rtv-1.21.0+dfsg.orig/0000755000175000017500000000000013222035043013606 5ustar noahfxnoahfxrtv-1.21.0+dfsg.orig/.gitignore0000644000175000017500000000020513222035043015573 0ustar noahfxnoahfx.* !.travis.yml !.pylintrc !.gitignore !.gitattributes !.coveragerc *~ *.pyc *.log build dist rtv.egg-info tests/refresh-token venv/ rtv-1.21.0+dfsg.orig/CONTROLS.rst0000644000175000017500000000520413222035043015604 0ustar noahfxnoahfx======== Controls ======== -------------- Basic Commands -------------- :``j``/``k`` or ``▲``/``▼``: Move the cursor up/down :``m``/``n`` or ``PgUp``/``PgDn``: Jump to the previous/next page :``gg``/``G``: Jump to the top/bottom of the page :``1-5``: Toggle post order (*hot*, *top*, *rising*, *new*, *controversial*) :``r`` or ``F5``: Refresh page content :``u``: Log in or switch accounts :``/``: Open a prompt to switch subreddits :``?``: Show the help screen :``q``/``Q``: Quit/Force quit :``y``: Copy submission permalink to clipboard :``Y``: Copy submission link to clipboard :``F2``: Cycle to the previous color theme :``F3``: Cycle to the next color theme ---------------------- Authenticated Commands ---------------------- Some actions require that you be logged in to your reddit account. You can log in by pressing ``u`` while inside of the program. Once you are logged in your username will appear in the top-right corner of the screen. :``a``/``z``: Upvote/downvote :``c``: Compose a new post or comment :``e``: Edit an existing post or comment :``d``: Delete an existing post or comment :``i``: Display new messages prompt :``s``: View a list of subscribed subreddits :``S``: View a list of subscribed multireddits :``w``: Save a submission -------------- Subreddit Mode -------------- In subreddit mode you can browse through the top submissions on either the front page or a specific subreddit. :``l`` or ``►``: Enter the selected submission :``o`` or ``ENTER``: Open the submission link with your web browser :``f``: Open a prompt to search the current subreddit :``p``: Toggle between the front page and the last visited subreddit The ``/`` prompt accepts subreddits in the following formats * ``python`` * ``/r/python`` * ``/r/python/new`` * ``/r/python/controversial-year`` * ``/r/python+linux`` supports multireddits * ``/r/front`` will redirect to the front page * ``/u/me`` will display your submissions * ``/u/saved`` will display your saved submissions * ``/u/spez`` will display submissions from any other user * ``/u/multi-mod/m/android`` will display a multireddit curated by a user * ``/domain/python.org`` will display submissions to the stated domain --------------- Submission Mode --------------- In submission mode you can view the self text for a submission and browse comments. :``h`` or ``◄``: Return to the subreddit :``l`` or ``►``: Open the selected comment in a new window :``o`` or ``ENTER``: Open the comment permalink with your web browser :``SPACE``: Fold the selected comment, or load additional comments :``b``: Display URLs with urlview :``J``: Move cursor to next sibling comment :``K``: Move cursor to parent comment rtv-1.21.0+dfsg.orig/rtv.10000644000175000017500000000470513222035043014511 0ustar noahfxnoahfx.TH "RTV" "1" "December 31, 2017" "Version 1.21.0" "Usage and Commands" .SH NAME RTV - Reddit Terminal Viewer .SH SYNOPSIS rtv [URL] [\-s SUBREDDIT] .SH DESCRIPTION RTV (Reddit Terminal Viewer) is a terminal interface to view and interact with reddit. .SH OPTIONS .TP \fBURL\fR [optional] Full URL of a submission to open .TP \fB\-h\fR, \fB\-\-help\fR show this help message and exit .TP \fB\-s SUBREDDIT\fR Name of the subreddit that will be loaded on start .TP \fB\-\-log FILE\fR Log HTTP requests to the given file .TP \fB\-\-config FILE\fR Load configuration settings from the given file .TP \fB\-\-ascii\fR Enable ascii\-only mode .TP \fB\-\-monochrome\fR Disable color .TP \fB\-\-theme FILE\fR Color theme to use, see \-\-list\-themes for valid options .TP \fB\-\-list\-themes\fR List all of the available color themes .TP \fB\-\-non\-persistent\fR Forget the authenticated user when the program exits .TP \fB\-\-clear\-auth\fR Remove any saved user data before launching .TP \fB\-\-copy\-config\fR Copy the default configuration to {HOME}/.config/rtv/rtv.cfg .TP \fB\-\-copy\-mailcap\fR Copy an example mailcap configuration to {HOME}/.mailcap .TP \fB\-\-enable\-media\fR Open external links using programs defined in the mailcap config .TP \fB\-V\fR, \fB\-\-version\fR show program's version number and exit .SH CONTROLS Move the cursor using the arrow keys or vim style movement. .br Press \fBup\fR and \fBdown\fR to scroll through submissions. .br Press \fBright\fR to view the selected submission and \fBleft\fR to return. .br Press \fB?\fR to open the help screen. .SH FILES .TP .BR $XDG_CONFIG_HOME/rtv/rtv.cfg The configuration file can be used to customize default program settings. .TP .BR $XDG_DATA_HOME/rtv/refresh-token After you login to reddit, your most recent OAuth refresh token will be stored for future sessions. .TP .BR $XDG_DATA_HOME/rtv/history.log This file stores URLs that have been recently opened in order to visually highlight them as "seen". .SH ENVIRONMENT .TP .BR RTV_EDITOR Text editor to use when editing comments and submissions. Will fallback to \fI$EDITOR\fR. .TP .BR RTV_URLVIEWER Url viewer to use to extract links from comments. Requires a compatible program to be installed. .TP .BR RTV_BROWSER Web browser to use when opening links. Will fallback to \fI$BROWSER\fR. .SH AUTHOR Michael Lazar (2017). .SH BUGS Report bugs to \fIhttps://github.com/michael-lazar/rtv/issues\fR .SH LICENSE The MIT License (MIT) rtv-1.21.0+dfsg.orig/scripts/0000755000175000017500000000000013222035043015275 5ustar noahfxnoahfxrtv-1.21.0+dfsg.orig/scripts/demo_theme.py0000755000175000017500000002153513222035043017766 0ustar noahfxnoahfx#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import print_function import os import sys import time import curses import locale import threading from types import MethodType from collections import Counter from vcr import VCR from six.moves.urllib.parse import urlparse, parse_qs from rtv.theme import Theme, ThemeList from rtv.config import Config from rtv.packages import praw from rtv.oauth import OAuthHelper from rtv.terminal import Terminal from rtv.objects import curses_session from rtv.subreddit_page import SubredditPage from rtv.submission_page import SubmissionPage from rtv.subscription_page import SubscriptionPage try: from unittest import mock except ImportError: import mock def initialize_vcr(): def auth_matcher(r1, r2): return (r1.headers.get('authorization') == r2.headers.get('authorization')) def uri_with_query_matcher(r1, r2): p1, p2 = urlparse(r1.uri), urlparse(r2.uri) return (p1[:3] == p2[:3] and parse_qs(p1.query, True) == parse_qs(p2.query, True)) cassette_dir = os.path.join(os.path.dirname(__file__), 'cassettes') if not os.path.exists(cassette_dir): os.makedirs(cassette_dir) filename = os.path.join(cassette_dir, 'demo_theme.yaml') if os.path.exists(filename): record_mode = 'none' else: record_mode = 'once' vcr = VCR( record_mode=record_mode, filter_headers=[('Authorization', '**********')], filter_post_data_parameters=[('refresh_token', '**********')], match_on=['method', 'uri_with_query', 'auth', 'body'], cassette_library_dir=cassette_dir) vcr.register_matcher('auth', auth_matcher) vcr.register_matcher('uri_with_query', uri_with_query_matcher) return vcr # Patch the getch method so we can display multiple notifications or # other elements that require a keyboard input on the screen at the # same time without blocking the main thread. def notification_getch(self): if self.pause_getch: return -1 return 0 def prompt_getch(self): while self.pause_getch: time.sleep(1) return 0 def draw_screen(stdscr, reddit, config, theme, oauth): threads = [] max_y, max_x = stdscr.getmaxyx() mid_x = int(max_x / 2) tall_y, short_y = int(max_y / 3 * 2), int(max_y / 3) stdscr.clear() stdscr.refresh() # =================================================================== # Submission Page # =================================================================== win1 = stdscr.derwin(tall_y - 1, mid_x - 1, 0, 0) term = Terminal(win1, config) term.set_theme(theme) oauth.term = term url = 'https://www.reddit.com/r/Python/comments/4dy7xr' with term.loader('Loading'): page = SubmissionPage(reddit, term, config, oauth, url=url) # Tweak the data in order to demonstrate the full range of settings data = page.content.get(-1) data['object'].link_flair_text = 'flair' data['object'].guilded = 1 data['object'].over_18 = True data['object'].saved = True data.update(page.content.strip_praw_submission(data['object'])) data = page.content.get(0) data['object'].author.name = 'kafoozalum' data['object'].stickied = True data['object'].author_flair_text = 'flair' data['object'].likes = True data.update(page.content.strip_praw_comment(data['object'])) data = page.content.get(1) data['object'].saved = True data['object'].likes = False data['object'].score_hidden = True data['object'].guilded = 1 data.update(page.content.strip_praw_comment(data['object'])) data = page.content.get(2) data['object'].author.name = 'kafoozalum' data['object'].body = data['object'].body[:100] data.update(page.content.strip_praw_comment(data['object'])) page.content.toggle(9) page.content.toggle(5) page.draw() # =================================================================== # Subreddit Page # =================================================================== win2 = stdscr.derwin(tall_y - 1, mid_x - 1, 0, mid_x + 1) term = Terminal(win2, config) term.set_theme(theme) oauth.term = term with term.loader('Loading'): page = SubredditPage(reddit, term, config, oauth, '/u/saved') # Tweak the data in order to demonstrate the full range of settings data = page.content.get(3) data['object'].hide_score = True data['object'].author = None data['object'].saved = False data.update(page.content.strip_praw_submission(data['object'])) page.content.order = 'rising' page.nav.cursor_index = 1 page.draw() term.pause_getch = True term.getch = MethodType(notification_getch, term) thread = threading.Thread(target=term.show_notification, args=('Success',), kwargs={'style': 'Success'}) thread.start() threads.append((thread, term)) # =================================================================== # Subscription Page # =================================================================== win3 = stdscr.derwin(short_y, mid_x - 1, tall_y, 0) term = Terminal(win3, config) term.set_theme(theme) oauth.term = term with term.loader('Loading'): page = SubscriptionPage(reddit, term, config, oauth, 'popular') page.nav.cursor_index = 1 page.draw() term.pause_getch = True term.getch = MethodType(notification_getch, term) thread = threading.Thread(target=term.show_notification, args=('Error',), kwargs={'style': 'Error'}) thread.start() threads.append((thread, term)) # =================================================================== # Multireddit Page # =================================================================== win4 = stdscr.derwin(short_y, mid_x - 1, tall_y, mid_x + 1) term = Terminal(win4, config) term.set_theme(theme) oauth.term = term with term.loader('Loading'): page = SubscriptionPage(reddit, term, config, oauth, 'multireddit') page.nav.cursor_index = 1 page.draw() term.pause_getch = True term.getch = MethodType(notification_getch, term) thread = threading.Thread(target=term.show_notification, args=('Info',), kwargs={'style': 'Info'}) thread.start() threads.append((thread, term)) term = Terminal(win4, config) term.set_theme(theme) term.pause_getch = True term.getch = MethodType(prompt_getch, term) thread = threading.Thread(target=term.prompt_y_or_n, args=('Prompt: ',)) thread.start() threads.append((thread, term)) time.sleep(0.5) curses.curs_set(0) return threads def main(): locale.setlocale(locale.LC_ALL, '') if len(sys.argv) > 1: theme = Theme.from_name(sys.argv[1]) else: theme = Theme() vcr = initialize_vcr() with vcr.use_cassette('demo_theme.yaml') as cassette, \ curses_session() as stdscr: config = Config() if vcr.record_mode == 'once': config.load_refresh_token() else: config.refresh_token = 'mock_refresh_token' reddit = praw.Reddit(user_agent='RTV Theme Demo', decode_html_entities=False, disable_update_check=True) reddit.config.api_request_delay = 0 config.history.add('https://api.reddit.com/comments/6llvsl/_/djutc3s') config.history.add('http://i.imgur.com/Z9iGKWv.gifv') config.history.add('https://www.reddit.com/r/Python/comments/6302cj/rpython_official_job_board/') term = Terminal(stdscr, config) term.set_theme() oauth = OAuthHelper(reddit, term, config) oauth.authorize() theme_list = ThemeList() while True: term = Terminal(stdscr, config) term.set_theme(theme) threads = draw_screen(stdscr, reddit, config, theme, oauth) try: ch = term.show_notification(theme.display_string) except KeyboardInterrupt: ch = Terminal.ESCAPE for thread, term in threads: term.pause_getch = False thread.join() if vcr.record_mode == 'once': break else: cassette.play_counts = Counter() theme_list.reload() if ch == curses.KEY_RIGHT: theme = theme_list.next(theme) elif ch == curses.KEY_LEFT: theme = theme_list.previous(theme) elif ch == Terminal.ESCAPE: break else: # Force the theme to reload theme = theme_list.next(theme) theme = theme_list.previous(theme) sys.exit(main()) rtv-1.21.0+dfsg.orig/scripts/cassettes/0000755000175000017500000000000013222035043017273 5ustar noahfxnoahfxrtv-1.21.0+dfsg.orig/scripts/cassettes/demo_theme.yaml0000644000175000017500000201656013222035043022277 0ustar noahfxnoahfxinteractions: - request: body: grant_type=refresh_token&redirect_uri=http%3A%2F%2F127.0.0.1%3A65000%2F&refresh_token=********** headers: Accept: ['*/*'] Accept-Encoding: ['gzip, deflate'] Authorization: ['**********'] Connection: [keep-alive] Content-Length: ['122'] Content-Type: [application/x-www-form-urlencoded] User-Agent: [RTV Theme Demo PRAW/3.6.1 Python/3.6.1 b'Darwin-14.5.0-x86_64-i386-64bit'] method: POST uri: https://api.reddit.com/api/v1/access_token/ response: body: {string: '{"access_token": "5TsmI0CKTE9P80JWx5PNB8q2cQw", "token_type": "bearer", "device_id": "None", "expires_in": 3600, "scope": "edit history identity mysubreddits privatemessages read report save submit subscribe vote"}'} headers: Accept-Ranges: [bytes] Connection: [keep-alive] Content-Length: ['214'] Content-Type: [application/json; charset=UTF-8] Date: ['Fri, 07 Jul 2017 05:52:23 GMT'] Server: [snooserv] Set-Cookie: ['session_tracker=CYIJ6S5YULMlp5p0IA.0.1499406743221.Z0FBQUFBQlpYeUdYNDQwcjA1andsVVJrVjFwNGtKNzZiMHE5ODhpd3BUVjVicjhoRmRudDVBeXZqbm93ZUxuZ1JsTmlIdWp2ZXRERTZubjI3N0k5a2ZQeWpoYVFlaThJS05ibkZ3RlhZTmtVYVF2VXFhcnFyQl83RDk3MXJEZzJzX0xDM1BPRE14ZDg; Domain=reddit.com; Max-Age=7199; Path=/; expires=Fri, 07-Jul-2017 07:52:23 GMT; secure', edgebucket=u1fMLgWA7OnvVsZM9S; Domain=reddit.com; Max-Age=63071999; Path=/; secure] Strict-Transport-Security: [max-age=15552000; includeSubDomains; preload] Via: [1.1 varnish] X-Cache: [MISS] X-Cache-Hits: ['0'] X-Moose: [majestic] X-Served-By: [cache-iad2131-IAD] X-Timer: ['S1499406743.211475,VS0,VE19'] cache-control: ['max-age=0, must-revalidate'] set-cookie: ['session_tracker=CYIJ6S5YULMlp5p0IA.0.1499406743221.Z0FBQUFBQlpYeUdYNDQwcjA1andsVVJrVjFwNGtKNzZiMHE5ODhpd3BUVjVicjhoRmRudDVBeXZqbm93ZUxuZ1JsTmlIdWp2ZXRERTZubjI3N0k5a2ZQeWpoYVFlaThJS05ibkZ3RlhZTmtVYVF2VXFhcnFyQl83RDk3MXJEZzJzX0xDM1BPRE14ZDg; Domain=reddit.com; Max-Age=7199; Path=/; expires=Fri, 07-Jul-2017 07:52:23 GMT; secure', edgebucket=u1fMLgWA7OnvVsZM9S; Domain=reddit.com; Max-Age=63071999; Path=/; secure] x-content-type-options: [nosniff] x-frame-options: [SAMEORIGIN] x-xss-protection: [1; mode=block] status: {code: 200, message: OK} - request: body: null headers: Accept: ['*/*'] Accept-Encoding: ['gzip, deflate'] Authorization: ['**********'] Connection: [keep-alive] User-Agent: [RTV Theme Demo PRAW/3.6.1 Python/3.6.1 b'Darwin-14.5.0-x86_64-i386-64bit'] method: GET uri: https://oauth.reddit.com/api/v1/me.json response: body: string: !!binary | H4sIAJghX1kC/61WXW/jNhD8K4Gf0ySW8+HcW3rNtWmLw+XQokCLgqCklcWa4vIo0o596H/vLiVZ VOI2PeBeAofL1Q5nZ4f8PFOtgMZq3AHM3pxUUrdwejKrQPrgoKWlz7MShUEvvJPFmha8C7ylrXEr ZGOFViZZ1moDopbWglFmRYnbMSbLFtwGnHBg0XmKj7FVzGt9K1ZOGs+VhwigRRu0dEKZCAi3Bhz9 mjnQsJGmgBnt20inKJPXCzTeoRYZr8OTBacaMF6okqLZxfzvCLRlBIIhqQKEo7MEO5ZtMFcaxBZy 4aVbwRRuCZUM2ovWtaJGXWLgwl8AbX4M2vwmQpPlHtxaHOc9EOBW9OiftYNjBEkY2XA3+9C2Vh44 AUphm4RZ+kSx3okCG4aQBIKlJpRAEVyrqIKxg8I6qJKlXGOx7irnu76z0wQZPFKgCobP2AeQurwC BxxnCUqlk482TPuTddigaLCUejiwKDRhFiVt34lStY1qW5VTnxQm6RpWsthRa6Ur6gh4jBHn0hC1 sJmeGUJ/XGGRauwSNnwzcBTFniRV6Eg6tfc2JanwaqM81++ktXXUgDFucQ0NmhUKFgNEXSTKKWpp DBAbpxPhtCEntkrljwnn8oZ1Y7EluSAdGCvWbg5ejmW77ECzzk2h/5SDImkVSThH6lFHcVTdRGEG tkLjakWJRhSyqF8ypUyOT8KGth7XIjlHyvXNKSUpnYpVlSrGYNp/RRw5ar5XJINBq9N+W0n6E3Ss ZMkhabhpJGl8Ghn9JKmHsh+0l0NFsGPRksZn6nWvoySlOYwdGrQR54EEgmxlQ5nCAZiNIoKfq5JJ 72aK1C6J/mPnoG7MvoL53N6yiA46Ey7odPZ7Q2zB8yBOTCHa1cHUyXafJxlqA/l7zspOaD+4AzzR HCQ0RTaB1fzSeqPKockh2Z92QlKbSOIMZKT/9fn6zztjvowDllAuw1ehfBkpL2iHftH7LzfBI3Lr 7NkTl8nqc4NyIIek6CNkmHT1RB+RhjbOxpcBvRfa0No4Dsny6E7MSrwNaGc8vMqpw8zR4RO0LFTD Le3c4c35eX7m69Dk7Vn3lYbsQp7RGJ3f3Gm7uXe48Y/z6wu8fbd7eCh/eLuvfs7W38Bfxe0y+/U6 fHgb9g9nlmRC3+9U9r8r2N8WvzwsNnp/vS7WD9+5D5eLd81P+vvfF3dPG1xU+2/f38+LH21bPA4V iHOr5S7es/F6UU+RjVk4L4hZrfaSJ1zYWu5BLDilJor5clZ7vglM0Pq0u8uZp4j4GZ0kCpWTpbBM Ot6HNwfzNzZzDXyD68jwLIIDTrW9xcSloU4T/KRMeo4IX7wCv+O0R59Aej7Y5IM6fvHfvhec5vA5 IzvK2XnSyZ60P+bZ8uL0ZLG8/JNiA2Z/JRb608315JxIYGWnuh4R8rtzvkwOb0NOYySO0BUFOhTN rq5PT+gP1xy90e9sxxhVTCuPjetL8zzxukXTTqZgRa9G8j2rXDx3QmtUkv5kJPKXu2lrmZpxtwie b8s+g46mKpX6IV8bRAK/qiiLXINl1O8emRjMlt7cBCbB1lE47qjpiTYU6d5q0xhtFv3q8AkkX6/Z qA5mN7vP8N5/fKzK6q56/xhVpeiRWZHBCYc5RpBDPt+0Yi1dw1dbli0ZVXxdFPRGYZchJXRG5dF2 G5n8rj2JiUZ4U2gxK17trUHcSB9fAkN00NUxUTJmuqtlN0Xzy+wqW8yvLy/OGExsaDEC4LV+c9+u mHCRLfsEekb1L7Sh9vDKHM69zPoTHGR1sOl/AH1Jnh66DQAA headers: Accept-Ranges: [bytes] Connection: [keep-alive] Content-Encoding: [gzip] Content-Length: ['1347'] Content-Type: [application/json; charset=UTF-8] Date: ['Fri, 07 Jul 2017 05:52:24 GMT'] Server: [snooserv] Set-Cookie: ['session_tracker=EsHcNvrMDzIw7rl10k.0.1499406744791.Z0FBQUFBQlpYeUdZbllUSU1OcEdvaHd2V0tGOUlRUzVVNWRqVUtVeUFKSkxIV0t5Yk5sQWFyczJTSk9tWDRBbnJyd2t4alkxZzR5elZOMTBZeWp4UWRnUnctMTdOaE1pSDIyTHhsUGJCS1pvM2hlX0xUN0M0U0FKeGtEM3YwWFNVMFYyOC1yMk55YUs; Domain=reddit.com; Max-Age=7199; Path=/; expires=Fri, 07-Jul-2017 07:52:24 GMT; secure', edgebucket=FCaLeYpsJ64Y4b61zH; Domain=reddit.com; Max-Age=63071999; Path=/; secure] Strict-Transport-Security: [max-age=15552000; includeSubDomains; preload] Vary: [accept-encoding] Via: [1.1 varnish] X-Cache: [MISS] X-Cache-Hits: ['0'] X-Moose: [majestic] X-Served-By: [cache-iad2130-IAD] X-Timer: ['S1499406745.741230,VS0,VE93'] cache-control: ['private, s-maxage=0, max-age=0, must-revalidate, max-age=0, must-revalidate'] expires: ['-1'] set-cookie: ['session_tracker=EsHcNvrMDzIw7rl10k.0.1499406744791.Z0FBQUFBQlpYeUdZbllUSU1OcEdvaHd2V0tGOUlRUzVVNWRqVUtVeUFKSkxIV0t5Yk5sQWFyczJTSk9tWDRBbnJyd2t4alkxZzR5elZOMTBZeWp4UWRnUnctMTdOaE1pSDIyTHhsUGJCS1pvM2hlX0xUN0M0U0FKeGtEM3YwWFNVMFYyOC1yMk55YUs; Domain=reddit.com; Max-Age=7199; Path=/; expires=Fri, 07-Jul-2017 07:52:24 GMT; secure', edgebucket=FCaLeYpsJ64Y4b61zH; Domain=reddit.com; Max-Age=63071999; Path=/; secure] x-content-type-options: [nosniff] x-frame-options: [SAMEORIGIN] x-ratelimit-remaining: ['599.0'] x-ratelimit-reset: ['456'] x-ratelimit-used: ['1'] x-xss-protection: [1; mode=block] status: {code: 200, message: OK} - request: body: null headers: Accept: ['*/*'] Accept-Encoding: ['gzip, deflate'] Authorization: ['**********'] Connection: [keep-alive] Cookie: [edgebucket=FCaLeYpsJ64Y4b61zH; session_tracker=EsHcNvrMDzIw7rl10k.0.1499406744791.Z0FBQUFBQlpYeUdZbllUSU1OcEdvaHd2V0tGOUlRUzVVNWRqVUtVeUFKSkxIV0t5Yk5sQWFyczJTSk9tWDRBbnJyd2t4alkxZzR5elZOMTBZeWp4UWRnUnctMTdOaE1pSDIyTHhsUGJCS1pvM2hlX0xUN0M0U0FKeGtEM3YwWFNVMFYyOC1yMk55YUs] User-Agent: [RTV Theme Demo PRAW/3.6.1 Python/3.6.1 b'Darwin-14.5.0-x86_64-i386-64bit'] method: GET uri: https://oauth.reddit.com/user/civilization_phaze_3/saved.json?sort=new&t=all&limit=1024 response: body: string: !!binary | H4sIAJohX1kC/+1be3ObSBL/KnPK3e5dlWUBAwNsyrWVOMnm5bxz2c3mipoXAhuBzEOKksp3v+4B PS07tmNvnLr7ywKGnu7p7l8/aH/uHaW56v1Cek/Tqk7zYW+H9BSvOdz63BsVKuFVAr/zJsvgiUzS TJU6hzt/fl68WtO1t2SR17qqI3hbw42YZ5WG51UjSq1UWkc5H+loXOo4/agNgXLAp1OkIXieaxWJ 2XLLkVYpj/RImKWfv8CtOmlGIudpFk1TVSN7tmut7oA0O4qVzuJaf6yjpB5lS6rz27gSl2Xpka7g oi6bltfhEEQAVqqixEXda02ly6jUY7iJq//8jyElm1JHhs/lyizNj6I442kZdft0D1IjMcuOtRfg zpNUTyNZNPnKmlWS66LLLJVH5nJ+rC03wBSvihyZ6mjwpk6KEvd6kH4qC3lkToNPzMudmKChTWlQ N/hSTaMlj5UsSrxLKWMu0h6Py2KyoSi4UUZ2sMKaKkY8RVvppbvpaNiUu7IYIb0kVcoY0XwlGAOe A0rZS0d8aHQBFlYVTSlx58+9pkT19ZK6Hle/DAbpbqtqc0ZId+B6n97up9Xok/fMDn97efD26fG9 g8J9kB8LHj75yIa/Pfr9IL3/9tXLR7vDNP41Hu0djoc/8dH4drUnfRdsyKdUWhbzlIIjZ5Q6ggoV csuxkeu5sfkOGlui02GCOoNL1EypqyJr6rRVwp/XwXBa78myGBuW8cdezKWu/uHs67yGy5l5wMtk zzG/pnu2FZhfa6L6LPZcaSnXCd1QM2q5lhs62vOF0i4NvFVRgcCqqHAJot4I0RybnRRN25RxO7Q9 FWthiSCQjhd4HESVvgy4uyoaEFgVDS5vimjUsbaJptxQKBlz5buBYzEhBaNuSAPKY4etaY2uGyg1 BnojRGPuFtGY78de7ElpxYEdCBYrJnng+Szw3EDSNdGYAfqFaHD5BVFrwsuU5wbFPveANfP3dPAY frPo1V7AAlRDHKrADQJX2crxpa8tHoZMu/EVIMa3c3lxBc0RA+Tz7ZipmDJHWowHluMzwX1Xc1sJ xw/Ci8PE95BnDhPVniOdQNueDF3GXcVFzKnlCZ/53PYsz2MXx4bvIc8cGwAQQjB+5TlC6kAGvmLC k45S4Da2ZJazhnXnA4TvIc8cECAsuZqFPvdAT4DcVOs4EIL6AODcCnj4VRRAjxqN3d51ez5AF2xj mIa//bjkwxFIp9WeSWY6aayQAT7HnDuucpmlHTsWrudQV3rU9wT/sdHhfGfgMMejSjEeSx5ST0ke W7YIXC90Al8I/WMhyPlk9m0tXIfage9Tm9mCWiAsOGjs2tr1fZNN/zgocz6ZleUrbVncY5SHvnJi 7oYB9SD9gsCood74oZDofDLH4Mmhr0FEx2OKMgVJZxiL2OIW82N/TeataIUu3paCT14ycPI/9ptj VkwP9997D98dPhZqdOAUfeVI+u/7PLizz7Lhu6pnkh2dc5EtyjgktCiIVw9R7Jrb1YmzfJlW/en+ qGSv01fDpxUfRlr043uv8vcfX+4nd/xJePiw8D8F9eTRLmRpKMqydm95rr3IOU7sAp8B3XqtIl0p fWVVRTLj1Ym69PTnwzRThpy9gxXk1MAfHqAoeQ71OI8R2LsClpcySduSdlkPj4oJz7qCeEl3XFR1 lKSmzDYsIu+S5xFuuKS47C0swajVX6p0NC+EFz2NcZFmGqvsRSWryxE35GGbgWlsDODQ0YSqQVtR D/KZjKZplkVFns2iTNfRrGgiUab5MOKRKobwIKoT2K4RUz4bIKd5M1op1edNhmKjGVDVqTxK125J OIhWP7Ybhq4dejbbRYFWfM5UA4sKffA+TH978m6CjjTBvddUtt7NOG44qKVO89VTqdM6M02EZ3/s ExSUoKAEBCUgKDGCEk5AUHhAQFDSCkrSmKQ1AaUQ8F+S5rBIcGOAnRRRU8tOEhpafieJaltXTVol RtDVztHyEk9wrgm4C1EIbqZVhK2gFeYnabVhz0vjr2djI9e4EVkqkS94fwKGUawsb8ZI3rRK0MtX 2mSmJli0ybb7lDXb6lNbGmOnGbpxv44kNnGySZUhTXN/2RUSTZnrMoIgHXqeFu2Ktgm22GCcpeaG aZFt7X2t95PaXdUhaIlW+M7CmVFNW5x17k8O6uLrnawtPG9olVG4N+YlXM7PwI6AoWrql+tAtqUJ +WIGG+XG4s/X4MJOJ64rqxR8vsa1BqkKhT97D/XPFZgwGli/5g2gCdknQHhYcmC43CUPNQESFRhQ adwg4/KIFDF4CAYrdBFdpUPwBt5kNT5oOdwhgISEV8ab0FsqDdwkoAsSFw0+IuhNvDQXdcLr3YUB LHzzbYVeOAbsJXVBtHkL1DHWZu3XUHoNmEHceXu191NW31bphJj1ex96I/Wh99Owvo33x/jjYRtC b9Hw9k05HORtYJj7kJvfIABe4UFsBbiTYWOt9by0o0U31Rjh3CuM1UcnmqDbIR6VthZU5vF9Op12 od2A9tx8V6MNuv6gQUVHqOioLiJQNMQYo2gTV74aMWhgu35ocPaMOGDY3MjirobBLcjvOazj6DTk P9nXPgvEW8R2nJsA19Ry5OHCW5fQx8dJofP0Y/voqnA6nUlD8bw4jTnZ12FaHfJ8WBwWwlj7BkL7 SGMdoVfF/ksB+p8PU8xF/kVegXJqTR6UsJ7cB1y4Z0Qg9/REZ2CJJeE1eT2FXTl5+nT/Q75q40tx d3NdD/DHgIXeADVea6gggGgfzLrfLuyrOdF+ZSj2s0wOyIfGsRz2If+Qd/ukiHGozH5d9PEvGfHy SNdjAELEspKIZmYyKeAXYDTD30M4Vki1YLkio0JAcmoeD/kIn9ZaJnmRFcPZLnkNiXQ9a19OR2BB Es4HN0WsRXUjpBZNiXibq9259LAgMYdmAHh+OhBBEp2NYV9SNpC25UTvo8pL4BTTKVwAClMNXP/d tqwDTO5mmpfAa8UzXe2i4G+SM1VQFiCNSSeFJqWG3BuiA1RC5iwMTMxPA+XRaHDmSIpCkawowK+H OwSsdobcAPiDVdSweqc9ZKgPcXXc5BKbLsZcdskfeALDgmeLjeFdII9GRYxVo4h1AtFkmLRbLTbn SGeXoFQQxIAEhA2VAqBoMmqqGolhIddRbN/Z4LapzAqoWnRpClgC1jQi1VjLioDU7ZUseS0Tc4S3 xsZFyK3W1sit1gjJrU5pt4w1gjEuIGaRECwAmjyPY7AGYPhxIcjdgpdm9fWlBJd3QyTBSQIgAXSv 3CdbNq+crEkxOJLunH41/2hlMhf/kzhwyln8Hxq+CRpOnmpi49V50cK8375yvSnyPCH5q1Jkk3cM yvYcoqIDvggcOxIIfOfMkZlr+c715Mjn4nBLkgxZcsfSVSbJ9kaO/O2TP0tL2JI0mxbO14Z/urWn 2NfmAJAJR3/r98nr/ej5gwek35/HojNjFHj7om4FbwcvF+B/M6glwTPRTXOZNQpQrhhpgseDsAko rEvw7qyQxuNhFQDSqP2d6FKfWnquMvms43FVGhQEWPr5CllpM4K1yuLEGFQv12aqamuNcak5qEXi f/1zUKsl1MUGoZbVSVcHBVjEnLMGWU5BofJ2l5Z5At3W2vimLYlbXqTuXDntLRnaqRmcqRvXasAr bLyfjARbeuzd2ks22S8HmtuDyRkt9Y79Ney3bZ+GrAXa68H2bREFDhvYajLDx84pIfjcmf2J6GHb rmd3Qp0WPc5srpsif9lb7w7uilrrwdUHIbBc7KDsXD4IbZlAXRLdjEELeNs+hLpk+eqnUHvP9NTw NJ9DHQ9dYwTXj7/PdJq9KIr8IcAJ+jNucCEYXvA6RwjPcV0f97goEidFls2mkE+3u+nrnUx9XT5x ysN9+vzuo0dN5Tx4Pw6i/M5xdXCnn6jn98Ly3pvfj5/fzeibKX5w/bXaU5zaKhbaERDatcu0iqmt Y824HQcWXR+dcMK1OQKfnmt+5NvZvPg39uV0me0FjmtLyrlteSwW0neVJxyuQ+VSHax9P9+YDWFb Rwa+hzjL4bLQdpTtOSxwtePYvid9uPYDQZVU0tNrw0sbYx+2Y98UeZbDZQxszWKaUhE7tmKutD3h idB34thxGHdW5dkY6bCDG6Of5XCZR0E7FNzJo1rYnvLAi7TnadflTqjstXGsjXENenPsLWRzeWIH LCwMYuXq2OWSM0/EbqhdX/qeoMHa8Cm8tSqP594YecCx5wK5PlbQdkDD0FW26wscGAtkyKVtaWqZ T70reLAmEbOCE0PAiIBthPv0gtquEu+mxcHvsxevp0HUPJsdKH3sWNnzZ3fePjl+2b97eH/yIAk2 x2tMDFgL96snxk+br2HJw5HdBFUU5S+O3qn+01zSJzINxKS4m9w7ouGb6bE7jKZPA/fs+Zr2a+F5 k3yszcwLp6b5XWC8rkT/8hM2vgH4y+X+bZa1+lERs4TBYQEbZ1pDghZrSK2jES8nOsMkNZUVPIGC GGSt21WXqwfmtzZGbKyQeXSzIOjqga2JxyCB9/uYHUN1gIz3gaW+0lz1kft+y3q/Zb3fst5H1s26 Ka/6Ie3blh2EnvH8bRVDJ87ZhcJj2Js8xe/l72BfbBscmK3JvtkaHuHW5HU9X3YvxS/xNQlNCn6i jghpYAXdWVyqjnCs4FqndEwCeeXVxOMC8/idyxcT8/R7tZpYEN0sJi7Z0MLes8iKKYFq0zSzzbCE AA3i5ERJ9HBYmY65uUI7JKJpB7hgoYFt7IVhrxpe4Su0vqWn9W1c/byFG9zhO/x3nyyNHV1/VVUd N2lZArIhdo+KojLFwQULqzm7i+/8zAk83ObswqqjvtHhWljqiWLqAg0u3+SY5419a6dy+vPrinzn CnLd2kuGOXOoa5OkoLLBNEllEhW5jlShq7yOhM6KfBihm+BQadmFvzLiEbrElcY5O7QtfzPObW18 XSHzl45t73A3ArsRs5uBCtzuF4MpO0tA2cGvZ0sE+fWUyBZatJP+UpHN9fAfaa+rRWb894tJZzlg KxpWx4bQcWt6eP3ly38BcMfWWAA+AAA= headers: Accept-Ranges: [bytes] Connection: [keep-alive] Content-Encoding: [gzip] Content-Length: ['3785'] Content-Type: [application/json; charset=UTF-8] Date: ['Fri, 07 Jul 2017 05:52:26 GMT'] Server: [snooserv] Strict-Transport-Security: [max-age=15552000; includeSubDomains; preload] Vary: [accept-encoding] Via: [1.1 varnish] X-Cache: [MISS] X-Cache-Hits: ['0'] X-Moose: [majestic] X-Served-By: [cache-iad2130-IAD] X-Timer: ['S1499406747.598866,VS0,VE101'] cache-control: ['private, s-maxage=0, max-age=0, must-revalidate, max-age=0, must-revalidate'] expires: ['-1'] set-cookie: ['loid=0000000000000lqnao.2.1425202840186.Z0FBQUFBQlpYeUdhdHFFRkJMVXZTQ1hoYUdjNGI4SHhGSG9NemY2bElIQUZqTjZCRFBjVkJQMnpQdHcxS2dyd1hjWWh2QllvQmg1ZWVrUlhYVG5mMW41S1FaNXJoTFRyc1hpUVpWWHNZU21TWmM5Tnd1QUJyTmcyM0dOaWFIc3VEYlU5X05WNF9wMW0; Domain=reddit.com; Max-Age=63071999; Path=/; expires=Sun, 07-Jul-2019 05:52:26 GMT; secure', 