx <- make.names(colnames(x)) nxrec <- colnames(rec.x) ny <- make.names(colnames(y)) nyrec <- colnames(rec.y) dataIdx <- colnames(df) %in% c(nx, ny) recIdx <- colnames(df) %in% c(nxrec, nyrec) data <- as.matrix(df[,dataIdx, drop=FALSE]) recordIDs <- if (any(recIdx)) df[,recIdx, drop=FALSE] else data.frame() units <- names(df)[dataIdx] charvec <- as.numeric(df[,1]) # Return Value: ans <- timeSeries(data = data, charvec = charvec, units = units, zone = "GMT", FinCenter = finCenter(x), recordIDs = recordIDs) ans@documentation <- Documentation ans } setMethod("merge", c("timeSeries", "timeSeries"), function(x, y, ...) .merge.timeSeries(x, y, ...)) # until UseMethod dispatches S4 methods in 'base' functions merge.timeSeries <- function(x, y, ...) .merge.timeSeries(x, y, ...) # ------------------------------------------------------------------------------ setMethod("merge", c("numeric", "timeSeries"), function(x, y, ...) { # Deal with names of numeric vectors units <- names(x) if (is.null(units)) units <- paste((substitute(x)), collapse = ".") if (length(x) == 1) { x = rep(x, times = nrow(y)) return(merge(timeSeries(x, time(y), units = units), y, ...)) } else if (length(x) == nrow(y)) { return(merge(timeSeries(x, time(y), units = units), y, ...)) } else { stop("number of rows must match") } } ) # ------------------------------------------------------------------------------ setMethod("merge", c("matrix", "timeSeries"), function(x, y, ...) { # Deal with names of matrix units <- colnames(x) if (is.null(units)) { units <- paste((substitute(x)), collapse = ".") if ((nc <- ncol(x)) > 1) units <- paste(units, seq(nc), sep = ".") } if (nrow(x) != nrow(y)) stop("number of rows must match") else merge(timeSeries(x, time(y), units = units), y, ...) }) setMethod("merge", c("ANY", "timeSeries"), function(x, y, ...) { callGeneric(as(x, "timeSeries"), y, ...) } ) ################################################################################ timeSeries/R/statistics-rowCumsums.R0000644000176000001440000000330012620124746017313 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # rowCumsums,ANY Computes cumulated sums by row # rowCumsums,timeSeries Computes cumulated sums by row for timeSeries ################################################################################ setMethod("rowCumsums", "ANY", function(x, na.rm = FALSE, ...) { # Transform: if (!inherits(x, 'matrix')) x <- as(x, "matrix") if (na.rm) x <- na.omit(x) ans <- apply(x, 1, cumsum, ...) # special treatment when x has one row because apply returns a vector if (NCOL(x) > 1) t(ans) else matrix(ans, ncol = 1, dimnames = dimnames(x)) }) # ------------------------------------------------------------------------------ setMethod("rowCumsums", "timeSeries", function(x, na.rm = FALSE, ...) setDataPart(x, callGeneric(getDataPart(x), na.rm = na.rm, ...))) ################################################################################ timeSeries/R/utils-old2new.R0000644000176000001440000000524412620124746015460 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ .old2newTimeSeries <- function(x) { # Version 1: if ("Data" %in% slotNames(x)) { data <- x@Data charvec <- timeDate(x@positions, zone = x@FinCenter, FinCenter = x@FinCenter) units <- x@units recordIDs <- x@recordIDs title <- x@title documentation <- x@documentation x <- timeSeries(data = data, charvec = charvec, units = units, recordIDs = recordIDs, title = title, documentation = documentation) } # Version 2: if ((".Data" %in% slotNames(x)) && is.character(x@positions)) { data <- x@.Data charvec <- timeDate(x@positions, zone = x@FinCenter, FinCenter = x@FinCenter) units <- x@units recordIDs <- x@recordIDs title <- x@title documentation <- x@documentation x <- timeSeries(data = data, charvec = charvec, units = units, recordIDs = recordIDs, title = title, documentation = documentation) } x } # ------------------------------------------------------------------------------ ## # Example ## library(timeSeries) ## setwd("~/r/fPortfolio/data") ## rda <- dir() ## sapply(rda, .old2newRda, suffix = "") .old2newRda <- function(file, suffix = "_new") { stopifnot(length(file) == 1) local({ load(file) nm <- ls() lold <- mget(nm, envir = environment(NULL)) test <- sapply(lold, is.timeSeries) lold <- lold[test] lnew <- lapply(lold, .old2newTimeSeries) objects <- names(lold) for (nm in objects) assign(nm, lnew[[nm]]) newFile <- paste(file, suffix, sep = "") save(list = objects, file = newFile) }) invisible(TRUE) } ################################################################################ timeSeries/R/stats-model.frame.R0000644000176000001440000000670512620124746016300 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # model.frame.default Allows to use model.frame for "timeSeries" ################################################################################ # YC : remove model.frame because more problems than benefits. Rely on # default model.frame as long as as.data.frame.timeSeries works in # 'base' function model.frame.default ## setMethod("model.frame.default", signature(data = "timeSeries"), ## function(formula, data = NULL, ## subset = NULL, na.action = na.fail, ## drop.unused.levels = FALSE, xlev = NULL, ...) ## { ## # A function implemented by Diethelm Wuertz ## # Description: ## # Extracting the Environment of a Model Formula ## # Arguments: ## # formula - a model formula ## # data - a 'timeSeries' object ## # Details: ## # Allows to use model.frame() for "timeSeries" objects. ## # Examples: ## # x = as.timeSeries(data(msft.dat))[1:12, ] ## # model.frame( ~ High + Low, data = x) ## # model.frame(Open ~ High + log(Low), data = x) ## # FUNCTION: ## data <- as(data, "data.frame") ## ### model.frame.default(formula, data, ## ### subset, na.action, ## ### drop.unused.levels, ## ### xlev, ...) ## model.frame(formula, data, ...) ## }) ## ## ### # Create Model Frame: ## ## ### format <- data@format ## ## ### FinCenter <- finCenter(data) ## ## ### recordIDs <- data@recordIDs ## ## ### title <- data@title ## ## data <- as(data, "data.frame") ## ## Model <- model.frame(formula, data, ...) ## ## #-> should be in parent.frame? ## ## ### recordIDs <- ## ## ### if (NROW(Model) == NROW(recordIDs)) ## ## ### recordIDs ## ## ### else ## ## ### data.frame() ## ## ### # Convert to timeSeries: ## ## ### ans <- timeSeries(data = as.matrix(Model), ## ## ### charvec = rownames(Model), ## ## ### units = colnames(Model), ## ## ### format = format, ## ## ### FinCenter = FinCenter, ## ## ### recordIDs = recordIDs, ## ## ### title = title, ## ## ### documentation = description() ## ## ### ) ## ## ### # Return value: ## ## ### ans ## ## Model ## ## }) ################################################################################ timeSeries/R/fin-returns.R0000644000176000001440000001130112620124746015213 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # returns,ANY Computes returns from a 'matrix' object # returns,timeSeries Computes returns from a 'timeSeries' object # FUNCTION: DESCRIPTION: # returns0 Compute untrimmed returns # OLD FUNCTIONS: KEEP THESE FUNCTIONS FOR COMPATIBILITY: # returnSeries Deprecated, use returns() # getReturns Deprecated, use returns() ################################################################################ setMethod("returns", "ANY", function(x, method = c("continuous", "discrete", "compound", "simple"), percentage = FALSE, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Computes returns from a 'matrix' object # Arguments: # x - data object containing ordered price observations # method - "continuous == "compound" and "discrete" == "simple" # percentage # Note: # To make it conform with PortfolioAnalytics: # "compound" == "continuous" # "simple" == "discrete" # FUNCTION: # Settings: method <- match.arg(method) # Calculate Returns: data <- as.matrix(x) positions <- time(x) if(method == "compound" || method == "continuous") { data <- rbind( data[1, , drop = FALSE]*NA, apply(log(data), 2, diff)) } if(method == "simple" || method == "discrete") { data <- apply(rbind(data, NA*data[1,]), 2, diff) / data data <- rbind(data[1, , drop = FALSE]*NA, data) data <- data[-(length(positions) + 1), , drop = FALSE] } if (percentage) data <- 100*data # Return Value: data } ) # ----------------------------------------------------------------------------- setMethod("returns", "timeSeries", function(x, method = c("continuous", "discrete", "compound", "simple"), percentage = FALSE, na.rm = TRUE, trim = TRUE, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Returns the returns of an object of class 'timeSeries' # Arguments: # x - an object of class 'timeSeries' # method - # percentage - # na.rm - # trim - # FUNCTION: # Check Arguments: stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Make sure that series is ordered: x <- sort(x) # Get Returns: if (na.rm) x <- na.omit(x, ...) series(x) <- returns(as(x, "matrix"), method, percentage) if (trim) x <- na.omit(x, "r") # Preserve Title and Documentation: x@title <- Title x@documentation <- Documentation # Return Value: x } ) ############################################################################### returns0 <- function(x, ...) { # A function implemented by Diethelm Wuertz # Description: # Returns the untrimmed returns of an object of class 'timeSeries' # Arguments: # x - an object of class 'timeSeries' # FUNCTION: # Compute Untrimmed Returns: x <- returns(x = x, trim = FALSE) x[1, ] <-0 # Return Value: x } ############################################################################### # DEPRECATED: returnSeries <- function(...) { # A function implemented by Diethelm Wuertz # FUNCTION: # .Deprecated("returns", "timeSeries") returns(...) } # ----------------------------------------------------------------------------- getReturns <- function(...) { # A function implemented by Diethelm Wuertz # Description: # Computes returns # FUNCTION: # .Deprecated("returns", "timeSeries") # Return Value: returns(...) } ############################################################################### timeSeries/R/fin-splits.R0000644000176000001440000000726012620124746015040 0ustar ripleyusers # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # outlier,timeSeries Removes outliers from a 'timeSeries' object ################################################################################ # DW: # We should call this function no longer outlier, much better woud be # splits() since the function tries to detect splits by large outliers. # For outlier detection we should use better methods than just the sd(). # ------------------------------------------------------------------------------ splits <- function(x, sd = 3, complement = TRUE, ...) { # Return Value: outlier(x=x, sd=sd, complement=complement, ...) } # ------------------------------------------------------------------------------ setMethod("outlier", "ANY", function(x, sd = 3, complement = TRUE, ...) { # A function implemented by Diethelm Wuertz # Description: # Returns outlier splits # Arguments: # x - a numeric vector # sd - a numeric value of standard deviations, e.g. 5 # means that values larger or smaller tahn five # times the standard deviation of the series will # be detected. # complement - a logical flag, should the outlier series # or its complements be returned. # Note: # This function is thought to find splits in financial # price or index series If a price or index is splitted we # observe in the returns a big jump of several standard # deviations which is identified usual as an outlier. # FUNCTION: # Check arguments: stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Find Outliers: SD <- sd * sd(x) if (complement) { ans <- x[x <= SD] } else { ans <- x[x > SD] names(ans) <- as.character(which(x > SD)) } # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Value: ans }) # ------------------------------------------------------------------------------ setMethod("outlier", "timeSeries", function(x, sd = 3, complement = TRUE, ...) { # A function implemented by Diethelm Wuertz # Description: # Returns outliers in a timeSeries object or the complement # Arguments: # x - an object of class 'timeSeries'. # sd - a numeric value of standard deviations, e.g. 5 # means that values larger or smaller tahn ten # times the standard deviation of the series will # be removed. # complement - a logical flag, should the outler series # or its complement be returned. # FUNCTION: # Check if univariate Series: if (!isUnivariate(x)) stop("Supports only univariate timeSeries Objects") # Find Outliers: SD = sd * sd(x) if (complement) { x = x[abs(x) <= SD,] } else { x = x[abs(x) > SD,] } # Return Value: x }) ################################################################################ timeSeries/R/statistics-orderStatistics.R0000644000176000001440000000301612620124746020321 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # orderStatistics Compute order statistic of a 'timeSeries' object ################################################################################ orderStatistics <- function(x) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Compute the order statistics for a 'timeSeries object # Value: # A named list with the order statistics for each column of # the inputted series. # FUNCTION: # Order Statistics: td <- time(x) # Return Value: mapply( function(cl, nm) { S <- sort(cl, index.return = TRUE) timeSeries(data = S$x, charvec = td[S$ix], units = nm)}, as.list(x), colnames(x), SIMPLIFY = FALSE) } ################################################################################ timeSeries/R/methods-plot2.R0000644000176000001440000004371712620124746015460 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ############################################################################### # FUNCTION: DESCRIPTION: # .xtplot.timeSeries Plots a 'timeSeries' object # ... support for at = c("pretty", "chic") ############################################################################### # FUNCTION: DESCRIPTION: # .xtsPlot Internal xts plot unitility # .axTicksByTime2 Takes care of "chic" axis creation # .endpoints2 ... determines appropriate axis end points # .periodicity2 ... determines appropriate axis periodicity # .colorwheelPalette ############################################################################### # .plot.timeSeries <- # function( # x, y, FinCenter = NULL, # plot.type = c("multiple", "single"), # format = "auto", at = pretty(x), # widths = 1, heights = 1, # xy.labels, xy.lines, panel = lines, nc, yax.flip = FALSE, # mar.multi = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1), # oma.multi = c(6, 0, 5, 0), axes = TRUE, ...) # x=dummySeries(); y = NULL; FinCenter = NULL; plot.type = "s" # format = "auto"; at = "pretty"; panel = lines; yax.flip = FALSE # mar.multi = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1) # oma.multi = c(7.75, 1.1, 6.1, 1.1) # dots <- list() .xtplot.timeSeries <- function( x, y = NULL, FinCenter = NULL, plot.type = c("single", "multiple"), format = "auto", at = c("pretty", "chic"), panel = lines, yax.flip = FALSE, mar.multi = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1), oma.multi = c(7.75, 1.1, 6.1, 1.1), # oma.multi = c(6, 0, 5, 0), axes = TRUE, ...) { # A function implemented by Diethelm Wuertz # Description: # Plots timeSeries objects - Internal Function # Details: # A modified copy of R's internal 'plotts()' function, # see 'plot.ts()'. # FUNCTION: dots <- list(...) if (is.null(dots$minor.ticks)) minor.ticks <- "auto" else minor.ticks <- dots$minor.ticks if (is.null(dots$type)) type <- "l" else type <- dots$type if (is.null(dots$col)) col <- 1 else col <- dots$col if (is.null(dots$pch)) pch <- 20 else pch <- dots$pch if (is.null(dots$cex)) cex <- 1 else cex <- dots$cex if (is.null(dots$lty)) lty <- 1 else lty <- dots$lty if (is.null(dots$lwd)) lwd <- 1 else lwd <- dots$lwd if (is.null(dots$grid)) grid <- TRUE else grid <- dots$grid if (is.null(dots$frame.plot)) frame.plot <- TRUE else frame.plot <- dots$frame.plot if (is.null(dots$ann)) ann <- TRUE else ann <- dots$ann if (is.null(dots$cex.axis)) cex.axis <- 1 else cex.axis <- dots$cex.axis if (is.null(dots$cex.lab)) cex.lab <- 1 else cex.lab <- dots$cex.lab if (is.null(dots$cex.pch)) cex.pch <- 1 else cex.pch <- dots$cex.pch # Continue ... if (minor.ticks == "auto") minor.ticks <- .periodicity2(x)$units if (at[1] == "chic") minor.ticks = TRUE if (format != "auto") minor.ticks = TRUE # FinCenter - take care of it: if (!is.null(FinCenter)) { finCenter(x) <- FinCenter if (!missing(y)) finCenter(y) <- FinCenter if (is(at, "timeDate")) at@FinCenter <- FinCenter } # Plot Type: plot.type <- plot.type[1] if(isUnivariate(x)) plot.type <- "single" if(is.timeSeries(y)) plot.type <- "scatter" # Axis Positions and Format: AT <- at[1] FORMAT <- format[1] if (x@format == "counts") FORMAT <- "counts" # Main and Labels (We dont use them): main <- xlab <- ylab <- "" nm <- colnames(x) if(length(nm) > 1 && ( plot.type == "single" || plot.type == "s")) nm <- "Values" # Decorations: # if (is.null(col)) col <- 1:ncol(x) # if (col[1] == 0) col = 1 else col <- .colorwheelPalette(ncol(x)) # if (is.null(pch)) pch <- 20 # if (is.null(cex)) cex <- 1 # if (is.null(lty)) lty <- 1 # if (is.null(lwd)) lwd <- 2 if(is.null(type[1])) type <- "l" if (length(type) == 1) type = rep(type, times=NCOL(x)) if (length(col) == 1) col = rep(col, times=NCOL(x)) if (length(pch) == 1) pch = rep(pch, times=NCOL(x)) if (length(cex) == 1) cex = rep(cex, times=NCOL(x)) if (length(lty) == 1) lty = rep(lty, times=NCOL(x)) if (length(lwd) == 1) lwd = rep(lwd, times=NCOL(x)) if (length(cex.pch) == 1) cex.pch = rep(cex.pch, times=NCOL(x)) X <- as.POSIXct(time(x)) Y <- series(x) if (AT == "pretty") { at <- pretty(x) } if (AT == "chic" ) { ep <- .axTicksByTime2(x, format=FORMAT) at <- time(x)[ep] } TIME <- time(x) # SINGLE PLOT: if (plot.type == "single" || plot.type == "s") { # All curves in one Frame: if (is.null(dots$ylim)) ylim <- range(Y, na.rm = TRUE) else ylim <- dots$ylim plot(X, Y[, 1], type= "n", ylim = ylim, axes = FALSE, main = "", xlab = "", ylab = "") for (i in 1:ncol(x)) { lines(X, series(x)[, i], type = type[i], col = col[i], lty = lty[i], lwd = lwd[i], pch = pch[i], cex = cex.pch[i]) } if (ann) { title(main = main, xlab = xlab, ylab = nm, cex.lab = cex.lab) } if (axes) { # X - Axis: if (AT == "counts") { axis(1, cex.axis = cex.axis) } else if (AT == "pretty") { at <- pretty(time(x)) if (FORMAT == "auto") format <- "%Y-%m-%d" if (!is.null(minor.ticks)) { minor.at <- timeSequence(time(x)[1], time(x)[nrow(x)], by = minor.ticks) axis.POSIXct(1, at=minor.at, labels=FALSE, col='#BBBBBB', cex.axis = cex.axis) } axis.POSIXct(1, at = at, format = format, cex.axis = cex.axis) } else if (AT == "chic" ) { ep <- .axTicksByTime2(x, format=FORMAT) if (minor.ticks) axis.POSIXct(1, at=TIME, labels=FALSE, col='#BBBBBB', cex.axis = cex.axis) axis.POSIXct(1, at = TIME[ep], labels=names(ep), las=1, lwd=1, mgp=c(3, 2, 0), cex.axis = cex.axis) } else { if (minor.ticks) axis.POSIXct(1, at=TIME, labels=FALSE, col='#BBBBBB', cex.axis = cex.axis) axis.POSIXct(1, at = at, format = format, cex.axis=cex.axis) } # Y - Axis: axis(2, cex.axis = cex.axis) } if (frame.plot) { box("plot") } if(grid) { abline(v = at, lty = 3, col = "darkgrey") grid(NA, NULL, lty = 3, col = "darkgrey") } return(invisible()) } # MULTIPLE PLOT: if (plot.type == "multiple" || plot.type == "m") { nser <- ncol(x) nc <- if (nser > 4) 2 else 1 nr <- ceiling(nser/nc) oldpar <- par(mar = mar.multi, oma = oma.multi, mfcol = c(nr, nc)) on.exit(par(oldpar)) for (i in 1:nser) { plot(X, Y[, i], axes = FALSE, ann = TRUE, type = "n", xlab = "", ylab = "", # log = log, col = col[i], pch = pch[i], lty = lty[i], lwd = lwd[i], cex = cex[i]) panel(X, Y[, i], type = type[i], xlab = "", ylab = "", col = col[i], pch = pch[i], lty = lty[i], lwd = lwd[i], cex = cex.pch[i]) y.side <- if (i%%2 || !yax.flip) 2 else 4 do.xax <- i%%nr == 0 || i == nser if (frame.plot) { box() } if (axes) { axis(y.side, xpd = NA, cex.axis=cex.axis) if (do.xax) { if (AT == "counts") { axis(1, cex.axis = 1.2 * cex.axis) } else if (AT == "pretty") { at <- pretty(time(x)) if (FORMAT == "auto") format <- "%Y-%m-%d" TIME <- time(x) if (!is.null(minor.ticks)) { minor.at <- timeSequence( time(x)[1], time(x)[nrow(x)], by=minor.ticks) axis.POSIXct(1, at=minor.at, labels=FALSE, cex.axis = 1.2 * cex.axis, col='#BBBBBB') } axis.POSIXct(1, at = at, format = format, cex.axis = 1.2 * cex.axis) } else if (AT == "chic" ) { ep <- .axTicksByTime2(x, format=FORMAT) at <- time(x)[ep] format <- attr(ep, "format") formatLabels <- names(ep) TIME <- time(x) if (minor.ticks) axis.POSIXct(1, at=TIME, labels=FALSE, col='#BBBBBB', cex.axis = 1.2 * cex.axis) axis.POSIXct(1, at = TIME[ep], labels=names(ep), las=1, lwd=1, mgp=c(3, 2, 0), cex.axis = 1.2 * cex.axis) } else { TIME <- time(x) if (minor.ticks) axis.POSIXct(1, at=TIME, labels=FALSE, col='#BBBBBB', cex.axis = 1.2 * cex.axis) axis.POSIXct(1, at = at, format = format, cex.axis = 1.2 *cex.axis) } } } if (ann) { mtext(text = nm[i], side = y.side, line = 3, cex = cex.lab) if (do.xax) mtext(xlab, side = 1, line = 3, cex = cex.lab) } if(grid) { abline(v = at, lty = 3, col = "darkgrey") grid(NA, NULL, lty = 3, col = "darkgrey") } } # end of nser loop return(invisible()) } plot # SCATTER PLOT: if (!is.null(y)) { stopifnot (isUnivariate(x)) stopifnot (isUnivariate(y)) plot(series(x), series(y), xlab="", ylab="", col=col, pch=pch, cex=cex) return(invisible()) } } ############################################################################### # Test function for xts-plot-like axis positions and labels. .xtsPlot <- function(x, y=NULL, type = "l", ann = TRUE, axes = TRUE, major.ticks = 'auto', minor.ticks = TRUE, major.format = TRUE, grid = TRUE, box = TRUE, ...) { # A function written by Diethelm Wuertz # Descroption: # A simple example to test the xts functions to generate # nice axis positions and Lebels # Example: # x = 100 * cumulated(LPP2005REC[, 2]); xtsPlot(x) # Settings: # time.scale <- periodicity2(x)$scale ep <- .axTicksByTime2(x, major.ticks, format.labels=major.format) # PLOT COORDS: xycoords <- xy.coords(time(x), x[, 1]) # RAW PLOT: plot(xycoords$x, xycoords$y, type=type, axes=FALSE, ann=FALSE, ...) # ADD GRID: if (grid) { abline(v=xycoords$x[ep], col='grey', lty=3) grid(NA, NULL) } # ADD AXIS: if(axes) { if(minor.ticks) axis(1, at=xycoords$x, labels=FALSE, col='#BBBBBB') axis(1, at=xycoords$x[ep], labels=names(ep), las=1, lwd=1, mgp=c(3,2,0)) axis(2) } # ADD BOX: box() } # ----------------------------------------------------------------------------- # Borrowed from ... # Package: xts # Title: eXtensible Time Series # Version: 0.9-7 # Date: 2013-06-26 # Author: Jeffrey A. Ryan, Joshua M. Ulrich # Maintainer: Jeffrey A. Ryan # License: GPL (>= 2) # URL: http://r-forge.r-project.org/projects/xts/ # Packaged: 2014-01-02 18:00:13 UTC; ripley # NeedsCompilation: yes # Repository: CRAN # Date/Publication: 2014-01-02 19:18:28 .axTicksByTime2 <- function( x, ticks.on='auto', k=1, labels=TRUE, format.labels=TRUE, ends=TRUE, gt = 2, lt = 30, format = "auto") { # A modified function borrowed from the xts-package # Arguments: # x - a 'timeSerie' Object # Example: # x = 100 * cumulated(LPP2005REC[, 2]); .axTicksByTime2(x) tick.opts <- c( "years", "months", "weeks", "days", "hours", "minutes", "seconds") tick.k.opts <- c( 10, 5, 2, 1, 6, 1, 1, 1, 4, 2, 1, 30, 15, 1, 1) if (ticks.on %in% tick.opts) { cl <- ticks.on[1] ck <- k } else { tick.opts <- paste(rep(tick.opts, c(4, 2, 1, 1, 3, 3, 1)), tick.k.opts) is <- structure(rep(0,length(tick.opts)), .Names = tick.opts) for(i in 1:length(tick.opts)) { y <- strsplit(tick.opts[i], ' ')[[1]] ep <- .endpoints2(x, y[1], as.numeric(y[2])) is[i] <- length(ep) -1 if(is[i] > lt) break } nms <- rev(names(is)[which(is > gt & is < lt)])[1] cl <- strsplit(nms, " ")[[1]][1] ck <- as.numeric(strsplit(nms, " ")[[1]][2]) } if (is.null(cl)) ep <- NULL else ep <- .endpoints2(x, cl, ck) if(ends) ep <- ep + c(rep(1,length(ep)-1),0) if (labels) { if(is.logical(format.labels) || is.character(format.labels)) { # format by level of time detail, and platform unix <- ifelse(.Platform$OS.type=="unix", TRUE, FALSE) time.scale <- .periodicity2(x)$scale fmt <- ifelse(unix, '%n%b%n%Y', '%b %Y') if (time.scale == "weekly" | time.scale == "daily") fmt <- ifelse(unix, '%b %d%n%Y', '%b %d %Y') if (time.scale == "minute" | time.scale == "hourly") fmt <- ifelse(unix, '%b %d%n%H:%M', '%b %d %H:%M') if (time.scale == "seconds") fmt <- ifelse(unix, '%b %d%n%H:%M:%S', '%b %d %H:%M:%S') if(is.character(format.labels)) fmt <- format.labels if (format != "auto") fmt <- format names(ep) <- format(time(x)[ep], fmt) } else { names(ep) <- as.character(time(x)[ep]) } } attr(ep, "format") <- fmt # Return Value: ep } ################################################################################ .endpoints2 <- function (x, on = c("months", "years", "quarters", "weeks", "days", "hours", "minutes", "seconds"), k = 1) { # A modified function borrowed from the xts-package # Arguments: # x - a 'timeDate' object # Example: # x <- 100 * cumulated(LPP2005REC[, 2]); .endpoints2(x) stopifnot(is(x, "timeSeries")) x <- time(x) on <- match.arg(on) posix <- as.POSIXct(x, origin="1970-01-01") .posix <- unclass(posix) if (on == "years") { ans <- as.integer(which(diff(as.POSIXlt(posix)$year%/%k + 1) != 0)) } else if (on == "quarters") { ans <- as.integer(which(diff((as.POSIXlt(posix)$mon%/%3) + 1) != 0)) } else if (on == "months") { ans <- as.integer(which(diff(as.POSIXlt(posix)$mon%/%k + 1) != 0)) } else if (on == "weeks") { ans <- as.integer( which(diff((.posix + (3L * 86400L))%/%604800L%/%k + 1) != 0)) } else if (on == "days") { ans <- as.integer(which(diff(.posix%/%86400L%/%k + 1) != 0)) } else if (on == "hours") { ans <- as.integer(which(diff(.posix%/%3600L%/%k + 1) != 0)) } else if (on == "minutes" || on == "mins") { ans <- as.integer(which(diff(.posix%/%60L%/%k + 1) != 0)) } else if (on == "seconds" || on == "secs") { ans <- as.integer(which(diff(.posix%/%k + 1) != 0)) } ans <- c(0, ans, NROW(x)) # Return Value: ans } ############################################################################### .periodicity2 <- function (x) { # A modified function borrowed from the xts-package # Arguments: # x - a 'timeDate' object # Example: # x <- 100 * cumulated(LPP2005REC[, 2]); .periodicity2(x) # FUNCTION: # Check Argument: stopifnot(is(x, "timeSeries")) x <- time(x) p <- median(diff(as.integer(as.POSIXct(x, origin="1970-01-01")))) if (is.na(p)) stop("cannot calculate periodicity of 1 observation") units <- "days" scale <- "yearly" label <- "year" if (p < 60) { units <- "secs" scale <- "seconds" label <- "second" } else if (p < 3600) { units <- "mins" scale <- "minute" label <- "minute" p <- p/60L } else if (p < 86400) { units <- "hours" scale <- "hourly" label <- "hour" } else if (p == 86400) { scale <- "daily" label <- "day" } else if (p <= 604800) { scale <- "weekly" label <- "week" } else if (p <= 2678400) { scale <- "monthly" label <- "month" } else if (p <= 7948800) { scale <- "quarterly" label <- "quarter" } # Return Value: list( difftime = structure(p, units = units, class = "difftime"), frequency = p, start = start(x), end = end(x), units = units, scale = scale, label = label) } ############################################################################### .colorwheelPalette <- function(n) { # A function implemented by Diethelm Wuertz # FUNCTION: # Color Wheel: orig <- c( "#FFF200", "#FBAA19", "#F26522", "#EF4823", "#ED1D24", "#A9285F", "#662D91", "#4D2F91", "#2E3092", "#00707E", "#00A650", "#8CC63F") orig <- orig[-1] # Splice Wheel if (n == 11) return(orig) rgb.tim <- t(col2rgb(orig)) temp <- matrix(NA, ncol = 3, nrow = n) x <- seq(0, 1, , 11) xg <- seq(0, 1, , n) for (k in 1:3) { hold = spline(x, rgb.tim[, k], n = n)$y hold[hold < 0] = 0 hold[hold > 255] = 255 temp[, k] = round(hold) } ans <- rgb(temp[, 1], temp[, 2], temp[, 3], maxColorValue = 255) # Return Value: ans } ############################################################################### timeSeries/R/timeSeries-readSeries.R0000644000176000001440000001025612620124746017144 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # readSeries Reads a CSV file and creates a 'timeSeries' ################################################################################ # DW: # I think we should add a similar function for writeSeries() using # write.table(). Proceed in the same way as in the case of the read # function. # ------------------------------------------------------------------------------ readSeries <- function(file, header = TRUE, sep = ";", zone = "", FinCenter = "", format, ...) { # A function implemented by Diethelm Wuertz # Description: # Reads from a spreadsheet and creates a 'timeSeries' object # Arguments: # file - the name of the file which the data are to be read # from. Each row of the table appears as one line of the # file. If it does not contain an absolute path, the file # name is relative to the current working directory, # getwd(). Tilde-expansion is performed where supported. # As from R 2.10.0 this can be a compressed file. # header - a logical value indicating whether the file contains # the names of the variables as its first line. If missing, # the value is determined from the file format: header is # set to TRUE if and only if the first row contains one fewer # field than the number of columns. # sep - he field separator character. Values on each line of # the file are separated by this character. If sep = "" (the # default for read.table) the separator is ?white space?, # that is one or more spaces, tabs, newlines or carriage # returns. # zone - the time zone or financial center where the data were # recorded. # FinCenter - a character with the the location of the # financial center named as "continent/city". By default # an empty string which means that internally "GMT" will # be used. # format - the format of the timestamps as recoreded in the # first column of the data in the.. # ... - optional arguments passed to the function read.table(). # Value: # Returns a S4 object of class 'timeSeries'. # Notes: # Note we expect that the header of the spreadsheet file in # the first cell holds the time/date format specification! # FUNCTION: # Read Data: df <- read.table(file = file, header = header, sep = sep, check.names = FALSE, ...) # Get 'timeDate' from first column with header specifying the format charvec <- as.character(df[[1]]) if (missing(format)) format <- names(df)[1] td <- try(timeDate(charvec = charvec, format = format, zone = zone, FinCenter = FinCenter), silent=TRUE) # DW: 2014-09-16 # If sep=";" fails try with sep=",": if (sep ==";" && class(td) == "try-error") { return(readSeries(file, header = header, sep = ",", zone = zone, FinCenter = FinCenter, ...)) } # If format provided in file or with format argument, try to guess it if (all(is.na(td))) warning("Conversion of timestamps to timeDate objects produced only NAs. Are you sure you provided the proper format with argument 'format' or in the header of your file ?") # Extract data data <- as.matrix(df[-1]) # Create Time Series from Data Frame: ans <- timeSeries(data = data, charvec = td) # Return Value: ans } ################################################################################ timeSeries/R/stats-na.contiguous.R0000644000176000001440000000371612620124746016702 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # na.contiguous,timeSeries Finds the longest consecutive of non-missing values ################################################################################ setMethod("na.contiguous", "timeSeries", function(object, ...) { # A function imlemented by Diethelm Wuertz and Yohan Chalabi # Description: # Finds the longest consecutive of non-missing values # Details: # adapted stats:::na.contingous.default to timeSeries objects # Yohan Chalabi # FUNCTION: good <- apply(!is.na(object), 1L, all) if (!sum(good)) stop("all times contain an NA") tt <- cumsum(!good) ln <- sapply(0:max(tt), function(i) sum(tt == i)) seg <- (seq_along(ln)[ln == max(ln)])[1L] - 1 keep <- (tt == seg) st <- min(which(keep)) if (!good[st]) st <- st + 1 en <- max(which(keep)) omit <- integer(0L) n <- NROW(object) if (st > 1) omit <- c(omit, 1L:(st - 1)) if (en < n) omit <- c(omit, (en + 1):n) if (length(omit)) { object <- object[st:en, ] attr(omit, "class") <- "omit" attr(object, "na.action") <- omit } # Return Value: object }) ################################################################################ timeSeries/R/base-diff.R0000644000176000001440000000630512620124746014567 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ############################################################################### # FUNCTION: DESCRIPTION: # diff,timeSeries Differences a 'timeSeries' object ############################################################################### .diff.timeSeries <- function(x, lag = 1, diff = 1, trim = FALSE, pad = NA, ...) { # A function implemented by Diethelm Wuertz # Modified by Yohan Chalabi # Description: # Differences 'timeSeries' objects. # Arguments: # x - a 'timeSeries' object. # lag - an integer indicating which lag to use. # By default 1. # diff - an integer indicating the order of the difference. # By default 1. # trim - a logical. Should NAs at the beginning of the # series be removed? # pad - a umeric value with which NAs should be replaced # at the beginning of the series. # Value: # Returns a differenced object of class 'timeSeries'. # FUNCTION: # Ceck Arguments: stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Convert: y <- getDataPart(x) # as.matrix(x) # Check NAs: # if (any(is.na(y))) stop("NAs are not allowed in time series") # Difference: z <- diff(y, lag = lag, difference = diff) diffNums = dim(y)[1] - dim(z)[1] # Trim Positions: if (!trim) { zpad <- matrix(0*y[1:diffNums, ] + pad, nrow = diffNums) z <- rbind(zpad, z) } pos <- if (!trim) x@positions else x@positions[-(1:diffNums)] # Record IDs: df <- x@recordIDs if (trim && sum(dim(df)) > 0) { df <- df[-seq.int(diffNums), , drop = FALSE] rownames(df) <- seq.int(NROW(df)) } # Diff Result: ans <- timeSeries(data = z, charvec = pos, units = colnames(z), format = x@format, zone = x@FinCenter, FinCenter = x@FinCenter, recordIDs = df) # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Value: ans } # ----------------------------------------------------------------------------- setMethod("diff", "timeSeries", function(x, lag = 1, diff = 1, trim = FALSE, pad = NA, ...) .diff.timeSeries(x, lag, diff, trim, pad, ...) ##x <- getDataPart(x) ##callGeneric() ) # until UseMethod dispatches S4 methods in 'base' functions diff.timeSeries <- function(x, ...) .diff.timeSeries(x, ...) ############################################################################### timeSeries/R/stats-aggregate.R0000644000176000001440000001326512620124746016034 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # aggregate,timeSeries Aggregates a 'timeSeries' object # FUNCTION: DESCRIPTION: # daily2monthly Aggregates a daily to monthly 'timeSeries' object # daily2weekly Aggregates a daily to weekly 'timeSeries' object ################################################################################ .aggregate.timeSeries <- function(x, by, FUN, ...) { # A function implemented by Yohan Chalabi and Diethelm Wuertz # Description: # Aggregates a 'timeSeries' object # Details: # This function can be used to aggregate and coursen a # 'timeSeries' object. # Arguments: # x - a 'timeSeries' object to be aggregated # by - a calendarical block # FUN - function to be applied, by default 'colMeans' # ... - additional argument to be passed to the newly generated # 'timeSeries' object # Value: # Returns a S4 object of class 'timeSeries'. # Examples: # Quarterly Aggregation: # m = matrix(rep(1:12,2), ncol = 2) # ts = timeSeries(m, timeCalendar()) # Y = getRmetricsOptions("currentYear"); Y # from = paste(Y, "04-01", sep = "-"); to = paste(Y+1, "01-01", sep = "-") # by = timeSequence(from, to, by = "quarter") - 24*3600; by # ts; aggregate(ts, by, sum) # Weekly Aggregation: # dates = timeSequence(from = "2009-01-01", to = "2009-02-01", by = "day") # data = 10 * round(matrix(rnorm(2*length(dates)), ncol = 2), 1); data # ts = timeSeries(data = data, charvec = dates) # by = timeSequence(from = "2009-01-08", to = "2009-02-01", by = "week") # by = by - 24*3600; aggregate(ts, by, sum) # FUNCTION: # Check Arguments: if (!((inherits(by, "timeDate") && x@format != "counts") || (is.numeric(by) && x@format == "counts"))) stop("'by' should be of the same class as 'time(x)'", call.=FALSE) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Make sure that x is sorted: if (is.unsorted(x)) x <- sort(x) # Sort and remove double entries in by: by <- unique(sort(by)) INDEX <- findInterval(x@positions, as.numeric(by, "sec") + 1) INDEX <- INDEX + 1 is.na(INDEX) <- !(INDEX <= length(by)) # YC : ncol important to avoid problems of dimension dropped by apply data <- matrix(apply(getDataPart(x), 2, tapply, INDEX, FUN), ncol=ncol(x)) rownames(data) <- as.character(by[unique(na.omit(INDEX))]) colnames(data) <- colnames(x) ans <- timeSeries(data, ...) # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Value: ans } setMethod("aggregate", "timeSeries", function(x, by, FUN, ...) .aggregate.timeSeries(x, by, FUN, ...)) # until UseMethod dispatches S4 methods in 'base' functions aggregate.timeSeries <- function(x, ...) .aggregate.timeSeries(x, ...) ################################################################################ daily2monthly <- function (x, init = FALSE) { # A function implemented by Diethelm Wuertz # Description: # Converts daily to monthly series # Arguments: # x - daily time series # init - should the index series converted to a wealth series # FUNCTION: # Save Colnames: colNames <- colnames(x) # Fill to end of Month: Time <- unique(sort(timeLastDayInMonth(time(x)))) x.endOfMonth <- x[nrow(x), ] time(x.endOfMonth) <- rev(Time)[1] x <- rbind(x, x.endOfMonth) x <- alignDailySeries(x, include.weekends=TRUE) # Cut Properly on end of Month: today <- timeDate(Sys.Date()) first <- timeFirstDayInMonth(today) x <- x[time(x) < first, ] Time <- unique(sort(timeLastDayInMonth(time(x)))) # Align Properly: mSeries <- alignDailySeries(x, include.weekends=TRUE) mSeries <- mSeries[Time, ] # Optionally Initialize: if (init) for (i in 1:ncol(mSeries)) mSeries[, i] <- mSeries[, i]/as.vector(mSeries[1, i]) colnames(mSeries) <- colNames # Return Value: mSeries } # ----------------------------------------------------------------------------- daily2weekly <- function(x, startOn="Tue", init=FALSE) { # A function implemented by Diethelm Wuertz # Description: # Converts daily to weekly series # Arguments: # x - daily time series # init - should the index series converted to a wealth series # FUNCTION: # Convert Series: mSeries <- alignDailySeries(x, include.weekends = TRUE) start <- which(dayOfWeek(time(mSeries[1:7, ])) == startOn) mSeries <- mSeries[seq(start, nrow(mSeries), by = 7), ] # Wealth Initialization: if (init) for (i in 1:ncol(mSeries)) mSeries[, i] <- mSeries[, i]/as.vector(mSeries[1, i]) # Return Value: mSeries } ############################################################################### timeSeries/R/timeSeries-isUnivariate.R0000644000176000001440000000314212620124746017515 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # isUnivariate Tests if a 'timeSeries' object is univariate # isMultivariate Tests if a 'timeSeries' object is multivariate ################################################################################ isUnivariate <- function(x) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Tests if a time series or rectangular object is univariate # FUNCTION: # Return Value: if (NCOL(x) == 1) TRUE else FALSE } # ------------------------------------------------------------------------------ isMultivariate <- function(x) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Tests if a time series or rectangular object is multivariate # FUNCTION: # Return Value: if (NCOL(x) > 1) TRUE else FALSE } ################################################################################ timeSeries/R/timeSeries-slotDocumentation.R0000644000176000001440000000553412620124746020574 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # getDocumentation # setDocumentation ################################################################################ # FUNCTION: MANAGING ATTRIBUTES # getAttributes # setAttributes<- # INTERNAL FUNCTION: # .appendList ################################################################################ getAttributes <- function (obj) { # A function implemented by Diethelm Wuertz # Description: # FUNCTION: # Check Argument: stopifnot(class(obj) == "timeSeries") # Extract Attributes: ans <- attr(obj@documentation, "Attributes") # Return Value: ans } # ----------------------------------------------------------------------------- `setAttributes<-` <- function(obj, value) { # A function implemented by Diethelm Wuertz # Description: # Example: # obj <- dummySeries(); getAttributes(obj) # setAttributes(obj) <- list(mat=matrix(1:4, ncol=2)); getAttributes(obj) # getAttributes(obj)$mat[[1]] # FUNCTION: # Check Arguments: stopifnot(class(obj) == "timeSeries") stopifnot(is.list(value)) stopifnot(length(value) == 1) stopifnot(!is.null(value)) # Compose New Attribute: name <- names(value) names(value) <- NULL A <- list(value) names(A) <- name # print(A) # Get Already Existing Attribute B <- getAttributes(obj) if(is.null(B)) B <- list() # print(B) # Join Attributes: JOINED <- sapply(unique(c(names(A), names(B))), function(x) list(c(A[[x]], B[[x]]))) # print(JOINED) # Assign Attribute: attr(obj@documentation, "Attributes") <- JOINED # Return Value: obj } # ----------------------------------------------------------------------------- .appendList <- function (A, B) { # A function implemented by Diethelm Wuertz # Description: # Appends list B to list A # Arguments: # A - first named list element # B - second named list element # FUNCTION: # Append list B to list A JOINED <- sapply(unique(c(names(A), names(B))), function(x) list(c(A[[x]], B[[x]]))) # Return Value: JOINED } ############################################################################### timeSeries/R/data-examples.R0000644000176000001440000000000012620124746015456 0ustar ripleyuserstimeSeries/R/fin-turnpoints.R0000644000176000001440000002363212620124746015750 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # turns Returns turnpoints from a 'timeSeries' # turnsStats Computes statistics of turn points # BUILTIN: DESCRIPTION: # .turnpointsPastecs Builtin function from package pastecs # .extract.turnpointsPastecs Extractor function from package pastecs # .plot.turnpointsPastecs Plot function from package pastecs # .summary.turnpointsPastecs Summary function from package pastecs # DEPRECATED: DESRIPTION: # .turnpoints2 Deprecated, use function turns # .turnpointsSeries Deprecated, use function turns # .turnpointsStats Deprecated, use function turnsStats ################################################################################ # DW: # This function is originally borrowed from the contributesd R package pastecs. # It is not necessary to load pastecs, the functions required are builtin. # ----------------------------------------------------------------------------- turns <- function(x, ...) { # A function implemented by Diethelm Wuertz # Description: # Returns turnpoints from a timeSeries # Arguments: # x - an univariate timeSeries object, e.g. a price or index series. # ... - arguments passed to the function na.omit() # FUNCTION: # Check arguments: stopifnot(is.timeSeries(x)) stopifnot(isUnivariate(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Handle Missing Values: x <- na.omit(x, ...) # Convert to Vector: X <- x x <- as.vector(x) # Turnpoints: ans <- .turnpointsPastecs(x) tp <- .extract.turnpointsPastecs(ans) data <- cbind(x, tp) colnames(data) <- c(colnames(X), "TP") series(X) <- data # Preserve Title and Documentation: X@title <- Title X@documentation <- Documentation # Return Value: X } # ---------------------------------------------------------------------------- turnsStats <- function(x, doplot = TRUE) { # A function implemented by Diethelm Wuertz # Description: # Computes turnpoints statistics # Arguments: # x - an univariate timeSeries object, e.g. a price or index series # doplot - a logical flag, should an optional plot be displayed? # Value: # Returns an object of class turnpoints. # FUNCTION: # Settings stopifnot(isUnivariate(x)) X <- x x <- as.vector(x) # Turnpoints: ans <- .turnpointsPastecs(x) # Summary Statistics: .summary.turnpointsPastecs(ans) # Optional Plot: if(doplot) .plot.turnpointsPastecs(ans) # Return Value: invisible(ans) } ################################################################################ .turnpoints2 <- function(...) { # Deprecated: .Deprecated(new = "turns", package = "timeSeries") # Return Value: turns(...) } # ----------------------------------------------------------------------------- .turnpointsStats <- function(...) { # Deprecated: .Deprecated(new = "turnsStats", package = "timeSeries") # Return Value: turnsStats(...) } ################################################################################ # Package: pastecs # Title: Package for Analysis of Space-Time Ecological Series # Version: 1.3-4 # Date: 2006-11-28 # Author: Frederic Ibanez , # Philippe Grosjean & # Michele Etienne # Description: Regulation, decomposition and analysis of space-time series. # The pastecs library is a PNEC-Art4 and IFREMER # (Benoit Beliaeff ) initiative # to bring PASSTEC 2000 # (http://www.obs-vlfr.fr/~enseigne/anado/passtec/passtec.htm) # functionnalities to R. # URL: http://www.sciviews.org/pastecs # Maintainer: Philippe Grosjean # License: GNU Public Licence 2.0 or above at your convenience # Depends: boot, stats # Packaged: Tue Nov 28 15:33:42 2006; Philippe Grosjean .turnpointsPastecs <- function(x) { data <- deparse(substitute(x)) if (is.null(ncol(x)) == FALSE) stop("Only one series can be treated at a time") # if (exists("is.R") && is.function(is.R) && is.R()) # We are in R # Now done with Depends: field require(stats) x <- as.vector(x) n <- length(x) diffs <- c(x[1]-1, x[1:(n-1)]) != x uniques <- x[diffs] n2 <- length(uniques) poss <- (1:n)[diffs] exaequos <- c(poss[2:n2], n+1) - poss - 1 if (n2 < 3) { # We need at least 3 unique values!!! warning("Less than 3 unique values, no calculation!") nturns <- NA firstispeak <- FALSE peaks <- rep(FALSE, n2) pits <- rep(FALSE, n2) tppos <- NA proba <- NA info <- NA } else { # The following code is faster in R, but do not work all the time! #if (exists("is.R") && is.function(is.R) && is.R()) { # We are in R # ex <- embed(uniques, 3) # Works only in R! # peaks <- c(FALSE, max.col(ex) == 2, FALSE) # pits <- c(FALSE, max.col(-ex) == 2, FALSE) #} else { # We are in S+ m <- n2 - 2 ex <- matrix(uniques[1:m + rep(3:1, rep(m, 3)) - 1], m) peaks <- c(FALSE, apply(ex, 1, max, na.rm=TRUE) == ex[, 2], FALSE) pits <- c(FALSE, apply(ex, 1, min, na.rm=TRUE) == ex[, 2], FALSE) #} tpts <- peaks | pits if (sum(tpts) == 0) { # No turning point nturns <- 0 firstispeak <- FALSE peaks <- rep(FALSE, n2) pits <- rep(FALSE, n2) tppos <- NA proba <- NA info <- NA } else { # This way, we consider the last element of duplicates, as # in PASSTEC 2000 tppos <- (poss + exaequos)[tpts] tptspos <- (1:n2)[tpts] firstispeak <- tptspos[1] == (1:n2)[peaks][1] nturns <- length(tptspos) if (nturns < 2) { inter <- n2 + 1 posinter1 <- tptspos[1] } else { inter <- c(tptspos[2:nturns], n2) - c(1, tptspos[1:(nturns-1)]) + 1 posinter1 <- tptspos - c(1, tptspos[1:(nturns-1)]) } posinter2 <- inter - posinter1 posinter <- pmax(posinter1, posinter2) proba <- 2 / (inter * gamma(posinter) * gamma(inter - posinter + 1)) info <- -log(proba, base = 2) } } res <- list(data = data, n = n, points = uniques, pos = (poss + exaequos), exaequos = exaequos, nturns = nturns, firstispeak = firstispeak, peaks = peaks, pits = pits, tppos = tppos, proba = proba, info = info) class(res) <- "turnpoints" res } # ------------------------------------------------------------------------------ .extract.turnpointsPastecs <- function(e, n, no.tp = 0, peak = 1, pit = -1, ...) { if (missing(n)) n <- -1 res <- rep(no.tp, length.out= e$n) res[e$pos[e$peaks]] <- peak res[e$pos[e$pits]] <- pit # Keep only the first n points if (n < length(res) & n > 0) res <- res[1:n] res } # ------------------------------------------------------------------------------ .plot.turnpointsPastecs <- function(x, level = 0.05, lhorz = TRUE, lcol = 2, llty = 2, type = "l", xlab = "data number", ylab = paste("I (bits), level = ", level*100, "%", sep = ""), main = paste("Information (turning points) for:",x$data), ...) { # The next function actually draws the graph turnpoints.graph <- function(X, Level, Lhorz, Lcol, Llty, Type, Xlab, Ylab, Main, Sub, ...) { plot(X$tppos, X$info, type = Type, xlab = Xlab, ylab = Ylab, main = Main, ...) abline(h = -log(Level, base = 2), lty = Llty, col = Lcol) } # Return Value: invisible(turnpoints.graph(x, level[1], lhorz, lcol, llty, type, xlab, ylab, main, ...)) } # ------------------------------------------------------------------------------ .summary.turnpointsPastecs <- function(object, ...) { cat("Turning points for:", object$data, "\n\n") cat("nbr observations :", object$n, "\n") cat("nbr ex-aequos :", sum(object$exaequos), "\n") if (object$firstispeak) { cat("nbr turning points:", object$nturns, "(first point is a peak)\n") typep <- c("peak", "pit") } else { cat("nbr turning points:", object$nturns, "(first point is a pit)\n") typep <- c("pit", "peak") } cat("E(p) =", 2 / 3 * (object$n - 2), "Var(p) =", (16 * object$n - 29) / 90, "(theoretical)\n") cat("\n") # construct the table summarizing all turning points typepts <- rep(typep, length.out=object$nturns) tablepts <- as.data.frame(list(point = object$tppos, type = typepts, proba = object$proba, info = object$info)) print(tablepts) # Return Value: invisible(object) } ################################################################################ .turnpointsSeries = function(...) { # Deprecated: .Deprecated(new = "turns") # Return Value: turns(...) } ################################################################################ timeSeries/R/statistics-colCumsums.R0000644000176000001440000001443612620124746017275 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: COLUMN CUMULATIVE SUMS: # colCumsums Computes sample cumulated sums by column # colCumsums,matrix S3 default method (for matrix objects) # colCumsums,timeSeries S3 method for timeSeries objects # FUNCTION: COLUMN CUMULATIVE MAXIMA: # colCummaxs Computes cumulated maximum values # colCummaxs,matrix S3 default method (for matrix objects) # colCummaxs,timeSeries S3 method for timeSeries objects # FUNCTION: COLUMN CUMULATIVE MAXIMA: # colCummins Computes cumulated maximum values # colCummins,matrix S3 default method (for matrix objects) # colCummins,timeSeries S3 method for timeSeries objects # FUNCTION: COLUMN CUMULATIVE MINIMA: # colCumprods Computes cumulated product values # colCumprods,matrix S3 default method (for matrix objects) # colCumprods,timeSeries S3 method for timeSeries objects # FUNCTION: COLUMN CUMULATIVE RETURNS: # colCumreturns Computes cumulated product values # colCumreturns,matrix S3 default method (for matrix objects) # colCumreturns,timeSeries S3 method for timeSeries objects ################################################################################ # ------------------------------------------------------------------------------ setMethod("colCumsums", "matrix", function(x, na.rm = FALSE, ...) { if (na.rm) x <- na.omit(x) ans <- apply(x, 2, cumsum, ...) # special treatment when x has one row because apply returns a vector if (NROW(x) == 1) ans <- matrix(ans, nrow = 1, dimnames = dimnames(x)) ans }) # ------------------------------------------------------------------------------ setMethod("colCumsums", "timeSeries", function(x, na.rm = FALSE, ...) setDataPart(x, callGeneric(getDataPart(x), na.rm = na.rm, ...))) # ------------------------------------------------------------------------------ setMethod("colCummaxs", "matrix", function(x, na.rm = FALSE, ...) { if (na.rm) x <- na.omit(x) ans <- apply(x, 2, cummax, ...) # special treatment when x has one row because apply returns a vector if (NROW(x) == 1) ans <- matrix(ans, nrow = 1, dimnames = dimnames(x)) ans }) # ------------------------------------------------------------------------------ setMethod("colCummaxs", "timeSeries", function(x, na.rm = FALSE, ...) setDataPart(x, callGeneric(getDataPart(x), na.rm = na.rm, ...))) # ------------------------------------------------------------------------------ setMethod("colCummins", "matrix", function(x, na.rm = FALSE, ...) { if (na.rm) x <- na.omit(x) ans <- apply(x, 2, cummin, ...) # special treatment when x has one row because apply returns a vector if (NROW(x) == 1) ans <- matrix(ans, nrow = 1, dimnames = dimnames(x)) ans }) # ------------------------------------------------------------------------------ setMethod("colCummins", "timeSeries", function(x, na.rm = FALSE, ...) setDataPart(x, callGeneric(getDataPart(x), na.rm = na.rm, ...))) # ------------------------------------------------------------------------------ setMethod("colCumprods", "matrix", function(x, na.rm = FALSE, ...) { if (na.rm) x <- na.omit(x) ans <- apply(x, 2, cumprod, ...) # special treatment when x has one row because apply returns a vector if (NROW(x) == 1) ans <- matrix(ans, nrow = 1, dimnames = dimnames(x)) ans }) # ------------------------------------------------------------------------------ setMethod("colCumprods", "timeSeries", function(x, na.rm = FALSE, ...) setDataPart(x, callGeneric(getDataPart(x), na.rm = na.rm, ...))) # ------------------------------------------------------------------------------ setMethod("colCumreturns", "matrix", function(x, method = c("geometric", "simple"), na.rm = FALSE, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Cumulates Returns from a stream of returns # Arguments: # x : a matrix object # method : generate geometric or simple returns, # default "geometric". # FUNCTION: # Handle Missing Values: if (na.rm) x <- na.omit(x, ...) method <- match.arg(method) # Return Value switch(method, "geometric" = colCumsums(x), "simple" = colCumprods(1+x) - 1) }) # ------------------------------------------------------------------------------ setMethod("colCumreturns", "timeSeries", function(x, method = c("geometric", "simple"), na.rm = FALSE, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Cumulates Returns from a stream of returns # Arguments: # x : a timeSeries object # method : generate geometric or simple returns, # default "geometric". # FUNCTION: # Handle Missing Values: if (na.rm) x <- na.omit(x, ...) method <- match.arg(method) # Return Value switch(method, "geometric" = colCumsums(x), "simple" = colCumprods(1+x) - 1) }) ################################################################################ timeSeries/R/base-start.R0000644000176000001440000000403012620124746015005 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # start,timeSeries Extracts start date of a 'timeSeries' object # end,timeSeries Extracts end date of a 'timeSeries' object ################################################################################ .start.timeSeries <- function(x, ...) { # Description: # Extracts start date of a 'timeSeries' object # FUNCTION: # Extract Date: if (length(x@positions)>0) timeDate(min(x@positions), zone = "GMT", FinCenter = x@FinCenter) else NULL } setMethod("start" , "timeSeries", function(x, ...) .start.timeSeries(x, ...)) # until UseMethod dispatches S4 methods in 'base' functions start.timeSeries <- function(x, ...) .start.timeSeries(x, ...) # ------------------------------------------------------------------------------ .end.timeSeries <- function(x, ...) { # Description: # Extracts start date of a 'timeSeries' object # FUNCTION: # Extract Date: if (length(x@positions)>0) timeDate(max(x@positions), zone = "GMT", FinCenter = x@FinCenter) else NULL } setMethod("end", "timeSeries", function(x, ...) .end.timeSeries(x, ...)) # until UseMethod dispatches S4 methods in 'base' functions end.timeSeries <- function(x, ...) .end.timeSeries(x, ...) ################################################################################ timeSeries/R/aaa-Deprecated.R0000644000176000001440000000352012620124746015523 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # DEPRECATED: # .description # durationSeries # midquoteSeries # spreadSeries ################################################################################ .description <- function() { # Deprecated: .Deprecated(new = "description", package = "timeSeries") # Return Value: description() } # ------------------------------------------------------------------------------ durationSeries <- function(...) { # Deprecated: .Deprecated(new = "returns", package = "timeSeries") # Return Value: durations(...) } # ------------------------------------------------------------------------------ midquoteSeries = function(...) { # Deprecated: .Deprecated(new = "midquotes", package = "timeSeries") # Return Value: midquotes(...) } # ------------------------------------------------------------------------------ spreadSeries = function(...) { # Deprecated: .Deprecated(new = "spreads", package = "timeSeries") # Return Value: spreads(...) } ################################################################################ timeSeries/R/AllClass.R0000644000176000001440000001272512620124746014450 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # CLASS: REPRESENTATION: # setClass Classify 'timeSeries' # setValidity Validate 'timeSeries' # setMethod Initialize 'timeSeries' ################################################################################ # CLASS: REPRESENTATION: # 'signalSeries' Deprecated S4 Class representation # 'timeSeries' Deprecated S4 Class representation ################################################################################ # YC: Note if slots are added or removed, don't forget to edit # getDataPart,timeSeries-method and setDataPart,timeSeries-method !! setClass("timeSeries", representation(.Data = "matrix", units = "character", positions = "numeric", format = "character", FinCenter = "character", recordIDs = "data.frame", title = "character", documentation = "character"), contains = "structure", prototype(matrix(NA), units = character(0), positions = numeric(0), format = character(0), FinCenter = character(0), recordIDs = data.frame(), title = character(0), documentation = character(0))) # ------------------------------------------------------------------------------ .validity_timeSeries <- function(object) { if ((length(object@positions) > 0) && NROW(object) != length(object@positions)) return("length of '@positions' not equal to '@.Data' extent") if (NCOL(object) != length(object@units)) return("length of '@units' not equal to '@.Data' extent") if (NROW(object@recordIDs) > 0 & NROW(object@recordIDs) != nrow(object)) return("length of '@recordIDs' not equal to '@.Data' extent") # Return Value: TRUE } setValidity("timeSeries", .validity_timeSeries) # ------------------------------------------------------------------------------ # Note it is faster to assign manually all slots of the timeSeries objects. setMethod("initialize", "timeSeries", function(.Object, .Data = new("matrix"), units = character(0), positions = numeric(0), format = character(0), FinCenter = "", #<< FIXME: use identical in code rather than FinCenter == "" recordIDs = data.frame(), title = character(0), documentation = character(0)) { # as.double -> crucial for speed improvement in subsetting if (!is.double(positions)) positions <- as.double(positions) .Object <- timeSeries::setDataPart(.Object, value = .Data) `slot<-`(.Object, "units", value = units) `slot<-`(.Object, "positions", value = positions) `slot<-`(.Object, "format", value = format) `slot<-`(.Object, "FinCenter", value = FinCenter) `slot<-`(.Object, "recordIDs", value = recordIDs) `slot<-`(.Object, "title", value = title) `slot<-`(.Object, "documentation", value = documentation) # Check only one we needs rather than using validObject anyStrings <- function(x) if (identical(x, TRUE)) character() else x error <- anyStrings(.validity_timeSeries(.Object)) if (length(error) > 0) stop(paste("Initialize timeSeries :", error, collapse = "\n"), call. = FALSE, domain = NA) # Return Value: .Object }) ################################################################################ ## setClass("signalSeries", ## representation( ## .Data = "matrix", ## units = "character", ## recordIDs = "data.frame", ## title = "character", ## documentation = "character"), ## contains = "structure", ## validity = function(object) { ## if (NCOL(getDataPart(object)) != length(object@units)) ## return("length of '@units' not equal to '@.Data' extent") ## TRUE ## }) ## # ------------------------------------------------------------------------------ ## setClass("timeSeries", ## representation(positions = "numeric", ## format = "character", ## FinCenter = "character"), ## contains = "signalSeries", ## validity = function(object) { ## if (NROW(getDataPart(object)) != length(object@positions)) ## return("length of '@positions' not equal to '@.Data' extent") ## if (NCOL(getDataPart(object)) != length(object@units)) ## return("length of '@units' not equal to '@.Data' extent") ## TRUE ## }) ################################################################################ timeSeries/R/methods-plot.R0000644000176000001440000003557112620124746015375 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # plot,timeSeries Plots a 'timeSeries' object # .plot.timeSeries Internal function called by plot.timeSeries # lines,timeSeries Adds lines to a 'timeSeries' plot # points,timeSeries Adds points to a 'timeSeries' plot # FUNCTION: DESCRIPTION: # pretty.timeSeries Returns a sequence of equally spaced round values ################################################################################ .plot.timeSeries <- function(x, y, FinCenter = NULL, plot.type = c("multiple", "single"), format = "auto", at = pretty(x), widths = 1, heights = 1, xy.labels, xy.lines, panel = lines, nc, yax.flip = FALSE, mar.multi = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1), oma.multi = c(6, 0, 5, 0), axes = TRUE, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Plots 'timeSeries' objects # Arguments: # see plot.ts() # Additional Arguments: # format, at to beautify axis.POSIXct() function # widths, heights to handle layout() function # Details: # This function is build in exactly the same way as the function # plot.ts() for regular time series (R's ts) objects... # Examples: # x = as.timeSeries(data(msft.dat))[, 1:4] # .plot.timeSeries(x) # .plot.timeSeries(x[,1], x[,2], pch = 19) # .plot.timeSeries(x, plot.type = "single", col = 2:5) # FUNCTION: # Check Missing: if (missing(y)) y <- NULL # Check for "pretty' and "chic": if (is.character(at)) { if (at[1] == "pretty" || at[1] == "chic") { return(.xtplot.timeSeries( x=x, y=y, FinCenter = FinCenter, plot.type = plot.type, format = format, at = at, panel = panel, yax.flip = yax.flip, mar.multi = mar.multi, oma.multi = oma.multi, axes=axes, ...) ) } } # Labels: xlabel <- if (!missing(x)) deparse(substitute(x)) ylabel <- if (!missing(y)) deparse(substitute(y)) # Take care of FinCenter: if (!is.null(FinCenter)) { finCenter(x) <- FinCenter if (!is.null(y)) finCenter(y) <- FinCenter if (is(at, "timeDate")) at@FinCenter <- FinCenter } # Return Value: .plotTimeSeries(x = x, y = y, plot.type = plot.type, xy.labels = xy.labels, xy.lines = xy.lines, panel = panel, nc = nc, xlabel = xlabel, ylabel = ylabel, axes = axes, mar.multi = mar.multi, oma.multi = oma.multi, yax.flip = yax.flip, format = format, at = at, widths = widths, heights = heights, ...) } setMethod("plot", "timeSeries", function(x, y, FinCenter = NULL, plot.type = c("multiple", "single"), format = "auto", at = pretty(x), widths = 1, heights = 1, xy.labels, xy.lines, panel = lines, nc, yax.flip = FALSE, mar.multi = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1), oma.multi = c(6, 0, 5, 0), axes = TRUE, ...) .plot.timeSeries(x = x, y = y, FinCenter = FinCenter, plot.type = plot.type, format = format, at = at, widths = widths, heights = heights, xy.labels=xy.labels, xy.lines=xy.lines, panel = panel, nc = nc, yax.flip = yax.flip, mar.multi = mar.multi, oma.multi = oma.multi, axes = axes, ...)) # until UseMethod dispatches S4 methods in 'base' functions plot.timeSeries <- function(x, y, ...) .plot.timeSeries(x, y, ...) # ------------------------------------------------------------------------------ # Internal Function called by plot(): .plotTimeSeries <- function(x, y = NULL, plot.type = c("multiple", "single"), xy.labels, xy.lines, panel = lines, nc, xlabel, ylabel, type = "l", xlim = NULL, ylim = NULL, xlab = "Time", ylab, log = "", col = 1:ncol(x), bg = NA, pch = 1:ncol(x), cex = par("cex"), lty = par("lty"), lwd = par("lwd"), axes = TRUE, frame.plot = axes, ann = par("ann"), main = NULL, mar.multi, oma.multi, yax.flip, format, at, widths, heights, grid = FALSE, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Plots timeSeries objects - Internal Function # Details: # A modified copy of R's internal 'plotts()' function, # see 'plot.ts()'. # FUNCTION: # Utility Function: plot.type <- match.arg(plot.type) nser <- NCOL(x) if (format == "auto") format = x@format X <- if (x@format == "counts") time(x) else as.POSIXct(time(x)) if (is.character(at) && at == "auto") { # Index = round(seq(1, length(time(x)), length = 6)) # at = X[Index] at = seq(X[1], X[length(X)], length = 6) } if(is(at, "timeDate")) at = as.POSIXct(at) # YC : force col and pch to be of same length as NCOL(x) otherwise # time series might not be plotted at all. col <- rep(col, length.out = nser) pch <- rep(pch, length.out = nser) # Multiple Plots, each one Curve, on one Page: if (plot.type == "multiple" && nser > 1) { ngraph = nser panel <- match.fun(panel) nser <- NCOL(x) if (nser > 10) stop("cannot plot more than 10 series as \"multiple\"") if (is.null(main)) main <- xlabel nm <- colnames(x) if (is.null(nm)) nm <- paste("Series", 1:nser) if (missing(nc)) nc <- if (nser > 4) 2 else 1 nr <- ceiling(nser/nc) oldpar <- par(mar = mar.multi, oma = oma.multi, mfcol = c(nr, nc)) on.exit(par(oldpar)) nr <- ceiling(ngraph/nc) layout(matrix(seq(nr * nc), nr), widths = widths, heights = heights) for (i in 1:nser) { plot(X, series(x)[, i], axes = FALSE, xlab = "", ylab = "", log = log, col = col[i], bg = bg, pch = pch[i], ann = ann, type = "n", ...) panel(X, series(x)[, i], col = col[i], bg = bg, pch = pch[i], type = type, ...) if (frame.plot) box(...) y.side <- if (i%%2 || !yax.flip) 2 else 4 do.xax <- i%%nr == 0 || i == nser if (axes) { axis(y.side, xpd = NA) if (do.xax) { if (x@format == "counts") { axis(1) } else { axis.POSIXct(1, at = at, format = format) } } } if (ann) { mtext(nm[i], y.side, line = 3, ...) if (do.xax) mtext(xlab, side = 1, line = 3, ...) } if(grid) abline(v = at, lty = 3, col = "grey") } if (ann && !is.null(main)) { par(mfcol = c(1, 1)) cex.main = par("cex.main") font.main = par("font.main") col.main = par("col.main") mtext(main, side = 3, line = 3, cex = cex.main, font = font.main, col = col.main, ...) } return(invisible()) } # Scatter Plot: if (!is.null(y)) { stopifnot(isUnivariate(x)) stopifnot(isUnivariate(y)) xy = cbind(x, y) xy <- xy.coords(series(xy)[, 1], series(xy)[, 2], xlabel, ylabel, log) xlab <- if (missing(xlab)) xy$xlab else xlab ylab <- if (missing(ylab)) xy$ylab else ylab xlim <- if (is.null(xlim)) range(xy$x[is.finite(xy$x)]) else xlim ylim <- if (is.null(ylim)) range(xy$y[is.finite(xy$y)]) else ylim n <- length(xy$x) if (missing(xy.labels)) xy.labels <- (n <= 150) if (!is.logical(xy.labels)) { if (!is.character(xy.labels)) stop("'xy.labels' must be logical or character") do.lab <- TRUE } else { do.lab <- xy.labels } ptype <- if (do.lab) "n" else if (missing(type)) "p" else type plot.default(xy, type = ptype, xlab = xlab, ylab = ylab, xlim = xlim, ylim = ylim, log = log, col = col, bg = bg, pch = pch, axes = axes, frame.plot = frame.plot, ann = ann, main = main, ...) if (missing(xy.lines)) { xy.lines <- do.lab } if (do.lab) text(xy, labels = if (is.character(xy.labels)) xy.labels else seq_along(xy$x), col = col, cex = cex) if (xy.lines) { type = if (do.lab) "c" else "l" lines(xy, col = col, lty = lty, lwd = lwd, type = type) } return(invisible()) } # Multiple Curves all in one Plot, on one Page: if (missing(ylab)) { ylab <- colnames(x) if (length(ylab) != 1) ylab <- xlabel } if (is.null(ylim)) ylim <- range(x, na.rm = TRUE) i = 1 X <- if (x@format == "counts") time(x) else as.POSIXct(time(x)) plot(X, series(x)[, i], ylim = ylim, col = col[(i - 1)%%length(col) + 1], lty = lty[(i - 1)%%length(lty) + 1], lwd = lwd[(i - 1)%%length(lwd) + 1], bg = bg[(i - 1)%%length(bg) + 1], pch = pch[(i - 1)%%length(pch) + 1], type = type, axes = FALSE, ylab = "", xlab = "") if (NCOL(x) > 1) for (i in 2:NCOL(x)) lines(X, series(x)[, i], col = col[(i - 1)%%length(col) + 1], lty = lty[(i - 1)%%length(lty) + 1], lwd = lwd[(i - 1)%%length(lwd) + 1], bg = bg[(i - 1)%%length(bg) + 1], pch = pch[(i - 1)%%length(pch) + 1], type = type) if (ann) title(main = main, xlab = xlab, ylab = ylab, ...) if (axes) { if (x@format == "counts") axis(1, ...) else axis.POSIXct(1, at = at, format = format) axis(2, ...) } if (frame.plot) box(...) if(grid) abline(v = at, lty = 3, col = "grey") return(invisible()) } # ------------------------------------------------------------------------------ .lines.timeSeries <- function(x, FinCenter = NULL, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # NEW Lines method for an object of class "timeSeries" # Arguments: # x - a "timeSeries" object # Example: # plot(MSFT[, 1]); lines(MSFT[, 1], col = "red") # FUNCTION: # Change FinCenter: if (!is.null(FinCenter)) finCenter(x) <- FinCenter # Lines: positions <- time(x) if (x@format == "counts") { lines(x = positions, y = series(x), ...) } else { lines(x = as.POSIXct(positions), y = series(x), ...) } # Return Value: invisible(x) } setMethod("lines", "timeSeries", function(x, FinCenter = NULL, ...) .lines.timeSeries(x, FinCenter, ...)) # until UseMethod dispatches S4 methods in 'base' functions lines.timeSeries <- function(x, FinCenter = NULL, ...) .lines.timeSeries(x, FinCenter = FinCenter, ...) # ------------------------------------------------------------------------------ .points.timeSeries <- function(x, FinCenter = NULL, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Plot method for an object of class "timeSeries" # Arguments: # x - a "timeSeries" object # Value: # Plots a 'timeSeries' object. # FUNCTION: # Change FinCenter: if (!is.null(FinCenter)) finCenter(x) <- FinCenter # Points: positions <- time(x) if (x@format == "counts") { points(x = positions, y = series(x), ...) } else { points(x = as.POSIXct(positions), y = series(x), ...) } # Return Value: invisible(x) } setMethod("points", "timeSeries", function(x, FinCenter = NULL, ...) .points.timeSeries(x, FinCenter = FinCenter, ...)) # until UseMethod dispatches S4 methods in 'base' functions points.timeSeries <- function(x, FinCenter = NULL, ...) .points.timeSeries(x, FinCenter = FinCenter, ...) ################################################################################ pretty.timeSeries <- function(x, n = 5, min.n = n%/%3, shrink.sml = 0.75, high.u.bias = 1.5, u5.bias = 0.5 + 1.5 * high.u.bias, eps.correct = 0, ...) { # A function implemented by Diethelm Wuertz # Description: # Returns a sequence of equally spaced round values. # Details: # Computes a sequence of about n+1 equally spaced ?round? # values which cover the range of the values in x. # The values are chosen so that they are 1, 2 or 5 times # a power of 10. # Arguments: # x - a timeSeries object from which the time is # extracted # n - integer giving the desired number of intervals. # min.n - nonnegative integer giving the minimal # number of intervals. # shrink.sml - positive numeric by a which a default # scale is shrunk in the case when range(x) is # very small. # high.u.bias - non-negative numeric, typically > 1. # Larger high.u.bias values favor larger units. # u5.bias - non-negative numeric multiplier favoring # factor 5 over 2. # eps.correct - integer code, one of {0,1,2}. If # non-0, a correction is made at the boundaries. # ... - further arguments for methods. # FUNCTION: td <- time(x) if (inherits(x, "timeDate")) { x <- as.POSIXct(td) as.timeDate(pretty(x, n=n, min.n=min.n, shrink.sml=shrink.sml, high.u.bias=high.u.bias, u5.bias=u5.bias, eps.correct=eps.correct, ...)) } else { #-> signal series pretty(td) } } ############################################################################### timeSeries/R/fin-daily.R0000644000176000001440000002014312620124746014617 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # alignDailySeries Aligns a 'timeSeries' object to new positions # rollDailySeries Rolls daily a 'timeSeries' on a given period # OBSOLETE: DESCRIPTION: # .ohlcDailyPlot Plots open high low close bar chart # .plotOHLC Internal called by function ohlcDailyPlot() ################################################################################ alignDailySeries <- function (x, method = c("before", "after", "interp", "fillNA", "fmm", "periodic", "natural", "monoH.FC"), include.weekends = FALSE, units = NULL, zone = "", FinCenter = "", ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Aligns a 'timeSeries' object to new positions # Arguments: # x - an object of class "timeSeries". # method - # "before" - use the data from the row whose position is # just before the unmatched position; # "after" - use the data from the row whose position is # just after the unmatched position; # "linear" - interpolate linearly between "before" and # "after". # "fillNA" - fill missing days with NA values # include.weekends - a logical value. Should weekend dates be # included or removed? # Note: alignDailySeries is now based on align timeSeries method. # FUNCTION: # Preserve Title and Documentation: Title <- x@title Documentation <- x@documentation # Adjust zone and FinCenter if provided if (zone != "" || FinCenter != "") { if (zone == "") zone <- getRmetricsOptions("myFinCenter") if (FinCenter == "") FinCenter <- getRmetricsOptions("myFinCenter") x <- timeSeries(x, zone = zone, FinCenter = FinCenter) } # Run Generic Function align() ans <- .align.timeSeries(x = x, by = "1d", offset = "0s", method = method, include.weekends = include.weekends, ...) ans@title <- Title ans@documentation <- Documentation # Add New Units: if (!is.null(units)) colnames(ans) = units # Return Value: ans } # ------------------------------------------------------------------------------ rollDailySeries <- function(x, period = "7d", FUN, ...) { # A function implemented by Diethelm Wuertz # Description: # Rolls daily a 'timeSeries' on a given period # Arguments: # x - an univariate "timeSeries" object or a numeric vector. # n - an integer specifying the number of periods or # terms to use in each rolling/moving sample. # trim - a logical flag: if TRUE, the first n-1 missing values in # the returned object will be removed; if FALSE, they will # be saved in the returned object. The default is TRUE. # FUN - the rolling function, arguments to this function can be # passed through the \code{\dots} argument. # FUNCTION: # Check Arguments: stopifnot(is.timeSeries(x)) # Check for Signal Series: Message <- " is for time series and not for signal series." if (x@format == "counts") stop(as.character(match.call())[1], Message) # Preserve Title and Documentation: Title <- x@title Documentation <- x@documentation # Fix missing matrix method for quantile(), still to do ... .quantile.matrix = function(x, probs = 0.95, ...) { apply(as.matrix(x), 2, quantile, probs = probs) } # Settings: periodLength = as.numeric(substr(period, 1, nchar(period) - 1)) periodUnit = substr(period, nchar(period), nchar(period)) N = nrow(x) Start = start(x) + (periodLength-1)*24*3600 Positions = time(x) to = Positions[Positions > Start] from = to - periodLength*24*3600 # Apply Function: ans <- applySeries(x = x, from = from, to = to, FUN = FUN, ...) ans@title <- Title ans@documentation <- Documentation # Return Value: ans } ################################################################################ # OBSOLETE: .ohlcDailyPlot <- function(x, volume = TRUE, colOrder = c(1:5), units = 1e6, xlab = c("Date", "Date"), ylab = c("Price", "Volume"), main = c("O-H-L-C", "Volume"), grid.nx = 7, grid.lty = "solid", ...) { # A function implemented by Diethelm Wuertz # Description: # Plots open | high | low | close bar chart # Arguments: # x - an S4 object of class 'timeSeries' with named entries: # Open, High, Low, Close, and Volume # Reference: # Build on top of Adrian Trapletti's plotOHLC() # function from his R-package "tseries". # FUNCTION: stopifnot(is.timeSeries(x)) if (x@format == "counts") stop(as.character(match.call())[1], " is for time series and not for signal series.") # Next: x.filled = alignDailySeries(x, method = "fillNA", include.weekends = TRUE) jul = as.integer(julian(time(x.filled))) X = ts(as.matrix(x.filled)[, 1:4], start = min(jul), end = max(jul)) # Plot OHLC: .plotOHLC(X, origin = "1970-01-01", xlab = xlab[1], ylab = ylab[1]) # print(axTicks(1)) # print(axTicks(2)) title(main = main[1]) grid(nx = grid.nx, ny = NULL, lty = grid.lty, ...) # Include Volume? if (volume) { Volume = x[, 5]/units plot(Volume, type = "h", xlab = xlab[2], ylab = ylab[2]) title(main = main[2]) grid(nx = grid.nx, ny = NULL, lty = grid.lty, ...) } # Return value: invisible() } # ------------------------------------------------------------------------------ .plotOHLC = function (x, xlim = NULL, ylim = NULL, xlab = "Time", ylab, col = par("col"), bg = par("bg"), axes = TRUE, frame.plot = axes, ann = par("ann"), main = NULL, date = c("calendar", "julian"), format = "%Y-%m-%d", origin = "1899-12-30", ...) { # A Copy from Contributed R Package 'tseries' # Description: # Internal called by function .ohlcDailyPlot() # FUNCTION: # Check for mts: if ((!is.mts(x)) || (colnames(x)[1] != "Open") || (colnames(x)[2] != "High") || (colnames(x)[3] != "Low") || (colnames(x)[4] != "Close")) stop("x is not a open/high/low/close time series") xlabel <- if (!missing(x)) deparse(substitute(x)) else NULL if (missing(ylab)) ylab <- xlabel date <- match.arg(date) time.x <- time(x) dt <- min(lag(time.x) - time.x)/3 if (is.null(xlim)) xlim <- range(time.x) if (is.null(ylim)) ylim <- range(x[is.finite(x)]) plot.new() plot.window(xlim, ylim, ...) segments(time.x, x[, "High"], time.x, x[, "Low"], col = col[1], bg = bg) segments(time.x - dt, x[, "Open"], time.x, x[, "Open"], col = col[1], bg = bg) segments(time.x, x[, "Close"], time.x + dt, x[, "Close"], col = col[1], bg = bg) if (ann) title(main = main, xlab = xlab, ylab = ylab, ...) if (axes) { if (date == "julian") { axis(1, ...) axis(2, ...) } else { n <- NROW(x) lab.ind <- round(seq(1, n, length = 5)) D <- as.vector(time.x[lab.ind] * 86400) + as.POSIXct(origin, tz = "GMT") DD <- format.POSIXct(D, format = format, tz = "GMT") axis(1, at = time.x[lab.ind], labels = DD, ...) axis(2, ...) } } if (frame.plot) box(...) # Return Value: invisible() } ################################################################################ timeSeries/R/utils-description.R0000644000176000001440000000252712620124746016432 0ustar ripleyusers # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received A copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ # FUNCTION: DESCRIPTION: # description Creates default description string ################################################################################ description <- function() { # A function implemented by Diethelm Wuertz # Description: # Sets default description string: # FUNCTION: # Get Description String: ans <- paste(as.character(date()), "by user:", Sys.getenv("USERNAME")) # Return Value: ans } ################################################################################ timeSeries/R/base-subsetting.R0000644000176000001440000005375612620124746016062 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # METHOD: SUBSETTING METHODS ON DATA: # .subset_timeSeries # .findIndex # $,timeSeries Subsets a time series by column names # $<-,timeSeries Replaces subset by column names # [,timeSeries Subsets a time series object # [<-,timeSeries Assigns value to subsets of a time series ################################################################################ ################################################################################ # index ################################################################################ # Note : no "character" -> because needs to be coerced to timeDate object. setClassUnion("index_timeSeries", members = c("numeric", "logical")) setClassUnion("time_timeSeries", members = c("POSIXt", "Date")) # ------------------------------------------------------------------------------ .subset_timeSeries <- function(x, i, j) { stopifnot(inherits(x, "timeSeries")) stopifnot(is(i, "index_timeSeries")) stopifnot(is(j, "index_timeSeries")) # subset data and positions t <- try(data <- .subset(x, i, j, drop = FALSE), silent = TRUE) if (inherits(t, "try-error")) { # cast error and remove calling function msg <- sub("Error in.