Zelig/0000755000176000001440000000000013457262505011365 5ustar ripleyusersZelig/inst/0000755000176000001440000000000013245253057012337 5ustar ripleyusersZelig/inst/JSON/0000755000176000001440000000000013245253057013110 5ustar ripleyusersZelig/inst/JSON/zelig5models.json0000644000176000001440000004065313245253057016416 0ustar ripleyusers{ "zelig5models": { "ls": { "name": ["ls"], "description": ["Least Squares Regression for Continuous Dependent Variables"], "outcome": { "modelingType": ["continous"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_ls.html"], "wrapper": ["ls"], "tree": ["Zelig-ls"] }, "ivreg": { "name": ["ivreg"], "description": ["Instrumental-Variable Regression"], "outcome": { "modelingType": ["continous"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_ivreg.html"], "wrapper": ["ivreg"], "tree": ["Zelig-ivreg"] }, "logit": { "name": ["logit"], "description": ["Logistic Regression for Dichotomous Dependent Variables"], "outcome": { "modelingType": ["binary"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_logit.html"], "wrapper": ["logit"], "tree": ["Zelig-logit", "Zelig-binchoice", "Zelig-glm"] }, "probit": { "name": ["probit"], "description": ["Probit Regression for Dichotomous Dependent Variables"], "outcome": { "modelingType": ["binary"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_probit.html"], "wrapper": ["probit"], "tree": ["Zelig-probit", "Zelig-binchoice", "Zelig-glm"] }, "poisson": { "name": ["poisson"], "description": ["Poisson Regression for Event Count Dependent Variables"], "outcome": { "modelingType": ["discrete"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_poisson.html"], "wrapper": ["poisson"], "tree": ["Zelig-poisson", "Zelig-glm"] }, "normal": { "name": ["normal"], "description": ["Normal Regression for Continuous Dependent Variables"], "outcome": { "modelingType": ["continuous"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_normal.html"], "wrapper": ["normal"], "tree": ["Zelig-normal", "Zelig-glm"] }, "gamma": { "name": ["gamma"], "description": ["Gamma Regression for Continuous, Positive Dependent Variables"], "outcome": { "modelingType": ["continous"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_gamma.html"], "wrapper": ["gamma"], "tree": ["Zelig-gamma", "Zelig-glm"] }, "negbin": { "name": ["negbin"], "description": ["Negative Binomial Regression for Event Count Dependent Variables"], "outcome": { "modelingType": ["discrete"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_negbin.html"], "wrapper": ["negbin"], "tree": ["Zelig-negbin"] }, "exp": { "name": ["exp"], "description": ["Exponential Regression for Duration Dependent Variables"], "outcome": { "modelingType": ["continous"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_exp.html"], "wrapper": ["exp"], "tree": ["Zelig-exp"] }, "lognorm": { "name": ["lognorm"], "description": ["Log-Normal Regression for Duration Dependent Variables"], "outcome": { "modelingType": ["discrete"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_lognorm.html"], "wrapper": ["lognorm"], "tree": ["Zelig-lognorm"] }, "tobit": { "name": ["tobit"], "description": ["Linear regression for Left-Censored Dependent Variable"], "outcome": { "modelingType": ["continous"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_tobit.html"], "wrapper": ["tobit"], "tree": ["Zelig-tobit"] }, "quantile": { "name": ["quantile"], "description": ["Quantile Regression for Continuous Dependent Variables"], "outcome": { "modelingType": ["continuous"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_quantile.html"], "wrapper": ["rq"], "tree": ["Zelig-quantile"] }, "relogit": { "name": ["relogit"], "description": ["Rare Events Logistic Regression for Dichotomous Dependent Variables"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_relogit.html"], "wrapper": ["relogit"], "tree": ["Zelig-relogit"] }, "logitgee": { "name": ["logit-gee"], "description": ["General Estimating Equation for Logistic Regression"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_logitgee.html"], "wrapper": ["logit.gee"], "tree": ["Zelig-logit-gee", "Zelig-binchoice-gee", "Zelig-gee", "Zelig-binchoice"] }, "probitgee": { "name": ["probit-gee"], "description": ["General Estimating Equation for Probit Regression"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_probitgee.html"], "wrapper": ["probit.gee"], "tree": ["Zelig-probit-gee", "Zelig-binchoice-gee", "Zelig-gee", "Zelig-binchoice"] }, "gammagee": { "name": ["gamma-gee"], "description": ["General Estimating Equation for Gamma Regression"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_gammagee.html"], "wrapper": ["gamma.gee"], "tree": ["Zelig-gamma-gee", "Zelig-gee", "Zelig-gamma"] }, "normalgee": { "name": ["normal-gee"], "description": ["General Estimating Equation for Normal Regression"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_normalgee.html"], "wrapper": ["normal.gee"], "tree": ["Zelig-normal-gee", "Zelig-gee", "Zelig-normal"] }, "poissongee": { "name": ["poisson-gee"], "description": ["General Estimating Equation for Poisson Regression"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_poissongee.html"], "wrapper": ["poisson.gee"], "tree": ["Zelig-poisson-gee", "Zelig-gee", "Zelig-poisson"] }, "factorbayes": { "name": ["factor-bayes"], "description": ["Bayesian Factor Analysis"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_factorbayes.html"], "wrapper": ["factor.bayes"], "tree": ["Zelig-factor-bayes"] }, "logitbayes": { "name": ["logit-bayes"], "description": ["Bayesian Logistic Regression for Dichotomous Dependent Variables"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_logitbayes.html"], "wrapper": ["logit.bayes"], "tree": ["Zelig-logit-bayes", "Zelig-bayes", "Zelig-logit"] }, "mlogitbayes": { "name": ["mlogit-bayes"], "description": ["Bayesian Multinomial Logistic Regression for Dependent Variables with Unordered Categorical Values"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_mlogitbayes.html"], "wrapper": ["mlogit.bayes"], "tree": ["Zelig-mlogit-bayes", "Zelig-bayes"] }, "normalbayes": { "name": ["normal-bayes"], "description": ["Bayesian Normal Linear Regression"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_normalbayes.html"], "wrapper": ["normal.bayes"], "tree": ["Zelig-normal-bayes", "Zelig-bayes", "Zelig-normal"] }, "oprobitbayes": { "name": ["oprobit-bayes"], "description": ["Bayesian Probit Regression for Dichotomous Dependent Variables"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_oprobitbayes.html"], "wrapper": ["oprobit.bayes"], "tree": ["Zelig-oprobit-bayes", "Zelig-bayes"] }, "poissonbayes": { "name": ["poisson-bayes"], "description": ["Bayesian Poisson Regression"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_poissonbayes.html"], "wrapper": ["poisson.bayes"], "tree": ["Zelig-poisson-bayes", "Zelig-bayes", "Zelig-poisson"] }, "probitbayes": { "name": ["probit-bayes"], "description": ["Bayesian Probit Regression for Dichotomous Dependent Variables"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_probitbayes.html"], "wrapper": ["probit.bayes"], "tree": ["Zelig-probit-bayes", "Zelig-bayes", "Zelig-probit"] }, "tobitbayes": { "name": ["tobit-bayes"], "description": ["Bayesian Tobit Regression for a Censored Dependent Variable"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_tobitbayes.html"], "wrapper": ["tobit.bayes"], "tree": ["Zelig-tobit-bayes", "Zelig-bayes", "Zelig-tobit"] }, "weibull": { "name": ["weibull"], "description": ["Weibull Regression for Duration Dependent Variables"], "outcome": { "modelingType": ["bounded"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_weibull.html"], "wrapper": ["weibull"], "tree": ["Zelig-weibull"] }, "logitsurvey": { "name": ["logit-survey"], "description": ["Logistic Regression with Survey Weights"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_logit-survey.html"], "wrapper": ["logit.survey"], "tree": ["Zelig-logit-survey", "Zelig-binchoice-survey", "Zelig-survey", "Zelig-binchoice"] }, "probitsurvey": { "name": ["probit-survey"], "description": ["Probit Regression with Survey Weights"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_probit-survey.html"], "wrapper": ["probit.survey"], "tree": ["Zelig-probit-survey", "Zelig-binchoice-survey", "Zelig-survey", "Zelig-binchoice"] }, "normalsurvey": { "name": ["normal-survey"], "description": ["Normal Regression for Continuous Dependent Variables with Survey Weights"], "outcome": { "modelingType": ["continuous"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_normal-survey.html"], "wrapper": ["normal.survey"], "tree": ["Zelig-normal-survey", "Zelig-survey"] }, "gammasurvey": { "name": ["gamma-survey"], "description": ["Gamma Regression with Survey Weights"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_gamma-survey.html"], "wrapper": ["gamma.survey"], "tree": ["Zelig-gamma-survey", "Zelig-survey", "Zelig-gamma"] }, "poissonsurvey": { "name": ["poisson-survey"], "description": ["Poisson Regression with Survey Weights"], "outcome": { "modelingType": [""] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_poisson-survey.html"], "wrapper": ["poisson.survey"], "tree": ["Zelig-poisson-survey", "Zelig-survey", "Zelig-poisson"] }, "arima": { "name": ["arima"], "description": ["Autoregressive Moving-Average Models for Time-Series Data"], "outcome": { "modelingType": ["continuous"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_arima.html"], "wrapper": ["arima"], "tree": ["Zelig-arima", "Zelig-timeseries"] }, "ma": { "name": ["ma"], "description": ["Time-Series Model with Moving Average"], "outcome": { "modelingType": ["continuous"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_ma.html"], "wrapper": ["ma"], "tree": ["Zelig-ma", "Zelig-timeseries"] }, "ar": { "name": ["ar"], "description": ["Time-Series Model with Autoregressive Disturbance"], "outcome": { "modelingType": ["continuous"] }, "explanatory": { "modelingType": ["continuous", "discrete", "nominal", "ordinal", "binary"] }, "vignette.url": ["http://docs.zeligproject.org/articles/zelig_ar.html"], "wrapper": ["ar"], "tree": ["Zelig-ar", "Zelig-timeseries"] } } } Zelig/inst/CITATION0000644000176000001440000000245413245253057013501 0ustar ripleyuserscitHeader("To cite Zelig in publications please use:") if(!exists("meta") || is.null(meta)) meta <- packageDescription("Zelig") year <- sub(".*(2[[:digit:]]{3})-.*", "\\1", meta$Date) vers <- paste("Version", meta$Version) bibentry( bibtype="Manual", title = "Zelig: Everyone's Statistical Software", author = c( person("Christine", "Choirat", email="cchoirat@iq.harvard.edu", role = "aut"), person("James", "Honaker", email="jhonaker@iq.harvard.edu", role = "aut"), person("Kosuke", "Imai", role = "aut"), person("Gary", "King", role = "aut"), person("Olivia", "Lau", role = "aut") ), year = year, note = vers, url = "http://zeligproject.org/") bibentry( bibtype="Article", title = "Toward A Common Framework for Statistical Analysis and Development", author = c( person("Kosuke", "Imai"), person("Gary", "King"), person("Olivia", "Lau") ), journal = "Journal of Computational Graphics and Statistics", volume = 17, number = 4, year = 2008, pages = "892-913", url = "http://j.mp/msE15c") Zelig/tests/0000755000176000001440000000000013457021742012523 5ustar ripleyusersZelig/tests/testthat.R0000755000176000001440000000025413457021742014512 0ustar ripleyuserslibrary(AER) library(dplyr) library(geepack) library(survey) library(testthat) library(zeligverse) suppressWarnings(RNGversion("3.5.0")) set.seed(123) test_check("Zelig") Zelig/tests/testthat/0000755000176000001440000000000013457262505014367 5ustar ripleyusersZelig/tests/testthat/test-poissonsurvey.R0000644000176000001440000000043413245253057020435 0ustar ripleyusers# REQUIRE TEST Monte Carlo test poissonsurvey --------------------------------------------- test_that('REQUIRE TEST poissonsurvey Monte Carlo', { set.seed("123") z <- zpoissonsurvey$new() test.poissonsurvey <- z$mcunit(plot = FALSE) expect_true(test.poissonsurvey) })Zelig/tests/testthat/test-utils.R0000644000176000001440000000547013245253057016632 0ustar ripleyuserscontext('test-utils.R') test_that("REQUIRE TEST Median()", { input <- c(1, 2, 3) expected <- 2 actual <- Median(input) expect_equal(actual, expected) }) # REQUIRE TEST for to_zelig_mi ------------------------------------------------- test_that('REQUIRE TEST for to_zelig_mi', { set.seed(123) n <- 100 x1 <- runif(n) x2 <- runif(n) y <- rnorm(n) data.1 <- data.frame(y = y, x = x1) data.2 <- data.frame(y = y, x = x2) mi.out <- to_zelig_mi(data.1, data.2) z.out.mi <- zelig(y ~ x, model = "ls", data = mi.out) expect_error(summary(z.out.mi), NA) expect_equivalent(round(as.numeric(z.out.mi$get_coef()[[1]][2]), 3), 0.1) expect_equivalent(round(as.numeric(combine_coef_se(z.out.mi)[[1]][1]), 3), -0.122) z.out.mi.boot <- zelig(y ~ x, model = "ls", data = mi.out, bootstrap = 20) expect_equal(round(as.numeric(combine_coef_se(z.out.mi.boot)[[1]][1]), 3), -0.094) expect_error(z.out.log <- zelig(y ~ log(x), model = "ls", data = mi.out), NA) expect_error(z.out.log10 <- zelig(y ~ log(x, base = 10), model = "ls", data = mi.out), NA) }) # REQUIRE TEST for combine_coef_se for bootstrapped ---------------------------- test_that('REQUIRE TEST for combine_coef_se for bootstrapped', { set.seed(123) n <- 100 data.1 <- data.frame(y = rnorm(n), x = runif(n)) z.out.boot <- zelig(y ~ x, model = "ls", data = data.1, bootstrap = 20) expect_error(summary(z.out.boot), NA) expect_equal(round(as.numeric(combine_coef_se(z.out.boot)[[1]][1]), 3), 0.007) summary(z.out.boot, bagging = TRUE) expect_equal(round(as.numeric( combine_coef_se(z.out.boot, bagging = TRUE)[[1]][1]), 3), -0.052) z5_ls <- zelig(Fertility ~ Education, model = "ls", data = swiss) expect_equal(length(combine_coef_se(z5_ls)), 3) }) # REQUIRE TEST for to_zelig_mi ------------------------------------------------- test_that('REQUIRE TEST for to_zelig_mi -- with list of data.frames', { set.seed(123) n <- 100 x1 <- runif(n) x2 <- runif(n) y <- rnorm(n) data.1 <- data.frame(y = y, x = x1) data.2 <- data.frame(y = y, x = x2) data_mi = list(data.1, data.2) mi.out <- to_zelig_mi(data_mi) z.out <- zelig(y ~ x, model = "ls", data = mi.out) expect_equivalent(round(as.numeric(z.out$get_coef()[[1]][2]), 3), 0.1) }) # FAIL TEST for to_zelig_mi ---------------------------------------------------- test_that('FAIL TESTS for to_zelig_mi', { x <- 100 expect_error(to_zelig_mi(x)) }) # FAIL TEST for or_summary ----------------------------------------------------- test_that("FAIL TEST for or_summary", { expect_error(or_summary(1:10), "obj must be of summary.glm class.") }) Zelig/tests/testthat/test-tobitbayes.R0000644000176000001440000000042513245253057017632 0ustar ripleyusers# REQUIRE TEST Monte Carlo test tobitbayes --------------------------------------------- test_that('REQUIRE TEST tobitbayes Monte Carlo', { z <- ztobitbayes$new() test.tobitbayes <- z$mcunit(nsim=2000, ci=0.99, minx=0, plot = FALSE) expect_true(test.tobitbayes) })Zelig/tests/testthat/test-tobit.R0000644000176000001440000000116013245253057016603 0ustar ripleyusers# REQUIRE TEST Monte Carlo test tobit --------------------------------------------- test_that('REQUIRE TEST tobit Monte Carlo', { z <- ztobit$new() test.tobit <- z$mcunit(minx = 0, plot = FALSE) expect_true(test.tobit) }) # REQUIRE TEST update tobit formula -------------------------------------------- test_that('REQUIRE TEST update tobit formula', { data(tobin) z5<-ztobit$new() z5$zelig(durable ~ age + quant, data = tobin) z5.1_coefs <- coef(z5) controls <- ~ quant z5$zelig(formula = update(controls, durable ~ age + .), data = tobin) expect_equal(z5.1_coefs, coef(z5)) }) Zelig/tests/testthat/test-logit.R0000755000176000001440000000176713245253057016620 0ustar ripleyusers# REQUIRE TEST Monte Carlo test logit ------------------------------------------ test_that('REQUIRE TEST logit Monte Carlo', { z <- zlogit$new() test <- z$mcunit(minx = -2, maxx = 2, plot = FALSE) expect_true(test) }) # REQUIRE TEST logit example and show odds_ratios ------------------------------ test_that('REQUIRE TEST logit example and show odds_ratios', { data(turnout) z.out1 <- zelig(vote ~ age + race, model = "logit", data = turnout, cite = FALSE) betas <- coef(z.out1) ors <- summary(z.out1, odds_ratios = TRUE) ors <- ors$summ[[1]]$coefficients[1:3] expect_equal(exp(betas)[[1]], ors[1]) }) # REQUIRE TEST logit example and show odds_ratios ------------------------------ test_that('REQUIRE TEST logit to_zelig', { data(turnout) m1 <- glm(vote ~ age + race, family = binomial(link="logit"), data = turnout) m1_sims <- sim(setx(m1)) expect_equal(sort(unique(zelig_qi_to_df(m1_sims)$predicted_value)), c(0, 1)) }) Zelig/tests/testthat/test-gamma.R0000644000176000001440000000170613245253057016552 0ustar ripleyusers# REQUIRE TEST Monte Carlo test gamma --------------------------------------------- test_that('REQUIRE TEST gamma Monte Carlo', { z <- zgamma$new() test.gamma <- z$mcunit(b0 = 1, b1 = -0.6, alpha = 3, minx = 0, maxx = 1, nsim = 2000, ci = 0.99, plot = FALSE) expect_true(test.gamma) }) # REQUIRE TEST gamma example --------------------------------------------------- test_that('REQUIRE TEST gamma example', { data(coalition) z.out <- zelig(duration ~ fract + numst2, model = "gamma", data = coalition) expect_error(plot(sim(setx(z.out))), NA) }) # REQUIRE TEST gamma to_zelig -------------------------------------------------- test_that('REQUIRE TEST gamma example', { data(coalition) m1 <- glm(duration ~ fract + numst2, family = Gamma(link="inverse"), data = coalition) expect_message(setx(m1), 'Assuming zgamma to convert to Zelig.') expect_error(plot(sim(setx(m1))), NA) }) Zelig/tests/testthat/test-normalsurvey.R0000644000176000001440000000116213245253057020232 0ustar ripleyusers# REQUIRE TEST Monte Carlo test normalsurvey ----------------------------------- test_that('REQUIRE TEST normalsurvey Monte Carlo', { z <- znormalsurvey$new() test.normalsurvey <- z$mcunit(plot = FALSE) expect_true(test.normalsurvey) }) # REQUIRE TEST to_zelig for normalsurvey --------------------------------------- test_that('REQUIRE TEST to_zelig for normalsurvey', { data(api) dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat, fpc = ~fpc) m1 <- svyglm(api00 ~ ell + meals + mobility, design = dstrat) expect_error(plot(sim(setx(m1))), NA) }) Zelig/tests/testthat/test-arima.R0000644000176000001440000001340413245257143016557 0ustar ripleyusers# REQUIRE TEST arima Monte Carlo ----------------------------------------------- ## Need to implement ## # REQUIRE TEST arima successful estimation ------------------------------------- test_that('REQUIRE TEST arima successful estimation', { data(seatshare) ts <- zarima$new() ## NEEDS a better test, possibly once get_coef has been implemented for arima expect_error( ts$zelig(unemp ~ leftseat, order = c(1,0,1), ts = "year", cs = "country", data = seatshare), NA) }) # FAIL TEST arima fails if DV does not vary ------------------------------------ test_that('FAIL TEST arima fails if DV does not vary', { no_vary_df <- data.frame(country = c(rep("A", 5), rep("B", 5)), year = c(1:5, 1:5), y = c(rep(1:5), rep(2, 5)), x = c(1, 3, -1, NA, 1, NA, 1, 2, NA, 5)) # a.out <- amelia(x = no_vary_df, cs = "country", ts = "year") zts <- zarima$new() expect_error( zts$zelig(y ~ x, ts = 'year', cs = 'country', order = c(1, 0, 1), data = no_vary_df), 'Dependent variable does not vary for at least one of the cases.') }) # FAIL TEST arima models ------------------------------------ test_that('REQUIRE TEST arima models', { n.obs <- 2000 x <- rnorm(n=n.obs) z <- rnorm(n=n.obs) t <- 1:n.obs r <- rep(c(1,2),n.obs/2) beta <- 1 phi <-0.3 y <- rep(NA,n.obs) y[1]<-beta*x[1] + rnorm(1) for(i in 2:n.obs){ y[i] <- phi*y[i-1] + beta*x[i] + rnorm(n=1, mean=0, sd=0.2) } mydata <- data.frame(y,x,z,t,r) mydata2 <- rbind(mydata[10:n.obs,],mydata[1:9,]) # reorder dataset # check ar model zj <- zar$new() zj$zelig(y~x + z , data=mydata, ts="t") expect_equivalent(length(zj$get_coef()[[1]]), 4) # check ma model zj <- zma$new() zj$zelig(y~x + z , data=mydata, ts="t") expect_equivalent(length(zj$get_coef()[[1]]), 4) # check ar-2, ma-1 model zj <- zarima$new() zj$zelig(y~x + z , order=c(2,0,1), data=mydata, ts="t") expect_equivalent(length(zj$get_coef()[[1]]), 6) # check integration zj <- zarima$new() zj$zelig(y~x + z , order=c(2,1,1), data=mydata, ts="t") expect_equivalent(length(zj$get_coef()[[1]]), 5) # check obervations out of time order zj <- zarima$new() zj$zelig(y~x + z -1, order=c(2,0,1), data=mydata2, ts="t") expect_equivalent(length(zj$get_coef()[[1]]), 5) zj$setx() zj$setx1(x=2) zj$sim() # ACF plot myorder <- eval(zj$zelig.call$order) mycoef <- coef(zj$zelig.out$z.out[[1]]) myparams <- zj$simparam$simparam[[1]] test <- Zelig:::simacf(coef=mycoef, order=myorder, params=myparams, alpha = 0.5) expect_true(is.null(zeligACFplot(test, omitzero=TRUE))) # plots expect_true(is.null(ci.plot(zj, qi="pvseries.shock"))) expect_true(is.null(ci.plot(zj, qi="pvseries.innovation"))) expect_true(is.null(plot(zj))) }) # REQUIRE TEST ensure that the workflow can be completed using the # Zelig 5 wrappers test_that("REQUIRE TEST timeseries reference class wrappers", { data(seatshare) subset <- seatshare[seatshare$country == "UNITED KINGDOM",] expect_error(ts.out <- zelig(unemp ~ leftseat, data = subset, model = "arima", order = c(2, 0, 1)), NA) expect_error(x.out <- setx(ts.out, leftseat = 0.75), NA) expect_error(s.out <- sim(x.out), NA) expect_error(s.out <- plot(s.out), NA) expect_error(x.out <- setx1(x.out, leftseat = 0.25), NA) expect_error(s.out <- sim(x.out), NA) expect_error(s.out <- plot(s.out), NA) }) # REQUIRE TEST to ensure that summary works with arima with sim ---------------- test_that("REQUIRE TEST to ensure that summary works with arima with sim", { data(seatshare) subset <- seatshare[seatshare$country == "UNITED KINGDOM",] s.out <- zelig(unemp ~ leftseat, data = subset, model = "arima", order = c(2,0,1)) %>% setx(leftseat = 0.25) %>% sim() expect_error(summary(s.out), NA) }) # FAILURE TEST cs ts by with timeseries ---------------------------------------- test_that("FAILURE TEST cs ts by with timeseries", { data(seatshare) ts <- zarima$new() expect_error( ts$zelig(unemp ~ leftseat, order = c(1,0,1), ts = "year", cs = "country", by = "TEST", data = seatshare), "cs and by are equivalent for this model. Only one needs to be specified." ) expect_error( ts$zelig(unemp ~ leftseat, order = c(1,0,1), cs = "country", data = seatshare), "ts must be specified if cs is specified." ) }) # REQUIRE TEST arima with differenced first-order autoregressive --------------- test_that("REQUIRE TEST arima with differenced first-order autoregressive", { data(seatshare) subset <- seatshare[seatshare$country == "UNITED KINGDOM",] s.out <- zelig(unemp ~ leftseat, data = subset, model = "arima", order = c(1, 1, 0)) %>% setx(leftseat = 0.25) expect_error(sim(s.out), NA) }) # FAIL TEST when data is not found (not exclusive to arima) -------------------- test_that("FAIL TEST when data is not found (not exclusive to arima)", { expect_error(zelig(formula = unemp ~ leftseat, model = "ma", ts = "year", data = subset), "data not found") }) # REQUIRE TEST timeseries deprecation ------------------------------------------ test_that("REQUIRE TEST timeseries deprecation", { data(seatshare) subset <- seatshare[seatshare$country == "UNITED KINGDOM",] expect_warning( ts.out <- zelig(formula = unemp ~ leftseat, order = c(1, 0, 0), ts = "year", data = subset, model = "arima"), "All Zelig time series models are deprecated" ) }) Zelig/tests/testthat/test-probitsurvey.R0000644000176000001440000000043013245253057020236 0ustar ripleyusers# REQUIRE TEST Monte Carlo test probitsurvey --------------------------------------------- test_that('REQUIRE TEST probitsurvey Monte Carlo', { z <- zprobitsurvey$new() test.probitsurvey <- z$mcunit(minx = -1, maxx = 1, plot = FALSE) expect_true(test.probitsurvey) })Zelig/tests/testthat/test-interface.R0000644000176000001440000001131013245253057017420 0ustar ripleyusers# REQUIRE TEST from_zelig_model returns expected fitted model object ----------- test_that('REQUIRE TEST from_zelig_model returns expected fitted model object', { z5 <- zls$new() z5$zelig(Fertility ~ Education, data = swiss) expect_is(from_zelig_model(z5), class = 'lm') }) # REQUIRE TEST zelig_qi_to_df setx, setrange, by --------------- --------------- test_that('REQUIRE TEST zelig_qi_to_df setx, setrange, by', { #### QIs without first difference or range, from covariates fitted at ## central tendencies z.1 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") z.1 <- setx(z.1) expect_equal(names(zelig_setx_to_df(z.1)), c('Petal.Length', 'Species')) z.1 <- sim(z.1) expect_equal(nrow(zelig_qi_to_df(z.1)), 1000) #### QIs for first differences z.2 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") z.2a <- setx(z.2, Petal.Length = 2) z.2b <- setx(z.2, Petal.Length = 4.4) z.2 <- sim(z.2, x = z.2a, x1 = z.2a) z2_extracted <- zelig_qi_to_df(z.2) expect_equal(nrow(z2_extracted), 2000) expect_equal(names(z2_extracted), c("setx_value", "Petal.Length", "Species", "expected_value", "predicted_value")) #### QIs for first differences, estimated by Species z.3 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris, model = "ls") z.3a <- setx(z.3, Petal.Length = 2) z.3b <- setx(z.3, Petal.Length = 4.4) z.3 <- sim(z.3, x = z.3a, x1 = z.3a) expect_equal(nrow(zelig_qi_to_df(z.3)), 6000) #### QIs for a range of fitted values z.4 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") z.4 <- setx(z.4, Petal.Length = 2:4) z.4 <- sim(z.4) z4_extracted <- zelig_qi_to_df(z.4) expect_equal(nrow(z4_extracted), 3000) expect_is(z4_extracted, class = 'data.frame') #### QIs for a range of fitted values, estimated by Species z.5 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris, model = "ls") z.5 <- setx(z.5, Petal.Length = 2:4) z.5 <- sim(z.5) z5_extracted <- zelig_qi_to_df(z.5) expect_equal(nrow(z5_extracted), 9000) expect_equal(names(z5_extracted), c('setx_value', 'by', 'Petal.Length', 'expected_value', 'predicted_value')) #### QIs for two ranges of fitted values z.6 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") z.6a <- setx(z.6, Petal.Length = 2:4, Species = 'setosa') z.6b <- setx(z.6, Petal.Length = 2:4, Species = 'virginica') expect_equal(nrow(zelig_setx_to_df(z.6b)), 3) z.6 <- sim(z.6, x = z.6a, x1 = z.6b) expect_equal(nrow(zelig_qi_to_df(z.6)), 6000) }) # REQUIRE TEST zelig_qi_to_df multinomial outcome ------------------------------ test_that('REQUIRE TEST zelig_qi_to_df multinomial outcome', { library(dplyr) set.seed(123) data(mexico) sims1_setx <- zelig(vote88 ~ pristr + othcok + othsocok, model = "mlogit.bayes", data = mexico, verbose = FALSE) %>% setx() %>% sim() %>% zelig_qi_to_df() sims1_setrange <- zelig(vote88 ~ pristr + othcok + othsocok, model = "mlogit.bayes", data = mexico, verbose = FALSE) %>% setx(pristr = 1:3) %>% sim() %>% zelig_qi_to_df() expected_col_names <- c("setx_value", "pristr", "othcok", "othsocok", "expected_P(Y=1)", "expected_P(Y=2)", "expected_P(Y=3)", "predicted_value") expect_equal(names(sims1_setx), expected_col_names) expect_equal(names(sims1_setrange), expected_col_names) slimmed_setx <- qi_slimmer(sims1_setx, qi_type = "expected_P(Y=2)") expect_lt(slimmed_setx$qi_ci_median, 0.25) slimmed_setrange <- qi_slimmer(sims1_setrange, qi_type = "predicted_value") expected_sr_colnames <- c("setx_value", "pristr", "othcok", "othsocok", "predicted_proportion_(Y=1)", "predicted_proportion_(Y=2)", "predicted_proportion_(Y=3)") expect_equal(names(slimmed_setrange), expected_sr_colnames) }) # FAIL TEST to_zelig failure with unsupported model ---------------------------- test_that('FAIL TEST to_zelig failure with unsupported model', { x <- rnorm(100) y <- rpois(100, exp(1 + x)) m1 <- glm(y ~ x, family = quasi(variance = "mu", link = "log")) expect_error(setx(m1), "Not a Zelig object and not convertible to one.") expect_error(setx(x), "Not a Zelig object and not convertible to one.") }) Zelig/tests/testthat/test-poissonbayes.R0000644000176000001440000000044113245253057020201 0ustar ripleyusers# REQUIRE TEST Monte Carlo test poissonbayes --------------------------------------------- test_that('REQUIRE TEST poissonbayes Monte Carlo', { z <- zpoissonbayes$new() test.poissonbayes <- z$mcunit(minx=1, nsim = 2000, ci=0.99, plot = FALSE) expect_true(test.poissonbayes) })Zelig/tests/testthat/test-normalbayes.R0000644000176000001440000000046313245253057020003 0ustar ripleyusers# REQUIRE TEST Monte Carlo test normalbayes --------------------------------------------- test_that('REQUIRE TEST normalbayes Monte Carlo', { set.seed(123) z <- znormalbayes$new() test.normalbayes <- z$mcunit(minx=-1, maxx = 1, ci=0.99, nsim=2000, plot = TRUE) expect_true(test.normalbayes) })Zelig/tests/testthat/test-weibull.R0000644000176000001440000000045513245253057017133 0ustar ripleyusers# REQUIRE TEST Monte Carlo weibull --------------------------------------------- test_that('REQUIRE TEST weibull Monte Carlo', { z <- zweibull$new() test.weibull<-z$mcunit(minx = 2, maxx = 3, nsim = 2000, alpha = 1.5, b0 = -1, b1 = 2, ci = 0.99, plot = FALSE) expect_true(test.weibull) })Zelig/tests/testthat/test-quantile.R0000644000176000001440000000330613245253057017310 0ustar ripleyusers# REQUIRE TEST quantile regression doc example --------------------------------- test_that("REQUIRE TEST quantile regression doc example", { library(quantreg) library(dplyr) data("stackloss") z.out1 <- zelig(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc., model = 'rq', data = stackloss) z.out2 <- zelig(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc., model = 'rq', data = stackloss, tau = 0.5) z.set2 <- setx(z.out2, Air.Flow = seq(50, 80, by = 10)) z.sim2 <- sim(z.set2) expect_error(plot(z.sim2), NA) z.out3 <- zelig(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc., model = 'rq', data = stackloss, tau = 0.25) z.set3 <- setx(z.out3, Air.Flow = seq(50, 80, by = 10)) z.sim3 <- sim(z.set3) expect_error(plot(z.sim3), NA) expect_equivalent(coef(z.out1)[[1]], coef(z.out2)[[1]]) qr.out1 <- rq(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc., data = stackloss, tau = 0.5) expect_equivalent(coef(z.out1)[[2]], coef(qr.out1)[[2]]) expect_error(zelig(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc., model = 'rq', data = stackloss, tau = c(0.25, 0.75)), 'tau argument only accepts 1 value.\nZelig is using only the first value.') }) # REQUIRE TEST quantile regression with Amelia imputed data -------------------- test_that('REQUIRE TEST quantile regression with Amelia imputed data',{ library(Amelia) library(dplyr) data(africa) a.out <- amelia(x = africa, cs = "country", ts = "year", logs = "gdp_pc") z.out <- zelig(gdp_pc ~ trade + civlib, model = "rq", data = a.out) expect_error(z.out %>% setx %>% sim %>% plot, NA) }) Zelig/tests/testthat/test-matchit.R0000644000176000001440000000121613245253057017115 0ustar ripleyusers# REQUIRE TEST for matched data using MatchIt ---------------------------------- #test_that('REQUIRE TEST for matched data using MatchIt', { # library(MatchIt) # library(optmatch) # data(lalonde) # m.out <- matchit(treat ~ educ + black + hispan + age, data = lalonde, # method = "optimal") # z.out <- zelig(educ ~ treat + age, model = "ls", data = m.out) # s.out <- setx(z.out) # z.outl <- zelig(educ ~ treat + log(age), model = "ls", data = m.out) # s.outl <- setx(z.outl) # expect_false(s.out$setx.out$x$mm[[1]][3] == s.outl$setx.out$x$mm[[1]][3]) #}) # Not run due to unresolved environment issue Zelig/tests/testthat/test-ivreg.R0000644000176000001440000000562213245253057016605 0ustar ripleyusers# REQUIRE TEST ivreg Monte Carlo ----------------------------------------------- #test_that("REQUIRE Test ivreg Monte Carlo", { # z <- zivreg$new() # test.ivreg <- z$mcunit(plot = FALSE) # expect_true(test.ivreg) #}) # REQUIRE TEST ivreg AER example with log transformations ---------------------- test_that("REQUIRE TEST ivreg AER example with log transformations", { library(AER) # Example from AER (version 1.2-5) documentation data("CigarettesSW") CigarettesSW$rprice <- with(CigarettesSW, price/cpi) CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi) CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi) CigarettesSW1995 <- subset(CigarettesSW, year == 1995) # Unwrapped fm <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax/cpi), data = CigarettesSW1995) # Zelig wrapped CigarettesSW1995$log_rprice <- log(CigarettesSW1995$rprice) CigarettesSW1995$log_rincome <- log(CigarettesSW1995$rincome) ziv.out <- zelig(log(packs) ~ log_rprice + log_rincome | log_rincome + tdiff + I(tax/cpi), data = CigarettesSW1995, model = 'ivreg') expect_equal(coef(fm)[[2]], coef(ziv.out)[[2]]) expect_equivalent(vcov(fm), vcov(ziv.out)[[1]]) }) # REQUIRE TEST ivreg setx and sim ---------------------------------------------- test_that("REQUIRE TEST ivreg setx", { data("CigarettesSW") CigarettesSW$rprice <- with(CigarettesSW, price/cpi) CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi) CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi) CigarettesSW1995 <- subset(CigarettesSW, year == 1995) CigarettesSW1995$log_rprice <- log(CigarettesSW1995$rprice) CigarettesSW1995$log_rincome <- log(CigarettesSW1995$rincome) ziv.out <- zelig(log(packs) ~ log_rprice + log_rincome | log_rincome + tdiff + I(tax/cpi), data = CigarettesSW1995, model = 'ivreg') ziv.set <- setx(ziv.out, log_rprice = log(95:118)) expect_equal(length(ziv.set$setx.out$range), 24) expect_error(sim(ziv.set), NA) expect_error(plot(sim(ziv.set)), NA) }) # FAIL TEST ivreg with 2nd stage covariates logged in zelig call --------------- test_that("FAIL TEST ivreg with 2nd stage covariates logged in zelig call", { data("CigarettesSW") CigarettesSW$rprice <- with(CigarettesSW, price/cpi) CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi) CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi) CigarettesSW1995 <- subset(CigarettesSW, year == 1995) expect_error( ziv.out <- zelig(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax/cpi), data = CigarettesSW1995, model = 'ivreg'), "logging values in the zelig call is not currently supported for ivreg models." ) }) Zelig/tests/testthat/test-logitbayes.R0000644000176000001440000000041213245253057017623 0ustar ripleyusers# REQUIRE TEST Monte Carlo test logitbayes ------------------------------------- test_that('REQUIRE TEST logitbayes Monte Carlo', { z <- zlogitbayes$new() test.logitbayes <- z$mcunit(nsim = 2000, ci = 0.99, plot = FALSE) expect_true(test.logitbayes) }) Zelig/tests/testthat/test-logitsurvey.R0000644000176000001440000000040713245253057020061 0ustar ripleyusers# REQUIRE TEST Monte Carlo test logitsurvey --------------------------------------------- test_that('REQUIRE TEST logitsurvey Monte Carlo', { z <- zlogitsurvey$new() test.logitsurvey <- z$mcunit(plot = FALSE, ci=0.99) expect_true(test.logitsurvey) })Zelig/tests/testthat/test-negbin.R0000644000176000001440000000036713245253057016734 0ustar ripleyusers # REQUIRE TEST Monte Carlo test negbin --------------------------------------------- test_that('REQUIRE TEST negbin Monte Carlo', { set.seed(123) z <- znegbin$new() test.negbin <- z$mcunit(plot=FALSE) expect_true(test.negbin) }) Zelig/tests/testthat/test-normal.R0000644000176000001440000000037013245253057016754 0ustar ripleyusers# REQUIRE TEST Monte Carlo test normal --------------------------------------------- test_that('REQUIRE TEST normal Monte Carlo', { set.seed(123) z <- znormal$new() test.normal <- z$mcunit(plot = FALSE) expect_true(test.normal) }) Zelig/tests/testthat/test-probit.R0000644000176000001440000000173513245253057016771 0ustar ripleyusers# REQUIRE TEST probit mc ------------------------------------------------------- test_that("REQUIRE TEST probit mc", { z <- zprobit$new() test.probit <- z$mcunit(plot = FALSE) expect_true(test.probit) }) # REQUIRE TEST probit example -------------------------------------------------- test_that("REQUIRE TEST probit example", { data(turnout) z.out <- zelig(vote ~ race + educate, model = "probit", data = turnout) x.out <- setx(z.out) s.out <- sim(z.out, x = x.out) expect_equal(sort(unique(zelig_qi_to_df(s.out)$predicted_value)), c(0, 1)) }) # REQUIRE TEST probit to_zelig ------------------------------------------------ test_that('REQUIRE TEST probit example', { data(turnout) m1 <- glm(vote ~ race + educate, family = binomial("probit"), data = turnout) m1.out <- setx(m1) m1.out <- sim(m1.out) expect_equal(sort(unique(zelig_qi_to_df(m1.out)$predicted_value)), c(0, 1)) expect_error(plot(sim(setx(m1))), NA) }) Zelig/tests/testthat/test-assertions.R0000644000176000001440000000414013245253057017655 0ustar ripleyusers# FAIL TESTS no Zelig model included ------------------------------------------- test_that('FAIL TEST setx method error if missing Zelig model estimation', { z5 <- zls$new() expect_error(z5$setx(), 'Zelig model has not been estimated.') }) test_that('FAIL TEST setrange method error if missing Zelig model estimation', { z5 <- zls$new() expect_error(z5$setrange(), 'Zelig model has not been estimated.') }) test_that('FAIL TEST sim method error if missing Zelig model estimation', { z5 <- zls$new() expect_error(z5$sim(), 'Zelig model has not been estimated.') }) test_that('FAIL TEST graph method error if missing Zelig model estimation', { z5 <- zls$new() expect_error(z5$graph(), 'Zelig model has not been estimated.') }) # FAIL TEST insufficient inputs for sim ---------------------------------------- test_that('FAIL TEST sim method error if missing Zelig model estimation', { z5 <- zls$new() expect_error(z5$sim(), 'Zelig model has not been estimated.') }) # FAIL TEST length is not greater than 1 --------------------------------------- test_that('FAIL TEST length is not greater than 1', { not_more_1 <- 1 expect_error(is_length_not_1(not_more_1), 'Length is 1.') }) # FAIL TEST vector does not vary ----------------------------------------------- test_that('FAIL TEST vector does not vary', { expect_error(is_varying(c(rep(1, 5))), 'Vector does not vary.') }) # REQUIRE TEST vector does not vary -------------------------------------------- test_that('REQIURE TEST vector does not vary', { expect_true(is_varying(c(1, 2, 3), fail = FALSE)) }) # FAIL TEST is_simsx error message --------------------------------------------- test_that('FAIL TEST is_simsx error message', { z <- zls$new() expect_error(is_simsx(z$sim.out), 'Simulations for individual fitted values are not present.') }) # FAIL TEST is_timeseries ------------------------------------------------------ test_that('FAIL TEST is_timeseries', { z <- zls$new() expect_false(is_timeseries(z)) expect_error(is_timeseries(z, fail = TRUE), 'Not a timeseries object.') }) Zelig/tests/testthat/test-probitbayes.R0000644000176000001440000000044513245253057020012 0ustar ripleyusers# REQUIRE TEST Monte Carlo test probitbayes --------------------------------------------- test_that('REQUIRE TEST probitbayes Monte Carlo', { z <- zprobitbayes$new() test.probitbayes <- z$mcunit(minx=-1, maxx = 1, ci=0.99, nsim=2000, plot = FALSE) expect_true(test.probitbayes) })Zelig/tests/testthat/test-lognom.R0000755000176000001440000000015613245253057016764 0ustar ripleyusersz <- zlognorm$new() test.lognorm <- z$mcunit(minx=0, ci=0.99, nsim=1000, plot=FALSE) expect_true(test.lognorm)Zelig/tests/testthat/test-zelig.R0000644000176000001440000002666613245253057016616 0ustar ripleyusers#### Integration tests for the Zelig estimate, set, sim, plot workflow #### # FAIL TEST sim workflow ------------------------------------------------------- test_that('FAIL TEST sim method warning if insufficient inputs', { z5 <- zls$new() expect_output(z5$zelig(Fertility ~ Education, model="ls", data = swiss), 'Argument model is only valid for the Zelig wrapper, but not the Zelig method, and will be ignored.') expect_warning(z5$sim(), 'No simulations drawn, likely due to insufficient inputs.') expect_error(z5$graph(), 'No simulated quantities of interest found.') }) # FAIL TEST ci.plot range > length = 1 ----------------------------------------- test_that('FAIL TEST ci.plot range > length = 1', { z <- zls$new() z$zelig(Fertility ~ Education, data = swiss) expect_warning(z$setrange(Education = 5), 'Only one fitted observation provided to setrange.\nConsider using setx instead.') z$sim() expect_error(z$graph(), 'Simulations for more than one fitted observation are required.') expect_warning(z$setrange1(Education = 5), 'Only one fitted observation provided to setrange.\nConsider using setx instead.') expect_error(z$graph(), 'Simulations for more than one fitted observation are required.') }) # REQUIRE TEST for by estimation workflow -------------------------------------- test_that('REQUIRE TEST for by estimation workflow', { # Majority Catholic dummy swiss$maj_catholic <- cut(swiss$Catholic, breaks = c(0, 51, 100)) z5 <- zls$new() z5$zelig(Fertility ~ Education, data = swiss, by = 'maj_catholic') z5$setrange(Education = 5:15) z5$sim() expect_error(z5$graph(), NA) }) # FAIL TEST for get_qi when applied to an object with no simulations ------------ test_that('FAIL TEST for get_qi when applied to an object with no simulations', { z <- zls$new() z$zelig(Fertility ~ Education, data = swiss) expect_error(z$get_qi(), 'No simulated quantities of interest found.') }) # FAIL TEST for get_qi when unsupported qi supplied ---------------------------- test_that('FAIL TEST for get_qi when unsupported qi supplied', { z5 <- zls$new() z5$zelig(Fertility ~ Education, data = swiss) z5$setrange(Education = 5:15) z5$sim() expect_error(z5$get_qi(qi = "fa", xvalue = "range"), 'qi must be ev or pv.') }) # FAIL TEST for estimation model failure --------------------------------------- test_that('FAIL TEST for estimation model failure', { no_vary_df <- data.frame(y = rep(1, 10), x = rep(2, 10)) z <- zarima$new() expect_error(z$zelig(y ~ x, data = no_vary_df), 'Dependent variable does not vary for at least one of the cases.') expect_error(summary(z), 'Zelig model has not been estimated.') }) # REQUIRE TEST for sim num argument -------------------------------------------- test_that('REQUIRE TEST for sim num argument', { z5 <- zls$new() z5$zelig(Fertility ~ Education, data = swiss) z5$setx(Education = 5) z5$sim() expect_equal(length(z5$get_qi()), 1000) z5$sim(num = 10) # Look into unexpected behaviour if sim order is reversed expect_equal(length(z5$get_qi()), 10) }) # REQUIRE TEST from_zelig_model returns expected fitted model object ----------------- test_that('REQUIRE TEST from_zelig_model returns expected fitted model object', { z5 <- zls$new() z5$zelig(Fertility ~ Education, data = swiss) model_object <- z5$from_zelig_model() expect_is(model_object, class = 'lm') expect_equal(as.character(model_object$call[1]), 'lm') }) # REQUIRE TEST from_zelig_model returns each fitted model object from mi ------------- test_that('REQUIRE TEST from_zelig_model returns each fitted model object from mi', { set.seed(123) n <- 100 x1 <- runif(n) x2 <- runif(n) y <- rnorm(n) data.1 <- data.frame(y = y, x = x1) data.2 <- data.frame(y = y, x = x2) mi.out <- to_zelig_mi(data.1, data.2) z.out <- zelig(y ~ x, model = "ls", data = mi.out) model_list <- z.out$from_zelig_model() expect_is(model_list, class = 'list') expect_equal(as.character(model_list[[2]]$call[1]), 'lm') }) # REQUIRE TEST functioning simparam with by and ATT ---------------------------- test_that('REQUIRE TEST functioning simparam with by and ATT', { set.seed(123) n <- 100 xx <- rbinom(n = n, size = 1, prob = 0.3) zz <- runif(n) ss <- runif(n) rr <- rbinom(n, size = 1, prob = 0.5) mypi <- 1/(1 + exp(-xx -3*zz -0.5)) yb <- rbinom(n, size = 1, prob = mypi) data <- data.frame(rr, ss, xx, zz, yb) zb.out <- zlogit$new() zb.out$zelig(yb ~ xx + zz, data = data, by = "rr") zb.out$ATT(treatment = "xx") out <- zb.out$get_qi(qi = "ATT", xvalue = "TE") expect_equal(length(out), 1000) }) # REQUIRE TEST getters values and dimensions and plot does not fail------------- test_that("REQUIRE TEST getters values and dimensions and plot does not fail", { set.seed(123) n <- 1000 myseq <- 1:n x <- myseq/n y <- x + (-1)^(myseq) * 0.1 mydata <- data.frame(y = y, x = x) mydata2 <- data.frame(y = y, x = x + 2) z.out <- zelig(y ~ x, model = "ls", data = mydata) expect_equivalent(round(as.numeric(z.out$get_coef()[[1]]), 2), c(0, 1)) expect_equivalent(length(z.out$get_predict()[[1]]), n) expect_equivalent(length(z.out$get_fitted()[[1]]), n) expect_equivalent(dim(z.out$get_vcov()[[1]]), c(2, 2)) z.out$setx(x = 0) z.out$setx1(x = 1) show.setx <- summary(z.out) z.out$sim() show.sim <- summary(z.out) expect_equivalent(length(z.out$get_qi(qi = "ev", xvalue = "x")), n) expect_equivalent(round(mean(z.out$get_qi(qi = "ev", xvalue = "x")), 2), 0) expect_equivalent(length(z.out$get_qi(qi = "ev", xvalue = "x1")), n) expect_equivalent(round(mean(z.out$get_qi(qi = "ev", xvalue = "x1")), 2), 1) expect_equivalent(length(z.out$get_qi(qi = "pv", xvalue = "x")), n) expect_equivalent(round(mean(z.out$get_qi(qi = "pv", xvalue = "x")), 2), 0) expect_equivalent(length(z.out$get_qi(qi = "pv", xvalue = "x1")), n) expect_equivalent(round(mean(z.out$get_qi(qi = "pv", xvalue = "x1")), 2), 1) expect_equivalent(length(z.out$get_qi(qi = "fd", xvalue = "x1")), n) expect_equivalent(round(mean(z.out$get_qi(qi = "fd", xvalue = "x1")), 2), 1) expect_false(show.setx[[1]]) expect_false(show.sim[[1]]) expect_true(is.null(plot(z.out))) xseq <- seq(from = 0, to = 1, length = 10) z.out$setrange(x = xseq) z.out$sim() expect_true(is.null(plot(z.out))) myref <- capture.output(z.out$references()) expect_equivalent(substr(myref[1], 1, 11), "R Core Team") set.seed(123) boot.out <- zelig(y ~ x, model = "ls", bootstrap = 20, data = mydata) expect_equivalent(round(as.numeric(boot.out$get_coef()[[1]]), 2), c(0, 1)) show.boot <- summary(boot.out, bagging = TRUE) expect_false(show.boot[[1]]) show.boot <- summary(boot.out, subset=2:3) expect_false(show.boot[[1]]) set.seed(123) mi.out <- zelig(y ~ x, model = "ls", data = mi(mydata, mydata2)) expect_equivalent(round(as.numeric(mi.out$get_coef()[[1]]), 2), c(0, 1)) expect_equivalent(round(as.numeric(mi.out$get_coef()[[2]]), 2), c(-2, 1)) expect_equivalent(length(mi.out$toJSON()), 1) show.mi <- summary(mi.out) expect_false(show.mi[[1]]) show.mi.subset <- summary(mi.out, subset = 1) expect_false(show.mi.subset[[1]]) }) # REQUIRE TEST Binary QI's and ATT effects and BY argument------------- test_that('REQUIRE TEST Binary QIs and ATT effects and BY argument', { set.seed(123) # Simulate data n <- 100 xx <- rbinom(n = n, size = 1, prob = 0.5) zz <- runif(n) ss <- runif(n) rr <- rbinom(n, size = 1, prob = 0.5) mypi <- 1/ (1+exp(-xx -3*zz -0.5)) yb <- rbinom(n, size = 1, prob = mypi) data <- data.frame(rr, ss, xx, zz, yb) # Estimate Zelig Logit models zb.out <- zlogit$new() zb.out$zelig(yb ~ xx + zz, data=data, by="rr") show.logit <- summary(zb.out) expect_false(show.logit[[1]]) zb2.out <- zlogit$new() zb2.out$zelig(yb ~ xx, data=data) zb3.out <- zlogit$new() zb3.out$zelig(yb ~ xx + zz, data=data) x.high <- setx(zb.out, xx = quantile(data$xx, prob = 0.75)) x.low <- setx(zb.out, xx = quantile(data$xx, prob = 0.25)) s.out <- sim(zb.out, x = x.high, x1 = x.low) show.logit <- summary(s.out) expect_false(show.logit[[1]]) expect_true(is.null(plot(s.out))) # Method to calculate ATT zb.out$ATT(treatment = "xx") # Getter to extract ATT out <- zb.out$get_qi(qi="ATT", xvalue="TE") expect_equal(length(out), 1000) # Plot ROC expect_true(is.null(rocplot(zb2.out, zb3.out))) }) # REQUIRE TEST for get_names method---------------------------------------------- test_that('REQUIRE TEST for names field', { z <- zls$new() z$zelig(Fertility ~ Education, data = swiss) expect_is(z$get_names(), class = 'character') expect_false(is.null(names(z))) }) # REQUIRE TEST for get_residuals method ----------------------------------------- test_that('REQUIRE TEST for get_residuals method', { z <- zls$new() z$zelig(Fertility ~ Education, data = swiss) expect_is(z$get_residuals(), class = 'list') expect_false(is.null(residuals(z))) }) # REQUIRE TEST for get_df_residual method ----------------------------------------- test_that('REQUIRE TEST for get_df_residual method', { z <- zls$new() z$zelig(Fertility ~ Education, data = swiss) expect_equal(length(z$get_df_residual()), 1) expect_equal(length(df.residual(z)), 1) }) # REQUIRE TEST for get_model_data method --------------------------------------- test_that('REQUIRE TEST for get_model_data method', { z <- zls$new() z$zelig(Fertility ~ Education, data = swiss) expect_is(z$get_model_data(), class = 'data.frame') }) # REQUIRE TEST for get_pvalue method --------------------------------------- test_that('REQUIRE TEST for get_pvalue', { z <- zls$new() z$zelig(Fertility ~ Education, data = swiss) expect_is(z$get_pvalue()[[1]], class = 'numeric') expect_equal(z$get_pvalue()[[1]], get_pvalue(z)[[1]]) }) # REQUIRE TEST for get_se method --------------------------------------- test_that('REQUIRE TEST for get_se', { z <- zls$new() z$zelig(Fertility ~ Education, data = swiss) expect_is(z$get_se()[[1]], class = 'numeric') expect_equal(z$get_se()[[1]], get_se(z)[[1]]) }) # REQUIRE TEST setx with logical covariates ------------------------------------ test_that('REQUIRE TEST setx with logical covariates', { swiss$maj_catholic <- cut(swiss$Catholic, breaks = c(0, 51, 100)) swiss$maj_catholic_logical <- FALSE swiss$maj_catholic_logical[swiss$maj_catholic == '(51,100]'] <- TRUE z5l <- zls$new() z5l$zelig(Fertility ~ Education + maj_catholic_logical, data = swiss) z5l$setx(maj_catholic_logical = TRUE) expect_is(z5l$setx.out$x, class = c("rowwise_df", "tbl_df", "tbl", "data.frame")) }) # REQUIRE TESTS for standard R methods with zelig models ----------------------- test_that('REQUIRE TESTS for standard R methods with zelig models', { z5 <- zls$new() z5$zelig(Fertility ~ Education, data = swiss) expect_equal(length(coefficients(z5)), length(coef(z5)), 2) expect_equal(nrow(vcov(z5)[[1]]), 2) expect_equal(length(fitted(z5)[[1]]), 47) expect_equal(length(predict(z5)[[1]]), 47) }) Zelig/tests/testthat/test-createJSON.R0000644000176000001440000000053113245253057017420 0ustar ripleyusers# REQUIRE TEST toJSON --------------------------------------------- test_that('REQUIRE TEST toJSON', { j <- createJSON(movefile=FALSE) expect_true(j) mypath <- file.path("zelig5models.json") expect_true(file.exists(mypath)) expect_true(validate(readChar(mypath, file.info(mypath)$size))) file.remove(file.path(mypath)) })Zelig/tests/testthat/test-qislimmer.R0000644000176000001440000000260013245253057017464 0ustar ripleyusers# REQUIRE TEST for qi_slimmer -------------------------------------------------- test_that('REQUIRE TEST for qi_slimmer', { qi.full.interval <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") %>% setx(Petal.Length = 2:4, Species = "setosa") %>% sim() %>% zelig_qi_to_df() expect_equal(nrow(qi_slimmer(qi.full.interval)), 3) expect_equal(nrow(qi_slimmer(qi.full.interval, qi_type = 'pv')), 3) expect_equal(nrow(qi_slimmer(qi.full.interval, ci = 90)), 3) }) # FAIL TEST for qi_slimmer -------------------------------------------------- test_that('REQUIRE TEST for qi_slimmer', { qi.full.interval <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") %>% setx(Petal.Length = 2:4, Species = "setosa") %>% sim() %>% zelig_qi_to_df() expect_error(qi_slimmer(qi.full.interval, qi_type = 'TEST')) expect_error(qi_slimmer(qi.full.interval, ci = 900), '900 will not produce a valid central interval.') z <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") expect_error(qi_slimmer(z), 'df must be a data frame created by zelig_qi_to_df.') df_test <- data.frame(a = 1, b = 2) expect_error(qi_slimmer(df_test), 'The data frame does not appear to have been created by zelig_qi_to_df.') }) Zelig/tests/testthat/test-survey.R0000644000176000001440000000427313245253057017027 0ustar ripleyusers# REQUIRE TEST survey weights correctly passed -------------------------------- test_that('REQUIRE TEST survey weights correctly passed', { data(api, package = "survey") z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey", id = ~dnum, weights = 'pw', data = apiclus1, fpc = ~fpc) z.out2 <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey", id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc) z.out3 <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey", id = ~dnum, weights = apiclus1$pw, data = apiclus1, fpc = ~fpc) api_design <- svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc ) model_glm <- svyglm(api00 ~ meals + yr.rnd, api_design, family = gaussian("identity")) expect_equal(coef(z.out1), coef(z.out2)) expect_equal(coef(z.out1), coef(z.out3)) expect_equal(coef(z.out1), coef(model_glm)) }) # REQUIRE TEST survey weights correctly passed -------------------------------- test_that('REQUIRE TEST survey glm with no weights', { data(api, package = "survey") z.out1_no_weights <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey", id = ~dnum, data = apiclus1, fpc = ~fpc) api_design_no_weights <- svydesign(id = ~dnum, data = apiclus1, fpc = ~fpc, weights = ~pw ) model_glm_no_weights <- svyglm(api00 ~ meals + yr.rnd, api_design_no_weights, family = gaussian("identity")) expect_equal(coef(z.out1_no_weights), coef(model_glm_no_weights)) }) # REQUIRE TEST repweights ------------------------------------------------------ test_that('REQUIRE TEST repweights', { ### ----- NEED TO THINK OF A BETTER TEST ------ ## data(scd, package = "survey") BRRrep <- 2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1), c(0,1,0,1,1,0)) z.outREP <- zelig(alive ~ arrests , model = "normal.survey", repweights = BRRrep, type = "BRR", data = scd, na.action = NULL) }) Zelig/tests/testthat/test-amelia.R0000644000176000001440000000153313245253057016716 0ustar ripleyusers# REQUIRE TEST for Amelia integration, no-transformations ---------------------- test_that('REQUIRE TEST for Amelia integration, no-transformations', { library(Amelia) data(africa) a.out <- amelia(x = africa, cs = "country", ts = "year", logs = "gdp_pc") z.out <- zelig(gdp_pc ~ trade + civlib, model = "ls", data = a.out) z.set <- setx(z.out) z.sim <- sim(z.set) expect_equal(mean(z.sim$get_qi()), 1000, tolerance = 100) }) test_that('REQUIRE TEST for Amelia integration, log-transformation', { library(Amelia) data(africa) a.out <- amelia(x = africa, cs = "country", ts = "year", logs = "gdp_pc") z.out <- zelig(gdp_pc ~ trade + civlib, model = "ls", data = a.out) z.outl <- zelig(gdp_pc ~ log(trade) + civlib, model = "ls", data = a.out) expect_false(coef(z.out)[[1]][2] == coef(z.outl)[[1]][2]) }) Zelig/tests/testthat/test-gammasurvey.R0000644000176000001440000000047113245253057020026 0ustar ripleyusers# REQUIRE TEST Monte Carlo test gammasurvey --------------------------------------------- test_that('REQUIRE TEST gammasurvey Monte Carlo', { z <- zgammasurvey$new() test.gammasurvey <- z$mcunit(b0=1, b1=-0.6, alpha=3, minx=0, maxx=1, nsim=2000, ci=.99, plot = FALSE) expect_true(test.gammasurvey) })Zelig/tests/testthat/test-weights.R0000644000176000001440000000217613245253057017144 0ustar ripleyusers# REQUIRE TEST weighting --------------------------------------------- test_that('REQUIRE TEST weighting', { set.seed(123) x <- runif(90) y <- c( 2*x[1:45], -3*x[46:90] ) + rnorm(90) z <- as.numeric(y>0) w1 <- c(rep(1.8, 45), rep(0.2,45)) mydata <- data.frame(z,y,x,w1) w2 <- rep(c(1.8,0.2), 45) z1.out <- zelig( y ~ x, cite = FALSE, model = "ls", weights = "w1", data = mydata) expect_equivalent(length(z1.out$get_coef()[[1]]),2) z2.out <- zelig( y ~ x, cite=FALSE, model="ls", weights=w2, data=mydata) expect_equivalent(length(z2.out$get_coef()[[1]]),2) z3.out <- zls$new() expect_warning(z3.out$zelig( y ~ x, weights="noSuchName", data=mydata)) z4.out <- zls$new() expect_warning(z4.out$zelig( y ~ x, weights=w2[1:10], data=mydata)) continuous.weights <- rep(x=c(0.6, 1, 1.4), times=30) z5.out <- zelig( z ~ x, model="logit", weights=continuous.weights, data=mydata) expect_equivalent(length(z5.out$get_coef()[[1]]),2) integer.weights <- rep(x=c(0, 1, 2), times=30) z6.out <- zelig( z ~ x, model="logit", weights=integer.weights, data=mydata) expect_equivalent(length(z6.out$get_coef()[[1]]),2) }) Zelig/tests/testthat/test-exp.R0000644000176000001440000000121513245253057016257 0ustar ripleyusers# REQUIRE TEST Monte Carlo test exp --------------------------------------------- test_that('REQUIRE TEST exp Monte Carlo', { set.seed(123) z <- zexp$new() test.exp <- z$mcunit(plot = FALSE) expect_true(test.exp) }) # REQUIRE TEST (minimal) documentation example ------------------------------------------- test_that('REQUIRE TEST (minimal) documentation example', { data(coalition) z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model = "exp", data = coalition) x.low <- setx(z.out, numst2 = 0) x.high <- setx(z.out, numst2 = 1) expect_error(sim(z.out, x = x.low, x1 = x.high), NA) }) Zelig/tests/testthat/test-plots.R0000644000176000001440000000263713245253057016635 0ustar ripleyusers # FAIL TEST ci.plot if simrange is not supplied -------------------------------- test_that('FAIL TEST ci.plot if simrange is not supplied', { z <- zls$new() z$zelig(Fertility ~ Education, data = swiss) expect_error(ci.plot(z), 'Simulations for a range of fitted values are not present.') }) # FAIL TEST ci.plot first difference setrange and setrange1 same length -------- test_that('FAIL TEST ci.plot first difference setrange and setrange1 same length', { z <- zls$new() z$zelig(Fertility ~ Education, data = swiss) z$setrange(Education = 5:15) z$setrange1(Education = 10:11) z$sim() expect_error(z$graph(), 'The two fitted data ranges are not the same length.') # REQUIRE TEST for first difference over a range plots z <- zls$new() z$zelig(Fertility ~ Education, data = swiss) z$setrange(Education = 5:15) z$setrange1(Education = 15:25) z$sim() expect_error(z$graph(), NA) }) # REQUIRE TEST ordered plots --------------------------------------------- test_that('REQUIRE TEST ordered plots', { data(sanction) sanction$ncost <- factor(sanction$ncost, ordered = TRUE, levels = c("net gain", "little effect", "modest loss", "major loss")) z.out <- zoprobitbayes$new() z.out$zelig(ncost ~ mil + coop, data = sanction, verbose = FALSE) z.out$setx(mil=0) z.out$setx1(mil=1) z.out$sim() expect_true(is.null(plot(z.out))) }) Zelig/tests/testthat/test-bayesdiagnostics.R0000644000176000001440000000254313245253057021023 0ustar ripleyusers# REQUIRE TEST Bayes Diagnostics --------------------------------------------- test_that('REQUIRE TEST Bayes Diagnostics', { set.seed("123") data(macro) expect_error(zelig(unem ~ gdp + capmob + trade, model = "normal.bayes", bootstrap = 100, data = macro), "Error: The bootstrap is not available for Markov chain Monte Carlo (MCMC) models.", fixed=TRUE) z <- zelig(unem ~ gdp + capmob + trade, model = "normal.bayes", data = macro, verbose = FALSE) geweke.test <- z$geweke.diag() heidel.test <- z$heidel.diag() raftery.test <- z$raftery.diag() expect_equivalent(length(geweke.test),2) expect_equivalent(length(heidel.test),30) expect_equivalent(length(raftery.test),2) }) test_that('REQUIRE TEST Bayes Diagnostics for factors', { set.seed("123") data(swiss) names(swiss) <- c("Fert", "Agr", "Exam", "Educ", "Cath", "InfMort") z <- zelig(~ Agr + Exam + Educ + Cath + InfMort, model = "factor.bayes", data = swiss, factors = 2, verbose = FALSE, a0 = 1, b0 = 0.15, burnin = 500, mcmc = 5000) geweke.test <- z$geweke.diag() heidel.test <- z$heidel.diag() raftery.test <- z$raftery.diag() expect_equivalent(length(geweke.test),2) expect_equivalent(length(heidel.test),90) expect_equivalent(length(raftery.test),2) }) Zelig/tests/testthat/test-wrappers.R0000644000176000001440000000603713245253057017335 0ustar ripleyusers# Zelig 4 ls wrapper working --------------------------------------------------- test_that('ls wrapper continuous covar -- quickstart (Zelig 4 syntax)', { z4 <- zelig(Fertility ~ Education, data = swiss, model = 'ls', cite = FALSE) # extract education coefficient parameter estimate and compare to reference expect_equivalent(round(as.numeric(z4$get_coef()[[1]][2]), 7), -0.8623503) }) # Test missing model argument error--------------------------------------------- test_that('missing model argument error', { expect_error(zelig(Fertility ~ Education, data = swiss), 'Estimation model type not specified.\nSelect estimation model type with the model argument.' ) }) # Test non-supported model type error ------------------------------------------ test_that('non-supported model type error', { expect_error(zelig(Fertility ~ Education, data = swiss, model = 'TEST'), 'TEST is not a supported model type' ) }) # REQUIRE TEST wrapper setx ---------------------------------------------------- test_that('REQUIRE TEST wrapper setx', { z4 <- zelig(Fertility ~ Education, data = swiss, model = 'ls') z4_set <- setx(z4) z4_set_vector <- round(as.vector(unlist(z4_set$setx.out))) expect_equivalent(z4_set_vector, c(1, 1, 11)) }) # REQUIRE TEST wrapper setx1 ---------------------------------------------------- test_that('REQUIRE TEST wrapper setx1', { zpipe <- zelig(Fertility ~ Education, data = swiss, model = 'ls') %>% setx(z4, Education = 10) %>% setx1(z4, Education = 30) %>% sim() expect_equal(length(zpipe$sim.out), 2) }) # FAIL TEST non-zelig objects -------------------------------------------------- test_that('setx and sim non-zelig object fail', { expect_error(setx('TEST'), 'Not a Zelig object and not convertible to one.') expect_error(sim('TEST'), 'Not a Zelig object.') }) # REQUIRE TEST sim wrapper minimal working -------------------------------------- test_that('REQUIRE TEST sim wraper minimal working', { z5 <- zls$new() z5 <- zelig(Fertility ~ Education, data = swiss, model = 'ls') set_x <- setx(z5, Education = 5) zsimwrap <- sim(z5, x = set_x, num = 10) expect_equal(length(zsimwrap$get_qi()), 10) expect_equal(length(zsimwrap$get_qi()), length(get_qi(zsimwrap))) z5$setx(Education = 5) zsimwrap <- sim(z5, num = 10) expect_equal(length(zsimwrap$get_qi()), 10) }) # REQUIRE TEST ATT wrapper ----------------------------------------------------- test_that('REQUIRE TEST ATT wrapper', { data(sanction) # no wrapper zqi.out <- zelig(num ~ target + coop + mil, model = "poisson", data = sanction) zqi.out$ATT(treatment = "mil") my.att <- zqi.out$get_qi(qi = "ATT", xvalue = "TE") # with wrapper library(dplyr) z.att <- zelig(num ~ target + coop + mil, model = "poisson", data = sanction) %>% ATT(treatment = "mil") %>% get_qi(qi = "ATT", xvalue = "TE") expect_equal(length(my.att), length(z.att)) }) Zelig/tests/testthat/test-relogit.R0000755000176000001440000001173613245253057017144 0ustar ripleyusers# REQUIRE TEST Monte Carlo test relogit ---------------------------------------- test_that('REQUIRE TEST relogit Monte Carlo', { z <- zrelogit$new() test.relogit <- z$mcunit(alpha = 0.1, b0 = -4, nsim = 1000, plot = FALSE) expect_true(test.relogit) }) # REQUIRE TEST relogit vignette example ------------------------------------------------ test_that('REQUIRE TEST relogit vignette example', { data(mid) z.out1 <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772) x.out1 <- setx(z.out1) s.out1 <- sim(z.out1, x = x.out1) sims <- zelig_qi_to_df(s.out1) expect_lt(mean(sims$predicted_value), 0.1) }) # REQUIRE TEST relogit vignette logs transformation ---------------------------- test_that('REQUIRE TEST relogit vignette example', { data(mid) z.out1 <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772) z.outlog <- zelig(conflict ~ major + contig + log(power) + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772) x.outlog <- setx(z.outlog, power = log(0.5)) expect_false(coef(x.outlog)['power'] == coef(z.out1)['power']) }) # FAIL TEST relogit with tau <= 0 ---------------------------------------------- test_that('FAIL TEST relogit with tau <= 0', { data(mid) expect_error(zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = -0.1), "tau is the population proportion of 1's for the response variable.\nIt must be > 0.") }) # REQUIRE TEST relogit with tau range ------------------------------------------ test_that('REQUIRE TEST relogit with tau range', { data(mid) expect_error(z.out <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = c(0.002, 0.005)), "tau must be a vector of length less than or equal to 1. For multiple taus, estimate models individually.") }) # REQUIRE TEST relogit works with predict -------------------------------------- test_that("REQUIRE TEST relogit works with predict", { data(mid) x <- zelig(conflict ~ major, data = mid, model = "relogit", tau = 1042/303772) x <- from_zelig_model(x) expect_warning(predict(x, newdata = mid[1, ]), NA) }) # REQUIRE TEST relogit follows ISQ (2001, eq. 11) ------------------------------ test_that("REQUIRE TEST relogit follows ISQ (2001, eq. 11)", { data(mid) z.out1 <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772, cite = FALSE, case.control = "weighting") expect_equal(round(coef(z.out1)[[2]], 6), 1.672177) expect_equal(colnames(summary(z.out1)$coefficients)[2], "Std. Error (robust)") vcov_z.out1 <- vcov(z.out1) z.out.vcov_not_robust <- z.out1 z.out.vcov_not_robust$robust.se <- FALSE expect_false(round(vcov_z.out1[[1]][1]) == round(vcov(z.out.vcov_not_robust)[[1]][1])) # Not adequately tested !!! z.out1 %>% setx() %>% sim() %>% plot() z.out.vcov_not_robust %>% setx() %>% sim() %>% plot() }) # REQUIRE TEST Odds Ratio summary ---------------------------------------------- test_that('REQUIRE TEST Odds Ratio summary', { data(mid) z.out1 <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772, cite = FALSE, case.control = "weighting") sum_weighting <- summary(z.out1, odds_ratios = FALSE) sum_or_weighting <- summary(z.out1, odds_ratios = TRUE) expect_false(sum_weighting$coefficients[1, 1] == sum_or_weighting$coefficients[1, 1]) expect_equal(colnames(sum_or_weighting$coefficients)[2], "Std. Error (OR, robust)") z.out2 <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772, cite = FALSE, case.control = "prior") sum_weighting2 <- summary(z.out2, odds_ratios = FALSE) sum_or_weighting2 <- summary(z.out2, odds_ratios = TRUE) expect_equal(colnames(sum_or_weighting2$coefficients)[2], "Std. Error (OR)") }) # REQUIRE TEST get_predict takes type = "response" ---------------------------- test_that('REQUIRE TEST get_predict takes type = "response"', { data(mid) z.out1 <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772) prob1 <- z.out1$get_predict(type = "response") expect_gt(min(sapply(prob1, min)), 0) prob2 <- predict(z.out1, type = "response") expect_gt(min(sapply(prob2, min)), 0) }) Zelig/tests/testthat/test-poisson.R0000644000176000001440000000221213245253057017153 0ustar ripleyusers# REQUIRE TEST Monte Carlo poisson --------------------------------------------- test_that('REQUIRE TEST Monte Carlo poisson', { set.seed("123") z <- zpoisson$new() test.poisson <- z$mcunit(minx = 0, plot = FALSE) expect_true(test.poisson) }) # REQUIRE TEST poisson example ------------------------------------------------- test_that('REQUIRE TEST poisson example', { data(sanction) z.out <- zelig(num ~ target + coop, model = "poisson", data = sanction) x.out <- setx(z.out) s.out <- sim(z.out, x = x.out) expect_error(s.out$graph(), NA) }) # REQUIRE TEST poisson get_pvalue ------------------------------------------------- test_that('REQUIRE TEST poisson example', { data(sanction) z.out <- zelig(num ~ target + coop, model = "poisson", data = sanction) expect_error(z.out$get_pvalue(), NA) }) # REQUIRE TEST poisson to_zelig ------------------------------------------------- test_that('REQUIRE TEST poisson example', { data(sanction) m1 <- glm(num ~ target + coop, family = poisson("log"), data = sanction) zset <- setx(m1, target = 2) expect_equal(zset$setx.out$x$mm[[1]][2], 2) }) Zelig/tests/testthat/test-normal-gee.R0000644000176000001440000000272713245253057017522 0ustar ripleyusers# REQUIRE TEST normal.gee with . formula --------------------------------------- test_that('REQUIRE TEST normal.gee with . formula', { # test initially created by @andreashandel library(dplyr) # make some fake cluster ID mtcars$myid = sample(1:10, size = nrow(mtcars), replace = TRUE) # sort by cluster ID mydata <- mtcars %>% dplyr::arrange(myid) m1 <- geepack::geeglm(formula = mpg ~ ., family = gaussian, data = mydata, id = mydata$myid) #this works z1 <- zelig(formula = mpg ~ ., model = "normal.gee", id = "myid", data = mydata) expect_equal(coef(m1), coef(z1)) z.set <- setx(z1) z.sim <- sim(z.set) expect_equal(nrow(zelig_qi_to_df(z.sim)), 1000) }) # REQUIRE TEST normal.gee with multiply imputed data --------------------------- test_that('REQUIRE TEST normal.gee with . formula', { # test initially created by @andreashandel library(dplyr) # make some fake cluster ID mtcars$myid = sample(1:10, size = nrow(mtcars), replace = TRUE) # sort by cluster ID mydata1 <- mtcars %>% dplyr::arrange(myid) %>% as.data.frame mydata2 = mydata1 # create MI data mydata_mi <- to_zelig_mi(mydata1, mydata2) zmi <- zelig(formula = mpg ~ cyl + disp, model = "normal.gee", id = "myid", data = mydata_mi) expect_error(summary(zmi), NA) z.set <- setx(zmi) z.sim <- sim(z.set) expect_equal(nrow(zelig_qi_to_df(z.sim)), 1000) }) Zelig/tests/testthat/test-ls.R0000755000176000001440000001462113245253057016111 0ustar ripleyusers# REQUIRE TEST Monte Carlo test ls --------------------------------------------- test_that('REQUIRE TEST ls Monte Carlo', { z <- zls$new() test.ls <- z$mcunit(plot = FALSE) expect_true(test.ls) }) # REQUIRE TEST ls with continuous covar ----------------------------------------- test_that('REQUIRE TEST ls continuous covar -- quickstart (Zelig 5 syntax)', { z5 <- zls$new() z5$zelig(Fertility ~ Education, data = swiss) # extract education coefficient parameter estimate and compare to reference expect_equivalent(round(as.numeric(z5$get_coef()[[1]][2]), 7), -0.8623503) }) # REQUIRE TEST ls with by ------------------------------------------------------- test_that('REQUIRE TEST ls with by', { # Majority Catholic dummy swiss$maj_catholic <- cut(swiss$Catholic, breaks = c(0, 51, 100)) z5by <- zls$new() z5by$zelig(Fertility ~ Education, data = swiss, by = 'maj_catholic') z5by$setx() z5by$sim() sims_df <- zelig_qi_to_df(z5by) expect_equal(length(unique(sims_df$by)), 2) }) # REQUIRE TEST gim method ------------------------------------------------------ #test_that('REQUIRE TESTls gim method', { #z5$gim() #}) # REQUIRE TEST for sim with ls models including factor levels ------------------ test_that('REQUIRE TEST for sim with models including factor levels', { expect_is(iris$Species, 'factor') z.out <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") x.out1 <- setx(z.out, Petal.Length = 1:10) sims1 <- sim(z.out, x.out1) expect_equal(length(sims1$sim.out$range), 10) x.out2 <- setx(z.out, Petal.Length = 1:10, fn = list(numeric = Median)) sims2 <- sim(z.out, x.out2) expect_equal(length(sims2$sim.out$range), 10) }) # REQUIRE TEST for set with ls models including factors set within zelig call ---- test_that('REQUIRE TEST for set with ls models including factors set within zelig call', { data(macro) z1 <- zelig(unem ~ gdp + trade + capmob + as.factor(country), model = "ls", data = macro) setUS1 <- setx(z1, country = "United States") z2 <- zelig(unem ~ gdp + trade + capmob + factor(country, labels=letters[1:14]), model = "ls", data = macro) setUS2 <- setx(z2, country = "m") macro$country <- as.factor(macro$country) z3 <- zelig(unem ~ gdp + trade + capmob + country, model = "ls", data = macro) setUS3 <- setx(z3, country = "United States") expect_equal(setUS1$setx.out$x$mm[[1]][[16]], 1) expect_equal(setUS2$setx.out$x$mm[[1]][[16]], 1) expect_equal(setUS1$setx.out$x$mm[[1]][[16]], setUS3$setx.out$x$mm[[1]][[16]]) expect_equal(setUS2$setx.out$x$mm[[1]][[16]], setUS3$setx.out$x$mm[[1]][[16]]) }) # REQUIRE TEST for set with ls models including natural logs set within zelig call -- test_that('REQUIRE TEST for set with ls models including natural logs set within zelig call', { z1 <- zelig(speed ~ log(dist), data = cars, model = 'ls') setd1 <- setx(z1, dist = log(15)) cars$dist <- log(cars$dist) z2 <- zelig(speed ~ dist, data = cars, model = 'ls') setd2 <- setx(z2, dist = log(15)) expect_equal(round(setd1$setx.out$x$mm[[1]][[2]], digits = 5), 2.70805) expect_equal(setd1$setx.out$x$mm[[1]][[2]], setd2$setx.out$x$mm[[1]][[2]]) z3.1 <- zelig(Sepal.Length ~ log10(Petal.Length) + log(Sepal.Width), model = 'ls', data = iris, cite = FALSE) z3.2 <- zelig(Sepal.Length ~ log(Petal.Length, base = 10) + log(Sepal.Width), model = 'ls', data = iris, cite = FALSE) expect_equal(unname(coef(z3.1)), unname(coef(z3.2))) setz3 <- setx(z3.1) # expect_equal(as.vector(round(unlist(setz3$setx.out$x), digits = 2)), # c(1, 1, 1.47, 1.12)) }) # REQUIRE TEST for ls with interactions ---------------------------------------- test_that('REQUIRE TEST for ls with interactions', { states <- as.data.frame(state.x77) z <- zelig(Murder ~ Income * Population, data = states, model = 'ls') s1 <- setx(z, Population = 1500:1600, Income = 3098) s2 <- setx(z, Population = 1500:1600, Income = 6315) expect_equal(length(s1$setx.out$range), 101) expect_equal(length(s2$setx.out$range), 101) }) # REQUIRE TEST for ls with unrecognised variable name -------------------------- test_that('REQUIRE TEST for ls with unrecognised variable name', { states <- as.data.frame(state.x77) z <- zelig(Murder ~ Income * Population, data = states, model = 'ls') expect_error(setx(z, population = 1500:1600, Income = 3098), "Variable 'population' not in data set.") }) # REQUIRE TEST for ls setrange with equal length ranges ------------------------ test_that('REQUIRE TEST for ls setrange with equal length ranges and polynomials', { iris.poly <- cbind(iris, I(iris$Petal.Length^2)) names(iris.poly)[ncol(iris.poly)] <- 'pl_2' pl_range <- 1:7 # Polynomial found outside of formula z.cars1 <- zelig(Sepal.Length ~ Petal.Length + pl_2 + Species, data = iris.poly, model = 'ls', cite = FALSE) z.cars1 <- setx(z.cars1, Species = 'virginica', Petal.Length = pl_range, pl_2 = pl_range^2) expect_equal(nrow(zelig_setx_to_df(z.cars1)), length(pl_range)) # Polynomial found in formula z.cars2 <- zelig(Sepal.Length ~ Petal.Length + I(Petal.Length^2) + Species, data = iris, model = 'ls', cite = FALSE) z.cars2 <- setx(z.cars2, Species = 'virginica', Petal.Length = pl_range) expect_equal(nrow(zelig_setx_to_df(z.cars2)), length(pl_range)) expect_equal(zelig_setx_to_df(z.cars1)[[2]], zelig_setx_to_df(z.cars2)[[2]]) }) # REQUIRE TEST for . formulas -------------------------------------------------- test_that('REQUIRE TEST for . formulas', { z1 <- zelig(speed ~ ., data = cars, model = 'ls') zset <- setx(z1, dist = 5) expect_equal(names(coef(z1)), c("(Intercept)", "dist")) }) # REQUIRE TEST for to_zelig within setx ---------------------------------------- test_that('REQUIRE TEST for to_zelig within setx', { m1 <- lm(speed ~ dist, data = cars) zset <- setx(m1, dist = 5) expect_equal(zset$setx.out$x$mm[[1]][2], 5) plot(sim(zset)) m2 <- glm(speed ~ dist, data = cars, family = gaussian(link = "identity")) zset <- setx(m1, dist = 5) expect_equal(zset$setx.out$x$mm[[1]][2], 5) plot(sim(zset)) }) Zelig/NAMESPACE0000755000176000001440000000353213245253056012606 0ustar ripleyusersimport(sandwich, methods, survival, jsonlite, dplyr, geepack, coda, Amelia, MatchIt, maxLik, survey) importFrom("AER", "tobit", "ivreg") importFrom("Formula", "as.Formula") importFrom("grDevices", "col2rgb", "heat.colors", "rgb") importFrom("graphics", "abline", "axis", "barplot", "box", "image", "layout", "lines", "par", "polygon", "text") importFrom("stats", "binomial", "complete.cases", "density", "glm", "lm", "lm.influence", "median", "model.frame", "model.matrix", "model.response", "na.omit", "quantile", "sd", "terms", "update", "ARMAacf", "rnorm", "pnorm") importFrom("MASS", "glm.nb", "rnegbin", "mvrnorm", "gamma.shape") importFrom("MCMCpack", "MCMCfactanal", "MCMClogit", "MCMCmnl", "MCMCregress", "MCMCoprobit", "MCMCpoisson", "MCMCprobit", "MCMCtobit") importFrom("quantreg", "rq", "summary.rq", "bandwidth.rq") importFrom("VGAM", "vglm") importClassesFrom("VGAM", "vglm") importMethodsFrom("VGAM", "coef", "fitted", "predict", "vcov") S3method(summary, Arima) exportPattern("^[[:alpha:]]+") exportClasses( "Zelig", "Zelig-ls", "Zelig-glm", "Zelig-ivreg", "Zelig-binchoice", "Zelig-logit", "Zelig-probit", "Zelig-gamma", "Zelig-exp", "Zelig-negbin", "Zelig-normal", "Zelig-poisson", "Zelig-lognorm", "Zelig-tobit", "Zelig-gee", "Zelig-binchoice-gee", "Zelig-logit-gee", "Zelig-probit-gee", "Zelig-gamma-gee", "Zelig-normal-gee", "Zelig-poisson-gee", "Zelig-bayes", "Zelig-factor-bayes", "Zelig-logit-bayes", "Zelig-mlogit-bayes", "Zelig-normal-bayes", "Zelig-oprobit-bayes", "Zelig-poisson-bayes", "Zelig-probit-bayes", "Zelig-tobit-bayes", "Zelig-weibull", "Zelig-timeseries", "Zelig-arima", "Zelig-ar", "Zelig-ma" ) Zelig/NEWS.md0000644000176000001440000002640313245260154012461 0ustar ripleyusers> All changes to Zelig are documented here. GitHub issue numbers are given after each change note when relevant. See . External contributors are referenced with their GitHub usernames when applicable. Zelig version 5.1.6 ============================== ## Major changes - All Zelig time series models are deprecated. ## Minor changes - `predit`, `fitted`, `residuals` now accept arguments. #320 Zelig version 5.1.5 ============================== ++++ All Zelig time series models will be deprecated on 1 February 2018 ++++ ## Bug fixes - Resolved an issue where `odds_ratios` standard errors were not correctly returned for `logit` and `relogit` models. Thanks to @retrography. #302 - Zelig 4 compatability wrappers now work for `arima` models. Thanks to @mbsabath. #280 - Resolved an error when only `setx` was called with `arima` models Thanks to @mbsabath. #299 - Resolved an error when `summary` was called after `sim` for `arima` models. #305 - Resolved an error when `sim` is used with differenced first-order autoregressive models. #307 - `arima` models return informative error when `data` is not found. #308 ## Minor - Compatibility with testthat 2.0.0 - Documentation updated to correctly reflect that `tobit` wraps `AER::tobit`. #315 - Package terminology in documentation corrected. #316 Zelig version 5.1-4 ============================== ## Major changes - Speed improvements made to `relogit`. Thanks to @retrography. #88 - Returns `relogit` weighted case control method to that described in King and Langche (2001, eq. 11) and used in the Stata `relogit` implementation. #295 - Odds ratios now returned from `summary` with `relogit` models via the `odds_ratios = TRUE` argument. #302 Zelig version 5.1-3 ============================== ## Major changes - Roxygen documentation improvements. ## Minor changes and bug fixes - `zquantile` with Amelia imputed data now working. #277 - `vcov` now works with `rq` quantile regression models. - More informative error handling for conflicting `timeseries` model arguments. #283 - Resolved and issue with `relogit` that produced a warning when the fitted model object was passed to `predict`. #291 Zelig version 5.1-2 ============================== ## Major changes - !EXPERIMENTAL! interface function `to_zelig` allows users to convert fitted model objects fitted outside of Zelig to a Zelig object. The function is called within the `setx` wrapper if a non-Zelig object is supplied. Currently only works for models fitted with `lm` and many estimated with `glm` and `svyglm`. #189 - `get_se` and `get_pvalue` function wrappers created for `get_se` and `get_pvalue` methods, respectively. #269 - If `combine_coef_se` is given a model estimated without multiply imputed data or bootstraps, an error is no longer returned. Instead a list of the models' untransformed coefficients, standard errors, and p-values is returned. #268 - `summary` for `logit` models now accepts the argument `odds_ratios`. When `TRUE` odds ratio estimates are returned rather than coefficient estimates. Thanks to Adam Obeng. PR/#270. - `setx` and `sim` fail informatively when passed ZeligEI objects. #271 ## Minor changes and bug fixes - Resolved a bug where `weights` were not being passed to `svydesign` in survey models. #258 - Due to limited functionality and instability, zelig survey estimations no return a warning and a link to documentation on how to use `to_survey` via `setx` to bipass `zelig`. #273 - Resolved a bug where `from_zelig_model` would not extract fitted model objects for models estimated using `vglm`. #265 - `get_pvalue` and `get_se` now work for models estimated using `vglm`. #267 - Improved `ivreg`, `mlogit`, and getter (#266) documentation. Zelig version 5.1-1 ============================== ## Minor changes - Average Treatment Effect on the Treated (ATT) vignette added to the online documentation - Corrected vignette URLs. Zelig version 5.1-0 ============================== ## Major changes - Introduce a new model type for instrumental-variable regression: `ivreg` based on the `ivreg` from the AER package. #223 - Use the Formula package for formulas. This will enable a common syntax for multiple equations, though currently in Core Zelig it is only enhances `ivreg`. #241 - `zelig` calls now support `update`ing formulas (#244) and `.` syntax for inserting all variables from `data` on the right-hand side of the formula #87. See also #247. - Arbitrary `log` transformations are now supported in `zelig` calls (exept for `ivreg` regressors). #225 - Arbitrary `as.factor` and `factor` transformations are now supported in `zelig` calls. - Restored quantile regression (`model = "rq"`). Currently only supports one `tau` at a time. #255 - Added `get_qi` wrapper for `get_qi` method. - Added `ATT` wrapper for `ATT` method. - `gee` models can now be estimated with multiply imputed data. #263 ## Minor changes and bug fixes - `zelig` returns an error if `weights` are specified in a model estimated with multiply imputed data. (not possible before, but uninformative error returned) - Code improvement to `factor_coef_combine` so it does not return a warning for model types with more than 1 declared class. - Reorganize README files to meet new CRAN requirements. - Switch `bind_rows` for `rbind_all` in `zquantile` as the latter is depricated. #255 - Depends on the survival package in order to enable `setx` for exponential models without explicitly loading survival. #254 - `relogit` now only accepts one `tau` per call (similar to `quantile`). Fixed to address #257. - Additional unit tests. Zelig version 5.0-17 ============================== ## Major changes - New function `combine_coef_se` takes as input a `zelig` model estimated using multiply imputed data or bootstrapping and returns a list of coefficients, standard errors, z-values, and p-values combined across the estimations. Thanks to @vincentarelbundock for prompting. #229 - The following changes were primarily made to re-established Zelig integration with [WhatIf](https://CRAN.R-project.org/package=WhatIf). #236 + Added `zelig_setx_to_df` for extracted fitted values created by `setx`. + Fitted factor level variable values are returned in a single column (not by parameter level) by `zelig_qi_to_df`. - `setrange` (including `setx` used with a range of fitted values) now creates scenarios based on matches of equal length set ranges. This enables `setx` to work with polynomials, splines, etc. (currently only when these are created outside of the `zelig` call). #238 ## Minor changes and bug fixes - Resolve a bug where appropriate `plot`s were not created for `mlogitbayes`. #206 - Arguments (such as `xlab`) can now be passed to `plot`. #237 - `zelig_qi_to_df` and `qi_slimmer` bug with multinomial response models resolved. #235 - Resolved a bug where `coef`, `coefficients`, `vcov`, `fitted`, and `predict` returned errors. Thanks to @vincentarelbundock for initially reporting. #231 - Reduced number of digits show from `summary` for fitted model objects. Zelig version 5.0-16 ============================== ## Major changes - !! Breaking change !! the `get*` functions (e.g. `getcoef`) now use underscores `_` to delimit words in the function names (e.g. `get_coef`). #214 - Added a number of new "getter" methods for extracting estimation elements: + `get_names` method to return Zelig object field names. Also available via `names`. #216 + `get_residuals` to extract fitted model residuals. Also available via `residuals`. + `get_df_residuals` method to return residual degrees-of-freedom. Also accessible via `df.residuals`. + `get_model_data` method to return the data frame used to estimate the original model. + `get_pvalue` and `get_se` methods to return estimated model p-values and standard errors. Thank you to @vincentarelbundock for contributions. #147 - `zelig_qi_to_df` function for extracting simulated quantities of interest from a Zelig object and returning them as a tidy-formatted data frame. #189 - `setx` returns an error if it is unable to find a supplied variable name. - `setx1` wrapper added to facilitate piped workflows for first differences. - `zelig` can handle independent variables that are transformed using the natural logarithm inside of the call. #225 ## Minor changes and bug fixes - Corrected an issue where `plot` would tend to choose a factor level as the x-axis variable when plotting a range of simulations. #226 - If a factor level variable's fitted value is not specified in `setx` and it is multi-modal, the last factor in the factor list is arbitrarily chosen. This replaces previous behavior where the level was randomly chosen, causing unuseful quantity of interest range plots. #226 - Corrected a bug where `summary` for ranges of `setx` would only show the first scenario. Now all scenarios are shown. #226 - Corrected a bug where the README.md was not included in the CRAN build. - `to_zelig_mi` now can accept a list of data frames. Thanks to @vincentarelbundock. - Internal code improvements. Zelig version 5.0-15 ============================== ## Major changes - Allows users to convert an independent variable to a factor within a `zelig` call using `as.factor`. #213 - `from_zelig_model` function to extract original fitted model objects from `zelig` estimation calls. This is useful for conducting non-Zelig supported post-estimation and easy integration with the texreg and stargazer packages for formatted parameter estimate tables. #189 - Additional MC tests for a wide range of models. #160 ## Minor changes - Solved deep assignment issue that returned a series of warnings on build. #172 ## Bug fixes - Resolves a bug from `set` where `sim` would fail for models that included factor level independent variables. #156 - Fixed an issue with `model-survey` where `ids` was hard coded as `~1`. #144 - Fixed `ATT` bug introduced in 5.0-14. #194 - Fixed `ci.plot` bug with `timeseries` models introduced in 5.0-15. #204 Zelig version 5.0-14 ============================== ## Major changes - `mode` has been deprecated. Please use `Mode`. #152 - The Zelig 4 `sim` wrapper now intelligently looks for fitted values from the reference class object if not supplied via the x argument. - New `to_zelig_mi` utility function for combining multiply imputed data sets for passing to `zelig`. `mi` will also work to enable backwards compatibility. #178 - Initial development on a new testing architecture and more tests for `model-*`, Zelig 4 wrappers, `ci.plot`, and the Zelig workflow. - `graph` method now accepts simulations from `setx` and `setrange`. For the former it uses `qi.plot` and `ci.plot` for the latter. - Improved error messages for Zelig 4 wrappers. - Improved error messages if Zelig methods are supplied with too little information. - `model-arima` now fails if the dependent variable does not vary for one of the cases. ## Minor changes - Minor documentation improvements for Zelig 4 wrappers. - Dynamically generated README.md. - Removed plyr package dependency. - `rbind_all` replaced by `bind_rows` as the former is deprecated by dplyr. - Other internal code improvements Zelig/data/0000755000176000001440000000000013457021753012274 5ustar ripleyusersZelig/data/klein.txt.gz0000755000176000001440000000115013245253056014554 0ustar ripleyusers‹5”½ŽA „có.=·û7&@ˆä‚“îRD„@èÞžúÜ»ÁìN{ºÊe»ºÿýøþ×>Û‹½¸½}üþ°·?ööÓ¾Ú7·wûb¯öîöúë“ïêÖüÚæõjüL«ëªVûÕU¹µòU¯e­_ÃB{§â­é¥ø EÕ'óñd‰ Á¾B ñ?¬ß— _“#ÉÊÖv&A,1-šöïù¥IMŸÐ¢Cé“«,àÅ0ßÀáNŠ B›ý3sw=ë0• X´H«Ð%C,Šì¼iSÏ0}ÀÃú¢Ü¸Š:[žíÖÞ˜ g7º¦RŽHžÒJÓ ¶­¯‰×:P„kE±wˆh4ýèÍJœ5¨¿~’«'ô*v6W"ô &žä)|_ÀçáÐ4úÉš«ÓÒ¡1óñð”*hܪ؜­¼~D“`Ïfeïj:E,Å:ƒ’œA¥—ðHKÒ¯NמNë‡ ŸE=®™‡B@Õ‰CBÓ ]N‹a̹D™\±!2‡ìi¯Å0±a–|ÏÓÏ․ʪõ¾”½ãPÄ@6I®˜xæœÖƒ ÐUo{*ÆYå§­rÄz0æá<“²2JO9™xþª9úlpžÚgÅÐ`0‚¾:EËsëé$Œ‡o½c®´9ÈtWN9¼1‹XŽt½ø} H\œ©ØŒ ã†Æ±jDðÜ£dÁÆf¸ /qœÛ ÏÃØšWËʳCF À_dãÈ$wUѶÊOð@^·Ò_(Æi+onOIÐéûO[1Zelig/data/grunfeld.txt.gz0000755000176000001440000000077513245253056015274 0ustar ripleyusers‹ET;Ž%1Ìç}Ë€ù8i¤=†Œ6ßd®¿PØïu‚…)  Ü¿¿ÿü{êûõ÷öëØÏcóæ§í×±ÏçÏmÑ:Š JCäsX9¶@ñØRvÓÐöôMaºtÌ4_Q¨w%‚;ù9˜0À…4ú{™‘nž'ƒduwuU× f,\|57ÿû?ÿë?ÿëï¿þþ?ÿßÿ0FÄÿý¯ÿõ¿ÿïþ;þÏþûüÏÿÿüïÿñ?þý?þ×ßÿöwøû¯ô×ó©!ÇXs}r©=÷¿Ú_å¯ðoã·WK|r|Rˆ½‡ÌKóbZcm£1Ò3JüiåÕü÷_a^ W{K-¥ñg™WËzl©ÅÚGˆmÄþŠ¥OçxÓˆ'¶ø`¾ú§?=⣰8©ÆõàlwÆ,ð½žRk òi¡â]BxbÎmÎ@(üŠð ©µŒKeôT:þh½Fµé{M­b°ÙÍ5¬½à¸¸~ÝÏ3„Uþ`=JÚƒ…/©ÌÑÃnöô4W*d¼mš ÉÍö¬)ë?FmØ’¹—9a¼Îû-­éŽ6ݱ–8Ÿ_÷Á§<&å'áëú™mÞ÷¾·]m†CÇÚ`5p¹”>ð“¹åbYoZ#.ìK¼mJ¾õcÕ¯±YñãŠç†Ððgër[»®à0%NÚÈïÅ}óÁK`Óc-J }îçI‹ø®Œ_â“bÀb›£Çz³÷±Ã¦ýpuklXÉÞ×FJݡ;ªà; –/âã8Í­ãÜÌ{§ {ÿ.æøS0A ¯†õqÌÑÑNÞë½+Þ;†Ò3ös£<3šl=r~Ê€,§¡¹Ïx3íø×a‰vÙÄI ˜G¬ö(·Ï܆ËÞðëÜÃ|–-Ï{ÓâYŸŠyÃù{°K®st[ßñ]þZ—ûY€rÂ{ŧãPµ\Bësô8 +»Y~L•'¶8"¯š¼É&oʈø¾@Îã3OW¶Pqð³n ySí×q]í×Ù¶ôë;¢]¶N·|êÈ<œO’8ÏšÒ'`õ°Ñ>°s›Cìíˆùرê¯jª¢ûi›¯ÖGªµ$-~çÕ¥²À}ð–OÉÂfÎa1¡½K‘¹ÑŠmbœŠù(j´2·üÔKñ¸aɘ’Î+`"½äõè·B0Q[Š]~)„2ODnµÎßÊ”1åºK×å¦yð¼ÕóÀt®)-ý|`LB•qÞÔv¹>ç“×4TÛˆ9Ì €þ ã‰Küñ²|ü á@®\P Ϫ£¹8UU (a–J®ù|DôjEJâ}Ô׫ÕóqÔ›7)‰_ñ9 óˆóÒi"Ìg™vÛ̓©$êuçNk6‰¹àüÖZÁ,„¤_7·2eôêèØS:Í-ž×7ñ~û«àY¡ñY¼™mÌ„yæù+¢˜–ù]XÂÖCoÐ3¥®{çµÉ1ý‰Ú<†8p‡¹O[9ï<Ûåͦ¼Mõ¥òäu‚xÙ-†yí×°<9hýZ_vá{sèæf‘½µ†Ùý¹À¹¼]Ö,N]¥±ñƒoŽÏ"‚äÚ íɰ£Æ2ºhïg¥µ@Ýö)çj2º¾j§uÛ§„‰X‘Œ›´i´B¸àNóŠ¿•ùÙÝæ£×ºƒóTÄ0h±AÄa¾Æmâz¼wÎ!LЏ²¦¸÷óùãg&h"È„k0½çÍÆÙn‚¤ù<©Ãæ,°›ð³y¶‡¤ëkRìðŽpÖ¶ø#žçÌöüHnê`õðæú"µ©ÆixR–Á uÎÙÈçmªW)ò]Fžr–Ž}j,þÚœŠ÷ùjök›âýtN…6$^!æ ‚ƒ²˜SŒm*ÃÎ~à.ÍÑ&(ÞÛ2ó4÷EZÛC×f.ÔÎYæ%8Âc†0öOÎÐ5…’+U©0˜þ¶™øÁüpXˆ5ðËa1«j3 “d¬§iÒ_–—<ãªÔ aÃ¸Š¹Äd·»[âðØ¼¿÷nÔõ&%Y¦ŽL#!¦9Wö}~žl¸‰hH zwÜR‚N¦vx$£_RþKŒëxˆw¼vñ]äãaçel£’pû§Ê~¨¦­ʳfÞ]¾œr «…ÏÏrkñ!pt±1ƒåYÃÓÑØÈr/Í….昮ÀmðDiÙÊùarìÂÕ€XSÚí(Ûïåx`?Û[ pZóú°ßÃ…tË£™mFÉꎉA¡†Áe£N‚Ô…|‡ÃÑbNm ç]ŸhHs’aa›²Þžî^8î#{z:«W,ƧAþÂ8HxƒlÏmkKm®±R5йž•¿×«pÈøinAîÂöø«.ib;K›é:õÒ°‚ؼeZÔ®¨>,sŸae—A¼$@”ñ2L’}|ºxÒ~=œ¯É“ïv°lp0¡;ñƒQ!E–ˆHéæ"­µJY¡ì ÅŠýÔèM¯Cš¤+!“jŽt©¼Ú.OÇ ÈřçC§½Ðûú±,¾—Û£mš.†²æRÜ[à[ZwÙz ƒ 3ödŠ…ü(S§8ÅO˜ÛnM˜`ì;6Bç€IZ¶q·{/kªr:»i ynäð@ºð­üÌçr¶h5ù ÒÆÈí&ݺ<°Ø k´ßÞ~Â’0yHµÄN{’²ÆesyüÐýŠG»<,8FJ ”ùãòÁ<ññŽå²§¥5åÛíÁ¾µÉËÕܰû—óÊ6›úr™Z¬-¼X”ÓƒE ö¸vösWÀ¨žå!æuí›bSÝ¡¢aÓÃîNO-n”‡bS} <„úü³²¨áü{¿®àÃk_VÝßf—R¿Î#†ƒmaÆyÝ\’Ƴ‚ÙI…VFû¾ŸÌŠ-À`Ï7|°PŒ‰öËçY;S~ ö-QмÏðc(Ïïí>Ë“ë÷6.lL0çR‡]gÀ)´ç&þ×Þká¼7£}½œÁ·zѱ”û·G3×fjùìøhï¶rû\»=¿Ÿ9ŒA>ßûùZ½Ö'Y‹ßl6wK†6¼ZÒ´ü×ÛÈ ¤?”x4òxê7"}‰RJ^w¿çÂ{¡Nžù_øÚcî$ìèè0È™ºÔOWÜì÷ÓÌ ]3û Õ+…Ы¢U¿ÇÜœÌÐ-V|“*ôõ¦¿\#îéÚ°Å£¡ËŸ~mtË„ñœõ‰ º0ÝX,rÄ\à¤Â©p}4¢fû×{”T•K·[Äßœ @|&t 7“w·ÃÖAïB‹?dó¾ÄˆÄÄhÒp%˜èµ2©B?û)0›¡oë2Ї‰·¿ÚôuJhl nzrñy|/=ó:ÄFNOì!ÁÇÆVþ#œ6¶¢(·î-‚Ãú¶(Gî-“l)âs‰Þ5LˆÖKÚN^Îgžñ{X¬ ^¤žp´íS/ÞFÓÛKDl1 {;—¸ï˜”ÝÈLÃ,Î1NÊLcÁµÂüGlíÖðJs£D÷ë^y+snbg‰—”k²PÑYbEzná°J)CW`µÃ{*ßÍ‚{óº¯Pšê ’»öL_¡àêÙPê+¸üm -^§yfOàñCúþŠX²²œæ(Ïî}(¡Î?-B®¬¨B÷¯ë–¨‰É#t¿K¥´iº—›¡²ŽmRª.19LxÈÿèk›ÚùØ ®ºüð£ÿ“g ²®geü·ø¥]çf6,÷íí N¡9 ¨fö×rÈ›{oU aÆ[RÎ|ۘݺø}œ¶ƒÜ¹#P 2*A˜F1‘ŸÛÙ;´€TÌ’Ñ›2‡« €ÏËP¢¸¼žîîÝ+rˆgCÀ”fUO< O¦†Ë/¹®˜BTï–ŒöižÇÛdØZ)%òÞÇ:èºÅÞöøïÚIr÷ÞªÝb±˜zÜM»^Ïsi†U”w …G%ðÞ&¿°eœOòJ¯ã]áaAxÔ… ‰UÓYª¡ðƒ™˜=û=¥·lÈ)j¤Qy`èÙÏá2û¤;6/œN€¼b‹Î­-wï{̶±«„ò ò£ƒQ/QdS÷ïvÐĺÿ§0I”{w‰²Äöœ}îmQôG¦G¿t†Ü»÷ÛPgpÛãî0eZÓð rb"Y *ˆdÚŠk*šü•W¢‰Ú3á¼§ÁÈ$÷Z¹¦}ýr„li—¨²cWÆø5Œ¤@š‰ÊeìÎ’ãjDžúÞàH$†é—Å+ÇðK”a#Ïpš6æ’¨&ä'øzƒ2¡r†õk'"²#öktw6'Þ-ÁÇš®`ƒ®gò˜îE^›Î†[ìníªî™”Ÿps '6bK¾yþð%¸ÅLÆVT]ËÖë9b\¦3Å̺‡gt¾ê5ŽW?"{f gk¸-Sƒ:ÄÝiE†¿åçôqvR«ò2oÎÁPtiÏÚCm†678©aUãj0bnðøÌÙ‚Gcæ®û [ʹ~øÒmjOCPÙ2특؄)…–µNòHßrØ „q(0õò[|jìÀ0…GÁ E Wš¿··Q õuB¤“Ç8œzž³Î6dz$›^Ð3ÎÓo’Üî ›ZD9ÉëÜÁ;eÝ¿œõüÌùbåáÒ@òcÉmxýÇøy’›ùþÞ.A@*…B—hÁ±äu¾íÁ¤ÙgihVBtGØõp 6Uh~¼âÓicâÏæãäuîæ9Ž%T>“Øé8™kø%¸¢µùj¯­·–楅ýºÌÇÞgT?ÃàœP HW‹ñ8§Øk°ÖØ"0<°ñU„ÎxTôà‘ÓÇš÷keèt†ÃTXH2ÅKàªèºœÎ-`m×/ѽn¼ìk¿~A$RIÃîøƒR d00¤‹sl?jNÌß“çÂ2 š& §Vס€t_صðJ'B`¢#QÔK§tcŠý–ÚM¼æ¹A ®uV:ñmXê#Ñ«\kQñ†½0º6&¨tʸäéÄCøy^g-m¶zø“QlZ¸@Øåósסw¯Fl¢01.‚äT¾Aš­t…zØõvœ“)©Ÿnÿ½i¿ .åçì噓äTVæ)"1º+S˜yg@ û³îÏ“i/¸T˜Œý@·y Oç}N«£@Ó”‡«Š9]K•óͲ…—– t1ö"¦8-üpö©ê…´ÍÊ‹3 ùÐ(“NžMÜÀkÝóÅ›§ ”SÇ´TúM™ó¸ Ûy½hΘž¤„âûԙ˘”A|¯#îŽ×|™ýRWb:9XôË™Y ,>(¶@'+ðè~ˆÖ.”Ãù¶ð´ËîxQ».ÐØÙj×Ïþ¨E^RñÈÉ’°~ï&|µ§`³æÐSœög«žÙ!ä3S’st0ïûµ‘È‚yĆ̜‰µrr7ßî Œ²‹»3½V¶J¾â$ÓÈ€=òÐ"$ Ͼ¥œmZÇp³# -ì^¢3ºðüPÍM•ôXBjÞ­žôrý_Ìì8'$==¹ø 1F;ƒMÛÆæ3×`z4פ͋|°_r†2Y9XÓ…D7áÎ}¬µhé,M Èa·°Øø™k¸d÷Ù5Hò7ßö­ê“R'HU`Fªóm!öÖÆj3_¶»HÉß|»hþ4›ëß Œ¹9©›Üóõ­J=V¬/öGO Þ´8w5E¨MhÞÜûZø~‘ä<3™ÛrPiÓO\O—{ùˆÊ õíæè÷rÞg²˜º _ûôSG ¦À1›EZùox¦ðÚxu÷vN•Y<+É…|cü 3Å|Bbày úk™Ê[^ ôIåûe% Ç% Ídõn²0HŠª¼Ü’b[aB½éеn‰J -$%*+í™^aWA°¬R±¾8uüž°ò¢i(ÁóNGÁv~`«<#C'Ãê^£ûy%ƒ~©BɪB¹L®EeòcÒ{GÑOó5+S uÿ¦†“¨ùŠ®§»‘Ñ QÛ̇•qÉ"VÑ”ND¶ÀPô•çâ+c^é/uzícÝ®žõ¬í¬L2LUÙ<–¢yotqósæ1ÎA±W,E÷—ƒ_wû»Î-~àÀÆ¢:ÃázÖðË\[¤4ËG|¿Ž™Y™Ê7¼Î|ƒìõƒ‡Pé¼»Á¢Ö^ ýœñWaQöÛ|¦ÐëúNØi9ôY Sæ:ÃtPš¤õ!r°5yf×h%`¸1\P Þ¯¯šAHìjükoxµù.òw”þúùŒï¹²œB–ÏX(U 9CÍÙ½ò%{Yá+Öb%?9jë¾î¯µŠ—¨^ÒýûÙQ z·ñ~ãjQ7]‡<€œ^ç2yÚK6Z„kI±ð½ƒIÖ%3ë<§#¸ÁDRNîŽCëe–áÀºJÍ+Ä”x|ò Ć _DyÅð²~çùÖÆ/Ä®tm©gCļ‹,·o¯¹¶ç÷ÛÖf±…©ÇŸÆºÄ½ ßfœr½„åfÖ—fíòRkµá }lÏÊJãÙ ³ô“§žj¹Ç5ü´ÓÚ¨¶p/0JŸÎúHép@ÖíÊYwš[™•…,,ÎÇ6„V¨ L5;Øòüv oc: '‘Y¤Ç WsUÝÖæÈ¥ÏÈ,9€wnAœò×/|—®¬s*¿ð=·ÈÁ? !•ø#+Ñ5¤ß{eçTËŠ)f¼Q]Øîܬþ¢gVŸC30µVätf!R :"¢Z¯»º!Ré»a+?TÃÅj6\@‡YÇOyÿÐ^ŸÛ *”…øxŠù5\¿3Œ%· ¸ZÅÎMIJÅÈ"ÆŽu£©]òÃæd9Š—À{Vâñ´Oy*îi‡5ýR-Ÿg½;<ðÀÌ@ízœóE¼KÖ¡V®ñ]0¦cãžá^à :Lü‹üX5·YÐïbT)˜~W7;VÊ&î¾YÃÆÅ¿Æ †!2o7l²ß˜O)gÕ$îP»îÙÄ_¿X_/Wp‡È®Ïù<{’àÃfo,Beâ'ЍÖÖÉ—ØÿLÍâˆ@;4ª {¸Íõ^ô¿dʸYØ{¶4³dëØÈ/ÄÜ•ß jô¢ÂDÌ#edÇ9Í ”°¿ºµØï/ªÓ,ƒ"¿ð WšV[§–Æ&§l|Öí.E[ œh,FõJ‹0Öðâ¥Å[u)±0 ¹`rkµáõ,¡ì –§Ý" ,¹Îtac|àÛÇ5¼Ÿ¼ùÔåP{ËÃ.Vƒð\ôøn–¹¶\†ØÂè·–"\R24,rO¼@óº6ý+VIJP´ï~Ôƒ™´%H@¿VZì@J&î°y»~¡7ðëãlÐ;˃f“T(|=êNh6_ I±ïg¥iÓp…P_5b&bÊr ·¨c´Å_ø–旘ϓu{ù…›ßg¯wIpÑä0Bêù—Öpe¶jB©á.CÝؼ%­áÔŸ•(”¨¹Þ«›çu#^ŠK g$žsn’o— kv”=ÜÒgv9_ÿ!ÁT%¼¸.­·¹ T‹ngâ9R%…Ó{"’a`ü¤M{¬,)"ÏðmUP®¤~µH×õ‹K>9C} 5„¹`sxv`ÚodÎtQqßp3|`G¥gÊ̸PƒüØoðˆ5Yrá¾'œÃD[&Ó ½aÚð6¼Áž~Ñ”UowÉ&Rõ˜x1ÂKÁ*׋’‹˜þVñ)ËÑfZzIèlºÚ5$––VZD ®ÚñøCè`†"š3̼>ÎçÀüâ"ÄêÖ]û¸„³_ê×ãIUKF™|[l-•Ò‡»ŒYKU¾ˆÊŸ$ùt.BgŽ¹Ò†6ÁWßûR‡îëVnûr]1Ø+@) Szò+…!}×p¯îx§È—e¡òÄ]¬#?r:¯¯—¹§ð×ók:ïLÍþŽã Á¹fÿ–1 ¦–æ%#¥në…nëÿ!Ć\YÃ¥E)ÃÝF,"IfX&à<Ø×–†q/z‘:uTÏ[ÁYw?•´Pw¢B;cÞN Å=}?8¡ØM0*'aÝ]ÎÌ–ª±ÛIˆ¼,­M»¢˜Ö1÷ â—]×oy-ÛrC‚ X&¾„rÝ¥’cT÷¨èz¿q¶ÌÌ™+ý¹ùéåCÆ„'Á¬±,Ú´Òmv±ç–ûÔr&m‚N^ww “Œ›±èZžuQšðRPT°¸GR8ê"„ÍÝ)ªXÜ5Zü@D'ºí‰F{g>ÀºREP“0Oe{Od5øÈ>íå(Šyýʘ¶îï„4ÛÞ-ŸiŰ8 ûÞ„¼œÁñ¾n\‚£2ÅÆ5uµ^WàÑ £8\ô7øÈ°O9´\¡5š¥«^Œ~ÝMhëÍŠ_bsXr+ ŸŽN3þh|Åâ¸Ä1l/Õç²u [«üþ$Òkø%ueR®>WsÂXǬ&ã]ýSIETè°ÂR ën‡~[ÅEO+G»P$e7ÿΜÙêHÒ­Ä/æ¸~l þéóUÐÑ·•MÔñC² Nð0bˆª‚Å“æºÎùusøjÊ–ÂXs+ºÑ×lؾ®Á L–è Ó#¨R*’MQâV!y°ø8>‹»¥† ´@”ná’s§›Ü½‹TÃ?Ã6ªÀ¢'n^¿E­§Ê¿{« Z+t«Ë˜¬«†¢FÀÂ2ÏÔ±ªªP< ‰ùû u˜_¿æíþõìûuw¨uáêÎØØª<àÀïé…P%ÃA[ðÑš.[WR$É^Ø™/Öõo,®*ùV!r³«€š.¦ï,Ú†ûÞZâÁiZ_—d cu Ûc$wÀ„¢­“¢dßþºm]¯çšEjjRxó5;fúÖtÉOùïÇÙÖœ–8 ‚HöW˜!uÉ©|cL,/c¡0åfò~M–À¤{hx}W(îáÅõ{Åà¶XBþŒØèâEH:C*W¹t;Í’ÝN¨E8iPiÒö(NU2ÜX©•‰@ áhê½ "º‡!E1»à=œÕ°²3μ¶J›l˜Æ…ÅÕªpMÆ8Û:fšÖrû5™ré¶(×ú8ytX<ÇæAH³Úö) ۣͿØu«ð¢{ÅàZY¯HÜ*·Ö¾+å|]Bòµëílg'=ß“"-ÕY&Ží”^o>Üt pZç×çbÆÂ-S(©Q/h\sxë-5(!—îœQåÒíÁˆõ¹té¦N)˜0•¹Î’K·ó?ÚûµûA›×û9TCØ%LD $vzMö:NCõæOX;_Ù¾S¼è5ØTN[RÅ>zf®Íbn‘N;SÀ4úÒ0´A]qº†k¸£3଑À’âêQ¬*è˜R¿.ÜÛÅZké ÐWFÈ‚ãÕ9GY"ƒ,FhÄé>“BŒ˜sØ <ëi—P|ÕÝÆ1v­¹ñäÞ±TÝëƒt…l…­|7Æ ö™t=…Ò¬]Äv¬ÁÌ«’{oÈ@«µŸ=óޫܹ1Å(p5µ¯j8Iá:÷xé:fݥ‹·ªÇ©1—2£§¤³M\»@òªùp9w;®f=|„³ à×ãY¤ê þA8zrÝëøgðrå,ôoå¿í2ŽÅm¬(Å)‡K¼jÞ«Ü9,;¼å áñ%Ó©ª„`€´…`jœ‘¯†bdÄ|@9âïØYq•XÅ”‰EÎ%¥gal›JOt¸,þ$¼âañeZçßr.vÝ+î½;®-ÜiÖáf"¢WB¬=WD—ÝîZ`eׯfÜ\ÛöÔ›)Öu÷9Ëž&MÏ5Iݵ§Ÿ}_Ãq¶[i Þ_¥¿á\Q,ËÛñÁv=žA\ÑmAI1œ A!pS¢¶BS~î¢ì›Jÿ. ´&XçfÙ¬ÉáÌVõúIuìpÝ;cžQ& 7b†íÞžP(a—“l‚|–-· xH[9Ö•7ê˜qðzæðx ¯Û‰X4’4’ZzÁ]Ë$À—¯ /¬á R¼ ´2žÌ{%±M¼·xt™/ÜÄ7s˜yÎUL´ØaÍ羆;PüWjñe1LgSûˆ×uŸì_jÙ»æT¢ÛF\Ó¡¦»¿ÀÙ…#yÿЯ^‹¡dÞíÔz2o“ØëT¥|þ\ÿ}¹… Êº~1‚µ:éâ:AMóv;'åüù% &)gî’'h9¨Ò²‘ñ7bç¤Ròâ¸ßz€a y²$¸çç^ÎÞï5:“°Åa|¬µÌ—ॄF¾˜i ÙóÐpR±¶°µ`WµïõzLƒKæÉ—Û™XáZ©ˆÍOB´›õ³›ô°¦†hå¹Å„ÖN( –yží‹óìx3(5f5Â4Ó>\Ø, 1¿–½·-fcËg>Í]1tÊnßÛëÈ”8pÎëÎxò«}%TËÅèõéš¶Ã¥yyßKZ’¦Õp^ ÿý…4êú¥”Ý<ˆöõÖ Ž( ­G06µ…8y{óú… ÙL«VÛ‘Š;éóú¥¬Ì._h¥&p>òäe˜h=Ì+ö~êê¥`<½¶3JÎËñ–@ötÚ«½ &ˆN}2¹þ˜}]ï"3‹1÷2 àÄNGšØ¦}¹Eìz=ë‡ænl)5Ï9õv@sGš—ðx[ý!¶mjlMÔ ï´u$q5Þ&·]+ëirÕöÿškÇaniÙµÂa2¡ëú•wÕžiQm_É9»„[¿˜aZ!-ï¤k~ã°~W8¬ÉW;­áàb¢{ tEq“wvêPç«¢sLÄ`Æ4–©l?ø3Ÿp­ö¼¹·¶1y¯Ù”·vAw7¯É;×ù7åÞòŒCZ‰€tüͶml뺰–[;ûý¥]Œv˸J‰y½?Ï?ª€þ\L-‹µvO¯qAÛD.s_KEôç3W¾?BJý¦ˆŠ.—³ú.n`]³QZ4ýÝåM²**<üŽŽ¾wr¹+©W‹êìN€–y}Ü4ÊÜM=<ç"Å´ÜQ¿zÇ6z»ì\KweÐöëqýÒƒ…™Ã@ìW qé¼Ý­\N_×Ïå¬îߎ{Õ'ܽ±ÃÁ»j;®Ì^^ún¯GøÀÅã*“qñMtùp'g¢´ÆËϺ’{Q¾]¿èJ"Þ¸7'0%Û¡´|¼>¼ƒ"˜Â‹#ÜÌç%/Ðoü´½Xn£Õ³fƒímÅ ëX«Xn‡N…L…Ê©ì(¹Öj(âø°°MwÚ”ciH×DðZiåÓ`H'X¤$‡L_$1½/Ííc‡õ½Ý{j6äöa¿åEù:¾ðÈM·Q_‡4¾! é3ž ^Dý•@;ã‡Ü¹Sýë³+ái×Ýá{!Ø‹nçä×£<16ò²oíÇ—3é:äÜMl)ù£ÃÑg^ÎÝ8™G~xÛ¾k^¯±ú™U‹Ák(Û¶çy­«e:[}Ó&­„}Ý@e®Û]Yðãº. ’5gq4&¦9þnxu\ƒ¼`é0pú§¦ÿÀX†oƒ÷|ÊîŒ5o²l»]?/©âáÅrg$ÎøËý–ލ“¦|½Žw-FŒgˆ¨ßûF~7ϳç_mâµâ%låÍ#z\çbάQ†h´øþ:µñꀬÍpóîâ¤í‚w_ƒ8¶`o'‹ysügvˆ\óÐPb¾Ž“kfÎß;õ˜–îíé>†à’;Ñjb‘[!Wh$Óâjeª^}'<þ¼Ý•^)Ò+ß^ìëv‚<ì-0çÝÜ»ûÝÚMaÁ7ÀP=ÜÞçk½m¾I Í\dt†ðêtZ…e[0 xÈÕ;§ †{z‡„ϼ~)ØŠ°5XJA¾²ZþŽ|UŒkWfwUöFLó÷í|ˆ¢f¢ŸgBëú…J¾…ÀZ gUÙ ’výRy8;ãéa|m=®8Lõ7zXW×ÙÆz™Èúó5Ùr ±³jj8h„ –|”¼{ׯ-1KNôØQ)©‡¼uRÄä®,¤3Ì^>l®\Z¤1ŠõI.’£,BR(ØçZ>úÚW¬Ðgö•Ϥ{Ž6ü‚†Œ.rQ²º¿ݪ£ésƒ_2쑨×lËÀ°åºá­¾Îœ ¼u父;\š3LÍzÅ¡ý£QCç5ç''wêªLðïŸÏš/ÿ¥O0Õù®‚3/´&[÷2ÛN«²á –Á q÷¤oõ'\²êKû(kxkDþÈwÜYÅìZe›v ¬øe«åç£Tá…Š—­ÎöÚ÷ålP©=î£ü #ã$¦$Ö–ÞwôϼZ×zÄ¥—ºÒ>î&’¹´LŠ3Ã¥±“/ôQwp•½þf½CŠ·æªvÜUœd8‰©âjÔhŸ)ZÍ7jðG”³«ý%ͼƒo ›'Ap}û—?ª®›ŒL4Úáƒ3æF9G6q^äðvÃ~Ù`Ÿ™ÇÆ9Á7àÿ±ÀËþõsgëýu0³¦=_²*jðû|3‚o63;¶Ù5ã¯+4íùbô¹z‘«xk¿üx•ÝÚ*,«^éÒ-»ùG]¢y³ô6t7ƒì½›`É×ím;Ç{34Z¼}v€£ôWÒ=å×›®ºàšpþÒdê |§ø•mÊî ³L˜•‹}GX9íClÞôtbãlü¥!=ÖÈYØOì±®mì]s†÷¤™[äG·Â>/A_$ŠÒẪ¹CŽÅK®¶è0•‹Õò“k©©mœ›+麞ÁˆQËV¯ùZ;Ï*û¤70@îä\Õ.üQÌÉUÎÑ[ ¸Â7ô—^õwP7¢—âô¯hÏ9,¦êÏ×3|G²ì+šGÿßm lµ•"<¡ó1álF}iû·]¤†«½æÊY^OüçžÎà¡R"+û<Ô¬­ ~%¯^ÁÇâw¸4·:µŽè„£oZƒEMå»å¾'V̹{JÊ–FŽßI®wð-ú ©õƒèš/ËÌ¥—·ç{E×&agªô”©h]¯'¶“·ãª^ÎÞ^b®ßE 7’ø5à†Ýtsx\r®3^—‰Áa•'K×+ÉÿÛ{ùh@:‹S7åîB½R9ðurêÌWšf 1Gð‰i²âÝmü c‚ã_$YÑøÏ¢'È3<ð`Ù Øs¼‹úGÎ>ÀÙI—['E)Îš†A©À=f_lÀ%¨_}€ˆhØÕZŽDl4Ñ’øÂÙ:§ó°¶1Ë>l–Í‚Æ’ÕÆãÝÙy™É ë/㌠ »úŸ6 œ+dU!:ßàúgs,ýÎRL»aR¢æ=>±ð9f¬0«È’ Ï瀉Ïz¸âiõâF8³c@;¯›ÔVpÿí0`=â¢Õ™ *®Û‰Ólnþ›$MÒóR‘EÍ3’G’#DqLœkC0@L?¯góGXØsoraÇT9¿Ýv³Å—ÿvê ¶1Î)âÅ<ÁiÄÌ> X†½äé’ŒWJ´Ià4|=ÊàÚ76Bû¦äráòÊéÊ[l¯,oŽB ÎfkË N³ ꣙ úºvo4«2KŸ^+›ÒÚ”z+wµ8=žÍí¼µ¦NÄ¡µ`cµÆ$‡é98ü{…ªý…H'Ͼ¤ïu%/õpéýé|\ªwÂd}}„<¹•B¨g3Ñd¾ãª?¢Ÿ};Òµã_IoÈž¨¨=3·™þ6ʪ,Ãk’Z n“­«g_HtúALŒ×s*l ·î_®X “bÅwúÖî×\ Cäa¹r—— èçCN“JN™hú‹í"œçåI6‡åêrL6Mò’`;<å"_djaA÷’úFa‘^òÀ5¬àŸ·0Xð^ [›I»BÐ[Ë­‰X$í1‹;’ù¡¦+pá3½!"bÒlj¾ÅL&:‰æVj>Ø×Ù߆µ^ø’òžË¡W:éêÐý¿µ½…F5œñ¿9 JòAã¤MÅ<ò×h4ÀOfÉä͘¡¯TXlAŽñ„…gG=ï­ßØPœ@Hv†ÏmQÛø‹r¡ªnð§2‘ù7 ©oçbÙ:(ëUøöï;\Z>ù4*mx¢ÞYøçþ ÐV—†â~ž¼²oó 5@3y°»×#.ÝÜý+Ü+ÜÛíDvíg6G`jtRj0#¿‡4QÜÓ!°û]Z¸»np¤è¶2zà¹8ý{ƒ¡F•ï»À¡{ˆl5lŽÄ¢ŠbËàIÁsç[føT„õ.0T^áÞÔÞYÝ.™;"ÿ!ìFª¢øÔ36©¿4,£¨'·D­ ¦¤¨mwçØÄù-x‰<;P¬Äß?SÆehqÛXªÜ Ø .I:=À%vÝ_è»#FvªÔé‘‹Ai¡·›?pJ¨‹ rÉio7¼6Ñ ÓyÑ$¨ãYZý•¿tN<ìO ÆfQB4îHˆHJîdÏ«ç/”HŠÞj!co°:Ž1¸ú Dy—ò0:Ë/Œb ¸V¶®(}ë†â.ܦÍij3ûçÇ ÷Žsk£¥÷ 2\Û( Cz©À‡¡¿¯Î‹08a6^=Ì6 ^éëMV&bqI,å;(â cöX;®"Tp'íVÿ³û‹¯áÜ܃ásúÉ÷|ÍÝ´Õ‰› -aˆæâ5,ˆº¥ñío]ݧÏU§[¥[LÀÅ(ÌÇŽ§¡•ÀµÎVJ à‚ñåìª*Í=“ˆåië«jDÇf>e³„3Ã~T…ŸYÍì¾-oÜ£æÄ3/0¹&±°bHYã¨ö ÜϬÅϰ^ú÷•”X*±xjPÁïc»`fìs°ñ;!8F9<’?\Û˜.­\äEoØ·;­^ex“9·ºBî¶&|êêÝmK@ÔÝ(bp¨¬þÀ/o6æK6×?Q<žF>dõ A f³É4‰4ñRv¼/hT…@¢\SšCtê þ°Š>'¹o!ñ±9v?'~9]Ÿ‡¹áŒ/Àndfª–Çi2Ìéçj7€a`EÖ`*Õ‚Ü3závÔ‹‹ƒ–}:ùðI»»†«KÉ‹gÎå³Ú7ìÌA¦µ”Ü{gØuHÃErà"Kü¾òÉ‹Ï]0@¡Ú Áa¬hãgrº×gê×)hï©.ßÊŸQ¦"– ÇU©7¼èg×ç>jÀ‚®ê]sâû~ë’DЍaˆjŽÙd½ÄÃe‚FÉ\X$_.@8€Ï7˜”qÜa2¶L"“¹V¢Ó…»ò—®ì¾xŽù}?S˜õÛ™oI, œé§´ ;)}O•“ÇlLòˆLL$(žúËíÙI­Õ­EäñܨRÄý Û+)帇c+<¹™‹ Œ¿ìPÈ×¼je 3 › ?ñ?öÁ›:æûDøÂ`h†àˆ£œ#!ß^*¢<©[²ù.-›]*¹û%keÓs •L ()×IÊŒ]»˜2œ¼£Ö›ö0‹I]ÏȧÇkôÙ†b ÎÐô˜óW3K=øÛÅ@Å?9Sƒ?ñÒ’D¡Ëô|ñy?³4& Uší‰ŠP½òAÒÃIåÞŸNß8´ôïd  P~òD®Š3‰NÈD–É›Dú–TÚK)\ÜvÙ)\’:PI­Þß±–¢¯)èÞƒìƒÐz%ו‘YotåRÌ0C9'´ «µëÂx“1ĈA—°ž5³+׬.`]tH‰E%$ë_ïsåHj%¥/!>:g¥3G“Ã7zÎ*6JšÒ˜GÅé“{˜[[« §wÆ´3)®ÛÒìÉil¶€YþPB’u:r6Ü$ýÞ=9"g6µ\ªÞF vî’ˆJÜ›zý){ª²†·c•Ý®Hb½,c€›ƒû€uå=wvf01”ÕѲCÉ»ÆoÖ‹2`-ô„ɨðXRóÒ°CƒLcØVs†±‘ÉJ>!îE÷WÑÇ©S²íŒÒ™ðI骶)J—Ü‘ËCõ“8œt €Sc7\¾è€Y»Ö{%PœðÁÅ'€ñýü\¥Ïþ}ý±EÉîí1Tµa<ðh 3°“²¦ÜƒŒPGH'Á)ˆsÉݸs˜9û·$ßÁ)›uñ‘Z+®—ôf—Hv7Îû¬ùq/’6¯Ê;Á’üËëW8=ΙÞUw*"»ÿ8;̲dvådíKbϺ¡7ŸßØy5@šv㣳/j—`Н¤TçN{ ;\Úž3&WhÍ“2˜e†’2Ÿ>K ¸²äÉ%ù£§>WkÀ±í§§ ¸ùÚ &\ûþ¥5böȦ… …NNÎ'P5dÙÂòGw>3B<ó¹ŸàOL̶°‚šÎº?wó½ÜÙøÍ¥‚8…’J!ßf]hϘ  Óµ,xrÚÓ f‰ódõÄóäÃ_/ÐÏV {,Ý­ùûÓpPMÍó¹Æç||ÅOÃáÝͶ҈g÷@!¦4. d_çÕiðF}ƒë² ß4ÂzÅzaÒÕ -ñÊçøfHœ/«óKeᆰK;þ>o˜7 ߌ dYÁbC°qí‚ü„ó󥑳Õ¤Sì.AÞîyµ;¨äM¡£œçXP‰,¿vðSÃÏäYnl“œU;½t›ô@–#z¡%e!õ?üÉXd(WÚþ¹¯­›Ãø-IŸåˆî;7؆×6xÑ å—n÷µOr¸½ÇÉÁ•åoHÙ™+„ÔÀûÃyo¶lΟsI™gÕAž¸agÏ BvÈÚ`ãûÀ¶š(tv,7 ‹® ì“¿°Ú­ûºa¼€â÷ÉÞƒ°Óƒk̳—o ?Ë×Ü{²…#&¦’Eãé«…#ýæ[­mæxZ%MûÖ„Y¼™Û»ÝZú¤‡ž"ìÙHàµ=QÚ²áøwœa˜6xãfŸM•p¨°Ä¬û_Û™Ú´§çÌDäZ¨ÛÑY]E]áñÿ%Hvv²—YFð½4l8"Þžn2*¥³¦š| ˜2$2ŸØ>$÷Ò.MÞ¾ŸømÜýª–2qË|ºÐó—ÜAN"É`PÈÒ±…Ç¢d§8=íQ!tV®óf6å|1Yd6åÿÙ®Êùb NÐÍC±¤s¢ÎM¨ÜÙHƒú?ÌL³;%ð+ p<ì†ûü{C9M–ëÀXÑø™˜Ã=A×®]24Àgý×Fq±ë•ol”½£P¸ogUx–óI.uøx…É=£‰Á#¶çžÓجÎ$×KYà2(¾2&âÚø|>²ç³|ÓòÁ\h|¯Í4ôÊ&ןÂjwB® öþ,«ì ïÔšžn;Ií5Nóía¡å˜"_hb0Zh6Þ»€—ù…X*Ö¡,ˆ$·ø‹Šj´j37[ÙNKG[Ú%f»T`1SÕ¡Czš„ë#Ûh$´Ï°÷´ xô!!;¤î²VWš¥ô$•_Ú.Š˜ß…1¸°ð*aÙx £Müé}¤yǤ¡ /d(šþœOU9•}ôéd,¶3F;êÚ8VÆÑ´ÒTêÔ±§O4@!H†BKlÑ,.S½‚ó²P<ï~@³­¶¶´Ì„ZpêÌ&t~ŸsãC P¤ì]:­)ig§S%n¹÷ó¶wkä[å¹Qx®ãG_ï ?»«ÔÐH ½üKö,Ou?í6³ã˜VZÁ¹Æ–Á ²ÒÆå0øRyWÅÍy¶¥ç™uÍ#×õÔëh=AY ƒ¥ý$’‚Þ ´C74‹Ÿoƒ¼ä§Y¶–ª<ÏÙ6ž1M&¾qÊq G*6^¤”w›ï8 .˜výÍTF¿q6´Vð Fg˜bn~]Y¡WiUÜ«ÝÛ½•bþT·w)güß„bÈ³ÞØeÕÒâÅ;l½!ª ¸Ô-J‘õ^Ü40ÎÇ}R§WˆsH»Øan-Z‚ò€‡ò|¥[?F™%\P:Eni¢w'à´°ï’? ¸$’lSÉ«eûŠFo_ôkD÷VŠY”O}“l•;gÓÄkDzdt‘{ê.èŸK#U•ΨÂ%åß•{VDõ³Wº~‰øJbù°ï`Åìa3“òýð[»¡8z§*uR㸬*ññµ†TÄùŸ…YôW5a“ò­Ý£ØPSt.àÖ¯ž]sü…7èì¤{ÎÚ8~ã\AXÒe'3þŠ×ïTÍÄáe/ÿlr9­‰ßÆö—D>_î­¢ZÑ·H©>@½4†>âÌ>dydÑiel0By —ª2¢³ïÈúù%eš´ÎÞdËÍÙÖSŽ´0x…5bT±«’+Ô‰nê;Ä4†\Ú…ÁN¢qió´* –ÿª±xç³Ñ]„È}GÙ¾´×¡"„aéfÿ¢-Š|Ö½ QÏ‘¾¼p?~Ù§ù7(C¾xíèF¦dìŽG°—”[ºÓ%WV¤>Œé4Û+9$w/‹ø°•9dyeð©›DPÇCö¹¸œZ(TÝ¿œ _—ÚtZÃá‹ È&). v™åûÔñXÌŽhÓõ>J·öB/"bóÅQÏ%Ì­6–EÍß…9$ûëŒó>+“9L,=1:9òwß®TÓ’ÊáݱVp¡½Ÿ}£æ—Ø¿L½öDOç\~©ç̈`N¥^ó|DÄ¥<©šØ̆{*öWgÔYÏ Ya¿1fX©Ø½ÖW Û½e ·FsöbÚÃÍõ3I¤àöcg‹Ñ÷w·³oXhßý`šºÕ•~ïÏ6˧Ú×í£;Û).ï¹]Û€¹¹=LMˆ7™ñ[NÍæU`ߨäñdm8pt+Î@»+ãõˆ~Íëé3ѵ¯Úì5;/½œ‰MÜzV:õÁ±whg},_¸ÜzŽDÄà&B¨w–Ì'R‰Ò#‰™©:åرnè`ß­G· U’¾32.%œ_vã×°y“ºS½³_o~ 3¹ž ЬñpÝ÷•Êm»éõ¬ ¾wÕ²±†%ö~˜ðš…IŸÐ¯ 3vCѵœ /ës±Èe@WïH’iÛ÷H7þ£g…«r¦ï;Ìšzتp !ŠgÑòºá¥í!£&ðk;IN‰Ïê ë¾Ô7*Ò7´Êð1boí;Ow²×ç"5Íõ¹Ä›ÈBþäÉ]$Sä¥Hî/CùÕ¿RÁÕ*òÒû ò9 ´<ȳÜû¤—Ô/ðòï'¨§"AO³IZÿÖÙÕÒÎ"!K¨¨æó:Ïeœ{)»d¾ñȪ ½Ö „<úŒ)dðØæöT³³(¬}°×Ö#.eDÅqÁ!âLP}°c>¤¥vÃËÄúf¨—$~š9%–EzYÙôfÝPi´³7ïçyÎ-hMâ»Á|þö´³šú~E??"ûÄëpTIÕU¥˜k‚ÃħžX{™o0à%ò±ËYRÞH£A¶Z±z÷x¶—I—QÔ½©=ÊM´tÉðËejT•b·† RÖ®Všt¯zÔ+‰$g¯kgëÍHZˆ‡Ñ œK6|ÇÚ[rltJ¾±úÍ55A{OŠ~žÂZå4ôzž Ú;XÎ^GºÕÕÄ{®ý™šï§)ÜXL­ÆÜrýfFš¼ÖK§XºpîSþ?1Ù€Ô&«;L ;øù#”ÔÒ4¥vD²lW~j5ª¬É:TÉ¥G‚ã<-ÕýëYMÜqgÖ &ô—P‚œææ°ß—Jsî}Ü~ŸHÙËn‹„p ÒƒÙ Ëå\ð`—Ø3•>§L¸• ðNŽöGê«ìNwðfÉgøOSê¾ÊvpÊÅÖQ”ºyν£¯ÝáÒéûÿ¢ãGó&œe¸=Â]Þ-r`+%&£ê¡)ñ¹CCˆà&»l¢$zóªÓÍEŽb|Ùð’Rb5{:a°ê½Ò¯ZpŸ­'þò‹i|9.Š#“Át2Þ0ewvwÛÃo&4Íoä2=ñ ð‰RŸ!¶"‘€`/¯‡^¨ðB0ôwÎÛsÞªškí²(.CÕ†å€Ú\O…aÌ„Ôòé {oÂú¾]ƒliÌÖ.Ö[ˆm¡ÿ æJ ¥Fÿ/>4ÑfP–  ³ÌÆ}8¡DÓ Cà6¥÷ayØ*Ì„éùFxšZsÞÚ)4¥Fkeî4‘·°äœL_ó†§ä¸]7”Éí3fk¢ñâ£s]Ð^zöëòÙ”¡u÷¼­DÝ¡^<"Û,Bèî }¤Œ˜­Œ[q),e4žumt–++\×ðq¿L0 ÆšFö]‹F¶áùìX¹Oœ6Ówå§ž ;ó n]Yü ;'­pˆ(fQþl¾Ð†CêÞªäÌ^]°ÞITi7¬ªz2'núYd»õê ÉâíèÜO8ˆÆ_’Õ~æ½uC»¯ÍßE‘´§‚ó‡@¨Ù(9rbæ»Ð»·xRWuÇLG{âÅÅRÚ£+Oº$(°ÆEc,²´ŸHkâmYôÑØ“$ÎP#¤š†•/2TÙòÔÙ+]YxõÕ².|ª¬ûJ$0wiÞŸ ^]>QW^õ”'™wW¬c´޲ë¬h)•|é¼c¸ H“?áÒk/û…7·¶-¶Y±mõË—V9rTzPáÂÑÕ´%1ÐÇ7x˜hûÂ\z¸Èj‡x±Ëéš ¬y@È[í†b=:¥³×€k—7 ðΑØ;¥‘ó±‹üdN«œÓÝÛMŸÎV±¼ïêô¸nXÎf. ñÆÂqˆræ›áÞ½öô%ª Haõ_"úÛ-Øí=rOˆt “8fÒP™A0% >Éxl·ï7SM0nÄv‡ô($ UÆ ûÃnMÆ,õË6G#ÇnÞ¼B€Nפ0¯ê÷›Fü£¹¶ð^w!¹ïò³L©H2h¬8™Ô ÷ØÕæP±¼¾(]ãüvÜ=¯º7Ì¥g±Idð­ñõŸ¹/ºçY·œ¥M¹¯;V³| I{ètøˆ¶‡nœ¼~”½0uãkm6 œÚaœìÆb…` ¡î$¼¼±ÏrÆÙ•üd™>}1‘î?ßö‡MHvˆÒ;ž™g¨¿3m4jü%Á5éû¡÷i#°òûylüq7Ç·InŠ£YºuÄìù"º¢%ºHx÷\%ëððõö54¢å6»ço]ç…Þ}([BåowD†É¶¢„×Þ΂I°Q¹Åàv˜GßËÐTü‰Íì¢îÖ4ûJ)׉Ø`S€6ÝŸA|>_v³Al»ªVßÛ€Ûž>Z"ÉdÇ)bþ Œo˜\ÐŒke†œIw2Ç×çæÉVàè½s¾Ò·MhìÓRn4z¿õ7]¾íŽÿÃ+‘憮„fÆŽ'{7ïÛ&­^VÁM…Zo³ªºT‘}!EMWª³x„Mc¿Â^ǹÛÓ¤1k|£N’à"ññõ^ß;Ç„¼p¼´ÄÛÌÀ°%‡Cº`¼»f­ý‹Ð~wΤÍ:‰d(„´%”ÑÒtUªÞ:+uOöîä\6à2ÍrQº8“ ?cIÜ@¦Ù×ëâLÚ«ùLÛËw…ך }ˆ|dIÉ÷Èö{ï÷mLšàÒ<9ø€xör¥WGº(j6f#ÌL˜[^˜DóÎ4;¨u¦ŠZemöŽ\ãË1ÄüýD¯ÕÙ%$“9”é‰yu;m" Þë°lw{›Ô '¤/V½ñ‹þ‘2Ž •Z§”[wx’÷õÅÒ¤CNò ”8¼ÔõB[;nXäï#®>—}”Š[Kc‹v{v¶ð™1àõˆKMT´¬å¸ef}b³2az°Q)SR3&O8Õa| ýgs<ÉrŒUÆ)9äêî¹0‚ê 4~œPãÇÞÇéš6xˆ© ‡*¿”“Kîo7šwT6%+!ÈfÖ™¶ñ—ÌVõ'ª†d‹Wh€Òå¯àª£øöf*7ˆŒV–éá|´Øÿ«»`¯@0Ub,Ø£–QÀÈ&C%ëçã,ä|ãÕKfÀLªä‚‘Õ  {œ-2î„K &`RSŽð£axUJ<ò¯ÕÂáWîªêuêEæPæAÇæYúMÊßÇÆ_¸±Y]äB³ã«Íê×/þÅÉÈ'õš3©)œóÁ®›OhרOayÕäŒ,82©­¤îž©¶IU3›£Ò–±Y.½ˆÎ¦%Ϫ3úÅì™ñÐl^<š£ö7¦1’¾ ƒ—àLÛø ¡SõhçE›¤0Øåä1>nš·~¶¼g<¥Ðª*ÑÖÜ~ȇÞeAý”gZ½„ £ÔîRïq‚uCUÊ2¼Ér8¨L¿åèÒ ›.c>IÄl¶v˜Ó_¡øb2ÁÑ/¹Ù­'ê1p)I7„‰ÞÓÃLˆEÂX+Ý`½Î5+¯ªçئ‚ŸÃ³Å¢Úà‰>ï6ƒÒ'o4™NÉÝIɰ1ž[sUÛöJïÅ–&nÇo|ÀeÒëb^%pç^’-’g‹·ìYœh£H$Ô<ŸäèS0ΊÇ%_¼±$­Ïû~öÉÌÌÊÂ")}hQ„l¾ô £…t–ÀË`ÃÙéfc†íì{‹œm•çcÖËa`<Ó2ÙUÀ¯lqa%(ó‰¦} ÜŸ<)¸‰LÒ´oá$Áª3!µÆ_û‘¢0‘Hf4L§xƒÖ€Ü޾7СHhøwšq³æ¤LfpÂBr âc0}ïñ™Í™í×Á—ü' 1A^,¸eq<û+Û—‹Z^=‹ÂìBÅozLxßÇ.J•8~ãzüÜÉ}Þ›óØ&r÷y£t'Ë|I¬á"}zÔ'˜–f¤•ík¡ÇÙXb†±,m„4ÖÏÞÃ=N¹\ˆ1ò²É¨zgó PgÁJOeFÌæx…«Ï}pجëLv$îå/¿ EÇvaê²mãóYEüå>oÂÇZ½œ“äo$JÀs$‰&°÷š?1íc€—µ¿›çج¨½ë^þ°÷&§4ªÖD ãý캡ȼ·D ‹y:X §÷a² ]0þ³“ìÛD(GÛ5žS>“º±‰üýéroö6÷öà¯äæVöo3¬ŠáC?ÐÏkä±ûÃ[­”M©SEm<5•é+2›0&ðØ®éRÊ[Öúa £ªâ°˜4ÔNÒh:µ_‚wMû´_Dó;\ªÜîèxPЮéê^²{.¬›†€,"£Åf7¼dÃŒñ˜ºàœlò¯VÖø•þrãOïÞ ÅvÆøJõØ2¥_&7äÜj‘q]R>@@'¿À䲿Q>›wt2 ë ˜ Yˆ]7¼°J¹nÕiQÏØ’Ù¦€´W6} &}[ô›ÔqÉwͲ?XÖeU†æð —^‚Wú¾–1L<ÃlÏÎ#ó‚â­7¡°˜qÓ–ãµF›ÏQl€ekŽRXX!¨ ÂâÇpoPõ¶g‹ ¸ê „‚éÁpÕ ¬4÷£‚°Ñ;ÁK¶GˆŸçSDÖl¥0¡| Dó£3*f7ÔIØ ¹öÎêãóŽŒdp©KæqN] ,0 ÐÆ)¶8l5aûâFAµnÁ%Kó+C-”åj‘-­EœÊÙiËÆ KýÊz2æ‰õåÑàf+ Õ‹ñ^o´9.vC[…½Ñ˜-t/¶!2ØHkÇ.w#Zúœõ•çØß0:2îwN¤hB¼” øæTŸK›ÄÝJÙt‡òO¾p½žo +Ü\ÞæOèG±<ã°˜ézX’ÝløEÂHçúëyÝÊ⌮6‚fì~„ŽÏ²Òºï9ð|瘲G”K*DአÏóÔSu 0ë;Æ©ÏS¢ Ï‚ÄLRò”;ìÃj{·\Ùû–«QbÓ\.‘Éàw«¹E_íx”‹Æó…Óðî¬êtšâ·¡~áù…'0Ñ6³¸Wfa$™²oÅoüò{ÔG„B~±{bºÛ-‚ïQ›XÁŽ &ž`ÿÂ6£ùÏrˆÙo¹œëmÁŽßw¨llÀn~ìg3솗¢ˆï+Y’ûuã¥]´‰é@[ïKÃ;wÆüú‰hÊyo…—v¦”n}W»øþºŒ8n¤ä'D¨Äï4Šdjw=ˆçxØd$öJÊÞáÙ9ðU8n_cG­[IïŸY¢QÙÕ"üñDé¸77—ˆv 㺠Ø/¶‚ëiùˆ‡Ò±OgœfÐmScüàá*H)Óà û KóJ`´9è¾»7n  âÞÑÓ\Ć+½þMYüì5ßþ_*÷1`œx¬#ÑZ>EošQŸ)9™Ö>G˜Ü¾”x÷)í¼Uë¦%mÚF>³~º¼ZP׳ãçvq¬<è‰Óv ¸ò‚ê+D:¾Ûk¢¢Ü>8õƒ€’²œLä(?o1g½[¯ÎŠËŽòYÈ ‚_³Ùcv°)8ÃÁ/’Òx§1@¤-Ý›m€É…ÂïC((‹yÉŽÆF{̨Á3‡b® Í^À¶c»U h·„™^ ßN€(†úBèR«á›3áJ4WõdÔ¥øÆú9cÀ…ÜÝ×ÅÉ…·ö©ÕhÚIÑ{•mµ.¨Iƒñ/OªLZØøK!Y¦QŽ^M¤;xhoÀs^Qàñµ£<æDôOï6ãÔ¤+`µK†‚ÝÞUä/Õ˜Œº(?ïÀ±iw¸0ÁOg,§À$“ÎvÏ™\M:4ÆË"Ð,Ådòy>d6>žµv\è—NåßÃ$¤š_äà7î;Ùõ‹aí§Wøß¸Ôvv¬çxaðGü1ëxµV*¼áR¾§×)ömw¸‰n àw6|à° _ž95vb8õÌÙÌB¹ Ë‹‹-öò /ðBvFå’€|6Ͳ2;è@O7»–X¹‡m—ò¤µ15¨Æ7§òÔðP’4Ve¹üý6z}“’Ú ¼ãÔÌ┫ºs±4”ô¾¤ÐbÅ’w¢ ö}œÒ c¼fÊÙR Bw™±¾ j¼w–„´5†q>¾[_ÉÎ[ : üNȵí¾××G9Ú÷M¡oÇóÞ‡X ®Â´ßžnãåRmž®i‰.(Þë4L­E2)¬?`©v8Ô4稌JvÞr™±×s {œ š–pz%DÉ´€*fße4.•ì¼ðg`€zè@žUÖ4 VP-rpè¢Êª^| L 5þÛCgÇ3FS¹Õy¾€Zê\Èni‹£öiÚˆ8Úx!–ÜKï>ÌðL&ÚõëK/ Ÿ€qAê¹D“×»óÚš ‡\i覜½±æŸ¨ÃLŒ ×?îp¡SÔqMÏ7ùÊ}¬G$'ƒj£aÎÉS]ë·ã\Ã4,ÅÆA|XÄ9ì†DˤGÏ,0ãñ,ÆŒŠñNþýʉ“¼œÝÉ*Y&êÐí/ÉNE+ÒsIû¿ØK^Ge·âœ>¬ÔmË„£ÈPwÅ~~Á…M Æ%–°±ßf‹ö>Ò{ƒÌy]òK8 6–n­]ý{¾üÈo`V³'\ˆåý¥pQ½Éß¡œ[Ÿ&ÿˆz6‹å}%Qlºjf^½[íòo-%„ô½4pÀK‹.Ÿ…[ûV?KñbÂÈ‹Mòb/¤pë-À"œ'á0Îü“lûä´PçŽopiÑå›#ösh.ú¼s"P¶n’SK*Yèßë<ç¼*ÀØ—lñÌ¥×¥’{±[Åi;+±U„´9yÆ ØÐæóSš§“h‹'‹v¡WPØáþû‰ÞÎõÝr ÓPá,Ʊ'–³&C3©ëa3X EU×WÛxÑyw–Ÿa‚aç…YZ©'žcïò‚Sº˜‘ ,¤,ö­­ù Í3=mw`µPbSY’ÇMœôÏBE9½ä™Ñ×pùï•ib¾lüµ+º>Á‹+ß$…6IîÇJ™¡„rHIßËn¨ŒÇ âV|NE#}àÃMK4í7q”ò®å„Ø=Q®ÞæX:O†!öTÄz  ¤­?+phl¯1o—Ä$‚»¦‡^Mk€¼¤Û/—œówÀ%eW&–™åìG¥¿â%l€2¥ïx§ò2ÉÛïìý*ìÞoþ§&à{ƒë4'JžB6ª~ ó¤z‰G*D›¾üL• ¸Tl»Ê¼ñ3ÍpaÃØD BHŠn7ìÇXœowù¢ï¡\úà³J}–‘²›@p¤íkÙ•KòE÷˜ƒžxÝJ¥nÖß~úLaÊùÜÓ¶”6}[o‚D¦Þ¨u×ñ}Îú¡'²}¤k_·›fã²™áJò&/$lKm›ùUhé³ 4éÞ:Åæq\ÀA8;µáÖ…åIvÃ+ãd¥Æ!èS°ao÷4ìz~£ßi¼ô‘—3’åNîäøë²ÜÉ“íÄreÂ:Ínèñôw -smlÁÚ 7Xnv…×_L_Zèüä³Jé‰åìË–Êî@†4íZ’ÔÕÉ»m€°C[,ÙK^…ˆ¦Ñ;zý*¼•¥`1ÆDN´uC'~øµd¬DºŸƒa‡vG¡ÚUHlÄJJ“yäÙî‰Á…ù†ÏÎ'|£D±, wl¹R Ÿji#{Kœ³’¼9”[0ÄVV.ä¾÷lÚåB¾}ÿF•AIÄ>lÏØ×l™ˆ;Õº&ÉCZo ‰o‚ Ô#‹{žn«è<Å¿øD „ìçí?o൥¯U–‘½¸´AkÀ`Jd¥¸—Îzô •¿ÒìKcã8÷žäúéDYë±Bßtû„KC‚;«ºôB3ÇNíçørõOèg•ÌW"Ùo›^_OV ›½¡ë‹W@¾PN¸—¯KºDs³>êÖ)Ç¿Z.'©ífïÿÃ)˜Ç½‰Á< ¥|$s4w+Ëå<ÑYÆŽÅAí!šÓÆ[¯ÝÊ× ¥P7B-Û¼7¥&1(¥Ý>µoü–öÙ­«3s5s»é3é?°hì"5>Ü2µðûÉ;[)µ R5>žÝðï \Ê$fQwsˆíKÐŒñŠb½» ÚqÉÒd×€ |–XwµóC´UÿE7 ¸8JÑ?Ñ¢¿0Ô¶•›{ as2R Èó³è„wÝf¯,¨îÛin>@©Ñí•mc}Ðßã'œ`V÷›½HêÍ'Ö;(zîçŠýü’Y›Û‰‘ ÁÖ[ nïÍê³ê>÷¾£öÄz º–[¾àœ""®:*H9rWÄß-ì•«©¿ßÐöŽ<нŒ©A²GBÒC±Y½eG}¯UÉ”Í2ƒYÍãL(듆å_òÍ?•Mž«£”ެ QÞ ‡f&(³ò{ÂÛRJÆ Lc*Rcο”ǹÔóî7¿ç)Ê8¼ñÏU¢wHàl'w¦ÝOx½WþU6OÒÞ-_ÀžP¸XŽÇLô¬l(K¯XÃÉ%¿§ìþi&Å,¹ÉÜñ|eÔÍ?Åk‰ÀXET%¶qå®îç9@PÖ‡´õ•üÏ߯¡û‚nΠ½a¿„}ëņËÄïB±”o3\Wå „×€¦a:&=´ªl•åžÂáßþ˜Tâó?dZelig/data/bivariate.tab.gz0000755000176000001440000000062113245253056015351 0ustar ripleyusers‹m”Q’Ä Dÿç)O *jn6sûA%†Úª¬ûiÁðÍá ßÄ ÏW?^}K¸>Vp•+Ó—¡€x%"‘H&ƒ.aüƒH #\6 ‚;FI$ !ÔÂX&ƒúŽŠŠnч` ˆ²s¥gAÿ2q)hn7Ž/;+–kf(,©5Fu¦S BQÙ „úL¶=À-;· .lܪQH:»7¥C•Y¶ÆäÀ©8qxê«Ö˜j´oév‡Ý§÷C´5>2¼*•9Ç#d\€"œ°œë.ò kŽ@ûÏ/ÔÀÑ6y_¦4ãâìn>Zelig/data/free1.tab.gz0000755000176000001440000001111513245253056014405 0ustar ripleyusers‹}\ÉŽ · ½ÏWú $.ZŽ9øš|ÃÀ¹8€í â¿$’Z¨êFc:ÉXV•¸<>>±òñÇÿ}<ßÿõ£ýþñÏŸ¿¶ÿøõ??ûó÷¿Úëþû/è¿°ÿ¢þ‹û¯ôñí#† 9}<áðÐóñËÏß¿ÿñïïOlÿ Û·?ôí£”˜Kÿ[à¾ì¿þøþ[[ºfü´Ýb û2NíŸ}üòý?e»¾Ú¿Ù¶íbŠTJlâ'ù…ÛŽDŒ06 í/æsãx/–ßß>*s@=ï»õSÈ9¨?Ò8l|Rw ?Ûö½j[àÜëXÅǾvj7éN§ Žu©& ß+©fÀAM4B‰G˜õLŠq>ÈIO;Ôq†TΓ.œ‰ÌexɃ¨Ÿú^10¬ ß­†+r*a€ZŽ{’šÌç¡hl¸B„Hk aÔŸpXÖ@^ë‡"ïŸèÒþnÑÀ´È(g£°Ä3]h·m ÈfÛû©ËŸÐiì}ܳ•©Çªöt÷pgû[Ü÷ÂÇGZÆB„îÍÎu­°$P”Û:œ>B›+(PÂùÐÉ+†(Y¨UµÒŠ9óÀÓL·9`Vƒ0’*t¤ÿûß|̈Œ½æ±‚B<™‡9Åpd\¥ÂÝ¥T©j¢³ñ²FóA¯Ör%Ÿ1Ië˜Õ<´g0§ùZkxÍ(Y¥{A¢T5WܪIOzÞÅX•­½cÉ;, %”}ÞÍbÛì -‡…s¤#2¹j9ÀYL|‰ëý‡;#¯’|b<<[DraÁÈòòÜÍ™Æ)˜wë:Ä- ¿I‹2x뮢P%6ýËYtˆ³“Äå_¨ÐÖµ¬"áÍ-ð$l¸Ÿ[ÆŒL(gÊì6ôéð1L×"<Ÿ@Ê9%DZ& ³ås+¯6¼Û|_‘LBõ[–Df-hƒem>X>…•F M‹p÷AL¹Ñùáz€Å$G "íЦ9ø9bw4ƒÈð™—×ê )9¸ŒgƒÝVÓòpCñ#ïa£Z’ˆçÛ¡†äX?ÈsÛO+_†Ó¨ë†‹â|‚QáÙP¤P¢Áb|m“N‹%SÓáV·ŽsDk^¶³ºU9†4ÌãWO%†ZÔe® †‰=êDlŇ½õæO;oƒ)Ïàl?}C*ü:¤7wLÔ–Ùõ2 %ƃs TnÀR‘Ù•æ·± ¯ì¡u   }@æ³,™{ Cuð4ÏŠ9bª!(“·3(l·ç¦H‰µM¹N³4µ<«ÚäfCë*ë}†-ðjÜFèì«qÐ-’µN«gÊ­ÕÅUoöð¤›r±èËøÌ% “¦°o‡'+oy˜…­2ÞÖ¥ÕXPÌ ‘}Ên”¤73µª”ƒGáB£•†ÅÑ  Ë2œá4ÞCŠ‚ùa_&ì§Ÿ#®á­¸êYzÚŠRC·_aƒ± ys׉é¹ ¦FE£/œmÙ%ýE}CÏÕ»5OT}9W‡·¢™PHŽÄ¦Ï‡ >Qõ Ø©ÐÑe§–]¼ ç“U¥4y«mr&ÅCô ®‡9“¤D”»¶nøÑÿÏÁºaH £ÌÕs7¿.f…à×¶Ô°âÐá8kí­”fÍKÙ4W!p`-LPÇB¢ö쟕¬Š¨–>U93êÒè|xH{6*?j ¹°‘¯$…†ÂôKØle¡m}\2[ï†Ò°) ÙuŒ°8¡¨¤à¨Ü!™µgj|(•;ž‰ë™¥”©Àås;Xü‘[PÆ»¢6,{F0â|t-sa,ªý¸í6A²Ôší¡‡u…¢¦eíVÈ2P› - MöðG§GsªÕ”“x›Ã:œsT¾Çg m‚ppQT3œþ<¨-å˜Y›Y~3š™@€/>5BF"4zQ7÷¶5>U®à=Ÿ©ÿ H½Âp[wÏ tªÚ”zÕëÂh({Ûî‘SI'žz´²ÁPòV„œÝfì¶B/ô_\:KЮ¥ˆÜµ—cUüÎöb fÊ|²tRXŠÛ-…%)ip΄¿mHÔ ü–.** ˆ¨ÀtÈFݸ¡}ÑuWÀ`ŸK©[ì‡Ý8¶òÍYúuCc?9ÑmâUé-§;zi»Šwæ/ªš‹éýt™­¤6 v¯„ov1ÊÝJ¯ø“œ-E]M*tèÛ.Ú¯"5£Ó=HãÓn7r…¢ùO7˜¬»’¬ŠÀ²›;jHÄ·¼ÐD¡©1P þ$ ëPTLú ÃA¥ßë™;˜´H \ßTQIK£üN“ê1ÈM Âmº-mÛëeã«é‹äÎÊW“×@‰]M±.ÞÝä2eä)ø…v ‰÷ÓÈ‹‚gæâN»~'*8gMW1P˜À‘¬iŽY.³¹>®O‚ýT;¿ì¼£Æ@¤Íön´!^‡ µX§·ƒÎr­º\q$mëõ£‚{>Îj*Ù„2Ì ´øb“Õ±F¬/ë¦Ð§ÕB™ÔxÇÍ Ñ>‰ÏØjv^ ˜ ¨E‡Za/JéÀ»bÈdj½ÊÒÁ7›àiã­´÷3hçóF'=‘8A,“ƒmš&½#qÔäv éÝLÒX…¦#ú¼Ýï2 àxpNwåžò›ðI!§pñÉøÌ ’qÁ­M~3Œ½_–eäàÂ,c !—$ “ú{q¤Z`IçÝ$O аʕEóñ•Ô°V\IËì}Î\!ôŽrÖ2ð‚Û BÁdóìRc¿¼Á¢Ñâôè#![(+æ!Ae n»ÕR@ÕÁä¡qº(:œÖHÏÖœtûJz3¸´=…¦ÜðÔ(®ló™Iô“ÎZv£ÕÐSx=wE”I~XÞäš…jàvmä2(ïáû±¦5cŒbbGÝçcÁƒ=@1B}½ß¶cc˜:¶u=wv¤ýª'uâ=n)÷©¹=;d ¤t”“wóJ]‹SaÔîÚ{áÕúr5ôÐÃyŲâw”™2öWx§o±Åi4ÉË!¯aaÔä˜Od¶8”*\Vf³Ý, qÓ’>{Åvé«’?Ê1ÞXµNÑù=Ï"#QUƒt}ç‚PÏ[BˆÖV_m˦é´S€ŽXú·3Ý4Û‚LÀûêÁÓ¿vÜTM¿:« %¼@XºÉÞâl¼§»²öòôlü†j¥xÓ÷—'®Å½ó;ݶܺ\e}^<3(¶!§K<’¨¥UÅù–f#92W¹Ÿ{! 5HrP|‰¼]3‘==^ ÙžÚ8E4Q"| :S¨I9j~£3qŒ†Ì~¿Mî™!Œ$–Ç ¤uA %k Àc¿D -Åé½mZ4Põ;wc¨a,A56η²³04æ'Ý¿á“ÓÅÙíÞ0D»­û° 2-c$^©Þh7)^™ ×a#›üS{Úa²¡Ÿ ‡WT/ôkÔ/+Àxß±P£ €»X8c0¦ÆvïXÝhI®hʈOËã^° Ì0ºý,3íš l2âàœvÚÑ*+^ؼfbF¼‘×OëÙ÷ v£†ô—ækM±ê96·¢Oà¥uâ*gÞw8›6ÖI¿B¹b8­·É¨Í.#œKuç…Ù,Œp©*ñ’»Æ[P4U蜷~M$”DR=˜/¥ìëU™Gôdèܰ±]¢Õ›Æórc[WYµÞÏ,“Vãf=\lrw±4¾ %˜oÜ®·š !îŸú¼‚QW6™Ýä[‚sÝ6˜Õ¬w°| V2m ­•Öü~ísN–†¢ß«EŸrg‘ 4‚&q¿*ÿ¬Õ-ÕãK¿g„k‘©qöÔSä!q]¿ãxaX¶®¤Ø,Ý›ÉY>hÔÒÿilõ‘p›ö}/tú‚Û´‹¿`³aU 6¿äÓŽW$4”N•Ã\èîâ"Ÿ#¦rb¾ü, éñ Êv@"?YÿqÕ® S;“­FÎþ×¾~ÐãæRö/=îºÎj>Ȧ\œq°Æv;Ëò)¼g\ (lèüû¨Ò9²/^k:b‘ ŠÄEÉ­Á|»Ká~Ó*ƒ„©–þO¢R|i˜Oïò–­ûý2ÙjTÎãßqÖÞ0Tû`Å'Ûnä>f¾Íؽ’Êñ~X”¹In;*Ï7֦ɿ¯qwÍFÀ©µÆ+£„Â#.gœ%3˜®X1*+ö£L*%ºûì» HØt³Ù}Σ®øö½É:¯eG•©M¸÷ÛË5L[§ç .´ª˜÷™›3N•>‰ e€Ãµ![Õ²:#ñèëÌÄ>Mßm|ÌS6+™ TQ²=^¡"ª>7³z¹ä±0Ž:Ñ WâáãX²ŒÒ]ìÏÐå£~+é'‹Ç×üVk´KÏÿ^Za"[’Úñ2‰Dê™ää[„9b0KÈ öuÝ„ƒJžîÞW›¤!²>ønÑäRP†èA´`÷¹È.HiÐ! ¯ëæA2I›D'»“÷ƒq²®Ÿ.Ô0v©š$çÞ/è¦CRúO‰ &A¿ÄÕ2}§`g0ë1â‹ÖjX>V Â7¢?Åa•>œVÿ½÷zQOÑ¿p.+ÏUÖ  ™#ÙkÛšD­V‹ÇÖ­†x,“;_’m"oåLûôˆSmõƒºa’œè§ó…þYi.v»ð2Óu°?ýÎïå®ìL¢Ê6³ë[Ѽÿ¦æî9¨EZelig/data/free2.tab.gz0000755000176000001440000001111513245253056014406 0ustar ripleyusers‹}\ÉŽ · ½ÏWú $.ZŽ9øš|ÃÀ¹8€í â¿$’Z¨êFc:ÉXV•¸<>>±òñÇÿ}<ßÿõ£ýþñÏŸ¿¶ÿøõ??ûó÷¿Úëþû/è¿°ÿ¢þ‹û¯ôñí#† 9}<áðÐóñËÏß¿ÿñïïOlÿ Û·?ôí£”˜Kÿ[à¾ì¿þøþ[[ºfü´Ýb û2NíŸ}üòý?e»¾Ú¿Ù¶íbŠTJlâ'ù…ÛŽDŒ06 í/æsãx/–ßß>*s@=ï»õSÈ9¨?Ò8l|Rw ?Ûö½j[àÜëXÅǾvj7éN§ Žu©& ß+©fÀAM4B‰G˜õLŠq>ÈIO;Ôq†TΓ.œ‰ÌexɃ¨Ÿú^10¬ ß­†+r*a€ZŽ{’šÌç¡hl¸B„Hk aÔŸpXÖ@^ë‡"ïŸèÒþnÑÀ´È(g£°Ä3]h·m ÈfÛû©ËŸÐiì}ܳ•©Çªöt÷pgû[Ü÷ÂÇGZÆB„îÍÎu­°$P”Û:œ>B›+(PÂùÐÉ+†(Y¨UµÒŠ9óÀÓL·9`Vƒ0’*t¤ÿûß|̈Œ½æ±‚B<™‡9Åpd\¥ÂÝ¥T©j¢³ñ²FóA¯Ör%Ÿ1Ië˜Õ<´g0§ùZkxÍ(Y¥{A¢T5WܪIOzÞÅX•­½cÉ;, %”}ÞÍbÛì -‡…s¤#2¹j9ÀYL|‰ëý‡;#¯’|b<<[DraÁÈòòÜÍ™Æ)˜wë:Ä- ¿I‹2x뮢P%6ýËYtˆ³“Äå_¨ÐÖµ¬"áÍ-ð$l¸Ÿ[ÆŒL(gÊì6ôéð1L×"<Ÿ@Ê9%DZ& ³ås+¯6¼Û|_‘LBõ[–Df-hƒem>X>…•F M‹p÷AL¹Ñùáz€Å$G "íЦ9ø9bw4ƒÈð™—×ê )9¸ŒgƒÝVÓòpCñ#ïa£Z’ˆçÛ¡†äX?ÈsÛO+_†Ó¨ë†‹â|‚QáÙP¤P¢Áb|m“N‹%SÓáV·ŽsDk^¶³ºU9†4ÌãWO%†ZÔe® †‰=êDlŇ½õæO;oƒ)Ïàl?}C*ü:¤7wLÔ–Ùõ2 %ƃs TnÀR‘Ù•æ·± ¯ì¡u   }@æ³,™{ Cuð4ÏŠ9bª!(“·3(l·ç¦H‰µM¹N³4µ<«ÚäfCë*ë}†-ðjÜFèì«qÐ-’µN«gÊ­ÕÅUoöð¤›r±èËøÌ% “¦°o‡'+oy˜…­2ÞÖ¥ÕXPÌ ‘}Ên”¤73µª”ƒGáB£•†ÅÑ  Ë2œá4ÞCŠ‚ùa_&ì§Ÿ#®á­¸êYzÚŠRC·_aƒ± ys׉é¹ ¦FE£/œmÙ%ýE}CÏÕ»5OT}9W‡·¢™PHŽÄ¦Ï‡ >Qõ Ø©ÐÑe§–]¼ ç“U¥4y«mr&ÅCô ®‡9“¤D”»¶nøÑÿÏÁºaH £ÌÕs7¿.f…à×¶Ô°âÐá8kí­”fÍKÙ4W!p`-LPÇB¢ö쟕¬Š¨–>U93êÒè|xH{6*?j ¹°‘¯$…†ÂôKØle¡m}\2[ï†Ò°) ÙuŒ°8¡¨¤à¨Ü!™µgj|(•;ž‰ë™¥”©Àås;Xü‘[PÆ»¢6,{F0â|t-sa,ªý¸í6A²Ôší¡‡u…¢¦eíVÈ2P› - MöðG§GsªÕ”“x›Ã:œsT¾Çg m‚ppQT3œþ<¨-å˜Y›Y~3š™@€/>5BF"4zQ7÷¶5>U®à=Ÿ©ÿ H½Âp[wÏ tªÚ”zÕëÂh({Ûî‘SI'žz´²ÁPòV„œÝfì¶B/ô_\:KЮ¥ˆÜµ—cUüÎöb fÊ|²tRXŠÛ-…%)ip΄¿mHÔ ü–.** ˆ¨ÀtÈFݸ¡}ÑuWÀ`ŸK©[ì‡Ý8¶òÍYúuCc?9ÑmâUé-§;zi»Šwæ/ªš‹éýt™­¤6 v¯„ov1ÊÝJ¯ø“œ-E]M*tèÛ.Ú¯"5£Ó=HãÓn7r…¢ùO7˜¬»’¬ŠÀ²›;jHÄ·¼ÐD¡©1P þ$ ëPTLú ÃA¥ßë™;˜´H \ßTQIK£üN“ê1ÈM Âmº-mÛëeã«é‹äÎÊW“×@‰]M±.ÞÝä2eä)ø…v ‰÷ÓÈ‹‚gæâN»~'*8gMW1P˜À‘¬iŽY.³¹>®O‚ýT;¿ì¼£Æ@¤Íön´!^‡ µX§·ƒÎr­º\q$mëõ£‚{>Îj*Ù„2Ì ´øb“Õ±F¬/ë¦Ð§ÕB™ÔxÇÍ Ñ>‰ÏØjv^ ˜ ¨E‡Za/JéÀ»bÈdj½ÊÒÁ7›àiã­´÷3hçóF'=‘8A,“ƒmš&½#qÔäv éÝLÒX…¦#ú¼Ýï2 àxpNwåžò›ðI!§pñÉøÌ ’qÁ­M~3Œ½_–eäàÂ,c !—$ “ú{q¤Z`IçÝ$O аʕEóñ•Ô°V\IËì}Î\!ôŽrÖ2ð‚Û BÁdóìRc¿¼Á¢Ñâôè#![(+æ!Ae n»ÕR@ÕÁä¡qº(:œÖHÏÖœtûJz3¸´=…¦ÜðÔ(®ló™Iô“ÎZv£ÕÐSx=wE”I~XÞäš…jàvmä2(ïáû±¦5cŒbbGÝçcÁƒ=@1B}½ß¶cc˜:¶u=wv¤ýª'uâ=n)÷©¹=;d ¤t”“wóJ]‹SaÔîÚ{áÕúr5ôÐÃyŲâw”™2öWx§o±Åi4ÉË!¯aaÔä˜Od¶8”*\Vf³Ý, qÓ’>{Åvé«’?Ê1ÞXµNÑù=Ï"#QUƒt}ç‚PÏ[BˆÖV_m˦é´S€ŽXú·3Ý4Û‚LÀûêÁÓ¿vÜTM¿:« %¼@XºÉÞâl¼§»²öòôlü†j¥xÓ÷—'®Å½ó;ݶܺ\e}^<3(¶!§K<’¨¥UÅù–f#92W¹Ÿ{! 5HrP|‰¼]3‘==^ ÙžÚ8E4Q"| :S¨I9j~£3qŒ†Ì~¿Mî™!Œ$–Ç ¤uA %k Àc¿D -Åé½mZ4Põ;wc¨a,A56η²³04æ'Ý¿á“ÓÅÙíÞ0D»­û° 2-c$^©Þh7)^™ ×a#›üS{Úa²¡Ÿ ‡WT/ôkÔ/+Àxß±P£ €»X8c0¦ÆvïXÝhI®hʈOËã^° Ì0ºý,3íš l2âàœvÚÑ*+^ؼfbF¼‘×OëÙ÷ v£†ô—ækM±ê96·¢Oà¥uâ*gÞw8›6ÖI¿B¹b8­·É¨Í.#œKuç…Ù,Œp©*ñ’»Æ[P4U蜷~M$”DR=˜/¥ìëU™Gôdèܰ±]¢Õ›Æórc[WYµÞÏ,“Vãf=\lrw±4¾ %˜oÜ®·š !îŸú¼‚QW6™Ýä[‚sÝ6˜Õ¬w°| V2m ­•Öü~ísN–†¢ß«EŸrg‘ 4‚&q¿*ÿ¬Õ-ÕãK¿g„k‘©qöÔSä!q]¿ãxaX¶®¤Ø,Ý›ÉY>hÔÒÿilõ‘p›ö}/tú‚Û´‹¿`³aU 6¿äÓŽW$4”N•Ã\èîâ"Ÿ#¦rb¾ü, éñ Êv@"?YÿqÕ® S;“­FÎþ×¾~ÐãæRö/=îºÎj>Ȧ\œq°Æv;Ëò)¼g\ (lèüû¨Ò9²/^k:b‘ ŠÄEÉ­Á|»Ká~Ó*ƒ„©–þO¢R|i˜Oïò–­ûý2ÙjTÎãßqÖÞ0Tû`Å'Ûnä>f¾Íؽ’Êñ~X”¹In;*Ï7֦ɿ¯qwÍFÀ©µÆ+£„Â#.gœ%3˜®X1*+ö£L*%ºûì» HØt³Ù}Σ®øö½É:¯eG•©M¸÷ÛË5L[§ç .´ª˜÷™›3N•>‰ e€Ãµ![Õ²:#ñèëÌÄ>Mßm|ÌS6+™ TQ²=^¡"ª>7³z¹ä±0Ž:Ñ WâáãX²ŒÒ]ìÏÐå£~+é'‹Ç×üVk´KÏÿ^Za"[’Úñ2‰Dê™ää[„9b0KÈ öuÝ„ƒJžîÞW›¤!²>ønÑäRP†èA´`÷¹È.HiÐ! ¯ëæA2I›D'»“÷ƒq²®Ÿ.Ô0v©š$çÞ/è¦CRúO‰ &A¿ÄÕ2}§`g0ë1â‹ÖjX>V Â7¢?Åa•>œVÿ½÷zQOÑ¿p.+ÏUÖ  ™#ÙkÛšD­V‹ÇÖ­†x,“;_’m"oåLûôˆSmõƒºa’œè§ó…þYi.v»ð2Óu°?ýÎïå®ìL¢Ê6³ë[Ѽÿ¦æî9¨EZelig/data/MatchIt.url.tab.gz0000755000176000001440000000015513245253056015537 0ustar ripleyusers‹óM,IÎð,QÈ())°Ò×OÏÎÌK×ËH,*K,JÑKM)ÕÏ)È,á‚Òê§ä'ëLJ„ÄC@ÌxÏÜ‚œÔ\½Œ’܈Iz)‰%‰¤Ò6ϵ¢b‘TÁZelig/data/SupremeCourt.txt.gz0000755000176000001440000000044713245253056016117 0ustar ripleyusers‹mSËnƒ0¼óh¿Àk›×±Í¡‡J­ÔöHj5H‰QyTÊß×&` -B«ñ0»³^èÜíïØô¥ô9˜?c{—½ZkÛÎc§úÒÔ.y5֚Úq0þìëÜ^kOil»—>wææbJEÊ.¢wBòŽŠ)ª ªiFÖphF³Þú…H(Z¬=Dº%äV+õËâ^ngƒ±;ÆöXQ`.á*²Æì vÍ9fo<Š—˜]AXŠý¨§%S`¾ƒ%¾ÚÉåÛ“¶اÌàh%ö) \_¦¬h+0ïÙìs7ZÅ%ˆ’Sñlµí{ÑÖðÚT÷Jå.h§<ÙQ%Ö®à^iÃbÑÀ¥ÿËðÎj…Jþ'¼ƒ3/Zelig/data/sanction.tab.gz0000755000176000001440000000106513245253056015224 0ustar ripleyusers‹VÛŽã }߯@|6×|NÕÍŒ:j&£6#íç/á’—@å#ûøØØ¥ÓãI ½Ïó=–Ûës\ìå1ý̯õ2þÛ.÷ù½ß¿Óúu¿þP ˆ Ü~ד€$tº}Í/òœßo @JA `À ± :ÍÇ÷œn6pHëƒÐçcYž#?>ÆûFPÀ‡©`dôSŨ€auŒ¦Î†;†Ÿ1&úa5Ìà3‡‹A+Û¸ÏÛã{UŽù8M¾t3'pt‚t£Ùrâöq<È@ƒöJU¤GàV ‚—T S¡«W»Hèê˜qE4øHP‰„,¦ãrG–“EðdbœÄvFÈÓo?>Ññ ;™¨TvK“c¦Ž4ªÍÐЦËYZB+¬< ˡ㢣)çmEx¢(8»<Úexy¡Ë Šq»Ì9vt¢;$M‡dGGÁÒÁX!)Àƒâ,*ÍÆdIJª§KSVäœJ ½_aS?KLåÕÉìú &–°¨Þà³]²¶úR’µ…‚˜Ê¤YKéJ‘÷Éq HÙaª®0ÕyŸö‘4:N@Še›€ ù Pnqñ$-}HKaìGïâ´LÔamqÿB3ˆˆy—ÄU2]j•ͧT{Q+NŠ•?ñ0Фö‰Ðx‚šå»º°ü4äªNâiÌ•1‡¤4§»ú.”∶2Z^x Z…5»¥ …ÞÔi«MN—œüz-<É Zelig/data/swiss.txt.gz0000755000176000001440000000171413245253056014630 0ustar ripleyusers‹5TËnÛH¼ë+¼ìiä¼çèØ‰ÀÊñÂÀ'ÒÄ" ÀˆÔÚûõ[ÕT €ÀRwuUuwŸj[Æó¸¼wª»{mãa=/k«øõñ­ü§²ŒóÄ_Çõðûû}YNóy<àë—ég™½ŸÛR¤Ê®»Ÿ×¶Ôsi(™zmÔÕàÕ`TÖ9(c´Ùuõ\ÍÓˆÕƒr ²JN'wÃ|je:œêåÏ=qÙh¯lÖQy|²Õ€õ„íçukC%¯“²AK¯¨¬Õ1cwÝ׺^ëu<Ÿ1X :+g bh »îÛÜZ–¶¾ lPÖk VQå^{ D}hó{âIE0atòÊX"ÏeªBÙ©œJ*Géät=*eNÄx‹6B˜€>î{.mœ6@¦>Òf›AÛÄ*n×½Ôk}¿©ŸãLŽ:&bü®»_95^aPš’ö¬'ï×óÄFº€­Ôm OÖ rw­b0‰˜^ó 뀅¥[‘¶_.óT \ð>dÍ7° º W"æãáTàÁ´U²*™0 ¹’ý|„íÇ ƒYÈ:úcY¯ßuOe½!ì½ð` +D6zn¡x*ê…­s—Z¾¦±×‰¨kYß@†ñ‹–CeòuÒ ¡~•¡=4ñ6bž¡G`  I’w$ÏàÉe n’@ZH{¾¾Ï©Q¾‡rü¿! ¡>ù«ý "2tü‚¢Y¾}ˆ±ý[11LÈ·‚±Aä|Ú¤‚˜r9þQ§SYÖQ¹ ‰’A†ø>ËVÀTÏG’˜õ*ê( ±·”ul`¹Á‹ýI;YÄùŸkm7)@Îe†Èƒ wZxÆcZN,©&V5“„ÊXèAA:°y·£ éÁ-àê‚B¢Ó û[ÃüÄHÄvèJO> »/¸g¯ÿ²'ŠiSMvׇq¡q¿É0=aëc C[€žµ/+îa# Ë'ëe"¹<ãì´mÏ ÙRWKtÙ¤{–ƒ9MàÃþr…!"Ä¡? Cmc‹ô¤-Ì ìu0·ã…,ßÃÀ·ãÏé( Gº£ ,`E3Ðø©ª§ù 7Îp5QFšœ ³ÜB¬!.´n‰ã¶Šß]éy9«cUß×ÿDjø€§éÌQö˜cý»xÏ-@bK¢p˜ÒzÑꡪÇ:!G;1ÉÆaYŒæ~3†ãµª‡6 0ΡŒãÚð`f.ÁÌ øX0†qŒÛœ"\cÈö?b;TQÚZelig/data/kmenta.txt.gz0000755000176000001440000000047313245253056014740 0ustar ripleyusers‹5R9n1¬½¯ð `ƒñs"E©“ÿ7af“Kže.ïÏøŸãk|<ó–ìŠaª²|YGöÀ­Ži _±: oñp$oÇôÇÔÅr5¼d¯h åüëa“ÐÍíÐ$­s6¼’n}ÕÔ¸WÃL{Îx@ê{ñzGÒ"Œ’# ß mͤï0xèüªRûÐâ¹BbÖü¡t¼wòL’Ã?ƒ•6qÇFÉ¥|Ôäñ—w‰v{ó"U;iÿ »lk,;ÙÛ3 ÛÞp×±ÅÛ"È7=+$ŸäÄï kPy7‰ÖBÎÜšv™ÛÈÕ!ƒÁ܃Û;Œ…¼³­½­…wÕ¹o½ùÙyûùkÍ/[SKžÈဋÚî‹t'/÷ÚI]h£µ_ýÖ¿Ãm=?¨% ×çÌÅïvZelig/data/immi1.tab.gz0000755000176000001440000006167313245253056014435 0ustar ripleyusers‹…½Û,7’$øÞ_!è½Á;ù9tcÐÀ`·1X`1?f¤›çÉ ©’ªJ¥LƒtúÝÍÿþ¯ÿþ¯ÿþû¯¿ÿÿÿñ?ÿ3Œñÿûÿÿç¿þÿç¿þã?ÿßÿ…þÏÿüþã?ÿ÷ßÿöwøû¯ô×ó©!ÇXs}r©=÷¿Ú_å¯ðoã·O[éé #¤–z,ÏæÓ´žÆÚFc¤g”4øÛʧùï¿Â|2žö†§ñg™OËzoì%ÆØ{Ã:{Å¿Òg”‘J-¹f¼³sp]/Ÿ´çyBJc„˜±Lño7û,.þõäšþl.²ÿ>ŸÒrO­åSÁ»0_äÓñ7þ‰ß>øÍ¹öð9XdàÓðØ÷÷R"^ÜPùÓ4Ûæ%¼z`aµõ§ÎuE®+D{Ü[ůŸø¤bÅþäù8Ùã‘ñÅ£c þgüU?-·sˆ¥¶Æ_哱é[’°UmnnÈöcìWö”ŠÁ<™ôyzn8ˆõ¦47;~føîF—ÑSéXÆZHµ |m‚c°ýÍ5¬Ï½`<\¿îk ß{°’ÚJH¶'¶ñ”9zØdOOó¬Bu¤y”¤·ÇN+ôüŒQ±1÷2·ŒmÃß—ֆǨÇ%îhÆÖƒ\ÓÚÂVF1ÅÖ'QE#ß7éÝDÛን÷ÞG(O £à'“èbY+Å~ÆFx\RЦEÛÓ§ÕŒUô§ ¬&ò3×ó¶v­ôwmäÊ:¿RJ{JÉ8½¸N;öó®Œ?5áÍX_ÂôuÒt4¢~ß¼Ìy¦¡b{›—ø1JÂñåXÓc+°’üI1`4¦É8Õy)¬Ï~ŸO»7~FŒ ¤°Ç5ø½ì ¶ßö%pG“GÎÏ<¨PqÚ˜tÆÉòùºD{l ¥l#(4Jò™ `#Çâ(­ÏwÙñ¼‰v®¬¦'‚—„>êhst³³~.ÏÇýÌCç~cŠšcÇÕÇÍÑãÌ®l²üG*O ¸lqD>5Ž“í”ñ}€!Îë3oW¶ škYSƒãTûõ…aWûu^ŸùþŽhm‡sÇ,9”œq Îг¶LÜ|dX¯ÅWn{˜c‹`274‚¶¸ãó±ía Áþ7UÜ'~çÓÅÒ@”xq>“cÛ;™ÇYŒ†q)Fä«p!áHñS2Åã „ÅcJ:Ÿ€1õ’׫ß"ÁXm1®ñ ¼làið6à†µÐ+•NTŒ1§øðÎ>“Åí\[Zúù‡*ãLÔö¸>ç‹×6T#Äæ@þ„F8ÍǦ8àW ¹ò@Å<«®:îv)„„ Z›{ÌwçóÑÒŠ„Äûª¯¥ÕóuÔÊ›„Ä/w¤||ê·N=ßÕMHl Âõº‰ó›ÄYkMdŽu2éõëæúC¼P€:hJ·¹Åóù‚Ó>kXK,`­Fˆ8Œ¿Àª)'!F ²€?/`byrÈ&,.€%¯ááL÷ø›Æÿà/À¥¡ñ-û:.Ƶ’½=åk ,‰V]Ç{ò2„‚,¾MÞÚYDÛë€%ñw¸xó÷qµ;&?õ-p^(ÕÅOBlg~ÃÕàŠAûÃŬÔÖð.ãé9CRðü§F¼x@”ñÒL’}|º˜Òþ<œ¯Í“ñvÐI àк3nf[ÎŒt³‘¡¥ü¼`û æ4.2ÉlÝÒ$ÍrêĪ<˜„?þP±xlk¡7J˜Y‡Ýܰæõké|/ÃGtš.ª²6S&Ü›å;[m»COЉ*7YÈ¢sè:d¸¸Æ™¢š—ì"à[p¾èÎ~¥´Ôã ;n7`Ìù“Ζš¸Bž”@VPȯ —å—ž–ÜI©Õnä‹CH¤‘ÛÁƒ4@Ð[`ßÁòík¸(y³ÉCâ….@¼/à*|ùs‘0|sH{Ü98 Ghî1å:µ—ˆÑ¸T¤~®ë’— YKtʾÛ]~‹ç”«Î±(¥”óÑ6ÛûrÙÛ2= ´ &ñl,®ˆ?¿l©›áRaŽçI^l«ÁæÀBa×v^é塨N_|¡>ÿ,-j8ÿÞŸËÿð¢Ëªùmsq›é€,làýÅé–†ßô%ŽDº‡¸ ¢Ñ¾ë“f±ùìýÆ‚w!$*Û¹íɾLAðj£í]õL#h]ÃêšÅ¯-5LÖß[Á¤¿ñ™TœŸi߮յç*–Ÿ5œI3Ú×Ë| ]KY€»CsÑRËg÷H·•ÛçÚüõ¼>³ƒÌ¾÷ûuz­/²¿ÙnîªLÅ'7ZePþ誙«‘‰MÆÍ @þ:¥/~J1ìî®â÷^¬o•å ‡•´IëËùwj‚|[ÐŽºXz—óì÷ãÌ ]{ûò×+’@ë/î¹Yš¡·³—]l¥›FOhzƒÓ†l¼7©[%Œç,QÌshÖ-›™â+q‰4Ü®þµ!ÅVeØíZ1Ì%ˆ{˜, ÌÊüÝaXðhWÅ–‰1.&†ŽHí}11Šal•¶vx Þ;lšæ•×Î1„%Á†1‚·ÕÚôuŠjln*Gñy¤ËÑ|Às0Œœf-,{|b«ø†¾H;>áDÚv¢Œ»7ëÛ¢¬¹7W²£ˆO>_ ° ,â³è.à,+Jò”ó­‡ZûáèÄ‘° —ÀŠÏÅàhZ½˜Äæ¹°ÕÉu±9¦l+‡45ìât㦔ålÇÞÒi”s¤^ÎÑnÛ½bWfÞÄÎ,/)Þd~Ì3ËŠ4ÞÂá(rë-6šÜ…6~Ê ŸFoï OŒ»üÉÞ&ÑÆ#ÖÖ{ ®agÁŸp—=É Ì·Ju€¤ÝÂÞÏW’ÆVJ‰ngPŸµXã »tšÂ4ÆËV‹l£qdLá%‚êSFŽó÷ó¹‹~ÍpªÐ¸3¸É03Vh)Æ‹½aÂ(Fù,^žvZž¸ð…Z!,Ø5]‘Gú×Ú¢_Ç.Ïÿà^¯K![ï >xÉu~Èè'­¨f”ùñŠ8P‹ë¼BÛÚâXk7)>Œ,<ïh]Ü-ÆKÔÚTâ˜.î#óçDñvª_ñÃÏ·Âb5Q¶Þû¨9Mÿ}ÐórSTe&Åû¡ ò’Ã÷~¶©×§¤…Ôe‰í—˜<ýËŽõ<+ì¿ù0íy8;1³q`™ookÑEX}¤*C ˜ÃÓ9(dnÌx‹Ë™q³ë¿¯9ÈœÛs`rôöÝÀ&ê-î-½Q×"æ|áå ˜O/ªÕ6í»W’¤e¼ Ö¶ÈP6Ä6¬[º¢ìÏ9(íÛ<–·1±uT æ½ïuÐóts¯Í(ù,ÙÍ­ÐÛ5{._çfj¯Í,íü{Ÿ_:óKçW¾D‘8Ü®j‚XèO%Ñ»Ü)Um'ùIë©Ñ¥£ ¸èa½íf‡Ï(`™¹` Ø…ÅHjT|kjÊ©saZ,óuéæ ³å˜½÷ö>f£ìZܶÿIüÑͨO².ªx[Þ„}nÿ'?I”}wq³Äv‰‘’¸é%¢*…JcÉÙwïÕ„¿Ú‡Â%ÕDÏÉ%’~‡Óº Ü,9si6\LùmZ.(ü)®O¦uqšûe(½¥]Ëž¿"?Ưf$ÒÄ¢sGzkj¼W“IÏåN§9lÖ5\ .¯€¢TÙ†¯ÉʹœDú@Øá» ~J¦¼Å§áŽtn¸é¬ýê ]«“±ˆ5ƒ=`—°ÃqÊ3znc/8ëíÝN£†›÷n‘U÷pÊ¿ ×âCC¿j5Ï{4G+Šøâ@Œ†PsÈ£2VªJTñÍð8{…6Å€ø©öiWWfÇNô§Ö'­hEìvN ³ƒÆB¤™)C§3»“d•™y³†L[ìþßç~‚ãP (¶¬½~IÞZ#”XpWúé!6 ø®ùe†n¡g\A(ÆØ.¦`ä¸nì°“ÚïTÄ'tf‘»Â‚[³—33¶lÂ8äžzÙ.¾;vi*ørÇ´)€™¿^»?äH}ÝIæ1ÎNeP=r@m–¸ž‹A½rtLEOO<³[¥`=ß©ù•Ó“¯Yìy;;Ï‚ñ”ÔϦ·ÿ^ñs^\ÊÏ-pý^¦ee’,25Ü’y5 ­¢é+ÍTçlñÌðód˜}ôÜ¡¼/§3¥Ódâøz¢7ÖYå|fYy†ªæÍÑ©šó:zÏÝ®õ"­\¥ ’pƒ‚Åz>bò¨â–§±Ž>_¶žž¿Ž €åôàÏF±åŒÃ]¯+:‰s~OR\ñ}ñÌrLEúu’uz´™ÐÓ+tÍDz¬=oôåÓÉÓîí³æá)XÄb¸Ê#ÝïÑ¢CÙo5OtvOµçΣ_I®öqýl–š&•qÖ2ÅS«Çl™N˜þOr OfÂ:¦§€þ²Üý‰fg<œEœþñ j¥8À_‹…Êì|›…b2 3îFõ:ÚªäÇ—Ã$ÌäûЦžÀu¬áåƒ-Sýg†<”µHûjîMµPƒLòJ sÖ¯,®2^oOZ]ÿ{;ÎÁ±P3¾œÑîaa·©ì.sL.OewÂ*‰Lƒ ;½®®bÇé£Îô倜Öð‹…»!ëÌÁñ,ÅFvçÅBH²;ß:®yì“‚MæÃS×€aY“¶ËÝ*_Ä“dw¾M5›íõo$ƬÔMîú¢C!ñQ-„™¿T— 3”.7UѸX„ÌÌC C|$Î Ò úÁz»ÌÌW¨4Re§¾mÝá~a!Ò›º» _·„·lƒZ5ôô‡ì—Ù:w G[MD;‡Ì̱•dI¾þÉÍ#E™@ÄqÛÞ qˆc^}’aù^¬øá¸Äƒ£é-ÊK}‡Ì’†¼+/Ó¤) ódíÒb‘Â-`i.†¤€eÁ. l£±…ei⨠Á !Ùpùh·¸Ô¢ãÁ&™=Wuçwëù8kÈY%)—ì&óÎä'œ Žâ²û²§£‚E@Ï(!²$¬(–e7îŠFÃ/ ŸÒ^ÆNv3V27j0†Û=K%?–÷{_|N6ã`ÚúöözµFZ™fd8è5ª¹y,Zó¦t_θ™;“å ŸÈ˧¢ùÃ%ÚàÏ£,ÏwÕ.&´®Òqª°bVæx—Í6Ÿi–©ø^ŽiYAËwªYÙ« NÓ9»%H-bó°ä9K&‰¿ÍBSmtÂe2I šf…%±#%LN©¹ÊÂJ€XƒÛ½u²c™”œè˜¯›>×Á¤,hàeegY¦ãž³o/Oç½²èBŽ–§‡m€ú‡u?xqÓÈ2ßþ«ÿÉQ”ûš^G/ν¤ùûÙX Z¾ky¿Î5šPwÁ%±½¸GKOÊIŠ„l‹¬†ZÆô@³ö¦Ø`BZZoOÇ,ãI9y)´Hón˜¾voN—êY:.aQ#Ã:_ÃeË0„ IÈ:æú´¹û [‹$´Å1sò Éß°‹v6]Cñ‹gx¾éK\E}]?}{Öì2ó($Zò¾êçæÙ¦‡LâÑÁßÝ“csg玹å²g›žs9ùBÅQËÉÿ(ês6~ü6ìü¹\Ö/)œ•¬³å.-2ͪÑz‰/mvV¸üÂà•`úòÇûc¯¹ä“Àó˜gµ«hó^9þët×WqOB㕪¬âXÓ¹züŽ÷-²/—Ô]‰ÚRÏzˆYvß^mŸÓo„?°¬¡ò’´¨¡¬¯g-Î2r½¤•Íœ¾F/÷ŸyVYáÇáY‰i¼nõñg!ìÙ ¸åzñÜélª;“ÞÕFÐ;ò,oÅ1›nMWÎ’ÓÌʬh$‹ ¦,â„é&]¯û‡\^&KO–ýXd]• µÙq \¼°±ü4dÃÝ,|—±¬[*³ð½·a¦ûôÁLU¨¡:Šf ï“þj&1tV½ÐâZíƒ.'\æ×Œ™˜»äª§¦‚Q÷{@ @gA·ÔÔ•~–Ö!LpóLÒ(S5àÞ,ž„uô篕6휇Þ)“4ŠU^òYrkç‚R>7å“ÐÍ= &q¹røªLí'6ã ËN¼xß³â':åü]®¦-ö°v¯_*ç"̽2ß¹³^£Ør;â]¬°48†ïê1]7 ·äLˆÞš˜e†%ØQuÓžße©.ý’cÝìR)¢¸fL i Ó€` +Û$Ûêwâ§³Êw¨=g£Xß.;pÏ“µ÷çóÞ‰Ï3{g$Àìí ¤Â üf]êqñþÓ¹ÂÿJÊßj¬K&×l•Ilóc³gÛCE–"4–AO_-%Ì t–ÌÖÞˆƒñ,ô䋰¬ZÝ%¢Xf9pÉo¸­#>kuJ†Õß°ó ?ÈÁ˵J–t|âA¥IÕqqNªcMk:q•LÌ|>ÎÁÌâR.y "äböõy< k1 %®în°uÍ@Ü™Ì:ªòM­ü ”s3²€·Bâ^ÖtÕõ–ºÔ­ûÚ•oº\\¡ôsJ5”ø:žêdß} ÷*w˜|©õ9«ºF2$÷”çõõ2$÷0þÚûšÎ”©ÝÿÃr|¥r®íº… ƒ DǨy1I ÜzŸÀùÀ› NÚ¨©,¼¯R/ÙäA„þ°*Ÿõ¶¸!s„É€•¹hлÜ-XšV6;•>Ó RmaËq:Å÷èTðÞ2Èýx]×ì2f¶HM'òR}t4íšÊ´ny+ç£Iz~ k‰‡¹18ƒY„m{ ‹›Ä”Â¥96Ó»æEcö°†_ÂVÆâêsÕ% Ì€QÞE@ŒâõyˆÐ'p&ËýU À¾•â¢×•£Z(¼²›}g¶lõ\Ò­dŠyúhÏ «Î“iõëC¯J}+ٌذxFv3t}¼êw”¼ž‡³ËÝ"C5e‹_Øürcüî†vutÑ qXdýdépB˜p9‘X3}‘z Æ%Ü‘°ö*8~×Ü,t·p ¸ ÞÍóGÏöOUþè%i£*Bx‚xàóxqJ[MN•y÷–@ÔUðÔkÁ¦ó²|¦&wòÒ÷¤{UU©xâó÷1~Úüõlûs¥4î`PkþKøÄ/]lÃò‹ ³l¥åÂ3˜Ó¥ éŠ$© [)Ç¢ž?pg"]Bq³§¦ÕtQ|'Sƒ “âŒîÏåHfº]žI8±U/|¯ŠôíËmëy=»ÔÌSS“ü›¯Ý1Å·¦ËîúïÇYÓŒ3p–ò>Е­¤æKž SäA¬øt(æOÏB/T:éî^_畊›æ¸®¢ º“+!1Q›ù' ·¼`šeÐí€K6H¹åM‚eã<^eáTYpu€I<‘é!F‰÷ª ÑÝ¡X> ,ºõ?CÕqg^”Ò¨C“j‰m„ [{1ΪŽ)¦µ\·~íe1ÇÅæäZß&s.