'session_tracker=EsHcNvrMDzIw7rl10k.0.1499406746608.Z0FBQUFBQlpYeUdhYmFhMjY0QlJLRm1kLUlRWGl4RWZRVHZIcWZhcWZNSWlZeHhoLVp4eUc0S0MzcXk2QmxEWlJIWU9NbEtHUHJaN2pWQ2RuczlBMnoyOXp6WDJRX3JTY3pLdTU3cG5YdEpCcmx6XzdqVHRxZTJNRG1oY0h0LUdpdUQ4cFVJTXI3UzE; Domain=reddit.com; Max-Age=7199; Path=/; expires=Fri, 07-Jul-2017 07:52:26 GMT; secure'] x-content-type-options: [nosniff] x-frame-options: [SAMEORIGIN] x-ratelimit-remaining: ['598.0'] x-ratelimit-reset: ['454'] x-ratelimit-used: ['2'] x-reddit-tracking: ['https://pixel.redditmedia.com/pixel/of_destiny.png?v=cb%2FABGh5ca5iuA7xnGcRuEy59xY8w0%2Bkq%2BKrywYDqnXs%2BwyInsDbRdQM5L4nNUXtvkgdj%2Flk1QyLdOuD6TXf3o4u%2BU2zNLtEKHri235%2Fcl0Dyn44KTucNQ%3D%3D'] x-ua-compatible: [IE=edge] x-xss-protection: [1; mode=block] status: {code: 200, message: OK} - request: body: null headers: Accept: ['*/*'] Accept-Encoding: ['gzip, deflate'] Authorization: ['**********'] Connection: [keep-alive] Cookie: [edgebucket=FCaLeYpsJ64Y4b61zH; session_tracker=EsHcNvrMDzIw7rl10k.0.1499406746608.Z0FBQUFBQlpYeUdhYmFhMjY0QlJLRm1kLUlRWGl4RWZRVHZIcWZhcWZNSWlZeHhoLVp4eUc0S0MzcXk2QmxEWlJIWU9NbEtHUHJaN2pWQ2RuczlBMnoyOXp6WDJRX3JTY3pLdTU3cG5YdEpCcmx6XzdqVHRxZTJNRG1oY0h0LUdpdUQ4cFVJTXI3UzE; loid=0000000000000lqnao.2.1425202840186.Z0FBQUFBQlpYeUdhdHFFRkJMVXZTQ1hoYUdjNGI4SHhGSG9NemY2bElIQUZqTjZCRFBjVkJQMnpQdHcxS2dyd1hjWWh2QllvQmg1ZWVrUlhYVG5mMW41S1FaNXJoTFRyc1hpUVpWWHNZU21TWmM5Tnd1QUJyTmcyM0dOaWFIc3VEYlU5X05WNF9wMW0] User-Agent: [RTV Theme Demo PRAW/3.6.1 Python/3.6.1 b'Darwin-14.5.0-x86_64-i386-64bit'] method: GET uri: https://oauth.reddit.com/subreddits/popular/.json?limit=1024 response: body: string: !!binary | H4sIAJ0hX1kC/+y9CXvbOJIw/FfQyTeb2K8tWfKZzNNPr3wlTnzFsuNOOz1aSqIkxhSp8LCtjHd/ +1cHCN6UKMnuzOxmJmkRBAuFQqFQqCoU/vni1rC6L96KF8eG6xlW/8WKeNHVPA2K/vliaHcHmjuA 35ZvmvCmMzDMrqNbUHLzT/Wptxn7qq1Zlu60jGEfXw48b+S+rVbbFW/gD9tuxdG7XcMb6l1Dq3Ts YfX8d2/nnfW9+8VffWP2f7TXDd39sHt8Wq+1fz94uPhca2xs/ujeb7hfDiojRtB3Ab7rtLyBPtRb uqW1TR0x8Rxfh9eu3x4aXsvTH7zWwBuaiMZ/mN7ff1ldFc291tnhoVhd/Y++93cs7Bp3omNqrvvr 1xfD7tcXQfko+OF6jm318anh3l4Q8sJwhWaaQmvbvif2j5p7V83m0dlpRXyxfUeMbNcTlq53XeHZ wrDckeHoomu4Hd91DdtaEZp7KzRL2CPdWtWtrt4V330d6G9bwhtonhg59nDkuYJpZTsEyB1oAMbo 6porbAc+Niz4wK0gktUQS3ok7L9aX62crnySzbmEJ0Jv6/DT9xwNumVByUAPcdJM29KT7YiGNQ6Q QHw0y73XHTH0ofN9G7ooNMB/ZI4R+hjpEsBbAehAQcPqmH5Xd4X+oA1Hpk690gAo8pWwe8KFno8l kQFARVzSZ65wbSYTjoGjuyPoB3x9b8AjdCPdnOyQo/8HNPT3l+tv/g79tgEJqy9006VPGA6SoiLO uFeaB6TBwYSuAOV7ttM2ul3dYkrESOyb/IS/TQN/H/XiWIgBUaSndTyfaIzUAkpAD/EjTQwcvQc8 WHWq/M5lXgyfqVUNyxgBbifdJiELcLF30LEeURNIyIR07aHOPQdq93UP+VB/GJkadJfHJgMjqmBY pnGrG8Oecacr3FJvQiwLkUwRxjRgzgK9LRASwEYw/GpkkV90SxhefPiE6xseTv1icqiPgCow77Dn vQSjad07o6PP14zo6bpJ0yaYUVq3y8Ql7gZ2B4p3oWvYepwCUHmo3erC1S1kRsQCIQaAHH31Hj6N f1SMTbTTcoiw4/eDcfKtJEl0vq/EWodZOEo3Vg04PiJiQPiJjobi4l4buyTk7nHWwaQEmQCgSDAC HZLshSyqsaxTjBUpC1kqNvPoN4jvgNcC8X4qpbtaKQy3RWsSLhE9DeY7vLg3bo2MlWNg37doaYpU NWiRq38f1Axa5wwX6DluWRqsPSPog/FAIF44VbVAYL3IKoRvl5d/0uVjeRkHcXl5liVheflfcRV4 NZ/0J3KJHDGWJd9DEV4Jv1yAlM4SvwWoTSNhmTShyAvBvZpafObDeHYZGUc/LQgjnZogAHHQp5Zv cfFVSUoNFAcxUTHQtW5aY9byNOYjp3f+4Z1//QMk2L2zf7lrWlfH+h/uhy/vfuzUBm7zk/3pw/h+ 63h/J9CYYYJ1HGOEnZtdJR5sBb+U8EZcAdX7+3uJJSEI/O7e8nOVxeBvrm72UBT+ipKW1h/86xme qf/6t83dpu4Ytu/+bXOfmxM3onlwcXR21RR/0nIRUSkYjWDlGWxmIoUETGGliF5F8V+FIdIfXtJK 4PggebjpC/wZNvmW26RWgjbtlLaHv9QaSMKPeEEDOuoazpYuCHBH73ghQxsorIGTkQQo1ORP4PKx 6NiWp2GFe3sFBLfteCvAjh3ddTWH3wIpcSp4ugWlwJ2nIAyxjJcW+x5YN2gAitv2g1xcvIHt9wee Ww0lpodyNCLakcX7uPBQMVBuCO2AuAXscU7FV2/JAH3brvTNqndydbFxy3Qc2jAzaKSRPsF/40Op diYZiowiKa4wTM2I+CGRg6TxzS6K+74Oe06jQ5Qm6TPSO0YPCoJ1wDVALkeWrqJu1I+3t2u7i+5G MCVwjLAPkeU7XNzVMLiFGO53zs+PewvG8ByIDARewTXH1XUkNq6aY1QaLM/o0Vo1gmUMFkcT+AM6 MZTLkaNDCXzWAxG9wmswMJhvkjjUBKhfUIi8h3NiBHPdEfeag6K4sJvGcG/vpL3gbsYGAnmF+cPW RjBNVsIOas5wTLQAZtMdz3Cp+6bmYb8L0d5/t/GpfrJgtEP9TI4Nqnk9nbgGseUZQTqepY3gHZAZ dBhiNdK0QBLLfuMkCfQkRx/ad3q3sD/vtv5oa6MF96dpm0bHQIYTQ5iQQGporQuqCKjs2BWXaN/T 7mB0SN/DoZKyrRDbPb1+fPllwdieAGrI0oAbaR/CMUCMsuaBBGShbHmIM1TzQBZ5AncfrtpskRDj cTPuDFPv66hDROS60RPMlF1dH6JU0AEMCl8YXimkwzHEUeUyUGtA9OFCgMqYjSpusfDQNt99uhwu mEB7vE6Qsm9Az4AeLpsUYWqZOmwAADljqGGvy/Del8+n/au1eZGtBkt2VGmQSinq2bcsBGiZQW0Z BDLMIR01OGRIIPxIG/LOJDG98BMQGrDMg1ratYlLBzqsNvgSRqigaw/WaPSHw12jFR9YBgd0CLwW 9grEaWi3gv4PoHXaTQ10U27M49rJwKnGHjfw6VLr00oPLCk1GioOKrVNu3P73bc9PaTZoB6QMgf/ /snhH9/kMnkjNbg/E8PBQOQgJFuR7azj0xWQTyNqhSbGONCI6ZHGydNo5wSqrdHH3VpkCGm/4/LH IEasVVDhjc6qbeE+FPqidSXhqGmFiOqwQjtKwkPD9HRuwBXtMc7Fb6ATZZFTMWGScn43TyN96UtN GyQNtxFSkoEmYXX7ubC6fYYl6TcdvLafC6/tS9z0vsb0mwTMcnKBWZLldwEOrWOWfj8ROcly3z/s frqQouvK6tGIhJ/SL6L95CGlkd8n5RCm1F3EMgKb1G5b69zSyqmUhd9Ek3YyeXM6tdk4QngAQm2F GOusN2EPyrElVbtGkXCHEsqGRcXBaeEqgeTzXnn4i6jK9yvipfpVdfGpInDuQc8QZsfu0uS8QZMC 6Q1/vg4+XSIcghqlMKXZcYZLU7iEuUT7Ia2j2FrWRCILQgDUw30yv6VHJ/J7AKoBiAEYD1PvSVKj EYVgeoMJNXkDnqpbjTZRVc0TmLbdHefg0s1oAV/EWGaaDaoLPNnWHKCYy9tU4JgWL/AMFeoLompk /jCuUTo9HT64q29V6luwPFXWd2OoNeEVr9X4dzKWMVo/EznRSNPSWoojGfYhmrW0kE8LkH5C3NBu YLWUHZBBH2NhaBwswOyvICdgpQXrhKehvCwa8CdE5H6geWj1R/HVoj8M/RrNxaBf03YISguw+yvo p9aDlt3ruQPb9sJpzh+Ks+BFAepPiCHgBbM4MuM1F5V8DfYe3MwZVYjM+4aqUIBxQs4GopWfghVg 8iJDa9EB7NXRHMH+Curdd1/3PP23zGVb6hWjB7e7c8l9uEQzsyZGsMv+JYF0fLlLa3kvqxcHzVbz orVng3LSr57i4gYKnQ67o5HmGdCVcDimUHcuP1kXw6sJn7wcauMNb5CsRb+kMkS/J7jKyPooTdOC uaBSIdt1xzZNbeTqra5u6p7ebXWkTTB0nME2zqntRJxmI78N2/vWQuzOaTpHWZXrRUtCGvBk19Fq 06HdmEaeM/Q5kJtKWkNXYTt3Z5MuGprfytJPKklu2qtowOau5Ro/kLo39c2tFQH//Ekuwj5shyMU BXnvoLdQhtvAhtC401vkxOzYvhV5RTCnDbE5sLr7DyfvdlcPL/+on7zzvumjT2tbnU8Ht3/ct758 arhnV3531H5jNT8FDgPpkogwhSv2AC47LCLDii9f0h9xE7Pa//k6TzNWci7fOZDhGFjCaffVkk2R lZ6bmEaSJU39S2+/WjUyif+7W+tv2GiCjAt/1aDEDPZE2nqFfLlPYGkvRoGN7YTCeiXcb01tJS+G zoZygr5REX+RhbsYRTZyE4qbCQLMbp0ubpIN1NTkVkU8tWW5GBc2LhMu2xUxn1W4uCU2DFNLOxUx u0X31fNacos7xcZc6tSbitibxwpb3BAbYqkhlsHPYj69SRpGk2ixEXUJraTozY9bRxHZ1dXVAGcR tYKSFgf9FLicKEtjEjzbOINek6VEE8vLqv7y8iKMkYSnwjLP0IgVbpR5UGFaaFMEzANcE58Vmg/x s9DYp74pNBHiNzGbnvqs0BiInwWmvCT12dxH1A/II2a02d1UMwxvqr2U/pCquhQbJLE4q9t/ZZra /ivOEpNMZ18tNAo8stb21XoLTP+I/wBtUZ1n6wv3dhp1KbXx05ThaenxJjTtzA8404KELJG0wszR RtLMA11IGFLmAJ6w0/DEkdaPOcCiLQXwTFos5oCYNoogruqr0LQwRxtqtoQWDOhE1CgQMQjM0U6B HYKERWSiFtgDbqI7/aToYYsAQbv58/UUG3ukZhII79/5jdymw0M0MHXoe7G4VJejRk1YU1um1tZx x6x2g7QHdFu8LQxfyL2252g90MMjwOQmLth61uqbK2J7nXeebdzBtYGK8Ka2vbnxZnt9I2yfzk4E 7ZNFQFM6N6J/PzA83QSSt4Dqno9AXoAW1tK6Lr42NYt2pjo9qb4CvRzNs50Iirf6GLa2JpW9eFmn P/hNECfnbbZU5G0HhpGpVauv1epbtTfrm5U1bMAhNGOMgx989zVHA73eQlCKKMBMhGdYJAG3fA+p R8DX12sSuDzOEhJxB0rXdzaQjEHPUEkBavrxviUGDCv2/B8/YuMdaO+4wwcc+rYzxq4cG6B/e2OT CZg2piS7O4+hA1sgDbrFimEEuzAeGiOd7wz9/oWyasitZsvtgNbYIqoODQu/3kKyKWnb8sYjGkru BZlKkMloe6Fe4joQ5ZWQQWWL//3fK2LKI0cKznMcEbqMb4BwRy8uHX84Eg4QdUwKieuPRrbjkRA0 ow7us9PjL2RbCot+EaegIka+uB/YYqQBj3SMESqWBu73QQnsabDdJPsDjrUaTqGxIy9hK7sc6K19 3M5J/JOloc2MozESbtR4SEHaICfFHvCPBoNQsfSI2TnsW+R1otdh80hBUp0BsO44aBlBrhQDVKUt +15QzLdrAhzeYGkyfmQ2jI1KBCnYiverdt1CI1iIvz7EX+fHB43mgWgeHB/sXYqGOD46/SgOjxtH F+Lg88HFF3F5dHIgvpxdifOz5iUhxB+GXZseSxh+/HnNRnP5xLzDv7t23hvYQOW9okme9xIkg4e2 SOmky6hhsBk04w2qFHnv7nTLD86OcQn9pl/TGVYDkTDLGY7AAktCY33HtxySG/lHOMIZoQRVeIaj 5FxfXsb5vby8iCmdnK8VQVoO721vlpcjXLy8rNSQSOnSTBMr1ki5KRBikTvHeGPH4P8BO6p/dG3x D7QA/INYVfwjZErxDyDSP0gN/gezVHIgeYCio5cdVp9rJV97/31rePHDHPmnB5326eaRubN98vuZ fbZx9MXzji8/dja+315YFwe9xkLD6tNnB2n6hIsEanWGZoprVLrEexu3l6dBzExYL5Ai2fAynX+k xg0QYKVv31VrW2trXc0wx9IRBgoFFolVcazhOFCrK6hSo4k5dPJdjbr4nvAJJV12sOA0eLRNW8rf aJd3HQNmKqguF7Y9FLtQp1yDySnELewN9M4tnbxh2zVyW2SOJz9KegRjQYZM+bzylJRPkcK7N2Bj 4hA3QpPcIit4Se+eYFgpEEjNHuiAbdu+jcM5se90VNiq04BCSHrbcDoVd2zhf3Dm/tYZoAg2XfTT DGU8cAgnAwxi1NfaFc3A6Jku4cGETX6ctYRzeNPB8d7ZyQG9jrtfk9GEirbXugk9JzUYdWKQyv4Q 7Z6dgY2GbJTSyNrnjo4bS7Tw9qjgyqLzUU20PQKbM9lYwPOwx9Cjh12dzOMunhRC2cRt8Y/A5hdd EqClsFmCXFGmpNC9AY0PYazgP42Thssn19A2S3XRDo8ycmSbBqwgtPCACo7uqooQ52yBog0vfoaO I3RkIXOT50vAng5EK/aA9ZO2DriyosEFZPim3Qw6L3I6nhpqGGnXBznV1XGngN4U2zJhFwM7Wb1i OxF9Kq0M0e/kcEaZ4Bx2301xdPrp6uji6KBZhhmaOu6CTBPXPRePG373DQdN457NAWfZfQvFKs8/ NY3Ejeb9KfpDEJM4vwhE9uH7ib26uDqeui9zBcI1ga+pnYmBcOHhpyeMgwsiCI8IXPDE64nVdkcc 2j3FL+zX6j2wnNiTvppzdB+NGc1JITH77G24M2wTlTApZ33Y/b9x0YkpQQduIJxvnTH7jAPXCauk GfHrGVYtdEhUJTCGJSUxN6xCvNFOj2/Js9vGA4+6JSh5AfYqnDu5ATTlxiA+CFlULv516dimiaty qA7AYHR0xxLBqxS6mVihT3w8Is+XF8AMD/OaaDkCKWtbKKqVEjwN4aNKfVVaLdzqpuZ+27arMIC2 D+iSKWNs+61bUIVb93oLxGzr3rDQgdtq6x0NNJBWx3PkmCmdrBH5HpHDBcdwXV9/yiGbbcwutI7h DmlVaIB4Xm3qsLeBkhRqmRjkfc1jhBMpOk48TWhZayP/oitcl0H3C6LC5xJEONel1/wodOmLKqzw Dw9T8+eFjksrciVwaFaMgHit3WoBTNpuRX3TqUZm73qZnoe/PsN6Ik40yxj5JuGbwiizYfpsGPls RbQdo691DY6d6EaDRe5wu/aUPS/D+bwzb4bK15llTrk00EY/pssxsKgmB8AqgQ+cGD2yX6cz/HKz zcreCj3ea+SAJ5c5cZLDXv7M0JYVdh/b6XwZGduYXHPeijyjfq/zTO2bWhc0RrYLy2QKqqenZ5cy qkPzFjtuuWv9sSQFKOtMiqZycqYQyGznlM/dB1Rv6wiNF2bRc2CnyGDVlk6FXFUEfIqOlljzYb0F EyBBgV1Y3RsYI2HCQDc5EJBHXS6fU3b/0hYUamFyENIKZ0nQOEwLSmWMIU1cmqEUy4NaDTaCGw3X RTMQLlzYyKTVVNbHhRTIrv/m2b/+rX7owN8kS6J7jNw9bmItDFJ4BJk/IgJEk3YxkDXIhey3o0wk 0IXOrbFYcXL0e2xMsoQIoIrOIdwuwBrWdcU7DHW1aLkPlIApR6phYu4LhgZCAPVODPVZkYRAEmhA W5ACnORDVQ6axiFSu8cVgTTsaG3YX3m4XURfHslj5mM7QC4SuufoJL3Q8kdmLw8DguQuOXPsPWPk Vnptg6wy3IvDXWZkKVxkxIMcS3TYdxxY8KFNT64OliCdutNwOgPjTu/SU5cmXob+JhlO48oVQ0bA XyPyrLuB/qFeRngqNQazs0WcKybsS3Z1EP4Y7QfCB0cmop6mUMps+Ux+x+uCG8o/ph/vDshEzDMa I53IPowLD66zND84HMaC6d6BfR0tNGTPvaexB/qaaAUY2baDMWCW8CeJt/wwfHpO7lG5mPexRyfn ZxeXjdNLshBPu8PN2Hq/x06FjuffCFLkGCg+R9fFiJ5PcQMU9ctUbuo6rcDXRx+Pkja8mAVgSusp DlHF8Kpb69aDa0lRTDpCozuEcWh0UECahjug7UaixQmWyhzRm7ORGd+5tW3clbdcDxBodWB/7rXc ga57rbuNlm96BiioegsgtUagAsiJDLBE8/Lq5Fzs4QeiiR+IzxtPiaq2/rBt0tiA2Lh1Wx0oBpam IAK0ocP/HewIWwqrv2Ebro7CoEVrvBQGwfdij78nk12g0ZZCHUfSbVsV7y46hMcgXQAmSN/hjCMX sMfGjje+k+ddCTYJDt7mv4dF2xt00J53LuN244212Ts4bbtv0dNiDPs+G5B3Lz50f5z8qHwbSdvb FcwGB4NkaKlJYrPLiZeuQTmarctTccCG0a2ZW1WtBzp0S4eVdNzSDAdthMCePdhjd1ue3eqZYw5T 6mJAdqttj6vd+sNG+9b9zfV+NbzNdXt9p0/I41938Gun3tM73TWZJ2Bfs/q6g6ZXKYjDbu5rQAEH NeB9zLC2uK5eYETQrj3u2J4X4XjfvusZ1WAxxq5ghRaGzsh5eD2wYe6RmD4SEgBLumy88rwJEYfR aPWgS5Gj0mT5oSKHGz+PyM8Mo/sU4g8IEC7P1ZPDy/vv3JMD5qw92N1ogR1tz3cc0HLG6Z3nHGxO LiPNxXg7z7YweRgwEHM9S45VclCs2qNVvbs6HK/eGbi1WoUptqqtgnLp+Y6+avdW0UBdJYXT1Kv1 zZ1afbvGfTkZi8/0kTgktXSPP8JVGmNzFtED3wXluKuNCW/KcleVifSqQLut6tp6tbYR75A3gr+O 1tVXtSEewtCsVdia+5R0zgFqrH6z2y4mQruFmb7asU1/aFV3atv1nc2dDclvH+z2KshPsq9dnp+L Ezz/sovyzoZ9RGTnOFvPIqxx+fnQk+khjmFpOdExMlc0GHOgaXDuIN7klO0gBW0LFguytrnoYqgy u7fYrzLwZJ6AMwuXuiOq9jbm1Zmur5Mn3DudFDTPRuULT4GIJ5t5U3tLlYO4FGED6cZc9424DvmT 4e+BHNVAfxXXehsN5OXhS/AjZHAaMmqB/4VHHDRTKmye1uuJ/ydUm7BcdjGgT4WolGo40zfKg0QD xI0eyrfl4b+Ne2/xtBDTkLomFQCuUB54gLxhweLVd7RhVhvV3wbmr7pURY+CmmFjzHKZjE0PSZ2c i6WnSkdNjbyR6S1b3ooYU8W1oSa1t9d4HqTnw2YYF0HOKRFSY/I+YS5P2Kk2bUqIfS3DZ7ZgR1iK jEpt9B+6bTmUWDGUHKH3uFjC0GNI1om70Hgra9vV+na1tpUAGvEax9CPjTfDi5aEuIiDh47pu7A+ vIWJDeoCxo2Q4SfmjPeSzvhkZ5ETCWokxC53JzvfUGz17f6PTa54Ypi2+GKgz2gECpudlENlqbxV rdWqte18KlOD32yY97BhJzpRBJrewVy1QAPeyT4DEfTvt5pMN3jsgyYLS4CBQQKdwdwkWCsmgWzO YPNXdIXbw6AHStuLbMNma128A35B68e5b6E0Eh+S1OsZsAl6VuJ1u+uODKk6pAi/d7bZZU/E7ITb BH21kHCo9Jj2HZr4Iq2ySRz3K3pbNyuXnxPsBVvA5yfQm42tmsxf8AEPcZ3brt029M7cJEIVuoBE scYmUeYvYZ3N+ta2TBlxatyyKRLXQxrdPc2xxmGROIZ58GNOmm1Ua/VCmp07trg63ANawH4Xj7Od Gp2pEPsZyLnhj+4MrriPaJ9oFFya2oIsnGpkHVi9xz0X6Edoe7fIuosSiwJwZQgaYXVudzuA2E9B sI319jpX3LPxNL8ZGepd/8ePyCifa6jdLoKYazvFxNQ9AzAUV83GoQjQQmrSGRU0++yip3MPtrge bOCV87+BZvafgKjrRu1e7th2dQtWLMcxFkK24gVhV8MwRZibng1UOUFfYbT5lThpNIv9SH30QT0v edqdrpykH8cmSJOBNhpqCyBP8WLA5GmimxGJ8zMwSn19q/NNUkIba6DLWKko67J0WK/Wi2cXOsVt tJ8KDZQo1x13NG9FtH1SsdBkKzDIxTQxm8aoerB/Qp45h/2XeJSNs0Dsf8B8IoAQKSF03cA7u0uv 6FScM648Fxlrm86WEmKOPoZBBhXRmSmxW5ySG4WUvND5yBswU3yzwz5k9Bn2xGfD6RuWoRFl0AeA IRCU/QD43uCbEKI2q/hu6blouOncfR9vcMWk5+CQ5sUJeaDnJGkdJ2l9rYiojTD2qoe5MugGikRM 9QpwXc/GDQDwJLvGaYEl+p2SCRo+B324B4uE32ZHK8ytYO85xBXZsHqmDyAxyo9ivOU9KliBIXWk aSqwdWPAMwBBYF2jb2CyD70HwyXdf88xSt9/jKQP5ETrolQX74AytufxebG5RqZ4n3ah95msOBau aOodR/cwFwrya5JljizN7/vouduzh0O0iuk4ZkzWpu84dh9ngIynDOhcQVs8zo8TA1o4Gxg2qgDP RttvwBZc8YOtg4rR788riycS9ci6QxM5EAM9kt9s3wEKo4RVGDyjJWTz++3dtvRlXtgwpzzRHGEE y7yzvkbGpgIy7FMyLpaXH4yB1hXXmtcZIMuMgFUczC3DM3dfuzO64r3t2PcGbDkOHV3vwq4O/cS4 VwlUbs33BgzONR48DFBFq68bDcXx7m20oYsvtnMrLo0hnZxwPVc3Mcnbs5G8e7shl64PGuLQME08 Rjk3wbcKCb6HucacO2a7e8cg4n2x/Uu/HZCx6fkocFk94ol7p0M9zIM1sMU9Zr1xXc03KWpbxrjs 6yPTdrS2Zpp/f05NavO7Bnt8rvgeWIO2qAtg22IqvpcbO+S4sFV09t6jaBuCLoJBOpaobwoZAYFW LgeP6mMoI7LfgdU3OYyqK3YBno2OEAe1AfbugTB4Lhpa7vcHKQAv/c4tyGHojjn/xgVEYLFmLls7 6Zxidj7ZKJ2+tQJvohUeh6LUQ3wiKmYcPLQfyClWAQJSkircdwNvxvsiLm2L0uq4BqbhOsVDc6g+ oMPquQj9TRvsSF1rHyOgLvy2PHs9M5HRPPGm0KB/pJbnIersmHkBFR8SmJjg64jOo+Dhapn1C3aF dJqVaC7ru3g6zVKQPIFJZ7C+KqK8anw2b4BLPAftounjGFB/Lgq3fWtHsvI7GSe7i+vZifHDd7V7 bU5i18iCUUDspmHingj0fMxN0zFGBnIpEvscZSjoqHcgKewVKVgPOrZlD42OPN4kGqyO0gdnP0Bh Mj0Ym1VQpnxc5+D/ju0EJzueg5ybRl26bU8wl9Ue7m7u5nYOIB03CukYZdp4yyuRNf6k8a4Br62u SxfpYVg4paTTdYyVxNwsIEUp8yJsFqDCmDI5Pdva1F6zPBlBQ3arEwN0Gz0VhjUD8dYLiffeEBSB RTk6OSJbWs4CDMTr/xzKn3eGsSQt5OzFJkKCSuB8xohy2ALV6nVxAZsOuyKiw1JbW/tbqCPwMQgL c5+Ge9i/jPKa921L3lZ2DpoKLA8DU+dW5qJ7vZDuUepEml0RnQHoRTqZXkA8urYPT7DR6Zs2KEyo 9aPyuYrykj67GMOkR8peGy7leQwFrytqUB20uD5uxnhftg8QMIdl5Tm3DNqw/136L/YGsNDCxmVg za0yII1rhTTeG8ByDuoyruqGa8pbg8hOTXhEzNYSI6lPYMjwCNPNYrhDoFtENl5kKbi32KCAit09 h8LgwQCP1AtY3qjWtd6kyFUKCHk2evdcf0tKYvj2Vpy1teG8y9ladb2Y2kcCdmC7moPuNG4wZMS2 w3Zk0iQw3A00CTwmRsYucYJHkFAwYOZXR1oL+AgPHspdgcq4k+jrHucw9Uec1xS0iveoRsCGwg59 v/camiX/Kmny5tb2pRy/gBVIc7q0HYVd5UllvzL3GOBmo2AMjvf2L8RVE1WHsbjQvQrIEzTd8xKI 1AHlwTyxYS40RiCHOVMp5i2wUSNrA0V1PCOAIY89R/M5auM5yKZvbctQl10HtvbnmuOCSpkMLpuB YJuFBIs1tgLikS12ytYQMBWrYEEY2i8oPXkwn4E2O2sDY5srXmtjC/jdH4HuMjdpasXBPQ3YCQk8 CG1h8lokQigvUcadGtY3nuNUhAYBoeEZJfRw0v26DioCvFsg92ZQDtuoDeXfPGOf55cg57qGzUKN TdHYu6IEL7gURmo9G923v3XrMmiPzS5nSqJ91PVk+O8sA1Cs13KjB12kabJtcXR0lNz84vKv7DXh TjjQbelqZjzEiweFMK/quWNjRmHxGb73NHkU6Dnour05kict9ny0H3YGHIk8P0GLdS507qHVSWCy biBAyrk3S0xV/hEpfk/hvZiZAvNXxwhT9avnDhoYQKzopmdL+ZcqDsmCZzeTIJoDrWvfw7Cur63J sPVkaQQAqpSw//FHxDknDQI3fa6Sg+PG5cG+aF7tXhzs7x9dTnusa0JYc/Zp5mRp2A36NSFkFr6+ BuXAOrQdEt4KZqy0NMz3NighupuCmigvDfcyfnhEwU2UF8CdKpA3cStkDZ8q9AH/LhpE4pL9g+bR u1Pggd0vRZlzUrM/ERuM6fyq/W93moz4gq3j1tomcWM4dd99+Kyx9SAsSxBgjtZHw9ZQb43tVheW mMCpk4nH+bB1ore+2MCHWDMXo3hAP/3OouOkVIfhdSvykAT5Vn+h5Lc/wyU84Yzk5IcWGhBWdXa0 cg7Ert41MJMtKZa47GxseoMJ4b0q11YQ38t8GaXmBML9xJfvtM5Pd/b3Dmurg72DndveN3t19UP7 fcs0//AfLo+HW833H+oXzrb9x5fbvMt30ICVSDeIxauYYTIvOeDy8ldLCLEqblB7mpTGL0jhF8/J nZcecCkAXZyerxAYnlpRcMom4fvzdbIoSNQdtFiQSm9JxGqmToWo6ipjXuQL/GBSYrwwEzjCz85/ hyAxsz+iDf+RWe7wiS7geIoUdiQr+//COeuWOVXdcjxBXdCtcIAK89ARowDFEynlAihF6eKCOsvL zEiKURI54XDqURuU4E3ChXF5pOxq/PyWL2jA3Ivw9F9H/zUhzUDWr7z0Z48LzGx2wx+/ys1KlpvF PyPf2VLQ26P/yupP8a/LWKKxVJKxx5nyh+HdBNMk8srtZfYx51mTi4UEmp5CeYm5HvNelMrYpRj0 8wSEilNsPc6ZPStAYxIW4a9UuqvH+TNZKSwmjQ7bjBKppx5/sqxSiRV09kRRiioxKVaQ2Ann6hPl bAqHCLGZnGTpUSwygRLezhTNeZQrNqbJorQUeOVmy5MUTNzfM3l1qrxGjxhuxOB/ypxFN4e7RxGV L5qsaGnu1EQ3OTmHQj3wPpqnCO+HIoL/PmkpL8gY9PiXJQOiTO+gsiRy9wQqD+w0ksl4lpfFTSyr DinlkdUwTMFDOheBwe0IybzMLDnhWGKn0WLI6XXkshhsZrKy1uTOtJwFunTSnAgOuflnyiIxbzqc KF2IqtHENYpPZYKbZOVXmRlo0kPAKWyWBP4JQWQkk3kVSyKjms/JSRNBJ5mu5VUqTUtJwi48y0wk w0yUD7IytxSjOkOWmHDywG4/L7MLTEaawQFqU6diUcOUTOmyFB3tCdlQYiLxyRKzxDCakMUkhtGz J1qJYVqY+iSL/JQ2JcJm+flLYr2clAyFkFKcNDllSZKlkgam+KBnGneCT5N5Q+JzhAkf5hqJfFiY BCSGQGFGkQjEIMNHHIW8rCBRmckGJdVoQbaPyFcqD0e8vWkSeaCFiK+wi2bfuEmkzygWN7GlGFNw KGGCiTAeMccFP0pzBD/cLC/nppkILpeJrRCUrWLpcXk5yBsBvLMcRWCReR+WJZKpZAxpxDh3w5J4 BIYPki0gahPTKgRtJHIdZLRAiRGWZAN0mgMbeMKkBQFqkTP9GWhRygHZcZkpAPFCQTJnToCg/djZ +QwM6Ey/woDOXiIGsx+5DxrGc/Bf8aYfPmb+9QUfL89AgQ7P89jIA9qIQfYB9gyI0yATP0WegQOd OE/hsOjj4MtyvbkJTkN/fYGHs6En6lB2Fm54uDvAjc5cE25PdLo6IFn0zHEGUnQ4WiEVMO68Z5eD xqMHirMax6PHqvGAZ0ucDFbtqOO6Ga3QsV4Sl/IwLjbyfMduAxxjZ2Ez0KRjswGaeNKVuePpz7QG CAa7iugB0zSefDSV8FTHRxHTf8mDompxS5zezOo2nvUMuh0sPJNPYb5a7OlLtRwEBxKzMMWTk0lM pzvaGICPnzfMaIPOJlIb8jQhtvHznRsMV8/wMF9Wb7q3Gzz15CEz7M3ecx3KC5AMz6xloYgn6pIo PtOJNyUgYke3MpCkI2sSSTpkRkrQT3KcTOkQ6oxXRg/oLBj2IDjBRXPn1dxntF6FZ7NeFZ/JCtDM PCiVgTGdrSKM5TEoxPiZDjwp8Rk7C5SFJJ5YCpDEWMyArAs/RaTUnujBmiyM8BRQgBEe3KH59HRH dF7NdjQn6E7k4EpGZ+hgTdAZjMwMyLvY8y6vJp5zUbpO9PBJFsJ4TiVAGA87kMBNHiL5+oLggFr9 LIdGQmVAneTIQh2PfBDq8pwG0Tp5IuPVz3ASQ63m6eMRGR2j8xSyY3T4ATu28GMOan5GjwNkYYPH FAJs8GQBYjPPGYKg4Whgf0a7dARAtkth+6TbpgL0v75QgflfX6Ay8DwB+XF95uwVRahn9IIC6oNe BPI2HuXO3z5FdLsSArGQ8ywsMTw9wDIQW2VCx5fRvMatYUgOxn2nYrrRiZwM0yb5FwvOZkAYQ5QK vI4YZZNRcNEX8RDoyItkHHPk1WUiFNmS1zO/lM5NEY0BVnjcyNDZ5WUK242aCBNGyTD2N/RqhF8n gm0nwUlE8S4JEb0tfOh7scvC5VXe6NttmVpbxyhYFelJW2O3xSGf4QsZP+s5GnpmIsBkgGYQVlrb 2F4RbzY5qrSNMZro2IY3G5trtZ2tsHW8SDzZOpnOcZkgt5+Pn72A3cnQbmEUnNEzdLrMGnRiijfV rVgvg3iDCHK3+rgFqjKVvXhZ39DWGEJwSba32VI3oZPsJDrVNtY3N7a3drbXK2vYgENhwnEzMn6B 1ncNNrsWwlL0AG2hpXUR96BIQm75HhKOoG/srEnoFOqh6CcJEfRJRffFepUYJKzY83/8iI0x7L51 NIVgxC403redcQg+HQyNHQx798QRzUg7CmJp0bXrkbDt8MJ6vIv+ztDvw3fSRdgChcfRW0TmIYgf qIBkVHEvLYx8w+5wJykiGjmOdCL1EtbhKO+ErBqQ8L//e0X888UtyFCs7m1SzLHmafD0z2DMEmHP Wl7Y85utg8bd6j6sjdbuof/jYb31befNaveTd91uOa3Rem37w3jPvD85Xd8Jwp4JMddpATVhYqci uaNzSIaxJziHI4giDIF+jwxAiuCRqgb1uf7d3nCp25Gb5XFYesYDgXjhVK22pgjM6GB58iMskzVL 3kPfv70+XP9jcKLvrH2+3RkMh9uHJxtrxpvt77d199rbPNo/P3+/erx29f7TQu+h52MgTeoWxdzH z4XMkHcd3Va6zBhFEHOyrj9rvcQRrvI53JPQo2d5YMTZ2UZxy1znHPQtlCYU/Vt958MkRvPfhORh IMHdkYbtrcN+I7fx2U+n/buM5//Ve556Tzhv6na9X9sMLhg0TKg2YXZMhIlSFoRsNxCv0ieO8/M3 0wAJ92ttbe1lV07R1EVQMzZnJVzwiease/7Uul9Mc86wsDlHXtuSvFds1uY8r7C54Ohi6qjijM05 7cLmnLbsXXsxzQ3ze1eH5oayd8MF9a6f3xz2ri+b6y+ouWExqwwlqwwXxCpWxrx7acnZJq+2nbuR gZluJNKngUxJNZgyk9Kk5rRiEmqShNE7d+ZpzvULm3N9/tT1C5p7IoUghLGA9WF+xLNO2k44dh6I GEXgcBwipJxwdjvQ5KOhYKe7jdYFQQWtjQ5wQsX/jJaWb6dafdk4PT27Ot07SH4ezwkQTL62tjq0 u6tt26sMdMe+9bURRdbJFfYc9ii6Iw5N9MVf2nZyfiwSnQzjDbNyRwXrjtoP3w2KxGzBixa6VVqw Q4Zdr4f2a90JFAP0tzT6FMJ6yW8KEJ/qTHw91blCnEmz7+OOkI9ctDgK37PlNEb35Tt4zYcrklkL uDXVNmVOINeF5slgXAobGKMbBoMYBHCNaJBxFK21oBNxaop4zoXpZ62SPGEajUt7JC51bRieM8DY rODm9QVM7ow2a9lMYo3i9G6T67ejm57RcUNu2TJHd7ZMifNRR/PMmTm2xrdo7UfHIp9CyaR/rnyZ iHJ9OpTxCEEM0/G9zQBOOhzA4Iqjpnh3dnogrs4/n10eiPPGxeUX8Yv8szCE16dDeHirt/3ObYy8 32u3MuEwRb5Tgp8j0bc9YdpjzfTGwrAobGA4FvunjbCSeIexmIaLhw11z761fWs4sjHkZa23sI5t TNcxmKzuyHfifPMjyLJ4bX+zNMe+d28NivQQJG3Qnk+T7cLvjmEaj8mrr/UxFATnpUahHWP0jXTx tBgFTaPhr4ktrQhT1/q+jm5MpwMTGX2zB83z08rC+s65KSb2Hc+IxUe0bko2/ExBCBhFB+I/2Tvb 0lexdyvi/9s5iXSxqXUcDWEVpZAvtV4nU5HEHzPu12zuvT/Yvzo+IHCJ9BuxNCBzCUOMhmaEs3fH YU0Qynx918Sa6BqdriaGConXB5d8IeLE6qeaJy4/p+ouUE5/8M2KWOOcSjkqbE7ap+rpl49hcQ7H TAHm5KgxG5i1nbdra6JxMl3tBO67jcvPE5stN3NTn+fWCvHYez9j5+Ngzi6OZwNTW/vXp+HZx72J WEwB5uh0fzYwtTrS8Pxfmob7B5cTsZgGTGNGPlz7N6Dh+fujiVhMAabZaM4GZm37X5+Gu2czdj4O 5upyRrG69ubnoiEvz3xrQkl0Ls8uJiIzBZjTs/PZwKxt/VykTH2eWyvE4+RoRnkWB7N3nLKhTAcG aLg+Kw1xW/K3+lp9YstPT8bdj6cTsZgCTONyxtFgTXE2Mv4srHjcWIiWczzzCr0zHytObPXpSfj+ 7GoiFlOA2T+Y3JlMMKxsz0bCn4UNz9//PhGLKcA0Z+VmoOFcbPgEEpHX6J0UlMzKcYyuZ9X14mBO Dk5mA7O2MTtHIjUnz6dypEx9nlsrMh1nlWhxMHuzau9Aw5k58qeZ1YvRFWdXu+fQFX8WPlyQvn1y NOPqMo+u+LPw4cy2wDiY2bfQcyiKPwsfLmgL/X+KYjEWU4CZeds3j6L4s7Dhgqxh75rXs4GZV1Gc 2Go5ErKS+CYFJbNyHJuZt71xMLMbcuZQEn+WhWVB25aZdc15lMQn4MbU57m1QjQWZAub2RY0j474 s7DhzMpdHMzMFoh5dMQn2j2nPs+tFaIy8z4jDmZmk9o8auLPwooL2vLNrG3Oqyb+JKw4s+klDmYe e9i/PisuRlWcedc3r6pYnhVLxk5lBEudHze+nB0e8v1cCw6WisasX+zz7WI5oUrxqvVpq17vHU5b 9fDodNqqB9NDLYFrFgUSg1k+ACvawOvaUuLSt5KbntwzBlmAxMbqWhlgf1W9wiUGOiHHbzKwNHkz AKaATSP1kih3dQpGf72TbDBvrZUfpBovaGPaen8JDxSSGBpdLwNs2nq5VM+z6OdRfZYhnxbJf8t6 sxAsGK2N5GjlKeN5o1XQRgg0Y6Mg1lc3ygCbtt5fPOEyPImlhGRqPDIApoCVZYDXm8lWMgYo1UoO sKeoN2kQpSYwHbBF1wumToqIeQbCvKlTdthSAP631StLsNfrySEq6VFIYlMI6Kn4MrKSph0ZovbU YjTDn1pKoqXGIANgCljZkcZXwbzcSjaYF5ieNy8L2pi2Xth4xm64DPnK1CtmlCda+nKpnmenzqP6 LEM+LZL/lvXKEux1PTlEGbyZaiUH2ERAT8Xki663sEmTJm8GwBSwsoOIr4Ipt51sMM8ImjflCtr4 d6mXS6u8Y0Z5tJrHbjin7Y/bmGwh+796/1cvs95CzaQXOmYo7kYuGGWo8fkYJlSrbcyWUW0KVPBV OKPpIDrgpN127XuLayQKqZFsQfwX4hxeHBtFOiz9CbGGRjFBb1tzb3UP8/UqzFNvfkLsM9D+qfF1 8VJWV+HKjz8hnsC1pu1bfT3Kx1zyE2LL0qujWd43TMwcoBwv/gnxdj2QDT7etxfKi0jZT4gxcMG9 TMYXPP2EWJ7uNuq3Ckt6+gmx7AFjau64HZNe0cKfEOdQuOKt0QrrePFPiDfwQMdwOqb+TXdinBGW /pxYvzN6IZnl80+I6TWgptDEh58QR7yWxKAN3K4eWYPjxT8h3uHkeieNAonCnxBnWBk4XbtCWJUU Y5sHPFkv0qv12Xo1aec/IRMidGmo3eFNG7eyk/uN40TfJiUEdKpd3cLr//x+X7Hk/sFpaTD3eJ+j 7UgI75rXpSE4dudWofD+7Ko0AFPrmMYIrw5kGMeNvRlg4LXQwfflqTnUh6OB4fYd48cPvGSHIZ0c JGfIZEiegdeN3dvmnYIio6bKQLFsUxvpdOujhHJ6VhqIN/Dxznj+/uxjeaq6ftD6+fvyzTvGqGN4 Ywng7KI0AMqrxp83Z+CJICVdAKE0AN/TBt80vNQV315dlocAKMjRS61rkz/WPBNVuoF2H8iJxmV5 zo5ldWQwu2ccqlgGTN+21CTf/VieofH6KdP28MpyJ4S09748WToDmBV9u+2bpoJyVB6Kqd/peOth R7sLwMh0d2XAdHXPsQ1vZCCRJZz9g8vScEZaR8mvo9P90t9jIkz++uSoPEmDrJQBhPJcZo1vrXA9 O/3ysTQE28HRsGGhNzoM5eyiPB6u8aDoeD4DW3i2Y1vwjzby1KJ4OYPoutdcvH8NmOLe+KE5Qdb7 60bRzIsn0O0ad0GtX+SlIqfyThG8gIQyHeOtIyBa6F4h24Qlw9VbXd3U8RqgIB9l5MYVvDC4thMp SN/QM/tlJhTp3DBNuhmz71Iu3VDXrFCfZDT0NP1zR7aB97dGLpNRF8d0AM/gJqj65taKgH/4KijQ hvBO0KDzLdd28K4Yde0UXWREl9fQ3UbhK4I57U07vbM/zo2z4drZN2P8Zc34dH/6Y+y2Wjvt5pe6 ++bybNevb+7s/xi0Pq8F98WgvR1aDUZNtpq4GuklXwXz1fnqPOIf+M/b1bdz/wUwN3lXovz5mpep yB0qS48KAfVngZjI2yagYXkJxdLjTVdeYvx2ivsjoLp1r6pPvP8BqjtDVX3i/Q1Q3ZNXc2Oe8eIr AzwPobdD6JPuT4DqwxD6xPsPoHo/rD7x/gKEHnZ14v0DSMiQ7jn3B0Clgbw89e0U+f+huhaiMDF/ P1R3fVV9Yv79gDPh7+rqKv6HCr7S3mxZ3IQDocAsJV7mZ48Xiazx0S8jCdiXxE0qm3tIxNw88PnQ MpKs597CxzTplEjkvoTkefnyJpEofUIL+WnXJbyXJdOo8zDhBvkxLwP6I7x7S8NqPdbEzaRU42EP kumYC/OYLyH4uriZMj94fitZqccJ+Lq4+fqiIH/31xdFebvzG8xLHU6Nboib582xnY+nlZMJnPDc FDdzpsTObzgzDTe2+tVZxTs1mQXV/4Ky5eUg2fXyMokXzEr9iAmnHzGX9KNKE/3IGaAVn2b9A+9k FudHnOigCC/RD9DKlx6DJMn8Cg/8LUF9QY+wE+KaoPUuPQapgLNqwkaea8I+AWrKZK1ZNfcRafrR AJhBWtesmqAqc81mowk1ZfLSrJqwd+SasB2GmjJFZ7ymTJRJhaA8c/3Ts3OoL8+NZ0GGbQfXhH0Y 1aRzgFSCHCfqESQ+nnJV2BAHZM0GetyQxDomEshzrgpoWPH92ZWk1cFpQP9skOfvfw9otUc1s/CU ecio9BppSj08OAEcZAYH9cFVZMAQSfyxh+MR5CnIRCIgKw9DlKwJmGoATo5OE2RNDYBkQWaCKFUT MBUTTE1VGtMYVRMgFQe+a15nUDWk6Rsqo4GnPhBbRWmapFQwXDwJojSN46r4j7irmFMl+xGvFHIq DQ/+IEYs4lQ1okTcFE2jQImP8EfAgflAY/M6RVUCGpWEwUlWKQkv9mvwt/54vXf4eHh0+ngA/8Vn LP/KUhD1+sn/IkJ49g8bxgEWj+HPjdU13GEEXceYURHWpiL6/n/+B4+VBaT6n/8R/E0IIwJh/TFa H2cT1gcowXaG4W3wexwbfE8POGJ4LikLOs7kAD/5LRVx/za5hADIDsnPa4+Mj6yBzJvGB4Pk8S3O GYkL/aTPqRswhzDUn59wXge4yC+pKOjbFpfhaqFohVyA30TgUd/C6jgJMlCr81v6nlELQcWBITqy NhUF6GxL+MC6hA7+iZTjWsbthuwYYBD8WdAeFP8ib6dC2KCU1RcVKqZKwjgsLkJjSyzAiYuTzxyk o6BwFAw/cptBhImsHgZwqG/u7/nnKYYi8M+ooz/ZLjrR1Qehh1oVoROYH9DVyr/ibswkxHcnChf2 wj0K1p9gKwMi9U+0Hyh31hIXH5xSccxFxa9gQtCrwO3EpcDnVCpdSVwIs5IKQ/dQUM6NssuHy4Ct GJGEG0e+PWJ8oq4ZfnN6Ri+i3hZ+AdOGP2EXCheev+fq6BaRJWcXjDi7OriwKREnfTQo4nakasyF ICioNHAzSJR2VV0uAGlBBVF3AL8BYUdvYhse+eojd5nN9lwGKiaVJU3xwdsj+TY0r8s3xwf8Jmoy 51egYdKruBmc38GUpnds2uYyUDGoDDdPQYlkIbm7kUT48pGJIM3KXAqqMZVGTcX85lwiz+ZfLruU YxM36fI7kNr0LmWmXYpe1z3NhfYvjuGJbhqf90r7zfqK2H6TvtF+e21t/U3ejfYvLvEy7JXsO+1h 9tIV8Ssz32WPlSOX2Ku7uiOX2NfrmzubtfW15CX2aEbAqjPeXo9g4a8EG7+9/qZW34HS9Z0NpNZT XWL/ojlC6Y19SJvJ8X2+rZv4IX7zvOKhrKvnFQ0Cq/W/3N3zt52P1idv4/LIur1sXHgfPXd8Mbhz N/vr7e7t59+/79w3Pxxu9fff15VFvPzd8+V9EnZmJAZ5IcjUThRzxdB3PdHW0VZCJ0TCHC57vuOg FeWq0qyIc9s0QMRqprD0e1fQRWz4VxgWfDlk65RtmWN2dmRlgqFf2e6jjMQy+7awbE/w1GD7Gmgl fMklIYuiSIzQeibgCSg5FvcGsCX0xdGH9p3eTaJC/YtnpaGHLwicARM1oDcdNgRpMDVA9FNvX66/ +bsrUHCh8yBBK/0B5pjJ13SFpRUhe6F1u4gk4yXubZC2MadQBJk43FPb09+KK5fcF8R3EVzUT3ad iEvsgioUXVt3uXXzXhu7og8ygHpFyHKHV0QMItZ2dJ6KXbZLAaviTHdFDwbCd/TY0LsekEN07NEY ljp4IPByiBx7GKVhwWBMYgxJRMSkcXws9hrnzRUkJxag5bDW2b04aHw8On1HT11AjBmGMIlSesqW eP4Rh5F1F03CLpCKBNqKAE0LoEamRAf6aONkCmkDWoFmwKSm+bHahxUYdAtXgAj0zS7yKAJnCgOR DGBux+gbFgAjc6Mk11RIxzlG8oIifwKusHsTR0U5c6VlP2UmH3HP3YjjDJQSR++7L7EEBJoLnALS TfNaMBAtzUHHI/AwCrxWgFGLMZJxFabdd0faUAAgYMGBja5MgesaiqDMiR06krPJVA0kYGR2kbVd IGIwPWisezYuVkgT4CbqCtBGRxb4puMssblRrbwXN1h9aDmJrrmSRkmhr1bHsMyg5anesfTvtEIZ 7sjUxi1US3AJ7YHKRzXCIVELIi8f+LJWwY1epsBfXp4o5NMCfnkZSVqvwNeLENLLywLhCfgzURC/ igjg5WUpdJeXC+Usg+Z/l5fTAhVgvooK0FdTC85XJQRmSWEpibKuejaz8EMwGwrMfJJtfqmG2Gwi 55QUU8u4ryslIpRf8mmlFxoRrXmkSnJek24bmcxyp5RQRtt5ymjv4gC00OOzd3vDs3G3v2eOB9rR eOt2fe3bcO20e/R51LhcuzdWVz81AmV0IREw4eXW4WJyrZuAko69jS0rMAaSw2RoUKQglOy/iHNT 15B8OG3y1qW+bVf6ZtXeaZ5dynBL5BscyBAU8AUII12MiJ2MkYbhIMmljx7jt2ardaUk6sJAbqDh ll5elIUdKWqRffWHEexeYIaOhRxsYH2SwSh5M3RDvoY7RYVML3acwWGPoz/IqDIQCz3YmTNHRvCd Bi7PFnz+7uueJ9dtkqFcEMJjUsYuDh/UMvGHZuQIXjzsD9oyUn+P94IiDNUJYb9l4AQuAP5XnS9P RMbPd654Vxcd487g80tTxPdf4qIrbGjVcdlRDLtwowMyuoPxFBVxagu0HNooVTXP0zq3IOHdAcpJ rdPxXY5eWBEgtvRVd6TrncGK6JkabLv7KwDMwFmyAqoIyDL6BY10BqsDHy0afV6ELNxae2jjIINy BG6FYxVw4e+JO8M2dXR9k5R2dNc3PVyoNGjGqqSkwyQJPSLB0GrrLaIY0+MEZ/gRrEs8e0JGzD3L MMWgyGUTNRhccR033F4p2kYUJG56isG7QljifmATaVB5IpUBu6pWMtYbQecSrtEfeBVxHaU/iRHQ TPCn7QOKjnGHcBRavFYT+YlJ4I0NhIMl3YqMgG+BKIIlCQcPAI5sXEwNDeNPAEXD9l1cYV0dpjiM n0uCDEUbSBVou+tDQ57m9DHqsvw4WjbH2Hhupb7XIvZqye5hge20gt60okR+wvH+DP3HecR0/w7d M7zxCvGAPTKsMkMcKlGhBwUI/903gPriTnMMbISBwmy5xvCSewejsywaCgNB6Ry5GCg5OHZtUmy9 wT3MZFBD9Tuob/RQ58OGKKCExQHIbVD77q077BNq7kE1NNzdwtyTJrcqcbdSepUtkRZu0lEp6Ajg 4bqGlUkBxPkPALnU7vVWPehMB1/ksYFaMYOCcODK8w70CijzhKwgp/5Qs4wRhnrpAb1cOVNQ57sz NNF3bH8kGJ+pueMkAMvDOxEwElnra7iLEFKnuDxrlidb14ZZ57XCXqlY6RbUa1HjLWi8RY1LKs88 4yadFpuoFTjn+2uH8hxJuImNKAasDkS0jn8/xaDBeyC5c6e4sIj6SFP9qhmokVJ3nIID8VUZzsHN T6V+6MDfoGoLTe4468nxoiMbyaECGUTGAEtKBfUe9u+OtDpNwT+lqQPCkRwD7kDHAEyUdCTCYMfi ifWa6MJ+/qegUPm5NAUtcB8q9/2KHNh7tlsoy0nK2pBqOAc+2WcUmKAFECCgfPCSCQwpd+4IJmEf p2YitsYOECbQO9Ag0g1hJ7b/s4o5NkzhLt5pwUrIRxCecACy7GwarpQZtt0p6N2wAgowNFyaYQlA fdAyeuiyx92kZo5dXB0stH3JhqTCsLqKS9g3/FYTPf1eGn6QuvoDlA1tXH1A5eJCtE1FhwP0LdAB NbMi9qQCYrA6CNIXFqHQCHM/QKWFp16HTYWedqvzLniofQO8vIAzDEepM8SImsXq6b3edg0P6YWA eRVE5QLJB82hMgJqJisk7E+mqhSO0kHTH3wFupA/A7eUsvg8IfukZFmgDwIRDqw+irVUG3mgEqzT Ts5ImLJD0EFTPquMNknp98leiPwMSyr+lA50HQcJB0JHDR0tdyAj2OJFG7weHhTA977VNkixHpJ7 NTFKOUaHyWOHjn6yavK0a2FvcWeo+teSHYItBA2nzp1qYViAr/X1mZWbKQa0ieZKmDNtrftLCljO N0c9sb7+N9Suh4iSTTq7w5ZbKVrQlMhzRyCX4p6RJ88K6feJDSSGmQs0nA5TVJ+CvvghezG6lXrt KWmVJTvlhFgBfbir2+REgFmI0940RtOv5Nc67Y3IJuvapDpJh0aPt/Xi9UiHxYENIkASE/6DezUd pRCyP0hKHTaCutepLK2Em+w22qRXBNo8HPQJSDu6a3dAbAoyyypp9/pQ6+ht275dEfIUDvzwh20T /ouRNHr3yFItIO0Dg/yK3BcE+0kVs0F6e0XQcOAG+W350c2YOQHRcQvOZJebcaJ8iynPdA2WBYy7 4Em/SI6IuD7I7PLdt72/B96OsASZInCNoMyJen2n4I3LQehZIUIrE88uxkLC/AptPmSfwbV2BPo3 TC3afNPiR9pKxyN7CLl04hoMfoTi0ESXyoj4WC7mvEaiq6qgYTSmBeahoTamqSFRAEnM62cgCRBS V++YGghndFxBl6o4bWCRI57n7YOj86gDr/qdAcoI1djB73vHV82jzwdvw44DAPXw/uwyfFNeoLBr pBWxJFfq2y6rZi3c3zp+hy2Iswqb6XadB3c4e8SeZupWV3Ooanz3CJO7c4ssJr/GMjLKb4sPvilW Ra0O4v2gyUfeo57h5JdcPDk3yrmkHfc8UhB2HSWRNwA9+0T3NHkejN5mnqae0JGdoCO1OTuCR5ps dT5tZnxqa4qyo/kQOrZRUp6iG3tenGoSp3lRapw0eLe+r8G03Ae+Y91rLqTWF4XUidEZaLopTjBO G1akc8fuVVCKSRYEajY7BhnxNU/s+7e6uLJAvjguqvazd6QejPiiOoLyfFdz2iD/xLGui0NtCFqg OMTFiwTgJFxZCJyRUL3QWemXdqa4fBhs4BP+SlqvJmmxHH+PvhOe6YfolMMIViR4Ojqf2o7YuKjd CVhQyOJoVLEd0HN1GFuvYtgRTOQCjj5rIhvo9zB/z6g2llaPLpJpZ+LtpodgDxSr22y1Po3JyxQu aBkKW8SF7ZuNuz9QfuEjUGVNsoqCqoswGGtdc8cCdLBVw6qIBh6ut2jVM0FXAwCwxlq4OcTvoD+o 2hmgrpBCDXoMqS62eBnggRQwnE7FtWyMHQeM+/iJ44mtra3tykTGyR6Jt/FT107T1NxBXNIfcrgA j8ElVy4kfk5TSOqu3XHRLQ7KAEcE2M7QrXarerV22DgafTpuds/bq/U977huHrkn9puHszt3y+1+ erc/Ho7/qL9x9evxJ/f08sO4Zj+ce4P7KobqIpjffHf0q9ujKHBG/IJ1ZDRywAScFWVp7G28rx2c f2LAWatzSchvg7PwwfBWRmNvAAqQNb4nKyRSh1trgDI1Dva3uLOdsT3Zkd/fH982AwL1YVrreFZe