*: \n *", "", t) stop(msg, call. = FALSE) } pos <- if (length(x@positions)>0) .subset(x@positions, i) else numeric(0) units <- .subset(x@units, j) # Record IDs: df <- x@recordIDs if (prod(dim(df))) df <- df[i, , drop = FALSE] # Result new("timeSeries", .Data = data, title = x@title, documentation = x@documentation, format = x@format, FinCenter = x@FinCenter, units = units, recordIDs = df, positions = pos) } # ------------------------------------------------------------------------------ .findIndex <- function(ipos, pos) { attributes(ipos) <- NULL if (unsorted <- is.unsorted(pos)) { or <- order(pos) pos <- pos[or] } i <- findInterval(ipos, pos) if (!identical(ipos, pos[i])) stop("subscript out of bounds", call. = FALSE) if (unsorted) i <- or[i] i } ################################################################################ # [,timeSeries Subsets of a 'timeSeries' object ################################################################################ ## i <- c("index_timeSeries", "character", "timeDate", ## "timeSeries", "missing", "ANY") ## j <- c("index_timeSeries", "character", "timeSeries", ## "missing", "ANY") ## expand.grid(i = i, j = j) ## > i j ## 1 index_timeSeries index_timeSeries ## 2 character index_timeSeries ## 3 timeDate index_timeSeries ## 4 timeSeries index_timeSeries ## 5 missing index_timeSeries ## 6 ANY index_timeSeries ## 7 index_timeSeries character ## 8 character character ## 9 timeDate character ## 10 timeSeries character ## 11 missing character ## 12 ANY character ## 13 index_timeSeries timeSeries ## 14 character timeSeries ## 15 timeDate timeSeries ## 16 timeSeries timeSeries ## 17 missing timeSeries ## 18 ANY timeSeries ## 19 index_timeSeries missing ## 20 character missing ## 21 timeDate missing ## 22 timeSeries missing ## 23 missing missing ## 24 ANY missing ## 25 index_timeSeries ANY ## 26 character ANY ## 27 timeDate ANY ## 28 timeSeries ANY ## 29 missing ANY ## 30 ANY ANY ## YC : Added i=time_timeSeries i <- "time_timeSeries" j <- c("index_timeSeries", "character", "timeSeries", "missing", "ANY") expand.grid(i = i, j = j) ## 1 time_timeSeries index_timeSeries ## 2 time_timeSeries character ## 3 time_timeSeries timeSeries ## 4 time_timeSeries missing ## 5 time_timeSeries ANY # ------------------------------------------------------------------------------ ## FIXME : deal with signal series # ------------------------------------------------------------------------------ ## 1 index_timeSeries index_timeSeries setMethod("[", signature(x = "timeSeries", i = "index_timeSeries", j = "index_timeSeries"), function(x, i, j, ..., drop = FALSE) .subset_timeSeries(x, i, j)) # ------------------------------------------------------------------------------ ## 2 character index_timeSeries setMethod("[", signature(x = "timeSeries", i = "character", j = "index_timeSeries"), function(x, i, j, ..., drop = FALSE) { td <- timeDate(i) if (any(is.na(td))) return(as.vector(NA)) # bad to use directly @Data but more efficient in this case i <- .findIndex(td@Data, x@positions) .subset_timeSeries(x, i, j) }) # ------------------------------------------------------------------------------ ## 3 timeDate index_timeSeries setMethod("[", signature(x = "timeSeries", i = "timeDate", j = "index_timeSeries"), function(x, i, j, ..., drop = FALSE) { # bad to use directly @Data but more efficient in this case i <- .findIndex(i@Data, x@positions) .subset_timeSeries(x, i, j) }) # ------------------------------------------------------------------------------ ## 4 timeSeries index_timeSeries setMethod("[", signature(x = "timeSeries", i = "timeSeries", j = "index_timeSeries"), function(x, i, j, ..., drop = FALSE) { if (x@format != "counts" && i@format != "counts" && finCenter(x) != finCenter(i)) stop("FinCenter of timeSeries and subset do not match") .subset_timeSeries(x, as.vector(i), j) }) # ------------------------------------------------------------------------------ ## 5 missing index_timeSeries setMethod("[", signature(x = "timeSeries", i = "missing", j = "index_timeSeries"), function(x, i, j, ..., drop = FALSE) .subset_timeSeries(x, TRUE, j)) # ------------------------------------------------------------------------------ ## 6 ANY index_timeSeries setMethod("[", signature(x = "timeSeries", i = "ANY", j = "index_timeSeries"), function(x,i,j, ..., drop = FALSE) stop("invalid or not-yet-implemented 'timeSeries' subsetting")) # ------------------------------------------------------------------------------ ## 7 index_timeSeries character setMethod("[", signature(x = "timeSeries", i = "index_timeSeries", j = "character"), function(x, i, j, ..., drop = FALSE) { j <- pmatch(j, slot(x, "units"), duplicates.ok = TRUE) if (any(is.na(j))) stop("subscript out of bounds", call. = FALSE) .subset_timeSeries(x, i, j) }) # ------------------------------------------------------------------------------ ## 8 character character setMethod("[", signature(x = "timeSeries", i = "character", j = "character"), function(x, i, j, ..., drop = FALSE) { j <- pmatch(j, slot(x, "units"), duplicates.ok = TRUE) if (any(is.na(j))) stop("subscript out of bounds", call. = FALSE) callGeneric(x=x, i=i, j=j, drop=drop) }) # ------------------------------------------------------------------------------ ## 9 timeDate character setMethod("[", signature(x = "timeSeries", i = "timeDate", j = "character"), function(x, i, j, ..., drop = FALSE) { # bad to use directly @Data but more efficient in this case i <- .findIndex(i@Data, x@positions) j <- pmatch(j, slot(x, "units"), duplicates.ok = TRUE) if (any(is.na(j))) stop("subscript out of bounds", call. = FALSE) .subset_timeSeries(x, i, j) }) # ------------------------------------------------------------------------------ ## 10 timeSeries character # inherited method works fine # ------------------------------------------------------------------------------ ## 11 missing character setMethod("[", signature(x = "timeSeries", i = "missing", j = "character"), function(x, i, j, ..., drop = FALSE) { j <- pmatch(j, slot(x, "units"), duplicates.ok = TRUE) if (any(is.na(j))) stop("subscript out of bounds", call. = FALSE) .subset_timeSeries(x, TRUE, j) }) # ------------------------------------------------------------------------------ ## 12 ANY character setMethod("[", signature(x = "timeSeries", i = "ANY", j = "index_timeSeries"), function(x,i,j, ..., drop = FALSE) stop("invalid or not-yet-implemented 'timeSeries' subsetting")) # ------------------------------------------------------------------------------ ## 13 index_timeSeries timeSeries ## 14 character timeSeries ## 15 timeDate timeSeries ## 16 timeSeries timeSeries ## 17 missing timeSeries ## 18 ANY timeSeries ## rely on inherited methods # ------------------------------------------------------------------------------ ## 19 index_timeSeries missing setMethod("[", signature(x = "timeSeries", i = "index_timeSeries", j = "missing"), function(x, i, j, ..., drop = FALSE) { if(nargs() == 2) { # same sub-setting as matrix if(any(as.logical(i)) || prod(dim(x)) == 0) as.vector(x)[i] } else { .subset_timeSeries(x, i, TRUE) } }) # ------------------------------------------------------------------------------ ## 20 character missing setMethod("[", signature(x = "timeSeries", i = "character", j = "missing"), function(x, i, j, ..., drop = FALSE) { if (nargs() == 2) as.numeric(NA) #-> return NA if comma missing else callGeneric(x=x, i=i, j=TRUE) }) # ------------------------------------------------------------------------------ ## 21 timeDate missing setMethod("[", signature(x = "timeSeries", i = "timeDate", j = "missing"), function(x, i, j, ..., drop = FALSE) { # do not return NA if comma missing because timeDate index # bad to use directly @Data but more efficient in this case i <- .findIndex(i@Data, x@positions) .subset_timeSeries(x, i, TRUE) }) # ------------------------------------------------------------------------------ ## 22 timeSeries missing setMethod("[", signature(x = "timeSeries", i = "timeSeries", j = "missing"), function(x, i, j, ..., drop = FALSE) { if (x@format != "counts" && i@format != "counts" && finCenter(x) != finCenter(i)) stop("FinCenter of timeSeries and subset do not match") if(nargs() == 2) { if(any(as.logical(i)) || prod(dim(x)) == 0) as.vector(x)[as.vector(i)] } else { .subset_timeSeries(x, as.vector(i), TRUE) } }) # ------------------------------------------------------------------------------ ## workaround i <- matrix. setMethod("[", signature(x = "timeSeries", i = "matrix", j = "missing"), function(x, i, j, ..., drop = FALSE) { if(nargs() == 2) { # same sub-setting as matrix if(any(as.logical(i)) || prod(dim(x)) == 0) as.vector(x)[i] } else { .subset_timeSeries(x, as.vector(i), TRUE) } }) # ------------------------------------------------------------------------------ ## 23 missing missing setMethod("[", signature(x = "timeSeries", i = "missing", j = "missing"), function(x, i, j, ..., drop = FALSE) x) # ------------------------------------------------------------------------------ ## 24 ANY missing setMethod("[", signature(x = "timeSeries", i = "ANY", j = "index_timeSeries"), function(x,i,j, ..., drop = FALSE) stop("invalid or not-yet-implemented 'timeSeries' subsetting")) # ------------------------------------------------------------------------------ ## 25 index_timeSeries ANY setMethod("[", signature(x = "timeSeries", i = "ANY", j = "index_timeSeries"), function(x,i,j, ..., drop = FALSE) stop("invalid or not-yet-implemented 'timeSeries' subsetting")) # ------------------------------------------------------------------------------ ## 26 character ANY setMethod("[", signature(x = "timeSeries", i = "ANY", j = "index_timeSeries"), function(x,i,j, ..., drop = FALSE) stop("invalid or not-yet-implemented 'timeSeries' subsetting")) # ------------------------------------------------------------------------------ ## 27 timeDate ANY setMethod("[", signature(x = "timeSeries", i = "ANY", j = "index_timeSeries"), function(x,i,j, ..., drop = FALSE) stop("invalid or not-yet-implemented 'timeSeries' subsetting")) # ------------------------------------------------------------------------------ ## 28 timeSeries ANY setMethod("[", signature(x = "timeSeries", i = "ANY", j = "index_timeSeries"), function(x,i,j, ..., drop = FALSE) stop("invalid or not-yet-implemented 'timeSeries' subsetting")) # ------------------------------------------------------------------------------ ## 29 missing ANY setMethod("[", signature(x = "timeSeries", i = "ANY", j = "index_timeSeries"), function(x,i,j, ..., drop = FALSE) stop("invalid or not-yet-implemented 'timeSeries' subsetting")) # ------------------------------------------------------------------------------ ## 30 ANY ANY setMethod("[", signature(x = "timeSeries", i = "ANY", j = "index_timeSeries"), function(x,i,j, ..., drop = FALSE) stop("invalid or not-yet-implemented 'timeSeries' subsetting")) # ------------------------------------------------------------------------------ ## 1 time_timeSeries index_timeSeries setMethod("[", signature(x = "timeSeries", i = "time_timeSeries", j = "index_timeSeries"), function(x,i,j, ..., drop = FALSE) { i <- timeDate(i) callGeneric(x=x, i=i, j=j, drop=drop) }) # ------------------------------------------------------------------------------ ## 2 time_timeSeries character setMethod("[", signature(x = "timeSeries", i = "time_timeSeries", j = "character"), function(x,i,j, ..., drop = FALSE) { i <- timeDate(i) callGeneric(x=x, i=i, j=j, drop=drop) }) # ------------------------------------------------------------------------------ ## 4 time_timeSeries missing setMethod("[", signature(x = "timeSeries", i = "time_timeSeries", j = "missing"), function(x,i,j, ..., drop = FALSE) { i <- timeDate(i) callGeneric(x=x, i=i, drop=drop) }) # ------------------------------------------------------------------------------ ## 5 time_timeSeries ANY setMethod("[", signature(x = "timeSeries", i = "time_timeSeries", j = "ANY"), function(x,i,j, ..., drop = FALSE) { i <- timeDate(i) callGeneric(x=x, i=i, j=j, drop=drop) }) ################################################################################ # $,timeSeries Subset by column names ################################################################################ # should behave the same way as $,data.frame setMethod("$", signature(x = "timeSeries"), function (x, name) { nc <- colnames(x) nr <- names(x@recordIDs) dataIdx <- pmatch(name, nc) recordIDsIdx <- pmatch(name, nr) # if none or more than one match returns NULL if ((is.na(dataIdx) && is.na(recordIDsIdx)) || (!is.na(dataIdx) && !is.na(recordIDsIdx))) return(NULL) if (!is.na(dataIdx)) return(.subset(x, TRUE, dataIdx)) if (!is.na(recordIDsIdx)) return(x@recordIDs[[recordIDsIdx]]) NULL }) # methods to generate completion after $ .DollarNames.timeSeries <- function(x, pattern) grep(pattern, names(x), value = TRUE) ################################################################################ # $<-,timeSeries Subset by column names ################################################################################ .dollar_assign <- function(x, name, value) { stopifnot(inherits(x, "timeSeries")) # check size of value if (NROW(value) < nrow(x)) { value <- rep(value, length.out = nrow(x)) } else if (NROW(value) > nrow(x)) { stop(gettextf("replacement has %i rows, time series has %i", NROW(value), nrow(x))) #, call. = FALSE) } # assign value to recordIDs if (length(x@recordIDs)) { x@recordIDs[[name]] <- value } else { x@recordIDs <- as.data.frame(value) colnames(x@recordIDs) <- name } # check if object is valid validObject(x) x } setReplaceMethod("$", signature(x = "timeSeries", value = "numeric"), function(x, name, value) { # check size of value if (NROW(value) < nrow(x)) { value <- rep(value, length.out = nrow(x)) } else if (NROW(value) > nrow(x)) { stop(gettextf("replacement has %i rows, time series has %i", NROW(value), nrow(x))) #, call. = FALSE) } # get data part data <- getDataPart(x) # coerce value to matrix ncol <- NCOL(value) value <- matrix(value, ncol = NCOL(value), dimnames = NULL) # set up colnames cn <- colnames(value) if (any(is.null(cn))) cn <- if (ncol > 1) paste(name, ".", seq.int(ncol), sep = "") else name colnames(value) <- cn # if name already present - subsitute ... if (any(cdata <- (colnames(data) %in% cn))) { cvalue <- cn %in% colnames(data) data[,cdata] <- value[,cvalue] value <- cbind(data, value[,!cvalue]) ans <- setDataPart(x, value) } else { ans <- .dollar_assign(x, name, as.vector(value)) } # return ans }) setReplaceMethod("$", signature(x = "timeSeries", value = "factor"), function(x, name, value) .dollar_assign(x, name, value)) setReplaceMethod("$", signature(x = "timeSeries", value = "ANY"), function(x, name, value) .dollar_assign(x, name, value)) ################################################################################ # [<-,timeSeries Assign value to subsets of a 'timeSeries' object ################################################################################ # Note that most of the generic function works by default with [<-,timeDate # only need to deal with special cases that are i <- ("timeDate", "character") # ------------------------------------------------------------------------------ # timeDate setReplaceMethod("[", signature(x = "timeSeries", i = "timeDate", j = "ANY"), function(x, i, j, value) { # bad to use directly @Data but more efficient in this case i <- .findIndex(i@Data, x@positions) callGeneric(x=x, i=i, j=j, value=value) }) setReplaceMethod("[", signature(x = "timeSeries", i = "timeDate", j = "missing"), function(x, i, j, value) callGeneric(x=x, i=i, j=TRUE, value=value)) # ------------------------------------------------------------------------------ # character setReplaceMethod("[", signature(x = "timeSeries", i = "character", j = "ANY"), function(x, i, j, value) { i <- timeDate(i) callGeneric(x=x, i=i, j=j, value=value) }) setReplaceMethod("[", signature(x = "timeSeries", i = "character", j = "missing"), function(x, i, j, value) { i <- timeDate(i) callGeneric(x=x, i=i, j=TRUE, value=value) }) ################################################################################ timeSeries/R/timeSeries-slotTime.R0000644000176000001440000001056012620124746016654 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # time,timeSeries Extracs time positions from a 'timeSeries' # time<- Defines S3 UseMethod # time<-.timeSeries ... to avoid problems with zoo # FUNCTION: DESCRIPTION: # getTime Get time slot from a 'timeSeries' # setTime<- Set new time slot to a 'timeSeries' ################################################################################ # DEPRECATED: DESCRIPTION: # seriesPositions Deprecated, use time # newPositions<- Deprecated, use time<- ################################################################################ .time.timeSeries <- function(x, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Extracs time positions from a 'timeSeries' # Arguments: # x - a 'timeSeries' object. # Value: # Returns a time resampled object of class 'timeSeries'. # FUNCTION: if (length(x@positions)>0) timeDate(x@positions, zone = "GMT", FinCenter = x@FinCenter) else seq.int(NROW(x)) } setMethod("time", "timeSeries", function(x, ...) .time.timeSeries(x, ...)) # until UseMethod dispatches S4 methods in 'base' functions time.timeSeries <- function(x, ...) .time.timeSeries(x, ...) # ------------------------------------------------------------------------------ `time<-` <- function(x, value) { UseMethod("time<-") } # ------------------------------------------------------------------------------ `time<-.timeSeries` <- function(x, value) { # A function implemented by Yohan Chalabi # Note: # To avoid conflict with zoo package. # FUNCTION: # Assign Rownames: rownames(x) <- value # Return Value: x } # ------------------------------------------------------------------------------ # setMethod("time<-", "timeSeries", function(x, value) # { # rownames(x) <- value # # Return # x # }) ############################################################################### getTime <- function(x) { # Description: # Get time slot from a 'timeSeries' object. # Arguments: # x - a 'timeSeries' object # FUNCTION: # Return Value: time(x) } # ------------------------------------------------------------------------------ "setTime<-" <- function(x, value) { # Description: # Set time slot to a 'timeSeries' object. # Arguments: # x - a 'timeSeries' object # FUNCTION: # Assign Time Slot: time(x) <- value # Return Value: x } ############################################################################### # DEPRECATED seriesPositions <- function(object) { # A function implemented by Diethelm Wuertz # Description: # Extracts the positions of a 'timeSeries' objects and # converts them to a 'timeDate' object. # Arguments: # object - a 'timeSeries' object # Value: # Returns 'timeSeries' positions as 'timeDate' objects. # FUNCTION: # Deprecated: .Deprecated(new = "time", package = "timeSeries") # Return Value: time(object) } # ------------------------------------------------------------------------------ # Deprecated: "newPositions<-" <- function(object, value) { # A function implemented by Diethelm Wuertz # FUNCTION: # Deprecated: .Deprecated(new = "time<-", package = "timeSeries") # Assign Rownames: rownames(object) <- value # Return Value: object } ################################################################################ timeSeries/R/base-rank.R0000644000176000001440000000377012620124746014615 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: COLUMN STATISTICS IN FUTILITIES: # rank,timeSeries Returns sample ranks of a 'timeSeries' object ################################################################################ setMethod("rank", "timeSeries", function(x, na.last = TRUE, ties.method = eval(formals(rank)$ties.method)) { # Description: # Returns the sample ranks of the values in a 'timeSeries' # Arguments: # x - an object of class 'timeSeries' # ties.method - # "average", replaces them by their mean, # "first" method results in a permutation with increasing # values at each index set of ties. # "random" method puts these in random order whereas the # default, # "max" and "min" replaces them by their maximum and minimum # respectively, the latter being the typical sports ranking. # Note: # Ties (i.e., equal values) and missing values can be handled # in several ways. # FUNCION: # Return Value: apply(x, 2, rank, na.last = na.last, ties.method = ties.method) } ) ################################################################################ timeSeries/R/timeSeries-slotFinCenter.R0000644000176000001440000000610712620124746017635 0ustar ripleyusers # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # finCenter,timeSeries Get financial center slot from a 'timeSeries' # finCenter<-,timeSeries Set financial center slot from a 'timeSeries' # FUNCTION: DESCRIPTION: # getFinCenter Get financial center slot from a 'timeSeries' # setFinCenter<- Set new financial center slot from a 'timeSeries' ################################################################################ setMethod("finCenter", "timeSeries", function(x) { # A function implemented by Yohan Chalabi and Diethelm Wuertz # Description: # Get financial center slot from a 'timeSeries' object # Arguments: # x - an object of class 'timeSeries' # FUNCTION: # Extract financial center: ans <- x@FinCenter # Return Value: ans }) # ------------------------------------------------------------------------------ setMethod("finCenter<-", "timeSeries", function(x, value) { # A function implemented by Yohan Chalabi and Diethelm Wuertz # Description: # Set financial center slot from a 'timeSeries' object # Arguments: # x - an object of class 'timeSeries' # value - a character string, setting the name of the financial # center. # FUNCTION: # Check: if (x@format == "counts") stop(as.character(match.call())[1], " is for time series and not for signal series.") # Convert to user financial centre: positions <- timeDate(charvec = time(x), zone = finCenter(x), FinCenter = value) # Assign Positions to Time Stamps: time(x) <- positions # Return Value: x }) ################################################################################ getFinCenter <- function(x) { # Description: # Get financial center slot from a 'timeSeries' object # Arguments: # x - a 'timeSeries' object # FUNCTION: # Return Value: finCenter(x) } # ------------------------------------------------------------------------------ "setFinCenter<-" <- function(x, value) { # Description: # Set new financial center slot from a 'timeSeries' object # FUNCTION: # Arguments: # x - a 'timeSeries' object # Assign Financial Center Slot: finCenter(x) <- value # Return Value: x } ################################################################################ timeSeries/R/methods-comment.R0000644000176000001440000000266612620124746016060 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # comment, timeSeries Get documentation slot of a timeSeries object # comment<-,timeSeries Set documentation slot of a timeSeries object ################################################################################ setMethod("comment", "timeSeries", function(x) { # A function implemented by Yohan Chalabi and Diethelm Wuertz # Return Value: x@documentation } ) # ------------------------------------------------------------------------------ setMethod("comment<-", "timeSeries", function(x, value) { x@documentation <- paste(value, collapse = " ") # Return Value: x } ) ################################################################################ timeSeries/R/fin-runlengths.R0000644000176000001440000000422012620124746015704 0ustar ripleyusers # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # runlengths Returns 'timeSeries' object of runlengths ################################################################################ runlengths <- function(x, ...) { # A function implemetned by Diethelm Wuertz # Description: # Returns 'timeSeries' object of runlengths # Arguments: # x - an univariate 'timeSeries' object of financial returns # ... - arguments passed to the function na.omit() # Value: # runlengths an object of class 'timeSeries'. # Note: # Zeroes are handled as NA. # Example: # set.seed(4711) # x.tS = timeSeries(data=rnorm(12), charvec=timeCalendar(), units="x") # runlengths(x.tS) # FUNCTION: # Check arguments: stopifnot(is.timeSeries(x)) stopifnot(isUnivariate(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Handle Missing Values: x[x == 0] <- NA x.vec = sign(as.vector(na.omit(x, ...))) # Compute Run Lengths: n <- length(x.vec) y <- x.vec[-1L] != x.vec[-n] Index <- c(which(y | is.na(y)), n) X = x[Index, ] series(X) <- matrix(diff(c(0L, Index)), ncol = 1) # Reset recordIDs: X@recordIDs <- data.frame() # Preserve Title and Documentation: X@title <- Title X@documentation <- Documentation # Return Value: X } ################################################################################ timeSeries/R/fin-align.R0000644000176000001440000001077112620124746014615 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # align Aligns a 'timeSeries object' to time stamps # .align.timeSeries Aligns a 'timeSeries object' to time stamps ################################################################################ # DW: See also ... # in package timeDate # setMethod("align", "ANY", # setMethod("align", "timeDate", # ------------------------------------------------------------------------------ .align.timeSeries <- function(x, by = "1d", offset = "0s", method = c("before", "after", "interp", "fillNA", "fmm", "periodic", "natural", "monoH.FC"), include.weekends = FALSE, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Aligns a 'timeSeries' object to equidistant time stamps # Arguments: # x - an object of class "timeSeries". # by - # offset - # method - # "before" - use the data from the row whose position is # just before the unmatched position; # "after" - use the data from the row whose position is # just after the unmatched position; # "linear" - interpolate linearly between "before" and # "after". # "fillNA" - fill missing days with NA values # include.weekends - a logical value. Should weekend dates be # included or removed? # Example: # data(usdthb) # data = matrix(usdthb[, "BID"]) # charvec = as.character(usdthb[, "XDATE"]) # USDTHB = timeSeries(data, charvec, format = "%Y%M%d%H%M") # align(USDTHB, by = "3h", offset = "92m") # MSFT = as.timeSeries(data(msft.dat)) # align(MSFT) # See also: # in package timeDate # setMethod("align", "ANY", # setMethod("align", "timeDate", # FUNCTION: # Settings: Title <- x@title Documentation <- x@documentation # Check for Signal Series: if (x@format == "counts") stop(as.character(match.call())[1], " is for time series and not for signal series.") # check if series sorted if (is.unsorted(x)) x <- sort(x) # Adjustment: Method <- match.arg(method) fun <- switch(Method, before = function(x, u, v) approxfun(x = u, y = v, method = "constant", f = 0, ...)(x), after = function(x, u, v) approxfun(x = u, y = v, method = "constant", f = 1, ...)(x), interp = , fillNA = function(x, u, v) approxfun(x = u, y = v, method = "linear", f = 0.5, ...)(x), fmm = , periodic = , natural = , monoH.FC = function(x, u, v) splinefun(x = u, y = v, method = Method, ...)(x)) # Align timeDate stamps td1 <- time(x) td2 <- align(td1, by = by, offset = offset) # extract numerical values u <- as.numeric(td1, units = "secs") xout <- as.numeric(td2, units = "secs") N = NCOL(x) data <- matrix(ncol = N, nrow = length(td2)) xx <- getDataPart(x) for (i in 1:N) { v <- as.vector(xx[, i]) # New Positions and approximated values: yout <- fun(xout, u, v) if (Method == "fillNA") yout[!(xout %in% u)] = NA # Compose data: data[, i] = yout } # build time series ans <- timeSeries(data, td2, units = colnames(x)) # Remove Weekends: if(!include.weekends) ans <- ans[isWeekday(td2), ] # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Value: ans } # ------------------------------------------------------------------------------ setMethod("align", "timeSeries", .align.timeSeries) ################################################################################ timeSeries/R/base-cbind.R0000644000176000001440000002575312620124746014746 0ustar ripleyusers # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # Generic functions defined in {base} # cbind.timeSeries Combines two 'timeSeries' objects by column # rbind.timeSeries Combines two 'timeSeries' objects by row ################################################################################ # Generic functions defined in {methods} # cbind2.timeSeries Combines two objects by column # rbind2.timeSeries Combines two objects by row ################################################################################ cbind.timeSeries <- function(..., deparse.level = 1) { # A function implemented by Yohan Chalabi and Diethelm Wuertz # Description: # Binds columns of two 'timeSeries' objects # Arguments: # ... # deparse.level # FUNCTION: # Columnwise bind: dots <- list(...) # Preserve the title of the first ... element # counter <- NULL # for (i in 1:length(dots)) counter <- c(counter, is.timeSeries(dots[[i]])) # Index <- which(counter[1]) Title <- "" #dots[[Index]]@title # Compose Attributes - Documentation : Attributes <- list() for (i in 1:length(dots)) { if (class(dots[[i]]) == "timeSeries") { nextAttributes <- getAttributes(dots[[i]]) Attributes <- .appendList(Attributes, nextAttributes) } } Documentation <- as.character(date()) attr(Documentation, "Attributes") <- Attributes # remove NULL from dots args if (any(t <- unlist(lapply(dots, is.null)))) dots[t] <- NULL # deal with numeric values vecIdx <- sapply(dots, function(obj) (!inherits(obj, "timeSeries") && prod(dim(obj)) == 1)) if (any(vecIdx)) dots[vecIdx] <- lapply( dots[vecIdx], function(vec) as.timeSeries(rep(as.vector(vec), len = NROW(dots[[1]])))) # coerce to timeSeries object if not a timeSeries if (any(t <- !unlist(lapply(dots, inherits, "timeSeries")))) dots[t] <- lapply(dots[t], as.timeSeries) # note that new timeSeries get FinCenter of first entry of args FinCenter = finCenter(dots[[1]]) # get names of arguments if any units <- unlist(lapply(dots, colnames)) if (length(t <- as.logical((nchar(nm <- names(units)))))) units[t] <- nm[t] # change colnames if they are the same if (length(unique(units)) != length(units)) { for (name in unique(units)) { pos <- grep(name, units) if (length(pos) != 1) units[pos] <- paste(units[pos], seq(pos), sep = ".") } } # ensure that data is sorted dots <- lapply(dots, sort) # get list of timestamps and recordIDs tds <- lapply(dots, slot, "positions") rec <- lapply(dots, slot, "recordIDs") # Fast version when timeSeries have identical timestamps # or with signal series if (any(co <- unlist(lapply(dots, function(ts) ts@format == "counts"))) || (any(!co) & all(sapply(tds[!co], identical, tds[!co][[1]])))) { # check if all have same number of rows if (diff(range((unlist(lapply(dots, NROW)))))) stop("number of rows must match") td <- if (any(!co)) tds[!co][[1]] else NULL data <- array(unlist(dots), dim=c(NROW(dots[[1]]), sum(sapply(dots, ncol)))) recordIDs <- if (sum(recIdx <- sapply(rec, length))) do.call(cbind, rec[recIdx]) else data.frame() ans <- timeSeries(data = data, charvec = td, units = units, zone = "GMT", FinCenter = FinCenter, recordIDs = recordIDs) } else { # Aligned timestamps: td <- sort(unique(unlist(tds))) fun <- function(ts, td, ref) { mm <- matrix(NA, ncol = ncol(ts), nrow = length(ref)) mm[findInterval(td, ref),] <- getDataPart(ts) mm} data <- mapply(fun, ts = dots, td = tds, MoreArgs = list(ref=td), SIMPLIFY = FALSE) data <- array(unlist(data), dim=c(length(td), sum(sapply(dots, ncol)))) # Note that recordIDs are not preserved when time stamps are # not equal because don't know what value we should use for # missing entries if (sum(sapply(rec, length))) { msg <- "@recordIDs cannot be binded when timestamps are not identical" warning(msg, call. = FALSE) } # note that new timeSeries get FinCenter of first entry of args ans <- timeSeries(data = data, charvec = td, units = units, zone = FinCenter, FinCenter = FinCenter) } # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Value: ans } # ------------------------------------------------------------------------------ ## # YC: ## # Note that since 2.9.0 S3 methods can not be defined for S4 classes ## # which extends an object like matrix. Therefore we turn all S3 ## # generics to S4 generics for backward compatibility ## # Note that since 2.8.0 it is possible to define methods for functions ## # with dots ... ## if (getRversion() < "2.9.0") { ## cbind.timeSeries <- ## function(..., deparse.level = 1) ## .cbind.timeSeries(..., deparse.level = deparse.level) ## } else { ## setGeneric("cbind", signature = "...") #-> creates warning but ## # cannot avoid it with ## # current dotsMethods scheme ## setMethod("cbind", "timeSeries", function(..., deparse.level = 1) ## .cbind.timeSeries(..., deparse.level = deparse.level)) ## } # ------------------------------------------------------------------------------ setMethod("cbind2", c("timeSeries", "timeSeries"), function(x, y) cbind(x, y)) setMethod("cbind2", c("timeSeries", "ANY"), function(x,y) callGeneric(x, as(y, "timeSeries"))) setMethod("cbind2", c("ANY", "timeSeries"), function(x,y) callGeneric(as(x, "timeSeries"), y)) setMethod("cbind2", c("timeSeries", "missing"), function(x,y) x) # ------------------------------------------------------------------------------ rbind.timeSeries <- function(..., deparse.level = 1) { # A function implemented by Yohan Chalabi and Diethelm Wuertz # Description: # Binds rows of two 'timeSeries' objects # Arguments: # ... # deparse.level # FUNCTION: # Row bind: dots <- list(...) # Preserve the title of the first ... element # counter <- NULL # for (i in 1:length(dots)) counter <- c(counter, is.timeSeries(dots[[i]])) # Index <- which(counter[1]) Title <- "" # dots[[Index]]@title # Compose Attributes - Documentation : Attributes <- list() for (i in 1:length(dots)) { if (class(dots[[i]]) == "timeSeries") { nextAttributes <- getAttributes(dots[[i]]) Attributes <- .appendList(Attributes, nextAttributes) } } Documentation <- as.character(date()) attr(Documentation, "Attributes") <- Attributes # Remove NULL from dots args if (any(t <- unlist(lapply(dots, is.null)))) dots[t] <- NULL # Coerce to timeSeries object if not a timeSeries if (any(t <- !unlist(lapply(dots, inherits, "timeSeries")))) dots[t] <- lapply(dots[t], as.timeSeries) if (diff(range((unlist(lapply(dots, ncol)))))) stop("number of columns must match") # get names of arguments if any otherwise use colnames units <- unlist(lapply(dots, colnames)) if (length(t <- as.logical((nchar(nm <- names(units)))))) units[t] <- nm[t] units <- structure(units, dim = c(ncol(dots[[1]]), length(dots))) units <- apply(units, 1, paste, collapse = "_") # Bind: # data <- base::rbind(...) # no because S3 method dispatch done in C level data <- do.call(base::rbind, lapply(dots, getDataPart)) if (any(unlist(lapply(dots, function(ts) ts@format == "counts")))) { return(timeSeries(data=data, units = units)) } # recordIDs part if (length(dots) > 1) recordIDs <- tryCatch(do.call(rbind, lapply(dots, slot, "recordIDs")), error = function(e) { msg <- paste("@recordIDs cannot be binded :", conditionMessage(e)) warning(msg, call. = FALSE) data.frame()}) else recordIDs <- slot(dots[[1]], "recordIDs") tds <- unlist(lapply(dots, slot, "positions")) ans <- timeSeries(data = data, charvec = tds, zone = "GMT", FinCenter = finCenter(dots[[1]]), units = units, recordIDs = recordIDs) # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Value: ans } # ------------------------------------------------------------------------------ ## # YC: ## # Note that since 2.9.0 S3 methods can not be defined for S4 classes ## # which extends an object like matrix. Therefore we turn all S3 ## # generics to S4 generics for backward compatibility ## # Note that since 2.8.0 it is possible to define methods for functions ## # with dots ... ## if (getRversion() < "2.9.0") { ## rbind.timeSeries <- ## function(..., deparse.level = 1) ## .rbind.timeSeries(..., deparse.level = deparse.level) ## } else { ## setGeneric("rbind", signature = "...") #-> creates warning but ## # cannot avoid it with ## # current dotsMethods scheme ## setMethod("rbind", "timeSeries", function(..., deparse.level = 1) ## .rbind.timeSeries(..., deparse.level = deparse.level)) ## } # ------------------------------------------------------------------------------ setMethod("rbind2", c("timeSeries", "timeSeries"), function(x, y) rbind(x, y)) setMethod("rbind2", c("timeSeries", "ANY"), function(x,y) callGeneric(x, as(y, "timeSeries"))) setMethod("rbind2", c("ANY", "timeSeries"), function(x,y) callGeneric(as(x, "timeSeries"), y)) setMethod("rbind2", c("timeSeries", "missing"), function(x,y) x) ################################################################################ timeSeries/R/stats-window.R0000644000176000001440000000750212620124746015412 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # window,timeSeries Extracts a piece from a 'timeSeries' object # DEPRECATED: DESCRIPTION: # cut,timeSeries Extracsts a piece from a 'timeSeries' object ################################################################################ .window.timeSeries <- function(x, start, end, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Windows a piece from a 'timeSeries' object. # Arguments: # x - a 'timeSeries' object # from, to - two 'timeDate' position vectors which size the # blocks # Details: # from and to, are both included in the window. # Value: # Returns a S4 object of class 'timeSeries'. # FUNCTION: # Check Arguments: stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Check for Signal Series if (x@format == "counts") stop(as.character(match.call())[1], " is for time series and not for signal series.") # check if all argument names are used if (length(dot <- list(...))) { if (any(names(dot) %in% c("from", "to"))) { if (!is.null(from <- dot$from)) start <- from if (!is.null(to <- dot$to)) end <- to warning("Arguments 'from/to' are deprecated.\nUse instead 'start/end'.", call. = FALSE) } } start <- timeDate(start) end <- timeDate(end) Positions <- time(x) test <- (Positions >= start & Positions <= end) ans <- x[test,] # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Value: ans } setMethod("window", "timeSeries", function(x, start, end, ...) .window.timeSeries(x, start, end, ...)) # until UseMethod dispatches S4 methods in 'base' functions window.timeSeries <- function(x, ...) .window.timeSeries(x, ...) ############################################################################### .cut.timeSeries <- function (x, from, to, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Cuts out a piece from a 'timeSeries' object. # Arguments: # x - a 'timeSeries' object # from, to - two 'timeDate' position vectors which size the # blocks # Value: # Returns a S4 object of class 'timeSeries'. # FUNCTION: # .Deprecated("window", "timeSeries") stopifnot(is.timeSeries(x)) if (x@format == "counts") stop(as.character(match.call())[1], " is for time series and not for signal series.") from = timeDate(from) to = timeDate(to) Positions = time(x) test = (Positions >= from & Positions <= to) ans <- x[test,] # Return value: ans } setMethod("cut", "timeSeries", function (x, from, to, ...) .cut.timeSeries(x, from, to, ...)) # until UseMethod dispatches S4 methods in 'base' functions cut.timeSeries <- function(x, ...) .cut.timeSeries(x, ...) ################################################################################ timeSeries/R/fin-spreads.R0000644000176000001440000000513412620124746015161 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # spreads Computes spreads from a 'timeSeries' object # midquotes Computes mid quotes from a 'timeSeries' object ################################################################################ # DW: # Setting bid and ask for column names is maybe the best choice. Examples # are the TED spread or the Libo OIS spread. The spread between High and Low # is the range. # ------------------------------------------------------------------------------ spreads <- function(x, which = c("Bid", "Ask"), tickSize = NULL) { # A function implemented by Diethelm Wuertz # Description: # Computes spreads from a 'timeSeries' object # FUNCTION: # Check arguments: stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Compute Spread: spread <- x[, which[2]] - x[, which[1]] if (!is.null(tickSize)) series(spread) <- round(series(spread)/tickSize) # Preserve Title and Documentation: spread@title <- Title spread@documentation <- Documentation # Return Value: spread } # ------------------------------------------------------------------------------ midquotes = function(x, which = c("Bid", "Ask")) { # A function implemented by Diethelm Wuertz # Description: # Computes mid quotes from a 'timeSeries' object # FUNCTION: # Check arguments: stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Compute Mid Quotes: midquotes = 0.5 * ( x[, which[1]] + x[, which[2]] ) # Preserve Title and Documentation: midquotes@title <- Title midquotes@documentation <- Documentation # Return Value: midquotes } ################################################################################ timeSeries/R/fin-monthly.R0000644000176000001440000001316512620124746015215 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: FOR MONTHLY OPERATIONS: # countMonthlyRecords Returns a series with monthly counts of records # rollMonthlyWindows Returns start/end dates for rolling time windows # rollMonthlySeries Rolls Monthly a 'timeSeries' on a given period ################################################################################ # DW: # I think we should call these functions: # countRecordsMonthly, rollWindowsMonthly, rollSeriesMonthly, ... # ------------------------------------------------------------------------------ countMonthlyRecords <- function(x) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Returns a series with monthly counts of records # Example: # x = as.timeSeries(data(msft.dat)); countMonthlyRecords(x) # x = as.timeSeries(data(edhec)); countMonthlyRecords(x) # FUNCTION: # Check Arguments: stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Check for Signal Series: if (x@format == "counts") stop(as.character(match.call())[1], " is for time series and not for signal series.") # Count: ans <- rollMonthlySeries(x[, 1], period = "1m", by = "1m", FUN = NROW) colnames(ans) <- "Counts" # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Value: ans } # ------------------------------------------------------------------------------ rollMonthlyWindows <- function(x, period = "12m", by = "1m") { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Returns start and end dates for rolling time windows # Arguments: # x - a 'timeSerie's object of asset returns # period - a character string denoting the length of the rolling # window, e.g. "24m" means 24 months # by - a character string denoting the shift of the rolling window, # e.g. "3m" means one quarter # FUNCTION: # Check Arguments: stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Check for Signal Series: if (x@format == "counts") stop(as.character(match.call())[1], " is for time series and not for signal series.") # Get Window Parameter: periodLength <- as.numeric(substr(period, 1, nchar(period)-1)) periodUnit <- substr(period, nchar(period), nchar(period)) byLength <- as.numeric(substr(by, 1, nchar(by)-1)) byUnit <- substr(by, nchar(by), nchar(by)) stopifnot(periodUnit == "m") stopifnot(byUnit == "m") # Get Window Parameter: periodLength <- as.numeric(substr(period, 1, nchar(period)-1)) periodUnit <- substr(period, nchar(period), nchar(period)) byLength <- as.numeric(substr(by, 1, nchar(by)-1)) byUnit <- substr(by, nchar(by), nchar(by)) stopifnot(periodUnit == "m") stopifnot(byUnit == "m") # Make Windows - We expect monthly data records ... positions <- time(x) Positions <- unique(timeFirstDayInMonth(positions)) numberOfPositions <- length(Positions) startDates <- Positions[1:(numberOfPositions-periodLength)] endDates <- Positions[(periodLength+1):numberOfPositions]-24*3600 # Windows: windows <- list(from = startDates, to = endDates) attr(windows, "control") = c(start = start(positions), end = end(positions)) # Return Value: windows } # ------------------------------------------------------------------------------ rollMonthlySeries <- function(x, period = "12m", by = "1m", FUN, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Rolls monthly a 'timeSeries' on a given period # Arguments: # x - a 'timeSerie's object of asset returns # period - a character string denoting the length of the rolling # window, e.g. "24m" means 24 months # by - a character string denoting the shift of the rolling window, # e.g. "3m" means one quarter # FUN - function to be applied # FUNCTION: # Check Arguments: stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Check for Signal Series: stopifnot(is(x, "timeSeries")) if (x@format == "counts") stop(as.character(match.call())[1], " is for time series and not for signal series.") # Settings: windows <- rollMonthlyWindows(x = x[, 1], period = period, by = by) # Apply Function: ans <- applySeries(x = x, from = windows$from, to = windows$to, FUN = FUN, ...) # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Value: ans } ################################################################################ timeSeries/R/base-t.R0000644000176000001440000000177312620124746014126 0ustar ripleyusers # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # t,timeSeries Returns the transpose of timeSeries object ################################################################################ setMethod("t", "timeSeries", function(x) callGeneric(getDataPart(x))) ################################################################################ timeSeries/R/base-rev.R0000644000176000001440000000221112620124746014443 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # rev,timeSeries Reverts a 'timeSeries' object in time ################################################################################ .rev.timeSeries <- function(x) x[NROW(x):1,] setMethod("rev", "timeSeries", function(x) .rev.timeSeries(x)) # until UseMethod dispatches S4 methods in 'base' functions rev.timeSeries <- function(x) .rev.timeSeries(x) ################################################################################ timeSeries/R/stats-filter.R0000644000176000001440000000572612620124746015376 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # filter,timeSeries Applies linear filtering to a 'timeSeries' object ################################################################################ setMethod("filter", "timeSeries", function(x, filter, method = c("convolution", "recursive"), sides = 2, circular = FALSE, init = NULL) { # Description: # Applies linear filtering to a 'timeSeries' object # Arguments: # x - a univariate or multivariate time series. # filter - a vector of filter coefficients in reverse time order (as # for AR or MA coefficients). # method - Either "convolution" or "recursive" (and can be # abbreviated). If "convolution" a moving average is used: # if "recursive" an autoregression is used. # sides - for convolution filters only. If sides=1 the filter # coefficients are for past values only; if sides=2 they are # centred around lag 0. In this case the length of the filter # should be odd, but if it is even, more of the filter is # forward in time than backward. # circular - for convolution filters only. If TRUE, wrap the filter # around the ends of the series, otherwise assume external # values are missing (NA). # init - for recursive filters only. Specifies the initial values # of the time series just prior to the start value, in reverse # time order. The default is a set of zeros. # Value: # Returns a 'timeSeries' object. # FUNCTION: # Check Arguments: stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Filter: ans <- filter(getDataPart(x), filter = filter, method = method, sides = sides, circular = circular, init = init) # Note: do not use as.matrix because ts objects might # not be coerced properly ans <- as(ans, "matrix") # Add Column Names: colnames(ans) <- colnames(x) ans <- setDataPart(x, ans) # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Value: ans }) ################################################################################ timeSeries/R/utils-structure.R0000644000176000001440000000473712620124746016154 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # str,timeSeries Displays the structure of a 'timeSeries' object ################################################################################ .str.timeSeries <- function(object, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Displays the structure of a 'timeSeries' object. # Arguments: # object - an object of class 'timeSeries'. # ... - # FUNCTION: # Series Name: cat("Time Series: ") cat("\n Name: ", as.character(c(substitute(object)))) # YC : as.character(c( important to handle str(timeSeries()) # Data Matrix: Dim = dim(object) cat("\nData Matrix: ") cat("\n Dimension: ", Dim) cat("\n Column Names: ", colnames(object) ) firstName = rownames(object)[1] lastName = rownames(object)[Dim[1]] cat("\n Row Names: ", firstName, " ... ", lastName) # Date/Time Positions: cat("\nPositions: ") cat("\n Start: ", as.character(start(object))) cat("\n End: ", as.character(end(object))) # Other Attributes: cat("\nWith: ") cat("\n Format: ", object@format) cat("\n FinCenter: ", object@FinCenter) cat("\n Units: ", object@units) cat("\n Title: ", object@title) cat("\n Documentation: ", object@documentation) cat("\n") # Return Value: invisible() } setMethod("str", "timeSeries", function(object, ...) .str.timeSeries(object, ...)) # until UseMethod dispatches S4 methods in 'base' functions str.timeSeries <- function (object, ...) .str.timeSeries(object, ...) ################################################################################ timeSeries/R/methods-as.R0000644000176000001440000002564512620124746015023 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # METHOD: CREATE A TIMESERIES FROM OTHER OBJECTS: # as.timeSeries Defines method for a 'timeSeries' object # as.timeSeries.default Returns the input # as.timeSeries.ts Transforms a 'data.frame' into a 'timeSeries' # as.timeSeries.data.frame Transforms a 'data.frame' into a 'timeSeries' # as.timeSeries.character Loads and transformas from a demo file # as.timeSeries.zoo Transforms a 'zoo' object into a 'timeSeries' # METHOD: TRANSFORM A TIMESERIES INTO OTHER OBJECTS: # as.vector.timeSeries Converts a univariate 'timeSeries' to a vector # as.matrix.timeSeries Converts a 'timeSeries' to a 'matrix' # as.numeric.timeSeries Converts a 'timeSeries' to a 'numeric' # as.data.frame.timeSeries Converts a 'timeSeries' to a 'data.frame' # as.ts.timeSeries Converts a 'timeSeries' to a 'ts' # as.ts.logical Converts a 'timeSeries' to 'logical' # as.list.timeSeries Converts a 'timeSeries' to 'list' ################################################################################ # YC: # here keep S3 methods because it should expect an oldClass object as argument # ------------------------------------------------------------------------------ as.timeSeries <- function(x, ...) { UseMethod("as.timeSeries") } # ------------------------------------------------------------------------------ as.timeSeries.default <- function(x, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # FUNCTION: # Return Value: ans <- timeSeries(x, ...) ans } setAs("ANY", "timeSeries", function(from) as.timeSeries(from)) # ------------------------------------------------------------------------------ as.timeSeries.ts <- function(x, ...) { asTime <- unclass(time(x)) yearPart <- trunc(asTime) decimalPart <- asTime - yearPart leapYears <- yearPart%%4 == 0 & (yearPart%%100 != 0 | yearPart%%400 == 0) days <- trunc(decimalPart * (365 + leapYears)) + 1 freq <- frequency(x) charvec <- if (freq == 4) { # Quarterly Data: days <- days + 1 ans <- timeDate(format(strptime(paste(yearPart, days), format = "%Y %j")), zone = "GMT", FinCenter = "GMT") timeLastDayInQuarter(ans) } else if (freq == 12) { # Monthly Data: days <- days + 1 ans <- timeDate(format(strptime(paste(yearPart, days), format = "%Y %j")), zone = "GMT", FinCenter = "GMT") timeLastDayInMonth(ans) } else { NA } # Result: tS = timeSeries(x, charvec, ...) attr(tS, "ts") <- c(start = round(start(x)), frequency = round(frequency(x)), deltat = deltat(x)) # Return Value: tS } setAs("ts", "timeSeries", function(from) as.timeSeries(from)) # ------------------------------------------------------------------------------ as.timeSeries.data.frame <- function(x, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Converts a data.frame into a timeSeries object # Notes: # The first column must contain the dates. # Examples: # data(bmwRet); head(as.timeSeries(data(bmwRet))) # FUNCTION: if (all(!(num <- unlist(lapply(x, is.numeric))))) stop("x contains no numeric columns") # Check if rownames(x) or the first column has a valid ISO-format: if (num[1]) # is.numeric() is better than format == "unkown" # which can give wrong result. i.e. whichFormat(0.1253328600) suppressWarnings(charvec <- timeDate(rownames(x))) else suppressWarnings(charvec <- timeDate(as.vector(x[,1]))) data <- as.matrix(x[, num]) units <- names(x)[num] if (any(!(cl <- num[-1]))) { recordIDs <- as.data.frame(x[, !c(TRUE, cl)]) # do not take first column names(recordIDs) <- names(x)[!c(TRUE, cl)] } else { recordIDs <- data.frame() } # Create Time Series Object: timeSeries(data = data, charvec = charvec, units = units, recordIDs = recordIDs, ...) } setAs("data.frame", "timeSeries", function(from) as.timeSeries(from)) # ------------------------------------------------------------------------------ as.timeSeries.character <- function(x, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Example: # as.timeSeries(data(nyse)) # FUNCTION: # Load Demo File - Returns a data frame: x <- eval(parse(text = eval(x))) # timeSeries: ans <- as.timeSeries(x, ...) # Return Value: ans } setAs("character", "timeSeries", function(from) as.timeSeries(from)) # ------------------------------------------------------------------------------ as.timeSeries.zoo <- function(x, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # FUNCTION: # as. timeSeries: ans <- timeSeries(data = as.matrix(x), charvec = as.character(attr(x, "index")), ...) # Return Value: ans } ################################################################################ # YC: # Since 2.9.0 must define proper S4 methods .as.matrix.timeSeries <- function(x, ...) { # A function implemented by Diethelm Wuertz # Description: # Converts a multivariate "timeSeries" to a matrix # Arguments: # x - a 'timeSeries' object # Value: # Returns the data slot of a 'timesSeries' object as a vector. # FUNCTION: # Check: if (!inherits(x, "timeSeries")) stop("x is not a timeSeries object!") # Convert: ans <- getDataPart(x) # is matrix dimnames(ans) <- dimnames(x) # Results ans } setMethod("as.matrix", "timeSeries", function(x, ...) .as.matrix.timeSeries(x, ...)) # until UseMethod dispatches S4 methods in 'base' functions as.matrix.timeSeries <- function(x, ...) .as.matrix.timeSeries(x, ...) setAs("timeSeries", "matrix", function(from) as.matrix(from)) # ------------------------------------------------------------------------------ .as.data.frame.timeSeries <- function(x, row.names = NULL, optional = FALSE, ...) { # A function implemented by Diethelm Wuertz # Description: # Converts a multivariate "timeSeries" to a data.frame # Arguments: # x - a 'timeSeries' object # row.names, optional - not used # Value: # Returns the data slot of a 'timesSeries' object as a data frame. # FUNCTION: # get rownames from timeSeries if (is.null(row.names)) row.names <- rownames(x) if (any(duplicated(row.names))) stop("cannot convert to data.frame with duplicate timestamps") ans <- if (!length(x@recordIDs)) data.frame(as.list(x), row.names = row.names, ...) else data.frame(as.list(x), x@recordIDs, row.names = row.names, ...) # Return Value: ans } setMethod("as.data.frame", "timeSeries", function(x, row.names = NULL, optional = FALSE, ...) .as.data.frame.timeSeries(x, row.names = row.names, optional = optional, ...)) # until UseMethod dispatches S4 methods in 'base' functions as.data.frame.timeSeries <- function(x, ...) .as.data.frame.timeSeries(x, ...) setAs("timeSeries", "data.frame", function(from) as.data.frame(from)) # ------------------------------------------------------------------------------ .as.ts.timeSeries <- function(x, ...) { # A function implemented by Diethelm Wuertz # Description: # Converts a colum from a 'timeSeries' object into an object # of class 'ts'. # Example: # # x = dummySeries(); as.ts(x) # # x = timeSeries(seq(12), timeSequence(by = "month", length.out = 12)) # as.ts(x) # # x = dummySeries()[c(3,6,9,12),]; as.ts(x) # x = dummySeries()[c(2,5,8,11),]; as.ts(x) # x = dummySeries()[c(1,4,7,10),]; as.ts(x) # # x = dummySeries()[c(4,7,10,1),]; as.ts(x) # Changes: # # FUNCTION: # check if monthly or quarterly data td <- time(x) m <- c(timeDate::months(td)) #-> c() to remove attributes # (m[1] -1) -> shift vector to match first entry in m monthly <- seq(from = m[1]-1, length.out=length(m)) %% 12 + 1 quarterly <- seq(from = m[1]-1, by = 3, length=length(m)) %% 12 + 1 # get year of first entry y1 <- as.numeric(format(td[1], "%Y")) # important to use vector/matrix to avoid troubles with ts() data <- if (isUnivariate(x)) as.vector(x) else matrix(x, ncol = ncol(x)) if (identical(monthly, m)) # Monthly data return(ts(data, start = c(y1, m[1]), frequency = 12)) if (identical(quarterly, m)) # Quarterly data return(ts(data, start = c(y1, m[1]%/%4+1), frequency = 4)) # other frequencies not implemented yet; return default value ans <- ts(data, names = colnames(x)) attr(ans, "positions") <- time(x) ans } setMethod("as.ts", "timeSeries", function(x, ...) .as.ts.timeSeries(x, ...)) # until UseMethod dispatches S4 methods in 'base' functions as.ts.timeSeries <- function(x, ...) .as.ts.timeSeries(x, ...) setAs("timeSeries", "ts", function(from) as.ts(from)) # ------------------------------------------------------------------------------ # YC: # Unneeded since timeSeries inherits from the structure class # as.logical.timeSeries <- function(x, ...) as.logical(series(x), ...) # ------------------------------------------------------------------------------ # YC: # Important for functions like lapply and sapply to work properly .as.list.timeSeries <- function(x, ...) { data <- getDataPart(x) ncols <- NCOL(data) value <- vector("list", ncols) for (i in seq.int(ncols)) value[[i]] <- as.vector(data[, i]) names(value) <- colnames(x) value } setMethod("as.list", "timeSeries", function(x, ...) .as.list.timeSeries(x, ...)) # until UseMethod dispatches S4 methods in 'base' functions as.list.timeSeries <- function(x, ...) .as.list.timeSeries(x, ...) setAs("timeSeries", "list", function(from) as.list(from)) ################################################################################ timeSeries/R/base-apply.R0000644000176000001440000000570112620124746015003 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # apply Applies a function to blocks of a 'timeSeries' ################################################################################ setMethod("apply", "timeSeries", function(X, MARGIN, FUN, ...) { # A function implemented by Siethelm Wuertz and Yohan Chalabi # Description: # Apply Functions Over 'Array'timeSeries' Margins # Arguments: # X - an array, including a matrix. # MARGIN - a vector giving the subscripts which the function # will be applied over. E.g., for a matrix 1 indicates rows, # 2 indicates columns, c(1, 2) indicates rows and columns. # Where X has named dimnames, it can be a character vector # selecting dimension names. # FUN - the function to be applied: see ???Details???. In the case # of functions like +, %*%, etc., the function name must be # backquoted or quoted. # ... - optional arguments to FUN. # Value: # Returns a vector or array or list of values obtained by # applying a function to margins of a 'timeSeries'. If the # returned value is a matrix, and if the input argument X and # the returned value have the same number of rows, then the # returned value will be transformed into a 'timeSeries' object. # FUNCTION # Check arguments: stopifnot(is.timeSeries(X)) # Extract Title and Documentation: Title <- X@title Documentation <- X@documentation # Settings: pos <- X@positions rec <- X@recordIDs FinCenter <- finCenter(X) X <- getDataPart(X) ans <- callGeneric() # Manage when univariate timeSeries drops the apply to vector: if( is(ans, "vector") && identical(length(ans), NROW(X)) ) { ans <- matrix(ans, ncol=1) } # Result: if (is(ans, "matrix") && identical(NROW(ans), NROW(X))) { # Compose timeSeries ans <- timeSeries( data = ans, charvec = pos, one = FinCenter, FinCenter = FinCenter, recordIDs = rec) # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation } # Return Value: ans }) ############################################################################### timeSeries/R/timeSeries-signalCounts.R0000644000176000001440000000267612620124746017536 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # .signalCounts Creates charvec for integer indexed time stamps ################################################################################ .signalCounts <- function(int) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Descriptions: # Creates the charvec for integer indexed time stamps # Arguments: # int - a vector of integers, the counts. # FUNCTION: # Check that int is an integer # ... # Check that all int's are positive ... # ... # Format: cint <- as.character(int) ans <- format(cint, width = max(nchar(cint)), justify = "right") # Return Value: ans } ################################################################################ timeSeries/R/timeSeries-isRegular.R0000644000176000001440000000336512620124746017016 0ustar ripleyusers # This R package is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This R package is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this R package; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ # FUNCTION: DESCRIPTION: # isDaily,timeSeries-method Tests if a time series is a daily series # isMonthly,timeSeries-method Tests if a time series is a monthly series # isQuarterly,timeSeries-method Tests if a time series is a quarterly series # isRegular,timeSeries-method Tests if a time series is a regular series # frequency,timeSeries-method Returns the frequency of a regular time series ################################################################################ setMethod("isDaily", "timeSeries", function(x) callGeneric(time(x))) setMethod("isQuarterly", "timeSeries", function(x) callGeneric(time(x))) setMethod("isMonthly", "timeSeries", function(x) callGeneric(time(x))) setMethod("isRegular", "timeSeries", function(x) callGeneric(time(x))) setMethod("frequency", "timeSeries", function(x, ...) callGeneric(time(x), ...)) ################################################################################ timeSeries/R/base-scale.R0000644000176000001440000000311312620124746014740 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # scale,timeSeries Centers and/or scales a 'timeSeries' object ################################################################################ .scale.timeSeries <- function(x, center = TRUE, scale = TRUE) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Centers and/or scales a 'timeSeries' object. # Arguments: # FUNCTION: # Scale: setDataPart(x, scale(x = getDataPart(x), center = center, scale = scale)) } setMethod("scale", "timeSeries", function(x, center = TRUE, scale = TRUE) .scale.timeSeries(x, center = center, scale = scale)) # until UseMethod dispatches S4 methods in 'base' functions scale.timeSeries <- function (x, center = TRUE, scale = TRUE) .scale.timeSeries(x, center = center, scale = scale) ################################################################################ timeSeries/R/fin-periodical.R0000644000176000001440000001412312620124746015631 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # endOfPeriodSeries Returns series back to a given period # endOfPeriodStats Returns statistics back to a given period # endOfPeriodBenchmarks Returns benchmarks back to a given period ################################################################################ endOfPeriodSeries <- function(x, nYearsBack = c("1y", "2y", "3y", "5y", "10y", "YTD")) { # A function implemented by Diethelm Wuertz # Description: # Returns series back to a given period # Arguments: # x - a monthly 'timeSeries' object of returns # nYearsBack - a period string. How long back should the series # be extracted? Options include values from 1 year to 10 years. # and year to date: "1y", "2y", "3y", "5y", "10y", "YTD". # FUNCTION: # Check: stopifnot(is.timeSeries(x)) # Match Arguments: nYearsBack <- match.arg(nYearsBack) # Settings: if (nYearsBack == "YTD") monthsBack = atoms(end(x))$m else if (nYearsBack == "1y") monthsBack = 12 else if (nYearsBack == "2y") monthsBack = 24 else if (nYearsBack == "3y") monthsBack = 36 else if (nYearsBack == "5y") monthsBack = 60 else if (nYearsBack == "10y") monthsBack = 120 stopifnot( nrow(x) >= monthsBack ) # ReturnValue: rev(rev(x)[1:monthsBack, ]) } # ------------------------------------------------------------------------------ endOfPeriodStats <- function(x, nYearsBack = c("1y", "2y", "3y", "5y", "10y", "YTD")) { # A function implemented by Diethelm Wuertz # Description: # Returns series statistics back to a given period # Arguments: # x - a monthly 'timeSeries' object of returns # nYearsBack - a period string. How long back should the series # be extracted? Options include values from 1 year to 10 years. # and year to date: "1y", "2y", "3y", "5y", "10y", "YTD". # FUNCTION: # Check: stopifnot(is.timeSeries(x)) # Match Arguments: nYearsBack <- match.arg(nYearsBack) # Series: Series <- endOfPeriodSeries(x, nYearsBack = nYearsBack) # Internal Function: .cl.vals <- function(x, ci) { x = x[!is.na(x)] n = length(x) if (n <= 1) return(c(NA, NA)) se.mean = sqrt(var(x)/n) t.val = qt((1 - ci)/2, n - 1) mn = mean(x) lcl = mn + se.mean * t.val ucl = mn - se.mean * t.val c(lcl, ucl) } # Statistics: for (i in 1:ncol(Series)) { # Basic Statistics: X = as.vector(Series[, i]) X.length = length(X) X = X[!is.na(X)] X.na = X.length - length(X) ci = 0.95 z = c(X.length, X.na, min(X), max(X), as.numeric(quantile(X, prob = 0.25, na.rm = TRUE)), as.numeric(quantile(X, prob = 0.75, na.rm = TRUE)), mean(X), median(X), sum(x), sqrt(var(X)/length(X)), .cl.vals(X, ci)[1], .cl.vals(X, ci)[2], var(X), sqrt(var(X)), skewness(X), kurtosis(X)) znames = c("nobs", "NAs", "Minimum", "Maximum", "1. Quartile", "3. Quartile", "Mean", "Median", "Sum", "SE Mean", "LCL Mean", "UCL Mean", "Variance", "Stdev", "Skewness", "Kurtosis") stats1 <- matrix(z, ncol = 1) row.names(stats1) <- znames # Monthly Return Statistics: xData <- as.vector(x) noNegativePeriods <- length(xData[xData < 0 ]) noPositivePeriods <- length(xData[xData > 0 ]) stats1 = rbind(stats1, worstPeriod = min(xData), negativeValues = noNegativePeriods, positiveValues = noPositivePeriods) MaximumDrawdown = NA TimeUnderWater = NA AnnualizedVolatility = NA SharpeRatio = NA InformationRatio = NA ValueAtRisk = NA ExpectedShortfall = NA # Bind: if (i > 1) { stats <- cbind.data.frame(stats, stats1) } else { stats <- stats1 } } colnames(stats) <- colnames(x) # Return Value: stats } # ------------------------------------------------------------------------------ endOfPeriodBenchmarks <- function(x, benchmark = ncol(x), nYearsBack = c("1y", "2y", "3y", "5y", "10y", "YTD")) { # A function implemented by Diethelm Wuertz # Description: # Returns benchmarks back to a given period # Arguments: # x - a monthly 'timeSeries' object of financial returns # nYearsBack - a period string. How long back should the series # be extracted? Options include values from 1 year to 10 years. # and year to date: "1y", "2y", "3y", "5y", "10y", "YTD". # FUNCTION: # Checks: stopifnot(is.timeSeries(x)) # Match Arguments: nYearsBack <- match.arg(nYearsBack) # Series: Series <- endOfPeriodSeries(x[, -benchmark], nYearsBack = nYearsBack) y <- Benchmark <- endOfPeriodSeries(x[, benchmark], nYearsBack = nYearsBack) stats <- NULL for (i in 1:ncol(Series)) { # Gdet Series: x <- Series[, i] # Compute Statistics: stats1 <- c( TrackingError = NA, Alpha = NA, Beta = NA, CorrelationToBenchmark = NA) # Bind Results: stats <- rbind(stats, stats1) } # Return Value: invisible() } ################################################################################ timeSeries/R/timeSeries.R0000644000176000001440000002551112620124746015060 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # .signalSeries Creates a signal series from scratch # .timeSeries Creates a time series from scratch # METHODS: # timeSeries,ANY,ANY # timeSeries,matrix,missing # timeSeries,matrix,timeDate # timeSeries,matrix,numeric # timeSeries,matrix,ANY ################################################################################ ## .signalSeries : generate units, title, documentation if NULL ## data must be a matrix .signalSeries <- function(data, charvec, units = NULL, format, zone = "", FinCenter = "", recordIDs = data.frame(), title = NULL, documentation = NULL, ...) { # Description: # Arguments: # Note: # it is possible that a ts object is considered as a # matrix when timeSeries method as dispatched. Hence this check # FUNCTION: if (!is(data, "matrix")) data <- as(data, "matrix") # Add units, title and Documentation: if (is.null(units)) units <- colnames(data) if (is.null(units)) units <- paste("SS.", seq.int(dim(data)[2]), sep = "") if (is.null(title)) title = "Signal Series Object" if (is.null(documentation)) documentation = as.character(date()) # remove rownames of data but keep colnames for # functions like var, cov ... # Note that if it fails, new("timeSeries" should fail to - normal try(dimnames(data) <- list(NULL, units), silent = TRUE) ### new("signalSeries", ### .Data = data, ### units = units, ### recordIDs = recordIDs, ### title = title, ### documentation = documentation) new("timeSeries", .Data = data, units = units, positions = numeric(0), FinCenter = "", format = "counts", recordIDs = recordIDs, title = title, documentation = documentation) } # ------------------------------------------------------------------------------ ## .timeSeries : generate units, title, documentation if NULL ## data must be a matrix and charvec a timeDate object .timeSeries <- SERIES <- function(data, charvec, units = NULL, format, zone = "", FinCenter = "", recordIDs = data.frame(), title = NULL, documentation = NULL, ...) { # Description: # Creates a time series from scratch # Arguments: # Note: # it is possible that a ts object is considered as a # matrix when timeSeries method as dispatched. Hence this check # FUNCTION: if (!is(data, "matrix")) data <- as(data, "matrix") stopifnot(is(charvec, "numeric")) # Add units, title and Documentation: if (is.null(units)) units <- colnames(data) if (is.null(units)) units <- paste("TS.", seq.int(dim(data)[2]), sep = "") if (is.null(title)) title <- "Time Series Object" if (is.null(documentation)) documentation <- as.character(date()) if (missing(format)) format <- "%Y-%m-%d" if (identical("", FinCenter)) FinCenter <- "GMT" # Remove rownames of data but keep colnames for # functions like var, cov ... # Note that if it fails, new("timeSeries" should fail to - normal try(dimnames(data) <- list(NULL, units), silent = TRUE) positions <- charvec # as.numeric(charvec, "sec") attributes(positions) <- NULL new("timeSeries", .Data = data, positions = positions, units = units, format = format, # charvec@format, FinCenter = FinCenter, # charvec@FinCenter, recordIDs = recordIDs, title = title, documentation = documentation) } # ------------------------------------------------------------------------------ ## missing ANY setMethod("timeSeries", signature(data = "missing", charvec = "ANY"), function (data, charvec, units = NULL, format = NULL, zone = "", FinCenter = "", recordIDs = data.frame(), title = NULL, documentation = NULL, ...) { .signalSeries(data = matrix(NA), units = units, recordIDs = recordIDs, title = title, documentation = documentation, ...) }) # ------------------------------------------------------------------------------ ## missing missing setMethod("timeSeries", signature(data = "missing", charvec = "missing"), function (data, charvec, units = NULL, format = NULL, zone = "", FinCenter = "", recordIDs = data.frame(), title = NULL, documentation = NULL, ...) { .signalSeries(data = matrix(NA), units = units, recordIDs = recordIDs, title = title, documentation = documentation, ...) }) # ------------------------------------------------------------------------------ ## ANY ANY setMethod("timeSeries", signature(data = "ANY", charvec = "ANY"), function (data, charvec, units = NULL, format = NULL, zone = "", FinCenter = "", recordIDs = data.frame(), title = NULL, documentation = NULL, ...) { data <- as(data, "matrix") if (!is(data, "matrix")) stop("Could not coerce 'data' to a matrix") callGeneric(data = data, charvec = charvec, units = units, format = format, zone = zone, FinCenter = FinCenter, recordIDs = recordIDs, title = title, documentation = documentation, ...) }) # ------------------------------------------------------------------------------ ## ANY missing setMethod("timeSeries", signature(data = "ANY", charvec = "missing"), function (data, charvec, units = NULL, format = NULL, zone = "", FinCenter = "", recordIDs = data.frame(), title = NULL, documentation = NULL, ...) { data <- as(data, "matrix") if (!is(data, "matrix")) stop("Could not coerce 'data' to a matrix") callGeneric(data = data, units = units, format = format, zone = zone, FinCenter = FinCenter, recordIDs = recordIDs, title = title, documentation = documentation, ...) }) # ------------------------------------------------------------------------------ ## matrix missing setMethod("timeSeries", signature(data = "matrix", charvec = "missing"), function (data, charvec, units = NULL, format = NULL, zone = "", FinCenter = "", recordIDs = data.frame(), title = NULL, documentation = NULL, ...) { charvec <- rownames(data) if (is.null(charvec)) { .signalSeries(data = data, units = units, recordIDs = recordIDs, title = title, documentation = documentation, ...) } else { callGeneric(data = data, charvec = charvec, units = units, format = format, zone = zone, FinCenter = FinCenter, recordIDs = recordIDs, title = title, documentation = documentation, ...) } } ) # ------------------------------------------------------------------------------ ## matrix timeDate setMethod("timeSeries", signature(data = "matrix", charvec = "timeDate"), function (data, charvec, units = NULL, format = NULL, zone = "", FinCenter = "", recordIDs = data.frame(), title = NULL, documentation = NULL, ...) { if (any(is.na(charvec))) return(.signalSeries(data = data, units = units, recordIDs = recordIDs, title = title, documentation = documentation, ...)) if (any(!c(zone, FinCenter) %in% "")) charvec <- timeDate(charvec, format = format, zone = zone, FinCenter = FinCenter) .timeSeries(data = data, charvec = as.numeric(charvec, "sec"), units = units, format = charvec@format, FinCenter = charvec@FinCenter, recordIDs = recordIDs, title = title, documentation = documentation, ...) } ) # ------------------------------------------------------------------------------ ## matrix numeric setMethod("timeSeries", signature(data = "matrix", charvec = "numeric"), function (data, charvec, units = NULL, format = NULL, zone = "", FinCenter = "", recordIDs = data.frame(), title = NULL, documentation = NULL, ...) { if (any(!c(zone, FinCenter) %in% "")) { td <- timeDate(charvec, zone = zone, FinCenter = FinCenter) charvec <- as.numeric(td, "sec") FinCenter <- finCenter(td) } .timeSeries(data = data, charvec = charvec, units = units, FinCenter = FinCenter, recordIDs = recordIDs, title = title, documentation = documentation, ...) } ) # ------------------------------------------------------------------------------ ## matrix ANY setMethod("timeSeries", signature(data = "matrix", charvec = "ANY"), function (data, charvec, units = NULL, format = NULL, zone = "", FinCenter = "", recordIDs = data.frame(), title = NULL, documentation = NULL, ...) { # if charvec NULL returns a signal series if (is.null(charvec)) return(.signalSeries(data = data, units = units, recordIDs = recordIDs, title = title, documentation = documentation, ...)) # coerce charvec to timeDate charvec <- timeDate(charvec = charvec, format = format, zone = zone, FinCenter = FinCenter) if (any(is.na(charvec))) # Note : there is already a warning in timeDate if there are NA's .signalSeries(data = data, units = units, recordIDs = recordIDs, title = title, documentation = documentation, ...) else .timeSeries(data = data, charvec = as.numeric(charvec, "sec"), units = units, format = charvec@format, FinCenter = charvec@FinCenter, recordIDs = recordIDs, title = title, documentation = documentation, ...) } ) ################################################################################ timeSeries/R/methods-mathOps.R0000644000176000001440000001342312620124746016022 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # Ops,timeSeries Returns group 'Ops' for a 'timeSeries' object # cummax Returns cumulated maxima # cummin Returns cumulated minima # cumprod Returns cumulated products # cumsum Returns cumulated sums # ##diff,timeSeries Differences a timeSeries object # ##scale,timeSeries Scales a timeSeries object # quantile,timeSeries Samples qunatiles of a timeSeries object ################################################################################ setMethod("Ops", c("vector", "timeSeries"), function(e1, e2) { lattrs <- attributes(e2) e2 <- getDataPart(e2) value <- callGeneric(e1, e2) if (identical(dim(value), dim(e2))) { attributes(value) <- lattrs value <- asS4(value, TRUE) } value } ) # ------------------------------------------------------------------------------ setMethod("Ops", c("array", "timeSeries"), function(e1, e2) { e1 <- as.vector(e1) lattrs <- attributes(e2) e2 <- getDataPart(e2) value <- callGeneric(e1, e2) if (identical(dim(value), dim(e2))) { attributes(value) <- lattrs value <- asS4(value, TRUE) } value } ) # ------------------------------------------------------------------------------ setMethod("Ops", c("ts", "timeSeries"), function(e1, e2) { e1 <- as(e1, "matrix") lattrs <- attributes(e2) e2 <- getDataPart(e2) value <- callGeneric(e1, e2) if (identical(dim(value), dim(e2))) { attributes(value) <- lattrs value <- asS4(value, TRUE) } value } ) # ------------------------------------------------------------------------------ setMethod("Ops", c("timeSeries", "vector"), function(e1, e2) { lattrs <- attributes(e1) e1 <- getDataPart(e1) value <- callGeneric(e1, e2) if (identical(dim(value), dim(e1))) { attributes(value) <- lattrs value <- asS4(value, TRUE) } value } ) # ------------------------------------------------------------------------------ setMethod("Ops", c("timeSeries", "array"), function(e1, e2) { lattrs <- attributes(e1) e1 <- getDataPart(e1) value <- callGeneric(e1, e2) if (identical(dim(value), dim(e1))) { attributes(value) <- lattrs value <- asS4(value, TRUE) } value } ) # ------------------------------------------------------------------------------ setMethod("Ops", c("timeSeries", "ts"), function(e1, e2) { lattrs <- attributes(e1) e1 <- getDataPart(e1) e2 <- as(e2, "matrix") value <- callGeneric(e1, e2) if (identical(dim(value), dim(e1))) { attributes(value) <- lattrs value <- asS4(value, TRUE) } value } ) # ------------------------------------------------------------------------------ setMethod("Ops", c("timeSeries", "timeSeries"), function(e1, e2) { # Note keep recordIDs of e1 only # check if conformable arrays if (!identical(dim(e1), dim(e2))) stop("non-conformable arrays") # check if positions are identical if (!identical(e1@positions, e2@positions)) stop("positions slot do not match") lattrs <- attributes(e1) e1 <- getDataPart(e1) e2 <- getDataPart(e2) value <- callGeneric(e1, e2) if (identical(dim(value), dim(e1))) { attributes(value) <- lattrs value <- asS4(value, TRUE) } value } ) # ------------------------------------------------------------------------------ setMethod("cummax", "timeSeries", function(x) callGeneric(getDataPart(x))) # ------------------------------------------------------------------------------ setMethod("cummin", "timeSeries", function(x) callGeneric(getDataPart(x))) # ------------------------------------------------------------------------------ setMethod("cumprod", "timeSeries", function(x) callGeneric(getDataPart(x))) # ------------------------------------------------------------------------------ setMethod("cumsum", "timeSeries", function(x) callGeneric(getDataPart(x))) # ------------------------------------------------------------------------------ ## setMethod("diff", "timeSeries", function(x, ...) { ## x <- getDataPart(x) ## callGeneric() ## }) # ------------------------------------------------------------------------------ ## setMethod("scale", "timeSeries", function(x, ...) { ## x <- getDataPart(x) ## callGeneric() ## }) # ------------------------------------------------------------------------------ setMethod("quantile", "timeSeries", function(x, ...) { x <- getDataPart(x) callGeneric() }) ################################################################################ timeSeries/R/methods-show.R0000644000176000001440000001162612620124746015372 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # show,timeSeries Prints a 'timeSeries' object # print,timeSeries Prints a 'timeSeries' object # .print.timeSeries Called by function print,timeSerie ################################################################################ setMethod("show", "timeSeries", function(object) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Print method for an S4 object of class "timeSeries" # FUNCTION: # Check records to get printed: maxRmetrics <- as.numeric(getRmetricsOptions("max.print")) maxR <- as.numeric(getOption("max.print")) maxR <- floor(maxR / (NCOL(object) + NCOL(object@recordIDs))) max <- min(na.omit(c(maxRmetrics, maxR, Inf))) #-> Inf to cast case when maxRmetrics and maxR are NULL if (ptest <- ((omitted <- NROW(object) - max) > 0)) object <- object[seq.int(max),] data <- as(object, "matrix") recordIDs <- object@recordIDs FinCenter <- finCenter(object) # Series: cat(FinCenter, "\n", sep = "") if (prod(dim(recordIDs)) & (nrow(data) == NROW(recordIDs))) { dataIDs <- as.matrix(recordIDs) colnames(dataIDs) <- paste(colnames(dataIDs), "*", sep = "") #-> use format(data) to have same number of digits when timeSeries # is printed without @recordIDs print(cbind(format(data), dataIDs), quote = FALSE, right = TRUE) } else { print(data, quote = FALSE) #-> to be consistent with @recordIDs print } # print message if (ptest) cat(gettextf("...\n [ reached getRmetricsOption('max.print') | getOption('max.print') -- omitted %i rows ]]\n", omitted)) # Return Value: invisible(NULL) # as specified in ?show } ) # ------------------------------------------------------------------------------ .print.timeSeries <- function(x, FinCenter = NULL, format = NULL, style = c("tS", "h", "ts"), by = c("month", "quarter"), ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Allows for horizontal and ts like print output. # Arguments: # x - an object of class timeSeries # FinCenter - print with time stamps according to FinCenter # format - use specified format for printing # style - a character value specifying how to print: # "tS" Rmetrics' default vertical print style # "h" horizontal print style, # "ts" R's base style for regular time series # by - specifies the period for a regular time serie, # note only active for style="ts". # Example: # x = timeSeries(); print(x, format = "%d %b %Y"); x # FUNCTION: # Change Financial Center: if (!is.null(FinCenter)) finCenter(x) <- FinCenter # Match Arguments: style = match.arg(style) by = match.arg(by) # Change Format: if (is.null(format)) { charvec = rownames(x) } else { ans = timeDate(charvec = rownames(x), zone = "GMT", FinCenter = finCenter(x)) if (format == "%Q") { Quarters = rep(paste("Q", 1:4, sep = ""), each = 3) Y = atoms(ans)[, 1] Q = Quarters[atoms(ans)[, 2]] charvec = paste(Y, Q) } else { charvec = format(ans, format) } } # Styles: if (style == "tS") { cat(finCenter(x), "\n") X <- getDataPart(x) rownames(X) = charvec print(X) } else if (style == "h") { stopifnot(isUnivariate(x)) # print(as.vector(x)) ans = as.matrix(x)[,1] names(ans) = charvec print(ans) } else if (style == "ts") { freq = c(month = 12, quarter = 4) start(x) start = unlist(atoms(start(x))) end = unlist(atoms(end(x))) ts = ts(as.vector(x), start[1:2], end[1:2], freq[by]) print(ts) } # Return Value: invisible(x) } # ------------------------------------------------------------------------------ setMethod("print", "timeSeries", .print.timeSeries) ################################################################################ timeSeries/R/timeSeries-getDataPart.R0000644000176000001440000000527712620124746017265 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # S4 METHODS: DESCRIPTION: # getDataPart,timeSeries Get data slot of an object of class 'timeSeries' # setDataPart,timeSeries Set data slot of an object of class 'timeSeries' ################################################################################ # YC: # This makes getDataPart a bit faster than default function setMethod("getDataPart", "timeSeries", #"signalSeries", function(object) { value <- object attributes(value) <- NULL attr(value, "dim") <- attr(object, "dim") attr(value, "dimnames") <- attr(object, "dimnames") value } ) # ------------------------------------------------------------------------------ # YC: # This makes setDataPart a bit faster than default function if (getRversion() < "2.8.0") { setMethod("setDataPart", "timeSeries", function(object, value) { #-> Note : do not use as.matrix because ts objects might #-> not be coerced properly value <- as(value, "matrix") supplied <- attributes(object) valueAttrs <- attributes(value) supplied[names(valueAttrs)] <- valueAttrs # YC: force @unit to be identical to colnames(value) supplied[["units"]] <- colnames(value) attributes(value) <- supplied asS4(value, TRUE) } ) } else { setMethod("setDataPart", "timeSeries", function(object, value, check = TRUE) { #-> Note : do not use as.matrix because ts objects might #-> not be coerced properly if (check) value <- as(value, "matrix") supplied <- attributes(object) valueAttrs <- attributes(value) supplied[names(valueAttrs)] <- valueAttrs # YC: force @unit to be identical to colnames(value) supplied[["units"]] <- colnames(value) attributes(value) <- supplied asS4(value, TRUE) } ) } ################################################################################ timeSeries/R/stats-lag.R0000644000176000001440000000754512620124746014655 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # lag,timeSeries Lags a 'timeSeries' object ################################################################################ setMethod("lag" , "timeSeries", function(x, k = 1, trim = FALSE, units = NULL, ...) { # A function implemented by Diethelm Wuertz # Description: # Lags a 'timeSeries' object. # Arguments: # x - a 'timeSeries' object. # k - an integer indicating which lag to use. By default 1. # Note, negative lags are to data in the future. # trim - a logical. Should NAs at the beginning of the # series be removed? By default FALSE. # units - # ... - # Details: # The arguments differ in the following way from the function # stats::lag - lag(x, k = 1, ...) # Value: # Returns a lagged object of class 'timeSeries'. # Example: # SPI = 100* as.timeSeries(data(LPP2005REC))[1:20, "SPI"] # Note negative lags are to data in the future ! # lag(SPI, k = -2:2) # lag(SPI, k = 0:2 , trim = TRUE) # FUNCTION: # Check Arguments: stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Internal Function: tslagMat <- function(x, k = 1) { # Internal Function: tslag1 = function(x, k) { y = x if (k > 0) y = c(rep(NA, times = k), x[1:(length(x)-k)]) if (k < 0) y = c(x[(-k+1):length(x)], rep(NA, times = -k)) y } # Bind: ans <- NULL for (i in k) { ans <- cbind(ans, tslag1(x, i)) } # As Vector: if (length(k) == 1) ans <- as.vector(ans) # Return Value: ans } # Convert: y <- getDataPart(x) Dim <- dim(y)[2] # Lag on each Column: z <- NULL for (i in 1:Dim) { ts <- tslagMat( y[, i], k = k) #, trim = FALSE) z <- cbind(z, ts) } # Positions pos <- x@positions # Record IDs: df <- x@recordIDs # Trim: if (trim){ idx <- !is.na(apply(z, 1, sum)) z <- z[idx, , drop = FALSE] pos <- pos[idx] if (sum(dim(df)) > 0) { df <- df[idx, , drop = FALSE] rownames(df) <- seq.int(sum(idx)) } } # Augment Colnames: cn <- colnames(x) a <- if (is.null(units)) # ensure that colnames is replicated according to the length # of lag indexes. as.vector(matrix(cn, nrow = length(k), ncol = length(cn), byrow = TRUE)) else units kcols <- rep(k, times = ncol(y)) b <- paste("[", kcols, "]", sep="") ab <- paste(a, b, sep = "") units <- ab # Result: ans <- timeSeries(data = z, charvec = pos, units = units, format = x@format, FinCenter = x@FinCenter, recordIDs = df) # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Value: ans }) # until UseMethod dispatches S4 methods in 'base' functions lag.timeSeries <- function(x, ...) timeSeries::lag(x, ...) ################################################################################ timeSeries/R/fin-drawdowns.R0000644000176000001440000001525012620124746015530 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # drawdowns Generate 'timeSeries' object of drawdown levels # drawdownsStats Compute drawdown stats for univariate time series # FUNCTION: DESCRIPTION: # .drawdownsHistPlot Displays a histogram plot ################################################################################ drawdowns <- function(x, ...) { # A function implemented by Diethelm Wuertz and Tobias Setz # Description: # Generate 'timeSeries' object of drawdown levels # Arguments: # x - an uni- or multivariate 'timeSeries' object of financial # returns # ... - arguments passed to the function na.omit() # Value: # returns an object of class 'timeSeries'. # FUNCTION: # Check Arguments stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Handle Missing Values: r <- na.omit(x, ...) # The starting point of every time series is set to zero. # This ensures that the starting value for cumprodReturns below # (which is the wealth index) is 1. startup <- timeSeries(data=t(rep(0, ncol(r))), charvec=time(r)[1]) # Preset Drawdowns: nms <- colnames(r) drawdowns <- r <- rbind(startup,r) colnames(drawdowns) <- colnames(r) <- nms # Compute multivariate 'timeSeries' of Drawdowns: cumprodReturns <- colCumprods(1 + r) cummaxReturns <- colCummaxs(cumprodReturns) series(drawdowns) <- series(cumprodReturns)/series(cummaxReturns) - 1 drawdowns <- drawdowns[-1, ] # Preserve Title and Documentation: drawdowns@title <- Title drawdowns@documentation <- Documentation # Return Value: drawdowns } # ------------------------------------------------------------------------------ drawdownsStats = function(x, ...) { # A function implemented by Diethelm Wuertz and Tobias Setz # Description: # Finds the drawdowns in an univariate 'timeSeries' object # Arguments: # x - an uni- or multivariate 'timeSeries' object of financial # returns # ... - arguments passed to the function drawdowns() # Value: # returns an object of class 'data.frame' returning # drawdown - the depth of the drawdown # from - the start date # trough - the trough period # to - the end date # length - the length in number of records # peaktrough - the peak trough # recovery - the recovery length in number of records # Author: # Based on Peter Carl, # partly from contributed R package Performance Analytics # Note: # modified with permission from function by Sankalp Upadhyay # # Examples: # x = drawdownsStats(as.timeSeries(data(edhec))[,1]) # FUNCTION: # Check Arguments: stopifnot(isUnivariate(x)) # Compute Drawdowns: drawdowns <- as.vector(drawdowns(x, ...)) time <- time(x) # Find Drawdowns from a Numeric Vector of Returns: draw <- begin <- end <- length <- trough <- c() index <- 1 if (drawdowns[1] >= 0) { priorSign <- 1 } else { priorSign <- 0 } from <- 1 sofar <- drawdowns[1] to <- 1 dmin <- 1 for (i in 2:length(drawdowns)) { thisSign <- ifelse(drawdowns[i] < 0, 0, 1) if (thisSign == priorSign) { if(drawdowns[i]< sofar) { sofar <- drawdowns[i] dmin <- i } to <- i + 1 } else { # @todo: recovery time (in days) draw[index] <- sofar begin[index] <- from trough[index] <- dmin end[index] <- to #cat(sofar, from, to) from <- i sofar <- drawdowns[i] to <- i + 1 dmin <- i index <- index + 1 priorSign <- thisSign } } draw[index] <- sofar begin[index] <- from trough[index] <- dmin end[index] <- to ## length: as.timeDate(pos[x$to])-as.timeDate(pos[x$from]) # If the time series ends in the middle of a drawdown, return the last # date of the time series and set the recovery time to NA endt <- end; endr <- end; if(to > length(time)) { endt[index] <- to - 1 endr[index] <- NA } # Result - an index list with all drawdowns ... ans <- data.frame(from = as.vector(as.character(time[begin])), trough = as.vector(as.character(time[trough])), to = as.vector(as.character(time[endt])), drawdown = as.vector(draw), length = (end - begin + 1), peaktotrough = (trough - begin + 1), recovery = (endr - trough), stringsAsFactors = FALSE) attr(ans, "series") <- x attr(ans, "names") <- c("From", "Trough", "To", "Depth", "Length", "ToTrough", "Recovery") ans <- ans[ans[, "Depth"] < 0, ] # Order Drawdowns: ans <- ans[order(ans[, "Depth"]), ] rownames(ans) <- 1:dim(ans)[1] # Return Value: ans } # ------------------------------------------------------------------------------ if (FALSE) { .drawdownsHistPlot <- function(x, labels = TRUE, col = "steelblue", add.fit = TRUE, rug = TRUE, skipZeros = TRUE, ...) { # Note: # We require(fExtremes) move this function to fAssets # Check Arguments: stopifnot(isUnivariate(x)) # Plot Drawdowns Histogram: X = drawdowns(x, ...) histPlot(X, labels = labels, col = col, add.fit = FALSE, rug = rug, skipZeros = skipZeros, ...) # Add GPD Fit: if (add.fit) { z = -as.vector(X) par = gpdFit(z, u = 0)@fit$par.ests u = seq(0, max(abs(z)), length = 200) v = dgpd(u, xi = par[1], mu = 0, beta = par[2]) lines(-u, v, col = "brown", lwd = 2) } # return Value: invisible() } } ################################################################################ timeSeries/R/statistics-orderColnames.R0000644000176000001440000001304112620124746017727 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # statsColnames Returns statistically rearranged column names # orderColnames Returns ordered column names of a time Series # sortColnames Returns sorted column names of a time Series # sampleColnames Returns sampled column names of a time Series # pcaColnames Returns PCA correlation ordered column names # hclustColnames Returns hierarchical clustered column names ################################################################################ statsColnames = function(x, FUN = colMeans, ...) { # A function implemented by Diethelm Wuertz # Description: # Returns statistically rearranged column names # Arguments: # x - an object of class timeSeries # FUN - a character string, the name of the function to be used # ... - optional arguments to be passed to FUN # Note: # Example of function Candidates: # colStats calculates column statistics, # colSums calculates column sums, # colMeans calculates column means, # colSds calculates column standard deviations, # colVars calculates column variances, # colSkewness calculates column skewness, # colKurtosis calculates column kurtosis, # colMaxs calculates maximum values in each column, # colMins calculates minimum values in each column, # colProds computes product of all values in each column, # colQuantiles computes quantiles of each column. # FUNCTION: # Apply colStats Function: fun = match.fun(FUN) Sort = sort(fun(x, ...)) Order = names(Sort) ans = colnames(as.matrix(x)[, Order]) attr(ans, "control") <- Sort # Return Value: ans } # ------------------------------------------------------------------------------ orderColnames = function(x, ...) { # A function implemented by Diethelm Wuertz # Description: # Returns ordered column names of a time Series # Arguments: # x - an object of class timeSeries # FUNCTION: # Order: ans = order(colnames(as.matrix(x)), ...) # Return Value: ans } # ------------------------------------------------------------------------------ sortColnames = function(x, ...) { # A function implemented by Diethelm Wuertz # Description: # Returns sorted column names of a time Series # Arguments: # x - an object of class timeSeries # FUNCTION: # Sort: ans = sort(colnames(as.matrix(x)), ...) # Return Value: ans } # ------------------------------------------------------------------------------ sampleColnames = function(x, ...) { # A function implemented by Diethelm Wuertz # Description: # Returns sampled column names of a time Series # Arguments: # x - an object of class timeSeries # FUNCTION: # Sample: ans = sample(colnames(as.matrix(x)), ...) # Return Value: ans } # ------------------------------------------------------------------------------ pcaColnames = function(x, robust = FALSE, ...) { # A function implemented by Diethelm Wuertz # Description: # Returns PCA correlation ordered column names # Arguments: # x - an object of class timeSeries # robust - a logical, should we use robust covariance estimation? # FUNCTION: # Order: if (robust) { x.cor = robustbase::covMcd(as.matrix(x), cor = TRUE, ...)$cor } else { x.cor = cor(as.matrix(x), ...) } x.eigen = eigen(x.cor)$vectors[,1:2] e1 = x.eigen[, 1] e2 = x.eigen[, 2] Order = order(ifelse(e1 > 0, atan(e2/e1), atan(e2/e1)+pi)) ans = colnames(as.matrix(x))[Order] # Return Value: ans } # ------------------------------------------------------------------------------ hclustColnames = function(x, method = c("euclidean", "complete"), ...) { # A function implemented by Diethelm Wuertz # Description: # Returns hierarchical clustered column names # Arguments: # x - an object of class timeSeries # method - the agglomeration method to be used. This should # be (an unambiguous abbreviation of) one of "ward", "single", # "complete", "average", "mcquitty", "median" or "centroid". # ... optional arguments passed to the function hclust # FUNCTION: # Order: Order = hclust(dist(t(as.matrix(x)), method = method[1]), method = method[2], ...)$order ans = colnames(as.matrix(x))[Order] # Return Value: ans } ################################################################################ timeSeries/R/fin-durations.R0000644000176000001440000000457712620124746015542 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: FINANCIAL TIME SERIES: # durations Computes durations from a 'timeSeries' object ################################################################################ durations <- function(x, trim = FALSE, units = c("secs", "mins", "hours", "days")) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Computes durations from a financial price series # Arguments: # x - a univariate or multivariate 'timeSeries' object or a # numeric vector or matrix. # trim - a logical flag, by default TRUE, the first missing # observation in the return series will be removed. # units - a character value or vector which allows to set the # units in which the durations are measured # Value: # Returns a S4 object of class 'timeSeries'. # FUNCTION: # Check Arguments: stopifnot(is.timeSeries(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Check for Signal Series: if (x@format == "counts") stop(as.character(match.call())[1], " is for time series and not for signal series.") # Match Arguments: units <- match.arg(units) # Get Positions and Durations: pos <- time(x) dur <- c(NA, diff(as.integer(difftime(pos, pos[1], units = units[1])))) # Data Matrix: ans <- timeSeries(data = dur, charvec = pos, units = "Duration") if (trim) ans <- ans[-1, ] # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Series: ans } ################################################################################ timeSeries/R/base-dim.R0000644000176000001440000002021512620124746014424 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # S4 METHOD: DIM OPERATIONS ON DATA: # dim,timeSeries Returns dimension of a 'timeSeries' object # dim<-,timeSeries Assigns dimension of a 'timeSeries' object # dimnames,timeDSeries Returns dimension names of a 'timeSeries' object # dimnames<-,timeSeries Assign dimension names of a 'timeSeries' object # colnames,timeSeries Return column names to a 'timeSeries' object # rownames,timeSeries Return row names to a 'timeSeries' object # colnames<-,timeSeries Assigns column names to a 'timeSeries' object # rownames<-,timeSeries Assigns row names to a 'timeSeries' object # names,timeSeries Return column names of a 'timeSeries' object # names<.,timeSeries Assigns column names of a 'timeSeries' object ################################################################################ # Base Functions: # Generate from Matrix: # edhec.tS = timeSeries(edhec.mat, rownames(edhec.mat)) # edhec.ts = ts(edhec.mat, start = c(1997, 1), frequency = 12) # Univariate time Series: # edhec1.tS = edhec.tS[, 1] # dim # dim(edhec.tS) # 20 4 # dim(edhec1.tS) # 20 1 # DIM # DIM = function(x) {c(NROW(x), NCOL(x))} # DIM(edhec.tS) # 20 4 # DIM(edhec1.tS) # 20 1 # length # length(edhec.tS) # 1 # # LENGTH # LENGTH = function(x) NROW(x) # LENGTH(edhec.tS) # 20 # LENGTH(edhec1.tS) # 20 # # ncol / nrow # ncol(edhec.tS) # 4 # # ncol(edhec1.tS) # 1 # # NCOL / NRWO # NCOL(edhec.tS) # 4 # # NCOL(edhec1.tS) # 1 # # isUnivariate # isUnivariate = function(x) NCOL(x) == 1 # isUnivariate(edhec.tS) # isUnivariate(edhec1.tS) # # isMultivariate # Just Negation of isUnivariate # # # # ------------------------------------------------------------------------------ # length # dim # ncol # nrow # LENGTH # DIM # NCOL # NROW # ------------------------------------------------------------------------------ # Note it is faster to access attribute rather than accessing @.Data setMethod("dim", "timeSeries", function(x) attr(x, "dim")) # This should make functions like # model.response(model.frame(dummySeries() ~1)) work setReplaceMethod("dim", "timeSeries", function(x, value) { # dim(x) <- NULL returns a vector if (is.null(value)) return(as.vector(x)) else x #<< returns same object : # setting new dim # is forbidden for a timeSeries object } ) # ------------------------------------------------------------------------------ # colnames - faster to have dedicated method than relying on dimnames[[2]] setMethod("colnames", "timeSeries", # "signalSeries", function(x, do.NULL = TRUE, prefix = "col") x@units ) # ------------------------------------------------------------------------------ # rownames ## setMethod("rownames", "signalSeries", ## function (x, do.NULL = TRUE, prefix = "row") NULL) ## setMethod("rownames", "timeSeries", ## function (x, do.NULL = TRUE, prefix = "row") as.character(time(x))) setMethod("rownames", "timeSeries", function (x, do.NULL = TRUE, prefix = "row") { if (length(x@positions) > 0) as.character(time(x)) else NULL } ) # ------------------------------------------------------------------------------ setMethod("dimnames", "timeSeries", # "signalSeries", function(x) { list(rownames(x),colnames(x)) } ) # ------------------------------------------------------------------------------ setMethod("colnames<-", "timeSeries", function(x, value) { units <- as.character(value) if(!length(units)) if (x@format == "counts") units <- paste("SS", seq(NCOL(x)), sep = ".") else units <- paste("TS", seq(NCOL(x)), sep = ".") if (length(units) != NCOL(x)) stop("length of 'colnames' not equal to array extent",call.=FALSE) x@units <- units colnames(x@.Data) <- units x } ) # ------------------------------------------------------------------------------ setMethod("rownames<-", c("timeSeries", "timeDate"), #c("signalSeries", "timeDate"), function (x, value) { .timeSeries( data = getDataPart(x), charvec = as.numeric(value, "sec"), units = colnames(x), format = value@format, FinCenter = value@FinCenter, recordIDs = x@recordIDs, title = x@title, documentation = x@documentation) } ) # ------------------------------------------------------------------------------ setMethod("rownames<-", "timeSeries", # "signalSeries", function (x, value) { # if charvec NULL returns a signal series if (is.null(value)) return(.signalSeries(data = getDataPart(x), units = colnames(x), recordIDs = x@recordIDs, title = x@title, documentation = x@documentation)) # coerce charvec to timeDate charvec <- timeDate(charvec = value) if (any(is.na(charvec))) # Note : there is already a warning in timeDate if there are NA's .signalSeries(data = getDataPart(x), units = colnames(x), recordIDs = x@recordIDs, title = x@title, documentation = x@documentation) else .timeSeries(data = getDataPart(x), charvec = as.numeric(charvec, "sec"), units = colnames(x), format = charvec@format, FinCenter = charvec@FinCenter, recordIDs = x@recordIDs, title = x@title, documentation = x@documentation) } ) # ------------------------------------------------------------------------------ setMethod("dimnames<-", c("timeSeries", "list"), # c("signalSeries", "list"), function(x, value) { rownames(x) <- value[[1]] colnames(x) <- value[[2]] x } ) # ------------------------------------------------------------------------------ # important for completion with $ setMethod("names", "timeSeries", # "signalSeries", function(x) c(colnames(x), names(x@recordIDs))) setReplaceMethod("names", "timeSeries", # "signalSeries", function(x, value) { nc <- ncol(x) nv <- length(value) nr <- length(x@recordIDs) # Note that using [][] ensure that length of the # names are equal to array extent colnames(x) <- value[seq.int(nv)][seq.int(nc)] if (nv > nc) names(x@recordIDs) <- value[-seq.int(nc)][seq.int(nr)] x }) ################################################################################ timeSeries/R/AllGeneric.R0000644000176000001440000000653312620124746014757 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # GENERIC: DESCRIPTION # returns Computes returns # rowCumsums Computes row cumulated sums # series Extracts series data # series<- Assigns series data # coredata Extracts series data # index deprecated # index <- deprecated # outlier Returns outliers # timeSeries Returns timeSeries # colCumsums Computes column cumulated sums # colCummaxs Computes column cumulated maxima # colCummins Computes column cumulated minima # colCumprods Computes column cumulated products # colCumreturns Computes column cumulated returns ################################################################################ setGeneric("returns", function(x, ...) standardGeneric("returns"), package = "timeSeries") setGeneric("rowCumsums", function(x, na.rm = FALSE, ...) standardGeneric("rowCumsums"), package = "timeSeries") setGeneric("series", function(x) standardGeneric("series"), package = "timeSeries") setGeneric("series<-", function(x, value) standardGeneric("series<-"), package = "timeSeries") setGeneric("coredata", function(x) standardGeneric("coredata"), package = "timeSeries") setGeneric("coredata<-", function(x, value) standardGeneric("coredata<-"), package = "timeSeries") ## setGeneric("index", function(x, ...) ## standardGeneric("index"), package = "timeSeries") ## setGeneric("index<-", function(x, value) ## standardGeneric("index<-"), package = "timeSeries") setGeneric("outlier", function(x, sd = 5, complement = TRUE, ...) standardGeneric("outlier")) setGeneric("timeSeries", function (data, charvec, units = NULL, format = NULL, zone = "", FinCenter = "", recordIDs = data.frame(), title = NULL, documentation = NULL, ...) standardGeneric("timeSeries")) setGeneric("colCumsums", function(x, na.rm = FALSE, ...) standardGeneric("colCumsums")) setGeneric("colCummaxs", function(x, na.rm = FALSE, ...) standardGeneric("colCummaxs")) setGeneric("colCummins", function(x, na.rm = FALSE, ...) standardGeneric("colCummins")) setGeneric("colCumprods", function(x, na.rm = FALSE, ...) standardGeneric("colCumprods")) setGeneric("colCumreturns", function(x, method = c("geometric", "simple"), na.rm = FALSE, ...) standardGeneric("colCumreturns")) ################################################################################ timeSeries/R/timeSeries-isOHLC.R0000644000176000001440000000432712620124746016141 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # .isOHLC Is the series an Open-High-Low-Close series? # .isOHLCV Is the series an Open-High-Low-Close-Volume series? ################################################################################ # DW: # I think we need a better method to detect if a series is a OHLC(V) series # or not. A possible approach would be: # any High >= Open, Close, Low # any Low <= Open, Close, High # Volume >= 0 # number of columns 4(5) # ----------------------------------------------------------------------------- .isOHLC <- function(object) { # A function implemented by Diethelm Wuertz # Description: # Is the series an Open-High-Low-Close series? # Arguments: # object - an object of class 'timeSeries' # FUNCTION: colNames <- c("Open", "High", "Low", "Close") if (colnames(object)[1:4] == colNames) { return(TRUE) } else { return(FALSE) } } # ------------------------------------------------------------------------------ .isOHLCV <- function(object) { # A function implemented by Diethelm Wuertz # Description: # Is the series an Open-High-Low-Close-Volume series? # Arguments: # object - an object of class 'timeSeries' # FUNCTION: colNames <- c("Open", "High", "Low", "Close", "Volume") if (colnames(object) == colNames) { return(TRUE) } else { return(FALSE) } } ################################################################################ timeSeries/R/fin-wealth.R0000644000176000001440000000237212620124746015005 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ############################################################################### # FUNCTION: DESCRIPTION: # index2wealth Converts an index to a wealth series ############################################################################### index2wealth <- function(x) { # A function implemented by Diethelm Wuertz # Description: # Converts an index to a wealth series # FUNCTION: # x - index time series to be converted # FUNCTION: # Wealth Initialization: for (i in 1:ncol(x)) x[, i] <- x[, i]/as.vector(x[1, i]) # Return Value: x } ############################################################################### timeSeries/R/base-applySeries.R0000644000176000001440000002523212620124746016157 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # applySeries Applies a function to blocks of a 'timeSeries' # fapply Applies a function to 'timeSeries' windows # DEPRECATED: DESCRIPTION: # .applySeries Applies a function to blocks of a 'timeSeries' # .fapply Applies a function to 'timeSeries' windows ################################################################################ applySeries <- function(x, from = NULL, to = NULL, by = c("monthly", "quarterly"), FUN = colMeans, units = NULL, format = x@format, zone = x@FinCenter, FinCenter = x@FinCenter, recordIDs = data.frame(), title = x@title, documentation = x@documentation, ...) { # A function implemented by Diethelm Wuertz # Description: # Apply a function to the margins of a 'timeSeries' object # Details: # This function can be used to aggregate and coursen a # 'timeSeries' object. # Arguments: # x - a 'timeSeries' object to be aggregated # from, to - two 'timeDate' position vectors which size the # blocks # by - calendarical block, only active when both 'from' # and 'to' are NULL # FUN - function to be applied, by default 'colMeans' # units - a character vector with column names, allows to # overwrite the column names of the input 'timeSeries' # object. # Value: # Returns a S4 object of class 'timeSeries'. # Notes: # The size of the 'moving' window and the selection of an # 'adj'-acent endpoint are not needed, all the information # is kept in the 'from' and 'to' position vectors. # FUNCTION: # .Deprecated("aggregate", "timeSeries") # Check object: if (class(x) != "timeSeries") stop("s is not a timeSeries object") ### if (x@format == "counts") ### stop(as.character(match.call())[1], ### " is for time series and not for signal series.") # Monthly and Quarterly from and to: if (is.null(from) & is.null(to)) { if (by[1] == "monthly") { # Use monthly blocks: from = unique(timeFirstDayInMonth(time(x))) to = unique(timeLastDayInMonth(time(x))) } else if (by[1] == "quarterly") { from = unique(timeFirstDayInQuarter(time(x))) to = unique(timeLastDayInQuarter(time(x))) } else { stop("by must be eiter monthly or quarterly") } from@FinCenter = to@FinCenter = FinCenter } # Column Names: colNames = units # Function: fun = match.fun(FUN) ### # Blocks: ### j.pos = as.POSIXct(time(x)) ### j.from = as.POSIXct(from) ### j.to = as.POSIXct(to) # Blocks: j.pos = time(x) if (is(j.pos, "timeDate")) { j.from = as.timeDate(from) j.to = as.timeDate(to) } else { j.from = as.integer(from) j.to = as.integer(to) } # Iterate: pos = time(x) rowNames = rownames(x) rowBind = NULL for (i in seq_len(length(from))) { test <- (j.pos >= j.from[i] & j.pos <= j.to[i]) if (!sum(test)) stop("outsite of range") # make sure that cutted is a matrix ... cutted = as.matrix(x[test, ]) # YC : *AND* make sure the matrix is not subbsetted to a vector!!! # YC : here it is fine because as.matrix of a timeSeries checks it # YC : but prefer to check it one more time at the end of the loop... ### if (sum(test)>0) rownames(cutted) <- rowNames[test] ans = fun(cutted, ...) rowBind = rbind(rowBind, ans) } stopifnot(NCOL(rowBind) == NCOL(x)) # YC : see above # YC : length(to) might not be == NCOL(rowBind) if (length(as.character(to)) == NROW(rowBind)) rownames(rowBind) = as.character(to) if (is.null(colNames)) { units = x@units } else { units = colNames } # Return Value: timeSeries(data = rowBind, units = units, format = format, zone = zone, FinCenter = FinCenter, recordIDs = recordIDs, title = title, documentation = documentation, ...) } # ------------------------------------------------------------------------------ fapply <- function(x, from, to, FUN, ...) { # .Deprecated("aggregate", "timeSeries") # Check x: stopifnot(is(x, "timeSeries")) if (x@format == "counts") stop(as.character(match.call())[1], " is for time series and not for signal series.") # Check for missing form/to: if(missing(from)) from = start(x) if(missing(to)) to = end(x) # Return Value: applySeries(x = x, from = from, to = to, FUN = FUN, ...) } ################################################################################ # *** OLD *** # Check if it is still used somewhere ... .applySeries <- function (x, from = NULL, to = NULL, by = c("monthly", "quarterly"), FUN = colMeans, units = NULL, ...) { # Old/Alternative Version # Chreck for 'timeSeries' Object: stopifnot(is.timeSeries(x), is(from, "timeDate") || is.null(from), is(to, "timeDate") || is.null(to)) # Allow for colMeans: if (substitute(FUN) == "colMeans") FUN = "colAvgs" # Monthly and Quarterly from and to: if (is.null(from) & is.null(to)) { by = match.arg(by) if (by == "monthly") { from = unique(timeFirstDayInMonth(time(x))) to = unique(timeLastDayInMonth(time(x))) } else if (by == "quarterly") { from = unique(timeFirstDayInQuarter(time(x))) to = unique(timeLastDayInQuarter(time(x))) } from@FinCenter = to@FinCenter = x@FinCenter } # Start Cutting Process: fun = match.fun(FUN) cutted = NULL i = 1 # Find First Interval which is not empty: while (is.null(cutted)) { cutted = cut(x, from[i], to[i]) if (!is.null(cutted)) { # Non empty Interval: ans = fun(cutted, ...) } i = i + 1 } # Continue up to the end: for (j in seq_len(length(from))) { cutted = cut(x, from[j], to[j]) if (!is.null(cutted)) { # Non empty Interval: newAns = fun(cutted, ...) ans = rbind(ans, newAns) } } # Return Value: ans } ################################################################################ # *** OLD *** # Check if it is still used somewhere ... .fapply <- function(x, from, to, FUN, ...) { # A function implemented by Diethelm Wuertz # Description: # Applies a function to 'timeSeries' windows # Details: # This function can be used to aggregate and coursen a # 'timeSeries' object. # Arguments: # x - a 'timeSeries' object to be aggregated # from, to - two 'timeDate' position vectors which size the blocks # FUN - function to be applied, by default 'colMeans' # Value: # Returns a S4 object of class 'timeSeries' if FUN returns # a time series object, otherwise a list, where the entries # for each window is the output of the function FUN. # Notes: # The size of the 'moving' window and the selection of an # 'adj'-acent endpoint are not needed, all the information # is kept in the 'from' and 'to' position vectors. # FUNCTION: # Check object: if (class(x) != "timeSeries") stop("s is not a timeSeries object") # Monthly and Quarterly from and to: if (is.null(from) & is.null(to)) { if (by[1] == "monthly") { # Use monthly blocks: from = unique(timeFirstDayInMonth(time(x))) to = unique(timeLastDayInMonth(time(x))) } else if (by[1] == "quarterly") { from = unique(timeFirstDayInQuarter(time(x))) to = unique(timeLastDayInQuarter(time(x))) } else { stop("by must be eiter monthly or quarterly") } from@FinCenter = to@FinCenter = x@FinCenter } # Column Names: colNames = units # Function: fun = match.fun(FUN) # Blocks: j.pos = as.POSIXct(time(x)) j.from = as.POSIXct(from) j.to = as.POSIXct(to) # Iterate: y = series(x) pos = time(x) rowNames = rownames(x) # Compute for the first window ... i = 1 test = (j.pos >= j.from[i] & j.pos <= j.to[i]) # make sure that cutted is a matrix ... cutted = as.matrix(y[test, ]) ### if (sum(test)>0) rownames(cutted) <- rowNames[test] ans = fun(cutted, ...) if (is.timeSeries(ans)) { ## DW can this happen - check ? rowBind = ans for (i in 2L:length(from)) { test = (j.pos >= j.from[1] & j.pos <= j.to[1]) # make sure that cutted is a matrix ... cutted = as.matrix(y[test, ]) ### if (sum(test)>0) rownames(cutted) <- rowNames[test] ans = fun(cutted, ...) rowBind = rbind(rowBind, ans) } rownames(rowBind) = as.character(to) if (is.null(colNames)) { units = x@units } else { units = colNames } # Return Value: ans = timeSeries(data = rowBind, charvec = as.character(to), units = units, format = format, zone = x@zone, FinCenter = x@FinCenter, recordIDs = x@recordIDs, title = x@title, documentation = x@documentation, ...) return(ans) } else { listBind = list() ## DW [] -> [[]] listBind[[1]] = ans for (i in 2L:length(from)) { test = (j.pos >= j.from[i] & j.pos <= j.to[i]) # make sure that cutted is a matrix ... cutted = as.matrix(y[test, ]) ### if (sum(test)>0) rownames(cutted) <- rowNames[test] ans = fun(cutted, ...) ## DW [] -> [[]] listBind[[i]] = ans } # Return Value: ans = listBind attr(ans, "control") <- list(x = x, from = from, to = to) return(invisible(ans)) } # Return Value: return() } ################################################################################ timeSeries/R/fin-cumulated.R0000644000176000001440000000573212620124746015507 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ############################################################################### # FUNCTION: DESCRIPTION: # cumulated Computes cumulated series from financial returns # cumulated.default Computes cumulated series, default method ############################################################################### cumulated <- function(x, ...) { # A function implemented by Diethelm Wuertz # Description: # Computes cumulated series from financial returns # Return Value: UseMethod("cumulated") } # ------------------------------------------------------------------------------ cumulated.default <- function(x, method = c("continuous", "discrete", "compound", "simple"), percentage = FALSE, ...) { # A function implemented by Diethelm Wuertz # Description: # Computes cumulated series from financial returns # supports 'matrix' and 'timeSeries'. # Arguments: # x - data object containing ordered price observations # method - "continuous == "compound" and "discrete" == "simple" # Example: # X = as.timeSeries(data(msft.dat))[1:10, "Close"]; X = X/series(X)[1, 1] # x = returns(X, "continuous"); x; X; cumulated(x, "continuous") # x = returns(X, "discrete"); x; X; cumulated(x, "discrete") # Note: # To make it conform with PortfolioAnalytics: # "compound" == "continuous", and "simple" == "discrete" # FUNCTION: # Check Arguments: stopifnot(is.timeSeries(x)) # Settings: method <- match.arg(method) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Handle Missing Values: # if (na.rm) x = na.omit(x, ...) # Transform data: if (percentage) x <- x/100 positions <- time(x) # Calculate Cumulates: # ... colCumsums and colCumprods are generic functions with # methods for 'matrix' and 'timeSeries'. if(method == "geometric") { ans <- colCumsums(x) } if(method == "compound" || method == "continuous") { ans <- exp(colCumsums(x)) } if(method == "simple" || method == "discrete") { ans <- colCumprods(1+x) } # Preserve Title and Documentation: ans@title <- Title ans@documentation <- Documentation # Return Value: ans } ################################################################################ timeSeries/R/statistics-rollMean.R0000644000176000001440000003030712620124746016707 0ustar ripleyusers # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # rollStats Returns rolling statistics of a 'timeSeries' object # rollMean Returns rolling mean of a 'timeSeries' object # rollMin Returns rolling minimum of a 'timeSeries' object # rollMax Returns rolling maximum of a 'timeSeries' object # rolMedian Returns rolling median of a 'timeSeries' object # DEPRECATED: DESCRIPTION: # .rollmean.timeSeries Returns rolling mean of a 'timeSeries' object # .rollmin.timeSeries Returns rolling minimum of a 'timeSeries' object # .rollmax.timeSeries Returns rolling maximum of a 'timeSeries' object # .rolmedian.timeSeries Returns rolling median of a 'timeSeries' object ################################################################################ rollStats <- function(x, k, FUN=mean, na.pad=FALSE, align=c("center", "left", "right"), ...) { # Description: # Returns rolling statistics of a 'timeSeries' object # Arguments: # x - an object of class timeSeries # k - integer width of the rolling window. # FUN - statistical function to be rolled. # na.pad - a logical. Should NA padding be added at beginning? # align - character specifying whether result should be left- or # right-aligned or centered (default). # ... - furter arguments passed to function FUN. # Note: # Internal function are borrowed from package zoo ... # Example: # x <- timeSeries(matrix(sample(1:24), ncol = 2), timeCalendar()) # cbind(x, roll(x, k=3, FUN = mean, align="right", na.pad = TRUE)) # Internal Function: .rollstats <- function(x, k, fun, na.pad = FALSE, align = c("center", "left", "right"), ...) { window <- matrix(1:(length(x)+1-k), ncol = 1) winFun <- function(i, fun, y, k, ...) { fun = match.fun(fun) from = 1:(length(y)+1-k) to = from + k -1 fun(y[i:to[i]], ...) } rval <- apply(window, 1, FUN=winFun, fun=FUN, y=x, k=k, ...) if (na.pad) { rval <- switch(match.arg(align), "left" = { c(rval, rep(NA, k-1)) }, "center" = { c(rep(NA, floor((k-1)/2)), rval, rep(NA, ceiling((k-1)/2))) }, "right" = { c(rep(NA, k-1), rval) }) } rval } # Roll: ans <- apply(x, 2, FUN=.rollstats, k=k, fun=FUN, na.pad=na.pad, align=align, ...) x <- setDataPart(x[seq.int(1,NROW(ans)),], ans) colnames(x) <- paste(colnames(x), "RSTATS", sep = "_") if(!na.pad) x = na.omit(x) # Return Value x } ############################################################################### rollMean <- function(x, k, na.pad=FALSE, align=c("center", "left", "right"), ...) { # Description: # Returns rolling mean of a 'timeSeries' object # Arguments: # x - an object of class timeSeries # k - integer width of the rolling window. # na.pad - a logical. Should NA padding be added at beginning? # align - character specifying whether result should be left- or # right-aligned or centered (default). # ... - furter arguments passed to methods. # Note: # Internal function are borrowed from package zoo ... # Example: # X = timeSeries(matrix(rnorm(24), ncol = 2), timeCalendar()) # R = rollMean(x = X, k = 3); R; plot(R) # FUNCTION: # Internal Function: .rollmean.default <- function(x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) { n <- length(x) y <- x[k:n] - x[c(1, 1:(n-k))] y[1] <- sum(x[1:k]) rval <- cumsum(y)/k if (na.pad) { rval <- switch(match.arg(align), "left" = { c(rval, rep(NA, k-1)) }, "center" = { c(rep(NA, floor((k-1)/2)), rval, rep(NA, ceiling((k-1)/2))) }, "right" = { c(rep(NA, k-1), rval) }) } rval } # Roll: ans <- apply(x, 2, .rollmean.default, k = k, na.pad=na.pad, align=align) x <- setDataPart(x[seq.int(1,NROW(ans)),], ans) colnames(x) <- paste(colnames(x), "RMEAN", sep = "_") if(!na.pad) x = na.omit(x) # Return Value: x } # ------------------------------------------------------------------------------ rollMax <- function(x, k, na.pad=FALSE, align=c("center", "left", "right"), ...) { # Description: # Returns rolling maximum of a 'timeSeries' object # Arguments: # x - an object of class timeSeries # k - integer width of the rolling window. # na.pad - a logical. Should NA padding be added at beginning? # align - character specifying whether result should be left- or # right-aligned or centered (default). # ... - furter arguments passed to methods. # Note: # Internal function are borrowed from package zoo ... # Example: # X = timeSeries(matrix(rnorm(24), ncol = 2), timeCalendar()) # R = rollMax(x = X, k = 3); plot(R) # FUNCTION: # Internal Function: .rollmax.default <- function(x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) { n <- length(x) rval <- rep(0, n) a <- 0 for (i in k:n) { rval[i] <- if (is.na(a) || is.na(rval[i=1]) || a==rval[i-1]) max(x[(i-k+1):i]) else max(rval[i-1], x[i]); # max of window = rval[i-1] a <- x[i-k+1] # point that will be removed from window } rval <- rval[-seq(k-1)] if (na.pad) { rval <- switch(match.arg(align), "left" = { c(rval, rep(NA, k-1)) }, "center" = { c(rep(NA, floor((k-1)/2)), rval, rep(NA, ceiling((k-1)/2))) }, "right" = { c(rep(NA, k-1), rval) }) } rval } # Roll: ans <- apply(getDataPart(x), 2, .rollmax.default, k = k, na.pad=na.pad, align=align) x <- setDataPart(x[seq.int(1,NROW(ans)),], ans) colnames(x) <- paste(colnames(x), "RMAX", sep = "_") if(!na.pad) x = na.omit(x) # Return Value: x } # ------------------------------------------------------------------------------ rollMin <- function(x, k, na.pad=FALSE, align=c("center", "left", "right"), ...) { # Description: # Returns rolling minimum of a 'timeSeries' object # Arguments: # x - an object of class timeSeries # k - integer width of the rolling window. # na.pad - a logical. Should NA padding be added at beginning? # align - character specifying whether result should be left- or # right-aligned or centered (default). # ... - furter arguments passed to methods. # Note: # Internal function are borrowed from package zoo ... # Example: # X = timeSeries(matrix(rnorm(24), ncol = 2), timeCalendar()) # R = rollMin(x = X, k = 3); R; plot(R) # FUNCTION: .rollmax.default <- function(x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) { n <- length(x) rval <- rep(0, n) a <- 0 for (i in k:n) { rval[i] <- if (is.na(a) || is.na(rval[i=1]) || a==rval[i-1]) max(x[(i-k+1):i]) else max(rval[i-1], x[i]); # max of window = rval[i-1] a <- x[i-k+1] # point that will be removed from window } rval <- rval[-seq(k-1)] if (na.pad) { rval <- switch(match.arg(align), "left" = { c(rval, rep(NA, k-1)) }, "center" = { c(rep(NA, floor((k-1)/2)), rval, rep(NA, ceiling((k-1)/2))) }, "right" = { c(rep(NA, k-1), rval) }) } rval } .rollmin.default <- function(x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) { ans = -.rollmax.default(-x, k, na.pad = na.pad, align = align, ...) ans } # Roll: ans <- apply(getDataPart(x), 2, .rollmin.default, k=k, na.pad=na.pad, align=align) x <- setDataPart(x[seq.int(1,NROW(ans)),], ans) colnames(x) <- paste(colnames(x), "RMIN", sep = "_") if(!na.pad) x = na.omit(x) # Return Value: x } # ------------------------------------------------------------------------------ rollMedian <- function(x, k, na.pad=FALSE, align=c("center", "left", "right"), ...) { # Description: # Returns rolling median of a 'timeSeries' object # Arguments: # x - an object of class timeSeries # k - integer width of the rolling window. Must be odd for rollmedian. # na.pad - a logical. Should NA padding be added at beginning? # align - character specifying whether result should be left- or # right-aligned or centered (default). # ... - furter arguments passed to methods. # Note: # Internal function are borrowed from package zoo ... # Example: # X = timeSeries(matrix(rnorm(24), ncol=2), timeCalendar()) # R = rollMedian(x = X, k = 3); R; plot(R) # FUNCTION: # Internal Function: .rollmedian.default <- function(x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) { stopifnot(k <= length(x), k %% 2 == 1) n <- length(x) m <- k %/% 2 rval <- runmed(x, k, ...) attr(rval, "k") <- NULL rval <- rval[-c(1:m, (n-m+1):n)] if (na.pad) { rval <- switch(match.arg(align), "left" = { c(rval, rep(NA, k-1)) }, "center" = { c(rep(NA, floor((k-1)/2)), rval, rep(NA, ceiling((k-1)/2))) }, "right" = { c(rep(NA, k-1), rval) }) } rval } # Roll: ans <- apply(x, 2, .rollmedian.default, k=k, na.pad=na.pad, align=align) x <- setDataPart(x[seq.int(1,NROW(ans)),], ans) colnames(x) <- paste(colnames(x), "RMED", sep = "_") if(!na.pad) x = na.omit(x) # Return Value: x } ################################################################################ .rollmean.timeSeries <- function(...) { # FUNCTION: # Deprecated: .Deprecated("rollMean") # Return Value: rollMean(...) } # ------------------------------------------------------------------------------ .rollmin.timeSeries <- function(...) { # FUNCTION: # Deprecated: .Deprecated("rollMin") # Return Value: rollMin(...) } # ------------------------------------------------------------------------------ .rollmax.timeSeries <- function(...) { # FUNCTION: # Deprecated: .Deprecated("rollMax") # Return Value: rollMax(...) } # ------------------------------------------------------------------------------ .rollmedian.timeSeries <- function(...) { # FUNCTION: # Deprecated: .Deprecated("rollMedian") # Return Value: rollMedian(...) } ################################################################################ timeSeries/R/timeSeries-dummy.R0000644000176000001440000000511412620124746016206 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # dummySeries Creates a dummy monthly 'timeSeries' object # dummyDailySeries Creates a dummy daily 'timeSeries' object ################################################################################ # DW: # A more natural name for the function dummySeries() would be # dummyMonthlySeries() to have the same naming conventions like in the # case of the dummy daily series. dummySeries <- function(...) { # A function implemented by Diethelm Wuertz # Description: # Creates a monthly dummy 'time Series' object # Arguments: # ... - optional arguments passed to the function timeSeries(). # FUnction: # Return Value: timeSeries(matrix(runif(24), ncol = 2), as.character(timeCalendar()), ...) } # ------------------------------------------------------------------------------ dummyDailySeries <- function(x = rnorm(365), units = NULL, zone = "", FinCenter = "") { # A function implemented by Diethelm Wuertz # Description: # Creates a dummy daily time Series # Arguments: # x - a numeric vector # origin - the first date in the series # FUNCTION: if (zone == "") zone <- getRmetricsOptions("myFinCenter") if (FinCenter == "") FinCenter <- getRmetricsOptions("myFinCenter") # Check: stopifnot(is.numeric(x)) if (is.null(units)) units <- paste("X", 1:NCOL(x), sep = "") stopifnot(length(units) == NCOL(x)) # Time Series: if (is.vector(x)) data = matrix(x, ncol = 1) if (is.matrix(x)) data = x positions <- timeSequence(from = "1970-01-01", length.out = NROW(data), zone = zone, FinCenter = FinCenter) ans <- timeSeries(data = data, charvec = positions, units = units, zone = zone, FinCenter = FinCenter) # Return Value: ans } ################################################################################ timeSeries/R/timeSeries-slotSeries.R0000644000176000001440000002141412620124746017210 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # series,timeSeries Get data slot from a'timeSeries' # series<-,timeSeries,ANY Set new data slot to a 'timeSeries' # series<-,timeSeries,matrix Set new data slot to a 'timeSeries' # SYNONYMES: DESCRIPTION: # coredata,timeSeries Get data slot from a'timeSeries' # coredata<-,timeSeries,ANY Set new data slot to a 'timeSeries' # coredata<-,timeSeries,matrix Set new data slot to a 'timeSeries' # FUNCTION: DESCRIPTION: # getSeries # getSeries.default # getSeries.timeSeries Get data slot from a 'timeSeries' # setSeries<- Set new data slot to a 'timeSeries' ################################################################################ # DEPRECATED: DESCRIPTION: # seriesData Deprecated, use series ################################################################################ setMethod("series", "timeSeries", function(x) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Returns the series Data of an ordered data object. # Arguments: # x - a 'timeSeries' object # Value: # Returns an object of class 'matrix'. # FUNCTION: # Get Data Slot: ans <- as.matrix(x) # Return Value: ans } ) # ------------------------------------------------------------------------------ setMethod("series<-", signature(x = "timeSeries", value = "ANY"), function(x, value) { # A function implemented by Yohan Chalabi # Return Value: callGeneric(x, as(value, "matrix")) } ) # ------------------------------------------------------------------------------ setMethod("series<-", signature(x = "timeSeries", value = "matrix"), function(x, value) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Assign the series Data to a timeSeries object. # Arguments: # object - a 'timeSeries' object # Value: # Assign to be assign as series Data of a timeSeries. # FUNCTION: # if value same dimension as time series # we we can assign the value directly to @.Data # This can speed up math Ops significantly if (identical(dim(x), dim(value))) { x@.Data <- value if (!is.null(cn <- colnames(value))) colnames(x) <- cn return(x) } if (is.null(charvec <- rownames(value))) charvec <- rownames(x) if (is.null(units <- colnames(value))) units <- colnames(value) # now that we have charvec and units, better to remove # dimnames of value to avoid problems attr(value, "dimnames") <- NULL if (!identical(length(units), NCOL(value))) units <- NULL # if now same dim , drop charvec and returns .signalSeries if (!identical(length(charvec), NROW(value))) return(.signalSeries(value, units)) format <- x@format zone <- FinCenter <- finCenter(x) title <- x@title documentation <- x@documentation recordIDs <- if (identical(NROW(x), NROW(value))) x@recordIDs else data.frame() # Return Value: timeSeries(data = value, charvec = charvec, units = units, format = format, zone = zone, FinCenter = FinCenter, recordIDs = recordIDs, title = title) } ) ################################################################################ # COREDATA SYNONYME setMethod("coredata", "timeSeries", function(x) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Returns the series Data of an ordered data object. # Arguments: # x - a 'timeSeries' object # Value: # Returns an object of class 'matrix'. # FUNCTION: # Get Data Slot: ans <- as.matrix(x) # Return Value: ans }) # ------------------------------------------------------------------------------ setMethod("coredata<-", signature(x = "timeSeries", value = "ANY"), function(x, value) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Return Value: callGeneric(x, as(value, "matrix")) }) # ------------------------------------------------------------------------------ setMethod("coredata<-", signature(x = "timeSeries", value = "matrix"), function(x, value) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Assign the series Data to a timeSeries object. # Arguments: # object - a 'timeSeries' object # Value: # Assign to be assign as series Data of a timeSeries. # FUNCTION: # if value same dimension as time series # we we can assign the value directly to @.Data # This can speed up math Ops significantly if (identical(dim(x), dim(value))) { x@.Data <- value if (!is.null(cn <- colnames(value))) colnames(x) <- cn return(x) } if (is.null(charvec <- rownames(value))) charvec <- rownames(x) if (is.null(units <- colnames(value))) units <- colnames(value) # now that we have charvec and units, better to remove # dimnames of value to avoid problems attr(value, "dimnames") <- NULL if (!identical(length(units), NCOL(value))) units <- NULL # if now same dim , drop charvec and returns .signalSeries if (!identical(length(charvec), NROW(value))) return(.signalSeries(value, units)) format <- x@format zone <- FinCenter <- finCenter(x) title <- x@title documentation <- x@documentation recordIDs <- if (identical(NROW(x), NROW(value))) x@recordIDs else data.frame() # Return Value: timeSeries(data = value, charvec = charvec, units = units, format = format, zone = zone, FinCenter = FinCenter, recordIDs = recordIDs, title = title) }) ################################################################################ ## getSeries <- ## function(x) ## { ## # A function implemented by Diethelm Wuertz ## ## # Note: ## # Used for getSeries methods in fPortfolio package. ## ## # FUNCTION: ## ## # Return Value: ## UseMethod("getSeries") ## } # ------------------------------------------------------------------------------ ## getSeries.default <- ## function(x) ## { ## # Description: ## # Get data slot from a 'timeSeries' object ## ## # Arguments: ## # x - a 'timeSeries' object ## ## # FUNCTION: ## ## # Return Value: ## series(x) ## } # ------------------------------------------------------------------------------ ## getSeries.timeSeries <- ## function(x) ## { ## # Description: ## # Get data slot from a 'timeSeries' object ## ## # Arguments: ## # x - a 'timeSeries' object ## ## # FUNCTION: ## ## # Return Value: ## series(x) ## } # ------------------------------------------------------------------------------ ## "setSeries<-" <- ## function(x, value) ## { ## # Description: ## # Set data slot to a 'timeSeries' object ## ## # Arguments: ## # x - a 'timeSeries' object ## ## # FUNCTION: ## ## # Assign Series Slot: ## series(x) <- value ## ## # Return Value: ## x ## } ################################################################################ # DEPRECATED seriesData <- function(object) { # A function implemented by Diethelm Wuertz # Description: # Returns the series Data of an ordered data object. # Arguments: # object - a 'timeSeries' object # Value: # Returns an object of class 'matrix'. # FUNCTION: # Test: if (class(object) != "timeSeries") stop("Object is not a time Series") # Deprecated .Deprecated(new = "series", package = "timeSeries") # Get Data Slot: ans <- as.matrix(object) # Return Value: ans } ################################################################################ timeSeries/R/base-sample.R0000644000176000001440000000211712620124746015135 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # sample,timeSeries Resamples a 'timeSeries' object in time ################################################################################ setMethod("sample", "timeSeries", function(x, size, replace = FALSE, prob = NULL) { x[sample(seq(NROW(x)), size, replace, prob), ] } ) ################################################################################ timeSeries/R/statistics-colSums.R0000644000176000001440000001151112620124746016557 0ustar ripleyusers # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ # FUNCTION: COLUMN STATISTICS: # colStats Computes sample statistics by column # colSums Computes sums of all values in each column # colMeans Computes means of all values in each column # colSds Computes standardard deviation of each column # colVars Computes sample variance by column # colSkewness Computes sample skewness by column # colKurtosis Computes sample kurtosis by column # colMaxs Computes maximum values in each colum # colMins Computes minimum values in each colum # colProds Computes product of all values in each colum # colQuantiles Computes quantiles of all values in each colum # DEPRECATED: NO LONGER USED: # colAvgs Computes sample mean by column # colStdevs Computes sample standard deviation by column # mean.timeSeries Computes sample means by column # var.timeSeries Computes sample variance by column ################################################################################ colStats <- function(x, FUN, ...) { # A function implemented by Diethelm Wuertz # Description: # Computes sample statistics by column # FUNCTION: # Statistics: if (inherits(x, "timeSeries")) apply(na.omit(getDataPart(x), ...), 2, FUN, ...) #<< YC : as.matrix is slow ! else apply(na.omit(as.matrix(x), ...), 2, FUN, ...) } # ------------------------------------------------------------------------------ # YC important because default colSums is unefficient since it retrieves # full dimnames, i.e. rownames which is very time consuming if (getRversion() < "2.9.0") { setMethod("colSums", "timeSeries", function(x, na.rm = FALSE, dims = 1L) { x <- getDataPart(x) callGeneric() }) } else { setMethod("colSums", "timeSeries", function(x, na.rm = FALSE, dims = 1L, ...) { x <- getDataPart(x) callGeneric() }) } # ------------------------------------------------------------------------------ # YC important because default colSums is unefficient since it retrieves # full dimnames, i.e. rownames which is very time consuming if (getRversion() < "2.9.0") { setMethod("colMeans", "timeSeries", function(x, na.rm = FALSE, dims = 1L) { x <- getDataPart(x) callGeneric() }) } else { setMethod("colMeans", "timeSeries", function(x, na.rm = FALSE, dims = 1L, ...) { x <- getDataPart(x) callGeneric() }) } # ------------------------------------------------------------------------------ colSds <- function(x, ...) { colStats(x, "sd", ...) } colVars <- function(x, ...) { colStats(x, "var", ...) } colSkewness <- function(x, ...) { colStats(x, "skewness", ...) } colKurtosis <- function(x, ...) { colStats(x, "kurtosis", ...) } colMaxs <- function(x, ...) { colStats(x, "max", ...) } colMins <- function(x, ...) { colStats(x, "min", ...) } colProds <- function(x, ...) { colStats(x, "prod", ...) } # ------------------------------------------------------------------------------ colQuantiles <- function(x, prob = 0.05, ...) { # FUNCTION: stopifnot(length(prob) == 1) colStats(x, "quantile", probs = prob, ...) } ################################################################################ # DEPRECATED: colAvgs <- function(x, ...) { # FUNCTION: colMeans(x, ...) } # ------------------------------------------------------------------------------ colStdevs <- function(x, ...) { # FUNCTION: colStats(x, "sd", ...) } # ------------------------------------------------------------------------------ # mean.timeSeries <- colMeans # var.timeSeries <- colVars ################################################################################ timeSeries/R/base-sort.R0000644000176000001440000000352312632505222014640 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # sort,timeSeries Sorts a 'timeSeries' object in time ################################################################################ .sort.timeSeries <- function (x, decreasing = FALSE, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Time sorts a 'timeSeries' object # Arguments: # x - a 'timeSeries' object. # Value: # Returns a time sorted object of class 'timeSeries'. # FUNCTION: # check if really necessary to sort x # important in order to improve efficiency ## NB: is.unsorted can return NA if (!decreasing && !isTRUE(is.unsorted(x@positions))) return(x) if (length(x@positions)>0) x[order(x@positions, decreasing = decreasing), ] else x } setMethod("sort", "timeSeries", function (x, decreasing = FALSE, ...) .sort.timeSeries(x, decreasing = decreasing, ...)) # until UseMethod dispatches S4 methods in 'base' functions sort.timeSeries <- function(x, decreasing = FALSE, ...) .sort.timeSeries(x, decreasing = decreasing, ...) ################################################################################ timeSeries/R/methods-is.R0000644000176000001440000000435212633117102015013 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # is.timeSeries Tests for a 'timeSeries' object ################################################################################ is.timeSeries <- function (x) { # A function implemented by Diethelm Wuertz # Description: # Tests for a 'timeSeries' object. # Arguments: # object - a 'timeSeries' object to be tested. # Value: # Returns 'TRUE' or 'FALSE' depending on whether its # argument is of 'timeSeries' type or not. # Changes: # # FUNCTION: # Check: ans <- is(x, "timeSeries") # Return Value: ans } # ------------------------------------------------------------------------------ is.signalSeries <- function(x) { !as.logical(length(x@positions)) } # ------------------------------------------------------------------------------ # YC: # Note if is.na returns a timeSeries objects then we have problem # with the function quantile... setMethod("is.na", "timeSeries", function(x) setDataPart(x, is.na(getDataPart(x)))) # ------------------------------------------------------------------------------ # something like this would be needed if is.unsorted again became an internal generic #if(getRversion() >= "3.3.0") { # setGeneric("is.unsorted", signature = "x", useAsDefault = base::is.unsorted) #} setMethod("is.unsorted", "timeSeries", function(x, na.rm = FALSE, strictly = FALSE) callGeneric(x@positions, na.rm = na.rm, strictly = strictly)) ################################################################################ timeSeries/R/utils-head.R0000644000176000001440000000647112620124746015012 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # METHOD: SUBSETTING METHODS ON DATA: # head,timeSeries Returns the head of a 'timeSeries' object # tail,timeSeries Returns the tail of a 'timeSeries' object ################################################################################ .head.timeSeries <- function(x, n = 6, recordIDs = FALSE, ...) { # A function implemented by Diethelm Wuertz # Description: # Returns the head of a 'timeSeries' object # Arguments: # x - a 'timeSeries' object. # n - a single integer. If positive, number of the first n records (rows) # to be returned. If negative, all but the n first number of # elements of x are returned. # recordIDs - a logical flag, should the record identification # be shown? By default FALSE. # ... - # Value: # Returns the tail of an object of class 'timeSeries'. # FUNCTION: # Head: if (recordIDs & dim(x)[1] == dim(x@recordIDs)[1]) cbind(head.matrix(x, n = n, ...), head(x@recordIDs, n = n, ...)) else head.matrix(x, n = n, ...) } setMethod("head", "timeSeries", function(x, n = 6, recordIDs = FALSE, ...) .head.timeSeries(x, n, recordIDs, ...)) # until UseMethod dispatches S4 methods in 'base' functions head.timeSeries <- function(x, ...) .head.timeSeries(x, ...) # ------------------------------------------------------------------------------ .tail.timeSeries <- function(x, n = 6, recordIDs = FALSE, ...) { # A function implemented by Diethelm Wuertz # Description: # Returns the tail of a 'timeSeries' object # Arguments: # x - a 'timeSeries' object. # n - a single integer. If positive, number of the last n records (rows) # to be returned. If negative, all but the n last number of # elements of x are returned. # recordIDs - a logical flag, should the record identification # be shown? By default FALSE. # ... - # Value: # Returns the tail of an object of class 'timeSeries'. # FUNCTION: # Tail: if (recordIDs & dim(x)[1] == dim(x@recordIDs)[1]) cbind(tail.matrix(x, n = n, addrownums = FALSE, ...), tail(x@recordIDs, n = n, addrownums = FALSE, ...)) else tail.matrix(x, n = n, addrownums = FALSE, ...) } setMethod("tail", "timeSeries", function(x, n = 6, recordIDs = FALSE, ...) .tail.timeSeries(x, n, recordIDs, ...)) # until UseMethod dispatches S4 methods in 'base' functions tail.timeSeries <- function(x, ...) .tail.timeSeries(x, ...) ################################################################################ timeSeries/R/statistics-smoothLowess.R0000644000176000001440000001507312620124746017647 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # smoothSupsmu Smoothes a timeSeries with the supsmu function # smoothLowess Smoothes a timeSeries with the lowess function # smoothSpline Smoothes a timeSeries with the smooth.spline function # DEPRECATED: DESCRIPTION: # .supsmuSmoother Smoothes a timeSeries with the supsmu function # .lowessSmoother Smoothes a timeSeries with the lowess function # .splineSmoother Smoothes a timeSeries with the smooth.spline function ################################################################################ # DW: # These are older functions which have to be rewritten ... # The functions are thought to be used to smooth financial # price or index series. # ------------------------------------------------------------------------------ smoothSupsmu <- function(x, bass = 5, ...) { # A function implemented by Diethelm Wuertz # Description: # Smoothes a time series with the supsmu function # Arguments: # x - an univariate timeSeries object, e.g. a price or index series # bass - controls the smoothness of the fitted curve. Values of up # to 10 indicate increasing smoothness. # ... - further arguments passed to the function supsmu() # Example: # x <- smoothSupsmu(MSFT[, 4], bass = 0.1); x; plot(x) # FUNCTION: # Settings: stopifnot(isUnivariate(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Handle Missing Values: x <- na.omit(x) # Convert to Vector: X <- x x <- as.vector(x) # Smooth: ans <- stats::supsmu(x = 1:length(x), y = x, bass = bass, ... ) data <- cbind(x, ans$y) colnames(data) <- c(colnames(X), "supsmu") rownames(data) <- as.character(time(X)) series(X) <- data # Preserve Title and Documentation: X@title <- Title X@documentation <- Documentation # Return Value: X } # ------------------------------------------------------------------------------ smoothLowess <- function(x, f = 0.5, ...) { # A function implemented by Diethelm Wuertz # Description: # Smoothes a time series with the lowess function # Arguments: # x - an univariate timeSeries object, e.g. a price or index series # f - the smoother span. This gives the proportion of points in the # plot which influence the smooth at each value. Larger values # give more smoothness. # ... - further arguments passed to the function lowess() # Example: # x = smoothLowess(MSFT[, 4], f = 0.05); x; plot(x) # FUNCTION: # Settings: stopifnot(isUnivariate(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Handle Missing Values: x <- na.omit(x) # Convert to Vector: X <- x x <- as.vector(x) # Smooth: ans <- stats::lowess(x, f = f, ...)$y data <- cbind(x, ans) colnames(data) <- c(colnames(X), "lowess") rownames(data) <- as.character(time(X)) series(X) <- data # Preserve Title and Documentation: X@title <- Title X@documentation <- Documentation # Return Value: X } # ------------------------------------------------------------------------------ smoothSpline <- function(x, spar = NULL, ...) { # A function implemented by Diethelm Wuertz # Description: # Smoothes a time series with the smooth.spline function # Arguments: # x - an univariate timeSeries object, e.g. a price or index series # f - the smoother span. This gives the proportion of points in the # plot which influence the smooth at each value. Larger values # give more smoothness. # ... - further arguments passed to the function smooth.spline() # Details: # smooth.spline(x, y = NULL, w = NULL, df, spar = NULL, cv = FALSE, # all.knots = FALSE, nknots = NULL, keep.data = TRUE, df.offset = 0, # penalty = 1, control.spar = list()) # Example: # x = smoothSpline(MSFT[, 4], spar = NULL); x; plot(x) # x = smoothSpline(MSFT[, 4], spar = 0.4); x; plot(x) # FUNCTION: # Settings: stopifnot(isUnivariate(x)) # Extract Title and Documentation: Title <- x@title Documentation <- x@documentation # Handle Missing Values: x <- na.omit(x) # Convert to Vector: X <- x x <- as.vector(x) # Smooth: ans <- stats::smooth.spline(x, spar = spar, ...)$y data <- cbind(x, ans) colnames(data) <- c(colnames(X), "spline") rownames(data) <- as.character(time(X)) series(X) <- data # Preserve Title and Documentation: X@title <- Title X@documentation <- Documentation # Return Value: X } ################################################################################ .supsmuSmoother <- function(...) { # FUNCTION: # Deprecated: .Deprecated("smoothSupsmu") # Return Value: smoothSupsmu(...) } # ------------------------------------------------------------------------------ .lowessSmoother <- function(...) { # FUNCTION: # Deprecated: .Deprecated("smoothLowess") # Return Value: smoothLowess(...) } # ------------------------------------------------------------------------------ .splineSmoother <- function(...) { # FUNCTION: # Deprecated: .Deprecated("smoothSpline") # Return Value: smoothSpline(...) } ################################################################################ timeSeries/R/base-attach.R0000644000176000001440000000265612620124746015130 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # S4 METHOD: DATABASE ATTACHEMENT: # attach,timeSeries Attaches a 'timeSeries' object to the search path ################################################################################ setMethod("attach", "timeSeries", function(what, pos = 2, name = deparse(substitute(what)), warn.conflicts = TRUE) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Attaches a 'timeSeries' object # Details: # The function works in the same way as in the case of a # data.frame, i.e. the return values are vectors. # FUNCTION: # Return Value: callGeneric(as.data.frame(what), pos, name, warn.conflicts) }) ################################################################################ timeSeries/R/timeSeries-slotUnits.R0000644000176000001440000000344612620124746017065 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # getUnits Get units slot from a 'timeSeries' # setUnits<- Set new units slot to a 'timeSeries' ################################################################################ getUnits <- function(x) { # A function implemented by Diethelm Wuertz # FUNCTION: # Return Value: UseMethod("getUnits") } getUnits.default <- function(x) { # Description: # Get units slot from a 'timeSeries' object. # Arguments: # x - a 'timeSeries' object # FUNCTION: # Return Value: colnames(x) } # ------------------------------------------------------------------------------ "setUnits<-" <- function(x, value) { # Description: # Set units slot to a 'timeSeries' object. # Arguments: # x - a 'timeSeries' object # FUNCTION: # Assign Time Slot: colnames(x) <- value # Return Value: x } ################################################################################ timeSeries/R/stats-na.omit.R0000644000176000001440000002337612620124746015457 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ # FUNCTION: DESCRIPTION: # na.omit,timeSeries Handles missing values in objects # .naOmitMatrix Internal function called from na.omit,timeSeries # OLD FUNCTIONS: DESCRIPTION: # removeNA Remove NAs from a matrix object # substituteNA Substitute NAs by zero, the column mean or median # interpNA Interpolate NAs using R's "approx" function ################################################################################ # DW: # I think we should deprecate the following functions: # removeNA, substituteNA, and interpNa since the function # na.omit() can already handle all these cases. # DW: # note we do interpolation with approx(), zoo also offers # interpolation by splines, we should also add this. ################################################################################ .na.omit.timeSeries <- function(object, method = c("r", "s", "z", "ir", "iz", "ie"), interp = c("before", "linear", "after"), ...) { # Description # Handles NAs in timeSeries objects # Detials: # Linear Interpolation is done by the function approx. # Spline interpolation like in zoo is not yet supported. # Arguments: # object - an object of class 'timeSeries' # method - how to handle NAs # interp - how to interpolate NAs # ... - arguments passed to function approx() # FUNCTION: # Check Arguments: stopifnot(is.timeSeries(object)) # Extract Title and Documentation: Title <- object@title Documentation <- object@documentation # Settings: method <- match.arg(method) interp <- match.arg(interp) # Skip ? if (method == "s") return(object) # Handle NAs: if (method == "r") { # Remove NAs: # DW: # object <- stats:::na.omit.default(object) object <- as.timeSeries(na.omit(series(object))) } else if (method == "z") { # Substitute NAs by Zero's: object[is.na(object)] <- 0 } else if (substr(method, 1, 1) == "i") { # Interpolate: interp = match.arg(interp) f = 0 if (interp == "before") { interp = "constant" f = 0 } if (interp == "after") { interp = "constant" f = 1 } n = nrow(object) for (i in 1:ncol(object)) { y = object[, i] idy = (1:n)[!is.na(y)] ## DW: ... added # Linear/Constant Interpolation: y = approx(x = idy, y = y[idy], xout = 1:n, method = interp, f = f, ...)$y object[, i] = y } modID = FALSE if (method == "ir") { # Remove Start and End NAs: # DW: # object <- stats:::na.omit.default(object) object <- as.timeSeries(na.omit(series(object))) } else if (method == "iz") { # Set Start and End NAs to Zero: object[is.na(object)] = 0 } else if (method == "ie") { n = nrow(object) for (k in 1:ncol(object)) { y = object[, k] if (NA %in% y) { start = sum(cumprod(is.na(y))) if (start > 0) for (i in start:1) y[i] = y[i+1] end = n+1 - sum(cumprod(rev(is.na(y)))) if (end <= n) for (i in end:n) y[i] = y[i-1] object[, k] = y } } } } # Handle recordIDs ... recordIDs <- object@recordIDs modID <- c(r = TRUE, z = FALSE, ir = TRUE, iz = FALSE, ie = FALSE) if(modID[method] > 0 && sum(dim(recordIDs)) > 0 ) { index <- attr(object, "n.action") recordIDs <- recordIDs[index, ] } # Preserve Title and Documentation: object@title <- Title object@documentation <- Documentation # Return Value: object } setMethod("na.omit", "timeSeries", function(object, method = c("r", "s", "z", "ir", "iz", "ie"), interp = c("before", "linear", "after"), ...) .na.omit.timeSeries(object, method, interp, ...)) # until UseMethod dispatches S4 methods in 'base' functions na.omit.timeSeries <- function(object, ...) .na.omit.timeSeries(object, ...) # ------------------------------------------------------------------------------ .naOmitMatrix <- function(object, method = c("r", "s", "z", "ir", "iz", "ie"), interp = c("before", "linear", "after")) { # Description: # Internal Function called from na.omit.timSeries() # Arguments: # FUNCTION: # Extract matrix: x = object stopifnot (is.matrix(x)) # Match Arguments: method <- match.arg(method) interp <- match.arg(interp) # Handle NAs: if (method == "r") { # Remove NAs: x <- na.omit(x) } else if (method == "z") { # Substitute NAs by Zero's: x[is.na(x)] <- 0 } else if (substr(method, 1, 1) == "i") { # Interpolate: interp = match.arg(interp) f = 0 if (interp == "before") { interp = "constant" f = 0 } if (interp == "after") { interp = "constant" f = 1 } n = nrow(x) for (i in 1:ncol(x)) { y = x[, i] idy = (1:n)[!is.na(y)] y = approx(idy, y[idy], 1:n, method = interp, f = f)$y x[, i] = y } modID = FALSE if (method == "ir") { # Remove Start and End NAs: x = na.omit(x) } else if (method == "iz") { # Set Start and End NAs to Zero: x[is.na(x)] = 0 } else if (method == "ie") { n = nrow(x) for (k in 1:ncol(x)) { y = x[, k] if (NA %in% y) { start = sum(cumprod(is.na(y))) if (start > 0) for (i in start:1) y[i] = y[i+1] end = n+1 - sum(cumprod(rev(is.na(y)))) if (end <= n) for (i in end:n) y[i] = y[i-1] x[, k] = y } } } } # Add Control: if (substr(method, 1, 1) == "i") { attr(x, "control") = c(method = method, interp = interp) } else { attr(x, "control") = c(method = method) } # Return Value: x } ################################################################################ removeNA <- function (x, ...) { # A function implemented by Diethelm Wuertz and Yohan Chalabi # Description: # Remove NA's from objects which can be transformed to a matrix # Arguments: # x - an object which can be transformed to a matrix # FUNCTION: na.omit(x, ...) } # ------------------------------------------------------------------------------ substituteNA <- function(x, type = c("zeros", "mean", "median"), ...) { # A function implemented by Diethelm Wuertz # Description: # Imputes missing data by zeros, the median or the # mean values of all matrix elements # Arguments: # x - an object which can be transformed to a matrix # type - method specifies the substitution method to be # used. Choices are "zeros", "mean", or "constant" # FUNCTION: if (!inherits(x, "matrix") && !inherits(x, "timeSeries")) x <- as(x, "matrix") # Type: type <- match.arg(type) ans <- switch(type, "zeros" = apply(x, 2, function(z) { z[is.na(z)] <- 0 z}), "median" = apply(x, 2, function(z) { z[is.na(z)] = median(z, na.rm = TRUE) z}), "mean" = apply(x, 2, function(z) { z[is.na(z)] = mean(z, na.rm = TRUE) z})) # Return Value: ans } # ------------------------------------------------------------------------------ interpNA <- function(x, method = c("linear", "before", "after"), ...) { # A function implemented by Diethelm Wuertz # Description: # Interpolates missing values in a matrix object # Arguments: # x - a numeric vector or time series object of class 'ts'. # method - the method how to interpolate the vector, one of # the applied vector strings: "linear", "before" or # after. # Details: # To interpolate the function 'approx' is used. # Value: # Returns a vector or time series object where the missing # values are interpolated. # FUNCTION: if (!inherits(x, "matrix") && !inherits(x, "timeSeries")) x <- as(x, "matrix") # Internal Function: interpVectorNA <- function(x, method, f) { n <- length(x) idx <- (1:n)[!is.na(x)] x <- approx(idx, x[idx], 1:n, method = method, f = f)$y x} # Select Method: method = method[1]; f = 0 if (method == "before") { method = "constant" f = 0 } if (method == "after") { method = "constant" f = 1 } # For each Column: for (i in 1:ncol(x)) { x[, i] = interpVectorNA(x[, i], method, f) } # Return Value: x } ################################################################################ timeSeries/R/zzz.R0000644000176000001440000000201612620124746013577 0ustar ripleyusers# # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # ../../COPYING ################################################################################ .onLoad <- function(libname, pkgname) { if(!is.numeric(getRmetricsOptions("max.print"))) setRmetricsOptions(max.print = 100) #-> show() of large matrices # YC: This should really go in methods package. keep it here for # the time being. (R -2.9.0) setOldClass("difftime") } ################################################################################ timeSeries/vignettes/0000755000176000001440000000000012620124760014423 5ustar ripleyuserstimeSeries/vignettes/symbolTableFig.pdf0000644000176000001440000001670512620124746020036 0ustar ripleyusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20140417140611) /ModDate (D:20140417140611) /Title (R Graphics Output) /Producer (R 3.0.2) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 3433 /Filter /FlateDecode >> stream xœµ\i£Ý6ý~…ÙW3²6vÚB ¥ihZHÓ„^šÊÎ_G«g|Ó¤R4|ÈÍóµG>–ŽæèHW†åú˃åãÓøïÕ‹Ó+OßyãÕåÎÓ“Z•R ÿ|zçÑé•×u¼þâÞÛZO”r F­ܺ™åâáòÞ•‹«‹WË•Û^] þywy|oyûòñ'˵û·ŸÜ¾óÉÝ'ñŒY®<½úþrqýôÚE‚²˜°ªmqzݶEo¸:\0„Õàòäîòîò¨½vóϽyí­ß™åÓÓ{ï/jùèËõøïÁ 2Ö7OÁ®b¹aÕíê|ùˆEßìª,•àuA…by›_7›ªàŠºº\¼6åc(an­‰xÌ£3£Qµ+™x©2|˜ ʧÇË=+ö¸gÎæà™L­nÏ2zúܨOÇèôÞ¥÷#véÀmîõJ ;V¶ÅlËh=Z*ˆ–$žòðWåù1¿¾ëæZ§<Äì)šŸ:bõžÑŽÆ2èFcÉã¡U{/Ç0›]Uá‡V£±ä‹4°ØÏN0/.1Ñ DC“­r*qa¾Lj©£CªU£Q¢Å5jA"Ù ­ç!b20Ñô—¬øEˆäoô6 s‰ÑwTçú%ˆdd´‘ –vù² ÄX`kh; бQ­]¾"‘ ÔnbuU ¿*‘,ŠöóÝ%Š—Ô-•ø5ˆÉ®´†=ºø(}ëŠ F2*›’Á˜¦³ÊSߺ*ƒÑí³½›€¾$;`ãàÑå¿.‘üÊ6­/X K#®Tâ7d ’SÙô%J Äñ•+lü¦ Äæ˜ô%Õb´¾´Ë·d ’GÙ>ÇØ§q+ÄѦZ‚\Húˆâ¥Mgû€k›VҔѨTC÷ŠL=‘óÙ¦$ë0s0J"¸M+H†HnD†}¸µÍêGìª~ËŽ¨ù±I„&´+D3+"/-‘ 4³êQ!’¿Ûd &\˜hfÕ£BLkx\$›ƒH¾Ô̪G…HnÕÊ@¤ͬzˆÙÃq]m "_»œu'"yo/‘ 4³ÚR!’÷2S⬶l!»»Cü¶ D2ófV[*D³ êwd ’™7ê TZ…4¥»|W"™y+ .®,7Öñà÷d ’™·ê’ FÃ\þß—HfÞʨKòÞ¶<ôd ’™·ÓêÅ9hƒoÓs?È̼P—j½u)ñG2ÉË[u©Î»Ú‚We ÒŠ£P—¼Òg[C_“h÷Á˜V—ºÚh[CÿX"Yy;­.¾9ïÚЯÉ@¤G+ .6ž×[kè×e ’•wÓêâöeÄRâ2i]Ò ¨Kâ"ýŸÈ@$£ï¦Õ%”¥Ê}eå§2Éè»iu iþ0d»Ÿ ¼.‚&ܬ¶¸m7úå‘6‰Ðןûf(ݬ¶8“KÔ»¶ü\"}7«-±óOtwmySb2úÕPÎj‹+«â°kË[2Éè»Ym‰ë²tmè_È@$£ïfµ¥t »¶¼-‘-§ûYm)µ˜}y±7d ²™ƒYm)\L¾¼6ô;2iæÀÏjKmhZµ¿)‘ýxyV[b^L‹¹Ñ—×}!‘Œ¾P—ÔÐiÕ¾¬”þR"}?­.¥¡ÓïKCÿJ"}?­.:U_þp)ñ]ˆdô½€º4£_Jüµ D2ú^@]²/ßþoD 2£ï§ÕÅ”_ßÊ@$£¦ÕÅ£¿/Ú¿'‘Œ~˜V—‘Œþ­[2Éé‡iy)Ó¢}yê÷e ’Óòb“1ßÒ,c*ñˆäôô¼˜²hŸ7j¥'‘œ~˜–›'#Ò‚o±C¿—HKúaZ^J-¦] E¤oË@ZÇ™–—1óºú¡ DrúaZ^LZ̺¶;"iI?LŠ *H™-é4‡0mŠOÌ–ôAMªKÃ;t¥â]ŒdõAMÊ *,kðùë©È{2iQÔ¤¼´z—6×¥"ÿ ƒ‘Ì~ì:2Éíß—ÁHnÔ¤À¤íhÉb‘Ýÿ£Ff÷AM*LÃèMÚ‘Š| ƒ‘ü>¨I‰Im,7ü’ÁH†Ԥƴz$Ç)ƒ‘?¨I‘A¥²Ÿ6»>”ÁH–”ŒÎ¤ÅýºÅê‘ F¶ådt&ytWúÌcŒ|sñ´Î@[Þ÷¥ÿ,ƒ‘í3A€˨çcŒl?1Lë æx´é®`|"‚‘o.†iÉù1ÿ\¿`|*ƒ‘m+†iÁ}E¾ÐçŒlS1èLÚ™º/)÷/2Ùöb˜Ö™ÒÖf_Úù« F¶³¦u&ïJ›‹ë8üSŒl_1èLªÇèÕkÿ› F2ÿ€:“0¢Iÿ¥"ÿ.ƒ‘Öùt&a$ûÿŒ´Ð8­3%‡—·C¤"ÿ)ƒ‘ü? €Î„¼Z†ÿK"Û#€³*ƒQ±l~ÃWtü÷$D=0ŸÀY•AŸ1jß~úŒlgUF«²m;¤=ö©ÈÿÊ`¤}п¼3kÞ¿¼3ÏÜ¿¼s3Û¿¼3—yØ ÞÌìŸÆÑ`æË¨»‚™a:lmî fNFw¿h Óº"èî7 ´`Zñ=ʰÃK~FÆVÉ@2Œc·Q†±Ý °2Œü¶Q†ñÙ6Ê0¶·¶Q†ñ1Ì6Ê0¶´Û(øêo£ ãr¼2ŒfÊaë'XL:Ìô¬3i1ý«ÁlÖ×ô¬³œoú VƒYÎ7ý+Á<ç›~‚Õ`–óM?Áj0Ëù¦Ÿ`5˜å|ÓO°Ìr¾eÏùv”a<çÛQ†ñœoGÆs¾eÏùv”a<çÛQ†^T6Ê0¶Ìv”a<çÛQ†q{lGÆs¾e7”n”a<ç»Q†ñœïFÆÌ‘ë'˜?ߊ ®Ÿ`þ|“0¸~‚ù}ûîþ²º~‚ùóµàú æÏ·¼‚ë'˜§Í¨µ¥|?Áüù6Qðýó´³Âöýóç[+Á÷ÌŸoz?Ê0žóý(ÃxÎ÷£ ã9ß2Œç|?Ê0žóý(ÃxΣ ã9?Œ2Œçü0Ê0žóÃ(ïZeÏùa”a|œFÆ~Üa”a<ç‡Q†±q~è&XÊšxx=ªn‚µ`öŠ?ÕM°Lã|TÝkÁì%ª›`-˜½åOu¬³œª›`-˜r>ªn‚µ`Êù¨º Ö‚)ç£ê&X ¦œj”a,ç#Œ2Œ-#Œ2Œ­ë"Œ2Œå|„Q†±•P„Q†±œ0Ê0–óFÆævFÆr>Â(ÃXÎGeë-Ž2Œ¿¸Gvx;í(Ãø eq”aìµ°ØO°ô’|}Èùý¯umÁ,ç÷¿×µ³÷ºöÏç·`–óûçó[0Ëùýóù5˜çüþùüÌr~ÿ|~ f9¿>¿³œß?Ÿß‚YÎïŸÏoÁ,ç÷Ïç·`çcÿ|~ ¦q>öÏç·`–óûçók0çcÿ|~ f9¿>¿Ó|>öÏç·`–óûçó[0Ëùýóù-˜æó±>¿³œß?Ÿß‚iœýóù-˜åüþùüÌr~ÿ|~ ¦q>öÏçkò»Áù›¼û VƒYÎïŸÏoÁlœß?Ÿß‚YÎïŸÏoÁ,ç÷Ïç×`žói>ÿÆér Å>endstream endobj 3 0 obj << /Type /Pages /Kids [ 7 0 R ] /Count 1 /MediaBox [0 0 432 432] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font << /F1 10 0 R /F2 11 0 R /F3 12 0 R >> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 12 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 9 0 R >> endobj xref 0 13 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000003797 00000 n 0000003880 00000 n 0000004015 00000 n 0000004048 00000 n 0000000212 00000 n 0000000292 00000 n 0000006743 00000 n 0000007000 00000 n 0000007084 00000 n 0000007181 00000 n trailer << /Size 13 /Info 1 0 R /Root 2 0 R >> startxref 7283 %%EOF timeSeries/vignettes/timeSeriesPlot.Rnw0000644000176000001440000015272612620124746020104 0ustar ripleyusers%\VignetteIndexEntry{Plotting 'timeSeries' Objects} \documentclass[10pt,a4paper]{article} \usepackage{hyperref} \hypersetup{colorlinks,% citecolor=black,% linkcolor=blue,% urlcolor=darkgreen,% } \title{\bf Plotting 'timeSeries' Objects} \author{Diethelm W\"urtz and Tobias Setz\\ETH Zurich and Rmetrics Association Zurich} \date{May 12, 2014} \begin{document} \SweaveOpts{concordance=TRUE} \maketitle \tableofcontents \setlength{\parskip}{20pt} %\SweaveOpts{strip.white=FALSE} \setkeys{Gin}{width=0.9\textwidth} % plot.ts <- function ( % x, y = NULL, plot.type = c("multiple", "single"), % xy.labels, xy.lines, panel = lines, nc, % yax.flip = FALSE, % mar.multi = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1), % oma.multi = c(6, 0, 5, 0), axes = TRUE, ...) % plot.zoo <- function ( % x, y = NULL, screens, plot.type, panel = lines, % xlab = "Index", ylab = NULL, main = NULL, % xlim = NULL, ylim = NULL, % xy.labels = FALSE, xy.lines = NULL, % yax.flip = FALSE, % oma = c(6, 0, 5, 0), % mar = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1), % col = 1, lty = 1, lwd = 1, pch = 1, type = "l", log = "", % nc, widths = 1, heights = 1, ...) % plot.xts <- function ( % x, y = NULL, type = "l", auto.grid = TRUE, % major.ticks = "auto", minor.ticks = TRUE, major.format = TRUE, % bar.col = "grey", candle.col = "white", % ann = TRUE, axes = TRUE, ...) % .plot.timeSeries <-function( % x, y, FinCenter = NULL, type = NULL, plot.type = c("multiple", "single"), % format = "auto", at = c("chic", "pretty"), % col, pch, cex, lty, lwd, % grid = FALSE, frame.plot = TRUE, panel = lines, % axes = TRUE, ann = TRUE, cex.axis = 1, cex.lab = 1, % yax.flip = FALSE, % mar.multi = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1), % oma.multi = c(7.75, 1.1, 6.1, 1.1), % ...) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 1 \newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Introduction} The Rmetrics \texttt{timeDate} and \texttt{timeSeries} packages are workhorses to deal with chronological objects. Since their inception 2009 under their original names \texttt{fCalendar} and \texttt{fSeries} they have been only slightly modified. With version R 3.1. we have essentially improved the \texttt{plot} function, but we also took care that the functionality is almost upward compatible. In this vignette we show how to work with the recently updated S4 generic plot function \texttt{plot}. The function is written to display Rmetrics S4 \texttt{timeSeries} objects. The basic functionality of the \texttt{plot} function is to display single and multiple views on univariae and multivariate \texttt{timeSeries} objects. The function \texttt{plot.ts} from R's base environment, which displays basic \texttt{ts} time series objects, served as a model for our design of the generic S4 \texttt{plot} function for \texttt{timeSeries} objects. Similarily, \texttt{plot.ts} can be considered as the prototype for the S3 \texttt{plot.zoo} method. The \texttt{xts} plot function was build to display univariate \texttt{xts} time series objects which inherit from \texttt{zoo}'s objects for ordered time series objects. The generic S4 time series plotting function can dispay \emph{univariate} and \emph{multivariate} time series in \emph{single} and \emph{multiple} frames. The plots can be tailored with respect to several viewing components: colors (col), line types (lty), plot symbols (pch), line widths (lwd), symbol sizes (cex), axis layout (pretty, chic, tailored), minor tick mark appearence, font styles and font sizes, frame positioning (mar, oma), as well as tailored panel functions (panel). \noindent\emph{General Plot Settings and Design Apects}: \noindent\emph{Plot Type}: Univariate time series are displayed by default in \texttt{plot.type="single"} frames, multivariate time series are displayed by default in \texttt{plot.type="multiple"} frames. The default line style for a plot is \texttt{type ="l"} is drawn with "lines". \noindent\emph{Time Axis Layout}: For the time axis layout the function \texttt{pretty} determines in an automative way the \texttt{at="pretty"} positions of the ticks. The \texttt{format="auto"} is extracted from the time stamps of the time series object or can be overwritten by the user with a POSIX format string. Alternatively, one can select \texttt{"chic"} to generate time axis styles. We called this method "chic" to give reference to the underlying function \texttt{axTicksByTime} from the Chicago \texttt{xts} package which generates tick positions and axis labels. Furthermore, a "tailored" method can be applied which allows for fully arbitrary user defined positions and formatted labels. Minor ticks can be added in several fashions. \noindent\emph{Annotations}: The annotations of the plots are reduced to the y-label. These are taken by default from the column names of the time series object. This gives the user the freedom to have full control about his views how the plot should be look like. Note, multivariate time series in single plots show the string \texttt{"Values"} as label on the y-axis. Main title, sub title, and the x-label on the time axis are not shown by default. We prefer and recommend to add these decorations calling the function \texttt{title}. This allows also much more flexibility compared to passing the arguments through the plot functions. All default annotations (including the y-label) can be suppressed setting the plot function argument to \texttt{ann=FALSE}. The argument \texttt{axes=FALSE} suppresses to draw both axes on the plot frame. \noindent\emph{Decorations}: There are several options to decorate the plot: These include colors (col), plotting symbols (pch), scaling factor of plotting characters and symbols (cex), line types (lty), and lindwidths (lwd). Note, all these parameters may be vectors of the same length as the number of time series, so that each series can be addressed to its own individual style, color, and size. A grid and the plot frame (box) can be added or suppresse specifying the arguments \texttt{grid} and \texttt{frame.plot} in the argument list of the \texttt{plot} function. \noindent\emph{Panel Function}: In the case of multiple plots the plot frames, are also called \emph{panels}. By default in each panel the appropriate curve is drawn calling R's \texttt{lines} function \texttt{panel=lines}. This function can be replaced by a user defined function. This offers a wide range of new views on your time series. So for example yo can show zero or any other reference lines on the panels, or you can add rugs to (return) charts, or you can add for an example an EMA indicator (or any other kind of indicator) to curves shown in individual panels. \noindent\emph{Example "timeSeries" Objects}: To demonstrate the wide range of options to dispaly S4 \texttt{timeSeries} objects, we use the the daily index values from the Swiss Pension Fund Benchmark \emph{LPP2005}. The time series is part of the \texttt{timeSeries} package. For this we have introduced some abbreviations: <>= Sys.setlocale("LC_ALL", "C") @ <>= require(timeSeries) require(xts) require(PerformanceAnalytics) require(fTrading) tS1 <- 100 * cumulated(LPP2005REC[, 1]) # SBI (univariate) tS2 <- 100 * cumulated(LPP2005REC[, 1:2]) # SBI & SPI (bivariate) tS3 <- 100 * cumulated(LPP2005REC[, 1:3]) # SBI, SPI, SWIIT (Swiss Market) tS6 <- 100 * cumulated(LPP2005REC[, 1:6]) # Swiss and Foreign Market Indexes @ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 2 \newpage\thispagestyle{empty}\mbox{} \newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Standard Time Series Plots} The \texttt{plot} function from the \texttt{timeSeries} package allows for five different views on standard plot layouts. These include \begin{itemize} \item Univeriate single plots \item Multivariate single plots \item One column multiple plots \item Two column multiple plots \item Scatter plots \end{itemize} \noindent The only argument we have to set is the \texttt{plot.type} parameter to determine the layout of the plot. The default value is \texttt{"multiple"}, and the alternative value is \texttt{"single"}. The arguments can be abbreviated as \texttt{"m"} or \texttt{"s"}, respectively. \noindent \emph{Univariate Single Plots} were designed to plot univariate \texttt{timeSeries} objects in one single graph frame. Nothing then the \texttt{timeSeries} object has to be specified, the \texttt{plot.type} is forced to \texttt{"s"}. \noindent \emph{Multivariate Single Plots} will be used when a set of multivariate \texttt{timeSeries} objects should be drawn in one common data frame. For this argument the vlue \texttt{plot.type="s"} has to be specified. \noindent \emph{One Column Multiple Plots} display multivariate \texttt{timeSeries} objects, such that each series is plotted in its own frame. Up to four series, the frames are displayed in one column, for more series the frames are arranged in a two colum column display. \noindent \emph{Two Column Multiple Plots} handel the case of more than four \texttt{timeSeries} objects. Then the the series are displayed in two colums. In total, the number of rows is not restricted. % ---------------------------------------------------------------------------- \pagebreak \subsection{Univariate Single Plots} The most simple time series plot shows an univariate curve in a single plot. The axis is designed from "pretty" positions calculated from R's base function \texttt{pretty}. The labels are printed in the ISO 8601 standard date/time format. <>= par(mfrow=c(1, 1)) plot(tS1) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The chart shows an univariate time series (here the Swiss Bond Index) in a single frame. For all plot options default values have been chosen. You can decorate the plot, making it more conveniant to your needs, e.g.: change the color (col), add a main title and x-label calling the function \texttt{title}, or remove the grid lines setting the argument \texttt{grid=FALSE}. You can also design the minor tick marks, setting instead of the value \texttt{"auto"} oe of the following spreads: \texttt{"day"}, the default, \texttt{"week"}, or \texttt{"month"}. } \end{figure} \end{center} % ---------------------------------------------------------------------------- \pagebreak \subsection*{} Tow other plot function implementations for \texttt{xts} time series objects can be found in the contributesd R packages \texttt{xts} and \texttt{PerformanceAnalytics}. Let us compare how they generate plot positions and time label formats. \vspace{-0.3cm} <>= require(PerformanceAnalytics) par(mfrow=c(3, 1)) xts::plot.xts(as.xts(tS1)) PerformanceAnalytics::chart.TimeSeries(as.xts(tS1)) plot(tS1) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The group of the three charts shows an univariate time series in a single frame for the plot functions as implemented in the packages \texttt{xts}, \texttt{PerformanceAnalytics}, and \texttt{timeSeries}. For example in the case of daily time series records \texttt{xts} uses U.S. style labels whereas \texttt{PerformanceAnalytics} and \texttt{timeSeries} use ISO standard date labels \texttt{YYYY-mm-dd}. The plot decorations are those from default settings.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Multivariate Single Plots} Multivariate time series plots in a single panel are constructed by default in the way that the first curve is plotted calling the function \texttt{plot} and the remaining curves by calling the function \texttt{lines}. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="s") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This chart shows a multivariate time series in a single frame. Note, we have to set the argument \texttt{plot.type="s"}. Again, for all plot options the default settings have been used. You can decorate the plot, making it more conveniant to your needs, e.g.: change the color vector (col), add a main title and x-label calling the function \texttt{title}, or remove grid lines setting the argument \texttt{grid=FALSE}. Note, to change the color settings you can set the argument \texttt{col=1:3} which would result in "black", "red", "green" for the three curves, or you can just set the colors by name, or selecting them from a color palette.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection*{} Now let us compare the plot function from the \texttt{timeSeries} package with the \texttt{chart.TimeSeries} plotting function from the \texttt{PerformanceAnalytics} function. (Note, the \texttt(xts) has no multivariate plot function implemented.) <>= par(mfrow=c(2, 1)) require(PerformanceAnalytics) PerformanceAnalytics::chart.TimeSeries(as.xts(tS3)) plot(tS3, plot.type="s") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The two charts show a multivariate time series plotted in a single frame. We use for the plot the functions as implemented in the packages \texttt{PerformanceAnalytics}, and \texttt{timeSeries}.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Multiple Plots} Multiple plots enormously simplify the display of different curves in multiple panels. These are the ideal plots when it comes to the task to create a quick overview over several time series. Multiple plotting is exclusive to \texttt{timeSeries} objects, \texttt(xts) and \texttt{PerformanceAnalytics} offer no multiple plotting tool. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m") @ \begin{center} \begin{figure}[h] <>= <> @ \caption{As long as we plot less than 4 time series in a multivariate frame, we get a one column layout. Annotations show by default only the y-labels which are taken from the colmun names of the time series to be drawn. Feel free to add main title, sub title, and x-label calling the function \texttt{title}}. \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection*{} For more than four curves the frames of the plot design are arranged in two columns. <>= par(mfrow=c(1, 1)) plot(tS6, plot.type="m") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The graph shows the layout how it is created for six curves. There are two columns with three panels to the left and also three panels to the right. Note, it is easily possible to adapt the margin sizes and the gap between the two columns of plots calling the function \texttt{mar} and \texttt{oma}.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection*{} If you like a design with a small gap between the panel rows, you can modify the \texttt{mar} parameter to introduce a small gap, here with a width of 0.3. Feel free to modify it. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", mar=c(gap=0.3, 5.1, gap=0.3, 2.1)) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{One can use in a multiple plot the \texttt{mar} parameter setting to create a small gap between the rows of the individual charts. This lets a plot look more elegant.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Combining Single Plots} You can also create your own multiple panel plots. Just combine single panels in an array of rows and columns using the parameter settings for \texttt{mfrow}, \texttt{mfcol}, and \texttt{mar}. <>= par(mfrow=c(2, 1)) par(mar = c(bottom=1.5, 5.1, top=4, 2.1)) plot(tS2[, 1]) par(mar = c(bottom=4, 5.1, top=1.5, 2.1)) plot(tS2[, 2]) @ \begin{center} \begin{figure}[h] <>= <> @ \caption{One can use in single plots the \texttt{mfrow} and \texttt{mar} parameter settings to place single plots either row by row or column by column. Here, \texttt{mfrow} and \texttt{mfcol} to the job. In this case a vector of the form \texttt{c(nr, nc)} draws subsequent figures in an nr-by-nc array on the device by columns (mfcol) or rows (mfrow), respectively.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Layout of Single Plots} There is another option in R to create panel layouts, not necessarilly in an rectangular array. Have a look to the help page of the function \texttt{layout}, her comes a simple example. <>= nf <- layout(mat=matrix(c(1, 1, 2, 3), byrow = TRUE, nrow=2)) par(mar = c(bottom=2, 5.1, top=3, 2.1)) plot(tS3[, 1]) par(mar = c(bottom=3, 5.1, top=2, 1.1)) plot(tS3[, 2]) par(mar = c(bottom=3, 4.1, top=2, 2.1)) plot(tS3[, 3]) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{With the function \texttt{layout} you can devide the plot device in rows and columns expressed in matrix form defined by the argument \texttt{mat}. } \end{figure} \end{center} %To be more specific, the graph \texttt{i} is allocated a region composed %from a subset of these rows and columns, based on the rows and columns %in which \texttt{i} occurs in the matrix \texttt{mat}. %The argument \texttt{layout.show(n)} plots (part of) the current layout, %namely the outlines of the next \texttt{n} figures. % ----------------------------------------------------------------------------- \pagebreak \subsection*{} In addition widths and heights of the layout can be different from row to row, and/or from column to column. The sizes are expressed by the arguments \texttt{widths} and \texttt{heights} of the function \texttt{layout}. <>= nf <- layout(mat=matrix(c(1, 1, 2, 3), byrow=TRUE, nrow=2), heights=c(2.5,1)) par(mar = c(bottom=2, 5.1, top=3, 2.1)) plot(tS3[, 1]) par(mar = c(bottom=3, 5.1, top=1.5, 1.1)) plot(tS3[, 2]) par(mar = c(bottom=3, 4.1, top=1.5, 2.1)) plot(tS3[, 3]) @ \begin{center} \begin{figure}[h] <>= <> @ \caption{With the function \texttt{layout} one can also define the widths and heights of the columns and rows.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Bivariate Scatter Plots} For historical reasons, like in the function \texttt{plot.ts}, there is also the option to create an scatter plot from two univariaye time series. Since this is not a "true" time series plot, we will not go in further detail for this display. <>= par(mfrow=c(1,1)) plot(tS2[, 1], tS2[, 2]) @ \begin{center} \begin{figure}[h] <>= <> @ \caption{If \texttt(x) and \texttt(y) are univariate time series, then the plot function will display a scatter plot.} \end{figure} \end{center} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 3 \newpage\thispagestyle{empty}\mbox{} \newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Time Axis Layout} The function \texttt{plot} comes with three options to design the time axis layout: \texttt{"pretty"}, \texttt{"chic"}, and \emph{} (note this not a string argument. \emph{} should just abbreviate that we have to input character strings of fully arbitray \texttt{at} positions. For the first two options the style of the axis annotation is generated in a fully automated way, whereas in the tailored case each tick on the axis to be user defined. \noindent The \emph{"pretty"} time axis layout is the default setting for the argument \texttt{at}. Internally the function \texttt{pretty} is used to compute a sequence of about \texttt{n+1} equally spaced round values which cover the range of the values in the time stamps \texttt{time(x)} of the series \texttt{x}. The values are chosen so that they are 1, 2 or 5 times a power of 10. \noindent The \emph{"chic"} time axis layout is the alternative setting for the argument \texttt{at}. Internally the function \texttt{axTicksByTime} from the package \texttt{xts} is used to compute the sequence of axis positions and the format labels. \noindent The \emph{} time axis layout leaves it to the user to specify by himself the positions (at), the time label formatting (format), and the minor tick marks (minor.ticks). % ----------------------------------------------------------------------------- \pagebreak \subsection{Time Axis: "pretty" or "chic"?} Our plotting function comes with two axis-styles. The first is called \texttt{"pretty"}, which is the default style, and calculates positions from R's base function \texttt{pretty}. The other is called \texttt{"chic"} to remember its origin, arising from the "Chicago" \texttt{xts} package. \vspace{-0.7cm} <>= par(mfcol = c(2, 1)) plot(tS1, at = "pretty") plot(tS1, at = "chic") @ \vspace{-0.3cm} \begin{center} \begin{figure}[h] <>= <> @ \caption{The graph shows the two flavours from the \texttt{at="pretty"} and the \texttt{"chic"} axis designs. The first style uses the function \texttt{pretty} from R's \texttt{base} environment to compute the positions for the major ticks. The second style uses the function \texttt{axTicksByTime} from the \texttt{xts} package to compute x-axis tick mark locations by time. In the upper graph the minor ticks are calendar days, whereas in the lower graph weekdays are drawn (therefore the small gaps between the minor ticks become visible). Note, the time series is in both cases an object of class \texttt{timeSeries}.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection*{} Now let us plot a multivariate 3-column time series in a single panel. Again we compare the outcome of the \texttt{"pretty"} and the \texttt{"chic"} axis style. <>= par(mfcol=c(2, 1)) plot(tS3, plot.type="s", at="pretty") plot(tS3, plot.type="s", at="chic") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The only difference of this graph compared to the previous is the fact that we consider here a multivariate time series. Three curves are shown in a common plot. Note, when using the \texttt{"chic"} style, then the vertical gridlines are narrower compared to the \texttt{"pretty"} style.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Time Axis - Selecting Minor Tick Marks} The \texttt{"pretty"} style allows to draw the minor tick marks on different time scales. These are: \texttt{"day"}, \texttt{"week"}, and \texttt{"month"}. <>= par(mfrow=c(3, 1)) plot(tS1, minor.ticks="day", at="pretty") plot(tS1, minor.ticks="week", at="pretty") plot(tS1, minor.ticks="month", at="pretty") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{It is worth to note that a good selection of minor tick marks makes a plot much better readable.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Time Axis - One Column Multiple Plot Layout} In the multiple plot layout the axis are drawn along the same principles as they are drawn in the case of the single plot layout. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", at="pretty") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This graph shows a one column multiple plot layout. The one column layout is generated for up to four time series. When the multivariate time series has more then four time series then a two column layout is displayed. It is up to you which axis style you prefer, \texttt{at="pretty"} or \texttt{at="chic".}} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Time Axis - Two Column Multiple Plot Layout} Concerning the style of the axis, there is now difference between the one and two column plot designs. <>= par(mfrow=c(1, 1)) plot(tS6, plot.type="m", at="chic") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{When we have more then four time series, then the display will be generated in two columns. Note, it is possible to modify the width of the gap between the two columns.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Tick and Format Layout: The axis style} The third alternative to style the axis offers the users to define format positions according to his preferences. Here comes an example: <>= par(mfrow=c(2, 1)) at <- paste0("200", c("6-01", "6-04", "6-07", "6-10", "7-01", "7-04"), "-01") plot(tS3, plot.type="s", format="%B\n%Y", at=at) plot(tS3, plot.type="s", format="%b/%y", at=at) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This graph shows plots with user tailored positions and formatted axis labels.} \end{figure} \end{center} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 4 \newpage\thispagestyle{empty}\mbox{} %\newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Annotations} Plot annotations are elelents which can be added to plots or completely discarded. To discard all annotations you have to set \texttt{ann=FALSE} in the argument list of the timSeries \texttt{plot} function. To display annotation you can call the function \texttt{title}. This allows to add the main title, the sub title, and the x- and y-labels to a plot. Together with the appropriate character strings, you can also specify the placement of these annotations by the arguments \texttt{line} and \texttt{outer}. There are additional functions to add annotations to a plot. These are \texttt{text} and \texttt{mtext}. % ----------------------------------------------------------------------------- \pagebreak \subsection{Discarding all Annotations} In a default plot we display only the value-label(s) which are taken from the units or column names of the time time series object. Title, sub title, and time-label are not shown. To discard the appearance of all annotations on a plot you have to set the plot argument \texttt{ann=FALSE}. <>= par(mfrow=c(2, 2)) plot(tS1, ann=FALSE) plot(tS3, plot.type="s", ann=FALSE, at="pretty") plot(tS6, plot.type="s", ann=FALSE, at="pretty") @ \begin{center} \begin{figure}[h] <>= <> @ \caption{This graph shows a plot where all annotations have been discarded. Now feel free to add your own annotations.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Adding Title and Labels} To add a main title, a sub, title, and x- and y-labels you can call the function \texttt{title}. <>= par(mfrow=c(2, 2)) plot(tS1); title(main = "Index") plot(tS3, plot.type="s"); title(main = "Index") plot(tS3, plot.type="s"); title(main = "Index", xlab = "Date") plot(tS6, plot.type="s"); title(main = "Index", xlab = "Date") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This graph displays in a two by two array four single plots. We have added title and x-lable annotations.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Changing Axis Font Size} Sometimes the axis font size may be considered as too small or too large. Then you can use the plot argument \texttt{cex.axis} to upsize or downsize the font. <>= par(mfrow=c(3, 1)) plot(tS3, at="chic", plot.type="s", cex.axis=0.75) plot(tS3, at="chic", plot.type="s", cex.axis=1.00) plot(tS3, at="chic", plot.type="s", cex.axis=1.25) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This is an example how to change the size of the axis labels relatively to its default value. The upper graph shows a font size decreased by 20\%, the lower graph a font size increased by 25\%. You can proceed in the same way when using the \texttt{"pretty"} axis style.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Flipping Value Axes} Flipping every second axis label in a multiple plot from left to rigth might be meaningful in the case when axis labels overwrite themselves. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", yax.flip = TRUE) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The graph shows an one column multiple plot, where the axis of the middle panel is flipped from the left to the right. Note, the same procedure can also be applied two two column multiple plots.} \end{figure} \end{center} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 5 \newpage\thispagestyle{empty}\mbox{} %\newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Decorations} There exist several options to decorate plots in different ways. Plot types (lines, points, horizontal bars, etc.) can be modified, colors can be changed, lines can be modified by style and seize, points can be selected by symbol and size. \noindent In the following we will give some examples \begin{itemize} \item Modifying Types \item Changing Colors by Names \item Changing Colors by Color Palettes \item Changing Line Styles \item Modifying Line Widths \item Changing Plot Symbols \item Modifying Plot Symbol Sizes \item Discarding Grid Lines \item Drawing a Box \end{itemize} \noindent to show a few of the many types of cdecorations. Play around to achieve your perfect layout. % ----------------------------------------------------------------------------- \pagebreak \subsection{Modifying Types} <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", type=c("l", "p", "h"), at="pretty") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{If we like to consider in a multiple plot for each panel its own plot style then we can set the parameter \texttt{type}.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Changing Colors by Names} Colors can be changed in several ways. Just by their numbers, e.g. 1 (black), 2 (red), 3 (green) etc., or by name, e.g. "black", "red", "green", etc. or by using well designed color palettes. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", col=c("blue", "orange", "darkgreen")) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This graph shows how to assign colors by name in the case of a multiple plot. You can do it in the same way setting \texttt{plot.type="s"} if you like to display all three curves in a common single plot.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Changing Colors by Color Palettes} When the number of curves increases, then it can become quite difficult to find a set of nice colors. In such cases it is convenient to select the colors from color palettes. <>= par(mfrow=c(1, 1)) plot(tS6, plot.type="s", col=heat.colors(n=6, alpha = 1), at="chic", format = "%B\n%Y") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This graph shows an example of six curves diplayed in a sequence of reds. For this we called the function \texttt{seqPalette}.} \end{figure} \end{center} \pagebreak \begin{verbatim} FUNCTION: COLOUR PALETTE rainbowPalette Contiguous rainbow colour palette heatPalette Contiguous heat colour palette terrainPalette Contiguous terrain colour palette topoPalette Contiguous topo colour palette cmPalette Contiguous cm colour palette greyPalette R's gamma-corrected gray palette timPalette Tim's MATLAB-like colour palette rampPalette Colour ramp palettes seqPalette Sequential colour brewer palettes divPalette Diverging colour brewer palettes qualiPalette Qualified colour brewer palettes focusPalette Red, green and blue focus palettes monoPalette Red, green and blue mono palettes \end{verbatim} % ----------------------------------------------------------------------------- \pagebreak \subsection{Changing Line Styles} In multiple plot to each curve an own line style \texttt{lty} can be assigned: 0 "blank", 1 "solid", 2 "dashed", 3 "dotted", 4 "dotdash", 5 "longdash", or 6 "twodash". <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", col=1, lty=1:3, at="chic") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{When we like to print plots in black and white, then its makes much sense to use different line types so that we can distinguish the curves one from each other.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Modifying Line Widths} Not only the line type, but also the line width can be modified for each curve in an individual kind. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="m", col=1, lwd=3:1, at="chic") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{The graph shows three line widths, the upper's curve width is thick, the middle's curve width is medium, and the lowest's curve width is the thinnest one.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Changing Plot Symbols} To use different plot symbols we can assign them by the parameter \texttt{pch}. Don't forget also to set \texttt{type="p"}. %<>= %par(mfrow=c(1, 1)) %tS3weekly <- align(tS3, by="1w") %plot(tS3weekly, plot.type="s", type="p", col=1:3, pch=21:23, at="chic") %@ \medskip %\begin{center} %\begin{figure}[h] %<>= %<> %@ %\caption{This plot shows how to assign different plot symbols to the curves %in a single plot.} %\end{figure} %\end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Modifying Plot Symbol Sizes} The argument \texttt{cex.pch} allows to increase or decrease plot symbol sizes with respect to the current plot symbol size. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="s", type="p", col=1:3, pch=21:23, cex.pch=c(0.2, 0.2, 0.2), at="pretty") @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{This plot show how to change the size of plot symbols in a single plot setting the argument \texttt{cex.pch}. Note, for each curve its own size can be set. The same approach can be used also for multiple plots.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Discarding Grid Lines} By default grid lines are displayed. To discard the grid lines from the plot set the arguments \texttt{grid=FALSE}. <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="s", grid=FALSE) @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{By default a grid is drawn on top of the plot. You can remove it by setting the argument \texttt{grid=FALSE}} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Drawing a Box} <>= par(mfrow=c(1, 1)) plot(tS3, plot.type="s", frame.plot=FALSE, grid=FALSE) box() box(bty = "7", col = "white") # boxL grid(NA, NULL, col = "darkgrey") # hgrid @ \medskip \begin{center} \begin{figure}[h] <>= <> @ \caption{By default the plots are displayed as frame plots. This means that the graphs are surrounded by a box. This box can be discarded setting the plot argument \texttt{frame.plot=FALSE}.} \end{figure} \end{center} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 6 \newpage\thispagestyle{empty}\mbox{} %\newpage\thispagestyle{empty}\mbox{} \pagebreak \section{The Panel Function} Multiple plots are very powerful plotting designs. Each panel in a graph can individually tailored by the user. By default each curve in a panel is generated by the function \texttt{lines}. You can define your own panel function(s) by setting the plot argument \texttt{panel} to a user dfined functions. In the following we will show three examples. % ----------------------------------------------------------------------------- \pagebreak \subsection{Adding a Horizental Zero Line} In this example we show how to write a panel function which allows to add a horizontal zero line to each plot panel. <>= par(mfrow=c(1, 1)) lines2 <- function(X, Y, type, xlab, ylab, col, pch, lty, lwd, cex) { lines(x=X, y=Y, col=col) abline(h=0, col = "brown", lwd=2)} plot(returns(tS3), plot.type="m", col = .colorwheelPalette(3), panel=lines2, at="pretty") @ \begin{center} \begin{figure}[h] <>= <> @ \caption{This multiple plot shows panels with curves having a horizontal zero reference line.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Adding an Rug to Multiple Return Plots} This example shows how to add in each panel rugs to the righ Y-axis. <>= par(mfrow=c(1, 1)) lines2 <- function(X, Y, type, xlab, ylab, col, pch, lty, lwd, cex) { lines(x=X, y=Y, type="h", col=col) rug(Y, side=4, col="steelblue") } plot(returns(tS6), plot.type="m", col = .colorwheelPalette(6), panel=lines2, at="pretty") @ \begin{center} \begin{figure}[h] <>= <> @ \caption{This multiple plot shows panels with rugs on the right Y-axis.} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Adding an EMA to Multiple Index Plots} This example shows how to add an EMA indicator to each plot panel. The \texttt{emaTA()} function is provided by the \texttt{fTrading} package. <>= par(mfrow=c(1, 1)) lines2 <- function(X, Y, type, xlab, ylab, col, pch, lty, lwd, cex) { lines(x=X, y=Y, type="l", col=col) lines(x=X, y=emaTA(Y), col="black") } plot(tS3, plot.type="m", col = .colorwheelPalette(3), panel=lines2, grid=TRUE, at="pretty") @ \begin{center} \begin{figure}[h] <>= <> @ \caption{A multiple graph with EMA indicators in each panel.} \end{figure} \end{center} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 7 \newpage\thispagestyle{empty}\mbox{} \newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Conclusions} The \texttt{plot} function in the \texttt{timeSeries} package is a very powerful tool to create plots from time series objects. This includes to display univariate and multivariate time series in single and multiple panels, to select from two styles for the time-axis or even to tailor positions and formats according to his own needs, and to modifiy annotations and decorations of plots. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 8 \newpage\thispagestyle{empty}\mbox{} \pagebreak \section{Appendix} In the appendix we have summarized graphs and tables which are useful tools to create plots. We have reprinted the default color table from R, we have summarized several color palettes as available in the \texttt{fBasics} package and other contributed R packages, and two tables with font characters and plot symbols. % ----------------------------------------------------------------------------- \pagebreak \subsection{Margins: mar and oma} <>= # Plot: # - oma stands for 'Outer Margin Area' # - mar represents the 'figure Margins' # - The default size is c(5,4,4,2) + 0.1 # - The axes tick marks will go in the first lines par(mfrow=c(1, 1)) par(oma=c(3,3,3,3)) # all sides have 3 lines of space par(mar=c(5,4,4,2) + 0.1) plot(x=1:10, y=1:10, type="n", xlab="X", ylab="Y") # Add Text tot the Plot Part - red text(5,5, "Plot", col="red", cex=2) text(5,4, "text(5,5, \"Plot\", col=\"red\", cex=2)", col="red", cex=1) box("plot", col="red", lwd=2) # Add text to thebThe Figure Part - grey mtext("Margins", side=3, line=2, cex=1.5, col="grey") mtext("par(mar=c(5,4,4,2) + 0.1)", side=3, line=1, cex=1, col="grey") mtext("Line 0", side=3, line=0, adj=1.0, cex=1, col="grey") mtext(" 1", side=3, line=1, adj=1.0, cex=1, col="grey") mtext("Line 2", side=3, line=2, adj=1.0, cex=1, col="grey") mtext("Line 3", side=3, line=3, adj=1.0, cex=1, col="grey") mtext("Line 0", side=2, line=0, adj=1.0, cex=1, col="grey") mtext("Line 1", side=2, line=1, adj=1.0, cex=1, col="grey") mtext("Line 2", side=2, line=2, adj=1.0, cex=1, col="grey") mtext("Line 3", side=2, line=3, adj=1.0, cex=1, col="grey") box("figure", col="grey") # The title will fit in the third line on the top of the graph. title("Ttitle - Third Line") # Note 'outer=TRUE' moves us from the figure to the outer margins. mtext("Outer Margin Area", side=1, line=1, cex=1.8, col="brown", outer=TRUE) mtext("par(oma=c(3,3,3,3))", side=1, line=2, cex=1, col="orange", outer=TRUE) mtext("Line 0", side=1, line=0, adj=0.0, cex=0.8, col="orange", outer=TRUE) mtext("Line 1", side=1, line=1, adj=0.0, cex=1, col="orange", outer=TRUE) mtext("Line 2", side=1, line=2, adj=0.0, cex=1, col="orange", outer=TRUE) box("outer", col="orange") @ \pagebreak \subsection*{} \begin{center} <>= <> @ \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Character Table} \begin{center} \begin{figure}[h] \includegraphics[width=\textwidth]{characterTableFig.pdf} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Color Table} \begin{center} \begin{figure}[h] \includegraphics[width=\textwidth]{colorTableFig.pdf} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Color Palettes I} \medskip \begin{center} \begin{figure}[h] \includegraphics[width=\textwidth]{colorPalettes1Fig.pdf} \end{figure} \end{center} \pagebreak \subsection{Color Palettes II} \medskip \begin{center} \begin{figure}[h] \includegraphics[width=\textwidth]{colorPalettes2Fig.pdf} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Symbol Table} \begin{center} \begin{figure}[h] \includegraphics[width=\textwidth]{symbolTableFig.pdf} \end{figure} \end{center} % ----------------------------------------------------------------------------- \pagebreak \subsection{Axis Style "pretty"} <>= FORMAT <- tS1@format FORMAT POSITIONS <- pretty(tS1) POSITIONS LABELS <- pretty(tS1) LABELS @ % ----------------------------------------------------------------------------- \pagebreak \subsection{Axis Style "chic"} <>= axTicksByTime <- function (x, ticks.on = "auto", k = 1, labels = TRUE, format.labels = TRUE, ends = TRUE, gt = 2, lt = 30) { if (timeBased(x)) x <- xts(rep(1, length(x)), x) tick.opts <- c("years", "months", "weeks", "days", "hours", "minutes", "seconds") tick.k.opts <- c(10, 5, 2, 1, 6, 1, 1, 1, 4, 2, 1, 30, 15, 1, 1) if (ticks.on %in% tick.opts) { cl <- ticks.on[1] ck <- k } else { tick.opts <- paste(rep(tick.opts, c(4, 2, 1, 1, 3, 3, 1)), tick.k.opts) is <- structure(rep(0, length(tick.opts)), .Names = tick.opts) for (i in 1:length(tick.opts)) { y <- strsplit(tick.opts[i], " ")[[1]] ep <- endpoints(x, y[1], as.numeric(y[2])) is[i] <- length(ep) - 1 if (is[i] > lt) break } nms <- rev(names(is)[which(is > gt & is < lt)])[1] cl <- strsplit(nms, " ")[[1]][1] ck <- as.numeric(strsplit(nms, " ")[[1]][2]) } if (is.null(cl)) ep <- NULL else ep <- endpoints(x, cl, ck) if (ends) ep <- ep + c(rep(1, length(ep) - 1), 0) if (labels) { if (is.logical(format.labels) || is.character(format.labels)) { unix <- ifelse(.Platform$OS.type == "unix", TRUE, FALSE) time.scale <- periodicity(x)$scale fmt <- ifelse(unix, "%n%b%n%Y", "%b %Y") if (time.scale == "weekly" | time.scale == "daily") fmt <- ifelse(unix, "%b %d%n%Y", "%b %d %Y") if (time.scale == "minute" | time.scale == "hourly") fmt <- ifelse(unix, "%b %d%n%H:%M", "%b %d %H:%M") if (time.scale == "seconds") fmt <- ifelse(unix, "%b %d%n%H:%M:%S", "%b %d %H:%M:%S") if (is.character(format.labels)) fmt <- format.labels names(ep) <- format(index(x)[ep], fmt) } else { names(ep) <- as.character(index(x)[ep]) } ep } } @ <>= ticks <- axTicksByTime(as.xts(tS1)) ticks @ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \pagebreak \section*{About the Authors} % ----------------------------------------------------------------------------- % Diethelm Wuertz \noindent\textbf{Diethelm W\"urtz} is professor at the Institute for Theoretical Physics, ITP, and for the Curriculum Computational Science and Engineering, CSE, at the Swiss Federal Institute of Technology in Zurich. He teaches Econophysics at ITP and supervises seminars in Financial Engineering. Diethelm is senior partner of Finance Online, an ETH spin-off company in Zurich, and co-founder of the Rmetrics Association in Zurich.\\ % ----------------------------------------------------------------------------- % Tobias Setz \noindent \textbf{Tobias Setz} has a Bachelor and Master in Computational Science from ETH in Zurich and has contributed with his Thesis projects on wavelet analytics and Bayesian change point analytics to this handbook. He is now a PhD student in the Econophysics group at ETH Zurich at the Institute for Theoretical Physics.\\ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \pagebreak \section*{About Rmetrics} \noindent\emph{Rmetrics Open Source Project} With hundreds of functions built on modern methods, the Rmetrics open source software combines exploratory data analysis, statistical modelling and rapid model prototyping. The R/Rmetrics packages are embedded in R, building an environment which creates a first class system for applications in teaching statistics and finance. Rmetrics covers Time Series Econometrics, Hypothesis Testing, GARCH Modelling and Volatility Forecasting, Extreme Value Theory and Copulae, Pricing of Derivatives, Portfolio Analysis, Design and Optimization, and much more. \noindent\emph{The Rmetrics Association}\\ is a non-profit taking association working in the public interest. The Rmetrics Association provides support for innovations in financial computing. We believe that the Rmetrics Open Source software has become a valuable educational tool and that it is worth ensuring its continued development and the development of future innovations in software for statistical and computational research in finance. Rmetrics provides a reference point for individuals and institutions that want to support or interact with the Rmetrics development community. Rmetrics encourages students to participate in Rmetrics' activities in the context of Student Internships. \noindent\emph{Rmetrics Software Evalution}\\ If you like to get an impression of the size and quality of the Open Source Rmetrics Program have a look on the Ohloh Rmetrics Software Evaluation. The Evalutions gives an overview about the Software Development (Code Analysis, Estimated Cost), the people behind it, and its community. \noindent\emph{Contributions to Rmetrics}\\ are coming from several educuational institutions world wide. These include the Rmetrics web site and documentation project supported by ITP/CSE ETH Zurich, the organization of Summerschools and Workshops supported by ITP/CSE ETH Zurich, the R-sig-Finance Help and Mailing List, supported by SfS ETH Zurich, the R-forge development server, supported by University of Economics in Vienna, CRAN Test and Distribution Server for R software, supported by University of Economics Vienna, the Debian Linux integration supported by the Debian Association. Many thanks to all behind these projects who gave us continuous support over the last years.