$XÁ`PQL¤&ë“ùS…(D‰ÃårÛ ×5ðÂÄ­~kÑ])ççb’÷Q{ÞÎjvÒû…« ¹Ué(…ÅÏbjS“ëÍ‚›°<D–3×5Ý-P(®áÝ^t:—{‹ JfÈ »àgTt»+ÂÖWŒ $\qÚC¹ùxÞx•A·CAÚúÚý¢Íçýì¨YqW1G˜ù%ëuR'6…%Âì;äö}ÁT" Pú×î ˆô :\e²1 á  Ì‚„9× @TD´HבH ÔÕXœS™eL6ÝBÉìÏúµàÞÖ:KO}…„Ì9^…C“s{”lMâN÷O¤“'³.åÉö¶‹+¾j¶qô]ko<¶wNWª2à2gâ×@Jô˜œ0nIŸIÏÓ™+MÝ ú ¡9¦^¡ÎªØÞÛ²”ÕÚÏ&‡ÇU¡½7Ŧwˆ‰ß‚8qeuîÞÒuͺs…W܇ ¹cghÅVc¦ÇײºÌ»=«f½}„³ àÏã™§êþ>z2ÝëøçÜå:Ê™‰‰peÁ˜ô;h€ÀìÑ–#ƒŽI¡4‰?1܉UUȲì«ç1 :ÏòÄGJS\íœ`ö­ô\ì €‘ͳm²ïvˆ(•– 6´*/›’>÷ KZϽòþ×¾¡}(©IœøªòsÍç²é®UVöüªÇÍÍlO½)i=ÿÃíÓ`Áá5÷Kò® —fwÛ„õûK} Ö¯úÀ_o®à–eÏíéÁö\…öçBù”„_Èžñ,Ñðs¾…«'Âæúâ9‚Ö”Ô¹é6kó‚”à÷áÐÙÀï…Ä /múíãÄ¡a ¶ ¶"J ~ü.N $É&sްܑžgrµ²ŒHâ×™ÂÉáñê^Óy‰Q¦fq‰K뎀`i–GXÉÆ-ÊMñªGÐÉx0ïÄ6þÞâ%¡ËŒá&à™ÃÎC.ð+¤hr¸Ç/Áo,ªÅK*‹¥t6u’س€âz.'Ћ…Zô®9ªèFˆk;Zf3Ê'u¸—_˽ŒêÖz0oãØëV¹u÷ú\ÿ}¹9¡Êz~Ñ‚u:éb;RMóÖ;6åüùÅ¥&™/þJ3)Zêލ†Áˆ 9Ç €ác~J9Üiõ×Ú›•¨½°þ$ÒaòüÅ})¦‘/zš˜‚¬¹R ÖÔ2‘s-ßçss·0¸xž¬¹&+nCmß–ì‚·Ïýl(½íŸ!"ZQfР¶•K–ŸMÀ¡” O_ÙÃÖ êô! sPÂÆfÖð ô‰(¯ä306¯”óï}9Ò%Pœó¹CŸüŠ_qÕrQ{}»†å0¡QšɼġEiZ çÓðß_B£ž_ Ú͆hÞ"¢̪?i!ê­‹«'{o>¿€5›nÕj;Âr'}^?6T­ã¼ù4~Yì_™:ξÊ›WìýT×KÂx|mG–œãÙ,Žì¸0¯^táP½®ÌÉÄm{ÖÆÈ8£0_Àö0ÇòË[Qî;[Ğ׳€ £û¡ð°N—0žku8@3HšR//¹ãm5‹ØÈÔ7Ú7Øö¶¦8‚1–f9Ì\Ã/]M´×žˆ¹…eÕ(ó ]ϯ¬öþKLjjt¥hÛÅÙØdžíÊÄ:%[ÐÞ X”tbˆÕ¦7Ðè÷‡ ÁÂÑ´À š¬³S·¾\%xWÌu¦T‚ý¯…DÀ.¬Y °×ðK/#ñ{k—äîæyçJÿ¦LL¨$üâ#ÍkO*kßpÛ³s•çZnaì÷—Î1¢•qç|Þ5‚: €®øÚ¥ûOW| ÖôššYÔ¡H@ôçâ3S¾ &ô"*z\ί/+ð;j`Ù"‹ÑÖÛ¼l÷™ûœñ»©«+¾vRÄæë¥Lîí¸ut%æ>•OˆFì§rV™fFУ–Í3Ó…Á²[ïk¹ÞØa+„[ÄêVÖÞàn.W½úöL0{~QUÍŽÒX`n3R_£M·*½$Hî<Ó¨uµ»c®tÞšÁšrЭ§¹u7²íUpÕ d#©boëg¾hžúÇ9V+R¹Ôü¹`Ö|=…°ð©ºPêJ˜<”fÌÇI›ñ6`31®ðù°À 6Ï:"å›Dµé.XT“§–D#fíBîÂc)„\T³ám»C}nÙžK#Ü £×p‘õ‹N(ï馮”©Â];wÃ7<¬îÁ¶ -lí¼²'ߎh3¶{¾¶ÐXïÏ×T§E‡2À.:~—Ö+QöðaÌ~5ÊYó_Û‹Ö)ŵ,¶® È]ÄÙþ\|^¢¼âÙ§G°Ÿ.ˆ•7&ŠÚkÉä:L­çél„˜W¬+FvÐE×sùkãà›36,-…ÏþÔ´Êfº"f»© ü¶N.þ±>NX.œ–Ý$¢,ÑOƒNt½“ê×ð‹c†n)˜—Ð7Cš(ë*¼º!†1ýkxöÈËÕeŸòMÖs¿Ò];'óŒQ»È.´•@¢ËhX¸w„ʃú¼VSÝqþvŽ.Bº5ô Tºä›¤ÈZÛQ™!VÏ>=¢¼vO|:mŸNä´ÐY›½^ÝÅV”¹;î!:¤Ê®~þ^‰dxÌü炈aU‡€–@³6 :õžÎÊGÒëû}ù$ÅWšèz÷™eûn¨©k7”¹Ãë`µíIOÆšIksÛ…r-Ü@Û›®×õK[Œ´жLw '^åV,§¯[µƒ×i‘bOgùµ°nüOeÒÉ: ÅÓö´2[¼ÄÝA>UÖÀ3ÄFøU›N…ƒ€ð—7Ït|[»*·‚|{~©ÎC¼Áo“Š¢²%†q›G"뇭»(Cè­ÿš #œµº¨ç—f~¢Ãq1‡-Ùe¢í¥ ëZËDÛ3§À… ­ÀÞežzJ6\þÆ__€ùlºc¦ Cú¸Æ×I+š1H5±ËQ«ñ/ß×Ü…ÍüØá=û^¶ýL“&VÄ?H6…±†_€Mùí•­°XU¹¹j“ÇsIQ+D…ÏÎéCÖÜû#ÒC$Ô,§ö­ÊÓy¥¯MçäW 㕦Á;j˜-óæð~\œq×!ÛªÑl¢ 2gWßyÙv»×d^ù¡ê·C©Äg̪ŒÌ£ZQ‡bm{”×\¦³Ö7Ùc!0dK Ÿ_Ó]ÁðãzîýŒŒt¦z@8¹5ÜÒ+lÖèÛg¿ã• FPœÊFOø‘m†£Õ¼!³mº~>:ÅÃkåΉ8ã[+÷[7¢¦š²ô€¼ë¹Y#{¢Œý^™©[={ÿU'^ß/q`+nÑÝ:ï,æü)\„p­V #Þíõº‹q'ÿg¿ Ð\ Ðú.y3û§"5¯¹›õkõ¯yh9ï0VÇ üP<íõ1OÛ±VAl ÏŠˆ5›|Á‡tü9Û%ßa*Øÿ jÜžÅÃdëZaÎÙܶû¥ì¦o¿àÄZ†ÀP-ÜÞík­6_Ò~YÜc}ÀðÓÄ~Zœ•0`]kös§>ÃM½C¸g>¿”k͸idSž\ˆ©“Yæ ¿6Ëud·UövLó÷í|‹¢öââÒÉ~s%ß\`…Cªìiªëù¥î™œ$²”âTaÎ×OSýõÖY¬ãlì‘èhs¸œo„ôƒƒæÓôE}ðeî#í‹•µ:d&F‚ãƒåWÂîÔïfªTî7Δ)q¤Xm×1Ñt ¾éÎc\Œé)‚QÙÃ÷ësF4Uööj5¨_ÏåÏêæ©rî db«—•ý Ë`ðÖîg8Œá‰•rŒÓÛÕdõñ6 [ë±ÕKñ‘)x‚@X3Ä35¨ýá£àÝ»8nª b=NÉ=ÙxUÚà …@~Ø·µ J\3E[éÖ_þ¹pŽ2['°Úkð»ÚJ¥±}s Å÷'Rb3eFó_Òá'„lò pz:#ÖøKÑ­Z›>Ù<¸¢ña‚ê|™Axnvf¦`€Ò[7 &Û — ´ göH×­¿¤²MÇÓÌÖ̵L<+ŸÏ¢/ÿ¥E-CËàÌNÅÊÖÆ¬Ù7êléL…¤vÛÀTjFuáÚW­Ú€qމ«çø#ëqG³5;´Ê¶í ´â—¯ÎŸB…$^:ãÎ Ûw†rÖ¨Ô'÷Q| Le¨0ó莎þ™WõZ¯¸´õR{ÚG†b„}õºwxÚ$<<Û<%P­"à½g­!Å[U»ž|ɤåÚqáû™ÂRyßE9ÛÙéÙB¼£l¦ z‹Á{?ßV‰,ía‚ð3+Æ*Sæa¨4âÓ$íJ?ÓÛ!PLeƒ[dc¸ó0n°yÐÇ«ýÜ¡zM̬]Ï—°ŠÚü>ßàÎÌn­ìÄ·)´ëù¢ô¹x‘©xkÃüdßõÖ°ÇH‚`,?Úä‹êÑü›.Þ¼° ,éîbO¬^Œ;çFÜF7²‰$IÑ՗η¤:rʯ-]õ{oùž0ÃÐ4¶ª/có\Í­gV±í®ÎGbÙÀójdxkÇ0Aîˆtv‘¡ßí6ݧBzv3i }gs¤Æº,&Ì3Hí;&x•Kr*\T–ï–\ëLjnv¤_æzÎCŒ:µzÖÚ&ªïÝ`- |ÞïœUÍpÁöˆº]Ž«röÝb€08·Ô }ÅÅ¡W} BOy Mÿ Ú<'’ßYößÎïvÚ žÔ­é8!2bAÚšÛ…e¸ÈSÉÝ)[y½ñŸÛ:c€œwÀx1›´ÙuÒgPþöËõX|†K_‹ K«Žï•!ð±ÈîÆÓh°³ë—UóGh){@ÊŽFV߉®58‰þfÓúEtðÌ—VæÌ«Ëýr­å™<4¨´G:b·76ùgþ46\Ì÷~nAíÒ@1ÁÞØõ-oÓUáq‰¸N5±3vÂÎÅ!Ú)¨%ßÞÇÇvÀÂg· ä3')¾"5ÎÞªí˜7󣙕v”¹ô/Ò ×„í\àJ㿈²šñŸ9OU¸#` þzöuaÀ%ç0ûï1ÄꉇyVm™­x~ÙW©„AaÀÝa_lÀº£úék³‚*í²é‘“y_JÅ6½¶^ "ðµÀ’|ì $oZUüø…¼pœ…-qÕ,`sÉnæºíK7éiß­lÎwjO ÃfC„°‡rÑ„Iaš÷øò™…+¡Ì’Ì'aÍï5ök ¸gÓÚ Ê“;C³Êù–¢RmÀ¥4×Ò40à’B«[âs&qÉ­p3ÞÄjB¼$ 8ùDÏÎ8ö>b5Üͱ”l€Â©¯øfóW˜ÓsïoaU!¿]y³Ó”ñvê ¶^¡ŠÅ÷™`?9a[és¹ÓÜž¸ÉÐÿ cM®y,ð•Š>Sx-zq²ö¿ÝÒ5Œ“'öwŠ‹¬»K^+¹³mÚ¹Ë%xRè-3"È6¦«§/ ³&–œ}ãÕî` 4ë¨R{˜©i·§\xŒôí tн¤¾QÏKpA« Л,x³…­Õ¤M 'ôÖr Šj­ø÷„+BÈrŸn¹ ùµ¸”ŽÑ™M½ìýùæV0BsͽèÄ™‚Ø©FÛ’z zÏ<fæ°Àˆ˜BÝÆ‹{ 5ëԬŠö¸zºxrÃ(&„¯¢ªBXl«ÍžÚløxCfå;Öï"ú®[7¸^"ОÝtwu(Üæ wÍá@ÎUUýwª™ßxË%u2q4–½‹²ÍPõŠßmÿ®á’fîÛèÃøÎzÅ?7X šË­ŽÜî“ðl¦¡h'Ú÷zÅ¥«»…›†f»]®®p9³Öûµ²3q—fŽI%3²ÃuKqËjÖ€v~cð7žËÓ¿Ìü^ûa(Ct÷“µù£ÞÀ{a Wg ³0¢ê°Þ%ÆeZÚ€ b©ŸÃøç[Jtﶆª+ñã/ ˘×y(¶Ž`ÚÚð]gB>~ÁˆÒ*˜¡/o¼ŒM_$hÈ ƒm¶]`ŏ=4PRŒwØ–Sž*´&ÉÓsV.¨aÑf+D:Ú +¦ÑÍšðÚ^D¦ó¡‰SÇKviõ%»] åyR3ÓWØtœH+i6äêzá¥a‹˜RT‚)“ñ!Üð¸8NQf&sNäS,Nrµç׌ÿE¨QI¥oáP|Àß´ù‹¯ìl³–ÊZÚ{ù±ñÕûN5\,**“ôRžŒ¾Aˆ€Õ#v™é¼šP]̶lÀdKò6fxާS?äU‚¥žÙ·Šuž…wå®OPu|%¬ùnóËåwnð2”^f¯SžLÎ]»Õïm†¯™“ŽZüÚƒ1^j°¤£Ç[{÷™òP¬VFÓÇB Äx¥Hžš¯1Ëej€Í"×Qè{i‹‚‚‰ŒO%ÓÒª_U0Fët‚lÛðÐÝ:a ¡ü°dšqÈZµ%+‡öЙÑ©œü¥Àqüvhh¤Š-« ”ï’¼‘ß!{oîAr\’#ô=\PsdÇGÅO81T+±ïÄG€:eãåº*ˆÐÏ`Cš'~/‡rQßA/ÙAÑ[öm·Çîë7Ôxa:·âÂÙmW?²ØëªÃx¯ÑÚ£ÙXƒ~lp½œìó%¤ëß(4ÏÈÍd{p>ðÚIª™ fˆKf“4þœ“*WHüš§dÈ-CÅÔ>¦Õ2ká"»8lT¸^¨L­,A„¹´š|Gê'ìki=oØZ‚³2å„'H3É1{4ø"ЂÛQ4²&Ì\“EÉ sÛpK½ÐæœE«…Ãd‚K‘Ƚ†­HMp/!eØr±03îË ¼†ñÜI’ßÿW‡q°ò-ÄŸ` £<‘ÿýÇüTgpå¢ß(dË%Ç…©š7¼@Ù*‰ðŸ¤o–¢TÛöomâÖ+éÃþŸ…í|q9ƒM_/žqi¡±^ü·2×£B—t8 p¿âî2XkÈç5ø1 Pæ–¹e}–”A¾;‰ô,ä€kEÏ"±rµ¤vÆÇócU$òÔýu 7JôħÂú,,¶(slÿ­Ü³ñÛÉ$„ßÑÜ‹xx&+93ñ”»Û{4**0¹·H´+î‘ÈW6´ËžvÉjRâKl—Ž.ñ•µúöŒ||{ìl0ë3¯âvvý93B9Û£››/ßË öÓ× Hä^¤i§é^ŸéÜ]‘ÈKw¦ÚœßÏTêúíRȾ|˜®Í L¼Åï½r™-3’̦\‚ñÊ_3*Yg•E‰ûFŽÊ<ݯº­IáǃSöC-©0/—®g[¡ Ϋ ÁI'BÎì‡Ô¦­1‘Œ¡Rã²×ÖØÓ&ô}ÿûß /QæÔ¸d{4ŸáÒ¸Ù%©¢‘»q²Ž6=‡I›Ð>ƒ»Ôé¦Ïí̪êBÑΨÌê'%¬%¥GÊ$ Î¯Ë ‹Ìs¡z˜gŸܧfã/`«ÁßxiM"f’ùÞ%Â±Ë ~ˆc£zko”Ÿê’$N»ÜúÔ野þ´J;Ýë,#K× ª¬ªNŒy±*ÑR Û]Šv —„.TRlòíp)újaƒî82ý,t„À,[ÒS‘ s°SD/–àdd>J:*`BP–óа=º«tIÑßJŠdBÕ \‹„pü¦¡&/bÜq¾>$D¦:–õ²ñá¬>Ìô/œ~ >e”çp6‡ô²Èž Ô ¥É<0I6èÞF™wƒF;¬ŠBilëÑ™&b€.Çþ̵3bpl6ù¨ß˜PÂÍi\%ܬdÚo€ìõC¦ËFǸïøï/›ó ¡Êp¤„®,t~¯õ†q&˜Ë³ZŒVñT·përºœ5}<{8}"G&þGˆºx)Ý’«m‡hž¼;ÎÕXâ§lÔ.úÔß /B`¶ÝH4i2Íñk[P?¿Ï/ºÌÑ]ÐÙŠ= úºèeú ËjÙœJä¼³—NªZòøhž¸ºV5ðu¤œÎü’÷êÁõ£Bò–Eã2Ú\©/™-w `Àµ{¸¢§ÿÞB-).Ñ÷««QɛϟËï0àR,’}€«“o•m¼Iw¬]&ï,qqi'%¼¾o›ß÷"†óªÂSRC’•yý ÇÊ9#ÝróÎV¢bÙII¬ïÌ‹àŸyűR)d Ë–ýêhEÑDƒ†9`›ØâTLš–KÆ ß!Y–»Ce)¸uÔ³Í5QT/9D“Š%oNßt+—TX6)ê¹ðÛ&ÉÎ<0ªõÑ*‰Ü›–åK8)jè®Î¶©ŠrnQÑn#™fdd;Œ‰+Y¯É%M¢I1Ð[VZò¾ó/+"M}ë´v .7wòôØ §×vÈ«&7h:;övq©ÈúJyºa h†KtæoÑ–ØÆœ†B·ñåÆ5N×.éY2ç’ŒÒSÏ«5à’Àí·g•K’—=Œyj½TÑŸoMò’IJDèá ‡R­,|N"»tˆ1±êaÐí3†^©„ÆÆf_vc½$Ù¤o¾ìJ.xqr)$UF¾u£6áß¡c' `JÚøvVx'„Aƒ+‘!0lŽ- ŸuA7\º+õLöLØgmÄ¿…ðÓxÎXþü4ü Þ½ÙŒ˜F< r5¥qÉRöcs×oH8,L;Æ…‹/±^PuµeN¼;Nîã’"ç§êè§›[xñYˆË¾&à 0òãêá?€ .0§e=fGG½„]²ìÕ=c§Ø‰¼­ôj3˜¸Aêh‚ó&+o"Ë<%xx£«­±£kñ]Π\^âM¢ ˽€”b€"=;óþÐøî âá—¬Êá’ .fŸeH†P"t V!Ø'¸yºyà¡äpñ~Ë“ƒËËs>@¾¥ÎÎ._îôFà Ћöó9Ì㻪ªÈçÆ‘03Ût¥j¹\YQÎ%ÀHM:{bÈ¿sgØ ‹—j¶þfÚ¾A¶í£ã%GN ¬L[J¾Ùð†ÓB°¯”Éyjrˆ‘‘ŸMŸµ¾R&ç¡O­ù’vQ|IÚø­'³x{·w6ðöJcAIæ'Û½Y,¶9(iqÓs÷aÆF§/ ô†ÍmpjÛžž36‘_iåá‚9„YÞO4¼á¨ñ m)giÞÈód'ßdaÍœÒYá'7ZÇ RÃ/0·ÁßéúöýÄoïW•±Œ[ÔÙž·¼¸DrRRÑèúZC3£3|‹Í¡â`™ÁùÖCÂ$ç‹Ò"Ý) gõ¦\å|Q'Í ÚÍKX²÷1Ü)¨±tgˆl™ZYYºï„oçb²2÷¶*tquv÷`™D6wE>O©† Ñͽ çœ/òUæ\ö$Ý‘R›!BCU´/(Î/5—[¶h"ØÆCÓŠ>ß›Åäó:ƒFÏÍ’Êßö™€=àÁ3×s©]ô ÒçHØxÛ’rÑÑ¿:9X^a¿±1{ûåQRî)‘qÍp홡¾ë¿ZŠs]/²|'JÙ•“û6Xe…g ô·²Ë0Ó`ŸéŒPQ kŸÅ^x©\°²‘=aøÁ™³â ïË(…>Ë>Ý“ 4à‚:à»xm­a¤¸@zh蔺vãMq¹Oë„õÄø§RljÑãÌE]j—„j,äå 68³:œk/ñ§Ç}‹"*Û5W;”U¯¹©Ë~wÚÌŒ¾ªã¹]ê²!ÿÎ3 ßqr»$Fû{û·úý™ýVÙ®Ò ÏL4ÖŠ–Œã4*mA¼P• ìƒAà–l¼¸ÑÆþ´I^LÄÛNßÎÈÓ³¸ôç|õ˜›pY™.A¤Vƒ¿é¼†ÃºL †F|P™jܱÇQ4@Ù½iºƒ.… –ì­;x“ ÅôÉ ?¼ìÌw)ì‡a4é€?çNˆ wÙ»œZ[r_RÙ[îýLõ®ŒÜ W×tÇ5;ÝÎM¦*Ô(X̉½ÿRz{–¥ºßuÛÖqɘUE‘z9–MàK£¤[å§Ÿ“·XÜŒg;§qÞV—;2]O}ÖúÙ~Ÿ}žјáBün›Ð¬|fþWÄ?)i×9•ç9+ÆSOÒ®4µoÔùäàc+B†ÕqSq_nQè«"ø336èŽXÉÇPšqÖM§]u~^Y5¢W^U!ìÝÀ?lmÎ&êEÔbÊ90¯›[‰Éz°ÕWã½yë»SDµ—BFÉñ¢NŒû}â8_öÙKÌŽz šhQ‚¢úÑ“y.éÖQšC —l݃"3wOƒ°mWnïî7N6@fîV¨—pR±%*œÔèRÏŒŽ±Çí·"3öV›YU}cná&ƒHYà¨Ð,Ç`‘ »Ë¨î/¬ÑNôØÆëÛún‰¼2Ί€6ÝJÏ/N_ñË" öí¬`T˜i´T a#?&ô<ŽÞ)„ uìþ5¶J¼8}­;˜37‹¾¤q¶)ª= T}2ep¢Ÿ‚ä5ß×€}›vwÒ=rm¼ç¹œ°¤ %Ïì?ÊÇQH\6¾ü³ÆY¼EÝ©:°héù»‹*Gß,¥ú¥Ë´J›‡À,i²ÌÄš¼P‰Þnϲ/L¼ìÑèZ8N“ÎÙû„lá9£EJ+c3àÅì8Ä %•‡±î#î/¤Œ-X펔’I¢j>ƒÜÊà JþéÅ;‰œuî¢ÔÜ·—í;@ÙP3Ë-Z ru¦ÈbÝ{õ0éË÷ë—}›]Òâ‹’nØJö ¡ÊîI ¶HY¥;|2{ræÕÏÏmznî^ ñé³ée˜AĤùó­P†”aÈ<„y7àYŒ/gµ×¹v±bõ÷Õ‘j¡„²¥Mg Ùß® Ø$S{‹"®¥ç™!˜¼#@wàUlbYñT¯?:ôéXÆ™ÐXõýÌ~¤³Î³Ó}dï¾-©¦3•Á»ç\iÀv²ÿ64M–ªSªó§s<¿ÔslDéN¥^c}T€kÊ}L]gøÇþJ ÒÈL{x(‰˜Moã/9Þ,q= º¬¨%¸–&…f¯Dd:Qbç=Ú|]ã,Ùn¿±`ï_²]Mc@Bª=uúYÄ€6¸:û¨[Þ¯kH´iO-®öy+ɽÛLê>´4µÛÒ.ùÔ2wЧýΪG†¹ÙzB>·â€´›0¶È ½4mÀ‹šèÒW¨³{âš]—nÛxó‚…SUÚ¶†v–Dz„Ë­ IôW¸Ý :¢î1*3Ã)/?D‡K¬ £Õ îywì¶¡ªÒwDÆ™„r~wÀ Û7Ù¡;ö{ü°uB£ ¥[Ô´×qI°û.©ÜˆÍDÁ¨gQðAZˆ#Æb:¬¨¸OÃlÂ~Ü1âq¢sf}.¹è*"°‹Dw)sG°Ÿ®O”gÿw†„eV%;Ú–Ga¬zk19ýZ‘‰ì— [R+¼ä _¡ÃÞ¿å¥f¨®çôM¥°ž:†?ftIi¯Ï…ûj›ësq66 9y° mÀ<™ZHolŽ(ä ×’<ˆºuµsQåèžòm†|öQî&fíÓÏÀ¢o=²gEcw™:{Á4òé’…ÎO´`êÔ½ô/W¨2?3}8˜ˆ Fù‚³U¥ùî¡©8*µ²ÐˆÐÕ¡é¹zW=­w«ü°—t/?\›nØkž"g’¤AZTåñfÄÇÞ «ÃtX­^X^ˆéSÙ ¶€‹·ÝÉOðE[EÏ/5$Ãj<÷T/þüŠ¢cÔ©êÐSÛÆì|üÓ›ðÒU#Ï"¿‡Ö9ÉÒøªãÒ Ṅäæ[gQ$øóÃÄO2ßzýMh»©®à]c×']܃Ýÿ›’ç[¦ÊÑ·gÄ)÷]¤$Óêè%Y¸zï’-]ŶM&æ¡áÆg"±ž*ŒÆ+‰nxöÑž›»yÑ4àR]ͯY=HJT¶erˆõ GW—Qyl’¾ž{êí;qBK¸ äÃÓÌöÕ‘f·nB6Cù#6+6‹-^Æ÷²)w“& “v"AhTò^…Môni)ÿj•Iyi…ù좉ÅÎ$Pàcߺ‰­á.«šôZ/¹äÑgPû†ÍÉc¯ÌÛSõοGýVÙÖ+.EÅ_qIEd\’HHÌ#³­MxÙX'†z ãÏt,1>¬&®ÊϪʵ=äíÍù<ιyHl[8g¸$`ÛL5&.,„ä„i³oòÜZæc·BjÚ÷›Z>_Z9«’iowUÑËLl²B|UÖìOA²yÞ¼aͪð…n5PUøBPK˜~K,í L\=<¹eÅe(<¹•>tÊ<ëM:Aæ|¼ÀO×nÐ ‘6ØJBRŠõÇk…X@ôKZo)6wS­0mׯ,ø6ýÄ v™dka«•Ȭ!n'Í §Ú™)vɆ{lüÀ>ð”ìщ1×ñ†‡ýû>¡hÀ¹ëÁL…¤o²ŸU‘\ü˜=Ám¸'ØÍ ŸÐžuóŒ”2¥?3ÿ¢D­®µ6ý^³û†õ³Xã/¥G\ÔðOp Ú÷9ÈÑ%iªÞp§[;™DùuW7G·ò¬DD½éyQ ø¡:æÑ¡h` P‡*‚Fà¾öoÄ?´:uʼ4¢þj,|ë&¡ç¬ AüTeôþF\´èRÖдh뉲Þß¼ÀtžK$?Y‘Æøc‚oc×WÔOò¹£‡Ò0šB™{¬ÚÛÄw¿ýíig!õýŠ~æ¿Ù÷Éc—›ƒu P)SØ¡lÓd¡dYù%aZ’ ÐØ-âÓÂ…v%›b—; ‚L/3˳yMmüE/±¶ LË1okÆ:ajÏLÑ{gt:€ a l|9{ ª²ÇÙÞºodîÙ ISÍ÷ ¥6îXoÐ2£èƒW6â ÏbKa›±ÏÖÁüOÇ:»ÿæUTþ¤ÅÙŽÕMÝ&;tÏ~·=W°óíèÐmlJß½á¨5vnHæå3“ X:ؼMxma›&ÜÜwJ?É€²­»“î{ÿÙ•Ûúd Hb¬Š2+Œ™“ÝoFk m%ó Vó¡§ön,ŸENà{SFÙë†,¼›>ÛrÒåDätoê–r“-]Bü²—šÛ¡¯8d4c5MTž•é°Æç³Î\|I‚ËÙ ²S5tpBÖ¨÷Ÿk6œbÜHµMÄë,p3 )±wó¬sC{Í ¾`ã=´·´œ¼žt«¬©_(‚˜M‡EÏš¢¤…ý/R%dècþšï‚-Õ³}›lþb@Í‹§ÿ4Õ¡î‡lTRÊÙÙ)/uó†œ{‡_›áÒ黆ѤÉÞÝ1Äínïîæõ Aݲšâž‡ÔÏ ë<24á>çøKo]%£ñŒsîQ PýúC¬ŸÊ”ÖÏDbÜÒo7#æ?Z¯lM…žÙ±Ò¹FCs4¤­…ƒm¡‡A‰®”å{êÕ¹ûØY™wÄr6ÊrÛ›­ á³jÿSÃlÏ™.T5×ÚåLœ…63Û)›ë â?dnndd÷`7%ú¾ ƒl1ÌÖ.ºë‡jÙ™‰¡ þÀ¿© M[}ȘQ5¼Dº)(úN p}²y4ñø2ü4~;B3Ý÷¦@Ú¾** Ö;˜…V8Ñ2Zh®ƒò…%³&tëj8Ì“"V«;šÂ¤0-̦xµ|;´nHÓ»Ÿ_KÊg=\y ­»«ç­"j†z1‡ŒV”»§ü'ì—4RWoÙ¹Täù Šç0èXãÇ%ûe¢ÏJ_ÊëJ Œ5^5| +$q9i}wQVê)cg~­O‹ßa™¥SP´ÙÓ´[ÓR{…ÚûnÎ~|cæ–B2ÉÕvUVjbºµsj,M÷c—T¯Éˆ I ¬D{v Uû•÷2ÔÒqèÂIÚÁ¬SeæIœeNfúw%ïÞ\I]u§{Êt´7^ì+<º¢¤'|轄†\ÀèÝÆ»f? ¥)-/Øt“aä©dZQ ›ÀÃüaf"DíÀ‹7Ûü2·Jf;6¦I0ËÉ9y.‰ê2‡ºwx9„Gæ ášæm€1)r˜ê'Hº.Ù£É_qi»—}Àµ‡‹mT(§Üê/­sd£ôÐnʘfÐ>âž“tX„0þHpéáª} ñ¢‘³èa÷Ñ@¥Ÿù>6>œu-¹j»’roµ{] ]ØUä!‚ªÅ›fGÙþ…_¿;hÒMPC(–´{Ãjë2eo=–ºÂ¼;8—]ñvÙf(]˜I™(Å[HGâ+|‰ë–Ñ«rêÞݨJäÖ¬§óö{eûµ <3Æ`R‰g=¬™HºYi6@>‚m[˜zWh,dÈ©jUº`~±GpÁ?¡>ÀÚÞŒ¸’PÖ.pàaÙ‘à³ôã„fáÙî À/ÄfW`nùÀ*]ëÝ:澉}¦B+£CzYÓÝŠRýÔU”º}æ˜:Ô„¬Oâ·Ó “ØOËô›->½DýpÍ#Ñ€rcж!ªQ}Û€~YÇ%Wr†Ð‰Ù[ v\Îz£—D² ÞØG}9²‰s@Æ5 ÝkVß=, ø :>ܶ·«?ÓQg¶.aèêÎa: [gŒ‡, {·ñ—õkŽübêyv*¡3EfØ|ÒIóLÑ$»ëtVΤÁ>aF ®ØÚÇÆg™b‘PÇ»\Ôâ0d²>…<½ù¬šM6ŸZ\ÁHJ,óaíÍ„uasDhîôÜÕ*@‚¡,ãâãx.Þ!YjÃMâ—sf"cvz9øf3¬7zÒñ‡-Úóki+Ê(NØÝ…ÈnëýŠ ŸnÁš0o`C­»»g¥¤O®Íô›P¾¢mKðÅl4ÓT›„:µYÄš6‹;³ˆåð^60‘˜™‡ñ¬Èr¿ÊPþñ;!ßÏDæõ ³,=3‡:NÓÐ9Ú­¹Á" ¥#ß0F¼œ‚ÄÓˆ–ôÆ•‘7iÄ‹Nš|@9k|³~› 40"âhøPûÔÝ… 5;nl{’°x»|9C¡]z ¡AË=›ù¸&¸è Nzé’`_|À¬<ø)—Æi#]¤ôrNâ{`«ã—`-\‡úÓ칬l Ò…^HÃFjW³¥»h…õ¬õZW"¦]òåj·-ù®¿ °Œº½]ê–!¤Oö®@¿ÈÄ=¨l×B¨+îÝ}}±élÓ-qx•ë´vÜR¿¯¸Z\öQªk­¥ÅÉDçL3Ý^q)‡Š°· ¬o¬Ú§–QØúßÈÚžyËYKÁ,FÍ›ø\¾øý³¥6@8q‘ÁuCU¯‡ºp{ö„éÌDjæ:Ô´e†˜¨ðå—prÎýíHóvê•ÏäT *] BÐåÕªþFÁcmÞ P¤üå[•Ÿq¨•Þ½1ñ;iÆ©à0ˆ„a;$V߯ /U2”p#Ï™œJ#‹8Xs=ÔÎu”qfrNxõpS•OrIŽUÝá67[ü\fHÁ¼O°ñéwéôí`ƒ?/ôô³)ÃŒWíT¯§P/<‡¶NbW£ÌJ9°&}›¾UÈ H` ïƒÆËýΑ,ª÷Ø 3ø ×Í7´«Ïzð“™Dˆžf­ F‹çZGÀêg³ÃSÚ75…Ñq¸L¦}&œÔò/³Ï"µ™vl]-Fólý7Æqø§LÛ%Ûø ’Sõ´ó¡MDhFÔö ¡Î4¾Ÿ5oc,Á-ê¬Å´àK‹¬ÙsŒÅäPOÁQ!¾Ö޹E½§´¯ U%ËÆ ÄÓ˜†F,nOŽ.±€i ¬Ôql¦lü@Õ/‘&@'7¶ñ¿ÙÔtkcL|ZÕP6ô&Îk&¢…fé~ãVRë2D Ï» ÑÛ™ÿÑ!N_+þ´_‚ç ¿.Š+m}œß¨xØϭͪéÃs­Þ¥–ÆqÇ%Ù*ø€Ë¶³‚>ÊÉ•#3lI²¶øÙÌÌ蘙kF㢈÷PSŸ§µÂK_3•úaÙ¸ì8"d£W†Aª?—xµ°F=t¤Ÿ…V†×Ä®£A5j¿¶6ϬºíØ ºQŒ­ññ¦†Vp-ÒÒ-¢â—ТÁ“ .9…ç®þ¿±Š pÔÄwq¨7ÓUØÀ)M¨¶fç®<ø£~–õÉ—|-ö5;^Ó–WXÖ Á…ï±»:“o.`Ò./ íS6±ñ×LˆL¹Â0 Á<²ÆÙ²û½X.èpôZѱC0ü™¡va¼Ã¶¾Õ‰ôah¹Ï é׿on޼ºaj‹.°þßM¾tªšÁcÉ/¦è=xüòÊþ<žE¡]? ¸€Ç1Ë•·53C ¾'›ð²ëñ¡N%·üo Ð:½i¿Ñ?‰sÏÆ1¹0_¢¥Yk0¦†2Œ1Èf~{"fܵÑl`cæPª-§\ä2ûÊàôcb†Nü}›ÿª+iùŠ­½R{üÞÉ„ÞÛóÕº }ÀsÏlΛjb›Âf¼ÍÁŽÙý9Qt1iL—>3:Õ /Ümü¥ÔºH¦*'z¯º3è·K›gB|ªDb ¶™Ñˆ—Ÿ;áеrṼø½læ·ªÁ‹8`²ü¬½Æç3/Šºù üxc>.Òêåž$_‘ÏÞ$ Jz†ÙÇ€ øSÑ®´ç\É2ý;•ÙG~qŒ7eé„ç¾&Œg3Ÿ—¦«U7ÅØøKŠ?cÛôé±[UeÕ¨ñ+ŸaÝ0 Ü–¦± !þj6^έèß6YÇŽ.6à‚qïZ±[Å[µ”Sw±!»}ƼCƒÔÜè}õbMLêdUZb_¶dbS}zvœF ¸8ñšhµ_„Dó.õG®|(Gúˆºv©«Éf¾à£&–q#¦Mh…xïoÇ0δê_­àñ+ æà¸DüþÉìåf³J0±Z¹·Eì\û3éÎØè¸dËe_Q>ëx܃ù âqÏ66áXÊ%Á¸äãV]—¡6¦‘x2-³6™ÉÀS %¨Æ /îVÍ_Ÿã^iöugúa$Ý…hêÊ=gzmrðZßwtyõ¥f“l!=;sAVñÖ¡lV ¸ÌüIchío–G±ŽQðîŽBü»B­¬&!6[p–½øVj‹ ¸bV{£اS WÜœ J’Þ^²½BI ÔJGëkFbÿSlr-„%µ e%o©¹¶fÏ™~¹G²¸¤ª‹ñáN]Ê,˜Ñt«Ügh¢Ò7Èl±þè—z»¨ƒS uÄñ bq¶ÌÕEŠL c‹ØF9žSý N¿þ3›Ó’ÎÛr¬1Éý³Òõj-{h6fd‘23èÃbÝ#ûJÌ7Æ‹‡È'Œž ÷»'5!^ œ8ÕÉçRkÆ–Ü·r6ÍPþ©Ýž×óR´ÂÍðmþ†~äËÓïUž‰k ¼Ì†_XŒ˜`pÜc|,'ḛ̈kÓẖ¬ðÉ1¶( 6`o€Î4–\ _rß™*SùÏ| ±ãYs6©oaõE!ÇÀ÷3oI›æiÏ¿fdñçBÔÝjûåžÿâžX8&Ú¥@*@Èá ÊéÛ,ÓuÇÖ2Òñ’Üש»áÜØ<1dRmÉùB«ÒƒlÕ}€ÞXÏçFoòŽÄ†¬#®"›¯},¾Í²Uß›àWø2eÛx+³•Ó"Èþ<õV]Lg }aý{fú¸Š¿˜JYØ3;gã‹åÒÓ޶ܵpqPŸá‹÷÷.ç%°áÝbÕ+.Yjrã†úÍÒ'{1Òe4mX¦¾ÅŠ4^¤v¯« P9Ë à#øÓíÆ±( {p½Ø›ƒÑùÙ8¶Ãåx¿5s.·•}üP¦¢öVé@I+Žñ—âˆï’¼ýr‹ºòÒ.©ŒUçÙ΋IÎ4ׄ2)/` ÈŠš¾Ë/íJ)îú.°vöíxÂìñˆÚ/å»B™Úm U‚;PéÃTïàšãÌuÉÌ3ù«ìxWBØÓèí¬Mj¼Q2î Î¥]¹8s]ì]Á崌Ľ„¬Ì2O¨´P?F3í—LA žrîješgÎ`™Ù,ëàÝ\7|½QžÄí~Ø.ö Ûp¡×¿‘‹ZsòWºñ¥zÆå¬€dÍ8.ÿT›0Ω“A/—¤ׯ†ÊÂ7£ÒVäýZ7)iÛ6¥;äì¬5\pA]ÎŽKV·³cCO¸¶kÀT_aiÜ»²½6*Êî#€N}êlÀæànäèáOÜÆ0‹z lXõ²8¬Ó|ÈÿJ>ÀQ~S* {šØµgW¹na”)·U^À^fõ ¬¡ÙIžl‚ñÞÌv[³Ô³¦+Í4ª}Í7Óúíh€©oÌÿÙÖ’Ë™ݾàÙ˜sbÕð[hi8ñ›ûûK~~.0¼µP­6@ðÙ3N#— we¦X &qÔ6›õ®” 6î=§ÒL£w³ÁÇô‰Ë’ƒÅÉ*tD.X«íIP9þëŠ1rWsÑ@R™5ã6¿ËÈ_¸1)uQɾ;ʦvuœÓ‘W‹po½aá DŠàg& !ãåÊ áVâH®­6PTdÎb;Î>£ŠÖp‡°z¶Eï ðdÏ/¹’~}• ¼C—iÇzö…w­d;n–Ž´6bþ^_‡uÚIÛf¸ðî 2üh1±Ñ9H+í¯Æ=éTY;»_õž3ïGŸ_ ·}êÃÄ)6Émã^¬‹Ç—@Îw@> ÀYŸ;ÑÇ*{-¨!E$í¢jcß|ßÒÔþ ù Ï6þ×¹–Ì„‹j×zò®³R—Þu&[±ˆÁ½-uþ'9U„t à¶€mÌ—-Ÿ¹` `¾PßÀÖ–"eRJUmÀUú/T×ÒØŸõ±EŒÏg§± ‘˜Ëe &ÇéPÉP E`Ÿí(×øvV»(dI3õ4³#3¯™9ÚØ–kŠ6üí”»" êR¢M«èѥϟ ¤M\ÒY cï™fnÒúù%;lÆBþÿätO^=Gh==orë&% ¿˜“’ÇÒ­¿«Ï#ùže+鬭ÈúKá"z“¯¡œÛ›%ÿˆzÖ‹e}%ÁïŒlºªg~¸j—¼k ¤ŒßK7 çÚß…[W¿Kñ¢ÂÈŠM²b/àpé.X\ÅëN$>mŠD›¾aÀ¥O—Gì·ž=Ú7µ›;ÜÖ ‚Vêîàì-ŸÛši ÕNÜÓ§.>ŸÜŠÝjÇÒÖ4OÈ!(>æ!JEøxv`ëöáàîÌÒ`àÍhXuû~£7u}é8ó"£×Ââªj÷AY½{Õ@°Ž»ƒþâ¡òØ]ÛÆ‹¸X3x [MfÎÞwÙÁÉË[·€–Bv7Ú»¡íA¾Dfé‹|ø?OË–ãšùt¨K²é|£— ÓXg™˜‘d:QRZï-<)6ºƒÚ&¹%{HÈ"†+Õg ôÔlBïú›æV|O<™šâ†|z$«±7jÛ7“Ã(q÷„xºÈov®¢Ç€kŸ¤»îÉO‚!¶Òc6IR=ën“Ø}rÛôЭi ™t»ñåtþ¸íhÒÔ&@fXxmü5cÂNJ±Ò·ÃS‘™äé¶{Ó ›!Ê~ý) øNpÝæüÁD™ÑÙ‚ 3%¦^ü‘rѦ/NÓ‹J ºÔn»È¬í– >´s*1ÈóôÆ[O{¨M~†=©]r®Vƒ ÂìV™šóšÐsoÏÍ1 žTÝhoÇóR Ÿóì lwÚÞèŒü¥ ›l—@“L‚Ô.ŒÛê· õÐdtÒ.&¿¯BÞÓ@+™/ȧP‹4dò¶¬[ › Säprì¼íºlQü1ûÑ€ž!Ñ×72¡9±?xùX’çÚ¾Ž]‘±$[t÷9ئõ çVÔ(õ"àÛ÷å3y)ësG!(núÖÞ”™údÕ·þô“ÀäúIžZû2¸]5“5yhIa3\Z(øýòdÚW½¥ï‚ —öö)¶ã’4q¡PÀäŢآÒ&¼COÒwI%ÚÌÙâɻ䜻·a@?sÑï6^šÉËÉ2'w„üµYæäÁøõ&¶Ž ó6¡;Ôß…´éSpOx‘È$V}4+®mO^€_:è,â½9G³êå¼µ7©6@+,²çºÐ„Š~ŽÙÓew˜-òŠ'©môž^¿òŽ6ä4ß 3mO›Pé²Ld)äÿX9±ì¤Åg‰»¡Pm€ê$6ˆ%ж¹´Yë€Ù‹Jg'\vº$>ó´<>™[š¶Þ«é±ùÝeþ+Åy³gÏnÎf3\@ùÅý³C¿SÁA x#+lvÕ)ÑaUÓ ÁÓºö°Ÿ§]gû“Ì |ˆQí˜ðŠóŲœ‡tÿ9—˜¾Y*vŽîF$ÂjçÛ ³Y¾Ò …ØtÄ/t©V‹ ä¨zƽhÙ™2Cü”ìLâ%Œ!¾Ucz›cuËÙ½\ýúY"Ïâ7º f:SÒmB‰×º€,¡œ.é^~.éâÌÍú¨[³ÿêo³œACÀÚÁ¾+ Ù›¶n\—ƒ•Ì.džcÎ28wX Ð.[ÏŽÚêi‡ñõ,Ó0¨´#ki†  R”Ź«§öJ¿eeðƒO™ÕB©ƒðX‘DØí᪅!óúï!dF\`”ÌݺÅB´‚K¡ÄdY •UÎ,…Ô„òbm}íy9³íà.™ä<¦Xpvü„¢ËÒ¿h‰ƒ;)ú'zWôWµÑ²ìÏC«X-¬«¬t¿HLÈÝE›Éeê¾Mææ„ˆ¾­X¯Èçë§<Á¬Ž¯{Ô›E¬5(znèÊÒà[™ƒ·#$€‚I¬]O´stUü¹7µ7Ö‹Öå¯W.‚§Uvj[jOciË|=\6Þ+Õß+ÔíóVÇ” ¤1ES‚­m…匩â¤V«²Z·ª…KŸéÀƒ„² ÿß–ýkÎΓïe‚¤;¹‡…Cõ{ÁÛÅ»Rfƒ§†ûE§(ÊŽIÑÐ=‹Éˆ³yDèç:)=?ßP„gæAd€-m>åë½Â¯Rù³ Ò½et)æ†`#ÿu à|2Ç0ÌNÙíÓDø„X…ÀT çQ7ûtv:jl8Ê^¿lùjŸYêúlu„°®ãj«çÙžû¾\áÏûš²uûÐÃzµÜ._ü±#¯OšqÞŠ>Üli_†y{–Èó5×_?ëa®‰yEçm­—×°à¼Ù'1®OZФõ³ £•Çz³’àÍræmø^¿íÒóM߇y«ýófwi{?ç^0mîoôâ~Ú L[Ÿfo[Ù¦-Û¼œ=^p¹‰M­Ï_5m5à‹³É{ÝŸïÿ^¸É‡.‰ÚZQ·é8Ó·iÞ¶ñùë‘÷W©0oì[ìiíZ¿{A,þ{¹ýñ5Ï&o{›ÖÎ+" ÒëšÖŠÖmØŠ(i-· óVÏ£=·xޱõä-ðå²íÏ8‹µÅËoÛ)ØðL°'—Yk0k¹ê¤Ê.m…/×ýÛ!ä5- ÛÔ/VÆžóÖà‹¾ö©ñYØp¹™‰è%ï˃wÂY¥Ì±~|ò=V½Ž¸Þ¬Ã´½†<£¿—aÚÞ­s–KïiÙ—ŽÖ-'ï¿u–õh=ó_Kù3Ãþí‚/nžZ]߬ü½K$°Yï°ÚŠm$93:·n‡å9 ûÀoºÔK k©w\nãsh tAÚ²¹ïÄÔ8×'ñ² Ÿ}4÷´œ7ñØìÑÌÛ sÌëD4oýóææmD5kE¼—­uqùrÜgÆèx$…óìÏW Ûƒ¦]ny›ïåÉÓ`½=Ï>q›æóUÌ0O´n%| —‡ÚuY÷iÐ(NÈtNÈ<-¥µ'Ì[O¼"ÞË0oÏé-oÖë6¼ÖÛcª·…yL(kZ'L›šÎgÖëvá'ž Q_l̰]ÚàÌ›{ñpÁUó3Æ6½Ï·EO!žnÞ] Î+6c¸{#âËÄ€ /èß÷‘ÏLþºÎ†GD E>¯™ºG"Ky\íuÖ^38åxîŸ/Ïo¾Z$仺¶óûõ²±Æ³¾â†-„dí·çùæA=¸Í\Êñ#oÜïóMžßKðE6RW^Áˆø!Ë k@û÷ @È)ù€ºvHr‡ìy¾Z÷a BÄïú@ QåïÇ;¿çïñ¼g~àýE¼F¹º-D0"Ÿýÿ˜ÕPÏýñÄhìØ-\‰ë¯\®»³VÀö{Ö¾óŸq W3@mn?"æL/(8ÙÀ\. <£w×ÕË™y;ô‘ÐD<;¼þæ9pî´@~Žy}Žó詌ý÷€â"Š–ôÅ1êFÞ0ÍбÂ~„ê¶? $„¶ÿ>ñ˜É=èy¿?bŠlçfjq/9tN¨"ëó= ëÜ- ·PëÑNÛñD&Y¨ŸÙž2Î`Ød4h¬0³¯ç l‘ìLõ9LWp#]¶Ðó³ï‚è"]^áEs3¸þ‘˜ç±1ˆ0^§Í¹‘ .‘vf€gPl°îáêl`Ý £‰!”!3h 66šÁ®khÄ´8|fŒ("wYÀÜë:Çët µ°¿b‘”¯¿Gˆ&îÙ{JŸÂ ld×ýÝ!’ÙyŒ7ôhšû:â EzïO€ÃbŠcžÈ"Žj‡„Ä#BœÿD®ë8Ir®çùpŽ®[@,¢Žç”•=öXéÁãàÀšX\#vD¹á»EwäÉFê ÍŒ­œ "ܾ~B=,¶‡›ÀæNÙ§ðÐß·ëh“}À7À°ž¿]ÞNÙ‡H>÷?näú{œ¿fѺçß×'-ðØ—‰$ÚU/rÂü½S6·ñLïžB QßôÞßGòXEa„½ƒ”¬^œ`∠ä }O†ÔQˆ ÀKD’šZ(PqH²NÇBN7,ð¨% ?^L h{7è[ËàÎÌ ¬ëÎ <@Cbÿ  ÛåSº9‚Ð@(òzÊ|¢”FQ°¾bïïgw Oð´ß¿G(òØ=ArÈ¥ìâWbOˆDš-°g~÷û唃Œ !É÷À G$‡ÀÚãë:ÌßCú¹þ,ýýþãò} j¥ìbôlØ{ÈÐCJ7!‘¦ß7œ A¢ì„käMóBjD,­” êÅ‘}ðžaÄ"ŽÉד_×Ñ–B=™Ý„PD­hým-ë.9`×õ[øŒ Bµq Iõ†å,T—‰ YÁð|ˆDžù7lÃ+߈ÇpÐp˜æB1ÓQòÇMK”ê07I-È"Ùö)TÙ ô‰½D@äDÖ_;{°|" bT¢‰€ˆæÏú»E÷"Éé»Eˆè?ù”u·pù䙑Zt XN”õÐ/|Àè;CÍ­ÀÄŽ\B$ònûó[<ÉnD"zN¿gÀvÄ!‘¢÷G0uǹ˜âœ/€H¤’Ó=NH$é–TZB$ÒÊ'ÈŸ0ûñ¾ÿdG.!ÉM½µ”ÿHv†œgB ¢ 38¤;Gcö²ßoý}âçÇ,źîÎà@hÝ¿\æ,Ì༟ßbB Y9Ý”©Éò$)¥q‹§Âè–¨ùNýE $?û8בZ4ÚÒÂùÉD–ý€%’φ Ög¡Èø&ªB=¥Ÿ 6xº\,½¾iâ ê':\™5áy&lb‘l=%O iõQϘÉÙ¢Ii2B‘žOïy¾VÎõÌÏç¾p.ŸÔØ ÈEjÕ ƒŒPä}¾~¶à¡Ôä+yHç÷o‡ˆ™ˆ8(Xwe ^!Èh(–£‹%49#fÞ&0iÀW°dŽÊC²äí&gʈ 5ÂgʈC«þ“a¯ë0•òý‡dˈ(;3"©ÁÙ‰]0+Áó¿ï0¤„O40 ™//'ÇÕèìDd‚!éãg„!½j,j9ë:®?€!ÇÏCºA ¦¬ë¸{Ð3@¼ÈœÈ·_ X ʧ¤H'܉cõYœ˜uIVÞ ÉŠ°‘ïß æ¨œ¯<+‹'å;y6a(û)+ÒÕÊKÚ1œÁZ ¼`yÝ€‘•F(e†í˜É…Ž‘úñ”rqü¾èÌ`ÁE™Sq%s½Å´ì ËFr`gû}#qè9!™å\ÍiÞ’ZÜ6i°JÖÜÉ™—ùz´„E?b«õ¼a§U"VÎ*D8¢A¹cÉÖõÉ«T·á&}äæ¶ñÚFaÊH¿Bgô42¢‘Ô?yŒh$ͳ™ ´3›¼¤¹±’€MnΙ÷Þ÷onþp ¯ëƒæ_ ençù'ïB—zÌFzú¤…rG8¤ÂER]ÒÕ Ó᜸"°‹ ´¯B4òâáìŽ:B#–·Q;h䙨ˆ+ƒh¤¸£v]‡ œvÔKT9±Üv<¾tLN ë:¨Þ8È F¥¯¨/GpÄvØsï:\bÎ…$ó‚#—ƒFq£w€³Kx¤YHeyckÆÕŽ"%2;j–º+'ÿŸçÝ žÈÓ§‡C";@ò9+¼ß-û(ô‘„ºð‹pŒþ eÔ_C@‚å '(•17’/»r#›{O¢õû”×ËZŒg<‹ÐÙï"iõÇ%_‚KŸ5V¿[@v\%¸˜ÌYáîÒ…‚xäÂÏ-DÑ*–šxɾܨ¨Ï: Ø7w­€õ· ŒAÞÍÍAÊB¹‘Úm‰;Q"ñÜ’ná8ÏÒz-5PJä°Œ7d…XZÃòcúïïÜÅ—xL¸H*ëï ŸOqd–›6KÞa“B©‘j˜Wž/ÝI2:„IÌ£_ÎÖºîÖ`…=°®»Ôˆ£#Jt kIþ° &i_ždIýòü3(˜уè˜Öu4‚6âL–ÌÙ99H$°\Xä^K®€öxvžÌñv…¥V05¢´ds â‘T4õ$A¡B©‘¡¹9-NÈxŒÄ¡A,%»üfPNáʳþ@=®fA@"Fø¹Éóûç:Q|“f%pWŠóý ,ù²B-uQ@Š[²w…r#S}¡Ä—ââZ'î%b…r#ø“ì[).»äˆ®¥8¢``ÄU¨D¿±a¶‚x¤$JE#ØÆ'_0;òZÑ*ÎÊfÌŽÔf±ïÉŠÏŽœƒZ‹sŽ4Ôv7±åðIfÍÌ`œz}ö³Žè&ƒƒ¸á ¾ÁuG(ÌÓ²žU°àQ4ƒ'\È‚€¤ÙQ-\Á‚€¤ý{=j[ua Ööe¤ H«ˆšãyèIyvAs Ø¹JCP L+Ép•î’s]GC(k¤Ó"ÌÝÔ\zæ)x· ² qµ‚rµ“ʘ©_ v]'Æyûp© ‚å2Y’±ô[šØÒø…jD¢¦áC{ çPKd㤠‚’µB Aq)¹.  &©AcKzRŠ$)jiî³S$y±¨@!®V·³RÜAäjeó'µNnÜâ«pÖ# ig‰-T étKP ÆNð°L—f÷g1â‘RÙ]×ñ$1¼±ÎÊ÷ýtËI’µ\$q³E×ßãAÒõ ÐõA É¡áI2ovðT­­ëÓÝà˜1‰­ÕࢃXS·®Ã Ë€h±!eHŒ.ÞXED¢ILó×k ðªm!4!‰u˜;Y‡¨=e¹" àLœjHŸ"9!r ŒÕà– £BÕHå˜E@ð@ʼnšQÃdÕçH°8]¿ùƒ7¨ñ–c2P^ X!¬DŽ*qµ§‘W9©Ã#ݵJ9’D“ªˆG4öy*ÝÞëˆGºU½H^E<¢„^x~Ä#/Õ'³ ª„Gº5$ÇW}á¹ÃCÕWž;Bq¥ÒóodµRÕÈ7lS)E’,ª²ê5AŽë&¾ÐaŒ×L+pò Ö€?){8§HED¢òÇJ¿@e#YrA$5sT†ÊW×ßWºNQ™uýFT0DU1C±WÉòU$u±S " Ñf”ñJ#šHè± ȼ¶ðûT7òõç+’z(»P™\‹ Nã1°î¾ R=Àˆ•Û4LX)Cò²½ºx£»¶""I铈­Å#¿:T%º–Å若¦""Ñz{sÕª/9žˆq*•¥©öq2Ïï;WQùú}ç Jm×aU$ýËå¨HjS+%œÜZiÆŒë&m"ù5c© ÊF:ŒËÚ®~¨Û§ IÐØ©Ú9Ê4£lÙ’J€$ë"–ÂŒŠ’œ­Øúõ¥ÖßßÎó¥*eHêw‚g˜åGŒr&Ÿ†€DõpŒqÕ¨’ÝäÎV"]wUœÞP# ¢öqÁ»);R­>B´;@}†N@'('²~€È¿æq ¤$1Áõ%’\¢Û !I3̽‚Óë:§]àû€”ª_(±åæ Îຎ†ðÌÐJo‰Æž-Ç×(="+hþÖp¼M*e7_jy“ë:éyÆœUCD’†b: *4ʦ•ÈYóù‘æÜi$Êš³Ly#A-;¬E°a‚¤IÞ9*Öugý$M­ôuF@V‚ÓͳKð6lg¨#É_6QΙ®Dßü÷nTPÀE<2" âù}œ?S¼YgùºŽ{8±3´®·Ë²ùé„GŠñfe w"lip8¼½°I3Ù¯cf{tVÐñ2;³7 |µ8÷®Á‘¨>!’·SjtN BG@R³æx%‡Ø©–ÝÌàúý÷#SÔˆœRáï|#áuÊX©³ˆþt$ QÓ®!éHÞ“>Â1°®G^'&°Â"ïý AI‚wª!±sTjxzòî ®ñÍÅè” ©g¬"± –$sÇ T«L#ë¦üˆ} %Èò>ŸÏH•8Ô=;¢B†xI3Å‘µI×u‰§XIù{gEYï@¶N"½µ-ô„÷»‡$µ8˜´S‚$蔞]pÚ;k=óЦˆä:fH` /¶#$Ð)r [vIR§jv€ Ëοo€ˆ%}ÀúÇÇÊ€,SGHra.w‚$5ò¬¸1=Î"_×Ñ Ú–¹“t½ÞrL–ƒêH€óvœ±Nù'Fº®»],ªB'öØ«CÅZ‰·Ã„µ@EÍ(-U4ªJG@Rª®A‰;ôz +˜¯Õ?€äðJCG@¢’‡ø~$=©DÖ4“¬°ëxWÍè.Çüˆ&ù`úûºÆ› ­žÐ¦p=:â‘bù»?L`o¦”äúä$_øÀþ~Ö2¶Uï>ËØ›î=]ö Õ«wªg*>'õÜñH´=,ŠÜ*Hd‰Ã #<š'‡ÌÓ1A¢±m‹ wL¤þ!JtB#Ⴧ:¢ý{‹ÜuªgOX’°GG4RA˜Kžø"°#é q—Žp˜ãºBnpDDcÞ 8bÊe¢9܇[.&ѯ@!оm'¶–ñr®tD#p]b×µ}%½a­:•XèRW ÒµZQWJT£VKT¨Szä]Rpêi;Â-¢‚=<]–¸¹-Dõìí“£íD×ÒjT#gÄ#Ŭ´hZ *h·‚e ~¢kYAµ(€¢kYš[‚.#\1Â#Eãfó¸R#8_P‚2qç²µÔ™5Oh`zž_–ÐîvezшÊ×ÛTкD瘤¬e¿/‡ÈˆˆPž$è¸v± Ñ ôˆ©§Åãlß$¹ Ž7¶‘-ñhäE²ÅÎ1?âîfQ±Aé¦2u½‘n :£Â ª14'Îúð¿™mÐÀôÈ+ÚîxÂ-œªî a†RÖ:DH° Êhè×4F—7°stÊoä%ö^§‚vóäD¸if:ȧ“Êo“Oh1pd@ç©Aí-*`aû’?Â*#mÚ\1!t ‡GT¢ñP†O‘œ)‰ ‚#äßûSŠä5S’(?Å(»’ôq­ ± Å <Ò¢2Ëí7Zã Œ?QúU;Sn¾Œù"£ppZ#§"±Op$~\Ap‚ßÇÛTÐÞ-0x‚ƒ…~çÇ™TARŠu!‰»>bP†DWç(Yn¡A‹]Ê|Qõ @bÞ¶ªÎ›‘³ö”' bliA®!–Œ­vüAH¡ ßPd⦲Ïb$i¨ø‰ÄþFcP‡¤ô¬Çû‚HL+Ùîgñø%$°•ãw‘62…ö%p1Ha ”0Å{…­SE$y¼á¶Š{OÙÈuŠE"’n‘©U³®çËóYÓè·%h¡±Aˆ$hèL[|tw–¬ðÆ6Ãù{Gß׎â.$±ð¯º+¤õ4Kƒ¥1Üi,8N‘Ñ´­A‚‹ƒ0‰$³a“gËâë‚iA’Àl‹u˜AìvÓ÷ÁÆ>ëzå=¤B‘[0z"$Qæö¡Z¬¿Ç¨B6#}G“E¶ê'ƒ2’h|ÂìÎáŸp]G#X?FdfUà÷i+1©¤´[bú’öâŒw1LŠZ%®2©¦½ð1·®ßÒݨ‚Ī$:?3Æej¶ò‡rº‘"–h–ÀÊ$Dbªø’iŸˆH^\î"O“H[_Aêym=rœÙw ! ¹àúYn3h€aRç‘ôñ'XãUµ~ÿÖûÆDæUaËͤú‘ìÿí,O"lÙó ïuR~$*CœýI[ÐäSÛ’ù’ ˆoÝ ]?ýÂIÐXänºÆ#^älºúA+úš£z7ÁÍAb!¯·ó|e"ªÈD4"p ‚“úŽdKßĶ? OÈ:Ò7³¹Ðj#¸Ë§OGEo“ºº¾#ëïqþ¾m&•|õ°'¥GŠ£[èo’ÀhqBÝôr¿7Z×]ó%T0{_€(Q¶0¢…ìø7A‹ Mj3åZ”xSü è¼ \-Ú3À)Ááq¶ÌËkBÃÏ€¼®^?-Ÿtà$U ¶¶±Å±BNÕ¦¤ËžÁéç¶Á3⦨}?Õ¿ÃÂÁ|Ð,Ð),ÉgĽÛí`D0ÃÜ'AùÏ€I“¥ô‡#¸q¼DØÌÏÖª–f™³*Ö“@\˜g'÷ÄM•²Œg ÞDjþž´AWÔè U²xT§«%·áØ©ÃÚ#\Ážƒÿ‘ú¿éA;‹FÇÉׯH­µ«—u¼‰Üþ[-© ¼’(Á’Qx¨À·™ ÄcÜ mðJ}à±ñÑ)ü‹ÔŠCÕ)»w‚ß’ZÁ7@wõ‚× !5ƒ¯óѵ`”óÙ–mrtOmÐ%Èn7„ÿ°P,æ©%|Šv‹“ˆ‘ªWªèœY_1O3IkámGj òS«~eßÁµrs c‘Ã_ lô ý^ÇZRkø:.“‰)‘˜‚R³c.fð#Ö[ä±3\Ä1ú,ïŽ)My$I„EjìD=Ä#‰÷¤VB(1R-‹R`q2©À~|Bý‘ÚÄë8„©Oüø¶D‰Ô(^Á„¨S<ŠÎHaäVññò½|E‹oãËÍâëP’›MB èB/rj¯‡´)îDêÿFo\UJ¤†ñЬڌuF‰tù,;LÜ€W&‰³H-ã%è zì‘zÆ÷¦ÇŸP bÄÔM9eqˆ¨i¼î Ë}Dî?¾Î'µ¡Pø G…ú˜€æñ.»+œoá8.úãµa£Å~ct)ñÕǦÞñš¤:þIGÉ1z°ï:¯ZÕ~8ò#1¶[.Öè‘:È«WCj!_… 3œxeVle¯áµÀ|ø‡ºÈþEeÔF¾[5‘=ƈ€§[ÀBxÊ‘úÈ¿ãD^„W£ë˜"ZKÚHž:ÉgSì2/ϰö^Qä^ò¦h\ÑUò†p¸ðСß4õÙ|GÜkªI£ØÄB¤€8FJë´ QKé©¥<()Àåžò¨)#ÎÌpNúñ%7©«|šþ\ª5€ÄÁ‚F#D7(ÆOó× 1FÒ1 øQoy!·C/±ÈÍå¿êF‘ºËÃ6ÇgéÓâ%Ryèw¦è’ÌC³,EÑÜaÞ6lj1_lïhT…{̃_¨@œ›Ìƒ«"!t.6>@¤6ó9æ‘úÌ'ˆ?|hLÔM¥Îo0ZÍ×b¤q#>½æuážP^š:ÀÈÔlþÂ¾Š‰Jb@wñ°£"u›v:ŽÉQD?$Q‰¾Dè'*?ƒkæ©á|JÊC]ûDãÔe…%‘{Î[—°ˆÜt>ä‘É&&$˜¥ú'Rßyèé«`ƒÏk‘ ¤G¨óü02›0z#µž×;àî¹6}g†šÏëé)Q TÍ4Qÿy^?Â!‘Ð'v˜Ö²sÒ}6q–Ç>‡F©© =H½©Éå.ôC£XMT*S%Ÿ~²8{a#ÈýäÙ.1(R/z>…&‘šÑ+¬ÇŽºÑË¥; âÉÓÀÄ!EêGrV"tSa7]¢Ì6—\24ìhK›TŽ«%¼¢,Lâ¨uˆ½Èd>{´©$“©)=(Y <þYWz!ÃFjK_ vªÐcâÞ+XvM5_é_8q–g|Jc"5§Ñy›*îTj…÷-p23ÜBÞ´RVÜ ‰‡#µ¨¯AÍr•ä>õ¨×U¹DEý9©*€™3„=Ãh_ R‹—Ush{Îæ{ŠN¿}§z§H¹U}Ô€€F‘¨W½’ó •”þ÷˜µ"úÚ·kS¤nõZêùIjW¯Ê¡Æ Ô¯^û6R„5La³À¿ˆHDjY_íƒ Ó8RÏzeÓ´J×’'¢±)Öô#÷­wTÙýèaBÙÏáÊFê\/m½%d°ïp«ÑÄá{×»î<1QeM«:M‚èlšž‡$ 5°æð‹î|¤ö„¥ÙÆTÏÈßÀ>õ°Ï— HBäß.5„S4LjJÔ5Ò Ví%²¦á4‘·ÜÇ>*šVúM"äEµR ¹•}û†O’¯ý×ìß¡SQ3{Ð÷–bµHÝìõŒ‰‘™ÂºkFjg…· ×ÿÏý.RG{P×Xs&è£â™&Ñ©©=D»tfª¹Ñº;Xù&šW1S¶§[Og?™ÀÖÕXm[¤æözü@–ºÛ×þ©¼‰ÔÞ¾™â‡žpÔß^YëàBRƒûj'µHZDêpéyé©Å}‰ ]4è¶{Ü£ð_êrŸÌ*Kd¤6÷šv†ˆõ¹gO 1åìÈ^@r­r s§{G‡^©Õ=Hc(h ^÷cpÁðz‚>¦¶¨Þu»×·gœÚÝ7+§Ô0õ»×.ÍÖÍ(f¯àô½cNl/5º!$ LjeE=ͳdD>Í‚¶æH `¨ŽŽ”,Fjy¯¹9>RÏ{¬>?\ûHMïuƒãkð)õ›À ¶÷šƒ„*õ½OFàÑØ!5¾ïV¿,®‘:ßß錸k&$G’©,G{ÔA4#ðÑîJø””êùÊ9<2O¾çp«PÄuMí&»µž>9ž¸*£Úc dGnóÍEžLª¦ö%û'p*û7Ñ ÷hw«²{Fp‹-³ˆ˜1Õó@’ŸÏ±ÂªÊ¦q¥½\ÙSW‘._aO•>îàteÊõ]·ÊΈz VL…LÜ6“¿–îŸÏW°è„¢bFÐCQ;±SzêWwõpkü`;“¼rWõ;vóh?wÓùTÞhÈönÕ€íòµd0On.A¡¢tM^ÓmpWî3qÛ¬½œ²Ît Mqœº´g€ ûôb&ë|¤$ÀL§+KP$mžèYJôÅ´ùžž½ZýGÈ£ájà…æÎ„KùZʳÏyô|ÆÍ7\ÖÌs-25£Ì_ ñ@ná¼t ËÃårØ©=àæ¥ãÖAÄ£Ÿ ¢¸™ÈmÐAB³(™!O6?]H™ y’-L 4åé"nžnœ'6Håpëû÷ pŠî—±ÛìTÐB˜Lí)Í©SÜ•òôz¢~è«xvÛ1u«Xg`¢ Š˜]ÌgÀm]Â.Ôæ«tÿ @w(¨c©äðB€'há„æ‹g·õíX.2ƾC¹l?8 æzZWè§N@  ¢yûŽb?¯ÉÕ<ÄéÚ?qÐUâm‡Ct§Ä›3tê´×OPw˜Ìý’|a4[ZZQˆÝVØ¡Ú`.‹ÑÔ~ÜJm!š]îTûÒƒæ€DAc‰êÄ3Àqý¥šõ ¹¯;»-›ß(ìó’nû aŠWB ` ÷šJƒj-Kb‘B*‰[R¸²Ä;£éž• ¯áZ™Ë{ÊùY¼:sØûW‰-%Ýœt| Ä;Ð-]Ý„’oS 1B-c i´® Þ©†VCWï$V”ÒÍgîð XãàÛBªhÕês5¯]\ç˜O¢´P¢ç«Où À¸åøF KaÒ%‰qì‘w_ôFñŽ–B̤çYºUÏ€ÞÁíIå<µk([ 0 %z,Á¯n@AÀ£b¼àb—r#d™jü3Àµá‘¦äQ RÛrùŽ…$›ã7€UªËå¦íZJçÜg€´yÂd¡<4º—æ¯ÏˆÊ_Ü &>ÐM7ý’"·u<û!ØZ~ê³ ‘Ûn'žn:D¯ïໜßíÚgÄMB¿Bˆ'|T Ÿˆxªe…C[ñ¨>­‰â=Úe"Ldâà:ÕN¿I1-Aàô0|¸º‰ì®îx‚'׫9BYº6‰ÐgDâ×p]埮ÐÞ‡wKç©Ü pAÈóú"Nué€pp%¾Tº ´„«–¥;ÈÑBˆ§éOh¨®zÚWòpÿ²Rôg! ͮ͵Gd^SN6ýÀèQÛª Ô/¤êlÇ£†Á˸mp4"ƒ]Kß9öpËKЀ[  ÓM¥/ x¼ä?ËtÑ_OÈ*Äm¥4`L—鲸ÒS‚GÅgx<­»LG?¯©‘×âÕÔ÷½âÖì¥o€YP)Ác_Sz•Šy.µ—Ꭾ{ˆÄ×à¶· ™£(ö ðÞ·Æ•¸m 6#6¦R#L‹»h€ª—ï°¤öO°²Ÿ‚ð¤q YÂ\W'ö,&DsP•jy ”i-O :ºQÏ€L?ñ‰ÔèòáÉÌU)¹S”—¦;§’zòœ€lU©e.ÕžW‚;Væ-Ý[®; ÜkÐÈN¥ìÎW‰ò€«r|š >ÐGЇÔW"¶YÄRíy%´ãš=íNhíÀ!Ñ~8I _[R“c¼ø²Æšn–ÒdqcE´Óæeˆ×†ùt9ùj¾ø•2Sû7nšàWêHª“x­Ù­Ja‡KR1»º“Òèöp›J€ù•D §(D^÷p+ǵN¨±– I)Õµ¥‘è°Ö·ÔBZÚUƒ»š‘¯ˆv´Ì ðo%´cg†^*òØÙ© ÜZ×gá³;'À¬ÜòêûezPW¹a&¸:QLD夣v÷– h¥BžK®«ím€.$)m•4جMøŠÙ@>¯²teÂìð#¶¬!,Õa©•Ù–ò9TÒ¦V7™®Ò3`º‡HÞvAù‰J¤6s,ms4ÇÑPþ¬˜2â´ÕoÆ ¶[È?hùTh ´‚J4 QÙehi]›«Öûq׿¨XÕá×J€'*ðäg€“VôõÕ³Ú<ªÞXmü ·:qœ*Â;ÙÚ/©»C¤¶ö- ®ý–,ã‡ä ,¨)BµÏGúñp˜Ã….W¢VüŒ¸µ¨‡ÌG%¡Ñ“º ÁJLµ÷¸v±]Y¦m~Ù õÊj‰“:\ZaÙ¾ƒS ôŒ™ê$šmû©Ír]æR‚Ç>¨½iµYB] ›ª¯æYPôd*"õ>ÑS †6û‘ØN‘pºH›ç“U"µe(ÚÉAå<¶7¤3Ú3€»¼þ`(îЂ‹¥7÷8mZE ‰†˜§æï)ܨœÇ¨¯*¿ÕÂ--+¢yÈ£‡ÓU-8.s-D¤¤ß,‘%íÐóTõ6T^«‘€TŠ+¢EG<á>¥z5_Ï“ÄØàk#J›‘ûVuÿÄͽw£‘¤4¨¥I©Q=5<”¶¦Ï”(¹”uÛb¿l? ެ´èv¸×¬iˆy ˜½fº…‡wµkŠ¡ 1O3OB)P 1Ã-§æ±µ*ñÕóh~²Ä-¹™¬Î+k¤Ø–ôc-wg¿–‘&K" ­¼eÇwq]tŸ7ݰ×Zpv>4Ö3 äÉÖ¸J5­šoÂé±_CÈ£"ÔˆkTÈ#Ž< šW™>tMJ4‚6JðŒoÔ³Uv†dÉ(cµ!âÑz$´Œxšúõ û7ádJk®ŒÇ„…ÅTR'ìs¢ß“<ÍÒá¢ÝÓH}Ú6:œàÀˆø…êxÚT?A±xkÎMàìÄZMZ`FŸ y€+ñºÖØO'ZÎþ ÒÆJ)Dôæx0Ô“hn6' ‰5ÀC-iÞ6kéÑF›TEjý`4oߦ˗,®&HaÈùDÌ£G$.+'a@a=à¡ú²9Ì£ŽÈôpÏ=ªn\îGNÚ¾Cºì?ð¡;•ñ@»T…1b»“Ø¿{Üb‹Ò½ïà8ÀbÕ…Ô óåSíH'Ѷ G éNyž •²äÉ_"r„Ë7ݽ† ¦×^/o'9ÌN¶ƒõì”èI™Ü?áTˆP*ißÁ5¼àSG̃t’Óaùàì¥kb{rS‰˜gÝDÛ²|.8þzrÑ6©Ê¿NšmI ww’©¶ŽBAŠÑ;•ñ\É=¹ÈetȬ­MêX!´Òô ð?%Öô@3e%0t*ã1L£8»SOÒÀ¦&a:©T›¶4ð{äëšSÈÒôt“S=ïN ÇŽ.=Û:‚ž~ÑDíTÅSÙkÛp&/½{½¶Ûw½&žÒ¾` {У¬ðCíéTÅc&ûò<íñ€±¶¢S©‚1Ïh_ŽSGÌ“¦.k bõâü!_áÝ óÜl)ITÍÂj@°WÇ.È~kU·(å¤ ¶S£K²¹#æéi4ÜI¯Í˜±*®ÕIºÀœW zt’.€š+ ·w*â±ÃQÚÒ=0˃¥ÕAîÀýv”…,TËŽGËí"ÜI :}ÝüÞnÞÄ z»ò­eË3‚Û!“ÙšKæ}í«xH'Ѷ¬¢ÊZë˜äéVsN‡ËLÈö¦dGÄÓã—8Ó‡‹K~Eªp:ž8t"´nºZ—ñ‹Äûp´—ÜB=e“uFÔ L'‘ê¬!"³Èˆx^˜äÙZ.*‘‹éÓ‘±|%_÷IáíTÅ#„(Pë$ÙÖÔ”©ôA§ž<ï-|Eq§¦{óÚ„T­Qè1Ý!þY—y”ÈÑë!)ÇcbšAyïð=×åä:õ=×e†|Ú‘L”â‰|®ì; ciÆP¿I*ÕMCê³ÍàDÁ-Ëé+y¦ƒ 3¸ƒ§ýrÐc"ÚéÙbÌbD&¢j"qNèIÂ`•`4Ãk©ÕD“HmÒE ×3pÔR|WuU&‚ÕÆNËŒ.j‰=c×ODÇÔð†l"ØÉ“Ù"{zCÃ¥-öC๠˜ÕL.8{ O¿IÂÍ$=„Å4£³–>m8I§ sD§m¦ TB' ˜‘±‡¤®<ù’Íž$Ôv6x„ñI¥<Á6—8+“4ª³z–rœ$ÔfšZ2]S­•ˆâ¤R«„_Å{N奞­ÍÒmš¸˜„w óN yæëTBXeæËT’a‰jJ³ÓIµ<ãëÍÌœ=wDªbR-Ï1ùò=÷Ṟ̄¢ì™]X\G)|žˆxšp@pnRSžôÍ+L"¶™¶³Ë'"Hëkˉ9ž¾¤ï‰€`Í;L¯ÔæÏ¾YœµÁaaL<šÂ”=I©Í²ÝšÊšÄk3'\“~“rKª¹cçØJÕ”wÊ7Í4©'Oÿv­œwL’Ò^“T "snö\”ïkœh¢2&ÉÈTNŸ¤ÔÖ (H%¤ „U^FÁž‰î"–¾áÆì.ÎæIm _!ñ1I©ÍèÔ*x>©ŠÇ(¡U™„wй¿¶w臘YA YÎÁGø§`p¥m²«²à²–1°§ì¼$¼˜Í$¸ÓŒy®5âÓiSË\jŠu"Ü)F#¶× N[ûV>Oâ´+ªo4î$ºX’¦¶¦æQ˜¤Ó–8·Ü¥ IܱyPõ”9]Ý·™Ô”'Y8bl/"ÊïLãyl[ùÿ%Ã×ÈþZelig/data/coalition2.txt.gz0000755000176000001440000000516513245253056015527 0ustar ripleyusers‹…ZY’¹ ý÷)*êî˧/0w(·j쎑JŠ^<áÛA ³zúè½—$ˆØ×oŸo·×ŸëåúòzÿüòúøÏýý~ùýíö‚?ýü~{ƒŸÏïÈxy{}}Ç_~~>>Þþ{ýÛ5^/áïõá_«íã%\R¹\ÿyÿþ¯×ÏÀ€³Åá_°x¾^ºÇý÷åzIÁºÅëõÒþnº|.D,ÕÂV'¸ÎIrÖháq½Äîp'Û„¯=Ü,ÃõRæ¥op†t:{õùQàd‡ƒòÒ4PŽÃ³Ù`\Ð@·„²´Óãdí4wþêKÙ3òp Ð`‰´G¯pØäìÅ-F¶Qïí¿øƒ "“g4§é8—%zKHI(3gË@¡,”ý eFQF®l×â앲ÊP3œ6h“­1jÇ~…º¼]Î(³z<û-ú‰9ÒXU‚—ô.ŽÖ l…‹ 'Cjò'5äHGõ¶2è'(òåö¸}»!œ8¤=º\2\ ¸d8 ÂÒè?kng¸²†Ñø±(jÅÉâöîãå†,Y8Ê šËe-%«…Ñù´-–Ó×%°e¿@Aeà2´fç`‰N’GžKV@g•uVG–p¶xQ­„tþtVå<#´RÚü)ÚÅfÇèüÛýñãöö2†Ä]  6+ÁæU¼ ƒQÐõÀ°¯¨¹àÑá‘]á@°[¾®°×[!Y‡Ã£$W\¡amØ’ÙCî ”YI£VÜÿ´ÞüĀc$2cu Ðcˆ¼†ÓDk{“ç„.׈9@ªðGe®-:Š'Lõb Úº%tT&Gê€`ŠãtÒ5t«‚œ¿¿>¾ßßê9GÀ_iCÈš‰”RYFá«F –Ç{9n!èZ‚Ü`)‹erlCèXcȨ-Ã;¶Å‹‰ê<­a#hô3²ªÁã>¨àî #ý<¯ôÕg]dñ²³Ë¿,žQ—Ï(ÁÛb4)1Ñ%2{yñ‡ìjpeDGÆ\“-ÎZcjü(#¹5fPß@RšÅãºwŸOËܼ:£&gÖD(ѹí,ê¶\Id UE`üèr³­\ª 8EÎnR€¢ÓÓÜ·ôƒÍŸ}2z†7h zY #xsÅ€%N—,PÙ¯Sõ”´*1rLªt"5G—;²Ö›@È´Ép„²ŠA!ÐÍbðjw ¼:¼6`kl¼³Ã|ùý8}ß>wó¦ŒiØÀÄÊ#Äó³#¤Ãéö3x>É.N‹ØÂt¿…Çëê¡NMq×Ü%aܬn-¡/=)!z!‡ö7Êð2Ì%Ã^¡Y6/ÑíÁm–aÄuL%8ca÷²µ7qÆÀö帉'퀴yÏ‘T—Š'ç²Ø¿¨‹â½;˜3ÅY{G8žuž–ˆTl 61ÅÜØÃ¬ª£›Ú6(®¯/÷áØÈ®¦;ÖO]BÜR0gJÖ“k¨~X¥ìrW‘Ê2ª&,aÐï(måîÍš4ŽÐµléq5†ž1t ¸_ž‰1u‰/ÔãtÙdÜUu”·iÞvØýH?ÖkaaÓA’ANBù%iã÷ú¶  Ö,°™ž¨ÿa_m«7ÌžuŽÔ@Ò,j7„$>ö%UÊ£‹Vê3!ŠT0<Š çªÜ»›<¡Q³¨ül….}(ŽvÒ3ÂØÓ¬ñT†)Ä&4GÀNHæm㙪[\7b lyŠ3CHdpfðt"–0IûžŒåýívÿN ½Ö•^uÖ¥„âM©òºÍèšÝžo±‡@Y¨;|šD_VWfÝ\ì³3·8!± ’,3¢,‘º§¤}ŽE‰~›¼/ÎÅpÅ6(®Û}Rþê~…Õm‚ÇÛ®&‹o|×H)ž1±ZÓM!øõ§ÖP` J!îØþT‡×ìp íæn}l¤zé‘›jó #K÷¯”ãE ([ÐŒ!Ô5¶T¼:¼é½Dr¬šA§ä Êîèn·ïô€ÍO,ÇÑÀ&Ìý°pÏ=Üx°óÊ€÷­s—™ On…ül…l»6‚J¨2²„b mÇÔó-ºV²p¼¼ö›!ù"øSh™©x6x¶G’¼ºÅ£tóŠK¸(a«Š'Þ Y\kç÷†Í›à¨zÓ)!gKhÛ‹/¡Ñ!áÜpl|ìù>G‹«+ê÷8Q<†Óúî{lxÖSÇ"XÄdmI`%ÄŽG­ ¾?~O† _œŽ,}¨`R §±#©ëóÒÀ;‹ —'´±çLX´Ö/ô5×UXü{`•­{¤Q‚}¢‹¥”À~#ðCÂe`ƒ$º€n„´•艵ǞÄâûîH*»)¬\¼Ô'¬ª³®®#ëñóíϹiY×?¾‹é“œÁ÷Ñ“Ç:pƒÞ8¾ŸÚŠ/¼[û£%_ãˆwßSw$ßö5§5^pqpÞÇ{ŠݾËå¾·í®ÅàMC€ñ@uƒ!t}žù‚0ö ôÁ1ŸDœ: VB¶z!Š¢Â|VQÓ¶}ÁÕÁɽÍY{¢õ4:ú*’ ^ôE¸·õ‚gાŒ3ÎO¿ý‘¦ï¢ÁE#Pçôo>‚dhèƒ]“ÑNdî™@v;õ N¤P–õzܱ¶ *PÚSûÙŠlÖwˆ.Hd×®†g”Wòd—‘ sŽØòý×íõÊêíŒcs¸ k„Á^¹¥©_Õ8¿5K¸¿ÿyÿvg|îp¼Z;à´%[Óàûµ‘qŠƒ'½8L:0ø~jlCgßÎD0Å‚«ñÅrI'ñšÙ~>Á÷ÈÇ5çã}¼šW62ø~}X8Î?7a²þxƒ±¢ÁàQqìϸq¹ø‚ðd• 4Ä5¸¹“AÑíh ldÖ£á—ÛתnϽ Œý,Fû™‡’–ŸŒƒá_œð]T³Þ¹‚-±êÊDŒý+Ü~7(Zelig/data/immi3.tab.gz0000755000176000001440000006174213245253056014434 0ustar ripleyusers‹…½[Î49’,öÞ«(Ôû$‚wr9fp0€ Ú½ÌH7Ï?ƒduM÷t÷LƒtúÕÜýïÿþŸÿþŸ¿ÿúûÿý?þ×…1"þëÿüïÿçÿûïÿÄùïÿü¯ÿûÿÄþ¯ÿú¿þó¿þ÷ßÿú;üýWúëùÔc¬¹>¹Ôžû_í¯òWø×ßømæÓ–[I£¦‘[ÏæÓ´žÆÚFc¤g`[ù4ÿýW˜OCÆÓÞRK©Dü-óiYï ÏhxqÁˆÐCþ Ï?­>)`¢ÖR‰ƒëzQ®¹=ÏRÂ蘱Lñ¯¿›}BK=þóäšþ6ÙÿÆ>Ÿ’âˆ1ÅVBÇã¿æ«þõ÷øÿ‰ß>øÍ¹öð9XdàÓð¬·^JÄ‹[À*:—ló^=°°ÚúSçº"×¢=î­â×OägÅŠýÉóqZïÆ¦Ž‚ Âü¿ñWüôrνÄ;ö3}jX=¶kOëÕÙæÆ>peO©µ…ÀWcµÿ*¥ä„ÌÑ…ß>!µ–1ºŒžJÇŸÖBªmàkìƒío®a}Æèsàáúu_ß{„sþ€Xr 5L]Æ=l²§§yV!‡:ÒóýÑÛƒ( , çXÄγvô 8<00ï^‹/ܶ»3°» ê¯j¢Â¶0`ÿj-IgŸÇùp#w¤4布Ùa¡Å˜öÎCÚ|l4ŒK1"_…;Ø )~É¥x<€°8LIç0–^òzõ[ £-Æ3Þ¯þŒ'iC<=%ÉaÊ•H×cc˸Êx VÉ(›ÃÚÒÒÏ÷ÅTgš¶Çõ9_ô¸¶¡æ07Ò'Œ'.ÉÏÇvññ«qƒã©ß-MŒw¿ésòz¾Zy“ˆøåŽqAàñý‰É8Xí&"6õ`ŠˆzÝÄIiMÂì¸%lT'“^¿n®=äÁ;ÑÁv@SºÌ-žÏ·}biÜ×ZÞ‡Wq.£Ë„mæõ‘òyý> )îúpqcMm7»Ÿ(ÊÓh ÃA99—3á‘7Ûá ±7…WmåuøXtI¥ßû´2E“_ëK-|Ó†&7…ì-3LèÏíþÍÓíÒfqé*5p™œ6z<«<üœ*¶wvÌ•ödÇ÷zWZçÓL¹‡ÔÀqä«­™‚‚%âD2&iyÞõš…~{®s´í)F%ž_gjyŠ˜´–DYHqXÖ«›Öޏ‡)?äpemqïçëFþ©Pâ¡sÏO‰“]ö¡MùUš¨/4ü,@ }2t’¹Ð!æúÚ»»#œÅ€þˆç=3’ÉœV^ .¯–‚ûŒiP_Z st¾)žk)eZ:ÙEŽSW™¿6›b»^ökÛâýrNy6Ä]Áæ ƒ¬˜ \‹®`^Tãæhão²¤†0 ’4’N)Î]€Ô93À¼ø´B㟡SoOãñ˜ O”N‡æ‡C™©4@L°,b(ª]©¦‘?Úõ—âe—&lïq@;–Ð|?×µ· zòC=¤. 7À>­íÁ/ú:ªÎd?§0pñ™`^)/Nhí…#!ÙëÓY¾Ncœ Ó¯Ùdï½B²Óˆ¶Û±c›a+ÁÕÇïój—wy*\øbhÕÅPBlg†C憣!—*M±†wOùÞÃ_*ñ¢(;⥚$ûút±¤ýy8ÿ^»'ãí € ™þ² Ë—‘n6Ò¢µd*G.XyOI°³?I«K°5qt  ¬Œ†;ÌCè;“G ë„ÜÀ}…Q·®Ì¹·Ý#BMUY{™¤“¼XN°£u›­B>(S``r’…üÈS:..rÆæµc„N åËNë[s8{•ÒRƒÌ¸Ý€±ß§³¡&¾'%‡x˜åà IJüÚçrVjµùâeävcðõӘΠ7£õu8Y„¼Ù ‹Ëdq‘;•‚ U~t‘0|óH{Ü58 GH\è:…S‡ø!%èy0ª–ìBÕ²ïv‡ß’…åªs,J)å|´Íö¾\ö¶Lº®àI¦!Ž`ngS‡z&¦0*lí…\¸c-â¦õ~’¥˜‡2äÍ=ºB}þY^Ôpþ½?—ûáE—Uóks#ޱàTp#Æ×j 4ü(ID {²0½ö]Ÿ4‹ÍÇ`ï7¼sØySaÔá>`ýë¬e fèeº÷ðÓ Z×PÆßÛ‚–&ëï­`&Þt÷€Aö^¡ÍéÚsãÿk9-œI3Ú×Ë|Ë]K™€»;s‘nËgïH·•ÛçÚüõ¼>3ƒì¾÷ûuz­/²¿ÙnîÊ y(È,:u3÷· ApÈ'ñjðñ×%}ñSŠawwo~Ìõ\¦l4¼±Ñ[Ã(È9ãt{Éæ%èòœý~š™c¡kg_¾zEz•Ãê÷š›¡úÅÿ(¦B{/þõÏë©ôï“ßλÓm¼p u  „ñœ%Š9ͺù{è"“¿Ãt«­ºDQûýkCŠ­Ê°Ûõbœ n þ=(VGkk¼i¾».¶´q±1tþCšï‹“ˆS ÓÅ ¢vÊê¿yYw܃ =¬Ñ?iRc'x›­MŸ§ Æ&⦦ŸGº-5<‡…‘“1aq‘ú+ôk†Hf $œhÛîQ”u÷æÂa}[”9÷fKvññ¸Ü;†B] ë‡æU(zÖðr&>Æg0:0hŒÑ]¾Þ~±9šV/.±¹.luò]l®)ÛÊ¡˜½tßâèf(+ÒîQæp7ï^±+3qbg¦—oRôÈ´" ¸p8 E¥+œµFï°ì øi”÷ŽQ„àÒ4N¸i9¶c¸2ŠþR¤îé$Œm…ìŽÑf\ÛHosB{_ãûùZ’baÌäE8.º wg\>ȨàÝ{³E¹Ñ¸2fÔ°4¨'qþ~>÷xѯ-N¿˜-vpЃ3x½îbr˜@ŠQ~‹—·}F jÄŸqùÄé:êXä•þ5¸øvèià9`jôÜ­˜œÌ½ƒ8µ@¯Á‚`c‚nÖpù“^Q\$p9Úµu@°µò.×ÕC®ÝIÒbo1^¢Ö¦Çtq ™G'ÊöÛ©~-V¶ßû¹Ek¢Œ½÷A)rš.ü ç妪,&’ï‡!Á[cŒño?ÙÔηV …ÔeŠ-˜˜<ýËõ<+ì¿y1íy8»1³±`po{×(ŒÇýM¸ëkx:‡…Ì‘o93ocvýâ÷u"t;VªÞ7É:MDÅ|]»Q× ÑgéÅ›0ç5öê“ܳ¿öÝË}øé›ŠKò<Ä…«„uç ªÇ÷-ާXÞÛ7íÓ<˜·s°¹VEóÞ—:è¹0›xQ’ì½·d7·FTDo× ì¹œ›­½öRÞÅ!Å{+ý‚K”q¾É“áç›ig-T‚m'¤ ö *  üB\ô¸Þv±^AÙõ,×ñ"<ÅùÀ¦z© çŽ Íeš,óuòonºEØ2øÞÈl„]‹÷?¸]Œzq%랺…·'ìsû?9J¢ ¼‹Ÿ%¶çlELó<€cPØâ\ú¢%xïÕ@ž|pL°3øñ¼Œkx¥ƒ¤+ ‹5\—WHQŠŒÃƒÛdd.áêüÁFa_ÁqZ‚ºC5c‡ Qú¯­èWOèºcŠf(æà6b?ã„–€$C€˜Â·‘‰n;nÞ;{‡S~ü]Œ BÎC,qÖh…_ ˆ4ÆOå8•×lòzVbæì8Ô?y,ëWW6*1ÙppPÌÖ}ê‚zAfúÔ ù‡Ç»cgn'¹: Ür3†L;哘œƒ*%XÌ"ùqÕ'Ò ›ƒIÀ$ÆZ¡{äùC·ÐƒcäíY1»8ìœ.êáÒÃTóÖìå̉ I‡œS/ÃÅ÷F7 ”„£ P8©ØÇÊúº"’Êcœ÷Vð©ç9KmÃA¦GÜé…Ð1å<=ñÌk…¿z.žSó*'Ew ÏB=å,égì·;ó4¡«„5¼þ£=ÉÎ|™-Cà›´= *¯á]÷æW#LÚqf‡¦b%EÈ‚õ<ÜNf>l bA±}m¦Ì΃‚ÞÁP!Ê (¤pq¯èìC¾il¶:_^rØŸK׬|Î3\̈[6–õZl°¼U W ¦Q—ºä)h«7“<»€3¡Ýb!õÂ8£dÍ-™âÅuUô\Fçæ´¶çwŠ–/tíÏ/¸ÄDm¸L¶‰‘Ñ×ë¾ü¼áðcÖ5|€•çR@cy‚’`¤ûÁ®ƒWLì¬ãJ0ìÒ&¬Î˜ýáM ; 4T×§Œ³N`ÁD³ryŽp›a¤áÄaOÌžoóâÁ=ŸÇ³”6e= Jœ,’áJSEúX’YY Õˆ|°¯S ’YùŽi·ÒòaÏÛÙsŒ§¤~6Œü÷&þ.¨¸”Ÿüoý^fee’,2µåtÎD¿€a‘‚@©9ž9 qPR _¸ŒÅ¿s:Ó9¾4ðFì(õʵ–|Óm#°OÅ?¥æ±<à)ûÖ¿/õb×¹ •;6æ1‰é޲ä1Å ¦±Ž>_,úlÎÚv«ËS•ÝÙíz]ÑIœÑ=IQÅ÷½3³1ɬ|Ÿ$Í.½iýâ›B]—ÞQ£/Î<ª¡Lƒ/D¨.‹Î„"Ýï‘=y)y¢³;pÔž >ö†¸ÚÇõ³MjÞ—TÜ{òF&¬ß ;JsŸ‡•¬ñƒµ€½ckhͬ£¨é•¸ŠSÃnbÛT¥8\:ßË$QŒq7¨×ÉVA_¾rÄ­6ƒ°°f¯+g­…“qƒè‹´¸3´G'”î¡b ¦ñ¹ù«ƒUù­^/OZ\ÿ7;;Îq1P1¾œŒÑnaY?ÄIÕAèVLÁe©LN(üà‹Ø;ÆÛê3ÍÿÀ¨2#¨næRéZ:óSP;d÷Sx®k/er^¬ƒ$“ó­áš¯>)¹k1°ÃBdFà*c¹‡Ó2A·œq$™œo3Íßf{ý„1K'õG±·q¾ÈPHÙÃðáƒí Í8S6Nµ=àò¬'Å#°Hcj¸»µ^. ó•2*dêÛÐÑîåLfR™ºû _pæxÔŒÈâ*åÔЇ¸Ù¸Rµæìí,3—V’ùÆúç,Êtšwj%‹ÈO½@ê“B—ïÅŠŽK(8šÒ"Hê;àdŽ4äë~Ù%Å(a˜k‹n¡Jó.¤áˆšåY45¬Ðí[ Ú6®P±å*~öH¬ ‘‰’‚Ú½èÊaª;·[Ï/É(YÉ(f°ï +®çžõFÓÏÃËŽD…ÉJŸ†ÿ®øW–Ѹkë¸'ì¨ÞÖp)€eT&¡@¾†Ú‚'°<Žpំ¿Lae•8uOÜYÓ5á/ßñ,{…iÞ”îË7Kg² $(_îÍ.aet¾Óݰ{̪ÁEPóc¯»l¶yK³¬Ä÷rLíÈ V¾QvfdO#<¸Kçüí†ZÄ&ÃðÉájžÐ9Ë™QÔ‹ eO™w&£ƒÌ\ù`¢†Ì„.õ²Ö.+äFwA…è$p9¾ÁŽ0<@o‡ͥÈh<Àõ×té¼UVÈ2ñ[f.ÙMÁ3`²¬Ä·³ÅRr徿×QÅ‹_/iþ~¶T‚Öï*Þ¯g + TΡ¸¶nyeò~à[Zì==ôè; W+T\éúútÄ7OÊI ¹å†ód̪×úMKrv¼.ùÔ/3Hƒú8Îl ·­£€>‡3q°(!0ÜÊžVX7'Gþ\´³‚šî!øÅ3júWQ_×Oßž5û½©v„ p7Tv éCÜ*>»‚x¡æ-„[Îáì×1Ÿ\v éá9—“/dµœüÑ«L«0¬:^Ï V 8˽±Á–™*ù_Úì¬8ù…Á [úrÅûãà↘ \™ÓÑÝõ”‹K·_ô†ÿ>ÝVÚÄ?R1Åg­Ó(®¿c}‹ðË·+a[êY1ë"ËìÛS¯ísú•´?¸ºáTàùu¦ ¿õ8äzqÌÍ´XÞÑP™Ö=Uèqgy–_o†[ý@Ëå])„v®èY®·ÎFI†§T£^Ïýƒ2×Ö yúfUf"3“~žŠK'a]kÙ};Ž7}`@ "Àeílj3ã°s}æa•ÑЙÃÝ*|§°¬[*«ð½³ÔßiDlN€¨¯‹6Ãú½Ï•`µÂpG,¶­­n–…ÁØØdñXôÄä.¥ÃÃ’3w£Dší°¸œÝP©üVèÆJøÎBœð. ¯Àj í@‹kË„«Éá L0?ëÊ´zSíù`­”禓˜þ4\8|ýÜR™Ú%BlÆA–™xq¼g…OTÊù»â[Øaí^¿äÌSN3ÏÄ”3ð¥õ:/ñÎSX„§`ã;qL—Æ Ã=E†PÙ€}]”¾œ'¹›þüNJ•xé€u³[¥pânšQg2½nÏJéÏÃöúù”dVjâîµçMüµŠõñ2wŒìúš‘Ï›'ö=_¶¸Ó)†_Ð/8§»¸þËrïBÈÆók±·Û^ï©ÿ‹IŒ‹Þ1³$°©D½N0þ\ªÔ?¼bÐ5 ­ŽŽa¥È+Aò’!PÈ¿Êk/ `€u¯×b¿¿NÓ ŠÌÂ7`‰tF}+âžå=)2 †Ã§Ñ8ju<½·\ÖðrgýØâˆ“m¸…½sx=s(»ƒåi7Ä&sZÄA×n[s©–buy”ÿ¼…aç9–ðœ…x¿NÖu,àD:¬áW¤ßú¸p ÉÒ°Èf<•šÏEô//ZQ­…"²û‘¦ÏZß­AŠ%îÈy{~)ràÏÇY›÷ZŽXe„Ë£èìc:®R¥ÆS£¦‹òŸ¾òČŔ.Çh‡!«ðÍ!Ì.² wøƒM_nVŸ-ïßbM%Üq:£ãàõk¸Â[B } ûš™Ö6ûögY %j¯·$çõõJH¼$,–ÎP<¯¼¡˜ËÆÖî(z¸GÏÖã‹÷¹ûÁÀ;sZÍ¢Z4 üDðŠgêñ}L*8*±üÛ¡¢-&!³ð­TR®¤~åIëùÅ 'P¢œÆGQy™Ã³#Ó~ýr&‹Š†›Þ“>‘nc IÒÀ::…/q‡’_ƒ&úìpFar–3"lçfÉIYµºK0qÆZ žA 8/ßM¼uz"s±Á1§N¸ö>K4’ׂ Å=¤N+‘3t`ƒèv^Ó‰§êÃÌçã|Ì(.‚¬îhݵÜr9ùóx’ÔâEßî[ϳÙxÌ:ªò…TþÄÈyéÁº™Ì+w{›ÃÉ~ÉRw®´Y®½,ý ¤ž ch8à™YŽXÃ=¹ã _d]¥Noâ`ŽlÈè¼>^6äÀ_ï¯éL˜Úü?ŒÆ‚smþ-ZLzmš‹”´­—¢•Lz-ÝZt -µGÑ“†ˆÌëתRªå€±ÎÄ`ª>T¢8¥Ç¢[¡Yw# @ 'ðŸiÁŠb‰‡"Ø–ÃJ+TT›]–̦±éd'¾ôM»B˜Ö%oå|4IÏ/1-±0·éI®ÓÄ…Á—'9Bu÷ˆ®õ³^f–\éÏÍH‡ÒY™ˆ’RÄq™ŽÚƒ<ªÂ©6ÈhhŒ~ñºô6CïvÌ1’Y]"¼¤e,îNT+uaÁfìáLwy³½5˜zaзÜ×lŠ{?3˜ÃÚ à3#+^°†`¦4&Å WûµfÚúZ/J³‘.¤;ÕïÁJ cEé‹ Á¼±¾m\¼¢RÃÆ5hµV+Cð¿(Žýõ:N-UÕ ŠÔéÌZ³Õ3aÍ&Üè¦ÁÛïUÛfRbÍ ²òðUÇÅ…a”TŸ áÒ+´Ð>¤#³ZݰKÌÊX\}®ª„ýÞRÞ©?T%rdyÐâCOߚ΢¯o•¸èu娪NÙͶ3C¶:ŠtKÿXÅÄ…ˆ£$ê#‚|EIU¨Ñ·†MÄ1ˆû ÷{…*ª’•4×ópެ[T¨DÙbkoƒ<¿›at]•¬Éí#ç`2%Zæ {¦-îLlgc< j08ÌX³_Pªê.ÑV•u“­w±~ªÂƒÀF &ßN¥øüµTœ*ãî-fñPÐ(vŒä!_™Ó‰K0ôŠ?ë“'²Ve'ž¸Äüý¥|˜?¿†mþz6ý¹ÀŒ[¨E›ñ;ñßKÛjø•Ø)qYb œzN—.´+6’¤.l‹öŠ]‡Ê FE¬\sÚO½w–NìØ0ë™÷»V#-¸2£&âÿ˜âƒ«¢|ûjÛz^ÏÞ4óÒÔ$ÏæksLï­é²¹þûqV4)¼‚ “aààõsx¾`\f%£>ñÒ„å<Ãê'Êý¶y…××yzâ¦8®›èæÜæGÀM€q7X÷gËsx>k­AÓ‰’+kì122Q¬BàÔìY̓V4„beLI÷*lèÁ›ø¬ê[è† Ó×pij/J¡©ÏI¬äX¨jíÅ8+:¦—ÖrÝúµ—ż›ƒk}›Œ9Ø80WiZ§'Å•P‰—`$/¯[ÝÓ×-ðtÄ-kkÑ])ççâ‘wd¨=og-;éý]ˆ•L»{Ù§¢fZr½ptŠá†¶ž:«kBîÌá·¡˜†Ûs{u.÷”È=w)œQeÏ펈õ¹ÕJ²† äÖÍ}¯²çö¶¾v¿hóy?»ifVïÛ‚-Þ³½NêÄV;aI0úv\ë>B©®,ØàlBõGÏ¥†«À …XïÁÄ´8cOŸ`+C7Ë ÝUæ©Ê€ËÅ=¯D5üK¬*ôç’R¿ÜÛÀZgéÜ+dŽñªò3Ø–@FDÿeX´„ýõ2kÒ|Pµ]üðUÓ£ãZ›ã½3V©Ê~cÝð(ÜFè­©¹Ÿ¦ÞŸIÏÓ™/¿„sÏÌ^brÛúUEöÞáUk?ÛfW™s{½+ƒ+üÊ…_¦s÷–®‹Ö/ü&¿ýí"GÄ¡–‰'š~:Öó´avª ¼U³Þ?ÂÙ ðç^;iÏÏ¿…GOÖ{ÿ ]®£œ™ˆWFÜÎèhÕºÖ˜Ù–×a/ì¥MŒy£…õU-• Hî‹k u•jØWu‚]¯0Œm¶¯>™¸ÓŽVå`a<¥žÉèU…f ÞÔ×p¹é·KZÏ=ãþ×À£AØÿXÅ ‹Z5Ÿ+šË¦»¦WÙó«&7O¶=2Ÿ7m ­çŠÉô[€P«—IlªG³ûmÂúý%1PëWbà¯7W…–eÑíà`{Ï.Ãç¶ ­˜5ëqK*³Â«×ÌoáꊰùËÙ õûz ß­ÍS½™íðXÿ¬SÙ£ "€Äè¬$³ê<­BÐ2èÀ’çO¤Ë©zYyl¹Ô˜§Y¨5Ð×°j€Ágš; Wdµ ð¹;‡×t*/J·~aZÆ‚þMU¬%hg qŠÔU³E9*^Ù:æ½bØÆà[¼ ¹Ìnñ‚U^à°Àz4AóÊmÊ|Ë~ãP-^,†èlê!±ƒ€âz.ÝâÅA-z×¼œèF‰k;Ôb·Å/6³c»{«.ªkëÁ¼a¯kåÞësý÷忆*ëùEÖ餋õljš÷|Ø«RΟ_œjb’2è.‚– ƒ…[CU¯-O‡gW‡NM¸Ø\ûšÎiõ×àKÓÏÔX~y¡AÕß/Lq|QÕÄÜ ƒø…ló2â÷ùÜÜ- .¦'{n¯ÆÚÀh 9ââ®ZHs²~6•ƒ^öÏ¥!Zynn¡µåÁ2ë³9È«bcH¤2›òЂ£òÂpã“Í‚kÂ|în{]>¤ÑÞÉ‚Ûu|[Ž4‰C ÎùÜ#r¿âWLµ\ô^ß®a†cI”VÝÄø‡¦i5œOÃ)õü’ÉnVD“ņu†@[ž%ξ×V½!Nß|~©ÑlšU«*}´W5™«› À‡”2{|)+Ep"í`4ã­yUÿnž­÷“U/ùâñµ½¦ä|Ͼ`ñã&?ú«Ç—ϳ!åÑiõØZ¤f•¶²è2ÙˆcH[+J}~cEìy=‹Þ¤ÂkÂL‡²ªE7¯ú¢r³Gšp—àx[]"6*µZílû [S6Æ>+О…îm]Õ-7/ÿÚkGanaÙE5Baî¡P{~­¼º¾öÖ*¢]u¹zÏÞÆÖ/j˜G8ËS€Ê5#µ—9ݸ±ÿÂRïŒ82—çÁá²ÍNmjøv%à1ù™ïa†ÆªEǺ®ØLʲÇÊž7·Ô¶RÞk/e©]pÝÍÓñÎ9þMÁ7E¤(¡z.åü÷nÛJu®çíÌà|}—Ž1¢•qåóy—5váÿý¹¢¤Vë™_¥ƒ "wv¶’|èÏÅ%f–|Tkî7FTô¸œe7}±ôü$ž'»€ÙÛnâdR~nÛî¶Z‰m d.PÜ×ðpÏh9jïpIœíáŸý=\ˆÓç÷ݽC@£•_åÄ.áJ“ŽÝí1³žCªOóÓ\rïÂeßoÛ9eÈ“Ázê¬õŠ‘„…Üߺ@m=>gFÛá ¶,¸E«nbí}íærÕ ï€[Ï/zêõQ¤Ò9ð©u 7o.Ž–ªKgµØ‘ w™XPA;³rXúÙÀóq»)¢02pÙ2à FÖ_;”çXϯ±áõüPóçb«dàÄ´QÊ:Ÿééž–1[áÚÝze'$h°Óg ‹u¼{Ã&PmºKñ«´²i¸Í`ýÓ51‡ãþãQc"a/Ù[Du¯ï¹C=q7XS޾œ®M'²~ÑÉô`A_gÀ¬’híÜ¥ ¾UÂêmÛê„­xòí‰6S»ç{çŒõü uZt(óë¢âw™_ì Ê¢öì0XfdvqÕZ¹X<=_™nZϽæä[ÄÙþ\\^"½âàÓc™Ÿ.今új©GáëÁzžÎ6ˆ9ź‚d».jÏe¾‚ÉáÍ™í`ó¹)à¶À¦šiuÇRÈl!³¸ n´BƇ ö®|eî+óˆa*¬ŠÎ¤ÙÎJ ۋ‹[f$+Ë83 Õ ×Û½ôJÅ…Æ Ü‚á)€Ýë{nLe],ïàð+ݵsÕ1 P衬Gv]i³Æ-.'»VKÆêÕ½æ¦mMw!d±@Á%ß„$í@ÖÚ^ÉÞï¾Ûcq×îIè8ÓÁJ”è~½ÿR2ϼ4]ˆÈƒ×~þÞË©ªÔÏß+ÆÃN¼ÄËTÐJ0¾4ÚÌ¡ÃÊBÉu•SÙ}Nö:_Iñ•&ºÞËúÌǢؚ{eYM“9G¸ ¶9ʵPpWmï¸^×/í0fÆ=¤'óžùÖ¥è·L9}ÝŠ§|N‹…‡ÜñõåóÜ L ë?†EY §í°2[¼äÝA@±ÞÓ9™J´¢sÝÑ’ìˆ8ê*¥]‘>rOÇ·ç—Ì\qÄ[ÝMêm“ô ïé~o³ØaÞó·r±˜jÌö~R3U†óè·.~"Äq±‡-Ùe£í™ k÷•)w¬ ‚3­ÀdýØ5\îÆ_g€9mºWL9æ…ôq ¯£V0L€½ßH™u"iW#Àçâ·Þ¬ïeÜO6(³%VËŸñÅGî•4†FÁøó çQD…ÏÎøÇ!sîûc- ¦Øƒi/‚ï_/šÍ9ȯÆ[A%udÊ3lîXÃûqmÆ]Çó•uà PœÆ·àém·{Mæ•J}Û3%2îudsyæ«™¤Bm{ˆ×[¦³ÖÇÂi¢ÿú*èdÓ]KàÇõ\Ì:?àE-1¡Û”¨!S/ó~Ù”^æé„Šƒõg½5ÃŒTÐtý|t&ŠGøƒÊHœñM”ûMQ3M™z‡R¼ë¹¹%v¤Œý^4¶æyöþ«N¼ˆ!^ÂÀ–Ù<¢»uv3«UˆKBÈV†¯È"†›qg‚*´:v b‡¼g —ƼÙýS¸oaÍ·]¿Vï…5-3çfÕ1&?¼°æ¹ÎÇP4íÐé Ê^`¹\Å8†çÆàøsº ÚÓµÂV7w56ûúvôt[äq|­»_ÒnúøK |C åÂím¾Öjó÷ €ãØ!Ä;;‹:KSˆ4Û̬†¶Þrý1nëÂ=óù%]‹„X ·SÅǹ­½éw¨Ê¹VãÆÊÞ‡iþ¾O.j/úy/t²_´ä› ¬³ð‚*ZÒž_òË40 VÁ —gUQ¾ÎÑ“/÷!Øä§Æ‚?áêåàнan(tÏ̇®qÖc™1h’};}5å-ó`ˆaªè¡úf*Uî7>cÐÿQÜ[ôh­­’!¸—#XG)Ëï’S9n Ú͸jÖ·åú½c'Ï=/G¦ü8ˆ$n8Ÿ^ÕÑßµv?^ˆÏ…#„{¶a¯W÷™²~]Î¥j|vqÍ,¶ç—ˆÇÒY5”{IçåÞÏ ‰²»@Ùf-ˆh-®¿UÞi~ÖúbjuÞèáì·ެ,ù™ ÇK`as×£îüì÷LTÖûE¸{Äõ¼ÞôïuíÛ ÅAºaO0Z B=šK3o®°šíJüÀ‚ºµ•d%U‡:¼CY¢G®¼Geæø\Á»Ss£ùü ^>ýÄÈT§FµÊ€eʱ'þGžÆ$ôôy˜Ô³/°v_ÃÅ°Ï _F¿ŠJP>3¦K–¥gµ(2Aþ,jÉzqtÿeÎq«¨Âºð±³‹'¤TÙfßÞΖ—¯îR9È"‰£3eJ)–#lEè X ÷xûöq1f¤¨¨†Ê¾_Ÿ«*¥Vj\m»ýÞ{K÷W BÝ2OÖ ñL j{ø(z÷ÎŽ[…ö2{ѳ|q ÖŠ]ѼƒŠ»—>V¹PÐFÞ!~ÔVxáD7Üj&¹‘Ó¯"á4¶o¡b\.6EéLÕË̶_ã/€x&²,!Õš^²¿dݪ§éóŒs¥:ËéçÂPsÎ!T[ð-ÅÎìV½8W ^êðb@>+lß.fä> dá±Ì"¡P ã·Ëê¯êµ^qi祾´,E¶‚Ê ›Ò£„#³ΆzÔ ^FeKÁ±5(2xês¿ÈZ ÕÞèl`gêïg~û0üV? þŠr¶¶³/Rú]œ¥7ÿ³‚=Û¥« :Ùai¡cÙÐ;@¿} jØPÿ-ýC‡Y®ä\Ö=…÷1¦«}üã^&fÖ®çK\E~ŸoLð]ÊÌV(ˆæÛ” Úõ|Qú\¼ÈT¼õ_~<.xòqOU@M·lIõ¡2lvÖf§Zˆìà Œgï±¥;Û„nªãv·ØhþÏOÆj›éªß{ä0CU0 +¬åœM¡Ã½[V±õŽžrÐI`ó0‘6þÒŠa–¢ÁúÀXY< ßa+ô,¦ÍªcœÍº:ÓæŒ®T²;›Ô¦8ß¾ÂO¹„j‹.R¹¨,ß¹fšÕÜìH¿Ìõ DŒ:´z ×Ú* ïÝ`Cù¼ß˜UÍp)îu»¼°ÊÙy‹ªÀ¹7ô^õ5HÓx MÿŠ&äÖˆ—ªxÎ#šûþßíì´!<³?¡²fQÞ‰1Òµ¤ Ëp‘×.hãïÿ¹3ÃFÆ×èI¯¸ÌtËC?Ýâçh|ñ.M-‚î¬Z½Ã‚lTy"ÓÞ¾ô×/ÛªÞå,À=e#›ïÄ× ¼îÏ/˜Ö¯¡Î|édιá|;Öh…ÂFN‘±uÖÐ7·“¡ãB^vÞž_n«ˆà^Þxõ µéаL½PœÉR ô¾ú/Í% µ#Ú:øØxTðì5!Hèå,¾¤ràçä53_1š:Ë–Ã,g ¼Z¶]Vhð’‚ÿd2ã?3ž £p¯€l€ØëÙÕ…ÐaöÒâ,šÐך¼ª+ä‡Î6àRìNb3Ü:%T >ÁΔW‚’‚Ä¥:‡é„‰ *SË ¢"6±ªøþ……ÀxÛØÒfÞìåñR`!„+Û¶„ b@ Ušóì¡1Z)©È²J–&LŠÒ¼ÇÓÏÅP:˨²²ר"¿ZÀLk3\ú½GíªÂ~û¹TpIÌ5”\´ºtA¦Û^3Íâfº‰Õ„x 8ñDgÛa@¾¹•’ P™ŸWx³ù+¬ ÇÞÛÂîé·“Þ[q+6àRmMò?Äq7fßG1þÔÛÄ„Ìñx‚8ËB@—$àêKÀÞ¥}+Dh•œ3\Ö¬>íÓ'e—3‹«ÏeŒ2,i¾šŽ‘© šðÒyl¶Ã‚FÏäÎjèFzâº3Š"§¬óú® +ž©‹!æðSœ6-Õø‹+"ø'+ìT Á<øº”Nïù"÷üÖzÄïÐt` Hç áÜ4þe÷†9Ë’ÛëRè—6¿~)óWýÊkÞ=¹,ÃÆÚ ¤ù¢öj@…dño\¤°*Ylaö†Æ‚ãÆV<øB¢ÏˆKb_ª%³^霿\ÁÆÈŠÓú``+”ewAµb€¬ŒswKƨŒÛ2׸Ðk. #ÀNŠ…„X«Ï¾ñnt|ÀGãðXoÁÆ_XŒ”íà!Á­¤¾Q¥G_Á¥¬ðŸ7'Xð. o0”í ‡n[Ÿ‡Ý k2jçVÓ ¹À¾Œc´JbXïÏ7—B° u[žqaÌ@*²F`·ñ—ˆw\tÌŠ¦to;¡)rˆ«ÅzQ5µÙìîËÆ«»è*yOïàÃ-ä¯>Ví:ï)N gϺ0î, íâc^yëИ©†æiĬñÐúu M:šH\ü·HLµ]3Õv)=æWá†$u2ñb,[÷dÍPõŠßmÿ®áÒìÉ·QQÃSíõŠî­Õæ9û>ü>©Ënj€vò {¯W\z¹ûW(¸—k·ÙQáÏGa™žúÔm>¬ÅÈé&†[KªgÆí²Á±¢ÛÑèçÔôïCbïÔ›@ðÐÝGFE,Ç€·ôl´ ¿KÛ[ ˆç #òû™†‡ 6àR®ÔÏa\ýn ^"R Û0÷®{D@$×,oálŒÍxIúžÁ:FµWð¹Îà…U® 4Àccж2Ÿ¦Í/üݤ ]Uòô Ée·Ñ³g»öÚ×fò–&¼vÑ„é|hâÔñ-­¾daK[ë¸7öЂòªÁzLìî•*,`/¬çOSŠ‚—¦™øBTˉ}£LQ6&Ó:”pòÓñµu¢lÊÝd\„)} ‡â.ÕM›ˆg=f¶âý°Æ{Þ7Ðpñƒ(#ò’EßzÊâ;ÈÐhÖ™Ì=ǫنL¶$ï`ÖÙÈgr0ñp wŸ%ëj!(”<à a6Ax´`Õk8÷öÀÙI/«×)Oç®Üj€‚- jV$´Ÿè,.ÆK–Tôxkê>ÝqŒeáø T!Òl¼P‡¾k².S{„ž´ðFŸœ VÅùâ·±û€†ÔëCÖ¾¢)F €ÐÌÓ;K°1{`Z“™pc,º ‹h­ñÒQ È1÷—_Ôl€ZË7"oN,±—¤Èâ »77!…[3##Åt)™#;>*²x*,ÉZwƒ‘9r—¶ˆó:dlÑÚÿ¸©¨ÊÁoÈKvPôv}Ûõ± 詆7®sK.œø¡™\MG½Ø„Þz|ÓŒ`ÑBj>¤ÏRò%žëŸ˜];dQ4,Ì#Ä8b57æ4=Þ ‹l䮑'$ºuú€cÓaÏ]xø¹X3´Y²(^»KÙ}ß/Ƈö"ð¡»c”Ù R§ˆëU“~®~Xb!„äYú7È•­¸Ç´àvoFÄ #6 W›’W©9gÑêß°—2Á¥(äÞ<Ã^Qtú ¦=IÏ—Ay㹨xÔ†á°m+B :Ú‰(w‰^f€*ß œê ®\ôE,b¹ q\˜Ê}U œýÕ˜Ô–aÙ'û­KHµÚÂ*kkúzñ‹K ª$sca€mò GYuF!¸Î¤¸ã”±cR9™l%VóË";<Õ¯@’ D(¬Éf»¤ú2{¬KKRžÆ¡ñë0n,4Ð΋snÙÀ–LùºçZÍ%)‰q¶öë.Åþ'^$6Wi³'Ù¼#y0***¹7G´+îaÈÚEO»@š„z‰êãwó˜E%/¾=#ßß;[…Çõ™ãï2rêÏ™Ê×½ŒÌKçwÆr«ùékP rOÑ4òð¶ ¯Ïtî®@ä¥7ȾÜüŸšA1±Û¥} v] –cø^+¯³Ã0? B‘¥›:y‚}µ÷d²4‘âãiÇîÓ Eî7Ý–¤Øãî’åßlJ³@;¶Í˜þ ÁÉ>¥)±²B¥â>ÙÙõr|°ØÉ0ò¾ï¿Rÿ;á%] Êœ¨Gó.=›]’*¹'ëhÓsq˜Ð‰ 5“fZƒ2Ì(Mêåp©e†¶ï0–Ií¸Õ¸½{l>=R6RdgT¶3îÁZ/Ñ1̯ĸµ`ã/uVƒ¿ñÒ—DÌô8Fïw—èLˬKSØ‚ºì°7ŠÜ_!Iâ$£roQ§o:úwXÐsº'Y¦O¤ ‰ÙBÆËmõbU¢¥.¶»ôì.ݨ¤Vïo‡KÑW+=qoÑh&B·ÀŒ¡,Û’®õ3uï‡ÈF¨}àŠ6Þû¡±á3éÆš"b¿ í,4m=xŽØVòæð,ý\)Ř«õE$Ï`Ü€ýyÚÅ^3ÔKáÎÚA²ƒÉ-¬‘2=*k^ÌfóšÕhúYblmã“vàÝ>™H´4“•Øa¡U¸ zn•ÈÜ‹£?F’Ýð‡*•èˬÝng®7—"Ë Õú0`Í0Ü0Õc§ç-©:+ì6SN’LÎCÖ(Õ j­|»ÛÔD‚e}¨ø ˜éLÅϰ#oVfEŒ5<»¨,5Úù-¤Y¾ÛøtƒVÛ)^º£ ÕXâp×m€Jßœº»áñE Ìx(Œ9¨Ìjb˜j4q)-G—÷3ã+ö€èë¦3¤ ¥(䙢œªÝt·GÏé–DŸ­0Ka@V‚õãÐÝMr:3ÌYÜ”eXþ–µ}/Y¼ùR±'‘+Èth`Ÿl…’ÅÃú VÂDë_ÿQò†çÔ; ¸$ŠdàÚäÛEeÛ®ª¤»;ÖHÙûJ\<ÚIX×÷eóû^Äp^x‚4$™×¯ðB9ç"·4ØÏF¢"ÙIý߸‹àŸy-*b%+íØÌ|WPx(«/.&k5š¶hã/hA¿A2,þ„Ï,l5 H E¶S½ÄûåMJ”¼ù|Ó-URQÙ¤ çV|_K(76e¥tȽc{pÕYËŒÁÑ`\AAÎ- 3à>B¶ÐJmt»Q¡›}½•~~-J¤õŒ³Áh D(˜* 0ž5¡w ßjôÚyÆäV˜Î¤_»xTd|%Å<÷šáÒûœ„¥J}),(y«襬%\ÀY²æ’lÒSë5àÞöÛ#›:5r6}„o 7ySSyȉ«#Ù˜š¥è^¦ÙE@÷ üÎÙ鋵@ Ûøs 1'e¨á Ñý“¼rÎÈ2† ŒÈ·^Ôfí·§2´°ëœ“÷ÜÐ6ôP&öþn,;*é èìn hB×çßÕ±ë‡iÌPLèäìÉa<çÛ+W~~ï¶lFI#ž ¹™Ò¸”ýœÇTo%pð\ºá»˜°–X/õtµ¡&^A§õqAÇù±zÝÓÍz0~°ã¾zû-Ñ“W ß…`€ƒ X‹ÇRÿÃÉ –DβUw´N±7:y[èz…ÑöVKGœ7Y˜‰ì¦)ËÎÍ®ð3îµÉùiº;¿¢Mb {|ó\žE>T“cËÍÙjúÜR¿ó B+>Ÿe‰óÃä4lј´l_à†éæ{_d’ÃÅï-ON.*ÏH€|ÃÌNÃ1´ÌhÀ`úy³ñê‰~ œg%Cžêûa—!óY{g¦Ô®ñÞä]ÀM¥tvHXêC$d†ñ—c1²ølߥµí“ã'ÇOÀßXf÷´ÆT÷¯¼Î²5­ ñ7Ð1¤5kîÛø‹b(+&Ç Ü¢ø’´í['f ð‚E[ßµU|ÊÚs_ÈQzâÃŒñ§¨`NSbh— z2 Øü×¶¦Fié9W$òëìEwÌqBù^+´í/­lFÞñ#Xô*Ø®¦tÖ@Hº‰ø_ìq Ý@Y¶æ¥(\š½}?ñÛ½û•6eüâüt–çm..уœ&J„‹÷¿šÙÍ¢¸âçkkB…;oJSÎEJSVuÕ›V•óEdÀ4R!»ë˜5dmIb9Å`-ÁÈè:®”>Á{æü⼇ɼÜ[©àœíáÂâ !kަ[ÄžÚ½ˆ5\„« ¹ìey6­«`§ ¶¾|, >—‹#XÖi.7˜(Nµ¬b9 »œŠwî”mŸ¨Ê<7* œy¨tó2^<–g§%«Š“oÚ]*íü;¡â ³Ôg\«Öo?QöC9gH߃k§ ð]ÿUQœízjå!ek÷mªÊþÎ2=#´#L5‡’R\H<¢<``+[±m®—üÀ4a-¬:Ùè4k¶‰Š¾/£´ù,ÃtÇ>hÀ¥Ô€oⵡ†]¦j)ÃOaBeßÓ‚Í*–%¢ ‰H/ÓYÔcãT(`¾±]`,q–÷Å¡a­ÂÅü°Y¦',“ù‰x;áL ±ÅqêÉøl|<ªÊ~uVã«*žÛ%kú< ˜i즤´ ÚwØû"¾˜%OÑUY\»L¸VdÒ{鯫±~~‘à ÕÜ…xI;0ÅQwî§õHð¾•4Aü2µlÛ€þœ/Þ:ñD(œá±ø¢x·Vô´þte¯ñ—ªò~íþõÒm8Y.X¨Û*Ù›)ºéqã°mÁ€ýò£uV)«–ìeÓ^ºb€ÜdïjmI;›œJvËs}µë"7£ÕÕÜq¥¯5xÑ×Âx.XVf8p•á[3ÄÛ]·}ŠöþœX÷G&Û¸Ü?(視ÎvP㼯.vnù.ª½“âV ´ÕfÂ(CÇihB¡/ Mà¼G¦üe…Cyž³b˜5;ó&:3òjÜ…ñ^* VÛ^s3ºšÄ­¯ŠG¼î¡BªC9 |Ø!ýu#û÷¬›PVbè•U•GÅ ö¢š³¶˵ñö¬f_ÎÀ•ÄŒã…aQ£ôšâÍ?¶öpÉ^”/j¾¸h6`œï: ›Nh^b‡2jk|ðÆ@»÷x.éÖQjC  ‡nA‘‰»£l×…èÝÝÅÉÈÄÝòþ4àC²c’EK¬`¥éJF[½3! Êœµ1ńЂ©ï2[¸Çƒ!!*öžE]dÀî"*~ÃÚ‘@ÇâZ_¼ »ä()7ø®L³¢Z?›b¥ç_¯Øe‘ýúvT”Ùót ÀŠuÕ¡¤õ+)Ù;eP¡‚Ý¿¦V‰_¯u¤Â€~æeÑ—4.2Â6E颇˜>(¬FøA0@p‘ùºÛvwÒ5`m„*´î-‡°¤ %ÓÒ‚ÁNË)°'iÒøòÏúf‘Á ¥¯±†Vb‹¦§~oŸÒEß,¥údÀg‰&t¸j–Gc‡×å´I4;„Ø"6¹µ`¶`¹EK“ÎÙ{ƒlQ9#=…Gq6^®ÆÖ«-(–P@¦„”ÄÞí2g÷â(t±u&Ï$:,k¸äj,Þ=ä¬qrß¶ïÑz~@Vã /€¿È^Ýûè›.{ýúeßæ_7 ”øâé£[9%{… ÉîP[¤LÒ½d2éLM|V¹›/yE!STèèäÅ-Z`¾eÇÌ*p½Q{Àˆ¦”rVzi«ÐöA³vÛp€•4}K´Áñ¦P7î 8+”{ÞœPÙU¥/ÌXý‘Á¹ìu—"Ù×3Ît6á/‘åJ@ÌáÚ5^¶îÛŒj:R»;ÐJ.•ïËB§ñ¶¦ÙÆÀè´:{:GñK=E„q*õácT•Dì ±`×s¼Ga…Ç:væ¹ÂTÒ–\Zq*¨Y<Îz¨â²\ú:ÕZšô™Í×L”6›€…ÑmÃ$Ùî¾1`¯L»]L£³Ö÷;ƒØÏVŸÎ¾é†õuýè^rÈ—7Ü"9Zä$îCScâjM²‡Ól[»KJ0lfææz Zjè×`òzE¿†ôôŠ‹šèÒ×kmx5»/½œ»×¸ö¬Hê¾}E;ËcÂåÖw$ú+ŒKÀ(¯4î ½ÏÒ¿ke¹PP„éhWÈ¡¾[n£På’¾£1Î%õÝ«lØ¾É Ý˽3Ç(>Ü \²fî‚2.¸ºï’Êùº¨õ, ¾3È;•‹Ì¥ ˆ .³i›£ß ÍñxÕ¡sêe}.¹èêMI ¥Ì|D‚à<\×ûú=ë'Rõ]ed™ReÓ]úr<ö ìZ¿Ä—Нï*.õF1 â¨(Fê L ÝÅ^Ÿ ïÕ×çâhl [r·ž³ ¸K޳ÃQî 1ÉÒ’CªGO·6³v,JÝaîÑfÈç2“›€v'=+Úb'z®VÊ—ú15žÛ§~­™c”©\Гr *«DCy©FxÞžd ~žNïW„¦œU8´z ÚcS!<—tÜ\ê” ƒU§IøÕ”éê0Ýsû ð4‚wÚ‹±ƒtÁ³ ƒÿ‚ç[¦<Ñ·KÄ ÷V¨H Òê–ç\½OɆP±m“myh®ÁNƒ \\GЛ™‚U5g’Î\š­û¶©æì®/y]zK7P¢,LöŸ+B5—kGôõÜ¡¶o´„–p)ŠSü × f¶¯2&÷ÖA6ƒò9A\lŠüÀ\×ýzƒªŒÉÝV„±…/‚®Áü-ïmXʱZeM^š?a@>{ƒX\qZM ¢Í°ˆµ\Påß/pG8ûY1Δ‹¯O°–vf YL¥(ñð¶Íª=t¨–·^q+$« ôZ/Èñè3XÝ»c7DHÛS²ÎïºÚzÅ%¨ø+.ðÃiÆ<…Ç·€o­—}uR¨—ØýìŒËnÊwüaU›Pᳩ7çóðææ±MláŒkI>@•ÔC#:žÅ™¿ã®ÊêPÚ–ØŒô,ªlÎݬµ=rö–\Weáû@yÄÁ±)ÜÜj©z´lBéÏ—|§ªZB¡«é­ÄÒ¾ˆ«Ç$7¬‘…b’[ ‰ÞŸôd®‘v˜’¼”™®Ýj¬CEbJ.ýEЛóÊî!ùi%3ïõ1–Ò•yÂþ†­‘ó'Öðür¥Ìúüxþy6† L²/ÄI‰n¼½ß‡ßI¨q¹‹ØÍêãCƒÂ4^¶ôüŪ¼Ñ7ÙSiXù3ef¬®*¢YØ#¼²ŒQ¤·pú›X¬ª‰`·kÖøvÖÚ\ôK\yãd1B¼ [4þ’j”gÎÀÎÞ <<t¨^Ôè–ªãÚ`4}°q¡ÏJ ÊÕT7D·|,Ž'*[NH†ñp¯qtÈXT‹‘w U˜`E×l€ ÑsÇ' °"—{ë 8£1TÒ§ Åû÷qàÑÏsCó"E[”õþæ ¥{³´õ\ˆºFœuwID±›ct÷xŸ Èçö‚_4Å0÷ØWµ¶‰ïæ2÷ÛÓÎRêûý̳ï“G-ßžN{…2Fq¯.áUl\¶ª/@¶ÇÎ?ƒQ&{å­Ö­cSØr¯X?D·1à…²›UÔÂE3µ¶ ®q2,É43{Ù۸ЉXéì 6¾œ]Õ¿ù[Já¥ý†›‚™ ösëúd)Ž[q· ɼè³ÃM·ñÊ”c+ª fæñlmWÙ¢ž3–fÉE ¢‚e2ã쌶G·u› Ñòn{®Â¸o/‡®cn÷V8­yœs«\ž`ƒsw‰C`Ï-›ðÚ"Â6Murß8þ/‰; ²« &ÆŸMQé±MaO"‰Ð²ÒF€Ñ2Q±’, BiIÂæƒZc4i-Gð‹éOô(8nþ¤ìËGkÃ/wº‰<îMÍQnR ¥Kx_&SsSô 'oV˜‹³ûˆ™›°Vèù£„ÕF¢<™ˆð­ÒÖdµ^ZÅb€÷Ôü-úÄ ?JhÂߟªÊXM}SN°¤'3ö@“š—ÛÆ«n]&Öµ¹.]Ÿ¡$‚á¨TT¢vˆ½ï†7†ª…»™Ùk8Êhã/žÙÌÍá¾[I*­Ð»¸ý¾‘±Mæ;Q±K3o÷`ê¦yÐ’ªänlݰ šÍ\wŠn´?RO_ÉvÍfHgŽS½RO÷C¶{SÊÙ×)uóþ›{G_›áҌ黆Óò£ à» ·W¸É»™×+TÄè†xh z’?>³=µ|˜=×t3‘Ù®–¥!¦³[7±V=õ˜7NWÞ,á!öEŽQdËàitZyõJ¬¤‚»‰AËDãeÊm=le w¢õ?äÿàêÍyªª«ó°á–ѬÕSSlÅvØg¡ôÒ´öœ CÉr­]Å™¨ØÝášë rï°õ¦f}Q\swb7a|ß¶A¶fkmÈUDµè,L~f¼ˆ\5ÏrE4gÏPü8Z»„¦˜è>à*¥p»ìÉVQ/¿º}SLôÖN¡yù#’{°k}³œX·Š ŽÎ>Q62ae1l,ØÝM!R°Ó¨¨³ˆÙ*æ`’J ¾=ýZR>kâ1´îÞžMG´õb©˜»Ã}Œö €ÔµÄ0w](¶ÐzˆÖx¤' ò¥ò:žfGÔç´jd‡CãÃYÑ’·¶ {KÙëjßé cÞ$ PÕ¯‰Ð£û&·¾àþ¬íÊ|¼A0Þš°œõ[jÔl”Úæ•›]â×üJ6}qiöd)Ó„“tâ¹+€JXtI0ÏKγ@?ƒ=LÑ+¦rtÕ=:awׄ—^íâ†ée³]f•ƒÙ9‹%oF‰Ó ’ÌéI* ý€TëÒ¬|;“˜¿„yÜx…’ÌÖʺÕ`ÓØÔgö¼%Ǥrò°gÿëj sÈQ^_”®N~»ðP=”ÓÀûˆy%R¤ˆA©ãç­ÖE÷ë¬Ôš/äê_ãC#‡¼ )B¿± /…xý2{.êV¥µÙ¹+·ˆVÝfÖ [ZŘº—ÞÌð‡¢œYeBdÛtRøt‹Ùp±£·òa;’™ôöeVh\©²l »:[ºGÏ—Øs(ólsÎŒéòdÍÚq<S²‚Â^°ñæÿÒ÷_ŠQMü±Ñ;[¿`£{äöÐ1q¾Q‘ÛÝ|²#TävcØš‹‚]{# ÈÊÆöЕÝdDvë"Sü¹ìÌîÖ4ûù :Š™OGî4ù28Öʇ豻­DÕ7Ô¿Ú‡}|žéȉVÿ¹ßÒV£ÁÙ;É4Lÿóë“ma}n6lµŽÙÛk_Î%©R/‹³ Lg-ëÜ^ê²jwÔÜDVjóÚ|Ýü›ÝmÇX/‡àºB­·MÕG]RǾ¯ȽC1¤3°eöpÍ¿× ’‰!2ÜÃLŽª,ÝdÄ×n}Ž(]8â˜Àª¦ÞüGVKW‘¤] 3†ÖþW¿{‘¤C´:2söÁ¹5-É¢)·žJÝC½[5.»âí²Ï2OºŠ$¼9Mÿ|bGŸ/u©HÒžÃg‚Àû‡²À)k•=®¿a©Þ¯=ß -¾¼9±Û¥éÝ1¨oͶEàÞ}[Ò‡ Zb§GÉku•õÝ…£ÝY¯š´™™ ·ÒMË„ù'ôwOGí±Óh'Ò`Zk¼NáU¡Ù˜XIk½5ìþ¥öY¯<lŠÁBöã˜ÞòQýÜeØîyÍ,¡_é‡næB²ç%´ÆB,Žæ¿„g‹Ï/é{èY¿\±$PnŒÑöDé©o+Ð/ì¸À%É" ÉÎÒÊ*ldàéª4àè…ŽìQ—„‡^a-€)ô¦M¸´Ú€UKŒ»¢³·ŸìŸ¡¢K0®Á]’¦‰¾2 ?0tøLW” ¿À Ô¡iÈ ~óõl€&\˜Ýϲ“Õ&Tf6n o´ÌcŠÊž@•Âúä6>Ë‹¬nLŒÃXÐM{9_Tâ’Gc_ ‡ ŒšôýjKϦ\-OmëÃt rˆN¯ˆí`EßÎ ÏÅ=$km¸YüòÎÐ0€*ËóILá0¼ÑpÐñ»þšíH¸æE\K&x7ÇÚ¡ Å…O·`M˜Î·@°á]N7wkf=#`GãÑ„rî:Otbc$|vcAi-àÞâÓÂÃ^pôo°èÌZœGPøpå3óûFþÖp‚ ¿Ñø~&^Jx3Wa~²Ûˬ®ÄîÚk|t—ݹ$Â"ùV`ÄË)HBhð wIù“F¼¨¥É”³Ö—'ÿ,•&QaÄ*”ØæF°¢}n1C´ì––¿>°á¯³ØTg«³à*ÖˆEÔi/]öÅ\ ”Ïv®ëHI ž×éwb©z;JïH³áY»bÓ¢?*´/Gó÷=GçÍ!Y „}»bÛ*溪¼ç_u{ƒÔ $¤/VNÙ«â#ýC•©™‘Šö‹½Ñ㻯/– ªØtC$Oq½ª7ò÷W£Ë>JI­uæ0í—ø–é^o¸¤BE XŽ[PÖ÷UýR# ä9N„…Uæ6àÃð>ºWjÅÄ6þâ÷Ÿµ À&ÈX:SÍ0¤=5£¦Tg‚!äq[,ß„lªá å—lrÆýíAóö뱚C¢ŽEx–¿µª¿±œÍädù¾Ü«r5Ïbe IP&óîêì&JXB¤o.HÊÖÝnÇ»ð±¸Ýc½‰Qƒ¹`IÆ¡Ê8ó8§»z‰ 8Qñà:bT‚úCâ¶õÙ3ù¡³%ɾ•fª%Lx[›öÄb÷°]5P½žB½°œ™VÒ”lt+õÇÆ_Ša¯?vj‡ôIA©áˆç7BF¢¨^CbË`Â8Ôºù†võú@­$ó Õ¶é”ͶŨmO•ÔºW¥´SlE³dà“¸HÿÉu©Ç°µ"ö V»]ææxýwm±€9h®°ñ!¬{;’[ §ê hç3›èØÁʾªô³âM5«ç³ “Œ'~¦+Êú`Lì)V|ˆ }:AÙ½~Ù œ5Æ%B¯²ÝC}sNÖ /Ì”æ?†…&Y+xF] wCëî­~õ°Ö½¥¬h?ÅDMÎ&¼ìº}ˆ“£ü·éçl^DdtéÌôWÛƒo3Ößì³ØJµSKÌ,b㥦î­Ë?l¨É¬Âðšñ[>®IK ¸t ñû­âOôć µUÂ¥Tpïeå~o§_>Œ_*–ß^o‰ÓëÒa±àI¶…I hP¨P¢3öæA"êHW[ž­HG]*Ûšî sŽ"‹ ñ ©ñ@±·ÞU.éŒÑ7`œŸI¾dIR!Ÿéž °/è6 çù‚–¬ÊN‡|Æð‰Ù#ójbVž›»qÂe¥wœÒtf×&»øå-άd>g_ä|x؆"Fš|q,g Ø„1G­ðÚœ[ô8I]š^JèVuܨÚ{æÐ>Ì´9ˆ‚ RÍòٙŧccýlÒ(žx€iÿ­Ÿ?ò?ÄŒ22ăå°Épîk=å"–I²… ›A¶ÌYZ%Ê1þ¢¢:+Uìø îñ[' zoÈcTëô¡;«µ¦‰êÄ´¶¥Š›ÀZ [âÆ7XâmÐÝa…ßYöî©\.U1ò_&«ÃDÚiÆÒ ìKM3µ =)øÜûâY âö2™ßŠÆò´&±4(ì˜dAŸªh¬7–#óqV/÷$ùŠT ðìL€î}æOõõéc:»£ŠvEm]÷ÜÿÄò©‚/RÏ*+øTÈ}Mx­ÁÀ|®8+!ÇÙ°ÑÆ_þÓ¾‚ªÄÌᘃÑ1þb9Ç$úθ•žÁÖÍG6óžöo›¬¬á=ïC{è°®wI½ÂÛï¼³¥ì˜ºËˆw™šö “I=©átIå­÷*øg˜Z›ØMÉ«ªýâÂk"Õ~‘Íg¸d¹æÑ/ ¡ Âéí XýΙP_°Í«Þ["œÃõV똲åLûþÕ ¿b`®þKTÀ¯Ÿ¬^ªt‘5&Ùœr¶@ŸõQX†¹m5 Ãø Z.ûŠ.uwÂì- qKÄa3f›°œ?ÑÁ¸r«n‹¬Þ\*õHþåïþ"þ-B„ÇåÌ„œO*À[س–mJ•©ö=XÇ=ÿš‘ÅŸ g¸+Ôö Ÿÿ?±hJ ·]é!‡sENßf™®{u-#ÏÈ}­1ÎfºØ #°E]‡|¡Ué¿A¶ê>@o¬çs›îúöÙODkù‚Ôñm–­úÞ¿Â÷2S¶å9WÇ—Ó"” ¢-ë$½v—õd+3me*º¤:A-¿´ñ—.ö~²åª—Ø>—‹2ø y›ÖîG¹ˆÊ‹ ÿæÌ¹àù=€Þ &sÔg:w¬Æ_Ò#¾KR«®—WÔµ—vAzÄiS²!eOÍî”7m=S zd¦Á–~i'¥Àë;ÁÚù·W¦„¯à,m4»Ù6ªÖÔ ¿3y@ðuèµfᾡm2pŽ= ‹ùj;jÚÚAlìTÎ;-ÿqpJ¤Ý tÙ…h_®ë€ý¢,¸ îúM³k9á:ì^Æ#\+ê¤‡Ë ÅN÷ÛRr¹± h4RòZR[}Ûƒ.Ø÷žÐe.lÃ¥^ÿ.~hÍÉ_€ãKö>kò]^ñ¶5òlÜÃFÚ•>—åÄópö3¹‚%«q7+mEÞ¥u“¶mCNòfg­áRÔí¸àºË.<•µ]®µAõäÞµíµQQ–;ÑFªlO ?r”¥W*l‡H€KI+,§Ê“šíáÙù•Å­¼Dx•ƒ_D¥ÕÆa‘¶ o¶Æ¶ä‹Ï,5GF>2f‘ü–*š•¦ÖëëYÑ•bÕ¸fšéõ—&ÃÉÈúÂéÒ¦a Vp ¦!Ù’ Ý#Dˉ_àï/ñù©xuá­qjµzø°Ç릈a@2ózÌthÂK÷ )¦1¸7ûa ¾4ó†šáçÿÂ*ÀÍïö —òe «õRÙéLž?›ß%äo¹1ét1t9=ßU6“Í0ÎXäЀÂaBŒÃXiP:žó %BcT&Éë(´g­ˆÂ )˜5Æ‹ñ=½®+Õ[ñ#<Ç¿áßÉž_€’~yÞK—ê ê›x®ýBG“]Z4øÊ™Xøm»€r5m¤m´/œ;h€Ê8=ì“Ûg¹ fÊEú¶p#°Mµ?a¶DÂ1U†`˜’ÎpséRxÛW Ö7,•Àf›,C›C:‰>˜Lèe¬è|Á³JPT"»coó¥5HÜE¥Ç¾ù¾««°Ó­ôž{Íø_÷ZúK+­ïE–±QûÊÚÂO7ã"z§p!V…8`7éªÂ=c$‡8*k ˆñ—M/+؇u±â7«¹¬˨<´õ³×¢òå“çÕJ¬‘Ù“fÎç‡,‘x©Uì<Ù 9myæŠâÄXç.±¯‹og½‹;ÄÎp•ޤÉlüÅóýýâ‹çÛY´òa#Njø`wŠ: tÝ2p€Ëò†ôaŸGHÀ%áU¢ƒ†7׺Q™Òe÷,®ˆƒ-¬„y­Fd€V–*Æ ¨ÇÕçk'EµuÝ{1ÚžË=SüGYgq,Ԩ̫>ºI¡YÐáñÇ™=ún?ÉCŒæQñ5þRÊ/^¹ UéÕÂ5å- ëZ`’(Ìð±9›ÛžwDÑÅX¥fÞô¯zƒEŸÁ‹K¿£ FÕá©ïá©NýôV!*à¹côÆqSl#ËÒ±šYÌ]¶»¤Æ7§DUòò‡=¶X«Óô'ï|³•&µ $¼ÃÕLå”­º—b‰vBZá‹•ÏxŒ6™¨q‚'zM¦¢®7–³¹0ž³uÊrM"ÄSi¡5³sk°0¾ë¤¯€çÍ ð| dÛÆv§õõQŽû}—Ñ·Ûô}q`/°!lêÜb±ë¬LÚƒ©k/‡yÝJ-°&ˆÜ§±yk7! ®97We¼á|¿ê9›o¬¤²ÎŠ–O3ðfTêì;ŸÆy ž—RDêØ}Mô‘eöˆÃ$KO.3g-U\÷ÛDç½ÉûÄTù\ØIô1ÊUOKÉ[ê"G­’ˆ]–Œî¿yÊÌfË2þ\ÛÕºtkäên>v (点~9‡c¯0àb5ÿÄ.'9…¤ÛÞfâ¬&¸”TÔmMÏ× ù ~¬7¤ÇcÐüZ±¦ñ®1¦çê¥~DäC1¸S´ù.°–©p–€¡Ôm¼Ì±-*þª1+m‚)‚‡ÚðK°SΊô\ÿßöœ„×Eù0‘ î=3Ljý)+Kd1^¿¾`Ãf«ò§0¯Y ‘hØcÎç2_R/ÖôЉ£g»Lßä­[ËN {õ­wËAÛÙ®‡î½‚¯Ù¼ §›ƒQ =Bl@:_çUšjüЖŠ!‚’À¼7xRDt/Qh»äÖë ‰°¿;Û10ë $bzÇÐ_p[ñM‘¶8 ®dBcÙEÚï¢àº»™a×=9]¼!Ì1qžËþ ÓSë¡hàça4šÅZG°.ïöèÛ±“u{ôФi ¨ÿ溗K¤ù;ਛ’šÉT ØwÌ$u¹Â$ì }»9IޱÝ[UØ Þdþ'à;Áu›©‹4V<ìz;´¢‹RžÙô­Ïô®A¥]¶]` c{®™ ufÓ„'hBåÅ¿ÃvZ²vùEŠî$EGwã)~˜Ÿß&ê«à8âöÜ`ây@ÕþöáùÕÛì0RØ:¯±Ô0BñªÃoEÈød»D—d¤váÜ2ÿÒ7 õ c2Bi—è’_Ø[ëÕ2íöY z ì:&^uxË[«,®>èÆ¿iÁ2@aa2®WHÅlŠ03¸èê $‡Ø¾Ž]á°$tw4ئõ çV°()Xºß>}£ [ÂAÁÒ·î&(dZ&æ­+ž#ôKþžäˆÚ—•튙LÈ=ri+PpôRÂ̘_I–¾ *·´wM±}z' 3 G¨nyôQ׊“³üh¬`Íë¦xysœsÓ6ú Ïlô»—îñ2E²ŒÈ½,þÚÆ,#ò‰û°+Te‰9æû'›ÐèïôÙü™<°—Uº¬Ùüò©¿ê|é ³Êï9𠏤¨H—ʲaRÉKÄ€C7÷sÌ’Ýü^Éy/#i3x;¯_7ë½ÖÎÂR¥sƒ×¹d•fqErM.ª×ê:|öàéf&h!³¶²Jì9¦sgÌ=™…™e¾æÃöÑõ(f z‚äØ ŒYÿiUG¥KâzçÍÁ]¶oˆ¬ ÈölÛ•*ú¶t2«°ÇhuÚgC Dû$›Í¯ˆö&a&,Öš…À=ÅfY780PÙKÉÆ‹mJ‰\r#;}˜Å3| ŸÚ±¬ž¬úJ»[].àñéµÀ.ͪ¯5Fˆÿ¦ \¬¤èŸè=Ð_¸i£är‘µdÁ°]3{éâòG½e•Þ›Ýw¡sßsóª^¸-Ùèªäóí40—r¦ƒêêÍ ÖäL9·qÅ€~^dm{Q¤Cy`œÊªñYØo}”>÷~£öÆzñ¿ºô•õ‰+®à¬Ö>9ÆLàdØlL!£®ž›þ^¡¥ÌÏCòÒ§ƒ°™DYµÂK<Ôi­VY7ï,®8è'…-‰V$ߊK!Ïõ’zø}£Š—³6D­¬ÕzüƒÃÈ=T¾¦¿œL,Ìd{¢è]2âTôuŸÉÏ·ÚÁ3á‹øæÎlèñX—pü@æè+ä*?ËÝ»ä2öŠ/~R´æv¬–l `Ep0<%PÍýMÙ{à°G/ïffß´¯-—oÖéÊG„S@°°¦•}ò¸ñ È$»8[‚ŽÌÇûÕc”.dïn Ú ûÅ±è§ (/dχ…ÃY>ä/ÁrwÚ¯Œ*ˆó[m#+zò„ýÿÂ,Ö;dZelig/data/seatshare.rda0000644000176000001440000000621513245253056014745 0ustar ripleyusers‹í[kl\ޱ×v솿gqÖYÛqÕ4xçÞ;sýƒîºI@Á$|ø$ð·À§€Ñ¾EûíÛç·oѾÞ—a`”O§·o_T¿þßÖåëìöiÕy´oŸÝ¾9ø>QwóÔJÓÇ|pjÇÒÇ^ziÊóôQôŸ½`ª?SVuÞЖ<üF8O™Ÿ©}ê’lˆXoú¢¡ž'Ó´qã†)lly*Ä8æI¸}j¥™ÖŸçOÜseØNt~8b ç‰ãyæ]Lºnf ÛïÓ<íz"|?yóhØßŠu·ž­çm]¨×·ó}åªp\Ù•_Õ~ÝÞòVÜðp8_Yư.3¾þ–_r œ¯þ9zßÌþ¥èþôa¬ËÁ~8çÝ>?~^·ƒ}AÒDZ?¥x~°ZÇ)SƒõÔ¢¿ûÒ€õÔƒ¯~šv#Æ7bžEXw3ækÆûq/ø¢.ì_„ý‹ƒ¯óÞ´ÏÆþTaü|øWƒ¼¨Æ| À&¬§ ~7`õ˜wÆÅŸ¿'\Wâ›@¼×‚x·`Ý-XwûQí÷RÌÛ±M?oG^$áwëïÃxd£mæIè8eÚð¼ã1ý¼c(ŒS¦íoz}IäWò{šg ò&¡×>¤×“þ/òâô!½_éÃÚÏô‡Ú¿ôa¬£yy6æ+×û™>uÍ_1äU‰®£ôLjÃà|Ô—­CÌ׈yjL>ƒ·ûYåh?›¿…æ}¼WÞjŒ«ÄóJÌ׌÷–ök=éêÐã».×ëZŽø.C>u"ž؇ôüi-““õ„yŒ3zT‚uİÓ_ŽþüöŒ«6z¬Ã¼Ð“—çàyý ´“˜¯Í Æ·cþ6àô·MÛŒ_zãóá>t"ÞK—ë|ïDÞwš<6uóÀÝa»ë¨ñºCþù‡þîcõÅa»þ§:Ž›±þg—…ëixy_ø~t³ù]ÿÜaÿ»ׄó,¼m^Ø®¿iW8®ñ–÷ÃqÍx/ŽzŠ#[Ðßr•¯÷iì¢pž%Ø·äëw„ÏÛ'mËî û;¾q$·ôŸð÷,ÍßYZŽëø³ ǵc¾öÕØ?¬«ã¾¡_Káç¹Íá:;‡~>ïüUø^ú(êï0êu™)Óùjëõ8ôû—ôQÔ‘ƒ¸ÆÌyÿLþÇP‡xÏê{%ê®í:ì[=ÎÛFÄ·íz´k1O-êe°õmò`Ú­ÐÏÌ¿ qêÚ¤ë[`½^R¯ÃߢÛ~…~Ï»Më«û#)Ì×¥=·õ+®ÑïKÔoýˆ£ôõþxÐIñ²Þ—CÐÅõ:ÒGôüéƒhF]ÌÍÁ=å„ÑðÄ Ce8J¡§Ÿ`~sŸ9=9fæÅ>9ˆg æÃûV¿æá¼2zXntÇœÛȧcFÏ /ö£ëªwô¾%Pç‹ßÌ—OãšÍºuül>~‚¸™|Oú# ø3%8ïK‘ßæ¼Ìİ>œ'üç"?`\5ü¨6ú‰<¯Cšó8‰÷Û0o;t¿}·^GêÖÜÿ›°ïyûD½´AÇ–`] ÄãÄ¿ãkÌ=ÈÜk°îÄ×Ü7Ì}ÉÜGæÃ¯ùˆÇ<ð˜ø×šsÁÌgêuiÚ‰·ô<&®æœl2÷.ðć¼—Ä>%qïmoÜÜÓÌ=ØðÃÿz`æ]„x´`?̽ÉÜÃ1Î1Ÿv¬ Ï‹{ýôP!íx÷$ÌB'_?~¾vÿ­q'žçã8ê}ôé« â˜>ç¦avϹ‰B8ºip¤îÐçÁ4Üskyâtp÷ãs33á¾kïÒëë¹óÌðdgÂ}úž†»ôù÷éqÅýC³÷œ‡w?óÝð½Ñß|ÝÉűËb‰B8¡ó¾(fq>×y~JÌÞµ"܇ý½Oo˜ _~öû#3á®u‡f…ûSÙÓÁÐqƒïáü(†pžÃ÷pNXĽcâÜ,†ïàü*ŠˆC1|yP ßÅù]q>ÃísS‰Bøæ®%¡ß/ >™˜ ¾}?î|21R'>~{Ãl0¿^ŠéU>>‡ó~¶¸Sßë§áî÷ïÝ0Üý-ЧÈÿ½þk¸îAŃ¿Ë̈é[²³Á¯þgøÓà>ýù&múùЙànÔG1܇|*ŠÐ­Ï ßTŽäâNý9l޽~>,Š£?ÜáÌ ïÝ4”‹Y}Ïš†{~ùbAœ@| ë+†æ=ƒ/Ž Âñæ‡FN qnçãØ‘ðóå4ÜüàHAÄùù÷'ƒãK^ÉÂQÜ7 îÄ}¿æçåØÃÏÓEñTuµçtvÁÕ™™pÖ[ ·ã¾R _¿ãkÎlpçCÏÂýߎÏ„ã¸ÏXÌ»/Làžbpì¢×NÂÑñõ'áØHø}‚Åüç¸oZDܵþÂ`þûã|4›‹cðÓb^NËŸGÆ7äbþø½±¦áÌû•oÙæþë¶8á/{'»tgÅ5×߸yëàMhÆnè4ãoÜÙ|²ùdóÉÖc’¸›ÄÝ–XtuÑLÑ4]šMŸ¦¤©h4É–"[Šl)²¥È–"[Šl)²¥ÈÆôLOÁôLOÁôLOÁôLOÁôLOÁôLOÁôLOÁôLOÁôL9Á”L9Á”L9Á”L9Á”L9Á”L9Á”L9Á”L9Á”L9Á”>Ù|²ùd“d“d“d“d“d“d“d“d“d“dSdSdSd³bXêÒc×Ïéõhú4%ME3 i×àÒc—»ôØ¥Ç.=vé±K]zìÒc—»ôØ¥Ç.=vsËßgùKʶ¤lKʶìÊ«h4íÊ$e[R¶%e[R¶%e[R¶%e[R¶%e[R¶%c,cÉKÆX2Æ’Ñ”Œ¦d4%£)MÉhJFS2š’Ñ”Œ¦d4%£)MÉhJFS2š’Ñ”Œ¦d4eN4)æ’b.)æ’b.)æ’Ò&)m’Ò&)m’Ò&)m’Ò&)m’Ò&)m’Ò&)mŠ+/§×£éÓ”4Í€¦]ƒ¢ÇŠ+z¬è±¢ÇŠ+z¬è±¢ÇŠ+z¬è±¢Ç*Çcй¢˜+й¢˜+й¢˜+й¢˜+й¢˜+й¢˜+й¢˜+й¢˜+й¢˜+й¢˜+й¢˜+й¢˜+й¢˜+йê&[7ÙºÉÖM¶n²ñz«x½U¼Þ*^o^o^o^oêd@ ¨“u2 NÔÉ€:P'êd@ ¨“u2 N“:™÷eÅ5×öo1_V˜Îªïôoí_¾q°ÿºÉÖÔÿ 9ñ?•y¥OÝLZelig/data/friendship.RData0000755000176000001440000000533613245253056015354 0ustar ripleyusers‹Ý› XSÇ€CX¾¥€Ôú¬O*Š V­=Ç…Š‚ò@?ÙÄY –­°jÝ©¶\ÐZŠÅjQk­‚Eîî» ]°®¬‚"-Èúð{W¿ÏÛw›Ü$ø|=ß&39sΙõŸ¹ žS½GмE<Ïãkiðøš½oµø½4x¦Î§¤¼e4«îÛ@sïRÖc‹õî=AžÆÛŽ›@Õh-4Ü24o»þO¿ZMh;g·fÊGMp©þ«]ö“ê‰ÁÕ™[o Ã× æk]HBe?p™Ø´D [ÏßBëR¡kò÷)(Hm«ð½±‡ˆoh¹ sîênÍã»Û\aÀCgh>Ôèâà WË›îyøÕp}Èa‘lŸÝP\,„¶£§w¤™¤¡Nk4šLȦ*%sºxLGñ§N&N-ƒž²­üx)•öîÇÂÍ—¿F“C¥µV3s¨îòn{çŒè˜3|é J‰U­Ø)ÉšŒâ¼SÅŸ@SÂúc‘–³¡ýÓ„ñ†6~hùh¥ûíÛó¨v™dìpÿdbšpj#ÿþx°6|ÊÍ»Èwóü×[ó‰À%ñ‡¬ 6hÓØ™µÌÅRû°Ï¨œ…VfyܨkÕùUq_ vÄÈYš‰•gWÎ,oÔ¼=çýñ6p4ïç¹…M2êáôyÚZî.D—9VlìOÒm'˜LCC¥ž’-¹Dÿì/ýæZž÷‘Æü]øÚ¼üži¡¶°oqN±¯…;ò_C¿"_h¾ÓzH\æúc ¦—,$"×ñ]ëˆÙOƒ98FSmefÉïEì…?ö¯½›oì†æýw¤9ì G͵]7¬…¨]E‚#FøRÍc’žžŠ£Úµ%ëø“ÎÂùÆÏto#<}ú>ý©Rg›Á#Œúí¼+#CSo·hÁPkP=í¯›ü¦² vÔÖðu•· ¡å°ÔÛI+ìŽ^è¦_‚nÇ&œ-›‹RŸž7«¨«n|o_·..uy;ÀêUs&"\ÿLk–XÞñCëKËè.‘]Üc7pcš<*IŸm¾d#šö¯y|’ª>æÒ¶³>Ñ·÷"½¤OŒ„….éßB‡÷Qù‰ß (FwÚòj_bzÏËÓ)ö”{.ö¸:Ú™˜Žþq@òOK¨[£d¿½ÿU&fõhR@¥È ò¨fÿËÁF­sˆ@«ëÓÓÔpünj럛Ø¢ÙÄwÞÔ“É@¶{ƒE¾ „jó-œ_›} Z''Ý/ákÃ×>+NÞ¹Ú}u+gšxBiäŠÌš“ vÜ&Qg¨?røI¦DS—פä=4‘cª]Á&o"Nõ‹@ö •7îܼ¨ŽÊüP?ªdj¸˜‹\ÛŽ@ÉWŸm‚e(––O>>&V$ímÞpjÃóEãæ½_ìÿ˜¿õ¢q«Õ"{Ñ)brsWƲ3½ûÆ1ÃCb½ìwâZSÖo_ Å¤šÖø)%ð°`è ·â "ÈÈ~ÛqBên«zùòf8ϰMµ':iº+ ŽÚ iýörçïhâ%™6C MÛ÷iëmIGíòV}>x'4×{9Zn(F³EŽS…QaÒI[k´Û¨c9Íù–!e ; %ƒ¬­Â;©cGêÆ‡%Ja%2X‰4+‘…• ‡•@³YX V +Q+‘f%²°hV +‘f%Ò¬D9¬D+f%Ò¬Dš•@³9²iV"GV"ÍJ Y 4+‘#+‘ÁJ`a%*ÈJ`a%0X‰ Vƒ•À`%Èa%²°YX‰ V" +A+…•À`%0X‰ ²hV" +‘…•@³¬DVÍJda%Ò¬DެDš•H³d%Ь+‘f%ЬDš•ÈÂJP•À`%°°YX 4+‘f%²°¬Dš•ÀÂJ Y‰rX Y 4+f%Ò¬D+#+‘f%Ò¬DY‰,¬D%Y ,¬š•À•Ïn ÈrWEF^ÕçÑÈHÙü3EÙg&Èȳ¥L=f<\¿ï`ÚS´üO©ð¿ÇÃÌ+*L»Ïäy»…Wt\Ùâc+çú=.×ñdÖg¶Ÿ->u}oö§ñ6VÌ3dè±Ù“7o˜v˜zòÚÃ[}¶ùÎs|˜åÌ8˜ö¸úWtþ°é˳¯¨È‹CÞü`óSf=®Ï4åíŠÎoyí|þ¹ñ‹zòì2çÑ_³ò…ŸËjGJ"‚c{ß¾¯Ä4R±- Åg4gÚã"Ú#Ó"œ>$ÃÎw Ls#¯A…XÜÿnû™ìÒù´a—^§(]Ê­Ÿ6!m4mj YçÜ[§êÝ7.ßHæœê®Õéë7¡I7–y•*Ó,Ô´Ro¬"Î ÔéäÍ….}¥Å4R1Â1Lšh†½JÔ-j‚;7!íw´½7·è«àF_ÆMh9U)­O5ßg†à¬ÐYVñ}†â M謧½p6.™à8”쎫4‚I‡ãEņáð0žŽùót앇þ?Gç9ÿj4乇ÚC#˜ø`‹ÿ™Œ?€‡Vk¡­¬"c?(fÚ?œþ3Zelig/data/eidat.txt.gz0000755000176000001440000000023213245253056014540 0ustar ripleyusers‹%ޱ1sWÁPƒq_\ù/þÞÑ ô5}Áç™é.åÏÍ$. Þi/,u”‹W” 7ˆó,I—ø.íçÉ¥›A#·$Ž Ò–æ„¯TTHu,-ö^ºÿu`w7ýóÕÆÔºÏ°é÷—=Hîri£É:˜ÎžKÙú°Á—çŽ?v×t*^ðZelig/data/newpainters.txt.gz0000755000176000001440000000111013245253056016005 0ustar ripleyusers‹mTÁŽ›@ ½ïWŒæ¢ 䚤»Õ*«FÙ4‡Þ ñ«Ã82vÿ¾d`H8 Ð<Æö{~¶]qyæŠjbo] ü%_è׊7¢ßÿ«êŠ?Ù5˜_GòhMòülæú,ºw ÈçdÛ£Å+„Îl‰ËŒm{˜Ü~HøR³íÏ“€½ÈÌlÑ{²}®$ä{mÈ›—ày"é;å'tà tlãR»Ð[òlŽšýŒ„?š‚|TsÚ½ŸìÎ'@7\JCÖ—™ùÝä r£“ÜÓùw!¨5azÏv RRA-ä¡¡jÊsº‘Mct¥Mo`À»E`"ê„ókÏÒ{dÅÚC®>ÜWx&?𛇖lfæåè+Äèí±ª§j8€§¦šÐr UAÿ‘×–èWÌ1ÔÄR¨Wq|«íÚ{#äo%ò®£w/{»§ÜáÌóMÕ³UÖèû¬iœuO¾fÁºŽúµö{¥ŸŠІ«Ðöé“}sxšèó .P“%j?[(4¦×yÍ%zŠç( èkƒ’÷Ðh 6à?|~´cvB£ ÄaHÙÊx°Z ?Øe{knlueW›\Z*ó#û¡Â¤×ÍR?Ñ4E>š«ÂkQuÔeî‘ÿˆØ¥r Zelig/data/CigarettesSW.tab.gz0000644000176000001440000001011013457021753015740 0ustar ripleyusers‹}šËŽÇ …×=1Ûº°XUKÃÎE±gXŽ•d'^IlÃV€äíóvÿKFOÛ€¤¹5»ÈÃsYóøëÇwx\ÿ÷û_øëýÏøóçŸ~þÏ¿Þ}üðÓúàÝûþÊß~|ÿÓ¿õ­ßýWŸþåÃûý£_3ÿüâþÈs´Ç%¯©·É½•dÖ—:{M)-9ûjÃË(•¿j]ÌS¶éc©em|Gª#›óÝKNeÍ#{ÏÙJë|G]ù¡Z[qϹևǢ¨ß¾µÔÒ#jk«Ö&O³‘ÚR¼äÔ«/µ'¯ÖmÎÁŸ¹d>÷ðXõä\œ'‹''[[)žy«Vg^¬ÎæSOÎ|‘°}ô–<'¾a©¾æž,÷>𛵇G#Ä—_\œ€oÛ¥µzMµç4ko _%Cä‡ïá«}µWË56MÙäՔϙ[+œ¨)Òë‹•4· •uzÕa hš»÷¢M[I¾{i³{s}îáÑõäï.Ÿœ·#̵ôQ[`‚zJ@€Ú[‰¥Bê˜nÖFU(6åÝÍÉU'ÄW¿9Žça¬®£å½"É—9 ࣮)0e €ztªÀ»¥‡ÇÁ#ÿpÝxÔ£@$TœŒð ™g±8Êm-óH9§"ºA ÇÃã$È/ªÝHü¨¯4ˆç™-‘ì…¬¹‘ª¥ŒevÕ2 륵¡Ï­Ã2¹¢Q¼͘ñê U*@Ôº®ÝxHit…«&˜šüâ/†qð2|¸ÐÛWRÇcݘBoVÛ¿úêå@sîà­kú$sÊUïük)m6îm €‚@7×Ôº=£ êúW—õ²p¥®% :~T8††ì”ÂÕ‰B›þk½ðCmF#Ói¥YßDV©ci+3pžE ¯ž/Ê™E\2åt#\Óû¬ P£^Ñ©k[&$0âÈ©ñ°£é9³ÔUI´ðõ›‹Z7:õ‘`×: Ÿj`­z¢é–É J¡ïÍjë¸nD§@b…¯ÿ~Ñ»>[¾BaüE EƳÖlÀd.D&ÂÐIŸ…wWr8I7uWI|sIr?oÐoTŽû”Þ®™/éD"Ô:+?E×ÕQƒPÁâ}ÄOW=F ¶ÔµP‘ê?&}5ª¾±$rîäÃçx´ˆâéí dƒ{Ië„÷a·6ÁÛ€h^f†^…gj_G™€óˆxž( jD»Ã„<]u(8ÛŽ§¢$Ùf…Q`2Î& Kà 墩T? ŸáÀh|žF¥w^O@°ˆž.´v”r³%x¦Id”ˆ`À‘¤n´€ K-ïVõ`Áó—âŠÖÄ“/I&\8Éišƒ^ ˆe ‡ÊL=I3,%ãÄmhõ""x¾h"ßH2L ° ZæŠcS&_‡(sƒ,EW$Ò¹¢“ ,¢ç«Žj;ühjM¯B¾"ë"w–dw,ÒèIÝŠôp JEjÀ¢W$½ˆžÿt%Ûymdm‚аp¼9oTy™ ]C+"xþóËOë°éø[ɲS#ãŠÕŸFMÐ:—éJ|«ñ"ùªêýç§‹”à]õì10¤aŠÁRƒd0#Äx„>cœä"]ˆ×„€æ¤s £UÿüýEFÚÖ¦mX—$/\Ået ’uζªQî;Ãtй -£«:ÿùB»(än?¤’è3ÿ‰ù€‘ÃÒ|Þúò¨<CäÄÏ`6ŒKǹ$©5qÕú¯/*“Å]ËÈSѾ<]CÎÇ7/J‘á±²¼—­ÄMðŽŒ{¥Wªºýõ×Wκ—[ ìRÅ×F˜BªR›n>ކÄp3¥00„ `® NÞ3©æ}5Gùmz›+•êØTÚå¯^01“/•_g¶³žx9=YÝþ— 5&³ûàI¼äJ3"çT$ÔaûàèNZ(ޤJè?=}íØÔðß^)›o}ÈdÔÂd+eEM þª3J2Õ8[»s,UAþæ‚ñ8vwíiRϬô€.x^ÜŽBXWuã> ª—à .q®jþ7WÔ87IþUIÓ,î6|§4Š0îC“è’›:ÿ»+-îy,B§9Ù0`rŒ`Uê;d\„#ºæÛf÷lOÒ×Q¡kM³jýïþvQn/½ÝÜT25ÀòIYF’/å7H×ÆË¢¸æ ˆ²ŽÏé‡LÑD½C€°uXmÁJF"PØÇ|U"cÐ(ïRJœJM¹›ñ¤S©á¿¿²”·ôñ³"(FmcAës:×±-7ˆß•<¹@‡ (?Ìĵ0Z¤š0 8S÷q¼¶qŠŒ½ƒ´… ]ŒvÌ2œïkµŽÛ®êM5+_äÕY¢Â©Í¦ºJƒ½êùت…eŠÍ«)q•®Ù[èê#k@¤†L´Vb ã’‰fìÆÂ„*ÇZí´bm `% ¡ïÞR¨M‰¸ éÉ#.›'©šÒM!L=–j§;Z+ñ¤‚'dÚÌ©c¶3fZÜÖ0D]F"–;SS"QcÄ0,M&Œ+µsj-–m§}‹…ècC:*K`¿,bw<±ÇJfÕ2s³&ÌÛMª“uåÚêt娮ÅN©‘ÖÝ”\#Œ.YSÍF耔Æ=£mÛd\íÚ ’BHQà0 Œ:™cIDoí˜i7¡Ý@™±±Ö&¯õ„[#ÛµÓ^¥ž0$LÞ™ Õ¡^¦a›fØe…ž(J¢ý`§Ó‚„C›JT;¶k§ ät¤E¦ŠL[,8ã WºG,mÈ?ÀKí¸qäø¸Ó@ÝåÚ¹$ÑôÉ"éÀTjŽñÕíó;3übSwtš¼ïw–|Ž÷cÏvZZS{í‘ÂE»¤|Ûk_;¨Ê¢m¾®µhà¾_ÕÁs«Éëé>Ž¥Ûy¦À+bæ¶Â¸ÈO :Ñs×dŒµ—Ïöu_£4)Э]¼í)ˆ3¥Ûi¤R÷X­V\l™·›ð:kïº@À˜”X,h7¼q¿( §C°'ˆ-L3Ò±t;3r oÓ!-£m*éLµ1õÌÏà Ð!åûÆV’Û´Ø'Ùy›F>ÖlçµÏò±5zF×ÝÛ’7(Q!ÒîLǼ/^Š&üUÃR¤¹¡y”cÍö’Ón±×ºlÓÕqzQŠ*—X6¦•7ß÷•5&¤¬½žÆ%‰qê±f{a*¡i² #GÌš¶–Æ$è ,H cýôö0žlÇší\Ð4’÷‰MgäúÂ~ŸÜ hþ_ÚŽ3×Vªèj¯ •T„´@¿"µcÍv*i2œUGàÝUß{ÆÜ*²ÄpDñ™$ ”»4Z¿U@‡i“¶JâÇÎí4Uº†¶mf§3rüæƒdL ©í—À<DùÓØFúÒÜvIÕàÑ•Û)0v¶ØªÝ8îj¯k7£ƒàäØ2ñZUò›°˜¬ÚíF”0ãXÀÊ&=hx…_RÓ2LWûñ«/º¿‹[7¼ZÒœq”rÂNèsÞ•ˆ@óXÀ·§yLQ—øAŽ5¼¸žòÎKøæÚ‹.:à‰pŸ]¢&¥Ùo}g:–o§‘¦®ˆÄÀ䜟…d˜A¨„n©ä4‰4tUªÝÎoƒ†V˜ÚCƒHùX¿jšëWJ¨?†|ì[q+eâY%îÝ?¿í—(xŽ«%¹iI)ƵÀ§ hŠQg9Öo§5ãerU2‹6WýUC&HO=Ü5‚à0µÝV ²j ã%:Ê®ÓÕcw†©3Ó¤Áä¨zðX–çÀ½‰þš!H¿Ä ¢àRôk†QT1°NdÇ:î4sóE ¬˜@s $aäewM„/Ó…©ÚGýÎs„ztÕlÇ:î…t©oK`¼ g¨º ¦ÅÜúv‡E‰`8¥î¿¤ë‰ë~›B?Öq§¶·íŽC£k2]5Ù…„ ÑÝeÌù(Ý•TÔòð”_Ï'Zelig/data/sna.ex.RData0000755000176000001440000005616113245253056014417 0ustar ripleyusers‹Œzw<Õ/Bhi" J‰·J!J‘R"D4­Jfe5H)É>{›•’ìÙP¤Œ2ºŸß½÷uÿ¸Ü×ýƒç|Ïy>Ïó¼×7»M×Ïtœ)$$$"$"J¾O#ÿ!ß„…„æÌ âþ']×9+$4m>ùIŒ¼DŠ|ùA Y²Ê ‚ý·$r6g@à{ÿÓúƒ=`³ž¾õú8ûÓ6(9¢ìj&g™l/Ø hÛ©(×|ŸPJg=݃y<×ýzmà•ÆÞ Ô(§ó”lumx­Ó7ºM—gZS1|åä;µKèà{®-Ï¢</Gå±ÂêvpÿŒ}3?á~£'ïX™ X¢|™ÊNन…ÿY` ~g俢ç·À[(¿ÀèQ%…{=3ï–€—µÍíæÚT°ÛFý—«_¯0_sÓÁó<Þ»Âj*¼1ñQž×vxî±xðbKL"Gƒ'R[}%lƒÇz‰ÿt Ø·%hxØ‚€„º:xÝÌoWôw€[¤U´Ó ÌñÇ9ÅŽâàýóãšÙ³@,IKÚ¿ Ü—z_ÚÒQö}ÙÓ¯+àšÛ«¶ûþ²‚K7íÁ=¾ 5û͘«füº2I^ßèqêÜÑ à¾RÚs0ý*¸—E¬ý ž©˜ªkß#ðn·;×2 ¸´'§ÅA¼šA¾ÛóQÞ¦I‹²<Þ~Z;Ú|V\Ï íEðêM­˜-w“Ó•ôwc`o»m/GêªyûÖœ{"§FÀ³8¾Ë¥ÿ0¸Wv¬-iê/ìÞ¤¤c¸~GîÊí¼ ¶Åü®a1p×v›òùƒ§Ø~×®d.xfKŽÎvh%ûpëx_Ÿ8_sÍ"x`w(„Vý“«RJ!Cà¹oý­© Aªøèi5ô§·•øG·òï›>M[p¶µòë‚·-,"ÌN<…¹ÿ^[‘z¢Æ´ZLlÀ{D=õø´3øbV…W¤É¹:Ë78œ;Ó7ü·•ø¹ƒ{¤Þ‡@¶ûÌ—-äuõ­‡×Hšƒwú‡ˆ{¼Ÿ›Î(¯CÙÓ„¤~yàW>ûôýI5ÊÕès7Kƒû©üp~¨œØeó£LÄ 8Çô›® û³IŸøª>'í+ÁžrNU‹ ïÆö¿ž?Áti”÷¹ þÑÌcVr' 0èqX“™ž˜wÅü8ð¤Ø:É9`:h–…ËFB %¢"1HÎ)s1³lõñ¼kÛÀºezg‡¸é‹RcÍÀÙÖeS±ì‚Q͇Tað^K™——‚Ë3RÂÁ›œ¼F;¯þ½égýúÀ9´H¿û±1*…e(%{½6Ü®#æ$x!Ò}â#ÀWÐhÉìŸ Î —_š9à¿8á`lm ¾ì˜Óáþà¾Û~xO8vyú.Iÿ^¬ùèÆ$¸XG¡w  ü’â<ç4p/ß÷÷”4Ø;3k§yoÿüÒ[6œtpfúŠeôùvöYô@`7lDûwœl£c‘éË!ðú+br{ Øõº¦†såÁûlü•ïöv¯_¹ùà*tÞxDp­pûØx2ʼF4<·)'Þ~k‰ 8¼Øyf^à'm¶Óþ{µÝÞÓZ3À-¾'?h¬ˆò»ýZÈû~ .¬zÁ„ãÚSîUào­\Å™NηnÝ~‰Ê.Ý>d¨öœ‰câ'Þ‚+ÞÅëÞŽš¶PØÌ3àÙ[›©=Žxãè.ù^ðžš~J’¹NËAíû ¡àÎãžZ3¼6Ñ0[9‚ÛÊ¿­ú™gÀ¡\È;fX~x¼á·È à/ZÓ{ntx\ÕÇNÛ6€Óq¢g/\ï{£·-= Ÿs©«/ÜàO¶8€»Ðãí%üwÞÈÙSà­iðè;%²ãÁ¡–¤ÞCM…NGÇPþÑØì_a3éoqd†CøÓsÚ—Ó¥ Héóñ¶Ô€Àr¶¥Ê‘X”û|JÔ ªƒ#,cÑ“• >óäP°iø"»iìÀ½+§õm—;øn*‘9GÀy“šáæ° å¶‘¥»vŒ¯)t˜3ðð?ÞµÑ:|œÈ2Ãc»$À[öGñ‚ÆWrýÊŠ•΂W·àvï¶‚ÃÞqÖ{ðšeâæˆ’ú(Õa7€{Çâ϶#ÅàZÍUˆ\=¾TÐúmn_Éü'X‹ÿôJ3=Ã÷`¿ÊÀÕ*Ñ‹‘Ÿ/do™Ë›%€?;"éùë]àgï}³.y;åç7ŠÚMã:ð­ôxùhitõ¯Âè³Öë@ðšhËÏœ5'øzžÆÈÏíÉ£íÒëÀ× ÞtuÙ¾õÜ—ú(×Âxw¹ø’ $®[Ç××3¨› î Ôæªudî)z¶1¼,0‡ÊÓUÁ?ʼn3Zöœ¦ ]˃×SÝM—úƒ^(C÷88&Ž[Jæ©[´¿ÐšÎèðÍõ ß QnÛ¢ìžáè,ÝàÍ8*TðåOEÞ]‹3Ï8~dì3ÁO‹„Ú{.x‡½~¾Š†@‰aþç3Ùû¡}ú³ Nq……¹‚wñFƒå.WpÊ–µŸ±g许Ұ ¸e©ïÂÏ5ƒ3˜óZü-á½Ö›Ý_ ¾ÓÕGo;Q~NuÒ¦à>xy½Ú.âO!`Þ·øqt6ÚË¢/<ì_­ñ¥jÔðüÂü÷Þw®“Á®¨XðT·†ŠŒ;‚Oé4("ûµç‰ô¼ÜlÂ÷2‡u4Á =û(ä¨/áÁ9bèà™´ÐŽè½ÿm¯×ìþ nW®X¿¼£žr‹fÞWs¥Dà²>ðö~o¿~®eÓ5ÄMö¾'ÁËøé±¯ä:̓YFÏÁ³ªžP‰Ü NÉÑŽÄídN*­wèkÀ]óFÙó"áýí~s²z9(¯“˜#ól;x7"cÃ/ú€Õ>zit@\çâžHñ\«WR¥f€{ÓòøKÊ8Êg‰úšœÓF™òB‹tsY‚ƒª%»=Œ‰^|ÑïxHxÖIyë…œ(ÓîʶþÎðl ³å¶`%ß[Xü‚s/üˇ@£æj&ø€#š—6šþ ê¾æulSΫ°’0TÕ×ýÇ­xÑ&•# foÛ¤' ¦UDíg%”Ë4ëŽ_ ûñÖkmv=8·nï|Ä| žÔüûé6.,9¯*s$:ø5ÞVì&?â ŸÜ%ü—âYå¯ ¾_dbøõ po¬P4~| üÒ‘»{n”Bð«rÔÜë 8!¢ÇŒˆ/™qò)żuO 2;®¢J5j©¸ÕKð3b£6€Õ•ujàîÐßÇóâFÁÏR¬Г%<üë™Ûx××½ÛŸgÓÕ•f)÷^ÇR¦ÀS_ržö˜ìCôÖ^/¢§O~eÏv@¹öìêBpÝ‚TÄ¿=õ°Ù·ý—)xWޏuI¬ç½§ÏMzu©ñƒ{;†Î–8îÞ³áO”!˜þÇàªë °­ZÎ=zlv¸•ò‹]àÍí)›ºö 罋”zÁ1osIqÞ‰²sèÜM滹ãÓ˘A”í¬¹|n<5‡ç_ô‰žä}0‰"zq·7–Mú$ÿû óì}cÚd‚ûè§ۅ蘈¥Úä¢#ü+NožãçŠÉDwðdß]Ëkwòâ9†à«DÍ\CøIƤiSB8™ñ®s¾7I5NW?[Cfèø›O¨Èu‰€§ïêö+вë¦ï…àäñ³O)qÏ‘SYà·Õè§8Ð!¸¾õÛð,‚%|¦,ÁÝÍ»«÷?SiÿZ(YŒønï\£"xœm›—e¾ñ¨%}Á¿Dã‘[à¤&þ4y& 6ݰò×ð3°’yB½àr'RN[|#ºã»¦³b98ɯƞFÂSõuÚJÂo Ý·~o½sPïs ¸ÖýÖ ÏŒG7ˆï>ÓW’úÁüMùnIEôÍ?_ó‘Tž86Os•Õæ Üjš¢±é%”_öÙ±—à<®.diO0¸=F-¿?“=hrÍ2]¶\£Æ\…'Èùü‡»PR²Bà^ǰМ[DΩ۪$þiá–¿[påÊÄ+òùÞÞ×0UîâÀÅrK'­`WœûNü ¨Ã™'T™;<ûô¼ôé£ç$Þ¿ñ‡oæi ÅÌ9¢[)S·®A äfcf¯®^¸ÄÀL¢Kç>ÿKü²ã}Ëžiü±fÆ9SpŸ¿Nì -穇ûÂÙD]:“:6ÓÀ’]ø<7v%¸;F‰Š Á½®1 AXk¿ÄÛ(Ó5\¥6y eÚåéûŽß}Ù ¬ÞeÑÜÆßµÄ˜Yéæ´€÷¯"­¸ü…ª£ã_ßÿµ×œ‚ƒq-×Õràßû}6ö$É%g³ª ŽÌE™7ÞµýÏ×°zwßs¢«YÊ»ØàïÚ.»óûTHÄôh—‚·]˜ï9&~„óe=+R·anéþCŽ$¿í/øDxã„;KK‰îì(òèŠæ@ ÚÁ´{Iù’³=Åà$¶Ö:?|.ó㦓M9àͶ¬ ÈóÏS¥¢¨‚ôG瞃ք88×3¿ü^ôƒä_ýhÁÛíÎ Lyò9K¯Ë×tBðpgÇ4*ñ¿£ÓéÛIþØbÓ´œFôÁ‘Z¿Í•zÝ*¶ÿát gß\ž®%×Áþöf¥i*é¿¥òÓíé³Pf8§àº´óû75öšì¥§¨:\ߘȃ9$Ç(Ovœƒà¯žÂ4>x4ÎÞ3FZàÉ­R-¿VnèËá=à2úøR^¼íÑk½ Ž÷XU»W:Ñ—!¹6z„£-ý€ò¢#_׹ȃÅ"e>øI~Ä?§n_p›ä½ŽÀQÝ2ßu)¾;ˆ¯?0[×=)Ÿè·`—øÀ„gÚ¡ÓÁs‘÷»øÝ‚Ÿ’'ø|‡ºá·=ó^½õËИä=ú†„Q±»¤ž#7N Ⱦ]2 RÿŸ“: ÄÇí28¢=ø ÍßÆÂ¯ƒ»rÑWñÛ§‰NrFwÏûv¬8ë9ØÑ ©QW×AUÇ´óÏ;Å@·¦ï˜ñ§ææ%‘½ JÜð(Œø–õyù «HÞ>8võße”§‡_¼çgÎdhÞõ ]ðc_T%¶£<ùY±è‘³,^ó1²F ì˜=Gþ‚àù¥x#ó-\KMÐÚIöy›Å§£›QÖTpm½Ìgð¦ÕÊéz‘¼óa'åM¾-8Jù¯ÂÈ‚ß"ÝÔÿü¦c=ײÁuíèô¹™ ~Æ<íO»Á§ê·mÏpGÙª¯„æ~z92c”ÌÚe6Cx#¸ZwMÏüÓ¿LÚ ZÒì“Æïø]+Éü£*ƒw«º»½·üzî‰ÉJåãÇÁu©¨`æÌóÌÏŒ£oü`ß œý`MäÕSàßÝòD8”¼ïž‡†ÍÎD/›»84ÿ·BSsÿ¯»uÓÜ{“ÉÿyCOHháÿþšú?·íhñÌ¿ü$´(ýøëÓ¯AOI0:0ç J‹4g•8š¢hk–[Ÿ9׆â†M@[Ö:f¡ql‡#)]‘S(ž;»¿EØÏ Š¢ö ÇwÈ1žéë¢DUm~½h{Õ¼40\”g%Û88÷î3ßÁŒ±‹¼g¶toÅž‚[Õ(L ¶«LÜÚÙ·Ó6Å øIôâu›@ažÎùñõ:X*­…VvÓPú•79ÒÛÚùòéæ¡³@û9.nawŒüþÀ}_ÏÐÃi»íÇÀJM;þ%Cô7ò?·Í"qî’|×xÆ~0™1ó‡¤ ÝÓÞ^‡¢³ïGW™˜iùÃ6ø(êFoHÏœ¯â¿÷€’=p˦…_ÚÆ÷í#ñ¿·§…ÒvŒOa ÙÏ–NØ@ävŽýÇROŸÜ»ƒËAéªJ[9 Úªl‘]ÔXßyéÊ“€ÈìÕú {yQïÕt£äãðÊ%‘Ò`tó7ÏøÜÆäû„ª²`T‰vËWø€fúyšÔ9p¶;¯ÝÛj·äÝË+Ê@;”`ÁÈÓõEíÌg7#@9{¢c¶ ö°~¥Ÿi#s øM = ªâɺújPž«3ù¼ÔÊ‘ï³'ÀTUÊ´q_RÖݽ©«¢Ä'·aR§ôO¿oß»ú,‹ÖS³LAÝò-p~2 ¥§MÒ¢É\ª`uë¬%‹¯?– ¡0E¥£À†m®ð èí‘Üí§ A{º÷pªLŠÙóDÿzX¡pg½\á«¶åè¢=ãî nÑ_½Í Ì—™¯׊ƒqIa[¢h ¨»L©¡äeŸƒ΃–}ꛦhs^ºI(ƒ½æUÛÍY Kû…7$¢ÄýéÑÍæ} §ùi³#]s ) vàäNá`^ejI×D‰¨¤¨vè :û„‡Ú-¯wZqôK‘c3º@QÉÝÿî:%LÝ­v=^ö_\¿´Ã޼JmвVHͯí¢RTöN”Æ+û«¡ÈîG×™å :.)jÕÍÄzüĺy » Œ²>>$¶yçèÔ=5”.cJœózªËäâÑ´d.z5^s ÁÈÞ§°vÆfP <;ÎÏ«CI¿låõyç‰<æ¸ßs1¨ó4’2¾G¡äSaqïmoP=Ÿïðk}¸ ýOð Ù+ŸNºÞ(Å!Ê— Èü«®ù½ÛiKp‘ôZë´8Mܹƒ ÊNs&}¤Kœ÷UëÝ2ÏÅ:;ðxtÍŸûj‚úÆã¥™A(lfm›™ÿ½TNKw!J¦Ìv UW–òç‹Ï¢%`OWq7µ]*ÛÁs¨E=›N§m2s¡ý£OÌPì¯Û™~ì÷̤´X°\ÎÞ_˜3Ìé»%À`ж‹Ö‚¢4]ò˜Ï"0âò+7(ݵõmvùªÃd?Iµ+~#°»°tÿ)|ªêm·^Õ4ÅÜç^7<ÁlQY>Dp裘‘‡)0rÂR>ƒ3aÜþpŠÌµØJ{ß‚ù¾îõIÃïdnOóæø¢$É_.%;™Ø¡‹sžH dç³GÓ÷£°p•ø°ãPnnè~–Mú5|ATæ5J‡\Rg1Â@ÕŒ­ŠX jï¢Öw[¥@©ïsçïãžÛ>¿Ø”˜ a:S`«øøÇ7ß]¤I£ÿ…g{ëí«O¾WBTħ T{Óùr«3 /yÐ=ßÒîÂöƒ»A•¸´oîï40Ù~Å7:ù Íðšæ/Q„R÷Ëß{ŸõÞ`Ðc¯Ã()n.9d•jf:§À†ìKlGO€È;rY{–³Qš5ñÈ8µ Œ… EÉÁ(½²~¼s¾Šþœ ªÚmº¶Íú™âJ X_íòõŒuÂSt9 ûÙøuÁøÜ³ûkôiо÷ÆU›¡4úÕƒìK_P2vÖÏ6|:h—"ޝ¿¬€|Ío)Ù=… ž˜cp™ðÙÖÀ=y(ÇÝ#&´ÔÁ ýÞý”+…Â2 iGÐtl³kóNÒ Ÿè¯åÁØÉk°7¼ÚI9D®ó÷7«tÛ9<ðtÇv"ç{sWÙú£DçöÂÓ¹U ï·íýýã<¨s¶¼¸Hú¶‡’¸ß—ÔKŸÊ}{ ´o÷<8¥Cúšj?‡ìåñk‰zƒ#vøgJ–ë¾ D6‚açµA•ÚýXIŸ“`½yžXéІºz…À¶Ž]º¹ìi-]aÙ] [®Œüm¥'KTåÕ:AI,S˜åØ Š”Z¢E)˜Iw&HY‚eRtrt9§»×³§A™p)*¼RæÖ£Ë]> ¦°öɯ¾ øTŠè|²óäRµáâ¤ÿ#_¯šë¢ä{â>Õ[Á /éÐZõý˜‡ÖïÈç*‚ÇØ÷b‚ìË#…Ì{#Ó@yó`Ö[Û(>v8BGÞÔ¬ˆŽñ8Jfv_µÖŸ’X9XFâÛÉÆÕç´@ <òSw!Š7öu\C黚ÓRG+AÕY½¯ì9JÂ6ôF Û‚eUX%­mºØ‚YÅÂ$-uýù§ËqÃö •(ÄLT½{ÚúÇãõsPÍe /l}¥ã¨á©ê%¯¾mŸÆ¢ŒºÎ¢ã`—û /ø“…’`ý°¡» øo>lnIxùlÎß’m`‡,Ú¾JƶŽ÷×¢˜qñs¸O3ÑÉI…K^¹ +yœâÍËwyìõ¯WÁðŸ¾$GÝôïæ—<ÅÀˆ”d‡ÏlµCh}½ï(…áqç¢p»yß°Vj{—Ÿ9êb™ÏÕÆ¤Ÿ>ðý'LæÓ•øö‰¶.Ñ=«ß½r¤. '×v€º}ƒ×°”,‚X rfíì¡ïQÄzh¬ê•„¦é „œ@mhŒhÊ“ÕoÜxÃPJe8!WKfƒ•}ü”ÊNâà n¯´ëÃÝÁ`Ôãh2s$i«ˆ¾ŸwZ{Åz.è'§oð§ƒúÙæùðom“Ù¿oóy”º]Aɲ ÐûbÕé"àžÚ=©`g‚R]©Æ»ÿPúKöjMÞJÐD{^”P¿¶pœ#¼¾¤#Éyã P\‹nÌÇ&óÔïvá·É~ëù Û¹”ˆÍÝæFÌÎËÝ ÆÎê9,šÖ¬c5a’M`¼~÷6‰c /Škh (lc½K(àðÔ°H©[ú^Ô•ZE’óDžw}ñvðx8HêZ–’\Ý•JòÊ óÃÎ{(Ý:=¿y)©ÿ…R²=Éu­f>òêÅ`Ï>s±mªêßî¢U·H^›ï;ãÁ90vô,tw°{FÂÝ2džY gŽP∞ô=šÿ’ðcI©´ë˜ûç– oêË{î}™dmmrù¥ zöb½ãD¯N„ ”Å‚wåŒ1s!~¯v›®"¼C5Z°ÔË»ZZrëÀ¼w²(rŸ*J?5ºwë ÑÛTÏÀî*Éoé´;ªBäÕi®‚~ÀÙlËm’ïž>à?ë±£lj5h_8yšŠçPZaj÷ª|œú€3Ë·ˆƒ¹Žû¶ŠÝŠâÇï½ÇO Àq•ÿq?®ÌW&öê¦þ÷>ä2áMÞ×µqS^÷µGä9)Ä—LÑYÕ ú¶ä¶‚˜[(qa7&~H,M¶Šr”º2ÇQ*ÞôUg 7öëÍóX z¤íï’˜+ÂÝÞ<&>[ÿ£™Ä§0ÏLž<$ž ¶]Ôiãæ‡`Ù¬»qLîïåÃËî¡D6êµKãG’k…4ÞÑ‘/ßkü̉I+×q¾UÒ?1Ý Eͳ_Y¯3¸íŠì×|ÐÖ¤š/õ'~åâ§E$Ÿ ¶x?~àéuö—A”îè|.Öµ¬ïPמּ…RÆ*†­ÞJòظ3-@ %O=û†·,ýÖõ;©Üb0lN= qêBIrÈ}Ý{%ćUšwëìHË1œM|ƒù«ãVP+Îi(; û¾wj}Jí—»»Iç“JUË$ÕÀ´o½öéòIPªÉ†ŽÖ¢ E'”Þ“œ9‡%~¥X9{<6‚¾ñç±7߀ùQ­ç«„6(ÖlÏj\ÚÁ=b´EÛÁZÝ>ê^IæEµ~ ÆÝ„âu‘¢Ö7Éó3¥¾ŒÅìèL7 DÑôî½c¾óÀúö4¾,æX[~Ÿq#xÒdKpV€ò¥ºXÊW0×¼Øzo-J†Ž®7È A鬠˜K’ãüM™:Σ]ŠW‰/´þVZ½y=¨yvq¿glÓbÈ÷„e Šíèsoê]õ—AoÍ«0¤Ÿûõ;©ƒ±VXVÇŒFɸ£³µOήÍgÏü÷,” ÕO²Ö“œ`Ï´:ìr¬è¡‹¦Þ_ÌÖ[# :©üÞ6î2˜±*Z×gsˆØ´®IŒäÑ u†ËëQúh®ýî~`iT¾´ê- ˆ>ÿ×áFö0ánÊ¡å e‹õ‰ ®$¾<¹r¿ÄŠuwm’ä€ydì,Ÿµ™'kî$¹¡×#¤¶o.Øu—fu€rdH¸±G ­+¹>Lˆ?Y¬g'1²Ì}£3Ó —2B÷ÛÐ1¦ÇŒhÞïW(t;"Ɗѽ^uÛ¡N‚¯ß„îÌŸ ê4iÇa+âk?ОÆÐPb®¬·ëèÖ²–ïBb@ûôy®‚" ÌŸïw¨¼Msù õ Àþý&×ä 6êŒefý¯Ûv"ÿþŸ÷êXù_[ÛŽ€ï›¾ ÷x¸? f|Ô'CØKH‘d¥*oæ3oðLl$÷zôûζMtš1xmºÃwõ‰×ùúøÑæt¿Ä:-]Áëv~<¹%rv6B9àü`¶–Æ×­ëí×.žT—ÐëÌ ˜àúVÄ>WýÐBéOóP¤Ò¸‘û¸¼Z}™mÃ" «yìO“´çàaZ†Äb”ÿH¥þ6ë~ÄÒjáùà¨ZÔMs×ws¤CSB8m6¢§Ì6‚XÖÿümJsëuŽƒ¯yèúïÏåäsM­×C¹¯uÁH­ w};oŸmåõ,Ë‘ 𼯮Èùï¿’”»™coæÓ¸gÄû[J?›û”xA§WT/‚÷.¿Cìï1뇜Ésäƒ=ã[ŠGx§…t=U_‚Mß& Ô€q¹Wcë¥8pÎ,j³.,ñxZÚŠA’¿Hͯúž{AÜíRÐ-.yÓA¿Ã–i7Ö¢l[`íø:Ò盛 á|Y°îX»½_s‚:½ºÛncà&–Ï éuóýõ°!I'²Û*'Ž” €Îÿ8©¾EÕƒqçoÕ‚ó)û—YË%ðâ ¨]‘`óþ†«{¤•3ótx½ÆË祀é¢*­®öFéMR³ÀOpKQùn°lZÌ‚pîH¼ÿfžÑÔû’qBevÛχÀÁÚÈKšì‰ö¦Ä݆óAë8TÎÝ‹2!»‰©P.¸‹Î&KÉù¯IÌ& ‚"rhâ¸çÝÇ=O_ÓõgHË °Jõ"ï8倣fõIvsØÁqi]àKf›®—; ήæã ’Ýà‰« ™®ûÙq¥iïwƒž/y?s‰ØAÇ–—Ÿ¾ža.]ñU×/»†ÕÌ=qH}†›Ï‡8<grÑóépðŸæÏ¥m}ÎßkÝ×iZ¼å¤bª6ø|Ÿcqž›ˆ'Qéöµ üz‡0Fëð ge>‰‡`eׇšáðuXfÓî7dÉêØÌSà×yhŒ„%€ëÜáïì|œ›g(ú&™à>ÌÞ]Ðù <æö\¿mi`/9Dþ(”ö“š3Ø4ÌMºx© (+¿)f(ð_ ×Ï›ïG…pÝÏ?;.á3Ãb¯ƒû]ct¾Î””ül9xŒàhÆ‘p+”íÛòàÙUÁ‰vkg»ѲWmŽSÁÙ¨Òûæˆ&èÓ™Â{ÿ’Œ [«ôPÜuù""!ˆØ–=WÀÇHli¾ç(øî§Íâî‚Yïðr@²Œ3—õ)£Lc÷ á`ÇѰ_^Îëb'i0g,M¸ ^–UæÛ 5ðd‹.Nn×\«øo ÉÈÇ–Ò/k‘¯í>'xÔ}Z¹.;QÎk(žyå)˜·Oôêþ… |{„ô%°óÎig€wð¼W|ã ”©n Sè> ÎÓoRªÏ X8ÓpžëJÐã6ìpìÈ//NaêH&á‹îžœà4Þªq] IêY+ít<·÷ {è¡òjÁÖ*/±VîÇÁù¹K³= ì;ãP¿JxŽÝ¾h6|ZäË÷ÀVìùÈÎoõz3÷÷û‰ÌxÅ"È©Œå©Œfzö„÷éaÈq•çÀ“K£ÏsÀ ËÌu(gwRæÉ};À.l¹ðù—%Þ2&úWÀ<¤çz¢lûü³Öž·~ñÓscû þÕG;n&|œ¼gN% |ÅO¡r:$ƒïuÒUg€ö(éA¨Çt°÷êi~{OÜKz»ú‘ëûD¸ý„>¸«Ö¬ª÷ zÔòÇç2…dˆ Dž€¿¯èÚ‹%(m­;'%µìî7ïrs‰®¬3–‹Y fêãå^) ”Þ>¢tû+8Ü”€Ó…¥(?òNkŽÿA°?,H"Ùã¶SRѼɕ›ƒš£ÁXíaÃËìkîPöâà[扶<o}zÿI¢¦Ùǽc~ó£6úq©kyÒUÏbâñX¡ÛkE…Á9Ñ¥º lnÄé¯fA\½Ü”@2ïƒCZº½£àeÿ(¼ü|å[]§Ž½oxüo”‰J¹Žò¬${Ðû-å+^4€aÜÇÿðߟ¦¸z²Šê °?¿u׺›àÌ2µUº4Nîðë–·!˜÷íãÓmà7¬©é?ûì*åGdÕÁ-™?j1´œy>v(ÎZf ¯À~¾¶iüàðû â—™ŠcÊ`û {Õ)¼'YàeSó-øÎKÎùýµguu´Ùù'`½œàgf‘k{›r³ ,ó/:´úR¿D›d)Ù?‹ÔUuÄónS9³Se×|3„^ÏÑêILM•£uyÃÈZÒµµŸ'Iß §÷7%e“ÆM’eI/œ_·ù×P"#ØÿôJÉþøÊõ X— ©‘ ‰(ºt­€Vâûúóž+`w.Üa¨”Lx[ëàŽ‡ÇÀݶõÓ4ptFJóúUÀY)¼}¾„ ¸?ï1¢}íÀjèˆ_Pv¼m"´Ó£(Û“¿àɧw Ert ýÀìírvu ¿¢9=ùM>øÆóVðo[ƒuqtäÛùЃ_SæmUg*À0X3œöÏ^ëÅ€¯íº—c= Îëë^ûäß‚wûþ’w†›Ày…{ý"d~;žÉæIúƒSsÇZ>ã8Š‹úCw5û·°!)jôèãê}¾€=d±%ßOì«ýãÀ _vÍèÀ ð÷mL7÷Ì}Cš8•CÊ4ÁþÇÉ]|™¡\À:”º¿¼7;Ö œØá%?µÀû6êØx?ì>åëݺÁwÍ]¬œá¶œlCx8 †Guï€'[¤QšãÁºrAÞRp [ßi .Çã¥~–ùW°Tšôî(–ü7ôÏþ@|«Ÿ9¶˜ \Ó$Ð÷tØãi;VZÎÇ ªïêu¢ÃæIYïT§¡,C{#c Ø;u%Ír2Qb›dmK<¹$ë›ÒÝ:pZW¬6þ¬…2Û¬ºò7Š ÿÝ7-¥ë9ÊÞz7Ö€i'¾¯¿ú¨S¾ÇeV€ca;ãçh>8ÛNéP6€q:z¶Ëõ£à¾^¼5«ZÜ;?Ÿ*u&û¤QõòͲÇLJZCÀÜ=‘ç3öß¾/Ÿ_q³Œ?r¹Ò²Dwœîr]ÝcIR•í¹tðŽïÏs•´ç¢Ö(° ½·˜;fá2–ú2Pߘï­w#ûž3gaê\S0º?á~›ôÚLšrýjw^‚;À7ò‰ŽËY‘”º ð›L¾Ü.²cŠqühß?/ôü‰ò/Iû§ïíÇÞà’½<ðyÝ {”vzm š?ιŽy»Îì$Y]ˆA?ZïÝ7MVàÄÅTy¨«‚£ÿ]öæ£wOé.%üÔùíÊSIâ[ Bî;)å–°þº´-haZÙÆ·ˆï~¯ù’*ŸnÙ\™±1pL ¾¯§€³ýÌ«wm»ˆž+——œâƒ™}©þÍpÿ.‰»Løá{ì|Nû °Ý×îYò{%]ií‡3kÀ-·¼=â5ƒðƪuáÍ$ëÙ‹ÿªZLxÊ7a—ëß‚—¡’JD¿•{f¶÷€]_S¾½eßý~ôY­G™á§”Î…jà+Kµ_8 vì¬xýþà¿Øxrë#p.lýh”ðÕ¨¯ 2#àoϯ㪀ñ¢x^À1ðš~ÌTùÏßøé~ è‰J~{îeŸdK³ÒÁ«©ùf]–u¨ê—Íd³?JyN…£làWãùíQ”,m"<Å~³õÖ§:cp.ËXÚØ\·]¹cÚÜ‹2iqÏt­“à.u?üY远ð¾MõŠæJ,U>:NþbÊÉ€ 0b¬K_¾0„@åÍ[É,a0t{ß™D]·àÛÐ*Wø.43óõ + &Ë}0kÚ‹½Âåà>Ù¼Cb§<* »¼SÞ vˆwõ&á3ÕM›5)ð:,ˆýI®ŸŸ'·¿_lkŸÊùö$߉™Ý·Ó}Ÿð’Ó’ú(¿ì×s‘øØîßP¾­*›vœ/9sÇN"z#%wí Ñ9‰ž“Ni`{‡Šz@r×Ú7¿¶†ƒ½´KÞç†øYWuÄ+]Qzl{Zàlòyî¡Oyê o÷^wáô10ö;oþ—ôœèê í³/‰Î–ê[_]™ ê ÙEÝ¿–ƒ¥»ôõ¿z0Õ##¤w¾__wñ(ßÜ»±VÜû ùYËÍžœBÙ§ôÉ|޹‹óéàÛË©Ì;î'­˜´­KÁ+,¼P--¾ÿ…©_}ÄO8‡gÝüæëºç¼5éà*|êjOú ö{—MÄWÎ4.S’ûßž•ˆà=èÖX³EŠàñ_Aí‹Ë¤.VðÉfe®…Üy˜´ågÞö>BÝêõH/ña vïÈ ©úC_ÜVƒ¡4Ïåo›8¶1ý?–¤¡tÓŽ>ŠÇôÈì·iFÉ⊻œ‘]à_ò_èï ^~²UfcØV{†·Fiƒ##ý!Ub˜[tW_$<-?”La¢LË%h¿öØå†!æQ`ýZÝ«pÙtIÇŠMà9ÕŽæ®K$yd¶öui’ggû/|Köèšò‰çϦƒ§v±¿ïû?86E[Éõ©ó.q"À}ù³_\° ïÂ¥Î-Èó­Ü{ã¾`‘¬=ÑJreí=W°3Зn;Í·›mDúl^d,ù9”ì+ãm½EØóÅä_ÍvߺÞáBì}p£o4…É€}·rÇ%fµ캵œo MƒSÂÀ8R»w(^ 쬗¾Ñ±gÀJŸúy¶†øÈ8åÖȨÐù-¿û²0x› Þ¸(ºƒwÜĭĉø›Ä¹' HߩŪe‡u¿8o&ñó7wNA ëîä ¯”}LUÜ"úLªPÛ¦þf¢WF>¦ù$7]JÜÓ:FöiÁ=å™ÀÖÊå™ü¸ngNåºÓÉຉŒ²F‚0)~ª0ܜ׮­@ù<ÿß ãÀUË[*߯ –ɳ¸´²÷(_Y—»ä˜eÓØ-Lð´­ª.¤Pn$xT÷Ö¥E¿s+H¾Óû¹¢>® ìm“2 Ü+U;H^}4ùtðAÊV‰ÿ¼Ï½ ZÈ"ç’ÇîÄDrŸÇGƒ51{ c-‚ÄúR)ÁíÝ6üZ¿<±Ÿ1—´ü³lë³Ó Ÿ½•ŸÝt›ä‹‚û ¸à›«Eë,s—Ût¨F*ì®ð\®‡ø¢BÝlPW)k}»âHü¡mϱ%s‰ÏýÝ] ކÈbF›?¸i)rŸc@3í'~~ïݾMØ™V©hyƒ·ÿuJGÄk¢Ãtõñ;«!ø»øëpÙ÷ú^t¤üÝ«kI¹ ´ØõM^îŸÑÚ|ÿ|R:%ª¯âC=/áÆî‡h»"ô®X×Í?D'}o›¢s+-,˜¢úÃë|h.ûÑœ¾®}ặh}µ[[”!…º©ççb¼3ÑJôäi m«§VÜiÛ®“ܰ«/~ ý…¡£‚7Z}§}Ãy|0¬œuÁh±È˜ä–‹|fÄÔE4ÝÿýŸ7ìX}&Ö¦ã)šÕ2•ò>£Ål¥Z©­‹¿Äý5û‚Ư‰ý·™hMN/ùZ‚×,uÕ—hØ«¸õb º¼«?¹à…öÊ÷æ8t>M‹¹‰¦—‡ò6@{ÜæÕÚÁ{ѤtöýX&ZÛÅDÅi¶h,<÷Yí#êÞXìÓhDۣᨤ‹­x?z;Mœr-bŸ«Fס3ó¥÷U´Ä>ŽXÂÕF“Ÿék?Åh9\½5%‹Šz»E½¦Ðä°äÝ´äCh½—>vþ‡W™<©ø˜Žv-×ÖéZ¿Ð>kŸ¯v(Ú|E/ä” Å6LÆwÎ!tyܬ.^ZƒC­B™$94—Ïz5týšË§}¢ŒæY?f^2„÷Žßè+„£%`Ñî‡JReØàZu4ýy‘Òò*ÍÞ!w.B»xcàÁ}hZùóéi ‡wÊ5OGk—̧[bùhyJ5MªA³©=åpÁ4n>¥t£ŒÌ¥ziÒžÔ_d|ŒÉÝ€ºW'ï+Aç‘’BW ´in]éî Z&âÛ$¡þÓ׷ݪU¨»ü©âô÷™hÚórÏÚ-ÑÒåžs û+š«[n<ï)B»O{­Þ9 ÚlŬÎX;£e†¶Cuf*ͺì¥Ô³ÑÂ8±}"Ï - “,7ËA§þ®¸ä¥¯Ðê.õuøç_4 ßïÙVZ=Rf¯Yóí«{êÚ¤ÓÑyÔªøšÞ_´›VÙ];ªÙ;íOnù¡õr鎎œz´žlÖ}û™üÜ>+"²á š“²ÏÛé£õÙ3»*5!ÔÞ¾³Ä§Ì˜ôs½¢’ým´.Òy±ÚG-é”°).?-“ićÇêï7J£9$x¼åL£gI ýÿH[¢©¤û cï)t ¶Ö=¿“Œ¶ÙÎå•ú)h9ëöäç™5hV³˜-rõR•¬œò>´|a¨š¢¹îU¢LV%š>¨T{T¡ñf½[öFÕ&RJ>&¢%ê”éµ?èöWÓqGë’ªúñ¡Ž"W´}Úg¦ì¾.[‹úÊŒ ¾*´;h9,Œ«A;ë&—¥ˆöUæ×ÏKG[äè^G…64‰¼½"„¶Ë)&¬‚´èÞyœ³ÅÍŠ{ÛW> D[+mÏæCñ¿×Ë%JÞ£e»NwEêÛÆÞËÕÝF{‡£'7í:7;~r:BúIÿí~ƒ½]ŸN.^þÐMTO=5í5l]ïÇûÑ8ÓWÊ+z#Jóìš, x1oÜË#û±ôæõ6 Ô=üéÒ)ÕŠ¦ƒë³ÇT¯¢ùcø9¥ýGÐÈyCp4FÓ×2ÏÞC³ã— ÉÓ)ç7ÑfwQs*M4ÑK¥›âÑèý¡Tq‰,:ÞØØ©äoDK'Ïé‡ç&´eþ³š˜cAðq7OsM#Ú$53.®¡¢k=x'ïš^9œèwA½×L]ÊQ4i©ÌbZ Éfø¯õut2ícÔ]@ÛˆÕa¥­èZ´]B¹à;ÚÞÖmô[±ŠàE&¬âÇtÐŽÍœä\-pö®š†6­ )m´TÛÕï_éfnUÒù^tô)úéG„¢¥nÇoçt=b*>O†¶É¹ù—•Ðj°ëWõ>r¾-ÌአhÊÎcü8‹NW{¾¦Š£õzúÅÀ7WÐvfZ¦ü0Z$ûŽ­8ˆæ‡êƒ–¢h^¹g¿©Ã46ŽyéGxý™ü3)ÂÛâB¦1ºhîM0´ÝoˆÆôS}ÌÂCݹƒhÛwø‹O7ZVUvvÍÙ€¶{‰aŽj+QW3МyPa ±kÝÐ&5°µ'ˆàóͦi”“D_º'.PBËÔ½åc hÚ©°`¹íi4<]þÞú5©ÓÎé^â^´ÝŠh‰nö'º2¼ùÃíh<(×â—V€†–ËÔK¯„ÐÜ]R8Óûj³>ãnZ+¥C/ù¢õëô¢ñ4Eº®º%n‡öÎ~ã'"P÷±×èvÃM´¬Ÿ\¸Öˆè]ò¯öaÿ4ÉXæ~Fç…év¹Òh:ÿdcÖ !KïXÆ E¹ögÓ4¸Ï=ØÖ 4=ƒ,4”SƒÑäM +éE[BЏî—hù¹+l{ÍUB œB³SƒÙv;2OóS[%žœBý/‡˜¹h‹:¼ð”Þ:´ìOü#^s/%ûþÚ )¥zI¬[–Ÿ¼2‡ðë‚¢s9gÖ¢5ÐéÆÏ«²hè|”ðM§>é˜i¢iõùåÊŠDO/Ÿ?^Üøj-K–íBË.—WÇ«ÑôM~;íã–×Èœ(KÄLmºÑx¨§ðØ2´?rV)i…æHÙ5'm¶¡¶Å6Щ -5ï WÕ¢}_¬:G–ðé‡Íæü´hιpCT( ÍË$w[†¡ž®rYõÑ4Ó >zÉ@ÃÜ?wNn3'{{‡"gdÕ‡Ÿ1ÏøÔ«Œz±õ*_É>¸@êžì4ÇxüÆÎ<šê÷o÷(Ñ@QÆ”(TD!T—IEˆÌsŠ/EEQßh΄R"‘RH‘©Mfö`›íÑ ¥è|ÎzÎYëwÎÏzþ»×^{ÝŸ{x¿¯ëu}þØÛéõ':ÍûŸÉHÖ gÕõzg$P¨i6C@Ú¦-í¶1$uGñèl­Ýø1S· Z·ûýu¨{ìçuÕtäùëc ù4,ZŠî€ÁMOsБvW'÷}P5ÅýÑááɧ–*¡[\Yòûú÷VtËG›±ËCŸ^utÉ–o–o9‹îŒQÏÖAt•oIo±Fg€ág—rw¯ˆ{S– ê“ëIÃ’/ˆ¾Ô­+"xçgÖ›Ië‹ GopßOð×L£,«^qŒñT=´Ñ­±2`íp%¡Mëîjµ Ë øP_ÕHs"Muåm‰z·=$¹ ½¶ç,\Ĉ}¿y¼A¾bžÂ]@}¹åE«úPž.Ê6‰ºëç¯Zèv ö,Šn~¢îùµ¤ŽÓènJŠ«1¹‹·7³á*Hη‚½ÝLÑúµéu†ûwЮ<¶—3ÿ²¡ôÞ[:‡A¶L¦ñÜÓ@uM¸=à²ÿ’ì³u PÇ5Júš?“yàÓa¢Ÿb““_Ù¾Ma89<á Ú+e«ÿ8€¶ÃaGºf5oÅ·Põ/,>–m®ýfrýFèI žz ¤£òbûûÐýàÛ9ËÈU Xïob-õ¢¼ò‚\cPXUÜP¢Î>SÍ~e}@;_lyLB×W»òÌê¿,è=eô·‘«©,t=Õèbô¤]¹+Ý#ó+] ÅѳmÕ`lø<ør;ŒÑÞ²¬¡w4”—ñÏó½ˆçšhHíLÖÑ ¦Èôäý-=ô59m¨ì ¸Ì(Doú¬:/Í0¿¡j׆#'„sAmS=äŸ÷]u}o›‚ª|!A-ö6(éç«ï®&êßüsGàÆ:ô, óšvúhø«íy:u¥Moä¡3U¦¢€Ò-îhÁ©Uè(»•×Aõà‚¸EžñèÌW»ü¦lº>)-EƒôY¥˜´x!º„´@é¹ßA¾R\j˘’Aç qÝ5 ÝóR?~ ä*Tíseè~[ó(vh‰7}.M¦LÏ[aízWôÆÏ£§…¥7ÞÞóÇ–E•¿y©ÝãkãßÑ©•3•4Apž¬Ýz.„L-VV0%8 7ÏX¡½®&5æñCPé,ËÉë„jÏ“i iÆú8ŽBhJöK¿f>5KºGƒv¤¡ø£ç•Ñhç³ò“(E³ ˜oÐ]mü6ÊxÈ=Ú¿­…„oäþ9³]s3ºÂ/M­¥"5ÿN”‡hgy+¥\‘–“írgÈËÍ’_bß2•뫚ô{ei(Üéá¸{ ¤¹p =’V‡· í&)üúžP£k?Fýí!8ÛdÂåªzÕ¿dª§oGo¢[|üÜÙèM:ÂŒ°˜Ù$Ö‡Ö}Ѓ]_$6£ÛKaÍ]›´Åý³LrÒ´¥O#}w™ƒôçí…®ô$•ÊBO4„£[‹ ‰:ù)[lia‚>ƒˆÂ›Ž„__£>u俵Š/BêÑõÇöøœ`+ôˆÞ«G-uª2ÛÔ ‡¢²PoñËëTA¾‘r¯'ò h¿GU‚v1á•eÊš]-ïÕÑÞhªpð!Hô'–‹ÕƒÔ¼ØÜ[Ÿèÿ*Õ¶nB/œ¼E\(>Žž¯™û­¨&¿mVt.$|Wó·!cÏB˜ÿ”Ö6ƒz¿áöæ_¦Äýhßü ѹr2Ý¿&^{XRƒnÉHåøDoІ·ŒyBìÿxÓÑ"òš¼˜ļ&ö'9Т•Mw£KíîÀÒ‹óA[t~ªlHnŠõ;‰ü¸º4UÔKœ»û“½’Ñõ0*ðà¨#¡Ç Êè¹½¼tM±ããú¿õêA ù -kd†ž%}Ù[A Lh5}úíCˆ,ÈYŠ|æ¯ÑÆRZC¯7œç¡}KÆôΩ0ûxÝ‹ðǺܾ‡Ð£ú§ôŒ#‘ô7¶^!ò=éŽøåã*èL9l8Ë rcŸ¤n³—2z£…>„Î8·óHjv™DRž2ÊWžÍC¿5ƒèøZË+)3ùåù½^5G@Íìh¶YJì+°âÝ9BGÎ^í9u¦>”™÷óúMJ¿Ð Aç—›bõÇ¥ÑÁþj£< =ç›ô&¡Ë|¦¸g?á»?‹FÇþ¹ š«Ïñ´®è½qàtàT#ºõc£ Zˆ{K?osÌt%áokD[úÐfÓs‰Û…®“æZDίڔ+ëTˆÎWÙMu踪>µÞÏ=‹| #^¢ëÍA[Ù Í\1uÊbz߬¸¨ð¤[;%eÜŸ ›ž½1D<÷‰Èjþ_"× äKÞEÇ«Ì4)¢ºs…Dî»|jí£È †NŸ<:…^‡=ó:nÌCÇÚ@ýà,P¶™¬Ø4r¤OzE'V‚¶üN†Z"('.ä~É#úÛÀæu³Qÿ;u~¾‰m“¯:‚ðåéG“N‘?ÐCMºp|¾+hû²(“™DN‘ÈÔX÷^´¨¿’zã/Ðf'-˜'”õÍõZG7)К]Œó…WA^çü‹º ¤õÒiA)è´ëˆ0l:Ê“å'⳺@=©°Ê±„àC!cùÄúfPj˜íÏÑÛs`àâƒåhõwùV—ñ?zW7ïºtìðS~þ.c6þú°1+[!8úìêÊ>ôU–á]lÿœE³ø2¶ë„çÉÈ‚_s^ƒÚú™3í¼e0ÄR¼ìþBËKÙ«,¶¡'úÁ¦Á2ni¾#àmÛo~¥ý„‹,/݃H%¼ìÓÛàow®¤|Ó"‡yÑè‘øsÞÍlã°ÎÀçáÙ"á-O ǘ³ÉªmW²À8 ½öWýo°÷'ÍÑZ^³#Çoÿð]íÌ>ë_Þ¬ÐùÂô{Ó F ˆ~‘/§ ÁC^Ø K˜ÐµämÍ´ƒðy®Êî¯o@ŸÓÜ}mÐü¨Á²µ pü ò=«!@œl«8{J Rý30Hi “MüYµâ€òûèY‘4лzèô5A5ަ¹êô°KP vuÄRÛ*èQó›Ï€ûÎû¬D€˜©q—ïHy‚mÒ(=8þ6fJïâ“`¤xú9ÂèÞ?í 1ZËú³ñÜGª Évò°8ƒ÷§B¸á¾³z™%x‹‚O$¬ ýì‚ä-WÀ ÔtõÀð·œe¯ cÐoe¢jZ^NÃLëƒ!è)ØâáüÌÓ›×—ÜÛo©ÃÕ½ â^J÷ZÖ¼]x}èùf°oéç̳‡p5ÿ“ ¿ü›‰3bc 1Ò”žÚ?:ŒíŠ):‹4@;ÝñÓ4Ð,Ñ»‚ä›v`lÞ™pw>ÌîFy`‰¿š½÷£+¸wì¿™Š¾ëb'>lB¿Í|º6¥ÃM¡çòÿêC¸ï–âô9 ·o^Ô5üÐ Úçu‘¾7cÛô‚jÙÔúWàÅÚ. õÛæÃy9 ö Zÿ©ŠyO±œEÌ+ôü· Ÿ´¯Ÿ.ÁОÍY­ö‚«ô.oå >Æ•|\.¾Ñ%¿ `Ì–=M3rh]~r¼—µ3$»À‹Éôf‚¿únÓ“û²QÌɺùeú5—‡Ý@·ú(·~L\•*ÃÀܪHyð4ôä¢õ’1:Zún3̲—%ŽºÀ­Ô=\H)‚@ý¯GȈênžŸü³ôN}k­8ðÃ;”O‚)¶|úß/mM({¯[–lþ²] ~ƒ¡äº¼/{ F×:¥ÙÖn7Û¨¾L§Ì ×§¾Ÿ|ÁoIüõDõ!Fü#£ÿ%<•^v±¼p3XObc²}ôÀùò"R6¡l‹^ãlŠx’ÞïOs9}ñE§4ð× …_48NcºqI7è×·É<ü¡ÖºÞߨl‡`sãQ£¯Áš'N³Ï°]¦roÓ(Xá\'–èx¡f=)3ÉàOÞvP~ÂHQÃÖ¼ÅiRÔgœžË„@`dÓBdÐá:ÃW§P7ÕLI–*@øH¤³*£[†4×@X=Wö¬Q#åÞ¯·Ï2€Ð\Ê×â’ïZ¥Ÿ{qÀ¿’\1'×ÜV£úÅó¤!XwcÍíYÀ¬XØûLx;æ,> ‘²iËž+ŒVÙМÇÁï0Òr–btº>{¶ïŒÜO¢5Õï‚`nÁõÀw÷Ñ»QÖ|Ÿ¯$èýWêz ѹØ6E2lûí}~ê1°MýV²åZðØ~ç* >™tFÿÀ0~ºP_uƒw·mÙ6ý[SRëûðx.د^[R{/@tZ4­’ º¿áŠÈ$èÖ¶3¾u`tßõæÝUe`Ë<(>¾Ôލ;…ç²ÇÎy¼ú+¸æ7þœ€3uîÙd-†4ã(~³É…Ô’9„ÃÛ‰»·CPs4z®“*†±®t»‚客éz-Â% '7Ý3ÃàÖ8M€þ~݃ËÀÚ R®°þ,’zõ£9àܘ1¸¹üÚÕ.[ëÅ Ù'Õ/} ÌÏï.˜Ágî|›šùA`=ò¾E6ßw4:¦·í·ß;«U¯eN»RåÑ_«C?Oƒu¶wÆÕ¯wÀ>xDaå ð…o(y óÖiþ¢ÑÁ¿ê½~ϺRŒ Zïê±&ö¡S{8Eº}Öº®òì) =>1nB6Æ ãS'¦·6„ëf´ìüó BùM2šKo‚Û«Vê&§^¶BšÙþ£7h©è6gÉ2:¡‰UÇ_ß]îö—d31°µ+L'{0 ‹êp"Î94º4=¡ºŠÞùè6 ­p˜»œDÆÌs`­]wÛ sÃo†é{ÀNçouÌE¬÷ïw}iæGwô¹Tb¼Ncó’Œ+àeYQ•1Ô´ö·o‰ ¸ÒŸHÃA†`9 ¹éEÚƒñí%ËÂâHL¶·ÁÈÉX³¯Í„Þ’ýÚ"R™JmÞ×¼Ì=ŒÓâÝ`|ý¹rÃØËWsŸ¨ŽaàjP€Á ŒÙ®¾–' >íOçŽì ”{†”z‚Wð–UŸzòú­Ú‰þ½­øÒCï×ë5üˆ¡Gñ­Ž7^€Þ½ÁÓò†?‡ž×¶½æòSî‡êžðÏ—ËBgŒ L^:╾ßXi–ÍBŒØMêÉT‚%ùJ3 ¬ÛŸŸõä½#t)ð©ü¡/`v‹çή‚@Úží©üB)Ç3¥ ìg³Ýöw€‘?z«ŒÈh×àÌí1êäi°íc£ÁðúRÝV»Ã*ïPÔ^ƒkh3\¨ûLaIbwá—!—%\9lŒÈrþø|êL•»…3À±r«¥Ëîgþ&oñå§(±$o/G¯¯ÆŽN?ð¤¬ù¤Ne0ö¤ü-H{ W>e˜Ð«º’Ë/þ÷0Õd¯ê{BW·¸’¯Cäv!š¹µÎb@¥œ–ºº «Wžñ3ÊFN†`{?'C§Áw›·²Bé ÑÛØzau£úD_¨Ë}÷>³ÜüÆ”902mCº/áþóã2Pƒ(§ÂΈàÎì}éQ%‰·µyi]ò­˜Ùöõ{Ïù±›ÁÛ˜g7»Ý"ã!ï èà9qvåVïÇìûþP©cà…X…ÍÕhG…·k¿)˜»ÚUf?E_^÷ fªY‡‚gÜ»@èj°–z £á³¨ú”‡jö¿=ÞQ±ä~úS‚wS†W×*va€’!n§2 îb<§Ùˆ‘&u*¬Á¨ ÝðÉüÛ>ßꆖ€ï1Ã}á¤-¸òj!ó_|†èoÒ’÷÷î`äØZ«*[ ¹Š­WƒÑ¡9ðºàô ËFCÃÁò|ààâþÂÞÆh)­¿`$ú'u“ÁщàÛ§‡‚}FËGÕn èÇj]Ì%êêü£7%¯AÙµÄ'|Ñ“Ã,CiŒ.¿²èH÷Qð.…i‘ónÆ­q‚S‡?4l5çmŠðzÓoL~8Mð{Qy“‚/Á÷¯W,r°z©¥”çzôïà,øÔ FèÁ³¹c )ªÈoè:³L3Ÿ¬{âñ©¥÷ }Üë)1¸5#yK6صŽ`ü˜‰=ÆG³+?:R` ÜäæºËìû¾Mq î³xc^ú—¬=/VsöŠT¼h+8wâk휀±u¹EŸ§Øã§ßK(ßÌÁm,ó±Ž ¯»Jr`¿ç&Ho¥b¸¤æÍÌYúàçZ“t” öK˶-çÖî¼¶({ ±‡ù±ž`(Ò2ø×À›“5⤀‘ÈÜ<5FŸD·\³ †PõÚÖ#³MˆeͨÒ"tX<( AFä’ýæ ³ÀU5§öcHÝdôxº«.g˜ƒ‘ÁÞ-™‚°èÛin- Ü”‰âÜÞq°¤™¸åb”’õC•¡Àû EþX?ÞiPœûýÜ9¿­îu­‘)”|Nð'Érv­<Øm1!'Ò1âÔøÎ1?<;Óνç! Ó Õ=ù‚Ï܈⿥ ;&cªºã îy»Qå}üÓ»ÍCŽC”¿onÑKYÐw»¸Ëcõ£Ït8?ÀoÐ4¼^‹¡¹iáZrÎ`¾–>kDº©qô=Ù`÷+x)È‚ñðjàŽ S0ž$Dxí"rË–»² ]Ìr{SÀG¦â‚FÏÀ ö¼ê×êÆ…™Ž*kva¸üä•óMÁWx73r‡àÎo’å¡ödH/r2®$üÕsV,K ôö’÷~4-¢>îz_$¸ÍQ}lú7žZjªU)‰¿¬Oœ·d…1q ½²æÓ;.ê 0iÕ_AIªÊ_¦°ßg”Fº›^¼æuÎ50J;Ÿ~¥~µà˜W{¸?Ø©OMû𙵛£yìn…ÿԃϞØf˜Á½š[ûD7~S÷Û›¶>­8=Ü‹q‰CehS91ZËŸ x]>_þ™†Jü“3õW‚av cEÉ_p­6X4¦|âà±î$¨³3hT1{ôf?«úÅù ~ý‹aÿ-<“ã–o+;I.±â1X£‡“UšÝ#õ£@ìß:ó–óz1ýìº#ð±ÏÑíµÌÛ`å?{C¿HÇà\Î.ŸX¯†Þ™{Å~`Éœu”ûAœÿ²ì’®„ÏŒîÛ¼ …wßOý¨)Ó÷Éú×`–„k÷ß_¾e£Âª>.×¾—ûKAt¬È­¿RŽÐ¹º›?‚E„ßqŠ!twDù«øRVxê_ŠçýÖoOCß2a1å­RCÀ´ð­øEðÎ/Ÿh–;‘+<¦Cz¾ì¾›3Ró ´Ùç¤úÛÜ—/Î=T¾‡á³ÖëÝ:‰¼r£Œ¬éfzì¦É´s„>- Ìø­‰ñ-¦61æ‘àG,ßu”³ü%9ó¿ìTçİ—ÖVIðsfXܺLäye±ø{ [ê2vP0²ÜâߊÍ5M|qsÄÌÌ;<~Nûƒ[Øê“S_AcèNÇœ: ^}^íaH[åÒâ-Œ~ð{Y;5¿.7¹^[<ðøÿ8Z‰o9 NG‰º¸‚-F¯jõÍ~ õZ‹ÍL°.ªKG„a,ðÔž×i0š5ÄÆ1R}вú‘&Æ^‹®7Ó„à[‚0â:8j׆•>uµÚýƒæàFZBÝ~•N oÐè•åÞ‚ŸB•/« ‚qóÏšÉ]áÑ´3¾•çú¥¯Zy Þ8)<»‰®çxk®üìp¦˜Ó_;â&î¾[¶Eªì°¯™£ù©}ý-à5D>†¹—1ä¶6Ùë—;èbmWMÀ{ìùí™^ ˜ºG=vIBô0ø°8IƒNŸs£òúÀKajžð'ò•”åJ³Ü­i7fžÑê™FÊçMà5ÿ½ø%§±[ä¥ßðN,zð–ÐkæÌcÍõÓÿõí4»ûø!açŸrFÀ#'ÅÏÕæ€Û8ãøÇº Ñ2~Ùqœð[.)÷´Á›êð<3›¸? †Úý¶à;ÿ~ešéA©üW¦b•à™Î)óKt€°ÝKû²älð˜êåóÜÎ#¿üð‘âÛD³t?¨ ö‡0Ï?Øõß¿«û~ÖN2Ä;øp81Xð_ÿA!ö¿?œéè¶á?Æúÿ16øñÆÿoúÿ'ö òÿ¿‹ÿŸ/Îñó>á½Î?Œxæ­ElúŸÌC¡(cZelig/data/mexico.tab.gz0000755000176000001440000004754213245253056014704 0ustar ripleyusers‹}iÒ$7’Ýÿ>EZ b9N«‡š¡¦›csF&^™<¼çK”d²2²¾"³<ß7üø¯ßÿüå<¼~üÇ¿žõûû_»ÿí÷û}ü—_þúç¿ýþþûïüúÛÝ?þý×üúÿ¸ÿÂÿú—_þÛŸŸŸþý—_þã×ßþåûß~ÿû¯¿}ÿÓ_ÿóÏûû럿üí÷ß¾þóûÓÀüòÇ?ù?ºÿë?ÿöo¿ÿþ÷ïßü×_¾ÿç—üõï¿Üèýþß?¿ýÏßÿø÷_û×ÏOÿùÛ¯÷ßýó÷ÿùÛ?ýß¿Ü(ÿqÛ?ßú¿ÿñ¯ÿøüöÇ/ÿõ_LJ?‡üçŸ|~øýÏX|~øçïãÇ?>Hþã_¾ãÏ?þúëŸÿøÃûÛ?¿ýí—ùQ~¼êë}ÿª¯6•Ï?õóïúÚ¾~Ï”ÏËý?rÿ÷¿ü¨ÓÖ¯zƒü~r{í¯Š¼˜2¿íøü—Lûqÿÿÿ»qùþ|¼¾•`úüð6þÛ_~l?>²`êý_ø«÷ù¿y¨î_¿`ú›÷ýgPåûéA™ñé~$‡,Àf`x(b£¤>_Ä#˜}âRb8g$N¹ïyœéCšW;8ãïã„ùqñT8o›¬8Õ§Ïl qyÿptS}ÿ}~ÑyÏYΩ¯ Ô)ø!!Þ¬üÄ:ãXí†SÉ‚*m!þ!O„Ó×¹$¢L<Ú-`äíƒzëá\ÛDùœ÷³ñ\ ¤l8þù°Ðà€ÎG=hUí£)Þ¾¬/|ÎÌÒ6O†ÎÐÙý5­N½¢Ù)K0êÍМ‚ |ê s{+­°×Ÿá‹;ÏÕŠ·_ã×¶î}Ï4ïkàã´¥õ ó†S½_^¯i›ãgUaàÃùø,¹h[&§ªè?†0Úex$K5ãm€Î N½ñiÑÛÀ}àö[>l }&?[9¥:ø” õ6¥sÔ?ðÅúk°vfò>à@f¼((è[o´ëÉoi›AÝÂþ¾¨ ··gDEhjüÈÐûÄu_pJ®뺺[‘Å‹„^ ½ÕÌRäoO! ðÅb ­é¹Š@#~~:L»m³ pxñ"ååPÁ ï?^õŒ };¬þâ÷×Ê´í9xaSCû›§åŽ®/+ñpíWç_.ÙvÒµkNx]_×WO8ƒÐS¶Ë_tsQBS¹Ð2›‹ïoj KèBOá p ©„S,œÈˆÇW“½œ Ézôa6ðiÐ?„ƒ¢‚Î=ñ8а¡ÓÐÖ(¨Äwq9h yaßC$Þ¨½¦jí]]Â!G_Õ²ƒ!\&£ï™*ÃÕ“Úã…Á*, Ôè* •X ‰jµçª —{Ú«OéÓ–Šø\Ñ"§f-é¹Ú}®yñû;3=m±ôÍÔ5œ‹±Ót¡÷ò#| \(Žl¹Xn¯Ö„)FK¦ûù*]²½‘> jNàÜ|H ôÊ|G–dß²ð*î‹P¬B\÷¾wMþàd°`u( | ç>;8FïÞ…*>|\ü¼?¸¼÷Ï—¾Â}á³\ëþúp,uÅ}®h •>w. ž i¯çxû\ å«LÄ7h ¥¢‡2ôÏQ2ùÚ&FßS¼¯bàŒ¯šô9ªÂ¡½-]¶1wãï}`ÀiÑÂ3 ›®] g¹¬Çf at}Í}i(wKúRôG:ðºDYOa0â-ðÇnkë_8ѵc¨B?æì@ðk( ë¹àâWÌ|=D}PA[ÈXæã²±.óô8’œ]»© OahMú1ÉzØÀ»¬4<NQbB‹ø´,vR±pª5Ì>¶ü XEÂ72"èlùÅS¦ÃãÁ–:WP¨Ù$ ž®o°›ùô#y3ƒÔS|h\B]CÓ[8ÌjNI=÷ȈÕàóc¨ºÅ@ç¡çLr|%µdÉ4ŸâB«-¥^<²dÉ6?¶,Ïyé}áÆh ëÐÐO~º®ùq‰ ­¨ÉÎ/>Þ¥YÄËÄ„0ÛÒ ’l+‚Ïr#^•1+AB×QP‰€Vvëj‘@t¦&¤÷#ÎïGšn3ƒÂ[EÓ`èÁL¶íêŠÎMÍúýh±\»Š‹¿†öÙÉFÚlêΡt¦½À¿»eDº¾ódó?~%>t[’:lØv†ƒä çsÐ"Í1³ ÅÀ[Ány¿-¥y¦: YIi½ùº¨ô€O«W†„v³ÂLY•Dty›D¨­îÝâ!½³NáX(¥ŽUÙW±%Àø‚RR)¤éÈõ+œ­Nž£¼–w­ÜIî­/”*…ËJÞ¬ŸR•æTly‡ Ý„Ï+¯d9©YN2ùލdo挺(Èly÷Cy›RÒìuxä®õ¹¢¡Ïqn6Rbó1Ík)IO½‹/KJS1z Ä.Æ ´1ù¦ŒDŸ€šÛrä Vuº’êÄh‹|¤nõ®£}¢¼Ò¥ô//j#ÛªH$Ü'FÂÙ4°ÊÙt¶Â7ÉÑKlxW$üÎx*ÊÚ4’_@g¼~å£ûúÏpýÑ\—b†x°”3' ?L1d¤¾­¶¥AŽ<_°ç1G€k«E’e£Áà‡ºj1®TõhªIàKå˜Ý•Õ)5IP³j;F+xÿ5ÑÚª·ïR®M…kóEDœ Zà+,[—“)'YHFmÓ‚0YÙ¿å6È­âd<ÈRŒhnÛˆe"¹ãáNZI¦e¥ÝVò ‡kë#‹.ËJê÷¯¼^ÌÕ…˜»½½*Ž„OÒ¿™jH‰ÅH2ޥՒ䚉6ŠÈ#8ƒ|7 j¦±ì>¦AÎ}~ŒÖ¶—Dé$r €$/1‰ý­'2‡AO›IBC#‚G*4z¬¿€¥¦J*#ðöEŒfzÏYøµ!RÊjm£#“6Ô¦Ôµ•wËK]›vª×®Fí ×< ó*¥¹øÑ2ÁˆÓ+5 Á#Y ‘²Dõ-îìƒU …hÙ\™\ Ò¢Qv´ñ+§V¶j¯Ÿ\4™z{y)ïû¿Ž–pv[G›§ió×£ ¶- [\áhúÙò³u%6)¤™ é¨Óë·B»íY@3HU-¥ K‹´Î.¯bÈ=Ú(kÌ8ãb)"Ûi¯Ÿ1‹U۽ʢÑÔÙÔþZ]¬‹0Ì$Üa@ P&‘úÛ^-›ø((JÅ­ëþ«‰\±Í;9›‘z$qYLBö¬Þ€bͨù8¢ _IÁ¡¿È‘奚­›ôHt¶¿ccwÑG^€kCZQØÙµ;“€èþM@ÁÙ¶±ÄWû'Gëu9Úo )Èzÿt|‹•oÁD1Z)ÑÒ¥*£¶š÷vjÑò^³õ´Ò1Â[é„Õ£Y{´¿3@ 6èRü÷’Bd³ÜÈç[»ù÷ ¨Ú[³¦öû§CÅ?©ƒ4µXr¢^›µs–PÉÙpGV»§ëQG YéŽ(FËzTmj˜ú¨ò é*¤=Tg¨GÖÙöp6ºZàÈݵ쵑mÛíßd¯í«" ŽvZ…5›i ðG޼"FG|©-­<œ?¨ÈãmÓz´ÅHW¤!òjŽåU–rŸ©–LÔ)µð"j¯ÜȼäGDñ_}„´l‡ámeFf6j”²È”Æ‘ô½i i©_–Ú~8ÃØvuH­Üš®è=¤Nû®Q»×mŠ’07%[Æ åýG½}œOÇ$IËÄ­:æ>®'À*f̽çÙÎwÔÒ6~ËÛ¹íc‰ÉY, å=.ÖÜY¯‰€ÉÓuY+FK¹E H"Mƒ-œ]“d]{M~Âçfýv›Iš·M@•³M@ý ¥¶PÚ¢¼iH2TÀ™ô=ѽDŠgÛ'-…HR†l‚íÛž aÆÁkÞ¦“¬Q{Ó–@Ím®òÏDIæ˜b±EúË-F½ *]¡?U¥mö•Æ®¥þòþö•öó±”Ô´‚ÙÍ¥'y¸«Æ‹SÉ݆5ñdZ"šÅ©,œà)™V¡æè ‡3Ümu¸{‹e884p— ÆÐQÖÞkÅ‚[:*¥7 ÝЉmp‚©ÕÐø€`t¨£LµÄ,Ù¦ö‘c€mzõ¢sç¤ÞPÌ·\½× Ñ™¥Û`(W;C}'±¤ tº6²hP:Ž6uR}'7œ«Gk,é9²¾ež€ù6&7ïóEH ç-Þi»ªšn3¼¨g3¬]ß¡[Ã’ér bÔ ç•Ø£… À*™<¬oã•xû'Y­u«¾&©Ì=ëßÎNh4Jò$È7Ï"‰ªÛçi€úNy›J»N‚2åÚ6ŸH%enrå÷¯Îb‚âÄ­–Pq/rÀ¡¸7Þšvë´)nËס¥û´EÁ  f9IÃXù¤Q ßDN*›O¸ZMò%CroÌ5êS8ð)6Æ¥Ŷ§DÍ6ÄvÓ €¶XùûO’€¶wçŽ='Eæ.'¯1—‹¹ß J W@¦pƒ‹c^â>aå€ÛJŒêÛ瀛™ ÷=P] £êr€eý›¸Iç†ïÐ@©KÂ:éÔ¶’ú²¬}-Ö¶UI8þdí»„¬Í¬tñš¤nz6¯l§ÀL™EIrwµv[ M0#®PbÊ  ¦³`’m³i 6o ® žH4 h+áhðIWcm­§UmšÜÿÕFÍ j'z[3åÆá&¤ýåÂÒ­¹½£’+ y©ÚŠ:€ R5çëø¦X– ¶m¦ùÏ»€+çâá»:I~ÛZíÔ“ o»Zbm¡ýÏ:]Œd¤Q³4rI@ũͣ­û5 ”¶I)Áï Ô³¶)” !i‡*I=™xIQÚè%@HX•$´¥ ¹<µ-Á«¤¾t[»xÿT‘šàšsä4U’d$;ê¨WVšG³€ ´P‰2¢7iäÆË±mUFM³)-«JA¯Ó´ÙiGŸs›©­£1€#FÚ6U¶ÔØóÑlË71¢ž˜€ k×—ü)šÏí‚ÑþC(H?’üÖ´g×7}ÓFnÞ6ˆ>3 ï(¸¶YY’Žäª”DHãlÔH›am”lµAºg®iD’=Ù Fº²™¤hlýÔc ’k7qÜ•ŽDôHHtD[ÑG’‚kí&G£ÛÙ%1 6’ƒo!P‘³Ú¸cG‹¥vWíä#\Zu$L¶Å |¥mJG9-OqÇôÛPþ»hmëBÂ?Ôøñt¡öi=R2~ß³‘d,vÞ¿sHÀÚŒÿMRº*iÛÝ@¯QޝeÿñëgL7 >±«Èo‰r‹(iÌMÎ\õ¤lƾÍÂ(dI4þŸ9€]¯JGµänŠ7¶úbËý‡}-Ê4’£y´nis7PqÌ™[Y$²“%•M$ùNh„° œ´ñÖšã¤ÊÞ¿[&b“&+B$¤$ÖlÝ×6ͨ“ܲô6¤„eàz˜Q…pϘ›Yh_™¤PgÖ—ŒP•Uµ¤uníè¸óâ687GÚàŠé±!PâR(`Éc³Ê * ÈÑÒið68é0ý­ !õöí'gíD’&›(í^J4PžŽ{–”D( –<ÒþVžìK®¥•#sɘ¯uÏ,½ ™¦*ñ…I2%m]J%f·†SrþÔßžNÀ;œMcÒ ()ÝèÁúXéà}É3„’Ö Èb>=T(ómgè´û,&y@4ðÎÍÓÈ;¥Z¯SoíìTIjIèomZ»Ó[³þ–/KjVb˜È;'é}’0üWÏtâ†&i¹[ØM®ßeI2'@š·|ºõ" ´ä®žÄÃÑêäìëíÅŸ†¸¥^2’  Ñ•®Ò„ä5‚äH#kÿ¯šÒí ²(7(,‚²‡ûz’I¸…ª4ùèJ'nÐs³½úÏ’äêH\?Ym6¥·¦lë•NÜ0SÇè‚d›ÿ54rwuý@#ÑG?!öÿµ¿õÈ×F@®½úY›ÊFI?/‰ö6©mН¿Ž}}þhÓù™úî )­IjXuTY{[lA}›gÔ‘Ð÷Wç;:¡ÚÚäx{pÚ&åkÔÛ,DcÛ´(i2µ‘oñdš|÷†*io·è ^ÔÜ÷§¥Ü'dÑÖáv\?9)ž-¼b h€ÌT»n˜¤=Û†)Àµo¦½GmÛm–ÈlqgZÂæ‘öBá)€Üde;[¯ª%ÅÐ3w¯‚{+ÅbÄ PY\·± gK‰C¹ b×¼í]­¦ëÎ, ï¯•¸i%ñH¨æÄuä#H6Ô•‡6@ ÿž¶kTþÅ/ ©·3Ú"¨n»7㚎Eì"¢€ Ün¯d Ñk[ÄN¶¬ÒCšÇÌ~ Œ¸ä°¤M€ÂÕ¯tw¬¿(’bÒ$õå%Ä…¤?TOR_*mòIœ´L>¾L6JšQIµ%T¾ý¹¼&\[o[= ð¡[6ƒ¼òv¾l•¿ºn¶†žää|’˜&ëYš ÞÏJ´j(m³gc0@dIdvõÚܤ$-à]£–lϦ›šs×ãIÜ@ítCnd“iÐvf׆û_ávËj’z}Òoa¹Ø¦5ç”xï¦Ân{ LÖ†!i!ˆz˶©¾b3˜UµÚÞ)ùÝíú_H]’qk­Y@TDí÷ÖìÅïÌÛ óßRÖÖšÄ5üví=i„DÒ:š¨íúÒƒ+¹[ç–Gƒ™€’š¤UßÒ@Œ`ÚÈGíP=¢$ä;¡Ñøˆ`ô°•„ŽÒ…*©'¶IÛ¶veׯÕöŽRR1€Ø”:rKÒ`ʆl i%¶‰HÛV"FCmF;Û›Il¶nƒ6“þSó¡¢Óî"â½ ´*rs­Û &ÁG‡6#Æ6óhiç¶V[š•~5#~«êÈ•ŒG cim[ €ê°5¡Ñ®;`Rñ’WË<û¶l>¡:’c2Œ¦™ðxËk‘îµ®-9š‹³¶wª³µîבõ×ï¹9›*8›¦[SLvd{»Æ?µý«d³'Gcqbô𜀪9­G†ÜÞ¦\ΦySï¾q2 Ià[orÀ“ŽiD™^íö­QôØnæõAD‹uº2b£?l¨œ–‰ÈDbgÑ´³+ëïA…RDJò.žZµÏiÚ£UÇ¥FŒ´¢ÝíòáÑVšÞ?Ã’K[ˆ-µ+ö-«DVù÷ .cmh¬¨ûûWí_^s‰ÇH[Q' Ðö§i„Á ý íø&!Òá¶*Û™ù‰ZûhÛ ¯/ãiSÖØeuØM‹–%×6Ê­„†mk(oœ(¶Õº³Õ‡i Ùšj±jû  Tm×õÏÝŒRR”L ½eã‘*%7ËÄRè×ÞêZ¶£RË©iÄ^  ¡ É;yjþq…ÓüGŒEL@æ%S2¥æÚV.Ú‚±mP²²•³C%­6+4)×l5dþp<Š°ÙµF@÷G…‘\i=7gg! “Þ®’úkPƒ#Ñ Ü®<*—V"Õ 4$ V¤½µÇ Ìˆ×Æ£yûß_)„×n FðËÖÑÂyëµ_»¸k“G«·¼ÉôØÝÒÌ̯§Å¿™%òÐü þnC©’ÈÚÓ$Ao·ÐÓJU¹ò-%@‚ÊÚˆRHýÑ ©öw‚Ò4¸äí¬©²{Gæ‘”%‡—ÔÒ´6­äNËPò¼¿©¡M·KÒ¼X€ÒÜŸ”H>BNÚ’Éß&9é²þþRÛ6œ¨¤-Lµ#ù™»t•÷’ähi©d*'ÿÔ%õþÿ–4µÚÞ˜ªOÐxÿ_iK’ä9c›=^[ÐÛâÎÑ¿,"­¥´În•®4þ[ké / +cU»g+îl契¤ßÚJfd׎ýöÊmJw[ÒCº­ »¬< R»›UÛÌÙÐÅmv†ØÒh¥£·.. KÀ'l¶%ùÀ’ôŸ,$•¤i=Éñ#³°!zÉwN)zÉ8Úš!ÜòñH¶Í£-ÞoŽó‘ñÚ¸‘öÔ.®­PÒûX¦&©‘Ú[áÈ˪$8"ŒÛ»nU•ôÅww÷t‰âÕðRòS¸=Œä^2Ñ"=Ú™³Gî¡§Õ²vË ­¡ƒtÛC’„Ò!yD®£¹…ļ9ª¶z@Ûü s{ZggL2S¤‘Fƒµ©GöÕ­ χFma”¹íÞjïiÇ”­f úA0:Ÿ®_Ô?ËZÏ1Òþ8e¯ÝÈÚ3F‡sHª`TÁG=Áh¢±ÕÙHå ÆMÈŠù¨Zí#M’£i½ó2RƒÆÒV"#G2Ÿ£Òb+kœDÜS³)//µÅ:[„„`û–Í/ à‘€4(Ù]šµ d¬xÿ‡i!aþÏDíõál*l‡DPqn«ŠôŒDýOHé‹‘ê‘îÚM”KÊ$ÙQÉMÃ66AiÔ#=¹ ©óp4 O$¬ˆæ%þŸTÃÙNIjxÄè¦3ݪœdUÒS=˜wkÚìtc¶Ï½MÐu­•žÍ îi²$åE•ÆLB{–’µ±c;w{mtI A^ò«”¦I›À‚綤ÿ„»Y’ôÊŸ®DÓü' ápðÏ5Ön©´-*™÷,ñÑ}}/0ºs{Q¹±ŠgãÕ")u›o#‘ÇW~õe¢ F ¹Äøë襒gû~ÎÜ—¬Ûf0¨7s—3äµÛ¶‘(gÏM‹ìTJƇéÜ\aªé»¬/Ùb«Uv{ý $÷{ýR¸)òQGìÀÚJ§QRN¤hÒè´ò¯ÚŒÐ3O²-M@¢·U…pÕ®±’ЪIô÷Û*Þˆ]•!=–ÚîYj»¡¸!€dzˆñh£m„åõÃo›€„³ëK ŒÜz0$Ëÿ“Fn8²½”¯ë¿®¿#3é#’¡™$"Õ6{ÃG=E’üôÅÌ 5èT\Ë"u G*µ½ïn6vZ")¤S!逃۬–5H—($·¯ÜNi+r8JôòÎNIã‚ÜbÎFOb`Ä¢$ ¶uIN»h“ɸ’½H0ãmÙŽ¢A†.j¹´С!ihÍlµdÚ†&2m$ÑEkCHŠÙFœíAÚ(¶óhn?šêÇå·—€Qˆ’zq-RžR·àêst(ù¿I$WoW 0}·o$=^[Ú#¥g3Ã(Š’TC?‚^ûeßH²Ô@Éœ·/F}OÁÛZ€Ò’$u ¶á¶ %{|GX3”D“$ãÓj÷ºy©ŒH¹ý1ÐõÉšÒh·$’#×Þë®Ä®ëâ)·]M›úPHóhnÎF“HÃAjY’dŸß'G;-±ÕÕ^NR]@ìÑ qµÛ?yæ$[ŒdÏzo!Ž$Éן³Y”ñ¿hµ[!FÌfòînÍ3R-\«ªÊ:E·Ù…íªÔ5÷Z;0bÒ¶°»‘×xDoaÉŽÿED´‹tˆÈNŒÂ¾V5¶sI§õ-g‹õo»7‘ŠÒP‘ëõ7k"q¶ (ÝjÉ¥ÖÝoG·D’³¹ÍŒÝ¾²¶v ¼#ýÛÛeµ¿j~(/yŽš­è †Ônoÿè&¯DbvÿÒØu8ÒêZ´GŸúø£ï_ûšûæ2Ûê³Aç&~ddíÍôHY€;¹Ñòù ™˜þÚ¬±šv¦Èãä̃-y³‰:wšZ| NÊÑ’vjµ1ÔÒ·p´°Š¦ûW$•ÔãO‡†ì~ȶÐùDl0äÃœÅø=ííʈ çx®% lð}$v_ž¶²"—¾ÜK¶cú—*Ú¿ËÅçá¥ÅÇ$Bφ#!ýãúwÝŒ`d&®é-¢¤ów_NL"1¿Îü*[øw­”ðA†#ñID¡ˆlŽa"‹;[ãÙ&•öx66ÿ×—"ñé( I—‘öºˆÔäg·dQ•­¤ìºÖ#éÑ·ÙÆT“ÇÙ èòÒVä÷ñY³dÑrÒ"é»i·Y­Y"+áhaÇBß“ÖV;hsd Rm#œU•¶ò¢¼Ap³s4´‘ÐײÛZ}]c&Zc„£MÇv—¢zXÌ#µ<EE21 Eæ@£´9¾‡×¿'­UdÄe£½Ó&·¶µB‘0 ï¬)†c³‡RI%0¤Yú1š4r•vhÉm»ë&b›oPËv¤vø¤Õ=j—ѨNήTü­-{þYÞ"'Fíåz6ûa^kR^ÏuÚ( ñG‡ŒØ‚$‰¤~DÚ!ës?~:Òº$3f£!±Q¤Û#MhzÛD‘~"“i‘¤—ÅXéaŠ„J{0Ò!imŠ¿>FزN+„ZÌk޵Œ!û™÷££œZpkɃí6mY 3­¶óm5›WHßë1ϾŒßçà°DçcI}-+™M‘xÏÓ‘Å"j‹ÿÚo{4øè4Q¤õE‡…ÜáFd4¢øŸ5Qðz6hÅw¨™=$àh£[Œ´s ò|L·Ó‘ÐTÛ0l‘|\{&íQšúYS¶#מë±&õµŠ Tµ‰ÐZ6ÙÎdyÇõèE´#Àè’¬¶÷ûgÂ&ë´× Kƒ#¯¢€HmnêºÚÎV¤`Ûý’ªlb{€þ`ds¹íQÞEºY’ªö™Ú×fu¤÷Hoºç™6›×²ÅÈè ÝgÈ×5àhCl¯´d£q@ùnkñÞÊ#ôG/™´¡Ñ7Û{Ö±Vuòh&ŒT\˜EªÑgç0êºþ+r¤:naç;ïAÛ}kûûшܴ ‡Äö•ßukû;é!ÑlÔ-pÏ®¶2®¶m¡ÑŽÜÈýý¸ T2/ZÚHK‚¿ým8›y bwþ,¹ˆQÏŽnrIDŨú£…G­ÕhOO1bV£ìvQku4šZ;Šó£ ÐÃ펴 С‘YC¬@rí{´Ïo" „sm‡QÌ0’%v½3/CDŠÛøG3ç"âc?—ÕÞK˜³±Öÿ."!ã{!£=µ3ˆWŽŸ}BJÞ³aKsñ);E ™¶:¹7?ÈÔP‘M½?üŽŒ-9²8¥M‰Èÿ²ÛìŸR1+ÿlÂN¤Öc¤¹Ÿ (ljU{4ötÅJ­`d\m‹Ñ ‚¼B¢®kQC!ùéH•‘UÆ5dð~‰‘+5rQ䮵H˜^–í-ߥ@f½61Â0ZÇve ¨Fƒ!íp¤þa"k¤Ñ&4š%ÑDT;]ÐÀ¨P¨²ƒ¶ÉÙ]«cmm3­Q¼+]×ÓØö@q€hß\ Ò ûÓísöuAŽq‚/ ðâN6NyOž%ˆ7϶¥›&¸™ôŠ‘U‘›Û®mvC\ë¯{¨ Sf×Ú(82¥Ñò|ßKþ·àhd;ÿt4ØžB¢Ã‘6Q×ïÕö´Ô³É6µV®Úçì ÈšÈ8Iþ¾cÚWõ£HCÙ: µ¯Lþ•Ï' (Ò¨¿­ú·ß°9ò*V§º‚Øv“ûS„´y¨ÁŽÀDvÓ¬M#„R[…õ÷€€T[7¬]…2GGQìѬ²ín]ƒÍEÞíگלíž×c ?­&+b´¿˜±™G3œ #lb3U ÛD)í ‘Àÿ{Âw€ÔHéܯª¤ªÏ™óïlwÓ÷‡C!“:2$ε aIà‘øb¤f sMM0ÛVIîaën¿\éœd¥m¯™´ŸµÔ‘(<šì×nŽØËƒ‹Ä«ñö=ìk€G !¹ìó:Ñk›€zĈ>÷Xhhj¢üÓE²;­ ¯m[?ŒlŠÁhþOrµ3ù#Í-9šX¤ éÔ³Ù+(/©6B‚ø/”.6ƵAéû-ŽÚòýî§#‹ÃkÎöÛ Â¶Ú¬öÃy$Œ±’vßÔDŽ”ºÆî_ŽTAçkØ)òQ&mFj‘W,{4 #d9ÃÈ9ÒLC¢÷o¥öè™B‚Ò·V®€lä´_@nÆŠÙh7 @¼‰û_@ÉsnÏ7ÈI·t-ºZà59Z2õ -2Øêð½(CF¼?‚ÁHµþ:ˆ~‹wG««Õ^2«·_Ýk6ºíÙ8¾½ºõ(µ—4k#qPßN¿Ä6þÐÐ0â:2{DœÊ¨jEŒ¨ú& çiƒA¶´ë«äì²|È (}¦€ÆgW:‹¿d#·ãl£_#£Ú >‰}¼Íðþ]²v3@&k¼þ‰QÈý©üO@¶^ëwGKŸ£ßï6,éõ‘#{5jdä~zû#µ¤ÿxwkØ &™kk~ÀJ]öJŒÜK6ª÷¨_ ï 掠5›AZ߇8$u#& S…Ô¦h~å`¤ö2éÈãFl,°ÛCŠÔfªz:6G„B©Z÷ €ð]Ë=J‰×¦àš]ÖJ@uŠ4U 4½§´–»˜2{Ìý”ñÚ¯ÇW|£°†ö s½‰¡z„Újê*#ŒáFÜÿÎmä£ ÈyÚTEÈ?a¥€V|t”dQS‘3ញ?Mb§ï¡Òؖщ=$gü’ôj·…Ñ0µ²„ªH±GG}{YÃÍÁ°Éë£^È4G éh6RlËôÈø®ë5㣣†ÝQˆB˜lK®H Fa,’4‚{ߢ;ŠRäêŒ>ê–øŒ¬TÒ Éë¯ašnᣙïûQÖj˜B`2r9nÑB‚ ‚‘ó´5¥0I!AgWbt# m™_C Y芀´3úv¢ï~]=VGKZ£¨½g*2&þý ˆ´’ ˜7ó¬Á‰<šéÕV–$ó¶èãÜ´"ÍmEc¦†ŽmbŽÂv£™¤¶&5à×¼þèhw c‘$ö¸þ¥К,¤ÑvåÈæP‚çš5)lÒõ{ø±H:Z`©C¾úOÞ”ÒGšÚK½?ÙªY­ÁIÐHíŠäæÝ9É!Áù'KúG#5"¹Ý+=ª‘è!mi³6n­0‰`¦,9…ÌŸzÉÃ.K»ŽÏü‘·Ÿj‘ô"ÍÂ'¥‘»6}52ãɦ»£m6 ¦m ­Gå§“.b$´{j——,ê*#(¾ @NmÃñ€×(ý‡Œ-„Ä×")m8ZÕH[mžÚ鳑J¤"y!™î!e›Zé¶{“-”Õˆ£»Î? âvú kÎJ;ÿ\‘N’2Àd^Dõ›i„0B°E»Ý o«“•TÕk÷É¿ÉU_@i‰Š›<ÑîÓ‘£Ý²¤æ$–J²ëŒA#k·{ÒÓ }³2օ‘YÔZ…+Ç}›ÜÚ¡I†'E±µƒ‘ZµLÎÆ·G0ÖÚÝø˜ªÉÅÙWÓG†ŒµÈöÒmÖw+šh"ŒØÆM­t%O‰’¤} ¬MF6¡úÍ•Ìk“Ú>ŽÌŠ‘&ßž£°`ãØÝ<»j¤aO}^ë'€ÂV4K£Yú^’7Û{¨³“¥Wþ7‹#QfZ€’%$ˆIÆ!wg ¾¶]šì‘?F@ZFöh¶IŽdd"Öê¶#ǰ=>‹æ¾†Šô€Ú”Ú#ÉÌÜ™9ÉÓSFóØ/ó‘¸À>šQ<¤ÐwÉ$ÍÀ68Ò®Å)ò­«ƒø8w›nòômíø( ’¹¶=i©Ë”#5Ø>B^›ér¸rj——²ö!dæÚα=tOßt)±©«Ù9G,Kr4t¾íõ+}É£û—(ÛS6þ±Š°\×ûÚdXËÛÕuœ»ÿ¯…ÖüGió‹Zm´5W‡±MÏ÷"‘œ³ÍôAy­ª6;ÿ¼C²šŽóa¿6™»ëÛ!ÏÞß™<Ñ® î&Ôý_×6xÛ¿©VrA#;Ú°ÍPû¡ó*iS©D*ölW¦Hª!S-#6ǃ‘.“þ+"¬•xm F·¯µa[ ­»ïp¶é |™J»Jà“5»Û2ÝâË‘¼:èÊÚ`ŽIí+x$[TI3J˜ú?.—ÿƒÑf`r2Fе&¤ýh$0âòpS!³ä4GKv5¨¼Ýj‡Ï´úä%síW˜²¡iƒªsÚ^# a»LþÏû#Óð8<ÚdÚ7îÿÌf#W¸yüЇ:9B@·½ @él$ÖGÌÞ29Gò|§kHÛ¾‚ ¤"‘¼Ýù~œ £“TÿëÑÆý`”¬ V@ws¯]AlÕöT$ç;QÛ´!lm_¬­C †#Ï÷ž)[ÛÐ^ÒÔY{aävÇ#ËJ°ø‰VúH’µ9ßéôö,Gf$^GžÙã‘Թö%ÉÎ*ɘ #“Þ Jƒ'Ií&ȈQÁµÿ+tùªzmêmKñÿ-[k»Š-giñþíàO帞=jöCjKØÏ •­ÍÎ}RjÅjŸv6Q»õÿú.ße|!FnO«†ÆÜî§u§È¿ þ'’?šàvç£zÀh‹G;ó[ `{UÙøë_YÛ3>I©g¯æhb„±ßýŸÕ<Òn=7øD×ê+݃ØÕ´G!AξÊD¤¹£Uóe ÁÀ݉~=’ g5 vèÎàÞ~6K#SÔ4’\òf¤¡?qýÕ4‘0‰Àé‘Uÿ@ÆUþ9ýh¤•ÿIþ¬ÑÆ…gM6þé¯ígýzâFœõüáð¡é_>ÛûUÖTÖTUFz×¾÷ü~ybK1Îg#O‚î¾¶^ˆ4¨ÝÌZ4´ÃR¤}ÿÞÖ¶êÏF¹b-eY e¤A¤Ö2"1ÙuZÃÍÉ­!¡g rœiT”hµ'JÉD;-÷ðrz̵aŸÑzçŒ{ZámÑ}_«Zôlã『LÙj£]Õç5=‘¨Ú|=Ruö{ø7ˆÜÿñþ¥ó3 É8šŸ,‚Ñ*ÿÖp4}¦k°ö–l³Tœ6 <ëȉQõª M¹µØomKÇ~·¦#û¨FEÕ6C²öf¶YªEbU²ƒHVl¡m' äv^Úð‚šÇÙL„|n®ÖNlPÙJ‡¬ØDV€Ñ‘3¶k,ƱŒ„%„äÈíô׿g¦ÿÕ éË‘6–ÚÖêÔÿv6’@ïoÓ‘O£}1R7Ë£4A‚˜}÷kñ†?ê}­nJíU1á6c¨ú§ùï k£GšßÕc;µ6î¿?NÙàþ©üR‘t³ÍÆ#¶{màÙ“‘zèý£„pä.H“HÕÞx‚ŒŽ@ög­-òßÝŽ*'„ûRû‚a!I7òÙiµ»ß¡œ´j¶ç:¶™*äC¯ #÷0ÒNÉ¿¤A2¼ÒzîNmk„Œ¦ìj¯lW!¹!òÿbõܲ)€LÇ6©ÄŸ+E´y±ÕE­u]†:’ M¬×æ­öj6JŸ8µ#Yzmû¡I½dðQË:äÂF‹s?- hm2AͶõE¬ (}•{±oÏ6†HxA„íxGj«Gzk[»Ð¦¼Þ _žíHšHHéIí¨¶Ã3íçQ=GRSNŸ]uû‘Ö5Ñ|µ!·ÌHmqì“»š 7Ò6b@Ú´?ú¹ùç<\‡¥—é1ô ÉFÈlŠÄÌëÅ!Ûþjä†#c)¼d¤ú6Ï#}ËqFͦ2û£½?ÃGZÔ Req6´öŠ‘ãH3…ÄnjEVT=ÑH¶Š4sLd’™³U)m±Iîÿ¬¼6­Š­„ý×ÛŠ æ±®íLºÿhýçJ“Øio›6Ò¾Y^*¸\×i×4Í?çiž²¦Ífg[x‚9Rëh»åH0pG&maZÿ<XÛt£µ€š?ôÚ¶ì0€kþÝ0•¶õL÷y^*$Li€!ÛË<÷ûQÁ’×cc+ÜöSgQ}÷'Õö•,Øöû£dO¿mÙ“ÉÓojÅe­c½š&mý”5¯í ¬ÍP: “ˆ±f»…WÚ­#qÿ²¢¨)€‚³ ?*îЋlGƒky¥[ˆµ‹àÐ*2{¿˜Ùš% R´$“VO€Ìõ‹Öfåˆ#„7^œFaï²?Ú§éH­ùßjG(l—/GâdZþ••ì´Cj£PXh©ÍuÆGŠ’q¶¯wÍI]Ÿï4D@ŽÚ×»E@>GZb_#bä‹€Ü<G¼LBÂctFIË6£‰i¹c7*r-;1JV£©°}’F[Ol½ÿ0@Í¿î¿H¸¡v²cÇ®´h|€”Ô¦•iôðL»ú-¿6cl¯’."Ñð¿©±õ½¿B¤|Y+¶¤í"ˆ&¹JU³M1aN2mþ¤·±P:Påß’Hò]¤Rj¿J¢¶ëKØtH@†Ì–µjÕfší\mùßÒQ›*Ð>á-‰úÝÈ‘´hVmèfÂM.Sánº­¯ î`ía¶»sIˆ‰U'd ˆ2² @E¯ ¾(ݶ»g¯‡£éÇ&F¦¯µ.:ñˆ‡¤ˆÑöìl¸ºóHÔýǵI?y¹»e$êØ¹=Ÿ0ß·höìÀ¹7+#ŠÑÀi-ÝCŒ»+#ý¯ÛZ·%µÝ¼AF@ÜŽ”BÖ†¡m?s†d–s×…¦Ä„ôð‘ûe1¢ÊF@ò‘Û0‚¿±Öì\{h#QN/,4¶lRÖ tÃÞ¼vú»ë¢Ü‚Ú¦ åÅÿ"F5Qs÷ŸK-²6û‘U˜iï/ó$ºÒhD¶ ЙY6†É31š¼&÷ÿVª3¿¶b¤íHµ6s_úÈT{wd á—µFÙL#[õ¯~Äá2Ûdo‰"#áhB$ût$…ÿ¸qOîµÖè:ÂíJ¹Ÿ  )Ò‹Ž0Ž@¨S z¦¶¡IFFm[³6~6}¤*$36FÉ€dydžŠ$M®-Û‡ögh»3GÛZ!ô§¤²Åû xmg2ûÛ ¹ÍÃ(QþË$ö[¡ÿq¼C[¤¼F¢Œœ‰Ö¶NÛ®o‡©ŒT#µghlEl S{f4ŠÙ?nk…-Ély@à‘ÕFvi϶ºI—ÎÇz=R‰Q¢µ5ˆøêÈ\d…Öj¶3F ù¿ßêˆ ‰Ñ²ùñH¨,6G?­‹ä´¶ßÖê¥ÄMlñþ$ÚÈ+Íl3tëÑаH ý ÖÓí1Òë±hƒÔu­‘wÿ 1jž#«|ݨHÙ¢®½Ì Y}ÁEªë¨gØi¸WÏIÓŸ@‚ÑŸr¤Íµ]f†¬¾(Ùâ*ÖHCí!löåHh>òäf—#Ú£I«Õu™ÅĆæíâ#tÑÉ­É{6^‡Œ<Ë‘i¶²)o»®•wOy;´Bb¶ŒZ| ¹!2¸m¤’y«ÉrÒøp2SdÖ\¾MôÛ¬$3F¦~;àà“1”Xòö´å§Ó}íkׂ×%pJmkd²ÙaK=]u§Û󈋷×1Jb!ARʺ» ¼é//Kù)TÜ?‹#>F³¶¤Ù»ƒXÃDH—j¦"'„(§éÌÉ<îm¥¡ä³ï7z€™œ©™RÉîn[®À½M ×–ÅR¼˜WªK`ÕµW>ð‘ïšr¦ZL:r3ìø:I9ï®üÄïnÔ*¹»Œ›bíæÀî£%^û–e9Û„Ôsi1òïN—¦àîÄQ¡3§ISð¼[ «}cÆì_´iê)+Ò©:“rÇÇ€N}Ã/êÌ¥Ÿì«’ÑU½ÿB¤™xé§öV©Þ<~]#Áà£pç~ •<{º²¯¦“*þîÄ/h!é Ž*¯f9&85¯U`¥ðëüúOOÉŠ5«ò4‹•È{1¤‡Ôº_Ðg+D?µÕöª\ 1öÞa‘Ó¥»Jø)Æ™—@:ôtõeùiæb¢gº®Ó¹Q†ÐМ-K}›¡€J^n/-ÔLýr>d©º-ÙWâ ûy×§Qþ~@™üw]gã¨éžU- â5·ÐþJ”K³ÍŒ·¦6ØÜ‚@©NªooÏd/;e_™d4Mí{eùfp¹Øóíqm1ªÖÓ {{Žô!ý¤r¹æè­ðmxÒ)ÌR‚>àÎTÿb‘’ÞÝI?:ËÊm¶PluÝÈËO&ß.«éß#.3íT6{eè4Æ)ÇI¶ Ý+0cäÂ…#K\z±§S_e|õ•û‡È’,ëÒ×¼ÃW ŽH§×+‚×]'¬%Ó ñ¢ŠÂåòzvÒÑœ¡pÎäF\ºÙ:ÅH‚áÔ5ö×<¥g—ÉËj˜p똙Q`P=™¼‡Ñ3F‚H‡I3´ª²f7¥ºâš‘ç|$&¯;wü:•<0C«×FŠïi«÷¶èý=]’6 )ú¤d°2¤VbJÚB!™†X(ïºâ€6Z«<$t'¬Ž¸¤vÒ½NíÙN‰àùU¯t5ËÂ)IAÆ…Ç÷žãDUgÆ=|8%¡Ë >Åáô:F/O—ìV£36í§ÇÇ®{U‡p/íÔ³uË.µ¢,B¼ù L"ê÷‹zèHáîZLˆÀ󟄽!™°“t"¤3¯ú€N‹ ŽÐôm]ךCÒ,àä’ãÔ»ÐäiÞEv ÌŽÍkuë³.X~Ú:ݪüX—ÕÐ)&³ð•¢Ç=§xUHYê8-~:ËOHgñWZ±ƒ_$!ÞaÂNúŽt€RêY"‡ £5¡“£ÇSyè‚é|ÿI ˆ)ZÅn~U—•nORGÄ.r¦/m_k¿²„íÚ³9%ö•æV ‡Áë‘ ˜„YlpJnÅ;+p j¬Ü€ $·ršVBÁ.µ08XLºd­W×ô„L„I'Ãäp1Ük ±ôÅàùKžŠ%Í‘ss qJó‡ðW¤š·Œ$óÂÉŽ\Òà1ÿÿØ*ç\Œ+´ÊBÛ“âÛ;¹»ê Þ•<‘M·uà””9+±ïjÏ8!êLºå «ãI*øÞL5(ÍL„ñuÄɼJéé4pJ\ ÆÔK\»Wí…¤Ãr{¸uÙ;š¢Èã"Xuê&?=É]Qμ[s¾=Ipñæüº,àüjUb½”¬ÕÀAHƯåíF”Ç¡ŸäiB/ÁTäåÔ´îöhê¤B òvýàÖ‰žn4‡¦4GHÛ„Ôhð¨žYb¾Eƒ‡%êÌ’×:5G~f[”-謔·™-ÖÀç;¸[(Æù§àd¦Ô|P=²G ð(R¼»Ÿ8äデNàù:õêSú@:½~R×¾AûÆÚë§ÂZ'Ùz|Ò)ËbÀÞÁY)åMHZ›"¤Ô=Œ!P)â¬X‹@¼’VE}vrfqu ¥ôÔž¥C|0UJ²Ï‡1À¤x›–“€R†A«{k^‚˜dVC0cÈh¦cßÃâñ²ëé(¿|Ì÷ÌrYuiS¥–NŒl`§Î§»_CЧzœÞS×ÏÛ[Š_ÞJÙ@±å•ÜðÈÀ‡L­ÓÂXV*êÝêHæ!Vëg¢0Ú3œ|XVâ{•Ðt û¡»˜mpnOgš )Áäò+o6ôžX©!CNHã”=+J€+”¬Ñ´ÖüÐùGÏ™ŠSàqÕ¾aÏBI©Ék9Ï<=d…Áy©'u&,¸zd§óZ¥²p /2hÜâ6`úÓ.°ïVVGñrÓi‹PÚ¹Râ­RçmÏ ^:Oéïn'gÆÉLÊÝ ÛžÕ:!w§œîÈ-‚‰^³¤=%xÚàfêUsÎ$F´RÚ œ.‹®¶®3îY/â;ñz6·ÂŠô'TVá£Î¼ˆÓfô80bI¢èƒØÅº½y([H¬ØÏÕ“šå§-É«P^Vò0³R`@r;#‡ND㋱™•Z~Á–<=¬qË>ŠsL`;fhÊ&þ8}Væó¾ÿNº´Ãˆî’éY©B+àt2¾‹žýZÒðdŠ@Í@‚˜tÅêf}àdüqP™n²liT:áørºžö×¶sËû«±œá7ÇR÷þôt»eïzh7œtÓ<Éø-1“ z²ò[“l²`/cMQ+=iÌj‹d“1˜<µY{ÙBÿ”¼»ÿޞݞ!g yú.šª„¦1¤ž’õ>xXû]—ªY!1µÄ:°I4Ô®?ÆeeB¡æ# ƒ¶øÁÅQ{²EOXóÓ…-H®3‹‘Y%ÜHrr !…¨“&vD.-Óä e'“ï?Ylµä0Ò Ò'ÙG¨1‚‰ø>ŽÏ‹¸ì!CNÛYžïNߣ¤t¶ ²0ÿœCšL¾‚ =i?dbXÚÄ%Gg€¨ò=l·Z1Ä 4U·ðÉÛeV¢½”3¡¢ºî·Lη@Ò¶BÍbÃ+í„Ø¿oé5_ÉØi``‹°á˜Í~åH&Ô­»_Ú$Ú Bj–9ÁL0òÈûõ^4áƒÓ™÷^E ÑkÜ–jqÍ£ÀÉ ÞÎ8iÿ&$üZãIHI¢êòÍ& òtÀ)m²%¼{@í é2 @Jv¸QÕ}S?„6¯X‡å¸¼Q°jj>ùž±üdÒȧ۽Ia!NµH` «9ÇÉ`ƒœ¾iRÜdÐnHáÅ4Ê̴红š‡Ñ_t:]!HHŒ¸­ÊÍ)[íÇÕõSoz¤ôm<É®¬oœ?õ)vÃ?ÍIF1²T½Øa¿^Öºvãg·§$ŸZs™ªÓ=Âc%o–¨Z Á>‘Jß—ª ±›7{‰&}rÔÞs°„ºÍ§]z¦"*ÁþU¢!V2ÝÚà©Üؼkõ­‰#f©›NÉ»\š\5ÓøýÌ—}á´,:˪ǷÖŒ<$·Ù”N:…'æÕÑ~€Tøû É„žt™ø;òD͸Z ‡¯ãÇ«8Hõà´Gæl¢k» ̦YB‚c÷M“×§>ÍjôÊ•ÌK¨9ȵ†-꥾ߖPÞäÝÙ±§.[½¼ú¯Üê&Äè™dØ ¼¾«5èaxciƒT9Å¥ÚÙNu|Ê$¹ ü–´·×Rh%'C +›²&eBJ[ÉÅÃøþ…8X²¾L.Ï.že&J¯0©+Iô²Ø¼„T¹úds‰UX©<™³„½*Þ*´çÞ:môª%y{ œe÷*‡¤ãta±2’uÞÞ¦[ì-h2¹úç0o@ l°:ì”Ó%{ ÉÓÔ>¯ ca©Ö´—œÖó^AÓˆI[ëÃN|ˆ_×íª¾¢k¦š9}Ü#ë/£oY–”UÁÉP5ôg!¯Eí1/Ò'“a¡“ÁÆí–5$·õU„žé 6Ó‰5è:õi ­¾Ô”' *XÀP5™ÓWÊ™¼Geƒ³ZÜ~"ŒpxÏqZ @]ùœäx,aƒæ¼rõìà§ÆñQ‘¿ŒŠE…-“<˜] …=˰/e]^Ú—½²Êo£¥›Aç m´#$ofg'CÝG¸=WÑE^š›Ô§ ÍxdÙdPRLz[ªÜ‡yÔ É|ýÚ¶F.o‡Ê°V„çÊøIàdÔ@HÒGÙé tˆS`rÈ04TËvH éÃDÝÜ3XpîÇ-#p¯òu“]â4žª‡çQ%#.›ÓäE°Ûô؉ӱŸ±n.‰è™ü–Õœ ¼¡ÚVrI{j7>!¹Šúd°è[¶¿iГ«DªðŒ¾yuÁJo“ž¹®ë™¡ê ùåùlé3ª>“8áòÜ.85/I~Åû+ã(7¤næ‚@Ÿºþ‘¥$þtå¥-µ›¹ õ¡@µžŒâùÌËë¡××'ÍÂYEÖsÅÃÝõ¯wmÌAËP¸]ñ¡ºqÊ달I’'Æ3ñÆzX¿¬aÕ”=>¾n-ú’†ÒOvÂßeE¹ôAL‰¬í–Z¥7ìÔ®/‚ÛxذfOúuÜeŽö•ùU¶.¨£XÕV=6K/÷V¸lŒ®yŠû‡35]:%£úüJBJ÷ Át|ñ:õådµÂC\É=æÍÓ»ã©Ïg|ˆÂªÚ¶˜eTiæ:o{wš`¤døñëzªâI„åîâ€'1+¯™f{Ív´Gœ¬IHçÆ!] 9E®®æ2.Ì¿¤©¿ÉäöMu¡†‚Úòȳ­ã-ÁÛ¯Ì SMMMŒà fú­¼$a!Oúpë(È'"~ÏËD'ç“Ó/@h–63ͶìÔÑrfÁdΊæ",±þ¼ŸC\Ò^‘ØQ·XHm'Lv2ÔÅéÜÅOG˜Ô}©¹²¬4Õï2xÇ‘æ2ŽlK´>¤;Ö¬æiýž=›bFÙ-×õ0ë(4O‰\Â<Ú éLÛWèÕ™zu¼»[„çñN7ªßÖ÷ÁÞ³~/PR’lgâ­@Pê´¡‰û»Ï¯“È̯¯U÷!¬{à]V±.çfOý‹  TÖÇÇØZu­÷yNWÀI“‘SðN7D§—WýûÅtZµE ž‡WPå¥IƒÉP„aïNBýÓÅpÉù“­&NãKŃ:/ËO :YíFpºÜDëMÅB~"f’™ww™Â¾UP8§{U8!Ÿ5華õE…IJu&Êy5²¡}]ž_dÛ(–¨ ßÃ"¨A]Ú2ë vf¡2Öœ)ÝÉÔe`ýò™üÎJÐtõˆÒbg<÷ 'ÈÝõB?MÓ}¶*ÿ´{©´€â!Q °…T–©½CäBG³µ·Zêîí0û¶m¼aôxW»I:ºsÅãÄlk&ê´ÉaPjÛÃéâ¾ðé†dÒ‡tþa6]çS0ƒâóîü#œ€D ®Y´¡Úfxœ\Ζª4n!Û')vâLE~ºã©‰ùXBJÆß´Sh£´x¿À邸ÍVý‹¡ª[ „1ÜW^K?maú ž“x¬‘3¡vDgnWv:º¤ßKÚ³¬˜Ï¯5ÿ'ùœ©‡sYX8¨’ ¥¥î5gûžäîHáY7JK™w·qÒWO‡˜srfOö AÞÆÏ§¦Y£?¾lpwÖÚÍtôÏ8“ÂÎjƒÛõ”_8!õÛºk@âV·¦þx1d¨VîúŠ95"cÅ}‹1–‚âM×Ow䦑 ‘·=­ n¼ÃRÒš¥”êcÏÂÅåÿ®àôh@†Zelig/data/macro.tab.gz0000755000176000001440000001263613245253056014515 0ustar ripleyusers‹}\K¤7r¼ëW4æ®™|dòhï†mÀ—…ás[ÓK#a4ÂBÿÞù¨ª/ƒÍ^a±`7†¯`df0¿úôï|ùöõÏO/Ÿþ|{ýªÿúñóoúß|yûEÿõÃëo¿üú?ú‡o__?¿}úîSÕ?ÿ×—Ÿ¾½}~ùÛ·×oo¿z©kΗ—q«úO/üòÒnRüŸ—ýÏ˺M¢UæwŸèV݈™„Ö¼¤®àvËËK¿ñÑn3k¹Y•ÊwŸú¼ld¹ÀÁ½Õó#ÏÄyÖ?˜ùºq#ñ=?Mœh ÷œêmÔ2ŒhõÈ4¡—ïÛ­< Ñå6š,ûH5i¶îuFëºÇT*úÈ5é6]:Ï\÷\êQ4¹&”dÛ5¹?1:rM&_[pgKi~ÃèÈ5q Ll¡ ÝŠï¹&εĖm×hõêë>rMPÒ†*I)ÒøÁ–^Û Sâ#×–’ïw¯}Œ5ç=›´Ùm\ûËë—×ϯùŸ:(Õi·E¸É­«~ɈæÂ¿HÿÊá‹ÎgÔË­Î0A˜€òt¸N½ÞÊÜ ¶¶|;.XÖN*|Ò­ŒËvy³^vóÍbD««@›y]Aƒ)3»n¶Áaú0o '9YªÖÖà‚ .ÛhÒý¦µŽ°Aoà$uÎutm LïV½k– ‹|­ÙíhÈž œx%»øqû$‘%éÁãÿ+Ó¿PYgQ£!KL²Û53Áµ©”æá¢!Kxý½[i­#KÄn×uÜLƒlSÉ0²ÄÔ¹gX>·¡ašuS †,1YîOjÔ ò¤£5²á†, =– TV=ÖDËt©#KLˆ/j(¬!¬*&HYb |]2Mˆ`K”vr}4d‰LÈŒn‰­ZÈ׆,1ÍíׂœÔzÚC–ˆkI:€¬%ƒnuLñsC–„Ê&–h²Gµ·¬0·54qD–„¼ök’e,Ë0c'—±¤³ŠóHAé?~úòãç_yÈl½ sñ£¬Ïå~oAž^]Sáq‘ôˆç¨ödžp]h³û7ÚŽMûèŽðaºà3ÃU½õ›zy†û‚S™'¯*^¤7‹ƒÏpÊû• ‡7Ë¢¦.gxƒ»}MÄáz%'“]ó±ÎpͺÓOk¯~…HìÜg9Ã=íNIðaÅ™æ?³."zÊ(òÖ)×uí?³Îä;M~ÀÖ Í¸{7Ϭ Oá—qòevÏãæ™u‘zÓÏœW­ú¹Ï3ë,÷NçŽy é³ˆˆóÌ:•w=¸§rnh[§¢ÁϬS™OWÆ » ׿MÓ&»2óÌ:Óˆ–u;'<Ê4ߺ3ëLökŽŒ“W‰#“ >³.pþ`ò*}<§í<ŸYaࣵk|•¨zøÌº)øÜƒç|f Ö „<]û¥:ü̺OŒæ(æ‹4zu©B ?³.ÂDºq+÷>£k”^nëþóíÛÿ¾}ýùõËçß1âyÙutQ¨Ø˜Ø=@V§Ñ£^c9`–|åßë,D©>Ë0‰ãuÀ.H+„ÅNÍ&çRÞcÙ÷—/lÍØ©$6’K=`=û¢ ›cʲ]Ti4,°dü|®—@ÖKsyz)í€mP~ VÏÈ¢¸ÛØ#2·öó•qÀz H¦SÃZ4IåÁ&Grà‡Ãwas ZZâJñä]¼Š ¾]X˜³^®^º{àKN5¶jxi\Zäú/^1fiXɺñ¨Õ°ëÀ+)P OP~óœ"[¹SXÝõN8/M¦ˆîC’a83£„Åq‚8Ø™¬ˆt<-‡ªË¸ûÞ · p­PþÓpûÎçéÆ÷…c(·ÓxŽS- U$ÇUÄUp’+ˆ³§ºb6ãÔ}æ|BÓæ—Ô ­i½+ƒÛàïÐèz`üŠ÷×ë^'´‡Øä·À §Šðš¡Ön‚¿C{ꜞŒ7/³®.>öè}ï­ËcW;)ÙȺ(7æ„ §©*9«jx— ò¢e@cο}{ýùÏKŽõL4 ­{õhþM[+º6 `ì §t¤!9Ûr˜èàìmÜäõóL<½1ÂøÞõCîP_°hÌš$ÅKjrú G$UÆPÁ«*kÉ“œ«ùâí0{Ò±¿Ò` 0Úâé›wy"w¦/Xû ñðnkØ^{ã«ûÒ ]é±»Zõ¹à“»ÒlXƒð¡;ÒÛr¬W®9 Xuz]OCI*Z×9 XÂx}ÂY·‡ÄzŸ$°„á­'⦳ˆŸ[–„è¦Ñ`’ªd«xð¤ , ÉM°|U‡9ÑxHX²¥Ë`M•£RLXyrªÚóû·Y»E‚\XtJ¡ØïÖC±6`IHí³'¤`¨’؆¿ÏKÞ=n…ãìQ´K"NûS‘™Ñ… ,(¸êf$êÝЬ'F–4Œî0¥2 M$–„À–k’R«µƒLnÒ¤K5°dAæ¨[²ª˜µ5Ù"…ëüÓ{@¼ŒÆfš—ÑZÖ8Þ€þ ¯Õ‡Ì ùT^®ÇÙÉ”-Læ´µkì³Å1¬ ¸ “¨QiD×…ó|#ßM¹ ¨ ßšD7-…õœ€rðZ[Ü££ðž¶½üÔi·OŠ›tæs6x‰KM•-*l ®Òá>'`ß23Î@ &kŽøH`lÀ VZcó*M£‰§Ô6æ˜è–üÔù<Žîå|ãZÝ6æÄ3`ªä%¨,^EbªsBxSSµ7ÒÖcW7æ°{d©sc!pæÏGÔ7æHÙ¾ ˜ ¨OÅKwês¤Bå|MÔ [¢·–úÆ!8Ç8 ¨©…f»þ5Bߘ³}³5(×7æHßFÌ»j•RŸ¡¦}cN´ä¥üåñw8É5ɲ®8nÌ !>%äVN³ÄÍs¢ /M5朗|5ö7ês¢/;=–äs´:Íìœä}cŽ,ðêš&eÖz¶Bå–ʬæM–¶Ž9[ov»Ñ«– Mi5)ñgŒ9ûûÛç·/—ëP¹“½6×HÊ2ü+r#:áÖ½½¹ô0,È儃œ&ïKõ{_•i.ùÂX;â³êÐt}ݓщ|a ûNÅÖŸi"_X@ØÐ°ñz‘˜'ò…ñSÜm_ìË0Žbg"_ȵG-„t"_ÂpHç>7Lj‡|1ýMïm÷,Ùs¾LäKÈo¾ïçÏ¿nËÓD¾„úöÆg4¬#_"þà¹yŠ·ÝúxŒ|Ù a|Þ6…•MŒ|†ðR!ßZI<Ö#_doä…ñôüî1òeû$Æ ;­« =Ü4½F²Lxùº›x=Š.ˆùÓ¸Ûhλýú÷×§ÑÐLÎkŸ=SàÞ4¬º|‰Nç ÇîlŽ)©ã8«"aPD—ó…Û÷5ç˜uƾ,ÄíÍÍ%ãúMÓ´(b¢»ù‰Û›ß­¯wòæ;ŠÎæ Wñ… qÝ«âÃ×èj¾pãƒîËœñ¹EGó…k`TȜŜâ»ND7ó…ëÛxùþ‰æâµGªÌn€†_1­áíÎkA¾ð„Î7ô^—*O³®\Ã!_âùnžç¹t›4gòsä ã+Z¶>Þ*±ŸÈ^`ÙcªçÎC"Ÿ\È—h€;_u~r‘HµòE>ŒÓ†Í'â1›ò%.Ϻ¤ç7j‹¸²/ñUJòγÖ¼^È—ÐÝtÞø©ñ(pÈÓÝñá<íUòž-/ä‹Ìgq<–„A ùîCjGÿÛÞó$ò…|Ù<åßY·IîæâB¾˜î–ü8½ªðjã“©éà°Ïš‘/«lÖý<„óÔÄ´r7œñå¯o_~yýúWÂ˽jñE{Å«E/Þ4mîðf`ì iÚ·:40ß W‰Ìµ¹Ç›{'Óó((>!›ñÕÜåÍÀ¹kƒœP–ƒú÷Íîó& —-èýÕÐ?v§7÷ï á5RtQ·4÷z3pïCžÛˆš-Ç×é²ÛV@m¦iÍŠÏ´šû½¸ÿ–$”ZðÌø4®¹ã›ø=á„›¡¥r׈æk¬sB‚“[Ÿ¯¾¦E/«¯±nÌ ßw^#BNéÏù±9ucN$¿ô–MûJg¸;ÓêÆœÈ~S¯u¾ÅzÜšÄ7æl¿Ö11íª7#\ü\ÀÆœÈSÛLuÚ+ÄT7æ Q±¿“ÉÞ?ƒuc>¸UÌÔÙ>*=Ö¸1GðgB¢=FQX6æÄ'áésʆS:'ßÚ˜#ø«ø[˜hcŽ0´‘lÇ¡sQ¦úæÐÆ•ãl㛹3=œÄFsBs[¢ý–Ñ£õDϱ·jÀ9 'ûª¤ôvÿí ±‘%ÐÍáýíõá?TÿaM¬¡Øî¿ýdGwƒæ~ðc§ŠJ®Ö¹±ñæ:L&挧,ŠVƨq ` >)ÂäÙ`¿ÝÓÜ ~ÂØŸ&>Íì\¿î_°º¥Bйlz_4w/Á— x¶´Îòµ¹|ÁÚfVgR“ ³Çh`þQ7}8Úhñ©Ksÿ÷‚í¶¼¯Z/ǯ˜4`Iô:*{¾%‹·4ÒŠ¥*ˆ1U/Ù-'”'1¥-ïê(ª©îEûza©š1ƽ½dKÞä?{2=ÝžÉÝ ;%Ïü_XãÈVÒ„‘¥òJ8ŸxEœíN­·CZelig/data/immi2.tab.gz0000755000176000001440000006161413245253056014431 0ustar ripleyusers‹…½Û,9’$ö>_Qè÷Mïäç˜ÁbAZ,ú{™‘nž'ƒäé®îª®LƒtúÝÍÿõßÿë¿ÿ׿þù×ÿûüÏÿ cDüßÿõ¿ÿŸÿï¿ÿÿç¿ÿó¿þïÿÿüŸÿõýçýïýǿ¿þIÿ<ŸrŒ5×'—Úsÿ§ýSþ ÿñ/ü6ãiuÔ”ðøÉ¹W<›OÓzk}Œ‘žQÒào+ŸæýæÓñ´·ÔR*–ù´¬÷æÔFnu<˜v<ýŸøOú¤Çó”œbˆ}pp]/Ê5·çyBJc„˜±Lñÿjö -õ<øŸ'c±ø³¹Èþ/ü“sªk-׆ù"ŸŽáŸxŠ«cäÚ1OÿÂæ<ëÅ­—ñⰀʟ¦ùØ6/áÕXñS[ê\WäºB´Ç½Uüú‰O )Öør>¶íK#‚ Âümü?5ŽŠ=-Õ'âCði½µZžXŸçW…ls㳸²§à!àÕù“cÂZžÒ°ª8"nBø„ÔZÆè2z*o_ ©¶¯M°s ¶¿¹†õ£̇ë×}má{ÖcªéiXEh}6×ÓÓ<ªCiž$ÉíY‡UBÏ8¨Ú@”¹—¹c|Öã7Á¥µßÑö;Ö74cçKàc,¾÷§Åúîø'³íS¾‘M´ Žø³Þ#Î"Œ"~2i.–µ”\b;_KÏÍi?VO¹ñï8ÂH²YÛÚ³ÒCNܳ‘{(<½òÉy¤ :É)‡ßJÄŸÏÑѶèµn°O #ž¤R¸¡ÉŽ#ç§ PL©÷6&•q2Ñûû²Øcc'%`A8 PRÏ$¾UG|:Žª†ù.;7ÉVŒÎ9äÑ h'”þÌÑm}Ç{tÁx>îgš×g‚rð­`ŸeÒMgfe“åÇøîzÀU‹¸:)‰ßdã7L×€ÎÛ3·0ýל[ÖÔ`Õ~}a×Õ~Å(¿#Úc1l\ Ð'.׃IšØyÖ–>§&æÓkñ•ÛæØ"XÌÀ¥ð£—¨°= ¤ØÁÿ¥Ê ³ÃÏã|º£÷Òk­™7~nq1¦½3‘6ƒ¸Gä«p˜a1¹'‹)é|ÆÒK6–þÆhK9 ìÃdÕñª záb9úN¥ó±±å¼«x(7±kKK?_cPeœ‰Ú×ç|ÓãÚ†j„8ïÊ”>a6µ¿ 7àÇ•*ÞYuÕŸÊ] œÂjî1ßÏWDK+’﫾–VÏ×Q+o’¿ì‘¤TrÃq@:‚/Å6ßÕMFlêÁ”õº‰“ÒšK³Ê·A¡ICõëæÚC¼R4¥ÛÜâù|ë,¿‚®®9þ÷Ï\i3ÂLij£€‹b[x{?)SÅJ 2"öy@Íî:¶?Q–§Á/˜aÒi+gÊ3*oU¬GÄÇÄ•× âcÛâÁ áøÚü8iµ¾ôÂ7qhrÓÈÞRÃT€þÜ.à<Þ.u·®RU›‰Á‰£ÇYgœ>EnÇÄ9Ì•ödç÷zWZÔN¹‡˜ šÕ˜ûk”Ö¥!4òDœHÆ$-O= » ªÆù@/ñ×mO1*ñü bp^A4áÀZË`ÝØ)”¨5ØÃ„ îeJ.ÜtÞ÷“ gdjñ)ÏÒÉú8«MSc€ªH‚ªøŽâ­¯-±«;ÂY ØÑxÞ1£ø‘\ÑÁÙaÝPnbjSˆ÷JÊ œ:å0—=ò™Hµ”b+#O.’@…±OyÅ_›Iñ¾]Í~m¼ßÍ)Ά˜+ØÁ¼?àasƒÛ“(â ¨0s´±‰7QfòœH{-eªÈ±7ÿË‹m€léäJ&(•ÃH‰ÌCƒÀ¦Eó `¹‰ü` ðõ:íúKñ²+ž»Lû€~¡/Ë–VFZÃ/¼ÃÎ 0–ú"ݨçM_W¦ˆLŒ>òëëç¡ÊÈÊ<Ô5Ü84$d*™ÔüR¥h‡G,úE‘2^Â#š 8a\³Še'“ ´‘øbHºyP¼—#vÐ(—ôðvMƒPL¤hhá{!Q&GK•a¡‰ó_ãÓQÛȲ/³1ÃÞA9dN°aC•œ ¡œ_'Ã.\UˆµÙ¡Ý®³ýÞv7vØŸ0 è4ô¥cÌçC&lèd0±Ú|?×mw±÷Ð!=Áu[Ïóž@zA,€ÁB¬q gÉO¡Â'Ò Êe^Ç%IvR²·§³€¥¹Ri]?ÿ ¸±ÎBß›%$;Œ¨ÍÆå†JA¥úñ}^íÞ‚ÍO+Ó çfÛ×µ3Ëárz ¯&“‚™iËé2ŸììÒÒ‰ˆ²$^ºI²¯O[ÚŸ‡óïµ{2ßJÀ§ãÈÕ6ÈÌe×§t3’¥%Ó8 ˜ –Fƒ5À²äµ^o+Ú<ì îqádG`Ýdeà2Tø ”*0xëÚ ÙsoÃGdš.ª²¶R&Ü›ç;Ym A\3ДqAN²Yû¥“ãâC•XJ%v©rÞŠ¯)ÏÎ^¥´Ôã ;n7`Ö^åt¶ÔÄò$d2{l!vá²üÒçrVjµùâaävåðàc¸ä&…fÕ.:Þl…Åc²xHs$‡¸˜_]ä¡xsH{Ü58 GpÚûS¶‚BI8x%ÕõmåBÔ’²ïv‡ß†åªt,J)å|´Íö¾\ö–JáÓbÁæCl?¥·5¼-÷¶uò2|+(ÿ:7¢ —¯3j~¼a ¿&Å<Ûê‹ó!Ôçï⢆óïý¹/¬šßvG4 j¹ø{p­&îÚH$ü ëL¯}×'Ýbs2ØûŸ8,di`ͲʈA¶`†åADá¯i­{(ëïmBK«fª¼UÌDÝ Òg eûkïÛsãþ‹òZ8Sf´o—9ø–.º•2wwæ¢Ü–ÏÞQn+·µùëy}f2Y}ï÷ëìZ?Þc}3=m×d ´Üà‡Tžj_²Tf ä“x1òxê×#}ñSŠ_ww¿÷b}« ?˜'ÐIRœáyVéÅü)‚,KM6¿tæ—ίl‰2Î7´ø™®Rð!Èú,JªÚNì¾t$2Ï^e¾Eêm;|"ïa¦Sìl¬áQ~êQ núí@'˜Ë|]º¹çl9fí½Ù»–sÖ.F½x’uOݼÛò&ìsûßÜ$QÁ½‹—%¶GùM¿B`’2Ô!qcZX«•}÷^ m Ü\zÔ 7xý×ð¨éïð©©Á”ÅŸBÆ X”ÚR}›¦Ž Y™”s‚Ö·5öË$PrK»ø•=}EnŒ_ÍH¤‰CCº5Šy0†6V0²áV$Èk°Ô–0—iøŽ'J³‘m¸;MÖjú-Xýa4 …Û…ËAͦCuÈà7iiÎÞ¯~P˾‰btý3§ª lè<¸‚m¥½éÖ_YE4Üœwk뻇S~Ü]äÆPGïLýiµ/öéAÄbðe$^œÌÔ–fJMÉp`x6;Ud´©­ïWODà Ë÷Ê`Q_:^·s¢ÔÈLÐÆà=nêÈм Þñœ3Åt£†ÜK{èþC‚oÓØÀ5°éþ¢2’õAW7¥*ºf³ßâθ"…)'`^¸SÅÒ¨òíF%’BåjÒƒ}°µ—3+¶DÂ8äšz™.¾7˜™b¸õP;é_0ýzÈ‹úº#Ëcœ÷VéSÜO›%®çbO¯ÓÏÓÏÌVùWÏÅqjNå$ËsOáYÙ_O9‹úÀ|ÆÆ¼²ËE¹b "^<èI†æûk¨ 3‹êé×ìÖäAÄ—F˜´9ãÌMÅJJ=¤¬ç "î¾7^¦y!%“¯“ݹ+èà8)O?‡mÛ~ñ¯èèC>½¯N 5/9ìÏ¥@vh¨|•sæcÀ˜cçk'Œ5X‰^5¸_8kx.ºãIÅÝ&ŸA÷wæï)\ÃÇy+Ì+™¢òå6¯£=—Ù¹y¬íùÅ¡¢åÆ YûóKZ"Åô ·A×Éó'£ç.Eâ¡ÛfñÌ“³¥¬|°¦¾\aɳH·“µç ß>‰)‹ä_`IÇû5[Œ&1–} ŒÔÌg­À‚)™ÆÃԣРDðF&©äÅä’‡>èùü’~cúzòP^Xc뽩dI–%tªZ™@óÐIæ&ɲ|ƒ´_éhzî.”wÎÈb+©Ÿ-oÿ½<­ç´¸”Ÿ³©gŠL’eY$“LÑþy\ ;Ê+èßcFŽgHÕ*f~œcnëps:S:s陚J6®oZ”šó™eYÎJaäœw¼­“÷ìÐýZ¯·ÛÎãs;S™ âJÉß÷˜â–¦±N>_ñ2½¨ ú–@‡¸Õ¦7†»žÄ9½')ªø¾xf8&…ß9S›q¥Izà=Útî–ýõè0¸Ï„f݈i{‹Ì”Eº_#{.¥ð¥å‰Ìö\&þ;ÅÕ>®Ÿ­Ró¿¤âþ“wbÂú}5ž\Àͨãã 0f^#K2•:È7® tZñpTãpx a˜¸Hm¦¬Î·U(£ãnS¯³PvéÛ]BEÚ.µ”ùloSÙKmá­a% . 4!Ì´È”&)¿öX( ¢D6Uûwk¤å½^ž´¸þo¶vœƒ b d|y£]æh9¸*6¦ÊŒ’\œ*ȘñtÖ!Å(&`BŒG ë5Z1´wPª|ÿjEéKkt¿q;{·b [®©•£\2›Ì5“cÞ{:ý\mö\T¼ vêsøgÉŠe™'5ƒ–24 ¼.Q‰™Ãƒ0ñŒi `2ù[Âò\’˜G†…óŽ Æ¶ÿÊž‹º•îä5]»µìu©yº/g\ù<å¾*š?\" þ<Êî|¼Áú€p*R"Q \Ã/›mÓ,Cñ½Ó;²–ï4;³²×<¦sþvKŽZÄþ=§Èä Ò€Ý>ÊÖ‘bB˜üs:%ŸbGèðŽShÒTa°ƒdS&ÖhPÒGÖñ·Ð—ÖCÒ™Ã4M’UÏ$ÃqÏ×·—§ó^Yh!Ëp¤)ÕñëÜp^ߘ,Kñío±âŸEº¯ùuVñâÚKš¿ŸM• õ»’÷ë\›Y߃ÐZÄW¯£Iª àŸ7pè6šò ß²òÿ¶j\ÃYÆ”r’QN7”è‡Ñèáf\Nrx¼ny!Ӏބ|`¹åɲ#½àtºÅ–j®ôÁšÚǦ¤ääÙ‘¿1m¬rM÷0üºdžkú’VQ×OŸž5»\¨0äÉö™[[ðcóLÓýŠð¨c„èÿm}½,‡³kǼrÙ3MϹœ|¡â¨åä¿°2ÍÂx0ëüy•2ÿË Å€s»¥.-*u³ð%¾´ÙyœÝCš_É¥/g¼?þVh…‚“Ld$¡J]ÎEÛ÷Êàðß§›Â ½ &pƒ.CƒZ½¦séö÷-º/—Ä] ÛRÏŠˆYYvß^|mŸÓo¤Í-`p…2Ü8û¼±øõ[³D€\/‰eyЧFK‰ñçpy?6–gÏãYÏ#í3•Ÿº†^ÝÖµ¯×G†à©ÚˆÙ)Ìô+kï”zú–fVfFâBz–¡Ú/×кزüöL^Ö‘@t<Œ’EìЮ(ûfÈ1-T^ö°rƒò×.|W±¬{*»ð½µ3øK¢â‹%…|Ì-œ–;  N—uyÖN7«ÃèL¬ÁN‚™•»´ÏLYâû ¨Éƒ3¡[f*Í:üË Í:8—ÒÖ<,œùIzÈ ãÜIüjh©álöz&­ý50‘[W¦ì×ÈìÐDózÄÜ.ab³² Å‹÷=+üx"SÎß Øc×óKÝ<-ß2˜òÜA(£{ÝÅý!NÇwñ˜n[†{væ§ác¨^C”¶UÑ“»iÐï²T ˜~I±nv­ºûÿß¶Y¦ÐÁi1Gô‚9ݰÍ~ç~J8«>qw‚Úóxö¬éëe ësF>ïž8¸Š÷”„öyûÅ¥}uµ×]üÿTt 1Ž ±5@5¦ðÛì½þßž_TøP…îŒo*¬d\K5°“9€ÿ@×D ‹"ËõX‰Œ·NÏž‹YwÌûýEvšjPd¾Ó–¨µ%~vŸR“sºKñÖtë·Áð„Z ‘“Öpw¡¾™?Ë¥¡m°@a0os ¯ge—°(Þxª+¦= £×|@kx?ßy³ªË#Cg ÆÎƒ,á9 òÆšÐFÅ!Ðqf*k ׄ¿õuá–±„Ã"»ñ„4Ÿ{l÷דV¸PDw?òÁtÚTŠû:i)¤¸çÏÛó Ò?gÞ´›•¶–GáÙkˆÂŸ\¨é¢—ßþ‹)Ë2ÜÜŽÑC†á›E˜\þ0 _I6ýÅ×aÊ0|_„é$í#PZ~ÓýJôt¿wYIøž§9¨lFÈj<$ ¯Åi«÷Jçù\5‰—šÅ’ Ø xÖï-¡ïÀÖsaú¼höøâ€Nô Ð~'<æÔj.‰ªEÓ¹,Ä4ÔžHyqÕãÞ‚å€-µY>§kg·§åË•äÎÿM!]Ï/&y™Q¤‡ê¹DÉëu2ß®9“EÅmÃMña"'9|ì§W²§£E†bœj*,lü•Ê„žù$âusYô¹†_ädÕÚ.áĉn"5()íkuÈ‘a$±‡Å¢bÏYet {toš…â‹=?üØñ»Eh4'„˜ù|œoYÅEi«{ÆîZn¹ä9ùóx’ÓbE ßæ[wLÑÃÁ¬£*ß´ÊŸ yœéÉT@ú¬2/‹y+‡õM•ºr¥]©r=ïçljú՞ءR€?&‚k¸—x¼CäK­¨R§7a°(GFä!Ûy=gdø!¥¦3ej÷ÿ°ßiœëù%`L:<Í‹CJÖÖ ðD”ÎÄÝEùós.Ue–ÍA…A‡Î6»Yì°‘-åPs)\7)u›•i;B1 *lŠu¶ 'îÑøµú„DfÍ.Sf Ô¬ÕÉP|«=:›vMd²ùËùl’ž_¢ZbbM¨làµA­ÒšgôuÑ–ç©n>QÛŽqVËÌ”+ý¹Zél´à@Öat•‰ƒ vfÅcSžöU4f“°±¬MÁ´ ?¯j/ ^ ŠÊw7ªH]˜°;¥gØåYü4¨'tÃ*­¦i(*HMƒaÉTÁ‚‡ÉŠ@kÀ™! ,ÇÞ¾j `jvÛm}®CÓl´KàDÄ»ÊxÑ2„‹LÁC Çz~qJ×ÈÕZ®¢‚—$Œâ £¿®Ç¹yd²‘Sö¶œYE飻ëÎfkg¥ÛZ€í±š'^yWÆÅ‹a´TŸ éN.Ž™cÌ”óa ¿®ŒËÕçªNú˜Á¢¼K€êLÒ  몣%ÌÔÇöú­½®ÕB¡•ݬ;3e«g“ne Rìñä¤ vŽ3{¨þxòRUúè[ÇnËØdlžr¦-%»ªlqÇÈëy8‡×-4Tƒ`Q¶†Í/'ÆïnaWGeBaâ%Š, %Âŵ||yBfáÕ…€G°”Pk¸dÛ-\B®w“±w1jø{ÖF½Õ)ŠâÅ'm%9UÖÝ[C´Qè0A¨W";ÍéœK°*º0Nhè^UÕ)ž¸ÄüýCÌŸ_À6=ÛÆþ\Ô"MÕ^òc«Â€;’ßD©eL•vO](05]HWl$IaØ*9ÖMsÈÐȤYH((OwÉš.ºo™81‚ƒe³b5)‘®Ò’¤E– Ý"Vù^ëÛ—ÛÖózv¨™Ÿ¦&y7_»cºoM—ð”ÿ~œ•Í™úÑ dZ£±-ݸæK¢ õ‡Èt)ÔîBUÙ¤»gx}×)nºãºŠ²évO‹I ’@!£*?ÖÙɦÛÑ–l:y–#Žs"eeáÔ,¿ä1D ¦ii#‹t”!ºû S;Ó¾(*š½Mõ/J!Ï…9•#k8`–ŽE)J}ë:¦šÖrÝúµ—Å›‹k}œ,: _|7ˆ(4fÅÏDÑ2ýÕ8L¹†Ëá¶Õ ®kàu‰[ùÖ¢;ጾŸ‹IÞDíy;+ÚIïï¢Û@T0†‚âhQŠr½qä´H¦g¤SzÌá·8¡¸†Ût{Þß\î-0(™!›î QeÓíÞˆõ¹´é¦ò;ýf,Éò7y¹Ê¦Û m}í~Ñæó~öÔСË+Ƽ¼Ï6KÊĆ¡°˜B}{jßÁÎi*nT7×pEDŽ€ÃµÉáÖ`ysÛøßY†ÙGŽãõùY„»,¸ÿñ|pð"€NËà)òbU%^Sê׈ÛOæfµzƈ0ßx L_–àƒ™Ôé©ÙØ‚2’{ÝÅ_5Â ïØæúîS–ªl8Zne [_Ò½å}&=Og¾Ä8En“c÷ñ™kÿÝ{Û@–µZûÙè0¹Ê¢Û¡SÖf©^ð]'¾¢ÄÎÝaº.Zw¾ð[‚é,Th¬ïƒ:I¾’Þ­?bøºh2ñöÜšõþÎv€?g¾ª‹øéÉ€¯ãï Ìu”3#íÊŠ;àc±¸D¢à°qv›®Òþ3¯¬sÝR%°æ Èƒë@]új†C¹‡Ì) W›XëÂ0Ê,K®Ì2…¤žGÛžG‰œ{¢DG8¢iSÞçsIë¹WÞÿx³uniW¹í¹gt­ç×2+{~UäÜñSoÚ@ZÏeu`%½“øyËÜ3Ôž~óÜ„õûK Ö¯Á_®Ð–eÐí Âö<ž³¸,I·©‘£V‘ÎTœ5s>šâsqßTx  5åunÊÍÚ<ϼÞ‰¥áY 7Ë:Ùða4Œ‰T, [:ò6ôϰOCQ¢d Ã?4q°‰Ü¾ANLՅ̲è8zÂòÛ?¼¦‹–fI ¯¸\XŽ Ðd!ÊëøE˜QŽŠWI‚ŽÆ£y¯(¶ñ÷/)]f·xIXæµÃZFä­¡'l];¾…¿1¨/É,–ÕÙÔJbÏŠë¹”‹µø]sLÑ×v¨AÄn2°º#¡DhÝ T¨¥K ›®­‡ó6~½®•ƒŠ¾>×_nn¨²ž_ô`NºXφTÓ¼õÃŽM9~qª‰IÊž»Ä ZðáÒÆ}aÃ<‘•fb±éœVí=º.f{HO ¾Ðf¿80Å5òEQWÈÎ5š /¿Ïë1.¦'{nÇdm¸œªAâ¥I6[?›ÊAoû;FD+Ê :ãÓ¶rIÃ2ó³yÅ_éDA†€C·Tûî6Ï>í5\>¶Íoc¯°ó8µ~_ÎØ)¾i$ÎùÜ£r¿òW\µ\Ô^ß®aµSGl”æH2/yh‘šVÃù4ü÷ Ð¨ç—’v3"š,6y㕆‰Çîelêq²øæó T³©V­¶#,wÒçÍ:àCe™=¾LͰÌ‘«$öÖW ¾yÑÞO}½$ŒÇØvpÉù8žÁâÈ óêµÁ8C"Òr§×ºy“uÆšh‡Doïñ²„ÖŠ* ßé"ö¼žÝ.ìTpwxbaÉ }‘¹$Í“/Ïùãm5‹ØÈÔ@7Z¼—ÄOìz¦Ûáâeîd1ÐnJíîç_{í©˜{lvý^âj‡®çWÖõµ·ŽÕèJ@¡wcëEL‡£d˵¨.ø;Ötã*˜I”¸ç3ubŽ–mvêV׫ —"æ±HhsÍ쑘,:×ðK/#ñ{™j—ìîæEyçRÿ6DȽR'ÁbL1àoÀí ÛiëS®åÖÆ~)X­Œ;àó.{ì"úsÑ´ÌÛÚ)Ê!½Â:íîÏÅ'f¦|^Ë+HTô¸œ¥7ñ Äužzÿz›'è€QÜ‘]g‡êê*´;)bóu‚D<ä´Ìçã&O&å÷àÖíÛà ½é„¯c½Û³†‡s –£.—òÙþîpìáBœ>¿»i˜‚À”iðŽ¯šßÃ%`iâ±»E†Sg] ¾+ÕÇqÀ»‚h{7®EêÒǶuÌÃñÆd/ ð3ÐÓ¨Öœ±ÇçlÄh;¼­ÃV ·hÕ¬½ÁÝ\®:õ²ÁÖó‹¦Jˆ(ádóÓÌ6\î\f¸=¬^ÆÉWoËÔed…Aü,,Ä<]¶»‘µ«¢Ÿ½Í9CЀ¾­åP?3FsÖ÷8κˆˆåSóçÒµ` CŠ wÀõø®˜Ú¡:c>¾Z°…(´B†ŠÕv²ËäÚEªMwÁÁ¢žÌžØmïß®ì2¶0,4s¸—Þê ;Öç–ðÉ11‘©üzQ¢§P¾(%.ä¤ú°`±¦°¢>Ý«í6½Ø†ÜvȰù{¥P¾}Ñfn÷D‹ØV¾&<­Í– vÑò»L°ÚˆíÇÄê c®ÎÁl/ZÿYÜ’Ùº!w!gûsq{‰ôЧ ñ~º!߸(j°%£kOéYûç©[¬`í¿âd»6jϵ‘N~&÷ÔÓ3‹†CÂíÅÙÛê-LÃ:Ò'ÌŽˆ c_çÚh£î‰}D K§ö™;kÙð‹k†”¾lÍBäõ±*;»Bl¼õàpŒKḆü\]ÚÎUÖÅòV¿ò];W=`™Áý098£84±Þ3­¶5›;ÎßþÑEH·–~âÊš|’ôÙk;0Ó"DeM^€^»ãªà| !r:ðÙ›½^Ñ­×n+/rwÜ/Ò‘v¬Ÿ¿—ÂÀGÚˆÿ„Ù/,~XÊT7Öë“•ѶûìuŠÿ¾¼’â+Mt½üÌÇWàÔµ*‰Û!v؆)3°VqúiØæ\(×¢Á]!´½]àz]¿tÆH3/?fBVR(¬<ƒ~+˜Ó×õsý…y«»÷vزì Ì J[`s€õ¶|Ö]|ñ’w›€JŸY˜F΂³Í¶ø*އûö0m¡ÒðpUFI’{Y¾=¿”èŠ#Þ 8묗ƒŠËæh‘íyæðáºEnlT;ôÅþµBÌ,ÍÌ7J0sâ~©0[rȸۛT°0&Õã7l¾ô¬é®høö:ïSÉhÖ„ƒdµ®t¨á “X~À÷a½8ô¶jWÀ‰ñùà8ØQ~I“ š®ŸÎ$ñðb¹s.ÎøËýV¨­¦Ç×6PÞuÑÃ{®Œý>­!ÿU%^Ä/‘`«oÑý:ïDæYÚþà_¸­j ¿ÛëuãŽÇ3í¦Œ²!è.…y3ü§xBØ<4–˜Ëq€ÍCóÌùûxã×kwP»à} %Lîp«¬!œ] &Ò¯ùÜÙsòç|D òoˆth܇ mËW‰ÀÞ sÎÖÏ´Ýôõ8|˪ˆÛû}­ÕæKî/ØD¢+…%qìâ‡?`Bi FÀÆ~}ÍJ— Ÿá¶Þ!â3Ÿ_ʶâ,&„™Þ\ÔÍá圯a¦ëÈn¬ìM™æïÛùEíÅÅE¤“ý&L¾ùÀ: GVÙ&íù¥úpBã¤Saó:ÂßÌ×ÏUýu ΞøîÁa¸‚cµ.ÉÓS"Ž*$ÐJ«›ýÔsp3ëJZ²#Et“b.X<¾™*™ûÐXúÿ]xÈÑZÏÅ´,²–åw©­åâ‡7ãb¨kß~”ë÷ž>yî~9Ô­ýå ’D¸Åâ|z¥¿ë ¡7Ä>…L¡_ŠÐÛ,õãÙ²—­-¾œ1k|vEê6³Øž_b F–ÊÚ†Š’ØŠüŽ^¶…†=Ÿ«^îÔèh>¿äO53²=lc·bV²ÎábЙQO¨ÐÌ_}ÂFéi•Åw¹Vç©—çæ/£çs ÜÄÓôÎä×`/d¤¦É$Ô†ŠÿX¤sÜpUÂL¶ÏP‰A™Å%kx;^¾¸ ~…Gg”4òLKÂq‚ ãˆ{kÁ¹Ë0Ü3A×ü#ž¯µO@* øÍÐt˜=¹dxs÷¡.ž Ã7”‰­^y¬¯°±,ïî~Äʬ¼)‘ŽòjÒ7ßNx£o)Ãoó±ÕRð‘%x‚AX3Ä35¨â£ðÝ»@Žz'i ·°Ëj+6^•0¬Åç@RAáy‚$YÑ„sZÁܵ ã`|<™Ò4Z¶.ë·Îqv“ëPÍ@ñ%Z•Æ_RâÙ Zd55jο”Þª»é#È”Ý=ÃäÞ•ñô·";³S¨å jbC³.]¦}ÎÔe*x¸¶Ñ>ÙËîvýÆÉT®caÓ>ŸÏ’//[}¨­\ùU g†*‘êì·Ff;Q÷`K( Ó)L­œ­W#ËpÁ¿WÚGÃ[OòGæãŽ,fkvt•½ÆÉ(³ø¥Ä«ýç£háŽòY_ûÎPÎ •Zå>Þ—B Ú>D3ÃV⮒­W\:{©Cí#K12 ‡d4[)=’áâæ)…j oE8¶†oVí |Ó/Ä~âfF&ùg Oå ‚üålmg_ä×±_åˆbùv~3¥âs°ßDI}U°OÅI¤Z­¨Ÿé«Ì<øÆ¾®T@;“ »K°b3¢î—¬œÝ· $Î-}C_qñéU_Ã8—ýúW4.çD@ g>ã\âÛþïÝÂN[!Â] Ð&°ó™xˬw¶%]˜† =ÕÝ2–×ÿÞÜlc™O9†éŠ÷}Å€~nøX|†K{‹ [«¶ïYIü Ö±Ä)P&á{cÕËüq#p‹HÙÑÈì;1õGúͨõ‹èš/½Ì¹—ò8ß¾µYTÉ–øþÈ¢ZSöü57\Ð;pÊVenG« àoÊó-wÓ•áq‰¹²=ÅleA‘h-&G…£¹·ó±-éÌN]Qt$ÍÍ?¨%©{öVêhçäà™¯8 9<ΈÞçÌþï ºã/ˆé®7þ›ø KÿÎz‚ à +Ø1س· .™‡Ù(/–örI™MÛpŒ~¢äÿ5§.¨wáÖ5¡úMÚDÌ%–è-ÊÏŽ¬=ìRq«fÚöGÂ[ Ã*û&9@#´áRp7\µpÌáJ¿¶+áJ¿öÑÊè|çöL€äD¸e¶ VÞñIš÷ø ‚#­à&BMZ ¥ŸÏ1JßõpM¨Õ'HA8ãc@;Ÿ›ÄVPÖçiÀzÅ%‹Vw.¨¸nO³ƒ¸Yoâ4AmÞ/YÒ v²MU¦gäå!vjêŸûS‚L½CãñO /ìB¿³ñ—6ïÁ?Y‰µ¿i‹Áï;éä®xà¥Æ.Ý#£ÏÎ÷Áyi6¾°ûCŒš5eæÐ+êYSô;™/¹qÕ_¡âæÍ—›˜˜”ÀÖìÝaý±r«0’²Â°ŸÀ¾a‰HŸmfp¼‡_Ùè´Ê# dh°ùË5_ÃYqbßÿÚ€Kqˆlì kîÒé’I,y¦‡àRÖéÉ0^Zá^EÁ˜à.W«£°eVeæ%B5â-#m;xPpk%©oé‹%¸UèͼßÂÖmÒ&zë»Õy‹IJ™¹Œ½ÛøtM^XÁþ:;0a#ìýùæU6¡RcöjãÏC× ¯2 Omü%æ'XUac$¡Ù*v¸ªFML+úÂä`€€YÀÆ&Ò¾‘Ø—®Ž)>Xˆ²mvFèÞ•Lô ˆ5»HÓÑ?`B™÷Ö¯w(Îfæ,Xh 9XêFG휫¶ ™_…[.©“‰²l½”5CÕ+~·ý»†Kß'ßFÅ O<ëo²@Ì€Äݧ~±¸¿´“Õ{½âÒØÝ¿Bå};j»ÝÈþíq]G"(2v*/TCʇƚ‘T³VTÏŒÛeƒ'‹n'£žëÓ¿XÐäPû±&P~èî%«Ìní3] n¯x÷¹.ÄsÚŠ<A†áÞ ÔÖ,Ãð»Ã€«ç-zÁ¢{_b»uKŽ=u¸Ñ,I5&ÆæËRq©ã€êÍù_>lÖGW8ác‹ÖÓýÔ_0lŒR³yC`ú!¬h›_xÇ,U¨ª§çœ\ pçèÛR€<‡¼ÍVW$ Û„×#š0MŒ:^rK«/Ù‹‚˜3 £»ö^ÑÊ̾€åI}L´¸9þÒ³E<)*Á”»Ÿ˜*¸¸CÅÐ=‡kÁ]¸wm±³•ȃÐê÷v¤r.ö—!½sßv}ìÂz±áíÜÊ i¢ÂL`37Z6Í4⨄Ô]3bô²&|ùl]þSÊ—˜®£ =KšýÚë“&Hö\»k1E—EtÕ>YÁƽYìZ Û§ärlt‚=xf˜zЃ-Å4Pˆ‘rv×÷¯áUqbÐÁÓó; »Àè•YbM?—>Ãf¿KÌÞþ(öd&þ=Âù…únUk‰ê t¬.k¸Ú•¼ðæœE«“à d’KȽ‰†­¨£wìaOûÄöl0(¯a<7`÷5e¾Ò8lÛŠ<¶½ñ_ MÙÔÕSú©óÒSÁ•‹‚£€E,—d—¦êáð‚ œá_JÊT°ñdÍ^èd¨ÚaÍ1² ñ7Öôõâ—'sÉÇb㕳[ÑÉ—ÁZC>¯ÁI2·Ì•X]iɇÂNZ ~ª 0Ý&*4¸ήkÂv†ÈócUòÔv ¸HÏy}Á#C£¸Æ ¼ à¡Øj®È¡fÀ' ×CÌ©ü͉^ÆÈ†@PfZ[.ßPTTTrï’h7Üï\h—<í’Ô¤¼—¨âÅ›Ç,ªzñíùøöÙÙP×gŽ¿bE…ØŸ ±¨ûû[çw¾rÃýô5( ¹×hux÷†×g:oWòÒ €=ŽÏ~¿ïg*"v»ÞÈ}"ÁD:yÁ\Ê÷V9„ÌžˆÉâ%VÆ€Œ(ׄ DvšC1mò|e ¸`ß»V>$ñv—ì‡VÖ¾S`ý…n¦#†QlÀî<\==)–êa%Ήv¥Ý²áÛþ+ó¿^Ê¢¬©qÉôh>Ã¥w³ËQ"wÓdlz.î’‰Ž F@w:)z´ñ×Ö¬š0j—ÒÌkyX¸¾©!é±}Ä’€ 𮝉+›ÙÅ4° À$4Æ_ Vƒ¿ñÒDîË$#ò½K“;6ª–Ôy‰žko”—ê’NnSn}êôCGÿ Ú%žŠ,AíØnÏ|bãå´zq*ÑR Ó]Zv —„.TRÏ÷·¿¥è«º·âÀÁγ çeÛ.i"´zö!Lм‹a¼pÐTaVÔCn:Á[¨RÁÖ!¦"¯)\²sĵ’¢˜,ñ'&îè°lˆ9W0îyýŸ‡]u õb¶.²ñá¬:,([fg2Ó’~i?ÉÑlN™e Ä™Ûñ¬Ö½oœþÐEFæø092®ÌŒ×‰Û%b€øÇþÌÕÕb©Ìà(ÌÄo@( àæ³L£LD³X3(þ¹!²3}|v‚§v³½Qöæ¡j”ÁD=Ìh¶gЇ>L¼}XDÏ­NcRe¡ÎP™0Êd/|ã¡+"û&˜˜Þ-Ÿ=¥tË­ÖŠó- ÙÈP½%€Ê6 ž²z$[SºH<‘¿af¶Xbn°-¨Ÿßç7]Æè.élÅ}Ýôy1À‚ûû`z £—rK PsÜãD¯ ½OääœÎ “iEdi¼û ±\5>ŸÕªiþæÊMaP…pk…r½ã ×j”Ê&-®D%UI^Jï{rö6gàÊäÛAeÛ.`ÒC›ÅµHo-qqh'¡ä¼o›_ø"ŽóªÀSBC’‰yý Ê9Ýb€<‹‡.ÔkÀ øg^AEl£ñ ìä1ƒbOžjýça6,“‚ÙÞý±Ñ—TA¿?2*w_Ø6kô V›Ø…ÞÆ_‚ýr†&•IÞü½éV(©ˆlRÀsCß×ÊIÙ1©rïYÆ^Šj vhúƒœ›ÿ 6Ý%P¾ ˺‰\ûÌV ùIZÏ’Hëg b‚Ÿk‹mÖæšh¼Y .»½^r¦3¾Ü.ÞY^IñÎÿ@3\ Ïl6±&ÆŒ)óy%…?/¸–PÏ„L¹$ƒôÔòj ¸dnûÝiÓÐg[XŸRì<æéÅoœ7)Ê®…d…lq“ʪŸsx'Š ÆÇ Û f \nÖåúbÿЇ^Òk’ ÔJ.Pqò&$ÕD¾5£6Kâ)0±ìnošQog­ƒg‚ Ç>yaß`x?+‚n³t×çßÙq¶ 5ãÀ‰äµÆç|åÈOÃÏàÝ™Íhiij 'S—ìd?æe®Þ pð\ÊáNXK¬D]-@!¡WHÇ©}\rãüTùtÏlù°;kf™sT—èÉë†pÂwàX%äþœ>?áü~ ä,Sõªc/tò6Ð«Í Ô¢7”Ž&8ï±&²,S|8hŒW€°¿§œ‡únY¦è ”xä·DbpfFtÉ\ñú¼¬ª|Ë «Ï2EOÉ=ÓHhyF44^–éæz_t’ÃÅí-ON.-Ï™ù–2;ÜXBZ‘MرyŸùKà<«røcxÊo¥sŸLÜÆ{W7:€‘šÂ›‡Œf<f šÃúäo~í]Û>9^RãäùÉêG˜ž>z"}z¿ç(kóÔß_Mw[fšªñWX­ù’nQ|IÚö­#³8dÑ»÷ZaoÛ’ž°šCˆß|Å2Ó­*cNÑJ·ž;ËCb4ÒŽ—Ü!© 9=gH"¿ÏŽºSg¬Žf(èÕñméóR†ã¯^6oË" ¶+٥х0W÷FÈõC§i˜­I²å¿g¥æ^‚bÀ¥ßÛ÷¿M¼_USÆ/n¡OçyÞêâ<Èi¨e+k°HS8uˆÅ÷Xˆ™Šíb7µ)ç‹Â"µ);àÎE¯Êù¢ NlP2Ý ¤ê>{Ã-}¢1TþGã:ï0~³¼…ɼÜÛ©"Ó€m±O´5¡ôu–ÒÖ†¿`ºåoEwÎá*C.{nî¦t17·3Y’5ÖÍJ?ó­-†¬Ó\nI¢¼›ã»] ~iÅç J1nVTöÔ\ÌʋɣV ô·Î.×lšk^ôó=^fù2äHý3Ζ•‹{Ê_\3\›eh€ïú¯Šâ\×++ß R¶F¥â¾UÙßYÆ'„ÅÔÊ®t°ÔAüIgä¹Ûæz)œíJØk¸bÉoƒÏçÛ(m>Ë6ÝS4à6à»xí©a²MáÎ8¹çC'TÊ“‰ÑqLÓluÔඈ|w3äŒ#µK ÇBl ¦8€- “dâÚËüB¢ñ…ec};CU‘âl|<ªÊ~u–)zUÅs»TbÅÙÌv 1ZsÑòôr»¤Cû{û·êýÁd±gânC^Ϧ£u.V²Äd!—Ü.rx`@#`¾ ¶ 3RugZ$/&âe´K'º‘í@Î7w½eÂçಶ¬®<“xßÈ ýó88®ƒí˜vìñ ô^H€^û×XÉe¥j %£°š­/z¿ãc¤‹Ý;Ù´—ˆ ?Ù»„Z[ÒÎ6§jÝrïg²weä[í¹™Ö€qÍI·s“™ }¼³eûN5Ãá[3ÄÛ]·}—<€©¢Qò=jÚÆFç«àå7ËÙjœ÷ÕåέºÓeµ‚ª;F$m•D¼¸Ê†6á$núdˆY^Øé6ÂC4o;ªò¬¶÷È4bÚrw”UzeWÅ!‚vdÍqÍ;d'n ı-¦œS™å3h”CuéÏ„ä[ã%‡·.Õ\ %É‹º0îš ¸ÀµM„öHŸxo†1Ç…N乤[gFé%\ò8tŠÌÜ=¶]I½»×8Ù™¹[íŸ\IvNòÃ&…–¸CÑ»c@ÿ{MfQDõ ¶YÂBù9óÇèLFì.¦fyXÊÂë0ºˆ—ä.¹KÊ-ƒWöYâϦ]éùÅå+–Ydþì™G›´1B· =…£÷8K {o:»*ñâòµÆTÐÏü,ú’ÆENئ¨dôØg4ûævÖÙYØ¼È†Ý »;é¶6BUÂî­Ž°¤ %OB² %³Òµg:gQ„ô¦sY­ §M0ª”ÒDÍ÷Û—ý ˜²@9ØÂ5­ !`2Ìœn_í(³[³n»ª'}GdœK(ÝwÚ°}“%ºc¾âªëS™¨Ð£qÎqÉ®û.É-Ñsø°Œz>ëï ÒZ6ø°Yã ½„!í‹>¡ß°f´Âm9—_Ö碑K®‚b_"æ@@>zX¸>†ùž"Îä€Hÿ> äYe¶f¼t@Œ³µV£]›X¾ôhü%©ø/iÕÍ?RAU:1¨swSøc%Ô]²Ùësá¿Úçú\<ŽMdOî&t¶—0qÁ0¦ÙãD _Kò(êÖqÖÎÅAe·t÷h3\4X O$ÆQÒÓ'ÊK¦vÄü«ÐšÍ/00sõaø¸¾þ±*Û“.lúD²†ZØ«—î=gmªÍôZ3lja[oTF §sˆøVªÔ=wy£ÁqŽyN¤îY÷ƬBœØxµí¿_ÚÉ9-ç91qˆÍSØ,.Ú.Îv'=aíA{®f´™Ͻԋ?¿cçØûùBnµÇDõàÑ–]ZiÌJÇY ¥³…«£Ñ» ±•ÃY$ÏÉ×/Œ§¿€++^½|t+±CL—Äöà¼ÉêO6žo™ÊEßn§Ü`‘²K«[Ÿ—áê K¶\Û6Ù—‡n;H‰Û& )° }ö ílÀ¥ñºo›Ðgw-Ø8‚I ˆ ÆÔ•¡º:“›£¯çžsûΚÐ.Ø8Åßp2³}•E¹7²_;ߘ"1  |_!‹r7ÇäÑÃb¢`ø?UDïN–ò®VY”—6PÏ¡™ a¾a·J„P6Î[.ùåßO}ÂÆbDI¨ƒM™ÝƬ¥yBWQÙçuŸ‹‡6¼õŠ¢¬*Ñk½äGŸA6]eÝžÊvÖ€|¶š\†9¤ìÖ¤C¯¸ä!N×;ƒÉZ"ÝZóecê%Œ?£³tµ€ úÅêj‹ñ ¤íI{s>tn[Q ç—ä´Í|r´’–ii®¼ZØNØ¿0¥`xÚ÷›TÙ¹›·ÆO•H{«´«ÍCƒŠ»l…»Tõò0æ?IÚÁ ÝŠŸª`…Z™ßq.í‹F\=>¹¥Äe(>¹•ڇª³abk1Û|ž¼€N×nZ4ÓP¸*SmËÄÿ$ÔÄÔ­pûƒ„ÕnE(̲h´l:›3vfk3Bž¡B³¼—ùÜämy_+²»%<"Ðfd¶êS ´L#ôÀZ3¨=P›Y½Ÿ[ffvvÍzù¥Þyzsgk‰ÚlZjã=»®°WøÃˆÝ”³Ôó‰Ð6ùs¬CóËÚ¼D³k¿„—1géP¡²I“}2>÷ì_)š iˆÎcíØF—¤©z½å‚ÃÓI@€åÇb¿ÕmÑ­0 :ÓtôÒt¡Ð¶ñ—FŠiV5A­ˆÇt˜’ãjÚ \Z?±üÛpnM$4àœ•!hŸªtÞߨK]Jšƒm­PÖû›W–î]ÓÖseDÃVKbÊ_ÿ³AólÝ=ægÔ§ç‚IÚÈÜã_ÕØ&¾ÛÈäoO; ©ïWô3ÿ;O¹|{;í*e<d˜Û4µ¬¬?!ºÏì½(£Ýo%›"—;~ }…à•¤ÝÒÀ’lüE1µ6Yšø@¦IK]¨^ {0½9.mâÁ³}G*³ÝÚLª,5OZ¯ÚVmH®Th³kŽæAÙ™þÒ‡yÁ¶£ŽÉ{H<.T½ðªò~[¾xd37ÏûÝ©4ƒ÷sû}ãÜrl­p³aÁ«æE§{Ö Ì½6ß#ª7˜£(·ýQƒúª»3ö©Äß[úOS ê~ÊvsÊ_šÍ®Ü€ØzûÚ —¶Lß5ü›ÖÍ{qnØáö ·x7Ç”°ŒnYMÏCÈ·7ºIÁ˜³¥—îIâ‹’]މ»`㳩;ø³Æ˜ao«†´}ˆ¹òÐŒ`’µÖ[ÎwkzÓ žÃžh£¥ÈXÞ7Ø~­cöPKìisþ¶PjêÑyÂâíU^+tØúÊ\:z% ¾ôÝòöœéBEs­]ÎÄy¨Ú±²6×¼ª[Jh«ž&ü‰œØM¹¾oÛ [³µ‹6䢗™’¥6ʲû…}9ú@ô•%ëŠ2½2\£t$]";0†ôÕ¿Ú"ÓöÕ»±@à<䘰.«b”=™Ì¸ sBÙÇ%ƒ%C°Ýý˜Ñ SZ&­„ŠÎŒÄ6"|~%AOç0Tó%]›rõwwö¼•DÍP/‘ÑŠ™n)?Æ ½õæVÅ­¸”•†Ù»†%lÊ>ãkü¸¤¿Ðý„û3>2ý¡YX¿Én–îο}wQ†ê)eg~­;‹ßááJ ¤ h狺Ùd˜îþþDT—DmÃ>m šVG5¡RZuv,ã’êÖËfæ‡ }ã%VíwÞËP·l÷µ¤.Œ¤=`@+T¸ÁÃþîMê*<ݳ¦£½ñbb)èÑ%=¤J‚Â<v¯6§{!* DX™;½hÓ#¥&w2Þ¶ÔóûZXeAr¶õ\ax³Í/‹ ÇIè>ˆù•éýQRõŽc¯Ð)B$s†pÍs´o”¡‹³$†ÀLËò5†Köhò7\úíe ÏæÖ»Å(EAÒ³¤+Fº£zÚ>¹.À][££\ÁÃÛ7Å¥‡ «ö5Ä‹J>{0 £°“á`κ–œµ]I¹·ò½®BS¦ÌÃæƒùÀüWztÙ¦c÷ÃNRó=èQú„rVq©„“5¢ÂTQ³ùå|1j|“Qe^¤­6¿ZMB°”T3Ì!–°ÌûÎ~,æ s©ùûMOÓŒ{bóœ!Yñ]b@çÿgJn,YKýˆª'WgÿêƒÜu6üüàËêD¦§UÃåLÀ€ \3¨n©Q‰E³;4ŒLêêsH[ß“®~»íQ=@k€à›Øp+¢Ö¿ã^t7]·h¥]M™®{ž™¨1ufvj ¯_e¯JÝÐZíbxUêž) C‹gV,Yew^Ø|öÌHyql¶MhÊSP˜ñæŸoíÃ> ç3Cýës5#„€7Ö’/±-0t+›³×±Õ˜õ|ɶà ³³ó½ î7mÇ…uÅôAXª2ÕVáJÕ¬“î¡ÛCëÄùF%ïö“¡B·{6†1Ë"\ö­mBü<—G_ˆâ»Vtk&Sü…©ìœîÖ 4ûGâd’‡¡Z¬bU™0”‰9Q+jg"˜½®+Á-)@§û­~5ú\²{©\eVl°dá=Zãës³aŒªçíí ˜sIßN¡qŠ~0ÛœÚ7¥»ËªÝ3ÿX]4Í`2isvònf·ÑU½œë µÞ6Ußt© û¾Â[ö°º–=sùMüëÊßÝmÓ„ƒ6ÎA¸›°=g„`…ú·[ pi$*uñ[ØÒ•À»ë_vÛ¿ñêw‡KÚt“•k6écíO–,;öÖY©+Ê{Àå²—}–uÒ›gŒl6Ͷ!üA\í‚‹¬jêîø½¶Sn4`·Çïí׿ïéCöÎè#¡)L í—t%Y¶]ù½û¶PP%¾€‘[­/ߣ]X‡N:À66j`w b¬å)÷w¯GšµÁƒU³…8:úÁ ¦ÙU—[*°ªÖz·¤ê7­OO5K@sbÒÄSm…·¢T?õ΄?R“p6D§â°'Ô„žø?›ÿœ->¿$ï¡uýpÍ#Ñ€r㊶'ªQ}€~]Ç%Y’ âéTg(*½ÝNBBgÙĘgAÐC åaã/ jÓ4d¿¹úìµÁ‚ÄÄ㚇&4”…Tl®ÀpDY~†ƒU³ „*O³ñY–?0<˜á'0žr¾§qöú©Ì€ æ]¹‡jVñB¶…r½Ô­DSlùD«¡Žo_š3Øãx.Î!jà â—of†2ØïVA¡Q4_èÇo¶hϯ•Q¸7,”ÇÅ{“f(*|ºkÂt¾r Õ³œ­ŸÁÖq¢'k¿4‚å¾î;’? ¶ `;ØdÏF¸öˆàøˆÂ©±Ò¡üc¼7Buê‰îSÊ?~gãû‰È¶ÞíT\²ÒXPȈ'ã= |EJG¾aŒx9‰§“ü¤¿¸2ò$xQI“(go¢Ë2­ƒ}ýÈ´$óÏü6ÀQ÷âÄ÷Ây¦Æg”ú­xGbé&¬Ïðʈ%ÔI/]²ë‹¸tO> žM\ÉÕ‘.b:LEü!ÈóL—·òáMi¶\V¦üŒBx:&muÍ_ŽÎåï'zΛ?†O'ä/Ñé`¤Y¦úHð^eÔíMR·!­H5e/ÔÇÕýŒ±WšÀ ¸¬ñÛ}}±äè|ËE^âzA«·äï+®—}Ô·ÑLŒ¤J/Žéü]¯¸ÔBE‹VŽ[DÖ7VMS§³«`?œÎdCaexnéÑ6þâôŸh ìû—¡å¢ô¸!3÷Ø`šH{ÛV¡lãÅT¶ÌjâYcsÆýíC³yô>3è s:™«`”KH«úµù*4@aò—cUNÆ¡2VèÇĤ£'cK6ðÔ»7žY^ªþ[+·‰ŸIñ)3'‰0B0P± Æ™Í9éÕKPÀYŒšoÉ£Zèp°ÙõŒ2Dæøt‹»|ªžw…WB =]Ú¾q‡¡6ª×s¨®ÃÄÒA¯f´@“yDF½€bÏú˜Vé˜Ö„¯Ow~§ÈHÕkD̤¸œzÝ|C»ú|â§ÓB8?nÓnóÅs©£‹`¶îè”vŒÍ¢è‘UK‘:6#@ G±³'Ó¡—‹4›§ë¿AÆê‡É)¾÷UùµÆ_°œª/ m–÷ÂßÑf7ßϪwœ™^­2Õ°ïI ¾´Æš «ÜMŽ V® óÙÍO` °»ÖØynЉJ @ 1'B)ôñž¦¿¾eæ¶íÔèKaž]øhWÍÖÍÃDCÉÐ{`8â®âæ‰ð“­BÈÂÞç×÷¨Ÿù&BlÃohÄ«ùÙD!Æ™í $Êë–¸ÎvvR(lŒçÖ\ÕÌ/ÙÐ{•¥â¸dZp)u[ A‰Aì<[f(P¼ÇÎÀÁ™¿™ˆ=É&"6þž|÷P÷œSw§µÂK33Õù¡¼OÂå1+Œe–´Õ²’ß]¬AÝèçMȳ³L‘æòGÜœ?–#Íå´æÜm|¼i¡Õ\‹´² Pw êáôß°4Àxîêÿø¨ØM|7'nÉÂÁ=*Iª™Ù¹þ¨Ÿe}ò%_‹}ÍÖ´e–5÷[α§:=70Œa¨™á6¼iü5 "~Ø0€ù‰Ž Ïg,û'\Ðá¦Û.+?kñNØ9lë[™€,¬|XrÉÍæon޼Z`j‹.ˆþßM¾tŽªšÁÉ/õ¥è=rüðÊþ<ž¡]?Ædoº9l T6ñˆìti·1^vÝâ= Â£WßO慳ↅ[ب²4.6dùíÁN—÷¬q`G¶Zˆ6^NŸ­'ýlÄ .þ²å\”T“”D:;‘üv ûé4YYE’ X£Æ+püºœ~÷*~©W~y=4¼ÕX§ñ'—k~šã°ã { •8«bË5•óÓYZ C›ÙÜËIDëêµi4ãb6ëÎìÙËhЇ“0àRÊ} ÆYðø©ä‹A–$ò™ð)îYb@w<3 ŒÇ+§ùÒ+Œ½OΘw?3pAJ,5»ûÞg;d:Ùýz0íVd¿¼Å™•’˜Oík€Ë=4©ÆS ÊÉŠp¯èöxØ~˜ß´Âk‡¢üa³¹ ÈZAMš_è=n¼HIÌàØ@ªˆ <‹é`~Ã,‡‚ÁßÎ ZV24‰Qqý<ø‘ÿ8"(– Keĵ3“œå!çkW¬¯z¡ ðÌÀñšÿ¢¢:/UàøÖã÷NôÞ–GŸ ±¡¹Ïò ¶‚¹‹(²s¬Ô±ÄÒÚÈ$æj¸œ‘ w ù+¨ÄŽ@õ¥u,Oý`ÌÿØÍ­jûõg“,3i˜9ÿÄbÓx…yÎ=p0 žqn‚ؽ æ·¦¦-šc îŸn¢ºòœ 4ÖË‘ù¸D«—‹’|EB<;“0 {¯ùÈ>xAû»qŽíЇзÂn3±Ë;õÌ$•T‘ãœûš0žmüy™&"Œ Y»Üí’Þ?16ˆÕÁÔ9f—ɢϘn¬º-€Í¯ç]cú½÷®vïšÛd• Š>l@?“+ÅnoÅRvLÝeĤ†¸þ3¶FB˶¡KByï¬D¨f+{j, vjjѳc4j‹¯‰VûEJ4ŸáR}äÊG¿dQNWó’Íz‰³ƒ½[Ôò’1¹[¾´!31ýL«þÕŠ¿‚`®Êì=4CYop<ãÚ:Km&§Ê?³_uY—¾›~3.©rÙW”Ï:Þj‚9âl‡Gnc·Á»ò €Ö„—Tܪë2¼C«3¥¬<¼CÓ0ϤÒ!Ñ2A|mü%ì5 €b‡iÃLv¨Fz÷téµÉÁ+}ß±eWà§Pn@ÎL7› 2Šßw%Îìdê‹´! l¼h3<Š Ð¡l½Q Û`+1c2ÍþB¶`ÙÈ›R[lÀ°Ú•2ºaA-t¨ñ‡¿À€ B®cUL?ä`!övožµ)èÌ‚l«ÙQÏÙ‡R)‚§K¿Ü#Ù\²ÔÅøƒ §.%lò|+Ü, šÀo8ëPª½ñRlupJŸÎ‘?«¤Ðî‚[г%îŒâ<­ÛxåS¿¢Ÿ“Ô3qh@ô°šJc¼/nÖ‹MØÏyY’EA¥¿§¼ žû™­÷–JâÅAäFÏû݉š/µNœž^}®3ÀKé¯“Ê ß:}áy=O E+ÜìÞæoèG¾ÌHK¾:›â0ªj2^XŒ˜`pÌcÞÈJ¦.LüOS6ƒÀ'¿Ø &‚Kõ &@¸[.0=Aå»/vcüáÖ‰ÇÙ¤"¼¬cc´·ç÷\Ý’ýµ"‹?W’á¦Oå¨:÷zb¡”nŹÒBgDNße™®;²–QŽ—ã¾Ö8³l"KÔˆ;Ò4:Ÿz)¿A–ê>@3Ôó¡MpÚÌXEbÓƒïf÷”³ƒÅ7Y–ê{ üþÞ¦lË%"E(—t¶¬sôN:-󌠂TþwšjD‡,c3œ^mÊ¥‘½Ÿk¹ê$¶Ïåâ >ƒ¬Í½£º ¸È;?)á ïöª^qÉP“7Ôo‚~áýKm¢ÑMæ_¡œŽØÁüs &1ÕÖõàrµÊD~{cº]£åú}£Ü—Ko¸xr]ÿëEÁ…´,Ľv äÞXA2Z¢õhKî—,—?Š›î¬\`Øgª²S$Ö„NÜo` (·ë¡%]¸†‹¼þZüК“¿’/eû0ί˜ŒæÁµ£^Zrtúç´É 7Ž‹"áÚÕ¸Ê'-ɵnBÒöm¨‰è!ag­á êbv\’º+z´]®¨ ú ËâÞUíµQÑ[Ü0bOØD\½ôT÷"ÇçGë}Á°™sé×:*%¸PŸJP¥BÏý“ü¹Ãü¦Sè4úž庅QvÜ–ŠþOéTÝŸ:ž1}žS¦¡ k,ÚªKœS¯UæmÜbfZÀ¥Ñpòò¢¾²tëô¤Cdz£ê¸’ˆþ‹-×sT(ôM}~,,¼õN­6@Ö4-R¦*wz8 }0´ÍB–«†_šI-JóÍ4æ[°ˆ,.#L'y å$û‚ pS¿H4àþvn6¿‹È_ 1étQpO;¾¦6uœ‘WÉ:hËe,34Æç¼BÉÐUDò:¹XÁ6 •9åš0ž¥6 ;6ƒX€¹p£'¿S¿mo9À~w•¼c–aGe¿ŸA_˜<'%6꿳åÔó´ïåu<§°òã…s PÒ/¶¤'š3R=>LC˜Hd–Ö3Ÿ„âד/жY„—C ûÁú {»§èÈü $ýµŠ—]¥Î·{m0‰ÈW3ÇÅÆÜÜKi´‹ªŠ}ñ}SSûèž;^ü¯g-™e"î®u¦ÀbŒ}eoU5€ì 6eœsçŠ &Œ<5LŠeÙ¸ýâ²í3;¶G"=Mƒf¡î3}îlú;­æË)L}t°u .-XªlÊ=ƒÞ˜ú¤Ø9²#8mùñÀ9슗Ø®ÃU¾ðÕgnè?¯2é6÷ýà‹ÓÛ´ ŒÉEx§ˆÍ†c¦^Èx!;ÎkÌ£HO®­Á~~ ¹\V•ì^ÀÅ:ŽYó^k6îåéÃ,ª,µ§ÊÞd¼|üÝŒÑö\öçžVJ04Œ^ÚÌG7²ÜSçpò:•ûï™9úî?9!Ik³—]ŸLFÝПüæ•Kžj\È-`P“ÙLÈöDÙÂÇÎlxÎ;¢Èb¬*¹©_õ’}G•~ì¦VÏK}×gÛ&Ö ;Š>ƒ· }[ôƒõ€…6Vij|—ßýx 7Ž«^KœÛ öÂðíc› ®7',3Ü#lj,ÃÒ—1>œUgÊÞsÕLå”­ºcá¶—Ù* bÀ l¼'Ÿv÷²“ÏÀÛÝíeºî½î+3Óx‘ “ ŠÆ+c›ÚÙêë×ÊówP°óæŽJ~ dÛÆv¥u#-Ïø}ãçÛ6ߛ⻞ø½™aàbÙvQ5´»©k<³+ïu¦?™ | ·ÆFhù¼©2 ¢b·Pfìõ\ÆWýX7îô“»èH‹¿µ4λIæ ‚Qš•3Œo5Mçã …DFêÈÁ„ž”lß:{Žqb“ ì l.*Ús²k/P·ÔEކqå©ð«]9¾Ÿ:/Á<‰:b?¾$û÷Kªžó3Ù¼; >س®Àp1ÆšaWš9üߨAí.PŠº¬éùº _qõŠ$$(2|&wÒj¹’ÍpõÒäw†«œp<Á&¼¤´¤9>Qûaú0¤±—5öˆ³3ìLiÃÅn6ü蔯"=—˜ÿ÷‹½á…«U×…&T'p:1x6EÅøù%3,Í2_V²q5ûaÛz$!öæ˜ó¹ìãkRâXºµuõïù‚#¿3³š½áº(ã/…‹àM¾† óIþõ¬ËúJÂ;Þö­Šk¾û¶j—Œk‰€¤\ßKó6 ðþ±ÿ1Lnu9pÅŸ°”{ÁíÀ€K["êwû¤R%G…:7{ÀKw.§ØÏ~¹èÛ6Î 0Rt“lÚFôòÊ»K¨CÊff'VØ`¥Ú'º»•Œñ ô#†éåYè®L­±=yˆŠPg-â3‹Œ¡´¸Ì^cü» ´ïGz/×wÿI†ð:z *0}¾àV/ ‰»£§Î2ê\GbAþ”Jêxùóò'¤¯¾ñì{—œ¼°u‹fÙ)dóßìmò%tDáÊÖÝø·'õK³V$¨§½,ÄÃ㢯=˜æv†y§ùÞŒÉ(¥÷–žÝ! m“ÜŒ=„D@^3(ŠS„ih*2úÊp+¾'*ã äg"(B‹³Ÿ¤®£’vwƒÃ(i÷tº²à\?×â= HwÍ“¦CÿVÃø|³H4@êù¡OÓðʼn8_ùr 9\Bv4è™­[Æ &ì—k²„”¥o§â2É3m÷v6C”õúSðàºÍ̱²ÿ44“²VtqHÊE›¾Mo*­èR¶í2S™¶M†\†­épðt–Ø„Jù|ð´díò‹2æIí’o5‘Ä ;d=‰É–F—ÔˆçÒcây@Õ•V¢í[l³{$ÔñÊr¯’ zží[ÒóK”IAjÆ-;0} Qß¹LF'íeòû* á=²a£Â?ƒ|Î:3ý2ÛÒýµz’,ÑBÏý} ú”… …à!^3»Ä[0#yšíëÔK²DwƒmZ¿pnÅŒR7'ð~ùL^Êô<¤SÚ%•¿´7åC¦>Yõ­/žÏ]?ôC¶ô¬Ú—¹íª™ŒÉ=‚i+ð´Ú3ˆ–_•–¾ Â\Úû¦Ø>ŽKnPe²q¯”í0N0«Ñâ¸BN’ÍŽ@”K¶;0_Qòö8ç¶m”Øg.úÝÆKy#YæäŒ¿¶1Ëœ<äÅ}ØövTe‘ý6¡;Óß5´ldÍ>›a!ÖØôr­¿°¾tÎY¨Ã{SŽfŒ˜÷¾&Õx‚”Õ‡Lzgü³çÉnî¯dk¼²m¢·òú•v³ú‰©÷J\#žÍœð +LÜ.\ÿ‡ÖÞØÂùþÉK™…+¼#+¥Oì³*³ªE²ÒfiÝ3ó>¾`‘X‰Lì2ö³b©ì Ã/Y(¶›ƒ;nßžÍpâëϲß–w‘(ö}6íJl#úÁÅ›MÞ3ø³½@aíM8Æ4,v÷ÍN–5Ÿ¤ø73QÜ »¹yÈóŸxiéë¥`geÍ0šU|ªéìÔœfM™'à *çèÍsß{ÌBKÆÂð}Í2û‚KCL;«´ô2‡~ÞS}A?‹ãjEwD‚©”ª&TTû…* 3(§K¦—Kºøq³>êÖ"Ç¿:9é³] Odܶº†½WëÆi±#ÛD ÕdY›;–Æ7Þ°ÊúQƒÖøKµÓ…p”v@-c@ébô7ñ@™›»jjkðúш“Å܃˜Ïm¦0%•1ÑÁìú* wÒB•m³÷.RÅB®Y°J‡ž’6àRÁMKŒ÷î©–œíÔd}nÍí6 diw¯kÀ%|zÏ3¬‰ò@»ky5¯Åø¿wÁaèÿ– ¡OôFè¯äi#eÏÊÝŠÔ(!Õ  bš˜°LÑ]°™ØQ’îÛ^n>@m3÷¾éöŠ|¾~JÌ·¨hõõfk ƒžÛ¸bÀe_³ˆÛa‘vÃì3ØA€ü13°>JEŸ{»Q{c½æ×Ù…”íÉü 6gãIyé<HȪ:›^Øx¯P¯P´Ï[ýRfCk‰¡å+—-z ­ ë­#R¡ÁžXžÈfÈ¢î|°ôñ\ûÙsò}£¡7zóˆô› bÇ÷†·K6éjƒÅôz>J0à‚ìE [“§·½ù½OQšá =xvèË,šÉº48×|Þ;ú7ò*}?·‹Y”g<«Ï~ÐÇ¢^doKÜP2¡ÚSú¦1gÙ¦¡äÞ +úà›Ú<êf›ÎbáZYL‡{A¿öÅãÆ‚ˆÙÏk JvZ6BïW/Œm‰zâ솠­°_¼Š~Ê襇´A’a=P¾ˆ¹;‹‰Ó`-#ˆªŒÍjõzò„ÿøÿaŸåNdZelig/data/voteincome.txt.gz0000755000176000001440000000741313245253056015632 0ustar ripleyusers‹íœIÎ䯅×ô1ú̉d- ßÀ>ACn, °e¾½™I²*ÞGµà57ü“™1¼x1°¾üëׯ¿~û2}ùï·¯ÿÜÿõŸ_ìÿ~üù‡_~êÿñí¯ÿþáë¯?þòóþß_ÿÞWþöí§¯ÿøöå_þøç/SžçyJÓkÊÓZ¦ùc1¥}5×Õ}=ûjú|v™êTç¸Ã¼¯n->›§2­ÛÇê¾¾ÿýT’ÅÕu?C«auënñÑÖ_&Û–}u?nŠ/ËS]³&›m]ð÷eZ¢¶¾©Ü` ®Â¶K¿×Õ`"tå,qÛ¾Á&+}ƒ%¬®ýnQ» wåDqï*·èmK”–YÇ"Øós¸Øk_,+¾K ©¯ê³Ýl[ ϾvÕÈa×~¯h/— lZ³Úán³ñXÝ6v}ÅŤž°tÛ|Gè–‘ãñíMK|?šÖ†ßÿ¾½Ô v‹±šG ì榧 ‹ÏÙa (v‰Ó­8ˆ¥K ƒº²ÓF–¥÷2GŽ¿9h„ ̶£ø½¢flÛ,¢íÏ6‘A¹w`§í7[VB‰Ûms-–øèìØ[£Ú9Þ«w‰vÔ=FdتÓ1¶ŠÂìX/B¨M…­Fبä3»q™É…+t§«ò2Pãa3ñ]Þ „Ÿ]2\úì½/d°/q¼Z%‚-ª²®œ »©Í =4AÉê±Jü0Ý„Ûĺ…稳~°àdö¨ A%žQšÓ€p‡ÔO+7KD/^¿b`»Àâu»­b· cM¦Øn»E¤ëœE9&p0¥¬FÓM\¼ÁdPÅfÌw%0™¼â^ÃP´¨’Mî ˆ› éu>|¢HÀ/¾ `Ôn'8-^áåQE¢!?#~õüÆ}Tí×*-ºnpÙÝâÁ6'¿rZòQ³DyY%2Ó¹È"Ûvþ-'0g(ñ´%Š3üÅcuonÑ’ÇŸ‡xUœ`|¥hµbÞHÀBêM0s1ä™Íª¼W…´Ã’ Ü!J‹Q× Ù›ìåì MPÆHÎ+v¦l”㳊mÌÎT‰ÅÕÍM¡ .+Ti/-5¬Ht¬[è+‰k÷UŸ°*'õÝM ‹·¦Ø_}¬Q1¹©F,TH˜]å1Ä–˜ŠÏÃI¡è*åÂs0Ž(Ý´fqck˱u*êC>6ýÄ¢ýµÑY‡³J$Äv½"j•¨³#™È°ºÂÁf% ­Å¡³mÃbˆ^ñ´M=a¾©‘Ø päBßµbÆ>c$nÔ&5ž$ݢЬõ+°ù!XM󚧪`43˜ÚP2c‚L©9QØÕYaÁâV,-Ž}¤Ãhf, é½2Õ¢mÄ0]À`¸x¨‘ÏwÝ_ðætÛ¨ž)8õò¬œ÷ÝüeD@%ˆU²Ú^O—¬\ì°·Ÿo&Î (q5 _P^+În`h»ñ‘Ùõ ©ÄB!WÉȪ%¸J‚­xDÔ¦€ÌÄH«7/!ñÑ fuéù6âPÑè.f•ÔÖ…nÚKËLžÙKÿÕ 4`wTl7¥ë„–´fެ˜ËaùÓÇa½Lý¶è·µ¼¯V/N†ÕæôoŽÏ–QŠûzÿ3®z¾ü¶jt@^¶œÕ¯¸>kGàgãÁ¬•ŸñѸºž-÷÷G“w¡Sí1Ùy.:R8ŒG!:Ö}?epÔâê*;äUâ³¢È×™'¾vs×…¤JvjtüI´êÞ …v8ÿÛ¹Ž$>ž6ÊÍ繎”òSâu 4„ëzÝXì3nk °¼ëË·]_gÁáS¹Gtù°®cn!Z‡JÖʨs¸ßKÎuˆ7‰nFß_ºnõXE9X7MèómÇÄNÔN‹rhgò/‘Ô¡>š’ºyv¶%ÖœG9:(}A, š:ˆ¬8ºì°¢K_‰Þç¾5“¢9»å Þ.gä—ÌjNGÃâsߪ\ÎÜAà Ä{ qÈÅô,œÉ¾Eñêö ú^¼A^ånãYóxf¦°}¥ âp·cä7ÊAϰ(>£^Äv:|=Kf^$*êE¼fË`㹬L"/jd«Çd°±5Þ`Á蹞#k"À›‚¼‚E[ÇŒ´ Ž[ÁÕÖ³ND£¬gÂ$vÇĽ½}^m}±rVÑ% ÈÉ‚é5YD¤Ç&!^¢Þà.Zó•M¢îÆ ÅòĦ`8ž™ˆ&½:/2û¶À¥$ÒÅ™ ±õlv ,D÷íÜ3ÇGGùUy_F?K‚K ›_49¢À¬´-ÛŽÎ(G#û}8i šÀ]A–¸Þ₦GëTt_«Ó%5ý1±#žÆ‚v6DéÑMVµ»ÙÀQƒ¦'ð!aµ/”—%žk¸×5hìk‰ÌĆ¢\™¨÷$HâÈÑå…C‰¶fòÑ×ÙeŽx ô{A¶3Æ~W朔ª§÷’è[h}:k~“b$šQ”}7UÃ{Ý+ú¨¤Ó¯é+Œ$WôxÐÃߣ²·¢»€‡¦\$/«DÉ6”,«ó¨Ê%l.H åúNä»DÁ’È6îÜY+嬷 CÐ’tc>°]Å(™ÏgFý¾l¯Ù·ïŸ?+²ÍgG8ù•1\N[5>Žp#ØËâ)µcxå5`K ÜdÔ:! ÙL_usÙ@liƳaeáêT¼_"ŸmÖbE¹?MÆbTGrÅ\ã²(sóªáÅ«Î`M"Çì ˜Hº«™D«Z˙ϓœ6AÜ0%G[X0 Þx±¬ñðj¬lXªÔloT¢)ãT•×ѨwX£`æ©è³ëYãÿî»LZ1N”z–¯¤"iëé<£°XÇ|[&6¿Lj>†Œ"š¢øñ›Úá„BåX4™>ਣaŶax ªZrÙ€Œ¤`§•›Y¤:1Î]:òÓ·ß¶ø”XVVðB‘'·&h”$@½ƒR%‹#9`˜¦ùã#4ºè²ë‡ØèmR«Çœ‚ ì‘“0Ê$— ¸ËóÔ ©[1=¬Z)ßxÈ£ ; yn™ ˜?×’Út Ì…#¬ˆ„Ê<-I޲1Zᢉ«R Ç#Tk”É¡d¨Ó'äìÀFð‘½at¨£7Œê× [ ¹îvlþÈê]Š Ôæí[àσeW×$a”Á;ˆ÷«PÍ¿ ;+öP¸ÃÔ0cb µÊvÎÉÂŽÐ R|t2&­‘·›rô³_è½×·Ÿ–›îˆ2;££Ž™LJådÛŒÆ0jTÂè+{Í¢„E)ÚXµ".rò=#;˨݂µôë§P vSv'ÞW¼¿«7S'PxâÊDEn$mý#tF°í_Ü¥7Ò+J\¡Mp¬Š®¯G"¡ÕªÍ<å›y¾aÎÆ-À…æáh¨aÑÏJ‰Ð‹z+Sžôǯí@˜O¿æÒ?@;_жa9Š›Ã wP­äéÐâÍ¥ ¨s=Ô¾Òû/Ƙ~ÓûCsîbT5J<_[ø]ñ{Á„©Ý ¿(´ukÎÒY^ÂV%˜´)C8[È¡šRú1n„ÔFµeêP]I±7:60|@Îß°L—½¹aºŠ†ëÁ¿_tño¡´:[49SPºS0h\ãäJÞ7ÙvÅyûê‰ûù"@wï» .6„µkh^<jy|ðü©^QúìÐ ¬$©vŸIÔ“><“¨Ï$êôL¢>“¨à?“¨Ï$êo1Égµ/>“¨ÇÁžIÔgõȘžIÔgõ™D}&Q§ôL¢Þ«ì™D=µóL¢>“¨Ï$êÛê3‰ª†gõ+×3‰úL¢¾¹ô3‰úL¢>“¨aò™D}&QŸIÔgõí´Ï$ê3‰úL¢ž·x&QŸIÔSäÏ$*v­ŸIÔÚŸIÔgõ™DÒÿ7‰ú?D¨NªZelig/data/PErisk.txt.gz0000755000176000001440000000254213245253056014655 0ustar ripleyusers‹uVKsÛ6¾çWpté¥á`ñÆ1M[7Íc2±ÛCn°„ÊœH¤£8¿¾»HB¶uÂGö½‹ÕzûS|\5+DñtDpïã=ÇõáÇ¡ õ#Áíæpæ«W«7qúS×{Ü«1[5¯Yk83FÉf¸%Vkµc`6OÑïºD«0ž{­[G,Õ¬îÈU¬LZYh i¦ÈÖÂÔ`Ì!å7ßow~ŽøçâUD rFÚ¬!îØVg´EbØm»qO¬eYŒ²–ÅŽ”a×}OJ-ˆÁ[©l¢¬PRãt<û>SfHb åRZm“òE]äDÿ³Ûcœ-•É>“³…QšcŒû$¢¬¨´šI!E:I˜–9m8ž~ë÷!CûdÉtÎÓj&Ù8³V©÷Ÿ(<¥J¾’ÀÝûö¡Û:_Öl³’ÜhÈ÷s2kàÃøvØ ûûäÑ fç2e,¯IàÀA¤~;¼~ßõÇÌÔ'ùÁ·K+ÓIêñä›/Ý:“«RWá9ÆXñ¡L’µÜñšÍ/ï¾]LV>ù† oʬ¸Å kCð{è÷>~Ãí]ó'àDö]ºõÍ—pïwÝšØ/m› Æ'¹Y¶uè3¼èõè7CÄíåàX©R~-~c(øvýÎ÷Ü^ÐUu¹ÐØn<…ð׿îÜqùÅJ*!øìÓb1‹Uvó«dZóq Àd{R:c] ‡ÊÝÄÖIÈJÖ`¤&kRµ’:Æ_c¿õ©.(W˜cœäu…) ¾ô®ß¤|œÖ,˜&+ œaLºt|èÃq¢Ìx¢1N†‹¹#9Ny=bYðQÉUî+)"B[R(†‡½Ø[ƤVH9F¨›Ì $ 8çt¶"w;¦±!áäwä›i½¼¿¸ˆš£f þoHŠOëUu8ãå÷¡$ŸLëT©F35g­Á^ì õ‡÷C ˜@·Ãx¢Þþä3“µRÆÕ€dIÎEK>ú?w¸;ƒœSRc´åœ"ظK…Î=æ˜U,­ãÆIWåë‘Ân=eYŠF­ÄbÎH0‘CÖ™1#–d€ÒNÙª ‹òÕêS87_ƒ/¿üºZFs,“OÝ6亠4!úӥ;¦ÊÒÖ06ij§ÀÏàšî¬@|ö‡Ñ7¤ÕÍØõ$¼°9VBƒ²UkŽmÎÒ%ÑoÇ$®‚ù¹õ…ÆØªt ´î3N™îp@ô²¹üÊÉá´4FÏVbÕY‰NEêP8 ñ)À°iè¤03ÅÓéx·~—ÎÏ0Û$•Ó\U™!¥L¯€Û.Äè›;þ{ò™¦µÄyÄt5­ñÝ¢©Òo;ìQ‡!fâ‚ó„Aè9X^–§zI•Ѽù/æqöä³4"£,¯‡›Kۃ拓§õyØsá3i(ì·±k>øþ[’SáœýVçgÈ<‡4†L“”sØ„$fÏLI/ŽW¡;ý ±éòëZf Iãöö1çû´&Žž[‚ÊRMڻߕk+È.$ˆÉ…o8‡íìnØRù–åò1%§˜ L*À¿û.·”å(«„sU¯@+Áwcü£€ÒópÊM¯¼¤ÃnDoÕúî6 ¾…¶›Þ¶Ï6®Op¬*¼ Ž¥øTò†ã|¨š Êü7ôáçˆóÔ¨ÏH|‚IU½.0wiÜõå±7ƒÔ–œV˜ª+‚k˜o_»ý½¿?ST0w,"ÁAÎRLºÇ‰Wÿá°Ë‡ Zelig/data/approval.tab.gz0000755000176000001440000000174413245253056015236 0ustar ripleyusers‹UV[nÜ0 üÏ)@øÐã8A´ùh“nEoß!EÙYpv—cr8CÊ>~½ü~ÿy¤ãßÓã ÿ__o/ŸOøôýùíúòñûíãfÞž^ßóË·÷L¥T|¾=þÉ×­Ÿ?òëíùÛÓñp DÉ IGn=Ûµv»üU‘<»>t$ÞÀDÍQš™Uò$ øH²P­dM4q©eaTsm‡I#‘&fKQëY®—\­œ©JKª´â P+ÔŽÔ#ÞP+µ¸P.¨Ó46"±¦yE­À8ð‹‡»z3Ø´T*å Ì<Œ¼ƒÆœW”kVtááž\>9„)*®¡ð@vS…7Ó‚{´ž†ÒXê“]ùÔ7uë¹r˜ ¡H½â5³µT%<¢Ôg&5ƒº¦(F²,ªÕ5A»ŠgîÀ´0É1æD;1îQíaPœ-g¦Ôr°â‘Éë° (Ÿ k¿ÝU›aî63 •òÅG}üJøLGBvоòL(Iu”÷D3y{”Õmã¼ ÚóŠçÄ×<âm@d¹Ìö¤—R#ëNÂ=¶‘¯ÝFMòØ{ax€4œc[3˵œÙ]bª¨þ!•¢=.èO²M~f:¦‡{ 5yYƒäF}„{íqÙÓŒÌ5M4Ã= PË'÷š9 Ýq ó@|úT¶ûÙÔš}ïkXè85˜îñ„zÅ1S“\ñž‡•âmââËTS °ælId{gYe µ·Îè¤Û;×€añ5 Q²…w‚³È‚R.`Ú× sûÄj']jí²>lÀ0¸âÜ–üq´±m;Ï0rò…-–CJ˜‡õî^kÞך8¨púH û€³ÒnÞ³­U ÷<—MŠ‹qŽð¬¹:ŽÃ=ãm¤¿h0 ÞëPNJ£­g„è¶PŒ6–Aú—ã2±¨lÛE±ó]NfÏÓšëÛ@¹Ÿ•!¹"<Â7Ý3 ÷S‰s´ë¾©±6%ƒ‰\ZÂ3“pu¶òÈE¥/1µ†q!ãRô“H|”Â?ƒm ÏdµAq€8ÌSS›¬Dg&Ûj™$ÜÓs®‰°èªáNDé«¿žÍªµ0Ï0Lÿ"Í’Ù‰÷m`ų9µå u Iulç|«ÀJ£Åœùàhùæöù\}{’_MBC<ÆK8Ùl”ïl$;q±2m¿¤à9îi¿öì˜jûí¤­“ÇÏ É[ÊbŒÚ~;±÷ž•ûz]ìôhû 0«åO­L„¶ßNÀºØkL„ÇÈ¢ÿØ `dª Zelig/data/coalition.tab.gz0000755000176000001440000000456613245253056015400 0ustar ripleyusers‹mYYŽ7 ýŸS4úHíÇ1 ± ÛÉùÃÇMUÓ†?îéêUÑH¢mVÜq®Zy fE%S 4+µmÅ‚yÅ1I„~8­x¤{ùß6kâY7Ïúª^®·t¢pÊŠgÝ ZN´&\Áé!/R†) 8×Ëë­h#h âÛêMP‰RX%AΕ,~t²’X=JSPî¦AÐê‡û޶cƒ”±†¸Ü3oç˜]«½@á]¿¡°aTjoønp­¹½Ë»¡87Ðb,es4ÝY {_H‡ÅmðE‹ãbÈÉ\Y]NûqôO_b k褈†øHËq2y±|Œ£æ Ool²éXM‡‘âh(™7À;s 8œ“Ó7á¨Uã’Z¢å6NÊ‚VíÚ!e× W}×Uð§©©yV&‰ãlÖ|Öú›è§t”k{Z’Ž9¬…'^4ùsfQ­åâði®SW±€MáꋼÜ0%ëØ`=º‹Ž‰ŽŠ‰‹‹Ö8Msw/'AÛ9 Ûó‰s³zd"aÄd ¿>òj•Ð`ÞÌÐ&Ž{q]‚µíÏ&±Z;«(qù]2ÿ‚Ù”¢q&* |svIæµwB¶ætXv”$ï–I^r ØÛïî©ÚPKÚqbSú¼³Ã$ÞìÓVWY†Xˆ\Ò'åÙ[×öCׯôzî–{Æ^8î*M¨^úAÍËTðªzpµ—¡ãÆJ¿ªQXµZ42T¦åâ£ôz‘ž€÷áf¹VÂCŒiÀéÕF° âFj¯#žú ÚöÌ»…{ª„g6е$åŽP*ë¹ã¤û®dC¹ úwè?òH-hÝ9Ýb ;GÜÀ|¯£ ÷ù¨Iñ–\iUá•Ë-âô8aFÖÁr‡XÑ2z]A”À‚n¸»_> íÛ"Ôî8ô€Å…ˆrVÖFP2ÔŒÄL\K3j„¨zk(Û®¦©_´ÓÕñE=zž2ÇѬ±0¢AŒ5äT“@üÖ˜ÌøJqiIGýNñ®ühºšuÁ)gÀ =’T½ß·à¡úAU®§ŠJ³K´#¦`JÞnæ #=ÊèÁ–øŠÛQºd„kb'(ˆ(“ó²Ù›m­YgjNõ9I3Ufíäh¤¤É’<‚üa_Ð&Ž‡Ò°Æ˜=_`¸kœ~(¥våÍ/{•îÞZŒ`‚<µx/Õ#=FâeÂ^çµ.º·S–ãƒ>ù³mçE7Åb¬5öÔ7úÎ*~9¼ &öüÂB¶æÄU¾çã*qvåOëŽkêÀ ÚoôœçKõZB$ºàŸ—æ¼§‰à:'P(Ñ.òxê ‹bE{FÒ¨Ë,¢èÐ[ØTù RWxœkÇP ô<·‘|¸"œ`QñŠu\•켤$:z` HT¿Á]¶(àqá4ʯIF¯•蘔ì\ñšÓtlWò±A«Ç{5acåRnŽø:Š{åˆaH1kÏ@Á¥¨ÝqR=ûŒ?dzü¼M3÷eŒ‚eLl±ÏݸVó®¿û¡Øç2òoã VÌP?{œ’»«šy‘KÕàÏ´/s‡X0«ò N •Á®¼•äæ WÔ¯¸Õ_è•\V¦þ’$ÇmРW~΂~гæB­X'°Ó® Ûùâ³âF‚¸¬3Ëqy”;—LuÊã-ÁT^ô¨ž„_5.bÌW–n;uÛóÀÜ&t9¤1¸ØtMY–]” MNo]Xç…+¼§ý;ÞÏŽÛ ”Ûñ z°ÕÒFÞûÁwŠÍUÔTP-·tLó¸ Òí¼€·®ÇàYA»Ý!]ñžÏ±!޳Ӣmcˆ–³9¾Ì¥F˜A±<‹cN£m€w〱%(Vl9¬L!­ Ë¥—åFaŽ™@ ˜…ëhª¿Â-UOï‚8Œý¤unÄ X^më †åS¤;¾Î<¬/$ØwÝ9/H¹Ó¹£5=IžÅÙ|1ƇЂcÅÜr͸ûy´³ÎS<=sWÅá‘£KÇ‹N˜A¯Æ]\«üÊÇð÷ŒŽ˜÷aäõhŸ%󖸶ºI§‡§ W1)d‰Ñ~6Oé®3ìvÌd‡F›Ç<×ïÀiЏÏñŠƒOòŒWŠ¿ÁR‹‚uØl7VT¤ÃÁòGΘrzð×™=lµ·8[Ðõl¬3z+¼N^µ·Ê"hŽÇEõ>ðy áe“ö­c_¯yì֙߬?lóÒ´¬,1ðª9>ð%§T¬©–š›®ÏxÞ—þ+Qp6ÇàS1.Tئ :U£I‘áªæŒ‹Í§•p€Lu{uuc´:wã}Îi§ó3D)ùCF'«œcÇzŽi÷·Âg"wƒ›¿œ${ž{F%`üD¡3*ÿA„Ú‘žùãG/çwЧÖ^½ÙQA½gUP­„½ +ÑU8QÎËÚ`û]¬É’é5ûveòK°Ç©{û„ÅZelig/data/homerun.txt.gz0000755000176000001440000000331413245253056015133 0ustar ripleyusers‹}˜Ën7 @÷ýŠÁ|H½—Y(ÐU¾À .â~Áùû’‚‡%Q«º8ÒÜѹc‡sÎ_w·§çó8ŸŸÞïé¿÷Ï·×§7úñåáîÏíõíýîýãëÏ¿N88Îï^ÞóOŽ~þù÷¿_oÄð<ð8¿½¼þ~˜˜?o±pÁbñ<¢0§Y:d±|Ùbå<ŠÅêyT‹£Ûs&e5`R’hRÒ_~ü@Is/i€dù¦ `º’Õº2’ 4m ? æy‘΋æó€t^4Ï‹ôH ùL Ù@ó©@²Ùü\²…Ÿî?3#X?ÙpUO&¼3= FŽ<Œa¼ÁÈëûôdÇGc¹ñÉØGf|6ö‘oxñäÅ^y n½/—`x ä% ±¼„ËËð{èìÁ8{ ³ãìή³ãÀèìÁ8{ ³‡ºf‘Îg"ÒÙ£qöHgÆÙ#=zƒÑ3ƒqMþ#J^þùxºÍ뇫&:ErÆÎDÇH`A:GBë²tä­t’¬t”-Èÿ $ë²ô%§lAú–S± J–¡L†²³ Ê–¡L†2Z eËP&C9X eëËÎd('ënùßÌlA2”-C™ eËP!CÅz† *`í$C¥z˜êB†Š· *Á‚d¨D ’¡’,H†J¶ Å‚d¨Ô ç¬d¨º €*ª`\¶’¡jªd¨Z†*ª–¡J†j´nˆ UËP%CÕ2TÉP-–ž¼ª±\½œ‰yör–%p<|9Ë8ž¾œe _.÷ .2Ž&æñÌY¾Àñ|æ,càx@sÖSŽ'4Ç#Úǯ·÷ÅLÊÞÚÌj-hS+l°»6¹Z XOO­,âׂQQ›`Ûk]%µ)ÖZÀšÚ k}‹‚(žf7¢EáF¶ #Ї^hS¯µ€MbgÇl7&yúL›l7&y,›l«ý< ƒw›,ÊoDùö6ä7W`Q~óÈñ >n°(¿yäxŸ7÷À¢üFOÆÀ£ñ÷ÛËûíñ½>O_(OÈÀ#òn ?x<*wkÆÏâ‰xdîÖŒ7Ì“3ðè¼»N{Ó ûë°[³wkX/Û»ÏbÃ,ð$–8?K¬BEB—ª4‰]¨ÒWã¢$‘Amâ);ê#ˆ£XQ%@N‰Jï•F¡ÏSÅ)N JSš”û0¥Qé³”FµRê³xRNkœ¿‚”Wû¥wù)F SŠû¥¾/“¿2”F¹Pú³Ê” Õ>@)ijðŸAŸ4Â>=é ú)< }vÒ(^Ñiþ¬4%'Ay N‚Ê”›Õ)6]ˆ§Ñ¢[‰ œZ’ ß—$}Á0u$AqªH‚ÒÔå© *}?ÒwX§zt!‡v$úr¤NÝHWÑHÝG› ÝÚGŠs.–æV$,«P¤Y™+‘°ª‘ú5ËNõ!µ/Ç„ágZ1ÿ…V× «$4®bÐÖqÆÀ!4¯:‘вŠDBëª]´‹0¾« …¡ é½8„!e¿øUVIHh\õ ¡iƒ„æ¡é•!é½uÕ€.ZÝ* …¡þè½8¤½×ÝG™¬-ÙX®j\%!¡iÕƒ„æU Z†¤÷ÖUú¤¾Eç© …!iŠsýÑ÷súÑWs÷Ñ ¢}dA2Š,ÈsîÑ ÊÜzô‚j„žkA ЫÊ# `N<ê-@}G/ðsÜAµ eGÄ9ëèin:ú²tdA™kŽ^P”s-h…:nL¶B½Š8²ç‚£DµB6Ïd+Ôic²ê´1Ù u2ŸÉÿ¹¿^”$Zelig/data/mid.tab.gz0000755000176000001440000014002613245253056014160 0ustar ripleyusers‹ýÙÎ4I’¦ž×U|¨ó LwÕË!8=ƒ&†ìA’w?ò¼º¸H&#²*óO w73UQYÞå?ÿ§ÿö¿þ?ÿßÿõúßþóï?ÿ—ÿñþoÿÝþ¿ýÑÿö_ÿ_öþ?ÿíÿ/ÿ]ÿÃÿñÿø/ÿ ÿá¿þ¯û?üŸÿåüïÿßÿüÿ,+ÿç_²¿¾¿ï¨£Û¿¾¯ÔÞzËéûû§ü}ÿñŸm¦ßUßL¥¥¹fO_[ié²ÄecÿÔEöïÿ!Ï>[nk¦õ•oþÍ¿ÍTÝg%ûÊ•×êiÔo }Öà²ô¥î®ûF^_ý¾o-ûwžºPŸ—òçÜ(#Õñ•’Sm}¹ìyþ~Ý÷åšs_k•Ñ–ý„¿˜ìBûˆý\¸ºÝưóÍÞÆ<—Ùç噆ûÞ2kŸÅî¶•1÷CÉ|šýŽï÷µö?ÍU¾T×7fÙ·;ÿ²]ÖËú}Z™£Î2¿VÓüR;7ËeöЗ¥‘ÚjölÒL©»gRV[¿/µÇ–V*ßøú˜#½7QìÞܱß6ìÉ噋=+¾ãnâ?þ³~þNGÏö\kv¹Ôó¥v§üÑï²ÞSž¥Œ2K¶×á.+Å?·ºl©Ù*)}öZÇ~nöãjkÃßiåÙesÚB8+Ó>Íî¿ùåÔÒøÆ²Ï´ËÚ~pý¯üÇö4ÝÇÕ2ºý“+U{×ÀeùsK8Ùmòbƨ%çÆB²{Ðe9»çÛ‡mš•Òlödô´ì*§\PûgÿwØ›pÖ§[˜¥ÅO›ÅÞDMö0Î[°wWý;McÙ3›­°Êù0»ŒO›{;ìËlÅ®:j®sÚÊѧ}UußÙW²Ÿ”ì[»í/·gìÅ…MøÕÌ\Ë>r”·0íGiá­ÚÚ²…ùÙS¶‡ EÂßv]MÍÝì,5[èŸ=ø9ÿêY™£V÷½mÖ¯¥’’vaù½­ÑÓðOÎVxµßfÿZå„¥O!çkg¡óqÙö_IõËö@FÉl‡ÉO›ÙošÖj¶B†½7Û¨Õ]µkÎmžÝÜú×JþlG×™X‘û±Ù&sŸTFmu´”JYiþ–Ç\=û«’Åô­¯×ôå¿e_iY´ó‹#×n[t°øV Ïkß¡}°‹ e•foÇbŒíüöÆe¥ÿ\˰÷iËŒ›~ác•YÁÖÇ´ÕøÙÚµ_¶Ÿ¾E²Zj­Øžg¹õê¾2<‹i‹Ýž§}T¶GÒßn·0üù«lïÚ™aû“-Ãmž¾7Å¿¢Á1T‡}–=þ¬w¤“ÃNŠßUK+Ç~Fmßü~_iXܪ°ˆ÷ÍfÑ%Ù¹¥Å£]—쎾߳ j—Ö¾”ífm±q“û>S*~æÁeÏ£ÚšîM%»'¿h‡Ý±¨YÀêïµ'{š.˜¦lDZ…¿Îvi÷Äå‰X¤vxêÕ¾ÖbCµ­¤½Ô—ÍÏŸóyXذçfÇÚ/ëܬ&.„/[ˆÃ¾ø›ãžÍó¹Óÿ:[ÝNƒÎƒ.Í_ïuÙÂöµv*Œ}r¤}™½o÷Œ-ôÛ›¶àaÇÌX<9Ö%wk÷æ–ù°[´×Á¢¶“×­9;ëš‹2vŠ6{œ_íÝU?á­s]ó…DeÚâ±Õb± ùÏk#»Ø-=Êe­Üí¸ghQ%ù=a …´À>Ö¶ËYjZîè­–'‘ܰ٫¥Jù}œ¡n%Ûb²-fûÂΚ]jSKsÛÇÖ9‹m[„¶â×_ÛWYtwç½½2Î{É-÷—QñµÍ’‰ed{Ôö¥5•&t¦ÚuË]gAÄ;,ŠY8¹g¹>°~þ>¦º–Sñ2ìüÚۛīuŸ+Y¶DdÎaÇj+çn‡.«>…ì$$dAægÖ‡íe·%IF±Ìvª…P}`Ýß»ü17XQ•ÌËNͳÙö2°Ã»¸ˆA °-ck`æ~¿—eÚkw‘ÅÖX±{µgÒ-©Ëçót]ó§I#„~ö©¥Ùî gü:;ÑÝSY¶V¦=cÛ’Ó‚ÏoíIý©}¥ín{$Eñï\§Ï[7yÑÝ’hñø¦-çr߹̥ÁÉ"Íg›ÒÎfg‹{¶4ÜM(kµ[m,*;¡&k¥é²åB‹í[{ùvX[²ÛsÏØƒ¹¶í|]–F& Ð~Œv_®r!Ë%!¶LgÍ¿ßÏÙåC¶lX¢`ÇÏÊÍ=½›#ìÛµCeÙֶĤÚá}~OÅÖv ¯Ì®mJáw¤U9Õ/e;¢2y¤¶¥¿“jæpÐf«¦¬zÈvLYþôÚDrìÃhªU–ü؆)gëãêtaÊB=2{Æ–}u¸W6›ÏøX†nÏÉ€…ɬÏÓÍZùù ÖRXNRÛñl-]~]¾Iȉ‰ÓÖrs{oÕvYu Þâ¡Ú´ûÍGÇɈ'®êîÃbÏgå„U1ÜPþý>2·ÞÉè-𨽦œÝ¾°Àëƒ7oËž“¥WvÈf·’íi·’3g®Ý±Å;ôëﲫìüpÛ±Q•&^{eøvÿ´Ê?f+ÏnÁn¶ý–h¶¯u‹Å²{ývâvÛ>åD3û·¾ÙöUx¶slØs°’1ýò8»pú$ÃÎ;æ‰è÷¹ø˜yVá…Ø÷&[Xší¾¸ðÜr\õ:1l-ÛSZõç[×7ýÖ%ê‹)¶°zÚ[w_6\ú˜-³Î¶þ¦2ÙìÜZn‹tlyvoõ$TÊ”ì ù\Þ ¶V‡×dg†E‚v‹ÀÌÚý-[RöùÙ\/QÒuµ» oU˜=:Û0ÓJÁ’îïË\تە©ÙZ·_,~{v„Œ½ªŠíC—cØyËW’XÛyäváò´²Ý&!Ã2°t¤-ÍGïÖ9Ílù-+G¦}Ö¼i¡~Üd Û× Oej£Ù©zVs.Û©niÒX6e»¥ÛµöqTÉ{ 4ËÇ|Öl‘ÒVÊ”Hºnîë¦v£I­…nÕßÞ‘çA[Vé³t:qVœóžS}ù™nØþQ·+í¥ZºÒ-47[…ßï Ìö'îÛ‘ÖmaYßpG›ÕaU’«Â÷dý|s(ú-îØþhäËD†_’ƉíÒ‘/[l¶¥õQ‡YRr/ä- pO‡_‘ÏÎQ¢© fW¹øÂIoç3™°=¥ä^1½KwzK©ØOVÚØù|éÌnŽTT7YI®”í;Ü´¼£Ð×j,¬¤%hßÊ×ZísˆÕ­:°dn(mvz†‚ȶ†€¶é&y_þÕWüùçÃ-^+?i”Wêè‹{qh)‰å–^5,Ûy[Ý–¸ßšö-ñâ#³Åh·^–½zŸ¼.»Û›|ž¾ç¹wWò½‡‘ŠU:–Úcçþ‰÷º®d¿ô›­,Ëè,æÚåK½h-—BƒÆ·<¬8àD.d1ɪöðCÉfï°“hUÛ sèMoÄ‚@õKÚøR)yíøýºëÓ—oT,§`³‹³i¹“Áò}_ÆØÖµ×AGÃR„6vOºrÙšþQ“õs8.{S½ýµÕ4Õ݈} quÐÒ_ÿ­U?.¯§‚&&t;7}ã×®[áÕYP°¨P,î[¦uƒ ?àWŒ:ŠXºojY{€Y×OZ4µ{±õLPÚi;ëÒ¶\P Éa¥»­ ímžÈ¯ëF)‘Å龘‰X.1vãù}ûÔªm+ð(Ë-R)ÙÞ/ÏÎzßósÔ´†ê»§c%„ïÆ+IåR˸Gú…­’‹¯à-ª‘Z¨¡½wÖuÓ-šFåb§Ÿ-2Vƒ=ĺƒo“Ø‘cwËäÄ_¥;ûÓì׺çbÉ'Ù®×VO½¾¦VµíP2Žt{ŸiõieÞ>š¸ÎvÉtS¬B´’Åö‹kÝËŸüð©Xæ”y!¶½ó/ªÚeË%‹D#Kíf:ñaŸØºÌ’Íß§bžÊZ%×9™éPH< õàT{a·5íç¸,Ð ËÚ­êµ kwã–´=åâ:vóôzm/Yžç2h+ÁJ\ Z,qek§vã¯Þœ]êê_5ÐÇœ…¯±gmý^¸–‹3,iºÖV9¨,œw>F•èjÖU—ݞݒ=Êé:k)BTh**{‡íÔpº¬…*Ó"|¡`aPb¡ë¯½k×޳ڻ³4€¡FRÔ{aÕ^âÊÖÌž¡-b±ƒN£UÝDØzND}^ò'e:­XΠw×´?íýÈÓõ Wá\opMº²j“Áe޶HöÐBC Â~¶U¨fzý(‡máýö“÷-ÝaYwæLÙ­­¹†/ ì°3›ÁJ%ÿþ.«ü$Û& è–&ŒÕêM½Àj{n¶×-ÔØûùÿ»] w±Ã“‡öGÍ”Æ:‘°qañ¹¼…_[^ɤ쯫>ù¶²ÔÊUûD2;x2wX9[|öaÛdØ6¶rìW7÷eaànñÏJcËGi‚ÎùÛvvÝrÛÓÖÔâZòF³ê·í(üÝçw(Íâµf+®N@Ò“™¾D#ÃþmáÍþø;'­+F£þkkç(´·Ì.ýܤŸ”Ó]h?¯±GèÌy‹0`êÉ7*>’¢ÝŠ´×<îáÄØ»r DŽí®a+ØÐùËgøŸæ} PX±üö·9+]j÷ê&ý&ûÀIÇí~oâ'Z횑ӒÎó±õsoùÓu~ÏÙ¹^t€jù»n¾åÍŸcô ãf+¤úëB9nÇz·`™3ÃŽqíWrÓ¼D㣇ÌÛ«¿-l;fú˜eq€ˆ¹2mžž†çêâyË` ìÒ]¾UmãøyS·;U5i¹Á)ÁÚ½nù½N…hÚiLÇünáJ7LJ½1€:­_è t}«bíækVÍÛ“Ü +žŠÅk«Xö\†&Svòæ{dƒäù|¿ŠrÏþ•,µí”77âS™¹³ŒˆÆ³BÆx{&ªO[)4¡,4çºÔà¶Õ|¶Ú­ù|ž“ÉŠV ùç½.d¿ñŠ‘“ÅÔ|úþçuŒB`¾…Ÿ¾gE—ùZ¼•Y¶sÁõäõËTí¼óaÈž®-zKãßSN·J×õîã$CB/;Ar¹§:«j–Ð+¥ ¤óú|¸šg{3ÐÆWZL一>o…ì$g&vv¾±ÍÙ”ýÞ]·šÇRåÌ IÅõ‚ê ç¥m .¨‚­F£ ¶ ﲇûhyر@j”•=ÙÍt]7}5b•m¿e»$Ùm9©Üƒ±ˆbGY*Fy“öz& ÑEuoÄ>Ê" §¿åF)Ÿ3³êºáOt¦ì3["HsÐíßFúï>_/†…á~¡-g;.-Åÿ|N×YáïÖÕgy%?öX¿|­Ù &‡–ÿ+­k «Ûå«üÈ`‹¦„麣•柶—[ÀaYF£²¥b ·]ÔjIߨÌtÈuê/ªM®ª+tí'‚gæaém8ËÏ| ò@:Ù.ýC78´4F!æKƒŒ¡š?íOÕÁ ðÒ×f‹n¿ ÒÁÉùO£Vµ¢gÐ pû’³lü´½ZE–ge0î¿Ùvçp˾'3 N×ü ©)pxÜÁ¥Yܤ۬¾Îï‹s¨½IŒ3(Õ’kúmà}¡¯àx,…“‹_”\ªÈu¾¼@†L€#öŸêË í²á›ŸíîF¡7éY¶ÓA®\¸¿YÉ=A¦œþæï|³œ!LÂÕ¾]Z¨8Ú/Žó³ÝñAšce"O²ñmtz2ñXá°º%:y÷Ë˾lúÎ 寨0õ7ÛÏ™¾®;ö?KL,Š}Þy3hîÂB­ÇZtÎô¼QZüë§µv6´8x4»ìâ[ì»­aZƔɎÁ?çñ«~í2ß°­÷Zm›§ÝàȔ罅©ë”=L€¬X9Å%«´•ð*¦þű_{wo¢ ŸsšŒ¦íÛj½e·ä™½ ötq“;Ÿ-úù­Ud"Äy;DÖ)ÅM¨¾1Ê9>›pb_)õ÷„mûM_ÐÚÉa§ì‚—r;·ì³Ñ²‹ËVÙƒ¦³ô‚Á”öOùÑ·½Rzã 2â_˜Ë?áÑéB[è±Ä (Ò¯,ÞDv0\ÔS°—jh¼\spaòu%1%Që³ÞWÛŸŠ àMl;±Rj·§,&F÷˜vò ʧV¢¹&Ɉ_¶É!-ÙäRÃ>Ï õ‹d纫•ܤ“¡ü>¯Øê·B.©ì~ÁŒû°½äÀ!Çl¹=cÁÜßÇj`ä–±½«töÀn}¯ “Ê_fG½OýûÑ\l´ÝùÅb,“ge¥È.Ø[ PêD4±ç÷eš wR#tÕÀ¾ÛE“”¥œjÖnwØó1ÞòB[›V•Ø·VWE[lðÛÑnv Q˜¨¢>ö³}; óŸ)[ëlµÆuÓ1©ëHûEeZ¯ÓÎ/ŒA´±¬À™ØÞó[Y|s™áÔ…Åf/bÖ:]¡Õæ´Iö÷Ú;µUlïLCÊt +Ÿ® ¿Ïö5¸âNkë»3Ö¼/lg×XªvU*£ô²%»nº`{‡¤¡Lwm¦Ò~!öÎ}ÙÛ`“YjÓ@dÕÐl«xüᤠ`É •¾¶ÛºwË\Î¥|@4èZ6rgÅŸ³LYûoµ­Cë\¨¨²O*ØLýÀOeð˜"Z4.¡«îrúiß–MU~ãøÅ[K¶«5[ù2èÞØééÖî!Ç(5ÿÿ±ÙFó}ŸWUdç­ñaÝö°ê‹|…ÌžþÁ!=V®+þå+%¡51ô¥ÿ[~þ[æ»gš7Æ/4kèËh*ÈÝœ:÷éÇÈÊbZvO°ZFd×ÚJÕP_lN Ô[ŒV_Ù¹c//ýõs6ψW»’R—ÒÝžJs˜¼iu€ïض­™m³PŠ÷lê_¯å* þ CeœÚu³ùÕW9\3žeA¹÷`‡€?Ã-™¦×ü±ÇûuCFËÛrÏzÚ¯ôH˜ »5ìªâÒàY(ü,˜A†j·{3 ¶NÊK6f¨”DÕ´ü]ØEvcB¿=dU\(‡l‰’ÛTFÊ­¸Éý¹UoqšPgλ;ø…Œˆ| ·“—ù‰­V`ï)׈¼Iœ,´K1ÆÕÅàÜìoû˜Ì•yA3¬-d»ž¡°¨½ôV‹ý ß]¢‰Q“€Ë Dµ8Vvèøó€8@È ¢ÎDuÜJmÚzô,6‹zVçÀY£êz3ºvå™fVóÕ¨_ymöOå–‚2ÃÍyg+Ù¯Pa$U K—ZЗwí‚E· ÂX-Óžãþ@]V›{Æ–Pwe ô8_¡"æ¶…=^Ú4¦q”:Þç™ÍL !