oHOpEHA63uBl9eKg2WpetEDT7hn96il6Ak9g571nDzGMoR2YsxJwS4SpkeKFMR8BS1KQe0FGFRmb 9vQJVWKUmFI7wrgrUFYpfg2V+YjvTWujn5SCLBRHlCXWz5yZ5Q+t+eXBPjvtNi4OhrWWD8h0W71v nf7d7uWpfvjp8+rqjvdjq/fHXl5mlhe4dp6bsE0lIkZjAokrkilbXorl5UiQT2RE4sE7N7TFgZUv FpQVC91Zyo7RWV7G2D1MngB/I/DnjrAJYL6ETtzE42IK8kPEl3GKrFkSN5EYmNxv5bqvKi4pBMTN XircRdEpFhyz9Db4SFDyD0se6cOfQfTI479RWMhNuPXj01RxJSq1s0yEhRCJUwEcr7IDNx7/PSMy ypJwxogMIvUUsROPcv4iMf6XBUVEiF9+WNgNH2XokmEJj4uKNyiL+WzxBko6SgmZ7fpPSkkOFlDf poVkSU/6480kP/ZUJECnw2S3MKGdcgBNdmY/lh2REujM6k9+LOMolnH8sNKX8AeX7XSRP5i6mul9 SHtuH5N+tf9zyU7nki07YKVcstlzJ+3ITI1eG9lPeQqBBdPfPJHzM0aPHJ1xMpXmd34y80fclI9P 7H8sywhx/2P+XJ3gKXz8X+MCvMlwyk1H6QxGmsoXGNVL6FjSC3Uk6UWOc+7xcpDwur0KnF6vntjL Fjb0HF61V6E37RXi8wq9Z6/KT4PpvWbhzjJhQwvKyU6SdGGhCUosR7fwWY4mMlTh50nHkfw87gZS tVNuHVk95aQJv0g4XeQHGS6U9CfSJZL8ZD4HR9hMwmGRbAYZu9D9gB8EQ0HDJJKuBvWGjBMTfANT n3MLfQ4hh1ADxT6AcHVK2/DDNggkjD95AG5QNy76Lmr7X/oJDf2JAcgwziuq51v2Y1S+iRvKQ+I8 k7U+MeQJyRCiE7PEJz5KGckVESab2ROgklbx5E6ODOjqm5s/X09hBy+dvkaZX+dMXlOvrYiatPRG k9esb9S2a/V62Hose41s5Hly1wQHyCO5a2o7WxtrW7U3bxK5a5TUwPozJrAB2Ovb2+sSdiKBzQ7m r6lvPW3+mmOjB7NtDKsodiPtmZCdVWtdSbcBAl1skpsNpErZNDfIzlG+CPkvaHOReW7e/Oh9XvMb +uqPtbWdT3+snX6w3n9a37DX1zrD473TN6vfd/f6jT/edTpz5LmR0yLo0fy5E74P1tep1/m5E3q+ xfmCIvjgm+RnWKbqljyXPbq8/aPV2+y/v2r+vjY8Ox1uf7c+e+ftu/t+q7V60Hx3sXen+c6X/U9X Cz2XrRxpUx3LPsTe8cfyIXStcQRE4ry0dJ1F3JdfYAOIyjSZeMiIKg2stGlEkBwyljjeHL8wOsP9 J5UYmhy1NRmIipm9PTxLj8W/SfUDFx2Otk35QzMbG2wGoMKYQqVfibMeqXQnqAyH7xORlrkb+Eva 3MEipXfH72xTDkzGiwS+jFOA4fTHmBSA+KmlzOJZDykFlUJWOORMFxG1NNiYEdnSYanJ3k9LlgT3 xaM7g+LUqCBKFcOrbt1aeu0Nt4W7bWQdF+T5LTNqoq2ZwwvTzJvLHjQfmLVB9tg9lJO06wKFgPE8 xzUEfT4o2wOqUp0EunEOpzilC9xF0st43JJCUB/irwF68mn5kw4q+oTfpUFPz4sq2tbUe7I3TLDs A3UFtWbl1AzYa7h7MKXTg4xHQ+2WTL0a6PHDkYebPxDhtlPhxrIDiEOA12gcsFQ8LHpLKPkMt0Aa MI0ZwSRjrQMbojG7SWn8xWu0cioIZC3jPCFoaPjmd/tskV8RoCChMcSRgjWCvofJ6uHJRcGe6gls G7Uum/OwH8molWB+1G/1uiVv/IoHY6VpMU0sd0ikGrmdQUkkG8WKOLm4XhHvjw6vyV0citUTHXZv x5HQbqJiuvXMRi4keNE3ei5sUky0pBvp48gBGlhNCZ5oYdjvlQhuoGKII9HTYXeKtqgkkgUNYkdV Q/gQbQC1zRDWMJMABbBBmTGc8CJcflzcwNU5XoB5GffhHnkLXNtE35QDL3RADv2FtAkfDn0LvQ3S 2Rr4EVjmTT2lYn3Mtm6Y39f9Oxm8xas+yi+YxQcPQDszyrps5DOsjumDRiU0F21/bNUfoRc4g73K 0Wg9QqPAGe+O9A66g6QdwiaXMBOKbBJylWwbjjfoajJp4kTC7OFch+qyMdSo0OZKO5EgK9rs/djA YB8WWkZnEIlIGMAm0HXJ6wkdgX19JNYALZ1yzae5zAMOVdFoJo2qMiUTyiNeveTuNZJMA/dbjk6x BKleZCIrMSWWZAdl7BwDTR6+iER6IchfATOk1WpFpldM+hCj4CcBwtnfLJjsm8Q+wU40BSzzm4Y1 puyrMBB3tkkRJ6Fpy0G3n7Jp9ow+qGYwCxyO0o4KD1WLlgklROLFhJEMruMcZvP2eIt7bHRQaSSl htyhuO1KQc4EEJ/Rowgg8qFyoIfj6KZ+h/5Y3qOzB2VgezblLaPq6LWVibsGaFG2cJGirzpBoAdK O99x0HwLZEZXCy24wtXN3irvbyRV0mtrgc4nLQFudXPzzcjeqZqa3x9IgZaSYSmqlKP3NtF7v3HA ciMFLfOjd3bWBhEDYkAAoNKlw4ZcsUyifGGo7xDqqKyTB5Z9ZQJdjW51hKOa5sVMOPuGg+Zh9rUD IMkS0leOvnGG/Fp/qIj6RoU37lxI4wb7/Mq3UX+JZv+CZv4b6tzVxTEm0HM8vGZqysGBz7Arke/E a5j37/2+DuCWUGjrBkli4lAZYoDeMOY6XBQjqRhlkC/wfl9zuiBMaXJgrJXlzdvJ2hr1sk++ZMTH scRrnrsotlz9wafYNplMUI7MUrrZTOhZUu20eXhNk0xxpyohoFItYK8LvlLuWRXjovX77LjGRSWF SUkCsPKbGXWYAp0JIaHABLI/ZN7AqxzZQ7i6g66rFeyEh2Mto+TwbjT2b+JSrIJTpKkVYJqwOKfx KtllUBuxz9J17cCIIuvB6rQCvDa0PQyMJKcpFOh7mHyelAcMGe36I+DqaaXUCbZQoB5r3Tujo2sW cFVwY26yNOSJGKbAsVkCsMd//MgfBTbjXRR4ouc5DezHainY8eIoWDZaSjJmQdQ74SWs6jEKARfG KOlzMItWUdBSQyZnV+xjqcPrVgVNHSOSrbbTZ8PHEU741lDrOPbLQ5oZEjq9gOUWXsg1GmRvdKdN 7BUVyCECKe4pycDrKmMqB1Qhd0IXSeiiX5JYJD1NMoFdBCFZtNWbni4WRr6Ry8oIEl1JFKI9DdFR 4lyqryvpxgoUEmqTAGm+N0BtkBVr+JJKBRcLvO0E49xopz1y7A6sFoycb9HKEdh6Ub6QXyiqQlaC cwGSazVex5LiiFqMSjOKLeIQGNc12rBeaGIIKh6aVDgsJLK00aq9qj+AwHTRhCLJEyAFL3SyqjNE tUnhUVqBcb5HIwvarbE6xpa4sSTpeJUkNHyPoXhDzbklyIro+A2tusmMtCluKcmTG7SONE+aJCoz wovSLWQCgs0DdRzDZLLAUECzYw+MthEoR7gAqX2eMgSElER1oWlpI/TXr3Y0KtOltk3KRhBmA3LP lkE2JKtwM8lQV2WAgupM7AQJtpbi5jQz17Z3Nvtr3E3Y9sGS1iHbGVNmCskwlW33GjcVaDvWE0gF kylcEeJKh6KcK+2Dv6U7lTFF0RnGoNDzWx3y7xFwNzc0m9uD3kkag6DT2b8T+yJ9xFN9+B6NPHw6 hJipbcDG2Ull9y6z51dm6Wr0jGWi3SZFvwqORuUjLtFgwxKQdnGlQ9RF2/ZWTQN3ddLhnNziFwBN HgGN03h6Y7kC/sSOm2tcR7u2OMJ/QMIdERejwQB34PiSbgDjeDkKQ/uNW4lJFfzNXEfSAYebomfa vucFchVrhjMDVmoXlnNcYdBo+Jtn//q3+npktrg6hsmi8VtWpWYj0ya+VATiPnCJIP48+LlzO4cY Mnl5SJBuzJyP5BkGnkzurKXfi+++7ut5pDlKxcyCTI0BhTUGVXh/tCL41FKiVTKI8LaMQoylAoTG fh6aHt0kToe0sK1fxJHML/+0ZCcyi+vwlhGYfL4Fcy8IhDYUQTEyvI2Bio4S5Rx9W1uDpdvyYQuv zKXMfbQy4G288iggY4R0ioiPJMVLie8sEXgMG6fAIozuE95coRXjN/HZcNGXiccDHQMo5bKAnUJI xlR6u+9eQ78A7nul3abLI5Snn9myKwqYVP4Gn9J57+MZGy9ce7Jehk1M2ULcMJi0B3JUNEUer3ZB ExjANsLv9aaEzWqZAs6PpTEcxRZceioNw7TNTnRg5HNpOOTt6xpdXOHtrta3FcTUm9KwAacofqW/ dweG540199blIFcFLPmiPGRYxXUrsS0My0rDs2z+nwIWFJSGdEAHKWmr8tm90EEV9sbSxhra89mv x8f/joQ2FHegsXIhh5rjZmMY1i+NxRWGpqIoc8Z7QBMQYgNjpDqX+bZ0G0Nds77ZsDgouKqkNCzY 0juw8evGpkS0sDTEBltadtH/9UF3bkOwqTelYV+p47IRkgZFpaG1dcdzPccYhSiGRaWhoeiFvULL 0fug6CqI8eLSUPFQ7CUs/E28M1IBjZWWhglqSidkHXgIIUjPqjQ6Kut+FKZSgulhQgoFlWxAhdIV JZsI4v6ePtvErGFxcv8aMRCYePza5eALH6NqQL1B9zd/JZWHaUiVkW0iCG7s/MXJJm6PRrv21cXO jw/HJ5/Mwx3tx+B09ba56377fGV033+7++P02H+/f3Y63MlJNiFbTQTlxhJKSGK/5RunpoksxHp4 h/Iq/rjJDw/883UyoJAu8qEPMUT9JZ5KEV9fZMcBfkWqV9PRan+K/KN8ybrUHl01Df+swv/wsujl 5YmhdBmglpfxYuqMiLYwrh9BhSFw1PZNfmhZUT8i1sJUyBrBfSko7uyrtZwKLKNh5B7j3ejwh/6L zyXisvAo371tvZo51OrV04ZYRY6/pIKrlirY2eJwqK8vOAzq6wvuWeUxL7KpGo9bWoFPE1FKAYz4 R9wUbtdADsbaitfjaKIKYLzgOCBg16yonbyzTBztszRFKA9SdxHxOI8TQm2wneePl3kVtZk9ysYz QmC+vkiHvnz9CgP69WtL/p8OZn59kR3ykqqb1f143MrjjCEp1WS4iQqnwDYKIkUef9IgkJsYLxeI 0EDJiUeALGG3EwEbjxyLUU2FWWDdyRESj08T/ICNZ0UwPD5ncAJJ0xkjDB4l/6nogBIxAdRugWM/ wZ0FPvtX8/rqCZUFONwfk770asJRnuUeR25Oe71TjYa1437sDO91NfBQ5/qloUa0FKZctqf4VYaH WK0wOT7XtC96Cck7nTv4MebpvVHO2kmNxhy9S0UO3Zt8H+tEeZN08IqpHLtLZTy2yMt/uacWb2Wd 0UNLU2mymxXXOkLoX82DehPzieZpW+xExYUI/xd1dga8lOHHlPqc3FzlsGK+IzPcfUU9kli4LGZ2 NcbUJYY1yX3ItUq4BtWGk3acsd3cDK62x0lOtZuUvwZ2sgVOnqUsJ04wAWO+M4Vxlj/s1QQ/GCaN yfB44WeZnq5X83i4FkID6rO41l89twOLppVimHLOJ/zi/9EqGvccCVmc5fKRr1i3znHYyDosfeUD +1X4d+Af4aeULyOsJX8lXQpBccRRwCXK1A+PN8HmdZIp/usLypiSadxfkoCvsqzq8l1oK5doRe3d XJQySyuwytjMBRF7MRckTL5cGLfYSixANKVNq9HT3NPkMEADFa/KNMBozcH3dD593rwGtTf1FcHn 9NFCFCY2qG1vrtfW17dDnGKZDUKcWNsweUOGUwTxepqMBy/Xut31dhu/iSY+CE5/RxIf1Ndq9W3o wlYi8QFrSVh5xqwHCHij/kYCTmQ92NqAQqDok2Y9OIB138F0RyjesSdpIzlWy7CwShXiVYHxmngq nvMgdfo+kvJAvpNrTUbGgxnyHWjsL8hMd4Dtlch2oOCUyk5Q3rUw2Ap+KYfCy8EWqGqROhFPDVdH OY+PybsPCCAd5d0/ajaOj8+uD/ZF82r35KjZPDo7bTKI2FnfdHTCFebhovw5JuW7qF6FKS8JQNpb dEBWO1CcgJm70tiUU1Xar2FdgQ9yaymAuA3lbK+o33DaxJxvTm1rNcjJF6Qly6l6od2rPGxhOjjN 7xo2p4PL+e48TAAHM8zuaJ0x7lBhdz7O+wS2CrgLoHRjmCSMEpAVUmgX88Vhwr3XoF0BmUzdCjT2 apctNZj0cSnnc5mAaEUZEFbkNiqn/hloMpTW5PVXv17f2qzB/lIHFdPsojknh4xxh14WG05yXc2T wCOoqjJ41CZl8ADKm13spRIcYRYPcue8FJhEiCce6AiI5UuRPYn4Lf8rljEhbO50UZWyJoh6mZgS 6Y+yJoGqlcX26uVERlc1i1g70lYuM6s607Kv+iCXYVWNaVj0K6kDyWwssXGPZWRJexdnl+FZ/D9t WVr+4i8VSxomtGDTI6hO8qqZrEQrqXmaAVEtM3JzLzNqDfQ3vYcz7pNMIkfQwqWnZFAbZu1TEQP4 kACXjWYUgnQdaOa+SrakAGa8Kw3/Gpkj8E+EcRLR0tlgcva0OEQuKw3vnW6nMIyUlYZ3xKKKrasp yJlvS7exi3l4yTgowQYFpSEdgOCIBwGqkvKwrDsDZgwqmyG0sKw0vPcGyuswslA+l4ZzDevdMZp5 Qn4JSkrDoj39Baa+C6FFykrDO4X1L4ZaUFAaUtfuoHEDDS2277UpPXQINvNt6TbkOhqCDQpKQ7oa mUYPE83HhFistDTMvmm3NRPWIBPjQyTIaGFpiLDn7Uai2vixNBTszFnvcqBf64YTQosXl4Z6xAnH cemNSBdVVhreoXarxwYjKCiAJJXUVHnYwqRF8eLz+vh+i9s8rYjGUHdgzUk0WXJdTAndmeXsVbMR 8mYzebnWVN/H+ZufS8PZA520qykw/Fgeit+OwICH0hBO9AejE0YF82NpKOe+7nj2RRRSWFQAbX5u 2xw83D5IFae5IG5rOH0dLVUhaVVJQV+yYe06mmuEQeb8WBrKHt7AEg40PpWHYZv2sG1E+EUWlIZ0 0PG1buQEg3wuDeedP9YiRObH0lDufpghjM+6pf/wQRUvADM/043txvHeDjd64Dv2KDkapRkOtKnI yMjngj7kwPmhO23N+KaFOn9YVBrarm72DX8Y8i4/l4djvA9h2O4sHdv1zb7mRCgUFJSGtOfYoKpH JgE/l4azr1voA1dw5HNpOMw+4VTK4qbJUA4djKtSUPixNBRXu9Uc7043QykO2yanPwN53mGIQOQI kXwuD8fR9UjH+LE0lPe+BdwS2Xbwc2k4RxgMYIX6nnwuD8fTzBAbeioNA7TMUx3NG4hBqI/Ei0tD PbHNrn0XTg/5XBoO6GdRQvHjLFDc2xAZfpwBiuP5/Ujaj6CgNKQLG92/IULyuTwcNL5EwNBjaSjN ju3FqBwUlIcEa0QEH34sD2WkGeHCQ0/lYdzrXQywDoDQ4wxQDO8HT4EIKFVWGt6l79zq4YTlx9JQ riwMXPoIe+GuHa6qsdLyMD+mtkZhUXlot44WVXvl84xwQrEtn2eEY2jWnm31TKMTGqFSbwpgz6/v 9V3b+yyVmEZ6qpbV9nr9AYgNDGlQ/YmUFfQkG96uZvVNrau7oYkkLCoNDTYXEQ6gp9IwjqxuRJzQ 02wwYlttVVIa1olmauOoxA0KSkM6xfswP9qOHkctXlwa6rl2G2eHoKA8JNgaGqMRWo5DYGFZaXhN kEvaCDqmoKmSWWCFiiU+lIZwOdCMmFAPCspDKinR55chRv2w+U7mST8xul1TFwdaKj96WVHiuuPo tkg+F3QkG86RE2E+fJgFwvcohO/lIbiOpodKGj+WhvLRd7rxuaRKSsM6pkMuMG+utdDYES0sDZEH Hsc9Jj7ixbNAxUN057oW2SpFC0tDPNdMug84BKdKSsNqxjiUnkrD+ILB1QoGPc0Gw9hzDAwEiIGS hQUQ55/++0avMbrkdhu9BdgoCUY48bNAZmMaGxvb9wYJUJGyAnjzU+R2p3P1XY7EGZ2HSbZXliS+ 6zmaGRWHQUlBR7JhHRrfjIgM4cfSUGA2/6FrsRUrLCoNTRJJgcom2mQ41zCRR9rIDyGpkgJYeQM+ RVTTVIVcPKgHjUQuQuGYdbwwCrZIoI/S2YkRbHAygzoYRAAwlwtTB3pU2MtLS5r19jkwRpB2J0i9 i8TiJ+VFjFtzm7Vu81oFhLhZSnpgtd0RpyziO0NOD65/oWb4kROsU6WsX0LSLIp5Vr2yTc3S4yJC yw1dQOhLxx+O5iexl9eeIrEkD7U3UxsFnTKMeKdoxSOVaO6eGUZeo8meUaOiKjI0semaKuiglegg a2qhhjB3N62pu8lNQz/z1JPpGizorCEzEQedpdNpc/bP8PNaS/YPW0vIvKIWBxupJl8ONlb7eEJE ypb41/xB8HlSJBNICnyWwe0sFnLuPYouMapHaolRJSEGwf2AdG86xyry/dd0JJxOANFX8jyfuGqu xoJGYdiTUdaSGvQ72RvZn6cJHadwNUIq736owXoANFyv9uXd2Xo3xVPJRY2+DmCldaGigFoCkFYL ssJrc6qeGK6pa3Twu7BeYfBtzjfTxbZnBezmVKXjxnmhuznfFAXy5nzSyInpzak+bYRvzue58b45 9aeJ/k19mki7WjyzI3dq82XaXcXM0UvPeVY1dT57jBWpJRYAkSw2eDwTtqoDOrNJVeKSrXj2yAMx M02dXXnytSoTFdi9nm7Jg9M0Pik6BTwjUxRonqd1MNuCJROPYJh+mrr8m/IBVN8dHeZVuLLoyBd0 6hQzJnAgepWZOe+T9GUXTzKsAZUXNKYKkXDA9mw0rfh4vJsUfkpJAGLHHIu2qeEZQJjWtknBtgQw /DQ4dxvyHsKQKKPkoj7x0eQwqwye+ZcpdvThyHY0B+8VjyPFpy2SzdFSJRvk1ZxOxOIuRRP3mmMB 0Eq601nJUuPNyVOx8dS1dCK/p6OgHmAOC9s0Zab8OLe3A/D79r2F2XtWggPPeAyXEjvFMkPnoJWe JfirgGHuB5o3tLtuV1p4412iI9DhaV08BI3odLRoF7tsD07M3uzNaAZO2apc5gnmQwf+JlSUOMIn /BkRO5Emdyr8ijfFkuRPpaw1PcpVdm4H1xJlKGywKqzV66mcfOGourrmdAa/ff+VE1n8bb1BKs4p vDuBcaZxw7+YCO9X+EIVwNzyHKPjtVznV8nC+Nf7FaQId6sh8KAqZXGiudiBCcoJ1gxMzoBoM4em tNxMalLhhINTKj0idQLT0NHhlqIcifIM1dOnSGwI2Fh09KlU4RXUhWUKnqQ6HJvV0xBlukSI8szP glIgRo4UqTHB0eDunpuapXviADSUAZ1Mih+xpc7Iv2JVLC9HjvdwNsNEjRt5KEcl5Yid25GnqVR9 /LOKp8gRobx30rceO1+TU5V4TbnniyrJsy85VaLHWXKqZJ5ByausjprkvA8PkORViJwKyakSHPTI eR2e38ipED2UkVNFnbPIeZ95PiKvsjoGkfM+frghp1LstEJOHXn+IOctQo+cK8ipFT0nkFNFhf4n uRMmRRiUn5wXHLqfOy8mMRbG1ue/KqKcjIbPe4tR7jnvZPx6zttIXHoGIcJ48SQhOKo8lxBhgHhO BRn1nfOWo7nzXgZh2jnvg+DrnNcypjrr7U01Eh9N2T4wdJqSBMVqQ00OQ01ShcOeC6jCUcx5r8Pg 5JwaQcBx1mtEnoOHCfNd430uHipYOOd9EAKc8zqI7M15LQN2c97KQNyst9gDGU5LXQijbXN7EkTR 5r3m4Nict0HQa87rIJY17zWFqOa8TMSe5tQKYklzXssQ0fy3GPqZ+1aGdOa8DwI1815z/GXOWxVX mfeeoyXz3lIUZN5LDm/MfRuGLeZUkXErOW/jEYZ5lcKQwbwaMgyw8HUu36VC87IEDEbRJcULR9nl ToZo2FxOlUgkXE4Njm7Leclha0Uvi9YwFWSW8z4ROpZTS4WC5b2PBHjlVAljtvIr5K6YKsQq771k wPSQRoKakiPLsU/5IyujmHJeU3BS/rvvue84oCjnbRgolFMhFv2TUycRz5NfK4zPyakTRtzkVOAw mpyXHB9T9DIIfEnWwrlIsR7JMeOAlfwx46CRnLfRuJKMFmXkQrJJjgjJb1LFd+RUkEEbOW9Pw2CM nBpBgEXO6zBuwsJ89phXPj8ygfejNxNCCPKyRcajEUhFu4n46pfRRb88yaNfPgYgBVfhVxi2wPjl OvGn6iSnub+JOubDxosc+vHGs53t02BgGDEMog509Xmh/z2OSJFTfBp0rDg6aUd3SJ3pkUo4r6fB w/BjeGQ4pEPqFLm1CUqYM0jaOeVcfykCBzM/87845xSMxTqLA2QyUxiRSYa+kXcuhCjJGjT5s523 OO8jXVhEqqOU9zX9WZa/VdXKS5WU5VNVLwu9qKpWkd9UVcrzlKoK0/pG1Qe53lBVYxr/Z7Ay3UQ9 WbQ1U1xX5A2LDPpSrtcraCPFMoGlOcUvE92REeIXOiBD/lEuR1VU5GQMK8XcinNSK+jvZFIBncq4 AZeXF+n5W15mbx9AncrBFyDN/3IC2vB5eTl05r3KceJBS/CH6xc67QobEjfLy/letleonywvZ41W 6LiT04tAZfu/EEL2ijGFm23CAhB1WilOkF6qm2k8RonOTeO/ivmuMvxW5LNaiibemyZ7rHKIzJcp Vvld4kli6+tb6xsbYdOxJLHym6dJBouV41lgOYNgIgvs5ps3tTeJLLDhsOAHc2SCXa/VJPB4JljZ 8SfLAXts9IA9xiBGsANpFyDWWZgfj7PykeCcLiusIlhuWtg3M+SFDVIeLyIxLEoNTF3fzrv57Pqw r4+Hn1sD11vte/v6w8nte2t/x14/Hl41v7zZOq6/++NbZ/Vjrd0Jbj57jkSzWeEZmJQcxVCgZ1Wl 5lUNtDqlYGAu4KSH/cgi42nsWKMsSfi8E4EGJRy7C00Tum7SuOanCUWeVSwUZgiFta8cpaKkWF5O Noogg5ZiOSkVb+Xeqre7d975Nvx0+eW+sX7ZuDbN6+3Gh3PjoXd58sk8ebBWe+39+qjfeX+5EfDW Qrz7WYEK2YE18aGOsgtIhoGO/f5tEB6NU4XFHJMZkDIbGkqAR9FQhc+DRrbmoW66iqEWC339yzCj FS9QfBV6UBqPVyyHHz0kWYuL7QlIl5yQsT7OI7pi/QiQ5MdkR7AsHaAYNxNebGnuxm+OPIWQaDo7 wjAHUn/X7B4sBJK/efDH6UIg6Q8fd77NBymTERcMEtVl0DJAEPVs3/EGE8DT7+RgR9oMLsTxNPP2 txy8Dm26KCSFHgp/jy0CjJwLwniAfWaM/vP/Z+9NmNs4knXRv9K2YsIiLvddc2LCj6RIibZIyiQl WqYmeBpAg2gTQEMNgBR0dd9vf/ll1toLgAYp2XPe1YxkdHVXVtaWlXvZAgicSnlg8WQNb+ZPCQqQ fd27ZkQKVXeriJiJq74efg5eh025vIU/HgxHjTt9wwurOuQiFnx3D5CfRtDqEXZhHQIm9mNj/HPw C+5zeVBjcwslAMTHOkn7P+fHIT9N5WKZHZ0L3Pui5DwShQk1cwOMHaLl/HgUObJeMAsgakZc4iea ZPwlkMOQL/UrJC3mRJt6xuXn5IMZZZbwcbEQ9AT2CqMY91L+s2BK80Q+HvA1RKbdvM9pjDuMtLJt RRNS1o8pBVjQj0lAlRHL1++nxNKzqoGElAZx/QOjDSyr0g5xKw/rzBi7YXgX9ax6QpHsybX74ZjW EQ1PgvvpImLytDqprF4Dno/c2bCDu67GS8Lg4S4s9u0qq2j2BIqmLFDeMuryeCk2DsFy69nSA0kx srO4OV4IJD3x1aMhrq6RGwwhSHl3BuaxK3KD57WjDuPJy4chTF89adgguXsR9yPyf+9jEkSxmeVe UhpSzHw6apbOFwEZ9fQ9O1gn+BiV+2mCBQbRdULdMGgQe9xnzQ/smymEXRoc3M0DKLi8b0J1Iuv9 hHVtfD0ZUaqyj7/9NOdbLprCw89DminuWxr1oxBqohbRtIJ7yPJzaM47h2MBZkX/zXaz4Co2xfIx Dfc6ffi5TxNCi4ktCraLDLxT8F98USwACuJF1FdfF8a0EJeaut71LVyNS1uePQdnmjPpi6h0I9kj 1IMBtdDQyWVauIKXlgqIRJ/WJxE3XCzGJ60iS3LtGm5AA82wPeflJceFuuVV7s4UGgOg6AsfFlAg 44Yt1k/hjDSKDBUAXjyllc+XYIlPLhRmb/3DRya0IgtcX9L7iobcY4+zL7ymRj2tcYzEVDGxDYjq 0mcD3RZ5cGk04TbbGnW8QK9SyDioDUw8+APSG9v7eCfC6caDhoGDBwtnMXfeC97NZNhwMqG5hVkk eBy5MD/ZIKxDmD143VVfHEaONZgUSLbwAeAjF+YIECscve8u9mh9S/LG0oFh35ZeI76POw9OHhk2 MPcOUOxlkkF/mQdEAw3lQgXW0WROKW2pK34mdCLGOAfd1k7iJrxUztWrbIu0qdQXpsk8+JH2gfbG qiTBO1a4fjMR6QExwE3a62EDtzTa4UExHc97fHmjB7cb8u1+cjkoX7yHY44XfZJSpyVUKz/vQl7U 4mA1rSwbN5dEvlYW36MkaR4l6WU7GVGLBl+/2MO3aSIFlh7gizEO+DJgQgCKYSVvy5yzIpjt+7fA 9c+oITqC0tEzlmSNR17zgYWLrsNyxcTaSBj6u1LoJ0JzI+MwaPa3elHYGnVnYJqbCF/BLbysRIEO O3b4vFaie2KCZ2/qNkpyY+WUeaBpFjrLZoSYlaJP+abryVs9wvTpq+JMM16p1xDEO9rZ+3FUh9W2 3wRDRdztsLE8uR0/abA8epCZFDK9cjIK5xc37KTtCJejKoLjtaQYA+yY5Xi4stbaaX9SNH59dZW2 HtRJbEtxNhZxGWI4YVeGOss5JopW0MOATmoMylucjANmRGh7Spt0pIE/F0Ogs5OpDWubyPGPU9mm c83cMHMxMx0ANjceJTQlFoUZYX0a8UWbHjSnrDK8XjSCp5wHzymrDI/PQ2w454oUp2wSvKIR98CX cZ+GQVsRnlAaVixjVoGp6egkTGZvuqxV3lRP2hL4pKKW/Ftrn6atJxxQ/j3FCGXC++D+g2YX4QqF ra+snRKstswm5L9DHKY3iGoVOLsnk7kEl3tq1zJ9iC8GVrtTJ4IKZY25hr0zXpSvWbRQAjYzkey0 H1wMQfyXc6zyZDQcEe+fATFExh2MRzCFjgRo6bNUrliOQxpAfWou8qXRdArVM6fQHa4bDog14sC4 5eAIOi7HGYav2S2Rl4LnLi4D6m8aybm2ENzzDczZbs4koXkUfZZFWBDiagycTozr9frW9mJA/8i1 vE8S6apVBKVmycPV/buH24do6/Lu/ZtWZ39v5+oketE6uTjYefl+/d1Z1Gotveuf/hLVV7VZMhs5 S4J1D1edJ8HKaKW3O0zs3dm0L+LbXvBPdl8piKOtBbXatTvK7D/jmhsXbEjtM/1D1zICku91M6WW 5qjKvIg8W14poJ5jPyuHxIROf2bBrS0HjzRMa1zgxqQaz9il2NOp+BNtcJrwibYkTfhEm4iKPikc iFm/LTDqcD3POvOxlzWWfOwp08x1salFGiw30yxkAeIP2v07mVuuJxhKykZ0sv1lYRl9VHfWXxSa TjJmE49OUqVZTR/cDjyotXFDPc5mycDHk8wWeD+jjcJ+OsEggY+mWx/wlVkP1zLoP+W0yWUzI8rZ hZksCWakFTmZPNhmrCuYAlSN6Xp/PW+zKPk1GnmN/pMMHQ9LBeU7Pifq+ZEPb+ffa183bmlFttm8 bp2TZem/QpnVbsqrwn/KqsCvKyuvSwdkoqZ84Yk03ejWhAN7AXrDMm4skKpZfTRDyBYCUE43zfQY IKzSmSvbR1QrUD1zxRVRLIsm16qT9TsIQYugbQJJFMDyMWOGnpfqePWwlHAkCxP1tqZbvjJWwrM9 tS0Pb7laVh9ZgJVXtTK8vHIWMAsVr4DiqVUZgKd+5VnSBU7jvtpUxZm7ClZUnKpAVSNuhzmvLdXj 7us9uUG/CA0+UgOqOIKyP4KIZS6dBzQ+Qfmp62bVmQwjq/wELE/fmMXDR8RVXDI8BcdVdgJkXo/p g3OUlAzGeZY9V66r1CA8BSQD8UoAZoIm0mAiakapzz9Rkfejo2hUS8fXKl5XVxcaYovvrPZxwSgP r2dTB3pwcopFjwXLKgLzjG71P0zgrKqwx8+uuk9KXIWdlLgqN4vi9RR1TfkRldX+SFSfAseTOBVE WW1fWVVe31F2efWfoDOu1/N3jNG4XlvdXgw2V0Vt4AVqbO6sra2vbtj2v1+gxrP1zXCVhmAxG68h rtyZeI2d9a3trUy8Bg8tvn1EqMbmxo6C64dqXG9vUuHai3UM2l8asKE6+i2VebYJYkD/sxR07jZj JW3oB6SY7TVfRMr2XxyRYuB8jwgSFQWIZ+vU00ywpliLaQu1pABGWQshzKGpoDdo/ILhQ0KFNDkD 8ayw1ZmZYDnUcbDSQr9k757kVcQPe51BEtxFUd8RoUSwT5gdw/nNcYkk4hO6hBt/J+JOgLMOB3Af 8Yu08GmlDdBRK1MrKk87jdUdP0jK4zweUP7gYaphY5g0w3FMQ5ySnKkERLD6de3/QGyrax3V+0KF jV4evxGBt7J2+TFxNjrTogqz+fQnL/oJYTZeL80GsfE2ao3VarKuarXKS6lWs8vnJ2fZiGT93ZcF GsUauMb0lfMCE2ZfYo0Lpzo72EwvsiNcHGdUGsPWH9y9jOLznTdvu3fvNt5/Wnt9sT/Y/rB6G53X Ly73fou/rG/sPbzv96nun/2nizPKW6/Kxip8eFh5RnMKQmrry7aQJT8VBA3jTRMT1pwVklaMMJ1f W12Tz0+jB5yZUvxzwOJqgJkWKpUzOQrQvM+tGQASegOeO4cfJQQ56Hoc0Mz+V4BYZ5JFm0xW5HIT WqPcirrqRADwQnCiEPhX3gPWNH0hG80VXbET8N5SW9YzEjNJREI59bhkn7VMhAyf9bRsES0K6ek5 dmE9TUKYTSEvi14IX3aS5I4O9FF/MbgEwsdvZOVqPa8/CSlPQx+L1ZrwdYkd8gWHCOa6nXG/lbTC MKagx9Z51083XByUZBqwY8CjKPkUgi5GoR4FNHc0ZqCjmQETO6nMmqJ8WIqBpIsgUkNrKwR3xpU1 FRJdniZCsjJoR8VdKHIyZE0GQl+B42EquTGIsCQ9hPbzaDOnGoSD4J5kuya13KK10GvoU8WZ6vcx Z9QIiUK2ODEM9H5YMmzWgADcjUSiTqP+aOjgPyCubfl2OdjfP1gMoEWAEnnMbNvEeZs47KcFNBhJ RKJGM4F+WPRAmsJDTkE6qfwKBmpitECEz3+B1H4efxFt9S3EAyQyiCP7xaNQ1jkAZFxyY7wHPaMe s3onISZaHYFg66FsoaWBVaMSnGjWd8L5yBOGmWY+2PMmn4b9qVIAq8Vt7QysNhe+XMkPLTak4Z0F X76TzgVTrf1ZUT/iUF0ikscpgBaKdgJk8aTXHKmLc/MfHvdanbDbhZzJ+hQHeyvxYH9BnbmSho1o 5ZYV/zl4KuIvVz5tirs27Q3v0eyKW5ZkEbKpExBgmlcajljZbRStZGU75hwjBcW2jDdTYWx75PIY a8rAln+YVxKYYpjUajOGsvJUmHb8EPpxHvXbKWhUlnWKhS+xs64XGZ1g4ogmAGyj5YvhkpPqZEgV CGlm3KgztzH6NWxn9uvy8rItKOndCdg7CExZaUZzMvcRG1kaJJLzKajPvSwWQsr4oPKQsKe3d56y 3rYeNlRqDpeC5JFUQ6FPESahQ4k6cw5kJJURC08Up0HyIKvVQVGne0mjT6M45UOOOUK21bA2HdVD PnmWIfOnjCtPsswvDzKtsPaYE63QPwn9pV6tkCwAQw+NTCTq6U4TqFoTYGl8FX6pVeENnAyRN4c8 AaK2Fx5CLMn+1RKwoIMW9cAeLweXqdx/4bIOSNftsw6mhJFk1kFpi10bV11JHIb3eQ6EwvskNrkw ms70cw9y0+vsgNkHA8NLk+SPhvTe9NeBnlka2f6/Th4u7dXF/GT7LVj6lechgLlTwjsYRnAkQNqQ mIaX+AoMb0slLWcFuB7iQdIaPhAZWXmI6rDoaqbBHx8wkA0638wqfoibt5FQxCv+iY2eBmvL6+u5 GZmZ+tlBgRPgKVJNYa/YnTkMieLmrlbBs8zL87in06QoVdIgvyo8umhv1fCYw4FKWoUX02UcT6Rk 8SWmo+2zrAA8c7tWm8CLXHJaRchAR2Kl+Dfy1KBdR8HgYG6RLVownjbk+QyYM6at8JMk3yKicwPT 940SvXpR1NTKY0JteePohlbA8vrO8IZWww0Ej5tONIQ27AZJqNLBTZPWVDOiL6XnV+1x8AALOXUy E6tXoMQRMWAPbcfGmUK67QkIE2S6nBlfGLB+n6ZGu/fMMC7ZGSWxUMXlQUD8NIpGrnoIJArbA4fQ HTQV3QgbA20RgbpXc0l8ZJFSbwZsCp2CNjwMBTmoaolL4ZZtEi6LKf9yT1TZLPBvYlmIKAePHr6T RWex4LqK9mF0F3lkRWMDlq/KTldbTKUsg4fJIk1O2GiMYD5lZxccQQ/gCKjc8bVQBDlz4Dxy2ORD 5lBLBm5RZC0STdpRpz8g2qq4O2FseDcTkt0+CZKijphpHE5Qz5XSw3vkUgbzIVzGLN3MrlW9p6Vv IN1He7/ZrhhFwxxgLTmTyRaAE/pbKP8fgTsCb024DQLidLFX38SK7Sy4emiPieIJMd3rq2s7trly enCJqcp1stBHKN9LId1CElsK15th3AFdBK43sL/JUOCXMxIPIXzSun0m6iyQezhkWzP8gVfqwMMJ NurFw4LlPkNf9Pm3stnsjTqNFe4KoU/L7YaINMk9dPrzurtJWn5PV37mTHcmkEbJOTifHPRoG8J8 3o26sGEuB5r4Ys3F8ABhnRQWMj1hqBZBHLPiUXBJ61zyewZtOFvWowhulimYiqZxTx5AjKBlUIfJ aDheBMPG6RHxkm1Un8F3d0NiJ1WFbgTgqm1gpNQSzIyTrH7L72nnjlIQCHwxVBprbfSiURm00YfH TWQIesGjLy4LBcPGgpwWYKCT67HsYEUZ9Il3jDuiSNxZTChmWCAm4yHza/irnbgyV3HxYoD+4x53 VZhi54YuARXUk89OrxW3yRQnQs8Y07toDC6ex7oPj4xRP+jDnQmdEy3dRBrihwcJuTgcxjS6w6Gc ygUk5IqwGNABp5WmeCGHmRzKXE+dbs2MYqUgvisvS5uWLGSRWrpJnQYceknh0mkJZ/ns7NTRzHWX jap1OUlv1TnlF9qRFl4qy+Dyrwmnj8VUH/7MsTinLcwZWIAkgGI1ioJSlNXGQPS8z79GnRDeqQmE AYXjt8JqALGZKEY3yiOmkg+XDyxN/nBUj1Cb94SMLKH9IRld0ounG9Sw2Qyu3748+jf4mWuIMv+G 9MLr3vCoUJwSj+pL8PO3qRgrWXlyWmFUmGzw2mcCqxykg26ovBvpqIJSEPlbFY+MDTkbLkWiB36Y gX9G/F1DhZ5yBcuKenuKH3QHYDoEkkLJjZuxB7iYbwGDJrYjoQjS8LktsDjIaHtIzHSrpYzJB0Wz O1bJ5wzWBApWMEQr54cXNxfnNwdJrxXfrpzCsxLehAfETNAJTQzhpPHj31MszyYCiC0/wXHwRg6B 4DktDvaG+luE1GFQ+XiawSYHOi7fivnNhERkzWq+IU0dpxZ+mSUNWjdvicwyzn+D+LFSc/P+znH/ fPftWvdw8Nvxn834y69bn3deDLbCV61f3g1/vdsYrd8NXv3xorf+W1n8GC0W5BQOToiJg8Aiqygd /BBkjNP4eELckGtXXvjYm/DlMG8+RoVya/C/n2ftx+wYUAOFn3lt1Wg91DKrKwCQkiVWq/mLrFYr XVaPMNDCp9awAOK2bg5bOKYShs886+ozLuMQtsnG0lqNvvlGZlHE4FUzgNLofSObpx2Pea2YhBsb Lj9iLxQaLD/+KE7CupmM5ZEAfA9jo+5pTkk8iymRHZmp8gRzof4kbx/Ub+Y2CHqTlDPqYan+JXY8 g9Z8xrmaHhdla6rVsA1pNTjWNVlUy8vLH3/UX1vzWa021WSmFqdYyQTYVOuYLFcPtawZjKhbzvRF Tf3F1i6NdE06aqxZH38st2L9VGi9WnHMU/MapT7+yAhgNM1MK8ysaYlQy5iUQBxXlIVoGX5zRVv2 ae06ghTOm1ntObJEsNlrtYl2GVoUtUILTE3d5GAOGW1eucYJNuH0L9HOiaPerFYUdkfE/55f5ywS ZW1/O9PIwoKc1BlDh5zVNaNFm2TC4JB2NkOUoZ8dOlgwJBQGEz+jpaJWuy42KZS1OoPKfQE0qsTu ULOgaiVGBjVIT2BBuC5T+z+mc5UMBcKWTjcCXCslfhli2bnWS1fmm3fYcpW6CwEwe1aqp6eV6qvk pSOsar2GVlIam0EDObO6faFAt56F5qjLrx2F9czIaGr1KH35Qol693+mVjw7ht9B0X1tVc0zz6yv 6C5QchcouOUqn/l02HLYyJVLoPRGPS00PquMrgm5reU1z1qMmFWVfJ1REZtdnylfWACPIrDL1KyP VP5Ob2BmPe61Vc+aDo0zely3R3NpXk2ylyfVoSrOAxdYsRqUVRFTlJzX51jJsmDKyHZWy+mFpRIT 9sFTTjIWwGG6nvGvC4xc31oMNncKAiN3NnZW19a2bfvfLzASH3sRkSrqxo2I3Fjd3Nnazt1g5VMg VJo3NJIa2Nze/dveYoWlxt2cQa0GaifffkOVLVD9v6GHc6vg8cP6CAmtYs234zjEVIu5chM7ypID K/hulaewa+FQVCwrXyGzB9jhBItJ8LCfGI/TgQLOnALUV3LuKsKsmRKzJtT+EdV9zliSscHYTumU VXInGw45vSc4hQ84LsmhExd4A4B1iDH/1hXAFFk8JELIGceyiEVnnMLmTdxTzjyZsMRCTx6wQ6r6 F2jTBndyYDRWot7SaLCikydEg5X11dWNrfWtF1tLe6qrNJ5LhU2h946MUmA54wfF4fnuwhD1rUQb tsBEbSxtSuAypM1cH/LnXYHsVTDs6is+T4vcuDC9SOLDtIJE+uA5n8GSeoLeAdO4FewRATXVOftU J2rJ2jIJvFx3Nz0EZZlLS5z9CjpQsm5k/YsfQsZt2EdgA09XYKaEHgg9VSlwIEAb0V7e80iR1LJE bUYdpZOWngksHzJ+uYZm/tB6TUBWF7iCqg+i2JZaMEhsKxAerbTH/GuCSXwfXBVLT7PXeYn0ONge PFRxlaqvEiL+/dm/fxunyJamNXuKhOEiZJJsrAzFVgjWs80OGlcjO4M3Ux0I9ZzCYPYqfuoTg/Ds APZ0HWw8sLMQU1lSpAWLc3oCqCKD+hENFQKX6VyDUUsEdT4UnHMEajtIqT2RoEOOMjYpYXzlF59x AF+8YZWREVVk70JUZeTyvgX8e4rh+AlDw9vbETMTE0LDTTcM9+LdwyjyaG2mc16lgwOZ/mnOk9pI ORP5AzHj1qqc096M/UwdyoeH545apTWzHz36RBVltXt8oif2rPxphjNSaSuzZ1uZfDjtvOQcc092 FLqyJ6wZth11cklCgGfPnj36bFJw9BLNHDtK+hVzs1BBaboW2BNBnnPUXoqFksvvylRatWQosDwb 6iqPJZRTXk6livisnNQhCUNVEncNwiW5+YqI20Jx5gOPgFRMe1Bvb59u91Z3X3x63eg+vOqdvDwe d1+tbrb2ws6r8VXzy9rZp/Bg62r46uRJr1dtb+PXhSFlF7Be0v8HctWbS+cveslDy3i3OgWWwufv qHk17g/GpgY/Tfr8bYqb7CN75YoumFTp1ZuzK9sEPUz6+LIdndDEX743NUyJreZcuZetf9g5aIf9 xKlvSmx9/iVDi8WJR3bH0O+GWB3ylh9T5zdto05826PW4Gegh+JlqLz0hu2p315Cffj88FK8NWeo 8NKupFmrHCKpWu7jFbcncFOSXjKcetIcl3S5WdjEL6POONgUSO5gFX+9EYQSjzPDt3iVExBxWigN qhy24bDR/vn+X/Wl93c7vx58+PPzgxpeosEXsP2P+q4c9fw0GrY68Wc16tOxuIhAYgNa4d1YS5Zu NW8wZx2vrRyYkq/XVoP+4wYs6vkKdCGQmijcPL98fzPgLi6o/ubIRfD86Pe/drgkcmaG1r/Z8oqP T9KjXmfrNN6T2gfhYMhGFzcs+G+yunZzYEq+fvzqKhuv/tnl8ae7ly9ab9V4XYJFfBkFb9shsZIN 93a856/3z2YesMv3wQnn1sh+P9dIvciBKfn6RYWBOiCiMw4O0tGgHTw/2L+YuW/fZDGsrebglHxe pY94NfNiiM/3v+wfdjdfv3onta9in75cnupTcHrL32aQ1nNwSj7frTBIcDAIDi/efrgInu/tH8ze RUnTnvv8G3ft0fNfctSEnXvxPbBnjeqnfsOt8lpY+DvsmO83Yjnr/2AUD/VFqhf4bYcmeP7uYq/C yIQDEq12ZhybFcP4yZNmgzVf3N7C017aaMf3OvUVF+kPpuhIp/fcEeGM00OrE8bpPzb29k72/Ig+ Er2nRf45IX5UPRtKXqyde3LE+3rwpyCb65SDvZ7Av6gL/1hfv4qiu874f11dXf2vyzYk73+oRBlz 9kjgBVdtnA+hUXIGV3iOrQHmr+7wedR40g4TvEDgzdSzyeGjpo41MpxHsAuz1lOUmVCjiLMrlCqi vBEXQvadhRrLGy9/ZLJqYt+wxr9s28u2I5MQvpAgIzi1ED5NeAyZu0ZKryO8VqFJcEVxcrsoWLZg IahDQxVlAuifEf6iQKMHVUl6pOAWzYaHwOFnaqMTleJ3FKa3SQa7szt20Y/cHE4z4GeqCYYMeRJ+ RYN8YBLSe+0ofWu8HHdvR3Iv0R9x2Gz++gW6KmnPWwFmI9JKCu+TNIbKsZ3gvqMWHTod9oCyyBUs gXonadyh7+owqVI25USxS49EgotRfYKRkX9NoBl7vbgLPWke/2Ic3P0CbXkPfnZQ55gx9EoZrJ2+ YkQ8mF1iaxph72Vo4/Odssrwwk+j8JcwtirBPSq4jCKuUgkSGIAoPfrdQlIFlSHtRyEtsr1ec380 ZA2UAZl7Ux12Uh/sj9LbKLU37Dllc8D7JWzcvU7SQdQNrb3bL64M9WUUDtuniY7zdUuqwwpTJ2EZ P1WGcRR248741cjqgU1JdVgkBKZh16KkCypDepWGcA8+InJjJ9MtrAzxVzr2zlqX7eh17GjJvdLK ME/Gb+IhEfC3Sc8On1tYGeJ5dAvf1AsYTjRAp6w6PDrvaU+dEJdiMXQLK0O8gD9bdBefJr+Okz9j uy+yL6pDpqOr/TZMnRvSdUl1WEMk+n7Xi+F7bLeaX1wZKq2TN+FguBendYn703CzL+aBfBF3+yS7 2eXulE2Ap9jFXLltR5gDYkCa4+D53tJpQSKz6Qfexup54txdL48T0CqGspeKD/1LWEiTPtg/A7Lg XXX4g/b7weF93HnpHi1eaXWYw07YG4aOTcmUVIa1j+C+g9jZi6ZkHlgJiRe907gX4a8L0ntRGfKB DksxIE1JdVhp+GV8+PlVnHZaaUybw8LMvqkMuzFK6xYcPXwgGeiwN2yPBnE4EBVNFXiHtIXrcM0l 4vgyebCkLfuiOuTekFALb+0kmZLKsI7ScBA7tEc9zwEnGrTPWi1itvaT0LW56jeX8qYy5NfJA83E y8Q5HI54hifRsRJQYb8/PuRbDC1hdAsrQ2zH3XHXgkoejk+iIRbOCQfgVYZHKy1WScfo6Xg42Os8 hOPBxajXGx/33rbjTtiMOv32HKzZL2Evojl4H6e3ce/AWtG98spQ3yQjhPwrWPxUGcZJ2GkknS7f GXwSN5s63Uvhq+rQ4b/TuxE+1ALmUimsDPI0RPqBoySlmTYQ3cLqEKMHkC4LTJ4nwKl4Up8t/THX SY2rRi11APcEqeo8Yt81T+s+ARMX4FviE+nAazqihi2qDO2cTviHMG0ZWLqgMqQ3xMUdpUmXRv5D 4nKNCIBrhmMOFsJHlSFfNNJR3dIbeawOJYp7rahjTzxdUB1S3EHenPck+ETj1/tnFqL7ojrYUZ1E Y053YSHassrwLtvhcGd14AkvTlllePX4th72boksuxjiVIpv9+nFJb+oDJaqvUqS5lu4Y7pQTWFl iOD9T8Je0jsM02Hb915S787kXWXQ1PlOFN6OopbKzaygclllaM0RpJNu3Gp1nMOZ4J0h1q06vMuk /yrSd1DZ5+pwUmRESEGs9pOxIwL55ZXh/hp3u+OLRrsbN62g8a5XJ1J4B1uX+74y8PdRZA9+PFSG 8NBOBhHNRBQP4mHYGxPjYABe4d0benc8OB7u8bvK8K9iYq2dbJ/quTocIq9hOyFaY6fGKZsAb8Yz 7yWURBBOX8515K2tra9vb7wedezZvoY0IMvbGxNwK4G1cc421MFV206GW1gZ4uUDibLjI2IxDbx1 8ZyrAmXvlqAcEA1xWH+nrDK8QTt2zyYGNThrXbw+PnzzsjI0rad+lTTtEnEL54b4OknTJL3wDqmC d9XhU1V7TPFTZRgHVw6UpaUlW1QZ1H5YH3eS3pbBSBfMAak3aEeOOkCeK8OpD6xxaD+ERhPx76/C DqJyG9UZv32EfacHxKpchCPLN/vF1aHGt6JufWP8S7Kl1WFSF+9OYqwtC9GWzQGPOAuQeQeaKqkO KwnT5kPYuTvs9uPUgeiXzwG3544fnqrDwLFKQvm+a9axZdXhjdLeaUKLzemmKaoM7aCNQKXOH1Fq 7zlxyuaAN3IUovxUGQZxXgcJIuxHI6uTMCWVweVUahZm9k1l2C9D4hyie8ecaEqqwyJm6QLZJTy9 pVc6B8wWq97tIjYlc8AaxLc92IYvRul9fO/QgfyrOaB/dg9xeawOJWnQuUdcogWkSyrDIqLeiYkz VCesnGSmcAK4auzd0dKbudg7GPyIhFzcuSTeLZyAYRnE9NaNEinyt5gJyqAR9u0K1gXVIZHQRLTg iug39ckzXuRfVYdOB0LL0aSp5+pwOuHAlW75uToUnAhQSb2KojtnPr3iOaDC+uhAw2NlKK/CbpS0 Ltupdxp6pRYmu9nMAHTv4ux4T90vJFtLSipj93r/DKjAXu0gKCCz7yoDf5UM26E9hOSxemdfpSRS Wyh4qozKazqU43rYcZaaLqoOK+lG0FRaSKqgetdeJ6MBrYMDRAk74GzhHMhR5ZOXPrCT6tLX68tX e1cnDpiHy+RVNNx7CMdX8bB9MkrnsUkf00I6ivXNMU5BZUjxH0m37hgd1HNlOL9EgwGJHr94u9Mt rA5xNECWPEdHYkoqw3oTIRswydCXSReCqZUuc2/mgR3T4FsPLF1QHVLizCge5oDQu+26socuqA5p 1IhbDiuknueAcxcduNZVXTABUjXW5WRJRSdUZF1OwuaJduo0jxOwKoOCs39P9rEzXpny6nDT86Se 2OWgni2cWUnjWa8RvesnvT3PHdIrnQNoityOxwPifk6jBxbALej8u8q9PxuxDcsZT1NSHVbaJ1Ey i6MpqwzvLTFD4/0OMo06Eo1XOgfMXm/8En7oLUf/4pXOARMZ6c9axwhBiRzKkn1RHfL0YPOZIcWE CisiHGCmzMKbdWGew32sGTpGb1NSGbmLBi240Anbl+fqcGhk4E1tAamC6pCSHp1Uez3ERzh2Qbe0 OsxhCKOiHTBdMBekyzRy+qkK5oDENISEK8+5xC+uDhXRWxaYH8s1M4x+lN7GqcsAO2XzwevBKu4u NKdwAsRqx+TlnD4Ll2E9SRzuRj1PwKsETjtaW121YPhxHijawuCYIp3CeSDyOWAvYswUzgPxgBjJ noo8d4Fy+TwADz/3qXOeTVwVzQMNhm+4VzcTKw/6xXNBjVpD3I/iTYwprAzxJOyxp9Lr+LYtsf0u 3Pzbyg1cMoMySBN/FHTZXPDg13JmHWhs0TzQzlSkvn6aBwZopu9PICXzwHofsgHjZRzaiOGiN/PA LtKv+cVzQSX25ip2QqmcsrngubKVeq4M5/ej2ETwCZjfl7ioMqQPyah3+zbpR1AbugDNi8ogkc39 ePDORU8KqkNKw/sI15e5Tje2bA54o4iNcw40VTIXrJfRUC5k8uCZ0sow3/XOD/feDO8NOCmoDmeY 9GPXp10KKsN5H2PnuKOvSipDwo55SFLHJcGUVIb1xyl7OhpI6nkCnBnZnLOhFkAqMjiINbRrgJ8m YFMCoznqDC8eYnuQmJLKsPbTeBh7ynxTUhkWHFCSBJzIg+uG6RdXh5p048Z+ktw5ODplc8BLm40R fA0s2XHKKsN7mTRGiFHxjymvtDLMwz5Jpc3o9ciGNdiiytBgD/B8MXVBZUieZxUeKkM4btFp8Sa+ A8fbs2vEL64M9ZLWV9hVt7zbZwtnVomecwvZWZTHyuhkeXH1PC+cfaJ/DpvnlVaGeWnCuy+Rj53E eUfmLXpZfRAtlLfJgPbU2yR1eMKCl4/oxHmIbJxFPVBvHgH7NwSkF4GWF9Uhx/2z1sn4kkZ15PAB bukEmGUnk0kTwQ9FkfQVCqek+rW3qZqxCCDBcH4J3Fg54qsE+KKJv8OlvHvBbdSL0rATNA1ygU1w 4Ny7hDwUSOi6iOt6UufzxUCuWxioGy2ROqMvHcadWMs8bB4TwA9I18vph6lOPUyRFPUW13GOqRC5 gQNONyLXQaHMz7CwHJw5dTm/LWew5VweBMpbWXNlOXnSlDoFifArI/QUqXIkuRRuzmRQzix6yGLu wmAwSu8jvvonh/y0LBnSqdL0GLYtb3XMssEKLmHWKbIb3+cO5nC5JPftL1tvLuvJ0UWnvtW4S3ud i/ftP9407t/svTs6uzn7Y+PD8cX+zfEvye7hZtkdzCp7rV0GP2Qy5OIj3Lb47BlSeqjPnWS3tIZ0 fspFPHCmWv6ljQJS/Obsin9c6qSxkpgFRTYzLG1X5Gv9ahKxfnUyrH7l1Kkfe/9c+udX5+/HnuQ7 /YpMk1+vL50ko/6dXuOCPHhOjtIFmyryayaJmWpi6ytnZ/x6rTts4ZfkWcun9Pz4cWGBs3eWtLGj uuEks5zeCycVptOLoKSJXd2NbALI6Q05OSQXJEnkV539UQF/8RUZ2L7mEi6W4LK2Kt9fI//g9Pad tIULkqOwDO76V6QF/JrN9/dVJfKzn0nzJu/d1CktSJ2HGZ3UR9MILA4T7pmTTHMLklXuay5dHHaH bESd9A0lteAalH8C2EkkXp85HgkvIPNygZ1qz6Q/m7NR71wpaMxDxmvZT1P2k05P9tOciExKpDYP Xjab2KMRyic6mx0hkz1/nuxj6q4CH1Eng3uttuy08bE3OX0Yf/PRyxbmJPyy2bdKvwAAnetLAbOp vbzcXA6wsi8M4jYd17XX0Z+yfIObVstcj1DCiMjVBcxKqL/BUlCr6VxYcndA5rXOc0WvhjWchX7y KlPqpJ/iMqCtU0bxZOmEUuijqqMTQ+mCXBYn+8bJzmTLvAxLutimSDIlnOhIPx2ZlEWmRCce0gVe /iBd6KcA0qVeEh9d6ObhMWVuLh1dmM16Y1+YbDamxM9Jo4svs0llnBcmJ0x+Vg+chC6misrSoh8L UqrYd16qFFNqkp3oEpuyxCnxE4/oFwcmb4gpyYYdyBusrHy+Dl5jyOlh+5NNvGFfmIQaukSnxTAN ZLJYMPRczgvVlHzPKSr4O5vBwuLipaIwtXIJJLg+J5lwYE9KC8EVOIuEU8FL8cBfZJJBWLwkn4N+ yqdfsEDdDAoM00u0YCF6yRJMocp3ULYOka7ANpVPO8ANcm4C25CTWUAX6WwAFlQunJ8hZYL/LUwV u28edRC+hefGzDOsbHi9A8yJkNdlbpS7AYpF5galM1wvft0CvXTjz10Ifqi4dDMTWe4MMSpwFLgc pDZO3P9GIrv5Gy/628FHBXGb50wwtoFWEjjNsN0CC5pDpE39gpBmrlsQBm1B6Bhm8+zEIuepohNI