\\ \noindent Rmetrics Association\\ www.rmetrics.org % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \pagebreak % References \begin{thebibliography}{99} \bibitem{zoo} Achim Zeileis and Gabor Grothendieck (2005): \emph{ zoo: S3 Infrastructure for Regular and Irregular Time Series.} Journal of Statistical Software, 14(6), 1-27. URL http://www.jstatsoft.org/v14/i06/ \bibitem{tseries} Adrian Trapletti and Kurt Hornik (2007): \emph{tseries: Time Series Analysis and Computational Finance.} R package version 0.10-11. \bibitem{rmetrics} Diethelm W\"urtz et al. (2007): \emph{Rmetrics: Rmetrics - Financial Engineering and Computational Finance.} R package version 260.72. http://www.rmetrics.org \bibitem{ISO} International Organization for Standardization (2004): \emph{ISO 8601: Data elements and interchage formats --- Information interchange --- Representation of dates and time} URL http://www.iso.org \bibitem{R} R Development Core Team: \emph{R: A Language and Environment for Statistical Computing}, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org \bibitem{quantmod} Jeffrey A. Ryan (2008): \emph{quantmod: Quantitative Financial Modelling Framework.} R package version 0.3-5. URL http://www.quantmod.com URL http://r-forge.r-project.org/projects/quantmod \end{thebibliography} \end{document} timeSeries/vignettes/colorPalettes2Fig.pdf0000644000176000001440000010337312620124746020461 0ustar ripleyusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20140430203415) /ModDate (D:20140430203415) /Title (R Graphics Output) /Producer (R 3.0.2) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 30481 /Filter /FlateDecode >> stream xœ½½K“&;v$¶¿¿"—ä‚¥x?–âHC³1“fD¶Ù6 NwŒTGSì&%Ó¿ ò‹¬Œº‘±˜š vfU&àŽwÞ¿ý§·þíŸßþõ—ÿãí_ßæo{÷6.ë·qz[×oÓú6oßÖùíO¿û¯oüåúóßþÍ_¿ýöÏ¿ôߺ®{ßݷ-ýùçßêþ÷KÇÿ!þü»ÿð¿§ÿkú›þß_þ´uo¿û¥ûOéÿýó/}þ‚·ÿí—eù6¥{_¾­ÃÛ‘‡ãž†é‡ØÞþP†sn߆ Ãa+Ã}ǰÏ_¼ç¡ »õmêºos—‡é·Ò°ç÷Îù«òpß0œ—4ò¿[†ã˜†ã·‰_Üíi8}ë—<œ¾mCn+†s¦¿‚áKÃôÕ/¿msî†éW™ºõÛ’ªiú¶Lú}ÿðËÏÿÔ‚$ý¦eÖ¾ —1ýïWÖ§ÌÕ¸”ÿo+¶ù¿¹>ý›X¢÷kP–è?i¹ó?Þ¶oü¿ã2Lë¾.eÞúîí7ÇÛ_ôùö›þåýÍO`£K¿ôœþ\Ò/ñë±QOÝ‘‡eQÊr§)ÚÊpÛ1LëO@þÌáÙžÂFŸ1žçm 6†ŸÁFBždltCúsžÇ_fêŽ_æôÑ\ÊpÏ›4ì6úë;' íeX>ƒól,ùÇ/Ã.ñÊEIPYÊpÊP™»¼(y¸dlL{þ¦<ÜF ûüÅe²Òpû6 eØgˆNé›Ö2òß<¥°/ÃqÁß;•¿j΋W†«ÁP†Û+l¤ŸkX˲Nyò¼–/_÷‡°‘þÉ 3Ã}cü5ØØÒoÓ¥™¸aßh¦îøeóç%&vÌ[BL{ù”Ç¢ôß–¾Z²¸Ò‚vúÞ²ÜãþmÜ ãÖ@e\KÒpèfã"L޳0¹pØwàq®ïqÄu¶o¤Ÿ«ëéçZÇg±‘~à¿l‡}cú5ØXûüwý |£™º#û>6äqÈ?Œ·ë±/¥\›ùX¨„·ú1í s‚4,ÛËİcƒb gq‰6üC,@C‚Êå) §ªx¥aW•¶¡`Ä…o(,Èeq˜K‘8åéçæ¨)CùãIP÷ÎPÙç2,0·ÛHá¸mÆäš‡+1Yœ‡ý†a‚÷˜Ö¸*à·Ô 6òÏ•~a#ÿ [ÿ(6òÏ¿bßXéL¨Øò¾Ñ§_â¦}ƒSwpCÎÃ~÷v=nS&hÚÌÇmD)ÇVŸ‡ãàB0nC®Ø*yˆm¤|ÊÇ­ÇÞŽ“‡Ýê4nþ!”§<ìf¯qÝ ”¶<,%…o\·ÜSýe1 BÑÓ´n/¹(jJþAR­šR~åÑš’Ân)ØØ~}ÆFŸ~ôgúï›ø§î ‘ËÃRÊAóò°¬/Hà¸.ø ‚"æá<™@æ!¥ÐË<ì‚|ŽkÁ¢¨i.½‰k–Z›‡ÃnÒ›‡…ça·™0—aaÞ ×)#Õ`Èøhþîµ3Í_¾ÌrÑq-¿sÆÆþsØØú\Sº1ë}ÂûM} §î`[ÚØöÒ<Æ¢”Ö2–l®´ »¾wЦÕ`@Kk¨ á5Ðfh– B´Ò†(mm¸á&ý|ß@kl ‡}èa+lôÝÏcÙÿËýrmæî r互÷k¨NÞÍ¡Iy¯‡båJ=Ëuj—«´0×(e®@ÐÑ\Ÿ ²¹zAƒsmƒBçÊýÎuêÞ9á€øå¢ñëÑ¢ñ+c}íJÍÄ}p¤ÏMʨ$gS9Ò&z«M!f›$Bê6…„n‚ ™Üô"ºÉ)$vSWð&¶’çI{%Þ“KÚŸý½cE¨[àT57…jþ(…j^ØhpXÍó? ²{V„¦Ì«?ÿþ_ßþêíïÿðŸÿô·¿«–frübŸùšêwÓ;7V[þY†Ä”>‡­roz õ›e\ù7y¼TNÏU3›ÇSeáäñXy8yÜW&NŸJ×^¹8y¼V6NOUžÇCeäôiûß+''—ÊÊÉã¡òrÒg·H‰WúÄ¢»—ù'ì*;§Ÿ!0µ=4ÐøuÒ\~ß3Gçb悘±ñùõˆifð(ã©R¯ò¸«\~‚¦*í+ûJë§òù³r–ÇCåìô‰6-•îÖKt§,×'ÒµTæNw•»Ó§gª4¿>³ßÊßÉã¡2xú š‰Å>Që½²x^ &ýDSeò”ßàËóÕˆ™,@¾òy. fíóî2-¥oh®Û<Êx¨¬ž>õ2såõô©áØ*%=ûJhïG*žÔáÓ E˜2}w•Šß§.l¬Ÿ~„s, aË"Èã®2}R/ ë‘CŸZí¹²}2"¶Ê÷!Blü¼@Lú‰–ÊúÉãý÷óÕˆÉÝè¹ûs1Û”±²ì¹ñžº;ªR3ƒy~²ÚSͰ¤y­À°eE)V(»Êê‡ˆÓ §Â=W.Pê¿­• ”Ç ‚†²Y²”V9A=ÄÄ@h÷5‚‡>—Ã@øÐqú ö´ó=&k}•!”Çý;Gè«3t08_{B³Ù*ÜŠ¸{ËAƒvÓüô¥ÜÄ.ž&j«|¡<*c¨ÇRG•È¿ce õié¦Êê{œMqJã±®Rý„OU,ÿC•?Ô種‚}!õ¥.@ÿêXÎ<Œwœ¼m§ðäÛ8$±Øæ!™E€¤e’[”HrQfh„º AÒ‹2É/Ê$Á(s £ BRŒ2 É1Ê($É(³,?"2ð¢,AÂ{¸,AÂ;u«.Cf€Ñ~õ»Tß`2ÐÕƒ+Bw. ]>¸&tûà¢Ðõƒ«B÷. _ ¸.|ƒàÂð‚+Ãw.-_B\[¾…¸¸|9¾­¹|㋼„ |‚à¾ð æ¾ð ~ÎÃJk›E±0±~÷OÿÏÛ_½ýõŸþúojØõiXäaýð‹jKb^ËQö³áŽ“}#üpíc‰ñ¡É<®L¬<î*kq*+NdB,Š›N{ú<çVŽêÇqÏ ç=}t+â\]‹ØgIWœÒÔQÓ4++»ÊÄrA«L¬<*kȺäwGý6fÕ9ÐrXÛÊ÷+@þeGº¦W´^»XW0³ÚÔ­ÅšXo Míæš±F:„ÆSecåqs„;Ѥ¹>áÆ}ec ‰f-••Ç]}|\&‚N—eâãðyÚp¦ÊÆFÞÕ…™¼¿‡€9 ‹$pÄ  y]Yy<¾3²¾3¹É=w²®`fÊÝǹÈÌý };‡i†2¶zŽi$x f\0ôM0~¼†#0§5NϽ²²ò¸¯¬¬!‹|5†ú¨cøAƒ5£iœk § s¯¬¬<*+kHEj®¬¬˜É[`eeåñüÎÊúr̤Ÿs;÷².a¦X¸ý¶ßqâ¸Ã4C‰ì•™•ÇCef Ý«Gµ ë­C&"•™5tƒ­ Çú¦SÇ«·ªU™øÔwRA_ëËNoßÊÌJDj«Í¬½áafx…™•ÆK÷!ŸI?aWßyêzÂÖ¦~Çýô7ëf¦bNdV³/7œ'lçð(ã¡¶³öÇvdg¥ñ\ÛY;,rÛYéwÝk;+/Fmgí°Ðmg¥ñXÛY;ŽéØÎÊsWÛYûŒû7²³v\Á°•Ækmg¥ñRÛYy\ÙYï1“ÿÅ©¶³ÒwŒïì¬/ÇLêp·s?ëf`e­åö-Òa3‡G̱š`­šd­‘šh­¡šl¬q4áÀ@4éÀH4ñÀP4ùÀXˆÀ`ˆÀhˆÀpˆ Àxˆø „Hψu SÌDSÌ|×Ô?„™3GëžVï3ù`×]ûLA;o4IkÃ^ZjAÜ–êx:]×¥PKâ¾jM\˜êx@]7¦P«¬%²–Ykd­³ÉZh­’µÒZ&k©µNÖZk¡¬Å–›OkSÜBmúN;|¨6yZW0³”£@Î4Ý 7·sxˆ3ZÒ'§´äOÎiK€œÔ–9«-rZ[ä¼¶$ȉmY3ÛÒ §¶åAÎmK„œÜ– 9»-rz[.ˆL­Sl‹‚ø;‹â!|æj]ÁÌT:&Üòî8˜ÞÎá¡Þ´šãÒ»VkPzÛX#ô¾±†ècÑ;Ð[FÐ{†Ð›ÆÐ»ÑÛFÑû†¡ Æ¡ÄgÚÂGû zíÀ zí§1ƒ^ûÔ׺š¡œ´€|Ëu¼v‰`±™C$‹Í"Zƒ‘—ÉT, ÂE1Hņު‹ÑÈ R*V£˜A$Œb1Š!DÆ(–!ãæ1Dʸ˜ óBCQ/ŠD½‡‹E½Sgë húbååˆn¿Ñ´“xHmkõPããÖ=Ôú¸”5?îìCí+ýpâÆ?Ü‚êA€â&Tïlx0ÀÏ àÐM¼6@·ÂÐÍð[t;ü”ݽtи%¯AS܃x)îÁÃ,˜îÁOÞÏZó6üÎÛú/ÿô÷·5,¸¾ý¡·õÃ/ª·´¹÷o9ÜqLu५GYgÔ—qåmåñTy[y‡OuzZ¢Ãazê}yÜUÞÖØã ˜ôÂQ¾õÄ<ž*ok„8ï.õkû,SæÓ•·•Ç]åm=”¿ù”ÿ‡ÊÛz™ô•·U~ƒwÞÖ×cƺé+oë f梡 .wôhíeÜUÞÖ˜«ò¶Æ4uKýÜYZü½~ ­§B«ÇÒzxÁ~K­ÛõöžZKã¾ò¶Æžºjëà™Ë÷sïRy[yÜWÞÖ˜6œ±ò¶ÆÜ÷WÞ1boëfòqíÊÛÊãõ·õå˜É tîm]Á .öÍxm½ÁÛjçð(ãn«ç˜¾‚×€oQzøˆ§×°æäm¥¢5ÖÞV*jsíme½¯ö¶Ò¸¯½­}Ñ}%ô€Ð7ÃÛJ”i¯½­4kokÇkZö¶2«¼­÷˜É?áP{[é'Úßy[_™üsçÞÖÌlèë—ìŠn·œ»hæð(ã±ö¶é\jo+“ÐÚÛÚ»æ:ïµÒÚÛíokÃÙxÅ×ýŒ_ø”·µ­ð_åmm¼~¬si\¿R;l|rNçD6\ó9’4îºøLþ‰¦æ=¿ñ£µiØøpâkoë förVg†7ü÷¯ÇL3‡y†¦Â|*‡úa¿Ü?×/ûmðÌ}Þj±F:•Æ}ý¸ßOÝç¹Ð¯Çy¯ gw|,Ï]ýÀß6àbΓm¸âófY¨ßøKã®>¯¶áaäf¼g­ó]©¿_ßy[_Žˆ_gÞÖ%Ì”÷ºöu$rnÀL=‡G̱º`­ºd­‘ºh­¡ºl¬qtáÀ@téÀHtñÀPtùÀX¨À`¨Àh¨Àp¨ Àx¨ø „Jψ¥ SÌDWÌ|×Õ?„™3oëŸ)Ï ì…Õ¬7î3¡m¼N%¹mã3’ãP B®Ûx®]rjIõ žüŠÇy®]r!jUȉGȨu!G¢†\‰Zr&jiȨµ!‡¢[s>­MÕ»€+„jäÇjÓ™·u½oÚʵ­ùÌ4sxˆ3†®Nº?8gøôÜ퀳†¯N¾8oøàÄá[€3Û× §¶ïAÎm_„œÜ¾ 9»}rzû.ˆ¼­S>8ðw>ÅCøÌÛº‚™±S—þ{º3íêM«9žñžŸ×`Ácž^£×0½†P c7}ÿTõÖÆ{ïxi½yEyPc‹ÃuKÊG;]=ÚÄ:£>¸Œ+o«ˆ6•·•ÇkÕgçñRy[y¯¶à9 whï1“~¢¡ò¶òwôï¼­¯ÇÌ ^â•·u 3pBË“§¹NýzÌ4sxÄ« Ö¨KÖ©‹ÖªËÆG D—ŒD E—Œ… †JŒ†Š ‡ÊŒ‡ Ï@¨øŒ„t†™èê™ïºú‡0sæm]ÁÌŠS:e·É޵τ´ò^•ä¶•OJŽC-¹nåÑvÉy¨%!÷¡Ö„¸òh»äBÔªQËBnD­ 9µ0äJÔÊ3QKCîD­ 9µ84ç³Úò!jÓwòáCµéÌÛºÔk—s¤K/äÜÅgBrg ]œ2tpÎðè¹Û7g _œ¶ Àš QË—'ßœ9| pêð=À¹ÃÙø –|ú«öUÀéÃw!Fìmqà* «pàï|Ї8ð™·uIÓ+ÓTþúåŽ^»ÃC½i5Ç=žÔ ·5ÚG%J±·†í5Fï@oAï]¥¨Ai5ÆÐ»ÑÛFÑû†¡ ãÔü ¶ðÑ>ƒ^;0ƒ^ûiÌ ×>õ¶®€fDÄ^I™ï¸TÜNâ!Ì›9E2oöÑ\ (²¹XP„s1¡HçbCÏň"Ÿ‹E@3Š„.v] )2ºXR„t1¥HébKóBCQÏʼn¢ÞÃʼn¢Þ©·u4ýñj·ÜŒi'ñÚnÖH5Þ¬’m®Y'Õ|³Rªýf­tÌjé˜õÒM0+¦Û`ÖL7¬ÚnY·Ý ²r»s|ÿ^±úÖ-ùÀ=0 ¦{ð0 ¦{ðSÞVÞž²¢ñÎÛú÷ÿü§wÁmùè̹³õƒ/©k`y! ¿aÇÙCFŸ Ú3£ÁÊtlÚ° Af¨Ú° fäÚ°¢½f Û°1ÏsZëôæ0·4Ü™ü–qŒõ–¹ÉØ£R2&nT žùÍ÷C×7GÌ#3å@7NPO—†È…CxÝ87 åø}«l·±CÏl·gû] u>_ö% d¶[š·WÖç±±”»âEÜ ÙLÝ¡DÅq¢Æ¼Å4,‚ÓGr f5æû¤Ã›“Ç jsGÅâqgÌ'²¦R!ýíœ"›ÿ!æKN=„F¦O¦aÁ³)§ÕŽÉ•iXTLæZæŒÙòÅH½LÃyy‰®”îgÛG(dþA¶§°oùZí §êóØ@šìXÔ᎛fêE±N$ j&¬/c\§ ŸA¾_›†;‡¹6NdÑ ˆf˜ŒÍ…  —MÃb=0zvZX÷L;-0.[;‘?3Ô6ýÅöàKÏxNù ÄÍÃ5À0-ô÷¿ÇÓdÓw‡i²éË+ƒák±Á4Ùi~éH};Èqyî–7Tš©;áì‰EÀ³§ñÏ^„C{É âíô½];-00”ZPadµ€Ä@kÁŒq×!ðQFe À Ò¼³}ºo0…ZØ` õ“Ø` 5;ç<]ÀFQõ í-·xõÔŠ~׆Ì`xm׌×fÎPymõŒœW!` ½ÊÃTDf¯è{ â‹ÊSNUñ Ò6›Ò…o RYpîþ”o0½^5…éõOÖ¦×ÛK‡é6Ê^¾ xÇ ÀfêŽ<Ì¥\Dn(ª‹iOa–:Dó 8L¿rnWD/yrPä3 ³!j: 'q0 Z;€‰ôHÅ%†Ò‡‰03áDtzÀû_Ã{là<¾¸è€¨ƒ'¹h¶ªÁá_9I°Qd—}ÖM©žË©¦îðÄŽ¼!ÅiõŒeÐ+#X²^`A;½Q‚åîü½ ùñPé7C%É·|³|\y ö‹1™!ÚÏÄ$œö à ï~"®þ~lÊßa£ßy# Øè·wÔ_ôó¿rŒ>µì¸­»ß!É5SwhCNÃ~í:ÇYͱ™gÁbŒ­>ë#C‚|ê`Œ2ÑwºUŠH·ëv)1YÛY£u]"”§4ä™õR¼ºUGÚKiëV=[Qþ¡n¡C„²ØIøEÑÌÊßK.Êš‚L7×”üƒ,aƒ5%ý„¯œ¡ úF9ƒ¹–>e»å­ˆzê¹|"¡š—†0…@³;ELÃy ™õÚ5èe~³±"ŸùwEM»R?‰«Oë‚Ö¦á°éíÈ‚H‰q›É„9{ óNØ 0)†n òvÂEÓwÓ*\4P˜Â¸h¾jõÊú<6†!×”ïƒN7¼CÜLݡЋöÐÓŽæÑ‹‚ÖÒK†ÆÓ ºë{§ªiØÒ *lx$¶Ã‚›e­´ ÊF[f.x³I?Ý7ØÃ ìaŸÄzØ ­ÓóypôeË@ðT~ÿ.C•#íÈÔ•´_SuÒnNMJ{=+UêYªT»TE¨…©ÆP)S¢Ž¦úD•MÕ‹œj:U>êwª‹T÷N Å/Š_OŠ_ÝôÚÑù<8ºr‡¶/]ì¸Ýpâ¶™»C’³¨i=ÊÕ¢³E)u‹BRÁ¤L.úI]äT;©«x[Éó¤½ïIŠ%íþÞ±"Ô-p®š‹R5’R5Ïlôò­$8°Ø;øùÛßýõ¿¿Ï0ûعùÑ×|¥u£Ü/õDÊS·©Ü05£ÊS¯ªÜ1µ²Ê%S§«Ü25ÂÊ5SŸ¬Ü3µÑÊES—­Ü45áÊUS®Ü5µðÊeS‡¯Ü6 Êu“´¢œ³@¥rÎÔ@+ç¬í Å¯k“˜svâç\@Ìí†N;ƒ‡Ã¥])œPÒ–Â GçYâ c ?”n¦pDÉj O”ê¦pE‰r _”f§pFIz o”â§pG ‚ ”^¨pHɉ ”Pû1 S”§0ÅVûjÄL–_¹<s»ÍÓÎàá„ÓÉq–H@•P®„TéèJP•Ì®„U©ðJ`•H¯„ViøJp•į„W9J€•A „XùJ•½ „Y¹J •9!„Èöy&¶JÜWbk«î5b˜Øzâý\@LkþÜ‘<ßÌàáeϰ„y­S˜½BLiö 2ÅÙ+Ì”g#€)ÐFS¢ ¦HaL™6)%¡L©6‚™bm„3åÚŸ¦`°Ç0Úˆa*ô³ˆa*ô‰#t1¥ÇZÑiÝñÌ^;ƒ‡“Ú½‹3ÉÝ»<“Þ]˜ï*Á¤xW&É»Ê0ÁUˆIô®RLªwc’½«“î]{<¿ï*ÙC~víÁ³\e{_ÿ€Ç0yÞU‰ÉóÏV%&ÏŸøDŸFŒ.¯ñ©½ñŽPèfóüô…˜)æPÊ+êyÎL³‡þf&š•©™j_d0YÇ3ÓMS³WŽQ¯•eT¦®òŒòxª™v‡à3q4ÙÁÔ"b&ßáq-!äbºrôØÌ·CšÀ³Ì7ë]çîÑ•=¦ä,ìå)Ï[ì£v˜aö»^¶Ã^!vË^A6Ó^aöÚF@ß¿W6’¤F^SŸ/JB¥Á„pi úH‚Ð'DêÎ9bÔ 1mÿbN<¥+Ì·\ÝŠDœÿ¼m‘Æ£]\ò™vy©kªßT%¤Í©ŠHºS•‘²§*$áOUJº ª˜dCU9©Šª‚U%¥IªŠJ²T•í̳P…%ŸW%)‚ªJ­$øPU:qš®t×ÅjŠ?oã1’ŒÅ¥Æ‹IJ¬Ó”–/&*©_LUN€˜¬Œ1]ùb²Ä”ƒH&-“BL[†˜¸,1u9 bò2H„YOçÌWƒ˜oë0<Ã|Ïü§+ ÞIóŸ·õJr ÔÆ £[@7ëb·ëd7ìf·l°›6BØmAìÆ0vëF »y#”ݾL5À§ZàOÕ„öv×F »ëgƒîúÔ•º™¡l/ñçm‚Œ7J^ÞÆ)‰y›§dæ2@IÍe‚’›Ë%9—Ù *C”ô\¦(ù¹ŒQt™£dè2HIÑe’’£Ë(%I—YJ–Jx.K”ðž-K”ðμª éËžñçmª¯™ uusEêîæ’ÔåÍ5©Û›‹R×7W¥îo.K_À\—¾¹°|qeùâÒò%ĵå[ˆ‹Ë×ãûךË7¾ÈKÈÐ'0÷¥Oð,÷¥Oð3V!ïã+ ëoþ¿ae{X?ü¢w÷¶ibÝqC _>ØÇã#“Ló‰J&ˆùÀ%Æâ<&hn×Ä=ê8͉³8ì‰÷gã,(Ðâ¨(Òâ$)Þ¯õAS&¬ù*Ø|L• m>ÅÊ7‰?J4«ú!Ņ̃@™hÖ¶òL4ûº]L4;q±®`­Y¿ì3wär4sx8jÐG°EèÚŒ*ônFú|7£}ü›Qˆ>ΨD—‰ ³åŒZôÑsF1J€TT£JE9JÀTÔ£NEAJUT¤$æW˜At¢O•3:± ¿3£…ÒW>ÖÌàTùXl‰á–\ßfgšJÆWæ©d~e¢ÊPfªleªÊFPæªle²Ê†Pf«l eºÊÆPæ«leÂÊQf¬leÊÊFQæ¬laDFÖ Ì0£U¶„2Z[[âË1ÃÃ'NÖ%Ìà– ,Ð;Þ>oçðpvrÌ1¯²—cÍkˆÜ ¯1³f?#̆6†˜mŒ1[Ú¤¨iŒ2›Úfvµ1Îlk˜}ýÁ>Ã,hc†YÐc†YÐ'^Ö%Ì”;,[?”–þÙ°ÃÃíÞË™áï®Ì€w­`F¼k 3ä]k˜àZÄ z×*fÔ»–1ÃÞµŽ÷6³v¼·o3k‡n3kçE*™Y;Þëú€Ï0sÞµ‰™óÏÖ&eΟ¸YŸÇLkgÝrԴ㌇ÚÎÚWÛ‘•ck;k‡°g;k_°F²³ò³ µµC´•Æcmgíèùmgíx®ßvÖ¾e;kÇ ÛYi¼ÖvsClgíxOKy™ü/Nµµ#@àYÜç ›s?ëÒ>ó³¼”¶-w³hæðˆ9V¬5P“¬5R­5T“­5V. ¨I'FÜÄCnò‰1‹Ä EbÔ"1l‘·ÁÏ€E ~F¤cÆM=1Ó6õOaæÄѺÔ7uåýN¼ÈxGf;‡‡÷rkmÜë­Å±ø®k…/K±–ø¶k¯K±ù¾k•´DÕ2iªuÒ"U ¥UªVJËT-•Ö©Z+-TµXróymòÍ)Ö¦V;|ª6xZ—ô™>øÌ-o1¶sx˜3JÒ§”ä/Î)K@œT–8«,qZYâ¼²$ĉeYˆ3;ÿœZ–‡8·,qrY&âì²TÄée¹#2µÎ9°, qàÖ¢xˆŸ¹ZW03•Ži³>³u7ØZíîMcŽÑ»Æ ·õ±÷õ²7ö³w6Ø[#ì½!öæÆ{wc½½1ÊÞߦ6`ŒS;ðg€ÚÂû {mc†½öØA¯}êk]ÍP®ïN4Ë-S3‰‡E0oæɼÙSDs1 ÈæbAÎÅ„"‹¼U#Š|.V]Ì(ºØQDt1¤ÈèbIÒ÷Ž)RúZ2EÌsB#QÏʼn¢Þ³ÅI¢Þ™³u4}鶇RæíÐ4“xXm÷¥zªñ¾sOµÞWò©æûÆ>Õ~_è§àûþt â9¸ ñZÝ?&@7Âo ЭðSt3üRÝ?d@7Dï4nÉkÐÀ=ð;tžeÁr~ÊÛÚ‡²»¾÷¶þþí-Æ•}ìnýð‹¾ÒÝRÆ—º4e€©VF˜:eeˆ©“VƘ:me©WF™:ue˜©“WÆ™:}e I PFÚè`<¼`+%AkR”Á&%BmR*”á&5H™fÕutfš©³W¦YÛÙ3Óì뮤3ÓìÄݺ‚™ÛÝ­v‡ JqS¡9…J±S˜¡=…JñS¢A…%J1T˜¢E…-JqT£ß]bX£Ÿeb˜c¼Úe!uB_î7Ÿ)Õùfž(Qቭ‚øõ˜±rúÊݺ‚™ÆÝïØgš9<œjê˘zê÷̘ŠêçÎø~«_CcªªKcêªßRc*«ŸZcj«_bcª«jcꫜ¥ÂÊQj¬œ¥ÊÊYQ꬜aDîÖ Ì0¥Õo°1¥µu*¾3Li=q·.a¦q·îÀL3‡‡Ó“cŽé,x p?ÖOÄvÀœÜ-¦;ÛÝbú³Ý-¦CÛÝbz´Ý-¦KÛÝ¢Âiw‹éÔv·˜^mw‹éÖv·˜~}¾Ï( ÚîÓ ŸÅŒÒ OÜ­K˜©Ý­;®ƒ¶sx8¥ÝîSÜín1åÝîSàín1%ÞîSäín1!^ñãd?ã‡gXìn1ÅÞîSî}Òc[šWj‡OÎé¤ÈÆ«`:I’Æ]÷ŸQê|¼ç‡7ûŸ­MJ?q·>™p·æÒØß¡5s˜gh*üÀ'¢¶ §ytbjñ¬€NTmPø|âj±F:‘•Æ}ý¸ß…Ð'ºð~œøÚÐøûD؆û}blßò‰² A|â,¿´_¿ñÇäŸXÛð€0ò 3Þ³Ö ¯ Ïrà±gîÖ5>SÞrã+¡w¨ÎÍ1ÇꃵꓵFꣵ†ê³µÆêÃ….¾­_ý#†ÜçcÖˆAëĨubØ:1n‚ŸëüŒH :ÇŒûzb¦íëŸẨ»u3ka¿ùÝPä§Þ¶ÏX â^nÁ{½9Ö v¬ôXKâ-@Ôšx µÈ‚!k•EÖ2 ެu$Y -X²VZÐd-µàÉZkA”µXªóymŠwQ›Zñ©Útân]ÁÌŒŒ±rÉoêîx9²™ÃÜÑÊ>9¥•rN;ä¤vÈYí,ÓÚy çµ3ANl炜٠ˆäÔr>Ĺ匈“Ë9g—³"N/çE‘»uÎíT·NÅCøÌݺ‚™±ä_®ýmoµsx¸79Fïk€Þ6Ö½o¬!zãXãMß?Õ½µ0¢ÞÛ/M²7÷C”ìÝýN%{{?cÉÞ߯\Rð#˜ÔüF&µ…ó}F½¶ß˜d¯ý,fØkŸº[W@Óm°(òß?Þñ´u;‰‡E0¿ðJ‘ÌÀRDóû°ÙâùXˆpñº,D:?>+‹UoÓRäS±’¨b&‘PÅN"¢Š¡DFK‰*¦)Ul%bž‰z*Nõž-NõÎÜ­K )óTNí ý i&ñ°Ú.Ö(5^¬Rj½X§Ô|±R©ýb­rœë­«·p öÊݲÛ@Öl7¢“úO·‚¬ÛnY¹ÝŽ1¾®X}ë–|äˆË=x–Ë=ø©·×"¿t·þæ/Ë>v·~øEµ»5àÉìi¸ãܪR¾Ô¥)L°RÂÔ)+EL´RÆÔi+…L¸RÊÔ©+ÅL¼RÎÔé+MJ€RÒ¤(EMJ‚RÖ¤4(…MJ„RÚ¤T(ÅÍjSÍŸJ5Sg¯T³¶³gªÙ—áS©f'îÖÌl3Cñ¸r”âmIxRƒ7(ÅMq„RäW8:Ãq†Rôw(ÅOqˆR—(ÅPqŠR·(ÅQqŒR$×(ÅRqŽR4÷(ÅSqRDiÕù=fŸ(Qñ‰­‚øå˜é¬œ¾r·®`FîV©ƒËyBÍÎ5µ»ÅÜS»[ÌEµ»ÅÜT»[ÌUµ»ÅÜU»[Ìeµ»ÅÜV»[Ìu"ÔY»[Ì…µ3ÂÜX;'Ì•µ³ÂÜY;/Ĉݭw˜QN«Ý-æ´¶NÅWcF9­'îÖ%ÌÐÝ*xßqw«ÃÃùÉžc9 Zæ/{˜Ïì5d~³×˜ùÎÆóŸ#‹jj1ÄühcŒùÒÆ Nc”ùÔÆ0ó«qæ[û3Àüëó}FyБJ…<è‡1Ã<èwëfèn-w¹[íÎi÷Iæ¸û$sÞ}Ò9ð> ÁœxŸ”`޼OR0gÞ'-˜Cï“Ì©÷I æØû$sî}Ò#-Tý\o•»5®¼¦“$i™ïînÝáT´sx”qW¹[9%v©Ü­<+w+»ÊÝ—k¤YiXk >Yk¤>Zk¨>[k¬>\PŸNŒ¸'†ÜçcÖˆAëĨubØ:1n‚ŸëüŒX :ÅŒûzb¦íëŸẨ»u­o*XY{ž÷;r›9<¼—[pã^oA޵À‚k…=Ö ~¬5Y‹,²VYPd-³àÈZgA’µÐ‚%k¥MÖR ž¬µDY‹­:ŸÖ& ˆ¬M­€øTm:q·®`fÆíÐ)gæ-w<ÅÝÎáaÎheŸœÒÊ?9§rR;ä¬vÈi# œ×Î9± rf;äÔv>ȹ팓Û9‘Ã*g…œÞÎ 1bwë”G8pëT<ÄÏÜ­+˜KÂâZq¿å.z;‡‡{Ó˜cô®^ö¶^#ö¾^CöÆ^cöÎÆ{kc„½w䨡77ÆØ»ƒìíQöþÆ0µa\Ú>Ò>ØgØk3ìµÆ zíSwë hp gîóß¿Þqd½ÄÃ"˜6s‰dÚì%¢©HdS±§b"‘NÅF"žŠ‘D>+‰€*f Uì$"ªJdT±”©b*‘RÅV"æ9¡‘¨§â$QïÙâ$QïÌݺ´Ó”cÍ2Þšz«íbRãÅ*¥Ö‹uJÍ+•Ú/Ö*7@¬VnX¯Ü±b» dÍv#ȪíVuÛÍ +·Û1Æ÷ï«oݒܱ`¹ϲ`¹?ãnËTÖè{wëïþïßÿößþôxß–/žº[?ø’æiÞÈ)ÏÿýëÞðøc~Zr@ÀYÚ0†yDŒð´ažÐ$#Z-w&­õù‹g´Øˆeæ…épåú0¯üÞòUy¸3ÿ-mÃoiÿȆæÄ/NÈ¥–ç~óPÉrsöL–+1tC,_\BêòépåW–±Î)çï où)]<ÞD¶ oýò5@DÂ[ž·W.Öç±±Ì%1´ì\Û¼º™ºƒ¹ŠCžî²ÜÅ´ÏÃ"º!“1Ÿ#(|‰C†Èð¦<dz«´ÇaQ`yo#öY2†Ôq¹.wn@ò?„¥roÏa> ³ìÀ*‡Ü¹—„Ê’_™‡EÉDºåzÊBÚ}™‡óò].ßù_.ª ¢!Ëò}†ý—a£`<ÏÛ+·êóØÀ݈e-™oÀF3uYó° ì‹CîÕKlh sÍÃòÄ;¶y¸sØå/&“FLlN"›‡KDÌæa±@;¬k_‰§ÍÃb^ ¼6AÏ ;ÊÃb}àÅç<,ÎbqËp 0äáö È”Í?Hq)›¿¼2¾Ì”Íóö•ú<6p½Õ| M®§î`sLl‰yŽi/!б(%":–¬®´ ¾·‹ðiƒÑÔ† ‚« $ÄZf½6‰mˆ"0ÛFœ¶á°íó}YÔÆ²¨Å³¨×ñ¥ûôYlØG(gKçáŽ[¿õÔ €÷†Œxxo×÷fŽhyoõžw!@,½ËB\DiïƒÀ{ ¡0.Oi8UÅkXQbtXz)¼T…o RYf‰3¾ {×dØ?ZSaŸ»W.Ó…š2—Ø¢¢Ì,à 5¥™º#s)‘Ë) [Ð<œá3 LÃi Š˜_©dîMæ —8?hò™†óÔt(}‰ëP‚Lk° ‘Þ¡¤ã˜§&iƒ0#éÄtz(ï€ ï±QN囋%òàQ.šÃvÀá_¹IŸÇÆP˜Æ\â­î¹]WOÝá‰íyOŠÓÞë9,J§×FÊ’%®ÀÇHÊ‚&®À·JÊrO›¿7ƒ!Q¾tR ’ $ßõÌuÀ6¦u&3Dsý[À¹þmfxç\‹.öì©O`#ý\¸lLËû$ê/ÆFúù_¹FzØ‚¾Ô”[ôÿfêmÈiØï±]O¯'a3wÞ†ÂV?î¼ …B€Ší2‘,QDòc:]”˜q¥U„”ˆœ"”§4äÉõR¼rRÍ¥mœõxþ¡‰.Êâ(ñEsQ$ÎjJ~ôgŒš2.ï#쿸¦ä·¥^¸C¸h¹ŠÐá¬Ëgêš©;Däò©„>h^žî%H`>£0EÌhMA ÓÎ]¡—ù¹­Š|"ÙÈÔtì!÷“¸úÄ.hmÆÄ¤w$ "%Îq[æ<ì1Ì;áØÁ¨ òð#.š¾›NPá¢ç£\4}_¹@øF ¤J™¼{ÜñNh3u‡@O,ÚCO;šG/ ZK/O/è®ïª¦U``K+¨°áØ fl–B¶Ò‚(m˜m¸àÍ&ýtß`+l°‡}ìa­ÛóypÌE¶ÏlÓ_~ÇÃÃÍÜRŽ´#SWÒ~MÕI»95)íõT¬T ¨g©NPíR¡¦C¥Lˆ:šêU6U/jpªmTèTù¨ß©.RÝ;%¿TT(~=YT(~%¬¿tu.0ŽòׯŸw)£b”œEå(H‹èQ® ¤˜-’H©[’B¸&erÑOŠè"§”ØE])À‹ØRží•xOR,i¿÷÷Ž¡nlsÕ\l”ªù“l”ªyf£—_Þ[³"TÞV®þõßÿñÿôöWoÿóoûû?þÛ‹<³Ý›}MíH—gpAiºåytd€¹/bF˜;Nfˆ¹!eƘûUf¹eF™»]f˜¹fÆ™{ef ¹•fFš;mf¨¹gÆšûtf°¹gF›»|f¸Y`Æ›åfžUÈdæ™›hfž}×E3óìËZ%džy:³•§Çu©ÿé_…˜fZ¿bP¡å-ZýbСÅ1!Z;cP¢¥5)ZycТ…91Z·cP£e=9ZõcУEAAZ3dP¤%EIZ¬}ܰ$Ç`Åï4¹¯FÌd ò•Ós1òq=·ßn°ˆÛ<”vj5œi¨Ë™–j-iª–Ú™¶j%ži¬ê™ÖjŸi®–ù™öj€i°6 ˜ki²¶˜6k‚i´6(„Y?/ƒôV üLoýNáÿjÄ0½õÄÿ¹€˜©¹øs¹£éngðP¢rÌ0•¯™c…Ø+ˆDçXa$>Abt ‰Ò0$N)'¡H¬#Ñ:ŽÄëø û£= Ñ$D?Œ&DŸ¸BWö˜1W¥¡áÍOŽÜ•){ RÛcGª{ìòH}*€Tø¨H*‚Tù¨2ˆGˆ*„Tú¨RH­*†Tû¨rH½*بRª’=$hWÑ<ËU¶PcÎy Rè£*!…þ᪄ú3¯è )»ËPªRÞi~=bšÌóÓ^`¦˜6*¿¨Ç±¸`š=483Ñü¼LÍTû ’˜,ŽåÓívxbÂúx3宼ãLºÏ2Óîv´Xbâ8BL"Áä»ýÛФý6ˆéòä`¾]¹Gö0ó͞ϤKU©XHå Û-r_;ƒGÌ0{^¯[b¯;f­ j­°úm!@í¸¢n]R3/„©×%¡R „` B¸t}$Cè"…ç1jã…˜¶1'¾ÒÄ@Dmêî0¤Û<¼‹KBÓ./…MU@œª„ô9UÉwª2R÷T…$þ©JIT“t¨*'eQUP£ª¤tIUQÉ–ª²£yª°ãóª$UPU©•ªJ'nÓÄàâNvýôÍ fŠRäÅ$%Ø‹iJÏ•Ü/¦*7@LVf˜®¼1aY bÊŽD$“–Q!¦-CL\6‡˜º\1y™$Bˆì§sæ+“AÌ·ub¾'Ôæ»åg…æòÌÞ->C;ƒ‡»Ñ˜at«±èf½Bìv½‚솽Âì–vÓF»m#ˆÝ¸ÆnÝd7o„²Û7‚©áT ü  šðÁÃîÚˆawý,bØ]Ÿ9SWˆÌ®w<ó•¤;ˆL3…‡%/oã”ļÍS2s ¤æ2AÉÍe„’œËŒ¬P•!Jz.S”ü\Æ( ºÌQ2t¤¤è2IÉÑe”’¤Ë,%ˈ %<—%JxÏ–%Jxg~ÕÈt7VíÖÕÍ©»›KR—7פno.J]ß\•º¿¹,}s]úæÂôÌ•é;˜KÓ—0×–o!.._£ï_k.ßø"/!CŸÀÜ—>Á³Ü—>ÁO¹XÝR>µïm¬ÿåÿô5ê±²Ë>´±~øEﮚ ¸u»åx¿â|«ŒON"0,V"P,Î]"p¬:– ¦§67ùô¡ÎrŲ:ó¹áÐgxÖW>Óª¥å1Û8oŠÀµ8ŽŠ@¶8­ŠÀ¶8ÌŠ@7ë? 8kÎû•€³8 Š€³ïºyœ}Ù¹.œYW0ÓŠçÈ·ñïx<¿™ÃCɃqÉ„qPÉ…qŽɆqÌɇq ɈqH|ä(!'3ós$/Æ t$3Zƒdr£5J&;ZÃdò£5N&CZer¤UæW˜ ép9’¿Ó ¿3£µÒWVÖ¥}¦\wÜÊ©žùŽçÒÚ9<qj%Ÿ¨Vú‘j'€ªv ±j'¬vÑj'‚®v*ñj'ƒ°v:k'„²vJ1k'…´vZ„yY/0ƒÈV;ŒlýΙørÌ0²õÄ̺‚™¡üÅ âêÖܬvE)Ws •&Ö`Æ-C¯ÑïÇk8sZcD=ATt`QÒ1ü AêšÆ(¢ªȲŒ#ê:>ˆÂþhŸA4t`ÑÐOc†ÑÐ'vÖÌ쥫_:üyŸiæðPd{ìåˆt½‘ïQ  µ‘ñQK)µQ‹:Þ¿U­Bd}Ô2DÚG­ëxW~Ö¾£VÉÏÚ¡…ÛÏÚyŸJ~Ö¾¡ÒœóDÐGmBýõ‰ôg†ÖÌà8rßeVÓ÷wôhÍe<ÔŽVÕ¨­4žkGk‡¶gGk_°Fr´Òx­­Ú ­4kGkGÛoGk/o÷‡£µƒoÙÑÚqÃŽV¯µ£…‘p´ö=ÝЄüÖ=Z~ ¦v´ö’&ð0î·]½Ä+KëÒ>S^¤Y'dŠßá‚6sxī֨OÖ©æºÏæ»'ܧ#îã‰!÷ùĘubÐ:1j¶Î@Œ[‡àgÀ:?#’‚Î1㾞˜iûú§0sbj}3º‚‹‡?î9ØÌáá½Ür÷zËq¬¾2ÅZá;S¬%¾4ÅZã[S¬E¾6ÅZ%9QµLr£jäHÕBÉ•ª•’3UK%wªÖJU-–â|^›|е©•ŸªM'¶Ö•}f-û »§;‚wÛ9<Ì¥ê‹SJõç”+ N*×@œU®‚8­\q^¹âÄr-Ä™†HN-×Cœ[®ˆ8¹\qv¹*âôr]„ùZçX.…8pëR<ÅOŒ­+˜™Ê¥»Ó &|[ß$gK½iÌ1z×Xô¶^#ö¾^CöÆ^cöÎÆ{kc„½·1ÄÞÜcïn ²·7FÙûÃÔŒqjþ P[ø`Ÿa¯m̰×~3ìµÏ¬­«ÅÉoßÒ85“xXófN‘Ì›=E4Šl.á\L(Ò¹ØÈ^U1¢ÈçbEÐÅŒ"¡‹EDCŠŒ.–!}ý˜"¥o'SÄ<'4õ\œ(ê=[œ$ê™[×T½Üg…÷wB§Ãç¢ÖiŸ ¡Õás!Ô:|.„^‡Ï…Pìö†D‡Ï…è‡1£èŸëf–²ÏŸë–ÚÔÎá¡ðöð¹î>ÂßÃçB8|ø\Ÿ áòás!¡zÖ·‘ý®Þe±Ï…pûð¹6ÞFÖ™miž­6¾A§3#ï…éLIwÝG|†aôÕ+ª÷£µ‰aôg>×%<3eŸ¹ã Èvó MxÑWg£¶ k®³SÛþ¡³U´>Ÿ½Jã±>›•Æ}ýÚß­Ðg»Òx­ßûÛ ølØV^ñ³cø–Ï–m¸â³g¹E©ýCœHœ]Ûð¢0ò 3C9³í³^[Éx˜ë¢^â•ÏõyÌøÙPÜ®XïØgš9×%Ì”û¡®»§×næðposŒÞ5Ö½m¬zßXCôƱƛ¾ª{kaD½·Ÿždoî—)Ù»ûáJöö~×’½¿Ÿ½¤6àW1©øÑLj çûŒzm?:É^ûY̨×>󹮚m͆ú~Ç¡Òv‹`~ò•"™_„¥ˆæc)²Å{²áâ¹Yˆt~Vf««¥È§b%PÅL"¡ŠDDC‰Œ*–!UL%RªØJÄ<'4õTœ$ê=[œ$êù\—všâpÅŸ·)Áb4RÛťƋUJ­딚/V*µ_¬Un€Ã¾õ‚õnÁ^ù\rÄšåFˆUË­ë¶›AVn·£ïŸ+Vߺ%¹bÁržeÁr~ÆçÊ :ï®ø\þ·ßÿ¡oŒ.š}htýð‹jºcݶÛÈ7SÀܰ1%ÌM1SÄÜ43eÌM5SÈÜt3¥ÌM9SÌÜ´3åÌM=SÐÜô3%Í¢SÔ,0eÍ¢SØ,:0¥Í¢SÜ,Z0å-„!¤žUPeê™›|¦ž}×ä+õì« ÊÔ³3£ëó˜qM,——醚ØÎá¡8B‹oŒ+´8Ç8C‹wŒ;´¸Ç8D‹ŒK´8È8E‹‡Œ[´¸È8F‹Œk´8É8G‹—Œ{´¸É8H‹ŸŒ‹´8Ê8É ßcñНø˜øå˜é,¢¾2º®ì3$ßźÈµÜÉiš¹§at!5Œ.䦆х\Õ0º»FrYÃèBnk]Èu £ ¹¯UDJ®.䯆I‚\Ù0Q;& riÄ!Flt½Ã s\ÃèBŽëw¦ÅWcF9®'F×Ì@zÞÊÁÄí–\úfå+ÇS¸ñ Ÿ9Öùͱ†ÈwŽ5Fþs`ùÐUNÕÔbùÒ1äO)v£È¯ #ß:0Žüëø ûƒ}†yÑUbUÉ‹~3Ì‹>1º.a’P÷áêÝÌá¡÷8´€œ÷8Ô€ø8ô€œø8ù84œù8Tú8t±ò²²e Ç>m ç>u¬¼¬¬C,õ¡•ÏçéÐÈÊ c:T’ÆS÷Ÿa.}Â@.ýõ‰¹ôgF×¥Ú„#;%)q»Ã´hçð(ã®2ºÆµÃšëðTKetåqW]cËZÎJã¹2ºòx¬Œ®<î+£+ÏÕ^]eî*£+—úpÙ‚‹">|–ÆsetåñT^[ðTÛµ÷˜I?ÑP]ù;úwF××cfP/ñÊ躄™rübÇñ;kçðˆ9VK¬5Pˬ5RKÍ5tËÍ5vKN ¸e'FÜÒCnù‰1KÄ %bÔ’1lÉ·$ÁÏ€% ~F¬ bÆ->1Ó¶øOaæÄèºÎ‘t” Þ¶ÏXâ^ní{½µ9Ökw¬ÖöXK¬ý±ÖXd-²vÈZem‘µÌÚ#kµIÖBk—¬•Ö6YK­}²ÖZe-¶}Z›¬%²6µZâSµéÄèºÞkïS®PËvÃã)íæŒùÉ)msÚ$ 'µ‰@Îj“œ6â±ÀymRÛÄ g¶ÉANm„œÛ& 9¹M™­2YÈémÂ#6ºN9p$e·¦ÅSøÄ躴ϔÐX¤ù8òm}“.ö¦1Çè]½ìm½Fì}½†ì½ÆìöÖÆ{ïÈXConŒ±w7ÙÛ£ìýaj¸´}¤-|°Ï°×6fØk?ŒöÚgFץƩÜÍÙæÒlßqC½ÄÃ"˜6s‰dÚì%¢©HdS±§b"‘NÅF"žŠ‘D>+‰€*f Uì$"ªJdT±”©b*‘RÅV"æ9¡‘¨§â$QïÙâ$QïÌèú …ÆÞ¦‹ÑHmk”/V)µ^¬Sj¾X©Ô~±V¹bµr Äzå&ˆËmk–!V-·B¬ÛnY¹ÝŽ>¾¯X}ë–|äˆË=x–Ë=ø£+3èéÇF×Ð]%ã-?&ynsýàKÞím7¾Ø‚”´~ëЫ!C­ßz´ÃHXë·Ý2ò×òpg[Ÿ¿xD¯ì¶>qŽ™¹o{Z‡DŠð½¥#ÏÃ!qi§è·H…KI¿­(›H”ë7E–÷€óPñsóPÞ§˜9òe»’ìòr¥³ÏWñª0sþ¾—ÒÎC|ÊÃï«ó“³_‚HÄÀåy{eg}Cy+aDSvYj¦î`øbŸQ‘×͘‡E}Cpc¿“x Ö±Ot¨”@„>æa‘ö ™ß5Ab`y£<äRAKAy§e}SØd–BK~ee䰛ʰ`1–ù=Rúr™‡EÒDf~ ¤°7dæá¼¼ÄF—ëxy@¦w~dùA¶§°Qt´¸ˆ ÷Þ%&ç˯Q€†¢Ä¸<¥áT¯aE‰Ñê%cÄ…o RYf‰3¾ {×Ý?ZStŸ»WvÓ.ZÞAË ™áެšfêŽ<,¥œD.Ç„lAóp®Ï$0 §%(b~'§"éWÞç —8Shò™†óÔt( ‚‰ëP’Lk° ‘Þ¡Äç˜CÞ!L˜…b:=”W †÷Ø('õÍE‡’‰ð(íWqøW¶Òg±!±w×úþuêTSwhb×w§0íë®ÇFð»lz‹¤,Yú‰ùTIYÐuÑK&e¹³ÀßÖYï ¨¬“¡’äû¿€Ù:r×Á˜Ì]{bÎvû†a†÷ÚWÿ²×Yæï±±Î¼+ld“ kÿÒ>úü¾±—Œ+H»9Mï®}SwhC^vÞ‘Âv½l¼²„Í|YyC [ý²ò‚ AîÇ(Ë¢ëQ¥ˆ,³ng—“›Õ5 PîNç(OiÈÓì¥x-£»—Ò¶ŒzÐÿÐ@»eq‘ Œ¢¹ô(g5M´kJþA–‡°Áš’~ÂW6Ñç±±”C/SIåìïà¢ÍÔ"r¹­êMóòQ!ýÒQ÷\€ŽÚ{!yH ¯èèE>ûy—°Ÿ©i.½‰k…Öæá°›ôæ!UJœ‡Åsa.ÃüÎ ‚aÞ(ýæ¢ù»i edç/¯Ôý'¸hñôylàEHpÑiºãàe=uÀ˜Øò¡i/Íc,Ji-cÉJã ºë{§hZ ´´† ^ í°a†fÙ D+mˆ¢Ñ6€Ù† ÞlÒO÷ ô°ÆzØG±¶ÂFkû\%Kù3[?w Ú8¨iG¦®¤ýšª“vsjRÚë©X©PÏR Ú¥*B-L5†J™*u4Õ'ªlª^ÔàTۨЩòQ¿S]¤ºwJ8(~©¨Püz²¨PüZº×öÎ…ªRã–'›¹;$9‹ÊQÑ£\-H1[$‘R·($…pLÊ䢟ÑEN)±‹ºR€±¥¯JÒU•ZQð¡ªtâ5]î®·b6 w¼ÓÎàa¦(=žLÒr=™¦Õ|2Q‹ýdªöÈdméÚI ¶Ñ@¦l‚LÚ6™¶] 2q›dêö@Èäm‘!2ŸN™¯-2ßï<†g˜ï™uau½n¹6Mw¸ í êF«.Ýjµ¥›B·+ˆn8VÝr Ýt Ýv Ýx l¤—,¢›„¢ÛC „S-ð'€jÂ{ ºë@ ºë‡ƒîúÔ—ºB}ËKåët[f|;…‡%/oã”ļÍS2s ¤æ2AÉÍe„’œË %;—!Jz.S”ü\Æ( ºÌQ2t¤¤è2IÉÑe”’¤Ë,%ˈ %<—%JxÏ–%JxgnÕ&S®wÄŸ·©¾f2ÔÕÍ©»›KR—7פno.J]ß\•º¿¹,}s]úæÂôÌ•é;˜KÓ—0צoa.N_Ã\¾‡¹|㋼„ }s_úÏr_ú?ãae²¾ž™XxÌX³]¬~Q-â5ýòúìºÝq¶Y`q¸EÆÇ&‘%§*‘5‡.‘EVÉÑ#›Î{úDgÙjªŸN|VYh}ec1K­:Mºâœ¦›"‹-΢"«-Žª"Ë-N²"ëÍò³ÏšÃ~޳ê$(²Ï¾kæ™}öu‡º}væc}3mÈâ-[Z;‡‡B ã6B ã”6B ã7BãŒ7Bã8Bã„øÈÛO:@NbæóåeŒãçm´ÉPGK” }´„ÉPHKœ ´ÊPI‹Ì¯03@ÓÉr„,~'~9fFK¥¯œ¬+û dæuØï’™Û9<”~j!_é¨ú•ž*#@éª2 ”¾*#Aé¬2”Þ*#Bé®2*”þ*#Cé°2:”+#Dé²2J”>+#Eé´2Z”©(+ëf˜æ*cBi®­1ñå˜ašë‰—u3H;œ uºåŒ`;‡‡S–cŽ‘Âk€”æX#¤8Ç"UÃkÌhc€)ÑÆS¤!¦LcL¡6™RmŒ2ÅÚfʵ1Žìø %û£}†©ÑÆ S£Æ S£OܬK|¦CÒøDVsWÒxì3Hs½iï±×# >jÒâ£V M>j Òæ£Ö !!jQÇË·ªUH³Z†´û¨uïßÊÎÚwÔ*ÙY;¤pÛY;/SÉÎÚ7Tšs>ƒtú¨MH§¸61þÌϺ´Ïìûù|ãú鰙㌇ÚÐÊ`¨ ­4žkCk‡´gC+?,SZi¼Ö†ÖiІVOmhíèúmhíå1ÿ0´vð-Z;.aØÐJãµ6´*†Ö>ã(Z×äÿÖ-Z~¦6´ö/ð0μ;Z—ø (/·æ¦;Úkçðð» æ¸Mæ¹æºÍæ» 'ܦ#nã‰!·ùĘebÐ21j¶Ì@Œ[†àgÀ2?#R‚Î1ã¶ž˜iÛú§0sâi]ã3Yj¾1í°ÃÃ{¹Õ6îõVãX |_е¦XK|cеÆW¦X‹|gеJj¢j™ÔFÕ:©‘ª…R+U+¥fª–JíT­•ªZ,Áù¼6ùökS«>U›N\­+˜ÙÊ+ñçm|Fг8£D}rJ‹þäœ6ÈIm³ÚT §µé@ÎkS‚œØ¦9³M rj›äÜ6EÈÉmš³ÛT!§·é"ŒÈÖ:åÀ6)È¿3)âÀg¾Ö¥ÚTôÎ^Å]}“-ö¦Õ—ÿ¡ZƒÒÛÆ¡÷5DokŒÞ90€Þ:0‚Þ;0„Þ<06кÑÛFÑû†¡ Æ©ø3@máƒ}½v`½öÓ˜A¯}êl]ÚhÊß¼#,þŽD©v‹`ÞÌ)’y³§ˆæb@‘ÍÅ‚"œ‹ E:Šx.Fù\¬(º˜Q$t±£ˆèbH‘ÑÅ’"¤ïS¤ôÕdŠ˜ç„F¢ž‹E½g‹“D½3o몌íÓüŽ×ÛI<¬¶ûb=Õxß»§ZïkùTó}kŸj¿/õÓ ðºñ$Ü„x1nC<(7"ÞãŠçàfÄkp;â1¸!~ë qK^ƒîß  {ð, –{ðSîÖŽ÷w^º[¯âæ?v·~øEÍ-ãÜÓwxg¯¿#ª `îÒ˜æN˜ bî”™0æNš dî´™PæNœ fîÔ™pæN~ÔK)UÚ\¹[LP³RÀ„5+ £^KÙ•¸6B ¢Á7+Lx³ÄijúJ:ÏÜÙ3ñì»Îž‰g_w-‰ggîÖ̤}ýͯ2ÞqÆ£ÃCQ„VÜUhEŽQ†VìuhEQˆVü•hEQŠV µhE‘QŒVÕo/!Ê1žfBÔcõr”…xØ }¹ß}B”¤Uç˜A´¢DF+~§ ~=f¬œ¾r·®`¦/×'úÒßç?ïŠãŒ§µy–1Õoš13ÕOžñAW¿ˆÆÌU?˜ÆLV¿§ÆÌV?·ÆLW¿ÆÆÌW?ÖÆLX9ÊŒ•3¢LY9'Êœ•³¢LZ9/JR”»õ3Ìpõ;lÌpmŠ/Ç 3\OÜ­+˜Ë3Bu¾eŸiæðp¶rÌ1²—c Ík„ìæXîDiØÝbö³Ý-fCÛÝbv´Ý-fKÛÝbö´Ý-fSÛÝbvµÝ-f[ÛÝBöu¸[ÈÆþ`ŸQV´Ý-fE?‹eEŸ¸[W03íp,¬&ÿyW¾x¸[Èpw ïán!>Ü-dć»… ùp·1îbª—üxÙOùá)»[ȸwkãdôØ–æ¥Úaã³s:)²ñ2˜N’¤qW¹[/0ƒLúêM¿ÕûÑÚÄLú3wëfàQà-¦õŽ­™ÃqO ¹Ï'ƬƒÖ ˆQëİubÜ:?Ö)ø‘tŽ÷õÄLÛ×?…™wë f–òXAüyÛ>c-ˆ{¹7îõäX ,رVXÐc-‰÷QkâA@žm—`ÈZeA‘µÌ‚#kIÖB –¬•4YK-x²ÖZe-–ê|^›âm@Ô¦V@|ª6¸[—ô™rú8þ¼ÏXt&g´²NÊ?8g8tÝ퀳†³NÎ8o8àÄá\€3ÛÙ §¶óAÎmg„œÜÎ 9»rz;/ˆܭSN8ðwNÅCøÌݺ‚™mÀÙ.ýyWßdw‹½i5Ç¥w­Ö PÃjJï[­!4èXãMß?U½µ1ÂÞ;^›DoQöô°õV%zûxʽ¼t m ¤vàw2©-œï3ìµãIôÚc†½ö©»u 4[9®ã?ohü)E0¿òJ‘ÌÀRDó±Ùâ YˆpñÂ,D:?@KÏïÓRäS±’¨b&‘PÅN"¢Š¡DFK‰*¦)Ul%bž‰z*Nõž-NõÎÜ­+ A¼aüy›,F#µ]¬Qj¼X¥Ôz±N©ùb¥RûÅZå8è[VOáì•»%·A¬Yn„XµÜ ±n¹bår;ÄÚ冈շnÉGîX°ÜƒgY°ÜƒŸzpE´–Ý­ø‹ÿñ—oé§ý‹ùí¿ÿùí¯Òø»êÿФI1Óìc¿ë‡_T{sIÿÀ[þw<ÿÄ 0÷m soÌ 1÷Î soÍ 2÷Þ *soÎ 3÷î :so?é©¡uxª…ÚƒÔ¬0hÍÚ¤§^v¥õíЇ¨M0ÈÍÚƒÞBBðY…XŸ¹×gðÙw½>ƒÏ¾ ± >;ó»®`¦/o0%f¼¿ƒƒ·sx(‘Ð ­Ñ1ÑЭñ1Ñ ­2QÑ"­12‘Ñ$­Q2ÑÑ&­q2Ò(#­‘2Q2tè÷˜A¢5E&,~§)~9f:k©¯ü®K˜)¹d}чRµ¸-•Ó:4£OÃïb4ªý.F§Úïb´ªý.F¯Úïb4«ý.F·Úïb´«ý.F¿F8¢aíw1:Ö^ £eí¥0zÖ^ £iíÅ0PÑ~×;Ì(ÊÕ~£\[ïâ«1£(׿ë fätÉõº-þ×~#–=ÇŒ`ö0¢ÙkÄg¯!#ž½ÆŒ€6 US‹!FLcŒ 6QmŒ2ÂÚfĵ1Žìø "ûƒ}F‘Ñ‘U…Èè‡1ÃÈè¿ë fðÈ2\¯©»ávz;‡‡¢Üãì¢Þãl¢àãì¢âãl¢äãì¢æãl¢èãìÅÊ›Ê:›(û8»¨û8Û±ò¦²Î~¤…ªŸðÍã¡ò»Æ•·Åt¶$§ÚïzDÓÇY DÓ?\›Mæw] .¹^7`¦žÃ£Œ»ÊïSû¶T~W•ß•Ç]åw©ý[ë3ZiÒ>ØgÐkfÐk?ôÚ§~×%ÐÜíwµ“xXÓf.‘L›½D4‰l*áTL$Ò©ØHÄS1’ȧb%PÅL"¡ŠDDC‰Œ*–!UL%RªØJÄ<'4õTœ$ê=[œ$êù]W@s»ßÕNâaµ]¬Qj¼X¥Ôz±N©ùb¥RûÅZåˆÕÊ-ë•› V,·A¬Yn„XµÜ ±n¹bår;ÄÚ冈շnÉGîX°ÜƒgY°ÜƒŸñ»Æ¹\£<÷»þÏ?ýþ÷|˜fß‹à·4Ü™—{ô —ùJ?£z2R®Wf žîçÏe@÷+óçV—¯g—/F”]>:0½9$°ß›4sü¾U\~Ù|ޏ~z—X ,~Y \~!à…©õyd”²×—«ÌÃzÃ>ÖLÜ¡ìÅ¡ƒÆÆdÆü<øþæÜÆìƒ©ŽùqðáÍ™ù‚{ù_qükP` ÞãF‚"…`˜ ÒÏ–yþ‡˜D Þ9•à d0ÅrXPÿ˜q™†E×dæ°‚Â1sXQºÞ#£P³ü/ñ‘¸uÿ 2p,n^ZWŸFF_nNôå]¹~ºAl&îPdë@’Á@×aÃê2îuØðùã;·ùZ<‡¹VdÕ ’MÃ©Š™Íwæ«Ú4,V#jÇŽu¶c#ƒñ¶#ù4ÃoÇ6_„;¸$ Î;˜(„Bn¯ÁÔÙôƒÇ©³cW_Š †ÎûKƒêÓȈ{Xù#xà ¾fâ={ZíIGH´—Ò^0„‡x9;}oW…S Œ®Pl-1öZ c(¶ ÈÈl”Ú‚/ã¶n†qŸî̪2˜Uý 2U~€W6Ôç‘ÁØ8QwÜí¬'îP<¼¶b†Çk£f´¼¶qÏk“g,½JCëU ø òÁÀ{—,¿Fé Ĩ0¥áT•­É*jéÇÉüT%oûQAp.ÿ”g0á^Õ„ ÷Vܧ_î•ÙôidÄ*øM¿þôz=qGæ.ú–óA¶ w<Û'ê—†Yô1Ì“[ÑÆôçÆE¤’ç {¿zQÌÒÝèꀑÙìGTw@nŽˆpžÓ1h23PD¢¼&(¼GNë‹Cxæ÷W–Ò§‘qÿý©zâOëÊÛS˜ônÕ##åWÉzÄ ÖÍz¢¤,g7铲ØÝäïÍPÈ·-”|€`ù0@†7Ö Á®3"@÷€,èÍ>û†Q‚v¾,ÑyÃÀUŠsTt#oJù­¹þITd™ñ…gôiPÜAªš¶ƒ›p¾Ÿ²{‡Îo:ÎÞ¾÷™£ÊÞž_S¼ñgÍvtUØ']‰ÊŸê}Ô…ì\Oö‘öP)6Yž]‰öA§×óÇïu¶=×°½×óå_èh •ê·Kê-¥qÛQ N Gúxû)o*ûð.ÃþkËFúé^Ù@Ÿ†ÁýP5iYÚ¶Óÿ)nÛéþ~—Ï!L&i4Of†iDo.ÓÆ4ê‚Sn«ôúL8óÕ³ÞlÔçq UÍ&Ïn»‘Ù€ä¦QqÀ€ó¨Ç(ýôiÉöh:¶…ªÚkf™¾•OFî¶ÔRý¼2e/œOÃàv[§ž´ƒmœ'´ÐOvi½¥;ô"•ÖÑ ¸óû¦h:µðèH ´« zY ®€†.X D‹,€¢xÑ\Ÿîh=tžÂgÀ 5k>ƒÆ©¹áXd=k…í¯P´÷B"Ò¾ ýH{6Ä%íçPž´×C–R€f¥AKõj—j ¤0ÕèdªIÑT¯ °©–A~;¥§T M=X M%<¿ô_>ƒÛÍ—zÖJÁ"\ЉEÆ "‹¨Qa‹£þ,ŽGuZ Úµø!•m±GêÞâ–TÅÅ<©™‹—RQk¥Þ.N+5žŒ·ÑêÏ¥lQFJÙRFHÙûþ3aP…rç‡ _ú+ÿý/Ó—¼ýÅþý÷g& ÒÉ>tY~ð%5k­ó; Vž—zå}©GT˜ZHå…©ÃTž˜På©?U™ÚWå•©»UžYï<3ä©7VšZg奩³Vžšoå­©/W›ÚvåµIQ~Y€Uùej{•_Öö½5F¿.¾ìÄ{ù<^ñÓ•‹hùáÅÛò(RPj“"%F)’ppJ%žu”¥HC)]Š<”¦HDédŠL”Œ¦HE©lŠ\”§HFitŠl”„§HG)|Š|”¨HH «/ðˆD hŠHl´/ÆËd½ð•#óy¼ ±7Íÿ¼-RSúªRKGT"ÕT²¶RO¥z+U¢¸RS¥™+UU’ºRW¥¸+•U‚¼R[¥×+ÕUr¾R_¥ö+Vf€Rcå(UVV‚ð!‹æ^˜Â*)^)¬­ÿÅxaë‰Oóy¼à±á¡/FÞW\Ûù;œ‹ìù¥Œîùg®²×‡¹Ë^?æ2{}™Ûìõg®³ñÁÜgã‡¹ÐÆs£?ŠÆ's§_æRßÌ­6þ™kýÁþœgã…9Ïâ…1Ï'îͼ”$ù—\Ç;øK3‡“×½3™Ýû;“Û½ÿ3ÙÝõÉï®L†w}aÀë“å]Ÿ˜<ïúÅdz×7&×»þ1ÙÞõ±5áü÷À¯\_{;ÿ€¿0IÞõˆIòÖ#ÉŸx:ð‚<ð)?è:öw„´4ó—g§Ü ~Ø÷8]"þÈClæ—=ì_óÏüjœµ~ꫵ¾j»µþêÊ…5íÂzzáK-¿ð'E@ø”`@üJN ¼¥5ý"øá¶sŽuòÂJÛÊ?‚•ÿç*T–Bxçᨙ½C;·d3nìÒÔ¸ïKpcYǪ!©ŽEE:kŽD>–$)€¬X’YФ²ÞIXd9”êÈj)I’Åt7—*µVði鑸ÇÊÓªžWè*8Ö îà}›È¬.]d–Wœl„q79ÎE"+,ŽMâ×¾Êë+cIYdq&ïÄúÈ&³Ì|¢“Yg>ðÉ,4ŸeVš„e‡Õçæó”Ìkmf‡}Ù©)F‡8KW³if+gôÇ;Ð53x8ÒÏ™ùçsÎŒô1hFú”4#}ˆš‘ƒ>cÍHBÁ¦´ïÚŒ4ônFJT$¢¤CE&JZT¤¢¤GE.JšT$£¤ßWˆAD¡Ïf3¢°•ò¾1£ÌWÞÒÄdƒ ³Ä|Èj¸ÃŒlgðpr¨Äu%‹J|Wò¨Äy%“J¼Wr©Ä}%›JüWò©Ì%£ÊÛ<Êx¨-¦Ü«ÕÓ¾‚’ÉbÚaYÛbÊ/²ÔS¯µÅ´ÃÒ¶Å”Ÿ7¬-¦Gfl1íx ßÓže‹içÅ'YLi¼ÖS9l1íx™Jy˜ü/NµÅ´ãyþG™o~p;÷˜. f)/`n¥6ÍÛ o´3xÄ «ïå ¸/æ ¹oæ º¯æ »ï&Ü—!îÛ‰ ÷õD˜û~"кjݶ¬€[tþ-Iàã!µç-îቖ¶‡-'.Ó°¬]œ(_îx³™¿Cû·µ4lïVÚ°ûû®Šƒ/¡vø¶J‹¯¡òø¾ “ÔAÖ-i‡,kRYõ¤;²(J•dÍ”fÉ’*E“WbñiòÍ#À²•Ÿ)?'>Óx/jñzǪföB ñä‹’éI'%â“mJâ'•@®*{€TVæ™®¬a§‚'Ë– –iA–-Kƒ$\†9ºìâAFÓ)£•—@BÛz ÏðÙ§é<¶Bñ^ §û YMì0cnK3_úS¯ ÚW¯º[¯)š_¯8zc㭳тÎÚXw4ÒЗ‡hÛRtõÆ0š~#šÀ»ZdÃò³ð@ƒ|æ5]ÀÎ_âTÝÞß'©xû€få­’–7n(^ÞÖ!ˆyÓ‡^æ’9Íj›Ë Ä8hu.Eò\¨ ô¹ŒAt‘ƒNèÛ¶}*ã9ý èæêÍíÑêBÉíÌmº‚¥à£œfØo¹ú^Oß!ÜWÇ!’û^94t_:§Äî+é”à}c½/´SÂûîøã:<,€¸-‹ .Ó£µ»ö°â*>,ˆ¸©O‹Bù ã5V éû2<%ýG©*%ýŸºÝ´uåöÃ;é<÷½åÄ´®-§}Mý‹Ž¹¶ ¥ÂÝÒF)àJm”°Ô¨* K¬´Ôè*`K°¸Ô(+ K´¼Ôh+૯¾æÊrR@XïT8<ÕªF_c@&¡@e`&©F^ÕÝlz©ñV WÛx3ÐëËnh3ÏëÄrº‚˜"ÕŒ8¸wK˜@3ƒ‡sö$†)‡Ob™rú$¦)ÇOb›rþ$Æ)Pbr%æ)GPbŸr%*‡ÐO 1§Ð/1Ç0$Bãï¡uösFÌI”ü1Ì ”¸§ÜÀVÜûrÄXÓ|e9]@ B‘¦Ò}¯wòlgðpœ§ßábܧŸéb¨_ñâ#¥~ä‹q¢~Œq£~"Œq¤~AŒq¥~`Œq¦~Œq§2$‡*ÃBq©24§*ÃCq«2D„YN/ÃxR?-ÆxÒÖ@øjÄ0ôÄrº€˜¡Ü5ÀcAëzǃ Í  ކà+€×c…ð*e¬`Wgˉ¡Æ¶œzlˉ¡È¶œšlˉ¡Ê¶œ(>Úrb(³-'†6Ûrb¨³-'†>Ÿï1 A¶åÄäG£ äËébÆòJÀRØÌÖßðºw;ƒ‡£Ém91ºÜ–£Ím91úÜ–£Ñm91:Ý–Ÿù§éxG×oÓáÉJ[NŒn·åÄhw¼`ô»f0Þ7–?ç1ŠZGêð(ý£UIIë'–ÓÄLå>6•á[Tfóü‚‡“rPDýZÝ6‚’épÓÛ‡ŸÒx¬G¥q_¿X·Áæöáª4^ë7ë6¥ñᬠïÑûðÖžåÃ]oeéðW÷õÃu Æðᱠϳ !¯3àif¶ÚðBþ£ÌwÈO›Ÿ[NƒC3ù°yÖ> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 9 0 R >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000030846 00000 n 0000030929 00000 n 0000031052 00000 n 0000031085 00000 n 0000000212 00000 n 0000000292 00000 n 0000033780 00000 n 0000034037 00000 n 0000034134 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 34236 %%EOF timeSeries/vignettes/colorwheel.pdf0000644000176000001440000014243412620124746017275 0ustar ripleyusers%PDF-1.6 %âãÏÓ 7 0 obj <> endobj 13 0 obj <>/Filter/FlateDecode/ID[<295E44FDAE254B2AA171513D3A17C178>]/Index[7 8]/Info 6 0 R/Length 40/Prev 50176/Root 8 0 R/Size 15/Type/XRef/W[1 2 0]>>stream hÞbbd`b`Òbb`°ab`< ¤#˜8ÿ01|y äÛ1°Æ endstream endobj startxref 0 %%EOF 14 0 obj <>stream hÞb```a``|Ï›Ö2`30D00ä20p,Yaâ230–ÏÒŒ@| Àðr¾ endstream endobj 8 0 obj <> endobj 9 0 obj <>>>/Rotate 0/Type/Page>> endobj 10 0 obj <>stream q 180 0 0 199.9199982 0 0 cm /Im0 Do Q endstream endobj 11 0 obj <>stream H‰ìÒA ¡þ/i1ç4ÈBÖŠ}"Î<ˆ°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ûé°Ï.ÔÂóÿÂÑ0FÈ„\«¡¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Óa;¶Ó1ïCĹP± Š#© endstream endobj 12 0 obj <>stream ÿØÿîAdobedÿÛÅ     '$''''$25552;;;;;;;;;;   %%#(((((#,0000,7;;;7;;;;;;;;;;   %%#(((((#,0000,7;;;7;;;;;;;;;;ÿÝÿÁAî"ÿÄr    a!16ƒ²Aa"2QTq“ÑBU‘¡¢±ÁÒ#$35CRSbert’Óá%&D‚£³Âñ '()*4789:EFGHIJVWXYZcdfghijsuvwxyz„…†‡ˆ‰Š”•–—˜™š¤¥¦§¨©ª´µ¶·¸¹ºÃÄÅÆÇÈÉÊÔÕÖרÙÚâãäåæçèéêðòóôõö÷øùú O9!AQ12Raq‘Ñ"#3B± $%&'()*456789:CDEFGHIJSTUVWXYZbcdefghijrstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¡á¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÁÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêðñòóôõö÷øùú !1Aa‘2q’¡ÁÑ 3BQ‚±á"#$%&'()*456789:CDEFGHIJRSTUVWXYZbcdefghijrstuvwxyzƒ„…†‡ˆ‰Š“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêðñòóôõö÷øùúÿÚ "?édVEd寓”µõô¼Òy8|7ðœ˜àåDÌŠw<2C°¼Ûûâî5B‹i¾¥8ÇÆHv›|xd‡ay·÷Êp1àq’…æßß!Ø^mýòœLxd‡ay·÷ÇÆHv›|§!Ø^mýñàq’…æßß)ÀÇÆHv›|xd‡ay·÷Êp1àq’…æßß!Ø^mýòœLxd‡ay·÷ÇÆHv›|§!Ø^mýñàq’…æßß)ÀÇÆHv›|xd‡ay·÷Êp1àq’…æßß!Ø^mýòœLxd‡ay·÷ÇÆHv›|§!Ø^mýñàq’…æßß)ÀÇÆHv›|xd‡ay·÷Êp1àq’…æßß!Ø^mýòœLxd‡ay·÷ÇÆHv›|§!Ø^mýñàq’…æßß)ÀÇÆHv›|xd‡ay·÷Êp1àq’…æßß!Ø^mýòœLxd‡ay·÷ÇÆHv›|§!Ø^mýñàq’…æßß)ÀÇÆHv›|xd‡ay·÷Êp1àq’…æßß!Ø^mýòœLxd‡ay·÷ÇÆHv›|§!Ø^mýñàq’…æßß)ÀÇÆHv›|xd‡ay·÷Êp1àq’…æßß!Ø^mýòœLxd‡ay·÷ÇÆHv›|§!Ø^mýñàq’…æßß)ÀÇÆHv›|xd‡ay·÷Êp1àq’…æßß!Ø^mýòœLxd‡ay·÷ÇÆHv›|§!Ø^mýñàq’…æßß)ÀÇÆHv›|xd‡ay·÷Êp1àq’…æßß!Ø^mýòœLxd‡ay·÷ÇÆHv›|§!Ø^mýñàq’…æßß)ÀÇÆHv›|xd‡ay·÷Êp1àq’…æßß!Ø^mýòœLxd‡ay·÷ÇÆHv›|§!Ø^mýñàq’…æßß)ÀÇÆHv›|xd‡ay·÷Êp1àq’…æßß!Ø^mýòœLxd‡ay·÷ÇÆHv›|§!Ø^mýñàq’…æßß)ÀÇÆHv›|xd‡ay·÷Êp1àq’…æßß#/'&lkž‰öTÅÓI"=xNv(ˆŠšUzæ´g7ÅôËfýí—Îh~î5B‹i¾§“/m:Û''%­³åXgl±5ˆŠ¸*àºq>—qª[Mõ(*i)«bX*âdñ*¢«$DsqM”èÿ+¼PÀ³ÒŽò»Åü =)±t7“þ'Sw&w‰+Ͳ,ªlÔtÁ'=FÞlk‚£³bˆ ‘]åwŠøzQÑþWx ÿg¥'‚ï¬["³%©§ª£‚i\éq|‘µÎ\¸gT€èÿ+¼PÀ³Ò•VöT[´™cZTõNeMSœ“HˆÜ]‚/&ÇCy?âu7rgx½˜!¦±¬è)ØØ¢eKѬb#Z‰Á]€Á%_ek¥cVÐz¢½¨½+4*§¸›tJ®‰Ž\ê¬j¯~qƒ×ñýìgž‡èØ=s¼7Î@ež@0Zд(ìºGÖ×JØa1sç']OdÇo3(¤´í‡Yp¿ÖZà«SC¥ðÎ^Ö„÷í»Ù­–GEaÂØbEÁ&™8r//BseÖVN¸ºÑ•¼Œà±<¤8qÆùdlQ§ ïr5¨šUUpD6 š»{ϤŽ[V¬¬{QÏI3ÄÅ\üM ‡]A“:‹.r®%Ŷ”«ï\'–‡f̽L¡‚XÙ\ÔÄ®j=\ÞðUθµPÒß’ù;#x³i•>õ±<ä8V½×äõ{Ô(ê ¸–5WG+U|à øäl±¶VgkÚŽEäTűéXôµ4V]5[ÒI ‰±¹íÇps"çäCÝq²¾¶ªÎɺêÚ'¬SÅ+˜*¢ðšœ}³²Oåî¨Ú_z[¾Ð ¯£ü®ñAÿÏJkÙ)YShdí e[ÖI¦#×U\W>c7œˆÕK3ßtóÔgp [—™E•¿%=-k㥙–ðZ¨ˆ¹œ™Ó‰PàÓÞUGQæ®t‘¶F«Ø­fj.tÑÖ-/jÊç‹& R4Åô’ð¾á&o= ˜?HSNʪxªb\Y,m{W‘ÈŠžyÏÊu´aUËeʰÕEÉšˆ«ÒtÊ™ñâC•vÖ§©˜†7®2Q¹`w_ÎÏ)O>_Zþ¢2j¥ì\%¨Nw‹¯‹ó*ùƒ]ÑþWx ÿg¥*.÷--[FÚ[:Ø©YÛL¨€ÁIO•™j½Î¡š¢l4¤¢µ<†ày£¼ µ±§Hí,_׊¦.ªr*#TÖlË6’ɢІ‰q5˜&¯¯]Tôr¦Â¥·¬‰é¦b,­Ï‚L:f½©Š`¾xƒ$ò¾‡*iܱ'1ª‰›@«Š¦>«Æ‡|Ár>Ò–ÆÊJI‘x-tÉÉÄ­zðUÏ7 ÅU2SÓK:èŠ7¿àQWÐ?:UNêš™j¸ºYõ^W*©úßUm‡^­Ò”“að*~z@ewBÚüª£cÓ®™SÞòÍÈÇn¥¢uÇŠ’\<ɱ >Q̉¥Lÿ)ïJ:ßCaFÚ‰#UkêŠÄŠšQ¨˜cÛ:÷lÉddëÙNîÕæ rfTj¦/Tñ³´qºYs¹îF§mW¦èç-«ä^w©‘Ëí0F˜'Õ>c¼ ² —ƒ=Cœ©¦:ˆÓ¼ŠkVGbYQSFÖ«co4r"pžü:g*ñç8w“bÓWäôÕ©yæ‹ Y""p¸8¢9¸õ°PI^=-¹3lûI¥¬~h܋ꩬ˜çEä:¹{ª6—Þ–ï´Ã#‘ñHÙcUkØäs\™•3¢› µi-¯v²Úꦣ_ïHöµÞZ&8o9ª–g¾é穃vOW²ËÈkAú)è'mS…‚y 3é•Ù{C“Kηž«•1æH¸1ˆºËèýMãeu|¼yÒô±Ác壕IªÊ¹ëª¥¬©r¾Yžç½ËŸ:ç5«±°©i,6Z’F×TÖ9ÎæŠˆ®F"àÔN¶€ge®\P¹QS31ГFˆ‹ðMB'¯^GLÊl ‰¨Ç*'<Äœ+›Ÿ7h¾µìºK^‚j¸ÚöHÇ"b™Ú¸fru•ü÷Q ©ê%§UŽböÚªž€èÞjÉ)ù´.G5Ñð˜äÎŠŠ˜¢¡ŠO—ùZÉäck܈ÙˆœhETO [Ý…­%vNÍC3¸O¡r±¸ç^“§œÉê~šfûÚýå»±/:®ŠË©’Õ{««]+Rž5DcQ¼êåDщ͚ð2ÒÓ•Vëcš:h¸Hž>SÁ™*Ü¥´ÏX¥*#¦Ã2¹W©f<¸g6j+>ŠÎ…´ôP2Ú˜#XÔO›˜»«fص)*ã¶ÖGOÍବænà94hN4+ÏŒ3¢ ÀzVÕžËVɪ³Þ˜¤ð½©Èì1jù'ç©b|¾Æ÷1ÉÖV® ~’1Ų½Eå4îbaZ%C:Ø»3“É@Öº[Síj‹-ëƒj¢á±=Î=>RŸ±kóÕ« “±e|94sG÷šHØv›ì{Z–Òf+ÎòµÊ‰ÆÝOù«ž¦Þ¶d›tÕÕ=*i^Ø5<€dîÐd‹ªò&®ÝàªÔ2d’ºÅgù8ããgè{:ʧ¡²!²¨±GN¹:ø¦_UL"ß²ßc[VsÓ×2¹½v.v¯ •Ø[)Y“«I3º{=ÊÅÇÛkÓ5|ô2ë~½ö½¹WZ77¨w=Ç ÈD<Ù?”ØIZ‘b©YG$'—©wœòä]™ê[)h©œœ&6Nk'¼ÇÓ/–€6NYÉdØTt˜,P7‡ïNN¼µ0‹_صo¿So¸ýÄ~wµý‹Vûõ6û€GO&2¶¯&"ªm-–j®5ÏÅZÞz‘jÒ$LxO‡áËÒ|ž½zŽnÊl ®Ê爓‚æò¹º;Fš¨Š˜.tëýèX4öU­m8«˜ç9L’5zeNÞ Á¯Ç$sFÙbr=j9®L訹ÑI¬®Ëš™D§cyæ¹íŰ¢àÖ§½x»G:ï-îHÎú§p½EsDÅtð¼6§ ev|ötõõ.WI<ŽzªòèNÒ ÷‡–6œüÎ’^f®^–*xÑWµ¡Ê§’L¨¼K-¢­Õ ¯<(¬ññi_uö=ˆÛYìE©¬s•©Š¶6ªµ:Øá‰g,QÍ¢™¨ö=×&(¨¼J€y)yÌ´ªc³­¸Û²ª69Ùš79t#‘tbw/Tkýá›Í2̶±£°2ŠzZdàBî Ч´£³à¥BêÑ´ßkÝs«$\dZv2Eë¹Fªù@1½äf«Yžú°Á ï#5ZÌ÷Õ€Ë;@`s|_L¶oÞÙ|æš1œßÓ-›÷¶_9 û¸Õ -¦ú”äÅÜj…Ó}Jpzú²ß"óœZw¯«-÷ò/9Àñ¶Ý®¨Ò{Ü»ÊbFÛvº£Iïrï(2ʃ>¾a”ü¿qMϯƒØe¿/ÜP`Ëàõü{ç¡ú6\Çï óüå¯ãûØÏ=Ѱzæ?xoœ€Ë=¤öh{é6ê˜%ôÝM÷¾-ä7¼¤öh{é6ê˜%ôÝM÷¾-ä¼¾ Uj¬ØqÌÊü9UQ=‚²k:¶ êtE–žFÈÄrbÜ[1C@¾ wpìÚ¼:^±*òô®B̪J+Fš­ÈŽl3ÆõEΊˆ¨«åUø*åG´S÷7z`·©• Š‹> ˜zíÞ˜Õᦳ§…“ÇJÉ×µx ÎŽLSˆûócÅð ïçªu–JøåFà÷T5Ù‘pÅ\Š~Šf<Ǭ‡‰(h‘qJx‘SÜÞ<à«iÃÏuTܧ•¾KUήjµÊÕÒÕT_1úMSÁL +,·ØùAYFäÁ¼ÕÒGÊÇôÍ_,GVì&H²²¯³`™ž>úÒ~z°m%±íŠKI4A3\äëµs;ÊSô =DUPGS‘ñJÄ{™ÑQSäøsšÔW9QÜ›_ŽÂ͇‹ãô¨@ØGÛ4-v…«…àÐЯr&ÔÙöu£¤‘$¯g ¹ÛƒÑÎ,éR BšuÌ‘ÔDåí#‘A“ôiÌÊv$™=hµÚŽo)ª§EŽG±®LèäEOäå|í¦É›JW.²½©ÛwJžx0`F—g½ÏºJ”_ ’5;\ÕÑ3CRŠ•Ô·K#^˜,”ë.÷**y@É–š¥tŽŽébàøjh𽥓9•šÔ”®«º–FÄÅÍ¡lˆžðþùH’›îH5“k[£¾Ns7|…µ)g9«öÚª€3¼~|ÊF$yAh±4%dÛʧè%TDÅxÏÜÉSl×NÜé%TÊ®ƒ¶º'¯4µcâX#wÓ!SôÓ7Þ×ï)¢Ý+’šÔ¬Té]À‰´ŽrùæuSôÓ7Þ×ï(2i·=ì>Ð÷â=ÓC3Ûžöh{ñé¡;Ù²¹æÈ‚Ôbbú9x/_p“7žˆ^•³g²Õ²ª¬÷¦)÷=S{è›Êt®ž>meZðûqZß%Ž@dÍ^ªç¹Ë¥UWÉ(, ¶¶²v‰Ô6{bX"Ȫö+Š¢"çEN±Àž7C4‘=0tosU9QUÒn–¢’¢–²Íž8ß$r6fpÚ×/ÉÁ])×@?‚®T{E?sw¦8ùE•–¶S2Z,ÎV,mV¯M‚.9׬n\ãCØñ|{Üh{/€ox2,—’H23)Y S¶ìQ|¢8Þ2º‚92^Ò‚š&±VÏÁFãÀÁÜIÈ`àÉUeÞ&PYTÙÔ¬…a§gŠæ*» 9ׄ‡µà«•ÑOÜÝé‹ ¶šŠÑɘ£|1>ZG¾ªµªì1á5W7YJ®q¡ìx¾½à`ÁmûzÐÊ:Æ×Wµ©##HÓ™µZ˜"ªõ×®XYü/z´voVɇkš4ҹƇ±âø÷Ž_GY^ÈšÖ7€Þ•¨N©½` <Þò3U¬Ï}X`†÷‘š­f{êÀe 09¾/¦[7ïl¾sMÎo‹é–ÍûÛ/œÐýÜj…Ó}Jrbî5B‹i¾¥8‹½}Yo¿‘yÎ-}µaÐ[ôiChµÏ…’`×+Ç éÛüôm·kª4ž÷.òž/ü“ö̽Õå “dÑØ”,³¨­‚5rµªåé—ΠáŸ_°Ê~_¸¦‚ríÜœ³2Ž ´Øç²«ÙÀr±qTȃ×ñýìgž‡èØ=s¼7ÎB]·c’r9!—ª*zµüYʶµÔjhDDO”žÀ-}&ÝS³¾›©¾÷ż‡èzºX«i¥¤c™Žè‹‚àäÁs“Q]žJÃ#%d2££r9¾­zçEÅ=ì°Éîˆì7ÑÇ‚TG„´êº8mM:f0ÚºJš‡ÒÖFèfUǦ ˜£Î}©`XöÓx6•,sª&åL§& äåÅeÐGf[1¾F@œ¦9Ä×"ªhëÊ‹ÚÉèÚ«5;‰8-by*å<Ó]VKÈåXù¼\“óH¢ªÉxÕüñ.N“ò‘=L—ËKW+2‰ c–‚ž'ÊøÛÓ=ËÔµîÚèBôô,« ɱ±Ù”̃„˜9ÍL^ì:긪žø$rû#—(é[YBˆ•ôÍTj.d‘šxõúÅpüßSKQG3©ê£t2±psŠ×"øç{'òîÜÉèR–6zd^–±To¼ªgCd´¬;&×oÑ¥Ž~³œÔá'iS9==Öä¬ÎW1“C$\<Ò8%%½ÛmÍÂ*Jv/]xnôPàZÙe”vâ,5UNHÝ›˜ÂœÍ‹É‚g_Ñ¢ºœ˜bâõ¨“‘Ò"'”Ô;vfIdí¨ú*(ÚôÑ#Óš?Év ÁêTäó-Œ‚Æ“¤zQÃÌܾFµ«äé1kFά²ªßE]¡š7**90Ç•:è~Œ=RIJ­˜ù•¥MB&…rtÉÚT΀îM^”T6|T6Ì2JèŒdñ`ªæ¦dá"ªgÃŒô2Îð“(hýFYðº g9+äTῃÐ…l×U’ò¹]7‡&ÉŠy¤SÉKuù+Nä{â–£)dUoÔha“7Y”–ŒtÐ1R¹y°éÎ<ý~²ÎZÁ.EWSBœ⦌N²5ÌD;´t4v|)OC ‰º#PúZVu5­C-ŸXŠè'j5èÕV®¨ºS´ùÐݲ6&O‘ö|2§ ’R+\‹ÆŠ®E=ü“ö̽Õå%AOeÑCgÒ"¶Àb9Uˆ+ÛÃò³&+2nÑ’'±V–G+©æÃ¥V®„Uë¡ÒȬ¼~LÆú¸QF÷pÚTG±Ë§ s*/XØj¨ék¡u=dLž'icÑß,™«»•©z½‘IN«ÅÕä/‡mÞÅ,Ô2SÙò$Ò±X’˃Q˜¦ ¨ˆ«Š™Õ]¥TÊJ8Ý4ò»kSÅxÔÖẬ—Ü'óļޓòš…•`Ù+8e+ Å0W"bõí¹qPS&läí€Ë?t¼>g'ŽLþ2h0ªŸ¦™¾ö¿yOÑîDr+WB¦ J>ìrQïsÝ ¸¹Êåõkôªâ ›žöh{ñé¡» &켜ŠXlÆ9™È÷ðܯΉ‚i:€cùY“?.ÙCpŽÓ•“7 Ž_Vù*šäÇO tñ'‘1¬ju‘©‚ ¬ÚYí-9ŒôÌ‘‘»¬’aœ{`?”Ù,æåäT17-)Ù3pЈ«Œ‰ã`¦¼Æ6666& kQ¨œ‰™^{6–¦ºšÐ•¸ÏH’$NësDÁOhátíbÕ¾ýM¾ãôI+=ÚäµDòTK ªù^ç¹RW¢båÅ|ð ëê­=Ì,äX9-ddç6[-g7àðøoWõ8á§¶uÀ2KÜö=Mï¢o)׹ߦ;Gït[®*-ÌŽ±2†¥•v”o|‘³™µX÷10Ç Û<öMYy9±ÙŒs;šçðܯÎÔÁ4öÀ3;ÅÉ:›6Җפ_ETå{•©3zõH½dUΊNäõ»U“¶œv•.VâÙ#^¥ì]-Sô ãd¬Xäj=ŽL×"**r¢“•÷y’µïYKÌìê°9cO#G”Άöruñ#抢90ÎÄj;?o„‡6Ô½èR72È£r½S4“ª#S—‚˜ãä?lšácÍ*pëpÛé~‚îòVé"R¬ïjâ‹;–Dò3'”ÐÉÕ«¬°)äµ]Íf«…d›Á0“àáÖÁp1ì®ÉzÌ›´dc˜çQÈõu<ȘµZ¹ø*¼J†ìÖµF1­j""&dDN#ÇSKMY  ª‰³Dí,z#š¾H‘ù[>KV¾N6¥&‰Í¡Éʆ౓\ÍÀ©áaÔðÏáÝeÚd¥[•íôê¾Ùzµ<…ÅQ·O“H¸¬•.N· ©ó=§zõ5Žm…KÌ_+‘šeG9Ë‚`ÔÍŽ~2—-Ù$yTÉœ¯‘°DréWbÜWÉ=›/!òjÈ‘³SR#åbâÙ%U‘ȩƘæC©jY”¶½ ¶}j+ ™Ujæ\t§hó©½äf«Yžú°æx䟶eî¯)h(iìÚ8h)Q[ F1xK‚r€{g7ÅôËfýí—Îi£Íñ}2Ù¿{eóšß»P¢Úo©NL]ƨQm7Ô§s|_L¶oÞÙ|æš1œßÓ-›÷¶_9 û¸Õ -¦ú”äÅÜj…Ó}Jpg7ÅôËfýí—Îi£Íñ}2Ù¿{eóšß»P¢Úo©NL]ƨQm7Ô§Ç,ј¹sñ'èËW,™“¥oY òë“ÈqW-Kƒmoë!JSÌ[¹ï>x£êœ˜õ´©áu|iÔµWÊ=kÑò‘Ê¢.3FÂKÊ%ÁZ^¹PŠÇ„öÖÐwÉ h;‰äž :ÙKçžÎ^ÂÜ#ëLÃv=öׯ½SU<³ÌÉ¢“¨r/'Ê4¨HåP×µ±Rò…pR—„|Ê„^,dè«$3ºfòé=è¦d­Å‹ÛN3aجž_I‹C«Io«š'NPÇ‹w>à¾| æø¾™lß½²ùÍ4c9¾/¦[7ïl¾s@;÷qª[Mõ)É‹¸Õ -¦ú”àEJB˜&w®„>óʱ\ºx“”å¹Î{•Î\UH¶5b¸†Û&ãg¥­Å+ÞÖ7Q¥…âGËžç¹\åÅTú€iÎr¹U\³ª­5Zk9ÔÀû1îÜ&. ‡Ôšç1QÍUEE),ãÓ§¨lÍë94¡æ9 {£r=¹•¤2¶V#ÓÇNSr°kÄÖYQW1-nI^ö¹ÉV㺱3î,€Íñ}2Ù¿{eóšhÆs|_L¶oÞÙ|æ€wîãT(¶›êS“qª[Mõ)À⨓™Âçqá‚xç±â:ÚÆª­â$æRºÒÝÏJ®^k*¢u-̇€ÎåÝ)Šø¯¦ç¹Wľ;¢”RK Œ€Ø£›™ÉÁ^¥Ù¼s×3™¤²‡Ic2+-XéïRª_˜”T“O)ÙÒóHšþºg>ç¢C{b±¯m6¹¨©x´Î®;›°ŒÎo‹é–ÍûÛ/œÓF3›âúe³~öËç4¿w¡E´ßRœ˜»P¢Úo©NÔ´ƒZÞºâ{g¡h/«žâK±×«$fȨSPÙE]š=P£€UF¦*¸"iUÌ1Lè¼`{ôÆ77¬¾y핞¹Þœˆ{¦õ`¯X’*µS°ª¢u•ɰ)Àg7ÅôËfýí—Îi£Íñ}2Ù¿{eóšß»P¢Úo©NL]ƨQm7Ô§¢iùÇ ½t>@… ž¬jû‰ïž¥ Þ•®ë*¡.ÇX¯E›!V®¡²‹¹4z G;ëZuðÙ”2ÖÍ¢6æoœ¹šÔåU91ŽˆäkRw9Q.Ô7påÛŽ}«[NÀåF=jçµpVÄ‹™˜õܧͅ4–}L¹;Vås©ÓšRHí2@«™9UºóäýԴϬ­Ï[\þm:ûN=LiÈÔÌ2‚‚jˆc¯¡Í]Bîk¹'‡yý™ WçK.Ѿ·9ëOJðø¸õ,»¶fìuAëYµðÚtQVÁÔÈÜí]-rfsW•öNƒØæ9Zä™ÍUEE®‡ÚÂåž3בtõh„nw]|ãÚ7«bÃAEªŠ¸*ª‡gvl F°Ç,ðÀÞÏF'*œéíúvf…‹"õ×¥C iTñèÕ­W £R¦£órhPOIoÕ»¨kž:ž?SV‡µ§À¡ÓuŒI’Ò‰o MêÀª÷ežR‚q¶íst«]ÛNñìE”+¢x¼v¯|äË’¾’ª·&æ%`ÖŽDõLíƒÕ§´¨ês1èŽö—tª{Gu‘(˜ärWEœç”%rI§š3äg7ÅôËfýí—Îi£Íñ}2Ù¿{eóšß»P¢Úo©NL]ƨQm7Ô§éÚœ{1M"§JÄÒ¿â÷µˆ®r̉TÃiag´÷²6«är5©¥W2š¼£§‰U”ÍYíZq+- šçð¦wKÄÄÌÔ=blkrÒ†“%uµ5J«Èt'·m —3ùšu˜˜yg¨úš™3¾W»¶å<@éº+ßnr­êšÜ›ÆÏ·4“Ú—ÉSîʺ¨×Jööœ§ˆÊ–Ѝbéт޴!Tá9%N³Ó?’‡Z“()'TdéÌ\½|íòI€v!Ë#CȨ’³©Ÿj¤–[º²í®k‘ÕEEЩ’>†Ô©¡rp…k£Æëô5ðWÅÍ!\éÕ1z¤)IålJÚêËì ±š–¬ö@dûЦ>i ›Ç†)ãPc ±¡¾­ÕE¿IŒ§q§»`yª¢æR®K³¡á<ò<Iâ¾Òg1Ê‹†wE©$ÖP1Oëq!Nš‚Êz9þÓ%GyQ©åží½hÉAF‘Ò§ ²©é3=ÍÞ´‰O5“gGePGHÅá9©Â‘ë¥ïvw9{jvágÞÆ[{çl;¤ÈìÄ>_ ;™3ÜCèà'Ç~Ûàõ6}ªüSÚb©ër#¼ó¾z¶Ÿ ©C-Ù’Dé\šZäÎ×'*)êX„ÕTÍ]BîcPžÕ‡S"r93¸¹ø„‘r8s6%ÚZ5ÞÁo«Ÿ+„]ÌÕCè{qsI8KÔ·9šMҨ̄ËW¹úªß””So!îÀÎg[ÖLçÐáÃl&5¶±¨‰x‰1ÂÝ×ww ¨ÔUUÁ:©ÌÀUDLW2'ȯ·ÅX©0s´+×BvZÔµ]Rå‚Â$̪š]ña]bªª°à,È–¯ÂÃ$lk \R¨°äŽÌûË4³9_+•î^5>€ÕUË:¬êµTïI, ~ŠØ¨¦Tl‹Ícë.”í)è$(Ñ :Š•«uìO™ÓErJê+©ª¡«šBìS8Ó¶y‰ j™ieIa\4§§YJj*ØëaI™É™ÍãE6ˆ6T”Åb"ZT[´"¬›Ñá%†]«=@æg7ÅôËfýí—Îi£Íñ}2Ù¿{eóšß»P¢Úo©NL]ƨQm7Ô§ÒiYNšEÁ¬EU ³$ëP­§h²Ï‡…¦Wfc}Ñ'4ÒTHéer¹î\UTòVÕÉ[Péäã\dâCÀD•JV;©[Ñ=‰Ï9ß<À:ÇÀòÓTÍI2M àäò:ÊxõZ¨¨³*U‹: è«àIY™É™íãE=’:Ì®uJIášDë§\°kšö£Ú¸µÈŠ‹È¥©$¢Ïe;smpΈJùf£ävO³Å<)4jÞ4ΊsÕc•®LÁ੦I“„ÜÏO,‰cV²ÆÙÐS5)¥É0ÐÝF­î‰œÐªEs—DÅUt"!ò湊­r`¨pò‚yjŸ FåI«sÎôÓ Õ»¶ºÕ ÀtH–Zâ³OD«£mÊ·‡KwÓéd¢Û6œ¶ô©ë<\((º8(¸>_s'!Þeb¢[šëKÿbº®¼1†1Ïr5¹ÕNœ1$,F'޼§Öž°·ÎåÒ§˜Û,± ¶lTÆÏKKŠV½®rÕ©~î,H & qm»ASÖ8—ïb§œtë*–ó/…LÉ×UÐJ=î‘ê÷®.rªªöÉV/+XLH,Yœô§Æ|S¶Á£+ùbŽ-Yõù&=[èçIY£C›×CÀL{¡¹Õ™ÍYÑLJ*I§…2Æ)Y4m–5Å®LQO¹Å°*צ¤zû“=;FÙ$”$¦ b%ªÚ¥eKR½'Fn: 3šÀg7ÅôËfýí—Îi£Íñ}2Ù¿{eóšß»P¢Úo©NL]ƨQm7Ô§ÃÊJµkYFÅêºwö¸î¶œëQ],šS„­oi3!Ó—Ä …B–¯Y¯ªšê»‘Õž¨ŽhK“µk52Ó½qt+›ÞWA4{öüÂÐ1Í&,_G–v$‘,¸Í¬êK~}Sw$ŠÐpéNÔš’’ŠjÚÅàGj÷;7=`Y•k¶ís*m]1ž»“6u<ö¢®Q[‘Øq硳Օ‚¦‡¿LPú*R¢"& ™ˆèË,2 ­¯Ö·½íDQy–ºp¨ãs*Y8:§†N©¹úé™O ¬ö¯RåNÞs[”vW q TºZÀ\3¡W‹Ç€ôAí­žþ''–Ï“Ë:¹“KçšÈ\Ã>´ì7sÔ¼Û=‰Õ9Wµ˜ó²ž(ú–¦=uΧnQÉ\EÆŠØIv´K€˜gÄ«ÅbÂNÛVM¥F“Òú®²‘ÜÞ•ë™xmð½§&e:y=_OjY±ÖBÞ×LÅê™#s=‹ÚS¦LÕ|vmô¯oKfÚïlu)áb¨ÐÉ9Ú”ØäVDÖ¢bîló=ÓN“ÚÍY ¨ç™˜Sñð\¡Ÿ×téïnóâží±'4¯“¬Üž2‘ªKâY²˜‹YÓ%ãiV4/)AnêîŽ:¦àòÒÌ´õÌžÉkŒ®EG"*hTÄŒ*ìù9­/]<Eñ³¬"ÏI‘É’_`p[`„ód[#€g7ÅôËfýí—Îi£Íñ}2Ù¿{eóšß»P¢Úo©NL]ƨQm7Ô§ïæpHÿic—ÈBWU^5Ä´¯úbŸm;Î"É–$¸³éM5± '€}àzÇ4oO ö¯§Ð&”íŸQfTP]¢âˆ½t>O¤^»g¼§œ}Í-°sr‚ÖKÍ}KS‡;Õ"¦‰4¾Wæc|'H™¡øòeíGtÖ}”çCHžIôI/.¥“¶JÙ6rG2óJ¹Ü³ÕËÆé_Þ2hC¨Õ´¬ú{R†j ¤áG3«×Eârr¢çCÚ,—´*ɬKIq¯³U#s—Ù±{.Tí¦žSºOe5,ôrÔÖ{UÕ©QtËL½[yU4¡Û¤ª‚ºš*ºg#♈ö98Ñs€y€UËdʾÜwžxbÐo¶dûh§®iѱëç¹»&OSÔ#×+zôšÅ\lör+“Ë&J{¼>>^ùjS°]4;Ž×&‡°Ü¥×Kzgº6",s|_L¶oÞÙ|æš1œßÓ-›÷¶_9 û¸Õ -¦ú”äÅÜj…Ó}Jp†¢®š•¼:™YzïTož 6’ºÝÄyèË TI]*§¶ÚªžJàznËë5¥‚W| z'&×4J̱ãÔŽs»½˜f^ÙŠ½<37àWÑ=êl­°ªU›ó%^)[åçCíV©˜Ù–<ð*‘Ïw7³²SÃ;xp=²5xÚ¨äò!ôÞÜ@xªY敞Õ“Ê"4f/4‘UЭ=\±/…záÚ\èN±&Ûz†ªË<a¤Ú&«äcÃ9ÉSê{–<ÞЉ¼M^ö›œç ´okRª¢JëH¯j`ÔN²" ñÏÈ­rbŠ˜*.…BjÉUÉÛfLŸ•p¢¬WÏg9t5tÉ¥ c—”6G©{=c‰ÜΪ$Ô²¦–JÌíñ—B€uÌÉû]-‹=³HÞgS–¨—K%fg'¢‡LnÛ‹™×+¸¤j;Ð_8çû~Ÿš@ÙÚ™ã\´§Õ¬J”¾³–‰/üRfÄýîëΦoœÈWRGÌi¢ÚXˆ¤Ý›Nµ5‘³Â¢ðÚB¨¹`•$U«3Rúš‘ÖÂxc Û ØdॣiÒÙóZ‡g^¥‰Õ9yŽr1\³"USê”ä£u¼IÒª5\¸"iU̇"»)ìê5VF«Q"q3©òt6»[i9Zçs8x£jàž?\æ“£XŠÚBN|¾Á kÔ«ŠUžqŽÅÚœ¯´eUHÈ[Úá;Ë= -»VUéªdñ—ƒçˆ:Nö¯\‰X´)ê4â³®½{>¤íqç™~ {çš+vÖ‰qmKבØ9<³Ðˆô´r¥úŸN9c„^ñE.XVƨ•Q²VñªtŽôPîÐe ›]ƒüÊEð’fòB@ìC—FeªÑ¥eÃ9kZÚq+ǻǨÊÊJºH¦Uži^©½¥,hëiëáIéžjéë¢õ• P%,Ž”©:«VÔ‡²l:–+á,1x¤±o‡œg9€Íñ}2Ù¿{eóšhÆs|_L¶oÞÙ|æ€wîãT(¶›êS“qª[Mõ)À½u¡IgB³ÖH‘±4c¥y8ÏNÜ·i¬Z~úyž‹ÌâM+ʽd3«FÓ«µ*¢­êå^¥¾©ÖD89ô7§ ™gÆÆáð•MÛ"Õë[.*êÑYæèæŽÏ"úMÏQ=KÖJ‰+—J½UËåž0bW*Ú•¬ŠµÝÙɼ̚|4€š–¶®‰é%,¯‰Éí*¨žF‚¦È˧¢¶Yœ$Ñ͘™Ó¶â@QÊ–†ú6U[Ý„š[³Â´ zž¦ ¸›=3Û$nLQÍ\Pò™emÖXÓ¤;…¯«"^¥Éè/)£YV­-¯J•4Îä{ªjõ”Ì×£¯IËÎ…”®j3Xã±Gº9€žÊJElŒ«jfrpÛM ᫦e];à~‡&eë/˜e¬ènm[T½Cæq¾W}ç†Jy] ©ƒ˜¸)ô!**,Ëj‡0(rn“ƒêÜ™ßÒ³´šTâQÒÉYPÈ#ðËzÉÆ¥œ0²› iƒXÔD;ö‰öbÚ6ÒôÙJ7]ÝØû“y@÷ÛV”9/N«Ì•Qi=¾^–>Û—Ê:öŧ gM_>t½+SKÞ¹šÔåU=<˜³&¢¤}mMhZ犧q¢»©9™Š¦ó®Æ2&68ÑÖ"5­LȈ™‘°3j"äå¶Ëv<Ô5êØ-¦†?Dsú R¢¢¢*.(©Š)⬤‚¾–Z:–£â™ŠÇµzÊqrb®zgÍ“V‹•Õ6~ÆGi–}vþUM Ý–6Ë¢zb×"¢øäU;égt/ð«™zéÄ¥yèZÖ>EÍ#OV±3r§XŸbr5”âbNöZ]¥T:¬:újw%¨Ë\÷rh*ŠÕTTÁS2¢Ÿ´K…“g-T¼ÖDõSà—¬dƒñÞØ“ª¯è§ÍJ‘§)bGJÄ£X æïL.täoÒ>0Lù6È['†Øm´jxuT„©QÕ›“ÆØúK+ ‰ÓJ¼1ªç/"V‘ð•Üõm[R.™f“;×4lãr÷ˆ:ÊÊŠéÝQPîä"uóZÖ”–[§~f&hÛÖoéer•Žé’Ø–‰^ì±X6±¡vJíI,/vÌ@uŽÐîY–E™P“B¸µz¶/Rä=0}k•ŠŽjÌ©Tùœ#8¸É]Of‘C[¡NÚ˜¹3§/)ì™?k:Í«F½}Q*£dN$ë8ºEEDT΋µ%”$vO‘%ªË6Åv-K˜á,1{ ãävPÍñ}2Ù¿{eóšhÆs|_L¶oÞÙ|æ€wîãT(¶›êS“qª[Mõ)Àzvµ§“Dú¹¼*`Æñ¹Ë¡pÎrº×[FÑZxÝŒʬnÞǺ…[6ÉÜ5'%©<ÕîùÇ*¾º¢Òª}]K¸OzøÈœHœ‡®€­ÊNM¶î¶ð°¿cZõ=cj"\X¸$±ñ9½þ±è‹1õ Êœ”¢î4ð3]¤ª†¶ž:ªwp£‘¨æ¯ yˆ|‡µÖ‡YS;¤—EøÓÇ.Ã]D“–kÈVM%<¸šÍ@}7œ»jËçÈù¼)êæ&jN·l˜TVªµÉ‚¢à¨ºK³—jج¬Æx0dÜ}gvùN„²GfcHvê©_Å5T§w ÆKƒï42ÀõŽf«šQO¡-QQfZJià}˜ÇÈôˆ®s—DÒ}é駪‘"ªç/²šÌ²" o4~™S;¸“‘ÄžLøëJ“j»úŒµGÍ“f¶‚_žg§N½nD:ãå5«-BØ(“…_\ô§¤g Ú_ÚjgRÓØmFµ&D:¸®#ÑÇ—(’>ªÍ±_‹½¦Z®$åF'–S…‹eEcY±Pļ%bp¤zé|ŽÎ÷¯*©ïœŒ€TPT#a·¬Öã]fª½še…}yøÙÓ”ï 9”Ö³«éí:(ké]Šv#›×Lt¢ò¢æ=’fãµo:ÍwKfÚ¯t´‹ábŸKâäGiB˜™jY)SŒôè‰/q;✱ѹXôV¹3*.e,V²Î§­OV&âzi%ˬ-#ªÄ…3^¶©Qp”챬ÇNäg†9TJƒÞª±êé±V§5gµ7Oއ¤¨¨¸.eå!Eƒ ÐÄjµnÉ(TEv-5˜| gÐæ‚’¦¥p…Šî] äŠ+ 8°’©y£½¡:”ï™<Š4¥qFÌÛ’ÒCU["ÂO챞…eÉXä’LY i^5äBŽ8Ù8Ó‚Ö¦ˆ|¢#SL4"&Å#‘C’6fÓrÚ¹mQ^È•w‡X£H'2¾ÐXáek‚ËÓÉï)¡<’ŒÏmº¥¬´ç—ZV7´ÜÇR_‚Éjõšú©ßk(éÚ÷Ï5w?!è€å€¾KÚ Ygó)×€½uo…R ìä­RÓÚ‰W¥ªÅíéC±#‹eÆmgR[óŽØQÓÔ%»Ã„–v=qn-•ÀÍñ}2Ù¿{eóšhÆs|_L¶oÞÙ|æ€wîãT(¶›êS“qª[Mõ)À”þ£l™êQp½;2jªªª®u\êZÞJ¶ZD^­Î‘Éï9“Ï"Œ1u¼ -­[ú÷™ –‹ÂÀàG€Þ ŸM5šÕÑÀEÁóvܺ9¾SÔM]41BålÕÝ5SÛ¦*fõkȮЇvšžJxéiÚŒŠ#ÔЈ‰‚AåsíÛ&;fÎ’ËÀ“3à•:¨ånv9QÉ‹Wë¦sä @ ¨‰Š® ×SëÍ¢ö¶ù( ¨ÉâMê‘÷,îúEàVEÅÂÞz<Ú/ko’…Þ"9k$jâž«LS:qœ™nC®×FQ²au5&c,À>²I,Y%r1L\ç*5©ÛU3–#ìSÔ½•ÙwVwÇ©{+³ î¬ï€{`ñÃ<,æ”ò6Vc‡ ŠŽn=lSÈÖI#‰‹$®F1©‹œåDj']UO[Ô½•ÙwVwÀ=°zž¥ì®Ìƒº³¾yਧ©g4§‘’·8Lr=1ëbŠ @«ÞÈÚ¯z£ZÔÅ\«‚"'€}^¾º 6Šjê§pbŠ÷/k‹¶§ÓÔ½•ÙwVwÉËVÑ ·­Èl…©‰,ú Mc•íFË&˜¢EÇ:q¨C%¨j“[Ö‹p­´Ü’+WLP§®¢NÒg^S¼x ©¦©jº–VJÖ® ±¹‰É™Tò€ðç5W½Q­jbª¹‘8ÏWÔ½•ÙwVwÀ=l¥¥µ+,yéìiy[¸<cÀUDTW5Īœd½.RÅ“éQKSKS ¢ÆÀÕ‚yÝS ¹£¸)";¦TåÀ««¬±k`u<Õ±#]†vNØÞŠ™ÑQQȨzTù7“uQÔpŸ]?%™Ó,Òô‹Âb#¸J©‚èÀÖfUVÍUOfÅLÞy¨™ìlæŒXÆ#ÕéÂj9tာʪÚWV¹)£|VRÀÚµá¹çI‚¯3Í¡xΣò~‚VD’ºgÉ‹$S:W¬ÌUN àìqÃ#Å>KØò½ÓN’`ôb΋#Ñ’ó,íY3àì0ãå3-*ÒÖ„´±ó›k¥¥é\îl¼«‘Øa‡á–Û´Ù³kªÝ<Yu5 Hä‹:5[ÃUÍŠc¥ê¶%;¤ð,|ôê® ÌÕNhìQWªÑŸAëºÆÈ÷ðy¥Dr5ºÚúžXÇ`ªÖ¢¿6ŒÀ£òê¥$}44ñÏ+j)bcÑdŽ'%BªcÓ52¡ïÖå-U•Z´„óIiRJGF®àË/ ±gã·’Ÿ'rvªU©ëU#dî“›,«Â…UcÅxK ÷kì–Ú…\üŽ…î•‰†/Y©ŸF`†ZZ5ÖnMMSJîePå†5{|'4r5ÊžIã“™dÅ=E+¦ª¨­|Ìló=ñ«äç\qÃÆ;µ´”µô²RV±$‚VªH×hT8Iedª@´ï¬Iœ4ªW¬jÅŪÌ_Òª*r-ª©ŽØ¦J¦¬N³g¬mTp¹V)Q°¤TÇ¿íÖåµ}ŸV¢Ž%–¢–*ªv±îVð^ö±ZåTÌ©ÂLè{­²²A×¾xez>W¹òNsÝ+xW*»?K˜ûÁ“y5Wã‰üôˆÈãÇ›,«ä{‹Â^ b€ªGTºº­ÙW:¶5Uju“<ÇÂ& ‚q\3¨È=Eµ¬´\²èÎøõ/evdÕðlñÏU0¾žv£ã•ŠÇµs¢¢¦ ‡Ö ÊJ¥T¦š9•½W3s_‡oSÌ9“sËeÕÍ’Õ®W-2sZ¦Ju\ÉÛn…(Î&SÙ“ÕSÇiYÙ­ 9ÜÚ}­«‰y‡žÎÊ;&Т†±*b‰eb+£{Ú×µÚÕET\Q@:€õ=KÙ]™ug|òÁ[GTªÚiã™Z˜ªFö½S·‚¨˜ªëVÌk•®«E‘ˆ¨¾Iñê^ÊìÈ;«;àØ<WQU9YM‡BÁ§Z›VaŠ5Ü7v›œäÆÑ¹­®¨‡ÅY¨BR{¦-è"ý©ƒQ:Ȉ|€l%Ls|_L¶oÞÙ|æš1œßÓ-›÷¶_9 û¸Õ -¦ú”äÅÜj…Ó}Jpм&¤©M ׯ«Ú\P‘4|±¡ZËG±1};’Tí&gyJg‰3¯Jõ³§yd7’i=†À ˆ¨¨º0= jjxä}$±µU½4nTEW5}:ÕXÕr=Q8MÇãLO¨³iVtã(ÝiIdwÕ‰†1±µÄFµ4"fCìðÖÛnëÂÙðæµíV½Í](¹Ðñs/¶Yä!æs1©8àŒšY£ÃÎt¾Ùg†wô‚ËšV5ÙfÁÁ©ßRUpLêº R¢õeSS*`äÿzwL¾y’ê·„•«¿©YÊRmB9[x^ ™ïž:Šx*á}=Lm–)±é‹U:ʇI³•ЮNx›MÜÚ:ÉÏi»›N¨ðQÐÑÙðó½ ,‚.»#[Šé\ÇœðCS éê’E"p^Ç&-T^%9Ý ä߉´ÝͧTrºÉÏi»›OvŽ‚ŠÎ‰`¡…”ñ«•ÊÈÑÜW1ìô–(ç‰ÐÌÔ|r5Zö»:*.eE>ãFu—Ê 3&ì{9õ ³)¤¨‘R*h’6âù_™©è©å±r*Å¢³a†¶ŽŠ•NÒ=ˆ¸½ÙÕ‘4!ô øñÛﵞϲÜè(“ÂÉ6‰%ñ´!LëQYÔ6lnŠ‚S±Îá9±¢5tc˜ö@úÉ%ÑJÔ{Õkš¹ÑQs*)ÌèW&üM¦îm: •ЮNx›MÜÚ{”6mšÇGAO;^¼'66£QWF+ì€õ{#Ñ×"£‘t*.eCì9] ä牴ÝÍ£¡\œñ6›¹´ê€V†Ì³ìÖ¹¶}fÔn8hÇÛáQ:.e>@)r['UVΧUUÅW™´t+“ž&Ów6PêPÙ6eš®uŸM:ȈXÚÇ à{`|i̤]MƒcXÙFŽ«£†K:×r5®{R”âäk¼òÔô­{2 bÏš‚|É#zW'TǦv½9Q@=~…rsÄÚnæÓÙ¡²,»5Î},Tîz"9cj5U> èäŧ=]4–}¡šÐ³ŸÌ*SÚ°ê$NG&s´rß“=#Ý$–};œåW9UUU\ê§ÇB¹9âm7siÕ•eY²:Z H©Þæð\èÚUM8f=Ð2L™Éù¤t²Ùôï{Ü®s•UU\êªtÀ+¡\œñ6›¹´ö(¬[&Εf¡¤ŠžEo]Qª©ÖÌ{ GeuÃXÊÆ§K;prû“~!bzvµm*))—ªTá1zÎM T+:µ-Rš^¡ÓaWÜ=hÉê/Õ34uܯ|¹Î\UU©Š©õõAØñü ܱ¾‰Á{Zä^%CêE³”¨–•Ú–-5MὋ»–â<1RRÀî11ŽÃ Zˆ‹æøª®¦«=é÷¨«‰$³ÀzuYñG%UD,v ŠªµʼIÛ=ÃêøÙ"pdj91EÁs¦) úÇPª,ê‰Ve™f>jBþ-\Mä¾WUÓÓ²¨ùÞJö£$Ü71¹‘©á[ã!ïõ{•Ëj¢5J*+‰ö«#¨U-{Óªõ\}¤Îå&èé%­©e4)‹ž¸v“M’š::hé¢LQ—®§vÃàѾÌ[FÚ^‘¶ÖÈP§¦“á)ã땳<À±9¾/¦[7ïl¾sMÎo‹é–ÍûÛ/œÐýÜj…Ó}Jrbî5B‹i¾¥8}dcdc£zb×µZ©×E̦WlÙϲíi*;×®ÅΊjÇ *ì?R´|Úõ¦Y×sxÛÞ8=³¥Ú6ÆÆué]Šá8aY«*3ª­r`¨¸*.a+À|.8.— Êxigt¬VKšXׂôó—´¢céA¸¹,Q¹wwÔó€}á†Z‰Y-WÉ#‘­jiUPa+¸ÖÉK)m+QŽzc :¤’/n¥@z•H°JÚÖhN–TN6õücÛ=û6´-‡p)â^f¹#óF‰Ûã>¥©¶…õúQ‹•Ü+*xÏF>w5¢½ÏTF£sªã Ð2_&[e±++VôÌšR4^.ß\ûd¶JE“ñ=%sj&á¯2—Ek8›Ÿ€ÊÖMMI›×F„¯æï¤Ÿ­Û7V2Dz6Í© gM_6~fÜÄÒ÷®f19U@9ûÝnZpä½:¯1N E¤ôâ‰EÛrùEØØØØˆÖµ‰™2!ÈÉ›.j 7ÕWtÕõï犧q£Ô³´ÔÌv@ÈÊ[&KJ‰³Q¯¾‰é=$œ|6øUärfS®9ö­³gGZÄà=qdѯUÌö/iN3UñÙ·Ûh7¥³mg¶:”ð±Thdœˆí S¡iX´6›q™¼0Í#s;Ç땇WWjKeQcUõobq®vÅÛãT4¹›+¡{ar2Ec‘ŽTÅÊ™—ÙèØV;,j§áóYäs¥¨™z©$vw9} I47­Ó:ä™3¢•—Vœo.ßC¼W7b ñI ð$b±S6Eiõ4ÉiéçN ѶD÷$E=2zÇ•qZv§¼ª·ÎS¢ë ~Bô[ÚXd”-ħµM=‘ ®…ìom/Á8óE`Ygm3}ËyêqK‹UZ˜8GÛ¶ôV(Éç%± â‚yÝÀ†7Håâj*ª ’­¨T}b¥;:ÝS×ÐB¾8b…811¬N³Q<£îv!ØsMꮺ´C–µ¶©,⡚ð³Ô ²èìÖp)˜ˆ«Õ=s½{j{`Öµ“5&D¨„t§)·)6ÛÊÀú|€3›âúe³~öËç4ÑŒæø¾™lß½²ùÍïÝÆ¨Qm7Ô§&.ãT(¶›êS€x悈Ö)ØÙºZäEC]ö]J«éUÔ®^&ôÌò¾Qƒâ¢-©®­ u•ÉÅKWD‚¨È;N5^w–)S‹X¾‰é»#íæ¯®ݧ·¾i ãe´ã•ª±Þ+èêžÌÍÙ‘Öó×<-o½=¿÷©²½ê‹UV­KÓŽN§àS1ÜcQ‘µÔÐL°9""ZtèÓ¢®B*:¤=JëN’ÍX­ÊÄ©™!Ø*·†í«Ä}6ØLë.QáÕY¶+þK-W¢ŒO,÷²šÔš‚‰´Ô=5}{ùÞ•¼|'ii©œö¬k.Ά‚,üã#×KÞìïzòª€{Àõ­* {R†j ¤áG;«×N²§*.s•’õõ ɬ;IØ×Ùª‘¹ËìØ½—*vÓO)Þ'²ž’zIaÊk=ªêŠ R¢6é–™z¶òªi@ xi* ®¥Š²™Èø¦b=ŽN4\ç˜ê6Ô£u¦ë%ŽWT²™èˆªÖµWÅt"¯XÛ3›âúe³~öËç4ÑŒæø¾™lß½²ùÍïÝÆ¨Qm7Ô§&.ãT(¶›êS€ðªLUpDÒ« ãZ9_`Ùʬ’¡%‘<$>¬_+1õVÑ'>e8Á]“If³´j›Ìb*¥¹8+°ò‘Ï=ÞM®«ÒSÀÔù:üÈæ^µ Π·UÝRfŽ æ;ɵZ¾¬¦éÉÃo¢§B–ò霨•´®èÜO!p éPFÍ¡-ÕsV™lU”ö%©ƒiªZ’/²äéä)Õ8**Z¤ÇDe«±i¬Ì ôí{2 ^ϚϨêeng&–¹3µÉÊŠ{€ødâdŧ=U4–u¡šÐ³ŸÌ*ÚÑ:‰S‘ÈvÉÜ¢§šÌ­ƒ*(X¯t8C]’ËÕaÆ­\èP1í‘‘ºˆäÇ6eÎöú½íŠ÷ª5­EW*æDDΪ}‰Ü¦¨–О —¢r¶ZÞž­íÓ3W¦í+´ ÒÁc­ËRl§˜7…Ofµx£EÁòöܺ9 SÇOO,Ó@ÔdQ1Ʀ„DL áQŠ×&(©‚¢è>@Í’«“¶Óì W Õ|ös—C]¦H=)Ž^PÙ¥ìõŠ's:¨\“RÊšY+3µ{K¡OœžµýLYíšFó:˜\°ÕDºY+39;\hÓè[v¬65%t©ÂsplQ§U$ŽÌÆ'*©ëdÕ•5+êëׇhW¿›Õ?¬«ÔÆœLǧ RåPº²¡ŽmŸd=c¦cÑSšÔxip^&èB=¯”Ô^1"óyÓÙl\ÉÛ^"FÐÊkVÐUE‘a}—Jž:éSYT8T­ËYëÖײR•ËÈ=Õ-‚.êmK:馢8׬®Ew™Ît¹cbF¸6GÉï,\<¼UUÅW^5ΧÁÕt¹ëhˆž% KEjs”žeĶ%ßFÖG´Íð)é<9_bJ¸,®ÞÚ¨žV&z)-‹t·ÇÛ´Ö3Å|³÷ÃT¦´(ªÓiÙ/#\оF“Ø2F½ìr9ŽV¹4*. v¬ì¬´èU+¹æ$ð²uXr.“3%È´ž“]¥3’µ¥œUÚS¾éY`z&‚m•oPZÍÂp%ñÉÓ;JD‹Æ¼½d3Y¦–¢WM;ÖI¸¹Î\UTÍ 7ZVUš©]„0Ë+ÈŽ­±•Vµ²ålÒ¬P®ˆcUk0åãSŽÙDFÒD˜‹œå7vM·šÓ䪋ŠfT(,\´µl•lr¹j©Ó2Ç"âäOqv”'ÁñZŽI•'>¡RTÝØ¶ža²XÖõŸnAÍhßÓ¢tñ;4í§¢tLFжªÏ¨eU‹¬\QSÎ^ºŽLe<ý?øGWz¶>%÷&òX¨)¥4%¬[1Vá`ž¹Ý:@#¬Ö´k©ìÊ)«êÁŠ+݈„NU\Ç+%¨gHæ·-á]i¹$r.˜âöTIÚM<§¯h|xíøì†tÔc›=jøWͦ8|m*RèÌ€ 3j¢äå´Ëz$†¹Y¢ÔÐÇhŽAJcÃYIu,´u-GÅ3jõ—0•ˆæ®(©Š*h>I옫ž–I²jÐrº¦ƒ‚Gi–}vþUM P€ð¸5W2&uRC(r­ÎWQYnÁ©ŠI:i^º7¾}òºßV«¬ª7`¾Ïzn'¢H T¥gV1oWØv¶×&•jÊíÜ1‹ÞÙòªªªª¸ªéUÒ|tI ´r>'¤‘¹Xö®(ä\´ÉÜ©Jµm ¢¨Ù´2]þEë)|¢ª.)™SB™aFtN–•R¢œöU‰NË…ìÖ’Ê™­‚w%m寋œjëDMé\¾©è¡DU‡"5ÛE*õèNǨéÍaZõ» 9š€g7ÅôËfýí—Îi£Íñ}2Ù¿{eóšß»P¢Úo©NLÝÆ¨Qm7Ô¦ÅÊ›}–ž²1QjfŰ7—ËȇeÎF¢¹Ë‚"b«È†E•í›ZYÑq†5XáN$kxü}&HL£u;D9¬ºúfž JXÌåÍ4“Êé¦r¾G¹\ç.uU]*};„.0{Õm\u”®àI±Eâ^º/"ž¸¡6Õ£f±-h-«>:Øs+“ Æ×¦”=ó0È[ilëQ(åvõŠŒ\t#ü*úžt¢2ÓT¨NXÕ´ý4÷RÀõdõuUM‡”UO#ŸfÚ|Ž\[éÔ*uší ÊPž¥©gSÚÔYõ)Œs1[W‰ÉÊ‹œçd½£Q,2ÙŠühY®H¥Uöc=—*r*ygyÜfPÚÞ¢,çMsJ™\ÒÅÆù_™©è©ÒÑI«9(íé-—ç ³\ø(Qz—Ë¢Y¼mÓÉë'Ô=œØ$^iS*¬ÕR®—Êüî_A˜ÁÊŠ Ž 6íšÜk¬ÕW£SL°¯¯"^ÚgNS«gWÓÚtP×Ò»…ìG7®t^TSÙ&i>;6û¬çt¶m¬÷KJ¾*/‹‘¥)€6RÚ³PÒ²Ž8v…{ù…+zʽT‹ÈÔÎë-UM¹”IOG#£ ²]¨{–uLÑcÆEÅN½i¥•g¾tõãºH“Ü—Æ>ö-• gECð•©Â’EêŸ#³½ëʪIe¥zÔZ)HÕé)›‚§¹;:ùFLK*ªZ­$¿:í}¸šñ‹ÔVj–Ìà=î‘î‘ëÂs•UʺUWIõZ€ËKS-Du0/ñ¹‹èuŸ[¡G\Z$j*§YxÓÉ2·!«×…5œõÌ©ÍcO)Èväqh_B¶ŽÉ‘–ÞÇU(éÔ¸JŸ ¼ex¤W@g7ÅôËfýí—Îi£Íñ}2Ù¿{eóšß»P¢Úo©NL]ƨQm7Ô§YZ+gX3¹‹„“á :ý6•ò12bêó*—*4\Ø>UO!¨B¸ 3'®CÙó¾­s$R[2œ€òǺ7µì\ÕEEë*gCf±k’Ò²©«SL±7…ïI™ÞZÁ¤ÝÍRËcKN«ë‰×ÓÑÏÄÃ(IÚ‹YNÛ];•rIkÑXz/²iŸkGl"¹•Âè]Á\ö.tG'  ÷Õ%€Ц¢Jy*jŒŠ&+ÞåЈ‰Š€q²¦º¡c†Â³…m¦åšb…={*ö“2rk>†žÍ¢††•¼ b1©Úҫʧ&)毚|¨®j¶Zî–•ŽÓ3z„äWiRˆÏ·,˜í›:J7/LÏ‚T꣕¹Øäñ΀ädÝ­%§D±V'ºë\|höønÓ“:rjÝcì+N,§§EæàÁi±¼qªàÉ»m]<…ÉÙ#Ts^ˆæ¹3¢¢çEû¨šUµ–Ùz¹õ BÄrâÆ7W‚œJ¼g¼>¯r1ªõÐÔU_Êë'uM\ÕβHçy*i–¤‹›S"iHç)– {©±/T›´pÁVy±[:$ÐŽOÔ­-±M&8"ÈŒwiÙŽq÷ÊÉ£zikÚ¾B¢œš´.E¬¨|U‚© Eâ”ZÑF²«„Æ»®ˆ§Ø¶S@g7ÅôËfýí—Îi£Íñ}2Ù¿{eóšß»P¢Úo©NL]ƨQm7Ô§ ÖñÞ®¶âgi›‡Ž®% ËÇb¶Ú‰üO¦o”çgv±·„•¹Óë 9š]]“×Öèø½Tï=Rîì£\+¥âÆ6ùêcl[ã¦ÂÜøçïEÐé“GÒW=‘=ñ·š9­Uk1Ĩ™–ÖL´––Ʀc¢…›ZÍ^©‰°JuåW&~B’Úµb±¬é«åN±0‰¥ò;3œª¤µ›O]’•°Z–“øq[ND´àÃPõU}ç?@-šÖ±¨Æ"5­DDDЈšùÇ<TÂúyÚŽV«ÕÎŠŠ˜*4ÖÛòM³Ø­}D°¹¾¢ÚTñHìÌzí\ËÈX¹ÍkUÎ\UUt"!WOhå5D¹Ogªµ¶[Õ,¨Õ3MÀ\erò; ÝŠç1®zp\­EVéÁxÐû‘iÁlYð×Óõ2·¦jék“3𼍧¸é[MWY5hžØœf¯U6¦–kÍòQPÊ^ÕcÜÅÒÕT_1>^˜³éIÛG.«ÚIè­ðø"`Ù‰‹Úw'ž}OfÍ…j- xS?f'—ŠŸQ'TJêbNö-¼I7 j&1:ÍO8ûŸ ™0>K…-áœßÓ-›÷¶_9¦Œg7ÅôËfýí—Îh~î5B‹i¾¥91w¡E´ßRœ!o2•U´u¨™‘_—·ƒ„5Ì®³VÓ°ª"bc$IÍcëâÌøy™Û€³¶jÄ=Ÿ Ú·Ù$“ÐÀS—wt« ˆú‡& Q;•;MéSËÄÍ¢óHØ£L^÷#ZuUÁ ¢É¢mfÓÑ7Ù15«ÛÒ«ä˜e™¨•ÔîµÐ»QÏ$V½žØ)íI¨hÙGCÓZƒùÞ•¼h®ê¤^F¦sªJž“~<¹EÃê¬Ûø'´ËUƼ¨ÄòÎí£AOjPÍATœ(§bµzéÖTåEÎxì{2Ά‚ézw®—½s¹ëʪ{ ¼m© ž”–³}]J÷BÙqEæ±·¨“ÇM'P6RÓÚV…<6]+"«“WPŠˆ±Â™Ü‰Ç‹´JZhhé㥧j2(XŒcSB"fCÊ&5c(=¦Ì¶dù,5^‚?Ï)ÏN׳ ¶,ù¨*36Vô®M,rgk“•ôrbÓž®šK:ÐÍhYÏæ5 íHD©ÈäÎÚ3l££Z+^xðÁ¯w4giÙüóI&²ÒÌZŠFWƾŸ3ðÓÀ^?N´²9Òմ朗ªº£d(¼¨¯sòYeßÈÚ5¨µyáS¤¦b»r\Èp %lÅ³ìÆºDÂZV?®ˆ½JybKŽ"Vm5ö ³®¨Øò[ª§¬üzã²*•€Íñ}2Ù¿{eóšhÆs|_L¶oÞÙ|æ€wîãT(¶›êS“qª[Mõ)ÀáQ0\è¦M•¶+¬{ZF±¸SΫ$+Å‚éoŒ¦´r²ŽÃŠÝ³Lì3:h_Öw[´¼fHO uÒÚœö] ?NâÔ£…lŒ|ZªièêMRÅd±¹Zæ¯]Ü!¹€n˳*mzØè©[‹ž¹×‰­ãròY©™Iɤ•Öòü±VºÑõ%3}QH¸·‘tyM,ôì«6žÉ¡Š†™:XÓ;¸Üî7)î(£tõ*–51MG+ÂõgÕïdlt’*5¬Es•s""gU'l:Û´¦ÊŠ„^cÓSÙ¬wH¸:^Û—Ê>ÙM<¶L-DåGÕú²±íÓ3W¦í+´!Þ‚©¡Žž£#‰ˆÆ54""`ˆp7@ú¾HØ­kÜW¯¨ªˆª½dëŸc—”VK­k=YNîgWNôž’DÒÙY¯c$c£‘Íz+\ÕΊ‹™PëñTÂʈŽV£ØäÎŠŠ˜¢Ÿi#d¬tr' ¯Ek‘t*.’rÂ{ì+N\˜©UæáOf=Üqªâø{m]…(ŒÖÞ²$²+] °½UÑ;®nÚÓPµ,Ê{V•ÔÕ §;šZî%C:´ìÊ«*¡iê[ïN¥É×B\¦N°–t¶¯…tYmuœ¬˜(MÜ«‡5nëbz€¬H:V-‰SlT#XŠÈZ¾¬—‰¬œ§&µ^¨ˆ“ªŸ5*F”\æîEclö²ZÅ[J­*fo¬Ð9qÐçq7¾h3!ᤤ‚†”ÔíàÆÄÁÑ^SÌU ¶j«j¥ZͲݗVûV¬Íô Ç( æø¾™lß½²ùÍ4c9¾/¦[7ïl¾s@;÷qª[Mõ)É‹¸Õ -¦ú”àOeVJCnÅÏøG[zWhG§´»ÐS1ª¤¨¢ÔÕQ¬R±ps\˜)·œËk'ìër[0‘¤™¹¤oÆœ†Xq¨)-48ì« Vá(`ž¹˜è(mœŠµ¬µt·žéÓCãL\‰ÊÝ$ú¢µpr`©¥2¤r:š,äTéΛ¹$Ó>Óäû27ÊädmW¹s#ZŠª¾AObd¥^­šÐÆ’ 8/¯\œ‰Åãœ\äm5Yºt§UÜ‚oz86m—[kT¶–Š5{×JøV§]W‰ O'rv–À¥æqôó½f•tªõ“¬‡·fY46E:SÐÆ‘·Ã;Kܽu^3Ü:Ñ"«é%$%¬kPá'†{¾Eª­iWÓÙt3WÔ¯8®^ºõ‘9UsÉ3]ñã·Ùe7¦³ì§6jÅð²O¦8¼m*b:g%¨* ÖÕ¢˜WZnI^‹¦8ý—v“Ë; Í£ŽMÛ¬¶šÏ´œØk‘:˜åÑÞ>…)QQSΊxê©iëißKUe†DÁìvtT>ìkXÔcµ‰2 Ø<µYô’ÖÕ9,W½ËÖCÎxjèé« Zj¸Û4NTUc³¢«WòЋ“4uRM”¶“UµUè‰nÓ :u äUÒ¥ðˆˆˆ‰™2!òŒ¤²d´¨’Z5àWQ½'¤“ß ÚrfSÏaÚÑÛ6tuN™Ù4KÕG+s=‹ÚS LÕüvmöÚ-élÛY펩<,U/";B€Sµ}ŸKi@´õlGµt/†jõÑOdÉ2ÓE385(»bkŸÛ+]g+¥¢ŸO ©Óµ9PáèÒk‡.ÐÉË*ÑÅòEÌä_fGÒ»ÇâS¥C=8k|¸dÍnZJ5ãw¥ã=¸*j²¡ª«GP×§dEjù)ŠÙrR܉}qÃN»ÕôPêºO¶¬[êy"JuSXç»×¯9ét9mã‡:?Êïžx²JÜ•s‘§]îDó±>$(‹.ŸnÊ¡.¬5¤q–µÎTkQUW2"gR®“!ªŽ­¨DN6Ɲ’¥ŸaÙ–j"ÓBœ?n?¦’¦fHâ:ÝŠ¥Ý©ÉZÛØô×]¨ó0-KXÙ!SV­žÐÆtð=˜îñiMM-§¦bGSjPw¡@dÅmjªÚ–U™VËwfîEbŠÄ€Ês3›âúe³~öËç4ÑŒæø¾™lß½²ùÍïÝÆ¨Qm7Ô§&.ãT(¶›êS€m¡“Ö5§ŠÕÒ±Î_Ôà?ÉL>¢ªZR1(©+’I­Ùá#ênÚÌ‘Uij%‡‘p‘==Ý”øú®¹ŠžäÅO9Ê_šFzU4;„·Fƒh‚Žì¤ÇÕµÍD÷Õ|÷[¹²!TZ™e¨TâÅ#o•ŸË+X¯Z¢6î…Ÿuž•eÙ‰…4q/µ"bÿ%qSÝÆ«=©½%q+‹0|*¢&+¡“™”V²Ùs¤…9¥TîH)bã|¯Ìß4©öÉû%,{5”î^DвÔʺ_+ó½|œÈrìÄ\¢·d¶ßž†ÏWÓÐ"õ/“D³zSÆu¯SI”Ie×#Rš²$u ¨˜böuq¹zühv@}%–8ctÒ¹Æ5\ç.dDLê pr2zÒ­µâžÐ™‰$³*Q7I&æá»¶¹Ðë€=kF‚žÔ¢š‚©¼(§bµzéÖTåE·²89/_QÀšÂ´uš¨Åré–%õÜ©ÛLËÊw‰ì§¤ž–Hr–Ïjº¦'ºe§^­¼ªšPíÑÕÁ]Ke3‘ñLÄ{œh¹À<Às|_L¶oÞÙ|æš1œßÓ-›÷¶_9 û¸Õ -¦ú”äÅÜj…Ó}Jp=ZûJ‚̉g¯18Þ¸*ö“J’6èЫ—Nê…MIê¶yÕLà¾%µª·u 6‘p ’®ñ²’¡W™I;zѱ|—bsß•ùK"âëBoQ<ä3¤‚"Úª!‹ôm`Åc˦‰qm¡*û×Éå¡Ò£¼¬¡§TçŽeRÔÓÂo|–àA-_£Xm—y–MR¤vŒO£zæáúò/%3§VSUÓVÄ“ÒJÙ£v‡1QÉåwÂ|;sU2FSLó ©­í†À³…e¦ªÎiŠõì‹ãfCµUS <•UFE ÷¹t""b§&)¦­–|§®j¶zþ–™ŽÓ3z†ò*éS“³AEG +x1@ÄcSµÇÛ=€9™Cdz˜³ næu19&¥•4²Vgjú |dõ¯ê^ÏIeo3ª…Ë TK¥’³3“´ºPê–XòÓe­j9È*¡àÖB¸ôÏoQ#x±Ã2€u€&íùd¶íòZ‘Ê‘`Ù­)áaEébÇ®åòŠ)8|s<üàð´cʼnÌÉûÖM4Ž©zO[U+¦ª™<3×B&>2t¢Š8cl15ÈÚkS2"&dCî¢9ª˜¢¦ ŠMYJ¹9m>Á•p¡®WÏg9t5ÚdƒÑB˜æe ‘êbÏtQ»™ÔÂäš–TÒÉY«Ú] Ó/'­RörM*s:˜°ÕĹ•’³3“´ºPðÚy[cYб¾^m*{..™|uЇÇ9“ªÌl¥F¥y^Ó‹›Ý’ºvYx•Ò*¥;!o½UîôåM–C2®5JÎF5­ô +)bZN¤;EeM]•ì3ºõ×MP/DÖö8óô¾Jwb³ÊUžy¢užÖ»ÐCâJ›YM’Ò~ÈKàôVÀÔ Exµ Tm¡L×§¢^ ¼…Å {3)l‹WÓL‘}•'Hÿ/OŒdlV>ÑiÖSŠÈµÖMŒ®Î›½[ª<$µÇPd8Às|_L¶oÞÙ|æš1œßÓ-›÷¶_9 û¸Õ -¦ú”äÅÜj…Ó}Jp>4gR3*/ =Ï¡±ø3Ô¦(ù—%ópωKv=ŠëB¶Òjk¦tÒ;뎤Ї®ßDD¤”ù`½eÛ6•:OgÌè—íÒÇr*hSÑ>äjb|u ÑZMNs&ƒO• –³QXU(ÚF+ù­oMƒeF`­‰¾ôºPКֱ¨Æ¦ j""&„DЇçÈ•ñ*=ª¨ô^ 3*/!§ä>Zz’FÙ6£ýjja «›š¢q/¹yäØÒUklÆ¥+Umd>Ô² ¨}Idd1>iFÕs—NdLTñÑVÓZ±ÖR=$†fð˜äã@8ë:Ñ£m{lÅ‘9éñ,©b«ÀEÃë{ zv«EdS­McÑ©á[¥Î^²!ô¶mŠkÕu Šè‰Õ=ÜH†[jÚµvÅSªªÝНPÄêZd0ÅŒé%7V¶ÖJÍwò»Iáy[Ý‘ö¶²‚¢{Jzê>%=g•±Êœ.f½Øqñ)èŸk^Õc“TÁPðÓ¹ÍU§‘qt}JõÛħUʱu¦©’,TiBš§{N¦£™4°«¹« Ï<àØŠ­TsWM ™” {-«(´öŠ­M>Ž畉ÛãBþ޶š¾µ4’$‘½3*yËÖS:v ½WaÔ¤‘*¾*sX—C“®e3ÂŽ­¤êhCÛ O éÔ¢”*nËe²f´^‚ºšÒ¥ee+¸QȘ§]”öâ,ôЬJ. ÆJãNãOw`s|_L¶oÞÙ|æš1œßÓ-›÷¶_9 û¸Õ -¦ú”äÅÜj…Ó}JpY”«dÑ%Hì*ꚸªidz{k¡ ™æŽš *%^ "cžå^$jb¦mÚ’Û6¤ö„«ëׯ=¥‰™©ä©1ó­µ¹:‡ÌÄz:s¨¨kN­øñ7Ï>^ª‰‚i\È|µ¨ÔDN#±wPÔm5½¨žÄÎ#äûG$ÈÙbr±ìr9®LÊŠ™ÑO¨26\Ê&å–Ù$TJ¨0díåâwiNñŒäm´ëÛ†G;'T†dâÁË™|e6TTTÅ4)&UÊ}+k©¦¶.ê>@\Èñ§2“T»yÖKóYö›5¯SÚd‡‘JÇ6ß²[lÙÏ¥Eæs5RZySLr³;ž>9y;jIjYÈú–,up=ÐU1S %fg*r.”:€­§hÓÙT3WÕ.ÂÅvj¼MNU\Ç3&,ê†2[jÓO IRG¢û*?eĤÓÊzÓ5ÙK”îä_Q–<ˆéSÍS¥­åFéí”ÀúK,pDé¥TkÕs•t"&u>ä–_ÚËMFË2`úžšL4ð‹ÇS‹Ý@ÕZÆûÇ••Z–êx^ì–6Iå·-·h:eUHªØYÄëöÔå€OUW,ëj¥Ú•8Ñ„ar1W†¡ŽÁ&בçDë§`fYÅZj¬^ ¸šÆšÄÖ©ŸXÞÙ’3:91Cìzíõž~gì¹UU¼ŽãOö’e¥h¶‡Í ޤZ– ÁÜ’ÍYuOá´ ·Ýd×%4îõ–¡È×c¡®\Èîù¦"¢¦)ÄÍ;#-e´ì–Ç+±š•R'ã¥S¯vdÑ2¾+ööÃJå“–äö`wÀh¯€Îo‹é–ÍûÛ/œÓF3›âúe³~öËç4¿w¡E´ßRœ˜»P¢Úo©N׋h­Oº.¬‘"åàõNòÉK»Õ©WUÐÒ"ædO‘S•ËÁO8„+HÛC 䪦¹c°|€ú¿:¤iǧ´q{¨R{U¨—fVá½2«×´Þ×\ûŽÐ m Mj¶ª·aá‘ʆْ–ŠÚ–%S—ó>g'½3¥_8ÄÍ6ëjVK*ª•W×5äí=>!Õ—6xtWÉŸPÆ[ fÀøDDÇDÅq\9—6…]dE5ÏÏ­‚7><ïà9U‰™x€(ÁÌ¡´¬ŠÉ§D«¯³°EÕ5!“›Èþ W5˜¦sÕnTUY–ıÔE#Õa¤kiæs6ºg¹¨ävã›8h'áÊ™PÔQ:&ó㨞ô‘ŽD•ÃL4b˜qž­^^SQºhä$’(9³[ ¬•ÈÅjªfGtÀ@âK”œå=4v2Ò²®dŽN=¨±·‡À\3ª[Jך›&ç¶c‹+ifFìꊩ‹qò@:À–³ê*,» ,¥µ+ê*ÕôÌ–HÌ•ÒáÁkQ˜gr&“ÁkeUSj)¨•¡¨Ž¶‘Ó5Ùø%Åt¢rg@ KÉ—ENÊÙhÞÚz˜§’‘ü&ªÉÌQUQSÂ≘îYu³Úl«šwIXׯÅr=Ü&)Ž=ÀÔLpDLWÀù>T×-¡mÔÊ‹‹#2gi™¼óR¬—˜RM?¶â{¼„U1—¹^÷=t¹Ê«ãç:Ò§Rj_“ºORNuj½Ò”V~½ªXÀé4I4jÅ̺QzÊšúÓʲ3æ{‚ôåN3Êzóz¦D©oSÔÊœœNñŽMÅ’‡ôæ­Â™*ËW&ºW#Þ;ÕÓØ3ç@q:@y \´¶ÒSªàʦ+=É:f“‡µeN´Ö•,é›J%s|_L¶oÞÙ|æš1œßÓ-›÷¶_9 û¸Õ -¦ú”äÅÜj…Ó}JpÊï9ʹA.„¤fK‰ÎôbVÛTòñIJ‰ð.^ùY“c–^¥€”ÀèÅTÅ\Õá*çÍä!÷±\¨¨³M=IíL¦|p½ÅÞAñÂ÷yØ Üü$7cëÂ÷yÏ Ü]ä P¾çá Á»/qwXÝí²¶c«*j’Dp§g4à᎜éh—S ¤5óñ+âbxȪ`•#’§téJ”×fcŒïô]î¦Ñî)é‡EÞêm➘ ³a?Ñwº›G¸§¦{©´{Šzb€Oô]î¦Ñî)é‡EÞêm➘ ý{©´{ŠzaÑwº›G¸§¦(ÿEÞêm➘t]î¦Ñî)éŠ?Ñwº›G¸§¦{©´{Šzb€Oô]î¦Ñî)éŽm¹”¶ŒÔñMeÐZ0ÍM3eVº"‘‰Õ±Ù×6š¥Ëˆ+ eE=›_,oLÎdHæâ™•1áuÏ/EÞêm➘ðÒüv­÷YîélÛYî’™|,U_";JÀý{©´{ŠzaÑwº›G¸§¦(ÿEÞêm➘ô-‹ZšÚ§ŽšªËµاŽv«!D^kŠ&w.b¼IZ¶Í=¯NÊj‹.Ôkcž)‘Y "ð£r9;—6(zv„¶}¥^¶Œöe¬ÙWó6&£}På{xú뜹ÔPT¶FËeÚ¼kVäH‘:w7€©§F¢ú.Vµ’P[k)ù݉ÌcN 8Mñn“Eå¤ËbJ7Øõë 5Ê÷º,‰".|t.s¥Q”°USII=hºX±½¼Å0Vª`©Õ ‰J”N³%¤¶æ¢æ|Î:wÆÞ Vª*`ª¨©›>Ê fJšª b¢t–¬¯‰˜ªCŠ1˜"¢aŸ9~3Õ§³_SIgÛ‚(掞%‰¼RlÎàçÅW Úl¦e-âŽyûe'Àž``· ™ÓU¹ÝãˆðóÏÛ)>sÏÛ)>âž`'mÇÃ1¦«s»Çá矶R|Å>tr*,R**`©Á<àNÛ†*Ï­ãˆõé9¢1Ìs\c°b»2«~!ì|rÑ*­¤æÊ4ôÍ8ÂùÊõ\º÷lš|6ûF¸HÅë9<óêy)˜²TEi|Œo’¨€ÃÀž¨Ù¡\bb¯çsêÄà±­ë5ûÊ ÆÀs|_L¶oÞÙ|æš1œßÓ-›÷¶_9 û¸Õ -¦ú”äÅÜj…Ó}Jp„½:%}{S×R:7/#ÓòÐÍÍÃ),´¶,Zª1{£WGïmé›å¡ˆ9®c•LÕTT](©™P©!}:­_ MsXO€Ú>@kWsD´¹:Éœ˜:ªWËò^¥¾q–QRK_Y )‹ç‘¬n«¤Ýhi#¡£†Ž$ÁDÖ'ÉS§/|Ík*ªÏ|‡ÜçO°ëWÚve3ªëdH¢bi]*½dN5Š«2SP{'*ÕÊ{Çŵ• æ‰ì¦tòy £Ç ò‡/ëíu=˜«IM8Iëç§*ñxÄ›œç¹\åW9sª®uS¹ D«Më5ÒZŸJ;¹}]z9Õ¶un'ÌïA½ó=áå$«ÒIIÖcÑÄ™i²xMÈQoi™¸ŽÿGYOŽ<ùæÞ=˜/(áT掊dë=ˆž[p%Áõ`Ã\0 ÜF…Az9Q¶•"³®øW„žBà¾YWeå‘l7†½Üq¯K"x˜ĴrIÒHœ¬{WsUQQ{hb|Ž­¸ªà¡‡o€Írvðê©\Ú[kˆs"Nž½ooÚÑ)j©ë`eM,–)½«Š)Ñ‹ð—JUÒÐùjáëÛM=³Dê:…VtÍ|r33ã{W¹¼¨{Œj±b¹\­j"¹t®j}ŒÀ|¶<Û[=Ï}<+1.ÍŠå鞞䩘è>¯{#j½êkSÜ„VPeò1]IbàåLQÕ.Ο%N>Øšsm®îAjÞDV×Ztl|ÒºvBœHåé—´šT˜¯¼j(•YgÓ¾uMzó6ú*AÔÔÔUʳÕHédrâ®zª©â9P’T­u8êmÉè"ž¢ðmÙUyŠE {‹xKä¹TõW-rWzôÆwŽ>̇B±¨¬Tã¡t¡‹.òŠ5é¦d‰Ösè`u(ï&¡ª‰]H×§¢Ujù ‰ÈbV% c‚ÎÁ½Å™•¶%¨¨ÈææR¯²åéÆ] vtçC;ÖXZvC›ŽZšdÓ×D÷â>+N:Ö¶æNïJ½™ªвmªj'£~8uq®gµzʇ¾q#¥ԕƲ0«Úc˜íEEñóå¡Lê:éé\˜,R½¾Bæ6S:Ëë5i­6×±=WTÜëÅÃneò޼¥³µ²äÉ›A]B¼é>RG®;åÒ\u 8¦LR-e»I£dæŽí3¦9eµÝÙ«êûVD̾©‰|·/œ‡8M¢z%ÙÉlk«Å«<®--\°"ÜP)@3›âúe³~öËç4ÑŒæø¾™lß½²ùÍïÝÆ¨Qm7Ô§&.ãT(¶›êS€Ê/ 'ÖÌ´ÖѾ³V*¹pÐÙ<2xúPÕÏNֲ魊 h*ÓHÜËÆ×q99PÍ'd½¢Ò[à ]F~Ú±ªì:çÐÕ·;W?½¼NCÐ+¢£‘)¢šÀú`ÚÉ|›¨Ê*ô‰¨­¦Qg—‰ÚS•OŽr1ʳ"ÆR]¦O«¤u½RÞ•¸ÇL‹ÆºÿA ñRÓAGO-3Q‘DÔkšò‘£EXÏW-ò]¸€ÕïlltTkZŠ®UЈ™ÕLfOVÖµi,j'×V;‚Æ&dðÎwS”Èmü ­·êÖz—+bj¯2…¥bwúê{Y]”R[Ö‹¹›•) Ul â^»×•N JM'HiDërøGÚW왼™ÊzÌž©N ¬”Tæ°®zoYN >9¨ôTTµ m5£Ke#ÒH¥n-Tó—”ö «!²•ÖErPÕ?Ö:—"gÐÇ®dwixÍSNt%G„°]5E´S᫇¡± 퉬Y覎&͇V.eVö—2‡”ömDðEjÙÉñ¡f¹f‡ßfD¼ŽC£eZTöµ6…2ô“16»C𼍹ŒFlÒ¶-Z{‚JêŒ\Á¬½[ÞåÁ¬o*©î“ß{ykÓY–LŠÊtð³T&gIÊМ ½ÒÂÉÅÏb9Xí-ULpSæI$ŽF±ˆªç.dDM*}ˆL¼Ê%sÖÅ£v L¥ÉƼLï„IÍ´(ʼÔV{Ý‘Îʼ¬–Ö‘ÔTNVQ1pULË"§òu™çhNÓ§QQЏO°jδªìª¦ÕѽXö®tð®N²§¦OÛÔÖõMI30I¢ãjõû]c!=ûÖ¨±«ÙY∸HÎ'7Š“œ¶]Š«ÆêÁ5‰îùŒØÁࢫ†¾–:ºwp£•ˆæ¯oˆóœVšw4fPÙ-¶lÉ)}š‰Ã…zÏMNƒ¦ŠˆäT[E>©Ô•)Æqw%šz£’7Ã#¢‘¯c•®jéELÊ}K¬¶É¥—…lP3¢zÑtª'‡OD…'ÄbÃtÊ],;.e%R8÷Twg»ÄéÊjbª¸"&uP=ÕõQQÓ§ I\NNºšå›A™C =LLDÇ®¼käœ<ŽÉ¿Qpsõc}k™¹š¾Ëjñv׌¦;’xt D¶«’*¶âÏVMEJ›»N›Ç»ËwÎ99¾/¦[7ïl¾sMÎo‹é–ÍûÛ/œÐýÜj…Ó}Jrfî5B‹i¾¥0»'èr‚iª“‚öâ±L[½×C#·rzѰ*V Ætо«™¹ãzr/_Üe-|¦¬‰³DôÎצ(v J]’Óml#7L öíÙ=ÓØRbšyÞUÁS‘®ï‘uÖM¥f=c¯§’N75x+Ú](q™Ú´ëU5´Ñê †…›`Úö³Ñ´4¯‘êpcO“.\Ø7iO¶¢Û‘'z`©3FžôºTÅ<8Vå§Y)©”›$òk$í ¡™ÔXi¾¬É›´ÞºšÕ—eQØôl¢¡b26&uðÎ^7*ñ©ìà Tñ¶Øãb`Öµˆ}ɱ匵š–ˆlJà ‚Fñ-¥ ³g@ì&­Å†”:¯'A\cùkh­£”5 ‹ŒtëÌÖé4ùx‰,:8‰=£i™ŠºÎ¦}€É­ä=´¶½ŒÆÌìj)U"“*‰Ô»È22¦îí£·R•Ë„u‘«8¸Méš`•C£†µÛM I]Fªp((*ìk~xi£WÙv‚:£7SéÕ'iÚ{g|Ï€FR-§-(,¦;šÖȾtÑ kÕ½yṗ½gPSÙ”PÐR·ƒ F·®½u^U]'²= rÓe‘eÏZî©Â4ë½s5<“–Y'•óJ¼'Èås•tª®u-o"½UÔÖk2"Í"y–ú$9ɤů¥yJÿ,÷¥ˆGh[Ýݰ¨ù,y™Qeƒ¿†o¢]˜Å•Zû>ѧ¬báÌ¥j¯k<ƒecÛ##s£šŽNÒç8)l)^TSX¦µëö#áQ0\è¤NTd[•Ï´,†ãŽ.’<µox·±"$Ë‚tX¶][wôÞ­\×1U¯Ej¦”TÁOƒ"}£ŠIœŒ‰Ž{—CZŠåòŠ +"-jõGÕ':BºUùÞ©ÈÞùõ­s©"Nj­dR±ÕõY¨¬×‡9a–¢FÃI¸5­LUT¿Élmž­¯´‘S¥‘él|«×S±cäõ›b³ fp¥Té¦~w¯{Æ:gjž†›©­b»l-̬„éÑ» ož¤öHÁ Îo‹é–ÍûÛ/œÓF3›âúe³~öËç4¿w¡E´ßRœ˜»P¢Úo©N>’EÍVLÆÈÕÒ×"9<³î8µy“uŠ®–†6¹xãÆ5ó*ˆsŸvÙ6åÅ­™©;èUƒ"FˆÛG® ‹ˆ–Žíòi‹‹™,žõ"áå"*<“ÉÚGAC 49éÍÍbuÀXÑjõ[ñqV±¬j5ˆDЈ˜!öÆdT©4³¯²ã{þL&i4Ï•ÙÕïs•yUq6»}ê˹ɥ)eÝS;Ò¤õ»Cê wO Ý“P´–%KWgQ¼lS(õ³µS‰P*NŠ•Á½¢âˆ©Æ˜Ÿ'Š™UÔÑ9t¬l_))Ö|*¢&+™Œ5ÈäG5QQs¢¦tSâXÙ4nŠDÅjµÉ×ELžÉÙ¥²kfÉjÇ+¹Š,Ö|ŽÒúu^§5j棆¹®LZ¨©Ž¦}#)mY¬úVRЧЮ0¥gYËÕH¼Lê{V5™gEBÇ+Õˆ«$Ž\\÷»;ܽµPx”åJÔeV|R%lIòTL|³†{öó•öÕk—JÔÉç©èбQW´à·h­è§Ø“à|Ÿ×òj¥j¬*)•q^bÖ¯m½/ d¥ÎWdä¾ò¢|œ\pÛ%v”^í-퉫UeÙÕ©…]4rò¹©“¤åÍ‘9=*ª¤h{“ÏÄïб®µD[ãu;&½,©(­ÙI¤Mô`ã«»\?ˆ{ä^OB¸ó¿4TöãœïEà>YLL…0¹YöT•ÇZzÓG¯MAEFÞ ,žàÔE=€h“Zò““ºÛowx@Íñ}2Ù¿{eóšhÆs|_L¶oÞÙ|æ€wîãT(¶›êS“qª[Mõ)ÀÒ¶bY¬ŠÈ“:ºšTó*aÆøö$Œs¡ÍT^Òæ0ËJ•ÔV…E#Ó†g³ÈUÀïHVÞ—Š}Dõ€tú÷…ªùXÄÒçµÇTCètòjk­Ú*tLQgkÚgL¾qñËBеD àC=¥O!¸SX8¹OfOWM¡gæ´,çózeö¬:¸×‘ɘíJÈ´à¶,økàÌ’7¦jécÓ3𼍧ºzôt”Õ)#H’y]4ˆ˜à¯v•ä<Ï{#j½îFµ3ªªàˆöõ¥—6 žªÆÊµR'……8IðZ ê«Î©rªQѱ‰Ä²¹\¾B`elž#íƒHûTäò2çÞ.P¹qo1bu‘˜ùê#¼l bôÉ Ó¬¬Tó”爑.°Lé™fˆ3êK϶‰®N5‰Ê‹ä.%›–Ö ¤¨ÎmÎò/„›¤ÏȺ–­À¦|ºrYùãžh©¡}DîFGUïræDDLUO»\×"9ªŠ‹¡S:Ú*kF–J:¶sHeLÜU1Lqâìb>NOC-¯].UVµQ%EŠÏÞ˫îåÏÚ)«ȘØãDkˆÖµ3""fD>À?”q¬Vís²¾JãèœÒ/ižÞ|¸tµ²Dí§J¾q8sKBÃBWô ÷x >›j¹Ç“”¸ø~ü—)•¢+•™ÕW6["—œ¬ºZ]  EíáŸË8¸à¶r¹N1ÝåwAo§¸8‘ 3›âúe³~öËç4ÑŒæø¾™lß½²ùÍïÝÆ¨Qm7Ô§&.ãT(¶›êS€Ë¯ËZKaµìL#¬b*¯ ¹—ÊÀÔN>UX‰nYÓ5=_« _sN/3¤ñ,¸ˆ«h´”ÊwŒƒìö>7º9Zæ*µÍ](©™Pú•O°7ee¬•U´‰ÒÄÞcû“³¹|d"驦¬¨Ž–ªùez1N5Si°¬¨ì[. ó¬mÅîö§®w/’u¥q(B–®É“ÀtÓàIåŽX%’Õ³¬ç#«;ô¤H¿291‹Ô-µ3¹;ˆ÷ò‡+¬û«¯7«Téajèårñ!›ÛKk[oUª™[=,,ű§ÇãœÙe’i,®W½êªç9qUUãZ×=ÈÆ"¹Î\:ªõ#òbs-Ki:`èiŸ³ËÈp‹°›;¯’¸náçÈ•uilÚ Âyê†;K¾yTµ•"År¹MmÝ ¨ÔW.dDÅTà.Uå,9db¢ÔÍ‹ o/—‘ ŽYdžWM3•ï{•ÎrçUUÒ§[*í—[Vij¢ã J±Bœ\ñøëœã”äð¬¶S·-©ÓN«5ƒãNe>A˜Øx¢^få…tibòu¼cÈ}db½[™Í\Z§ØàÄVÎÚ‰h·U¯•ƒ€Ï xåUr¤-Òî©zÍ<‡Ò6+qs³¹ËНœ‡¢¬ÍKEµ[£åáÀ}ѨLÈ™ù>“¡ôy)ê&¤•4îVK‘ÌriEC_É«v+zÍeJ`Ù™ÒNγ“´¼F8w²2Ú["Øì)êU"•8“¥Þ2˜%0¬ÆN–æÚaêBùf£[N`OåvN¥·GÍ`DJ¸V5ö¤ãbúÝ:’¥%(àhÃäñ=ÑÈÕkÚªŽjæTTÒ‡ÔÒ²«$#µ‘k¨Q#¬D雡²a×åå3™é楕ÐT1ÑÈÅÁÍr`¨sEœ›±ìˆYº°5Ž'Œ}7€ lɧZµ)]VÜ(áv(‹ìÇ'k®}rg$*mw¶ª±4\q\Γ‘¼œ¦•OO ,,§§bGmFµ­ÌˆˆqU8,Ë1A:pwdñµ“}>舉‚fDÐ|€q"@Íñ}2Ù¿{eóšhÆs|_L¶oÞÙ|æ€wîãT(¶›êS“qª[Mõ)À&rƒ!¬Ûe]QOë%RçW±:G/¹'¢†kd·c¹V¢’$Ñ4X½ž>ÓÇ6cáQ0\èv!JŸ•¹+.•&Œ‘Oƒj®É› ÑUZª8ÕËášœy-ÀãÏvÖŠ«§‡‘¯G'–Šv[-†¶¨©áŸWÈËA¥øY8ý5TaÖé=)ìÁw=¢ËͦÉÏÁ<Ê!Ée®Öø_#,DU\1UâLêw,ŒŒ·-uk› Óºe™©‡"iSP¡ÉûÎÁhé"c“ÃpxNòW:&Ë— l×jaÈàdþFÙv$ÈœñU†y¤MòœG|¨ç¹ë;–u>@âÄËElÛ¢F.J‰ :ø¿2ùX²óê•"¢£EÌç>W'k§žd€Ú8K¼‘õvIÁò §Yðð|ŸÈÀ$UV¢çM(1LQ¸ç]|+˜º¦O€|€ET\S2¡ð|€l™1hú“°éjœ¸¿™ð$÷¦t«çR.쪕ö}U"¯®¦Gµ9™ü¶–„¨Í ˆä»9&®I¬Ð1Ÿ æ[9=fÛqðj™„¨$ÌÍ"wÓ‘N˜Ôe(5(»eFakd=¯g+¤¦o=™øQõhœ­ÓäÏcãr²F«šQȨ¾Y¸¥e•fצ”ÑËÊæ§ ÉÒ}¢;©[),#}š°3ŸQY?2ª±’B«í\<…Äõíì¥\Õ3¢|‘~b}¢C¥[ Õ«Fv &+»±¸É$Òr+‘©å!Ó£Ék‰QÐÒ1ÎO '«ËÄQ•±¤±)K:á™ÙÖ«j¹GNç7ŽG'4ñÔ¶°ò މ[Qi¹*fLézé«è•mkXˆÖ"5B&d>OЧk>¥\á™DøkZÔFµD̈|€|8Às|_L¶oÞÙ|æš1œßÓ-›÷¶_9 û¸Õ -¦ú”äÍÜj…Ó}J`µæ½VÖ¦gi±OËÞ4“8¼ØÕ-:IxN©ð.^ùžKRñM”µ$FƒàŽ“àäø>@ŠTVªLÔÅS3‘4ªšª«+Ó;Bu“‰(8P%õ-f»®|Þá»®Íø3èù÷`õJºèø–(×ÈUODÐŒúëã^o]/G|•Uô ›*Ç®¾Éµu6às|_L¶oÞÙ¼æš1œßÓ-›÷¶_9 û¸Õ -¦ú”äÅÜj…Ó}JpW›H¯¢¤­DõÔ®c—‘éŠyhZœÌ¤³}Jص4h˜½cWGïMé“Î2AuF­Ùõ{$Ì`ù ŠÕV¹0T\Tëø|Ÿ€€ù>´l|¯lq¦.{‘­DãUÌ€MÚÒ,6DÕNLõ®¦&z©^z6-Y–U5 iŠ&£½és»ËSÞ$ÅuÜêêrIÝ“`p>@g7ÅôËfýí—Îi£Íñ}2Ù¿{eóšß»P¢Úo©NL]ƨQm7Ô§*Ë› l«UÕQ7 jÅWµSB?Ã7Ñ&ͦ۲)í»>Jóp“߯צ…1ûFÏ©²ë$¢«oH×EN''"”dÑlÆÐ­¹¹#¦”ï•̨õðÁ°ù> | ^@Xk_iz‘™¾³Ñ®-ÇC¤âOIÁ²lº«b¶:Fâç¯Lï Öñ¹M†É³)슨)“Æ™×Î].^ÙÖ•E m [’5U긱³ÜÎps|_L¶oÞÙ|æš1œßÓ-›÷¶_9 qª[Mõ)‰‹¸Õ -¦ú”à.RäÕ.PS`ì#ª™M†t÷ë¡ÚÖ¹X¨¨³*M§u…¥fVÙ5.¤®c{W2øW']TÛ-K"‚اZzø’FøWh{W®‹ÄgÖÝßZT*é¬ÕçÈ4ðS4ÍN׌P…*ké;w„o…Tñàd˜>òÅ,/Xæc£zik‘Z¾Yô;Ðð|ƒï TH‘@ÇJõÐÖ"¹| îÙVEu³T”´1«•z§øF']T£±.ò¾±[5ª¼ëžf™æw …ýfPÙTéMCDÄÓ‡TåëªéU:ÑeMe&âËá§U,XYêdöNÒdý'2‡§™è‹4Ê3—¬d:À9\ªª³ªšmÝ`|0Îo‹é–ÍûÛ/œÓF3›âúe³~öËç4‚î5B‹i¾¥16íG’Ô”õu°Ã+y§ {ZäÅʺJ‰ò{ÅnèÞøP¾‰ò{ÅnèÞøèŸ'¼Q¦îï€uËèŸ'¼Q¦îò{ÅnèÞøP¾‰ò{ÅnèÞøèŸ'¼Q¦îï€uËèŸ'¼Q¦îò{ÅnèÞøP¾‰ò{ÅnèÞøèŸ'¼Q¦îï€uËèŸ'¼Q¦îò{ÅnèÞøP¾‰ò{ÅnèÞøèŸ'¼Q¦îï€uËèŸ'¼Q¦îò{ÅnèÞøP¾‰ò{ÅnèÞøèŸ'¼Q¦îï€uËèŸ'¼Q¦îò{ÅnèÞøP¾‰ò{ÅnèÞøèŸ'¼Q¦îï€uËèŸ'¼Q¦îò{ÅnèÞøP¾‰ò{ÅnèÞøèŸ'¼Q¦îï€uËèŸ'¼Q¦îò{ÅnèÞøP¾‰ò{ÅnèÞøèŸ'¼Q¦îï€uËèŸ'¼Q¦îò{ÅnèÞøP¾‰ò{ÅnèÞøèŸ'¼Q¦îï€uËèŸ'¼Q¦îò{ÅnèÞøP¾‰ò{ÅnèÞøèŸ'¼Q¦îï€uËèŸ'¼Q¦îò{ÅnèÞøP¾‰ò{ÅnèÞøèŸ'¼Q¦îï€{5¶Uh·ƒ[OÜ®jp¼'ªî¬Õ]5§Uâc¸MòŠuz'Éïi»£{ã¢|žñF›º7¾slG²ÚåC*MbdÔ—_Oª«ž‰îLEôO˜î¾™ÕµÏ_ycSÑ):'Éïi»£{ã¢|žñF›º7¾sĘ·/ ­9=ÜåÒ]åN¨é’Z…Okv òߣ³h,öp(©ã…=Á¨‹äé=N‰ò{ÅnèÞøèŸ'¼Q¦îï˜Ýï·9Tùro:€åôO“Þ(ÓwF÷ÇDù=â7to|â`ê—Ñ>Ox£MÝßä÷Š4Ýѽð 9}ä÷Š4ÝѽñÑ>Ox£MÝßê—Ñ>Ox£MÝßä÷Š4Ýѽð 9}ä÷Š4ÝѽñÑ>Ox£MÝßê—Ñ>Ox£MÝßä÷Š4Ýѽð 9}ä÷Š4ÝѽñÑ>Ox£MÝßê—Ñ>Ox£MÝßä÷Š4Ýѽð 9}ä÷Š4ÝѽñÑ>Ox£MÝßê—Ñ>Ox£MÝßä÷Š4Ýѽð 9}ä÷Š4ÝѽñÑ>Ox£MÝßê—Ñ>Ox£MÝßä÷Š4Ýѽð 9}ä÷Š4ÝѽñÑ>Ox£MÝßê—Ñ>Ox£MÝßä÷Š4Ýѽð 9}ä÷Š4ÝѽñÑ>Ox£MÝßê—Ñ>Ox£MÝßä÷Š4Ýѽð 9}ä÷Š4ÝѽñÑ>Ox£MÝßê—Ñ>Ox£MÝßä÷Š4Ýѽð 9}ä÷Š4ÝѽñÑ>Ox£MÝßê—Ñ>Ox£MÝßä÷Š4Ýѽð 9}ä÷Š4ÝѽñÑ>Ox£MÝßêÍñ}2Ù¿{eóšYtO“Þ(ÓwF÷È;ÕµlÛFš´1T+%•\‘¹†(˜c€pí'Áòí'À2|'Áòð'ÁòÁò| ø>O€ò| Áò| Áò| Àäðù>“àäàù>>Oƒäøùø>O€ð|ŸÈ>“à|ŸÈð|ŸÈÁöiõ>ÍÿÙ endstream endobj 1 0 obj <>stream 2014-05-14T21:14:07+02:00 2014-05-14T21:13:01+02:00 2014-05-14T21:14:07+02:00 Adobe Acrobat 10.0 application/pdf uuid:9cb91169-7cbd-f84f-b1db-2ddbe477f4c4 uuid:ccc87a8c-c8d3-f143-b142-fbf798839731 Adobe Acrobat 10.0 Image Conversion Plug-in endstream endobj 2 0 obj <>stream hÞ2U0P°±ÑwÎ/Í+Q0Ô÷ÎL)޶ŠÅê‡T¤ê$¦§ÛÙÖw € endstream endobj 3 0 obj <>stream hÞ2S0P°±Ñw.JM,ÉÌÏsI,IÕp±22041054124460Ô60R70Pׄ¨Ê/ÒpLÉOJUpL.ÊOJ,Q04Ð3ÐÔ÷ÍOÁÔlb`×P”ŸRšœŠM·‚gnbzª‚s~^YjQ1Ð 9¥éº™yšvvð7. endstream endobj 4 0 obj <>/Filter/FlateDecode/ID[<295E44FDAE254B2AA171513D3A17C178>]/Info 6 0 R/Length 37/Root 8 0 R/Size 7/Type/XRef/W[1 2 0]>>stream hÞbb```bܪÌÄÀ[ÁÄÀØ Ä·˜m˜˜ ,­ endstream endobj startxref 116 %%EOF timeSeries/vignettes/characterTableFig.pdf0000644000176000001440000007333012620124746020462 0ustar ripleyusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20090325151403) /ModDate (D:20090325151403) /Title (R Graphics Output) /Producer (R 2.8.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 5 0 obj << /Type /Page /Parent 3 0 R /Contents 6 0 R /Resources 4 0 R >> endobj 6 0 obj << /Length 7 0 R >> stream q Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 172.98 397.45 Tm (Table of Characters) Tj ET Q q 73.44 73.44 328.32 299.52 re W n BT 0.000 0.000 0.000 rg /F6 1 Tf 8.00 0.00 -0.00 8.00 122.60 342.74 Tm ( ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 122.60 342.74 Tm ( ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.27 340.12 Tm (!) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.27 340.12 Tm (!) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.75 339.92 Tm (") Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.75 339.92 Tm (") Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.60 340.11 Tm (#) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.60 340.11 Tm (#) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.40 339.91 Tm ($) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.40 339.91 Tm ($) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.27 340.26 Tm (%) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.27 340.26 Tm (%) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.49 340.17 Tm (&) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.49 340.17 Tm (&) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.84 340.81 Tm (') Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.84 340.81 Tm (') Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 122.27 331.25 Tm (\() Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 122.27 331.25 Tm (\() Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.27 331.25 Tm (\)) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.27 331.25 Tm (\)) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.60 330.44 Tm (*) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.60 330.44 Tm (*) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.40 331.05 Tm (+) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.40 331.05 Tm (+) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 274.60 333.37 Tm (,) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 274.60 333.37 Tm (,) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.40 331.09 Tm (-) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.40 331.09 Tm (-) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 350.60 332.87 Tm (.) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 350.60 332.87 Tm (.) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 388.49 330.67 Tm (/) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 388.49 330.67 Tm (/) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.60 320.93 Tm (0) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.60 320.93 Tm (0) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.60 320.92 Tm (1) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.60 320.92 Tm (1) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.60 320.87 Tm (2) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.60 320.87 Tm (2) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.60 320.93 Tm (3) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.60 320.93 Tm (3) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.60 320.87 Tm (4) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.60 320.87 Tm (4) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.60 320.91 Tm (5) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.60 320.91 Tm (5) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.60 320.93 Tm (6) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.60 320.93 Tm (6) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.60 320.99 Tm (7) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.60 320.99 Tm (7) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.60 311.37 Tm (8) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.60 311.37 Tm (8) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.60 311.38 Tm (9) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.60 311.38 Tm (9) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 198.49 312.28 Tm (:) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 198.49 312.28 Tm (:) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 236.49 312.82 Tm (;) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 236.49 312.82 Tm (;) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.40 311.96 Tm (<) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.40 311.96 Tm (<) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.40 311.93 Tm (=) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.40 311.93 Tm (=) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.40 311.96 Tm (>) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.40 311.96 Tm (>) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.82 311.37 Tm (?) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.82 311.37 Tm (?) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.40 302.59 Tm (@) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.40 302.59 Tm (@) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.71 301.80 Tm (A) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.71 301.80 Tm (A) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.93 301.80 Tm (B) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.93 301.80 Tm (B) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 234.71 301.80 Tm (C) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 234.71 301.80 Tm (C) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.15 301.74 Tm (D) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.15 301.74 Tm (D) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.16 301.80 Tm (E) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.16 301.80 Tm (E) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.55 301.80 Tm (F) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.55 301.80 Tm (F) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.19 301.80 Tm (G) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.19 301.80 Tm (G) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.71 292.23 Tm (H) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.71 292.23 Tm (H) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.27 292.23 Tm (I) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.27 292.23 Tm (I) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.08 292.24 Tm (J) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.08 292.24 Tm (J) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 234.71 292.23 Tm (K) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 234.71 292.23 Tm (K) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.86 292.17 Tm (L) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.86 292.17 Tm (L) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.04 292.23 Tm (M) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.04 292.23 Tm (M) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.71 292.26 Tm (N) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.71 292.26 Tm (N) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.71 292.25 Tm (O) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.71 292.25 Tm (O) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.53 282.67 Tm (P) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.53 282.67 Tm (P) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.64 282.69 Tm (Q) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.64 282.69 Tm (Q) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.38 282.67 Tm (R) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.38 282.67 Tm (R) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.23 282.67 Tm (S) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.23 282.67 Tm (S) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.16 282.67 Tm (T) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.16 282.67 Tm (T) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.84 282.67 Tm (U) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.84 282.67 Tm (U) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.84 284.29 Tm (V) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.84 284.29 Tm (V) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.53 282.61 Tm (W) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.53 282.61 Tm (W) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.02 273.11 Tm (X) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.02 273.11 Tm (X) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.42 273.06 Tm (Y) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.42 273.06 Tm (Y) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.16 273.11 Tm (Z) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.16 273.11 Tm (Z) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 236.27 273.72 Tm ([) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 236.27 273.72 Tm ([) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.15 273.85 Tm (\\) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.15 273.85 Tm (\\) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 312.27 273.72 Tm (]) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 312.27 273.72 Tm (]) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.97 273.10 Tm (^) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.97 273.10 Tm (^) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.60 276.60 Tm (_) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.60 276.60 Tm (_) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.60 259.04 Tm (`) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.60 259.04 Tm (`) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.08 264.31 Tm (a) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.08 264.31 Tm (a) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.40 264.16 Tm (b) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.40 264.16 Tm (b) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.40 265.16 Tm (c) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.40 265.16 Tm (c) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.62 263.35 Tm (d) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.62 263.35 Tm (d) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.84 264.30 Tm (e) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.84 264.30 Tm (e) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.52 264.44 Tm (f) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.52 264.44 Tm (f) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.96 265.14 Tm (g) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.96 265.14 Tm (g) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.19 255.42 Tm (h) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.19 255.42 Tm (h) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.28 254.73 Tm (i) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.28 254.73 Tm (i) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.19 255.57 Tm (j) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.19 255.57 Tm (j) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.40 254.67 Tm (k) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.40 254.67 Tm (k) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.40 253.78 Tm (l) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.40 253.78 Tm (l) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.30 255.56 Tm (m) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.30 255.56 Tm (m) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.52 254.71 Tm (n) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.52 254.71 Tm (n) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.40 254.75 Tm (o) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.40 254.75 Tm (o) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.40 245.24 Tm (p) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.40 245.24 Tm (p) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.52 244.42 Tm (q) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.52 244.42 Tm (q) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.40 246.03 Tm (r) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.40 246.03 Tm (r) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.19 245.19 Tm (s) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.19 245.19 Tm (s) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.84 245.18 Tm (t) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.84 245.18 Tm (t) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.30 245.15 Tm (u) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.30 245.15 Tm (u) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.75 244.85 Tm (v) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.75 244.85 Tm (v) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.86 245.18 Tm (w) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.86 245.18 Tm (w) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.63 235.38 Tm (x) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.63 235.38 Tm (x) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.86 236.46 Tm (y) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.86 236.46 Tm (y) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.62 235.42 Tm (z) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.62 235.42 Tm (z) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.68 235.58 Tm ({) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.68 235.58 Tm ({) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 274.80 235.89 Tm (|) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 274.80 235.89 Tm (|) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.68 235.58 Tm (}) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.68 235.58 Tm (}) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.40 235.50 Tm (~) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.40 235.50 Tm (~) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 389.60 237.54 Tm () Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 389.60 237.54 Tm () Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 123.60 227.98 Tm (€) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 123.60 227.98 Tm (€) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 161.60 227.98 Tm () Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 161.60 227.98 Tm () Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 199.60 227.98 Tm (‚) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 199.60 227.98 Tm (‚) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 237.60 227.98 Tm (ƒ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 237.60 227.98 Tm (ƒ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 275.60 227.98 Tm („) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 275.60 227.98 Tm („) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 313.60 227.98 Tm (…) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 313.60 227.98 Tm (…) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 351.60 227.98 Tm (†) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 351.60 227.98 Tm (†) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 389.60 227.98 Tm (‡) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 389.60 227.98 Tm (‡) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 123.60 218.42 Tm (ˆ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 123.60 218.42 Tm (ˆ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 161.60 218.42 Tm (‰) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 161.60 218.42 Tm (‰) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 199.60 218.42 Tm (Š) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 199.60 218.42 Tm (Š) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 237.60 218.42 Tm (‹) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 237.60 218.42 Tm (‹) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 275.60 218.42 Tm (Œ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 275.60 218.42 Tm (Œ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 313.60 218.42 Tm () Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 313.60 218.42 Tm () Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 351.60 218.42 Tm (Ž) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 351.60 218.42 Tm (Ž) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 389.60 218.42 Tm () Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 389.60 218.42 Tm () Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 123.60 208.86 Tm () Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 123.60 208.86 Tm () Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 161.60 208.86 Tm (‘) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 161.60 208.86 Tm (‘) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 199.60 208.86 Tm (’) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 199.60 208.86 Tm (’) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 237.60 208.86 Tm (“) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 237.60 208.86 Tm (“) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 275.60 208.86 Tm (”) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 275.60 208.86 Tm (”) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 313.60 208.86 Tm (•) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 313.60 208.86 Tm (•) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 351.60 208.86 Tm (–) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 351.60 208.86 Tm (–) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 389.60 208.86 Tm (—) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 389.60 208.86 Tm (—) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 123.60 199.29 Tm (˜) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 123.60 199.29 Tm (˜) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 161.60 199.29 Tm (™) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 161.60 199.29 Tm (™) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 199.60 199.29 Tm (š) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 