–GZj8èµù¯Ebp ÛdÙ¯«Ÿ» KæüíÒ‚¤n5´ˆ±7í¿ºh7 ‰QÛ£ZÈŒY=Ë<7Nl‡|/ayìf"vÿöÞyZâ\]ãÅ·Jû‘âoЗòkІÐá'YSÂ5Õô}ºêàƒ6ÞºE„VÁjÓU’ 59»au•ìX¿¶$’;ÃiNø°È¿{èZêæÙ©©QÙ•Ù~§ÚúÎmÜzŽÂ ¼!9ž›EÛ#Ž8$èRÌ3™É}ùa¥¼Ø¾`ÿÔ«ŶTîo'Ä ¬d@½"tû=­,pŸkZ$ca§›nºŽ&¨x¶¾ÊD°‘ÇÎmôy-¹I[aŽIŠ–;}Ö›ó5.4ñU5©Àc|àèÏ£Yv!¿Ém[gv'–°oÌͺ0°ÎŰ©&PÙÁ¬©Ù‡4+ÌbXö2úïmžYlå†ÌC34{ŠwA³ìù¡µUfvT‚D àŒ„3ìâ6ý#Dk@PK,YÝF¯ÕU'vÞÚÞÈBÃ×ÿ¸´(Üdׂ’¶5fgÇý}s_è³RΈ Ý—Ú£üÒuËó’ Å•(YXuA½:PV¾YHÄJ–¹ÉJHRáB -}K4IssÚ3¤â²i; ¨ó"ÓS ÝÞ kºzÖZZœðZi_çÆü·ßÉΛ™]j ¾ÐãÌ[Ôd(%|—µÐƒj–½[¦ÒêyìIb:ð‹îr~]<-„•}oYCѬR$øþr5F~Ï ³ Eù=#^‡ýÏîáŒnúQ˜àO9À¹ãð± ‚'ö­ótõÏuœU 5æ0óβþ9z&ßòß €Ûò¡E×Ý´=b9ß¼B ‡ÊN£˜–koM} ¶Þ9‹ýBÚÜbò|+†.\÷ÑM }ô@Ó§wˆˆëý¯7œÁ€Ü4ât®›Ée±SÑ>[ÒKÁXü3\sÁC çÊ$sÿ»QÞ™§[a2!bXÒNY¡?ÏbÿÛVt¥jˆz C€ú–Ì– ÈåÎD?‰3¢œ÷WL'2¸,2ö°Ú5${gâ˜Õ·>{\@›Q€Ã·ïƾÁÏõa¬q# ÿÙwzÍ„2Õ ú9õ¾ë¾tºs‚àÚOJå—ÂÛ…ýó£(‚OÙ7ž©%’¯Ï¨BlKÁ|·ï{Ÿ‘Óï©>i….ëõ"ZÖ¾Ðg ?ì Z✷òðaO ùýb±o‰YÍÊ3‹Û^v‹)UHÌWŽ“óyR6°§ëžMbŠ@Nk)0ûV,Öz‚ pR bHwƒˆ]Ø]ÝÎL·Âhÿçw!qÅ(“Æ«‰‹0ÖZø‰¥‡y‡ÀÍ>yÞLðù~ŸI^Á£k·ÿpâ\ò«½!„ ð“([k"(+X²ÂÐ\Hýqê§®œq 0Øn†ÿS=‹+›’aÑ@é÷Õ$}f‹R?à¿ -¶-È·™±+à $Ä©SúB€U|{Ù˜™”ËI÷‚´zÊ“Ë&¡gðÄ!`ôÓkÖËéÕW©P{ÄÔ¥ë7Þô§Ÿ+Ý´Üšl«ÂÕîiô£ÉÑ<&ÍN?»¾¥WFÜ@áa†E†%ÿ]–$ Š?ò¥I#zûiOo‘K¥²Gz7´*:ÐîëÙÍïp[xnýÌv6ÚÒååS"š$‚eú~™„>qU?·Ø~’¥Šö–¦ëÑAüê¶ô×b²"jÀÉ£íÊæ»»…™SE¦öò»OWNßoïÈ'Ñ4Ë €wYò-%wn;å(^ 1Ë-G’¾Ýb²Kò27Âfåf{½[}y^^è’·eQãS³ü¢Ÿ ¨ðc|(Xب…ûЂÛþËú•e}1+`Õå!¯âO;hþaì§|ÁUµoR¡Ã¹¸?ÔÎÚP•/8δ¸žÝnä¾rùy"Sñ$\H’÷2uCý` N2RÕ`L“ný:‹¸èº0¡\‰KXJÌŸú¾y¼ê>Aé»-–ðaŸ ¦Ïm *äÆß¾yõÛÔ…¶éýMÛÉ£"ÔË4oåQ÷•Åçs” L«é‡uWkq¡o Ðü­ÌªÖÎé—¥m¿Ò“hô^(âúf}h±†Ë~¡#¤Õ@´ý÷'r¡‹–„}n¼Úi »ßÇ] CûS¹«xc´Ýj?1#ëÂც½M4Ò ¼¡`õZ®cÅ„Ò⮑ÎGòxJ tô¦,åµÑ»-È£ÒÅf,9ôÿ(-•óŒ%/Ü9ëJh‰îW¢ú¢æãh³ûÑ~¹ïyN†8t´¥¸÷Õ4) ¥á¾[L¡´„©ˆ$ÜM«j×N=oE+Ø À¿È® òXC5ŸË“ìý>óö²ô$éAÃZtÑÚaK­\ð]dœvX/;SüuA¯sæ4êB Ô%…IìosÙ·ƒcyýÈ·øŸºr6_ôqÜXn5DaÛÃs[û3…qŸß´b¨ìÁ€ÇJ–êu·€Ðwa쓤8Ã…Õ§a4"9ɹ¿â¹IuûîA !Ò“æ¹TG½­VÿÈ-sN³,ˆ%~¬ýé/`J:”3ý̹üd–ÙzMŒu’8·g¯OüàZ•¢ÛȶTô ×GêùÐ ïŒeYhÝZ$V–ã0KÓ|âðŒª®<#€{Ü!Y¦ÛÎZ«É~™oµÿî‰â–£Ù‘\é‰ì §ç»1P—®Šå–¶êÊCÛ)óõJHUØ9c餤v4¶n‹ðæÈ†àf°+3¹ó ¢¿°?`—™ùþj}½Kf¼œ2Œ6]Lãö"Sàt4»e½Eh0@±¾ MÏçWG:D]¿Ê”'eª–ùø˜r*w”ÿù}7ój·" ­àA~9ã÷j}¹¨2Ña²Gakr®ú‹>°<,KÇ’eÛ– ¬/ûWX“çØkÂN&C‡²˜—. ª$4Õòw4y&½‹#Ï¥AÝu Y¤d€F¯Tô™mz %Ü¡ê¯ßI»Ñ—{Þ‰É~&P Ñ^E[ö•ÿ%Xv—Ý9ýO}fÙ ˆ¡‘߇$Æ$UÓ6EÝó?­]Ž_w7<šÅpH2馨úòn|€ò–ßÚ›,y‡|=óÑBïÂÇ D·+¡„о•Ç­äBºŸ(5l)]ElC™‚Ý6€_†6ö…ÃO kÙ˜4ЧqYðû›Ÿð&æDYZ$íÞóÜ)“+¯ˆfG\A³¡’¬¼ìÐ.l_÷-/P>ð–¼SÁF6± ÜÝph2õÌd²ý~£ݵ‘ÜAòMHªxd’ôü󶬔" }l²CÚÊx9ÆR²ƳìÕtn¥èsœñT[3•ðQÑü½i”y|˦‰_üq×Ô}Ô~ÿÓ›AK¸ÌÝgœççr5êGË‚ÚÓJ‹z{1IâºÔf ̳.–Œ}x;g—¾»||pÄ>,{jy$,ÚE î,$*ö¡¶¯{év"UÀ2|uI—ƒ©1¾½{†ä¢Ý¸r§Cº8ÙÒÞ¢VûÜIHƒ+äWÅ€¢@†¦®ÄoU´/J‡þì²Ñº¹m–r®õãß$ø<0WOêvyïW¤…)胰 ,ðß¶dÙW¼}#„£-cèû Û÷ÓÆˆÝ Ë÷ˆ{ìÝ–ýòí!ÍW‰Š3 Ýœ|Á Ÿƒ”a¿á®|C÷3¦çr€ÒêyãR%{› D/÷¾)N.ÄyÛ}ßÚ²sùû›€Dƒ-ãtÔuW“åB˜§Ä#ªd ÷á$ðE•«‹N<åÃE5ìµkWƽ=ëé]èÜÜ’\B§ TŸÕºå··?]Ø}eÓH+‘t ‹ÎiçÙ ÙM^Ö¦ÐF”ļMŸ% fÈŒ„VÂüÍGua¤2eêÒ¾NËq·#ÒþÄÆIv –:Â÷D*û#Ç3zŠ…L;ƒÂ•ç³eQPõŠàL¦ö†^¦oåY(,nB…ĸ+”QxèEñ¢‹–ÆdÄw3Œˆûç¾p…NžeÖ–ÀÚ¶éŒbÎæÒÍØ¹ë¾{êH±ZrYºÚ^ZÎà™ßdj´öIô‘v®ø hf0À›•ਉ5 ‘ WpQ½‚šõMz >ôYD¾jKå]¹G»‡ÂÚ.$È1¢@Èg5‰ý3šÀQ,™== 9•§½-/JG$½{ᵄ²uàö Òèÿ úf»ÑÅ®ôài‡‡ËGڛŎhÚI]eúnåw*JSÄo”X‰øý…3=ÈQ=®îÓÞ¦YÝ…ü~õ´Îë¶ÄΣ= è©ùµö›Ãê¤c8ü6 õ|7Iž{Œ b¡s”KÞQ<¸ÓörPRµ¿o?–ÐGçÞ3jç# <ûW·TÑî8ˆ¯ôDr{û¼§øG]Q#mè#¾ñ’ÖÙ@ÎØ]ÊÁš`€‚ ôó ñ ReÏ¢¹T$â;O’õ÷QÀ"9è]»eB~K‚F”‡@¥”RÍ„+t¸$iiQ¸U&¾/pÁH‡ÿȾ!» }’uù*Dífµ>ÃOB÷Ó ¥Ëyˆ~\‡ Û‡‹®F§o0Ó7ÎÔo,¥¢Í¿ÉèÏbÆ]>ß¾°ûÞŠÚøeÉt k'l ¥]¸ü!‚Çfâ} ˜ ]?À*&SÀu‡çB?`nLÝí¨ƒkT^¢î ¿ß3 È·0ºp;;ÔçAäqq½ZB¶*èÏO­8<·ª=ý†ñ²qocë9ÒóôíÐÑ’†…|šNCIé¡•J¡Çiå&!ÎŽ‡õ©mŠŽ‡ïr0?â³m•_ƒlÄ“½ëJxĵ–/-?󪘢tR§AÆß/üÀÞ ßî%S/5$R~5¹Ž>žiJ`›eI¶#‰TÙó<¨¯ÚŒæoº ¶6V+v?:iâµ;xk®0òüF¦ˆÌŒXzvuö´¯ðés­î¨AQe~Ó?d‘Ñé`íDÌz…ºny!†J«ïCµiØöé;ÙbÎAÑò.8$¤sÌY‡¯Œú«×i†™Áhk਒<‘Bôs½¤„ÄÒ˜„k:Å®>‚ïæ  dKû½@¥½î"eOï7oœòïä²|É"²H( õì'ðd[©x¬E‘s ²›)£Sõ‹' Fƒbd©–Çé‡÷‡xÔ…Sîm9t!Pëc&í’fŽô…ñdPዾðÜ…ÊÐ…9¦v Áá,êðÝ3!ï }p¤‡u[‘¶¢Öí¯2E~ÖsykJÒ(¯‚¸ß®õh[ÆGpê©Éµ¹w×m3Ìõk %’eH‡51[TR”þ%->ìqüXTa3D³ÈÖ1t÷viAˆRRâ%L ¶6ð–ô½œXO®£Ë`ù4Fà`ÅCv†rÏÐ;@@’4Ö|3ItÓúó…1çPSZ‡W–2ïþh°ÀÅ—aG£ú’>$Ëž{ L’*¢m˜„âp¿ƒÐÈÂaÆn o‡üsgJ‚‹øŒo)/E ,ÿ$]Wßoo4~¨É`í&;åÂ@2ɈEM´Ï ToI¶}Ý”+‘íÍ‚sù¤œñN{3hu'í‰ë×6†y Jˆí ‹ášnžÀ9@Y94Ñ›Ì ‘ëÂìÁùq„½IÕ y™æ:ån>ú‚¼Â™’*º£íßVQº}ʶä?ù›´ê¿*?ÊYû•¿ß+¬ÝkqÙ’!ož´üKº½ñµ/ô?¶×J® Èך>ÈgÅ×î`¸à0qºÿÂî¢Qcš…ð§O9oþA߯']=Uƒ4;ˆ}aauKpLaÖ—éÐ,ôϨȄ™i¶é¾Nùá4¿vfï e³ \‡ؼž$l¾YŠúKµ >á“ÙR¹Öçgލ.…›îÝ ô£ôëÖ"mD[dISD5m¿fö_³ˆs$iëÏe±ª¶Ev«ì`(½GH-íY1ªZéNfÿ÷ÚÄB`U&‘ jÏ= šº/ôd0;®hìYN˜P©xl¦.s€/M{1[J¿nÁ½z û‚|z«ãus„ûYçºÈ^è-‘viø§ƒä‡ûjüè(ãìÀ·—X¬¥^L Çn ºWRxâ={4Z#ÌÚ€.šžpÓ…Ý×®‹‰ã MÌLø•}úì:Ù/ëô5ɵœ+ñ‡Ø•õ+Ù¹02öxÔ ñ`R˜|^œÂ\Š…E4áf,üœìç, +r|Ç r H‰ê=ο¢g9a @1êöY$þ ÕÛ.¶N`ß—!:æºvÝôªnÄPÖmþ úI¾ðµÁ¤û¥vY 6èúÁ6A«†¯žaM8nM]Jùªó³=3…¿…Z/ƒqoTË*” Ü®jOg†”%´8’FÕ±ïdµ€¾[PEd^-œ¥vìrBøsÜâ٥ߜ+ÁyùË®#àƒ@ô¶ìš®-¾…@âm…lkWRq_9}b&n̓ɼdÜLS¾#éó´@d®)j æÎ—’f]ð„S°\qB”háµSšÛ%©Iè^ü?tÏÙðK=C ÑÀ1`[®Í–ŸÇÙÍïÑ)~¡xó».­<ó¨P±­$í#ù$;pkhõ†1Æbꕜ–=u?&W â§(Qqæ»ùb%Ö¼ÅxÃE ô$< $O§âéçÛzY²†- ‘`Én å~—_C ðü°…§Ž…Útõ!ú& Í [Á(¨!&â#Sa·‚QëGv‹iÒ=ï KÕbÚK9d]gx¨ë†‡&beÀ*£ñüí¦á™2Ùã"±‰CÏ8Époú§ÃØÜ}sÉ2a„"kèæy›æx—?<+ Lc#ìoÇÀêäP·#Ò\°R`Œ^N¯ºnúì¬(Txõ-_HèíØp(pk¹qOßk±Ë‹û)·µwÝAšºNmè5h’ØÔ‰T¯•‡ªUwj2„°hagk=)Òõÿi¡L(Øs‘Gwº'·½¶/쾉L{‚³Õ¬Öܳwàý¢lu$à«ú54q’?aP*Ä3”Âøí•ìÌ%=YŒ*·¸ËdÕ:×Õ –¡|Û¥=?ã« °.ÀÙHÒÁlÊ/æ/ÝS‹ÉNP˜D SµÉr¡¼¯ 8CD,Èè¿’{“ [ù+CžG_À»418>Á{^n…1Òá YáéÚÁ™üÝ´¥”ø›Çp`¡îäu3E@’ExëÑhþd³Ì}é 3yËm³Zùðýr$øu»„ŒÃ'§¤.¾ÏÀ/ÈýµùäŒÊÜ2Û¬†jIê[q庯ô²û >0õÂ1·õ»t‹^øo_Ú™š Äᪿ횯VÆùn`>jÚ—Ï£6²ŸPÍFŠKkº‘wu@®k„¦40›ŒÎ~Á:ä]Ø0gY} CË?"£¸ëSRpPv ( Œñ^eºäIòtâÀý¢æ¸OgbLB‚ü$W¤´8òËçÂ00djœwi%Û_½Vï ²-Á ̼/‹‹°—ÇS•Q§Ü õ:”àÚNJ¡}3‚/AÀƒ¼Y©%@;¹Ð×XO`ÊÆVþõ¯÷…A\Ë–Å}´ÍdÔ®~¿± ‹ôñiv\§ê¬ 6¦¯t¿’@ø¡¬ zðZRŸ+ÿUnJCƒ )çã5_÷®!ÈyÚo£“Œ°4´™º—®ZÉù CZªR2®CÇ?ŸlÓ-QëÜ$“Ú|R…~.\žÑôuD­¼àÕrNÎ+J DEöíup>:E~…!–¾oV¡9Û73M×¶ª,]h(46á‹èǶ}Ôéù mÿ»›É¤¤a »Ž)çû¼ Ç$7ˆvýé~ RsyÛPùQÀáßáì· aÒepà€¬*¬Ž¯à¹°øøˆZ3Cqœv²‡ðq¡ï¤2I]²râ÷Iº—Ö§«=`¸ÃˆcTÙ¼pÆ6Ãë ð _ —¸Ì÷üñVs!Ä›¼æô±ŽþiÉPÅ‘¢8ö`=OeJ{»~©tÃDÜ×[Ã3$ƒÇŠCò£wÉ…ž¡9eàG_§Â^ß ¢‡®´LgU¯Ï_›Ê]ìJuy Ø¡^O¸½+gÄч•[È £‚œä=ØÍ~”ú]h¢ߨëOõl-;ÒÜ>°#·Dó²LÊõå}_Ü!z ø©ôÞ£áy~%ÍywÛT•^Áª;gÊ|‚œºoàš(Ç!„[nQx>2‡&7ê· …s?çã«h  ß©¦t ]k–³£[,*Sh5üéLã›®k¾Æ”ÒSáä!ò䧺ƒèl`ò$ó§áIsn¹î }xBëP°?ÀŸŸÊ²¾¯[õŒd-Z$``v\ÕN]æ_ ðBºÌÜùŽ£ü-ãÔŸÅü¡B º»h³úË© ù’Ü¡©qO®4,1t:7ÝtaöJ'æa+Ÿ®ý¹eÄW݇•-óÅy%ùï÷V¿eP\Ò¿&-ÄþöŒÞ4bAîRX’7ÙÆ{¯j¨Öñ$â…á£lîzfg+ð ›©*²^ó»¯Ë‚Œºjv;Þo6ŸÍ€Y‹Þ¶Dpƒ„xÝŽ»õŽV­¹»Ahž§”ÚUHÔ±‰áDp"bÖ•i¼Pûe6‚É`g®€ˆˆļÃqý[«Õk¾ñYQâÊ„/â쀭8V+Ã$˜Ãé—,€_ õµà\˜Ê4z‰¶Â÷¥A­€vL+›•’ÖŸ¸7Ä&¡cEß|2<ñýc¤e½D#uYƒé„šß,Ô]¯  }PóŒ Å¦î©ØþÀ t*_ê%y4˜K‚i²Êä«Kâën&a ó…>IßS±r®sG :¢TÖT|:Aöã‘£o”ã 4‡»Ä, ?Ô{×…á0¶JTºf¨ùY`ç3¿}ehï‹2%Þ&¦eîm7ºVîäLôrfàŒ¦]Ëñ[ô´2A|U°Ÿå:7o+cFDî©/L˜øIMIï½BÚÚ»„|,˜ã‰çŸg 0¬[æ–²«ó^ºíró.‰i,ôßKúè÷{=—F÷¸a–AõungwJ^Ymp”œÁ»Œ0Ø" ìvÌR-{\¿¨ýÓÕ=ôŒ…2¨e„¤öm[jºp|®`íÙЦ;éöf,RT…ìf¿ònoM,Y‡îIÒü†Skq¤öÞ^23³ñ›‘¶Ã2Pl îlþpHHBQÈe¯!×ìlâΨH­O ~c~Áì¡Ï5Ážä'>0Yš•‘\mD5¾Ð°»"ý<ÉRÇ3M‘¢¿_åÐʾrFšyÙòÍ`)œÑŠ]ødPt?pá‹ w_ð{ mV÷$í7"˜"'®/ÿFó ÜÝ@r¢+WT"ix¸ÜÂ"±ÅH¡K¿?³d_~AW³×…VãÜýÀ»Ájñæ”ø0Hm’z®]àžd}BJ¡'Ì+PÈúì¢AZö›»È†PUÇ)®Õ0pO¿M?ÌÕ’’–«úï¦Ín¶QFÕð„ìJ_Q`cÅýü(3þ¾¬‚¤?]KNÕ㸢ëZs±y1¤©ûMß{éZé”_²ÎbÊMÛë;ñq÷ñ‡˜ ¢¸íÊ;æ}¡ÿ‘TÙ¢oŽÌÉý#Frawa…RE > º¹œ–Ó~:PX]Z ”qh&g•ÔkƒêÂ|Œ, ¡¯…Þ¥óÝa8–´A(^>Éo=P½íQ£L§ ÍÁ ÚW"ȳWdzð)|¸n¸¾M#âÊø<7”¾/¬6@7¬Hߣæoe®/ÌúÅkòd+iß6„ C%`¥+  Ä2‰dþíW¸W.æÒkWíŽÆÁô;æ›ÿî"%wœ žzù8جÒË™šjúåµúáàHi áèƒ;µÝÊW“ÂøÜ*èÄX½øn ×ܶ¦¢5•Ñ¿¹ØþÈö5ú”[MæÇþÕûYñ‘9«mÀ™¹.än¯GÌ VG,ÌÀ²Ôñ[e¸•yÙzÍÚýœ ÞØBûW<šÖ4§¦ ÒºƒlCÓö‰E±“Ê”ÁüjÃÈYø£‚[×” Qëw*<«’tª ¨5•é7û=áôkK>)%ù¶ïsÊó&¥ù\éEf ( ôoÉÝËn·iŒn¹„I|-?Øø>H»¾¼ßÝd IÃy¡üŒœ@}5t­l™´q‚Ýã±èïÆºh½V¦xYîl.Ïepè¼Ô^è›X&Õú/Å–w;hÎ0Ö± 677Á‚$f›@3­/†§}©‡ba¿ØÁ7ý¶eÆ<>IP%>–8Ú—H‘*ñÃLØYÞÜ´ìD€-,ª™Í?%u]é :ÛYM4XÇÆ«—ƒ—²Ë`7€F~Ö¶^S0œG´%’vÌ›ãî±¥V“:* ac)9˜¢=g»n¬€>#·ÞÉ:DŽW&ž’ç²¾‘2Â2;Yº®ûpVñMdMÚCœÚ2k3à™¸S¯¶‰ý½ü\ •W¸"ÊMµ0qpJ¿GÃ|ÒGÀ,êéJõó#¹A)Vć¢Ù·Û óê–z®0íQ iÛN°fs°á£”)ü‘ž¦¤Ú9ü£„9 ã\ŸÎ8ÌÕpÆ-‘ÊF™ù¥ëUWæà’4ˆYX‹Qò,þÙ²,ˆ2†¶ù;(?j®¼4ùÑk©-â•ç«ei;@—¾-÷‰HÊ!Æ(#¥ç‹ zvXÂŒYy¾ '>Å[:ÓÁ–õ+;áËO}'ã¬\*ýQœòã|Þ辈•vhËØçþ6  [Øtdp*×а[OfQC B `Q'vßéÉ´ÝæCvJ+O¯š: ÀÌ êk­ŒÓr‚?tæûS‰gði×äeõµÌñ´¯ta]A;®t)`%Z¯`*%ølÅç_‘V±t ¢¸³¥‡ Ö·R1Âò³>9`Év…r¢ä¥~ÊÚ$ƒv úÐÝ`¬aÉ”¦nX³n„N‰ 7°¦qˆ6üýa>=@?± ÚŒßHš.šOúi‚@´sÿªćXµ¿—Be€þb™cmÃo¼¬¹ jŠ\ÑÊöV?_­ärö,}>Qâ–0/&Nw3’¿ÒJäÏÎwZ±ýg*ðQÍGE̬ì€h úÓ»ñõ= umhx8 \ü´ ã†En‡ö¸÷­flÞˆÙÑ휚ǡ­áO‡œÉKûIXg€c^ÓŠ.˜€>‡\ÉÊÑÚØ¢Ã#–XÎO“ Kõåy £8|¨ú9&÷eÓ;§K¹Vì„Ä~“Z m±û‰V  í4@Zªýªy[RÞo`L`€~öxw?¦v]ØC›™3”Y‰Yöáw.œþl)Û‡ X)šl'é'ê åëA®tÈ[2#¬t¢Ž®[þ'I)È›m^daÛWz=nÌ.–p½SÓ¢—Ý _€&ü¥¸t”rfÁú¯Ÿ“rî't¸5²ª˜P¸àåF\U‰ÅÖºË{?Ÿ±‚¹¨€‚“!.¢ˆÊœöyEâ%÷™‹SFj™çù¬â3o+ìÐûE©]úðÕëétžœ¨7 ?§Ö›0ZEU³ý eŸÇÆl½lŒˆîâ´súc¨IžðG5éºéY¾h)CV®j•='æÆ•9ò)-”Ô¦¹ öˆ/êqǺRPÓ+cH?ÔÚîû‹KíÆ4âÊ„@R4ÛÏêÜ2±ñ¶cÈgÙG"D¤Gþ+ï¸2È4€†Ð†›âÝ‚äRoüj9³dÓPm_þÕD0ìf¾ûb¸e©Å¡AÖOÜze‰ä{/ØÉ,¾2üX×.L¢™vûïÊZí9°½Ð½Y»‡¹åR2 &Ý}y‘pa-°²¤*eBw%`*ÛZà9Z~"[!TóÞïEfTZEECÁêžÁ}kqÒ¼/·l áÝ‹bÿ9Ž-L{—‚CndqT®ó)㯭†âŸg'íE>´e£´Î… òïBØ…m'æw­îZT!š’îð:ÚzHô&Ÿþæ÷ŒSx4oð¾Y¯}ÄvLbÒýÞϬ²E¡¹¶3Ÿ“þƒ¬q),Y ÒsrÛìâÏ}à,25€zÕÁ=Šž»íðýöÚȶŽe1÷ØWÞÃÿB[¸‰¼†0YéÀíÎZVZïwéÀ  J¯Ê²,ù9ñ,•å~yºgÉKyTä{«v¬¯Ü¯D˳Ѥ²£$ýpïs3x?÷C±¾gŸŠi×Nï@ôµä÷.MA$¹ºäŸÎK¯}P“߸æ¥"åÃR~FÚ¢9Ù1è6º%e S¶ÝfÔæ*cK-ù}Ž3ƒPªîòwÒ ›Ÿ¬F~æ&ýLë¥-¹Uù}.q~¦9È-<ûk–&E¥{J° '[%#ï¸Òk,R$·ÑVã´•âI«G—m¿LdyÜÚüô¯×„üç B1«nqÚQ2åùIŸv­'Æ)ŠN.l.âí'ùç^.o‹IÄ¿õoÍR…Î!©$nÕ ”V}Üï‡ iF:m£’kòa£òj8V°1Ìw(‡Åìöòx!âû…,ëÆ6ÞÍBõÆÝJÁ&y¿ •¿ £iþ=qTðÐéù:úóÒ|äk‘SåïV`IØ©þܳ”(°átW6óéU`ÝpZ¯:zpSw¯±BϰƒÒWŠJº –¤äÂA“9 ÏU_8`¥ñ).æªYbÖÂÃå(C_ £X¼)V\‡ƒ×úEjT 2JÇ ™&¶DW“ íß)ú5$ˆêâm]Ä Æcöyþ`>”*Ýýóî_}J(Ý&DEöèÌw>èÒø^þB`ìèjѵ'ÊNñô=uÆà7pŽÀU( º¬dmßþ‰lØ&á Í¨.#«ÅPðÑË–Õ*>¤(è3Ƽ¹öó¼qíÝn²o}Ë•³M« Ê^n½rõ‘ƒiÔ•„fßµx4E|Ò‚Û\PééÞP®=&Ì= óé§!+ÝŸåúQdÙð>Ñ…±²n(•-fõßDE… çý ohW.˜¡™b±õksöë–˶ûn¾°ÈµLÃ’;}x‰É­û•èô ÖÓ.‡iÜz8älÅ*ˆTžŠ‚j`ñݯ÷ì% Š*3ìý#ÑÑtAE 'œšËÆ`@nK-Úö 39Ú:y'©kãZßš,E¤R±ã¾Ðœ¼¹¥1mÙ'7Ù|Âg¯lm¹_I*’%[Ps0<ªUþoÛÉÜÊñ‹ ºnPAÁ°¹·-XòI¤Óm°ìd”_ASº Ÿô€[”g´ß–PJ¥«¥iDOÈfÿ™¹£ûQ‰ÏÈ”l­RÛ8è&ú㕾ñ³õïÌ’NW™[Þü§p ázÞÃÏbíÓSå·l5,À¶¾ÍIË¿èïôï àÂÜŽ.ƒø/K–ð%ÜДkÂæ—R0¦°¤û@|TzÊ7¬hA¶t/Px4Oß]yè´ ôÔ}ÚI°Ïèñ’ôTþú•zc#-«†p K-ÇÓéÏŠUÜ÷òDg"|”Ù\žTz‰»#¼}ž¯€WZÿÅ h˜_؇(Pwgû\*a’Q÷ ð¶GëU®ÐC<ë®\Œž 2ÈîËas’üéÜkúÂð·©½ôKkÖöBxÒ ±Kp«­'ÿÙù¡ýtŸ¢=Óeª4$ûF <¿²ßc–B •o‹zeçÆ‘Ôrë O˜ºgÞlEé!ÂkþXx{—€„Jjéò·n‚¢…ÈÝä™?çÕ­6—CMP[U¿¡Åu_¤ÜÙ’¤gãúd§ñÉ[ÕC¢èsûâ ty0Éß ¢ÃÐÒG4q>AàúvµßC[¨ɽHûi`ïÛn‹rm8«Ã›dZ[ÿ‰?ï+Çè>ü&1™eô:÷ x³Ü 2ûÔÅ9ƒªj$GþvGXö;uúûáÇ$¤ïñÏ{fSIŽß=€oK¡j0àìŸ Õ©–ÿŽ´fms@å›V<`Ût7®®þ¢’±÷vsÿüÒ¹]@?å.›äH=ó1}ÊJ"¦Ø8*8õ• KäßÜû!Æ7aÌÖJ—£Œ›˜ìwdM£oéÙ£N“6֜ڪ»E„rÑÌ(óOpB’5|JÅN®m˜_'%‘:æ˜!Á…U.¢ùŸh$«…hÄ9Äí´Gø`à=´{2D;•à{nñ”eBš}&ˆÈ²æ‘œ÷V}¸Jó %G€(AÏž`M.¾rptÒçDIï»RVÜïàH$Ÿ¶ý·4€?]5œgØ‘@3IÜó‚”1÷Öe¦Q»äUס I,¦rûšz;%ð~#ÒŠÆüw`ÒUÇ™Ê!CxÜOS¿L2É‘pù\è£DEçÿ´P¶$àüBLg¡‘bbÛ6·wÛÛjþýá%ÜA –^bo€Ö·{´­í÷mOó9Þ‰Û\Báò¹˜þÌ+ÚÏÄsKÁ‡!?3 à©ËTøÍðýØ»¸Pu’J(®=Mmu_™ñí#ðŸô1hA^G㣠Â$ÊŸ ‰:+ é{–>Ttl6Ñ1â™ë(oí¤º}î1An$„^DÞ—T#øê»2ÂôPd.lÿ Y p¯Î¤´½(,<ø`A+µ!ïˆyâ[r€Ó·Î5À}ûÅ}n'4 ‹tí;Ö>ýÚëlAV;},¯ÛY'#û]u{eC(›ù;gœpãú\ÚMª/ÝòÞñâܼ FôƒJð¹4£òKk±+:WªÝbÏ(dbŒä³,礔qÒÚE0/¾‘B»•Jðû¼ðü·íÚvn}¿QîÀ0AGÿÙ©ÊŠÛµ ¶!ËDÚB “ËÖvÄÞò„¢]LÆ}w¢SwÃ7[á‘tí.¨å5pyRrOTƒÕòÿž÷¤”úsò­°Äœ‘°áÒüìL8G2 -©2¤š8)œ—Ýó)÷»“!­I`>ýuGÔP,¾Y÷mG:&v“žâž.°Îi]øB”Ýß@ä"³2ÝË^hñ„v"/ã…õÚQTdVüB³¸Çªß©L÷L#Í=rô™±:ÆGö~²€Ð?·ÕÖëbÝöu¸på~éÂ@[³.îëÑ·ÿ¤<Üý'°"/‡q’V˜sì[¿ÌßÙ£CÛ¼±W‰ÝR«ÊŽ>N¯òžÜCˆªì¾'õf×LîZ×\OŸ¨f¨í„ÿ&Æ.ØÅ(Ù²1ïUf ­ˆ&OÐZn ¯-DóûD´ŒäyØâVK]œ/tº¡PÙ3¡´Ñ¢eÔBëѼ&óïÒê-íUnÀãrˆ@EeÞÝ*bª*JᔟèkjÂÌÝMgëþj×"±ÍÉéŽnœxÎpYO2U_™ A‹¨(Z4ó)•+É/$z±H” åŸú-8„Òܪ_FˆáÑ?µ”m21i€Ÿa0-¶åËä§”ÛâgÞ7$öž$g,þ@ƒþÇ ý»Iò¯6¦@°ŸzZk2ö¡ A–\“¡Ê8~bûÞô C‘^pý̽>«¶¼ùF˜õ1PСÚkBT•=å,Í¿opþ¶&Èiox¥ÚW_q4U©Ùm§˜½súJv^|a€K_£K%ÛjAâ-?ýÆ·ª¶f²’õ#Y½ä9”—BxaZºôµ*÷L.Ń™¾PûäÉRòÕàP=l§¾Û‰•ìŠüéI9Ês ZyÈR—p·èÃËGç¶Ú’ ñ|w±³Ø‘1yŸRk—:}Ä4`&èO°\áEVÕ¾3%Z‰E ðiCú²á~ìü•!5¤éVŽ*ѽp’}òæÒX(]hƶ•¸Ç(5­H‡–3z{EHE¾¾³ü2D“…˜;DþáñÜAKoIøý²£é·ØAú…,h`™:ûlšoï-)àÙÈ{Ü»È~²úòîCÛ²‹úŽ,%Rh·èO‡ž¤ÝˆÅiêiŸçÝFŽÎPÎdZBcŸ#jæÖPugMPÄßòù;CÖ_oKÞ%ˆÆùd€<(+ª3¤úí$øý…h“Yá r%·)kgè¿L,X\Þžð[R,A 0÷B¼xš‚÷(‚1ñ€Æ0*K-aZkŸÅ‘`ÔR~¹ƒíòpΣ% ›^eZñàlÏõׇÂ8 ƒ ùܯ>×ÄòvGUƒY"¸ppØ=sd?E©B¬ðþŽìÞØ8ö ²ÑDz,ýÚ1«Ô›•#å?”뀌vvÓ!PMB^Vý”ŠV–*é<Õ,{ÆŠ•Ï7iãíAˆK3`ò›[6a©".¸Xår”´r`àj#ÑVð›—zf¿eÜ= ´pC«|Êwؼ®Þ!ó`¸°.¼ [åÓ Îí-`†áÐoø+\Å¡_kÂ/,~Sb¦\Ud ¤94àX¼¾WM?3wå"xÝd/؈´ÙF \ͰéSÀ¾gJÜ6jΟGYý Qe>(¯~ð‰gUÔ¥„­Ö"ãÚJ³êBJ6)ø.F‘„&Ö(¶ÖÖ•ÊV—¥Lú~ã”ù|`tk,‰©Ê3T:Ee1™³l¥ÑîC9ZãKÌ©y$Xö6¤=íkE¢£ìÓTy;Bš‚þÍXæNŒ™Ž¿ùz"ÒA±§z"Ÿ¤Ð„D& ¥+2dÊð³Ò!!QLðÐ:Û1µAyû2Øq§‚ýéßs ¶Ò³·0Ê(…CÃ:|‚‘ÅG4t QÚ½æ¦ðÐ×RúÚ˜ëýbÛžÛmͲ]T|ÅÄÊNRGþ¾'0­¥a§øC‘#™!6 ³£Ï¾¡!§‹R½@5Ÿ²î‘¬ñçõè^ú?2'Hœ½Í gç–%pµŠÛ":©zä,ú’¾fhL š”k9¨-'R]8Cc˜lØÿ RÌÖ¨ãÈ"ׂB ƒ\!‹æÝã Ø^ëoNµÏÛ}¯SGu¾ W\!Ÿ×0hh”L'Cܛɧ~CÎäƒL›Þ´‡#1…0‰‹˜Èbmg"íß,`99Ç$yÊì’å4ßÏ-> -øÐ¶žÕºcyf+~6®Ž~ѾÿÞ8AÆ¢Äx÷‚W u¢„{ŸÊVPwU¬YúƒÑÐÒp›ÑÎX’D4œ×Æ9-áfI#B.À\¤PiÓ%­g3’ñÎ짤LšaVA·½’çVèkC‰ˆÞHê¶±î*„Õ¸Ëls·‹äR¦Eüç)FŸ ·ïi1‘,ÔØûh„*Ω»¨OFŽ,B‡ñÌfY¹¼hßµÀtÖN‘r¨j¨‰+CŽ{ƒf˜¸e6lÍ®ñgßá ^à5i­]KÒÉ´Ø73”!û÷àMÌZJèvÚ4$‡)ªä6‹€°r:IJŒó±{º$OÀ8^Ô&PâÒH«ýް`(µ¬.XœûÕ°H¹`†ç)ªJ@»–Ø¢yÇ À[ùWÁ®Éãž®*z*–º‡¾äT^édܼÙWgËh è×íÅÿ!Û8w?å5H ŸíVž%¹œG´›ní 9tè»ÔI÷œ`7xšŒ3ý×ÒdŒ¨Pó˜_¿G"+- QØ{¨!v|»úchïç½`jý øÒœÃ€Ss¨3zÄMª´7:GÝÇ¿YlNž|bñ–$ž¡X™S0Ü’bûMì{H3¼`z;è1Ì+‹¢lnm‰¬*PÿžœÂ Ùt½Â-P"{åÐ ´HÛé Ї‘PÙì¯/ÏÈCZN$Þ Ð8%ðF}̵s¯§©§¿·nË¿]è±c¤PQŽ\·˜4^Ÿ~ˆÂÈœ@ó°Uv34¦äCDÚRbÞ³è¤FȬàfõBKýÃùëï² J›«?6áÌ 8»Ý¥TŠî~àÆ5Ø= «a'ø‰ßéY¬ˆå¥^¿,@N"!q¥î`HvDVY8ë‰@mɦá‡o¶´˜‹J7¾ýšª$)£N=°oøð¦«l«`#)æeæð´—úÓ¶êa­i‘=œ3#[èG§ zÕ„§†Q½…º*«n¸y”TíW—~Ã%bŒ§ÛFª{´ôàW”&>œ!â†A ;›<7½ÒkÙ¤•„ÆÌGÙñྜÅÐ.ÃYܧ|ZAãÜ©ÞÖ.%` À`¼ ÿ\E3…æТ¢© Éðü¤´håW¦'9”£ŠÐ@M\|™@ƒ 1Žö8'6гq+X ba¥™¼þžÜU–çvðIØâuœ&O¹ËÛ¦ æ3ñÍ!Äe=B÷Ѐ;{:ŠlX»$Ò9àï•îu¹üº£c·@šñÿï® hޝùÇb‚:yLçÞD@ c>nBa7ßóëoüûzý™ª¢Áß³÷p„r·2ÄA•Ÿw¤Th¤Õ¿çz„²ŠñªLIƒ&ÃÏ#U”W]>|$l7T¥»cEZɇüýЈ¥ŠšßÐÕ½@ںġ@e á(·ý©„À0™a(K´ÈrK~¬ž…+ñÏ‘ó»/ª)?/G9*ʨ€ 0:ZV®d!}¾,Ý(†ÌV·kYHØgƒW¾Àyåvçh”Sô¾NM£0ŽCÓ/^Ø».´¢üöïÜ àG^è ÑG‚ÖÙÓw0vŠ}c{¡ìf0¥›Ì„Žk ÷Âh:g¿œÅm€Žß¨çfI!¯ÒL`¾%¶NzÏ¥ƒÊªý3†¹BÔŽ·Ž‹ | ÛÑÙú6œO7C`rx>˜öºç%#ù™Ž=R* \€½î ¢nòZÞG'¿™_¶Ídz¢Y˜ÔzCÍñ{jGeuy¸IÌU2=²þ]—«¼ÏåÏþ5bë[.{êAþÜÇ)  ˜Z†¿ò3}ÜJ¡˜Ãlmà …ìýrg,ÏæÕtÚO…Yžž¨˜Îš< ãn±ÕÖW¹}0v¬2]+ž)Cl‹ökÿ¼¿žÊÈ=NP¾öνôö~}QÒqw<¸$ÊË)~ {ëW¹JÒØL˜}žà‡âS ’%Äͬ;þîŠ~_¬,ª½îQ¶ÌɱÀÀ§+M>Ú/?˜¼èìÒ‰÷ç{gükÏüœ³’ÄN%(ðà^Ó©BR{Ý_ :,Ô|2g%¨p¡|G1iˤuß5­Îþ‘zõ~‹÷²É%`cqo•²‘S™vHµl¦Ð§ªàú#¾¸¿œÇÉ«75°3?ØMØ c¿Ò9Š%“8ŽôPÝýñæœE~shG³/)LåÒr!–«}÷iÂ;îèT9¾\æý¥ö^É”h*}OÀ€§f54!Ã!ŧKæ­-°$‘ £‘…š[Ëóš:nM¬x8m· $šÚ9i·î)Ðð0s¬Ò’ðc~fIêGæ(’„™4³]4(ú»Q ¬€*¿þAÂ\õ5ìä¾ù[•øVÏ@oPzªÚ”ª“(&DßRWè¡‘jWXG ‘¾yº:ê°Ó»=Ì{,OåOþñÐ8´çðÁ·ÿûŽÝƒ¤~ý2³ZÀŠ9@ó–ü]zDßjK$ód戭?5z:[–†Ù\*Ûþ;'¾6I¾‡m¹¶ÔŸ¥bQc¬†LWÙ‘ýèf¥mÙJ¯Û( ûTŸŒÛ|+mu…t ü‡BÑòЬlù#¦/–ú¡Ysv+¯¯´XIڹݲÆô@ËæiÔ‰§$ß$fûŽoÿêýHUj0']ç9¡|øÉ¼{ÝNßA^"âOd”J˜¨±±s;Âþ}OCJèz7–K¾5½‰ß“ fd€[Yl-×r„7jÀh2¥üáN ŽX 8$™úU1¤ 5ª†ý¿4Í*Þ§F¼ß(µŒô¹bþ"¶Hsï ÖÓÀTa)ÿ¬OV°7ü€éä ¨•6Ø Úg¸¼ûèŸß5Ò „ÕQ´Úoå Õ˜þoó›6Óœî6È‘¯ûÑJÆP ñÜs¾oBX¨ÕÝeX Y[¹¨n5€wÏû" âVµ+KÛ  -¬·mið•ä‚Y dšbÀë„IO®AS˜où/ÞºìßçvnÔ†¥çç3濞 R"kƒÉ=Ü‚“/ÔcÔÃDEºpÏJdwÂ")ìÏmz%´Ñ”dÖrh=¡iÙ‡ZK‡-µXžÏRè¶Û7PZùM/¤¶VºOõÇf¦cSœÛ½¼«^¯J"ºOV tίÉÖ827´BÀÎk¢vD } ’ô ³¨N·Æ8üŸªTÅ»¶‡Yg¤´9mÕaáËb$k00wØ NÂ̤ «1¸ÃgÀ–` {‚žå˜Œz&îáÏ‘TKÍûp’µÓx>üªÝÞ€PãS]{gqᇩü*6FuÍÃüIÃ2èÕkI"¾eõ2]çaä:"'cn;ÖS[~«×uÒÓÙ¨ }Z—ö> iBFd±p þ6¯6Ê6²@Ìr>I`[Lk º'ÁŽ}B2îÀ»l£bêŸí‰“ZœHÁ)¶ÚÊxëG%àìç’5è´û3Ûì~Ĥ|3dtDÞˆ'EÛ Îd2R.!Éÿ lTBÎ~1³ˆô!} H6†3!¦ ºhˆ>Ùi|(`G5„ "dÚKžƒQH”\¸'a :G–íÁt†×ó“ÂS{æph@I]˜¦ †åJ]ìÚÏ‚×5žWo~ô(ÀHêCÈ÷²Ã~:@wD¥‚„½P¤ÙX ýq¹é-µÈF?ŸàX`ˆ_.DÞL=ŸŽ|s£•áöÖìsÀüÒG A1ÐyrºñüðõsµI$"Ã`¬w÷$õš-Û@ gŽdEÎO|qÃV‡ùu4ëmb¬4\ JŽî~mâ1m麕ýöwö*¶xÈzè÷П¦3Pž¢ÿ‘,,A2fRyÃ`©XêÝK亶‚<î0`>›ûÞµFm%„¾ÚÜ€<ŒQžýg>) ä%Œ>îLq€/÷[olšv : 1Mè´¯ÊÓB]ZÍ¡$KhÉÂê™Ì&Ë[w²ð†[ ‹AyǸY%#Îs1i&F³F¯XÝÒÄ_ !­¸$8¯Å[ëôM ù Y~ ØY½%O¶yteZ[s·o¥î°Ýi”ÍüòüDr· Ùì-ð{3é?¤VwÕ 5Þ…ÿÊ! $í} wrýÑvèî-t)äÇ‹´;ÊeƒÌçüA=šèVº?½äž0÷iY•‚¨¬a‚G+ξÙëè¡øË`›ÞßÂÞ‘Åüé†ÌÉÐË.2+{e°gÄ¢nÐ^Ë=¿(§ÌÈ–¿²vYG#óòôµv¯²Ç¾ ¸/øZM"V aÓ^H fX圇ŠäÄu-Và´w°ÒR’$tAqV¯¨NJf *[Rr_†Àl³œ>#Ľˆ~G7‘šç_óä°^dÃÕý`¾þVw ¸/F‘¸ÈÏì6  ÷øÿ§Á󒺬y3Du°Á¸óy‡ÆU˜—…5Îm*Ö ç ?þ!Ö˜3~¿†ó1‘òùzaUzFhz>gAŠJV÷K!œ^Ã’Jf/ÒÔñ• íÄn¹5'ß:–¸»;;STl€œ ûšÎ®ß’²V& aÝ t)­ìN3¤ç@’´]I'nh†uØÀbòlžf1dó„òÍ=M¶Ý}ˆgÌ\y-ÈÖ¬ñ£«!.]#YŽA×¢snŸšoݸEmíî<;h!þƒØ):ù÷û-æ.ìvÎyú[Iïtsc‘Zh¯­Žrn‘Ïÿ¾' gùËò.¾Ðó+IŠå Íц-¡êÙòÖ4?ì=æÊÕï~*×eæ$dp³ø#à«€')v\uÐx'»É%á µ¾ÈJµ Ü6˜oÇLa§be„T=¡½(?Ž’~2#{uAÅü£^% .˜lÙ|œìéèéÞ¢œmÐá"­wå*˜ˆŠ,xñÅ ­þö+oo)¾u…šhj¹üºg}WÌ-@ÐŒí´›ó±Ì«GÛ5ÝG™Í, «nŸ'Æîx´šBèãÈa{}?­­ &~EÊ6 èiy¾Â‡¾™Í¤Œ¨¼ ÒÎô´Ýð"ãôg/v1 %ò­0C«no¹²!íFÔ%ClUÐxú燡ÝwÂ, ß]šUo>MUb`¥ÀuË¿— o¡þä1àŒh§HŒ¶m°MR{h¹Ò;^ëtºGÞk\!†·îyãˆ@S†]˜¿ËÕ ;ÿ‹XKð€ã!ŒÓ_º„æ’ƒ’q/¡”¡Ÿ7³±ƒH,…êMYê/·¸U;ö]v؆³ËŒroèïªÊh”­ÌÙoZ9Œ±í„†Þ9´UBKôY/´HÙ_p¸ÜrO„ˆ»ñPI:CÂá­ú׎ª‰Ÿøc¢ÎÌaÓŸTÙn-dŸwòq´s:(õI Ô]m®>¢aKî¦OÖæTÎAS#¿ð³s÷ç_#=Øø•Ò/Z!g•#æŸóº„ZG`þÈw€pÅã<˜Ý);›=RØî9é™b$û8 Sp÷㥀}ê™Ä3$+<0Lï»"LwìsÄ(ž9Âc‘$Bíq1]ÜÜqé÷¢oá$J{ Q$û _>V.›ÎgÙ?hœed¨»Ôl\aERL&˜@â[¨Ru½ÞYÇVA š°ÖŸ0›†¤t¾ýô̪*!P¾:¬±Kõ´³Åƒ±éã„ú¡ÜßÔ5 _’j^+è" QZr‹Š˜ü³!òŠ|=é¬Ê(³PÅm¿bN=ËÄ7zb Ãô¬ƒÖ:(Gi}Ôêk*tšéÂm¿­ GbÐ…°“{øzÏ2,/u§…€xSèÃcøŒ†,Ø3¤Õ6•okJ•$ ®Í¯ÉÏÃGh“À@¼ŒG®«vχ6‡?¡óÖè›;KUÕC(ó§™!•ætÙ,š®wˆ!>-l!#>Zc¯b¯9X[îoq‚3A¨¾óni þÓ)];†tkÍmåÖƒœ<$¿}dèåeœwe†ù‰¦Xñ ”=ñ,÷u³Þ²¿gñ hŒÔ‹1V+¯·naù¥$³0À&»µ;5ÿc™jek!‹a4r… Ï ɯp»<¹Ðo½¥¤mªnŸ8"ÜyÜ‹€ŸÏ]C­ø|  ý|(3—ç'¦)ÕxWB=4t„®6–FaöªüôxŠ9iyo†Øv×÷Voi9N®-xÀȯèÓß½¥¦n å0èbFp@žWÏÞ…ôšCö‘ Þ1˜²tãÚÈUèYºÐѲSHEÍ—&+0N#Ï è_åo”Ë8 ~ ?Ä霣IO×wcMÆJîpˆJºéðEsÒ-HÆPµI=Ýò#'>ž£Ð—l Z„€ŠfŽ|ØÞ¨Ô;,éÊÔ›~Gù¹û±¦eþ±å 6°)xÉ•…ÆF$‰Žc KbÑœ¤meϱ]§ï¸ ú$jñ9V”"htµ9_0­²Bšý»/;ÔæëåóÖ7;€þ:üÎ',«Æ É ÷ÉüP%c›¼ׂ¶Pñ6¬ÌãÈ´ÈrCÀ®µx)ðê'…ûøSQ¨îã¬G‰õÙÕ£ßñû;’K¯b>àÿRëYï~¬4BW¸þ1+Av³¶“êí2¯ýK¨’Ñ$öcÔ'™³]ý¾PuuH74«;:@å@Ä.¡ ˆÑÎCû5ê éáãJ?np?}Zµ >€,|ðAó ¢q…RÒßSßH¸ùíZ{%kwŸÒú-e¢Ò¿ˆ†äQ0òéÎdå®-‡ „„Ñn`8Z_Nb±ÍÀ†Ä»©È ‘ìöú¤ÒPuú:ˆJŠg 8y‡ÍÒaÈô"e‰RŠYt>äœ1ƒ¥ÌAá:›'*Aíuÿ’Q)±%ì±e(òÞ_ð¬£X¦¹E€ˆ›f3dz¿sÿü˜ÌpvÍÛ¬'äDŒ Á¸ ør(Üÿ&ÿyµÝ,ƒñÍo“èspn ôÂr ªR¿y ¯Y|~uO‹vYé×_G` ãÖŒ(<œ7ÝÊpVFO¾Šh'¼ÉÆ ~=Y¶¼øÛõã¸Úrã» ¶–|²Ì/³5´â2÷ö&MåµJq‹ƒ­%ÿ¥?ï-ÂÞs¬‚ü »Ù‰ãerl&niÅ@—Ïî÷€ýû/w5ÜDìpéખu¬\ð®øƒ"øÆË·ùfèY«ï@×–Yê:Q*έwîI à°$±“.,jë;B÷­‡¬sFÕß–y»r äŽ:Q8â7«2eÈ RO€pµœé\5Pkœ™3và„¥ž¥ ´¥T}÷Å}È1‰)!ûæäècwµƒÉÖãÕ•ìQð=@ƒ”v—G(6°S ŸTÆÏ“J+¨µ[ªAKÖ“àéç²¹‡ºµb …·æ~Å›¶ 2$<1:ŒE{ãPµÜ“þ–oþ-Kñh2TLW$´n@ZQÐð­ ªh“îVÙìšÄéuX.yÞ¹ZÑVF&ˆ†|è¡q[GÛtŽJÍ¿AÐÖ0u øBïìŠ{{ÿd¡ì""¶ ­WV¤!¬¿Ð~3íþÆl$—<1ñ²CÕŠ¾!*šÑqÚ0|ÅbT``àÓö3¬×=Àa3ÒqØ‚¬<’¿‡-)»`Ü)ïI÷­§=Aq&z ×X¦¨å7Û²ê£é^ zˉÁpæ“åm4ƒl,`6ßI·›éË›ÖoBŒÖJTê.ïµÑú¾m%ôBŒ„.F ;Ó€»@bÇ 4¡1î@.©Ø¡zp( ÁÅéXcÆÀõtB ÉܯjÉ–^Ú!HÆ*©¦µ•޶‚ì:C;ªÊ8$öõ=¼æç%×ÕC§jÊ,,m½¸Ó&TkÌß5€kbYå;޲Üâ<‰,A{ Aéu€Ð89RßiŠ1UÙžIé±ÒêI·«Î8!È:¡½ji:˜ýtKGá“¿E…ð‚KûÐ8b8dý± Ó.FSžøG<סdá>ZdjZ/•xlÝèT@ ÛÏjÑïá˜4¯ vø©èaDi'<.Z\»YÝ=û¸×0"}­×-§1Ó Ž…X,ÝðYOûè(ôŒX¡Á[Gkî7È”>~Y6 ƒ4¹žz‘jy˜_eØšË린‚G—/ÃiE¡yÕÓÞ'â´ãeþc¡‰ðbšåk%;}>|®h²o…Ûƒ[,AA`»>ª“Ú¡<ù«„Ê£Çäå¤\cÛ4ÿnTiîc½T05Az'çÖŽ^I´èƒÆ0}Bx%Œ¹ñäD¦Yù´4”°äàw<…÷¦1m×·¤<ÌrñKŠ 0@»ûÑOR£­U²̬NOÏwŠhh6ƒ3ÈÚb݃@5è²ñÉ-@]pȂқºqr›Æ”`ª#pÒD;‹¶:êa±&D÷²ÐÑ8Ãih¬ã‡½ÝF½Qÿ‚³W²c ÍÉ¿—ð¢í2?Õ t‘2«‡Ö µ¼`q™ 4!c> íöJAž ÁQÎŒ„<þ•ÎÝÞÄ4N„”I¬¤60ïÌ•sß»£L³cóaÉUlRú„õ_ýTû‹6` KRÝÙCö¡‰? Ý«¨K$‘t8 bÕ@!Þ²÷r­wU9Øúõˆï.e¾p£@>söý2„” F;&åê‚X~a•/¯e8ŸÏA^ÅŸ‡‘@=Ü˧Ú6"¨\ßê§.Y’úÆ‹[·)¨³!£3<4¥MÍÙÐ3ð(¡ù—Äh» ¡§#W=~âT) PÑuö¢ì;sp6¤É Q Uÿ>ÞÈRŸD(¬ œ2¶—ý⌕ Ò•t tØ‚zçÈ|Z<Ó7AHÈF‘2*￉©/è8Ømu¦0ÙÁ­Ìx/Iç¸Ùæ›)ÿ’¨Ë>òМۧ0.MOáÄýbäÑ`µÄ#Ñ•÷D¼)Fg¤¦TÓ1ñ°ÿÒ&…YxEJž êÞ çx§ñYÖPô«W4Jbñ>e@‰ÉòùÊm&b’CðŠº^1ESyrúöµ‡4[øuâ3@འA.¡íÃ,ž‘3-äžÈ.kóÌtJ<²,J‘ª]_ANÍŠ(°/µOžNß{ðñs´ ´Ö)ê.rkεÕFÎ[¼,TA¶Ù82}Ç=”ñ$`ˆ_Êt°á¼*,µ/( &m`!™ÖÔÛ UßR$¾>æQr0Ù¶¾vúT”²? ¤2YÑ•öŽ+V¶ô»ý$Äã&ˆêa#y¥¢‚¤•šAJq~GÕÎïtÅ5ÅýLÕ£PîBP‡!cKå8±ÜìHôK} …YqÓF;B²ß} _ÒÖÑçìâvxÁ.ݯðJY4¨ïíNЀp»[ïtæ8 wS[PR”ƒ9©FÙ£ Œ$xöáðž VSšTÑø¬S&è·“^°Å1þ‚Yõǹ@?0ï{rÜŒT*ý¶€à)Ât£?ÍØ#kp g,Šo/P1²ÿ;`Ë@HyÏŸ÷€*dÆHRcvÔ»ì&b o,ß2Ir"XŒŸ#€úø-z6”#‘¤d¯= ­úEmúú p’U!¬øŒ²+»­.³¢·Ýì‡ÔT ®ù ±£ý4én«ˆ‚I“‹€œ<Ðb@Úni·Æa3Lå žw\áþ9lÖô‰,˜Û‡JÆkã¤}u;®ÅAßBÈN[<–¡Jû´Öݲ‰‚óvµ™ܼ&¢è43jÆ02áæü9«C½ÃÝÎÔš,T‚—nosÕz[tS‘yÂ㌒ä¶Ò6soù·.忀1S÷|H'A³4„%ÎmØ*J•îK–Ф œâ-ïò‘-KI¾È»èñãå=ë)<ëw Iþ'¼µt%}Ûõ©ÂxérJ°E†¬äŽz‚L¿ ªÑCÞ;ùŠán唎l¿Õ¶20_À’¹9‹Kˆ¨¾ü’&IfA«ê’ ˆ'ö~ûË’§€v••„Ôý5ˆü‚bCb²ÙP.yÔ6iYÂRHM¸u#ø#BB£œæ&0 í騭@g%É;²ã'Xïöt ]V^xÝ(ý”G ZÈ “Kþ*ò©*eç¯jÖÐsIï]¢§oôšþÍžm`ÚR¥˜ö8 üä2Û}x7íW0~­Œ›-'¢q(`XüÓÆ–†Bg‚òFsC/ü{¢_R´tøMÇÊ)PŒ(?ºøÛÖ/Á–+…‡#VÙá,6Á÷˜þ§æÚAÀ¿Ø+À¥Ï´h›µ ŽŠ–Šy4ú~ôCì꾉N¢7´XŸ~Ä7‚DOQÍ‹ßm ,0ÐÈßÛÖö€RÌ)xÞ“IÐ|í‹q¯÷c-rÒ ¢Á?RQx¾0ªþªø8N°FŽZ§RΙ|eš5'ê À@*ºþa£ú‹g mŠ9ˆ½=k%‡ö:üÃ$3ìx}[ݘí[˜N©±n`ô…o/HÔ˺Smêéª Ðx¿&«ÈÛÈRÓ ¿Î}‘üa’Ã~Þ)ú >‘Z軆ÑV ¯öÎôr\:ÏùìÅö|k{}h‰.µH_ÊãXn{7Ÿ ¡NïÒ®µ¤_å;=2€}}»k¹©9Èu¹lØÉ6PøÁ¸£ì;‚„ã¤qmŸZò^ŽÇžaÝ”$(܈ØíØRЇĴÌEžSI<Øò82Q¨9íý[ár™ÎtPbd·#¬=†u‚`ÒIh;E„‰ Ȱ]QùÍyö ¨`„†–\R¨&Û)*ÔÍÎÿ°óÀœm¯ŸûfÇqøûþÈsM:&çd•=òjÁ6>¼WQ=€¤^›orÎà?ÀƒCq½Ú*³î>·Ê!»¬k]ç…ÑY¨¹,Ìzø\™ª]Äüž„•‘;­°ÏšŽÖ(múæ´í–"^0UõØö¶ÿ!_¿ÿèQÀôçDªßqˆ"ŽALúÛÈ· )›ºã[çÚ¯ø|läó@²ã<—¾wÓ²>‡_éV6Aj9aßè#­®QÜ/¤f—žå;Í€Þ[ÏRla¡ÎØØ%ö˜‘Ê¢ùf¯h¢½©…4 ¿îGV¦?V¦²ÿmECXBpw^ Ý Ê’mÌëT²‘ï-ü 9öO'%í{R`yImÅÁf*/B‰›—Â(,Þó¡8Øo¥·|¼Ï,PÉB Ÿþ=tœ6_AÙQ ²­«*iŽä#.{¨wÌŒ.íÚ\:)D5Z¹A'v·­ñ?¹hÊiE…4CðM°Âù4åO©3`ÊaÀ0ƒk\Fs‰xкƒ6ŸK×?5mHr³ê3Cªë!\ÒúÁ,Ô/˜¡ €Œ1fTJV'bj[¹j×' uä ±|xêiB;ŒÛÁ¿O}Êè(àùßD =,¿Ü4²œ]’Qw„™å3=#{=ðF Pò< ä¹]…ƒ@]MÛÜêm\§ÚX–ù‘‰Î¼*öP*¾vµÌÛwïÆ´‡È<gzêÃe'8ÉÞ¤1&z½ j‰íY_@‚RçxåS߈jÏK‚ lÆj³|ª4Ôü 7È·ð‘HNRpA’}‰ÜVšÎ#ànóüUäºLÅ!DÈ?pÌ[j„c-} zX5dS…™6,Ž^ž^&ýu?~„•Ý\îYɨÓVçt£ÓŽ… >Î[±ø@Ûˆ“´Cg¡#NÁÔ¯Û[…s”£2hZ䢧ºÙÆ»µyV`Vf´7‘°£ÑÕÇåDÀLjۆf\·|¨»y.Tà °ïÞt0úé®&í¯­•-±õ89³ØÀh[®;6E2ÚO, ÆÕšõvl>4HAŸ"dØÇ’ʾ9ÄDŵ §xàLíu5$Œ tpsÐh9‘שŸw6\5Äóö=Á–Ë Úm–B†j)ýpv—%ìÆÑ:Ý”F5Ý]°€RÃÖ‡÷É`ø4TÚf·A.v™ƒ­\dû¬Êøæí.ÊÝ(jáÑB\Afå‹#.ûif`(IöìÛÔòG î++ ViÞ j?Ûß²MÓÀˆ×B¹«cŸv°e‹2Fj liÈÁ2¬Sþs5 pQ·Üh²¾øk‡ד/·éVbÃX,”{r#zç;D£žüÆ—ú“·6s Åœ ”ýæÞ!¡ßÙ@Ù)ýD²F ,Òz]RUyÃ9¾V *·Æ«mÊÇ:ÞV¹_x–¶¿¶5Á›<û¸Zá '6Á³ô¯f‹¥)|r¸"¬B´¶`wžöC§ 0©¼WjÞªáÑ•e¢(½N0ªx–}§ÑJ<©ðü¾¡ 1ý¶‹3Û9½Ø ÕGEÎLéj-J©z®©p\L5W,Íp¨Y{a9ô!·5™‚wxõÍæ1­ +–5à": ÞûV6ýÖ¨ =$*Ó&1æ®Üê¡ÇÀ$7hZÙ{ãäÍG ®ET"æSp¡ë³AÙÎä¦gw‰&sèTa„ò¯Ö3ÖDB™~—ªgŠQ‘¿óp¦ìjpn,O”¬Ì€U¤¤QÝvz~Ž1ñ(Gð”²ÑJs,/?íŽ!šèpø*†B­CËÿ£™WI•o^vɘR°ã °îù°ùæ# ~̘”ƒùîNnJàËD#>pøÙM7sëPˆ}i.kP€kø@¥znu¾0›dªý!X6Õ§¾H¥=‡0d;˜¨¯÷ºuv¯Oö3(… Ù'‘;q‰Fè®ã…6‘ <Øymn[!©ƒ0™Ù°õî~ØœàÞ$üW8á¡ë]ÛQ‰\'Sø¿vG²Ôí"?”ãÕ½šï Øá»‰uÛ8â'‡2J`͵±ì¦'^”Ë­Ü9JDP>逯óI m¢ò¸Ël7ñúO‘s£o}Ö µ ߉&ÎÚè…ÓÙª·ßÇâ¿<Ñ÷‘ºÚe]ª“Ÿcå€×»Ýªñµ_´Œôp#_Ï}MR×ü„AüCåààb¾-œßö3ç‘@ÑÅ2ÿh›†"¶Ìê {*Ù/§…ùì™ji·õd¼A±RÕ„®ø0•6·Yj™0î… y7íÔxË¡ãC¶±¨ñb‘¾q:Wÿh-®)+FîF3±{ÊÊ[r„FùŠ…z Û-»¼ui2@p×aͪ- äf´—¯Æ£ˆa9ˆC!ÛÝ*&” yÿ↖`'!hÝBT ‹'¯Œg :£b"O¥R}ˆf á ˆ™¤”$Dî­¯4ƒöÒ*I0E}´¬ù^"”á‘ðAå}º¯Ê yús˜Tã.‰r]b+üÊåJ3رe`4®äq[Ú3©BœeYðפ2S7ºE6¢ 4üã¶ú¯ «3¡×ýóÕ:âθ€¥£”TǺéé~GèE:•‹à™÷¦)²ª &yÔnq¬ }EŸŠ¿ö…ö3ñDõ¼¶™4ß§ˆm.9 Z}­5²¤À$2vÇÛä{b/ãÛYá29Hð C˜i—zpV[ ·~¡3?®I£Èyî!(¡BUåUÓ°Ô¢Ÿd!I ·@/±ô…U1t×-l€BÈò'¶ä HÆ™:ºý†v—Bãt«Z.€³ì^MZa`̯¡ÝŒqökTÍ ˜óáCèÒäþ•£«t ­ñ(+Ü?ô—&Üj@GM ,(nüK Ó®¼¤Š/dh‰©) É)˺û„6U"ô- |eШ“–˜ë!f´Øƒ"(za´=P\ÆÛÄècúɨmT1Ñ,¦78`• ƒ>+FYˆ^IM™gž.©M[þ«Q‚ÐÏ牌*ÙÅvÉ!Ät031-)+¾-‘qZAd²O-Wx~¨0¡Ù=¦­³¿è Ú– ·­XÌyuþoжGHeø÷mñsZÞou<%‰îçNóP pKˆÞ!Èp°‡ßEìé°vé~§ušÉBKºšº×~/*D Íí ï²{øfw6®D„¤ýða±ë„zZk>PÚ¥MîÃö2Ón~ÙÓ„\çƒÕ g›V«®#ý¾‡ëÑl<¬mo0Ýãê•ývfHæ{ÊLÃú¤a§h¨“ûÖv¶ºP·ÌçÐ#ù( šïöt@î6aDÿ,[iIÊ·Õ°ÚÌe‰á7™ãгÝ|@á’,rùd|¯Ò”Å>­Þ*_üƒöE; px¼cê‘_%À˜.‘’ ÏO.mÜ¥³!ém†~:þ]¬2Ø)õ`2dcq8ˆ%BVD³  ôr”6Ÿôó™!Ù+3?KêPT¹æAØ‹ eȪýÎ%IÕúö|…k/)ç‘ZpÏØÊBƶûâ“a“¹Ip¥gîãýnˆSÑü‘¿²$BÝ2#U‘¸)ZDO:tË‹Í@ôA&-ØÈwЍ¹k?<Ì;DxG¢V::w©)ðŽ0æè)/X$öÒsëVêNïÌ=ÎØ‰Ä _—ü·ëIvÃý9{2A$®œíš0ÿ ɆDØ/ˆð§ý¿I¥€ Ã$AêÁLnæ1Žü޹A(Ò$Ð:òŸyïûVB•Cw·-a¨@[€u 2ÍAsz¤gø?Ä$އr Ê{_.òû6O$ÿt|ùÀñSs⑱S¥¼9ès!¶ervB‹ùá`¤Ý·J´Æb€.Ë¿Õãl¹Ub4’!Äiè_kÇ;¤Ê À'°­¤©ÀÚ?°N…eîslàñý%†Üw–¨I¯¥¡ÓWd²)©{;mGb%„Ò = ÁÔ"GŠ{ã:á{Ø €;­²šGÇ{^9Âïç›e¦ ýÚߥïz „.Ãs†«±¦zÙ’´¼s÷ê.lìÅh'™k¶+¤)FŒÌ"ä=ÿÞ3ùïÛ0(;qˆ ÷Ѿ0Îl˜ÆûC¶ïÁùBhì%‰ËîÀv±_¸’fÌÜ4íî°«àA€I’jýÉ&±„s([>†©£Kîçh±A®óO…M{àXþ°+Ü%¨_'ù¶U¡©e*ºŽZémœ·Ê˜°É ñõL”ÖDanƒ¶ ͘-rü·mS`±0XB z˶ÿJN(Íu7ŒjM¼ŠïÞÞŠO§„àYP µïçyL×($SðÖ•× q[˜]ƒÍ&H· oí9®k8>HÛ–¶_FÍ¥n6W)lã´†ík ¢l ªgÃB Ô÷5˜˜g™³üÆ·­{@c…ØF%D–_‹»óÕï Âû“ÚÙÊ -0Ìt²°ØZ{,pV€%ú3Ö.Ã3e€ŽJU¸¡ðŸ£Ì*¾6¡½~·]¡1+R–~¯Úñ¶¿Zn·Â SÄ s΂3HÑ,ªX›$uÛ[Lq{Öºá([ , 2͆¤ d²r&Æ]¥JÀeqP2ž£Ÿ7Æ5-üŽçÔP(ž³ðrÛåàåDu/ ’ià[ÐÉÂ1l`4é_KÂ"V‚ÆŠÇJgR%x43ôðªÙ|J*®)ó¾à…‹¿4’ÉE¦3tïúžûd;QR¢ÇðO»ÂÎe¹{ËIIŒ7Š»ÜÑ¿í˜ÀGA"(VÎw[ÔJaKf t!i×£ÛÝ.úh>#È2¸‰AÃ"èõŽ ä… /\`ð¹`@Ó,d >2ò>ˆ“–§Ì*ò­³0zÍ †Ðvj³¥~érzF8ÛïkôÔ ²òèû¥fˆ¥YE'`¢7VÙaé9ÚÙO Èu˜s8ÝØ¶AÏß'Å ¬}‡¡q-Ž>7‚ë†p²ô‰’h Mà¹ÜúâôÃ`M” Ø´ã´w¿]F£D‡YŽÙQ8=²º>tøDﺠ:m{÷Ò펂V¡ON›ì[D«*é%[[Ö¯·& Þ??e®øê«]€´0i;ùìÆn©üîO9¤Ëùqº"b^§°÷÷:~Rjë'ïœÀÒùBh&>ªÎùÚºÇ/‰ÛwºAõ˜õLÉúÅC ¬Êèœvß8*¦âi¬ 5–©-zé$[“©Ä± óCÕÇ’³™Ï?fÏÞjж Ï@ï#RÃÎådÄÇÎyY7YÂŒpP‚m.|^`b .Q¡¾ÃÛ'}Þ³²Éf¡­/ÛÓ^Ùýƒ†§ž[á ÔBáÙ§Á¯ §F¢.³ÑþœBæé+ûPÐÊ@G2,•ÚÖ=§à –TKPí­Ô²Ï«¤KQr­€†Œm…tæˆUuK©NRdÿ%ÓŒy0Ú°];3l$údÂóª:†!¹`´C»­*®ÞɶE‚~ €9Ä#¡³ªÓªnOlÇ š­‡ÑŒ§s×ë^2Êpí¬ô`Ý%{ªö:~d®GøâJ‰ƒ­6cÉt³G -Ràø‘Ž ¹3’ÊéŠ}ls•x¸} Kå6âóJ74S?ù²$S,#Ds:ç2Jp[§ §,EεGíCÀUÄB½–=#—ϯŨf‘O{÷†>…Íl¹ñN ¾œjÈ[¶YÕ9ð‰½Å |å†*ZBÝZr}?¨^E²³Æ±Þ6DÝ ±Í¾°L¤'ŸG‘¸Ç¡TáIn§ž Aƒ{%ºÿÐÊO6jib Xr˜æZÑÑËÍ*4Ò*Á¡X)Ök¿®ÞÂå ÀoÃk²ÀømšÍÄÐ~Lö@;¸Ð£›èDI$ýö(Ýö’Q­¦­«~©¶™ðwm†÷ÝåÁm;l0ÕüCFdb,Ÿ ‘~ñª&HÁu4‘v[•Â>´#šì–pæ·'éõ p˜ŸVÀFK¶pô5É`ä‰Ï×ÿ«ö/Cv__-QU>´Oëv¨Ÿ·G7Ã0˜¦Ž]Äa·Øø ±y¬˜‡)"3èõðFæ÷R „–4ìZŒ$0¿[šjã W”>ù÷^TOÄW§ åÿ¾ ›·{!Iˆ[(4vŠóÒ•H- vps+xîÂU™ÙÏRÿ­LÇ“™@‚ÁÌîƒOj%]PiÚûÖ&&=(»ä‹üž„Õ[TXh;¤Áª ×Ч°ä¸úx‰ò6Œ–VU. l3¼xîlMÌ-[ÿ^²Kg´Ô¥Ì€ü{P±ÍoÛYXŠYOs]†ÿKU~Î2 ,ÇÇóŸCQŒtËDÀúA ˜ßÁÐÖ Íï%ŽÄÉÅ8~ìGŒ'DР¡ì3u; ¨î†„ÔÿÞ´•#Ø'Ê“lI{ÄJÆõŠ“\4ˆBߎ¡ƒ„¦u—½èÎVfŸ¡ÅRi#☂.öjgÞºÝ,‚z Z< ŒèæwFJîrˆJÏÁ’ÁA?ew:&0Dš»!Na>•‡<¯?{Ò# z3L£IÝéÍu][”„.Ë” â'ŒswR{ùj·€àc‘^uúÆéÆs¾Öï.l7àÃtq#4¶˜OH8ål5 |Ýx"Yà$Öñù+8ð|bâÑõÛ :å RR†ðsªÉ2Ù£ âŒ1-‚•Q¶(ð›ëõv„äDfµ6$ådL³×T2^AhEfqh!f¾ƒ3÷1a&þä:Ðð!ê1Œa -_n{yÏýÛ´Aš¡…‹ï¹5j—ðì]üú¸ïO|›/hR3âäèz­«vÉÓüÙÇG{óøcš´ýŠh²o»Îw¤„Œ¥E’âÊG¡…N™ÏD2˜4pƒi­™$xmÁ9Ù29Éhç1åN.„_¬ãÁ9:@Ã`yK’-Ž H…ZµN‰ü!a9ß<¹¿¶j¡^ä™_Fï?k+ô“ù„—LFŸm£ÓJÛ{º_…¸;a  XVQ (ˆ~©uYÅÚsjýøœùñŃ•NA·Š£%Ý['¢)e(!Åñ³ÉUØýºNu{:¦uI ²–I¸<½‡…a!¡reG¥£ÏõW3¸ÝŽ£BȸCó\Öú(>ðg>EžIòY­¤ãœ¤4Í´×] .ð»¬(šýôÁ$ ÚÑóç•û,®=ȼ<fÝÌ€Øìȧ£M+óv¤Ži½Ç?eB@Ek ‰Áì>’ ßc HQ”ð'óª½ч¾‰{–×£–4Ï­MÙ´ŒKåd{˜T¹Ÿ5PR¡¿l°¦ ¥Å˜7­(` Nðû~ÙxQÖW¯RÙÔäíܧP Q˜QV¶•\P—óæ£÷G‘ähðXih¥l^žö*¿%ø:$mÐÄ*yÔ7mh°¼ÜQ4eoh޳ɖBG "ÐBº'74oáCLß}!`K0Ë­è;\È~Tÿ±|pK¨$xz/K`¡y¦d) lKQn®Eù:3 Ì)tlÒ„± Ï-ËÏŽÞ¥žT¾©ÄH«Ã>1èh7èaøàÏÖ†2†x äò)ûäMÎ ´NÈ®vbË må7ñû44ŽÀf»’Rn2@ïýWKÁïueú. >R½%¬d«z÷? ÚDNd\-,ÿ1µ3ÍÇþpFÆÄõá@Lè\ÚÂ`Â2£¼ ÒÀÆvGpª‚±ö‹¬uÃ8ÁEÌè¤ 5±lñå%ëØ–¶Ð—ÐmCÜWpªŠ^ˆƒ)oG;¶ùkYË¿º’C¨+@ŠùbÎÅê²÷<ÿÊ• ÙÕ øÀJ*”fÓÙ¡QÅAýxÝ V*ÛÅaìO–6º…÷àÚÒ'mI§S(Âг ­[ÃfÊÀ+€-l-@û{=ëmX$PG“z0~$¶tž2fU ö;ˆÒ½o+Ì! ¿>ОÀè ²f Ô:íÛ=àJå›ÁpúA ¦U w‰ZW»ãã+ošCéGòǤ[X¾ûà׎þ!á"€Î0þÃiÞp”¶8ÞWýÑmûìÛ Ýa@- ò”±‹$ÉŠ@¯ñ)È_ ¸R«¢Äc”´`s€ãï›6¶@éà“Ö…üç­ÀÐØk3gxÀ2½qú³P_äçö%Y3na9U”-¸”&²$ŽpFÈëÓð‚@Üäò¢áºÐàgÀð÷“ÝÒñ^:]]Œþ ŠÜ=¤N íL¿àa§Jó'»›ró‰àÌ(QýIÐiHÓþÅZƒRC/ÜJ±7W‹%^/ñšö¯øLw-&u^˜!OÓÜ…s¡i˜ R´Z:°³=H»6%>/Ý4(6iv+¡?L½p\ì"´ ¤íÙvëm Ø0½þm•˜'Öõ«AõÈShsˆ\ŸÈ’:ò±w¶.&E}ò„lã #’ÀßÓfŸ°\8Àê8÷(Y»í÷Bw=(;Mã¬r’qØ:œiµp® ¡°PsÒÉÇé÷x°wði(¿>¼Ú!äÁ¬VÜ}€£nqñ g×úQqGA7AF ÏÞL8:šHá°RÀ²3 ÷saÛ¤¾P|–iàGAr~Οyç9Õ;c QåŸiþÄZ†Ü;]ÏN Ì»DW¾Fƒb¸dÀ¬A {Å]ÓÛñpú“{´ ßÏïqDÇ™<®÷¼ÊÆŠêÞoÁŒ¬&nÚÀÑ­ÜFðÅa05‘¹EâþûÞ$ ÈÎÝ:#b¶®ÅKjn¦‚w‹_Hf¢«Ç<XXyøØv〚óÑÁ;´Â"áÚàpŠpšÅ,,ü^›CÅ«Zr’ó,Û$+[wV è"PG*”f¡þ씵8ÎÛÇAK»Óˆ, øW‹¹»…Jòº}ë¼Kž ¨5¹á‚ $—­ó±‰s+`™QÔeÈ&$O»Ì5‘RsÂý°Û›S‘lhoè$VuNÿ†’>.l®ÐÀÛ#NÍy þå$  @m ¿iŠœ±:q;\ˆQ Üà7¡Q>Hîã÷#OQœÁ†ÈÜ15€ŒW"—†™ ìu» Œ=ãìáiVÈ6ÈÔ$D4o ZÒòl44tŽæ«ß&_` ‘ ­Í\ÕDQ6ðÎCÒS¸)° sëŠâfàéé¨5'dU½·yg ÛÌAlViÆYÎ|"úHVʯHjLD êåè( †•ša€à©ÖÓ¥S2Q¨!M‚•,Í™æé—IH§T/¨w&TR('Ýf¢f¯QÝóØ"}b°É[0«ÌƒÌN ‚:ØÎ Yp¯Ü…˜ˆÉÂ!eÌUðjAë šMV€¢-mÏ í+¨6š$¼Ü³è¸lßÛݤíOÀ´;ç¨L/˜mÅÜâYp6 ŽEšWH«ä(^Ö¤ÁFsv惙¸JÁ%¸C•Ê d,„þ§VNÛìyÀÂ~·ì»±ÍÒòI ©ÒSï*¤ÇÌàyƒ|&ŠK3ü::›BÚÚ²™ƒgb¤ô ©YPµN~âKA[¯jÇt¡ÁÕì{6,0…Íİ÷ùð*‰Ü)L]Þ°tÿd»}• BLö% ˆÔ*‰öòý(Ãû‚ÙDˆQf’ååëILËjÞð¡vÒ€w†ûÃB«o!³ë(6>á+¶¼s@‹"‹ i¥ñ¸¶Ék•³H }@fuâ.ôþzk§æ>ጄùì‡Z.Íû¤|ÑHFŒºôÝâCI¯šDfAËP±«l°Ë¦§V¼¡–†ãÉ éõ>ɧQ£Ó¡Àà€ËAíµ¿7À†8œ-x–/a©7îØlÃtKb°D–¦Ü¹óa™ARyÈpæ¯U.ðÕP£OÓp¨²Îÿ›«wiN£þ7R GbþYmè#;hŠ@¬>~eN9€·0@ œî]Ç9^ÈÇÐó©[`XZ»¹(©ôÞ¢Ü.mP¯$é÷n[%h ýJÊyêW1—_ ÿÉŒ6Ø5õíX¿`Öù*1RPo£ú…›Ø™;Õ›^H߉OLUÐîZ?éaU¼Z2ЄNµvê~AòLÊ-ØejƒA;¥]û“'ÓcªTe§Á0¤:¹,»15,Êÿ«wc˜ÔŠ>ÖöI®4»oJªìR"MFAZrö.‘¿À—ðÍÆ4§ Šøþr …2µ»š1bQ€»ÔÉÊÑïÇM­ñ›Ü ³ôi’^ùÓ Ä ¤BkBÈ~÷™«‡"™ ÿÌqíEq@Öh;õT³}µ‘'60µŠбòó$‘…,°Z÷™–nÁ–>@[7^¥ÿ/rÆ ºïóÊI.o'Šf±~y*5å×êG À·æ›êtôD*¨s×/µ§Uýæ)L~…À^èkÿh L>ƒµ&ÌìÊÉ”71ëñeSã¯á]²2z8äÌ®|àŠÊµqûŒ7E?øzÐ-, •&ú»tÑ r6óû^ÔY“úUÖUi.—Ö/˜°NÅ™¹Ÿ()¤Ÿk¢f¼û'qÅÔgÓø´Gh,ÃFº$‹1ÙÇ£e³CWps@+t4 ^;.·=ãMæOõŠÜ4(ô‡n#<ÙgBÂZðtÎvîß,g÷yö–˜½ŽúØ‘š€ såž7¶€$ºrJ ñKü¬¨äêå §/is½#¨ ›]ËQ º)6š|ÃÝóQEƒ1ïÕ¶J®îmsˆÚ+¬´›ç“ôVC#öÁ‰†×ûê¤)Üa*X 22O´'_¤<-GPê.¨¢Þ•ùÃQHýCõ5ΟÍþMšgä°‡ƒ9€^?‘ƒ‚ økžø2';´ðDê½û}a TQ¢»¶,ü–ÀÙsIÂ±ÄøXDõM[7! kÝn‡pÊöcV#Tz2ÖÚp}Åœë“[»‡*7ØÚ•‘´¤•¿’²=mmûó þ +^–èt™ß±IBÓ{© '°9I­¸—ÑäI«Š9{ȦϾP-Ýæ«³…ï9Æ^Œ‡WwL 5ÂÃéÒã±—³N!°ñi)gño<9HµCu8”ØØñ&®’<®í@ÔEŸX¤ùü uic•w!Ë»¤ŠY !Û>|õR¿æàÇ460Ó‘…¬y+wgþ;}ιœ~L¤Ÿ ˆV˜(û°Q‘»vXö@ï¸À‰#ãP‹tLÚ8áËðº3°†q¬õ˜À}O–‡ªÝVj ¡‘4dª5òê MÞ¢õ¨ðž§ÎWB!ox$¯áÍ êÈ–?v{”(û÷yÛÎkO¬rDòcì¡–a’Nqºé3Mï€ü’¤x‘o·r÷{Mƒ/„äñKé‚%¾9‹?¼í¤?aËÔñD(eS…ñœj(­pFÍÒÖ+0dÏ•B U~äb[B8½í %=JF°+èÖX¼hÈa`,”æXŒ æT’†'{ªFV7+#  ÌÒU’LÜïüîâÅCtŸS]ô¥ÐVÍ­¢H‚yÁA<¨˜¬>ŨÈË P1­ðÚÀw‚¤¯žÏ¬õ6Duˆˆ`pÎbYýÖA‚ÅÙ/ stÏ» éÏßǨv²Åyßî¢uHC§!ûu{ýŸ*ϨG°§ˆñˆVÖ·oE¢Hâ¹@Ññô½tö0©–—DóÉA‘mÔÎy§ñοGy›ùŠÊL ûq ¾S¶kégƒÅõ”Á!úx´#5½ÛOŽMS“¤ç’”rÉ/#àÊPó…V?ŽHÊ¥êÔ ÿ|rN—æV_?ö[Æ>‰ï.LàáÐù®G$ùö¾êîW2èÊQôÛ>ÉWî‘GÉTÉ')q¸›¥§|¶Ívë º¯ vˆ•ÈvZ×ìvžP8wh¯Âì騦_Åš´AÌÅ“®¥%”*ÔÚyómÍ  Uû7³ô8ÚøKB‚*€^÷hgÛ[ƒˆŽÛõÏäípl}s§I\±afÍ»Äß@¯ ò?Üè^oýnÜâ u7ØÆ)+´r­ Ú¯Rë/_ä-dkÆ’w@=mѲ¹aËw¿-kÁžvÏvƒH4á „Ö„„âyic&¯ÉRö§£|¥Qq\5Na/‚¨½þ èÀ®\sDõç°æóvÆ‚‰T-Kº†ÅâØ­€×ÏèÈK”©@ɸ\¯Û–eÀ*íAG‹~žöÉ–›¦±âÞ7°Üæ!?´k§CÔVAtÒi¢ CŒïuô¿ëɤ Ïh1ÃD»Y‚™§W !‚ nÅ̵lÍuùñÞƒ­š0ƒžÀ–£h{:\¼Üé—•l‹üÀ}bœÑÖ±à •h•Ê7ƒ‘y4¬Ó–ô‚<éqí´ß(À ¶ï©‹»¢Ð”Õ}Y<`™‹.h;¤Ðð €adŽÒdÙÀÁûÒÛ Çž‹Y¶‘Sä£Í«D#ÈðÇ€BR—ß}‘C'Ù˜¦´ŠÔí“A–cÓÅD¥÷Q› ºz•±·VèYwófÑ:Ñ$öÖÄ©}ß¿@,2Áí¿llÊ ÂgßÐÍšíÐÛ£Ô(êóá…qt“!y–óÈÛáBõÛ½Gt%MJt±,iœ'±¬ÀÛà.ŠlGGé i®q’Tõé  Ð4¼n'üPkûB3Õ^ NËþV÷J rÃÈÞ´±Ó=¨ž£ÂË IH7Ù¼ H¬Q}d›û$¥8Ö³@R-‡”¨Ñ±Ê~é|°ñºÕ‹CeÍ{"ñ*m½MÀMÍ÷9xâ ç·¥ý_;= ûÇ ˆ( ‰¶ËeÊFâ0~ƒ2mECëõÑ5—¾ÅMç“f Bh œzPm~¹ã d…(Ã)—åLôÙ]¥…J|U)¡u~¡íêÂ˪¡²öä±g*ן †èFŒ¿;]`ìQÿyC‘¨„þ  )%I/ÿÒÆ¨ÓÂâCª[L…ËûÜ^¯ÇìFZl¶}¶BHÙ·X•î—PtQvÊ=ˆÁbÇÅ®ÀÆQ1ŽÁ#)wÊ`Ùr ÒÍÌIÔ.®“Ôö¦‚Cæó,<ëiJ~ëšw)$ ú.1*‡VØ!?ÕÚß›óÑÖá`Xb'âìW¨#¥[Çl=è!%Š7~º×@ù %û›ˆ=ä«ÁöÝ;(¾(»V eó»m¥_ Šd7xâÉÜöôÑó‘J 9`"ÁTºqÿAÅl¹¸þo¢Ç&g4Úæ7§/‚E»¦Þzô^ƪñfù¢…:R'¼ZÛ˜ýꎗØÍ ‹DO+§„_V§Dó X¨»þ”ÁíîÐ!ÌB ÔÎ'å9ŸãÎ"¶õ ­â%<¢å L¶J­RF19ýC¤àAá€[œ°|P²÷eL‚2É´¤ð‘àØÍö¼Á9ki u‰Bœ=#Y†ã㾪$?EÄß»e çq:má¡¿ ¸þ¦²ÌþøFÊöý Ŷ@6$H”| l¬Ž’xÃÛ ô@aû’,IyÎr 4Gô.mÚŠoMÓ±“Ψ—WO5 í+÷ú@?¡ÚŽâèæEo(‚±Ì‘Õ8}W0e:ǪriÜhÛF¦¯H{'kµÍm@ªl Ó rúµ ¡ðøn úŸ¶%1¦Oßñ2R+á;­ÂG#ƨDÁޝ[ØFÌ N‚æÏHGMä¹Áh=X¨èÕAŽ‡Ð´Ñ’Pú@Ùúæ!ƒ ‘ùµc@¦ ¿PT«Zƒ¥Ïþs7¦_ú2tižÍõ´÷7<ÔþH¼|hÌp[2;I`õ#ñ³‘mÓö]GµæLža„‡S–ºGÁ´æÍ•<¸Æºx’¥5:¥ÍD~Zn›IÞ&>ÝÇå“ï]˜0ò( ½Îö¯¢MmUIÛë–¶J ˆ8ˆØ-KÝ#5ƒñ>>™ Æ¿×³¸(B®¦d­Ñ‚:åâð˜W¤Öh `¿œ¾;ËÒÀ‘³à,h'⥅çþú7ûäÂsØEã¥1E÷êCÕÚë=‡\Û¶ë¡)Ç=°aˆÚúnShnÍ:ÓO±þmzÞD=ƽOÜó¾ûðܶµ¯íбí%‰{GéE¼ x }ËÆˆÅˆý¿ÕÝå´[½^%Åñoô0ùîr³Y~Zšx†nEjñÑF«"áCãúù¢+ÐÝPöæÒ®É‹0!Â8€ÊY’Ž á¿ç¼˜‚9:"øúØÃì× pýêÓÀR¨*~‡ú+ °5óåˆ3’ÁN÷í&ÜåÚË·^äÙø nãŸ:€då€{A~è›tmj¹â®"Ø”ëø²ƒ)‡Ã˜܃K-†*/>ñªNÉŸ7R½†EN.Ó+&p ·÷ü9óOlfÈJG?3¥¹ ýÇ? ¡O„QûÅ$ªÂˆrñ”|Ÿ SU9ÝnÃ&ÒG#9\Á³dµ—xEí×`JAtri<…zÁG"û›©@'Aß®PÍ€ñHþâ—ÂÁövuè L“¥£ްIù»¨Í™Ó òßB™žø=0¦kµ‡¦ ¸µïôJE ^¾F@@Gdoì­R¯Ò÷&™š +n+=çŸe(Ö€¡Œ`~6=$»+qÖRTy«7lÚO¯bkv #ީ趪þxôõ7§ÑœÈh™D’ßšj[E‡Æ#íÄÏ’NÛ’/ñ»†æ?w’Do *µF9s´]ì[܈v˜’ÛJª© B~!®ÐÙ×ô]õL߀ƒ 0Ö™®ó~òç@‘HÒM 2Ç~ð{vÄL@XÒoðöž „ºÌë ·“J's§@F]{‹±o8Ò‚èÈ’…¤íz0¨yÏSF¼iÄz¤ÊBZóÏÜYÆûг’2f§þ`-›¤ÝFaŒ;‰š.Üb“”h¾sA'¢ éÚ½¥âhÁ‡«TüÞÈæ8#9µ§L@ü`þéö^ßbuÁÍ…tÅ#é©¥Á†n3DMª<_‘³cP ÜB÷ç ÓÉR²tò¬í¼a±?K­\cá0ê½Áѱ¼DèëÄHonÃ)º‚1„̶|ôtet#tbÈÛ™@Ȉ°]¨åîšD³=V¸Å€ úèȼ¼ü+Ìž‘ ƒ®h+r¬‘žõHšÿö)ÊWÄŠéW è(ÁÿÄGîÉ-È´†B­Pb¹xͬçS ½‚¯¼×JåýKOQO2²j*㌄E\‘r¼r%Õ“vhù¨’V#›…$÷°I»C^7ý©u™wç@«5…­=åùHÚi'Å)F4zHa<ƒy•mâ„xq)ÁJYž¸CH «AÑ®íÀq$öUPÅÞJJ»¦]—EŠæ¾?ÁCÐt‚V1ëa^SÐJ”³òÞ‘4[OCIǬ­ü 7Bý¦ïÖØ¥ÕƬ‡ÙƒŒSÀ:ÔUïPWóE[þþaέ±Ò»äVþ~­‹ZÈtåmDÜñâCd%Md]@…V.³ê‚ðÆ.ÎõÃÁˆŽÆ‡Ð‰à½­#ާ™ê i>#&xCÔ‚[íÆqЭoøŒC:DåÙýÊ¡ò òà0ÕŽEbº‡Ê´q7%ðÄí*Qùæ¦'‘-bÖV*iͺ …‹Ôú7“².&¼Ø% ¦CùR›-ÿV¢Ž-\m´ÚìyøôÔR°Íé ’pí‘~œÞë¼ Þ±ý…A׸Šr{dw Š ÛfXhÞ-÷+‹Hxq?HIݼ™{ÎîùÞ£p‰ÛüéÃ…ýôåå`ד&¾UU4P]L4Þ p“M,(u¤*5TôÚì,yóM6#–2EsˆGîéT‹.€® 2fÂnŠB§Ð/ ðí4ÿ-´õ±Icì *—:‚ªI9I/qŽ™Ë8ñüóI~w´ó.l¯ô^à’¨dMÂ?Û†útmÒ±í& -ú6ËME"µ,*ôÞéÙ?ˆN@žÒ9J@‘p—O¶j>r¬œé ƒœh™º¶èŠüX烙AÆ:Írr„ ýä=Ç»ºSí‹´¡“1€eôqD(ÿe­Z†¬—¨uÿòÅœ#€4 ¡’Wa‰*”¤»„•`PFˆ"n kNiŸôãpµmÞHÅ,Š`‡ò(Ú(q‹fÁÉ]¡þ­HÑlb…ôº,(4”é%­-ž,þLÄÇ04AÞž¸ýð_ ‡…©¤{ÜäÁXK~¨Ô§ç‰bû…jRÁÂd{Og[|akçÍjˆÿÔ«TÉg2ðçüxqWBGq»:Ö  ŒjÄÖ¨>Z¶Ó؃¦a“hA,±_`ôgýI‡4©?rÙØ®=ÎK!3F®©rlòú¾ü\Ú¨ÂPº Œ³†ƒõ’tmÏÙUžŽÁa\­+ &H±»£"Õ~wd_·*B7œ¡¶»! ãdi¡Ý€êû ñ‡æøMõí›Gñ±±"q.UÓŽ‘ÎŇ0;S…v £F¤·¾7 R:…¶d‘§F¶ãÆþù­âXv·:T”ÊLøÖ¢Q% ñ¹§ wf¼¹Yôˆ&‡>ž}y;PûC>‰I1™×~×5`lqÊ.âx¡Úí–ßIÔ È¸D Ò2зÈ6¸ÙfŒ?â\‰qìh0u¹ššI²dýîÃéôtÒqKÌ,"½ß(m 6&•{TW&AüŽDe~«þò¥®Nf!··ÈN„"¾pRË Þ‚ßx€VÈ¢:_̸ÔÐ* Ë•?Hˆ·ˆ±3ÞÑ›¨‹üÑk±»±”˷͸!U54*É+Q}†öú ¹Ò|3 VtÛ†ý`ÖÏÉ?4Œ ‚zè…¸oû:kTÍÛnû0ð uz:S˜¦Û/}Õômú¶2èÙõ ëþââàdª¾!)Y9)XØ^8mg¦úÊ¢¨_jWHé¡)b±àW¸…YË ÑGè€ÝD¦Ú¥T Dæ!Hq´Ÿš Öœ‰î>XÝèŠÂŽÝµ¦Ú÷5…µ¸}|0#ï)»Rj‚÷ñ‰µ}\ßÂ×¥mÙ»´Uf2ú=ˆ¾,DJJ€ü”{èüö`•̺-tØhì“…‘¢Ï_x!èZ–9_'iï༠\Å’»€6¹ÁqˆÜµÔðñ¡7Ü©5rÖöJ)<‚ýf@§Ã¾âî7‡ª&˜Èhú·ƒ[ ë°çÚßKnñÂŽjƒ‚+9Úƒª¾½ÜF0¿X¤‹0,@þôkìYøßHßΠ]zÔ’šú ¨¡)R LVPAyæ± †O‰U)®'µ,âÍ[m \™“šNIzi—t«‚z„­Š‰7ýû5øJ|3Ÿ,ˆ¬¼“eMÜ,Àú‡Í¬Ú¢Øì5êK]zšÑ/J ]KuŠ0…jK¨¨9½f]ÕDÐÖÙÑ™¤ç _J¯Y":õãömðÖÕ¦|±QþÚ¯ˆ‘ñò ­\5qÆf8Õù{<¤EždFë–FÁfÜà¼ñKÕU×KðHÊ–äçË6ÕÌßòЄÜ*‡0ñ~T/b£&n5 Ú†Z¤Ggê¥æâç{Äh˜A—£©òº.]Ö=ÀNVSW>#œÚ„«c¨óöñeuÑà™m`ÞñŒsŽYÀä舒á1”2˦®EÊù@=‰µDÜ hBúf0ÃÏ$Tç5`¼@†oRLxx¬ñ¨hä‚-€UÆ1kËMUÉOIŽ¡ßƒVŸ7T;P7ÿ™{nVÒš*{J¥“žDþÜpáÐèê i ÎE¾ÃƒƒçΡï[‚·c„êØÊö @„…¸½$ÕÚ¼/é÷}q¢ e©Å²y‘‡×a_èÙHè‹XÑàñ èL[IîyvZ2Dƒ´?û`IïƒÆ‰]ÑV7–Zgá,AUQ¶pÛ}¬%ÌôÝä²0mULéݯ8è0^`Àܤ-Qä–ú§¹%F(Ý,Ê ŽA;„_¯En0¾–ß@Óž£ë§»j|Ó)UÕs´ÛBe^^z+îB ïß|µÄ·‰e3ŠP«d ÈA”¦°¹õK>*™W\Ú¢^‘-¥ÔsÚâ©AþÛâgÇ\v:$‘ÐÄh°’}9¿U/±m¡ûù¦Yô GHâ Ç\ëCæEÛäˆÆy g7’(;h –šÛÅ”6Â$NЉ·ngد)V UBd)¤.«^àä5`ðÁ¹DÞuý³8Sá ]J|BF D‹>ï°¿j„VYÂ2£ ÷[ßÈwAêË~] Åè.¯3š Ï`ÿlp“ƒÈFÌ?Y³-ÝÐÆÉò;'SúÌ%B€CØj³¼ýX€îûFiÉïXºæ`™WM×–5™aæ]Tºj,–ÓºÚ±à'ýpuS9HøðPþ  €ˆ‰wcQPüOžq»?©OPŰ5Ø;VÂåƒÛÚI—Ývn¡»KÒÎ'¼r†¢~Ö€a‰ ¸ã;ΟgPP•ó+Ü66‡A­øõS"¤Ž”×l«ûœúŽŒ„Z„ø”ûXËuN+eß´Æã(†Ê¢L‰%ŒBBÖïÖÞRnÁãw‘"Æ–óu:$U!*y˘B4Ýä1Ôë-{–D­ãß¶E ¥†`p/kT•ÂÅ>+e’ÎØ®‘ÿ‘»Jâ Äb²ºðDÏãCŠ39¨-C*¥_Wå•»‡wJîêû8eÏ ‘Ȩ!NŸ:q%ùöRÛÄZÔ`O_vO³g°.EÎ ”Ñ~é†lð™$ø1ßGãÛ¦Éô#³ã_6g‹rȺw2·zÙ×îô~çD6ïøÍ¼X ––ߎ’PG1­Øîøy/è뱿ð´ Ëû-ÕF”ðžµÔà+ÓlÇ.:÷.zB“P†n¹¡ÿXñG²%?'өЀÁÌZcš%!¸þjDÁ€1Wñ‡­m ‘—GSÖj*Ã÷?µ¡]:)œúÛ¼`¤CÍ‹vqÏC`{vl{ íQ?°c¶€ào¦‡:ÖªúsŒ^E†uÍÎýùÿmK±lj’Ô~{Ÿxf¸¬%Û: IdÞñ>@º¥="ìÚë͇ULÆ žò8Ù¬p V³ô)ÅÕ‚G¹+¦­) w¡EËÕŽ¼4ÂI¢’õÆô¤Þ™O*í(rÒ¶;¿¢´Â0Áï^düp€ÞÓ›/~÷á¿s”Reuº¬oj0vW7ª‚ í¢¹±­º2ÖãnE”€ÞE'3é°©ñ—õ£;O81~ϲwI?e´LºÑhÇ]hYÔÌßÕŒ«ø‰.L"øcÚiãjº#7EŠêCu®–¥]Ìo£† üC›Oi®ï\xƒG~®ß‚)£Öó9ñÆÿ„”L¡tôZelig/data/tobin.txt.gz0000755000176000001440000000031713245253056014571 0ustar ripleyusers‹%IjA E÷:…ЊÒPÓq:$d6öýý¥Þ4ý©?<É÷ûy}ýýËõ›ßÇûú ‰ w«-6Ÿ$‰ÿÑÛaÛNâù» ¶¾H¢¤¦Ý:É(y§7ɬ²Ó6›¢lÕk4GUla‡3FS¤•䔽ÊÖJ‡Óló@L{ Ž™}9®V¨Hƒß*Ikz³!¾Ò 4µG®9Ö´èü¤_3_xÀ-Z|#Ebf#'&28Ázmz:†Ò4ˆ*¾VZelig/data/immigration.tab.gz0000755000176000001440000003675713245253056015745 0ustar ripleyusers‹…}[®-¹å¿G‘¸0Boé3'pçP€‚B·Q( Ð³ïˆ×ÒÞ×I~ä m=(’⛿þõïýû׿þ÷?þóŸaŒxÿßÿ÷ÿü¿ýãþ?ÿúÇ?ÿïÝÿûŸÿü?ÿøçÿúÛ¯ðëôÇõ÷rŒ5×+—Úsÿ£ýQþûuÿ6ÿñûÏûÞLÏ?^µ>ÆH×(i<ƒëó5ÿú#¼_C¾¿ö–ZJ%ÞËÏ×ò,tOŸÿºÿ¹Î¹rÍíº®Ò!æ{{;ûÕl[-õ<ž]¹¦tÿíÝGÿuÿï=M¾g»ÿqüºÿ÷|݃ÆÈµ×poñ^8<_Ã5Wj½”x¯Ô½b}~šÞÏt¯5îÔÖ¯ún$> Ñ>÷Vï__ñJ!ÅzŸ9¿Ÿoܹ¿<Ê}ê{Ðý_ãùãoÈøùð‰Ô~ž/#ËrÅpcfñùjd—ìʈ÷®Ç=ÁÍ^Ä+ï sjÎ-cê›ìªýZp¢j¿Îó`ûΣ}/2Ö”§+Ü—pY»OT ·j`ʱśÇ˱”甓í˜Âƒ1ãùOªµ$Üaþ%Eƒb1öt’X{?†Ýx8â3ùÛífŸjt&ý•äÙ˜WÉséõë)¼mã}[—øõ’k1Þ”âuO|/|ÿ<Žfn¥ûÈmÄ]†œö¹^>åÅyòjè•Ã{æ›ë†qÅùT=Ÿ#ŽvÝ$yŸ¬–ú\8M]^õLéž¡µ®ÏâÙÇ|ì­€kît9÷V}ºÂÖ˜æ7âÃÙiÏÝË4«„Û‹Oí2jß¿<äî÷ós£ è°Eÿ_&üüÜ0,ÝÀ{H§Ü|ì>+±»e¾Wz^¦4ÚCãþÑ‹c­ø(dÚ T9ß ~>×KòÄþçs3B6À·>EýV1› ;7¶×¬_ŠZÞ{é•n©ÏK{sx«=Š·÷Ö“aÅ6}šî†Sœî_ß²ÀH±W`E7œºyÓÍ¥n@ç{’–I‹Ý uÿ==QofÑòÇwcbµßÿz@“òõ°™2!×»±™ r¸Ç¾žÆï§ÁÛNg3‚ÏbíâFôoX8îò÷öÊÍŠSãC7²EXŒ¬Ä‘_zMéÆúËÿŸŸ›,º#y³ŸèNyŸ‡>v“á‹á7·¸1ï}AîxÈÝlÛ¶·³“E;"¤öÿ‚N µŸv—‰g-ûê5ð¬uB›¿úû3¡?´æ¯+jÝ¥3Üp3Qá|†í† ÉßLêJçqÕeFpÉN«Õ~úyº)È¿4Öƒ½á{¿&[‡pm&@X ÙÝ¥:S BoÂŒÂ~Ä÷8¥Û#plGR³¯†qùœÚ ,áØÃ‡jFÔ¾ð.ÈèRÚf>¥ˆ0w$DN\Û€pµÑ5èv4JÉXÑq×*¶ ãçñ¼ªr¼.H!íz¿ß¢ò=’÷¯àá™aq„”¾s¶07!¤ïlÀ ¯,­«X¿øt_¼„@Ú°Eâ¡ÚºTß Dæñ:¯ñëFݲl„‘bûf 6‘7†à³’ s´çÁeñáƒcXˆLÈæÁˆáwqâ†51N›v€ÑPÝG}ÞS‚~ã´¢Äpp)ϺEŠòàòýv—‘ã;Áû†æo툦í(VcÉ1B#Ül}k(Ñ»L¾FÔŸá1‚íÆLbK4νҦnæuOÔ:x@ŒÂÕcXL—"¹yw)Ÿwt‹Ó!Å3öÆ”†oHÃg‘„m0à{Qoo˜[„c¬Ü¢çc£º¼éyQ©ù]êн\9&z|¾™¾g¸ËK}¾©&WƒŠ°ë¤è;¦™±&*㽩E1ó5ý^8%A9ÜbžX4^™\Ï{ËÞ5¨'|ÛO¦r÷ºª.ß³m—´ë°mø†c˜\âé.ቀBh¬q~•n.fïÒ}6ƒ@€KŽÌp–¨Jœ^è2(þsÅPü…e0A“ØO°&èp©~Ë >°g=!Œçt¯Ù÷ ´öߪ•¦BƒÅ%†ì_"w·ïö–ð;“~K>Ï÷[”I4)§Ð>¢[Þ?b‡ê„_ !¬š&Q­8 -6jÅa|³ïB…Å£À;~,„9CzÖ_ªº…:¿7JqbWNœûëdVÕô( aÚê_öèpÌcï÷è¿&»¥Õ³—” …‚^¡ì–b2U)ÝÙ€æÛ‚‘cê¾¢Äߟñ)_¾nh‚P§ÃÃOR»±tÁ̳یML#A˜þ–5‹]Û0üd’óÚ”£ÀT³4*_[;ñ€™{7"ã{÷0#­3BÇB]/ÁAL!Í—ñ°3¨ïÐóô,;u†D¯^¿|A¦@ÌëU„4Xù“ê? vñù‘áƒó "&÷2ëìŽyÜÁPëKÍ9bíÊ'æ´Èï*€Nþ@3kL†¿oÀÞÆ çÀ‘a’bf0¾cŽyçoÊÿ>Ñ„áøÂ±›ƒrÛAµÍîôòÐÅÃCî÷a…|ç6:C†?#ç¦ Ãï‡6Cbf¾Ñ_ŽÅ%´°ßfÛ„€rFŠ„ù»/›l˜"Ä·¤‘`8Œü‹ë¨3òÎ)’”æ=&h‚%Θʉ¡+ßÖNÁ>§WiÒƒ}6¦±Çî cv„‰†ŒôA 9_Y5‹Af¤óýY1 ¬‰Ød*EÌôaœßiìÚ¸ ¸U6b;=ÜM2â¤7ž ˆfø’7D°Ïf®ãgÄš€• ¶yùƒô³0” ¥­Ý`>±²ˆè(¼!¥ú黎œ’û™ëcè E·p§]´0ßW®"¨€” þÉ:,#ú¢Ѷ ƒ€ŒÈ|7Rø øO„éyô_¥q’y•+B§I(Êï‘«“T Êï@áž[˜ïîö5À"<ûÍþoԻʽ•7¢i¾»-}ˆ ïxßCTœ>/rã/UJ;[ó“sÓ:µñy×Mø6L ÌÞ…¹-ÃBï¡Â3¾®maX¹‹Ü+^,eù#ZrJ°×ïQØÀEŠòGÀ‹Á´›¼µ'O€ÇvHÖ Wa¬?m;Á0î!3xt•Ú`ì{ôm8!$ù3ˆh`dBàhVg/!ï@ Ï<±ù ñlÚ DÈ"êZáÕmþ>Ç#OÕ~ ¸¾=crüî”KWX*£ÏÓ äúSW(ó;ÞŠÞËÕ}Z2õ¥\Èœ9ü/˜K¸ü§å•HÞH3òÃ|J&U ü(ì½<å÷;0m3dÑàÁ‡4q©d€l·„Üå€#‚Ͼ‹\6~¾tÈ,>Àï~Y§Ìù{QJ'â»H€2‰´Õ-°¡Ð¥'Ø¿ßE0Zmn¶„ó¼I,Np¸}™ì©cä¿®ÀÊiK?‹¶¼Ÿ£oË\Y±[P2¶ƒ«$åì.Pû^}Ö e·±nΆŸ&϶fD)bêÚ,€yà—¥E¶Î*›×ˆGêPO›â„ƒn§È¼qÝœ û.+ͪ2˜Õp‚½°»4Hôç<ï17*›¬A¤?9­ €DïUÅ}VˆÐ¥¸Kþ(7^½5ÌûÉbÍê_~pÿelß+ÛL0U"[EhqÏCÒ¦•ZEqhŸÓö‹6¿xp¿Èÿ+~"¬ ¦«õ u%¾ËŸ‹ÿâáîèïÆGÍ÷È™êßeã‰ï (nâ8ußïC±ç5{¸ü<€=Ð[<ÊVÁ6úÖrãÇ=ül¨éA çG!H\s. {Q:Ê×ß\ª>ý÷‹“êÕx)ˆ«9KoÏ;ˆß‚\Òãå Ø8"«eÑ!isG(YF'Øw!ˆ‡÷c–ÑZÿ¨bo[lò1G÷YŒÙûòOΠ ìü¾uôN¡Þ 1}¿ã5<#»˜”éßÛÞ›Aäì»ÓŠÌWÅJ8"´®3¤g^­ñVÛfвÔ÷@ãBæ“­ÖQñìy¢q Ÿ*ê÷Ãï ˆîÊ[0˜øº…òL@ÒüOÐÝ 3× M˜AT?ÕÔ—”ÂáUšç€=þtËX;…äKÜqßDõÊÒŸòœÄG°ÑV?³Ÿt®ö¬ †½ûžå±ÂÞ¿ÃXÑ—ÂúY*j‚1š—çôÛ¹)_Í{ŒÂËc)@#Rö+Ò(eÔyJ’ç0VæP¹ÞP—‘.t]Û5¬¹CÖ²q5¼¿g²¾ëH0Ö‹<Б0z” ²¤"ø!{{ðáYƒ‚¾Ó§á€bþ7–6Q4WÞ@üYÏ{n0‹-º¢å|ß9(æ;†ç÷»÷&;Èâù(L<Ê[ÏêÌ^Äh³·´âlvR@f¶ìgc߃/×#k†#}›W*¤=fb”Õ Î½@Žý²øZÀã€l†Ì3Â|¦ËMD+’Ÿì0Š’jM*(†^Ü€1ñ~ˇQ#œ¼_Z8ø­2àszÎÛ.qar-~1g€EÿÐuì»0¯òÊ-{–'²k¦fpÆí[7¡` ¬xé[h5¼þº¾ý@„d,X|¹¨ßªøÂœ_¥çÁf4\ݵGËýe]ˆDúv á_©ýˆIŒ¿ñKÈŽž…°¼fX­a&0TR,O½jÅNU[fyFþõƒ×‡@ë)JügÏœ‘+O¿Ø<Ó@CP ûQmuF€ÂlHµ§¥ÚQkqsã@º*8$€r•JlŒãú®[ÿ.Ÿ~³½øì pAâ÷Ríæ ¢mjý_½g[p<ž¼{ÈGû¥‰÷ß©•5Bøþã!‚Ã!RRÐ㺆ÀˆÊ9T¨¼‰®÷D0f¶D½Ê¼ÖXâí®7qHöùužâã=ÀþßnŠÆ=@4Ç4íïÐ|#)›Ê\ ¢?µ™j#††MKYžEl£L‘=Šˆ Ûä<4˜¸`Û…§îÙ Ö ÅßÑ8墱?ò`R2Ü¢Ž6Ú•\qÇÚ*Id/Fü„¹°GL°-š¢jÖaèË—< ßïu†ç,¾²Ä6wé³`ãü ÓÅý¢ÀýŽbî!,Dõ­ ³Û•…[®eÙßK/Ý bgW”…TA. ¡_5ɹrùÙÞvø‹2¡÷aÙX?Š^îøe›~٬̎ýVw*~aÙ±ïM—€]ÿ,n]l€5*wª*[.æÏØúC>爺v†ÍÊ.Ȇ–E¼¦ël2WÃnR‰ý$êÇ¢D¼J¯ˆ Bì…¡ôÑÿM "³3ã™뛤s¸-q aì¨ÜÃð“fx Ö»ñ#÷Js‡5ÀÎÑhô{ ^p¨{„ ]¾ˆÍ÷"Ñæ?7湬”Pü„©hGËlüFÔ  ±¾ª›Ø•@+Ø¡…6PW‡!ò°fÀ¡#x,h.ÊF[  Œ…t6„ü¤Ã̶'>º‰6/ú™ï]W)id¶ðœµMæSa=è¨GÈîƒ5 ¯Éé‘|G9ˆy¶§!û]áy!,ª³Ùާ?…²ÌmüìEx²~æJÆY` ØðDßÔØ׫N4$¢û¼Ä€ á/ ì{{Ú"‹  ¥lñzpÿç'î@‡e,†·½­ rÈW!hü²Í#¼g÷]¯uÑ.ë‡YhÃQRبê „ý¨žŽq?Þ€¹†ˆ•„þŸÕ# àJ]Á‡baæ!н Š8‡·snq5 k1 ÃîAi\ƒ)JGÍR#$¸N¡§ØQ‡‚]‡#ú)n ÝnCZ‡ ~…³ÀŠmœCr_è¡+\ü!°Ê&Õê°t?ñ.† nµù¨×oDϬÀ­"šýÛÿ‡×ƒuÏî솎ª±.© Ù¸^µÊ9 ùøJΔͯ|*Èhg-êÕU.Q}Ɉ4“E˜GåHb:LiÀ$*4ê°«îÈv¨¡Hw)úró)Ø…^ÕYêZ€r!šDë­û{ÅýÙN7®‚6!Ä©†Äl¯»Ó_Ä)£E`ÍÍ=À†¬Ù þm±ëûqΚ•šl Û9²Š¸ˆð`Å5b¥í”GÆK-Þÿ‹1ʈ"BÝ‚BhÂ.·XL£¡ü[³_·Ú­’ã4Q¡Ø¦bxiLî=Úé`6[ü×Úƒ¨EMØ4Dº;Y×s‰Ÿ t†—ƒ(ÓB_ ±7íIGÆ›KˆžZ<ÎÊ„Ft»n˜êÄ­fH°£ú˜ÔÏ[X½Ä3Ö&—O÷”Áªì‹-ámÈ$ƒ•&@—8ûfØ.QžS¸[òJ{ ›ò*w^Xmyý y@U^ a pÄa ñ“ái…ÈüU¸.Ä+úŒ3sŽäL-а¤Ê]JMvt6ä=;“E°å‡HõÂ/›îªößáG;§, J5 ôv”©ü‚t„¶LâŽAA£½xOà‚óáŒ>I¶ Dã.ëïÛŽ·8ÄÑtµãÝU^=´‡S€•Ä“ì/QùÜl«ªW±~õàUç#J÷œqºsú*ÿ‚ÚˆmÍŒ‚(F¼“œ./žãÝl ª<³Ýn©ÔPŽ"B‹T&qˆ3g`yÃÛ=w¦p~ÛÄ!¢FÖÙ?Î0[õÏ%Vª¬uO(:ß^l<  Ï‘WõxþFuº6€ç´3Òˆô€]ìý †\x³Æ="pš±Ps™ï:?*ëïU-È=P]óLà6ÎÂYwÔöPVûyÃ&øåCdg¬Ã“iZ2isºáB¤Ø"7.c®dònF mH-Ä%?Ú7Ä* e%"Ò~…·?DxDHEˆô8êÓÜCö÷@à#Xygc]Œ GGöïi®Æª/uÌã¯8Èr8ÑÖï.¾eÍ¿¬Ô»gxΦFStl‘cd§M¸Ùá²}[àæ´÷ˆô]\V1à£ÒË<—.UgxÐ/ŸŸÀ.Wþï&º‘²UIîþÑ19DVÛÜJFw(E"åûÃD#@¢s_ù*˜sø?Y\‘E°±îIw¶ÌË?Œ>À_Èð’“FÉ,Ž1Н®‰@ÈÉvŸhã ¢G_ØÿEwñ.¡<Òè˜PS”sÖ÷ÃõöÁý~#…tǶ7g‘m$£ ´¶³~¬Ñ„‘oOBHÑY`;¸³Ý2oP¤’BBŸàÚW\?w/¤ lŒÀèÕ×ïoØWÕ< ì‚{Zâ82}[GžcPt +FÁÎÂÜ‚#v“¢ù­[ý•ÉÀJKgܳ#WÈüÖ!1fÈ-zÒ‡Ho@F Q3,°%®7`΋ÿQ±Û†ü¯ºt‡·Kîï?¿,+ìŒ+ä·7®of‡cõŸ3LËî¥9OJH6 zÎ`0÷·w®ÇyòÚd÷W @8Ù²í‘n¡<§ÈJ)/1$Ú_’Ï#J£$§´¬$f ã½MHAí!Áê/âŸCÊ” öÿ]¬ùýç:¨LÅÆ*à i¯dcݳp•”ùGM {©›ÐT!E'¸δ:Ì :O-¤€@™ ú„ŠtHÐ'¼ÊØs€{#6·U·Ñ ;¿YŽ $xÎÜfà8h€ð½¦ø¢=ù#Di èwlº»¿âKé ¹?ܯÜg÷ §"Þ^à «°ó®ŸþÒ 8Ï.“s@ô¥Dèáiˆp-ÞØxå•]Ø}÷(›…-VQc €Ïo“V3^¿EH¬-tèvù¢ð²çÛ¤óüEðdex¼f‹s ñ®CU› ö¬eÌàC.¾|AðìVƒÞí)ÍP3D À½ªVEÈAĹ…f¨ÒÌ>½§}p^1ûôžÝºª ¥Å!%f„ÔÖ&ÐJ¸ˆ2òT¥°Úõž©h†%Hp>½@Ň´×|³“DÛM:³þ?oJ‡Û2`Ž`”à’lÈ…k¯pYÑm `ñö½ò:Ͼ*ýrc²)‡Ý|ºü”nRM‚åñf™)Ì›ä°ÀÁ~¾GWŽe›eÛׯWÇ¥-~ÚHO9È0XvT˜*ß.¿qbö Gƒzæs0žù·ÑïOr@ÎBZÉk VåÇË=Ú#ÌHðPBΪ´œV¨C9‹‡}fβh Þ¿®IšI.*zH¿Ä‰[v­èû«dë\Ð{b‘IâÝú Reˆ 5òBæOdñQ ¸¾_Mò¦1ìþnÛ"vET®ñ8iÁö wà{³C†j!E‡ŒÐ¢ÝvKÐÈ:¤Æ£k?LÕG½t³wÒ&<¨ëm`®ÂÞÕqaWc_ÇoqŠøieH¥¼ööúõuo®!b³6õÚm¹sÁ¢_¸'N€Uð4Ü?}åæUeäGÞ²“ôËÇpZãòŠ7Úóó8B”÷#÷•Ëko|§…}‰Ð(DÝÿÑòëHèÁYš¯ <÷î£_½oÎi³C†ºÄÇr}¢C}8)ÅÀ3„'lÑÅøF³£À¡ÃÀ‡;2Th^å¹½®¢VxÿÂÐ2!^®Ë—ˆøZ¼½€-!Ú_VYÄOSã²HXÿ_I¿oû_ÏTתÅ´ÈkL'~ºPò¬Þø‚æç€f†O7´›|´>ÍTï&T ¼`%×!M€OœG§•*Ù¨ GÔ:Óq±-6rü û¯;,Á™ Nê÷;·àð»hT‰Ð‹Š=‚Ð\Ù|¼Üø. Nà6ê®ҕuú¿[ƒîWà£cj°5ºÏ"71S50 ª©4›d-œ¡áy’C1v!ð% \ä ÿ…hÊ‘ÂÀFÀ;…W@…õ&å¤H¸–7=Œê†ŒRâËW .œ‰¦@„üÁ$…EM}i«dDålÊÿ°%c£?ŽÚÆ|è¢ðÛ¸‡’ ¬½Ïß|± ³ŽŒp[ŽN§›mšÂYŠ ÀeÓîࢅ4¾°5ð.%‘‡&oýxµ øÜÂZdA{%Dç€áß;½SúÃ.î6À ÄéFÇQIðc Ò§ïÍ*Õ·oƒ]ª´¬s z*¾yáÇÑ.¶öÒQçUá>o¯`Ï ±°‰‰ ŸAÉóÆPÙãÀ«æ;GüÐ7~nB>ñÍfÝT•^_Øõà0Åb›/j:m3ŒÏ1ðé4z0™ ÛAa¹¤ã-±E{°á u!®ð-A½TÑ 5¼…lìhð\œ›À9šÿØ@½)ª„jäƒR/0‹MËüÖÞ¡ ya·­’ùt¦l hœEùÀ£†¬X›(‚†È‘Gõ¹éš‚nŸ£"·ÑUJ­¡3¡ý,z Â[½ ¦ÁÇR©vœÝšm[UuCø!ü݅뮢ƒûS‚­ïqE%UYW/Áù.6!>íi6Іè.Ø…x÷ñ®£ÓAqt)1³ñ˜m†,¨É_u•XœwÕX­ö—æß~àJ0¢7þdøÞJÐ|e­$Q=T:TA…aª#Õ×(Lu¼|d;¶R|Gÿ‘ãZ£ß”ªð»Ìä5Ü@ª³+Í)D1P :•Å“Übá2óYí*SŸEQÕÀ~ÄgŒ«QVvüΖ„ò v½”x¥²¢ÄÅ*«²®êáC5HA¿8k†R(³try;&ӢȬk ¬KñÇÓ^­˜ªÛWj`DÔîöâ"­·p Y¿À`uã,Ll3”‹L ¡>TdAï½`lZ½‹ý¢Ð¡–ì«àe­!‚ïÖ6?*,×+Í§Ê ºfš„„WYÖÎý™µuU%ä8Õ*î"gˆ~OQÈ‘AP^”ïcž#pÌ%D¬qá"…ºE­˜¼ä*Üb‹‘#Ê áxg çâPu R-øNÚÄÑ<•0îÔöY#s®"*RÁ’ÂÇ*ö½¶Õ9GCÖ³ q®Èz¾å˜^νú*¤Ué…pzè½À qX§ÁÓè„•ÎÞ®Çá{Û=¼>ć·àçß ’íø±ž/öPøøtáàaã³ %†×"Ìhò·“±oÞåÑ—è?Fˆ ðX;ã—FE;Qr9¼ŒƒÃWù^ ß;ˆ4àŠ€¥o /Yr™Eddc.óQmu®ß˜qŸßW 0~±:ulÖz @#/Qü¦Qö?íÚÕFØörP®ÞÇ;]ûî>É„ »µÇ–PÛ‰!-,nð2œ5 ×["¬Í6hŸfQ¶;Võ°ØïØ•…æ*Žb A7tYKɘúAc ´#€Î@€ÒG»æŒoåTDíFÂQûBÚƒè^Ø y\÷ ´+Ö ù‹A6ø$'{ ;ME‰ùI@¶»†Ú©ŠÑµ$üXYÙÙé oØ'ÂéMßӽΙü8L^á*­ 9}åãÂÖÇ¢ƒnhÌ{ðr¥ÞuéS @!ã‹.¡­ö ßIß‹ PKUº¥ßÈß ×åŽT`» ‹¾4¡1éH&‚ˆxIœS”_ÏóÃQçÔî1/¨ò³( AòímìµÒIœÂÃ-e=·\®Çܼüš=^Å=D!mQ†îÈqöœ%sÀÏýVCiA:d{™€ÓQ§HŠVé¯úØú øæºz›±Ù¡rÖŒ.f»´O jõ:^ë¤øùÌ?A¥>Üí¶t’æ,#ZìUtRO¢yoà2ŽÏ¼ éªvÑžGf‚×å²”Ñw“ÝuR6Gp{©†žéÛu2 æaI]'…ß ä˜#…ZKêÐQèè4vó °ã;õèß5(ÞŸ§výÓ­fl  oÉQ»(ˆÓP®9¶EVbOW­2ÔŸn󯩮"é rc"jˆÏøÛ,ٗث `°ÁYîäÝĬô!޲_òŸ€Ó”ï÷M ½ €ñ‰ªUûqÌk‰U…ûeÿí¬xtÞ¤ñÀ¶gPu ôçnDßþÂ&ÆîÉR‹}û'ÿö ;À©Þ‘gp&²151’½­Œ3M”ˆBNJÿè‰`?é²3ŽÒ½² Áb6Ný]CG•£“×a0iY•Òèˆý9j9B44äs¨‚0ý6P¾­]¨,ÞÉê¨,ÓGº²üN":CmïCºÞ0 (6bGU]×H%C„j0h¢#áñm§ì©\/ù=#Ð_ùóW«¥ò6é‘-•w–×p¸…õ§ ‰ö«{$ 0Ø]íðr¤¥õ§¦ò‹²Í*”NH±ƒúÁÑ×k0äg/í» ½µ›°ú«þb¥¼xË9ƒ¨µ¸ ŽVjçA9B–^ä>—Лì7ßFðAKÒø`<ʽb£e•Ï4¢€˜æÛjùµMl œPYÙjÙs̲=ÏaöSÝÁ.éψë#¹Ú!p’ˆ/+@x“ GD_YsI¼”zFB%Ÿ#…#Šk Z稾Œ³à‰BHgt¯áû"ø]ƒÃ@£µ½zåôÕ\y;8;»+«`ƒÁŒQÙg¨ µ„~í,’š9§ˆ«E7¬¡\„]æ-6–…um±$Hƒî`>òáy«6 úO:Ùª“ºkü¸³"Œµ•k ûPÏ0®•͸³Ã(m)TQùöWöoº Û)³Ò•" /©ÿÝee'04`;áËßøG—˜Vyßjé>‰DdøÜ—ÐÌBnN`”ÙG½@`"IÔ_ŽÒšOgÎâ«Ç}pÑ½Ž”Ž$¯0Ú¹y1夸¹å(f”[P·ñ÷ŸÜ+{®mj×:oGYsA†,n‰ÝJ…¦qe5Ô ¦!j¡Å·¿ó·}-^Ð5Dg‡x!ÐèŒwsv£ÕZ—ª†(y/$ˆºñ‚¦¡ÚéÅ eW½Dµ¹“]¾É‘L· ”KÜê6øšn|Û:G½0ƒè[ˆvù!•‹rX*É+Ž6爾z´ðµ‰¸¼FdÊÜ$ÿx!Lé‡UØpÏì1p!EáŒU4º8+¥'*"Gì¬A¼“î™›hÇãqôHà\ñtaHh@­.bã "Š•`WÉá×ÞQSXÒâêý|6¬m6‡J¶çQáäØ Ð* ¥œe5íÒÇŠÑ¢ Q¹höeˆÅØY‹Õ‰OSˆxž |sÂ⼨QÇ@Mxæ4ˆNV1@/qÛ=ÎÀ¿Cœ,6<*gÚ>ÒN§ØYì¡Ú[)–hý½¬Çls¢KZG&rDáØ>ØýyW3Gˆ˜1ð¿ÀŽm"1h"n¥¡¹ˆ£ŽùJi^‡c Ôfù¯kZ–ÃØ¯!Ù&œõ—í¤eáz‹! M˜SDF |Ÿ L5DtGdAÙU[ƒÊyà5Gñƒ›DE)‰ (Í£q‰îrª¸%hþìô,̸ñíô<ÙÍvTœNq6`Ę́Šìûìu\˜`<åëõvzöŒ´¼£"ŸU_æ–À sv#Ãí"Þ^Š)Z –a0<±íóÞâs‚úÇ©VxÑnOá \$)|7,@”Ô©ò,+ÒnÖÆY=é;n›/¢öeLD9®U!Ð] =5á–\|’‡ÈóŠoèàX%(<ÀÕ±g«m¶¼C‡}Ÿ•8$¾ëmózÇ€Z«G‚·ágÆ'Ê0]¼¦|É >¸}ß=tá‡$ÿ†—C…KÄÕÛùHž²sÒÉáµOŸ#©òÍèË.ºuÍÃQ°&™ǾÄû2½S 6!t £Ä0ÔKÑb0åæÐ0llìp¼,¬‘ýê+dŒC”gáÛ¤š=“ïÁÇá÷™d}œÂâÍNar‚*^[¥®¯•o‚¿¬Ú5øK¢bÿcU®âÛËÙ3ïf"T…]Fý ÷t|›;O¶ã·_ˆ…XO:Vé£GÀ2µÅ:‘l"•‰Ó¶ÜæôkìÈB ²BÒÑ_¡Ú¦äµ°¨e ù*nêÃÜK˜ýq ¾ßòFbX“½nI²)†›E…ômùì•À“£ZYsDÿaâ«&µG²%û.BUˆÿˆ’:k¼ŠÅê]—€ýÔÁ¤é¥ ç¢`qc?È!‰:\œ6E*×vMIŒ×˜”Žâ\ÕÊ%ooøyD’Åî#4Rû)A<¾ý¡ƒc¹H&ã¿í¡]+"eø˜apOëOZ”É#t‡ÓZfGËz ý2Þ€#Œ/Ú.Š8¼]s¦E^ŒŒ:ãl9¢û¼eCØ‹É|XéÛuØðì^‘F¡B™c,äipcaVÛS3F6…Q9ѺHÿþócûh°½Uº_H¬¡‰¤EDò¬Ã Ê­d#Z‰nÁñm~z‰« ˆœ!û&+(ñ2¬Çm«c´9Ûøéõ1Â9qºÜ°ÆPB ð•VUjCŒ¬´z”p1²BTÔ«`âT…3u—»@9 ˜X"t…³I÷u œÊLµ"¡[Ä&1Ï®1P{eºimº²*¶ôŠS¹¶b*6Ü\w†ÒªÊÎázPŽ6‘v Ôs H»[ð+™="'0Æ£¶jŒ«¶ªu#µQ›'Æ¥-|‹¿ÿ\“ˆbŽÜü¤¨ gŃà`€™›—ãÒpã9¶tž‘N!êxÇt-»Èf s&6q€L‘.©©°Ò%ü°i€è»;ˆ8@x ž±Ë´È£‰ ºƒlÓ%Bˆ] ÚƒSBÿýލx)Tîr•WÚ=úÍVÕ3 g§ žÄ=¨ÐÆÄSˆþæj-æÍlº—ü¹Z.™Øöͯ‹µ QÐ0&ÕÔ¨Îh(ï6¡MˆÅÈÞÓ;^µnNQ}a-֨ɺ{ ‰±«ª¯€ÃK›m"A\æÓ–¨\ˆ0í˜>’¸ƒMƒîðÜ›5lÏn^³ÿñ‡ÃfÓn%¦9bÕLˆöß>#Qƒ8MБlÚêYVÝNƾo"90&$iŸ±£v/tE.9…ìõƒm2Q`¯…a >¡ìì>½Ç:žþVb5âNÁÓ Ý´Wlf ®ïgLEö›–„ý¦•˜ó6œþíå"¶TÇiHk©@@V”S„g ¶ôõré0´ €+b7¾À›XyõÈÊ0>GĨ¸&ø –sa7‰(­tí=Ï{?|Tjìöc´Cí†w€J¶Ø³ …_⿱j¯Šê1µè¨ 9¶ŸÞ¤™¶Ö`Ô.ƒjÂT ”í§OÞax·ò1vw¼Ýy¦b*9a= °~ùÏß:h_¶cþ(úWu‚òqªƒvv6¤>S° |-½‚°GÊÇi®´;„Ûb@óv£vÚœð峘'§Š“!O›ŽEá‚jÈéP°=°›œŸ˜C ¶üÂad¡êd€r_÷ºÐ!«ªpDÓŽ¹H÷Ø–hµ¹™©Ïú{V5¡TAǘu¤ Ø9Ø’zO÷Ç•eT…:«c6Ñú, ZmL ¸Ì€(¿WsÌôiœ¤ è°èòÞGc¥WHyù0É´ÚD„Ь𘼢Áïì^5#rѬà|ÌP>N\0€ÕTdY33²¾Ï‡‚#Pê;V´õÑxúŒi|'`6ÆtÈ™- Ö_ÒÏ ¬q5žVM:#;OŸ `´9ª¿s¡ßÎÓž±¬rŸÝ}>6Aý–º ;'!@'aÇÊ8‡ª˃~è#Ùþ"òúø¦eè#*K1¾¨…XiàAÞ÷™«o›ºdíÆ(øí5†z§È Ø…±Ž’nö¢>ŸVÌ*B>?¦€õÀm³j.8@„à-®ñUa#SŸn@ƒ-¶@5C­¥BÕ3ªFŒÚx*ºÍízSã€äÇT’o—ìS¢D2KÂzm 爪´$l¢ùjj寙¡Ÿ†ŠL ]¾#ûVŸí l‘*¬Z|lXAêcRÑæX•Äm‰<—-âa$¢ÔŠ#%¨"RôÞÞÕž2¼Ö›?8³„”›æ=‡ˆ€w²x<6GŒbV¥€Y2vsª@8Ì,(u•åVÏÖø#x¥h,CÓn}¶¦>U`C Ä^¹.Ì1„;SÃE—û 3¨3 ÊSÌÂßþ?§HÁß,Zelig/data/Weimar.txt.gz0000755000176000001440000000104213245253056014676 0ustar ripleyusers‹-RK®1\{ƒúßî5ì@âé%yJæàô”m6ã¶=®ª®®O§¿—öñþkÜ®ûíhïï×ëÛíò<žíÃéñåòó|´ÏÇy´çùôØßnûõõåþgÿ¾ö__ÞöUý>_Žÿåsù±ªï÷ëþ<.ßÖîõq?°=ÝŽçÉÔ¢»5NËÆfԌĽ£tGaÙ3×÷—l.æŒJ4…¥£ª¤éQ4‰^Ò´Èš“EcažÝXû¨4;(çQʰ™Q5Hºɠ/V.ß̘»z5¡&EÜÒxPZÈ)Qzv™6.…‰¼M¡¾Ö¦ç&Aø—ÃIC‚µ„ð¢lïY¡C„—xNØb¸TÓƒê^¼ÊdüW!ánÀNJ CE»ð†¯3EM×Ì—8ÈE;£ªŒ®ƒ¾i¸õÒAEËbcÆ [5f©˜‚¥³«"õQ)­á‘§fÚi4*uì|Ž,*Ø6‹ÞB;æTžŽ'-Ô♈Ñå:ÈúC‚Ø©ß#狲 7¡ÍR°Ì ¯±_aœrª5S´R+`Hиe/t3“ ]\câödÈÚZ(m¢C²KÌ~‘–‰`ŠØúJ‡uƒâÆÌœd„ë¨JË=¨#«)JM-e|Ñå5t„y‚±Òœ>–>)‘~‡WÓ D›QQà¶×~bØZelig/data/immi5.tab.gz0000755000176000001440000006156413245253056014440 0ustar ripleyusers‹…½[Î4¹r$ø®Uê]‰à\N3Bc€Aï¾ÍH7Ï?ƒdIUç &ƒA:ýîæÿ×ÿ×ÿý×ßÿÿÿøŸÿƈø×ÿþßÿßÿù¯ÿÀ¿ü×üçÿû¿ðÏÿùŸÿÏüçÿþûßþÿ•þz>5äk®O.µçþWû«üþíoü6ãiʽb¦§?#ç§âÙ|šÖÓXÛècŒôŒ’[ù4ÿýW˜OCÆÓÞRK©Dü-óiYï͵Ĝz¨©•–â_ñ¯ô)½¬¿(OžSÕõ¢\s{ž'¤4Fˆ‹Àÿöw³Oh©çÁÿÁ¯RÂßæ"ûßø'ž>¹‡Xc|Ú“BÄ|‘OÇßø'Ÿâ7cäŠïÄç`‘Oó^Üz)/n ¨üišmó^=°°ÚúSçº"×¢=î­â×OÄ‹S¬ØŸ<§õî4ò(Ø ŒÁÿåOZÂrË5¤þWù”‘°µ»_k™_²Í}àÊžRk [ò%ÇQBé s®…nBø„ÔZÆè2z*ËX ©¶¯M°s MGÖgŒ^0®_÷óa?xI°?5—yVaØdOOó¬Bu¤y”¤·gV =?cÔªÄFÌ-ãã°¶ìMqimx´ ªÀeµð·üi Û< /åés2#ß7éÝDípÝbÆš°g[6?$­4ðE×"§´i±êìcl gSð!éÁßÖã¶>¤ô€¿bÓ¨³ðøÊ'ÅÔKÊ#¶Tû$ÒØÏ›ÆË‚é;ÎVCisôеü½xXø§åÔêSzi¸*“ÄÓ³æ.™$ôtÕOž+)©ECOÁ³9:¬¯~@àc—žÚ{ë7qŽŽkô{Ý œOÙ‚ |ýxæŽ&;p˜2ÚˆôÞÛ˜tÆÉt¯ëí±1œGÁÙWÐ(Ég®,g\<’`‹!O¢MvÔò`Ÿ±¨‘'%cÛ;ió±1nň|.a;,&™âñÂâ1%OÀ˜zÉ&1_"ÁXm)K(¾EÙ6n^OLX-þu޾RéúLcÌ 2­?ó…8°kKK?_ãPeœ‰Ú×ç|ÓãÚ†j„˜ÃÜÈŸ€µ/ÙÏÇvóñ«CöÉó¬ºêOå.…0Aksùî|¾"ZÚ—õ¾®úZZ=_G­¼IHü²Ç©y$Ðþû}d1ÓjÒmW¦¨×Mœ”ÖlA R úusý!Þ‰N†8†ns‹çó±à‹KÂþðeœËè2a›yý ˜(v…—÷ÀÈ¡öDpÿ%…›Ýtl~¢, Êù¸œéÎh¼ÙçŒâã ÒÊëþð±ë ë¬Ðí 4:'¬Öí ¼HC“›Fö–¦ôçvýæáv©³¸s•ª ˜ x¾H£Gé¤o¢Nh ; n ¾3YVOFg¯w¥u<ݨ”{ˆ¹p°#Å^Egݨ|’1I£ÐÈŸ'æÖ¡å‚Å€Ðæè*1Œ³Âè ÆÔò0+ö1&ˆyG3…´í{˜2õÅ)C¸ð~¾}“ ž+t™±>““ Ýô_­‰â ,©·Øùk›$=Ä[_›bWw„³°Ãñ¼gFñ#¹¢ƒÓÃÊ ¤EjSˆƒ ã_©PâFÏÁùL¥ZI1+Âf!!A‹Ëqª*ó×fS¼/W³_7ÝÜ÷Õœ¤1Ä[Á æ ƒ¤ào?Ô°xëÚ£m‡ßT95²:¨]=Ø0˜©"?¶Åoö—×O°¥7ðÜ:*åߘJ@^Ïm“ ?˜`N~y¡0è1€`{6ý¥wÙ2xiØ{,žwˆÚµ ¿0;âðØÆ¿i7êy³×õ2%d‚ªbš›…/·¸¼0FlõÆ ÃÚ%p8œXoR´Ã#ý"HY/áÉAÇrq J,N&aÙxÿþ|ðḡڦؾ2UäVF¥ªŽ½Ik÷ÝêË)ÚZøb°•I0"07d%.U\‡)+ð¥mdY˜âÔ08(1KΆPÎo“i®*ÄÚíÐn×Ù~/VÒ29ЀR†‹’§Ž1Ÿ›±A»¢ƒBð‚î1ßÏõÇGJHïà# ØiÉNŽ;p›y28cíkx8K~ZpW¤ÐrmøÔeLFãç;-ÙÛÓYÀÂ$ü`£ ¾Rbië,Üä{ñ„d‡å´ˆÐW"ö±B¬Öð}^åkÀ§MN ¢y¸Ùq=ogžCöö€"¨¦T’€-§Ë|‚¼ÀphKqéÄö\–ÄK7IöõébLûópþ½vOæÛ®”h ÔNö³Üéf%-RK"åØÓôì€bB§™´nj’ZWî<~ƒ› âl`+8Þ˜avÐèÅ%oâ ÖUZ›!‹îmúˆPÓEYÖfÒˆ‹¶ìlÝl+¤oˆC¨60êå( Y„HÔà®;ô3q¹øÎÖ±ÖZqÖÞæpö𤥠Yr» ³6+§³­&¾')P9tòìÂeùµ§-wRkµùâiävcò+ÆUi6(y³—ÉC"&vê9@±üòèòhï_<ÒwNÓºR Ãó G‹<Œé »Pµ¤§ ¼Ýç·ä[¹ªæj+ç“m¶õå²µ“Ð;h³ãâáWuBƒ~;x!h+ ¨œ­s/¶Óê]g%ÓQªy(ã¬Z˜ó!ÔçŸÅE çßûs9 ^dY5¿tB·¾éÀÎÃÉ––oaƒ6"ÂCêí»>)›“ÁÞ_ÅcÞš/Œ}`”m¹we N_3þú`÷Ÿi­Í—õ·¹híšT¹%^:fÂ5€úº§}•Çr:…ö\ùÿr´†3iFûz„où¢[)p÷h.Òmùìÿé¶rû\›¿ž×gfcå÷~¿N¯õã=Öá7SÕv]»™3þ•r|cžLA0H(¸¸èõ땾x*ů»ûŠ7Oæz.ã4 æí,4MÓæICÏøˆl:ùÎ~?Í ²Ðµ³/w½ 4ÿâá–›©zûg¦Ò%½Òò¨à)Òê”ÑeU¿Ý"(a“Ú3õÚ9¼œï<ÝPôVÂ|l¸}¬¨Ès±7šV/±y.lu²76Ï”måP\»8ýĸ)3”Uaƒ@í¢GŸtݸ{…®Ìº‰!œ^R¸ÉâŸg†i»…ÃQ(Ü ÛZo¤}³Â§QÆÛ; ”hê–§ƒ:ñP°­¶žUE¿¨ƒ K«C˜Ã ›:¨ ÐÁ% @+Tç5¼Ÿï䌖Ápcd t‰#[‹½¸:ãò?ÆxÙkÑm4† í¬ðÑ:?Ÿ{°è×'‹HÓè‡ü€Õ¿BK1^¬ “E1Êkñò´Ó ¸t%Áìd¤g‘y,òHÿÚZ 0€Q –€[Ut ¯÷8Xìô¤^:¶X~¯ˆ5TØÓ}´ZëH8×µvs‘âÃÈÀ´ñŽÖÅÞb¼D­M!ŽŠéí,bŠ ¿ì’á÷~n±šè‘º×Q)rš.þû ç妧¬k›ï/7tØÀÕó³Mí|m•´<æ´^bò ô/?Öó¬°ÿæÄ´çáìÅÌÆ‚e¼½mAHŒ”A0œyov­eʽ)Õü˜ñ–3Ë6f×-~ß&j-·§ ´ÏS9›˜¬õºfLm#.{~at.ƒ¡Âb‡xn ¬}½ÝM»_ï!8Üà/!õ‘Þ\`1.¯Åµ“Šä½}“ѾÍCy;›‹U,ï}­ƒžK/Ù¼À‹’J>®æÓˆÅ¤ã®Øs9;7;{mfiçßûüÒ˜_¿Ò%Ê8ßdÜT°üÎP-]'Ò+)AÎûDÝb©ÌÏù=ª·]ìøÁ¹ú\p»R^|DQ>q¼"™jÌŒ´YD: ûh”-kïí|ÌFÙULù•÷£›Q/®dÝS7ï¶¼ ûÜþON’¨àÞÅÇÛsÎFÉTë¨_ƒc¯†iR²îÞ«™¹x:ý /kx“ýžfÒH2±GsE™~ïhåt—†<­AÃxÖÒóÙðUrK»¸•=}ENŒ_ÅH¤ƒ®¸·R>ÑÇÚW 4ìS­ ¬wy}£ìÂw@QŠ ÃƒËd¥Ç\bÕÅFoƒÍŸ¨ÐÂÎxž^–°éW/èº3ÝX6<ƒ¸ BA}(3Výáw0ÜÕÓØç×n|;îQu¦ü¸º&ÿ«ämØ0ʺ¾Üƒˆ/þ3#G$JÞøúSéE|³;Ú5$àH7<#j‹húÕ‹Ç@Qáuç—¼¸Û15ˆCÌ^èŒÅ{ÜÌéãÌì$VÇŹ¤û4ä\Ú÷Ìi{2ÃØØ¿^ÖrÆUa,Ÿ‡2Ý7`Í.V¿Ç?àšPСlÑø[×oØ9.¨š!5|O_³—3#¶DÂ8ä˜zÙ-¾7îæƒ^_¹= r:Ké’õuC$”‡i„'ƒ80ÉKž§Ýµ²ž‹7½²sL9OO'׆ɨ¸å¸;`c VªôHæ§$(wík2'e‹îyú„¯N:dJ} gKÄ<’)>g–Qô\Fçæ¯¶çgŠ–/tíÏ/I‰Ô*¾‚ @Åå,Rìg!mªz’Q‰ùq¿!>ª8RÆ’lÊŒ¯â“{¥¯DH6å;¤ÝJ×|{ÞÎn³`,EñÁK’tJ „ŸâR~ÎVžé0I6eeä‘21ËÒœ®Ìû†Ð‚ÆWÎNÊñÌé+Ïdp ¼Œ Og:§ ˆƒtÇf©¶ṵ̀¨ÙrñXxgÀ¯á¾÷ïKÖÛ%üá ÆB•oÁ ’G·uö¹ŸU4.çI•žBܰWÊ^R²èÎn×ëŠgås{’â‰ï‹gFc*âϯ£œ.Qhœ ðrȘué=côåÍ¡÷@ ­…šoãüXeî÷h¼LηŽ'B»'Ús厽Ó[íãúÙ"5ßK*ã¬bŠ£ÊÄ„êUuE q÷hã@Á…¾²¼Š©ZFÿû,f"Ãå0Zžzß:Yœo‹PLFçnOÛðò•Lžˆ{ÐT X'Ï"l oµe&Ç3-¤˜Š9÷¦Z'\$¦ª%=~÷F~«×Û“V×ÿÅÞŽsA,Ôã‹/7c´{ØŒ°#³À';s¸ŸîÒ´Ùî¬Rèy+Ü»B{%`kêå#­ÍnéÌR™Ì 9þÐ_ †í¹†çó-—ÍùÖqÍYŸ}<%VáþSC§KÇÓœn–Xl5/âI²9ßvš¿Íöú7c¦Nê& wã|m¢"8ƒ‚Éñ<-S[„•ƒl@a¼‚‘Çt ¦Š'A@2‰o¾]6æ+YTú¨2SߦŽîp¿8»¥5u÷¾rY>O™yh,Ë™* à Ða:ÄuY^¡¤Xåŧ•dF¾Sýé ŸÖi©¢L(\‹âÇŒú¤Ðå{±â‡ãަ·(%õq2WHI¦×¯iRŒ†9±vi±Há«4ÿBR¬²Ð· llp›NªÏ¨u€>A|ŒW¬á  m!©OÀ ðçDǺž§ºó»õ|œõã¬b”çÆ±âzîYïdúÉ@óã›Û aäis-ÿ¥=O7E#rÃ*ã=»Ã=÷+ÁFá±` X¬Üݡ̸D°¡ËÆÏžŠºî¬é̾‡´ìu§ySº/g܌Ƀr0Ò};T4¸Äüy”Ýù®wKLЃäee%³íÖðËf›»4ËP|/Ç4¬på;ÅÎ,„ìu„éœÿšÄ°ˆÍsMÏé19\-” ‹Š¬Ÿd†CŸ\2+ ‰)ar:ˆ‡é |´ÄŠ+±¶¦Y F‡Å'<813r×§(0Ù°"ðA¦$õ><2o9©üT¦åVa¾Aw´·y  ©´É)—+èI‘ê¯Íf—×ïœÉ’[;—’ªä¹ÙA´Á¢.mÅæÕˆ¹]BÄfdÙ‰ß{VðñD¥œ¿;Ç;ò°¾¯_jæg’%6nTŠ«^&»a¸), NáÆwå˜.†{̧Õ.9Íð¾Òžr7ýù]“*ñÒ/éÕÍn•Š»iÆX…Þ¶2cyØf¿³>%šU›¸;Aí¹Íb}½,Á=Iv}ÎÈçÝÿnvï0½@׉ôŒµ’—pÿ?O5–À’LZ4ÑÞ®¼­öߦ»(„bø­xÜеRSÿ´F¡,ŠEòä&Ž(‚ýà,8P.`QëØb¿¿NÓ ŠÌÂwÊ%™\æ}ÝXÓ]ê¶_K°©é…‚þ •u wê›õƒÁ±Ô•…ø…ÿYÃë™CÙ,*XÜ9ΩS'-,ÅXÃûùÊ›I]¥jo¡Ø… ž³|$?(²È¡XÜ¢„k®ß:Šp ËX®a‘ÑxšÏEô/?ZÖBÙýˆSh‹rZß'-” Å÷Äy{~9ðçã¬Î;Öƒv²‘h¡è샿`…WŒY³D±ñŠ ¼ÊČǔen^Çh§!»ðÍ"Ì.² ÷›¾Üì>[Þ%ÊEß]¡ØÇœÄ€i6\±€½ äÓiõÁ àº*.ЬÆ]Á\´ ä™Có|®‚ÄKÁbI l÷Ø 7,gg kwBÜbhö8Ÿ3¥ZTHù©ZÍ%Kµh:ãÏ ëÌS ‹«×)û?PqFäUZ`Ss:eg¿Ô*K–+©ßÒ´ž_LrŠœUâÏpX«¾°ÈP|;æLÕžUpàa¦¼0§)ZKöd´cä¡ÈP¯â®C*ƒ³×ÉEˆ"TÈÈ£Æk/òERV­îPœØ õ™‘õ]cùËÇs jä…’VC{J+´éÆÊQÀ×–ã¨PYÑÒ°–±.¡g¸ðaæóq¾f—rIJ—Kž“?'I-Q¤òm^°uÉ?ÜYÌ:ªòMªü ”ÏútBú@ËJÐ ›MW]iù!KݹҮd¹ž ìå˜*#lHzá@­mY>ÅZ·0ùÒ,T ¸ËƒE9²"÷dçõõž²º…ñ×Þ×t¦Líþfã+‰sm×-bL:8Í‹EJÜÖ îDeà(Íe™vøb õ’ŒÍ‹‚;€ëq% ÉÖE¡¡¸r8V†C®q2wIã&t•S±)±f˜·’B+3« (ž¸GÒ‡áà ½'ÛÂf—1³EjÖ·{ëKóÑÙ´k"Óºæ@Ü‚röüÖSù"xø:?«tw<OSÝœ¢‹ÔÛ8kfÒús3ÓÉÕÀÓ˜TÃŒœEê]» Jè¸;Ð#°¢¯´ë­%I¡ºdYE /uE%‹»Õà£.LØÌÒ3ì 7›Umšd‚þ°¦s¤ Ò…QìFNŠ"И° ð6¿x‘ýŠ›¶>×i6Ú…u•S}b€ ƒË´.²ŒÁ=‰c}ݸ¸F¥‰käj-Wù£—4Œâ £¿®G °–h»C2$Ão,JÝ]w6ÛÅ©Æ6‡Eªf ‹Âk¯¾jð¸ø1Œ–ês!Ý™Œ^¹»µR†> ¿ë¹®ŒËÕçªNöXR"ÅoÐ,kà?‰E¹¹÷¾¦³ì[+.z]9ê…Â*»xfÍVÏ&ÝŠ@ ˜ÒGAÂtæâÄC^<»¬çŽÓñ«eG,õ¡¬ Ä¿Î×…Kš´]„ª¢Å}s§ªA ([cmnãw7Œ°«#‹2Žh$,÷ÍÌDÀlìn‹™L«Š¼\Þï<ø]p³(#\B®‚v“½w1€jøç´*{ï„îÀçñâ”¶‚œ*ûî-ƒ¦ç×’ª'ö ¬tת8`“‡EÑ×¹é^UU)ž¸Äüý%€âϯq@›¿žÍc.‘¶CA­ù/ÿ½Ô± Ç" >•ch}aƒÕt!]±‘$‘¶r¬›–¾é]uØPðìì¹i5]Tß™&Ãâêé`>ñY«1<¸äN”TüóYX³óù©£þe_SÏ5óÔÔ$÷æksLõ­é²¹þûqÖ5g<»1·º·oqGÍ—D—y1´¨ìÜ,%”î®a›î‚Seâ¿Ê¤Û] vÂSYÓÓx€6<Ÿנ锚Qñ»œq¹PNõHàÌ |YNL^5é^•"zð(Â^Û•"s™¿Õg^”Â4™Q…+àÓ×I(cô­ê˜fZËuë×^s\lN®õq2èIlëÀʭЫQë(¶Ü‹/¾jºqt^ks<ºwNXª²à !#$3«Å°‹Ù)ã–ö™ô<ÙÒ,–¡nVF›þ¿YYÒjíg“ÃÌãªàÞš²ÎFÕ‚ïŠ8±åuîþÒuϺ³…ß8ºZï[̧÷™X¬,éL¡^®ê*ónÏ«Yoáløóxfªº…@žŒ÷:þ9{¹Žræb¢\Yp;—ƒ°¼ç'Ú¥IÉ ƒq1âÄLl„5qÅÒ qÏ þ—„·3­!W|ŸEÈ´¨I++äO<{PÍ(o»‹÷(|$Ñá¨fJÒÂ-VÚçuIë¹—ÝÿÚweê#° $5¬á÷Œ®õüZeeϯŠÜ<ÛöÔ›6Ös%Æ€ú@ñƒÚâã•Iíé7¿MX?¿”jù*üõç kYæÜžlÏåæ9É·  Ä-V Œë!4Åç.¾…KÊlÔïë%~·¶N˜3ÛÑ|Vñp!IÐ`‰|yc*ãš\–3” f®’ŠÒ$›—ÿ‘„:äÍÃêÍéÖø°P6âÆèÞa­5^Ãk:¡‹ÂNà1³,o¦„N¼²µ§³¤Û¥ˆòR¼ t2Ì{E±½·xÉç2[¸)˜w¸E­³¸5ð…l_'×ñKð‡jñ’Ëb9M]$ö, ¸ž‹e¼8¨EïšÃ‰n„¸¶C½!vƒ²Êsh3µ™uéÌ»]Zæm {ݪt‘vþûróA•õü¢ëtÒÅt6šæ]vPÊùó‹GM,2_Ü•fR´,ĵ@´à2-;–‹LGLÖ_ÒU÷ÝËÚ[™9ÌÂЙf¼f¿x/Å5òEOWpk.P­É„‡z\¾Ïë1 .ž'kîÆúa‹¼,@gZJšŒ¹Ý‰a/ûgxˆV”t¦må’„e¶gó†´v"Ç\Ý´ãA]P‰¡+Å á°N¶ÑyóÙØëò“F{çiž›‚oË‘&qÀàœÏ="÷+|ÅTËEéõíš|à†ŠÒªÛ¿ÒТ4­†óiøï/¡QÏ/åìfB4™kT€!pyz Õ“›ºCœÌ½ùüÒlšU«íÈôyýRVf/ÐRyvm‡ÔÀç˼bï§¶^Æãk;¨ä|ÏŽ`1ä&/ú«ËÆLÁ" Z2Û‰hés-W8ÑL®Pû}ùƶ¢ èw²ˆ=¯gù@ŸK!B>$§ÏâŸú"s3Gš§^žsÇÛj±‘©n´o°í7n'Övn¬±Á*þØ<ük§= s‹Ê.šQæµçWàÕõ­·^Õ¨Jð Ocë-LG£DË  ~ê‹°?Rå¿­éÆ•ûã¸Ò¬qî³fb—ivjS÷{°#ÂZaà`ú- S˜ÙL(@-\ìÇ µ È{í¥ µKbwóz¼s¡S_Zy¨Þ+±ßo¨më\ÏŶŽ0öûKÇÑʸrˆù¼?ÏY|ûïÞýáÜõ§ËöbY|%Î+ã£÷çâ33¾?‚›û =.gÑ]&)1iÞ`#Ãz›§æ€}QØÍ+ÑÕŸvÖÕ°E%v§l–ù|ܤɤü£kw®ñ¶&âÃ07z7UÃÚËÄsxË„GÿìkìáBœ>¿vR¾BK´•ŸèÄ.¡JŽÝÍ1:ùƤnÜëæ§§ðÙÞ…k‡Jìˆ/óˆþ*ˆß•~’ÁñqUÈgû2Ü»àWvÃ}-×Û9lep‹VÝÂÚ2¢×rբﶞ_ÔÔ6‹8°$º¸2ûUÌÑæÈeå ™ ݘnüõõ²°2+ Á%&(}³+»[X»" ÑPO Ô•‘Ý\Û9•=¿ä¦ŠXnÑ4îà‡¸¤ñà;iˆÓtEÓ•ó±¡×îækþ°; ´vw0¾ÜÕ¾a¨6ÝkÂɲÅG‚Rñpc×pUÌD¦ƒü/›AxƒƒîŸ{®ç‡ÑÁBšDÃ5\„ý¢”8!–]O,PHÖ?Iuv»À^lÃcmXØÚzÖ½ýÐfk÷|ñìŠmåkªÓ¢DÙ_¿Ëþ*`yàq%~÷Âóšó_Ú‹Öe»i=¿ ®íÏÅå%Ò+¢n’R ߘ(j­¥& ‡z©õü‚@kN±®ÙA]Ïå­ð,QM@¡|ó@ÁȨ,ÛÛê-BÃ@ílìQG Óú8`ôP‚òݺDâhûÇœ—ÞÝËÅ/3ÍKvGÀo[߬£Wt­ÌÞ”»˜ääê²Ïv®²nŠ·pø•ïÚ9™gøDúI)¸}ÓhÀ–4öͳ"dÍænó·otÒ­•Ÿx ò%ß„$ý@ÖÚË´Qù’€×îÁ5ŠÙ‡hÚìÇê #z½ä‹˜›¦+#òà¶Ÿ¿omÌB¿½9#€µÅš}MËÅMÆhb_ß¶ ‚ºUvŸ“½M‘ß—GRl¥‰¬wlŸùøâAWS5ÜŽ®“q³wòB0·½¹®Å»¢g{ŸÀõº~i‡A夆 F¼+ìÙœîV+§¯ëçÒ óTw¥Cîùõ…€àÄìV Ñù¶|V]|ñw›|Šw„ÊÁÕÂÝÉëd•,9yb€äᚌ²#÷‚|{~©ÍC¼aoÖ ÚBŸÕLÛÍ+c® Šs¶a*d#¹ä\ÏT¿‡KT ßúø‰‡|`®^[ÏóÙˆ²8pW©Ü!oêCìÀÒØqÖ»ñ×`>›î˜)Ǻ>®QàuÔŠ¥¥Æ†;ô£2%Ç 7Çsq‹Û§ÙkoÛ~Bœ$Ò¨¯³3Üo’mÜÁá¸Ý­¯—_REÔñÉÇ/718dÌš¼~ØÝ«‘àsŸlŸªä½WòzÑtÎ?~•°©³EbD&¶ÂîÙv¦g¬uxX l±WƒUÚx™v»Ód^ø¡Ê·C¡Äd m~L`µeгí^kl™Î*ß ѵ nÖtW üuÎÁ½¼T|qì6Œžy7¼0Ž 8 Dyc`9ïa€hAÁ7„­²CeÛtý|t&‡‡×É“pÆ·Nî·jDÝ4eéº7¬çæ•Ø“dì÷NÈïÖyöþ«B¼ˆ!^BÀVÙ<¢{uöæB­’Æ ÂiÆ«õ±ˆáfÚÅY™Ìodû3¢­á"åÍìŸZÔ¶ænÖ¯Õ;¶æ¡gæü½Ã,ãññ5Ï8C™’;ÌjýT6Ù£ã&Ê|MW·á]\/@@ù!€Ú+ìo‚M.Ú”©wh9gsÓî—´›>þ‚oÙC¥p{“¯µÚ|IùÍH虂jeåC$¶ )ŒC¯Ö®9U.=à ½C°g>¿Tk‘I¦f8½ßý±µ–äü"´ì–ÊÞ‡iþ¾O.j/úy/t²ßDÉ7Xgá€*[¢¤=g»Ž» f6À/XÑ:úâ9ª¿ÞÃ:{Âafþç ‹çÊ*¤ëŒYjƒee+çÃü—‚½`Ñ•²:ÜH̬&„ìi…åî¾™ Äýg,ëÈ(Ü“³ÖVÉ ÜÑìÛú9GÆLäQ.–‰YC•pûQ®ß{%ܹáå¨QY)?Þ! „[ΧÏ.p~›.2Lš:.WC›ÑeþR™öòr†ªñÙ¤Ûlb{~ x̼ôÆ  X<ñٞʎ©Z¨q3¹ia!ÛŒzéA.­êfjuÞéáì¶2 éàe%j,¸ÍöƽŸýþ’•õ~îÞq=¯7í{Ý#Ϣ܀âƒ8ƒíWT‚±F«*¼³ºè³šmñ<½nÏdmËc0šÕ ‚l`½Ï¶Âc5l¶ÎÚ—"q}œÌÀ=;9bÎÈ&DzÈ«OÔPè®jÎæ\ì”ä³,Œ(ÓÖ7,¿¼Vç)—ç†/£_%eùZ,@%¬ª‰¶îI(.Ë:FáJÞF95dkQ&°w¬&C×Ò6ÿÚÒU¿÷¨!†èfÍHK_Φ°áÞ.«Ø€‹zGy½[€í…D,šðÒŒ¡"+Q²âtã2^z·¶“C%ê;µ+“GŽ®’¼g77˜´­|·L˜—ÜT ¸(-ß=¹W™®7CÒïs=§!F[½kí:«ïÜÀé)[ʪf¸@{DÝ/ÇU9{o1À»å¼s7ô—^õ5Œs¹¯E{Îí€Õ>ýùÚ…oO–}Å·çß»„¶„õX$X1q%ä·-éŠB¡5Kê’•×ÿ¹¡3Õ›9…"±¼Ù+›Ÿ$Åg¸´µºµêô^ØõGE|íK€2 ßûªîå Röp”ŒÌ¾/\Kp ýÍ¥õ{èЙ/µÌ™W—úífœ¡`vö))¯ÈÎzc“æOkýL½½¸ÜNVÁÞtç[Ú¦ëÂÊÛ<`)°Kƒ9-°˜´¯%)(¸·ñ±-éÌM]QtÍÍ=¨%©cöVâhçä ™¯(Íbðl±ÀÒïLGÞᯮ7þ‹à Kÿ™óÙ…;V°â¯gg\²³H+þÉ~;4Ô@ƒø3¨AVÊ*B Fç™…<²î®äk›­ìÃ>Zɜﴞ@,ÍTú  4•àa&EiÞã¡•f¨ì »Ò!Hº¿´ô]×\Z}B•­w„'Æ€v>7 ­ „ÏÓ€õŠK­®\ñ¶#¦ÙAÜŒ71š Îî—J,âgž+bÄ8B¸Ä¹&„]ŠÎáÍæ¯Ûz[Ø-UÄo×ÜŠ ¸@­Iü‡è½ YÏôš†4[Ÿ`ÿ 0¯ñJï$¦Lô”Â>'`oÓ¾áÚGÉ–»®9]‹µû 8Ùé;‚,Zþ“Îb¡ ØPv+¿¦Ý;ÿ¹Bˆa_I Ø•ñNîË_ŒÃÇèo…<FŸ©kAÓ±“µÚÝ)#U;(to!©O”·óÅ\Æ*÷óæ Þdá e[àÙŸ[³­Ž=`Â<‘é&âñŸn‰ ï`ÿ#£>ÅÈRý÷.‘0@ø™{µ;;îEˆ@pK~ž¿¼ymn8.µèLCÜ,v'f=þg|¹¸÷à£s¹22™ºþUÆ”1ûlÜKès¾¹³(´‹™±Qì6Øl¢nÆÆ{@ë×54Ýè´5™3Oh~a?ÎRÛsÌ/Â-‹Ô©ÄQX¶öÉš¡ê¿»þ]åՓ†'ÐõŠî¬Åæ9kî~„¾²[… <èÝë—^îþnnXíFnê´WÈSˆª &‰±“ µ>k‡µ¢zæÚ.«"žWÚ”,(‹r7¥F%”¾eCñXÓæ.aª0s};Œ:5§:l¼Cô¾Ó CˆÊ"½”?`€§¡¿¯ò¡ÜÓa÷šPí˶LÀdKR¶¤@7EaëR¶€ùCwŒ•ÍÆE,Ý ¿ç¨~—Πvž/›×IOöæ®Új€rȈ£7&þS:œÇEÙ›7ÇV¼uuŸå?„œ=3.kã•ô±Wm2½+°=Ê âÚÊÙ\Uœ/~ ñ:Ek, ùЦ Z’x¢™"‚¨«+”Âä hÒXlÖ¡OÛ‡¶i~&bÛü¥ qT©a¡ØèPí™ ûwEÞÁï¸7÷ ]Qøì£Ó-GF|T`qLJiÖO῱+Ø’UoÈ®Kt( 6gøÃ¸©x–ÖO¼K6PôV}Ûå±ëš. !~»nU… Ö¸Y„i~Œ+&7’ÞzQ!O³“ï /Íùó%œëß(OæÀÓd­ÅÿšpK’HFµÇPÜ Q¦)kîp Däa~â b¯´/.õ÷‹ÕÅl¯ÈB`púAã÷ÓÔZÖ"bº¾ÏŽ@­4|"9³‡£b{l@ nGÑÈ›JJltèRo³›=ícÎ9´z7ì¨A&¸ƒÜgØŠŠ.B"š'ä›Áê8òÚÅs  nÔ–Áa·¹È];„Ú$GtÀª|§ÌTçoå¢ß(XË%Ç…©LÑTàLZ%Tf"0ËÎè¾|¯´d(T.Þäõâ—ë%ò S=Ö‹KÑOÉCŽwÁZC>¯ÁOI82·¤•(Ó“>/œX.!– N6©˜És‘:£MØÎ ¿~ªŠ@žš¾®ãÆAa³ÀMhè±zß¿C•Õ\’Ì0åŠh ì½%x5(;'3v‚ ½ð’®Ë»1¢Ýp@¾Ò ]ò´K>“r^¢zøÝ¼eQe‹o·ÈwÀ·µÎ†í¸>sœË¡œúsæƒò³GA¾T~ç+7¬O_ƒB{q¦‘‡÷kx}¦3w… /- Øèìóû~¦rÖo—Bæ%®e‘¯˜7ý½V³å`¶¹ýëŠaG&S­„äým•ºwvd ¸ Ý»R>$òö’†_¨ò”¨ Ó¿êÜ*v—–Ó`Ï«"€|u½dMXÎÎï„—J(cê„l>Ã¥]³ËQ!wËdlz.Þf‚²î†J›z„Æ_»±j€LÈð§©P‰ÚíAùôHݛ¿33<1ˆ˜M92‰-<£á»²‰ÖÙü—~$r^&Ùï]šì‘±õYÂ*f{£¨ý’NnRnÍéôCGÿŽÚå›î–éÃÅeö&Ç2W9'A²¤Ÿýr*ÑR Ë]Zv —àƒ.T NÞ¿î–¢¯"èÞ|ƒPƒ¨ƒDŽ¥¶–tR Tzéò‚ÂËe6^ð`ä%MèÆÉØïb”éz¹h/‰9âZÉAk˜ê×™.‚½ùÃe›¼xqOêg¿w JHjúrm|8+e–€Íc,Ô${r›CV«æȰÙÕ†'e7¾'¢¸Ø»qÚ[ŽNìÜ#‘õ#GgŒB#É‘C ®!ôa£Šø %Û\À•1 ;OܬüÜ@Ø+ÑÂJ Í0ks—½y¨¥›13M”@¥s.@#¨ ©TîÁÂCa*J $HÐdL> úæÔ¼`ÌíÊ*¾'j9é–Tm;”.Á#ç‡j&q¸é6 žòy$YSºÈ€<“X«×À…±×ׂúù}~Ïe‹îrÎVì‘Ð×=g8VWô{ìl´~MÑc™%‘5Üåq……Áàø€ÎÜ’¦,@có¾BƒÇ˜¡ZJœÜ¨,ó§£cvÚ ¶Bc\˜© n †4|º«P){ ÷±ætΕUì9tóNÙ¶ ŒtwÅÚUò^ovR–ëû®ùu/b7¯Ò;å2$˜×¯ðÊÇ3¶-ÓPÏ¢BØI‰«ï„‹àŸyűRc@ðy\i0ÅNqæ ~zŸ¥0Tf4¦rÉô$«òàK€ˆÏ³•iú6þè—+4©BòæîM·IÅc“Ââ¾m’lÌMÙA©òÐ¥ìÃöǃ¾jªK¦Ò(¼¹ÕÿbWˆãÀLŠÆÊõS+„,ÛÝÆÕ@?¿Bi=ãlA¤Y:YH[Ø%BºÁÍuÙí)± Iÿvñ¦ÈòJ wîÈšáÒô|¦m1WuvrK_nñ[ct2HoÙtIé©ÉÕpIÚöÛÓÌÒ§n¶4ï¾AÞ¤èg™Â4𧯠S†½{àcZˆG?·œ¨i0Ê—±;”C/‰5©;¬ñÖÝÐ\âäKH*†|ëEí¯þ‰íª2æ>ªCogc‚İñvR´ÂÐÏj ›,ÝÕù7*ve^c'î\ž(&küxÎ×Wnü4üÞ­ØìF<Ûr2¥qILös^Öê ú† Ç€pñ%Ö Œ® „‰W@lj}\òâüXðtOkù4JêBßÒ¨«œ˜©õçܦ©6*{Pî}Qýÿ¼‰ä,SuOÔ)öFg!o]¯¸Áèh‚ó&+_"»ešqÙF§/ú‘÷¾Ä€vÎä“ È2E/À¤TƒnIÄ3‘ŽÜS–fº|KŸ«Ï2E!`VwÂf—ïÑð1^–éæz_„’ÃÅí-ON.-ωù–/K¸ÏÆcd+ÂÆ¥Ûxaè\âæY•;°_ûLQ$âhÈ2Ew`#5Áèì !é)þÙw…ÊõbÂù›\ûÆÔ¶OŽ—¼8y~²:Â`ÂÏéà˜EÕßs”µ¹w4d×YèøË6ª&¼#’Øš/ÙÅ—¤mßz0k€7s{·[ƒèÌ`(žÊS0ʉ—±Ï¶GÓ_ÓV‘/më‚ã %%ÆKêT†œž3‘ßgeÞÂ^ŽP–Y;8;«+1;;àÎK/›$xWcBT°ûÒY!åBó…îÂ.Ø8=£#åå^z€bÀ¥ÇÛ÷ë™TBÉ·à§3=opq‰ää¹Ds O™Ø“° •íÌÙu,·Ž’$9_T©MÙ±v.zUÎ]pºnAvtDÂÙíò¦…‡ì‰FüÁÈ:5Ù`ÙÈ9ÅÛY˜ ̽‡ ¸pb%‡£ ­ ½å4ËSKȈÜfÎù"]eÊeGäÙ8™Ã1PŠu™Q¹\²eŸærK¥ÉÀà8™W +Øy l{_:GêüÌ”–Û +?87¡Uì´A¥äOw{.õü;¡Zõ©?ì@^Ê÷î(÷”½¸f¸vÈÐßô_Å™®×T¾Ó£lÊÃ}Ûª2À³lÏÌ®G /7TQ‰š§+×KEà$aZÖDIìždãóùJϲI÷œ ¸à øö];hØ­“•ù0‹åØ„²ƒ‰¼¬ÚF8Þ1sŠÌœÕTã0ߨ.Ù+qÖÖ=„ ÁÇ &§¯ñ*×îe~bbSœ ä~oŠy-™ ÓÖøYh±)É~gVôª„çv©¿bŒŠÙ-=åt*ÃúÄqÓ­(;÷V‰YJݶ>³çƒ:f³Éx=H)L&Zqa!òºúE¶ì­B«Üwe—¡ülj•ž_\½â˜E¶ëÛIÁÛìeÊž`)Ø„žº¾Ïµëþ5³J¼¸z­ ;}ŸÙYô%‹˜°MQ™è®ü0… 2;;Ã@1]©ÈtÝí»:é¬62MßÑcé`I:žI™ü†ÙʼnØ[6¾ü³ÊYd«&è ÷sîôóÇÝS•蛣T`ŽÐfa )vvx!‹þ`Bº0V3Wé|£yÊo7è‚r –&³7Ù‚rFz…¬Tg —ÊÁ+’fL´M‘-»c¢æTÚŠìG›ÿ_$4orÖº‹çâ¾¼kßÊg¤ó°`Ùÿí‹ê‹Ò·îF{}™ß~ý²oó¯ PŠ|ñªÑ GÉ^!Ù=Á)ƒt‡J&Lw4­!µ‚ˆâɸ;42Æ r%Ï è5¾UÆ0{[PØ”†hÉ69+¾Î´e®n”Ŷؙªþ*ʦnß%ïЩ˜]jëñ®¯ì tHgúòxŒYz9˜™Zô¶ lHöåŒ3MÐÜχÝv™lº†ËÐ}[RM'*KwO²Ò€ à}™êKWœ%¯7:{:ÇðK=GD”ßTê5¾Çæ/ì¤Awˆ–o öWf°†P·P¢;ØK趃ŠÁîu¾šP޵tËpQBkiÒföºC,©ÇLÔ6vé³ ½Ät»ûÆ•ç»_L#³[Qéw±Ÿ ™Nk¸äùºz$TÚ’UñŽ‘{Áµ ˜Ä}è\jL¼]ò§eí¥ùÆÄlH æ¤oâDqðÙ]¯WȽ4hÀ‹–èâWGöd5»0ª)½9ÀŠâ¨ûôí,e —[·‘è¯p¬‹H ¦ûý©Ãš!ô6=c: ׄ,»uæ¶;á="_‘gJóÝÑ5lßdˆî0ïé#5éÙb¼¬`ɪû.ÉáÎaÃ2êY|g‹}C +Ÿ3 ¯³Ú&ì7€#Ç:W]Ö碑K®ÞŒl ¿$3†€ü†ƒ« Ï÷ 3q.1г¬L± / ãL•lD<®¹ÕÆ_2НÐîßòRßè.öΔ˜Â2ý1ƒ¬ K{}.üWÛ\Ÿ‹¿±i€¬ÉÝ‚Î6à”Ìm$€%÷‘a¦¸X[õàéÖ`ÖÎE•¢{–{´òåÒ ‚úMèG¬]*yØüVõEÚvŒ)Äëfænü‹V™žt Ò ?'öª´ÞÝÔ •~A?'qq€˜Çu»*ãs/ô°]*Ð=wu£/åë\ñ⻳™ du°ñâÖ,Où0/T ¯ÀÙXŠÀ‚Ýba¼/Îv§=mÁ=Wå vLçÆéÅŸ_ñrì U º3ÿþaCX(ÔDšv(Þ™dKdßø ð ²tJÕh … zÖ§g½Gæ)Dƒ‰YãG{î\ÂV*#xW½?H—|öàdóÿ&áùŽ©Lôíq½a)­´Êú¼%WoQ²¥¨Ø¶É¼ÜûjÀL\P„‰ìf)äUx³»°³ödÜ̓¦—èj>Íê±ÑÌuP~ †Ö‡ŸÂÃôì½úzîɶïd -áˆSü Wð2Û×ìŠò»kÍàˆ²³c¨~_!{òd.Ö‰ÂÌé` /EùÕ¸RÎÕ*{òÒ÷ Ä"6,á´kÐ(þÒ0Îo¹$–?¡ÊW w&[˜µ´3KÈb*åânõ}þÖwnÈwë7 Y ×zÉ>ƒA'ì.»"J¶=Uë¬ù®¯­W\ ˆŠ¿â’€8ã1šYmËðØ„—ub¨—è}šùìøóŸÖ£I@¥×’õæ|çÜÜ#¶‹-œ3[’Pwð”gÝ>`ÚžN[˜+€@ð¤üTtîæ­ñSåÏÞ ìª/av’ÝVË„cKÍHlop U`B·š§*0¡ÆZªéµÄÒ¾øÃÕ£“[.¬Q†¢“{H‰ š~a(b¾›¼ L×ÕY™±V9AEí _¦‘ M6ű×Ïê“>K0°8ÂD±—Uþœ¼ZÙðS „š„TÈÅÊWªpˆ ´¬ëÌhÁ­2`˜vkuYg”r§qëkÁj´6 Ï'%Êå™wÌà<­FÑÀ.ŒÔÎ$peÆÚ[Z °‹]¶xAYô-"îÛÉ¡»Ø”´{MkèÜË+‘WräÆ ‚Mxmad"€Üw?©€îÓ[ǾŒF¦;TZlSÜtH¨Ü'|sêTl:KJ˜rÄ´3&¸R3%»¨ ^Øz”ƒ±qüÈü¶T™ýU‡FZV¦ðnîlëI—3‘Ó½©1ÊM´t‰ïËbjn‰¾cǬ.{Ø9EIÅ_-å³Ò\|Iåœã4§±v<ñTptZá¹TÉ&sj]c¢$þÿ¸!ДѻËù<Ù~#’\"h§÷XÐÞ¼rðÒCÅ=óÍhÜÐÊ)vJ ’B“èX„zOì]ï§$³õÒ&¼Ÿæ/èÓ¼ÌTF]eÆÇlÂ|KO*³ú7+l²à6BgÎ΋, ´Q2Unx”]<â=d‡¸ÒŸÉZ,ÐÜòÅ— «¹yÂï†I¥=÷n¿oŒ+^–ˆ…F Èrœ›×›îX?`‰ 8fG–¬lŸV.™w q´?ÊO_wÆ •ò{Ëÿi*?ÝOÙ®Žr|O f× î[x73:‘ͻϠ5ü‹vM6ïŽn¯p›wsØI Åè–÷ÐúÜsC*eS´‚Q)m³y½éf#ÏÜìYËÑ3ól|6çöójF¶¦¤Äj ²OmÂÀÆ—óåš±mìÑ:`ÌÔ ù•1°µk°=¬žè5±ƒ BÌ€ðSPcÎݱK¢Ã~bez·œ‰¦, ÖÂÜy°Æ?«e[{ÎT¡b¹Ö.'â,ÔÁu÷œÍõ;X˜ä «9¯DöAÊô}[Ù‚˜­]Ô!Weã€Ó uÖ—Õåj…ð“a¿Õ®VnÌ+ÀJ%ïúðˆÍÆz´òUí[»cÚ+ºg³7‘eFG ç1Sˆ@Çøø¹¡B7È=Pþ$s¾2º‹ )JJteÓP–³g 0\éÝÓ¯%å³"®<†Ö‘oZ¢ ¨{ÈhÅ«K·Œ}å%ÔõÄ[z.uœN‹ßÆd$#®qI~©Ö"ƒiÓ7b²DV+>ý´xyrõ»‹2SO ;ón YüË.%AD–šƒ<% Ö+‰îíï‡ücß_–Ÿ$($6_UóWª7T쉰Z¿§2.™^ L†ååì³E{p‰Tû•÷êÓ=Õ}èBFÚãÀ°gØ„´— «6ߨ•»{s&u•›î)ÓÑÞx1±óè ’%¡´@gìZ›rÔ¥Hf6$@ î s÷g×[4 àÆ²â½ôh”0j¡õ\±wõÉ*˜™÷ ‰³Ó›$6ÞÁÃìõö Â!B2g×,Çh¼²L—dd•ãk —ÜÑäo¸4ØË>àÚ®Å(%”SömõÇ—9²QzóàÑÕ¬ebqClß—.œÚ×/ ùêº0æ/³`ãĖ@öpíí¦ÊŸƒè+LëÌ€ú .Ót·u ¡g&ò l•Çú^uçš1~Ø/µ²¤ A4¿’G_|:­¦ï¬xН»æ7ó4‚™ÇD;5;ÌLMBÐdj¤ìœc”'ì£SïšqÜÐì>'k —g¸”¾3hbc5\}"5žŽ“èà66^jJ£;{5Á©¯b‰P9˜˜¬gl—銿Cœ,41ÿ}2aÜ$¢Ö4òL/OÚ–>f_”®>~»ðS=`jÌ K:– ¤k³ñõ¶Ezãµ$Àn§l×=O³~èÊ éÏ&¼@ñúmörÔ ¦µÙ•£î©’ôŠw¦ Ž(PÓîл0;ý`™1–©ÉÂÞN‘ì:†!µtï÷ùV?lCr>³T:õ—)Ngž´¿·f× Ì¾ ý›Ý´lüµ­N ñ›hŸÓkã/Ì+ZਠzwS²U&>aå¡+ê»=tKœo,vkvóÉ>A±Û=ÃÖ\Ǿ÷±ø°§:³<™Âd½\’™Š¿ñ"˜ÙÝúf ‹À@0»{@Ö°ˆÚÆG-̵Ù.uÕª¾É`•JF†f!ÞÍÚï·ÒÕèŸpÉï6^IÄf™Div õ¹±ÕxæÞ9—$¬^ç t>3‡d3u™µ{î´}¢Ç=³4p Wœw³»UÔË!¸®PëmSõM—²ï+¾µñ t'×ý»"¹»«ièTáCA™Ó¹·ç ¬PW oœh…8%–Fçái]‘Ý]3Ñþ…g¿;PÒ¦ŸÄ• õºs:wosi¨Ô¿¦ì‘ˈ«]öYJÿö 3½a°=ïT¶õÕ—”^RwOéesÒ‡W8B>}‘Uz¿v|g°¶‘ ÒðIVÝÖ»'¢nVš H·m'æþ5‚)žî²Ñ®¬'m†&‘Tñc¡Ý0Ld ¸À[Å´/ðZºìB9êï ¢Ùõ—[:° ×zçrœo„퉓¦ "•êV—êçî¦í[Ú|ˆÿÈBÊÎúØg´ c9ŒvùnáÙâÓ'¿¾[Çú5àšK¢åÆmKT¥ú¶ý¾ŽK¾äÄL¯¹Óª†^ÕUµZÖ{x??q5IüP€­2 VLÁãìž`53‘ˆðE¿€Ýþ¡.^ÍÔ‹0Ø—]°¯ û@¬8â TÉ‚Pƒ¦ñx*ü/[Ÿ½ Ø P‡•ø*6¡gž°ä¦t¤<]ãøˆÊv™…;e ÄPkgßlVŒ%bIù YŇ”#VÒЇURMPrl>áF<’¨ °ÚÌ)fBç_bÖ´3 ˆFÆsqÉZn¿ü3³Ö†EctÖ\Íõ0<íø Áíùµ8*34 dMܳ-P¡áÓ5X¦ó5l(ëx÷¸î›] ;—Õ  ˹û ‰ì“¢ÖAúU_tï1p²Œ_àúÛzt©ˆž›(2àýÅqJB~§äû™ÈÄ>¡•áÀ2£¹ †à4¢;íÎÐC9É7œ€/§ 5Ôõ *#‡Òˆµ4ù€rVúèSÎÔ$¸‘íX£ùFw7‚Ö,ç(x1לŒ¢¹?g(¾KÆÄX Â]Åñ¢‡:í¥KŽ}ñˆòàâÙÌ•`é"©§è'¢Ñ`y.L%ÛFµ¤Ù3Z#X6½°Iø€k|9º˜¿Ÿè…:oI€[V§BÇ*0§ìX„¼au{wÔ ßfP±ñ ôqb6±¯"H“äÝì <ÀûúbIÒ!#ù–‘8¼ÎõV;n‰ÈßW\.û(U¶ ”˜`k¶Ù[-û+.QÑ"–ã•õõn©lDTˆ&’*“ ±H—’=1dÔŸ/žÿ)Û¡ ÒÁ# â–ï`”çLÓy@@·‡=éU]ÇhÚÓCl@¹<œ¹›M— ùóY Ñê¯ÌT;+ûKh½×x¼Ô³_SŽÏqƒ!ž×*M%ž­»•L¿®‰kk}œß¨XØÏ­¥ª‰m™Ï{•¥ñÚqɳ > ‹±ëR¼AU•~”혾âwðŒXÌLáœ9¦O4:—ð¼P»‡šæœš:­^z˜©ÎŒ®0¡ÁqÓ¾8&Cò»¿€õå¡ýœ#Ä"rÓÃþçi«~—#®1æñ'.¶;®†7ý³Ú€k‘V¶Yœl¨ÙÏ=,Š®ù¿qŠ ºÁÖ2<­"'{R¶ ¯.fç.<Ä,9Ëùäk¾ ûš«iË*,kŸ;©c@<˜Ù¥‘Ò#ä†XĄ̊[Db7x˜çæzl6>Ÿõ¯ìŸp‡£C,ÓÊn ×¥yuí®N°L&L@+/ÃÄøæ–È«÷¥¶è‚äÿÝäKǨª<”üR`ŠÎÑcÇ¿¯ìÏãYÚýcÊY˜›Tgá î,N»Ù„—]·x¨òèÕðsz`ÍQ¶A‰Ä-±¸ðýí¼>˳˜kZÃLãåñÙ›–a˜è˜é/k9%Õd%\z…øõöÓ!mâ¡ü”%Ê‚™âÆï»éWOâ—~åw×Ã{‰ŒØÆ°Ýÿ¥Û=Hù`ƒêò¢ÎÐUKålN…Á@šÌlìª Ï)ÎQ$ãab˜°=iÄ&(|2|©p¾ÉÑ·`œJ¾ØbIR!Ÿé~öxeøŒF2ËGlx<Ï´d!;:ë²úŒ>2Ì—¦æë)˜Ië²±ÞÌÎ4»øe-Ϋ”Â|Âe_Älba?6ÆîËÿÄÙV;èz0Ž© ¯­‰è˜#¨r+ŠX.v½)ë9n„]<ɨY}Øç¾NU$o,f–tÌ„3q°ÿì¶~üÄ<qöhÄ݆'èZM¹He È€D¤î§Aw›ÿ¢¡:'UÔøÖã×N¶óÞŽGŸ ñ°a¸ÓQ•aÛâÌXÃaŒªHHó°iF­t¨ÏLBØÇ¬ªÇðç`ã/…ÖEUÉÐ‡Š»5@ÉÐoWvšqt)õõQF#Š_:ß`@<+ AÌ^ó[Ϙ=j#[€Q1 VµÉ•;‚Æzã<…÷¸<«—{’|EÂ<{‘0 {ƒù´>\€ŸŠvÅÃÄ{Ýÿ‡õ*65¶lªø„á¾&~÷$‰ì Ëœ^e-F-à’ÛO{Œœ)ŸGÚí2µ‹9æ [ùÐûÂg–ÍFøåV¯àæVòo›¬já½âCŸpÁµw•Ømâ­VÊvõS~cÔPoˆ³I7L|rÙ5^ryï»JŠOS•] Ö<;D£‰Õ~ñÞ5Ñj¿Èˆæ3\j\õè—ü  ÊéjY²/,&bcÇΖ I›ð 3¸c ]°%ÖÚš‡§¡ÿ„¿\ý—€€ß¿áû:aôÂÓN˜ÜˆWÆflt\ò䲯èºCõ¦QÁo,öùÊ™ò\ŒK&nÕmQ§ØRÓÃôÓ‡ÐW–ûl2=—]ñŠÆ_Â]«4œý¡ ²8ÄdÙ=[zíqð2ß×)Ò²z¨Ê±  »¿J¯ÙÇã|Uæ–—‰ÃHFœ» × mFG±:’­JÆõšïæ²ð[¯W«¾5Úb®h€ÕÞ(¶Ïn„bàÔÑÔ0àO Ëd‡Y»Ë-cO\2mBLÎäW&yb)6¡.–”kködé—o$û€KŽºØ~ÞÔ¥¾ÒyÀÔr#<²ã&T¿fo¼ÔÙEœ’§™ÂKˆ:¶Om›>lg@‚Áö.W6õ+è9m9ô¶Å´%Æ;êâû “M¨Sغ‹ÙA«îwOÈ d[7}Ó1@–ßOÃÙº•˜ ñR'ऩÔêK\ª~Pb9ö-ʾ)Yáfñ6C?òdº›Y(]JnjJ6üÂ_ă£kÖwœ¿ã“°,v‰“Kl ð6¤3ÿ!ϲd÷èS1<{$ù‚êvÓü-4Ĥ•³yà,RQÝL„6[ çê{®nÄþÅŸ FwÓ¥rT—ûÂ;±0 A¶n9 ö 9œ±8}—e´î ZF9^‡ûZ#>5ò]^ÜVVj-Æ_HUªoÈ?|ô7Öó¹­Êß0˜`ã”…,†ñ—ôßæÜÏ›à7øŽ.eÛx+­•»"”K[ÖI ­8LÄë”éÐÁæM.Ç£‹„ãXLoã/ÍëýdËU#±}.ÏdðdknÞW»å"ïü¤'µ[«zÅ%5MþÛP¿¹ù…WÅ:1 h, ¥›å‰Q½80þ’cã¡ä7°Gð7¦Û•1jQÖñîu±UÖqš)ÁvÓÔþå8¿¥r.µ•uüPfÝV%² otS–oÝ›iIjÐõò‡ºêÒ.é3`12óŒce¤ÃŽ^æäDõÞª.€p}WU;ûV24ÜÙȆmBHßm¼e/¡@ÈŽ‡¸¤;[“4‰TÊ,‘tŒó+þ M¬ „Vͤú!“0\LÆ WŽ‹6á*Ö¸ÀÉ'­É´n’Ò6nä3ä§³ìqÁuY;.ùÜΑG;oœ3ýqK—ñ¯°=gˆn÷1A„ñÔVZliƒ 939Š(ôäU^Ø‹çªEfðxPaaÑÛ_ÉŸ»cé7Ò §1 Ÿ…­na”%÷Vð i2m޳4„‰2Ǫõ†kÃæÙ¶€ê2çÔaÚ-b¦\ú ' /ê+?×Úq'æP®VsE2óöðÐ2º¢â oÚóCqXá½aª HÒJ¥†ƒÍM=õéÎÃö¦×FFu4þÒ:HªiÚ,z üXÊ/-hÒ*ï=Ì7ûÑöë~1½…}Ê Á¦Àáµ—‘¿0cÒê¢>7xÍd3Œs ò¬0ÇÁãô±›Ðùí‹âsV“ñr ì)‹1—În(ÉP6¨ÈœÅ6c½$|:¦ˆ ¹ôØèÙ¿ï¤ïdÏ/é‘~u•ü»C–aG%¾Ÿ_¯q5–Mé.â*¾—×Ñœ6Â6ÊÎ4@v_˜¾¦F´Îr ]Þt’;Õ×ÕÉ“¸ß‰¨\Áè"]·}j{“fó8( Ë<¼H.aœï€|¾Þ³”ñÐyf}Æ›Ä|i wQ5±ï¾ïêÂsºa^á¹ÃÅÿúÖ’YqÑa‡Î}ê,Ad«Úa”)âR*»³"A£°ƒŠ{ñ<20÷}¿l:ýÚà±Å04kÁ²*MýlÀMžµÜuf@|³Ñ0>ŸÃ2Eb.—-4ªpø¦-1>ñoèÐÀv¾ýZ·²ŸO¤\b±Xk±k|?3àï_">Ρ…`œÈÅ8MÍ®‘–Ñ4º×û2o…ÃHí± ðLáÍ©nD¦Ù½t«²uR#6Ô7ÁãuDŒ!L,ÓÚ cl~Ú¹îmËe€îY¥á3:Áøâb¼|âq¶HNt)/l<˜=úî=I¿Ó³ˆ$ÇFJ¢Úò“ß»rIS]É;‰`ØðjÝ1Á>íÚ»²áq8±ºÇê¢|ÕKXôSúX0NP=-õ]œm›X/Ì(ú Þ2t‡k— |ÿ<ÔŠuîi0®Z-˜ ^ÐhýÅþØ]ogKšÉuT¬c§Q¾÷¼ÙI5 ž¹—ÜQ¶êŽÄ`ËL£)BºÛ)(ÖItÈjÊü܃—è2íá¬)ÌO.8¶œyø6^õ³q`²Á$JXã0Å:oNè¨tàw¤@¦mlWZ·ò„ß7z¾Ý¦{GœÈ®ÖìEDu)ZUTùìné{¡rñ^·a¦Âæ¹#ÙNIýrn®Êxë—óPÏì³`<Š]®f¡ ½PÖÖ«†ÆY`Wä=ƒ)eæõ›H},ŸÅÖ­z­ÏÄÏ0Tæ7­ñßî9ï=žÆ|`ouЂmà¸`€ËIݦ}i”ŸÂ"-Ö~LàÈ 6Â]ítÒ¤hB\˜Q—&\ÛÍÁ®^¿™ÃS®ÔMΦXóO”)Fwì>þ=Ãß.(Šº«éùº _‘õŠ$¨YàØ ¹ÙØüÐõÅôÜ}4ÂDÚÒ,gN6á%¡e5bÿ¹VºÆË{‡Ã+y$˜nþ24ü蔣"=—ˆÿ÷‹½á©2›Â<pì6ÇkC9ÌÓV_´õóKZØÌ¶Ä\ô1‘¹$­GboŒ9Ÿ+MøÅ™”4–n]ý{¾ÈÈLfo¸à-ÊôKá"w“¯á²éÉ?¢žUbÙ^IhÇ{#Û€®š™ß–­ZÁ%ÛZ )Ï÷Ò¸ ‚ª ŽÍ0à½åwI&ìiæ"eÃ^;ˆ8%˜aB\ZþmÐÓ^b”á±Ñ×DF¯ˆ]ËPéÃZm‰®OðÚÊ ¢ÐfЮo1‘5…¿˜K0K}e¸ß1•JVntÇæïuÌ—T- Èè åt ð~0Dzy ¸–îi@º)ž‘”û¢C¼À Õ+óÍ"±ëä–é¡KÓ #évåË%æüp Ù­ÜâÀºÕe¥Xòx*×| ;(EJßîN…e’7ÞÙ*Y÷*4úª øNpÝg–·áÔ貋9ûÄzñGÊC›¾ðL• ¸”k»Ð¬í,O¸$| ôé‡Ð³YªOíGOœS»LÑ7e(È“Ú%áj~¥§Y[ìØ<íöÜa5êçU7ÚÛð¼”A&¹Ce 9ÐÚNÁ}Sqð[² ß.1&Ù©]ø¶ìÀô­C}§3´KŒÉ/¬`†÷Pˆ†Ö™ýÈ”®a[ÔŸ³N082=ÆØ™o’mrC´‘<é·Ÿ2wÕÊ€@3e1EH&©<Éöu芉%¢»ÃÁö¬ç3@"FI1Óýîi J س)m€BÓ/íMùiÙš·žx>ŽIíòû$¾¬mWÍÆQî­¤¤Ú ~ˆ”_e–¾ ÃäßÞ3Åöq\rƒê²4z§„ë‹ú¨+Ú$‘„kP¨ŒÍ,Î9¾Ý#°kýÌD¿Ûxé/c$ËœÜ1ñ×6f™“CàË“Õþ %=«Š˜ýJÎþ¸@_=nSl\H·!/¿í äK:¼wäh6@ œ·®&Õ(–ÇVIØa¨z”F~ŽÙ3e7ÿW²E^yˆ¶Ñ;yýŠ»åeÉ!‹ë™+±Î%+„s£1F 1«]‹ÏBÝ Í ‰ S©qŸä=Mïò\¡g™‹ÝêlÝ[lËÝþp'u›ßýå¿ÒPŒ7‡rs†4›á‚Â/æŸeB¾mjÝ ¢±®¯¬úUˆH*%³œê1¥?{ãÖM<‚3ÖÏÚnÇ`~´q„ßôD1„ìç!ÑNà•¥¯S–†•:Ë%±ÝX/q„?\JKg¬w‚Hb5¬ÆJs¼§Í½7™5xÄœ&V#s¸ì.A 1î¬ÒÒ Âø]x‡Lõ ý,‘ëta¶D{+·û×~Á ÈÊé’ìåç’.®Ü¬ºµÈñ¯–½I]’€mP”ØÈ•„ìÍZw6ø!ëÃ_åÊl|Ñ9îРÐÁ°ú ØøKµ† ”v,-£„tIBjbƒ‚PÚµS[ƒ²o‰ðƒÑ„&fyþôî2²ßY£„;Ñ5^”'œ:h²›;c,6>žmðï.53Ê>«þŸ”»í‰ìϽû¡=/g¶|À%9‰<ŠÎÑÊBo¼ÈŽ“Ô vÛaËÀ|¾©ÌÙÛàÀ Éf6,“ºÙ§Ìû¢-ÀÒ¹5f<öÉãÆƒÒ„eùÍÃÞ5FGýê‰1JïWOŒ­°_‹~ JêåÅNi?A¬$Ì5ÀÛˆ¦Yßø`ÏMVqlîÿàÿö7R/ô9dZelig/R/0000755000176000001440000000000013245253056011562 5ustar ripleyusersZelig/R/model-exp.R0000755000176000001440000001467113245253056013613 0ustar ripleyusers#' Exponential Regression for Duration Dependent Variables #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. For example, to run the same model on all fifty states, you could #' use: \code{z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', #' by = 'state')} You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' @param robust defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators and the options selected in cluster. #' @param if robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then #' z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3",model = "exp", data = mydata) #' means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster. #' #' @examples #' library(Zelig) #' data(coalition) #' library(survival) #' z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model = "exp", #' data = coalition) #' summary(z.out) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_exp.html} #' @import methods #' @export Zelig-exp #' @exportClass Zelig-exp #' #' @include model-zelig.R zexp <- setRefClass("Zelig-exp", contains = "Zelig", fields = list(simalpha = "list", linkinv = "function")) zexp$methods( initialize = function() { callSuper() .self$name <- "exp" .self$authors <- "Olivia Lau, Kosuke Imai, Gary King" .self$packageauthors <- "Terry M. Therneau, and Thomas Lumley" .self$year <- 2011 .self$description <- "Exponential Regression for Duration Dependent Variables" .self$fn <- quote(survival::survreg) .self$linkinv <- survreg.distributions[["exponential"]]$itrans # JSON .self$outcome <- "continous" .self$wrapper <- "exp" .self$acceptweights <- TRUE } ) zexp$methods( zelig = function(formula, ..., robust = FALSE, cluster = NULL, data, weights = NULL, by = NULL, bootstrap = FALSE) { localFormula <- formula # avoids CRAN warning about deep assignment from formula existing separately as argument and field .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call if (!(is.null(cluster) || robust)) stop("If cluster is specified, then `robust` must be TRUE") # Add cluster term if (robust || !is.null(cluster)) localFormula <- cluster.formula(localFormula, cluster) .self$model.call$dist <- "exponential" .self$model.call$model <- FALSE callSuper(formula = localFormula, data = data, ..., robust = robust, cluster = cluster, weights = weights, by = by, bootstrap = bootstrap) rse <- lapply(.self$zelig.out$z.out, (function(x) vcovHC(x, type = "HC0"))) .self$test.statistics <- list(robust.se = rse) } ) zexp$methods( qi = function(simparam, mm) { eta <- simparam %*% t(mm) ev <- as.matrix(apply(eta, 2, linkinv)) pv <- as.matrix(rexp(length(ev), rate = 1 / ev)) return(list(ev = ev, pv = pv)) } ) zexp$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ .self$mcformula <- as.Formula("Surv(y.sim, event) ~ x.sim") lambda <-exp(b0 + b1 * x) event <- rep(1, length(x)) y.sim <- rexp(n=length(x), rate=lambda) y.hat <- 1/lambda if(sim){ mydata <- data.frame(y.sim=y.sim, event=event, x.sim=x) return(mydata) }else{ mydata <- data.frame(y.hat=y.hat, event=event, x.seq=x) return(mydata) } } ) Zelig/R/model-probit-bayes.R0000644000176000001440000001336313245253056015411 0ustar ripleyusers#' Bayesian Probit Regression #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. For example, to run the same model on all fifty states, you could #' use: \code{z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', #' by = 'state')} You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). #' \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). #' \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the #' Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1. #' \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is #' printed to the screen. #' \item \code{seed}: seed for the random number generator. The default is \code{NA} which #' corresponds to a random seed of 12345. #' \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector with #' length equal to the number of estimated coefficients. The default is \code{NA}, such that the #' maximum likelihood estimates are used as the starting values. #' } #' Use the following parameters to specify the model's priors: #' \itemize{ #' \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar. #' If a scalar value, that value will be the prior mean for all the coefficients. The default is 0. #' \item \code{B0}: prior precision parameter for the coefficients, either a square matrix (with #' the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that #' value times an identity matrix will be the prior precision parameter. The default is 0, which #' leads to an improper prior. #' } #' Use the following arguments to specify optional output for the model: #' \itemize{ #' \item \code{bayes.resid}: defaults to FALSE. If TRUE, the latent Bayesian residuals for all #' observations are returned. Alternatively, users can specify a vector of observations for #' which the latent residuals should be returned. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' #' @examples #' data(turnout) #' z.out <- zelig(vote ~ race + educate, model = "probit.bayes",data = turnout, verbose = FALSE) #' summary(z.out) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_probitbayes.html} #' @import methods #' @export Zelig-probit-bayes #' @exportClass Zelig-probit-bayes #' #' @include model-zelig.R #' @include model-probit.R zprobitbayes <- setRefClass("Zelig-probit-bayes", contains = c("Zelig-bayes", "Zelig-probit")) zprobitbayes$methods( initialize = function() { callSuper() .self$name <- "probit-bayes" .self$family <- "binomial" .self$link <- "probit" .self$linkinv <- eval(call(.self$family, .self$link))$linkinv .self$year <- 2013 .self$category <- "dichotomous" .self$authors <- "Ben Goodrich, Ying Lu" .self$description = "Bayesian Probit Regression for Dichotomous Dependent Variables" .self$fn <- quote(MCMCpack::MCMCprobit) # JSON from parent .self$wrapper <- "probit.bayes" } ) zprobitbayes$methods( mcfun = function(x, b0=0, b1=1, ..., sim=TRUE){ mu <- pnorm(b0 + b1 * x) if(sim){ y <- rbinom(n=length(x), size=1, prob=mu) return(y) }else{ return(mu) } } ) Zelig/R/model-gamma-gee.R0000755000176000001440000001110013245253056014617 0ustar ripleyusers#' Generalized Estimating Equation for Gamma Regression #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #'@param corstr:character string specifying the correlation structure: "independence", #' "exchangeable", "ar1", "unstructured" and "userdefined" #'@param See geeglm in package geepack for other function arguments. #'@param id: where id is a variable which identifies the clusters. The data should be sorted #'by id and should be ordered within each cluster when appropriate #'@param corstr: character string specifying the correlation structure: "independence", #' "exchangeable", "ar1", "unstructured" and "userdefined" #'@param geeglm: See geeglm in package geepack for other function arguments #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #'@examples #' library(Zelig) #' data(coalition) #' coalition$cluster <- c(rep(c(1:62), 5),rep(c(63), 4)) #' sorted.coalition <- coalition[order(coalition$cluster),] #' z.out <- zelig(duration ~ fract + numst2, model = "gamma.gee",id = "cluster", #' data = sorted.coalition,corstr = "exchangeable") #' summary(z.out) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_gammagee.html} #' @import methods #' @export Zelig-gamma #' @exportClass Zelig-gamma #' #' @include model-zelig.R #' @include model-gee.R #' @include model-gamma.R zgammagee <- setRefClass("Zelig-gamma-gee", contains = c("Zelig-gee", "Zelig-gamma")) zgammagee$methods( initialize = function() { callSuper() .self$name <- "gamma-gee" .self$family <- "Gamma" .self$link <- "inverse" .self$linkinv <- eval(call(.self$family, .self$link))$linkinv .self$year <- 2011 .self$category <- "continuous" .self$authors <- "Patrick Lam" .self$description = "General Estimating Equation for Gamma Regression" .self$fn <- quote(geepack::geeglm) # JSON from parent .self$wrapper <- "gamma.gee" } ) Zelig/R/model-ar.R0000755000176000001440000001061713245253056013415 0ustar ripleyusers#' Time-Series Model with Autoregressive Disturbance #' #' Warning: \code{summary} does not work with timeseries models after #' simulation. #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. For example, to run the same model on all fifty states, you could #' use: \code{z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', #' by = 'state')} You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' @param ts The name of the variable containing the time indicator. This should be passed in as #' a string. If this variable is not provided, Zelig will assume that the data is already #' ordered by time. #' @param cs Name of a variable that denotes the cross-sectional element of the data, for example, #' country name in a dataset with time-series across different countries. As a variable name, #' this should be in quotes. If this is not provided, Zelig will assume that all observations #' come from the same unit over time, and should be pooled, but if provided, individual models will #' be run in each cross-section. #' If \code{cs} is given as an argument, \code{ts} must also be provided. Additionally, \code{by} #' must be \code{NULL}. #' @param order A vector of length 3 passed in as \code{c(p,d,q)} where p represents the order of the #' autoregressive model, d represents the number of differences taken in the model, and q represents #' the order of the moving average model. #' @details #' Currently only the Reference class syntax for time series. This model does not accept #' Bootstraps or weights. #' #' #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' @examples #' data(seatshare) #' subset <- seatshare[seatshare$country == "UNITED KINGDOM",] #' ts.out <- zelig(formula = unemp ~ leftseat, model = "ar", ts = "year", data = subset) #' summary(ts.out) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_ar.html} #' #' @import methods #' @export Zelig-ar #' @exportClass Zelig-ar #' #' @include model-zelig.R #' @include model-timeseries.R zar <- setRefClass("Zelig-ar", contains = "Zelig-timeseries") zar$methods( initialize = function() { callSuper() .self$name <- "ar" .self$link <- "identity" .self$fn <- quote(zeligArimaWrapper) .self$description = "Time-Series Model with Autoregressive Disturbance" .self$packageauthors <- "R Core Team" .self$outcome <- "continuous" .self$wrapper <- "timeseries" } ) Zelig/R/utils.R0000755000176000001440000005533613245253056013064 0ustar ripleyusers#' Compute the Statistical Mode of a Vector #' @aliases Mode mode #' @param x a vector of numeric, factor, or ordered values #' @return the statistical mode of the vector. If more than one mode exists, #' the last one in the factor order is arbitrarily chosen (by design) #' @export #' @author Christopher Gandrud and Matt Owen Mode <- function (x) { # build a table of values of x tab <- table(as.factor(x)) # find the mode, if there is more than one arbitrarily pick the last max_tab <- names(which(tab == max(tab))) v <- max_tab[length(max_tab)] # if it came in as a factor, we need to re-cast it as a factor, with the same exact levels if (is.factor(x)) return(factor(v, levels = levels(x))) # re-cast as any other data-type as(v, class(x)) } ## Zelig 3 and 4 backward compatibility ## This enables backward compatibility, but results in a warning when library attached # mode <- Mode #' Compute the Statistical Median of a Vector #' @param x a vector of numeric or ordered values #' @param na.rm ignored #' @return the median of the vector #' @export #' @author Matt Owen Median <- function (x, na.rm=NULL) { v <- ifelse(is.numeric(x), median(x), levels(x)[ceiling(median(as.numeric(x)))] ) if (is.ordered(x)) v <- factor(v, levels(x)) v } #' Create a table, but ensure that the correct #' columns exist. In particular, this allows for #' entires with zero as a value, which is not #' the default for standard tables #' @param x a vector #' @param levels a vector of levels #' @param ... parameters for table #' @return a table #' @author Matt Owen table.levels <- function (x, levels, ...) { # if levels are not explicitly set, then # search inside of x if (missing(levels)) { levels <- attr(x, 'levels') table(factor(x, levels=levels), ...) } # otherwise just do the normal thing else { table(factor(x, levels=levels), ...) } } #' Compute central tendancy as approrpriate to data type #' @param val a vector of values #' @return a mean (if numeric) or a median (if ordered) or mode (otherwise) #' @export avg <- function(val) { if (is.numeric(val)) mean(val) else if (is.ordered(val)) Median(val) else Mode(val) } #' Set new value of a factor variable, checking for existing levels #' @param fv factor variable #' @param v value #' @return a factor variable with a value \code{val} and the same levels #' @keywords internal setfactor <- function (fv, v) { lev <- levels(fv) if (!v %in% lev) stop("Wrong factor") return(factor(v, levels = lev)) } #' Set new value of a variable as approrpriate to data type #' @param val old value #' @param newval new value #' @return a variable of the same type with a value \code{val} #' @keywords internal setval <- function(val, newval) { if (is.numeric(val)) newval else if (is.ordered(val)) newval else if (is.logical(val)) newval else { lev <- levels(val) if (!newval %in% lev) stop("Wrong factor", call. = FALSE) return(factor(newval, levels = lev)) } } #' Calculate the reduced dataset to be used in \code{\link{setx}} #' #' #' This method is used internally #' #' @param dataset Zelig object data, possibly split to deal with \code{by} #' argument #' @param s list of variables and their tentative \code{setx} values #' @param formula a simplified version of the Zelig object formula (typically #' with 1 on the lhs) #' @param data Zelig object data #' @param avg function of data transformations #' @return a list of all the model variables either at their central tendancy or #' their \code{setx} value #' #' @keywords internal #' @author Christine Choirat and Christopher Gandrud #' @export reduce = function(dataset, s, formula, data, avg = avg) { pred <- try(terms(fit <- lm(formula, data), "predvars"), silent = TRUE) if ("try-error" %in% class(pred)) # exp and weibull pred <- try(terms(fit <- survreg(formula, data), "predvars"), silent = TRUE) dataset <- model.frame(fit) ldata <- lapply(dataset, avg) if (length(s) > 0) { n <- union(as.character(attr(pred, "predvars"))[-1], names(dataset)) if (is.list(s[[1]])) s <- s[[1]] m <- match(names(s), n) ma <- m[!is.na(m)] if (!all(complete.cases(m))) { w <- paste("Variable '", names(s[is.na(m)]), "' not in data set.\n", sep = "") stop(w, call. = FALSE) } for (i in seq(n[ma])) { ldata[n[ma]][i][[1]] <- setval(dataset[n[ma]][i][[1]], s[n[ma]][i][[1]]) } } return(ldata) } #' Create QI summary matrix #' @param qi quantity of interest in the discrete case #' @return a formatted qi #' @keywords internal #' @author Christine Choirat statmat <- function(qi) { if (!is.matrix(qi)) qi <- as.matrix(qi, ncol = 1) m <- t(apply(qi, 2, quantile, c(.5, .025, .975), na.rm = TRUE)) n <- matrix(apply(qi, 2, mean, na.rm = TRUE)) colnames(n) <- "mean" o <- matrix(apply(qi, 2, sd, na.rm = TRUE)) colnames(o) <- "sd" p <- cbind(n, o, m) return(p) } #' Describe Here #' @param qi quantity of interest in the discrete case #' @param num number of simulations #' @return a formatted quantity of interest #' @keywords internal #' @author Christine Choirat statlevel <- function(qi, num) { if (is.matrix(qi)){ #m <- t(apply(qi, 2, table)) / num all.levels <- levels(qi) m <- t(apply(qi, 2, function(x) table(factor(x, levels=all.levels)))) / num } else { m <- table(qi) / num } return(m) } #' Pass Quantities of Interest to Appropriate Summary Function #' #' @param qi quantity of interest (e.g., estimated value or predicted value) #' @param num number of simulations #' @return a formatted qi #' @keywords internal #' @author Christine Choirat stat <- function(qi, num) { if (is.null(attr(qi, "levels"))) return(statmat(qi)) else return(statlevel(qi, num)) } #' Generate Formulae that Consider Clustering #' #' This method is used internally by the "Zelig" Package to interpret #' clustering in GEE models. #' @param formula a formula object #' @param cluster a vector #' @return a formula object describing clustering cluster.formula <- function (formula, cluster) { # Convert LHS of formula to a string lhs <- deparse(formula[[2]]) cluster.part <- if (is.null(cluster)) # NULL values require sprintf("cluster(1:nrow(%s))", lhs) else # Otherwise we trust user input sprintf("cluster(%s)", cluster) update(formula, paste(". ~ .", cluster.part, sep = " + ")) } #' Zelig Copy of plyr::mutate to avoid namespace conflict with dplyr #' #' @source Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data #' Analysis. Journal of Statistical Software, 40(1), 1-29. URL #' \url{http://www.jstatsoft.org/v40/i01/}. #' @keywords internal zelig_mutate <- function (.data, ...) { stopifnot(is.data.frame(.data) || is.list(.data) || is.environment(.data)) cols <- as.list(substitute(list(...))[-1]) cols <- cols[names(cols) != ""] for (col in names(cols)) { .data[[col]] <- eval(cols[[col]], .data, parent.frame()) } .data } #' Convenience function for setrange and setrange1 #' #' @param x data passed to setrange or setrange1 #' @keywords internal expand_grid_setrange <- function(x) { # m <- expand.grid(x) set_lengths <- unlist(lapply(x, length)) unique_set_lengths <- unique(as.vector(set_lengths)) m <- data.frame() for (i in unique_set_lengths) { temp_df <- data.frame(row.names = 1:i) for (u in 1:length(x)) { if (length(x[[u]]) == i) { temp_df <- cbind(temp_df, x[[u]]) names(temp_df)[ncol(temp_df)] <- names(x)[u] } } if (nrow(m) == 0) m <- temp_df else m <- merge(m, temp_df) } if (nrow(m) == 1) warning('Only one fitted observation provided to setrange.\nConsider using setx instead.', call. = FALSE) return(m) } #' Bundle Multiply Imputed Data Sets into an Object for Zelig #' #' This object prepares multiply imputed data sets so they can be used by #' \code{zelig}. #' @note This function creates a list of \code{data.frame} objects, which #' resembles the storage of imputed data sets in the \code{amelia} object. #' @param ... a set of \code{data.frame}'s or a single list of \code{data.frame}'s #' @return an \code{mi} object composed of a list of data frames. #' #' @author Matt Owen, James Honaker, and Christopher Gandrud #' #' @examples #' # create datasets #' n <- 100 #' x1 <- runif(n) #' x2 <- runif(n) #' y <- rnorm(n) #' data.1 <- data.frame(y = y, x = x1) #' data.2 <- data.frame(y = y, x = x2) #' #' # merge datasets into one object as if imputed datasets #' #' mi.out <- to_zelig_mi(data.1, data.2) #' #' # pass object in place of data argument #' z.out <- zelig(y ~ x, model = "ls", data = mi.out) #' @export to_zelig_mi <- function (...) { # Get arguments as list imputations <- list(...) # If user passes a list of data.frames rather than several data.frames as separate arguments if((class(imputations[[1]]) == 'list') & (length(imputations) == 1)){ imputations = imputations[[1]] } # Labelling names(imputations) <- paste0("imp", 1:length(imputations)) # Ensure that everything is a data.frame for (k in length(imputations):1) { if (!is.data.frame(imputations[[k]])){ imputations[[k]] <- NULL warning("Item ", k, " of the provided objects is not a data.frame and will be ignored.\n") } } if(length(imputations) < 1){ stop("The resulting object contains no data.frames, and as such is not a valid multiple imputation object.", call. = FALSE) } if(length(imputations) < 2){ stop("The resulting object contains only one data.frame, and as such is not a valid multiple imputation object.", call. = FALSE) } class(imputations) <-c("mi", "list") return(imputations) } #' Enables backwards compatability for preparing non-amelia imputed data sets #' for \code{zelig}. #' #' See \code{\link{to_zelig_mi}} #' #' @param ... a set of \code{data.frame}'s #' @return an \code{mi} object composed of a list of data frames. mi <- to_zelig_mi #' Conduct variable transformations called inside a \code{zelig} call #' #' @param formula model formulae #' @param data data frame used in \code{formula} #' @param FUN character string of the transformation function. Currently #' supports \code{factor} and \code{log}. #' @param check logical whether to just check if a formula contains an #' internally called transformation and return \code{TRUE} or \code{FALSE} #' @param f_out logical whether to return the converted formula #' @param d_out logical whether to return the converted data frame. Note: #' \code{f_out} must be missing #' #' @author Christopher Gandrud #' @keywords internal transformer <- function(formula, data, FUN = 'log', check, f_out, d_out) { if (!missing(data)) { if (is.data.frame(data)) is_df <- TRUE else if (!is.data.frame(data) & is.list(data)) is_df <- FALSE else stop('data must be either a data.frame or a list', call. = FALSE) } if (FUN == 'as.factor') FUN_temp <- 'as\\.factor' else FUN_temp <- FUN FUN_str <- sprintf('%s.*\\(', FUN_temp) f <- as.character(formula)[3] f_split <- unlist(strsplit(f, split = '\\+')) to_transform <- grep(pattern = FUN_str, f_split) if (!missing(check)) { if (length(to_transform) > 0) return(TRUE) else return(FALSE) } if (length(to_transform) > 0) { to_transform_raw <- trimws(f_split[to_transform]) if (FUN == 'factor') to_transform_raw <- gsub('^as\\.', '', to_transform_raw) to_transform_plain_args <- gsub(FUN_str, '', to_transform_raw) to_transform_plain <- gsub(',\\(.*)', '', to_transform_plain_args) to_transform_plain <- gsub('\\)', '', to_transform_plain) to_transform_plain <- trimws(gsub(',.*', '', to_transform_plain)) if (is_df) not_in_data <- !all(to_transform_plain %in% names(data)) else if (!isTRUE(is_df)) not_in_data <- !all(to_transform_plain %in% names(data[[1]])) if (not_in_data) stop('Unable to find variable to transform.') if (!missing(f_out)) { f_split[to_transform] <- to_transform_plain rhs <- paste(f_split, collapse = ' + ') lhs <- gsub('\\(\\)', '', formula[2]) f_new <- paste(lhs, '~', rhs) f_out <- as.Formula(f_new) return(f_out) } else if (!missing(d_out)) { transformer_fun <- trimws(gsub('\\(.*', '', to_transform_raw)) transformer_args_str <- gsub('\\)', '', to_transform_plain_args) transformer_args_list <- list() for (i in seq_along(transformer_args_str)) { args_temp <- unlist(strsplit(gsub(' ', '' , transformer_args_str[i]), ',')) if (is_df) args_temp[1] <- sprintf('data[, "%s"]', args_temp[1]) else if (!isTRUE(is_df)) args_temp[1] <- sprintf('data[[h]][, "%s"]', args_temp[1]) arg_names <- gsub('\\=.*', '', args_temp) arg_names[1] <- 'x' args_temp <- gsub('.*\\=', '', args_temp) args_temp_list <- list() if (is_df) { for (u in seq_along(args_temp)) args_temp_list[[u]] <- eval(parse(text = args_temp[u])) } else if (!isTRUE(is_df)) { for (h in seq_along(data)) { temp_list <- list() for (u in seq_along(args_temp)) { temp_list[[u]] <- eval(parse(text = args_temp[u])) names(temp_list)[u] <- arg_names[u] } args_temp_list[[h]] <- temp_list } } if (is_df) { names(args_temp_list) <- arg_names data[, to_transform_plain[i]] <- do.call( what = transformer_fun[i], args = args_temp_list) } else if (!isTRUE(is_df)) { for (j in seq_along(data)) { data[[j]][, to_transform_plain[i]] <- do.call( what = transformer_fun[i], args = args_temp_list[[j]]) } } } return(data) } } else if (length(to_transform) == 0) { if (!missing(f_out)) return(formula) else if (d_out) return(data) } } #' Remove package names from fitted model object calls. #' #' Enables \code{\link{from_zelig_model}} output to work with stargazer. #' @param x a fitted model object result #' @keywords internal strip_package_name <- function(x) { if ("vglm" %in% class(x)) # maybe generalise to all s4? call_temp <- gsub('^.*(?=(::))', '', x@call[1], perl = TRUE) else call_temp <- gsub('^.*(?=(::))', '', x$call[1], perl = TRUE) call_temp <- gsub('::', '', call_temp, perl = TRUE) if ("vglm" %in% class(x)) x@call[1] <- as.call(list(as.symbol(call_temp))) else x$call[1] <- as.call(list(as.symbol(call_temp))) return(x) } #' Extract p-values from a fitted model object #' @param x a fitted Zelig object #' @keywords internal p_pull <- function(x) { if ("vglm" %in% class(x)) { # maybe generalise to all s4? p_values <- summary(x)@coef3[, 'Pr(>|z|)'] } else { p_values <- summary(x)$coefficients if ('Pr(>|t|)' %in% colnames(p_values)) { p_values <- p_values[, 'Pr(>|t|)'] } else { p_values <- p_values[, 'Pr(>|z|)'] } } return(p_values) } #' Extract standard errors from a fitted model object #' @param x a fitted Zelig object #' @keywords internal se_pull <- function(x) { if ("vglm" %in% class(x)) # maybe generalise to all s4? se <- summary(x)@coef3[, "Std. Error"] else se <- summary(x)$coefficients[, "Std. Error"] return(se) } #' Drop intercept columns or values from a data frame or named vector, #' respectively #' #' @param x a data frame or named vector #' @keywords internal rm_intercept <- function(x) { intercept_names <- c('(Intercept)', 'X.Intercept.', '(Intercept).*') names_x <- names(x) if (any(intercept_names %in% names(x))) { keep <- !(names(x) %in% intercept_names) if (is.data.frame(x)) x <- data.frame(x[, names_x[keep]]) else if (is.vector(x)) x <- x[keep] names(x) <- names_x[keep] } return(x) } #' Combines estimated coefficients and associated statistics #' from models estimated with multiply imputed data sets or bootstrapped #' #' @param obj a zelig object with an estimated model #' @param out_type either \code{"matrix"} or \code{"list"} specifying #' whether the results should be returned as a matrix or a list. #' @param bagging logical whether or not to bag the bootstrapped coefficients #' @param messages logical whether or not to return messages for what is being #' returned #' #' @return If the model uses multiply imputed or bootstrapped data then a #' matrix (default) or list of combined coefficients (\code{coef}), standard #' errors (\code{se}), z values (\code{zvalue}), p-values (\code{p}) is #' returned. Rubin's Rules are used to combine output from multiply imputed #' data. An error is returned if no imputations were included or there wasn't #' bootstrapping. Please use \code{get_coef}, \code{get_se}, and #' \code{get_pvalue} methods instead in cases where there are no imputations or #' bootstrap. #' #' @examples #' set.seed(123) #' #' ## Multiple imputation example #' # Create fake imputed data #' n <- 100 #' x1 <- runif(n) #' x2 <- runif(n) #' y <- rnorm(n) #' data.1 <- data.frame(y = y, x = x1) #' data.2 <- data.frame(y = y, x = x2) #' #' # Estimate model #' mi.out <- to_zelig_mi(data.1, data.2) #' z.out.mi <- zelig(y ~ x, model = "ls", data = mi.out) #' #' # Combine and extract coefficients and standard errors #' combine_coef_se(z.out.mi) #' #' ## Bootstrap example #' z.out.boot <- zelig(y ~ x, model = "ls", data = data.1, bootstrap = 20) #' combine_coef_se(z.out.boot) #' #' @author Christopher Gandrud and James Honaker #' @source Partially based on \code{\link{mi.meld}} from Amelia. #' #' @export combine_coef_se <- function(obj, out_type = 'matrix', bagging = FALSE, messages = TRUE) { is_zelig(obj) is_uninitializedField(obj$zelig.out) if (!(out_type %in% c('matrix', 'list'))) stop('out_type must be either "matrix" or "list"', call. = FALSE) if (obj$mi || obj$bootstrap) { coeflist <- obj$get_coef() vcovlist <- obj$get_vcov() coef_names <- names(coeflist[[1]]) am.m <- length(coeflist) if (obj$bootstrap & !obj$mi) am.m <- am.m - 1 am.k <- length(coeflist[[1]]) if (obj$bootstrap & !obj$mi) q <- matrix(unlist(coeflist[-(am.m + 1)]), nrow = am.m, ncol = am.k, byrow = TRUE) else if (obj$mi) { q <- matrix(unlist(coeflist), nrow = am.m, ncol = am.k, byrow = TRUE) se <- matrix(NA, nrow = am.m, ncol = am.k) for(i in 1:am.m){ se[i, ] <- sqrt(diag(vcovlist[[i]])) } } ones <- matrix(1, nrow = 1, ncol = am.m) comb_q <- (ones %*% q)/am.m if (obj$mi) ave.se2 <- (ones %*% (se^2)) / am.m diff <- q - matrix(1, nrow = am.m, ncol = 1) %*% comb_q sq2 <- (ones %*% (diff^2))/(am.m - 1) if (obj$mi) { if (messages) message('Combining imputations. . .') comb_se <- sqrt(ave.se2 + sq2 * (1 + 1/am.m)) coef <- as.vector(comb_q) se <- as.vector(comb_se) } else if (obj$bootstrap & !obj$mi) { if (messages) message('Combining bootstraps . . .') comb_se <- sqrt(sq2 * (1 + 1/am.m)) if (bagging) { coef <- as.vector(comb_q) } else { coef <- coeflist[[am.m + 1]] } se <- as.vector(comb_se) } zvalue <- coef / se pr_z <- 2 * (1 - pnorm(abs(zvalue))) if (out_type == 'matrix') { out <- cbind(coef, se, zvalue, pr_z) colnames(out) <- c("Estimate", "Std.Error", "z value", "Pr(>|z|)") rownames(out) <- coef_names } else if (out_type == 'list') { out <- list(coef = coef, se = se, zvalue = zvalue, p = pr_z) for (i in seq(out)) names(out[[i]]) <- coef_names } return(out) } else if (!(obj$mi || obj$bootstrap)) { message('No multiply imputed or bootstrapped estimates found.\nReturning untransformed list of coefficients and standard errors.') out <- list(coef = coef(obj), se = get_se(obj), pvalue = get_pvalue(obj) ) return(out) } } #' Find vcov for GEE models #' #' @param obj a \code{geeglm} class object. vcov_gee <- function(obj) { if (!("geeglm" %in% class(obj))) stop('Not a geeglm class object', call. = FALSE) out <- obj$geese$vbeta return(out) } #' Find vcov for quantile regression models #' #' @param obj a \code{rq} class object. vcov_rq <- function(obj) { if (!("rq" %in% class(obj))) stop('Not an rq class object', call. = FALSE) out <- summary(obj, cov = TRUE)$cov return(out) } #' Find odds ratios for coefficients and standard errors #' for glm.summary class objects #' #' @param obj a \code{glm.summary} class object #' @param label_mod_coef character string for how to modify the coefficient #' label. #' @param label_mod_se character string for how to modify the standard error #' label. or_summary <- function(obj, label_mod_coef = "(OR)", label_mod_se = "(OR)"){ if (class(obj) != "summary.glm") stop("obj must be of summary.glm class.", call. = FALSE) obj$coefficients[, 1] <- exp(obj$coefficients[, 1]) var_diag = diag(vcov(obj)) obj$coefficients[, 2] <- sqrt(obj$coefficients[, 1] ^ 2 * var_diag) colnames(obj$coefficients)[c(1, 2)] <- paste( colnames(obj$coefficients)[c(1, 2)], c(label_mod_coef, label_mod_se)) return(obj) } Zelig/R/model-poisson.R0000755000176000001440000001141513245253056014502 0ustar ripleyusers#' Poisson Regression for Event Count Dependent Variables #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #'@param id: where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered within each cluster when appropriate #'@param corstr: character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined" #'@param geeglm: See geeglm in package geepack for other function arguments #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' @examples #' library(Zelig) #' data(sanction) #' z.out <- zelig(num ~ target + coop, model = "poisson", data = sanction) #' summary(z.out) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_poisson.html} #' @import methods #' @export Zelig-poisson #' @exportClass Zelig-poisson #' #' @include model-zelig.R #' @include model-glm.R zpoisson <- setRefClass("Zelig-poisson", contains = "Zelig-glm", fields = list(theta = "ANY")) zpoisson$methods( initialize = function() { callSuper() .self$name <- "poisson" .self$family <- "poisson" .self$link <- "log" .self$linkinv <- eval(call(.self$family, .self$link))$linkinv .self$authors <- "Kosuke Imai, Gary King, Olivia Lau" .self$year <- 2007 .self$category <- "count" .self$description <- "Poisson Regression for Event Count Dependent Variables" # JSON .self$outcome <- "discrete" .self$wrapper <- "poisson" } ) zpoisson$methods( qi = function(simparam, mm) { eta <- simparam %*% t(mm) theta.local <- matrix(.self$linkinv(eta), nrow = nrow(simparam)) ev <- theta.local pv <- matrix(NA, nrow = nrow(theta.local), ncol = ncol(theta.local)) for (i in 1:ncol(theta.local)) pv[, i] <- rpois(nrow(theta.local), lambda = theta.local[, i]) return(list(ev = ev, pv = pv)) } ) zpoisson$methods( mcfun = function(x, b0=0, b1=1, ..., sim=TRUE){ lambda <- exp(b0 + b1 * x) if(sim){ y <- rpois(n=length(x), lambda=lambda) return(y) }else{ return(lambda) } } ) Zelig/R/model-timeseries.R0000755000176000001440000001767313245257106015175 0ustar ripleyusers#' Time-series models in Zelig #' #' @import methods #' @export Zelig-timeseries #' @exportClass Zelig-timeseries #' #' @include model-zelig.R ztimeseries <- setRefClass("Zelig-timeseries", contains = "Zelig", fields = list(link = "character", linkinv = "function")) ztimeseries$methods( initialize = function() { callSuper() .self$packageauthors <- "R Core Team" .self$modelauthors <- "James Honaker" .self$acceptweights <- FALSE # Need to deal with block bootstrap .self$category <- "timeseries" .self$setx.labels <- list(ev = "Expected Values: E(Y|X)", ev1 = "Expected Values: E(Y|X1)", pv = "Predicted Values: Y|X", pv1 = "Predicted Values: Y|X1", fd = "First Differences: E(Y|X1) - E(Y|X)", acf = "Autocorrelation Function", ev.shortrun = "Expected Values Immediately Resulting from Shock", ev.longrun = "Long Run Expected Values after Innovation", pv.shortrun = "Predicted Values Immediately Resulting from Shock", pv.longrun = "Long Run Predicted Values after Innovation", evseries.shock = "Expected Values Over Time from Shock", evseries.innovation ="Expected Values Over Time from Innovation", pvseries.shock = "Predicted Values Over Time from Shock", pvseries.innovation ="Predicted Values Over Time from Innovation") warning("++++ All Zelig time series models are deprecated ++++", call. = FALSE) } ) ztimeseries$methods( zelig = function(formula, data, order = c(1, 0, 0), ts = NULL, cs = NULL, ..., weights = NULL, by = NULL, bootstrap = FALSE){ localBy <- by # avoids CRAN warning about deep assignment from by existing separately as argument and field if (identical(class(data), "function")) stop("data not found.", call. = FALSE) else localData <- data # avoids CRAN warning about deep assignment from data existing separately as argument and field if(!identical(bootstrap, FALSE)){ stop("Error: The bootstrap is not implemented for time-series models", call. = FALSE) } if (!is.null(cs) && is.null(ts)) stop("ts must be specified if cs is specified.", call. = FALSE) if (!is.null(cs) && !is.null(by)) { stop("cs and by are equivalent for this model. Only one needs to be specified.", call. = FALSE) } .self$zelig.call <- match.call(expand.dots = TRUE) if(identical(.self$name,"ar")){ order <- c(1,0,0) .self$zelig.call$order <- order } else if(identical(.self$name,"ma")){ order <- c(0,0,1) .self$zelig.call$order <- order } else { dots <- list(...) if (!is.null(dots$order)) { order <- dots$order } .self$zelig.call$order <- order } .self$model.call <- .self$zelig.call ## Sort dataset by time and cross-section ## Should add checks that ts, cs, are valid, and consider how to interact with by. ## This follows handling from Amelia::prep.r, which also has code to deal with lags, should we add those. if(!is.null(ts)){ .self$model.call$ts <- NULL if (!is.null(cs)) { .self$model.call$cs <- NULL tsarg<-list(localData[,cs],localData[,ts]) localBy <- cs # Use by architecture to deal with cross-sections in time-series models that do not support such. Currently overrides. } else { tsarg<-list(localData[,ts]) } tssort <- do.call("order",tsarg) localData <- localData[tssort,] } ## ts and cs are used to reorganize dataset, and do not get further passed on to Super callSuper(formula = formula, data = localData, order=order, ..., weights = weights, by = localBy, bootstrap = FALSE) } ) # replace packagename method as stats::arima() has a second layer of wrapping in zeligArimaWrapper(). ztimeseries$methods( packagename = function() { "Automatically retrieve wrapped package name" return("stats") } ) # replace simx method to add ACF as QI. ztimeseries$methods( simx = function() { base_vals <- .self$set() # generate mm of all averages d <- zelig_mutate(.self$zelig.out, simparam = .self$simparam$simparam) d <- zelig_mutate(d, mm = base_vals$mm) d <- zelig_mutate(d, mm1 = .self$setx.out$x$mm) .self$sim.out$x <- d %>% do(qi = .self$qi(.$simparam, .$mm, .$mm1)) %>% do(acf = .$qi$acf, ev = .$qi$ev, pv = .$qi$pv, ev.shortrun = .$qi$ev.shortrun, pv.shortrun = .$qi$pv.shortrun, ev.longrun = .$qi$ev.longrun, pv.longrun = .$qi$pv.longrun, pvseries.shock = .$qi$pvseries.shock, evseries.shock = .$qi$evseries.shock, pvseries.innovation = .$qi$pvseries.innovation, evseries.innovation = .$qi$evseries.innovation) d <- zelig_mutate(.self$sim.out$x, ev0 = .self$sim.out$x$ev) # Eventually, when ev moves, then this path for ev0 changes. (Or make movement happen after fd calculation.) d <- d %>% do(fd = .$ev.longrun - .$ev0) .self$sim.out$x <- zelig_mutate(.self$sim.out$x, fd = d$fd) #JH } ) ztimeseries$methods( simx1 = function() { d <- zelig_mutate(.self$zelig.out, simparam = .self$simparam$simparam) d <- zelig_mutate(d, mm = .self$setx.out$x$mm) d <- zelig_mutate(d, mm1 = .self$setx.out$x1$mm) # return(list(acf = acf, ev = ev, pv = pv, pv.shortrun=pv.shortrun, pv.longrun=pv.longrun, ev.shortrun=ev.shortrun, ev.longrun=ev.longrun, # pvseries.shock=yseries$y.shock, pvseries.innovation=yseries$y.innovation, # evseries.shock=yseries$ev.shock, evseries.innovation=yseries$ev.innovation)) .self$sim.out$x1 <- d %>% do(qi = .self$qi(.$simparam, .$mm, .$mm1)) %>% do(acf = .$qi$acf, ev = .$qi$ev, pv = .$qi$pv, ev.shortrun = .$qi$ev.shortrun, pv.shortrun = .$qi$pv.shortrun, ev.longrun = .$qi$ev.longrun, pv.longrun = .$qi$pv.longrun, pvseries.shock = .$qi$pvseries.shock, evseries.shock = .$qi$evseries.shock, pvseries.innovation = .$qi$pvseries.innovation, evseries.innovation = .$qi$evseries.innovation) # Will eventually have to then move acf, ev, and pv from .self$setx.out$x1 to .self$setx.out$x # This will also effect next line: d <- zelig_mutate(.self$sim.out$x1, ev0 = .self$sim.out$x1$ev) # Eventually, when ev moves, then this path for ev0 changes. (Or make movement happen after fd calculation.) d <- d %>% do(fd = .$ev.longrun - .$ev0) .self$sim.out$x1 <- zelig_mutate(.self$sim.out$x1, fd = d$fd) #JH } ) # replace sim method to skip {simx, simx1, simrange, simrange1} methods as they are not separable # instead go directly to qi method ztimeseries$methods( sim = function(num = 1000) { "Timeseries Method for Computing and Organizing Simulated Quantities of Interest" if (length(.self$num) == 0) .self$num <- num .self$simparam <- .self$zelig.out %>% do(simparam = .self$param(.$z.out)) # NOTE difference here from standard Zelig approach. # Normally these are done in sequence, but now we do one or the other. if (.self$bsetx1) { .self$simx1() } else { .self$simx() } } ) # There is no fitting summary function for objects of class Arima. # So this passes the object through to print, and z$summary() is essentially print(summary(x)). #' Summary of an object of class Arima #' @method summary Arima #' @param object An object of class Arima #' @param ... Additional parameters #' @return The original object #' @export summary.Arima = function(object, ...) object Zelig/R/model-gamma.R0000755000176000001440000001164713245253056014101 0ustar ripleyusers#' Gamma Regression for Continuous, Positive Dependent Variables #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' @examples #' library(Zelig) #' data(coalition) #' z.out <- zelig(duration ~ fract + numst2, model = "gamma", data = coalition) #' summary(z.out) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_gamma.html} #' @import methods #' @export Zelig-gamma #' @exportClass Zelig-gamma #' #' @include model-zelig.R #' @include model-glm.R zgamma <- setRefClass("Zelig-gamma", contains = "Zelig-glm") zgamma$methods( initialize = function() { callSuper() .self$name <- "gamma" .self$family <- "Gamma" .self$link <- "inverse" .self$authors <- "Kosuke Imai, Gary King, Olivia Lau" .self$year <- 2007 .self$category <- "bounded" .self$description <- "Gamma Regression for Continuous, Positive Dependent Variables" # JSON .self$outcome <- "continous" .self$wrapper <- "gamma" } ) zgamma$methods( param = function(z.out, method="mvn") { shape <- MASS::gamma.shape(z.out) if(identical(method, "mvn")){ simalpha <- rnorm(n = .self$num, mean = shape$alpha, sd = shape$SE) simparam.local <- mvrnorm(n = .self$num, mu = coef(z.out), Sigma = vcov(z.out)) simparam.local <- list(simparam = simparam.local, simalpha = simalpha) return(simparam.local) } else if(identical(method,"point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha = shape$alpha )) } } ) zgamma$methods( qi = function(simparam, mm) { coeff <- simparam$simparam eta <- (coeff %*% t(mm) ) * simparam$simalpha # JH need to better understand this parameterization. Coefs appear parameterized so E(y_i) = 1/ (x_i\hat{\beta}) theta <- matrix(1 / eta, nrow = nrow(coeff), ncol=1) ev <- theta * simparam$simalpha pv<- matrix(rgamma(nrow(ev), shape = simparam$simalpha, scale = theta), nrow=nrow(ev), ncol=1) return(list(ev = ev, pv = pv)) } ) zgamma$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ lambda <- 1/(b0 + b1 * x) if(sim){ y <- rgamma(n=length(x), shape=alpha, scale = lambda) return(y) }else{ return(alpha * lambda) } } ) Zelig/R/model-oprobit-bayes.R0000644000176000001440000001543113245253056015566 0ustar ripleyusers#' Bayesian Ordered Probit Regression #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #'@details #' Additional parameters avaialable to many models include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). #' \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). #' \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from #' the Markov chain is kept. The value of mcmc must be divisible by this value. The default #' value is 1. #' \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) #' is printed to the screen. #' \item \code{seed}: seed for the random number generator. The default is \code{NA} which #' corresponds to a random seed of 12345. #' \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector #' with length equal to the number of estimated coefficients. The default is \code{NA}, such #' that the maximum likelihood estimates are used as the starting values. #' } #' Use the following parameters to specify the model's priors: #' \itemize{ #' \item \code{b0}: prior mean for the coefficients, either a numeric vector or a #' scalar. If a scalar value, that value will be the prior mean for all the #' coefficients. The default is 0. #' \item \code{B0}: prior precision parameter for the coefficients, either a #' square matrix (with the dimensions equal to the number of the coefficients) or #' a scalar. If a scalar value, that value times an identity matrix will be the #' prior precision parameter. The default is 0, which leads to an improper prior. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' Vignette: \url{http://docs.zeligproject.org/articles/zelig_oprobitbayes.html} #' @import methods #' @export Zelig-oprobit-bayes #' @exportClass Zelig-oprobit-bayes #' #' @include model-zelig.R #' @include model-bayes.R zoprobitbayes <- setRefClass("Zelig-oprobit-bayes", contains = c("Zelig-bayes")) zoprobitbayes$methods( initialize = function() { callSuper() .self$name <- "oprobit-bayes" .self$year <- 2013 .self$category <- "discrete" .self$authors <- "Ben Goodrich, Ying Lu" .self$description = "Bayesian Probit Regression for Dichotomous Dependent Variables" .self$fn <- quote(MCMCpack::MCMCoprobit) # JSON from parent .self$wrapper <- "oprobit.bayes" } ) zoprobitbayes$methods( param = function(z.out) { mysimparam <- callSuper(z.out) # Produce the model matrix in order to get all terms (explicit and implicit) # from the regression model. mat <- model.matrix(.self$formula, data = .self$data) # Response Terms p <- ncol(mat) # All coefficients coefficients <- mysimparam # Coefficients for predictor variables beta <- coefficients[, 1:p] # Middle values of "gamma" matrix mid.gamma <- coefficients[, -(1:p)] # ... level <- ncol(coefficients) - p + 2 # Initialize the "gamma" parameters gamma <- matrix(NA, nrow(coefficients), level + 1) # The first, second and last values are fixed gamma[, 1] <- -Inf gamma[, 2] <- 0 gamma[, ncol(gamma)] <- Inf # All others are determined by the coef-matrix (now stored in mid.gamma) if (ncol(gamma) > 3) gamma[, 3:(ncol(gamma) - 1)] <- mid.gamma # return mysimparam <- list(simparam = beta, simalpha = gamma) return(mysimparam) } ) zoprobitbayes$methods( qi = function(simparam, mm) { beta <- simparam$simparam gamma <- simparam$simalpha labels <- levels(model.response(model.frame(.self$formula, data = .self$data))) # x is implicitly cast into a matrix eta <- beta %*% t(mm) # **TODO: Sort out sizes of matrices for these things. ev <- array(NA, c(nrow(eta), ncol(gamma) - 1, ncol(eta))) pv <- matrix(NA, nrow(eta), ncol(eta)) # Compute Expected Values # *********************** # Note that the inverse link function is: # pnorm(gamma[, j+1]-eta) - pnorm(gamma[, j]-eta) for (j in 1:(ncol(gamma) - 1)) { ev[, j, ] <- pnorm(gamma[, j + 1] - eta) - pnorm(gamma[, j] - eta) } colnames(ev) <- labels # Compute Predicted Values # ************************ for (j in 1:nrow(pv)) { mu <- eta[j, ] pv[j, ] <- as.character(cut(mu, gamma[j, ], labels = labels)) } pv <- as.factor(pv) # **TODO: Update summarize to work with at most 3-dimensional arrays ev <- ev[, , 1] return(list(ev = ev, pv = pv)) } ) Zelig/R/create-json.R0000755000176000001440000001203513245253056014123 0ustar ripleyusers#' @include utils.R #' @include model-zelig.R #' @include model-ls.R #' @include model-glm.R #' @include model-ivreg.R #' @include model-binchoice.R #' @include model-logit.R #' @include model-probit.R #' @include model-poisson.R #' @include model-normal.R #' @include model-gamma.R #' @include model-negbinom.R #' @include model-exp.R #' @include model-lognorm.R #' @include model-tobit.R #' @include model-quantile.R #' @include model-relogit.R #' @include model-gee.R #' @include model-binchoice-gee.R #' @include model-logit-gee.R #' @include model-probit-gee.R #' @include model-gamma-gee.R #' @include model-normal-gee.R #' @include model-poisson-gee.R #' @include model-bayes.R #' @include model-factor-bayes.R #' @include model-logit-bayes.R #' @include model-mlogit-bayes.R #' @include model-normal-bayes.R #' @include model-oprobit-bayes.R #' @include model-poisson-bayes.R #' @include model-probit-bayes.R #' @include model-tobit-bayes.R #' @include model-weibull.R #' @include model-timeseries.R #' @include model-arima.R #' @include model-ar.R #' @include model-ma.R #library(jsonlite) createJSON <- function(movefile = TRUE){ z5ls <- zls$new() z5ls$toJSON() z5logit <- zlogit$new() z5logit$toJSON() z5ivreg <- zivreg$new() z5ivreg$toJSON() z5probit <- zprobit$new() z5probit$toJSON() z5poisson <- zpoisson$new() z5poisson$toJSON() z5normal <- znormal$new() z5normal$toJSON() z5gamma <- zgamma$new() z5gamma$toJSON() z5negbin <- znegbin$new() z5negbin$toJSON() z5exp <- zexp$new() z5exp$toJSON() z5lognorm <- zlognorm$new() z5lognorm$toJSON() z5tobit <- ztobit$new() z5tobit$toJSON() z5quantile <- zquantile$new() z5quantile$toJSON() z5relogit <- zrelogit$new() z5relogit$toJSON() z5logitgee <- zlogitgee$new() z5logitgee$toJSON() z5probitgee <- zprobitgee$new() z5probitgee$toJSON() z5gammagee <- zgammagee$new() z5gammagee$toJSON() z5normalgee <- znormalgee$new() z5normalgee$toJSON() z5poissongee <- zpoissongee$new() z5poissongee$toJSON() z5factorbayes <- zfactorbayes$new() z5factorbayes$toJSON() z5logitbayes <- zlogitbayes$new() z5logitbayes$toJSON() z5mlogitbayes <- zmlogitbayes$new() z5mlogitbayes$toJSON() z5normalbayes <- znormalbayes$new() z5normalbayes$toJSON() z5oprobitbayes <- zoprobitbayes$new() z5oprobitbayes$toJSON() z5poissonbayes <- zpoissonbayes$new() z5poissonbayes$toJSON() z5probitbayes <- zprobitbayes$new() z5probitbayes$toJSON() z5tobitbayes <- ztobitbayes$new() z5tobitbayes$toJSON() z5weibull <- zweibull$new() z5weibull$toJSON() z5logitsurvey <- zlogitsurvey$new() z5logitsurvey$toJSON() z5probitsurvey <- zprobitsurvey$new() z5probitsurvey$toJSON() z5gammasurvey <- zgammasurvey$new() z5gammasurvey$toJSON() z5normalsurvey <- znormalsurvey$new() z5normalsurvey$toJSON() z5poissonsurvey <- zpoissonsurvey$new() z5poissonsurvey$toJSON() z5arima <- zarima$new() z5arima$toJSON() z5ar <- zar$new() z5ar$toJSON() z5ma <- zma$new() z5ma$toJSON() zeligmodels <- list(zelig5models = list( "ls" = z5ls$ljson, "ivreg" = z5ivreg$ljson, "logit" = z5logit$ljson, "probit" = z5probit$ljson, "poisson" = z5poisson$ljson, "normal" = z5normal$ljson, "gamma" = z5gamma$ljson, "negbin" = z5negbin$ljson, "exp" = z5exp$ljson, "lognorm" = z5lognorm$ljson, "tobit" = z5tobit$ljson, "quantile" = z5quantile$ljson, "relogit" = z5relogit$ljson, "logitgee" = z5logitgee$ljson, "probitgee" = z5probitgee$ljson, "gammagee" = z5gammagee$ljson, "normalgee" = z5normalgee$ljson, "poissongee" = z5poissongee$ljson, "factorbayes" = z5factorbayes$ljson, "logitbayes" = z5logitbayes$ljson, "mlogitbayes" = z5mlogitbayes$ljson, "normalbayes" = z5normalbayes$ljson, "oprobitbayes" = z5oprobitbayes$ljson, "poissonbayes" = z5poissonbayes$ljson, "probitbayes" = z5probitbayes$ljson, "tobitbayes" = z5tobitbayes$ljson, "weibull" = z5weibull$ljson, "logitsurvey" = z5logitsurvey$ljson, "probitsurvey" = z5probitsurvey$ljson, "normalsurvey" = z5normalsurvey$ljson, "gammasurvey" = z5gammasurvey$ljson, "poissonsurvey" = z5poissonsurvey$ljson, "arima" = z5arima$ljson, "ma" = z5ma$ljson, "ar" = z5ar$ljson)) cat(toJSON(zeligmodels, pretty = TRUE), "\n", file = file.path("zelig5models.json")) if (movefile){ file.rename(from = file.path("zelig5models.json"), to = file.path("inst", "JSON", "zelig5models.json")) } return(TRUE) } Zelig/R/model-probit-survey.R0000755000176000001440000001336513245253056015650 0ustar ripleyusers#' Probit Regression with Survey Weights #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' @param below: point at which the dependent variable is censored from below. #' If the dependent variable is only censored from above, set \code{below = -Inf}. #' The default value is 0. #' @param above: point at which the dependent variable is censored from above. #' If the dependent variable is only censored from below, set \code{above = Inf}. #' The default value is \code{Inf}. #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item weights: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000). #' \item mcmc: number of the MCMC iterations after burnin (defaults to 10,000). #' \item thin: thinning interval for the Markov chain. Only every thin-th #' draw from the Markov chain is kept. The value of mcmc must be divisible by this value. #' The default value is 1. #' \item verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) #' is printed to the screen. #' \item seed: seed for the random number generator. The default is \code{NA} which #' corresponds to a random seed of 12345. #' \item beta.start: starting values for the Markov chain, either a scalar or #' vector with length equal to the number of estimated coefficients. The default is #' \code{NA}, such that the maximum likelihood estimates are used as the starting values. #' } #' Use the following parameters to specify the model's priors: #' \itemize{ #' \item b0: prior mean for the coefficients, either a numeric vector or a scalar. #' If a scalar value, that value will be the prior mean for all the coefficients. #' The default is 0. #' \item B0: prior precision parameter for the coefficients, either a square matrix #' (with the dimensions equal to the number of the coefficients) or a scalar. #' If a scalar value, that value times an identity matrix will be the prior precision parameter. #' The default is 0, which leads to an improper prior. #' \item c0: c0/2 is the shape parameter for the Inverse Gamma prior on the variance of the #' disturbance terms. #' \item d0: d0/2 is the scale parameter for the Inverse Gamma prior on the variance of the #' disturbance terms. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #'@examples #' data(api, package="survey") #' z.out1 <- zelig(enroll ~ api99 + yr.rnd , #' model = "poisson.survey", data = apistrat) #' summary(z.out1) #' x.low <- setx(z.out1, api99= quantile(apistrat$api99, 0.2)) #' x.high <- setx(z.out1, api99= quantile(apistrat$api99, 0.8)) #' s.out1 <- sim(z.out1, x=x.low, x1=x.high) #' summary(s.out1) #' plot(s.out1) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_probitsurvey.html} #' @import methods #' @export Zelig-probit-survey #' @exportClass Zelig-probit-survey #' #' @include model-zelig.R #' @include model-binchoice-survey.R zprobitsurvey <- setRefClass("Zelig-probit-survey", contains = c("Zelig-binchoice-survey")) zprobitsurvey$methods( initialize = function() { callSuper() .self$name <- "probit-survey" .self$link <- "probit" .self$description <- "Probit Regression with Survey Weights" .self$wrapper <- "probit.survey" } ) zprobitsurvey$methods( mcfun = function(x, b0=0, b1=1, ..., sim=TRUE){ mu <- pnorm(b0 + b1 * x) if(sim){ y <- rbinom(n=length(x), size=1, prob=mu) return(y) }else{ return(mu) } } ) Zelig/R/model-poisson-bayes.R0000644000176000001440000001310013245253056015571 0ustar ripleyusers#' Bayesian Poisson Regression #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' @examples #' data(sanction) #' z.out <- zelig(num ~ target + coop, model = "poisson.bayes",data = sanction, verbose = FALSE) #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). #' \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). #' \item \code{tune}: Metropolis tuning parameter, either a positive scalar or a vector of length #' kk, where kk is the number of coefficients. The tuning parameter should be set such that the #' acceptance rate of the Metropolis algorithm is satisfactory (typically between 0.20 and 0.5). #' The default value is 1.1. #' \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the #' Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1. #' \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is #' printed to the screen. #' \item \code{seed}: seed for the random number generator. The default is \code{NA} which #' corresponds to a random seed of 12345. #' \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector #' with length equal to the number of estimated coefficients. The default is \code{NA}, such that the maximum likelihood estimates are used as the starting values. #' } #' Use the following parameters to specify the model's priors: #' \itemize{ #' \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar. #' If a scalar value, that value will be the prior mean for all the coefficients. #' The default is 0. #' \item \code{B0}: prior precision parameter for the coefficients, either a square matrix #' (with the dimensions equal to the number of the coefficients) or a scalar. #' If a scalar value, that value times an identity matrix will be the prior precision parameter. #' The default is 0, which leads to an improper prior. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_poissonbayes.html} #' @import methods #' @export Zelig-poisson-bayes #' @exportClass Zelig-poisson-bayes #' #' @include model-zelig.R #' @include model-bayes.R #' @include model-poisson.R zpoissonbayes <- setRefClass("Zelig-poisson-bayes", contains = c("Zelig-bayes", "Zelig-poisson")) zpoissonbayes$methods( initialize = function() { callSuper() .self$name <- "poisson-bayes" .self$family <- "poisson" .self$link <- "log" .self$linkinv <- eval(call(.self$family, .self$link))$linkinv .self$year <- 2013 .self$category <- "continuous" .self$authors <- "Ben Goodrich, Ying Lu" .self$description = "Bayesian Poisson Regression" .self$fn <- quote(MCMCpack::MCMCpoisson) # JSON from parent .self$wrapper <- "poisson.bayes" } ) zpoissonbayes$methods( mcfun = function(x, b0=0, b1=1, ..., sim=TRUE){ lambda <- exp(b0 + b1 * x) if(sim){ y <- rpois(n=length(x), lambda=lambda) return(y) }else{ return(lambda) } } ) Zelig/R/model-zelig.R0000755000176000001440000016316713245253056014136 0ustar ripleyusers#' Zelig reference class #' #' Zelig website: \url{http://zeligproject.org/} #' #' @import methods #' @export Zelig #' @exportClass Zelig #' #' @field fn R function to call to wrap #' @field formula Zelig formula #' @field weights [forthcoming] #' @field name name of the Zelig model #' @field data data frame or matrix #' @field by split the data by factors #' @field mi work with imputed dataset #' @field idx model index #' @field zelig.call Zelig function call #' @field model.call wrapped function call #' @field zelig.out estimated zelig model(s) #' @field setx.out set values #' @field setx.labels pretty-print qi #' @field bsetx is x set? #' @field bsetx1 is x1 set? #' @field bsetrange is range set? #' @field bsetrange1 is range1 set? #' @field range range #' @field range1 range1 #' @field test.statistics list of test statistics #' @field sim.out simulated qi's #' @field simparam simulated parameters #' @field num number of simulations #' @field authors Zelig model authors #' @field zeligauthors Zelig authors #' @field modelauthors wrapped model authors #' @field packageauthors wrapped package authors #' @field refs citation information #' @field year model is released #' @field description model description #' @field url model URL #' @field url.docs model documentation URL #' @field category model category #' @field vignette.url vignette URL #' @field json JSON export #' @field ljson JSON export #' @field outcome JSON export #' @field wrapper JSON export #' @field explanatory JSON export #' @field mcunit.test unit testing #' @field with.feedback Feedback #' @field robust.se return robust standard errors z <- setRefClass("Zelig", fields = list(fn = "ANY", # R function to call to wrap formula = "ANY", # Zelig formula weights = "ANY", acceptweights = "logical", name = "character", # name of the Zelig model data = "ANY", # data frame or matrix, originaldata = "ANY", # data frame or matrix, originalweights = "ANY", # ddata = "ANY", # data.by = "ANY", # data frame or matrix by = "ANY", mi = "logical", matched = "logical", avg = "ANY", idx = "ANY", # model index zelig.call = "call", # Zelig function call model.call = "call", # wrapped function call zelig.out = "ANY", # estimated zelig model(s) signif.stars = "logical", signif.stars.default = "logical", # significance stars default setx.out = "ANY", # set values setx.labels = "list", # pretty-print qi, bsetx = "logical", bsetx1 = "logical", bsetrange = "logical", bsetrange1 = "logical", range = "ANY", range1 = "ANY", setforeveryby = "logical", test.statistics = "ANY", sim.out = "list", # simulated qi's simparam = "ANY", # simulated parameters num = "numeric", # nb of simulations bootstrap = "logical", # use bootstrap bootstrap.num = "numeric", # number of bootstraps to use authors = "character", # Zelig model description zeligauthors = "character", modelauthors = "character", packageauthors = "character", refs = "ANY", # is there a way to recognize class "bibentry"?, year = "numeric", description = "character", url = "character", url.docs = "character", category = "character", vignette.url = "character", json = "ANY", # JSON export ljson = "ANY", outcome = "ANY", wrapper = "character", explanatory = "ANY", #Unit Testing mcunit.test = "ANY", mcformula = "ANY", # Feedback with.feedback = "logical", # Robust standard errors robust.se = "logical" )) z$methods( initialize = function() { .self$authors <- "Kosuke Imai, Gary King, and Olivia Lau" .self$zeligauthors <- "Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau" .self$refs <- bibentry() .self$year <- as.numeric(format(Sys.Date(), "%Y")) .self$url <- "http://zeligproject.org/" .self$url.docs <- "http://docs.zeligproject.org/articles/" .self$setx.out <- list() .self$setx.labels <- list(ev = "Expected Values: E(Y|X)", ev1 = "Expected Values: E(Y|X1)", pv = "Predicted Values: Y|X", pv1 = "Predicted Values: Y|X1", fd = "First Differences: E(Y|X1) - E(Y|X)") .self$bsetx <- FALSE .self$bsetx1 <- FALSE .self$bsetrange <- FALSE .self$bsetrange1 <- FALSE .self$acceptweights <- FALSE .self$bootstrap <- FALSE .self$bootstrap.num <- 100 # JSON .self$vignette.url <- paste(.self$url.docs, tolower(class(.self)[1]), ".html", sep = "") .self$vignette.url <- sub("-gee", "gee", .self$vignette.url) .self$vignette.url <- sub("-bayes", "bayes", .self$vignette.url) # .self$vignette.url <- paste(.self$url.docs, "zelig-", sub("-", "", .self$name), ".html", sep = "") .self$category <- "undefined" .self$explanatory <- c("continuous", "discrete", "nominal", "ordinal", "binary") .self$outcome <- "" .self$wrapper <- "wrapper" # Is 'ZeligFeedback' package installed? .self$with.feedback <- "ZeligFeedback" %in% installed.packages() .self$setforeveryby <- TRUE .self$avg <- function(val) { if (is.numeric(val)) mean(val) else if (is.ordered(val)) Median(val) else Mode(val) } } ) z$methods( packagename = function() { "Automatically retrieve wrapped package name" # If this becomes "quote(mypackage::myfunction) then # regmatches(.self$fn,regexpr("(?