bNvVscDcmI0Vtm14Mb+m2vomV7Dhu7aCG4xrvvdDaLmuBNk69dww2WyhG+lq3rEfsTThBZgyePXb wjdRpLZAgkENkgWRnLJWB7cOGD9U0xR7sZam1ImWtGU64tGUZOIWbTl8uc2TjRa0ZTYKUBe5oXy2 DOF4pp8miE7m0Imzs90sOZ1W3GA3U+KFrNlSHXRmS7LxYc4rjvsyjyaAS5DORF0x3uYJSJesdURV GaBeqJQZDMWr6l+GjEiBxDCZgly8kX2l4ogsXAQACVwJDXLg+lE+thjsknn0ImtwC7kdCImRYeDy U2/o4ngX/jBbaNGRcBbVAp45TMV0RIeXCBQTfmLr66gRC8GLBvEKT146gAtDMaQZDtqwTZhwC12g oyb0sxf9YApNAIMuyQUbuG9iDiIwBYgFsA/Krd8UKO98+6y87FkmK16M8JM3FZTzu330vdhNuXid 26H1/Mad4rzPt31nfLnt19YjW5f5XtW21PWLtqUZz2bzQjsm2wLjS2yRtT7CukR7+ppn7bFrCjzH W1OqXWfdAvaAtQWeI6spZk9U+2R9Sr0y7RdaOqXw6TRVtKOmeRaHS+fRek46hdb5kQsVa8KOioY+ O96MTnvWK9Epcl0L3WLjG+i2knfi4ybzxV6rxmnPLVOOd07R2Z77pPzgnJKMN5vzpojAolg5jnll ZleqLilXLu6HOHpp4ijvjWcWf2GeQL/dTionLFPg+FLZMu0P5ZZYrybTqvghcXvaR8nBSbyL5K3y PHLeKpchfm0ciiyi1jNIl2j/nvyaZQcd85143Zgn4z+jS6wXjC7J+LKYYscZxZZZh5JeoAp9rxD9 qePXoYuMc4YuYB8L/ZBxlzBjL/4NlsoovwX9qB0QMs/KkcBAMaqoS2PttyDtW8eKn3+pDfD5N8p8 bl64dm733tjuaOhdG6sudYXq8KYT1iPYf40tiy1YgxsxatkXynJM2w5SjgNMmaC04Wxta2cx2NwU u5m+1h4m6bWNje2NnY0N2z5fSJ9p/6EdDyOQrxtinIcjVPwRJpewOUCPaI7YlhaxBdz0T99C6qB1 F41vSDznsh+frW+GqzQEVG5uqdy6MbfhqrtmgeT66trG6tba1ubyKhpI2TS+4mlPUePTKKSTgOYF sMxIxM2IEbVFCvLNaIghA/T1ne0NBZ2v8zUjpwZA9wk3itLYjfxeZaYHH7ZGX754s2vuvE1v1PWz Y3TiEKfrkIgmNg36kPcFwGffwaBPC7b3ba3338+GshhcT7CJz4nCHBaVvM1d3b2c04FP13tjcRDM 5OEmxl257noGBLlaGrdGY5J/NPZzZSW4GTRokm94M3TjHmpjsZtbom+G4z7vQFl/bJMHPeARMy/D 3tjd4ZaUqPb+z/9ZDP73j3SA8a3Vwy02c4dD3Hj9v/XGUnZ3A2eQ3gxBhvOmf5cgze0P017Hr6u9 89Pj01fsiiAlWO7Ga2U/om3DyxwLZjDgm4zVpca02YfYPe4NvHjNlpoyNxj8GJgrOaDK1xuTt2Xu 0g5YL9RgD2R71VMsHVNBVhL/lEu8aSEEdzAp0xtCPcS1zyG0GZ0OLkDuEh/YhM0JuxTChb6dGAuE 1kMw6Ifd5eB4GMQD3MdNhAndCoe6jZC6HgZE+Du4slvuUmbKhyueZQDETcGSniEJnaPbtjFMEaFJ cEgK7vpOcdROAlYV20vKmT7cRmiyFUUdHiyeA2yQusyOBgDbWdm4qyu6MSI0dIvBQ6Q6x8U8d6N+ me9LhhqIPQ7Pn0bQBzk+MFJQ4u8yfRmAlC7JLelFa+E86vP5RBMpa9C7i90SX2KRLkf1KGiINijo hmMeQyxavpOe5lfG40HfwC5tSnVVLXsJsT6owINzj+ujMUgYyaNE4WiVgJ4HREKGXrhIxSGQVaan NAze06GdGwi5Mjzoj7AurvHJv9kEGvekB+xgswQgiwHuxOYVPmCTYzepY+VKM7z8ooR2sOwdWll0 it0nHWJVA5L+aKhoWfzg9oB/T3Fa0mRQBtuhx1g5BeTMUGlbFjOhJJZnjVke99JukPJW/Jkh/Jiu 8JnN3JZDFvHq2bNAUTeM+/yUDLVrtQJSVav9X+pUkTphLGcmRcISCEkxbMAUWiRmcGe6MiSlhlvr vy8VuZ5EJ0i0dehKDvtCakB9+M4E4CPLL+4mxAazO08JVbN6DnaHD73m6H26+rKX/rqW7Kb9y7fx 9kP45mr0Nu7+ebPbG/66G28Nd1+sas/BJ3EBbm/oXznXVHDBJLaH/T5jGPfuaQkr2vKMXhrv7Pdc xL7N9L2QRuufLS3k6Lzr9P026cS84RmSgesXW7DB18wxpFG4se7VGeScNxn0vFNIcD2PBrRgGtk7 6FY0YeUd9gz/SCv4NbHT5qpQftB3yat37o2rxTfULzHIGa6yf8SHT3rfPV6VDNsK9Mkq6uMqP24z 3No6FTjPzE0/iSFls0B2s7y+TYLW8sb+TRo92JRUb/mbp0XBuQzyHD8nQK92u+wano4iaKCJAtEp G3wcra7W67lF+q5310seerLwzT7wSjNICWzd0vQAPd3flZZCxw6L5ciuoSn4N8O3hbbhAHrp4ISO mDYLweIkXtolIXVR06cQmfJMtwojQNRo+ldCynbdq+MwsATNwyJDFZdvb3OkkI63bG6CAuK3F9xC pUScVdiQE43hmNNWObhBMB4sE1FNo8bQ6kW64Z+mBliKATMNYP+iFOviebR8u6zP6UU6HLtRshhE w8ZyQa6JwlHgVZubgdwSf+Ys9GY0hBdEU7jDiUMgS211OVBjfNZTuRWnrcELqJSizzRqPXYxWQ72 Rs2Y2C/iFMBKDMEyBqzuCMDjdAg+uGjmUVi/dB8nHWJyAnQwWF3mVictEUZobTk4TQJ1EknXpmGK XzzM5vyS+Rp8HK2vrm3GvUZnBMcoM+Np1GEF8exRK/nZYJqHnzdrN0s3vYTon6AsMzRI4GRNHPJg RJNLvHCjHbTDe2IziSuIwjRQn9M3USfyrxMTtGksRx3iw7WEMASXncE3d2abjVp2lC9LvJzhCkoi xPg9bDCBjB71wWqc2Ce0MaLlj92T0nCCVjs9asW3RKRQl5i7sQz7Z+ICBzTqabRiPlxqsHuWZfIH YLktHBhjGkqoAWtI8MDZd0DIgKUlc2urwZhGVdaLLZY1V9zZwtW3LqsvgnWVEDjuEbmAbKS4mJlX 4sWI5jscBGBTSZg5IspTT5K7oA/lIAl57aRHkgcxpiKfNZsQB/EGhKPqFDXCnmw4NVc84CERsdii jykT7SH9asVYnAPM3S3JXcSUPx9EImoGGwvLgUz8gF8SUWSaSW3EXWafaUc/x4R14ruI5Jd+RE30 aAEsQCShSWbKCkUz5DCIiCSbpD3abpVnY4Nn4yoeNtpLr0ewHUjKilmmwS6CsxQDQ6Qbuwxb6IEB tgmgYJQ5LacNdzcKaQv0kqAJv2AmLHyg8nXK5yLZsuNDQ7TRXK73wgMRxxhrnJYwC0g8C1rsnTRC Rai4s25FtOrTz8gxfl3WA4s43zAEKIp6WM34huhQt8/DCDlUJLihHKZoE9riSb0onOdNnmd1QBGm IF50VO+noyFxg8MxMH0dpiRMGUI5bQkc6CXoiNdDePIB2TBoxi06v7EejB5hkRd0jr7uh82bg6R/ c5rcvEx6I5sgKfuC0RJOi9CNOoPowSpDpw7B1rLocYaaAXkDAX2oRmWmLpulQWP5ENWF1shMJnTo BxFRmyY4FQQVAUfmVdRRWYXoEPx3529gGkmHMHxVrWx4K0jyMFzyUsQiUloOxrzyKtpWnEPaA7hX icpLM23YLjFLzNR1sQFy2iVW4ICcK+5BdXYqOjuMzgWWcgxeSTbhe5ifZfAjFZQ5DUF36MIBh6gw E6shDdoh/NacA1qNMFpMsd+XwLguB0GFaXquj6zF4PIBzEeqmNoKMN4z/8cMA46oDqs0sfvMkYET g/lvZaNlRkBx57IWqi+DXR731zimLvpR1JAc4DMP8gelFmylEdOKBIRCFFrEjfQwunRW92mLtkad DvEu9ZEoMkG/Md7Cx8RYK01h2eiciEA6hdrSca8YohGYv8+sCdZcVT2+TYap4ojA6/QjEj9CGK5B a/HJoDNK+XQmMYhNjlFz0hhlurcfsaADtIR2E+lnTaFWxf4XNMAgFaJFbY9opibBL5yDFxmCvjcY hKPOkP17I3UdzswzcqppFCCRJNdZ6sQtErW6IbZWMhpgPRG/tkT/l1+0TaS9urTH09Iewz+xE4R1 NZAhIo86lYiXzxGn4YODWQv+V8pkbzCDCBT1Gq5JrFobFn6jHdNpDPCCuHRkEuDCqVlb5bmhVtJm 8DZM6XR9Q4dtD6rfeeeFzxhsGhzbPZgD6tA2D7mNPtqoMshq2TBQCWizcMPWUBbmWMTwBAFExNCR /F6HWYFtF8taNQ2mFmBnlu/0Pl7Z6N63xpsrcbdPZ1zYG944vNRNGt2GKfi+m420ecP9WxG2gPnd YRv2A+6lsAPMPrMfR2AEdy1YE7xJU5hfG2lzKTNrtPLSrqglEhqeXjBohF21rKf1nKSTAR226DiN ZfTzMPnXP9aPUvqrJGjRq0UYBuEPpcJA2UkaESgTqNJo0Fdrnikmn+8gIMbRKBhGYXdZrcyMOjjX 7+zSLdKbcHyQHKxP0dVnXXM7mPpU4z+LguUcSw9MNbP8+BtcidRT8ZAXc47iW+U0byYR5A2agH4f qgMlBuc6ne+zWdi96EEtUZgFP42iUbRoe6WNjjNALBzFDXexaElg5Cbpec5qjJRPVBRbkUvLrKGY pNSqUWIU9jdDcezOz+Nl4mXMiTuAr2fSW1jkEUJdreXBChWi1APTRHItAhaJEebkL9g4PNAsikFn 1QhxMLDpsB92aVd1mNYQK4IY66CFKE5a673JrGlmOvEj6uIX7Gn/zBtrH2mmHRbZZhkpaXV2TPdI ljTmZzuJgaF2DHvRUc+ArBmOOe7R6kyTfsoKAlkQixAaHdMfQwPeGOWuUMRPo7hx1xn/EFy1I7BW oDQxDL8KEyaUtOIf2mOeUWiB7mD/tPoxQ/Zn76y/Bl8mWDzZhaapgKFgOJabMXVtxFMQsvZa2D27 OzFQaoOarbYcnGiy6Wj1MF0QqtFAl04FvTdc6VPOQiNzyiMjqrR5R1RR7atmAt0LVjJxlMT9sFQP DnvScs0SWiZTShI9iqJmXeeHn0bALiJevWbUaGUgZByLBLatos7JIrmxzn+mn7k3bpdn7IOKyr8M K1DgSUtGARz8kxFAoD9K3bB9UfjrN8G//A4/05phqWB7xL9mm52iY/AcymwxUCmRVbpbcEh5+LA1 53GGq2KoH8QW8jqM72xePrdwfphZcHNAOiEBAgsz02m/uAQuP0zxOzJ5hcx2ZXfpv0nisQqGMO4s 15ut4399lqh6ma/H6Mve2W3zYPjm19PPp5/i9M/bxkP6y13/6vXw8uWX43TnzcZ9r312crSelGWJ Ont3eb736vCHkuRQEiiC2TZeGdaReZpfB4JJeitZm03w1VpGXT+LHufAsS4T17BEcXSKQLTOEgR3 6Sv9z0sY9bF3DTeAbAWx5C98vRYTffHrWQz9BIINmjkIkjzlK/CnHhTZ1bO0hxPL1Gpi167VPIjG Er7g2LV/MvZsBuWbsHsq8wkNntidP360k3YNU3JuxnybMw1ntR30hKZkF3uxF1/7NuDi4Rab8QLi Z3rPfBswBvfJTbzcjm/BRTvz2GWvq1tQJ4QO5Eem1H67MNH8mtumyzy4NWUz+5saS2s1bSBVyYue lRs6eWE8ynzpDMh/jGlSkaUCi6P0plY7m2BGRGYj1eMC6+DHH32r4Mcf9WRPsQY6A/k3tfSpYatm wJNuzW2hW8nb3gDfWtwYpckGNUFhPkOZqZs1gpkXMxq4GM+81UrPelWzFIObxepk8HykNUnglFuK 5P3TWIG4cznTjrTw4T/RZCOoz2eO4cGYYmMxkyzLFl98C9uJXqzz2kWK6tu6JTYP7v8kQ0a287MY KPRqtRUeb3y4dgwC07kTvSSrWx8WptoYzDjPbj+4flK1f2n3CzXKjl7e430dnf91Vks/dwus+edm nvlqfKPCx9jNrpi/tjr2spARTzG/oHWd11btWlaxsC9K/77gqdlrtamq9Vrtb6FNl7XJASffSUHO iShrwf8Albcau5qosGlC/wqttZGjZ9RHA2nabBk1M8oCCKVTFclm+zgaYsX/uGpfBVDDNfrb//aU tv8d/MtLvrqAfBlW2M5pV7mZvKoCRZ7m0y2RB1/H6AYpzpJt4kc1XAjAovqo/ujMEzuri8HOakHi ie3NnRerGyoI3cR551Eheky864CTI3yjPBRRuLq6voM6fh4KCcr081Csb6+tbmxn8lAoSouvH5GD YmN9XUH+u+agqKCZ4sXzlOkKXsyRrwCr210KdgmqFv+GCQtYH64YPD9EV4eaSjNDzylrNgW6Hodp EctqxU2KWB5uyWCVRyzfxq2ieOUZu5YFjqoaoheHqXB9EhtGewu/ruiEonOfdlTUHwbL1Or9YrCc 3NLxudztbwqTsExifRe7gPgBZQ7jyqDdZhqhEGB+NeyOwAcvsgSI3CH8QFuohXy4ATomrAhGhCD/ kHFhABKLs6DiqwV7EEXlyJcQzowfulo6DsZ+s9SeEs1JrsZRzhwMHbIDqMbmgUgsLhibiAO7lW5X aRDMYpCMBOJcIMgzaCmQJOrysQgPEtbOI0Efs/ZW3sjosFoLAOZxO2EWHrNT6LXjiB+MoTiioFGF Gr4j9o12lfKYmDRakpfEw9SJ+x7erK2uCRanxD7RmpLin4MDHhAMai5M18t0khTaowvmCEIZeDd0 5CBNBgN+zGZnyHcgb/AWllE4dl7jLPSKir0DCjBWzCGxP1kfqxWhIMZ8igdnlJfBGGj2U4wFYNYz rdwmQ4ibYY843iHUHMSe4jM+XjQ72g8RPw6NDeDLMmMQsfCvt3KkR5rgqoXIv/PW/Al9Vtgwh06l vWBta3U1EGNX8DyU9SKcaEsrYBes1hFDJJPuIOrq4IcP0DZGdzJO8l7rszOaD9rI4AVEesE2V5Rs WWacY+oHRh0BDQPQYhlIaZfy/c+4EhSsLG+C1TZk8aoZNcIxb0OZb3VIQL77Fe+Dl/gAuELnESs5 GXgjw5ReS3WoljOno90NPhp17ejgY3iURiSZEDdjSBNriXgI2EJQJGwUgC8ghKpPLCqS8BFB4dLA QtCg64CsJDXWdYhu36HoRvNTLHcnaXwbw9aiVomtCVx5yBRhIqqlhSsZTFmgsQpXKnYVmUg0ThMS +8F7IsPI6+Ojq8Vgj1BJbukEOgjvouBlOOYT710fimDeGtmBczTSekoNwzeQbYPrW2jRgvvkgWPV JtR4WkX9nJc7j6erO+nw4tFKCCdutlovize3lV1ld+X6ddwjdr8Z15n60JSi6iLt2ZTOkhbSVIDT V6WoK1s3gZJWeOsu1PB1zkqth2CoVI8eD6JIU05hmGEn8JTdh27isfPf4/Z5/9Le/PVypFRixMdA a0knLeeWgVY9DWjLsHWQCBAhOw6efxytr29vrq8uQNuTQB5g7Mr24lwzISYXsRwLj3J++Nu74/PD l5kWWIdr7CVSQewxULV06iOlmVSEbTGng9N9DgPwcB2eKIEjRDCHlGoMSwOaBtp7s/Nv4Nly6+fd +ZslawZibP2GT88us3VUd9C6EHNeTrL+nVRH1Ub9FHaLfszb3Ff4EwHRxjceV1Hx53pid3jO3NSk HQKxlJd24eZ+BNbWksoDUSdKGYK65hBUOzzqkTiN+zVEGdejKWX9UFF/ZRabKg0gkh649VXeGdZW PfSY9knXeVaMRn5+11I8Kf/fEQ0kOP4kJSJM4n0kqEl7Ccm+tH7oBCMqAr8HzAKTxwkrJVjC7ok+ QxTiE4hxcxx/naGD/hopl4gowJyLU6UVg7UbQglplYtos46DMI08bR44b6KQTLzsEcs0DHpRYYm4 Q5BfMXkzL6fTi6Mre0b446eO1G6Y3gVpPPg0goNP9EKNBZozg0G8BiBlF828M3cp9nhNX4wIe69i bvLLsouT1BXxdDojse07UcI4Bu3TYuYNWNvu2OagJMLkfgzj6rydOkXWzyF08jCfiiVvzFs516nz sBGD9R5En/m/7aSb9NtJPW4wp8BT+oCMWbDJwRzkCbfOIs0sGc9bY4p38sS+qKXRwv0wyGD9xUmF akYeVbKHadYWA7FWsbbaZSKbWINX2gywrEg4Y1pCZ8CvkP+Kh4rtBZgYWeWK2yXWRFpy0rf4+AbP lb1Cu/U4dkPOqMbOBHF/JMyzttOLTGxQDP7Eksdihu2CedVQszeiXmTuZjCZH13REm2pvKHmj80+ 2bHYB+Uz7gA+KVwO3iQPS1GrBV65R0PVIa7GfMwHe1M2JNEUgjlinWtHXKtUHjqjFk3hvcT036bu ZT+8xYCw4esqFgMGzb+IL49bY0xFP2TnFL3K8VEK/oKFgqQbJT2J/pd5uk3DLtEwM+IZ4l5NvHaG PTe83vossIUKLMfU3AyJF1hJUcrucIMb0ercgMW/Ec0fVLPKRecmSdVWOWIxJYW4s0RsB+03x96s 5DKjM+Jb+OD8dDfO6kG8fmQ83AtWjTbIsPYuu27yAIsHpmRc7LCM2uMXIxTBoTlp3eDL4c0DrS1o aKljNxEu9BpQWTi+GSY3EZRAoRqa1wnrgPg8EDeUB9A9ueiOJYmfJw1CHucV3HrTJipNR+ord2F4 pT5MT4Z2IR3g4o5e1PQAuYUzwjlsjho82WHHA5UpnxEafXr4eZiGBowumL3+ObQDRDBdELpsRii4 b+G3EfuseX3KlM8ITd/OQfvGg5YpnxHaCS2nk2iPahhAtmhWGBE8qmDKvvEwypTPCi2mWlFnP/QH yy+eEdYpu3N7cGzRjDDeRmmLSPCbJOlbKG7hrHDY32ngIeOUzQhFa1w8MG7h7HA6b4gSvcStVToD WL58Rmh8TZSHkimZFQIuZtkbthHI4gPKvJgZXgrBLQPKlM0I5SqEN5YHxBbNCgNXe0apD8SW+VBm oNlX7YQmhpgBH6JbWgyTf08xF5rQFCguIAqytQoypXPOsC6OjyCcwMy34HSnbcXG879DVNJREdpL grQRgSB9jsCAskIOFmQvIbQzB3yjYMyuLn1iC4hza0Rw0kNiTqgFmo6w9Yv9WXX0Z4t20qbap4lz cqyrbpQZBowNsrmoJGSfrmwuxWg+wjRaq82uTis1h8pNwbXa7UQTp/5qNrNlTWDX5rNRZr0NHeti JVc9Y7PUYlfOFCm9ui63I/77edbyiEAvVFpbDnDldaGBEGCDmlZVFBnAiox+anl9G4NercSOB5et yag+na2uVmiiq307wxzmiWbp+kmMaGbpZex0C7Ua3POpnblMZrIEtTnrb24TA6rrWPhzGblqcIr+ TnYtYLoBTItXds5QRbhVsU3VWOk2s0mqVmCIonX5aGNS4WU5js1qQVbXJg9EuZ2IzpFvaRoybT/a HESzVGABouV4dkmvJqnvf8A4bKmlW81y4y3bydr1whWLlrdVy6XWl5qhwXMZXH6ay9ACzHaAWe17 GExqIJT/KZaRWm0Oa4jstl3UnmDRsFM9zYjx8UfQuo/EcMqvAmMFXkLPiYZfqEVWZnXAXRjfy9DA LNKqM46TTQfXvnK9jM0T84Gwc/PdFkJjMLPu/6e/XOcvPLervCf8/0fo63+aRU+vOGIehuu5deCl sUpPoZ/XEVMsE0AgcDXmSryYQUVdtoCfSFWus154KmxwrSu+NloVZbTKqvSVUhLbR63wVSUZxa0q zShgVanVpuoCXyuqSz31piq0ukpV4KoddZFVIaoSVxtoi1ytnio1Ojr9nFG1mWKjNlMlVgemCxwd l0yAp49yHdGrRaUgbghME2dIeWxkilGceFEpmzuruzubuxaV73cdKj724k+Ui70bf7KxiXtKV3cy 8Sc0Jo+LPiG4q9vbCu73jT7BShwMx7Q+0IG87g/fzKvAw/Kbrq37+OMvH3n0mQbbeJXcvW1VwlXW Vv9/Ga/iBJIL70AHVFZnfUs8kXYs1E9WSf1DELyO1C2rYtkOJZyRANIRSIeImGQ9vWzet/1EsaAo sdZbaWyJs8BE2QAGdYeYpNfwkC49pRicPajWbnud+/YKbfUb8FY3NF5p3AKzjVlGZPUI2WB0nkyk vejhtvglGraseaXAS+UowQIFO4HxnQVDTIE0dq5n45xf27bAXUODA3mEhA7TxAzgobbJu6JwA1lX FLRiRDXxBFI2kpK+EkO/TxzkQ3ibKCmr/MN+nIYNSfmcf/8GtFtIBcs6NnuqVrDnPdkN5FdEzEJi KgbBSnCZhtDTrSCtyJDP/5XgeBh1VaKMsFOQiF9+qwPMqKJUXi1EQGcyfJQAmGEumOeHdCG388U6 1aFMqJ51u6nM7jTfC/YyWyV40Ij8SjuRTr0UhLYX3ioZovx7lbsi90GR8w543b2TPc3N5npdzMzK HuT+h11l3EdVu7FFHQ+BmFvOOHNwj6XzFawzs4bS5Q4RW2Yu/1zdYDo+IZSO+2gOjYJguiK6q+sp ivpTASVleXU50MSyVvMJZK3m0cTrLMWawL/PSRkXWNPqEzrJ9mZpV2mr+GyhjJ5dO3SpDEKWoDEw h2yBwZX8TRnaxMpGQ4lY5VZIdyzNYeVYdQrDmqvZ6QmrZa49GvBT4d4vG5E8WUHSHUkMU0wKRAFi dz6WWGZjX9dqdksi696sm1tuQc+FhZrdUXxBZ2nSxvvdUfOX+urxl93dMDl/sfu52f182f7l6GF1 /7e4czk8P93sHZ9evT1cOnzSCzqZzBxPTfaxqJUWYjuHJUIpEtvhwHU2B3Hp4TZZMQtZm9VWQCND PDGN+UBSacxCUydYFR3OrdBa6fAwrP8JB3ew6wyToIPkbnEPavahikfJ+OVxBtSDRN/Xy5ueP/Nz ruZZPTOk+GGJO+8SpcMzCknWyNM4+HROqL/jHGrR41/5k820+RiezMe3iEMrOqrKCNwMbWfpWyEa 9vVEFDyyOPt4gTAY2klkQWYENjgIaKAgzlE8AzChuIsBUq84fhchGkl6D6GSJLiwAuQT6L9lf2qK jfXMlNxRDkPHp7XhsO1D/7Ws84DgqmJRVQKsSef8OxHOTmcQfPj38xUFPJPWOaiAaPUjZHbY+pxB xjqs7syBo5WPxnpwqtgD+sI/hoLn9XgI54th3BuP0g4rPxeqhrxMWdz5o6poeVflhwuXv6BoX2kr BYg1RsToszkxES8jnZcPszBMkbAqAx6jl3Ke1pDGB7qrDpsVaF2toNIovY/GaoXNPm7+MU3LNU0e mq0RW9ExCwHNFfX4T+xBu1GIn0Q23tSWqK1ZYcbeMjfgGowWg4d2BM0gTCd/0uLEYLAihrO2ReA1 Q+uAk5YabfSKY+MNpz7Tphlral4MJMVSB7ZltpDBPpGqTJFE96P7sNqtOX8P6SSHZUaQKsgiULxd fNww3eoKZ/RzQp43teshdchAWPwFTavB8PMPzIlZK/wkeFn/JKZlcPPAEmopA6fUceycZdjwwxTp zji/ubLX38KXcc/2kIfhedjp0k6DuW1Mohpb8cQYQ+TnFsl1gyXllcFPi0E9gdJTPTSc35xZ9znc pkDHBnCKGSw4S2+2oZvNbfEvSdK++vb2j8727p97n/e2L9f2X2+P7t/9trX/Ze1o7VWa/vLm4M1u Eq+/+rK6d1eWpP0VhuqHYB9jSPQKPRwmfVgB69RrGU/mCnoDmDyIkKcNPpFF/ANLDR31MsyxIREs CDI0U7dMF4syvz9WTPipknhQ7IM4T95D2TZiBS6VAkAanh34LL9SSdRqVfj3muRgW8upDmq1DFut xc18X6aoD2DlNJxxOZQsi12kQmBEZ2CE7Zcel/vxR4e7/fij/uxpWdb/LuRT/5t4U4tVRcZTVfzm XKVqh2ZsBsVH+Uzm+UmoPmq1uZi9GueKnZW/s0M8M/P28UfNtH38UTNrCsx/CCdmNvBT6YoAEBkW 2YdiTo6mbHEUcE/sbcDtVeZUZmuFOKEFV/U8i/HcnKCPM5Zfr21vLAZra+tFiRy3NjdfbL6wCHw/ k/mzze3m2vYq6viZG0Wj7ljO116sru5ubK5uZS3nMr74ek7bOSBvbW4ryN/Xds7cCHDPs5l4/d15 RaDylEb0OUzo1DV3Cdm1qtr721vQw0wWAFqkuHVjhbPqruA+g3qYSmWcPqrAyjqBn0qRZrkqB/+k pq0RD3C5aQt9M1NZYNii4bh2+smX0OTHYyHfa9DibNu8elSDFW0FJ6337/7obT/c7YVXYTMcrP22 d9wb/L4RfW4crN32N3/f+bDxZ/fmaD/+7eltBXsOk9EGd0anLwkNadhvy8EOx25c8bKMVMcdc00B +ADjeycRMeLax0vMahp4mDHKwiC14rTgUkwEjRBNTx4WxEm6B8dP5hMexNEYNSQzDAsnkoZ7iegB g1KpqUCHNDsnRCJ4TicjjVQU9Wgpid9klyZJeUi6q1cpEnRwpXr0LuNjJSqq+FYDd4+xb7PhkfnC Dxg52a3EC9w0KlusSj7Py1S2eST54TVfc8T/DLOXEyo4MtOYAIaRVfeU9JnfHbQjYjOQa9uDrFgJ Yp09TgLrXhqb8IHFoSz4saRRvSsfVu7XSfxRFsmVYXgXwdAsDU/5yDbOq4SDgsRVOuRLRPCNMjI2 R8ovvj9OcfkDOEnrntyk0yRuxaBTrq8yqMmAI4byfStcU4U9FLrjWHHAXgM9a7BydE7zma6I8Xc2 BHdObXBwkeoViZIsGaoX4tHWbEbNlQFcN3G1A66UwNqVBZWxb8mG9IPQvB6rdRL1lkH4+0wKk1Qx o8fYuzfdkGQSGQaJnuECZxTsZu6G/QGCPFtCt7gMZAQcCQm/IfyiqU+X2GpyTVkIeQ9RP+k9y/M0 3yk8e32pMRwNSSJkKfszbhOSvla9mjY3/ggJwcAjKGTC8LF0rV3HtZaChGjt5PQEiBR43U9AyJ9P w+i1E75JhDaBvkvHsX1ghCO+/QDO8hFuVuhxP0jw0xE+7ogLw0owO02osi6GYYc3qHWtckKKWBpU gS3DpAOG3h+bzFnkjG0SMHfXu1UXx4hmBsoFoU6FacjmHWo3dKUlegMo6PBRjgY8rMhVWooN46iV 2xHRHUQtOas/O0/z4pZThXGEo1GGDXHXEW4fgkeNCmNjJ1gI5Xj3ENVxo5IS8WN10Y1Oy1i4jq4Q Z2gjE4J6J5FVhIlOVJAbnd3WRIQvoAKxJQvCcpgAOxVRh9BLxlGDU+iJ4im5C8fLWU0P8zxp0o7r CDTk13yRkcCBjA3QNt4IA5Wpw111Vtw880Ar0vggywBMGEHFbQhHih3UzTMBKVy3zeF46yZZyViY 5LVN8YAH92Mag+z3qXL99+q5hbY+jSXRh3BOmkVrRUfu8pWOvSYkxQSxgN0uFNa4kLAxFhVUfB/z fW2sXsnsfTVkrDvSt2lh0Fhvkh/rt5o0hsNh2LiDvKpvyuIroXhtJayQtyFe/pUq9agd3sc0eImJ bHUUpBI93uNwL/rAXNll9hpEJT4lcIcXeoyCnAZsOTiPbqHzwqfRbRrdmhuqVBhPNq5sWta6jNEv n3nbzE2B/UDMBrwj60woEKnStBmw7Qg3SVLrQXEj/pvO0HejiMcHIXMIJysyihZbBzYsI6pkkYG6 jiXUF7JwY7IulZ8+0zt1DvkomrlS9wplEU1U/1kUei6CiVK1u0B5NyuPBFv7pZfT09hXsm3IuUlL xQlxA1B1IxEHJhISktS/ZEYLpw0rkUYYLBWf5TzM7rpRI+jkeHDmmRabPyHFSsZps5QxCWVdvHBP Jy98L7wwHlbIMXsh4bXoBVEhlf7BWZqIhe1QN0k+jnF+tCDO0nftGAJCtZ0zkb6/TZNWxIMHzbqR sWWPh1DADSWtmjP556UaG+aT+w5IzS+wrrmIX2C5B8tS8bsmbI5Pbx7tOjTyhtnCwnwfwZM2apoC oUp8efJEh43s1e8sq3AIH78tEKA1MeHNBDOkuz1AEvIUAZZQ6qgiQHIHJ1t/9MKR0cgGKRfEeCg5 33xShuQ+dBSSqIXtsywy2ehn3qjYW10WHB/CHl9A2tBybYHgy2D0EA6hOLKDOEyd323G0EpuDEpK 3S/2mve4u3RPbjjMfbTiwlwx7XH9etIclzRuPnIXonAp5vSXR4ZrhVSpOQlKyAirGxkNMK90Akyv P9NRdiRf05RTNqGhYnjsqW4gFUXaPAJZ4jjvhm4uOF0woYliSIzY8fkbH1MqmACpIrJhl+QvvghN 3W1spzL7ZkKjxbAfdIinP9x+8QSoM3TFEl1352Skq2JM7Ucn0BLPWH8GnLzhfXiwA/rwMKGzxfXT sF7H7W+GVZfnCXAqItgkAc0uVHqYALoYwj5r2U/34Eiy10xY0jIQi15OaKEi8g0kDtNN4WEC6GII yOiUWhjyOAFKRQRbyWdn4fPTBODFMOiQ6kN8cuU1VTIB1gyI2lX+6vjogitNWPhF9V7/BucOpO7J BU7m6s+AkNvrCYJtDnQxBOK3DAD6PaF+RdRooXnYqecJDRTDIYFr2IZO0UAyJRNgVUS2gsCfa6oY 4gBJATy0TckEWBkGRvMs8qR5KcPWrePpMqFpc9g0/tb3H2WW7PAeF0ZzvsGepM9ZhPmp0U5wrfs6 pwgYApbSLreQlQjnj8sCygWlzAjyt+D/WhGnV3g093dGXO1VksoWKWD9UpEevxW/B8LIGhjis0d9 j17aYm6neOqKoRLWBpTuQXH9iiu2l7DS5fPQipvZ0gmNFcM8Jh437oXpeD8aDM+sdi1TPgHutE5A 5unVB/18zRKMXu69tWjQw6xtl+8dfp5ixzdOq+fiAvJWWb7/Jn7Ms5q0uatqR87S7b+xA/L7P36/ +fW3N73jtZdv253DP1Z36seNN18ezteu4t7u6u758XDnS3fzxftj40SQdUD+OFpfW1/PuBfgxewD OquPQK1W5BeAG72nugLUMh4Atep2f5BflWDIXLkMc/szlEyx5MPJ9r8Lrfb/jdq+Wf4avXQ+WTYt W1v3BJM5JxmxX6rSMhv3t7ZsG9yfXXt26azfjDg781iys/WTW5xpmShPWW2LvBZjjViIjcfjVOvy wl9gQuYEVnpcPEswujXJ5uvXLDLd5gdmgpH2pyc2zk43zOKmd+BeanmtSXov7mOJzfQ6axG1q09b TpGSzoD5ZuZNjPWshsyPP2oD5scf/1aGSxPawPOStT+ii8WWxhWWpRZ1Ojk2Ea748oAx++m5eIQl zyTsK7PeEab/ww12GMQaYm+qWNxqNWtloyEqMaxdl9nKaGuVG3AWiuxntVrWZkbNVjSTIcEwQouM SQxJTme1grnD9HgLVzZkqTQpyaRhmmjIEnyf3EglYGnbzGB0Qg5T7Qrr2Y4cypqzNi1UMSf9pM1I P3nmIyD5jG1CxCvkzT8/PbXZh9uzNp6PvcdacwDQscgEXwPf+iJpLNWfr87vJXBRK9pkQvVWsnYQ vHWZJv5E1N94pS0BTjnU+3iVU7fLN76ynIONFJY0/19pqbjKa5yfAPXwIJW19pibpoNMSot0svwJ NALyiVKLopCVlgqc0UQSFtAZKhRcNaBCgU8SrkQLUQO3hVb1hVfe8cPvrY4Jc/8sqwlC6TfX+qAR rbnBEkmHal04K8IMm1WkSAf465WM2kJegY91dRFiL2Xdgfrg5d7bwHW6nyWox2TEVHwE6j9BhM/q YrC9WRDgs7P2YmNjd8si8x0DfNb5D+pkAnw4rsAJ8FlfXVvffLG7/SIT4MO0Ed/OGd4DuOtrqwru 9w3vmSU15uxiP6+SJwzOwXqpGp2DZewuALvSVIsVwnOmalsejtpvb9+0hnevj5OD33/7cn+6t7o7 OBocr46Wwnen9ffD9dZ9fPRh7fdbrW35S8J9MEsjRG4yYeGzFN95evik0YhSOeP5hH3GsTiYHA6d lrzN0gb/ZEUZaxgZ/IzwnBmzLIZAdbiuQs+VXPyNp7cTzV3eTQ2CJp91KxgKPhgCOmwEcN5thz5v jvodzl5PIpuc8iV9ozNBMKcfk/CUQI58Wx/AVICTJZ4KMXE6yxozVQRzsAIf12iwAnpXhrDvQAbN QwIuEmINc1IiDM9UmZkuLYVLUDWHFkOISpOw2cD1MlA0LPIIQolWAheKISsyhbhzRv2GqBKoiFwc lVieSC/gJRtDNHIgyZjli1wzxrGIH6aoax8TbaY/1eFm8dYuE4zycDNZHIY6FQecFWzIa94lzG2X 7J3MXlTZ+gu3zSQwhVuwILxNiQ9lG0i9y++Wa5o3t316LIC+gPrVdgBqiFBYtsztF3OsZVSeY+Ei /UVuwWbXCObfLoyKgYFHS2u//RLev+wmHzY+PJy93dw7774/vL/q95Kr++H21fvfuy/74+6LrbXj 5T/7TxwY+EpuE5FbwqDbhCIOl6XhizxRrCdDXnCKpOsy3qZMHguINj+c0mwjjh8SrLAVzuUImrGG ciYcDWOofRAmXAAsfwKoFA3F+OZ2R+GBh5bFQAGhG+kX9Fe2YzkaJb9ZqJ524JoMREd7v1mI085V qYJfU7E4G+Wd90sGoJA8zHRCl7R9wOwubY9JCHRhx5G9oxrjEpf+y5g8z0CJ0luVZBB2MgebFf/D tc+fGu07+bIeul45ZcfzS1p/bMGZhLcKbzdMquaQVNS7LZ86TL+BVNHQ/pxpr1CpxAlwBA9p8KTU hbqkObUrRkzZvBY1PRo+4H42ufpKmuJrMWJlqL+U1xMaynr/sq8Fv8ik7dqU/iOlBSvE5RsuLd/W Hs7PMPlLWCqWfKkF44+mmb1BFKaN9s+f/nV6dvm/WBV10xgMkDV4MPjHxh5TXxNtBlvtv0jqMQUg gymJPcTJ/0vxLvg7/FczHJsnJfr/qxPdho3xjbT4jKouQchZElWJWjAgExOGsrTLjGflPv/1/b3C 7p6nw3USMJ+iv5be+L0GL//Nen3i0LTpW7Sg9w/teECMzhMMANGSIQ/CHN3H9ZJz9f8t2CtpdY7O gyF8gp6zPnTU/579Ppcm55pyxQY9QcctQ/U9+45jVLU6R+8bnaShTu3Svm937gZrW+pUSvTelMBj 3nETmZTsKbWFp33WA6mDiEsmH0Qm/MXB6u6+G95//FFEEyp5FaVd2J+gQsMx/RBzG2ApD5JeK2JF JcYtOBj1g/XVtR2VTo94XrZuHLRhkl5bWoWFR+xeMOj8v8HKiAQkJG7rwldCeVJ+o+YyI1kc9zNl YL60P/3pDMzeADcXv487nVAuRB3EtySoQ2rrEj4Hbdx5GzI3fNi77eC/jbDPecN+Sdq94DJK07EM A6F5EQ9H3LGNFzIQTwL+CbrdWettrbrdvghOkl7YSBghNBP1GlHwa9K7TTqJCFlH0TjqJTAZQIT9 OFpfDRtrG0GXOgMunIXSVnwfLY1pCwbNKOwsy0B0wzR5saMG4Ns09BRDErZ2H5wheRv1o+DPJKZF uR99HK2ubbXiu2EovxQScCqThQozPa3TQR++JmurAVBj1wdipjq085tp3CzbHU/f0lMMRyvtbbor pBN9puVIG/hN2Ai/yB2HjPNeOoiw9zFZjc6oToJzgycvYvOlzN/2qp6/okXxZLBn6nglhZ1xRbyE xB+SWIArc5VNN+Bb3HvRkI1afwtPU6DZSpIheFMr8snAfAtNxyxjWOCjanSZcCj9K51UT5M/7367 +vJqfy8crTffbnxaPb38sDX6JR7Uzz/ffNqIh+3jy634zbhvbsXIOqlejtKecTggCkb7Emsko/vC l6UKrGujnXK0lVp/JT6a802V6E2VgM2pxYp1R5OUtFldLyAaVdL10d5vucrI3SgaYTxmXzMAaIGe Sl8MeEazc+0qa3KwXN3OQvD8mhU1+Aq6m4WVa6hj6FE0NAsM2ehervOalBz8nA6GQVh9ynVWOVLm 0eRoVRiEpyO5VgoPmx+0VEEinsXibPDsmaPYkJVx/e/nVl+xgGuD/EGbWTXhiekFnLsVVGdj2LnT Bjtuh9BjUb0Qv78ON1BaQs2Tp2dFMSP5eyLQkyOqBHbC9a2RfWdEtO9J6NPRNBLaPHhCtsZSVILq jCi6ovQ3RlARXsLRCpQzYpmRe78xoiyxEposif5kJFDCVeRUJg6gC8+UkKmIwjeS19AuS6LBd5VA uZfUqycRvrgPEBqDbyosGpy/jbzEKwAyIHrxbZrw2Xzdn6eXdbgrkN2C7yWzmbl5MrGF+wCBC9Px ZFAzM+C6H8zid/dUybQ3NomrX3uxlfe1236xu765Zpv/jp52q6s7L5qcNtvztFMuFQ1mJsXTbm3t xdrW+upGxtNOkXp8Pa+v3dra7u72poLs+9pdr63vUunGLnsofjOXuwu4mU9wtysRJucXR9DUU3rl zeGUNyllNg/XHE55YZl0OTrdOnh9cnN6Of7UXFv91G9dvknjw/2N7dXj1VfvLvpr7a2zky+Dzd7B 7nd3yvs4au5uNOnfxmbD/g5b5ne0um7Ld/Cv/uaF+d1c33LgrPJvQGtt7tjf9dD+3qlb+HUH5sa2 Ld+Q77l8zf1ml2jc9vYuumBSF5MoSWu7Mw6i5u04GBC5CG4RVKKDW/DF6Vlwfnh4uPT27OLy4gcL cHMXb/d6cgUJbm7BgQD6Ourfw9knGyoTZOtKKCTHnQAro0BTQRl3IXE5zagRjlUMZTPs3bEL0z+O Vv/x4ugfL9b+sbsrEzO1its2q11Y0QUsmJ/HHuV09nkzuoIib6U1r8hCW5Ye8lSFW4B9Eg1DFa15 m0DNkYX8ksCcAD98aYB7pTn43ItmCPjHR8GHs3fByzOapcvg4Ozk7ZsPwdXx5evg8vXhxWFw/u7N 4QV/cnD27s3L4Gjv4DDYCy4PT96ene+dfwjOzoO3h+cne6eHp5fB/t5pcHR+dpLD0o6i2/1Mnh6L XBTWEQ1icA03/hN/V1XUPcY70c+F/6XbEgVYuXOiGX9DqK1/ou3EfxptQjD234YkVSIpJYTEIxQz kIfs3v9uO97t1/+0jZzdStgj3v7x3DgV6/x0RgX8sAmQ9oK3OgiD1wv4PEw5tNk87UxqMgmTPNtD seG6MrnmX8UmrcfDytrijcfYfKB9N7PZs+zQbiSpnFrrRC3l7XZuQh6eIq9OQQPH/9TqZuFnWf+k kqerKGmVk7w0l8v0NqiR00TiZEkCjxrtH4JLvkSKox+bcaulFBH1aPgQRT2OnW1KMDZJF5Iuwqm+ HPyKkDksRlv5B3UdGAn17H4N4WTQBoFjAgoxgyhoXa5mgzp++dHdon75oQx1WCWacePu0UP2nuYF GkUblzrgDAgp4vPouBG1hhylrCODDPHYHlGjB1FvgOhcqOt6+KZTmOxBVEUKLei6lPmTY/FjlYLB CTt/LGKygpDDYBErAhG4YtrgBvWBhfoTtmzhjsUaFF0sjSrOXn4vd8vpo7GAE7bnpAs7x2I/ut/S 8QLWANHWNEkP4XgRy7wf8Uhggn5AjehzIxI18RPgwOucM02Y+x7RWB8x3I24j41J6NRpn4ZYntBQ ATcjrT8fLGDHy+2CHPEa3obI0KCIjhgq/ytQYR568SC1jLLzz4/+8e/ZTQqwAeclGZi13RkrBAln IImRJjE/wdViPbF+Yn5x7FHneIksPHaPE2LHNFDC/LVDYqok94vN/sA2BWwneoncLIsBtMwF++vR qGCZCZeKP4pTddnLX8FXBi/BWAYqqAZ40yA+vu1iMtqjpRxHyzqdAo+SlCFDzKCtkiyMOk18L2LM D8FzPwPNCKleePqOu31aXjSxPZWpoJf0lmLiW2jAaRMtizv+o7ohe1WI4gOfb2hYUsbEkjICK4cN A6y0hc5NPTCBkesJEJnE7as7Heq8u0xt1qYt8m5UxY5pnRt77Jb5HafPS5sjA7IBNggIkcoXkwYw cWBs4f4wjcaUZ3uT94V3FB12Qee4gp8L+1EM1YG+RcvPYFjw5TnrO3PfPiHvhRfmJq5/P39WcPOW O6SFMGy90tH/v3j8h+KhGTDsces/BPcP5cg+FYvcV4/ZlhlNcrgV6D94a2XA9/EACVGIbT1K4wg5 QP4fhj9JSpwVNp5cNgwy6M1+OOQoTO5yppCbsqLZt8DhGI6BYpBhkdjgkX3xHXDxEfherc6TIv1b 4IF2IuKeku7YIOGUPQUGkxF4FaaduLEPJx9/JrIvngKVKbh0ozhVIUv66Xu0GjY7JpbSPj+u5clN vg2hITAtyuPjGpypqy+jqA8Kl5lqv/g74AHB5AZZh1YMDrboW7c/Xe3MODniw/fACIZa2KiTtLl8 e7vSaG3W1w9UInUw3Vehurv1G+OhcrXRTHD6JIyNIPFKlVRAInMaT9GrFoxCZkp81NnzVSX3zmBh 0Zuif1U9bqkUn7wSTKNuDK/ftLm38bFtZ51jX4bKNnFe2rYbTfyYpqll6DM4USu3fTOapevHus5T IEDy8HBUj8QvWFwdxCDQiMCI/Bw2m+xD/69u53acdJLBQ6iopo/Uh2R0SXAejRJPx3I3WpHhN7NR 1OZl1ImeahyQ+LMLhSQ7svNwcFLMwSyIXKDy7FhkLAe8YY+gRISCJPrc6IwGxP2ZnLrMwHvO+IvE tQ+SQOWY9bqTp6JuiUUKlrshJx3sd8IhNIB+avF5yQfW9HLcvR3JborT/h/jrVuk+hBsMIY6OOaE OtgODsJOBJPBhAEraQtrJZPV0ukr3OVZvbyyfbfzeX28gqR67dHKz4Phv/7c7DW2vqw54dTtf61H G83dVR2U/2wtODk8OQzOjmB0DK4OD3/9lgj2bu/HK/XRly+tKGretMPBzW3Si26GSXLTClOL87i7 7uK8HW5tbK9Gawrn9e+J85/J5guiGcNwfCOrnv4Ttf5xsPGPvbXezUOURjfww4POFHrom6R1Q8TG dGV7rf7C7crGztba7tbaqurKxhN2ZX4axzjsvTk8v5zQetF29nBZUWT88vz41avD88OXGWA+25Aa hYFRJ1wSb3qLrKr/fr6CgA2u5V+2LrVK9m0eJT08ziyPVvrRMNpZX11bsSdwLxo+JKkT1Owc/vQJ m3ODU/mIESklgHneyGaJF0JkY2K0jjLXRME9eMU0Kd9jMNkE7r3v4mSLitDlX8ULrbQBPiRm8XR6 RDPVZAg+IOZraRYpaS7AB0l/3A8HziiZkqcAf5RGg7Y/OrboKRo47CZ/xm+9Dtiip2jgMuriYM4o h7zSmZopIk6ia8u2qJep2mq55evucllXsHchFoeNuaN+kxCbgYnId1fxDb1uyaFTRH1O2bx/ohXz 9kXwfP/wck+0qIIm/N7X1/3+qiYntXf4mQYp00wJOSvrocVK5dMLm2LhSQLhKh3HiSL0sucwDJ5K XpcoTQx8yrnZ2WrrdPqBo1+UtU2f2sbwlqHSkzrT3iibryx2DpfAoY5xrxl9FmytdhdvxGIOZhfO AZmBlfb81g8uLuCD4SFB5xWJnlG6trOzrdaqU1IClB+m+DiasF1z+ky9Jkh7QX6f6O06tPomzS0n d3ZNzTwDMKWLNVH4fBOI7u3PWYajIDZ77vuDaBB7LTptew2VpPlpQrTvfz/qvV47i1vvfv/t7R97 F+et299e9t+fHPz2/iw5eJvuvr59+8f5H7+3x0lZiPbLcDzu3f3AbnR+iEOtNtWdTe7uWPIcDPPP CKTLlrCn1lejGOI/H3v/XFr6Sn/94qI/H3tB1hULV6QYF6yv+OBv6kcVCHJixv/J9YKSN/P5MnHd b+eRJOBn8ytypnpGdyHXHUg39QSuPBrSX+qQE3zl1Sp+NT89oT+NAH5KtxgF8THeLRqEv7q/t3MK 5v2xHiY1OJbU5nAn4VU3h1MI6n3s3dzcMMUUf46PPXhgfBXnCkMfcakZDOb//ZX/U/Fxkp3cRaFQ g1+rFdir5Rgo+X7FtzBP+zZrBZ72/Uwf+abVaV/jI2UDLf+Uv8zaKcs/15DjtDP1I7EBFn3G70UW LXrtQvFl4mlfg7qIBWzil9fOzjfX65QbsxYmA8Nug2nJ5urIG6GmgNCGIe+uH9d+pOv3zLJeCq5r NWW/qdUK27YdUJ9rm4v+/p+TzTa6mjKXuK1MMLjoWsbK4bQ2zVqi6ypjhFNzHhWgwV+ZGbwOFJgo 9PdsDXDantm0wHHjjzAEuIuuSL9vJj9YQp6ZMkW8He5iRf6CACjQkNvxmSAbah5rmlreUcnrFvP6 7aotVtWzOzp2jUReM10RiadSnDtKc4WbVVf7KM25+vG/a6O0Vrpnaon+5FTSZm2BrIQZta27c5zh maRxZpDzaIhRr6aDzJS21y3incb6WVPqnRHqPjZzwphHq7LUJY6WURc5ekFd5GvyqFRYBwcdhXqx Ps0dWKuNwrWzrOcym7VUe7agFWDXGY2WqVpST7VsbjLMKq9I1JR7ILJqKO8YcoGz/mqhXDeFU0pz fs+eXU/SGpW24Ww5q4Xi1UQglSLJ0x35iSFmyHvxI4tte+Oxs/rsybzD9yk8NimG+lptVpUOY3P3 xfp6WTqMH98S/9Vo2/jL5s4aMPlG+TE2t5tr26uo4+bH0FG9Tn6Mjd3dnc3ttc1sfgw7TagwZ4oM AF/b2VDA/4oUGf60FqTHeJy2jtfSX5sPA2vfXRt2TerBmSMhRqku72539Wb94Pfdm+Peb5vrgzDu 7Ozufjj7/V3z15PTbvfz1f2vf+6tdd+/ODC6vO+WEEPRwU/IkdcZK7UWz5evmU5XEN79gFxaToJC R29vtdNaccDrGkIw0X8R1ZeDE6hIBiO8VQwgSesGcqAyCYoUnrueVF+GBwEba0xuAiQAF0dXlXXA Txf2P9q66/DyKA/7Nz006zF3LVHBDDg3EhUNvrnU5/sOdLar6IPXv4q36/zy223r9o/33dfHndtm sn7wufHqeLd9cXvUObr85fPvbz/Ev1+s37273Hn7Qe+Op7M9eIv82e2wu/QnbU/7kbW32K/UgE7+ SAZh8jeDJE2Vf7b/ScZ4tY6nK7732JnDn/lLP8Sa65kvJJteSohwcCc1THwSLTFcOEjnCa5xD7tL 9RA3utP6Tlj5HCnFW2uEzHu4q5nEKHN1M6235UDu6pSUo4DbY9reo0XcHXWGMVYGINGOkVvvlTIb y4xqDqCIE3XnIOk04wg3nw8aMfilAdTUOJR6aJyvRIfGHgsmxpGidLPMFMjFsqwyDqJ+3FgMbjtJ PVoa9GlHoz0YZugIKM0D7E0GcYxLyYNm4akHsHvxKMoEvYnCtBfgdtaJU+XbGWcP0JqEj1w/vPJs 8C9lmH+NacSMWFQy1DpfuT2hMv/yw8Bmw6cuICNJqVUJm7Kqc+OinJoPiFdPOs4kzYBLWdW5cVFU 5ohW5oEQi0r4TKo+N07qzpLXsD1Uwqa44tx4tAQcUqkFxleO8w1nL6mYAbfZgeXwnT18cVp0mCEm EqZ60EG6YZzf6lp0lmZwrNKpKfdbp4HwF0LI/j/23oS7bSNZG/4rGPvmOGK0kdpzT858kizZSrRZ ixVHmsMXJEESEgnQAClKOv7xXz1VDaCxkQRJOc691zOxia27urq6uvZWr5GoaT/ajQF8Rsvck7TH P0dxmTHRYlFcxFEXi81U5DQqXiK7yXAuck1DkZhSD01DHWejvb7SsB6tjtsjuUCMANWG63abUOFC RquiQN4HbxrX/CbcTfIqwxnNZnbk0dRA1p9wUmKVNhUXPn5YqXyXBIwIUM9u2Q6pnKQlBbCqZ8YZ PzMu8ewVwbS3X9afVkKMVWl37jSq9UGv6rl8ZD2pR22rAemwSoKkZZIMq0CNZL8bfMQVZi/ko5VL 9dErQt7eKbf6GuQ0wYRaInjWy2jHJl21buHlFLxn9CqtaXnV2FWvJs97yAgQy7sfriPOpr6w1KGX /EY8wzq7AE5EsUlNCG9G6wrl3qO6NblRpInD2NJdBiatgP8NgorrS5HxMOpfuMaFKtt+GT8AT2Mp BQCI9a2J0NKa8rgY+yShztBJepSkF7mOOlcIr2rJCfzI2DCODz8YJ1bL1I4pnCeeX1znKzvZU/j9 iHAR1zgU3q3R/AwYSBbFX9Gq4seFejaVD2r3pLSlXvipsnpoWQ0c25EEGhZSNoEZwRszQJvGVniK Jt6LpuGQj4F1ECey6z8QTQYnAxRbF7wwr3vCmqGDOIqm40u2hvLffGqt3M27N9GINl4UM/pwauye H/xpKMJbGwkqb6XlTeOPC1ZfTndZ0fKNGvvJ2eZrSuXiHaOyurq4Kv8ZPY+0sp7rdpYNxIx4jSUJ 0pIq+zWrhYLIcdz+PiCsbpGGVt75lVr441KC+vXQ0d3D5b3OwDIefePA+fx87S8s8ztjFSKJG1ju P664LQe6ldnRzsa55ON8Q/R84OcJtOjmmOQcqFmIizLJlyaeqE2lpu0d7F4ZR86j3WezvdkJZqwy fsa2SQSjD5VenJiu/9oIZ8hQU8TdhG+rYJZfjaNuF1JWh5TXw9OLD4cHiwbcJS4LB91F4/gDEa/d WaTdtwUz0gE7T1xn0dj16puLmhy7f/xh2biizQlmFgcBNyMoIDHvhedYSsxHiMuZ6r9vhlXI/keT ZBajrMVs583nuWf5hLYoRg8ssjUwvcYiXSJKCKi1njm2as2ARGJ8JfHbbsImITF2xvoSH1tziDr7 /rLxX+U/YstU7svMZE3MNpZm+dfyhrF7Ypy/v5JpGSV6j54lGgakDx5Fzgxdta1woH/fbKnDkc9u InHzV+OybTqttmnTDqDQPH4W40g9DwP7sAlcYeVJ/ozG8fbbNCmLxke65oL+i8ap63FM4YXbNR2b nh16JomQi8Z7FLj3HmiFElSI2cIibMES5Zhgwm7PqKj1LZQhoY57HfvlpY6wsotB9oIsr9PELxnl zdEL83vMhNLfb0yvx3VLbyzroWOnUi0yUE+7z7NxiRM4GuazhC7iZA4aHq8cZkoozUpD/a9KjDvS SpF+no23myP4VnmD18ecFseQhtilIbZaOUsjwEErM9/n+0zHfebCeG6AEb3qsrgcWg0Lu8yAblI/ tAyOaJuiZXFO+9WgZdKWROxMVsHvZs+kdy97pk3/fLatPk33RCsid0lUyqQnLxmVNU9VQRw10cmE jYlQq+TdOGr/IHl3aJMU9brIdQeInnWJ1hYRttG2PCDSB3IVXwHagfR90zEb9O8FTFT07yW1avbo S+JCA+/Bep4IzRlY3h20qA9DOA8xnlfCsvKOxLF8ffm6+L2+3F1kxo6QmSvT7ln2orHnmT4EqVNr aPxlmYLna4eFsj+orYZL4pY6c4eI3fdMi97eszotezA9MSs0l8vC4demQHQGG5uX6sd6Ef17AZ3L z6y1oB7Bb8JvQ4+tWcZuo6GMKomRTMYmM28m6SpTpztjRw4jnUSWpMUirt1lYM5bGbpDGSf/jGBO ubAbtkkQBu/K1YjX/b7p1T0zqCGm3RjxUdsicm7jkCS18cZujfzQcy3fbRI2YGJUW1b6ftQE/ypI Z/HAqJBypDND2a4jUzXH84uBmhaUEPq0fb9duTi4rF5eVPeRMdVa4agtmCT2ieZp8dfS56pLU1EL iEyZ5h0dWv49JjggzKEKEcQRQCPS5b7bWafh8hDFlKP9bWScRHM5qJQrFeg4VpaHlyNuw9V2gKgc nM6Fgcj8FsDTPBPp5nzG6dffH/aHvYvTy+e/vJdy17w53msct5r79Q/ecWutf/y+/vHeJo4/aF3n JdDxybfIYQqXTCL4AC8h9SKIG1jAhQoP4N/SIv9kZ7+K2TPSzvw7x7hz4pz+/zz3y0DXbeR6/8/P MVEk5qZn1C4hg+bO+Wbchm7u2DeaK31h3DttvEMtKRd15jv+b7WF0W+08cY3w7hV3uXMl/zf6guj 32jjDQJG8wlnvuf/hgNNx73VxltAEny6mW/4v+HIzPznbTynFiLPq+Z1zfzC/625UOT9Nt6nqVyK /oepLc3FvcqZI4pYSkapFHpGJafEKBm3+W7IEaHx4QKeyv+JiHf0nOVULN5pMX+m6jtsa4SXsCAo U/ksU+DkOAELwlLACyms2gi9g8K5b0ul0KuHDIAcb+CCvJt2wkUZNBofS3vz1Pe6Zw2d6R8hgYTh yfGFack62lfiUlOf5vqwMj+NfGHq87Q3CTBOrMiMUGKC9oIh5nuQskeJo7gxX5jAhMeIxVNINPQf tZ1y7GQ1t/GyEH30Wn6dUinty0FGRIb7RoCJQMIoxP8CGslw2xjvLtkK9k6NQ/5m/qfhIt93koWU Tey4wdc/kuskz20SIbhUSqMwjrmkM2QyBAauiUx0IfkoePe7eybU2FPeCGx3CUTo7oM4UnTfw2QI GWf9z0SUrSGqVMoyDpVw3td3tvErDGp2/QQVJceesrdnDtbSqWK+5vYA4riJPWPGI6t4fL4jc/pU s50waWcO/36Suf6uhmuFNd1YnUbZ6JGnLc6ZY8fuNn7sf4tduVRK2ZKLIkE3CGcOvzPJ8P9Ws2+I Bd3Um4OH4H/BTeRMj7Kzsuw4D1EpYe9lsUcAemvkGlbvHLaUojgL20ANzbRpxOyVfJWwS3IP3MXt WIMhC62ZUrmCVNr5z88TGAcX5EUYg/SfejLPRKmOxyr5a9Z8xtvyolFOH/C9s7pd2d6MOo9nNEZa L0B4pUTGCv/BN3oiY5CnpCcyrm1tb2xtbm4lEhkj3QkffJ0ykZEar2xvq8b/jkTGNx9o+COO+n5V WyqT2BzTHNemyHOc47nfam18t8RE/NB8hJIkB8U25TihR6QNuM2O1ULRmpUh6gEIlrTQXMxgTqKi ytoW6/coNx5ffEKiniTEOeDccAUY/qBLQubzxLVcR8IPM0J8CG85KRFli6o1q+pZHevRDDLQTrBF caknuQtufOweL+IvQ5kmuY4WruuDDuyzGg5+dlySJF3faLjYelFviS7VQpCSk+k48COmaFoWJKCy 4dd/WG7SruuzmEiTavcMIpRHkoJ842e30SCS7y/yfX85lDAXkUP8TDceF8RcrMqG0cseVlefFAYi e9/AwINyTURZkuOYA9qpa9y7DwCO05AXVSZj16zTIBkPtAQsywFEI9pQVvwlQr4vm1rNbQRRM+kv aFP38CaoDHclpBZKhkK2OsIMy5urnDDeeXOHu/S/L2wXGdV+dCcP9ajSBvxgfCas5Qwh+yzygOPC buKoYRSOelfqeElxOkYC7Pbh55gxXoh13vddRxuCeie6ocrZoQCYsAXDVh6mdLeqiFvIxo2fH23T UFV2SLxXJXkW+Va9bdTbJmFA1cQxrH59QdXiIuJn+NX8Yb7DnxCHhmgc+zrpEWyB4PcxkgvZCWin sTtGZd1oUzO+GgOmNWKvrJbXUFYQWAoO9dQHlUw0CFyj/GyMT21+icle8+mJGXp+YnKC94TbSJSe HJbKYN57G7JRtn2mWFeCb4UpygGLFfv6SBaKF0rG7TRsLRumSdnpwhheyMd4/wCMD3AU4nLqgzyW hsc6/yoJ2yolmNXdm4BJ3b1hXIziRMHzFNthJBbkMXeBn/nuTSZPQZv/bAaidKHkYsX6y1ihBRPs Tz4fHXrecPDwdHxx7m7d7x3+/vu15w+P9nd+736uXv95+Plwf/Dwx2f/01wT7JPBQLiXjgpRpgHH XE6MlGG3nBWUUFzxH/pL/fJSZbW8uYS6of6S4w6XzEdY9IgfvqVl2lWBPcxjoxCbkUFLeUBlsZEk D8lN+7oAowxf1oTOcXFVarPggKfAw8VGP34pHgjlZoqVGZJzCtmgFa0iXv/Lhdk63JWB/E58j4sT 6Z4nKa8dQZslIfOv9LZeBKaUAy85A0o1Qsmz8tbqCxEGLeTqVnmtKr9qgxZthIH/S6URnrOPZWu5 vGbsDVrJXLGCg1oJsK5mahNXl1e7F1fG7vXV2dKHg9ODi92ro7PTReP9mXF6dmVcnV3vf+Rv5e3w 23Vchc4pDskIUhD5UT5xqhUDfHVQ/JK3QrVaqteXK57d7C959iOJDQoJF3THuOA7CPs4Pvp8kJzU GAlOXrcg46hN9mpxmzkny3L1ZXn3Grwy9e7kqdljTw7FA21lang43v9j5fj8eOX45NIgtrLFfSWo IOdYUW0AeCKi/e+DjiGNaOl0uSeOTgR4csYTs63PM35X5Xe1U3+odnqdaqfrVzGyFUVcUqERliZi qBflk+BcGv7JEEbkMH7kWxKI+EOPUOWO4lfh8ZXTJ8v+cOPbCce3U3h8lX/A+NbC8SUTLsePb+0f ML71cHzrhce3/g8YXyUcXzL9cvz4NsaMb1xVjv8Ne9jp7srB9f+w3csxq9Ygn6rOy0uP/tIHRVnn ZePRXzY+FCevnTHk9TcO8frsGGPcV9ydLnmQ+8V5fHn1xx3l4ek+Rnl1eSI90TUPk24UH+ffuVmP GacQLE1ijGLpuvgo/84te8wo1WwGNBtM5jQ0+3du3GNG+aESI9kPlekpdtz2/b91eyO1jDc043JA 2r5nXPY6dma9qvE4xpNodyuX+bNJtrf/tbg/P34l3Iv4/n+4z8e9kuN+ZNSLAevg9H3S2MWvJ8xb FVztnuwqkxZfzjCHUtRfBnjmtUzHfuHQXIE0ezL1b96bffHDzmUy624HuUrUB8mhRmaH0mQeqnOI I9lANPfXDidgwRfjNo0rl+6LP4xj5bj9yQglvwtczWKU7Wy371dXzK5ZHVpV07OqgxBmHPfQF5gR 5NOhj+E8qdKurCyURCkcdMOusiDrzmwkrZQjxjgKvzPP19ilwfSdqCQXo/m0GZeQeczIPGvGjtbV byaGnw5GibU48aSxS1TN3BKOu1F+jH25xd4yLU5mkr7zelG5LaE7RPUUZMZE94t1FwzVH/Qg1S17 tttvIdiLR9yur1jO0sBf4ahSkvxWKpX17crm2uaWGmgHSYvsMRy6Hk4kkWrKhfufDNW2p0rMXoZe oaOLffggHcfKKZo1rmfNhdOof/3sfFU58Hg5WiZniGC0zU7o0Lm0vEdVoiGxmCaGIG+UXpgqlQHI CaIAwjcK9C/HnF4h3MzwrY7FB/Hxa/FTVZOuvWzYJ543jSswYPGos3ASGsVaSQ8vDeIEkbDSbHCs oKIounDwqoH4UPju1cvZvfPvLJyNC08Js6OFT2E7Oo5c0z9ginzgvUecBRaNRN8aZg1n8KQGsWiY BhiJFNWXDB2Oe+BQ0uUUCsdgKwhqSMft/O0J8pf24K9T72HzZe33nc5Gu1IdPlkfPjR837xqbWx2 /Mejh7p59PnLx5cwLEAFHoQkcEUMTEImVgaQnx5cBxmdjHaOeHBc1886gBboMW7DvIB5OP+RLIz/ ceB92gGvkjWTCzTbq8+x6Yigj3nhcau8jLPpst3kUS5q2r2uDqur8Oe5PukR2axJwIN1NaEzXDss 7y3/MSZwWwdvRzmUyihCWNbN0IFLOZzPiVzTCsmsk31jbUtOwVxa+hUHNOkdJH21pdI3pOkYWyVA Avdl2PWEhp5JPRjl1YVvW13pZeO1OtlY+FZuSx87r9XHzsK3iuojynGdcx9rC9/WVB/rr9XH+sK3 ddVHlJY65z4qC9822pPSZuSDiVFl6JkoCuQYE2Tg/1j4tgM0RM6BOfcTOiGINlfRk2afn3NXkSeA +uKFEBnJ59xVaIynnng5RIbqOfcUGsSpJ14UkbF4zj2FRmnqCUsjn2wzbasB1ZbLvEPkfptlGwy/ XRv5bZZtK/FpuC1lmJeijcuAQQk/dRPQNwPGnTsHxyf/Kn/RBf2/VBptNQEIpds8y8NUe/GUNhDe nfmAZm2sscoTtwnDAAsz+g3eTW/3dQW+wAjSBgFpL62mZ0tRmZq+AimtakeAFVbfpc1MNbrocEkp l9ZKpRwtOe8MYVG3g4/jmm2enBlTkPlTUHtCrcVtiMZKMp5oLAuBHD2JPsodcw8TKo+TJWbqaQsT pWBeSux2cAzfzJmYG9uLxuZGOhezvLq2tbq1FoERT8ZUYHCqw+JrZWPiZT0NM8jK0NIwibTXN8rl 9e1EGmZy+vDZlMmY6KJSWVNdxJMx9dS+vz0Lc67qOhPX5DmYIe5ykzDLlb83CzNU6808tX5jqVdr PzuX1tfNz49u1fvy5fFmrfJ0X7vYf65Urx6e/vi4c+21lv5qbH/PwyaVhZy0a9rYujjA1ssyk2dn S7LBhT6zujVs1I7LnAMKKe3WPWqJa7TQLotMGH9AyrXpJ1I+OAvkKDhrfREZHzFjjmaNQ354Zttc e0PK1h3hEHFDI2Qup4dzyzkLBSQX5IWFFr5R8fG79CkPzDfhruAl8C/jilNmwiyg8urqT0bb7PWe l41dWh4qT6ahOvXltOVB79HFIcuTd/7FHRh1GlR4kKuHsgXqHHU2iHD+Dgw6tBRqpoekGHydsoem ditzOFS7LY4sFnLot0l6bbXDQ5AZPDZQ5s0I25k4zQYDhHiG+cH3DN2/jF8lWzJ7tGEyHl+MMdjN L/vua7vs8kLOz74j7IQsI8q4g+wXWyfAhbGE6zkvAG7YMOZH8ApS4xXIWTU9Fa3eJkluhHwVp1gU 22IcTUCCyclm1i8zXDBja/t659Nu6+F8+Nk52N07PTtzzJOXs/21dvuit1up1Tofnw5+/9i4+nC4 O9eMLUkxurE6BAQf7Rxb5IKc0E9Jv6OVK47a8SfxqOWMfEpkOZK8iXNqgdaWa+ze3PyLoCTapns9 Ug1skHNt4Djyw6zxv5AMiO5cZ3k5j2EcWlbHaHoWD4LTDHt2HRmiUjxLpVsS1dRJWlX5nbG2+Hdy AHI7WTR9A1eS0YqFpHY1vjt6V5uOe0bSUpRYFnl3srl8MhousyMl9JCyVXv6WllTZVuq5dVykEUk 3dKN4p1mDC9R/UYrfhNS2Ym8wss5lLNHDTmZd80eQjBTNSsxj+GIFLpTPTefeJiW1K64WcRmibKY lEyHZMyOIuu2+UgkTCuMRFJzaD4bP/e959Ry6ln9jusrf2l0HQ1wgTN53ZqByjuoo/uztdxaJhY0 ICpu210p+NsYdHvwuywsT7UrSzY0qKlaFlC6UGlRyHAtMwIhhfY09qgfQssisWpmSYSFcAFmYqLj dkhjiDChrjVMcFJzr+32ZeHeYxPBjjnzmFUo+exjZj4jWc7YvbA/aBsYwKe9znMfzc7MMKvEmNlh 9jvIUSbQ2qRVktbioPiy8IGZgVyfC5DnhFUlMwTHk4ts4ooLbkYgVYqYzAyRKdT/CExtTxgHJyHz 9PLwZoX+Og6YxMwo3JwLCgk0jR4bJN9x7dRFpNw7PnHUtt1j8my4vFpz1mjd9FTkgbqIYEkpBBgU kRNJm049+ii6FX06O9NSMT2zI6nm9nkt0L9LLIPULOLjNgqnzwrj9rxgZHUEwpvdFQEmqE0wdCye yJnRqUL4ZwfVd9mmymKtFFeYHY9BzmpR6BKZ2/MUyKQEXtvypN4tZJXD6+Nj5iSYoXFiWlJmSYiX LLLEoAvgSFvcFUBtC3UzBn1RT1Im/AQscaFoRH8YN/0YUktcDRDFSZM9YvT0/u5wqBmXlXaG90f3 zSHE+BWFhqniM7nTQyKT3zW9fp02MD5qYNn1WivMyZbMJXq6Ak2Rfvo989mxSNz3lupEjLaKyMNt 1gnkWQSfKlFCzYtuE4Fk3LTtDistHn01rLmew+8ZxBJZoVikVWp3lEbd4Pox0JVJRfblq47N5ZEb poe3OIDGbHApEeCp5/YGHWbRwFybVLEOCqso+ZJ0ZQxOeuT6c9xkCkGEH8bCcs8HbhgtMmTSamhZ SnNQn+sDy1/x2xZqNmrEwUXvaEQYFanmjjjRAimX5a+haQdnS+CMCoJUNsx4LHi4IkP4JvApCKgJ cuGW1KoZY8cJY5R2NUJk+zI0Pkx4fdBodJ5DuZRN8iOi1wI70KuGrwXBjiP04+OCynHW8t5F/aG6 8CvPwokIgpYMJVkp9qqRSTD/A4e8mX/c7LUeDtytQ+evcmNjZ/tT++XEu/xr6fdy9/P+Q+Xj+sPT mW0/HG+HdpVkyNvhwKGZr/d/xaS8o6VBq1RRF+dgGI47zIp4e2toZhXhqP/iSSGsoSh8/oQXM4iE bU5lAsHXqiaruOM1uwZuGkuG5nzlnW1yU5p8fiHfllfLYRxE5ofB0sswR6iWsq0DufCMtDeEHlk2 FuCivIwCVndvSPu/ezOT1r8SKvaF1flbTc7JHVgS0bq4xOOq8FDqY1TylVDrHqFrzwpQhQFaY4CK 6Muz9rvG/a5zvyN13lk7WueONpaNcXrrbUzlnKarDTFOb/KgMnTPWYeyyUPZ4uan0R9XREvEE3QT 6n5zoGuJA9lm0EZpbbP2s8397HA/E2hes3a3w92VVwnyPP1p1i7Kq9wH+OdEisvEfXCzS/ijWOnt OD2EA2W4kbQmE/BjrZFxqkXUHGAyE4pK0CB4fFjS8jYh/ccHO71qsaApD6XSD6kv3I7UAsKtOaVC LEynFgD7E1Z5172wkwQThTLijDFEO+VFY2s1I4ZoY3O1srW+EXUfCyJSvbxO7NDbyrq5ShhYjIcQ Ba5lPYRotVzZrGxXKokQIiwIvDpt2BA1u7a+qppN1HDfXqWblXXG2asFDx3bTQvHHo6KIKJFPVKE LqAzKTZRREMCXAWCjNQzJXJkxBhNEWGEBaETVkTBqsMCEUZhO68cEaRZ90E0ps1HP4YBCLZDuO8K W/sZU2BgBdBskVzqWLTsEApBl1aXeCfYIc2Kj+cIbFgwhnanI+WDuyxkYb5I4PSJxTyD3Q066rRM GvyycWFBGJVZ1SvpSjMmwhyitsTCGhgjNBuH1LVlX+HbtZ3/9lTJVzlDE0Bz04tGw/asOg4zY8EQ 0ZdImzIbwW5mdmqDrmjv6U5+V9ETddclvtMl6HNexI/IaPXe5bwelrlJ92jhdKhQVOQWEumYsQal JGW8RYRskCwYDpe2GLVL9wZOvU1jk7rFdIOF/KQZjS+DWpd8McawMLfQnLW1p7U1XgH5oTl7tPwf zi2XtjgVPRMuvShS559JvZhUIVXYL2YhUbSUpkfcLZVGEpxko0EYK5UUHb0bSz+lUnLOMAfZE5Ud cJMbNPlSP7rYe+offv5yc/349fPu8MPHg/Ku1W94nw4q72/WL57vzzd23D/vt9bnGnCTsVAvo7rd QDYPj+gK4yM0Y5pImiSB1B2wKqkrCYuYqIZr+fqidCwpUs2SGc0TipAjR7MGubz2iHZwwpg6kLhG e+14dsAXApmqvM4VrU1j4NhfBySOmywUWk9mV9YFJtGi7f25oeTtoQiQLElCM6a1WodEDjiWjSwO m3W8+MX18cFl+lW+KNMyimNWlQhnigyUN4WVujlAVW+jprCNVaxqc4eHFmgOgCB4HhjjA5Qb9B5E BeupbjFJsMQQTVRMlZPF2iUCRbRy0CUmGCFzCibTeU5/lflRBv9Pu7cMwygLVqNhkIqZWpjJkd7Q vDkku3ngKmDArHy0ICyFlEQ3JBqPa+LDOOb2YGFjsiNZjAlAnvHQGFP4w3pOKOlI3yM8YzzECk3r aSIwLVdDTfOGyKy41uoMKg4f11pFBkkLx8+SyEfbC2svVdejn40qqWb9tvKc0DVUtX7b6EXnlalq BMl4gRjUawJ1jXSFZ+a0CEMkxXKpPYBM3loWklIHYWJLESgRAU9dmS3ZXJgJDNsuFopCtmwMSpls Wjg9kBCPdbVsvHefnlRvPnTYvA2Ktwl9V+nx4WlYH7y/5AxqPbXCaIiEQtvvJsiI7Se0smm36VlW vS12G6bhpgl1Us4jkOH4dhfrhg8VINXa9uSk0HSMngbKRgoUzfxGTE/xF2DAJ3UUxVzGMdOsIcQP WeATGWjhIMErsIgRqr+oMwWUxUbtj8Jhws4Vb8GOKzuqz56E2IoHJ2eGYD1Z3R5OOhD9nZcN6HbZ +IyT8QRrsEuTRkrgphfHmLXBrSgSB+VE9MxNt+wmNobJm+aZFWrFt1kN503kJk3k1TNpWWyUYBMP 0vIIP6HlPT7PnWfPriMFjASUxJQtJl4lsSLvRdbelx44BcrGaaIYN2l0S1aTlkmfz9qIFmVCOls2 LpGBwtYOx3F5gQvstBJySXYrRbKhGIeNkSChHYSzzpj5NgQmuyn3iOaIfBKApEhWmbl8y/QIdwRf x3VxdroEQ++dX4VyApF/hwQmtQyxI1sWOmNbUbBZ8h7fQewzVk90eoXxh0n84j3R+DMnkiF6G/Y+ nC2I7d3l49nrbMkThZq7ycPMtjBLAQUR6LTSPA+2IeUtYBPUc3L0yxwbzmxQeb08C0dqI8PLdepi EQAbecCSw0pknmKYdezZAHXF4/OO8TO5V74voOgEMjIGkJqS8JyShhZhWvMGctCjhJgSiqKrptmN Pwr4I5GAY5L4ZfIOLAZHl4XtgFKV4waWZDiYeFnmIX2HkB4fZB0H85jYDzj1yocJi638KjAfQ2yQ yuTYgenRxESxfTGhGFLvxCP7ioCxpk14Tc2G3QElKQcYNQJwstjLwKONqGFzkqTpPYPPCFfhB0b0 hEcnHCZv2yqvpoeKo/8wSLXFEp0zR6AVJDcwuA6kpI7r4XQgwTTGE6BadtwjkSzZACbMm0lMGWr1 vUJWsw8SsmlzBnFDrstX58sQaBNkCCBkY5SdAWcBgZ7Z1hZzQdXheeZ3PKvFNBPbaqJvcrEGwSu+ Jq7aut9VqD6WVMoLtA9jHKRZmP6gDRNmiRmFog60eV6GhA9eybgIWO0CKwSy3JtwaNtddprJQUV8 eKvYn3GZkCQjQNNDSgZZZegW8bHuckLLvUvLQUQFlQ8cSP1i8I7yFX05CVCTpNNAZHSDqyz617KP 987fC+mn73MXUbRMAQRkgHLo2UiwHNtSWteINahHkWXKBen70TA0pPGvEfGGqb5wWG1TqShRT/rd qJ/pu7kBmxAmEaRbhZ1lPJvL0EjXsk1H8IVc/VinWQ/nMVASD3J6TD2ZR3caSTxCOs2iFX4wl856 /brt1TvWveVF44rdnUc3cjC34585xDmPSKTyHEvVbM17Oo9uj2m/cdyYFhx2mvFsHl3u2aT023tu v+92k11mPIu6nGFVnNMGbfWv3KGT7DH1ZB5DvKzTCGjnzsZr5tN5dLv/cff6dP/oKOwpuDGPxodt FKSBitqL6FK/OY9OTi8PbxRCSOHp2NraTj+aR4e+aT8HHDG5H2Q8i7qcgRi7ZqNjNqKRqeuJhlMo XTmMS7wbNLbX6vR3Y6vMhhUhvSD1l73FI6Jbv19txrh5WzdkTmSR4UYmw81kgajKf58bgvqm7/bY wztZDKrmfAjnJm2GTDgQ8FKpNBfL/7upLP7ij3lViz46UMFBbLbHD6g07Cma0i5fKv1gpngeJEzb XCcyy8COcKDvaFNH7jqAQhAoW1Vuc2zYI+K80uQ7rRUdAYsGwj//ydZwHgJs3zzBYu8uleZn4ub2 YdAulTQFfjojtoLrH2K3vsVE5UeFpyzWCynz9JgWEopmED871uRcKulm5lJpke5E1mRcv6YBGUDC WozCthF1T2UhBj2cjzMKv/tbjMEY5Y9h+cWOND4cQbfyAq2aYffuDQy6d2+A3Ls3TbMrP2c03AJB O2IDfDe7dfZdAavsbdLKGlthGbbZBdnuOZQ5BPhHsrEyjw0sqphqdDVvSyojANtuqfTjmkpF8mPB jP8qlYqbOkmmQSOlUtokqTWPF5RRUe6WEM6dYMnSED+IGfCCuxk2teiTLNtX+DBlpsoCQWxN4YOY XSi4m2moCZ9mWFTCZxmmjwj4lJUifJJpTAifhhaB4EZMiw9uplXr8FGGDhxBpRRXPfzue8ZklxFh XF7dyYjKXl3dLG+uRf1PGpTNxeKrhGyMaa5h2WFYoRaWvV6ubG2ura2uJ8KyM2RqfDlllDZ6WVvf UL3Eo7RfubhjfEKTlR2nV/ZZ5Z48qDpEzHeLquYef9SwavzQnNdS038INYPEgGikSpLhjaNm0d43 YHFPCiHjcVvUgWU2t0zpBcLeB6kCKhDN3aDTMB4cdxjsQ/dWvS/ubvwXipeQ/iAtIJVLdneGSiDJ Npwl+r3h4d4SykFf/4HwxrJWavgi2RpDWngMFC1/RoNIlyy6rzQ7gyZSvmSvHQVFVtBafDqu2EZi w7qytrpqEAO/2N2/OrgwLg4+XR9dHJwcnF4x9okOllgWzgydLmAJm1vkdOVre403gxGR05BLJFlD o2c8Irl6ZkIMJIeJiWosQUl7r0ks3ANEwKKznh3wHOE3O8g5N/t9e7PpPx5e3vxxsNW0Traf23tn 98e7/eF9ZfVpo77uNof1Pz/dDJ/L9snrBDmHFvIJ0sCiz5MG82BlJavzZXeVZwoQLKaKuXD6t8aO bmy9Pmlq3SVhkNsJ53ryJX6FKyUe2si2U9oFqSbHUFEPSa0TL0S8nGI2i415HWRMotn/G/br3xxr GA4GlTI90tNoB/pNxZFwYNFvTfT409ru+1CmF2RE1wkUZHPdeYJyYcnyabAip+Ymdu+7g3SChSSQ 8M/vDsCpNVQeJfz67t1zKYifKnufBvRmOClSICK4992BulQ+HgEmuPruYOzKQQUChbr47kAcmo7p Kcet/P7uIFx5pjYdwdV3B+OC1YKAa+D3dwdh92RXUcPJ7nfvHBtK4OWW398dhAt11kUwCXL13cG4 8uzHgGvL7xEgxD3vyW1bbk+8t+NcmX2zg+0qazef8QzkzPOMM8+8PmcfV+rdqc8+zoJm2/h9oM7K zj51OALnMyn4f9idriLJ3BN3J+h1a/JeL/vWo+UYlzDskPreUoeAz9D52ir1rr4c1zseTCqQBlrD yuZDe6v2vNK2Sb6vWo2W6VWHXGEK/xAYkqHpejhXqGbWnqsND0cNqTSOA3wArYY+YCAjip9l1JUZ R33vtknWrjkWuwkUrL/TTeM93zWWjJOBb9cNKAKur46SPOg0F42PLsmiJCrT34us/hEgLVLI9rjC /RGpxsaJ6RgV7WiH+Yy5vD7DmDMd6qmpbu+s2o8rNM91Neyq6TSqXWCi6g96lvdo+3Cke7bpVD3L 7r9YneDk7D3cNC7UzWwE7tJys+Hd+eDiyJRjeDtIw6X92fGlcoj4Dj/CwVAzkycSz4S9yqtjr9Uf WEMsFGXbc5771SaxmGodZVvqVdOFObDfr0IDr/bd4Mjx5bNlg23rhLSPyG2W9w2zb5CAbXxxvQfj yu6motBmQcfODNiYDBn1jW5vxa6aXRwE2n+u3ls43MGv6vyiK+e0MpUNXbgBFU7O8Ynxu3wyx2Fj g5h22BMSQWXQ7sq4fWb2VeLzGKXtVOu2Y3XNvtvyzB7RQNV1BDdq0Gpz2AveJ3LYj38xKSbyj4nn 66SwILcnliiOac9H4BGGrvvfuO1CtoLJ0Xr/ZN/7K646H60a9arvOdUg0k477zoyVu7Ri8Z7fpEh TZgxs0WxmYB+KK9vNjOBdh/uzdHQntEb3wvMxsb2SyaYJI5V2+7At0bDil3wI177fgC33UyAG5aP ABoi92rXqq6NBvt9+LJxYhlr3wl42+5vm5nA97ENIv6LAGbUd0y/X5VYnswB8L6pPviVZZFj+sL4 g7+YfDhzVTeuEdIjWDf6ZiuLKWQbR4E9m3G3bPdXnh8GFYc4abndf4IRWIYvleJYveJkUeknvDbM JsyYMFoHwWlhTEaL1j1iS0wdOvFnMFYYfRx+ISEQbeLENUQ3NRpWRj5gHNra9tpDc7O18WT7T8st uynQchFAxFdEvSzzz5j5mC8OEf5kmQ8IJ3WargqmGYTHXTMRLSIqkwAkVQ4BIhwsZ5KQwUO0OhHi Lf8rfCU9CbBC3Bw8BE0XbkxujtDiNn6V/uukiwCE2xCNV0NTgjVqg34HxejeqnblcKvgA30o86Cc j1an1xx0opiQLNoZs6HQgrvyBtYhSV0yB9qNaBb415gFTR8egtqi2Hm5LNzKqdVvduynPdoyzxRh JO8WbnMfJVShcJwwYYStJu4XbhdoQtGywHAWu1W4NQZCzD7nrqfstOn7hdvdc5/4oNToPIfwTuG2 BFFHCKE54WjmOJT6k+nafm/1TbsT4VO/WazFcVtMsswmdpCa3apy3AkL2/RaVVW4RAyBWmXLFXXa Djjgnt0yjlXdTQZ1KTh69zK+LLPBntdWwqdWFRr93yMqxo/Xmgns1xUW5wnodxIX5wvydxcYE+CH heti4E8G/SwGuPgIUua4fPBVQbzZwZ/NEhCHP20XmG0Ak5HPlIadOOi7Z2LkmQxqvkiyRjWU8HSS cChvuUjoT5VVhO0PnLrFgNM10hGU/ynZUexojLRYxaYnWh12yxEpOZ/Njwn6CdPPeD9Bu5JxEXn1 OVbxR0gKZNhC740GoRLIT8x7krlPXI6KPrelBCvjoEAQVMBi0vFORdIBi51IoUXpxKdDqsYmwiUn LJDMxANSudWiVThSJT/zJSWrcCthZDaae2vkh6PIG6rbJeM2miGuuq1az/LSZXjosgJOFqK242Ee M7Ufb0rrgwM4ZmqaW9BaBAnP1CAa0NqLx1XM1HIycEPr5VKtiZnaDxrR2lUhEDM1q9rQWpWghpka lSa0NoMYhZlaDRqJUTE1NZypVWlCx+rJ7kwN0vdaa6IJztSgNBEbtfj5Z2o1aCQ2S3Ddz9SqNMFs L8b0dD+96hDO9W/iN/+mbv269Ou3X/EZX7G/2/hmRM5s9YBd0vQg5W9Wz8VrTC/c6hLhWLY9s0wa oFL8t+j/NZyu4TgSbt6gd/GkovfXcFqOyGBOoXE6h2s4DvZpYhyT+xCLQFdY7g0AY+8i4IrJ6wXI a1qdIQCA/XwAYLxPrRBCpnHupZd6ngMt4jOlkmaCKJWKwFjQ/KExt1IJdoRivU1qtYh1ExoACvZV xPAQ6zChuBfutqjxID7aUV6aYqBM6TtiCkz/T6NJ462RdNzIA/VYndHzTr3wrrinJRpmvpNnYbQT 5jZ0qGQ1lvTBIKleG8Hf5GH5f7fv8t0p/y/FGdI+kNgglpAKGTo4tHvKVaHdibsdtAf7Cd+B3kpk /tfu8nuaGV97FFnik+/HTOrJh4FNPLh/O6nlefxamcEInuTThhzS9Dfw4rDj1+fHYVffkyeHnf5d fDnoXxd+g84n63s28TfoPyYeFQJgVgEpgCCwShZD/TSCYXjqGaxLcqhRzFrJpVOgZZYM3fZ45xh6 5uAkSd9vLqXkRpA2O3P29/rWorG5lpH7vVneWd3YXI/giCV/B3Bw3uFidhb47Edz4eX4mVySGZk4 k2ursrWxmkj+VvOKt6dM+EbL62s7quXvmvD95gBhfTjwBuSDMaTNwXgN9ixlmpzMnssk8zdnfJPQ oRNBRHYKmAL53sGqzj1z5uZ8f3hmPy29PD/uX3acm97V086nD62108vaqu1vHq5Za+dO90tj/314 5gzD9f3zx1XFIOTbskDFB0MS32jiKMpAFlWJsajCgzo4TbNrd2yTK3u18VXyTAjdfH/HBny+wH5I 8+31USaHScb2DZxVyCXfJBPYp0muSfUcBgc7wKJBRIKCdIFwGEArbSfdZy3XXW51Vnbdr49f/gqD BC6xHK3GPhf9kKOA2a5unBNBMsDsyGHzBJ/DaT31TK44R3AOXQ/SK9skUCeP4MgtcS/HLzGyBo6P anuQVV1j2CYBlsZA7QOJUW0gkp1RscziOgl9lN0KpeCs4SW2kvyjj2MjFjyol5GCjaEMLaUUeFLn r2WhDlqdD7TlMaCkHlY2FzjDCVXqRJrI51XASROsvGky1YNXVaq637mXHOb8VPXY6EOWoGesz4f0 JWv9FUj7dhzRhqJNjOAXClAwIJ8nud7Ogb7yBLYJ6ZyPGNXJAnOdooWC2fWHlR3zy19rzvrp5oHj 799svjy/7+x/2Vy1LxpfLg72ynvDcr9c29tvDueaXd9eC35FMVCbD2uNllrOpwc3BhfcNH4x9g9O L68vF43js7M/jGvjw9nZ4WW0Vr99i/MS0qNcZ0cVxD51a26DpBbYy0d98tCqba3KJ0ekzVvGoWej ROjmytqqxkHpw9SXzc36hnz5F418/Af3beupIx9cLfltmxaWCK9EMX2QlNuzhOlo7nfGVowXx1oN d20zLorHqGPlbVaggZkfCpSxBzEt1Qp3UqsV7aReL9xJvV60k0ajcCeN5HE1YztJ6Ue5vaT3nrz5 TraSLQpEbYLVsVCLgN0bgSa8luoe8WH2PLdpsZBpdowhPFSdIKYxeolrhQwcFGhjjdWB911qALbN Phc9jF5ZhpskKrSr9O90t/m92RJYTSIZXZHIzc/lyrBJI4Q9U5hzUyrRZckx6dCVEMOfbZ/UrzhA Saz7gl+pr8bmI0E9thBcRShPQh9uXbAnaoDxr+xYzsx5j0HAXkKxYvHPLIr9YKktjt/gCUgW5pGS 4UIpxhJtqPxH3poIyEM2ZaZlOtC/2sK/fNm9r+9nAfj/KYJk26BN9KbyfrPWGKORdCMpJeyQsrbI rtCYbUAcbF1UQQXGR40jUfZIoseTKI8vWMY2C1QyGBZdIgj518xJ01FiGZrnNsemTL+P9uXUBzPn Tccz3aKpOSPCOlGlhi77JBNiBriTxPQVy6Abi/V9Ess8kWu5eaEOrsTUtjo9cSuwaBoWq8Sxsx0T hVVdlDmSwtYkqhhHDuqfSsVRJe6JbT6xdQsMaOzrwOr3FdeV1uWOBgpIMMFoaYNHud0hCcuJlrWB JYYknCI3da/gbKmYF+Pc7dh1OXWq6DSduoFXA6WuVYFbXpaVdZL4B3RbvD0mV36Wgru2h3K3QLUq x8viNuYAlYijBoPatX2zZdxenp8dHR9cXP4HbmncvbzavbjC5HETUtgKaOZpRl98a74YgycjqmUt dqC8HSrVcXb7HOCBY9F2SdiD1ZGxEXUSHmKs/A6ssgRdLhu7jjremHHImhtXDAdDDF/DhmghFILm xUZ5XAk9QFOm9hZjzZWyu9q3ToNA8Z4XIRn4qixZUCzM7MwXwWGdb0ECr2Ba98mDqFJ9ZjaN+rf+ SuwwaXvZWiYqUZ2o6sxPqLAshw84UsGa5BTSieqG1WxitK5Sg/0OVFnj0fRsQSDeZXpD0VsuT1wn ZtozOibKUP8cVSTOPR+OWNtu49GuW7sOwaTlesTu8niFkwRnJIR8BFTCdcOxly8AVrfmW96jVEWn h1wM1R9IeXbMOI8YCJ7v3MXPdfOsHhEtH79AGzN3N9UkKrVdatXhQIEn9hjTTGmcFK0zdbfNRz5q QQat9H/MzJAoSftAK/aNWvK09PhUhcCCATlVZAesKJJj1WkF0VhEjJgX6piNml2MwLOW2gxXsClN hbXdztB89oUzKDNMeIqDBKYxr4yfcMgsJNX/snHmBGeoizmDKGzohDUJleEoKmcddBgJ+ymYZ8GV flD8o9kaBGXVp8LTmRwlAmoNG1WbWMB7DISOg5S7Nbs1wMtB5XYVbR5sSFFt7EiZgmLjWViJy8bP 1jIx7Ijh8/kQHwbP0R3JkZwXooiojt3h0oEU79+fgZrQjJwBsGjg6AaUkGQGGu8w2r0SvdDWweW/ sYRwgAsWVcfuKo5EbUYldheNujcgiahHFy7d6Sn5/eTS6JF00F/y+8/Y6L3+0PUeFnmCMjYl46NY G1nt9MH+uRq8rHjhStgRheSZt5uwuwQSc1BiPFgCKTTNOC/RlJ93XOFLfLVyaT0NaInOMlkiozQR 7igWUV/ajGqIJs4dQEv6fnTDW791Q1i5alsAMNyU0o8YpkjGHdOWWX8wA5te3lO9RQ8llpmVs9NX JEuuOv8qM3N7YvXN/2SScKqfzOYE965ectVXYmKMIyqBjAfI7kIhSt7GJeDnOVA68F3LcoizdJTh nmhTaUOGqEPzRcJVIB1Mh4LdSLwIitrypuwPWKEHBfILNiQu2ohxIAstXItoAGJK37OcVh+xWxg4 s2KwBDiOtWhHoBiHVIQmFHXuzXwxQQv1EIIdvMBT4QIPcpXYcBXkWenk7CpiYs9Ai10HUqGoEbqG poeKvR6RCBFFF8cx/NwEqLZzP/CgK/SIWRPrJFEfGqwvsc1y1kyfTxuipdcj6uRzSbCqMGHgz4T2 bpKrSplzcWfNF8XICuI9k/3rslNOhepdOeKqb3dF0dcOqmCGhzC7aDMGW8TrsAs46jifI2b5wbkT cT295dhNhHGzKqBOE2O8GIMe9o0eCi+jW16hkJhE5GKabhPS1ZkvJMpjj4J4rt5nhSLYuOTgDF46 EShs35IgQNU6NMXg9A0oF2zAIFUbzNIwez3L7BBvgNTKriTM3UBZP3PnLb/qjzwXG9bBI9bvVRvO O1kSc7RtXT33JrRtXdmIu5zs3fOBRwhNNzxHG9i5p5ofR6RryiQirtfJvtl1ovPNaBn3PCim6gKr WUy/ONyDGMWYSR47kmNaD6kmMt+8G6yu1ho8nkLDuQKpm8JWWANRln+QN9sfiOnZKHBOZKyydKcf DrbjVBOZbx7iIDysaD7dAYo7AdCROMBFZcK6MjusBF526Z20qJ7ZrqQ/MSNWXgiZNZMUsWffnnVV ZvsvYkb3yOZ+6v5hlz9EmMFYPgzsRsHCF/FGW5XP59uq7vgV2+AOeTNG6yPazbS0q9SGcUwme9DR hnFhDpP2oqTXtbN+v/2SoJFsQLM6YAJokA48ppf7p/vO49S9VFY3jHA9jurEelDlUcK3J+8kRtNj e/K21XCm6On0z6txs/KwbtuqhsoUHRxfT9C+eT91+0fdHi3hsX3U67Xp+1AKUdd0bHNcT2vrdnsw NXXRdBBDe7Bg3PjV2G8Tq2u5Y3qsWzs9FUkxRY8nLtL0lIFtz3TGkZu95lemXz0HT6RJdFUo0ThU NmutjfrUXV2d7v562TG7XYRp+6aX9KQke3sYttanJ/OLs4/G3tHVzZhO7je2A2/0FJ2c/n5+Y7TK mK2Bb3AikFEZ0+PDU2+tPTUSj/ZvjEM48bA7HrumpM0c/Tm60w1r1RmoeJsphqmWG0Sogf/rezgJ P5JmNbrPzXvz5f65YJ8ZAamX7qDf7plD48Jq2RxZIeDQuH819gZ2h631x1a/TY+O4VX4Yqkq3Lmw bbw8Db6qQmGA7d8J4LLd3iPBPEe+mRb83G9z5J4ykA0t62HM6lqrPbS/avgyaH82NlcqOyvlDX51 LHx5pxFJtMeg12C/2OrWyur6SnmLv5BHUZtxQUNFWk0uXOizHwVsvedALSWpLBlnJLEaOPy3gwTq Z6Nc6UuJ7mziyBSBroOcst2T3SzwZlKwPqB2Ajc6VmuavDQ7EoNTb85Rubrak1C9saL2TC/OU+pO mnQkUsDsmsq5hwiVXa/eHs07RpOHJB9cksLk/wpi4y/mSCqTzz9L65O9ehhaj16HVMrSxLj5/1A2 LnsWxxbR/nZ9ufsrbTiE0z1S0doGF6sxJmwK+2TqzWI6qmyrY3uaBOgJm/p+QKelorGfiJS9QjLV yofDmxWD/jLkXur7YiBvp77PfO3g0e3QHrVd6PXUu68C2mXb7nYtz9ipGL8YO2uFPkq9XAzCndT3 ma8FyCv0eurdVwEtRN46kLdR6KPUy68C4Qc4OUgx6nTYxXNoT2pSu7k5MH72zGHaJFUMTiU6je2P WNF+x+6aT8R8WkEpvbFfzYPrTMp2lHfsAjsl9uDBhDDG9IHUJwWBnXCB7pl96rLlITposi94vv3A BjVm1sfJMhm1DZNB6tIrfx6JKokKiZV0K5lSkEoNym6SG0lJ+XqLdd9HPKdWIzGpPASfJ8sf4l5a bkOKEX+brQ6NGYx25OIJTrGPJ9hN324ynJh1YrbUdnC09zy6YP+u5aGGA/cDjd245BvzaB6Jyj5B 3QLQqgvUZ/CN3WAoc+mnqFA9ccMSLihNH3GoywnfmUfb9bbZ7cEV0LZ7imHtG/vqZrEOXsMWn14l l9d7Fwfv3x9dXaa+zYCJ4zpM3ydaFVC0GyOgyG5pv20/mJ46+yy6LtzO8YCwfo0qBsJpwwaTDwq3 jH0tbC3c5Iq0cHH2MWyAfhf+nmTl8Hv6Xfh72k+iibo5KPx9BolHtVGkZTAwxGqMaHssFaK8Teqr LIgmTKBUjFslcsKYdeIqf9MYCPkia4MZlxgclk9NII1LLoyoYRskBRcoYhuUgFWx9OmsY71e7G1l Y3PRoL+kTMVcqsaOzTX1rM3zh9r6w+7L8drmWef6+uLl5ePL8bDSLD865Q+fHnf6q7335vuLi09B rmmyCu1Vm4NzjEOzbv3sL0BsVgX3EpmpeJnLh4xLJP3PzyrvdOHbN3pbyxfFE04l5SeptFD+EGmj C5zleRtkf/J9JIWq+/lJntwBjItc7+S2VDJj5XvGJHMu8Ce1mv7JmNRM+aRe1z8Zk2gpnzQa+idj 0ibxyYjyMOm375zkbcP1jHcqLeyd5CeWStk5iaXSPNIQufVYoyTdlUgzK+WlFgLskiE5g6XSbZAA yMU+fRlLPeKPC9RiPANQvifcZuXn0dvphpLJfgt6rp40p/LwqNWMpDp9CmNJeZJXXzSrDj2+lVrO DGvGpsBiLU0wXjK+GVqC2p3z69KSlCYtlTJzyAgF31BILkzzGt0Jz/U8U79u5VPJ66K+pa8o+Usi 6xSJ6pldtyG0DNiygSHGE694bD9+IhUAh5qQm/9UKn27e/NPzWLiecnLPsIM/aDJRCuJTKEwP+jd LHlBQMZ7F21kpPEwvean5bybNB3n3TzScNS05WbPMLCTZ8O8e8UsGICal7zCYL5OMsq7jCSUuzdB 8sndG1RNAwrTuSIMVG7uR6kUrfNS6R+f4qGwcPdGEh4SmRiMCuF+BTIroFClMiZ4rOknkvwwScoD INUzFTTY3O+deQBYooQBWWx/awKAmsYwbp9AMr4lRYUfNbQewGdFxAte5x3hznLK/4TIdpY9Y1Gj uINwckKbxIpjhUggeChrirx57uGleGA24bpQ0PWdw3Et34x0UDQAKBTxTBABSd+M4hHJ9NHYcGOl Z6APfMiW2GR5LYkT5mKat0kzYvJdMTlKhc6s8F3pj/Y9cwgpijuGossBuNwFScOBK0N/gWNn1QtB JCye4195bj3gEBA8j6Eh/pK3HTSC+FP9GQebqmfH18lH5r16pKI+Y48R4qkexwI2dfg5OjPqOh1r qb/MgZXq5VSYpP4ix0SqF+MRjvpbHM4Y4CYZnBgbCSIR1YtBXGEMfwgiDAaRFRKo98rxfwHWcqL5 tMYldC+ORiwrPRAvBgui7gKKmSp0Lmjt3+idA+UWAvKcIMgt+DoWvkYtSXibtJQMReOKeW+DaDO1 9iaIGuPxhqagt7GgMNzhQC5a7ojSERYXZ2v4T/4iNri3S2/s7eK9vV0Fg+Yt+U+OIg3XCnevA5AM O7pzFAiy6Ilr8S4W47Bluj1J9AreY2O6U5nwC7wXfRGjcrrOjyS5c7YZZBXpEf6W+4kwi+jOnbOj fRb9lvuJAIPkZxnefbobuu4JTVsy6phrPRogj1DJXppfG23oa4feBMS6UznoJvIYq1mlP7c0+wmb HD818BgPM0lDOXH5TXkp8MvyLVi7S1y9kWktdI3mNRcc5VUKzgID04jcnXmfBeYkxYKU9zLvbZZP +Q35JOmNzPsu7smUbydfPfSy7j3Me1vsCfK+5gvMe113IMpHBbZpzM7baJoi3x4aYrVE+e7kMnDA yVXSW6ZuC43yTziz5BfcUqrJmwOGEvMKgT1vXJHXKAtS+H+EoBIuG2puQpcP18wsUg08dHnMWAR8 bXV10ShvbaXLgFe21ra3VJHnVBFw1cvr1P5+22jUGmtb+EYvAR5UnNVKgK+t7qyRDLa6kSgBHp9C fIQbU1QCpw4qO+Ut1UG8Evjt5jpwt1MB7l6tHvglK3UYQtqlhud4UqCut3qm7FevX9abR1egrnfY UKE63Imi7NOUNw6cj1LduG+vtxnK/OrGXRLmOs+208e5KWBtIXaiCsfJJnAv87vsarj1PA/l4x+1 q92r5v3w+s+zsn/Un2vJW45W2h0OYdywe1B+j0g1bOj1eB4c0g6PwhvKjtKH5RxaecycxeYwowst GxWQfZi52WhIannT9BYNPv/GNNrEtWmc/zYu4ShaNJ4ts71snDC2DA1dht8fNJvLxiX+kZaCpz4s ncE3BLaeKq/0FszCotFsZtXcTAd2vZV5iXCjOeCzP42STd67FsOjfB/EgDp2EyYsL5GG4q0IwEfR GMOoh9STCIh/E15RtZoPmIg77ZQpoG2Rfg47G4BI9pkiQ97ppGP8MnqxmLFkKc40CiY5AJ3LA5eX 4VNirwW3klE0mG3AYra1YHVuEpAOTI6RAyrwCjFykwWMiAHQ/xgpft3sWIvRI+2tnkublisz09eL HcVog38nR1NwyBUecuBhYokvb+iQGAOreh3rjFhWi0g2Ao/U8KVBTx8SuxfQtuFDM4HZrNNh26Xp iD2MsQQDH6zfgXU1ibUjw7csweqfTEGeSdsRew++JEtBzRE5a4ycpyVGi4xlJIbeuzwKHpJ2RBf7 VU3luRE+rPxHwj2V3WvR4KPzlFdkyP51mA0d0qbbbmCkt1X9njkOc33ZOAtcO7dn+/8RLwOfq4c6 7kGmTHq8+BEtPFMA05LaTnE4WdNfNB5pG3d9dm8NrRo8vcS7JZFtHLOqpVqFwVO32Af+0tA9Fbqf lMMtsUX0YZkGZnmYi1kF3QjJE4JXT4F3Bm+TaTfYYg9PjOfCusiCB+3yyrooxA+BpA/hj/YoC0J8 ciUsG19oAHDT1C3Hh13cwumkrOGHBnzcNC6YlMSBrizDk41A5RdpI7hEG7VnPpNAHFcCl/tAcNjK IG42gggQtkXDuKJMP9K73jf/TtJfQSLd4LWoucS40QyivIFfr0niNJxZ4evKucXXBpF2zfg5cr6Z Rk/OouFwKDh1OySVgroWQSSOxZQLRWnA/l9uZdm48p5Tm5cGYLhVJoHWtq05ImiTAJINKIw1cOA+ rvfZuUiLog6eme/Oy0Mofoxa5XqvIF0VS2Hcuw+gdpzp4JPS8cxIFLpvdlhQuhIRKSJk8b7zZoo9 EmuANpTApz0pRadZhg4io4T2IEFETVhBxDJCBxwQx0QTbTAqOETb34L4A14lAcMJAkI6FsmePq1O Fx58f+D1PBteUOVujlyg2CcW4dBIeHdiNJI73DQLypsRq+v2EW8I/1vXvbeFI/PODLbZJkW03kfw y8Ch75VnEyvfrPluh2if0OZYdRgOPLa3KxzKLhdiQXbvn+HaWdsss4NnlS826vR3ZWcz9mRh0fjv 80W61dhea9DfVrmOq8oWzvmifzdXN+R6rWnEdvgEQiR9+ZJjA2mMTTic/83HUMp5Jx2z5npCZmDA wTkniyxaoIFkhHgq7i4tmAbBFiuVcq+88cz2tepmlaii2hh0uzjsS7gAeCXDzmvfaNoepB72flqJ 6rbZvedba1JQSY/BaSuYl24sSDeQMCSMkvWjr+qEeMW205ng/DvJezIZVAaB0qqQ02PCs2CSwDEq ggNhOAStYdF4uuDiAm1wvgy9Wq9bPc7JSdJ9DnGABJoDjxmPzmw8q2XKuTdonnetRQkhpH+VKYh3 V3Zzy7bd9CzClQP+Yfo42zTEXDg2Fi9Mo+O6D2qlE/GuVjYFokkVnTgGs/QtthYnMGD83CNuS2BJ YBWkI+Lx9wO46aW3mL6qYUNW1jgdUghDFIFh2663hWNF234ynoMjPuB4ALOXKDIl87o94BeShQHP kbVEoyB12+d2+LNQxIOrX4lNtsPyEt/hI4Y45oCerNAkt2xacqRYBjatRbByuoZ5EiyvX1/GjIRW Pj3IJ4fuFYmnU7Vyg3PTk6pOrI9OpP+psq00u19A1D9VdnhHwX/4JnGSPf7j0+4RPPGIEMzwdv83 EhOFXi6JiX2SRiWuRfYOWfDzhBziLcL05gZ10OAEYE8GtbgH6LZjcTSUdPXZtiQ8BwvJOJVHxs8Q ra1HklR4fcgOScsmuRzG5dkFSCVO1R8s16yV0+55/Wlt/2Rp52SUjYZ/T5oBAUYmAWBGENu2yJwc yvhixgJfZqP0fJMk/s9qN4HVbpJp/YHTTDpXrZetL0/VTWf7819W9765sf5of/n8V+uwfVP50Nnb bHR69+W/hn/U3Lw0k49el/4kLL94kEEI7wICePfDTvy7jAkHN8DZujJ0dr8hAjjXtpq1iRc0ld6G 9k/2B2bzvoV/ybGDS/hzFx4/bGjWTUPdns6aeQfPSNyKefeG7satlndvcCK8AsNg1hlAkmF0VE9F tEjbGO/eKNsidTSTTfHuzShbIkf2hpiLIM4zBKo3vpPdLxubY6136tVSyVwulcbZ5MKWS6UaXp/K 2PYu08gWxImzcU3rp45+fiCrmQZaA6DNxRyWSVYpm1b48PsaseI2Ks5LSsE6s3kpToZ5JorXMBol aXoma9BdsHETJ3pl609yjeTh7J9v1olGejmd/eYWqy/vdNisjXICy81C0kwTnmALpMBskddhAWPN wkhrjL6PQ7p4NUuKSAw/jKXktlTKkpbY5EELYXorxyixiVEsAsj/LNuGhNS+vU3bCEYkGaeRlGUN yLJjZFgDMiwBbAVYMBiohAlgZqiSNopiEBW0FOQxgSxgk6aJIBx0lPmgcACeuon9OZTSIpnwXxyW NWtw3kZl0djaSIfmlSvblcr6WiUC7TsG51XWzVXCzmI8OC8ImNKD8yrb6xtrm9vlRHBeesLw4bQB etRJZX1bdRIP0EtEhWEjn2to3rHdtDgjcER43v8cRZwp+u8NNMQC1Ik1WhWqw1cPNJzSLif7HYuU yg4gpYlj9u90YZldVoJo02pZiGzmDZimAIo5OGo/EHvVXAV554i+RqL/gK+4o3RlmmNOZgzVJ+3T nA92Q0NAKGSEojlmWZI42T7gk3qtUjxFFDJp9dQHHZRIKALjrnF1/N/vL2gj73YhNDPRIm/QR06h J0K8WbN5r2WbCG3erGbUWYvksdlI7+4hwJ5tLpDIQ/z1Vb50CIjYF9OQnBNzYsYOUcBSOgQJFMYQ 8wEkcuKoTwvao5kS64Opgj7yS/WMMV7OEs8avKoCWr/ePzKfHxHQqk8NczSN/vFGBhGzMGfMhUzR UD5NcjevSIDS/nenNnQ7LWklZ5MnMTmF2XHFuSbp82rz2D2tV70/v151K39a64PW+/ba6mX7seL4 H6tHJ+/tjl+5XPrU8+cacpz0eeNe2v2zkqBR5cgVSwA9PyYh1RE9Nsov3w8oQ3rb5QfXmqP+Ln3u bbqXlbe85JrmV62/XaYzHzMC+iNyDLUv6exw91PUD/8q7OhPvhRi5tDuwMAki3Ki3SQ2yjxpOjb0 t+2upY13D9ZCi3Np9LdUCQMiVrHWCp47ncTQ00w1CyCVFrR61t348HbQa+joph4kj1HqeKieruVW vLeaYLF4xxe9P18e3lKLWsdQ2MPhCQMRA/N7E4LVorHvDfy24oGkkfvtGJdRcMrLcwKzs31ec99S LxqYVwme6WtVCYKinfrjOYHy5WBr69PbGjzAIShRwqqvliKztQEKatQ80u6iIjkMiqjm1lNQkXNP vT0nEAfbH1/OX946npuYVZIvB2xyIAJumqSYPJOsC97dYP9D3YX6SEtcoDp1naULtwstpR6HrBg4 pxf9L7+/tZ1mGmNcWIeldbFVNG3kGgbM6yi8nhNiOlsv13++7bGZNYBEOIrMWmTRF0TZiXkTsM7j b80JtpuNjZPHt6SaJVmAo3QwtvPqjMDpm62WlSiUWaD/JPtL7i8tl1W1MHpI9psT7DfxPsd1FB/o 3svXo6ebt10rNlK9pBkTA2nmyjO2ZBAG6sJyIQBZT7Aw8mIT32ZDYQSlWCbDxugKknI7LwQtH38i QP5bxnRi/fLTxt7q6i8nK4c/bbz/BYvul+7zL9VqNf6gMRBD5+IvJNB6/SVNwvhvyEK/7Vm/wDr7 S9/9hWStjmk7v9D/GzRYuyPNQpL6RSSp5V9++Wl1V/21tLT0i/pZKvU7P63tNbxS6ddfTgjBMHo8 /6KEv5VgJ//X21pfVYtlK3mCbSUWyKLRUFtCXbaERWZqYHoB+4vWNM8q1HsTci17suL7KpAbRZ3t +g8kFOpvGJ8UkDxpWnwariXKKjUl/KoWgZUSTbTJPfMWJ4kOyrfDZ/CKIEUWm1VYUEYPmwQFs+Db T9jHl9NQJihSoqpjEL9try0xK/upsiogR0KnNvZ4PHaS/EOE4Ec8EFKn/djkSTfJu9o44RnQjNk8 bJ+LhaS0nIAba7SiCSGsUuiYFkSNDdgEn0eTmhvdZukmrqzUB54HD5reg7zNfnT1qpI0lo0TeBuw OlWLejCPGY5oUdn+2dZvO49s/FLSNHugm00LJfYy4n2Sk5NJCfyBpOwDsWCbPEg3JeoXmrQ0JrOl 7AxiCXwXPO88m3AbAahIOXYstXlpSzmooBg633ue+2izl8hHiUt2Pv0s9f5qA2j8yrdL24lJH7UG qk5dEz4UfMbCThTBYcG71HNtB15P0mVMp4UPFjjmjT3ZsgWpImZhBbFz8S5J0anotZAyuI4SgKaB Pdqu4FOp9vQdVy3gKgqYlQfL6unSKlyThIQBm2Q1GuBf2ZtrBs53ZclwXSr22mEMqugTs/KmwgHD EEU9wAU9hJMdRbF6hPAeCiFaKjiCkAKNXwm3NMAmbP/5iy4Fc9ahYSE2TaluCRdcUKgpoF4WSBnN dBVbGKNoUUNHC3QR2Ggwltia7ojxBQ5FVO/MTPjMRn300mXP6qDWzSLiJrCRCs4wrMBwwtb2qRo/ EqMTsRG20yTboKVi0j5rW83QgqOCACzmKJFXluNBmC9xegl8YyyiRLeWS6WJQDpk17UIAYqSEAuU SQzj2pKQIa52xq4IICuRMTBFi1Ilb4W5wcyt9VyeXW1jImAjrLnEz7DIWyaWEpTd8NGUHUYdSZlW Cewwg3KPQsvJ0YgwPkHrEuULRwp7d2ksEq01DbBqAcezHIkHynLuw8msQtp4TGDjbjMF+TX89azG M1etDfp9widc1rSChODHAaKi5CR0LmDXxPmI0dum2GSKDo3pOoiFDpuswUJqGbuDvhsKctFb7LqJ hwVowXks7YCzPpLozEIAl1HleB0EgBH/CcJosJcMFFq4rKcS+XkrQ29DcGvAqgIV2sIxl1nExGrU 9SOApjg+f4toMm1AtPBQNrM96CI6gJWp9DhSszYRFsN5UfOvx8rpJUp7dn3q9WliQZhT0e++5/q+ JieFu6HIpyosw7P8QQfmfwPFhRFJUTNT+JioP+Emdp9Gm2TkE32v0Gk5qMIIhQIyBmzuvE16KK1o IoykbdIDTwV/cmgZ5KOpQFZd8gZM1DzoPbowRVJ/qF3FF8scUijvsa/UwG04ce3eQPbaqbreA5Wy 5N8cdJgF0mRArpmOVGIh9o5dD4KWpNCxEkjDpdyivYiIgoVQLuisFyOgt2hN0rPl2Zj9Ptz6CDWF J5zXgeeiEqkIKn3hn4EMPLQ6JAmlZnGyhXgCvmh3wWBNBE4tZrUiGrKSqGt2y+UC3cQM3NazI78I LtzzTJIFu4tG2+26tKHUbDOQsYil+J0BxGu1LsXIqSgWYwxpNhhYn64R0wTTH0uakV8L3ybXIIKY lo33sT0HMjpJSYIbTdEfh5Zdn4v/QdrlKFDTTp7oO6mcmVaeNOQuRZZEuuUCC54yqcbEUflwHNAJ g2hGP3BFClMPLatnp8aXs+tIU+EYDAtbP6YCTH+ivmM26ljPXXao0bpXMJA6zDXJ0DlEVMS7DZSa Pq4XzWug98FVxkPFkSXbjt20NLvTgHYUPpMgbrDiPdpGIC8b1+BPpBVslElBctShwONA0h0uOkwR A7g+f797dRBds2bLSlYt9AKzxL1sHGuVzzl4BJXDsQ8FJoI6Dndgsg7qiLMUpbTQMCafpZ3oXQT2 UYtNgq7PmRz4SoKAjfVtqakrEoJ4lGIQRs5DDtwF0zbOnPDVUMLPM6ZmIS3LRh4jGoTi8EA8t9ax 1Ckewf6lxJW6CUkINBu+lbTITwRMypGRsXA0nwhwp7wiaaJV2mze/RwDTdKKw6/wIcH4FZnvHBp+ C5KlZhqXXB7UmnY5KvnEcgZiuUHA89qqxsCZFYEPh3IMg5Zp/yx22ra3cjV0/9xvE/NykYzi635o E0fzhDwZLGWgzipMfZYAInvm9G4hfpgd4mWdflumR+s5YKn+oMcKBDuRZD7B1xr0FcvNgaAsjSFO LMgVzeqgMIy0WL5oUH1AgDI8GXk4wfuFOzH9hyFh0BGZROvuxnZIIKOVodhK0+qaHWgkweFq3squ /3CDb+WAisJd0+cnwccjOs7q9iQAuHCnnVYt6ZT+wHLGoqFOBMBsB8vaOLEdF6IUTf3PHy4vThYC INBO4c5J4aq5Q53GLZ9EHWflg/m8smfLcQMrVx6pTSL8xCdYPi/cq49DLMMur6x620EaWkDe/wqa p/eKtz3wHlmw1Z2sYV9HDjFbxWuVjTvqLf1l4d6RS9OwEYkeo6AruH0wjZHhI8oKOH5/Ec6h9nnh voe0FPu0idmO3rVmZhb1Tt6I7S5B91oLhXsnHtSoWQ3Pdbs6z0QN1UA0UI+D3vQvCncXON4SKydg lIEwFnBJ4F5RV9B90ELhrhvg77QUAylfFSnxVt6rB5/Vg8Its14SNsdXhdvwTFInSSr1YYVvhY1d 0O398PZUrQZN4XfhBnwCinQl77kqy8xF8EU4dVBShOrFr2N6fUcFHKI3UqjqpBVHfpyM1gpDdDmw Ed93A5d7iCb9ZuEWGxZJuuzoiEgivFW4NdN5sq3+c0QOcl24nXMTfj6dFsI7BcMbgPi+1evx50Ft HsJZdK94gx9Jl+nzUhwh7oAmmIFIiFEb31jh7hs1Ubj3DomcWr/KZ4u7bKAMt4Zjd4pDfmsm8zaY aHVaNxsNkIQod8ELik+FBK5/WxypJ6bn2aQc6TsQyy1yW9/DtbdH9TM6joRvjol5ZkAQRBozI3Bq yYgSGyoC+vUrbCRRWMh/LE7/yKZTG9gd2Ni4GD4It+WaHPIbOXlNHLbUh+2ZqZvVxNB2HPPfiVhJ m2d/iMRloVEXau6NBT0pOPiOdOKuCmhG4rucgBSEHGD/y27+6wAxMihTL7qoGIjDXvhQHHZG93GW UB/x0y7055j/djISmKxmR3CObF61jjdIbxWjDqeuTFa1QwuaDinxSmXyInMHHnWal+XlZQxUEnzh IMBckVpHuxNJxSSF1x+WjUR4NBMdqMC4DaKQOVEypr9zzJkxPpZ54U5SeY3bw91POc1EQcvGmGDl oB4Da79oNh5dHN7GEQOdTn4uXgwGRA8bk0cNy3kByriUPCYgjAfGSNJxwAtIP8cJJmwtS34cxvQa 84jlDfqKjSbZZRifywfajYzLDdoL7InJpsL4WmO2uNqgH934k+wrCpRVqEobg/ICZNWZEqFKlGw6 DHqNhpEf7BrAmrCaJdsMw1dxOB5P6KRhq0EHQcxosuUw+DSgt6yg06ARLQ40ZyUa8eBRwRUflJfo N4oF5SU7YwwoAchlGcK1ffvdYxhLpRFxi6WSgQz0OL5KGThMBpLeSrTof2JBpOHNHy+AlPkrwinD I0LAFKL4xzyOOmFopRyMnB01qc0+nzOOUkoqJlLt3qCSoFQRVwSIz+ArBipKPQTuGMsX371yNOI7 DKZ4FKKGxMyowiTS8CKfcTZh1B8thP8L9MOZnYK23e8ZuCdEWDwALwS2WFgduuOT4iYNlQs+SIa/ Mc0UiXi7exNGut294WGj2bwQtuD56LA0/a3sUDPtjczwMdLik2Fjd2+0jyYLASNkRN3khHUFjUah Wu8mCNGilkdHZUmjo8Ouwq6FZv8vlCrYncJ5KxQepZGHCq0I7swSxhSnVAlNCu7NGG6UaIZZyAwh REFzI8KCQq6BLW+aEJ+7N1FoT7QgpwrTCSc5FXoDAfAfE2TD59ZLcI3CRkbMDBBl4FlMHgCvnjTw RX0faVLax1NFs6gGA/2Sm5swREV9KroxPnyluBPVj1L+0dHdGwkiuXvzPzB4BOI2Dzih3/LUzCkQ RPWga/saIeVEdyTNQKQvqJgKoedYKAUpalF8hpEXl6FVnTNuU+EPrOsl7hlBBMW7wAAt+nJWaIJU GkvdhlQxUyhE0CMiE7gP/DD0UIYUcPGYAv4oHqJAs54KEYjFJmgthWEC3I4eb5DVSkYb8PLzt/ih jDkFwwWCpsR5LwPin5igCd3/QRv0BjdA/xrZnvzwzbR3Xb5M3zfy/PQhEjQ3uSBDuwE4oN8CDbnu 9qAlzePNDWnXgGIi33nQlu7P5sb0G1hHWa7w4OPACMMfBhdqfidyagcNJZ3QAknSZR3SADZpIQH2 PQf34+5isdzEHcvBm7gdPpebTA8pB+1/DCGU1AOjgP836FX303LvMW9uiIvQ+6rmI/TPhuMXp6pg QDlcg2eRm5QfR37UEAjN8Sm0rHlHg5ci7yS/El1m8DKMnakj4ecM2oIbUtH7I+gzw18ZzkDMgyhU pd8xxjkiw4ZC9yA3El5hmTGLivsUC9fbm9eBt1tri0ZQ512vqbe5vb66sR11/v0q6uFlvZReUKpJ K6VXKW9sbpXL25uJUnpxKyk+mrKMHjpYr6ypDn68MnormVbJ/3WeVHZkxmvwhWsmqwhfONuBazRV ha+8jkOMixbiI97e1Gk8WkpBpwUq8cH0japUZl5Vqs7Sp0/dlrvuH3UbvaujVqV645/ZtUb7a/WT +9hqP+zenG0cbHi75e2gKhUDVqiy39yPEH60WlIgK7/iGt2waS3HAcKj5He4F72sONqkRb0af1V3 Pxz8eXnirLceGntnjZPKi3Wy6X79enlxvW+u1/dOhnsnv19seeE5E3OJl2iv45fI1gaBHugbeCYR 2N84GkB+y6lzUSB6LNAi2zsSIFBFGEkvUbQF/9Ii26N+l/R+J+wIa07rCuK33tlMrQ9dt6m1jstE 66Oaj4ZI2nkymW4yAASPVccaBGGFaspwZ06DhF24U03MGN1S1JHZy4per2SyboC8muk94F8Nn8Gt qBv+JTTKKmonJ8JHQRxzQXatnyqrdFfal0e8B0ANoJ0VeqSpn0XHv9I1OEb3BS7L/kowFg6d5wLK E0OAb4uBoJAqYGh4lV6WHagUBuwkz7yj0hZH/JJty/h9RFsgJEN1du7IXjESp+b38l7A2LFDqlqQ vjsQCkm/OaqprLIgo97nCxZXY5ZKqShuJyvy/I5SmDDpc0PR/eCMgjDb4REmIhhH2mYDcggah91Y duXAIIXDCboWrOWBHS+e12eJfwaYtxx30GrHAqu0AZyRnE5iESm1IeAsaMShj6JgYL5S1ismroaW 36kWZ15u53LsLBkvBjHUYZPERJj65fCY0PKWA3jS8i3gcdvs82OTpi8aHAxwNvyHgQhIF2yi/zqw ez0ZUJuoks3cwIDbs+vh+Sns/rNYQ1UNEiMCHLGlkF0cXdYoB1gpWCBwiUlfMRxLCYOkTsOUTIpT XU/1AWzsFxWLvBuYVFmKJMkvb2LjExjP+2SiOr08vEnMkBzt0bPgvRE7zbJxoJ2E0zdbydOuc3vc fXTthn6SSjjvvGB0lqMDAN7AXmJRHUDqSjpWjiCSbI1LkqQS5RPgqhh1OGuxuSJRFOkkGaPaO7u+ Mq4vF43d0/fG1ccD4/D6+Ni4uD7+KzGUaAbzoBrBW6biRdHBVCk5ahRmIpBDJCSGYiwZGSxWmskR wjQxKAx0DW4kMBPrJ7BWPNh9LFPHGIzrJpCHwm6CG5N00xv0epN1o0sk2oiim6O68zsmsWA4Mgrh L5SztA7De6P6C2NjiJdhL3l2JflGJaHeOSIrhZejAdFFohiWc+SkGCgNt5VLfCMIeqoFEAN83DpX G6q/UnnxHl+2g9sywBfXrbnuQzIBZF5drjX790NEbGld+s5u/UE7a3PSDifqz3xqem68P/YwDdt2 JzCI29PJf+M732l3+1/jnfNmwpY+bvwVOl1tldfX453CCOqyT9eFBznqOE/ESPU82eQ27rcrCXqC sMGhZXZyscyt16/mc+M+3mtv0O09EHPzezBR0Upsua/U+/pWxRzYdDvqPBIDWxY8oyQMgNvqZ7UX B4ZgwRlk3eeuSVJdf9CtdTwGSa2hrGfFe5lsyE1/7X4YR3jddTvBKF+p11bL+tqOIbpu9tvP8OM4 DiJUYOtsIpSx5aoaDa8ARXvwWMZ0a2N/706mzE3Xobda9qx4h+E5ZvXy9mt1++h1VsGno16h0AZx 1r++8lwPrUpre+Wng62ftss/7e79dLD9097eT9u7IQK2Vjdrd4Ntq56o3DspCP0h4sJkBT24D65v 1lfEW7GytbG5ubOzvVne2SlvlNfL5Yp0eoNj10S+hITpGxAviNbcxiLpMW3TeE7VKZgAGILFXra7 rYHA8seq9XJvf16+77UU/7SGUA8HXRjIX5ORbWw0N5q92Iy3TciITY6YFumtRjpay3Jt305KYXMD Y3t9dbsRA+PefHkBvrvPHEVTvOMEjrv3Xz6dufcRjpsW69Fm1/JIBccRaLGCrOJVFM0f52wuG0Ox M+ExwsKC5xxTzEpbg/RwBJfCFYib/nLM0kEfiaiIdAFSgUX5i7fac4ek+Q061DBtI22iVXViYfHx T4b42nOz1YozGpsVqtfaRzaa3mOlu2I24GTRepUbGVbquXXcGjgPLysweFTrnI3WNf0qzjCpwntb Fc0RXpEqgnqrpFV1rJarwGODiiSx0WeLfPaJeH3lO14oEgzcNI4PPpy91ig6jUG/vwIoiUlUwZX4 yMjKanlLgQpIwECYY0Hzw7PXAsfZ6G1trWzuVBvms18dOH27U/V7iFRW0GzuGHhk8CNDHv1LDuWs 09/NtW39wtQvavrF642gs21ZjNAhrV4ahO/i1FLlLySJ3WxZXpVWo181qx0OswlpwjJu8I3GNuRj gz+GuI+PDXxMYop8TKpHC7kUDcQmdPptBNkOPMRtcNyc7RkQ6ywcbIbsMRx7Znk4CQ16tBlUdnsF RPQ2zPXHOCvwO8hJ6DOHk71fO061svFakPTraxvuil0VW33iHxztVuVVzH5eBemRccGPFxP/Gsc4 CY5X7xFefy2QH5tuq7PiDRxEjFdrblhzQO7QHpqsOjC3rp827Zf7laea+1TF+XZVmygVtscqKX0r //b7vx399fnyavdmnckU//nt3xpNs1KprG0JlH/unf35q/GFvk7sgmzDpHamIDrIWxzV6jpt88Xq +HDN6joMrLIrJHFtbZe31jbXN1eEOSBGW1EfXxtNnKiNKPDXE4M2N4b3j/047TOk1jCoO/4KnW7W VzcSVgpEMSFQ1PRsFyFMr6bSbG6v2X4l3nmddjc54W72/i7bdv8YQQ9mx780n/WO7cfNBvNbpC9V ERhbJWIVSKqB+W6l0XpZrWw8rfwbhnE4+tYESG1L2Mn7jZSoBo5GB9dtIZqHL0lYu3dV8GDDN/O+ 1n/PCRsp7Ne8xle6btOysHiTYbZBPM0dsOSBk7pdp0q7RFVi2as9++XFVBO1L98ZJ/IdxgkzOIf0 4DveXVQMPH/3WsNoPDYGCSIKdSWfRtcYdEZy3OxKcrNAZG3aa+FtgejSsh0S9jOXMf/KLgYyExR1 77kWh2IfIW3GDaLkvicg3XorYSWrYUvnvzpWvz9IlVjKBierMP+UMJFI+jXBaxFRBGKVpB+mnym0 6sm6b22U17ZXhlbVM5GwXiWVf41FaLp2gqpDN5Yhj43/2lykF1iOvtg9Oj2dwGQ9wm4/lZ3/RrlM TdI1ufSE8vrCYexrFRv0mDvOb4Vbvby6+mA8mF7XXMYpkYOauHwt02eGyK5R+heatvlcQ2SfL0G0 TbfzAP/3UBIn6YUWn3fLyQLiH5UTevGoizRc7kU1g8d+2x10kPlE3FhidN2uJY4aavbfgb/Z53Pn g/xkBogUX+TNEOc368q9F+aDJ7Vm+lZy/LjTYs4X/j2m4kpY6kR5GDOdgxyT+iPU4MmAreiAJysx c1vZ2Fw0KkG4cE6hmTAyeaICM8Eizg3X8wZV//375u6fT9bnl/cbXx7s542jr5+s6w87f/ju7/7m 8Orlz067fNxpBeF6yYI1Deuxb/kdc9169BLhfHj8lv7IFqaH5VW/VQ2jVLqVu3kVCUJms1AqGdWl qnEbxMKN+kIFzy3IF0F8W/4XYUDcgsGflEoIbaMeFXQcl5b/uZKzOJxN9amHmo36UItRoy9XVhS4 gVs0/9NY3NkC1uVtdlSW6UlsvuolM65s1PcQFDMaSAeLZTU5eQhXOFLpRhsst3QngRrMbXCVsSbT LwWpZbGbsDDkhFuVSmGIVakUxO68mzqaihM401FUACIvZKpUGhUmdaf4JfJjU5FQXCwqNwIKnf7N 4U632WFKMvGj5Izs0KeFsVFNGDNyoIGaMFypVJowQkm+niwECY0Wijp6p6KNeJFQL/khQaXShAji eCNeKxMsglFxPjLwu7sVj/6THrj2Q+aS4wIuAcPl17LCb/itgMnG3tKjZ1RbEUuUbrMDX9TLIePl d7OCVpD8urLCpZMCKAK+yd8guiSNoEys3QYxHeOnRHGHZGiIYrQcp1GgkXiwhzSSEXyRv1ukGoxF c0iDTPugBtMp0FAsMkMaaseDJAo0Fou4WGCmdavFPRTBWCyCQuDKiGUo0mIsOkJavHuTCEy4e1Og xVjEg6KMrOiDEIGZT9WXWtxAERBiEQiqpRHBAEWa1sMMpGXx7xdpIxYkoHCu+eyLNBVz/0tTWY74 Ik3qrv0AuMifXqSlXDe9NDuJxzzqrpBLXjpIO8dDostxqqulPsqxXQABMZ+5NJ1wVhdpTPd8S2NZ jul32Q7pd0Uc0Xg50wGNB7mO50zcas50gVn5jIsMPOZ5VjQe+oCLNJRyKEtjhT22Rfqc0pcskKHj lIO2SO+jfMDSxdy8rkXAGuELDqZEOUzffRdHaSHYp/ACy6DG+EiLABHzwErrk/o1i3RTyL0qYGhu zCI9pb2i0lzc3/hO8zMWab2Y41NzeqqJS7sXQ2Y3tedSrfDQd1hgPHEnpIIx5Q8s0mDMwSgNso+v SBsxP6G0kecs03/PzwU3AthXcDLKCAs72EYAmcLotL6/aPOI+deKdB3z13F7S8Zt4B8r0lDMzRY0 pLm4CrWlO8uCtlJeqkIt6l4vQVuWh6lIkzGnlTQ5wkdUpOUx/ijuawJ9//+cRBlOoncJ51AcbXqV hu9ZZmVzfdEgwVp60cqsbFXWdlY3os6/X5mVt83m5qbJFS30aitBmQat2soaUWuZFLPtRLUVRdZ4 e8oyK9RyZXtzW7UcL7NCKKOb5Z0KkPZaxVbis5jwC2UYFDFWNk5HBUdSlS+0eiPqmVr4GeVGpqg1 YjrP+jxH5BQMtkCpkbCh1ywNEhxMkVsaZM2urbsMZX5pkP3TU+bfIVJGFwfRX4+VB1HAzM/5ih9h RMIKKszWTC96R6IG7pwTQANKIsjYvg99mzBmsw/i5PKEOF8fWo3EQBRw3YZeTrQcDnqUYzqYp9f3 TL/eqCdzWI87E6WYq1ojpgDpaXLCi7f/+TmghIUiU6+v6++4OYVY0jem8uZOZYp9qYeylVVV9YkG sDj1/oSXtY0pZBLaxrS+vbaxs7O2vpPYmILVP8vWhLa3VjdU29+1AtjITakYNf3NexWoVZ/0mTar QLzOjRT5/OXkaKvysbtzeL5de37vr/5hVzee3vcPH788PH86P7g/3ru+qdkHO59Opq+LNSUnxI8o aXzv4PDs4sA4P7u8Ojr9wPwuerho9IKK7Kjrbpken8kA+VjkkPDsib4UlhWhG9I//PckJJu+OPYF fFSplcr9XLBNnRswQH3TqNwvCkaT+FzrmBxxQATUWKJPlvDDkCru8LZDbIdLCeK57PvLOufWgq/e u4n6KqdnV4mBikiPkw2UhEWaBZEr0fGvOY3iRzLgPKVtwYdNq0qQ4UdaV7nhDv2XFThwq1gBNPNu DeZDKUVXRaBDtd7GORBBFCm/pVV/0d+P7jKwvM/nIWM2uJ+7zv3OiuNWcfxVtTdwgjMEz+lnTuf8 e8weOqkAl+Ia0T1V281/eR4nwMVHF/KLSIwrleKrAjEL/6iFgBknqi+ViNJLpRHEzZYERVt3b3Sa CtyzhcijAFkvMJC3oJspOsqgwwUuwZiUvtNzXbBE39fV2gf/z4/lzceGt7X251/DTvmyfnGze/TX 0HKWzk48Z3BiXWy/nBwdzLdEXwW/+DQ6XkByHVvKbCpRZAdriIrt8dsIuaEhE7nSfmmTPETXVs/u EeahRGpmEZMo0261O+w+AGm4aA0vacTN7iTb9HJZSsh+YtiObosZtuMCor7ldaVjs9frcKVNqZSN jVopuDJZDGeXIWNoJYCjbnoex8fxaUaGR/+gnnPf9B8MOA9g0RnyWSWLRsNjTwlHMTXM5waJVYSQ 1rKxy4O1PbYkLXKoUUQkHLE0cEhQ8nwVGYYVSBxIApdIQGCAze4Ah2ascLlS1GaGzyjCWnfgNEwn fsSihjR11Akf5xOeE0GjZyFKO409EmX8ZeNi0LAcBATa8K2RWGf1GLCMToRe+EikDPoZk/kQbYy7 HYnSomVHI/KlCH/ApDhEkUPzBIB4UZuw3s1lNASZ+S6fj/YzzYpVbxPB2kRfpkd804EPw0HkmLtg kLxngiAQbsfnloh8GYSuwSDH2OOwvUVDyoNzuCShcdhmNzJmng+W4NUgLYqdstcjJk7tukEV2WVj TzFaYa2YTo5K65gtIn7b76qzjuLHT2Ck49MAEowsikKTcyBxdouFUrgd4lyEJsvxEZVYdb1qtCdU meFXCYhqzaqqccOtQAOt4uAmz2KW4zb5Dnselivb4QEt6nt2UQ2xa1SbtOfVLARAVG36DgiDXCyQ +8uVneUg6Wl1tVbjKR6XqDGSmL5gR8QkC3/ijTEgKrVq5PiIBDXdOYaxS9tXc+DxpOrH7egHPGCA CC+VpiL+U3NVkqxwI59WGz519WOYph3TKRjuCNlsOSGc/f/svQtz2zazP/xV2HjOJFZty5LvOdPp 6/je+BbLjps4/ftQEiXRlkSFlKwo03k++7u/XZAEL5JIWU7bc5rnSSOCxAJYLBaLvWHMGtmF/djf NdCzUA/NpNam862LrPzSFtZO1ey3kPN70Xc4NdVbhVrJ5fds2qRNVu3lK+VyZGTl8pzp4xzmOb45 DTs6s23IOtjQ4yQxt7GhpZXyYdDO3EcUzj98c5D1erlv9zSZHcOUvNYvNkjG6txHpsQxXG5GNHsl gggNBpc5NQZdXmRefEx4DKj+hBkyG66UGGOxtMJX0UCujSzqCDZo3Fz70HGvW9Yuu9/ICNPehOOd 36pYKW9hRulw4dxjRul57igOZRK5PVVdfrXk+688DHAnhMVLhcQU2igc2ZJegopU62Z7pbznO6io DqAENkPpwsDDL1Zh8Z4zX7REk2viXh/jwXIfX2bYdcJneQvb5L15j2ZyjyUWuph28XpQ8RndVcdw kSpxAmXJfYALs/haTL4sCSvNlFK+YK4reyhtN5ZJEpk6HtJpucbSiFQVxPIwx6VuOwjlF0OTX/zY D761SRFyTG7zr0UM5Re/F0ori5I+ye1LfIMkKgeggvCCnuO41DIuPiNBdYmNyvT8NGg3cXkjVJNV r2aNF8ajBMZuTeHRCqZj6Ysld/p9HZi44yZGb/7FVhLZMgwO9b70zL31r8AUeYUO4csK2BI/WA2C TwcSDYfcfUFiMZQF9avoogLGNBJiimmYX4W8h60RkbiF9Yov7iFN+fpwsJK1w/uaKSuARCVe7fdt S0ROeDK43j0u7qxb9KVQIL3l6ZPr8+RlSECaNIQRDPhmzj7EbDbR4wyI+QenqbH3Diu0MZ8e2J0c OBRJveFzk81HNCHsutUwIZwHc7e4hCshgfUqcSbrCeFT7Ikp+aL1zSS6sIKdJFqsrQSMkf0QoM/A FXY41tBRUF3aqKY1QnD8O77+9dPaXqXC36Sc9REFZQ4tjgdqO00lVuAvRqt2TxIhcekd7opUJgQc m6LEHR33oNi5pzXS9zqmSpAcKQrHGyN2yXqfspJoCNPb/NpX7Ep+j28l2YigpuIPWSkJTDg+P1qi q41ij8/HPuw+lD/ylh9d7Tcu7CbsUQ+JU/QRn8DjcdqDTtfYZcj9Vur3bavRj3z97plfF/WOwY1M Os2A+CyTPoJ66ggEhj7q8LuwL3ihL4cu7duDnl0Prt8KVkTiDTcQTl+mpsbRhlvsmD0SGlyfGsOC WDNRCJFWI+h7MQx5LURtsUoh6KtWNgtWdPBDx2zVB/UwGbFfMAHwjxk4Kwurg3Y16FpQMqFvmUDb ng04beAxgK4XTmjgxwy+ag6HQc/wMKFHmQDCIBwAxMMEgD9miB3TfeyMcCAOCVsrm9C/TOCdRqMz qrWIeQTQw6IJwH/M4InZOu7IaYj8EPQwWjyhl5kagQFE9dJ/mgDyxwycjpdOg4bZdpxeODFa4YQe ZmoALmwBYDxMAPhjhlxzze8xBh4WTehdNuCmRyIgia9sRsBGGTaSeDWhsR+DCqeLCHTqTjj1fsmE vmUCTWIkrCJESjhXqPtqkuUTmomJQ74EJE++eBcIiJuJTijrYtNxVprt4s3v5vm33S+vRNVMr1UM oHRMPYS9SaoRQlCVq07vu6WBapg1C1HPAst/mgQMJ7Rv3yee8TX4LrIJwD9EdRY/J0En4BGVsOfA +4qOTNFk3iEquFQB59+ToPunS76mvemaHel/tEUdfPChtBA8ZmkkI4aq7QGrPsagiH8JiSQUAEGz C8Wrg8p95ep+z+k27GbxHOLNGRHpntPp0XolitPWWgg3eRrCD7kh61a5jvPtgQPcJAgTGKzXviX/ V4aRennYHp2GHzEq/iR2PpIaAOLKxpQKgo7BfRU4IgYhqM3gE+WbXyOeB/GryvTh8e8p7hyBI2h0 othnboI36A9LU6RbzgOLeZARgTU1TQfW6C70zmwkwiGMTdBIh6KcPnhw0SuTsmAnm8PoX5Lh6Ol+ UOlvWmve75fL9sGq9/uNe1P5dPP7+ah/6yx/aPe+n31dfX/grQ9uxmU4umx/N2hdj6CiQgAETL9A 4YrRdtrGwyNh1jCHdGJf7gw7jLs1Y2A0ByMxBCAOkF/FPCkAemHBYIcIrLEf7vyARr9ECZr4zv9l zwZgZLIbw+uM7guARJPL3gpIP4IYrEIhq+9BoWAYqPW/2s/gTkwOE0K7xpoG/uY+BirmrlDI7B5Q KMAjAH/yewWQiEDyI63cVC8AvyuhVT/qFbeCfFJCbS9isX/2LE+01geYnmRoRyq3OfQiblfX26bj gm4Kp8mA+l5M4HNqnoent6n2zSnGan9y8xmmiykW5/nMZYqNWR9UyNhzmIfnhOGZrcHBACTdWGjA nUfHEvZaCWCFQHz3IsbRWbqKdE2G6tU/xnQa4LFQyGgghdv0X2QT/fLqLs0QOXayeG5exCq6SFvG X2zqTJAi4yWD8VKJZXuVCn6lmyCnmh8LhYhJERwW0JShkN9+7X+jYtXaONseV1LWOONPwzeeaT+/ dN8uqz9v/wx+Lms/adn9WUwxYf0pKfKUpYnFC3ynmXPwGJhk5C2fG2D1wEPEciHvYR3Av6zhlyJN jY5HTRUu7/sRNTNKRFUsb3VtLHcPGlV5Feot+SmhYPQh+Eo96UxUMcfoxx/jTmnBAsf8iOrM0FRm i8adr+WKfyzKMUNXitHXfehjwmU4RfVlRFReqM5KqaCpiPSUqtxCZ5VSi6oHGqcoI5iswDIiiqvk GKbxfYicmlZKsjf88SaDlok/LWRQHRVoHQVKIlpKBVEHoTin4ge0rwfk/MDYz7sSojzpP8nUBFS4 tVNaXQs7EAkCfcUnP4jTCukYQVpI6BxSFVjm6mp5C3X0VAV+1JGeqqC0s7pa2inFI0Jj1IFaM8aF rpW2d7bWSqqFWMqCUnmbSte2OdHDS4WHvjol4dTrj9oS6Z3U0+Gb+Srb0E4slDSgzdYssaSbMwST gvPqZBNSq2pxnrGkJ639h367frh5652VVt+t712sLg9b3c+3n+rvqlc1p/bu295B3/r0OBr+8FjS Qz5xsw7DRb5jku+gV9E1oqITTQacXOMoj6wscsAn0qwReSlGpU7yT6LxTrqG6pUh7+EQAW2R2bOR TBxJe3zT1djK6iRn1usulDmclQm6gRVDMhmHrmpIEK0Uc5r/Gh3eJba8hszFSMtEklnTdQa9JcVq UcfrQzdH7/H2o9keOyRou1i9oYZFc0hIcem40UdD3IMxVa9pIiVi0B8UFropuiMaEZ8L8A2QC3RB YgW3RHNjYOrKtPDM22ibNMf1FeMGCk9alqgQNzklNsSjtlM12xeNBuT3J0tJ25wnSBkceUNi4LqP HbZdcAJ032w2GZ2BkuWNtdJckTqGSjVOgmc4P/t0LBrwALQ50yD2BkK3d+GHf0TUTIsJzASuvPww Rcs/x5DWr61pIa0xDAdsK4xpHbNSWcIwsq3F+JfjF5725bRV9uWVtrroqDTrqkKTWZYQd+056wUA Mi6OO42sxwe5Tlodi7OsgS+vQpKGiSIPzYv0F4+iTSGvnGG0zQ3r8Obj9X3pW6V8cXNyP/j07eKo /XnX+3T8eOp+LR+3vO/bh902CQJzDaNNWnf9rqpjyu3R4ztvdwHDIcws2DiDh9XFlnqOTGAf/MPi r4aI2kgAxqdxSCyYNLGaSpWQi/GvdNNwok9TaYP1fEXWPBUX+J8FEfCly5VA0AoDP7kT0nCcUSsU OAdHW5fVBSjzI9DOaMFCMYZDieQ1mwhQQ+rlXrO7EYF1oc5mxl7l7dGF8a7taDfCJ1EU95JGWVKE gEaiIprOM1Aaw0luZYmehh395NY2HxM5kvLDaQwHJevy+XCqx87pqXIfmQAnuhHFkSXFTgJdae2C 4qAjJPZoPjLR2d0nOjgV1zdW1jZW1ksrpY3yQt9T19+FfTLKksYv0bfxbU2k7GHRdmsL9DfRUGlj R2UMzNEWlKKOW19pNotNbgn2PW5pQb1KtFPeLK2PGVPRR+a4Bezzjzjn2FOKzkNh5wxrOoPI7rMe 1I86m6cWz+pV7n80brE/Hj4cbVcWZMdasDxoHpRYdyAPxkW3Hb9/NOpHNq2NkX3z++6230bXWY40 c+4YqqUJjUxwpJvW+m/d4+a3fb/1wGdAtX4cPE9ofXojg+uHWu9cG2K8HRplpqaeMdD++knl/abf BywUX4pAzVBomNT8mFbCRt7VPPPsqzbQRnvQUK6hNMZDPE2An3d4GhFd3XY+v/MbHnTlh6U4wU3w PKHxqW2sfa6Vj1dVG2obhaZOMYCVlZUJ0HM5OqYwoekaxTjT419ThJNxvO2UmKlRYUE8K2OL71R5 ylqlRM986uVNbGj3a62V/lPR8tr3Na/pLPRch+bBWl6Vnl8dXN2cvzUOYderGU/eilF5b9yd2S7y lxskUw7hqXTlJOdImvYH0VrD09rS6s6W8f8ZB5XT+72KunBdXqn5iw9iLH49q2eyfDV9duIwcyHm waTjlBugpSTNOT27S0uaHVrkWJVh9KWlrc0Sjf633crF+dU/YOx0BLLa9/2nYPRladA16YTWcbqP ZkUSEtetppXgb+koKG2uEwp8yP8AJHx33Lb56DyaARaUWHd3cH60fHn9h3G9VsVlFVeDLnLjd07v HRHbl4wHx3Tq2ZZGaWl1o0yY4ebeX7yX4Lm/N2oaPa/fMu02nfgD5KxLm4eXlWv1yvhGDI+mu2K5 8O/7Zuz/fmXWLNe4dB3j1MqGnvUdIEeD+g9AD3iqO2gNqlHOuqHI5+rmDzBCkvOstzDHOs2uxdeK GFcH764udvf3diuScm8KajbAVNDY1eCYGvuHMNa62SA+EmBlU5rb3z282j2njaVq1h6N05vTLAgo bxACBN6PGXhQe0xIphJvqnRwa4+KJff3zztPa+pov+C1beXLX7FYERhraYIHeXwsqYVjBzhGJDlj 0+i1XXtUIRwvK5IkO6awBfJoOt4A2ehJ6Ota/SKb2Oih79qPVrHvDFwo1ziZ3UapvEUHmvay07WW YWmk1bPMt+msr21tLkMTR6dX/nBtK3xk71aLipEedme5CyPn8pPdJX5kLT95y82yf0r6ddDv3Msd kr9c8SE8iB7HG2jpBp1f3PhJOfJRjX6YiPXpM3YXoBcO0V+3+ICseIDPAnx+qN4K0tRDuTX21bn5 Px/tsW+PypHDnioNp1g+DkkFht7lbypYVVQI479rqBWjfce/JlHuOFrIswrjMNMh/lXUtb263LW7 JD4u293l3ujB7NBPorBa2xnUd/6O1LWxsjGBvuzLse/2eEj663DaUinGU2eqaZQ1UKf4fykrQlml 5Yb5nWoTjkBRUEUut+2vA7v+dySrnUlkdWh+FmNq2stTHpP+Opy0VHqxBgl6Sf3uX7pKpavystOj SV9uclwMSMt7VA9/R8IqrY2nq4seCTRj31be66/CGUsllpqZIJbU76r/+7bB9W0iHcuzTOLY0IMs lzeWe67VsS13uW4/2VBr0qJznZ4VUtIW/jBTKpXXQERWz7Pb+PCHC1YHu0aFO26UN95OIqXyykaE z0ReXstQxr4/kPHp78P5SiWVurJWTSOplH2Sf700SQW1s51vvh0dDOzf/q7nm5tezQEL40vYlQA8 /YiTz5wklJW0JyXLn2NQ+m3QjkUoi9AVw2gG3bt/HG86TrNtsXWxZratbt10ixbQ9Ktl13+p7X8u nV3fjD5ff/5+tv/ZOX/42Dq/bX+vX59sfO7crJ3d9htnD7vfzr/vrp3tPzY/H5+tUx3v8++/ff38 UO9VyydrF0et9ln5bPT5qN67ONrZ/awywVw8We6QT54VREZOsnRNMV4ksVIqvShaPnfazufr2vpZ +bfBp07t+6fb+pP5cPhU7Xir5ver3qfrVoiW64NcaNlzOp1B1+6PDDZEaBnLLmnL7ktc6VxxJXzt pXBVLR8MPx/vfjMffuuclT8OP9+eDeuEu3r37LvZufle3ddxdZYLV+fWsGrjQtWB682bgjZfFCu5 Ftb1p1xYedGFtf2iaMm3sJq50PLDF1Z59UVxlWthPezmwtULLiwlRr0UVnItrId87OYlF1Z540XR kmthPdzkQstcF1Zm+30UU3HBVPkVfN2xLz5XnyeXxtqdKm1eWXK0ySpnJiGrMcD/tIMonJWB72G4 0OksD1SiMdbad8xH6sJb4+L89OT8IF8zae5k0bjgiC/iLRXka0Anz8lebGhWJWuBn8wyApAWtIJI R0J6q4Rf5OvZuD4oZ7pocwi1eXNytSee7ZnbULM43aUupTX4DNGb2Vr0D2X97v7v6+8XnuIOqh8v 9nOiKwZ4eHrU+vhtoW51nCjkfZTkAz1uFQU+ubMvI5rkvQqzQIw4iQftZW7Asansu2bdWpD/6k3E iOwaH+Ruy7Vq7sDu17yF8JfeyJWU7lVyQ655HbNHLMRyvQX9dxRLQfkM8Pkew5bTWwh+RGHfquLc oE8t0+3C0L3Qxi+2r+ugg/eTIGdw9s3Ev2r+DVub7dW1kcV2f6drcfxjk/6FFvZeS7Ry718DX1xg EpQup7sCLBsnYcUlo6JqarusFrITHesEX9ykV/hzR75mDr7uFN3YwpA4HmTX6vSsvs2DX0PgnwoE KdabVme1i3R66MQ7/hoR7sVBsTLoIPHNEcI3J40sT3hRkG9rT3SeyxVWer41ZGBGMDIOS/07JF2L zEtyBuTrZHmIMEm21UL+AYRdIGhl2uA5S4RssXDfodqDalA59G/llwhMhW7NaQT5KVxC15MKv+bA hWiyN21VT+0I9x2qaj03Akcu0SDcniOpJbgjaNX0JGfU7qCJ2KNyCdm8aBmVEeBjGt6gRnKZh4E4 SEnyhDQrDN4LAmbFR6lucsQP+6DQt6WdnZ0VOg5ZBjKycHgtCWbtNqjBjwiPjsWAL0qthXgwP0cE T4Nltvut0RJHdC0jUxiNs8H5y4IlQmPj3CEkoZI4imuIaXxSoek6uIDQkFQFSH41stwqjXpFR3CW hZCSTc8n4b88nd7VbuXUeRo9/n5/vVrb/HTw/ePD/m+9cufjyDo8Hm4fn2xdbvTXb79ZX4PQ3Vg6 vTG3OheyhiQVwjwF6iSRFvAkOQli0UMTMhzEmefYsCQCfJcMI4qnikgGIKHeRTJkKDEYPdAozPRT MOKRQcGLu3jbEgG0OP4DCe2Z8IHE7HDrpRXtNbCWKbRm0Y+liQGYiPIgXmZRC5CJAZgusS9qUS9M A4VYxArRj08qPELjT4P+/6WLvCqcUOVOj/FIzE9qbMgiQbgLYzYSlcYFe4AowgiIRLVxURp+cxOq Toi9QKNa4EOi6riQCb9VDmeIk0x6CASaCqMQ4nXGRS9wQ7EYg3jdSFRC3gQkdwXd0z9OEMya1d+F u1Qf+y9flJf9ly8xP/sQm7xYJrjwLyI5DSeoMeKe9+hF2A8MLDAPpvQw6e4+rhNxd3mtC1H393wd GONxPq4XScf1SD+iPuj5ekLzIn7fmJfpnt/jepjiVR7pYswZPF8fczlfj+thqnO31seER3a+PhIe r26Aw/Rzj+YCPa6D49yr9T6muEbn62bCH3lcb+LuzHovNP/krK0XCndKSxmwpfHexItIQASeo7vy TuI59O1//pP0tPnPf750//Ofckv+ZY9S+Rm6j/7nP0F/RO2c1ZVkDv5JM/nrTnUpGedOQki7MwiH yhU28tiITtb4aZyKbPhcKnTbl/JDvCn/SkTP5Lo6H0R72D7Dx4EkvpwDouGFKL/gcii/xL/wL8V0 blfO+aDZGrwQmktrCsvsgCc/K+//UhTn92qcD45rZuSxOgPPiPuvKQa9slGXX8ozTR6UG9rMuP6R zn7zwXAdB8gY78iC4Qmba9KVLdhcY35k8f11hY4UK9oZD0beQmGnUMBRI247jkoRk423uWzamb2w Fv0elkrSxb00O65uw83T51wG58wuUmGf16TPMUeFPD3M5T+R2TEp7OHmD574zF5CYRe3//KJz+rC E/S5vPpjJz6z40zYQ0WaP2ziM3uxhF3c+KsnPrOLCXPWFHatVDRJB4+AWwd+GHE+fZfiORHAHet0 IVXhBPHHmzTFYqrnhFQK0aw5LERRO1lpmdE9QrUW+CtM6GjEz0Gv53seBAiZrg2NQIE1PbGnJj0R 5GP2F0h8neJeIJ8XQqeAxJxqxnwe9hjLv3wcwwmb5blWbIRJs77UDyzuXGm8fd7vWmBB5+8nW939 Or5lXFUZZ0iXzwNrN3893jbOX0PZna5zmWhr1uzMOWi39kzTOPcYyQPvxtqGZ+rNM83Vi3quyh+Z 7XltfclYX03met4oba1v7ISNRzI9qzZeJrczPo4kdVZ5NyNJnddKG+XSTimW1Dk+Pag2c1bnNTp/ rKkmUrM6b5UZb/7A5p7V+Qh2ZAwh6QOQPt6/hWUeq2tqq/+a4TOa4TH9sTzbiUy1WprtgJh9e3oi z3apDHrOmWjb7I70JRzJs81N5ki0HQD6EYmxz0xc2Ia753CJBTKeN9RFcmL0wQTL3TNEJ7DWY1qq Ju5ta8CWp24Gi3hDfAndTfwMs5WD3au9Y+Pd7lWsIoiI9h+iNqyp+qBHOAalIV+u3G8WrCBOhDuu oRO+hcM1rk+uTw+wek7ODy+uznavTz4eyNqkjbnW4jvk2PGAYbM9WS60TIKM+wG5g545aHt1Fzcs 1EI/oFh53A8ooCR1+RF62TCfHJe2BgOVOGW85DDueyqZMO41wXLsmUiVS6+IgnEd3IpxSJ0PCdC/ UQk4bpjVQRvr2nT7YEEMm2atSUvKhYGs744CtFN5fHz79H0wKDyEI8nr6+Kvg+fnlO6v0WaBtTI+ p3QM/8EKDXNKz4vIQR7zp2hAfQ75on6SDP/mxKdILD61PKPJ+VQiWcydyRznzvR1+WrX3Tism2uX 9bVdq/d5b/ThvVe+Of1w6e1Urj89NfbeX/72cHW4uzrXJM5j7nROFZRjo9QE5cfh11Gp+DBoj0RW F9XwfWn1nubinvY62oFd735NeXCmeFT9RnXhwFBaLe5W1oxKz6oN2iIwnNGc4lYPEirqkgc6XOAp 9w3vauJPnfALSq6Dwnc7JC/UTD6nLKzt/Deu1vJA0b0Brq7k6ddk+qVY8M3VzeXuzWlQu2LsX+0e GVe7exJRkSkuRDzUD0lEUCIS7t7qk0yGPOqEAMj1tMbRYV7lpxdHF8b1R/gOXBLqta6DEg3Y6I1D 8AWSUlBithxCLZbt7cWtcSlrQG1Amnd8pHMtt5ja13BAlZt3xsH1yYebg+vrg7fZRntuDXmCfzXU 1XCYPVl2DkQf5jo8pbRoXVuJebLY3qZ4gmbwRX4rbl0rdr9YGo68pvKY3nc0tPFPOaiqywtQ3uf7 RonCr4TCgUrglrsxxaE4FYlherMQUXsXZ2c35yfXn4yjm5P9AyiUxBk/hsto7jJGwpvEWDOtz1Dd pC+744OrAyAbphrhrsQeY7QehPGERbxSrW89WtBEnbz1hOiRGJQoWZXDEfHPCQRWWjGOhOlGd/gx I+Vx8fPXAS5F8CMcgoKwY8G9C0J1crMfblXALbUygEmkPH1tlFeM8wujcnlxcnpwVaE9UPbD1JlN rpLdtodL9Qzf0VZONrIqwBhwqRn6zPuifKPeyzJMQrx2+GoG/2OfRQOw3GIwriLfEKs+Dy9eeKvd +nHHdxPKHq3Ag71Y3Zq18seboipbDCuMaSkyxX41tSMFdY+xOaAtOk19o9K2GPxCuAkhb+wUKQZ0 7vStOPMybrq4+YFQHMwARC18JexSpEGuJQUGHRzttlHBlaV1c4S7wnCv35KxbXaMy8o1Tp4yf8zA oxOrboIAfx501dz6p27/BkoVRiBCjJJUOlaHzmUgXdf2REjrWx2cqHHlKu5TdjtmF1Cov3SadXBZ tq3dI7mSDVHCfou0PuQqEOISHfMBAhQkrvhYAmKR236Zh3ad7nKUUNX1mNqdy13D7rDgQ/Icrl+O z4maL0hfLGDybYrUlUfL6oWdAHpVRxQmNc2GanpJ+e7yRViu1eMtty1CHfBGMtqTjW0XA7bkBq3Y QIN58kdT45WBm0px+Dcz4D5lN5vOV9aIrzjGSbttNYkrQhOACYG20KN96IlQwi6jxT7uYIEMdtN1 fKduWsrXgypfze45NC6uxYR9SZ3F9YJC0VPZE35MY8bJbScQC8vfvq3tOMWuNeQbbWuje7ngm0Zy r/rN+k9PiYXaENTrJSMcq1zI7gy7bYckCRkTzZjZHQUDjd3iKpQl+8CuB0sOLx1bIVVAMHWLDgya C74U8yXX3fSpXw9vuanwEcp4R+LpuwM6XR0YlxeV65Pzo/iiSbbzjAmUg9uvX3/5ORCXcFU9Cc/9 e8/9RQlO+IvQjl/U2bAW5l7q/0IrSskcpyd770XmoP4b18cH+jH05ND4dHFj7F+cB7LYNb0/ME6u jd13Fx+1YOWZVtHGirZ/XUMe1WRBkzhGAzfT45rWqtUfWhYukmd7EbPfqsW/mOhctn1W4ccZ24gy TYJsHoqz1XXRk4mNz8YeN8Qtq6t2wY1qzAvBwKpWi9gVpDAbn68YV5YQ6JIxDMflyq1RDdwKrO4s ZqaGweu36KiwltkoJGbI5FAfPnHdNwd2nS9C9W9woJnXJhFLqAPNA6w5fqqtnJO6yawxvL+4GN5T vGTgkli5fopaejRpfRrDloPlnW2yYELGpvPSeAkk7BAvSs5J0xdOR8oWy6FHNNC6W6zU3EGjUbT6 tRV1F5fG5XBXldKZ8CwElrweU2dGNClgaZDQgtLgyPYLttlyPEz6k9PG9dq+Ah+EOUU8EJrNiY3t FeOCdumm3fDUKpbrXP1zNW1J/m1mVQua+3HKRZwCryyYeZzuEUGTyUt/F06nnOqZ3WTC5jtcMC+8 gUUTdI/7ziqSNw3LogXt4m51x6i5jufJZ/RUJc6xOJuEsbNi3LaI4/kaLpLqrXbDtopnAR8/Mnot h1oJNI50vLK6JFbhkuxA+eSzGTbFFokimBKIqRY7lsWg/UOYuiX3udIHSYV9km/kLAg3jV+ffjn+ 6IxKndL61bsP2ja02lnbUnN2eXqwWzkwlsE7MNDluoX75sV25IsscfVSTpSWVlcMCNFG9IK+KkxV gS60OjIa1H9XN9MJH8dpJ3IroI9ZTJG2cakjg2IUk/CYocsl7CNwwgxOIrzZ4OjVhCGM70HXzvuT muMHBa0NUxLtRKMl0GmjbTZxkz1B7aMRIpvZqJb2PPBXSUEeFr9NuzewhtMpiW+uMyC8TlChZdUl R7sCzXJ45vCMQLjlORs66GZj0KZfbpuvCExVMANmnOuMMWnknu80NdRu5b1xdmDsnn+6PiZBMg1k igZqj60D0Jyz8iRgBdhcA5SK5Zm5lFIr/ZQyx+PXtq+92ygPh5vqEpEzQqocvUI8jIHpX+ZdcxxM A/YP2kx2z3Z/zbSbdySWFscXWm/Wr33nl/8qH7r4m2ZF80NvB2oZyj5+GxHEWmavN0KX+H5xsYn0 tTsmB7203S1l0khkrlycGzvG/kll76ZSOaGH6+Org939VEVTdALTVacpa+uM2DUbzj/w3MYgpyMx mDPXcda+K43ruFwTQZsRVerEPl261nIFYsIeTYstFoGcHRs9PqoU9fPs2IE6c8aTSIryemx3Nku1 x6o6G/nCQ9gZ2p6m1G7s7LzgYMo5B1PubQyeZh5M2avXVSrulxjMWs7BrK+vPqi70mYYzPrm17qy q73EYNZzDmajWR4oQplhMBu2N1RX9LzEYOJp7KYNZtMb2oq3zDCYzafuUKV9fonBxHOAThvM9mZ1 bXYGsL1TXn/BNbOVczA79uaT0t3PMJidx6F/I/BLDCaehnTaYMzBoPd15sGY3x62t19uMPEcztMG U9uqbtozD6ZmlvuKF77EYErxrKfTRlN/fFxXDGmG0dS7jXV1DHyR0eSVAaxReaRuspphNI3Vb750 /CKjySsENGubrspUP8Nomtaoq65OmOtoSmt0rh0gH0XO4bS+7vRn5wKt/vrOS3CB0rpxCA1nXKM0 bTQP69/r6ibCnKNB5a2n9mybTdw9IuVM8+HmoHJNB5nKr8bHg6uTw5O9XTyKa2P4GT+mnEjPLavO 56pfDf/gV7WMJ8u1Gzb8alIH9rwjX+i2pKEQpzoFh86CGc9zrBX3D4oVtorIHX7Tx50YV3JYSb10 aJLbtracZtGiT2GFg3dWz3Xqgxp8d1smXIrZ2woap2LNNsvfRuqK1+sWkqvAGbE4KB6Zbt3qOo29 QW3AmqsQIdkQcHpx8f7k/IhtQrtG5fjiNuu8jxs/xlqH0yJQIF2mBQPv96uBcWS7baNrmS4G8JPx kV1fErUmDYIfGAdyV3rQBcLGO7M6qhJw/JWWY4Uh4Iz0cXpwtHtqfDw5uAWSTk/O36ed870BAyrI K3nIjDYsB7s/6NLQzV5PRewNvGL/SQV2+0S0DBwtg4z8iO+d5UG3ZnU9h2iuaNdL5dX1na1SaUNd WWlfA+pUZKb2CHNidszvTpf7Izo7bxl6sGWo6pYl0H15p1jvFd+tbv7+/nLzt6NP0vAuVzQuXbsT d93K2DycOvUIRq9PYySUFGGpUL259+7RnXt051e7/svuzWC4/HFwc9VqBprnVvsXy8/uytA4XnK2 PgElXt9khKyYA9F4JydHWqvQh8vG7oAIxWzb5mwtOoN+/6npMAb0yPyLm+v+UzDGaOy901smDjOI vPVD962G5bq+i8/FoH/9senQ1rNnds36jF2MmwEwcQha+hX/+eXytNU8PLB3zPObaunqcatytdX9 cHH2tbn8+bcPn9dps5G++I4Sy/ADGtQeE/eTRxfqdI82tSDFv0DiekPni7bdsVVUDIcPuUIQ+sKN tpfCGC5oq7gyDk8OrvYOjMrNu6uD/f2T6zTmMJUJTNY1M5ObNhtU67Ry+Ok0gMFPIZCMMNDyoK2E wPA5N5yry/2rQ7O76yrPz0iRNrSsY0Nlp9Eg2rZrEYh+Ye4enlUuEWDkUX/APgKgsfLccEVhe9E4 dbp1P7lxojg3VMwDukMIbNgsOkamKPoqN3QgskGSm+mNZF+JoDjyJoSdZ+pk9Oe0/54dRGDrL3J3 2x+5bvlNoEV/md4C/54SkhLkIRa35NeayYpjJydkHvaDV14+9fC+w0Jhy3yyjCFbDkkWNx8tds5C 0DIXSNgdLZpfOZml8gdgu/IeXAm8jrlETBj+uyQ7eEvGueXCvY4EuGtkEVD+kUl4Pxm05bl98RS0 uk14WKysrLBUbqIduPZ4faabkEEOnY66BDos40/EN2Zoy0t5+snY18MIENw3crq6J1E0PIUtY0b/ id0bVvJOuu98mAw50lPuqmDdOSXb1eJVJifHXeA/xt0zAjgmBGKPPbVkjy/hSPBpESCvp0Z+FAoS 7fFai/KQlBFfuoWZwzf0BZwlbEM1uBz7w50oRIMypHPPC7pQwzPu9p3XKlICURKvx0VHBDkZfGWD RF3wFCT7vFAopEVASMffKIpKj00oFOAtVSikhCDkoKbQN2tRuih41GIP7q5QX0IIxgKOBx8sTg4x kPElsIGWx4UOSJVnhAag+vXUOAB8Nc7p/8urL18yuvvTpwTo7surpMf+l1f6d0JdBd0bn6Y03QG/ IH73hX+ot70aqSysH+1OT0j9X+dBn7KGgmX0wp7yKlPQ3H3TxzKYJOcK9sHsDvWLf5XDe/pMhX9k zjK5uCvMZ/Ugfx31HM+B35i/e4qve4qfO/u4L6pNMz5K/Y+MeIOI+NU1NufXs3uef3klOPGZaB27 85wcyF9PdBwvKHfxO8xDDtRmcYheTHiFZ0PpjH7ggkLfz1sl63qBAQXu3GNGI4OYm9+2GtaP88tO GZYMaSbn6/Szc+hILcN7tqN0stPS5ynO0C/lCK1YXDbf5CiVZnGCVg7QaRK5DPslHZZfa47KSSlY tZ/D+1hgZPcujreot+t7ERcKmR2HI4e3rA7DhcJ8nISVaikFj+Go6IAV8+2Vrye57r5Oc9llkgz9 bkOy88954p/LVDXB5za4nGbgjRd2MltgF41b3qIyuNSiX4yOCV6zCpE0QTGn1wLOv8F8pYyd/Vxl RVHtNPfU6SDgkRqACPwuQIx3PvdLVhPP0UXiEhOhi4toAnp5GnR25ZwOnX02E9DXpkFn38rp0NmJ MgF9fRp0dnacDp29GhPQN6ZBZ+/D6dDZzTABfXMadHYHnA6d/f4S0LemQWf/vOnQ2REvAX17GnR2 mJsOnT3jEtB3pkFnD7bp0NlVLQG9tDoNPLuUTQfPvmNJ8FNXK/t4TQfPzlxJ8FOXKztdTQfP3lUh +NApahp89oKaDp/dnTT4vpfSNPDsljQZPL6C/xFDZ34+zmMIzHyaO5Cmsg7bmX0zinn9BF3E8ei1 cuhRwt1kxxnpTLIvyZNHqAWYwYeHkUj9S/G7QTfv8rrKRLodecMtKUeZmBsMowmdSHq3FAr/T7Al ziPhFM3bRYW7d6d7ikTJYQbnEwGp+XmEEOfhT8K+JNJGzLsj2vMMPiICJe6BEYKZ7vgx3ukjxeFD mks6WUT7/Rw3DuE8+M//e5PZ64IqGUyHY5wpZN0qkZul4aLv5xCWw19BnkIXA8P/OOI4IEVxy7+U xuz2IXh8o5ndQ7ARu7jeXsTaHQWkn6i/RPP2/sCkxOW1rSVjayeZlXhnfW3nL0lKvNBobG6anB9V z03s52/UcxOXS2vr6xsbq7HcxHEejWqz5iYuI//xlmoimptYYcEf2NyTEh/guIu0t9hgMIaklwA+ +4eY+gsFNu/TMawwtLuFMeb715PN9sCCmT1Hr3qn9uiUFL3/yAS9MbqblhrVd0oIEKR9qnKjfm1t lbmb43Oj/uY8SoZsrUP+EPRqKAu+Tc+2Ofby4L3j7v7yt9Xj35eHD3X3aa9VObYqt8ffSuujXsc8 GZy5l2snF1e1m4vg8uD5eczcWu2a0rmgTHcu4vEE3kT8xD4j7D6U4jsceCiFbixHgRqal5SWqz/m 75KElgwUDpN7P6AvkofWRrprz2DNrQnToDXiF14f65Y/XDFuYZ2QRWx9q1mMN0/pxfsuESBxhiCj vqrEPUqGRLyH1RKrW60u30Jq1Ownu82j5PtkYYx0+37apyScS18nbvb7Zu1RWVKhYK5iMtrYLKi2 cdJgNjcMjxGw19QelwwSmlImjRb4oN0Pp009hxMnTmvJDvH8ajphA6QOHNF8QfPNUgxro8WxYMV4 o4SpJeOk0xy4S4bVr0nuxSR0aEphQogZHmHcAwOlpUQ7EPCoEjEkIbADQMC0oJQFskykMu+jlzyd VXoAplhvTeeQjhPQWhKiQi0r5U3jvHJ4azB7LWKkMUM47QzUqI8d5SVA9Ma13pwPqEujYpOV/MKi F2HQoLenxpsjiNkhodFY+wO3ClTKp0tMNQ62JxtGkTDhvXSgS5uEx4tmHHYTc3fQbZKA0kp8HouE 4QV33bJoS8SaUaulAn4guvMOlzvtuvTRxAyQQEvU1iayV3thN9C0s5NJCoCuNRQAD+iiCZOeWmwr tPnyFb3qkjVxYfN6sGITwknAGqWlIEphNWo2Gzg71kSACB1NYLnSNOtsoAn6sBTu1kNs3Y5h1uuu dAp0xtJCxwFT6VlWrSX9mcS7+OHQta1uPTRfDqop2S6TXA6/9AV9QtsOT/5n34k/VshAQ5fOJHXE IdKEgSW7IZMISnLDMjs2W9XqFhBuqd0l5UUIedwCT4AmsZUpMoTpl+TuZmPQ7Y48OiaGwMKifNDG aUhqbcvsRvsbFs2niTMCF92Ug5L86D2iVe1avbatgdPKJvQ4jYlEoC8oiL7jjda5X7h7NToM4fHO /wLXHgpz81/xQ2SpjEvHEw6qmFuVpmEzNuAcTrKBZzRDe2scWX348rjGIUiMzh0/8QFugoO0Enpf 3j8apiUQvg1mB2OmA1cPcWs6HnRp8oVhiYCl7OR0YG8ZdXMkLBzWLZ2569kDYWtW9vVo8GEWNGbz Nb4rb2wuGfQfObrPxeN4qoT+9fK0vd3Zv1odHvf2ztffv7/6/PGWWPDqx93LfXNke5Xb8/fN86vv 244voWfyYNaE76KSsFktWSiMF5x9Y+GPlYbRYm7RF5XmJecWA1HWANiExDObtApQOURTfP4MORTV /4FCZyq+lYQJWoSG/e8hQr5OiI6ymn6gbCjLM0X2k1VbjAl0UhRKZPIcF56Y8CIikTxrYg0V3EVE jvG2nPAbnlpUC+SI8bWCT+BmyK3rEgSNJLqZ007/P9GS/xFa8T1E7v54M+uG/ZddZQfNcGltPak1 LpXXdrY3djbC9iOK41cVLqQFD7Sj9y+kQzY3zHVzHXV0HbKv59J0yOXV0lqptLpVjumQGb/P0Rzj zrTtclkB/rGa41O7QQt11J50p91LSECvY5IPWo+pawPqnElfuzaDwhZbj048IcGqFv9uCtuERlv7 VCls3dY6D3eCwrZl91pOD+s2q9o2ViNdeWuNEw13T98d2/Xj2sftulX9uFOfq4Y2DLrWT25ah+XT A1gRxOOM3i3Ty3jq2JTwaywEdSdhx/7WN3uQCZ6I6Bw4ulpDJSGYXQXZopkAeIPAQ15gEwY73bMJ JDBfmFiY4++Zw4+o6mTqsVcbb+IWmStLxZSFAnPxcPeDoa4U80WtOD6mKm8iF/KItEZibNPzwwzk Wo4JAwHR1J2aFzG4E6nSIFqW1feK9WLpQ69aX24cV89Gjdvf27eXV7v3vzea3z+Zo9p27eShu/3b zt7gdNk87x2wg4UM+fj42DhU2PaMU0L22MGlKOn7WG7+p30gVd7yo6v9bpHoDLv6l1dtq+HfXqTS RvRbUz48gNNx4tOi3kAxaJyhVJ36aExP6ikNnCmtbl/vftqHeJGLwoL4C5LqnK5d+7nj4C70IJdE SkBGEJRByyYo0K4dOBNIxhlDiqtW9CFEMDQVCdcDCc7Pj4QUmWsMFq6d3s/XVvdnagu31j8HDQTK IFCGAjU/PNwq9eJL4oG4c3+l0fkZpuafYXT+mXjLz1VL6T9mRMmpQH1r3MKCfQxbNljWOxh/sbIt