199.60 199.29 Tm (š) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 237.60 199.29 Tm (›) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 237.60 199.29 Tm (›) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 275.60 199.29 Tm (œ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 275.60 199.29 Tm (œ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 313.60 199.29 Tm () Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 313.60 199.29 Tm () Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 351.60 199.29 Tm (ž) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 351.60 199.29 Tm (ž) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 389.60 199.29 Tm (Ÿ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 389.60 199.29 Tm (Ÿ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.60 187.04 Tm ( ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.60 187.04 Tm ( ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.12 186.99 Tm (¡) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.12 186.99 Tm (¡) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 198.61 184.95 Tm (¢) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 198.61 184.95 Tm (¢) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.40 187.17 Tm (£) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.40 187.17 Tm (£) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 274.93 187.07 Tm (¤) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 274.93 187.07 Tm (¤) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.75 187.62 Tm (¥) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.75 187.62 Tm (¥) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.60 187.76 Tm (¦) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.60 187.76 Tm (¦) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.59 187.70 Tm (§) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.59 187.70 Tm (§) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.59 178.11 Tm (¨) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.59 178.11 Tm (¨) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.59 178.17 Tm (©) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.59 178.17 Tm (©) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.59 178.12 Tm (ª) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.59 178.12 Tm (ª) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 233.43 178.18 Tm («) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 233.43 178.18 Tm («) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 271.65 178.18 Tm (¬) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 271.65 178.18 Tm (¬) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.19 176.53 Tm (­) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.19 176.53 Tm (­) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 347.65 178.18 Tm (®) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 347.65 178.18 Tm (®) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.19 176.70 Tm (¯) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.19 176.70 Tm (¯) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 122.00 166.32 Tm (°) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 122.00 166.32 Tm (°) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.40 168.02 Tm (±) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.40 168.02 Tm (±) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.96 165.82 Tm (²) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.96 165.82 Tm (²) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.40 168.05 Tm (³) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.40 168.05 Tm (³) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.40 168.47 Tm (´) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.40 168.47 Tm (´) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.75 168.49 Tm (µ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.75 168.49 Tm (µ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.62 167.70 Tm (¶) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.62 167.70 Tm (¶) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.76 168.26 Tm (·) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.76 168.26 Tm (·) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.40 158.93 Tm (¸) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.40 158.93 Tm (¸) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.40 158.94 Tm (¹) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.40 158.94 Tm (¹) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.40 158.94 Tm (º) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.40 158.94 Tm (º) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.40 158.92 Tm (») Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 235.40 158.92 Tm (») Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 271.60 160.73 Tm (¼) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 271.60 160.73 Tm (¼) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.19 157.48 Tm (½) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.19 157.48 Tm (½) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 347.60 159.06 Tm (¾) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 347.60 159.06 Tm (¾) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.97 158.59 Tm (¿) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.97 158.59 Tm (¿) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.31 148.92 Tm (À) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.31 148.92 Tm (À) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.86 148.73 Tm (Á) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.86 148.73 Tm (Á) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.42 148.60 Tm (Â) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.42 148.60 Tm (Â) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 233.65 150.03 Tm (Ã) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 233.65 150.03 Tm (Ã) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.53 148.85 Tm (Ä) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.53 148.85 Tm (Ä) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.53 148.84 Tm (Å) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.53 148.84 Tm (Å) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.31 148.70 Tm (Æ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.31 148.70 Tm (Æ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.53 149.44 Tm (Ç) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.53 149.44 Tm (Ç) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.53 140.01 Tm (È) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.53 140.01 Tm (È) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.75 140.03 Tm (É) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.75 140.03 Tm (É) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.75 140.53 Tm (Ê) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.75 140.53 Tm (Ê) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 234.75 140.03 Tm (Ë) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 234.75 140.03 Tm (Ë) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.75 140.03 Tm (Ì) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.75 140.03 Tm (Ì) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.75 140.53 Tm (Í) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.75 140.53 Tm (Í) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.75 140.04 Tm (Î) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 348.75 140.04 Tm (Î) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.75 139.92 Tm (Ï) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 386.75 139.92 Tm (Ï) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.53 129.66 Tm (Ð) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.53 129.66 Tm (Ð) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.75 129.55 Tm (Ñ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 158.75 129.55 Tm (Ñ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.44 129.73 Tm (Ò) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.44 129.73 Tm (Ò) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 234.44 129.71 Tm (Ó) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 234.44 129.71 Tm (Ó) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.04 128.49 Tm (Ô) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.04 128.49 Tm (Ô) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.31 129.75 Tm (Õ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.31 129.75 Tm (Õ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.40 128.83 Tm (Ö) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.40 128.83 Tm (Ö) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 388.60 130.27 Tm (×) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 388.60 130.27 Tm (×) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.75 121.63 Tm (Ø) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 120.75 121.63 Tm (Ø) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.19 120.97 Tm (Ù) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 159.19 120.97 Tm (Ù) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.19 120.88 Tm (Ú) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 197.19 120.88 Tm (Ú) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 233.43 120.83 Tm (Û) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 233.43 120.83 Tm (Û) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 271.65 120.79 Tm (Ü) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 271.65 120.79 Tm (Ü) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.19 119.13 Tm (Ý) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.19 119.13 Tm (Ý) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 347.65 120.83 Tm (Þ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 347.65 120.83 Tm (Þ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.19 119.30 Tm (ß) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.19 119.30 Tm (ß) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.62 110.24 Tm (à) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 121.62 110.24 Tm (à) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.28 111.03 Tm (á) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.28 111.03 Tm (á) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.44 110.62 Tm (â) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 196.44 110.62 Tm (â) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 234.44 110.58 Tm (ã) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 234.44 110.58 Tm (ã) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.46 109.36 Tm (ä) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.46 109.36 Tm (ä) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.75 110.65 Tm (å) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.75 110.65 Tm (å) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 350.06 110.69 Tm (æ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 350.06 110.69 Tm (æ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 388.06 109.86 Tm (ç) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 388.06 109.86 Tm (ç) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 122.06 101.13 Tm (è) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 122.06 101.13 Tm (è) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.06 100.28 Tm (é) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.06 100.28 Tm (é) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 198.06 100.28 Tm (ê) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 198.06 100.28 Tm (ê) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 236.06 100.28 Tm (ë) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 236.06 100.28 Tm (ë) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.62 100.30 Tm (ì) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.62 100.30 Tm (ì) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.62 100.26 Tm (í) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.62 100.26 Tm (í) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.62 100.22 Tm (î) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.62 100.22 Tm (î) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.62 100.26 Tm (ï) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 387.62 100.26 Tm (ï) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 123.60 94.10 Tm (ð) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 123.60 94.10 Tm (ð) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.28 91.90 Tm (ñ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.28 91.90 Tm (ñ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 198.50 90.86 Tm (ò) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 198.50 90.86 Tm (ò) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 234.86 90.77 Tm (ó) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 234.86 90.77 Tm (ó) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.86 90.55 Tm (ô) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 272.86 90.55 Tm (ô) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.86 90.76 Tm (õ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 310.86 90.76 Tm (õ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 350.06 91.56 Tm (ö) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 350.06 91.56 Tm (ö) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 388.06 90.74 Tm (÷) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 388.06 90.74 Tm (÷) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 122.06 82.00 Tm (ø) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 122.06 82.00 Tm (ø) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.06 81.15 Tm (ù) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 160.06 81.15 Tm (ù) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 198.06 81.15 Tm (ú) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 198.06 81.15 Tm (ú) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 236.06 81.15 Tm (û) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 236.06 81.15 Tm (û) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.62 81.17 Tm (ü) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 273.62 81.17 Tm (ü) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.62 81.13 Tm (ý) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 311.62 81.13 Tm (ý) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.62 81.09 Tm (þ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 349.62 81.09 Tm (þ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 389.60 84.53 Tm (ÿ) Tj ET BT /F6 1 Tf 8.00 0.00 -0.00 8.00 389.60 84.53 Tm (ÿ) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 121.38 359.13 Tm (0) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 159.38 359.05 Tm (1) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 197.38 359.05 Tm (2) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 235.38 359.13 Tm (3) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 273.38 359.05 Tm (4) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 311.38 359.19 Tm (5) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 349.38 359.13 Tm (6) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 387.38 359.11 Tm (7) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 83.38 339.93 Tm (4) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 83.38 330.50 Tm (5) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 83.38 320.88 Tm (6) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 83.38 311.30 Tm (7) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 301.75 Tm (10) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 292.11 Tm (11) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 282.55 Tm (12) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 273.06 Tm (13) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 263.42 Tm (14) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 253.94 Tm (15) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 244.37 Tm (16) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 234.73 Tm (17) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 225.25 Tm (20) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 215.61 Tm (21) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 206.04 Tm (22) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 196.56 Tm (23) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 186.92 Tm (24) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 177.43 Tm (25) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 167.87 Tm (26) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 158.23 Tm (27) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 148.74 Tm (30) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 139.18 Tm (31) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 129.61 Tm (32) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 120.05 Tm (33) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 110.49 Tm (34) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 100.92 Tm (35) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 91.36 Tm (36) Tj ET BT /F4 1 Tf 8.00 0.00 -0.00 8.00 81.15 81.80 Tm (37) Tj ET Q endstream endobj 7 0 obj 29175 endobj 3 0 obj << /Type /Pages /Kids [ 5 0 R ] /Count 1 /MediaBox [0 0 432 432] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> >> endobj 8 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus ] >> endobj 9 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 8 0 R >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Oblique /Encoding 8 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000029541 00000 n 0000029624 00000 n 0000000212 00000 n 0000000292 00000 n 0000029520 00000 n 0000029727 00000 n 0000029821 00000 n 0000029922 00000 n 0000030027 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 30105 %%EOF timeSeries/vignettes/colorPalettes1Fig.pdf0000644000176000001440000012056212620124746020457 0ustar ripleyusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20140430203415) /ModDate (D:20140430203415) /Title (R Graphics Output) /Producer (R 3.0.2) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 37256 /Filter /FlateDecode >> stream xœ¼½K-9z$¸Ï_ËÌ…îøû±­Æ´€zZ#Ð A‹’”£n¡¼TÊRAп’öøèÇÏ ô㋾[¤~ö™‘´öí·oíÛ¿¾ýûÿïÛ¿¿ßÖæ­Ÿæoýð6Ï߆ùm\¾ÍãÛ/?¿ý¯·?þðýùoÿú7oÿôçÚoMÓ¼5Õ¿þ'ýŸÿÛßýÐ|ø?ÿÝûÒÿoú/ýçÿoÍÛ?ÿоý6ý¿ý¡Í_ðö?~˜¦oCúÙëômîÞ¶<ì×4L¿Äòö‡2ÓpùÖ vK®+†mþâ5ÿ„2læ·¡i¾M¦¿ªKÖß;æ¯ÊÃuÁpœÒ°Ë?· û> ûo¿¸YÓpøÖNy8|[º2\f Çýßÿ®¬O™«~*ÿc)6wùçúüæw±D× ,ÑïÒrÿîÿ{[¾ñÿÿ”aZ÷y*óÖ6o¿ÛÞ~lzûÝ¿þðÿîKØ›î2lÔS·åaY”†²ÜiŠ–2\V Ó:Íúmló°ý6§/Nÿ©¶Ã°oËp.ÿ×æÛ’‡mÆSvk.yÉÆµLH›–dÆ0¯o–”þü´4CÛg¤–a3”aÁƘ¦(ÿ_‡o}þ¹ã„4äÿb¶ ¢í˜ÿGŽHmÁâ#l¤‰èËOnÛ<é·æ/²Ü…6c<ÏÛÒlt_ÇFûþÿlì¦nûaLÍ© ×ü±IÃ6a£°¾cÒZ†å38vÀÆ”ý2lòÏ\”•© ‡ •±É‹’‡SÆÆ°æoÊåǰÍ_\&+ —oCW†m†è¾i.Ã.ÿ—‡ôÛ2ì' ù½CùOyñÊp6Êpy„ô{usùEæ!O@úäåËçõ&l¤¹`f¸oô_ÁvŒK±±›ºí‡¡ÏŸ—˜Ø>o 1íåS‹Ò~›ÚjÉàJ Úè{Ër÷ë·~ 0ôË*ý\ €”†]0ë'a²€°…ɉö ÷pEx÷=6¨£}#ý^MØH¿×Üß‹ô 7øcìÃ×°qù¾±›º-Û66ä¾Ë¿Œ·ë¾-¥\›y_¨„·ú>í c‚4,ÛËD·bƒbé gq‰éü  .AeŽò”†CU¼Ò°©J[W0âÂ×䲨¥Hòô{ucÔ”®|Hn­)]«ÉsÆÆøë±‘÷_ÝÔmy˜K¹ˆ\æõÍë°&’À4¦ ˆiØV2ýÉëô2 ç.ÈgŽ}PÓ4ÌHÄ5OW´¶+,Ȥ7› Ä]—w殀Ñtº+«l0|ÄFÿmê‚‹¦/ÏÅÿN.š7 pøT¿36¦_‹öš}c7u›'6ýFS5ícÞâcQ&ÆjÉÒì®^Ð~툫²Üy¨ïóªÍxTúµ1TÖ± KÌúeå6R@Ø/‹19çáLLça»`˜àݧ5® øûeÄu€ü{¥¿EØÈ¿ÈÒÞŠüûÏØ7æ¯c£f휺r¶«·ë~2AÓfÞ/=J9¶ú<ì;‚~érÅV™ÈCl#åSÞ/-öv”˜·rÑ~.sÆÆúõ>åRlì¦nc[ÚØöÒ<Æ¢”Ö2–l®´ «¾wˆ¦Õ`@Kk¨ á5Ðfh– B´Ò†(mm¸á&ýxß@kl ‡½èa+l´Í¯¿.Çnî6*GÞ‘¡+y¿†êäÝš”÷z(V®г\' v¹Š@ sRæ Íõ *›«48×6(t®|Ðï\¡îˆ_.*¿n-*¿2ÖWÑöW)£v*»¹Û(9›ÊA6у\m1Û$R·)$„pLÈ䦟ÑMN!±›ºB€7±•²zN#¦K‹ubêÜʸ«Üž6µ3ce÷´©çX*1=ÛJko{Šž”âÛ¨”úmóX6@ÛÖKÇMåû´© ì+ã§MÝöX9?Keý!ö~ &ýFSåþäñúÁþy5brCzlFL"Z—!f7ƒy~š ˜a©óZnÉ¢R¬P7• Ôv3§Nµ{¬Œ ´=~›+'(wêÊfËjZeµÐ¡iÜÖîÚ\á]ÄéÆmå=@L–û*O(ۦЫ“~ÍáØ:˜ Ïìg0ÍO[ÊMìâi¢–ÊÊã®ò†Z,uT‰ü7VîP›–n¨ì¡¶ÅñW¡4îë*ÕøyªbùUQ›P]ÛBx¢J¶EƒŽ*ÚžU¶ípjå˜Ç¤ßhªœ¢ò}°Š^˜ô÷LÇfÑiÄLiú 1»ÌóÓ^`¦˜ÆCeåq[9Fm oÙL4Çš©¦q_™F-–:˜nššµ²òx®|£2u•q”ÇCʹ󸲎ò¸¯¼£<îj&߬hàˆGˆISSùGmÛúÁ@z9bz5,¤Óˆ™Óœ]…˜Ý n1Ãlz½쉽Bl™½‚쨹Ân¸‰÷ãDˆÛu"ÈÝ<æfŸ´@„Z* ‚­$áø °ÁOˆ%žCĸ'bÞ5ò÷ æÈX:˜e¾®WÚÍà¦]ÜwyKl¬VàX%,бŠX¿c•±¼Ç*dõUÊâ «˜µCV9K‹¬‚VY%-L²ŠZ·d•µ¬É*lÅø°*YdUz§ ÞS•Žì¦“ˆ¹ô|Ë~71EKòd’VìÉ4-蓉Zï'Sµ@&k·€L×f™°½2e[dÒv*È´md‰Ûç S· B&o—D‘ÿtÈ|í2ù¾³îa¾G&ÔÓ¦?àª^É6»Ñj†K·Z­@éfc…ÐíÆ ¢ŽF·@7A·B7C·D7E·†‡ZŸ¨ Ïöt×t×7#Ýõ¡5õEÈ\b?ì§p“äÛ8$±Øæ!™E€¤e’[”HrQfè…º AÒ‹2É/Ê$Á(s £ BRŒ2 É1Ê($É(³,ŸHxQ– áÝ\– áV_„ÌÒ_±Ëì¦p“®\º{pIèòÁ5¡Û…®\ºpYøÁuᆯ\¾CpiùâÚò-ÄÅåkŒñýsÍåw¾ÈCÈÀ'î Ÿàfî ŸàK6V¡ ]åcýø¿þýÔ€kÓ0Ͻúî}øû¦ë¤å®‡îs},.>1™Ç•}•ÇMe_u=ŽdÅqLÈDqZsÁQOæ\Ê9ý8ë¹à°§‚.E–‹“¢s‘yâ éŒ#š:gšÆ}e_åqSÙW].e•}•Ç]e_uY‘|wÎoÁIVí!„í›øv¼_vžkhp?ë±u3©Xå6þ:©p?‡y†F¬‘N`§ñPXy¼;¿ÒXïNã¶2°ºD°¦ÊÀÊã¦>;.û@GËû2ñqòó¸¯ ¬G˜é`‰éPyßÛR[îÃLo‰ô‘ƒu3]úp^*ýìç0ŸËµ? ø]Wj¶þ<î* KMËX]G1vÖÁï•ÁÐuƒe@ti¯ž+ «ë`›ËÀÈ㮲°ºÜ¯TV—õ¹²°ºô¿¬•…•Ç]ea#¶°`&ŸŠ®,¬<î?XX/ÇLno=¬3˜挙åºV~?‡i†2–zŽi!x FÜ.ô °|¼†=0§5Nϵ2±ò¸­L¬.Ë{5†ÚÂ¥cøEƒ3£ik § s­L¬<î*«KEj¬L¬˜É[`ebåñøÁÄz9fÒï¹»Xg033ò™Ý¦JÄ`­l¬<î*«k˜<ªi\_gí2©l¬®éliÜ×לÞ»U­Êħ¾è” ú\ßtjxõV6V"RKmc­E Ä+l¬4žš§|&ý†M}á©iaßZ›Ú—Ó|¬3˜Y “Y/´>ws¸•qWYëŒ;2²Òx¬¬測ô·®µ‘•£6²V˜ç6²Ò¸¯¬tld幫¬uÄåY+î_ØÈJã¹6²Òxª¬<®Œ¬˜É?q¨¬ôý#ëå˜I½írìdÂL[¬¬¥ˆ†iǼ3õn1ÇjµjµFjŸµ†j¯±ÆÑ~Ñž#ѾCÑÞcÑþƒ!£!Ã!/ã!?à3ò>#V€1í<0ó®¿ 3G^Ö9ÌÜfüo¦Ëö™€V^g’ʆ½>T8Ô‚¸*ÕðhºîJ¡–Äe)Ôš¸-Õðtº®K¡VYEd-³ÊÈZg’µÐ*%k¥ULÖR«œ¬µVAY‹-4Ö¦¸8…ÚôN5¼©6¹Y§0SމNkÆÌ0]°Ïìçpg´˜ONi±ŸœÓf9©ÍrV› ä´6ÈymFÛ¬ g¶™ANm³ƒœÛf9¹Írv›)äô6[„ÙY‡Øæ9ð;sâ&|ägÂL‚~^„‘Çs®ê›lh±7­æ¸ô®Õ”Þ6Ö½o¬!zãXcôÎôÖôÞ!ôæ1ôîAôöQôþahqhñ€¶ðlŸA¯˜A¯}7fÐk:Z§@SD½¥í ­¹4»IÜ$‚Åf‘,6{ˆhQ zÞ$S±€Å"]ºª.F=oG©XAŒb‘0ŠDÄ(†£XB„ŒkÇ)ãV2DÌ'„†¢^'ˆz7'Šz‡žÖ9Ðd=/þ½J Ž›ßPÛãN=Ôø¸rµ>näCÍ ûPûã>?Ü€¸î· z  ¸ Õc ^ ð[8nO ЭðKt3üPÝ¿c@7DÏìÜ’Ç )îA<÷àfL÷àk—³ËËÝk¸Zÿñó/ù~VºnÂÅí§ÆÖw¿èƒà®ë¯¿wÞÁBWƒÖ³È¨ .ãÊØÊã¡2¶ò¸¯šì<î*c+ÛÊØêSQ[+c«×û(lòóx¬Œ­<î*‘ ›ÊØêõF E†<*c+›ÊØê;>G!¨O?hÙ_DïðF˜šúü¬Œ­Ž·c_v=óccë føSÓt_†™z·2î*±­OÄg©Œ­<®Ïœ÷‰8­•˜—ÇcelåqS[}‹›_ {™ óx¨Œ­Êt¼¸ÔÎû™2™®Œ­/Velõiê¦ú¡³´økýZKyVϤµ0‚ýŠZ³êÕ9<²–Æmelõ u?ÑÖÀ0—éÑçÆ¥2¶ò¸­Œ­>m8}elõ¹é¯Œ-bÄÆÖÌäSÚ•±•Çócëå˜É tllÇÌrá>³›Ã­Œ›¥žcš ^¾Bé5âó^Ø“±•ŠV_[©¨µ±•Å¾ÚØJã¶6¶ÖI×”ÐBÜ ck„ÙIã¾6¶V¼£ec+ó¯ÊØúˆ™üvµ±•~£õƒ±õjÌäß»;6¶ÎbÆ÷ú.y›m7‡[÷µ±•çT[™ÖÆVb õ-Þ. ¥µ±ÎÆÖ‚ƒ;ñ~oû?¾í)ck™a¾ÊØZxëX‡<Ò¸~Ÿ¶[øØœ‰,¸ÿåC$iÜ4ÏøLþ†ÝK~3ìá[kS·ðÉÄÇÆÖÌ´W¿ºŸÃ •Æ]ý¤_nžë7ýæ>lµôX#ÆJã¶~Öo¡îÃ\hÖã°×‚ƒ;> –ç®~ÚoépH‡ÉÜþða³,Ô¯û¥qSV[ðt0ò38²çÃ]©¹Ÿ?[/Ç ”¯#cë f.;v?‡[̱Z`­Zd­‘Zh­¡Zl¬q´àÀ@´èÀH´ðÀP´øÀXHÀ`HÀhHÀpH ÀxHø „Dψu CÌDK̼kéoÂÌ‘±u3ë‹ö™Þ¢’Ö¶ð@iq¨¡Õ-<Î.-µ¤z}Å3€<Î.­µ*´D€#´FÔºÐ"Q C«D­ -µ4´NÔÚÐBQ‹-8Ö¦êEÀOAí´Ã›jÓ‘±õy̼àžÖ~7qÆõÁ)Côç S€†»MpÖ0ÀiÃtç Sœ8L pf›äÔ6=ȹmŠ“Û4!g·©BNoÓE‘±uÈä~gRÜÄŒ­³˜Aß”­‚ö²¾ÉÆ{ÓjŽG¼äç5˜ðŒ§×hÂíK¯!äçXãEß?T½µ1ÂÞ;Þ˜DoOP‚ Ç •èíãKôþñ¾%´xþÚA¼Ž máÉ>Ã^;^—D¯}3fØk[_͸}¾L ‰H!‚ÅÛ®ÉâéWˆhñ2l;¿{8v†-Ôè]Ù§6ôì,ÝU¿JÛò.‹E@3Š„.v] )2ºXR„t1¥HébKó ¡¡¨çâDQïæâDQïÐØúhÊaÒùŠn{?‰›Ôv³Fªñf•TëÍ:©æ›•Rí7k¥`VK·À¬—n‚Y1ݳfºfÕv+Ⱥíf•ÛíãûÇŠÕïÝ’'îY0݃›Y0݃/¾:8–ãÝ•±õoú·rýˆ»áO]­ï~ÑÃîìªs[¸èêÎVuÀe\¹ZE®©\­<ž«;§ÊÕÊã±rµò¸¯\­Ao¸°Ã/²GåjåñT)yA’ÆCóŒÏäß`©\­ò}pµ^Ž™‰¯=>vµÎ`&_£¸3õneÜT®V–!¦ÊÕÊã¾rµò¸©\­~Z±F:‰•Æcåjåq_¹ZyÜV®Vž«µrµÊÜU®VOõI² ×@|Ò,ÇÊÕÊã¡>©6áý÷f1“~£®rµòw´\­×c¦S/ñÈÕúŒ†~ ‡¾Œ‡þ€Ï@èøŒ„t„™èç™wýüM˜9rµÎc&*ÔUûLh@3¯SIh›ù6¡„8Ô‚êfžh—‡ZBjM3O´K(D­ !µ,„FÔº"Q C¨D­ !µ4„NÔÚBQ‹Cm>ªM!¢6½oªMG®Öy̾ŠÏ„Ø ÎŠ>8e(þàœáÐm·cÎŽ8mz5@œ–#NŽ8s8àÔáx€s‡#²ð-9&tVí¨€Ó‡ãBŒØÕ:âÀUþUáÀ8ð‘«u3Ñq_Õ7…«…Þ´šãïj ÐÛÆ­½R¤Ø[C{ö£w  ·Œ ÷®’Ó ±cè݃èí£èýÃÐŒqjþ P[x¶Ï ×Ì ×¾3èµ]­ó  iï*Æ E0oæɼÙSDs1 ÈæbAÎÅ„"‹ E<#Š|.V]Ì(ºØQDt1¤ÈèbIÒÅ”"¥‹-EÌ'„†¢ž‹E½›‹E½CWë  ¹î¬ú~7©ífTãÍ*ÙæšuRÍ7+¥ÚoÖJ7À¬–nY/ݳbº fÍt#̪íVuÛÍ +·Û1Æ÷¯«ß»%Oܳ`º7³`º_rµò'f¨Ã´~ü§íCH[¶¾Ž­ï|Iõ—õåÑ•ø÷×ç¸á3Ú hË‚óÒi݄ƘjÝ„¾™ñjÝŒ¶šákÝ 8Ü3ÏɬÛƒÛÒpeÊ[>¸ÑG¬[æ$}‹ ÉH¸^™xÏ7_ß'×÷ÌCØ\?@m`]"Auý¸K#Çß[å¸õ :wæ¸åèÚw‰ÓùDÙKÀÇ·4oœ«Ïc#UŒ·úß«2þ0u›Òû J³Ó°mL^ìÉ1˜Ë˜¯voNmì¨xÌtìù‡g5ú•‘žH„t´sblþAÌ’ZŒLšL æPªS*Ó°¨—̰Ìy²å‹‘p™†ãôM)Ù9º¶Èü‹,wagÜò-ÚÕ l,yLj¯ ÅÔmŠ]H&Ê: X_F¶>ƒ|¨6 WsMÈž;Œ0 › @$›†År`Ìì0±Þ!„v˜`X0¢v of€múÅîà“Îx7ù ¿ÍÃ9À0LôõßcƒÉ±é»Š³ÀäØô啱ðZl09v:QŸÇÆX®£Ç¿W¥ cê6Å5{bæìiGÔ³AÐ^2äxA}oSEL  TO- 1¼Z0c´µ@ÈàkA”±Ø0C³oFjîLœ6˜8}'6˜8WÍ?8NŸÇÆÔä]ñïUiäÚ7ó® ™!ðÚ®¯ÍœòÚê/¯BÀðy• ¦6¨ˆ0¸^%†±ö*@ ½WyJá*^âTÚºbOºðu`A*‹NÚò &Õ«¦0©þΚ¤ú~yè,ÀF9"ÿþúéõÔmy˜K¹ˆ\WÔÓ<ž× ì 7EÌÞT2ýɹM½äYA‘Ï4ÌÖƒ¨i‡^@ĵC’€hm$ÒÛ!þF”¸ëJÿ%ÂÌ(ÑéÏ} ±øâ¢2 îä¢Ù¢‡ä }s““ãß ^Ç©¦nóÄö¼Åiïõj¥Ó£"X²VoŽ`A=I‚ånü½ ùÌðPiC%É÷z³|@y ¶“1™!ÚŽÄ$ÜŽ¼x·qð·ý.Œü6Ú•w €vù7ýjl¤ßÿ‘St…iÄ¿W혺Mr¶kl×9·jŒÍ< }lõYé¢äÓ}”‰¶Ñµ§RDšU·®K‰ÉšÎ¨Yè¡<¥!O©—âÕÌ:Ä^J[3롊òƒš‰ÎÊb#ÁE3+~¹(k ÂÛ\Sò/2Ý„ Ö”ô>r„N`c-ïiùß«ø¦n‘Ë'Ú yi3$0+¯CPÄ4‡ Y§ƒ^æ'+ò™mWÔ´é!ñ“¸ú”.hmvkÞ†,ˆ”÷—L˜ó°Å0ï„Ms‚`h:*n\4}7ÝŸÂEóÁ„ñ&l€‹æËUœŸÏccIÓ^ÿ{UŸ‚©ÛÔzbÑzÚÑÓÇÚâÓ’ÌóaJf…ù¬%³Äâ(&ømœÔÄÕé8ȉ¬²8ç‰Çfã(²Îâ”(²Ðâ)«õSf©ù*³Ö|B•Yl>Àʬ6©>Ê.«Ïø!»Ì@™]¶ïá™]öº³\Ì.;°¯Îc¦].ÄL=‡›C}úš¡ƒ>œÍPBŸÝfh¡v3ÔÐ'¿zèƒá Eô¹q¹:VÎPEŸ:g袔G…2J™Th£”K…:JÙT裔O…BJ[~„„$ú@9C÷JáË1Ó[!}d`ÇL?]æGìçpsz©ô{¥›JßWú©ô¥£ÊPzªü¥«Ê_Púªü¥³ÊŸPz«ü ¥»ÊßPú«ü¥ÃÊQz¬ü¥ËÊ_Fä`=À ÓXåG(uïG¼3Lc=°°Îcf®ÃÌn7§$ÇÓAð e9Ö)̱†Éð3ÅÙ`ʳ1Âhcˆ)ÑÆS¤Aª™Æ(S¨a¦TãL±ög€)×Oö¦>3L}¾3L}>0±Îc&§>_…™ÝnNc÷^δvïõLsw-`Ú»kÓà]K˜ïZÃÀ×"¦Í»V1ÞµŒiõ®uL³·‹Å´{»X+p»X+ïPÉÅZñD×>Ãty×&¦Ëß[›”.`cÇÌÚ^Ægös¸•qWûXëŒó:ò±Òx¬}¬Šž}¬uÂÉÇÊ/-Ô>Ö EÐ>V÷µµ¢Ù·µâm~ûX+ø–}¬w/ìc¥ñ\ûX ±µâ -aä#fòOjkEZÀ½¸Í5ÇFÖç1ÓV˜¹ª›ßÍás¬îWk îXk¤îYk¨îZk¬î[PwNŒ¸{'†ÜÝcîþ‰A«ĨÕbØê1nõŸ«üŒH:ÆŒ»ybfßÍß…™+ë2º¾Š™LÁ/ ÚôãZL3õ³eL;õ«fLCõ£g|½Õo¢1MÕO¦1mÕ/ª1Õ®1­Õï±1ÍÕϵ1íU&ˆÒ`e’(-V&ŠÒde²(mV&Œ0"£ëf˜Îê—Ø˜Îº7-^ަ³]_ÅLnõ/Kô•Ñ¥Ôä˜cš ^\Ê5±† 0'£‹©Î6º˜úl£‹©Ð6º˜m£‹©Ò6º(vÚèb*µ.¦VÛèbªµ.¦^ï3J¶ÑÅè{1£è£ë«˜É’âeÉá6º˜În£‹éí6º˜în£‹éï6º˜o£‹éñ6º˜oùñ²óÃc,6º˜^o£‹éö>ô±L»·j»…ÏéÐÈÂë`:T’ÆMóŒÏ(m>^õËý÷Ö&¥Í]_ÅL¶.~=fvs˜gh(üÀ‡£–{txjéñ´€W-û|øjé±F:œ•ÆmýÄ߱Ї»ð~þZ øpØ‚çú}xlßòá²—A|ø,¿³_¿ôÇÜ^[ðŒ0ò3^µÖa¯÷rà¡GF×ç1³oñ/ÂL=‡[̱Zb­Zf­‘Zj­¡Zn­±Zra ‰ïŸë·ÿˆ!·üĘ%bÐ’1jI¶ä@Œ[’àgÀ’?#Ò…Ž1㟘ٷøwaæÀèú*f®©M»9ܼ—[{ã^om޵ÀÚk…µ=Ö’xµ&žD-²vÈZem‘µÌÚ#kµIÖBk—¬•Ö6YK­}²ÖZe-–}\›âu@Ô¦½–xWm:0º¾Š™K8ð~7sF‹üä”6È9m“ÚD gµÉ@Nk‚œ×&9±M rfç’SËç–I"N.Eœ]&‹8½LaDF×1¶iA¼7-nâÀGF×W1sM¯½›ÃͽiÌ1z×Xô¶±Fè}c ÑÇ/úþ¡î­…õÞ~o’½¹Ÿ£dïî×*ÙÛû1Köþ~ë’Ú€ŸÂ¤và—2©-ï3êµýÒ${í{1Ã^ûÐèú*h®õv“¸Yó;¯Éü ,E4¿K‘-‘…oÌB¤ó´r[õB-E>+‰€*f Uì$"ªJdT±”©b*‘RÅV"æ1¡‘¨§â$QïÞâ$QïÈèú*h.rêIܬ¶‹5J«”Z/Ö)5_¬Tj¿X«Ü§zëÙê%Ü‚µ2ºì65Ûh¤þÓ­ ë¶›AVn·£ï+V¿wKž¹bÁrîeÁr¾btu3.ŠÇí-ú\ÿòËÏ?ÿ±X\#Ëž;\ßý¢W^åRΗ:5倩VN˜ºe利›VΘºmå©WN™ºu嘩›WΙº}å I PNšÔå¨IMPΚÔå°IPN›Ô å¸Yb®Y`T¹fêî•k¶ïî™kö2Œ*×ìÀá:ƒ™8ïqqž!JuS ¡T9öN±D ¡T=JõS ¢TA&J5T ¢TE.JuT £TI6JµT £TM>JõT ¤TQFZyþˆ(JET€â^E|9f«§®3˜‰ƒe‡nJyV²©.&ŸÚáb2ª.&§Úáb²ª.&¯Úáb2«.&·Úáb²k¡ÖÚáb2¬Ý&ÇÚ=a²¬Ý&ÏÚ}!Fìp}ÀŒ’Zíp1©uïV¼3Jj=p¸Î`&°^œîk‡‹ Êžc¹ Z&0{˜Ðì5d‚³×˜ ÏÆ #•jØcˆ ÒÆ¦AªœÆ(ªa&XãL¸ög€ ØÇûŒ¡#Ÿ ‰Ð7c†‰Ð×ÌÄAù‹SÄí¤3©Ý§˜äîÓ Lz÷i&Áû4“â}Z‚Iò>MÁ¤yŸ¶`½Oc0©Þ§5˜dïÓLº÷i´Põ³½yÜUW?óª˜N“¤ñÐ<ã3Jž÷é &Ïß[›”<àpÁL\ȹ 3õneÜTWޱž*‡+ûÊáÊã¦r¸úiÅéTV•ÕÇ}åpåq[9\y®ÖÊá*sW9\y<Õ§Ê&\ñ©³4+‡+‡úÔÚ„§Ü§}ÄLúºÊáÊßÑ~p¸^™N½Ä#‡ë,f®=¸›Ã-æX½°Ö@½²ÖH½´ÖP½¶ÖX½¸0 ^q/O ¹×'ƬƒÖ ˆQk ݵbÜZ?Ö*ø± tˆ÷öÄ̾·¿ 3×ÙÚt-fvs¸y/·èƽޢkE;Ö ‹z¬%ýXk, ²Y4d­²¨ÈZfÑ‘µÎ¢$k¡EKÖJ‹š¬¥=Yk-в[y>¬MY›ö"â]µéÀá:Ë/ÆL=‡›9£Õ}rJ«ÿäœvÈIí³Ú] §0,p^»äÄv/È™ínSÛý ç¶;BNn÷D.«Ürz»/Ĉ®C¹XàÀ{·â&|äpíµ¯ÅÌn7÷¦1Çè]½ìm½Fì}½†ì½ÆìöÖÆ{ïHTConŒ±w7ÙÛ£ìýaj¸´}¤-<ÙgØk3ìµoÆ zíC‡ë¬¨w)hö“¸YÓf.‘L›½D4‰l*áTL$Ò©ØHÄS1’ȧb%PÅL"¡ŠDDC‰Œ*–!UL%RªØJÄ<&4õTœ$êÝ[œ$ê9\g݃‹ASOâfµ]¬Qj¼X¥Ôz±N©ùb¥RûÅZåˆÕÊ-ë•› Vl·¬ÙnYµÝ ²n»dåv;úøþµbõ{·ä™{ ,÷à^,÷àK[#ÎC<½ÊUÜ®Ýe.dºå+²‡F×w¾äá;šµøHEëòk“RÏÒÞÑ=b$ªuã€~yky¸2~­Í_<¢ÛFV[7NŒŒ+WÓ»qæ÷–¯ÊÕ¡pi¯èÆHK[Iö7~qI7)"°¼œ‡Š›ó°eÜ\ɦërR`ùâ’\—‡ˆŒ+J7õux9ÿÞˆ}Ë¿HièûÖ!ßpûÖN¯Á$bßò¼=2´NccÍÿíK«î¦ncØb—§»,wñðó°èojÌÇ õ@Œc—!Ò½)ä±Ãì*²›”X^âÈC$€–Ø.5E9¤é{‘üƒ°4]nó9̇c¦Ø@le6£KñC¨eQ‘—]j/ C fŽÓCl4¹’çŸ\BäE–_ä}°ý˰Q0žçí‘qu0<—îlì¦ncJkŽ-²Ëm{É- ¯yX>ƒxÚ6W›üÅ$ÕÈŽÍÃ!’eópŠÜÙ<,NRi»y`,™µyX| $Úæ!˜Z!JyX\<‡Å$AVnΆ<\aA³ù)†‚fó—W~Ãk±Á ÙSR4q¾bR–{Xü½ ‰:ð ”•|Ž  ùê/`–¨¶€0­«0™!šëßÎõoÁ0Ã;G]4±od{}x‚ô{áš°1Lã©_Œôû?2Îb#W“‹..ì¦nÓ†œ†íÛõÐð¶6ó~åå(lõýÊ»Q(¨Ø.ù ÂE$?³ÓD‰égºF(@‰XÀ4ByJCd/Å+‡×ÌQÚúQoYà 4ŒP{éÀ(š}"qTSòs@}Ô”~ú˜kÿâš’_z`Å¿dFzßÀÔm"rù€B4/O÷$0W‚"æ§µ† iH¯ÐËüWE>vdjÚ·PþI\}x´6cb ÒÛ“‘ç„%s¶æ0Ák­ú”<|ÆEÓwÓ*\༕‹¦Ïá#Cè,6r÷zÑÝ•ÝÔmj=±h=íh½(h-½dh<½ «¾w¨šV-­ Â†W@b;,˜±YÙJ ¢l´`¶á‚7›ôÃ}ƒ=¬°ÁöNl°‡ l쟳àà ¨+Â5ws·I9ÒŽL]Iû5U'íæÔ¤´×S±R% ž¥:AµKU„Z˜j •2U êhªOTÙT½¨Á©¶Q¡Så£~§ºHuïpPüRQ¡øugQ¡ø•°þÐà9ŽKíÝÜm’œEå(H‹èQ® ¤˜-’H©[’B¸&erÑOŠè"§”ØE])À‹ØRží•xOR,i¿õ÷ö¡ÞÙǪ¹Ø(Uó;Ù(UóÌFÏ9CþËK »‹JúË/úƒœ1gOœï}Í+o*1̽£ÃÜu2ZÌM)£Çܳ2šÌ--£ËÜñ2ÚÌ 1£ÏÜ/3Íí4£ÓÜm3ZÍÍ8£×Ü«3šÍ­<£ÛÜé3ÚÍB£ß,±0 ­B'£ÐÜH3 í]'Í(´—µKˆB;òuÎ fUU»ÈØÙÏà¦|BkXÌ/´ÄÅ|C+`Ì?´@Æ|DëgÌO´¼Æ|E«oÌ_´8Ç|FkwÌo´´Ç|G+Ì´0È|Hë†Ì´¬È|I ¶ƒ«–嘷øN—{5bËÜžˆÑs¡Ý³ŸÁM!¨VÄ’jÁœ!ªÖÓ²j¹!¬VãÒj±ž!®Öòòj©Ÿ!°vk£€!²ö2k›!´v!Rk“B‘ýó1uµÈÏP×w*ÿ«ÃP×èb`ÿ\hígpSÐrÌ0Õ¯‚šc…ä+ˆ çXaAAšd AÓ0Q))¡²#è:Ž ìø (ûÙƒàè@ ‚£oF ƒ£œ¡ˆ)t¡5´ŸÁMa#ì=vy„ÁG@X|T „ÉGAØ|T„'DBX}T)„ÙGCØ}T¹|¸«®‚m*¥*ÙB†vmÁ³\eÛ5æ˜Ç œ>ªÂéo®J§?ò‹N VÑ…†Ñ~óü´…˜)æøÊ3jqJ.˜f ÎL4¿8S3Õ¶A“$&‹SzÁt›¾ƒ˜pƒ^ÞL¹)¯ü“nÀ³Ì´›m–˜8NTSGÜH0ùfE×íB€wˆiò‰ä`¾M¹Vv3óÍçŸ]¤ˆt¡´ŸÁ-f˜}¯W€m±Wˆ]³VPMµVX=· –\QÇ.©¡ÂÔï ’„P©B°Ä!\Zƒ>’"ô ‘ÊsŒµòB̾—¿ 1ÞÒ ÄÀVºÐ\ÚÏàæ]\2švy©lªáT%¤Ñ©ŠHÂS•‘§*$PUJú ª˜äCU9©‹ª‚U%¥MªŠJºT•íͳP…%W%)ƒªJ{ið¦ªtà8@ ̦ -§ý nfŠRåÅ$%Ú‹iJÓ•ä/¦*G@LV†˜®ü1aÙ bÊL$“–Y!¦-/CL\V‡˜ºœ1y%Bˆ,¨cæ+£AÌwï4ÜÄ||¨ˆu¡µŸÁÍÝhÌ0ºÕXt³^!v»^AvÃ^avËF»i#„ݶÄnÜc·n²›7BÙíÁTŒpªþPMx²Ç°»6bØ]ß‹v×GîÔ ÈÀ˜ºÐžÚOáfÉËÛ8%1oó”Ì\(©¹LPrs¡$ç2#;Teˆ’žË%?—1J‚.s” ]))ºLRrt¥$é2KÉò ‘¡„ç²D ïÞ²D ïȳú4dà \jZí§p³®n®HÝÝ\’º¼¹&u{sQêúæªÔýÍeé ˜ëÒ70¦¯`®LßÁ\𾄹¶| qqùm|ÿ\sù/ò2ô Ì}éÜË}é|ÅÉZñ­¶²ÝHú/ü¯?ÿáÿ–þ·ñíÇÿÜ]ORâÙS{ë»_ôð.ÝU!äˆ ‹³¬>>U‰˜±8t‰²8“‰˜²êÈ&pœè\pÔ>ËMÌê<è‚¡ULZ[ù[ŒY«›–woã,*bÚâ¨*bÜâ$+bÞâ +bଠ1mw°Ä¢ÅAQÄ¢½ëò‹ö²3_ˆE;2¸NaÆÞÖe˜©çpS^aœÒFžaâFÞaœñFbG^bœGžb ïy9JçËÉØ|üyq:yŽÖ&™÷hí’yÖ6™ií“y’ÖF™7iõùf:hc:xŽüÅwZâË1Ó[C}dqÁL¸[Waf7‡›‚Q­ð38ÕƒUí0xÕƒYí00¸Õƒ]íP0øÕƒaíp08Öƒeí0xÖ ƒií°0¸ÖŒ0"ëfôjÇ‚A¯ï‹—c†A¯&×Ì„¿ufvs¸)€¹šc¨7±#n zxB^ØÓ# :0€éÀ¦C Œá Rï4FpFv`Ùñ@€ö³}ÒJßJØ\g0×U˜ÙÍᦠ÷ØË{=‚⣠H>j‚棖 ˆ>j ²¢5¼›«Z… û¨eMy:× Ü>×Ê»Vò¹Ö•æ˜Ï ¸>j‚ëo®M ®?2ºÎ`&<®«Îxíæp+ã®vºrþFít¥ñX;]+4?;]ë„5’Ó•Æsít­Ð ít¥q_;]+ä;]kyæ?œ®|ËN׊;vºÒx®.ä„ÓµŽèõº]4pÝ»å7cj§k-Á7sàvYÕK<²ºÎ`&\®Ë0SÏás¬þXk þYk¤þškèþ›kìþœpÿNŒ¸¿'†ÜÿcÖˆAëĨõbØú1n}‚ŸëüŒH":ÆŒû}bfßïß…™³ë fÂçºxŸ±FĽÜ2÷zËt¬¾NÅZáûT¬%¾PÅZãU¬E¾RÅZ%™QµL2¤jdJÕBɘª•’9UK%ƒªÖJ&U-–}\›|¹Šµi/+ÞU›ì®3˜ §ëb>#)ZœQj¿8¥ÜqN¹â¤rÄYå6ˆÓÊç•[!N,7CœÙ¹‰äÔrCĹ喈“ËMg—Û"N/7F‘ßuÌå^ˆïÝ‹»8ðáu3áu]Ü7ÉñRosŒÞ5Ö½­×ˆ½¯×½±×˜½³1ÀÞÚaïm ±77ÆØ»ƒìíQöþÆ0µcœÚ?Ôžì3ìµöÚ7c†½ö‘åu4áv],Ðx£¡æÍœ"™7{Šh.Ù\,(¹˜P¤s±‘íªbD‘ÏÅŠ" ‹EB;Šˆ.†],)Búj2EJß\¦ˆyLh$ê¹8QÔ»·8IÔ;2½>šÚïºX öípªí¾wO5Þ×ò©ÖûÖ>Õ|_ê§Úï;ÿtü$Ý‚x1nB<(·!Þ€Ïqùµº~Ì€n‡ß: ¢§vnÉcÐÀ=ðStîeÁr¾b{µóXvÿ¾×?Áìú¯ŸÞúô?~ÿÇnû=þþå§·¿*6Øÿã÷;ÿKAhOý¯ï~Q½í¥eKÿ&°]õ ?ÒÃÜÇ1]̽2ÓÇÜKó9{÷ÚL/s/Ît3÷êL?s/Ït4÷úLO³Àt5kL_³–Àt6k Lo³Át7kL³–Át8ëELK«ï´#-ͽ?ÓÒÞõþJK{Ù½v¤¥ù_g0³¤?ü/äˇÿ…üùð¿Oþ’ª§y{Ùoâ-û_KyX<ü¯…·—ud™vOÝv ß­ÓY’…÷ÈtÖ$›æŸaž}õ(àŒê}kmbžý‘ÿu3C9Ï¥q¹äù·Ýæð °ÎL-Ö\gª–üCg®h€>“•Æ}}f+Ûú…À¢Ï|¥ñ\¿¸@ð™±¥„Ä™²|ËgÎÜ"ñ™´ÜºÔ"$δ-xHy„™®œñö°¥ÄÜÌ»yR/ñÈÿ:ƒ™~ÌUiú·‹î¬ïçp‹9V§¬5P'­5R§Í5t'Î5v§N ¸“'FÜéCVˆ1+Ä •bÔJ1l%‚·RÁÏ€• ~F$cÆ?1³ïüïÂÌÿu3]a2ã”™ð<]Àgös¸y/·$ǽޒk%=Ö K~¬%ñ  ß ó‹‚</I‘µÊ’#k™%IÖ:K–¬…–4Y+-y²–Ze­µdÊZ,]ú¸6ÅエM{‰ñ®ÚtàÁL[8ð0Í¥Bu×ñËÒäŒÖþÉ)í sÚ; 'µ·@ÎjïœÖÞ9¯½ rb{äÌNU$§–7"Î-ïDœ\ÞŠ8»¼qzy3ˆü¯cl/ƒxïeÜÅü¯3˜i Zú9#gJ{îe}“ü/õ¦1Çè]c ÐÛÆ¡÷5Dok¼èû‡º·FÔ{û¹Jöæ~Í’½»»doï·0Ùûû©Lj~I“ÚÚ¤¶p¼Ï¨×öC•ìµïÅŒzí#ÿëhŠišv®\¢æ+@³›ÄÍ"˜Ÿ‰¥HæWd)¢ù‘YŠlñ-D¸x¢"_°• «n)ò©XIT1“H¨b'QÅP"£Š¥DHS‰”*¶1 D='‰z÷'‰zGþ×)ÐU¯MÓ’ .qêIܬ¶‹5J«”Z/Ö)5_¬Tj¿X«Üg…ëÕë)Ü‚µò¿ä6ˆ5Ë«–[!Öm7ƒ¬ÜnGß?V¬~ï–`†Ñ¯an!úõQñjÌ(úõÀÜ:ƒ™;L;£â‚Ú´ŸÃM‘Ì1Çk¼ˆtŽ5Bäs¬!"¡c@¤t•g5ì1„HêÀ"«ƒ8QD^†‰Gdv|©ýdŸaÄt•lU"¦ïÆ #¦Ì­3˜™ð”Ë(‹ëªXò0Ñý -!=%M)]-f^\ÖAŒOÃø Fš´±2·ò¸©zd°ÔAf>±§ƒ"3/é IÍ3>Ã(û8x(û›k£ìÌ­3˜¡tX8ð´^Àgös¸•qS™[}ÇT™[yÜWæV7•¹Õ'°Ìõ¬4+s+ûÊÜÊã¶2·ò\­•¹Uæ®2·òxª”M¸4âgiN–« ËzÌnê¶<,¥œD.§‡,Aóp|Ï$0 ‡)(b~&§"éO^Ç —8:hò™†cÔ´+=‰kW Lk;° ‘Þ®¤ê˜w]Þ!L˜‘b:Ý•G †Ø(òÍE»•p+mgqøGNÒ l  ‘5WD¨í¦nÓÄÎ+¯HaÚçUoàoYôIY²ôó¥’² ó¤‡LÊrgM¿ 0ä—;¦€Ê<*H¾æ ˜Í=·€pîŒÉ ѹ%&àì°/fxÏ qðOksþóÈ+QÀFöÚ{±1·£3Ø(:n“étÉEÝzê6mÈÓÊ«PØ®§…7“°™O3/Ba«ŸfÞƒB!È]`ebšt ª‘iÔ%ìRbr³:GÊÝéå) yh½¯©×™öRÚ¦^ïVàutˆP' ¿(šS‹"qTSÐD»¦ä_dº ¬)é7|ä ÀFqž»„ p«ø¦n‘ËmUkš—‡0… l§†Rçl4”Û ÌCºvEß@(òÙŽ«´üLMópjM\[ŸÖ-´6»Õ¤7q޲Pâ<,6s¶æp\`R ãBåí1ÍßM(#;y%èßÁE[´ˆ Øèò¾Ñ¢²Œô°»©ÛØÆÄ–}L{icQJkKVÏXÐUß;DÓj0 ¥5TÐðHh‡ 34Ë!ZiC¶Ì6\ðf“~¸o ‡56ÐÃÞŠ ô°6öNÏçÁ1”óq•iè/hTvs·I9ÒŽL]Iû5U'íæÔ¤´×S±R% ž¥:AµKU„Z˜j •2U êhªOTÙT½¨Á©¶Q¡Så£~§ºHuïpPüRQ¡øugQ¡ø55σ#Ÿ0ÐOî®P8vs·Ir•£ -¢G¹Z4b¶H"¥nQH á"˜”ÉE?)¢‹œRbu¥/bKy^´—â½H1¥}Qf ÿ"Ô;[àX5¥j~'¥jžÙèékI]Öeòs½ïŒ›¿ùËÇ ´çÎÍ÷¾æÈº. 6Ì sOÄ\1w›Ìs3Ê\2÷ªÌ-s+Ë\3wºÌ=s#Ì\4÷ÉÌMsÍ\5wÙÌ]sÎ\6÷èÌms Ï\7wøÌ}³À\8K+ÌI«PÉœ47ÐÌI{×A‹¯k““väçœ@̲âBRûvÑEý n /´vÅpCK[ ?´òÅpD c O´nÆpEËj _´êÆpF‹r o´fÇpGKz ´âÇpH ‚ ´^ÈpIˉ Ÿ´Pû1c´Ç0ÆwzÜ«3X~|äòœA ^L+‡x/y›f?ƒ›R­„+AUB¹V¥£+U2»Z¥Â+ÁU"½^¥á+V¿bå(AVfå(Vö‚jå>(ÁV愲eû<@ _%î+ñu¯î¿1L|=ð~N f.éd¸Œ4_q>j?ƒ›S˜=ÃLiö 0ÅÙ+Ä”g¯ S ½ÂL‰6˜"m„0eÚb µÆ”j#)ÖF(S®`¦`áHÉŽOR´Ÿí1L•6b˜*}/b˜*}à@ÌT:­¥÷žÛ+ö˜Ý nJz]Ið±Ë#)>ª’ä£J i>ª’è£Ê 7!ª’ì£J!é>ªX[ž *×öE|vl{T)UÉò³«h žå*Ûv¨1Ç<ÉõQ•\sUBrý‘Ot1|—®\Gê¯Øcv3˜ç§/Sl[¬¸˜$ŽÃÓl¡¿™‰æWej¦Ú68÷$&‹ãxÁt›6˜pƒÞL¹)JO0é<ËL»YÑ^‰‰§q_ÙF-’F‚É7+^5»„àb²øQ1ߦ¨X73ßzsì@ÌÐfe/¹î¸ŸÁÍ3¬~W+ vX+¤nY+¨fZ+¬^[P+.„¨S‚ÔÈ aêó…@ÉB¨T!X"‚.AŸIú„HÝ9FŒZx!fßÃß„˜Oébºò¾ôTÞó̇.Ûc¤ñh—|¦]^ꚪ€Ä7U isª"’îTe¤ì© IøS•’.¨*&ÙPUNª¢ª DGUIi’ª¢’,Ue'ó,Ta‰ÅÇUIŠ ªÒ^¼©*8M'Ó®xð ;ÍzÌn73E©ñd’ëÉ4­å“‰Zê'Sµ@&k£€L×>™°m2e»dÒ6)È´ía‰Ûâ S·B&oƒD‘õtÈ|m0ù¾sîa¾GþÓ Ä4Å–À|¯¸°ŸÁMÝh5Ã¥[­V t³±BèvcÑ Ç £[ ›„ Û¡„õt’…@tóPtû`¨pªþPMx²Ç »Ä »¾1è®]©3)§*ûBd¦+îÆî§p³äåmœ’˜·yJf.”Ô\&(¹¹ŒP’s™¡dç2DIÏeŠ’ŸË%A—9J†.ƒ”]&)9ºŒR’t™¥dù„ÈPÂsY¢„woY¢„wäUL9rÙå‚ì%»Ìn 7ëêæŠÔÝÍ%©Ë›kR·7¥®o®JÝß\–¾€¹.}saú æÊôÌ¥éK˜kÓ·0§¯a®NßÃ\~ç‹<„ }s_ú÷r_ú_q°2YÏ·™ß[XýÇßì,,&š=÷°¾ûEG&Ö¤‰1`q°%ÆG&#'*3.CVÇÍãš Îzú4gÙhªÃž N{V1hmeb1F­:I:㌦š"†-Ρ"¦-Ž©"Æ-N±"æÍâcÏvýeÕ)PÄž½kå{öº]ˆ=;r±Na¦+·N€œ+6´ýnÊ#Œ#ØÈ+ŒÚÈ3ŒÜÈ;ŒóÝÈCŒãßÈKŒÓá=o>éð8i™Ï–#1Žž#¯Ñ$ó-P2ïÑ&ó -p2/Ò(ó$-1?ÂLL§Ê‘¯øN0|9fz ¥|¬3˜YJù“‘uA;¿ŸÃMÁ§–ñŒ*™_Á©²¬*›@Á«²Ì*›AÁ­²!ì*›BÁ¯²1 +›CÁ±²A,+›DÁ³²QL+›EqŠ2²`†A®²%亷%^޹8Yg03—`޵œõ™¯ÚÏáæ€å˜c0Ç  9Öα†Îð3Ú`@´1ÂicˆÓƨAT£ °6†pmŒ#;>È~¶Ï00Ú˜a`ô͘a`ô—u3¼½R^™.Ùgvs¸)È=ör½Ç^ ø¨ŠZ ù¨%šZƒ„¨E /ÞªV!È>j‚î£Ö5¼{+3k]Q«df­Âmf­¼H%3k]PiŽù ‚é£6!˜þæÚÄ`ú#7ë fp«Acã%èn·2îj;+ƒ¡¶³Òx¬í¬ží¬üŽLmg¥ñ\ÛY+„AÛY<µµ¢ç·µ–÷úÃÎZÁ·lg­¸€a;+çÚÎBpHØY눃hÍ.ú·nÐò 0µµ–›9pžàåØÏ:ƒ™2s¹Ý0\bOìæpó» æ¸I湉æºÉæ» 'ܤ#nâ‰!7ùĘEbÐ"1j¶È@Œ[„àgÀ"?#ÒŽ1㦞˜Ù7õwaæÀÑ:ƒ¾«WjSÉÑœÝnÞË­µq¯·ÇZà»R¬¾,ÅZâÛR¬5¾.ÅZäûR¬UÒUˤ5ªÖI‹T-”V©Z)-SµTZ§j­´PÕbÉÍǵÉ7§X›öÚá]µéÀÓ:ƒ™vDÐXÆL·^N·›ÃÍœQ’>9¥%rN[䤶 ÈYm)ÓÚr çµ%ANlË‚œÙ–9µ-rn["ää¶LÈÙm©ÓÛrFdjr`[äÀï,Š›8ð‘«u3|W¯¼ ’¦ã²¾É¶{ÓjŽËÿ¡ZƒÒÛÆ¡÷5DokŒÞ90€Þ:0‚Þ;0„Þ<0ÖѸÑÛFÑû†¡ Æ©ø3@máÉ>ƒ^;0ƒ^ûnÌ ×>ôµN¦ü—ù®ÞÁûIÜ,‚y3§HæÍž"š‹E6 Šp.&é\l(â¹Qäs±¢èbF‘ÐÅŽ"¢‹!EFKоwL‘Ò×’)b‰z.Nõî-NõŽœ­ó ¹ð]½ý$nVÛ}©žj¼ïÜS­÷•|ªù¾±Oµßúéø¾?Ý‚xnB¼·!€o €qÅSp3⥸ñÜ¿s°sKƒîß  {p/ –{ð%okÅëμ­_~þù»Ô(æ•=w·¾ûEþ;Ûò·Õÿ^j7]]CÀÜ 3$Ì2CÄÜI3dÌ6CÈ܉3¤Ì:CÌÜÉ÷z%¥ 9+w‹!iV ¢f%¡×K)«BÕz¨AT"Òf¥‚!nVƒjV_GG¨™;{†š½ëìjöº+é5;r·>]ÏŠ¯ ³Ä´A+nL#´"Ç´B+vL3´¢Ç´C+~LC´"È´D+†LS´¢È´E+ŽLcŒw—ÖÏ2!ͱzµ ÊB<ꄾÜo>!-ÒªóÌ =Ñ "Óß)ˆ¯ÇŒ•ÓGîÖ)Ì"þ½*q3žÕB¬i9æñʱˆ_Ž5BÑ•Æsý¼ß‚Æß'–ò`œ[À·|¢lÁEŸ8Ë~×oü!9$N¬-xÀGy„™ïYë„×RÌ‚›9p—›Ôcwë fÆ>ï0ñçp󻿏Oæ¹æºÏæ»'ܧ#îã‰!÷ùĘubÐ:1j¶Î@Œ[‡àgÀ:?#ƒŽ1㾞˜Ù÷õwaæÀÝ:ƒ™üHSýïeûŒµ îåܸ×[c-°`ÇZaAµ$ÞD­‰Çy²]‚!k•EÖ2 ެu$Y -X²VZÐd-µàÉZkA”µXªóqmŠwQ›öâ]µéÀÝ:ƒ™¾\$Ž/ã3É­ìƒS†òÎÎ]w;à¬á,€Ó†óÎÎ8q8àÌv6È©í|sÛ!'·sBÎng…œÞ΋0"wë‡SüΩ¸‰¹[g0Ó•kçñïU}“Ý-ö¦Õ—ÞµZƒB «5*½oµ†Ð c}ÿPõÖÆ{ïxi½y+‰€*f Uì$"ªJdT±”©b*‘RÅV"æ1¡‘¨§â$QïÞâ$QïÈÝ:šG?ü %XŒFj»X£Ôx±J©õbRóÅJ¥ö‹µÊ p®·¬Â-X+wKnƒX³Ü±j¹bÝr3ÄÊåvˆµË «ß»%Ïܱ`¹÷²`¹_z{0ñö¬tÚÝúû°·~J8{ûñ¿þüÓ?¼ýî·ïrËž›\ßý¢w&— ‹îñ™a_nÖ憘aan˜&憚acn¸F憜aenØfæ†~Ðë.;kð: †¥Y0`˜š…A¯»¬Jä[! Q`X› †¹…(„p³ ¦ 7sƒÏp³w >ÃÍ^S†›™\ŸÇL.ùøêÚæz¸\qy?‡›R-¼1•ÐÂS -Ü1ÕÐÂS-ü1Ñ S-2UÑÂ"S-<2•ÑÂ$S-\2ÕÑÂ&S-|2ÒÂ(S#C|þˆ¤(ZHdŠâ;!ñå˜i, >2¹Îcf™.{õi?‡›âMÃäbü©M.Æ£Úäb|ªM.Æ«ÚäbüªM.ƳÚäb|«M.Æ»Fâ_mr1Ö ãcm 0^Ö ãgmÀ04Ñ&×Ì(®Õ&ãZ÷†Å«1£¸Ö“ëfÊå-¼Ì²^p@h?‡›c”=ÇŒYö0†ÙkĘf¯!cœ½ÆŒy6‘TÃCŒ‘6Æ3m 2†ÚeLµ1Ìkc1×ñ@ ö“}F±ÐN…Xè›1ÃXè“ëM8qàÌap€S‡Î 8y(4Zm°€Ó‡CŒØä:âÀU(VáÀï ‹›8ð‘Éu3h튙Þ4\/ÞÏá¦Þ´šãһƠ·5BïkˆÞ8Ö½s`½u`½w§ÉÕ[ie ƒèí£èýÃÐŒqiú H[x²Ï ×Ì ×¾3èµM®3  nË¿Í÷þö“¸YÓf.‘L›½D4‰l*áTL$Ò©ØHÄS1’ȧb%PÅL"¡ŠDDC‰Œ*–!UL%RªØJÄ<&4õTœ$êÝ[œ$ê™\g@3O´-GJ/M=‰›Õv±F©ñb•RëÅ:¥æ‹•Jík• V+·@¬Wn‚X±Ü±f¹bÕr+ĺåfˆ•Ëík—"V¿wKž¹bÁrîeÁr¾breU®&×ÿüå÷ü—ŸÞþªmÞ~üyïs•4·ÌTM®ç_ñÀá*Îu„3 ­YШ1+­YÑ 3I­mÐ*3g­mÐI3…-£†±k™ïæÇÄ™ï–Ϧ¹Æ÷"ß- W†Áå“m¤¿e–ÒŽ¨™LŽk ˆ·ÛÉ1sÆí̘9dÒ囨勑X—O oÎl×]h9þÞ*î-?a>FÜ[;|¦_–ö–x`e}ö±Jè%—(v·)b±k ¬1€1¿¾¾9ž±#ç`xc~¼{s´c¾Ë^þ¯8éÕ)Oot=s?7Ð ixgw<ÿ NÂŽwe7 «ì&T=FY¦aQ3tÙÍ nŒÁìf¬È(„,ÿä¢ 2%ìïANÀuÝCÃê2r¿…Þk¾âJÖnâ6%³v¤Ìmí¬.S]»Ÿ?>h›oÀs˜+dG.ͼØ4ª4Ù|=¾ÊšMÃb@0‰¶oXýSÛ7°/˜bÛ“E3ã¶o`~ðéç¾7Â|ܾuB(äáò —M¿Hñ.Û7µÍðRd0[¶[ÚRg‘ÑJ1¾*v·)ÏÙÓŠ´gO:² ½$HŠö‚!%ÄËÙè{›*ƒZP`Bµ€ÂüjÁˆéÖ³¯A&c  ÌÍ|™ª-p3sûpÏ`$µÁHê‘ÁDêô <2ŸN"cF õNî&nS ¼¶bfÄk£f‚¼¶qæËk“gú¼J³éU ˜ì òÁ\{¦Þ«ôt_T˜Òp¨ÊV‡µôëdVª’×ý¨ v8‚È3d¯j û« sìÓ÷Èb:‰Œ iÔWè1»‰Ûò0—pÑ·²¹ã1>Q¿4ÌR‡ˆažÜŠ6¦¿8·+"•ŒòàPÜêþŠÓw»‰Û<­3/JaÒ›Y?%«c,X3ê5’²œÍ ÇJÊb7ƒ¿7C!¿Ñ6Pò±.`ä˾žS3›ÆˆLÓ°®dAov׌´ó½ˆÆnM£¢éy) ¨ÈÏʵw¢"‹‹œ¢Ïƒ¢4$}1»ùŠWõ«iÛ¸ ç«(«wèü|ãèí{yªìíùáÄÎVj{W…uÐí§ü©^{ݽÎõdíi •b“áÑ•hítP=ü×VÇØs [[½TQ~BC+¨T¿Uo)ËŠJpP8Ò/À‹NySY»Qõ¯-é·{dþ|Ë”U5\Ui¯¸®]OÚF–¶¬t} …[Vz>…ßåÓƒÉ_ƒ™aё˴1šà”Ë,•>Î|ˬ5õ)ÜBU³µ³šÇ.d6 ¹iT¼0àÜ Ðz è+MݵÒÓÔ|+]M½¹Òפy(,©42õ¶J#Û7·5_Fv`°|/ùÄ›\·‹žÃÛÏßæ€@IJ ”⤀ÁΙ“x¦Az• %g)ÀPj—%†)QZ™%¥)@QJ›%Ä)€Q:%ã)ÀQ*Ÿ¥ž>À ¥’)ðp/“½/ƒEÁG¶Ëçñ²”g§qKh½BCÝÏßæ ÒΓÈ(•v­ SIÛÊ8•ò­ T ãÊH•n® UÉêÊX•ê® V‰òÊh•f¯ WIúÊx•⯠Xʈ•_ |ȇy€fªJoW¦ê^p1^©z`Æ|/s‰\š¬Ÿ-ëõh7›SŽ=¿ÔÊ=ÿLIöú0EÙëÇ”e¯/S˜½þLi6>˜âlü0åÙøb ´ñG…ÏødŠ´ñË”iã›)ÔÆ?SªŸì/Lm6^˜Ú|+^Ú|`Ñ|/î–ª´\q{?›sÔ½3gÝû;sؽÿ3§Ýõ9î®Ìyw}a`ësâ]Ÿ˜#ïúÅœy×7æÐ»þ1§Þõ‘9ö®ŸÌ¹w}mq¢ü a.¼ësáo­GŒ…?0n>NË€ó÷Ï^ ðÒ”³Àæ» ^ú¿•ïæFôØÎù<^í]žeÍ÷V=^vó·Åü²¿Õü«ýÕú¨;Öú©yÖúª·Öú«õ>Ô™ ?jÜ…/õõŸÚ~áSªñ+Í€ð– @ôKmà‡CÎ1VÔ® +û~ý¬˜<Ÿ‡J[¨Ëˆ×X¯x½l7{›vnicÜØ%œqß—ªÆ² ÉUCz‹ŠÄ:Ö)y,I’ùX±¤² I d½“zÈr(i‘ÕRº#‹éj.Uj­tÞÃÒ#…•g/ñÝRx¬ŸÏƒ£ÁCˆ%Šg¾$õ½ž»M4P:Y¢Ôu’HIïä˜ÒåIA%Ú“¡JÑ'•ÜO~+/€ô×у`ÇrHže1[Ë õ–9Af.ç‚htÈceÆî}€[Xì!t¥Ýéy¨äŠ$¸zî6õ”1³åó^:R¯ V¯úY¯(Ú]¯7ºa£Ͳ±‚^ÚHB«mœ¡7 Ѩ£èã`´ùÆ7T€';šbƒ=ñ­à@K|d@G‡Ã$åÚGWw“·I¡ò¦ Ë[6ô-o迼ÝCs1€xæRmÍ…Ò›Ë ”9!w.QÐõ\À û¹¼AtñƒhèÒMñ í€Ä溅íÖºíÈ<:³w,åPAþ÷×!v“·Iï6£ƒn¾µÜlbºÉ"Åv“IŠñ&›ëMF)曬Rì7™¥`²K³Àd˜f‚É2Í“i™"Û;³â!R(Þ› R¼¿• B¼ÿŠ¥”éK;|ô”þæ/¿ù˃”¯§¦Ò÷¾æ•®’‚±| Ž*®2X˧¼åÉ 抳‹Pqâh#îÇÉGÅÁH<ÚÚVÁ`må*)X,N]âÑWÊd0™Ïl2¸ÌG:læŸ >“*£ °úh‚À|b’A`û.›A`/;Ű[éÓˆ±¯Ô”û;—DYìfps>Ÿ*3¿Ï'™™ïçƒÎÌÿó9hæú˜4ó}Ššù‚>dM]ßg°™Oè#ÚÌ/”.¨|Cé†Ê?”®¨|DéŽÊO”.©|E龃¼AŸ¾fÞà^Ç{5bzË—Œ¥ˆYæâ”C4—¼s¹ŸÁÍ1 RÖ*å]1¢Ræ3*å^1¤RöS*å_1¦rs*ç@1¨r“*çA1ªr&³*çB1¬r6Ó*çC‘³ô1Œ5•S XÓ½SðjÄ0ÕôÀZ:¼;·Ât‰·´ŸÁÍaÃ1ÃÐöcV+„0ãXAÄLx…†l0,Ùa˜²İe#ŒaÌF µF#”aÎF0Þp†AûÀ°è'{ Ó†'ß‹f'˜K'3ÍíµîÒ~7Gš{gä¹wyF¢» 02ÝU‚‘ê®"Œ\w•a`€«#Û]¥éî*ÆÈwW9FÂÛ]bd¼Ý%FÊÛ]bä¼Ý%FÒ?á1ŒhwUbDû­UI íöÒ Ä kþÒ%RÎn·2îj)7jµ¿´Î dò—VøÕö—òK+µ¿”Æsí/­ð³í/åg kiÅyûK+^¶·¿´‚gÙ_ZyµIþRϵ¿Äˆ ûK+^œB>"&ÿÄ¡ö—V¼µ+óÍ/û-ÇÓ Äôp$Ë­€¥¹àøç~·˜a5½\7Å\!7Í\A7Õ\a7ÝD€›r"ÄM;䦞sÓOZ B-ÁÖp+À¿õ|<$õ£Å <ѲoàïAËÅt,-žÎqèá ûºž¿Mû·…4lï–Ù°ûû6Šƒ¯¡vø>J‹/¡òøF “¤AÖ- ‡,k’Yõ$:²(J’dÍ”`É’*9“WJñaòÝ"Àr¯ÞS~L¦ðhú"—wÜÇKt—zö6B©ðä‹ÒèI'¥à“mJß'•úO®*o€TVΙ®|aG‚'Ë“ –cA–-?ƒ$\n9º¼âA.Ó!£•‘@B»7îá³6Óx”ÿìPŽL W“Ýìmê0cnK3_úS¯ ÚW¯º[¯)š_¯8zc㭳тÎÚXw4ÒЗ‡hÛRtõÆ0š~#šÀ“Ý-²áù^x A>2šÎà£<‚²¿Â¤ÞMß&ÍÊ[3$-oÜP¼¼­Có¦½Ì%rš Ô6—ˆq.6Ðê\Š å¹PAésƒè"Ð÷i!#ú²-TÆcúAÑÍÕšÛ­Õ…’Û‘ÕtjÿÈmMWn.¦-ù2‘Ö™¡‚ûr8Dr߇†îk唨}霼ï¤S¢÷•uJøq£\x‡÷áaÄuy´¶q›C\¶‡wñiQèªþÎÂxŒHú¾îNIÿVªJIÿKfSúœ¯.0e³é¯ÿø vë©Ýô½¯©ÍM…ç.HæÂ%µPJ²R“ª¤+5±JÂR“«¤,5ÁJÒR“¬¤-5ÑJâR“­¤®¶Jê+»II_­ãÝðüªš|%…IP’˜D%IDP™d%sU7¯™Ì¥¦[É\û¦›É\/»Í`®»é bp©®²›ö3¸90OB˜õ$”)pOBšù$´)°OBœý$Ô)ðOBž%ô)0PB ý`ýž ã¹!4ýñÚf?VÄÀCIÁÃ@ { Ü {/GŒõÌGvÓ Äàé8<¶^q g?ƒ›s9ýÊs;ýs=ýFõ^Ìõ _Ì õ`Ìõû`ÌõóaÌ%õëbÌ-•¡\S™Ê=•™¡\T™ÊM•"„Ènz€æŒúá0æŒî̓W#†1£vÓÄàI¹r»{¹$¸f7ƒ›Óc†!öÇ àíÄX!¼9+ØÄÙnb:±í&¦Ûnbº±í&¦Ûnb:²í& ¶›˜®l»‰é˶›˜Îl»‰éÍÇ{ŒÒŒm71ÍøVÄ(ÌøÀn:\~ñìÜrA4À~7gŒÛnb¹í&f”Ûnb†¹í&fœÛnbºí&>ÝÏñr®_žÃƒ”¶›˜Án»‰í>tÁ wÊ`Æ»m0Þ‡:˜Ìc”™OÐá¡ù[«’"Óì¦3{ Ž•ãYÓ+žBÞÏ`žŸBðâ`R¨ß¢[zP2lZ`aûàS÷õÁ¨4në÷èXÜ>X•Æsý"Ý‚c4>˜µàyÜZÀ³|°káu,üJã¶~–Ža>8¶àñU!äb:<¼¬ƒV ^½¿•ùvù¹òc»é bJ=êËA«i¸BÜÍà3¬¾—+྘+ä¾™+辚+ì¾›p_N„¸o'‚Ü×aîû‰@ëD¨u زnÑø·$‡ôžc´¸‡'Zö=ü=h9°›Î´IHÃâ ¨W>õümÚ¿­¦a{·Ö†ÝßJŠƒu:ÔŽx¾®”–x¿ÇÇ¥¢0YDݲzˆ²fmUÏÊ#Š¢uIÔL«–(©Ö4Qq% xʮԟ½ xOù9°›NUŸò‚Uyâ!_”¼Š¯X/!´¾h©tÒB>ئe~Q›àª¶€@`º¶@„Æž,k‚4ZÆY¶l ’p™äè²DˆÙM‡ŒÖ~íÞO¸‡ÏØM'àÖ§)wgÓ‡÷²Hv;̘ÛÒ€ÆÌ—þ4Ö¥0’XµÒÝÆš.üÞ¡ê…¶Î~µßHDãíÑ—ûuE´í~z]½ßeDÓïGAƒŽw¶È~ò­ð`ƒ|d7ÀÇØÏþÑÝ!î¦o“få'F!iùýQ(^~œ‚X¼\Zô²xÖ´Èi~ój›D…§bC­N¥ˆRž •>•1 *rÔ U)#ª@Re<¦ÝT]¨¹ÝZ](¹ÙM'ð1» ?º½‚}ì¦o“ .nG‘\̺x¡$vÑFI𢕒èM _´T¿h«,ÑZY¢½²D‹e1ˆ6Ë‚­¶EAÚ½·0žIú¢ª’ôo¥ª”ô¿ô\^¢ÖëûMû÷òõÔlúÞ×Ôœ¸ˆ4ùVÞÿõÏ·21J ”¥Ô¢*qJ-¬©Ôâ*±J-°­Ô"+ñJ-´±Ôb+1«ubµÔ¢+qK-¼¹Ôâ+±K€½$(ñK‚Á,Ò0!+©„,µÜJÈÚ·ÜLÈz2u`6ALybðfÞ4y?ƒ›ƒë$ƒ)ØN2™‚ï:§!"O2›‚ó$Ã)XO2‚÷$ã)˜O2Ÿ‚û$*ØO2¡‚ÿ$#*P2£‚%C*XP2¥‚-D ƒø$ë)ˆo/ë½1ÕÌGfÓÄyRÍzÅ¥Þý nÎÇ´ÙÄüL›MÌ×´ÙÄüM›MÌç´ÙÄüN›MÌ÷´ÙÄüO›MÌ(TW›M̵UÁüQ[Ì'µÕÁüR[!DˆÍ¦ˆQÞ§Í&æ}î­ƒ#FqŸfÓ Ä ‡œmíËbm61…×3L©ß+À_¯S~½‚Lö 3%Ø`Šp¤ {1…ØcJ±HÙÑeʱÌd#œ)Éþ0EùxQªpä!Uø^Ä0TøÀl:ÜjšKmZ®¥ØÏàæ¬o`¸0+ÜG˜%î# Ì÷‘f‘ûH³Ê}äYæ>Á¬s™`ºT0+ÝG.˜¥î#ÌZ÷‘ f±ûH³ÚyŒ²Ë}‚Ùå·V%E—˜M'3•üŠilËAˆ+ú±Ý "í¾©Ì¦~np¨FÇ–æ”LÇšæ/+ëØÓ´‚ ëXT•Ù”Ç}e6åq[™MyªÖÊl*SW™My<ÕǺ&ÞÍÒ±¯œ$\™My<ÔÇÆ&¼5ëžì#bÒoÔUfSþŽöƒÙôrÄtj ™M'3–4¤q*öätÙÏà3¬®—+஘+ä®™+讚+ì®›pWN„¸k'‚ÜÕaîú‰@«D¨U Ø¢nÉø· ‡ÕžC´¸ƒ'Zöü=h90›N€¡YC¹Ö?_"÷Ôó·iÿ¶–†íÝJvëp(VéP;¬á¡´XáCå±þ‡ÂduuËÚ!Êš•ET=ëŽ(ŠV%Q3­Y¢¤ZÑDŵ\|T€,¢þìåÀ{ÊÏÙtÅGè kÉÑ)Wñ«Å „–âÁ-ÔƒNZÆÛ´È2j \5B” •µ}¦ksDØÖx² ÐhÛ`Ù65@Âmy€£Ûl61ÚÈS*„vï&ÜÃg̦ðÀC­]y+m¼B–ÛÍÞ¦3æ¶4 žyô§^´¯^5t·^S4¿^qôÆÆZçÈÜ*¿€±„ÆÛHC_n¢m7JÑÕ Ãlú…pjOv´È†:ä{áùÈl:ƒ"©$j–ñqÅÍÙÝômÒ¬´5SÒÒÆMÅKÛ:1múÔËT(§©`PmS9¡§bC­N¥ˆRž •>•1 *rÔ U)#ª@Re<¦ÝT]¨¹ÝZ](¹™M'ðÑ aFæG®iÅ>¨‚‹ÛQ$ó£†.^(‰]´Q¼h¥$zÑNIø¢¥’øE[eˆÖÊ"í•… Z,‹A´Y„hµ- Òî½…ñLÒU•¤+U¥¤ÿ³©Ÿdo0›~ùÓ~þóÇà¯'fÓÓ/8zEïŠK*ÈÎê'ôNÖêgô¦HÝJ^Ç„®4ÜxS^W¿¢ëE˜W¾&ưTm‡–ßWbÀòû¢Œ K[ÁaiŸzT=¤‹ Š‹+̃ƒÈZFŽè† âÌrá𦀸dyÓøû" ,§OŽŽK£÷‘ÂÍkІ °œ’ùÀ>ú”4sxÙ¸(3¶1noX h!Š/ŠÞ…˜¾l~cƒ†x¿4*J¢ÿFÅ•W!Ò1å9ú±ƒF3yìð58öÐ÷C˜Fˆ(.ÄŽ”CDŽ#ØbDZN£¯0Ðä›ßm8vÇ_…Rás`äCè¨ð7` ž±Ñ›#9b9Ç k‰ÈÎqÂç ¯§¦ÑÊQúeFr\Ä€æU‹ˆÐq†vøÐq†²hÑqaé*±£iT\D’Žd·ˆ+8 xL8Šß€˜ÓqU:æï0€¼Ðôó‹n¼Ð<Ùë-@\hž§ϧ1PNP³¿„¾V3¶1…׳Yz=Óå³ëU(ɾ^¡áÕkø}M¤kÕ‘$,D eXhA±„tb¡ ÉÅB R…N$ ¹HC>Ú, :ø> 98ýôG¦Íç1ÿ“SñøæK<¾jÆ6rkWEX·v\yk7FÈ·vj€kG8¸vx¼ð¯Ý¡âª WÕ@¹* ‚ÊUmb®J„€sU)„Ÿ«‚!ýˆ E\µ)â÷Õ„ˆç³Ø0ç00,åúÆxÅ‘ëjƶ—‘W¶ïü}iÕó.“Ñ7FDB‹/$u+w…‚²ôIæÓnÌtfwyÁ(!7§‘4Þò¿Ã!ò[ï«1Ð7‚_Šô{?òK>‹¥¸°m9…xÍK_ÕŒmÜUóÕÕ;n>à:z7ΫÖ{§Î«Ýyï:ÝÉÉBö×'ïþ]«Ë¿¹2¤Q3»jt -’RQòÙåÑÕ&'Í®DiÄgÊEÊ…öÞæ—6Zª[;×!òïkAúù¼†“÷Ž®ùþÒZ‘ðÀù,æòÎ[S^ŽÛ $«zÆ6²«ìµ·f^i;¤°²v¢4X[ƒÙ\;É£*·ó&Y!åˆÅ(m»¼p0Bø{ô©SÄŽÌÁ:[r0Òv„ضšG-FY¹ Ó3| Lõ¦ï¤ýQîµ¼ýzNˆxµÎÇg10Î}È–Wœâ©glc—åÙÄßšiÕ*àf·V¨tu^½•ß7D7¨UG§(D ‹ZÐa IÌî ÊЙ èZ…Nt´B.ºÝ£}½¡0€Þð>  7 ìíÏ‚`(®^o® …õ”m”[´­BŠÑ– ™FÛ1$mÕw´CúÑYHÛ?$#•ÈI*šTR C©Ü@¢R)‚|¥2iK% ²×!€H¤b‘è¾b‘¨{ŸAWzîW°ÂzÊ6ê®âWÐdŽ ×Š—AËgƒÎ+> X\ú°x ´cqDèÊâМÅ-©G“wR«&'¥Ž=úûúವþ}¤‹B-¾B-îæ/܃鲦‘ç¤6&þöŸÿf—ðÃD©'¶Äó¯xàKdº^ò1b˜Ô€0¥IýCœÔì1ãI # Ô&2!J=$¤Ô`2_JÝ'ã§§O•t*õ­ ¯RSËl+u¼L¾R;Ì\,õÊLÍR#ÍL-錙 è1eJ])C¦öm) ÷ªžSfÅYd“}™®xý¾ž¸M9oR{˜')ˆqƒ3Ë‘˜/'…‰és’Ÿ˜M'mŠÉu®˜k'U‹©w’¼˜‰'=Œ‰y˘§'%i{’Ù˜Å'Õò#2T'ÍŠIu{ÑêµÈ$Ì=²0>‰ {…¢\ópy=q›ò!Gç–ôH ÅÌ–”ŠÌäIIÌÌ¥”þÌÔJ‰ÓÌ´”rÍÄKÉÚÌÔæÍ´L âÌÒ”ZΤMIéÿoç®$ÇqQ__³ïÙuéÈ”-ŸòÔ2øÿ†vêdžîæn‘3ˆÞvD€«uoæ­®gsöP:ÂG i|U„Ë&Ú!\î#íŸU€ËÉ`ãve0Ù×s^?Ž ãnn)VÖeM$ÝEIë–¬uÃÀÙºÀnÝlP¸JP®B£«Œ€ì*2R6% W‚ïU¾À}7èßù™WeÆ=Spq'ãŽ;•ñ:~|9‚¾³[¸¥4jbXÕÔ¬=Æá\{ÈCÁ¶Àȶ@ðæ¼å¾¶Åú¶¥6·… r·e ®·E ê·%&¸bø¼Ï€§m5§}f5§=‚Ü© ž=;zº]¸¥{Û7 ÷6wܶ²õþÛ^_Ù´Ÿ?}^‡!\ô²åü\urýée‡ŒÕZ"ã;’M«û0à6Ÿ?}^g"Ðl¢†«¾QÆ5I\;ЇñRû™èõ®Út4r»2Æ'Ü?äM‘ÝÂ-.ke=v³[/Ú ‹QÍvÖÅf³kq#…úߥæ82ªsŽÈj«#Ázî´†<ò­[¸kå#ýF#3eÔG{c|†2&“Û•ñ441:ÐÇ#¾EÚ-ÜÒ£¸Sê¦Q9ÆUåoŽ•Ð+¢ XÊGã±—fg)= ÖR˜šº¥l5’KQk^—’×0/ñÑîg”Ë&§³jÒØ,ÕdŸ›QM&c”›•ñ>âS®†òÎÌná–¶oÍ£ÓÜ5¬Në×$;acî´ÍÀÓT6 OËÙô< i£õ´«’ÝhfʧÕmbŸF¸q~Úäfýi¢;(';s•YÚT=è>V?£ WnVF&l˜óp1t·pK-ߺ¬?3p­*×z¦2p­³‘ËÍÒ¸ZÕë{ A.G”“íÊ-͉<‹I‘<©É˜<ÇI <åɧ¬¤WV²-ëÉ—Õ…\ÌÚCjfe"S³n‘¸YÕÈã¬y¤uVD²¼y£AÔe9!ê:³œuÍ17KcûnÙU G¥ v„Ë6pD϶wÓ6ÄÖ¶†„Ú6ŽDÞ¶•â6Ä嶤„é6¬Dí¶³ âÛì&¦o+œÿuý½—M½|' òq{Pòñ3{Pòñ_Ï\›”Ï¿æ—ùÌ~ß}5R Ó_ hþæ—ü)‡oÈWyEŒ á;ÐG^ǃŒä]=þc½È7zÎõ–ßøFh½8¨LëýÀ̽l˜MÏ››…ù´^;ozz'^”¡Iy›Ö”W!Q59 œi{el°™¼7šiïCfú! Ì4Ñܪ ߯åëòvÀé´[º¥„4oäÂOóº.t5ïòÂ^ó¢/d6oÃmóŠ0T7ï'>ïåbˆpÞ<†×€.4¹ÆwaÍ5Ü ‰®Ñ_8u C±kÞú6ƃ_Þ+†ñ¶OÕ~XÏ¿ÒÜ¡ °HãNÑÛûï}o—n)]±AvØ‹¹Cflnc#òP ‡ùØx=DȆïáE6šM²Á}X“õC¢lèNeG¡Xv`ÆeÇ C§4_µ²Y|øû,þ‡µr2¦¹]¸dR”·§#nœn—n)˜u]X"t—}üc\7e _×-oú»¡àbÝn²Q  f• Z…Ä_O™‘÷)B·J®«¼çÎÏ Ð²j´ì©Ú€,;ÔÜ®ðîGÿzD¶¶[º¥LgdˆÏ×ð =Ì¡E{ÔÃ’¶@š¶Lð\»EJµ%†µµå þµ“èØNj`g;©¬í¤îö¼ß€JmMáËï3kJ Ô“QÍíÚxYüõ½°kÇwÄ|w»tKðÎjÀÅ;«&ï¬Ö¼³PôÎj Õ;«dÿ²áØ?of5ÃF;«ù¯‹;«ù]³š‘¼8«ùüée3«]à¬æc<T1|ÑFöÎj ÚŸÙ‹†g?ÖÜ®çñýÂõ>Èõ}Ÿ.®î–nqak3³ì5¡Ù”ZÔlY ,ª½e»5¿ˆAkŒT4ÎI[Ì4݈PKŽD5ìX;¼5ûˆ¿!ÊL:e´±wʧhc2®¹]Oϼôtýñùˆ×vK·ô@6â¸6»â0÷+Žz?s¡ø eÂ]("~éB‰iÞ–Ô4.å©Y]ŠW“¼”¶æ|)|MS›¦h6{Õ¿y¡¦ì¶SjÊd`s»6ê÷u|÷t9"ߨ.ÝÒF®¡vÚ¼FÞiˆ§El\ž²azÚËFíi>ħ5mLŸÆU8mm#þ4½¤%îx s‡i§;Z(m:›Y/Ú\>½è>—?¥ŒlnׯÃ81^^‡6žÈ7¶K·Ô® Ë‹‘.û0n ÖÒ-Ãxº¡ØR·Óª°´Jë°ÃÊ,ø‡Š+­D1Ú ®¼1éós«6ð°§j;ÚÜ!ŽñÇ>K"Ÿgëa‡É‘'2¹’ç5©“§9™”g=‰••€<Ë:AÚe! ³Æ”YÈѬO¤lV/28k Ÿw’ßùí'éÞ´áHøeQ!ü:³¨$üšmîÇÓe|Y{`2êGµDÎ~£L íÌÄÕ~ÝL˜í§ÏDÝ~MîGÓÄäëÕ#D_?·ûú-öà×µ‰çýŠ›ðÞO¼‰öýþ›à¿‡oÇߊc¤æ~iMj~f7šÔü—7c»þ<¸ù÷ÿù¿ï€F1¸ù›_2Ü1: ¨†(” :Í@„êCêK ‚¨6„¢:ÜŒêÃ7ª;þèeC?z]7'½HÈïcÖ•‡¼TÏ.S}¨Mõûa:5H æhó/”£šå@Žöf9Œ£’`G“ÁÍ­Ú#3þ­óüËv閲ƚP…DÖü*œ²¦[¡˜5û ã¬ÉXhÍÍÂGkªzZ3·°ÕšÈ…¼æ{2pÙ|ljÛúÍ0éë35Ãîú† ½7€ýª hi ÙBKÛ‡l?­&Šß nnׯûx5…¼ñzåné–r }j Š¡ï0Á8ô‘&^‡ô'øˆ>ï=Ñ·Ÿ`+ú0äE_‚Ëè“RP›ó‡éØ)@ˆ„Ù Bh‘/D Ü|Õ¤EŒ‚´¸çX€'ƒ›Ûµq˜Å÷Ñ_y&b»tK§ëÂ’¨»ì<ç¦ðV [ö0tÕÁ àU7`YÜ𖪃®n¾:¸!úsp,ÖÁ (Y7€fÜ€¡ž´:¸Òz¦6Âh nnׯëøÎ_žŽ#ø:¸Žìàv²ƒÈÊnà.;¸Êìàf³ƒž>_ŸãcOßã!A™ßCn I{ëδw P{cFµ÷ XOûð×GÆÆ{ÝgÖ”à'ƒ›ÛµÁSÅBŠß,ÝR´º7p¯{?,»·w ¶{·¨»7`¾{/$¼·† Æ{§ ¼7ŽàÍ{ ½·• Õ{— ˜½7Àxê}œ?¥ nîÐmŽšòötœOéà&p]X ¶.û0ë¦ k¹nÙ0žë†¾ç÷¾lLkÅKë+w^ŸÀÃû>^P }<+íËzmŸÝÆû&&}znÄÃúÀöLmÄÃÎ7÷Wq<Ž›©‡à[vk·49òíHr%–$uòÕI2©õIÊaP×÷*Gžåc–¤]¾tIÖ“¤¬(9ZëSR¶V¯dp­mIèZù’ßµ.&Ý›6 ¿ZT~YT~Í7·‹ãa Á¯Uåçvk·4rn+—@º^âê¶ ³Û$&ên ™ \ê-1yÛÏ„èmN±·uM߯¶ñ|ÚÞ†÷iŠí¿®¿÷um¨wcyjÞn4©ù™ÝhRó_zíS-Ÿÿß n~Û½‰V<Ð_Œnþæ—üä77êÔ…¹S¯$Ohˆ=õ©úÔņ÷SPphAõÇ ½È¬¡zë ˆê¼C*ª/Ǩ®=”£zú0êøCH2J´Š0Ì Úå ƒöv9Ä a€A“ÑÍ}Úpts9àìné–’»šQ…ëÕ+Ô¯¹oƒ Öô+İfcá‰59 m¬¹ZXdMÝB*k&ŽY»PΚç…Ö´/„´fá§5) ]Íö‹6`5f {l³ý°6š)~7º¹[#¤;äßíÒ-¥þ9º èèb £x‚Žn  :ºEèèR¡£8†Žn ®4QÝ@Ht?Ñ)tEg°0 G7ÖF¸…ŽnàîãùŸÕF°…“ÑÍ­ÚèWzïÃ]£ú£ –Žn†º°ÉÔ»ìÀFÝP¤n R7Œ©Û ät¥¿¼ì¤ U!OUf„Šôª̪€Á¶*o ®Ós#ÈÓ•3§§jâédts¯6.£¦<1ºÙ-ÝRÖ°³tHÄNÚá;‡‡bì”Ʊ3|ÈNøá#;ÿ‡žìíØÊÞ€¼ì͸ÌÞ;€Úì­˜ÎÞY€øìxÐÓ~#´d¯@K>³¦–<ÝÜ[SÞÞ®nùéáˆ(e»tKAåÞÁcî  çÞßîíéÞý îÍ ë/¾úã:º žÝ;GÐÛ½‘ÜÝûJ°ß½ÍÞ»Nã½ X^CôE Ö½FiýÌ^4œõÉèæŽscœ¯ã››ÇCÎíÒ-.lf–½>4›R—š-«‡eCu¸l·þ1莑ŠÞ!鬑™¾êÊ‘¨žëè‘·~ñ›¤L´¡YF{³|Š6&£›;´1Þ; Nàˆ^t·tKd#*Žk,sã-ŽzÃ/ ÑeÂàŒ"b¬F‰1t£ÉQž ì(^Æy”6Ã> ŸQ eÑ ¢i;©)¦lÔ”}ÊvJM™ŒnnׯûàÌ?7ð°j{ª6ð°³ÑÍíâH«1>õ}8âáˆÝÚ-MŽz"'WêyÔ©§y2©žõI¬Z ’gµN$íjIÖ“¤¬(9ZëSR¶V¯dp­mIèZù’ßµ.&Ý›6 ¿ZT~YT~ÍF7·‹ãeü±ãK΃ıY»¥‘s[¹ÒmôW· L˜Ý&1Qw[Èám0“·ýLˆÞæ4{[×ðmlϧímxŸ¦¸Ñþëú{?Ö†z7˜§æíF“šŸÙ&5ÿ•ÑÍóÛÀ}ÝüëßþPaÿø?° îèendstream endobj 3 0 obj << /Type /Pages /Kids [ 7 0 R ] /Count 1 /MediaBox [0 0 432 432] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 9 0 R >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000037621 00000 n 0000037704 00000 n 0000037827 00000 n 0000037860 00000 n 0000000212 00000 n 0000000292 00000 n 0000040555 00000 n 0000040812 00000 n 0000040909 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 41011 %%EOF timeSeries/vignettes/colorTableFig.pdf0000644000176000001440000004400112620124746017635 0ustar ripleyusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20101228123754) /ModDate (D:20101228123754) /Title (R Graphics Output) /Producer (R 2.12.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 5 0 obj << /Type /Page /Parent 3 0 R /Contents 6 0 R /Resources 4 0 R >> endobj 6 0 obj << /Length 7 0 R >> stream 1 J 1 j q Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 160.63 397.45 Tm [(T) 80 (ab) 10 (le of Color Codes)] TJ ET Q q 59.04 73.44 342.72 299.52 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 82.49 331.40 Tm (0) Tj ET 66.33 301.00 m 77.13 301.00 l 77.13 311.80 l 66.33 311.80 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 82.49 303.59 Tm (1) Tj ET 1.000 0.000 0.000 rg 66.33 273.27 m 77.13 273.27 l 77.13 284.07 l 66.33 284.07 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 82.49 275.85 Tm (2) Tj ET 0.000 0.804 0.000 rg 66.33 245.53 m 77.13 245.53 l 77.13 256.33 l 66.33 256.33 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 82.49 248.20 Tm (3) Tj ET 0.000 0.000 1.000 rg 66.33 217.80 m 77.13 217.80 l 77.13 228.60 l 66.33 228.60 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 82.49 220.39 Tm (4) Tj ET 0.000 1.000 1.000 rg 66.33 190.07 m 77.13 190.07 l 77.13 200.87 l 66.33 200.87 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 82.49 192.79 Tm (5) Tj ET 1.000 0.000 1.000 rg 66.33 162.33 m 77.13 162.33 l 77.13 173.13 l 66.33 173.13 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 82.49 165.00 Tm (6) Tj ET 1.000 1.000 0.000 rg 66.33 134.60 m 77.13 134.60 l 77.13 145.40 l 66.33 145.40 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 82.49 137.25 Tm (7) Tj ET 0.745 0.745 0.745 rg 66.33 106.87 m 77.13 106.87 l 77.13 117.67 l 66.33 117.67 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 82.49 109.53 Tm (8) Tj ET 66.33 79.13 m 77.13 79.13 l 77.13 89.93 l 66.33 89.93 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 82.49 81.80 Tm (9) Tj ET 1.000 0.000 0.000 rg 95.18 328.73 m 105.98 328.73 l 105.98 339.53 l 95.18 339.53 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 109.12 331.40 Tm (10) Tj ET 0.000 0.804 0.000 rg 95.18 301.00 m 105.98 301.00 l 105.98 311.80 l 95.18 311.80 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 109.12 303.59 Tm (11) Tj ET 0.000 0.000 1.000 rg 95.18 273.27 m 105.98 273.27 l 105.98 284.07 l 95.18 284.07 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 109.12 275.85 Tm (12) Tj ET 0.000 1.000 1.000 rg 95.18 245.53 m 105.98 245.53 l 105.98 256.33 l 95.18 256.33 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 109.12 248.20 Tm (13) Tj ET 1.000 0.000 1.000 rg 95.18 217.80 m 105.98 217.80 l 105.98 228.60 l 95.18 228.60 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 109.12 220.39 Tm (14) Tj ET 1.000 1.000 0.000 rg 95.18 190.07 m 105.98 190.07 l 105.98 200.87 l 95.18 200.87 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 109.12 192.73 Tm (15) Tj ET 0.745 0.745 0.745 rg 95.18 162.33 m 105.98 162.33 l 105.98 173.13 l 95.18 173.13 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 109.12 165.00 Tm (16) Tj ET 95.18 134.60 m 105.98 134.60 l 105.98 145.40 l 95.18 145.40 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 109.12 137.19 Tm (17) Tj ET 1.000 0.000 0.000 rg 95.18 106.87 m 105.98 106.87 l 105.98 117.67 l 95.18 117.67 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 109.12 109.53 Tm (18) Tj ET 0.000 0.804 0.000 rg 95.18 79.13 m 105.98 79.13 l 105.98 89.93 l 95.18 89.93 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 109.12 81.80 Tm (19) Tj ET 0.000 0.000 1.000 rg 124.03 328.73 m 134.83 328.73 l 134.83 339.53 l 124.03 339.53 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 137.96 331.40 Tm (20) Tj ET 0.000 1.000 1.000 rg 124.03 301.00 m 134.83 301.00 l 134.83 311.80 l 124.03 311.80 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 137.96 303.59 Tm (21) Tj ET 1.000 0.000 1.000 rg 124.03 273.27 m 134.83 273.27 l 134.83 284.07 l 124.03 284.07 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 137.96 275.85 Tm (22) Tj ET 1.000 1.000 0.000 rg 124.03 245.53 m 134.83 245.53 l 134.83 256.33 l 124.03 256.33 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 137.96 248.20 Tm (23) Tj ET 0.745 0.745 0.745 rg 124.03 217.80 m 134.83 217.80 l 134.83 228.60 l 124.03 228.60 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 137.96 220.39 Tm (24) Tj ET 124.03 190.07 m 134.83 190.07 l 134.83 200.87 l 124.03 200.87 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 137.96 192.73 Tm (25) Tj ET 1.000 0.000 0.000 rg 124.03 162.33 m 134.83 162.33 l 134.83 173.13 l 124.03 173.13 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 137.96 165.00 Tm (26) Tj ET 0.000 0.804 0.000 rg 124.03 134.60 m 134.83 134.60 l 134.83 145.40 l 124.03 145.40 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 137.96 137.19 Tm (27) Tj ET 0.000 0.000 1.000 rg 124.03 106.87 m 134.83 106.87 l 134.83 117.67 l 124.03 117.67 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 137.96 109.53 Tm (28) Tj ET 0.000 1.000 1.000 rg 124.03 79.13 m 134.83 79.13 l 134.83 89.93 l 124.03 89.93 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 137.96 81.80 Tm (29) Tj ET 1.000 0.000 1.000 rg 152.88 328.73 m 163.68 328.73 l 163.68 339.53 l 152.88 339.53 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 166.81 331.40 Tm (30) Tj ET 1.000 1.000 0.000 rg 152.88 301.00 m 163.68 301.00 l 163.68 311.80 l 152.88 311.80 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 166.81 303.66 Tm (31) Tj ET 0.745 0.745 0.745 rg 152.88 273.27 m 163.68 273.27 l 163.68 284.07 l 152.88 284.07 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 166.81 275.93 Tm (32) Tj ET 152.88 245.53 m 163.68 245.53 l 163.68 256.33 l 152.88 256.33 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 166.81 248.20 Tm (33) Tj ET 1.000 0.000 0.000 rg 152.88 217.80 m 163.68 217.80 l 163.68 228.60 l 152.88 228.60 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 166.81 220.46 Tm (34) Tj ET 0.000 0.804 0.000 rg 152.88 190.07 m 163.68 190.07 l 163.68 200.87 l 152.88 200.87 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 166.81 192.73 Tm (35) Tj ET 0.000 0.000 1.000 rg 152.88 162.33 m 163.68 162.33 l 163.68 173.13 l 152.88 173.13 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 166.81 165.00 Tm (36) Tj ET 0.000 1.000 1.000 rg 152.88 134.60 m 163.68 134.60 l 163.68 145.40 l 152.88 145.40 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 166.81 137.26 Tm (37) Tj ET 1.000 0.000 1.000 rg 152.88 106.87 m 163.68 106.87 l 163.68 117.67 l 152.88 117.67 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 166.81 109.53 Tm (38) Tj ET 1.000 1.000 0.000 rg 152.88 79.13 m 163.68 79.13 l 163.68 89.93 l 152.88 89.93 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 166.81 81.80 Tm (39) Tj ET 0.745 0.745 0.745 rg 181.73 328.73 m 192.53 328.73 l 192.53 339.53 l 181.73 339.53 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 195.66 331.40 Tm (40) Tj ET 181.73 301.00 m 192.53 301.00 l 192.53 311.80 l 181.73 311.80 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 195.66 303.59 Tm (41) Tj ET 1.000 0.000 0.000 rg 181.73 273.27 m 192.53 273.27 l 192.53 284.07 l 181.73 284.07 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 195.66 275.85 Tm (42) Tj ET 0.000 0.804 0.000 rg 181.73 245.53 m 192.53 245.53 l 192.53 256.33 l 181.73 256.33 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 195.66 248.20 Tm (43) Tj ET 0.000 0.000 1.000 rg 181.73 217.80 m 192.53 217.80 l 192.53 228.60 l 181.73 228.60 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 195.66 220.39 Tm (44) Tj ET 0.000 1.000 1.000 rg 181.73 190.07 m 192.53 190.07 l 192.53 200.87 l 181.73 200.87 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 195.66 192.73 Tm (45) Tj ET 1.000 0.000 1.000 rg 181.73 162.33 m 192.53 162.33 l 192.53 173.13 l 181.73 173.13 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 195.66 165.00 Tm (46) Tj ET 1.000 1.000 0.000 rg 181.73 134.60 m 192.53 134.60 l 192.53 145.40 l 181.73 145.40 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 195.66 137.19 Tm (47) Tj ET 0.745 0.745 0.745 rg 181.73 106.87 m 192.53 106.87 l 192.53 117.67 l 181.73 117.67 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 195.66 109.53 Tm (48) Tj ET 181.73 79.13 m 192.53 79.13 l 192.53 89.93 l 181.73 89.93 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 195.66 81.80 Tm (49) Tj ET 1.000 0.000 0.000 rg 210.58 328.73 m 221.38 328.73 l 221.38 339.53 l 210.58 339.53 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 224.51 331.40 Tm (50) Tj ET 0.000 0.804 0.000 rg 210.58 301.00 m 221.38 301.00 l 221.38 311.80 l 210.58 311.80 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 224.51 303.66 Tm (51) Tj ET 0.000 0.000 1.000 rg 210.58 273.27 m 221.38 273.27 l 221.38 284.07 l 210.58 284.07 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 224.51 275.93 Tm (52) Tj ET 0.000 1.000 1.000 rg 210.58 245.53 m 221.38 245.53 l 221.38 256.33 l 210.58 256.33 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 224.51 248.20 Tm (53) Tj ET 1.000 0.000 1.000 rg 210.58 217.80 m 221.38 217.80 l 221.38 228.60 l 210.58 228.60 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 224.51 220.46 Tm (54) Tj ET 1.000 1.000 0.000 rg 210.58 190.07 m 221.38 190.07 l 221.38 200.87 l 210.58 200.87 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 224.51 192.79 Tm (55) Tj ET 0.745 0.745 0.745 rg 210.58 162.33 m 221.38 162.33 l 221.38 173.13 l 210.58 173.13 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 224.51 165.00 Tm (56) Tj ET 210.58 134.60 m 221.38 134.60 l 221.38 145.40 l 210.58 145.40 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 224.51 137.32 Tm (57) Tj ET 1.000 0.000 0.000 rg 210.58 106.87 m 221.38 106.87 l 221.38 117.67 l 210.58 117.67 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 224.51 109.53 Tm (58) Tj ET 0.000 0.804 0.000 rg 210.58 79.13 m 221.38 79.13 l 221.38 89.93 l 210.58 89.93 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 224.51 81.80 Tm (59) Tj ET 0.000 0.000 1.000 rg 239.42 328.73 m 250.22 328.73 l 250.22 339.53 l 239.42 339.53 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 253.36 331.40 Tm (60) Tj ET 0.000 1.000 1.000 rg 239.42 301.00 m 250.22 301.00 l 250.22 311.80 l 239.42 311.80 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 253.36 303.66 Tm (61) Tj ET 1.000 0.000 1.000 rg 239.42 273.27 m 250.22 273.27 l 250.22 284.07 l 239.42 284.07 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 253.36 275.93 Tm (62) Tj ET 1.000 1.000 0.000 rg 239.42 245.53 m 250.22 245.53 l 250.22 256.33 l 239.42 256.33 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 253.36 248.20 Tm (63) Tj ET 0.745 0.745 0.745 rg 239.42 217.80 m 250.22 217.80 l 250.22 228.60 l 239.42 228.60 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 253.36 220.46 Tm (64) Tj ET 239.42 190.07 m 250.22 190.07 l 250.22 200.87 l 239.42 200.87 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 253.36 192.73 Tm (65) Tj ET 1.000 0.000 0.000 rg 239.42 162.33 m 250.22 162.33 l 250.22 173.13 l 239.42 173.13 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 253.36 165.00 Tm (66) Tj ET 0.000 0.804 0.000 rg 239.42 134.60 m 250.22 134.60 l 250.22 145.40 l 239.42 145.40 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 253.36 137.26 Tm (67) Tj ET 0.000 0.000 1.000 rg 239.42 106.87 m 250.22 106.87 l 250.22 117.67 l 239.42 117.67 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 253.36 109.53 Tm (68) Tj ET 0.000 1.000 1.000 rg 239.42 79.13 m 250.22 79.13 l 250.22 89.93 l 239.42 89.93 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 253.36 81.80 Tm (69) Tj ET 1.000 0.000 1.000 rg 268.27 328.73 m 279.07 328.73 l 279.07 339.53 l 268.27 339.53 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 282.21 331.40 Tm (70) Tj ET 1.000 1.000 0.000 rg 268.27 301.00 m 279.07 301.00 l 279.07 311.80 l 268.27 311.80 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 282.21 303.59 Tm (71) Tj ET 0.745 0.745 0.745 rg 268.27 273.27 m 279.07 273.27 l 279.07 284.07 l 268.27 284.07 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 282.21 275.85 Tm (72) Tj ET 268.27 245.53 m 279.07 245.53 l 279.07 256.33 l 268.27 256.33 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 282.21 248.20 Tm (73) Tj ET 1.000 0.000 0.000 rg 268.27 217.80 m 279.07 217.80 l 279.07 228.60 l 268.27 228.60 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 282.21 220.39 Tm (74) Tj ET 0.000 0.804 0.000 rg 268.27 190.07 m 279.07 190.07 l 279.07 200.87 l 268.27 200.87 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 282.21 192.79 Tm (75) Tj ET 0.000 0.000 1.000 rg 268.27 162.33 m 279.07 162.33 l 279.07 173.13 l 268.27 173.13 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 282.21 165.00 Tm (76) Tj ET 0.000 1.000 1.000 rg 268.27 134.60 m 279.07 134.60 l 279.07 145.40 l 268.27 145.40 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 282.21 137.25 Tm (77) Tj ET 1.000 0.000 1.000 rg 268.27 106.87 m 279.07 106.87 l 279.07 117.67 l 268.27 117.67 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 282.21 109.53 Tm (78) Tj ET 1.000 1.000 0.000 rg 268.27 79.13 m 279.07 79.13 l 279.07 89.93 l 268.27 89.93 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 282.21 81.80 Tm (79) Tj ET 0.745 0.745 0.745 rg 297.12 328.73 m 307.92 328.73 l 307.92 339.53 l 297.12 339.53 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 311.06 331.40 Tm (80) Tj ET 297.12 301.00 m 307.92 301.00 l 307.92 311.80 l 297.12 311.80 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 311.06 303.66 Tm (81) Tj ET 1.000 0.000 0.000 rg 297.12 273.27 m 307.92 273.27 l 307.92 284.07 l 297.12 284.07 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 311.06 275.93 Tm (82) Tj ET 0.000 0.804 0.000 rg 297.12 245.53 m 307.92 245.53 l 307.92 256.33 l 297.12 256.33 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 311.06 248.20 Tm (83) Tj ET 0.000 0.000 1.000 rg 297.12 217.80 m 307.92 217.80 l 307.92 228.60 l 297.12 228.60 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 311.06 220.46 Tm (84) Tj ET 0.000 1.000 1.000 rg 297.12 190.07 m 307.92 190.07 l 307.92 200.87 l 297.12 200.87 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 311.06 192.73 Tm (85) Tj ET 1.000 0.000 1.000 rg 297.12 162.33 m 307.92 162.33 l 307.92 173.13 l 297.12 173.13 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 311.06 165.00 Tm (86) Tj ET 1.000 1.000 0.000 rg 297.12 134.60 m 307.92 134.60 l 307.92 145.40 l 297.12 145.40 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 311.06 137.26 Tm (87) Tj ET 0.745 0.745 0.745 rg 297.12 106.87 m 307.92 106.87 l 307.92 117.67 l 297.12 117.67 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 311.06 109.53 Tm (88) Tj ET 297.12 79.13 m 307.92 79.13 l 307.92 89.93 l 297.12 89.93 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 311.06 81.80 Tm (89) Tj ET 1.000 0.000 0.000 rg 325.97 328.73 m 336.77 328.73 l 336.77 339.53 l 325.97 339.53 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 339.90 331.40 Tm (90) Tj ET 0.000 0.804 0.000 rg 325.97 301.00 m 336.77 301.00 l 336.77 311.80 l 325.97 311.80 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 339.90 303.66 Tm (91) Tj ET 0.000 0.000 1.000 rg 325.97 273.27 m 336.77 273.27 l 336.77 284.07 l 325.97 284.07 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 339.90 275.93 Tm (92) Tj ET 0.000 1.000 1.000 rg 325.97 245.53 m 336.77 245.53 l 336.77 256.33 l 325.97 256.33 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 339.90 248.20 Tm (93) Tj ET 1.000 0.000 1.000 rg 325.97 217.80 m 336.77 217.80 l 336.77 228.60 l 325.97 228.60 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 339.90 220.46 Tm (94) Tj ET 1.000 1.000 0.000 rg 325.97 190.07 m 336.77 190.07 l 336.77 200.87 l 325.97 200.87 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 339.90 192.73 Tm (95) Tj ET 0.745 0.745 0.745 rg 325.97 162.33 m 336.77 162.33 l 336.77 173.13 l 325.97 173.13 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 339.90 165.00 Tm (96) Tj ET 325.97 134.60 m 336.77 134.60 l 336.77 145.40 l 325.97 145.40 l h f BT /F2 1 Tf 8.00 0.00 -0.00 8.00 339.90 137.26 Tm (97) Tj ET 1.000 0.000 0.000 rg 325.97 106.87 m 336.77 106.87 l 336.77 117.67 l 325.97 117.67 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 339.90 109.53 Tm (98) Tj ET 0.000 0.804 0.000 rg 325.97 79.13 m 336.77 79.13 l 336.77 89.93 l 325.97 89.93 l h f BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 339.90 81.80 Tm (99) Tj ET Q endstream endobj 7 0 obj 17300 endobj 3 0 obj << /Type /Pages /Kids [ 5 0 R ] /Count 1 /MediaBox [0 0 432 432] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> >> endobj 8 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus ] >> endobj 9 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 8 0 R >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 8 0 R >> endobj xref 0 11 0000000000 65535 f 0000000021 00000 n 0000000164 00000 n 0000017667 00000 n 0000017750 00000 n 0000000213 00000 n 0000000293 00000 n 0000017646 00000 n 0000017842 00000 n 0000017936 00000 n 0000018032 00000 n trailer << /Size 11 /Info 1 0 R /Root 2 0 R >> startxref 18134 %%EOF timeSeries/MD50000644000176000001440000002710512633467257012747 0ustar ripleyusers558180eefa6c8e3217702d7c911143f2 *ChangeLog e7d734b2b9ed799cfd84ece729062d29 *DESCRIPTION 4fe323609ee6d1278bac3bd06f8e5f36 *NAMESPACE 7417a25041ce9a1531aa2dd338eba8fe *R/AllClass.R 527aae7078f17503b2cdecadb9f425a3 *R/AllGeneric.R 347cdf20d4b2289ee4e0d28422729462 *R/aaa-Deprecated.R 1ac4eb24b93929cd2649cb0afe1982a5 *R/base-apply.R 3956992b0f4550d6ceaf6d1c1dc9d5ac *R/base-applySeries.R 968c421f42d0ceb9992dda28dbb92d2c *R/base-attach.R bf75c1900d359d9c90290da4c2425131 *R/base-cbind.R 5d65fb056c9343690527697a20a7dc6e *R/base-diff.R f7bfa27eb8ad29fb4833629df4cb2db3 *R/base-dim.R cc83c20cec8f9f513caa7382f9b6ec58 *R/base-merge.R 6ed798fb2f8a96ddca7221d2efc6d377 *R/base-rank.R 64d35f5496dc0c4190aed8482d1ab8a3 *R/base-rev.R a4ab768410837ac64ea14dab3f463fe7 *R/base-sample.R 9469dcf517fc0cf345f186de3a21ab52 *R/base-scale.R d9f2f8ff41432b93ec19171b0ae608db *R/base-sort.R 3b5d882044aea7a06318630483a58903 *R/base-start.R 668a0499be18f2991b18b43e7e7be9cf *R/base-subsetting.R 787d5636b21ee586692fa57b10271810 *R/base-t.R d41d8cd98f00b204e9800998ecf8427e *R/data-examples.R e38b8155ba182239b14be153ac03f1f7 *R/fin-align.R 35a05ba21a2743468d78e824f64786f0 *R/fin-cumulated.R ee0188b9b207406a9870a19331cfeece *R/fin-daily.R 7927233d883f79c8d7d40930fe6ef2f9 *R/fin-drawdowns.R 29283f111ed012385b7f23844bc9a1b3 *R/fin-durations.R 5d06a2c8bc2f9a895fad418b8705976c *R/fin-monthly.R 5e05b4393f114ed8e32fbb387e4f69e9 *R/fin-periodical.R b7fcc4c21131701e8d0dfd874dbb9bcc *R/fin-returns.R f2dc2572b00b06518008493859833ed3 *R/fin-runlengths.R 5d37cb40e1478469171d33d825395b2e *R/fin-splits.R 2aefc803b5781c629297e053a4e8a791 *R/fin-spreads.R 5dc45f885c86a7205b8d9ebaa8cf7038 *R/fin-turnpoints.R 71580b37ec7a5f795a8fc6aeaa55d4f4 *R/fin-wealth.R c05c98f89b4f32fc376dee43082fd71a *R/methods-as.R 58f5a50dfbf8669c239615e1ccdbf58f *R/methods-comment.R 87157daaf0b0542b0f3ac7b1eca3b043 *R/methods-is.R e8c0ab735915b5fcd9fe02b459b00fc5 *R/methods-mathOps.R f0d67abbc0f53ebae292c8362f622caf *R/methods-plot.R a5f41f60726b9ccd9d05768d43eee84f *R/methods-plot2.R 313a83baf9d2a2ff221fb09c78bc819e *R/methods-show.R 4e252059ec665d2650267d3fc8b8a098 *R/statistics-colCumsums.R 20cc18c6b8815e6fda5f68be71ba4523 *R/statistics-colSums.R 628cf16ba73fea29c0ab4d0f9ba050ff *R/statistics-orderColnames.R 97d48f32243b61df5214da1acb00006d *R/statistics-orderStatistics.R 4e7187c17a34e389652ea79585e69bd2 *R/statistics-rollMean.R 2127cd77fff199b213284e448c4af346 *R/statistics-rowCumsums.R 0f837efdd75d10bdf5288a57d927b009 *R/statistics-smoothLowess.R 33a1b4c62d31f2c5ce6e5741e653030d *R/stats-aggregate.R 8199839fd45182174f57e337f774685f *R/stats-filter.R 8112f5f7ea44d346b2c57c1e76142516 *R/stats-lag.R 96e4b067a6f6de0b52987775e7dcde48 *R/stats-model.frame.R bdcc5381c257786d9c9b9a1f6605c3c6 *R/stats-na.contiguous.R 01bc7ed0a6c38d466544477bec1ff0d9 *R/stats-na.omit.R 5839ff28a0b1393fcac1da98d0d2eca4 *R/stats-window.R 4a48ebb592e0a9b15969544455c90040 *R/timeSeries-dummy.R b6019c6be24f38b69ca42404d3a48a56 *R/timeSeries-getDataPart.R 56489f9b98c52a583063b3bec3841172 *R/timeSeries-isOHLC.R b6b29df5a4e9370f07e51a740ac84719 *R/timeSeries-isRegular.R 41515d1a8ea45269896af20e17c45cca *R/timeSeries-isUnivariate.R 57ef6a985387329f687c7574c91698ae *R/timeSeries-readSeries.R 184369cd20ebaf4cc05464ef17aa00f4 *R/timeSeries-signalCounts.R 7f119d3b77c028a932377092f9a4a12f *R/timeSeries-slotDocumentation.R 3497ade73292c5dec2652335dd984588 *R/timeSeries-slotFinCenter.R b6273b9b8fa478acea3c616ff22f1e10 *R/timeSeries-slotSeries.R 28a6e00cdbf5e48b0548239f137b2370 *R/timeSeries-slotTime.R 4918b16308209845926c89ec171d2bd9 *R/timeSeries-slotUnits.R 5dca5b8ed59e58f0890cb60d45110d01 *R/timeSeries.R 4f24ad3daf9dfd14c6f3b3ca847cb0a1 *R/utils-description.R d345cd583c4d6403b4d45687578922a2 *R/utils-head.R c4d5d58ff1dfb91f1c1db4e742d87c0c *R/utils-old2new.R 2d76dbcbae420743ba74789ec629faac *R/utils-structure.R e83fb0c03a5b5909b6be7103e364ec85 *R/zzz.R 1a16502389a461db7dc9de0ffa16ea1e *build/vignette.rds 08783f26722d600f1d895921a23adb91 *data/LPP2005REC.rda 99535a09b0b8189278aff6d651041d6f *data/MSFT.rda b59874b3fc70b45400dc76a7774bd34c *data/USDCHF.rda 575a9649d181e899167b5b7fd7811c4d *inst/COPYING 29ddc76d19a7435c4101fdbd13ec0146 *inst/COPYRIGHTS df11bf613071e8b06eaeeccab8e9faac *inst/README 68b329da9893e34099c7d8ad5cb9c940 *inst/THANKS 0c711050dac267c8360c6223150e6f65 *inst/doc/timeSeriesPlot.R 618f03bbb6cb368076660795995056a9 *inst/doc/timeSeriesPlot.Rnw 677c8def6192447be6cf3a3a87b891a2 *inst/doc/timeSeriesPlot.pdf 0606ffb4675ae15060bd825afe8a7d16 *inst/doc/timeSeriesRefCard.pdf 00240e3af8ce216961a315a1c0dbeb79 *inst/extensionsTests/aggregateWrappers.R aff0877ae746813721c68f5dce737e5f *inst/extensionsTests/alignWrappers.R 3c5f9513a1dd434ad7681ce52c25496a *inst/extensionsTests/attributesExtension.R 30e3c046e97879e7293ce8cf5397b165 *inst/extensionsTests/chicPlots.R df134f2efe48f0a98c3728ffa6227404 *inst/extensionsTests/endpointsWrappers.R 6ff348d414cad9dba24940f24d066584 *inst/extensionsTests/xtsWrappers.R c6df0a8aafc7cfa9f914919f7f043ff3 *inst/unitTests/Makefile 89dc29af114e6a2a3c80a502b4f4c95b *inst/unitTests/runTests.R 63d0f736e1454c6745cb7aad063ef759 *inst/unitTests/runit.NA.R 94ab54bfea1b4edec5a3b5f04167d42b *inst/unitTests/runit.Omit.R 42504a80169f26a6d37ceda28a269139 *inst/unitTests/runit.TimeSeriesClass.R 8e685661d5ae69c3347782f6ce75d9a0 *inst/unitTests/runit.TimeSeriesCoercion.R 849fa2a5ae5a5b1f6d16e8b86ff3cac5 *inst/unitTests/runit.TimeSeriesData.R 90b7820b07832910daf1afd5dc224856 *inst/unitTests/runit.TimeSeriesPositions.R c132373dac907f3ce1ee549d855652d3 *inst/unitTests/runit.aggregate.R 54e1197ea897c2b1fed028f45cf3e1e8 *inst/unitTests/runit.align.R 3bda0d794fe86888602d8f23414f39f2 *inst/unitTests/runit.apply.R eb8242069cc228fb00172b9acfb35cdf *inst/unitTests/runit.as.R f2dee6d70982efbc28ae37bbb8ee57da *inst/unitTests/runit.attach.R f53b7fd9adf885a7a46bc799570cab6e *inst/unitTests/runit.bind.R ec0eb8243b004d056ddd14a21f0f4e60 *inst/unitTests/runit.colCum.R f3fbf0a01f8c829180b87766b5dae26c *inst/unitTests/runit.colStats.R ecf69175edcff5551790c179f11db117 *inst/unitTests/runit.cor.R 7987dfe562590cc70bec48bde41142c0 *inst/unitTests/runit.cumulated.R 21c034e99f1666e27dcee33d785bb2da *inst/unitTests/runit.daily.R ef380731926ca03e283be11bf34e3f32 *inst/unitTests/runit.dim.R ddf81974440ba5c80cb35bbe6ea5213a *inst/unitTests/runit.drawdowns.R 320bf5c925d2f3abedea2da686730107 *inst/unitTests/runit.durations.R 4fd8879fb2feabc9530501e63a8b72d0 *inst/unitTests/runit.lag.R 776e1aa61e6f1a666fddfa4546e59286 *inst/unitTests/runit.mathOps.R efacc4efe053f3255399912767bc127e *inst/unitTests/runit.merge.R e0352cd00443ed64c2a0004bd4fb3fdc *inst/unitTests/runit.methods-plot.R e6868109cc1c537fea76ac57c333740a *inst/unitTests/runit.methods-print.R 3ad927a3804d96a9736216041a9a87e9 *inst/unitTests/runit.methods-summary.R 18fbd863b2c420249df32513d41dad5f *inst/unitTests/runit.model.frame.R 334271359fb9c749a7dfde8f6608defc *inst/unitTests/runit.monthly.R eb124eec56065e3395c63cab251bcf13 *inst/unitTests/runit.na.contiguous.R c3bf679bb5a7bdd5e3b9df1cf1a0d124 *inst/unitTests/runit.order.R d073d9b64074dc094dff6f987c519288 *inst/unitTests/runit.periodical.R 0965a3517f6e21aca3d18841387b1c5b *inst/unitTests/runit.rank.R a49a96a4356e8deae4b44daedab98373 *inst/unitTests/runit.returns.R d8ba4ac6486f022a81ab101ed8e631a3 *inst/unitTests/runit.rowCum.R d33bd4274e713eb2d401b53feb7c9461 *inst/unitTests/runit.signalCounts.R 9960b28a8601cb8f6f849107cfc8fc8d *inst/unitTests/runit.spreads.R ae94687a209d31a2a430a8a72f759483 *inst/unitTests/runit.subset.R 8c98a57d8736b0515851139c13a08036 *inst/unitTests/runit.time.R 31c51655d159665b6391203a329965ea *inst/unitTests/runit.timeSeries.R 6248adf1d0d955fa3e004f0b28f3434a *man/00timeSeries-package.Rd 32d10029eec44fc9a457e2d6173c6bc5 *man/base-apply.Rd d75ae564861660dc81bc084f1653fa9d *man/base-attach.Rd 1048bd46490c6b2029b61c71bc0f7fdd *man/base-cbind.Rd 3d4a2f0bbfc5f506a49efc98cd256b89 *man/base-diff.Rd f195b5a72a03bda73799466c6c6d986e *man/base-dim.Rd 675054910e7ea90e392d3bd42fd1a420 *man/base-merge.Rd b8923b6844ca9ba5901e1b9a0ce9f122 *man/base-rank.Rd cb0ebfd5e54c1c1715018119d8a96dc6 *man/base-rev.Rd 9aff98951a26c78039a0460ac86c0687 *man/base-sample.Rd a116ae421f883f17bf73aaa0c3303d6b *man/base-scale.Rd 746db2b52b316d282b87f043083ded64 *man/base-sort.Rd 38e596e089fa1c5ce2df7976e6325442 *man/base-start.Rd 5e34b654492922dd0e006879cb283499 *man/base-subsetting.Rd 5d755a5286f21705477f5591addffba5 *man/base-t.Rd 4f3e467bf081831366ca1e0369ee4e15 *man/data-examples.Rd 2ad91c6eb4ca3ef8ba0dac8729d6b0e4 *man/fin-align.Rd afeb766429f352178e001e1e7dce3367 *man/fin-cumulated.Rd f6185fc68ae905186ce19f455eef5472 *man/fin-daily.Rd 396272381c50bb673d52b50d2d0a86b5 *man/fin-drawdowns.Rd 853986be1cadef98f9f9d64c314688b2 *man/fin-durations.Rd 91d84c99a62f5748b2b1d62a71d80a3d *man/fin-monthly.Rd 4b5e4dcbd88e4d87a81838bd340c2c2c *man/fin-periodical.Rd 3009ab0b4d87d84b0970a10a3df34019 *man/fin-returns.Rd 574d92bbd158fbea05cbfc80c2c87df6 *man/fin-runlengths.Rd 98d7cd9755dd5d255a7acc9eb2ee3889 *man/fin-splits.Rd 2a708241ccbd40d08bdb759bdba265b3 *man/fin-spreads.Rd daebb82776472c426440dc7c7a948662 *man/fin-turnpoints.Rd 2fc6c1521ba972b814557fe0b370f039 *man/fin-wealth.Rd 0e7b27cb79b3af2a2be74725d445a4cc *man/methods-as.Rd 6a2463fb908d48fb480a29cf245a002e *man/methods-base.Rd 03b5db3608a32b1871bc0e69d59bbb49 *man/methods-comment.Rd 6161d1e313a72c00546838ba1e274bf9 *man/methods-is.Rd 90f6b4698d478dbac21274def4e98a36 *man/methods-mathOps.Rd 2489ac779b0700d07d925510ba68eba1 *man/methods-plot.Rd bbf01aa4dc627329aabdbff94687975a *man/methods-show.Rd da7db95577645a1b362d399bd7bf7c72 *man/methods-stats.Rd 699c2c2f02a41c219fe1e756397d94c2 *man/statistics-colCumsums.Rd c9a1c2942c562105850fa9e469d88b2a *man/statistics-colSums.Rd 458a0c9baf46d3b06a6f25b8b823f159 *man/statistics-orderColnames.Rd 5939d663a63cda2f0cdb1acdab754e63 *man/statistics-orderStatistics.Rd 99d24ae42af6303597243a7a8d1451eb *man/statistics-rollMean.Rd 62060fd02cc11cc9bd9e6fd184ab4289 *man/statistics-rowCumsums.Rd 38c0ba4b39bb0956956eaa853b1ec453 *man/statistics-smoothLowess.Rd 13d4d104113b172cfe9130c5be851726 *man/stats-aggregate.Rd 09de66ce87e0629c1e0ac32699f242c9 *man/stats-filter.Rd 8d21291071325c69f9db662d8feb56f1 *man/stats-lag.Rd bd37ef634c58f37aae81f7c4b19619f6 *man/stats-model.frame.Rd 24ce47db3079e5392c6ef2f914b15d5b *man/stats-na.contiguous.Rd 924e06894ddce09d54c55fc5151f02f3 *man/stats-na.omit.Rd 7824f782d2221281ae576823ebce34de *man/stats-window.Rd ecf919bd976dc902a6b1a2b71123aae5 *man/timeSeries-deprecated.Rd 2c7fd99eb4af75bf46cd49cb94d0d10a *man/timeSeries-getDataPart.Rd e60dd076effe9e81253ded51a8d32282 *man/timeSeries-isRegular.Rd a78785a2a8c31a4c0c30084e2770364e *man/timeSeries-isUnivariate.Rd b2cb9021ef985bef1204aa12e1ecc914 *man/timeSeries-readSeries.Rd 3d5f21bf399b3010c4a2f78325f67616 *man/timeSeries-slotDocumentation.Rd 74c0786807844404c83a40ae25ab5567 *man/timeSeries-slotFinCenter.Rd 63912e32f8774fbe52cf1cfd685be588 *man/timeSeries-slotSeries.Rd 2efc541505e045d7d7b08a46479a7efd *man/timeSeries-slotTime.Rd 319d4945562adb5f0d6934000ecb44b8 *man/timeSeries-slotUnits.Rd e7760dc21862c24169967598dd640174 *man/timeSeries.Rd 49800352c3d12eb47acf6bc69a7cb711 *man/utils-description.Rd 9dc5189dda18ea9a45ee9742746d17e6 *man/utils-structure.Rd 2f5fc3b43ee968e0dfdcf69c1e84424e *tests/doRUnit.R d9fbe377cad1b0d2f684d3b71f324966 *tests/msft.dat.csv e0082956f0c082294af55dff827fd17a *vignettes/characterTableFig.pdf c1f351531201d1c5a99319debe31a159 *vignettes/colorPalettes1Fig.pdf 96410e04a3f1eac571ec2de10f40c901 *vignettes/colorPalettes2Fig.pdf 61bf91e727aa32ae300c067888d136e1 *vignettes/colorTableFig.pdf efb5d1677a5e3f01559bf066ec86cc1a *vignettes/colorwheel.pdf 3c2c1851329140ae3c375a6da33bd27c *vignettes/symbolTableFig.pdf 618f03bbb6cb368076660795995056a9 *vignettes/timeSeriesPlot.Rnw timeSeries/build/0000755000176000001440000000000012620124760013512 5ustar ripleyuserstimeSeries/build/vignette.rds0000644000176000001440000000033012620124760016045 0ustar ripleyusers‹‹àb```b`fbb`b2™… 1# '*ÉÌM N-ÊL-ÈÉ/Ñ Ê+GS! /ÉÌKWPG¨UWðOÊJM.)