<=\\()(.*?)(?=\\::)",.self$fn, perl=TRUE)) # would extract "mypackage" return(as.character(.self$fn)[2]) } ) z$methods( cite = function() { "Provide citation information about Zelig and Zelig model, and about wrapped package and wrapped model" title <- paste(.self$name, ": ", .self$description, sep="") localauthors <- "" if (length(.self$modelauthors) & (!identical(.self$modelauthors,""))){ # covers both empty styles: character(0) and "" --the latter being length 1. localauthors<-.self$modelauthors } else if (length(.self$packageauthors) & (!identical(.self$packageauthors,""))){ localauthors<-.self$packageauthors } else { localauthors<-.self$zeligauthors } cat("How to cite this model in Zelig:\n ", localauthors, ". ", .self$year, ".\n ", title, "\n in ", .self$zeligauthors, ",\n \"Zelig: Everyone's Statistical Software,\" ", .self$url, "\n", sep = "") } ) # Construct a reference list specific to a Zelig model # Styles available from the bibentry print method: "text", "Bibtex", "citation", "html", "latex", "R", "textVersion" # The "sphinx" style reformats "text" style with some markdown substitutions z$methods( references = function(style="sphinx") { "Construct a reference list specific to a Zelig model." mystyle <- style if (mystyle=="sphinx"){ mystyle <- "text" } mycites<-.self$refs if(!is.na(.self$packagename() )) { mycites <- c(mycites, citation(.self$packagename())) # Concatentate model specific Zelig references with package references } mycites<-mycites[!duplicated(mycites)] # Remove duplicates (many packages have duplicate references in their lists) s <- capture.output(print(mycites, style = mystyle)) if(style == "sphinx"){ # format the "text" style conventions for sphinx markdown for # building docs for zeligproject.org s<-gsub("\\*","\\*\\*",s, perl=TRUE) s<-gsub("_","\\*",s, perl=TRUE) s<-gsub("\\*\\(","\\* \\(",s, perl=TRUE) } cat(s, sep="\n") } ) #' Zelig method #' @param formula TEST z$methods( zelig = function(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) { "The zelig function estimates a variety of statistical models" fn2 <- function(fc, data) { fc$data <- data return(fc) } # Prepare data for possible transformations if ("amelia" %in% class(data)) { localdata <- data$imputations is_matched <- FALSE } else if ("matchit" %in% class(data)) { is_matched <- TRUE localdata <- MatchIt::match.data(data) iweights <- localdata$weights } else { localdata <- data is_matched <- FALSE } # Without dots for single and multiple equations temp_formula <- as.Formula(formula) if (sum(length(temp_formula)) <= 2) .self$formula <- as.Formula(terms(temp_formula, data = localdata)) else if (sum(length(temp_formula)) > 2) { f_dots <- attr(terms(temp_formula, data = localdata), "Formula_without_dot") if (!is.null(f_dots)) # .self$formula <- as.Formula(f_dots) stop('formula expansion not currently supported for formulas with multiple equations.\nPlease directly specify the variables in the formula call.', call. = FALSE) else .self$formula <- as.Formula(formula) } # Convert factors and logs converted internally to the zelig call form_factors <- transformer(.self$formula, FUN = 'factor', check = TRUE) form_logs <- transformer(.self$formula, FUN = 'log', check = TRUE) if (any(c(form_factors, form_logs))) { if (form_factors) { localformula <- transformer(formula, data = localdata, FUN = 'factor', f_out = TRUE) localdata <- transformer(formula, data = localdata, FUN = 'factor', d_out = TRUE) .self$formula <- localformula .self$data <- localdata } if (form_logs) { if (.self$name == 'ivreg') stop('logging values in the zelig call is not currently supported for ivreg models.', call. = FALSE) localformula <- transformer(formula, data = localdata, FUN = 'log', f_out = TRUE) localdata <- transformer(formula, data = localdata, FUN = 'log', d_out = TRUE) .self$formula <- localformula .self$data <- localdata } } if (!("relogit" %in% .self$wrapper)) .self$model.call$formula <- match.call(zelig, .self$formula) else if ("relogit" %in% .self$wrapper) { .self$modcall_formula_transformer() } # Overwrite formula with mc unit test formula into correct environment, if it exists # Requires fixing R scoping issue if("formula" %in% class(.self$mcformula)){ .self$formula <- as.Formula( deparse(.self$mcformula), env = environment(.self$formula) ) .self$model.call$formula <- as.Formula( deparse(.self$mcformula), env = globalenv() ) } else if(is.character(.self$mcformula)) { .self$formula <- as.Formula( .self$mcformula, env = environment(.self$formula) ) .self$model.call$formula <- as.Formula( .self$mcformula, env = globalenv() ) } if(!is.null(model)){ cat("Argument model is only valid for the Zelig wrapper, but not the Zelig method, and will be ignored.\n") flag <- !(names(.self$model.call) == "model") .self$model.call <- .self$model.call[flag] flag <- !(names(.self$zelig.call) == "model") .self$zelig.call <- .self$zelig.call[flag] } .self$by <- by .self$originaldata <- localdata .self$originalweights <- weights datareformed <- FALSE if(is.numeric(bootstrap)){ .self$bootstrap <- TRUE .self$bootstrap.num <- bootstrap } else if(is.logical(bootstrap)){ .self$bootstrap <- bootstrap } # Remove bootstrap argument from model call .self$model.call$bootstrap <- NULL # Check if bootstrap possible by checking whether param method has method argument available if(.self$bootstrap){ if(!("method" %in% names(formals(.self$param)))){ stop("The bootstrap does not appear to be implemented for this Zelig model. Check that the param() method allows point predictions.") } .self$setforeveryby <- FALSE # compute covariates in set() at the dataset-level } # Matched datasets from MatchIt if (is_matched){ .self$matched <- TRUE .self$data <- localdata datareformed <- TRUE # Check if noninteger valued weights exist and are incompatible with zelig model validweights <- TRUE if(!.self$acceptweights){ # This is a convoluted way to do this, but avoids the costly "any()" calculation if not necessary if(any(iweights != ceiling(iweights))){ # any(y != ceiling(y)) tests slightly faster than all(y == ceiling(y)) validweights <- FALSE } } if(!validweights){ # could also be if((!acceptweights) & (any(iweights != ceiling(iweights)) but avoid the long any for big datasets cat("The weights created by matching for this dataset have noninteger values,\n", "however, the statistical model you have chosen is only compatible with integer weights.\n", "Either change the matching method (such as to `optimal' matching with a 1:1 ratio)\n", "or change the statistical model in Zelig.\n", "We will round matching weights up to integers to proceed.\n\n") .self$weights <- ceiling(iweights) } else { .self$weights <- iweights } # Set references appropriate to matching methods used .self$refs <- c(.self$refs, citation("MatchIt")) if(m.out$call$method=="cem" & ("cem" %in% installed.packages())) .self$refs <- c(.self$refs, citation("cem")) #if(m.out$call$method=="exact") .self$refs <- c(.self$refs, citation("")) if((m.out$call$method=="full") & ("optmatch" %in% installed.packages())) .self$refs <- c(.self$refs, citation("optmatch")) if(m.out$call$method=="genetic" & ("Matching" %in% installed.packages())) .self$refs <- c(.self$refs, citation("Matching")) #if(m.out$call$method=="nearest") .self$refs <- c(.self$refs, citation("")) if(m.out$call$method=="optimal" & ("optmatch" %in% installed.packages())) .self$refs <- c(.self$refs, citation("optmatch")) #if(m.out$call$method=="subclass") .self$refs <- c(.self$refs, citation("")) } else { .self$matched <- FALSE } # Multiply Imputed datasets from Amelia or mi utility # Notice imputed objects ignore weights currently, # which is reasonable as the Amelia package ignores weights if (("amelia" %in% class(localdata)) | ("mi" %in% class(localdata))) { idata <- localdata .self$data <- bind_rows(lapply(seq(length(idata)), function(imputationNumber) cbind(imputationNumber, idata[[imputationNumber]]))) if (!is.null(weights)) stop('weights are currently not available with imputed data.', call. = FALSE) .self$weights <- NULL # This should be considered or addressed datareformed <- TRUE .self$by <- c("imputationNumber", by) .self$mi <- TRUE .self$setforeveryby <- FALSE # compute covariates in set() at on the entire stacked dataset .self$refs <- c(.self$refs, citation("Amelia")) if (.self$fn == "geepack::geeglm" & is.character(.self$model.call$id)) { .self$model.call$id <- subset(.self$data, imputationNumber == 1)[, .self$model.call$id] } } else { .self$mi <- FALSE } if (!datareformed){ .self$data <- localdata # If none of the above package integrations have already reformed the # data from another object, use the supplied data # Run some checking on weights argument, and see if is valid string or vector if(!is.null(weights)){ if(is.character(weights)){ if(weights %in% names(.self$data)){ .self$weights <- .self$data[[weights]] # This is a way to convert data.frame portion to type numeric (as data.frames are lists) } else { warning("Variable name given for weights not found in dataset, so will be ignored.\n\n", call. = FALSE) .self$weights <- NULL # No valid weights .self$model.call$weights <- NULL } } else if(is.vector(weights)){ if (length(weights) == nrow(.self$data) & is.vector(weights)){ localWeights <- weights # avoids CRAN warning about deep assignment from weights existing separately as argument and field if(min(localWeights) < 0) { localWeights[localWeights < 0] <- 0 warning("Negative valued weights were supplied and will be replaced with zeros.", call. = FALSE) } .self$weights <- localWeights # Weights } else { warning("Length of vector given for weights is not equal to number of observations in dataset, and will be ignored.\n\n", call. = FALSE) .self$weights <- NULL # No valid weights .self$model.call$weights <- NULL } } else { warning("Supplied weights argument is not a vector or a variable name in the dataset, and will be ignored.\n\n", call. = FALSE) .self$weights <- NULL # No valid weights .self$model.call$weights <- NULL } } else { .self$weights <- NULL # No weights set, so weights are NULL .self$model.call$weights <- NULL } } # If the Zelig model does not not accept weights, but weights are provided, we rebuild the data # by bootstrapping using the weights as probabilities # or by duplicating rows proportional to the ceiling of their weight # Otherwise we pass the weights to the model call if(!is.null(.self$weights)){ if ((!.self$acceptweights)){ .self$buildDataByWeights2() # Could use alternative method $buildDataByWeights() for duplication # approach. Maybe set as argument?\ .self$model.call$weights <- NULL } else { .self$model.call$weights <- .self$weights # NEED TO CHECK THIS IS THE NAME FOR ALL MODELS, or add more generic # field containing the name for the weights argument } } if (.self$bootstrap){ .self$buildDataByBootstrap() } .self$model.call[[1]] <- .self$fn .self$model.call$by <- NULL if (is.null(.self$by)) { .self$data <- cbind(1, .self$data) names(.self$data)[1] <- "by" .self$by <- "by" } #cat("zelig.call:\n") #print(.self$zelig.call) #cat("model.call:\n") #print(.self$model.call) .self$data <- tbl_df(.self$data) #.self$zelig.out <- eval(fn2(.self$model.call, data = data)) # shortened test version that bypasses "by" .self$zelig.out <- .self$data %>% group_by_(.self$by) %>% do(z.out = eval(fn2(.self$model.call, quote(as.data.frame(.))))) } ) z$methods( set = function(..., fn = list(numeric = mean, ordered = Median)) { "Setting Explanatory Variable Values" is_uninitializedField(.self$zelig.out) is_zeligei(.self) # Find variable transformations in formula call # coef_names <- names(rm_intercept(unlist(.self$get_coef()))) .self$avg <- function(val) { if (is.numeric(val)) ifelse(is.null(fn$numeric), mean(val), fn$numeric(val)) else if (is.ordered(val)) ifelse(is.null(fn$ordered), Median(val), fn$ordered(val)) else Mode(val) } s <- list(...) # This eliminates warning messages when factor rhs passed to lm() model in reduce() utility function if(.self$category == "multinomial"){ # Perhaps find more robust way to test if dep.var. is factor f2 <- update(.self$formula, as.numeric(.) ~ .) } else { f2 <- .self$formula } f <- update(.self$formula, 1 ~ .) # update <- na.omit(.self$data) %>% # remove missing values # compute on each slice of the dataset defined by "by" if(.self$setforeveryby){ update <- .self$data %>% group_by_(.self$by) %>% do(mm = model.matrix(f, reduce(dataset = "MEANINGLESS ARGUMENT", s, formula = f2, data = ., avg = .self$avg))) # fix in last argument from data=.self$data to data=. (JH) # compute over the entire dataset - currently used for mi and bootstrap. Should be opened up to user. } else { if(.self$bootstrap){ flag <- .self$data$bootstrapIndex == (.self$bootstrap.num + 1) # These are the original observations tempdata <- .self$data[flag,] } else { tempdata <- .self$data # presently this is for mi. And this is then the entire stacked dataset. } allreduce <- reduce(dataset = "MEANINGLESS ARGUMENT", s, formula = f2, data = tempdata, avg = .self$avg) allmm <- model.matrix(f, allreduce) update <- .self$data %>% group_by_(.self$by) %>% do(mm = allmm) } return(update) } ) z$methods( setx = function(..., fn = list(numeric = mean, ordered = Median, other = Mode)) { is_uninitializedField(.self$zelig.out) is_zeligei(.self) .self$bsetx <- TRUE .self$setx.out$x <- .self$set(..., fn = fn) } ) z$methods( setx1 = function(..., fn = list(numeric = mean, ordered = Median, other = Mode)) { .self$bsetx1 <- TRUE .self$setx.out$x1 <- .self$set(...) } ) z$methods( setrange = function(..., fn = list(numeric = mean, ordered = Median, other = Mode)) { is_uninitializedField(.self$zelig.out) .self$bsetrange <- TRUE rng <- list() s <- list(...) m <- expand_grid_setrange(s) .self$range <- m .self$setx.out$range <- list() for (i in 1:nrow(m)) { l <- as.list(as.list(m[i, ])) names(l) <- names(m) .self$setx.out$range[[i]] <- .self$set(l) } } ) z$methods( setrange1 = function(..., fn = list(numeric = mean, ordered = Median, other = Mode)) { .self$bsetrange1 <- TRUE rng <- list() s <- list(...) m <- expand_grid_setrange(s) .self$range1 <- m .self$setx.out$range1 <- list() for (i in 1:nrow(m)) { l <- as.list(as.list(m[i, ])) names(l) <- names(m) .self$setx.out$range1[[i]] <- .self$set(l) } } ) z$methods( param = function(z.out, method = "mvn") { if(identical(method,"mvn")){ return(mvrnorm(.self$num, coef(z.out), vcov(z.out))) } else if(identical(method,"point")){ return(t(as.matrix(coef(z.out)))) } else { stop("param called with method argument of undefined type.") } } ) z$methods( sim = function(num = NULL) { "Generic Method for Computing and Organizing Simulated Quantities of Interest" is_zelig(.self) is_uninitializedField(.self$zelig.out) is_zeligei(.self) ## If num is defined by user, it overrides the value stored in the .self$num field. ## If num is not defined by user, but is also not yet defined in .self$num, then it defaults to 1000. localNum <- num # avoids CRAN warning about deep assignment from num existing separately as argument and field if (length(.self$num) == 0){ if(is.null(localNum)){ localNum <- 1000 } } if(!is.null(localNum)){ .self$num <- localNum } # This was previous version, that assumed sim only called once, or only method to access/write .self$num field: #if (length(.self$num) == 0) # .self$num <- num # Divide simulations among imputed datasets if(.self$mi){ am.m <- length(.self$get_coef()) .self$num <- ceiling(.self$num/am.m) } # If bootstrapped, use distribution of estimated parameters, # otherwise use $param() method for parametric bootstrap. if (.self$bootstrap & ! .self$mi){ .self$num <- 1 .self$simparam <- .self$zelig.out %>% do(simparam = .self$param(.$z.out, method = "point")) } else { .self$simparam <- .self$zelig.out %>% do(simparam = .self$param(.$z.out)) } if (.self$bsetx) .self$simx() if (.self$bsetx1) .self$simx1() if (.self$bsetrange) .self$simrange() if (.self$bsetrange1) .self$simrange1() #if (is.null(.self$sim.out$x) & is.null(.self$sim.out$range)) if (!isTRUE(is_sims_present(.self$sim.out, fail = FALSE))) warning('No simulations drawn, likely due to insufficient inputs.', call. = FALSE) } ) z$methods( simx = function() { d <- zelig_mutate(.self$zelig.out, simparam = .self$simparam$simparam) d <- zelig_mutate(d, mm = .self$setx.out$x$mm) .self$sim.out$x <- d %>% do(qi = .self$qi(.$simparam, .$mm)) %>% do(ev = .$qi$ev, pv = .$qi$pv) } ) z$methods( simx1 = function() { d <- zelig_mutate(.self$zelig.out, simparam = .self$simparam$simparam) d <- zelig_mutate(d, mm = .self$setx.out$x1$mm) .self$sim.out$x1 <- d %>% do(qi = .self$qi(.$simparam, .$mm)) %>% do(ev = .$qi$ev, pv = .$qi$pv) d <- zelig_mutate(.self$sim.out$x1, ev0 = .self$sim.out$x$ev) d <- d %>% do(fd = .$ev - .$ev0) .self$sim.out$x1 <- zelig_mutate(.self$sim.out$x1, fd = d$fd) #JH } ) z$methods( simrange = function() { .self$sim.out$range <- list() for (i in 1:nrow(.self$range)) { d <- zelig_mutate(.self$zelig.out, simparam = .self$simparam$simparam) d <- zelig_mutate(d, mm = .self$setx.out$range[[i]]$mm) .self$sim.out$range[[i]] <- d %>% do(qi = .self$qi(.$simparam, .$mm)) %>% do(ev = .$qi$ev, pv = .$qi$pv) } } ) z$methods( simrange1 = function() { .self$sim.out$range1 <- list() for (i in 1:nrow(.self$range1)) { d <- zelig_mutate(.self$zelig.out, simparam = .self$simparam$simparam) d <- zelig_mutate(d, mm = .self$setx.out$range1[[i]]$mm) .self$sim.out$range1[[i]] <- d %>% do(qi = .self$qi(.$simparam, .$mm)) %>% do(ev = .$qi$ev, pv = .$qi$pv) } } ) z$methods( simx = function() { d <- zelig_mutate(.self$zelig.out, simparam = .self$simparam$simparam) d <- zelig_mutate(d, mm = .self$setx.out$x$mm) .self$sim.out$x <- d %>% do(qi = .self$qi(.$simparam, .$mm)) %>% do(ev = .$qi$ev, pv = .$qi$pv) } ) z$methods( ATT = function(treatment, treated = 1, quietly = TRUE, num = NULL) { "Generic Method for Computing Simulated (Sample) Average Treatment Effects on the Treated" ## Checks on user provided arguments if(!is.character(treatment)){ stop("Argument treatment should be the name of the treatment variable in the dataset.") } if(!(treatment %in% names(.self$data))){ stop(cat("Specified treatment variable", treatment, "is not in the dataset.")) } # Check treatment variable included in model. # Check treatment variable is 0 or 1 (or generalize to dichotomous). # Check argument "treated" is 0 or 1 (or generalize to values of "treatment"). # Check "ev" is available QI. # Check if multiple equation model (which will need method overwrite). ## If num is defined by user, it overrides the value stored in the .self$num field. ## If num is not defined by user, but is also not yet defined in .self$num, then it defaults to 1000. localNum <- num if (length(.self$num) == 0){ if(is.null(localNum)){ localNum <- 1000 } } if(!is.null(localNum)){ if(!identical(localNum,.self$num)){ # .self$num changed, so regenerate simparam .self$num <- localNum .self$simparam <- .self$zelig.out %>% do(simparam = .self$param(.$z.out)) } } ## Extract name of dependent variable, treated units depvar <- as.character(.self$zelig.call[[2]][2]) ## Use dplyr to cycle over all splits of dataset ## NOTE: THIS IS GOING TO USE THE SAME simparam SET FOR EVERY SPLIT .self$sim.out$TE <- .self$data %>% group_by_(.self$by) %>% do(ATT = .self$simATT(simparam = .self$simparam$simparam[[1]], data = . , depvar = depvar, treatment = treatment, treated = treated) ) # z.out = eval(fn2(.self$model.call, quote(as.data.frame(.))))) if(!quietly){ return(.self$sim.out$TE) # The $get_qi() method may generalize, otherwise, write a $getter. } } ) # Has calls to .self, so constructed as method rather than function internal to $ATT() # Function to simulate ATT z$methods( simATT = function(simparam, data, depvar, treatment, treated) { "Simulate an Average Treatment on the Treated" localData <- data # avoids CRAN warning about deep assignment from data existing separately as argument and field flag <- localData[[treatment]]==treated localData[[treatment]] <- 1-treated cf.mm <- model.matrix(.self$formula, localData) # Counterfactual model matrix cf.mm <- cf.mm[flag,] y1 <- localData[flag, depvar] y1.n <- sum(flag) ATT <- matrix(NA, nrow=y1.n, ncol= .self$num) for(i in 1:y1.n){ # Maybe $qi() generally works for all mm? Of all dimensions? If so, loop not needed. ATT[i,] <- as.numeric(y1[i,1]) - .self$qi(simparam=simparam, mm=cf.mm[i, , drop=FALSE])$ev } ATT <- apply(ATT, 2, mean) return(ATT) } ) z$methods( get_names = function() { "Return Zelig object field names" z_names <- names(as.list(.self)) return(z_names) } ) z$methods( show = function(signif.stars = FALSE, subset = NULL, bagging = FALSE) { "Display a Zelig object" is_uninitializedField(.self$zelig.out) .self$signif.stars <- signif.stars .self$signif.stars.default <- getOption("show.signif.stars") options(show.signif.stars = .self$signif.stars) if ("uninitializedField" %in% class(.self$zelig.out)) cat("Next step: Use 'zelig' method") else if (length(.self$setx.out) == 0) { ############################################################################# # Current workaround to display call as $zelig.call rather than $model.call # This is becoming a more complex workaround than revising the summary method # should improve this approach in future: for(jj in 1:length(.self$zelig.out$z.out)){ if("S4" %in% typeof(.self$zelig.out$z.out[[jj]]) ){ slot(.self$zelig.out$z.out[[jj]],"call") <- .self$zelig.call } else { if("call" %in% names(.self$zelig.out$z.out[[jj]])){ .self$zelig.out$z.out[[jj]]$call <- .self$zelig.call } else if ("call" %in% names(attributes(.self$zelig.out$z.out[[1]])) ){ attr(.self$zelig.out$z.out[[1]],"call")<- .self$zelig.call } } } ########################################################################## if((.self$mi || .self$bootstrap) & is.null(subset)){ if (.self$mi) cat("Model: Combined Imputations \n\n") else cat("Model: Combined Bootstraps \n\n") mi_combined <- combine_coef_se(.self, messages = FALSE) printCoefmat(mi_combined, P.values = TRUE, has.Pvalue = TRUE, digits = max(2, getOption("digits") - 4)) cat("\n") if (.self$mi) cat("For results from individual imputed datasets, use summary(x, subset = i:j)\n") else cat("For results from individual bootstrapped datasets, use summary(x, subset = i:j)\n") } else if ((.self$mi) & !is.null(subset)) { for(i in subset){ cat("Imputed Dataset ", i, sep = "") print(base::summary(.self$zelig.out$z.out[[i]])) } } else if ((.self$bootstrap) & !is.null(subset)) { for(i in subset){ cat("Bootstrapped Dataset ", i, sep = "") print(base::summary(.self$zelig.out$z.out[[i]])) } } else { summ <- .self$zelig.out %>% do(summ = {cat("Model: \n") if (length(.self$by) == 1) { if (.self$by == "by") { cat() } else { print(.[.self$by]) } } else { print(.[.self$by]) } if("S4" %in% typeof(.$z.out)){ # Need to change summary method here for some classes print(summary(.$z.out)) } else { print(base::summary(.$z.out)) } }) } if("gim.criteria" %in% names(.self$test.statistics)){ if(.self$test.statistics$gim.criteria){ # cat("According to the GIM-rule-of-thumb, your model probably has some type of specification error.\n", # "We suggest you run model diagnostics and seek to fix the problem.\n", # "You may also wish to run the full GIM test (which takes more time) to be sure.\n", # "See http://.... for more information.\n \n") cat("Statistical Warning: The GIM test suggests this model is misspecified\n", "(based on comparisons between classical and robust SE's; see http://j.mp/GIMtest).\n", "We suggest you run diagnostics to ascertain the cause, respecify the model\n", "and run it again.\n\n") } } if (!is_zeligei(.self, fail = FALSE)) cat("Next step: Use 'setx' method\n") } else if (length(.self$setx.out) != 0 & length(.self$sim.out) == 0) { niceprint <- function(obj, name){ if(!is.null(obj[[1]])){ cat(name, ":\n", sep = "") if (is.data.frame(obj)) screenoutput <- obj else screenoutput <- obj[[1]] attr(screenoutput,"assign") <- NULL print(screenoutput, digits = max(2, getOption("digits") - 4)) } } range_out <- function(x, which_range = 'range') { if (!is.null(x$setx.out[[which_range]])) { xvarnames <- names(as.data.frame(x$setx.out[[which_range]][[1]]$mm[[1]])) d <- length(x$setx.out[[which_range]]) num_cols <- length(x$setx.out[[which_range]][[1]]$mm[[1]] ) xmatrix <- matrix(NA, nrow = d, ncol = num_cols) for (i in 1:d){ xmatrix[i,] <- matrix(x$setx.out[[which_range]][[i]]$mm[[1]], ncol = num_cols) } xdf <- data.frame(xmatrix) names(xdf) <- xvarnames return(xdf) } } niceprint(obj=.self$setx.out$x$mm, name="setx") niceprint(obj=.self$setx.out$x1$mm, name="setx1") niceprint(obj = range_out(.self), name = "range") niceprint(obj = range_out(.self, 'range1'), name = "range1") # niceprint(obj=.self$setx.out$range[[1]]$mm, name="range") # niceprint(obj=.self$setx.out$range1[[1]]$mm, name="range1") cat("\nNext step: Use 'sim' method\n") } else { # sim.out pstat <- function(s.out, what = "sim x") { simu <- s.out %>% do(simu = {cat("\n", what, ":\n") cat(" -----\n") cat("ev\n") print(stat(.$ev, .self$num)) cat("pv\n") print(stat(.$pv, .self$num)) if (!is.null(.$fd)) { cat("fd\n") print(stat(.$fd, .self$num))} } ) } pstat(.self$sim.out$x) pstat(.self$sim.out$x1, "sim x1") if (!is.null(.self$setx.out$range)) { for (i in seq(.self$sim.out$range)) { cat("\n") print(.self$range[i, ]) cat("\n") pstat(.self$sim.out$range[[i]], "sim range") cat("\n") } } if (!is.null(.self$setx.out$range1)) { for (i in seq(.self$sim.out$range1)) { cat("\n") print(.self$range1[i, ]) cat("\n") pstat(.self$sim.out$range1[[i]], "sim range") cat("\n") } } } options(show.signif.stars = .self$signif.stars.default) } ) z$methods( graph = function(...) { "Plot the quantities of interest" is_uninitializedField(.self$zelig.out) is_sims_present(.self$sim.out) if (is_simsx(.self$sim.out, fail = FALSE)) qi.plot(.self, ...) if (is_simsrange(.self$sim.out, fail = FALSE)) ci.plot(.self, ...) } ) z$methods( summarize = function(...) { "Display a Zelig object" show(...) } ) z$methods( summarise = function(...) { "Display a Zelig object" show(...) } ) z$methods( help = function() { "Open the model vignette from http://zeligproject.org/" # vignette(class(.self)[1]) browseURL(.self$vignette.url) } ) z$methods( from_zelig_model = function() { "Extract the original fitted model object from a zelig call. Note only works for models using directly wrapped functions." is_uninitializedField(.self$zelig.out) result <- try(.self$zelig.out$z.out, silent = TRUE) if ("try-error" %in% class(result)) { stop("from_zelig_model not available for this fitted model.") } else { if (length(result) == 1) { result <- result[[1]] result <- strip_package_name(result) } else if (length(result) > 1) { if (.self$mi) { message("Returning fitted model objects for each imputed data set in a list.") } else if (.self$bootstrap) { message("Returning fitted model objects for each bootstrapped data set in a list.") } else { message("Returning fitted model objects for each subset of the data created from the 'by' argument, in a list.") } result <- lapply(result, strip_package_name) } return(result) } }) #' Method for extracting estimated coefficients from Zelig objects #' @param nonlist logical whethe to \code{unlist} the result if there are only #' one set of coefficients. Enables backwards compatibility. z$methods( get_coef = function(nonlist = FALSE) { "Get estimated model coefficients" is_uninitializedField(.self$zelig.out) result <- try(lapply(.self$zelig.out$z.out, coef), silent = TRUE) if ("try-error" %in% class(result)) stop("'coef' method' not implemented for model '", .self$name, "'") else { if (nonlist & length(result) == 1) result <- unlist(result) return(result) } } ) #' Method for extracting estimated variance covariance matrix from Zelig objects #' @param nonlist logical whethe to \code{unlist} the result if there are only #' one set of coefficients. Enables backwards compatibility. z$methods( get_vcov = function() { "Get estimated model variance-covariance matrix" is_uninitializedField(.self$zelig.out) if (length(.self$robust.se) == 0) .self$robust.se <- FALSE if (!.self$robust.se) { if ("geeglm" %in% class(.self$zelig.out$z.out[[1]])) result <- lapply(.self$zelig.out$z.out, vcov_gee) else if ("rq" %in% class(.self$zelig.out$z.out[[1]])) result <- lapply(.self$zelig.out$z.out, vcov_rq) else result <- lapply(.self$zelig.out$z.out, vcov) } else if (.self$robust.se) result <- lapply(.self$zelig.out$z.out, vcovHC, "HC1") if ("try-error" %in% class(result)) stop("'vcov' method' not implemented for model '", .self$name, "'") else return(result) } ) #' Method for extracting p-values from Zelig objects #' @param object an object of class Zelig z$methods( get_pvalue = function() { "Get estimated model p-values" is_uninitializedField(.self$zelig.out) result <- try(lapply(.self$zelig.out$z.out, p_pull), silent = TRUE) if ("try-error" %in% class(result)) stop("'get_pvalue' method' not implemented for model '", .self$name, "'") else return(result) } ) #' Method for extracting standard errors from Zelig objects #' @param object an object of class Zelig z$methods( get_se = function() { "Get estimated model standard errors" is_uninitializedField(.self$zelig.out) result <- try(lapply(.self$zelig.out$z.out, se_pull), silent = TRUE) if ("try-error" %in% class(result)) stop("'get_se' method' not implemented for model '", .self$name, "'") else return(result) } ) z$methods( get_residuals = function(...) { "Get estimated model residuals" is_uninitializedField(.self$zelig.out) result <- try(lapply(.self$zelig.out$z.out, residuals, ...), silent = TRUE) if ("try-error" %in% class(result)) stop("'residuals' method' not implemented for model '", .self$name, "'") else return(result) } ) z$methods( get_df_residual = function() { "Get residual degrees-of-freedom" is_uninitializedField(.self$zelig.out) result <- try(lapply(.self$zelig.out$z.out, df.residual), silent = TRUE) if ("try-error" %in% class(result)) stop("'df.residual' method' not implemented for model '", .self$name, "'") else return(result) } ) z$methods( get_fitted = function(...) { "Get estimated fitted values" is_uninitializedField(.self$zelig.out) result <- lapply(.self$zelig.out$z.out, fitted, ...) if ("try-error" %in% class(result)) stop("'predict' method' not implemented for model '", .self$name, "'") else return(result) } ) z$methods( get_predict = function(...) { "Get predicted values" is_uninitializedField(.self$zelig.out) result <- lapply(.self$zelig.out$z.out, predict, ...) if ("try-error" %in% class(result)) stop("'predict' method' not implemented for model '", .self$name, "'") else return(result) } ) z$methods( get_qi = function(qi = "ev", xvalue = "x", subset = NULL) { "Get quantities of interest" is_sims_present(.self$sim.out) possiblexvalues <- names(.self$sim.out) if(!(xvalue %in% possiblexvalues)){ stop(paste("xvalue must be ", paste(possiblexvalues, collapse = " or ") , ".", sep = "")) } possibleqivalues <- c(names(.self$sim.out[[xvalue]]), names(.self$sim.out[[xvalue]][[1]])) if(!(qi %in% possibleqivalues)){ stop(paste("qi must be ", paste(possibleqivalues, collapse=" or ") , ".", sep = "")) } if(.self$mi){ if(is.null(subset)){ am.m <- length(.self$get_coef()) subset <- 1:am.m } tempqi <- do.call(rbind, .self$sim.out[[xvalue]][[qi]][subset]) } else if(.self$bootstrap){ if(is.null(subset)){ subset <- 1:.self$bootstrap.num } tempqi <- do.call(rbind, .self$sim.out[[xvalue]][[qi]][subset]) } else if(xvalue %in% c("range", "range1")) { tempqi <- do.call(rbind, .self$sim.out[[xvalue]])[[qi]] } else { tempqi<- .self$sim.out[[xvalue]][[qi]][[1]] # also works: tempqi <- do.call(rbind, .self$sim.out[[xvalue]][[qi]]) } return(tempqi) } ) z$methods( get_model_data = function() { "Get data used to estimate the model" is_uninitializedField(.self$zelig.out) model_data <- .self$originaldata return(model_data) } ) z$methods( toJSON = function() { "Convert Zelig object to JSON format" if (!is.list(.self$json)) .self$json <- list() .self$json$"name" <- .self$name .self$json$"description" <- .self$description .self$json$"outcome" <- list(modelingType = .self$outcome) .self$json$"explanatory" <- list(modelingType = .self$explanatory) .self$json$"vignette.url" <- .self$vignette.url .self$json$"wrapper" <- .self$wrapper tree <- c(class(.self)[1], .self$.refClassDef@refSuperClasses) .self$json$tree <- head(tree, match("Zelig", tree) - 1) .self$ljson <- .self$json .self$json <- jsonlite::toJSON(json, pretty = TRUE) return(.self$json) } ) # empty default data generating process to avoid error if not created as model specific method z$methods( mcfun = function(x, ...){ return( rep(1,length(x)) ) } ) # Monte Carlo unit test z$methods( mcunit = function(nsim = 500, minx = -2, maxx = 2, b0 = 0, b1 = 1, alpha = 1, ci = 0.95, plot = TRUE, ...){ passes <- TRUE n.short <- 10 # number of p alpha.ci <- 1 - ci # alpha values for ci bounds, not speed parameter if (.self$name %in% "ivreg") { z.sim <- runif(n = nsim, min = minx, max = maxx) z.seq <- seq(from = minx, to = maxx, length = nsim) h.sim <- runif(n = nsim, min = minx, max = maxx) h.seq <- seq(from = minx, to = maxx, length = nsim) } else { x.sim <- runif(n = nsim, min = minx, max = maxx) x.seq <- seq(from = minx, to = maxx, length = nsim) } if (.self$name %in% "ivreg") { data.hat <- .self$mcfun(z = z.seq, h = h.seq, b0 = b0, b1 = b1, alpha = alpha, ..., sim = FALSE) x.seq <- unlist(data.hat[2]) data.hat <- unlist(data.hat[1]) } else data.hat <- .self$mcfun(x = x.seq, b0 = b0, b1 = b1, alpha = alpha, ..., sim = FALSE) if(!is.data.frame(data.hat)){ if (.self$name %in% "ivreg") { data.hat <- data.frame(x.seq = x.seq, z.seq = z.seq, h.seq = h.seq, y.hat = data.hat) } else data.hat <- data.frame(x.seq = x.seq, y.hat = data.hat) } if (.self$name %in% "ivreg") { data.sim <- .self$mcfun(z = z.sim, h = h.sim, b0 = b0, b1 = b1, alpha = alpha, ..., sim = TRUE) x.sim <- unlist(data.hat[2]) data.sim <- unlist(data.hat[1]) } else data.sim <- .self$mcfun(x = x.sim, b0 = b0, b1 = b1, alpha = alpha, ..., sim = TRUE) if(!is.data.frame(data.sim)){ if (.self$name %in% "ivreg") { data.sim <- data.frame(x.sim = x.sim, z.sim = z.sim, h.sim = h.sim, y.sim = data.sim) } else data.sim <- data.frame(x.sim = x.sim, y.sim = data.sim) } ## Estimate Zelig model and create numerical bounds on expected values # This should be the solution, but requires fixing R scoping issue: #.self$zelig(y.sim~x.sim, data=data.sim) # formula will be overwritten in zelig() if .self$mcformula has been set ## Instead, remove formula field and set by hard code .self$mcformula <- NULL if(.self$name %in% c("exp", "weibull", "lognorm")){ .self$zelig(Surv(y.sim, event) ~ x.sim, data = data.sim) } else if (.self$name %in% c("relogit")) { tau <- sum(data.sim$y.sim)/nsim .self$zelig(y.sim ~ x.sim, tau = tau, data = data.sim) } else if (.self$name %in% "ivreg") { .self$zelig(y.sim ~ x.sim | z.sim + h.sim, data = data.sim) } else { .self$zelig(y.sim ~ x.sim, data = data.sim) } x.short.seq <- seq(from = minx, to = maxx, length = n.short) .self$setrange(x.sim = x.short.seq) .self$sim() if (.self$name %in% c("relogit")) { data.short.hat <- .self$mcfun(x = x.short.seq, b0 = b0, b1 = b1, alpha = alpha, keepall = TRUE, ..., sim = FALSE) } else { data.short.hat <- .self$mcfun(x = x.short.seq, b0 = b0, b1 = b1, alpha = alpha, ..., sim = FALSE) } if(!is.data.frame(data.short.hat)){ data.short.hat <- data.frame(x.seq = x.short.seq, y.hat = data.short.hat) } history.ev <- history.pv <- matrix(NA, nrow = n.short, ncol = 2) for(i in 1:n.short){ xtemp <- x.short.seq[i] .self$setx(x.sim = xtemp) .self$sim() #temp<-sort( .self$sim.out$x$ev[[1]] ) temp <- .self$sim.out$range[[i]]$ev[[1]] # This is for ev's that are a probability distribution across outcomes, like ordered logit/probit if(ncol(temp) > 1){ temp <- temp %*% as.numeric(sort(unique(data.sim$y.sim))) #as.numeric(colnames(temp)) } temp <- sort(temp) # calculate bounds of expected values history.ev[i,1] <- temp[max(round(length(temp)*(alpha.ci/2)),1) ] # Lower ci bound history.ev[i,2] <- temp[round(length(temp)*(1 - (alpha.ci/2)))] # Upper ci bound #temp<-sort( .self$sim.out$x$pv[[1]] ) temp <- sort( .self$sim.out$range[[i]]$pv[[1]] ) # check that ci contains true value passes <- passes & (min(history.ev[i,]) <= data.short.hat$y.hat[i] ) & (max(history.ev[i,]) >= data.short.hat$y.hat[i] ) #calculate bounds of predicted values history.pv[i,1] <- temp[max(round(length(temp)*(alpha.ci/2)),1) ] # Lower ci bound history.pv[i,2] <- temp[round(length(temp)*(1 - (alpha.ci/2)))] # Upper ci bound } ## Plot Monte Carlo Data if(plot){ all.main = substitute( paste(modelname, "(", beta[0], "=", b0, ", ", beta[1], "=", b1,",", alpha, "=", a0, ")"), list(modelname = .self$name, b0 = b0, b1=b1, a0 = alpha) ) all.ylim<-c( min(c(data.sim$y.sim, data.hat$y.hat)) , max(c(data.sim$y.sim, data.hat$y.hat)) ) plot(data.sim$x.sim, data.sim$y.sim, main=all.main, ylim=all.ylim, xlab="x", ylab="y", col="steelblue") par(new=TRUE) plot(data.hat$x.seq, data.hat$y.hat, main="", ylim=all.ylim, xlab="", ylab="", xaxt="n", yaxt="n", type="l", col="green", lwd=2) for(i in 1:n.short){ lines(x=rep(x.short.seq[i],2), y=c(history.pv[i,1],history.pv[i,2]), col="lightpink", lwd=1.6) lines(x=rep(x.short.seq[i],2), y=c(history.ev[i,1],history.ev[i,2]), col="firebrick", lwd=1.6) } } return(passes) } ) # rebuild dataset by duplicating observations by (rounded) weights z$methods( buildDataByWeights = function() { if(!.self$acceptweights){ idata <- .self$data iweights <- .self$weights ceilweights <- ceiling(iweights) n.obs <- nrow(idata) windex <- rep(1:n.obs, ceilweights) idata <- idata[windex,] .self$data <- idata if(any(iweights != ceiling(iweights))){ cat("Noninteger weights were set, but the model in Zelig is only able to use integer valued weights.\n", "Each weight has been rounded up to the nearest integer.\n\n") } } } ) # rebuild dataset by bootstrapping using weights as probabilities z$methods( buildDataByWeights2 = function() { if(!.self$acceptweights){ iweights <- .self$weights if(any(iweights != ceiling(iweights))){ cat("Noninteger weights were set, but the model in Zelig is only able to use integer valued weights.\n", "A bootstrapped version of the dataset was constructed using the weights as sample probabilities.\n\n") idata <- .self$data n.obs <- nrow(idata) n.w <- sum(iweights) iweights <- iweights/n.w windex <- sample(x=1:n.obs, size=n.w, replace=TRUE, prob=iweights) # Should size be n.w or n.obs? Relatedly, n.w might not be integer. idata <- idata[windex,] .self$data <- idata }else{ .self$buildDataByWeights() # If all weights are integers, just use duplication to rebuild dataset. } } } ) # rebuild dataset by bootstrapping using weights as probabilities # might possibly combine this method with $buildDataByWeights2() z$methods( buildDataByBootstrap = function() { idata <- .self$data n.boot <- .self$bootstrap.num n.obs <- nrow(idata) if(!is.null(.self$weights)){ iweights <- .self$weights n.w <- sum(iweights) iweights <- iweights/n.w } else { iweights <- NULL } windex <- bootstrapIndex <- NULL for(i in 1:n.boot) { windex <- c(windex, sample(x=1:n.obs, size=n.obs, replace = TRUE, prob = iweights)) bootstrapIndex <- c(bootstrapIndex, rep(i,n.obs)) } # Last dataset is original data idata <- rbind(idata[windex,], idata) bootstrapIndex <- c(bootstrapIndex, rep(n.boot+1,n.obs)) idata$bootstrapIndex <- bootstrapIndex .self$data <- idata .self$by <- c("bootstrapIndex", .self$by) } ) z$methods( feedback = function() { "Send feedback to the Zelig team" if (!.self$with.feedback) return("ZeligFeedback package not installed") # If ZeligFeedback is installed print("ZeligFeedback package installed") print(ZeligFeedback::feedback(.self)) } ) # z$methods( # finalize = function() { # if (!.self$with.feedback) # return("ZeligFeedback package not installed") # # If ZeligFeedback is installed # print("Thanks for providing Zelig usage information") # # print(ZeligFeedback::feedback(.self)) # write(paste("feedback", ZeligFeedback::feedback(.self)), # file = paste0("test-zelig-finalize-", date(), ".txt")) # } # ) #' Summary method for Zelig objects #' @param object An Object of Class Zelig #' @param ... Additional parameters to be passed to summary setMethod("summary", "Zelig", function(object, ...) { object$summarize(...) } ) #' Plot method for Zelig objects #' @param x An Object of Class Zelig #' @param y unused #' @param ... Additional parameters to be passed to plot setMethod("plot", "Zelig", function(x, ...) { x$graph(...) } ) #' Names method for Zelig objects #' @param x An Object of Class Zelig setMethod("names", "Zelig", function(x) { x$get_names() } ) setGeneric("vcov") #' Variance-covariance method for Zelig objects #' @param object An Object of Class Zelig setMethod("vcov", "Zelig", function(object) { object$get_vcov() } ) #' Method for extracting estimated coefficients from Zelig objects #' @param object An Object of Class Zelig setMethod("coefficients", "Zelig", function(object) { object$get_coef(nonlist = TRUE) } ) setGeneric("coef") #' Method for extracting estimated coefficients from Zelig objects #' @param object An Object of Class Zelig setMethod("coef", "Zelig", function(object) { object$get_coef(nonlist = TRUE) } ) #' Method for extracting residuals from Zelig objects #' @param object An Object of Class Zelig setMethod("residuals", "Zelig", function(object) { object$get_residuals() } ) #' Method for extracting residual degrees-of-freedom from Zelig objects #' @param object An Object of Class Zelig setMethod("df.residual", "Zelig", function(object) { object$get_df_residual() } ) setGeneric("fitted") #' Method for extracting estimated fitted values from Zelig objects #' @param object An Object of Class Zelig #' @param ... Additional parameters to be passed to fitted setMethod("fitted", "Zelig", function(object, ...) { object$get_fitted(...) } ) setGeneric("predict") #' Method for getting predicted values from Zelig objects #' @param object An Object of Class Zelig #' @param ... Additional parameters to be passed to predict setMethod("predict", "Zelig", function(object, ...) { object$get_predict(...) } ) Zelig/R/model-lognorm.R0000755000176000001440000001660013245253056014466 0ustar ripleyusers#' Log-Normal Regression for Duration Dependent Variables #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' @param robust defaults to FALSE. If TRUE, zelig() computes robust standard errors based #' on sandwich estimators (see and ) based on the options in cluster. #' @param cluster if robust = TRUE, you may select a variable to define groups of correlated #' observations. Let x3 be a variable that consists of either discrete numeric values, character #' strings, or factors that define strata. Then # 'z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", model = "exp", data = mydata) #' means that the observations can be correlated within the strata defined by the variable x3, #' and that robust standard errors should be calculated according to those clusters. #' If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls #' into its own cluster. #' #' #' @details #' Additional parameters avaialable to many models include: #' \itemize{ #' \item weights: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item bootstrap: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #'@examples #' library(Zelig) #' data(coalition) #' z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model ="lognorm", data = coalition) #' summary(z.out) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_lognorm.html} #' @import methods #' @export Zelig-lognorm #' @exportClass Zelig-lognorm #' #' @include model-zelig.R zlognorm <- setRefClass("Zelig-lognorm", contains ="Zelig", fields = list(linkinv = "function")) zlognorm$methods( initialize = function() { callSuper() .self$name <- "lognorm" .self$authors <- "Matthew Owen, Olivia Lau, Kosuke Imai, Gary King" .self$packageauthors <- "Terry M Therneau, and Thomas Lumley" .self$year <- 2007 .self$description <- "Log-Normal Regression for Duration Dependent Variables" .self$fn <- quote(survival::survreg) .self$linkinv <- survreg.distributions[["lognormal"]]$itrans # JSON .self$outcome <- "discrete" .self$wrapper <- "lognorm" .self$acceptweights <- TRUE } ) zlognorm$methods( zelig = function(formula, ..., robust = FALSE, cluster = NULL, data, weights = NULL, by = NULL, bootstrap = FALSE) { localFormula <- formula # avoids CRAN warning about deep assignment from formula existing separately as argument and field .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call if (!(is.null(cluster) || robust)) stop("If cluster is specified, then `robust` must be TRUE") # Add cluster term if (robust || !is.null(cluster)) localFormula <- cluster.formula(localFormula, cluster) .self$model.call$dist <- "lognormal" .self$model.call$model <- FALSE callSuper(formula = localFormula, data = data, ..., robust = robust, cluster = cluster, weights = weights, by = by, bootstrap = bootstrap) if(!robust){ fn2 <- function(fc, data) { fc$data <- data return(fc) } robust.model.call <- .self$model.call robust.model.call$robust <- TRUE robust.zelig.out <- .self$data %>% group_by_(.self$by) %>% do(z.out = eval(fn2(robust.model.call, quote(as.data.frame(.))))$var ) .self$test.statistics<- list(robust.se = robust.zelig.out$z.out) } } ) zlognorm$methods( param = function(z.out, method="mvn") { if(identical(method,"mvn")){ coeff <- coef(z.out) mu <- c(coeff, log(z.out$scale)) cov <- vcov(z.out) simulations <- mvrnorm(.self$num, mu = mu, Sigma = cov) simparam.local <- as.matrix(simulations[, 1:length(coeff)]) simalpha <- as.matrix(simulations[, -(1:length(coeff))]) simparam.local <- list(simparam = simparam.local, simalpha = simalpha) return(simparam.local) } else if(identical(method,"point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha = log(z.out$scale) )) } } ) zlognorm$methods( qi = function(simparam, mm) { alpha <- simparam$simalpha beta <- simparam$simparam coeff <- simparam$simparam eta <- coeff %*% t(mm) theta <- as.matrix(apply(eta, 2, linkinv)) ev <- exp(log(theta) + 0.5 * (exp(alpha))^2) pv <- as.matrix(rlnorm(n=length(ev), meanlog=log(theta), sdlog=exp(alpha)), nrow=length(ev), ncol=1) dimnames(ev) <- dimnames(theta) return(list(ev = ev, pv = pv)) } ) zlognorm$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ .self$mcformula <- as.Formula("Surv(y.sim, event) ~ x.sim") mu <- b0 + b1 * x event <- rep(1, length(x)) y.sim <- rlnorm(n=length(x), meanlog=mu, sdlog=alpha) y.hat <- exp(mu + 0.5*alpha^2) if(sim){ mydata <- data.frame(y.sim=y.sim, event=event, x.sim=x) return(mydata) }else{ mydata <- data.frame(y.hat=y.hat, event=event, x.seq=x) return(mydata) } } ) Zelig/R/model-mlogit-bayes.R0000644000176000001440000001552113245253056015403 0ustar ripleyusers#' Bayesian Multinomial Logistic Regression #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' @examples #' data(mexico) #' z.out <- zelig(vote88 ~ pristr + othcok + othsocok,model = "mlogit.bayes", #' data = mexico,verbose = FALSE) #' #' @details #' zelig() accepts the following arguments for mlogit.bayes: #' \itemize{ #' \item \code{baseline}: either a character string or numeric value (equal to #' one of the observed values in the dependent variable) specifying a baseline category. #' The default value is NA which sets the baseline to the first alphabetical or #' numerical unique value of the dependent variable. #' } #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). #' \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). #' \item \code{mcmc.method}: either "MH" or "slice", specifying whether to use Metropolis Algorithm #' or slice sampler. The default value is MH. #' \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the Markov #' chain is kept. The value of mcmc must be divisible by this value. The default value is 1. #' \item \code{tune}: tuning parameter for the Metropolis-Hasting step, either a scalar or a numeric #' vector (for kk coefficients, enter a kk vector). The tuning parameter should be set such #' that the acceptance rate is satisfactory (between 0.2 and 0.5). The default value is 1.1. #' \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is #' printed to the screen. #' \item \code{seed}: seed for the random number generator. The default is \code{NA} which corresponds #' to a random seed of 12345. #' \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector with #' length equal to the number of estimated coefficients. The default is \code{NA}, such #' that the maximum likelihood estimates are used as the starting values. #' } #' Use the following parameters to specify the model's priors: #' \itemize{ #' \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar. #' If a scalar value, that value will be the prior mean for all the coefficients. #' The default is 0. #' \item \code{B0}: prior precision parameter for the coefficients, either a square #' matrix (with the dimensions equal to the number of the coefficients) or a scalar. #' If a scalar value, that value times an identity matrix will be the prior precision #' parameter. The default is 0, which leads to an improper prior. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_mlogitbayes.html} #' @import methods #' @export Zelig-mlogit-bayes #' @exportClass Zelig-mlogit-bayes #' #' @include model-zelig.R #' @include model-bayes.R zmlogitbayes <- setRefClass("Zelig-mlogit-bayes", contains = c("Zelig-bayes")) zmlogitbayes$methods( initialize = function() { callSuper() .self$name <- "mlogit-bayes" .self$year <- 2013 .self$category <- "discrete" .self$authors <- "Ben Goodrich, Ying Lu" .self$description = "Bayesian Multinomial Logistic Regression for Dependent Variables with Unordered Categorical Values" .self$fn <- quote(MCMCpack::MCMCmnl) # JSON from parent .self$wrapper <- "mlogit.bayes" } ) zmlogitbayes$methods( qi = function(simparam, mm) { resp <- model.response(model.frame(.self$formula, data = .self$data)) level <- length(table(resp)) p <- dim(model.matrix(eval(.self$formula), data = .self$data))[2] coef <- simparam eta <- array(NA, c(nrow(coef), level, nrow(mm))) eta[, 1, ] <- matrix(0, nrow(coef), nrow(mm)) for (j in 2:level) { ind <- (1:p) * (level - 1) - (level - j) eta[, j, ]<- coef[, ind] %*% t(mm) } eta <- exp(eta) ev <- array(NA, c(nrow(coef), level, nrow(mm))) pv <- matrix(NA, nrow(coef), nrow(mm)) colnames(ev) <- rep(NA, level) for (k in 1:nrow(mm)) { for (j in 1:level) ev[, j, k] <- eta[, j, k] / rowSums(eta[, , k]) } for (j in 1:level) { colnames(ev)[j] <- paste("P(Y=", j, ")", sep="") } for (k in 1:nrow(mm)) { probs <- as.matrix(ev[, , k]) temp <- apply(probs, 1, FUN = rmultinom, n = 1, size = 1) temp <- as.matrix(t(temp) %*% (1:nrow(temp))) pv <- apply(temp, 2, as.character) pv <- as.factor(pv) } ev <- ev[, , 1] return(list(ev = ev, pv = pv)) } ) Zelig/R/model-normal-survey.R0000755000176000001440000001245213245253056015635 0ustar ripleyusers#' Normal Regression for Continuous Dependent Variables with Survey Weights #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y \~\, x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' @examples #' library(Zelig) #' data(api, package = "survey") #' z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey",eights = ~pw, data = apistrat) #' summary(z.out1) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_normalsurvey.html} #' @import methods #' @export Zelig-normal #' @exportClass Zelig-normal #' #' @include model-zelig.R #' @include model-survey.R #' @include model-normal.R znormalsurvey <- setRefClass("Zelig-normal-survey", contains = c("Zelig-survey"), fields = list(family = "character", link = "character", linkinv = "function")) #, "Zelig-normal")) znormalsurvey$methods( initialize = function() { callSuper() .self$name <- "normal-survey" .self$family <- "gaussian" .self$link <- "identity" .self$linkinv <- eval(call(.self$family, .self$link))$linkinv .self$category <- "continuous" .self$description <- "Normal Regression for Continuous Dependent Variables with Survey Weights" .self$outcome <- "continuous" # JSON .self$wrapper <- "normal.survey" } ) znormalsurvey$methods( param = function(z.out, method="mvn") { degrees.freedom <- z.out$df.residual sig2 <- base::summary(z.out)$dispersion # not to call class summary method simalpha <- sqrt(degrees.freedom * sig2 / rchisq(.self$num, degrees.freedom)) if(identical(method,"mvn")){ simparam.local <- mvrnorm(n = .self$num, mu = coef(z.out), Sigma = vcov(z.out)) simparam.local <- list(simparam = simparam.local, simalpha = simalpha) return(simparam.local) } else if(identical(method,"point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha = simalpha)) } } ) znormalsurvey$methods( qi = function(simparam, mm) { theta <- matrix(simparam$simparam %*% t(mm), nrow = nrow(simparam$simparam)) ev <- theta pv <- matrix(NA, nrow = nrow(theta), ncol = ncol(theta)) for (j in 1:nrow(ev)) pv[j, ] <- rnorm(ncol(ev), mean = ev[j, ], sd = simparam$simalpha[j]) return(list(ev = ev, pv = pv)) } ) znormalsurvey$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ y <- b0 + b1*x + sim * rnorm(n=length(x), sd=alpha) return(y) } ) Zelig/R/model-logit-survey.R0000755000176000001440000001230413245253056015457 0ustar ripleyusers#' Logit Regression with Survey Weights #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item weights: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item bootstrap: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #'@param below (defaults to 0) The point at which the dependent variable is censored from below. If any values in the dependent variable are observed to be less than the censoring point, it is assumed that that particular observation is censored from below at the observed value. (See for a Bayesian implementation that supports both left and right censoring.) #'@param robust defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators (see and ) and the options selected in cluster. #'@param if robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then #' z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", model = "tobit", data = mydata) #' means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster. #' #'@examples #' #' data(api, package = "survey") #' apistrat$yr.rnd.numeric <- as.numeric(apistrat$yr.rnd == "Yes") #' z.out1 <- zelig(yr.rnd.numeric ~ meals + mobility, model = "logit.survey", #' weights = apistrat$pw, data = apistrat) #' #' summary(z.out1) #' x.low <- setx(z.out1, meals= quantile(apistrat$meals, 0.2)) #' x.high <- setx(z.out1, meals= quantile(apistrat$meals, 0.8)) #' s.out1 <- sim(z.out1, x = x.low, x1 = x.high) #' summary(s.out1) #' plot(s.out1) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_logitsurvey.html} #' @import methods #' @export Zelig-logit-survey #' @exportClass Zelig-logit-survey #' #' @include model-zelig.R #' @include model-binchoice-survey.R zlogitsurvey <- setRefClass("Zelig-logit-survey", contains = c("Zelig-binchoice-survey")) zlogitsurvey$methods( initialize = function() { callSuper() .self$name <- "logit-survey" .self$link <- "logit" .self$description <- "Logistic Regression with Survey Weights" .self$wrapper <- "logit.survey" } ) zlogitsurvey$methods( mcfun = function(x, b0=0, b1=1, ..., sim=TRUE){ mu <- 1/(1 + exp(-b0 - b1 * x)) if(sim){ y <- rbinom(n=length(x), size=1, prob=mu) return(y) }else{ return(mu) } } ) Zelig/R/model-weibull.R0000644000176000001440000001717313245253056014457 0ustar ripleyusers#' Weibull Regression for Duration Dependent Variables #' #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' In addition to the standard inputs, zelig() takes the following #' additional options for weibull regression: #' \itemize{ #' \item \code{robust}: defaults to FALSE. If TRUE, zelig() computes #' robust standard errors based on sandwich estimators based on the options in cluster. #' \item \code{cluste}r: if \code{robust = TRUE}, you may select a variable #' to define groups of correlated observations. Let x3 be a variable #' that consists of either discrete numeric values, character strings, #' or factors that define strata. Then #' \code{z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", #' model = "exp", data = mydata)} #' means that the observations can be correlated within the strata defined #' by the variable x3, and that robust standard errors should be calculated according to #' those clusters. If robust=TRUErobust=TRUE but cluster is not specified, zelig() assumes #' that each observation falls into its own cluster. #' } #' #' Additional parameters avaialable to this model include: #' \itemize{ #' \item weights: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item bootstrap: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' @examples #' data(coalition) #' z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2,model = "weibull", data = coalition) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_weibull.html} #' @import methods #' @export Zelig-tobit-bayes #' @exportClass Zelig-tobit-bayes #' #' @include model-zelig.R zweibull <- setRefClass("Zelig-weibull", contains = "Zelig", fields = list(simalpha = "list", linkinv = "function", lambda = "ANY")) zweibull$methods( initialize = function() { callSuper() .self$name <- "weibull" .self$authors <- "Olivia Lau, Kosuke Imai, Gary King" .self$packageauthors <- "Terry M Therneau, and Thomas Lumley" .self$year <- 2007 .self$description <- "Weibull Regression for Duration Dependent Variables" .self$fn <- quote(survival::survreg) .self$linkinv <- survreg.distributions[["weibull"]]$itrans # JSON .self$outcome <- "bounded" .self$wrapper <- "weibull" .self$acceptweights <- TRUE } ) zweibull$methods( zelig = function(formula, ..., robust = FALSE, cluster = NULL, data, weights = NULL, by = NULL, bootstrap = FALSE) { localFormula <- formula # avoids CRAN warning about deep assignment from formula existing separately as argument and field .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call if (!(is.null(cluster) || robust)) stop("If cluster is specified, then `robust` must be TRUE") # Add cluster term if (robust || !is.null(cluster)) localFormula <- cluster.formula(localFormula, cluster) .self$model.call$dist <- "weibull" .self$model.call$model <- FALSE callSuper(formula = localFormula, data = data, ..., robust = robust, cluster = cluster, weights = weights, by = by, bootstrap = bootstrap) if(!robust){ fn2 <- function(fc, data) { fc$data <- data return(fc) } robust.model.call <- .self$model.call robust.model.call$robust <- TRUE robust.zelig.out <- .self$data %>% group_by_(.self$by) %>% do(z.out = eval(fn2(robust.model.call, quote(as.data.frame(.))))$var ) .self$test.statistics<- list(robust.se = robust.zelig.out$z.out) } } ) zweibull$methods( param = function(z.out, method="mvn") { if(identical(method,"mvn")){ coeff <- coef(z.out) mu <- c(coeff, log(z.out$scale) ) # JH this is the scale of the vcov used below cov <- vcov(z.out) simulations <- mvrnorm(.self$num, mu = mu, Sigma = cov) simparam.local <- as.matrix(simulations[, 1:length(coeff)]) simalpha.local <- as.matrix(simulations[, (length(coeff)+1)]) simparam.local <- list(simparam = simparam.local, simalpha = simalpha.local) return(simparam.local) } else if(identical(method,"point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha = log(z.out$scale))) } } ) zweibull$methods( qi = function(simparam, mm) { eta <- simparam$simparam %*% t(mm) theta <- as.matrix(apply(eta, 2, linkinv)) ev <- theta * gamma(1 + exp(simparam$simalpha)) pv <- as.matrix(rweibull(length(ev), shape = 1/exp(simparam$simalpha), scale = theta)) return(list(ev = ev, pv = pv)) } ) zweibull$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ .self$mcformula <- as.Formula("Surv(y.sim, event) ~ x.sim") mylambda <-exp(b0 + b1 * x) event <- rep(1, length(x)) y.sim <- rweibull(n=length(x), shape=alpha, scale=mylambda) y.hat <- mylambda * gamma(1 + (1/alpha)) if(sim){ mydata <- data.frame(y.sim=y.sim, event=event, x.sim=x) return(mydata) }else{ mydata <- data.frame(y.hat=y.hat, event=event, x.seq=x) return(mydata) } } ) Zelig/R/model-binchoice.R0000755000176000001440000000210513245253056014727 0ustar ripleyusers#' Binary Choice object for inheritance across models in Zelig #' #' @import methods #' @export Zelig-binchoice #' @exportClass Zelig-binchoice #' #' @include model-zelig.R #' @include model-glm.R zbinchoice <- setRefClass("Zelig-binchoice", contains = "Zelig-glm") zbinchoice$methods( initialize = function() { callSuper() .self$authors <- "Kosuke Imai, Gary King, Olivia Lau" .self$year <- 2007 .self$category <- "dichotomous" .self$family <- "binomial" # JSON .self$outcome <- "binary" } ) zbinchoice$methods( qi = function(simparam, mm) { .self$linkinv <- eval(call(.self$family, .self$link))$linkinv coeff <- simparam eta <- simparam %*% t(mm) eta <- Filter(function (y) !is.na(y), eta) theta <- matrix(.self$linkinv(eta), nrow = nrow(coeff)) ev <- matrix(.self$linkinv(eta), ncol = ncol(theta)) pv <- matrix(nrow = nrow(ev), ncol = ncol(ev)) for (j in 1:ncol(ev)) pv[, j] <- rbinom(length(ev[, j]), 1, prob = ev[, j]) levels(pv) <- c(0, 1) return(list(ev = ev, pv = pv)) } ) Zelig/R/model-tobit.R0000755000176000001440000001724013245253056014133 0ustar ripleyusers#' Linear Regression for a Left-Censored Dependent Variable #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #'@param below (defaults to 0) The point at which the dependent variable is censored from below. #' If any values in the dependent variable are observed to be less than the censoring point, #' it is assumed that that particular observation is censored from below at the observed value. #'@param above (defaults to 0) The point at which the dependent variable is censored from above #' If any values in the dependent variable are observed to be more than the censoring point, #' it is assumed that that particular observation is censored from above at the observed value. #'@param robust defaults to FALSE. If TRUE, \code{zelig()} computes robust standard errors based on #' sandwich estimators and the options selected in cluster. #'@param cluster if robust = TRUE, you may select a variable to define groups of correlated #' observations. Let x3 be a variable that consists of either discrete numeric values, character #' strings, or factors that define strata. Then z.out <- zelig(y ~ x1 + x2, robust = TRUE, #' cluster = "x3", model = "tobit", data = mydata)means that the observations can be correlated #' within the strata defined by the variable x3, and that robust standard errors should be #' calculated according to those clusters. If robust = TRUE but cluster is not specified, #' zelig() assumes that each observation falls into its own cluster. #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' @examples #' library(Zelig) #' data(tobin) #' z.out <- zelig(durable ~ age + quant, model = "tobit", data = tobin) #' summary(z.out) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_tobit.html} #' @import methods #' @export Zelig-tobit #' @exportClass Zelig-tobit #' #' @include model-zelig.R ztobit <- setRefClass("Zelig-tobit", contains = "Zelig", fields = list(above = "numeric", below = "numeric")) ztobit$methods( initialize = function() { callSuper() .self$name <- "tobit" .self$authors <- "Kosuke Imai, Gary King, Olivia Lau" .self$packageauthors <- "Christian Kleiber and Achim Zeileis" .self$year <- 2011 .self$description = "Linear regression for Left-Censored Dependent Variable" .self$fn <- quote(AER::tobit) # JSON .self$outcome <- "continous" .self$wrapper <- "tobit" .self$acceptweights <- TRUE } ) ztobit$methods( zelig = function(formula, ..., below = 0, above = Inf, robust = FALSE, data, weights = NULL, by = NULL, bootstrap = FALSE) { .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call .self$below <- below .self$above <- above .self$model.call$below <- NULL .self$model.call$above <- NULL .self$model.call$left <- below .self$model.call$right <- above callSuper(formula = formula, data = data, ..., weights = weights, by = by, bootstrap = bootstrap) if(!robust){ fn2 <- function(fc, data) { fc$data <- data return(fc) } robust.model.call <- .self$model.call robust.model.call$robust <- TRUE robust.zelig.out <- .self$data %>% group_by_(.self$by) %>% do(z.out = eval(fn2(robust.model.call, quote(as.data.frame(.))))$var ) .self$test.statistics<- list(robust.se = robust.zelig.out$z.out) } } ) ztobit$methods( param = function(z.out, method="mvn") { if(identical(method,"mvn")){ mu <- c(coef(z.out), log(z.out$scale)) simfull <- mvrnorm(n = .self$num, mu = mu, Sigma = vcov(z.out)) simparam.local <- as.matrix(simfull[, -ncol(simfull)]) simalpha <- exp(as.matrix(simfull[, ncol(simfull)])) simparam.local <- list(simparam = simparam.local, simalpha = simalpha) return(simparam.local) } else if(identical(method,"point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha = log(z.out$scale) )) } } ) ztobit$methods( qi = function(simparam, mm) { Coeff <- simparam$simparam %*% t(mm) SD <- simparam$simalpha alpha <- simparam$simalpha lambda <- dnorm(Coeff / SD) / (pnorm(Coeff / SD)) ev <- pnorm(Coeff / SD) * (Coeff + SD * lambda) pv <- ev pv <- matrix(nrow = nrow(ev), ncol = ncol(ev)) for (j in 1:ncol(ev)) { pv[, j] <- rnorm(nrow(ev), mean = ev[, j], sd = SD) pv[, j] <- pmin(pmax(pv[, j], .self$below), .self$above) } return(list(ev = ev, pv = pv)) } ) ztobit$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ mu <- b0 + b1 * x ystar <- rnorm(n=length(x), mean=mu, sd=alpha) if(sim){ y <- (ystar>0) * ystar # censoring from below at zero return(y) }else{ y.uncensored.hat.tobit<- mu + dnorm(mu, mean=0, sd=alpha)/pnorm(mu, mean=0, sd=alpha) y.hat.tobit<- y.uncensored.hat.tobit * (1- pnorm(0, mean=mu, sd=alpha) ) # expected value of censored outcome return(y.hat.tobit) } } ) Zelig/R/wrappers.R0000755000176000001440000004711113245253056013557 0ustar ripleyusers#' Estimating a Statistical Model #' #' The zelig function estimates a variety of statistical #' models. Use \code{zelig} output with \code{setx} and \code{sim} to compute #' quantities of interest, such as predicted probabilities, expected values, and #' first differences, along with the associated measures of uncertainty #' (standard errors and confidence intervals). #' #' This documentation describes the \code{zelig} Zelig 4 compatibility wrapper #' function. #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y \~\, x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. For example, to run the same model on all fifty states, you could #' use: \code{z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', #' by = 'state')} You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' Additional parameters avaialable to many models include: #' \itemize{ #' \item weights: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item bootstrap: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' @seealso \url{http://docs.zeligproject.org/articles/} #' @name zelig #' @author Matt Owen, Kosuke Imai, Olivia Lau, and Gary King #' @export zelig <- function(formula, model, data, ..., by = NULL, cite = TRUE) { # .Deprecated('\nz$new() \nz$zelig(...)') Check if required model argument is # specified if (missing(model)) stop("Estimation model type not specified.\nSelect estimation model type with the model argument.", call. = FALSE) # Zelig Core zeligmodels <- system.file(file.path("JSON", "zelig5models.json"), package = "Zelig") models <- jsonlite::fromJSON(txt = readLines(zeligmodels))$zelig5models # Zelig Choice zeligchoicemodels <- system.file(file.path("JSON", "zelig5choicemodels.json"), package = "ZeligChoice") if (zeligchoicemodels != "") models <- c(models, jsonlite::fromJSON(txt = readLines(zeligchoicemodels))$zelig5choicemodels) # Zelig Panel zeligpanelmodels <- system.file(file.path("JSON", "zelig5panelmodels.json"), package = "ZeligPanel") if (zeligpanelmodels != "") models <- c(models, jsonlite::fromJSON(txt = readLines(zeligpanelmodels))$zelig5panelmodels) # Zelig GAM zeligammodels <- system.file(file.path("JSON", "zelig5gammodels.json"), package = "ZeligGAM") if (zeligammodels != "") models <- c(models, jsonlite::fromJSON(txt = readLines(zeligammodels))$zelig5gammodels) # Zelig Multilevel zeligmixedmodels <- system.file(file.path("JSON", "zelig5mixedmodels.json"), package = "ZeligMultilevel") if (zeligmixedmodels != "") models <- c(models, jsonlite::fromJSON(txt = readLines(zeligmixedmodels))$zelig5mixedmodels) # Aggregating all available models models4 <- list() for (i in seq(models)) { models4[[models[[i]]$wrapper]] <- names(models)[i] } model.init <- sprintf("z%s$new()", models4[[model]]) if (length(model.init) == 0) stop(sprintf("%s is not a supported model type.", model), call. = FALSE) z5 <- try(eval(parse(text = model.init)), silent = TRUE) if ("try-error" %in% class(z5)) stop("Model '", model, "' not found") ## End: Zelig 5 models mf <- match.call() mf$model <- NULL mf$cite <- NULL mf[[1]] <- quote(z5$zelig) mf <- try(eval(mf, environment()), silent = TRUE) if ("try-error" %in% class(mf)) z5$zelig(formula = formula, data = data, ..., by = by) if (cite) z5$cite() return(z5) } #' Setting Explanatory Variable Values #' #' The \code{setx} function uses the variables identified in #' the \code{formula} generated by \code{zelig} and sets the values of #' the explanatory variables to the selected values. Use \code{setx} #' after \code{zelig} and before \code{sim} to simulate quantities of #' interest. #' #' This documentation describes the \code{setx} Zelig 4 compatibility wrapper #' function. #' #' @param obj output object from \code{\link{zelig}} #' @param fn a list of functions to apply to the data frame #' @param data a new data frame used to set the values of #' explanatory variables. If \code{data = NULL} (the default), the #' data frame called in \code{\link{zelig}} is used #' @param cond a logical value indicating whether unconditional #' (default) or conditional (choose \code{cond = TRUE}) prediction #' should be performed. If you choose \code{cond = TRUE}, \code{setx} #' will coerce \code{fn = NULL} and ignore the additional arguments in #' \code{\dots}. If \code{cond = TRUE} and \code{data = NULL}, #' \code{setx} will prompt you for a data frame. #' @param ... user-defined values of specific variables for overwriting the #' default values set by the function \code{fn}. For example, adding #' \code{var1 = mean(data\$var1)} or \code{x1 = 12} explicitly sets the value #' of \code{x1} to 12. In addition, you may specify one explanatory variable #' as a range of values, creating one observation for every unique value in #' the range of values #' @return The output is returned in a field to the Zelig object. For #' unconditional prediction, \code{x.out} is a model matrix based #' on the specified values for the explanatory variables. For multiple #' analyses (i.e., when choosing the \code{by} option in \code{\link{zelig}}, #' \code{setx} returns the selected values calculated over the entire #' data frame. If you wish to calculate values over just one subset of #' the data frame, the 5th subset for example, you may use: #' \code{x.out <- setx(z.out[[5]])} #' #' @examples #' # Unconditional prediction: #' data(turnout) #' z.out <- zelig(vote ~ race + educate, model = 'logit', data = turnout) #' x.out <- setx(z.out) #' s.out <- sim(z.out, x = x.out) #' #' @author Matt Owen, Olivia Lau and Kosuke Imai #' @seealso The full Zelig manual may be accessed online at #' \url{http://docs.zeligproject.org/articles/} #' @keywords file #' @export setx <- function(obj, fn = NULL, data = NULL, cond = FALSE, ...) { # .Deprecated('\nz$new() \nz$zelig(...) \nz$setx() or z$setx1 or z$setrange') if(!is_zelig(obj, fail = FALSE)) obj <- to_zelig(obj) x5 <- obj$copy() # This is the length of each argument in '...'s s <- list(...) if (length(s) > 0) { hold <- rep(1, length(s)) for (i in 1:length(s)) { hold[i] <- length(s[i][[1]]) } } else { hold <- 1 } if (max(hold) > 1) { x5$setrange(...) } else { x5$setx(...) } return(x5) } #' Setting Explanatory Variable Values for First Differences #' #' This documentation describes the \code{setx1} Zelig 4 compatibility wrapper #' function. The wrapper is primarily useful for setting fitted values #' for creating first differences in piped workflows. #' #' @param obj output object from \code{\link{zelig}} #' @param fn a list of functions to apply to the data frame #' @param data a new data frame used to set the values of #' explanatory variables. If \code{data = NULL} (the default), the #' data frame called in \code{\link{zelig}} is used #' @param cond a logical value indicating whether unconditional #' (default) or conditional (choose \code{cond = TRUE}) prediction #' should be performed. If you choose \code{cond = TRUE}, \code{setx1} #' will coerce \code{fn = NULL} and ignore the additional arguments in #' \code{\dots}. If \code{cond = TRUE} and \code{data = NULL}, #' \code{setx1} will prompt you for a data frame. #' @param ... user-defined values of specific variables for overwriting the #' default values set by the function \code{fn}. For example, adding #' \code{var1 = mean(data\$var1)} or \code{x1 = 12} explicitly sets the value #' of \code{x1} to 12. In addition, you may specify one explanatory variable #' as a range of values, creating one observation for every unique value in #' the range of values #' @return The output is returned in a field to the Zelig object. For #' unconditional prediction, \code{x.out} is a model matrix based #' on the specified values for the explanatory variables. For multiple #' analyses (i.e., when choosing the \code{by} option in \code{\link{zelig}}, #' \code{setx1} returns the selected values calculated over the entire #' data frame. If you wish to calculate values over just one subset of #' the data frame, the 5th subset for example, you may use: #' \code{x.out <- setx(z.out[[5]])} #' #' @examples #' library(dplyr) # contains pipe operator %>% #' data(turnout) #' #' # plot first differences #' zelig(Fertility ~ Education, data = swiss, model = 'ls') %>% #' setx(z4, Education = 10) %>% #' setx1(z4, Education = 30) %>% #' sim() %>% #' plot() #' #' @author Christopher Gandrud, Matt Owen, Olivia Lau, Kosuke Imai #' @seealso The full Zelig manual may be accessed online at #' \url{http://docs.zeligproject.org/articles/} #' @keywords file #' @export setx1 <- function(obj, fn = NULL, data = NULL, cond = FALSE, ...) { is_zelig(obj) x5 <- obj$copy() # This is the length of each argument in '...'s s <- list(...) if (length(s) > 0) { hold <- rep(1, length(s)) for (i in 1:length(s)) { hold[i] <- length(s[i][[1]]) } } else { hold <- 1 } if (max(hold) > 1) { x5$setrange1(...) } else { x5$setx1(...) } return(x5) } #' Generic Method for Computing and Organizing Simulated Quantities of Interest #' #' Simulate quantities of interest from the estimated model #' output from \code{zelig()} given specified values of explanatory #' variables established in \code{setx()}. For classical \emph{maximum #' likelihood} models, \code{sim()} uses asymptotic normal #' approximation to the log-likelihood. For \emph{Bayesian models}, #' Zelig simulates quantities of interest from the posterior density, #' whenever possible. For \emph{robust Bayesian models}, simulations #' are drawn from the identified class of Bayesian posteriors. #' Alternatively, you may generate quantities of interest using #' bootstrapped parameters. #' #' This documentation describes the \code{sim} Zelig 4 compatibility wrapper #' function. #' #' @param obj output object from \code{zelig} #' @param x values of explanatory variables used for simulation, #' generated by \code{setx}. Not if ommitted, then \code{sim} will look for #' values in the reference class object #' @param x1 optional values of explanatory variables (generated by a #' second call of \code{setx}) #' particular computations of quantities of interest #' @param y a parameter reserved for the computation of particular #' quantities of interest (average treatment effects). Few #' models currently support this parameter #' @param num an integer specifying the number of simulations to compute #' @param bootstrap currently unsupported #' @param bootfn currently unsupported #' @param cond.data currently unsupported #' @param ... arguments reserved future versions of Zelig #' @return The output stored in \code{s.out} varies by model. Use the #' \code{names} function to view the output stored in \code{s.out}. #' Common elements include: #' \item{x}{the \code{\link{setx}} values for the explanatory variables, #' used to calculate the quantities of interest (expected values, #' predicted values, etc.). } #' \item{x1}{the optional \code{\link{setx}} object used to simulate #' first differences, and other model-specific quantities of #' interest, such as risk-ratios.} #' \item{call}{the options selected for \code{\link{sim}}, used to #' replicate quantities of interest. } #' \item{zelig.call}{the original function and options for #' \code{\link{zelig}}, used to replicate analyses. } #' \item{num}{the number of simulations requested. } #' \item{par}{the parameters (coefficients, and additional #' model-specific parameters). You may wish to use the same set of #' simulated parameters to calculate quantities of interest rather #' than simulating another set.} #' \item{qi\$ev}{simulations of the expected values given the #' model and \code{x}. } #' \item{qi\$pr}{simulations of the predicted values given by the #' fitted values. } #' \item{qi\$fd}{simulations of the first differences (or risk #' difference for binary models) for the given \code{x} and \code{x1}. #' The difference is calculated by subtracting the expected values #' given \code{x} from the expected values given \code{x1}. (If do not #' specify \code{x1}, you will not get first differences or risk #' ratios.) } #' \item{qi\$rr}{simulations of the risk ratios for binary and #' multinomial models. See specific models for details.} #' \item{qi\$ate.ev}{simulations of the average expected #' treatment effect for the treatment group, using conditional #' prediction. Let \eqn{t_i} be a binary explanatory variable defining #' the treatment (\eqn{t_i=1}) and control (\eqn{t_i=0}) groups. Then the #' average expected treatment effect for the treatment group is #' \deqn{ \frac{1}{n}\sum_{i=1}^n [ \, Y_i(t_i=1) - #' E[Y_i(t_i=0)] \mid t_i=1 \,],} #' where \eqn{Y_i(t_i=1)} is the value of the dependent variable for #' observation \eqn{i} in the treatment group. Variation in the #' simulations are due to uncertainty in simulating \eqn{E[Y_i(t_i=0)]}, #' the counterfactual expected value of \eqn{Y_i} for observations in the #' treatment group, under the assumption that everything stays the #' same except that the treatment indicator is switched to \eqn{t_i=0}. } #' \item{qi\$ate.pr}{simulations of the average predicted #' treatment effect for the treatment group, using conditional #' prediction. Let \eqn{t_i} be a binary explanatory variable defining #' the treatment (\eqn{t_i=1}) and control (\eqn{t_i=0}) groups. Then the #' average predicted treatment effect for the treatment group is #' \deqn{ \frac{1}{n}\sum_{i=1}^n [ \, Y_i(t_i=1) - #' \widehat{Y_i(t_i=0)} \mid t_i=1 \,],} #' where \eqn{Y_i(t_i=1)} is the value of the dependent variable for #' observation \eqn{i} in the treatment group. Variation in the #' simulations are due to uncertainty in simulating #' \eqn{\widehat{Y_i(t_i=0)}}, the counterfactual predicted value of #' \eqn{Y_i} for observations in the treatment group, under the #' assumption that everything stays the same except that the #' treatment indicator is switched to \eqn{t_i=0}.} #' #' @author Christopher Gandrud, Matt Owen, Olivia Lau and Kosuke Imai #' @export sim <- function(obj, x, x1, y = NULL, num = 1000, bootstrap = F, bootfn = NULL, cond.data = NULL, ...) { # .Deprecated('\nz$new() \n[...] \nz$sim(...)') is_zelig(obj) if (!missing(x)) s5 <- x$copy() if (!missing(x1)) { s15 <- x1$copy() if (!is.null(s15$setx.out$x)) { s5$setx.out$x1 <- s15$setx.out$x s5$bsetx1 <- TRUE } if (!is.null(s15$setx.out$range)) { s5$range1 <- s15$range s5$setx.out$range1 <- s15$setx.out$range s5$bsetrange1 <- TRUE } } if (missing(x)) s5 <- obj$copy() s5$sim(num = num) return(s5) } #' Extract standard errors from a Zelig estimated model #' #' @param object an object of class Zelig #' @author Christopher Gandrud #' @export get_se <- function(object) { is_zelig(object) out <- object$get_se() return(out) } #' Extract p-values from a Zelig estimated model #' #' @param object an object of class Zelig #' @author Christopher Gandrud #' @export get_pvalue <- function(object) { is_zelig(object) out <- object$get_pvalue() return(out) } #' Extract quantities of interest from a Zelig simulation #' #' @param object an object of class Zelig #' @param qi character string with the name of quantity of interest desired: #' `"ev"` for expected values, `"pv"` for predicted values or #' `"fd"` for first differences. #' @param xvalue chracter string stating which of the set of values of `x` #' should be used for getting the quantity of interest. #' @param subset subset for multiply imputed data (only relevant if multiply #' imputed data is supplied in the original call.) #' @author Christopher Gandrud #' @md #' @export get_qi <- function(object, qi = "ev", xvalue = "x", subset = NULL) { is_zelig(object) out <- object$get_qi(qi = qi, xvalue = xvalue, subset = subset) return(out) } #' Compute simulated (sample) average treatment effects on the treated from #' a Zelig model estimation #' #' @param object an object of class Zelig #' @param treatment character string naming the variable that denotes the #' treatment and non-treated groups. #' @param treated value of `treatment` variable indicating treatment #' @param num number of simulations to run. Default is 1000. #' @examples #' library(dplyr) #' data(sanction) #' z.att <- zelig(num ~ target + coop + mil, model = "poisson", #' data = sanction) %>% #' ATT(treatment = "mil") %>% #' get_qi(qi = "ATT", xvalue = "TE") #' #' @author Christopher Gandrud #' @md #' @export ATT <- function(object, treatment, treated = 1, num = NULL) { is_zelig(object) object$ATT(treatment = treatment, treated = treated, quietly = TRUE, num = num) return(object) } Zelig/R/model-logit-gee.R0000755000176000001440000001020413245253056014657 0ustar ripleyusers#' Generalized Estimating Equation for Logit Regression #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' @param id: where id is a variable which identifies the clusters. The data should be sorted #' by \code{id} and should be ordered within each cluster when appropriate #' @param corstr: character string specifying the correlation structure: #' "independence", "exchangeable", "ar1", "unstructured" and "userdefined" #' @param geeglm: See geeglm in package geepack for other function arguments #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #'@examples #' #' data(turnout) #' turnout$cluster <- rep(c(1:200), 10) #' sorted.turnout <- turnout[order(turnout$cluster),] #' #' z.out1 <- zelig(vote ~ race + educate, model = "logit.gee", #' id = "cluster", data = sorted.turnout) #' #' summary(z.out1) #' x.out1 <- setx(z.out1) #' s.out1 <- sim(z.out1, x = x.out1) #' summary(s.out1) #' plot(s.out1) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_logitgee.html} #' @import methods #' @export Zelig-logit-gee #' @exportClass Zelig-logit-gee #' #' @include model-zelig.R #' @include model-binchoice-gee.R zlogitgee <- setRefClass("Zelig-logit-gee", contains = c("Zelig-binchoice-gee")) zlogitgee$methods( initialize = function() { callSuper() .self$name <- "logit-gee" .self$link <- "logit" .self$description <- "General Estimating Equation for Logistic Regression" .self$wrapper <- "logit.gee" } ) Zelig/R/model-probit.R0000755000176000001440000000653713245253056014320 0ustar ripleyusers#' Probit Regression for Dichotomous Dependent Variables #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' @examples #' data(turnout) #' z.out <- zelig(vote ~ race + educate, model = "probit", data = turnout) #' summary(z.out) #' x.out <- setx(z.out) #' s.out <- sim(z.out, x = x.out) #' summary(s.out) #' plot(s.out) #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_probit.html} #' @import methods #' @export Zelig-probit #' @exportClass Zelig-probit #' #' @include model-zelig.R #' @include model-glm.R #' @include model-binchoice.R zprobit <- setRefClass("Zelig-probit", contains = "Zelig-binchoice") zprobit$methods( initialize = function() { callSuper() .self$name <- "probit" .self$link <- "probit" .self$description = "Probit Regression for Dichotomous Dependent Variables" .self$packageauthors <- "R Core Team" .self$wrapper <- "probit" } ) zprobit$methods( mcfun = function(x, b0=0, b1=1, ..., sim=TRUE){ mu <- pnorm(b0 + b1 * x) if(sim){ y <- rbinom(n=length(x), size=1, prob=mu) return(y) }else{ return(mu) } } ) Zelig/R/assertions.R0000644000176000001440000001270513245253056014104 0ustar ripleyusers#' Check if is a zelig object #' @param x an object #' @param fail logical whether to return an error if x is not a Zelig object. is_zelig <- function(x, fail = TRUE) { is_it <- inherits(x, "Zelig") if (isTRUE(fail)) { if(!isTRUE(is_it)) stop('Not a Zelig object.', call. = FALSE) } else return(is_it) } #' Check if uninitializedField #' @param x a zelig.out method #' @param msg character string with the error message to return if #' \code{fail = TRUE}. #' @param fail logical whether to return an error if x uninitialzed. is_uninitializedField <- function(x, msg = 'Zelig model has not been estimated.', fail = TRUE) { passes <- FALSE if (length(x) == 1) passes <- inherits(x, "uninitializedField") if (isTRUE(fail)) { if (isTRUE(passes)) stop(msg, call. = FALSE) } else return(passes) } #' Check if any simulations are present in sim.out #' @param x a sim.out method #' @param fail logical whether to return an error if no simulations are present. is_sims_present <- function(x, fail = TRUE) { passes <- TRUE if (is.null(x$x) & is.null(x$range)) passes <- FALSE if (length(x) > 0) passes <- TRUE if (isTRUE(fail)) { if (!isTRUE(passes)) stop('No simulated quantities of interest found.', call. = FALSE) } else return(passes) } #' Check if simulations for individual values are present in sim.out #' @param x a sim.out method #' @param fail logical whether to return an error if simulation range is not #' present. is_simsx <- function(x, fail = TRUE) { passes <- TRUE if (is.null(x$x)) passes <- FALSE if (isTRUE(fail)) { if (!isTRUE(passes)) stop('Simulations for individual fitted values are not present.', call. = FALSE) } else return(passes) } #' Check if simulations for individual values for x1 are present #' in sim.out #' @param x a sim.out method #' @param fail logical whether to return an error if simulation range is not #' present. is_simsx1 <- function(x, fail = TRUE) { passes <- TRUE if (is.null(x$x1)) passes <- FALSE if (isTRUE(fail)) { if (!isTRUE(passes)) stop('Simulations for individual fitted values are not present.', call. = FALSE) } else return(passes) } #' Check if simulations for a range of fitted values are present in sim.out #' @param x a sim.out method #' @param fail logical whether to return an error if simulation range is not #' present. is_simsrange <- function(x, fail = TRUE) { passes <- TRUE if (is.null(x$range)) passes <- FALSE if (isTRUE(fail)) { if (!isTRUE(passes)) stop('Simulations for a range of fitted values are not present.', call. = FALSE) } else return(passes) } #' Check if simulations for a range1 of fitted values are present in sim.out #' @param x a sim.out method #' @param fail logical whether to return an error if simulation range is not #' present. is_simsrange1 <- function(x, fail = TRUE) { passes <- TRUE if (is.null(x$range1)) passes <- FALSE if (isTRUE(fail)) { if (!isTRUE(passes)) stop('Simulations for a range of fitted values are not present.', call. = FALSE) } else return(passes) } #' Check if an object has a length greater than 1 #' @param x an object #' @param msg character string with the error message to return if #' \code{fail = TRUE}. #' @param fail logical whether to return an error if length is not greater than #' 1. is_length_not_1 <- function(x, msg = 'Length is 1.', fail = TRUE) { passes <- TRUE if (length(x) == 1) passes <- FALSE if (isTRUE(fail)) { if (!isTRUE(passes)) stop(msg, call. = FALSE) } else return(passes) } #' Check if the values in a vector vary #' @param x a vector #' @param msg character string with the error message to return if #' \code{fail = TRUE}. #' @param fail logical whether to return an error if \code{x} does not vary. is_varying <- function(x, msg = 'Vector does not vary.', fail = TRUE) { if (!is.vector(x)) stop('x must be a vector.', call. = FALSE) passes <- TRUE if (length(unique(x)) == 1) passes <- FALSE if (isTRUE(fail)) { if (!isTRUE(passes)) stop(msg, call. = FALSE) } else return(passes) } #' Check if a zelig object contains a time series model #' #' @param x a zelig object #' @param msg character string with the error message to return if #' \code{fail = TRUE}. #' @param fail logical whether to return an error if \code{x} is not a timeseries. is_timeseries <- function(x, msg = 'Not a timeseries object.', fail = FALSE) { is_zelig(x) passes <- TRUE if (!"timeseries" %in% x$category) passes <- FALSE if (isTRUE(fail)) { if (!isTRUE(passes)) stop(msg, call. = FALSE) } else return(passes) } #' Check if an object was created with ZeligEI #' #' @param x a zelig object #' @param msg character string with the error message to return if #' \code{fail = TRUE}. #' @param fail logical whether to return an error if \code{x} is not a timeseries. is_zeligei <- function(x, msg = "Function is not relevant for ZeligEI objects.", fail = TRUE) { is_zelig(x) passes <- FALSE pkgs <- attr(class(x), "package") if ("ZeligEI" %in% pkgs) passes <- TRUE if (isTRUE(fail)) { if (isTRUE(passes)) stop(msg, call. = FALSE) } else return(passes) } Zelig/R/model-tobit-bayes.R0000644000176000001440000001537513245253056015240 0ustar ripleyusers#' Bayesian Tobit Regression #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' @param below: point at which the dependent variable is censored from below. #' If the dependent variable is only censored from above, set \code{below = -Inf}. #' The default value is 0. #' @param above: point at which the dependent variable is censored from above. #' If the dependent variable is only censored from below, set \code{above = Inf}. #' The default value is \code{Inf}. #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). #' \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). #' \item \code{thin}: thinning interval for the Markov chain. Only every thin-th #' draw from the Markov chain is kept. The value of mcmc must be divisible by this value. #' The default value is 1. #' \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) #' is printed to the screen. #' \item \code{seed}: seed for the random number generator. The default is \code{NA} which #' corresponds to a random seed of 12345. #' \item \code{beta.start}: starting values for the Markov chain, either a scalar or #' vector with length equal to the number of estimated coefficients. The default is #' \code{NA}, such that the maximum likelihood estimates are used as the starting values. #' } #' Use the following parameters to specify the model's priors: #' \itemize{ #' \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar. #' If a scalar value, that value will be the prior mean for all the coefficients. #' The default is 0. #' \item \code{B0}: prior precision parameter for the coefficients, either a square matrix #' (with the dimensions equal to the number of the coefficients) or a scalar. #' If a scalar value, that value times an identity matrix will be the prior precision parameter. #' The default is 0, which leads to an improper prior. #' \item \code{c0}: \code{c0}/2 is the shape parameter for the Inverse Gamma prior on the variance of the #' disturbance terms. #' \item \code{d0}: \code{d0}/2 is the scale parameter for the Inverse Gamma prior on the variance of the #' disturbance terms. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' @param below: point at which the dependent variable is censored from below. If the dependent variable is only censored from above, set below = -Inf. The default value is 0. #' @param above: point at which the dependent variable is censored from above. If the dependent variable is only censored from below, set above = Inf. The default value is Inf. #' #' @examples #' data(turnout) #' z.out <- zelig(vote ~ race + educate, model = "tobit.bayes",data = turnout, verbose = FALSE) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_tobitbayes.html} #' @import methods #' @export Zelig-tobit-bayes #' @exportClass Zelig-tobit-bayes #' #' @include model-zelig.R #' @include model-bayes.R #' @include model-tobit.R ztobitbayes <- setRefClass("Zelig-tobit-bayes", contains = c("Zelig-bayes", "Zelig-tobit")) ztobitbayes$methods( initialize = function() { callSuper() .self$name <- "tobit-bayes" .self$year <- 2013 .self$category <- "dichotomous" .self$authors <- "Ben Goodrich, Ying Lu" .self$description = "Bayesian Tobit Regression for a Censored Dependent Variable" .self$fn <- quote(MCMCpack::MCMCtobit) # JSON from parent .self$wrapper <- "tobit.bayes" } ) ztobitbayes$methods( param = function(z.out) { if (length(.self$below) == 0) .self$below <- 0 if (length(.self$above) == 0) .self$above <- Inf simparam.local <- list() simparam.local$simparam <- z.out[, 1:(ncol(z.out) - 1)] simparam.local$simalpha <- sqrt(z.out[, ncol(z.out)]) return(simparam.local) } ) ztobitbayes$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ mu <- b0 + b1 * x ystar <- rnorm(n=length(x), mean=mu, sd=alpha) if(sim){ y <- (ystar>0) * ystar # censoring from below at zero return(y) }else{ y.uncensored.hat.tobit<- mu + dnorm(mu, mean=0, sd=alpha)/pnorm(mu, mean=0, sd=alpha) y.hat.tobit<- y.uncensored.hat.tobit * (1- pnorm(0, mean=mu, sd=alpha) ) # expected value of censored outcome return(y.hat.tobit) } } ) Zelig/R/plots.R0000755000176000001440000011441613245253056013060 0ustar ripleyusers#' Plot Quantities of Interest in a Zelig-fashion #' #' Various graph generation for different common types of simulated results from #' Zelig #' @usage simulations.plot(y, y1=NULL, xlab="", ylab="", main="", col=NULL, line.col=NULL, #' axisnames=TRUE) #' @param y A matrix or vector of simulated results generated by Zelig, to be #' graphed. #' @param y1 For comparison of two sets of simulated results at different #' choices of covariates, this should be an object of the same type and #' dimension as y. If no comparison is to be made, this should be NULL. #' @param xlab Label for the x-axis. #' @param ylab Label for the y-axis. #' @param main Main plot title. #' @param col A vector of colors. Colors will be used in turn as the graph is #' built for main plot objects. For nominal/categorical data, this colors #' renders as the bar color, while for numeric data it renders as the background #' color. #' @param line.col A vector of colors. Colors will be used in turn as the graph is #' built for line color shading of plot objects. #' @param axisnames a character-vector, specifying the names of the axes #' @return nothing #' @author James Honaker simulations.plot <-function(y, y1=NULL, xlab="", ylab="", main="", col=NULL, line.col=NULL, axisnames=TRUE) { binarytest <- function(j){ if(!is.null(attr(j,"levels"))) return(identical( sort(levels(j)),c(0,1))) return(FALSE) } ## Univariate Plots ## if(is.null(y1)){ if (is.null(col)) col <- rgb(100,149,237,maxColorValue=255) if (is.null(line.col)) line.col <- "black" # Integer Values if ((length(unique(y))<11 & all(as.integer(y) == y)) | is.factor(y) | is.character(y)) { if(is.factor(y) | is.character(y)){ y <- as.numeric(y) } # Create a sequence of names nameseq <- paste("Y=", min(y):max(y), sep="") # Set the heights of the barplots. # Note that tablar requires that all out values are greater than zero. # So, we subtract the min value (ensuring everything is at least zero) # then add 1 bar.heights <- tabulate(y - min(y) + 1) / length(y) # Barplot with (potentially) some zero columns output <- barplot(bar.heights, xlab=xlab, ylab=ylab, main=main, col=col[1], axisnames=axisnames, names.arg=nameseq) # Vector of 1's and 0's } else if(ncol(as.matrix(y))>1 & binarytest(y) ){ n.y <- nrow(y) # Precedence is names > colnames > 1:n if(is.null(names(y))){ if(is.null(colnames(y) )){ all.names <- 1:n.y }else{ all.names <- colnames(y) } }else{ all.names <- names(y) } # Barplot with (potentially) some zero columns output <- barplot( apply(y,2,sum)/n.y, xlab=xlab, ylab=ylab, main=main, col=col[1], axisnames=axisnames, names.arg=all.names) # Continuous Values } else if(is.numeric(y)){ if(ncol(as.matrix(y))>1){ ncoly <- ncol(y) hold.dens <- list() ymax <- xmax <- xmin <- rep(0,ncol(y)) for(i in 1:ncoly){ hold.dens[[i]] <- density(y[,i]) ymax[i] <- max(hold.dens[[i]]$y) xmax[i] <- max(hold.dens[[i]]$x) xmin[i] <- min(hold.dens[[i]]$x) } shift <- 0:ncoly all.xlim <- c(min(xmin), max(xmax)) all.ylim <- c(0,ncoly) # Precedence is names > colnames > 1:n if(is.null(names(y))){ if(is.null(colnames(y) )){ all.names <- 1:ncoly }else{ all.names <- colnames(y) } }else{ all.names <- names(y) } shrink <- 0.9 for(i in 1:ncoly ){ if(i ((max(comp)-min(comp))/2) )+1]) } } axis(side=1,labels=nameseq, at=seq(0,1,length=n.y), cex.axis=1, las=1) axis(side=2,labels=nameseq, at=seq(0,1,length=n.y), cex.axis=1, las=3) box() par(pty=old.pty,mai=old.mai) ## Two Vectors of 1's and 0's }else if( ncol(as.matrix(y))>1 & binarytest(y) & ncol(as.matrix(y1))>1 & binarytest(y1) ) { # Everything in this section assumes ncol(y)==ncol(y1) # Precedence is names > colnames > 1:n if(is.null(names(y))){ if(is.null(colnames(y) )){ nameseq <- 1:n.y }else{ nameseq <- colnames(y) } }else{ nameseq <- names(y) } n.y <- ncol(y) yseq <- 1:n.y y <- y %*% yseq y1 <- y1 %*% yseq ## FROM HERE ON -- Replicates above. Should address more generically colors<-rev(heat.colors(n.y^2)) lab.colors<-c("black","white") comp<-matrix(NA,nrow=n.y,ncol=n.y) for(i in 1:n.y){ for(j in 1:n.y){ flag<- y==yseq[i] & y1==yseq[j] comp[i,j]<-mean(flag) } } old.pty<-par()$pty old.mai<-par()$mai par(pty="s") par(mai=c(0.3,0.3,0.3,0.1)) image(z=comp, axes=FALSE, col=colors, zlim=c(min(comp),max(comp)),main=main ) locations.x<-seq(from=0,to=1,length=nrow(comp)) locations.y<-locations.x for(m in 1:n.y){ for(n in 1:n.y){ text(x=locations.x[m],y=locations.y[n],labels=paste(round(100*comp[m,n])), col=lab.colors[(comp[m,n]> ((max(comp)-min(comp))/2) )+1]) } } axis(side=1,labels=nameseq, at=seq(0,1,length=n.y), cex.axis=1, las=1) axis(side=2,labels=nameseq, at=seq(0,1,length=n.y), cex.axis=1, las=3) box() par(pty=old.pty,mai=old.mai) ## Numeric - Plot two densities on top of each other }else if(is.numeric(y) & is.numeric(y1)){ if(is.null(col)){ semi.col.x <-rgb(142,229,238,150,maxColorValue=255) semi.col.x1<-rgb(255,114,86,150,maxColorValue=255) col<-c(semi.col.x,semi.col.x1) }else if(length(col)<2){ col<-c(col,col) } if(ncol(as.matrix(y))>1){ shrink <- 0.9 ncoly <- ncol(y) # Assumes columns of y match cols y1. Should check or enforce. # Precedence is names > colnames > 1:n if(is.null(names(y))){ if(is.null(colnames(y) )){ all.names <- 1:ncoly }else{ all.names <- colnames(y) } }else{ all.names <- names(y) } hold.dens.y <- hold.dens.y1 <- list() ymax <- xmax <- xmin <- rep(0,ncoly) for(i in 1:ncoly){ hold.dens.y[[i]] <- density(y[,i]) hold.dens.y1[[i]] <- density(y1[,i], bw=hold.dens.y[[i]]$bw) ymax[i] <- max(hold.dens.y[[i]]$y, hold.dens.y1[[i]]$y) xmax[i] <- max(hold.dens.y[[i]]$x, hold.dens.y1[[i]]$x) xmin[i] <- min(hold.dens.y[[i]]$x, hold.dens.y1[[i]]$x) } all.xlim <- c(min(xmin), max(xmax)) all.ylim <- c(0,ncoly) shift <- 0:ncoly for(i in 1:ncoly ){ if(i0) & (length(obj$sim.out$x1$ev)>0) # Determine whether two "Predicted Values" qi's exist both.pv.exist <- (length(obj$sim.out$x$pv)>0) & (length(obj$sim.out$x1$pv)>0) color.x <- rgb(242, 122, 94, maxColorValue=255) color.x1 <- rgb(100, 149, 237, maxColorValue=255) # Interpolation of the above colors in rgb color space: color.mixed <- rgb(t(round((col2rgb(color.x) + col2rgb(color.x1))/2)), maxColorValue=255) if (! ("x" %in% names(obj$sim.out))) { return(par(old.par)) } else if (! ("x1" %in% names(obj$sim.out))) { panels <- matrix(1:2, 2, 1) # The plotting device: # # +-----------+ # | 1 | # +-----------+ # | 2 | # +-----------+ } else { panels <- matrix(c(1:5, 5), ncol=2, nrow=3, byrow = TRUE) # the plotting device: # # +-----+-----+ # | 1 | 2 | # +-----+-----+ # | 3 | 4 | # +-----+-----+ # | 5 | # +-----------+ panels <- if (xor(both.ev.exist, both.pv.exist)) rbind(panels, c(6, 6)) # the plotting device: # # +-----+-----+ # | 1 | 2 | # +-----+-----+ # | 3 | 4 | # +-----+-----+ # | 5 | # +-----------+ # | 6 | # +-----------+ else if (both.ev.exist && both.pv.exist) rbind(panels, c(6, 7)) else panels # the plotting device: # # +-----+-----+ # | 1 | 2 | # +-----+-----+ # | 3 | 4 | # +-----+-----+ # | 5 | # +-----+-----+ # | 6 | 7 | # +-----+-----+ } layout(panels) titles <- obj$setx.labels # Plot each simulation if(length(obj$sim.out$x$pv)>0) simulations.plot(obj$get_qi(qi="pv", xvalue="x"), main = titles$pv, col = color.x, line.col = "black") if(length(obj$sim.out$x1$pv)>0) simulations.plot(obj$get_qi(qi="pv", xvalue="x1"), main = titles$pv1, col = color.x1, line.col = "black") if(length(obj$sim.out$x$ev)>0) simulations.plot(obj$get_qi(qi="ev", xvalue="x"), main = titles$ev, col = color.x, line.col = "black") if(length(obj$sim.out$x1$ev)>0) simulations.plot(obj$get_qi(qi="ev", xvalue="x1"), main = titles$ev1, col = color.x1, line.col = "black") if(length(obj$sim.out$x1$fd)>0) simulations.plot(obj$get_qi(qi="fd", xvalue="x1"), main = titles$fd, col = color.mixed, line.col = "black") if(both.pv.exist) simulations.plot(y=obj$get_qi(qi="pv", xvalue="x"), y1=obj$get_qi(qi="pv", xvalue="x1"), main = "Comparison of Y|X and Y|X1", col = paste(c(color.x, color.x1), "80", sep=""), line.col = "black") if(both.ev.exist) simulations.plot(y=obj$get_qi(qi="ev", xvalue="x"), y1=obj$get_qi(qi="ev", xvalue="x1"), main = "Comparison of E(Y|X) and E(Y|X1)", col = paste(c(color.x, color.x1), "80", sep=""), line.col = "black") # Restore old state par(old.par) # Return old parameter invisibly invisible(old.par) } #' Method for plotting qi simulations across a range within a variable, with confidence intervals #' #' @param obj A reference class zelig5 object #' @param qi a character-string specifying the quantity of interest to plot #' @param var The variable to be used on the x-axis. Default is the variable #' across all the chosen values with smallest nonzero variance #' @param ... Parameters to be passed to the `truehist' function which is #' implicitly called for numeric simulations #' @param main a character-string specifying the main heading of the plot #' @param sub a character-string specifying the sub heading of the plot #' @param xlab a character-string specifying the label for the x-axis #' @param ylab a character-string specifying the label for the y-axis #' @param xlim Limits to the x-axis #' @param ylim Limits to the y-axis #' @param legcol ``legend color'', an valid color used for plotting the line #' colors in the legend #' @param col a valid vector of colors of at least length 3 to use to color the #' confidence intervals #' @param leg ``legend position'', an integer from 1 to 4, specifying the #' position of the legend. 1 to 4 correspond to ``SE'', ``SW'', ``NW'', and #' ``NE'' respectively. Setting to 0 or ``n'' turns off the legend. #' @param legpos ``legend type'', exact coordinates and sizes for legend. #' Overrides argment ``leg.type'' #' @param ci vector of length three of confidence interval levels to draw. #' @param discont optional point of discontinuity along the x-axis at which #' to interupt the graph #' @return the current graphical parameters. This is subject to change in future #' implementations of Zelig #' @author James Honaker #' @usage ci.plot(obj, qi="ev", var=NULL, ..., main = NULL, sub = #' NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = #' NULL, legcol="gray20", col=NULL, leg=1, legpos= #' NULL, ci = c(80, 95, 99.9), discont=NULL) #' @export ci.plot <- function(obj, qi = "ev", var = NULL, ..., main = NULL, sub = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, legcol = "gray20", col = NULL, leg = 1, legpos = NULL, ci = c(80, 95, 99.9), discont = NULL) { is_zelig(obj) if(!is_timeseries(obj)) is_simsrange(obj$sim.out) msg <- 'Simulations for more than one fitted observation are required.' is_length_not_1(obj$sim.out$range, msg = msg) if (!is.null(obj$sim.out$range1)) { is_length_not_1(obj$sim.out$range1, msg) if (length(obj$sim.out$range) != length(obj$sim.out$range1)) stop('The two fitted data ranges are not the same length.', call. = FALSE) } ########################### #### Utility Functions #### # Define function to cycle over range list and extract correct qi's ## CAN THESE NOW BE REPLACED WITH THE GETTER METHODS? extract.sims <- function(obj, qi) { d <- length(obj$sim.out$range) k <- length(obj$sim.out$range[[1]][qi][[1]][[1]]) # THAT IS A LONG PATH THAT MAYBE SHOULD BE CHANGED hold <- matrix(NA, nrow = k, ncol = d) for (i in 1:d) { hold[, i] <- obj$sim.out$range[[i]][qi][[1]][[1]] # THAT IS A LONG PATH THAT MAYBE SHOULD BE CHANGED } return(hold) } extract.sims1 <- function(obj, qi) { # Should find better architecture for alternate range sims d <- length(obj$sim.out$range1) k <- length(obj$sim.out$range1[[1]][qi][[1]][[1]]) # THAT IS A LONG PATH THAT MAYBE SHOULD BE CHANGED hold <- matrix(NA, nrow = k, ncol = d) for (i in 1:d) { hold[, i] <- obj$sim.out$range1[[i]][qi][[1]][[1]] # THAT IS A LONG PATH THAT MAYBE SHOULD BE CHANGED } return(hold) } # Define functions to compute confidence intervals CAN WE MERGE THESE TOGETHER SO AS NOT TO # HAVE TO SORT TWICE? ci.upper <- function(x, alpha) { pos <- max(round((1 - (alpha/100)) * length(x)), 1) return(sort(x)[pos]) } ci.lower <- function(x, alpha) { pos <- max(round((alpha/100) * length(x)), 1) return(sort(x)[pos]) } ########################### if(length(ci)<3){ ci<-rep(ci,3) } if(length(ci)>3){ ci<-ci[1:3] } ci<-sort(ci) ## Timeseries: if(is_timeseries(obj)){ #xmatrix<- ## Do we need to know the x in which the shock/innovation occcured? For secondary graphs, titles, legends? xname <- "Time" qiseries <- c("pvseries.shock","pvseries.innovation","evseries.shock","evseries.innovation") if (!qi %in% qiseries){ cat(paste("Error: For Timeseries models, argument qi must be one of ", paste(qiseries, collapse=" or ") ,".\n", sep="") ) return() } if (obj$bsetx & !obj$bsetx1) { ## If setx has been called and setx1 has not been called ev<-t( obj$get_qi(qi=qi, xvalue="x") ) # NOTE THE NECESSARY TRANSPOSE. Should we more clearly standardize this? } else { ev<-t( obj$get_qi(qi=qi, xvalue="x1") ) # NOTE THE NECESSARY TRANSPOSE. Should we more clearly standardize this? } d<-ncol(ev) xseq<-1:d ev1 <- NULL # Maybe want to add ability to overlay another graph? # Define xlabel if (is.null(xlab)) xlab <- xname if (is.null(ylab)){ if(qi %in% c("pvseries.shock", "pvseries.innovation")) ylab<- as.character(obj$setx.labels["pv"]) if(qi %in% c("evseries.shock", "evseries.innovation")) ylab<- as.character(obj$setx.labels["ev"]) } if (is.null(main)) main <- as.character(obj$setx.labels[qi]) if (is.null(discont)) discont <- 22.5 # NEED TO SET AUTOMATICALLY ## Everything Else: }else{ d <- length(obj$sim.out$range) if (d < 1) { return() # Should add warning } num_cols <- length(obj$setx.out$range[[1]]$mm[[1]] ) xmatrix <- matrix(NA,nrow = d, ncol = num_cols) # THAT IS A LONG PATH THAT MAYBE SHOULD BE CHANGED for (i in 1:d){ xmatrix[i,] <- matrix(obj$setx.out$range[[i]]$mm[[1]], ncol = num_cols) # THAT IS A LONG PATH THAT MAYBE SHOULD BE CHANGED } if (d == 1 && is.null(var)) { warning("Must specify the `var` parameter when plotting the confidence interval of an unvarying model. Plotting nothing.") return(invisible(FALSE)) } xvarnames <- names(as.data.frame( obj$setx.out$range[[1]]$mm[[1]])) # MUST BE A BETTER WAY/PATH TO GET NAMES if(is.character(var)){ if( !(var %in% xvarnames ) ){ warning("Specified variable for confidence interval plot is not in estimated model. Plotting nothing.") return(invisible(FALSE)) } } if (is.null(var)) { # Determine x-axis variable based on variable with unique fitted values equal to the number of scenarios length_unique <- function(x) length(unique(x)) var.unique <- apply(xmatrix, 2, length_unique) var.seq <- 1:ncol(xmatrix) position <- var.seq[var.unique == d] if (length(position) > 1) { position <- position[1] # arbitrarily pick the first variable if more than one message(sprintf('%s chosen as the x-axis variable. Use the var argument to specify a different variable.', xvarnames[position])) } } else { if(is.numeric(var)){ position <- var }else if(is.character(var)){ position <- grep(var,xvarnames) } } position <- min(position) xseq <- xmatrix[,position] xname <- xvarnames[position] # Define xlabel if (is.null(xlab)) xlab <- paste("Range of",xname) # Use "qi" argument to select quantities of interest and set labels ev1<-NULL if(!is.null(obj$sim.out$range1)){ ev1<-extract.sims1(obj,qi=qi) } ev<-extract.sims(obj,qi=qi) if (is.null(ylab)){ ylab <- as.character(obj$setx.labels[qi]) } } # k<-ncol(ev) n<-nrow(ev) # if(is.null(col)){ myblue1<-rgb( 100, 149, 237, alpha=50, maxColorValue=255) myblue2<-rgb( 152, 245, 255, alpha=50, maxColorValue=255) myblue3<-rgb( 191, 239, 255, alpha=70, maxColorValue=255) myred1 <-rgb( 237, 149, 100, alpha=50, maxColorValue=255) myred2 <-rgb( 255, 245, 152, alpha=50, maxColorValue=255) myred3 <-rgb( 255, 239, 191, alpha=70, maxColorValue=255) col<-c(myblue1,myblue2,myblue3,myred1,myred2,myred3) }else{ if(length(col)<6){ col<-rep(col,6)[1:6] } } # Define function to numerically extract summaries of distributions from set of all simulated qi's form.history <- function (k,xseq,results,ci=c(80,95,99.9)){ history<-matrix(NA, nrow=k,ncol=8) for (i in 1:k) { v <- c( xseq[i], median(results[,i]), ci.upper(results[,i],ci[1]), ci.lower(results[,i],ci[1]), ci.upper(results[,i],ci[2]), ci.lower(results[,i],ci[2]), ci.upper(results[,i],ci[3]), ci.lower(results[,i],ci[3]) ) history[i, ] <- v } if (k == 1) { left <- c( xseq[1]-.5, median(results[,1]), ci.upper(results[,1],ci[1]), ci.lower(results[,1],ci[1]), ci.upper(results[,1],ci[2]), ci.lower(results[,1],ci[2]), ci.upper(results[,1],ci[3]), ci.lower(results[,1],ci[3]) ) right <- c( xseq[1]+.5, median(results[,1]), ci.upper(results[,1],ci[1]), ci.lower(results[,1],ci[1]), ci.upper(results[,1],ci[2]), ci.lower(results[,1],ci[2]), ci.upper(results[,1],ci[3]), ci.lower(results[,1],ci[3]) ) v <- c( xseq[1], median(results[,1]), ci.upper(results[,1],ci[1]), ci.lower(results[,1],ci[1]), ci.upper(results[,1],ci[2]), ci.lower(results[,1],ci[2]), ci.upper(results[,1],ci[3]), ci.lower(results[,1],ci[3]) ) history <- rbind(left, v, right) } return(history) } history<- form.history(k,xseq,ev,ci) if(!is.null(ev1)){ history1<- form.history(k,xseq,ev1,ci) }else{ history1<-NULL } # This is for small sets that have been duplicated so as to have observable volume if(k==1){ k<-3 } # Specify x-axis length all.xlim <- if (is.null(xlim)) c(min(c(history[, 1],history1[, 1])),max(c(history[, 1],history1[, 1]))) else xlim # Specify y-axis length all.ylim <-if (is.null(ylim)) c(min(c(history[, -1],history1[, -1])),max(c(history[, -1],history1[, -1]))) else ylim # Define y label if (is.null(ylab)) ylab <- "Expected Values: E(Y|X)" ## This is the plot par(bty="n") centralx<-history[,1] centraly<-history[,2] if(is.null(discont)){ gotok <- k }else{ gotok <- sum(xseq < discont) if((gotok<2) | (gotok>(k-2))){ cat("Warning: Discontinuity is located at edge or outside the range of x-axis.\n") gotok<-k discont<-NULL } if(gotok= cutoff[i]) roc2[i,1] <- mean(fitted2[y2==1] >= cutoff[i]) roc1[i,2] <- mean(fitted1[y1==0] < cutoff[i]) roc2[i,2] <- mean(fitted2[y2==0] < cutoff[i]) } if (plot) { plot(0:1, 0:1, type = "n", xaxs = "i", yaxs = "i", main=main, xlab=xlab, ylab=ylab, ...) lines(roc1, lty = lty1, lwd = lwd1, col=col1) lines(roc2, lty = lty2, lwd = lwd2, col=col2) abline(1, -1, lty = "dotted") } else { area1 <- area2 <- array() for (i in 2:length(cutoff)) { area1[i-1] <- (roc1[i,2] - roc1[(i-1),2]) * roc1[i,1] area2[i-1] <- (roc2[i,2] - roc2[(i-1),2]) * roc2[i,1] } return(list(roc1 = roc1, roc2 = roc2, area1 = sum(na.omit(area1)), area2 = sum(na.omit(area2)))) } } #' Plot Autocorrelation Function from Zelig QI object #' @keywords internal zeligACFplot <- function(z, omitzero=FALSE, barcol="black", epsilon=0.1, col=NULL, main="Autocorrelation Function", xlab="Period", ylab="Correlation of Present Shock with Future Outcomes", ylim=NULL, ...){ x <- z$expected.acf ci.x <- z$ci.acf if(omitzero){ x<-x[2:length(x)] ci.x$ci.upper <- ci.x$ci.upper[2:length(ci.x$ci.upper)] ci.x$ci.lower <- ci.x$ci.lower[2:length(ci.x$ci.lower)] } if(is.null(ylim)){ ylim<-c(min( c(ci.x$ci.lower, 0, x) ), max( c(ci.x$ci.upper, 0 , x) )) } if(is.null(col)){ col <- rgb(100,149,237,maxColorValue=255) } bout <- barplot(x, col=col, main=main, xlab=xlab, ylab=ylab, ylim=ylim, ...) n <- length(x) xseq <- as.vector(bout) NAseq <- rep(NA, n) xtemp <- cbind( xseq-epsilon, xseq+epsilon, NAseq) xtemp <- as.vector(t(xtemp)) ytemp <- cbind(ci.x$ci.upper, ci.x$ci.upper, NAseq) ytemp <- as.vector(t(ytemp)) lines(x=xtemp ,y=ytemp, col=barcol) ytemp <- cbind(ci.x$ci.lower, ci.x$ci.lower, NAseq) ytemp <- as.vector(t(ytemp)) lines(x=xtemp ,y=ytemp, col=barcol) xtemp <- cbind( xseq, xseq, NAseq) xtemp <- as.vector(t(xtemp)) ytemp <- cbind(ci.x$ci.upper, ci.x$ci.lower, NAseq) ytemp <- as.vector(t(ytemp)) lines(x=xtemp ,y=ytemp, col=barcol) } Zelig/R/model-ivreg.R0000644000176000001440000002125113245253056014120 0ustar ripleyusers#' Instrumental-Variable Regression #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #'@details #' Additional parameters avaialable to many models include: #' \itemize{ #' \item weights: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item bootstrap: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' #' #' @examples #' library(Zelig) #' library(dplyr) # for the pipe operator %>% #' # load and transform data #' data("CigarettesSW") #' CigarettesSW$rprice <- with(CigarettesSW, price/cpi) #' CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi) #' CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi) #' # log second stage independent variables, as logging internally for ivreg is #' # not currently supported #' CigarettesSW$log_rprice <- log(CigarettesSW$rprice) #' CigarettesSW$log_rincome <- log(CigarettesSW$rincome) #' z.out1 <- zelig(log(packs) ~ log_rprice + log_rincome | #' log_rincome + tdiff + I(tax/cpi),data = CigarettesSW, subset = year == "1995",model = "ivreg") #' summary(z.out1) #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_ivreg.html} #' Fit instrumental-variable regression by two-stage least squares. This is #' equivalent to direct instrumental-variables estimation when the number of #' instruments is equal to the number of predictors. #' #' @param formula specification(s) of the regression relationship #' @param instruments the instruments. Either `instruments` is missing and #' formula has three parts as in `y ~ x1 + x2 | z1 + z2 + z3` (recommended) or #' formula is `y ~ x1 + x2` and instruments is a one-sided formula #' `~ z1 + z2 + z3`. Using `instruments` is not recommended with `zelig`. # @param an optional list. See the `contrasts.arg` of # \code{\link{model.matrix.default}}. #' @param model,x,y logicals. If `TRUE` the corresponding components of the fit #' (the model frame, the model matrices , the response) are returned. #' @param ... further arguments passed to methods. See also \code{\link{zelig}}. #' #' @details Regressors and instruments for `ivreg` are most easily specified in #' a formula with two parts on the right-hand side, e.g., #' `y ~ x1 + x2 | z1 + z2 + z3`, where `x1` and `x2` are the regressors and #' `z1`, `z2`, and `z3` are the instruments. Note that exogenous regressors #' have to be included as instruments for themselves. For example, if there is #' one exogenous regressor `ex` and one endogenous regressor `en` with #' instrument `in`, the appropriate formula would be `y ~ ex + en | ex + in`. #' Equivalently, this can be specified as `y ~ ex + en | . - en + in`, i.e., #' by providing an update formula with a `.` in the second part of the #' formula. The latter is typically more convenient, if there is a large #' number of exogenous regressors. #' #' @examples #' library(Zelig) #' library(AER) # for sandwich vcov #' library(dplyr) # for the pipe operator %>% #' #' # load and transform data #' data("CigarettesSW") #' CigarettesSW$rprice <- with(CigarettesSW, price/cpi) #' CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi) #' CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi) #' #' # log second stage independent variables, as logging internally for ivreg is #' # not currently supported #' CigarettesSW$log_rprice <- log(CigarettesSW$rprice) #' CigarettesSW$log_rincome <- log(CigarettesSW$rincome) #' #' # estimate model #' z.out1 <- zelig(log(packs) ~ log_rprice + log_rincome | #' log_rincome + tdiff + I(tax/cpi), #' data = CigarettesSW, #' model = "ivreg") #' summary(z.out1) #' #' @source `ivreg` is from Christian Kleiber and Achim Zeileis (2008). Applied #' Econometrics with R. New York: Springer-Verlag. ISBN 978-0-387-77316-2. URL #' #' #' @seealso \code{\link{zelig}}, #' Greene, W. H. (1993) *Econometric Analysis*, 2nd ed., Macmillan. #' #' @md #' @import methods #' @export Zelig-ivreg #' @exportClass Zelig-ivreg #' #' @include model-zelig.R zivreg <- setRefClass("Zelig-ivreg", contains = "Zelig") zivreg$methods( initialize = function() { callSuper() .self$name <- "ivreg" .self$authors <- "Christopher Gandrud" .self$packageauthors <- "Christian Kleiber and Achim Zeileis" .self$year <- 2008 .self$description <- "Instrumental-Variable Regression" .self$fn <- quote(AER::ivreg) # JSON .self$outcome <- "continous" .self$wrapper <- "ivreg" .self$acceptweights <- TRUE } ) zivreg$methods( zelig = function(formula, data, ..., weights = NULL, by = NULL, bootstrap = FALSE) { .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call callSuper(formula = formula, data = data, ..., weights = weights, by = by, bootstrap = bootstrap) # Automated Background Test Statistics and Criteria rse <- lapply(.self$zelig.out$z.out, (function(x) vcovHC(x, type = "HC0"))) rse.se <- sqrt(diag(rse[[1]])) # Needs to work with "by" argument est.se <- sqrt(diag(.self$get_vcov()[[1]])) } ) zivreg$methods( param = function(z.out, method = "mvn") { if(identical(method,"mvn")){ return(list(simparam = mvrnorm(.self$num, coef(z.out), vcov(z.out)), simalpha = rep(summary(z.out)$sigma, .self$num) ) ) } else if(identical(method, "point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha = summary(z.out)$sigma)) } else { stop("param called with method argument of undefined type.") } } ) zivreg$methods( qi = function(simparam, mm) { ev <- simparam$simparam %*% t(mm) pv <- as.matrix(rnorm(n = length(ev), mean = ev, sd = simparam$simalpha), nrow = length(ev), ncol = 1) return(list(ev = ev, pv = pv)) } ) #zivreg$methods( # mcfun = function(z, h, b0 = 0, b1 = 1, alpha = 1, sim = TRUE){ # x <- b0 + 2*z + 3*h + sim * rnorm(n = length(z), sd = alpha + 1) # y <- b0 + b1*x + sim * rnorm(n = length(z), sd = alpha) # yx <- list(y, x) # return(yx) # } #) Zelig/R/model-gee.R0000755000176000001440000000501013245253056013542 0ustar ripleyusers#' Generalized Estimating Equations Model object for inheritance across models in Zelig #' #' @import methods #' @export Zelig-gee #' @exportClass Zelig-gee #' #' @include model-zelig.R zgee <- setRefClass("Zelig-gee", contains = "Zelig") zgee$methods( initialize = function() { callSuper() .self$packageauthors <- "Soren Hojsgaard, Ulrich Halekoh, and Jun Yan" .self$modelauthors <- "Patrick Lam" .self$acceptweights <- TRUE } ) zgee$methods( zelig = function(formula, id, ..., zcor = NULL, corstr = "independence", data, weights = NULL, by = NULL, bootstrap = FALSE) { localData <- data # avoids CRAN warning about deep assignment from formula existing separately as argument and field .