BBga147kIwr1ezMO4r/K5QMPzuC22f55t10ddH52Gj/TQvz51rIe6e1zxhJANhiyf/YB5LnN9HVr kICQ+mECSWDH9Qwouj6+urh9t7v3/ufr45uryv7up+fg5LrlOkO+C5h67vICmhcq6IiZgJD6YQIV 2elFSRM/46DCpPhzrT2o+jQzxMw+AznHBP2YeEJI6HttCOQvQDcVU+1GuZGVGVdXlsjvdav+80nj 50/EHU7tx/AamgQmohiT5jUg0BQREIOBzA0PA1UpNx6yEw21QXT+s4pj/zl0qR0z8vEY0mjFj4oP oalg66yoKQYShjz5YpAvF8WsC0m7XChgMoB0A0soeiGwgz1vE5ichsi4iHscvjNItC3GOiKbgopW RfQpIlZX+FVMyp3W5RNeeLFbia64mwYirOqgSlZThrrUCoKSam1nUJc4Qz4LQFxeEqHZ7v8kthB+ kmBrTcdqi2IucgfRTH1PkdeDkwuL7IlpmLeA7jN8JNN4ohGnSOczjWy33VYqW4Oj0VgZ6ki0ockb LdzQmg6UspFBBmQltaV/scKwb7N0reJwCDofhlWIqK8hFsU3iqYBjifnnLYOT+AeaNYErek9jC83 IsxBZ0VbY5hswcfe8e518Xr39D30QI2VVkt8JkKUZGhBfKsHzZX6Q9ElCAJZlRiuk8jl+Jzhg6Im caBEz6bRuDU8+P771fHD9unR0827tebOh2r35P19Z3vnpPxh41P59LvX/Pr+4mjz96ai8Zig5xkQ DyYMcUzn3oYRGKVqo9YfCvQSEVDYwplSTczexkReK7stIaK0NurU6V2rde+7fcOm6EfR+VdF+yGn yx2zbsHkw1/Gl1GGjmWZmfzcx1cNMPfxZ+fN/oVxfnHN+4LY2NN7mpcSL8Fkr81mZmqcNhnhMWXj 3eHVQeX4vzb2xwsHaeLTHVf7Y8Ig59C1i6uTo5Pz3dP8vfNrvnAHjz9dHuidmyJuqc6h1mwdy3Su on4lj1b5URjAMHwYL9vn292Pn36+Pdg/P5itv6hvBPVn62u2ia8cX1xXfj48uTrI20euaXDNl+xg GPc8pjvju60dBO5CMC/Z2dOD3ffP6iYAvGQHz05+v969lLzds/ZRwZjUzbybwpUyDFQG1Uz7Ag1v Z9WjI86x0wsk1KBkQsfSYZntvmuGgOQxN5SqOdKhyGN+KFVnFMKghxBCVh+9qtOBy0YIRZ41QG9w 6Gqy3bpvj3MPjoOttWyr8WhZ6k4NvST3KGsjokw/0bj/mBvKvolQRfN4+8qrBvSZLM8P17XbbbNb f6dRl1aWG1595CGOzuzKmgxgxspzw7XgC+M6MaiR0twwD13LekfjVHcV6SW5YfkUFoDyC3JDalkj HGOHpmeH7sx6YX6IjJ7SaikE55fMCKtmu7W29WD5F4mkvJgRcgP+cR4UwjHI4YsZIWc/5E+HKMz3 pEs7ygDHI7MdAk55lxu+dI4A9NVZOVqWG96D+f37KLZ2tLLc8ETd3XeQTS4AqBfmhnhmwhlRcBdA 1AtngDgiammdDTy7duQ6Ax1s7E1u2CQvxLAZlOSG5Xi+qkU95IbQs+Ei6pp1W93OFS3LDU/f2mfZ 16lO1ewjQ5UORhXlhnbVfReAod+568M5VR3h/Kf8MNrO8MHshBuFX5AbUqXn9O3G6Pj4OIAVFuWH Ruyg2WxbV9qMaWW54UEY7Ay+2yHzDUrywxq4XRgRoP4JwWmFuSEOHmWJsaAfgIyU5oY5pOOCBY8t MAN4fGtBPynvcsPnuvfewH2yn5xQCowW54Z627Ksdq1l2u5vdqcTCtGx8glwJx9bkqEjvkoOZ69R Si67rY0H6/ThZm/D25XexNrOEeYQRIsI4z/GvLJz5t8hPiTqSdZCmPuP9BPLgr9sYSJ+9Pd8AkQ0 v8Bg+o7MbtPrmwZxEIO1wR0Oq7A5ZUE8U71xl+Kj98ebYuRwr5LVvCy60UahgGxImfzmxvuDax3X s5mL/ztnak91m6O2kw5sYQ6WeerE4TJH/eGImn1z9Cc7pX3pvl1e/vMtfNDPnO6fdzHfrGzjDbQw KT5iKYqYiBJGUvXSRA+sP+/iLlFjs0GNaT/NOytrB26t+p93mR2Q8vZsir9Utk7SshnvVJS3R9mc n7J1DOt0QNOXcO8J6CeTgjmpEc/Vh0PX/vPueKoXTV5EKf40zesnay8rZv/PuzGOLTmX2yQfm0jb 0b6hEwNa62OdSPJiaLKLS1bEgBELuyxobBhPhULgPoL59TsQc//IhjyNNye8RNA6WvM9Pzgb+BVD enmPj9f9oH1tu4h6bdyl+FO8zGaxGHQmj8NFgGup4IPI5Bihpj4gAd+xAb/vkn4JwWynejMsci3d 5yBEk+6bECM79ibgqqlG/eyozuNFIH2dYOcPhgqiDv0DpN7eGBt8ttUg/CODwV8am25Qz46iXNSI 6dEnKjC2c7e+fBFL95cvf2Qbtm7SjJjWJ3NNaco3W8/UWtxanqVBmKJnaky3fE/gwkFDSWuy3mym LXyiXTvLYKMW4lnaT7dRZ2lbs/zmx3fc4JylwdB4m7+9mP14wvxGdllpGObY/E0GVuB8jSm7av72 dKNu1iajfEK3v+K5qNtX5VnZSOVBmTrVQ9UZGf5vMTXGDIzqZWhAVM9iBJSHuC1PlWqWOCmJ29Kk NGoJk7LQkiXPgTVKHiMmJVXE1WET0p81u45erBll9GJlUZEiwWDUJKJ/LMYMKdHNEVISMShIUcQi 4BfFVfpS3g3U8fLMKnX5qevGpSScTU1PLQVQNcsvURqr377yVx41Da4q0JSwUhKqUdWzrgqVoqgu U8pS9I3qTUyLKIVxJaBG5nfhpot1NUVh95dFi6+tlpeM0uZGMlx8Y219baMcNv8Ds4xurNP/OBpc jxD3A2v1CPHNjdXt8tb6ZixCXGdcqDJrnDiB31jbUeB/bJz4QbYMo3+BMhSdMeeY6LNUniFyfJ6p Pv11ao6Lnz4/PO7VNjpP37a+Xd101lcP7O/dj3vXJx+sbze/tSpHnw8rH5crzZ1369t+aHX+SPQZ teEREwFI36nRYgrMEfI4uyVgjoHxX21iHZiFCYHx3NtgysOY+GAkcQA8f8Ebxdyyzuu3nVH3rHmz Wrv4tlzb+HQw2jx42BpeHtQvboatQeube7bqucunHzu11fmGzK/h157TrQ9qfbk3FH81BQtPjXyG zQSPKX5sZs2GSoM2rK5dW6Jj+zd6NkgWajkdYn9O1a4ZXnvgenRIxZWCnDQCV+xhWUguobYFHbtj mHwTYjICRTvgltubpZJyYGHVPFLKiGkk3cAlv89oAYDl1J9svgeImEZbsSDcRObfYiQaiHh+I6dr eJyuKa1jVRJU26Ni6fux6X2vSsfe1PjWAkkUZfJ1YovT+xhYGiY1s1f/7H2uSDMN4v7cZTBQvmyJ c/KEDRm0NdZa/rVVuNipzvk4amrSw7vPpHeTDINMBh8GGNcpsrSnEEe1TWvg68Dpq3gxlCUJBknf Gm2SVoo4qrMCC3mgrKYNdsgJctIrZkULvvOCMBpF4PFgsPCDEF0JHKS0G/AAURfyQNKaxSivLbNj HPJQT52m+F/M2m5svO8P3pfXP0jDJ1d7Bol/MwR9sDLGxmZYX2k2izdHn7523ykfCahqqRzJv2le cjoUTlgbp3zrkiw3EEBOU3ocsncxsJTPw75pUxH0+O2Rf8Hss4ATks31bQF+RGx+LkCJUo+7hwJU 9fWYN4zngd3Z2CsPlddhxc+hBPxOgKqWeKJcfh/a7f7M63H3evQ0VJR07hhzw95+67N3q9wh8Z22 4OJNzGmlEe3WdpWfbbRFzTiCjPnzbPSyer7tL+9oo8e0EbX5GD7P9q62t2obZ8F0xRqZFerT3uP7 q1Mfqktb7rPAvT/47Z27FXSygvxVzwK4eVl7rN9EluJMNEp7QrfV7kDEEGAsbUyAMXnhVfxDyKxr b6e59vBZegITDW9DIVDjDQpPLbM5sFQq2fRehi1pVAYRkUr8+sU9vpzFT4Mbfpix64Q6026Fbux4 yNSlCIS2HbrH4iE/BL0LM/Rg3xr0vVrLOrA9kQ5O7aYZQEx9m7uN9w7rDqBRO1aLKl6aG2ZXG3d3 hnHDFctqWrHjXqQ0N8ybijY8PIQQskaD3FR2j0VI0wD5Rbk7hPUjVy6F4LSyCfAmr3P8SllZ17h+ aPblJFgfQlmiuTBGSsMeZ0Wour4oNs+R0gloSIepumQ2U/rJhbkhygT3XMfrWTXN2TRWnhuudKpJ AgYuLY711S+eESpUlnGQXJYb3vHRfjjio/0J9WciS5gqbBVRNQtdWua9zm3kcUIn06EIgqB4SVKN Kp0RZtMxIxneI6UzwqTHOEAUTYA209Qcmt26CheYZWakYw0GEuutFE7o7ySINdPV3LO1shnhPdDk 0uKIQVSlM8KsW0gKHAMphTNCBPOOE6bPz3NBI0xJ9RBaUJQb2pNNrDqxUUdKc8O8tjvHjtt3tKsi wqLc0KIStFaQG5KitJTQtNiLCZCnr8OgxZj0Pdo6vj5UmqhjbjCUvY2zQXtiJODkZo+sPuvLaNbo jCawi8aVJdc9znhaONs5vz0YSH/xXchB/I0Tl2Sr++P3YJqy/emd0+FztHWyc3CV1oO0Ad/aj4LB WVsnQjg/Pq30aSgdRW3RVuUDTz54VlOJ82a93rmMkMbu2W5OAlcw6/1OX8vOE83qdG3RCe8M6hDL qMDUNVMTgQbEu7j+ppgGpADLxY1+eSWUGNCDj8ed70pf5eOia7ZHnk0H1EOrO7Rrj3S4dD0Vqz1r O+8P3p/ub0g710O7T/Kv+PJNgDp5FUZaC7jKbNtnoGTnh7j+XIpFx/7+4JOxv3t9UOEvpxll8Csk 2t8GXcsobculSmGxcelSU3IxBbskGGCNAzG90oJbKxl9LAG2ksAuQavicjcxhrEtlkuJFg++9cwu a8z2XbPRN342docmlMwWbC1INT7pRBKHv7ZcXk80wYAzAmmPjGQf4UNj7Datbk22xHQwcXqzvJVe t1juP4765yod3SHMMxU699cHbcs4jlhmEpBj5paMGaAVlZe9d+vr50qTddFoeHLNbN8lZMsdsnFy j3G0SOJjIa5zdfCOklrS2htbb6WNvXcbyiLijz3WdjKH9CSA3y7Pymu/+wCJl8WHkg/caeuit64O SriXuU77y0SIMn4JP9H1aJrxIgVFpcVEirke1YPDibbnSJvGcqrFz7d4brat2qbKbHFueq0nu03k 9KfxbmRcWo+PpnEFw9mkIfBDOdkjq05rjoQ1CRPL3a3mmqs0/NhnLhgISSPLEJ5h4uk6rnFW2zef 7HjuyWTv1pK9M7tmy7I79UHtMX/fal+/P6mdEVYhmHLh2e+KozqYmervuzac1Y01Ayc9uaRkzaBv B3CiR5bPlal9X0/2vdEOz6c5el3/9qAUmXttc1C3cKu7M/gW7OyemOmxRTDOKy27IbcBctHUnm4k e+rhghPP8lqwzOfucKNhBvl7HRe09Fbr4qXZ74++DMqrpR2P8AtJzr+wqIL22PDbthuWGOJbVuLb pmPUnWFX3dBkNNkzyuur6vAjaLeXcRHOCledTmfx4cs+LbbcvtNj+78/AzB18x036CY1RBviJPgB 29R07fxVlD08K638raUMelPzykcGuqAcJmLd/xfI/ykgc7xUINI0LaNLs2Y37Nq+/WRDugs/sjr4 pV5zu1IS72auLMtTNofZINacEUnD8wJmtpumO2q0zUCj8VyQkzfr2WC2HWL/TatteXCxnhPQiTvK bCBrZnd+E9102nWr+9hl+/ZUkPmyhsfbqlldEsLbutoNn8ga2JOX3Mp8VkXLHM4LS+wHbdYd88ls m10S5OcDtk77qOl5fXNeJDy02xE16XPhjZXSZwPn9dvOwPaq7cG8+MCQpH27ZzUfrAzUOxbieBqf lv79WfLLgfmv/PIvkBmBvKD80rH6rtNz2nbfTAgvZ9o7bnk+vJr2tHmxBHCXB5N44HM4QoRLW0+2 n8nuubC61nDkuI+2h5i2uUkuLuSWeQFLP63PBqtndZsD2zeJPRdazexNh/Q8EWW330ZQUk2U8OE3 QuX+W25nPoRfpTO2062688OSZ9J5e06w6ljtdp+kgOH8ROIGyVJ23ewRKltzo7SWWZ0TJKffN4em Z3XnKPj0zU7PrCJdAInZSI0yH7Bty/RdKiaAyiXQJPVCMZXxcfXs6fr6yyuDM1rRe1ENiSqrbz5a Xf8yaNeCwE8/2YlUunlp1/oDvih53GVNUS3SBp7EI5zfSoEaypQ4qSDllkjEb7lFvpIZXkqIY7FM t9/i+MW/QxK1yd3UkZNl9Cn5zoLgLy3h2V15Y3PJoP9ItOlc0p6BYiYGedmnFwcH7z48HR15x4Pj 0v7Xo/tm7fSrtXm7WipfbJ4vb/3W2j8vta/tIHhPhZEFc7qyshLRgUZwxfGQ8VxqCwtQw4fhXXru HJcIjgOIXyB+S3KmcWBWIkGJxG8tStvzicq6Sw23CloOzNgchKJaDmKt7sYEUSWqS4TRYo6QKh/H mActcMovBtkaBWNaOBR9SV/dFQrJQKZCYVwvw1opcUiohv1DU31zB4JafkBRArpEHQXfxUKEtAQv iZiioE4i/CfRiDZP3EhKVE+yDocBBXX0WJDEtxLVE3wbjcFJfC3hOsHXkdCaxMcShKNIzI+fQU36 Q5VjgTCJ6hI0I21JDZo/rULKfEs8TLRKLC4lpZbEtERrhTEfKRUkHkWvEIkSSXwv8STR7xH/kfhQ QkRigDmyI/GphH/on04hCgnv0Cswv2Hi953L1FxpIRdqoqcGTiSak7ALn1IKBWxTyTCJQsHvj8HJ Gzj6IVqCaIZoSfyT1ICC6CfRaIHIK7jhRgqiXvyRV/C/N+JFgXN9pFx3k4/gQBza4wOX1pRHeqyJ qLt5WjXxGo+8kU6F3t8p1QIX7pR34ogdhXi0Hx2J8oGOD0W5NqcA9R2VU175/sYpr1y4DUcaFg9f rd1oBeV8lP5S3HDT3/kutelvlXNs+kv2c028Cp1W46+iHqjxt5ovafxV4BgavtBHF7p5qve0eIUU 4n6XiRUrrpqKBaT5GurOlSH0QmGSZ2QK9xQXyxhfT2kOro0p1cU/Mlq9qPsoqg099GrUv1Ww4WiY gCwOifrXkl8w4T8Y1AzcDvVKulNgog3xHkzr0Rh3vwQEcRXUIUQc+RLfi8ufmtaUNYK/kMkClzq/ EMvN95UrFGZzj4vAKZcAJ4PTW7QW+7VRRf48fMXealSsOajJy7ukp1mAlIhfGuOE6xTu0t3E4shU nmVIVqxh7ly2FPy985uN11SeYEGTd+K8lfhM/Lu0z3ynrMSX4roVfEkdGeeVhcN0adG442URWHQW jWUSL8Z6UAXtRR2vOHFY2QcWtcIyRCySic5PKYDhOsWA13zAukGbwT7bbymlWXhFcbPrfrOi+uQG Iy5Hr4kmX/Hyh4vRl1cpwOCsxMA2fGARy6/Cje8V9OXVj/cGSuk0HJa403ep/j2Jg5HvE6RTHcg/ JjHiL3xz/iRELJQWc/+D+m+XJd12lv/wSikotwrh/jEXDIYcpytVplwdgkfdWcEvjBG6Ko05DPjF 0YkPwLLR3n+MmN15wHcFZQGXAURs5X4ttmiH/Y7ZpP0XmlXZLwrtwn5JyAf8Xmu22bBaaF0N5hxW SzVRuf+ZbWZ1m5NgR7dQaRgOe64ZgQK0sBnHf4obYvxyZUrxHxVHUE++OSNssudPnm8akP5FzQhB pzRdv18m2vqwjxF9e9iLiMbcL4bO2/8d1Vr7pQm9s/+CNcfhNpOilk1sOKL4NXIofHU2QYxClAp4 1rNYZcms9ypQNCCZMlgQIDw70V5pY2PJKK2mJNpbL5fLpfWwNz8u0R4+1jPs+Rm69Ax7pfLazsbq 9no8w55wanw9a3I9gry5WVaQo8n17krlbSpd214Hul4sx16lRwcfRmBSv473MshxSnImi+x58AI0 jE2E9xenwQsAvXDaOnHKDdTAovhVd3pIAzierYgJJle0DZ7EUiprmI95yCNqdWlKfEU2sUA6kyIz umlsLdfNEVTn3JpmZY1FaWSJFwmNZQuaxQqS3F6lQlRDMiWTC0QoOnsJTysjdT3kRmrtrXFBZxDh G8Yb4mKLLI45VFglNmD1l3skj/VX6HzoeURxRnFQ3EVWU5MEaZWzfsi57Nv2o2UQD5M2aLb4OoIV 4801Wh5GItZArMagB7LGdIREZvTQBsu3JKXhX2fQ57EoulhZTDUH5rAbzTO7YGuzxMQ9Prvg7fVh sIzC1IKE56m0iLnGSbCQm67CbLDFBSXX//2o4fVzqYDT18bTMip0p+dkrI411128P+9uXZ7U7t8f v1+unVzc/tbqftv5/tQ+2V4ebR9vfTDt3ZuNWvOjM9+cjNHrt+IBgfzJZmKpK7ElkTl72G8UzSph qugRg6+aKiwruDHj6ub0oLJiQOMektFPxq3pQnB6a2wZin74hPRkO5Lx/6dwqf23gdpNECrTkVUf EzKStW+XJKZ5kKtoLWAdkLAiPDhc2YIAtbTjGFI4KvlfhxwUuvs3YZZL0P4iqB53LvHhGomWmV49 GjSRDcMP67MitiiQg3bG3JYW1mIUxyDxY3poivD+N8cwvYPSI6gcj7W+2YtnfsSMkWxt4gDAxdq2 khK2UoqTwcrk2Y9uiU5iS7xgEzGj9yfjYKVJ65xEJr4dpG0T82IV2qJxaNasquM8LuEiFKSmXjLW a61xOUCt7gpYco+XqeM25YgedlqQsU/ctmuz2o6E+zAaKWSVYyOmIhusPygdTWVG0yWJzE7XbBsn 3QbMWmhLqHQaWhKjAhdS6+I7GKL3yOujVaPBLg+8ItId12g7KJZXN0rba6WtjeUTj29FIcwue07H Ila8TCWu/UQy5bLjLvdU75btsHfLzqM5Whb8YCH43xjaN3EDe4ibJUJkA71zPdBDF2ybubZvBV8y MLlUEJ3fJYON62DF9EmvRV0tmvU6bVEqkM1fibTdGD3Xadjt1EykaTOxxjMRzqRLG8TykCTpltzt xYXiOZBtaiID8l0O2NbfoWVALzj7NKR72+sQRugA4Y74XzSNxWp3n5z2k6V1yu4+DGimanLvEhet GLttjzCToIQkk2Tq5uevA6vftxZYHukxh7y/rxPNlbcUzV+J8lPNwIgvFfKn2HQ7I0GBcIZs+F0X SofCwa6Z4iGREZPnlo1De+C2QZs2Ky4Yjt3p0UFCTCVLBrSk6l3UrQRXCakdZcmwYNGz6XFk3FSC 74kGHcOzLBYVHNdu2hgtGsWkEE2x1hCzio1kyRAnkQx4ZxktvP/GGnm1jWLduSfU3gP8PfXy3u/F fd+5d4kt3xO+badOH6kkYVF+nJGqNwjrlcPb2E1IfbPZpDWXCflyQdXIwEVyuoCN++QMuO8AofxF 3J/mDQQ7kI9r0Umwj1OySlo8tdubsnsMgIMO9Z2gXZOEl63H0YW3Z7IIhcvP+Dy75DsJhQxjnzrc B7uzmb6h8Sdaz9jVLe4qTS5TnMtORyp/dL6O8qoXOEvGpUtCcPA0tKrBb4avEt8XYXvWBnJmdlUe wKnd3uZuv7OaTVA1NuSb3hOUuNm6TnV5YfB50DM8Il7iZwD1SOzBNN5Y2KJDLjVg4Lx6wsIllkiC xxrJS/5NisLaRNCYOpYdHgv7QuE0ILwr2zh4CujIhSvF1DzoJyDiIDq0qT0h4dKXX1eIjtyuz0GJ ARjVEQlQDZNOU9n6dgQpWNVXrOutgc0WOyz3De0sxR3I6lbPFiMjfeGBiQxo+2mNPGGXtIO42H6w tWC+SOB1aAU3aBpbtO3iIIZ1a+OiBqwGEovMLvFGJUjXiM3aOLspkYGZJTzzcAKjlU+HrP6g0cA8 YCQRr+oeCWd1O4i7ixQxRmQ/edP1GsPF2I5WhMLfVUFj6iFRR9afw5uF2SMBgKQYYjs49yl2nHEa SXr95F+k5zNu5ZlIp07aNqLX6slO6SrHR3F4xOUUfUJ+Gz6Q1C9I4FSx5tIkZZr+XZoFSArhAbzK E/EmONJAzwf8dzKukxJLm09Wu0+ndKVf5Mmugtb9y/YUqWWj0Wud8fui3Cw95CPEiZzvsdXwzk1i iscbu8FnlFCZsaRUAcF+5DJlNgbYKeTbYWsUXpBoDE3PnzCeDalO/9YtU8x18h24Qa1m9dipW0Sb 8JylhhXoVfA239Zf2hh2v1tF9unERo/jlzqs+yNhb0wsH5wY/UJGmJK2Am6P/s/Qha3trzs7xUCL TsJHlyihZuG16syZ/9LY1V6GneBfWoYbpVqCJhsCLXGFQfR2aUWFY0634SIPJdT+Pa6Q4t6cW0Pg Q4p/NUI7q6Y3yN5Y5ERMYKHHjusYxh+MO06VzhQGNHy01yROyVlOxhVWNV0M+p5kCpq2xOI9M2l+ +42AEcpjDBP6QkuHAmkjgIGH3BBajunCryKA4hfkhnTmuFW7TsuKJOAwl2CkNDdMSL33RPgBOL8g N6Rby3aVRs1/yg/j+pAO3iEQfpwFSt2un+AICH2WDk4vzw33YGQRtzNrYc7roCSElTzmpQPDbdYn HuSqayhrwk5Gy6OdrMpizdgEX9eKnaHb3PUOB7UwIWPizaT+x/fIMQxD09hBzx0wTpbA4l3TKS5C bNjGLfdJDpcuhxkQ81HALHU+w17sM2pD3HNs14Dzu2thH1ySw69rNeHuJSZjm0/m2LKUyCeKbpt2 MBsrh6VA066nNYGNjw+0MQFJY+3XLbP7yLsyPuY9c8CKG+VVJRWmct6xO/tS0Bvel2kLqZHc6W/4 2dEL6DWz6+9BxKEhb/MR3ZdSI7vplE2zI9YHbJs4fv7ad375r/KhS3+DLqhPlADsE0XYpaA5vsZ5 yWg7MNJymAmqQMhyFSW0MCvYZ/z5g3VixTimT2iXWvL3V4yxjkkn0hCtjVFrWbQZojprmz14IPB7 nqlQftJRGz/Jm21wDci0dKLPgBu1zLpWf/dsVxMsdjZWq+vFoXVPkiRMraGl3rt3GqLUML3H+4EH hQercpW8QXItIcOCj1ZSx5Gu2A76uFC8OqjcV67u90j+s5vFc2AUAsweTR0d6YmPSSPazGhg+fcU e14QMUVz/+tP7Erwdwh2Yz6aZmsIT9BgukxQh4WaXB0vB+u8GEiJhFPD1APhlFfHnELgNCtbOAE0 HqiKaXGAu6cFqcHliUOh2GNmwbh7tnUqcONJrIOEkLiYar+6SzNC5YEK6l9Q96OLySmDuUnZaJcZ IfDQ5fGr22pDi9CdL8WyU1Oy7YjhhysTVnNYd7506eNnW2/uokaYL69CLY3mSzrNniOIXFiYYHXh 7nKwThaThrT8Q20uiy9mPEkYThS2xDLy5ZVmEfnySunvGV3zs3R8eRVYOL688i0bd1ONEePWUiaD x6KhxpluoeAR/q0tEHeR8NIEO4mc/nPbHhZ9KphoSWAkRSwFr2e2EKj2xpkAUihusop/nHpftZOu v09p5Xn6edHNqzbHK9+F2jIp17+80pTqX16x+PzllVKi0+rxmV26djwcYBbtt8/2M6q3Gfg/XX1N SydUTwdK6aKonjMrnH3MvbBGmTGeR2Ps9yuXSlgRTUaVL5r40h178hun0339QrrcQiGuv717rStb X2dkoWk63EV/B6Vu3KVrT7NCn6ieXSwU0pWtwLQS9O7G60tJxItpWHmSRET0ZcJQJ3qXqu0cIycG sqGm30QJUUwxUFp2y/zEysfuGv8O1IjddX6OKgO7G1wYaPO6m/wsOrnuljyIcq277T9FlGTdHS4O NFq024ON4cuoRsrAG+ltQo3EIgLQFPxBAcnSX1J0QtKJf4rChyhqqo4ndfRjF/ZklY7CTgZ9zeu7 dBXLuJU0UWez+PpvqYZ5HVO/3EVUIeNGOk8NjAhcd3+8yaBIYYfYPFEnwYn/mWEm6+tLxsZqSpDJ dnljbXstbD1rlAlt1R3nnoXwhk3DWJpftIny2NajTVZL5Z2t9Y2dWLQJGD8+nTXUhMBubm8qsCrq IaqKeakYk+j0xTQwY/VSX1h/wysL+iiSUUF6wAALGH9hwAmIVp/1kMr8Fl884iQ2Y9NiB3xdmx47 4KvkJHSgP6pVuZfjQwcu2vVKreU47T36G6AmDCKIV0dZok7EE151a35KTvwIzRHHtIqJAgPlNdIl OW06X9c9cHaH9w5J9kHnWbEPT/WT3jVw4qDjNtQJxML57GbUrLZVdUXrQ9tBK7VlRE9J49ghhKMa DeItxM3NfteWI1eVJHyXviFews8Q2EnAHlFRy+71EK+PUtoP6FjKUrwGDVK81R/S5iA+zCkDkJ04 6NoTApAH0DhAywPFD4+IN2MuMLBRspzQsxzawaTHsuHRgBJ4XBK9fDh0/rRNZyP0G0G6CMRYQS6F cV2MTuPl6cFu5cBgzezFzZVROfh4cG58uDnZey9a2vgdOmOglt4alxiQSDly5g5UEyzMljeMkWVC LmvXx+Kv/NY/HvbUgQR1gK66VSPixhzwWZxQSG/dIbFD/TwS1WqMbWbtrVHpmZ2l4FgX5kMLsqRh HKze84gha3IUHXmGyKFB/1ZJWDEhlinRjj71OPsVzl4ss0JqbEcjdxAGj0B2yad2kWjBP38Halol rfXsTo8hqkemF40SOo7KVwE2jGpDpwNKPXeQI5EkPOqEqssIo2EORGU2ILaGRWuB5KAnox4D9ReX 48w+66I+ELG25eeK4t5hgqiumiTeeZRalcQsnBYRVUtnZaJvPlUOQf6ur2Dpu0jCA1q2nhyIbyMI PHTmFAVLmClOWXsCbYJZl4MklLR+H3yMjhvFhoxCJguZFTzeKpF77puBEPkWEysjFThJfmgq8qSP eOEiaUVpdTUzHW7qeOTV0iBmBZHVVHrVlbHreOutcYsWUo420iwfBUR7hVmoO5YXD8urAXXCT1mn A0bapdHFFW7Mq6BdYwWRr4twqk9QCXEqC+IPjCfoHFwTGbWIkBpmByojIjefHKkXmF/oafAvtOPU Q/o5FkX4EXKfCyz68MiEpUhM8kkslZOYVHpkp27QjuymZwPPrgX27eQrbiCPY0cEhIQFp4OXd8+D jzN6OnS8yQ1bbfXQMgZQtbLc8K5b1q05urVuLc2LVC8MISZdRdJBXlyrSybl9yQA0Xv5plhbA3Nn BItvDTX815OlHoNPHxMM1L5E+fIW6gTC9PGk00qIRP41bWn+KxCmDWCqQChK0lAWhE1x3sKg3rcs VP838TFInmDwIdJZZll8P4l9PQ8FKYg/mHLQSyGT10nymMt54fV40jCga4X+dPpBQPCZV9BHnXlL 9YD5v0aEf/1CojuQ9A+T09HlHyiUo7lMEjg+nEncVnkP/k5iNsbCi75QGCdMK8ck2AeSkm/aCyXP prxhSVTKdSlSSnSRDx3i2tdX3EVdBfgD1dvBnqartkul7e3t1dJ22HRW3bY59wxKvipR02mvrW2s bu5slLZjOu3IRDxHu40G1le3VAM/VLv96pRYrYec0ROyKMXHKhva/yUp4dlC5AQJAXjPYRRQ7+Zq EzAnJKFCe9ktAjq55rIJ5D92STDRkUWNm9imJNlnaqSRHHWwdcvuyvtQx+zTJoBZAaPDFiy+i7q8 j89xL0KNdmrYensj2R1oZlXgc/JEgnZCHIeyGwGBUNG1hvA24aY8IR6X2BowZKh8yeMgn2Mr5J10 whc9czQkcvKK3oA2Uvmd8rkK0LJioX201GlTI6Q4Xep8cVi0kIC3boUROOmvuQFRCMCwDiGKXTDZ BRhMW7oQnZZW2Z/L0MU9/YIa+dKvF09cw7A4s80erQriJZI1Hcb+PjIRVwm5I2PXjYQCXGAEyKRc N24huLwTTIQn5istlYcWJfKGRDMtsxQIyOMl7TtHBWtvSfI2xfFLAjMYWIBQ9RyO+CcJrfNz9cj4 kvo15b0J/hh6WAYCceg2tg9XwLpx7Q46PTAySETeoAeRwlJBHEn9z6kDOYqWFMz4LkRxFq6IYt/Q IBs0tlrLhpRYHWB3sfq1ZNir/N6nsbVYcoTXQa9HwhNk/K4x6A48WhBFrfdwkrVrtDLBUcbAuxB0 RXs15tubLpzjuuINydipFx244OqFIuwX7a7u1QaphTN5Cd2m6rcU4fEdQ/FJTl8lMueVMDXXFacr +zJYXa1WQwKQ6dfvLkqj+GlKhqzm1cRmE5b5mdmgTAPLH29e1cYb7DGRDG1JPs1iQUaejO1zIi/2 gT2T8QKMxmXVYypLxTu4gBEHHTvf43ghasINxVv8IlfZLPCfadzrdSrXKhQUpyoU8jOnkP/8tIgT wnyYCiDNwEFQbWZ2gcqpvAEv5sEIMOG86IMJkxttkiuZ3QbTKSI1z15s8eTMt7f5tP1gX6+dH3bO 1uq/9Zsb5c+j93uNylnn/LJmNi63bk6vfjt0RqOv8823l6KivmIh1agNXBcqHjn0g/qeHLseanyE p07VTR86EvQffgi2FGH52r7MFAOh2nNAdfVl4plIi4xjvV23a4M2neGVIoY98jizIrv0eUP27xZ3 WzM9MNCfIEa5IIHXIndHi9mWsUVFLRZewCigAJKVxN2gpWjiSjBiEOwW/CvXjco6IjHdYBVDJSI+ x3T+6ztYFUBqx+pUxZcVBzSogKiQLycA95EaAdJjAlg0fFVeCiVLmoDoHEVwAppsOs5Ks11cW2tf WQ+ClBarKLHmA19c7gdzQBzCCGchtmKTmNLFZ12ZzPAy3aX7UpflllaIVSrHcty6EbCT/47vYNLW tDsdr32Voq+M1De8rmXJITjcRtV+F7Trb6DKaBGifi/SG+6MtriCM27HJG4cAENk3hIcRDHAhE62 ao2crmgjiZl2TNqagpreAAo4OMLiEQd4GohIAohwIIZBFE3Sw5LBUo/ar7URLcl+jlghC5sZXF1t eBHXXMeTyCxE7BC0N6xrWFRPGCJxCFY7qpkZqMXFFx/UlLlFsCx3IRiOOCCDjhULQ99taIT7rAy0 JPYjxLs/UGpll3gK3mD6WZlou9BNoitqr5YdhN2foV4FoSCMjac5oVRFUEJs7jgXrfVN+UnH586W 3ZRjDgDepwjwOtWILTwvrATKQrr6GKwl5pyIu0CoovJWpu/sPlHqd9HjEPkJUChlJT5P07hYJIKK YEYDAi0Bgmf6acTGXkQ6daGVV3CtRAdzAmzQWGU6RWCSeUy2kQoqHj+jyVNsHfAx2E/mfZp6tgNn 9OyO3TYjiuFBtw31OlL8urirBm7SnkhomG7ZaYa4U0d0RqzWhk95FXrvZgvSy6D6gBt3nizJEICt 0OrSLocIBHaoVzFUgQgsNokW74OAA1aN5YF7QlS0FbYT/TMicmo9iPqQPpiIqlI6etnyxfPVJnof djUXf3G1p1cqqi85H/nmfG3FOPNl/Ih4nwScWj8U38LDgiJJBG4xi43CNYyPYpADdsMU0BLI1Ee0 EF5AHdshec+m8ioVwQDTg5mGWZoG7IAmn3WixA1IXAF/6qvrmRiRtGahEjSa1IoFoYfe034IYUpJ QbwiET6sLIVLBkkYEhQEntqnNVkTICHvayCuNcFYEijLNxfrKwaEFD+Scyl5tko0kArnEPGjzBS4 GuZATHIQswwtLEFWpYGTjIew1BEHVSA4gdWvLPo0iKS71DZWHckqzbY6E/mLBatCgiS41O+80bOt Gubn1qp6NnYfXgMN1/o6EKOday23sMM82TjTMon4pxuIPgj0IEIi4iJWwsZPPbBaaCcpZWoSVffd b9v7jmDEHPQd1KzJVJma3wh18R3IhkFiA5qO9HyzuhGILyK8B7zLZyLJBlLh7HHQiMJ8GHozflL/ WyID/WuM/MAR5lEEputHowhH6wZxP3gJxXqXhBgTxulww1YnYCWDEuoqPh9WMxcP2QVYf84x44BE lVUoo7BGDlFSLSCm3cZlkF4oW4h5VknqjEEeOPiiLrn5Wdn55ElTnERrvnmTiGKPqAbsKN9cHTzh zK2xs75Vw/XGfEZmMcwMFidjlI3CACfJwIINi5uTMhF2/I1TF3pcsDu+lkr1lmjDQg/0s17wGXsH 8Ids55WTf0D9ihcT9tUW3pVdTJne6fMHgq7JjRKZpAH05M46FkdFQAXNvnNcOkr2vxtXcvyClEPF CD785LiPiJcKLcq8G0Z7c2aZXfoAQuvux732oMrfQ4YfIpK7imtYFc6W/DBif+6IcDhwWcGKuTvJ 1QAilmErhihLQh3scUndszrJ0kpq09bN8LXT7Li3IbdhuxWdYv0gVG0abSWgm8Zjl2k7wOhQWGiS 9vIRtISu+5vfAzVPfNr2Okm4qdXValSnAgGic22x8EUFIyFxOXfoVXzSeUOTVhnQjJ3ZrusQDfCt cyTU0uZ3yabBJeP67LOotpL9zDd+CaOHywX6kISWWmnXHxAOhpg9pnYOvvMXFBgPRJ6hQzNlyf3k EEi1ua2bz5++nRXjoEvbr4c1ojoF8SkJN7W6Ws7qoMmz2HW6y3GQ0SMdb/gWlIRdr40tHtuONi7J c/HfBkmyzMVoJyIUNTh/RTfortougBfevmTHglBHvIKOtzjVCqkkx5IPRyrjgApEVu1mnWrhC7Jd ughj5i3PB4bLzMTuzLgz1TDCAE7wD83LRlUjibLbR9CgC6Utbq3lPUAOVisd/3DsqhKpJaWL4YF9 4GJX5S0+PEklh5UTWZI7gu0iiHCFtFcnllVDvCtsB1kRp0jL6gZ4ICbeFUT29aMfvNK6kGGINwz6 Np13LRyglW2Az3VsHTD48U13BAc2vu6VM4L4TyuDx0VsY46Lo1ATYiIi9+FbJdeiBWeF8JigiFoJ Rzw66Yc/Zu63ruVHFpo+DmUq/N/feeV4p0MTSuGh0RnP7cNM46m1kURhTDPmK8PkydfURZS4+JFN i6jLvGEgP4MOth9WL2MmPPbGE+G8blkdmvVBN5B+aX1igwqcf/iyWRnNJK3zGJt4rJ8HtUHXTyiK Vg53P3D0tNZTcBrOtKGL/fi/r+mVvmRQxr63rB52/9D1sQYhM60+DyVI9GT2+2bt0VPum0SDVbvp 9JGLKPDjNJeMJjHHuh/7zjvVioi3oJAqaKjNMfwiDCfnUqQ7UF80SwZ3L/UyLul5UtmfwLiG8A9n nc8q/ODWhoatNYCTVROLLvQvjeZfCZeNsDz4DrILDCqp7FNyUKtBddlwpGMyf2NH+ikxUvGzTx1q 1pFqtOXU3j18VLQF80eciPw8SFgZWoeTLaUS062JAxLsBCacfvstWv3K5pCkpCQKxkzPh9O9q2Pl tqFdDEvtPDjE3Z5skybJGXo+Pxmr+E+i6ka2sa5xcrWH5B60AGD5JbzL2d12ayte13G6Vh850JhI udEFlpIM4wCaR7jc2uyRTItIZVJOtpU4MijuQVhfJsbCiyDMbqAvkiCPAYZKPU0h8fh0sGvHhwGQ dQp2/nYix9HtK6HOSkyOIUqNPycC0UkLhmYcavNB0Bn0LjwQRR1h4CbxzEB07nl+fVFaLWWu2uje HKx9kKpukfavqq0z3cmVu9+uv7oHfmU25dEkZ68/bP9ubX+N1Icrr54FlSDcYqsFRSQ09CCjroU0 cKK/0RT0XjQjbeSOrik+HkH4VMWswxTDqlXFCLHv85mSU0dOipJS3h45gqR8N95kHItf98UCWVRJ Il0mjvfsQY9/1MoMjtVp2TPhN5HNXB1e4A6eXCjoqolCQbjFfCzPd5pNOciI0tdNz4sr4TW5WUzK hqFdqzsPM7IPDqlxXHZ1lyYIvHKCWCYU3WWxA4cpJSOMbjHE959//sn/4HbnZXXLM/3DZdlNq7Qw QQlzspsWClFbKVHAv+ZRUC2mN9C2/qXm0UIhahKlKcpmBS0UfMtnofCSxk6h4Ew2SyLeHAbJ0Ob4 r6VRtzQKwscbDAnLoWT1rzVQ4Wu6UY/w9n/HYneXMMUldjCRkRdXphrmBMHT7WuE4H+NZzmNZ4Lb dBsY4XM2A9d9wB7v/7VmzdWa9XqaFWucaQrMYGaDlBDJWLsS0clfbzSSPsZsP9SzXb/R5xt2pImx 9plQ+vibG1/UmSDdhkKj+McZSNSApts5win614iRZsRgROIvnUpD/eS4nRstPsvKEB5eVXTIHT7y jQSJZkUfJldPxLW9UZMBQN7THw38OOuA/8mLWgMKhQJmLKoOp8Kg9bsXVNYHypGIjWARp/PCp0Sv fsIFIX6voMOJYzqiV0/MkahOF30ISvOh5iBVqe6/j5AcvkqoxOMDEW26pgJ5ER14QCBxyWJ2pXcK dhSGoBmK6LoTcTMJjCtFELG2u4iu+g8j/qWaG3wZ10knoPpLnL4V1XPiC3810heu0jAnvhE1tPom UCQnPhOFs/6Z6IsTH4pmGR+G2mMoMDAHSmNcKIDTKSWxHtuXJXPDK8Y2NrVzSCJKduCo82cmc7gr lctLxtp6MllxqVzaKW9v7IRdimR0CLtEB3y+pQLdeZkEDwtl/oM6kdzFKqZRz11cXt/Z2dxeXYvl eehqkVyoMmOWB4An6Ar8j83ycIAc2jjhYilhDEnVPj5jooimIggoa6ZcBJszJCMA8eozHFKWajF7 NoIZ8xPPGAuHfYfNAHF5iy+SMIgqWbzBYQyyUmOga6HBnfkmD8nFz7sd2B7YuWkE84TUOFA4RmyM WSxFPjafHw3sbfWZhCZEA+/WIU7vdomK2rzKNCTjix+KqXhf0YFEB9NjLs2xMZfN+4vH5vGqe7a2 tnHz23ndrnzaePh2uvf7xlq/snFa+r59vv3x88On/vpcYy75HBCLA093KnirZ9KHNpH7TQeC9eLq VpFmd1le4ZYrOkSgR9LMsTMUjb28N/Bev1kjOKfRkVYz6KckwYt3NtUUHv+IPynh963IKmivGCMp Bi9fBWDX8VSRtC38rRywGJsWR+zjuiK/siqCqMm6evEKECDz6X5kRhZMCG6puS3Cb1jCkU/ihvms wGJISSaNOHTA3vnMEIGZIBm5fEHrkVADl4RtxhNs4Y34wtCmyZ/Jk2F6gZLXz2CG9QphknYT3IAC HaB/XNEkcyaxyXfm3oYpW1xlXPBVIsRVzEGzlQFI2PNjHDa8nmXVcMuSf05ic1/sOJVQ1ekjxu80 FyIOcCdhG8KBIIGEHh4+H3v5CP0IQRv7lWe1n3zlqp4gD3nxtMb4Z7SxyaNVZIBTdVMlZpAFZsgK Y4uH2X9rXA8dMGaLjhSPlqQfhF14eeDxEZgOPXSi7CvXnslt7jt6+hVR6K74SkiVcQFnarnbBAhB 95DXKQPwc8fYg7Jm3xyxPJmxDh6CNUBchoWnmqlY4Uf1pBH8UuqygY4RGsgOSRi8cPDDKw66Pac3 aJvustOzWZ7vDUigVkl+L6TMuOQyfbU7GS+7r5r9DuvXegLxHT8bFTh6hOBWeBIj04sVS/Poj5bp +OJ9BpThAGeIuqbNezTrXVlYzFA7SgGsXGNEybGZk17A5iBptQJ3Cc8corvQ/hpIDLnCJ9oMzbH6 YRnqB1mpDb5uqW5l4Sn4xXtZRemTlLZtSbu485pEg7a7JJaentNnjYnKZokTsm8sYp1gaKDmFoNN e1LbU/IhKrOeevJVQMKqqqJGd9lC6htNQvvo5G5EMzjHtzi1yZX9qlPJNLJ1y61cSAHzTYgW6hjo YV1oYXH1KqHa+kbSWlfpwFj361n+zWnjHSBjiRNm26ir0CUSB6r5UbxhI4Kz8NMzE3saU3D4aciF 5bXcz8hAYu6OaTv7hNZliFGZhwf80fbsvsp6FsHADKkTkJPUcrWmxyRPmMt3z06zEIcep0SS5gdu wI9po5NPMSP0glsNUTsmUmBaG+BiJvN9x20q+FS0i0bm0wLWk+q/Fq4F+EeWoC69iSwBFVnaHg6+ D1Y8S7V7S08TGs0B+/9n71u427aRtv8Ktzk9qb2+ytfkOz19fU2cxI5rO0lTu+ulJEpiLIkKKdlR Ts/+9m+eGYAEeJFIyWm7l+wmFXEZDAbAYDAzGKBPTbeJPiVdooTHgf7gYVPmxclUEzFnGIS6H95r yk8WZ36Dj0FD4NBwB9C+pMYPj7lS6oT2KzSjpwlrnYKQ34Q2mpLUx2mqS4drnvJJd95Q0pQp/xi0 bPrjbtA12j3khAmtVgEeBoNUtw4paUq3JjTw6N3HGNMm0u3SSCsMr/A5K4Jp+D0fL/piyfQ9tQGd UtK0VTKhhWISTLs9JHsZrGrh2IH5QgsCf6Wt7ttuYVBB0R7W6voDY06eSAq3WHk80iOOGeUHNOfj CXUSYAZMgD73ROZuDUeIqeYOSNQX/lxfpY9VUd0sK1XNqt/cXF/bera9tr3zU2/4465APA7h9HGO Z92dvcFjUAIoQUG4In4LjBFcADwgFa2KYBr95Dd/pJyVIV769lcEV4WqgdlenziJ3wRqjnG7IYPc 3ITUXN+nY7jXbQFzOv8x8ryMdZyyS+cXPmips/7M+0Ax9tMWc5BRROGXee/mDqZsnHLiE6KQN/6k c07Xu1fGVhRMdA/OGbsChN5PTjtAdh6lCs7oqQnHMQnhO8GdTtdJyLbCP/OPT+lTHHC2zkA4zvLB uaHObD9lFBG5ZyYoYm7boTvo0FFZMMQ5yAhY3AkeyuG4ao5I0RFvthNUu01ysOje6fPS8zhyPjSA rP7reN3BivOS/o1WjKnFGKtH9YwzFOuC5PgLTRAXNa7O5LRsQ+Rf9qlpwlzUBtjugzuGN91gwEoO QVlNVNb9dWJPmtjfRfwvYufXxFyRsksk7kzasL46CANaLz3tuAPVpa+vSOcPXwpvcW6C75z5/pin 3vgwTSfi69f3HtA6rDrKFbQZjESfJ66monph70IpCKNL6HJI1vrYUPNaA2DwpAkKAIK5+hNu/vxI v2S86EdqyLTaWOmIkwZDH/4QRpkV+ynGkqQiwrOKFWMIn1lekyBNNHB7TsvHJQNc3YidqJQvaoqg cLC2Z6j2nl1xDlGDfV3UCyus8Eq1IYoPeDmKPk2lAsU+vMP5FRR8sba0fDdLjIvC3HxDOj1WMjrG DR7CMNVh5Z6fGr58HL8h06HNmra2ZpDLABKG8TGQGx0u3Fq9/qdgnPf8ZkmwudqYt3D2cnt+V2KC /qeLqZgxhy8PcUKQXCOBG6ssZOTsgoSwHxnv+dnJE5qZS8KKG6K9KnnBLUma0G5Z8LLK9j3iEq+8 8M7oYTpnQmNzd7LfD8Ze89xvuGES5t9KndB6yUbch4fmSO6gaetKOnVCI/N2UQwjsIvETSdJE9ot Cf4g6Lc83g/2PVeVySRPaGbe7h2OGncRnTrQTDKHrNQJrZds5DVN+aDdTuDrhAmg5+3YG3j9DN3Q d/sWh0mlT8CgZEOs4YjBT9N3zNsthn9y8cZukBImtFka9NDtpnujkyaAn7dLF57bzREd8nImYFGy sajjD4fjnON3ft6EBuft9mU3GHZscidJE9otC37gN72xNfWTpAng5+3W1Xu7T+p7QoslAWuLegxZ J0wAPW9nTt3w3kuviSRtQssTGijGcJoqhEVjOtesrKxwAf7WmVmHnXRv2q78GRt/4m7lZab6l39m MFtQi3U07AShL0w2I3pZmZVbuApwzQoH5ret1ERL50yAXcpKnYq7wmFuLHTyz0Y5Z1bjyBorN14E QdN5MRo7L0KvHcWnZ+OALT2bXi7Vz8mRodhLbXovjNlqQFYubgpU9vEaBapBU3RcD77UYApQisQD pEnAIAOg+U7NFCfUOFqHUFd7o7Af9qPGJ6nuWcnLUJzcDH3aC9y6O/X7Mj5qqZbpaU5kFO1FawRG ua5tbS859I940D9GeJRYnV34Xsjui0ZQ/7Tee+O/r58ffbrrP3v1Ym374Mvw687ol87nX3ud7c+/ bo4Gez+3te9qOtiK0OmpQZ+UhysPAZHCua7kThpfhqnqurogb4jiwg3eG+SmDf/Rm5v0ilZlfqQ/ /FinGlmk4b5K1o/0X/9S0sS//pU4jeoW42d+pc+//aBcNBeu9a0Vce5cMPMMFNTPRcdwz7w2PS5z CCN8iqGmvTAX+8FwcQ6XS00QQuiD97TIp9IotTiHz+Qirmw9mlMkD0aanOC0j+TmaAA/DPAgUyU/ RqN21mHRzryOnQ/5NSHtqrew5FynHAfjuZG2VkzxQlxwaGZcmz6DhbPM8DTEZCvpTmh0aJLfYIak czoGmrO30APQKPT4Hn4xJ8D6+YYufGjnyRO+0DijB13xiNvyT+K0t6B5Hj/rGvM7w3GNePH14qLp /ba4SCUMbzlhg2YVgxdm/qi8J0/E0U03e9P/3XHo//yX/pUoUc+Nf1DiGgi0R2Hc0YxPGN/Qi122 4nKWX5eU8djjyiKZgsHwUEj2ASoMNymrpPaiikE13WbSmHwDzAIqJ75JCYxCf6YF3SYqKJciC7Lp fBQ3rxyCMr0x3Ye4sPbsiUta3j8LQmVxw4mLGG46DEO70SQFTFcb6jIDUa4sFkqxt4sgrp1Rkv6Z HisoE8+WPM+Rm77OT2aPNW8YD+VgIW2kfTAYD/GRsBDVThQ8CxhMykvBADeb7wO3nHUwSODO58Cw wKSg3SXrLWBPkkJvg4WE8a3H5tLYrv9UWntaxY5/nd7SYkzSGZOt+QsrMWa1FaeUQf4a/PEpW9R5 A87lh5ZBXhrJFwfb7bYz1RaOhUyMM2VQJHAKwhQumZD+r2XGNkmfGKqfflMD9eI1ZVjTdsLmZhmk FxZjKXlRbM2LbGGWSIeqJxtxT/497chyVuKubK4412UMvEXEVKUnWZEXmO2qhWEti9i8uiBRG1Km 2cVFu9Dk+c+rLhmjJ0+cxBZrLshCxg+8lelSPqQTQzEzCnuMk2EBdORbepnY6ngXUlmGEU1KWyav GGZijZJStukoLmaZdKSktsJIh5CSMo5IMd414yL8dXLxRudpA0FcIKO0d35fzdWtc41VU+stMBM1 dYKY0iJLAX28EWIBi0Qlm0wS0ZPqz2VUzNNx3vQ5S2Fsay4lK6NYtHg1N4gHXacr6orWQQ5TiXmK U05TyKI1wmfw6uQHZgta45Iqtsa1aOXikrbijt+bnS1aBHZU1J47SsTm2pKzuZYNErFZe7axvbaV IGLFiFCNfKOgEK3W7s76DuqYQSH01XYzKMSz9Z2dtWxQCHu0UWnWsBDUwGbtzwkL8YZOzdFwTKdC dCCrTkWZfF1fKkpEJmpAlSARjx0jgjv9zYNEpMZm/rgKnzuRy1gWx1Uwwh64UYs2g5g8SWyFNAik 5dbLD3lQqDZ+8/p9a327Xfvyy+urjbcXrdP7X9/sfzlvRd1fR0H7dGN5+L57SIegk4u9Rw15kDJ+ sA5+j6RCV+K1RR2Imj+43R4JNguxapaFOCMUr0GBHLNb2sDCfl3JHXzbzyv2bVPXxVlbCGleHbIE vnEx22pqBhew5LEaBlfgADah1NzuXwlsRNQc6LdUCmylSelXCKPbtG795tcuY+O1kGgHxBD45XkV ZnHZi2gbRSBpDyF0s03kQrqkwsEoktD5rmn5+QTUcQpoBEEOtGoI02EBkRq95pJW0js6xGgWdBEE PjJAfKeJRguFZrMR/N2NiPE0hvFxqYHgeXEYUx8x5jlcpTqdKGasI4RmkajWv300GD9LM7Uz6nyq DxyEcSjnS1nMZnAX7l2EKLnmJOL4zZ9I1s42WMkWn8db4nCXZoM43XQR5lBCjaoDX0J+PzJLT2Y2 /EEkeFA6kDh0dqzgDjimDe/0QqUiKOoQ2vK8Lk6H936AkG0S5pWVvUrXK9H7Vww36UkUwI/EIfYy iR2OtuIjGkfHln7Smdvv5znSlnFuiJs0PQRo4RlEjN0D7GRuITFEx4AKPBByG5r6YPMcoJvN7hhx Z6PW2OxEKv0xmmq6vT74V5RHtLzMx2j0Xd/7MuBApHFTSVLSQAXf/HQLD8NWDJp+PwrMgd+IYdLv BOYEkLanyRTLf2wkPzHY2F7kHCux6y/h6MAmIxaZEomJOQks8UXsq0zv/3y/h8KYXcu77tn9L9v7 w72H83r4stdxa1etfvN85/3xx/voy/Zg7evD6/0Pn89Gu0V+D9BRif36gV9aSUTNOk4k+Oi5/RHM gSn5F7XV0X4+4RUQFCD13gp+LmalULbP4f0U+/UUfGsh7nctn0EZywmSOVW4+j0lNz1Ny0sANEno Qea3lGfQfiyU/D6bvPHUlDN+V3RfjmOmCtlKCAZPbYEAgCru/qhSdatP8F1cLL2Fi1HXYY1ZaguO 0/WOKQmcktro4qJ5O0+Sm2wWjKwkEps3vgaiAJhJfwVbQjKuWmEwtzJrfe3ZkrO+tpNVZ63XNmsb a7sJXvkhT228+AkQLAIg9410XWtrO8+aG6hjBUBV6gZT17W2s7u1vra2m9J1GQiL+mAufRc1UqvV VCN/qL7LHuoUdy69JfI0+nPVX4SgOQX+BO1XdblDXFpBZcNTBU9TeB57t1iCWq7WG0yp1RXbK5YM DUZ7RISEFVa5EMOTCgP3Ik4XCabIszZ7JFF8ltkzIxrJVseeNyMxUmKbjXcv9EBKDF220dXHvMED jWu1T/6m9ykjdmuugFl4Cjt/c7R3eeQcvnXO3l45528vr+Y6b72CmxtzJO5RtHoZv4+hnNFeZC/S C/0bftjoetgUk2OZmZrQG/tzFoD86Y6MPwagnFwDILuD8VtRhmCaoWaqr4ejAa0kbJYrxlM6ieGY BQESCRodGdRhQNsOLfuw0oXb86Dra08w6vcFzb62iEgOHgvpY5tjb68KME9p/dLOTnKR15W3eDKa EBa74E6A0P1BLwnWvuIcwQWM5t1DZ2zIWjCTKweMCpjwpMBzBB24UyqP3bYLW13AXhAVYF3By7Op fPu4K3Db/39vse+ScJmkWIumPPxj6pobjZ3jIBjW4UlLw3HqwusPPcdWpEl5pQzpvbyp3hIwLQUl nqOpdMZGZicmUhqKNBxXls+kDlz/IghBtJF1xxWIeEniun6n5wHctAXvVX5E0no1TztywHcQ7tIV mrg6/XWZjUMgIF58iR13VMTlCrBO43e1Vml7HPIrZ7Q7q1f8qqyJc4+qYIKD3KuEWZtI58LRpQKQ Y1ksPKuX2GsCTqbDEc4gQjEeTBeMfOzxM5ZMxTaxiRWuxs4e8sqrOdxnx28EdjzicQrjVDxRqByt gCvwHrOuTktql+/l2eXxB+dAxmpCrUrajXnMXbqotnf12iyUTrB30cYSS0CJhevJkyfFYsR1jghQ YEWfKE+In6t28/mm4gC3tJizw8txbNEpu1unt2LM26Jd1dxLpZV59kmBUH4PlPJF+9vTOfc1jc20 PUvKWfvRzXd6H7r5zholKTvj3pLdNpia8YaQ2gakrZlZvOrWVPatB2Eya1bELGa7MWUeh6WaPFNT yWSO3JrJ2pCS5iNgE4p5WGZudQJ8PEWqxca1ClK92sk8hrAQjmNcG9w7vFVFBJq6psKrl5/jk8w8 no/O5jc+kZsZjcdHzWUzujt+rmZZ5yQUco3mNFIODRXxCbwcfQhuwjVtE3p5Izh+471G2cAKTN/m 5dykycewgOsuXTaCEZPmIOjVfXUdsMDOaWJTW63tLm+sbmfKT7Cv4vcxsb1Gh5Yh8ZG2c+jJa8kZ KAWtbqxK2LkKDb7x2rSbXJHsTVsUsYLjPWffa+uw5KXa3MkUndqm26Z95SM8HKs29ixTdEpjyaT8 QDySRjNyfjijve0gcBsd2u4z8Aqa3lzdyBSd0vQFbV20W2NzEPf9NlTVVx6eKC7d5c3V9Vqm7JSG 8/r8liZ/SI27vSp9Xq88uFg1h6HbUgu3TCO1nWX6p/LI6tWBjfaS4DrW4sGL1Oe85ZQm9c4M3X3J wkAL7sae88JV0RlKNLZbfT5ZbR14uDzWl2v+pdrbyhSd0t6F18b1QedS5tJrv3EXtMQaW6LBZ9MY Q0UnjZzoXyIhSHPymyHJYYukBmd9bY1TChy5Mht47jlB22lXtz+tbW/UYQhhQfG2tra+cxtSkVsS