&`\AJš t nËCÔ ’zÖ¼ÄÜTtkØ]R RóR@Âÿ°ëgü¦…Ã;µ²<¿¦E T ‹[fN*ÌÞÌ8‡9ÀÅ Êd Bw†ù(îç,Ê/׃ù# @â? {49'±Ý£\)‰%‰ziE@ý wœ³ÿ„ÓtimeSeries/DESCRIPTION0000644000176000001440000000163112633467257014141 0ustar ripleyusersPackage: timeSeries Title: Rmetrics - Financial Time Series Objects Date: 2015-12-12 Version: 3022.101.2 Author: Rmetrics Core Team, Diethelm Wuertz [aut], Tobias Setz [cre], Yohan Chalabi [ctb] Maintainer: Tobias Setz Description: Environment for teaching "Financial Engineering and Computational Finance". Managing financial time series objects. Depends: R (>= 2.10), graphics, grDevices, stats, methods, utils, timeDate (>= 2150.95) Suggests: RUnit, robustbase, xts, PerformanceAnalytics, fTrading Note: SEVERAL PARTS ARE STILL PRELIMINARY AND MAY BE CHANGED IN THE FUTURE. THIS TYPICALLY INCLUDES FUNCTION AND ARGUMENT NAMES, AS WELL AS DEFAULTS FOR ARGUMENTS AND RETURN VALUES. LazyData: yes License: GPL (>= 2) URL: http://www.rmetrics.org NeedsCompilation: no Packaged: 2015-12-14 07:05:22 UTC; ripley Repository: CRAN Date/Publication: 2015-12-14 08:24:31 timeSeries/ChangeLog0000644000176000001440000006332512620124746014202 0ustar ripleyusers2015-11-09 tsetz * updated rank function * exported getUnits and .DollarNames as S3 methods 2014-06-17 wuertz * vignette 'plotting timeSeries objects' added * DESCRIPTION, required packages added 2014-06-16 wuertz * Refcard PDF added to doc directory 2013-03-25 chalabi * DESCRIPTION: Updated version number * R/methods-mathOps.R: callGeneric() seems to have troubles in finding variables defined in the function frame and passed to the generic with the dots arguments. 2013-03-15 chalabi * ChangeLog, DESCRIPTION: Updated ChangeLog and DSC files * DESCRIPTION: Updated maintainer field and version number * R/zzz.R: Removed deprecated .First.lib() * R/base-apply.R: Added out of range test in apply,method-timeSeries 2013-02-22 tsetz * R/statistics-rollMean.R: functions rollMin and rollMax exchanged and function rollMin corrected, * rollStats timeSeries name corrected 2012-08-12 chalabi * ChangeLog, DESCRIPTION: updated DESC and ChangeLog 2012-08-07 chalabi * DESCRIPTION: updated version number * R/base-subsetting.R: Removed C level call to 'find_interv_vec' due to changes in R-devel 2012-03-21 chalabi * ChangeLog, DESCRIPTION: updated ChangeLog and DESC * NAMESPACE, R/utils-getArgs.R, man/utils-getArgs.Rd: moved getArgs to fBasics where it was already defined * ChangeLog, DESCRIPTION: updated DESC and ChangeLog * man/utils-getArgs.Rd: added manual page for getArgs * R/utils-getArgs.R: getArgs() can now handle signature of length > 1 * NAMESPACE: added getArgs to NAMESPACE * R/methods-plot.R: pretty.timeSeries can not handle signal series * NAMESPACE: updated NAMESPACE * ChangeLog, DESCRIPTION: updated DESCRIPTION and ChangeLog * DESCRIPTION: updated version number 2012-03-20 chalabi * DESCRIPTION: updated DESC file 2012-03-20 wuertz * NAMESPACE: updated * R/timeSeries-slotSeries.R: had conflicts with mu fPortfolio * man/timeSeries-slotSeries.Rd: 2012-03-19 chalabi * DESCRIPTION: updated DSC * man/methods-plot.Rd: updated manual page * R/fin-daily.R: fixed patial argument names * data/LPP2005REC.rda, data/MSFT.rda, data/USDCHF.rda: resaved data to reduce file disk storage 2012-03-17 wuertz * man/methods-plot.Rd: plot examples updated for pretty label positions * ChangeLog, NAMESPACE, R/methods-plot.R, man/methods-plot.Rd: pretty added 2012-03-16 wuertz * R/fin-drawdowns.R: drawdowns made visible 2011-11-01 chalabi * DESCRIPTION, R/fin-align.R, R/fin-daily.R, man/fin-align.Rd, man/fin-daily.Rd: alignDailySeries is now based on the align timeSeries method which is now based on the align timeDate method in timeDate (>= 2150.95). * inst/unitTests/runit.TimeSeriesData.R: updated unit test with new lag,timeSeries-method * R/stats-lag.R: fixed lag,timeSeries method when colnames are provided by 'units' argument. * R/base-cbind.R: Better handling of FinCenter in cbind.timeSeries method. * R/timeSeries.R: timeSeries method now works also with non default FinCenter when timestamps are given as a numerical vector. 2011-10-24 chalabi * R/stats-lag.R, inst/unitTests/runit.lag.R: Thanks to Daniele Amberti, lag timeSeries methods now returns proper colnames when used with multiple lag indexes. * inst/unitTests/runit.merge.R: * R/base-merge.R: Thanks to Daniele Amberti, merge timeSeries method now poperly converts colnames to valid data.frame names. 2011-10-11 tsetz * R/fin-drawdowns.R: Drawdowns are now compatible to the results of the drawdown function from performanceAnalytics ... 2011-09-23 mmaechler * DESCRIPTION: remove deprecated "LazyLoad" entry 2011-08-02 chalabi * ChangeLog, DESCRIPTION: updated DESC and ChangeLog 2011-05-04 chalabi * R/fin-align.R: Fixed integer overflow when dealing with very long historical data (1800 - today) in align method. 2011-04-21 wuertz * NAMESPACE, R/statistics-rollMean.R, man/statistics-rollMean.Rd: function rollStats added 2011-03-31 wuertz * NAMESPACE, R/fin-smooth.R, R/statistics-smoothLowess.R, man/base-rev.Rd, man/base-sort.Rd, man/base-start.Rd, man/fin-smooth.Rd, man/statistics-smoothLowess.Rd, man/timeSeries-readSeries.Rd, man/timeSeries-slotFinCenter.Rd, man/timeSeries-slotSeries.Rd, man/timeSeries-slotTime.Rd, man/timeSeries-slotUnits.Rd: help pages added and script files renamed * man/timeSeries-finCenter.Rd, man/timeSeries-slotFinCenter.Rd, man/timeSeries-slotUnits.Rd, man/utils-str.Rd, man/utils-structure.Rd: function renames * R/timeSeries-description.R, R/timeSeries-finCenter.R, R/timeSeries-series.R, R/timeSeries-slotFinCenter.R, R/timeSeries-slotSeries.R, R/timeSeries-slotTime.R, R/timeSeries-slotUnits.R, R/timeSeries-time.R, R/utils-description.R, R/utils-str.R, R/utils-structure.R: files renamed * man/timeSeries-description.Rd, man/timeSeries-series.Rd, man/timeSeries-slotSeries.Rd, man/timeSeries-slotTime.Rd, man/timeSeries-time.Rd, man/utils-description.Rd: files renamed * R/base-colCumsums.R, R/base-colSums.R, R/base-rowCumsums.R, R/fin-orderColnames.R, R/fin-orderStatistics.R, R/fin-rollmean.R, R/statistics-colCumsums.R, R/statistics-colSums.R, R/statistics-orderColnames.R, R/statistics-orderStatistics.R, R/statistics-rollMean.R, R/statistics-rowCumsums.R, man/base-colCumsums.Rd, man/base-colSums.Rd, man/base-rowCumsums.Rd, man/fin-orderColnames.Rd, man/fin-orderStatistics.Rd, man/fin-rollMean.Rd, man/statistics-colCumsums.Rd, man/statistics-colSums.Rd, man/statistics-orderColnames.Rd, man/statistics-orderStatistics.Rd, man/statistics-rollMean.Rd, man/statistics-rowCumsums.Rd: new file group for statistics and inference introduced. * NAMESPACE, R/aaa-Deprecated.R, R/base-Extract.R, R/base-attach.R, R/base-colSums.R, R/base-comment.R, R/base-rowCumsums.R, R/base-sort.R, R/base-start.R, R/base-subsetting.R, R/base-t.R, R/data-examples.R, R/fin-align.R, R/fin-daily.R, R/fin-drawdowns.R, R/fin-durations.R, R/fin-monthly.R, R/fin-periodical.R, R/fin-rollmean.R, R/fin-runlengths.R, R/fin-smooth.R, R/fin-splits.R, R/fin-spreads.R, R/fin-turnpoints.R, R/graphics-plot.R, R/methods-as.R, R/methods-comment.R, R/methods-is.R, R/methods-mathOps.R, R/methods-plot.R, R/old2new.R, R/stats-aggregate.R, R/stats-filter.R, R/stats-lag.R, R/stats-model.frame.R, R/stats-na.contiguous.R, R/stats-na.omit.R, R/stats-window.R, R/timeSeries-description.R, R/timeSeries-dummy.R, R/timeSeries-finCenter.R, R/timeSeries-getDataPart.R, R/timeSeries-isOHLC.R, R/timeSeries-isRegular.R, R/timeSeries-isUnivariate.R, R/timeSeries-readSeries.R, R/timeSeries-series.R, R/timeSeries-signalCounts.R, R/timeSeries-time.R, R/timeSeries.R, R/utils-getArgs.R, R/utils-head.R, R/utils-old2new.R, R/utils-str.R, man/00timeSeries-package.Rd, man/base-diff.Rd, man/base-merge.Rd, man/base-rev.Rd, man/base-sample.Rd, man/base-scale.Rd, man/base-sort.Rd, man/base-start.Rd, man/base-subsetting.Rd, man/data-examples.Rd, man/data.Rd, man/fin-align.Rd, man/fin-cumulated.Rd, man/fin-daily.Rd, man/fin-drawdowns.Rd, man/fin-durations.Rd, man/fin-periodical.Rd, man/fin-rollMean.Rd, man/fin-runlengths.Rd, man/fin-smooth.Rd, man/fin-splits.Rd, man/fin-turnpoints.Rd, man/graphics-plot.Rd, man/methods-comment.Rd, man/methods-plot.Rd, man/stats-window.Rd: several smaller updates: man pages improved, rolling statistics and smoother function added, some obsolete functions declared as deprecated. 2011-03-09 chalabi * ChangeLog, DESCRIPTION: updated DESC and ChangeLog * inst/doc: removed empty directory * DESCRIPTION: updated version number * R/timeSeries-readSeries.R: Fixed readSeries when reading tables with multiple columns. (Reported by Chris Breton). 2011-02-10 chalabi * ChangeLog, DESCRIPTION: updated Date and Revision field in DESC file and updated Changelog file * DESCRIPTION: updated DESC file * man/timeSeries-readSeries.Rd, man/timeSeries.Rd: added manual page for function readSeries() * inst/doc/TimeSeriesFAQ.pdf: removed pdf file because new version can be found on the website 2011-01-31 chalabi * R/timeSeries-readSeries.R, man/timeSeries.Rd: Added the optional 'format' argument and and a warning when the provided format produces NAs in readSeries function 2010-10-27 chalabi * ChangeLog, DESCRIPTION: updated DESC and ChangeLog file 2010-10-26 chalabi * R/base-cbind.R: cbind now extends vectors to match number of rows of the timeSeries object. 2010-09-30 chalabi * NAMESPACE: updated NAMESPACE 2010-09-24 chalabi * DESCRIPTION, NAMESPACE: updated NAMESPACE and version number in DESC file 2010-08-20 chalabi * R/stats-na.omit.R: removeNA is now the same as na.omit 2010-08-12 chalabi * R/graphics-plot.R: added grid function in .plotTimeSeries when using single plot type. * R/base-cbind.R, inst/unitTests/runit.bind.R: fixed issued reported by Thomas Etheber when using cbind method with timeSeries object with one record. 2010-07-26 chalabi * ChangeLog, DESCRIPTION: updated DESC and ChangeLog * DESCRIPTION: updated version number 2010-07-08 chalabi * R/methods-mathOps.R, R/stats-lag.R, R/stats-na.omit.R: improved support recordIDs * R/timeSeries-finCenter.R: cleanup code * R/base-apply.R, R/base-cbind.R, R/base-diff.R, R/base-rowCumsums.R, R/fin-runlengths.R: improved support of recordIDs 2010-07-06 chalabi * ChangeLog, DESCRIPTION: updated DESC and Changelog 2010-07-05 chalabi * R/methods-show.R: code cleanup 2010-07-02 chalabi * R/methods-show.R: Improved recordIDs handling in show method. 2010-05-17 chalabi * R/base-start.R: updated start/end to handle TZ 2010-04-22 chalabi * R/timeSeries-readSeries.R: improved dates management in readSeries() 2010-04-14 chalabi * NAMESPACE: updated NAMESPACE 2010-01-23 wuertz * NAMESPACE, R/aaa-Deprecated.R, R/fin-align.R, R/timeSeries-description.R, R/utils-getArgs.R: internal function .getArgs added 2010-01-22 wuertz * R/aaa-Deprecated.R, R/fin-durations.R, R/fin-spreads.R: deprecated functions moved to aaa-deprecated.R, started to clean up .... * R/fin-rollmean.R: code cleaned and description added * NAMESPACE, R/fin-runlength.R, R/fin-runlengths.R, man/fin-runlengths.Rd: .runlengths added 2010-01-06 chalabi * DESCRIPTION: updated version number * ChangeLog, DESCRIPTION: updated Changelog and DESC file * inst/unitTests/runit.aggregate.R, inst/unitTests/runit.subset.R: fixed unit tests for new years 2009-12-24 chalabi * NAMESPACE: updated NAMESPACE 2009-12-20 wuertz * NAMESPACE, R/fin-runlength.R: .runlengths() function added 2009-12-13 chalabi * DESCRIPTION: updated version number * ChangeLog, DESCRIPTION: updated Changelog and DESC file * man/base-subset.Rd: added aliased in manual pages 2009-12-10 chalabi * DESCRIPTION: updated version number * ChangeLog, DESCRIPTION: updated Changelog and DESC file * R/base-Extract.R: added completion method after the $ sign. * R/base-Extract.R, man/base-subset.Rd: updated signature list of timeSeries,$ method according to changes in r50609 in R-devel. 2009-10-26 wuertz * R/fin-drawdowns.R: example lin in script corrected 2009-10-05 chalabi * R/graphics-plot.R: improved handling of NA's in plot,timeSeries-method 2009-09-30 chalabi * inst/doc, inst/doc/TimeSeriesFAQ.pdf: added pdf files in inst/doc 2009-09-28 chalabi * DESCRIPTION: updated version number * ChangeLog, DESCRIPTION: updated DESCR and ChangeLog * R/AllClass.R: Added prototype in timeSeries class definition. 2009-09-02 chalabi * NAMESPACE, R/base-Extract.R, man/base-subset.Rd, man/timeSeries.Rd: added methods to subset timeSeries object with POSIXt and Date time stamps * NAMESPACE, R/stats-filter.R, man/stats-filter.Rd: added filter,timeSeries-method * NAMESPACE, R/base-t.R, man/base-t.Rd: added t,timeSeries-method * R/stats-na.contiguous.R, inst/unitTests/runit.na.contiguous.R, man/stats-na.contiguous.Rd: added na.contiguous,timeSeries-method. 2009-08-30 wuertz * R/base-apply.R: back to the previous version * R/base-attach.R: description added to attach * R/base-apply.R: apply should work now in all cases 2009-08-30 chalabi * NAMESPACE, R/timeSeries-isRegular.R, man/timeSeries-isRegular.Rd: isRegular methods are now proper S4 methods. 2009-08-30 wuertz * man/base-colCumsumsRd: file with missing dot deleted * man/base-colCumsums.Rd: missing dot in file name added 2009-08-28 wuertz * R/base-diff.R, R/methods-Ops.R, R/methods-mathOps.R, man/base-rowCumsums.Rd, man/fin-align.Rd, man/methods-DataPart.Rd, man/methods-align.Rd, man/methods-rowCum.Rd, man/time.Rd, man/timeSeries-getDataPart.Rd, man/timeSeries-time.Rd: renaming of man files finished * NAMESPACE, R/fin-monthly.R, R/fin-rollmean.R, R/timeSeries-isRegular.R, man/apply.Rd, man/base-apply.Rd, man/base-attach.Rd, man/base-cbind.Rd, man/base-colCumsumsRd, man/base-colSums.Rd, man/base-dim.Rd, man/base-rank.Rd, man/base-subset.Rd, man/colCum.Rd, man/colStats.Rd, man/cumulated.Rd, man/daily.Rd, man/description.Rd, man/drawdowns.Rd, man/durations.Rd, man/fin-cumulated.Rd, man/fin-daily.Rd, man/fin-drawdowns.Rd, man/fin-durations.Rd, man/fin-monthly.Rd, man/fin-orderColnames.Rd, man/fin-orderStatistics.Rd, man/fin-returns.Rd, man/fin-spreads.Rd, man/finCenter.Rd, man/graphics-plot.Rd, man/is.Rd, man/isUnivariate.Rd, man/lag.Rd, man/methods-aggregate.Rd, man/methods-attach.Rd, man/methods-bind.Rd, man/methods-dim.Rd, man/methods-is.Rd, man/methods-na.Rd, man/methods-plot.Rd, man/methods-returns.Rd, man/methods-str.Rd, man/methods-subset.Rd, man/model.frame.Rd, man/monthly.Rd, man/order.Rd, man/orderStatistics.Rd, man/rank.Rd, man/series.Rd, man/spreads.Rd, man/stats-aggregate.Rd, man/stats-lag.Rd, man/stats-model.frame.Rd, man/stats-na.omit.Rd, man/timeSeries-description.Rd, man/timeSeries-finCenter.Rd, man/timeSeries-isRegular.Rd, man/timeSeries-isUnivariate.Rd, man/timeSeries-series.Rd, man/utils-str.Rd: man script files Rd renamed to be more compatible with the script R files and the eBook * man/colCum.Rd: deleted by mistake * man/colCum.Rd: * R/timeSeries-isPeriod.R: isPeriod file no longer needed 2009-08-27 wuertz * inst/unitTests/runit.NA.R, inst/unitTests/runit.Omit.R, inst/unitTests/runit.TimeSeriesClass.R, inst/unitTests/runit.TimeSeriesCoercion.R, inst/unitTests/runit.TimeSeriesData.R, inst/unitTests/runit.TimeSeriesPositions.R, inst/unitTests/runit.aggregate.R, inst/unitTests/runit.align.R, inst/unitTests/runit.apply.R, inst/unitTests/runit.as.R, inst/unitTests/runit.attach.R, inst/unitTests/runit.bind.R, inst/unitTests/runit.colCum.R, inst/unitTests/runit.colStats.R, inst/unitTests/runit.cor.R, inst/unitTests/runit.cumulated.R, inst/unitTests/runit.daily.R, inst/unitTests/runit.dim.R, inst/unitTests/runit.drawdowns.R, inst/unitTests/runit.durations.R, inst/unitTests/runit.lag.R, inst/unitTests/runit.mathOps.R, inst/unitTests/runit.merge.R, inst/unitTests/runit.methods-plot.R, inst/unitTests/runit.methods-print.R, inst/unitTests/runit.methods-summary.R, inst/unitTests/runit.model.frame.R, inst/unitTests/runit.monthly.R, inst/unitTests/runit.order.R, inst/unitTests/runit.periodical.R, inst/unitTests/runit.rank.R, inst/unitTests/runit.returns.R, inst/unitTests/runit.rowCum.R, inst/unitTests/runit.signalCounts.R, inst/unitTests/runit.spreads.R, inst/unitTests/runit.subset.R, inst/unitTests/runit.time.R, inst/unitTests/runit.timeSeries.R, man/apply.Rd, man/colCum.Rd, man/colStats.Rd, man/cumulated.Rd, man/daily.Rd, man/data.Rd, man/description.Rd, man/drawdowns.Rd, man/durations.Rd, man/finCenter.Rd, man/is.Rd, man/isUnivariate.Rd, man/lag.Rd, man/methods-DataPart.Rd, man/methods-aggregate.Rd, man/methods-align.Rd, man/methods-as.Rd, man/methods-attach.Rd, man/methods-base.Rd, man/methods-bind.Rd, man/methods-comment.Rd, man/methods-dim.Rd, man/methods-mathOps.Rd, man/methods-na.Rd, man/methods-plot.Rd, man/methods-returns.Rd, man/methods-rowCum.Rd, man/methods-show.Rd, man/methods-stats.Rd, man/methods-str.Rd, man/methods-subset.Rd, man/model.frame.Rd, man/monthly.Rd, man/order.Rd, man/orderStatistics.Rd, man/rank.Rd, man/series.Rd, man/spreads.Rd, man/time.Rd, man/timeSeries.Rd: As a consequnece of introducing rda data files I have adapted all manual pages and all unit test files where it was necessary * data/LPP2005REC.rda, data/MSFT.rda, data/USDCHF.rda: now the rda files are there * data/LPP2005REC.Rda, data/MSFT.Rda, data/USDCHF.Rda: data files removed * data/LPP2005REC.Rda, data/LPP2005REC.csv, data/MSFT.Rda, data/USDCHF.Rda: Rda data files added, csv deleted, now all data files are in the same format makes life easier * data/MSFT.rda, data/msft.dat.csv, data/usdchf.csv: csv and rda files deleted 2009-08-17 chalabi * R/base-colCumsums.R, inst/unitTests/runit.colCum.R: Rewrite all Colcum methods to take advantages of new apply,timeSeries-methods. * R/base-apply.R: Improved apply,timeSeries-method to handle timeSeries with one row. * NAMESPACE: new NAMESPACE structure which should ease maintenance of packages. * R/methods-show.R: show,timeSeries-method is now more friendly with default "max.print" R option. * DESCRIPTION, NAMESPACE, R/base-Extract.R, R/base-cbind.R, R/base-merge.R, R/methods-Ops.R, R/methods-as.R, R/methods-show.R, R/timeSeries.R, inst/unitTests/runit.bind.R, man/methods-bind.Rd: Merge branch 'devel-timeSeries' Conflicts: pkg/timeSeries/R/base-Extract.R pkg/timeSeries/R/timeSeries.R * NAMESPACE, R/AllClass.R, R/base-Extract.R, R/timeSeries-getDataPart.R, man/methods-subset.Rd: better handling of @recordIDs with $<-,timeSeries-method. * R/methods-as.R: improved as.ts,timeSeries-method with monthly and quarterly data. 2009-06-13 chalabi * R/base-Extract.R: Improved $,timeSeries-method when matching names in @recordIDs * R/AllClass.R, R/base-Extract.R, R/base-dim.R: names,timeSeries-method returns now also the names of data in @recordIDs. names<-,timeSeries-methods works both for data part and @recordIDs. 2009-05-17 wuertz * inst/unitTests/runit.TimeSeriesCoercion.R: unit tests - still to be updated as.ts * man/methods-as.Rd, man/methods-bind.Rd, man/timeSeries.Rd: man pages updated * NAMESPACE: namespace adapted * NAMESPACE: * R/AllClass.R, R/AllGeneric.R, R/base-Extract.R, R/base-apply.R, R/base-attach.R, R/base-cbind.R, R/base-colCumsums.R, R/base-colSums.R, R/base-comment.R, R/base-diff.R, R/base-dim.R, R/base-merge.R, R/base-rank.R, R/base-rev.R, R/base-rowCumsums.R, R/base-sample.R, R/base-scale.R, R/base-sort.R, R/base-start.R, R/base-subset.R, R/fin-align.R, R/fin-cumulated.R, R/fin-daily.R, R/fin-drawdowns.R, R/fin-durations.R, R/fin-monthly.R, R/fin-orderColnames.R, R/fin-orderStatistics.R, R/fin-periodical.R, R/fin-returns.R, R/fin-smooth.R, R/fin-splits.R, R/fin-spreads.R, R/fin-turnpoints.R, R/graphics-plot.R, R/methods-Ops.R, R/methods-as.R, R/methods-is.R, R/methods-show.R, R/old2new.R, R/stats-aggregate.R, R/stats-lag.R, R/stats-model.frame.R, R/stats-na.omit.R, R/stats-window.R, R/timeSeries-description.R, R/timeSeries-dummy.R, R/timeSeries-finCenter.R, R/timeSeries-getDataPart.R, R/timeSeries-isOHLC.R, R/timeSeries-isPeriod.R, R/timeSeries-isUnivariate.R, R/timeSeries-readSeries.R, R/timeSeries-series.R, R/timeSeries-signalCounts.R, R/timeSeries-time.R, R/timeSeries.R, R/utils-head.R, R/utils-str.R, R/zzz.R: NEW FILE ORDERING CHECKED IN ... * R/AllClass.R, R/AllGeneric.R, R/colCum.R, R/colStats.R, R/cumulated.R, R/daily.R, R/description.R, R/drawdowns.R, R/dummy.R, R/durations.R, R/is.R, R/isUnivariate.R, R/methods-DataPart.R, R/methods-aggregate.R, R/methods-align.R, R/methods-apply.R, R/methods-as.R, R/methods-attach.R, R/methods-bind.R, R/methods-comment.R, R/methods-dim.R, R/methods-finCenter.R, R/methods-head.R, R/methods-lag.R, R/methods-mathOps.R, R/methods-merge.R, R/methods-na.R, R/methods-outlier.R, R/methods-plot.R, R/methods-returns.R, R/methods-rowCum.R, R/methods-series.R, R/methods-show.R, R/methods-str.R, R/methods-subset.R, R/methods-tail.R, R/methods-window.R, R/model.frame.R, R/monthly.R, R/old2new.R, R/order.R, R/orderStatistics.R, R/periodical.R, R/rank.R, R/readSeries.R, R/signalCounts.R, R/spreads.R, R/time.R, R/timeSeries.R, R/turnpoints.R, R/zzz.R: 2009-05-07 wuertz * R/methods-show.R: .print.timeSeries missing column names fixed on "h" style can now also handle "%Q" format for quarterly data * R/methods-plot.R: .plotTimeSeries can now handle different colors and plot symbols for multivariate series 2009-04-19 chalabi * DESCRIPTION: added explicit version number in Depends field for key packages * R/methods-aggregate.R: fixed colnames in aggregate,timeSeries-method * R/AllClass.R: initialize,timeSeries-method checks object with validObject * R/colStats.R: added colMeans and colSums,timeSeries-method because default function is unefficient with large timeSeries objects. 2009-04-02 chalabi * NAMESPACE: updated NAMESPACE * DESCRIPTION: more explicit depends and suggests field in DESC file. 2009-04-01 chalabi * DESCRIPTION: updated DESC file 2009-03-31 chalabi * R/AllClass.R, R/is.R, R/methods-DataPart.R: small changes to make timeSeries work with R-2.7.0. 2009-03-30 chalabi * man/data.Rd: added MSFT (timeSeries version of mstf.dat) in data folder. * NAMESPACE, R/AllClass.R, R/zzz.R: define S4 class 'difftime' with 'setOldClass()'. We will keep it until 'methods' pkg will define it alongside the other old 'base' classes. * R/methods-mathOps.R, R/timeSeries.R, inst/unitTests/runit.mathOps.R, inst/unitTests/runit.timeSeries.R, man/methods-mathOps.Rd: added explicit methods for Ops with 'ts' and 'timeSeries' arguments. 2009-03-25 chalabi * data/MSFT.rda: added timeSeries version of msft.dat dataset 2009-03-19 chalabi * R/is.R, R/methods-aggregate.R, R/methods-as.R, R/methods-bind.R, R/methods-dim.R, R/methods-head.R, R/methods-lag.R, R/methods-mathOps.R, R/methods-merge.R, R/methods-na.R, R/methods-plot.R, R/methods-str.R, R/methods-tail.R, R/methods-window.R, R/model.frame.R, R/time.R, man/lag.Rd, man/methods-aggregate.Rd, man/methods-as.Rd, man/methods-bind.Rd, man/methods-mathOps.Rd, man/methods-na.Rd, man/methods-subset.Rd, man/time.Rd: 'base' generics have now S3 and S4 methods. S3 methods are used because 'UseMethod' does not dispatch S4 methods in 'base' functions. For example 'base' functions starting with something like 'as.list' would failed without the S3 method. * R/old2new.R: added functions to convert old timeSeries format to new class 'timeSeries' * R/methods-subset.R, R/time.R, R/timeSeries.R: @positions is numeric and makes timeSeries object much faster. * R/methods-show.R, R/zzz.R: added getRmetricsOptions("max.print") * R/methods-bind.R, R/methods-merge.R: new implementation of [cb]bind and merge functions * R/is.R: added function is.signalSeries * R/methods-tail.R: optimized tail for large timeSeries * R/methods-as.R, man/methods-as.Rd: new as.list.timeSeries S3 methods. This means that functions like sapply and lapply can now work with timeSeries objects. * R/methods-bind.R, man/methods-bind.Rd: new cbind and rbind implementation in S3 method since methods:::bind_activation might create problems. Names of arguments are now supported. * R/methods-series.R: series<-,matrix-method uses now the new timeSeires() methods. * R/methods-as.R: new implementation of as.timeSeries.data.frame. Should has the same features as the previous implementation. * R/daily.R, R/methods-dim.R: improved handling of colnames and unit. functions like var() should now returns with the appropriate colnames. * R/AllClass.R, R/AllGeneric.R, R/timeSeries.R, man/timeSeries.Rd: timeSeries() is now a generic function with methods. timeSeries() should now take advantage of new implementation of timeDate() and should be faster in creating new timeSeries objects. * R/methods-subset.R: added $,timeSeries method with auto-completion of column names * NAMESPACE, R/methods-dim.R: added name,timeSeries method which return the column names 2009-02-04 chalabi * ChangeLog: * inst/NEWS: * DESCRIPTION: updated version number 2009-01-29 chalabi * R/methods-aggregate.R, man/methods-aggregate.Rd: improved aggregate,timeSeries-method 2009-01-28 chalabi * R/methods-plot.R: small changed in plot,timeSeries to avoid warning when dealing with signal series * R/methods-subset.R: timeSeries()[''] now returns a nuermic(NA) instead of logical(NA) * inst/unitTests/runit.subset.R: added RUnit test with subsetting 2009-01-12 chalabi * man/apply.Rd: fixed warning with new Rd parser * R/AllClass.R: use getDataPart method * R/is.R: use getDataPart method * R/methods-as.R: change as.matrix to use the getDatPart method * R/methods-subset.R: improved speed of sub-setting and sub-assignment and fixed problem when sub-setting with character argument without comma. * R/methods-dim.R, R/methods-head.R, R/methods-show.R, R/methods-tail.R: faster method * R/methods-bind.R: fixed colnames problem with c,rbind * NAMESPACE, R/methods-DataPart.R: added getDataPart,timeSeries method 2009-01-11 wuertz * R/align.R: old align.R script removed * R/methods-align.R: align established as method filename renamed 2009-01-07 wuertz * NAMESPACE, R/align.R, inst/unitTests/runit.aggregate.R, inst/unitTests/runit.subset.R, man/methods-align.Rd: unit tests which failed from the change 2008 to 2009 repaired, function align added the same as .align.timeSeries and documented, added to namespace 2009-01-06 wuertz * R/methods-aggregate.R: example modified was not working for 2009 * R/methods-lag.R: example modified timeSeries/man/0000755000176000001440000000000012620124746013172 5ustar ripleyuserstimeSeries/man/fin-splits.Rd0000644000176000001440000000236112620124746015553 0ustar ripleyusers\name{splits} \title{splits} \alias{splits} \description{ Searches for outlier splits in a 'timeSeries' object. } \details{ This function is thought to find splits in financial price or index series If a price or index is splitted we observe in the returns a big jump of several standard deviations which is identified usual as an outlier. } \usage{ splits(x, sd = 3, complement = TRUE, ...) } \arguments{ \item{x}{ a 'timeSeries' object. } \item{sd}{ a numeric value of standard deviations, e.g. 5 means that values larger or smaller than five times the standard deviation of the series will be detected. } \item{complement}{ a logical flag, should the outlier series or its complements be returned? } \item{\dots}{ arguments to be passed. } } \examples{ ## Create a Return Series with a Split - data <- runif(12, -1, 1) data[6] <- 20 x <- timeSeries(data, timeCalendar(), units="RUNIF") x ## Search for the Split: splits(x, sd=3, complement=TRUE) splits(x, sd=3, complement=FALSE) } timeSeries/man/timeSeries-deprecated.Rd0000644000176000001440000000052212620124746017667 0ustar ripleyusers\name{timeSeries-deprecated} \title{Deprecated functions in timeSeries package} \alias{seriesPositions} \alias{newPositions<-} \description{ \tabular{ll}{ \code{seriesPositions} \tab Extracts positions slot from a 'timeSeries', \cr \code{newPositions<-} \tab Modifies positions of a 'timeSeries' object, \cr } } timeSeries/man/timeSeries-getDataPart.Rd0000644000176000001440000000061112620124746017766 0ustar ripleyusers\name{DataPart,timeSeries-method} \title{DataPart,timeSeries-method} \alias{getDataPart,timeSeries-method} \alias{setDataPart,timeSeries-method} \description{ Utilities called to implement object@.Data of \code{timeSeries} objects. } \examples{ ## Load Microsoft Data - X <- MSFT[1:10, 1:4] ## Get Data Part - DATA <- getDataPart(X) class(DATA) } \keyword{chron} timeSeries/man/methods-show.Rd0000644000176000001440000000126512620124746016106 0ustar ripleyusers\name{print-methods} \title{Print a Time Series} \alias{show,timeSeries-method} \alias{print,timeSeries-method} \description{ Print 'timeSeries' pbjects. } % \usage{ % show.timeSeries(object) % } \arguments{ \item{object}{ an object of class \code{timeSeries}. } } \value{ Prints an object of class \code{timeSeries}. } \examples{ ## Load Micsrosoft Data - setRmetricsOptions(myFinCenter = "GMT") LPP <- MSFT[1:12, 1:4] ## Abbreviate Column Names - colnames(LPP) <- abbreviate(colnames(LPP), 6) ## Print Data Set - print(LPP) ## Alternative Use, Show Data Set - show(LPP) } \keyword{chron} timeSeries/man/timeSeries-slotUnits.Rd0000644000176000001440000000136712620124746017603 0ustar ripleyusers\name{units} \alias{getUnits} \alias{getUnits.default} \alias{setUnits<-} \title{Get and Set Unit Names of a 'timeSeries'} \description{ Gets and sets the column names of a 'timeSeries' object. The column names are also called units or unit names. } \usage{ getUnits(x) setUnits(x) <- value } \arguments{ \item{x}{ a 'timeSeries' object. } \item{value}{ a \code{vector} of unit names. } } \seealso{timeSeries()} \examples{ ## A Dummy timeSeries Object tS <- dummySeries() tS ## Get the Units - getUnits(tS) ## Assign New Units to the Series - setUnits(tS) <- c("A", "B") head(tS) } \keyword{programming} timeSeries/man/base-sort.Rd0000644000176000001440000000324012620124746015357 0ustar ripleyusers\name{sort} \alias{sort,timeSeries-method} \alias{sort.timeSeries} \title{Sorting a 'timeSeries' by Time Stamps} \description{ Sorts a 'timeSeries' object with respect to its time stamps. } \details{ Sorts a time series either in increasing or decreasing time stamp order. Internally the function \code{order} from R's base packahe is used. \code{order} generates a permutation which rearranges the time stamps in ascending or descending order. To find out if the series is unsorted, the function \code{is.unsorted} from R's base package can be called. } \usage{ \S4method{sort}{timeSeries}(x, decreasing = FALSE, \dots) } \arguments{ \item{x}{ an uni- or multivariate \code{timeSeries} object. } \item{decreasing}{ a logical flag. Should we sort in increasing or decreasing order? By default FALSE. } \item{\dots}{ optional arguments passed to other methods. } } \value{ Returns a sorted 'timeSeries' object, which can be increasing or decreasing in time. } \examples{ ## Monthly Calendar Series - x <- daily2monthly(LPP2005REC[, 1:2])[3:14, ] ## Resample the Series with respect to the time stamps - resampled <- sample(x) resampled is.unsorted(resampled) ## Now sort the serie in decreasing time order - sorted <- sort(resampled, , decreasing = TRUE) sorted is.unsorted(sorted) ## Is the reverted series ordered? - reverted <- rev(sorted) reverted is.unsorted(reverted) } \keyword{chron} timeSeries/man/fin-durations.Rd0000644000176000001440000000263712620124746016253 0ustar ripleyusers\name{durations} \title{Durations from a Time Series} \alias{durations} \alias{durationSeries} \description{ Computes durations from an object of class 'timeSeries'. } \usage{ durations(x, trim = FALSE, units = c("secs", "mins", "hours", "days")) } \arguments{ \item{x}{ an object of class \code{timeSeries}. } \item{trim}{ a logical value. By default \code{TRUE}, the first missing observation in the return series will be removed. } \item{units}{ a character value or vector which allows to set the units in which the durations are measured. By default durations are measured in seconds. } } \details{ Durations measure how long it takes until we get the next record in a \code{timesSeries} object. We return a time series in which for each time stamp we get the length of the period from when we got the last record. This period is measured in length specified by the argument \code{units}, for daily data use \code{units="days"}. } \value{ returns an object of class \code{timeSeries}. } \examples{ ## Compute Durations in days for the MSFT Sereries - head(durations(MSFT, units = "days")) head(durations(MSFT, trim = TRUE, units = "days")) ## The same in hours - head(durations(MSFT, trim = TRUE, units = "hours")) } \keyword{chron} timeSeries/man/methods-as.Rd0000644000176000001440000000753012620124746015532 0ustar ripleyusers\name{as} \title{timeSeries Class, Coercion and Transformation} \alias{as} \alias{as.timeSeries} \alias{as.timeSeries.default} \alias{as.timeSeries.ts} \alias{as.timeSeries.data.frame} \alias{as.timeSeries.character} \alias{as.timeSeries.zoo} \alias{as.ts,timeSeries-method} \alias{as.data.frame,timeSeries-method} \alias{as.list,timeSeries-method} \alias{as.matrix,timeSeries-method} \alias{as.ts.timeSeries} \alias{as.data.frame.timeSeries} \alias{as.list.timeSeries} \alias{as.matrix.timeSeries} \alias{coerce,ANY,timeSeries-method} \alias{coerce,ts,timeSeries-method} \alias{coerce,data.frame,timeSeries-method} \alias{coerce,character,timeSeries-method} \alias{coerce,ANY,timeSeries-method} \alias{coerce,timeSeries,tse-method} \alias{coerce,timeSeries,data.frame-method} \alias{coerce,timeSeries,list-method} \alias{coerce,timeSeries,matrix-method} \alias{coerce,timeSeries,ts-method} \description{ Functions and methods dealing with the coercion of 'timeSeries' objects. } \details{ Functions to create 'timeSeries' objects from other objects: \tabular{ll}{ \code{as.timeSeries} \tab Generic to convert an object to a 'timeSeries', \cr \code{as.timeSeries.default} \tab Returns the unchanged object, \cr \code{as.timeSeries.numeric} \tab Converts from a numeric vector, \cr \code{as.timeSseries.data.frame} \tab Converts from a numeric vector, \cr \code{as.timeSeries.matrix} \tab Converts from a matrix, \cr \code{as.timeSeries.ts} \tab Converts from an object of class 'ts', \cr \code{as.timeSeries.character} \tab Converts from a named demo file, \cr \code{as.timeSeries.zoo} \tab Converts an object of class zoo. } Functions to transform 'timeSeries' objects into other objects: \tabular{ll}{ % \code{as.vector.timeSeries} \tab Coerces a 'timeSeries' to a vector, \cr % \code{as.numeric.timeSeries} \tab Coerces a 'timeSeries' to numeric, \cr \code{as.matrix.timeSeries} \tab Coerces a 'timeSeries' to a matrix, \cr \code{as.data.frame.timeSeries} \tab Coerces a 'timeSeries' to a data.frame, \cr \code{as.ts.timeSeries} \tab S3: Coerces a 'timeSeries' to a 'ts' object. \cr \code{as.ts.timeSeries} \tab S3: Coerces a 'timeSeries' to a 'logical' object. } } \usage{ \method{as.timeSeries}{default}(x, \dots) \method{as.timeSeries}{ts}(x, \dots) \method{as.timeSeries}{data.frame}(x, \dots) \method{as.timeSeries}{character}(x, \dots) \method{as.timeSeries}{zoo}(x, \dots) \S4method{as.matrix}{timeSeries}(x, \dots) \S4method{as.ts}{timeSeries}(x, \dots) \S4method{as.data.frame}{timeSeries}(x, row.names = NULL, optional = FALSE, \dots) \S4method{as.ts}{timeSeries}(x, \dots) } \arguments{ \item{optional}{ A logical value. If \code{TRUE}, setting row names and converting column names (to syntactic names) is optional. } \item{row.names}{ \code{NULL} or a character vector giving the row names for the data frame. Missing values are not allowed. } \item{x}{ an object which is coerced according to the generic function. } \item{\dots}{ arguments passed to other methods. } } \value{ Function \code{as.timeSeries} returns a S4 object of class 'timeSeries'.\cr Functions \code{as.numeric}, \code{as.data.frame}, \code{as.matrix}, \code{as.ts} return depending on the generic function a numeric vector, a data frame, a matrix, or an object of class \code{ts}. } \examples{ ## Create an Artificial timeSeries Object - setRmetricsOptions(myFinCenter = "GMT") charvec <- timeCalendar() data <- matrix(rnorm(12)) TS <- timeSeries(data, charvec, units = "RAND") TS ## Coerce to Vector - as.vector(TS) ## Coerce to Matrix - as.matrix(TS) ## Coerce to Data Frame - as.data.frame(TS) } \keyword{chron} timeSeries/man/base-diff.Rd0000644000176000001440000000234412620124746015304 0ustar ripleyusers\name{diff} \title{diff} \alias{diff} \alias{diff,timeSeries-method} \description{ Differences a 'timeSeries' 0bject. } \usage{ diff(x, \dots) } % lag=1, diff=1, trim=FALSE, pad=NA, \arguments{ \item{x}{ an object of class 'timeSeries'. } \item{\dots}{ further arguments to be passed. These may include } } \details{ Arguments to be passed may include:\cr \code{lag} - an integer indicating which lag to use. By default 1.\cr \code{diff} - an integer indicating the order of the difference. By default 1.\cr \code{trim} - a logical flag. Should NAs at the beginning of the series be removed? By default FALSE.\cr \code{pad} - a umeric value with which NAs should be replaced at the beginning of the series. By default NA. } \value{ Returns a differenced S4 'timeSeries' object. } \examples{ ## Load Microsoft Data Set - x <- MSFT[1:12, ] x ## Compute Differences - diff(x) ## Trimmed Differences - diff(x, trim=TRUE) ## Padded Differences - diff(x, trim=FALSE, pad=0) } \keyword{chron} timeSeries/man/base-sample.Rd0000644000176000001440000000103212620124746015646 0ustar ripleyusers\name{sample} \title{sample} \description{ Takes a sample of the specified size from the elements of a 'timeSeries. } \value{ Returns a resampled 'timeSeries' object. } \examples{ ## Monthly Calendar Series - x <- daily2monthly(LPP2005REC[, 1:2])[3:14, ] ## Resample the Series with respect to the time stamps - resampled <- sample(x) resampled is.unsorted(resampled) } \keyword{chron} timeSeries/man/base-attach.Rd0000644000176000001440000000367612620124746015651 0ustar ripleyusers\name{attach} \title{Attach a timSeries to the search path} \alias{attach} \alias{attach,timeSeries-method} \description{ Attaches a 'timeSeries' object to the search path. } \usage{ \S4method{attach}{timeSeries}(what, pos = 2, name = deparse(substitute(what)), warn.conflicts = TRUE) } \note{ Note, the function \code{detach} from the \code{base} package can be used to detach the attached objects. } \arguments{ \item{name}{ alternative way to specify the database to be attached. See for details \code{help(attach,package=base)}. } \item{pos}{ an integer specifying position in \code{search()} where to attach the database. See for details \code{help(attach,package=base)}. } \item{warn.conflicts}{ a logical value. If \code{TRUE}, warnings are printed about conflicts from attaching the database, unless that database contains an object \code{.conflicts.OK}. A conflict is a function masking a function, or a non-function masking a non-function. See for details \code{help(attach,package=base)}. } \item{what}{ [attach] - \cr database to be attached. This may currently be a timeSeries object, a data.frame or a list or a R data file created with save or NULL or an environment. See for details \code{help(attach, package=base)}. } } \value{ The environment is returned invisibly with a \code{name} attribute. } \examples{ ## Load Microsoft Data Set - x <- MSFT[1:10, ] colnames(x) ## Attach the Series and Compute the Range - attach(x) range <- High - Low range ## Convert Vector to a timeSeries Object - timeSeries(data=range, charvec=time(x), units="Range") ## Detach the series from the search path - detach("x") ans <- try(High, silent=TRUE) cat(ans[1]) } \keyword{chron} timeSeries/man/timeSeries-isRegular.Rd0000644000176000001440000000363712620124746017536 0ustar ripleyusers\name{isRegular} \title{Checks if a time series is regular} \alias{isDaily,timeSeries-method} \alias{isMonthly,timeSeries-method} \alias{isQuarterly,timeSeries-method} \alias{isRegular,timeSeries-method} \alias{frequency,timeSeries-method} \description{ Checks if a time series is regular. } \details{ What is a regular time series? If a series is a daily, a monthly, or a weekly time series then we speak of a regular series. This can be tested calling the functions \code{isDaily}, \code{isMonthly}, \code{isQuarterly}, or in general \code{isRegular} If the series is regular then the frequency of the series can be determined calling the function \code{frequency}. A time series is defined as daily if the series has not more than one date/time stamp per day.\cr A time series is defined as monthly if the series has not more than one date/time stamp per month.\cr A time series is defined as quarterly if the series has not more than one date/time stamp per quarter.\cr Note, amonthly series is also a daily series, a quarterly series is alsona monthly series.\cr With these definitions a regular series is either a monthly or a quarterly series.\cr NOT yet implemented is the case of weekly series. } \usage{ \S4method{isDaily}{timeSeries}(x) \S4method{isMonthly}{timeSeries}(x) \S4method{isQuarterly}{timeSeries}(x) \S4method{isRegular}{timeSeries}(x) \S4method{frequency}{timeSeries}(x, \dots) } \arguments{ \item{x}{ an R object of class 'timeSeries'. } \item{\dots}{ arguments to be passed. } } \value{ The \code{is*} functions return \code{TRUE} or \code{FALSE} depending on whether the series fulfills the condition or not. The function frequency returns in general 1, for quarterly series 4, and for monthly series 12. } \examples{ ## None } \keyword{chron} timeSeries/man/base-rev.Rd0000644000176000001440000000122312620124746015163 0ustar ripleyusers\name{rev} \alias{rev,timeSeries-method} \alias{rev.timeSeries} \title{Reversion of a 'timeSeries'} \description{ Reverses an uni- or multivariate 'timeSeries' object by reversing the order of the time stamps. } \usage{ \S4method{rev}{timeSeries}(x) } \arguments{ \item{x}{ an uni- or multivariate 'timeSeries' object. } } \value{ Returns a reversed 'timeSeries' object. } \examples{ ## Create Dummy timeSeries - tS <- dummySeries() ## Reverse Series - rev(tS) } \keyword{chron} timeSeries/man/stats-na.contiguous.Rd0000644000176000001440000000141112620124746017406 0ustar ripleyusers\name{na.contiguous} \title{Find Longest Contiguous Stretch of non-NAs} \alias{na.contiguous,timeSeries-method} \description{ Find the longest consecutive stretch of non-missing values in a timeSeries object. (In the event of a tie, the first such stretch.) } \usage{ \S4method{na.contiguous}{timeSeries}(object, ...) } \arguments{ \item{object}{ a timeSeries object. } \item{\dots}{ further arguments passed to or from other methods. } } \value{ A timeSeries object without missing values. } \examples{ ## Dummy timeSeries with NAs entries data <- matrix(sample(c(1:20, rep(NA,4))), ncol = 2) s <- timeSeries(data, timeCalendar()) ## Find the longest consecutive non-missing values na.contiguous(s) } timeSeries/man/timeSeries-readSeries.Rd0000644000176000001440000000402012620124746017652 0ustar ripleyusers\name{readSeries} \title{Reads a 'timeSeries' from a File} \alias{readSeries} \description{ Reads a file in table format and creates a \code{timeSeries} object from it. } \details{ The first column of the table must hold the timestamps. Format of the stimestamps can be either specified in the header of the first column or by the \code{format} argument. } \usage{ readSeries(file, header = TRUE, sep = ";", zone = "", FinCenter = "", format, \dots) } \arguments{ \item{file}{ the filename of a spreadsheet data set from which to import the data records. } \item{FinCenter}{ a character with the the location of the financial center named as "continent/city". } \item{header}{ a logical value indicating whether the file contains the names of the variables as its first line. If missing, the value is determined from the file format: 'header' is set to 'TRUE' if and only if the first row contains one fewer field than the number of columns. } \item{format}{ a character string with the format in POSIX notation specifying the timestamp format. Note, the format has not to be specified if the first column in the file has the timestamp format specifyer, e.g. "\%Y-\%m-\%d" for the short ISO 8601 format. } \item{sep}{ the field seperator used in the spreadsheet file to separate columns. By default ";". Note, if \code{sep=";"} is specified, and reading the series fails, then the reading is automatically repeated with \code{sep=","}. } \item{zone}{ the time zone or financial center where the data were recorded. By default \code{zone=""} which is short for GMT. } \item{\dots}{ Additional arguments passed to \code{read.table()} function which is used to read the file. } } \value{ Returns a S4 object of class \code{timeSeries}. } timeSeries/man/stats-aggregate.Rd0000644000176000001440000000545312620124746016552 0ustar ripleyusers\name{aggregate-methods} \docType{methods} \alias{aggregate} \alias{aggregate.timeSeries} \alias{aggregate-methods} \alias{aggregate,timeSeries-method} \alias{daily2weekly} \alias{daily2monthly} \title{timeSeries Class, Functions and Methods} \description{ Aggregates a 'timeSeries' Object. } \details{ The function \code{aggregate} is a function which can aggregate time series on general aggregation periods. In addition there are two tailored function for simple usage: Function \code{daily2monthly} and \code{daily2weekly} which allow to aggregate 'timeSeries' objects from daily to monthly or weekly levels, respectively. In the case of the function \code{daily2weekly} one can explicitely the starting day of the week, the default value is Tuesday, \code{startOn="Tue"}. } \usage{ \S4method{aggregate}{timeSeries}(x, by, FUN, \dots) daily2monthly(x, init=FALSE) daily2weekly(x, startOn="Tue", init=FALSE) } \arguments{ \item{x}{ an object of class 'timeSeries'. } \item{by}{ a sequence of \code{timeDate} objects denoting the aggregation period. } \item{FUN}{ the function to be applied. } \item{startOn}{ a string value, specifying the day of week as a three letter abbreviation. Weekly aggregated data records are then fixed to the weekdays given by the argument \code{startOn}.} \item{init}{ a logical value, if set to \code{TRUE} then the time series will be indexed to 1 for its first value. By default init is set to \code{FALSE}. } \item{\dots}{ arguments passed to other methods. } } \value{ \code{aggregate} returns an aggregated S4 object of class \code{timeSeries}. \code{daily2monthly} returns an aggregated monthly object of class \code{timeSeries}. \code{daily2weekly} returns an aggregated weekly object of class \code{timeSeries} starting on the specified day of week. } \examples{ ## Load Microsoft Data Set - x <- MSFT ## Aggregate by Weeks - by <- timeSequence(from = start(x), to = end(x), by = "week") aggregate(x, by, mean) ## Aggregate to Last Friday of Month - by <- unique(timeLastNdayInMonth(time(x), 5)) X <- aggregate(x, by, mean) X dayOfWeek(time(X)) isMonthly(X) ## Aggregate to Last Day of Quarter - by <- unique(timeLastDayInQuarter(time(x))) X <- aggregate(x, by, mean) X isQuarterly(X) ## Aggregate daily records to end of month records - X <- daily2monthly(x) X isMonthly(X) ## Aggregate da, ily records to end of week records - X <- daily2weekly(x, startOn="Fri") X dayOfWeek(time(X)) } \keyword{methods} \keyword{chron} timeSeries/man/base-dim.Rd0000644000176000001440000000446112620124746015147 0ustar ripleyusers\name{dimnames} \title{Time Series Columns and Rows} \alias{dim,timeSeries-method} \alias{dim<-,timeSeries-method} \alias{dimnames,timeSeries-method} \alias{dimnames<-,timeSeries,list-method} \alias{colnames<-,timeSeries-method} \alias{colnames,timeSeries-method} \alias{rownames,timeSeries-method} \alias{rownames<-,timeSeries,timeDate-method} \alias{rownames<-,timeSeries,ANY-method} \alias{names,timeSeries-method} \alias{names<-,timeSeries-method} \description{ Handling columns and rows of 'timeSeries' objects. } \details{ \tabular{ll}{ \code{dim} \tab Returns the dimension of a 'timeSeries' object \cr \code{dimnames} \tab Returns the dimension names of a 'timeSeries' object \cr \code{colnames<-} \tab Assigns column names to a 'timeSeries' object \cr \code{rownames<-} \tab Assigns row names to a 'timeSeries' object } } % \usage{ % %\S4method{dim}{timeSeries}(x) % %\S4method{dimnames}{timeSeries}(x) % %\S4method{dimnames}{timeSeries}(x) <- value % dim(x) % dimnames(x) % dimnames(x) <- value % colnames(x) % colnames(x) <- value % rownames(x) % rownames(x) <- value % \method{is.array}{timeSeries}(x) % } %\arguments{ % % \item{value}{ % a valid value for names component of \code{dimnames(x)}. % For a \code{"timeSeries"} object this is either \code{NULL} or a % character vector of length the column dimension. Not, row names % cannot be assigne for a \code{"timeSeries"} object, the function % \code{rownames()} will stop and return an error message. % } % \item{x}{ % an object of class \code{timeSeries}. % } % %} \value{ Returns the dimensions and related numbers of a 'timeSeries' object. } \examples{ ## Load Swiss Pension Fund Benchmark Data - X <- LPP2005REC[1:10, 1:3] ## Get Dimension - dim(X) ## Get Column and Row Names - dimnames(X) ## Get Column / Row Names - colnames(X) rownames(X) ## Try your own DIM - DIM <- function(x) {c(NROW(x), NCOL(x))} DIM(X) DIM(X[, 1]) ## Try length / LENGTH - length(X) length(X[, 1]) LENGTH <- function(X) NROW(X) LENGTH(X) ## Columns / Rows - ncol(X); NCOL(X) nrow(X); NROW(X) ## See also - isUnivariate(X) isMultivariate(X) } \keyword{chron} timeSeries/man/base-rank.Rd0000644000176000001440000000367512620124746015337 0ustar ripleyusers\name{rank} \title{Sample Ranks of a Time Series} \alias{rank,timeSeries-method} \description{ Returns the sample ranks of the values of a 'timeSeries' object. } \details{ If all components are different (and no NAs), the ranks are well defined, with values in \code{seq_len(x)}. With some values equal (called ???ties???), the argument ties.method determines the result at the corresponding indices. The \code{"first"} method results in a permutation with increasing values at each index set of ties. The \code{"random"} method puts these in random order whereas the default, \code{"average"}, replaces them by their mean, and \code{"max"} and \code{"min"} replaces them by their maximum and minimum respectively, the latter being the typical sports ranking. NA values are never considered to be equal: for \code{na.last = TRUE} and \code{na.last = FALSE} they are given distinct ranks in the order in which they occur in \code{x}. } \usage{ \S4method{rank}{timeSeries}(x, na.last = TRUE, ties.method = ) } \arguments{ \item{x}{ an univariate object of class \code{timeSeries}. } \item{na.last}{ for controlling the treatment of NAs. If TRUE, missing values in the data are put last; if FALSE, they are put first; if NA, they are removed; if "keep" they are kept with rank NA. } \item{ties.method}{ a character string specifying how ties are treated; can be abbreviated. } } \value{ returns the ranks of a \code{timeSeries} object. } \examples{ ## Load Microsoft Data - X <- 100 * returns(MSFT) ## Compute the Ranks - head(rank(X[, "Open"]), 10) ## Only Interested in the Vector, then use - head(rank(series(X[, "Open"])), 10) } \keyword{chron} timeSeries/man/fin-daily.Rd0000644000176000001440000001232112620124746015334 0ustar ripleyusers\name{SpecialDailySeries} \title{Special Daily Time Series} \alias{daily} \alias{dummyDailySeries} \alias{dummySeries} \alias{alignDailySeries} \alias{rollDailySeries} %alias{ohlcDailyPlot} \description{ Special daily 'timeSeries' functions. } \details{ \tabular{ll}{ \code{dummyDailySeries} \tab Creates a dummy daily 'timeSeries' object, \cr \code{alignDailySeries} \tab Aligns a daily 'timeSeries' to new positions,\cr \code{rollDailySeries} \tab Rolls daily a 'timeSeries' on a given period, \cr \code{ohlcDailyPlot} \tab Plots open high low close bar chart, \cr \code{dummySeries} \tab Creates a dummy monthly 'timeSeries' object} } \usage{ dummyDailySeries(x = rnorm(365), units = NULL, zone = "", FinCenter = "") alignDailySeries(x, method = c("before", "after", "interp", "fillNA", "fmm", "periodic", "natural", "monoH.FC"), include.weekends = FALSE, units = NULL, zone = "", FinCenter = "", ...) rollDailySeries(x, period = "7d", FUN, \dots) %ohlcDailyPlot(x, volume = TRUE, colOrder = c(1:5), units = 1e6, % xlab = c("Date", "Date"), ylab = c("Price", "Volume"), % main = c("O-H-L-C", "Volume"), grid.nx = 7, grid.lty = "solid", \dots) } \arguments{ %\item{colOrder}{ % [ohlcDailyPlot] - \cr % an integer vector which gives the order of the prices and the % volume in the input object. By default the following order of % columns from 1 to 5 is assumed: Open, high, low, close, and volume. % } \item{FinCenter}{ a character with the the location of the financial center named as "continent/city". } \item{FUN}{ the function to be applied.\cr [applySeries] - \cr a function to use for aggregation, by default \code{colAvgs}. } %\item{grid.lty, grid.nx}{ % [ohlcDailyPlot] - \cr % The type of grid line and the number of grid lines used in the % plot. % } \item{include.weekends}{ [alignDailySeries] - \cr a logical value. Should weekend dates be included or removed from the series. } %\item{main}{ % [ohlcDailyPlot] - \cr % a character string to title the price and volume plot. % } \item{method}{ [alignDailySeries] - \cr the method to be used for the alignment. A character string, one of \code{"before"}, use the data from the row whose position is just before the unmatched position, or \code{"after"}, use the data from the row whose position is just after the unmatched position, or \code{"linear"}, interpolate linearly between \code{"before"} and \code{"after"}. } \item{period}{ [rollDailySeries] - \cr a character string specifying the rollling period composed by the length of the period and its unit, e.g. \code{"7d"} represents one week. } \item{units}{ [allignDailySeries] - \cr an optional character string, which allows to overwrite the current column names of a \code{timeSeries} object. By default \code{NULL} which means that the column names are selected automatically. %\cr %[ohlcDailyPlot] - \cr %a numeric value, specifying in which multiples the volume should %be referenced on the plot labels. By default 1e6, i.e. in units %of 1 Million. } %\item{volume}{ % [ohlcDailyPlot] - \cr % a logigical value. Should a volume plot added to the OHLC Plot. % By default \code{TRUE}. % } \item{x}{ an object of class \code{timeSeries}. } %\item{xlab, ylab}{ % [ohlcDailyPlot] - \cr % two string vectors to name the x and y axis of the price and % volume plot. % } \item{zone}{ the time zone or financial center where the data were recorded. } \item{\dots}{ arguments passed to interpolating methods. } } \value{ \code{dummyDailySeries} \cr creates from a numeric matrix with daily records of unknown dates a \code{timeSeries} object with dummy daily dates. \cr \code{alignDailySeries} \cr returns from a daily time series with missing holidays a weekly aligned daily \code{timeSeries} object \cr \code{rollDailySeries}\cr \cr returns an object of class \code{timeSeries} with rolling values, computed from the function \code{FUN}. %\cr % %\code{ohlcDailyPlot} %displays a Open-High-Low-Close Plot of daily data records. } \examples{ ## Use Microsofts' OHLCV Price Series - head(MSFT) end(MSFT) ## Cut out April Data from 2001 - Close <- MSFT[, "Close"] tsApril01 <- window(Close, start="2001-04-01", end="2001-04-30") tsApril01 ## Align Daily Series with NA - tsRet <- returns(tsApril01, trim = TRUE) GoodFriday(2001) EasterMonday(2001) alignDailySeries(tsRet, method = "fillNA", include.weekends = FALSE) alignDailySeries(tsRet, method = "fillNA", include.weekends = TRUE) ## Align Daily Series by Interpolated Values - alignDailySeries(tsRet, method = "interp", include.weekend = FALSE) alignDailySeries(tsRet, method = "interp", include.weekend = TRUE) } \keyword{chron} timeSeries/man/fin-periodical.Rd0000644000176000001440000000403512620124746016350 0ustar ripleyusers\name{periodical} \alias{endOfPeriod} \alias{endOfPeriodSeries} \alias{endOfPeriodStats} \alias{endOfPeriodBenchmarks} \title{End-of-Period Series, Stats, and Benchmarks} \description{ Computes perodical statistics back to a given period. } \details{ The function \code{endOfPeriodSeries} returns series back to a given period.\cr The function \code{endOfPeriodStats} returns statistics back to a given period.\cr The function \code{endOfPeriodBenchmarks} returns benchmarks back to a given period. \code{x} must be end of month data. Note you can create such series using for example the functions: \code{align}, \code{alignDailySeries}, \code{daily2monthly}. } \usage{ endOfPeriodSeries(x, nYearsBack = c("1y", "2y", "3y", "5y", "10y", "YTD")) endOfPeriodStats(x, nYearsBack = c("1y", "2y", "3y", "5y", "10y", "YTD")) endOfPeriodBenchmarks(x, benchmark = ncol(x), nYearsBack = c("1y", "2y", "3y", "5y", "10y", "YTD")) } \arguments{ \item{x}{ an end-of-month recorded multivariate 'timeSeries' object. One of the columns holds the benchmark series specified by the argument \code{benchmark}, By defauklt this is the last column of \code{x}. } \item{nYearsBack}{ a period string. How long back should the series be treated? Options include values from 1 year to 10 years, and year-to-date: "1y", "2y", "3y", "5y", "10y", "YTD". } \item{benchmark}{ an integer giving the position of the benchmar series in \code{x}. } } \examples{ ## Load Series: Column 1:3 Swiss Market, Column 8 (4) Benchmark x <- 100 * LPP2005REC[, c(1:3, 8)] colnames(x) x <- daily2monthly(x) x ## Get the Monthly Series - endOfPeriodSeries(x, nYearsBack="1y") ## Compute the Monthly Statistics - endOfPeriodStats(x, nYearsBack="1y") ## Compute the Benchmark - endOfPeriodBenchmarks(x, benchmark=4) } \keyword{chron} timeSeries/man/base-subsetting.Rd0000644000176000001440000001230212620124746016556 0ustar ripleyusers\name{TimeSeriesSubsettings} \alias{TimeSeriesSubsettings} \alias{[,timeSeries,ANY,index_timeSeries-method} \alias{[,timeSeries,character,character-method} \alias{[,timeSeries,character,index_timeSeries-method} \alias{[,timeSeries,character,missing-method} \alias{[,timeSeries,index_timeSeries,character-method} \alias{[,timeSeries,index_timeSeries,index_timeSeries-method} \alias{[,timeSeries,index_timeSeries,missing-method} \alias{[,timeSeries,matrix,index_timeSeries-method} \alias{[,timeSeries,matrix,missing-method} \alias{[,timeSeries,missing,character-method} \alias{[,timeSeries,missing,index_timeSeries-method} \alias{[,timeSeries,missing,missing-method} \alias{[,timeSeries,timeDate,character-method} \alias{[,timeSeries,timeDate,index_timeSeries-method} \alias{[,timeSeries,timeDate,missing-method} \alias{[,timeSeries,timeSeries,index_timeSeries-method} \alias{[,timeSeries,timeSeries,missing-method} \alias{[,timeSeries,time_timeSeries,ANY-method} \alias{[,timeSeries,time_timeSeries,character-method} \alias{[,timeSeries,time_timeSeries,index_timeSeries-method} \alias{[,timeSeries,time_timeSeries,missing-method} \alias{$,timeSeries-method} \alias{[<-,timeSeries,timeDate,index_timeSeries-method} \alias{[<-,timeSeries,timeDate,missing-method} \alias{[<-,timeSeries,timeSeries,index_timeSeries-method} \alias{[<-,timeSeries,timeSeries,missing-method} \alias{[<-,timeSeries,character,character-method} \alias{[<-,timeSeries,character,index_timeSeries-method} \alias{[<-,timeSeries,character,missing-method} \alias{[<-,timeSeries,index_timeSeries,character-method} \alias{[<-,timeSeries,matrix,character-method} \alias{[<-,timeSeries,timeDate,character-method} \alias{[<-,timeSeries,timeSeries,character-method} \alias{[<-,timeSeries,character,ANY-method} \alias{[<-,timeSeries,timeDate,ANY-method} \alias{$<-,timeSeries,ANY-method} \alias{$<-,timeSeries,factor-method} \alias{$<-,timeSeries,numeric-method} \alias{$<-,timeSeries,ANY,ANY-method} \alias{$<-,timeSeries,ANY,factor-method} \alias{$<-,timeSeries,ANY,numeric-method} \alias{window,timeSeries-method} \alias{cut,timeSeries-method} \alias{head,timeSeries-method} \alias{tail,timeSeries-method} \alias{window.timeSeries} \alias{cut.timeSeries} \alias{head.timeSeries} \alias{tail.timeSeries} \alias{outlier} \alias{outlier,timeSeries-method} \alias{outlier,ANY-method} \title{Subsettig Time Series} \description{ Subset a 'timeSeries' objects due to different aspects. \cr \tabular{ll}{ \code{[} \tab "[" method for a 'timeSeries' object, \cr \code{[<-} \tab "[<-" method to assign value for a subset of a 'timeSeries' object, \cr \code{window} \tab Windows a piece from a 'timeSeries' object, \cr \code{cut} \tab A no longer used synonyme for window, \cr \code{head} \tab Returns the head of a 'timeSeries' object, \cr \code{tail} \tab Returns the tail of a 'timeSeries' object, \cr \code{outliers} \tab Removes outliers from a 'timeSeries' object. } } \usage{ % \method{[}{timeSeries}(x, i, j, drop) % \method{[}{timeSeries}(x, i, j) <- value \S4method{window}{timeSeries}(x, start, end, \dots) \S4method{head}{timeSeries}(x, n = 6, recordIDs = FALSE, \dots) \S4method{tail}{timeSeries}(x, n = 6, recordIDs = FALSE, \dots) \S4method{outlier}{timeSeries}(x, sd = 3, complement = TRUE, \dots) \S4method{cut}{timeSeries}(x, from, to, \dots) } \arguments{ \item{complement}{ [outlierSeries] - \cr a logical flag, should the outler series or its complement be returns, by default \code{TRUE} which returns the series free of outliers. } \item{from, to}{ starting date and end date, \code{to} must be after \code{from}. } \item{start, end}{ starting date and end date, \code{end} must be after \code{start}. } % \item{i, j}{ % ["["] - \cr % index arguments used for subsettings. % } \item{n}{ [head][tail] - \cr an integer specifying the number of lines to be returned. By default \code{n=6}. } \item{recordIDs}{ [head][tail] - \cr a logical value. Should the \code{recordIDs} returned together with the data matrix and time series positions? } \item{sd}{ [outlierSeries] - \cr a numeric value of standard deviations, e.g. 10 means that values larger or smaller tahn ten times the standard deviation will be removed from the series. } % \item{value}{ % a numeric value to use as a replacement. It will be repeated a % whole number of times if necessary. % } \item{x}{ an object of class \code{timeSeries}. } \item{\dots}{ arguments passed to other methods. } } \value{ All functions return an object of class 'timeSeries'. } \examples{ ## Create an Artificial timeSeries Object - setRmetricsOptions(myFinCenter = "GMT") charvec <- timeCalendar() set.seed(4711) data <- matrix(exp(cumsum(rnorm(12, sd = 0.1)))) tS <- timeSeries(data, charvec, units = "tS") tS ## Subset Series by Counts "[" - tS[1:3, ] ## Subset the Head of the Series - head(tS, 6) } \keyword{chron} timeSeries/man/timeSeries-slotSeries.Rd0000644000176000001440000000305212620124746017724 0ustar ripleyusers\name{series-methods} \docType{methods} \alias{series} \alias{series<-} \alias{series,timeSeries-method} \alias{series<-,timeSeries,matrix-method} \alias{series<-,timeSeries,ANY-method} \alias{series<-,timeSeries,data.frame-method} \alias{series<-,timeSeries,vector-method} \alias{coredata} \alias{coredata<-} \alias{coredata,timeSeries-method} \alias{coredata<-,timeSeries,matrix-method} \alias{coredata<-,timeSeries,ANY-method} \alias{coredata<-,timeSeries,data.frame-method} \alias{coredata<-,timeSeries,vector-method} %\alias{getSeries} %\alias{getSeries.timeSeries} %\alias{setSeries<-} \title{Get and Set Data of a 'timeSeries'} \description{ \code{series} returns the \code{@.Data} slot of a \code{timeSeries} object in \code{matrix} form. New series can also be assign to an already existing \code{timeSeries}. \code{coredata} is a synonyme function nameing for \code{series}. } \usage{ %\S4method{series}{timeSeries}(x) series(x) series(x) <- value % %getSeries(x) %setSeries(x) <- value } \arguments{ \item{x}{ a \code{timeSeries} object. } \item{value}{ a \code{vector}, a \code{data.frame} or a \code{matrix} object of numeric data. } } \seealso{timeSeries()} \examples{ ## A Dummy timeSeries Object ts <- timeSeries() ts ## Get the Matrix Part - mat <- series(ts) class(mat) mat ## Assign a New Univariate Series - series(ts) <- rnorm(12) ts ## Assign a New Bivariate Series - series(ts) <- rnorm(12) ts } \keyword{programming} timeSeries/man/statistics-rollMean.Rd0000644000176000001440000000454212620124746017427 0ustar ripleyusers\name{rollMean} \title{Rolling Statistics} \alias{rollStats} \alias{rollMean} \alias{rollMin} \alias{rollMax} \alias{rollMedian} \description{ Computes rolling mean, min, max and median for a 'timeSeries' object. } \usage{ rollStats(x, k, FUN=mean, na.pad=FALSE, align=c("center", "left", "right"), \dots) rollMean(x, k, na.pad = FALSE, align = c("center", "left", "right"), \dots) rollMin(x, k, na.pad = FALSE, align = c("center", "left", "right"), \dots) rollMax(x, k, na.pad = FALSE, align = c("center", "left", "right"), \dots) rollMedian(x, k, na.pad = FALSE, align = c("center", "left", "right"), \dots) } \arguments{ \item{x}{ an uni- or multivariate 'timeSeries' object. } \item{k}{ an integer width of the rolling window. Must be odd for \code{rollMedian}. } \item{FUN}{ the function to be rolled. } \item{na.pad}{ a logical flag. Should NA padding be added at beginning? By default \code{FALSE}. } \item{align}{ a character string specifying whether the index of the result should be left- or right-aligned or centered compared to the rolling window of observations. The default choice is set to \code{align="center"}. } \item{\dots}{ optional arguments to be passed. } } \value{ returns an object of class 'timeSeries'. } \details{ The code in the core of the functions \code{rollMean}, \code{rollMin}, \code{rollMax}, and \code{rollMedian} was borrowed from the package \code{zoo} authored by Achim Zeileis, Gabor Grothendieck and Felix Andrews. } \author{ Achim Zeileis, Gabor Grothendieck and Felix Andrews for code from the contributed R package \code{zoo} used in the functions \code{rollMean}, \code{rollMin}, \code{rollMax}, and \code{rollMedian}. } \examples{ ## Use Swiss Pension Fund Data Set of Returns - head(LPP2005REC) SPI <- LPP2005REC[, "SPI"] head(SPI) ## Plot Drawdowns - rmean <- rollMean(SPI, k = 10) plot(rmean) } \keyword{chron} timeSeries/man/timeSeries-slotDocumentation.Rd0000644000176000001440000000411712620124746021306 0ustar ripleyusers\name{attributes} \title{Get and Set Optional Attributes of a 'timeSeries'} \alias{attributes} \alias{documentation} \alias{getAttributes} \alias{setAttributes<-} \description{ Extracts or assigns optional attributes from or to a \code{timeSeries} object. } \usage{ getAttributes(obj) setAttributes(obj) <- value } \arguments{ \item{obj}{ a \code{timeSeries} object whose optional attributes are to be accessed. } \item{value}{ an object, the new value of the attribute, or NULL to remove the attribute. } } \details{ Each \code{timeSeries} object is documented. By default a time series object holds in the documentation slot a string with creation time and the user who has defined it. But this is not all. Optionally the whole creation process and history can be recorded. For this the \code{@documentation} slot may have an optional \code{"Attributes"} element. This attribute is tracked over the whole life time of the object whenever the time series is changed. Whenever you like to be informed about the optional attributes, or you like to recover them you can dot it, and evenmore, whenever you like to add information as an addiitonal attribute you can also do it. The two functions \code{getAttributes} and \code{setAttributes} provide access to and allow to modify the optional attributes of a \code{timeSeries} object. %The replacement form causes the named attribute to take the value %specified (or create a new attribute with the value given). %Optional attributes are attached to the \code{@documentation} slot of the %S4 \code{timeSeries} object. These attributes are preserved during operations %on \code{timeSeries} objects using the internal function \code{.appendList}. } \examples{ ## Create an artificial timeSeries Object - tS <- dummySeries() tS ## Get Optional Attributes - getAttributes(tS) tS@documentation ## Set a new Optional Attribute - setAttributes(tS) <- list(what="A dummy Series") tS getAttributes(tS) tS@documentation } \keyword{programming} timeSeries/man/base-scale.Rd0000644000176000001440000000313612620124746015463 0ustar ripleyusers\name{scale} \title{scale} \description{ Scales a 'timeSeries' object. } \details{ \code{scale} is a function to center and/or scale the columns of a 'timeSeries' object. The value of \code{center} determines how column centering is performed. If \code{center} is a numeric vector with length equal to the number of columns of \code{x}, then each column of \code{x} has the corresponding value from \code{center} subtracted from it. If \code{center} is TRUE then centering is done by subtracting the column means (omitting NAs) of \code{x} from their corresponding columns, and if \code{center} is FALSE, no centering is done. The value of \code{scale} determines how column scaling is performed (after centering). If \code{scale} is a numeric vector with length equal to the number of columns of \code{x}, then each column of \code{x} is divided by the corresponding value from \code{scale}. If \code{scale} is TRUE then scaling is done by dividing the (centered) columns of \code{x} by their standard deviations if \code{center} is TRUE, and the root mean square otherwise. If \code{scale} is FALSE, no scaling is done. } \value{ Returns a centered and/or scaled 'timeSeries' object. } \examples{ ## Load Series: x <- 100* LPP2005REC[, c("SBI", "SPI")] ## Scale and Center - X <- scale(x) hist(X[, 1], prob=TRUE) s <- seq(-3, 3, length=201) lines(s, dnorm(s), col="red") } \keyword{chron} timeSeries/man/base-t.Rd0000644000176000001440000000074612620124746014643 0ustar ripleyusers\name{t} \title{timeSeries Transpose} \alias{t,timeSeries-method} \description{ Returns the transpose of a 'timeSeries' object. } \usage{ \S4method{t}{timeSeries}(x) } \arguments{ \item{x}{ a 'timeSeries' object. } } \value{ Returns a matrix object. } \examples{ ## Dummy timeSeries with NAs entries data <- matrix(1:24, ncol = 2) s <- timeSeries(data, timeCalendar()) s ## Transpose 'timeSeries' - t(s) } \keyword{chron} timeSeries/man/methods-plot.Rd0000644000176000001440000001766612620124746016120 0ustar ripleyusers\name{plot-methods} \title{Plot a Time Series} \alias{plot} \alias{plot,timeSeries-method} \alias{lines,timeSeries-method} \alias{points,timeSeries-method} \alias{pretty.timeSeries} \description{ Plots 'timeSeries' objects and add lines and points. } \usage{ \S4method{plot}{timeSeries}(x, y, FinCenter = NULL, plot.type = c("multiple", "single"), format = "auto", at = pretty(x), widths = 1, heights = 1, xy.labels, xy.lines, panel = lines, nc, yax.flip = FALSE, mar.multi = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1), oma.multi = c(6, 0, 5, 0), axes = TRUE, \ldots) \S4method{lines}{timeSeries}(x, FinCenter = NULL, \dots) \S4method{points}{timeSeries}(x, FinCenter = NULL, \dots) \method{pretty}{timeSeries}(x, n=5, min.n=n\%/\%3, shrink.sml=0.75, high.u.bias=1.5, u5.bias=0.5+1.5*high.u.bias, eps.correct=0, \dots) } \details{ The original plotting function \code{plot} was build along R's plotting function \code{plot.ts} with an additional argument to tailor the position marks at user defined position specified by the argument \code{at}. We call this style or theme "ts". With Verison R 3.1 we have inroduced two new additionol plotting themes called "pretty" and "chick". They are becoming active when we set \code{at="pretty"} or \code{at="chic"}. Plot style or theme "pretty" is an extension of our original plotting function. Plot style or theme "chic" an implementation along the contributed packages \code{xts} and \code{PerformanceAnalytics} from the Chicago finance group members. "Chicago" gave the name to call the them \code{"chic"}. For both themes, "pretty" and "chic" additional arguments are passed through the \code{\dots} arguments. These are: \tabular{lll}{ \code{Argument:} \tab Default: \tab Description: \cr \code{type} \tab "l" \tab types pf plot \cr \code{col} \tab 1 \tab colors for lines and points \cr \code{pch} \tab 20 \tab plot symbol \cr \code{cex} \tab 1 \tab character and symbol scales \cr \code{lty} \tab 1 \tab line types \cr \code{lwd} \tab 2 \tab line widths \cr \code{cex.axes} \tab 1 \tab scale of axes \cr \code{cex.lab} \tab 1 \tab scale of labels \cr \code{cex.pch} \tab 1 \tab scale of plot symbols \cr \code{} \tab \tab \cr \code{grid} \tab TRUE \tab should grid lines plotted? \cr \code{frame.plot} \tab TRUE \tab should b box around the plot? \cr \code{axes} \tab TRUE \tab should be axes drawn on the plot? \cr \code{ann} \tab TRUE \tab should default annotations appear? } Concerning the plot elements, the length of these vectors has to be the same as the number of columns in the time series to be plotted. If their length is only one, then tey are repeated. There is an almost 70 pages vignette added to the package, with dozens of examples of tailored plots. Have a look in it. } \arguments{ \item{x, y }{ objects of class \code{timeSeries}. } \item{FinCenter}{ a character with the the location of the financial center named as \code{"continent/city"}. } \item{plot.type}{ for multivariate time series, should the series by plotted separately (with a common time axis) or on a single plot? } \item{format}{POSIX label format, e.g. "\%Y-\%m-\%d" or "\%F" for ISO-8601 standard date format. } \item{at}{ a \code{timeDate} object setting the plot label positions. If \code{at=pretty(x)}, the postitions are generated automatized calling the function \code{pretty}. Default option \code{at="auto"} selects 6 equal spaced time label positions. For the new plot themes set at="pretty" or at="chic". In this case additional arguments can be passed through the \code{\dots} arguments, see details. } \item{widths, heights}{ widths and heights for individual graphs, see \code{layout}. } \item{xy.labels}{ logical, indicating if \code{text()} labels should be used for an x-y plot, \_or\_ character, supplying a vector of labels to be used. The default is to label for up to 150 points, and not for more. } \item{xy.lines}{ logical, indicating if \code{lines} should be drawn for an x-y plot. Defaults to the value of \code{xy.labels} if that is logical, otherwise to \code{TRUE} } \item{panel}{ a \code{function(x, col, bg, pch, type, ...)