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call if (corstr == "fixed" && is.null(zcor)) stop("R must be defined") # if id is a valid column-name in data, then we just need to extract the # column and re-order the data.frame and cluster information if (is.character(id) && length(id) == 1 && id %in% colnames(localData)) { id <- localData[, id] localData <- localData[order(id), ] id <- sort(id) } .self$model.call$family <- call(.self$family, .self$link) .self$model.call$id <- id .self$model.call$zcor <- zcor .self$model.call$corstr <- corstr callSuper(formula = formula, data = localData, ..., weights = weights, by = by, bootstrap = bootstrap) # Prettify summary display without modifying .self$model.call for (i in length(.self$zelig.out$z.out)) { .self$zelig.out$z.out[[i]]$call$id <- .self$zelig.call$id .self$zelig.out$z.out[[i]]$call$zcor <- "zcor" } } ) zgee$methods( param = function(z.out, method="mvn") { so <- summary(z.out) shape <- so$dispersion if(identical(method,"point")){ return( list(simparam = t(as.matrix(coef(z.out))), simalpha = shape[1][1] )) }else if(identical(method,"mvn")){ simalpha <- rnorm(n = .self$num, mean = shape[1][[1]], sd = shape[2][[1]]) simparam.local <- mvrnorm(n = .self$num, mu = coef(z.out), Sigma = so$cov.unscaled) simparam.local <- list(simparam = simparam.local, simalpha = simalpha) return(simparam.local) } } ) # zgee$methods( # show = function() { # for (i in length(.self$zelig.out$z.out)) { # .self$zelig.out$z.out[[i]]$call$id <- "id" # } # callSuper() # } # ) Zelig/R/model-binchoice-survey.R0000644000176000001440000000115513245253056016263 0ustar ripleyusers#' Object for Binary Choice outcomes with Survey Weights #' for inheritance across models in Zelig #' #' @import methods #' @export Zelig-binchoice-survey #' @exportClass Zelig-binchoice-survey #' #' @include model-zelig.R #' @include model-binchoice.R #' @include model-survey.R zbinchoicesurvey <- setRefClass("Zelig-binchoice-survey", contains = c("Zelig-survey", "Zelig-binchoice")) zbinchoicesurvey$methods( initialize = function() { callSuper() .self$family <- "binomial" .self$category <- "continuous" # JSON from parent } ) Zelig/R/model-arima.R0000755000176000001440000004357713245253056014117 0ustar ripleyusers#' Autoregressive and Moving-Average Models with Integration for Time-Series Data #' #' Warning: \code{summary} does not work with timeseries models after #' simulation. #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. For example, to run the same model on all fifty states, you could #' use: \code{z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', #' by = 'state')} You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' @param ts The name of the variable containing the time indicator. This should be passed in as #' a string. If this variable is not provided, Zelig will assume that the data is already #' ordered by time. #' @param cs Name of a variable that denotes the cross-sectional element of the data, for example, #' country name in a dataset with time-series across different countries. As a variable name, #' this should be in quotes. If this is not provided, Zelig will assume that all observations #' come from the same unit over time, and should be pooled, but if provided, individual models will #' be run in each cross-section. #' If \code{cs} is given as an argument, \code{ts} must also be provided. Additionally, \code{by} #' must be \code{NULL}. #' @param order A vector of length 3 passed in as \code{c(p,d,q)} where p represents the order of the #' autoregressive model, d represents the number of differences taken in the model, and q represents #' the order of the moving average model. #' @details #' Currently only the Reference class syntax for time series. This model does not accept #' Bootstraps or weights. #' #' #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' @examples #' data(seatshare) #' subset <- seatshare[seatshare$country == "UNITED KINGDOM",] #' ts.out <- zarima$new() #' ts.out$zelig(unemp ~ leftseat, order = c(1, 0, 1), data = subset) #' #' # Set fitted values and simulate quantities of interest #' ts.out$setx(leftseat = 0.75) #' ts.out$setx1(leftseat = 0.25) #' ts.out$sim() #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_arima.html} #' @import methods #' @export Zelig-arima #' @exportClass Zelig-arima #' #' @include model-zelig.R #' @include model-timeseries.R zarima <- setRefClass("Zelig-arima", contains = "Zelig-timeseries") zarima$methods( initialize = function() { callSuper() .self$name <- "arima" .self$link <- "identity" #.self$family <- "gaussian" .self$fn <- quote(zeligArimaWrapper) #.self$linkinv <- eval(call(.self$family, .self$link))$linkinv .self$description <- "Autoregressive Moving-Average Models for Time-Series Data" # JSON .self$outcome <- "continuous" .self$wrapper <- "timeseries" } ) zarima$methods( qi = function(simparam, mm, mm1=NULL){ myorder <- eval(.self$zelig.call$order) mycoef <- coef(.self$zelig.out$z.out[[1]]) sd <- sqrt(.self$zelig.out$z.out[[1]]$sigma2) ## Check mm and mm1. Particularly for issues surrounding intercept. rebuildMM <- function(simparam, x){ xnames <- colnames(x) snames <- colnames(simparam) ## parameter "intercept" can be spelt "(Intercept)"" in model matrix if("(Intercept)" %in% xnames){ flag <- xnames == "(Intercept)" xnames[flag] <- "intercept" colnames(x)[flag]<- "intercept" # this is equivalent to: colnames(x) <- xnames } ## "intercept" can be included in model matrix when not an estimated parameter (for example in models with integration) xnamesflag <- xnames %in% snames x <- x[, xnamesflag, drop=FALSE] return(x) } mm <- rebuildMM(simparam, mm) if(!is.null(mm1)){ mm1 <- rebuildMM(simparam, mm1) } ## Make ACF acf <- simacf(coef=mycoef, order=myorder, params=simparam, alpha=0.05) acf.length <- length(acf$expected.acf) t1 <- 2*acf.length t2 <- 2*acf.length if((.self$bsetx1)||(.self$bsetx && !.self$bsetx1)){ # could also check if mm1 is NULL # zeligARMAbreakforecaster() calls zeligARMAlongrun() internally # return(y.shock = yseries, y.innovation = y.innov, ev.shock = evseries, ev.innovation = ev.innov) yseries <- zeligARMAbreakforecaster(y.init=NULL, x=mm, x1=mm1, simparam=simparam, order=myorder, sd=sd, t1=t1, t2=t2) # maybe check nrow(yseries)=t1 + t2 ? pv <- yseries$y.innovation[t1,] # could use either $innovation or $shock here pv.shortrun <- yseries$y.innovation[t1+1,] # could use either $innovation or $shock here pv.longrun <- yseries$y.innovation[t1+t2,] # must use $innovation here # Remember, these are expectations using the same simparam in each expectation. ev <- yseries$ev.innovation[t1,] ev.shortrun <- yseries$ev.innovation[t1+1,] ev.longrun <- yseries$ev.innovation[t1+t2,] return(list(acf = acf, ev = ev, pv = pv, pv.shortrun=pv.shortrun, pv.longrun=pv.longrun, ev.shortrun=ev.shortrun, ev.longrun=ev.longrun, pvseries.shock=yseries$y.shock, pvseries.innovation=yseries$y.innovation, evseries.shock=yseries$ev.shock, evseries.innovation=yseries$ev.innovation)) }else{ # just call zeligARMAlongrun() yseries <- zeligARMAlongrun(y.init=NULL, x=mm, simparam=simparam, order=myorder, sd=sd) pv <- yseries$y[1,] # zeligARMAlongrun returns the series in reverse order to zeligARMAbreakforecaster # Remember, these are expectations using the same simparam in each expectation: ev <- yseries$ev[1,] return(list(acf = acf, ev = ev, pv = pv)) } } ) zarima$methods( mcfun = function(x, b0=0, b1=1, ..., sim=TRUE){ mu <- exp(b0 + b1 * x) if(sim){ y <- rnorm(n=length(x), mean=mu) return(y) }else{ return(mu) } } ) #' Estimation wrapper function for arima models, to easily fit with Zelig architecture #' @keywords internal zeligArimaWrapper <- function(formula, order = c(1, 0, 0), ... , include.mean = TRUE, data){ # Using with(): # myArimaCall <- quote( arima(x=, order =, xreg= ) ) # output <- with(data, myArimaCall ) # Using arima() directly: mf <- model.frame(formula, data) acf3 <- as.character(formula[[3]]) yflag <- names(mf) %in% all.vars(formula[-3]) xflag <- names(mf) %in% all.vars(formula[-2]) myx <- as.matrix(mf[,yflag, drop = FALSE]) # could use get_all_vars() is_varying(as.vector(myx), msg = 'Dependent variable does not vary for at least one of the cases.') myxreg <- as.matrix(mf[,xflag, drop = FALSE]) if (("1" %in% acf3 ) & ("-" %in% acf3 )){ include.mean <- FALSE } output <- stats::arima(x = myx, order = order, xreg = myxreg, include.mean = include.mean, ...) } #' Construct Autocorrelation Function from Zelig object and simulated parameters #' @keywords internal simacf <- function(coef, order, params, alpha = 0.5){ #order <- eval(.self$zelig.call$order) myar <- myma <- myar.seq <- myma.seq <- NULL if(order[1]>0){ arnames <- paste("ar", 1:order[1], sep="") myar <- coef[arnames] myar.seq <- params[, arnames, drop=FALSE] } if(order[3]>0){ manames <- paste("ma", 1:order[3], sep="") myma <- coef[manames] myma.seq <- params[, manames, drop=FALSE] } mylag.max<-10 # Need to set automatically. n.sims<-nrow(params) expected.acf <- ARMAacf(ar=myar, ma=myma, lag.max=mylag.max) acf.history<-matrix(NA, nrow=n.sims, ncol=length(expected.acf)) # length(expected.acf) = mylag.max +1 for(i in 1:n.sims){ acf.history[i,] <- ARMAacf(ar=myar.seq[i,], ma=myma.seq[i,], lag.max=mylag.max) } # Define functions to compute confidence intervals for each column in a matrix ci.matrix <- function(x, alpha) { pos.hi <- max(round((1-(alpha/2))*nrow(x)), 1) pos.low <-max(round((alpha/2)*nrow(x)), 1) ci.lower <- ci.upper <- rep(NA, ncol(x)) for(i in 1:ncol(x)){ temp<-sort(x[,i]) ci.lower[i]<-temp[pos.low] ci.upper[i]<-temp[pos.hi] } return(list(ci.lower=ci.lower, ci.upper=ci.upper)) } ci.acf <- ci.matrix(x=acf.history, alpha=0.05) return(list(expected.acf=expected.acf, ci.acf=ci.acf, sims.acf=acf.history)) } #' Construct Simulated Next Step in Dynamic Series #' @keywords internal zeligARMAnextstep <- function(yseries=NULL, xseries, wseries=NULL, beta, ar=NULL, i=NULL, ma=NULL, sd){ ## Check inputs # t is obs across time # s is sims # k is covariates # order is (p,q,r) # assume yseries (t x sims), xseries (t x k), wseries (t x s), beta (s x k), ar (s x p), ma (s x r) are matrix # assume sd is scalar ## Could construct these by using known order more deliberatively if(is.vector(yseries)){ #print("warning: yseries is vector") yseries <- matrix(yseries, nrow=1) # Assume if y is a vector, that we are only running one simulation chain of y, so y is (t x 1) } if(is.vector(xseries)){ #print("warning: xseries is vector") xseries <- matrix(xseries, nrow=1) # Assume if x is a vector, that there are no lagged terms, so x is (1 x k) } if(is.vector(wseries)){ #print("warning: wseries is vector") wseries <- matrix(wseries, nrow=1) # Assume if w is a vector, that we are only running one simulation chain of y, so w is (t x 1) } if(is.vector(beta)){ #print("warning: beta is vector") beta <- matrix(beta, ncol=1) } if(is.vector(ar)){ #print("warning: ar is vector") ar <- matrix(ar, ncol=1) } if(is.vector(ma)){ #print("warning: ma is vector") ma <- matrix(ma, ncol=1) } ar.term <- function(yseries, ar, n){ yshort <- yseries[1:ncol(ar), , drop=FALSE] # because we only need the diagonal of a square matrix, we can avoid full matrix multiplication return( rowSums( ar * t(yshort) ) ) # diag[(s x p) . (p x s)] = diag[(s x s)] = (s x 1) } xt.term <- function(xseries, beta){ return( as.vector(beta %*% t(xseries)) ) # (s x k) . t(1 x k) = (s x 1) } ma.term <- function(wseries, ma){ wshort <- wseries[1:ncol(ma), , drop=FALSE] return( rowSums( ma * t(wshort)) ) # diag[(s x r) . (r x s)] = diag[(s x s)] = (s x 1) } n.sims <- ncol(yseries) w <- rnorm(n=n.sims, mean=0, sd=sd) y <- xt.term(xseries,beta) + w # conformable if xt is vector and w vector if(!is.null(ar)){ y <- y + ar.term(yseries,ar) # conformable if y vector and ar vector } if(!is.null(ma)){ y <- y + ma.term(wseries,ma) # conformable if y vector and ma vector } exp.y <- y - w # one interpretation of an EV QI: E(y| l(w), l(y)) return(list(y=y, w=w, exp.y=exp.y)) } #' Calculate the Long Run Exquilibrium for Fixed X #' @keywords internal zeligARMAlongrun <- function(y.init=NULL, x, simparam, order, sd, tol=NULL, burnin=20){ if(is.null(tol)){ tol<-0.01 } ar <- i <- ma <- NULL ## Ensure parameter simulations in same order as model matrix xnames <- colnames(x) beta <- simparam[,xnames] ## Extract AR and MA terms if(order[1]>0){ arnames <- paste("ar", 1:order[1], sep="") ar <- simparam[,arnames] } if(order[3]>0){ manames <- paste("ma", 1:order[3], sep="") ma <- simparam[,manames] } timepast <- max(order[1],order[3]) n.sims <- nrow(simparam) if(is.vector(x)){ x<-matrix(x,nrow=1, ncol=length(x)) } if(is.null(y.init)){ if (!is.matrix(beta)) beta <- matrix(beta, ncol = 1) betabar <- t(apply(beta, 2, mean)) y.init <- x %*% t(beta) } yseries <- matrix(y.init, nrow=timepast, ncol=n.sims, byrow=TRUE) wseries <- matrix(rnorm(n=timepast*n.sims), nrow=timepast, ncol=n.sims) evseries <- matrix(NA, nrow=timepast, ncol=n.sims) finished <- FALSE count <- 0 while(!finished){ y <- zeligARMAnextstep(yseries=yseries[1:timepast, ], xseries=x, wseries=wseries[1:timepast, ], beta = beta, ar = ar, i = i, ma = ma, sd = sd) yseries <- rbind(y$y, yseries) wseries <- rbind(y$w, wseries) evseries<- rbind(y$exp.y, evseries) #diff <- mean(abs(y.1 - y.0)) # Eventually need to determine some automated stopping rule count <- count+1 finished <- count > burnin #| (diff < tol) } return(list(y.longrun=yseries, w.longrun=wseries, ev.longrun=evseries)) } #' Construct Simulated Series with Internal Discontinuity in X #' @keywords internal zeligARMAbreakforecaster <- function(y.init=NULL, x, x1, simparam, order, sd, t1=5, t2=10){ longrun.out <- zeligARMAlongrun(y.init=y.init, x=x, simparam=simparam, order=order, sd=sd) yseries <- longrun.out$y.longrun wseries <- longrun.out$w.longrun evseries <- longrun.out$ev.longrun ## Ensure parameter simulations in same order as model matrix xnames <- colnames(x) beta <- simparam[,xnames] ## Extract AR and MA terms ar <- i <- ma <- NULL if(order[1]>0){ arnames <- paste("ar", 1:order[1], sep="") ar <- simparam[,arnames] } if(order[3]>0){ manames <- paste("ma", 1:order[3], sep="") ma <- simparam[,manames] } timepast <- max(order[1],order[3]) # How many steps backward are needed in the series -- could we be more precise? # Take a step at covariates x for(i in 2:t1){ nextstep <- zeligARMAnextstep(yseries=yseries[1:timepast, ], xseries=x, wseries=wseries[1:timepast, ], beta=beta, ar=ar, i=i, ma=ma, sd=sd) yseries <- rbind(nextstep$y, yseries) # Could just change arguments so nextstep(nextstep) doesn't need to copy elsewhere. wseries <- rbind(nextstep$w, wseries) evseries <- rbind(nextstep$exp.y, evseries) } # Introduce shock nextstep <- zeligARMAnextstep(yseries=yseries[1:timepast, ], xseries=x1, wseries=wseries[1:timepast, ], beta=beta, ar=ar, i=i, ma=ma, sd=sd) yseries <- rbind(nextstep$y, yseries) # Could just change arguments so nextstep(nextstep) doesn't need to copy elsewhere. wseries <- rbind(nextstep$w, wseries) evseries <- rbind(nextstep$exp.y, evseries) y.innov <- yseries w.innov <- wseries # Note: sequence of stocastic terms are going to depart now ev.innov <- evseries for(i in 2:t2){ # Take further steps at covariates x1 (an introduction of an innovation) nextstep <- zeligARMAnextstep(yseries=y.innov[1:timepast, ], xseries=x1, wseries=w.innov[1:timepast, ], beta=beta, ar=ar, i=i, ma=ma, sd=sd) y.innov <- rbind(nextstep$y, y.innov) # Could just change arguments so nextstep(nextstep) doesn't need to copy elsewhere. w.innov <- rbind(nextstep$w, w.innov) ev.innov <- rbind(nextstep$exp.y, ev.innov) # And take steps returning to old covariates (an introduction of a shock) nextstep <- zeligARMAnextstep(yseries=yseries[1:timepast, ], xseries=x, wseries=wseries[1:timepast, ], beta=beta, ar=ar, i=i, ma=ma, sd=sd) yseries <- rbind(nextstep$y, yseries) # Could just change arguments so nextstep(nextstep) doesn't need to copy elsewhere. wseries <- rbind(nextstep$w, wseries) evseries <- rbind(nextstep$exp.y, evseries) } yseries <- yseries[1:(t1 + t2), ] # Truncate series to last periods, removing burn-in to equilibrium y.innov <- y.innov[1:(t1 + t2), ] evseries <- evseries[1:(t1 + t2), ] ev.innov <- ev.innov[1:(t1 + t2), ] yseries <- yseries[nrow(yseries):1,] # Change y to conventional row ordering by time before returning y.innov <- y.innov[nrow(y.innov):1,] evseries <- evseries[nrow(evseries):1, ] ev.innov <- ev.innov[nrow(ev.innov):1, ] return(list(y.shock = yseries, y.innovation = y.innov, ev.shock = evseries, ev.innovation = ev.innov)) } Zelig/R/model-normal.R0000755000176000001440000001450213245253056014300 0ustar ripleyusers#' Normal Regression for Continuous Dependent Variables #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #'@param below (defaults to 0) The point at which the dependent variable is censored from below. If any values in the dependent variable are observed to be less than the censoring point, it is assumed that that particular observation is censored from below at the observed value. (See for a Bayesian implementation that supports both left and right censoring.) #'@param robust defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators (see and ) and the options selected in cluster. #'@param if robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then #'z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", model = "tobit", data = mydata) #'means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster. #'@param formula a model fitting formula #' #'@examples #' data(macro) #' z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "normal", #' data = macro) #' summary(z.out1) #' x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8)) #' x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2)) #' s.out1 <- sim(z.out1, x = x.high, x1 = x.low) #' summary(s.out1) #' plot(s.out1) #' #' #'@seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_normal.html} #' @import methods #' @export Zelig-normal #' @exportClass Zelig-normal #' #' @include model-zelig.R #' @include model-glm.R znormal <- setRefClass("Zelig-normal", contains = "Zelig-glm") znormal$methods( initialize = function() { callSuper() .self$name <- "normal" .self$family <- "gaussian" .self$link <- "identity" .self$linkinv <- eval(call(.self$family, .self$link))$linkinv .self$authors <- "Kosuke Imai, Gary King, Olivia Lau" .self$year <- 2008 .self$category <- "continuous" .self$description <- "Normal Regression for Continuous Dependent Variables" # JSON .self$outcome <- "continuous" .self$wrapper <- "normal" } ) znormal$methods( param = function(z.out, method="mvn") { degrees.freedom <- z.out$df.residual sig2 <- base::summary(z.out)$dispersion # not to call class summary method simalpha <- sqrt(degrees.freedom * sig2 / rchisq(.self$num, degrees.freedom)) if(identical(method,"mvn")){ simparam.local <- mvrnorm(n = .self$num, mu = coef(z.out), Sigma = vcov(z.out)) simparam.local <- list(simparam = simparam.local, simalpha = simalpha) return(simparam.local) } else if(identical(method,"point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha = simalpha)) } } ) znormal$methods( qi = function(simparam, mm) { theta <- matrix(simparam$simparam %*% t(mm), nrow = nrow(simparam$simparam)) ev <- theta pv <- matrix(NA, nrow = nrow(theta), ncol = ncol(theta)) for (j in 1:nrow(ev)) pv[j, ] <- rnorm(ncol(ev), mean = ev[j, ], sd = simparam$simalpha[j]) return(list(ev = ev, pv = pv)) } ) znormal$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ y <- b0 + b1*x + sim * rnorm(n=length(x), sd=alpha) return(y) } ) Zelig/R/model-logit.R0000755000176000001440000001323513245253056014130 0ustar ripleyusers#' Logistic Regression for Dichotomous Dependent Variables #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item weights: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item bootstrap: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #'@param below (defaults to 0) The point at which the dependent variable is censored from below. If any values in the dependent variable are observed to be less than the censoring point, it is assumed that that particular observation is censored from below at the observed value. (See for a Bayesian implementation that supports both left and right censoring.) #'@param robust defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators (see and ) and the options selected in cluster. #'@param if robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then #'z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", model = "tobit", data = mydata) #'means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster. #' #'@examples #' library(Zelig) #' data(turnout) #' z.out1 <- zelig(vote ~ age + race, model = "logit", data = turnout, #' cite = FALSE) #' summary(z.out1) #' summary(z.out1, odds_ratios = TRUE) #' x.out1 <- setx(z.out1, age = 36, race = "white") #' s.out1 <- sim(z.out1, x = x.out1) #' summary(s.out1) #' plot(s.out1) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_logit.html} #' @import methods #' @export Zelig-logit #' @exportClass Zelig-logit #' #' @include model-zelig.R #' @include model-gee.R #' @include model-gamma.R #' @include model-zelig.R #' @include model-glm.R #' @include model-binchoice.R zlogit <- setRefClass("Zelig-logit", contains = "Zelig-binchoice") zlogit$methods(initialize = function() { callSuper() .self$name <- "logit" .self$link <- "logit" .self$description = "Logistic Regression for Dichotomous Dependent Variables" .self$packageauthors <- "R Core Team" .self$wrapper <- "logit" }) zlogit$methods(mcfun = function(x, b0 = 0, b1 = 1, ..., sim = TRUE) { mu <- 1/(1 + exp(-b0 - b1 * x)) if (sim) { y <- rbinom(n = length(x), size = 1, prob = mu) return(y) } else { return(mu) } } ) zlogit$methods( show = function(odds_ratios = FALSE, ...) { if (odds_ratios & !.self$mi & !.self$bootstrap) { summ <- .self$zelig.out %>% do(summ = {cat("Model: \n") ## Replace coefficients with odds-ratios .z.out.summary <- base::summary(.$z.out) .z.out.summary <- or_summary(.z.out.summary) print(.z.out.summary) }) } else { callSuper(...) } #print(base::summary(.self$zelig.out)) } ) Zelig/R/model-logit-bayes.R0000644000176000001440000001316413245253056015227 0ustar ripleyusers#' Bayesian Logit Regression #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @examples #' data(turnout) #' z.out <- zelig(vote ~ race + educate, model = "logit.bayes",data = turnout, verbose = FALSE) #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). #' \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). #' \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from #' the Markov chain is kept. The value of mcmc must be divisible by this value. The default #' value is 1. #' \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) #' is printed to the screen. #' \item \code{seed}: seed for the random number generator. The default is \code{NA} which #' corresponds to a random seed of 12345. #' \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector #' with length equal to the number of estimated coefficients. The default is \code{NA}, such #' that the maximum likelihood estimates are used as the starting values. #' } #' Use the following parameters to specify the model's priors: #' \itemize{ #' \item \code{b0}: prior mean for the coefficients, either a numeric vector or a #' scalar. If a scalar value, that value will be the prior mean for all the #' coefficients. The default is 0. #' \item \code{B0}: prior precision parameter for the coefficients, either a #' square matrix (with the dimensions equal to the number of the coefficients) or #' a scalar. If a scalar value, that value times an identity matrix will be the #' prior precision parameter. The default is 0, which leads to an improper prior. #' } #' Use the following arguments to specify optional output for the model: #' \itemize{ #' \item \code{bayes.resid}: defaults to FALSE. If TRUE, the latent #' Bayesian residuals for all observations are returned. Alternatively, #' users can specify a vector of observations for which the latent residuals should be returned. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_logitbayes.html} #' @import methods #' @export Zelig-logit-bayes #' @exportClass Zelig-logit-bayes #' #' @include model-zelig.R #' @include model-bayes.R #' @include model-logit.R zlogitbayes <- setRefClass("Zelig-logit-bayes", contains = c("Zelig-bayes", "Zelig-logit")) zlogitbayes$methods( initialize = function() { callSuper() .self$name <- "logit-bayes" .self$family <- "binomial" .self$link <- "logit" .self$linkinv <- eval(call(.self$family, .self$link))$linkinv .self$year <- 2013 .self$category <- "dichotomous" .self$authors <- "Ben Goodrich, Ying Lu" .self$description = "Bayesian Logistic Regression for Dichotomous Dependent Variables" .self$fn <- quote(MCMCpack::MCMClogit) # JSON from parent .self$wrapper <- "logit.bayes" } ) zlogitbayes$methods( mcfun = function(x, b0 = 0, b1 = 1, ..., sim = TRUE){ mu <- 1/(1 + exp(-b0 - b1 * x)) if(sim) { y <- rbinom(n = length(x), size = 1, prob = mu) return(y) } else { return(mu) } } ) Zelig/R/model-normal-bayes.R0000644000176000001440000001447213245253056015404 0ustar ripleyusers#' Bayesian Normal Linear Regression #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @examples #' data(macro) #' z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.bayes", data = macro, verbose = FALSE) #' #' @details #' Additional parameters avaialable to many models include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). #' \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). #' \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1. #' \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is printed to the screen. #' \item \code{seed}: seed for the random number generator. The default is \code{NA} which corresponds to a random seed of 12345. #' \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is \code{NA}, such that the maximum likelihood estimates are used as the starting values. #' } #' Use the following parameters to specify the model's priors: #' \itemize{ #' \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0. #' \item \code{B0}: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior. #' \item \code{c0}: c0/2 is the shape parameter for the Inverse Gamma prior on the variance of the disturbance terms. #' \item \code{d0}: d0/2 is the scale parameter for the Inverse Gamma prior on the variance of the disturbance terms. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' @examples #' #' data(macro) #' z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.bayes", #' data = macro, verbose = FALSE) #' #' z.out$geweke.diag() #' z.out$heidel.diag() #' z.out$raftery.diag() #' summary(z.out) #' #' x.out <- setx(z.out) #' s.out1 <- sim(z.out, x = x.out) #' summary(s.out1) #' #' x.high <- setx(z.out, trade = quantile(macro$trade, prob = 0.8)) #' x.low <- setx(z.out, trade = quantile(macro$trade, prob = 0.2)) #' #' s.out2 <- sim(z.out, x = x.high, x1 = x.low) #' summary(s.out2) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_normalbayes.html} #' @import methods #' @export Zelig-normal-bayes #' @exportClass Zelig-normal-bayes #' #' @include model-zelig.R #' @include model-bayes.R #' @include model-normal.R znormalbayes <- setRefClass("Zelig-normal-bayes", contains = c("Zelig-bayes", "Zelig-normal")) znormalbayes$methods( initialize = function() { callSuper() .self$name <- "normal-bayes" # CC: should't it be lsbayes? .self$year <- 2013 .self$category <- "continuous" .self$authors <- "Ben Goodrich, Ying Lu" .self$description = "Bayesian Normal Linear Regression" .self$fn <- quote(MCMCpack::MCMCregress) # JSON from parent .self$wrapper <- "normal.bayes" } ) znormalbayes$methods( qi = function(simparam, mm) { # Extract simulated parameters and get column names coef <- simparam cols <- colnames(coef) # Place the simulated variances in their own vector sigma2 <- coef[, ncol(coef)] # Remove the "sigma2" (variance) parameter # which should already be placed # in the simulated parameters cols <- cols[ ! "sigma2" == cols ] coef <- coef[, cols] ev <- coef %*% t(mm) pv <- matrix(rnorm(nrow(ev), ev, sqrt(sigma2))) return(list(ev = ev, pv = pv)) } ) znormalbayes$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ y <- b0 + b1*x + sim * rnorm(n=length(x), sd=alpha) return(y) } ) Zelig/R/model-survey.R0000755000176000001440000001020313245253056014337 0ustar ripleyusers#' Survey models in Zelig for weights for complex sampling designs #' #' @import methods #' @export Zelig-survey #' @exportClass Zelig-survey #' #' @include model-zelig.R zsurvey <- setRefClass("Zelig-survey", contains = "Zelig") zsurvey$methods(initialize = function() { callSuper() .self$fn <- quote(survey::svyglm) .self$packageauthors <- "Thomas Lumley" .self$modelauthors <- "Nicholas Carnes" .self$acceptweights <- TRUE }) zsurvey$methods(zelig = function(formula, data, ids = ~1, probs = NULL, strata = NULL, fpc = NULL, nest = FALSE, check.strata = !nest, repweights = NULL, type = NULL, combined.weights = FALSE, rho = NULL, bootstrap.average = NULL, scale = NULL, rscales = NULL, fpctype = "fraction", ..., weights = NULL, by = NULL, bootstrap = FALSE) { .self$zelig.call <- match.call(expand.dots = TRUE) warning("Not all features are available in Zelig Survey.\nConsider using surveyglm and setx directly.\nFor details see: .", call. = FALSE) recastString2Formula <- function(a) { if (is.character(a)) { a <- as.Formula(paste("~", a)) } return(a) } extract_vector <- function(x, df = data) { if ("formula" %in% class(x)) x <- as.character(x)[[2]] if (is.character(x)) if (x %in% names(df)) x <- df[, x] return(x) } checkLogical <- function(a, name = "") { if (!("logical" %in% class(a))) { cat(paste("Warning: argument ", name, " is a logical and should be set to TRUE for FALSE.", sep = "")) return(FALSE) } else { return(TRUE) } } localWeights <- weights # avoids CRAN warning about deep assignment from treatment existing separately as argument and field ## Check arguments: ## Zelig generally accepts formula names of variables present in dataset, but survey ## package looks for formula expressions or data frames, so make conversion of any ## character arguments. ids <- recastString2Formula(ids) probs <- recastString2Formula(probs) # Convert to vector from data frame as formula experssion for weights was # not being passed localWeights <- extract_vector(localWeights) #localWeights <- recastString2Formula(localWeights) strata <- recastString2Formula(strata) fpc <- recastString2Formula(fpc) checkforerror <- checkLogical(nest, "nest") checkforerror <- checkLogical(check.strata, "check.strata") repweights <- recastString2Formula(repweights) # type should be a string checkforerror <- checkLogical(combined.weights, "combined.weights") # rho is shrinkage factor scale is scaling constant rscales is scaling constant if (is.null(repweights)) { design <- survey::svydesign(data = data, ids = ids, probs = probs, strata = strata, fpc = fpc, nest = nest, check.strata = check.strata, weights = localWeights) } else { design <- survey::svrepdesign(data = data, repweights = repweights, type = type, weights = localWeights, combined.weights = combined.weights, rho = rho, bootstrap.average = bootstrap.average, scale = scale, rscales = rscales, fpctype = fpctype, fpc = fpc) } .self$model.call <- as.call(list(.self$fn, formula = .self$zelig.call$formula, design = design)) # fn will be set again by super, but initialized here for clarity .self$model.call$family <- call(.self$family, .self$link) callSuper(formula = formula, data = data, weights = localWeights, ..., by = by, bootstrap = bootstrap) }) Zelig/R/model-quantile.R0000755000176000001440000002164213245253056014635 0ustar ripleyusers#' Quantile Regression for Continuous Dependent Variables #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' In addition to the standard inputs, \code{zelig} takes the following additional options #' for quantile regression: #' \itemize{ #' \item \code{tau}: defaults to 0.5. Specifies the conditional quantile(s) that will be #' estimated. 0.5 corresponds to estimating the conditional median, 0.25 and 0.75 correspond #' to the conditional quartiles, etc. tau vectors with length greater than 1 are not currently #' supported. If tau is set outside of the interval [0,1], zelig returns the solution for all #' possible conditional quantiles given the data, but does not support inference on this fit #' (setx and sim will fail). #' \item \code{se}: a string value that defaults to "nid". Specifies the method by which #' the covariance matrix of coefficients is estimated during the sim stage of analysis. \code{se} #' can take the following values, which are passed to the \code{summary.rq} function from the #' \code{quantreg} package. These descriptions are copied from the \code{summary.rq} documentation. #' \itemize{ #' \item \code{"iid"} which presumes that the errors are iid and computes an estimate of #' the asymptotic covariance matrix as in KB(1978). #' \item \code{"nid"} which presumes local (in tau) linearity (in x) of the the #' conditional quantile functions and computes a Huber sandwich estimate using a local #' estimate of the sparsity. #' \item \code{"ker"} which uses a kernel estimate of the sandwich as proposed by Powell(1990). #' } #' \item \code{...}: additional options passed to rq when fitting the model. See documentation for rq in the quantreg package for more information. #' } #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' @examples #' library(Zelig) #' data(stackloss) #' z.out1 <- zelig(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc., #' model = "rq", data = stackloss,tau = 0.5) #' summary(z.out1) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_quantile.html} #' @import methods #' @export Zelig-quantile #' @exportClass Zelig-quantile #' #' @include model-zelig.R zquantile <- setRefClass("Zelig-quantile", contains = "Zelig", field = list(tau = "ANY" )) zquantile$methods( initialize = function() { callSuper() .self$fn <- quote(quantreg::rq) .self$name <- "quantile" .self$authors <- "Alexander D'Amour" .self$packageauthors <- "Roger Koenker" .self$modelauthors <- "Alexander D'Amour" .self$year <- 2008 .self$category <- "continuous" .self$description <- "Quantile Regression for Continuous Dependent Variables" # JSON .self$outcome <- "continuous" .self$wrapper <- "rq" .self$acceptweights <- TRUE } ) zquantile$methods( zelig = function(formula, data, ..., weights = NULL, by = NULL, bootstrap = FALSE) { # avoids CRAN warning about deep assignment from formula existing separately as argument and field localBy <- by # avoids CRAN warning about deep assignment from formula existing separately as argument and field localData <- data .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- match.call(expand.dots = TRUE) if (!is.null(.self$model.call$tau)) { if (length(eval(.self$model.call$tau)) > 1) { stop('tau argument only accepts 1 value.\nZelig is using only the first value.', call. = FALSE) } else .self$tau <- eval(.self$model.call$tau) # if (length(.self$tau) > 1) { # localData <- bind_rows(lapply(eval(.self$tau), # function(tau) cbind(tau, localData))) # # localBy <- cbind("tau", localBy) # } } else .self$tau <- 0.5 callSuper(formula = formula, data = localData, ..., weights = weights, by = localBy, bootstrap = bootstrap) rq_summaries <- lapply(.self$zelig.out$z.out, (function(x) summary(x, se = "nid", cov = TRUE))) if (length(rq_summaries) > 1) { rse <- lapply(rq_summaries, function(y) y$cov) } else rse <- rq_summaries$cov # rse <- lapply(.self$zelig.out$z.out, (function(x) # quantreg::summary.rq(x, se = "nid", cov = TRUE)$cov)) # rse <- lapply(.self$zelig.out$z.out, # (function(x) { # full <- quantreg::summary.rq(x, se = "nid", cov = TRUE)$cov # }) # ) .self$test.statistics<- list(robust.se = rse) }) zquantile$methods( param = function(z.out, method = "mvn") { object <- z.out if(identical(method,"mvn")){ rq.sum <- summary(object, cov = TRUE, se = object$se) return(mvrnorm(n = .self$num, mu = object$coef, Sigma = rq.sum$cov)) } else if(identical(method,"point")){ return(t(as.matrix(object$coef))) } }) zquantile$methods( qi = function(simparam, mm) { object <- mm coeff <- simparam eps <- .Machine$double.eps^(2/3) ev <- coeff %*% t(object) pv <- ev n <- nrow(.self$data) h <- bandwidth.rq(.self$tau, n) # estimate optimal bandwidth for sparsity if (.self$tau + h > 1) stop("tau + h > 1. Sparsity estimate failed. Please specify a tau closer to 0.5") if (.self$tau - h < 0) stop("tau - h < 0. Sparsity estimate failed. Please specify a tau closer to 0.5") beta_high <- rq(.self$formula, data = .self$data, tau = .self$tau + h )$coef beta_low <- rq(.self$formula, data = .self$data, tau = .self$tau - h)$coef F_diff <- mm %*% (beta_high - beta_low) if (any(F_diff <= 0)) warning(paste(sum(F_diff <= 0), "density estimates were non-positive. Predicted values will likely be non-sensical.")) # Includes machine error correction as per summary.rq for nid case f <- pmax(0, (2 * h) / (F_diff - eps)) # Use asymptotic approximation of Q(tau|X,beta) distribution for(ii in 1:nrow(ev)) # Asymptotic distribution as per Koenker 2005 _Quantile Regression_ p. 72 pv[ii, ] <- rnorm(length(ev[ii, ]), mean = ev[ii, ], sqrt((.self$tau * (1 - .self$tau))) / (f * sqrt(n))) return(list(ev = ev, pv = pv)) } ) Zelig/R/model-poisson-survey.R0000755000176000001440000001055513245253056016041 0ustar ripleyusers#' Poisson Regression with Survey Weights #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' @examples #' library(Zelig) #' data(api, package="survey") #' z.out1 <- zelig(enroll ~ api99 + yr.rnd , model = "poisson.survey", data = apistrat) #' summary(z.out1) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_poissonsurvey.html} #' @import methods #' @export Zelig-poisson-gee #' @exportClass Zelig-poisson-gee #' #' @include model-zelig.R #' @include model-survey.R #' @include model-poisson.R zpoissonsurvey <- setRefClass("Zelig-poisson-survey", contains = c("Zelig-survey", "Zelig-poisson")) zpoissonsurvey$methods( initialize = function() { callSuper() .self$name <- "poisson-survey" .self$family <- "poisson" .self$link <- "log" .self$linkinv <- eval(call(.self$family, .self$link))$linkinv .self$category <- "continuous" .self$description = "Poisson Regression with Survey Weights" # JSON from parent .self$wrapper <- "poisson.survey" } ) zpoissonsurvey$methods( qi = function(simparam, mm) { eta <- simparam %*% t(mm) theta.local <- matrix(.self$linkinv(eta), nrow = nrow(simparam)) ev <- theta.local pv <- matrix(NA, nrow = nrow(theta.local), ncol = ncol(theta.local)) for (i in 1:ncol(theta.local)) pv[, i] <- rpois(nrow(theta.local), lambda = theta.local[, i]) return(list(ev = ev, pv = pv)) } ) zpoissonsurvey$methods( mcfun = function(x, b0=0, b1=1, ..., sim=TRUE){ lambda <- exp(b0 + b1 * x) if(sim){ y <- rpois(n=length(x), lambda=lambda) return(y) }else{ return(lambda) } } ) Zelig/R/model-probit-gee.R0000755000176000001440000001036513245253056015050 0ustar ripleyusers#' Generalized Estimating Equation for Probit Regression #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' @param corstr:character string specifying the correlation structure: "independence", #' "exchangeable", "ar1", "unstructured" and "userdefined" #' @param See geeglm in package geepack for other function arguments. #' @param id: where id is a variable which identifies the clusters. The data should be #' sorted by id and should be ordered within each cluster when appropriate #' @param corstr: character string specifying the correlation structure: "independence", #' "exchangeable", "ar1", "unstructured" and "userdefined" #' @param geeglm: See geeglm in package geepack for other function arguments #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #'@examples #' data(turnout) #' turnout$cluster <- rep(c(1:200), 10) #' sorted.turnout <- turnout[order(turnout$cluster),] #' z.out1 <- zelig(vote ~ race + educate, model = "probit.gee", #' id = "cluster", data = sorted.turnout) #' summary(z.out1) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_probitgee.html} #' @import methods #' @export Zelig-probit-gee #' @exportClass Zelig-probit-gee #' #' @include model-zelig.R #' @include model-binchoice-gee.R zprobitgee <- setRefClass("Zelig-probit-gee", contains = c("Zelig-binchoice-gee")) zprobitgee$methods( initialize = function() { callSuper() .self$name <- "probit-gee" .self$link <- "probit" .self$description <- "General Estimating Equation for Probit Regression" .self$wrapper <- "probit.gee" } ) Zelig/R/model-relogit.R0000755000176000001440000003210613245253056014455 0ustar ripleyusers#' Rare Events Logistic Regression for Dichotomous Dependent Variables #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' The relogit procedure supports four optional arguments in addition to the #' standard arguments for zelig(). You may additionally use: #' \itemize{ #' \item \code{tau}: a vector containing either one or two values for \code{tau}, #' the true population fraction of ones. Use, for example, tau = c(0.05, 0.1) to specify #' that the lower bound on tau is 0.05 and the upper bound is 0.1. If left unspecified, only #' finite-sample bias correction is performed, not case-control correction. #' \item \code{case.control}: if tau is specified, choose a method to correct for case-control #' sampling design: "prior" (default) or "weighting". #' \item \code{bias.correct}: a logical value of \code{TRUE} (default) or \code{FALSE} #' indicating whether the intercept should be corrected for finite sample (rare events) bias. #' } #' #' Additional parameters avaialable to many models include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' @examples #' library(Zelig) #' data(mid) #' z.out1 <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, #' data = mid, model = "relogit", tau = 1042/303772) #' summary(z.out1) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_relogit.html} #' @import methods #' @export Zelig-relogit #' @exportClass Zelig-relogit #' #' @include model-zelig.R #' @include model-glm.R #' @include model-binchoice.R #' @include model-logit.R zrelogit <- setRefClass("Zelig-relogit", contains = "Zelig", fields = list(family = "character", link = "character", linkinv = "function")) zrelogit$methods( initialize = function() { callSuper() .self$name <- "relogit" .self$description <- "Rare Events Logistic Regression for Dichotomous Dependent Variables" .self$fn <- quote(relogit) .self$family <- "binomial" .self$link <- "logit" .self$wrapper <- "relogit" ref1 <- bibentry( bibtype="Article", title = "Logistic Regression in Rare Events Data", author = c( person("Gary", "King"), person("Langche", "Zeng") ), journal = "Political Analysis", volume = 9, number = 2, year = 2001, pages = "137--163") ref2 <- bibentry( bibtype="Article", title = "Explaining Rare Events in International Relations", author = c( person("Gary", "King"), person("Langche", "Zeng") ), journal = "International Organization", volume = 55, number = 3, year = 2001, pages = "693--715") .self$refs<-c(.self$refs,ref1,ref2) } ) zrelogit$methods( show = function(odds_ratios = FALSE, ...) { if (.self$robust.se) { if (!.self$mi & !.self$bootstrap) { # Replace standard errors with robust standard errors cat("Model: \n") f5 <- .self$copy() obj <- f5$from_zelig_model() summ <- summary(obj) robust_model <- lmtest::coeftest(obj, vcov = sandwich::vcovHC(obj, "HC1")) summ$coefficients[, c(2:4)] <- robust_model[, c(2:4)] if (odds_ratios) { summ <- or_summary(summ, label_mod_se = "(OR, robust)") } else colnames(summ$coefficients)[2] <- paste(colnames(summ$coefficients)[2], "(robust)") print(summ) } else if (.self$mi || .self$bootstrap) stop("Weighted case control correction results are not currently available for multiply imputed or bootstrapped data.", call. = FALSE) } else if (!.self$robust.se & odds_ratios & !.self$mi & !.self$bootstrap) { cat("Model: \n") f5 <- .self$copy() obj <- f5$from_zelig_model() summ <- summary(obj) summ <- or_summary(summ) print(summ) } else { callSuper(...) } #print(base::summary(.self$zelig.out)) } ) zrelogit$methods( zelig = function(formula, ..., tau = NULL, bias.correct = NULL, case.control = NULL, data, by = NULL, bootstrap = FALSE) { if (!is.null(tau)) { if (any(tau <= 0)) stop("tau is the population proportion of 1's for the response variable.\nIt must be > 0.", call. = FALSE) } .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call # Catch NULL case.control if (is.null(case.control)) case.control <- "prior" if (case.control == "weighting") # See GitHub issue #295 .self$robust.se <- TRUE else if (length(.self$robust.se) == 0) .self$robust.se <- FALSE # Catch NULL bias.correct if (is.null(bias.correct)) bias.correct = TRUE # Construct formula. Relogit models have the structure: # cbind(y, 1-y) ~ x1 + x2 + x3 + ... + xN # Where y is the response. # form <- update(formula, cbind(., 1 - .) ~ .) # .self$model.call$formula <- form .self$model.call$case.control <- case.control .self$model.call$bias.correct <- bias.correct .self$model.call$tau <- tau callSuper(formula = formula, data = data, ..., weights = NULL, by = by, bootstrap = bootstrap) } ) zrelogit$methods( modcall_formula_transformer = function() { "Transform model call formula." # Construct formula. Relogit models have the structure: # cbind(y, 1-y) ~ x1 + x2 + x3 + ... + xN # Where y is the response. relogit_form <- update(.self$formula, cbind(., 1 - .) ~ .) .self$model.call$formula <- relogit_form } ) zrelogit$methods( qi = function(simparam, mm) { .self$linkinv <- eval(call(.self$family, .self$link))$linkinv coeff <- simparam eta <- simparam %*% t(mm) eta <- Filter(function (y) !is.na(y), eta) theta <- matrix(.self$linkinv(eta), nrow = nrow(coeff)) ev <- matrix(.self$linkinv(eta), ncol = ncol(theta)) pv <- matrix(nrow = nrow(ev), ncol = ncol(ev)) for (j in 1:ncol(ev)) pv[, j] <- rbinom(length(ev[, j]), 1, prob = ev[, j]) levels(pv) <- c(0, 1) return(list(ev = ev, pv = pv)) } ) #' Estimation function for rare events logit models #' #' @details This is intended as an internal function. Regular users should #' use \code{zelig} with \code{model = "relogit"}. #' #' @keywords internal relogit <- function(formula, data = sys.parent(), tau = NULL, bias.correct = TRUE, case.control = "prior", ...){ mf <- match.call() mf$tau <- mf$bias.correct <- mf$case.control <- NULL if (!is.null(tau)) { tau <- unique(tau) if (length(case.control) > 1) stop("You can only choose one option for case control correction.") ck1 <- grep("p", case.control) ck2 <- grep("w", case.control) if (length(ck1) == 0 & length(ck2) == 0) stop("choose either case.control = \"prior\" ", "or case.control = \"weighting\"") if (length(ck2) == 0) weighting <- FALSE else weighting <- TRUE } else weighting <- FALSE if (length(tau) >= 2) { stop("tau must be a vector of length less than or equal to 1. For multiple taus, estimate models individually.") # else if (length(tau) == 2) { # The following is not currently supported due to issue with summary # mf[[1]] <- relogit # res <- list() # mf$tau <- min(tau) # res$lower.estimate <- eval(as.call(mf), parent.frame()) # mf$tau <- max(tau) # res$upper.estimate <- eval(as.call(mf), parent.frame()) # res$formula <- formula # class(res) <- c("Relogit2", "Relogit") # return(res) } else { mf[[1]] <- glm mf$family <- binomial(link = "logit") y2 <- model.response(model.frame(mf$formula, data)) if (is.matrix(y2)) y <- y2[,1] else y <- y2 ybar <- mean(y) if (weighting) { w1 <- tau / ybar w0 <- (1-tau) / (1-ybar) wi <- w1 * y + w0 * (1 - y) mf$weights <- wi } res <- eval(as.call(mf), parent.frame()) res$call <- match.call(expand.dots = TRUE) res$tau <- tau X <- model.matrix(res) ## bias correction if (bias.correct){ pihat <- fitted(res) if (is.null(tau)) # w_i = 1 wi <- rep(1, length(y)) else if (weighting) res$weighting <- TRUE else { w1 <- tau/ybar w0 <- (1 - tau) / (1 - ybar) wi <- w1 * y + w0 * (1 - y) res$weighting <- FALSE } W <- pihat * (1 - pihat) * wi ##Qdiag <- diag(X%*%solve(t(X)%*%diag(W)%*%X)%*%t(X)) Qdiag <- lm.influence(lm(y ~ X - 1, weights = W), do.coef = FALSE)$hat / W if (is.null(tau)) # w_1=1 since tau=ybar xi <- 0.5 * Qdiag * (2 * pihat - 1) else xi <- 0.5 * Qdiag * ((1 + w1) * pihat - w1) # returns ISQ (2001, eq. 11) ## xi <- 0.5 * Qdiag * ((1 + w0) * pihat - w0) res$coefficients <- res$coefficients - lm(xi ~ X - 1, weights = W)$coefficients res$bias.correct <- TRUE } else res$bias.correct <- FALSE ## prior correction if (!is.null(tau) & !weighting){ if (tau <= 0 || tau >= 1) stop("\ntau needs to be between 0 and 1.\n") res$coefficients["(Intercept)"] <- res$coefficients["(Intercept)"] - log(((1 - tau) / tau) * (ybar / (1 - ybar))) res$prior.correct <- TRUE res$weighting <- FALSE } else res$prior.correct <- FALSE if (is.null(res$weighting)) res$weighting <- FALSE res$linear.predictors <- t(res$coefficients) %*% t(X) res$fitted.values <- 1 / (1 + exp(-res$linear.predictors)) res$zelig <- "Relogit" class(res) <- c("Relogit", "glm", "lm") return(res) } } zrelogit$methods(mcfun = function(x, b0 = 0, b1 = 1, alpha, mc.seed=123, keepall=FALSE, ..., sim = TRUE) { set.seed(mc.seed) mu <- 1/(1 + exp(-b0 - b1 * x)) y <- rbinom(n = length(x), size = 1, prob = mu) if(keepall){ flag <- rep(TRUE, length(x)) }else{ select <- runif(length(x)) % sim() %>% plot() #' #' @author Christopher Gandrud and Ista Zhan #' @importFrom dplyr group_by_ %>% do #' @export to_zelig <- function(obj) { message('to_zelig is an experimental function.\n Please report issues to: https://github.com/IQSS/Zelig/issues\n') not_found_msg <- "Not a Zelig object and not convertible to one." # attempt to determine model type and initialize model try_na <- function(x) tryCatch(x, error = function(c) stop(not_found_msg, call. = FALSE)) model_info <- data.frame( class = try_na(class(obj)[1]), family = try_na(family(obj)$family), link = try_na(family(obj)$link), stringsAsFactors = FALSE ) zmodel <- merge(model_info, model_lookup_df)$zclass if(length(zmodel) != 1) stop(not_found_msg, call. = FALSE) message(sprintf("Assuming %s to convert to Zelig.", zmodel)) new_obj <- eval(parse(text = sprintf("%s$new()", zmodel))) new_obj$mi <- FALSE new_obj$bootstrap <- FALSE new_obj$matched <- FALSE new_obj$mi <- FALSE new_obj$data <- cbind(1, obj$model) names(new_obj$data)[1] <- "by" new_obj$by <- "by" new_obj$data <- tbl_df(new_obj$data) new_obj$formula <- as.Formula(obj$call$formula) new_obj$weights <- NULL new_obj$zelig.call <- obj$call new_obj$model.call <- obj$call new_obj$model.call$weights <- NULL new_obj$zelig.out <- new_obj$data %>% group_by_(new_obj$by) %>% do(z.out = obj) #new_obj$zelig.out <- tibble::as_tibble(list(by = 1, z.out = obj)) return(new_obj) } #' Extract the original fitted model object from a \code{zelig} estimation #' #' @param obj a zelig object with an estimated model #' #' @details Extracts the original fitted model object from a \code{zelig} #' estimation. This can be useful for passing output to non-Zelig #' post-estimation functions and packages such as texreg and stargazer #' for creating well-formatted presentation document tables. #' #' @examples #' z5 <- zls$new() #' z5$zelig(Fertility ~ Education, data = swiss) #' from_zelig_model(z5) #' #' @author Christopher Gandrud #' @export from_zelig_model <- function(obj) { is_zelig(obj) f5 <- obj$copy() return(f5$from_zelig_model()) } #' Extract simulated quantities of interest from a zelig object #' #' @param obj a zelig object with simulated quantities of interest #' #' @details A simulated quantities of interest in a tidy data formatted #' `data.frame`. This can be useful for creating custom plots. #' #' Each row contains a simulated value and each column contains: #' #' - `setx_value` whether the simulations are from the base `x` `setx` or the #' contrasting `x1` for finding first differences. #' - The fitted values specified in `setx` including a `by` column if #' `by` was used in the \code{\link{zelig}} call. #' - `expected_value` #' - `predicted_value` #' #' For multinomial reponse models, a separate column is given for the expected #' probability of each outcome in the form `expected_*`. Additionally, there #' a is column of the predicted outcomes (`predicted_value`). #' #' @examples #' #### QIs without first difference or range, from covariates fitted at #' ## central tendencies #' z.1 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, #' model = "ls") #' z.1 <- setx(z.1) #' z.1 <- sim(z.1) #' head(zelig_qi_to_df(z.1)) #' #' #### QIs for first differences #' z.2 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, #' model = "ls") #' z.2a <- setx(z.2, Petal.Length = 2) #' z.2b <- setx(z.2, Petal.Length = 4.4) #' z.2 <- sim(z.2, x = z.2a, x1 = z.2a) #' head(zelig_qi_to_df(z.2)) #' #' #### QIs for first differences, estimated by Species #' z.3 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris, #' model = "ls") #' z.3a <- setx(z.3, Petal.Length = 2) #' z.3b <- setx(z.3, Petal.Length = 4.4) #' z.3 <- sim(z.3, x = z.3a, x1 = z.3a) #' head(zelig_qi_to_df(z.3)) #' #' #### QIs for a range of fitted values #' z.4 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, #' model = "ls") #' z.4 <- setx(z.4, Petal.Length = 2:4) #' z.4 <- sim(z.4) #' head(zelig_qi_to_df(z.4)) #' #' #### QIs for a range of fitted values, estimated by Species #' z.5 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris, #' model = "ls") #' z.5 <- setx(z.5, Petal.Length = 2:4) #' z.5 <- sim(z.5) #' head(zelig_qi_to_df(z.5)) #' #' #### QIs for two ranges of fitted values #' z.6 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, #' model = "ls") #' z.6a <- setx(z.6, Petal.Length = 2:4, Species = "setosa") #' z.6b <- setx(z.6, Petal.Length = 2:4, Species = "virginica") #' z.6 <- sim(z.6, x = z.6a, x1 = z.6b) #' #' head(zelig_qi_to_df(z.6)) #' #' @source For a discussion of tidy data see #' . #' #' @seealso \code{\link{qi_slimmer}} #' @md #' @author Christopher Gandrud #' @export zelig_qi_to_df <- function(obj) { is_zelig(obj) is_sims_present(obj$sim.out) comb <- data.frame() if (is_simsx(obj$sim.out, fail = FALSE)) { comb_temp <- extract_setx(obj) comb <- rbind(comb, comb_temp) } if (is_simsx1(obj$sim.out, fail = FALSE)) { comb_temp <- extract_setx(obj, which_x = 'x1') comb <- rbind(comb, comb_temp) } if (is_simsrange(obj$sim.out, fail = FALSE)) { comb_temp <- extract_setrange(obj) comb <- rbind(comb, comb_temp) } if (is_simsrange1(obj$sim.out, fail = FALSE)) { comb_temp <- extract_setrange(obj, which_range = 'range1') comb <- rbind(comb, comb_temp) } # Need range1 if (nrow(comb) == 0) stop('Unable to find simulated quantities of interest.', call. = FALSE) return(comb) } #' Extracted fitted values from a Zelig object with `setx` values #' #' @param obj a zelig object with simulated quantities of interest #' #' @details Fitted (`setx`) values in a tidy data formatted #' `data.frame`. This was designed to enable the WhatIf package's #' `whatif` function to extract "counterfactuals". #' #' @examples #' #### QIs without first difference or range, from covariates fitted at #' ## central tendencies #' z.1 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, #' model = "ls") #' z.1 <- setx(z.1) #' zelig_setx_to_df(z.1) #' #' #### QIs for first differences #' z.2 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, #' model = "ls") #' z.2 <- setx(z.2, Petal.Length = 2) #' z.2 <- setx1(z.2, Petal.Length = 4.4) #' zelig_setx_to_df(z.2) #' #' #### QIs for first differences, estimated by Species #' z.3 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris, #' model = "ls") #' z.3 <- setx(z.3, Petal.Length = 2) #' z.3 <- setx1(z.3, Petal.Length = 4.4) #' zelig_setx_to_df(z.3) #' #' #### QIs for a range of fitted values #' z.4 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, #' model = "ls") #' z.4 <- setx(z.4, Petal.Length = 2:4) #' zelig_setx_to_df(z.4) #' #' #### QIs for a range of fitted values, estimated by Species #' z.5 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris, #' model = "ls") #' z.5 <- setx(z.5, Petal.Length = 2:4) #' zelig_setx_to_df(z.5) #' #' #### QIs for two ranges of fitted values #' z.6 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, #' model = "ls") #' z.6 <- setx(z.6, Petal.Length = 2:4, Species = "setosa") #' z.6 <- setx1(z.6, Petal.Length = 2:4, Species = "virginica") #' zelig_setx_to_df(z.6) #' #' @md #' @author Christopher Gandrud #' @export zelig_setx_to_df <- function(obj) { is_zelig(obj) comb <- data.frame() if (!is.null(obj$setx.out$x)) { comb_temp <- extract_setx(obj, only_setx = TRUE) comb <- rbind(comb, comb_temp) } if (!is.null(obj$setx.out$x1)) { comb_temp <- extract_setx(obj, which_x = 'x1', only_setx = TRUE) comb <- rbind(comb, comb_temp) } if (!is.null(obj$setx.out$range)) { comb_temp <- extract_setrange(obj, only_setx = TRUE) comb <- rbind(comb, comb_temp) } if (!is.null(obj$setx.out$range1)) { comb_temp <- extract_setrange(obj, which_range = 'range1', only_setx = TRUE) comb <- rbind(comb, comb_temp) } # Need range1 if (nrow(comb) == 0) stop('Unable to find fitted (setx) values.', call. = FALSE) return(comb) } #' Extract setx for non-range and return tidy formatted data frame #' #' @param obj a zelig object containing simulated quantities of interest #' @param which_x character string either `'x'` or `'x1'` indicating whether #' to extract the first or second set of fitted values #' @param only_setx logical whether or not to only extract `setx`` values. #' #' @seealso \code{\link{zelig_qi_to_df}} #' @author Christopher Gandrud #' #' @md #' @keywords internal extract_setx <- function(obj, which_x = 'x', only_setx = FALSE) { temp_comb <- data.frame() all_fitted <- obj$setx.out[[which_x]] if (!only_setx) all_sims <- obj$sim.out[[which_x]] temp_fitted <- as.data.frame(all_fitted$mm[[1]], row.names = NULL) by_length <- nrow(all_fitted) if (by_length > 1) { temp_fitted <- temp_fitted[rep(seq_len(nrow(temp_fitted)), by_length), ] temp_fitted <- data.frame(by = all_fitted[[1]], temp_fitted, row.names = NULL) } temp_fitted <- rm_intercept(temp_fitted) temp_fitted <- factor_coef_combine(obj, temp_fitted) if (!only_setx) { temp_ev <- lapply(all_sims$ev, unlist) temp_pv <- lapply(all_sims$pv, unlist) for (i in 1:nrow(temp_fitted)) { temp_qi <- data.frame(temp_ev[[i]], temp_pv[[i]]) if (ncol(temp_qi) == 2) names(temp_qi) <- c('expected_value', 'predicted_value') else if (ncol(temp_qi) > 2 & is.factor(temp_pv[[i]])) names(temp_qi) <- c(sprintf('expected_%s', colnames(temp_ev[[i]])), 'predicted_value') temp_df <- cbind(temp_fitted[i, ], temp_qi, row.names = NULL) temp_comb <- rbind(temp_comb, temp_df) } temp_comb$setx_value <- which_x temp_comb <- temp_comb[, c(ncol(temp_comb), 1:(ncol(temp_comb)-1))] return(temp_comb) } else if (only_setx) return(temp_fitted) } #' Extract setrange to return as tidy formatted data frame #' #' @param obj a zelig object containing a range of simulated quantities of #' interest #' @param which_range character string either `'range'` or `'range1'` #' indicating whether to extract the first or second set of fitted values #' @param only_setx logical whether or not to only extract `setx`` values. #' #' @seealso \code{\link{zelig_qi_to_df}} #' @author Christopher Gandrud #' #' @md #' @keywords internal extract_setrange <- function(obj, which_range = 'range', only_setx = FALSE) { temp_comb <- data.frame() all_fitted <- obj$setx.out[[which_range]] if (!only_setx) all_sims <- obj$sim.out[[which_range]] for (i in 1:length(all_fitted)) { temp_fitted <- as.data.frame(all_fitted[[i]]$mm[[1]], row.names = NULL) by_length <- nrow(all_fitted[[i]]) if (by_length > 1) { temp_fitted <- temp_fitted[rep(seq_len(nrow(temp_fitted)), by_length), ] temp_fitted <- data.frame(by = all_fitted[[i]][[1]], temp_fitted, row.names = NULL) } temp_fitted <- rm_intercept(temp_fitted) temp_fitted <- factor_coef_combine(obj, temp_fitted) if (!only_setx) { temp_ev <- lapply(all_sims[[i]]$ev, unlist) temp_pv <- lapply(all_sims[[i]]$pv, unlist) temp_comb_1_range <- data.frame() for (u in 1:nrow(temp_fitted)) { temp_qi <- data.frame(temp_ev[[u]], temp_pv[[u]]) if (ncol(temp_qi) == 2) names(temp_qi) <- c('expected_value', 'predicted_value') else if (ncol(temp_qi) > 2 & is.factor(temp_pv[[u]])) names(temp_qi) <- c(sprintf('expected_%s', colnames(temp_ev[[u]])), 'predicted_value') temp_df <- cbind(temp_fitted[u, ], temp_qi, row.names = NULL) temp_comb_1_range <- rbind(temp_comb_1_range, temp_df) } temp_comb <- rbind(temp_comb, temp_comb_1_range) } else if (only_setx) { temp_comb <- rbind(temp_comb, temp_fitted) } } if (!only_setx) { if (which_range == 'range') temp_comb$setx_value <- 'x' else temp_comb$setx_value <- 'x1' temp_comb <- temp_comb[, c(ncol(temp_comb), 1:(ncol(temp_comb)-1))] } return(temp_comb) } #' Return individual factor coefficient fitted values to single factor variable #' #' @param obj a zelig object with an estimated model #' @param fitted a data frame with values fitted by \code{setx}. Note #' created internally by \code{\link{extract_setx}} and #' \code{\link{extract_setrange}} #' #' @author Christopher Gandrud #' @keywords internal factor_coef_combine <- function(obj, fitted) { is_zelig(obj) if (!('mcmc' %in% class(obj$zelig.out$z.out[[1]]))) { # find a more general solution original_data <- obj$zelig.out$z.out[[1]]$model factor_vars <- sapply(original_data, is.factor) if (any(factor_vars)) { for (i in names(original_data)[factor_vars]) { if (!(i %in% names(fitted))) { matches_name <- names(fitted)[grepl(sprintf('^%s*', i), names(fitted))] var_levels <- levels(original_data[, i]) fitted[, i] <- NA for (u in matches_name) { label_value <- gsub(sprintf('^%s', i), '', u) fitted[, i][fitted[, u] == 1] <- label_value } ref_level <- var_levels[!(var_levels %in% gsub(sprintf('^%s', i), '', matches_name))] fitted[, i][is.na(fitted[, i])] <- ref_level fitted[, i] <- factor(fitted[, i], levels = var_levels) fitted <- fitted[, !(names(fitted) %in% matches_name)] } } } } return(fitted) } #' Find the median and a central interval of simulated quantity of interest #' distributions #' #' @param df a tidy-formatted data frame of simulated quantities of interest #' created by \code{\link{zelig_qi_to_df}}. #' @param qi_type character string either `ev` or `pv` for returning the #' central intervals for the expected value or predicted value, respectively. #' @param ci numeric. The central interval to return, expressed on the #' `(0, 100]` or the equivalent `(0, 1]` interval. #' #' @details A tidy-formatted data frame with the following columns: #' #' - The values fitted with \code{\link{setx}} #' - `qi_ci_min`: the minimum value of the central interval specified with #' `ci` #' - `qi_ci_median`: the median of the simulated quantity of interest #' distribution #' - `qi_ci_max`: the maximum value of the central interval specified with #' `ci` #' #' @examples #' library(dplyr) #' qi.central.interval <- zelig(Petal.Width ~ Petal.Length + Species, #' data = iris, model = "ls") %>% #' setx(Petal.Length = 2:4, Species = "setosa") %>% #' sim() %>% #' zelig_qi_to_df() %>% #' qi_slimmer() #' #' @importFrom dplyr bind_rows %>% #' @seealso \code{\link{zelig_qi_to_df}} #' @author Christopher Gandrud #' @md qi_slimmer <- function(df, qi_type = 'ev', ci = 0.95) { qi__ <- scenario__ <- NULL if (qi_type == 'ev') qi_type <- 'expected_value' if (qi_type == 'pv') qi_type <- 'predicted_value' if (!is.data.frame(df)) stop('df must be a data frame created by zelig_qi_to_df.', call. = FALSE) names_df <- names(df) if (!any(c('expected_value', 'predicted_value') %in% names_df)) stop('The data frame does not appear to have been created by zelig_qi_to_df.', call. = FALSE) ci <- ci_check(ci) lower <- (1 - ci)/2 upper <- 1 - lower if (length(qi_type) != 1) stop('Only one qi_type allowed per function call.', call. = FALSE) qi_stripped <- gsub('_.*', '', qi_type) if (!(qi_stripped %in% c('expected', 'predicted'))) stop('qi_type must be one of "ev", "pv", "expected_*" or "predicted_*". ', call. = FALSE) qi_df_location <- grep(qi_stripped, names_df) qi_length <- length(qi_df_location) if (qi_length > 1 & qi_type %in% c('ev', 'expected_value')) { message(sprintf('\nMore than one %s values found. Returning slimmed expected values for the first outcome.\nIf another is desired please enter its name in qi_type.\n', qi_stripped)) qi_var <- names_df[qi_df_location[1]] } else qi_var <- qi_type if (qi_stripped %in% 'expected'& length(qi_df_location) == 1) qi_drop <- 'predicted' else if ((qi_stripped %in% 'expected') & length(qi_df_location) > 1) { other_expected <- names_df[qi_df_location] other_expected <- other_expected[!(other_expected %in% qi_var)] qi_drop <- c(other_expected, 'predicted_value') } else qi_drop <- 'expected' if (qi_stripped %in% 'expected') qi_msg <- 'Expected Values' else qi_msg <- 'Predicted Values' message(sprintf('Slimming %s . . .', qi_msg)) # drop non-requested qi_type if (length(qi_drop) == 1) df <- df[, !(gsub('_.*', '', names_df) %in% qi_drop)] else if (length(qi_drop) > 1) df <- df[!(names_df %in% qi_drop)] names(df)[names(df) == qi_var] <- 'qi__' df$scenario__ <- interaction(df[, !(names(df) %in% 'qi__')], drop = TRUE) qi_list <- split(df, df[['scenario__']]) qi_list <- lapply(seq_along(qi_list), function(x) { if (!is.factor(qi_list[[x]][, 'qi__'])) { lower_bound <- quantile(qi_list[[x]][, 'qi__'], prob = lower) upper_bound <- quantile(qi_list[[x]][, 'qi__'], prob = upper) subset(qi_list[[x]], qi__ >= lower_bound & qi__ <= upper_bound) } else if (is.factor(qi_list[[x]][, 'qi__'])) { # Categorical outcomes prop_outcome <- as.data.frame.matrix( t(table(qi_list[[x]][, 'qi__']) / nrow(qi_list[[x]]))) names(prop_outcome) <- sprintf('predicted_proportion_(Y=%s)', 1:ncol(prop_outcome)) cbind(qi_list[[x]][1, ], prop_outcome) } }) df_slimmed <- data.frame(bind_rows(qi_list)) names(df_slimmed) <- names(qi_list[[1]]) if (!is.factor(df_slimmed$qi__)) { df_out <- df_slimmed %>% group_by(scenario__) %>% summarise(qi_ci_min = min(qi__), qi_ci_median = median(qi__), qi_ci_max = max(qi__) ) %>% data.frame scenarios_df <- df[!duplicated(df$scenario__), !(names(df) %in% 'qi__')] %>% data.frame(row.names = NULL) df_out <- merge(scenarios_df, df_out, by = 'scenario__', sort = FALSE) } else df_out <- df_slimmed df_out$scenario__ <- NULL df_out$qi__ <- NULL return(df_out) } #' Convert \code{ci} interval from percent to proportion and check if valid #' @param x numeric. The central interval to return, expressed on the `(0, 100]` #' or the equivalent `(0, 1]` interval. #' #' @md #' @keywords internal ci_check <- function(x) { if (x > 1 & x <= 100) x <- x / 100 if (x <= 0 | x > 1) { stop(sprintf("%s will not produce a valid central interval.", x), call. = FALSE) } return(x) } Zelig/R/model-normal-gee.R0000755000176000001440000001173313245253056015041 0ustar ripleyusers#' Generalized Estimating Equation for Normal Regression #' #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' @param robust defaults to TRUE. If TRUE, consistent standard errors are estimated using a "sandwich" #' estimator. #'@param corstr defaults to "independence". It can take on the following arguments: #'@param Independence (corstr = independence): cor(yit,yit')=0, for all t,t' with t not equal to t'. #' It assumes that there is no correlation within the clusters and the model becomes equivalent #' to standard normal regression. The "working" correlation matrix is the identity matrix. #'@param Fixed corstr = fixed): If selected, the user must define the "working" correlation #'matrix with the R argument rather than estimating it from the model. #'@param id: where id is a variable which identifies the clusters. The data should be sorted by #'id and should be ordered within each cluster when appropriate #'@param corstr: character string specifying the correlation structure: "independence", #'"exchangeable", "ar1", "unstructured" and "userdefined" #'@param geeglm: See geeglm in package geepack for other function arguments #'@param Mv: defaults to 1. It specifies the number of periods of correlation and #' only needs to be specified when \code{corstr} is stat_M_dep, non_stat_M_dep, or AR-M. #'@param R: defaults to NULL. It specifies a user-defined correlation matrix rather than #' estimating it from the data. The argument is used only when corstr is "fixed". The input is a TxT #' matrix of correlations, where T is the size of the largest cluster. #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #' @examples #' library(Zelig) #' data(macro) #' z.out <- zelig(unem ~ gdp + capmob + trade, model ="normal.gee", id = "country", #' data = macro, corstr = "AR-M") #' summary(z.out) #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_normalgee.html} #' @import methods #' @export Zelig-normal-gee #' @exportClass Zelig-normal-gee #' #' @include model-zelig.R #' @include model-gee.R #' @include model-normal.R znormalgee <- setRefClass("Zelig-normal-gee", contains = c("Zelig-gee", "Zelig-normal")) znormalgee$methods( initialize = function() { callSuper() .self$name <- "normal-gee" .self$family <- "gaussian" .self$link <- "identity" .self$linkinv <- eval(call(.self$family, .self$link))$linkinv .self$year <- 2011 .self$category <- "continuous" .self$authors <- "Patrick Lam" .self$description = "General Estimating Equation for Normal Regression" .self$fn <- quote(geepack::geeglm) # JSON from parent .self$wrapper <- "normal.gee" } ) Zelig/R/model-bayes.R0000644000176000001440000001035113245253056014106 0ustar ripleyusers#' Bayes Model object for inheritance across models in Zelig #' #' @import methods #' @export Zelig-bayes #' @exportClass Zelig-bayes #' #' @include model-zelig.R zbayes <- setRefClass("Zelig-bayes", contains = "Zelig") zbayes$methods( initialize = function() { callSuper() .self$packageauthors <- "Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park" .self$modelauthors <- "Ben Goodrich, and Ying Lu" } ) zbayes$methods( zelig = function(formula, burnin = 1000, mcmc = 10000, verbose = 0, ..., data, by = NULL, bootstrap = FALSE) { if(!identical(bootstrap,FALSE)){ stop("Error: The bootstrap is not available for Markov chain Monte Carlo (MCMC) models.") } .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call if (missing(verbose)) verbose <- round((mcmc + burnin) / 10) # .self$model.call$family <- call(.self$family, .self$link) .self$model.call$verbose <- verbose .self$num <- mcmc # CC: check callSuper(formula = formula, data = data, ..., by = by, bootstrap = FALSE) } ) zbayes$methods( param = function(z.out) { return(z.out) } ) zbayes$methods( get_coef = function() { "Get estimated model coefficients" return(.self$zelig.out$z.out[[1]]) } ) zbayes$methods( geweke.diag = function() { diag <- lapply(.self$zelig.out$z.out, coda::geweke.diag) # Collapse if only one list element for prettier printing if(length(diag)==1){ diag<-diag[[1]] } if(!citation("coda") %in% .self$refs){ .self$refs<-c(.self$refs,citation("coda")) } ref1<-bibentry( bibtype="InCollection", title = "Evaluating the accuracy of sampling-based approaches to calculating posterior moments.", booktitle = "Bayesian Statistics 4", author = person("John", "Geweke"), year = 1992, publisher = "Clarendon Press", address = "Oxford, UK", editor = c(person("JM", "Bernado"), person("JO", "Berger"), person("AP", "Dawid"), person("AFM", "Smith")) ) .self$refs<-c(.self$refs,ref1) return(diag) } ) zbayes$methods( heidel.diag = function() { diag <- lapply(.self$zelig.out$z.out, coda::heidel.diag) # Collapse if only one list element for prettier printing if(length(diag)==1){ diag<-diag[[1]] } if(!citation("coda") %in% .self$refs){ .self$refs<-c(.self$refs,citation("coda")) } ref1<-bibentry( bibtype="Article", title = "Simulation run length control in the presence of an initial transient.", author = c(person("P", "Heidelberger"), person("PD", "Welch")), journal = "Operations Research", volume = 31, year = 1983, pages = "1109--44") .self$refs<-c(.self$refs,ref1) return(diag) } ) zbayes$methods( raftery.diag = function() { diag <- lapply(.self$zelig.out$z.out, coda::raftery.diag) # Collapse if only one list element for prettier printing if(length(diag)==1){ diag<-diag[[1]] } if(!citation("coda") %in% .self$refs){ .self$refs<-c(.self$refs,citation("coda")) } ref1<-bibentry( bibtype="Article", title = "One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo.", author = c(person("Adrian E", "Raftery"), person("Steven M", "Lewis")), journal = "Statistical Science", volume = 31, year = 1992, pages = "1109--44") ref2<-bibentry( bibtype="InCollection", title = "The number of iterations, convergence diagnostics and generic Metropolis algorithms.", booktitle = "Practical Markov Chain Monte Carlo", author = c(person("Adrian E", "Raftery"), person("Steven M", "Lewis")), year = 1995, publisher = "Chapman and Hall", address = "London, UK", editor = c(person("WR", "Gilks"), person("DJ", "Spiegelhalter"), person("S", "Richardson")) ) .self$refs<-c(.self$refs,ref1,ref2) return(diag) } ) Zelig/R/model-negbinom.R0000755000176000001440000001264313245253056014612 0ustar ripleyusers#' Negative Binomial Regression for Event Count Dependent Variables #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' #'@examples #' library(Zelig) #' data(sanction) #' z.out <- zelig(num ~ target + coop, model = "negbin", data = sanction) #' summary(z.out) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_negbin.html} #' @import methods #' @export Zelig-negbin #' @exportClass Zelig-negbin #' #' @include model-zelig.R znegbin <- setRefClass("Zelig-negbin", contains = "Zelig", field = list(simalpha = "list" # ancillary parameters )) znegbin$methods( initialize = function() { callSuper() .self$fn <- quote(MASS::glm.nb) .self$name <- "negbin" .self$authors <- "Kosuke Imai, Gary King, Olivia Lau" .self$packageauthors <- "William N. Venables, and Brian D. Ripley" .self$year <- 2008 .self$category <- "count" .self$description <- "Negative Binomial Regression for Event Count Dependent Variables" # JSON .self$outcome <- "discrete" .self$wrapper <- "negbin" .self$acceptweights <- TRUE } ) znegbin$methods( zelig = function(formula, data, ..., weights=NULL, by = NULL, bootstrap = FALSE) { .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call callSuper(formula=formula, data=data, ..., weights=weights, by = by, bootstrap = bootstrap) rse <- lapply(.self$zelig.out$z.out, (function(x) vcovHC(x, type = "HC0"))) .self$test.statistics<- list(robust.se = rse) } ) znegbin$methods( param = function(z.out, method="mvn") { simalpha.local <- z.out$theta if(identical(method,"mvn")){ simparam.local <- mvrnorm(n = .self$num, mu = coef(z.out), Sigma = vcov(z.out)) simparam.local <- list(simparam = simparam.local, simalpha = simalpha.local) return(simparam.local) } else if(identical(method,"point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha = simalpha.local)) } } ) znegbin$methods( qi = function(simparam, mm) { coeff <- simparam$simparam alpha <- simparam$simalpha inverse <- family(.self$zelig.out$z.out[[1]])$linkinv eta <- coeff %*% t(mm) theta <- matrix(inverse(eta), nrow=nrow(coeff)) ev <- theta pv <- matrix(NA, nrow=nrow(theta), ncol=ncol(theta)) # for (i in 1:ncol(ev)) pv[, i] <- rnegbin(nrow(ev), mu = ev[i, ], theta = alpha[i]) return(list(ev = ev, pv = pv)) } ) znegbin$methods( mcfun = function(x, b0=0, b1=1, ..., sim=TRUE){ mu <- exp(b0 + b1 * x) if(sim){ y <- rnbinom(n=length(x), 1, mu=mu) return(y) }else{ return(mu) } } ) Zelig/R/model-ls.R0000755000176000001440000002053713245253056013433 0ustar ripleyusers#' Least Squares Regression for Continuous Dependent Variables #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #'@details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #'@examples #' library(Zelig) #' data(macro) #' z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "ls", data = macro, #' cite = FALSE) #' summary(z.out1) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_ls.html} #' @import methods #' @export Zelig-ls #' @exportClass Zelig-ls #' #' @include model-zelig.R zls <- setRefClass("Zelig-ls", contains = "Zelig") zls$methods( initialize = function() { callSuper() .self$name <- "ls" .self$year <- 2007 .self$category <- "continuous" .self$description <- "Least Squares Regression for Continuous Dependent Variables" .self$packageauthors <- "R Core Team" .self$fn <- quote(stats::lm) # JSON .self$outcome <- "continous" .self$wrapper <- "ls" .self$acceptweights <- TRUE } ) zls$methods( zelig = function(formula, data, ..., weights = NULL, by = NULL, bootstrap = FALSE) { .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call callSuper(formula = formula, data = data, ..., weights = weights, by = by, bootstrap = bootstrap) # Automated Background Test Statistics and Criteria rse <- lapply(.self$zelig.out$z.out, (function(x) vcovHC(x, type = "HC0"))) rse.se <- sqrt(diag(rse[[1]])) # Needs to work with "by" argument est.se <- sqrt(diag(.self$get_vcov()[[1]])) quickGim <- any( est.se > 1.5*rse.se | rse.se > 1.5*est.se ) .self$test.statistics<- list(robust.se = rse, gim.criteria = quickGim) } ) zls$methods( param = function(z.out, method="mvn") { if(identical(method,"mvn")){ return(list(simparam = mvrnorm(.self$num, coef(z.out), vcov(z.out)), simalpha = rep( summary(z.out)$sigma, .self$num) ) ) } else if(identical(method,"point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha=summary(z.out)$sigma)) } else { stop("param called with method argument of undefined type.") } } ) zls$methods( qi = function(simparam, mm) { ev <- simparam$simparam %*% t(mm) pv <- as.matrix(rnorm(n=length(ev), mean=ev, sd=simparam$simalpha), nrow=length(ev), ncol=1) return(list(ev = ev, pv = pv)) } ) zls$methods( gim = function(B=50, B2=50) { ll.normal.bsIM <- function(par,y,X,sigma){ beta <- par[1:length(X)] sigma2 <- sigma -1/2 * (sum(log(sigma2) + (y -(X%*%beta))^2/sigma2)) } getVb<-function(Dboot){ Dbar <- matrix(apply(Dboot,2,mean),nrow=B, ncol=length(Dhat), byrow=TRUE) Diff <- Dboot - Dbar Vb <- (t(Diff) %*% Diff) / (nrow(Dboot)-1) return(Vb) } getSigma<-function(lm.obj){ return(sum(lm.obj$residuals^2)/(nrow(model.matrix(lm.obj))-ncol(model.matrix(lm.obj)))) } D.est<-function(formula,data){ lm1 <- lm(formula,data, y=TRUE) mm <- model.matrix(lm1) y <- lm1$y sigma <- getSigma(lm1) grad <- apply(cbind(y,mm),1,function(x) numericGradient(ll.normal.bsIM, lm1$coefficients, y=x[1], X=x[2:length(x)], sigma=sigma)) meat <- grad%*%t(grad) bread <- -solve(vcov(lm1)) Dhat <- nrow(mm)^(-1/2)* as.vector(diag(meat + bread)) return(Dhat) } D.est.vb<-function(formula,data){ lm1 <- lm(formula,data, y=TRUE) mm <- model.matrix(lm1) y <- lm1$y sigma <- getSigma(lm1) grad <- apply(cbind(y,mm),1,function(x) numericGradient(ll.normal.bsIM, lm1$coefficients, y=x[1], X=x[2:length(x)], sigma=sigma)) meat <- grad%*%t(grad) bread <- -solve(vcov(lm1)) Dhat <- nrow(mm)^(-1/2)* as.vector(diag(meat + bread)) muB<-lm1$fitted.values DB <- matrix(NA, nrow=B2, ncol=length(Dhat)) for(j in 1:B2){ yB2 <- rnorm(nrow(data), muB, sqrt(sigma)) lm1B2 <- lm(yB2 ~ mm-1) sigmaB2 <- getSigma(lm1B2) grad <- apply(cbind(yB2,model.matrix(lm1B2)),1,function(x) numericGradient(ll.normal.bsIM, lm1B2$coefficients, y=x[1], X=x[2:length(x)], sigma=sigmaB2)) meat <- grad%*%t(grad) bread <- -solve(vcov(lm1B2)) DB[j,] <- nrow(mm)^(-1/2)*diag((meat + bread)) } Vb <- getVb(DB) T<- t(Dhat)%*%solve(Vb)%*%Dhat return(list(Dhat=Dhat,T=T)) } Dhat <- D.est(formula=.self$formula, data=.self$data) lm1 <- lm(formula=.self$formula, data=.self$data) mu <- lm1$fitted.values sigma <- getSigma(lm1) n <- length(mu) yname <- all.vars(.self$formula[[2]]) Dboot <- matrix(NA, nrow=B, ncol=length(Dhat)) bootdata<-data for(i in 1:B){ yB <- rnorm(n, mu, sqrt(sigma)) bootdata[yname] <- yB result <- D.est.vb(formula=.self$formula, data=bootdata) Dboot[i,] <- result$Dhat T[i] <- result$T } Vb <- getVb(Dboot) omega <- t(Dhat) %*% solve(Vb) %*% Dhat pb = (B+1-sum(T< as.numeric(omega)))/(B+1) .self$test.statistics$gim <- list(stat=omega, pval=pb) # When method used, add to references gimreference <- bibentry( bibtype="Article", title = "How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It", author = c( person("Gary", "King"), person("Margret E.", "Roberts") ), journal = "Political Analysis", year = 2014, pages = "1-21", url = "http://j.mp/InK5jU") .self$refs <- c(.self$refs, gimreference) } ) zls$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ y <- b0 + b1*x + sim * rnorm(n=length(x), sd=alpha) return(y) } ) Zelig/R/model-factor-bayes.R0000644000176000001440000002711113245253056015364 0ustar ripleyusers#' Bayesian Factor Analysis #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{~ Y1 + Y2 + Y3}, where Y1, Y2, and Y3 are variables #' of interest in factor analysis (manifest variables), assumed to be #' normally distributed. The model requires a minimum of three manifest #' variables contained in the #' same dataset. The \code{+} symbol means ``inclusion'' not #' ``addition.'' #' @param factors number of the factors to be fitted (defaults to 2). #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' In addition, \code{zelig()} accepts the following additional arguments for model specification: #' \itemize{ #' \item \code{lambda.constraints}: list containing the equality or #' inequality constraints on the factor loadings. Choose from one of the following forms: #' \item \code{varname = list()}: by default, no constraints are imposed. #' \item \code{varname = list(d, c)}: constrains the dth loading for the #' variable named varname to be equal to c. #' \item \code{varname = list(d, +)}: constrains the dth loading for the variable named varname to be positive; #' \item \code{varname = list(d, -)}: constrains the dth loading for the variable named varname to be negative. #' \item \code{std.var}: defaults to \code{FALSE} (manifest variables are rescaled to #' zero mean, but retain observed variance). If \code{TRUE}, the manifest #' variables are rescaled to be mean zero and unit variance. #' } #' #' In addition, \code{zelig()} accepts the following additional inputs for \code{bayes.factor}: #' \itemize{ #' \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). #' \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 20,000). #' \item \code{thin}: thinning interval for the Markov chain. Only every thin-th #' draw from the Markov chain is kept. The value of mcmc must be divisible #' by this value. The default value is 1. #' \item \code{verbose}: defaults to FALSE. If TRUE, the #' progress of the sampler (every 10%10%) is printed to the screen. #' \item \code{seed}: seed for the random number generator. The default is NA which #' corresponds to a random seed 12345. #' \item \code{Lambda.start}: starting values of the factor loading matrix \eqn{\Lambda}, either a #' scalar (all unconstrained loadings are set to that value), or a matrix with #' compatible dimensions. The default is NA, where the start value are set to #' be 0 for unconstrained factor loadings, and 0.5 or - 0.5 for constrained #' factor loadings (depending on the nature of the constraints). #' \item \code{Psi.start}: starting values for the uniquenesses, either a scalar #' (the starting values for all diagonal elements of \eqn{\Psi} are set to be this value), #' or a vector with length equal to the number of manifest variables. In the latter #' case, the starting values of the diagonal elements of \eqn{\Psi} take the values of #' Psi.start. The default value is NA where the starting values of the all the #' uniquenesses are set to be 0.5. #' \item \code{store.lambda}: defaults to TRUE, which stores the posterior draws of the factor loadings. #' \item \code{store.scores}: defaults to FALSE. If TRUE, stores the posterior draws of the #' factor scores. (Storing factor scores may take large amount of memory for a large #' number of draws or observations.) #' } #' #' The model also accepts the following additional arguments to specify prior parameters: #' \itemize{ #' \item \code{l0}: mean of the Normal prior for the factor loadings, either a scalar or a #' matrix with the same dimensions as \eqn{\Lambda}. If a scalar value, that value will be the #' prior mean for all the factor loadings. Defaults to 0. #' \item \code{L0}: precision parameter of the Normal prior for the factor loadings, either #' a scalar or a matrix with the same dimensions as \eqn{\Lambda}. If \code{L0} takes a scalar value, #' then the precision matrix will be a diagonal matrix with the diagonal elements #' set to that value. The default value is 0, which leads to an improper prior. #' \item \code{a0}: the shape parameter of the Inverse Gamma prior for the uniquenesses #' is \code{a0}/2. It can take a scalar value or a vector. The default value is 0.001. #' \item \code{b0}: the scale parameter of the Inverse Gamma prior for the uniquenesses #' is \code{b0}/2. It can take a scalar value or a vector. The default value is 0.001. #' } #' #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' } #' #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' @examples #' \dontrun{ #' data(swiss) #' names(swiss) <- c("Fert", "Agr", "Exam", "Educ", "Cath", "InfMort") #' z.out <- zelig(~ Agr + Exam + Educ + Cath + InfMort, #' model = "factor.bayes", data = swiss, #' factors = 2, verbose = FALSE, #' a0 = 1, b0 = 0.15, burnin = 500, mcmc = 5000) #' #' z.out$geweke.diag() #' z.out <- zelig(~ Agr + Exam + Educ + Cath + InfMort, #' model = "factor.bayes", data = swiss, factors = 2, #' lambda.constraints = #' list(Exam = list(1,"+"), #' Exam = list(2,"-"), #' Educ = c(2, 0), #' InfMort = c(1, 0)), #' verbose = FALSE, a0 = 1, b0 = 0.15, #' burnin = 500, mcmc = 5000) #' #' z.out$geweke.diag() #' z.out$heidel.diag() #' z.out$raftery.diag() #' summary(z.out) #' } #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_factorbayes.html} #' @import methods #' @export Zelig-factor-bayes #' @exportClass Zelig-factor-bayes #' #' @include model-zelig.R zfactorbayes <- setRefClass("Zelig-factor-bayes", contains = c("Zelig")) zfactorbayes$methods( initialize = function() { callSuper() .self$name <- "factor-bayes" .self$year <- 2013 .self$authors <- "Ben Goodrich, Ying Lu" .self$packageauthors <- "Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park" .self$description = "Bayesian Factor Analysis" .self$fn <- quote(MCMCpack::MCMCfactanal) # JSON from parent .self$wrapper <- "factor.bayes" } ) zfactorbayes$methods( zelig = function(formula, factors = 2, burnin = 1000, mcmc = 20000, verbose = 0, ..., data, by = NULL, bootstrap = FALSE) { if(!identical(bootstrap,FALSE)){ stop("Error: The bootstrap is not available for Markov chain Monte Carlo (MCMC) models.") } .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call if (missing(verbose)) verbose <- round((mcmc + burnin) / 10) if (factors < 2) stop("Number of factors needs to be at least 2") .self$model.call$verbose <- verbose .self$model.call$x <- formula .self$model.call$factors <- factors callSuper(formula = formula, data = data,..., by = by, bootstrap = FALSE) } ) zfactorbayes$methods( qi = function() { return(NULL) } ) # The following diagnostics are also in Zelig-bayes, which unfortunately Zelig-factor-bayes does not currently inherit. zfactorbayes$methods( geweke.diag = function() { diag <- lapply(.self$zelig.out$z.out, coda::geweke.diag) # Collapse if only one list element for prettier printing if(length(diag)==1){ diag<-diag[[1]] } if(!citation("coda") %in% .self$refs){ .self$refs<-c(.self$refs,citation("coda")) } ref1<-bibentry( bibtype="InCollection", title = "Evaluating the accuracy of sampling-based approaches to calculating posterior moments.", booktitle = "Bayesian Statistics 4", author = person("John", "Geweke"), year = 1992, publisher = "Clarendon Press", address = "Oxford, UK", editor = c(person("JM", "Bernado"), person("JO", "Berger"), person("AP", "Dawid"), person("AFM", "Smith")) ) .self$refs<-c(.self$refs,ref1) return(diag) } ) zfactorbayes$methods( heidel.diag = function() { diag <- lapply(.self$zelig.out$z.out, coda::heidel.diag) # Collapse if only one list element for prettier printing if(length(diag)==1){ diag<-diag[[1]] } if(!citation("coda") %in% .self$refs){ .self$refs<-c(.self$refs,citation("coda")) } ref1<-bibentry( bibtype="Article", title = "Simulation run length control in the presence of an initial transient.", author = c(person("P", "Heidelberger"), person("PD", "Welch")), journal = "Operations Research", volume = 31, year = 1983, pages = "1109--44") .self$refs<-c(.self$refs,ref1) return(diag) } ) zfactorbayes$methods( raftery.diag = function() { diag <- lapply(.self$zelig.out$z.out, coda::raftery.diag) # Collapse if only one list element for prettier printing if(length(diag)==1){ diag<-diag[[1]] } if(!citation("coda") %in% .self$refs){ .self$refs<-c(.self$refs,citation("coda")) } ref1<-bibentry( bibtype="Article", title = "One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo.", author = c(person("Adrian E", "Raftery"), person("Steven M", "Lewis")), journal = "Statistical Science", volume = 31, year = 1992, pages = "1109--44") ref2<-bibentry( bibtype="InCollection", title = "The number of iterations, convergence diagnostics and generic Metropolis algorithms.", booktitle = "Practical Markov Chain Monte Carlo", author = c(person("Adrian E", "Raftery"), person("Steven M", "Lewis")), year = 1995, publisher = "Chapman and Hall", address = "London, UK", editor = c(person("WR", "Gilks"), person("DJ", "Spiegelhalter"), person("S", "Richardson")) ) .self$refs<-c(.self$refs,ref1,ref2) return(diag) } ) Zelig/R/datasets.R0000644000176000001440000000055213245253056013517 0ustar ripleyusers#' Cigarette Consumption Panel Data #' #' @docType data #' @source From Christian Kleiber and Achim Zeileis (2008). Applied #' Econometrics with R. New York: Springer-Verlag. ISBN 978-0-387-77316-2. URL #' #' @keywords datasets #' @md #' @format A data set with 96 observations and 9 variables #' @name CigarettesSW NULL Zelig/R/model-binchoice-gee.R0000644000176000001440000000160413245253056015465 0ustar ripleyusers#' Object for Binary Choice outcomes in Generalized Estimating Equations #' for inheritance across models in Zelig #' #' @import methods #' @export Zelig-binchoice-gee #' @exportClass Zelig-binchoice-gee #' #' @include model-zelig.R #' @include model-binchoice.R #' @include model-gee.R zbinchoicegee <- setRefClass("Zelig-binchoice-gee", contains = c("Zelig-gee", "Zelig-binchoice")) zbinchoicegee$methods( initialize = function() { callSuper() .self$family <- "binomial" .self$year <- 2011 .self$category <- "continuous" .self$authors <- "Patrick Lam" .self$fn <- quote(geepack::geeglm) # JSON from parent } ) zbinchoicegee$methods( param = function(z.out, method="mvn") { simparam.local <- callSuper(z.out, method=method) return(simparam.local$simparam) # no ancillary parameter } ) Zelig/R/model-gamma-survey.R0000755000176000001440000001100013245253056015413 0ustar ripleyusers#' Gamma Regression with Survey Weights #' #'@param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #'@param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #'@param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #'@param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #'@param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #'@param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' #' @details #' Additional parameters avaialable to this model include: #' \itemize{ #' \item \code{weights}: vector of weight values or a name of a variable in the dataset #' by which to weight the model. For more information see: #' \url{http://docs.zeligproject.org/articles/weights.html}. #' \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to #' robustly estimate uncertainty around model parameters due to sampling error. #' If an integer is supplied, the number of boostraps to run. #' For more information see: #' \url{http://docs.zeligproject.org/articles/bootstraps.html}. #' } #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #'@examples #' library(Zelig) #' data(api, package="survey") #' z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "gamma.survey", #' weights = ~pw, data = apistrat) #' summary(z.out1) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_gammasurvey.html} #' @import methods #' @export Zelig-gamma #' @exportClass Zelig-gamma #' #' @include model-zelig.R #' @include model-survey.R #' @include model-gamma.R zgammasurvey <- setRefClass("Zelig-gamma-survey", contains = c("Zelig-survey", "Zelig-gamma")) zgammasurvey$methods( initialize = function() { callSuper() .self$name <- "gamma-survey" .self$family <- "Gamma" .self$link <- "inverse" .self$linkinv <- eval(call(.self$family, .self$link))$linkinv .self$category <- "continuous" .self$description = "Gamma Regression with Survey Weights" # JSON from parent .self$wrapper <- "gamma.survey" } ) zgammasurvey$methods( param = function(z.out, method="mvn") { shape <- MASS::gamma.shape(z.out) if(identical(method,"mvn")){ simalpha <- rnorm(n = .self$num, mean = shape$alpha, sd = shape$SE) simparam.local <- mvrnorm(n = .self$num, mu = coef(z.out), Sigma = vcov(z.out)) simparam.local <- list(simparam = simparam.local, simalpha = simalpha) return(simparam.local) } else if(identical(method,"point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha = shape$alpha)) } } ) zgammasurvey$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ lambda <- 1/(b0 + b1 * x) if(sim){ y <- rgamma(n=length(x), shape=alpha, scale = lambda) return(y) }else{ return(alpha * lambda) } } ) Zelig/R/model-glm.R0000755000176000001440000000224613245253056013571 0ustar ripleyusers#' Generalized Linear Model object for inheritance across models in Zelig #' #' @import methods #' @export Zelig-glm #' @exportClass Zelig-glm #' #' @include model-zelig.R zglm <- setRefClass("Zelig-glm", contains = "Zelig", fields = list(family = "character", link = "character", linkinv = "function")) zglm$methods( initialize = function() { callSuper() .self$fn <- quote(stats::glm) .self$packageauthors <- "R Core Team" .self$acceptweights <- FALSE # "Why glm refers to the number of trials as weight is a trick question to the developers' conscience." } ) zglm$methods( zelig = function(formula, data, ..., weights = NULL, by = NULL, bootstrap = FALSE) { .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call .self$model.call$family <- call(.self$family, .self$link) callSuper(formula = formula, data = data, ..., weights = weights, by = by, bootstrap = bootstrap) rse <- lapply(.self$zelig.out$z.out, (function(x) vcovHC(x, type = "HC0"))) .self$test.statistics <- list(robust.se = rse) } ) Zelig/R/model-ma.R0000755000176000001440000001033413245253056013404 0ustar ripleyusers#' Time-Series Model with Moving Average #' #' Warning: \code{summary} does not work with timeseries models after #' simulation. #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)}. #' @param model the name of a statistical model to estimate. #' For a list of other supported models and their documentation see: #' \url{http://docs.zeligproject.org/articles/}. #' @param data the name of a data frame containing the variables #' referenced in the formula or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{Amelia} or \code{\link{to_zelig_mi}}). #' @param ... additional arguments passed to \code{zelig}, #' relevant for the model to be estimated. #' @param by a factor variable contained in \code{data}. If supplied, #' \code{zelig} will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This can save a considerable amount of #' effort. You may also use \code{by} to run models using MatchIt #' subclasses. #' @param cite If is set to 'TRUE' (default), the model citation will be printed #' to the console. #' @param ts The name of the variable containing the time indicator. This should be passed in as #' a string. If this variable is not provided, Zelig will assume that the data is already #' ordered by time. #' @param cs Name of a variable that denotes the cross-sectional element of the data, for example, #' country name in a dataset with time-series across different countries. As a variable name, #' this should be in quotes. If this is not provided, Zelig will assume that all observations #' come from the same unit over time, and should be pooled, but if provided, individual models will #' be run in each cross-section. #' If \code{cs} is given as an argument, \code{ts} must also be provided. Additionally, \code{by} #' must be \code{NULL}. #' @param order A vector of length 3 passed in as \code{c(p,d,q)} where p represents the order of the #' autoregressive model, d represents the number of differences taken in the model, and q represents #' the order of the moving average model. #' @details #' Currently only the Reference class syntax for time series. This model does not accept #' Bootstraps or weights. #' #' #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{coef(z.out)}. See #' \url{http://docs.zeligproject.org/articles/getters.html} for a list of #' functions to extract model components. You can also extract whole fitted #' model objects using \code{\link{from_zelig_model}}. #' @examples #' data(seatshare) #' subset <- seatshare[seatshare$country == "UNITED KINGDOM",] #' ts.out <- zelig(formula = unemp ~ leftseat, model = "ma", ts = "year", data = subset) #' summary(ts.out) #' #' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_ma.html} #' @import methods #' @export Zelig-ma #' @exportClass Zelig-ma #' #' @include model-zelig.R #' @include model-timeseries.R zma <- setRefClass("Zelig-ma", contains = "Zelig-timeseries") zma$methods( initialize = function() { callSuper() .self$name <- "ma" .self$link <- "identity" .self$fn <- quote(zeligArimaWrapper) .self$description = "Time-Series Model with Moving Average" .self$packageauthors <- "R Core Team" .self$outcome <- "continuous" .self$wrapper <- "timeseries" } ) Zelig/README.md0000644000176000001440000001674713245253056012657 0ustar ripleyusers [![zelig-logo](man/figures/zelig.png)](http://zeligproject.org) **Release:** [![CRAN Version](http://www.r-pkg.org/badges/version/Zelig)](http://cran.r-project.org/package=Zelig) ![CRAN Monthly Downloads](http://cranlogs.r-pkg.org/badges/last-month/Zelig) ![CRAN Total Downloads](http://cranlogs.r-pkg.org/badges/grand-total/Zelig) **Development:** [![Project Status: Active - The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![Travis (LINUX) Build Status](https://travis-ci.org/IQSS/Zelig.svg?branch=master)](https://travis-ci.org/IQSS/Zelig) [![AppVeyor (Windows) Build Status](https://ci.appveyor.com/api/projects/status/github/IQSS/Zelig?branch=master&svg=true)](https://ci.appveyor.com/project/IQSS/Zelig) [![codecov](https://codecov.io/gh/IQSS/Zelig/branch/master/graph/badge.svg)](https://codecov.io/gh/IQSS/Zelig) [Dev-Blog](https://medium.com/zelig-dev) Zelig workflow overview ----------------------- All models in Zelig can be estimated and results explored presented using four simple functions: 1. `zelig` to estimate the parameters, 2. `setx` to set fitted values for which we want to find quantities of interest, 3. `sim` to simulate the quantities of interest, 4. `plot` to plot the simulation results. #### Zelig 5 reference classes Zelig 5 introduced [reference classes](http://adv-r.had.co.nz/R5.html). These enable a different way of working with Zelig that is detailed in [a separate vignette](http://docs.zeligproject.org/articles/zelig5_vs_zelig4.html). Directly using the reference class architecture is optional. They are not used in the examples below. Zelig Quickstart Guide ---------------------- Let’s walk through an example. This example uses the swiss dataset. It contains data on fertility and socioeconomic factors in Switzerland’s 47 French-speaking provinces in 1888 (Mosteller and Tukey, 1977, 549-551). We will model the effect of education on fertility, where education is measured as the percent of draftees with education beyond primary school and fertility is measured using the common standardized fertility measure (see Muehlenbein (2010, 80-81) for details). Installing and Loading Zelig ---------------------------- If you haven't already done so, open your R console and install Zelig. We recommend installing Zelig with the zeligverse package. This installs core Zelig and ancillary packages at once. install.packages('zeligverse') Alternatively you can install the development version of Zelig with: devtools::install_github('IQSS/Zelig') Once Zelig is installed, load it: library(zeligverse) Building Models --------------- Let’s assume we want to estimate the effect of education on fertility. Since fertility is a continuous variable, least squares (`ls`) is an appropriate model choice. To estimate our model, we call the `zelig()` function with three two arguments: equation, model type, and data: # load data data(swiss) # estimate ls model z5_1 <- zelig(Fertility ~ Education, model = "ls", data = swiss, cite = FALSE) # model summary summary(z5_1) ## Model: ## ## Call: ## z5$zelig(formula = Fertility ~ Education, data = swiss) ## ## Residuals: ## Min 1Q Median 3Q Max ## -17.036 -6.711 -1.011 9.526 19.689 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 79.6101 2.1041 37.836 < 2e-16 ## Education -0.8624 0.1448 -5.954 3.66e-07 ## ## Residual standard error: 9.446 on 45 degrees of freedom ## Multiple R-squared: 0.4406, Adjusted R-squared: 0.4282 ## F-statistic: 35.45 on 1 and 45 DF, p-value: 3.659e-07 ## ## Next step: Use 'setx' method The -0.86 coefficient on education suggests a negative relationship between the education of a province and its fertility rate. More precisely, for every one percent increase in draftees educated beyond primary school, the fertility rate of the province decreases 0.86 units. To help us better interpret this finding, we may want other quantities of interest, such as expected values or first differences. Zelig makes this simple by automating the translation of model estimates into interpretable quantities of interest using Monte Carlo simulation methods (see King, Tomz, and Wittenberg (2000) for more information). For example, let’s say we want to examine the effect of increasing the percent of draftees educated from 5 to 15. To do so, we set our predictor value using the `setx()` and `setx1()` functions: # set education to 5 and 15 z5_1 <- setx(z5_1, Education = 5) z5_1 <- setx1(z5_1, Education = 15) # model summary summary(z5_1) ## setx: ## (Intercept) Education ## 1 1 5 ## setx1: ## (Intercept) Education ## 1 1 15 ## ## Next step: Use 'sim' method After setting our predictor value, we simulate using the `sim()` method: # run simulations and estimate quantities of interest z5_1 <- sim(z5_1) # model summary summary(z5_1) ## ## sim x : ## ----- ## ev ## mean sd 50% 2.5% 97.5% ## 1 75.30616 1.658283 75.28057 72.12486 78.48007 ## pv ## mean sd 50% 2.5% 97.5% ## [1,] 75.28028 9.707597 75.60282 57.11199 94.3199 ## ## sim x1 : ## ----- ## ev ## mean sd 50% 2.5% 97.5% ## 1 66.66467 1.515977 66.63699 63.66668 69.64761 ## pv ## mean sd 50% 2.5% 97.5% ## [1,] 66.02916 9.441273 66.32583 47.19223 82.98039 ## fd ## mean sd 50% 2.5% 97.5% ## 1 -8.641488 1.442774 -8.656953 -11.43863 -5.898305 At this point, we’ve estimated a model, set the predictor value, and estimated easily interpretable quantities of interest. The `summary()` method shows us our quantities of interest, namely, our expected and predicted values at each level of education, as well as our first differences–the difference in expected values at the set levels of education. Visualizations ============== Zelig’s `plot()` function plots the estimated quantities of interest: plot(z5_1) ![](man/figures/example_plot_graph-1.png) We can also simulate and plot simulations from ranges of simulated values: z5_2 <- zelig(Fertility ~ Education, model = "ls", data = swiss, cite = FALSE) # set Education to range from 5 to 15 at single integer increments z5_2 <- setx(z5_2, Education = 5:15) # run simulations and estimate quantities of interest z5_2 <- sim(z5_2) Then use the `plot()` function as before: z5_2 <- plot(z5_2) ![](man/figures/example_plot_ci_plot-1.png) Getting help ============ The primary documentation for Zelig is available at: . Within R, you can access function help using the normal `?` function, e.g.: ?setx If you are looking for details on particular estimation model methods, you can also use the `?` function. Simply place a `z` before the model name. For example, to access details about the `logit` model use: ?zlogit Building Zelig (for developers) =============================== Zelig can be fully checked and build using the code in [check\_build\_zelig.R](check_build_zelig.R). Note that this can be time consuming due to the extensive test coverage. Zelig/MD50000644000176000001440000003747513457262505011715 0ustar ripleyusersd2dfab643f67be5c5f54d7fae1049e5f *DESCRIPTION e1271f2559ab23440ab394d7d7888dfc *NAMESPACE 942b5cf18863345c7bec7c3fba1b6aca *NEWS.md 730ab0cfd1a65d32bffc31dc9faa3cea *R/assertions.R d6ef085ccf0851cf45daa5ade58e4666 *R/create-json.R e3856971ba3777ebc380d91f5998f26e *R/datasets.R 8720ccb3fd7c7214a34ede6f2d5c3a1a *R/interface.R 6e804798e6660e0741c6db33769a32ce *R/model-ar.R 05711fae4df16ec699e3b656ef7f4c67 *R/model-arima.R 9ec8819a950c30f1304af690bc072df7 *R/model-bayes.R de52ae95a161be627e87bb004698c03a *R/model-binchoice-gee.R b67bd8ffcdc291f632417c95ad0b9fc5 *R/model-binchoice-survey.R 78abc68d47e75e693a9091758d23c096 *R/model-binchoice.R 94b92af4802d3311dd1dc1f07dc1c211 *R/model-exp.R 2f420918edb49510981c1b8cde437ac0 *R/model-factor-bayes.R 655f967a5ac8fb616c904c3ae7967da1 *R/model-gamma-gee.R f02fe38e7cba69ce094cd7779e71c3a8 *R/model-gamma-survey.R b4eb6d7fea8fdc7a4fa49856c8c8c354 *R/model-gamma.R 7fc360e3cd0dcd3fbc623cc93010adcd *R/model-gee.R 51b8b42079973ac0e635aff6a83fac48 *R/model-glm.R 3ab8a7861cf925231749507ea7d8df8c *R/model-ivreg.R f0081bead3ac50ea4b4297fed17425be *R/model-logit-bayes.R dec59f27c07e98029bfe23399d0474d8 *R/model-logit-gee.R 59fcf9b753323af83423923062877aaf *R/model-logit-survey.R e1015437fcff5a0a6bf33d97d980344d *R/model-logit.R 03c28f3f11a25de113b9e81089fe9e98 *R/model-lognorm.R c5e79fc9667e6c8490634454bdfdf28e *R/model-ls.R ddd102cc0cb8b71c467f344f73e370a4 *R/model-ma.R ad0fddd7110c4cfe943bf8d9daa54c72 *R/model-mlogit-bayes.R 98715b67b8e8e6e3cb8c934a76f231dd *R/model-negbinom.R 53825c4a87aeab87ca1f8c54fefbb380 *R/model-normal-bayes.R 31d961687f0062316580c3d3a07a96c4 *R/model-normal-gee.R 40221bd2f0fce26ffbd2a49b736e7f2e *R/model-normal-survey.R 2ef1d98a65be1cc85ed64a0a33911605 *R/model-normal.R ddfda5f2729e9e811623422b7bbad397 *R/model-oprobit-bayes.R e07877092e4442511bfa634f3e259c74 *R/model-poisson-bayes.R d19822f4e9f239d703f9e2a9834f4ab6 *R/model-poisson-gee.R 2278014d5080dedc64f2e5d12a2044d2 *R/model-poisson-survey.R fd7ec98d8050e4593178f6c61f26331e *R/model-poisson.R e2e4f36d1f52837ca73dd9ae79800c9e *R/model-probit-bayes.R ee3bd7275201e8b64f6564470053122c *R/model-probit-gee.R 203a5584212c675cc8b11e19f5757487 *R/model-probit-survey.R 1429a685e824beb21bad0683a3c5d446 *R/model-probit.R f6cc92aa02b250c2c1eff594a3edf84c *R/model-quantile.R cf83af2578b2ac6daab8a1cd3ab60c0e *R/model-relogit.R a3757b9586b6df589dc4dbb88b547ddf *R/model-survey.R de67af872b2fe1ca071dbdeb794e649c *R/model-timeseries.R cff2612a2388afaef910b090fc75c933 *R/model-tobit-bayes.R 94c33a8d2919a6b0e7be661d946ea807 *R/model-tobit.R 93b036e1e972171320a42d532517c647 *R/model-weibull.R 377730404b89c5c039d66b97a977dce4 *R/model-zelig.R e9a87c8e51730b022171e92a01fbb4c0 *R/plots.R 5a94e8d8b23d1c5d2ddfbf887168f597 *R/utils.R 23e6baa451254a1fe65ee3bfdd8b001d *R/wrappers.R 93d0c2b41a8f2ee662e24a2254f529d0 *README.md 39ef73926d0b63476cdddce1806a6413 *data/CigarettesSW.tab.gz d8568ae5389248b670f8c744a6393bc5 *data/MatchIt.url.tab.gz a6f9d73b7928a4b1b3098db3f47e5daa *data/PErisk.txt.gz 92a23a476e24f1cd6d24d0da91400dfd *data/SupremeCourt.txt.gz b7e99eba34328eb8666a65215d295aec *data/Weimar.txt.gz 10c152956b65fb8dd9ec77e5b7e292f0 *data/Zelig.url.tab.gz 0032352d73cb7588e5380d280032f3f0 *data/approval.tab.gz 55d9d1a669d8be91391c84f3fa043d73 *data/bivariate.tab.gz 9d8e26c166e0e37c0db973a83101a6b9 *data/coalition.tab.gz 7f751eba795fe4a5fc05fa59db936639 *data/coalition2.txt.gz 809c9dc00afa3a9a2fac98c6a5beb07a *data/eidat.txt.gz d96e13fe15af9acc7acfe60c5ed49202 *data/free1.tab.gz d96e13fe15af9acc7acfe60c5ed49202 *data/free2.tab.gz f7e30143b828d9579a885df15166c437 *data/friendship.RData ef951783ffa4e6d1c30ba0ae5d826f95 *data/grunfeld.txt.gz 350bdb7fcd6af5111de558dc4d95dbdc *data/hoff.tab.gz 96667c7fa64956e37c98d27da28d6323 *data/homerun.txt.gz 4b5a0ad83503b53d3938ef096f0b49dc *data/immi1.tab.gz ad3aeedcfc3efaf07b97eed891eb54a4 *data/immi2.tab.gz 20e7a626848c89890dd244a1f5f5fe3c *data/immi3.tab.gz c9e7da59ab5939e3ab3a1b13997c6066 *data/immi4.tab.gz c78cb1b6027462372e6554ca9347ec02 *data/immi5.tab.gz 95877625cd68d0528e0e82c44991539c *data/immigration.tab.gz 758ac52b426648bfdfa6cb5890525322 *data/klein.txt.gz 4b90f1abe69813998c0e883ea50d8d1d *data/kmenta.txt.gz a40a04e03f5a6b7c6fb5eb2df4e114e8 *data/macro.tab.gz 80de03b905bf13c6a8f6fc0f4656dc84 *data/mexico.tab.gz b533bad8842a7e90edec8e48fae4344f *data/mid.tab.gz 95428f80b455ff968eaa1f1664de79b7 *data/newpainters.txt.gz 021b1ecd5eb60a3473ae630319248695 *data/sanction.tab.gz 4056a7cc6e8f06f472496c0304828584 *data/seatshare.rda 336854cdacb726631f77466eb046efd7 *data/sna.ex.RData e68f058f062c39262205a8284c04322f *data/swiss.txt.gz 6ac34a147ed09bb7cbc393d35382cd85 *data/tobin.txt.gz e479597b35b8b696e886e90a37946a5a *data/turnout.tab.gz 4ee261cada9146f1cabf2df5066c2e24 *data/voteincome.txt.gz 1991a163805286e252e97ca46aaa36df *inst/CITATION d75bbeecea1decdf729aa94849615f96 *inst/JSON/zelig5models.json 5d61fcfa3cf1a472f7513cb543caab6a *man/ATT.Rd aa77e9e21710c77ddec4c139e11e3d0e *man/CigarettesSW.Rd 4a9dd790032ca1211119953a6d9e134a *man/MatchIt.url.Rd 6fe2eda530325b23eedb7b92614b3589 *man/Median.Rd a700be4d8663051b436ce61a26c5a94f *man/Mode.Rd 0641d8ba40e205316b2d2fbe0fb5eaf5 *man/PErisk.Rd 58172f8c13fe9864a8ac2e26fbd391de *man/SupremeCourt.Rd fe15364db9b4e80c56722eec238629e7 *man/Weimar.Rd 0ff238e5cc8220d7ca2c5e805a1160c9 *man/Zelig-ar-class.Rd 1dc653a75a63625a5220eeedf1bdf3cc *man/Zelig-arima-class.Rd dba84d0dfccdae1cd08e02e57e3d8cd6 *man/Zelig-bayes-class.Rd f00cb4b7c0b1269a0bcf3fcda1ff6c9b *man/Zelig-binchoice-class.Rd adcc9bafd98950ad536552665d2427ac *man/Zelig-binchoice-gee-class.Rd c2b68fcdf0e3ec8ce12a63f8976fde74 *man/Zelig-binchoice-survey-class.Rd 7a7a60ee040c7ccc38138a0612341289 *man/Zelig-class.Rd da91c99e8bc365829c553f9d34e5de04 *man/Zelig-exp-class.Rd 7643a86feb8215c4bb5611d63e6d0a32 *man/Zelig-factor-bayes-class.Rd ee76e603891841729916911b25aa85d3 *man/Zelig-gamma-class.Rd 74a06666c5060176fb6f9e38aa157684 *man/Zelig-gamma-gee-class.Rd 044eba9bcf0a35c24a18a81b31059fc9 *man/Zelig-gamma-survey-class.Rd f12ce468d6a4a2552bc765da7126e316 *man/Zelig-gee-class.Rd 541483dd01a6e0997b7fd53af58dd0ed *man/Zelig-glm-class.Rd 1afd99f810e9117a95630082dbc1b46a *man/Zelig-ivreg-class.Rd a6fca9e9136e0be089c655929e287db5 *man/Zelig-logit-bayes-class.Rd 07cb9206960dc7ffbd803607d54688d9 *man/Zelig-logit-class.Rd 66a6767f7c650c453111f7744b35a9f6 *man/Zelig-logit-gee-class.Rd 0f257151126627b4813b5246b21d3d02 *man/Zelig-logit-survey-class.Rd e0e62b241529e739b444ead492e13566 *man/Zelig-lognorm-class.Rd 9c900a598308c225b668bec8b6d50ba4 *man/Zelig-ls-class.Rd d179021274cfd86f31ae389f241ab194 *man/Zelig-ma-class.Rd 1cfa27d2e89864a934ca181155bb84d9 *man/Zelig-mlogit-bayes-class.Rd cb6f8a6e800a1a0ab44fa58dd4ddca64 *man/Zelig-negbin-class.Rd 9b907186169e71309ae9b7e2e512820d *man/Zelig-normal-bayes-class.Rd 87d02e15a3a1e50728122665ac5eea39 *man/Zelig-normal-class.Rd 0bec2a6e58c9da93187e0b27264fd350 *man/Zelig-normal-gee-class.Rd e4099ab1bf5781fa595a56b969c40283 *man/Zelig-normal-survey-class.Rd e158a303d354ed423f9c49ebff315b40 *man/Zelig-oprobit-bayes-class.Rd 13676759d2e1de98df384929e6c9fa16 *man/Zelig-poisson-bayes-class.Rd 966584a067d9b93a91fdd91340831f5c *man/Zelig-poisson-class.Rd dd418034db233d42bc9c5b24125e6d5c *man/Zelig-poisson-gee-class.Rd 9f520635db1caff9670f4376e1574dc7 *man/Zelig-poisson-survey-class.Rd 83d3eee551d8900782e22eadc8141cc5 *man/Zelig-probit-bayes-class.Rd 1f213a14a164a266407c940d42de777d *man/Zelig-probit-class.Rd 8d24a583a287ae56170cb81a6a1e76d8 *man/Zelig-probit-gee-class.Rd 5ecdc1dbea34bb4f4becec49dbfc999a *man/Zelig-probit-survey-class.Rd cd132d1111f55ae3b54f3db9772ab85f *man/Zelig-quantile-class.Rd 0f07de9b044efb6caa694ac1d7e6c0d7 *man/Zelig-relogit-class.Rd 32f11c9014e70ecaa8735a15313dc212 *man/Zelig-survey-class.Rd 28befa6c3c6be2f7d0f2ca1015f149e6 *man/Zelig-timeseries-class.Rd 12adbafd4965874fbaae540171969ecb *man/Zelig-tobit-bayes-class.Rd a023fc1027c896a4415cf9fb0c0799cb *man/Zelig-tobit-class.Rd 32c9f45012a2354b514c6a83f7f71cdb *man/Zelig-weibull-class.Rd 1db4de0bb107ccfd6df5890ba8e604b0 *man/Zelig.url.Rd 7e5422c7821d99df3cd21a9e789c5cb6 *man/approval.Rd dd114842e76f6de2d0f9540313bee78a *man/avg.Rd 83d85754bfcbadc14cfe8dc538007d0b *man/bivariate.Rd 70843d4ace4da608950bb13369d8a56d *man/ci.plot.Rd 5b06186ff4a191fda1ccd9906a47156c *man/ci_check.Rd 1433613bc7b1a876c1524924b2ff71dd *man/cluster.formula.Rd 3b01d1373c2b9f311a70f150f8a3e7cf *man/coalition.Rd 11360f284ca3189f573e8087c7d99502 *man/coalition2.Rd a94fe1e45448d2384e7182c3e8031cc0 *man/coef-Zelig-method.Rd 8e33d656e6b89f3f5c1b63282ed32031 *man/coefficients-Zelig-method.Rd c199db35a7e06054b33a4a1ba0ed6607 *man/combine_coef_se.Rd 64573eabf10fd2239d504a53c470e5dc *man/createJSON.Rd f00f82ceb45ea52cf2964b018711feda *man/df.residual-Zelig-method.Rd 11ad69ed866d12262602fc3b786091d4 *man/eidat.Rd 3b4d131bf2f3bccfc31ccdb969fb18d9 *man/expand_grid_setrange.Rd 0adad4c4df5d949c191191a8761b2782 *man/extract_setrange.Rd 0cd9672aeab780eae4e453a17c6df1ad *man/extract_setx.Rd c17f8c77523cb1c1fb55ee790d4cc8d0 *man/factor_coef_combine.Rd 1db2cb483aded6e6bc2c286452699612 *man/figures/example_plot_ci_plot-1.png 0a38a46e11917808441d7f1c363e3960 *man/figures/example_plot_graph-1.png a682e41f4819805f11956e26e5f5f763 *man/figures/img/zelig_models_thumb.png 3da34554f4fcf4639b761347bd13fabb *man/figures/img/zelig_poster.jpeg 0c6df7a3fd72f6356621bafc6c775f8e *man/figures/zelig.png 47accfc672bb5311a1e5a9e1829817f5 *man/fitted-Zelig-method.Rd d8e4df6b181afc5e10fee0d774850c90 *man/free1.Rd 788c8364b3a5ff56275ed6f1de9b7790 *man/free2.Rd c060e534333e3a52a0f48d33b65e5542 *man/friendship.Rd e7007cb028b61c22e3d1abd1255fa06d *man/from_zelig_model.Rd 0e2115d8a5e2bf275e88cd0b1bb47711 *man/get_pvalue.Rd 776322d5d31b903b0c957b8865bdd816 *man/get_qi.Rd 08ddb445a5fed950e829c554cbc6b0df *man/get_se.Rd 1f77e073ad9ed30b57064d284fe0f2a6 *man/grunfeld.Rd 2c288905c76033d24c8f7f57b0d65d40 *man/hoff.Rd 15d4c0ce7ecead47eaad9be2473a18d3 *man/homerun.Rd 20131069ca801fde8baa331de4b7657e *man/immigration.Rd ada18b99b51f2fe1f05d21bb4467ea94 *man/is_length_not_1.Rd f5886747cb45ffbb208e1a3248a7e923 *man/is_sims_present.Rd 2d32186d242f5154fec6e14ac0b2fe9b *man/is_simsrange.Rd 43daaa8a74c93abffaee91f00851d080 *man/is_simsrange1.Rd 5da0e5bb64d08e3e2013c6c7a740546f *man/is_simsx.Rd 930e1e4dcde7e92157b9d1a72e87b583 *man/is_simsx1.Rd 595dfa8399d64f845e410b12a2930760 *man/is_timeseries.Rd 3db10262dbe8d3091165dd6a1c70e4f8 *man/is_uninitializedField.Rd 7f7e865ed883582c81773c4ca0f53320 *man/is_varying.Rd f33eb280f46d0812bf91341ade56cfb1 *man/is_zelig.Rd 61fdfd3d9bbead87c42a83da5124d542 *man/is_zeligei.Rd 81c4ba627b9e0c72a52277a18b8baa7a *man/klein.Rd e01f00d574aa52df6ae5c03e836c79b3 *man/kmenta.Rd 58bda9cf87e4f5c413a73aedc14bb159 *man/macro.Rd f9c9396da5c2e9ab849dd470df38c0f5 *man/mexico.Rd cf4104be98d25488ab2e01af44917568 *man/mi.Rd 8c578fbc0e4ecb684033111f6db818ff *man/mid.Rd 2b566cd8c8432fe7fdaaea014ee7bfaf *man/model_lookup_df.Rd 89edab38f604a9075e095f5c0b5bbae9 *man/names-Zelig-method.Rd d7905236f8793559d3c452facbc3ea4c *man/newpainters.Rd f7416f61d8414811598c4c18bc285000 *man/or_summary.Rd d5e28f4b5801a4b36e5e9d63fbe791b8 *man/p_pull.Rd 5cf00c09efa952ce607b4faa7aa2f80c *man/plot-Zelig-ANY-method.Rd 1fea5947a9bf8a0a1d10e83b7c9efdbd *man/predict-Zelig-method.Rd 9c13154f9c4762ef3394e3e15579357f *man/qi.plot.Rd 8c997755338862ce51401967376e25df *man/qi_slimmer.Rd 9124537c50e8b70e2c60136fc547f3c4 *man/reduce.Rd c462fdd11bd3773b30f4dd5588d840fc *man/relogit.Rd 941774dbc1f1a5f068e1b797338503fd *man/residuals-Zelig-method.Rd d969ca33e40835b6fd445d624d38b6d6 *man/rm_intercept.Rd 01c04da4f501cd95b1b0baf18056151b *man/rocplot.Rd 685e8fe4738e2aad2ad73d7f2388570b *man/sanction.Rd c3d7c70bb4ef08c0dbd66590a1b3bca4 *man/se_pull.Rd 3a3cf6aabdba4eda08f28d587e164135 *man/seatshare.Rd 6c13acd515be6c74d95ba6f67fceb57e *man/setfactor.Rd e707b0dfbf6163bb6bca159eb730846a *man/setval.Rd 07231854f1db8f76daaaf6e06fc31857 *man/setx.Rd b4644ea355b1fbe38520c1c0044df587 *man/setx1.Rd 5bab31b1fa7e825be1f0c4b99b084089 *man/sim.Rd cc1db75dab734792f30267dd4519ff63 *man/simacf.Rd 89b3b0b1cbadd5bd66fb30f972d25c17 *man/simulations.plot.Rd 1eab2cf2e0c82ea67d16c8ad05571a9c *man/sna.ex.Rd b1b3ef3ff457b8c6a67840961ce3c6a2 *man/stat.Rd 3b657ac6dfd76e1a9512d28ed3e90a47 *man/statlevel.Rd 4c74eaf4e19bdee82fc01de007681ebf *man/statmat.Rd ec8e4d4d9927610ef656bdfa8c7ae92d *man/strip_package_name.Rd 35ea6002885147ef58a85646af253282 *man/summary-Zelig-method.Rd c584f7a73ce8ce6e8913efc263435e93 *man/summary.Arima.Rd ca14c12e0087b1815d741b09dba0f5cc *man/swiss.Rd c7f0c57e8ad57b4e6d38ebb815cba9d2 *man/table.levels.Rd d012037d71e3dbd7182d498781091eed *man/to_zelig.Rd d878a8714cf3efcd22ea687fd1037989 *man/to_zelig_mi.Rd a75e0696550ade6ffe2e44144e98d75b *man/tobin.Rd 22a97549418c1978fcf9ea3c509e590a *man/transformer.Rd f7b42178326db13f916c540e911d3864 *man/turnout.Rd edb67c0d550cc55cc01419359a551ebc *man/vcov-Zelig-method.Rd 7db11c580fca316818486d75881e1b73 *man/vcov_gee.Rd 302f94e3f043246539af278a87b2bf68 *man/vcov_rq.Rd 4f8bbc003dde60b928758dbba5042aa8 *man/voteincome.Rd fc283853003b14de787de5fbe28bf673 *man/zelig.Rd e3d051d2c29e28238d1f3ec8e2745e75 *man/zeligACFplot.Rd f455135fe3b67b227edf5b6375e755c1 *man/zeligARMAbreakforecaster.Rd 9134bf2c5e1088f201dc27514812c8e0 *man/zeligARMAlongrun.Rd 8655d042b78e10caf24e6805f6265ff5 *man/zeligARMAnextstep.Rd 8e411d380385c8e0080c3ff4b875f6e7 *man/zeligArimaWrapper.Rd 24c9ec13a8b559c25a112c32942aa404 *man/zelig_mutate.Rd 530525b72d95fd0fff940145b03b26ad *man/zelig_qi_to_df.Rd fca90c07adc91e4a81adf8202ded266c *man/zelig_setx_to_df.Rd d37d7b70b380b85f4ca7b727572a4d8f *tests/testthat.R 33bbc413841f9c2441a339e50ac8e9e1 *tests/testthat/test-amelia.R 3b16f1b151b8022a851e5308335f73a5 *tests/testthat/test-arima.R de67b02afc8f07c05cbe608b027d6c0f *tests/testthat/test-assertions.R 7a4d0e0a06f8787b721c4266aad8cd94 *tests/testthat/test-bayesdiagnostics.R 152bd88b896ddbdfb62e62fbe1a4da0b *tests/testthat/test-createJSON.R 3cdebc4d9ae6a1a8f24edb4cb649daad *tests/testthat/test-exp.R 2d8ae19a7d1775c15ca897f925310957 *tests/testthat/test-gamma.R e8c6a3549de6c20ba6bbb74ce07e749b *tests/testthat/test-gammasurvey.R db15e482d4b854bc42897f7f420d4f0f *tests/testthat/test-interface.R b4f59c7831c39c44d506ed1515fd47a9 *tests/testthat/test-ivreg.R b40bebb72f2c4b1b6d89f40baa277a73 *tests/testthat/test-logit.R 796b15cf3454e7dba342aab3ce815382 *tests/testthat/test-logitbayes.R cc897ac33adbf2c3946908e29e940812 *tests/testthat/test-logitsurvey.R e61d50bac858ac865638fce2d3368e2c *tests/testthat/test-lognom.R 940f9d6cb91f072636128c2b2537a7ae *tests/testthat/test-ls.R 2d9db560eee83d1fdbab678704439e21 *tests/testthat/test-matchit.R 2ef00fc9d4a5fc5e0d980c369ce977f5 *tests/testthat/test-negbin.R 0cd1256d366d5773334797fe9ca04ce9 *tests/testthat/test-normal-gee.R 6d982c141b7885e04834e3d18cbe9914 *tests/testthat/test-normal.R b2d000230446e73b1dbb9bdaacc345c7 *tests/testthat/test-normalbayes.R 83c1e350ac708f2ff92b3bf8698164f2 *tests/testthat/test-normalsurvey.R 302630a45fcba891efa406ae480f4ee6 *tests/testthat/test-plots.R ceb0a2447b517bdf4db850bd4bead147 *tests/testthat/test-poisson.R 80f9a6b03ff3d65593684c6a48327637 *tests/testthat/test-poissonbayes.R 53342ae909c0dd222e349a811b26deb4 *tests/testthat/test-poissonsurvey.R af5d9e5678536a97b15c8696bf9e32e4 *tests/testthat/test-probit.R 7253a8926dbea18251ee585d4e597588 *tests/testthat/test-probitbayes.R 14a4f73fe26f0153bd991d237746c48e *tests/testthat/test-probitsurvey.R 23a9905bc7b09bdd931f727fbc7b581c *tests/testthat/test-qislimmer.R 6c34b0993dd9f30b177d7a3b0b0f4227 *tests/testthat/test-quantile.R e3891132bf0287999de91297f4e36f6a *tests/testthat/test-relogit.R caec2a060f6ad936010b2953d45a482c *tests/testthat/test-survey.R 99190c093bc2b35dd3362eb57140d777 *tests/testthat/test-tobit.R e8b1d1f6618b931ad4c7b1510b952ad2 *tests/testthat/test-tobitbayes.R 5ae9afe4dcd1535b81e454436a2faaa5 *tests/testthat/test-utils.R 5899f0b0f78d3d0d6465caaacb025388 *tests/testthat/test-weibull.R d1cd3bd62d9bf4e8935d35ea3b2a45ac *tests/testthat/test-weights.R 590f47b47c83e232881268465b2545b2 *tests/testthat/test-wrappers.R e18d243a2c79411ebc4ec9d4dacc40c0 *tests/testthat/test-zelig.R Zelig/DESCRIPTION0000644000176000001440000000657713457262505013112 0ustar ripleyusersPackage: Zelig License: GPL (>= 3) Title: Everyone's Statistical Software Authors@R: c( person("Christine", "Choirat", role = "aut"), person("Christopher", "Gandrud", email = "zelig.zee@gmail.com", role = c("aut", "cre")), person("James", "Honaker", role = "aut"), person("Kosuke", "Imai", role = "aut"), person("Gary", "King", role = "aut"), person("Olivia", "Lau", role = "aut"), person("IQSS", "Harvard University", role = "cph") ) Description: A framework that brings together an abundance of common statistical models found across packages into a unified interface, and provides a common architecture for estimation and interpretation, as well as bridging functions to absorb increasingly more models into the package. Zelig allows each individual package, for each statistical model, to be accessed by a common uniformly structured call and set of arguments. Moreover, Zelig automates all the surrounding building blocks of a statistical work-flow--procedures and algorithms that may be essential to one user's application but which the original package developer did not use in their own research and might not themselves support. These include bootstrapping, jackknifing, and re-weighting of data. In particular, Zelig automatically generates predicted and simulated quantities of interest (such as relative risk ratios, average treatment effects, first differences and predicted and expected values) to interpret and visualize complex models. URL: https://cran.r-project.org/package=Zelig BugReports: https://github.com/IQSS/Zelig/issues Version: 5.1.6.1 Date: 2018-02-27 Depends: survival Imports: AER, Amelia, coda, dplyr (>= 0.3.0.2), Formula, geepack, jsonlite, sandwich, MASS, MatchIt, maxLik, MCMCpack, methods, quantreg, survey, VGAM Suggests: ei, eiPack, knitr, networkD3, optmatch, rmarkdown, testthat, tidyverse, ZeligChoice, ZeligEI, zeligverse Collate: 'assertions.R' 'model-zelig.R' 'model-timeseries.R' 'model-ma.R' 'model-ar.R' 'model-arima.R' 'model-weibull.R' 'model-tobit.R' 'model-bayes.R' 'model-tobit-bayes.R' 'model-glm.R' 'model-binchoice.R' 'model-probit.R' 'model-probit-bayes.R' 'model-poisson.R' 'model-poisson-bayes.R' 'model-oprobit-bayes.R' 'model-normal.R' 'model-normal-bayes.R' 'model-mlogit-bayes.R' 'model-gamma.R' 'model-gee.R' 'model-logit.R' 'model-logit-bayes.R' 'model-factor-bayes.R' 'model-poisson-gee.R' 'model-normal-gee.R' 'model-gamma-gee.R' 'model-binchoice-gee.R' 'model-probit-gee.R' 'model-logit-gee.R' 'model-relogit.R' 'model-quantile.R' 'model-lognorm.R' 'model-exp.R' 'model-negbinom.R' 'model-ivreg.R' 'model-ls.R' 'utils.R' 'create-json.R' 'datasets.R' 'interface.R' 'model-survey.R' 'model-binchoice-survey.R' 'model-gamma-survey.R' 'model-logit-survey.R' 'model-normal-survey.R' 'model-poisson-survey.R' 'model-probit-survey.R' 'plots.R' 'wrappers.R' RoxygenNote: 6.0.1 NeedsCompilation: no Packaged: 2019-04-21 08:03:55 UTC; ripley Author: Christine Choirat [aut], Christopher Gandrud [aut, cre], James Honaker [aut], Kosuke Imai [aut], Gary King [aut], Olivia Lau [aut], IQSS Harvard University [cph] Maintainer: Christopher Gandrud Repository: CRAN Date/Publication: 2019-04-22 06:55:01 UTC Zelig/man/0000755000176000001440000000000013245260557012140 5ustar ripleyusersZelig/man/sna.ex.Rd0000644000176000001440000000063113245253057013620 0ustar ripleyusers\name{sna.ex} \alias{sna.ex} \title{Simulated Example of Social Network Data} \description{ This data set contains five sociomatrices of simulated data social network data.} \usage{data(sna.ex)} \format{ Each variable in the dataset is a 25 by 25 matrix of simulated social network data. The matrices are labeled "Var1", "Var2", "Var3", "Var4", and "Var5". } \source{fictitious} \keyword{datasets} Zelig/man/Zelig-poisson-class.Rd0000644000176000001440000000701413245253057016273 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-poisson.R \docType{class} \name{Zelig-poisson-class} \alias{Zelig-poisson-class} \alias{zpoisson} \title{Poisson Regression for Event Count Dependent Variables} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{id:}{where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered within each cluster when appropriate} \item{corstr:}{character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"} \item{geeglm:}{See geeglm in package geepack for other function arguments} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Poisson Regression for Event Count Dependent Variables } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \examples{ library(Zelig) data(sanction) z.out <- zelig(num ~ target + coop, model = "poisson", data = sanction) summary(z.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_poisson.html} } Zelig/man/Zelig-glm-class.Rd0000644000176000001440000000101413245253057015352 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-glm.R \docType{class} \name{Zelig-glm-class} \alias{Zelig-glm-class} \alias{zglm} \title{Generalized Linear Model object for inheritance across models in Zelig} \description{ Generalized Linear Model object for inheritance across models in Zelig } \section{Methods}{ \describe{ \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} Zelig/man/seatshare.Rd0000644000176000001440000000147713245253057014414 0ustar ripleyusers\name{seatshare} \alias{seatshare} \title{Left Party Seat Share in 11 OECD Countries} \description{ This data set contains time-series data of the seat shares in the lower legislative house of left leaning parties over time, as well as the level of unemployment. Data follows the style used in Hibbs (1977).} \usage{data(seatshare)} \format{A table containing N variables ("country","year","unemp","leftseat") and 384 observations split across 11 countries.} \source{OECD data and Mackie and Rose (1991), extended to further years.} \references{ Douglas A. Hibbs. (1977). \emph{Political Parties and Macroeconomic Policy}. American Political Science Review 71(4):1467-1487. Thomas T. Mackie and Richard Rose. (1991). \emph{The International Almanac of Electoral History} Macmillan: London. } \keyword{datasets} Zelig/man/homerun.Rd0000644000176000001440000000236313245253057014105 0ustar ripleyusers\name{homerun} \alias{homerun} \docType{data} \title{Sample Data on Home Runs Hit By Mark McGwire and Sammy Sosa in 1998.} \description{ Game-by-game information for the 1998 season for Mark McGwire and Sammy Sosa. Data are a subset of the dataset provided in Simonoff (1998). } \usage{data(homerun)} \format{ A data frame containing 5 variables ("gameno", "month", "homeruns", "playerstatus", "player") and 326 observations. \describe{ \item{\code{gameno}}{an integer variable denoting the game number} \item{\code{month}}{a factor variable taking with levels "March" through "September" denoting the month of the game} \item{\code{homeruns}}{an integer vector denoting the number of homeruns hit in that game for that player} \item{\code{playerstatus}}{an integer vector equal to "0" if the player played in the game, and "1" if they did not.} \item{\code{player}}{an integer vector equal to "0" (McGwire) or "1" (Sosa)} } } \source{\url{https://ww2.amstat.org/publications/jse/v6n3/datasets.simonoff.html}} \references{Simonoff, Jeffrey S. 1998. ``Move Over, Roger Maris: Breaking Baseball's Most Famous Record.'' \emph{Journal of Statistics Education} 6(3). Data used are a subset of the data in the article.} \keyword{datasets} Zelig/man/free2.Rd0000644000176000001440000000776513245253057013446 0ustar ripleyusers\name{free2} \alias{free2} \title{Freedom of Speech Data} \usage{data(free2)} \description{ Selection of individual-level survey data for freedom of speech. } \details{ A table with 150 observations and 12 variables. \itemize{ \item{sex}{1 for men and 0 for women} \item{age}{Age of respondent in years} \item{educ}{Levels of education, coded as a numeric variable with \itemize{ \item{1}{No formal education} \item{2}{Less than primary school education} \item{3}{Completed primary school} \item{4}{Completed secondary school} \item{5}{Completed high school} \item{6}{Completed college} \item{7}{Completed post-graduate degree} } } \item{country}{Character strings consisting of "Oceana", "Eurasia", and "Eastasia", after Orwell's \emph{1984}.} \item{y}{Self assessment (see below).} \item{v1-v6}{Response to vignettes (see below).} } Survey respondents were asked in almost the same language for a self-assessment and for an assessment of several hypothetical persons described by written vignettes. The self assessment (\code{self}, in the data set), "How free do you think [name/you] [is/are] to express [him-her/your]self without fear of government reprisal?" was first asked of the survey respondent with respect to him or herself, and then after each of vignette. The possible response categories are: \itemize{ \item{1}{Completely free} \item{2}{Very free} \item{3}{Moderately free} \item{4}{Slightly free} \item{5}{Not free at all} } The vignettes, ordered from most free to least free, are: \itemize{ \item{vign1}{[Kay] does not like many of the government's policies. She frequently publishes her opinion in newspapers, criticizing decisions by officials and calling for change. She sees little reason these actions could lead to government reprisal.} \item{vign2}{[Michael] disagrees with many of the government's policies. Though he knows criticism is frowned upon, he doesn't believe the government would punish someone for expressing critical views. He makes his opinion known on most issues without regard to who is listening.} \item{vign3}{[Bob] has political views at odds with the government. He has heard of people occasionally being arrested for speaking out against the government, and government leaders sometimes make political speeches condemning those who criticize. He sometimes writes letters to newspapers about politics, but he is careful not to use his real name.} \item{vign4}{[Connie] does not like the government's stance on many issues. She has a friend who was arrested for being too openly critical of governmental leaders, and so she avoids voicing her opinions in public places.} \item{vign5}{[Vito] disagrees with many of the government's policies, and is very careful about whom he says this to, reserving his real opinions for family and close friends only. He knows several men who have been taken away by government officials for saying negative things in public.} \item{vign6}{[Sonny] lives in fear of being harassed for his political views. Everyone he knows who has spoken out against the government has been arrested or taken away. He never says a word about anything the government does, not even when he is at home alone with his family. } } } \references{ \emph{WHO's World Health Survey} by Lydia Bendib, Somnath Chatterji, Alena Petrakova, Ritu Sadana, Joshua A. Salomon, Margie Schneider, Bedirhan Ustun, Maria Villanueva Jonathan Wand, Gary King and Olivia Lau. (2007) ``Anchors: Software for Anchoring Vignettes''. \emph{Journal of Statistical Software}. Forthcoming. copy at http://wand.stanford.edu/research/anchors-jss.pdf Gary King and Jonathan Wand. "Comparing Incomparable Survey Responses: New Tools for Anchoring Vignettes," Political Analysis, 15, 1 (Winter, 2007): Pp. 46-66, copy at http://gking.harvard.edu/files/abs/c-abs.shtml. } \keyword{datasets} Zelig/man/Median.Rd0000644000176000001440000000062013245253057013617 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{Median} \alias{Median} \title{Compute the Statistical Median of a Vector} \usage{ Median(x, na.rm = NULL) } \arguments{ \item{x}{a vector of numeric or ordered values} \item{na.rm}{ignored} } \value{ the median of the vector } \description{ Compute the Statistical Median of a Vector } \author{ Matt Owen } Zelig/man/simulations.plot.Rd0000644000176000001440000000241113245253057015746 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{simulations.plot} \alias{simulations.plot} \title{Plot Quantities of Interest in a Zelig-fashion} \usage{ simulations.plot(y, y1=NULL, xlab="", ylab="", main="", col=NULL, line.col=NULL, axisnames=TRUE) } \arguments{ \item{y}{A matrix or vector of simulated results generated by Zelig, to be graphed.} \item{y1}{For comparison of two sets of simulated results at different choices of covariates, this should be an object of the same type and dimension as y. If no comparison is to be made, this should be NULL.} \item{xlab}{Label for the x-axis.} \item{ylab}{Label for the y-axis.} \item{main}{Main plot title.} \item{col}{A vector of colors. Colors will be used in turn as the graph is built for main plot objects. For nominal/categorical data, this colors renders as the bar color, while for numeric data it renders as the background color.} \item{line.col}{A vector of colors. Colors will be used in turn as the graph is built for line color shading of plot objects.} \item{axisnames}{a character-vector, specifying the names of the axes} } \value{ nothing } \description{ Various graph generation for different common types of simulated results from Zelig } \author{ James Honaker } Zelig/man/Zelig-mlogit-bayes-class.Rd0000644000176000001440000001207213245253057017175 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-mlogit-bayes.R \docType{class} \name{Zelig-mlogit-bayes-class} \alias{Zelig-mlogit-bayes-class} \alias{zmlogitbayes} \title{Bayesian Multinomial Logistic Regression} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Bayesian Multinomial Logistic Regression } \details{ zelig() accepts the following arguments for mlogit.bayes: \itemize{ \item \code{baseline}: either a character string or numeric value (equal to one of the observed values in the dependent variable) specifying a baseline category. The default value is NA which sets the baseline to the first alphabetical or numerical unique value of the dependent variable. } Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). \item \code{mcmc.method}: either "MH" or "slice", specifying whether to use Metropolis Algorithm or slice sampler. The default value is MH. \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1. \item \code{tune}: tuning parameter for the Metropolis-Hasting step, either a scalar or a numeric vector (for kk coefficients, enter a kk vector). The tuning parameter should be set such that the acceptance rate is satisfactory (between 0.2 and 0.5). The default value is 1.1. \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is printed to the screen. \item \code{seed}: seed for the random number generator. The default is \code{NA} which corresponds to a random seed of 12345. \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is \code{NA}, such that the maximum likelihood estimates are used as the starting values. } Use the following parameters to specify the model's priors: \itemize{ \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0. \item \code{B0}: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior. } } \examples{ data(mexico) z.out <- zelig(vote88 ~ pristr + othcok + othsocok,model = "mlogit.bayes", data = mexico,verbose = FALSE) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_mlogitbayes.html} } Zelig/man/is_zeligei.Rd0000644000176000001440000000103513245253057014546 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assertions.R \name{is_zeligei} \alias{is_zeligei} \title{Check if an object was created with ZeligEI} \usage{ is_zeligei(x, msg = "Function is not relevant for ZeligEI objects.", fail = TRUE) } \arguments{ \item{x}{a zelig object} \item{msg}{character string with the error message to return if \code{fail = TRUE}.} \item{fail}{logical whether to return an error if \code{x} is not a timeseries.} } \description{ Check if an object was created with ZeligEI } Zelig/man/figures/0000755000176000001440000000000013245253057013601 5ustar ripleyusersZelig/man/figures/img/0000755000176000001440000000000013245253057014355 5ustar ripleyusersZelig/man/figures/img/zelig_poster.jpeg0000644000176000001440000013016413245253057017737 0ustar ripleyusersÿØÿàJFIFÿþLù!èL" N' ƒ¤‰°9Är hÄÌ®(^kÍÁZ;XWz¦>'Í}3ÏTSæü%Ùæ.[vÅÞqò+ÀÛßž^Šë¿è‡ñ öºçô"|·ö¹ýÒõ¢rÕ›‹qcØù O= ˜BDqœ€€h-•F¾îÁÉè4B¨úŒ«}7Ë}ý!Ò³£ñ»±WL²—e,ÍDŸø_MshEÅZ[ÑëÓÚÛôKí£Dýï¨&ÿ?e´tVÔöÃV¾,Ë@&‘œA§ 2OdøÞ,Ìrȸ³ù öË {?,uÿëwå“{>Ø“²9Og ‰Ç#âϲ1e$ÓHÎ ÓÅãŠ3¦{§ž¿9dº¨‹zH˜Î*¼3\õÕ›äÕÇ9×ÛëdÝÚ#»:‡U6ág}ŽËénÍÒœê{Ñmo¾ŸªôÝ‘ ùÜjå©ì{¹Îè§§õØÇr…ù½S¶ö¾l€rÅŒ$@çiÈ bÛ–-¨!‚Y$%ǯ{:ö!k ã3-Ê?ïjãÌPÁ 3BM˜ä˜(HÎ Ó CC@¯ÏjÔÞy¿­ÃïÓv|cLìÿ§S÷f‚64Å 0„ˆâ 9Ð404ë{g«^æ–†;xëOjdjÝE^‹9œkêh‹@&` 9Är h`h>8DN®ïË=¸ü•¯ú“kÛ¯:ˆm/GZ´¥ûqîã`^9Uúf€x´`&‘œA§ ††€8¹HxkÝ9qñ;>˜u`v¹Í… %´2äÇ•…þö€x´`&‘œA§ ††€1ˋ Îè€ç†8Ï9¼bÑí~NÈåA™ -˜ €$@çiÈ¡€!  3ã‡[Ã7­³€Ê«)—'goŸÞ‡O¿:ï«c²ùAÙRЀLÀ sˆ4ä@ÐÀÐ ŠŸ£sq;aÓ‰æÇƒ›&º¯Úž·SAÍñhÀL!"8ƒN@@4  =mÙ6ÍÔÄS>_]Ÿ—¶:—Å”î}NÝu3@†€x´`&‘œA§ ††€ImPû,áXöºý“Œ÷£yöï'o£ÞâùƒA4Å 0„ˆâ 9Ð404qáÂë“=ƒ® O·>þn~¹…ea‘’âÐ €˜BDqœ€€h-#¯@_ÔÆ‹Hö¬JïGÚ6+[vƒ[÷yÍïÐ-÷ÑH¨´níDÜœtõ¬¢×Ûã9nâx´`&‘œA§ †‡‹Õ×-•㣳£c1ÇIßW@6C›nšz!²fqPû6.µu¤rXih;ù^-˜ €$@çiÈ¡€! .^q^ÂíJ7䞦ٖ×~_§«²=êR_Û¦”BSè¸û:qh‹@&` 9Är h`h‡›Áˆ§ø%½MXuýŠ¢sÕÉèxêŠ'd½ VWžWjÃ==ñhÀL!"8ƒN@@4  ƒÃ,QYkfðq÷ÔüËØ-²ÊÒª‚·ýçI}È#GvH‹@&` 9Är h`xeŒ"ž‹¯ÖU»™êh6Øß®5â×;ck´ÙóúÐíåÙ«2ªµémsA†ç‹@&` 9Är h`h*–ßâÏU XmÊï«Ö»‚až eäÙm˜ë$‹`;¸uGdc®ïh''‹@&` šJjN8MÜ• Á „܃„äƒ„àƒ¢pB8!œ¨B'*‰Î0”MÈ;&ä“r †ÿÄ-06 !1@$3PÿÚRmVÚ­´=[hz¶Ðõm¡êÛCÕ¶‡«mVÚ­´=[hz¶Ðõm¡êÛCµ¶Ç+mŽVÛ­¶;[hz¶Ðõm¡êÛCÕ¶‡«mVÚ­´=[hz¶Ðõm¡êÛCÕ¶‡«mQìp]w’÷ñWÎÖ¢}I N_ÕÐE2õ•†Pþ®À_(-©!F)YLo^yIzè×]ä|ñ»úËêvBUhèHçìÎÂ0wƒ£Œ°lSy‰˜FÑu£^§Ä8fõ»öÜ„½tk®þW½L@ÀS½okXë”3œõIú‚“ŒÃRµ§QF凜ýU‹äq‚k)9lu2*@EyUðŒ‚VMÖk>šÁ³õ éÞ£#ÕÍ]xf£=puPåpü½tk®þWµN‡Ó­ qttQ›œztO+ÊèDôªZšM¢í¦'ÜË:Ó"ÃRcÊI€6Fï'™(Ì<»HJCc¢&׊y¥À“úÄÉŸ§É–­ZúvÁÐx‡ù´Ð t*4ljÿ™/]ë¼~(ô*ôxÆ ;MZ_Vsc‰ãùúL•špê=ƒ]†¯»pÐ^1¾¨â;ðýqõÑ®»ÉÝMÅ02ô{"´¯¤ýUÊÞ5žØDzOÕY‚ýÄÇ­ =:Çòóù’õÑ®»øyü|þ>+Û_Åyü|מ^º5×~3ócªîˆâsÖq¦Ícõ:CM`e!;}\´Ù²‚äxk¤”çYŰÀ<Í"™òLÝÕµ¶Y³Ý[ƒc|u´O<¢ ã§] jÌñdSmk€Á9=eŒÍy,jU!¡V¢éûh]OŒRM¾±Âf¸ÁÜiSØKE1du„{'pä‘óŽþ$½tk®ü/R~¾=–‹Ç´†q¥ótßDÞÇ6ŒÑDb$ÑäI AS.‘CNRnå®HDEƒ‚$´l,5åôuWx«¤JGb×LpÓÁl„Da´e(8æú<Š0d§NIÀÃÍà^"‰*ÚPô´†Ž²‘ˆ–Ò6¯äÄCd ¦ÄRFïHe¤Ý¼«|Izè×]üÚ5êo˜ò’õÑ®»ÌE ÷Ö ‡¿ÂšÇ̶¶l's¼b(¶ºŒ¦9Izè×]çñjöÚ¼Z¼Z½¸ùå%ë£]w•á rÛÌN“-[?~5õMþki/+͹‰zè×]佩}7a1¨:¢ì GC˜`³wð¤Ì4‘ŸÌÔ-3Ó¤pP:Étç¡•}ÈK×Fºï%êREÆ{JGU ‡ãÛ¬C=%¨‚Ød`ÊHd[L¡!Ê´ŸÓœì¹ zè×]äW+ab™ß¼>‡˜‰cDÚU Jª6å Oˆ¹²m¡áX7ÄEü XrõÑ®»É–6Êßmc_nc_ng_JÓûs\Š7‘ño·céi.B^º5×yïX8Nëÿ?¾R^º5×y|Ú½øÚ½Øåg™Ý´Í¯ãú½tk®òeJ캒±­ ÕVÌå}#¾~LÉ\ókó1¯<¤½tk®ò^²ËÛM\^EÊJ'öÌ•nÃþkxUÕq“†ñØ6Ê5öÛrõÑ®»Éz)ši3nƒIäò=Ó.H³ÉâR‰È5~¡:®lâ?”—®uÞKÔˆËI •zc—ŠñYcK6&ùñ_nÇ—®uÞo5æÕæ½Øÿ@—®uÞc÷R)P^s9”L·Uät ¤’ÖÊÕkùæ%ë£]wš^5‹Û&»Ø'Vuy8ôK}J>n—)/]ë¼ÅïnÊ'NZ¡ŽVrß;}…ÖCþ<¤½tk®óGIÈãŒLô“æd(æ”QN)͵³ùr’õÑ®»ýéèqÒ)cìO”—®uÞ?5ﵫæZ¾e«ßjù˜Õï^mVÎÞ>f5ç—®uÞ<¿U„cÉwåNgNµÄ)Q,u•`vFâ,§ñ²j-mV#3É™8å2`4«¥ámÆK×FºïÿŒ¨Úg(ˆm4o ¨ p“$ƒŠ xÙ9•–Á»{³ÅMVlÂöÕ9gËÆ¶žÊq½¸Ézè×]ãʧG¥&%%O:i&1 ñ̾oÈŒÈ:w:„Ì‚ >À–JæÉJü×±â±+C°·/]ë¼w¯¯ÕªÞ>µxµ~«Å«ÅªÖ·!/]ë¼—½K½Ï*RjF%‰2)¬å$lƒôV½³Æö÷[˜—®uÞL«,Pe”¹‹Lb•“]ÛªN諚.|*ÕÊÎUóÊK×Fºï&WñO–\ü»wXµ›µ×Šº™ý¾9<Ї„qv1ŸNï7YߪrõÑ®»É"ÎÏ›¢0ݲW$iO¤á³Œ+Ž›Åì±,uÕ?e”Çù »ÛÇÙöo-ÈK×Fºï;ääš®GÆ]1ý=Ô¯¨DkRS¦ƒ7¦Qí˜aÈK×Fºïõ|òõÑ®»ÅÕLÇ3Yrá¶Š4|ÑòêóYçl-¼l­²µì‰;‰Œˆbq–`^9(êÜd½tk®ñ_÷i°¸Ù·Ó,±e¨°jÍéë…µRm1æ‡åÞk|¬ƒéÇBƒÃòZ…"Ö4ki”ŠÚ«'댗®uÞ<ª@Z9äé$ ù»2ѹ 8œ•¼;Öù<–} "åÜ~œC²w”S2^º5×y/¯Y²l¥þ‰­}½ŸœÙ5αi…îͯŸ¦GÏŽR^º5×ðIzèéúp;˜n·0ÝnaºÜÃu¹†ës Öæ­Ì7[˜n·0ÝnaºÜÃu¹†ës Öæ­Ì7[˜n·0ÝnaºÜÃu¹†ës Öæ­Ì7[˜n·0ÝnaºÜÃu¹†ës Öæ­Ì7[˜nˆH‡Ô€ÿÄ@!1A"0Qaq2¡ð#3r‘ÁBR‚±á@b²Ñ %CñÿÚ?ÿ¾(%œÔm'vPN˪:ï)Ôž)5\p0þVn>˜—gUÄ¹Ø ó…ÄëèèMÿçLp9No„ñí6oFzE¶m—±6zr’š’YPŽðʤ[¾Ì:wZò%?Gk¢ûÕ-ÿiA7ácÝŠ¯g}&Ùö“iìÝÍ8 —4î E©æüG.zb¶¦¦)LŽÒ4ŒØæàK7\l}‡]´„’Gu²"á®|Éøbª:í—S¹kÇ7"i#ÐQ pm¿wFøÖ*ju  S³½ò‹\ÞÂÀÄÞÓ:u,{¯ñ6ÔŽ+–Á0€\Þÿr±››‹Úú⦪ª¶g©¬žZš‰ ÞY¤y‰rÇçÙñãˆ+g‚#lðýR"›U> ƒƒSI§þ2žüIŒÊ.ÕšV×ðØx`W„}í5%=4™r¬]ä_¼w@|B I$’¾y]¤cÇ5µ=ú[ë‡e¥µãý…¾|qÕúóÇWÿŸ__ž4úôþøÓ×ÃëË_¯¯?–,¼¯õ{yòä?àeßù½ûÇž,¿^¶ôµ±§Ïõã‹§ôðóïò½¯®4ÇWåú^6åñ?®)©Z«2¬¦P ßÊ‘È[9>© š•¤…£Þ ˉFKÚä­Àà}1Ãü„ÒbyØ(½û±USH²¬¹Ñ鬠~#ǸØó¶˜’JγÆÑ¬j8f éÄë|FÙ£F¸7U¹ö¼Ñ,ñ´Oð¸³b™vòªÛ†oï…£I9³qÌo|SSî—5ÉvaÜ›è4í媨‚)'•"X£[7ú3\õp‰%DìX¤@œÍàÚó8¥®–§vœ¤m¾1ë Ô·ò8ßEu]ìyŸá[êHâ<ÇoP©´%x%.”è3§ïpCŽ˜‚š ãy hÉ *zºµ‡Ž|»¹dC’}K°?kkÛŽ( ÍQDòÙDÅŒ›õÏ Úñ¿3ÛäAÁTz Uàå  0u* 0µÀ׸þxJuAÔ%²ÞÆÙyðíÕØ*‹±½‡–§èáã|£ªuk1kB35'‰Ôöð[zšf9€§ BóI4Ñ©îÚÿÄ#Þ•ðÛ.¢bÓ)F>¡²¸`®RWøN_ËNßc$mZ©xÒ02eÝ.U޼8€=pòP¥4Ñ%MRH¦I¬É%æjGÏm:ö^¯­ÀÅ,²T hjéä•ä™YH +ÔkÁ£ åñÄ¿y'ã÷Û¹›|ø~x±î?—¦,{p8Ù»V¯fI7»$g|›¶g×+2ù0#«ó¾ $¹oˆÉmlͯëÚÆÁJ©«ÿgÑ j¥’•fuS,¬‚Iµ½·hß¹ÅôaúcÄ¢£„ìÑý£E5I롵ã¤ÞO\À÷K|‹Ë.k뎃ûˆé¸Tˆ6•[3lÊ“²ofÙªè½` à”LÚƒ|{=Šæé+WÀ³"t_l59apµi{‰oÉÑ‹Xñ¸é6Ì¥ÙrôBc*Hõ;š¶©ÞÍïUÕræÝ±:e @-ÌãiC45õ QâlÇ<‚"7øtÓN§l½«U²*ª—&ôÄñ#2ß ‘r1lN¼±GÒ¡³Âû¤T‘…5 ó4Ldvªu>w-×Í‹ü[Œè©ÎùØ/¯Ž?jD‹öÀ«ˆenà{µÓhDôóMø,º‚?® |12I®U%lMº ÷zá6¨”Z0 ™2‹éÕ-aÆÜ±{6qbxsîîídLöá¡_ = K<ŒZ™³5Ó2¿WÏLGIZ±Mû‘ÏðåY,?Ɔ­·y½Ï«`ÝY5·¦  neŠo¦@E¿<(Ê,8xÿ™ÿÄ>!1A"Qa02q#3R‘± B@b‚¡Ñð$C¢ÁáÿÚ?þw ZäÐyœýCq·+ï€ëµì¤ô;[âKYIÓTEÃ8~X=¡ÉÁ ×Cqþ+þ–ç…Ï2ÙðÕ#ý:}oË"©…dбTÈÁ[ñXòÓåêzsÆsŸÓP„0Ñ=PZ“Hó<„q>y#çu_—Qê¶cŒ¢¢‹3‹½RÊê#“4óG"¢µºÝlu+¸8š¾’’ FÕ+¥—W‹¥Åÿç®?´9=ØØ×G=WöÄYÖU(ké·6 Ÿ-ð’$ƒRËæ9¡ø3QRÔ_O—êWÄ~§³y9bÆŠ-źíôÂd]4r,áCÙ˜õ7·¦ãÕ9Ç 2LºXJD²NÁ€Œ~îþl,··¨›"Ï–’¦’i~ÒY¦–T/À¹‘Õ¬@o´$Ø[b-ËnÏå¦É"w‰`¬G©ŠZ¢ËÁ.@«*B Üìyß O`ÂJŠ!%”܆ÜZû±ýšÉÙÙä¤WÕГlC‘åTÿwEO±¸Öš­ô¹Âª Òªª<”X~ŸÎoÓ/Oùùâïéú÷/LoÖØeÍþ[×l˜Ÿ éä|÷üÁÃ#0³–¶ ÇFÚ­kÓ—L-`,9àày#~¿ÌM·è7?@;?/e½Û™CëJù+(%RÇ,ËMDX{ÈhŒ[¼šwŸTk(ñ¥˜K£öc54¨ÙÃÒW‰ÒΞ÷š‰TSA+ Õ”­A‚üUâð¥™êdX–4§AS,ð{-𦥣¯ÌÊ!1i†²%“1ED˜DÖMÊ(xZV ,íTjH)uåÓ{?÷6Zs(j§Í¡¢š:ä…êéD•~ñÍæ„¹Š „¬ô2ep–J¢¡x®qEìòŸ+ÌÎM_5Ua}ÔòŠó#…­Ê8¦¹d¢‚’–Q½ôðj%Ga×¢gñv^NÌ­MdY¬«NôRES_MQ8Zd.õÐA*̽âSÁ(eM:OMO4±°Š›Ù«DO®¢I8i¢5”µW–³/ŽIózS—Rp)¤Ì^§Ì*cn=âQsÅ¡~ÅRMÚ:iZJ…޲ޓ!­©‚gG‚ñe],0qïq…z8µÈ"©šœ–1Á+­&[ì×6«‘(ëš‚VãË]YSCLÔ† zˆµQ™}à•ÖÅ  S˜éÕäuº³äÒdɘÑ6c¨Ó±¬I„¨ïMÜ“.šE§/Q5U&®EU‘ Y#ˆ`0föw6_OM]P‘f ,ɘ×å9~a?iV°UÒÅüÕŽÒ—Æ‚˜L¥L™ºåðæ3ÕNÕ4q%,qT(ŽyÍ$MTÑñâŠcTñB#´i¸ßùl<†=<¹|÷Å…­anV¶Öúa"in•mcâ _ ç‰ xΗÒÄ®¯þ[tÆÄô¹ýl?Û¸°ò\ºbÃËÓòòþ°òøJ†Iby»ì?ºbI)2°A2U˜³"œB‰t¹³ z‰Ó|BrÐщÈåY5.ñ±Öö!µ`¥ïq±¹¾ÂF[i³nƒ~Wøñ¹ÖEùÝO‘ÃULúµð®O>·î ²ƒnD(_ô\K'©°©×øôÔ4U•4t4¦¶¢²¥RF±iIϹþ„–km¿ qŸeTÙUa¥¦¨–©"е"Ñ,¬wT)± p '渾ØÌ²Š|¸UFÕ¦Jˆ©¨ªi•)Ý£¨J•FpÌؘõXjùˆÇ¢Äð¥F¦&,î7åÈîooŒû “¤) Çü#sùÛ_o%ÕTyytôÉ%ëêU£‘FñěϙÊû|Ùœ3·yXçs$ј¥Te®ý5õóõÅ´,Âj¬°W.¨*k:ÕŒ‘¥ ðÂŒO‹H®«ó8›·¹]T9%e†o4OLdãFIñŬ¤.âÖ·Æ f#¸Á¢¢¹&–šçrL1Üú“§Ú’6Ô!†6=V5[þ`oŠŒªŠªžH K0ªH¥¶b@"ûßÏ®)28¡XYûÊRéë¤K±ó ž»üf½¶çÌb»3š’j&€¤ps,Ëö‚à÷&ü‡3‰³:yé5¤ˆ*©Õ*Zž÷h—a¿OМEUÕdKÉÔ‘q´fÀ¿ÓUÇžÑÀ(ÊÀì4ܾŸýÆ3,©3.L/r tܵQömêú¬y›b.ÏR@ï$q­ä€R²³J~ðí÷’\³„Øa² vV]Ôp#;\(“[ƒ·­†)²è(´ŠTЊ[UرbÛõêw¿Ç¿ëûâçÊÇ"ÛsÅþ< xÉ]Bæø‘DóÈ©a¦Ã~[ôçôÄñ¶º‡žÇ¯÷ùâày~½ý‡ž8–¹¸G‘×lgê~9ðóÚü¿‚°ž ßóøÓÕEK ¨˜éˆœ¯Ð}I6_3a‰3Šhi’¢kúN“óª¹ SÊçoRm‰ó(âãN4ÆÏ@jS)ëûb«0§¢<öiV$;x˜ºòÄY•%LujTZ6e˜ži£›?6&ýFøŠ¢ˆÒh\IŸ#¦êÛtø¹ÖGuPTTÕÓ¤sG)îÒðõ28uà‹jìvÅOcijÚU«Ìó Lœ"ç[Ç; #Њ€“¨o¸Û]“¥ÍS_['Šœ¬k)DØ:ÐÿQ¶ø«ì=mJUOYV^*ˆæŠ.!à ŒªÖ×>d“‰²(›¿¬cÌãáÖ.çXÓ¦èAM‰Æ[—ÖQAC Ìp.”,wø²|·ü$?×NúG©ä1ÚäÏ"•ªr¬Þ¢“´ÖZm=ûÊš‘,rƒÃ'N¡°£Íª©2ªz9êfÌóE…Z¢¹ãPŽÇú‚D‘ýëx!Nw½Í”ã-Ϊ©†íºÇ¢þ*€äËO¨’ȸ71ˆjRpYokìOQ}ÆÒÀì.0ù} “ñ´&»(ÔwsnšÛOšƒ¤õåáŽ:Ñ™ ‚êõðŽŸÒOË}­Š|”[þšB;º¹FošÖÞæöúmÈ`åíN-*ðú…äztòøöåŠlÉé¤ ¨Å’ÇWÐm`ie¸Û}¨Ì+Le‰¤»é™öµ¯!S#?Kb¢¦JäÐïhÕQ|þUOŠwØ¢£§ªð N¥‚i¤²Ÿû1™-~[éúcÜ•R•4ßiéá¾µ]Z˜¢üÄâR7òúarŠ…¬¥¦˜ªñÈßR°ÐÊr6å¸ßÓ.’_ºÝ‘Y¬€øô(»[{Ùmÿ¬>Hb]sjTî/'0I©@®ÈÜé0%¹\«|N †!’ç‘úmõø°I$”r¥RWž‡uÿ2Üb*ö…8å©TFÁ–û\Ø©¸ý°õ1Èñ1z£ÂU·‰u‡ü<¬1ßíÉê,/§Ä ‚Ö-~‡Ä/ç{uÃæUEt$ò赊¹¸ÝtŸün0ÃSj<ý9yÿÄS !"01Au´#26Qa•Ó5BqÔ $@Rb‘¡ð%34CSr±DP‚ƒ“ÑÁáUct„¢²ÒÿÚ?¢8íãŽÒi®¸áÓ!‘‡¢2"&³’©®eöãè 'Âàýß@Q>îøú‰ð¸?wÇÐO…Áû¾>€¢|.Ýñôáp~ï (Ÿ ƒ÷|}Dø\»ãè 'Âàýß@Q>îøú‰ð¸?wÇÐO…Áû¾>€¢|.Ýñôáp~ï (¿ …÷|}EøT‘ h¿ ƒò1ôáp~F>€¢ü.Ýñôáp~ï (Ÿ ƒ÷|}Dø\»ãè 'Âàýß@Q>îøú‰ð¸?wÇÐO…Áû¾>€¢|.Ýñôáp~ï (Ÿ ƒ÷|}Dø\»ãè 'Âàýß@Q>îøú‰ð¸?wÅqÖhtfÞnS6Ü d!6Ì!<@b¨Â*š ¥—?Ü”¯¦_w·uþ ‘/ÉÉárY{2ÅmIîwÕ\¨%ظ&ép*õl—MPd#²¶íóÎ"‚~±%±ÎàÚŠ5s¬ K‚:l–±4¨à­ì@¢iq!U¨Á«R“k›2óCuDú‡¨¶UìOjªm„:ÓæšõÇG…¹IÿÛ9•åÿ”KíÆËztÕþåªxñÃýÉJð1úWeÊtY—y× ¶ÛlTÈÉW±>ÜJ pîC¦‚›+#Ì“0½H¥ÖÓ=v1±{0|IÄ\FдO<' MתòêÈBB…Æž"!6ïè.É!Š]5ç ÉŒÛF©ÏJŒñcL…d¹G@¶$·6ûc”Ìà÷ÆŽT/ œ€e.ÍÙ4DØ#›¤ˆhÒ"[š-âcõ‹È¥ÇäÓLˆ”D ¹b0™sLþ‹œK•AlŠÄB‡X VÙ6Zq•ý*´S}¶Ý‘SM¡?ƒK¢"/›:œ¨2Nkç MÑ$V#‹`ã„(D$D¾Š÷ÃôùÈblrFÝŽãhމ¡ªu‰***&ëeÁ“ä¶Û{ªºÃ¢!º Ê肈¤¨9—Ò½—²Ô¾(ªÒ­ñ'L8v<—mˆ ´öqÒ´m«n¢4®»#žB„Ú -ñùUrIIŽ{1¡¤&ÉRW#¹Úp܈‰fõV^ =AxÊÒ8ž•MUo‡f¬"]F¦4Oݹ™Lν¹ðóœl²RV¯€ušt×™q3ƒ€Ã¤—²¨•‘ÊVUûoµðÌ(Âë’¤:,4À«¤ñz"¹yÅÙ¸ïéb/ UhþWn=ݧ½*nƒÂ"TF[&š–4! dŽlJL–ã›§ý‘%`UÁ7©€Mƒ¤„¤ÈåóFŽ"’&a¾\6ÙpåC;Š ‚Ûñ‰TÌS1 ó‰vêº`¨Ò+0ˆÇPnË/!7›&d&_ [Ñy׺-Ó…Rz1.Ö‘ñ²ÿÈ'd÷õcù¢« q[2¶ÃàNÞÙ•»ê"v]Eý¹jžüpÿrR¼ ~€VµI‰9À­ºë~tØ.§?o· ­Ç—ùOoò,ß¿ Å3ˆ*°Ø"RPTaÔU"ß;iÚÒ'ØD‰±-Șâ7ÑIT—R+vº¯ê—³onaÞ+Š@Ñ›€‹NVÕ\pD\qÅlÓQǶÐÜ¿; ÞöKC¯³TjkU + ž‡P˜4lÔѪ*. _×D½ì˜Y²µŠC‚ÕžUDRF[šTµ—aMDºæëç`ß—Äèa^-OwR[Il™aŠ›ºfð6-›ÈÈ“/7Žî$™Üs Ka›•ŽJ·§%Ó\¶DGsël‘®¸Äèu) G¨3!ÔHRc™ ”¶i†´”Â# 4ûö¹;„‘%—Æ5X´ú3:‚y™„( \óK"yÌ·]®—²—9ФjÌ*Ìd\{É2Ümè}YÚ8ÆHe–ê/9NëeëÃ5€÷*‚êIP3éò¡–tQËõHOcsdm! ¾.")ƒ j‰lrz °‰™T¶Þ©Æ«BW]PmòBb”ûjÀ0šÛ²ê"ÿIœ·ÄyÌH‰G@Ô'¡R[ˆ,½‘mz›O:½.ꦎˆiöCç Ö2º5¯(ŠÆ¨‹iýX*ÐÆn2†´ä' ´ÕÑ%T G«2$@ª/'’Ãê Ã(hO·¥«œ‘~êÛÊdYäqò.LHƒ^« gäRÙ‹#’'›é¤ÄÙ9ÈÉ„ ³sPQ”A .!Ñ83‚¡M›v8³ˆUל¥¹ÙЛiMXeá|yBi¶Û®:£œˆvÄ£´¢ÄQMWOw%É+kÊuMãó›l;'K_îZ§?Ü”¯¦z›X„ÄèoŠ‹Œ¾i¿jv‰'a"¦•Â5•£©©—"˜HŒ*_ݸÙ#¢‰Õe¾Ø%ŠÅ"®Ðz.Dž ™Ò– 8ŸáÌxÒNO©E*q2*^þŠÉKõõe¶”³I¤6ª™Š\ð%ßû`á*ÿÃR¸º²UumP–&¹4b^Ñ' IÂKö¢4ªxfF‚ÄŒ ´È'5,жÜËÚ¤½5¹jžüpÿrR¼ Ì{?—«ñ;z*ÿrÕ< øáþä¥xÿ‰RœÚ 9ÉM‰ú*l0nŠºã¿»qUD Ó8R‡CŽuê ¹ÞâŒÔ™°éÍf2ä´ôy¨ä¤*ì‰g¢ÎkfZŒŠ7‰(ïÁ…¢Õ6§Kõ ”²Z…M9±–ë6ä·Ø`µdG6 ÑY"Ès°“Uá¼ÕW=lÚ§D}øî¢¢ÛªÙod4l‹"ìVB²óW8ž“/ƒ©”]PÃôºûî±PâXôÙnÑ$§j6Ý+Qæ\H ­>€£iJÛ~}U¯'Ö*¯D¥Çª× ‡£5X‡B!²6ÖlƤ¶Ž+né,Q|•¶Õç ÂCâˆ(u9U¦§Dâá;M)ïr¯2FÚWDÕ´ˆ¹æ*ÜZ~¹ùpSeÉ&Ðb»0™ͨŽç]mq½eÊ($h)™sZ]Mˆ"ÄáêMjoÌV_ptwjMƒ>¨‘þI‰³ ‹¨ôšÜó6ÐJ…]“ɘ£•f© “üÓL*Ã,¹éfäÍFY{WÑãy 2*&lM#§qªe:¢4‰5èT¤zŠ5Ux#”–R[5y·œ@74*1$+„  S%FŠŽª K!àe%ú¡¨B„^áU·ïÇѨQcJâ*¨¹–“HÆv¢ÅruF|¥fæàDˆÙ0Ú¡>â€gÅN7F©Tƒ2·Ãu*{!ŘTÙ1[¨ÀÇ6]e¹l<Ó> à¹•W=í6•T#ÉR®Ä„ópN˜Í‡&"¹—2¶’q¥s-Ó6[ì7_ÒÄ®Ô$Õ¸v µ¸­´2êtÖšjFü¡Áƒ“ ¼¼BP Á‘RIJ÷*(lÖ#0§r¯:Фe”ÎÍŒ³-s•' -&Å4ál"£Èòq%9ˆâ‘>Ú‡#FuPDKYW.fQ.T¹T3òoŸ£kr¼cË×òŽiy´óä²ÛU:ñ2@ã#§Óët¨Ôêö­<Â’ìf (΀¥(y°ºR3’PHM·†¤sü°×2@äT ” $j ’y÷•ÎT‘µ×2ô®ê&¢Ê*U2œæ¬ÅˆÃl,—9Ö7”5 3”¯lˉԺ_5O᪔©rJšýFm!j+µ TŸ$r sSvÄrg J.ñ>'ñ"ðí2µF‹D¬Ã‘Lbª¯39ÅfdG\~*Æ–L<ðJæ›/+¹ôÛ1N*‚ÃŽqÕ¸>Bj0Ü"yÊ% É1Ô_WÜ9ŠØ=¸'5¸™åÅ.Šñ+“‘ŽSS|•MÇêR¼ì§ ”‰MQÅÈ…Õ”QÛ…§Ó¸†CC2‹Y¢W iÃ¥Wj¦ôé0æ+ 5<ÚRÍVYy ýxâb9„›â:2W\1âxy¥‘äðÍÈ ¶Ê·Ê×W•£wTSÍMÕjüF9Ž«qCU¤uæ©nÂJ“5)Ž9Såi5¸œ¡®PÍ9)äð¾,Fåz®`¬S!Ô†#šÑ’[ ¾Œ=oé[΋”»3&ø¦8ÄçèõŠ Ñ©Pêñiç ÉFÕ—˜y4äD’Á+£‚8ÖÙÁQ1Xs‹8 ª5‰ôg(”ùqé-ħQa;!©J4‘ù3 ¡Þr`*µ•‘Øu1V¦;XÓ•.(s‰š¨3BDà¶œ¡s³*!Ȍ驅ìù›ĺ­>°í*b5ÃkDÒ„ÓÃJ‘Ã@ó1\QqÜ’ãÈiòmæ ¶–׳Ë}«µúÅ}+•*ûPJ–4ØñF¸- Œ™&A”íç U7Îd¥´êwûbèÁ:ã¼MHiºAz“\)ü½¹K$¤¸SXóEÀlL~².جV*ÜaÊx‚ |;"$¸ôFcD¦Êá©2_ƒ–"ÌueFs•<:'º®¦kZ¿"¡YòÕCˆêÞY™$iá¦ÞX‘â“M4Û力rt \ÂH‹”³Û2ÿ-¹jžüpÿrR¼ ÆêOäêLvc«XêünÌu&:¿“«ñz“ù:“ñkýËTð/ã‡û’•àcôÝWþ7ÄÄÃ[ŒÄ‡Z`åÏQrKa|® 6Ñ  ¯UË7· P¦SiñXjÍœMH)-šéDZsP \æ*/7·)o>2p:äF‰ ΣW«0¢ß'¥—~¬HÒ'—”>rOUÂvÆvBFïèÉÌM“ ¾þÎÞž¿ÜµOþ8¹)^?æ…'i–ž‘¡‘MÕU"Œ#çû´‘-Iß«aUUN¼~ø¢¯ˆ’[âqbz±ŸE!Ô9}©¨™ÛfQœWÃ>\­¼+èÙq2 6£L—6%DMT…úvC—CY2Š#n#€bktEº^Ø2K¢J‹ÄÕ"-ZºjÕ×Òf"G}¨èòÜ™&†A—27|0ãíhÕ,9KšGUq·§M0ËŸ•LudsгgèÛ0^¶S%Ò×ÅG‡ë”ˆñŠ<‡LgÅbÎ1jÌ:ÀÛR2´à4¨Š¼ÂôvLp´Êˆ¶µº9¶²Ç0åu© rZˆg± ÜktÝreÛ5Ò\ª5$z¤Rf£ÆÁuz$†æ2¹•@ @ÓL/>Ɉ²Ûôd0ýЍ—÷ŠÝìé«ýËTð/ã‡û’•àcôå]cùö_CʇÎeÜãq^¾zgOÖDÆsâj»ír6vó7Vì—êAìOf2-k”§g(† _æ@auÂÚ°Û~̰Cmýî¯eñ¥TÌÇÐÍÖ›Vó3~ft]³[®Ûb·FÊêÅeЙÂFÄdæWôW)õ"utÕþåªxñÃýÉJð1ÿ4UÊ—^µ¶ý5¹jžüpÿrR¼ ~™cO¬SaÈDBVdËe—KÑ%4$¾ËÕX蟋í·÷žÜ MWé8d€ã‘’ØDEꤻ"vã­0¬ë4¯ çVµQô”/šÞûaÎI.44Ðy·tÜN°<йKÜ»ôõþåªxñÃýÉJð1újÇ×éñçC}.-%™9`œßIÏ› ;˜"´ÓYÉE.âéªÙpä€áªõ©Àë4x…MŒ¨rr'å.ù¤]ÙÇ2؜ʌ¶¨ª¶OÂȇ:§Ena³™Rˆ<´ml:MY¦Q9¦ƒ—˜| T#Ô": Ó®SæÝQ³Z3€ëkÚ–0-¶\~©…"Y0‘]‚Û‡%Ç$5¦Ii4Ýs9"ˆ_IÅ-D/H‰.‹\k«Wv óF­ì×&d Í=fužü ïç¸e$höNG*·L/däÏMŽ]} ®fÀÓ[ªAr m£Ã $²R ¥êqΠ©º-½w£¿K_îZ§?Ü”¯¦‘5õóL4N(ýcTN` ].F["aÊ•t‰ªl|ªãCu!ƒ„¬Ãõsº·ÕsÒç­î–ªÕ&pÌÚÜji &†b¿O£Ãe4È<§™yÑ”Œ[5²—:ûà+´¨Ñ¨õP+PÝn+”•H’Œ°ù¶™,Û™….¶TDçcðƒªO40tIèέåù·›Êb·ÙrÙ1øHŸUÚ¢Cqö ó:ñ¼ÄWòš©\œ$]ùʼíñÄlÍa·êrŸ«Bc͉KYy9LWÍ×?7›•7M‰-lI­N¦²íFQXôÊ‘ŠëƒoFy 5ÝD7Lª¾mLRÛtµþåªxñÃýÉJð1úU%ÙUz¬‰ºª¯b"`b²ò$O"èâìnŸZª ]êNÔß|V§4¥–î•—3®*sŒì þIÔ˜¨ˆ–½:[êâÙï˜\ºsU ›!Dº¨ ­º+iM­šÉ7¦ ¸Çm\¶ct¬$¿U/Ú©ŠûŠð l¥W+Æ«bUKól[&Ùºñ_È J)8sŸÙË‚ßê*­‰wæûñPzE/ˆ£ùYçŠdZ$·¢RÞŽEdŽ­g1 ®bÏ™QTQQµÉ€¢ÒiÅGFíÃ&ÐÐl¤ædRÔ-·3U5öôµþåªxñÃýÉJð1ú[*"¢¥•©}ÖÇõ8ßö[ÿùÇõHÿöCÿþ©þÐã:Méw•2þÌTŽ‹îhý3N#¼¤*VkQ½óµ¨‰pSÚÅÕíÃPžáòp™h]j\qiPR×"?m¾ª.¯PXt6#Å`ÕÝ02ôžr„ê†Þní'b¯K_îZ§?Ü”¯ó›Îƒháê™* o×{oìþ_ýºjÿrÕ< øáþä¥xý>ꉖþôÅ9ßìå¶ô#÷'(eoïÈbžõÅ×ÝþŸù¿æþåªxñÃýÉJð1úc'*³ò*£-m§è¡ yöÿZ'J%^Cn¦IœEFä«îÄhoÊ0mæW2"ë[n¶RöáeF!5ŽMÎŽB·B(䇰‘qÊú=-[þ®\ûÿ—^#¸ö]Shò_-ÈzÒûã¯÷ÿ³¦¯÷-SÀ¿ŽîJWÓ]l‰Ö½ŸÇn&Ô„o&«0ÖÞ™¶žyÔý,Æ9AE=øjPä)•,€Ž*"’¼ÿP[LËìæ® S•y]ã'W5“yÅ/rˆŸºä‰‡Z.iYb…ûDÝÒÚ*˜‰NŽZHL«8‰rm¡AÿDŒ–×ö cQ”d£bGdºà¯µr©YÞ˜Å2óÌulɳEÿ˜÷tµþåªxñÃýÉJð1úf)Q•VuYÎLÖTº´Í¯"G¹o5•vÏ•0ÌV¬ 2È·Îí°ÙU}ª½j¸XtÉŠ›&n; òÁ‰±–êDÛVWuš"[äm Û¥“ Q¬+㠭É95Ú¦nžUyòTÉè§0yʸi <ˆx—Åvl¸‹S‚×)Úv<¸¢¨.ºÉ–qq….i: œÆ•C6m‹Å6•Sri  $¨ODŽÙÙyμࠨ‚úz:ª½‰Š•:KÚî3)§UÍ“1Lh_vÉìGuv_«kuôµþåªxñÃýÉJð1úa¨¹"kO‹œV<‚g+Y³·;¦eKåKõbòX‘7ÿ­™&B/¾Î»mð… ›9§×j3`iÙéåÏÕ·_Wòõ~λã݇F<êqGqU@žŒî³CìÈ%¦í“´”pê›Ç&T·ùD¹mªõy€›6Ø¢em­ôÑ:ZÿrÕ< øáþä¥xÿ™uþa_îZ§?Ü”¯§áèôéÏÓÖ¡_‹KÑí© ùd?Jé²n˜â8ÒªÓjÚJ3ŽR ¹¤;b5æn"‹·£±1ø“wqí¬ÎE΄…o—.ý‹Ž}©>mV$-YÓ6ÀÞ‚Ó¯W.9K—d²û1ü{/üvôõþåªxñÃýÉJð1úv$MoUi’¡žméHcps˜CŸ/蹜ؘ¬UÀEfÏ~mEz®ª¢Æoj§îÄ$Sv{ujSòÝeÐi3é–à ¢éX•2­û1ãb5 ꌶeÆÑh•ÜϸhJá˜öìÚ‡½KkU%ǩ賬Ý9ˆI+rrw);ªA«­d[ªÚý[n «uP¯¾ÛõtÕþåªxñÃýÉJð1úyª‹c~Ñ[öæ}Dß—5±*ŽJš ðè¿“.èò¯9UW³k{±F'¥+„íça°Œƒl(¶¹IÔqUM.‰èï¾8iJ³(üÜÛÿjq#!û_+á¿ðútÕþåªxñÃýÉJð1úzhÀd$yÉ&CDâ7Ý´ß®ë{â©*dF òºBÀ ¯#ɨ„¤+|©aöâ+Ťr“I8 ·ÊRÓ\=;˜•—I«-Ïœ]X¥´´ÖÉÓÜ–‡ÊÇÏg̹m“™lö¿»ßЏ¿ÑfVâL è.TuñUjÛ*8kÿL}øoüþ5¹jžüpÿrR¼ ̺¿ôÄèí¹©ÃuRãÎr˜àkœpa[²©ÀhvþŠ[ötÕþåªxñÃýÉJð1ú~¼uý˜ëüN¾–¿ÜµOþ8¹)^?KT•)éMÓ"„f£´2hyY?6`ºmç-쥛ôp× PRRBˆòGyøï8 eh¦>n!nˆWe wSEKâLd¦éÈhzO8ó¥*¹ÏD%²î«‰Ó}ªœ6Û•¤Ä‡STT—šàfQóšn"*¥öÇ Âo•éÏj 8 ë‚ «$sŠº•o„ X-Õöþü³Ÿ•r5’MêšF[ÓEõ¸!&ù¿~(üKÏÊf”ù!þé¯K2ï¨`&«ÚØéªI´Ÿ'¾ôi¨Éé<ªº"¹s¡‰æ]•I½…ˆÌÍʉ‘×Íéj¦Ç~®ßwI_îZ§?Ü”¯¥“-¦ÌE’Þo8®w¿éÔoÖâŠ-ÓlJ®¼?”Í4pÑ3v®[ÝWPó¯ÖU¾8v`¦Î5Û["åV*¨¾ÜVåTe¬Æ¥ŒbdÌPa» )·›Ôº~ƒÖÔõ¢r¦Í:¿~ çšÓjkö"_ÿM°‘9ÆóÔŸü,S®×ýø9OîK!Õ$ìXö «kö*l½‰‡e„~PÓ ›Žsò’ ïa.u_µ %¸K>gžc›0mèŠ&ËÒWû–©à_Ç÷%+ÀÇéAçE’‚À‚Þ­‰YEBuUlŠçW^ÖìÇ“áG 6žš®ºšyTDErŠž)O5ù[,ÎÉYq­·»D‰¦u›VÉ×$%ìIbÈ‚‹¿ÛŠSâÛJZŽ'wwUlÄ‹.ÞÁí¶9FYi“AÖqÇ“9 ýNmý·ÀUѶɑ þÕÅËRDT÷.׿on"V"Š$¸ëgCûð¶[_© D•Ez½¸“ˆî«²ѳƒ‘±Î–ÌEú)Ö¶ìÇ$&}WÍ­Óœ¿åì^’¿ÜµOþ8¹)^?MÙù¥¹jžüpÿrR¼ ~˜ C~Y‚æFËOD="um–ýH)r^¼ H¤é²Ò ¡ò€%\©o}×ì¾øå.DäÌ*y²3»§ö ¡öÙ}ØB¶m…:Ô—­PS­vºý›õbB]G“žSRÙš…þ‹¿²øEEº*^ý{tõþåªxñÃýÉJð1úiOn·q}%²l—ö'RaÉÓ|Åbìw-ó)š§±9ÈžÝ?~”Í´n»k¢ÆeÍ£‰—*8kýó`%iÞ\±U„ÒÝ[WúËåún%‰Sß 7US ´Û²V¡1ÓÊ᪚ÞÛç%ìOj'Ra)°[Gmƒî®V{¥T¹ª‰¿³ë`üØ‹!vóï™ÇcÈžŽ˜.Ù½%^¤Å¾ÏßÒ×û–©à_Ç÷%+ÀÇéwÙ.«ìOãöcÄ¿’ãòÉ èK…Á'P T‰ÌŽ*"ok"¦)ñÞÒW7ZÒ^Nž˜(žS5·f뇊–Ù¹ £ê>Ùê|ÔT0ESEٱȖDÂòP/(:Á8é:$,¥2Ô̈ªYù¡Ùº"m‡q‰ Rzs¹¨Ú‰:ûÎ(¶¹þ·7µ:”K²Øm•óPiÈVË-óô…Q7ç줽Kˆ¹.«âÎÉu3ýdE^Á篰S~–¿ÜµOþ8¹)^?JqIçØmı”cFÝ!íEÊ‹Ûk/¿Ì:•^ ì,ÍK"¯nG1ýØÍ ²Üì·] ´Pç'b$ˆš'o®M˜û­ƒf¹Ãî²×2‹* §a»fÐÛòÇóUf–ãÖE&aÑq/ú…%·2ªýdû0¤´*qºÕÊlµ×DÛýÙö‡7»Îÿé†N­¥I‹²6Ú‘ ÌîKqIãÊ„(ÚÌ­­×3…¶é:&«U]_“xãìW_u,ï¶Ÿ\6†qŽXT˜k¸€~›†«ryûy³zÀØ ì‰Ò×û–©à_Ç÷%+ÀÇüÁÉPb·QiôQ ÝFÌKÇ7SD…Ay͸©¿QcÁµdæ¥ò=èôç×·”³TêíÏ–ÿ«‡ä'Já˜w^GÙÅW|êöü›"}l¤«„løÎ— SlÏÑPÜûvtRøO*ñT§Ãë5OŠÅ0 •"ÂuáR¬”©‡a£hóŠÙºá¢&¢¶‰˜³/j­‡"453âZ䕌;¥BåŒÅŒHˆÝ€ÕäêÕ5ɵ°u@¤ÓNPqÒpеÊ^4ÎPÆIY•3))*ÛaG·lT ·ÃíJ“ED!¯6㯛ŠËåZHÑÍî$0Úë"›‘X©Ö©”ê£íƒ¬ÓåòGv‘ܢɸŠ* GlC‡Rˆ^D>IžK`Q¡‹ÎnúO:暉^ä¼ëÝJüXtZs"pS1¨„Ây¹IèIPy¨È¢Ñ3³ÅO2lƒ›MÆó.ð' È0†g§Kp#´®Ûk“èåÉ@•-µÄê‹^w‚Àä:ª!yáœnþe5úè('Ô£~n"ÊaÏ —ªREHÔæÉs Ï¢ Û6ƒc}6…Vý%¹jžüpÿrR¼ ~–½" Ôúk&ÌujNœv㸨¯¶Lªi=”us\¶L¶\SΠûì?Fš3 ̇(á¼Ä—šTæº<ãÖiI 7EOfKªœ?.³[$ƒî(V å6%‘ÔH^T!̾–‘ï†ëM˨ǟ%¶yjDžüv**Ê7¥å8ਹ²fæ¦l¼ìJ¤Õ[iøÇT~4‘eöé–Ê«šùoº%¶Þé†éËR¬?J„lÌKIæbÁCuŽ-–NU¦Ùi3ÊU½„-Õ‰¤ç/d«Í„z´x®«1ë˜5¬Û²2êݳQeÅTEÅEéqå9å*dZ\–uí¶Y!Ga±¶‘0ó9˜&Õ ^@¹*`'¤Úä‰)K:>¬ª£æ|„ÅGETU/’ù€ÕTÄìw;"S㫤Ì6…†–C¤ûÙ,™Ý5Îeí"ÝzJÿrÕ< øáþä¥xý/RbæÃF¾Ò^®¯Ù…NNÍ—uLƒºÚÛûvÆnLÍý¹èíåAº€¯5:“~Ì*ƒ Ç*Ù6·±²ý¾Ý±ý]­úùƒíÍÿí¿Û¾/¤ŸU>ªÜbîžþš¿ÜµOþ8¹)^?ü ¿ÜµOþ(m¹]£ƒÑé€àR Ãe 5öTQ\zÁDø¬ŸX(Ÿƒóñëâ°>~=`¢|VÏǬOŠÁùøõ‚‰ñX?°Q>+çãÖ 'Å`üüzÁDø¬ŸX(Ÿóñëâ°>~=`¢|VÏǬOŠÀùøõ‚‰ñX??°Q>+çãÖ 'Å`üüzÁDø¬ŸX(Ÿƒóñëâ°>~=`¢|VÏǬOŠÀùøõ‚‰ñX??°Q>+çãÖ 'Å`|üzÁDø¬ŸX(Ÿƒóñëâ°~~=`¢|VÏǬOŠÁùøõ‚‰ñX??°Q>+çãÖ 'Å`üüzÁDø¬ŸŠãmW)¸tz˜€7R†dD°ŸÊ"‚òª‘.È«ÿÄ*!1AQað @qá‘¡±0ÁÑñPÿÚ?!s¿.h¶)¯Oç«V­ZµjÕ«V­Zµa2^‡ô$ø}ÒÉþ{×ó´«V­Zµ^½zôë×°x[3ЃNž_ßχ½¾ ¡Ÿc-ŒQ·¯õï¦9.š“D¯0J#„åQ…•Rô+\1K ¡qᔂ¾"3laváWÒaxÌ"0AÒÁަ•€}óßÁ¿•H ¾ûãw<ÜX&'¡ÉÎ"$oöV²ª+štDÁËd-»ó²Œ~ªSè #´ÞâÐÀ±@5a¿w.²€1œˆ\¢žW6}O. ¬8%L‰b-/9nÉò)|g?H¸Ö.¯`ëÓ(†°A‰ID4Œ+eCBÎŒÇ\€7±o¢Pà!)–gA¼´¾S]°"­OˆTÖaÌ¥i̺f@\i¨ñÔ} 6=0 ê6jQw¹BδÀ–²Ha —(Xy».Ÿ““—÷%²NÄ0ì8‡§ 1‘™%<|º-0µF¾XŽuÐÖÌ\«M7tˆ)š F>¨Dè ØSTNWYmɆ„€‡YE! !¢ÐeDþE'{…2_HM=yÆâEvè@L†õĆ#‘"‘TK¥bÊEº¶Ia™’$\6ÉKÛÓ¨„î2âSZ=·ê‰" \ïu—2f 0ÈX.¶+î8x³„.ulÈ No Âö*6H‘Y¼pþ ¢;,-¯˜ K”(ÐÜ…ƒ(L€ÄÀ!‚ófH¸ç‡I„`=*¥p+ÔΘ¦”xÅŽ‰F]°(tĉ»ÑÔµi²·×`| %z2IÐúfímî´þR@_ßÏÖ ކWOÆAàÄ8¶Êd¤‡A¾ˆñ˜&Û[‰Y;]:ZMŒó*TÉIÕ°Žv|d)ã"aVoã“"ãIzZ ¿žT&‘fºõKaØÄ4/t‘hi¤BC+ àî²:9ï®A~? ''''ë=÷Þ˜$<òÕ_@Ù :ÏD"Â`0¦;¸ƒ²ýôq´ js•ªõG-ÖU”èmÊ!ÄØ@”?ŒPIåGret ͹Î+$Éï÷ëéõ†LéüiMèüSžî>}1¼NûìÏnzW÷¦O9½¶¿NwúDd}q®º]Ÿî&ô劗®l¸uŸíp-uÀäþ\†ÇÊñ¶ñƒ$Ëõô޹§¾õÎ?£ž‡¾÷Ó&ÚKÄ #ˆÎûŸáH cùاÌ"³ ̘Fð:qM¢Íá ðFT.ÊPç¹ pqMhë6ÅIÖ®KSáÀ&6»sôÏNh‚û£žÐåñŠÊ•ÊBš¸)ãaɉ-ä?…dˆ¸APø„‹¤®ðX×_ãñþc,¾¤îý}²ÁßüÍ-ˆŠ*4K ƒS¡¯>¹Ò}²>ß¾úgAzÖ»_ÎADn„JÊýåz¬ãÿ{é„8Θão¶0mÓ×|Ý5Óï·¦Eû¾=£Œè9Ó}òÇNã: ô7ÿ„ä ПNúÿÌèn³û¼ƒƒíš“díοëét# àü @_ßχ½¼Ñ5XO b¯"éƒ!'@}XÎÉõú–µY&ÛZ%?ˆSÚ@ƒ“`ÌVqίýrÁL*^ƒq’;ý=üù„€¤L›»Ö&pS16bÀ¤ âà•Ìàû?sm¼M 6"þ‰€elj&|ÅIX=E<š@_ßχ½¼0f͘Ô4pº¼8ãt¡fØC ‡s°R£°£TÛQ_ÄäØÁá‡K[¾- Ñq$߈‘6(rgß=üù„€Œô¡H¨ˆÁ©fÕ„ à°ÁðÚzIŠÅÔ·"Eåä†Ò¥ âÙ!u²›žØ'DV4êm¢X2 õòI|g>öðÁ:]~,ë×4(c-˜?Ó7ØÎÊÛLŒA¤ºÖØ{ø7òÉ(k•Ñ>!@JJuÏ~í=¬/kÒËMh SZäš4é}c÷‚ŒÈjÖA:'|Õ z—ú}L“Ÿ$Æwóáïo¬ßÞT(’®˜‹@ç´Ðéå@ggÆ÷jlV0/ÿ2o$W”0ÅíIr|Š3ŽÓLÌ)ä–F×µ¼ ™0‹@ P¾¹tàºÛí±à8ŸÏƒ,Ó*ܪQ1¥dµ©BuE1MÒY <ÐèqhðFæ•hõ´—ÇR:Ýð)ù^3FµËк6L–éÓ/ôî:¹€•’4 sN 4WgO"Æwóáïoª*È&Üýb3²üêt„Pø{,LÁQ7ˆEʲѸD@È8_¥éRæs2A³„£ÒÈA«G2. ³¬‰Xm’%|$ˆK59¯ŠîME¥‚Ä×#:¾ ü²@NœÀR¤tDõÃVþ^͸ÐË÷q«ªÜÛÞýõ¼]L©NÉŒj¨q–’KðÉ,^šbF&‚ÝK£k‚tm®K@Ø p/z>AUÌÆLâ"ÆwóáïoewoýöÈ“3¤„nj¬Sª2/®6G86öÛÿ–H b?Ìy¿zñŽ›Ô ë–1,ºMÚ×ýºå vÒJTNËü&²p†Î#³;ï¿×“H ã;ùð÷·ÔOOîôéë®L[ØÞŒ*YºÖjÀœÀl- SRõ¦J¦¾ ÆBn9¹#•ݦŽÃi/£'à›¥ dƒ¬D“¦U`¸°_ÏÝŸ»ïàßË$³-¨E„r×'¡¨åÒÔ ‘IÝ‹ 6ÃÀ( ¶É.‚„]ÄŤ¦ñî2èDlw¤d ýíRqhDBêzÛ¦ÈÅc¯jQ ÍtÑåä’øÎþ|=íõÕíŠ(Ðh‚’ë‘ÅGy$T*YWÍ›ÛlQzôˆ3V´v0$ÂØ³ÆxK•¹»àfY¶º¬Nrð[ª° J6AÙ`ªÇ¿ƒ,¡àÈÁ^Z–/j¶2®QñÕÅÒ½#4ÄÊÖ%o¦™Ð+ãþdWiæ 6CÐþú4ÂͲQë±Dßäc´%hHPòI|g>öðÆ[‚wõßqš;õ·ý>øƒ¿Ýpjçô?Η5‚lôwÅ;å}=üù„€tS0pVÜ›ŒÈ×YcÔ“PåFÎÈs(s¾pfU[ 2NñZ`€_N#“ð(tp®“}÷íäÒøÎþ|=íá’œ¨Ò^ zbȘ\*-h-8^#ž²òpRT°§úv )‘Èâl«àszNæ&)EV„¨Ë@}=üù„€¡(Rj7žm›4«” ‚©y‡‹¬jh‘H"A)0ð©ùF¾¸2ɈғýÎáÅòi|g>öðÐÅ@ˆºD~0Á€Ì\p’HHõ2P›ÏR„”¥ÀòEÛ=#èe] È„‚€…ëaKίZYÓéïàßÌ$öúF©kFóÌèåzF&Û•Pk)`ßPàDÛýM /ŒïçÃÞØé‘Æt°«Au+íž©µŸ·ã&Ö›¾Ð“Ó}Ñ›ûï¸&Ô’"®;ß "yýVDkÌÍPÆ¿ŸL‚ן}¹È E°¾†¯H0/7?‡LúïåtÅ &kZ6ëÓ|‚P‚èˆ4X¡X$±©–‘8ªk"LÖIŠÍ­ä£‰UÊ~b‡ãiøJƒ×â 9HrÚ²Ów"z$3ª¤$&áf#G¤Ð RÉt"¶s2)1, ¢ÅŒ¿Ë0ñ&:‚x¿#H ã;ùð÷·Ð «Uß¾ù¸Ìà讬r@r`Ñë0êC“q9r©³M–‚)i®=œq&B©#©Ò#!.V’@m 2|j‘;´êŒº×Ô›ü°LHEF*ÀP¡+•?Ìä B írýn¨^‚¥Õ]+7z}wò‰:wÎ(ÿ9ྱ‘ÜeÆäƒ'U˜%‘IPu®&H Ú‰XrIDA!œUWáø¿û™ CÓ!¨Å*¢­È¨br“v…aç ç'¡€+t¡WÊ7eÕ…®³¨…**Ód0m‹eêÑÆê–8ý3Zù€¾3¿Ÿ{}ëîþ½3[òc×ç(SEa?¯Œ¦=?îf¥ŒŽüg@õŽï:ŒDNwý}wòɇOl€!B5‡­C /#‚ êx†S¬®<&…l5­-ªX¡PмØ&9= À78` "!6ãœæ¹Û©ÿoí“ùòI|g>öúÎhšÁ´•:>={bd­9 B‹‹\L.=u‰‹Æ4£Ê‚!¼KVg,*`UÑÙ¨.·Ûâr±„欮jržÖSè 4A”•`×Gïžþ ü²@De+@Õz»-¬ 3çIÐÄ=R°ÎÊ™M.j/P±Œ4 F_Ø’Z!!fÉs騀¬¥Œ– awmÕM fWÁuɃNê´oE’±òD€¾3¿Ÿ{}Qœb†°ªÕ2\Öc¯I*ÜÑ–¯ fíÍÐ.”P2’F@Êæþ쌶UQ9²è4% ³À¢¥BUj BK8ÛQtƒ¢»a„Í!èÄIàŪE£­Ž)i§ÄÉC O¥qàßË$1zO¬œw£}»œŸÅÉ ºq8KžÄAÑ) ^]½¦fK© 8l¦D—E—‡=Þ€œžâ 6ënârȤñüø{Ûé&I’sô¨ÊãŸû†¯ã/éYrO®þQ '"èk÷þµüBÆ+ŒVyÐü E²¢6ÂYŒ‰ å,5‚A”JDŽBN]½”ÓUÑÈ5¿Ì~vÅâ a•QîâðT™íœ‚^i.}.#¬†0P¡ŒZé#sB´J/I?+÷²^•ä1ˆq«È$ñüø{Û €ÇyÚ$ä›*o »ª„Ì!F×-¦ùpšc$Ù‹àÁÛ™LÄÊcyýìÒͱ91€ç°¦D 9!}‹[,P`J$æó’Am›:¶p‡J‚²èìX )´A°i°‘(z3‚q ÀdÏœïc†8Ä‹ü_O®þU !ÇØc&$WJ¥´’¬áHuÎ D(È1PHÖrȨ“úB–Iä@"Í b‚©ÐÝ5NàÜu•^YPa¨¶J9Ò2j•šŸíÝÎe30ak uµV£–L?‹ '*Šaþy€¾3¿Ÿ{}#&%&™N£?œ£x$$Ø¡ÀÖ, 5€Ñ,à hNXN„e¤P­²Ð±–´¼ˆ­ïÈ(KDQlb’Ë©r³3¶º²Wœ¢f¤/}à±xˆöÈ<ù´€§}÷úþtŠûs7òtëÿ…~ýÛ÷êß¿~åÛ÷Ýþsù[÷o_º~øò§ÏÝ?<ÜIè\AŸÿÚ cÎ8ÓÏájðâÂÆ,¡"7 9T!… bÊŽQ6æÞ¯YRPÆ,£  Ï˜x?/4C… bà Xù‚n¯‰sÌ$PÆ< Ž!ì} žj¥ bÊÎ 6FPaÂPÆ,¡á‰µ!… bÊ˳ýÛaÂPÆ,¡莿ÿ†!… bÊÎ:TÛpaÂPÆ,¡ðe3Ý!… bÊÏ…¢uPaÂPÆ,¡ã¥Uå!… bÊÎkìaÂPÆ,¡àƒÄE!… bÊŽ”â÷PaÂPÆ,¡f–üZ&!… bÊÙ`~øaÂPÆ,¡ìŠs!… bÊÊ—í—PaÂPÆ,¡Ïü1k!… bÊ‘e aÂPÆ,¡ W~U†!… Ò MQ@ÏÿÄ)!1AQ0aq‘¡ð @±ÁÑáñÿÚ?ÿˆxˆÐ´`ÈèC/~7¡1g‰â(Vá|l7¢ D">ª™Î’FBÒ\óëo_!7Óä¦CŠ0FÈðâ8‡O˜g`  WÚæ -q€*aæÙ&À`x¢ú`w?X`DS ‚Í^&T«ú P€/l8P¢ˆKS¾6?Ÿ¾°¥—©J¶:.ÐÛ`DS´¥%ÀM<ç ²ø[²°î¯| ˆŠïT“”rwÎCyÏ":"¡7MbD¥YAÚâÓôC> M˜kNñØp„dZT8’Ç’?¦È8A¢Pµ3°åÅI™D0ÓóêííEîdñJÞÝUÕøwýýïúÿ>ÿ©ØøwƒõÕlRư£ƒ×¹Xk-Yu— ód`H‹»QBŒ]QwB‘‡@”'Ãßœ Q‹NÇp)è·GÅWÂ’xˆ Š­Á‹S¥5¥¥½b I“X,Òáôì=;4w]ë°•!N=*í9ÚÌäŠ.›P‡ÊôAäObÀlÊ)}©¦€ç ‹æöVTF‘!©r–^”¢¯»kÁ F”@YQÁ{kŠKžR\^‹‰€V<[‚QG]4vؤ3Ç€«Pg3º{$<´6´áÙƒö(º=÷õðÓàW·ÿ|]®IEˆžÅC²o*êQÚ`ELÈ·g'K×ß¿þÏñ_6÷9¿>à+—yBTàŽðc6Ròb·k–D'ƒNÅGATÎʽ!óÜì€Å=rx2ÒÓ«¾¾òšZú§gXñìZ©|Ù­Gê>€ùžŸÃ?1‡íâõØuK!5C‹ûÂÈÒ€xŒêª”°‡9ÑK•:0dI\‰ R;&üÞÀÐÃ^ýõËñD;¤hUoœ@´#ÐLÄ!¦©m0¦% é{$7ºö†™•ª»^='Ëÿ|gï‚*›¡wßGŸ<€¿!B-JS˼‰1‹ .­?oÛ#æVÈ„Ÿ¡Ç~w Xàú öéâܕԕ ¾þ"Ü=0'™Ó³‘H…(Kßç÷ãæ@WÓùY|®gîLÙ‚,óbpPáϬ²`&ŽÜH©q·¢b4eyGˆñCGš"| #ô¡«ôÆyœïâ¨@ìcêßW :0èPjV39‘´tŒbdþôñÊ0E,„äÀÐ:ùØ­‚ – ñàø@ &ƒ ØgޤÀV‹á¿Ò£:¢ûZ¿³ç(©‚°-Œ  £íÀzÁh¤«PXX`i TàBZ„§K£üü«z5ä` €U`0{ ~yÔÚè‰ò(‡´»ß3¹ºel–Nòõ®"‡Z‹O+¯ C™Ò@¡°){höo\û÷ò*= ü(bÓ$¢ZÓÔù¤Ò œ}ă0:Xì%Ï”O3¬Ý"‘S ñŒ8È(ðÞÓM• {:‘ôühzHþ8Æ‹º®A«Añ ‹&¢,N¥ µrm)æq3¢+È"ZòR< Å8Ešq©h HÜ€Ó )›öü¨¤<Áü)«À\üFõš¤AY´^¶ iŠ´(2+Áb " IŠ ìæ×Ïçëæ`nÿ€ ¨J&¢ñH4%Ñ–úE)àòWÛ‹¦\¼|Kú à€ø… LòÞÿ޾Xúw¬ï˜BËnÃ=øà„°+C#»@KÛxÀQŒ(H±,TëÀ+v †éÓÁ¶lîxë¿äù KÕ/ãÏ:¥xkMDKW'×â©4D+ßç¤âs¡n*I{vA¯¥\ªtEi¤²Î+‚MCE–ø™Ú‘„ §R{íüíù|"Å4¬LRŸ~Láü»€:ifËA=x!’°$Qóe3Éœ$8DÏ Ä»½h%4žš —ù<÷Íjûiñwî9ýøÿ™ÿÄ(!1AQa0q‘±ñ ¡ÁÑð@ÿÚ?þ V^Ž.T¨È0Ð>=ã?\%+0ÃŒ)˜bI‡*Ð1”̆X×/* QÒgöûùSQb–+#:örj¡F2W@ePÛÇZØ© A)Ë‹y×îà¨ÀŠ:}8i¦Ð›; ÈÁ:@ú¤P´a]-œ`û%fpUíÅ`¢ÃTläqÛM +°R™å›0‚QÙð¤Úe; »l&:ž%Õ€#,0Ít÷åã»å«…’´›ããш !“õD8 ŽÃB^ ¼Ä£ˆX¹4¸Y¢©Xãh\9Ž8Ÿ6,‰l–%ÌÆW=ðÀ˜BiȦ:ÃÃ"d3?¯Fé|{?‹ÜçÛô>¿—æuÄ\öõþÝÿŽNŸ^ÿ\}p·£¸?íÿ«ÀÐ`kÈ¥òï”*`Chѯ·ì#n¯)ŠÝ  ).dëÞ.ÎhÆ{–gÇŸ„¼gxñ¬óf¡:ûëÔþ©-•ö ú÷Êi dÚ}§…Ëè+e9P5x{ øBFËä܀텉¡²8VÖb£û6€c¯9fyŽ=€ cøâÔ%UÖ7磮  Mº?s÷ž3×6¸šý_ÛÄœraÖ·;:÷×8®C[‰–õû(~« €Jô®¦8öðØÍhþ1žâa”Ã5MÏWç›|»)‡&ÿ¼ˆ¢¸Hr2‘vd¤àºWáÐ¥Xm^zÞmׯ™Cx×÷×ëÍ^fX³së¾{ÿ©É„–‰BøEm‚tR¾]®?_Óå6fg~=𨠴H…ˆ¬¼¸‘`¦·#ËpÖ2\„p ‡©Ç‚?0ó:õÃ#Œ Üš½ˆÁ™ºª ˆ¢a ùù3Öúº½^Gé•#•L<²Áó„‚£pG¦ ‹ ð`œèŒ¥†–ˆDd… % C°ÄXßËÆd² »Ù–Ð%KSٔî;Ü]üDÍÙp#¢ÖJc ì`,¢ÙòHDd É%à=¦t}uó4,‚¥ ŒOr^·ïŽ˜&Š”!›!3ôx\ãKUmÍ\A ‘ŒS“šj˜"1ÓJ³ OšŽ‘äU5f>í?n¦Òs ší ™EŒ ´àYU@X ƒ2Çǿǟ¢QDž(x³"±jìæ®±È¥ŸN©¸¹T-R£ ¡Pñ®…†à ÐŽ›’7D„†TAÄ 0¸äˆF^  ®PäAÝô[á±x" Ê °"*¸rxB6k ŽBQ(Q…èTÍj¨BVg(ƒ@€XйJ}ôÿÿÄ(!1AQaq‘¡±ÁÑáð ñ0ÿÚ?ïyf“lriWÿáóçÏ¿ùÿªÿ¯Ÿóÿü§ëþ¾}ðùæÿçÿùgßý|úbvÌ>Cèûࢵ”39kæ^ ³fÏ\¸¨v؈¹žã‰”aLš¦x7㛈õ$ÄnsÛ÷ÿåóçÏ¿ùÿþYÿø¾… .P¡NÕUĵœÊDrŸ‘ìûã%Ä÷zøî½X~RÊÿ«…Vxébk£·r‘šY†£±ÍñïiÂÙœ†êúUMb³žfi¥¶ ®…¡¥ÇÔS#‘O tNàø|LÇ‹0}(3ÛÄ”3ð×ß©œÄd"5‰ušÇõÊH˜"z™ÖŽæ²ú‹žêÙ‘›¬M¼‚Û’†eÌdËaô BÑ$¦$$^ú„–›_Gan06 £ ÷þ]ã. ÂÕ„”™1ŠârÁبh]‹Æø*ÐÁVÒÈ–œA!–QˆŽ§ t¦¾3˜|âÈɶGº¾@ª å=ƒRLŒï’A Щ»Ä‹|§sL¨£:îJ[@dLo&ߟ:'‘)^& |ÔFæiÄWãó1ç㘭5=Ÿ4f$ˆ—<¯Çîã“sâ½ÅÿìyÁ±X¶Wxˆî'ž?3>îÖ ÁçÍÿÍ>—¦}xö¯Pà9Ÿ]tø¡¬dˆÅVÙÇRV'ýn©%ˆ™Ó8ØhG28yùš¨'-ÖtíÚàù5û’"rN8Ô±üÝËÖ§Q›eç¨ÎÌ^¼æÃÛWõåõ—ê?:çsQ:"Ù4 ÀƨœŒî:Í:y*ãÜÁÖ:Y6³•GfDU[ g‚¶Ù¦­®ê‚c‹¦º“ÎÜ­'÷,­“ÈÍó¢e°ì™=Å+òXÕ¤ pø´hyaÌá½Á’î ×ÒÆÃ®&†ÂE \“ %¸Ø«Ì8öJ¡´U”ƒÝFæ¡™›óÈpôÏO¬DßL»9ˆ›rÛLÒÆ{”¬cN)Z?¬‰š¶¡¾_‚ÞÄò˜ðÄrí#R‘7ôŸClópYŠSÛ8ò̆ªæj¼š­3õ{8ζI><³$v”ù„šð-ãrdã•ê¯ãù·Í‘?:ï{zyOÈö}ñ’â{Œ½|w^ƒN¬?)eŒÕ«j £s4â+Îñù˜óñÌVšžÏš3DKžWã÷qɹñ Þâÿö<Îà‚X¬[+¼DwˆÏ™‹Ÿwk`óæÿæŸKˆÓ>¼{W¨pÏ®º|PÖ2Db«lã©+þ·T’ÄL‹Žéœl4#™<üÍT?“–ë:víp|šýÉ9'$dQb . nfyîAY#¼Š"Ü‘Z’ÐŽadˆHP^ò’Ò銿æëµõƒÀªš†J‰ÿZØ‹ÓØêBäüúâ=2‘B™ .²å|ª¦d醣”Ãs}Ó!Û¿4€æÝbú¬M:á€*zc‚`+žIéHž żõ¶DŒz˜œd„y¦—+el±¦\¬ò›`v€·¿ÁpÆ1œ)4R"³ÄÃJ$ … ªß‚ÞÄò˜ðÄrí#R‘7ôŸClópYŠSÛ8ò̆ªæj¼š­3õ{8ζI><³$v”ù„šð-ãrdã•ê¯ãù·Í‘?:ï{zyOÈö}ñ’â{Œ½|w^ƒN¬?)eŒÕ«&TÊ%”ƒÄ°Id‚ ÓMø/Fnà  àUDÖ%Lo”Ä›Wà;˜ƒÔ(šŒ˜d²hèà‰Á¶ $»’¨J< cVʱRaâÈu÷t&—µyàD³õͳ“_ø£×üÝÄ!lÍm‚lepGÀv8q]¸3Ì&&Ü6#¾$nܼà‚ü"'ÿ jÓlÏu|`´ˆ‚ž‚H5¹¹àL€”LÄ[sBfમ rÅD‰ïX™[9!€JPlØ–è¿:'‘)^& |ÔFæiÄWãó1ç㘭5=Ÿ4f$ˆ—<¯Çîã“sâ½ÅÿìyÁ±X¶Wxˆî'ž?3>îÖ ÁçÍÿÍ>—¦}xö¯Pà9Ÿ]tø¡¬dˆÅVÙÇRV'ýn©%ˆ™Ó8ØhG28yùš¨'-ÖtíE¸˜ÓÿÎH‰É8än·ü»Šø‡2¬²ŸÓ'™¯ÛmÒ°ÓB±J°{½"ÛPß3^úOQóà&¸Jò±a¸"ô]ßš„Ì{gÍ7%‡\²?þW¿¯gÖÉ'Ç–dŽÒŸ0“^¼bÂîLœr½Uü6ù²"Gç]ïoO)ùϾ2\Oq—¯ŽëÐiÕ‡å,¯ñš¸UgŽ–&º;w)¥˜j894Ô$ V¼¨‰³e²)4ÈÑ „LÔðA,%•øêâ=VñÌ·-C•`Âæ'Œ› (Qä-ÐDúŠR€U5=ææ †J‹âÉeA(U@±¤ü6FÜ:ÀwŠÃºéñCXÉЧMNœQ8º©Š¹,žA¯Ú?ê‹ u§­ìMß„?àÀ ‘¡…m= š`}¸šîd0ú~sX¤ €‚@“IG#KÉdæXPp®ñç€ Š;Éä …2ëLrºP‹»×ÈH‘Jú¬ÆÀ¤$AÕ8¡ô3D‰⯠_ÞEüïª1ÒD}†p»T+ü6;ÌøŽ3³{ˆG$ªä_Iy^$ÐŽŽy ú"þÎr¤Š2Õ‘•×AÁ1W¦ò°/æêyÕ¡ºãÕDÜ'±Ù …váÜçҜܜ¦·‡¯FÍr• Px©æ@š¸æÀÛblÆ@Ñ&N,H+ `TM3bQ á5à[Æ,.äÉÇ+Õ_Çóo›"$~uÞöôòŸ‘ìûã%Ä÷zøî½X~RÊÿ«…Vx ¹n"6æŒåÜG3ÐaRGrÎ&Òà¹Ã|CP\Nr9§ ŽýÀ§¦A}4ä#Fø4@ú«¡¾ Ẏà`¼{W¨pÏ®º|PÖ2Db©%gЬOúõI.Jr-0²MLH’¤ÎX1¡!b½Rµv™Za2j±%h È„U2ÒŤŒO€iÁj<†–U¦ ‚€ Hf?˜£Ë"óvÆA’è! ëRú€åªe„õÌKA-< `a€( ¬0 ‚‚8˜‘U  Uáˆ$pŠ DÎGûa  …$ú"Àà© QdŠ @„YHWç*ä¶È“)>nâRD`$ ƒ +,Tòá„`"c¨0¡O&g  2ä„s o Ê ÀI†<0DÎ˾&#<ȈhZœ/)³²§zÌ ™™¡˜eÚE³Å°"I’†™•™c/0ÏP„­A–y m¢Arc1S"º 0¨‰ó K‰9€$’ƒ”²;Bi&¼ xÅ…Ü™8åz«øþmódDλÞÞžSò=Ÿ|d¸žã/_× Ó«ÊY_ã5pªÏ,MtvîR3K0Ôp69±à>=à­8[3Ý_J©¬VsÌÍ4¶Áuд4¸úŠdr)án‰Ü‰˜ñf¥`û`’†~ûõ3£3˜Œ„Cf±.¢`ÓXþ¹IOS:ÑÜÃ_QsÝ[23u‰£¢w!0Ek¹—({œYƒD˜—€`3JuedàW }2N„šgró“h pÍÒŽSÒHxùÍîIŸ €B&QÎS, ³CÃ^a(¦+,¦IÂÆYz¢z›1ÔÅÁeg0ùÅ5“lu|€TÊ{¤™ß$‚+ 3Sw‰ùNæ˜+QFuÜ”¶<€È™:ÞM¿>tO"R¼L@ù¨*ÌÓˆ¯;ÇæcÏÇ1Zj{>hÌI.y_ÝÇ&çÄ3{‹ÿØó;‚ b±l®ñÜN#<~f.}ݬAƒÏ›ÿš}.#Lúñí^ =Às>ºéñCXÉŠ­³Ž¤¬OúÝRK2.;¦q°ÐŽdpóó5PþN[¬éÛµÁòk÷$Däœq©cù»—­N£6ËÏQ˜½y͇¶¯ëËë/Ô~uÎç¢tE²h€9ðD¿ Í¥TNpC‘æýÿQÜ"Ïs!uÇ„ê-ê ÔRK5zÍDR…YcSyãE!$0_ŸºÓ…¹Y6<‰L¾_L %øÝºé {_ ‡(k"1U¶qÔ•‰ÿ[ªIb&EÇtÎ6ÌŽ~fªÉËu;v¸>M~䈜“Ž5,7rõ©ÔfÙyê3³¯9°öÕýy}eúιÜãÔ@@Nˆ¶M0>—á™´ª‰Îr<ß¿ê;„Yîd.¸àðE½AºŠIf³¯Y¨ŠP«"Ljo<¬ããæS%ˆ€¢äÄx¦D± Y”å-¢D™"P W·Æxe(¡Õ%Œ‰p Ï ¼²ð¼$*·0<$Å îB™³XŠže;ÌLƧ&7^®yçLx#z„¹»· ò=3Óë7Ó.ÎDâ&ܶÓ4±žå+ÓŠVë"f­¨o—à·±#ü¦<1»HÔ¤Mý'ÐÛ<Üb”öÎ<³$!ª¹š¯&«Lý^Î3­’O,É¥>a&¼ xÅ…Ü™8åz«øþmódDλÞÞžSò=Ÿ|d¸žã/_× Ó«ÊY_ã5pªÏ,MtvîR3K0Ôp69±à>=à­8[3Ý_J©¬VsÌÍ4¶Áuд4¸úŠdr)án‰Ü‰˜ñf¥`û`’†~ûõ3£3˜Œ„Cf±.¢`ÓXþ¹IOS:ÑÜÃ_QsÝ[23u‰£¢w‚5`Äc3r—öÀ$|½Yé@M¬ŒéB‹1m…, +2úVH! ’_ú1å…$ÚJ&dbÇÆÛsʛž0‘)Ù0€œƒd!€v‡Äp9 ay"JJ…A$@ÀÆ ÜC’þbà¹æsœYY6È÷WÈõAœ§°jI‘òH!‚º57x‘o”îi‚µg]ÉKcÈ ‰“­äÛóçDò%+ÄÄš‚¨ÜÍ8Šó¼~f<üs¦§³æŒÄ‘ç•øýÜrn|C7¸¿ý3¸ –+ÊïÄâ3ÇæbçÝÚÄ<ù¿ù§Òâ4ϯÕêÜ3뮟5Œ‘ªÛ8êJÄÿ­Õ$±"ãºg æG?3UäåºÎ»\&¿rDNIÇ–?›¹zÔê3l¼õًלØ{jþ¼¾²ýGç\îqê 'D[&˜ŸKðÌÚUDç9oßõÂ,÷2\BfÓUê*%µ™c1 à;ਠ¤e´†k*«C!›Ü_þÇ™ÜK‹ewˆŽâqãó1sîíb |ßüÓéqg×jõî™õ×OŠÆHŒUmœu%bÖê’X‰‘qÝ3†„s#‡Ÿ™ª‡òrÝgNÝ®“_¹"'$ãKÍܽju¶^zŒìÅëÎl=µ^_Y~£ó®w8õ¢-“@ÌÏ‚%øfm*¢s‚7ïúŽá{™ ®Hä 6Œ°ÄP'6AP0NÑA 8Þ„37›ç{oÜ(¢ äG‡Š4YÅÚÈeAi’€Iº(‚E€ 8=ßùŸ2Xƒ;4#j…‹˜Ò~,=NRd” €˜ÍÊNußÕóΘðFõ swnä8zg§Ö"o¦]œ‰ÄM¹m¦ic=ÊV1§­ÖDÍ[Pß/ÁobGùLxb9v‘©H›úO¡¶y¸,Å)íœyfHCUs5^MV™ú½œg[$ŸY’;J|ÂMxñ‹ ¹2qÊõWñüÛæÈ‰w½½<§ä{>øÉq=Æ^¾;¯A§V”²¿ÆjáUž:Xšèíܤf–a¨àlscÀ|{ÁZp¶g!º¾•SX¬ç™šim‚ë¡hiqõÈäSÂݸ>1âÌJ ÁöÀ1% ü5÷êgFg1†Íb]DÁ¦±ýr’&ž¦u£¹†,¾¢çº¶dfëGDïjÁˆÆfå/ì.+„$“Û³ì+D8Ó“gV¢c¼³Myx¥*d{hoÑ.-X/´ *´ ˜H ’,Hg+Ò— öMI#è‹Fé{Þ‹HüƒÏ„6ξø0€ŒDPA€ëO*!c¨qd dÊÈ÷WÈõAœ§°jI‘òH!‚º57x‘o”îi‚µg]ÉKcÈ ‰“­äÛóçDò%+ÄÄš‚¨ÜÍ8Šó¼~f<üs¦§³æŒÄ‘ç•øýÜrn|C7¸¿ý3¸ –+ÊïÄâ3ÇæbçÝÚÄ<ù¿ù§Òâ4ϯÕêÜ3뮟5Œ‘ªÛ8êJÄÿ­Õ$±"ãºg æG?3UäåºÎ»\&¿rDNIÇ–?›¹zÔê3l¼õًלØ{jþ¼¾²ýGç\îqê 'D[&˜ŸKðÌÚUDç9oßõÂ,÷2\8,˜t|@ë|J“6ì¦~Qì—Œ–ÂC H1†sÎ9)Ð$ „O$S"K’A yãÒÒ7R!v  D²,8EEC‘,“žú—.2_a¹}CšvKwäqS+ DO2æ&cS“¯W<ó¦<½B\ÝÛ†y™éõˆ›é—g"qn[išXÏr•ŒiÅ+Gõ‘3VÔ7Ëð[Ø‘þS˜Ž]¤jR&þ“èmžn 1J{gY’Õ\ÍW“U¦~¯gÖÉ'Ç–dŽÒŸ0“^¼bÂîLœr½Uü6ù²"Gç]ïoO)ùϾ2\Oq—¯ŽëÐiÕ‡å,¯ñš¸UgŽ–&º;w)¥˜j8ØððVœ-™Èn¯¥TÖ+9æfš[`ºèZ\}E29ð·Dî‡ÄÌx³Òƒ0}° IC? }ú™Ñ™ÌFB!³X—Q0i¬\¤‰‚'©hîa‹/¨¹î­™ºÄÑÑ;À°¡dH³iBh¼¦B\ÄOOX‰G>´i"?!•ÍÜ‚ƒhèLA”**º,÷JsEŠYè¶LèM>øº È]ÌNr•@„«‚$‚Fch<8)`Óáa±ÌF9œÃç@ÖM²=Õò}Pg)ì’dg|’`®€ÍMÞ$[å;š`­E×rRØò"dëy6üùÑ<‰Jñ1æ ª73N"¼ï™?Åi©ìù£1$D¹å~?w›ŸÍî/ÿcÌî%ŠÅ²»ÄGq8Œñù˜¹÷v±>oþiô¸3ëǵz€÷Ìúë§Å c$F*¶Î:’±?ëuI,DÈ¸î™ÆÃB9‘ÃÏÌÕCù9n³§n×ɯܑ’qÆ¥æî^µ:ŒÛ/=Fvbõç6Ú¿¯/¬¿Qù×;œzˆ ÑÉ fçÁü36•Q9ÁG›÷ýGp‹=Ì…×$2ÇÄdðEΧ' a RP h½â"ºC"H$Qš/d¬JXr #AU,<Éä)ÉE 4D !6L8@ÂrÃJà"=,µ80,ÒVšôÁHP)o»y,dr±”s)Þbf591ºõsÏ:cÁÔ%Íݸgá鞟X‰¾™vr'6å¶™¥Œ÷)XÆœR´Y5mC|¿½‰å1à ˆåÚF¥"oé>†Ùæà³§¶qå™! UÌÕy5Zgêöql’|yfHí)ó 5à[Æ,.äÉÇ+Õ_Çóo›"$~uÞöôòŸ‘ìûã%Ä÷zøî½X~RÊÿ«…Vxébk£·r‘šY†£±ÍñïiÂÙœ†êúUMb³žfi¥¶ ®…¡¥ÇÔS#‘O tNàø|LÇ‹0}(3ÛÄ”3ð×ß©œÄd"5‰ušÇõÊH˜"z™ÖŽæ²ú‹žêÙ‘›¬M¼ !`*æ/+÷¯ƒ”±Dˆ¿.„ÐŒ.ÆaYxž*"Hb‘œc ĉý*WkÍ|¢ð“(2ԉʅôywäÃLÄ7ÀMØÈŸ$C©g„z„*Ærã9‡Î,¬›d{«äú ÎSØ5$ÈÎù$Á]š›¼H·Êw4ÁZŠ3®ä¥±äDÉÖòmùó¢y•âbÍATnfœEyÞ?3~9ŠÓSÙóFbH‰sÊü~î97>!›Ü_þÇ™ÜK‹ewˆŽâqãó1sîíb |ßüÓéqg×jõî™õ×OŠÆHŒUmœu%bÖê’X‰‘qÝ3†„s#‡Ÿ™ª‡òrÝgNÝ®“_¹"'$ãKÍܽju¶^zŒìÅëÎl=µ^_Y~£ó®w8õ¢-“@ÌÏ‚%øfm*¢s‚7ïúŽá{™ ®€ªLßEçR4ö¥:Ÿ²è!D‹o jìAu\™/ƒy¸í!9HÆ1H"A\HQ¤"H"á†j]r  -aÒ¸51ë '”ä­‰J5½—®S¼ÄÌjrcuêçžtÇ‚7¨K›»pÏ!ÃÓ=>±}2ìäN"mËm3KîR±8¥hþ²&jÚ†ù~ {?ÊcÀË´JDßÒ} ³ÍÁf)OlãË2B«™ªòj´ÏÕìã:Ù$øòÌ‘ÚSækÀ·ŒX]É“ŽWª¿æß6DHüë½íéå?#Ù÷ÆK‰î2õñÝz :°ü¥•þ3W ¬ñÒÄ×Gnå#4³ Gc›ãÞ Ó…³9 ÕôªšÅg<ÌÓKl] CK¨¦G"žèÁðø™`úPf¶‰(g᯿S:39ˆÈD6kê& 5딑0Dõ3­Ì1eõ=Õ³#7Xš:'xVÆfå?°¸®G¿ð =1™­PAÀœ¶Asjx  ,¹”;GYNEËDÃJ¨€I€¹‰d° ¬IKÍÅŒO¡‰ ±‚µˆ$’ùcÅ2KSü²–\Lp„wàƒÔÂw‰‹‚ñœÃç@ÖM²=Õò}Pg)ì’dg|’`®€ÍMÞ$[å;š`­E×rRØò"dëy6üùÑ<‰Jñ1æ ª73N"¼ï™?Åi©ìù£1$D¹å~?w›ŸÍî/ÿcÌî%ŠÅ²»ÄGq8Œñù˜¹÷v±>oþiô¸3ëǵz€÷Ìúë§Å c$F*¶Î:’±?ëuI,DÈ¸î™ÆÃB9‘ÃÏÌÕCù9n³§n×ɯܑ’qÆ¥æî^µ:ŒÛ/=Fvbõç6Ú¿¯/¬¿Qù×;œzˆ ÑÉ fçÁü36•Q9ÁG›÷ýGp‹=̅ר·¨7QI,Öuë5JdIMç…ÿApi8âBÖW†’ñD\”P^¬ô &€ÖE,žá¤¨3”ö I23¾I0W@f¦ï-òÍ0V¢Œë¹)ly‘2u¼›~|èžD¥x˜óPU™§^wÌÇŸŽb´Ôö|ј’"\ò¿»ŽMψf÷ÿ±æwÅbÙ]â#¸œFxüÌ\û»XƒŸ7ÿ4ú\F™õãÚ½@{€æ}uÓ↱’#[gIXŸõº¤–"d\wLãa¡Èáçæj¡üœ·YÓ·kƒä×îH‰É8ãRÇów/ZFm—ž£;1zó›m_×—Ö_¨üëÎ=Dè‹dÐ3sà‰~›J¨œà‡#Íûþ£¸EžæBëŽ Ô[Ô¨¤–k:õšˆ¥ ²$ƦóÈ‹°[ob€;0š7˜;þáQöÕ ãx{{¤à· '~2™$Í‹fi$G%™™1 ZŒ)G‚°r²vœ¥ßºŽiÙ,9Ü‘ÅL¬<Êw˜™NLn½\óΘðFõ swnä8zg§Ö"o¦]œ‰ÄM¹m¦ic=ÊV1§­ÖDÍ[Pß/ÁobGùLxb9v‘©H›úO¡¶y¸,Å)íœyfHCUs5^MV™ú½œg[$ŸY’;J|ÂMxñ‹ ¹2qÊõWñüÛæÈ‰w½½<§ä{>øÉq=Æ^¾;¯A§V”²¿ÆjáUž:Xšèíܤf–a¨àlscÀ|{ÁZp¶g!º¾•SX¬ç™šim‚ë¡hiqõÈäSÂݸ>1âÌJ ÁöÀ1% ü5÷êgFg1†Íb]DÁ¦±ýr’&ž¦u£¹†,¾¢çº¶dfëGDïjÁˆÆfå/ì.+€Hùz³Ò€šY»ÆäÒDä"'¡Ã¬¼"ü¥WS«[6ˆÛU$ŒK.0õ¨9DHœY ¢¹*u¹å à‰ˆŒX‚`FH¨b«…Œ²õDõ6c©‹‚ÊÎaó‹ k&Ùêù>¨3”ö I23¾I0W@f¦ï-òÍ0V¢Œë¹)ly‘2u¼›~|èžD¥x˜óPU™§^wÌÇŸŽb´Ôö|ј’"\ò¿»ŽMψf÷ÿ±æwÅbÙ]â#¸œFxüÌ\û»XƒŸ7ÿ4ú\F™õãÚ½@{€æ}uÓ↱’#[gIXŸõº¤–"d\wLãa¡Èáçæj¡üœ·YÓ·kƒä×îH‰É8ãRÇów/ZFm—ž£;1zó›m_×—Ö_¨üëÎ=Dè‹dÐ3sà‰~›J¨œà‡#Íûþ£¸EžæBëŽ Ô[Ô¨¤–k:õšˆ¥ ²$ƦóÎäƒl¹,Ïê§"*)ljc¹Ûe0³ÏCa†á_³Í´TpMä0,ˆ˜ ©ã¸ß±§¸­æå ‚Uedµ\±4ì–î Èâ¦V@ˆže;ÌLƧ&7^®yçLx#z„¹»· ò=3Óë7Ó.ÎDâ&ܶÓ4±žå+ÓŠVë"f­¨o—à·±#ü¦<1»HÔ¤Mý'ÐÛ<Üb”öÎ<³$!ª¹š¯&«Lý^Î3­’O,É¥>a&¼ xÅ…Ü™8åz«øþmódDλÞÞžSò=Ÿ|d¸žã/_× Ó«ÊY_ã5pªÏ,MtvîR3K0Ôp69±à>=à­8[3Ý_J©¬VsÌÍ4¶Áuд4¸úŠdr)án‰Ü‰˜ñf¥`û`’†~ûõ3£3˜Œ„Cf±.¢`ÓXþ¸‚L€N!gQS–aŒ3Ó%Lá’fœbÓ¡®U $ˆQ)jé£ Ø’ràh’ÜH!BSÆäû+JVÀˆdQ•”’Då…³H™’f&(ÏÓ‹ŠÉÌ ]7Œ)Ž”THª`é,±CKr(M3h”&Ž&8 #0A&!y‚Ðè…ÄRS‡°¤ôòB AºÌ213òH!‚º57x‘o”îi‚µg]ÉKcÈ ‰“­äÛóçDò%+ÄÄš‚¨ÜÍ8Šó¼~f<üs¦§³æŒÄ‘ç•øýÜrn|C7¸¿ý3¸ –+ÊïÄâ3ÇæbçÝÚÄ<ù¿ù§Òâ4ϯÕêÜ3뮟5Œ‘ªÛ8êJÄÿ­Õ$±"ãºg æG?3UäåºÎ»\&¿rDNIÇ–?›¹zÔê3l¼õًלØ{jþ¼¾²ýGç\îqê 'D[&˜™(‹ÐÃ8b´9¨‡O+DЉ•Z` ÀaáÚü«Â1,§…8H";åq•±vAÑ:LB‘† ÔmŒKa`pªSÞ³9fL4˜ãî"š@/‚¡J€M3õå¡BEœ¸ÉÜHŒ°w(¤òþÙn¸Ôš 9iª@`$))¿ê.TÄ$Ç!ÃÓ=>±}2ìäN"mËm3KîR±8¥hþ²&jÚ†ù~ {?ÊcÀË´JDßÒ} ³ÍÁf)OlãË2B«™ªòj´ÏÕìã:Ù$øòÌ‘ÚSækÀ·ŒX]É“ŽWª¿æß6DHüë½íéå?#Ù÷ÆK‰î2õñÝz :°ü¥•þ3W ¬ñÒÄ×Gnå#4³ Gc›ãÞ Ó…³9 ÕôªšÅg<ÌÓKl] CK¨¦G"žèÁðø™`úPf¶‰(g᯿S:39ˆÈD6kê& 5눕  ”ƒÜÅbøˆÂM`Ä5CÂaäO)p„¨5 ¤`Ï0fO~‡”˜L Ÿ 7¢B(ÆJåUéI²4'…À ˆH „Z`{`)ˆ‚a-żrËt 6ä@.ÒdW ‘–Ð Ã]ÒÉ”ÑÈÐã&¤oަ¢$ê Ù„™µOß’g’A Щ»Ä‹|§sL¨£:îJ[@dLo&ߟ:'‘)^& |ÔFæiÄWãó1ç㘭5=Ÿ4f$ˆ—<¯Çîã“sâ½ÅÿìyÁ±X¶Wxˆî'ž?3>îÖ ÁçÍÿÍ>—¦}xö¯Pà9Ÿ]tø¡¬dˆÅVÙÇRV'ýn©%ˆ™Ó8ØhG28yùš¨'-ÖtíÚàù5û’"rN8Ô±üÝËÖ§Q›eç¨ÎÌ^¼æÃÛWõåõ—ê?:çsQ:"Ù4 À6 â™N¢s‚GŒVP"*ð*P±ðÑÝA1$ÁÏW «, ‰O#ÆtóH™¦„³2ÎÉ€ % [a¤Ê¤M# ¢âÕûM€¨QÔ ]ÎKR9Jp™¼ÉR²DPC¦‚hi‹™ƒŠ˜²BhF‰º\¦&æ¬ÿÞˆ‡LôúÄMô˳‘8‰·-´Í,g¹JÆ4â•£úÈ™«jåø-ìHÿ)LG.Ò5)Iô6Ï7˜¥=³,Éj®f«ÉªÓ?W³Œëd“ãË2GiO˜I¯Þ1aw&N9^ªþ?›|Ù#ó®÷·§”ügß.'¸Ë×Çuè4êÃò–WøÍ\*³ÇK]»”ŒÒÌ5 Žlxx+NÌä7WÒªkœó3M-°]t- .>¢™Šx[¢wÃâfØ$¡Ÿ†¾ýLèÌæ#!Ù¬K¨˜4Ö?®RDÁpNΊ¹‡¦z†äˆÔÃ:šˆ Ե˱JHÒ¡“î8¡* 1AIŠÕ JÃ|’9Aƒ:…8­™ÖÞ ô˜…ý¦ˆÄîfD„†0·þb>§…$)[ئ ˜:žE!"q™†&ÉY– âjÄȰK©XÈbæŒÌòé’Õy¸}òE"LÖUÍÛ+µ—ŒPDïØ›‘›žI0W@f¦ï-òÍ0V¢Œë¹)ly‘2u¼›~|èžD¥x˜óPU™§^wÌÇŸŽb´Ôö|ј’"\ò¿»ŽMψf÷ÿ±æwÅbÙ]â#¸œFxüÌ\û»XƒŸ7ÿ4ú\F™õãÚ½@{€æ}uÓ↱’#[gIXŸõº¤–"d\wLãa¡Èáçæj¡üœ·YÓ·kƒä×îH‰É8ãRÇów/ZFm—ž£;1zó›m_×—Ö_¨üëÎ=Dè‹dÐ3sà‰~›J¨œà‡#Íûþ£¸EžæBëˆfäã· ™¨¦ÜñÆ“AZ(`¢ ÍäH$M‘áäª9è „§€#fÞ CÚ¯*ðt^è¨J%¸IQa…©‚N !C¤Ä—F´>68’ÄÛ$¹=‹ÔDó)Þbf591ºõsÏ:cÁÔ%Íݸgá鞟X‰¾™vr'6å¶™¥Œ÷)XÆœR´Y5mC|¿½‰å1à ˆåÚF¥"oé>†Ùæà³§¶qå™! UÌÕy5Zgêöql’|yfHí)ó 5à[Æ,.äÉÇ+Õ_Çóo›"$~uÞöôòŸ‘ìûã%Ä÷zøî½X~RÊÿ«…Vxébk£·r‘šY†£±ÍñïiÂÙœ†êúUMb³žfi¥¶ ®…¡¥ÇÔS#‘O tNàø|LÇ‹0}(3ÛÄ”3ð×ß©œÄd"5‰ušÇõÊH˜"z™ÖŽæ²ú‹žêÙ‘›¬M¼ˆ¢p2"å¢RwÔÑQ€Á€œR¸oŸ«u“%¡’ò /‘éø´4 ÅQáÔìÖQy¬](KöÒÇÀ§`Upì¬à<|‡ÑD¯`SäHƒ!À¢l¡Ló9‡Î,¬›d{«äú ÎSØ5$ÈÎù$Á]š›¼H·Êw4ÁZŠ3®ä¥±äDÉÖòmùó¢y•âbÍATnfœEyÞ?3~9ŠÓSÙóFbH‰sÊü~î97>!›Ü_þÇ™ÜK‹ewˆŽâqãó1sîíb |ßüÓéqg×jõî™õ×OŠÆHŒUmœu%bÖê’X‰‘qÝ3†„s#‡Ÿ™ª‡òrÝgNÝ®“_¹"'$ãKÍܽju¶^zŒìÅëÎl=µ^_Y~£ó®w8õ¢-“@ÌÏ‚%øfm*¢s‚7ïúŽá{™ ®i"4¨%h<6Ó´]P‰+‰€¾kGQ‡ªØÆäÍ<€RF1ÌÝ £Þ¸³IÑ9¼¶ ”ñv0%ÑôMOa±ò'cÃ%X¤3K'2æ&cS“¯W<ó¦<½B\ÝÛ†y™éõˆ›é—g"qn[išXÏr•ŒiÅ+Gõ‘3VÔ7Ëð[Ø‘þS˜Ž]¤jR&þ“èmžn 1J{gY’Õ\ÍW“U¦~¯gÖÉ'Ç–dŽÒŸ0“^¼bÂîLœr½Uü6ù²"Gç]ïoO)ùϾ2\Oq—¯ŽëÐiÕ‡å,¯ñš¸UgŽ–&º;w)¥˜j8ØððVœ-™Èn¯¥TÖ+9æfš[`ºèZ\}E29ð·Dî‡ÄÌx³Òƒ0}° IC? }ú™Ñ™ÌFB!³X—Q0i¬\¤‰‚'©hîa‹/¨¹î­™ºÄÑÑ;ÁnIóã™ $B=O)²gn„,ß÷ŒZ°Ã‡M?%Lž„%NïÙ¤R¹QÈòÊH<€õ‚„¨/Ͷpa›ižQ“ÆKI…ƒ‹JÜë“(QèµUÜdD²âßWÈõAœ§°jI‘òH!‚º57x‘o”îi‚µg]ÉKcÈ ‰“­äÛóçDò%+ÄÄš‚¨ÜÍ8Šó¼~f<üs¦§³æŒÄ‘ç•øýÜrn|C7¸¿ý3¸ –+ÊïÄâ3ÇæbçÝÚÄ<ù¿ù§Òâ4ϯÕêÜ3뮟5Œ‘ªÛ8êJÄÿ­Õ$±"ãºg æG?3UäåºÎ»\&¿rDNIÇ–?›¹zÔê3l¼õًלØ{jþ¼¾²ýGç\îqê 'D[&˜ŸKðÌÚUDç9oßõÂ,÷2\CA …’ä^{a åDjA‹ªø©× (Á··3åPæ0ðl M¾o0Ài)p0Q.¸’pDBx<V‘Öp|%,r® %ÛôÓc < C¹JŒfH0àB €*jHšõsÏ:cÁÔ%Íݸgá鞟X‰¾™vr'6å¶™¥Œ÷)XÆœR´Y5mC|¿½‰å1à ˆåÚF¥"oé>†Ùæà³§¶qå™! UÌÕy5Zgêöql’|yfHí)ó 5à[Æ,.äÉÇ+Õ_Çóo›"$~uÞöôòŸ‘ìûã%Ä÷zøî½X~RÊÿ«…Vxébk£·r‘šY†£±ÍñïiÂÙœ†êúUMb³žfi¥¶ ®…¡¥ÇÔS#‘O tNàø|LÇ‹0}(3ÛÄ”3ð×ß©œÄd"5‰ušÇõÅ#(Dõ3¨w1V3Õ¶;’ÅÔ.*Î%¸°¨Æfå.3H\j r‹Xó‚´ìTT›•†.‚{³4?Çå‚KLß¼Û°Ein„—•A_Õñ(…Ñ©›q³uÆ1íÏ«qÙy¸àpf‰ƒßK9˜àÈ™ÍÚ­Ô­{ä´Çµ‘ÏPeöVáËs3s™ † è ÔÝâE¾S¹¦ ÔQw%- 2&N·“oÏÈ”¯>j £s4â+Îñù˜óñÌVšžÏš3DKžWã÷qɹñ Þâÿö<Îà‚X¬[+¼DwˆÏ™‹Ÿwk`óæÿæŸKˆÓ>¼{W¨pÏ®º|PÖ2Db«lã©+þ·T’ÄL‹Žéœl4#™<üÍT?“–ë:víp|šýÉ9'jXþnåëS¨Í²óÔgf/^saí«úòúËõs¹Ç¨€€lš`ꦡ XL Á b ”¨9?¤pø÷yAc*§-Š'D~‰’báA M’ % ã*t´f¦• Rh’NPÅÀ–QÊeä@ÞkÒbŠòÊ<Ǫ.ÀD™#Š”Ý4¡á, !¡áx²p˜Ð§Þ¬ dÃ+*WÝ耿NwxWá鞟X‰¾™vr'6å¶™¥Œ÷)XÆœR´Y5mC|¿½‰å1à ˆåÚF¥"oé>†Ùæà³§¶qå™! UÌÕy5Zgêöql’|yfHí)ó 5à[Æ,.äÉÇ+Õ_Çóo›"$~uÞöôòŸ‘ìûã%Ä÷zøî½X~RÊÿ«…Vxébk£·r‘šY†£±ÍñïiÂÙœ†êúUMb³žfi¥¶ ®…¡¥ÇÔS#‘O tNàø|LÇ‹0}(3ÛÄ”3ð×ß©œÄd"5‰ušÇõÆTt«%X ÀêHq# ÌÔè¿ð‡™¾&–•=HR~'¤ÎE‰>4aƒéŸ÷‚’£§e·w^ùë)¨ì½™å¸Ùâ«Ê«Ø)ãDmÆ,÷#–RòeÕ̉ÛYx*N3Î9¯ˆÕ‡ãÔ~où¦Ë*òkWüÏ$‚+ 3Sw‰ùNæ˜+QFuÜ”¶<€È™:ÞM¿>tO"R¼L@ù¨*ÌÓˆ¯;ÇæcÏÇ1Zj{>hÌI.y_ÝÇ&çÄ3{‹ÿØó;‚ b±l®ñÜN#<~f.}ݬAƒÏ›ÿš}.#Lúñí^ =Às>ºéñCXÉŠ­³Ž¤¬OúÝRK2.;¦q°ÐŽdpóó5PþN[¬éÛµÁòk÷$Däœq©cù»—­N£6ËÏQ˜½y͇¶¯ëËë/Ô~uÎç¢tE²h€8’& ÆKÚtM7 ,JÈ2&f‹°fCL¯t8ã~Ò¦ØøD‚ÛˆYÜ{Qˆ¢_èOæÆ:7CÒcâ(Á¢'¶Y@ÕêêNin‰aõUn$¢¨e7ÔðxU& ƒ9¼t Bb\0Ú¨W ¬Œáˆ.f¡ÌÂ÷‡á鞟X‰¾™vr'6å¶™¥Œ÷)XÆœR´Y5mC|¿½‰å1à ˆåÚF¥"oé>†Ùæà³§¶qå™! UÌÕy5Zgêöql’|yfHí)ó 5à[Æ,.äÉÇ+Õ_Çóo›"$~uÞöôòŸ‘ìûã%Ä÷zøî½X~RÊÿ«…Vxébk£·r‘šY†£±ÍñïiÂÙœ†êúUMb³žfi¥¶ ®…¡¥ÇÔS#‘O tNàø|LÇ‹0}(3ÛÄ”3ð×ß©œÄd"5‰ušÇõÊH˜"z™ÖŽæ²úBÊ»ÌÃX˜8#ÂØZ€HÐG}p‰éÒ€‰MaŽh¬µ“À €!„«SP3€@æ&sÄÃE0$‰yä[PœQ!›Ü_þÇ™ÜK‹ewˆŽâqãó1sîíb |ßüÒÆ$øøŸ¾4ϯÕêÜ3뮟5Œ‘ªÛ8êJÄÿ­Õ$±"ãºg æG?3UäåºÎ»\&¿rDNIÇ–?›¹zÔê3l¼õًלØ{jþ¼¾²ýGç\îqê 'D[&˜ŸKðÌÚUDç9oßõÂ,÷2\pxN¢Þ ÝE$³Y׬ÔE(U‘&57žOa}|ÉÓs¸-cW{ùÜi¶S ¼‡úœÓÝ*|žh–Ó×F3ÝJbMME‘„’ó+`4˜¨tóßRåÆKì7/¨sNÉaÎàœŽ*ed‰æS¼ÄÌjrcuêçžtÇ‚7¨K›»pÏ!ÃÓ=>±}2ìäN"mËm3KîR±8¥hþ²&jÚ†ù~ {?ÊcÀË´JDßÒ} ³ÍÁf)OlãË2B«™ªòj´ÏÕìã:Ù$øòÌ‘ÚSækÀ·ŒX]É“ŽWª¿æß6DHüë½íéápâZy„-2G&V1p®ëÑ×Ûèieö¯ægV\Þ!4LN>¡Rþ~Œ}?<ò‘zg©~àìc‹:1ý±ð2n"d¥ÿBË!XÖ9L@Cä0<Î5}[> ´»è´Và† .À36œû˜¸®_#‡ ­Œ‰þ¢.WèÜçž@¬öü?<\±ücÑ3:µ¨ë®({6ܰÜ._¼‘ÈãLÅÚ›Îܯ›OöE1 `®²“òu0qÔÄcĹ/Ï£¼w3Ê^ˆiº -Îny„ú3Y\ÄÎ9ÞQIˆ2Õ\‚33ÈY2O·9N¿j çÖüÐÆÍË#÷qðdyøäUGe¥é£zˆ¼Ï>¡öÜsdè‹OýW¯3ºpV'¾ôSG|SÕ ¾üâký±š‡‹È" yÿÙZelig/man/figures/img/zelig_models_thumb.png0000644000176000001440000030526013245253057020745 0ustar ripleyusers‰PNG  IHDRZ’Ó½¥í iCCPICC ProfileH‰•WT“Éž¿¤Z RBïH‘.:ÒÁFH„!!¨Ø‘EׂŠ+º*¢àZYTD "Øûe],ØPy“º¾vÞ=gþùrçÞ;ßÜ™3€²;'' U ['Œ òe&$&1I=:€ hgsD9>‘‘aÊHÿwy ’þš$Ö¿ŽÿWQåòDHˆS¸"N6ÄGÀ599Â<íPo4+/G‚ VB‚q N“aM N‘ak©ML”Ä,ÈT6[˜€’„73Ÿ“ã(I8Ú ¸|Ä[ ö⤳¹߇Ø:;{&ÄÊdˆÍS~ˆ“ö·˜)£1Ùì´Q,ËE*d¾('‹=çÿ\Žÿ-ÙYâ‘9 a£¦ ƒ£$9ÃuÛ—93T‚©7 RÂ# Vƒø<Ÿ+µ—à»éâàX¹}?Gä× 0@—í ±Ä qf¬;°…R_h†óóBbä8E83JÍd…‡Éã,Kç…Œàm×ûœ¼È7aÀø&Öf‚ Àïè¯ï‡¿d#€ „ ð€\3â/Ào4(BÄ¢Q?_é(äCý×Q­ìkR¥£ùRLðâl\÷Â=ð0øeÁ总ân#~Lå‘Y‰Db01h1ʃYgÁ&ü£ …=f'á"Éá{<ÂSBáá¡›pÄ'Ò(r«üBáOÌ™`è†ÑåÙ¥ü˜n Y;Ᾰ'ä¹ã \Øàãa&>¸7ÌÍ jd(åö}-žOÂúÇ|äz%K%'9‹”ÑÆoÔêç(~?¬ö¡?[b˰#Xv»€5aõ€‰Â°vì„VÂi%ŒÌ%å– ãðGlìªíúì¾ü47[>¿d½Dy¼Ùy’Íà73gŽŸ–žÇô§1"àØZ3ìì]œí²£ã-Czf#Œ‹ßu¹Í¸•@eÚwÛ€ãO ¿ÿ®3zË}5':9ba¾L'9ŽP€2ÜZ@s˜p€ÀDb@"˜W<dCγÀ<°ƒR°¬›Áv° ìÁaPšÀip\à¸ë¢¼à=B„„Ð:¢…è#&ˆ‸"^H†D!‰H2’†12Y‚”"eÈfd'R…üŽGN#.äÒƒô!oÏ(†RQuT5EÇ¡®¨ŠÆ ÓÐ44-@‹Ð•èF´=€Ö¡§ÑKè ´}‰bSĘfƒ¹b~X–„¥bBlV‚•c•X ÖÿçkX7Ö}‰8gâ6°6ƒñXœƒçâ ðøf|^‡·â×ð|ÿF tVwB!F˜E(&”öŽÎÂ}ÓKxO$D3¢ Ü—‰Ä â\â âVb-±™ØE|L$‘HZ$+’')‚Ä&告I›HH§HWI½¤dE²>ÙHN" È…ärò~òIòUò3ò‚Š‚‰‚»B„WaŽÂ*…Ý Wz†(ª3Š'%†’AYLÙH©¡œ¥Ü§¼UTT4TtSœ¬ÈW\¤¸QñâyÅÅOT5ª%Õ:•*¦®¤î¥6SïPßÒh4S‹–DË£­¤UÑÎÐÒ>*Ñ•l•B”¸J •*”ê”®*½RVP6QöQž®\ \®|DùŠr¿Š‚Š©ŠŸ [eJ…Êq•[*ƒªtU{ÕÕlÕªûU/¨>W#©™ª¨qÕŠÔv©Q{LÇèFt?:‡¾„¾›~–Þ«NT7SQÏP/U?¨Þ¡> ¡¦1^#Nc¶F…Æ nÆ0e„0²«‡7ŸÇèŽñó|L͘«c>hŽÕdiò4K4k5oh~Öbjhej­Ñª×z k[jOÖž¥½Mû¬vÿXõ±c9cKÆ{WÕ±Ô‰Ò™«³K§]gPWO7H7Gw“îÝ~=†K/CoÞI½>}º¾—>_þ)ýL ¦3‹¹‘ÙÊ0Ð16ì4è0243Œ5,4¬5|`D1r5J5ZgÔb4`¬o<Éxžqµñ]W“t“ &m&LÍLãM—šÖ›>7Ó4 1+0«6»oN3÷6Ï5¯4¿nA´pµÈ´ØjÑi‰Z:Y¦[VX^±B­œ­øV[­º¬ ÖnÖëJë[6T›|›j›[†m˜m¡m½í«qÆã’Æ­×6]–Ýn»{öjöí ííß8X:p*®;Ò:68¾o5ž7~ÛøÛNt§INKZœ¾:»8 kœû\Œ]’]¶¸ÜrUwt]ázÞàæë¶Ð­Éí“»³{žûa÷¿—3·ežÁ¼ÅózæûÌß¹Y² e¡Ñ¢…½‹‚í[LYœ¹ør¡]aYá»%ñK‹t‹=þ%è—êb¥bañ­¥K·/×ñ—u,w\¾iù·nÉÅR»ÒòÒ/+8+.þjÿëÆ_‡W¦®ìXå¼jÛjâjÁê›k¼×ì+S-+({¼vÒÚºuÌu%ëÞ­Ÿ±þBùøòí(ĺ7†mlØd¼iõ¦/›Ó7ߨð­¨Ý¢³eù–[¹[¯ncm«Ù®»½tûçü·wí¬«4­,ßEÜ•¿ëéî¸Ým¿¹þVµG{O鞯{{»÷Eík­r©ªÚ¯³U5Z-®î;0õ@çAÿƒ 565;kµ¥‡À!ñ¡¿'ÿ~ópèá–#®GjŽšÝrŒ~¬¤©›S7PŸ^ßÝØÐu|âñ–FÆcØþ±·É ©â„ƉU')'‹NŸ*85ØœÓÜ:íôã–-÷Î$œ¹Þ:¹µãlèÙóçÏiói;uÞó|Ó÷ Ç/º^¬¿ä|©®Ý©ýØe§ËÇ:œ;ꮸ\iètëlìšÐuòª÷ÕÓ×ü¯»rýÒð]7coÞ¾5õV÷mîíçw²î¼¾›wèÞ¢û„û%T”?ÔyXù‹Ôv;wŸèñïiýèÞcÎã—ODO¾ô=¥=-¦ÿ¬ê¹Ãó¦¾À¾ÎS^ô¾Ìy9Ô_ü§êŸ[^™¿:úë¯ö„Þ×Â×ÃoV¼Õz»÷Ýøw-ƒ‘ƒßg¿úPòQëã¾O®ŸÚ>Ç~64ë éËÆ¯_¿…~»?œ=<œÃ²¥W 645€7{ %»C'%ÙÛK*ˆì½(Eà?aÙûL*Îìe»€0xGÙ› ÄTØK®Þ1,€::Ž6¹ˆRd±¨ðCø8<üVR#_…ÃÃC[‡‡¿î†dïМ+{óI„ï÷;¤÷œËFKÁÏòOEkÀ„~Û¬ pHYs%%IR$ðžiTXtXML:com.adobe.xmp 1114 402 1ðiDOTÉ(ÉÉ»my"Èû@IDATxìœUÅõÇG Š(ˆŠEPQDÿÆ(Š=j[Ð(Xb4*j”¦FcD±¢€Š]c±ÅبX’Pl`fA± ˆÌÿ~g9ϳ³÷¾²ïíî{»ç|>ïÝ{§Ý™ßm3¿9çÌÿ‹Ä™†€!`uï¾ûÎñY{íµÝ†nèÖ\sM ŠÝ†ùêׯïš6mêØf#äÿþûïÝÏ?ÿœJι7Ø`÷«_ý*V];?ýô“[¶l™ûñÇËÕIÎß°aC·Î:ëøŸ„ÙÖ0 ªDà¿ÿý¯[¾|¹ãýÄ»)Ix7ñþä—í;8©¬Ún«V­*×0 eåÊ•Þ÷qyÃ|…>þúêξȆíwumO ¶øzõêņ¯úñ[÷Á|\ó®g»æÝƦÛa‡ÜŠ+ÜÿøGwÁĦùÇ?þáÎ?ÿ|÷Ê+¯ø¾'t’›2eŠÛgŸ}ÜM7ÝT!ïèѣ݈#Ü&›lâž{î¹ ñpóÍ7»Q£FùþÅ;ï¼ãÖZk-%u»úê«ÝA$ÉËm_zé%wÚi§ù0©ÏÆŽ;îèÃ8÷îÝSyžyæwÖYgùcÎÕ AƒT\¦ÊÖ'®\0_´h‘ÿýç?ÿq`õùçŸû¤O<ñ„k×®]*›nãƒ>è:v옊ûíoëó|òÉ®ÿþ©ðž={º™3gºÃ;,uíR‘«w ;ÀfÉ’%®_¿~îŒ3Îð1Ü<òˆßoÕª•ëÑ£‡ÛsÏ=]§N\Òý–îx #ZÒÁcq†€!`µޝ¾úÊwà¥7vüÒ Õ¯¿þÚÑYo½õ|¾Lä é,|ûí·åòóA‡¤aPB~øá_'Ý©õ‚%›¶I>Û†€!PðþäÇ{8$ä|Õ¼» _ÈÚ»KÉ› ÷'Y<ö·|î4WƒÖnË §VÈÊ@9é:.›=ÅͽéHŸ§åQÃ]“ν*ä'@È×-q2cÆ ×«WYþqãÆ¹ÿû¿ÿóÉ„hùÃþà.½ôÒ YeÀþ›ßüÆÝ}÷Ýâ%àÅ_ô}Ž5É u»÷Þ{ݯýkI^nûᇺC=Ô‡Iݪšhɵ>Rá… º±cǺ×_Ý}üñÇ\a«1 ’gz¯½öò}¬?ýéOîì³Ïöy ŠŽ=öX¿ÿ裺-·ÜÒïó×¹sg?i• ȰsÌ1Ǹ¿þõ¯>øAFA\iYwÝuÝ®»îêößwÀ¤1&›}#Z²AÉÒ†€!`Ô*èB²¹@M:æIBç‚bB$›|’–Z,zV‘üBÒHºªÞÒf:h¯0Ó ¤O£FüìWMhÖ„õ±ãº‡ƒªùóç»O>ùÄ?—Ì.Ö5áµxñbßì–-[ÖµægÕ^0â}*ÄKR&HýKJgá5‡Àç\ä¾zeŒ¯@‡Ëf¸z묟ueOáOéÓ·8Ñ5hµml^!3Ð(Ùo¿ýbÓ¼ÿþû2yê©§\Û¶mý~&¢- H”$_Hô÷ /¸ÓO?Ý¢ù‚ "u»ãŽ;\—.]|Xø÷Þ{ï¹Ã?Ü?öØcn‹-¶ðßòªÔhɵ>TîùçŸwLõuèãlµÕVn³Í6sÛn»­Ç<‘h!ì²Ë.s<`Ï5@®¼òJw×]w¹­·ÞÚ=üðÃ>Œ?ú0`‡l¼ñÆ~ÂʤùûÝï~çN=õÔr)Þzë-7qâD÷ꫯºyóæ•‹ãý˹+ó6¢¥”v`†€!PÛÀ\ç›o¾I55sL…Ò‘ ä$Ñf>hz4iÒ$q–MNG°—m~)'Ÿ-õ†\‘Ùà°,êÃ,Ž©Ý‡èØqu"Á #uño¼±:«Pçúç?ÿé˜yEð|š$#À;N“.IÚ.¼ë4ébï»dL«3æ›7'¸EãËL~šîÙǵ8ìâ¬NÙÐGCws?//3ÿí8b~b>!3Î=÷\w 'Ħúï¾ûnÊ|$Ñ"ä@H„'?~¼»ä’K¼†ϸˆÔí /tG}´—Ûj³1ªj–\ëCß &¥0 2dˆ×ÐÑf8|ð7ó¡qqDË¿ÿýowÔQGù¶cÊI³ï¾ûºÏ>ûÌ <ØõîÝ».×·o_O𔋬ÄÁ§Ÿ~ê5q&OžìÀA»e̘2"0—"hÉ-Kk†€!P²Äi¤d";˜1¥ã µP²5óAs„Î䆴fÖ_ý´ÄŽNŸÏ>01 Š+‡öSŸtš–hpÄ é–.]êOžlÌ| XÈ«MŒ(ƒŽ<þ_ØV¥hÍi¯>¤ ¶¹vt9¶_·ø~ú$·pÜ·jõLrõ4v­ŽáÖÛ®[\tlØÁìmúñEpùå—Ǧ©®À|œIæ[G#ZòE°|~!] a’Ĉ—$dª>|Ùì©‘¯•2ÿ(kFpM÷ê{b4Y‘,“|<än»Aeû±¢@!3Z´há ÒÐÂýOÌŠè><‰hÑ&GûÛßR©¢&^ö‰œér1Ÿ!Ôm£6r=ôPÊ ¯ä§_Aݾøâ §}—T5Ñ’k}¨;Z0ȳÏ>knƒß´E$¢‡Ã7Üpƒ×ŠÁ9íßÿþw·ûî»»Ûo¿ÝçÓ’–góŸ8Ÿ§Ÿ~:¥í"õú׿þ•Ò¢>­[·ÖÅú}ùÐ_‚hìÉEŒhÉ-Kk†€!PRÄi• ‘Ò¬Y³D|—`&D^È‘L«Ñy"oM,™ÈÔã!•˜m3rE®ªm+ƒ3Ï‹"‚E8RÆÚÑ@í⊴[´4êÔ͵Œ—l´[p& 1ú—¿üÅwÜqº˜jß—N6'Uýꪄ-U‡44ïkù¥#^x_òþ—Ÿ™UÝu¡äŇGþVÊ´È8nؾ‹kµ Zut¼cx·ü2_½tGÊ\ˆté|³™Á>Z˜$ÊõäƒY þEøVb²‚ÖƒH:¢…o>$ -hšàã ’`çw–ì^ó„2x@ðàŸ…ï1÷"çÆ4EÌÝØ9r¤OGø!œÀ¬‰?Dý$Žh‘úàÓåÌ3Ïôéî¼óNï4Ödñ§±Ê¥>ú½…óZYÁ‰Sò¼a6%«ü&¦AìkÁOЬ ÄæÛI+2+5aòÃ÷ÍÁ‡2©øARá›=õÁñ.cøåÁÌIk´ñ^ÀŸJ»ì²‹wîë3æðgDK`YRCÀ0 ÒA ίŠh¤Ä‘ q ¤ ~XèÜ$ ëÐÉ-i³É›Tf6áÙ’+h¯èÎC6e[C Eãú»o¦=è£×lÐÈmÔ-šu޻̱¡Î³ä¥Ñî³Gñ³°aäwaã,ü.ÑB§WVÿÐåÊ>s±ÙGSN53¯ÏÂÅ_œrÖKÝ∩çæYâ¹§Ó¦MOtl¿ýöҬĭ`…6I.õá½|üñÇ{<)‡¶5¬˜ÄÌü|LuzâÓ‘2ÄÓÁ¡£@~-t¤È›ŽœÑésÙÏD®Ðã¼tãښ˹,­!"€¹Ð¼±e¤ ³ËmúŒvk5m&K/_8ÃÍs’ò»0!ò»Ð%¯wúôéã"tŒé¬c‡©3‰zV”YKœ2ªµÇè ³šqH'  ñ¹‚z»vˆÍ`†ó3@àùePÀ`€A?ï„ú 6~Í5×8YåƒpêŠß„ &øaƒž={º3Î8£Âà`Ö¬Y>œtÌ 3HÀ7 ƒ-t˜„D «Œ°Á@ŽÇ8Á©$ªö̲3Ð<ÆOXi„YxVô lCÓ Éÿç?ÿÙ1aÕ“Ûn»M‚ý–ëÃ@R–R?–`ev8‰ä¡½`ËàF„wŽ0!ÝX­¤ºmFÞë|Kd›îÜ\ îêË}“üX¹dA¤9×ß}ÿá«Îýü_÷¿U+Ýÿ~^åÖX³ž[ãWkEö¿õ½iQóîet³9ïž{î%4 ìóŒ‹ðÌâäÄO” Ô6¢¥cÇŽþyã}%NTSD;hÈ\wÝuŽt"!ÑÂÒÅøÁO$ Ï-ä$hâhIG´pˆLkDð5Å;5“ÑÂ{@ê#ïBòònˆ«qà`ÀÒÎZh?áøÝ‡[o½ÕG'ùVa kH/D/Éìbþxoãû…­4‡p~Œ/úf¡°7Z.d¡ðŽ£ÎE•#Z*ƒšå1 CÀ(:舋TŽY!kqW:Ðqš(|”ɧÂ9˜â<Ú´ˆóѹ.´ÎDgÇ¡¹"bÇU&A³‡vIùdi7ðéh9ó²Ë-?ÀW©þ­½…8"Y9"¬»^u•9dùMÌNBÎQʳÎ`"˜3› A€ð|c“1 déïÿ{¿Œ(3¯$q¢* Ú Ed@Á»ƒ%LÑja„lºé¦~ðÅl²uÀÉ$rÏ=÷ø¼OâˆHQ·§½Ô—÷ _à¤â‚ii+çç}8gΜT2H |¡ɺ?‚ç ñ. ýL¼™6`ò%2HÈ0Á‚ë)µå–[–+öÍ7ßôD—¼ßܰ¿`Á]!/ð×Ãà¸&„º€#?!_2Õâzó~Æ4_2¡öK<¶Y…hù‚Á‘,ÿ]á#=ÑR¯~D´üÊmùoiiÔŽO~)é—=î÷%K–øï4d'Ïd$«àð.@ÓCž…_reÞ ˆ 4&Qü¶Ì;׿Іà]ÊG}ä Â! x‡ ÜsǼKX‡ç1[ÿ a}x©ïƸ:øfø£>¼SXŽvòŒfªš8´‰ÈéЉ-„z”ÆQ®ÑGáká“D ëªSOÞqäåZ£ÁI’DðJ^¾-ǼsØG¬¨w>Ï­-‚°m CÀ0J:À|e°BCèÜ2( ÒæJ°‡žA°èÑ‘(Ô,&mÐ䊜Go\ÑhØ~u  U6ïÚß5Uf+‹'Žˆü.ŒôÉÛö‹×j¡ƒŒvšŠW^y¥XÓÉ•ý¥—^êî»ï>ïc ;|f]¿ ˜ äµJ°í1b„“¿ .¸ EV ‚º:Ï-y™™…ð@˜ýÝ'šFûÓ!È2m1ž=Y!IˆhR_òb×ß¿O2ÐÑ×Kƒj¢¥yóæ> þhH ýÁOk´p>ü=p>âÀ r‡ºñ.cPÀ¬³V«‡4‚€B… 8´ðТÁa%ïšÐq'«o0ØHšeU{® ¾" Or!¼»˜1c*`Á†A$ƒ4{“&M*§¾/$ç„PÕ~ˆ´G•Øœ/Ž4÷¨æ?!]h/û´3“pop¯@Âp±Ï/Ÿ\¦s–b|è§%] oÑ¬ËÆt($Zôó’î™âBb#Súlãq‘ë²ÅUUŸlë]¨tÈhññCû¨ň–R¼jVgCÀ0 @iB§•Žzhº—–B’3ÌÄ2Ñy8´$ÍÒä"2K ™#3óa~:ä 9oH…iíØ(4zð“­6‹ÔaÙì)Ñj"GúÃ=.Šõé"iÅGKœãCf7™©Ä…_(2À`vZVµ ƒ´3 râòòüá$ñË/¿ô³ÇH:-ÌšöèÑÓ@8S óLÌb wM´0ƒŽ™@¸â…&ZÐA£%ã»s'Dk— qa… ±¢rúÀè•K ƒÀ…ÙrTèY"•÷ ñ˜ShÁÄ ’‡òï¼óÎT¤ ƒYL³4!E"4‡8BôhGÇøŽa5²K›e†9D ïcȪʪðSVU õ“÷8[ÞãÙ/Ô‰ë Þ¼×ÁM1UYçb,ûóG.r_½2&UµFºº&Ñ2ñkGËÆc¦È»dùÂYî«—G§LIœ3Ü\‰ˆAî?ÈM!ÿRS;òÞÑ-Dã†kÛ6òSR)4ÑR™úp/ׄ'̦xß3¹á‰I è«Û¿S¦:Ñ’ !‹7 CÀ(:’H´Kð? :¿¹šúб` gªCg˜UH9GeÀ¡^tÄ9m ‰)ÓÈA¢ô·\ãt/â’îÝzÈ‚$2N§ ÷+›OÊùþ‘Anåì—ýaÇó%¸Ü–gB´OÊED³”™Î4ÙùˆÈye™vK˜†ãtD y0Bc‚•ÃBÁ¬‚5q8Šˆ& uÃéeÜL6þðƒ‚éÚ4H:¢r‚YV|œ`2“D~RWÈMhh¢MO<ÑŸOÿi¢…ÕQBÓ I{ä‘GºéÓ§—Ó@–öCîÄ] ˆ p[LÄD窫®r‡rˆœÊ«â³Jï/í0mÌü¼@ŒÄ ¦[h¥ ¹ƒ)a%çèׯ_ÊwÎÆó)wítÚbÚò…o ÷-[~„g+B¾ðlñ=·Ù–S é´Ö޶Y¾ÑvÝc«ÎòÎhÊ-YMÊ ÑÙ'­ø\B³ ì™ á9ç¹}.ñìpoã;…çV­1HÚÃ?\‚R[M´ðá¹yòÉ'S&tL@ä¢U—˜ë¡ý…Üu×]þÿ&Ü÷Ü7ä'ßvÛmç}›¤Nœ°“O}¤ÈšòïqŒÚγBÛ!wñu•dþû²Xü; ~²5¢E°­!`†@Ñ#D° •¢ý£Ð9¡“G–„ii4tÒ“7::tt++œƒú ¹WhêÇ`"_2'®| K×'”¸Q)’/‘ž·ØŽ¿ª[9ÿ·fƒÆnëËgÆV/¢eÝö»ºÍN 6?鈖0³ òù10¸3Ò°à†DËÉ'Ÿì^{í5?¸zúé§ÃbÓ-R&Z-8Mü¤¼ñÆåÔß5Ñ‚OfÂCÑD DŽ˜þ„éD½žY÷'žx"ŒNã¯@°ÂtHÒ†D Xí‰Aé>#Mþ‰Ó¢q‘#ƒF­¹¾q$åÒV¡Ü'øo­1W" ~!^Ð\¡MµQøÆðá^•ý¸÷L¶mç›È–ë‰ ÄL¶åÔd:|@}|M·HKe¯FÛ~÷G޳wËX¥Ï" ![šw=;2i¬èW|.¡‚ÐWÂNû\b9dÈ@ž„÷?Lð„Û}÷ݽƗ&V…ØÀTŽ{_:ãwDHBÊc%2Χý5‰3\âÑ ƒ¸”0-¼qÜšIò©eóî©)ÿNøtA„†\å~.UÿNF´øËi†€!`ÅŒRfšÂpHš`êÁ¦£cOÇJ“%tp!WøÅ‘+ HÉBþ\…2Ñ< .üâÎA™œ‡v@¬„æN¹ž³.§—ÙcÁ ¸d:–|µaË=¥…hÓ÷“‡¹¦Ýç‹êpÙŒÈåúŠMzNV,™ïf_Z6hJ Ia™ˆ–iÓ¦ù¥61›‘“ä•mH´à³º˜¨àÛ%[IG´9¤…!ç@ÆÁ•®“&Zž{î¹”ŸÉÃVˆÞ ¤O´jЮ‰K‡¹Ñĉ}~´ôâ$ŽhÁ„_)”ÉàYe_S§Nu´Õ›D0O‚@ÉE ¾Äƒkq…©†ª lÑÊÙm·Ìƒn·T÷å[#ï,ÙæÓ&!_(C´dÂýªxod[g½|.> Ðl)#hÊÈ‘$m;ðD+Mú!|oi3Â÷¿F˜×pß¡E&(}|C‰ß'–>å”SRMbCpØÍ¹¸¿é“`ˆ–d|øŠ#ZHG}ОALó ’Þ±rn¶ùÔ‡ü5éß aÈV´wÐ’£UÊþŒháŽ21 :.f&ðº23„¨2kÆLƒIñ!@§3Á’Ž0¡¥ÉÒÒñ¡ãg~GÈd‹ ÷—&VâÊ—²„Xa›–Œ”WÛ¶z`¡µGB­®¦0àžIº†™.ùÆWg›¿ys‚_„sf;Û,õ[:}¢›?ödØò¨á®Iç^Ua›Žhap¯—æÞ¾}{·ùæ›{ü€0Ò¤'ÀG Ú/¹:•LG´H™I¦?Ò°aÆyMf±1}Br!Z¸¿HŸtanÀ ŽAäÂsÁêER"`Ä÷/˜3aâÉG´°²Ð>‘6 ÏžøÊÁÙ8fC„…æA8Ûei‚Ù¬ BH¯—–æÝ ÞÔ 2‡óiaY[š@Ôç(ö}yßÉÌäýȶ÷^ã{Š&mt\\Zîkß,IDn˜G޵³ít¾ZÒ=Ï¢­Å;Bž—P0OÁOmC#ŒåŠMl`ʇçP¸wynñãÇûŽØ#ZGòõÑB¹ÖÇü;ZáĈ–Âai%†@‘"ÀÀ›[Ve`à't6ìWoˆ‹·°êCÂB4MB²‚j¿t†Ò&¤_*¤ãº'™ ¹’«F \M¬pœ$Ô—ò©?ÎY—D´9›ýªÄ&ÛDœÚ}&b¤*ë]Óe³ÜêÇÃËü%4lßŵ=}BÖUš™ü´h–OŸn D‚$¢óÔÙf:™1— MŒhÁ¼•t.hjd+éf2:á„ܹ瞛XäÀæ4]ºtñ+h0¢…ô üX5NdðÇÒ´ àt ìüJàT2\>õÌ3ÏL$ZÈÇŒ=æA2ÙN‚Qågp¨‰œß²Š‚œBhæ1“qôøãûÉÊ5 3ù¾ò~e‹Èq¸ï#‹àï!òõÝ}ÝŠyo»ú´r[^øzlÍ’¾›ÚÙv:"7›ç_*8„ŽL‹ÄG ä&šˆ-</Ff~¢©¥Ë`)xü,Ñau4´Tª$Z*Só勞ZþûF´ä¡•`EŒj ¨\ŠÝ'UÅ©VfÌPY‡g˜ˆ0ʬ]mìž¿ö@䥦[¹dûaÎÔ¨#ÓÚ/…Ø UÇÈ›/W¿ië¢h.„dHÜÊtÆP_&$`h0®!jÁB®Ä5Ž´¤Ë–\¡,f é´ ¹W®„1 R…mmœ…Dk™Èì*ẃÏq¡E:è” :.ŽX)t]êJyóÇôuKgLöÍÍV½_Ï6³‚H›>w¤…+‰h_$­S¦L‰%+ì3è‰qºí¶Ûz5þ¸ ðî'o§NÜ­·Þꓤ˜I™h‡`'<ûDš!‹/.·šQ®DËu×]—r6žçØcõf8°Eû¹œ[—0Ÿ˜SÅi´ &x–Àb†mÜ 9ä ËS#˜I€sœðþàƒü{Zæâ«“!´JÇ(ƒï¦C8ÈÄŒM“ümJÒûBÖ®÷9®Jùúê²U²F>œÚ&øpâ='˜}pA'•Î41ÝóÌÂ|Ó0ÃÃquœ€ÓN;íäû‘ˆ-m£Õ…˜ÐKñ}tÔQGyÒ’tUI´T¦>qu7ÿNq¨dfDKv8Y*CÀ(AèÐÑ •;A<ÏëÙ†t®Q}þöÛoýlǵÁ”þ Ç H9—Kº„Í»õwÍ» HŠ®Òp:.\Ÿ$m!)„à+à ZÒÐ)¤£D™q"ä éÅç@˜N:–!±¦ 5±‚-¼ží ÓóqM‘'àÅõA’ö0©ù;âvöÐ]ݪåe«q¤{wøUA&tK^.#Vê5h䶈fªë­Ó8mC’ˆ´FÐn@]ŸS( È!0 ‰ÿ¢ÎÏû}›m¶)—š”¡}®¤˜‰ö %iœàß„e”|<ì°Ã~?W¢ÿ$bšã Xýq¶Â`Oü˜@b@L$iðè|ID ïä=÷ÜÓk¢É”ï¥nÇêjøÉ ðcÒ¢gÏž©UT$ž-¤uÅ|W¯À$ƒTœ]b6'²Âõ,.…UòÐgÓdK«ãeÿ«Û{¹ÿ~ñ¡[»eG×~P™‰÷Œ–$¢Ek´¤[>>éyÖKŒkç¸úܲ/KÌëçFîaž?ö“b†:`'&UI´T¦>Rwóï$Hä·5¢%?ü,·!`1²*ÚØöË Z\•qŒ†Z:úL§¸üŦí¥n¨äÖoÚÆ.›S^5—¥Ûô]-Ú- h°5Sˆc@-*:ö¡†k*ó$b…|*b²’äãG¸îüÒ•%õ?åQ>ÛbÕX∺'i›dÛ–ög³åú &IĉϦLKS|?}’›7ö¤Te5Þ®›[w‹.îW‘¶Ü£UC~ˆHÞï¢tb.DâM£÷ËzQºL’D´È`†ü8´e`/©€Æ«‹ ˜·àçC„{5–.Ƨ e‰) Ï®ÅaW(•h¼ü¼zvzÝÈïÂf9ø]¨P`š°âÁ¢ÉˆùA`àLQHŠcF‹x0'žc:ò²ô_xJòjr…÷ÆžN&Ò‘4ID ïÈP$tôž÷ äéÙgŸÒV¢E;¤óqŒ¶Ï-Ï&ÏR•DKeêcþüe)ØŸ-ƒÒ 2 bB€ß›o¾é;™8"Ä/K&ÁùžØ³£î-KûI>V*Bý|ÆŒ)²@VY¸à‚ bíËQ³æ#ŒÊ8>Øg @Ǒη 8$&LtÞñƒ°ªkÚÃÀ “à‹å“{Eªýß¹5#UýMûŒŽ8ÉËb¢Þ?ÌI©NJ:ûæLçÖñ´õs¶"&Bž0ˆ?ðtÔùO:ö¼C¬$‘+äãGûr>Ùʹ3m)ƒŸ&V8U íÒ„sèúÒ~ѮфJ¡ëB{¥q„ x‚½‰!"€Ñçÿ¸(5 Æs¼aDò6ë>0£¹Î›D´†÷ùçŸ_n`Þ!,Êì2+ȉÏÒ‡ƒz4Zà@„h A[S›PôÀƒ¸Ð´€Uì (;H|ËhsUÒäB´@à<ûì³Þá.ć&ª!ú©_HpÌ¥XñHLg ãÇÙç!C<Â$ç[…wÔ>‘ŸÒð.xþùç]óæÍ}ú¸?Ò£ÙÃ}-PøKÃÇE(_|ï¿ÿ~ÿþã÷Þ{oÝ!ºLj'øûøš®Þ,qÍ]»AÝZ«5pÓµXO,eò•D´P>Ϊ1O§5EðCñÕá¹Æ|¢…}HÎ&Mš°[N¸ÇñÿG?²©J¢…òs­ùwµÂ‰-…ÃÒJ2 "B€.!t…<ɧz8D½âavŽ$Nü:û¨4³†ìê!O˜=dV‘Τˆ&ZB§½ÌÎ2ÀåÃÐAF†éäãhuå«W÷hÓûv×h»ôé) ²å£¡]Rš-[þ5r˜›ƒƒ\p€0rÂ’@&ì qÀÀ¼è¸“WÈ £ÝÄ @¼¯g´Õ„ áäÉU(WHM¬äZéi“Ôcö¥qÇ`@HW(‘¶QžÞׄ‰Þ/Ôy­œº.¼¼K0Od€”¤¾Ÿ/R¼_ \Ð dà ‰i‹Ïd8[4#âü1}ñÅ~f™4¼Ë!häÝ"åè-ïá… úólºé¦:ÊïóÜ3ƒtÁß «!uèÐÁ5kÖ¬BÚ|¤½þúëž”…xÏäKŒº MB{Ñ.ÝN´M0›@{'À¼BÁg +©`z ©“ !@¹L^€?KåÆ,aYL0 ÄwB NL½²]2:,ÏŽK Mš`’Ø&š(JG¶”iåŒú.ß¹l|@¥#Z Xð„™Äfܳ ˘C¤F´«4Ñ’´2“nÁä!¯1UM´äZóïTØgƈ–Ââi¥†@ €í9« Ìn2šÐÁfÕ:å¨5C–àla5 LŽøp"wß}·×@ñÑŸ-¨¨Óù¤Sú(O:¶”ÃÀ'tÔé8³ü¨ø`0m;Z.*â6q ó”­öif'Ìÿ͛ܢñ}p’Ú.í§® tXÐé‡Tà‘"¤ qB&.„‰ÞçDrL‡&$L(SÂÙÊ/¬wÒ1ƒ !Ø’Ÿ:AâH}¤z†XÊÓÚ%’(^•[içÈf¿*ëbe†@ÝB€o–,IË`RÌ+ê ÖÚêDà“È è‡Õ>äÐlÙ¨û·þÎGDZq맪±|á ·xÒµÑ heNs‰ÈÆT:ŸKLvÑã;¦ [â‰ò!a -èG ™¥Mê4ÑÂwR"˜²3 ÇD&íhÀ‰¤#ZXb’ò®»î’,·ùÔÇü;e„7§F´ä—%6 R@@;×;çœs܉‘ÙM>2hÐ ¿d_ÛÈ®ýᇮàW‚s ÎÌèO<‘:-àS€clåµà²†YEYUCÇS>¾hWºYEf•çÞÔËgmyÔpפsÙ¾.KïCtð™5 L-{­mt ¸Èw8„\’…´B¢H>]†„…Ä á„ÉOÒ±…Aè ð# ÛP¨‹ˆ¤%¯¤§Žr,éŠi+¦9Ô‰zj“'$Q1ÕÝêbu°¡U·ÉĨj˜0Z-#/d‹œ¯~ähm¹es~qrMš,¬šØtï2ŸD’>nËN:ŸK£FòfoäÅœs74Oð„†}&Û0mÒÊs‚æfvü˜\ägÙøô£ŸÄä“e¢ÍBÞtD‹î?2 ÇRò¬À•Iò©ùwÊ„nnñF´ä†—¥6 @@¸´meª®µcÐŒ‘(²˜m@óA»ETºõ‡2É›=6ó8 „La•‡8Ñ+: ÝÒ¨Q#O„ðñŒ¯&t?¼z›ÏÞnàÓ®A«Nåˆ"B’DŸkNdvÄ*!ÿkÚÎýÜ£¼Š8d†*l9NǾË–|ì ©¢Ë‘ô²Õ$Œä‰#at…ÞIʧZŸ0M–Äfb†@1#Àìûܹs½¶&þhÐîãÛ†#bC ºÀŒhñ¤©¥äãÎÛ 2/jyôˆ¨¯S¦É—& Ëäs Ÿ~CVû0 óÒGcâMú%/Ä}9LðÙ'+ Iš®]»úçˆ 5-º¿Êrð4"48ŽF«ÁZÓ™$ŸúP¶ùwÊ„pöñF´d•¥4 AsqRƳW¯ôš隥µc°ïMZŸÇwœ/Šœ¨X Ñ‚œó†Âêb»Žý.Ëþi¡“‹¦j­²RÃÕW_ígZt:ö—¿v›ûqÊhÜá²åTm%m:¢%广~C÷ß?> YÊm!;Bâ…-çt²Õy4Q¾¤a+û’^k âéìh²#Œ'N«þJ™lãˆÂM›L C ®" ƒ4i?ß2¾cú],q¶5ªäþ0{Šû)òÿ„ï¹Kæ{R‚eh")›åâãê—ÉçfÑø[âG¿§Óh«Äù{Š+Ÿ0´ZÞxã ¯½‚?¥¤U,“òK8š¼ø,ÂìŸTÚ•¤Éf›k}Ì¿S6¨fNcDKfŒ,…!`” ôQù„ ÀÞ{ÚÊÊc=æ—ü¤“‰úh8“!å²²*¥Ns:ê(¿/D ÈI“~±'ö‘Ñê¨â}ž0>êüdßï”Ï* ¡ü4ýq·lâPß!nÛïþØÕ†ÀFÊó¿~Gï÷wr«¸*ŒÎꜤC.ça+aÉFœ¤“r„”Eð·äÍ$.R>åI¢‰’D¾d*×â CÀ¨- ÑÂ²Ï 1u8üðÃý;»¶´ÏÚaU€ùw*ÃØˆ–ª¿×ì †€!P|ðÁ^ uÍk¯½6«°<çAäÓŠ™ÐwÞé—Èd&cÚ´i‰åh¢åª«®J-˜ŽhA[…Õp°ñ#ƒþ¸ ùpê©§¦–…–ôhb,ÿø”–æ]û»æ‘¹l…™¢Ù—–--Kä3,š°B%<—„³/ét¸ä‘0¶ò“8¶ Bº„$ ñ… b(G$cš/‚”m CÀ0 CÀøÑŒ«ëþŒhùåž°=CÀ¨EÈR}“'OvÍ›7ÏØ:ü¹ÜqÇ>Ý£>ê—èÔËbú“¤¶‰iärÏ=÷xÇ·ìk¢'¹¨€²E°½=þøãý>NÎpÔ†0g°Ï–6 }!d‚Oð'mñÖ¿å…Sb͇â²ÎœÏ-1ÙGeãHÂ…m„|aŸ0!a„X¡PMŽ@¤„Ç:Œ}D¶B°H˜„‹F Ǥ‘­všËy¨8J<ÇìK~²Jþq^!]â¶•,Ö²†€!`†€!P2˜§Š—ʈ–Š˜Xˆ!`Ô WÎ>ûlß|› <8m«œ³Œ%v¬o¼±{á…|ú?üÐzè¡~?\ºY8~üxwÉ%—ø œ›5kÖÌïßrË-îºë®s-Z´ˆubÆ 2œŸúRWÑRÑåã”÷µ×^óAûï¿…•$íâ‰ÃÝâÉe<:usmú”ùl‘ø¸íÒéÝü±'û(lŸÛ ªhâ—/.  â ¶¢#„y4ÉÂ1¤G¸%Œi…h‘t„A’È1y ㇈6 ùäç#‚?0Çœˆôì QÂʈFA¶œC"Fê&çÊ©0Kl†€!`†@" Z,R5óïõo£ŽiYÏTP±­!`µˆ ˆ ÍŠYPØ<Öx‰—å+q6+i1—Ø€€Aë%NŽ9æ¿üòî»ïî—þÙÚ÷ßïÉ>>¬B¤½ÅS'~,õŒ´e6ß|s¿4´&ä\89­[·öm’ð¸íÇÑêA8ŽC [Z=AÒ^Ù¦µM—8N%q„Q†„.¤ arö '½¤Ñå¯EÈ®&bHCÝ!e!bdësüãBƈÂL CÀ0 CÀ(Ì¿SÅ+eDKEL,Ä0j _}õ•7çÁÃ<ÂÒ|8ök×®Ü2h~ï½÷Üõ×_ŸÒÙgŸ}ÜM7ÝT–eÆ-ƒósÎ9Ç—£ 6ÌÝùr `éÀ:¤¢Çç ZX­èá‡öäŠ ®%žíqˆ 1ÀòÑçw^9ÂࡇrC¢Õ“à‹ïÉ·]yèÿäÆž©e1#Úpï¾nÝ-º¸_mÐÚý7òDz|Ñ{î»é“ܲ9SSEˆo–T@whŸh¼,]ºÔYBˆ€¤ƒ/à-aΑ4Bœ.å°%œ¤‰ä!Ÿ¤!NÊ'<ñB! “M^Kc†€!`†€!#ZÒãc±†€!PÇÀœ‚…º4W X°šT-\´\D»#Ô>Lx` i‘BzÒ±AǤR&N»2„xH H—ðúK‹I‡‰fB"”MÉÇ6)/å ñB}ãê!eæ²Õ¤ û¹hÀPp/!ƒ U¯\Ú`i CÀ0 CÀ(eŒh)å«gu7 *C- ÷ šEpB°¬·ÞzF°(Õ¸…4àš@`™i"„ ¤ûrÝ ãÂ8Ž…< ?ûüâ4QHË5‡t€èá—Žü.ü4é<œ—ºó#’—óŸóR {¤`A¨O6BÛ _B&›¼–Æ0 CÀ0 ºˆ€-uñª[› C ÌëA(MÈ~ì›Ô,úA`²q¡À>„¤ äd q¢Í"¾žì“†2„¨Ñ-EsÒ…r!{0m¢üP(C4]âÈÚDÚP¤mà|Ô½ª„ú E„„Éæ|Ô,¨Ÿà×Þlʲ4†€!`†€!`Ô&Œh©MWÓÚb•F€&NXX0IÑ vƒ 6(¸ ‡>‡íH–ðr€cÑ´ "…?„Ä„ñ¢}Á= „KX#ÈÒA‚P–H™Fù4Ä‹_ÊÔBZ~r^Ï>yDÛò%,ƒ4rNÎ[¤ ç;Á˜­0ŸnK›Á˜çJï§Ëcq†€!`†€!`”*F´”ꕳz†@Þ0 ÿúë¯ýà[ c6¾I“&~@(a¶- „0ƒ àÚBˆf¤Žp¹¾ ø…páòá"†}-$!q$ñB¸tøùa di3%´üüâ´ej’tÑm¬5Gé<²¯I½/ñ¶5 CÀ0 C 0¢¥¯šÕÙ0òB€A ¦üD´®¿þú^ã@Âl[z0؇C½ÝƇ^äštmß0 ´,ž8Ü-ž|mÚ4º­ŽánÑ%m:‹4j #Zj y;¯!`T+ ®C-ÞM›653¡j½Õw2®9¾[Ð(AØCN@‚0@r„}Ñf‘-¤‹éÜSŽÖJЀláGYøù I”8Â…zÈ2ÕÔQ 3”qPV’Æ ù…tÉ¥ÌlÎ[è4štÑû¹žG®-϶0²ŸkYÕ‘~ñâÅ®Y³f©û/—s~þùçþ>á–«ä“wÕß¹cNr?Ì™Zî´ Ûïê‰ÿiѬrq:us-£‘Í>—ƒÅ C @-–Eãz 9•îý²á^}#BwˆNžÕ>“(L”TæÊDΧŸ~ê¿×m´QFSà°Bô1æÎëÈËw?&‡¾øâ ·é¦›†Q¿úê+?AÔ¢E‹ØoË¢E‹¼æ-ý‚l„þ yèkPß 7Ü0›lY¥Éçp‚|¾eóæÍóíÉdÆUCÑ’Œ†@íA€Á¯i±Ôžë™kK¸þK–,ñ$ Ž!T”s y!ÁODˆ!^G‹…c:fšp!-fghPvá‚ïM @²ÐqÉÆIê•n+š.IæEÔ“:Võ’Ñéê˜kœ.´ ¼ÀWÂr-Kˆ—p[ÝDÌ{ï½ç†î¦OŸî¯=÷ÄþûïïÎ:ë,GÜÝwßívØa7hР M¤cÅW¸wß}×Ñ™FÚµkç:wîìN?ýô´à|òêŠÌÓ7RçŸìƒÖlÐÈmÔm€kº÷I:‰ßGãå‹I#ÜÏËËL47Ü³Ûø°‹+¤³CÀ0¯éæ–¯&jëoÐjµÆÊnÚ~öÈEnÉ+cRÇ-z\ûJ%P;O>ù¤Ïò¾åÛ·ýˆ#ŽðïÐ[o½Õ½õÖ[Žr|°ÊU¶ !ïçqãÆy’EGî¼óÎî„Npûö߬8À‡]}õÕžTùûßÿî^zé%?Dïÿ!C†xÂçå—_v7Üpƒ{ÿý÷ý·n»îº«»üòË+2·Ýv›?~¼ëر£5j”»óÎ;Ýäɓݿÿýoß·iÞ¼¹øq&HœN äH.’‰t¡Ý”ÉLŽ´3—ò‹!­&_¸W–„‘ö€‹Ü\O|xo ùš(=öØc.JÝ”M4[è¤O˜0Áí±ÇŽN´–_|Ñýå/ñ÷áÌ*rßÐF6ÙdwË-·¸-·ÜÒë¿|òêr¾Ÿ>Éͪ¬ùIhÓg´[«i¤Ü>~æGÚ/¢á²iïÑn½íº•Kc†€!`€€6jÔ©ëj-¸õÁY6{Š›½_ s1Sl7hRZŸPL¬@XÜ{ゥ2õ;xÇwô}‚×_Ý 0ÀtÒ/2y!ß}öYŸ—o}ëÖ«E˜ˆ@IDAT­Ý'Ÿ|R®yñÅ»ž={¦ÊçýL¹ÈÙgŸíî¸ãŸžo/ýÊEvÛm7wàúïý]/âó›ßø¼|£D ì)ïÿþïÿÜf›mæø¾ L¨0á‚п9r¤3fŒû׿þåÃøŽñ½Dø¶A<üö·¿õÇò÷ÏþÓõîÝÛבº´iÓÆ—5gÎIâ¶Új+iDŸ([ÉçpŽ|¾e|!±¤ß†ÆZCr ¡uíµ×ú>W¶íɔΈ–LY¼!`”$¼8aíQKAM’A«Ö\8ÛÖ è\`®ÁýÁŸŽ~I"š*ò1&aÌ4¡‘A¢…p~Üg”§á’D¸$¥§~•!\¨mFk†ŸnƒÔBúÐñ«-Ïm¦­I[i{e·à$ÚI\!b4QCÙBÖ°O‡üCñÄ ffÏÐD¡CüôÓO»aÆ¥ÞW»ï¾»ŸI$²páBwÐAùø]vÙÅÑ™G¥œùŒ3Ü9çœãæÏŸïÕØ'Mšä—¦/Ë™_^)ƒ-&A³‡vIùdi7ðéÈ!e'$vùÂîãáe3º †¶¸pª™Å"e†@ÝEÇÚ]ZækM¹-ý{"ó~éô‰nþØ“=pë¶ïâ6;}B"ˆÿøÇ?ÜùçŸïãÑ`9üðÃÝöÛoï5$ÐܸÿþûSyC¢…÷jÿþý=fÈþð‡TZȇK/½Ô½ñÆžGkDD-„AN@¶£µÈ»ÿ²Ë.s<òˆ$÷ñûÛß0ÌþêAOÉ6Î*ž7 À1»à£Š Qé"göé´hR‚4ñhˆp_A~@P`š&åO3^¢‰B.Ü›"¤òOÂdKè AähaPOÊ%®B§‚_éá‰D›j³„ŒÖ„Ñ×±Щ¥Ž:7ZîýNBå›N+Ò¥KwÓM7¥âéàÓѧ“þÐC¥ˆ©òC=Ôw‚Ñz9î¸ã$Ê*›7UH´³löT7÷¦^>¨y×þ®y÷::íþâ‰#"Ç–#}š¶ý&˜óÊ´hY¤!P÷ÐÚ,mûݽ#*š %¡¢Í;\63–È彎‰ÌgŸ}æöÜsO‡‰P(¼£…l ‰Ì~ÆŽë0B‹#´EŽ>úhŒÖKË–-ý¾&Zø¶Bª iAȃßýîw>-ß]´µP_ú,râ5Ñrâ‰'zÂ]çã[ðè£ú cŽ9Æýõ¯ÕÑÞìè’K.ñÄük¯½–ŠcòˆI„¶ÒæPþô§?¹W_}Õ›Ae#ù^ƒÊ~9/ÚB|'!…ä;«ë Ù‚òðû­·ÞZGWz߈–JCg C àÁ€V„Á1›Ê J¥ ÛÖN 2d¶rí1¡Õì‡p¡"šø0XÞ`ƒ <‰Â½G9"'35œS§!N|¼H>Ù&.BÒ@ºTæÞ†DÂ…m(” é¡#T˜¦¶‹F íŒ#bt|&,¸/˜=EèÀ£'}úôñš/;í´“»êª«|ÌÀ!tŠÑvÑZ4>"ú»à‚ öý1÷Üsf¶[z„¾‘i’hßøÀÕÔ ;|òÊ@Cdz¿ä™kÝ×Ïßàƒ³Õf‘2PñŸ{Ó‘þ°y׳#’f DÙÖ0 ÈÄðßOGÌÏ ‘oÞœàè’)‰È}æ™g¼éižzê)×¶m[vË ïZH¾Ï!Ñ‚†ñ[l±…ëСC¹|Ìœ93e2ôÄOxßY„k¢%Žì ¦E¤ëÚµ«7]!L äþRzõêå† ’ŠÒD D ý-£Gv#FŒðA.¡Y)Ä?Z.>cè+#ôQD+‚B÷‰|‚èï´ÓNóy ¯¨G6’Ï5Єæ?|ËâMˆ.ˆ!¾´cÊ”)‰¦N˜oñ­F+è¼ó΋+>ç0#Zr†Ì2†@1"À ŸZã€Abe¼Écû¬NUƒ$ƒ,͸4qÁ€–0~"˜1X¥3"áä¡“±#yˆCóRDDÒH~ÂÉ+>^$lIG~:eSne ʇD “dz£5näÜhóð,1Û&„‘ÄÙ¶ ÑáH“2rL'ùÔSOõ‰¯»î:·í¶Ûúýð2dâĉN-¨xÓID˜]Lz§1x¸ùæ›ýýFÜ£ùä ëöý#ƒÜÊÙ/ûà¤&&Ãü³”ùrY»ÓA®á…Ñvluooý½ûù»Ï« µ=ýX$øÞÅ ú³!r…tà{†3ñ¸r8i·nݼfH´„Â,"›ßþóGù¬€ƒ$-˜§`º þQÈ‹sÙ+’Ð4øLô¸æškRÙ…h¡Á»>”|0¥½ñÎ;ïTÐT…œÁ„A“fóÍ7‹H³ d?L‡h#’ Ñ’Ï5€‚ÜAР§YœÐf&)¸WÐ2â;fh‘âdžø$A’ó,Ì´ !F´E+Ã0j6|Ä /X4˜‘712!ÀýƒZ® t¤#ÆýÁ ÷åÑY£s¹'ùçžãÞ£ŒÐœ(Ôn! „ ä‰íãE‡³Ožª"\(Ÿ¶@¸@@i­âTŸÅ´\L²C@Û‡£n­ÉMÒ ÎY‚"Øèã /IDãJÇc^iG§’òrÉæù~ü©nåüw\ý Z{ÿ a<Ç<3qõ!Nˆ–úmvtëu A&†€!`x¾¾ºÌT¥2D N·g_Zfj”¤1‡¹ïÃöíÛ»Ç<õ#œ7ß|³‚F  0‚ÔøøãËH"Zx§³ÂP(B´à,“œP2-h"âû$ÚK»é¿@ö‡’‰hAÒb*ì§HY¹-ù\&DËSÎi+Z>˜½™e+h-‰cáló$¥3¢%  7 ’@ÛKÉ @Øk˜îºjîP­+ÉýƒÊ¨øD‘Á¢-TBî5!ô $´ |qÒ9 5_BíÚœ›{Y„²ÃtǶª ÎA[ù¡í"m&¡~št) µÿ$ Kp–AÇÌd’°:Nµ3\ ã^ÌÖnœ2 sd&¼tÆ“„û]îy¡ :ù¾yêr·ô2“¤—͈ü dvT)çÓ¡Æ{ŸæÖß÷L‰²­!`nñØÜò¹Ó2¹qPi––G wM:—ù’Òi!1ðƒ…yšI‚4!B´8Ð6‘ï4Z¤¼SÑ’@C±mdŠ$«%-Þ{ï½w…SçK´pþ¨¨TY¢…> ma)d´]h+æGL°ÄõsÏ=—“FK>× Ÿï ULb±RT&ÁGæI…#Z ¢•a5‚3ïh ˆ 1À×fÚÛæŠ@xOq/i’¤"âË­*­Q™8í–ÐLˆ2!\t¡ŒœS¶é—tDäÏfË9„pÑí–¼K.uÙŸ‹`‘´ÕjϬLA‡/NPãfN-h˜àÁOXg+ùä Ï¡ý ´é}»k´]÷0Iâ±^$i ”˜Ù" C Ö#ðù#¹¯^ãÛ™+‘«m·81Z mÛ x é¬}w„‰ø¶c6Âä‚&Zø.£¹k»víÜÈO «Ó0±'òÁ¤üa•:ÑÉ€3väôÓOw¬Ð´ñÆKSýöÌ3ÏÌ™hÉçäó-cU>®I§NÜ„ É«R•k`Œh)VŒ!`T/ဘÙ®&†@¾0›#K@KYÚ$­ü•h-!D­òjò/N»%ÎÄ2tÙ”#¤ ûq’D¸@‚¤iD'”%5!$es>žEóç"ˆ”mYþ“¥‘ñãÇû%EËbÊÿï±ÇÞ R-+²Š³–Iþ]>úè#GgŸk-ŽóÉ[¾f‘SÇ…3£ešËÈ•µ[vtíM “$Ϲ¦›ûiÑ,Ÿ4JÌl†€!PëÐDnÓ=û¸‡]œU›Wýø­ûhènîçåeË'ù⽋3qHnÌ7ã´žõ{Z-8[h‰tìØ±BÝÈ3 GJh9òÈ#ÝôéÓÝ>ûì“"\ÂwïÞÝÍ›7/'–|®A>ß24‰Få¯ýÔ©S'c™¡ïצM¿¼vØæÊÑRÔ,!`Ô(h@´ˆ ænþX Ûl@€Xó 4]¸ï¸Eã†0Ñ`‘pòŠ)‘ĉú1uEC|Z+.åò&Iª‹páü`Äsˆ–Ké útqÞ¿*ã̈|ðÁnذa.¡˜¡‰H-ìúÙöìÙÓ±i(Ü—=zôp³gÏ.·Üf>yÃsp¬WÉv‰g=ÛܨSWצÏqE[˜!`Ôq>ŽÙå« Ùlµæô;©E‹\Ó½OŠEâ:thj8X–&L-Z›B/ݬóŠY a¥N´@Ô³ÂÒ¡‡ê.¿ürÝL¿©Ï÷ÉÅGK>× ŸoÙ[o½åW¢¾8œ[õ¥Ÿi ¾ø®¸âŠTûȓђz–×0ªM²00Ó¨öJÙ k%Ìn@( Ì€1 …A¸ÿÐÞ€h4„Aª R¬ì†÷*Ú-¨#‹$‘( Î…´!}:g¹Rž.¡f äÏL:²FÊÈe üâü¹PŽöçuQX6’í(:ôbÏftÞYñ@+M´€Õ½÷Þë.»ì2ïÔN î(Ò1¼òÊ+½¦ ÷³†Zë%Ÿ¼áuZõãwnöÐ]ݪåK}TÓ½úºæÝúÇúka¦yñ¤‘nÉËeÄJ½Ü¾¥mkdž€!`”Óš[³Ac·Q÷ŽwLœð~™?æd·lÎT½n´ZÑf «I~|¬°b ßP–=æ=‹`ö˪4üD4Ñ‚_-ü| ¬ÄêA"Lš )ƒãXÓŠO,Þï,ߌ”Š1a¥Ÿ€3\m6ÄêE˜ ÑG˜Çí> Ã_e¯Åæó-;묳ËK·hÑÂÝxãn›m¶IÕ”Ÿ¨m#¢¬PZÀF´¤`¶CÀ(f8òbg0‡0XkÞ¼y¬úg1·ÃêVZ„d ÷„‹ÖHÁdc¹7i!a|¨!S´)<ˆr†ž4„Å™…÷>é¨Ú-™üu@ …æLä§Ź M¸P68Ðfá"u•t¤cyJÔÐîT”™ähÙ²¥ïüá`¢Ûn»M óDÛ‰ÑjÌÌ!Ûo¿½wŒË,ƒfãÁƒ»Þ½{û}ùãþ©l^)Co¿Ÿ>ÉÍûˬ1«5éÜÓ­»E1‘,=ä~˜=Õ}óænå× RYÛö›à’ÆÄ0 OîO¾6Û°}—èݲ«¿¬‘µ+¿^è ™¯^º#e.‰ÛnÐdW¿izG§ ¨1Ã\° ì½Ä š÷0ï`G¹_|ñ…× ÔD ïîã?ÞûÈ"ŽowÝuW÷ᇺ™3gúï?¦E¼“wØa¿3¤L)-S¦LIMÐGà{Äwó¾5´¿sçÎÞß ýœßýîwÞ—K6Žf+{ À=ŸoõÆÑ1×—6ác;¬$ÁÂu£oǪRBŒqÎ|ň–|´ü†€!PåðrýòË/SËëÉRåÛ ÜZ³…ûÎ…^îÒƒÁ²ÜðP{­VÆ¢ÊÉ:äCËE dNèp—Îi)+¤#\âΕ®¬lãhd M#]~A ?+tæ>ùä¯!…Ä oY ¢nݺ9VYӦòc_ F´dvÚi'œÚÏ'oªµ³,"RŽëï=*8v·þ­¼¹PœƒÊØ huÈ\Þ/¢9— 4YZ=2#É"eð=Bã©§žòƒnÂ7ÝtSO&œ{î¹Þ¤LÞÇ ÌE0¥A“…¥µ´jÕʇ³rÐu×]çn½õV©(ïêR$Zhß)L\µ™>}“ýöÛÏ 2ĘbÑ7—ôZ“Ò&üUöP\>ß2úZ,1©´L<ð@‡ÖK6d‘Λi߈–LY¼!`Ô(¼T5Éã̲¥lM êD’C´S 6 R˜áE›ú £—!'¿ÖÈ‚ˆÐþ^ˆ‡!¿ž4T4¡“dv¤óÉ>õ ³¡5rˆ£îhÚd"l¤œ\·ÔÛH—ò¨q/q7Úh£T)O>ù¤ïàËJC©ÈÕ;\¿Y³fùÙT®Ën&,…Ì–…Ñ—Ñ쳬Æs¼aäÔ²Y÷f.Ž…†@"¼_Œéë~˜SžØ h±4ï™%ød‘té¶|ÓéK¢Õ""K-cZ„Ã×PXú Þ½h>h³Ò¢åÂÄÌ[lQ!.,«ØÁI´@X­ "E÷½éÿð-Â+úèU˜²m[e®eçó\´h‘¯7“Ltl·Ýv®}ûöÙV9§tF´ä—%6 êD ŽdapZUƒÁêl›«4Ðd - ƒÁìŒ/ü¶ÐÑâþEDƒ…ãt~[Ð:Ññä3%"}*dÀtèñÇ÷æ#“'O®où!P¯-ùÝ3–Û0ª#YªT+² @¬Ði@ &0óѦ?-˜âhß.¤ƒ,ý¶ž8‘ДHç•4²ÓnIÒ„‘<á–ú@ÚYD<&I´!næ/Ì_ˆcÎɼˆ:QlÅ!_JIpn{íµeNq¬Èò˜bøÀÉ-ñ`ÀŠ8Í51 CÀ(}ûöuS§NõšŸþóŸ]—.]üw‡¶“&Mò~[ø¶Üpà ©‰ wv+ êÚ50¢Åî{CÀ(*Œd)ªËa•Iƒ€&KâȈ mD:ñÍYçÏ…4Ú0Z+†pʃ” …çÍñ!C<ä þŒB§ºa^9¦ ÚÄ}:žUµB‘œ#Ür~!] ’t}$-xP7p¦­Ù¶SòW÷–™ÔsÎ9Çû`I:w¿~ýÜgœ‘mᆀ!`•D€ÉV`“U†ÂbøŽŒ5Êí¹çža”ºv Œh)Ðcņ@þ0˜ ßšO–üqµªmÄÀ?I³…Î…˜ÆNÈÈ”8.¤Ax&t^Â0U‚p‰“P†r I´iR\>–´B‘G5AhÐ.1/ÒfNºÞt’EÓ…m± Kdbÿ?wî\¯E´å–[zg|¬ Ïî—+Vøç€g¢¦ÿD :¸?! M CÀ0jF´Ôžki-1J–£ŒÐé4M–’¾œu®òšDaÀ$&CHÙB8äq¤Óþ\ DDë…t„Š”ÉyÈŸD"@Îh¿+” 9“«¶ç…8Ò¤eUÇ Ee-Oþ ÑvaÐ*Ø„9¨/í–_fa>;®]Ü~ûínäÈ‘®M›6~V»¦[wä‘GºéÓ§§]λ¦ëhç7 CÀ¨F´T7ËeD€YsüU F²X+ªZ€aФ#[ ?ø‰l¼ñÆþ¾‡$Ð~V∑p è¸4R.[ÈH M’äê(WÊã¥ÞÚtíÊc)æbÚ)ÄK¨‰£ë'Ä ï!_t¼í×NJ…háYûÓŸþä/ÂàÁƒÝ;ìP;/ˆµÊ0 ZŒ€-µøâZÓ R@@“, ~Z´h‘“yC)´ÑêX7€(ÑZ)éÈm Ä}¯µW´v ȉ֋ ÈyB¿-aIË–ô$œS„ºåâ(Wò±•²(WÂ-žb0Ç:±Õ¤‹&›tÙ“zõêyÒ ò†kc’ŒÀÊ% Ü7Ó&¸å gE¿™nå× \ý Z»­¶~]“{¹úM['PÍ1ÅF´Œ=Ú-X°Àí¼óÎî ƒJ¡áºÛn»ùã[n¹Åíµ×^©8Û1 CÀ( Œh)ëdµ4j%雵²ÁÖ¨Z@H¶@< ñ¡Þ )¢ •la ¥‰É£ Óˆy’N£÷! h„ áœI«é|qû”Aý´fé (h/Ûbꌖ ?H—t/Rw0­MÄH|]Þ.yi´[ùä׺u¤)Ó Al–¥K—zÒ¯U«V±ñ˜-ÑÂ}0{öllµÕV‰ç•rÃ-Äj³fÍÜk¬FeulDKV0Y"CÀ0Š#ZŠúòXå Ú‰ç¸þÚÙZkU]D î!Ùâ$_²%<ƒ¼$²…s£‰¢µQÈC}ÐÞ¨Œ@¸|ûí·)5R$«ÕÄ’ÐR‡\·¢ñ"ÄK6š/œC/¢ #Û\ëPÌéçéë–Θ쫸fƒF®ÕÑ#\£íºW¨2/_Lá~^¾ÔÇ5êÔ͵‰È–trß}÷9ÌiðI2bÄ¿ã7zÂãÖ[ou{î¹g*;ÎqlûÒK/¹yóæùð6ÚÈýæ7¿q'žx¢_®5•xõN&¢eΜ9.r3fÌH9g‡,Ùzë­Ý\vùí÷Þ{Ï >Ü;·…øáYÚÿýÝYg刻ûî»}» ”ªû}ô‘;ðÀÝ)§œâÃÙ_¶l™ÃA<Ò¤IOôwÜq®wïÞ>Ìþ CÀ0Š#ZŠÿY Z…@8(¤Él¿‰!PÛà^×Z,øa‘%“¥­„¡ ‘ Ùy)¢…s}ùå—)Œlˆ“0ååûù¤ûÛßþ–" 7Ûl3çÏŸïË„p9í´ÓÜgœáõßc=æ ¹ï© Ï:é¹ï¾ûº &ø6ÝvÛm©¬q«í´ÓNžhI%Z½Ó¯_¿Øs‡éìØ0 C 80¢¥8®ƒÕ¨00a0(Ë8³R 9M ÚŠ€6ía ±Âý/š-Æìw¾dKh²¤ËN—<ÔEVK"~e rÈ_Y©­„‹Æƒ4&&´âEˆ&Û}!^Âm11˜ ÍÚ%å“¥ÝÀ§#‡·26qùÂîãáøtølÙ⩉&DB„ð]À|²£gÏžnóÍ7w:uòË“sÏöèÑá}Ò²eKwùå—;ˆ£+¯¼Òk¹p ©a#"å‡DËÂ… ½V ×Ç´hÓ°:‚öåСCݳÏ>ëÑLAkF„srÈ!žX!üä“Oöõá™zúé§Ý°aÃRß¼ÝwßÝQ‘8¢…{ж‹ö=8Ãåy¬¬)’œÏ¶†€!`Õ‡€-Õ‡µÉ¨ó  -$ ƒ9éÈÖy` €Zƒ&ql+f=h}HƒkLH¥#[j“»8Í–8¡ÌlÞB¡ @~„:ñ|VÖ”H.(åÒÖÐ÷I©k¸Hûⶢ풴˓m˜ö#¤ŒäÕqUAÐ,›=Õͽ©—?]‹¹¦{—i¶ÈùÓmOáOé“´í7Á5Ü¢Klr!BˆÜqÇ=)®d5nÜ8O|à¯åñÇw¡_p?á„Ü?ÿùO¯Irà 7¤Î%å‡D &ŽÑxALj–8t,Ì0 Ú‰€-µóºZ« ¢B€m~ü-ZÉRTWÈ*SÕ0°† ÒM“0L„š(Ñ$ õ¤ŒlÈ4f˜Á)-çL'Ô“<8ãASí–B£F¸ªÉÛ€RFrH¼W×öûG¹•³_ö§ë8¢ÌoIxnî!t¸YÊ|¹4Ùù×òè2í–0!øízóÍ7Ãh_âùôÒK]·nñþ^þóŸÿ¸^½Ê´oÆŽëvÙeŸGÊ×D š/ÇsŒæ™g*hÈøˆèïí·ßv8¤EpØ»Ûn»¹ýë_îè£öa¡I‘\ý÷׿þÕk»Ñ¢Q±}CÀ0j7F´Ôîëk­3jfñ™ÍG脣ɒíljWÞ*`ÌŸ}öYÊ<dzø)Š#[Bb²-‘lɈ fÝEâÌ$NoynÉG=ž]Èmž¢Óçºo„K®ˆÅ§OG¤‹‹/-}è÷ãOu+ç¿ãÖŒü¬l}ùÌØÄÙ-ëFË@ovú±ùãˆpÖ¬Yîˆ#ŽÐA÷Y™H™¸òqd{Þyçy‚èßÿþ·wPW(÷,þ[œæuÔQºƒöa¯¾új¢Ï±›nºÉaÂdD‹‡Êþ CÀ¨ÑR'.³5Ò¨p‰_¬1P íík¦fvVC f 1¡Ó*bæÃsGÂHÍò’HœµBvÊs˜­³[ž_òq‘l´b$m6[#\²A©jÓˆSßLgùêñ¡îë×îôÉ:\6#rh[Q;*I›…Õ‡f_º›Ï›éÖ8ñ™Vÿ½öÚkÞÙ,‡8ÈÅOK&Á‡Š8–#Zî¼óNï°–çgÚ´i‰Åi¢åª«®òæ@,Gf D(š1IÙùhIBÈ CÀ¨}ÑRû®©µÈ( Ôé† åë¡(g•0ò@€›h™ €)ÎbõRÐBJòi-˜L É–¤ç,Lš#¥kŽvæK:ò²* þc %I„ ¤f$…Ò¤)T}ëb9ß¼9Á-_æ[¥MïÛ]£íÊ/œ“¥Ó'ºùcOöIÒ-ñG„èrçÍ›—Z²ùæ›ov{ï½·ŽÎ¸W>æBgu–Ï‹¹÷[œ°¤ôÁì£î¹çï¬ÿ/,ùŒ¼ñÆ"2NX‰’Ȉ–8t,Ì0 Ú‰€-µóºZ« G€$ƒ'„A3÷&†€!P†€&/äù 1³ I’L ãE#&ÄštÚÙm.dKœ)ç)´†à[†ºj#±Ùh0è|¶_8–/œ-Ó\F®¬Ý²£k?hRօϹ¦›ûiÑ,Ÿ¾ÝÀ‰Ñ²ÐÛÆæ#BtBˆÇvØÁ/¥ŒÉNïÞ½utjŸïIJÿþû§î›¸ò?üðCw衇ú´éü¬Œ?Þ]rÉ%>ÝË/¿ìš5kæÜâè!~ûí·÷ûáKLóìÑ"cdž€!`Ô^Œh©½×ÖZfÔÚ 'ËŒ²ì%3÷&†€!ð h°¡À,:>[´ãh½âP&2EûBâ Id UmŽÄs)„Î/5‹ß#/¦D˜"‰@~ð+ôóÍ9ÀBŸ‹s‚ D¾mLªùcúº¥3&û7ïÚ?Z=h@ÆJè¥7Ü³Ûø°‹óÄ!ab–YFóÓ!–YŽ3W‚øhݺµ_zYʈ+ÅŠžŒAó€pÇ—äå¶8ÌÅ}ºw¨{á…ä"g»È-·ÜâöÚk/¿o†€!`¥ƒ€-¥s­¬¦†@I ÀÀˆ’Ë ®$g•4 ˆ@’#½âh»pÚLó"©’Öˆ!,Ù¢ “\ŸSMq4c8WU8¹æ}qKÛµPgÈ)~…&yôyl¿<«~üÎͺ«[µ|©hºW_×¼[ÿX-«~üÖ-ž4Ò-yùŸ¶þ­\»A“£´ÉË…Ç!åkàÜûï¿ïâBü±3Žlõ=ðÐC¹!C†xs¼p¹æ¤òYJ·6çœsŽ_:ZŸ_.KGÿú׿öûüÝÿýŽ¥ÉÛ¿wÒI'ù¸åË—ûe ÿò—¿øº˜-ѱڹsgO4öë×ÏqƾLû3 CÀ(Œh)ke55Š:¾ÚŸDÒ@¯èb4ª ˜de!ZëD´]¨’&SHj£èxÒ§{5¡CY¤ÍÖˆzk»äGÓ„ºV…@JAðèe§å<ø­á¼UAôÈ9lû ßOŸäæ-#­¿AkפsOo‰ƒ™Ñ7o>àV~½ •±m¿ ®á]RÇq;IDH˜öúë¯÷š„o¶Ùfn»í¶ó&ª3gÎôD áûì³cµ-Iåóí Iœán½õÖ¾L´XæÎë‹!¬2$åþïÿó~Z0'BÐð™ïG}ä5ÖZ¶lé¶Ùf÷ÜsÏ9Lˆn»í6Éš¨ÑB›)S¦øU6ÝtSO*ÉRÒ©lÇ0 C h0¢¥h/UÌ(=XaUjDK¯%VcC úÐ"â7…_ÒŠ]:=ÎtÙŠ„d d š1q¢ÉâÓ3a~êˆ/ ­m’íŠFaYÙsN4\ø±¯…6Bº˜Y‘F¥jö!R0#ZùõÂŒ'hùsiyôˆD¿,º€$"D§‘}œØ¢…‚ÙŽ–M6ÙÄk€ôèÑ£ÜsAštåãzÔ¨Q> ä‰|aŽ$Îpuœì?ðÀnìØ±î“O>qäGã Ÿ-˜=Ú›±Ì4+‰$™£Ý¤ž/ÓlÔlk†@i `DKi\'«¥!Pôhç·Ì,ã—ÅÄ0²C ´DYYH› A¤híM9“D¶„yÃi↸\ÈÒkŸLs>™IäiòHð¡î µàDz…_!WFÒç°}ç5W¾œ8Ü}õʘX8ê5hä¼iQ÷²•Šbåˆy¦Dï½÷ž'Þ YÐᙨ¬ð-£<œäò,tèÐÁµoß>k)´®x&ÐNA æÉ'Ÿ¬à‹Eâ“¶´•–0KjÛ¶mÖuH*Ï CÀ0ª#Zªk;“!Pk„á {­m¸5Ì(qfwš íLWÈ]½²Q&²%Ô‚ W6ÒåÆícbùÃV$×2$_®Û$?.”ƒ† ØØjE¹¢š[ú•K¸Ÿ"-—Îpë´êäÖŽVªß´un…”hjÌ{Ð`i×®ƒè‰œì¢éúŒ‰Kka†€!`µ#ZjÇu´V5†@èÐMó•Pc—ÃN\Â@R@ž šÁŠ˜ç@ -‚@Î^4:âÌõ´æ‹.Óü…dKyd)wH} †˜ÍjÚ´iµh–ð.âÜhP-¦å¢Ñ°ýB"pØa‡¹>øÀ¯>tóÍ7W(Zퟖ$2¦BF 0 CÀ(iŒh)éËg•7jí—¥ºf°k¾ÕVC jÐf8˜@hç¸ú9ƒœ!Nˆ…8³M¶@8ˆÃݸ@è`:!ååJ¶PfXu®*G¹qí€4‚ps,\Å´ˆº™ù €sÛk¯½ÖqüñÇ;|Ã@†Îž=Û½õÖ[Þù-ÏÓ™gžéææs.Ëk†€!P:ÑR:×ÊjjÚ¬A/C[tµ %„€Ö`-•Pa '+A&@¶ IZ+šl MBhÂsñls¾\H –z iÎQÕŽrÃvpœNË…xêÄÓ¢\ÚG^C0bIh|°$‰9²MBÆÂ CÀ¨½ÑR{¯­µÌ¨RÂÁ³äæx²J!·ÂëÚ_‹¬úBÒϜք0ý$Q¦ÖŠÉ•lÉ”>éÒèz‘†ºAÚT¥£Ü¤º€Z.lãÂ…zAºØ»,! K‡ÀÛo¿íyä77Z šIˆ-·ÜÒ/ÍÊC;î¸cº¬g†€!P 0¢¥^Tk’!PÕ„A=»^Õç¶ò º€@Hd q¢µÈ ? [D2i­„dK&-4´AÐJAé,ÙB~ê&åPV£Fü¯&´HÀAH—8Ó"i+„ ä‹ùœ“êF@îS΋ Ÿ4†ˆ—xÛ†€!`F´Çu°Z%…@œiCI5À*k”zÕ üšš)Bˆi‘4'ÓJD!Ù’ÉK˜MêQòA·‡úR>ejB»Eð‚Lb ]ˆÁTâdK=µ¶‹„ÛÖ¨J^~ùewê©§úS¼úê«Þ©4ï¾û®ûãÿèÃ͹®‡Áþ CÀ(JŒh)ÊËb•2Šm À` ³†š˜•.^„¬f†@aIqtK¸6-Òea\“&M*8¡…\À‰5i‘\ÉžwžûÊ-h·ÈJIœ¿&µ[8¿x@¸@¼POÁGâe 1¤n[C W¦M›–r¤;vìX¯5&eÑ"HØÖ0 ÒDÀˆ–Ò¼nVkC FÐN2ólÕHåí¤†@ "À3§—|¿,Ú®„ÓDýœr,>^Ø Ó蕌$ÞB: ‘"& ù<ÿ”ÅÊFÚWJ>š2ºž…ܧ~¢é¢‰¡ðBºÔE3£å gº¥3&¹e³_wì¯Zþ«× ±kÐj[×p‹]]“{¹úM[‡ÙñjžyæwÖYgù£wÞyÇûp>úè#wï½÷úCœí²Rb-û3 C è0¢¥è/‘UÐ(}ùå—nÅŠ¾Bq3åÅQS«…!P»Ð~YÔCœ :<ô×ÂòƤˆ&b|`ô’-¢1#ñq[í†r×_ýJû‰€ÄÐKIs¾bÑn ÛV[ü4A¦ãXˆ® ¿Ú(K^í>{ôâ´MƒtiÞ}€kºWß´éêjd:¢% #Z’±pCÀ0Š #ZŠëzXm ¢E@ûWÐþ"жÂV1C ! ý²h퓤pš®ŸÙ$G¶ø\É•l!_6y¤üp›¤ÝB™Å*BºÈ6]=!Z0³âG›ØBR•ª¬úñ;·`ÌIî‡9SSMX³A#¯Å²V¤½²bɯÝòóò¥©øuÛwq­ûŒvõÖiœ Ëf‚kþüùnã7®4¡—ÍyÂ4€Ÿ~ú©7»ƒ¤Ä1r®‚y×¹Y³f‰Y«ƒh™7ož'Z+ӆĊ[„!`†@FŒhÉ‘%0 b¦P¯^=ßé-å‚]QC Ôýª0ðdÀ†‡fBšˆIòÅj¿dãEçË|5Üâ´[ t!\Já]#„‹l3Ý__¼K¹†z?S¾bˆŸ?¦od.4ÙW‚¥ÕÑ#\£íºW¨ÚÒéÝÂqœ.:usm"²%ÁŒføðánÖ¬Y)'Ż첋;ï¼óÜŒ3Ü7Þè¶ÞzkwÓM7¥Š;á„<)Ó«W¯”ÙTäê}÷Ý×ï]xá…î·¿ým¹h®ÝÝwßíÆçI¹óÎ;;Ê—ü:î´ÓNs|ð;ãŒ3ÜAä† æ^|ñÅT›l²‰ëÞ½»¿ÿgïL £¨Ò=þ94ƒ0ÂA6!ˆP\@à¡à¨uÞ>A〬:<â2‚ˆ Ž,*›8"LPqTPADÅ%€ ‹@HtžÈ…'Ãëÿ·ç¦RU]ÝéNRÝÿ««î½uï¯:®‹3EsÛKߊhóSî Ù;°:Õi©ÒdXNÀK¥–ã©È“¼€÷Ë/[T›FæÈ­3ÛãÀ²eËä/ùK0LáiZŒÀë¢ÅâÅ‹å‚ .Pz0ˆß~û­ 8PF­w—zÌÈÈPÏ!â\{íµÁc(™Œ\)ï¾û®Ú‡ó4hÐ@öìÙ#……ÿñÌðÑ«W¯`?lÜtÓM’››+·ß~»¬_¿^¾úê+u¯Yóµ|ã7Êĉձ͛7—GüBR\ˆJ‘&Ã}æ™gdúôéÁdÎx?0“_·oß^%àÅßH€H v(´ÄŽ-G&¸ ÀRÎqq¹ˆ8!àô÷h† YCûp“Ï0'±ÔšÅ.¯‹#¾-ÇM°»¼b Ƈ8õ˜âBnàÝâç|'ZtÁ#<‘ÌõY¹ZŸCpÒ!GvÖö±xŽ¡vP oáÉÒtô 95¥aÈSåo’]SKD älI»Î1„aB×]wÛ´i#“'O–&Mš¨JUðС¹EShY±b…Œ9Ry”<øàƒrà 7×µsçN™4i’|üñǪ´ù|<† -´`× #úÓŸT¸Ñ¾}ûÔ¸V`o¼ñ†4kÖLmCüDèPvv¶z¾aÃUFžN°H„ˆTÚs% ï¼óN•÷b,øÝwß}êï뢋. &ÚU'ã/  ¨ Ðu¤⇀ùM9>Üã $i$@•C‚†‡öCLÑ7¡VÏ3ÔÃN"Š)¶À£ù%BýÍ㜦ãµ_(‚f²_ÝV{·„š“n_ÕÁN‹.æv¸ó¼Gà Fé›u\ „£À´@£žDðëèŽu²{foÕóìîã%¥s‰g‹—¡~X>M~Xù„jÚdhN "QÛnðdYºt©¤¦¦Ê[o½UªÜ1:àÚÀ¢)´<þøãÊ“!B ,P㛿¾üòKÉÊÊR»àõ‚ùi3…ŒÏÓ&Ô£GµküøñJ˜ÑÇÝr´„+´@ÀƒH…Ü27ß|³Œ7NŸ&ø±eèСêù«¯¾ªÂ¯‚¹A$@$UZ¢Š“ƒ‘@ü°ÞÐéœñ³B®„üIÀ@Í"SðÀ·5üÇôzÁ 8Ä;3óºxMÌscL¯ýìÎoîƒĤ¸‰Ô†µAHÒånõþxzO„Áë ÌÇh¬Ó.Ñp¨}ÞyR®š®NßtÔÛä·­Sfzzº´hÑ¢ÌiÍPŸ7ß|Sš6ml£…–sÏ=W^{íµà~½ÿ¥—\r‰z ÃÃdÈ!úòhq*ï®Ð¢E(kk×® æt žì׎;*±[o½Uå¼±çs  è ÐŽ…⎀¢`V9‰»…rA$àC¦h‚\`f®;1ÅQœÂ|¬Þ1ÖP$'\Ö~8?Â}´§…S?/û­!Jèƒñ‘¿ÃN ð2¦_Ûháb ˜ëG½?Vëúiéh9±c>cZžíi ‚ikƒ-Ù%aFµÛÞ(©Y%Þ-fä6ÑâŠbc¶ÁöàÁƒ•M¡Åzˆ\êy_æÌ™£r¡“ÐOx´ØX8!¾Y$'J @À̇bTB¤C„LÅPBy›˜¹] \Xíê1íñ~c†+A¬ æ %¸$%%QTŽ<„”‚EÙRôkÞ·!’ù\R³¦Ùæe±ë‡°–'žxBàÝbòû $æ£>x§X=ZÐvëÖ­‚2Ç(a® _@ 7ò¸äåå•ZÐíï»ï>AigÓÒÒÒÔ~ˆ4ezöÙgÕáÎ; r¢ÀÊ#´ ?*ÿÌœ9›Ê ‚\vÙe -¹™Æ'ƒ2 ¡ ÁëÅKU"³/·I€H€Â'@¡%|fìAqEÀL˜ ×zÜ„ÑH€üI"<Ô`fÒZf©f3i®^©~*Š)¶„fôøúb‹Yþû͹êvÑ|t\ ôà}?ئ…Gà‡åSåÀš¹RªÕðº;!IDAT\TX¦cµ¤dI¹bP KI¥¢2 BìÀk$77WU–B‚ÚæÍ›«ÒÏÈ-â$´è!áÙñõ×_ „4T/B˜šûòË/•· ^ÿðøÀ߉iH¶‹¿±ôôô2ÇÌván£â¼Nð:lÔ¨Q¸ÝmÛ(/ xð@Ìlݺµ4kÖ̶-w’ DŸ…–è3åˆ$à òÍ¥âDIÀkNäbЂéñqž(¦A1“纉VÏ”pÅœ×yñ<”¸ƒ6å5.à€P ¬Á4œ9+bå]cž+Þ¶OØ'¿¼\Žåo’ߦµ’ÓU…ª§4ˆÉ2½-191%  0Ph ›’@¼€»4n<` Š·«Ëõ$*3 ÂN¢ ¦Ç‹]•!S¨A{;Ïì‡YÅ»Ò%-› vÑ "¾}×âsÏòÁÜ!¸àÇ*¸@4‚gÊÊÇ8V½)´ÄŠ,Ç% ˆ& -ѤɱHÀGÌ›±Hn|´TN•ŽB'XfЍ °jqÁNH1ÅP9X0Ž™s%¯k’\œbK,’äZ_˜?’CpÑ9ltˆ=xoDn̉V5Ph©׳  p'@¡Å’@\0¿µÆÍ„^— æ¢H Á˜a ð7®Í¬2ä$¤˜9X¬‰uõ8úÑ*”D"¶À³9b´Ø÷¥Zµj©p"}žX?‚D&k¥"œ °.z¹Äú*„ŸBKhFlA$@$Pù(´Tþ5à H Â ˜áøæßÚÒH€â‹€)–XÄÌÄ·“±&Á¶zªXû[IYÅ–Pí­ýñçDÞSèˆD´±;œ}˜æ€R¸Ú+Èì÷KüPt1©TÜö?ÿùOUª¸~ýúrË-·T܉y&  ƒ…–0`±) ĸÈãfê›êxX/×@‰J‚&¯ƒcfâ[3¼Hó²Š'vmt[rúg÷x@R®²TE¡ÅmâZÜèð $6 -‰}ý¹ú!`ºþ[o²—I MÀê¹bMlk¾G@€ÇˆÕ¬‚Œ—œ)¦7JyÅx˜% 1¿äädUÚ:×Ê~Þॅ»êEzŽ[’…Gx¿TõP£âcGdÏÌÞʃE¯á7IÉÊsåôfäçëÔ±êÂý Αj¿­Üg·®Ð‚×÷ß~«ܺ%¹uòh§Æ@èO$ù(´Ø]Eî#  -|@œ0oŽªU«¦B†pÃC#H,æ{]®„éD¯N!DfE v t­T£)¶`lÓ;ϱx·Dr£Œþaàj /nçWíí¢ÝÚWô±¼yƒáB+Õi!°¤eM“äÖÝÊL£0w¹ä/Ê-¸ Œ¨a@lq²ë®»NUxBÂvòˆ!ÇMß¾}eÀ€Án'Ož„åääCâp¢[¯^½døðáª_°C`Ã*´¼þúë2wî\ÉÏÏWÍÀü /” &HÓ¦MÍ®ª”4öÓ¥V­Zêܘ^‹¨J…ë¤ÅÉU«V•êÏ'$@$@‰I€BKb^w®:àCëñãÇÕŠ­ßb'.•H @À-!¶[.ž9†“÷‹ÙÛÑ[ Z`ðA^R:VÛ^~™ž0M†æ*u°íæ–£eçÎÒ½{wu'Mš$7ÜpC™1V¯^-wÜq‡Ú?eÊA8ÌZš7o®\í5b 4z \ÿëž–ƒ«¦«]MG½H~ÛJù¯–]S¯Uíêv!u»²íã&´hQ#%%EÞÿ}Û×$½ì²Ëå¶"„>0Sh§Œ¤üú릛n’ÜÜ\éܹ³Ìš5Kí¥Ðbâ6 €WZ¼’b;ðó7¸‘¢‘ €&A‚ 7Ñðx3Í !r{Á1R^-Ùq2$Îýøã墋.’… ªf¦Ð‘¢ !? ’ä"¤èÍ7ßTM(´Ø‘â>  P(´„"Äã$à3øýý÷ßÝèëÕ«“x}ŸaátI€,Ì0»<+¦×‹›Wœé=‡0#„…²XŠ-vÞ-0¯Xä. µÖªp\ .Z„ÁœÌm<×m°mg?-"'ò6ÊoyVΛ¼Ù®‰  %´œÞ¬½4¶Ä¶¿›ÐÒµkWÙ·oŸ˜ÉqíA’Z$«E >ø@5ÑB DÃÏ?ÿÜ®›Úa^0f; -ޏx€H€HÀ……8Õ»ûQ?X/Í€ö’Ñ­~|ãA9´vzzî¤\ÛjCN"Ëñy²cRGÕ7ÒÐ!$°ýùçŸe̘1Ò¿=­2=ö˜<ÿüóªêЊ+Ôq-´àºChqÜP¾ù‘GQ¢¼g`Zþ" “…–0±9 Tef8’›…7UùŠqn$P¹ F@œ…Ù……:®goŠ2ØçÕ“.Öb‹w ÞýR Zó­ ‡6äHÁâ’Ü* Ì–äÖÝ}úÈÆåú믄 Á(´Ø¢âN  (´„ÄÃ$àæ7Ïv%[ý²ΓH b ˜Þ(9(Ôô„ƒWD\"ØïV]ÈÌû!Ã)é¨u…V±çXM±çD’_¼Wâ|ÚWáDX;ÍÀ¿–Ž—?˜§Õí:2P=(Û½Càè÷>~ísÖå¥^Ï Ž}Ü„–_|Q&Ož¬ú:y¥|øá‡rûí·«6/½ô’´iÓFm›BKÇŽeöìÙe’önß¾]%ÚE‡9sæÚÁ(´( üE$@$& -acs¨Š¹ªŠóçœH€*—np!@Àìr;™B®]ˆ‘9{3‰®×ä¸èñó8zô¨.Vb Þ/>,ðr1ù[LöÛÅÇŽ¼Sº¼SòUƒäV™’š5Õ6_ „s@ gSëÖ­%55µtƒ0žÁ _x ¯×¼Da Ϧ$@$@>$@¡Å‡S&MßÂâww¸.ÓH€H R¦'Š]b\Œk†*º…¡­)–@˜Áp8!9æ{Æ‹µØñb~°­!Eš„ý#r·üðrùyÇZ9=½£œ#rËÅb? ÷’ @ü Ð?×’+I0æ Q$ß'..—HÀ#P‰q!@˜ù\ByÒEšWO×ôŒÁ>$­EYæXš“à‚s"Á/„m«—E,çñI€H€H€üE€B‹¿®gKA¡\üƒ ¹A$@a° )v‰qÍÜP¡¢Ú—£G½lôXXÊQÃÓ¥"E }~¿>⚢ä2®i¬Êyû• çM$@$à/Züu½8Û'`ÞÔT«VMêׯŸàD¸| X•ç6ÛÀ£&nfŠÅðH‰¤.Ä–ƒ½JpcŽœ-8EæâV„¹@tAXQRR’Ú®èùùé|³gÏ–'žxB6l(+V¬ðÓÔ9W  (E€BK)|BU›B†ð-*,”›~Õ^ gG$àÖð »PE´1“݆ʿ‚ö¦GŠqƉ•)Ú MET$rš öÃ#!Rv^.8a ^.ø8o†2Ïå)ëL¡%Þ^\ $. -‰{í¹rŸ0]îñ!=%%Åg+àtI€üHÀÌ­â”×ô¶ƒ€AÆMH° 8‘T"Ò,ÍäàØ‡9Bìq;¿îËGx¹à§¨¨¨LhÎ Ñ^.˜¯[n›Xα¼cåo–ß,‘¢ü-òóÎuÁáNoÖA’Ò2¤VÛ^Ç–Áý¡6(´„"Äã$@$@~!@¡Å/WŠóLhðb7 ÌËMLBÃââI€¢N Tb\œÐƒ‘_b‡›ÁûãBt!ä(ÒÐ=fE"„ëàüU%? Ä*.v t±v¼¯Cl70˜U·–O•V>ršu3GJÝÌìíЀB‹'LlD$@$àZ|p‘8E0orÊs3B’$@$ ˆ"‚A@^;´A[˜/Ó[ãER‰H,ð ‚4Ä}~ŒWYy[ôœ¬•´— Ä!-2YÛAlÑž.ضcmíSQÏ´gfï€Ëæà)«Ÿ™¦ú¨,X°@í‚ Dÿû¿ÿS³°ã<öØcÒ¥KÕFÿœ¾A®Üòì$@‰DBÂs`nvf¸£×÷.óýn€qÓ©ÁCÄ̃±z‰<(~0̼ñˆg„Ë„2pà =DÜtëíòpÔçxŽœ*øÃä‘GÁîRöÝwß©° Ã‡+Ñ!QڴЂçýúõ“»ï¾[ >šBËŒ3"iW]u•à°'Ÿ|Rºvíj–ììlY¾|¹dff*Á¨ÔA>! (7 -åFÈH 62¤]›áÞ[™1ù±Y!G%ð#¼/y©‚fz¿À»ß·7 @ÈÁ*,ZùUÌŠHóÁ ·ßßWq-À ?_ðÜ‹ç Ø™ö‚Á1sϯzZެž…Mi6zy ùm+µíåWQþ&Ù5õZÕ´n×R·Û(ÛnvB ѧ*óh -¨öƒp —^zI ÓàãdZtpòhAU¡%KìÅ!;¡â D7ÌaC‚Áó0°p„$ÚÕ9fTç_Qh1ip›H€*ž…–ŠgÎ3’€#³$©Û‹ã<@$@HÀ†>Ï;3CÂyo3EŒM±"ÄœC[¼änÑë‰æã¡ 9R°¸$·Jó%¹u7ÏÃæ.—¼ù·©ön%žírôh Why衇TÙdäfAH’“ÁBU¢ÐâDŒûI€HÀ?(´øçZq¦qN߬"Á¤þ†õì³Ïöô­oœcáòH€ª0ˆºº¼Uð¾…G;3E™p¼Gà©AD[4ÅŒ‰ñQùE¿÷b›p§µ M¢YQþæ@BÛqå´Ô i2,Gyµ„âP|ìp ¼s79qpŸjÚüþuR=¥m7;¡å›o¾‘=z¨önyV´h†kÖ¬QåÁ‘àž-0Þ£žX~uêÔIUŠ–GËÂ… bK5TBZ»d¶˜‚®üc­”D¡Årø”H€|H€B‹/§ŸP‚îì°pnBâ“WE$ষ n,ò`˜¢ Öæ”×Ånݱ[ ²Xs·@dÁ{±“—ŽÝ<ã}ß¿–Ž—?(©¬“rù@9»ç„Kþ>ÐçÀ¯}Î ô©çÒÇNh9~ü¸\}õÕ*‘±YBÙzb$ÌEx)– oçΕo—Ç{ÌÚ-^„f_<Ÿ:uªÊo®GËÖ­[UéfŒ¡óÅ`Û4ˆ{]ÉnáQÁâŠ6 -šI€HÀ¿(´ø÷ÚqæqDÀÌuP½zuuGËãRH€âœÀwß}LŒëVŽÞ|¯C˜Ž—’Ï]¬Åœ7½\t’XìCX¼[ðÞœèV|ìHÀ;¥kÀ;%_¡Hn•)©YSm=[àÉR°h”nZ¡ÚV?3MšŽ^h[ӣЂÆ/¿ü²,f̘1Ò¯_¿Rc@@A.¼I.ºè"µ_¨¸ƒÒÎè;räÈ  QTT$(}ï½÷_»ÑZp^#áJH´«õâÎ 1•†jÕª¥ò³@¤ÔF¡E“à# ø—…ÿ^;νA¡E“à# ø—…ÿ^;Î<˜ßW«VM… %ò‡÷8¸¤\ $,(:¡7ÞÇÜÊ8CdÁ7ý0´…'_8¡9%¶`~Z ˆãF_æ a?‰üžýÃò©rè“%ÁP"ͪݶ—ÔíVR©È}lÛp' „C€BK8´Ø–¢HÀ¬Ônž‚(NƒC‘ @T ˜eœC Èfµ5ä@‡B8VÑb æ†sZËAÓÃ%œ«V±m{öì)Û¶mSÕ‡fÍšUæä:Ñ.¼÷Þ{ŽbL™ŽÜA$@$@.(´¸Àá!ˆ«Û<G&²ûy¬8s\ Š'ÎûÂB¤½D ´@p Ç*ClÁ¼á‘ƒlkÓ‚ *È$zÒ\ͤ²‘ÜöÉ'ŸTÓ¸õÖ[¥{÷î*?ËŽ;äÓO?UÉoq ÿ÷ÿW%Í­ìùòü$@$@ñA€BK|\G®ÂgPeèøñãjÖ¡¾ñõÙÒ8] P!6ðÚƒ…Jòm 3h_¯^=Ïù6Ðf[Ü’ñ–ôˆÎo'Á£C0‚à‚Ê2´Ê#€Ä·( ½lÙ2ÇI :T†îxœH€H€H \ZÂ%Æö$PNfÈ>€# $H€â‰ÓS%TÙzS(WH$^~æ`I(R¤×ÀMpAþˆM]h•Gà³Ï>“¥K—ª„´ø?ܼysU"•‡.¾øâÊ›ÏL$@$—(´Äåe墪*$¾E\n&ܪrTÕ5p^$@$à…ªõ  bƒYåÅ®¿YÚK{»1pNT¥ð«H±EÏ‚BŠà©cÞó1ü0¬È$Ãm  ˆ?ZâïšrEU˜€™$²víÚê[Î*<]NH€ÊEÀLvë%œ^0Z rä41ôÇ{­[l¹_ tT¤ýòË/*¤ å„­†9á'))©Âçe Ÿ“ DŸ…–è3åˆ$`KÀ,eÊ![DÜI$g vÀ‹^¼øÌö@Ir\ô³Š-‘”Æ8Ñ0x2Bl§‹NúkŽO¢Ë‰û¤zJsyÜ&  „$@¡%!/;]ÑðA p½ÞlTôüx> ˆpEfx‚À#qù]ªW¯öô ¶ I{È@lpÉXaŸÜ¡Äˆ.X£ùMt9ºcúd‰@`ùyçºà’NoÖA’Ò2¤VÛ^Ç–ÁýÜ   D!@¡%Q®4×Y©2T©øyr J&`¾zñR1Åä3A~—HB nãÜZlÁ8?Ê4ˆïEEEÊËEÏÍ:Ÿª.ºü°|ªü°²¤l²uîæóº™#¥nf¶¹‹Û$@$@$÷(´Äý%æ+›€yÃÀ¡Ê¾O<ñ„¬^½ZöîÝ«šÀ«é’K.‘þýû«²ÌºßÉ“'åŽ;îo¾ùFíš9s¦œwÞyú°zD¸Vß¾}U5¨FɬY³Tå§W^yE^xáIOO—)S¦È¼yóä½÷Þ“¯¾úJ…ú"s·nÝäž{îQ‰‹K Ê'$@$@$àB€B‹ "ò0Ýå«Ò7¨å]û“ @$̪BȽ 73Åj´óvä6r¤À[" ‚E:u*ÕCÄi¾ZtA>üè9Ûµ× òÏT«V-$W»1¼ì;°zŽ|ÿ ªifí•pRí·µ»;,»gô–_ ¶¨6gw/);¶Ç]»vÉÈ‘#eûöíª.‡ëÃkæá‡VˆÚøµmÛ6éÝ»· ;ÿüó%''à=à mâĉ²xñbõôù矗víÚ©í9sæÈ´iÓ¤E‹JlY¶l™ÚQyÕ´5kÖLæÎ²D¹nÏG   ÐÂ× Äˆ€ùí)>⦂F$@‰LÀLtë5÷ŠÙìêÕ«W®„¶c‚®… ÌÞ5•™$×ËkóÖ¢K(áãA|Ø€u™Û^Îe×!C»¦dJqÑùMR²4½BNMih×´Ô¾ãòT?x¶TKª)éc×9†áštïÞ]vîÜ)©©©2yòä (²gÏyä‘G”— NðÜsÏI§N‚çÒ¢ vdggËàÁ%‚Ά ¤À 6`À¹ë®»Ô6~™}ð<++Kn½õV2„Òäo¼ñ†<öØc8¤æ‡F$@$@^PhñB‰mH LÖ|øv æi$@$èû¹«`^Ãà‰‚<+0ä'‰´‘ ð 7ôf’\ì÷›×a¸Â‹^»ö"ÒaN9åÅÕMlú)w…ì äfyñLÑçãé Ó$«¥Fzópp{Ñ¢Eòàƒª0ˆÖ¼,Xs¿~ýä‹/¾ßýîw2}úô`_\Ó>}ú¨cX‚êׯ¯’}ûöɹ瞫<]°^m¦ÐrÑEÉßþö·2ÞM{^|ñEÕcÂc†F$@$@¡Ph EˆÇI p9>~ü¸êY^W÷NÏ.$@$Pe à†!DÅÅÅjŽ^BˆÐÐLŽ‹›åò†ü`}¿CnÐáÝR™Éfõ\Â}D¨„ý£Ÿ‡;ÚÛ‰/‡W=-GVÏRÃ5õ¶ü¶AkÏCåo’]S¯Uíëv!u»²í{ÕUWÉwß}§Ä”»ï¾Û¶ÍÂ… 塇R_^ ‡ þÇjƒ×KÏž=UE''E^zé%µ„Al1ÍZ ² ŒÕ òµmÛVí3fLÐ;ÆÚŽÏI€H€HÀ$@¡Å¤ÁmˆóÛZ/ £pJA$@¾"`†y !ÂΡ«EClÁ˜Ö¼-YªB hÌ-Ö] l™ÛáŽýÓÒÑrbÇÕ-cZžmw°ƒwŒmÉ. 3JnÕ5Ûen™&¼.½ôRµÒ¤I’™™Y¦ v|ûí·* ¶çÏŸ/—]v6ƒ¦½b‚;BØÕL¡eíڵʫÉÚϯ¾új)((›o¾YÆgׄûH€H€H  -¥p𠔀yó€œ^J˜–ïŒìM$@þ$`z¨x !²†üD«r„ˆ8ðÑ–œœ,øñ£w‹^ƒÛ#XêõâL 2ØÖû° ûiñ9‘·1Ÿ¥¦œ7ysÉNËo7¡eë}ªÑé$º‡-±ôÙ²e‹Üxãeö»í@e";AfàÀ²~}Ie$x© ²¤…–ZµjɺuëO…ªFðžAN䆡‘ @(ZBâqðHZ¿ÿþû`‚E¯îð‡g3 ˆ+‘¾g¢ŸzäU¤ñÏôHD{xÍÀ»Å-w‰—qýÞF1ëq9¸ª$'JúýkK%ÂE‰e˜˜ýHˆ»cRI h§Ð¡>úHn»í64—sÎ9ÇS9å#FÈå—_®úè_( ð!„Á4h ¯½öšÔ¨QC7 >j¡U‡–.]ÜoÝ>|¸¬ZµJ®¿þzyüñÇ­‡ùœH€H€Ê ÐR w@dÌRÎÑüàÙlØ‹H€ª>„Á“N<1ÌÊAÑÌ…OÌ â ^5kÖT‰{ÕŽýuhCŽ,.É­ÒpÀlInÝÍ3‰ÂÜå’7¿DDi4`ŽœÑºlXÐÞ½{ƒ%›gÍš%;wö<¾ÙaGÈËqL{ìôêÕK&L()Km¶ÕB <—>þøcóP©mxÚÀã‚ËСCKã  °#@¡ÅŽ ÷‘@˜PAß„ÂðáåGi$@$@¡ ˜yW©ÍPMœ%š^„YPåHçƒÁøH” A'Q+Èåo$´-WªŸÙ PÞyy Ls- qµâc‡å»É‰ƒûT»æ÷¯“ê) Êôó6mÚ¨ð%§œ*è„ëïr§$%%©müBž]ÖùÎ;ïTbr¶ÀìÄ-´àø»ï¾«JJcÛ4¼ úàÿü”)Säºë®3s›H€H€l Ph±ÅÂ$à¾1ƒ; ß|²”³wvlI$@¸ÁŽ4ì2ÚeŸ­W7×GŽ z·à¸ön‰×Ü-Væó-/?~0OíJ¹| œÝ³¬—ˆÙÛ‹FÊ¡O^V»Ï ô©çÒ§ÿþ²aÃ:ôæ›oÚ†"Mœ8Q/^¬B‚V®\<®S=Ôk Õ…^~ùeUýïøƒJd !îÿøG©„·¦Ð2zôhAn«-X°@}ôQµsjÚ´©µ Ÿ“ @ZÊ áðN7(匂°hº¯{Ÿ[’ €¿ ˜Þ)0ÂI$næUA_ÜPG3§ ÄtœÃL ¯$PEe¹D²âcGÞ)]Þ)ùjÙÉ­2%5kª­g ÕF†ÒËZœAèÐ…^¨!Éí AƒÔv·nÝdÚ´iº‹˜BKµjÕdöìÙÒ¾}ûàñ5kÖn·Ür‹ÜÿýÁcÜ   7ZÜèð „ f|£ c)ç°x˜H€\˜‚I¸ï§f£Xˆ-˜¶µ 4ö%b8ÑÑëÊ ).*U…¨f çJRZËÀO†åo ül–#¹+U†Ž¨6Õ’’•È‚6¡ì¯ý«<óÌ3ªYãÆ¥uëÖŠóæÍ›B ¬K—.2sæLµ_ðlAb\Xß¾}åÞ{ïUÛúÄ™œœõÉl‘Ô¦…x)!ññþýûç¼à‚ 9crss•7S“&MäÕW_-¦¤à/  p @¡Å w“@(¦Ë:¾ C^–Dt%ʼnÇI€HÀ+„aꦵk×+­Ul‰E'<-¢Óp£ŽŸD±ö© Ÿw–”Pv[7Ê9§f=a›—Å©ß;ï¼#ãÆ“Ã‡—jR¿~}•¶{÷îÁÿ·G¡ÇáÕbõ4Âÿk´ùî»ïÔuBþgk¡•‰ž}öY9r¤|óÍ7¥Î —±cǪp¦Rø„H€H€\PhqÃC$àD¡B‡n>°EÓUÝé¼ÜO$@ñL ¼9¯L± uêÔ ÞG“›S8ÂGáå’(v`õœ@þ•%RT°¥Ì’*T»m/Ié<¸Ì1/;P¦,_ýµú_ ¥S§NÊóÄK/mL¡Eç{A¾ O>ùDP²ºyóærþùç{ŠmH€H€H  -¥pð x#‘åøñãªq¢}“é[‘ @dà-ïÄx¦„c(û¬ó©ÄRlÁœì’åBhÁÿ…D\À!EÇäÉ©) ¥Fzìªòf'´TùIs‚$@$@¾ @¡Å—‰“¬J̼,ø Ä‹4  è0Å’pÅlx¢¿AŠµØ‚óA:zôh)‰*¸”‚PÅŸPh©âˆÓ#  Ðâã‹Ç©W<3/K¸•1*~¶<# ø“Ä‹HK>cÅ-¶àœð¢AþíMƒ}0 .%ªâo -UñªpN$@$(´ÄÇuä**€€™;§c^– €ÎS $,cÇŽÉ?þ¨ÖrÊ! 'áxeˆ-˜,ÿ¼d)´øçZq¦$@$à7ZüvÅ8ßJ!€ìÈË‚$¸0$<<ýôÓ+e.<) $ 3¹-ÞsñÞŽU–Ø‚9Bp¤5¤¢¡jÔ¨ÎRØ66lØ |ðÔªUKŽ,io ¦Å!I€H€ –8¸ˆ\Bì ˜ùðá8%%%ö'åH€H Á @(AÉçââbE"‘»2ÅL=BŠìü?ÁÄš?  d4*uÖYa'@Fe%¼¶Qµ¹„h$@$@ñC€BKü\K®$Fä•%`ø0„ä·á¸¯ÇhZ–H€‚Œïß¿_¹cx$.ÄH€H rà}ÙÌ×R»vm%DD23Éne‹-˜?¼\àááEç£1×ÑaEû«‚§Kñ±#²Å4ùqÍ\sš¶Ûu3GJÝÌlÛcñ°³A¸@¼@º€GQÛ’mͦ…3ìiÊîQÓÔì0Ô”opL®Ón^0Í,ŸÐÓl[»ÜÛ­~sS§Û¤\åÜ>ú¨yæ™gÌqÇgî¸ãóÔSO™I“&™ æ+V¬hŽ8â3hÐ S©R%·ª¿þÓO?™»ï¾Û|þùçfõêÕv½zõL³fÍL·nÝâNœ¼þúëfüøñæë¯¿6zœï‚ .°õFefÏžmÚ·ooÎ8ã ÿ|.ÑR¡Bs×]w™ï¾ûÎðùauëÖ57ß|³9á„ü:²Ò»woóý÷ß›ÓN;Í\}õÕ²Û\sÍ5æÛo¿5×^{­9ýôÓÍ}÷ÝgÞÿ}õa{ï½·iÓ¦¹ñÆý:º¢(Š€"^(Ñ’^Ÿ‡ö&Å0ƒµnÝ:Û fÀÇÀ5Å—­§WE £p ’‚zºÄ @ZàÅÈ3 Ò…?¼-·oßÚ5úÌ×°Ë.»ØçWa>ÃÖ|0Ú¬|y€=wùúG›ÚF›2»†Ú¾e½Y:¶³Ù¼ƒ˜©~v?“uBçо³sÈ!f̘1–”Àkãù矷eñ áù,vÐA™qãÆåòŒ¸å–[ÌúõëmQ>G>_È* ‚â‘G1 6´ÛòòbG ÜþüóO»yøá‡[ñÄ-Q½zu:4lØ0óÜsÏÙ÷ß~»õ.‘²Ë—/·Þ„ýuÔQfÀ€fŸ}ö±¤ÔܹsÍM7Ýd–.]jÉ™)S¦äð\z饗̭·Þj›‚¼8ÿüóÍÁl=H{ì13qâD9M$ÑB5jXâ£yóæf§v2‹-2x­|óÍ7vâè€ðÛB%Šh¡ ŸÕ•W^i=^ðZZ¶l™éÑ£‡™7/ºõꫯšúõëûmêŠ" (Š@z  DKz|Ú‹#À@ÕûO—Xýâ§WE m’#ãxrä×ð^ ÔDˆ ^pyàÎ&!Fô›?Ñ˫ς•,!`  —ˆ˜ßæL1?zÚ,XöCLåfíò:…Üõ„©Ûu’jÔÜ?殸DK»víLÿþýÝÃ6|¨E‹¦SO=ÕzÀHÈ”ýöÛÏz”)SFÙ%a7çœsŽÙ¸q£õz¹ä’Kì~𢭕+WÚ&D(h6B¶Dy´€#¡G-®mذÁ´nÝÚzÙÛO„h¹ÿþû-ä¶Ihׂõë×ÏÐŽš" (Š@z! DKz}Ú› ¬+É’‚AO©(Š@> ”Ft8  î iAø¨+’[¹rå\!*ùèj±VṆg‡/,“5¼z„¬€„ÙðÞp³áƒ‡m3õz½iÊÕll×!gò²­ËçšECNµÅª¶ênª¶éZEˆÎû¾&DÅW˜éÓ§›£>ÚŒ;Ö¶ƒ7Ë)§œbׇnN:é¤Ðö Ýyûí·­WÉ /¼`˼õÖ[æ†n°ëo¼ñ†©ëiª †ö ÙŠ"Z.¿ürë5¬Ë¶\¤Ý§Ÿ~êÉ‹h4ÂÛ&h|OѪ$âšKRSE@H/”hI¯ÏC{SÌ0Xùõ×_퀔S—/_>¡,ÅÜM=" (Š@#¢ß!€¶G˜GFDõÐÝx!ð'†H.â«mWÚKÅ’—r!` ðà‰Òz ëßo/ö6Û|h5º4¬ˆÅ'Šx™ß3fT¡q+OÛeLh}!$ Ì Z /r íA8ûàƒ¬€,ëo¾ùfdVÂŽî½÷^ÛÏ/¿üÒI£G6C‡µ,èFõ¯B¢ˆ–0Ïúƒ¹ýûè£|)/¢ÝÚ 3t{™Ð‹¡OjŠ@IE`ó‚鞨ö2/›ÙR/»YcC–³üf0+©éu¥'J´¤ç碽*‚$KA‹¡Ëz E@PÐW‘B8#*¨¡‚¨*Ï ÇtÕmÉïõr}0²¤ÁR–ìûí™.fÛÒÏ<}–Šæ€A1}ö»ETѲ›'¢[§Û³n5]ˆ–(O "þ Áâ-O<ñ„%Pü†Xùä“Oìç‰Ö  :'èD+3gÎŒ$ZÒ=ì°ÃB«»¡>&L0‡rˆ-—ÑrñÅûÚ1Á†É|„Œ-Adt»$ °}˳ÂËZ¶qî”ÐËAï©j›ž&ëø+BëNE P¢%>íCJÐ4Î)]Oª(Š@¡#IàŠãVšf¼]Ï‚ ïúÅSƒ«&1«¦>`ÏÖ Ï´\B¸dî‰"Y˜‰^pg,t"¡CdzöÙp2&ŒhA$ÑZÎïŠÍƃ†òYYY¦{÷î6[Ð1Çcðn‰2kñ‚‰òh!["¸aFºhv±W^yÅ4hÐÀ®çE´têÔÉŠéÚÂJ´Ñ̓zP¤†Gx;/#m| /żz¸ä…”OJ´¤u=gÊpIbÁ«U«–Ñ.á)T; (Š@Š æ—_~ñ=P Ko ‡gz0bxÍÐ~a¦N–¶Óu¹næ$³â™˜¶J펙 MÚ$ÜÕs&›¥ã®´å÷é8ÚìÞ¤uh]ñhI–h!›¤GF%ãÁƒ[­Ñm v MÒDG-œ2&ÌÜСÏ>ûÌ=S¢% -ÝWšp ]p Ï´‘+e÷¨å½ØLöÒ4WÊóR¶oYï¥wnc5(ܰÏôÈ¢ü-+’EOˆš0ûþûïÍ·ß~kõØD0—0$¼d*T¨`>þøãÐа… š3Ï<Ó6E´\tÑEæ¶Ûn ;­ùïÿkyä;©óÞ{ïùe”hñ¡ÐEÀ#Pþ¾ÇGõ³û™¬b™Î‚ðà%GhÑæ…3ì!Ș:Ý&‹…n“lüøñO3žÜÇIëÞ­[7›ulöìÙ6u<^c®JI=Âÿ Y\kÚ´©¹ì²Ër qS‡¬fzK*„:B¾¢/†ýë_ÿ2hOAø|øá‡AoRÂ3yÀ} áïAƒå"d}ôQFÙ¨Q#óÐC™ÇÜzç}õÕW6CÏ¿o¼Ñp74hDᥠS¯^=ÓµkW¿¶3Î?ÚÁó{–<÷8Œ@ü¹çžk&ÏI圢į*ÑRâ?b½@%Y\4t]P’‡Ú*Üë±Â&ÓøÒ¶«]‚÷Þ-œ«¤ÛÏ/ö3«?Šeú©Ü´­uÙÏëšWLèaÖÍz΋6Dü-¤læe…eÛ¶m é˜ƒÆ òÙgŸm,X`_îºë.[dΜ9~zd^D$ÄÇ­/©£ÙE´0Ó‹gMp¶—ï }cvúª«®²¡JÒ¶-‚„.ã²­ÍÖó-‰zÍ-ÑÖ'[â34Ê=Â=%1¼ùb‡~¸Õâš1cF®ß9uÉNFÖ2 ²¡V­ZfÉ’%ö¾cwzÿ¸÷pƒà ]Œ0EB ¹OáÃs„v1B¸&];¡ªn¿8ŽGuÑ “û%šOuêÔ±a‰ã™$˜<—­$C¡:cL^ýÁ'žx¢Ý–_|ñ…騱£í#}©]»¶}ÆA:‹¡¥i„P¼ZÞ¬¦” Ö¬Y“íe °^*ÈlÏ­®T\·^¤" (¥  ñï÷ÞÌc¶7p-T¼²ß>Ïž)ž[u¡ž#ûsóúìïî8*{^Zöï‡ám³_ýchWÙÏq)»ðþV¡åÜ^Oö˜íÍ.»»s¬{/2¶ŒGRäØÿä“OÚýMš4É~íµ×ró^h²¥^ãÆ³çΛã¸GžØºÍš5Ëö¼Zücž ~¶7 mÑ/þ¼^ÿ8+ÞKŽÜ{1Éöf©ýãœ÷šk®±Ç½—­lÆ!®µk×Îóƒ÷!<+W®4üVG%Õý%¿Ñ‰'ÚíàŸqãÆB„ðâ¿uÑhÂë¥F¶ˆëÑÂóôóî³È#éÍ)§œbËâåBXÓÞ{ï£yú‹îJPJî—æÞwÓM7å¨wË-·˜—_~ÙîóÓ§OŸÇ%lL²°‰&ë‘Îv“k嚃†w¡–„‰w`°Œn£D‹~ J<EéF^âÁÓ TE CàÅ»(2áp‰|Žñ¢n qÿ%Õ R Ú´C!Þu’ιF‡a‘º,n]yqÈÑB;|æ?ü°ýcÝ5R/tä‘Gº»ýu^ˆp¡ã7,©Â„(½jsóÍ7Û"ˆ–àËΡ‡j…'Ò¥.1¤íž—4Ú š-ADt;€DþŽòê_~êÐæªq—™­‹g™²{Ô4 ûÆtW‚ç v¥ÌæÓÌâ‘Úâ5Ú1•›µ V5o½õ– ýá¿Óºuëæ* éAèNhAŠãd ÛÿýsÕ7ož2äyÔYý ¹DKÙAB‹(תU+óÀ±Ìnìkß¾½A/Åót3žçìöC-Ù!éêýƒÞ YÔ†jwA¸4lØÐ=l‰á«¯¾ÚîC3MŒgZ.áLa¸{žzVgòŠû¶Z8J´„ã¢{K.ÉÂ%VŠ^†" (%^ËËBa¥}‚ÆËE0 4qí¼d3‹YRmÍ£=ý•g}]÷:ËÕhdÐq‰³tËö:"“óçÏ7ß}÷Üwß}# –°sã©„Ž^-bhàù‹K›61Q`9æ.ù®áAã…”D*y1 {Qqëèº" xg-Œàð, ,+Û ¢O"ûRµ\{̃‚,Cu»…§vÇ3,ÌI/¤ÞŸþyäo²uëÖö·$Z‚ç%«™xøûá‡,©!BìQD‹&d.¾øâ`SV…ºˆËöêËìæ‚ ážéA–41!¦!õÑ• ÚsÏ=gn¿ýv»ÛÍv&å g®¼òJ»‰' ÷É(㞈÷ ï¾û®á1%Z¢‹íW¢%>>z4ƒP’%ƒ?<íº" (…„/ x¶5ÙBw™ ÄíZÎÅ>RA3fY’m³2$VÞ !ÊÃûÄÓl±Ýef9Œã%HÄ"=‡ÐíL¹^ígjpI’ ÑFŒ¸åSÛó¢=ûúQg™¿6¬´éœ“%Z\–(Ámˆ‡úõë›W_}5òbÁ™9sf.*@2>©±hÑ¢È6¢ˆ<æÆš¸ˆå’´¼ˆDi=Ý”`5{½\7¤?1AË‹há^çiÓXbŠçZ˜)цÊßû”hù ]+A¸Ù…¸,õd)A®^Š" (I"$[í!kDQ$ ž8nŽæñ¦ÁC‚A¯Zú Àx°^r{÷îm:uꔫs„ñrF–‘©S§æ:®;J'®I"ëé€^!ñîAyw¯¯/B% Ã~úßÕfó×ïØ¦ ]šT“ëfN2+ž‰y‚Ôí:É„½üvÑ[»%ÊÐYAo%èÑ‚Þ&B|ñ à Û¡Ž„"uîÜÙ6E´Öx 'ä:uA‰–¨PKñhI–há»ÌµÌš5Ëï+Þ.\+áGžÈ®MqýÎ;ï¨G‹PøŠ-á¸èÞ F@I– þð´ëŠ€" A²¥¨ x\òyÉÀœËýé…õ‚RDp•ªfqÙŸ>}º%®¿þzÓ¼ys›~Ý…)S¦XM<’†nŽ=öØR…Mi»XˆRî˜'®§‰ì+j\Â0b#¬÷Êf’­š<Ä´é“Ôí:Ñ#KŽI¸ûKÇ^a6Πûß5ÏÒÍ­EÈ )ŽÈFO)ÌøœI£Œ^ŠK´@œã¹÷[½zõLO'Í'°ûöÛo­0,Û™N´pŸ9r¤½´nݺ/ œ©V­š\ª]^wÝuF‰–„n(Ñ ‹îÌDx8#OÜ$ƃa§L{Ød"öÚgE@P2HˆĊšlá<œ“øvÂÄ”p$Òc !FÈ€d ö ]/uªÍV<¦Û™ƒ€žB–5â#AòÃ=‚%=´0¯o Ûßß 9,»G-S¯÷ä„2mœ3Ù,ÓAª^ï)¡§’ ;x’-'ìÝ`áÂ…ÆKklë»D‹— ÙtéÒÅîÇKí¥ A®HÖŸL'ZD¤»eË–>á¼^tª~üñGõh ØV¢%ˆnf&J²dæç¦½VE ¸H•~çeF”ç•/_h‚hH‘ ’º%DÞ+¤fE‹—qÒ47iÒÄ éÆŠL]¯õÌ‚@Dý—L‘²ù]ºÞ#.Qµžßó”Öz®WK…Æ­½leCâ’-h³ü8öJ›FžòõzOÌn6g΀ 8Ðf âLV2î˜K´<ÿüó6ÛûÝÔÍl‹IhÛ™N´œtÒIVDþœsÎ1ƒ ’Kô—ÒgŸ}¶ÝV–Ð%ZBaÑ™„ƒ!òË‹r:<‘ïº,ó‹Š’(ùE.ýë¹aDô6›Ëìíf§2‹ü–Ý£¦çñ2,©{Äo¼ñ†%Uh{Ÿ}ö±™ÇÈ.vþùç[¢¥oß¾† Db+W®´ž,¤vv­fÍšv?™ƒ|ðA3jÔ({˜ìBx°d"ÑÂ<ûì³æ¶Ûn³úb<ªT©b½-O>ùd+Ì$¡XhcJy²©åD@‰–œxèV† €Û5*àb,YYY²©KE@PE !‚d 3œ•*UJ¨naâ¥SH—`»„}÷Ýw†ì8Xºx´@¬¬þpŒÙ¶v™a&ZŒÙg„)+7m›ÔKÔ×eæ ^'Î#K—XÉÏՈlj,iCˆYæ§]­“9üüÊfï™?~Y`¶oÝÛb‰–]²j›²{Ö15.zлϘï "dO'îùb’j™Ð"_ƒFêg<`ß<üðÃseãá>§}ƒ r ¶•îÛGRLb3Ʀ±/1È–ùóçÛ mèY¹Y˜¤Li_*ÑRÚ¿výÌŒˆ7‹XÅŠ jŠ€" (Š@~’- ¢ÉH” C‚É\¶Åc“~Ì;×Üpà f§v²³±¸¯óš Û¾eƒùuÊPK²äuþ=¿ÂTiÝ34åj^uõxjm—4/!XòÛC á .]b%¿mk½ÌF€û áCçÆ„i£®¦ŒRTµMO“åÝcò2„ȹ‡b$×A#´¢C›dÿý÷)UÛ=ö˜6l˜©]»¶/\ª(„‹U¢¥@Ô&Šê®è-cfU°xð׳(Š€"P’à’gŒÅE¶0+Èó,ø,£L*àzÎRˆ>ƒ§Ÿ~ÚΖò²À_¹rår‘.¼/^¼Øìµ×^¹Ú¦ ÚE·ùdŒ4¬‹G´µ^,R÷Ê®5™²{Ôöö/5[–ÏÏ¡£€¨eÝnÏFf‘vtY|QR$ W!^'²Yß•ê™2 <ã–Œhçy°lð»]¾þÑÖC®Ì®•<í–yÖ{nÛÚåþñÝê77µ:ŽKæ2I{ÜqÇÙ¶Þ½{›N:ùõ¹r¾ÿþûÍ«¯¾jµF¦Nê[ážüÍ7ßXo2’%ëÍÁ9yæ@bÄ3ôd¢¼öyFb™ð%×Ó$^{ø´ÉõV«V-‡7O°ž-AD’ßV¢%yÌ´F † qC!T(ÑK º¬§TE@È0xùtÖyIÜsÏ=s‘½,È#GŽ4“'O6‹-²Í1àîØ±£iß¾½Vä¹×¿ë‚Ny´x9àÅXˆ*2X¿ì²Ëlï¼óNëæ=aÂóÁø!¶d† -ž›~ø¡>|¸}IÀc·y„Iã${®s‰G²lZÓ)ˆi$ Í BêÕåÞ¬´¼ñ2T§Û¤°&u_!" '.Fªä”â…ÂËš'2b¥ íkÝÒ‰ž,d"ƒ`©Ña¨!T(hçL¶÷—¿)ò,A܃>ئ-枎 )ŸgÍšeÓ¹ó»ùã?ì=ðÉ'Ÿô3Ïûî»ïš!C†X›ß†€9Œúôé*RÞªU+›ïî·d-úꫯ ýyæ™gl×\sùöÛomv#tb 9Þ{ï=³dÉ{ü€°i©ÑA\!ÓÙ N8£Fì>B– MšÇÜ÷ê‘2DíÚµ³"Áüž]S¢ÅE#ëJ´ä7­UL0¸ † ©èm1¯§QE "$[Ä"„æži„Íž=Ûoá[HŒì¸­ãéarÈ!‡Øý®.³®„Ìòr€gÊé§ŸnË á2qâDz„— ×"FFÓN;Íôë×Ïf:rÏI™#Ž8ÂÆás½Q¶æƒÑfåËìa^‚jÛYäh=›í[Ö›¥c;›Í;ˆ™DR°F»´î—ð®_ôOâ­§ ‰B{Bž©RÐsh}E ¥c¯ðÂ…bž$Y^&¡êyd"į¹u»zYp4kÚî;ï¼ó uøsoä·Y½]HôHHå ‘´{ï½×<ñÄv7¿H ûÌï ž+¤ Å\¢EÄpé'ÂðâO¹zõêY"‡™OH˜‡zÈÆ×Ë ¼aÆvFµiÓ¦†Tœƒ™NŒ9„K˜2Äl3.ý;—«`öî¹êG“,Ò/CÔcæM…¶^éÒUã{$/Cà’ì¶`Y%/lâu"d í)‰RTµna!€°öâ‘íls„"Öï_ŸE΋çÜâ‘ÚMB¹/E™Ü!/jÔ¨a=P BXíµ×|CÈìúõëûM½þúëæÆo´Ûx^{íµ6d“ˆãBž/öB5ñ¤1!Z Jð˜¼à‚ ÷_B~;ì0[LúƲxÇ6™ßí /¼`=¥=Žóá8dûÛo¿m `‰#úqõÕWKQ›ˆ HIx®POÈtˆîùãÆ³åƒ×¬D‹c¾W”hÉ7tZ±( 2(`FQ Eynm[PE@àŘA±-Ì.âr^çd ³ª z!Y:wîœh<8ÎÀË‹h¡ / ˆ;bx±–“A>p®ÁôE]dóRÍ šØ|1ö}öÙvVö?ÿù ]r_Ä¥Üos¦˜ÇÅú[£ýS¹Yì¥HŽÇ[ºž0yÍ:Çk§8ŽI9'x†YØþ¨6ÂêtŸûYñÝäÅÌ%Ud_AÏ£õ¢DÀMç\·ëÄÐpĨó¯˜Ðì›õœ=ܰÏôH-(—Ì@E<¥]2sÎ9vÏ?ÊcüžO=õT³bÅ sÖYgY¯{ÀùiͽÑ]êQ_Lˆ¶ Û<餓ä¿tû6bÄ_”W V™s`xÆŽäÏBQ[·nmlåØûï¿oºvíjµ¼>ù䟒ã<# }МÁÛ†ëS¢EÈÿR‰–üc§5‹~ðÁP!ÜÜÈþÀÀAMPE@(.‚d ç…ÄÀEꨣl¸éí·ßn‰v)£D‹ ‘ÿ¥-ùÇNk2ÿmذ!Çà§ ÚBîž6§(Š€"P `ðMx¢ƒbˆÆâ¾ì€ –Ÿ;v¬4—cɬ%³—X²D ná_|qŽöØ e)©KÛ…T€l€˜`É Â¼yól9—¨qúí™.fÛÒXXSÔ‹PÑB;ó{î´¬ãi(œÒßmºÐÖý<„ ;q¼6âÕ£-Ž»õÙ"%¬/ºO(-¬u–ùkÃJ+€K†²0ã·öt‰Üª­º{)Ÿc¤K° !3ðdÁ£%Ìб"oC¼D0 ˆŒ½÷ÞÛ¶e?ü° Õ¤Ÿ„€JˆŽ-7Ýt“¹üòËC«K߸÷î4–_jÒ¤‰Õá Ghb„УŒ{4ÏþÈ>„ï—_~i‹+Ñ…Zþ÷+Ñ’ì´f!!À€A¬ë~ËÀCC… `mFPE ÀCZD3K˜L(îçd‘èСƒéÛ·ohŸ#’ ’,Ñòßÿþ×a(hB´tïÞÝ@ö O2XàvN¬?Æ3’‰g4&DËΞÎʃæÙ}Á‰-;í}°É>=ü%'Ø^am‡½œÛv ÷XX]öÉ~Æ+².õ‚/„ÁmÊGOÚÐ¥"PšXÿß“Ì_¿ÿ–/¢¨wƼ5!Z £!¥Ã ¯>¼@\¢å¶Ûn³åx» ie¦ÃqtZÐË„hAL÷Ì3Ï´û‚ÿ„h‰ê›-Í›7·¢åÁúñˆ& ñýè£,¡.÷ô`J´)ø¶-ÇP[È' àȪÀŸkdRàOMPE@H' þúë¯~ˆ /Ë-„¸&b¸n3±@xΕW^Z…ôÉ-̨"|´D‰fs¬n·] …`è„da4÷Eh×c:›rÇæ&{‚u¢¶;ð—Y!Ù:¢ÚJ—ý’]Dúy#D Kñzq×¥¬.’€Àªq—™­‹gyBÛÑDnДë&ÕóÒq±ûé>G›Ý›´–C9–Bf fÛ»wïÇd#ŒhAã¥eœÐêŠw &‚å¬'C´Dõ-¿D ^+d²“ CÜkB€(ž G[F‰>­Â5%Z Om-A]âG˲‚| XÝød9¦KE@PE à%?¨%V¡BJ”WÿHÝIˆ[„gà ÏϰÞd÷K(Vw×oÒE¼©Üu<­ä…”q•š" äE䯻†•/ö3k>Š…b&"†EfpŽ0¢E´µ &Ðh‰2ÂpH Íoû¸X*‰ž5³gÏ6„»öïßß’E¬»F(+Ò J´¸¨κ-…ƒ£¶’  D X ZÄ $3#(õt©(Š€" ¤ ¦ü‰ñRKV"žiQ&™!¥5jTh1¬s0ˆ–­Ëçy‚¶1r…4ªõzON(½óö-ë½ôÎm̶µËìõÆ{ $ƒwº!Ñ\F¼í(b§0.Ÿ ,ñŠò%l_aœKÛPòƒ€Kä–¯ßÜÔí6)¡f\}–2^Úùýͬ—_Ì![Ê—/oiÉîfr'dˆÐ!±T-¼ká‰EéÃàé"Y”h‘O¬ð–J´–ÚR@ vËëbdn L(ÞÀTÊêRPE@H'xq^½zµÿ\Ëkâ\Bsð8` ¾ï¾ûæ¸&"Ú·oou\8ND ýùÙ›9^½cæ¸rÓ¶¦F‡¡ìŽkKÇ^a6ÎjËÄÓOˆÛH)<è/‰¬Dâ #$ ßgñš‚¦0Σm(a,ÑÖlZ8ê~v?“uBç°bþ>HÜÅ#Ú™ßWÄÈ•xaCTÊ/ÑòÍ7ߨÔÍ´$#؇qïné…ñL€pAãE,UDËÒ¥K­îý4hŸºZúÅ’gÌwÞiw¯M³¹Håo]‰–üᦵD Š`áÁ••å?ÀlN‹)Š€" (i…žš-nø š-xj'„ãš¾|ùrÓ°aC3|øpS»v,™.p;Ÿ1#ö¢ÁE¦ÑBŸ nm¶îx±aæ¹F‡!9R=SC—eÅ„^fóÂév»\FžÌ»®ÿ —Œá»Èvؾ‚ž9ŠŒqI™‚žCë—N¶­YæÝ_Z™í[cÚ¹ÕÎéê9·yÁ4³Ü»¿ˆ§\…Æ­LíNcâ—_¢…FE#…0QîÛM›6õÏ…®Ä ™†ÈF‡> Þ/b©"ZÐË£…þxàæÙgŸÍñLÂ{O„×1D/ºè"é¶Íb„È.Ϩ)SôÞí“ÄŠ-I€¥EG Š`áAŒ ž,jŠ€" (Š@IA‘[¼6Å¢žwÓ¦M3×_½Mg næd… Ý&v¹—þóñÇ·ë&L°BŠl|þùçþ ØZd}øá‡ÛòE)†kOàý#„ˆ™gyB¼r·ÍM¹šìrÓ‚é^™ù†å_[c¡U¸ô×ñR¶–«y4£Ë!F¾¸ú2Áð¦d»é.â\&Û¦–/=¬›9ɬx¦—Á„)Æî/™²YµìýgÓ‚>KÁ²{ÔôHÜ©!?‘FAˆîÏhgýüóÏv’òò‚ýÜ›!Ûùžß}÷ݦM›Xˆ¥\)™!?ï¹çžP¯ÊåÕ7!z’Í:D&ºGyÄvò¯4Æ …}e›çÏÌ™3M5¬˜ºdÄSùó¿T¢%ÿØiÍâ,+üñVSE@PJ¼¤B¸¸Þ- ¾ƒBï ÎqåfpKæ=B54h`.¸àC èc=ÖBóÊ+¯Øýl¤ ÑB_˜y^1¡‡ïæÏ¾(c¦¹F‡ay¾EÕ×ý©A@¼b„„q š‚’1â\¢#ÃoA­t#™»bBOßs.{¶èdª´é•Ðý%/2ƒó„‰áÊù!(H ýÁÈ.Y³fMóàƒšFùûX¯U«–ÝÁNxN˜åÕ·ü-ü~!x íÝŒpxÞ ”{Í5ט?üÐfK³OÄs1%ZÂ>©äö¥”hÙ´iSr½ÝQ:¨–œŸFx€ö—~7-#û8ÆÍ>Jì(?ç+éuø!3XDx‰‡±ø*Á"hèRPE 4 Êåšñæä/h+V¬0UªT±™*8¶dÉK¶°þñÇÛ0[ÖÓÑÖ|0ÚÓ_™J¸ìVÿhS¡q빟£€nä ”-°á‡vX¾:ýöÛo[÷¦|UÞQ)Š¥2dˆ3fŒý¾úê«9E©¨ËÃWé iQE#Ì(F5E@PE 4!ÀË&3 îìÿªU«¬Ç nŒ¿‹Ë믿nõ˜q$ÌHRõºeÒqYè¿¶l0;{îû"”ŽŸPñ÷IYŠWŒ,óÛ#—p‘°$ñŽQ¯˜ü¢š^õ qWMæ…(ÆÂ³·ÿa;¸ÓNeŒÙÙûóŒûL펣mH‘Ý‘†ÿøî‹Øl»víry¼¤a—µK…ˆ€-ŸT-¸á"è´Éw"¶™8Cn ü•÷f…ÒɸiÀˆB°°î8fì ÃëÈmW×E@PLD€g%.¼\~òÉ'Öuœʼn'šƒ>8Ç%Qî’K.1ßÿ½9÷Üs­PaŽº¡” \ÂEÉà2¿—«dL~‘Km½íY»llgÏK.&¢-½ÙÙÓyâhóެD²¿Œ§UµMO“uü²K—Š@Ú 2¢¾üòË„€`0òÒK/Ù²p€œHº¹„)åÑ‚· ®ºU«Vµñj!U }תÉC̪©D¶ËM¤¦—Bq÷&­#Ëõ†+„ñ4%X‚ˆè¶" (Š€"C€g(Þ-&’ÕB…LÄì#dËËåW_}eÈ1gÎëµ;~üx³÷Þ{+„Š@©F *,I¼d ŽKÆH˜퉗ŒzÇÝüÕuSÚ↜¤™yxÏyùå—m4&"ålCޏÞhjÝpà ÖË%++˼öÚk¦råʶªKT‰–“N:É@ºŸp öÜú³~ýzÓ¯_?3uêT«{‰¬ÏìùçŸ7}ûöµë¼ËsÌ1–ä`i§{÷îm”–Ú¥K[Ž´÷ì³ÏÚkå:ñRá;óÉŒ=zXÂ<ÜwX·ÿ´ƒH;ž;ÔçøóÏ?·RôLI­ö7iK´@Xˆ.KjŽ;î8»Î¿¨‡yÑÂw(Ú%Ç8Œ!_r@¸~Áâþ‹ÑWÜ£ìûG{†–›d\ãhËEܳE'SíÜXcØyäÆ/L<Þ*8/Ey¬Ð7T~Dò§äJ²ºOPE@(|Ó„.œ‰Iþ\WðÂïAÁZ$[ž·h+äWK.jlV°žimE µðÛf<.&ctÙ–±ºlËþ’¼ÜøÄÅæÏ_¾³÷ú^ØP˜1fH-,y¡=ÏFˆ– ×†Û&$Ä“Ìè„bo½õ–õXa¨³„Y·nÝÌ{ï½g‰¼Q0—¨p‰Þ]%̦k×®ÖC&Ø&"·LæãEBDFøÏäÉ“mÒ’ÅT¯^=G5·³ä<š-Ø]wÝe Cð¶yÿý÷#‰{´i ™\·ÿ¹a´Ï>ûÌF¡°?Œ4 –/MÛiG´|ú駦cÇŽV„Ì?ö@l„ŒÌ_>¶ . 7.bì =`‡î7õ0"Z„üáGNx‘ÄÛIƒ0“°y-ó{ÆbߪÑáoýi+ÞRHš]÷mfj\õ´-Ê›²Ü¨%þ4^;Sb%/„ô¸" (Š€"P¼Ä#\xnóá’“!›L7«?cEý·­]æUvZÖëvO/åjùÍýýy­DÍòª§Ç’Ž@ØØ^ÆýîµÇ#iÂÚpë¦r}íý±‰òxžþQD ^ÿßÞÓ·Œ'¯ DKaÀõM×öÑGY²½H„nßyç{,ìßÃ?l½`¸OC>ð>è.ÑBýV­ZY/Ö9äK¼@Åó!¤ Á^ IÞ=ñ¾9ì°Ãì³Áü»òÊ+­è/Î DyDïßHcÐÄ æöDsƒ¶jÕ*þÄþ0O¡`ùÒ´VD qj|€ˆì0€xüñÇí‡õðÅÂU 2åæ›o-&îL0{x·Hü[ÔÃ<Šh9çœsÌwß}g‰î¿ÿþÐsÝqÇVÜ.Ñ dñȘútëŠç äI˜I"qq»^÷w?j̽ QFös LÁA=V@CMPE@H_ \$ó_Ø c þÜg}q\Þ+¿NjI–¼ÎÙRÅûOÄË%jl–×9ô¸"   ×MTkaäNTÙàþxu׎¿Âüñã§’¶¡—=(Ì¢îs®GKöCLåf±÷¬`B´ÄÓýœ;w®Ÿ%ˆ }Ê¿øâ‹VûsüøñÁfým¼EðNÁ$„Æ%*‚D º¢ ¤Iv ²A¢ Á4BšÈäʬòþA‚Þ ¡Aò¾K]!t¢ñˆ–œq„½™žÜ? nvQD˪ÉCý,DÙ—=5Æ<׋ÒȤëÁÂ,t92TÉ0»¼Õ !Ú¼0–Ý‚¾ðò„]Ù¬œ±ýÁ~FÍÜr`Á‹ $Ô¾ûî«¢¹.8º®d(?¿ØÏ¬þ(–Hdÿ»æF& »<÷Ý(ž†¥-LÖ‡Ù7ß|ãk˜¼ñƦnݺ–]*Š€" (Š@nx–C¸  Ë ÊxFó‡×KA'Lܬ·rlÙá@IDAT2µ;ÅãQçæ%²E¼[¢B¦¥~ÔØŒSÜáÑÀ€$}ê²eËìõ³ïßÿþ·M;ʺš" d¼-ÜÊ'fëõz3”À ^ÕJÏfÍO˜¼…Ñ⊽ÛÞ-!u1‘¡ L“w½¨wNªEc‹"ZH'gÉ\‚ºŸRÐ!d5ðLáÞH[¤zÆð®‘”ÏvÇŽÒW6ÑåšIõL=¢:xÇ3Þi“{lûöíÍí·ßn‹¹ýW¢% ¹øûRN´¸â·<8Éñ-*ÉñºN\[›6ml‘¨>^ý¨‡yÑÂ@à aÝ0±¤xD õ„,Ù¹\E/qZÂîqn b^7!_±Ï5ŽñÃò…˜x²P7âEÚƒt¡>2¨“cºTE@P¢C€g6bžóüÉ„JðŒx²òŒæYÍX%oUB†¾¿3&lKÖDtÊìZ)xŠ\Û-ßlnþںєñÆ=õ¼Œ"Q!DQc3f  ÏF»€„ûì³=×ÉÌ+Ëú 2^³;ôŸ" d ®×?ïHxËUh{× ^÷•US†™5ž7Fè"÷–x&D ï›h®ÍÇ5îh@ì’ΙwBÌ '‚€€ˆ™~ *hÂ¥sçζˆKT¸-òÎO`Wú÷±nx¿`üx„…Œz˜‡-Ô%FnÍš59~<ìwM˜Ì¼ˆ–œ3B­½¡Ñn3¡ëA׸xyâCر¼d Ʋ%ʸc Ä0ʃ{¼™3·-©ï0îq]WE@PÂG€ç4ƒqyÞçu×C2FžÛnˆños¦˜ÇÅ^¢BŸ£Î³næ$³â™^öp¼ñKÔØŒñ¡Cx&ã94Ò¤’.õšk®1×]w]ð°n+Š@† àjµÐå [{â¶mmÚç]²j&ÿX»Ü ËâêDÅÓf‘K¢…mÞëFŒaïuls¿ä}òÝwßµa7dr³Ùr 2ý0éá!±B¦!ÈôVð~Á\¢Â%Z-  #MHörñÅÛ¤/ÜÓ¸·a’A¨Q£FæÑGµ)›íÿÐs¡¼ï¢ùÂû5σÓO?Ýzî·ß~‚GlÉ’%ö\&ˆïB‰¹ýW¢EPI|™2¢…=\§°{ï½×Ï'žh÷/÷}fΜiC‡pÑ óÀL@ÄðJNsÚz˜G-|ÁÂÅ !¤¯¨T#æË &/¢…:‹·¶bq¬WmíÅ"zŠüQs½½Òs½n‹äåÍÕNØþDgÁp9æ./>?H®—6Øæ//oYæU^+Š€" (Š@ÁàY-ÄK"Ïj÷l<¯±ß>i6}ü¨k5è3ÍðÒãZØLޣײhÈ©v3^úÕ¨±™Lv‘ú”™]ˆ ×6lØ`¯—^„ÔE sp'¤óºŠ²{Ôô<_†%”F^ˆB{-Zdßið€CÏ„ ˆlàÀæüóÏÏqjˆˆœ¸ÿèÀ´DZ.Ôå^Iúd‰¸ —¨p‰މ& ë78ðžE_¾úê+ûŽU§NóüóÏûÄ .h”òî•••e%1ðð#Òi¬ÿþ~2¶y‡Eë…ä3+V´2u=¡ßo¿ýÖž ±uÈNjÛ%Z@29KÑÂ`Ò¤˜(Ùƒºté’pÏ)™+_6^øaýþóŸÿäxå‹ÉyðÚ ':eÄ¢æQD :-ÄÓ‚º¸`Axø»õ0G´Pw®Áƒ›¯¿þÚþxÈóC ~¦³GöË.º0î9ÃÖ!TVxd‹¤l+SÆ#´(ë„Îa‡‹e7#:Ja^*#¸¢±Ì˸‰ 3ƒ¹(cÀᙣÞ.Q(é~E@PE èpÝùÃB‡âõ  ¡CÒöìÙ³ÍäÉ“mæàl.pÿûßÿü‰8©£KE@P@ H´(*Š@Q#2¢¥°/ v Hbz‹jvâX(W‹›ìsÏ=g XHÔñ“1[<\¶yáB0¶aD»ÖllYÛâòbI¤Ï%.`ôNh|¨DÚsI™= ÖïÚUÒ%ˆŽn+Š€" (E‹€+†[»ãc‘Ù@ÂzáŠáîÓq´Ù½Ië°b¾çpУ%¬0š 3f̰ú{âÊwËØ±cÊë>E@(å(ÑRÊ¿)¸üC´5vˆÝâ1ƒk.ba†W dËÉ'Ÿlzè¡°"%n$ JÁÐ"ˆ<\’!\â/Ú #r(£¤ (¨)Š€" (Ň€›Þ™çz½'ûšrñzKï|ŒݰÏôÈè0ocÜô Çfâ¬U«V¡§"¬ïf¼`ñz z1‡VÒŠ€"PªP¢¥T}Üiq±J´$ø1 "=~üxDÚ.æ®ÍŸ?ß\vÙefÓ¦M‘%bÿJ“ááƒê?¤‹kù%\¤ —¼HÈþ8—š" (Š€"  nøPå¦m=ݸ¡yžhéØ+üðèx‡h(ŒhA‡@„ɉ–BÐ Y [5†hOã`9ÝVÒ‹€-¥÷³OÕ•+Ñ’ òäF'}svv¶9öØcm–$öáí‚3¢B¨àãÍRT!K v7eÅŠŠpá‚ \ÄÛ%J'&Ù°¥”¥'VE@P2Eƒ[;!ÎÍ=²eH®TÏ\™—Žíl~ßHÖÄ0¢…çþñÇoC–ÉþØßË&éN¬rÜ­[7«ÛrÔQG™qãÆe ªÚeE@(jxà«3‰pv0;PQŸ[Û/(Ñ’ÄçNF!ÒiA¶„ÌðáÄ «_’öÅ#\PôfÖ© ÆÀ ï!È úå—_l ®ÆÛ´ÒÍ›7/µž,Q0F.!.î¬TTyí‡pAÏ— 1ð‚p!ÔKc¶ƒèè¶" (Š€"<‰dL”V+4nåy½ K(kÑB[„oã1üÛo¿IÓþ²AƒæÖ[oµ©žýº¢(Š€" ¤%ZR~i:uáñ ‚hnaçÀÃâ%Z$çR-—Â@ZÛPE@PŒ!›ÐúYÏšM gä‚c7/sâžÇwŽÌ0”«B;Ö®]k½X˜ôbÌûì³9üðÃu2%ü´ˆ" (Š@ñ! DKña­gò ä-73^'x·º°Œ˜n - ¶):.…y¾à9t[PE@(MØP¡-ÌλVÌ3D¨4á¢×ª(Š€"P:P¢¥t~î)¿j\ÉRäê«@€@¸fˆís®0/ˆ!]Rˆv@PE@PE@PE D  DK‰ø3ó" ApýuµU Y*W®lÓ5öUA¶@º¸Þ4œ£ )¨ »ŸÚž" (Š€" (Š€" (Š@æ" DKæ~v%¦ç„ùNäêªàm²Ç{ŠXn(Îáâ<”QÂ%ˆ”n+Š€" (Š€" (Š€" $‹€-É"¦å‹ B‰øû²¥ © ¥½à2L —2J¸‘ÒmE@PE@PE@PDP¢%Q¤´\± ùA8^'b*T°Ú-²]ØK%\ QmOPE@PE@PÒ‹€-¥÷³Oë+z·™(++«HB‰ˆx„ ž5š¥HÒ¥" (Š€" (Š€" (Š@J´D!£ûSŽ^-«W¯ö3u(‘\páÑR±bE%\(]*Š€" (Š€" (Š€" äB@‰–\èŽtB€ÌD-ÅJ$×E¸šp&´\ÔE@PE@PE@P%Z\4t=mHE(‘€A:èuëÖå {8Ùž6jŠ€" (Š€" (Š€" (Š(Ѣ߃ŒA U¡Dç‡pxƒd!œh÷Ýw—]ºTE@PE@PE@(Å(ÑRŠ?üL¼ô°P"„j ç).Û´i“MC½}ûvÿ”ˆõVªTIõ[|DtEPE@PE@PÒ‰€-¥ósÏø«Æ³ä·ß~ó¯¯þŠÓg¢?b>.N$ˆèRPE@PE@PÒ…€-¥ëó.QW‹gÉÚµkýk‚äÀ»¥8 ÁÜõë×›-[¶ø§…d!”¨¸‰¿º¢(Š€" (Š€" (Š€"2”hIôzâÂ@‚²E¼JRåQ‚~Ëš5kŒNDV"ˆÒB«)Š€" (Š€" (Š€" ””h)Ÿs‰¾JÄiW­Zå“-è¥T©R%%á;„R$ÄÀkv¢ýõÓ‹SE@PE@PE J´ä€C72È–_ýÕ÷(I%ÙÉ‚†ÌæÍ›}8 '»e×]wõ÷éŠ" (Š€" (Š€" (Š@ÉC@‰–’÷™–Ú+‚àÀ³EÒ/CnT­ZÕ”-[6%˜„…FáBX‘š" (Š€" (Š€" (Š@ÉC@‰–’÷™–ê+J7²…þH8‘|0@å"˜«¦(Š€" (Š€" (Š€"P²P¢¥d}žz5;@˜VBwRíÙB—ð²¡OâmÃ>õn5E@PE@PE@PJJ´”¬ÏS¯ÆA ÝȺ&Þ-xº`êÝbaЊ€" (Š€" (Š€" ””h)1¥^HéH¶üùçŸ6%5.bêÝ"HèRPE@PE@PÌF@‰–Ìþü´÷ Žd ÝVï–><-¢(Š€" (Š€" (Š@†! DK†}`ÚÝü!®d‹z·äïóÔZŠ€" (Š€" (Š@q °uëV³}ûv›Ét—]v)ŽSÆ=Gºõ'ngKñA%ZJñ‡_Ú.=]É>õn)mßF½^E@PE@PL@ sçÎfÚ´iæ¼óÎ3wÞygÊ»|á…š9sæ˜:˜¾}û¦¼?Úp”h ÇE÷–PÒ™lQï–ú¥ÓËRE@PE@H mk–™s§˜­Ëç™­+æ›m«—šr52åmv­ÙØìÞ¸URí¤p¦-³fÍ2<ð€½ÔqãÆ™tð¾)î™^W‰–LÿµÿI#à’-ÿøÇ?Ì^{íe³ÿ$ÝPUón©T©’Ùm·ÝŠèŒÚ¬" (Š€" (Š€"¬ù`´Y5e˜Ù¾uCd‡ ]j´bÉ—ÈB…t ݈–Ñ£G›eË–™¦M›šÓO?ݿʷÞzËÜpà vû³Ï>3åÊ•óéJñ# DKñc®gL\²¶·J•*iE¶lÛ¶ÍÐG–b»îº«Ùc=ÒªŸÒ7]*Š€" (Š€" (A`û– fÙØÎfÓÂé9šùgF¦Ì®­wË_[7æ8VµuSµuÏû {#݈–¨ëS¢% ™ÔìW¢%5¸ëYSŒÀ_ýeV­Zå¤W®ZµjŠ{•ûô6l0ü‰í¼óΖltQSE@PE@PJ KF´õH–örv.WÁT?§¿©Ü¬]ŽËûcÍRó딡fݬçüýx¶Ëù#V¶lÙb¾ùæS¡B³ï¾ûš2eÊD”4&Q¢%™6ƒ'ûã?¬fcVVVðPÂÛJ´$ U±T¢¥X`Ö“¤#A²…Ð}ú˜½÷Þ[Šú˼ˆ–ü´)¿þúëfüøñæë¯¿¶À+V4\péÖ­›5j”™={¶iß¾½9ãŒ3¤ŠéÝ»·ùþûïÍi§f®¾újóÝwß™.]ºˆžõë×ÛrÕªU3;í´“Ó²eËÍÄ#ZòÛ&$Ï AƒÌSO=埋±=ï&äÐŒ3LÏž=­W fš7ožiÛ¶­αD÷¨£ŽÊ±O7Š%ZŠg=K#€ÇaDB¶@^¤«ðìï¿ÿnµ[¶oßî#Šg b¹jŠ€" ¤ hLmݺÕ0hM–¼Æ}šû2ƒàT ùq¿]½zµ…´FÅ-Ï"f%±t}z"E@(¬š<ĬšË–“lÐb/ÜhóŽp£ýïšgµ\Â@ÃsäÆo´‡:uêd®½öZÿƒw"²x¹ºóÚk¯™Ê•+ûÍD-ió¥—^2·Þz«=,矾9øàƒÍO?ýd{ì13qâDÿüy-äÝ€Ð!Êb3gÎ4H Ä ‰²õ_‘! DK‘A« g je@M¿q·+[¶lZ^ƒpt[ÈN$ã A”®}–~êRPJW^y¥ùä“OLÇŽým¢WŽK÷˜1cLýúõÍ«¯¾šhµB/÷á‡ZWlþôÓO퀵ÐOÒ {Þ?þØúCŠé.E@PJ KÇ^á¥ržj¯§ÑÐ¥I]—ëÕR·ë$/ýsÌ3ÆmòþÔSO5+V¬0gu–¹çž{ÜÃv‚ã¼óγ¡7xŒôë×Ï/F´¤Mˆ|ú³råJÓ¢E "äŸlÇÊ€|²%¢…jªÑD1µÛJ´¤={!°iÓ&#®ƒhŸ Ž›ÎÄäýO LçЧ4ú¨µ+Š€"PÄ(Ñ’€3•hÁõÛÚe¦ìµÒIÈ?BZSPxQOÔ ܱb¼zxEHèJ¼rù9¯íO\lþüå;ƒ6K}Ok%Ì¢<36/˜f¼ÐV©~v?“uBç\Õ]â…^0p@®2ì@å½÷Þ3µjÕ2S§Æˆö‡-iÓ­ûÆo˜ºuërš sÊ)§XO%Zr@“1J´dÌG¥-Ü´ÏÄIîµ×^i-8˃²EÜÌÁͼ[迚" (©@  DËÛo¿mðä€ìfЛ*s âôhÁ…]böoºé&S¾|ùTAçy›3ŬþpŒM¹º}ëßò¦,Wó ³çñW˜Ý›´Î³- d2Q¤„B†Y<Ò!b$¬íLÜ·öþf¶Ûåëí‰à>z QDËö-ëÍ··5¶uª¶ênª¶é•«þèÑ£ÍСC­Ðí;3ë¸ìxøá‡ÍC=dÇþŸ}ö™ÕHáXÑR6¥.éŸþ¹­•>¸ËÖ­[›¥K—æ©Ñ"u\‡þ§2üVúTš—J´”æO_¯=—láÙ’î†7*ã2cGÞ-è#¨)Š€"PÜ„h)î¾F/UDKTÒiÿö-Ì /ÛÇÆ¹á3Ïn_+4nmjt©›à–ÕuE ¨ÀKrõ0B#Š4 +ë¶U× 3ÃÚñW˜?~üÔzÄ!„fQ™6]–(}—Ûn»Í¼øâ‹æˆ#ް~ÂÚgßûï¿oºvíj£ÓR¯^=»F´¤ÍÛo¿Ý<÷Üsy†È^~ùåVkE=ZìÇqÿ”hɸL;\Ô@V ŽËCK×´ÏADàÝâÁ»%êálC·E@ˆB€—” Ø{Ì~ûíw¦,Œhá…·Æž{îY¨¶„}âê¨!ÔûÍ7ߨðÐÚµk‡ öF-Üc™aÄÕ;ÏAêåŽ;÷å‚Ï*>7®!™IŸþÙ^;¢ÉÚÖåóÌ’íŒëÁÂ,4?Ä6-œî‹S²p"f©I½*mèRwLÃv˜—H ¬GÝt6ÆiñÂÕ“!5’)Ë9ÓaŒøó‹ýÌêÆÚhÿ»æ&”qH>ÏU“‡zBºÃìf½^“­7“%ä $JK/›ÐÈ‘#ew®%aCâI‰ç‹¤z#Z Òf÷îÝmhÒ1Çcðn‰²:˜/¿üR=Z¢JóýJ´¤ù¤ÝK  `‰Å™’ý‘\RA‹ñ¥ÿ.jŠ€" $‹ÀÂ… ­(àܹs}7øvÚÉÆ¸3£G Ê ¹DË¥—^j˜½#‚¼ü@¶°ŸÁ+m¹FêMbè!NFŒázôÑGÍ3ÏUË(Ò"1¼ˆj/U×—.ç]7s’YñL,ä'«E'SýÜØ=0¯þ6ôýÀcÌ_;B£„tïºë.ûÌ@›…çK”ñŒáù‚G;÷z±0¢¥ m<ØŒ;Ö>G£úÃo„g÷yõh‘O"³–J´dÖ祽-F˜!aÖO,3IeIߌ‹WûÕ»EÐÑ¥" $Š©+!IDªN:– À;ƒ$¹æšklšL·M!Z 0 j¸—__¥J•÷Õ£Ž:ʦ±t=C¢²ÉþN8Á¶óüóÏÛS"éfa;蠃̸qãr…NRÒC4¸§‹# ËN:M!M\¢…™K™…Äaà+/ŽCâb.8@æ\ýõfùòåvåøÃ EHüc=Ö  à^¿{Þ`Ö¡¯¾úʶ‰g V¡B›‚”sH›wÞy§Íœa ìøÇLî-·ÜbCLÙE?ð¢†YÛGyÄ¿v·®»î¦`­Ð¸•©ÝiŒ{8tÝÍ&¥ŸZQw;ò–‡éˆ½G©ŸŠeÉ$7¸¹¿9úV/ý/­ç$qÑàVž vì~Y·ëD/{Ð1y‘èýÝ+ˆ4¯¸¯Fi—@hLž<ÙÞÏ  #Z Ò¦:ÜÃéß¿ ñì<óÌ3ín%Z‚èdƶ-™ñ9i/S„€¸¤szf/˜…LËDá`6•?1õn$t©(y!ÀË;Þ¼X5mÚÔ ò‚Ž^ ip-6~üx;óf7¼B´° ÉÛ»woûòÏ !ޤ֔ÔÍxÅ\tÑERÕ¡Lï,û¥à‰'žhúöíkïË´9lØ0óÎqÈ¡öíÛKQ³dÉ;`e¦ý°Ã3ýû÷÷Iûìcõ*¸vw!Î ¬ðÚ‰ k"«Ð÷wÆÂƒv.WÁ £Pf×JÒíÈelƹ¹7ã¼Ñ–iØgº†E¢ÿß+wÅ-$@äXY±¨òR¯8—aÞ!aÄG0 «WœýÖs.›L÷²µ³îì jã-W¡I›Ð“p_ùù¥fݬ˜pn9Ï»®^D¶" T”ÔÍXðù`wzÿÐ:$´Â1Hl„-isΜ9†ÒÏÒ0ïÆ=zØ{2e‚ý¡.mZÄsPLÅp‰ôX*Ñ’Ÿƒö"pÅqyÈ“ #“ŒÁÔ¯¿þšC¿L"2 sí«"P€‘´“¸6g¹· ÔGƼ9ÜÙ?—hÁE:,œ¥S§NfÆŒÖ#ãÝwßõÛB%ÑÒ®];K–¸83³Þ¢E ëÍwê©§ZÂFŽË€•û7„Áûø“O>iCŽ(ÑçKx IƒGL0ë„ áKè£à5"Æ>ŽQþ•W^1„õM\Çy®€]Íš5m÷¼.Ñ2aÂ; ç¾ýØc™æÍÿÖD¡â·ß~kÎ=÷\Û‚&×u „sÎ96´ ¯—K.¹ÄÖ þ#ÃÐã:ÛÝQ‚“Á:²í†ìÓqtFg"ŠGvÈõÊ2Šäàx‹›ñ-Œh)h›ão¾ù¦íÄ9Žï„ñ'E´ð,¼êª«l±5jØþ_|ñÅvûñÇ·¡¡ÒFØ’ eŒç{ðùV^÷%‡€-ÉᥥK! ª\q\fý*W®œQHp x¶¸îõ¸Í2s©žŒú(µ³Š@± €‡ˆ ún½õV#·àÉÑÁ;Ë‚&D &âc8ÿ\Bb¢qã˜ÎG^D ƒAH ñØpš4W\q…™>}º9úè£ýAª{- –° /«¼C0ïöÏ%.ܺx¦ªCŸ˜]ƒ¸øî»ïÌÉ'ŸlS…Ê~wIh‘Ìb‚!0˜{^—h9ûì³­˜ðÁlµjܶd½OŸ>6T b Âo–SN9ÅæÅ⤓N’¢9–„8ñùõ ÜP’5o=`Ö¾;ÜÖkÐgšÙÅ{é äA˜mY6Ç,#~voqµ©Ð²ài»y†õ}‚çN†°p¯5ØNIÚ#C‚„ ׄ&% ½–ôA`G¢¬š2ÔÜŽyÁÅëž,d5C*/ƒTþ÷¿ÿm½ùÎrÈ!Vg‹ýL ]Å÷-«6mrzÒD-i“ZîÓË–-³]ÇkÑxŒÐ[ÂD 7"ZðìDÀãmž<Óð&E(ÍžAƒ\5ˆžà5Ëëvò(Ñ’ø W=žs>ø æéˆ"Z(“ß6©Ësð¿ÿý¯½‹ö¡ˆ¾s‡h!<ˆ0!1  -xá@ª‹¦åÑ,#l4hî38H´0‰B()ž¥5jùC@‰–üᦵJ! bñlÁÜàzÎ@&ÓL½[2íÓþ*Åá.ÿùÏì‹(¬Q/¸£ß‚¹qïB´¶Âz”þB\¼;[—ÑBÌK/½Ú$BD]¢…°tH0êQ?s iÓ¦…z2 N´'DËŠ+Ì¿þõ/{Ѝ®œÒ„LH­Zµ²žA.d7Œö!GhSÙ×^{m$y#íÊ’0)”d R)Ìkóo¢¥¢G´Ì‹l2“ˆ–È‹pÄ#Fœbv•±A^ä eø 3f£ÃêS>j¼U'Šœ ;¯îSÒ ÒÈ“…hë²¹&û¯m1¢…NîäýÆ ZÊìbª¶îáýåöPLäZðöCceñâÅV³jÿý÷·ËDêF•)h›L„ò;gT "Ï— "Ç݉”ˆñÒáz{&R'SË=gð– ’©Á2ñÈžLÅAûžÄB‡†y¡Còì !ChF%:”gcÅX"1rŒð°ç  D öâ‹/È  E-ÁrÉn+Ñ’,báå•h ÇE÷*‘Ã)©N¹1†éDVN³êÝ’fˆvGHÜÌ3gÎÌ•*YºIV2á`ÊJ¼·-­[·¶Ù€¤¼»ä>Š 6jÔ(+dËza-S§N5Ý»w§é:2vGœñˆy‡hÁ“‚A201€–ì?¢uv*ÜÎÑ–‘P-—h!4‰g̺uë|‹ó æ´ é$üå%¢F2RD‘Eaý ÛWXb¸u»NòÒ¶æò ;_:ï+,í—`¸—\s¦>aÞ4òÝ“k #q¾³R^—¥Üb¸­¬ n¹š<2¥±Ù¼`š±b¸"†»Ü+1\¿ðŽžAxµàA‚`yl –Û–ÌrÉÊ @ž“º™s¢ †8¼kô­k×®6õsݺum¯{\Ö£ˆ<ðy_!ô'QbZÚd©D‹‹FþוhÉ?vZ³”"ÀÛÇÅÅ×¼L¶0ïH$f5ƒøL¾Ní»" $†ƒ@]±`êf·Ât$~b/?Lˆ–xa>ˆÖB0`d^¨S§Ž]/l¢Å½ÂhHÓ4îéèÉðMšèfÍšYÁnݺYñ]î…®W m@H‰0:'ò’‰. ä—{Y™‚Y|$¤—õK/½Ôv…A­hǦÄy1W£/Úd@ÎÀ<Ì-þá‡l»x˸:xá fˆ/’µ·ó“"ss¦w®è¥wž–Dzçc¼ôαÙiMïö $¾/?äLXt"s¼eš ±V/q$µdº!3½s/½óÐ<Ò;÷÷Ò;?g/È–DŒ,wkÔ…¤‘ epSK%Z’ÃKK+n¶¸ôa<è3U¯Å^ÀŽaÞ-\dK˜K£[W×E d!€V:#¤†¦Jv¯/ z ÐH9,&D ÷¤¢ã"ÇYâe‚· "¯O=õ”¨°‰¸„æ s‚öˆ#üs‰g ç„PbP‰¦ ýv=KH rä-2«IÝÛn»ÍŠ-"Ü ‰¹"$ŒœœÁ4˜AÖã #±õ®'K´HjÒ¬¬,Kg)w”ð"ц!,‹Ï‘e”01ƒ}2ÂAée«&1«¦>`“vµv§ÑQEýýZnœ;ÕnçG¼ÒoHWŠ §Žü>ÜËp,ŒÈqëçz~ !@‹³¯z®¿ؾeƒY4¸µŸ²¹n׉žç[L\ýïR¹×’½¿âúÄO؆øÌ íD„ÏBŒ‰SÂf[¶li·åß¡‡j…ËÉNG8&÷Tž 4ऄÅe—]&Õ좃ßÍ<`‰ù•+WÚý¬ó|’,C´)óÜ—¹Ç“‰ˆç1Ö7—háþMˆÆØß%d F_yÎI(ûÂÄpyv f„Ū%‡€-Éᥥ’¤×â_”·Â9˜™ˆnÚ `ÔE t €*a*QƒG£{Z.D „‰˜-l3ÇÀ×l1´C÷Ø=;þøãåP¡‡Ѱâ2x%»™ä…Äxà2¸–P›0¢E^ÆC¨@´HyÃå|¸“C^ ùQEºPäbï¼óŽí/²AÁà(¢eéÒ¥6dˆ~’Å`Xîɸˆƒ9nðÌÆBúÈ1>ȶé‡xÎÐðxäà™Äµ±Œòz‘¾ó2´uElÀýO/µjÍè#ÄRsK–è²,ŸÐËü¾£ìnõ6uº…kë¸õt=óó–‘ß›\]‰VOʧjô¢qû$Oå÷† *ÇäÞ!ÛºŒ!€.ËÊ—جLõscëyá³}ËúM,Œ¨ÑÐ¥‘U ÌE Ï@„Å…@‡ìàÙ€— d6Ï W\ˆç™6pà@«•Åçùå—_šAƒ™yóæÙû,!ŸîóNˆˆw¼'ñŽaò,G·s¿Æ oFžQ®‘ jŠ€"Pòà>бcG#b¸p€!/L îb”‘Á«Ýáý¢Wh4^¸Õ­[×þ¾þúkóÓO?Ù¢h™HÖ©[- ÇŽkûJ! põÆjÕªeg2ÑSÁ…›þU«VÍ’>¸Is¿#ƒ D¤ îÝA Õ2=ôŸñòƒÁ3ÏÎÇÌ ø2(&œI¼Y¨E´p b ‚ c°Ï vùå~Í Ÿ´œ ìÅ8~¹ÂÄõ`Ôá³dö”ÏQ> >C>˼Œl KF´õ„*7úEË×onvkèef …Í §ûÇËîQÓÔíöœ)›UËß§+Š@"ä—  ÖKä\©.EÜЯx„O°ßª‰¾Ç#…‚í嶫Ͳÿ]s K”þ¬š<Ôó´f7£´Zø>@zãÙxÖYgù!ŸÒKî…<“x.>ÂBÌ%Z\M19¾lÙ2Kàs_=ùä“ ÷1!ZØ&õr0<³ }s‰Ïñhá3u{¿„©ºþ¢ˆêªF‹‹`þוhÉ?vZS°\\Èb ÐKR˜ 7D]·`ö•*UÊå¯_E@(y@@0`$Ä…™6טCŸÅf•ãB´‹Ž7.Ó¤šƒ@‡7ì %K´pŸâûná 4qÉf@4{ù£< pB™Ü4˜.á%$h¡]†ú÷ïoI ¶]ý­•à ‘{^7tHê"„÷f×xèÕ«×ÿ·w&pR×/A]@$‰F‚Š*‰GM䌣\ãF.¼@<ˆJcŒ@”¨$€¹ŒrÂ"Š€Ê!Ñÿý­õ5½Ý=3»;»s¼÷ùÌvOwUuõ¯g»«~ýÞïņÝ}<£ tøÈóJöCáUsÒI'ɦ„KÈ”ÍOŽ…EU¨ÑúS÷¼›½‰“’ôQ8é¾ô"Àïžÿ{ׂUãQ’j– ?è?ׄv×D9ƒ7 בz¸¥§B°øÛ'Ñ6/û^.®‡Ë•«Ùt«µÖÏܪ³¿š~Wr ÂFN0ìEÜDµ'íæÚrÇ]'ÛSªâ…6 1ô“Ò‚áCïßX¾¦%áªxºf¼\`§ <§„h¹ôÒK­WPý9sæX¡[ö-\¸0&"+D ú-xú­4}s‰–W<Ñv“‚L^`ð¼#, S¢%©²Ý¦DKÙâ©­å)¸lK˜ yï¹f<øq§¡.Α†åÚ•ÖóQ2Þ.óa²Â‚%Êü¤ äJ®ßQç_‘ûÈJôÍöæ‡^öõ^©È+¡ÇÎR!c¢H ¬ÂÈ¡ ²%ÙÔþÎG/3ÿýôƒîS“aó› #Z\–û2µ:ô+Vr¼O<ñD+|^¬Àw +H«ŒAH@L`B´ÐdK­X±"–ÅÁ\ á¢KR:û­4}¢…¹:aa&Z]n9%ZÂÐ*»íJ´”–ÚRž#@"&:&¹ªeÂ’·¢r®œ/^-¼å殦(Š@IR…û &QÆ=‡„ õ°‹BK÷)Š€"™Š(©š£mƒzï é68ËËVÔ¦X1ÈH”ÓBÂw¤aC„ax¾Hªg!ZðvAƒ%ÈðZDãCtV¼ -¥é›-¼P€há9dhw!|ÎX]´Ê”h Bªl·)ÑR¶xjkyŒoH'„Ãnx¹SP8nâ:ÙÉ…+¬ç ¤!T„`‘ûgБy›É=Wn!W‚Êé6E@PìBÀM¦³vFë=qî=k‹t]ÂHw%l–0#óÚc÷¸Ö/Š€"B¨‚ÉeÕ*Bª(…–îSE { ôpÝØNVëiÿÊÕ=AÜEIer½Y¢RÈKè Þ—Ç~ÄÈÊ3wî\2$Z&”¢¥G6#¿ßEßí+RI‹%"ZJÓ7—h¹ûî»ÍYg%‡[’.Í™sÏ=×Üu×]vŸ-q¥å‹-iUÍg¶oß# ððÈuc„F;q‚dA¿….¹þ ÐóS‚bE"ÀD½Ò¢b¹–ò9êšâÑá"çNY&KèÕ@¸¨)Š@n#@%‚µâ±’ˆXR…¥š" (Š@~#°Á Úý]ž-‡÷mj´¾0”¯=ÑíOæÜ쥗ÿ^4÷ÈÞÓf8>|¸õ4©V­š™ý ô\sH!W¢Ò-»+ ^5( zNŠ€" ”=„m7Þj¶„µ^Ù /*¸d¼©ì¥”OÖÐQ¼á†Ì«¯¾Z¬ ^(蜴hÑ¢Ø>!ZÈܳ~ýzóè£ZÏM)ˆçÇ€L¯^½dSl™ ÑBá’ôMˆ^d¾ôÒK±^² ¹ÏæfÍšYžúõëÇúÄJѸŸ%KŠD†)¿jÕ*j)  DK `iQE UÜ”ÏùBäâÄÍ:H0W %]W2¼T„XÁE:Ì$+¤ ä²+aHévE@PD ‹ËÞÍ+ ë{ WZR¥J“SÌAõŽK*Õ~aa¡AÒäÈ#4Í›7·Ë°:.ÑÒ­[7ÃsqÙ²eæý÷ß7„åøu[ÂÚJ´=Õ¾ùÛãy AÂK‘V­Z™‚‚‘¤¿oÙ²ÅzëÔ©SÇzµ$]Q Z”hÑ‚"F‚„lÁ˜t ¢•¯“Jxùø3)á’Æ 6­”ÈQWg%,ˆ{™„áªÌÿ²š" (Š€"kø‰–\;?=Ÿô  DKzpÕVùB⻕D„ ¶|%£üXéwE ¼Þ„¹.Çþã«ÎŠý®(Š€"ë(Ñ’ëW8=ç§DKzpÕV84„(û%Œpd!CÂ^ú†¼8nºE( øÿ“p HWGÉm_ÂDÄVIP]WE@È”hɇ«\öç¨DKÙcª-*ÅТbÄ6á¤Ï?ÙCÍÒ…·èjŠ€"Prø?ÃSEþøãaP§N ƒIáºñŸÐ¢={öÏ¥¼\$¼(…fµ¨"Qˆx­x­Di¬(±’Q—N;£(Š€" (Š€Q¢EŠ@ €»ÿÖ­[í‘qã?ì°ÃòÞcÇŽæ½÷Þ3«V­²¡Gu”iذ¡iÚ´© {ºL„­[·Î†Õ¬Y3ްbò)„K:ô\ {0B2мPSJƒ€*ÜXË Ä1”X) ÒZWPE@Pô# DKú1Ö#(|þùçV„¤0®Q£F`¹\߸dÉ3jÔ(³qãÆÀSÅãgøðá¦k×®Åö£Mq 'Øí&L°ëLTý™%ú„•V£Â=îøñãM—.]ü‡ÔïŠ@((|ø­JÊåÐÂÞ%V¢ÐÑ}Š€" (Š€" dJ´dÞ5Ñå h.…HRçcÑ<`&Mš ‚ iÖ¬™%ž6mÚd cûN=õTsß}÷Å‘$.áÁ¾:Ø ,ÛÃô\øyA¶¸Ä ÙTÌ=n6-ßlßd¾Ù±Éì_¹š©\¯e*§¬eKˆ€**âµÂÿ~”¡©ÂG~£¥%£Ž¥ûE@PE@PÊ%ZÊSmQHÑᇞtÝl/xýõ×›çž{ΞFAA¹ýöÛ͉'ž†CXÐØ±cÍ+¯¼bËõêÕË\{íµ±Sw !Zb;½&¶„øb$„–»_ÖeB+KÙ¶dò|ë­·ÚÝ]t‘iÑ¢EXÑ ß¾gÍb³uÜú²Î@IDATÞ³·p¥Ù·÷˸þTmÒÆTizŠ©ÓyHÜvýR2ø½ñ;/¾'"U ù\R…õT‰¿’õVk)Š€" (Š€" ¤ %ZÒ…¬¶«$‰À¶mÛbé‹«W¯nøäº½óÎ;æÒK/µ§Ù¶m[ƒWHØyûí·fРA1²åñÇ7Ǽ­›ˆhqq”P È-ê…M€s%LcßW_šÏæ7Û^{È…!pï–‚‹Ç©—K :Å7 Âo bE~[ÅKß"¤ K<«Xª)Š€" (Š€" äJ´äÖõÔ³ÉB˜ðoÙ²%6ñ¯[·nÎO¾.»ì2óöÛoÛóœ;w®9âˆ#"¯Ü§Ÿ~jÎ8ã ‹QŸ>}̰aÃlù0¢roÚ%ås1Yf¢Ì A^´b¸|0ˆDu¼Åã%UŸ6oÞlðVÂs'Yá\BŸH^¯^=ÛTþ@²¬ÛÙ† I½*MN1x°T®×Âónñ‡7¯4»=o—ÿíÝi‹P¹º©wÉxsp«ÎR%¯—.™Âï /!U’†ßŠK¨ðûQSE@PòG€ŒŸ<Ïk×®mÇs©ô€ñ&cy¦§R7e3­?é8Ç\hS‰–\¸ŠzYá-Lò1&cèµäª½õÖ[æ×¿þµ==¼Zn¼ñƤN-—µk×ÚLDƒ¶uüDKµjÕÌ£>jÞxã óÅ_˜ýöÛÏ4iÒÄ 0Àœ}öÙÇá¡{ÿý÷›?ýéOV3‡ï|(>÷Üsm_É,ä“p¼lhÈ!¦]»vqmÆ'N4O?ý´AôXìC1EœФ›óAÔ÷ÕW_5}ô‘­FF*Bª›jÕª•4¹Ü8½¯Ù¹b¾-S©f=K TiÚ¶X}_}a6?9$V²¥éˆÅ怃rß« 0 Ù¸Ö(²L•L¡7ü"M=U@EMPE@È~ò“ŸØçý½÷ÞkN;í´”:Ö¯_?³hÑ"ó‹_ü":žRe\ø—¿ü¥Y¾|¹¹ä’K̈#ʸum®¬P¢¥¬ÔvR"@ºg&~ˆ˜èç¢ýñ´z,œÛìÙ³K¥oâ-½{÷63gδÞ)#¼uÀ+c"û¬`¡ŸsæÌ±áe²›m{ß{Ùly•ÝÜ ÷TS­Ué"åd ¡d«†|GðÝÁrAQ(‘¿ÄT"ã\å|¥,ĸ¤Ë$„GŽ#$ ëXjŠ€" (Š€"¹ ä¿÷;ïÚý+W³+þ± úr„'‚Òþ2aßKS÷kþך4ibžþù°C¤};:K¼ÙÄ–.]ZnzYîqÉ~Æ]MP\FÀ%KZŒß˜Ò©º^-QY…háÙ Aâ'ÐIFѹsgØ“0s¼ Å‚ˆÆ*d«ä… î¸ã)[¾N²ÚÄ …l—c!ênÙ²¥Ø±¤òÍ7ß#[’!Z¨§-‚^f,•hɌ렽P€h‘7›¼QNõ­r`£¼Æ÷FÞÀúóPH”] ·J¢åÁ#î‘.áFR„y´àŠ(-U“ož­[·ÚøXÛuë-ÒfË–-mÚè 6)Ï›’ãŽ;Î>Ä™üóðgbÏd–Imႊ÷ Fh’¼1ñ—-‹ô·ÎõÒB·ô7ß…¨7!h\bFö—´³Brˆ÷‰,ÝcJûþm‰¾K½²^J?i7hÝOØ$süÒ%¥©«DË÷O6-d ùŸ—Z·ÿL½$ó»×2Š@¦"à¾$êg*ÏÃTÊF—q^‰©ÚÎG/3ÿýô󦉧µdîËw¿û¢(JWˆ¼˜ñf2yþRÁ.D´¸¤Æ3Ï<ç#õX¢µò÷¿ÿÝÔ¯_߆,±Í­ëfÄdŸ$ !ñŒ›•hT²k©DKv]/ímž!Àä›l4<\™(áÕ"áÙ ‚_]t‘}x@t@>Ô¬Y3ð”ÐqAG…·„Íž=;Få©-d ¯“?ÿùÏ6¦Öß&9¿ùÍoìfÒ.óÆÜãºDËSO={[™rì±ÇÚòò‡p Hê»Ú0<ôqñ$t×R u‘z,qq9sf܃ÚÝ/ë{Ö,ö‚©ÛOÿ¾²Ä\úO›B(±î'hJC–”¦.(ÿ{f3@­(s=KÊÓ£¯8‰Ùg2P¥J•Š‚ áqy“ŒËþ‹•E/´«·ê\lŸnPr¨û4“cî÷AæÞëýûKòlò·‘ßwÜu²í6"¸=x aDË×^Êç5·¶µu¢—AÇ$œŠóƒ´=z´%¦ˆç¥L”}â'Û¾K{¸¿§Ä_ï’q©žœl~r¨—i¨h’T©f=Oµ~h|sÔ1³qŸ ’…üÁoIº – \BX”µ0®Û§dÖËâzRÁ@¶d9niˆi£¢—E´Tôy'sü}_}éÝ;†x$Kð›g·jÇuöÈÛñys_qÏ]×3¹×»½‘û½»Í½·&³Ý-“Ëëeý< ÂjÇŒ¾æë–šJ5ë[!\ˆˆ02Âõh)¸xœ©qrÑË&B´@den¤)ÃÿR<^üo]’!À ºh-ýêW¿²uÁ…ÉF¦¸xºMž<9Ff<øàƒÖ«­]»v6”Ž·’³fͲd0ÈRÞ,r? º_Ð6éÔ#d0Í9Š1Ø…t…àó-d#SÚ¿þõ/‹׎ð@t£Â²§!®xË-·Ú‚;üðÃíÀ[ô²%®å´‰=öØcÅÎ…DÎÍ&îEb„2˜?çœsdSÜòz̘1ÖM]„Ö!}N>ùd[/YoÉuc;ÇH\ÜüñVùA­qÇâK‘ÇÜÏcn‰ÝÉÂ$H-·ºÊ=CÎÕ~ðö&²x©p>L°£Œ*äL!Y˜Xò€.‰ñöyûkÓ¾{Ëü½‡ ,L|i}a¨›mIŽ—Ïu„xázKŠbÖ™„1@g½<~ó‰úÄ~ ÿ„àÿ²—Ér~Û 1‚ļÓoÁ@ˆö‘Y AiêâAÁº^ddjpÏB²…ÿ¢bl‡XáM$í ˆ‘¯!{ ?}ôQ{Ÿ”º, Áƒô¡FƒGœ»[×]wÉÛdõœÜl"Qú îqt½üß³9HcÄ%e)D˜HýŠXò|õ¿ŒðA„GP½Šè>Óï‰ÛhàŸL•¦Eº+Q¸¤r¢OKÂ~‚L¼‹y>¸×AD $ d ÞËÜ«…”ñ· I2wî\ûŒ tò…{8uƒÆ†üû' ¥îP’ ÑBq bOÕ ‘ôË Z¼Š¹u|B ‰DÝÏ>û̦hÇmà CR¾ó=Šhƒp¡]<ü ¢qòïô’Ä &H'ÏÛv¼VÐ:"6ÃË…p>Êðf’¸|lÑ¢E¶oö‹÷§C‡63„ ÷aΜ7Ä çÙ$ÆýšãK¨Ô”)SL‹-ìnBׯË£¯šÅ÷0¢…cvíÚÕ …7õO:é$K`Aá™G¨#( ™‚AÂÐ?ú‰ø8Þ2Gy¤=‡+VØì„5Aàãµã÷à³x m×ëb¿é9ÍKʽ¿ès›XÑÑ7-¶!ŒÒ®.“C ÈS„šQd‡Ÿ‘#…m—ýå¹L–øð߃ê•g¿õXe€{A_î°.CL-OP;ȸ¯ 1':Q•½ðèÆ!ÙŠ¤¾-<3 Þå)ûù#aÏ!Þ#D´ðRLHm¼‘ñîôÊ„1pÉ’åË—ÛtÏ”ç@wãàÁƒí=™2n]¾“*š6ðÌÁCGÌÍfäzäÈ~]–/J´”/Þz4E TêY\¾yóJL~©¬•E L`Ðå0B †„I†û +W–Û]²7ç ”>}ú˜%K–X¯Š ÄÞ蕤.^à0qâDóÈ#Ø,\¼õƒ´`bˆçK¡®±QiH¶îà·m\ÂXÓŽ€ !aJÙÃð˜yýõ×-!Ã6È<> ¾\‚r…0'2$½ð µF{Qxñ0 GÏÅo&L°¡A\WÞr*……-@ È™`N:µ˜Æ¡ŠBXòxöÙgÛöd°Žø6}¡O®R„ø#¡Mx½Îd»–Ï3=ÜÏîjÐ{j ÀvP=¶¹aGöž–•™ˆäwvŽîv~ÇLÚÂ,j?÷…l0þø-ŠüÖ\o-Êú ©¯KE\¯9¾Wñ²—U÷2—¡ÿt '”ûO{BfÛ«ÅÂ…ðÐEÈ º(kÙ²¥%œù]â©É=XÂL!¢!VðþãÅdµK:-køðáöÞg ÏÖ­[Ǻ€Ç õ <8ú,n9Èñ_|Ñz&Bœ‹!žÕxsºaD ¡½’³  ÀK&ð%44ÊðlÄx!â6DÕÓ}É! DKr8i)E c€hpÁâ-¤š" d7LÊ„x‘eÔA´ ñº;ቪ—Ê>!KÅa‚d.)@Xd+M]H¼SüÙd;ƒAÃ%î[~&Âx† H§ÇÝwßm‰ˆq¿æ- }ó÷T¼ZhƒA+^/.Ñ‚NÔé§Ÿî¯f³ˆ‘A>‰‡…8Þ, œ!y‚Œ4ÎW^y¥ÝűÏ:ë,»îÜ!Ô ‹ºüòËm›xÆ Ðd;ë½ðËŽ;Ú7xA ù)ô³Ÿý,¨š!Ô L úãÿXæ‹“Ì—¯eŠkzÓ¢@]È® sÓ¯Üþ Sí´AAÅJµ ò‚æŸÜG5œ-ÄFÔ9$»ß©› m~2$¨L²ÇÔrŠ@ª6~ë¼ñžàö÷ºVamàÉÒÀÓ˜KD²PBœ{÷eî¿<7yfA‚ ?†¦¿u¼þÄSEŽF´@T÷ìÙÓzœC>’¥ˆg&ÛIÛ̘ÿ'ô±ºt)ò”6¹?Cl‹F!Ú]6ô ƒ »†pÓ0¢…ç’„8áÑÈx}A<'!Œ{çô£ýHp ö;D¿±‚ºRb”h)1tZQ¨˜XpãeBÀC‚s:&YsvzTE@˜ºÙ´Lñ"d ¢µ"Îê?¶;Ps½(JSW•0¢âR ÈFmu\Tâ ƒ!>È@ƒl ŒsI»Áûã†T 6Ëà–9Ĥc§¬x7@®Üyç¶:aK2AÅû‡kÇÛΰÁ+LJâM*aWxa~¢Eô¸¤M–¼ MÆð6-td² Ñw<}x–ÅdÃo»f^i¾Ùø¶!ËÐ1·¯÷ä/F¶¬ÒÀÝ¿àÇæ€îEBüu+â;$VÐùõ|D (h¿»-Q›î~Öýˆ´%¿)ù.Ë’Ô‘ººT2o¶oòBƒ›],4fß7æÛÿí3ßîû¯Ùï€Í~þÀ˜ý+ÙТ:]’»r¾B´@*Š÷¢›|Â…gºx~ #Z(G(-á¨xMú OEH õïçŠ. ÷`Æö¡ôœ"ˆ¿€¯„ù‰ãŒ3B^ÄðÓ?4t+D ®é"”xûí·[ñÚÐFx§ˆ(pØ98Å#W]1Ü‚‹Ç¥”ÞÃm4pVR“¢ÈÎdÈÎTH™0¢'(„MN/¬ŽìÏ„%a‹þp*?A“ ‰“ ç¢}¨x>yv”Ù¶pz¬#¤‘¯ÑúBs`­V Òvoá*«áòÍŽÂX¹ÆCçz‚¹-c߃V‚ˆÄ`×{( 6,‘æ¡d–«ZµjÐ!C·}ðÁ6t2™Œ~:*x¶8Ц~n䉩“M(Ȉæ<[ýñ“ªAíø·)ÑâG¤dß•h)nZKÈÐïÚµËö¥zõꆚ" ( ñÂ`ÉZÔ„I#Þ¨¹ÂºB–D…êæÒ·oQúM²'0XÅJS·¬‰´dÕÁ¼A”¢Efxîãa$EG Ç‘pª«®ºÊ 0€MÅlíÚµ1‘^ÎY²¹Ç¢…Ê2Ê€œy‘mâÃ?´©¬¦ß’E/ ¼‚ ñEB˜p;#†ÐLX}kÑ[cR¯=bQRéÂ]7¶‹Í’lv >ê¶ï( 9ÃoÛïÍÕÎ÷G+Ÿµ o™dš zåÓc=JY#°gÍb³þÞ‹l³hAá©R­U¼€¬“ôÎ[çŽ7Û¿#e Yz$î…ƒ]¢…ðÈžò¡.JÇ ^Šü!ŒN]tOÐñ"Ü¢!q²¶ááé·N:Y¯=ž-ÔEÏeÙ²eVÿ‹ºlÃk”ç÷lÊ}ôÑG özè¡ö¾Ì±8∸æýD Ï$4ÅÂøB 5²ç¹Æ¸€!ŒðZÈ|DíɰdzA]H‘' ³ Zj(Ñ’^ZZÈ(x8lÙ²%ö@—›ªš" (~T ñ€1Ì [ðtA›"…‰ ƒJ7m¥ÔÅ‘ã?Þ<þøã²9F´”¤nY-L&¤E;7ì)S¦Äú)+¤¯&•&„çÌù»„GªD  ©<ëÖ­kÓ„…ÀHXz(xÚHl½{\—h‘4¢„õeÂÿ–!F!uDü.ô_X†‰£©‚æ ‚‹d(bòf®Kµã:›‚KÆE’-L†6Nïoö¬]l›<¼û(S«C¿°æu{ à'd‚¼vüeèv™[Þ§UR‚†ÿSC•÷Õ*:Þ¾¯¾ôÙÎæ››ì†ÆC_ôù¤½§Rç¥h&BŠ@X!Î5ˆŽ5qâDCf8ÆíÙ‰x>I–!îÓ<£1îËÜã×#˜Ž¡·Bìiž¾Œ˜K´pÿ&ÄCÛ‹ÿIÈŒ¾òl•P$¶‰áòì@8ÈaUK %ZRÃKK+‡nò€`’€^‹š" (Q0yr‰— aUÞìA0`¼QcÆ[;±iÓ¦Y>¾óÌM,-ì£.oŽ:ê(¾Z‹ª[ÖD tq9/w ÌàQZ¤x•p|Ì%’ ¾4h`px?È[9WÈUú%D ƒØ7ÞxÃÖmÔ¨‘­‹øëÇl‹ÕMÑÂÁÄË„uúÂÛDܾ9GÎ7ƒkR|b.á‘*ÑBýI“&Å2þ@~0xfpŒË8ä3(&œI¼YüÇu‰ö=òÈ÷¾ ö¤Ó"¿ ¤ô“–“½û{õêeÏ“mÔaÁÛSér-ð˜éÝ»·T ]B´~ŠçFïè#TiÒÆÓO¨o*yöí}Ä‹…†*Õ¬g šm÷‡6¬;JJÐȸ(¤ÙŒÜEêÐáDûÝ“J•Ð #†Ü6Óµîj³4¿mE¤§œ¿„m?ÁnŽÒj²„ó|á…Šéuq…ÄF¨ý,tÇĤ.ß]=2Ù¿iÓ&›ŽûjÇŽíý_ö ÑÂ÷ Ý.~ßòx]vëÖÍ’ßRW–ܧy^Ò7R;C¦`.Ñ‹þ~ì˜Ñ×|ýÑRKÊ=¢ÈcÎ_&l\‹÷Üú{i‹G u YñLˆOÉó‡"ñ褜ÔE+‹gaI*/;ß|óÍX!Zù!«›ßºÅc{æ™gâôþEz.u:]ã… •]qK!K»tC(ÝB®ÖÕÂ… cB°R÷ÒK/57Þx£[%¶>gÎ+tË·®-;<~“PZ< + 3<%yÖâÅÈ3Ô%Z^yå›4¨¾H<ï=”h Bªl·)ÑR¶xjkŠ@…!ÀCþ“O>±.ðt‚‰CEºVz`E@H+L x«ËG„û‚È`·‚܇âò®–»àåòp©Ò´(3Qîž©ž™"9D+–ˆhqCŽFŽi.¾øb©[’Ö™Ð"Žã¦hv‰–¶mÛš©S§šýöÛ/V•Õ«W›îÝ»ÛmïRS¢ÅÂÖ?J´¤^m\¨8Ðjᆌծ]ÛŠRV\oôÈŠ€" G â…ÚBº°„xÁkOMH„ÙžöìÙc‹•6ÛS¢c%³S ñÍ„þ$Óg-£”¼0 Ýß…áÙrX—!æ`ÏSÅõnÙ[¸Âl7Ñì\ñ½h§™ƒ[uŽì¢-"Mó„ b„É×_m VÿAÄý¥—^²z&Ò [·]»v†TÊBþó¿<|øp³`Á›ÍìCõêÕ“ªVP—0Ú01\ R/˜jÕª™É“'›Ö­[ÇêCˆôë×Ïz¤@ð Ï‚÷ æ-|ïß¿¿Õq!¼Û¼y³éÛ·¯Ù°aƒqÆØE´ÜÿýïúCúi¤ÔRG@‰–Ô1ÓŠ@V ÀM,D“Xx”dÅ¥ÓN*y‹€/Ü¿ Š£4^‰Á$ƒ]>B¾ä-xzâ¡ — ™BDD2´p9ìxíµ×Ì•W^iD¨@­ZµÊá¨zE ó {¸;WÌë,¤ )ã÷¬]·O–:‡˜ZúÅmú"dIûöímúeÆÄÇwœ%[Þ}÷]óå—_Z]•›o¾9&j+íH]2ý¬[·Î†÷%¢téÒ¥Ö“…²·ÜrKLLWê&òh¡ÜÇlzöìiÇí<Ϩsì±ÇÚíÜ¿ð”á7fÌÓ¥Ki:F´@¼ ñ"º2ô ryåÊ• Ü|дlÙ2V7Šhqï™5jÔ°2Hj©! DKjxiiE «à¡Á;øàƒ 7K5E@P²×âE¼ô¢úÏ`Ô%`ä­cTÝWzöz©ÿgõªÙ Qé[,»ÜIC¦-¿ûÝïÌÆmØ ‚²CE[R2ˆ¶Îo5[ÂzYµÉ)¦à’ ¦R­úaEâ¶ Y‚à,Yžzê)CHŽÞ"è—à±â7©Kæžõë×›G}4æ•FYøàëî?tèP6©)y‰¹»×,2ÿñî/{7¯2x»@ªTöô[ª6mšÆ9Y°#CT@lB`ÊÙ¯o"m¹DK·nÝ Þ—Ë–-3ï¿ÿ¾À ,ǯÛ"uS]t[ tŽ<òHÓ¼ys»L¶ž‘­Zµ2ÉV-VŽäxÓ0@ÛF-5”hI /-­dÜhÑkÁxË«7ʬ»„ÚaE@ˆ@Àïõ‚÷ ÛYŽ$ìˆu¾kˆe"äŒa´ùÉ!ž–B¼PͪMÚ˜úž¨e”HeP½²Ü–iDKÔ¹)Ñ…ŽîS*?ÑR1½Ð£fJ´dÛÓþ*%@6Z„÷p/TQ«€¨UE kàm#„‹„%K¾È âñáñ¢$Œ R´Ä{eÔ‹<—þ¢°Ôý=„ªMÛxo™[zËS¼7ÐK¼·Ï+½åbJD­<}…†ƒf•8¤ˆgÞKh½qFð‘ç!²A– ÑÂÛm²Ž Å€®A*¶}ûvÛ¢L¥®”U¢EÐ¥"9(Ñ’9×"›z¢DK6]-í«"PBx»‹ûŸ¼åe°ÊäAMP|Aò…0# =2&ÕóÏg×ý ÷^ ªb5ÆÇe<¿Þ¾Ñz½ìù.ƒ¡D‡Î•ÝKÄgΜiÝø'Mšdyä3þ|ë¢Oæ Ü×ÉÎѵkW›1áÉ… šÏ>ûÌ0#´éUÝ$"ZÐ2£-DjwîܫʳrРAÅÄ-c¼tÈ&òúë¯ÛP]ˆ &eW]u•uÙGsâeúôé±jV"¸‰=öØc6ä€r¸ûs.ü6ÙD÷×´ÔE âP¢¥â°Ïæ#+Ñ’ÍWOû®¤€À®]»ÌçŸnk0Q`Àª¦(Š@¾#ñ -^/,…”IÑ~/ê3Éfò-2©¶™Iå?yv”Ù¶°ˆ0¨Ñú+D™¨§÷e©ÓéS§K¸îȸqãÌC=dÅ#6lhþüç?ÛæI·*^™àHZVˆ 2…`xqÝ0BÀHKzúé§Ûïü‰"ZÞ{ï=óÛßþÖ ‹€Õ®]Û~Ö¬Y{9qê©§šûî»¯Ø Ä!!TÈ"Æñ!ôX"&ùÀXM ú ”u!ÍW_}UŠÄ–d™1cFì»®(Š@ù# DKùcž GT¢%®¢žƒ"$hµ0©ÀÈ@æfdsZLPœF@È—Œ)) 㕈ˆa’ži^‡„ ­W”V´RÍz¦ñ°yžîÊ!îi®ïûê ³nlgóÍŽ""ã蛇f ¢…†ÀàŠ+®0¿þõ¯mX)Tñ.‘Lz.ì¿ì²Ëì³ o¼D#:å”SâñÄfüøñö¼®¾új{<9I~?ÿùÏ͆ lÝaÆ™6mÚXaÛ7ÞxÃŒ5Êz¸P² ÑM± ¢úsþùç[1Ü>}ú˜ÁƒÇH:©«KE@(&Nœh Ô³Ï>;v(ÿ^è³ %Z²íŠiR ÀÀ"ŒA*nÑ,ÕE@PRC ˆ„ϘÔZŠ.í’2RR¼dä;Kñ¦‘meMÖìZ>Ï|ôp?Û|ƒÞSMµVE¤‹/j¹sù\³ñáþ¶È‘½§™ƒ[u,î-½¼4©däqíúë¯7Ï=÷œÝÔ³gOsÓM7¹»mØÑïÿ{«­BŠS±0¢eÖ¬YfôèÑ–ÔÁ{æ¨£Ž’*±åرc-i¾ùË_ iV1H˜[o½ÕÖ%Õë 'œ«Ã „Ï9çœcµe’!Z¤²j´ºTE »P¢%»¯Ÿö^HÞÊAܱq“VSE@([\Ïñ$t‰!jÊö¨Ñ­4a5 á ÉûbÁ$óå«÷Ù¯MoZ¨Ë$TKôZÖÜÚÖÖ r‰ˆ¿í´iÓb&.G}´mSþ ×‚— FŽ„È†-BjtìØÑ  d„áe‚ÝqÇÖ†u©{î¹çš»îº‹MÅ ÒÍ%ZŠA£E@Èy”hÉùK¬'¨Gà“O>‰Å³C´@¸¨)Š€" T É1A̸hìšy¥ùfãÛ†,CÇܾÊÝ[‡œ #[V i`ËUõtz*VÇ]¢… B„ùmöìÙfäÈ‘v3‚²•+WŽ+9Ó¿‘çÌ /¼óP #ZŽ?þxN{Ûm·™=zĵ%_ ÌN:é$뙉C&uý!ERåóÏ?o®»î:%Z\Pt]P}äe…ˆí¢áÒ¥KpÕ[o½e5fÔ£EÔ¥" (ùƒ€-ùs­õL8È@D&" Q\ÄqÕE@P ¶Îg¶ÎŸhw……ÕcÛÞžîÙvw2¡C-[¶4O=UÜë¥,‰ˆŒv[´ha׃þ:DÑ/~ñ «Ë²zõjÓ½{w[ôñÇ·Þ-Aõþñ˜ßüæ7êÑŽnSE ÇP¢%Ç/°žž"†Z¼•# %F,»_L1¬®nWE@È/\1Ü‚‹Ç™'_”4Û_f¶„µk×Îlß¾Ý 2ÄôëW”Éîpþ°oîܹêÑâ`¢«Š€" ä J´äË•ÖóTBà-oç0ù¨)Š€" (~\Ï”*MÚxZ+S#É–}_}a6Nïoö¬]l›:¼û(S«C0)Aò&Z X^~ùeS·n]óÒK/ÙTÍþsž0a‚™:uª ¯¥L•*Ulˆ2˜yóæ«»bÅ ó«_ýÊŠíªG‹Uý®(Š@î# DKî_c=CE Bˆ¶lÙbXb 8Ý”ž‘•u§" (Š@^!°aÊ…f÷Ú¢Œ@•jÖ7õ.ç……à¸@ìY³È>9Ô|³c“Ý•mHê•7ѲnÝ:«µB-ž*cÆŒ±Þ'ÒH² ñ|teo?™†ØeåM´Ð—I“&™ûî»Ïvëˆ#Ž°Â¶ˆÃ“ÕÁ\ˆ“Ö­[Û2âÍ"瀧 /ÏÎ&Mš˜M›6™;wZÍ3RFÏœ9Ó®“bZìµ×^3W^y¥ýŠ`n­Zµd—õž‘6ñ–!é§ÕE@P² %Z²ëzio´!@ºgIª!DiƒYVE ëØ÷Õ—æ3/ Ѷ…ÓžKíö}Ì¡]††ê²¸ TÑÂñ_|ñE3zôhK¸ýaýòË/7Æ +$å–.]jÆŽk³}ýõצjÕªæ˜cޱº/;vì°ž05kÖ4¤ž‹"Z jz÷îm ‹ˆ,Dwg̘!Uu©(Š€"%(Ñ’%J»©¤ÿþ÷¿æÓO?…!Œ{à¦û°Ú¾" (Š@–"°gÍbóù›³¼ôÍ«Ì^ŸKåz-LÖ…fÊ´SÞ»w¯ù÷¿ÿm?ß~û­iÖ¬™%L N’1ž¡¼°àÙ¹ß~ûÙ*’ŽO—çŸ>™fl‘6nÜhõÓ4h`>øà¤ëjAE@Šå6IDATPÌ@@‰–̸Ú E #صk—!å%FªgR>«)Š€" (É ñ–º9™úÙT±[2z衦yóæ]9r¤l騱£ Q ,¤E@Pr%Zrò²êI)%GÀ !"N]ߤ•K­©(Š€"› œKHaAˆæV®\9îDÑw!ìh÷îÝæŽ;î0ݺu‹Û¯_E@Pr%ZrûúêÙ))#à†í¿ÿþVWCˆR†Q+(Š€" ä0o¿ý¶MßL˜Ñ©§žjÅmëׯo³øáí‚ÀîöíÛMûöí­7 b¹jŠ€" (ùƒÀÿ†jYŠ =8IEND®B`‚Zelig/man/figures/zelig.png0000644000176000001440000003534213245253057015430 0ustar ripleyusers‰PNG  IHDRõ~ñ£‘:©IDATxÚí} lUוîÈBâ!Äc\êûCÌ>„J)¥”8·„ % PJåB)%.C)%@¸æ7¥LJB°CÍ£LJ3Œ‡áQ&bx”RphBŠxE!”A(B!dYÖ~kí½ÏõÅ\ãsÎý;÷Þï“–¶1¶ï9ûœ³¿³öZë[÷wP´Ǭqa[Ì¥± ³¸B(fE‰8ŽÒxŽÆþ˜Àyˆ2²ÝD2d+Û…Y:Çxò<î’IE"1ëÃ03À¼kx8&.jïCȤñ(Y3tà}ˆƒaãy´³3dÕ˜! qXå!ÛZÆ1ÞÇM²á˜% Œ!»ÚÞóŬfWc†€ûЉ "‰ól]q6VOÌp¯ça‹r"ˆÇ²*Ì‚@¬yD·ïÛº²­ë4NÄ ÷“y©âÆV“uÅ,÷ ³8îq ò8 ý+ #YÖæíÉãÙÌp?yØ¢†Hân òàïÇ ÷ã!-KÒž^¨_"7ž}O{ì´Ù6ÌdYsÈ6±ò@þþñ‡ä~=Onøô=íy8ÖT¯þM^ÈU"‘n˜=€ÆP"Ž›íãƒf>.×ýí]¹öÌ®öžG²À ”¦çÑ—ìdrÆUåè~R<÷-ùÿg³"øý[Wmvº~/¼€Ò$mÜŠ6ÑßcŒ#«äÜ÷~©âq³e¥ #åx‘l0f tˆ£‹‘*i¹wëª÷êô¶z¦úN¬á.ÙÌ(@Ɉ¶­ ¡$òà”Ý¡?#WŸÜaRuë“Òv86’•cVŠDÝC1q4ä%²ÎÕ¨‡eÕ÷•¿ú¯­rý'ïºÙºJZ±P잇-xëjir_sM ÕræöŸ±ÎÕ=麮Ǧ†ZÌ.@1HÌš²Åu§ÒÜ©÷`« ŸîNÔ{´ë:øwÙ4œ ‹b†Š“¬ÙÖÝäþѧ‘¿üè Uï‘ÅŒ«Ùõº¦ú¸:Á%ád75yˆ¶þÛt¶æPù°† ¸BÁ$¡˜8Jª÷Pý=ÖÎÎE½‡•Þ}d]q¥"Ž÷‰4R%\ïñØŒrí™wÒíï‘‹Ÿn¸Lã0\)€Àxª5í<ò>ZÚú{TKñÜ·ä’ÿؤÈ#žOÏ£ÍZÈYˆ+±­ò8.‡LÌ#4¦Ÿ¬ÙGþ¯=ËåÆŒõ÷ȘÅ„÷aõ"âø„æ‰zš>òû¯No«÷hªŒÅO74“2W ÂèFı¥}_óaó¾'Wÿe‡‰;ÔŠ@tuzÃj\=€üȼmÝJ®÷èóôcrű7óYïá¦ÝíQ!mpÊ.y×’ë=Xëjvý’¤¾æAµ†kdcprOQ²œt]§Þcʯ_’>Ý­Uqs/UâzŒŸVï»p%rO [Ãv[Ê.‹$3Z ®ýø@’Æýcý—ôuw\M€€¼.dÓˆ4­i¿>ºZ>úßQ}Íy8Õæ™°ä6·™6H›ä”@†pkÚäæP¬²ûÓýkT½Gû¾äñÆŽú˜Ç]þ~¦F"‘ý4 È2yô Ò8FÖšð>ˆ<žÛðc¹é³=YjK›í±á ²á¸ºY‚êkn‹ÕÉõOTÉ'k'µÛbj(¬±©¡™Èd®0@öd&ÙWŽT  Z?*×üõí¶¾æ¬÷peljD Ð òä}\qâ<>4îQ¹à_VËõŸîö·¨ëôû 9‰´‡âJd–<*É9ÛV\(X1²J¾°S f¡À/?ÚY§VÒç–áŠdŽ@6‡í¶”ÝŠ'úÈšW&ê ùÇ RïÑùoj8BP/\q€ô‰ƒû{L!»ëÈ”ô~²¯úã1rÕŸ·ß›‚[ vºá3qåÒD(f åz6‘Äjù^¹ìÈ-UR,Äq¯5àʤç}ôÅÄqò4g‘Ä‘ÉIë^”ë?}·­†¢Hb)b!6ðé}Ì!»™,’øí¹¶êí‘I,f;] iÏä1€ìš4g‘ÄG¦ “¿øÓ¹îÌ®{úšÇÛ-¼ñN¾ß‘Å6’r‘F´»ð@}¹¿GÈÖžGåè~24¦Ÿ\|`]¢¿‡Ÿ¢ÀE›òR,èB\‘û„Ô/Åàž@vçÑ’Ü×ü¯Ï•›>û šÇÍ¢ïÖx1^ÛGt£ã<…; sâàz9¡˜hv‚æ\iþÔŠirí™]ÅWïáÂÈi´ @'Ŭ"ŽËÎÖÕ×ÈóxtÚpµ²HbººVu9î±a¤M:ð>*Èã8—ܪߤoÊW7y¼Û¶˜ºÜ²zP¼P¶¯’ÎçxÝé†0î€ûÉ£'y;˜“§ì¾ôþ U,/±m«v›ˆd*î€{É£Œl¹Ö¹²:WÏÄg© ùÚÒ&ŽdEàí¸[î!Áq[N½GÅÈ>òÉW&¥ô:\×O´®#ÍñYOÜ1„m Ŭ¦ätÝþS¾-_;ùö=AsXÂfஞGÌ*';œÜªÏÓåÂ?¬‘ë?Iî,Ø€1¡Uÿ}Ý w¥L,’¸š¬54¯é#ç¾·L+캬 ï,=·ðÒu;­LÿœˆÒ&”4Ì ÙÖWÉ"‰\,¸éÜï°Mõ`qÅVkqPšäa‹ÁD7’ɃÛÒÞWôëÈÎZ¿t£0P®z»Ø¢‚ÆpØVzgB1‹ï‡.x2èl!©b‘Ää¶´â¹!rÕ‰·äú¿½Ûi¥xW‘Ä⛃*mB×´;Y”lÄ(§’Í#o3Nãv²LÜ«‰ˆãs¯’}E?;OZ\º’í%kqâ}' ’?ݯƒæð<<õLßœ+/„ëtLc¯^æ@ £ïM q>Yœ¼Ê÷iÉAóSíã¨óð465ìë”4l«7y ChÞŸ%[Äqò—ñ‰º&¶Õœ#rpk¼ÖO ,SRJ*dyöGž&×üõm¥°‹¸‡ûøU¥¿þ“woÐØët£y®$2¨¦9RýT¬­<ïDéûäù‰›ÉZcù6%×o‹V²fí创!3áYxrà7à]!§Xpt?Y=ñò•[¯2®÷pgk‰0¸¸rãg{T;ß5§vÊeÿùOrÁ¿¬–Ãçmøúèê†-ŽÓ<_ I´š:gY]ë­±£tŒBÚËØjb+µº˜ÊÖšÈHÖO”´ça•‡ô–I³4ÿú¨‡å‚߯”?Õ•æqŸ‰uE*œ¨ÈâÌ;Ê3Ó¦;0þê¿¶Êù{_•S·¼,GÕN’ßøÑHùиj>‰»5X®³¤ö(OcõÉ*†ñüoæËšŸ=£t¾Ø£¨0F¥ÏØy-d×ÈN„mUð·’¾?“lK€Ð÷àMP°2ÓQØu¶Q^x»V÷ö(Ö: ÇXqìMùâ;K•ýÀiÃa81Œ„‡á–(bVsR=²w™T×1FƒŠc=àQPà¶´ŽL /–ÿøCrê?½¬È#¹ÖïGQdý§»U-ŸSmã9}ëBǘ4Xö&²à ûÞO>¬Þm„ÐÙØjˆ÷yï‡bb‰®‡P‘ @±{œëÒYy›fôÏŸUäÁ[;]ÀGÞÅzÏàí‹>\+'ÄgÉ!³Ÿä u"Žñu÷^F‹Ê‚ŠY—ÉŽñn!c‰‘&ë©;ê"(òèR½=ÚC=þ“ïÓb»£}Ö‚«Ëà¸ÍêoÉ—¿R>½æGrÀÔï$t¼T†Ëm©.Àã¾Ð×+hä,¨þØ‚ ¤ÉƒÞÂù ºÕQ×}dÊ·å꿼•R¦$¨Õä÷fN½«Žÿå߯’±eÏ+Í®{¼ŒÎàŽ‡ÁYQûC:©`„ʆ²â†@VТx[e\ÑâÚï¹!*.°þ“ÂHä: >VŽi¬ùëNùò¾UryL¦2¥¸øQe’¹ÊŽÜ@©‘5NãX4FHE¶Ò/šbjT–Q¥ÝOþôqqpòàbF¥üqƒ\ò¯ËgêfÉA3G*4ÚRmO±¶×uò.Î’íä®|F®¾'Ï î€ Díá_ ™Œ+~[ŸñæOUc¨ ’‡³•¶QÅ5vË_þç9sûÏä·^%£O=¢< Öé ™$€ŽÌë é”ZîõÝw€ûm«jµÚméºÏÿæ%¹þS³mÅÅ‚í´ŸâhBÅ;øÿx'?çvTÞ†î™!לª—óö,—cþq²ì3~`›Æ‘_ÈNêO‘èS¡â:Ü?㒪Ya­*Û YRÞÉ£ŠìHrÆÕè%ÏÉMg÷Ü—®ë¶â<[tΠbâøÅ‘-òÙ säc3W[SìmtR ÞbŠ÷¶³H± €´É£»éùÀcE5‹'ª®‚KBº®ÛàfKœzËʶUß4ám¤ŠkpŸ©úæ†GÛB11‘¼pØiË‚DcV”l@4&ú—¶ñXQ®jŒÎs|ƒ{hpÝÆ/?zCU†?6}„ê|Èõxg‰,v¨ 8‘FÆú˜ØKÙ zÈ®—´Ñð\àIJëed©«{‰&fí!Âé–Æg- »îò³ÎE±¥ <€<º„bJüŽ#8pÆù‹?ýF½ñ'úz$Y¼ƒÑ­ÅÝŒ7$ê6ÿÛzùôk3ïQ¹í ‹ŠÏáªi§:ÍtÉë–Ň¾‘L”5âiJë^Záv®‰¬?$Á÷}‰YµôwZ]~ÞeÐy”‘Íp¤ÙYã‰пøÓ•Í”ëm«D6Õg{ÌÛó+Y³ø]αÑz7Mìfyƒr·í @  œˆ•,ޏ'/@ @G29¬;ש­ &îË­¤ÙSôëðÚ×ÃuŸS)ÎAñø©z9ëíZ9tî]N¤¦¶©œn}m¤Á5*çÍÖÛ0: òJÊrüÐ+‰ØæÁ.í’&¸žït ÄÖâòó@ @Jòn©BAÎ`bòØd”hsÑú•?‡Å Ùãà>áÿðÆ9hæãJ2åk5}’á‰1¤Um÷‘ÍfÙó|Î!=Èš@o†%=‚@Ò%—óM–¾b‹V—Ÿî#¡˜8ãH³³Mßú½u”KÜOvË•D?øõ<%dÈ[hãH߸mú{¯U­ZmÕ+£,ÿ=¶°°…U˜[XQla>É£/Kt(ò£3™¦¿¹ðž¾q×ZS÷ÖgÄ;ùžò8>ÖÇ«ÇÿYNZÿ¢´&•#û¨^)b·éXo£*€}cļ©•ºÁÉŒâÎÒ#(ˆmµº¼®  A,1~Øñ¡b›jììÿª˜8žßü’0u˜üûÇ«T€¼-ÆálY‰Ï‰<¶„u÷ÃòxèM DHŒ ô=·óqùy ‡UÖµ­aSeþdí$Uœ—Ž‚q(Ùw¸m‘ê#®bäq„l*=r3¦sd«‰HXJ¥k=ôÚ1Y+¥<Ò¢tOZšˆÛùÎPÝåç@J!ZÉv;%ìyÄ–M‘ñS;ïݮʔÑßãn85ç¥rÈìQª.“G ™n“Ë ™* ò¡·­•†D¸í';ã7€nÒ=wâiKw ËmÝJ;AtÀÕ¶½ÕoáþN/ó?§lUæI[S¾GS­Î“ãÜ7däOŸVÛT½ïϪº«Ä mk¡ñŒºðCß=½ˆHz²Ebb Ëáˆ!¯#ýîqúzž¸t·°\Ï{zAtÛª5…„y*W@ ¥I\e¾™껼UÄžÇã´¨s,➀y&RrMfÕÒÛåS+¦ëËUy‹ƒ/Á…«,j‹}D"­¾¼˜õ%Ù`Ìd.=´³°F’m¤ëözgF?· W§äÈCt£Ez¿í‡Œ8âÐ9cÔ¶{yÍï÷@´^+ö²Èaß§S™UŽÀa¨-Æñ Ù¢°-Â!ô Ò¢UNÔbZšýT Ó›ì "Ÿ™˜É y 9ªDW/ ôº±ž×’#ö<6ªâ;ÇóXø´ªô^wæD€{mZqM$_°o•8}„ÚKVÆ5äqÎ<Ž`.Z3”*«ÿúòh%=„ânÞÓ"èhÛê>Ïã[sF+σƒÚio[ÖÄÃAòåG«ú…ðvU»êqî¿Á­a_7 ªðÌ‹û=\ó8o!Ïe±ülaEÓô@ y$<ÝŠ–=ñ Ï#}òÐÙUyž¬ž4Xy7íä×Év„P úbU‰Y¥‘uu4ŠNŽy#< Kž‡êéñµš¾ò;óǪØÄºN<øÌ!& ®ùÙ¿®•ßyé{*%—Äa[·È-ÜØ^¨DWZ|vÓØìS¶ä˨m ÄLfž@r%emäa[å´pomó<’öÒ耹“måU^=éçØëX}â-9yÓÜD·Â¶8‡h éùn‰‹«øEªœ¬ÖŹulf2[âî: dÊóèeb ÍJÛêɾ²æ•‰‰þá¾B)¯CÇ:j7ÈÇf<®¼šDܶZÃZV}9z&Ê"e[ÏF9íÖ_¿ÎÔZ‚ y ÄmöÈyôÅ Þå…ãO¿ö#%“^÷ñ;¾É#n¼Ž5§êUÙÈØþí«È›Ãº²}®BA-P4¿â+îa«¢²÷1‹Ù%\Õ A^À^•ñ4F¨Šo^칓 £mÕ™Bnªí,ëØ­bßúñÕÔ)QÓSÛUg´z\…‚ZœªÈé·X³âm]ûãæœdŸðß*òèMÀz'M—=„áóÇÊ×þ²CɦûÍ´â¶ËŽl‘ƒgÕ´¯&¿I¶?Kpá"¢ß’û~èôBš÷-¼p™8Æn"¯2L²£ô™³s¹M”K)î‰ X?³UÅoS¯ë-2–àÔÁs3ÂÍKëMºÇviY’h(&Ušîè~²wM9±î] ¨j<¼§çrœ„Écή_È~Ï Qu#L!íu\¦ÏCA`á{åtƒ7/ÂOc¨ËA)¡E²»y½ ºçåŽ<’Þ&–‹m²ÿ”oËÚƒñ/ÛVm½Éw«FRß}yœü{ ÙuÁq•á¤I ˜@l1! …]òXÄü<’¹ÿ<ÏE”âoÎ½ŽŽ<³;œùC_÷Ê&äÊá–¶î=‘Qk[½ì\ÍãµåëºÕ™Ë‚õ@Œ’î ²ÃN¼£rtõQ?öʯŽýV®ý{;ïiää:ÞA^Ë¢?Æåc3F´ïȽ:jÂÈ¡.ïCðö“ß·1²­8‡Édàu¤iá=ÒÑþy¦ÄÕqd bÔÜx;'ˆNÁ^Jçq7 ×w#{"ÉÒÉχ@8æ@žÇb" ¦h³¢.VŽªž»êÄö9«?~ûök§vÈ5§ß&BØé®ÂÜ©ï8»[Îßûª|hܵmeþ~3ÙlYypмџ@¢éwEeŸ÷ÁÇ(.ßB¹E‹I)­Êt~iy Q“ÝäB¸1£¢·­§MßÊu%»C_¯¥yA/ —]ÜÁ °mÕ„lkoȾ§ýëáyËùóZYwzç ‡@Ø áö²Õ|Ô™À:Ç;8X>qÝ‹R{3މê×±é¹EEÜÓ|·ÚÓ¶u Ü“ÅÄ…l,ˆÏa½Ù]òuüIÕ¹ÿ¼Às¯“ÝëÉ‘ÿýIDÇxZ2ð9‡3=gŽ˜¢ËÏO? ‹• Ü}VÆÄdÕ͈¨´éô®±V¼Ó5N2Ϫ±ÅZåÅwþ³ù#³]՗ȃûw\UzV¶2V·]˜œB{ê¿?+ûõ™wkWþu»L&‘ºz”;zVkNí”ãWý0¡ Ò]¯¢¶£èȃƒóœŒ+Ï=ÍÕÃ"&ä9nSAÇsÎçñ·D8Èm«øÄ<úzý½¾¦r¹§©Vï¥þm«ªõAf›l«©X¿5 ŽÇÏm6•ïå™&wÇ!ÒŽx8ïLÈçEÁçõ¾­~_§â²3•¬†^F*³E¹¾K"ºcæô»·½üý¨yÁèäçòC ´xWqÌ¥ñBRï𻡘à,¨a©~gëß~W±ú¯o]^’@îWÑ]õ—·äйcT}G›–•u€Æ!Xr‹ ô M1pþÚÒÚb=xy‹ÑÉ‹û^ŸÇÍì]ö¹˜1Áp­G£‡šˆö6'Ó[X¹($Tb»;çH†‚èLâLÚ>çù&Ýç 9TzøÌ°!™ÃΖYf,‡[XZ†„ˆƒ\7®ðqã'½¨sßrþ÷ŒÎÔm_?³{ý«'·µ2èXHý}$²þ“wåÒÛå9£UÁ¡ªïPädíCa`Q’G•©Ùð“®ÛL Èù–)1o‘w|¤_4ožåi~~™©|^æ&}ó¾Q{Nƒ3E 9”2YìA\3m1E‚oø¸OÙÃl¢ë<.šF¦¨¹ÆSMýGKº÷œx ¼UE‹÷²¥á˜8g$BœN~Ÿ'²Ômúì¶³û†‘òEÊm,ò<8Þñóƒ›äÃÏ|#Ñ1>ã}îRãÖ•;òì>+Í÷DòüRaro{~‰Ù¨'ol„“æÑvåÚÉD%z4‡•èôûÏšz/÷(Û–hïÓˆVdnH;­»#1ñ‰îaof¡¶ß k¯BìVÕݶhÖÅz‚äŸÓ÷W¨ˆ‡Ïh8ÿÇ®šÞyƒHÄÄBt0]+é¾'_þýJÙoÒ7“ô¬Äeç ÞQ”qrzóÝ¡vyO–Z½Œú-,ßäÑ“Á¼·¸«÷¶³'/¢3ÁÄY/ÇEÇs'©½Š@\~n$#ˆ»û%-Ñ…â„§û4¦´Î6G³ðòa…^[l§Ï>¾ÔÒ[M¬µœ¾ž¬k3D˜Æn¡¤I ÙmdAÿÏõ“µ§a±ôÈœŠë¤äÒȽ4’ͧQˆôæ§ÿ{àʓۛ“½ö<^z…* Ô•åüy*¸KmQ’GºùøMY4‹AMÎcVTg͸;~[°¬ÈêÛp³@x™×ØNËYOôDÝÝç¥E :ëÊó}úz4‹Mëøosü,ç¨C„ã«Én›…ÿ ZÏÓxŒÆiÜoì‘÷å8¶ÿÌM²§ÎÂü›/N#§êV„Ò VÖŸûCÙ¦w&Q²á³ÝJÞ$úÔ#&MWpŸò“áBP‰üÞøãh¡òY¹«Š¶¦ îÁ’ÙgÝ·ÓUíÖH·bMLÄ‹âïEZ\†än «0*ÑuìAxõäc:Foú=rp{Ð5;èSg­ãˆî5®Òiw9œRÛA¶¸­hÛTq'Fõ½ÛúgX]è-áE<”…þͳ¿Ÿ°êÔ[7Ö}ºKþèíWdoNÓÕ5L…Ñ»£xÉÃVòì_˜åÒãÈÛ,ñ`œ‡˜êåøi±;Íq 刺6º=N#9¾$#[Xnæ%[XQ^8Ý}ž±Åå=º?/NdÈÙ °i(vÞóóÔYÝÄB¸G”Æ4Ž¢‘•jç™­(¶¹æ{5Di¬â­®lJƒìúzþúüï<·iŽ.ÔšV-šìгºˆ=0-¤¦‘9²;½3“:ÛèḿÊWGDíí¹ÏØánˆ™ð@r&e˾” ‘ÇÞ¨wI‘ò^c.Âë£)Y°Õx;Âÿøvïn#æ?µ  âPLlG°¼è dWÄö]«ÀÍo*rcé<®{8ö=Ñ7¬‹/EÝ[¡=L@V]辪dcUÛ¥=7[ÌrÒ$sÝg#C ‹9Ž-A÷@"Yô@L×Á+âFû´Õº± =CÇL£©f#êˆl«â÷<*É>0ÂÒãÈ Á6º©{øüVGۺ鹧Á»ž0>ŽÝ®¯ýl:âæs2Ú½“ÏóL ¶è¥z¶¸œ/î˜ûTÅnTýQgÇ<!²¨ ;a¶­î½Ž¥µdd§sãzîM`«È@oozîÁ`«Ú‹S&4ßv’EE¢1û[XVÚ[X” <HD· vëI±„Hm€žÃ‰îzÔÌ ÇD¯°-všm+.ÜŠ ó’ Ž.ZÚܺëÃóFÕvxœg£Ïó+¼1f˶’‘†Rv–<˜5ʵ'e+……ºOYjç«Î=À€y !rãxËÊÇ~h[• L¤·ík>ÔuÙnæ[êÃý[©8åSE¸ÇS¾ Ľúofz¢gA—ŽíYª¶| §Ì])¯ºQã@BºÿÈ,";fëê0w+ÄÒZäQé³…ª4¯-ó,Kã< Ïlë\ö·°ÒÍÂÙ ¢Ïöp7h¾Æè^eµ„+³…Ž –ƒ¿fQ¥1Š¥µdÈã@=™³Òî3[Bo¼—K…@èÚ\ö§^›Ã:XV³°æ{˜¯+AÚ‚uO ØÂ"²¨&»¢ªÌcÖyòBІ¶4È£ -2oDtÑ™·Js½oýQ4`2%HL\öQU_æ_þÜ}%z4C’ó¡c›ïa®I ¯D'Ò¨ Ûªƒ ‹#^GÚÒ!#ÏîWãª)âSk)çÜ•ŽùVÉla¥A ð@°…åÆó(WcªÎã&É|,­%C £miýɳ×±ÒüÁûíVyÔ[z¡[à·°" ŽŽ}‘Cp·° yÔ’×ÁžÇ=jCÑü²|sÚV=øì·'£ß»Iã‚%Í2½¹>ßV½°¨¹G¥ùå“@ÜΑ•!qõYÞ²°l1ßõyØ#˜ ìw>'ùÉÂ"ò˜Hö¥îc.öAߪd<ÞdûÒ¨4ß-PED—ÝŸ¯Òôbš9žÙb€ÏyÊ]%zrOôÌ×Ìõp@&ÐÜÞrQ‡“{„Ós+²Æp@äªlãØb{•懢·r·q~3®.Á—ŒÜŠ)f¯}²‡ûûK:—Qº ]>§¹%#S²×ÇUÎÀ²Zļ}3Í¥¹àÞƒŠ`q<æå¼i\ª’“Jt»MÊ$ ÈX÷y  ÙÓwyÜ9&ÛÚ¢·­TÍÇD,­%²(ØJ^ýªÏ`,ë/ )’ÅñÙfãKî^)’~ fûÑK ‚™ºJ×tœ@v;-!r‘ SR2 Ç=>÷WŒÆAsk^ÍÅ d^ Þ/9–sÙ"°krR^XŒÝ•ìqÁm?HŽd(ÙEò@ØûhÀ²Z*[WÜÅÎíÛLJ[-¢ìSû€B[(UÐ|vžË”Ý‹-XCɼPrÖ–€’ň½–¶ôÂð¾GaÐyžû®d{<sÖ d‚©÷¸X{N «7bM•æ|SeöQÄVâ‘Ç=Ì«´ÆrMËôu£è­}ÔG-…ÑÝççä¸'ºÈ^Otzyö(@9.Ï×x`D÷f—yß ÅD8l[—Œ÷±•æ%Cшû Üý f€ëdc[l‡‡…Òx@Ž}¸‡ã>ã׃,)s.ÏF\uöKØfºÞey¼ÆÜʶÙËË^V‚èDÝÉvª¸GLGWÁ’!ЍqÛ½Ö{è½hµxt+ò9šéi^bâL>•$ïc½‡{¦ëä®'zvê@̹ vzÀ¸¼Þ'ɪòwÅ)Ïmv<ò6–r‡ìó°-ci-ÙñWiÎÌ÷K…d½¼•Ft÷·áy>æþ¦m°ÛfRKÒø¬œnaE²ëôà6Æ<7 •—k¬kµ¼ªbg‰@lë®÷ ò˜JV†¥µèEÖyšÂJ¹¦O€ô8ž,¥`1=¬‡¼Ì‘Èö|¦3³´]ßfwÇ«äÁi|Ö ×ó’I¤“ÏKCž~™—çì(ouæøúr­ÖaÏm¶<1ž¼×±´– ˆñQÛ•üsª·þ½þ¥5_ªÊ]oôÜŸº&OÇZaÔbÝ^Óãi~žÄJ_LÑÎ^Ý|ÆúoÓrüü²rs`<“¾ÛKkñ#¢ãçÓ)™YjsFžð&¬È]óTl©,·Çi•›bF·ÇÙIS9À[ÝÊ@%º•U1•ÝÇ=fc¢c럣k<Äx¾2&#Aè‰ì›t…w}'+Ù^Pj•Öí·6<ÚÄÜ£˜åqq9I¿Í·#aZ§ñ®ˆDºfù¨“4üö½ùï‰ìh2sÄÝh[jW£V@ܤk Ï_oÞð2oQ;(×6¢3ˆ®º=>³¨,ˆ¤ùBà4”ru¥»…e‹DC)çç›@èoô¥ß=åå91Û^YËJ¤¿Ë5IÇLÛéí> HOt pɃn ™þß\¬è÷K¾LD{!^÷žOe;Õ3¢¥È/z<®3™þ£’äÍy}Ã第m™–ô¡¸qô7›2жøzðFúX`ã7«EªÈʶ&“Ñ9q&ÚHóXµ­žçж˜ÔÚ² _×.º©êgîå˜nf*ð[, ¥RœW7ŸÛEü‚±Ûˆ–¥q®¼cЋխé8®FÛê[Ò0la¾\kÞ^ŠÕy\XFx¬VN^ЦfBlÑlGòµÝ×cÙ–©­–bªDOqnc|÷űÕï-Õq O²ò|m…i±{Ö£4‚è@V¶8}Ö{ýÈ…c>öâ7;©žžêCôàMBÝ},,åf/|¹ÙÒhõv¾Êxa­Ì ”»:Xöë@Ú}ÏwmÄó<;竼– ÚQ/äÁêëÞ•®C׈Cìf<†4¶³¾yÈ·]}Ž­Šzo¸›ºÿlàyU4ÂÓèèMQ4z'dÁü®4>—–¡ˆký%1Ä,.ôwWC÷4c¥ÙúâmªùdäIŠ/}DzlqŒ ³’t޼¨ßÍÀ½v'¢ëŒ ˆëíPN©¿ñéiÐ5=È©ÛW[\ØÂüýõ6/þ‘çÆç¢B‹»8uÙ£»ƒ‘ëEnÒß¹hêLN˜ÇšÌó¥¼÷}ž¶ò˜ægºB>ç=Ño6´°pŽ,g³ÓHøéþeïfÓj—ó|=ð@2è$Ík_ZÔ an9N²2K÷VQôDwqžœ°°•ìV@®é GíÀÎD=1öÊýˆyx«"Z¬5çi‹3ÉN§ÄÜka‰œÅ@RœkˆŽ‰4·+°ÍéHŸÀ%=ßëóª…?ÀÛȼ’cª¤‡zG$³3™°ktL‹²ìÝæ.×ή¯"Oçr4O×ôÍAM»˜< {ˆ˜,¥5fdŽmÁï8×uõ~>MÅV>§ã;¼†ëžè™ji›­žè^=OÕÁ7rp=•'Iów€Æ)Že«ÛžèHãɬ5fx®‡›øÝ|œYz%G÷VIÄ@pþƒˆ¨ß÷]/âB˜Ódm-îH9ÀøÝz 1¬ˆ€GÄ:dnDX;‹x,$t¹¨D¹'Ù•¨¿†]~™fæ«d/ºæðÞŠ{˜ïÆôÒxE­‘sws]¯æJøÓ4¢¦ë=Ä%£rœÎvf‹ùgˆ4—“‰ÉÎÐÿíu»¥éEyœ‡|¦‘ù^ »ÇÖF²(OÏ©¾äÌ7zXÏÞ1µ Ÿ›Êò|õ©qyo1ÑLK'˜ 0Íßéä³T}Mmžæ£›ép#2[¥gsýÍMCò-ô=Çšéþ¸¥¶=mq‰þ}"¢_ù¡2—órȃW6 +"Ò¢­2µ&ðVÙEî¨ö´Õ~~¢ n‡cÒ[5ÿ“ÆúºÊF*£<Ÿç)Q‰ÿÎæ$ª NU/™átÝXe}6·Á5Æ×o¬" [©)‡ý1š¡nî#®)ˆ«…J&ZcXD/ œ=³¾>ѕɧŒþÑ zèÑx$¢…ÙÃXJ?3ÙFÌ$`î§2bš|E1kP¿(KÒBâÊö*" Ño¢•ôu…ÑNax·JòæŽË:X&³8-nÝÆÍð2(DtO·ÚY+0c€ã¬öàLÁŒgâc"‰žó›!þ˜5€,Ûþ¦±ÓlÆYq=òw¬œú+ܶª¾Eº5@Vßê§EmUðw×…]¡ŸÍ[e7Èœ¨íZ2g/®.@V D óÐ÷œ%Gåã8#º?I“ËãdBœ‹« M±E¯ˆ-îFm“¹Ôùx OD7N邹8N–€çt_\]€¬/Î.ßìuzls®åAè3ûz9F²=‘ l”2l‹Úž:îÈvß•¤c+SŸgº"vÚ™Q÷ayW 7‹ô³OêÉ‚v~Ö=-¿Ò£jóˆ]äôÆžØ"rYáíôÚÅúfY"5áÜâ´py\w<Ƚ²ÄGî¹”Å13x݈ ž%;ê½_Œøâ‰¹' ÓèÉSÿróÖÿ¡‘Þ/÷S¼gâ妻ä?Ç¡2ÉÐ< o$²€¥ÒÓèyÞ¼¹c ‘Ê«˜œ’¾ßW÷Vç¦SbvÔVª¹çÓèTy;_€6/dÚß11’ó&¶ÂÍøaØ1Zìip û‚Ù»›þç‰]غ‰Ët?ûì˜h%;µj>B"ÜÏüB[}…ܨ¾¶­É ¸ $¨8…ÚvR•çAó>nÑñíDµ9@p=‘*"-ô–ß±-é¥N$k£Ž›Ì˧¬<àÞKDòaTg;åËë¸AÇÀ*W °¼‘^d3É>Š&⮵³Òy m/‘ØD.2Ä•(l2a “×#ZwêF†="«ôwODt•û@Ì8@q‘7xª6[k¹W9ÙeÕÌɶœ¾2ñµêÕ!Ú¾§âêkNŽIÿ>KÆ…‹ÉFUb–J…TlE*½‰jL5:ëkÅ 1ìä1¢—ETÕ»O$2·¦Ð¿ÐÚV¶èFÖSŠÊæbI“ªHL„M<…¥ÚËsy\ÿ0‡(ê¼ :IEND®B`‚Zelig/man/figures/example_plot_graph-1.png0000644000176000001440000027564413245253057020341 0ustar ripleyusers‰PNG  IHDR  9\î' iCCPICC Profile8U]hU>»sg#$ÎSl4…t¨? % “V4¡´ºÝÝ6n–I6Ú"èdöîΘÉÎ83»ý¡OEP|1ê›Ä¿·€ (õÛ>´/• %ÚÔ (>´øƒP苦ë™;3™iº±Þeî|óïž{î¹gï蹪X–‘š®-2âs‡ˆ=+„‡ ¡WQ+]©L6O wµ[ßCÂ{_ÙÕÝþŸ­·F qb³æ¨ ˆð§UËvzú‘?êZöbè·1@Ä/z¸ác×Ãs>~ifä,âÓˆUSjˆ—ÌÅøF û1°Ö_ Mjëªèå¢b›uÝ ±pïaþŸmÁh…ómçϙŸ>„ïa\û+5%çáQÄKª’ŸFüâkm}¶àÛ–›‘?ÜÞš¯¦ïD\¬Ûª¾Ÿ¤­µŠ!~ç„6ó,â-ˆÏ7çÊSÁØ«ª“ÅœÁvÄ·5Zòò;À‰º[šñÇrûmSžòçåê5šË{yDüú¼yHö}rŸ9íé|èó„–-ü¥—”ƒăˆ¡FAöçâþ±ÜJjåI.’£[/ã]m¦èÏK 7ÔKëúR ÿD³‹r€¯Y«QŒOÚ-¹êëùQÅÎ|Ÿ|…6«¾ ³ (˜0‡½ MXd(@ߨh©ƒ2­Š_¡fçÀ<ò:´™ÍÁ¾Â”þÈÈ_ƒù¸Î´*d‡>‚²üެÓeñ«…\c?~,7?& ÙƒÏ^2Iö‘q2"yŠ@ÿ«g Ÿ|UP`þo@IDATxì|TEׯŸN¨)¤ „NèMš¢ô¢( (Ø@Š4APŠˆ€€€¨¨ÁâKAAAðEQ@:RUzÝoÎ¼ßÆ$›žÝ»wï>ó#ìÞ¹sgÎùÏîÙsgÎÌõ±©&    0ˆ@>ƒÚa3$@$@$@$@$  ÐåH€H€H€HÀPt@ ÅÍÆH€H€H€H€è€ò3@$@$@$@$`(: †âfc$@$@$@$@t@ù    0”PCq³1    : ü J€¨¡¸Ù P~H€H€H€H€ %@ÔPÜlŒH€H€H€H€(?$@$@$@$@† j(n6F$@$@$@$@”Ÿ    C Ð57#    ÊÏ €¡è€Š›‘ Ðåg€H€H€H€HÀPt@ ÅÍÆH€H€H€H€è€ò3@$@$@$@$`(: †âv}cçÎÙ3gôß_ý…+W®8µÑ›7oêº/^¼¨ë•ú¥½k×®9µ´•]¾|Y·sýúõT§¤]iÿÂ… ©òåàï¿ÿÖçl6›Ã9{†œËèz{W¿ž?^Ë :¦LW¯^ÕùÿüóäoÓ¦Mº?Sæ§,/ D—´õ¤,Ã÷$@ÿ°Û/ùÞœ={6];òoéܽKi»Œ²7iítJÉíº¦Ì“÷—.]Òö#«ß ;3WÛü´òÙí6_lbÚ$ºÉŸpþþûïqäÈ]Äž/\ì)£zÄÛ¯³—å«kÐu W·Õzçw",,Lÿ-ZAAA¨^½:~üñG§ÈôÇ躟xâ ]ßœ9sôñŠ+²¬ÿ§Ÿ~˜1c²,—^W^yE·³nݺT§<¨ókÕª•*_ŒSdd$’’’´1Ju2ÅÁ‰'ôõ={öL‘kìÛÕ«Wk5j„”ò‘GÑùï¼óŽî¿[n¹EFq¬Ë–-‹bÅŠaÏž=ZXùñŒGLL 8`¬l<”ÀÛo¿­¿cb3CCCQ @ˆÝ|óÍ7¦QJÛ•{#NÔܹsñÉ'ŸäX–´v:eÍš5ÓºîÚµ+e6î»ï>ÍbëÖ­©òÓäÄæ§½ÖÇbÛË—/ððpüòË/ÉU 'éGù ”Ô¦MÌ›7O¿û.ç^zé%},ÿ=ôÐC:oöìÙÉyr_§N”,Y29o\G€¨ëغµæQ£Faܸqèܹ³v^ºtéâyjÔ¨§žz ‰‰‰™Ö/Ž•”ýæ›o2-—Ó“¥K—F½zõ´!מ>ýôS=Z(zçËgîùÝwßöíÛë;ö·ÞzK«°qãFÌŸ?µk×Fÿþýíjé׈ˆL›6Më×»wo7|øpœ_|¿ÿþ»æ)ŽbÁ‚õ9ùX¾|¹vúd€BL죯¾úªþíg3m9ßÿ}Èì‘8ê¿þú+öíÛ§ÛYÓ¦¨¨(mÇeV©OŸ>º¬ØWéC___]\®‹Õ¶›Sði ºèX}!˜,Dà¶Ûn“€G›ºk¶©xIÛÎ;mjÄ̦¾d6u—kSÆBŸ/T¨MÝIÚ”seSÓÚú|ñâÅm 6Ô祜¤o¿ýÖ¦ [pp°íŽ;îЯR¿rõù×^{M—_ºt©M9¡6eˆô±¼*CnSSZ6åÄÙî½÷^/ÇMš4Ñ×*ƒ–\V›rpmÊ ésÊ@êsjZÙV­Z5›º³ÕÇ_|ñ…>Ÿò?5ògSÆÄ– ³ÕM…ØÔ‡>VSÖ6ÑMþ”ãmSFTŸÊiÔõ*'\—þüóÏõ±Š»ÔÇ#GŽÔÇ™É,z)ÇÓ¦ œ–YdRŽ¿¾.%'‘ÎÊàê¶Ôô’~UÎdr©õë×ë¼½{÷&ç© ›2ä:_úè»ï¾K>Ç7$@YP7¹úû£FÈtaå,ÙÔl„Î{ï½÷t^¥J•ô÷LlŠ|ßä{—™ÈÌv¥µ7j YÛT±¯M›6ÕvN^¥ ±‰bk•Sd?~|žìtZÊáÖu«8I}J ècu£®W®\©Õì’­yóæú½º1ÖçRÚ25¸¡ÏuïÞ=¹ ‘W…écµVÀ¦f©´mW7ñZW¥›:dSŽª­qãÆ¶^½zÙT„MÝDÛT̬¾Vòņf”Ä 7iO,ÛÄnÚ¯•kTˆ’í…^Hu¹]oáúôÓO§:§n4ôõbÇå÷’ÉõdºÉBì¨KqJä‹&jWkiw@ÅHJR Z´Qw½¶£Gê<1€â(ªi ›8fr½ ÐçÔ¬>NÏ•2RVòé²j ˦Fbmj:Y;§rîöÛo×çÄÐË—\Ýñëcq˜åXÚGVäYä“T·n]]·ºãÕÇiÿS#¹úü–-[ljdP¿ƒ"I-Ʋ©QM›i°©s›šÖÒçÅÙMûƒ™š™ÌjTÃ&N½Š·µ©;r›GqÅK’kþùg›8Ç%ÑÛ®§8Óök¥|z¨äÛoÄøÊõL$@Ù'`w@Å’?±Qò'ß'±’Ä•<ù>‹MÌÌde»ÒÚ±•R·Ý®©™&›Üìž:uʦF>õ¹7ÞxCË!Ž`ní´® Åï¾û®®{èСz`Bì­L.ñÛo¿Ù>øàmÅQ”Áq$%åÄU38º¹¹–4sæL},ü±~/ Ô ‘,Q#™ÉvLœ[±™™¥I“&é:„‹šyJU4=TÍÎéòÂ\͆¥*o? j'áúWNÁ«O¢“rä "÷"S2Õž2©/™>”© ä–i^ût±ÄÚWÊô½Lɨ»Q]Þþš².