} which gives the action to be carried out in each panel of the display for \code{plot.type="multiple"}. The default is \code{lines}. } \item{nc}{ the number of columns to use when \code{type="multiple"}. Defaults to 1 for up to 4 series, otherwise to 2. } \item{yax.flip}{ logical indicating if the y-axis (ticks and numbering) should flip from side 2 (left) to 4 (right) from series to series when \code{type="multiple"}. } \item{mar.multi, oma.multi}{ the (default) \code{par} settings for \code{plot.type="multiple"}. } \item{axes}{ logical indicating if x- and y- axes should be drawn. } \item{n}{ an integer giving the desired number of intervals. } \item{min.n}{ a nonnegative integer giving the minimal number of intervals. } \item{shrink.sml}{ a positive numeric by a which a default scale is shrunk in the case when range(x) is very small. } \item{high.u.bias}{ a non-negative numeric, typically > 1. Larger high.u.bias values favor larger units. } \item{u5.bias}{ a non-negative numeric multiplier favoring factor 5 over 2. } \item{eps.correct}{ an integer code, one of {0,1,2}. If non-0, a correction is made at the boundaries. } \item{\dots}{ additional graphical arguments, see \code{plot}, \code{plot.default} and \code{par}. } } \value{ Displays a plot or plot elements of an object of class 'timeSeries'. } \examples{ ## Load Swiss Pension Fund Benchmark Data - LPP <- LPP2005REC[1:12, 1:4] colnames(LPP) <- abbreviate(colnames(LPP), 2) finCenter(LPP) <- "GMT" ## Example Plot 1 - plot(LPP[, 1], type = "o", col = "steelblue", main = "LPP", xlab = "2005", ylab = "Return") plot(LPP[, 1], at="auto", type = "o", col = "steelblue", main = "LPP", xlab = "2005", ylab = "Return") ## Example Plot 2 - plot(LPP[, 1:2], type = "o", col = "steelblue", main = "LPP", xlab = "2005", ylab = "Return") ## Example Plot 3 - plot(LPP[, 1], LPP[, 2], type = "p", col = "steelblue", main = "LPP", xlab = "Return 1", ylab = "Return 2") ## Example Plot 4a, The Wrong Way to do it! - LPP <- as.timeSeries(data(LPP2005REC)) ZRH <- as.timeSeries(LPP[,"SPI"], zone = "Zurich", FinCenter = "Zurich") NYC <- as.timeSeries(LPP[,"LMI"], zone = "NewYork", FinCenter = "NewYork") finCenter(ZRH) finCenter(NYC) plot(ZRH, at="auto", type = "p", pch = 19, col = "blue") points(NYC, pch = 19, col = "red") ## Example Plot 4b, Convert NYC to Zurich Time - finCenter(ZRH) <- "Zurich" finCenter(NYC) <- "Zurich" at <- unique(round(time(ZRH))) plot(ZRH, type = "p", pch = 19, col = "blue", format = "\%b \%d", at = at, xlab = paste(ZRH@FinCenter, "local Time"), main = ZRH@FinCenter) points(NYC, pch = 19, col = "red") ## Example 4c, Force Everything to GMT Using "FinCenter" Argument - finCenter(ZRH) <- "Zurich" finCenter(NYC) <- "NewYork" at <- unique(round(time(ZRH))) plot(ZRH, type = "p", pch = 19, col = "blue", format = "\%b \%d", at = at, FinCenter = "GMT", xlab = "GMT", main = "ZRH - GMT") points(NYC, FinCenter = "GMT", pch = 19, col = "red") } \keyword{chron} timeSeries/man/fin-returns.Rd0000644000176000001440000000420212620124746015733 0ustar ripleyusers\name{returns} \title{Financial Returns} \alias{returns} \alias{returns,ANY-method} \alias{returns,timeSeries-method} \alias{returns0} \alias{returnSeries} \alias{getReturns} \description{ Compute financial returns from prices or indexes. } \usage{ returns(x, \dots) returns0(x, \dots) \S4method{returns}{ANY}(x, method = c("continuous", "discrete", "compound", "simple"), percentage = FALSE, \dots) \S4method{returns}{timeSeries}(x, method = c("continuous", "discrete", "compound", "simple"), percentage = FALSE, na.rm = TRUE, trim = TRUE, \dots) getReturns(\dots) returnSeries(\dots) } \arguments{ \item{x}{ an object of class \code{timeSeries}. } \item{percentage}{ a logical value. By default \code{FALSE}, if \code{TRUE} the series will be expressed in percentage changes. } \item{method}{ a character string. Which method should be used to compute the returns, "continuous", "discrete", or "compound", "simple". The second pair of methods is a synonyme for the first two methods. } \item{na.rm}{ a logical value. Should NAs be removed? By Default \code{TRUE}. } \item{trim}{ a logical value. Should the time series be trimmed? By Default \code{TRUE}. } \item{\dots}{ arguments to be passed. } } \value{ all functions return an object of class \code{timeSeries}. \code{returns0} returns am untrimmed series with the first row of returns set to zero(s). } \note{ The functions \code{returnSeries}, \code{getReturns}, are synonymes for the function \code{returns}. We do not recommend to use these functions. } \examples{ ## Load Microsoft Data - setRmetricsOptions(myFinCenter = "GMT") data(MSFT) X = MSFT[1:10, 1:4] X ## Continuous Returns - returns(X) returns0(X) ## Discrete Returns: returns(X, method = "discrete") ## Don't trim: returns(X, trim = FALSE) ## Use Percentage Values: returns(X, percentage = TRUE, trim = FALSE) } \keyword{chron} timeSeries/man/methods-base.Rd0000644000176000001440000000057212620124746016040 0ustar ripleyusers\name{base-methods} \title{Methods for 'timeSeries' object} \docType{methods} \alias{mean,timeSeries-method} \alias{summary,timeSeries-method} \description{ Methods for function in Package `base' for \code{timeSeries} object. } \section{Methods}{ \describe{ \item{x = "timeSeries"}{a \code{timeSeries} object.} }} \examples{ ## None - } \keyword{chron} timeSeries/man/methods-mathOps.Rd0000644000176000001440000000711112620124746016535 0ustar ripleyusers\name{math} \alias{math} \alias{Ops,vector,timeSeries-method} \alias{Ops,array,timeSeries-method} \alias{Ops,ts,timeSeries-method} \alias{Ops,timeSeries,vector-method} \alias{Ops,timeSeries,array-method} \alias{Ops,timeSeries,ts-method} \alias{Ops,timeSeries,timeSeries-method} \alias{-,timeSeries,missing-method} \alias{+,timeSeries,missing-method} \alias{cummax,timeSeries-method} \alias{cummin,timeSeries-method} \alias{cumprod,timeSeries-method} \alias{cumsum,timeSeries-method} \alias{Math,timeSeries-method} \alias{Math2,timeSeries-method} \alias{Summary,timeSeries-method} \alias{trunc,timeSeries-method} \alias{log,timeSeries-method} \alias{\%*\%,timeSeries,vector-method} \alias{\%*\%,timeSeries,ANY-method} \alias{\%*\%,ANY,timeSeries-method} %\alias{diff,timeSeries-method} %\alias{scale,timeSeries-method} \alias{quantile,timeSeries-method} \alias{diff.timeSeries} %\alias{scale.timeSeries} \alias{quantile.timeSeries} \title{Mathematical Time Series Operations} \description{ Functions and methods dealing with mathematical 'timeSeries' operations. } \details{ The math functions include:\cr \tabular{ll}{ \code{Ops-method} \tab Group 'Ops' methods for a 'timeSeries' object \cr \code{Math-method} \tab Group 'Math' methods for a 'timeSeries' object \cr \code{Math2-method} \tab Group 'Math2' methods for a 'timeSeries' object \cr \code{Summary-method} \tab Group 'Summary' methods for a 'timeSeries' object \cr %\code{diff} \tab Differences a 'timeSeries' object, \cr %\code{scale} \tab Centers and/or scales a 'timeSeries' object, \cr \code{quantile} \tab Returns quantiles of an univariate 'timeSeries'. } } \usage{ % \S4method{Ops}{timeSeries}(e1, e2) % \S4method{Math}{timeSeries}(x, ...) % \S4method{Math2}{timeSeries}(x, digits) % \S4method{Summary}{timeSeries}(x, ..., na.rm = FALSE) % \S4method{diff}{timeSeries}(x, lag = 1, diff = 1, trim = FALSE, pad = NA, \dots) % \S4method{scale}{timeSeries}(x, center = TRUE, scale = TRUE) \S4method{quantile}{timeSeries}(x, \dots) } \arguments{ % \item{center, scale}{ % [scale] - \cr % either a logical value or a numeric vector of length equal to % the number of columns of \code{x}. % } % \item{diff}{ % an integer indicating the order of the difference. By default 1. % } % \item{digits} { % number of digits to be used in 'round' or 'signif'. % } % \item{e1, e2}{ % [Ops] - \cr % two objects of class \code{timeSeries}. % } % \item{lag}{ % an integer indicating which lag to use. By default 1. % } % \item{na.rm}{ % logical: should missing values be removed? % } % \item{pad}{ % [diffSeries] - \cr % which value should get the padded values? By default \code{NA}. % Another choice often used would be zero. % } % \item{trim}{ % a logical value. By default \code{TRUE}, the first missing % observation in the return series will be removed. % } \item{x}{ an object of class \code{timeSeries}. } \item{\dots}{ arguments to be passed. } } \value{ Returns the value from a mathematical or logical operation operating on objects of class 'timeSeries[], or the value computed by a mathematical function. } \examples{ ## Create an Artificial timeSeries Object - setRmetricsOptions(myFinCenter = "GMT") charvec = timeCalendar() set.seed(4711) data = matrix(exp(cumsum(rnorm(12, sd = 0.1)))) TS = timeSeries(data, charvec, units = "TS") TS ## Mathematical Operations: | +/- * ^ ... - TS^2 TS[2:4] OR = returns(TS) OR OR > 0 } \keyword{chron} \keyword{methods} timeSeries/man/timeSeries-isUnivariate.Rd0000644000176000001440000000212112620124746020227 0ustar ripleyusers\name{isUnivariate} \title{Checks if a Time Series is Univariate} \alias{isUnivariate} \alias{isMultivariate} \description{ Checks if a time series o bject or any other rectangular object is univariate or multivariate. } \usage{ isUnivariate(x) isMultivariate(x) } \arguments{ \item{x}{ an object of class \code{timeSeries} or any other rectangular object. } } \value{ \code{isUnivariate}\cr \code{isMultivariate}\cr \cr return a logical depending if the test is true or not. } \details{ A rectangular object \code{x} is considered to be univariate if the function \code{NCOL(x)} returns one, and is considered to be multivariate if \code{NCOL(x)} returns a value bigger than one. } \examples{ ## Load Microsoft Data - setRmetricsOptions(myFinCenter = "GMT") data(MSFT) Open = MSFT[, "Open"] ## Is the timeSeries Univariate - isUnivariate(MSFT) isUnivariate(Open) ## Is the timeSeries Multivariate - isMultivariate(MSFT) isMultivariate(Open) } \keyword{chron} timeSeries/man/timeSeries.Rd0000644000176000001440000001320512620124746015573 0ustar ripleyusers\name{TimeSeriesClass} \title{timeSeries Class} \alias{TimeSeriesClass} \alias{timeSeries} \alias{timeSeries,ANY,ANY-method} \alias{timeSeries,ANY,missing-method} \alias{timeSeries,ANY,timeDate-method} \alias{timeSeries,matrix,ANY-method} \alias{timeSeries,matrix,missing-method} \alias{timeSeries,matrix,timeDate-method} \alias{timeSeries,missing,ANY-method} \alias{timeSeries,missing,missing-method} \alias{timeSeries,missing,timeDate-method} \alias{timeSeries,matrix,numeric-method} \alias{index_timeSeries} \alias{time_timeSeries} \alias{timeSeries-class} \alias{index_timeSeries-class} \alias{time_timeSeries-class} \alias{initialize,timeSeries-method} \alias{seriesData} \description{ Functions to generate and modify 'timeSeries' objects: \tabular{ll}{ \code{timeSeries} \tab Creates a 'timeSeries' object from scratch.} Data Slot and classification of 'timeSeries' objects: \tabular{ll}{ \code{seriesData} \tab Extracts data slot from a 'timeSeries'. } } \usage{ timeSeries(data, charvec, units = NULL, format = NULL, zone = "", FinCenter = "", recordIDs = data.frame(), title = NULL, documentation = NULL, \dots) seriesData(object) } \arguments{ \item{charvec}{ a character vector of dates and times or any objects which can be coerced to a \code{timeDate} object. } \item{data}{ a \code{matrix} object or any objects which can be coereced to a matrix. } \item{documentation}{ optional documentation string, or a vector of character strings. } \item{FinCenter}{ a character with the the location of the financial center named as "continent/city". } \item{format}{ the format specification of the input character vector, \cr [as.timeSeries] - \cr a character string with the format in POSIX notation to be passed to the time series object. } \item{object}{ [is][seriesData][seriesPositions][show][summary] - an object of class \code{timeSeries}. } \item{recordIDs}{ a data frame which can be used for record identification information. \cr [print] - \cr a logical value. Should the \code{recordIDs} printed together with the data matrix and time series positions? } \item{title}{ an optional title string, if not specified the inputs data name is deparsed. } \item{units}{ an optional character string, which allows to overwrite the current column names of a \code{timeSeries} object. By default \code{NULL} which means that the column names are selected automatically. } \item{zone}{ the time zone or financial center where the data were recorded. } \item{\dots}{ arguments passed to other methods. } } \value{ \code{timeSeries}\cr returns a S4 object of class \code{timeSeries}. \cr \code{seriesData}\cr \cr extracts the \code{@.Data} slot from a \code{timeSeries} object and is equivalent to \code{as.amtrix}. } \details{ \bold{Generation of Time Series Objects:} \cr We have defined a \code{timeSeries} class which is in many aspects similar to the S-Plus class with the same name, but has also some important differences. The class has seven Slots, the 'Data' slot which holds the time series data in matrix form, the 'position' slot which holds the time/date as a character vector, the 'format' and 'FinCenter' slots which are the same as for the 'timeDate' object, the 'units' slot which holds the column names of the data matrix, and a 'title' and a 'documentation' slot which hold descriptive character strings. Date and time is managed in the same way as for \code{timeDate} objects. } \note{ These functions were written for Rmetrics users using R and Rmetrics under Microsoft's Windows operating system where timze zones, daylight saving times and holiday calendars are insuffeciently supported. } \examples{ ## Load Microsoft Data - # Microsoft Data: setRmetricsOptions(myFinCenter = "GMT") data(MSFT) head(MSFT) ## Create a timeSeries Object, The Direct Way ... Close <- MSFT[, 5] head(Close) ## Create a timeSeries Object from Scratch - data <- as.matrix(MSFT[, 4]) charvec <- rownames(MSFT) Close <- timeSeries(data, charvec, units = "Close") head(Close) c(start(Close), end(Close)) ## Cut out April Data from 2001 - tsApril01 <- window(Close, "2001-04-01", "2001-04-30") tsApril01 ## Compute Continuous Returns - returns(tsApril01) ## Compute Discrete Returns - returns(tsApril01, type = "discrete") ## Compute Discrete Returns, Don't trim - returns(tsApril01, trim = FALSE) ## Compute Discrete Returns, Use Percentage Values - tsRet <- returns(tsApril01, percentage = TRUE, trim = FALSE) tsRet ## Aggregate Weekly - GoodFriday(2001) to <- timeSequence(from = "2001-04-11", length.out = 3, by = "week") from <- to - 6*24*3600 from to applySeries(tsRet, from, to, FUN = sum) ## Create large timeSeries objects with different 'charvec' object classes - # charvec is a 'timeDate' object head(timeSeries(1:1e6L, timeSequence(length.out = 1e6L, by = "sec"))) head(timeSeries(1:1e6L, seq(Sys.timeDate(), length.out = 1e6L, by = "sec"))) # 'charvec' is a 'POSIXt' object head(timeSeries(1:1e6L, seq(Sys.time(), length.out = 1e6L, by = "sec"))) # 'charvec' is a 'numeric' object head(timeSeries(1:1e6L, 1:1e6L)) } \keyword{chron} timeSeries/man/fin-wealth.Rd0000644000176000001440000000117712620124746015525 0ustar ripleyusers\name{wealth} \title{Conversion of an index to wealth} \alias{index2wealth} \description{ Converts an index series to a wealth series normalizing the starting value to one. } \usage{ index2wealth(x) } \arguments{ \item{x}{ an object of class 'timeSeries'. } } \value{ returns a time series object of the same class as the input argument \code{x} normalizing the starting value to one. } \examples{ ## Load MSFT Open Prices - INDEX <- MSFT[1:20, 1] INDEX ## Compute Wealth Normalized to 100 - 100 * index2wealth(INDEX) } \keyword{chron} timeSeries/man/base-start.Rd0000644000176000001440000000155712620124746015536 0ustar ripleyusers\name{start} \alias{start,timeSeries-method} \alias{start.timeSeries} \alias{end,timeSeries-method} \alias{end.timeSeries} \title{Start and End of a 'timeSeries'} \description{ Returns start and/or end time stamps of a 'timeSeries' object. } \usage{ \S4method{start}{timeSeries}(x, \dots) \S4method{end}{timeSeries}(x, \dots) } \arguments{ \item{x}{ an uni- or multivariate \code{timeSeries} object. } \item{\dots}{ optional arguments passed to other methods. } } \value{ returns a \code{timeSeries} object. } \examples{ ## Create Dummy timeSeries - tS <- dummySeries()[, 1] tS ## Return Start and end Time Stamp - c(start(tS), end(tS)) range(time(tS)) } \keyword{chron} timeSeries/man/fin-monthly.Rd0000644000176000001440000000601312620124746015725 0ustar ripleyusers\name{monthly} \alias{monthly} \alias{countMonthlyRecords} \alias{rollMonthlyWindows} \alias{rollMonthlySeries} \title{Special Monthly Series} \description{ Functions and methods dealing with special monthly 'timeSeries' objects. } \details{ The function \code{countMonthlyRecords} computes a 'timeSeries' that holds the number of monthly counts of the records. The function \code{rollMonthlyWindows} computes start and end dates for rolling time windows. The function \code{rollMonthlySeries} computes a static over rolling periods defined by the function \code{rollMonthlyWindows}. } \usage{ countMonthlyRecords(x) rollMonthlyWindows(x, period = "12m", by = "1m") rollMonthlySeries(x, period = "12m", by = "1m", FUN, \dots) } \arguments{ \item{x}{ a 'timeSeries' object. } \item{period}{ a character string specifying the rollling period composed by the length of the period and its unit. As examples: \code{"3m"} represents quarterly shifts, and \code{"6m"}, ]code{"12m"}, and \code{"24m"} semi-annual, annual and bi-annual shifts. To determine the proper start of the series is in the responsibility of the user. } \item{by}{ a character string specifying the rolling shift composed by the length of the shift and its unit. As examples: \code{"1m"} represents monthly shifts, \code{"3m"} represents quarterly shifts, and \code{"6m"} semi-annual shifts. To determine the proper start of the series is in the responsibility of the user. } \item{FUN}{ the function for the statistic to be applied. For example in the case of aggregation use\code{colAvgs}. } \item{\dots}{ arguments passed to the function \code{FUN}. } } \value{ The function \code{countMonthlyRecords} returns a 'timeSeries' object. The function \code{rollMonthlyWindows} returns a list with two named 'tomeDate' entries: \code{$from} and \code{to}. An attribute \code{"control"} is added which keeps the \code{start} and \code{end} dates of the series. The function \code{rollMonthlySeries} computes the statistics defined by the function \code{FUN} over a rolling window internally computed by the function \code{rollMonthlyWindows}. Note, the periods may be overlapping, may be dense, or even may have gaps. } \examples{ ## Load Microsoft Daily Data Set: x <- MSFT ## Count Monthly Records - counts <- countMonthlyRecords(x) counts ## Quaterly Non-Overlapping Time Periods - windows <- rollMonthlyWindows(counts[-1, ], period = "3m", by = "3m") windows ## Nicely Reprint Results as a data.frame - data.frame(cbind(FROM=format(windows$from), TO=format(windows$to))) ## Compute the average number of monthly trading days per quarter - rollMonthlySeries(counts[-1, ], period = "3m", by = "3m", FUN=mean) } \keyword{chron} timeSeries/man/methods-stats.Rd0000644000176000001440000000404412620124746016262 0ustar ripleyusers\name{timeSeries-method-stats} \docType{methods} \alias{sd-methods} \alias{var-methods} \alias{cov-methods} \alias{cor-methods} \alias{dcauchy-methods} \alias{dnorm-methods} \alias{dt-methods} \alias{sd,timeSeries-method} \alias{var,timeSeries-method} \alias{cov,timeSeries-method} \alias{cor,timeSeries-method} \alias{dcauchy,timeSeries-method} \alias{dnorm,timeSeries-method} \alias{dt,timeSeries-method} \title{Time Series Correlations} \description{ S4 methods of stats package for \code{timeSeries} objects. \cr \tabular{ll}{ \code{cov} \tab Computes Covariance from a 'timeSeries' object, \cr \code{cor} \tab Computes Correlations from a 'timeSeries' object. \cr \code{dcauchy} \tab ... \cr \code{dnorm} \tab ... \cr \code{dt} \tab ... \cr } } \usage{ \S4method{cov}{timeSeries}(x, y = NULL, use = "all.obs", method = c("pearson", "kendall", "spearman")) \S4method{cor}{timeSeries}(x, y = NULL, use = "all.obs", method = c("pearson", "kendall", "spearman")) } \arguments{ \item{method}{ a character string indicating which correlation coefficient (or covariance) is to be computed. One of \code{"pearson"} (default), \code{"kendall"}, or \code{"spearman"}, can be abbreviated. } \item{use}{ an optional character string giving a method for computing covariances in the presence of missing values. This must be (an abbreviation of) one of the strings \code{"all.obs"}, \code{"complete.obs"} or \code{"pairwise.complete.obs"}. } \item{x}{ an univariate object of class \code{timeSeries}. } \item{y}{ NULL (default) or a \code{timeSeries} object with compatible dimensions to \code{x}. The default is equivalent to y = x (but more efficient). } } \value{ returns the covariance or correlation matrix. } \examples{ ## Load Microsoft Data Set - data(MSFT) X = MSFT[, 1:4] X = 100 * returns(X) ## Compute Covariance Matrix - cov(X[, "Open"], X[, "Close"]) cov(X) } \keyword{methods} \keyword{chron} timeSeries/man/methods-is.Rd0000644000176000001440000000160012620124746015532 0ustar ripleyusers\name{is.timeSeries} \title{timeSeries Class, Coercion and Transformation} \alias{is.timeSeries} \alias{is.signalSeries} \alias{is.na,timeSeries-method} \alias{is.unsorted,timeSeries-method} \description{ \code{is.timeSeries} tests if its argument is a \code{timeSeries}. \code{is.timeSeries} tests if series has no timestamps. } \usage{ is.timeSeries(x) is.signalSeries(x) } \arguments{ \item{x}{ an object of class 'timeSeries'. } } \value{ Returns \code{TRUE} or \code{FALSE} depending on whether its argument is an object of class 'timeSeries' or not. } \examples{ ## Create an Artificial timeSeries Object - setRmetricsOptions(myFinCenter = "GMT") charvec <- timeCalendar() data <- matrix(rnorm(12)) TS <- timeSeries(data, charvec, units = "RAND") TS ## Test for timeSeries - is.timeSeries(TS) } \keyword{chron} timeSeries/man/statistics-orderStatistics.Rd0000644000176000001440000000131212620124746021034 0ustar ripleyusers\name{orderStatistics} \title{order Statistics} \alias{orderStatistics} \description{ Computes order statistic of a 'timeSeries'. } \usage{ orderStatistics(x) } \arguments{ \item{x}{ an univariate 'timeSeries' object. } } \value{ Function \code{orderStatistics} returns the order statistic of an univariate 'timeSeries' object. The output is an object of class 'list'. } \examples{ ## Load Swiss Pension Fund Benchmark Data - setRmetricsOptions(myFinCenter = "GMT") X <- LPP2005REC[, "SPI"] colnames(X) ## Compute 1\% Order Statistics - N <- round(0.01*nrow(X)) N OS <- orderStatistics(X)[[1]] OS[1:N, ] } \keyword{chron} timeSeries/man/stats-filter.Rd0000644000176000001440000000105112620124746016077 0ustar ripleyusers \name{filter} \title{Linear Filtering on a Time Series} \alias{filter,timeSeries-method} \description{ Applies linear filtering to a univariate 'timeSeries'. } \value{ A 'timeSeries' object without missing values. } \examples{ ## Creata a Dummy Signal 'timeSeries' - data <- matrix(rnorm(100), ncol = 2) s <- timeSeries(data, units=c("A", "B")) head(s) ## Filter the series - f <- filter(s, rep(1, 3)) head(f) ## Plot and Compare the first series - plot(cbind(s[, 1], f[, 1]), plot.type="s") } timeSeries/man/base-apply.Rd0000644000176000001440000001121712620124746015520 0ustar ripleyusers\name{apply} \title{Apply Functions Over Time Series Periods} \alias{fapply} \alias{applySeries} \alias{apply,timeSeries-method} \description{ Applies a function to a 'timeSeries' object over time peridos of arbitrary positons and lengths. } \usage{ fapply(x, from, to, FUN, \dots) applySeries(x, from = NULL, to = NULL, by = c("monthly", "quarterly"), FUN = colMeans, units = NULL, format = x@format, zone = x@FinCenter, FinCenter = x@FinCenter, recordIDs = data.frame(), title = x@title, documentation = x@documentation, \dots) } \arguments{ \item{x}{ an object of class \code{timeSeries}. } \item{from, to}{ starting date and end date as timeDate objects. Note, \code{to} must be time ordered after \code{from}. If \code{from} and \code{to} are missing in function \code{fapply} they are set by default to \code{from=start(x)}, and \code{to=end(x)}. } \item{FUN}{ the function to be applied. For the function \code{applySeries} the default setting is \code{FUN=colMeans}. } \item{by}{ a character value either \code{"monthly"} or \code{"quarterly"} used in the function \code{applySeries}. The default value is \code{"monthly"}. Only operative when both arguments \code{from} and \code{to} have their default values \code{NULL}. In this case the function \code{FUN} will be applied to monthly or quarterly periods. } \item{units}{ an optional character string, which allows to overwrite the current column names of a \code{timeSeries} object. By default \code{NULL} which means that the column names are selected automatically. } \item{format}{ the format specification of the input character vector in POSIX notation. } \item{zone}{ the time zone or financial center where the data were recorded. } \item{FinCenter}{ a character value with the the location of the financial center named as "continent/city", or "city". } \item{recordIDs}{ a data frame which can be used for record identification information. Note, this is not yet handled by the apply functions, an empty data.frame will be returned. } \item{title}{ an optional title string, if not specified the inputs data name is deparsed. } \item{documentation}{ optional documentation string, or a vector of character strings. } \item{\dots}{ arguments passed to other methods. } } \details{ Like \code{apply} applies a function to the margins of an array, the function \code{fapply} applies a function to the time stamps or signal counts of a financial (therefore the "f" in front of the function name) time series of class \code{'timeSeries'}. The function \code{fapply} inputs a \code{timeSeries} object, and if \code{from} and \code{to} are missing, they take the start and end time stamps of the series as default falues. The function then behaves like \code{apply} on the column margin. Note, the function \code{fapply} can be used repetitive in the following sense: If \code{from} and \code{to} are two \code{timeDate} vectors of equal length then for each period spanned by the elelemts of the two vectors the function \code{FUN} will be applied to each period. The resulting time stamps, are the time stamps of the \code{to} vector. Note, the periods can be regular or irregelar, and they can even overlap. The function \code{fapply} calls the more general function \code{applySeries} which also offers, to create automatical monthly and quarterly periods. } \examples{ ## Percentual Returns of Swiss Bond Index and Performance Index - LPP <- 100 * LPP2005REC[, c("SBI", "SPI")] head(LPP, 20) ## Aggregate Quarterly Returns - applySeries(LPP, by = "quarterly", FUN = colSums) ## Aggregate Quarterly every last Friday in Quarter - oneDay <- 24*3600 from <- unique(timeFirstDayInQuarter(time(LPP))) - oneDay from <- timeLastNdayInMonth(from, nday = 5) to <- unique(timeLastDayInQuarter(time(LPP))) to <- timeLastNdayInMonth(to, nday = 5) data.frame(from = as.character(from), to = as.character(to)) applySeries(LPP, from, to, FUN = colSums) ## Count Trading Days per Month - colCounts <- function(x) rep(NROW(x), times = NCOL(x)) applySeries(LPP, FUN = colCounts, by = "monthly") ## Alternative Use - fapply(LPP, from, to, FUN = colSums) } \keyword{chron} timeSeries/man/fin-spreads.Rd0000644000176000001440000000336112620124746015677 0ustar ripleyusers\name{spreads} \title{Spreads and Mid Quotes} \alias{spreads} \alias{midquotes} \alias{spreadSeries} \alias{midquoteSeries} \description{ Compute spreads and midquotes from price streams. } \usage{ spreads(x, which = c("Bid", "Ask"), tickSize = NULL) midquotes(x, which = c("Bid", "Ask")) midquoteSeries(\dots) spreadSeries(\dots) } \arguments{ \item{tickSize}{ the default is NULL to simply compute price changes in original price levels. If ticksize is supplied, the price changes will be divided by the value of \code{inTicksOfSize} to compute price changes in ticks. } \item{which}{ a vector with two character strings naming the column names of the time series from which to compute the mid quotes and spreads. By default these are bid and ask prices with column names \code{c("Bid", "Ask")}. } \item{x}{ an object of class \code{timeSeries}. } \item{\dots}{ arguments to be passed. } } \value{ all functions return an object of class \code{timeSeries}. } \note{ The functions \code{returnSeries}, \code{getReturns}, \code{midquoteSeries}, \code{spreadSeries} are synonymes for \code{returns}, \code{midquotes}, and \code{spreads}. } \examples{ ## Load the Microsoft Data - setRmetricsOptions(myFinCenter = "GMT") data(MSFT) X = MSFT[1:10, ] head(X) ## Compute Open/Close Midquotes - X.MID <- midquotes(X, which = c("Close", "Open")) colnames(X.MID) <- "X.MID" X.MID ## Compute Open/Close Spreads - X.SPREAD <- spreads(X, which = c("Close", "Open")) colnames(X.SPREAD) <- "X.SPREAD" X.SPREAD } \keyword{chron} timeSeries/man/stats-lag.Rd0000644000176000001440000000234012620124746015357 0ustar ripleyusers\name{lag} \title{Lag a Time Series} \alias{lag} \alias{lag,timeSeries-method} \alias{lag.timeSeries} \description{ Compute a lagged version of a 'timeSeries' object. } \usage{ \S4method{lag}{timeSeries}(x, k = 1, trim = FALSE, units = NULL, \dots) } \arguments{ \item{k}{ [lagSeries] - \cr an integer value. The number of lags (in units of observations). By default 1. } \item{trim}{ a logical value. By default \code{TRUE}, the first missing observation in the return series will be removed. } \item{units}{ an optional character string, which allows to overwrite the current column names of a \code{timeSeries} object. By default \code{NULL} which means that the column names are selected automatically. } \item{x}{ an object of class \code{timeSeries}. } \item{\dots}{ arguments passed to other methods. } } \value{ returns a lagged S4 object of class 'timeSeries'. } \examples{ ## Load Micsrosoft Data Set - x = MSFT[1:20, "Open"] ## Lag the timeSeries Object: lag(x, k = -1:1) } \keyword{chron} timeSeries/man/stats-window.Rd0000644000176000001440000000062112620124746016123 0ustar ripleyusers\name{window} \title{window} \alias{window} \description{ Extracts a part from a 'timeSeries Object } \examples{ ## Load LPP Benchmark Returns - x <- LPP2005REC[, 7:9] range(time(x)) ## Extract Data for January 2006 - window(x, "2006-01-01", "2006-01-31") } \keyword{chron} timeSeries/man/utils-description.Rd0000644000176000001440000000042612620124746017144 0ustar ripleyusers\name{description} \alias{description} \title{Creates Date and User Information} \description{ Creates and returns a data and user string. } \usage{ description() } \examples{ ## Show Default Description String - description() } \keyword{programming} timeSeries/man/utils-structure.Rd0000644000176000001440000000126512620124746016663 0ustar ripleyusers\name{str-methods} \title{timeSeries Object Structure} \alias{str} \alias{str,timeSeries-method} \description{ Compactly display the structure of a 'timeSeries' Object. } \usage{ \S4method{str}{timeSeries}(object, \dots) } \arguments{ \item{object}{ an object of class \code{timeSeries}. } \item{\dots}{ arguments passed to other methods. } } \value{ returns a str report for an object of class \code{timeSeries}. } \examples{ ## Load Microsoft Data Set - data(MSFT) X <- MSFT[1:12, 1:4] colnames(X) <- abbreviate(colnames(X), 4) ## Display Structure - str(X) } \keyword{chron} timeSeries/man/base-cbind.Rd0000644000176000001440000000375612620124746015463 0ustar ripleyusers\name{bind} \title{Bind two timeSeries objects} %\alias{merge} \alias{cbind} \alias{rbind} \alias{cbind2} \alias{rbind2} % \alias{cbind,timeSeries-method} % \alias{rbind,timeSeries-method} \alias{cbind.timeSeries} \alias{rbind.timeSeries} % \alias{c.timeSeries} %\alias{merge,ANY,timeSeries-method} %\alias{merge,timeSeries,ANY-method} %\alias{merge,timeSeries,missing-method} %\alias{merge,timeSeries,numeric-method} %\alias{merge,timeSeries,matrix-method} %\alias{merge,timeSeries,timeSeries-method} %\alias{merge,matrix,timeSeries-method} %\alias{merge,numeric,timeSeries-method} %\alias{merge.timeSeries} \alias{cbind2,ANY,timeSeries-method} \alias{cbind2,timeSeries,ANY-method} \alias{cbind2,timeSeries,missing-method} \alias{cbind2,timeSeries,timeSeries-method} \alias{rbind2,ANY,timeSeries-method} \alias{rbind2,timeSeries,ANY-method} \alias{rbind2,timeSeries,missing-method} \alias{rbind2,timeSeries,timeSeries-method} \description{ Binds two 'timeSeries' objects either by column or by row. } % \usage{ % \S4method{merge}{timeSeries,timeSeries}(x, y, ...) % \S4method{cbind2}{timeSeries,timeSeries}(x, y) % \S4method{rbind2}{timeSeries,timeSeries}(x, y) % \S4method{cbind2}{timeSeries,timeSeries}(x, y) % } % \arguments{ % % \item{units}{ % % an optional character string, which allows to overwrite the % % current column names of a \code{timeSeries} object. By default % % \code{NULL} which means that the column names are selected % % automatically. % % } % \item{x, y}{ % two objects of class \code{timeSeries}. % } % % \item{\dots}{ % % arguments passed to returned timeSeries object. % % } % } \value{ returns a S4 object of class \code{timeDate}. } \examples{ ## Load Microsoft Data Set - x <- MSFT[1:12, ] x ## Bind Columnwise - X <- cbind(x[, "Open"], returns(x[, "Open"])) colnames(X) <- c("Open", "Return") X ## Bind Rowwise - Y <- rbind(x[1:3, "Open"], x[10:12, "Open"]) Y } \keyword{chron} timeSeries/man/statistics-colCumsums.Rd0000644000176000001440000000314612620124746020007 0ustar ripleyusers\name{colCum} \title{Cumulated Column Statistics} \alias{colCum} \alias{colCummaxs} \alias{colCummins} \alias{colCumprods} \alias{colCumreturns} \alias{colCumsums} \alias{colCummaxs,matrix-method} \alias{colCummaxs,timeSeries-method} \alias{colCummins,matrix-method} \alias{colCummins,timeSeries-method} \alias{colCumprods,matrix-method} \alias{colCumprods,timeSeries-method} \alias{colCumreturns,matrix-method} \alias{colCumreturns,timeSeries-method} \alias{colCumsums,matrix-method} \alias{colCumsums,timeSeries-method} \description{ Functions to compute cumulative column statistics. } \usage{ \S4method{colCumsums}{timeSeries}(x, na.rm = FALSE, \dots) \S4method{colCummaxs}{timeSeries}(x, na.rm = FALSE, \dots) \S4method{colCummins}{timeSeries}(x, na.rm = FALSE, \dots) \S4method{colCumprods}{timeSeries}(x, na.rm = FALSE, \dots) \S4method{colCumreturns}{timeSeries}(x, method = c("geometric", "simple"), na.rm = FALSE, \dots) } \arguments{ \item{method}{ a character string to indicate if geometric (TRUE) or simple (FALSE) returns should be computed. } \item{na.rm}{ a logical. Should missing values be removed? } \item{x}{ a time series, may be an object of class \code{"matrix"}, or \code{"timeSeries"}. } \item{\dots}{ arguments to be passed. } } \value{ all functions return an S4 object of class \code{timeSeries}. } \examples{ ## Simulated Return Data - x = matrix(rnorm(24), ncol = 2) ## Cumulative Sums Column by Column - colCumsums(x) } \keyword{univar} timeSeries/man/fin-turnpoints.Rd0000644000176000001440000000704412620124746016465 0ustar ripleyusers\name{turns} \title{Turning Points of a Time Series} \alias{turns} \alias{turnsStats} \description{ Extracts and analyzes turn points of an univariate \code{timeSeries} object. } \usage{ turns(x, \dots) turnsStats(x, doplot = TRUE) } \arguments{ \item{x}{ an univariate 'timeSeries' object of financial indices or prices. } \item{\dots}{ optional arguments passed to the function \code{na.omit}. } \item{doplot}{ a logical flag, should the results be plotted? By default TRUE. } } \details{ The function \code{turns} determines the number and the position of extrema (turning points, either peaks or pits) in a regular time series. The function \code{turnsStats} calculates the quantity of information associated to the observations in this series, according to Kendall's information theory. The functions are borrowed from the contributed R package \code{pastecs} and made ready for working together with univariate \code{timeSeries} objects. You need not to load the R package \code{pastecs}, the code parts we need here are builtin in the \code{timeSeries} package. We have renamed the function \code{turnpoints} to \code{turns} to distinguish between the original function in the contributed R package \code{pastecs} and our Rmetrics function wrapper. For further details please consult the help page from the contributed R package \code{pastecs}. } \value{ \code{turns}\cr returns an object of class \code{timeSeries}. \code{turnsStats}\cr returns an object of class \code{turnpoints} with the following entries:\cr \code{data} - The dataset to which the calculation is done.\cr \code{n} - The number of observations.\cr \code{points} - The value of the points in the series, after elimination of ex-aequos.\cr \code{pos} - The position of the points on the time scale in the series (including ex-aequos).\cr \code{exaequos} - Location of exaequos (1), or not (0).\cr \code{nturns} - Total number of tunring points in the whole time series.\cr \code{firstispeak} - Is the first turning point a peak (TRUE), or not (FALSE).\cr \code{peaks} - Logical vector. Location of the peaks in the time series without ex-aequos.\cr \code{pits} - Logical vector. Location of the pits in the time series without ex-aequos.\cr \code{tppos} - Position of the turning points in the initial series (with ex-aequos).\cr \code{proba} - Probability to find a turning point at this location.\cr \code{info} - Quantity of information associated with this point.\cr } \author{ Frederic Ibanez and Philippe Grosjean for code from the contributed R package \code{pastecs} and Rmetrics for the function wrapper. } \references{ Ibanez, F., 1982, Sur une nouvelle application de la theorie de l'information a la description des series chronologiques planctoniques. J. Exp. Mar. Biol. Ecol., 4, 619--632 Kendall, M.G., 1976, Time Series, 2nd ed. Charles Griffin and Co, London. } \examples{ ## Load Swiss Equities Series - SPI.RET <- LPP2005REC[, "SPI"] head(SPI.RET) ## Cumulate and Smooth the Series - SPI <- smoothLowess(cumulated(SPI.RET), f=0.05) plot(SPI) ## Plot Turn Points Series - SPI.SMOOTH <- SPI[, 2] tP <- turns(SPI.SMOOTH) plot(tP) ## Compute Statistics - turnsStats(SPI.SMOOTH) } \keyword{chron} timeSeries/man/timeSeries-slotTime.Rd0000644000176000001440000000215112620124746017367 0ustar ripleyusers\name{time} \title{Get and Set Time stamps of a 'timeSeries'} \alias{time} \alias{time<-} \alias{time,timeSeries-method} \alias{time.timeSeries} \alias{time<-.timeSeries} \alias{sample,timeSeries-method} \alias{getTime} \alias{setTime<-} \description{ Functions and methods extracting and modifying positions of 'timeSeries' objects. } \usage{ getTime(x) setTime(x) <- value \S4method{time}{timeSeries}(x, \dots) \method{time}{timeSeries}(x) <- value } \arguments{ \item{value}{ a valid value for the component of \code{time(x)}. } \item{x}{ an object of class \code{timeSeries}. } \item{\dots}{ optional arguments passed to other methods. } } \value{ Returns a 'timeDate' object. } \examples{ ## Create Dummy timeSeries - X <- timeSeries(matrix(rnorm(24), 12), timeCalendar()) ## Return Series Positions - getTime(X) time(X) ## Add / Subtract one Day from X setTime(X) <- time(X) - 24*3600 # sec X time(X) <- time(X) + 24*3600 # sec X } \keyword{chron} timeSeries/man/stats-na.omit.Rd0000644000176000001440000001214112620124746016161 0ustar ripleyusers\name{na} \title{Handling Missing Time Series Values} \alias{na} \alias{na.omit} \alias{na.omit,timeSeries-method} \alias{na.omit.timeSeries} \alias{removeNA} \alias{substituteNA} \alias{interpNA} \description{ Functions for handling missing values in 'timeSeries' objects } \details{ Functions for handling missing values in 'timeSeries' objects and in objects which can be transformed into a vector or a two dimensional matrix. \cr The functions are listed by topic. \cr \tabular{ll}{ \code{na.omit} \tab Handles NAs, \cr \code{removeNA} \tab Removes NAs from a matrix object, \cr \code{substituteNA} \tab substitute NAs by zero, the column mean or median, \cr \code{interpNA} \tab interpolates NAs using R's "approx" function. } \bold{Missing Values in Price and Index Series:} Applied to \code{timeSeries} objects the function \code{removeNA} just removes rows with NAs from the series. For an interpolation of time series points one can use the function \code{interpNA}. Three different methods of interpolation are offered: \code{"linear"} does a linear interpolation, \code{"before"} uses the previous value, and \code{"after"} uses the following value. Note, that the interpolation is done on the index scale and not on the time scale. \bold{Missing Values in Return Series:} For return series the function \code{substituteNA} may be useful. The function allows to fill missing values either by \code{method="zeros"}, the \code{method="mean"} or the \code{method="median"} value of the appropriate columns. } \usage{ \S4method{na.omit}{timeSeries}(object, method = c("r", "s", "z", "ir", "iz", "ie"), interp = c("before", "linear", "after"), \dots) removeNA(x, \dots) substituteNA(x, type = c("zeros", "mean", "median"), \dots) interpNA(x, method = c("linear", "before", "after"), \dots) } \arguments{ \item{interp, type}{ [nna.omit][substituteNA] - \cr Three alternative methods are provided to remove NAs from the data: \code{type="zeros"} replaces the missing values by zeros, \code{type="mean"} replaces the missing values by the column mean, \code{type="median"} replaces the missing values by the the column median. } \item{method}{ [na.omit] - \cr Specifies the method how to handle NAs. One of the applied vector strings: \cr \code{method="s"} na.rm = FALSE, skip, i.e. do nothing, \code{method="r"} remove NAs, \code{method="z"} substitute NAs by zeros, \code{method="ir"} interpolate NAs and remove NAs at the beginning and end of the series, \code{method="iz"} interpolate NAs and substitute NAs at the beginning and end of the series, \code{method="ie"} interpolate NAs and extrapolate NAs at the beginning and end of the series, [interpNA] - \cr Specifies the method how to interpolate the matrix column by column. One of the applied vector strings: \code{method="linear"}, \code{method="before"} or \code{method="after"}.\cr For the interpolation the function \code{approx} is used. } \item{object}{ an object of class("timeSeries"). } \item{x}{ a numeric matrix, or any other object which can be transformed into a matrix through \code{x = as.matrix(x, ...)}. If \code{x} is a vector, it will be transformed into a one-dimensional matrix. } \item{\dots}{ arguments to be passed to the function \code{as.matrix}. } } \note{ The functions \code{removeNA}, \code{substituteNA} and \code{interpNA} are older implementations. Please use in all cases if possible the new function \code{na.omit}. When dealing with daily data sets, there exists another function \code{alignDaily Series} which can handle missing data in un-aligned calendarical 'timeSeries' objects. } \references{ Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R., Botstein D., Altman R.B., (2001); \emph{Missing Value Estimation Methods for DNA microarrays} Bioinformatics 17, 520--525. } \examples{ ## Create a Matrix - X <- matrix(rnorm(100), ncol = 5) ## Replace a Single NA Inside - X[3, 5] <- NA ## Replace Three in a Row Inside - X[17, 2:4] <- c(NA, NA, NA) ## Replace Three in a Column Inside - X[13:15, 4] <- c(NA, NA, NA) ## Replace Two at the Right Border - X[11:12, 5] <- c(NA, NA) ## Replace One in the Lower Left Corner - X[20, 1] <- NA print(X) ## Remove Rows with NAs - removeNA(X) ## Subsitute NA's by Zeros or Column Means - substituteNA(X, type = "zeros") substituteNA(X, type = "mean") ## Interpolate NA's Linearily - interpNA(X, method = "linear") # Note the corner missing value cannot be interpolated! ## Take Previous Values in a Column - interpNA(X, method = "before") # Also here, the corner value is excluded } \keyword{math} timeSeries/man/fin-cumulated.Rd0000644000176000001440000000317512620124746016224 0ustar ripleyusers\name{cumulated} \title{Cumulated Time Series from Returns} \alias{cumulated} \alias{cumulated.default} \description{ Computes a cumulated financial 'timeSeries', e.g. prices or indexes, from financial returns. } \usage{ cumulated(x, \dots) \method{cumulated}{default}(x, method = c("continuous", "discrete", "compound", "simple"), percentage = FALSE, \dots) } \arguments{ \item{method}{ a character string naming the method how the returns were computed. } \item{percentage}{ a logical value. By default \code{FALSE}, if \code{TRUE} the series will be expressed in percentage changes. } \item{x}{ an object of class \code{timeSeries}. } \item{\dots}{ arguments to be passed. } } \details{ Note, the function \code{cumulated} assumes as input discrete returns from a price or index series. Only then the cumulatrd series agrees with the original price or index series. The first values of the cumulated series cannot be computed, it is assumed that the series is indexed to 1. } \value{ Returns a 'timeSeries' object of the same class as the input argument \code{x}. } \examples{ ## Use the Microsofts' Close Prices Indexed to 1 - MSFT.CL <- MSFT[, "Close"] MSFT.CL <- MSFT.CL/MSFT[[1, "Close"]] head(MSFT.CL) ## Compute Discrete Return - MSFT.RET <- returns(MSFT.CL, method = "discrete") ## Cumulated Series and Compare - MSFT.CUM <- cumulated(MSFT.RET, method = "discrete") head(cbind(MSFT.CL, MSFT.CUM)) } \keyword{chron} timeSeries/man/statistics-smoothLowess.Rd0000644000176000001440000000503612620124746020363 0ustar ripleyusers\name{smooth} \title{Smoothes Time Series Objects} \alias{smoothLowess} \alias{smoothSpline} \alias{smoothSupsmu} \description{ Smoothes a 'timeSeries' object. } \usage{ smoothLowess(x, f = 0.5, \dots) smoothSpline(x, spar = NULL, \dots) smoothSupsmu(x, bass = 5, \dots) } \arguments{ \item{x}{ an univariate 'timeSeries' object. } \item{f}{ the lowess smoother span. This gives the proportion of points in the plot which influence the smooth at each value. Larger values give more smoothness. } \item{spar}{ smoothing parameter, typically (but not necessarily) in (0,1]. By default \code{NULL}, i.e. the value will be automatically selected. } \item{bass}{ controls the smoothness of the fitted curve. Values of up to 10 indicate increasing smoothness. } \item{\dots}{ optional arguments to be passed to the underlying smoothers. } } \details{ The functions \code{smoothLowess}, \code{smoothSpline}, \code{smoothSupsmu} allow to smooth \code{timeSerie} object. The are interfaces to the function \code{lowess}, \code{supmsu}. and \code{smooth.spline} in R's \code{stats} package. The \code{\dots} arguments allow to pass optional arguments to the underlying \code{stats} functions and tailor the smoothing process. We refer to the manual pages of these functions for a proper setting of these options. } \value{ returns a bivariate 'timeSeries' object, the first column holds the original time series data, the second the smoothed series. } \author{ The R core team for the underlying smoother functions. } \examples{ ## Use Close from MSFT's Price Series - head(MSFT) MSFT.CLOSE <- MSFT[, "Close"] head(MSFT.CLOSE) ## Plot Original and Smoothed Series by Lowess - MSFT.LOWESS <- smoothLowess(MSFT.CLOSE, f = 0.1) head(MSFT.LOWESS) plot(MSFT.LOWESS) title(main = "Close - Lowess Smoothed") ## Plot Original and Smoothed Series by Splines - MSFT.SPLINE <- smoothSpline(MSFT.CLOSE, spar = 0.4) head(MSFT.SPLINE) plot(MSFT.SPLINE) title(main = "Close - Spline Smoothed") ## Plot Original and Smoothed Series by Supsmu - MSFT.SUPSMU <- smoothSupsmu(MSFT.CLOSE) head(MSFT.SUPSMU) plot(MSFT.SUPSMU) title(main = "Close - Spline Smoothed") } \keyword{chron} timeSeries/man/base-merge.Rd0000644000176000001440000000247012620124746015473 0ustar ripleyusers\name{merge} \title{Merges two 'timeSeries' objects} \alias{merge} \alias{merge,ANY,timeSeries-method} \alias{merge,timeSeries,ANY-method} \alias{merge,timeSeries,missing-method} \alias{merge,timeSeries,numeric-method} \alias{merge,timeSeries,matrix-method} \alias{merge,timeSeries,timeSeries-method} \alias{merge,matrix,timeSeries-method} \alias{merge,numeric,timeSeries-method} \description{ Merges several object types with 'timeSeries' objects. The number of rows must match. } \value{ Returns a 'timeSeries' object of two merged time series. } \details{ The following combinations are supported: \tabular{ll}{ \code{timeSeries} \tab ANY \cr \code{timeSeries} \tab missing \cr \code{timeSeries} \tab numeric \cr \code{timeSeries} \tab matrix \cr \code{timeSeries} \tab timeSeries } } \examples{ ## Load Series - x <- MSFT[1:12, ] ## Merge 'timeSeries' with missing Object - merge(x) ## Merge 'timeSeries' with numeric Object - y <- rnorm(12) class(y) merge(x, y) ## Merge 'timeSeries' with matrix Object - y <- matrix(rnorm(24), ncol=2) class(y) merge(x, y) ## Merge 'timeSeries' with matrix Object - y <- timeSeries(data=rnorm(12), charvec=time(x)) class(y) merge(x, y) } \keyword{chron} timeSeries/man/fin-runlengths.Rd0000644000176000001440000000121712620124746016425 0ustar ripleyusers\name{runlengths} \title{Runlengths of a Time Series} \alias{runlengths} \description{ Computes runlengths of an univariate 'timeSeries' object. } \usage{ runlengths(x, \dots) } \arguments{ \item{x}{ an univariate time series of class 'timeSeries'. } \item{\dots}{ arguments to be passed. } } \value{ returns an object of class \code{timeSeries}. } \examples{ ## random time series - set.seed(4711) x <- rnorm(12) tS <- timeSeries(data=x, charvec=timeCalendar(), units="x") tS ## return runlengths - runlengths(tS) } \keyword{chron} timeSeries/man/data-examples.Rd0000644000176000001440000000137512620124746016214 0ustar ripleyusers\name{TimeSeriesData} \alias{TimeSeriesData} \alias{LPP2005REC} \alias{MSFT} \alias{USDCHF} \title{Time Series Data Sets} \description{ Three data sets used in example files. The data sets are: \tabular{ll}{ \code{LPP2005REC} \tab Swiss pension fund assets returns benchmark, \cr \code{MSFT} \tab Daily Microsoft OHLC prices and volume, \cr \code{USDCHF} \tab USD CHF intraday foreign exchange xchange rates.} } \examples{ ## Plot LPP2005 Example Data Set - data(LPP2005REC) plot(LPP2005REC, type = "l") ## Plot MSFT Example Data Set - data(MSFT) plot(MSFT[, 1:4], type = "l") plot(MSFT[, 5], type = "h") ## Plot USDCHF Example Data Set - # plot(USDCHF) } \keyword{datasets} timeSeries/man/00timeSeries-package.Rd0000644000176000001440000002243012620124746017324 0ustar ripleyusers\name{timeSeries-package} \alias{timeSeries-package} \docType{package} \title{Utilities and Tools Package} \description{ Package of time series tools and utilities. } \details{ \tabular{ll}{ Package: \tab timeSeries\cr Type: \tab Package\cr Version: \tab see description file\cr Date: \tab 2011\cr License: \tab GPL Version 2 or later\cr Copyright: \tab (c) 1999-2014 Rmetrics Association\cr URL: \tab \url{http://www.rmetrics.org} } } \section{timeSeries - S4 timeSeries Class}{ \tabular{ll}{ \code{timeSeries} \tab Creates a 'timeSeries' from scratch\cr \code{getDataPart, series} \tab ... \cr \code{getUnits} \tab Extracts the time serie units \cr \code{getTime, time} \tab Extracts the positions of timestamps \cr \code{use: slot} \tab Extracts the format of the timestamp \cr \code{getFinCenter, finCenter} \tab Extracts the financial center \cr \code{use: slot} \tab Extracts the record IDs \cr \code{getTitle} \tab Extracts the title \cr \code{use: slot} \tab Extracts the documentation } } \section{Base Time Series Functions}{ \tabular{ll}{ \code{apply} \tab Applies a function to blocks of a 'timeSeries' \cr \code{attach} \tab Attaches a 'timeSeries' to the search path \cr \code{cbind} \tab Combines columns of two 'timeSeries' objects \cr \code{ rbind} \tab Combines rows of two 'timeSeries' objects \cr %\code{comment} \tab ? ... \cr \code{diff} \tab Returns differences of a 'timeSeries' object \cr \code{dim} \tab returns dimensions of a 'timeSeries' object \cr \code{merge} \tab Merges two 'timeSeries' objects \cr \code{rank} \tab Returns sample ranks of a 'timeSeries' object \cr \code{rev} \tab Reverts a 'timeSeries' object \cr \code{sample} \tab Resamples a 'timeSeries' object \cr \code{scale} \tab Scales a 'timeSeries' object \cr \code{sort} \tab Sorts a 'timeSeries' object \cr \code{start} \tab Returns start date/time of a 'timeSeries' \cr \code{ end} \tab Returns end date/time of a 'timeSeries' \cr \code{t} \tab Returns the transpose of a 'timeSeries' object } } \section{Subsetting 'timeSeries' Objects}{ \tabular{ll}{ \code{.subset_} \tab Subsets 'timeSeries' objects \cr \code{.findIndex} \tab Index search in a 'timeSeries' object \cr \code{[} \tab Subsets a 'timeSeries' object \cr \code{[<-]} \tab Assigns values to a subset \cr \code{$} \tab Subsets a 'timeSeries' by column names \cr \code{$<-} \tab Replaces Subset by column names \cr \code{t} \tab Returns the transpose of a 'timeSeries' \cr \code{head} \tab Returns the head of a 'timeSeries' \cr \code{ tail} \tab Returns the tail of a time Series \cr \code{na.omit} \tab Handles NAs in a timeSeries object \cr \code{ removeNA} \tab removes NAs from a matrix object \cr \code{ substituteNA} \tab substitutes NAs by zero, column mean or median \cr \code{ interpNA} \tab interpolates NAs using R's "approx" function } } \section{Mathematical Operation}{ \tabular{ll}{ \code{Ops.timeSeries} \tab S4: Arith method for a 'timeSeries' object \cr \code{abs} \tab Returns absolute values of a 'timeSeries' object \cr \code{sqrt} \tab Returns square root of a 'timeSeries' object \cr \code{exp} \tab Returns the exponential values of a 'timeSeries' object \cr \code{log} \tab Returns the logarithm of a 'timeSeries' object \cr \code{sign} \tab Returns the signs of a 'timeSeries' object \cr \code{diff} \tab Differences a 'timeSeries' object \cr \code{scale} \tab Centers and/or scales a 'timeSeries' object \cr \code{quantile} \tab Returns quantiles of an univariate 'timeSeries'} } \section{Methods}{ \tabular{ll}{ \code{as.timeSeries} \tab Defines method for a 'timeSeries' \cr \code{as.*.default} \tab Returns the input \cr \code{as.*.ts} \tab Transforma a 'ts' object into a 'timeSeries' \cr \code{as.*.data.frame} \tab Transforms a 'data.frame' intp a 'timeSeries \cr \code{as.*.character} \tab Loads and transforms from a demo file \cr \code{as.*.zoo} \tab Transforms a 'zoo' object into a 'timeSeries' \cr \code{as.vector.*} \tab Converts univariate timeSeries to vector \cr \code{as.matrix.*} \tab Converts timeSeries to matrix \cr \code{as.numeric.*} \tab Converts timeSeries to numeric \cr \code{as.data.frame.*} \tab Converts timeSeries to data.frame \cr \code{as.ts.*} \tab Converts timeSeries to ts \cr \code{as.logical.*} \tab Converts timeSeries to logical \cr %\code{comment} \tab ? ... \cr \code{is.timeSeries} \tab Tests for a 'timeSeries' object \cr \code{plot} \tab Displays a X-Y 'timeSeries' Plot \cr \code{lines} \tab Adds connected line segments to a plot \cr \code{points} \tab Adds Points to a plot \cr \code{show} \tab Prints a 'timeSeries oobject} } \section{Financial time series functions}{ \tabular{ll}{ \code{align} \tab Aligns a 'timeSeries' to time stamps \cr \code{cumulated} \tab Computes cumulated series from a returns \cr \code{alignDailySeries} \tab Aligns a 'timeSeries' to calendarical dates \cr \code{ rollDailySeries} \tab Rolls a 'timeSeries daily\cr \code{drawdowns} \tab Computes series of drawdowns from financial returns \cr \code{ drawdownsStats} \tab Computes drawdowns statistics \cr \code{durations} \tab Computes durations from a financial time series \cr \code{countMonthlyRecords} \tab Counts monthly records in a 'timeSeries' \cr \code{ rollMonthlyWindows} \tab Rolls Monthly windows \cr \code{ rollMonthlySeries} \tab Rolls a 'timeSeries' monthly \cr \code{endOfPeriodSeries} \tab Returns end of periodical series \cr \code{ endOfPeriodStats} \tab Returns end of period statistics \cr \code{ endOfPeriodBenchmarks} \tab Returns period benchmarks \cr \code{returns} \tab Computes returns from prices or indexes \cr \code{ returns0} \tab Computes untrimmed returns from prices or indexes \cr \code{runlengths} \tab Computes run lenghts of a 'timeSeries' \cr \code{smooth} \tab Smoothes a 'timeSeries' \cr \code{splits} \tab Detects 'timeSeries' splits by outlier detection \cr \code{spreads} \tab Computes spreads from a price/index stream \cr \code{turns} \tab Computes turning points in a 'timeSeries' object \cr \code{ turnsStats} \tab Computes turning points statistics } } \section{Statistics Time Series functions}{ \tabular{ll}{ \code{colCumsums} \tab Computes cumulated column sums of a 'timeSeries' \cr \code{ colCummaxs} \tab Computes cumulated maximum of a 'timeSeries' \cr \code{ colCummins} \tab Computes cumulated minimum of a 'timeSeries' \cr \code{ colCumprods} \tab Computes cumulated pruduct values by column \cr \code{ colCumreturns} \tab Computes cumulated returns by column \cr \code{colSums} \tab Computes sums of all values in each column \cr \code{ colMeans} \tab Computes means of all values in each column \cr \code{ colSds} \tab Computes standard deviations of all values in each column \cr \code{ colVars} \tab Computes variances of all values in each column \cr \code{ colSkewness} \tab Computes skewness of all values in each column \cr \code{ colKurtosis} \tab Computes kurtosis of all values in each column \cr \code{ colMaxs} \tab Computes maxima of all values in each column \cr \code{ colMins} \tab Computes minima of all values in each column \cr \code{ colProds} \tab Computes products of all values in each column \cr \code{ colStats} \tab Computes statistics of all values in each column \cr \code{orderColnames} \tab Returns ordered column names of a 'timeSeries' \cr \code{ sortColnames} \tab Returns alphabetically sorted column names \cr \code{ sampleColnames} \tab Returns sampled column names of a 'timeSeries' \cr \code{ pcaColnames} \tab Returns PCA correlation ordered column names \cr \code{ hclustColnames} \tab Returns hierarchically clustered columnames \cr \code{ statsColnames} \tab Returns statisticall rearrange columnames \cr \code{orderStatistics} \tab Computes order statistics of a 'timeSeries' object \cr \code{rollMean} \tab Computes rolling means of a 'timeSeries' object \cr \code{ rollMin} \tab Computes rolling minima of a 'timeSeries' object \cr \code{ rollMax} \tab Computes rolling maxima of a 'timeSeries' object \cr \code{ rollMedian} \tab Computes rolling medians of a 'timeSeries' object \cr \code{ rollStats} \tab Computes rolling statistics of a 'timeSeries' objectcr \cr \code{rowCumsums} \tab Computes cumulated column sums of a 'timeSeries' \cr \code{smoothLowess} \tab Smoothes a series with lowess function \cr \code{ smoothSupsmu} \tab Smoothes a series with supsmu function \cr \code{ smoothSpline} \tab Smoothes a series with smooth.spline function } } \section{Misc Functions}{ \tabular{ll}{ \code{dummyDailySeries} \tab Creates a dummy daily 'timeSeries' object \cr \code{isMonthly} \tab Decides if the series consists of monthly records \cr %\code{Description} \tab Creates default description string \cr \code{getArgs} \tab Extracts arguments from a S4 method } } \keyword{package} timeSeries/man/statistics-orderColnames.Rd0000644000176000001440000000765412620124746020462 0ustar ripleyusers\name{orderColnames} \title{Reorder Column Names of a Time Series} \alias{orderColnames} \alias{sortColnames} \alias{sampleColnames} \alias{statsColnames} \alias{pcaColnames} \alias{hclustColnames} \description{ Functions and methods dealing with the rearrangement of column names of 'timeSeries' objects. \cr \tabular{ll}{ \code{orderColnames} \tab Returns ordered column names of a time Series, \cr \code{sortColnames} \tab Returns sorted column names of a time Series, \cr \code{sampleColnames} \tab Returns sampled column names of a time Series, \cr \code{statsColnames} \tab Returns statistically rearranged column names, \cr \code{pcaColnames} \tab Returns PCA correlation ordered column names, \cr \code{hclustColnames} \tab Returns hierarchical clustered column names. } } \usage{ orderColnames(x, \dots) sortColnames(x, \dots) sampleColnames(x, \dots) statsColnames(x, FUN = colMeans, \dots) pcaColnames(x, robust = FALSE, \dots) hclustColnames(x, method = c("euclidean", "complete"), \dots) } \arguments{ \item{FUN}{ a character string indicating which statistical function should be applied. By default statistical ordering operates on the column means of the time series. } \item{method}{ a character string with two elements. The first determines the choice of the distance measure, see \code{dist}, and the second determines the choice of the agglomeration method, see \code{hclust}. } \item{robust}{ a logical flag which indicates if robust correlations should be used. } \item{x}{ an object of class \code{timesSeries} or any other rectangular object which can be transformed by the function \code{as.matrix} into a numeric matrix. } \item{\dots}{ further arguments to be passed, see details. } } \details{ \bold{Statistically Motivated Rearrangement} The function \code{statsColnames} rearranges the column names according to a statical measure. These measure must operate on the columns of the time series and return a vector of values which can be sorted. Typical functions ar those listed in in help page \code{colStats} but one can also crete his own functions which compute for example risk or any other statistical measure. The \code{\dots} argument allows to pass additional arguments to the underlying function \code{FUN}.\cr \bold{PCA Ordering of the Correlation Matrix} The function \code{pcaColnames} rearranges the column names according to the PCA ordered correlation matrix. The argument \code{robust} allsows to select between the use of the standard \code{cor} and computation of robust correlations using the function \code{covMcd} from contributed R package \code{robustbase}. The \code{\dots} argument allows to pass additional arguments to the two underlying functions \code{cor} or \code{covMcd}. E.g. adding \code{method="kendall"} to the argument list calculates Kendall's rank correlations instead the default which calculates Person's correlations.\cr \bold{Ordering by Hierarchical Clustering} The function \code{pcaColnames} uses the hierarchical clustering approach \code{hclust} to rearrange the column names of the time series. } \value{ returns a vector of character string, the rearranged column names. } \examples{ ## Load Swiss Pension Fund Benchmark Data - data <- LPP2005REC[,1:6] ## Abbreviate Column Names - colnames(data) ## Sort Alphabetically - sortColnames(data) ## Sort by Column Names by Hierarchical Clustering - hclustColnames(data) head(data[, hclustColnames(data)]) } \keyword{chron} timeSeries/man/fin-align.Rd0000644000176000001440000000226412620124746015331 0ustar ripleyusers\name{align-methods} \docType{methods} \alias{align} \alias{align-methods} \alias{align,timeSeries-method} \title{timeSeries Class, Functions and Methods} \description{ Aligns a 'timeSeries' Object. } \usage{ \S4method{align}{timeSeries}(x, by = "1d", offset = "0s", method = c("before", "after", "interp", "fillNA", "fmm", "periodic", "natural", "monoH.FC"), include.weekends = FALSE, ...) } \arguments{ \item{x}{ an object of class \code{timeSeries}. } \item{by}{ a character string denoting the period } \item{offset}{ a character string denoting the offset } \item{method}{ a character string denoting the alignment approach. } \item{include.weekends}{ a logical flag, should weekend be included. } \item{\ldots}{ Further arguments to be passed to the interpolating function. } } \value{ Returns an aligned S4 'timeSeries' object. } \examples{ ## Use MSFT and Compute Sample Size - dim(MSFT) ## Align the Series - MSFT.AL <- align(MSFT) ## Show the Size of the Aligned Series - dim(MSFT.AL) } \keyword{methods} \keyword{chron} timeSeries/man/statistics-colSums.Rd0000644000176000001440000000460212620124746017300 0ustar ripleyusers\name{colStats} \alias{colStats} \alias{colSums,timeSeries-method} \alias{colMeans,timeSeries-method} \alias{colSds} \alias{colVars} \alias{colSkewness} \alias{colKurtosis} \alias{colMaxs} \alias{colMins} \alias{colProds} \alias{colQuantiles} \alias{colAvgs} \alias{colStdevs} % \alias{mean.timeSeries} % \alias{var.timeSeries} \title{Column Statistics} \description{ A collection and description of functions to compute column statistical properties of financial and economic time series data. \cr The functions are: \tabular{ll}{ \code{colStats}\tab calculates column statistics, \cr \code{colSums} \tab calculates column sums, \cr \code{colMeans} \tab calculates column means, \cr \code{colSds} \tab calculates column standard deviations, \cr \code{colVars} \tab calculates column variances, \cr \code{colSkewness} \tab calculates column skewness, \cr \code{colKurtosis} \tab calculates column kurtosis, \cr \code{colMaxs} \tab calculates maximum values in each column, \cr \code{colMins} \tab calculates minimum values in each column, \cr \code{colProds} \tab computes product of all values in each column, \cr \code{colQuantiles} \tab computes quantiles of each column. } } \usage{ colStats(x, FUN, \dots) colSds(x, \dots) colVars(x, \dots) colSkewness(x, \dots) colKurtosis(x, \dots) colMaxs(x, \dots) colMins(x, \dots) colProds(x, \dots) colQuantiles(x, prob = 0.05, \dots) colStdevs(x, \dots) colAvgs(x, \dots) % \method{mean}{timeSeries}(x, \dots) % \method{var}{timeSeries}(x, \dots) } \arguments{ \item{FUN}{ a function name. The statistical function to be applied. } \item{prob}{ a numeric value, the probability with value in [0,1]. } \item{x}{ a rectangular object which can be transformed into a matrix by the function \code{as.matrix}. } \item{\dots}{ arguments to be passed. } } \value{ the functions return a numeric vector of the statistics. } \seealso{ \code{link{rowStats}}. } \examples{ ## Simulated Return Data in Matrix Form - x = matrix(rnorm(252), ncol = 2) ## Mean Columnwise Statistics - colStats(x, FUN = mean) ## Quantiles Column by Column - colQuantiles(x, prob = 0.10, type = 1) } \keyword{univar} timeSeries/man/statistics-rowCumsums.Rd0000644000176000001440000000155312620124746020041 0ustar ripleyusers\name{rowCum} \title{Cumulated Column Statistics} \alias{rowCum} \alias{rowCumsums} \alias{rowCumsums,ANY-method} \alias{rowCumsums,timeSeries-method} \description{ Compute cumulative row Statistics. } \usage{ \S4method{rowCumsums}{ANY}(x, na.rm = FALSE, \dots) \S4method{rowCumsums}{timeSeries}(x, na.rm = FALSE, \dots) } \arguments{ \item{na.rm}{ a logical. Should missing values be removed? } \item{x}{ a time series, may be an object of class \code{"matrix"} or \code{"timeSeries"}. } \item{\dots}{ arguments to be passed. } } \value{ all functions return an S4 object of class \code{timeSeries}. } \examples{ ## Simulated Monthly Return Data - X = matrix(rnorm(24), ncol = 2) ## Compute cumulated Sums - rowCumsums(X) } \keyword{univar} timeSeries/man/fin-drawdowns.Rd0000644000176000001440000000413112620124746016242 0ustar ripleyusers\name{drawdowns} \title{Calculations of Drawdowns} \alias{drawdowns} \alias{drawdownsStats} \description{ Compute series of drawdowns from financial returns and calculate drawdown statisitcs. } \usage{ drawdowns(x, \dots) drawdownsStats(x, \dots) } \arguments{ \item{x}{ a 'timeSeries' object of financial returns. Note, drawdowns can be calculated from an uni- or multivariate time deries object, statistics can only be computed from an univariate time series object. } \item{\dots}{ optional arguments passed to the function \code{na.omit}. } } \value{ \code{drawdowns}\cr returns an object of class 'timeSeries'. \code{drawdownsStats}\cr returns an object of class 'data.frame' with the following entries:\cr \code{"drawdown"} - the depth of the drawdown, \cr \code{"from"} - the start date, \cr \code{"trough"} - the trough period, \cr \code{"to"} - the end date, \cr \code{"length"} - the length in number of records, \cr \code{"peaktrough"} - the peak trough, and , \cr \code{"recovery"} - the recovery length in number of records. } \details{ The code in the core of the function \code{drawdownsStats} was was borrowed from the package \code{PerformanceAnalytics} authored by Peter Carl and Sankalp Upadhyay. } \author{ Peter Carl and Sankalp Upadhyay for code from the contributed R package \code{PerformanceAnalytics} used in the function \code{drawdownsStats}. } \examples{ ## Use Swiss Pension Fund Data Set of Returns - head(LPP2005REC) SPI <- LPP2005REC[, "SPI"] head(SPI) ## Plot Drawdowns - dd = drawdowns(LPP2005REC[, "SPI"], main = "Drawdowns") plot(dd) dd = drawdowns(LPP2005REC[, 1:6], main = "Drawdowns") plot(dd) ## Compute Drawdowns Statistics - ddStats <- drawdownsStats(SPI) class(ddStats) ddStats ## Note, Only Univariate Series are allowd - ddStats <- try(drawdownsStats(LPP2005REC)) class(ddStats) } \keyword{chron} timeSeries/man/methods-comment.Rd0000644000176000001440000000123212620124746016562 0ustar ripleyusers\name{comment} \alias{comment,timeSeries-method} \alias{comment<-,timeSeries-method} \title{comment for timeSeries objects} \description{ Print or assign new comment to a \code{timeSeries} object. } \usage{ \S4method{comment}{timeSeries}(x) \S4method{comment}{timeSeries}(x) <- value } \arguments{ \item{x}{ a \code{timeSeries} object. } \item{value}{ a character string - the comment. } } \examples{ ## Get Description from timeSeries - comment(LPP2005REC) ## Add User to comment - comment(LPP2005REC) <- paste(comment(LPP2005REC), "by User Rmetrics") comment(LPP2005REC) } \keyword{chron} timeSeries/man/stats-model.frame.Rd0000644000176000001440000000310712620124746017007 0ustar ripleyusers\name{model.frame} \title{Model Frames for Time Series Objects} \alias{model.frame} \alias{model.frame.default,ANY,timeSeries-method} \description{ Allow to work with model frames for 'timeSeries' objects. } % \usage{ % model.frame(formula, data, ...) % } % \arguments{ % \item{formula}{ % a model formula object. % } % \item{data}{ % an object of class \code{timeSeries}. % } % \item{\dots}{ % arguments passed to the function \code{stats::model.frame}. % } % } \value{ Returns an object of class 'timeSeries. } \details{ The function \code{model.frame} is a generic function which returns in the R-ststs framework by default a data.frame with the variables needed to use \code{formula} and any \code{...} arguments. In contrast to this the method returns an object of class \code{timeSeries} when the argument data was not a \code{data.frame} but also an object of class 'timeSeries'. } \note{ This function is preliminary and untested. } \seealso{ \code{\link{model.frame}}. } \examples{ ## Load Microsoft Data - setRmetricsOptions(myFinCenter = "GMT") X <- MSFT[1:12, ] ## Extract High's and Low's: DATA <- model.frame( ~ High + Low, data = X) class(DATA) as.timeSeries(DATA) ## Extract Open Prices and their log10's: base <- 10 Open <- model.frame(Open ~ log(Open, base = `base`), data = X) colnames(Open) <- c("X", "log10(X)") class(Open) as.timeSeries(Open) } \keyword{chron} timeSeries/man/timeSeries-slotFinCenter.Rd0000644000176000001440000000166112620124746020353 0ustar ripleyusers\name{finCenter} \title{Get and Set Financial Center of a 'timeSeries'} \alias{getFinCenter} \alias{setFinCenter<-} \alias{finCenter,timeSeries-method} \alias{finCenter<-,timeSeries-method} \description{ Print or assign new financial center to a 'timeSeries' object. } \usage{ getFinCenter(x) setFinCenter(x) <- value \S4method{finCenter}{timeSeries}(x) \S4method{finCenter}{timeSeries}(x) <- value } \arguments{ \item{x}{ a 'timeSeries' object. } \item{value}{ a character with the the location of the financial center named as "continent/city". } } \seealso{listFinCenter} \examples{ ## An artificial timeSeries Object - tS <- dummySeries() tS ## Print Financial Center - finCenter(tS) getFinCenter(tS) ## Assign New Financial Center - finCenter(tS) <- "Zurich" tS setFinCenter(tS) <- "New_York" tS } \keyword{programming}