û{™‘$‹e$)à e¬ôû”‹k$C¦c”±†¡MŽY”v¤ŽcÇŽé•ÜÊàê©)/íªy›n’)Y%ÓUv™…¤Â… C~= $SXJ )½•óúDŠÿDF{ÊLfeÀuü¥LKxƒr¦¡FŒõÔ¸LùËùË,IÈôè)Sõêî>³âP#4ذaƒnKúPBìñL™^È“$@©È²„ÿˆÍ´‡èÈ{{’ï¢,N‘”™È©í²/¢‘ö%ÉqFÉYvZê—XG±5¶$‹Te¥¾=\IÎKH”„m© H’ØfåŽÈ©tSÊs)m½]? Á’8LiG’„H€è-Óàò'vZ¤bêÔ©ºL)šU’P35’ 5K¦Ã2+¯Xðì³Ïj{)v]¬$\Jì.“{Ðuw—·*qK²J:£$«=íIb_$þHbŽÄ!•€nqÒd¹|‹q‘˜Yð#Î]FÉî`‰q‘$í;*ΣIvC%‹–ÄI“8LY,%IÚ#$õˆÁSwÞ:_þ“øžÌ’,"Ä•áÒ¦ÄaJ#«¦xôŸº«Ç»ï¾« Qz†Gd’d7”²âÒž2“YÊHŒ”ÄŠŠS(qMŸ©îеáµ×‘Õ«½}ûkFåÅ¡gS‚îÅñîØ±#ÔÈ Úµk‡2eÊdtóI€Ò! ±‡öÐtNCÙSfv §¶Kì«$±™2P 7Ÿ¯žrÀÀîÐ9ËNK{ƒ) Å6ÊÂE±7jOr¬F(õ*r±)â(ª‘_ûéäW»ÛmOb3í¿/öxLa+û*±—*J;~b#%._…é˜v‰·[žÙ@‡½yµ·oMy.í{Y°);ˆÈo£ÄäKÛgjßÑ%my»ž]×36e )¿°­[·Ö— c,w•2ªg7„²e…liaZOO)5u¯ ŒÌ©©}‡)_nq$Å¡§VXq% _V¯‹Á•;l5u¹~íÚµzäOŒ•&qêÄH¨˜ÌôšLÎËŸ?¿^ %w¹¢ƒŒˆÚ“8¤’dq¬(£+ɾ—©>øÿÿÔÔ·~'ÛŸ|¥¨Ø«äÓ™É,ºŒˆ‘SÓèúN^.”ë’„­ ?€¬nwF’Ñ ÑKœNiGWô–û–3Úa$@ÿ::Â"3; #¥9±]âJzòÉ'õ¢ùþŠí[)6M’ÜЊÃä,;­+UÿÙm¤ Ò¶Wì£=Éâ"qå&~Ù²ez‘PzöRI‘Ul¥Øn™’Ù3{’­’¤¹^F7[¶l©ßË€‡°Û.³FbåwÂ>!7ØrCïŒ$+ÞeQ• „ÈÈ«ü>‰“,öSF´™ÜD@H1Yˆ€=Tb*ÓKjJEÇÀ¤Œ—QSÑ65ý¢c ”ÐqŒöÅ@êŽÕöðÃëØ#ehlj«}}z1 ÒžùÓñBêã¬_í±¦rN­<××J=Û)1¢²PHÊ*ckS£xÉAäÊ($Ÿ“ÅCÊéröX)©/m²Ç JýÊ9K>-‹ÔµÖAâ4•“¨ëRÆÐ!Tâ.e±•È$e%ŽTÞK\–¤Ìd–ØS ¢†ÊˆêxVeÈõu)ã¦tFÿ)ÇW·'±M)SÊPå@ë2ÂNbÒ$)§Së(²ª}S^Ê÷$@°Ç€Ú!¥WLb@ÕlPªS™ÙÌlWÚPùÞŠ´ÇŸJ ¹ÄFJ.±—òV£“¶¼ØéTÂÿÿØ`‰³—úÕ¬Pª"²ØS€Ê9Y4¤œFm×dqTZ[¦¦×õâ)5¨aëÖ­›MíÉœ¼I*UÓëzá§Ô¥ö)¶I¦$Ñ]lªêº‰»M¹hHlvf‹¤Yt$õJ›i“=TÍîÙÔà€^c`_t%eí‹>e‚ÈbOŒµ“pý«4¡:‰  ’¾{µß¦D"Sr§+£¢ÙI2Ò(!rG›2ÉÔ±L;ÉT¿=ÉHžÜíKýi“„È(bÚzÒ–ËαÜÕËÊÑߌ®“é&Ùr$£²™É,ç$~,£k3j3³|‰U’¸]­°ÒfVžçH€\O 3;Û%SÓ2umŸ’·K.O~S ’ ÛÙ“3í´½ÎŒ^e=€}'£2’/³/"«}{¥ôÊÊo‚„u¥—DG™Arf’¶dË'Qf2'Æ€š³_Ü"•Ħç|Š0â¸å$edhRR{}2 “QÊ,Ž5£k2ÊÏH·ôʧý!H[&3™3;—¶“ x.̾ë9±]rCžžÍ‘ið´6Ó™v:+òÙq>¥Ž¬LJ™Œ~䜳O©“Éüjþ>¢„$ G!dƒê”‹!ˆ…H€H }_«¦õÓ?É\Sà¼)ºB €÷à¨÷ô55%   S jŠn $@$@$@$à=è€zO_SS   0: ¦è A$@$@$@ÞC€¨÷ô55%   S jŠn $@$@$@$à=è€zO_SS   0: ¦è A$@$@$@ÞC€¨÷ô55%   S jŠn $@$@$@$à=è€zO_SS   0: ¦è A$@$@$@ÞC€¨÷ô55%   S jŠn $@$@$@$à=Lá€þóÏ?X·n÷P§¦$@$@$@$àÅüŒÖýÚµkX²dIªf9‚?üC† AåÊ•Q©R¥Tçy@$@$@$@$`†; 6› S§NűcÇЮ];MòìÙ³8uêÖ¯_ äÚ½páFŒëô5!ȱ+Mš4ÉÑ5, Ð~òS@$`¤ý4Ü À·ß~‹1cÆà·ß~ÃôéÓqâÄ >3fÌÈSï=âàFEEå©^L$à™®\¹‚[o½UÛÏÔÀ}RÓ~º=[&30Ú~î€ d???Œ77nDûöíѱcG§°÷ññA‰%ôT¾S*d%$@EàðáØ9s¦GÉlai?ÍÒ”ƒÜCÀhûéÖEH 4À矎;w"22Ò=ÄÙ* €¡Ü2*ž?Û¶mÓÓï÷Ýwâãã Uœ‘ €È."Û·oסVЇ: x·8 óçÏÇÈ‘#Q½zu„……áòåËØ·o .Œyóæ!44Ô;èSKÓ8xð òåˇ˜˜ýjÁ( ¤ À]DRÀàÛ<ßÞ={ö !!A/Îs…¬€r@ÀpôæÍ›zÁÑ÷߈ˆˆT¢N˜0sçÎÅÀSåó€\E@¶ÿêß«'Ξ¿€›j[Qµ êµkQ»vmW5ÉzI ×\¹‹H®…â…I S§NøhÉÇØ_ù\uîÔÿùχ© …öL†; 7nÜУžEŠq ‹3gÎ8ä§Íصk®^½š6û÷ï‡8¸L$_~ù%î¿ÿ~¼Ú¨*º$ÆêKú}ýêÔ©ƒO?ýmÛ¶ÍN5,C†på."†)Á†ÜN ÃÝðñÒÅhÚk ŠDUÆ_ÇÆ‚7nÇõ7±xÑ·ËG¼ƒ€á¨ìÑÙ¹sg½O_Ë–-Yú¿wï^¬Y³[·nÍ’ü°aÃô>¢i þòË/HLLL›Ícp ¡ݺuÃK ªàþ²%’ÏOoR Uà £ÃíñɧËѺuëäs|Cf àª]DÌ ep=6mÛá³ËÑfÈ.†„ë‹DUBë'w`ùÌÛ0`À¼úê«®„-x=ÃP!.¤ü°oÞ¼@pp0êׯɓ'#þüYvÊòåËÓ-#Ó¦\MŸ.f¦ püøq<Þ£;^n˜„nåâRœùßÛž•âèë‹®;áàñ?å@ˆf `ßEDB–h÷ÌÐ#æ—á½÷ÞÃkÖ£yÿMÉΧ]ê ÅpË`æ¬4hÛÁðÕeÜ 6IIIú/¥f2}.²„‰\E Åí·£E\dºÎ§½Í‡ÊÇaÅÁ?ѾM¬UOèb"3à."fê ÏåâÅ‹èÕ§?ª· BÓßu¦hL5ÄU홢ÿñ‡ï=C1Jé±Låéɳàeƒz&pwÞy÷þŽ)õ*fÙÄë’°eÓ·X¹re–eY€Œ" »ˆT©RÓ¦MÃêÕ«õÂ͇~XÏ*e'†Þ(9ÙŽ¹´iÓaqõ[ñÀÎHºŠMGàçÿîÆwß}—Qæ“€S¸m4=é'Mš”^6óHÀ)dt}È€þ˜\¿ øgYg±à@Œ¨YNO×ï?r4Ëò,@®& Ÿayl1wq5ikÕ¿aÃlظÍú›¥bÁEQºÎ£èÞ£víü1Ëò,@¹%à64å’ìÿ)ÑsQn»‘×e‡@=€»KÏNq]¦G…R˜¹k?&Nœ¨ø³}! ’€ 8cÙ÷1½]Dd/\&kè|oW”o2Á£²¥`™úãó—ßÄîÝ»Q¡B…l]ÃB$Snq@¹}N»‰åóJ@¦&ª•®—£ª|óù`¢š®0~ž~úiÆ'çˆ ;›€3véׯ_º»ˆÈN$eË–u¶È¬ÏÍ^zé%œýç"êÖëmIó‡".©úôé‹uëÖfû:$œðQÐÚrrA^ËÊ’Œvf4…’ëèí«à3Z%ŸWÙy½ç¸­qc=¶sÔ6K¹IM?Ù€º`ÆŒ¹¹œ×DàðáèW¯äÕÊiÇŽ©v›Ú¡C‡lí"’ÚÏŒÈxn¾üÞ(†ªm_FLùV9RäÜ©ßðÕœ8÷÷iåèZöLFÛOÃG@1…ä™]K©ÝE@ž“½Y-&ÚÚñÖ\‹ £ ÷¾õ&d4Æ8×y¡“p'´x5<ò(òMȱó)X †'¢HdEŒ1BÛ=‹£¢zn `¸êŒ)$7pb“LൟgŸ*¥œk-êF†ª ê‹ {÷îøàƒr]/$W]D$ž~ôèÑ®j‚õzÙïxþ‡ ÑøÑOs-uB½^xoîh: ¹&È 3#à–m˜d#úY³f!** GŽÁ… ôFô2RU°`ÁÌäå9È÷ßÇ ¤Ò9º.½Âcj—Ã'‹BÐ1‘€ÙÈ."2ZÅDBà®÷ ¶R;ý¨ÍÜ‘iûsçÏaíZÆæ–!¯Ë˜€á# vQÒ›B²Ÿã+ 8‹Àà~}1¡^%ä÷óÍs•ÕÔhÝè0<¢ö\\´xqžëc$[ÜE$·ä¼ãºuëÖaÛöÑ|ÀyR8_>?Ä×x#Ÿy›¾mš§ºx1 ¤%à64­ <&gxàÔ¶Kþè\&ÖiU?§öm¹ì= Z @§ÕËŠH »¸‹HvIyo¹ûxš FPHDž!”¬Ñ _Ín†ëׯÃÏ.Cž²‚dn™‚OnoHÀE$œcé˜ިªS[¨Z c"ð`·nN­—•‘@vØ7¢ß²e –,Y‚9sæè'!mܸ 6Ôï³SËX—À˜1cpîÂu”®ÛË)J +­ÝY cÇŽuJ}¬„ìè€ÚIðÕRÚ6o†'ª%¢lçRŽª‘ˆU+–㯿þ²3*c~Yí"bð®zææeJhÆ„¦¢ÆÓÏ7ë§½eOBíîxû].¾Ì./–ËާgKy6-["Âç&;aáQzjWP£ ‹Gàá‡ÄÇŸ,K¯óHÀ%¸‹ˆK°Z¦Ò6mÛ#"¾!ŠÅ7rªN±•ïÂO+GBVPºtÞt:U8Væ±8ê±]GÁÓ#0eÊlüj->¸£&|||Ò+┼‘ÕñÅÊ•u MV’ÜE$'´¼§ì_|o7mAR«œ®´_@ŠWhùì1‘€³pÔY$YÛ |ôÑGxfø0,iY/O{~fGmŽÇÔóå¹">;ÄXÆ™¸‹ˆ3iZ£®Î÷uE¥Û‡«ç½GºD¡’Õ»aåRçÄ•ºD@Vêq8êq]FÓ#0jÔ(tîÔ ÓWC½¨ÐôŠ8=o„]©VÄ_¼xÑéu³B È.Þ½ûÀæW«éª$Sû7nú`áÂ…®j‚õz: ^ÖáVTwêÔ©xþùç±¼Í-èc˜ŠU £F±PôéÝÛ°6Ù ¤$pàÀ¼õÎû¨y×t—†I›ñµ¸ç'¦lžïI ×è€æ/4y,æ°§†bÖ­ÕQ'²¨á" «^«§#Éö8L$@$`4–­Û¡Tµ{Q$ºŠË›.Yí~ìþå> Î夽£: ÞÑÏ–ÔrÇŽèÚµ+¦5¬ŠŽ¥‹»EGyF|©‚Áxúé§ÝÒ>%ð^ò¨á}û¢BÓ‘†@È_¸8B‹WÅȑƴgˆRlÄm耺 =Î yóæ¡jÕªè])÷&:ïIG¹‘é)µß軳gåæR^C$@¹&ÐwÀ“Hj9þÎßï8#¡âkuǼù(âŒø0?ûè€fŸKš„À×_î=¤F>“ð¼zλ»S˸Høß¸7ÞÈÛs—Ý­Û'ð½zõ‚_þHÄUíl¨Ð1å[áŸþØa&È S8 ¿¨˜’5kÖ€OñÈKWzǵgΜAû–-ð\ÝŠx \œi”Tµ4¦x¹Qó©§žÂÙ£Gз‚yF>ízûùªÙ’2h=‹¯$@$àtò8Ìu_o@¥;F;½îìVX ,¡jÕýðáó{ Ë‘€ÃÐk×®!,, QQQhß¾½v:CCÿ·qx||<:ä $3H`ÿþý˜þÊ˘«±¤œ=3¦îÊ1ÞúÝfŽ ˜±s( X„À½÷= ¶]êŒ"î½O¨×ïÏã¦ôùX¹E ÃЀ€=õÞ®];ó9iÒ$­ø'Ÿ|‚>}úàþûïw 6jnw¶i­V»—@ã÷úÌ.™2…  ’Úœ^žÊÄD$@Î& [Ïý¨f Ë5âìªs\_Lù–¸xé –.]šãky ÃPitÚ´iz19ÔIFEeU]Ù²eíY|%M`Á‚8¨¦ž­YÎôDz©ØÔï¿gz9) up§uú2+Mz¸;j=ˆ ˆ¬Šºü¼O>$Öï…a#xÃírØmÀ-¨°”GëׯǢE‹°zõjDFFê…IåLµò@à‰Çû`t (à—‡ZŒ¹´MÉ(üõ÷ߨ´i“1 ²¯#ÀEœ^×åZá]»va箟Q¶ÁÓ(UóAìý}/$.•‰rJÀ-¿èóçÏ×# Õ«W×ñ —/_VOs؇… C6·Ç„æT–·‰'ÂÿÚt+[Â#” ð͇Î*T`”zRÈšµk=Bf é9R.âܲe :wGj›9{öl½ˆ³{÷%Í6‡éø÷#0$<Û׸º``þPÄU¹ ½zõQ[)®vus¬ßb w@å™Ù²rîûï¿GDDêi„ &`îܹza’Å8S\˜:q¦ªÑϔṬʰ˺ª'3uø|£aí±!ï!Õ"Îù¹³â§áÀøñÇŸÐ|ÀlÓ©Wæ–~øjv3½9}¡B…L'2/ÃÐê‰1ïY¤H*±±±Æ³J2*vöìY‡b‡†ŸŸá*9ÈÁ çíºŠ¨ïmKE;§Bƒj©^…U¸ÀÌ™3õÂ:ƒše3^@ å"ÎeË–!å"Î'Ÿ|Ÿ}ö™Pð>»w %*·GpÁHÓ)_0¼ ÂKÖѶîƒ>0|ȼ ÷Öüýýõ´Q“&MвeK„‡‡ãÊ•+:†Dž†”¼eŠ>=GSò|}͹Ey?æ•lúËS1µvyó ˜‰d©§4½ñúët@3aÄS¹# ‹8תðY´yâÄ ºtñâE},ø`²yêÑúo6â¶ž_˜V±rMžÂâîÃ{ׯ§ûÛlZÁ)˜[ ¶Ã† CëÖ­±yófÈÔBpp0êׯɓ'#þüY‘gগ.\˜îÈjze™gnS¦LAí&Ú”Š2· H×¹LqL]¼ß”A)f“@Î dC/áKŒ¡Ï9O³_ѯ_+UÃJ›VÔ°Øš(‘ˆþýûë™Ó JÁLEÀ-¨HJJÒ)iH|¨üåËç¶Åù)Åá{7˜6yFTOt£yk:&$‰E é)ÒÑ£Ý÷Ä’¼iÁ«ÍF€1ôfë×Ê#ý½xÉ2Ôëbþ©íŠ·À»ïwÇôéÓùîÚ…ej7•§7dÈŒ7Î2p©HîÈHö¥óçpOé⹫À$W= FAç¿ûŽI¤¡V U ½¬’Ï*ÉB¦«W¯:üɵٹ>«úyÞyžyæŽEX‰ÚΫÔE5EÄ7Dþ¢ñèׯŸ‹Z`µV#à¶Ðô@ÚêÓ;Ç<ï!0jØÓ˜T~>~g|4žÝò_®õž®Ë5uF }ÅŠqðàAYÅ)­P¡‚C>3ÜG`æï lÓ±î ‡-WnöÞz§+^zé%†å7wÛèùóçSmDÿÛo¿AŒ«ü1y/íÛ·ãСCxP-âñôˆª¡?~¼§«BùMD@bègÍš…¨¨(9r.\Ð1ôòÝ)X°`–’Š­•…ŸiÿjÕª…„„„,¯gc|øá‡¸tåŠWlkLƒNh%¼d=©†nÝtBm¬ÂêÜ2šQ=7¢·úÇ-kýô}]Ë•ôˆ§e­ Ð)!³.HÞ.';×° dE€1ôYòüó#GAÙ[úª=Ý6N”+ˆUZŽÇÇsZâøñãú&)W•ð"¯ `ø'ÛD/OñX²d æÌ™£7Ÿ— ”6l¨ß{y*é@@ö€Ý®PЧR)‡sžšÑN­â?¨Fte›&p%ÆÐ»’®±uËc7%L¢T®Æ6ì„Ö E”S{–Þ‰ví;8¡6Vae†; Î¢·r‡x³n²…Gƒ˜ÄÌz+.Oá$ÓðÊè-Æ¥|o+–.Á¼¦Õ­£ÐÿkÒ¹t4æÎÿòd'&p‰¡ß¶m[òFôñññHLôÜmËœÁÄ*uHß~»é;µñ¼çÆŽæC¥¦ÃÐõÁî8}ò¨Uº†z8™€á# "^ƒèÌ€Õ™€€<„ ,Ðõ£ÂL sEh…½ûöëmoœ[3kóFC_¥JÈ‘V¯^­Ã–~øaýpì<ÊØ™y’΃Fhñê¦Þx>;<êôÀuŸ 80;ÅYÆ >jgœ^½ý_½€é#/=R¼@0â …à7ÞÐO ÉK]¼Ö» Øcè¿W±Ò©`L˜0A;£üÁO…Åã>\°UÛ½îqr§ØÇÇ5;ÌÀŒYwBœê’%K¦-Âc/'à–P/gNõÓçZŸU î.mÝçXߣVÃÏå¦ôizž‡9%Àúœó¬ò³gÏÆM ²Ìmž%xÒNB©ê÷ãŽæ­3(Álo&à¶Po†NÝSxJÝw¯@_ßÔ',tÔ*.Ó?Ûl!¨Š;0†ÞÔksü„)(£¶^²Rªtû3ø|Zm2ÂÑy+õlÞuáhÞ²†<8|ø0víÚ‰îå=ãùÌ0T -„ |>X¶lYfÅx޲$Àú,yd;vàÈÑÃ(Yí>”?#¡}ýƒQóÎixzø(ýT¸ŒÊ1ßûpÔûúÜT?1`š•ŒFtH°©är…0íâc0sút´oßÞÕ³N/"ÀzëuvÿQ2éø°œrQ‰·#¼T´mw'¾^ÿ•åô£B¹#ÀÐÜqãUN *V¶*—rBm毢u\1lß¼Éü‚RB C \¾|Ym½´¥ëõ1´]#«Úz26)¿þúk#›e[&&@ÔÄcuÑF8µB¼FDQ««ªõk†Ôs»åYÜL$@$`'0|øpª„‚áeìY–{ *P å› Â}]øœxËun.¢šKp¼,ïÞœþ:%Ysë¥ôèøåˇF±‘|*Rzp˜G^Là÷>Déú[ž@™z½qöŸKxíµ×,¯+ÌšЬ±„ ,\¸W/]D»RÑ.¨Ý¼U¶WÓðëW¯2¯€”ŒHÀPK—.Åå+×]®…¡íº£±|¾þ¨Òb FŽëŽæÙ¦ÉÐ5Y‡x‹8£‡C?µñ¼¯ZîMéŽÅpðÈ>É›:º’@&F>óJ×íïø9.Q¹l¾!;–Nh& ¯8åŸx¯èJÏQòÇăñˆÅ·^J¯G"‚ÕS‘ `æÌ™éf €8zô(öìù¥jzW\d¥ÛGáÅ—=ÿiO^ôQu‰ªt@]‚••fF ÿã£K¹8 ðϬ˜eÏÝY* >œoYý¨ @ö 4ÑeoGPHêǪfïjÏ-U¼b[ܰùãõ×é„zn/æ]r: ygÈr@àŒzäæ÷[· _¥ø\e­¢-Ô4ü¯;wZK)jC$cŸ®X…„:åø:+\P®ñ`ŒŸø¢T¡¹$à6ôˆŠƒÛ¶m[*±8€_~ù%U¬E _ß¾h¸‚ù­¥X´©^W®^Åwß}—ƒ«X”HÀJf̘¿ü/YßJje[—¸¤N8uê÷Í61ët‹úâ‹/¢yóæxàкuk\P{#Júâ‹/°`ÁëQ¦FÉV|¼ƒ“’½ñš©ÕÿÜŠÄ{Ÿ:“ÀÿL™: eê[wãù¬úÙ×/ µºáÉ!OeU”ç-JÀpÔf³A¶Ø©¦ e´³nݺèСW[ô–R­1cÆ & êD†¦ÌöÊ÷­b#°áË5^©;•&o'°wï^:x%«ÞëÕ(âk=‚~Ü‹/z5oUÞpôÆj» äS›rK’§áÔ¨Q=ôÄ9e².9¯¿êUÏgÖ“·+ô؉“4¼™Aâ¹ 0„)C4qBÅVlÿ B!¯«„ )Z¡1•ñÌ3ϸª Ökb†; ~~~¨Y³&Ú´iƒ“'Oj4/¼ðBCCµ3jbV->ùä\8wwÅÇä¡ë\Z$0‰¡…¸“uºÔ0MÂdj—5ôÅ—ëQªÖ£.«ß“*.UóQÌûp±'‰LYDÀpTäž6mäÙ·ÉjLŸ>S§NERRRrßX‡À³jãùÞ•ã½nãùÌz°M\$ÌçvL™1â¹Ô”š‡'Iì·_P„•¨å‰â;]æ˜ò-qæÔ ìÚµËéu³Bsp‹*HªU«Ù|Ñ¢EX½z5~ûí7téÒEǃš¥Ë)ƒjÓù=ªV{2ýK@¶cúm÷ÿÍà;È‚C˜²ä§_zåuõ䣞 ©1"úú#¶R[5 ?ʘÙŠi¸Å¯F}ªT©¢GBÅùœ;w.~øa½"^ö‰d²ýû£y\ÂÕS€˜þ%V7®_dž þÍä;È„C˜2ã§dñÑAµø¨D•{<@ZãD,Qõ>|ùí qÄÍÑ’ŸÑbܼySO¿ÿý÷ˆˆHýô‡ &hgtàÀF‹Åö\Hà«Õ«°°§›Ò"–Åx-ÔvL~Ò°aô§yLé&¹iIÂ$Ÿ¡   t¯a¦9 ú4bË·@@psd)"J5Ô{#¯]»M›65‰TÃÕ w@e ),, EŠ8~ccc‘ÐzõêAV¦Mþù'Ê•+—6›Çn$ðÒK/!<еŠu£æmºu‰ŒY·Ö¼R2S&ylj'P¸paÄÇÇë&S K¡’ ¬\½u:¿Ÿ|Ì7ÿ# 7ãqU:`üø t@½èCa¸êïïÎ;£I“&hÙ²%ÂÃÃqåÊÈÔÄš5k°uëÖ,ñüñǸ®¦.Ó&YY6›Çn$0sÚ+è]©”%0wÓ·@¯u?௿þJ÷¦ÌÜÒS:w¦‘#G¢zõêúfþòåËØ·oŸvDçÍ›§wq‡\l3s³gÏF>¿„ÇÕͼ —ž­|6/~ÄKµ÷Nµ w@ó°aÃt¼çæÍ›!ß Fýúõ1yòdäÏŸõ#£¢¢Òí-™’’)&s…e‡ÕHu§&•Ì! ¥(àÊáEñúë¯s/<öÙDb“Ùz$ûòLyñ”®Ó#ûxYɰ¸:j`é†~"b³fͼL{ïT×mÞšl·”vË%1®ògߤÞ;»Ä:Z?ýÔSh_Üö1ó˜íKFbÉÂt@=¢·Ü+¤3B˜4hnÓ±cÇP¶lY÷*hÑÖ=Š}û÷¡Õ]÷YTCç¨U¢ò]˜2åEÐuO³×b*Ï`È!zIžŽÄäùÖ©ÅGïÞZÍóq±-âŠáÅO¿uq+¬Þ œ´páÂtC˜ÚµkÇ&}H~Ñeš 0?Cœ☊íñí’Ç2+Âs"à6ôüùóAô“&M²ZïVeÁ‚€ ¢Ã¼D6´/[¤ øùbéÒ¥Ü7¼¼½H^C˜Š/ž.ÂÀÀ@ˆƒËä|Ë?ûÕïšåüŠ-VcxÉú¸zõªÞå;ƒX¬sÓQÇ-(ƒèÓé ‹e½øÂDtãÆóÙîÕöꥳfÌ šmbÞ]!LžÓÿ²0ì&|Q,¡‘çí&Ie5¼lJ/ëA耺© lÖp”Aôö®›š’;ØŸÕcÕfuhì& <¯ÙÖjþ± ›ëLÖ%à–gÁKý¬Y³ ûyÊ.\¸ ÷ݾ}; ,h]Ú^ ™<ÉêC‡pwBŒhë\ï*‰ k¾pn¥¬ÍRì!L[¶lÁ’%K0gÎýøâ7꘹¹sçZJ_OWfÙŠUH¨ÃUÝ9íÇèŠwaÕšõ9½Œå=Œ€á# v>éÑÛÏñÕs Œ3µÕtrhP€ç*á&Éo-†³_ý€Ý»w£B… n’‚Íš™C˜ÌÜ;©e“'!_"â¦>Á£, D%6ÅÖ%§õƒjJ–,™eyðLns@=¥ÎŠÀ²Å ñTbúÛ¼du­·Ÿð͇¥¢0nìXÌÿðCoÇAýÓ!À¦t ˜4k⤩(]·§I¥3·X¾~AzßÔqãÆáÍ7ß4·°”.×Ü2Ÿkiy¡© y²“€¬a²Ž€Z¯OݦѪeŸàÞ„h·µo…†ýòåC‡Ò±xnô³VP‡:€×…b_®ýZ->âô{^:ß/ Åâëcüøñy©†×š˜PwŽ'‰¶ÿ~œ8}-8ýžçnë¦bh7®[—çzX €ñF…¡%Q$ºŠñ[¬ÅØÊñÑÒÓŠêØ Ðµ“àkžŒ=·•ˆD°z¦9SÞÔ,V…üòaæÌ™y«ˆW“ N`Öœw‘xKÃÛµbƒ2 ÿçñ#8zô¨Õózè€zýGÀ9Ö®\.¥¹÷§sh½+Åcšz¢ €çX¾|9Ο»€˜Šm=GhKêT‘jþùçŸ7±”-·è€æ–¯K& ûVžùëoÜQ¢XrßäÀ½eŠãÀÁzOмÕÄ«I€Œ"0ôé(S¿äi>LÎ!›t–|ü™s*c-¦"@ÔTÝá™ÂÈô{ó’Qôåô»³z°H`î.Sûs*ÏYLY ¸’€ÄÁËöKñ5te3^Wwtù8yò8„/“µÐµVºE›oÖ¬VÓïÜ|ÞÙðûUŽÇÆõëñÏ?ÿ8»jÖG$àd÷í‡ØŠmîäš½»:?ÿüˆN¼ Ï<óŒwƒ° öt@-Ø©Fª$ûUž;·0²Y¯h«l‘¨†žñYÒ^ÑáTÒc \½zUm½´^M¿÷õXÌ,x\µûñÙçkÍ,"eË: ¹€ÆKþ%0æ¹çp—ýôÍçóo&ß9À¨e±âã¥8þ¼ÓêdE$@Î%0tèP*V…#+:·bÖ¦ D–iªlà9lܸ‘D,D€¨…:ÓªlZ¿Õã#™\C JXaÔ‹ Ãý]îsM¬•H ÏÞ~o> Ìs=¬ }²¨«dÕN=zLú˜ë‘è€zd·™ChÙr7®£At˜9²¨ãj—ÇšÏ?g¾Eû—jy67ß|7mþˆ.Ûܳ1¹ôqÕîÃ77›\JŠ—†; ² "66¡¡¡ sø›Åùž;Û{‡ÂÔ’<ˆÀ˜q/ ±aøø0 É•ÝV4¦‚‹bÆŒ®l†uHÀp´P¡B‘³èèhüþûï8­ߘòï©§ž2P}6•[ò¼ãÛ·£Kbln«àu9 0ªfYìýõW|ðÁ9¸ŠEI€\I`Ó¦M8~üJªÑ9&׈¯ý(^ž6Ýõ ±CVÕªUÃÀ1þ|C”d#Î'0aÂÄ ¬Ôfr=Bþ˜|Ke èÕׯ_w}ƒlÁ”8ƒd®né×ÿ $Ôz²U“ë Ä©8Ð}ûö*§ÿ¸ëc .'àT´êÙ³'úöå–.ïa5ðγн<§ß]„7Ýj;ªÝ* A›V-Ó=ÏLëà ’yúXœ Ÿ~Ú„º=Í#”Å% ̆è2Mðä“OZ\SïPÏm¨l+³^m²½hÑ"¬^½Z?AÂ;{¾–¿ª©à£ÊøÞ“ÀÍçîͪâ›uëðÑGÝ4Û3 Î ™£#úôy\-<º ù q#{¤T­îX¶|µ‘M²-pËkeê}äÈ‘¨^½º^„tùòe5¬¾… Ƽyóô%éËj@àÉÁƒÐ.>Üòñq‚ž[EtH¦6¨‚vC«V­??§þ<·7s/¹Ì 1¹€„Á|öùhÐm±û„ðÒ–‹%4Ƶ6í+tíÚÕK)XCmÃ=Y¼2|øp|ÿý÷ˆˆHýô‰+œ;w®Žµ^ëi!ý÷Í—_â£u¬§œ‡hÔ¹L,>Ú Íš6ÅÆÍÜ–ÄCºÍ©bÊ Ò¶mÛpâÄ }ãÄÄD§¶ÁÊ2& ¿aB +³™Œ% » $ÖïçÇOPcÙ;»5ÃÐ7nèQÏ"EŠ8è"Û39sÆ!?m†8¯W®\I›­Ÿ#£¨L®#0vìX FõÇþs]«¬9-™Š¯³è+¼õÖ[èÞ½{ÚÓ<¶0Î ¹¿sßxó=Tj1Åý‚x©%«ßÏ×½ˆ£G"&†!žú10Üõ÷÷GçÎѤI´lÙáááڙܻw/Ö¬Yy¶xVé…^HwÜ¡C‡”Õå<ŸoN £’òP/u° ¼Þ¸*úöë‹{î¹éÝÐ9£Öa.œArÌž=×oú"º\ ÷ ã¥èÅHåîÀ€°x1à <õc`¸* † †Ö­[c³š>Aز!œ1ƒÔ»wo\ºtÉAÞ~ýúq$ÝJêŒ/¾ø§NFê]RŸà‘áÂâêÀ?8S§Nå¶L†ÓwNƒ>6•œSUÞk_ÿ„£ê‡±@ï~0ÀáÇQ¯^=È«•ÓŽ;RÍ É"¤:dk)#.´Ÿ‘ù7¿|…*ðn…ò¹å¿TÜ÷nÿ¶¹øóÇ8rhŸû„°PËFÛOSy“&M²PWZK•~ê <ý’JÓù4a·¶Œ‹D£˜p´lv6lâªxv‘ÓEâ ’Ó‘fYávõèáßÕZ…Ví¹è/KXˆKꈫFã»ï¾Cݺu j•Í8‹€ÛæºÓÛˆ^¦—äÉ\V­Z…C*V·O¥xs Fi’ ¼¬Óù“Ú–'£øèä‚|cYC† Á¸qã,«Ÿ»ëÞ£—zìf7sw÷…½}_ÿ`Ä×êŠÙ³øêAÜ2ÊmD<è¢DíÓýQ ­^8õnÚŽ“UñUþØÈ¦Ù–Á¸½±À»v{ñÕïCPÔO1V ¶–"q(V².úöí‹>ø ½"Ì3)ÃPgl#bR––KnF y“ëUB€¯Û¢5,ÇÕ• ÍT{ƒ6øh96n܈ ¸²)Öí&œA2ü®]»ðÓŽjôó-cfkÙ&P¦Á,]üh¶Ë³ 9î€:cs ³¾ݺuC©ü¸+Ošð”Þ.Y0?ž®YïºGNžò±)g6 p)› œ ±W@IDATXì¾.]QºÖƒýt"SgWQêø…bâĉúQßήŸõ¹†€[†µd#úY³f!** GŽÁ… ôFô²Ê°`Á‚®Ñ”µæˆÀÏ?ÿŒ¥ െUrt »Ÿ@¿Êñ(pãzðîï 'KÕ ’‰vÕs²æî©îË/¿Ä¯{~G9n»äžÈA«å ÂÔ—§çà u7ÃG@í §·ˆý_ÝO m‹æèU9åŠò†Àý½‘3 |||ðÖ­ÕÐbîûè׿?ªUcünΚ·4gŒí›º=Š ·P!cfk9&[¥v¬…¥K—ê=qs\/0œ€[F@ ×’ æˆÀàAƒ`;÷7žª–˜£ëXØ<*„Bµok;u#Ád-œA2¦?Ÿþyœ»x¥Õ*k&óÈ—ÏO="µ?f~a)¡&à¶Pò7' ¸ŸùÚkø´M}.<2ge[ª'«–ÁG{×Cžý=oÞ¼l_Ç‚æ'À$×ö‘lé3nü$Ôéô6òùroj×Òv^íñµÆgë§bÆ hذ¡ó*fM.!ÀP—`õÜJ[Üv+V+ƒêÜlÙs{ñ’çSSñso¯…% þy†5 @öÜÖ´¢ï@±„ÆÙ»€¥LAÀ/ ‰õzⱞ›B ‘9: ™óñª³mZµBQÛu Q#gLÖ X¤ž¯[îl‹/ZC)jA.$0eÊìþu’ZóÑÐ.Ä첪K×ïƒß~ÿ]?žÓe°b§ êŒž_ÉìÙ³ñÍÚ5ø°Y-È"&ëx¨|I4ˆ EýÚµ¬£5!¤á#ŸUSïsTØ-°JW~+{Ko<üÈc®nŠõç‘Ð<´Âåò˜¹Aýúbέ5l•¨C3%áì¡xôÑGÓœá! €§KÕ©×P-d€ˆR|ˆƒ'*ÊÔëƒß÷íÇgŸ}æÉjX^v: –ïâ̼zõ*Ö­ƒž•âqG‰b™æY%âï‡E-ê`þûïáõ×_÷X=(8 ¸‚€ØÁb‘1(U£Ê7ìŠ&X§dÛ,Ù>ë‘î½ l•Må”М³XùÚÕ«£qdQ<£žžÃdme ÀÍjcÐÀxë->VÐÚ½Mí²K@b£U®Êß:<»—±œÉ ”®Ýç/ÝĘ1cL.©÷ŠGÔ{ûî¹çŽÄ+·Tòb Þ¥ú­Å#0­aUôèÑS§Nõ.å©- ¤!pðàA‹*ŽÈ„F¨ÞþUøäóMS‚‡žJ@¶Ïªqç+?q d[-&ó j¾>1D¢áêq¨Ÿº K[ÖE5=Ëä=îMŒÅ’Öõ1dÈ,[¶Ì{§¦$‚À;#„Ò‰ˆ®Ð·t]˜â ßZ…@±øFˆ)ß 6±ŠJ–Òƒ¨¥º3{ʼ¦6šŸ:e2–)'$¶ešµJ5ŽÃôÆÕpï=wCv@`"o! Sî 6FÇz£f‡éHj5‘;X¸ó“ZM¾?ŽbèЧ,¬¥gªFÔ3û-×RwîÜO>1 ZÔER8·É5H \(#¡ïß^ýúôÁ½;Y@#ª@™xöÙgQ$´öŸðCË'¾GlÅv™_À³OÀ?°ê?0¯¼:2øÂdn›{•-/¶mÛ†'N páˆGb"Ÿ=îÊFß¾}±hÑ"l¼» Ê-èʦX·‡h[ ïi‚{>ÿ Qa¡X¾j5jÕâ~¡fï>ÚÏœõÐÌ™3ñ̳cqñÊMÔéø&"ËÜ–³ XÚ£ NBõvS1`@­Gÿþý=Z«ïtþüù9r$ª«Øaaa¸|ù2öíÛ§Qyfuhh¨UøšF#Fàí7fá5íNçÓ4Ýb A …`kÇ[1aûÔ­] 4Àâ%KP¬·å2E¥‚ö3 LÇŽ‹_z—.]F•æ£Õ6K]Õt;'þ2AfÙS%*w@PH¸rB;!::;v´¬®ž¢˜áèÍ›71|øp|ÿý÷ˆˆˆHÅi„ ˜;w.˜*Ÿy#вys|ýÕZ,o{ ª…óïy£iÍ«ýòåóµÊã¡rqxvë/ˆUºFê˜0i2š6mjM¥=P+ÚϬ;MžfôÔSOcíº ðõ/ ¶Vz%«væ ÷¬ÑY¾D„Z”TûîèÜù^<òÈ#j;º7-¯³™4üVðÆzÔ³HGG(666›Í̼?œü _=‰Õ‡OaÛñÓ(€Ø’%Ѥéíú9óòtg:|ø0êÕ«yµròFû)ëæ¼ù&¶ÿ° çÿ9°Øêˆ.ßÅC &È «—ÿƾïæà× ¯#(8?Ú¶n†‰'jŸ$7õyò5FÛOÃG@í“€³gÏ¢hѢɫàóâ|ÚëõÆW‰§¡âj7®_‡è L«_mJE{# êìbÕÕ ü ®šˆ›êÞUÒoŽÆWË>B£9³á«FÚ££¢P­N]tëÖ wÞy§‹%òÎê½Á~Š“=}út|ñåzü±/ü ¢x…VHjû"âªQÎ ïì|jíTA…Q¾É”k4G]…õÛÞƒ|¿BÃcP-©î¿¿ zè!øù¹Í]rª¾fªÌ-D¹Š3o ²_¼x1V®XŽ_þçÔ.w&ÄbQ‹:¨ÉòF—Wg—@>Ô,VTÿ=QµŒ¾ì.àÛãg°æ‡ÍxP=iëüµk(®VÓ׺¥vHe–ƒ)o¬h?e[)Ù"nåÊ•ønëv=z 7®]ATéFˆ,ß-ÚÞ†üEJä ¯&LÈcX‹Wh­ÿn\¿‚“û¿ÁÁß¿ÄOÓ..P(LMÕÇ¡q£;ÆÅ™™ÀÌæ)çàe§ìù™Ñ*ø\¯‚7b ^†¨%þèôéÓ8wîœÞBÊGýBâ³ ,Y`%ÛKÉ*ÿŒFu…éS§t]ÇŽßþ‰“'OêzíuÿóÏ?8­Êü-mýý._¹Œ³ç. À7*©Õì "‹â¶âᨦFž|²Ùå,FÆ8zá¾>z kžÆ·ÇNáäÅ+/¬F²J% ¦š®o¬âJÅ;+–Ôè)$ãHþ¯%OµŸbËdDsçÎØ½{7~ùåì?pXÙÀ³¸pþ®]»„Â1(S¡qõ^²ŠDU6/Û#t \»r§mÁ™C[qúÀ·8{ügܸª>³…BV%ãbPVíc^¾|y”)SFÛ3ñdÔôÒ¥KúYôòû.ûžË«üÉoþ™3g ß+W¯áúõj±\>Ƚú‡À*THÏ‹},©BŠ/®÷K/[¶, (®¬yÉ4Ú~>šÕ*N鬒Ä9¦WNâIeS{éðÌ’L Š!´)'P º„Áê?ýþ&®ªÃU5rsýúud +nŸ8I{#á´RO°Zà¢þ «¸ºÂþRŽf ú$ƨe@Éüjãp•/éï›ÀLJNé?ÁÿþŸq³} ©8ï– %pMí‚ñ÷•«øçÔQ¬Z0sæÌI%j>õ] ðóG€úÈŸzï ËÈŸ¿†Lûû©'4I‰¯Ø:õ*ûÓŠç©¿Kâ—¨¿?Ï«úþÄÕK[qíÊ9\¹ø·Ê¿áP¿Ÿ|}}•/¢þ” læMu½ ŠI¾ü"=zÔtöÓpÔ«8åCFÓ¦¸¸8½I5e–ªV­ª¤Äé”+ù¡¹änÅþ*#šAAAYÅ”»™ŒF33kKÎÉ¢8³’R¶¥3ø €6Œ2òÿ÷ßC¦cå;#»cˆÃ%âè9rD/XÌ —6¼ª¬U“í§ØP±ògŸ ’W±2J#3B¹µVíGêEy% ð±ÛKt“?ÉÛ)öÒþ*>‡ØPÙq(+ßÈhûiø¼º+Vq:T?½E^™H€¼€ÑSHî"Lûé.òl—¬KÀhûiø¨½ë’’’Ô†ÁIöCý*^»üYy -•Â<  \ ýÌ4^B$`*¦Ú|È!7nœ©Q ð´ŸžÐK”‘HÀNÀm# vR¾Nš4)åa®ÞK Äþýûsu­³.Ú·oŸŽ¹È*ÞÂYí¹³‰£•Õ|QjïGoHŸ(:KL°7$YµY¹reÔî úÚãF=AVgËhû™.?ýô“Ž1•…Þäû(;¬x‹¾òÛ"»Éxˬ¨,´¬Q£†Ûô5Ú~ºÍ•òmÛ¶ém dåºlÍ”¨¶1ÈK’Õí5ÂÛo¿—jò|­,– _oøÒˆ3&ºÊoH"":{Ë€,ž‹ŽŽÖ‹K<¡e•¼<æ×êÉÊö3'}÷Çüo•¯¬ö‚$ßG½ª™úZ²·¥cccÝö{j´ýtË"$+n¤œòÛ OM¸ýöÛñàƒ¦Ì¶äû .èäÑÒäÉ“õ^­Îmò^¥J•Âúõëõtž ¯7Èhuû™“>”O6n܈%¼c“z¹üᇼfÆIVnÿúë¯zÔ7'Ÿ O-+û~Ê–·Ì°>l%#HÃÕc#3Úˆ~îܹ¹ÞˆÞS?t”›H€²C€ö3;”X†HÀ¾I¦k%†Eö†K›dèY¦7™H€H€ Ð~:2a €g0|Ô){&jJM$@y#@û™7~¼šHÀ< Õ‡ †Y³fé8‰w8Âúõëcûöí^û`ž%!ð$´ŸžÔ[”•H #†€ÚIo#eû9¾’ dL€ö3c6 ÞÐ'Ôñ_Þöù[+ûòz˶w²â_n¶¼eÛ;™®V­šWlá(ßb: ÿÚ2¾#   0€€[b@ ЋM ˜”P“v Å"   « jÕž¥^$@$@$@$`Rt@MÚ1‹H€H€H€¬J€¨U{–z‘ €I Ð5iÇP,   °*: VíYêE$@$@$@&%àûœJ&•ÍãÄ?~<ªW¯ŽÀÀ@-»l¢+=tèÞL×ÇÇÇãtJOàÏ?ÿo¿ý6®^½ŠÒ¥KCô’ǩΟ?ü1Š/n™Mø;†7ß|{öìѺÚûöðáØ={66mÚ„*Uª$÷yz¼m‹-²)™¬Wݺumÿýï“=éÍéÓ§m*T°9Ò¦édÑ+Uª”ÜÏÊ1µ)ç[ŸË(?ùB¾!PN™í±Ç³©ÇÃ&·bÕÏdz¶V”¶ª¾wß}·Mtê~4i’mÔ¨Qú½•ô[ªFîm>ø í•W^ÑúÉééhÕßÕd¥ÕŽ€¦rÇs~píÚ5=ú'Síùòý‹S†×Ë–-«+”çÂK’átON2"(Ó_r·&¡S§NÕ:îß¿‰‰‰ÉªÉ{ÑßÓ“2 zÚýÑGÕ#žýúõÓSí)ûVtôd}å³)Ï—nÞ¼yªî:yòdòXJý2ÊOu1HÀd¤^lÏèÑ£SÕnÅÏdF¶V·¢¾¢—Ì´<ÿüóxòÉ'ñÉ'Ÿ [·n’m)}7n ™~—е”)½>µêïjJ½ÿõ˜Ræò}¶ ˆ1”/JÊ9¹Xµüùó'ׄK—.%{⛿þú +èëë‹7Bbv$ËŠºJÿHì®ü©‘m¨QBlÙ²E÷¡•ôõóóC@@@ªã•+WRÛ?»å§*Ìp±52-«fVàïïŸÜ‚U?“ÙZ«ê+*¿)ááázPCìÒÎ;a5}SúöqF:ZéwÆ®kÚW: i‰äàX ‘cÚ´i@ñ{ï½GŽÑFRMk"***U¤|ÈäËåÉIMAkã/#òE’¹SM««ÄÆÅÅy²ªZö èPR€É“'C1 ’·ª¾ö³/´R3$:ËÞŸåÛ¯ã+ ¸ŠÀÒ¥KuŒ¹¬™»#¶VF̬ú™ÌÈÖZU_ñ}ùå—ñÁ W¯^úwu„ –íߔߓŒúÔê¿3€hÊOBß‹‘»¶áÇ뿰°0 02­)CíŸ~ú©®ñÛo¿urÏaS¦(.! 4Hß¼y³¾[UñXzÊ]¦Ä|öÙgPq‘¦9/BÈêvñµ'ûªGB¥oå¦CÂ/T|¯&VJõêÕêU«´Jò9¶÷gFùVÒº˜@Ó¦M±lÙ2mgÅÆŠ­•ÅH’¬ø™ÌÈÖZU_™U+S¦Lò Ì£ò®ÈÏîoܱcÇpúôi”*U W¯^Õ,„‰=IÞùóç“S~þùgÔ¨QCó±ç§´±ößaš²ž'Nè:BCCuÕÛ·o×mÚííñ5Ô”Ƀ̘1æº9Ý¿¥K—ºM“üÑöÜsÏåªý‰'j}¾øâ‹T×ÛóG•*Þ¼yºü€Rå§=8~ü¸.wÿý÷§=eØñ©S§Òí+éÔr8pÀ¦~l«W¯¶EDDØÔ„m÷îÝÉr~üñǺž† ÚÔ­_¿~6eLõù{î¹GŸ›2eJrù.]º$ç)ÃjSŽºmÙ²eÉçù†¼@v¿F³P7ƶ'žx¦É7½wï^ýÝ~ì±Ç®› ¶eçΩεoß^çóÍ7©òÓ4nÜØ¦nZÓfzœÝ߸FÙ† bû裴nµjÕ²©Á‰dYž ‹W^yŶ~ýzý^Ø)‡Ò¦íí¯¿þªË+Ç]Û]±Á¿üòKr6lÐ<î»ï¾ä4h|}}¡œT<ûì³hÛ¶­Ãõ)ëâ{°"¬¾FëÜ«W/,\¸P'Ù¶Ø ¡ûÏþƒçŸ^W-£š«V­Òö¥AƒÎlÎ¥ueö·råJ(gZÛ>™R6Ô 6Þzë-(Ç7nÄüùóQ»vmôïßÊ‘L–UÝàcÚ´iÚÆŠMÛ9|øpœÝvï½÷Ú^xᛚªH®KF † fëØ±£Ñü矒ϩir›ŒJ*'Ǧœ›2túœÔ¡>w¶%JØÔYçeVÜ¥¾öÚkºåXêväú´# R‘Ü‘Ë9{["š±•-[V·#ÿ©©Û¸qã´ÌÊá²mÙ²EŸK;*#„C‡M¾nÉ’%šÇ‘#GtžŒ,*OséÛ·¯MFuíIM÷ØfÍš¥G-…ÏW_}e?eûúë¯u=?ýôSržý}¦I“&ö,‡W¹#WN¢Mý`$ŸkÞ¼¹Ö{ñâŶñãÇë÷£GN>ŸrT2ßyç]¦U«V6e@õ]»™œÿòË/õyŽ‚ &o!Õ÷O…ªh{'³)ò=”$ßC±¡‡Ö3ò^FÅvȨÚòåË“ñef3¤Ø˜‡zȦN›|—¥¼Ìr”.]Z{öìiÛ³g®oÓ¦M¶=zØxà›Øñ”IFð¤žÿcï<À£*º>þ‡$B(!’¡„Þ"¤+]Ѝ,Hµ!EADQÄ‚Š"‚‚äµbE‘&"Hç~sæýî¾›°›º{÷îîžg“[¦œùÍîÜsÏœ™‘øJ1Òi]Y@ÿýwC¹ÜUªTq$ñÅuüÉ“'ëkÊ}ɘ?¾¡”UC)Xºï0#;[@Õð¶æ 9ó¶î÷¥¯5ƒ;™å™"£6#FŒ0DN¥:ž3Ò‡ Ó¥K—šÙdøŸÝ3N"·k×ΨS§Ž#ݯ¿þªGybbbôsN,ÁbÉ5ûpg ¨™¨K—.š‹´½0KMMuÈ(ÏKyî´mÛVÿw¶€Êw¦L™2´‚š óñùHˤ> `þ8EAeÏüÜsÏ=ZåhDGG±±±†(DÊ/ÐHHH0¤3Q–1ýc’!ÞøøxÝIÉL†‚$ˆ‚)£ CtìØÑˆˆˆ0ÔÛ¥¡|‚ôÐFZZšN/ÿË–-k(_ECÊEVò‘sQ´²ÊGÊ‘a‰¯¬Fݺu eÙÓç®PQ%îøñã%©!¡œO™2EŸKg*u‘ EK}EAUoýFfT†h”ÏN'DY•¼LÅq̘1ú\êW¡BÍÁTâ¤^å˗תÈ,[zzºÎK”iÉÇ• „ù”´f[™ÿ¿ûî;^H’ÞY©•¡"á/m§ü¶Œ””CùÊêøò'³*×”õTç#y™¼äºåÿ¥ïe¾þß»üKI '¿?³·óEN”= 3fÌпé3¥ÿߢü¾”…MßϪϘ={¶Ž+¿ý ècQü/^¬ûhɧV­Zú…yýúõú%Tú1q³‘{¦KÓ矮$鮼òJÝ/È}W ¨eöÛ¶mÓ2öèÑCçgö7C‡Õ.>={öÔýŠäe*™Î èÞ½{u:QRÍ ý‘ùòŸ•Ìb ‘>R8ŠÁBÊ0à?ÿüSŸ oW!»gœ¤‘~~äÈ‘’?ñÄ:_é+¥¼qãÆ9î»R@÷ï߯•V‰+ è–-[ñE±C¼”È}gT"‰Kƒ<¿òG€ hþøYžÚüqÊÂù#JœL%M:,ùa™Š©€–+WN¿é‰b©†íµ’#oæ‹-ÒyÊY‚t–R†(VbQ•cyC— &µh%H:b±hÊ=y+•U>WDñÁ1-¯Mš4ÑéEËÄ7Gê¦Íõ-é4¥,©‹ñ¡zë­·´A9–7Üpƒ¾/ŠcnPQÐÅ )~E¤“”s±xˆò&Šk½zõ´¿‘(‡ÒY‰¢-AÒŠÖÙZ¬o¨?æPdÎü¹%˜*É×9Ìœ9S§Q“ ´•Õùž+T +9Ê0•jç4òíÚµ«ó%“@@ÈÉïO˜ýŠô™ò./°LÔTvÄ*¿cyiϪϴb~N,fÒ¿Š²ºpáB¹eôêÕKç#ý›1(Èï\,˜Äò&/ôjBŽîƒ¤LsTËì/Ü) Ï?ÿ¼Î[,¶RéoMqÉ[”1ék¥/VîM:®¼KÈš•ÌbÅU“yôH—Xxå9!}ªyîH)fW!»gœøË sRóYR©R%Gÿ,q\) rÝTöEi•ô™ƒ;TFȤ½ä™Ãw\†I}“ý1ˆßŸjvÇGfšA½YjL™õ¨Þ~Ѻukó–þ¯:=ƒ\|ÅoSuP ”󵾯†ª!~0ê®ÏU嬭M¿Sñ7U–¿ËüP%RVùÈÌE™õ.¾HæŒ}‘Ç]ÙœJi‚²´bíÚµ¿™Í­:‰êä¡Mí«#qÕ—¾în¥afõP0µß¤ê€ 0ºîJÕ¾’RoÕCM„‚ÎѾ”Ê }·ÔÃM§—ÙâϙՌ|eAu´•Ùnâ·$AfgJPÖýßü£”L}¨,®y² êÁ¥e’6• ˜p®Ÿ\SÖ H[2@°Èê÷',Ô˶žé,}¦øNÊJÎAYõ©²XB ¿B ÃgÙgHŸ$+u4nÜXç+3ÓÕd¨!tçlÇÒg*cî«¥ïýòË/õ nåe‰Ô}‘ÙOšÿ‰3(åJ‘Ö¾ój(Y÷·ÎþòÒŸ)+,Ôpµî7%¹»þRî¹ë3³’Y)´ºÞj¨Ò_<›7o–ì´Oºô—™û;}Óé»gœ²äêXÒŸ9ᧆüõ%e(Ñ œïg>V.Ú7TúL©‹ø…æ4ˆìÂEüíòN 4ïI™Ò®”õÏát-œË$!3˜ œKç&A:%Ó¡Z½ÝéŽP–òQÃ(º£P~Ž:ž©ÀˆcûsÏ=é EA’`vTYå#ÊštÆÊgG§‘?{öìq»:PoÓPVX=‰G”WçÎT&(‰C¿|”¯ÔÛ¿VĤ3ʤ.Ίº²X:¢$''ëŽQœÖ•“¾.qEÁ• ¬Pn š«<|Þ{ï=( ¥v‚×òñG¤nÎK¤˜Ê¤ù?«"Ä™^xòÒ Îù"Ÿ²dCYjÉDÁV®Žs ü—€ò‰wL6Q>í%N&ý™AúLe%ÕK›)˧þeÕg˜K¢™ý¥ä£ü:õ2H’ôœûLemÓ“häÅ\úé DÙUVTO”Qyñ6ûl‹?ò",/·Ò7Ê‹³ôjYÇ”å‡Äè ù¨!f­h‹1ÁUiö;™ûLS9—~Þ̲”‘¼Ì+7%m8º‹r¨ü.õ3Å…Ø9¾$<$H™9˜2›ÿ3ß7ÏåA&hJ«yPs \ôä"å?kFsû_úR ìOÝ"ÊÑ * 9Âd¿H2ãO,—ÎA ‰hë (hÒ‰½ð ZY“óíÛ·;¢Êšòc“Îí“O>Ño¨Ò™šk¢IÞòæ. ŒÜWÃÍPCBº³’·FåÓå—¤;T5Œ 54­;Kéeö¥š£Ër•¼™·VY5$¢•:³#tçâ@fnK‡®†¨uç¥|N±dO Ê'jˆGwºr®†Çå_† †eô[¸âÌ„T“÷Åz*–U©«X[¥c•J¬Á¢ Ê»X?Äê+ÜDÁ“<$(g{}]fê»›e*J¶XœC\\œf`Ά—NÑTxãew,3ÞåEC^”-dõy¨H ;³C•˜iuÍ.OÞ'@"ÕïOùûA µC Çê( Ê§³fÍr Pu#/â²N¦(RYõj‚ ¤?%O …£¢Z«R^bETúA òÒ,³½%?™©.}‰üf%žÖ3´eH^z•?¥~ w–Ë!`¦yiTúLYYCúG bé”õ1¥ŸER¬²\õ—bå%Xž2S\ê" ¬²’¹S§NV²b‰Ì$7g¡‹b(k˜ÊªÊeK¯rbæ—ù¿»gœ D—þ2¯A”ayv¨¹ë¶ä%~È!úÙäJ!w.KFœ„ŸÉÕùsA@½1øwþ1ªÉõLpñ ”cµ”®•L:‘sñY1}@Å¿ÈtÔysÖ¸$yqð–4â+*~…fÙŸ2ùHîÉ™LdsÝI™À$¾Yå#rˆó½ä£:9Çd W> fþâ/ñ3û0Ê$$e…Õþ8â§©:ïÑG½ÌT kéÙ‹’ø¾Š_—›þ’â×jÊ%þK²€zËÖ"ˆ_­Ì’TŸ¡¬¸Ú/ËôßÊÉ$$)'óGò“ þªrOf«:)[®Ëä‡ÌÁô%™ù©:vÜt qM‡|ñiÿ3™%*yÉê $,²ò•ߟøHª—`=±GY+õï]Yö¾ó¦¨RL´O£ü†¤2ý½³ê3ä7§†þõïNü0•Âæð{TK0é߬ä'³ãe­^e(Гƒ¤sé$ˆ©ÂÖ}ô¯¦Lî|@%ôÁâ*ù«Q!¹äji;í_ª”,C)µzýKõò­ïK_*“‡Ì +‡ˆ¾ô/²ö¥ôEæ$¤¬dv™ >µ²¦±²ºJ‘ÕÙæt’ÈžùcÎÀ—6“ÉU™Ã²eËtñŸwÎ> ¦ß«ôõʺ«£I)u—òdÝP3Hÿ*×2OB^ÊbFãÿ<Ó>C0PYÊC‚,-$?C&Jв–9ÈËsæ…èE!’¾ÌU¸2!ÒA&Pš­²ËOâš ·«¸YÉ,ýhVi]å—“k¢+ ´Ë‰C®Ò;+ ®îçæš´ƒ(éæ$ÒܤeÜŒ.w”Sê>Cp!`Ó)se˜Ù]{®ÒI~æÄ"3mVùˆÿŒ«|Ì´¹ù/¾¥ÙùýH~Rž9tî.Z“¡'WAîå¤Wi³º&C~2J&Ax#(ËdR“¯¶$õF˜' XI@üMÿÃÌåfÕgÈp·øDfâò”ÙåFʾÌU¸â«ï‰ .¦/gvùIܬ&Xf%³ô£Y¥Í®lw÷e]†ÉÅÓê .O2±J£gÈµÖØùË‚©ý…€(_Ò™ˆ¦ü€ìC@f¾îU>´âw%Ÿì‚ø?‰_¬9;7«øâë$>\âïäêA˜UZÞ#`& }f… tŸ)J&ƒ=ˆÒ+ éÅw?» >®â×/þ¶9U¼Ýå)¾©Ê%B¯–â.¯çŒ@1ˆæ,*c‘ @þ p>ÿ ™ @.PÍ,F%   È?* ùgÈH€H€H€H€rA€ h.`1* @þ PÍ?Cæ@$@$@$@$ T@s‹QI€H€H€H€òO€ hþ2    \ š XŒJ$@$@$@$T@óÏ9 ä‚Ð\ÀbT    ü š†ÌH€H€H€H ¨€æ£’ äŸÐü3d$@$@$@$@¹ @4°•H€H€H€H ÿ¨€æŸ!s    È* ¹€Å¨$@$@$@$@ù'šÿ,ì“éS§0iÒ$„……ÙG(JB$`)«¯¾­Zµ²´Ì@(Œýg ´"ë@ù#`eÿP èý÷ßÃ0—¿`j ¿$pöìY´nÝZ÷~Y ÍþÓ‡ðY4 Ø€€Õýg@)  @bb"ÆŽkƒ¦¤$@Vøí·ß0þ|«‹ ˆòØD3²$gV÷ŸôÍsS1! @^PÍ 5¦!   È3€‚Ï3& 8'OžÄŸþ‰sçΡP¡BHJJBÁ‚|ß ¸†f…H€²$pæÌüüóϨR¥ ÂÃóŒË›$`%>‘­¤Í²*{öìÑŠèòåËQ²dI«9°<xæ™g0ZY=»$•ÅÊW¢DáBù–¶ ¦”R]*Ä¡úŠÐ v*¶õu¾óe$@$à+}®é‹×_[y™òé,XC»ÜõVMG£&Í‘¾e#•Pg@<¶Œ€å> —.]Âĉ±uëV¼ñÆX´h–-[†M›6¡yóæúزڳ ۸뮻0ò–[ðLëzXÔª®G”OçJ—Ž(Œýƒ:cÇ×ßàªíoñ˜H€ü†ÀâÅ‹ñæ[«Ñ~ÔÆ –OW(P0=îý {üƒ&M¯p…×HÀë,·€^¼xQ[=‹¿|ø4!!ÇŽóz¥Y€˜ÿôÓ˜3gÞ隆´¸R^ºˆòýå†Nh¹ê3 2K–,ñZY̘|Màá‡Æ_ýu™o½õjÔ¨»ï¾û²{¼`oâÊ6ê¶;иÏBDÅTÉ‘° †¢Ùõ¯aíÓ͵Q衇ÊQ:F"O°\•}Úûöí«÷jîÔ©bbb Û?íÞ½k×®Eºš\Â@<ð¦L™‚•›xUù4IU³çWvl„VÊÝuס]»væ-þ'€" /ÿ®–$;}ú4Ž9Pu –ÊtìÔe«uDÙªrUåBÅ‘ví <òhwôîÝ 6ÌUzF&ü°\a'L˜€.]º`óæÍØ·oŸ^"-- ³fÍB‘"EòS¦ «V­Â¬éÓ°¦[3Ô/]²UŽ.Š{UÇÀkúàà±Ë-D– ‚HÀ‹nQ.-®ÂÊ•+ájdÊU\^³W^yß~÷:ݾ"OB•([Õ[Ý‰Ž¯ÆÑÃä)&"¼°ÜÔR&5Pë7NŸ>÷ÜsˆÃ‡c×®]fþBÄuýúâ±æµ-U>MÔ7׬ˆh\Âm·Ýf^â °-›G܆Ԏ",¼Xže¬Úì6a1èÛ¯žó`BÈ-Ÿ( ³gÏF‡´Ò)–ÐS§Ni¹?úè#ÈÛCðh™Ö½+' OåxŸAx¬Y-,yf!þý÷_ŸÉÀ‚I€H ;ãÆƒ­—WÊ.nv÷õ~«V½-[¶d•÷IÀ#,W@ ÃP_òUøú믵µ³I“&èÙ³§Þ2Ñ#5b&~K@&?œ:r3›Öðiš”)‰Æê3dð`ŸÊÁÂI€HÀ .àɧžAj§éî¢äêzÑR•P­ÅhtëÑ'Wé™òJÀrP™/[%šNð÷ß¿ö 4hÚ¶m›£zÌŸ?ÿý÷eq?üðC¤¤¤\vìO`ïÞ½xzîãx³sS ±ü½è2@÷5¨Š«Þ\Ù0¡hÑ¢—Ýç ð%qŠ,Y e*·ò˜Éj(~ßΗõJ<òˆÇòeF$àŠ€åOúÐÐPíûÙµkWíó)Bɲ ²ø¼(£9 'NœÐ ¨(¡Îñ!ýõ×_s’ãØŒ@÷®]Ð/9Qù}^¾<—/DM-Ê :rÄ_Ï2I€HÀ-YO{Éó/¢F»{ÝÆÉË Yš©Ay˜ûä|ˆ?> x“€åP©Ìܹs±qãF*ô¿mžzê)½}xxx¶õ?~¼Ë8²Œ“Lnbð/â÷»O-Ãõv?{-}4¾n P»Š¨Ýü (¥%hcÇŽEÑR•Qº¢ç‘/•Øñջફ{`[úæ€æÈÊù–€åP³º²ë‘ìïúõë‡îÝ»;_âq}Ë͘¦öf*ä“÷!·„Å´œÚ;^Ö$e  »X¸x)ªµç5qj¶Ÿ‚¯¾þ²9 x‹€ÏPW’·º©S§ººÅkJàÞ{ïEQã"®­šhËŽIM¢yOÚR6 E$|d½ì!‘ˆ«ÒÖk•/\¤$jµ¿ƒ‡Þìµ2˜1 ØJ9s&&MšÄV "óæÌÆô&Õm[ãž•ÊáÔ?ÿàý÷ß·­ŒŒH x<úØÊ $@$à ²,Ò÷ß}‡¤†C--¾æ•÷áû~â.…–RŽÂ,W@e!zY*©xñË×{LHH€ì”Äøž}z&ÔMö›ŠO©€Õ¯«%™H€HÀn¿ýÄ%·AxQk_Ú EGíNÓ0l8}A}Ðì]¤åCðâãÙ·o_´jÕ :uBLL Ξ=‹ÝjHYÇ3=== ³rÀ³Ï> µ÷*®ªç78Ú%”Æ%%ó믿ŽÞ½½ïå7`(( €%Þ^ýöyÎ’²2R¡N?ìM_‚þýàå—_Ê|›ç$'–[@EÊ &`Á‚ˆ‹‹ÃpêÔ)¤¥¥aÇŽˆŠŠÊSE˜È<üàŒ®]YoÉê/R‹Cþ05iÚ9Û­Ë_êE9ý“€«IœþYJÏ<ó „ñÊÂó9)_âÈI¯½ñ¾úꫜ&a<È’€åPSšÚµkC> ÁE`çÎ8ðû︮uM¿«øuj­ÒÇW®Ã‘#G´åÞï*@‚'qD3檳f?ŽÊM‡ç*§#GÅTAÕ+nA§.Ýðûo¿x:{æ„|b Bάòÿ¸cÌô¯Z‘a>{÷És[” GóøXÜ}÷Ýy΃ I ?8‰3?ôü3íþýûñËÞ½ap_‡j-îĉ/±ôuCHùT@¤!ý¡ç”eúŸã¦êåýA\—2Þ¬d_ýúk.ïñ" x›'qz›°ýò—Õ7â’[£PD Ÿ W0$ z/ÄãO<}ûöù\ àßüÏ åß¼ƒZzÙS½Jñ(TU mÔ²Q.œÇ‹/¾ˆúk5(·Ÿà$N?m¸|ˆýÞëP¯ç‚|äàÙ¤%ãë#©þµhݶöîþÁ³™3· "@ hP5·o+»bɳ^½‚o…Ègé2iD­J˜1å|æÄä$7œÄ™7nþ˜J^t/!ˆMja+ñk´»‡ŽžäÖÙ¶jÿ†Pÿk3¿”X&ýyøºulà—ò; }}µDÌzùc½tXåÊ•oñ˜,! k)7hÐÇÿobŠ ‰ž>})))–ÈÀB¼OࡇA¥Fƒ½_P.K WCñÏ`Öì>¸é¦›”””ËZ@ù-°„À½÷܃žUbIyÞ,¤DáB¸:©n»u”7‹aÞ$à’ÀìٳѡCíÒ¥K½ŒD”}Â_yå—ixÑÿœ8q»víB…z×ÚRøR‰ Q¥Ñ´lu¥-å£Pö'@Ôþmn\÷1nHNˆºH%n­•„O×­SëéŸ ˜:±"ö' ;Å­Zµ _ýµVNš4i‚ž={ò{hÿ¦Ëµ„âjS¾"¢ì»aGõ¶“pìÄYŒÁ]’rÝÀLÁóKàu/½ôŠ„D£2¾ŸÅé©ÊÖ,Y ò¹ýöÛñôÓO{*[æCYYðâ‡\°àm÷ß¿ÞØcРAhÛ¶m–iÍ›ï¼óŽÃjj^“ÿÇŽCdd¤ó%ûÀK¯®Bµ¶Ó|(AöEˬø¦ý_Àâg¯RCñÃP¿~ýì1 ü?Z@ùUð:Çg?‚k«ŽõÓ6¶Ne¼òÂóæ)ÿ“€× „††jßÏ®]»âðáú7/uÃ@IDAT¼‡~%K–„(£9 kÖ¬Á[o½uÙçøñãø÷ßs’ãx™Àúõëqêä)”Méäå’òŸ}ñ¸š¨Úü6´ïØ5ÿ™1‡ "à ¨tœ¥K—Ö eaeñ]’åEdøÿ÷ ªoP6•½pá¾V[·=ÙÃ^³8³;G·Û&Ä¢¤ZPÊ”)9~øç(cF",Ì;7nD¡B…±žzê)4oÞáááŽkîž|òI—·5j„ØØX—÷xÑZ“ï¹ëP–nŸ<¢s]Ùj-nÇïÞÆõ×߀eË^Èuz&N>±€šfzñŸ«U«{ì1ý©Q£<œ- µ~â‰'‰ÊÑE²†“ëWÅSs Ⱥ±Rö% Êftttûõë‡îÝ»g¸Æÿ# /í[Ó·+ô¿¾@‚hÜg1^zy%¶lÙâ7rSPßð‰jVYœée6ç|ñK£¶i\¸p¡y›ÿ€À’g⺪7ün6ÍÕIe‰K˜6ÍÞ¾Z¦¼ü¸dÇœ©S§nƒ¤fâJQLí».{¯ûSyk´‹.Wõô'±)« øD•™œ2ô^¸paT¯^ÝQ}®©è@báþy÷nôPJZ ‡WÇc3 ä*²n~@`æÌ™\ÜÚ);/YŽJoÊ.š-ïWI‰‹‹aèС¶”BÙ‹€OPv¯P¡¦OŸ®-G¢®^½Z-å02ŒÄyD-¢¬†ÞËEFF…ÜÔ¢K…8ÄÃèÑ£ÝÄàeð,“'ObÆ X¹r%dRÑO?ý¤ýèÅ—žÁ lÚ´ GF|Í«ý²2/{Å¿°üeüð·éôËF´PhŸx8Ë»„_~ùß~û­^VDfq~úé§HHÜáZ ÛÕE½¬œÑ¯­o Y¼-Äì´šè»p~¡*V¬˜·‹cþAL`ÅŠ˜±€šõªX±"d9 W\q•OLü—á÷Ýjø½[€¿›MÕ¸LI4+ƒ¾}ú˜—øŸ9Q>e1qÀÏüùçŸpúôim‹€’ûGå€~uEûîaì-Øw(ô¤šD0kÖ,oÁ|ƒœ€ì¾`ÁÄÅÅáÀz[Í´´4ìØ±QQQANÇ?«ÿâ‹/â칋([­£VÀÔµ;ÏÂÒe/áÈ‘#nbðr0°Ü*°ëÖ­«×ügúQ£Fåšÿœ9sðçŸ^–N:ã"EŠ\v¬%ðì³Ï¢dx!$©!ø` …ÕN^óZÔÁûîÅ­·ÞÊïc°},ªoíÚµ!†À pïýÓ|ÅH5*h¹MÈ«e›Î²UÛ©Õmàã?òjYÌÜÿøDLb–Ïkxå•W\&•­äÊ”)ãò/ZGày¥€ö®\ÃïÎtÛ$”F³¸RèvÕUX»nó-“ @;wîÄþýûÐåšë3\”“íîÅÚ§[bß¾}zùÅ@©ë‘¶zÝ’žòaðoßìüR ¿÷‹Àì´øâ³OõÒbþÝš”žHÀ›n¾e¤^z)¬p`ºOD/òµz`àuþ³µ¨7Û›yÿ€­Pn%÷¿†ñ×£>RÃ,—.¢N©ŒûTûk}ò*wYµøþØzU1ðškòšÓ‘ 8ßÿÛ·‰*i¹wEó'4ÕZÕKLí߿ߟĦ¬^&`+”[Éy¹µ-ÈþÉ'ŸÄÕjøÝÕ o«"FÖJNŸÄ<`+¹( €=Ü8ì&ÄWïˆ"Ñí²T$: 5»¨-:‡Ù<¥°Ÿ) ÜJÎíïq!Ò7~Š«ÊÇz<_Ì0´`AÌm–ŠÇ~H/;æu Ì$@Þ!püøq¬ýøTk9Ö;Ø,ת-î†O7B–bd !àTf¿§¦¦B+—}Œe÷ŽÁƒ£K—.8vì[ÆO ÈÎGÇNüƒæeKùi ²ÃÿÈI­V½½{÷")I Ë3 5±®~ïC´º:¨8$7×WÁò ª5+뎀åPn%ç®)üÿúÚwW£{…àžýîª+©õP¯INDÿ>½]Ýæ5 #0tèʘ†è25‚ªæ1Ò^’uU«»¯¬åPn%ç¾1üùΙ3gðËo¿áÊfÕü¹^“}R½dÔ{ud¯&Mšx­fL$`oâûùÖ;ï)ëç»öÔKÒ%_1 Í}‚[n{‰¯?ek¹Tàp+9úŠäLÖ… ¢Rtb# ç,AÅŠQ\nI­ŒoÌŦƒ¬9Y]È3뮿e*5WÖÏêyÎß&ÖîÇ!==ÝŸ«AÙ=@Àr ¨)3·’3IÆÿ—–/C· Üû=7­7Z-ËôÌËcÚ©mÛ¶¹Iʸ$@@àСCøðõh}Ó‡P›¼U!$4ëöÃØ»ÇaÃúOò– SŸX@‚+‘Àß~‹‰'•eˆÀD Ãmµ+cÔð›HƒH  x=ÊUë€b¥«aíÿWå¤FCðÅéÜùðH‚òˆ hP6»g+½qãFµùÑEÔ)îÙŒ0·[j&áWµˆXAH€‚‡ÀoÊG~ý†ÏP½í¤à©´›š+] EŠ'`Ú´inbðr0ðÙ|0À –:>þøãèX!.Xª›¯z ÅÈÔJ=â|óÃùÊ‹‰I /öìÙƒóçÏ_–T&ž;wî²ë¼à®½ µº!²DÏdèç¹$5Šg—,Â}÷Ýçç5¡øy%@4¯ä˜ÎA ý³Oñ`jyÇ9²&0BYAç½´²nÆ ³ŽÌ»$àaÆ ƒìAž9üòË/(¨vïbð<Ÿ~ú _lÞ‚ö£6y>s?Í1±VO|ýá}ËpBB‚ŸÖ‚bç‡ÐüÐcZÈ’"Eëø¤‘CÅ”/èàêI©|A·îø2‡©åë^‹wÞû(7I7€P  ÆôEUV¯zƒ»å¼¬—Ú£J<†«áP À%0ðºÔ²C}EëræV.S¹ þQÛ’Ê ÁG€ hðµ¹GküóO?¢}";Ö¼@S«6}º²/4 @àؽ{7v(ëgÕw^å&ðÞ›«pUùXKŇ©‰\7©Ý‘&»;0*ÄZ@xõõ7•õóÎ §»ê'Öꎙ3gå.cû5ËW Cß¾}ѪU+têÔ 1118{ö,d¹Šµk×"==ݯ‹ðûöïGÇF­ƒ¥º^¯çÕ+à©WÖé-Ë•ãÄ.¯g$à%>ø ‰EéŠWx©„ÀÌ6¾V/l~mh`V޵rIÀr ¨H1aÂ,X°qqq8pàN:…´´4µ^ÚDEE¹”íC`éÒ¥(S$ñE#ì#”ŸK" Ó·-_·ßγ~Þ”?È <1ïTm>&È)ä¾ú¥ãÜùóøôÓOsŸ˜)ü’€åP“RíÚµ!ÿ#ð¬^~‰ëÚyºåFÖ¨ˆï¼íél™ €EV¯^ÿœDB­•8ÅèÙð5¯Æ¬Y eË–S1ÖÄ-Ë- ²ë‹øz–,YRû‚Š?¨ógÖ,ú€¸m-›Üøî?_¢«²Ö1x–@Ó¸’(^(sæÌñlÆÌHÀ&Þƒä¦7¡`AŸÙv,©§· )W£;6lä¶œÞâk·|-W@‹+yK,[¶,~þùg=z4ÃgܸqÙ2:¯Ìôçλì#˜8‰)[|ùŠ {öž>s cKä+&vMà6µ0ýÓ?æú&¯’ Ø–€,M÷ý®]¨Øpme´»`¥+6ÃéOiw<»ËJùòOÀrTD®[·.ÆŒY4/¡FÚWTüE?Û·oÇÞ½{ó’%ÓäÀã?ŽNj÷£‚jñ`ÏèS9þøß|óç3gŽ$@^#0zôíˆOé€ðÈÒ^+#Ð3.P0 5:«EégzUY?EÀgãÇÏs¸Û5©Q£F(S†CÃy›ƒ„Ÿ¯ûSj•ÏALFÉ ¢a¡èU9wßuÞÿðüdÁ4A@@:—îC‡!::IIIHNN‚šÛ³Š²¾õ{|„¦^´§€~$• Ãüaö#¡~T%Šê†€ÏPWòÈXBAµ."ƒýÈÞÆ9Š6 ì'\ItcJyôø`}ÕˆUñ$9šË’y_–`'ÜIÎ>­!.ŸmÚŒ¤F7ÚG¨$$4e«´¢K^´eVU°Üjú0mÛ¶ ¥Kg\®B–^eT–hb°—^XоÊ*Ç`ÁU0ø#΄·Ž¸ÿ”ÄäìÑV2g!²DyD—©aHŠøš½ðöêéT#V%3Ë- ôaÊÜö?¿pá‚Þ4 {RYû @^¡&|‚_äÒ.Ô¬¬JX¸èyTn’÷%…Ç«W­ƒÚ¤æ†÷xæÌÐ,·€Ò‡Éíž+!{ì1$FE"¡hD®Ò1rþ N©€Gg>Œæ?3æà÷d+cÙˆC|²eïìÌaüøñÈÉnr™Óñ<÷dïС?Ѩf·Ü'fŠl „†AÙÊ-1eÊ<÷ÜsÙÆgÿ#`¹Tчɿ¾(ËŸ_‚UâýKè‘v@•|÷ÝwŃ<±•qµjÕP¤H‘Ë>ÜI.w߯qã& B>E‰Á;j÷Ã;ï~äÌ™«Ï Xn5kL&“„½ÿŸ;w?þø#zõnmoATºxeu®[÷ß?ÄÍ@Î[5*×@dÙ sÓçÄÍ›7çNrÎ@²8~7}V7¾—E,ÞÊ/¸ävz6<¥Ï/I{¦÷‰Ôž((•+²påâQEˆÁ7†VKÄë+èêúö,U¶2ά|ŠRäJ±Ì\ƒÂ… #""â²ì@Ç]è2Ór}®'•¬ˆb±)®#ðªG„„E !¥#x`ŠGòc&ö"@Ô^ía;i^Zº×''ØN®`¨k…8QË“‰åŠÜàNrîÈxþúüg–pò‘籺Ì1±Î|°æ—÷xÑ¿ Põïöóªô‡Â/û÷¡—_ò*çì2 A÷Êñ˜4qbvQy?ˆ p'9k?==GFB­Öä¥ÄVj‰Ó§ÿÅÆƒœDàUßg> ‡2ðj4yòd4‹/’á…¯r~V£”zàÇÜšÎÏšÍkâr'9¯¡Í6ã;õûCKgð>CP¡n_Lš|>ݰÞû²ËÐjjÿ+èÝ×_Ãઉþ'xJܸLIV¿Ö%K–`íX¥ÜàNr¹¡åÙ¸²üÕæ-[‘Ôp¨g3fnY(_w ¶lÝžeÞô?T@ý¯Í,‘ø£>ÂÉS'Ñ>1Ö’òXHö†¤TÄÜGgg‘1–€L2š¨\1¶nÝŠ7Þx‹-Ò»ÇmÚ´ 2‹]v’cðYB°d¹ÚˆŠ©â½B˜óeŠÇÕDᢱ˜3gÎe÷xÁ Põß¶óªä÷Ý37(…'LÍŒe°kÕ0ü»~€ ¿2'î$çÛvaù«¨Üt„o…ÒÒ+5†'æ- ÒÚfµé˜íš¯ZÉ0ÓvìÀ¼ž-ó•{–@ÙÈpµ&h Ü{ï½\Ô³hý&7î$绦’-qÏœ»€²Õ:úNˆ .¹|íkðÍš±{÷nT®\9ˆINÕiÞ œ¶ôXMîºë.ÔS‹ŸW,é±<™‘g K)×^ä0«ghúg.ÜIÎ7ívïýÓPõŠQj T>6}Ña…£XëjÜ6zŒ/Šg™^ @ ¨ ú{–+—/ÃÓÍjú{5RþÎÊ`ôgÿÁ_|´´´€¬#+•=î$—=#OÆØ¹s'öïÿ]ú\çÉl™W. Tjr3Ö>ß.\@h(Õ—\â³]tŸ¼ÊVk¨™Aœê?üðC¬[·âßÄà[O>ù$" h—ÀÉG¾m ×¥ Aÿjå1IM†` °†ÀÍ·ŒDRýk^ÌšYŠKÅãj!ªT%=Ïe^ô+>Q@ëׯ¯!É>ãµjÕÒþl²Ïu5pðàA¿hÂ>2mîªÃžvn×!ji¬ôÍ_ähÛE;׃²‘€?øí·ß°}Ç—¨’6ÊÄ x«¶¸Ï,~!àë ô‰j‚]µj:tè€>øï¼óÆŒƒ… 9ËÍäcõÿW_}ÿü}ý¹õ¦ÕèsU^õ’Å´îƒ>˜«tŒL${ƒ AB«P$:>÷‰™ÂãÊVë„ F(æÍ›çñ¼™¡µ|¢€†¡­7… FõêÕ5æÌ6 ŸL¸óÜ]/™K/ù„~î Y£–,˜Ÿ»DŒM$+býÜðÙ&¤´º;WéÙ{ (€ê­Çáö^!ÌÙ>Q@eؽB… ˜>}:¦©!_QHW¯^#F _¿~–Tœ…d$°|ùrü}ô«YÖ ö'УR9=vŒû#Û¿©(¡píuH¬y"KTðãZžè‰µûàß38bêçMëT†ÜýõW¬\¹ ,PËZ@É’%ñé§Ÿ"%%ÅÏ‘ú§øãƌƽ S “\ìO@ÚI6 {Çíö–’€øþûïñÅæ­Hi3Ñ¥l‘  Ev“0aÒý]ѯOPa*»¹ìÛ·²èùš5kPºti$$$8n{VO| ÃΟÅuÜ÷Ýž äFª›Õ0üÎ/wâÈ‘#nbð2 @^ tëÑUE‘båòšÓy‘€,L˜û,öÿúªµ¼Ós™2' êv}³ç<© YÍœ™YBÀò•\eÝω'bÛ¶mÚêé\Ë3f@”Q™ Ï` ݺ¡q™h_ÚšYŠG ÜY»2z½ýfö(UfÌdTîÖÑj7¸«Eh!îgçïBl¥(•ØݺõÀÚµkì,*esAÀrT›/UªŠ/~™82Ÿ èUW]…?þøã²ô»víÂùóç/»Î ® ¬_¿Ÿ}²›û´vWmO ~éâH)Q ·ÝvæÏç¬xÛ7´=¶í:(¥¦ âÕÒK ö'PGYA×>Õü1Úµkg)¡ƒ€å hXXúöí‹V­Z¡S§Nˆ‰‰ÁÙ³g±{÷nõ³éééáÜ<üðÃEì3‡ë¯¿þ2«jæ8<ÿþ½zbRƒ”‹ŒøßEùIõ“1déóxê©§P° O¼jüŽ&WæÌ™ƒ/ÿóÚߺÑÕm^³!YŸµæ•“лÏ;z}  ÛÈH>yZMPÛÊì÷¸¸88p§NÒûZïØ±QQQîdu\—eœd7¥ÌŸ"EŠ@ÖeÈž@ÿ~}«&¼ß\³bö‘ÃÖZ–‹ARTn½õV[ËIáHÀξøâ ŒŸx/šö{…‹”²³¨”-ʇ!4*]º^éOíLÀr ¨ £víÚsÿPùЊãLÅóÇ~ø!Þ~ã lèÙ’<×'9NkTýŸ]ŒÙ³gC^ÄH€rN@¶€nݶj¨Îc*¤å±€ºgìØ±˜:uª»Û¼î2ë}@ï^˜Ö¤*£ƒ½Ú"‹¦q%ѨLIˆe›H çdIÀäª5P¹É0µßû-9OȘ¶"U {=›n¾?üðƒ­d£0® øÌ*?úíÛ·ãСCˆŽŽFRRfΜéZJ^õÖ-š£nÉ( Já΃j“Œf5­–«>À7ß|qSa Wz÷î ±øe²ðú… 2_èsy!/_±2*4¸ÕZMèºCåÊVmJ ¡Qãf8røw*T(ªí·uô‰*ë€Êâ±õêÕÓ3â¥سgVDeKHÙ‰ÁódÛÓŸ¾ùé}Úx>sæèsIÊ¢=¼V%ôèÚ?ïÛïsy(€= Lš4IOüÌ,Ý7Þ¨ûãÌ×õ\”í„Ä$ħ^‹ä–㵚AW¯šWÞ‹ã|…öºbÃú‚®þþTaËP®ꛯ‡¬.ðЃSðF§&ˆ.æ!Xª× Ü]§ V¾¾^¿àMŸ>Ýëå±ÿ#РA—B-Zááá.ïÚEyÅ'TD¹Ô~¨Òünå o+o´@Ãmy}šöŸ,ê€-[ã³O×[^> ÌËuÙ­jFÎ$g¬w‡­[áîzUÑ0¶DŽÓ1¢ÿ Á³­ëcά™ôƒò¿æ£Ä(_¡2âj\£”Ïq(PP-ÂPBÂ"ÐbÐ*lûò{Ô¬Iw$»6®åPO¬jW˜v•«±ru‘Z·ÕªhW)— 4R;[I{·mÞ ñ`ÎÌŠüŸ@JõZ(•Ü•šÝEåÓÿ›Óm GÆ ÍMâýÇê©oJàøñ¿ÜÆå ß°Ü*ÕÌï: ¾A埥öë{ Î>ˆ)‰þYJ'“ê%£.¢}»¶yJÏD$ˆZµnƒ‡N¡bÓÑ(BW¤@lcç:E+‹«'ü„3BÑ·_ç[<¶Ë- f]­jÞãÏ£V¯Z…½Z¡ˆše À«¡Ékë1eÊÜÿýÁSyÖ”\>|86o݉ö£6rw|õRXá(´ö>Þy¶‹Úª³½Ú²““ìÒÖ>±€Ú¥ò,Ç*¥xÞ7y^íØ壸0y ·µ»º•Ž(Œ×Õ¤³YÓ¦B¾ $¬^|ñE<·ä´ò6dh–!¸)žˆ¶7¯Ã–»Ð aÓ [nÌ®­MÔ®-“¹dÆ{ÿkúàÉ–u! ”3/z¥‹cn‹:¸N-PÿÕW_/ÖRJèËË^ÀMÆå&)ã’€m ´oß§/E¡~·Çm+#³7¸*mÑ宯ñOŠ(_²†,ƒwPõW¯åzüøqtïÔßmÚ€-}Z£al ¯•ÅŒ›@•è¢xÿêfXüì³HMM ìʲvO@&mظi×®PÛl øú²‚Þ# Ë55ìµõ»?‰ACnBÏž½¼WXçì3ôäɓذaV®\‰5kÖpQØ| ×®]‹Ä¸8à§ïðY–(‘ƒTŒBî ¤–ŠÆ÷×¶‡,Ö=tèP÷yÇVØflŽ;î¸O<9-­BxÑØŒ7yFy$_ã*\9r>Z¿ ]¯îÍ Jyäè.™Oö‚_±b&OžŒzõê¡T©RÅ‚÷ìÙƒèèh,_¾%Kr÷žÌ 6ìÆñüóK0½IM «Q1ómž“@ž È–woŽÏ?ðÂ…ñôüùy΋ ½O€ýgFÆÕdº>ø-¿‰âq53Þä ä“@dñòhëçH}8Ê–+×~€æÍ›ç3W&–+ —.]Âĉ±mÛ6”.]:C+̘1Ë–-Ø1c2\æ“Ý»w£Móf8ý÷q=qD,V $àiub¢ñIè°xö¨ïÜjT‚Á~ØflyVˆòÙqÌVˆ¢À@Þ P0$LOPúé‹ùhÙª ¦>ø€6¢y£¬`ÊÓò!ø‹/j«gñâÅ/ãœÃ0.»¬d†rJÕd´/Y_õk*ŸÁúM°¦ÞÕKÓ~Å»¶|ŽJ‰‰n²{®Jaÿù_\.\@ó­0ÿ™¥hsÓT>sõ-bä¼HN¡Ö }÷O™ŽV­Ûæ5¦û–[@ÃÂÂзo_´jÕ :uBLL Ξ= ±ô‰czzzÐ7Îøñã±ðÉ'¨f*¯¹º9j+ë XA@üŠ?ïÕw}þ­ò7.ƒ¦ÏÀÝwßmEÑ,#ØÓ¦MÃÔi£x¹:èpë&ŽŒÉ9F!Ï(]ñ t½[^„èâ¥ñîêU’Ï#ZË- "ç„ °`ÁÄ© 5À©S§––†;v **8w­I ÕnFE …áÕOa^³ZXßÊg¿×L–²Xý¼µ±¤m}L»g2âcKcÕªUùÈ‘I=I ûÏ·ß~:tDáˆ(L{x.êªe–šßð•OO~±˜WŽ „-V7¾‡ŠMnÕCòmÛ^ ™È;–[@Mñ*Uª„¿þú %J”Г’’’P¤HóvÀÿ?xð ^_lµêX¿Þ± ü“ÊA¶JL‹+ðõgíO ]B,v©òó¾Ùþ}ú XÑHôèÛS¦LA¹r\{Ö—-ˆý§Ì •QþóŸÿèUQüq?Sÿü¥¶Ó,Џ*mÐøšç[©¥/ѳlp¨’v ʦtÆ—ïÜ©ô˜’èÒ¥.\ÀþÑA(ëŸ( Á2‹óСCz²Õ·ß~«­»?îÚ…?ûÇÔZž§/\Du5¡¨u¹ÜÚ<ÍË–BhAŸ¤³þ†ðnP(RwÖIÆm©•ñÖÞ?ðÂ{o¢‚Z7´¸RFÕKcú ЬY3íR“œœÔ¬¬ª¼¿÷Ÿâ¿)[¯^½ÛvüÖJfÁÐB(Z<EKUBdɈ©] I¥*£Xl E\>gÀ*Þ,‡²"Y¢‚²Æ¿Žcv`Û†G¯æ²”-W:´A¿~ýÐQl2¸&P@Mú±tÖÌâk§»Yð‘‘‘yžߨQ#”)SFwl®«›¿«ÒqþðÃøñÇñóÏ?ã—_~Áï¿ÿŽ#‡ãÄ_ÇpüèQåNp§ÎœÅ¥`J%n‹E")*•‹E ªZü»†šì‘‰ äO ¦&8wñÒý…-Cú‘¿ñÝÑ¿ñÇÉÓ¸¤d‰*\‘j¨4Qj¢a‰˜ÒÉ…+VDµjÕôo¿jÕªÚýÆ¢ÿöÛohÚ´)ä ê?EÖ7bóæÍغu+¾ùöüvà¥lUCç¥S¾1J&6E‰øºjù¤ZÅ¿HÀß œ;}¿ïzþ´‡ö~ógþF¡ð¢ˆŒ,ª¬¤ÅP<: E‹ÑKÞ‰Owaµô]xx8 R}§ÒÌkr,KRÊGÜ¥MT“C½9Rluÿi¹4»YœÇŽËöû'{ »Š·oß>=œúôé,óèÞ½»^xû’š‘/¤èàÿý¨ãKΟ?ÿßR8/¹ÑÏ#BCPºH8b‹D 2´ b•¥(!2 …¢J!LùÐ…«û!3*˜‡Î_¡#'°Q}H Ä+ ùH¸¨~;çÔoJ^¾ÎªÿçNý…³ÅWßu§ÏâÄÙsÚòŸ¹ÞÕ‹X!Õ‡¨ßMAõ;*¨FÂÂþ»“\“z[Ó/{ÿþûoæäÎÏ;§Óg¸@'vè?»uë¦ûOy!¿¤Ú\dº¨^Jäÿ…‹pþÜÙ Äeø<:6YY1cS±Ê©‡q‚ÿ}ôœý{7Êç»×3¤á ø;Èb±HªÓ]éê7qö_\¼pç.œÃŸ'/áÔuÕ—JQ×.]:¯tõ ¯>—.*ý㜊î4.œ?­ÓeÅ"$$aJy )¢~W ýi˜šKeZ QzH¨ôŸ*ˆ±Ìný§å ¨'fqV©RÿüóÏemR¾|ymPÖ—¬B:uÖGy؉%Rä’¼…È9—·y )Z´(Š+æÕ7¬äå=4¢¼üý÷ßÚq_&!ÊJæG”H ò_^å÷)ʬ˜‘Ýo[~¿’&PƒúÏúõë#44T+úÒʱs)}¦,³'›Œp”'P¿‰¬—¯HßyâÄ ÝwбM6ò‘¾ÒüˆM‚œ›ÜÒʺëvë?-‚7í«¯¾ÒC3bµ(2,ß³gÏ|)y²\Lll,—1!ó? «‡|…—ý§¯È³\\V÷Ÿ–[@ͦ«]»6äãÄr!y«f  pM€ý§k.¼J$à?l¥é;S§Nõz””H€lB€ý§M‚b 䈀Ï, ®¤›9s¦«Ë¹º&þ{÷îÍUOE–a1ñŸ(»ñùóÏ?½6ë8¯õÿñã?1;YLX˜ÙmC„ãjé.™-™Õ,9¢g·ÛE.ñ#§` þÐÊŸâª'–Ù´‘ìÚ8ã²k¿î,£Ûµßr–SžEâS)>ævÒ×ÊRwâcí­`uÿé3MI~äÛ·o‡¬•­}@󻎠ÌnoÑ¢ž{î9oµO–ùŠ?«9©)ˈÞ”ŽJÈvRŠ¥úâj!²ÙíAdW¹¤ eB‡ÝÜSÄ!^–>³‹*³d–¾]‚Xãããõž]d9Ö¯_¯wÔùä“Oì$æÌ™£·‡}ôÑGm%×u×]‡Î;càÀ¶’«Fxýõ×Q½zu[ÉÈÂøsÿYQ­+»U¨PÁ¶M4kÖ,Uk:{¢ì­JÊÊòâ'/"vƒF›6m0hÐ ÛŠ™žžŽQ£Féµjm+¤¬qãÆxê©§ ëJ°Ü*o—'Nt»ý²eËò¼} 4 ëA$@®°ÿtE…×H€ü‘€å“Ä$/~â”9ÈJÿbg  ¸œûÏ˙𠀰Üꉅ”ý5¥& ü`ÿ™?~LM$`–[@¥ê&LÀ‚ ôÌì¨ýÓO!-- ;vì°Ýìcû4%! öŸü Ë- &6W )›÷øŸH€HÀ=öŸîÙð €ðÉ,xÿ@“{)¿þúkT­ZU¯×˜ûÔÞI!“vîÜ Ù¿ÙNAfçÿþûïz I;É%k¦Êºp‰‰‰v {öìÑ~Ó%K–´•\ß|ó^õ!<<ÜVrQ{µ’SRRP¨P!{ ¨¤:xð dÉ™“`×`×~=3/Y“[ÖÆ¶ÛzÏÎrÊìþýûm¿’Ç÷ßòåË{uPg.VSµ‚2Ë    pð‰¨£t * A×ä¬0 ø–Pßògé$@$@$@$t¨€]“³Â$@$@$@$à[T@}ËŸ¥“ @РtMÎ “ €o Põ-–N$@$@$@AGÀg;!ù;é—_~Y/^ë\áÇëÅÂß}÷]|þùçhß¾=Z·níÅëdzfÍÊPFTTFŒ¿ÿþï¼ó~ûí7\sÍ5¨\¹r†xÞ<ùõ×_ñÒK/e(¢fÍšèÚµ«ãÚ¶mÛðË/¿ OŸ>ŽkÞ>Ø´iäã:uêÙeæèÑ£X¼x1BBB0`ÀÄÇÇ;GóêqVß-Ùì`ÕªUhܸ±þ~‰|Vwåûò;oeýYVî|ðÁøôÓOÑ¢E tìØ Äùóç±nÝ:|ñÅß[Ó¦Ms—©‡cg÷[å•Wô†uëÖõpɹËÎË‹/bÉ’%>¶gÏžðµŒîXºë7rG ÿ±³zÉ‚ô+W®ÔÏ¡"999ÿæ1wÏ€ÈÈH[ývòX=G2Z@(rw ;yÈî/ò‘ýìüq­¬<÷Üs˜?>4h€1cÆà“O>É]ÆùŒmÊ$ÿ7lØ€÷Þ{OçØ­[7:t5jÔ@—.]ôÎ:ù,*ÇÉå¡ã,׳Ï>‹]»v9ÒŸáºë®ƒì<ä«àŽ¥»~Ãrfõ,C<—d¬«®º ÇŽ󅈺LwÏ;ýv<Ç`È¥˜ª3ÔÛ©ÎGYö µÅ¤>~ÿý÷¾}ûæ+ÿ¼&VÛÉj[P-Ë‘#GŒ»îºË‘Õ<`̘1ÃqnåÁš5k e 1„›n¼ñFcذaÆ-·Üb^²üÿäÉ“‰'êr_}õUCY³2(k¡,ÈŽs«2·žxâ ãî»ïÖÅoÙ²Es´J)Ç]ùvùÎ[É‚eeO@½ì:úBµÅ­¡,ž:ÑèÑ£¿§õë×:tÈ>3/ÅÈê·~úôiÝ·+Ë¢¡,R^’ gÙºb)Ï™Zµjj[N‰²2»wïÎY†^ˆåŽ¥»~à "ä*Kçg‘2ÎÕªUs¤?~¼ñôÓO;Î}uù`§ßŽ'˜ÐšO5^¬?²o¸ /I8|ø0Ê–-«Å„/{xû"(…JYѲÈ>¼¦µììÙ³z·Q£F–‹%oÈ7ß|³Ú–7Q o¼ñŠ)¢‡“-èÿ ”·^±ÈˆT·ß~«e’6ëXEe?c«CæïVïÞ½‘žžŽ;ß~»n_+erW¾]¾óV²`YYPNüõ×_ïp½zõðè£B½ëDsçÎuüžd¨Ñ}‘)}V¿õqãÆA=ðgF÷Éw,Ų({ƒ9wÇÒ_úå’ÁÔ'ƒ¤P* AÒЬ& Ø…}@íÒ”ƒH€H€H€‚„Ð ihV“H€H€H€ìB€ ¨]Z‚r @ $ Íj’ €]PµKKP   T@ƒ¤¡YM   ° * vi ÊA$@$@$@AB€ h44«I$@$@$@v!@Ô.-A9H€H€H€H HP ’†f5I€H€H€HÀ.¨€Ú¥%(  * AÒЬ& Ø…P»´å    !@4HšÕ$   » j—– $@$@$@$$¨€IC³š$@$@$@$`T@íÒ”ƒH€H€H€‚„Ð ihV“H€H€H€ìB€ ¨]Z‚r @ $ Íj’ €]PµKKP   T@ƒ¤¡YM   ° * vi ÊA$@$@$@AB€ h44«I$@$@$@v!@Ô.-A9H€H€H€H HP ’†f5I€H€H€HÀ.¨€Ú¥%(  * AÒЬ& Ø…P»´å    !@4HšÕ$   » j—– $@$@$@$$¨€IC³š$@$@$@$`T@íÒ”ƒH€H€H€‚„Ð ihV“H€H€H€ìB€ ¨]Z‚r @ $ Íj’ €]PµKKP   T@ƒ¤¡YM   ° * vi ÊA$@$@$@AB€ h44«I$@$@$@v!@Ô.-A9H€H€H€H HP ’†f5I€H€H€HÀ.¨€Ú¥%(  * AÒЬ& Ø…P»´å    !@4HšÕ$   » j—– $@$@$@$$¨€IC³š$@$@$@$`T@íÒ”ƒH€H€H€‚„Ð ihV“H€H€H€ìB€ ¨]Z‚r @ $ Íj’ €]PµKKP   T@ƒ¤¡YM   ° * vi ÊA$@$@$@AB€ h44«I$@$@$@v!@Ô.-A9H€H€H€H HP ’†f5I€H€H€HÀ.¨€Ú¥%(  * AÒЬ& Ø…@¨]¡$@ž'`þúë/—/^ Ð÷ .ŒÈÈH—ñòz1sÙîÊøçŸpá”(QB%é~üñGDDD 11QËxèÐ!9r•+W†ä¨!33çz:ó;þ<¶mÛ†:uêàÌ™3 E±bÅœ£ãرcú\¸nß¾eË–E||¼ãº´Á‚ÿµAH~Ò™ó9yò$þþûoN2Û·oÎ;‡äää eåôäìÙ³8uê”ËèQQQ Ó÷þøã=z+VÔå)RáááŽt"ƒÈ&òJøöÛoQ¿~}ý]1¯;ó2¥lÉç»ï¾Óù–,YÒ‘H€|@@ux $@J@)Ÿ†êV\~víÚe|Ø(]º´¡7ãûï¿w xóÍ7u>Í›77.]ºdÄÆÆ?ü°¾ß»wo}ï‘GqÄ0`Àe×”"gT¯^Ý qÄ{ýõט˜C)«Žk¹9xúé§ÝÖoÕªUެZ´haŒ;Öò„CÆ ‹/:î ¹þøã6lÐÇ»wï6ä;WªT)C)ëÆ?ü ã+E\3’kòïß¿¿qýõ×;òâ €oÀ7ŲT +˜ ¨(+3gÎÌðQ&­HŒ7ÎX±bEžÄéÛ·¯~øËC>s0ÐJ•*iågòäÉF³fÍtüîÝ»;¢ÏŸ?ߘ0a‚>%J‹«¯¾Z+T¢t¤¦¦E‹5¾þúkCdä`* IIIÚJÚîwÞë<@IDATÑUŰL™2Æ=÷ܣϗ/_®™µoß^Ÿ+‹¨!Ì *dˆ/ÁYUÖECYE eñ6~ùåcíÚµ:½² Ê­ãïÝ»×èСƒ¾î¬€*+¢N;mÚ4/·LTÚ?ó÷QY½uvï½÷ž.÷?ÿù>ïÖ­›>æ™gôùÆõ¹¼¨È÷ÃY•&6mÚèø7ß|³ŽoÊüî»ïÊòë`£#ñ €å¨€ZŽœ’€uLT?WáĉÆm·Ýf,]ºTßž1c†ñè£Ï=÷œ¶©¡MC– buEñ“O>Ñq׬Yc¨!qýp>|¸a*f9¦Úºukó’þÅWè4jXXŸÏ;W[Qûí7ãšk®Ñ÷Äâ%»©S§jåS k9ÿüóOmÑe¤_¿~ƨQ£Œ;w:òw%¿XÝÅì±Ç QLD©ÃàÁƒ-[¶8òû÷߇zHËuß}÷;vìpÜeQxôéÓÇxà aiÉO¬µbm›5k–VôÌ{f}Ísçÿ¦ÚªU+çËŽ¥-DI7-|rÓT_{í5‡Åøþûïw¤sV@åâ’%Kt;w6ªU«¦-ÐÎuSÃÝF•*UŒòåËg°€JÚ[n¹Åö6¹ ¦:oÞ<·IÛµkg(×Çý_ýÕ˹X^Åâ+вXÌÍvϬ€JÂ.]ºèú=Z+›ò#Öu ÊÝ@+ð´‚jüC>#@ÔgèY0 xŸ€©€Š2±xñbÇgóæÍºðÌCð5kÖÔ{Q@ä¡¿ÿ~C”!QDFŒaÔ­[W?üÓÓÓu^ÑÑÑúA_«V-cëÖ­*äN¥R¨çŸ^Ç7‡àEMIIÑ÷”¿¢!ýzõÒÃË2|*J©òA4ÆŒ£ã¤¥¥*TÐí¦òäJþ¬â‹b.õ‹c=tÝä\†˜Åº&eˆ¬ò_dK¬X Eùå[äêØ±£¡üUÚµkk ¢(L2$.õë›ò5ÔV\±LJ0ë«O2ý1Pá=qâÄ ÓšyÓM7é!eç¤2ü,2$$$h˦p4Ë“x™P¹&S©›|Æ/—A”nI/mïl•Ë–-Ói”ª#~NLTfçú™Ö\ÉG”[qÓpâr ršß±Ú›Á•*ß[iGI#ÖNç— I'VUis ß ê;ö,™¼NÀT@MEÃüçwê²]) GØ2ÜzúôiCMæ0êÕ«§ýñDÑ‘{¦õKD‰ŸÕ|f èÂ… uQD%8+d_|ñ…¾'ÃõfP‘ 5éEŸÊ¼(Dâ#(A,¢rnúGŠê,vñM—€/¿üRç'V1I/Öµ?üP6Lßûæ›oŒ[o½ÕØ´i“±hÑ"}O# âF éÄÑô¿”tŸ}ö™vk¥éÃ(ÃÛbYvLTòÊüyë­·t’&Mšh+`æô2¤-iÔÄ2ãÓO?ÍpÛ•*–X³ s¸;C"uâJ]¿~½Ng¾@8§ùý÷ߵ넸RH=3S5Ë5ÿ‹»€„ÿcï<à«(º6þ„Ð IèD@z:Ò›Ò›tAš ]ŠH/* `¡Š‚(b%òÚP‘"ETD@:¤·ÉýæÌëæ»i77Éíû ¿eïÎÎÎÌùOîܳ3çÌÈ †Ä‰l„È-÷ļÀøû“4)) /ö¯’^”Vƒ½ÄK‘sá$æ $@î!Àe˜TÅ@¾N fÍšÚ³\¼ËåP£O©Š,Þçµk׆R ´çñôéÓ¡2(çÜÿýPSÑÚ#=Õ Ò¸¡”F¢páÂi¤L~ûÏ?ÿ„R& ìA¡¦Ž¡Qíù¬¼„ÄÖõ·'½¬ ×DuRŠ7Œ<•É€¾'i/^ ¹VÎ,:N9òèz(…I_ [e¿ 5b 5â¬ë§!(¥;Áã\Ùã¢B… :}jÿ)ÅOjÔN'o5Ò™ìQ¥ë85J­ËM–À*B)Šº•ò®cÕˆ#”©‚UŠÔ?e‹¬IÔ)S —ô¡Ì)’ÞN¸VSð‰du â¡.Á(C_¨ÿÄ[_ÀëK¥ØëŒ{)•I ”­(D>i+¥l'J&«_ùû` p.Ãäî,•\J@–°±w霤Ë1©)l¨ifýƒ¾eË('¨Ñ6ˆ!Ê›ù1·7(ÛQýœšR·÷‘„t"ƒ(ÊjUÇ‹ò¢LÒX×ßžô¢hËÿËúHfÆ2=†¢%Ë)ÛX¨[­`I5’5 YÆHžÅF”%a¤F¡F ¡¼ð /@9Þègå¹Ìe Q“C™4ÎIï[_+;N½¼’(Îj”V×WæB­h`,Åϲd–5ªšì¾²ßLXÎK™G$»ŸV„ò`×IÔô²¤†\Æ9Y‚#Ô¨>ÆŽ«_ ”Ô.Ôˆº~1P¦(:•¼ÄHHI}ƒÿ‘ 8P§#f$à]¬àOŸ>­Gë”§ýSÞ×ZYQKÿh¡d´Qš5k´‚¥lõµõGÕ#®¢T(ÛQ¨)lôïßÊfÒ:™]ŸeM˨¨((3([L(;S­lÈH¤¬‰)Áºþö¤O­à¦M›BÙ|BFÓD®ï¿ÿÊÃj*ÊyG?¶yóf=Z,Ê›rÎÒõZ±bd”N9(¡wïÞßÇ'(´¢ÉHŸšâO­h̬„‡‡C^dôTÙ™ZßJ×çuëÖAyÔCFJÕRGPæ zX”´öíÛÃPÒRËTFO%ÈhxÒЧOÈ‘VnÊé,Q2eª_,ä¥F”ÈŒ)U¦'PN`hÞ¼¹~Y…{À€PÓõúAd¶•µQH€ÜDÀ=3ÿ,•HÀ ÐÔ¼àS²•%~¬ƒ,Ñ$^Äb3'5boiØ|¾ûî»ÚSu_ñÀ¶†’Ü“CìüÄ~Oì;­mïÒc*ù‹-¦8=Ižjaqí…n8܈ hÒúÛJ/\Ä‘ÈR7ÉWlQ%¨_í|$qâ„$kSAœºÄaFî)s‹ØTJ¯{qØR £¾'6ˆÆœrßZ^¹¶¶l@¥ $ˆç½89©ÅÕ­ÕNCRqÖJ Piñ&WJºÅÚ‰ÈpòÛZ©¿R²U£¹ÚYKì=ÓR³•z6ÁâÜ%aIƒáü$¶®ÖÁÚtýúõš¹ü}ˆ ³‘G˜K²n¨õcQ#×ú3ÿ#p?)V}1H€HÀ&U’Ýe¬Gåµüž‚·ž·™‘ƒnJ}dg¥@Ú•czÓ[g*£˜2]k˜$½'#Ã)¥PB¦ÌdtTFeš_F í R?åxåínOr›iÔG©r¥ÚL—Ñ›Ï=÷ÔrZÚÎXÌÒ Êá b3«ä ^pÒJ®M¤MÔ"÷0ìjÓ|ˆ H€N ío·Ã‹d†$@ÞH@¦³“*Ÿ"‡(¥®V>¥\©½ÊgFÒË3F.%åS|Ê=G+Ÿ’§(Y2m.æ®25þå—_B-ƒä´¢e ]O±ßtFQàÅYŒHÀ}¨€º=K& {M™¼2‚ÒÊDFú”)@ZÉÒ¼¯–«Òv£Ê Í´M Nd2 *#½ö±G{kç3[ωý§8Ñ¥öBaëYÞ#pNÁ;Ž%s"   °ƒG@í€Ä$$@$@$@$@Ž#@Ôq,™ €¨€Ú‰IH€H€H€H€G€ ¨ãX2'    ;Pµ“ 8ŽPDZdN$@$@$@$@v j$&!   p* ŽcÉœH€H€H€H€ì @ÔHLB$@$@$@$à8T@Ç’9‘ ØA€ ¨˜„H€H€H€HÀq¨€:Ž%s"   °ƒP; 1 €ãPuKæD$@$@$@$`* v@b    Ç ê8–̉H€H€H€HÀÙìHã5Inܸ)S¦ÀßßßkêÌŠ’ €'xðÁѸqc—TŧÐ3fÀb± <<Ü%ðX øØØX4iÒDëQ®Ç§P???+V ãÇw;–A$@$@$@>AàÔ©SX²d‰Ëd¡ ¨ËP³     !@”$@$@$@$@.%àSSð.%ÇÂH€HÀMnÞ¼‰ .@/ãããˆB… ! ÀM5b±$@$>T@ÓÇ‹©I€HÀaîܹƒ“'OâìÙ³8~ü8Μ9£sçÎáÜÙsøçŸpýÚu\¿~±±·«Òß½w°Ù²fC–,Y ¶ïññq¸£â³fÉŠÀ€œÈ›/"î‹@ã&1dÈ/^ÜaufF$@$àT@A‘y À¿îÝ»‡­[·âûï¿Ç¯¿þŠS'Oá5Zyëæmܺ} wµywãîjoÓìÙ²#GöȈ\9s!OÎÜȘyó¢Ph(ò”Ì£®UœŠ—û9áŸ-奿nÆÞÂÅ«ñ÷¥œ¾pï­|óçÍG¾¼ù´2:ç™9(_¾<ÛŠH€ÜN€ ¨Û›€ ðf¢p¾öÚkxgÝ;øíào¸tå’V …Bxþ0ËSË•ûWÌ­Ȝș=9Õ95E2£<$ïÀ‚EPT5ﯮ³¹‡C'áÇßw¢Z•ªjª¾0¦Ï˜ŽAƒe´>G$@™&@4Ó™ € lÛ¶ “&N¾}ûP oT/]4ï…’á% LO Ù²fEň úˆmÞ?üãFÃ䉓1wþ\ <ØSªÊz ˜ˆ€W* »wïVöP±Éšé?þ€ØT1 €³lÚ´ cFALL šTkˆLEÁ gçÐ|søgWun„FUàǃ;´":{æ,¬}g4hàв˜ Ø"à• èܹs!FúIƒŒD”)S&i4¯I€H Ó:„N;á¯cáÁºmѸsC‡O¡gº’vfÅ/ êUª‹Úåkaëî/Ѭi3Ô¯_[>Þ¢=êí̆ÉH€H ÃüÔÖ•ÊŸÒ7B­Zµ†-[¶ø†@”‚HÀ#<ñÄxyñËzäð¡ºíúà`ô| ;ú?Ò­[µ†,5Å@$@Ž$@Ô‘4™ €×5=ôëAmú£EÍf^/OF¨U®¦ù} G=‚ÐP|ûí·ÍŠÏ‘ @2T@“!a €Y ÈڞÆ CϦÝP­t³bH[lC't‹–5š¡U‹–èׯ_Â=~  Ì šz|–HÀg¼üòËhÛº-º5颗(òÁ H³`RÏ ˆþd+ …ž={+³ 03* fn}ÊN$  ˆÍçøqO`d§GѼ椒BÁáxªïÔ.‰ºQu9š#F‘ ØO€ ¨ý¬˜’HÀ |óÍ7è¯l>·ˆ²Åî÷A 'R–,YÐ>ª ¦öžˆÿ~¶ !B¸î²ãð2'0* ¦jn K$`MàÈ‘#ÚË»kã‡QµTeë[ülƒ€Œ†Në3 ­j¶@×Î]Q³FM?~ÜÆ¼E$@‰ PM̃W$@&!pûömDÕŽB£* иjC“Hí81ýüüÐDq›7x6rÇ¢Lé2hß¾=._¾ì¸B˜ €Ï ê³MKÁH€lQ»È2ÕѹaG[Éx/ ¹ræBŸæ=õˆèé?N",4 >ø bbbÒx’·I€ÌL€ ¨™[Ÿ²“€I ôîÝçÏÆ ]6&%àx±eZþ±‡†ar¯ 8{øŒÞEªNí:øî»ï_s$ðzT@½¾ ) @z¬X±ßÛˆÑP;åHÏ£Lk"!…1Lí5kÀtä³äA‹fÍŽQ£FáêÕ«väÀ$$@f @Ô ­LI€4Çcäc#1¤ý@„æ%'Î qîzá±gñPívøâÃÏ‚²eÊâ™gžÁ;wœX:³&ðtT@=½…X? ‡ˆGƒz ð@õƨr_%‡äÉLÒ&-k6ȶžOtyCžFâUñÚâeÈ+7*”¯€gŸ}–{ͧ‘)HÀçds—Dׯ_ÇîÝ»µ¡z¾|ù2eʸ«:,—HÀÇ ´T[IæÎž ê·÷qI=W¼¼yдz}\ºv ;íÆ¢…/aú´é¨X±"Æ=1}úôñ\X3 ‡p‹ºvíZL:Õ«WGpp0d9”£GBÑÕ«W£@‘ €l³ùýöí˜Õÿ)dñãÄ'üEäÏ“-#›ëã•ðão?aäð‘1ü1´jÓ/½ô .ì UeH€œ@ÀÏ¢‚òM5K™“ÑÎ]»v¡`Á‚‰ÒÍ;¹råÂèÑ£ÅÛ{Q«V-„……qg{1 ˜€À±cÇP¡\ {p0*–,o‰½[ÄC'ã¿{¿Æ£¿ J•*Xºl)"##½[(Öž¼€À©S§9»"¸|4..Nz%“¯hÑ¢¸xñb²xF @F 4lЪ6 ò™Q€.~®l±2jKÔ2¸|ý2¢÷üõëÕG¹²e±fÝZTªDÛ]7‹#§p¹êïïnݺ¡qãÆhݺ5BBB Ù/::;wîtš°Ì˜HÀ\ztïËxt¬ÿ¹÷iƒr¡K£NhS»>Ùñ™Þî³Q£FØôÁ&äÎÛ$¤$`nn1†š4i–.]Šððpœ>}7nÜ@ݺu±gÏäÉ“ÇÜ-BéI€B`Ë–-ø`Óx¬Ã0dËšÕ!y2×Ȩ—sšÕ:bþúaô}¨ëkÂI€IÀå6 FåEñöíÛ§§ñ3„Ï’ x/qfœ1ý)½äR ²dðmµËEbZßIøpè]«¶^SÚ·%¦t$à;\®€fË–MÛ}¶k×çÏŸ×$çÏŸ¯íxDµ'ˆs좔ô¨P¡Š)bOLC$àƒ7jŒ†Uèe||P<Š”°ü¡˜Ùn^¸Žv­Úºl êÂ( tpù2LR·E‹á»ï¾CöìÙªúÊ+¯ AƒHˆKíChhhŠ·d‰'QpH€ÌG`À€ˆC§Ì'¼É%Î៣õ_mPk†–ÃW_ÅÅëMþ7Añ=Ÿ€Û´5Q6“†îÝ»'â5 ¤I`Û¶mX·f¦ô~’K.¥IË7ˆiWº"$o0Öoˆ›6j'Wß”–R‘€÷pù¼-dãÇÇÓO?m+ ï‘ @"·oßF§ðp£Ž(žè/ÌG yͦèݼîø0Ö­[g>”˜¼„€ÛF@e>±áŒ‰‰A¾|ùôþð ,ðl¬& €§hÞ¬9Š…ÁÕyJ•X7¨S¾r*OùýèÝöZ´háæ±x ¤Ü¢€®]»S§NEõêÕõ¾ð2‚qôèQ­ˆ®^½š 'm%^“ ¤Hàå—_ÆÞ=?cöûSÌ„‘>I J©ÊjÏ–zÍé÷ß_/÷ç“‚R(ðR.W@ããã1yòdìÚµ  L„mîܹXµjF(ž$@$”À±cÇ0þ‰ñx´ý`ä äÞàIùðhÕþÙüѳ{O,Y¶â¨Æ@$à\®€Ê: ÁÁÁ JF hÑ¢¸xñb²xF @R6FƒJõP1¢BÒ[¼&-"›¡pHa<:ìQ½òŠìÀÇ@$à~.W@e©¤nݺA¶Êkݺµ¶Ï‰…, ;wºŸ k@$àÑD‰ˆ‹½‡Î:yt=Y9Ï P±dy i7 D`` §ã=£YX “p‹ü¤I“°téR„‡‡ãôéÓz/øºuëbÏž=È“'É›„â“ Ø" [ùnxo†?4”K.ÙÅ{‰TU6¡ý[õA¯=ñÕW_%ºÇ  ×pù¨!b•*U  ØK@Ltúöé«—Ù‘pH ="ËÖÄí;±hÛº ~üiƒÒiIÀÁܦ€:XfG$`õêÖC¥’P·BHKA Aåz¸~ûê×­ƒ¿DñâÅQ ó$Hƒ€[¦àÓ¨o“ @2Æ Ã…sçѧyÏd÷Aé!кV DU¨Gz?‚«W¯¦çQ¦%p* ÉlH€œG`Ë–-xûÍ·ñx§á}¿H ³º5îŒ篣]›v¸wï^f³ãó$@é$@4À˜œHÀµ.\¸€Ýz W³îz9×–ÎÒ|™À ¶ýsâJ—.íËbR6ðHT@=²YX) ƒ@­ÈZ¨Vª êV¤Ý§Á„gÇÈš%+FªQõÛ×n£UËVŽÉ”¹ ØE€ ¨]˜˜ˆHÀ:?Ü·¯ßÖ£Ÿî(Ÿeú>µgü„ncðã÷?`Ĉ¾/0%$!@ÔC‚Õ HL`Ù²eøô“O1úáÇôvЉïòŠG o®¼x¢ë¼±ü ,Z´Èq3' T PM o ¸‹Àþýû1zÔh k?ÁyƒÝU –k"…‚ÃÕtü£˜8áI|òÉ'&’œ¢’€{Puw–J$ Y§Qƒ†h[§*¨-HÀUî/ZFmrÐ]”éÇ¡C‡\U,Ë!SàBô¦lv MžK ²FM”/^mjÓ)Äs[Éwk&ëƒþ})uj×Á_ÇÿBPPï KÉHÀ8êFø,šH 1Ž:âÆ•èÓŒ‹Í'&Ã+WèP¿=Jº ë7te±,‹LE€ ¨©š›Â’€ç˜={6¢¿ˆVNG#Ý?»çV”53Amúãê?WиQcSÈK!IÀÕ¨€ºš8Ë#HF`óæÍxfÎ3ÕyòçÉŸì>#HÀÕ²eͦ^†Fbßž½\žÉÕðYž)P5E3SHð\âñÞ­k7ôoÕá%<·¢¬™éä Ìq]G«å™V`ùò妓Ÿ“€3 x¥Ò¬Y³pñâÅd\Nœ8¬Y³&‹g €gï±x¼·©Ý‘ekzf%Y+S噆ªåÀF<6+VDݺuM̓“€£x¥Z¼xqäÏŸ|š.GŽð÷÷wæC$àDñññ¨T±šTm¬–\jíÄ’˜5 dŽ@¥ˆŠèXÿA´jÑ Gÿ:ŠÌeȧI€àgQÁW8ÔªU aaaزe‹¯ˆD9HÀg Ô¬^…Ãð`¶È’…Ö@>ÛÐ>$Ø[Ÿ¯B΂¹½-Ú‡¤¢($ð?§NBTTäìŠÀ^ß”Y @"MhŠs§Î¡ud *Ÿ‰Èð“ <Ò¢7Žþ~ •Ù @æPÍ?>M$N½{÷Æž]{”sÇ(äðϑΧ™œÜG@FêGvŽý{÷ãñÇw_EX2 ø* >Ј¼…ÀøñãñáûbbqȘÇ[ªÍz’@ñŒÛåq¼¾ìu¬[·.!žH€ÒG€ húx15 @ ÌŸ?¯,~ã»AH>:qd#óEB cPÛ~Ø<è5bHÀûPõ¾6cIÀë,[¶ 3Ÿš‰1GB~¼HÀÛ T+]-#›ëí:oÞ¼éíâ°þ$àrT@]Žœ’€¹¬Y³£…‡á¾ÂæžÒú4vQmP,¤(jT¯áÓrR8p* Î ÊÆK/½äëâR>p* CÉŒH€ 2íÞ­K7ôkÕ5ÊT3¢y&Ÿ$œ7u†‰ONÄöíÛ}RF EŽ&@ÔÑD™ ˜œÀÊ•+ñHßGзe/µ¿;mãLþç`ñË+ƒ‡v@ë–­c¹)( d”ÐŒ’ãs$@Ɉ·{¿~ý0±ç¨].2Ù}F€/hZ½ *«}ãëÔ®ãËbR6p* ÁÈLH€6lØ€QÊÛ}hûAˆ(T’@HÀ”úªí:ãoÇ¡y³æ¦”ŸB“€½¨€ÚKŠéH€R% Óî}zõÆà¶ý9íž*%Þ0lY³bÔÃ#ðÓ;0uêT3ˆLI C¨€f"0È´ûAC0ôÁÁŹHÀìd›YQBŸ_ø<>üðC³ã ü$"l)ƺ òúõëØ½{·6ÖΗ/"""P¦L”Ì"H€E`áÂ…˜>u:S‹ÌW(QÎQÙ2ðz%Š£o‹žèѽöØÏß7¯oQ àhnQ@×®]«§&ªW¯Žàà`ܾ}G…(¢«W¯F-'ó#p0™^|á¹ç1Zm¯YºÈ}ÎÙ‘€÷¨]¾NýsuëÔÅ™sg={vƒ¸\ÇäÉ“±k×.,X0‘sçÎŪU«0zôèDñ¼ ð,ÇÇÊ7߯„îcQ,´˜gU޵!"ðpƒ8síÚ¶ÃÖè­T3V…ÜKÀå6 qqqzÔ3(((™äE‹…ÅbIÏ Ï! SŠ«ß^I½&PùôœfaM<˜À£Áþ=û¸]§·«æz.õ÷÷G·nÝиqc´nÝ!!!ˆÅ‘#G;wºžK$°‹@³¦Í°gçLí3Áyi*c4&2=þ90¶Ë㘽ræÌ™ƒiÓ¦™ž €ËG@ù¤I“°téR„‡‡ãôéÓ¸qãêÖ­‹={ö Ož„¶uZ£U­Ë„O‘ ¤IàöÛxfͳ¨Uüqšé™€œIàÔ©SˆŠŠ‚œ]ܦ€:C¸Zµj!,,L°:#æI¾Nàí·ßư!CѳYwÔ«åëâR>p;Ëׯ`ÎêyèÑ»'–-[æöú°æ%àjÔå6 ¶šVlahc‹ï‘€óˆýµ(ŸCÛ¢òé<ÌÌ™Ê㕃ßê·WaÖ¬Y‰îñ‚|™€G) ãÇÇÓO?í˼) x$‘#GbÆôjÂÇQù¾JYGVŠ|•@x0Œí: óæÎ믾ê«bR.HDÀåNH‰JOr±`Á‚$1¼$p6‡;=Œè/¢1Ym­Y(8ÜÙÅ1 ”+Ž‘‡cܘ±gÝ>}ú¤ŠQ$à;ܦ€ŠÇúîÝ»£=×#""´‘ï ¥$$àù¢êDáÈ¡?1­Ï$äÏäùf IÀ‡ ”-VF›À 89sæDçÎ}XZŠfvnQ@×®]‹©S§¢zõêzPYRéèÑ£Z]½zµ^#Ôì CùIÀ™ä;×¶u[œ;qV+ŸÎ,Žy“ ØI@L`¶é‡^={áÙ…ÏbôèÑv>Éd$à]\®€Š“ÑäÉ“±k×.,X0­¹sçbÕªUüÂ%¢Â p,sçΡK§.¸vþ*žì>Ž Ì;/s#L¨Q¦šrÈØ1côtü€2'3 O#àr4..Nz¦´ý˜ìtñâEOcÄú€Ï5re÷•šeªcD‡aðóóóÙ( øȲ5œ/CÕÊèÙ³§/‰GYH.W@ýýýÑ­[74nÜ­[·FHHbccqäÈDGGCv9b p* ÎgÌHÀ¥6lØ€*•« F©jýðdpiù,ŒHÀyBó‡ê—Ê_~> •P™é` o$@Ô&T >}zõÁ#-z¡sÃŽ\f)NŒ&o&7W^½uî©Ã'Q¬HQœ:uÊ›ÅaÝMJ€ ¨Ižbû«W¯¢RÅJxoí»˜Ü{d A ß%Ã?‡žá¨\¼ÊÞ_Û¶mó]a)™O ê“ÍJ¡ÌDàóÏ?GQ5 —3ûOCáàBfŸ²’€i ÈFÝè‚. ;©­uÛ`áÂ…¦eAÁ½½à½¯ÍXcH Я_?¬_·^ÿ5¨\/!žH€ÌC@¾ûáÂ0sú |ýõר²e‹y„§¤^K€# ^Ût¬¸™ üöÛoÚË}ëÇ_`ZŸ‰ òiæ¿ÊN@é"¥0£ß4ìûi/J–(‰sçÎ x4* Ý<¬ $'0fÌT«Z U”í×ô¾S¦F>H€H ž LQË4*ŠR¥°yófB!%À)xmVŒØ»w/Ú·k;7c1¡ûX”+ž8¯H€LO [Ölè«VÁÑn]º¡ß€~X¶l™é¹€çà¨çµ kD‰ÄÇÇC¶Ó¬S«ª—¨ŠYýŸ¢ò™ˆ/H€’¨[¡Ž Ýôîû(Sº bbb’&á5 ¸•P·âgá$`›ÀÊ•+Q (?v|³Cm§9 Õk‡lY³Ú~ˆwI€H@(Ž™Ê.4,0TÛ…JÂ@žB€SðžÒ¬ X8tè:vèˆGϦÝP§Bm«»üH$@öðÏæ~-{£JDE 2 +ß^‰O>ýÙ³g·/¦"'ਓÀ2[ÈÛ·okÅS¶Ò,’«æCå3# ù @"ÕËTÃìOáÔŸ'ŠO?ý4Ñ}^€« xåhdddŠ[ýóÏ?([¶¬«²<p™3gbá‚…Ú¾szŸIônwUfB$`ÊOto÷‡Nj†¥iófÚS>[6¯T ±xöR^ùW÷ÙgŸ!...òV­Z!<<G @Þüz4ô§ßvbøÐG±ðÙ…ØüÑfDDDøœ¬È3 ð×Î3Û…µòa²J£†P7ª.JˆÀeçÙXHPùôáF§h$à¡j—¯…yCžFHö(W¶ztï{÷îyhmY-_"@Ô—Z“²x4éÔéÛÅŠË·ñô€èÔà!dðèz³r$@¾M gŽœèÕ´»^7t÷ö]ÈŸ/S§Nõm¡)Û Pu{°f 0kÖ,Ý©ÿðÕ˜Øã jÓ²m x ÂÁ…ðdqغV,YŽüj âgŸ}ÖSªÇzø¯´õ±6 8>L`Íš53j4üâý0@uê•ÕZ| $@$àÉ*©~JŽ]‡ö`áÜ…˜?wFŽz³gÏöäj³n^F€ ¨—5«ë~øáôéÝŸ=‡‡v@}:yGñ–$@ "ËÖ€»ÿøYˆ¾ðÜ èЩ/^Œ $¤ãÈ* ¡ÆgH ÇŽC·®Ý°ÿ~´®Ýc|9ü¹ãH*¸M$àjÞ_r>õ'>ßð°pT¬X3gÍD‡¼@VÑ PõÄVa¼ŽÀå˗ѳgOlûr¢Ô¶™óÏFžÀ<^'+L$@©(S´4ä¸tí2¾=ðz÷ì Yþ°UëV˜5{7‚I ãS$@'¤±0’ì# [göîÝá¡áøûÈ9<Õw2ú4ïIåÓ>|LE$à…Äò¡zíñÂðèß²/Žìÿ•*VBáðÂ6lNœ8á…R±Ê®&ÀPWgy>A@–T5jÞ~óm -Š ÝÇ¢xX1ŸB €=üüüP¡D9}ÄÞ½ƒGÁ_~Ò+JA6ŒiÞ²&Nœ¨§ëíÉiÌE€ ¨¹Ú›Òf’€(žcÇŽÅ›o¼‰Ð|1¢Ã0=%•Élù8 x5±u7œ–DýåØAìúi7jT«Ü¹s#ª^Fމ6mÚxµœ¬¼ãPuKæäÃdª]¦–6¼·aA¡ÖnÊ/ëÃS4 ÈQF Ç¥¸ø8:ñ~>²Ý:wƒEý«X©"úõC‡rûìŒ!ö‰§ü,*ø„$JˆZµj!,, [¶lñ‘(‡› œ;wNw’[?ÿBM±Ge÷$Fø $@$@é'p2æ$ö9€‡vãŸ+Q²dI½´Ó“O>©§íÓŸ#ŸpS§N!** rvE ê Ê,Ãë|óÍ77vœ^N©j©ÊhS»•¶õô:AXa ðPâM¿ïÈ~üthþ:{a¡ahݶµ¶-S¦Œ‡ÖÚw«åj”Sð¾û·DÉÒI >>^ïôñú²×qñâE4©ÖsÎä–™éäÈä$@$`ñ¦oR­‘>nÅÞÂe7ºû›]¨øvE©ýè5i„ & N:ödÇ4^FÀm èõë×±{÷nÄÄÄ _¾|ˆˆˆßx¼ì¯ÇGªûå—_bÆS3°k×.„DËÍP«lMøgó÷ ) x6œ9r¢v¹H}Ü‹»‡_ÿŽ]¿ïA“F‘3 'jÕ©1cÇЉɳ›1]µs‹ºvíZL:Õ«WGpp0ÄÁãèÑ£Z]½z5·øJW2qFìÝ»sæÌÁ¶èmˆEýJQ˜ÒëI ÏHv|†H€HÀA²e͆*÷UÒG|«>z¦=‡÷*'¦®€Zú©r•Ê4x €,Y¸œ¹ƒ°»<—Û€Ê4§ŒvÊhSÁ‚ /ûÆvëÖ 7FëÖ­õ² 2zäÈDGGcçÎ^õ,gΜ˜plùh ~;ø.]¹¤w'/ö¶[(/vîTäY-ÆÚ @Æ  A‹šÍôqûÎmüë7ìÿõjÿd…É’%ѲUK <˜»1e³Óžtù¼!Éþýûñã?âøñãÈ™3§ž–ïÔ©$é>s >Ýȼö™*øè£°mÛ6Ø·gΜŭ۷P"¼8Ê»_­ÕYeŠ”¢#‘×¶0+N$@'pöŸsøM92ýrüWüqò0²«Åñ‹—(Žzõë¡C‡hß¾}Æ3÷Ñ'}~ Þh·ûî»—.]Bþüù¼à3£|ùòì;d)¤;vèÕ~ùåþã0Ξ>ƒËW®àŽÚê­PH8"ÂK¢vÉH”Œ*"!…iî;ÍOIH€H ÃÄ¡Tަ5šèèk#^®³e˦Ӌw¢Ë!ë\Êž½þjÉ‹¬Y²©ÑC?udÕá~ªšÿÛ£Õ‚8­Æë³ìë«ó¥òßÏqª¬»êˆ·¨4:>^=lÑ×"­ö0WŠh6¥ÈÊòþêKœ=[väÌžSÕ)¹r!P­—K}ñóäÌ|¹òª#Ÿ¾¶S‘ @æܽw_ŠÁ¹‹çôùì¿gÙ2TFLeà%0g òäÉ 5{++ù„†…¢páÂ(T¨Š)¢ÏÆgo›Õõù)xGxÁ?õÔS)zË‹=iÞ¼yõ([æþ ?}öìY4jô¿·¦Äw Gé$NF õÿïY)c*J+dƈ¢qÅÍ¢”:Qì$N[AFEQÌ¡”5Q"eÁ^QàÄ‹[ŽœY;w ²æýßH¥¤Ï*J¥ZZHF í ªÖˆSŽ‹³Q••1šÃžLíH£¤ÇµÛ×ô+v<À$$@$@$à¹sCŽREîÓ¿ïw”‚*Jª„¹qg®žÂñ?þÂõ[jFñÖMÜŠ½©îßKµf2“%«:Ôo´þ–u-3ˆ¢øI¼¤Qg¨ß[cR_«\k)@œ¸/^œjY¹!3¡FYy>½Ï¸|?“ 8Ÿ€Gí?8~üx<ýôÓΗš% ¸€Ëm@mIº`Á[·íº'vÇŽ³+­;íÝ»W/õÀÑ^w¶BÊeËòPb ãmŒ)Kã[±²Êƒ,V @ßÌG¤‡Mñfð<²üžácàyµ3wDo‘ þ-î Ò¿ZÛœ:».nS@eÈÝ»wCÖ©'Ÿˆˆ”)S&SòÊî 6Äo¼‘©|\ñð_ý¥=Êélä Úé+C¾€†#Yúždjg0ŒóŹÁóK¿±_ó¼¶a¿æymbÔÈ0=,Z´¨å–³,ç(Û¤»*¸Å ‰ ÑCà9rDïåªÆf9ö4hêׯÚ÷S¹ŒÀÇŒ%K–`Ë–-.+“ÙO@FØd…î&c?3W¥ìÙ³§Þ‚²G®*’åØIàÝwßÅÆ±~ýz;Ÿðd.MòäÉØµk—^ÄÕãܹs±jÕ*Œ=Ú:šŸI€H€H€H€|ˆ€Ëd 88AAAÉ0Êð³¬sÅ@$@$@$@$à»\>ꈅè}·9( ø>—€ ÒI“&aéÒ¥z×¢Ó§Ok¯ÖºuëbÏž=jÕ<¾O’ €‰ ¸|Ô`ÒBôÆ=žI€H€H€H€|—€[¼à}§ý’ýüóÏz'(.'c?3W¥”%²rçÎWÉrì$ k´ÊÒm™]²ÍÎâ˜,di½5jèeÌÒù(“;™ÀÑ£Gµï×Ðu2è déÒ%\¼x¥J•ÊÀÓÞûPïm;ÖœH€H€H€¼’€[l@½’+M$@$@$@$àT@‚‘™ ØK€ ¨½¤˜ŽH€H€H€HÀ!¨€:#3!   °—P{I1 €CPuFfB$@$@$@$`/* ö’b:    ‡ êŒéËä7Þ€lAš4ìÚµ 6lHÍk8wî^{íµ„ïÞ½‹Ï?ÿ3gÎÄ?þ˜Ï®'‡gžy&QÁ²¡ÃŒ3°råJX,–D÷xáz7nÜÀš5kðÜsÏáÔ©S®¯K´Ià³Ï>Ô)Sðé§Ÿ">>ÞfZÞtéã®]»æžÂ]\*P—ÈÅ‹cðàÁ¸páB¢’¯_¿Ž=zàË/¿LÏ ×|ðAÝ9¥>ýôÓX¿~=êׯY³fá­·Þ2nñìB¢Ø 4H+6F±¿ýö €ªU«âý÷߇´ƒ{ 2þù§ÞÑ¥I“&¸yó¦{+ÄÒÈKš¼4kÖ ¯¼ò Ö®]›p<ƒÀ’%K0mÚ4Ó|o¨€ºðïnúôé›ÈÈÈd¥Ž3<ð@²xF¸†€lƒÖ¶m[´jÕ*Q²õãK/½„-Z`Ò¤IX·n]¢û¼p Ž;¢råÊÈ’åÿ»,ù8q"~øa=úú믻¦2,%UÑÑÑ;v,:uê„û￟³©’rý `ÕªUZ•Y¸Ò¥K»¾,1U‡‡~ˆ²e˦šÆ×nüoîk’y <2õ!_|ÙgÜ:ÈèM`` Vr¬ãùÙuòæÍ‹½{÷¢eË–‰ ]´häž„wÞyµjÕJtŸ®! óO<‘¨0ÙÛZ” FÉH)ƒûÈK¶¼ >Y³fEݺuÝW–œ@@ÌWd¿qùý©^½:žþù„ïNB"~p1õ’ïÌÒ¥K½d»­B.*8›‹Ê1e1ûöíý{÷tG\­Z5­d&qöìY¼ð غu+>ú裤·yí$çϟlj'tîÅŠChh¨Í’ä‡õ×_…ØP18—ÀíÛ·qðàA]HPPžÎ•´¤A~P­ãpëÖ-äÊ•+iR^;‰€uW¥J|ñŨT©ä;µÿ~?~åÊ•sRéÌÖyA“°°0ˆ}»¼lß¾]ÛMÿç?ÿѶí¶òà=çHúû#³l}ûöEÉ’%S ‡æJÔ‰ 3gÎ\¾|YxnÚ´)Å’æÎ«4û÷ï“'O"&&Ë–-ðaÃRLÏHLJ"é€%<öØczÊ0µœÇ‡Ã‡kå3gΜ©%c¼ƒÈw@Ì$ˆí­8€¥ÂÃÃ!¦FˆEHHˆqɳ X÷q“'OÖ ü˜Jegùòå‰ìv]P%ñ/±ñüúë¯õ•ØúûûcäÈ‘ú¥mèСèÖ­[ªß-Bt.ëߟ^½zAfÚÚ·o¯cÄAYÚGF«ƒƒƒ[7çNÔ‰ ðÞ{陵û“O>‰þùG§“у;wj[Ä4d‚Lg#9Ò b6!íóÁèÔ´Òó~æ /^\Ϥ•S£Fô¬(©ßÿ½)MëÞw,ë>N^dôúÎ;Èž=»~¡–ÑP÷g9Œ ß“;vhPQ€ óã>Ï®#`ýû#ÓïbaÑF•`VdÄûâ™ ¨›[U¦ªäðÇàØ±c ×n®šé‹—i’… ê·Ð%Jh›.<@IDAT*TÐÓŒ¦‡ãÄãZF§EåGV+`p `àÀèСÄæP¦}{öìé¾ ±äDdÆç‘Gѳÿý7M¾Ñqß…ŒL‹‰žÄ”H^Ü$Þ׃ŸZˆ‹çùz+S>ðaâxD»OÏi`ùI[\kû\Ï©k"/kò²À@î&@ÔÝ-ÀòI€H€H€HÀd¸ “ɜ⒠€» Puw °|   0* &kpŠK$@$@$@î&@ÔÝ-ÀòI€H€H€HÀd¨€š¬Á). ¸›Pw·Ë'   “ j²§¸$@$@$@$ànT@ÝÝ,ŸH€H€H€LF€ ¨Éœâ’ €» Puw °|   0* &kpŠK$@$@$@î&@ÔÝ-ÀòI€H€H€HÀd¨€š¬Á). ¸›Pw·Ë'   “ j²§¸$@$@$@$ànT@ÝÝ,ŸH€H€H€LF€ ¨Éœâ’ €» Puw °|   0* &kpŠK$@$@$@î&@ÔÝ-ÀòI€H€H€HÀd¨€š¬Á). ¸›Pw·Ë'   “ j²§¸$@$@$@$ànT@ÝÝ,ŸH€H€H€LF€ ¨Éœâ’ €» Puw °|   0* &kpŠK$@$@$@î&@ÔÝ-ÀòI€H€H€HÀd¨€š¬Á). ¸›Pw·Ë'   “ j²§¸$@$@$@$ànT@ÝÝ,ŸH€H€H€LF€ ¨Éœâ’ €» Puw °|   0* &kpŠK$@$@$@î&@ÔÝ-ÀòI€H€H€HÀd¨€š¬Á). ¸›Pw·Ë'   “ j²§¸$@$@$@$ànT@ÝÝ,ŸH€H€H€LF€ ¨Éœâ’ €» Puw °|   0* &kpŠK$@$@$@î&@ÔÝ-ÀòI€H€H€HÀd¨€š¬Á). ¸›Pw·Ë'   “ j²§¸$@$@$@$ànT@ÝÝ,ŸH€H€H€LF€ ¨Éœâ’ €» Puw °|   0* &kpŠK$@$@$@î&@ÔÝ-ÀòI€H€H€HÀd¨€š¬Á). ¸›Pw·Ë'   “ j²§¸$@$@$@$ànT@ÝÝ,ŸH€H€H€LF€ ¨Éœâ’ €» Puw °|   0* &kpŠK$@$@$@î&@ÔÝ-ÀòI€H€H€HÀd²ÎTÁd2{¬¸gΜÁÉ“'‘/_>dÍšÕcëiTÌb±àÒ¥KˆGöìÙh8ߺu ¿ýö›®WΜ9êtýúuÈáçç‡lÙ²%Äß¹sW®\ÁÝ»w‹={ö 44TËfÄçÈ‘#!ý7RÌ'!ƒ>\½z"K@@@¢-GLLŒæ`Í.QxA$àm}Ÿˆ~íÚ5ܼyžö‘~ù?þÐuË›7¯î댦’:Kß%}ŠõqûöíDrüòË/ˆ‹‹Óý¡¤“¾OúL#X÷?ò›%GXX˜îSê_åwBò‘þõçŸFÑ¢E¬œzN­ÿ”BÝÍš©°>{ö¬þ½’ß%a(¿A®âäÔF°•¹úcep3mÛ¶Yî»ï>‹j'}¨Í2oÞ<7×*íâÏ;§ëÛ«W¯´»0…úâZrçέëV©R¥D%oܸQÇGFFZÔ—>ážÈ ü_zé%Ë×_­?9rÄ¢1Kpp°Eu–C‡éô/^´,XPÇýþûï y8ãC5,AAAɲv¦ß}÷Eu‚–=z$+—$àHÞÚ÷ ƒFéï‰#yd6/õ"m©U«–?ûõ×_eùÀ$Ü3~oä,ßw#?~\÷m;vì°tïÞ]§Ÿ?¾qÛ¢”IÝÿÉïÔŸþi9r¤Eú) ëׯ×飢¢ú×÷ß?!N)}–ݲ`Á‚„cáÂ… r 0ÀR¶lY}-ƒ ùóç·äÊ•ËrêÔ)7fÌ]†1Hb­€J£_zõÕW-j$ÏR¬X1‹¿¿¿åÀúùþýû[ªU«fQ3gúÚ™ÿÙê?=…¶¿Wòd( ÂÄ•œœÙ¶ò¦j‹Ž îµmÛV™¿ýöÛ„Ò¾ÿþ{KÓ¦M-o½õVBÜöíÛ-&LÐo¤Ï=÷œEM™$Ü{ê©§tg( kïÞ½µR(Êáš5kô(–²²HHÿì³ÏZämö›o¾Ñà=ö˜å¯¿þJÈKM7ë¼úôéc4håÍ7ßL¸7wî\ËóÏ?oyã7,}ûöµüôÓO–ÇÜòöÛoë4òöýÁX†n2dˆeÅŠ‰3‚šfÓ^·nÝ,òÆ'#ŒFxñÅ-¢ÐíÞ½[+âòå“7ðÔBjy ƒêÕ«k¦={ö´|þùçɲPÓEúí2$$Ärþüyýö.#òƒ(!©*qF;5Ê’%KKåÊ•É&iŒ`‹aZrþý÷ß–qãÆév“ÎÈVêh9>úè#ÍMþö¤3¤j´(ÏÎ `|§ÒêûRû®KÒÓ÷}ñź¿EHúR™õ°~É·õ½MÚ÷‹²(_c þå—_Öõìׯ_BG(ªé”J•*¥ÓW­ZUwr"¡ôÕ¯__ça騱£ÎG¦jD‘Nlå%oÝÊI—S¡B­'}^®ÿóŸÿè4OƒÜKI=qâ„®ŸÈ+ ¨-åØC[r*ÛSK™2et½6l¨ÿ.”mmŠSðRO Ž”ã‡~°|öÙgÚì@ä¤ú?Æüß9ìéûl}×¥VééûD‰”¿k)W4éäZ^î%ØúÞ&íû¤?°ž‚·Õ÷Ißj(bÒ¿(P@—+õ‘ f?R‘¥]»v–"EŠèë÷Þ{Oß·þÏV^Êî3¡Ï–Y yOŒßy‘ž™)’rdZüÞ½{zZZút£Ï6P£Ÿ•‘AIo¼¼KYFH+/y‰LíYÉÃPº$õ!õ— ³ko=;%ñbë.vðrO”Wë’* ºŒ¤Jú”ä—Q¶S ¶ÚÁ‘ý§§°ò#¬¬§à%Þ'¹ïíË0©VwW/85 ñ8¶J©Ðž‚§”<¨)r4nÜêQ'ëܹ³>+åLŸå¿ððp¨7k¨·SíE¯Þ¢¡lwô!Ôâùh)W°éË-ZèóǬϒvùòåº^JÒqÖϪé¨Ñ×½ÞUª=ËÕ´<”R õÖüQç!gñ¢4ê.òˆìÖ2È}ÕÑëô… ÖgñœLìÉ+é3I¯…“2ÐуNäš4­\+3([Q½:ꌡ¦ßRJ¦ãÒb˜šœGÕÏ7iÒDŸ•-0Ô•þœÚΔ#µ2O™%`Oß'eØó]OOß'y6oÞ\NPŠÚs[M‡ëë´¾·™éû¤5«¤û5òŠ6mÚhp5¥­Ë–ÿ”YþœVß'‰ÒÊKgdã?50 ƒO ‡²sש•i>Ëï‡uP³k ܤO+<úè£Ú‹^Vsyá…pøðáD¨í©Ÿ(òß‹´ÚÁ‘ý§én)10âlq2Òxó™ ¨›[OÂáòåËøôÓOj"²ýÃèÑ£µÒ©<º¡<°îŸ¥ã5‚tŽF/¨‰4.µRšp¡>È2CÊ{QG;vLŸåK/K?¨·B½|‘šŠ…éÔ÷DÉ1‚tž©QÕ¨6lØé€dY QòÔ[?ÔÔ“îìdy ÊöjtVÿùÉRNjT@_*;##:ÙÙž¼’=”B„tŽŒs It”¼Œ;V+ÝÂE–ÉRoõ ­Ÿ³‡ajr*S •,i"A”oa˜V0êoœSKŸ9R˃ñ$à(iõ}RŽ=ßõôô}’§¡d)ó¨Y#ýòiÏ÷63}Ÿ”kôÛòY^b%ÈÒEF~^BZ}Ÿ¤I+/I“‘ ƒÔu²Çß´úùýRÎŒPNX¶l™îÇÔ´º^ÒÎÈTYd™»¤Ážvptÿ™´Ƶ«Xå¥tNSJi½1.õ_yo”Æ ë¬<¡¦¼¡¦gÐ¥K=*(_`eÿe#£•£öíÛãwތԉb*ψ‚©¦H3,±š6òv„šrÑ#“òF.#ʘ^+XÒª©!¿¬ug[šN‡rn‚²]‚ŒžÊˆ¡yFyFbåÊ•Z1¥TäQ¶E:‘·½gGæeO™R_YÇnÖ¬Yz@ø‹‚-üÔtQ"߆©•©œôzŸÂ]F¯ÕtšC×âL©Õ‘ñ$à(iõ}RŽ3¾ëK—.…²‘Ô}•¼+g(§ö}õêÕÓýºræÑg™ñ’~RMá£téÒé™V^¢PÛÔj+‰)äå e7¯——UyÑNoÑD8‘™ISÎJX·n”C ”i–¾'y*Û^ݶIówGÿénIX_§ÆÉ:Wöv_¨¿šf²ˆc޹´ˆÓIË–--â‘l1FÃh^MËZ¶nÝjÜÖ6 Öv¤b7"^ÚF»Lq8’ 6 âÜcØXJyb÷c„)S¦è54ÕÛ®Eœ‰$/ãY±ƒ#¨NJÛ­NHb7$¶¦jDBÛ7‰ØzA½ 'ØKš3f$ØRŠmØAì†ÔË"6M)[yÙc*y®ZµJ—¡~!6HR¶ÈcØÁÊz¢b÷*ÁÚ(_ì·’[ Ó’S¾Œ5LÅ>VxÚ²•²-m@“¶(¯E ­¾Oʵõ]P{û>ÃT–’>Q¾ãb‡¨+×âÙúÞ&íûäkдú>ñš—-¤_•~^½ð[Ä»_‚ajx…‹Ý»ÔMú±”‚­¼2j*剧¬¡,Ÿe•¤AlXåž2JtËÚT™Xé4ÖvŸÂFú{a®¦â-²z‡ä#Ž7)[íàÈþ35PW²0äOÉ4-NƳÞ|¦’µžt„)y}U”e/ §#.½gQ@e]7 â $ÊmÒ 9¶ê‘4}Òkq00:õ¤÷äZW1ÆwDpd^F}¬P#.½çÌ0”v¾páBz‹L–Þr$Ë”$àiõ}Rdf¿ë†­_&SúŽeæ{+uL«ïSæVÚ IÒf682/ëºÈ +jË:ÊægkÔfÂoŠ#ª¬ ¦ÛSMž™vpTÿ)•s6‹T¨öp²õ¼7Üûã>¥ö3¸—€L»v@)ÕDlƒR²›I)­=q2Í+¶ŸIƒØTÙªGÒôI¯ÅÁ@dI-ˆÝ“­©üÔžK)Þ‘y¥”Fã2ÃPÚÙ°Íhù|޼‰@Z}ŸÈâÈïºØ¦ôËÌ÷Vê˜Vß'ÓÚ¶lI%{ƒ#ó².sÚ´iPËiÛMëxG}V360[2ÓŽì?ÍÂS{8ÙzÞîÑÔZÉuT»øh§'fésYÉjjAg›¤7í+rxkÖÑó ÈÊ3g΄ZvÍó+ëÆŠ?‚Z _;”ÊŠ'i5«fw_)¶ôâÜc'}Zåºâ¾3Yت¿·q²%‹­{~2Lk+ï‘ €# p Þ‘4™ @š¨€¦‰ˆ H€H€H€H€I€ ¨#i2/    4 PM 8’PGÒd^$@$@$@$@i š&"&    p$* Ž¤É¼H€H€H€H€Ò$@4MDL@$@$@$@$àHT@I“y‘ ¤I€ hšˆ˜€H€H€H€HÀ‘¨€:’&ó"   H“Ð41 €# Pu$MæE$@$@$@$&* i"b    G êHšÌ‹H€H€H€H MT@ÓDÄ$@$@$@$@Ž$Í‘™¹;¯˜˜´lÙÙ²ù”XîÆÊòIÀ«ôíÛ£Göª:{BeÙzB+°$à^®ì?ý,*¸W\Ç•‰»wï¢X±bŽË”9‘ x ØØXDGGǺ5—±gÿé2Ô,ˆ<’€«ûOŸ*ôóóCÑ¢E±eËl\VŠHÀ¹vî܉mÛ¶9·Íý§6,Å"; ¸ºÿ¤ ¨ Ãd$@$@$@$@Ž!à è©S§ðÒK/9F"æB$@$@$@$àÑ\>óæMLž<9”cÇŽáË/¿„œ›6mŠ:$ºÏ —®\ÃÕ«7P´pAdÍš•PH€HÀeî(ÿ‚#GO£p¡‚È—7—ËÊeA$à«\®€ÆÇÇcÅŠ¸}û6Ê•+§¹^»v wîÜÑJhþüù©€úê_[åųKAØöÙ{:‡Òåjà‡ï¾DHpPsäc$@$`?7o¡x‰Ò¸xáŒ~è·CÇPîþ’ögÀ”$@ɸ| >wîܸpáêÖ­«F³®bÓ¦Mxå•W‚_~ù3gÎLVIF˜—€Œ:.Tgÿ¾‚·>=uÛ®Á?W( †äÇ‘c§Ì †’“ ¸„À¥ËW‘;W îÜÃ;ÿ½Žv=§¢|Ù|±í—”ÏBHÀW ¸|T@àÛo¿Å’%KP³fM=íî«€)WÆ Ü»‡*5~Y1ã…÷2šñÜ,šû8hÖ ‡~݃œ9îñ 8’À˜ 3QòþÚ˜¿ì«+ô:ùòDŸ^=pöôQš96ó2—€ZÓ>|8~ÿýwO`À aèÐ÷) -”ª¬EŠ–D͆]0iÚ\¼ýúó©¦K︸8|±ñ]øy¯r<(®êÑ9sÑë5½™Þ3 DDD¤¨€8p·nÝòÌJ»¡VÒ¬]¹O-ŠN±ô •#Q¨xE,^²OŒbF’ ¤NÀå[qÞ»wOÛ€JgW¾|ùD5“}ÜÅIéý÷ÿßÞ/Q‚4.jÕª…ÐÐP|üñÇi¤ämO&ðêëë0oþ<·b{šÕŒ9w“†ÔQKxA¨rLÊl¸uý:šÖ©…³11h]µ"~øã(öŸ<ËçÏ#Ÿr”cðl²“GTTDy`H\ê%KÙžxsõ&Ìÿ<æ¼üyª8~øöslzó)?úKªixƒ¼…€«ûO—€ÊrKÙ³gG‰%’µIÉ’%q^ýЧdºþÊ•+É’=z”¶¤É¨xWÄ­[±xjÚD ›¸Â®ŠËÔXåÚí°à¹%x~þ»žI-Qìí[È_ ?üT‚‹ÞNHÖsæ\©Ñúƒ;B…ÈZ ñü@$à»Þ~{5¢šö´)`݆­°vɓت<â[4­k3-o’ $&àr4005BXXŒKYôÈ‘#8tèþúë¯Ä5LáªqãÆ)* ²½Œ°2x/©³žGñÒ5•÷{=»…h×å1¼4£ž}fb¦}ÿOšÂÕoÕ/þçU* i’bHLÀå ¨ÿÙgŸaÆ øàƒôîG9sæDÆ ñßÿþW¯š¸ŠÉ¯ž>e{¿uëÖi;ÒäO0Æœ=wË—¾¨l®¾LWuï/_A!E±rÝf èÓ)]ω—Í{§OžÄ7/Î5¢‡wéˆ_ÕTü˜Aýñæ‡[Ýã €oX»~ "ÊÖFž¼i¯ÎÒ²}Œ{¤®^»¼yh+î[ ”Æ™ܶ S—.]°zõjlß¾ÑÑÑxõÕWõô9G0ÙÜž÷“f+§¢®(V"ýNhZPCK3$à™cG1mÞ|¬ó¨ÍÔg„­ßnÇ—lÌP9|ˆHÀ;lü`3ªFµµ«²‚CQºB=¼þæ»v¥g" ÿp›šRÔ©S-Z´Héã|œÀÁßbóûkÐcÀÄ IÚ´UüöËNüyôTºŸ÷èP jRåî‹°ùlΜX4¸7FŒMS›¤x“¼—€ÅbÁö¯>EÝFíì¢AË>z@Åî˜H¥€ÊîHô`7ç_åãc&¡YÇÇT cžæÙÕ^5tÁâWßHÀo?Ý‚í»vcÒ#=ìz®mƒz(”‹g?eWz&"ð.Ñÿýyó‡#,¼ˆÝ¯×¸ ÿþ3Žÿß^ñv?È„$`bnS@e!úE‹aܸq5@·nÝ qP’ƒÁ\ăôç]Ûñpï‘™¼iÛ¾xgí[éÊcÌèјÓëaäP+3Øæìùÿy×._²÷¦#ð›?þå«7OWm³gÏ*uÄ«¯­J×sLLf&àT¢/V¬,X€O>ù¯¿þ::woxs5f,:<òräÌ”àå+Õ@–l9ðÉßÚ•ÏêÅ‹U­ÙMy¿§'ÈT}ë*0÷ÉñéyŒiI€¼€À¶/£Q%òt×´a‹ØøÞ;é~Ž€Y ¸\'£eË–aÿþý8sæŒÞ ^Öï¼zõ*ªW¯Ž &˜µ-L)÷’ëqýÆm´y¨Cä¯Û¼7–-ÿÿ5@f$àr4­…èÅœÁô¢óSŸDŸáÏ:Lভ{ úÓ÷qëv¬Í<Ÿ›6µJCTÕÊ6Ó¥v³HX(zÕ‹Äœ‰|aJãIÀÛ|òù7jâêšñóóSvè•7üo›õ%·p¹j½}Ó¦MÑ£GtìØ•+WÆ[o½…W^yÅ- X¨ë Lž¹ÅÔ¢óÕ20ÚZmeïøb÷UÅ[k>H- Î8Ž_[ŽgfnÔu|Oµ”؇›!Ë81 x?Ï£·¡L¥¤QËîø`#§á3 šŠ€ËP¡+ Ñ¿ùæ›(\¸0NªÅ¿¯«ý·e!z™’—8ß'pìÄY½è|ßás.l½æ½°jUêÎãÕ²Ký×EÉ"™û[ -PýÕÃÓ“žt¸ ÌHÀõ¾ÿîTªÞ(׫PM=›Ñ_íÈp|ÌB ›»•…èå`0'GGŒGÃÖƒQ¸H ‡hÔ¬ÞY6²³R¡ðÄË:}óñGøzÇOøù•…)wL÷N¨öØL9|ÅÊ”qHžÌ„HÀõ®ß¸…ãG¢R•Ú™*<²q7¬xs5š7©“©|ø0 ø:·Œ€ú:TÊg›ÀjÙ¥Ÿ~øJ-:ïûÉœ¹P)²5–._›¨"wcc1pȼ8 'r9h¹¯  jZs•M) €÷ølë·(Vª*dMáÌ„Zuǧ½ú3d†"Ÿ5* fhe“qĈ‘è<ðidnÙ%[b5lÙ k×®L”dü ¨^¬0Ú5ʸW¢ ÿ½¥ö‰ï“Ïpâð)Ýf 8œ@Jë(;¼“e¸í¿ß¢Tùz™–ºhñû¿`q¼·éóLçÅ R& 3Y#{÷@dÙ2T/ âf}” Åü‰ãqC­®Ã๨€znÛødͽºwã³ EÛîN•¯f&ˆ9w »~þU—óÑê•xç£-xqÄ`‡—¬FA6©‡¹S9 êp¸Ì0®£œ ‰C"¶oÿe+9fÚ¼v“nxã­Õ©3ùï._†ìÙ²¡qû‡pþÏ?п~$>ž6GWüW6¾kï¯Äá×^Ä´Nmð¶òÈ/.ùÿ øÉ£ø©iŸY÷(W®\#&†põWöoedÙ¥b%JãÑ)o¡rµ(§WqÅâé(’SFôFÝú ðþÄQ¨]¥’Sʽxå*ª ûöíCÑR¥R3M›ÀÎ;…8µÁ€/YG9 @ùò剨²eKäÎï¿ÿ~¢x{/ÌÜÞ»‡{‘¥šîòÅ Ó· .œ?§Ì}œ7Ó“j|ðÆ°®ãµ ›ðÖÈvoòÐ䙈þõ0Ž<ðí\TGׇÿŠ€ˆEiR¤ ‚ˆ¢ˆ5–Ø’˜˜hM{MŒIÞãû%ƨ‰&¢ÁÞ{Wl (‚""bWý‹ ßÌMÖ EØ{wïÝ3þÖÝ9sÎ3ËÝs§œmsq®ýJB-õõ“F@•ôíÑq[þ;æ74qð‘Äùä(B#bÍòùhß®=~îÿšhÎ'o«n­šÄvÖÿòÝù[JD@GY¬HLJƒ™¹µFœO®aíºõ`ïÒ3ç®Ga=“úçèïçóܼHµOŽhýØÑÖ.ÁÁÁà‡PÒ-ä€êV(V›«×oaÆÔß0pè’ÙX£ZM<Ê{Š@‡fx«K'ÑÛý´O,^¿WΟ½-j@? Peqú=.a7l5;+о?æÏ/9œ8–(Oê”ÿÆ'?þNÍœ¾é³¬iÂ'ÀµqCvtòçe­JåE&@¨È€IüßF};ÝÁèK‘øºŸÈé3ÐÚ¿;n¾úP$©Ãã‚ög§#M`w딈€X(޲æÉ&$$¢YsͬÿTiãGÒp*ë‚*‹žËH ëèa|òÃ$ûõë—±ö¿Å'}8‘sçãæÕ+ÿfÒ+­ Të] |Î]¸‚‹g¡ï;_Ibìý;·1sÖ,´q¶Gß®°ëp&®Þ¾'IÛŸ±ñ³–­Ä½[7%iÑO666ÇîÝ»‹©S§âøñãØ´i“~© Õ’áêѪ‚R^®ndd Ï€ˆŒš÷òôNmCÞxƒm(Š€‡“£ÚuŠ+h͸éîݓƌ.îcÊÓr@µ^Ÿšýúû±ð é~L¦Øéу˜8i2¬ëÖA ;罚Iuxºaö¶±›ä[64G§.˜úËXIÚ£Fô@—.]ˆÁƒ£>Rmºœ>}:Æ×Ì úDõÄ©s¦µÆ–67»Mø,[BhyÀn]¹§Ï×oh&bÊg=»bÚü…x’—Wu¨ŽÈ*‰ü—ý\»b>z¿5âßL‘^ñ‘ÏÈ?ÿdÎgm¼Ö&ðE+mZ÷Àœ˜/Þ‹ýâÓž]0yÆLºÐ‰ Zå?þ ÈÍÍßäêê*ì†çÇS*­± hêX±ÓJj™GûàbØá”ÊFà‹‘#ñÓ€^000([ÅJ7³n÷&X5{F %([j:á€òi£_ýüâJIY¾3ž~öƒY=sQ {úô ÍŸëÆØ!ô¥¶œZày¥*Ø–vø¥|±Þ¸Ù7ƒS£X5M¬&H®žàN'OUX,Džâââ`ÏŽ€uqqQû䘘¬[·®Èƒ‡xRjø*V ÿ%îÚ»æš~/Ø”»˜6}NÁ,z] µóçâYÞcôlRJɲ}üVÛÖ˜3‡ú¢lÔÄ+­ôóÏ?îjLLL0tèPtëÖ &LŸ““#žµ$YR|çûÊ¥sðÚÀÏDo7zå 86¬`ÏŶÕ&¨7¢6ï,ö312‡G„áÏ©‘bˆ&™zL€ÇµµµEƒ pôèQDrr2jÖ¬‰E‹©E¦_¿~èÛ·o‘wn°%,ú–ö§î³›8# œe{nkôJ<Î{¢ohËmïÄ ãñu¯®å®_RÅ®AHÉ`Þ°±XMr3S÷áìù ðkîTb;m;!1397n—XF“DàڛثI±$‹ ==£GÝPáàé‡ _ßÒ©7nàÑ£GE<ÄS5T"õâùî½\\<{N.-E³·AC vƼæ-\#ZJ¼?!Y.¢—†G?9#v×Ùëк\]øÎHî€ò;l~ïî~úI¸`ÚÙÙ ,øz¦ììl]àB:TÀÃG1{Æè1à?”ôêêü¬ßÍ1±èÑÊûÅ´dq5øf$oÏ0ü±^:‡p €<巉ũCyD B¸³Ù¤I“—düþûïÂ5õ¥LzóJÛv$1ç° _Y®¢ú‡öeGC.¬¨½¨?eâx|Ø>X8Û] ƒ{ø·Äò•«ÄM2ËH@r”ÇCˆ˜›› k>SRR•ùÈçwß}‡¯¿þºŒ&Pq]$09r»°{¡©]É£’šÐ{ËúuhÁÖ}6R#F\‡Ð>X°=yOžj¢éRe¼Ù) ëwÄãÎõ륖¥D ¢üüüVQ1zUgü.Ø:i6}qCÚ¿†´½ñ¸r³ÇG•wïö-¬ŽÙŽ·»„«²4þÖÊiÇŽSLP“-»@ÉP®"ŸB⣟•+ÿÛ¼¥¥%¸3Ú±cDz[A5tŽ@ä”IèÔû#Qõ:{òα5ÃA,Ü’:ɪqSX6vÀܘÝê¯p3vjGG7gÌ‹ü£Â²H(@bb"¢££K+FŸ Äâ¨:¸”¾l¡@•r½4©f W9gY¹êëK¥Ålãf{W'ðk§XÉØÈm›;`ÃRõÖL‹¥Éþõ%¦ÁcÙMž}ZMÕ©˜®˜øÛd´ëþ¡¨êe¦îEeöâlÛ´Líxºùá sŽ×'§—©^y ‡x·Ä]£1-1¡¼"¨x‰]?_ÂQî7‰{ ¶™jÖª[ne©èߺ²Nf² “—ËRMoÊf?ŠãgÏ¡#›";ujÝ ±É{)V³Ø K‘/¹ÊcÍEEE!#ƒíHfÓ§ÇŽCVVî²Í$žžžÉ‚ÏR’/ŒÃ§p4s?Úwê+š<’ÂŽø„°ÑÏò¤NaƒðËŠ å©Z®:ü|øÙÓ¦”«.U" Ðõ³ нŽÝ‘[ãÖ®JC¸ùF°š†/̆¿_6{^óñ€AÍž/® U^=6ÅïØÈ;7®SeѳüÍX†y¬9#¶ÃÚÚºH«|sÒµk׊äÎ5j”à°Îç²Ë2[¸>½¯8±¿NF@‡A026®¸°$dìMA c#Ø4¶(¡Ä«³[û‡a]tbÒŽ Ì«ù« kàÓ7;¶G›¯Æ`2»ù2ø'€¸Ä’=$ ‰ë§b+ÖäxvëØ"¢ØÏÄÊô êŽ5«ÿĘo?« ÙÊ]ÅGø±O7ÉôçG&G¯Y‹°ž}$k“z™€ä(_£,ì‚÷ññ*ó˜t|êýøñãj…aâënß.Ï‘ð%íà1õ6¬YŒŸ§ïM¾n+màkxÊ›*Uª„.ÞÃÿ–®–Ä厲= ’¿iÙtøfyÕ¦zD@XãYÑë'aü›@úþ]èùÎO’âð h‡™†àÒåëhÔ°ž¤mërcçOžÄ™œKòòLÍp š…I’µH & ùÀ‰ iö”¤‡>çK>ª‚Ý»woðGÁ¤Á¤iô‚TäózÆô©èýîXQÞ½; ANön£²ºvŠÿÎ_€-]*,¯4=CƒñÇ_à!»Ù2a±p)Š(îúYyúVw˶°wi­³½ZuÁ† 0òÓwµÒ¾.6ºnýz¼$~8¬Â¶Gx¸`ý²¥øÂ]º‘×Â:èó{­Œ€–œ)—DF÷ó7mKÄÇáÓª­hÊf;‚§OžÀÞZ3£Al-èý'ùX—"šÎ*Á|Ñ»¯­5Ö.˜«Ê¢g"@´D`GÜN8ºj¥uŸ€öHMŽ£³áÿ¡ÏO³Û{øÚûKï€vòöDô¦MZùP£ZŒZ| ¤\yäMúcÚt"ª²I»vÁÏÞV£m¼ÞëS|·p¹$§#õfÇ…._F;`5Ú$Œ”ƒ@jÊN´ðiSŽš¯R»ŽZ:"zk|Å…)@¶5+ácg SÉ­iççýÇNàÖµ«’·M jÑ¥@ÊÊùúñõ»vnB‡.D3êú¥\ºv®Í4뀺7÷Fs[ü¶z›hº«w n{S‘{÷Ž*‹ž‰˜@ê#,J‡),,šHÜò¿Í9{µÇú[ÿÍÐãW[6nDGwñ£‘‡X8ÉÅëÙTJÒÐÊ<R–¾£Ålñ·?g¢…7Ô¨Y[´fö°c[Ú6e‘zÿ>Ÿb;ãÊ­»¢éÏתY¶X¿h¨íp"@J&°qS,›~×Îè§J+ŸP$ÄŪÞêõsLâ.´óÑÞ)ˆ]½=°fÕj½îm/¹J”µÕÕâµ»`î „uoAýÃÜû8|ò¼Ø®E1’EÃ&ð÷í‚/f‰?=Þ]ìV,_.†$“5ÄÄnGsÏ5JŠWÄÅÝ—sÎá˜ÄkE÷%ŸÊÌÀ#¿»¹fg¶Êby;)nß~aƒhYêQÙŠÜ--2óHI>–¯Ù ê5àâî-šÒ©I»…S+Ä\#Ô›9бé±çh–hvpÁÝÚa{Ê><~øPÔvH8 E <{ö é© ðô .ú¡„9<ÜY·.z»„­ê^S1Ö#´¹£V«S³&íhƒ¨zAr´` úÐÐPôë×=zô€››æÎ‹ÈÈH-` &ËK`Jd‚×·z©õø±›û¤ÃÇ©Y©e+RÀÄĽº„Ϣį[«&¼l¬°y…ø£­áAu‰€ lß‹ºõ› ®Y­›çà„ØqZ×C› IJCeÚ°5˜ÚN=ý[bñ¢EÚVCïÚ—Üå„)²2¾ggÏ_ƾ=ÛÑ.âuÑ :šž†:ÕL`nf&Z*Ám[G ÷YeÌÞºK•%Êsç–îX½œPQà’P"ð ¢·²@ðâ…Š{EÓE>rõDònýÞ Ÿš†¶ÞÚ[ÿ©ê”lf*ñÀAܸ|I•EÏЊÊíâ”.\ˆÝìXÅØØXL:õêÑÑdô¹Æš˜4e&¼Z÷d§OÕИÌ‚RRRà­áï…Û(ø~Àë_`Ì’•l]Ò“‚Ù}Ý=(›vOR"D@:;bcàî*]ƒ¯hÉÉÅ7®±èWn¼¢”r?ÊÜ—‚ZÕª¢±¹öG£MÙ)ŠüløÓhVÊoœÖP)¤¶Ä!°pþL„u,Žp&õÒÙ³¸}÷5x^E›¹ÀÚÆã–‹œØ²¡9¬Ìê`×fñÚPÇV*Cô‰À­ÛwqúD<¼µsRaÖ•*U‚­“/¶Ä$þH/ÞïØ ‘6––à[íƒ1sÞüòT¥:å$@h9Áé{5¾ù¨jµÚpvoú$y÷.xÛÚ Rei¿¦}z ÃÔè͸y/W´nîìéŠu+i7¼h€I0(D`ÕºmlãOøy캒ìØF¤ñâ.ùÑ[ 둘€ÀæâD6)Ü–:ïC¼[âñ£GHÚºEâTF¤ýe×€Â$B7Lûk&Zw|[4eøñlÇÏdÃÓQÜÍGÅÐÈÜž-Úbì²èâ>ÖH^'?¬ß£Y$„Ò lÚ´ ΞíJ/(a gW?ìKÙ#a‹ºÓTâþöh¡; 1MÞ m?&Ž×)”¬ 9 Jî]‘l»xéöîŽEXD_‘Zö±ÑOçÆ QÕX;£=:¿ƒùÛwˆ6 êé숇ìnûÄÁ¢1$ÁD€üK 1~+ZúëšÚY'3ôî\øé0ªb«F ÿí xõN×plKJÆåsgu@å«@¨òûXãþ1u.Ü|#`Z½¦ÆesÏž>EjF|´7=S¿^C´p Æï"Ñ)LÃ/[" CJˆÀ¿Òóçùhjçôo¦¼2©fŠͰ+U´‘N…Ę­ðof#]ƒj¶Tô:^÷óÂïÿ­f *Vä€V„žžÖ]8Úuy[4ë3÷§¢Aê¨W§Žhm¨#¸sÇ70;&V´ñ½<°1š6"©ÓTFs7nŒš,øváǃpïÞ=Í5¤C’V¯ÛŒæìüu]LÖö-¿+YUM§ÝìøÍÖN¢É¯ˆà{vÅœå«èd¤Š@T³n5ËQ1" Ø»[Ip÷ H2 ½Ô¦¹ö/N–6°²tÄüØ$ ÐüÙÑmÙùǃ#gáΨ%AœSÑ:ŒËŠÀ¸qã›[tƒÝÇ YÙ¢®²Û¶mƒwțꗴœ³öîM´Mm7–Äâ~ðŸ÷µ­F±íÛZYÂ×¶ fþ6ÿc±e(S3ÈÕ G½‘òç”(„‰w!Ï>qOžäÁŽ]t!µkÛmŒÅ5©Z­ìm±eÕrôú¡.˜K:è7Þx£X+GŒ*U”÷“ð˜Åô=”¶C¿œY¬ÝÚÎtrõÆÖ•µ­†díó`ï—oÞ‚k3;ÉÚ,kC#^ëŒ÷£¦ã£ïFƒ‡Ë¢$š‚‡«"¥Þ¹›‹±Öy höía›|욊&¿¬‚½Ü[áfîÑΈïÈ‚o\·®¬jQy"@Ô$½5 ›8¡FÍÚjÖ¶˜­n߸‚ë7nKÛ°–ZÛ³]ã­uÚ±kÅvçW7¬‚µóçh‰’~4K¨~ô³F¬œ>g)š¹ŠvŽòÍ«Wpþò¸ÛëÖqë€øk“8g6GøaÛî$ô !D (~üfsOÝ\ÿɵå#l–¶îدë@“âwÂ×ΦhGéXκvÀ“&ë˜VÊRGkhjjªpgAœüXÎM›hSFA&ºôzÎìYî(Þô{rb¼l¬tn0$°36±cã<~¬ñîhbÑuM«!eÅÕ8\H„ÛÑ»­N³°¶÷FÊÞý:­£¦”Kf¿ýþÍu+Aq¶õ Á‘¬,ð#C)‰C@+h—.]ˆÁƒ£~ýú¸zõª`ÝôéÓ1~<§«+&5=ó.žÏB« NTBíGlî¡ã'ÐR‡ŽfS©Z§¶š5uÊqB¥ttwÁfš†Wá¦g" 1üœõœó§áÚÂOc2ÅÔÔÁ©ûÓÄ­S2Ÿ={†ýÇNÀÏÍY§ô*N mŒÈ ä“ÇGy’; ÏŸ?G;‚‹ïÂÌË˃««+œqÿþ}MØC2D"0eêløµí,¦®'Ÿ–°2Iœu X8¦è téGdCàTÖÜ¿wÍ\d¡³•­ö¥…®åUrozü\týgAû:µn…ÓrpêPFÁlz­Z‹:ܳgO,[¶ gÏž6"y{{ãÏ?ÿÔ€I$B“xlº¤„-øóÃß4)ö…¬œ³Ù¸{?ŽÖV/òtõ…§«fÍÿ9Œ‰…™fc vô÷Áè/¾–¡Pàc]ý^r"°~S,Ü‚e£²u3wìß¿]6ú–UÑ;ׯã";õÍE‡Ðg¿÷kå9‘â§¿fW„òÊI@+# Ã‡‡••ø‘p<ìÒŒ3ЫW/Á=}út9M¡jbˆšµD8CY¬ Î{÷$¡%[T©²V¾ŠeBfhd„,êŠDÍ‚Z5jˆFµkbo\l™t¢ÂD€O`ÇŽlý§|P[wÉTîhÒömB˜=9Þ`÷o„EkÖÿE£ÜrüWÿéÓ§ˆŠŠBFFrrrpìØ1d±X[wïÞ…§§'FŽYnc¨¢æ Ì›7‡Åþgúýaî};}öÍ4¯¸H½<ÚbÍÍ; \Ý0šdóZºÈ‰Ôu$VϤìÙ w¯@ÙXmk猛×.âî½\Ùè\E÷%ïN@*K])ëîà€êF†Øµ%ZWTR„’; |¼I²¶.ºÎÆÆF­ð‡FZZZ‘ßMÍ”4C õÀ\½|~ašXHJ» 5kX&U }¢»o=Ýý‘™}7îi>lX‡–ˆÞºMw'͈€LðõŸ沓òYoÈCÜ5´rž½é2¡\65SRöÂ[ÇN¹+‹}ü[bñÜ9e©BeK! ùÐjÕª!88æææðññvÃ?zô|êýøñãÈÎÎ.EeÀÏÏ>,RŽ;ŸÊ©–rgL™: >!}E;³7í`º°˜rJ|7¼“½VïÚ!4Þ%…c:9qšŽ©^# 9a!]‰€NˆÞ²ƒÅÿ Ò)ÔQ¦±+ö¤¤¡c;ùŒÜªc/³ïðQüñîu‹ë\¹¾íÚ ÍWcÉÂÊqÎe I>Ê!lÙ²sæÌ……Ο?/¡ ¦äy^i‰­ç'*~pç¶fÍš¥U§ÏÕ ÀÙ®[½í;¿©Fé²9süxH{ˆæe¯¬åž¡X—¢ùµZ†Uª ­‹¢W,Õ²…Ô<7¸ø8¸Èω³¶÷d3{š¿¶h»7Oe‚¡AeX°¸šrMÖÌ7±¬[;Ö­–« :§·ä# *½{÷L|}(¨‚ÔüŒ^KK`éªÍ¨ÓÀ6¶Ž¢4| u<عïrLÞX²bå=AU¶.H“‰‡cÚ¸n}2B“bh¯y¶7IDATI–Â\¾|¹H‘°0q–ÊÈÝÞ=‰öÍ{²SoDZºc¾ìô.Má}‰ñ,½MiÅtþó^¾^XÎâ•·ëÑKçu•ƒ‚Z- ŸZ§‹hIt¤ÍŸ9s.Ú¥ÑÇlùĉìspµ³E¾ØB«›ÖD“ÆöؘrPãMu l…íl­Ô3v#F‰G€¢ˆGåß¼‹—®áöÍ+hæèúo¦L^Ù;ºáìéÃÈ{òD&«§fòî$Ùn@*hákmZcͶXZêWJ^딚˜˜ˆèhÚeVþÔHÕKWn`oÒv„v|y„Z#™̴T4­o&«ÍG…moÑ¢-Ö‹0 oÎÎI¶mP ›6n’Þa†ˆ¢ˆ¼ú‹°y[MÙ¿Þ:|Ô²º8mÿ= ¿sÃ:u«P¹WКʧ&OžŒ#F`ìØ±ˆ‰‰_ÃÉ”´K`ÚôpñîÓê⬧Mg›Ülšh×È ¶îã„íìD/16½…·hŽu+WTPCª®Dšˆ"¢D.mÚ¿ Íd¸þSeƒ¥­;’÷)gèù&óL6ZÊì$U~îîÝ«–..œMïËA@+k@ùÒôéÓ…Àó|Ó¿¨r'ÔØØü\x;;»r˜BU4E`ÁüÙx}È8M‰{IÎÍ«WpãÎØY5~)_noÌë[ FºHÌ<‰`7ªß¹•/Þš4“4*•„)€&¢ˆ(ëlØ›¼½ÿôª":ý™•m ¤ Gr¾­Ózª«\úž]°3¯Su«èt¹nþèöÓo˜¢ÓZÊC9ÉG@)½n1âöý}(€8!L2ØTŒ‹e#T–ÁÉG¥õ” ó²:iiÅÊü¹‡“#=~„#û÷•¹.UP>ŠFQ2!Ä=ût&š»yËÖ̦öî8x@œÃ.´%9>ÞM‹ÆýÖ†.šhÓɶ)ª±ˆ%©ñqš§×2$-m éÚµkzÝ!Ú6~Ê´Y {K´õSGŽ ÛI¨„Ô²E0æ/ÍLé¯qsºxºaÕÂ…hÞÒGã²I ü EDþVUÜ‚íñÉhÒÌFl6M®ÉÉÅ‘'ÉUý"zïIJBëfÊq@¹]¼Ü°†MÃ{·i[Ä^ÊPŸ€ä# §BCCѯ_?ôèÑnnn˜;w."##ÕמJj”@زq9ºˆû3'û Ø¢I4j ßXpÛÛ5Ç]¶£ÿè¹K³5òº[€Öц<°$!úC`G\"l[ÉÚà5kô¦Ò3OÈÚ•ò©‡2áÛ\>'R©ô~Õs7¶LjãÖ˜W¡ÏÔ ¹Êu¢)$5zF Eþš¹MÙîÑ K?  <êeH¦ßËSWW븳iø‰{5®^§Î_¹‚³,`?%" "páÂKXø2–ˆˆUQ½|NÚ½N®þ²·¯ݵ[þKpøšÿ+·nÃ¥™²öuø¸¹àò8wR7 Úúƒ‘| ^e(M!©HèÎóìÙ3ÒícQâ»Å3OœÄÀ6¢È×–P/6ظi*¾Ø]£*p'£;¦téìY5n¼Fe“0ù°´´ÄâÅ‹ñÖ[oáØ±chÚ´i™9r$nß¾]¤ÞãÇe}?½íHF >øfNÛä–aÕÌ))ûðÑûâÄb–ŠÇî˜mð¶UÖô;gÇâ g‡†¬Y´ŸŽ#Nŵ£•PÅQT€A©Žà¹,¶gåÜ©“052B½:u@ë_ܽ}997Šþ ÿ[ª|¯zøbÙêUå«LµK oß¾èÓ§FU.wìØ¸¸¸"îÀñM¢rM»’ÓQ§¾%;ŽYþ×{'/¤§§Éµ+^è”ÀO@RžÊ ìÄ6FS¼æ]Ž䀖š«Lœ4 lóy#eLGóÆ Å­U™U áÚÜ_”iø¶>-‘síNÊЪԸîXÈ6¨-_¾¼\Šíg‘(N:UäÁ×盚š–K¦.TŠÝ‘»æÊ˜aá‘NK׬Ò!yï>´j.ÎqÎRL•Ûûù %ó(rïÞÕ€4ýA¨~öûKV?|øÖ,F‡îo¿”¯©7ÏŸ?ÇÑS§Ñ\A¡8 ²ñòl‡µÉšͧy^÷÷¼¿¦lŽ^b ðÑK9`kT2aï"ÿõŸÜäšµê¢z­úà3SrM|D}ßÑcðs“ß‘¨ê07e7l>vÖØ¶f¥:Å©L1È-оeM±6޾°°çt¢3l#MõªÆ¨ÍPbòróÇ¡3§pýî}›7 ]¬¤ixƒU @???„……)Ð2õL:°/n^ê–A)k{/ìLH–¦Å«˜¾{lؑ˵jT/¾€r;²u ›7¬W€%Ú1PípשV§OŸ†¶o‹¦Ó6…ìb)ÎÎzÑ”.ƒ`cãªhîèƒÕ»4”¾;?¹¶IUĬ^Q¨¨>HLLD´ž†îâ!‹ «‰v­ïSSo$ïÕ|„ ©lIÜ ÿfeß$'•~šh§£Ÿ76Ç'jB”^Ê T/»ý_£ùÂýkW.!0¤ó¿™|%L¿ŸÎBse.DW¡òòÅò]âüX¼ˆ¿¦ÐÁo*Öô \¾|“'Oƈ#„cŒcbbÀ×pò‡>¦-[w²õŸòŽÿY¸ß]½q`¿8×”Âm‰ñ>1!þŽÍÄ­32ØïZ¶TêHê>ÑINŠ*§ÞA×ß~ŸŠÖáƒE;ù(ëèÔ5­†š ž†áÝâã„§Žã&; PÓ©ÇPì`!Y.fÖ´h’'CLJ••ƇM›6aÆŒèÕ«êׯӧõó;²3>Ž,&¯’’csOœ?s ü€9¦¤ìÙBŽª—IçnÎØ´†–I• Ú?…É-5…Ô¹uû.¶F¯@¸H›8¦ÌŒƒh®àéwÕW¡ª± \Yÿe š±¨aZýÙÉH‘¿þ¢jŽžõ”ßd…ŒŒ äää±@³²²p—íÄõôôñ©)5%î-[+Êt##cXÚº#6N~ë@Od¤ÃР2¬)/òIá/Y{vlò–­[ gÓ{5ª$¥™4e.œØn³z D1ñéÓ'8–• 'q67‰¢t„z· m~xΘ±x)…ü¨@ÿ(¡j^^ŒX<]kë¢KZlllØI·ùJ0³L6>–%ìþob£¼é^ÄÅï.](¿e3‚>ý®âܦ¥'’3еY¤ Ï䀖–ҊΚ9…^*šY§†y­¨!ãØ‚eÓÒ#§Oâ’Aém­,ê‿Æý\•¨¬Âð5žÁÁÁ077Ghh(úõë‡=zÀÍÍ sçÎEdd¤Â,.Ýœ ѱppSÖô»Êj'÷$±ÝärK;¶oGkg{¹©].}ùï[˦M°sÓ†rÕ×çJä€êiï¯Þ‹|ÀÃ[¼°%‡êÇô»ê+dlTîÁX$Ò”ÙÈ>=0>rÝi«€ëéó–-[0gζãÛçÏŸÇýû÷$LÉó<}K±ÛwÀÙ#D‘f·`a¥2Ó÷Ènd{ç¾T„°‘A}Ií\°u#ŠTÖþ&´¬ÄRþ?¦!¤óѬÉ{ü§Øcs[ÑÚÐEÁþ>áXš(Κ-—fvv´ÃľÕEÓI' ôîÝü4¤Ý»w#66S§NE½zõ$Ô@wšÚ·g¼|ÛêŽBÔ¤v3áxÑø]©”*®¨#û÷Á¤JØ4ÖŸ›¡öÞ^ˆaá(•9 e㥈ҧÏ\@jÊN´è/š=‡ÓÒÐĬ.ª‹Ö†. öpñÁÅë×püüeQÔ=¨?&Ïœ+çω"Ÿ„9àaäLLk£¡…•œÔ.“®Í\ZcóÖeª£ÍÂ[×­E[e¿YWOgGܸsçOž,©åC@rôÂ… Âyã•+WFqˆˆˆbÔ¤,M7q¼ƒ_G5×fò]ºî6ÊýQ(©?*ÀÏ;³cÄ NÜÔ²1Þn…‘ÃÞ/IÊ'zC`ÍÚMpöl¯h{]¼B'·nÛ†vì„ }K¡ÌéÞBÇr–©Û%w@---±xñb 1ëx ò‚׎’xòž<ÁòųÑK¼ÍGwnÜÀ•7aßDÿPÞs­:aEb’høõ[ý—”Œø´è]4È$X¶nÝ Oÿ²Ðµ¼Jzùã[úðÑãòЬÞ㇑t0¡>Þ’µ©+ µgN÷6 ÇT¦îÜåÚõíÛ}úôÁ¨Q£Ê¤,®8¨YËаIsX7u¨¸°$¤ïKsã†ÂHw EmkíÀŽ4Ŷý‡E±ÓÔÄ¿¿Óƒ‡ ÁãGò R- ªW®^¿…Ó'2àé¬h»kÔ¬ ‹&Έޚ óvÆ®[ OKEŸÿ^R'´óõÆŽ½©xöìYIE(¿­8 \¾€~ùòå…Ô¡·bˆŒœ‚vÝÄýäúÈ< ;eŸ\Z?øwÜXñ§tn ¯&øêý÷JS…>'Š$°dù!ü’‘¬3oÞ²Ö®‹Öù~ܰz5Â[¸ê¼žb(ذž,ëÖFJlŒâ)Skhqg+’°µ3qŸpî{PÛ.¢iuúèaT­b€†õõsG® lp«pĤíÇ\ñF(þ–®ßˆ][tÿ‡IÅ…ž‰€¦¬\ÅFÛºjJœNËñ ì„í1ºÿw¾.v;º¶n¥Ó,ÅT.Ì՛ׯ³ EÉÖŠJgkç;4nÂéú¾hç¾s«R÷îeS0úqòÑ«z±&›6sqôÁÂíâ­5«]¼;o zY,HJD@_ܹ›‹Ôä8´ïfZ—X:8»³å6zàˆ.©õ’.üF¸ži5Ø5±|)_ŸÞ„y{` ‹FI=’; t–±z£éRr®"aûFtê>HÓ¢_È»{ë&²/æÀ­™í‹<}~À¦á·‹³^ŵ ›ŠoÃbƒ~úö›ª,z&Š'0{ÁJسðD|}¤¾$VÝ0w¡î.[[¶`>^óÕŸàóÅ}ï[¸ãÔ…\½x¡¸)¯ÉPMœe\·n]³u?…<À½{÷ ™Ho9Ÿ¯Ö=E½`ïÝ•W+ !ÂQ¼Üýqùö-¤:'*Žñ¾‹-;ã³z…¨íp" +.XÿÐ×uEIôí‰u:ú7žŸŸÑ[Ð7´$,tµ¶üŒŸŠ½l©®ª¨SzU‘Z›‚gûøø AƒxĦNŸ>ãÇ#;;»T•V®\)Ô)\°gÏžàò)½L€‡ïX4? ÿ¸åå4øîI^Û|tƒÚ){GjYUªT l3RÔæ8D},ÞÈ3?‹8êÃwðÎÐ÷q¸M(j™™•EM*KdE໡;~$ ŸY&+½+ª¬›‡?rsïaÏÞ ´òu¯¨8Öß´l1¬ëÕ…­•þN¿«€†{¹aýúuxgĪ,z.€ä# \Šže °¾ðÀçJ/øó¯°²õ5ôRZÒnX™ÕFZ5_n\Ïß…uÃjv\bî£xoð`:—¸,¤'ey¨º\¶D£ðƒG©U«–ÎRøqô·è¦ç£Ÿ¼søMC»Ãñ-»¾k3ñ3Ïü'¾êÓM›jèlÛý}±`î\ÕO“ÜÕDP]§ë:DoMÄùsgбË@ÑTÛ²   ~Ý:¢µ¡Áµk±;b—Lg£ÒR¤þ:ÀÌÄã¿ÖïéJ)XË­ªU« áê¸ÃYð¡ËvL‰ZÃjhÔQ—Õ”L·®½ÞáÉØ•œ.Y›…š?ùwØÕ¯‹V- Dïž,&êÎ}ûq‚Ò—ø}Üå¼àà`˜››ƒ‡Sêׯzôè777Ìew ‘‘‘%*K¨OàËQ_¡ÛÿŒ+Fâ'=:v!žºN [5%3,´/flÙ´YŠùÑL˜…S™‡¤hŽÚ ¢øñ‡oÐûD“/7ÁFì –Îý¿ÂFŒÒŠê|mã7ÿ÷¾íÛC+íË¡Q¾)«{˘ɢÐP*ž€ä(W£¢q@‹7…rUæ.ZËÖrÝc£ŸýUYÞ°v-‚›; M¡¤;T«^+÷«W¡‚¥¬-,0ª{8†¼õf%Qu" =“§ÎGUS6ÒF£Ÿ/uB÷×ßÇñ£éX-ýZï?~üŽæõiôó¥)úæý.0uÎië)›¥¶ˆ@¹üüóXa§w¹*ëY¥·Þÿ/îÝÏÅ»ˆvmŬé8žuŸ|]ÏèVÜÜ@O´hÜcÙþ Jÿ ô_²}µrí6ð6 #Æ,ņ‡¹÷±lÅrD°5ªÓy¿š€Þ¾’ŽEšÓf*}-4À_ Âk}ûâú¥U6=#°=>—s. }89;êvÎw£1;j<–¯Öü fîÝ;x÷ãO5ìV©¢®JT® ￉ÓgÒZüLÈ-CŽ/’Ò0øíþßù¨_¿¡(&,]°®–p°gj_¥u\hUctêð6¾ž»BRMùz¤AA~iƒgOŸJÚ65FÔ%0zÌX„v&ZcuõS9óF–øäÇ•èÛ«ŽÏÖ¨êÃö6…úúhT®> ³jÔ#:·Ç ~}õÉìWÚJè+ñèö‡‹ÙF–6-Ñïƒ hÑ2@ecÖ¯EågOÚÒCùú,´CÛž8‘s›öJ(þÇ!oÃ̸ ­Õç/ŸÛžžyû’¶£ókïè°–º©Z@p8"úooOÜÏ}¨%7,œuÛã0‰EÓ T1#ßè‡ s0ýן+&H!µÉ•iG®Ù¸_ï‚o&Æ ]xoQ¬8˜’Œ#ÇO gP+TªL_MC®Â¦²úõϦÏCÞiG#ý÷ ¬\³m[zjÚ,’G*Dà‡1¿²ÑÏá0©FË}Êò­¡ßÀÚÞßýoryª¿T'çL;ê],ù|øÉ>”*F€‡Å[ðùp ÿæ;\Ê>S1a ¨M^… ;‘Ÿ‹Ü·W ýj>ܽZ‰bÁÙ“'°9v;^òGUvì%qx{¢AC{|5w¥8 ” ÕÔÄÛ~ù;ÓÒѤAýJQ6–À™³9ˆÝ¼Ýû“¶a…µöí¯+1wÖTôTþM©ÏØa#¡m‚ñqÇ6ñi©0BÚ3ÇÓÙŸ†‡âí¾´¾™Pí}ËÜòÝ{¹ïö¾ýf$þû{,B;ö,³ u*\˹ˆÅË—ã5ÿ–¨W§Ž:U¨L¼óÆ(,‰ß…øC'* ¥ìUëÔ¬‰Kg¡jåJøôe@5ˆ€† Œüz üXœÜÚu(ÌOEÐT1ÀOÓâ±t~$¦Í\Z.Qý:†Áºv üoèàrÕ§J%ø~ð›8Î"ËÌù}bÉ…ôàr@eÒÉs®AÃFqíÖcü>?NÍÅY“y!ë4fχpvÒ…­ec™Ð‘·šµkÕÅà7¿Ã›¦àÂõ[’cbRqãÇ .~'>|½ææJÚ>5FTŽÈÆúUóÐç- U£bR‘g³z ðõ„m6¤?øºÚ²¤ï?†m»“°àëÿ”¥•U“$°è‹áòÅ—àËô5i-žÂåË—±lÙ2œ={–íÞ®ÏM{#,,L_û¡D»÷À'ŸüÙÙ§ñÁ×óD;b“+uì(,cá–<ÝàÚÌ®DèÍðro…¬3¯!ðó°ç·1°0“ºµj"á÷Ÿñî¸I°³²Äú5«áݦ­æ$‰# ÄëçûÃG ¤Ë‡¨kÖ@cœô]ßœÚcÐth†³Ù'`RµôåT³&þŠÿM™†#SdzuŸÕõ¡hö{5wƈˆvèÓ­ v:"Z;º,X+# Ã‡‡••ƇM›6aÆŒèÕ«—àˆžfÃÒ”€øÝûáv!°÷ì„È¥‡Eu>ù´û’•+ѧ•7<í© ´@ w÷wáçÛÿÄå›w$ÕÀØÈ ¿ûcúvGhx'|ÀFCo]»*©Ô˜z”xýܰy'ö§ÄcÀ»_©J©M ßÛ#PÇÜ=û¾WjÕsgá½/FaרoaÓØ¢ÔòT b¾çMܸ~?¡Ÿ#Í’; OYìÁ¨¨(ddd ''ÇŽCVVîÞ½ OOOŒ9²b=*ãÚyOž`òÔùpróC§Žíanã‡ëΡ׀`ÀÎ+ÈÌÀÌÙsÐÉà öëS,ÌjÉíÛóö„ïgßJ¤^¥ÜÀNp$ê7<¼tfæ ñÙ[i·¦ Ž<+ñúÉà ЇÿN;ßEúŽüßBÄnY‰_'Í,±…Ùßz¯wÞÃÆo?£$>¾Vwõw_à¿'!qóFñÔ±$w@óòò`ÄF[¬­­‹ °±±A~~~‘|%gp§“Çó䛋ªV­ŠILEPć˜¹î, þ‚噈jþö°zÝzômí7{šv¶šÂû÷†î]‡£Ý×£ñÕœ•x"qÀx³Úµñ×ÈOp8òWÜ9›[G´cq`çMþ ÷nK»FUMdzSL‰×O¾žÝƱÛTÙKoúQjCkԬ͜œmõŸ!ˆÙ±§Hó㾉) ãØ´ õñ*ò9eˆG ©ec,útÚtä$ñÒAÉ’¯­V­‚ƒƒann4`Ç>zô|êýøñãl­c¶bÒ¬Jç.\Á‚Å«±fíì߃&ͼàØ¿/8Œ†Všm¬iW/^ÀÊ+P¥0´S{ŠñV'me‡´Ž@s'OÌœ÷˜óæpü0 /ë§T©"Ý=#Ÿ‚›úùǘøðV²@Ô³ÿš†·?û­Ý\ÞºtGËà6ÚB¤—í*íúÉã"òkß¾Ÿ¥—ý)¥Ñή^xã“)èÐ.@Xâð·£9æ?Ÿà‡IbÛ#ÑÄ¢‘”*Q[ÿx-4?²CIZ´ ÄáÔ½hÞR?NœªÄFµ2丒­7\»v-Μ9“ÐÁÁcÆŒA½zõÊý¥4erùãêUÝ[»¶uûn,^ºÛ·EãÊ¥l8{¶C ¿†tFºÒÅa¼sãvÆlÃáS§ÒÜ>.4ÕRî/œDMúÓqîÂqôm‚¡á!ð°“æF¥°‰¹"6y/¶ìÏÀ–ŒÃ¸v÷>Â|["8(ÁíÚ±:a0d3ÚJûö탿¿?x C%'¹_?ùA^ï“êf˜º,Ü¥$ õ+fbñÔϰ9z¾þôœ8w»Æý'Û¦Ò(@­”Hà¯Õë0bÞrOOƒC ÏˉõÔ×OÉG@UàZ·n‹/ # ª]ðq>UruåùÒ•X¾*ë×oĞĭ01­ WßN0ü7xùK~Á=u8{ÙÉF§Î_„ >ê®ÖŽH]á©Ïz¸9{ÁÍù/œ¿x1q«úõ0«Y ½<áÝ¡N¨jd( "À¾{Û6ƒ7xéÚ5$¦g`×þÌž¿§¯^‡·C3vDlÚ´kÎ]P£vItÓ§Fäxýܰ%óæ-ƪ¥Ó…®êöæèÿÎɯ…úô=)ÎÖÀ Î8¼:w@;6qqÑtðMˆ”´OàƒžÝq/÷=¼ð¿ŸàÛ‰“µ¯”ˆhe”ïâœ>}º°ë½& †Í×5]¿~ÆÆÆHNN†]ùÖ"js4õÀìLHFâ®ÝHÝ»—Ο€½k0Ü|Ãض,]ó*b¿âÆ•ËÈ>u YliÃéóP…ßham O{Æ™.6b²—BöñS‡±ï@e&"çÊ9¸4µ‡?ëÛçft±g§Õ•B"mä>x€=™Hb˯Þx—EHa³Kb'©¯Ÿ’; |'ßlsèÐ!8;¿<ýÛ¡CT¯^«W¯.g1Ы,@ø™ì‹ÈÊ>ÇÖ©žÃ1vFú‰'u—/œb£< `eç;çVp÷n{{W<}’‡'̹~Ê6=çS‚lš©2;S½Š¡![ËgCæpóÇ«v¸óºylìãGñˆM>f¯óòã1[—÷ˆå=~ôXXC›Ëˆßa‘nß»‡Û÷saÂFÄÕ®…¦ êÁÑÚ µjÔ(Sª¤û<¼c'±ÇAQâNgtì`i»†æì¹!l6€%‹-Z»º)jT« c¶ûòÙó|<Ê{‚ûì;t7÷n³ïÐ 6¥~‹Ý?`ß³{ì;öàq³¿ÙÊ•*3™0dßßjUP‡É1«YuØ’—úì´ó:5aQ·ª³ÀöÓcöýOaé΃™Ì!=†½§Ï¢©y´f<=½àêá ölÑÔ¶`µr¿–úZnEËYQׯŸûÒcÕšMX±|²NDµêuЪý[èÐýmXÛPx·rvû+«Ý¿s7YÈ´[lyÕÍ›üq7nÞÂõ;wñ䟥(uM«Áº^]v-°€Ûô‹xºÿ¯š†Ä=ë„÷ÖæìóF`ÅÊòkE-¶gƒ?ׯUØß·yZ°a7·¯úÍÑ!”~¬Ý„õ2yüºëfg {§ÛÙÉ Íàèâ ;öà¾DE“Ô×OÉÐl„„OµóO¾ ¾`:t(®]»†5kÖÌ.òšobºu«ènÜÇ ñEÓÓÓ‹Ô)˜1ôÃOp”Ýa<þùüÁ–Áæ1g1ïñ#n‚ž>yŒ‡n³•ûxú4¯X†,:… »12bk8Ù3ûžWbNçßkóTëóò…ïy~þsvCÅþNž°›"&óñ£âOO2`ü»hÀUX1þÌåñ¿¹çìoîÙógÌÁ}\DŸºÌ±­ÉnDØw¤«V±¡öÊ~\‹T(ÁolÛ·o/̪ÈVÌK]¸~ö0Òöÿ}#,Ü?x‰¯qUSv#îzõÀõ¥òÈf'äÜ¿wìŠýͰû÷Œÿí°Gq‰_ûùߌð·ÆØßû­øûo¸¸/çñkÿ |Æÿ¶Ùo_^^.?~ÀþÎÙï`)[Eøß6ÿ{WýsÉa-[ n Ó—¡wå&ðôé36=Ÿ‹l ŠðåN—nÝ)V¿ÞV¯f‚ª|‹]Cù#ëÂE»~J¾T»8˜çûöí"àyªê'1vqªÂ:EGG«š¡g"@ôˆ€ÔSHÚBK×Om‘§v‰€r H}ýÔÚíjïÞ½Á÷ÒùƒßYS"D€â Ðõ³x.”Kˆ€|HÕZ &~~~ §—ªP"@ˆ€¬ÐõSVÝEʽ' SC‰‰‰î~ªRBÂß!?*,LD÷Ønõøøx4iÒDÄV´+š÷ßlfii©]EDlo áë‘-,,DlE»¢ùw•¯­Ю"j´~ÿþ}5J)³ˆ>]?ËÚƒüÐ[[ÍDZ(kÛR–çë0ùA,VVÚ9¨BJ[ï°ÝÿÜ^~š¢ÒßœÍGE5Uêë§ÖÖ€^¾|Ë–-ÃÙ³g…x ÞÞÞýœ:u*xŒ<9LáóŒ%ífõF‰@9 ÈáïŠo@jܸ1Ο?_N+åQM߯Ÿeí%¾´‹;±¯ÁR_?µâ€ŠHYN_®­[·¢k׮РÃûbþüùøðÃÁc”*5Mœ8?ýôS©á-älÿ¨Q£°`ÁäääÈÙ ÅèN×ϲw%Áç?®­úHvÏ...ày~:wD”d#?eäèÑ£à¶ò¸ëׯãöíÛ „™™nÞ¼ WWWÙõ¿˜ñãç΋¬¬,Aÿ’ì*)_vF“Š$Àœûí7¼öÚkˆŒŒÄÇ,Ø9sæLìÙ³ÆÆÆÂÃÈÈHÖöÀÄÄäÅ#66û÷ïlRÒ5—ô*['OžŒÊ•+¿èWþZΉäðß™¦M›‚û ü$ž6n܈Áƒ § nذíÛ·—³™ëžOI2ìHÃ|v,e>;~ShóÈ‘#ù†††/ÚgÇVæ÷ë×ïÅ{9½8pà@>»°ç?{öLP{õêÕùqqqùJ²‘V©R¥üóçÏ 6Ö«W/„ ù#FŒÈgGß yü?SSÓ|vxñ^/Øq¢ùÍš5tg£×‚Ê%ÙUR¾ì$•O€9–ùüzÄ»¹ÏŸ1c†ðš__™s*¼VÚcǎͯY³fþ“'OwÍ-ÜWm½råÊK¿¡…ËÊñýÊ•+…ë0×ýñãÇÂoÎ;wòÙÀFþG}$˜Äƒ˜S.Gó^ÒYÞ· 2òÿù4AÕªUÑ©S§Z'''£N:/Þóó{O:õ⽜^ìܹì(œ‰^½zu,\¸ÁÁÁP’¼?zöì wwwa”ßió)k>"Êœ·ÝÕ Aƒ—¦±_| Ã/Ö®]‹“'O‚ݽв$»JÊQ‘^-à£G|Ê}äÈ‘¨V­š0bÔ¶m[A~me?îˆ!]Ú½{·–´Ôl³=Âwß}‡åË—£J•*Š»æ¤UØÖõë× SÑõë×ú•ϼÉ=uïÞ|6ÍÞÞVVVhݺµðÛÊGCÙM”`ž¥¥¥ð,÷åä€Jðmåë9þúë/°Á—ZËÉɦ T™ü‚ÉÿÀä˜.^¼ˆk×®á“O>ÁÁƒ±cÇüñÇÂú>å¥Jr¶‘ÿ°%&& Ë%lmmñðáCábëÖ-p§[•øÔÞ½{÷ToeñÌFs‹èY’]%å@D@bgÏž>e{îÜ9á5_öÄŸ²äNZnn.ØLÞÿ}‰µ§9¾ÎµvíÚèØ±£Ð€’~W +lkÆ 1`Àá·'-- ‹-–sâë]ù5–jX[[ƒÍ" K»¸oÀûY•ø/'çTEÎÊËE÷·ÞzK¸+÷ðð¾0ü‹4pà@ð;~1T%~7Ãïxä˜ø ›zƧŸ~*¨Ï7ãð W_}õ•bl\°`àt²é=ÁF¾Æìûï¿G“&M„µ ª~ãΧתôW=7jÔ¨X»Îœ9Sl¾ª=mà#›<ñµÌü¦ê矮³<¯UÝ(òÞ-û4kÖ, >ü…|äL)¿+/ŒúçEa[ù&,¾ç€'gggaÝ$[riÓ¦ýSC~O?ýô“0˶yófAy~ž4ijÔ¨6õþ ¾nŸßHÉ9Ѩ½Çÿ æÌ™ƒñãÇ#((æææÂHaxx8îÞ½+Láò©£øøøw±¨¥Ñ&øŽ=¶^Çäò©wþÇ¡$ù’¶Æ÷ïßlä#,|:¾OŸ>Ø»w/ÍG‰øÍ"O|Ê;¢üÇšOÓò÷lM¾ðZîÿñëÍgŸ}ö %]s_õϋ¶Ž5J˜ªæóëovv¶ìG¶ù2n§*ñ ~³Ä7&Í›7OÈŽŠŠRUÙ>¿´"”ÞˆN€](^lBâýðÃÂâq¶›1ßËËKôöÅl€ÛÆ7"±;µ|65’Ïþp„æ”dcß¾}óù棺uëæ³Ñ–|6"ØÈîÄ…~ä X˜&11‹*›ýxç«6!ñ†J²«¤|Q•#áD@ |$¿žò¿Q¶î>?))I¨5nÜ8áo”Çy>»áWCšna7¾ÅnÂQÒ5WÕÅÙÊ7½²åPùl/E>»ùÈg7þªâ²}æ6±ÑÜ|6P•_«V­|¶tD°åÒ¥KÂfW¾ÙŒÿβuû²µQ¥x%þB¶Þ³‚çá|Š[‡'7ùH._,ͧ¥ '¥ØÈGSx¸¥ÂýÅG³ùF3¹‡w)Üo%ÙUR~áúôžhƒigggW¤i¾N”/Ò‡¤”kni}Åíä×^Õ‹ÒÊËásîŽï™(ü{—êñ®JHä€*¡É"@ˆ D€Ȉ­•Qg‘ªD€"@ˆPr@•Ћd D€"@dD€Pu©Jˆ D€% T ½H6"@ˆ D@FÈ•Qg‘ªD€"@ˆPr@•Ћd D€"@dD€Pu©Jˆ D€% T ½H6"@ˆ D@FÈ•Qg‘ªD€"@ˆPr@•Ћd D€"@dD€Pu©Jˆ D€% T ½H6"@ˆ D@FÈ•Qg‘ªD€"@ˆPr@•Ћd D€"@dD€Pu©Jˆ D€% T ½H6"@ˆ D@FÈ•Qg‘ªD€"@ˆPr@•Ћd D€"@dD€Pu©Jˆ D€% T ½H6"@ˆ D@FÈ•Qg‘ªD€"@ˆPr@•Ћd D€"@dD€Pu©Jˆ D€% T ½H6"@ˆ D@FÈ•Qg‘ªD€"@ˆPr@•Ћd D€"@dD€Pu©Jˆ D€% T ½H6"@ˆ D@FÈ•Qg‘ªD€"@ˆPr@•Ћd D€"@dD€Pu©Jˆ D€% T ½H6"@ˆ D@FÈ•Qg‘ªD€"@ˆPr@•Ћd D€"@dD€Pu©Jˆ D€% T ½H6"@ˆ D@FÈ•Qg‘ªD€"@ˆPr@•Ћd D€"@dD€Pu©Jˆ D€%ø†\“^ÝIŒ®IEND®B`‚Zelig/man/figures/example_plot_ci_plot-1.png0000644000176000001440000011731413245253057020656 0ustar ripleyusers‰PNG  IHDRàà}Ô¾• iCCPICC Profile8U]hU>»sg#$ÎSl4…t¨? % “V4¡´ºÝÝ6n–I6Ú"èdöîΘÉÎ83»ý¡OEP|1ê›Ä¿·€ (õÛ>´/• %ÚÔ (>´øƒP苦ë™;3™iº±Þeî|óïž{î¹gï蹪X–‘š®-2âs‡ˆ=+„‡ ¡WQ+]©L6O wµ[ßCÂ{_ÙÕÝþŸ­·F qb³æ¨ ˆð§UËvzú‘?êZöbè·1@Ä/z¸ác×Ãs>~ifä,âÓˆUSjˆ—ÌÅøF û1°Ö_ Mjëªèå¢b›uÝ ±pïaþŸmÁh…ómçϙŸ>„ïa\û+5%çáQÄKª’ŸFüâkm}¶àÛ–›‘?ÜÞš¯¦ïD\¬Ûª¾Ÿ¤­µŠ!~ç„6ó,â-ˆÏ7çÊSÁØ«ª“ÅœÁvÄ·5Zòò;À‰º[šñÇrûmSžòçåê5šË{yDüú¼yHö}rŸ9íé|èó„–-ü¥—”ƒăˆ¡FAöçâþ±ÜJjåI.’£[/ã]m¦èÏK 7ÔKëúR ÿD³‹r€¯Y«QŒOÚ-¹êëùQÅÎ|Ÿ|…6«¾ ³ (˜0‡½ MXd(@ߨh©ƒ2­Š_¡fçÀ<ò:´™ÍÁ¾Â”þÈÈ_ƒù¸Î´*d‡>‚²üެÓeñ«…\c?~,7?& ÙƒÏ^2Iö‘q2"yŠ@ÿ«g Ÿ|UP`þo@IDATxì½xå¹=þª[½Ûj¶änÙ’e›z3!@r Èå—„–„Bò$÷&¹ $—„ê%¹—::„0`'˜Š­æ^$Ù*¶ÕlIVÝ]ýÏù¤•ײì•eIûÍîû=ÏhÛìÌ7gF{æmç ëÇŠ€" (Š€"0©„OêÞtgŠ€" (Š€"`PÖ APE@JÀ]w©(Š€" (ë5 (Š€" %à€®»TE@P”€õPE@P€€p@×]*Š€" (JÀz (Š€" (@@ 8 ë.E@P%`½E@P  Ðu—Š€" (Š€°^Š€" (Š@PèºKE@PE@ X¯E@PE (tÝ¥" (Š€" ¬×€" (Š€"”€ºîRPE@PÖk@PE@JÀ]w©(Š€" (ë5 (Š€" %à€®»TE@P”€õPE@P€€p@×]*Š€" (JÀz (Š€" (@@ 8 ë.E@P%`½E@P  Ðu—Š€" (Š€°^Š€" (Š@PèºKE@PE@ X¯E@PE (tÝ¥" (Š€" ¬×€" (Š€"”€ºîRPE@PÖk@PE@JÀ]w©(Š€" (ë5 (Š€" %à€®»TE@P”€õPE@P€€p@×]*Š€" (JÀz (Š€" (@@ 8 ë.E@P%`½E@P  Ðu—Š€" (Š€°^Š€" (Š@PèºKE@PE@ X¯E@PE (tÝ¥" (Š€" ¬×€" (Š€"”€ºîRPE@PÖk@PE@JÀ]w©(Š€" (ë5 (Š€" %à€®»TE@P”€õPE@P€€p@×]*Š€" (JÀz (Š€" (@@ 8 ë.E@P%`½E@P  Ðu—Š€" (Š€°^Š€" (Š@PèºKE@PE@ X¯E@PE (tÝ¥" (Š€" ¬×€" (Š€"”€ºîRPE@PÖk@PE@JÀ]w©(Š€" (ë5 (Š€" %à€®»TE@P”€õPE@P€€p@×]*Š€" (JÀz (Š€" (@@ 8 ë.E@P%`½E@P  Ðu—Š€" (Š€°^Š€" (Š@PèºKE@PE@ X¯E@PE (tÝ¥" (Š€" ¬×€" (Š€"”€ºîRPE@PÖk@PE@JÀ]w©(Š€" (ë5 (Š€" %à€®»TE@P”€õPE@P€€p@×]*Š€" (JÀz (Š€" (@@ 8 ë.E@P%àI¾úûE¸èPE@m”€'ùü»±¿NÏ +O2øº;E@P,BÀñÜkll”––‹`=òTHÀM.‘žAkX‰øÈxé§Š€" #Ž$຺:ùþ÷¿/-S§N•ôôtINN–’’ùÎw¾#ÖŸ¯v˜Ã- b——ˆ­Ÿ±NPPE`¼ƒ騈dMMœvÚi&—_~¹Ìš5KÒÒÒÌkZÁUUUòôÓO#ÎÚ/o¾ù¦Ìž={¼°—íl[AºÃG$ÞHÂÞáÐt(Š€" 9Ž#à¯ýëRVV&+V¬˜˜˜OO__Ÿ\pÁrê©§Ê­·Þ:â:zópìO È7!$Œ7”ˆ½¨è£" (Á‡€ã\Ð¥¥¥rÕUW–|yŠ¢¢¢äšk®‘×^{ÍqgŒqáfXÈš¨å¸S§VEà¨pŸrÊ)²zõj¿ùÖ[oInn®ßõl]Aµl=3:/E@PƆ5>÷¹Ï Ix÷îÝòùÏÞÄx™€n2¡«««åOú“¼òÊ+ÆMí¨ƒa²LÔÚ÷“à–6' ¾iº§u(Š€" 8ÇÅ€ ÷Ö­[åºë®“•+WŠÇƒšžaãÜsÏ•üàröÙgûÄÿËÞÞ^éììô»"³¬™}Í,ì£þbÀGÚ–&j ýLPg!àHöBL²Ü±c‡ÐêeâUNNŽäåå™’$ï:GûøøãË7Þè÷kííírß}÷ɵ×^ëw]ߎ…€½ÛaêYؘ–°&jyQÑGE@Pœ…€£ x8Ô´†Y†”ŸŸ/‘‘ë]?ùä“åw¿ûœtÒIçqÄ×ãAÀÞÄ!‚Ï…C‰xý«(Š€Sp\­¬¬”믿^¾øÅ/ʪU« Ö¿ùÍo$++KæÌ™#©©©rï½÷:åŒyžš¨5fèô‹Š€" ‰5'àðH¾'œp‚‰½fddÈ“O>)wÜq‡ÜrË-rÅWÈòåËå©§ž’n¸AfΜ)ÿøÇ'`vmRµì::E@PFƒ€ã,àÛo¿]–.]*õõõ&‹ñÚ¯~õ«F~’1Y’ð3Ï<#矾Üyç£Á (Öa*Ú^dLïE ±gPÚ2(LBP EÀq¼yófa)R||<âžarå•WšSCYJßqÙe—ÉöíÛ}ß ‰çT¹¤¾t»qHœo=HE@p.Ž#`f:SdÃ;¼ÏY’ä;èªfFt¨Ž¸*j…êÙ×ãV' à¸0“¯¨óÌ80cÀl¸póÍ7Ëm·Ý&.—KXüꫯš¸ðƒ>è„s0¡sd¢—DyålÔ.±|I‡" (Š@`p3¶û—¿üÅì¾}ûL¶3uŸ©ŒõíoÛtA¢kšÏ½îéÀBlÇÞJÔ2ÄJÄvœ…" „*AUÜÐÐ kÖ¬‘¢¢"S <‘'Õ†:à±ﺴõáXÑÓï)Š€"0>8Î>ÒagggË'?ùÉ#­¢Ÿo¢–*jéå (Š@à*ŒÎÜ3µzÀƪ¨åÌó§³Vg#à¸,hgÃmçìQÔ²sš:+E@P‚ %à :Çv0LÔb ± YÓýó8¶Íé·E@PŽ€€ðÀ ÅÀ½ª¨Š'^YP&%àI‡Ü;ô&j©¢–3ΗÎRPœ‡€&a9ïœMêŒ5QkRáÖ)Š@! pìc9TMÔ:ôô»Š€" Š€ð¡˜è;G@@µŽŽ~¤(ŠÀQ  |`éªh¢–^ Š€" ;JÀÇŽaÈnÁ›¨Õ†'Úƒ8d/=pE@#JÀcN¿v^<ÕÖ‡ðÐgŠ€" Œ%àÑ ¤ëŒ MÔLº’" (%`½Æ&j5QQ‹jZƒË¸ïD7¨(Š€ÃPvø ´yú{AÂ\˜´E"Ö¡(Š€"p%àXè³ @ükô¥5QkÀÕM*Š€£PvôésÎä5QË9çJgª(“ƒ€ðäà¬{D`(QK;.é5¡(!Ž€pˆ_:üv°i}¨‰Z:º_E@0JÀ>¡¼{£¨¥‰Z¡| è±+!€ð$ž~Ç#}==ÒïFŽŽ!4Qk }¢(!„€ð$žì¯ äÛ¹»Vzö6‹ÇÕ7‰{·Wš¨eÿ9Ò*ŠÀø! <~XŽnKááÒ™'ÝaáÒÕØ ]Í{ÄÝÓ=ºï†ÈZC‰ZÞøpˆ·¦" „‘¡u¸–mD„¸SÅ•,]ânm’pst"^O‰“°°0K&ØiPQ«SHÁUê½PšÀžÝ»" ŒÞßµñÛ¢niôÀ vÇ%‰;6QÂ{:ÅÓÑ&aûZ%:!I"ã$ ¤¬c@M‹j"þDÀ*VÖ«BP‚%`Î"Å3%^z°„õöˆgÿ> oÛ+‘ñ‰•rŽÐÓÄD­Vü‰Æ#‰˜>%b.^ƒ" Œýe+rô½þèéž*aHÐrw¶‰kw½DÄÆ«8<ŠôÚÛ¨ç%âô¯" 8 %`KÏWd”ô%¥K_BŠDv¶‹»i·€éžŽ˜ké¬'oZLÔâ’!ÃÝÂ$ÖÈùäá¯{RcG@ øØ1œØ-„#a $ìŠG‚V7¶öµHø>‘($lEÆÂeâæŸ&jMìå§[W‰C@ xâ°ß-ƒh™¬e¶º;Ž¿ DÜŠq’D!Vê [l{cX’pEk¢Öø^zº5E@˜”€'× Ýª¥J½,Wêë]µ&kšdº§”úbš¨5¡—žn\PÆÐýµGµ©~Ä„ûR2¥Ïí’HXÄ®=HØB|˜Dd®Pš¨ªg^[pJÀÎ:_#ÏeJ®¤4+ŽèjÔµh GS脪qâ¡D-dKÇhÆôÈ׎¾«(C`T¼nÝ:)++>®_¿ÞL6;;[>ö±É…^(™™™;ݱîp#Y‹âáÝûÅÓ¾WÂÚ|„=B4a‹­¹¤ Hì½àC Ÿ‹EŸ*Š@ ðþ8ÊÊJùÞ÷¾'¯¾úªÄÆÆJ^^žLŸ>]ÚÚÚäÍ7ß”»îºËH(^sÍ5rÛm·IVVÖˆÛÑ7'°‹'6Az°„÷tAØ [ â¨øÁ„-Ha†âØ‹ ±&j…â™×cVìD`Ð1wðääË_þ²\zé¥rüñÇKyy¹tvvÊæÍ› ñ~ðÁ†„kkkåå—_–¦¦&™?¾Ü~ûíÂŽ?:ìAÀ+½iÓ¤'=Kº+îÜ]Ò˜¼‰ZmÈšö 6{°çléLE ”ÑþÍo~#'Ÿ|²ÜsÏ=qk)77W¸œþùÆ5ýË_þRž{î9¹âŠ+B CGk$¶’3 ìᆰ¶Ð‰)<*&d…=¼‰Z±¸×ø°#®a¤"l„õcÛAMÆñðåw¿ûœtÒI£Þ]WW—¸ ×T>eÔß™°û=èÄ´ßdOSAj …=FtŠLØ4lÙ0I˜dÌ¡ñáô¯" L,#þÚîß¿Ô{}÷ÝwG½®®h¦S¢ôdæJ/2¨»»:¥³¡Vz îá«:ÔÆ~$i5á°{´q¨z=^E `ŒHÀt=÷»ß•¾¾¾ÃNÌívËOúS9ãŒ3»Ž~à †âÄÙ t¡DJ™Ü½ÝÎ8€qœ%¥-IÄ} dú†Ô=4Žàê¦Eà F$à¥K—ÊÝwß-§Ÿ~ºÔÔÔô¾à{gžy¦üä'?‘Ë.»ìÏõ g"àmÑ=5Oz¢§HWK“tBÜÃÕÙ2 -*Ú"n»Ô"væÅ¬³V€Àˆ|öÙgˇ~(B2~þùç‡å‰'ž’’©¨¨G}Tž|òÉ¡Ïô‰\Gð*øÿö$­aꉓŒ{º ºöwH'ä.{Ñ£¸žP0‚…Ó\ÜJÄ¡rÚõ8IC`Ä,hî}Á‚òþûïË7Þ(—\r‰|ó›ß”½{÷Ê#<"§vš!ß‚‚‚I›h0쨹¹Yeí¦­2gÙñ25¦Ý‡Åzb_ÝidO÷¡Œ)ÔúƒÆtÙìCµpÐ¿Š€"0vKÀÜd\\œ<øàƒ2kÖ,ùñlöòo|CþçþÇpŒ}·¡ùMÖHÇ%¦Hü´ÙRöö[0ºe6ˆxÆÂ"‰„®³ÍÃèN³Œ)‘eL»dbô,öö'¹KfD4ƒc6žE<(Û|ÑêÜË8"3ÑŠâÿýßÿ-………-÷ß¿y~à 7X~höN/cÖbáÒ¾g§Ôn^#ëßY%3Ëì%ÇI|Jª½çÌ|úÉ]¢Gñ@SBH´Ed¦tˆ8.jà E`ô–€«««å _ø‚¬^½Z®¿þzùío‹™0¹ùæ›åk_ûšüío3dœžž>ú½éš!8uºpéTdãÖ2Yùø#’š#s–/™ù`Ó º§å.Ã-= w¹mãM7&ZÇÁ>¼Í´†8ØÏ´Ÿ"01ŒHÀ+W®”OúÓÆâ}á…䢋.ÚûwÞ)LÒúÊW¾"‹/6±àsÎ9gès}rôÄ@£9¯ätÉ):Yš«7HÙÊA÷ôÒãàž.–HxlýȘîÅ"l‹H÷4U¶ÐѸ§!…ìƒ5Ä\’à–öž)µˆƒý¬ëñ)ÇŽÀˆüÑG)ʇzhÄ —_~¹wÜqFròãÿ¸ÐU­ãØG[ÁÌÙÅfißS+µ[àž^ýwC³@Æ ¶»§Ù11mÑ*[î½-B-ûÓ2v•­¶Áƒd±±ÿ$fœX‡" (#!0"ÿû¿ÿ»q5)±†‰Yï¼óŽ|ÿûßi»úÞ1"ˆZ\.½°(·–ʪ'‘”iÙCÙÓG:7Ǹëcÿú Ê–;.ÑtcrucJ”Èx¼¢æÁbÞxˆ#L¦–q0Ÿo=6E`¬¨ô‘‹ô¶mÛ ì.µQÓz¯”‡l®Ù [Ö"yºÏ±ÜÓÞ sõ™&û%bJ¬±Š#à¦öÁ[ –.™\-µˆƒýtëñ)G…Àˆ¦»!­Zµê¨6ä]ùÛßþ¶‰{_ëãø `ÜÓ³àžÆÒÞX+uÌž†{zza‘)e²Ý=íUÙêKH…{qâ–F”²E Nœˆºbº§ƒÓYËb*j16œ8øß¤‡:>ºnE!F$`¶\´hј`HIIÓ÷ôK£G 1îi,CîidO§d9Ä=mT¶’Å—÷t§¸÷·K8@DÁ5Í%ìí/G}kzÛ²†8®i%âô¯"ª¨ zŒg~²]ÐGš&ÝÓ-5e’¶èžžÍìiÔG9ÄÅÖ×k²§#º:àžŽƒ{V1³ªƒxh qŸ\=4E`”ŒhSçyöìÙF k”ÛÑÕˆÝÓ³ŠÌÒÞX'õ â ïþîéE ãã%!5-€³ó¿ë•­t¨lyÝÓMFi- åYÙÓÁçžöÖ' 8<…bbð¥ÿs¯k(¡Œ€É À믿.Ë–-3ZÐÃ?Ó×v#ˆþ¾³Nù7YtÁ5PkŠ–UO>*«Ÿù³ì®ÚfG£A÷4{³ D7J™:wí”Þ îQÜúaÓ‡¦ýah5²ûŸIg§L0#ð\`D8N=õT¹å–[Äåb*‰'! ÜŧÉâ‹®“„ìùRþ÷UòÆ÷ȶ5ˆ ._«‚£¦ DÚ4éIÏ–.ßÅ=ÁÙ£ØÛ‡˜2—JÄV_:9E`Ü‘€.\hÚþà?ŸÿüçrÊ)§È¦M›Æm§º¡ÉCÀëž^ø‰«dƉH}u¼vß²vÅk²wϮɛÈ÷ÄìiWRº˜Å1èQ¼=ŠÑ‘©É[ý æ`‡q° "  !0"óS6^¸õÖ[åƒ>0+³/ðÿþïÿÚïÆ:4}2÷ô§Œ{Ú/ÿ|þYy뱇¤º¢T\½–[ÅtO#sºÙß=IipOwJgC­ô „5ÆÁ6¼DÜ«®é`;µz<ŠÀ£Ê‚öx<¦ám·Ý&QQ‡Šì÷Úþã=t¸ã÷Ħ,è±U?|m ÕÒ´½\Úvïœy dÖâ¥PÜÊë&'õ{÷ˆ€RXdg‡„Ç@{I[ùÆat¦³´´|)ϰS("0b´/Œÿþþ÷¿7Kvv¶|þóŸ·R4¡³³S6lØ III¦qDÖ“úž›c}Nñ‹äœ™féCÂSÓö ùç‹ÏJ Hlæâ%’W¸ÐêR¦÷tô§S´§a ‡íë7D\­½:ÓÚðáX¯zý¾"`G$ಲ2¹öÚkeíÚµ†xIÄii-i¡J×Þ½{åg?ûÙŠ¿øÅ/Œ»œ ï9XBÅ®MçwÞÐ:úäÈDA*{ÑI’µðcÒ¶«Fj·–˺wÞ–œ¹ @ÆK%BÖíé0$iy:Û$¼m°5"¬âð¼6Ö‹Ÿ‰BÄZ¾ä1ýX° ˜.eÜí·ß.òüóÏ›ö„6Fyy¹466MåÁ&‹-_¾\>÷¹ÏI[[›<ñÄrñÅË»ï¾+K–,ZWŸøGÀXÅÙ’Œ¥¯›Vq¥üë¥ç%*&Zf–,•é á¹½ÎýHÔêÅ2Ô± ­£¢´§Ñ1X$/½Dl:/©kÚÿ…­k("0"ÿßÿýŸü÷ÿ·!´?üá·z„Û}÷Ý''t’¬X±bhµ›nºÉÔ1ÿÏÿü°¥¢Ž±!5V1,â¬Â¥1âºmå²þ•’=g¾qQ§eçŽmÓñ­¡Öˆ)ÎÖˆ°ˆÃ<-pOtd CRW0 v^ârM«E<ˆþU€Àˆœ™™)Ï>û¬\rÉ%ÖÝÑ7Þxã!óüÊW¾"÷Þ{ï!ïú öN^Sñ‘,\´P¦8¤Y=­Æ¤¬|³ôuwJsU¥¼ÿòK ×%Fq+ŠV§ƒ5ň÷0&ÜÛ3àž†¸G$\îìSLë8†×"JÖR"†ÓªÇäŒHÀÌz>Z×-‰å©§ž’œœ9ãŒ3&¶®®.éëë3ÙŸþô§¥®®îý}ôÑGÆ}~È~#–WíΦÛÔœ¹sd lúŒÏjô»‚V3-b.Ìœ6V1º2eÏž+HÜJÏÉýÆ&yÍ~hc÷FgÂ=í–HvdjÚ-a¸‰ˆG‰{ú"Æš5=ÉšîN%#ðÔ©S哟ü¤!Ò«¯¾Ú¸x;ëîîÆaýë_ƒH¦Ë<0Ê]m5ÎcåÊ•’˜˜(‹/v_b¬÷òË/Ö*×ÖÖ Ë¥}ôQS·<¶½LÜ·8ÿ‹>}±t¡ŽuݺJ¡ì§ „P‚c)..–øø„‰Ûù8o9iÚ áÒ‡®FÍÛ×ɇ¯¾,á±b´IŒžb©UŒ y¤.]ñÉŽ8·‡îéþVCÄÚÓÎwO{‰ØÄˆÏ»ñ8ÿèæcDà°uÀLÄòÆ‚ãããå¸ãÐagÆ ÉËË3‰N7n4êX›7o6Vï¯~õ+ùÌg>sŒÓñÿuÎkýúõRZZj²³ùÈlí?þñrÙe—É=÷Ü#×_½qK3k›çÑ fR3‘Ëß \'çvš¿U‡>ß¶m›¸úaGMzOêë뤬¼L6nØ(ùùù²¸d±Ìš9ËôË=hE¼hÛ³Sš+n­Û&Y³æÀE½TÒs>^#¼§K"÷#{º¯G"'fMq°´Fä[ F1YK]Ó6^~:§Eà°ìŃ1Öûï¿ßܺuëL­-X|â‰'Ê¿ýÛ¿â‹ pf,ë•###AfõB:oÆ2˜Aý­o}ËïW[[[… `×\sßu½+Ž€½Ÿ÷A£™µÌ¥e¥ÒÞÖn,â’’INv^e­¹z½4n+“püè³®˜-£-Ê ¸‰8‰[±qÆ*–8±±÷?M;ðKÀçIò=œ;zøºñš.fŠlð c¢•°›¥–}ee¥deeÁ*.‘yˆGDªDHF³ïöÆZi2VñVÉ*˜õÉȳ<îíAœ˜*[´ŠMS²DZ~ó0šsÁu"b¼V×ôh‘ÓõñEਠx|wô[»òÊ+åé§ŸŠoÐR ÔÍÀD°·»O6oÞb\î{Pÿ\´h‘”,)‘Œt$9l¸z»a¯3d&ý2kÉ2cG!9ÊÚΈ®Ž"Æ$™9mT¶‚€µHÄÌšŽ¤k#ià@ô¯"àø?xÈXµjÕAJS\.×={ö´î«¯¾zÔÙÒm`Œ/“þÞ÷¾g”®FÊ€ãf­ü-ÞBHBþ¿ÿ÷9¹úê«Læ÷“O<‰$³G¤qcº­2"£§È´yÇ¡ĵ2ã„ó¥¾j§ü ™ÊÞzC:ö¶Úy`%7Z;šÅÞ&ìQŒÄ­~$Ï9yx0ù½8„— 7AÛ :ù\ê܉Àˆüá‡Ê]wÝuÐQm곟ýìAï1>̨Ɍ=³K±æÍ›'¬ùe2V°”äTd¦Ÿ)_ûÚׄøÖ­[M¢Ük¯½b¹œtü 92ë”3™z\‘²ê‰Gdõ³‘ÝÕÛ­í¸åA©R/{§eI·ÛeÚ"ö´6‰%qN^"nwâ…[ɨɧSçî F,CrÂü™œDf¿â;î¸ÃdA³oñ—¿üe9á„ 1³¥b0Žðð™3g®Y:з¢¢B^z Âè[‚ ꢢ"™âxe4¬ËÜŧC‡údi®Ù å«VŠxVÈì¥Èº_X,‘žÃ~Ä„û’3¤/Á[OL¹KtcJ¨'vò5GæÂ;ó8ü‰Á2è¡Vµ“O¬ÎÝJF´€­œé“bkÄŸüä'&óù±Ç3îÙ/~ñ‹ƒõ´ñòo|c„o×[ (™9ù¤Säºë®—ü\iØÕ`¼/¾ø‚ÔÔTã`aÎ8`„C:2sV±,üÄU2ý¸ó¤v[¼öÇ;¥|å Ùo«{z°ž¸{êté@I×Þc÷¡="“V±ÃÍɧEçd8Öö=S øÀ6‰\˜%M‹µÂÉÉɾ«ýó3òQ«/Ý(ZW¹NV¼ù¦ô¡nšI[EEÅ’˜è §æ —d 7n-••?"©Ù92gÙñ25¦}Ç0'f¬8RnvcÚ׊„­D‰Â R<NŒt{5§éSŠÃ¯Fäàý…&n9ùÌêÜ@P°/ˆ¬ÿåB¡ŒPÔ˜>î¸ãÍB‹¸ ññ T’¥2ºîçÌ™h¼ŽE{QŠF^É’StŠ´Ô¬—²·ß‚Aï6D<}a´¨í 1x` ÷b Crœ7}»jMÖ´ÑFˆÀéƒ)½°ˆ9¦àŠÅ½…÷öBÉxý«ŒÇð~ô#£=Ú õõ²ÑÇ7ûülÓ®q#D>Þ{ï=ùä/‹'¦â»ltOgÌZl*míܼFÖA:³–'ñ •˜8q âÄîTÔ·‰«Ñ'N†î´¥Gy!tà î$cÆ‹c5^|”êꡎÀa ¸©©Éh@{ªªªê>³õŸw477{ŸNÚãüùó'm_Á´£(X‹Å‹KÌÒÜ܈¬ñ2yøáGd*:_Q‡zÞ‚ùé‘$Ä[¹ ¸§×ÊÛzÈ4€˜M÷ôŒûNãĉ©Ðžñ²-"²¦)j@ #S êØÇ(ßä­xq´’ñxC¬Û BF$`j>Ÿyæ™. lˆPPP0üm}m9éñX¾ü\9ë¬3eË–­¨'.—7ÐOyáÂ…¦ÁÅ´iY–²s{úLÉYtŠÉž.}sȬÀ=Fl•hÕ 7õÄîØ¡î4ÝÓqâ¤Á81+“·Úù \âáŸ:pYÛø‚“ ‡à§„e ²“¥„5YÇÛÖ¶ÏqyE¹ÄA™±brŒƒÜ¥lظe´ï©…ÂZ@iËF÷´÷œ†±ñˆ8¢ âП [Á¢;í=Fï£IÞ«ê–}TpCŠr‰Á|F…ãh6>pìýRUU-PÙÚ¶}»°gq \×ôŠ8Å~ééØ"^+U•¦³§3§ç8DÛžAÔƒºÓ(_ GCqd¹§‡ÃÍXñ,š¼5}jŒè‚5ôx}“™3gšÅÛ³ø7Vˆ ]‚Š{Û^΃xkÞÒ³$»øTiAG¦µo¼.áaƒîéEa[62’ÌâÄ)îiq8jŠ#ÑÚXŶÍ×÷rÃó.¸§¹p0^L26®iuQ€¢Cµ€Çxªƒ×††z#;º } sQæÅœ–3Q•Ë £mWì{º£±Nò‹JŒ{:.ÉÞ:q¶Edˆ’qd4’¶%‚åMAZë6ñâoXÉØ ÿV:ÇcD@ xŒŽ•€ûe4m¯Fq,b®´ŠsçâÆÈ^b£ä¥±Š1÷p”Œ«Áló¿B•·œ÷Û 3>ˆ[0}ûÀ;.Üa³ÙÁòåËeêÔ©>À3*cM‡¾ð'>ñ‰ƒÞ…÷ß¿œþùFwz´ÇK,= àö°ôpx’3¦ÊŒÂERP\ñ‚>iظVv”þ]ú(Ô€wœpÒˆ†kt:bªÇÒŸÌ Ù¶m›¼éËÝ»w¡¦8FRR’­%‡¸ÎÙbê¼ã@fqR·±R6¼ó–ôtvJ|JŠDÛØâ×õ§]ˆ {ÐùÊÓ¾O\mÐÌFìÙÓN½‘ówÍÓ“ÄLên, #É}`hò–?èôs‹ðk[4W«¦2ðᨢ;7¬“X\½}’VP(éˆÇ¢­GOO·éNEÅ­ýûeqñb“Edq²gSS ‹˜–qræ4cgÍškä$½ëØöÖ Öwï7™Ó^«Ø¶yŽ÷|è3J@”,ÚKÆx¤Iãã n/@Œš€©×áukíÙ³GþùÏʉ'ž(ÙÙÙšz`w;‘ì{dûwƒŒ×ËÎëМ>Ö$o1‹ì8öìÙ-eùØ€ÆÓg¥âÖܹs‘_`¯›—8{ Ѻs3bÅ¥BR.X¼Äx-誶vx<¦”‰dLNŠFœ82.ÁñíGƒ7¯&#ƒ9HÆJÄ£AM×™lFEÀwÞy§üá0?št)ҽȌ^&eýõ¯5®ØÉžx ÷7Yì=NÞ5×í4ñâú­›$vÒf,D&õ<³óºë¸Ý}²iã&q¹ìilDw¦b±3Ê™ºö6™>ÅÍ5$ [LÚÊDfï ª÷œÙôÖÛ-Q,eBISâñQmD \ ƒµÅŒ{ÝÔJÆ¡pÖqŒ~ xóæÍ²hÑ"ùÒ—¾$wÝu—Üpà òÌ3ÏÈ‹/¾(O>ù¤<ûì³²sçNgí8Îr² Øwê´ÆvWm3.ê=5U’4mú@&uîlGf¶îmE]q™Ñ¢6åLKJ¤pA!’¸†dü}ßšç,ej©Þ`ȸßã/…u±±b/jÈX§ÀGä~1˜ˆî髨™IÞÃí#3©¹xVÉx´Èéz€_~ôÑGå¶Ûn“P@âÈÍÍ5YÑ÷Üs444 Ô$Ç·Å>°pë2“š‹ÇÓo²¨Ó Ê4‡wÖèÎTVVjTÄæ!a«déÉ˵X>3fOýi&mµíÞ •­EÆ*N²Y²“Vñìe_È|øþ?PjˆÉ[C™Ô`d/)û®§Ïñ@À¯|öÙg—óYgeöÇd¬ÄÄDùâ¿(/½ô’â‰è6Æ„”T)<ù4³´îj0D¼éÍ'Lö4•·˜I…úQûGØîL(aª¨¬”W^yÅL{IÉ$oAä½tm´“³ ÌÒ 7oã¶ryç©'$’³Ñ§8gÎ|X›ü¹·hÐ*FÄ^¶B„À‡óŽØ]oä.C¥”ÉÓÑÆ?Ì@ {e0ÉÄJÆý3Nøµ€¹Þͯ_¿^’“Ñæ p8>úè#S>’”ä,¡3ùqøc»<Ò!ò<6î¨1dÌLêÉ[èjdŒt>ïÕ"#¼lm©lÞ²Åt ÈxæÌ¬aïOd?Ê‚#nÚZ*̤ÎG=ôÌÅKÅæ®LpŸ &mAÍ8q$nx¼iL€<†fR‡ÀIÀ!ŽŠ€½óÚ#ËfÍšÁý(£läý,ÔHÀ¾çˆ2˜õ›7Iͺ a­q:ãÅ‹LÓw=ÛŸ{E>ÊEÝ }ähP³Ubb¢Ý7†Ýí­&i«iû:Iƒföì¥ÇÉÔü™öÆ]éžfÒÚ(ô¤½ŠGs½k&õhPÒuFƒÀ¨˜û7Ýt“)?âFÿõ¯Éã?n°~úÓŸ†d–Ó Ø÷âèDÂÓŽu•HÞª ‚¡!âtÄ‹&ƒI¹K1½5¹¹9¨+^b}Ïb Zj6š®LW©)Î/Zlw)$U#»ÚAÝaäR£Ø«É\Áž´åû?ã}GÀMÞò¡G‰€_îíí•“N:I¨c̸ïøCabkYüÙÏ~6$ãÀÁDÀ¾×LKCˆ¸Rj7®—ø´iˆˆ}8©S“ mû6lÜ€îLeÒÚÚj,âÅ(gJE\ÜæÁR¦¦­eÒR»EræÎG¬ø8I™fqyº2E  „QÚ‚«:š5ŰŒÃÍjƒyÆ‹éª6CãŃ@èÑðKÀLx¹öÚk…‚Œsyã7Œ %¯¾újaÍf¨Ýý+{/Š}°S]ÔTàJc}1¬âDÖ;¨F£¹¹ Vq9’·*Lsˆ%pQÏC»ÄÈ{E>\(ebÒV#ÈxJ|<ÜÓËìïÊdô§Û ?ÝeJ˜¢C¬¦ØûÃÇá2˜š¼å‹Ž>÷EÀoô$¹P ‹Ä;|œp F„£ººÚ$ ÿ\_;&eå¢7.v¢õŽŠURõ¯NIG¬8}æ"‰MJ³þÓQösÎ9çÈ™gž![q-—ÂEýÆŠ²pÑBY‚vƒ™5î6H$ܹ٠?&Y…'ʾúí²½b­T¬|Sò‹JPÊ´Tâ“Slš®™K?êÑû¢3¥7n‘èSìjBM14B¥¦Ø÷„¸ðbß`&5«¿ãð+;ôC«–±/T!ÿ|èº83gΔիWK#ôz½‚Þu)EI!ªcé-²:lÄ@heβÌÒÖÔh¬âÍoýÙü¸2VÌ’&Ûõ¨Ùìa>ä-¹ìÛ·WÊ+Êåϸ~“’“d)ˆ¸°Ð>éKzR /Ê¥»c¯4n)•·ÿô¶´…R¦©³ìóFàÆÍ•"®ødSSì¦äå¾–I[–7ÝïÍ^l°—ŒŒ¡™Ô8èßøuAwtt˜Ž5iiiróÍ7ËW¿úU¹ûî»4%)ÒñðÃØbˆ<‹ šqôNX“]¨±D­¥‡MäÎõ=µ,©¡u ’·vWo“ä¬|“¼•’RwF‰J?b˜Û¶o“µkÖJ=¥/‹ÉÒ¥K%#Ý>«Ø‹=“¶Ø‚¥Lnd%ÏÛž´ÅšbÓñâð˜)B÷tCyPy‹É[Þÿ‡þ „ò)—c÷KÀÜ %(¯¹æY»víA;½øâ‹åÁD“uû\bMt^Œ…€9>·GÛÚ¥¢ü1õL‰ȸ? iú_ØIÒºÍ w´4‹˜.j&q9e´¡3ÝÓ奥’±Œ%K–È‚ÂVÇŠ;š¤ V±IÚ‚°K™¬NÚ©¦˜¢¹a›¨kù LjuQOÌVnwTÌ™{ðÏCñ Æ„£££M\˜n»Pc%`<Эƒ.)²u]° \$càK«˜‹!c‡»m*YÎTƒ%<"ñb¸¨±DÇ&8∼ !J!}ÙPß EPÚZ‚îLé[ÅLÚjÚV!{`O‰3ÙÓ¹ó %á![G8æÙ‰šbêɇpM±ïù¡5¬™Ô¾ˆÿóQpðCqtG8ì»GÜt$cZÆŒ‘q¤e"þ¾“>Âóý‹+¥~Ë&#ðaJš¦Ï5‚ÿGøª51V̺b. Á,…Uls51gÒV#ˆx?¬c›“¶†Nò!5Åîi'eÚË8>á­SÊšT“zAµpS~ ø½÷Þ“ÿøÿ8âÔW®\yÄσñÃñ&`_ŒÜ(éðZÆýpÏÑEMWu¿åýq}Á÷¹–~ýÖÍÆEÝŠ:ã´ó‘E]$‰™ÎHÞ£U¼extQïB#’â¢bÄŠ—Hjª½YàLÚ¢{º±ªÒî¤-ï…B¥-Ü€FÁ*ÞQq}Š™IêÁ)‰{5©© õÓ8âñû½ºcbb$;ûàvvmmm& Ë«5â–õÍ1#’.ÑI©âñ’1,š~Ô®’ŒÝl¢à lÒÜ8L_°È,ÝHêÛ¹±Rj>zâ.nÉ@ISÚLªnZæ6fÇù‹l“èÍ Þ‹.S¥ˆ?úØ£¦„‰±âyóæ ³¬mS‰œ·ô,ÉY|šIÚªøÇßÅýæëHÚZj,ãè)hChÓ«x⤋iR¦ˆ=õŽp—ik>T­âœ§žÁ²&Ê`2y |l†’ñ }ðkî¸èîúÆ7¾!ìüÄOnµ }"-à‘@#Þn4Nw¡o«»«K<è/kÜÔ$c‡*±K…>jÑÃ8.%ÃdQ§MŸ/¶õÎᄸ‘@ÇF¥HL܃½Å‹‹M]±Íj[&i îi“´5{¾É NÍ:øæz„C Ü[ÈRhÉK2©AÎQXÂp}Lh̤&!#oË %ãÉ@}|÷1fæ4(À1gÎÙ‹Ä›„g$ÙŒ|“MÀ¾ó6dŒ¾­&“É,,g2nê’1þ#6¨ºµ«j«qQ7í¬‘Ô¼Ù ã"tkr†êVkk‹¬…U\QQ!Ó¦N5±â¹°Ši9Û8†’¶Ð«x j¼)yi{ÒV¸ù¤þtÜÒ$âHxƒB=ƒš×ÿãIÆ1^2ÖLjÿíFœÓ10›2P'š®èPã$ûžIÖãºIƈŸy`!{ ¢äB¼ØC£[Æõ £u¨k Ù½¿Ã(n1^ìÕ-·»O6mB¬dÜÔÜd:3• ƒ:%ÙN êC’¶ŠÑÒK¼Íe…Œ3ƒdŽë="6.ê„lB»®Øû›@2NðMÞÂkµŒ½èØ÷è—€iå¾øâ‹ÍÜ ‹¥¥¥Eî»ï>$¢¤Ê† ú<^ØBÀ¾X÷#yÅ#÷£‰†$ì&ƒ”ø_ØÛ5›CP蟘NPÝâ9¡5‰¸²²ÒäP0VLo‘­Vq•¶¶•a©”©YèÊ´T²f#cÝf ~‡¬âvŽG¢Ü- j\:Õ¤V"¶ïªðKÀlÆpÉ%—2óxˆÄóGåŽ;îâââC>ö7l$`_ÌûñãdÊšh÷õ‰î:ZÆÔìuÕ­ÕÆ*všê–‹VñÆMFÄf/;3¡+ÿo’’ìL:c8 uçfÔ—ùËêO/^"±–÷Wc¯âN$nÁŽOfQSm+T·| ø\e0‡#bÇk¿lÇ4í›…í싘µ–^2&1ÕS}ËaãÕ­‚Bc;Au«¹¹QÖ ik}å:ÉA¿â%èr4{Ö,k­â®}M¦#SsõzIËn¬âi6êOû^ÃTÛêŒãZ7" c-g:·¸Ð]Í¡–ñø;"SròÿøÇ¨çóÍo~sÔëËŠN"`_Ìi 3“zHðÉ,tS;±ÆøÕ-È_¦£q¬}›­b†mJ×–¢1Ä>£?MË8ím¬ãn©Ù«¸L\=Æ"¦È[%Ú<Œ5Ë™ n†r&†1"B¸œi¤s¥™Ô#¡2yïHÀ¿ûÝïüŠoøN±rr¡6œJÀ¾çÉ~ «”Öq?êX]ˆŸ‘ŒQÔ껚õÏ™LÄžÅl ѰuPu ñâÔ<Ä\-«Ïf#ºKñ†wbÅùùùÆ==ÈÂ,M Ûß²Ûq3yjþLcgÎ(~Xv½fâV÷~“AmÊ™p3qKË™œ&ZÃeRãµZÆð™¨g#ðDí,˜¶ ì=×w¢¬)Ʊ!c›“p¼àóhT·¶Pu«Böîn0ª[i cÛU·ú Eº~ýz“¸µÛ’’%ˆ/–Xm67æK×4e/Åã’™øX¸šß– | Ï[ÎOÞœ‘ˆµœé`xûMMj•Á<—‰xuÌÜŠÄfB‡Ú&ö=wlÑçîî:Pc̲&¸t=¬1vØ-qWG»ìܰÉ[åâF*'¨nñ\ìÞ½ËXÅtSç˜~Å3gà¯äžZ4:šêM{Ä–º­’5s¬âe’ž›gÑ G˜ÊAåL](gŠ7µÅ¡Þ&q8RQxƒdì•Áä%hçU8|æÎx=*^±b…üßÿýŸ455á‡l@ìm»¹ê‚ýÉöí†4úofÍ¡²&Xdý°x(É.'ö1v¢êV/dH×­_gȸ§»I[KLmq\œ±W2‘›«Ö«8"2¸§§Iäl­ø-3‰[ûË™Áä­0K…T…¥fR?ò~ xçÎ2þ|ILL4-ßÿ}9ï¼ódݺu†|ó›ßÈÍ7ß<þ3³|‹Ájvö.vƒˆà~°œšI=¤º¡¦Ú’–7×´KL´\u«¡¡Þ¨mmÚ¸Qf"F¼t)\¾ˆÛj´íÞabÅûª$gî$n-«e//üåL°ŠY΄Ä8ù8ôWñbjRk&õ¡ØÍ;~äßyçÓ«vÛ¶mÆúÍÌÌ”GyDX|à 7ÈöíÛfº®C`¼,<1Y¢°0“º™Ô®ÖÆÖ‰ʤG‚Yš×sñªnU—¯’^¸Ý)ô‘ŽLê)‰ö…T²³s è‘#ËÏ9ÇÄŠW¬xS\¸)Z‚ìéŨõÌ*¦Œ(—>$?5o¯”÷^zNb¦ÀGÞ‚…i©žs?µú¸@Ô†"®–&#F†+>ðãÕéáÂ?HÆ^×´Ã"U ¿~-àßþö·ò /ȪU«Ìy×ýÀÈòåË¥¡¡A ¤n¢¢-jðáÎ,3©ûÐâʤf·&fRû½·;Ü&òþ¾Æ=ª[ˆ“€IÄl›aq­t}}qO3 Äzâ%°ŠgÌ Ulß`¢_[Cµ4m/“¶Ý; 3Vœ”‘ißd}gÄX±ùhƒôeDàF‡åLšAí ÒÀsZÃŒÓUm½Oßчaøý•¤»«ªªjèk ,Õ«Wö&_Q šëé=¼­û“ÓŒ5ë‹ÝíuèÖ„LjÄ‹’Iœ9UŠÏZ.‹Î8[vWm3YÔekWJjî¬ÆYùÈA³ëç$''W¸œ{n·iñÆoÀ*v›fT§‹…N²-ƒØ%çÌ4K/«š¶WÈ;O?)ñÉ)2Vqgóûs4ù‡ƒySʵ—r®ð8PmËÕ´ sE›Dº§µ®xèœÐ nGŠP;y&IÆQÞû¬<ÿüórï½÷ ãĶý8Mô¹U øð›²&ßnM̤†UìaëDËHìðG!Æ-ÍÆÕl ŒjZÅh 1%)íH_ ègµ¨‡.ƒÀ[%ΆöôRÈ^NŸ># s:ÜÎ)1º·~»‰ïoÙ%3™ êøûB­b\ßQm²¦HXÄtQÛ^s~Ð1Lâ‹hì+Œú³n2©+6}ŒšImCÔTI5„>öTo—¸U)ô‘œU`moÚ;wHiY©lݲUæÎkÈ8ÚÎ6âÛŠzâf¸¨Y_œ×4É8 hV£A µ­ý°Ša!“ˆµ”éÈgL3©á„»°8L|ðâG±RTT4ü#}=ˆ€ð±] ¸î˜¼åb1nƒ)öá†D  o3@IDAT“’·z»»¥nÓq¹t¶µAèc¡qSÇ&g8ôí.´ª¬€ä%¥/#q#]‚ jÆŠc`±Ù8zq}4WUJÖ-6nêË2¾‡cw ”©s@àdÌ\ ‡Gà LêrQHÀ¬íýîw¿+ûØÇä+_ùŠüû¿ÿ»$$àÇQÇJÀCPó7«ÓMmÈÙôCšÔ’Áloiê]Ìf鈧̀‹šÉ;Ž;jÐ b­lCá¼yóL]1ºlíµ¦œ©­3òfHAq T·f[ëu08²” 7LÜb¸Î”2áæÁVoÎ}¨eRHÀ]]]òÜsÏÉÃ?,TÁŠ‹‹“+®¸B¾üå/R¶áDzJÀãFLÞ‚UÌ,T§$oñkªUÌlêä¬|ICòVJö,+É¢ ˆrÄŠKKKa ÇHÉ’Y´p‘D[j±QƒºeÇ&c÷´·ÊŒEÅ’Ë81-}ü/ÈñÚ"®‰pÄä #"uóÌ ·<¾=^‡?Öí”I¤Vñˆì X]]<ú裆Œ7B…‡.+ñ¾ð“å»n(=WžØ³=”¼ ¢ÂLÜ¢›šB NC½‹‘Eݱ·‰[è] Ë8.ÅÆÚ×~©ÆÃš5keGMšÎLÓ¦eY ww[‹qO3q+>%Ÿ¨óæCä­­è͉‰$ã0”2Ek)“ßSų™6Æ„-¿ì‹e(i?ñÄFš¥I$ãs ÎjC xòθ?ZC=ŒaM È`&8ª‡1 x·j/ŽDc ªn¥£Øä²ю’«ò²2$n•™ÐÓ2|.,DÜØÎŒdÞ¬Qò’ñâ}»j r6Vq \Õv&š™ÓM«*aQ$b\߯= ýi-e:ôŸA x&̈~íµ×äG?ú‘!kØ7‚ï¥p`Îé@cÄ‹!8ÔÖ1~¹3¡£Ü+ÿWšvÖ¡†m[Œ\#­â”û\ÔìŒE Z&mÕöI™Ô NO·3ÉŒ§¢õ¹l“È,êþ~÷@âÜÔ±°4m¦” D<SÊD«ØÒÜ@`¨ìƒúš5kŒÇÓO?m¤(?õ©O™x±Ï*!ñT 8°§ÙÄ‹™¼µ?ºìÐdÚ&±¦rØ?\¸‘­Û²í+„I\³Š%s6²’R¬›|[Û>'f9S˜DϺD—»O6mÜdbÅTÉc)Ó’’%ø½HûÉ›àoòw£ [$bêQO+˜mÈ8sÍ,M·øè$o…#F쵊mïxÂ#à|PÊqWK7³jX,úýï/þóŸ…Ï]È"äHJJ’‚‚t‡9Wn½õÖ Q¯¯‰ßl=Cm/†5l2©Ù6Ññ5ZÅ Û·HUy™ìÝÕ€R¦…ˆ/·è–¦ÀÇúuë$oútSÊD¹Z›Å'\p÷¶Ôl0šÜ¨×e]q>„>âl½ðÊ^2ƒ×F°gP‡OüOâØ÷PƒEºÀy×G—8ÿ¹iùòuKK‹iÁ1þè¾ùæ›2{öì±ïìßT>8Äëb(^Œ$.Æ‹]q‰Ž©/îD2T5¬âêÊ2‰ASZÅì[l›¨C¼6l0Vq'¼%K–Â*©Y.#É1­âf2cÄ$ãœ9l 1ÔËǪ«;¬Âðð˜ jˆ§D¡”)ØZ$*[tÉ}ýë_—2Ô'R¡‹Ê=# ºÎ/¸à9õÔS%<Ò:Çúžð±"øï÷#¾FùË^dRݸ¨©Gmq Ó‹ÏvAi«ª¼TZêk%=¿P2`Ç¥Ú—X´kwƒ±Š7lØhú†3i+?¿À{(V>Òë°·v JšÖ™¦¹ó MI³©­( ‡ÖwD>Ø"1 7•laÛÙX°S jôZ¿W_}µÑ¨>Ò.˜<ö‡?üAþõ¯iµ1¦ïêS› UL‘º¨Ê™`;$ƒšV1­aÆŠ÷To—Tˆ{0Vœ˜i_ëÁššj)à öÖíÛdîܹ²5ºùùù¸4Ð ÇâÑݱ״J4µÅ 6S[Œ¦VÖÓ*fg&ZÅ=Hà‚û?Òò~Å!GÀýë_齿+ÑÄ›ËYg% ,]»v™ ãööv¹òÊ+å‘Gñ®:©Ô¤Þ±c‡±z™x•““#yyyЪ{k2Þ|Ü|óÍ~ƒnð{ï½W®¹æ¿ëú® 싆³ž“Ì<ˆc«?b¦C­bˬÊáڃ$ë+ŒÈ2͆¬bÛzwažëPÆT†RÈ^ÄâÅ‹âVRRòáÍŠ÷y}˜ÚbXŬ-žš?Ë$nMÍŸigü aŒ«áSÎÄ~Å–%!†û^Í æâ§µG—¯wðn¼ñF“TñÎ;ïxßžðÇÚÚZ#º‘ظ–º 'üT[½*n¹öÃ*F²K?~°bÅHÊ s†uSí#ò± !RsgIúìIšj_÷ fP——WÈrþçIÆs¡Amkg&ïE;P[¼Ñ”4õuwHþ¢bô.^, )JvÒ*F-4Ë™Â{쓾 if²Óí·ßnjú†gѱ&·Â$iJÑMÆ ÅÍ:ß_üâò­o}+`w–JÀ“q¶íß­ÆŠéžöÀZ;`ógÃþÑÛÝ-;7T«ØpB°Ub²©mTÛÚ²y‹¢®qâ±ÍýнøuímBuâÅ$!5͸¨sç-H“¡†I_FÃ=`éË`&`¿ÕåT—ª¯¯7Å©©ß½½÷Þ{(!ˆ•ääÉu Å#ýŸÙÐ/¿ü²É†Î͵/žåýçÓÇàF€7¥,ýá2d·ì6­ûàžö°ÄÆb«˜qÊÙK7KK}¬âR©|ù~Ó&‘"IÙvH3Òâ-,\hvfª¨¨gŸ}Fb0ÆŠ-Zdm9SlJ†L_z¶ä•œi\ÓÕ¸á©Xù¦dÏAßbXÅVõ-†7Ç .”¾tÃ*ŽØ]; } "Ž˜0£'I ï[ø# ÆyiÝ~âŸ0¢LŽèêê’Õ«W E1¨͸éd ZÀlA ˜õÀ,cøÜç>gÜáK–,™¬iˆZÀ“µãvd¬bd÷«˜.ÄÕÜŒ£&Ó £s®Û¸Á1³©3Я8–q ÚãÙ5ú…^¸òŠrÙºe«ù ‹zæLÆ\íôAÏÙô-†êa A=c!j¢mÃgÜ+}‰x1kŒiSè#*'šÁ¿­«¸s@à:É.H^XÅ“cE+ÂnÜH˜6‰hÑÞ܈†l“X,±Ic¯88Ö9îûlQ¹ÚJ$nefdHñâb)\P(‘ ›Ç@ßbÊ_VÊþæ]C}‹S¦ZØs‰[¦œ‰‰[]Ú³X xðªÝwÔ¶mÛL„(¸§Å<‘ùHì»?fIóF’wŒMÓ"žˆ¡<¨†Æ6=pãÑ"¦â–nifP{˜ô䫘mÙ ¢1 )†ˆSÑ"Â2‚s#Sš4ø»PX¸YÔ%(W´?gÄ+Ù¸ M7G0óÎ[°P¢b,ì[<,qËXÅÔ¡†àÇxŒ'`^¼7Ýt“±2 (õ•üqÜQFÊOúSt8™¼ŒI<'|4ÛP JºÎ‘0V1j^M]1¬bbÅ´ŒRW<¼!»21q+>}r*"Ž„íðÏÚ¡—]‰–4…ãFÇ[[l{w&^#}‹+d_CµdÍšƒ,ê%v%nù€†üS[Ü…žÅ2Vˆá4>_ñû4¤ ˜b't’é¹K}åþð‡òöÛoËÎ;M¿àÏ~ö³FÂ/Šã´Â¦M›Lì7Ð}Š•€Çé„êf ´ŠÙ™‰Š[ý Ó™‰±âq²"&ænÄ]kÖUÀ2¾dÒ¥/#£í³ØvÖî” XÅü-¡ÒV1bųÑÖ4Ü2ŠáçÌW/»35m«ÀGq ·Šíl ÁîLÔ¡ÆõŽ›ËÜ\Ò2Ž@ËÄ£!MÀLvºöÚkeóæÍÆ¥K·îo¼a²ŸùÈL人ºcºÃ9ÚbÃúJÀ6œ…àœƒéÌ„.7¬c~°\ÐìpQÛÙ˳A‹Íˆ| V¼»jë€È¬âDˆ|‹4gºÖÚÆ‹º¥µEŠŠŠMmqzzÆDìn\·ÙÑT/MÛ+¤uçfIÏ›!3AÆÓ fÙ©íLjˆ‘°CSxXÄ€5y´Š[ÁLÀ~ô,óaÝHµ¾Ì6¦ 0õ_‡" ;ˆóqéOñ¦UìÙב¸µ…V¥÷¨I²™ÓóÍr@äãmqõö –3I4{.[0¢qsØ0—––fCÄ ­1É”%”ݲQ,Ø%d䘅õÅ-;6Ê:”…®]ñš©+fSˆøä œB•.ä ¸P[LÅ-7Ê™ÂÛZ%5ÅÆ*Ž ÝÚb¿LbeÍocc£dfÜéãÉ'Ÿ4q`°çZ×™¬eeÍ%#òA5:ï˜Ø1ÞsM‘áÇÍÖá+òѺ 7êèW¼î•a C¯.ê”l{,¶´´thÝŸ-gœq†lß¾ÝñŠ+d>H˜Š[¹¹yVÂ̞ϙh®ÁÅ(nÁ*~ûOIræ4“¸•={ž=åL¸9ó€l{± ÔÃËÓ¶WÂÜÍåLLܲ,‘o¢Oºß:`ÖÔ•” ÁwZšiRðÕ¯~ÕtJ¢ë†“.¼ðBS <ѵmûꂶ팄Î|Ü÷€U̘±?ÀLÜ2.j´–s!X·y#º3•Iç¾½ â"“E=’mc?´¾½¥—´ì’¸åA÷®½èWLùËN¨²M/\$ùpQ'gLµ b3Ÿ0ƈa3y+ÌÔCþ’‰[ƒ×s0» ý0b?»þPÃw\|ñÅòàƒ—ïû¡ð\ 8βÝÇh,a$º5º4¹QÊä&ÓE °}´77™r¦ë+%.%µÅÅ’:}ž•Ííkëvâw°B6Áð`âÉx–·zöïC¬¸ÒÄ‹cUœ;¿P¢Æ 5áד©-LÜ‚«ºËîcˆçåM—^èió’Î@]·w°$–Z,‰õl)KµÄéÓík.â;O>÷KÀ”Ü»w/DϧÉG}d¤©0ŸpAA¼ÿþû2QMï‡OÖ¦×c%`\S²ý€íblÓÑé\œ†{»`Aô¢VŸÒ†n¸¨IÆýpéÑbkضÅtgÚ·{—ù KuJRšu§Á7q‹ê{ÅÅHÜ‚‡0Ml¼YÛ×P…¾ÅÒ¶»:ÔóMuzŽ®uA wý†uÒV¿SZp£VSU…,õpS‘CYäo|ã&NO£jˆìYÀAc‘‚L Ѭƒ7JôÐÚ<üÞzë-ùÉO~"~ø¡‘xdâ•wüãÿ@Üä,s·Aµÿ05Íu7^“”Ù'¸¬ nÖ¡5aÈ.MH6‹.=ZÅ®æ4…ˆ2.jviÂ/ØQow2¾޹³;—N4Z¨*[+›ÞzÒ¨l¥ƒˆSó챊}·šA ìYüècJ˜±â…°.-LÜ¢ =%g–Yúà5i®Z'¾ú2¼ á¦;ÓŒBh}O¢žÃ᮫}HvVm“}®dB–³3.IÞ~þy¹÷ÿ`¤…o¸á™={¶éýþ¥/}Iž{î9!}ò“Ÿ4›|饗Œf×¹óÎ;·kÞ÷¡‚s¢´ãUW]e4U™|E5™áw¼£b˜wû$Ø’>ŽÝ(¾ƒ' ïEƒ€ã|~i!{‰¹/z}¿¤Ï# ˆIN“è¤ÔÁV‰È¢noAœ8Ö$n1ÆVu\R²,:ý,)<åô«¸¼Tv®yËdPgÐ*N<¸#Û`˜ðX®tÎÙçÈYgžii}½ ƒeÞüù²V±­Š[l5™Ux‚YÚke\Ô›Þ»G2g«xj>›Y û¡šp4EÖ¼ówiÅMÍ?þ™<÷Ðýh×%µÕU’ ôª¿ÿ]8#êOеÌn–Ʋ=³Õ½ƒ–ïßþö79í´ÓdÇŽÞ·­}Œ¸cøì¨pÅ.H$^º éOçEîT½ ýîsæÌ1æ?? µqÿý÷ËùçŸøÄ±»pxañz÷]ÂñšÄ‰%ÄLræ‹%fð}<xÛ,¡†¿¯ø#ʬÒ(Š  ¯k¸§_ ÑÑ*apS÷‡Gà"Ãbá`NŽ‚rçΗýH&Úö¯P…ª–0ˆ“Ä€ˆméxÄy¤§§·gQq‘´·µËßa•­]³F}H`MµÒ*æig‡+6ט:w‰ôõôIuéû²åýwñ¼Ç”2ùJ_RRet4ÒqÉdåR¿·]>sÂbÙƒ–—'sîˆWÜšÕÿü¹ó$·`¦.Y&»jwʾ–¹‚]ïÊJâ"å/¸àãú§w–1`€^fž|‡¥±ôÊNf‡¼ÊÏ›~cÀŒñ>öØcòûßÿÞϦBëã±Æ€Ç %8 |‰ßWãÂöº³éÞÖ¡ G`@‹šYÔPÝ›ÆÆEm'{çÏXqýÖͲ.j&p±DÆl(AY˜AÍ9›Ä­²Š[NIÜêlmDÒV¹4×lÔ¬Ó‰˜™Ñ‘’—]y§÷ŒŒîq ”Š«áÂ+]û‘<ðëÛåWzjÄ/Ö×TËÓ¼G®ºé»rÏÏo•_z¹ÔVm7n/>ï\Ù³{·ñºRŠqßï~÷»¦-í×¾ö5£ÔÈÞôôB°K^!Bï¾û®iU;âÎ,yÓ/sžt7?ñÄ&ÎÌ?ô7¿ùÍ¡;ófý 4êáÄÌõèÎ&)s¡;»ïp_Ö÷C þ_{=Íx±qAº¦êVŒý!: \U÷ôŽõ—:DŒD¨Ü9C¥+6HßÄ­½HÜ*rHâÖPw&”3ѱü‚ ¥hÞ\)ï†î(ƲA.ÃÓý¿ú…ü걿öÛJ×Hé?WË©ç] Ñ11Æž™“%ï¼ø¬dÀËð™Ï|Æxa×À»ðw¸¥Ï9ç“‘Î%ZÂtO?ýôÓÆsË>ñ$e›Ç¨ø¼óΓ•+Wš…=wùK;›2üú׿6Ao›r"æf+îXi!÷Uó=Æ™û‰Yã̇C/øßgcôûP[Ü$.&m‘Œû-VÝâY1Vñ–MV1Ô¬hgBú2 i6ŽææF$nU˜Æ&q ±b›·¼²;Ó4Ù+ gåÊ£/¿!S dꌨš!¹ÏÏ8iS±î^ÉŽ “èaåF#­ë´÷˜tÄA)JöØ­¬¬4Mî¹2cKTÇ¢[ú?ÿó?5ÌÒ$ö"Àx±Ébð™"ßcÜ9ÌØ²wक़ìl&‘œ±ÐŠÖ¼0æÊ81´{YÒÔ·¯ 7Û¸âPÒ„Æ6–41ƒšmú¸´ƒ€«aoxýQÓ‘‰VqJÎl«¬âôỗ·Êз˜Š[ Ð*±’˜¶&nE£«Q"n#"Ãeê‚L‡¦ºÍ“ø”T™†¤­t(…WûÁàý/;ôÈüð›o¾)Çüùúnâ _ø‚|ë[ß2ÙfLÈÒá<GÌäcü¯ÉðÞ%´˜IÎ^«Y˦œwÎýÍ8I˜Ñ‰)fRÝbIºL¼˜]š@ضDÈIŸµ\žv¦ÔoÙ«ø#ÙñኡXq ´ˆmáH€›‹„#.ˆqVVTÊKý«#Z%Æ&¥›±Ì9%²M!vU׬ÓPSL2NÊ d±ùe±nkçá—€éa"–7ýÛ÷HþŠ †YѪí‹Jð<§u<|0+›©:,›Ÿß`ZȾîl3GΙ¯Ù>ŽK4ÊšÜÝ]ª[m(i2ñb¨nYXÒˆé…Efa²ÖvZŃUœ‘ 2¦Ul5¯ŠxN:éd³x[%ÞsÏ=’_P`Ê™fÎdYÏ?›%—o"ØåŠ‹ ¹m{jdëš óì’i3à¢Ç@ßYÇáðKÀ윕•%W^y¥üøÇ?6–0ë„?øàùÑ~$—_~¹õîþ~2 /#g’2K§¢†3_Õ3ãEßÐá8v¢>/*m¹Ð*±2‡¸©/6ª[QÃý%?ÌD”2•@Ô¡èô³ A½–ÚÆ*ÎD¬˜uÅt­Ú4¦£æ•˹çžk2~)2ñêk¯‘*n%&(>Ù4gÎ%ݻҦÏ7Kw{«´Cm«ìí7$ó]vÁ9B p‡"à—€§L™bÒ¹©4²|ùòƒ¶pÙe—9Bmä Ië‹ C`$bæ{$fÆ™YGèý¹#{˦ŒÐÞÐ8ó„šqÝ0û¸ˆ÷ ¨n¡t¥$ÍÄ-’1‚…ãºÏcÝ­b6¯çÒÖÔˆ êµ²îÕ‡$13×dP'gÃʴȭµgÏn)E¬øhääæ@úr‰Ñ` jã X ÞàìGè‚cõ³‘úæVS_Ì$Þ@}؈ը² ½¯­­•ÒÒRãv¦kš®‘PNË‚¶õ<1ÉgøPyÎáˆ8ãµÛ[ÒëØ ]šÜɨݴÒ—¥ÒÙÞfZú±¶Ø6«Ø{ö)ê±aã)+-êP³®˜Vq ¡&cÌH “‚¤py»áèn•?ž.ÿ¬é”w^Aþúø}rñ%—•üEÅB…¿ÒYоà°ÎŠÊ#¬ÞÂw=}®ŒãÌø²‰3ÃrVyÎÑ"øõ"à†äÒŸÒoêŠM—¦¶fk»4E ©,Ñb³ìkÚc4¨UŒ˜&Œ’² ¬²Ô"1ßâ¢Åf1:Ôùxø‘Gd*ú´Sñijt# ýí;v×VËÔÜ|sM µ’²ž2X:´§®Æ””r»éY¹¾_÷çÌ#`§«Øä ™wÎgõ?žz"*‰ú(6YìÑJ µ1*?-ß›nºIžyæƒëüqô”Ÿþô§F",Ô€ÓãXF"f’2å9g>¤l ï¡’ ë Þ!1ˆß7TC×ÿ _“X$G=üËÿ”y%'J|R²œ{Ùµ“5u“AWr†ä.>Ý”3Õ£1ĺwV-jZÅÓfÎ6&mBÜ‘_îíí•‹.ºÈH}ýîw¿“þð‡fº§Ÿ~º| Ý(ÚÚÚäÞ{ï à!è®C áä N>(ÎìŃÞm:Ë|UÀ´lÊ‹Îä<tiJB—¦$ñ@"Ðti‚ªR?â­®Áúb›âÅlPPTb–½hHÙËÊWî7Ö0É8qÚ «¬bZ¼… Ͳw_«üëÈoÿc€`?þÙk¥s›¹ñ!ñÞxÛÝR_µEÞ{ý9™»ø9þì eNÑq2}Náä\ Ãöµäì³Ìèë‘–›dÃ{ïÉš×_‘é É qÊÔiþ\/ý0‹ÄëêêLç‰äädÓšPŒ®†P¶Õƒë¢pêÑŒHÌ8ZÍ1dcŸJ_bîÆ‹£‹j9¡ÀÎ;䓜Š.M)âAÃõ>ë»ÛëÅ÷¤‘ÀD—dBv’>{O™–%Ë ‰X|¬bô¦Ý^¶RúzûŒÒVú¬"aW!›F °­FÝó7ò+£Íðáê•è±ü/ÜèdJÄUj6WÊúWKËžikmº§û·ó™‡åšïßÐC‰@={@séîØk\Ôÿ|þ‰‚eÉñÇIvÑ€Îo¢vî—€©„µhÑ"!ùì ÜÐÐ ÕÕÕ!5}m´‡ëÐÍŸúh|è3{I¹O´\Š MÌ åúa.ýýq³¤ ˜ž}ŒC¥Aý e[Fæ2³d™YZêMuÅ_ÿˆzâ™&ƒ: V±-£%¢Óò ÌrÂ)gÈ]?þºÄÇÇKXÖ|yüþ;¥pñ2I@M÷Iç}ZN ¿ÔXówþ×פç€.ê‘Æ/¾v™ùüÁ§ÿ*.xDg»GZí°ï¹Ý¹†ó<ÚÁæ¹Å§JNÑ)Âv‰»«¤=¿Ýtœí6œ²ž_f¦3e'Ù8Á~ßñä“Oš8° qø¢¢Ï‚Àp‹Ù2™¤ì-—2ª_$d,*.2þg–‘pEsˆwHïÞÁ’&T¸§ ¤É¢ò ´ìá²ø¬å²“VñÚ·dbÛ”½Ì˜¹õ°M$Ê9W6—`ÜÎUÊLOÝ“O>Eê+Þ‘ÅW^'¯ýùétGÈÝÿßÐÇÇÎ:ÂîÃ’/ÏøžÚùÙ£¯£%þp¾ÖGgÕ…ÿ§°áBô£ØoÔ’c¼¬£øŠãVñKÀç ÐÏž·^x¡Ü|óÍ8Y¡UüÒK/ÉÝwßmÚ=©´ãλNø0à·â k™ÿ {“)ƒžQz²½É^êº&Xã7âÅɉµìÒÔ ‰FO[«IÜrÅ%I”=‰[ì“;kÉqfi®«5VqùK÷¡#ÓlÉ@ubæ±÷  ²ŸºêëòÁÛ¯á‹å—^%•ïÿÍrÎ%WÉû+^’s/¼Xæ ñªtíZYõÊÓRúâ³.ú¼tCålÊa²ÃPÈÏ:j3ðâã­êdóŸ9Ù;ðýù%à„„yî¹çäšk®ê­H hŽ‹/¾Xî¸ãŽ Ÿ¤î@$¾¤Ìç´™‰­®ë‰9+ÆE 2ˆÅ–x®ýh ÁÄ- ÝÓ̤¶)VÌF\èþe{Ī_7"3LÚJ§U<‰¥XÊsêŸ:1ËÎø„yÎR¤O]ýõ¡÷O9õ4á²sçˆ|”Ê]wÝ%³¡ç¿åLÓ§ÛãRšp>ñKÀ~-` q°ÜˆM¾óï˜.¼}÷Ýwå–[n‘––ùÙÏ~fÕAédn%×5&ƒ'̺f¡F/þtbásGF`À*PÜò€xûàžv5Á*FˆÌXÅ1¬+¶çî&sFQ{êéì4VqÕ?Ñÿ7õ¯HÚJË/„UlO’‘gCˆ%K–Ùá‹þ bL}.“¼v퓘KO¨m|ÕØõ©_f;¬Ý»w˶mÛpgt †ÁÎH‰‰‰rÛm·É­·Þ2Òav>Óðå2]Ö^·5cÈݨüèqúANÂüÃ኎A}k4,cw×~dPCj_ âÄ †ŒmRÛŠ‰‹“y'œd,ãÆÕFm«¬t•¤ç/0åLñiö©?M…"UîÔ)p£‡É4<¯ªª’ ëÖKN^®é{˜âI8õŽÞ…_Þ¼y³±z}É×{ÄW\q…|ûÛßjE³IƒE@86| 9 ÆZǬGfB—ÆŒ¯±ŠëŠ=èAk¬âF¨mAQ‰¥Lf$û‚|äÍMè§œ+›ÖséF¦wubÅ«_0µÄ¬+6V±EIf^0rrsÑ1WöÃãP[['ïA>2zÒ¹ ã©™SAÒ£Šlz7Ò~ øŒ3ÎÿøÇ²}ûvÓÉ­x@ ”|}AÑçŠÀ8!`œ§æ’º°ÍˆÁ2 c“aÝV¶+â9N>N› ‡K7&%ÝXÅ.XŦ!t Œu,nkPÖd˘‚æ N:EæìdÙS½ÝXÅ奇¸ÇBÉœ»Ôô×µe®ÞyÄC(eþü2wî\Þ¹s§¬ß°ArCÎkµ©Ã?ú%à´´49í´ÓLÙÉøüóÏ7ÉXìˆôè£Ê¥—^*¿üå/‡öpíµ×¢˜5ô¡>Q1#à5ÜÈɬEæÂÁìên,]8dØ_ZdQ .îÞc»!qè†j•ø€¨†-ƒV1»qéêh—í¥ÉÆK|ÚÿßÞyÀWQeü¤„B‘&RAéŠðWDW,° v¢Øý°ö®+VvWa;*¬€(‚ ¸t¥‡’Ræ~7Ìó%y! ä%3o~÷ó™¼ésï÷¾¼3çÜsÏi cŤv£ªÀîx‡T:<|¸Qùáõl—Õ:Ø~Ùe—ÉŠ+(€m(ü$°åGÀiNª3õba§™dò2ÒhÅÙ’« ?C“Ah¤-cGMeÒi?pØjݵ»lß°VµâŸeóÒ¯%EçÃ:Z=Á+»dg¦Kø©Ýý¯ºµ1ñëØ;´â}Ñ1æny+ª@Òwü.ï½ûžÄÄÆh ê΂|Ñá…/Òÿ´º._¼P^~þ1YFŒ!}ûö5ScQ‰;vm¸BrÐÉe `dCBò…aÆ© a®I¾0uêT¹ûuëÖf°ÝAíaUH€Ž@ÀÆ8Åšü·Œ©ZW°îåb¦2©):Rø8¤‚'ÒLeŠ•\ÄŸV!â”Sz£–mÌ’±w1Oÿ:gªÔn¨A?Zv–„”ÊÍʦvD\­ 6¿¨7òÇë BÃäzÒoÈÕ²qÓ&Y®Y™Ö­]#‡¶ü*¿-_,u’êª º«yÎég+/¼ð¼ 2dÈ"99Yzè!3<úä“OV°>Î9½L§¡Ô&Nœ(”‘#Gϳƒšõã¾ûî“qãÆ(ÎikB$P^þ¦j蓉ÃÅÂiNê“¥ópcu*“¥>à´§-å“§)–•)!)Y:Õ_Ú÷î#›W­”õK>׺êXlëÎ:§XãO;pN1ÆJŽo~¼Y²u x…&„XúóÙ™) Uî9àb©])­ýŸÑ€#O3fŒ1I»=n™ØþgŽRó@¼z¸ÙYHÎà4wx»®ü$¨8[;†`.>Í fj„Èôj)ê´•­Zqa®b3§XÍÓNÊÊ¥dv®âT´eœ¶–ÍÓ9ÅíÏ)Ntd7Æiæ¥nݺ›iQ­xþ¼ù2ô¬^Ò6ECu›·ívá‹N(SCàŽ;V¦M›fòÿbþïÌ™3 y‚±¿C‡ŽìPVŠHàèøkÇvf'[;öú4§?§ ²2åªSR²2iv#hÅNŠ´…žOiÚÜ,Y:¦ºñ—¥:§øMGÏ)¶¿­¾4‰9Ù’½uî†Ý!ôŠœŽ\æÏŸ/o¿ý¶L™2E pëÕ«'7ß|³É ŒÁõ.]ºù£ô×%AÝ«aªNÒZrÀœÄi’@Ä7h"qšh!&s¿š§·¨yZç· ·•s ¦aNñ€‘7IÛÝdÿï+L¤­m+H®&±` €ÿíõòË/yê½÷Þ+ýkÑ ØiiiÆS­È‰Ü  %Sµ-#tcÅÄɺÔRÁìÃlðºËÌ)Ö9¯ñ) %.)Eb5Eblê‰Ú¿[ÂtÝIÅžSÜû¯Ã匡Ãôê ¬Ô9ÅÐæ3´Î,•O  ®üÇðŽ$@^'` c8rEë/O-ÄÐŽëèëP/H›TOâë«Ó¸öî”õ ‡–©­•Y~üj®¬_õ«ÌœôOÉ= AŸ\WçŸc´bŒqo[ñd¨od+ŸI0+«¯ô«ÏB$@UKÚ±¯?Bþ¹ŽáÈ•é,'âJ…ƒ—Ñ ‰š¢¶äÌ’p´U¾WòÕa+¯’òïÚ±]b4ˆÒÿýe°DCŽHÍ‚®ÓwØ•©ãÙ(©ë–›üÄquêI4êËrÔ(€/$¨,ÐŽQða;ra¤ѸB5““1OÇÕH] TK- yY4#ÓÊÅ‹dö›ÿ–Úu’4òSŽßúDùuÉb¹éïI®nðŸi:5,\š·n#}UØN~üaÉW“ñ¦5ÿ“ËFßj4àëïý»¼óÚd9‘.Û~ß$CGÝ ëT;NW¿žL#×ÜqðK‚Z"’uxàpw˜}ïè4ÔF‰ñ’š…œaÒúäβgwª¤mß`¶ãS$.±ž L%KÅPWŒÏ&2[ã缦þAZ„Æ< Â¸hTá W¤ o®©ùbëÔÕ<Åòò€‘)B“A¤Ksͯ;ì¦[äÎáCdôýKBbÂ?Éï;9QÃOÖפ÷ŸÍš) š4ÕıF˜N{îiSû,Ø…Ò©g/Í,”#‹¾ùJV.þI…e˜49¡¥œ1pgJ­z)êÑ'û6¯‘ÔµËdϦUF›Å>*O›jÀå¹ç € xÉD8Oqš&‚¨!yÈS|Ø4í”~‚“X»^gHóù $R½¥Ó·¬’Í?-É-4Wñ '›ùÅN©kUÔƒ¸*(ó$@UNÀ(¿‡5`/˜¨}yŠM"ˆLÉÕH[–:`åª .ˆ­Qh"¨ò^ü@˜Ók×M‘Ó‡\*ÔikãŠeš«xºŽדº*ˆ·4Óš_:{)€C§/Ù RØZ1äq¨{Q&‚ÐH[: ‘¶"t¬8‘¶T›H[*”Tj$&ÊI½ûªfÜ[¶­[#~ùÙŒ×mÑAµâŽ¢ÃègõÄ1|+²²²dõêÕRKÝí‘ÃØnÛ1Ü–—’ „[‡ºuÑH[¹rN[»·I:GÁ<]à°ôˆ0O7nÓÖ,:Ÿxãò¥²úóÿHãf'HÛ”ž!ö-,lŽëB ?ûì³2~üø"ñøãKRR’téÒEZ·n-mÚ´‘Ï?ÿ¼È9Ü  P¬ Œ±Dé/jdjªéº_EÿV^×iI±‰IßPAhúÁ˜Ì´B§-M“¨^P/ªÆ½ IÉÒ±o?pÝÍÒ´U ‰ 0}ª«Wiv¼|ùrÙµk—ÀÔ©S©Ï:ë,>|¸¤§§ËŒ3ä‚ .ï¿ÿžùŠ}¤¸B$P[+†P¶MÔy:e5]eS(å…@f£(?ŒÅLeÒP•ùšj0_ƒ~§­ÃS™JãTÕûD¤Ñ ­$oH!X\'€‹÷Á”)SLt®¹sçú;VN9å™0a‚L›6Í·Ÿ+$@$P[ãÇù‹¡fj„¨PK‡©LI1bØñ§w‹¥:ÂY½¨5`tY¨xü ¸žpšzÐ]~ùå%0Œ5J~ùå—û¹ƒH€ÊCÀ6O#·@mÄ0O‡â¼b;þt|ýã$V“AÄhŒØà#}„å…ÚkGyz¾êÎÁKžë 2uäj¸µ(×2<'K¢470"XmûòŠ5{Ø"N±?~ý¥¦Qœ*{Ý'ÏvÆ—ä›o¾1q¨Ÿ:Q]Ø1֋Й;w–-[¶È£>*ÿùÏ䥗ØÁ!øe“H ÚØæé8µb9txœ¸Ú*¤NeB"ˆD㥣ÎZ‰u“%&¡ž´<³Ÿ>µüÆÓÔå—¢°m§Îòìß‘–íN RíÝs[× àÉ“' Æx—-[&K—.5ŸHϵ~ýz#€?þøcyå•WdôèÑ2bĈ ÷Dfff'¯Òn€ÌPvz®ÒÎá~ Ð$` b¤@@ØK"– ýã<âcã…%®^C‰ˆŽÐ$’'–jÃùQ{:!NŽ\ÂÂAåÏ$ µ4­"ÎŽÖŽïÔ©“Y®¾új_æi>J”¿üå/2hÐ i¬Iª¦|úé§r÷Ýw—yéÎ;eûöíežÇH€B—€-ˆ¡ÉÔÑ?5ô§¨0snhµ;ìp®á˜Z‰’Ÿ“#aYª‡K~´ dò²PX‡V«ƒÛ×iÀ¥á€œššjqÔ¬Y³´ÓÊÜ?dÈÁÂB$@å%`DþÁj-ý}/KLj1VrEsûFè´%„¾ÌÏ;$a:.l< >bMaîßrwyù ùå¾eðO\´h‘œwÞy’‘¡o`ZfÏž-Í›7—úõë›1áSO=UæÍ›üŠð $@$PŒ´bdeª¡¿®0Oã3$‹64"*F¢kjØKºiåKdFšDdëïr>½§ËÓç®ûjüøãfÞo~~áhË?ü ^x¡$''ËÓO?-Ï=÷œ@îß¿?…py¾<‡H ( ˆ±ÀY ‚¸–ƾtÝn9É„ëXpT\‚À<)‘jžŽÔh[a¹Ëyož‹‰« ¢\AûýðÃM½á”Õ A`†e̘1Ò¯_?„£wïÞfÿ @u€FÃ{ ÂV¦ê…^+æPèü1æé85OÇ6OCG©Vœ©Zq(Úã­ë\÷B¶xñb0`€¯ÕĹÀ¶ðµ ,%<¥YH€HÀ l8RuwÂB9$‹6¶Ð<]Û4/² @¢ÓR5°Gž„Ê É&M£\'€1÷wÖ¬Y‚i@(}ûö5Ú°m’Æ>K'ŽÏ™3GÚ¶m‹M p (ÄƘ ‡-DØ‚™:”KLÍZ›œ¢cãa“¶Kb4+Sx–jÅú[íå¢]ï®rÏ=÷œ¬ºwï.ãÆ“^½zɉ'ž(}úô‘k®¹ÆèxóÍ7å³Ï>“ ¸«q¬- €§­X[ G-,ÕJ›¢–Z$‚@ÊA„¼Ì?˜-áÒÅÊØk’@ „D¸NówÕu-nÖ¬™|÷ÝwòÈ#˜Ðþš¯-p cÄÔ,$@$àtÄ(v&¦\U 3tœ8eqažâx‰Ô´ˆR8WqÞ®m’¯ãÆy5ji ðá‘â:Œ~i×®LŸ>]^|ñEÙ¸q£‰½ÿ~iÔ¨‘4iÒÄäöHÿ±™$@!DÀÄȾ—¤KH;li¿!OqLb²D×ÒŒLj’>”æ­ŒL®Àöÿ¦aéÒ¥‹½‹Ÿ$@$àzF!Ö?‘º$êM)C1Â:+L#jEé8q$R!æ”ÜÌt)ÈØ§æi ª„Ôˆ&Î ­âjZ]ÁÖ @Q¶ †VuEØÊ:p@¸ûvy᥉ú&/‰ûv­dY[õëªø4-)ëLuN 3Ù˜LF&M…x(3C"öïщÔu˼Ö'P»±×Xg O°1>«ÚaëݹßJêŽí:­(ZgôHXÍ©Eåí€ĶÊ'€ýï%±‰IehˆŠ_ï/§®S;µgX/ @À'®*‡­ t„¦bK“/Te÷thŠ_fCŒîíbIDATªÊŽç³H€HÀ©lAŒ„€êà¼H‰’¶œÚ ÇX/jÀÇ—“ @u°±zM„-8lPiœãíÕÙ%å~6p¹QñD p.c¦Õ?pØJPiŒ¤¬H‡ˆ´ˆ,Î$@ìÌ~a­H€Hà¨Ø‚Ÿñ*±ä¨Π >*žÁ¼ˆ8˜tyo ¨F¶y:F…0–PްU˜úÑÀGŽ’ €;؂؎°•8Ô%¶ª·ÿ(€«—?ŸN$@UFÀ6OÓa«ÊñAÀGÄÃ$@$zl‚[š‹È8kÑa«jûš¸jyói$@$à(¶0ö9l6O;ª’!Z àíX6‹H€*BÀÄ1j§ÆB‡­ŠÐ;ºs)€Ž¯" $`°’­æFQWsðñ$@$àD¶Fl;l!°V¸J籫-îsð`–Lzþ’““S±‹Cüì0KKˆ·‘Í# ¨¶´ÈÕ ¹å¼_žž›•—'?Ο'íO>Yë$•óÊÂÓ¢õ©í‚ ]ìð“)€ÞA¬ 8€-ˆo:Y ‚XBYÓÄ/oM$@¡HÀÖFc´q1*EòT§« f´ËŠõ6pÅxñl  ÃlA©ã¼Iº@ÎÔðZå5O{$°×¿l? #•½:H+‡­Ú*UàX„”ˆéa2¥ àRÑð @EØ‚Ÿ5UÛ)Ð6#p@,ÜI$@$p,lótœfaÂrèð8ñ±Ü3Ô®¥t¨õ(ÛC$@$`{NWÔa‹^ÐìLV‰H€HÀ=lf×$ýC‡-š ÝóýeMI€HÀõlAìï°…,LÙ'¦vý×™  ÷ðwت¡cÄX „½ä°Eì¾ï-kL$@!EÀÖŠý¶2=؃NX!õ5fcH€HÀý|[Ú”lÄ j¯¶…´û[÷g (€ÿdÁ5  @˜ª!CQ«Õ…H€H€œGÀŒkµBQø‚6°ó¾s¬ €P{ “ÙD  ç v^Ÿ°F$@$@ @ìNfI€H€œG€Øy}‘ x€°:™M$ p `çõ kD$@$àÀèd6‘H€HÀy(€×'¬ €0ƒ:¹x/½ôRéÝ»wñÝžÛÎÎΖ•+WJ×®]=×öâ Þ»w¯lÛ¶MN:é¤â‡<·½eË9tè´hÑÂsm/Þà5kÖÈÙgŸ-çw^ñCÜ®À•Ñm·˜9s¦$''kx7;ЛÛZP9õMKK“>úHjÖ¬Y97tñ]6mÚd^F""¥ÕÛeéÒ¥’••%999Þ¡­ÿꫯ¤FÀAú&0CÀ:ù¶ø‘ÍÍÍ•ðpo@¬[·N(k×®urwUIÝð"2iÒ$™={v•<ÏÉyæ™gdçÎòôÓO;¹šUR·‘#GJÏž=eĈUò<¯=ÄÛ¿À^ëm¶—H€HÀ1(€Ó¬ €—P{©·ÙV  Ç vLW°"$@$@^"@ì¥Þf[I€H€C€Ø1]ÁŠ x‰°—z›m% p  `Çt+B$@$à% Äá¥Þ>ÜÖ+VH‡<Øò¢MF¸Á7J›6mŠðàVFF†ìÙ³Gš7oîÁÖmòîÝ»M š† =àÁ-„åD$¬:uêx°õÁo2pðó $@$@$P‚MÐ%p Ÿpðó $@$@$P‚p $ÜA$@$@Á'@|Æ| ” @\ w @ð PŸ1Ÿ@$@$@%P—@Â$@$@$|ÀÁgÌ' @ À%p Ÿpðó $@$@$P‚p $¡¿Ã²¬Ðod9[èeÙÙÙG¤ä%6e±(((8"«P9˜ŸŸ/ˆ‘ÎR5(€«†³#ž2wî\éÚµ«ÄÅÅÉi§&/¾ø¢xéGÖî„­[·ÊÅ_, &Ð|¿~ýdÕªUöaO|¾þúëR·nÝ€mý׿þ%}ûö•øøxéÖ­›|óÍ7Ï •¥±8pà€ÜyçÒ¨Q#‰ŒŒ”fÍšÉc=&yyy¡Òô"íÀKÆùçŸ/×]w]‘ýÅ7¾ýö[ —ï¾û®ø!nWp¹õô¯¿þZ  =zôyóæÉ9çœc~\>üðC·6é¨êŽ /¼P–-[&¯¾úª¼óÎ;²ÿ~Ã&==ý¨îé¶‹Þÿ}¹ñƾ|áG?ÀC† ‘… Ê©§ž*”åË—»­™åªï‘XÜtÓMá|óÍ7Ë÷ß/—_~¹Üÿýòàƒ–ëÞn:)''GF-Ÿ|òÉ«™™)×\sMÀïÎ/äÁÀô‰ÅÎ>ûlëÜsϵô-××Zý¡µô‡Ö·í…•uëÖÁþn½öÚk¾æê½Ù7{ölß¾P\Ñ ë²Ë.3mmݺµ¥–ÍlÛ¶­9ÇÿÀI'd]{íµþ»\¿^‹´´4Kµ<ë®»î*ÒVµœX)))Eö¹}cñâÅV»ví¬ÄÄDÓ¶«®ºªÔ&Ýpà VûöíÍwÿ7,ÇF€pà÷’Ú»}ûvùâ‹/äŽ;î°°0_Û&Mš$³fÍòm{aEdŒùÌ_ÛµMеjÕ iK–,‘ùóç ´>ý!-ò]@ÑûuõêÕÆBàbðàÁejFþç»a½, }ùå—¥À¿=Ǽ w²þìúïvõ:,AÇwœ,]ºTZ´hQj[0„5sæLyþùçK=‡*F ²b§ól7ؼy³©¶j=rß}÷aŒÛcÇŽ5æE7¶éh뜜œ,W\q…<ûì³R³fMIJJ’‡zÈŒ÷êÕëhoëŠëN9åY³fDGGËsÏ=W¢Îk×®5ûðcì_°½k×.Á!ÆþB¡”Åß‹âc¡hÿŒ3¤{÷î%^^ÜÌßÿzõê± xaU+ˆù¿Á˜8Kåÿ¦Êa²wÙ¶m›iÛÕW_-o¼ñ†qÀ‚¦3hÐ y÷ÝwC¶Ý¥5lâĉMxÔ¨QÆë÷ß7cÁp´ åR»vm#|Kk#4;¼¤ø¼¬A#ܳgÿnW¯—Å"PãÆ'°&=ùä“»v_Y »í¶ÛD‡'Ìø¯kêÀŠS;°S*»J¶¹ëׯ7Ú>;vì(:ÆUÙsôývìØ!:u2ÞÏ0Å~ùå—ÍÞ¾¡êhTÞ±_@ü‡)ü¯õòô”GyDžzê)#|ñ]ñRc†ª&Ožì¥fWI[)€«sõ>¤~ýú¦ðâ´d£¢¢Œ§ë† dïÞ½Õ[Á*|º:Z‰:bKÆ6Ï<óLyûí·%++Ëx¼VaU÷¨† š:©R‘ºíÛ·Ïl‡úy‘Fûmà%uüøñFøbZ’— ¦bÁRtÑEÉÆÍ”´E‹3ÆX:ËÑm›ÛÑs ©+í1›¦M›i—½?”JŠ40ÀÆ‚ Œ)­eË–¾£˜Ý¿ã äÛéÁ• ˜VÃÌê_`5ÀœaÌ›öZÀÅx9‹ {Ejjª` sñøø ®€-ýq½|¨—“«Ï:ñÄ—#Ì­þå£>’V­Z•óó?'ÔÖñ²iÓ&£ñÚmƒ4æF7nÜØÞåÉOhÀ:ÅD>þøã"íÇ÷–¯˜œ!|§OŸîIá‹þnÒ¤‰ÀGÂ74Ê[o½%^‹#`^‰¨W"L§Þ æf8QÜ}÷Ýfܦ×iӦɜ9säñÇwjµƒR/€ôСCe„ f:É3Ï<#;wî^ðzAÐ |WtÞ¸Yà°†(a^›®†hi¸oiøPL™2¥ÈWø¿ õ‚!«â–3˜¥Q0´e[MBC°ÚG,²»ïí·ßn´¾[n¹EFŽi¼€o½õV3ÉaU ju0ãÀ×_½`Z ¼~§NjÌÐA}¸ nŽñ>LG6l˜äææs=̯Gšê‚fU¸Šˆ¿ Ra–â7¸ä’K\0þW\ûqhuY-p% `Wv+M$@$àvtÂr{²þ$@$@®$@ìÊnc¥I€H€ÜN€Øí=Èú“ ¸’°+»•& p; `·÷ ëO$@$àJÀ®ì6VšH€HÀí(€ÝÞƒ¬? €+ P»²ÛXi  · v{²þ$@$@®$@ìÊnc¥I€H€ÜN€Øí=Èú“ ¸’°+»•& p; `·÷ ëO$@$àJÀ®ì6VšH€HÀí(€ÝÞƒ¬? €+ P»²ÛXi  · v{²þ$@$@®$@ìÊnc¥I€H€ÜN€Øí=Èú“ ¸’°+»•& p; `·÷ ëO$@$àJÀ®ì6VšH€HÀí(€ÝÞƒ¬? €+ P»²ÛXi  · v{²þ$Piii²iÓ&ÉÍÍ­ÀU<•H (€ƒA•÷t4={öHXXX‰¥N:rê©§Êý÷ß/–e9º ­Ús饗JRR’üñòÃ?”¸ÅÙgŸ]‚‰?§»îº«Ä5þ;"""ä•W^ñßU%ë?þø£ÌŸ?ß÷,ôã“O>éÛæ 8•@¤S+Æz‘@° Üpà rá…úóûï¿Ë'Ÿ|"=ôdddÈ?þñß1·¯¬X±BfΜ)ãÇ—«®ºJš4i°I'œp‚<ðÀµk×.àþêÜ™——'={ö”×_]N?ýtS¼hœtÒIÕY->›ÊE€¸\˜xR(hÓ¦ôïß¿HÓF%§všV¡$€wîÜiÚyå•W „li¥^½zrùå——vØqû¡Ù·V¼üòËŽ«'+DЈ ÷yš@§N$;;[ ]ÙåÝwß5L¸ 4ÊêÕ«íÃòðÃË}÷Ý'o¾ù¦tîÜYÍ9oµKAA9÷oذ¡Œ3F¦L™"—\r‰}Šù|íµ×Ì=¤[·nòá‡9hcÞ¼yrÆgHíÚµ¥U«VrÏ=÷HNNŽ9õŸÿü§Œ=Ú¬Cã¿ñÆÝ¢BûЮk¯½Ö°€ÙþóÏ?/rý·ß~+]ºt˜ûý Ú3kÖ,ß.Xn½õV9ñÄM½Ç'[¶lñß°aƒ\tÑEÒ¼ys< ŒQ²²²¤GfZ;^.Púöí+Ó¦M3ëøƒ—«¯¾ZŽ;î8Á ÆàÁƒeýúõ¾ãåé;ßÉ\!Ê$ o,$à)»wïÆ¯õÜsÏ•h÷Ï?ÿlé´uÝu×ùŽ©À0çßtÓM– bKì-ÂVÛ¶m}çŒ1ÂR¡j5kÖÌzðÁͽU[*„|çèØ²o©fmî£&S³­æRß9O=õ”i >Üzÿý÷­Ûn»ÍÒqXëí·ßöS|eñâÅ–Ž¿Z矾¹æù矷T[çž{®9uéÒ¥–Žßš6àÙ*,‹ßÂl÷ë×ÏRð˜ÿNì– B«cÇŽØLœ8Ѫ[·®¹¿jŸæTÔŒ·oßî©nÎÇÎüü|kРAVÓ¦M-˜ÖÔ©S­Ö­[›và¸:ŒY`N8®/+V¯^½Ì}Õ¤n©#™¹ÏQË…õñÇã2sÍO(þcÁ8ç×_•U«V™ã0ƒÂÜŒ¢¼Èøª M³fV\´ÿ˜3ÌÅ0¡ªà5ç-[¶LÒÓÓåä“O–ï¿ÿÞìØ”á@µk×.cBõÐý=Õ€åÑG5Ìö±˜UÜG«½»ÌOÕàå–[n xžÝNÔ¦`´×._|±è †½Y®Ï_~ùÅð‚IÞ.0cªŠjâ‚جƒ!LþðxÆsÀ½<å§Ÿ~Õx Cû| #ÀîÏøH}¯j à`På=]A`ذa2vìXSWŒùbÆÕ,*¶ðÄAŒcb ŽšU°lÔ¨‘Oø@Úã‹þ%&&Ælª©U~ûí7#8 ü ¾>úè#³ ^Ø(v̆ߌ»Æ7QwÔÉ¿@ ´hѼTøï/kcÓ·ß~ûOSmÒŒýúŸ¤±à…¦"Ï;RQsº¼øâ‹‚±à¸¸8Q´yéðç~¤ë7nÜhÆ~‹ŸÓ§O™4i’owq®þ}ç;‰+$PÉ*öÊZÉçíHÀ)ðãþßÿþ×h©Ðæ<è«Úe—]f„$æ–ª TtìÐçÔT^Aá ®±µ=ìƒf†‚9º8·øR\xã\\PÍÜØ,R233‹häEôä@σ–jÌFQ±½Ëh¶h“] YÚÚ¿½ŸxÑ€UÎhjþ— .¸@,X`®ÿàƒÌ©ååÁZZ]ý_²üŸÏu¨*ÀUEšÏq<h:v(Ë—/÷r€™;w®Ü|óÍÆ4mÿh«³–i´Ûò˜š!(gÏží;^ÖŸ~ú©o[Ç‚æfÿn1tèÐ"/öEÑÑÑÆ¼Š:ú˜wSSSE¥üwWÊ:LÆ:në3ã¦xÞ|÷¯Y³¦Y×ñvß¾•+WúÖ±¢Nl¢c榞öhÅòÍ7ߘ9Ù˜{üÌ3Ϙ¹¾Ð²aþ†ðµ¹Ûfo{Û¾ý ¦0Ñû z¼|ùå—Aac?—Ÿ$PÀå¡Äs¥Ä§jtÖ„ ,fÆ#XµuÎ9çXªûÎµë¢æ]ß¾â+¶4žhQÍ×w <—UÀ¯qxDÿýï·tÚ²½ q"<±kÔ¨aî…iQ˜J¤ó}}ÓpÎ’%K,LòŸ§gÖ¢E‹pÈx…«ùÙÒáÃS¿Þxã Ó6»op˜¢_ÔÜŒÍ"Ó°­‚ÛÒó ô!¼ÎÕò€C¦”§ïìsùI•I 7Ó/? @ íÁ;Z§ •qfÉÃ…6ó-4C»èô&3Ök;bÙûaúÆX³ kŸ†l+íÿÊÐÒáØä¯i–v~eì‡Æ -ÖßkÜÿ¾0 CÛĸ±m.ö?n¯C3Ÿ;†ìñcû´]ŒãâXiŽh0-«À/í9ŒŠ;\•z@ P0oO g«äädùÛßþfbMÃtªZ©h° ãå«A>ŠHÀc(€=ÖálnõÀ”šGyÄŒgb<×ÄÜc ï ö^Ÿ³ÅÕHfRxPÃ+Á Œƒ…HÀ›(€½Ùïl5 @5à4¤jî>žH€HÀ›(€½Ùïl5 @5 ®æàãI€H€¼I€Ø›ýÎV“ T3 àjî>žH€HÀ›(€½Ùïl5 @5 ®æàãI€H€¼I€Ø›ýÎV“ T3 àjî>žH€HÀ›(€½Ùïl5 @5 ®æàãI€H€¼I€Ø›ýÎV“ T3 àjî>žH€HÀ›(€½Ùïl5 @5 ®æàãI€H€¼I€Ø›ýÎV“ T3 àjî>žH€HÀ›(€½Ùïl5 @5 ®æàãI€H€¼IàÿÏŒljžãIEND®B`‚Zelig/man/Zelig-binchoice-class.Rd0000644000176000001440000000051713245253057016525 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-binchoice.R \docType{class} \name{Zelig-binchoice-class} \alias{Zelig-binchoice-class} \alias{zbinchoice} \title{Binary Choice object for inheritance across models in Zelig} \description{ Binary Choice object for inheritance across models in Zelig } Zelig/man/Zelig-bayes-class.Rd0000644000176000001440000000110513245253057015677 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-bayes.R \docType{class} \name{Zelig-bayes-class} \alias{Zelig-bayes-class} \alias{zbayes} \title{Bayes Model object for inheritance across models in Zelig} \description{ Bayes Model object for inheritance across models in Zelig } \section{Methods}{ \describe{ \item{\code{get_coef(nonlist = FALSE)}}{Get estimated model coefficients} \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} Zelig/man/Zelig-arima-class.Rd0000644000176000001440000000773013245253057015677 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-arima.R \docType{class} \name{Zelig-arima-class} \alias{Zelig-arima-class} \alias{zarima} \title{Autoregressive and Moving-Average Models with Integration for Time-Series Data} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. For example, to run the same model on all fifty states, you could use: \code{z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', by = 'state')} You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{ts}{The name of the variable containing the time indicator. This should be passed in as a string. If this variable is not provided, Zelig will assume that the data is already ordered by time.} \item{cs}{Name of a variable that denotes the cross-sectional element of the data, for example, country name in a dataset with time-series across different countries. As a variable name, this should be in quotes. If this is not provided, Zelig will assume that all observations come from the same unit over time, and should be pooled, but if provided, individual models will be run in each cross-section. If \code{cs} is given as an argument, \code{ts} must also be provided. Additionally, \code{by} must be \code{NULL}.} \item{order}{A vector of length 3 passed in as \code{c(p,d,q)} where p represents the order of the autoregressive model, d represents the number of differences taken in the model, and q represents the order of the moving average model.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Warning: \code{summary} does not work with timeseries models after simulation. } \details{ Currently only the Reference class syntax for time series. This model does not accept Bootstraps or weights. } \examples{ data(seatshare) subset <- seatshare[seatshare$country == "UNITED KINGDOM",] ts.out <- zarima$new() ts.out$zelig(unemp ~ leftseat, order = c(1, 0, 1), data = subset) # Set fitted values and simulate quantities of interest ts.out$setx(leftseat = 0.75) ts.out$setx1(leftseat = 0.25) ts.out$sim() } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_arima.html} } Zelig/man/is_length_not_1.Rd0000644000176000001440000000101213245253057015472 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assertions.R \name{is_length_not_1} \alias{is_length_not_1} \title{Check if an object has a length greater than 1} \usage{ is_length_not_1(x, msg = "Length is 1.", fail = TRUE) } \arguments{ \item{x}{an object} \item{msg}{character string with the error message to return if \code{fail = TRUE}.} \item{fail}{logical whether to return an error if length is not greater than 1.} } \description{ Check if an object has a length greater than 1 } Zelig/man/mexico.Rd0000644000176000001440000000116513245253057013713 0ustar ripleyusers\name{mexico} \alias{mexico} \title{Voting Data from the 1988 Mexican Presidental Election} \description{ This dataset contains voting data for the 1988 Mexican presidential election. } \usage{data(mexico)} \format{A table containing 33 variables and 1,359 observations.} \source{ICPSR} \references{ King, Gary, Michael Tomz and Jason Wittenberg (2000). ``Making the Most of Statistical Analyses: Improving Interpretation and Presentation,'' \emph{American Journal of Political Science}, vol. 44, pp. 341-355. King, Tomz and Wittenberg. ICPSR Publication Related Archive, 1255. } \keyword{datasets} Zelig/man/Zelig-probit-survey-class.Rd0000644000176000001440000001175413245253057017441 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-probit-survey.R \docType{class} \name{Zelig-probit-survey-class} \alias{Zelig-probit-survey-class} \alias{zprobitsurvey} \title{Probit Regression with Survey Weights} \arguments{ \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{below:}{point at which the dependent variable is censored from below. If the dependent variable is only censored from above, set \code{below = -Inf}. The default value is 0.} \item{above:}{point at which the dependent variable is censored from above. If the dependent variable is only censored from below, set \code{above = Inf}. The default value is \code{Inf}.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ @param formula a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}. } \details{ Additional parameters avaialable to this model include: \itemize{ \item weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000). \item mcmc: number of the MCMC iterations after burnin (defaults to 10,000). \item thin: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1. \item verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is printed to the screen. \item seed: seed for the random number generator. The default is \code{NA} which corresponds to a random seed of 12345. \item beta.start: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is \code{NA}, such that the maximum likelihood estimates are used as the starting values. } Use the following parameters to specify the model's priors: \itemize{ \item b0: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0. \item B0: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior. \item c0: c0/2 is the shape parameter for the Inverse Gamma prior on the variance of the disturbance terms. \item d0: d0/2 is the scale parameter for the Inverse Gamma prior on the variance of the disturbance terms. } } \examples{ data(api, package="survey") z.out1 <- zelig(enroll ~ api99 + yr.rnd , model = "poisson.survey", data = apistrat) summary(z.out1) x.low <- setx(z.out1, api99= quantile(apistrat$api99, 0.2)) x.high <- setx(z.out1, api99= quantile(apistrat$api99, 0.8)) s.out1 <- sim(z.out1, x=x.low, x1=x.high) summary(s.out1) plot(s.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_probitsurvey.html} } Zelig/man/kmenta.Rd0000644000176000001440000000117213245253057013704 0ustar ripleyusers\name{kmenta} \alias{kmenta} \title{Simulation Data for model Three-Stage Least Square (threesls) that corresponds to method 3SLS of systemfit} \description{ Dataframe contains 20 annual observations of a supply/demand model with 5 variables. Columns are q=Food consumption per capita, p=Ratio of food price to general consumer prices, d=Disposable income in contstant dollars, f=Ratio of preceding year's prices received by farmers to general consumer prices, a=Time index. } \usage{data(kmenta)} \format{ A table containing 5 variables ("q", "p", "d", "f","a") and 20 observations. } \keyword{datasets} Zelig/man/zeligACFplot.Rd0000644000176000001440000000076113245253057014753 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{zeligACFplot} \alias{zeligACFplot} \title{Plot Autocorrelation Function from Zelig QI object} \usage{ zeligACFplot(z, omitzero = FALSE, barcol = "black", epsilon = 0.1, col = NULL, main = "Autocorrelation Function", xlab = "Period", ylab = "Correlation of Present Shock with Future Outcomes", ylim = NULL, ...) } \description{ Plot Autocorrelation Function from Zelig QI object } \keyword{internal} Zelig/man/klein.Rd0000644000176000001440000000142213245253057013525 0ustar ripleyusers\name{klein} \alias{klein} \title{Simulation Data for model Two-Stage Least Square (twosls) that corresponds to method 2SLS of systemfit} \description{ Dataframe contains annual observations of US economy from 1920 to 1940. The columns are, Year, C=Consumption, P=Corporate profits, P1=Previous year corporate profit,Wtot=Total wage, Wp=Private wage bill, Wg=Government wage bill,I=Investment, K1=Previous year capital stock,X=GNP,G=Government spending, T=Taxes, X1=Previous year GNP, Tm=Year-1931. } \usage{data(klein)} \format{ A table containing 14 variables ("year", "C", "P", "P1","Wtot", "Wp", "Wg", "I", "K1","X", "G", "T", "X1", "Tm") and 21 observations. } \source{http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm} \keyword{datasets} Zelig/man/SupremeCourt.Rd0000644000176000001440000000200713245253057015060 0ustar ripleyusers\name{SupremeCourt} \alias{SupremeCourt} \title{U.S. Supreme Court Vote Matrix} \description{ This dataframe contains a matrix votes cast by U.S. Supreme Court justices in all cases in the 2000 term. } \usage{data(SupremeCourt)} \format{ The dataframe has contains data for justices Rehnquist, Stevens, O'Connor, Scalia, Kennedy, Souter, Thomas, Ginsburg, and Breyer for the 2000 term of the U.S. Supreme Court. It contains data from 43 non-unanimous cases. The votes are coded liberal (1) and conservative (0) using the protocol of Spaeth (2003). The unit of analysis is the case citation (ANALU=0). We are concerned with formally decided cases issued with written opinions, after full oral argument and cases decided by an equally divided vote (DECTYPE=1,5,6,7).} \source{ Harold J. Spaeth (2005). ``Original United States Supreme Court Database: 1953-2004 Terms.'' . } \keyword{datasets} Zelig/man/eidat.Rd0000644000176000001440000000051213245253057013510 0ustar ripleyusers\name{eidat} \alias{eidat} \title{Simulation Data for Ecological Inference} \description{ This dataframe contains a simulated data set to illustrate the models for ecological inference. } \usage{data(eidat)} \format{ A table containing 4 variables ("t0", "t1", "x0", "x1") and 10 observations. } \keyword{datasets} Zelig/man/is_simsrange.Rd0000644000176000001440000000072313245253057015111 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assertions.R \name{is_simsrange} \alias{is_simsrange} \title{Check if simulations for a range of fitted values are present in sim.out} \usage{ is_simsrange(x, fail = TRUE) } \arguments{ \item{x}{a sim.out method} \item{fail}{logical whether to return an error if simulation range is not present.} } \description{ Check if simulations for a range of fitted values are present in sim.out } Zelig/man/Zelig-oprobit-bayes-class.Rd0000644000176000001440000001020413245253057017353 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-oprobit-bayes.R \docType{class} \name{Zelig-oprobit-bayes-class} \alias{Zelig-oprobit-bayes-class} \alias{zoprobitbayes} \title{Bayesian Ordered Probit Regression} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. Vignette: \url{http://docs.zeligproject.org/articles/zelig_oprobitbayes.html} } \description{ Bayesian Ordered Probit Regression } \details{ Additional parameters avaialable to many models include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1. \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is printed to the screen. \item \code{seed}: seed for the random number generator. The default is \code{NA} which corresponds to a random seed of 12345. \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is \code{NA}, such that the maximum likelihood estimates are used as the starting values. } Use the following parameters to specify the model's priors: \itemize{ \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0. \item \code{B0}: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior. } } Zelig/man/rocplot.Rd0000644000176000001440000000425313245253057014112 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{rocplot} \alias{rocplot} \title{Receiver Operator Characteristic Plots} \usage{ rocplot(z1, z2, cutoff = seq(from=0, to=1, length=100), lty1="solid", lty2="dashed", lwd1=par("lwd"), lwd2=par("lwd"), col1=par("col"), col2=par("col"), main="ROC Curve", xlab = "Proportion of 1's Correctly Predicted", ylab="Proportion of 0's Correctly Predicted", plot = TRUE, ... ) } \arguments{ \item{z1}{first model} \item{z2}{second model} \item{cutoff}{A vector of cut-off values between 0 and 1, at which to evaluate the proportion of 0s and 1s correctly predicted by the first and second model. By default, this is 100 increments between 0 and 1 inclusive} \item{lty1}{the line type of the first model (defaults to 'line')} \item{lty2}{the line type of the second model (defaults to 'dashed')} \item{lwd1}{the line width of the first model (defaults to 1)} \item{lwd2}{the line width of the second model (defaults to 1)} \item{col1}{the color of the first model (defaults to 'black')} \item{col2}{the color of the second model (defaults to 'black')} \item{main}{a title for the plot (defaults to "ROC Curve")} \item{xlab}{a label for the X-axis} \item{ylab}{a lavel for the Y-axis} \item{plot}{whether to generate a plot to the selected device} \item{\dots}{additional parameters to be passed to the plot} } \value{ if plot is TRUE, rocplot simply generates a plot. Otherwise, a list with the following is produced: \item{roc1}{a matrix containing a vector of x-coordinates and y-coordinates corresponding to the number of ones and zeros correctly predicted for the first model.} \item{roc2}{a matrix containing a vector of x-coordinates and y-coordinates corresponding to the number of ones and zeros correctly predicted for the second model.} \item{area1}{the area under the first ROC curve, calculated using Reimann sums.} \item{area2}{the area under the second ROC curve, calculated using Reimann sums.} } \description{ The 'rocplot' command generates a receiver operator characteristic plot to compare the in-sample (default) or out-of-sample fit for two logit or probit regressions. } Zelig/man/Zelig-ivreg-class.Rd0000644000176000001440000001456213245253057015723 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-ivreg.R \docType{class} \name{Zelig-ivreg-class} \alias{Zelig-ivreg-class} \alias{zivreg} \title{Instrumental-Variable Regression} \source{ \code{ivreg} is from Christian Kleiber and Achim Zeileis (2008). Applied Econometrics with R. New York: Springer-Verlag. ISBN 978-0-387-77316-2. URL \url{https://CRAN.R-project.org/package=AER} } \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means \code{inclusion'' not}addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{formula}{specification(s) of the regression relationship} \item{instruments}{the instruments. Either \code{instruments} is missing and formula has three parts as in \code{y ~ x1 + x2 | z1 + z2 + z3} (recommended) or formula is \code{y ~ x1 + x2} and instruments is a one-sided formula \code{~ z1 + z2 + z3}. Using \code{instruments} is not recommended with \code{zelig}.} \item{model, x, y}{logicals. If \code{TRUE} the corresponding components of the fit (the model frame, the model matrices , the response) are returned.} \item{...}{further arguments passed to methods. See also \code{\link{zelig}}.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Instrumental-Variable Regression } \details{ Additional parameters avaialable to many models include: \itemize{ \item weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item bootstrap: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } Regressors and instruments for \code{ivreg} are most easily specified in a formula with two parts on the right-hand side, e.g., \code{y ~ x1 + x2 | z1 + z2 + z3}, where \code{x1} and \code{x2} are the regressors and \code{z1}, \code{z2}, and \code{z3} are the instruments. Note that exogenous regressors have to be included as instruments for themselves. For example, if there is one exogenous regressor \code{ex} and one endogenous regressor \code{en} with instrument \code{in}, the appropriate formula would be \code{y ~ ex + en | ex + in}. Equivalently, this can be specified as \code{y ~ ex + en | . - en + in}, i.e., by providing an update formula with a \code{.} in the second part of the formula. The latter is typically more convenient, if there is a large number of exogenous regressors. } \section{Methods}{ \describe{ \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} \examples{ library(Zelig) library(dplyr) # for the pipe operator \%>\% # load and transform data data("CigarettesSW") CigarettesSW$rprice <- with(CigarettesSW, price/cpi) CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi) CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi) # log second stage independent variables, as logging internally for ivreg is # not currently supported CigarettesSW$log_rprice <- log(CigarettesSW$rprice) CigarettesSW$log_rincome <- log(CigarettesSW$rincome) z.out1 <- zelig(log(packs) ~ log_rprice + log_rincome | log_rincome + tdiff + I(tax/cpi),data = CigarettesSW, subset = year == "1995",model = "ivreg") summary(z.out1) library(Zelig) library(AER) # for sandwich vcov library(dplyr) # for the pipe operator \%>\% # load and transform data data("CigarettesSW") CigarettesSW$rprice <- with(CigarettesSW, price/cpi) CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi) CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi) # log second stage independent variables, as logging internally for ivreg is # not currently supported CigarettesSW$log_rprice <- log(CigarettesSW$rprice) CigarettesSW$log_rincome <- log(CigarettesSW$rincome) # estimate model z.out1 <- zelig(log(packs) ~ log_rprice + log_rincome | log_rincome + tdiff + I(tax/cpi), data = CigarettesSW, model = "ivreg") summary(z.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_ivreg.html} Fit instrumental-variable regression by two-stage least squares. This is equivalent to direct instrumental-variables estimation when the number of instruments is equal to the number of predictors. \code{\link{zelig}}, Greene, W. H. (1993) \emph{Econometric Analysis}, 2nd ed., Macmillan. } Zelig/man/Zelig-lognorm-class.Rd0000644000176000001440000001000113245253057016244 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-lognorm.R \docType{class} \name{Zelig-lognorm-class} \alias{Zelig-lognorm-class} \alias{zlognorm} \title{Log-Normal Regression for Duration Dependent Variables} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{robust}{defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators (see and ) based on the options in cluster.} \item{cluster}{if robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Log-Normal Regression for Duration Dependent Variables } \details{ Additional parameters avaialable to many models include: \itemize{ \item weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item bootstrap: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \section{Methods}{ \describe{ \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} \examples{ library(Zelig) data(coalition) z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model ="lognorm", data = coalition) summary(z.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_lognorm.html} } Zelig/man/Zelig-logit-bayes-class.Rd0000644000176000001440000001105513245253057017020 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-logit-bayes.R \docType{class} \name{Zelig-logit-bayes-class} \alias{Zelig-logit-bayes-class} \alias{zlogitbayes} \title{Bayesian Logit Regression} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Bayesian Logit Regression } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1. \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is printed to the screen. \item \code{seed}: seed for the random number generator. The default is \code{NA} which corresponds to a random seed of 12345. \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is \code{NA}, such that the maximum likelihood estimates are used as the starting values. } Use the following parameters to specify the model's priors: \itemize{ \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0. \item \code{B0}: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior. } Use the following arguments to specify optional output for the model: \itemize{ \item \code{bayes.resid}: defaults to FALSE. If TRUE, the latent Bayesian residuals for all observations are returned. Alternatively, users can specify a vector of observations for which the latent residuals should be returned. } } \examples{ data(turnout) z.out <- zelig(vote ~ race + educate, model = "logit.bayes",data = turnout, verbose = FALSE) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_logitbayes.html} } Zelig/man/coef-Zelig-method.Rd0000644000176000001440000000063013245253057015665 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-zelig.R \docType{methods} \name{coef,Zelig-method} \alias{coef,Zelig-method} \title{Method for extracting estimated coefficients from Zelig objects} \usage{ \S4method{coef}{Zelig}(object) } \arguments{ \item{object}{An Object of Class Zelig} } \description{ Method for extracting estimated coefficients from Zelig objects } Zelig/man/sanction.Rd0000644000176000001440000000134013245253057014240 0ustar ripleyusers\name{sanction} \alias{sanction} \title{Multilateral Economic Sanctions} \description{ Data on bilateral sanctions behavior for selected years during the general period 1939-1983. This data contains errors that have since been corrected. Please contact Lisa Martin before using this data for publication. } \usage{data(sanction)} \format{A table containing 8 variables ("mil", "coop", "target", "import", "export", "cost", "num", and "ncost") and 78 observations. For full variable description, see Martin, 1992. } \source{Martin, 1992} \references{ Martin, Lisa (1992). \emph{Coercive Cooperation: Explaining Multilateral Economic Sanctions}, Princeton: Princeton University Press. } \keyword{datasets} Zelig/man/factor_coef_combine.Rd0000644000176000001440000000117413245253057016375 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/interface.R \name{factor_coef_combine} \alias{factor_coef_combine} \title{Return individual factor coefficient fitted values to single factor variable} \usage{ factor_coef_combine(obj, fitted) } \arguments{ \item{obj}{a zelig object with an estimated model} \item{fitted}{a data frame with values fitted by \code{setx}. Note created internally by \code{\link{extract_setx}} and \code{\link{extract_setrange}}} } \description{ Return individual factor coefficient fitted values to single factor variable } \author{ Christopher Gandrud } \keyword{internal} Zelig/man/stat.Rd0000644000176000001440000000073413245253057013403 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{stat} \alias{stat} \title{Pass Quantities of Interest to Appropriate Summary Function} \usage{ stat(qi, num) } \arguments{ \item{qi}{quantity of interest (e.g., estimated value or predicted value)} \item{num}{number of simulations} } \value{ a formatted qi } \description{ Pass Quantities of Interest to Appropriate Summary Function } \author{ Christine Choirat } \keyword{internal} Zelig/man/Zelig-ma-class.Rd0000644000176000001440000000723513245253057015203 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-ma.R \docType{class} \name{Zelig-ma-class} \alias{Zelig-ma-class} \alias{zma} \title{Time-Series Model with Moving Average} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{ts}{The name of the variable containing the time indicator. This should be passed in as a string. If this variable is not provided, Zelig will assume that the data is already ordered by time.} \item{cs}{Name of a variable that denotes the cross-sectional element of the data, for example, country name in a dataset with time-series across different countries. As a variable name, this should be in quotes. If this is not provided, Zelig will assume that all observations come from the same unit over time, and should be pooled, but if provided, individual models will be run in each cross-section. If \code{cs} is given as an argument, \code{ts} must also be provided. Additionally, \code{by} must be \code{NULL}.} \item{order}{A vector of length 3 passed in as \code{c(p,d,q)} where p represents the order of the autoregressive model, d represents the number of differences taken in the model, and q represents the order of the moving average model.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Warning: \code{summary} does not work with timeseries models after simulation. } \details{ Currently only the Reference class syntax for time series. This model does not accept Bootstraps or weights. } \examples{ data(seatshare) subset <- seatshare[seatshare$country == "UNITED KINGDOM",] ts.out <- zelig(formula = unemp ~ leftseat, model = "ma", ts = "year", data = subset) summary(ts.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_ma.html} } Zelig/man/Zelig-tobit-class.Rd0000644000176000001440000001116113245253057015720 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-tobit.R \docType{class} \name{Zelig-tobit-class} \alias{Zelig-tobit-class} \alias{ztobit} \title{Linear Regression for a Left-Censored Dependent Variable} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{below}{(defaults to 0) The point at which the dependent variable is censored from below. If any values in the dependent variable are observed to be less than the censoring point, it is assumed that that particular observation is censored from below at the observed value.} \item{above}{(defaults to 0) The point at which the dependent variable is censored from above If any values in the dependent variable are observed to be more than the censoring point, it is assumed that that particular observation is censored from above at the observed value.} \item{robust}{defaults to FALSE. If TRUE, \code{zelig()} computes robust standard errors based on sandwich estimators and the options selected in cluster.} \item{cluster}{if robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", model = "tobit", data = mydata)means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Linear Regression for a Left-Censored Dependent Variable } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \section{Methods}{ \describe{ \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} \examples{ library(Zelig) data(tobin) z.out <- zelig(durable ~ age + quant, model = "tobit", data = tobin) summary(z.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_tobit.html} } Zelig/man/fitted-Zelig-method.Rd0000644000176000001440000000073713245253057016240 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-zelig.R \docType{methods} \name{fitted,Zelig-method} \alias{fitted,Zelig-method} \title{Method for extracting estimated fitted values from Zelig objects} \usage{ \S4method{fitted}{Zelig}(object, ...) } \arguments{ \item{object}{An Object of Class Zelig} \item{...}{Additional parameters to be passed to fitted} } \description{ Method for extracting estimated fitted values from Zelig objects } Zelig/man/predict-Zelig-method.Rd0000644000176000001440000000071713245253057016411 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-zelig.R \docType{methods} \name{predict,Zelig-method} \alias{predict,Zelig-method} \title{Method for getting predicted values from Zelig objects} \usage{ \S4method{predict}{Zelig}(object, ...) } \arguments{ \item{object}{An Object of Class Zelig} \item{...}{Additional parameters to be passed to predict} } \description{ Method for getting predicted values from Zelig objects } Zelig/man/Zelig-weibull-class.Rd0000644000176000001440000001040313245253057016240 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-weibull.R \docType{class} \name{Zelig-weibull-class} \alias{Zelig-weibull-class} \alias{zweibull} \title{Weibull Regression for Duration Dependent Variables} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Weibull Regression for Duration Dependent Variables } \details{ In addition to the standard inputs, zelig() takes the following additional options for weibull regression: \itemize{ \item \code{robust}: defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators based on the options in cluster. \item \code{cluste}r: if \code{robust = TRUE}, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then \code{z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", model = "exp", data = mydata)} means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust=TRUErobust=TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster. } Additional parameters avaialable to this model include: \itemize{ \item weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item bootstrap: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \section{Methods}{ \describe{ \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} \examples{ data(coalition) z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2,model = "weibull", data = coalition) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_weibull.html} } Zelig/man/statmat.Rd0000644000176000001440000000054113245253057014101 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{statmat} \alias{statmat} \title{Create QI summary matrix} \usage{ statmat(qi) } \arguments{ \item{qi}{quantity of interest in the discrete case} } \value{ a formatted qi } \description{ Create QI summary matrix } \author{ Christine Choirat } \keyword{internal} Zelig/man/ci_check.Rd0000644000176000001440000000073213245253057014156 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/interface.R \name{ci_check} \alias{ci_check} \title{Convert \code{ci} interval from percent to proportion and check if valid} \usage{ ci_check(x) } \arguments{ \item{x}{numeric. The central interval to return, expressed on the \code{(0, 100]} or the equivalent \code{(0, 1]} interval.} } \description{ Convert \code{ci} interval from percent to proportion and check if valid } \keyword{internal} Zelig/man/Zelig-gamma-survey-class.Rd0000644000176000001440000000625313245253057017222 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-gamma-survey.R \docType{class} \name{Zelig-gamma-survey-class} \alias{Zelig-gamma-survey-class} \alias{zgammasurvey} \title{Gamma Regression with Survey Weights} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Gamma Regression with Survey Weights } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \examples{ library(Zelig) data(api, package="survey") z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "gamma.survey", weights = ~pw, data = apistrat) summary(z.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_gammasurvey.html} } Zelig/man/is_varying.Rd0000644000176000001440000000075113245253057014601 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assertions.R \name{is_varying} \alias{is_varying} \title{Check if the values in a vector vary} \usage{ is_varying(x, msg = "Vector does not vary.", fail = TRUE) } \arguments{ \item{x}{a vector} \item{msg}{character string with the error message to return if \code{fail = TRUE}.} \item{fail}{logical whether to return an error if \code{x} does not vary.} } \description{ Check if the values in a vector vary } Zelig/man/qi.plot.Rd0000644000176000001440000000074313245253057014016 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{qi.plot} \alias{qi.plot} \title{Default Plot Design For Zelig Model QI's} \usage{ qi.plot(obj, ...) } \arguments{ \item{obj}{A reference class zelig5 object} \item{...}{Parameters to be passed to the `truehist' function which is implicitly called for numeric simulations} } \description{ Default Plot Design For Zelig Model QI's } \author{ James Honaker with panel layouts from Matt Owen } Zelig/man/relogit.Rd0000644000176000001440000000076513245253057014101 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-relogit.R \name{relogit} \alias{relogit} \title{Estimation function for rare events logit models} \usage{ relogit(formula, data = sys.parent(), tau = NULL, bias.correct = TRUE, case.control = "prior", ...) } \description{ Estimation function for rare events logit models } \details{ This is intended as an internal function. Regular users should use \code{zelig} with \code{model = "relogit"}. } \keyword{internal} Zelig/man/strip_package_name.Rd0000644000176000001440000000060613245253057016242 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{strip_package_name} \alias{strip_package_name} \title{Remove package names from fitted model object calls.} \usage{ strip_package_name(x) } \arguments{ \item{x}{a fitted model object result} } \description{ Enables \code{\link{from_zelig_model}} output to work with stargazer. } \keyword{internal} Zelig/man/Zelig-poisson-survey-class.Rd0000644000176000001440000000625613245253057017635 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-poisson-survey.R \docType{class} \name{Zelig-poisson-survey-class} \alias{Zelig-poisson-survey-class} \alias{zpoissonsurvey} \title{Poisson Regression with Survey Weights} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Poisson Regression with Survey Weights } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \examples{ library(Zelig) data(api, package="survey") z.out1 <- zelig(enroll ~ api99 + yr.rnd , model = "poisson.survey", data = apistrat) summary(z.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_poissonsurvey.html} } Zelig/man/expand_grid_setrange.Rd0000644000176000001440000000057113245253057016603 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{expand_grid_setrange} \alias{expand_grid_setrange} \title{Convenience function for setrange and setrange1} \usage{ expand_grid_setrange(x) } \arguments{ \item{x}{data passed to setrange or setrange1} } \description{ Convenience function for setrange and setrange1 } \keyword{internal} Zelig/man/zeligARMAlongrun.Rd0000644000176000001440000000056513245253057015612 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-arima.R \name{zeligARMAlongrun} \alias{zeligARMAlongrun} \title{Calculate the Long Run Exquilibrium for Fixed X} \usage{ zeligARMAlongrun(y.init = NULL, x, simparam, order, sd, tol = NULL, burnin = 20) } \description{ Calculate the Long Run Exquilibrium for Fixed X } \keyword{internal} Zelig/man/tobin.Rd0000644000176000001440000000103313245253057013534 0ustar ripleyusers\name{tobin} \alias{tobin} \title{Tobin's Tobit Data} \description{ Economists fit a parametric censored data model called the `tobit'. These data are from Tobin's original paper. } \usage{data(tobin)} \format{ A data frame with 20 observations on the following 3 variables. durable: Durable goods purchase age: Age in years quant: Liquidity ratio (x 1000) } \source{ J. Tobin, Estimation of relationships for limited dependent variables, Econometrica, v26, 24-36, 1958. } \keyword{datasets} Zelig/man/zeligARMAnextstep.Rd0000644000176000001440000000061313245253057015772 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-arima.R \name{zeligARMAnextstep} \alias{zeligARMAnextstep} \title{Construct Simulated Next Step in Dynamic Series} \usage{ zeligARMAnextstep(yseries = NULL, xseries, wseries = NULL, beta, ar = NULL, i = NULL, ma = NULL, sd) } \description{ Construct Simulated Next Step in Dynamic Series } \keyword{internal} Zelig/man/free1.Rd0000644000176000001440000000776513245253057013445 0ustar ripleyusers\name{free1} \alias{free1} \title{Freedom of Speech Data} \usage{data(free1)} \description{ Selection of individual-level survey data for freedom of speech. } \details{ A table with 150 observations and 12 variables. \itemize{ \item{sex}{1 for men and 0 for women} \item{age}{Age of respondent in years} \item{educ}{Levels of education, coded as a numeric variable with \itemize{ \item{1}{No formal education} \item{2}{Less than primary school education} \item{3}{Completed primary school} \item{4}{Completed secondary school} \item{5}{Completed high school} \item{6}{Completed college} \item{7}{Completed post-graduate degree} } } \item{country}{Character strings consisting of "Oceana", "Eurasia", and "Eastasia", after Orwell's \emph{1984}.} \item{y}{Self assessment (see below).} \item{v1-v6}{Response to vignettes (see below).} } Survey respondents were asked in almost the same language for a self-assessment and for an assessment of several hypothetical persons described by written vignettes. The self assessment (\code{self}, in the data set), "How free do you think [name/you] [is/are] to express [him-her/your]self without fear of government reprisal?" was first asked of the survey respondent with respect to him or herself, and then after each of vignette. The possible response categories are: \itemize{ \item{1}{Completely free} \item{2}{Very free} \item{3}{Moderately free} \item{4}{Slightly free} \item{5}{Not free at all} } The vignettes, ordered from most free to least free, are: \itemize{ \item{vign1}{[Kay] does not like many of the government's policies. She frequently publishes her opinion in newspapers, criticizing decisions by officials and calling for change. She sees little reason these actions could lead to government reprisal.} \item{vign2}{[Michael] disagrees with many of the government's policies. Though he knows criticism is frowned upon, he doesn't believe the government would punish someone for expressing critical views. He makes his opinion known on most issues without regard to who is listening.} \item{vign3}{[Bob] has political views at odds with the government. He has heard of people occasionally being arrested for speaking out against the government, and government leaders sometimes make political speeches condemning those who criticize. He sometimes writes letters to newspapers about politics, but he is careful not to use his real name.} \item{vign4}{[Connie] does not like the government's stance on many issues. She has a friend who was arrested for being too openly critical of governmental leaders, and so she avoids voicing her opinions in public places.} \item{vign5}{[Vito] disagrees with many of the government's policies, and is very careful about whom he says this to, reserving his real opinions for family and close friends only. He knows several men who have been taken away by government officials for saying negative things in public.} \item{vign6}{[Sonny] lives in fear of being harassed for his political views. Everyone he knows who has spoken out against the government has been arrested or taken away. He never says a word about anything the government does, not even when he is at home alone with his family. } } } \references{ \emph{WHO's World Health Survey} by Lydia Bendib, Somnath Chatterji, Alena Petrakova, Ritu Sadana, Joshua A. Salomon, Margie Schneider, Bedirhan Ustun, Maria Villanueva Jonathan Wand, Gary King and Olivia Lau. (2007) ``Anchors: Software for Anchoring Vignettes''. \emph{Journal of Statistical Software}. Forthcoming. copy at http://wand.stanford.edu/research/anchors-jss.pdf Gary King and Jonathan Wand. "Comparing Incomparable Survey Responses: New Tools for Anchoring Vignettes," Political Analysis, 15, 1 (Winter, 2007): Pp. 46-66, copy at http://gking.harvard.edu/files/abs/c-abs.shtml. } \keyword{datasets} Zelig/man/zeligARMAbreakforecaster.Rd0000644000176000001440000000064113245253057017263 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-arima.R \name{zeligARMAbreakforecaster} \alias{zeligARMAbreakforecaster} \title{Construct Simulated Series with Internal Discontinuity in X} \usage{ zeligARMAbreakforecaster(y.init = NULL, x, x1, simparam, order, sd, t1 = 5, t2 = 10) } \description{ Construct Simulated Series with Internal Discontinuity in X } \keyword{internal} Zelig/man/Zelig-class.Rd0000644000176000001440000001023713245253057014604 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-zelig.R \docType{class} \name{Zelig-class} \alias{Zelig-class} \alias{z} \title{Zelig reference class} \description{ Zelig website: \url{http://zeligproject.org/} } \section{Fields}{ \describe{ \item{\code{fn}}{R function to call to wrap} \item{\code{formula}}{Zelig formula} \item{\code{weights}}{[forthcoming]} \item{\code{name}}{name of the Zelig model} \item{\code{data}}{data frame or matrix} \item{\code{by}}{split the data by factors} \item{\code{mi}}{work with imputed dataset} \item{\code{idx}}{model index} \item{\code{zelig.call}}{Zelig function call} \item{\code{model.call}}{wrapped function call} \item{\code{zelig.out}}{estimated zelig model(s)} \item{\code{setx.out}}{set values} \item{\code{setx.labels}}{pretty-print qi} \item{\code{bsetx}}{is x set?} \item{\code{bsetx1}}{is x1 set?} \item{\code{bsetrange}}{is range set?} \item{\code{bsetrange1}}{is range1 set?} \item{\code{range}}{range} \item{\code{range1}}{range1} \item{\code{test.statistics}}{list of test statistics} \item{\code{sim.out}}{simulated qi's} \item{\code{simparam}}{simulated parameters} \item{\code{num}}{number of simulations} \item{\code{authors}}{Zelig model authors} \item{\code{zeligauthors}}{Zelig authors} \item{\code{modelauthors}}{wrapped model authors} \item{\code{packageauthors}}{wrapped package authors} \item{\code{refs}}{citation information} \item{\code{year}}{model is released} \item{\code{description}}{model description} \item{\code{url}}{model URL} \item{\code{url.docs}}{model documentation URL} \item{\code{category}}{model category} \item{\code{vignette.url}}{vignette URL} \item{\code{json}}{JSON export} \item{\code{ljson}}{JSON export} \item{\code{outcome}}{JSON export} \item{\code{wrapper}}{JSON export} \item{\code{explanatory}}{JSON export} \item{\code{mcunit.test}}{unit testing} \item{\code{with.feedback}}{Feedback} \item{\code{robust.se}}{return robust standard errors} }} \section{Methods}{ \describe{ \item{\code{ATT(treatment, treated = 1, quietly = TRUE, num = NULL)}}{Generic Method for Computing Simulated (Sample) Average Treatment Effects on the Treated} \item{\code{cite()}}{Provide citation information about Zelig and Zelig model, and about wrapped package and wrapped model} \item{\code{feedback()}}{Send feedback to the Zelig team} \item{\code{from_zelig_model()}}{Extract the original fitted model object from a zelig call. Note only works for models using directly wrapped functions.} \item{\code{get_coef(nonlist = FALSE)}}{Get estimated model coefficients} \item{\code{get_df_residual()}}{Get residual degrees-of-freedom} \item{\code{get_fitted(...)}}{Get estimated fitted values} \item{\code{get_model_data()}}{Get data used to estimate the model} \item{\code{get_names()}}{Return Zelig object field names} \item{\code{get_predict(...)}}{Get predicted values} \item{\code{get_pvalue()}}{Get estimated model p-values} \item{\code{get_qi(qi = "ev", xvalue = "x", subset = NULL)}}{Get quantities of interest} \item{\code{get_residuals(...)}}{Get estimated model residuals} \item{\code{get_se()}}{Get estimated model standard errors} \item{\code{get_vcov()}}{Get estimated model variance-covariance matrix} \item{\code{graph(...)}}{Plot the quantities of interest} \item{\code{help()}}{Open the model vignette from http://zeligproject.org/} \item{\code{packagename()}}{Automatically retrieve wrapped package name} \item{\code{references(style = "sphinx")}}{Construct a reference list specific to a Zelig model.} \item{\code{set(..., fn = list(numeric = mean, ordered = Median))}}{Setting Explanatory Variable Values} \item{\code{sim(num = NULL)}}{Generic Method for Computing and Organizing Simulated Quantities of Interest} \item{\code{simATT(simparam, data, depvar, treatment, treated)}}{Simulate an Average Treatment on the Treated} \item{\code{summarise(...)}}{Display a Zelig object} \item{\code{summarize(...)}}{Display a Zelig object} \item{\code{toJSON()}}{Convert Zelig object to JSON format} \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} Zelig/man/macro.Rd0000644000176000001440000000146513245253057013533 0ustar ripleyusers\name{macro} \alias{macro} \title{Macroeconomic Data} \description{ Selected macroeconomic indicators for Austria, Belgium, Canada, Denmark, Finland, France, Italy, Japan, the Netherlands, Norway, Sweden, the United Kingdom, the United States, and West Germany for the period 1966-1990. } \usage{data(macro)} \format{ A table containing 6 variables ("country", "year", "gdp", "unem", "capmob", and "trade") and 350 observations. } \source{ICPSR} \references{ King, Gary, Michael Tomz and Jason Wittenberg. ICPSR Publication Related Archive, 1225. King, Gary, Michael Tomz and Jason Wittenberg (2000). ``Making the Most of Statistical Analyses: Improving Interpretation and Presentation,'' \emph{American Journal of Political Science}, vol. 44, pp. 341-355. } \keyword{datasets} Zelig/man/Zelig.url.Rd0000644000176000001440000000026413245253057014301 0ustar ripleyusers\name{Zelig.url} \alias{Zelig.url} \title{Table of links for Zelig} \description{ Table of links for \code{help.zelig} for the core Zelig package. } \keyword{datasets} Zelig/man/is_timeseries.Rd0000644000176000001440000000104213245253057015265 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assertions.R \name{is_timeseries} \alias{is_timeseries} \title{Check if a zelig object contains a time series model} \usage{ is_timeseries(x, msg = "Not a timeseries object.", fail = FALSE) } \arguments{ \item{x}{a zelig object} \item{msg}{character string with the error message to return if \code{fail = TRUE}.} \item{fail}{logical whether to return an error if \code{x} is not a timeseries.} } \description{ Check if a zelig object contains a time series model } Zelig/man/ATT.Rd0000644000176000001440000000166513245253057013064 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/wrappers.R \name{ATT} \alias{ATT} \title{Compute simulated (sample) average treatment effects on the treated from a Zelig model estimation} \usage{ ATT(object, treatment, treated = 1, num = NULL) } \arguments{ \item{object}{an object of class Zelig} \item{treatment}{character string naming the variable that denotes the treatment and non-treated groups.} \item{treated}{value of \code{treatment} variable indicating treatment} \item{num}{number of simulations to run. Default is 1000.} } \description{ Compute simulated (sample) average treatment effects on the treated from a Zelig model estimation } \examples{ library(dplyr) data(sanction) z.att <- zelig(num ~ target + coop + mil, model = "poisson", data = sanction) \%>\% ATT(treatment = "mil") \%>\% get_qi(qi = "ATT", xvalue = "TE") } \author{ Christopher Gandrud } Zelig/man/qi_slimmer.Rd0000644000176000001440000000302413245253057014564 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/interface.R \name{qi_slimmer} \alias{qi_slimmer} \title{Find the median and a central interval of simulated quantity of interest distributions} \usage{ qi_slimmer(df, qi_type = "ev", ci = 0.95) } \arguments{ \item{df}{a tidy-formatted data frame of simulated quantities of interest created by \code{\link{zelig_qi_to_df}}.} \item{qi_type}{character string either \code{ev} or \code{pv} for returning the central intervals for the expected value or predicted value, respectively.} \item{ci}{numeric. The central interval to return, expressed on the \code{(0, 100]} or the equivalent \code{(0, 1]} interval.} } \description{ Find the median and a central interval of simulated quantity of interest distributions } \details{ A tidy-formatted data frame with the following columns: \itemize{ \item The values fitted with \code{\link{setx}} \item \code{qi_ci_min}: the minimum value of the central interval specified with \code{ci} \item \code{qi_ci_median}: the median of the simulated quantity of interest distribution \item \code{qi_ci_max}: the maximum value of the central interval specified with \code{ci} } } \examples{ library(dplyr) qi.central.interval <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") \%>\% setx(Petal.Length = 2:4, Species = "setosa") \%>\% sim() \%>\% zelig_qi_to_df() \%>\% qi_slimmer() } \seealso{ \code{\link{zelig_qi_to_df}} } \author{ Christopher Gandrud } Zelig/man/is_simsrange1.Rd0000644000176000001440000000073013245253057015170 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assertions.R \name{is_simsrange1} \alias{is_simsrange1} \title{Check if simulations for a range1 of fitted values are present in sim.out} \usage{ is_simsrange1(x, fail = TRUE) } \arguments{ \item{x}{a sim.out method} \item{fail}{logical whether to return an error if simulation range is not present.} } \description{ Check if simulations for a range1 of fitted values are present in sim.out } Zelig/man/vcov-Zelig-method.Rd0000644000176000001440000000056213245253057015732 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-zelig.R \docType{methods} \name{vcov,Zelig-method} \alias{vcov,Zelig-method} \title{Variance-covariance method for Zelig objects} \usage{ \S4method{vcov}{Zelig}(object) } \arguments{ \item{object}{An Object of Class Zelig} } \description{ Variance-covariance method for Zelig objects } Zelig/man/Zelig-ls-class.Rd0000644000176000001440000000651713245253057015226 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-ls.R \docType{class} \name{Zelig-ls-class} \alias{Zelig-ls-class} \alias{zls} \title{Least Squares Regression for Continuous Dependent Variables} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Least Squares Regression for Continuous Dependent Variables } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \section{Methods}{ \describe{ \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} \examples{ library(Zelig) data(macro) z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "ls", data = macro, cite = FALSE) summary(z.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_ls.html} } Zelig/man/Zelig-poisson-bayes-class.Rd0000644000176000001440000001106413245253057017374 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-poisson-bayes.R \docType{class} \name{Zelig-poisson-bayes-class} \alias{Zelig-poisson-bayes-class} \alias{zpoissonbayes} \title{Bayesian Poisson Regression} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Bayesian Poisson Regression } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). \item \code{tune}: Metropolis tuning parameter, either a positive scalar or a vector of length kk, where kk is the number of coefficients. The tuning parameter should be set such that the acceptance rate of the Metropolis algorithm is satisfactory (typically between 0.20 and 0.5). The default value is 1.1. \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1. \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is printed to the screen. \item \code{seed}: seed for the random number generator. The default is \code{NA} which corresponds to a random seed of 12345. \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is \code{NA}, such that the maximum likelihood estimates are used as the starting values. } Use the following parameters to specify the model's priors: \itemize{ \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0. \item \code{B0}: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior. } } \examples{ data(sanction) z.out <- zelig(num ~ target + coop, model = "poisson.bayes",data = sanction, verbose = FALSE) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_poissonbayes.html} } Zelig/man/setx.Rd0000644000176000001440000000472013245253057013412 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/wrappers.R \name{setx} \alias{setx} \title{Setting Explanatory Variable Values} \usage{ setx(obj, fn = NULL, data = NULL, cond = FALSE, ...) } \arguments{ \item{obj}{output object from \code{\link{zelig}}} \item{fn}{a list of functions to apply to the data frame} \item{data}{a new data frame used to set the values of explanatory variables. If \code{data = NULL} (the default), the data frame called in \code{\link{zelig}} is used} \item{cond}{a logical value indicating whether unconditional (default) or conditional (choose \code{cond = TRUE}) prediction should be performed. If you choose \code{cond = TRUE}, \code{setx} will coerce \code{fn = NULL} and ignore the additional arguments in \code{\dots}. If \code{cond = TRUE} and \code{data = NULL}, \code{setx} will prompt you for a data frame.} \item{...}{user-defined values of specific variables for overwriting the default values set by the function \code{fn}. For example, adding \code{var1 = mean(data\$var1)} or \code{x1 = 12} explicitly sets the value of \code{x1} to 12. In addition, you may specify one explanatory variable as a range of values, creating one observation for every unique value in the range of values} } \value{ The output is returned in a field to the Zelig object. For unconditional prediction, \code{x.out} is a model matrix based on the specified values for the explanatory variables. For multiple analyses (i.e., when choosing the \code{by} option in \code{\link{zelig}}, \code{setx} returns the selected values calculated over the entire data frame. If you wish to calculate values over just one subset of the data frame, the 5th subset for example, you may use: \code{x.out <- setx(z.out[[5]])} } \description{ The \code{setx} function uses the variables identified in the \code{formula} generated by \code{zelig} and sets the values of the explanatory variables to the selected values. Use \code{setx} after \code{zelig} and before \code{sim} to simulate quantities of interest. } \details{ This documentation describes the \code{setx} Zelig 4 compatibility wrapper function. } \examples{ # Unconditional prediction: data(turnout) z.out <- zelig(vote ~ race + educate, model = 'logit', data = turnout) x.out <- setx(z.out) s.out <- sim(z.out, x = x.out) } \seealso{ The full Zelig manual may be accessed online at \url{http://docs.zeligproject.org/articles/} } \author{ Matt Owen, Olivia Lau and Kosuke Imai } \keyword{file} Zelig/man/ci.plot.Rd0000644000176000001440000000405413245253057013777 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{ci.plot} \alias{ci.plot} \title{Method for plotting qi simulations across a range within a variable, with confidence intervals} \usage{ ci.plot(obj, qi="ev", var=NULL, ..., main = NULL, sub = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, legcol="gray20", col=NULL, leg=1, legpos= NULL, ci = c(80, 95, 99.9), discont=NULL) } \arguments{ \item{obj}{A reference class zelig5 object} \item{qi}{a character-string specifying the quantity of interest to plot} \item{var}{The variable to be used on the x-axis. Default is the variable across all the chosen values with smallest nonzero variance} \item{...}{Parameters to be passed to the `truehist' function which is implicitly called for numeric simulations} \item{main}{a character-string specifying the main heading of the plot} \item{sub}{a character-string specifying the sub heading of the plot} \item{xlab}{a character-string specifying the label for the x-axis} \item{ylab}{a character-string specifying the label for the y-axis} \item{xlim}{Limits to the x-axis} \item{ylim}{Limits to the y-axis} \item{legcol}{``legend color'', an valid color used for plotting the line colors in the legend} \item{col}{a valid vector of colors of at least length 3 to use to color the confidence intervals} \item{leg}{``legend position'', an integer from 1 to 4, specifying the position of the legend. 1 to 4 correspond to ``SE'', ``SW'', ``NW'', and ``NE'' respectively. Setting to 0 or ``n'' turns off the legend.} \item{legpos}{``legend type'', exact coordinates and sizes for legend. Overrides argment ``leg.type''} \item{ci}{vector of length three of confidence interval levels to draw.} \item{discont}{optional point of discontinuity along the x-axis at which to interupt the graph} } \value{ the current graphical parameters. This is subject to change in future implementations of Zelig } \description{ Method for plotting qi simulations across a range within a variable, with confidence intervals } \author{ James Honaker } Zelig/man/setfactor.Rd0000644000176000001440000000070313245253057014416 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{setfactor} \alias{setfactor} \title{Set new value of a factor variable, checking for existing levels} \usage{ setfactor(fv, v) } \arguments{ \item{fv}{factor variable} \item{v}{value} } \value{ a factor variable with a value \code{val} and the same levels } \description{ Set new value of a factor variable, checking for existing levels } \keyword{internal} Zelig/man/coalition.Rd0000644000176000001440000000212413245253057014404 0ustar ripleyusers\name{coalition} \alias{coalition} \title{Coalition Dissolution in Parliamentary Democracies} \description{ This data set contains survival data on government coalitions in parliamentary democracies (Belgium, Canada, Denmark, Finland, France, Iceland, Ireland, Israel, Italy, Netherlands, Norway, Portugal, Spain, Sweden, and the United Kingdom) for the period 1945-1987. For parsimony, country indicator variables are omitted in the sample data. } \usage{data(coalition)} \format{ A table containing 7 variables ("duration", "ciep12", "invest", "fract", "polar", "numst2", "crisis") and 314 observations. For variable descriptions, please refer to King, Alt, Burns and Laver (1990). } \source{ICPSR} \references{ King, Gary, James E. Alt, Nancy Elizabeth Burns and Michael Laver (1990). ``A Unified Model of Cabinet Dissolution in Parliamentary Democracies,'' \emph{American Journal of Political Science}, vol. 34, no. 3, pp. 846-870. Gary King, James E. Alt, Nancy Burns, and Michael Laver. ICPSR Publication Related Archive, 1115. } \keyword{datasets} Zelig/man/cluster.formula.Rd0000644000176000001440000000071313245253057015552 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{cluster.formula} \alias{cluster.formula} \title{Generate Formulae that Consider Clustering} \usage{ cluster.formula(formula, cluster) } \arguments{ \item{formula}{a formula object} \item{cluster}{a vector} } \value{ a formula object describing clustering } \description{ This method is used internally by the "Zelig" Package to interpret clustering in GEE models. } Zelig/man/Zelig-probit-bayes-class.Rd0000644000176000001440000001131513245253057017200 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-probit-bayes.R \docType{class} \name{Zelig-probit-bayes-class} \alias{Zelig-probit-bayes-class} \alias{zprobitbayes} \title{Bayesian Probit Regression} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. For example, to run the same model on all fifty states, you could use: \code{z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', by = 'state')} You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Bayesian Probit Regression } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1. \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is printed to the screen. \item \code{seed}: seed for the random number generator. The default is \code{NA} which corresponds to a random seed of 12345. \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is \code{NA}, such that the maximum likelihood estimates are used as the starting values. } Use the following parameters to specify the model's priors: \itemize{ \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0. \item \code{B0}: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior. } Use the following arguments to specify optional output for the model: \itemize{ \item \code{bayes.resid}: defaults to FALSE. If TRUE, the latent Bayesian residuals for all observations are returned. Alternatively, users can specify a vector of observations for which the latent residuals should be returned. } } \examples{ data(turnout) z.out <- zelig(vote ~ race + educate, model = "probit.bayes",data = turnout, verbose = FALSE) summary(z.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_probitbayes.html} } Zelig/man/Zelig-binchoice-gee-class.Rd0000644000176000001440000000070213245253057017257 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-binchoice-gee.R \docType{class} \name{Zelig-binchoice-gee-class} \alias{Zelig-binchoice-gee-class} \alias{zbinchoicegee} \title{Object for Binary Choice outcomes in Generalized Estimating Equations for inheritance across models in Zelig} \description{ Object for Binary Choice outcomes in Generalized Estimating Equations for inheritance across models in Zelig } Zelig/man/Zelig-normal-survey-class.Rd0000644000176000001440000000637413245253057017434 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-normal-survey.R \docType{class} \name{Zelig-normal-survey-class} \alias{Zelig-normal-survey-class} \alias{znormalsurvey} \title{Normal Regression for Continuous Dependent Variables with Survey Weights} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y \~\, x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Normal Regression for Continuous Dependent Variables with Survey Weights } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \examples{ library(Zelig) data(api, package = "survey") z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey",eights = ~pw, data = apistrat) summary(z.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_normalsurvey.html} } Zelig/man/vcov_gee.Rd0000644000176000001440000000042113245253057014216 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{vcov_gee} \alias{vcov_gee} \title{Find vcov for GEE models} \usage{ vcov_gee(obj) } \arguments{ \item{obj}{a \code{geeglm} class object.} } \description{ Find vcov for GEE models } Zelig/man/statlevel.Rd0000644000176000001440000000061313245253057014427 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{statlevel} \alias{statlevel} \title{Describe Here} \usage{ statlevel(qi, num) } \arguments{ \item{qi}{quantity of interest in the discrete case} \item{num}{number of simulations} } \value{ a formatted quantity of interest } \description{ Describe Here } \author{ Christine Choirat } \keyword{internal} Zelig/man/Zelig-relogit-class.Rd0000644000176000001440000001062213245253057016245 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-relogit.R \docType{class} \name{Zelig-relogit-class} \alias{Zelig-relogit-class} \alias{zrelogit} \title{Rare Events Logistic Regression for Dichotomous Dependent Variables} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Rare Events Logistic Regression for Dichotomous Dependent Variables } \details{ The relogit procedure supports four optional arguments in addition to the standard arguments for zelig(). You may additionally use: \itemize{ \item \code{tau}: a vector containing either one or two values for \code{tau}, the true population fraction of ones. Use, for example, tau = c(0.05, 0.1) to specify that the lower bound on tau is 0.05 and the upper bound is 0.1. If left unspecified, only finite-sample bias correction is performed, not case-control correction. \item \code{case.control}: if tau is specified, choose a method to correct for case-control sampling design: "prior" (default) or "weighting". \item \code{bias.correct}: a logical value of \code{TRUE} (default) or \code{FALSE} indicating whether the intercept should be corrected for finite sample (rare events) bias. } Additional parameters avaialable to many models include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \section{Methods}{ \describe{ \item{\code{modcall_formula_transformer()}}{Transform model call formula.} \item{\code{show(signif.stars = FALSE, subset = NULL, bagging = FALSE)}}{Display a Zelig object} \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} \examples{ library(Zelig) data(mid) z.out1 <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772) summary(z.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_relogit.html} } Zelig/man/extract_setx.Rd0000644000176000001440000000133513245253057015143 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/interface.R \name{extract_setx} \alias{extract_setx} \title{Extract setx for non-range and return tidy formatted data frame} \usage{ extract_setx(obj, which_x = "x", only_setx = FALSE) } \arguments{ \item{obj}{a zelig object containing simulated quantities of interest} \item{which_x}{character string either \code{'x'} or \code{'x1'} indicating whether to extract the first or second set of fitted values} \item{only_setx}{logical whether or not to only extract `setx`` values.} } \description{ Extract setx for non-range and return tidy formatted data frame } \seealso{ \code{\link{zelig_qi_to_df}} } \author{ Christopher Gandrud } \keyword{internal} Zelig/man/residuals-Zelig-method.Rd0000644000176000001440000000061513245253057016747 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-zelig.R \docType{methods} \name{residuals,Zelig-method} \alias{residuals,Zelig-method} \title{Method for extracting residuals from Zelig objects} \usage{ \S4method{residuals}{Zelig}(object) } \arguments{ \item{object}{An Object of Class Zelig} } \description{ Method for extracting residuals from Zelig objects } Zelig/man/Zelig-poisson-gee-class.Rd0000644000176000001440000000724413245253057017036 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-poisson-gee.R \docType{class} \name{Zelig-poisson-gee-class} \alias{Zelig-poisson-gee-class} \alias{zpoissongee} \title{Generalized Estimating Equation for Poisson Regression} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{id:}{where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered within each cluster when appropriate} \item{corstr:}{character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"} \item{geeglm:}{See geeglm in package geepack for other function arguments} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Generalized Estimating Equation for Poisson Regression } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \examples{ library(Zelig) data(sanction) sanction$cluster <- c(rep(c(1:15), 5), rep(c(16), 3)) sorted.sanction <- sanction[order(sanction$cluster),] z.out <- zelig(num ~ target + coop, model = "poisson.gee",id = "cluster", data = sorted.sanction) summary(z.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_poissongee.html} } Zelig/man/Zelig-gee-class.Rd0000644000176000001440000000105013245253057015333 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-gee.R \docType{class} \name{Zelig-gee-class} \alias{Zelig-gee-class} \alias{zgee} \title{Generalized Estimating Equations Model object for inheritance across models in Zelig} \description{ Generalized Estimating Equations Model object for inheritance across models in Zelig } \section{Methods}{ \describe{ \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} Zelig/man/se_pull.Rd0000644000176000001440000000051113245253057014064 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{se_pull} \alias{se_pull} \title{Extract standard errors from a fitted model object} \usage{ se_pull(x) } \arguments{ \item{x}{a fitted Zelig object} } \description{ Extract standard errors from a fitted model object } \keyword{internal} Zelig/man/p_pull.Rd0000644000176000001440000000047013245253057013720 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{p_pull} \alias{p_pull} \title{Extract p-values from a fitted model object} \usage{ p_pull(x) } \arguments{ \item{x}{a fitted Zelig object} } \description{ Extract p-values from a fitted model object } \keyword{internal} Zelig/man/combine_coef_se.Rd0000644000176000001440000000374613245253057015535 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{combine_coef_se} \alias{combine_coef_se} \title{Combines estimated coefficients and associated statistics from models estimated with multiply imputed data sets or bootstrapped} \source{ Partially based on \code{\link{mi.meld}} from Amelia. } \usage{ combine_coef_se(obj, out_type = "matrix", bagging = FALSE, messages = TRUE) } \arguments{ \item{obj}{a zelig object with an estimated model} \item{out_type}{either \code{"matrix"} or \code{"list"} specifying whether the results should be returned as a matrix or a list.} \item{bagging}{logical whether or not to bag the bootstrapped coefficients} \item{messages}{logical whether or not to return messages for what is being returned} } \value{ If the model uses multiply imputed or bootstrapped data then a matrix (default) or list of combined coefficients (\code{coef}), standard errors (\code{se}), z values (\code{zvalue}), p-values (\code{p}) is returned. Rubin's Rules are used to combine output from multiply imputed data. An error is returned if no imputations were included or there wasn't bootstrapping. Please use \code{get_coef}, \code{get_se}, and \code{get_pvalue} methods instead in cases where there are no imputations or bootstrap. } \description{ Combines estimated coefficients and associated statistics from models estimated with multiply imputed data sets or bootstrapped } \examples{ set.seed(123) ## Multiple imputation example # Create fake imputed data n <- 100 x1 <- runif(n) x2 <- runif(n) y <- rnorm(n) data.1 <- data.frame(y = y, x = x1) data.2 <- data.frame(y = y, x = x2) # Estimate model mi.out <- to_zelig_mi(data.1, data.2) z.out.mi <- zelig(y ~ x, model = "ls", data = mi.out) # Combine and extract coefficients and standard errors combine_coef_se(z.out.mi) ## Bootstrap example z.out.boot <- zelig(y ~ x, model = "ls", data = data.1, bootstrap = 20) combine_coef_se(z.out.boot) } \author{ Christopher Gandrud and James Honaker } Zelig/man/Zelig-exp-class.Rd0000644000176000001440000001035513245253057015377 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-exp.R \docType{class} \name{Zelig-exp-class} \alias{Zelig-exp-class} \alias{zexp} \title{Exponential Regression for Duration Dependent Variables} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. For example, to run the same model on all fifty states, you could use: \code{z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', by = 'state')} You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{robust}{defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators and the options selected in cluster.} \item{if}{robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3",model = "exp", data = mydata) means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Exponential Regression for Duration Dependent Variables } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \section{Methods}{ \describe{ \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} \examples{ library(Zelig) data(coalition) library(survival) z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model = "exp", data = coalition) summary(z.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_exp.html} } Zelig/man/rm_intercept.Rd0000644000176000001440000000063713245253057015125 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{rm_intercept} \alias{rm_intercept} \title{Drop intercept columns or values from a data frame or named vector, respectively} \usage{ rm_intercept(x) } \arguments{ \item{x}{a data frame or named vector} } \description{ Drop intercept columns or values from a data frame or named vector, respectively } \keyword{internal} Zelig/man/to_zelig.Rd0000644000176000001440000000123113245253057014235 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/interface.R \name{to_zelig} \alias{to_zelig} \title{Coerce a non-Zelig fitted model object to a Zelig class object} \usage{ to_zelig(obj) } \arguments{ \item{obj}{a fitted model object fitted using \code{lm} and many using \code{glm}. Note: more intended in future Zelig releases.} } \description{ Coerce a non-Zelig fitted model object to a Zelig class object } \examples{ library(dplyr) lm.out <- lm(Fertility ~ Education, data = swiss) z.out <- to_zelig(lm.out) # to_zelig called from within setx setx(z.out) \%>\% sim() \%>\% plot() } \author{ Christopher Gandrud and Ista Zhan } Zelig/man/coefficients-Zelig-method.Rd0000644000176000001440000000066013245253057017415 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-zelig.R \docType{methods} \name{coefficients,Zelig-method} \alias{coefficients,Zelig-method} \title{Method for extracting estimated coefficients from Zelig objects} \usage{ \S4method{coefficients}{Zelig}(object) } \arguments{ \item{object}{An Object of Class Zelig} } \description{ Method for extracting estimated coefficients from Zelig objects } Zelig/man/approval.Rd0000644000176000001440000000062113245253057014247 0ustar ripleyusers\name{approval} \alias{approval} \title{U.S. Presidential Approval Data} \description{ Monthy public opinion data for 2001-2006. } \usage{data(approval)} \format{ A table containing 8 variables ("month", "year", "approve", "disapprove", "unsure", "sept.oct.2001", "iraq.war", and "avg.price") and 65 observations. } \source{ICPSR} \references{ Stuff here } \keyword{datasets} Zelig/man/setval.Rd0000644000176000001440000000065213245253057013725 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{setval} \alias{setval} \title{Set new value of a variable as approrpriate to data type} \usage{ setval(val, newval) } \arguments{ \item{val}{old value} \item{newval}{new value} } \value{ a variable of the same type with a value \code{val} } \description{ Set new value of a variable as approrpriate to data type } \keyword{internal} Zelig/man/createJSON.Rd0000644000176000001440000000111113245253057014353 0ustar ripleyusers\name{createJSON} \alias{createJSON} \title{Utility function for constructing JSON file that encodes the hierarchy of available statistical models in Zelig} \usage{ createJSON(movefile=TRUE) } \arguments{ \item{movefile}{Logical of whether to (TRUE) move the JSON file into path \code{./inst/JSON} or (FALSE) leave in working directory.} } \value{ Returns TRUE on successful completion of json file } \description{ Utility function for construction a JSON file that encodes the hierarchy of available statistical models. } \author{ Christine Choirat, Vito D'Orazio, James Honaker } Zelig/man/simacf.Rd0000644000176000001440000000056313245253057013672 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-arima.R \name{simacf} \alias{simacf} \title{Construct Autocorrelation Function from Zelig object and simulated parameters} \usage{ simacf(coef, order, params, alpha = 0.5) } \description{ Construct Autocorrelation Function from Zelig object and simulated parameters } \keyword{internal} Zelig/man/Mode.Rd0000644000176000001440000000077413245253057013320 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{Mode} \alias{Mode} \alias{mode} \title{Compute the Statistical Mode of a Vector} \usage{ Mode(x) } \arguments{ \item{x}{a vector of numeric, factor, or ordered values} } \value{ the statistical mode of the vector. If more than one mode exists, the last one in the factor order is arbitrarily chosen (by design) } \description{ Compute the Statistical Mode of a Vector } \author{ Christopher Gandrud and Matt Owen } Zelig/man/Weimar.Rd0000644000176000001440000000157613245253057013661 0ustar ripleyusers\name{Weimar} \alias{Weimar} \title{1932 Weimar election data} \description{ This data set contains election results for 10 kreise (equivalent to precincts) from the 1932 Weimar (German) election. } \usage{data(Weimar)} \format{A table containing 11 variables and 10 observations. The variables are \describe{ \item{Nazi}{Number of votes for the Nazi party} \item{Government}{Number of votes for the Government} \item{Communists}{Number of votes for the Communist party} \item{FarRight}{Number of votes for far right parties} \item{Other}{Number of votes for other parties, and non-voters} \item{shareunemployed}{Proportion unemployed} \item{shareblue}{Proportion working class} \item{sharewhite}{Proportion white-collar workers} \item{sharedomestic}{Proportion domestic servants} \item{shareprotestants}{Proportion Protestant} } } \source{ICPSR} %\references{ %} \keyword{datasets} Zelig/man/Zelig-quantile-class.Rd0000644000176000001440000001174413245253057016430 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-quantile.R \docType{class} \name{Zelig-quantile-class} \alias{Zelig-quantile-class} \alias{zquantile} \title{Quantile Regression for Continuous Dependent Variables} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Quantile Regression for Continuous Dependent Variables } \details{ In addition to the standard inputs, \code{zelig} takes the following additional options for quantile regression: \itemize{ \item \code{tau}: defaults to 0.5. Specifies the conditional quantile(s) that will be estimated. 0.5 corresponds to estimating the conditional median, 0.25 and 0.75 correspond to the conditional quartiles, etc. tau vectors with length greater than 1 are not currently supported. If tau is set outside of the interval [0,1], zelig returns the solution for all possible conditional quantiles given the data, but does not support inference on this fit (setx and sim will fail). \item \code{se}: a string value that defaults to "nid". Specifies the method by which the covariance matrix of coefficients is estimated during the sim stage of analysis. \code{se} can take the following values, which are passed to the \code{summary.rq} function from the \code{quantreg} package. These descriptions are copied from the \code{summary.rq} documentation. \itemize{ \item \code{"iid"} which presumes that the errors are iid and computes an estimate of the asymptotic covariance matrix as in KB(1978). \item \code{"nid"} which presumes local (in tau) linearity (in x) of the the conditional quantile functions and computes a Huber sandwich estimate using a local estimate of the sparsity. \item \code{"ker"} which uses a kernel estimate of the sandwich as proposed by Powell(1990). } \item \code{...}: additional options passed to rq when fitting the model. See documentation for rq in the quantreg package for more information. } Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \section{Methods}{ \describe{ \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} \examples{ library(Zelig) data(stackloss) z.out1 <- zelig(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc., model = "rq", data = stackloss,tau = 0.5) summary(z.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_quantile.html} } Zelig/man/names-Zelig-method.Rd0000644000176000001440000000051713245253057016060 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-zelig.R \docType{methods} \name{names,Zelig-method} \alias{names,Zelig-method} \title{Names method for Zelig objects} \usage{ \S4method{names}{Zelig}(x) } \arguments{ \item{x}{An Object of Class Zelig} } \description{ Names method for Zelig objects } Zelig/man/zeligArimaWrapper.Rd0000644000176000001440000000067513245253057016061 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-arima.R \name{zeligArimaWrapper} \alias{zeligArimaWrapper} \title{Estimation wrapper function for arima models, to easily fit with Zelig architecture} \usage{ zeligArimaWrapper(formula, order = c(1, 0, 0), ..., include.mean = TRUE, data) } \description{ Estimation wrapper function for arima models, to easily fit with Zelig architecture } \keyword{internal} Zelig/man/df.residual-Zelig-method.Rd0000644000176000001440000000066713245253057017163 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-zelig.R \docType{methods} \name{df.residual,Zelig-method} \alias{df.residual,Zelig-method} \title{Method for extracting residual degrees-of-freedom from Zelig objects} \usage{ \S4method{df.residual}{Zelig}(object) } \arguments{ \item{object}{An Object of Class Zelig} } \description{ Method for extracting residual degrees-of-freedom from Zelig objects } Zelig/man/Zelig-logit-class.Rd0000644000176000001440000001102013245253057015707 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-logit.R \docType{class} \name{Zelig-logit-class} \alias{Zelig-logit-class} \alias{zlogit} \title{Logistic Regression for Dichotomous Dependent Variables} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{below}{(defaults to 0) The point at which the dependent variable is censored from below. If any values in the dependent variable are observed to be less than the censoring point, it is assumed that that particular observation is censored from below at the observed value. (See for a Bayesian implementation that supports both left and right censoring.)} \item{robust}{defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators (see and ) and the options selected in cluster.} \item{if}{robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", model = "tobit", data = mydata) means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Logistic Regression for Dichotomous Dependent Variables } \details{ Additional parameters avaialable to this model include: \itemize{ \item weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item bootstrap: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \section{Methods}{ \describe{ \item{\code{show(signif.stars = FALSE, subset = NULL, bagging = FALSE)}}{Display a Zelig object} }} \examples{ library(Zelig) data(turnout) z.out1 <- zelig(vote ~ age + race, model = "logit", data = turnout, cite = FALSE) summary(z.out1) summary(z.out1, odds_ratios = TRUE) x.out1 <- setx(z.out1, age = 36, race = "white") s.out1 <- sim(z.out1, x = x.out1) summary(s.out1) plot(s.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_logit.html} } Zelig/man/extract_setrange.Rd0000644000176000001440000000137013245253057015767 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/interface.R \name{extract_setrange} \alias{extract_setrange} \title{Extract setrange to return as tidy formatted data frame} \usage{ extract_setrange(obj, which_range = "range", only_setx = FALSE) } \arguments{ \item{obj}{a zelig object containing a range of simulated quantities of interest} \item{which_range}{character string either \code{'range'} or \code{'range1'} indicating whether to extract the first or second set of fitted values} \item{only_setx}{logical whether or not to only extract `setx`` values.} } \description{ Extract setrange to return as tidy formatted data frame } \seealso{ \code{\link{zelig_qi_to_df}} } \author{ Christopher Gandrud } \keyword{internal} Zelig/man/is_uninitializedField.Rd0000644000176000001440000000101213245253057016725 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assertions.R \name{is_uninitializedField} \alias{is_uninitializedField} \title{Check if uninitializedField} \usage{ is_uninitializedField(x, msg = "Zelig model has not been estimated.", fail = TRUE) } \arguments{ \item{x}{a zelig.out method} \item{msg}{character string with the error message to return if \code{fail = TRUE}.} \item{fail}{logical whether to return an error if x uninitialzed.} } \description{ Check if uninitializedField } Zelig/man/Zelig-logit-survey-class.Rd0000644000176000001440000001103313245253057017246 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-logit-survey.R \docType{class} \name{Zelig-logit-survey-class} \alias{Zelig-logit-survey-class} \alias{zlogitsurvey} \title{Logit Regression with Survey Weights} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{below}{(defaults to 0) The point at which the dependent variable is censored from below. If any values in the dependent variable are observed to be less than the censoring point, it is assumed that that particular observation is censored from below at the observed value. (See for a Bayesian implementation that supports both left and right censoring.)} \item{robust}{defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators (see and ) and the options selected in cluster.} \item{if}{robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", model = "tobit", data = mydata) means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Logit Regression with Survey Weights } \details{ Additional parameters avaialable to this model include: \itemize{ \item weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item bootstrap: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \examples{ data(api, package = "survey") apistrat$yr.rnd.numeric <- as.numeric(apistrat$yr.rnd == "Yes") z.out1 <- zelig(yr.rnd.numeric ~ meals + mobility, model = "logit.survey", weights = apistrat$pw, data = apistrat) summary(z.out1) x.low <- setx(z.out1, meals= quantile(apistrat$meals, 0.2)) x.high <- setx(z.out1, meals= quantile(apistrat$meals, 0.8)) s.out1 <- sim(z.out1, x = x.low, x1 = x.high) summary(s.out1) plot(s.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_logitsurvey.html} } Zelig/man/mid.Rd0000644000176000001440000000156713245253057013206 0ustar ripleyusers\name{mid} \alias{mid} \title{Militarized Interstate Disputes} \description{ A small sample from the militarized interstate disputes (MID) database. } \usage{data(mid)} \format{ A table containing 6 variables ("conflict", "major", "contig", "power", "maxdem", "mindem", and "years") and 3,126 observations. For full variable descriptions, please see King and Zeng, 2001. } \source{Militarized Interstate Disputes database} \references{ King, Gary, and Lanche Zeng (2001). ``Explaining Rare Events in International Relations,'' \emph{International Organization}, vol. 55, no. 3, pp. 693-715. Jones, Daniel M., Stuart A. Bremer and David Singer (1996). ``Militarized Interstate Disputes, 1816-1992: Rationale, Coding Rules, and Empirical Patterns,'' \emph{Conflict Management and Peace Science}, vol. 15, no. 2, pp. 163-213. } \keyword{datasets} Zelig/man/Zelig-factor-bayes-class.Rd0000644000176000001440000001622513245253057017164 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-factor-bayes.R \docType{class} \name{Zelig-factor-bayes-class} \alias{Zelig-factor-bayes-class} \alias{zfactorbayes} \title{Bayesian Factor Analysis} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{~ Y1 + Y2 + Y3}, where Y1, Y2, and Y3 are variables of interest in factor analysis (manifest variables), assumed to be normally distributed. The model requires a minimum of three manifest variables contained in the same dataset. The \code{+} symbol means ``inclusion'' not ``addition.''} \item{factors}{number of the factors to be fitted (defaults to 2).} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Bayesian Factor Analysis } \details{ In addition, \code{zelig()} accepts the following additional arguments for model specification: \itemize{ \item \code{lambda.constraints}: list containing the equality or inequality constraints on the factor loadings. Choose from one of the following forms: \item \code{varname = list()}: by default, no constraints are imposed. \item \code{varname = list(d, c)}: constrains the dth loading for the variable named varname to be equal to c. \item \code{varname = list(d, +)}: constrains the dth loading for the variable named varname to be positive; \item \code{varname = list(d, -)}: constrains the dth loading for the variable named varname to be negative. \item \code{std.var}: defaults to \code{FALSE} (manifest variables are rescaled to zero mean, but retain observed variance). If \code{TRUE}, the manifest variables are rescaled to be mean zero and unit variance. } In addition, \code{zelig()} accepts the following additional inputs for \code{bayes.factor}: \itemize{ \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 20,000). \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1. \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10%10%) is printed to the screen. \item \code{seed}: seed for the random number generator. The default is NA which corresponds to a random seed 12345. \item \code{Lambda.start}: starting values of the factor loading matrix \eqn{\Lambda}, either a scalar (all unconstrained loadings are set to that value), or a matrix with compatible dimensions. The default is NA, where the start value are set to be 0 for unconstrained factor loadings, and 0.5 or - 0.5 for constrained factor loadings (depending on the nature of the constraints). \item \code{Psi.start}: starting values for the uniquenesses, either a scalar (the starting values for all diagonal elements of \eqn{\Psi} are set to be this value), or a vector with length equal to the number of manifest variables. In the latter case, the starting values of the diagonal elements of \eqn{\Psi} take the values of Psi.start. The default value is NA where the starting values of the all the uniquenesses are set to be 0.5. \item \code{store.lambda}: defaults to TRUE, which stores the posterior draws of the factor loadings. \item \code{store.scores}: defaults to FALSE. If TRUE, stores the posterior draws of the factor scores. (Storing factor scores may take large amount of memory for a large number of draws or observations.) } The model also accepts the following additional arguments to specify prior parameters: \itemize{ \item \code{l0}: mean of the Normal prior for the factor loadings, either a scalar or a matrix with the same dimensions as \eqn{\Lambda}. If a scalar value, that value will be the prior mean for all the factor loadings. Defaults to 0. \item \code{L0}: precision parameter of the Normal prior for the factor loadings, either a scalar or a matrix with the same dimensions as \eqn{\Lambda}. If \code{L0} takes a scalar value, then the precision matrix will be a diagonal matrix with the diagonal elements set to that value. The default value is 0, which leads to an improper prior. \item \code{a0}: the shape parameter of the Inverse Gamma prior for the uniquenesses is \code{a0}/2. It can take a scalar value or a vector. The default value is 0.001. \item \code{b0}: the scale parameter of the Inverse Gamma prior for the uniquenesses is \code{b0}/2. It can take a scalar value or a vector. The default value is 0.001. } Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. } } \section{Methods}{ \describe{ \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} \examples{ \dontrun{ data(swiss) names(swiss) <- c("Fert", "Agr", "Exam", "Educ", "Cath", "InfMort") z.out <- zelig(~ Agr + Exam + Educ + Cath + InfMort, model = "factor.bayes", data = swiss, factors = 2, verbose = FALSE, a0 = 1, b0 = 0.15, burnin = 500, mcmc = 5000) z.out$geweke.diag() z.out <- zelig(~ Agr + Exam + Educ + Cath + InfMort, model = "factor.bayes", data = swiss, factors = 2, lambda.constraints = list(Exam = list(1,"+"), Exam = list(2,"-"), Educ = c(2, 0), InfMort = c(1, 0)), verbose = FALSE, a0 = 1, b0 = 0.15, burnin = 500, mcmc = 5000) z.out$geweke.diag() z.out$heidel.diag() z.out$raftery.diag() summary(z.out) } } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_factorbayes.html} } Zelig/man/is_simsx1.Rd0000644000176000001440000000071613245253057014347 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assertions.R \name{is_simsx1} \alias{is_simsx1} \title{Check if simulations for individual values for x1 are present in sim.out} \usage{ is_simsx1(x, fail = TRUE) } \arguments{ \item{x}{a sim.out method} \item{fail}{logical whether to return an error if simulation range is not present.} } \description{ Check if simulations for individual values for x1 are present in sim.out } Zelig/man/table.levels.Rd0000644000176000001440000000122513245253057015004 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{table.levels} \alias{table.levels} \title{Create a table, but ensure that the correct columns exist. In particular, this allows for entires with zero as a value, which is not the default for standard tables} \usage{ table.levels(x, levels, ...) } \arguments{ \item{x}{a vector} \item{levels}{a vector of levels} \item{...}{parameters for table} } \value{ a table } \description{ Create a table, but ensure that the correct columns exist. In particular, this allows for entires with zero as a value, which is not the default for standard tables } \author{ Matt Owen } Zelig/man/PErisk.Rd0000644000176000001440000000555713245253057013635 0ustar ripleyusers\name{PErisk} \alias{PErisk} \title{Political Economic Risk Data from 62 Countries in 1987} \description{ Political Economic Risk Data from 62 Countries in 1987. } \usage{data(PErisk)} \format{ A data frame with 62 observations on the following 6 variables. All data points are from 1987. See Quinn (2004) for more details. country: a factor with levels 'Argentina' 'Australia' 'Austria' 'Bangladesh' 'Belgium' 'Bolivia' 'Botswana' 'Brazil' 'Burma' 'Cameroon' 'Canada' 'Chile' 'Colombia' 'Congo-Kinshasa' 'Costa Rica' 'Cote d'Ivoire' 'Denmark' 'Dominican Republic' 'Ecuador' 'Finland' 'Gambia, The' 'Ghana' 'Greece' 'Hungary' 'India' 'Indonesia' 'Iran' 'Ireland' 'Israel' 'Italy' 'Japan' 'Kenya' 'Korea, South' 'Malawi' 'Malaysia' 'Mexico' 'Morocco' 'New Zealand' 'Nigeria' 'Norway' 'Papua New Guinea' 'Paraguay' 'Philippines' 'Poland' 'Portugal' 'Sierra Leone' 'Singapore' 'South Africa' 'Spain' 'Sri Lanka' 'Sweden' 'Switzerland' 'Syria' 'Thailand' 'Togo' 'Tunisia' 'Turkey' 'United Kingdom' 'Uruguay' 'Venezuela' 'Zambia' 'Zimbabwe' courts: an ordered factor with levels '0' < '1'.'courts' is an indicator of whether the country in question is judged to have an independent judiciary. From Henisz (2002). barb2: a numeric vector giving the natural log of the black market premium in each country. The black market premium is coded as the black market exchange rate (local currency per dollar) divided by the official exchange rate minus 1. From Marshall, Gurr, and Harff (2002). prsexp2: an ordered factor with levels '0' < '1' < '2' < '3' < '4' < '5', giving the lack of expropriation risk. From Marshall, Gurr, and Harff (2002). prscorr2: an ordered factor with levels '0' < '1' < '2' < '3' < '4' < '5', measuring the lack of corruption. From Marshall, Gurr, and Harff (2002). gdpw2: a numeric vector giving the natural log of real GDP per worker in 1985 international prices. From Alvarez et al. (1999). } \source{ Mike Alvarez, Jose Antonio Cheibub, Fernando Limongi, and Adam Przeworski. 1999. ``ACLP Political and Economic Database.'' . Witold J. Henisz. 2002. ``The Political Constraint Index (POLCON) Dataset.'' \ . Monty G. Marshall, Ted Robert Gurr, and Barbara Harff. 2002. ``State Failure Task Force Problem Set.'' . } \references{ Kevin M. Quinn. 2004. ``Bayesian Factor Analysis for Mixed Ordinal and Continuous Response.'' \emph{Political Analyis}. Vol. 12, pp.338--353. } \keyword{datasets} Zelig/man/Zelig-negbin-class.Rd0000644000176000001440000000654113245253057016047 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-negbinom.R \docType{class} \name{Zelig-negbin-class} \alias{Zelig-negbin-class} \alias{znegbin} \title{Negative Binomial Regression for Event Count Dependent Variables} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Negative Binomial Regression for Event Count Dependent Variables } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \section{Methods}{ \describe{ \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} \examples{ library(Zelig) data(sanction) z.out <- zelig(num ~ target + coop, model = "negbin", data = sanction) summary(z.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_negbin.html} } Zelig/man/mi.Rd0000644000176000001440000000061013245253057013026 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{mi} \alias{mi} \title{Enables backwards compatability for preparing non-amelia imputed data sets for \code{zelig}.} \usage{ mi(...) } \arguments{ \item{...}{a set of \code{data.frame}'s} } \value{ an \code{mi} object composed of a list of data frames. } \description{ See \code{\link{to_zelig_mi}} } Zelig/man/Zelig-logit-gee-class.Rd0000644000176000001440000000732413245253057016461 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-logit-gee.R \docType{class} \name{Zelig-logit-gee-class} \alias{Zelig-logit-gee-class} \alias{zlogitgee} \title{Generalized Estimating Equation for Logit Regression} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{id:}{where id is a variable which identifies the clusters. The data should be sorted by \code{id} and should be ordered within each cluster when appropriate} \item{corstr:}{character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"} \item{geeglm:}{See geeglm in package geepack for other function arguments} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Generalized Estimating Equation for Logit Regression } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \examples{ data(turnout) turnout$cluster <- rep(c(1:200), 10) sorted.turnout <- turnout[order(turnout$cluster),] z.out1 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster", data = sorted.turnout) summary(z.out1) x.out1 <- setx(z.out1) s.out1 <- sim(z.out1, x = x.out1) summary(s.out1) plot(s.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_logitgee.html} } Zelig/man/plot-Zelig-ANY-method.Rd0000644000176000001440000000065013245253057016356 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-zelig.R \docType{methods} \name{plot,Zelig,ANY-method} \alias{plot,Zelig,ANY-method} \title{Plot method for Zelig objects} \usage{ \S4method{plot}{Zelig,ANY}(x, y, ...) } \arguments{ \item{x}{An Object of Class Zelig} \item{y}{unused} \item{...}{Additional parameters to be passed to plot} } \description{ Plot method for Zelig objects } Zelig/man/grunfeld.Rd0000644000176000001440000000122113245253057014226 0ustar ripleyusers\name{grunfeld} \alias{grunfeld} \title{Simulation Data for model Seemingly Unrelated Regression (sur) that corresponds to method SUR of systemfit} \description{ Dataframe contains 20 annual observations from 1935 to 1954 of 7 variables for two firms General Electric and Westinghouse. Columns are Year; Ige and Iw = Gross investment for GE and W,respectively; Fge and Fw=Market value of Firm as of begin of the year; Cge and Cw= Capital stock measure as of begin of the year. } \usage{data(grunfeld)} \format{ A table containing 7 variables ("Year", "Ige", "Fge", "Cge","Iw", "Fw","Cw") and 20 observations. } \keyword{datasets} Zelig/man/zelig_qi_to_df.Rd0000644000176000001440000000551213245253057015405 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/interface.R \name{zelig_qi_to_df} \alias{zelig_qi_to_df} \title{Extract simulated quantities of interest from a zelig object} \source{ For a discussion of tidy data see \url{https://www.jstatsoft.org/article/view/v059i10}. } \usage{ zelig_qi_to_df(obj) } \arguments{ \item{obj}{a zelig object with simulated quantities of interest} } \description{ Extract simulated quantities of interest from a zelig object } \details{ A simulated quantities of interest in a tidy data formatted \code{data.frame}. This can be useful for creating custom plots. Each row contains a simulated value and each column contains: \itemize{ \item \code{setx_value} whether the simulations are from the base \code{x} \code{setx} or the contrasting \code{x1} for finding first differences. \item The fitted values specified in \code{setx} including a \code{by} column if \code{by} was used in the \code{\link{zelig}} call. \item \code{expected_value} \item \code{predicted_value} } For multinomial reponse models, a separate column is given for the expected probability of each outcome in the form \code{expected_*}. Additionally, there a is column of the predicted outcomes (\code{predicted_value}). } \examples{ #### QIs without first difference or range, from covariates fitted at ## central tendencies z.1 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") z.1 <- setx(z.1) z.1 <- sim(z.1) head(zelig_qi_to_df(z.1)) #### QIs for first differences z.2 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") z.2a <- setx(z.2, Petal.Length = 2) z.2b <- setx(z.2, Petal.Length = 4.4) z.2 <- sim(z.2, x = z.2a, x1 = z.2a) head(zelig_qi_to_df(z.2)) #### QIs for first differences, estimated by Species z.3 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris, model = "ls") z.3a <- setx(z.3, Petal.Length = 2) z.3b <- setx(z.3, Petal.Length = 4.4) z.3 <- sim(z.3, x = z.3a, x1 = z.3a) head(zelig_qi_to_df(z.3)) #### QIs for a range of fitted values z.4 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") z.4 <- setx(z.4, Petal.Length = 2:4) z.4 <- sim(z.4) head(zelig_qi_to_df(z.4)) #### QIs for a range of fitted values, estimated by Species z.5 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris, model = "ls") z.5 <- setx(z.5, Petal.Length = 2:4) z.5 <- sim(z.5) head(zelig_qi_to_df(z.5)) #### QIs for two ranges of fitted values z.6 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") z.6a <- setx(z.6, Petal.Length = 2:4, Species = "setosa") z.6b <- setx(z.6, Petal.Length = 2:4, Species = "virginica") z.6 <- sim(z.6, x = z.6a, x1 = z.6b) head(zelig_qi_to_df(z.6)) } \seealso{ \code{\link{qi_slimmer}} } \author{ Christopher Gandrud } Zelig/man/get_pvalue.Rd0000644000176000001440000000054413245253057014562 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/wrappers.R \name{get_pvalue} \alias{get_pvalue} \title{Extract p-values from a Zelig estimated model} \usage{ get_pvalue(object) } \arguments{ \item{object}{an object of class Zelig} } \description{ Extract p-values from a Zelig estimated model } \author{ Christopher Gandrud } Zelig/man/to_zelig_mi.Rd0000644000176000001440000000201313245253057014721 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{to_zelig_mi} \alias{to_zelig_mi} \title{Bundle Multiply Imputed Data Sets into an Object for Zelig} \usage{ to_zelig_mi(...) } \arguments{ \item{...}{a set of \code{data.frame}'s or a single list of \code{data.frame}'s} } \value{ an \code{mi} object composed of a list of data frames. } \description{ This object prepares multiply imputed data sets so they can be used by \code{zelig}. } \note{ This function creates a list of \code{data.frame} objects, which resembles the storage of imputed data sets in the \code{amelia} object. } \examples{ # create datasets n <- 100 x1 <- runif(n) x2 <- runif(n) y <- rnorm(n) data.1 <- data.frame(y = y, x = x1) data.2 <- data.frame(y = y, x = x2) # merge datasets into one object as if imputed datasets mi.out <- to_zelig_mi(data.1, data.2) # pass object in place of data argument z.out <- zelig(y ~ x, model = "ls", data = mi.out) } \author{ Matt Owen, James Honaker, and Christopher Gandrud } Zelig/man/zelig_setx_to_df.Rd0000644000176000001440000000372613245253057015764 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/interface.R \name{zelig_setx_to_df} \alias{zelig_setx_to_df} \title{Extracted fitted values from a Zelig object with \code{setx} values} \usage{ zelig_setx_to_df(obj) } \arguments{ \item{obj}{a zelig object with simulated quantities of interest} } \description{ Extracted fitted values from a Zelig object with \code{setx} values } \details{ Fitted (\code{setx}) values in a tidy data formatted \code{data.frame}. This was designed to enable the WhatIf package's \code{whatif} function to extract "counterfactuals". } \examples{ #### QIs without first difference or range, from covariates fitted at ## central tendencies z.1 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") z.1 <- setx(z.1) zelig_setx_to_df(z.1) #### QIs for first differences z.2 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") z.2 <- setx(z.2, Petal.Length = 2) z.2 <- setx1(z.2, Petal.Length = 4.4) zelig_setx_to_df(z.2) #### QIs for first differences, estimated by Species z.3 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris, model = "ls") z.3 <- setx(z.3, Petal.Length = 2) z.3 <- setx1(z.3, Petal.Length = 4.4) zelig_setx_to_df(z.3) #### QIs for a range of fitted values z.4 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") z.4 <- setx(z.4, Petal.Length = 2:4) zelig_setx_to_df(z.4) #### QIs for a range of fitted values, estimated by Species z.5 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris, model = "ls") z.5 <- setx(z.5, Petal.Length = 2:4) zelig_setx_to_df(z.5) #### QIs for two ranges of fitted values z.6 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") z.6 <- setx(z.6, Petal.Length = 2:4, Species = "setosa") z.6 <- setx1(z.6, Petal.Length = 2:4, Species = "virginica") zelig_setx_to_df(z.6) } \author{ Christopher Gandrud } Zelig/man/Zelig-normal-class.Rd0000644000176000001440000001071213245253057016070 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-normal.R \docType{class} \name{Zelig-normal-class} \alias{Zelig-normal-class} \alias{znormal} \title{Normal Regression for Continuous Dependent Variables} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{below}{(defaults to 0) The point at which the dependent variable is censored from below. If any values in the dependent variable are observed to be less than the censoring point, it is assumed that that particular observation is censored from below at the observed value. (See for a Bayesian implementation that supports both left and right censoring.)} \item{robust}{defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators (see and ) and the options selected in cluster.} \item{if}{robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", model = "tobit", data = mydata) means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.} \item{formula}{a model fitting formula} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Normal Regression for Continuous Dependent Variables } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \examples{ data(macro) z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "normal", data = macro) summary(z.out1) x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8)) x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2)) s.out1 <- sim(z.out1, x = x.high, x1 = x.low) summary(s.out1) plot(s.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_normal.html} } Zelig/man/zelig_mutate.Rd0000644000176000001440000000100213245253057015106 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{zelig_mutate} \alias{zelig_mutate} \title{Zelig Copy of plyr::mutate to avoid namespace conflict with dplyr} \source{ Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical Software, 40(1), 1-29. URL \url{http://www.jstatsoft.org/v40/i01/}. } \usage{ zelig_mutate(.data, ...) } \description{ Zelig Copy of plyr::mutate to avoid namespace conflict with dplyr } \keyword{internal} Zelig/man/get_qi.Rd0000644000176000001440000000150613245253057013676 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/wrappers.R \name{get_qi} \alias{get_qi} \title{Extract quantities of interest from a Zelig simulation} \usage{ get_qi(object, qi = "ev", xvalue = "x", subset = NULL) } \arguments{ \item{object}{an object of class Zelig} \item{qi}{character string with the name of quantity of interest desired: \code{"ev"} for expected values, \code{"pv"} for predicted values or \code{"fd"} for first differences.} \item{xvalue}{chracter string stating which of the set of values of \code{x} should be used for getting the quantity of interest.} \item{subset}{subset for multiply imputed data (only relevant if multiply imputed data is supplied in the original call.)} } \description{ Extract quantities of interest from a Zelig simulation } \author{ Christopher Gandrud } Zelig/man/Zelig-survey-class.Rd0000644000176000001440000000101213245253057016126 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-survey.R \docType{class} \name{Zelig-survey-class} \alias{Zelig-survey-class} \alias{zsurvey} \title{Survey models in Zelig for weights for complex sampling designs} \description{ Survey models in Zelig for weights for complex sampling designs } \section{Methods}{ \describe{ \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} Zelig/man/is_simsx.Rd0000644000176000001440000000067113245253057014266 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assertions.R \name{is_simsx} \alias{is_simsx} \title{Check if simulations for individual values are present in sim.out} \usage{ is_simsx(x, fail = TRUE) } \arguments{ \item{x}{a sim.out method} \item{fail}{logical whether to return an error if simulation range is not present.} } \description{ Check if simulations for individual values are present in sim.out } Zelig/man/summary-Zelig-method.Rd0000644000176000001440000000064313245253057016452 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-zelig.R \docType{methods} \name{summary,Zelig-method} \alias{summary,Zelig-method} \title{Summary method for Zelig objects} \usage{ \S4method{summary}{Zelig}(object, ...) } \arguments{ \item{object}{An Object of Class Zelig} \item{...}{Additional parameters to be passed to summary} } \description{ Summary method for Zelig objects } Zelig/man/setx1.Rd0000644000176000001440000000465513245253057013502 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/wrappers.R \name{setx1} \alias{setx1} \title{Setting Explanatory Variable Values for First Differences} \usage{ setx1(obj, fn = NULL, data = NULL, cond = FALSE, ...) } \arguments{ \item{obj}{output object from \code{\link{zelig}}} \item{fn}{a list of functions to apply to the data frame} \item{data}{a new data frame used to set the values of explanatory variables. If \code{data = NULL} (the default), the data frame called in \code{\link{zelig}} is used} \item{cond}{a logical value indicating whether unconditional (default) or conditional (choose \code{cond = TRUE}) prediction should be performed. If you choose \code{cond = TRUE}, \code{setx1} will coerce \code{fn = NULL} and ignore the additional arguments in \code{\dots}. If \code{cond = TRUE} and \code{data = NULL}, \code{setx1} will prompt you for a data frame.} \item{...}{user-defined values of specific variables for overwriting the default values set by the function \code{fn}. For example, adding \code{var1 = mean(data\$var1)} or \code{x1 = 12} explicitly sets the value of \code{x1} to 12. In addition, you may specify one explanatory variable as a range of values, creating one observation for every unique value in the range of values} } \value{ The output is returned in a field to the Zelig object. For unconditional prediction, \code{x.out} is a model matrix based on the specified values for the explanatory variables. For multiple analyses (i.e., when choosing the \code{by} option in \code{\link{zelig}}, \code{setx1} returns the selected values calculated over the entire data frame. If you wish to calculate values over just one subset of the data frame, the 5th subset for example, you may use: \code{x.out <- setx(z.out[[5]])} } \description{ This documentation describes the \code{setx1} Zelig 4 compatibility wrapper function. The wrapper is primarily useful for setting fitted values for creating first differences in piped workflows. } \examples{ library(dplyr) # contains pipe operator \%>\% data(turnout) # plot first differences zelig(Fertility ~ Education, data = swiss, model = 'ls') \%>\% setx(z4, Education = 10) \%>\% setx1(z4, Education = 30) \%>\% sim() \%>\% plot() } \seealso{ The full Zelig manual may be accessed online at \url{http://docs.zeligproject.org/articles/} } \author{ Christopher Gandrud, Matt Owen, Olivia Lau, Kosuke Imai } \keyword{file} Zelig/man/Zelig-ar-class.Rd0000644000176000001440000000747013245253057015211 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-ar.R \docType{class} \name{Zelig-ar-class} \alias{Zelig-ar-class} \alias{zar} \title{Time-Series Model with Autoregressive Disturbance} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. For example, to run the same model on all fifty states, you could use: \code{z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', by = 'state')} You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{ts}{The name of the variable containing the time indicator. This should be passed in as a string. If this variable is not provided, Zelig will assume that the data is already ordered by time.} \item{cs}{Name of a variable that denotes the cross-sectional element of the data, for example, country name in a dataset with time-series across different countries. As a variable name, this should be in quotes. If this is not provided, Zelig will assume that all observations come from the same unit over time, and should be pooled, but if provided, individual models will be run in each cross-section. If \code{cs} is given as an argument, \code{ts} must also be provided. Additionally, \code{by} must be \code{NULL}.} \item{order}{A vector of length 3 passed in as \code{c(p,d,q)} where p represents the order of the autoregressive model, d represents the number of differences taken in the model, and q represents the order of the moving average model.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Warning: \code{summary} does not work with timeseries models after simulation. } \details{ Currently only the Reference class syntax for time series. This model does not accept Bootstraps or weights. } \examples{ data(seatshare) subset <- seatshare[seatshare$country == "UNITED KINGDOM",] ts.out <- zelig(formula = unemp ~ leftseat, model = "ar", ts = "year", data = subset) summary(ts.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_ar.html} } Zelig/man/MatchIt.url.Rd0000644000176000001440000000027713245253057014564 0ustar ripleyusers\name{MatchIt.url} \alias{MatchIt.url} \title{Table of links for Zelig} \description{ Table of links for \code{help.zelig} for the companion MatchIt package. } \keyword{datasets} Zelig/man/coalition2.Rd0000644000176000001440000000215113245253057014466 0ustar ripleyusers\name{coalition2} \alias{coalition2} \docType{data} \title{Coalition Dissolution in Parliamentary Democracies, Modified Version} \description{ This data set contains survival data on government coalitions in parliamentary democracies (Belgium, Canada, Denmark, Finland, France, Iceland, Ireland, Israel, Italy, Netherlands, Norway, Portugal, Spain, Sweden, and the United Kingdom) for the period 1945-1987. Country indicator variables are included in the sample data. } \usage{data(coalition2)} \format{ A data frame containing 8 variables ("duration", "ciep12", "invest", "fract", "polar", "numst2", "crisis", "country") and 314 observations. For variable descriptions, please refer to King, Alt, Burns and Laver (1990). } \source{ICPSR} \references{ King, Gary, James E. Alt, Nancy Elizabeth Burns and Michael Laver (1990). ``A Unified Model of Cabinet Dissolution in Parliamentary Democracies,'' \emph{American Journal of Political Science}, vol. 34, no. 3, pp. 846-870. Gary King, James E. Alt, Nancy Burns, and Michael Laver. ICPSR Publication Related Archive, 1115. } \keyword{datasets} Zelig/man/Zelig-normal-gee-class.Rd0000644000176000001440000001045713245253057016634 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-normal-gee.R \docType{class} \name{Zelig-normal-gee-class} \alias{Zelig-normal-gee-class} \alias{znormalgee} \title{Generalized Estimating Equation for Normal Regression} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{robust}{defaults to TRUE. If TRUE, consistent standard errors are estimated using a "sandwich" estimator.} \item{corstr}{defaults to "independence". It can take on the following arguments:} \item{Independence}{(corstr = independence): cor(yit,yit')=0, for all t,t' with t not equal to t'. It assumes that there is no correlation within the clusters and the model becomes equivalent to standard normal regression. The "working" correlation matrix is the identity matrix.} \item{Fixed}{corstr = fixed): If selected, the user must define the "working" correlation matrix with the R argument rather than estimating it from the model.} \item{id:}{where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered within each cluster when appropriate} \item{corstr:}{character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"} \item{geeglm:}{See geeglm in package geepack for other function arguments} \item{Mv:}{defaults to 1. It specifies the number of periods of correlation and only needs to be specified when \code{corstr} is stat_M_dep, non_stat_M_dep, or AR-M.} \item{R:}{defaults to NULL. It specifies a user-defined correlation matrix rather than estimating it from the data. The argument is used only when corstr is "fixed". The input is a TxT matrix of correlations, where T is the size of the largest cluster.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Generalized Estimating Equation for Normal Regression } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. } } \examples{ library(Zelig) data(macro) z.out <- zelig(unem ~ gdp + capmob + trade, model ="normal.gee", id = "country", data = macro, corstr = "AR-M") summary(z.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_normalgee.html} } Zelig/man/reduce.Rd0000644000176000001440000000144713245253057013701 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{reduce} \alias{reduce} \title{Calculate the reduced dataset to be used in \code{\link{setx}}} \usage{ reduce(dataset, s, formula, data, avg = avg) } \arguments{ \item{dataset}{Zelig object data, possibly split to deal with \code{by} argument} \item{s}{list of variables and their tentative \code{setx} values} \item{formula}{a simplified version of the Zelig object formula (typically with 1 on the lhs)} \item{data}{Zelig object data} \item{avg}{function of data transformations} } \value{ a list of all the model variables either at their central tendancy or their \code{setx} value } \description{ #' This method is used internally } \author{ Christine Choirat and Christopher Gandrud } \keyword{internal} Zelig/man/or_summary.Rd0000644000176000001440000000114613245253057014623 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{or_summary} \alias{or_summary} \title{Find odds ratios for coefficients and standard errors for glm.summary class objects} \usage{ or_summary(obj, label_mod_coef = "(OR)", label_mod_se = "(OR)") } \arguments{ \item{obj}{a \code{glm.summary} class object} \item{label_mod_coef}{character string for how to modify the coefficient label.} \item{label_mod_se}{character string for how to modify the standard error label.} } \description{ Find odds ratios for coefficients and standard errors for glm.summary class objects } Zelig/man/vcov_rq.Rd0000644000176000001440000000045213245253057014104 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{vcov_rq} \alias{vcov_rq} \title{Find vcov for quantile regression models} \usage{ vcov_rq(obj) } \arguments{ \item{obj}{a \code{rq} class object.} } \description{ Find vcov for quantile regression models } Zelig/man/Zelig-timeseries-class.Rd0000644000176000001440000000121113245253057016743 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-timeseries.R \docType{class} \name{Zelig-timeseries-class} \alias{Zelig-timeseries-class} \alias{ztimeseries} \title{Time-series models in Zelig} \description{ Time-series models in Zelig } \section{Methods}{ \describe{ \item{\code{packagename()}}{Automatically retrieve wrapped package name} \item{\code{sim(num = NULL)}}{Generic Method for Computing and Organizing Simulated Quantities of Interest} \item{\code{zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)}}{The zelig function estimates a variety of statistical models} }} Zelig/man/CigarettesSW.Rd0000644000176000001440000000076413245253057014777 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datasets.R \docType{data} \name{CigarettesSW} \alias{CigarettesSW} \title{Cigarette Consumption Panel Data} \format{A data set with 96 observations and 9 variables} \source{ From Christian Kleiber and Achim Zeileis (2008). Applied Econometrics with R. New York: Springer-Verlag. ISBN 978-0-387-77316-2. URL \url{https://CRAN.R-project.org/package=AER} } \description{ Cigarette Consumption Panel Data } \keyword{datasets} Zelig/man/get_se.Rd0000644000176000001440000000054613245253057013677 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/wrappers.R \name{get_se} \alias{get_se} \title{Extract standard errors from a Zelig estimated model} \usage{ get_se(object) } \arguments{ \item{object}{an object of class Zelig} } \description{ Extract standard errors from a Zelig estimated model } \author{ Christopher Gandrud } Zelig/man/zelig.Rd0000644000176000001440000000700413245253057013537 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/wrappers.R \name{zelig} \alias{zelig} \title{Estimating a Statistical Model} \usage{ zelig(formula, model, data, ..., by = NULL, cite = TRUE) } \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y \~\, x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. For example, to run the same model on all fifty states, you could use: \code{z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', by = 'state')} You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ The zelig function estimates a variety of statistical models. Use \code{zelig} output with \code{setx} and \code{sim} to compute quantities of interest, such as predicted probabilities, expected values, and first differences, along with the associated measures of uncertainty (standard errors and confidence intervals). } \details{ This documentation describes the \code{zelig} Zelig 4 compatibility wrapper function. Additional parameters avaialable to many models include: \itemize{ \item weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item bootstrap: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \seealso{ \url{http://docs.zeligproject.org/articles/} } \author{ Matt Owen, Kosuke Imai, Olivia Lau, and Gary King } Zelig/man/newpainters.Rd0000644000176000001440000000222113245253057014760 0ustar ripleyusers\name{newpainters} \alias{newpainters} \title{The Discretized Painter's Data of de Piles} \description{ The original painters data contain the subjective assessment, on a 0 to 20 integer scale, of 54 classical painters. The newpainters data discretizes the subjective assessment by quartiles with thresholds 25\%, 50\%, 75\%. The painters were assessed on four characteristics: composition, drawing, colour and expression. The data is due to the Eighteenth century art critic, de Piles. } \usage{data(newpainters)} \format{A table containing 5 variables ("Composition", "Drawing", "Colour", "Expression", and "School") and 54 observations.} \source{ A. J. Weekes (1986).``A Genstat Primer''. Edward Arnold. M. Davenport and G. Studdert-Kennedy (1972). ``The statistical analysis of aesthetic judgement: an exploration.'' \emph{Applied Statistics}, vol. 21, pp. 324--333. I. T. Jolliffe (1986) ``Principal Component Analysis.'' Springer. } \references{ Venables, W. N. and Ripley, B. D. (2002) ``Modern Applied Statistics with S,'' Fourth edition. Springer. } \keyword{datasets} Zelig/man/from_zelig_model.Rd0000644000176000001440000000144113245253057015741 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/interface.R \name{from_zelig_model} \alias{from_zelig_model} \title{Extract the original fitted model object from a \code{zelig} estimation} \usage{ from_zelig_model(obj) } \arguments{ \item{obj}{a zelig object with an estimated model} } \description{ Extract the original fitted model object from a \code{zelig} estimation } \details{ Extracts the original fitted model object from a \code{zelig} estimation. This can be useful for passing output to non-Zelig post-estimation functions and packages such as texreg and stargazer for creating well-formatted presentation document tables. } \examples{ z5 <- zls$new() z5$zelig(Fertility ~ Education, data = swiss) from_zelig_model(z5) } \author{ Christopher Gandrud } Zelig/man/hoff.Rd0000644000176000001440000000135713245253057013354 0ustar ripleyusers\name{hoff} \alias{hoff} \title{Social Security Expenditure Data} \description{ This data set contains annual social security expenditure (as percent of budget lagged by two years), the relative frequency of mentions social justice received in the party's platform in each year, and whether the president is Republican or Democrat. } \usage{data(hoff)} \format{A table containing 5 variables ("year", "L2SocSec", "Just503D", "Just503R", "RGovDumy") and 36 observations.} \source{ICPSR (replication dataset s1109)} \references{ Gary King and Michael Laver. ``On Party Platforms, Mandates, and Government Spending,'' \emph{American Political Science Review}, Vol. 87, No. 3 (September, 1993): pp. 744-750. } \keyword{datasets} Zelig/man/friendship.Rd0000644000176000001440000000144413245253057014562 0ustar ripleyusers\name{friendship} \alias{friendship} \title{Simulated Example of Schoolchildren Friendship Network} \description{ This data set contains six sociomatrices of simulated data on friendship ties among schoolchildren.} \usage{data(friendship)} \format{ Each variable in the dataset is a 15 by 15 matrix representing some form of social network tie held by the fictitious children. The matrices are labeled "friends", "advice", "prestige", "authority", "perpower" and "per". The sociomatrices were combined into the friendship dataset using the format.network.data function from the netglm package by Skyler Cranmer as shown in the example. } \source{fictitious} \examples{ \dontrun{ friendship <- format.network.data(friends, advice, prestige, authority, perpower, per) }} \keyword{datasets} Zelig/man/avg.Rd0000644000176000001440000000057413245253057013207 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{avg} \alias{avg} \title{Compute central tendancy as approrpriate to data type} \usage{ avg(val) } \arguments{ \item{val}{a vector of values} } \value{ a mean (if numeric) or a median (if ordered) or mode (otherwise) } \description{ Compute central tendancy as approrpriate to data type } Zelig/man/Zelig-gamma-class.Rd0000644000176000001440000000623413245253057015666 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-gamma.R \docType{class} \name{Zelig-gamma-class} \alias{Zelig-gamma-class} \alias{zgamma} \title{Gamma Regression for Continuous, Positive Dependent Variables} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Gamma Regression for Continuous, Positive Dependent Variables } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \examples{ library(Zelig) data(coalition) z.out <- zelig(duration ~ fract + numst2, model = "gamma", data = coalition) summary(z.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_gamma.html} } Zelig/man/is_sims_present.Rd0000644000176000001440000000064513245253057015637 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assertions.R \name{is_sims_present} \alias{is_sims_present} \title{Check if any simulations are present in sim.out} \usage{ is_sims_present(x, fail = TRUE) } \arguments{ \item{x}{a sim.out method} \item{fail}{logical whether to return an error if no simulations are present.} } \description{ Check if any simulations are present in sim.out } Zelig/man/Zelig-normal-bayes-class.Rd0000644000176000001440000001162713245253057017177 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-normal-bayes.R \docType{class} \name{Zelig-normal-bayes-class} \alias{Zelig-normal-bayes-class} \alias{znormalbayes} \title{Bayesian Normal Linear Regression} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Bayesian Normal Linear Regression } \details{ Additional parameters avaialable to many models include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1. \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is printed to the screen. \item \code{seed}: seed for the random number generator. The default is \code{NA} which corresponds to a random seed of 12345. \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is \code{NA}, such that the maximum likelihood estimates are used as the starting values. } Use the following parameters to specify the model's priors: \itemize{ \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0. \item \code{B0}: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior. \item \code{c0}: c0/2 is the shape parameter for the Inverse Gamma prior on the variance of the disturbance terms. \item \code{d0}: d0/2 is the scale parameter for the Inverse Gamma prior on the variance of the disturbance terms. } } \examples{ data(macro) z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.bayes", data = macro, verbose = FALSE) data(macro) z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.bayes", data = macro, verbose = FALSE) z.out$geweke.diag() z.out$heidel.diag() z.out$raftery.diag() summary(z.out) x.out <- setx(z.out) s.out1 <- sim(z.out, x = x.out) summary(s.out1) x.high <- setx(z.out, trade = quantile(macro$trade, prob = 0.8)) x.low <- setx(z.out, trade = quantile(macro$trade, prob = 0.2)) s.out2 <- sim(z.out, x = x.high, x1 = x.low) summary(s.out2) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_normalbayes.html} } Zelig/man/swiss.Rd0000644000176000001440000000272513245253057013602 0ustar ripleyusers\name{swiss} \alias{swiss} \title{Swiss Fertility and Socioeconomic Indicators (1888) Data} \description{ Standardized fertility measure and socio-economic indicators for each of 47 French-speaking provinces of Switzerland at about 1888. } \usage{data(swiss)} \format{ A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0,100]. [,1] Fertility Ig, "common standardized fertility measure" [,2] Agriculture % of males involved in agriculture as occupation [,3] Examination % "draftees" receiving highest mark on army exami nation [,4] Education % education beyond primary school for "draftees". [,5] Catholic % catholic (as opposed to "protestant"). [,6] Infant.Mortality live births who live less than 1 year. All variables but 'Fert' give proportions of the population. } \source{ Project "16P5", pages 549-551 in Mosteller, F. and Tukey, J. W. (1977) ``Data Analysis and Regression: A Second Course in Statistics''. Addison-Wesley, Reading Mass. indicating their source as "Data used by permission of Franice van de Walle. Office of Population Research, Princeton University, 1976. Unpublished data assembled under NICHD contract number No 1-HD-O-2077." } \references{ Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) ``The New S Language''. Wadsworth & Brooks/Cole. } \keyword{datasets} Zelig/man/transformer.Rd0000644000176000001440000000162313245253057014770 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{transformer} \alias{transformer} \title{Conduct variable transformations called inside a \code{zelig} call} \usage{ transformer(formula, data, FUN = "log", check, f_out, d_out) } \arguments{ \item{formula}{model formulae} \item{data}{data frame used in \code{formula}} \item{FUN}{character string of the transformation function. Currently supports \code{factor} and \code{log}.} \item{check}{logical whether to just check if a formula contains an internally called transformation and return \code{TRUE} or \code{FALSE}} \item{f_out}{logical whether to return the converted formula} \item{d_out}{logical whether to return the converted data frame. Note: \code{f_out} must be missing} } \description{ Conduct variable transformations called inside a \code{zelig} call } \author{ Christopher Gandrud } \keyword{internal} Zelig/man/turnout.Rd0000644000176000001440000000145313245253057014147 0ustar ripleyusers\name{turnout} \alias{turnout} \title{Turnout Data Set from the National Election Survey} \description{ This data set contains individual-level turnout data. It pools several American National Election Surveys conducted during the 1992 presidential election year. Only the first 2,000 observations (from a total of 15,837 observations) are included in the sample data. } \usage{data(turnout)} \format{A table containing 5 variables ("race", "age", "educate", "income", and "vote") and 2,000 observations.} \source{National Election Survey} \references{ King, Gary, Michael Tomz, Jason Wittenberg (2000). ``Making the Most of Statistical Analyses: Improving Interpretation and Presentation,'' \emph{American Journal of Political Science}, vol. 44, pp.341--355. } \keyword{datasets} Zelig/man/Zelig-gamma-gee-class.Rd0000644000176000001440000000763213245253057016427 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-gamma-gee.R \docType{class} \name{Zelig-gamma-gee-class} \alias{Zelig-gamma-gee-class} \alias{zgammagee} \title{Generalized Estimating Equation for Gamma Regression} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{corstr:character}{string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"} \item{See}{geeglm in package geepack for other function arguments.} \item{id:}{where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered within each cluster when appropriate} \item{corstr:}{character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"} \item{geeglm:}{See geeglm in package geepack for other function arguments} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Generalized Estimating Equation for Gamma Regression } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \examples{ library(Zelig) data(coalition) coalition$cluster <- c(rep(c(1:62), 5),rep(c(63), 4)) sorted.coalition <- coalition[order(coalition$cluster),] z.out <- zelig(duration ~ fract + numst2, model = "gamma.gee",id = "cluster", data = sorted.coalition,corstr = "exchangeable") summary(z.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_gammagee.html} } Zelig/man/Zelig-binchoice-survey-class.Rd0000644000176000001440000000065413245253057020062 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-binchoice-survey.R \docType{class} \name{Zelig-binchoice-survey-class} \alias{Zelig-binchoice-survey-class} \alias{zbinchoicesurvey} \title{Object for Binary Choice outcomes with Survey Weights for inheritance across models in Zelig} \description{ Object for Binary Choice outcomes with Survey Weights for inheritance across models in Zelig } Zelig/man/Zelig-probit-gee-class.Rd0000644000176000001440000000752013245253057016640 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-probit-gee.R \docType{class} \name{Zelig-probit-gee-class} \alias{Zelig-probit-gee-class} \alias{zprobitgee} \title{Generalized Estimating Equation for Probit Regression} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{corstr:character}{string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"} \item{See}{geeglm in package geepack for other function arguments.} \item{id:}{where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered within each cluster when appropriate} \item{corstr:}{character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"} \item{geeglm:}{See geeglm in package geepack for other function arguments} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Generalized Estimating Equation for Probit Regression } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \examples{ data(turnout) turnout$cluster <- rep(c(1:200), 10) sorted.turnout <- turnout[order(turnout$cluster),] z.out1 <- zelig(vote ~ race + educate, model = "probit.gee", id = "cluster", data = sorted.turnout) summary(z.out1) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_probitgee.html} } Zelig/man/summary.Arima.Rd0000644000176000001440000000062213245253057015151 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-timeseries.R \name{summary.Arima} \alias{summary.Arima} \title{Summary of an object of class Arima} \usage{ \method{summary}{Arima}(object, ...) } \arguments{ \item{object}{An object of class Arima} \item{...}{Additional parameters} } \value{ The original object } \description{ Summary of an object of class Arima } Zelig/man/Zelig-probit-class.Rd0000644000176000001440000000532513245253057016103 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-probit.R \docType{class} \name{Zelig-probit-class} \alias{Zelig-probit-class} \alias{zprobit} \title{Probit Regression for Dichotomous Dependent Variables} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} } \description{ Probit Regression for Dichotomous Dependent Variables } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{bootstrap}: logical or numeric. If \code{FALSE} don't use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of boostraps to run. For more information see: \url{http://docs.zeligproject.org/articles/bootstraps.html}. } } \examples{ data(turnout) z.out <- zelig(vote ~ race + educate, model = "probit", data = turnout) summary(z.out) x.out <- setx(z.out) s.out <- sim(z.out, x = x.out) summary(s.out) plot(s.out) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_probit.html} } Zelig/man/immigration.Rd0000644000176000001440000000156213245253057014747 0ustar ripleyusers\name{immigration} \alias{immigration} \alias{immi1} \alias{immi2} \alias{immi3} \alias{immi4} \alias{immi5} \title{Individual Preferences Over Immigration Policy} \description{These five datasets are part of a larger set of 10 multiply imputed data sets describing individual preferences toward immigration policy. Imputation was performed via Amelia. } \format{ Each multiply-inputed data set consists of a table with 7 variables ("ipip", "wage1992", "prtyid", "ideol", "gender") and 2,485 observations. For variable descriptions, please refer to Scheve and Slaugher, 2001. } \source{National Election Survey} \references{ Scheve, Kenneth and Matthew Slaughter (2001). ``Labor Market Competition and Individual Preferences Over Immigration Policy,'' \emph{The Review of Economics and Statistics}, vol. 83, no. 1, pp. 133-145. } \keyword{datasets} Zelig/man/Zelig-tobit-bayes-class.Rd0000644000176000001440000001230213245253057017017 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model-tobit-bayes.R \docType{class} \name{Zelig-tobit-bayes-class} \alias{Zelig-tobit-bayes-class} \alias{ztobitbayes} \title{Bayesian Tobit Regression} \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}.} \item{model}{the name of a statistical model to estimate. For a list of other supported models and their documentation see: \url{http://docs.zeligproject.org/articles/}.} \item{data}{the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{Amelia} or \code{\link{to_zelig_mi}}).} \item{...}{additional arguments passed to \code{zelig}, relevant for the model to be estimated.} \item{by}{a factor variable contained in \code{data}. If supplied, \code{zelig} will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use \code{by} to run models using MatchIt subclasses.} \item{cite}{If is set to 'TRUE' (default), the model citation will be printed to the console.} \item{below:}{point at which the dependent variable is censored from below. If the dependent variable is only censored from above, set \code{below = -Inf}. The default value is 0.} \item{above:}{point at which the dependent variable is censored from above. If the dependent variable is only censored from below, set \code{above = Inf}. The default value is \code{Inf}.} \item{below:}{point at which the dependent variable is censored from below. If the dependent variable is only censored from above, set below = -Inf. The default value is 0.} \item{above:}{point at which the dependent variable is censored from above. If the dependent variable is only censored from below, set above = Inf. The default value is Inf.} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \code{\link{from_zelig_model}}. } \description{ Bayesian Tobit Regression } \details{ Additional parameters avaialable to this model include: \itemize{ \item \code{weights}: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: \url{http://docs.zeligproject.org/articles/weights.html}. \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000). \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000). \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1. \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is printed to the screen. \item \code{seed}: seed for the random number generator. The default is \code{NA} which corresponds to a random seed of 12345. \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is \code{NA}, such that the maximum likelihood estimates are used as the starting values. } Use the following parameters to specify the model's priors: \itemize{ \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0. \item \code{B0}: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior. \item \code{c0}: \code{c0}/2 is the shape parameter for the Inverse Gamma prior on the variance of the disturbance terms. \item \code{d0}: \code{d0}/2 is the scale parameter for the Inverse Gamma prior on the variance of the disturbance terms. } } \examples{ data(turnout) z.out <- zelig(vote ~ race + educate, model = "tobit.bayes",data = turnout, verbose = FALSE) } \seealso{ Vignette: \url{http://docs.zeligproject.org/articles/zelig_tobitbayes.html} } Zelig/man/sim.Rd0000644000176000001440000001207213245253057013216 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/wrappers.R \name{sim} \alias{sim} \title{Generic Method for Computing and Organizing Simulated Quantities of Interest} \usage{ sim(obj, x, x1, y = NULL, num = 1000, bootstrap = F, bootfn = NULL, cond.data = NULL, ...) } \arguments{ \item{obj}{output object from \code{zelig}} \item{x}{values of explanatory variables used for simulation, generated by \code{setx}. Not if ommitted, then \code{sim} will look for values in the reference class object} \item{x1}{optional values of explanatory variables (generated by a second call of \code{setx}) particular computations of quantities of interest} \item{y}{a parameter reserved for the computation of particular quantities of interest (average treatment effects). Few models currently support this parameter} \item{num}{an integer specifying the number of simulations to compute} \item{bootstrap}{currently unsupported} \item{bootfn}{currently unsupported} \item{cond.data}{currently unsupported} \item{...}{arguments reserved future versions of Zelig} } \value{ The output stored in \code{s.out} varies by model. Use the \code{names} function to view the output stored in \code{s.out}. Common elements include: \item{x}{the \code{\link{setx}} values for the explanatory variables, used to calculate the quantities of interest (expected values, predicted values, etc.). } \item{x1}{the optional \code{\link{setx}} object used to simulate first differences, and other model-specific quantities of interest, such as risk-ratios.} \item{call}{the options selected for \code{\link{sim}}, used to replicate quantities of interest. } \item{zelig.call}{the original function and options for \code{\link{zelig}}, used to replicate analyses. } \item{num}{the number of simulations requested. } \item{par}{the parameters (coefficients, and additional model-specific parameters). You may wish to use the same set of simulated parameters to calculate quantities of interest rather than simulating another set.} \item{qi\$ev}{simulations of the expected values given the model and \code{x}. } \item{qi\$pr}{simulations of the predicted values given by the fitted values. } \item{qi\$fd}{simulations of the first differences (or risk difference for binary models) for the given \code{x} and \code{x1}. The difference is calculated by subtracting the expected values given \code{x} from the expected values given \code{x1}. (If do not specify \code{x1}, you will not get first differences or risk ratios.) } \item{qi\$rr}{simulations of the risk ratios for binary and multinomial models. See specific models for details.} \item{qi\$ate.ev}{simulations of the average expected treatment effect for the treatment group, using conditional prediction. Let \eqn{t_i} be a binary explanatory variable defining the treatment (\eqn{t_i=1}) and control (\eqn{t_i=0}) groups. Then the average expected treatment effect for the treatment group is \deqn{ \frac{1}{n}\sum_{i=1}^n [ \, Y_i(t_i=1) - E[Y_i(t_i=0)] \mid t_i=1 \,],} where \eqn{Y_i(t_i=1)} is the value of the dependent variable for observation \eqn{i} in the treatment group. Variation in the simulations are due to uncertainty in simulating \eqn{E[Y_i(t_i=0)]}, the counterfactual expected value of \eqn{Y_i} for observations in the treatment group, under the assumption that everything stays the same except that the treatment indicator is switched to \eqn{t_i=0}. } \item{qi\$ate.pr}{simulations of the average predicted treatment effect for the treatment group, using conditional prediction. Let \eqn{t_i} be a binary explanatory variable defining the treatment (\eqn{t_i=1}) and control (\eqn{t_i=0}) groups. Then the average predicted treatment effect for the treatment group is \deqn{ \frac{1}{n}\sum_{i=1}^n [ \, Y_i(t_i=1) - \widehat{Y_i(t_i=0)} \mid t_i=1 \,],} where \eqn{Y_i(t_i=1)} is the value of the dependent variable for observation \eqn{i} in the treatment group. Variation in the simulations are due to uncertainty in simulating \eqn{\widehat{Y_i(t_i=0)}}, the counterfactual predicted value of \eqn{Y_i} for observations in the treatment group, under the assumption that everything stays the same except that the treatment indicator is switched to \eqn{t_i=0}.} } \description{ Simulate quantities of interest from the estimated model output from \code{zelig()} given specified values of explanatory variables established in \code{setx()}. For classical \emph{maximum likelihood} models, \code{sim()} uses asymptotic normal approximation to the log-likelihood. For \emph{Bayesian models}, Zelig simulates quantities of interest from the posterior density, whenever possible. For \emph{robust Bayesian models}, simulations are drawn from the identified class of Bayesian posteriors. Alternatively, you may generate quantities of interest using bootstrapped parameters. } \details{ This documentation describes the \code{sim} Zelig 4 compatibility wrapper function. } \author{ Christopher Gandrud, Matt Owen, Olivia Lau and Kosuke Imai } Zelig/man/bivariate.Rd0000644000176000001440000000106313245253057014372 0ustar ripleyusers\name{bivariate} \alias{bivariate} \title{Sample data for bivariate probit regression} \description{ Sample data for the bivariate probit regression. } \usage{data(bivariate)} \format{A table containing 6 variables ("y1", "y2", "x1", "x2", "x3", and "x4") and 78 observations.} \source{This is a cleaned and relabelled version of the sanction data set, available in Zelig.} \references{ Martin, Lisa (1992). \emph{Coercive Cooperation: Explaining Multilateral Economic Sanctions}, Princeton: Princeton University Press. } \keyword{datasets} Zelig/man/model_lookup_df.Rd0000644000176000001440000000073213245253057015570 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/interface.R \docType{data} \name{model_lookup_df} \alias{model_lookup_df} \title{Instructions for how to convert non-Zelig fitted model objects to Zelig. Used in to_zelig} \format{An object of class \code{data.frame} with 9 rows and 4 columns.} \usage{ model_lookup_df } \description{ Instructions for how to convert non-Zelig fitted model objects to Zelig. Used in to_zelig } \keyword{datasets} Zelig/man/voteincome.Rd0000644000176000001440000000276213245253057014603 0ustar ripleyusers\name{voteincome} \alias{voteincome} \docType{data} \title{Sample Turnout and Demographic Data from the 2000 Current Population Survey} \description{ This data set contains turnout and demographic data from a sample of respondents to the 2000 Current Population Survey (CPS). The states represented are South Carolina and Arkansas. The data represent only a sample and results from this example should not be used in publication. } \usage{data(voteincome)} \format{ A data frame containing 7 variables ("state", "year", "vote", "income", "education", "age", "female") and 1500 observations. \describe{ \item{\code{state}}{a factor variable with levels equal to "AR" (Arkansas) and "SC" (South Carolina)} \item{\code{year}}{an integer vector} \item{\code{vote}}{an integer vector taking on values "1" (Voted) and "0" (Did Not Vote)} \item{\code{income}}{an integer vector ranging from "4" (Less than \$5000) to "17" (Greater than \$75000) denoting family income. See the CPS codebook for more information on variable coding} \item{\code{education}}{an integer vector ranging from "1" (Less than High School Education) to "4" (More than a College Education). See the CPS codebook for more information on variable coding} \item{\code{age}}{an integer vector ranging from "18" to "85"} \item{\code{female}}{an integer vector taking on values "1" (Female) and "0" (Male)} } } \source{Census Bureau Current Population Survey} \references{\url{http://www.census.gov/cps}} \keyword{datasets} Zelig/man/is_zelig.Rd0000644000176000001440000000053413245253057014233 0ustar ripleyusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assertions.R \name{is_zelig} \alias{is_zelig} \title{Check if is a zelig object} \usage{ is_zelig(x, fail = TRUE) } \arguments{ \item{x}{an object} \item{fail}{logical whether to return an error if x is not a Zelig object.} } \description{ Check if is a zelig object }