iW+prVuRcaLboAWVKgpsqyv0L0d1FnYSBOXlmSmbe1nEahv1wYyIBf0g5MuupwQLkl6CYhbDahu4 rD+GUmIHB28qW/bC7YvC8bE2+1/ce5/440UnaGoxYvoUR1YyGU9PzpJkg4AlAOl5WrhWsgjTcSlx W3Odl7hgGjxoak9v0sb97GhW1J9V5tsXdHzGJYoPdH4PVIXp7dj4Xh7tzYzwbqbkFIRfjcIQCB+4 kVea39r4Xh3NPDeeTWGjWXxP6aw+igjdfn9W+s4xHyrLvC9wP7/pnDYOglmpuz8ztpU3xX1WTPSd /TAIVHi+Eu3Y+J6/PJkZ4c1MySkIHwajtrNPFH5QLw6UaMVGd57FVlnIOXdHrN3qjqKv5aUbG+FX ewczI1xZ2H7pLr90EdikPwz6y4f+lwyAgqZsnF/MPocrH/ougmbfGzsvR82ZGfDbvdcz41t9r/Pu abdz+RTVc2fEeO9KSYrVMd6tvMcdrLxacU5pFs+6YezvzY5t5Q3u1MVDtw/O5dBttQIV9rNESzbK h0dXM6NceY879KAL9pwPbvduVqFnjk15t/IudyrX552rTtBzZ9w3zt7OjG/lfe7U7TaCbs/ZHw27 sxJ4dilit/I298rv9XDL0u3oU8T0Vmxs59jmditvc6/4SH3uDSvoJ2x05xAiditvcocBAm7AF5T2 jjbhvHwQ0jwOh35phYeN/dnHFzNjX3m/e0U8ze3TGanxJ0hsu5W3u3MXasM7NTtm3aH3LmZGeafy fveh4w8hUpx6YcMn0S1Tv6AlG+WXb9/NjHLlTe/A7XkhVKTu3Yxz+PRkZoaxU3nDO3LD+TaPOdjb TuXdbu8VLrwrj5cSLdioHsyuSdmpvNFd0Mbse85JvxG0+/4wyNQvaMlGef/d8cwoV97rLtweTdzj IBrOujOfn8wsq+3MsNeNnb1P7tjPVCxowsZ1nmVWfaPzoD0JnNNRGLozyu5zyJU7lfe2q6A/dl55 rdaftFVU3t2Udmoe0ef1zMf77co72yuXduKDoH/XnVV9Msd02K68q73t+qzIfu+Fsyv/ZpfNtivv a4fuvd909t27DkduyVQvaMjGeHblyXblre1qDKnhsucPO5mqBY3YyB7OfrTfrry7HfJW8dINQ39m 9jDPfKi8t733G86+586uOZlDz7NdfWtTJ4vgQb+WUqIZG9+D2Y8W21O2t6kWVjaLJt4CF3x3xYG3 Yq77zuz2ye66/wX2SWnoVi7J3MJj0otux56LKygkL97Ch/C2FYSrP42GPb4HRAB+FEdwGLvwFzlw LR31foRXqpUu9wR/FFSsHHiH/diipTscuG0Vnp29BkYDOBA8hP7QE5NsMgQzmj5zx6qKdfON/4jW zdwWrEFcPXiTUdQ4B13v3uvCD28/DB7Ku+hYkEtOj+5as9MonB5Nd3y7ftvQ+NzWGZ/4/WFFqvyF M2H5Tsd+9fIwQ5Y3e85Bxw2hAsk0VgZmWYo076LtiRSpsSG/G0S3br/twYvvDyDIwd5FhiIHbhiQ bOQ6524fPkbfli79etjN0gUE2WCCNBQ2twOFzQxkKcc2j/d+5uxpLFL7Z6623M+CC9UkYrWNtx/M hwyLIU2kEft/IqLlwG/cuUPiNtLYB/YjxrcTdYJRt+mcOGEQDOG9nn7SoUT7qnki7dbatnZ07bkD TWdpTrytcceadpWr93Dv7Y3x7U5sMnElTW4u59A4/35biuD9IKgn74voBIPky47c/OyKPzK1Ck9p duWOnc65eP5Ni1RzLfv2R5xiNcg9g1d6vDM5V/pBuVKtIHyvN+QwAmZTRrLV3v5ojGsJcH0ehm7T WzKDCwAZ1eHSCOTcJzDwyMnNdJ9jMJZur8qlw2XnMIArOW5lXHl19SBuqVZCvPrAy9xsJUnN9OIw vgRSvhFiWnxzwmxCp1kNpOvGLm5pDzf0FA7+wIjBVCBsy+/2rOXBCZmOHsep06H27Ctv8pmBaNyE mw6S8LptwpnUxFRSMoATp9NScPG+iEUATshA5RcAykNt+y0LKL4zMF/oRBNk6iqw2mP0rZE5+WGj VY+xot8WRgdBt+u1vfhqSwazfJAHhuPlgTUtl+F55DZ9FyrKSjBpg+i7mYuXVqrVzh5yqjZS/X7n cub6T9mmVPGIuO/QayfvdaUz7MbiQTdzy7eGmMPJJLRS89s5QJBingYN3HUo2Zw3CgPisgkBdUJ+ IyQCHFGBgTDTSTN/6tNdq3U6B6gNIWmMf1V9P2sSKPvBrBzv4wl1K67P/viTp9+5TUBldoIBDINB iYI93+35zaA7oJ1+eun6qNVyu0Hd7+r3FCcUjoaeh0BPUwvKMW16Ma/fdku0G7r3XglwQ6+Pt0U8 XFuL36+bUP6T2x7Fj6dOKNcIuiXoPvS+lGk0cO9wkg1dHzdBphbHQwk4cE4teEeNu1HDH45h0tI7 0YQKtBOTQEgj1W8E+aVLMIJG8FAPxvnVzXL9cZv2hBJU9Nx2fEFtQjHaEPHS1fSCRIx68kLuhIJN bxgG/rAL0X9q4Tbsm3V3PHAbd2UGp+djZgZD995HwLBshUyNFlxwSmCij7pTC0auX4b+9VGj4fa9 MhDdr9hX6LxdYgV3g0ipKkJXy54Tim8+K4NA5Lkd90G/oJ0U5F+5uwx/TLntHgd+I3HtuXOmo/bH m5m6wZYcAzig0l8hwN9khM+8h8g4fCb4C1liwk7UNMTaGGm6XNnUyKhjf5mx+PMjCxaGxn53vF47 O9/+8ir6+vZ+t/H+w2lwMdrZadRaP787uf3FHbTH7z9t7A0GHz8WRRbEeaCPUYGmNYktwPea7ThV 1wW3hZN3gHKvHzv2tWP1goC8T5hz8ZffvMHI5d8ndnLuEZvPFzxBf1L3gJHOV3md33UClXZ+f87P b7BOJHXLlgrqC7Q3/fwrsVRkY3X9pl94f5UL7KBA+rIp5zy76efdkjRvhlK5zdWNm/7Ea5xcaL2W D828cykFd6TDfFblFHX38aZf+jYjVcNFxZt+5uoh5ewC4dx7gpy5hd7kXeqj3Geglo4dSCO5yuoG fY2OJ42+xJZMucmLfrYLcwv8vOZ19mJa+WZnuQ7H01hoTNTAoP3u4JqZo6arg/nK/9z0rdtilHVN y+b05AyDzLTC5aynxqUsVeTsCCWe0Wjbd6BU9uXRHufv3vStK0d4twb5V0fcwjMaJ+uKjw2dlox5 o0bX3edMmgD2BRaVff7yhPM3gXtyXySFGM0t+3qGyn+1d8D5Ncy91G0IVeSFtE8r1rp8oHLf7r3m bJDO9vVXBfau3qDALpHOcK1Xmft7krkLutie7KrE4dEVl9gBfNNxXOUryu4S7Ww/bZV/9pazt9CA 6Rats5nyu0Q80wtZZSri7RLxTKdflasIv1sD4Qt9bHU7H19wYaKi6dKaArWGUbI9SFWJvQsusUNU TDtsqhIv377jEkRK0z9S5Z6ecFd2iIyGO6Ldzx2iofb+UzkHsjJ2wH1SznaqxP67Yy5BFDR923TH Tnj0dpiCypUshRHIZ3luqXw1sDtEMdtRSuVriqzFS8oandc8r7efoeHEDciGvU20emt53ah8NVrb mHS2k4sqIGtimwhm+JSovEOZ09tbqGy6cKSAE8UMjwndK1kt2yCY6aCgsg9komzXmM8XmP+ZB2cM 5OVZ8GNZ/POs/fmW/qyVn1k6ODn1FgbAm77Bw5kSb2jlpi3doBJKl+7rTObrBcHg8nDBtClXb3sG Q7Fq+mDvYiFrva2OQXWTLI/Lk+O9n3mSaXPob7HoCVOpetn7eqL9cgqSWZsot6xgTjBSWoHDcmyd 0gGx58WaeaQtqlhcbGxk9ec0E2NSRwyGykaQmAnZRJiUMmx9TnkLX1w/x0anDTPyOppux4gmlrGs JaUSG5m2whhHSl1IW7moiMiUWcOVQQVYnBQwtj6pLDEnaVzF1BRXEpOQRoENRnEe23VUFltzkixY Z1QObDIyqIn6PTuyjVbdyVpMVOYBgcmxfahcy4rhpG0XqlA6WFjW8qALpgwIPNVSZoNUUTYAmOVS an9VXGvxzZKx7t46IDx5wrsJa8HVsdLIe+KkcjMJ/L4pBoKV3/w29Gqi49bflipbJ5oaa52mFdNx Geaz8ZeomfWnaJP1V0pprJOVblh/sgo4qQJNr/6yFbpxBcXU9XdaPavTLS0sHtPVlFGaVV1OK1D1 t+hJ4y4pdWjSumg9k1YS5aZOS+kwdXJaVYmXvTlDaSR1Oc3Q9bfoF/VXokbUKYa2UCfZSkGdyrq/ GKpS8VV+0jDW9swX+l2VToJtQ6G3vfZsc62WNJwb811JM8D7jw3xriJsmiHea+sb62u7W5upEO/Y JlF01qDutfXabm1Ngf1Dg7p/d4kHDyY8YHhWUhVq7VkT5YlY6JHAg+7/gsFX1VHnm0KTYOZQSzpP 5BJMkorDD8EC6Vb9Pp4EwU+cSjBrSHrzI8gUdR9SwQpXzjdbpRsS/2mjIa1jxTCQiDYceunA2/XQ b7Og9eAPG53lDk3eJec+GOKVlL4/GEHccki+qbu+CpRcDpWNNCp2s2Bs6DAOTQhaSltywNrFeNJE 8ow6yX99CWl6dg48ELeVFlaTIahYyeUwEtd9A6PLBrYLmt/yULheDVou79CeynFTMZHAjiKHNvsG XuYORkPnB3kMBoIppOHobwskrH5peAMRLBu0BxBth76OCl0OSbkQYSB5FtDo0Rk/dLur4OtdHwNS ufNyLcSAC7GPubnDj5DTjBv1A5oL2M1oF3tY9qBwGvJPYqZd2uVXR30lfi+BEkPEYMUzLRFxkJbb XCb5AO+MIwisnsfMS1ZZLv1h1OcYuZDnHd0S3gpqYl9pEIlpZdJ0BUH5efC650DVS2NdpaNyYcfo 6F6bJndfsU3qBaFHZ40lp80Kb5w2vkj3gHcXgX77S84gUBGAHU1zdAe4eoRs0CPhX/Y9Pm/5UG5K TFp+54YP5+jH+cHphUxeatMnaNGIeGjPbXBcYcS/BTfD5GtBkELs2KZHm2GbZg2GBO8Q0Y5Cc4qP JCqOb9SFHtbTYf3L0UVuXtkTq+612zxgUdDCI0HqCycvYE8o4ijm6+ezyjUkN9Kshc/9wEHPiHPs RhL8lhq5FIuYoyYIPz9fpcV1ubNXvLKZ73Ao/gGd6WmYwnGS5PQQopkmW/yETU7jlayt88QWt5/S jdqDdd7likOLDxo9F7pFTOp4Y01ijC86i4uKSouL1fYdyO26co0qF+wleF6qyh5igt0gsALisfYD E/omQf/DeLzZ8BY1PIlvm2W3qey/FS82kd8h5P+T+avZ110Z1PI806z8jCf6LHzQhLK+lp3RN9/F PO3muzxeluYfLIenmEbFJ7SPOi8/tYPx+6tfordHdw8ftlq1o43z/sn5lw/Pjlve/d7DsO+Oehf7 h41HfUI7yJW2E/eZ1XYQrLS7q5/uOqeX6nKKvWF86Ixp0siljSSVP/PdbCY1c/jh1fEv23nN7I/8 rvJOnbuVqx3PO+3ktXIZ8Jw/xbg8Tlv7H6OX97/ktcUr7SWtIDqsPk5b228etnu/5rV16nnghJ4T 3zGcu7Gfa0edn43bbwlAWtLJHY6529nYGO3shUaU+rf9LuynMB4mfkr7XTqwH3dd37g5ZpBar2e2 GZfHa1UvD/nM3nda3fr8+W6ovLa5zREXkgcX+VVJ7GovghdOC8gxP8ZjIYKDFE4hUOKKVa76weRA 0IjRLv7T5x8v/d6g6/39Z21M+Lu8afH3WAj4fmPPrPl3dzTsBCGl7o2GwalWL8WUxlN3cHW5jcIf 1fETf+E99WPfe4gThj9CFW28LUDbRN0NnUPX744FqRgnIR/nOJLlxHnqDY5SNErG9K1y7Eg09GDs WADnB84pd9a50HehkmrOB7Eo4kCNB0GpfBcK2ohf8+yN+rTnAhABIdGiM4p8Vz0kgqL8qm/fU49p Z2fyYHMUflbO8OxnJHsWbaO0+WCzHgZNFVCEe5oT/lm8xl94fbhvUIM0uXq80XPRaT7lRxBOcHER G/WD16U+yTOibBNCJ4IIvSaBiaW4MZhGIAgWnhivOn6y8Tt461Oen6FpH9PSsBTF8y7OLCKXyTnP CFrTb2IDJyEm5D0+UK8eMK1WHI2Hm3EAtRbGA6voeCQFdB8khJijJwoLP0Gj4WJMKGdIk2PkLft9 kgA9j1b1iBawQ9ITi70mCuoxWdeYLA/MA3qQm2je4JnVnteDglg9MBv5PR++VsHA7/N0d+uQkjGd enjJRmxfS/LCDp6O9SFQ03DA5k6DBAFpEPr3kIQ/BXewVvYIX5qwEK697j2e7NGIyRBlkFMItTyY 8qPhaOA3VW6fBR60IXIsS/r4rHsNd8RzxRurZzBJfh/1++MV52MwchpuHzKTHNf0A7gkhjZHjaHI /XjWh5+CkekGGbRggr196DMGqB8FXTyv68l063sNkurcEHyjBx8UfkqmYDq96py9/fRScWo995Sg F38bo1mADXrXtPRuJhZ41ZgwIP4w5Dd0XUXdhPucXgiF+BUjOSvhWMPOLl8VNRSfoskc1D/pp38g iOONKLyupEkRFfTV5DS0Ujx5FolQA53NGXuSdF2t4Hj60fRsPvBRQfEpOtPQwYhy89scHu/uvlMh o1jkJ2Heqk8ScThMx0/IEpjmqrIgOBc2o6C1A/F+EOD4m30/MrXMBZMP/p0EjJk4qMZ71DxR3fTz bbHQ8+rKd1UYrx5GvS27BDsf1L0OVgLGeFKTUy4z5dwiyvQtHNnP86SImnPfnL0M8L7wcpOOZh2Z EnLExNzk8QWk1Nym/aUtm0CDn/1CufK4CUSoaBz42qSJYu1s2d2qTDtPWP+Dn7crtY31PNlPnfO4 xTyhz9DgMCWgIuGNROQcWniJ/gaMlA/vWCpDWoAwo1uH4lwdkNum1YeDaX9MmxYd7WkwGMyDB9cP vEFGc0izWoYSb+zCERQ/HfHjWwHWZk9j+oOhMsGmS6gtZCfdrCStFZM0bRkxSGqSSTpIa4M2Kyh4 YONzSRIfpt7VLJBr2UHHUJCpmZUkJM2SFLPSXlGqM1YhJMoz/nRh/W6zRD4aQJnGBGsGD33+oPpQ JPKW6hNJxksQ2nsedGxcn6X6+IsVAtHA7fWUlgIvQbMbMgkN4YjmCzGIxxuJjeKRSBuGjJGYwUQk ghRr6YhAZ+eiYZMn2mzNoNa/uDQMvYGwCZL0Rj125R8CDrDHO4dYIz3P7T8iQTaLCZK2SxkESel6 ZItZco6pmXoQ3C1hcx6O6p6IXIo6tKSNXWhOjefCinNgLFlskagsSlBW5dGW3Q0g8kS8HakHAIWW T9Yfj4JbxRRMG80MChpqWFYJ2ppYEq+bk+1z1XDMVQYJjmkDnIHjVQcHb3AekD2lb6X56sR+E3yj JvRA+OfsTggo2c1oe2X9eY5KOVYY8xDRgZO2i0TRvAT65CubzVkRyZH3watjoq3GglN91MbrpZAt VgdhwLKzuAtQMs5uTb/hqIzVaEwFew7Q0JWctt+inoqYIguYH6unIyrKYSvByZam1whuS0Vjtr1S e+6cGw821oMvvK3TcXHEyt6gN6D1ja7EQiN1vA6NnTOglRYQqzABDEYhlOlcKur4gwGqardHYih+ C4+NynGIkY53w2IcN547+8VK++J6m8+JB0zT53f8dkcPojHSsZq/GPzW8wJJ8uq83+8/yOQ+SBkI kolcDHj7uXOMAxtIR+e1oJE6sPFWq89rMhGVhp+4dDRqdLTrUbYJJaBm0mddwjvFSzhtWk56/kcY QdhxMW0I2aNEZGr9iLJg2HojFIsCPGaqaJopMasNhYeKDrOASqxpCIitER6FdbWRBQhha/XatNqW yhhdHm0od4uHMm0NN4YysfHA4FiwIDZfPQs/K25vGoISOFxZWYX4tzYL4beS7eATDemaNRs005sQ djxiNZ6PrfzxKPGsmBJpc71BiakGK/qZtVkRexoxw/GNgrrcinNqHERpX4vk4WWldZEmtF8aMWia LSPodx6PFOtrxbTIOBIYxJjuUrCUpCmJFGMMHQSo2PV7PnYM0YcQo4byEZsGX1QRuU4EOLW1srgf 9SK43dIWaDQv84XYaYArlR4IXffQFjH7B0gM8rJxSJy2Qf2iVZdjFswQNH3SF+Wteh3ZAYHyYvWU Pa/rZ5Yf9eAuI6tB8xA/ymEeApnJHYnAbWixgxHJBh+wceEd6yB5O1p9K32s4mh13CXgyYL+xIeW FdoKva7TwtXbocCAUvQrhB4RofEEfAvzQeuvkglp061HI+2qQ2VSBk3FxlaeRTKv6tSFFh+aoNLD IV3WMyvRePHRTOv3PRaUSVKDMk9wSLd65/FCJ6b+eeSHsQLh3o+AtV69mL7ah5P1C32aGJDoaI+R +x6U6EHGI1Dx/AhYZUjrhw59orNlzWvX7wQB70IkJEOOyE5g+Y2b2VqHS0OSQE60ZViOTcKb9SXU 0R48VVyWRiHMJbh03MHAY6HF60YeL7uiZs+7jK49azfG0fbDvcxI9z7w5VF1wLvzxrw3sqpTliXG SUt1xnyFHA9zVOicn/IMgdmiBTbhslqiwyc/GiSALMLuXQTlC/ULbXPXBp1xxKIHFECRMAgixT21 JFIwvjB1W3iPnWqT5GseA2hc/DA+Q7LQgqm4oLfzmIZyel9xLrXo3PI81R5NC0h8IfTFLRJNiZc1 cfzWp1MaPy2uxOB+YD6qkzEX1B06Oe12A5HF2baCE5XXLJR3z5gTN/k5eCLEDydy9ApgsY3b81sL xhPxzolMLDHrYLLDzBH0PekQbhhjgav1xfOMY2fI8krmOLg24PACLPar1dxXH94t7YjLOjpavtEo bMKQMhKdIIwuorVTJ/4hzB5Q73NJ6lzTh8GRjlHJAoQU4hceWJQg0KAlGKX7IkNAO5ALdZ8yLvZH 2o6gVVeMBDH5oiaSrg4hfzGngtDogwsTYNw9ERWEnjq0hdJqlRkTH5AjEYmF4YE9eTB5QodGPExt uD/0aMCG0Opp1vjgRzRzY6OTzBustQGgiMBYhDgb+DEDPDbZowbPXWZ4xkRSAlLcHov2yXyPy2FK 5Il+6e3ZVsTzhnbAmyegsbeGNp2BaDH/es6w8i3SWTH35MWzs96lMLArCbnB9Zk1VYLU/Pih9loZ tLT6akZQa88CT/ty0Eq7GtWN/b0MJNY3PF9dHYXd1Re0qQ8ukXByiEubq+trG1u7tZ1n65sbm7Vn G7UtJeVzmWrtxBh/2robdFSkYYbjHIzEUWE2eLWv3a1NJcee9GkitcOZcattbOwcq/cnMMQNeQWg AFD+tHOHUal5pQnfCn06F0ern4i/Q7p9XKJDRxaEzZV2G0KjcrHBnRj9EmABrIK+EdsZi15ketOK pof1l+FX5bd2/H8vJzWaA2XL6wRflHXoEEFDIueAOe8kOHXa+e5w9lCRnaukZQVg/EoEytg/5WZU 26pLcNckV2OQDyVLnOk8Jctk8yGV4CllQU3nKVMgPRpPmdJOZZ5SFt5UPlAaUAnmlLOxZdLzZiKz mrmm4aOwoHw0Z2NBc5ACnGkuYpRkWPmoVGdYs3b1UnTYj9PVjd3ocO+TIHsB3bsfu7TmYzoJ2Lv+ 3dcH5UZy6LNe3p0IrEq385u8+vRp/045mrELKaIKEA9Nu1WklFj5jWXBv/WP/fNXAj4d2z6nI+oj b1cplyjJabeSbIzcJwgqJ2ilsLJD5KbhIy3eY6fR1nTiyzg8c4vO7wUKYdObOeu/XFD338MrFrhX cXdNzTwlpvDv9OikxicZ7dWLo8vby4vbg6Df8turZ7ANoCMHsN4N/Tiyfapps60pl7TiiIUpSwiV HBDhcSNCaxkuYY5pOi+CLiJ27LU9HGyp2gsXzhR8Mf2vECrzg7IBscsEcFRSW+IsCu1Axvaz4pwo G01ccAn6TPHUEZehZqwmY91Md+j3kNFmAnD+QxCySWPQdYcwgNI5nB1x+RzscLAghy3Ryj+ANZ2h 441hROKfDzTZvKH6ILhNcWrgT/bGM0CurKzk9aTqHCgbinNzbcmhf/7IUJx373/1P291rvYG767G d1s7tfbVLzvN0ZHb/bK28/7r6bPP47B9tP12vHdaFIozNR+0b3jKHVxrCcZac0cj2W3+LXVnB/DW V5zrxUV1g2Zx8bcfElmU79ss3IQ3fSkk91+sMnJZxihj3l6xSsqFF6OkyYqtksKvjZIW57WKCn82 iup7H1YpuSZiNm3dxbDKylUPJ3vFw7rewbDw9/ofP0y9Z7FA4OWORlJtIuedEC/q228lOduItYXw 9oEAqxMvU8Q9xd/FxbJ3IRYXnQ/eU+WNNNO1h+viWw3GKItz8sLfNIZPcq4zxNg7891ZEBgTrig8 zbua8JS6UnDjILtUzJsH13NeJuBgNimzXDwCC/+7YDDnBQOZDZXvE1w/VQbpp8boy3WCBQUTKDX5 1vWfehvgOuPsn113cPp/Wt7Z/xrZBb78BnDx/mfOAzaScuF/mnLdv4Zbft5k1/TMcci/nuRvb244 7KIvgPAX8cbAZa7Z3p7XKFu2Y6ZZwvIeG9yf5hvar1O28uJGYywXsTUqlwneE/MrpBwvFv4jnddT 9KiVpkdtoazn+TWzZ3EgL9zx067niFTw13MwT1FrozS1NhaqBIr4xl7hqV5slu7F5kLaj0hYTgmX 7qd/vit3qttbpbu9tVDODzvVwHbpBrYXZnaipibpzP/f4DEdd/Uv5CEd4zTFIzou9zge0DG4LTre px2aje1Z/J6N8o/nyJya6zul5/rOwv+8jR/R2zg1Drulx2GXmZrpKnxtegIbs0ichRcewyM4he2z 0tg+w/7JxPhLuPOmpci10h1ZX8vsoUYInKWb79S+D2r+VX1v0Xv8faK9nsS9VieXEOpjdyGm0GNI 93m+tKbEj/3VXMP+n+gTu7goHVb+r4uL38TllRv4S7i6ygh8a89WaUU5sl5X8lelWSW+rpAxq/ir Spv/2e6pTwvcUqXvfyEvVEFI86TY6RSHLpfP1I/rbCrNPaZvaboDw7+oK6ng+Y08RzXLVqok/C3l GKoLXyunLEOAEZetxCahD6tGEfHFSop8FCcqo4S4WCUlLnGG+e0HPsqUd5xK1ddOT0Y74hiVlIt9 kIwy4qOUlBGHJ7MAe0PFBSxawtuxqBcl3IoM0444BKHZlMNQQcPiihjXP/6/lwbK4sNjQDc9caic eOnE+WwXVX8RYTDl5Le4mC7kOCSwTZwbmdKT50mm+MQ5kyk9x/zJhzV5LmXqTJozmcJTJqFZHoNh +rkVjMSMEy8DZ8okzMHMcDsrwK1wYmZKTpikVlk0bbuBFTSduHQZGIjPVxaq9F+7bRkVxK8rUwFY XFtOV0YdccxayMGLWvnJKCguVuklrp4fYT+nuGG0Z1q/DSjKoIfnjSyrt1FE2bxRZIoVOaNNTp0R /jz7saIn/oI60/2CKr+qoR+3IHm6G4Q+nWdYdQEw8760cb2+traEFxTFc8R8b+PZ1u765k6CUu57 GwZK8ekReH2bxzdQ2Hx1QwefVtYxSl7fWNusre2ure2kXt2wJgvqzPj8BsFf33lWU/D/2Oc38OLo hNc3/uddxSvif0+EzOSbp07V4JWs+WjSqcGntrJRpbKWvXC1gTe4XGXiY00RQ+efiQcknWRobniY aIQ1DqGVHeI0YeePXP+5s73LxC+OXC+9ikc6iVlfSCxRZlmP2U2m00IOTdJYocUElYqRsDd+frc1 HPueXx/efhw3v7xt+TtD95e78NXPG6/339bX9jvvB+++vv1wevKokbCVwyeRpkErSp2NickYwEXh 73XHErI059qRonNfOA9xDwx/hOe7NZdLmFsPOy00kXiIEYoDrRlihYc6DsOyDEbEKgDmlvBqY9v8 vTA6mBeJn2gnG8Uy9YF0HKs2jIZwFiY2MFI2Ku7nEnFCxt2+md7xIuDCTLrEwlKmM+inqTfeT8Pg x+9rxyH9lfkg5MZGQz1gRBPlQLLsrEVmUBc/Elfod4MGnsNtO3une7mxpi0AbKvQWUPMyWQND0Pj d8dxu367T11ssG5FUP7QCRjmsDO1KB4wL1v2yu9ly66a+KzGuDIYeMIVIN7MbUFgmJ2Fn1U3Grgo Wbv5zilXzUKqZLt5k8WNGsuNyF1pN1Ya7qrXb68eei2XdmjKGUjVA54qxhX04UPAS2iPB5jk3/TN jFT/8vB5NSJpXaKalSi9cX7qHB1eZYqnhkaPhnzpGaannIT1YDsEF8gJ83Go+bDYFJSnTAsq/VSY iiJ6TubWKgoqtFEJyVb456TFEq82r4dfV9Y6BYuxsKGGZcjUHqq+kgYhQ3mh8qwIme0RO1EQhe+J HVtJNhGcC4asb04cC9jZpqPskIqbUgFiasrZQrO+aEQcq+6zzwAlRa5SuqeagNrRliLh5ILX3MEt kcuS3Aj2XzoT9NnGyH0SomSp1qnxkAZycVe+dF7+XapkDKAZ/0ISbBe2D6h13UZH9JMSMbfU3aOk kLhtlOHYaScnNYZJQjKMefPGCGE/paGc2SkGspWt/c2VrcNb9zb0IEaTrMBvBNsYXW/+lmAiiBjR 86fRAw4QYfzaomzNNPT0H5i7l9jLim3hdAhZZpfYvM7mX9eyB9/YPGecB/DsAiodiAPddCiaxyN6 DUQP3TpxrWXYHDG/N/YUtWvzURtaB7HEsadMqg+J9SHjZKE9LYgAJKuIFMQDY/ha0CpWPhgjmIq7 eCj134EsbBRigTCeI2BfEVupDBeenBGfCptWC/FmOj3DbTg55snzC2n6Px6x1kEsCChdv+/h+fDm rYGJRbr1eUjHVmNwNL2ChaEb5kk5QIPh93AHheZRA7b0MU8eNqvD9Uu5WC053jB96/XxiLINohhH bYWzosN2ig5zNLSDhrjjqTZ25qE13O7ZJZTOouEQlEvPH6L7irfi1AnFLhGYDi3jUdhdyEBPs0iW f1g4wOvXyUmo7w2hjuEqOULSHjbtAZtboaHDaD+qoCRudTE6ShVQVWbqbOLrHBZ1OmMpiY/TJvN+ U4za69IZbqjkKPWR4JChbz6QfZhio85B0KXzta+AqUQ85s2plaGeunSaDOoKnP6qDIbE+Ho46kcP fuPOPBKekXi/rzNmgcpToUsMKIYXp/CO8cath26zciwHgv2gVtUZrYbOA/w/r7wwZCaXibw/HdxZ cO9eNoKhHhh8O5JQHdao796PNHryURnIW9plQz8QIOqjMpDzoxMBcB5i9jtH8HFtOicR6F8Z2s8j r+41BKD8rgzi0o3u3GGj4z24fQFkplQG93F0Fyg4/HMCgDTT47v0B+wawNn25frpPGHf7bdaahHj 54Sm8wHUXZqtSore599Lztuz6mBCElqGmgr76qs6GNopiINT1bdnClScMhNeB26XToTqMR/1URlI cxR23J7AOOTf7N4yI0pHzR5tx5pU+qsymGPajyC2xJCMhMrA2iOvO1Bv3r3g35VBvCSZruV+ERjq YwYgPb8b90h/VQZz55E02Fc89LV8VAby2sdFRpqJJgvUiZWh3cF5AeKSUrq81t+VIZGo06mHfrOt Vu2b+LsyqDdBv5nqoCRVhsTSbBS5o7aWAZKE6sCCPmaxotSpfC05Z/uVIZ3CaOm5KqiG/qoM5sx3 iXG4x263G1nUUhmVAb4dDt0HRSn5XRnEOUm8YT2gQ2hbLVwzZSbOdIEL2gor+V0ZhOyjgV7B8Wd1 QMNXQacfnb1RgIYrDifQNHhTGVg0atLOonaBS/moDOSqw9q+uqvgqG9n33yVrywsGiXi+gqQfFQG 8t7tN4LRvdZKx5+VAd1j06BDeV1JVe/V95Kzf1AZ2AMdl8JuoPr2QX1VBvOhQ4e5bmJgka/ZMPL7 zYhpnCzcD5JWGdYHeIgPvHYMhb8mgMkV+Ogc2PL4+O92cbUjVEqw6aGVOlu6leS0+ZKKebmPxErp 8tKkEpCOce1UHXRVEsJr6Edb8zuaD9FT4o3EfRGQWuRx3nJiZZgdt64gaYbuiNrA61cHJtz30uuz 9ULASpqjEyvD7HpuS4FSa9s5deEI9gYZlcHRSXjUuFMA41WOPiO5Mji+5ECT9pOnlRl6GjuvvIzx bDo8OMGZFh58y4BM2j7S6yJnXu/T5uEN67TpcoU55/ZQRiJ0B8lA69G5kMS50fUeGdl6d+R9cscp bDnczStKng/fy6DRUJvFnNjqZXjSG7gNpXCIl6YkTkA1H+ZVHBtT9fq4OuP/ALe9hjuINKxk8cRZ E4CWoOFxEDzaBD04VrIO/aiAlWwoQTRcjjhsGpg1QjL4wxE7iQguU9QKl7jtNep2YxWqm37IU9lt fbePtiRCGzWlZPTC7DId4Y/0Zmf27i0snaX6kcb5mES00PVhpjFZlJE8nVPlQ5Zqyu4U75VIc85V 4mwwiYTHQdhI9l+lEJfEyjBZjarViQrYLEAGm+vRuhrtY75yeikSjDasU/7QOXfDru/ChF65jYP9 g9sLwk4JaPTp8GdlQAF3WR+uZhrfIsPASa/nt0M2w5nTyUhWzTnw8h8xfaq1TI20cNE1GHSCvtbL vXEdM3ECxDRzYHPJG0R84NxpT4DnESEYeP1BPKxwy1GUpfRkuCndWXZee97AGZJ4BuvtrHPBIH7D bySuQMSaOqu+IrW3Cl+AL4lbUHydBsrUr7g97A9YtZ8zOOrS8QS00nRkK/0bONXhpojQsoTl3uoT /BqNGx+7mx/ar7X9E4WT7eNV4PedEd//7KJNvhRN6KurI7k+H6X6kbVflnDwTzA0GlHGLf49xcc1 jo8o1GcP979C+E41GZaVR+SIr7M7Ay8gSX3JwQ3KEeLIsde253aWuFyHz1pLTtQPHjgLcRtw27od qUOI2y/0/5zJf7QMicvF1VQO/Y8UUdNw3tUjrEplHPlL9hq0+s9wkX1qu8Ze57u0FvlVT3OTXVgB pRYXLRfXxUUk/k6CbeA4vztwM8V/4UJK/6Wc58vP478oiL/Xsgae5jlRWthN9MvEhSdxoPzdUa6R aPGm/4S9G2/6k/wYFxevYUsvokWOg8Pqwop0djHreajlsv8cn0Lu6ZMnh8FzXGFeXJzgCgiqoIhy 78tGMcuSN+3fB9L+4/p687eiCjnjUc5Pb0Fwm8HVTgb7yROJR5aQIeUJx4jXZkI836krxjjlrra4 +A081L4N7olP2dNcXzI9Yyb7hzFl12fCrowHmML1WzhxMebbM2Fe4Ka1cH29MxO8rDeW6neOQxXN sHwfKl4IWszIukjd9Kc5Q1XjtmnXJ814n9Cf2JUJvbhW3ki/IdiN+s3du057FnGJlA+SlNROQ1xC f0iW5f7D+VlHobhkvmOPrhXnqvJ5XjtS9kEG6NpwweGMxEVH5YtnjeTJb8l4K/YGzlC/JSPPC4ZL nR+dSAlxa+E0+SnJppMKZ5oJUoT9TziPf8mMefJEPExkROAmIsOAX2qYYs8PzhGnED2C4sshGepD ZVm+GVLAcOCQQsqAwLnqt2RkPCm4iPhaSAltKOAM/SFZhrMD5xrfUkC8GDhPnBskWTkmcLr6rTPE 10DlyIdkKQcCzlGeBSpDOQNwTspdQJdQVn6pHPsASG5iuefsxLCvstkUz1mWoV5yDQM7FzEs8KpA YjeXAsqqHueyfpaz9IdkKaM25+RYvqWQ2Ei4jPyU5LQNmguYiVJMrMucKT8lOTYXc078pTJNE7AU 0DZiVUAMu5ylLL6SYVhqOTOx5Kp8UTFLnvyWjFhfzFnxl8o0rKScn5hRpYC2fXKmNouqLMOeydk6 QWWLdVIqWtbLOJ8NNlJVfSyotZ5jXORTKJ0VwbifLC6KwRC8XB0x2wi1oFeqMvUxbMsguBCXTFnw uKht6UvKZm10XBxGvKRQyuLGJWzLXFJWGwQMkxqXZ6tbUixjKONCDfmdFLNsX5rgsX3MaDWxask8 ia1eqoxBYdpmE9tVhswaf2V0YmhDyzhVBJHNS4XwYrOQCVFbkLIg+UGIhhdm4KUsNwzNtvBkx+JY ZvEVwrFkByA2tuiprq0yeVhpk4rGCxPzWNY7/TeugYlebPTAKsmzafCUFvEpZcaQtcOWBl5iWRMB o5AxKMiClN+x5l+tHaRpC4FRLtHmJ+Virb9VTk9Z/JaMMqp3XUtU9gqgVqdLk1rXLplaSc55Sn0u OTnK00SzXSxFZvTkAi2lx+bmzIQFHgVWVwte5VXMMS5ZdbXqY3X9sNW/Uqpo6cCTWFHMLS8uTtPn IhZnsYaYgX6jWCyxym/OuCvPdgvCrtR2atu1zaR1K+yKauTbRFd54rlra7Ud1DGDrOg4CUaQldra +sba+s7GbirIiiyEecKrEGQiwDMF+Y8Nr/KGFnIXuGcV58hWU/1baL8xXysofYHjY4Y5Wd/9Lwx0 gnCtUB6KhjXHek9LOOqMVzkS66p6ISi23edlJgYfHdNDqddXCqwb+GEbpZKr0Im9iV8piBD9URm4 92gKcZzjZFSSQJGInSzhHFFEDF+JEcq4aj3p7hV/fFQRWznAM4IIj53BiAOUyCNScD34f2gk+dKx S1kLhr2W1bMJmqx3IjisdOOSSd1+1JKgWgKJFTxui44AEkhUwk0xPFB1xdFGhpYLa0UgQaNdIQxr 8RQJVEAhTuq5HPlTh9wX/bFOlYgyQrEKlqSyAWm0Lak4IM3IDTZ4kRQHpJFpF6/ITECazKQumKrp CcrGgcXF6ypTi/ZXY2ouLIqma8KsufkO9Tj8dcVZcvMdZgfV/NNmRXpcmKXFg1ExJE9j2fXO74Pa i4dLf/Tr+c+dXz5+cG9/aTbOvvbeN+uHp78M3M+Xwce1lz8/fkgem7lAQlruZ+WitAnb5o4lBKs0 gCyTEdcK/EpY0R6HvX4nvhdp77DsTVYLqXiqp5i00QnENuaeCB/UEc585XMiqXxGQM3n8eYuG/aS w0PIenKEH6PlVQ+6iCCMjT3q0LSgVRfR970fQBEcOZG8INhASHd+aUYZuFhYcPGsTtiLVpxLwiFq jXnp3gdjbxTiANZwmiGJMLyG8PgYrwbuklLsLzmINh3waxushxXpo0VFqCkJDgzLhZhoUZPD/npU NyQs1RsJzZztKQm14qzLy/KG1yYeAJI4yHgUTGpPHKusq8fRF7zq5fPLW7Rygjbk0nFi+Bv19eMc tIavgDnjILeur06lSflKRzIWfLIeM/vEf/nFEF+9uKCKi+tAtvxV8IVGIH7tiCgYP/0AtsZsYUJl jq7e52jTElSZ+O89TaWOvOOV7HRqiuDFMr/hGTvggxvKQxdmmGYtGsbCmnpJiJvw+rBl0LqXiNPG YzOdYLhMkjIUUPJA3fPYBEfzoh8t4n2OAcTYDp5QIdKy0VEEVr8X9OMHPBIE40lMPPaLH/WSHJqP XVrGWBE+3hhpuWybomPkPb/4ceolUT0i5wLMg6ZuC1ZQgiOTmIjNqw6GP1AsdipoIQw/esevwdH0 aBCCdYeVKmxaDtxBPfiiIugjeLWc+SM8CAAHhCV5/y7Job0Kx1v5Qkg3UI9RHuDRPgGE6Il9PJFI 05Qfc8QQ8JuJlNB01TN6erjaEncd4cThxaDZQIcOZvxQk3oIEE8o8IDRcqXO4CQrigK05aIFwYQq 9gbMPYQjOQPslJjLdDBgIX3FuZC4inhtRPeCJ0vS8fjJIf1YWeFaOQtgyG90HLzEFRWVUnHRJZo/ rw7envPMpthUFRGYhyKcZMvvKu/MCf5XBiOqpRnRZY6M4g4I8iDkd5tyvAeEcVTjVUSMxI4qz2M+ 8L/JhGfeCnutRCJRsnBEU9NzwWmZCfAjR8xHSEyTkKlgdiBUt8tPj2WIESOgbbSorqYADT3xku6w 08CkizyWsSLnB35SrRlAsW4sMg4GCvYTRAN/iIehaNn0icE9yOtoThgEvQWZbUO4/jT9phm3bghb M9YlS0wy56RjPXm00vnBvXNpPhQ1jRcMvQG/ULIwqaNB2DeedvHx/mKyVcjuN6G6sC8AmVBIvd5U VOKC5UA+qLdg1Ro78nDZqvGIWSsMeqaMTHstHJymvNTHfId51IhfnoyYmp68LGnsKgWIxcK52PlT YjlyimpSp9kBgPrAU5nqNEK8kcV7R/wKnbVC1UtLowFepcDLbiToi1YYcJM1hJcyu+m7VLHLQbrF AgShWk56xBs+g8zf8YVt+yEe1uDXwPCQEvsIfBHfGK87AB/Uj+tEI1ZlKv8f/WJKTiuC3uTgLkBV uXmkKKHRj2X1e95hHpTHjn7XKZ41KZoV0QbDbvNOJhZPsKawYDWCxFnk5ZEcvHQRoKDFrKkIpJlx uGp+ZkVwffLJqLfVGVQ3vFqLBhs1ypD0244b3Q4fgtu+9yDP+iiP6YP4OWrGRoR4sHVzpYm3GSYm y8/aL4/hSJdyRFubQpckRsOBMk0R/py2P8Qhww1HOIw3r3p+eq0Jay6EG8KREoZ4riPgxzkxYphP VHzadCwSNedqPhZv04wWwm+hdHug3hTScoZ6LA1v8qmnGGm/lUfQtMiBuyrFnO1SXoODexMiP8M1 kSuqPdPHI3COOxoGGPIG2GQWUnqusrO5jgL/k31+zbfCFHuRmufKy04QwEXMwevDXIFb57kpyiPb zz1vvl2oww1JMDNNOaszsEDhwTA5IQqSVlKCX4Zo+eCku9hFU0dpJFWGdkgzQ1370F+VYbygaTsM XnTxrE94CSEiBpjNqgx974yfGT90xyf9CwjgCbrZrAR60fJIg5eVXQ/gqBYDNhMrI+w+0Pbmjb16 GDwkIK3U6mieBcMrv7fXbx6FvrrWnk6tDvScuHOf2MJlLwA/iMGm0itT4AAT23P7ePQhUfhYqZVh 6qdJcdcC74LrkAy5WZWhHwdB83bf7d/FQOMUg6w/yKEFxws5Q9IJrC2PN8VHD5LZRZKBnKOPA2bp bOS4fJSgc2iNGne9MZ1ehiN1Lygno3JnO72eiv6jPiZASDPubXwxm/jJeY9H7DKWGYOjZBjKinNO TKqopqy6hLOZKQkMxcYZEUvYOYXoaMF8oi6SCDh9qyQBxWcmu0Zb3fdt48lGiKxGaTyux5+WyDII 40jbeIUYv691U7/9oFFYuOlfxzApuc1eJwCmKwlkAWZvTy+DB6cG54DhGP+GgbqxZe1D5UN+4/eZ mxOKW34f9YJPfkEeMGFXJUWIxwjkjd9m3ySQrB22WgNKxmmAGgOuIAPGtZI5nF8/HiAaAQOCLElr IArjYGeRP/WbTVrjVbDvcZW50DdBzIc/q/gqoc83UObC3oAwH/IHJJm5lZBvoMZcyBsQ5kP+AgpK 2jaqdyKUmvP3JQtovi694zcVVV8Wy3VG3mGcqxsmiPk6cBg89Kt3oalqzdUJG8h83Xjhd+GsUmVO tbnKXD0wQcyH/wFtMU1X7wklR6EhlebqggVjvj68rob93Vx4q9rzYbyHQ1S1rczlKnOhboJ4FPyr 81NBYX52moHzKP2ZfZ8QfLJMfq7uZcHN18t3A6tnJZfLaDB/fywY83UC+8Ys3QDTn78jKSjzdeUq GDhvvNaQukPH6rBaf4bdBteaqzs2kPl6sx8Mh0Fv9g7VH6NDNpD5OoThEZl9lu4Mw0fojg1kvu6o 8Zm9R/XH6JENZL4eXXZGrVbFE2EkdebqgwXjcbpwPArZIjFDV1pS9TF6ZIGat2MujKnV+oMqc/Yj ATEf/oe4yfQBJp2Tamf2JlWEKcif7+CeBjNfby7dakeUyJ3vfBLXnw/tgw7sX1UQh+tDdy7UDQjz IX/0ZdClqtXUbZ5UmqsHFoz5+nAeDMCuK3VhIHXm6oIFY74uvIEbi+Bfcp/rUo25sE8AzIf6K4Rb qrhJf+I6c6FvgpivA2+7TY4kVG0NBN3mEJXm6oQNZL5uHLtyT7J0D1ouLmW35tsBbCCP0IPq+meg ML8OOgVlzp74NDurnc1xMWPoztcFA8Sc+Iee1yQxvFIHpM58PTBhzNcFRDHh4CzSh5KMKVK15uqF DWS+brx0u0G1LnSoxlzoJwDmQ32v3/a0XFQSd/hczycYGRDmw/7Qu/crYt9ElbmwNyDMh/17n126 qqzfe64yF/omiPnwF8Sdg2BQDvlGMJgL87j+fGizw1lC+JLzJlK15uqBDWS+brzxnEN4zlXqRZc4 dzDfHmyCmK8HH4PR1aheUaQeB6MhVZqrCxaM+frQCBp3bghnzLBkB4wac3UiA2fOjnRGjTutiSrb FbPOrN0wYczXhYtRn31yK82nUCrN1QcLxnx92O8iGmelHtRRZS78DQhVsC9+X56/p9zzjoMywx9f RXAQ5zG+HDwpQLO+Ef7tIzQLQsl1UHHbddriHbtkRp9ouXceIvC6uHcod+5g4lGhX7neEqJLLnNj S04/0L84+ogUWXLqfq+OG6hc3+31cbNrZF8pLUPdv0g85u98J+rQ8rjTtzUeqJMrKyupK9goiYlY dHt6wdG5ky9JS/QbZ3FR33uWO/Sr2t9aLiwvGveUF//7bicLjfRd5MXF9P3jxUUHUYOqXyn+x9Vp +n7tCiAV3hRGZrlrwVJyyh3gm+/su7833/1F7/zefJe+63vzXYk7vk//d7f3z7zbizmYusiLpMe4 tWssyRqW5Aw3cSWQcuHd2huJrsF3ahExpPJdWgV9touzT2e8MPu0+kXZuCnrgqzGHhaIabdhVVnj 6qtK0fdc8fnnX2oFFiVusCrccy+PznZddXFRrqgu8t6ZCxiN5l1BxQ7xmJdNCV7clr5DurhY9d7o 4mJMzIr3QlVbeXdBGegNggDd9J3r5OJlEmdv/kudC9XubmrhKL6dKTxjrguP6fuWGBHereeCOuUa JeDPfmcStWe4IAnqIbRicgXyOnt1sSgg5bSrkAt/04NjXmWU8bGvI1JCPFX43o0kyBUe+Z29wacy spfvmJTxPR51pU6SrNtvupx1e00npu+kSap9o0zSste+VEZ8deuRLmwpsOl7VyqZb1PxYHJkW+tu lCKlfe3JvNbEI8UXl/LuDPFWlb42xNeQUM2hP3m1VE7mthGhmL1J5HB4Q1wHcn53+OoP/de45nPT X15e/l39Xb5B/NLkpg4VxVFqYNykoaR/ptP+SV207sioetYVFl3RSvwnYWeZB1VN02ynK5ppqGc5 y6p6poukrmemEaa5vra62azja9x6NouApW5DKDDWZQUNwEqkqpl7CKpy6pKArp5KJgD2DQBV23LQ 13WtRKqZ9r3XxLM842PyWalUO/F6V/W0MkjX0N9U1vY3V+Utd3BdyUpMauaNUtYH2waSGqNJPtYW xJwhtgHnFOA5kHILjmdBHiQ7Vc2DfABpn19zKqSAFHn0Kkgpd1sNKJVMcCb40ipQKUdXDSqVrFDK 9fnUONkOmTFOdnKC0yRYKefOGKkMrJTnpqpu+1Xq2naqUTnlM2kDsV0ZU7DsTAZpeivGkAxnwgSC kYhpk+MnqOdN2oUvnjjpDGCQeOjp5mMfurjtOAXMw/SNU1VM3zVdyUyjammvNFXT9hnTde1Uqp3y B1OVbW8tXdlOpcqWJ5aqarhK6XpGElVK+UCpapaLkq5oJVLVjPeRqpxyDdLVU8kEwPT7UXVTTjm6 bipZ183bUtPeMCYIa2slGJavi65vuqLElc1E1LS9THRVywckrmulYiqm/TtU9ZTzha6fSiYAlmeF qmy4PuiKRhJVsn0aVC3T50BXM9N4AZreBKqeae3X9cw0qmfb8VU9y8yuK1qJWAT8iy3oqlpi49Z1 khQQNG271gS1DcsxQe1krJyU1VjVt4y6uraV+E8ORWvZa1Vd25qqK9upVNuylMa9Tdswk16ncwDC tlFqIJYFMQZgpVLltHVQ1bZtd7q2nQrZ1DbMqcqm4UxXNdP+6UBYN6MalwmJ/52oM3DiQNW5Q+Nv rC05GzmR8TeebdRqOwkSZSPjD8KgF9xCg4pIxU3gOGuE/Br/QR0zQr4O3GxEyN/YeLa9u7PzbCcV IV/pTFB6xgj5gLy1+0xB/kMj5NvjmLKHyYnzL2B65Dn4iNHx/+TY+FOjSX/6snG4vv/5Yriz0e0f e/Wjy+jloDXY+OXV8qC5/yn8dLT7+vWri/uD/oOOJv2HxdrHjyS21T40Wg4sLpgMlsXB+cFtNkMP ZqwlKCv7Hs02fl52yVZygvPAzINnalhtvQJ7p7gBGPEHRVMMTVe7G9SpNqvYWOPI7/8tKysoOKwv Ou22pyKJqwUC2xZNS1Ffw7ADdal66MRxm5gdlplbDN38sYcw66JPhzp2CS/cGsE0odxhNSRmrtf/ FIylYSWPVDaeP1oI+o2tT+shz8XiEPSiJ9sTPVk8/5NI9IuL33CYFxf/qJHFeOYN49Ppw5cmIKiS oVp+yHi3aJF/aB68C7/8fLz3+cuLFy82Dj7u7DRGJ8/ev/61ebX9tfPp14u1/V/fvdk6Pd181JDx qZCP6c8tXc5w72lsSPUPYsBPP0EhdYoA1nQ5OyKeerciDq67srISBWwyHoZjx227rAFvyjiE3tAN oZiKxnQs6jl4C4DmEgw0GMbICe44tn/DHcF+OoSTh7k8+SkvmY1+1KOmkna5B8WPaNiR/2IOqN2T lrmQ6axkhKAcei2aqklTL1wx6OOB15OfjbjCp0F33PdGX/IQsCNdlqNtPHQ5Dyq5n4fvzn/5JAN6 dvThuRO/CqWeYnIu8Wq08fZJHlqpiIgT51TOvmFh+aS9LuhcDkct2ObcoRFsWPtMwHQl7miFSGXZ tt3qemZTOWKHAGzysM81eEk/j71cknd06y7cXBpePQjujBFl06Mxh8HRSmFSy2ByyjagVbeJ55X5 afY+HnGHrbHpBzq28TS4Gxm4lyTpqg45P2D2kUic+ziOdF4GQn8l5KYl9Hnk49F4M9C9Pxyx1c+Y y2wFq/1d2URUYOhpaG9m0OYH8pw79sQCJWg3sHaTH8YskXZSwdvifsA7xu4LUoz+MBmaEljXWi9Z 05kJwbCNtu77464Kaxv5eIu8O1ZPjhjtDNmlY/ZWdrvPvnYQGe0WB/fboHVbJ2aow+mygThpjThb SYpvZSh+6tOBkfDRb0+Xg7OdgXMuxrBRNKKVOxbjrDolsCEbW7d+mEVtxHjC3McLqF3YxBVj5y1A DhntIGiqxQk5QfmRMUfIwbIq9wk19wHMuhv5Dac9ogXDz3XPzXGcbyg7pUk/uyBVRn6a0GEiVk7f V7KTLCFG4qTi8oh2V5xzPoA5A/Ye6tHoD+mvoCP+kvyAM3tttShDEDKaLkDOxCg7XQ8tOb4dMHKB esHowYXF3xnCgww2eZKp/CZetgf2EyliNrqTaXSvO+zgIWDlwDDq+zACYcCEy2Lt0yoAsZj5WfSi AaZTNs0EVxYGTVU2FsNVBGvXFYeGpALePeqScIquEBHbLtwz5JCtHRP0gqT1iX4nDhNl+7ib6eNZ wNMWqFC7dOJoivummlXwHGt0MPiHJMyNe0H51moLbGUmAHBHsmQF2q+JisIqBJiB0QfvZlRbW39G XfbgsdKA+2G85qOhi2dQ4YjXcj7DN2PIgw+9grh5EOHpBNBQ54fYaRCHhxzE82M8c5ETcWTkXRnD KY49QGCocIcuhZ//Yk8+7Ssp+q6GA9W+eLAgWTHGjjsYeHDxOgvgFM8eChGqPuB1dJos3QDLvk/0 MLDlX/nRXzn/1I8wdXjC8MbwZbiMU5FoczSZgpAY1dCNz1GySJX7GHDg+eV2KzQs/qPqPS84ZcEF BRSnKbq2vE7pPvrH4obr/Gtr7XsH/tQowI+JRbCr0lzowKl4iWYdLwOZ5441YBlMUuFrc2ZgVsyy 822mAtdJkh7b7SDzXIl2k9XuJOxchjIlhYVEUFjf7QeddSUWNOFAArchuFOnZATlIZuIbHXlHJ2k LGHSuzRpbG9mR5yOMdqitRPxjF3A5K0g9LeLB64jfo2Neq4mnb3JqxmLvT5n4eTQe3PBuWAGlpb3 CqhjPDhg7ISmoJQehys4fNIKYhcv3qljBWGkWCWW2D0chnkhhEHXwZQETrZ+p7gXKyQOfEicdy1X c14ww5BOHBCawqDj1/34PR8LUdnjB26o3WUxFA/Qa/B23wpG8FwXksPfX/dexK8e1pPsb04fawSH 4+ZSzI0z5MX5UdH2K5zNozumcaex6vWXR3RiCWlugN61ta313Y31na3lk2gZk44GeRkMluSaZUoJ /Xt36C0H4bIWgpYNx8FlHOGXZcyY1co0NXydjSlME24uPHfW1te3tozGmM3ar1LIWwkJ5fEleoKT fkMchjF4uKcCeoZ0SGMWoyUqJUuBtwd9GlMl62L3his6i7jdKKCJzbKZC7HtoRN01b6Vq5JwTvHE Y2HXV/zh6ubG5o6nJNpUh1bKTdMtLDa+OBDU79kRO6IR0qK2tZ+K/NCGe6vywYcOzRl7OLM7ra7r h7GTHByNQggj7E2tfEaJQHgiF6r2cshtL8QrQDt/8tvifNZoBCG7wBOBM8gqRovRCVotTBAWLBOm 13BxYsH9COvlM9nbCGHuTXIyW3IsBaBGCLyQ2lEPbUzrjXrjE27dfE+DujBqQNI3+Ssz3BQnlt0k EtEdu7HiUDweiu7El5R3M+HZVW8s2fN54sGp6jmqrmbdcegTeZm7xU6YikpVTlMT5KcJWFCLmwcd t39K4oigY6aUaJ5/TZBLJrd9SeMmC/rSHSfvONjJ3xyLQ7d/dwrVVIxAnDJL2+lw/jPOi0stvh6I gsE59rtgCSVQmm9OFAgJ9tRcjTz896fPP/Ly+X5j7/va7h6lEHNr/v3txd8PaOEHffy69Nzu97X9 oEX/7OFOzD2+nzHPwF860fNGfhuFPypBEH+xU/xIIlScMPyRuNaTenfkrQmFrgEZ60ZD/a0EbfjX bFOlImEePK+O/j94tDcH8iv+aVAN5SIiCJKDoXs3wg/akPm/dDb95OJHNKITFH68cgcu01VBG7q0 S+Pb7dM5h+u44WjIrdy5D67Ptej0Qydd/Or5nDWMRrgKxxWoUGs043g09GB8EHSUtPrXGorWKAzH THb64Qu56CekKvysUxucjR8q+/TNOf4zwJnco5k78JlUoev368EDJTTdqIMU/FfyTseU/MYfDruo cK5gjv1WS7VH2xDDjBtpQwtKu5mUHHhtF3d2vFCVGlMFLhe6IZ0bGUp3NAQX6PBXoxsMJDWeTYT3 7IsLvdXjuS+04K1ScI/+YoOqrlQyAeT3EL/7XuOuToWYDQmFI59J2vXacUaf5AIapfaICckCBH2K CIEUqI15GPzGHWWMmM74kF/coPuVV9RD0Bvziux9X9uh8xxDpAMSVZPTHb6HuHEq10/jz2HI35I/ 6tW7ksW/CHqpQQy9rnfv9tXDufZQ1vVYvuB2nA9uONsYFm1pnDfFNh/fLCcxU0vvuDrIsp/bpQ/l 9RJ0uxE7EU0IJKCM9X9AHAEcwLWlLx9z2nrCNjHdr1AEpvrhuMOhK9pIvkQrt333emPnstEZ9Wgs mkHqcb4ytCwXJOC6trm25NA/4kH2KKECptrnn62vv7v8fB4OxsO9r+O1X66+3O/9+rZ55e2fv3w9 Xt73dpdP/aP9/ZPPa9o+nwo9oFpNeVXhSgzfiol/8B2ga21chwNfY2NB59/wBb7vHt88/jTHLH7z Hd8WlJbhOPjP5X8uLipD9s13tgH75rvYcC1BDuIOLS5eT7IsJxcQs3bphaR9k0TxDwae2ImfpuzD RLz2OsNAQfyazcRLC0jkZza0CLQaoE0100rZDZQtNL1q7Z1hVL35LjamEl3TRlQBugmg5Q2jpkEx NndepyyVRdcFC6yRYvPEJWlYNa9ZtfjbD04lGEUWzQW2XkpXt4TWKYuk5G0j7w+2MlrTW+ZgrrUQ jrvm/PuW1r+5PKfKGPzQiX/9i7qxwsPxqLa7f/1LkWiFh/OQ3bCqWd80gB0A+DeyqGm8d4H3TFYy zY8sMxhYoWX+ArP4hhYvXhJQq2Hm/HmmLEHjkc1Ucd++qQnK2CoWF2UFmKYiSs6zDl1njTvTmHjG SrSgtOs332njD8K/VDf6PK1o7NH7WGLNuTbtM4X9kFgDoMjVfHYahcAshhiD3X4r28t1vuEjkZcU TabaN+a2wyxgvAWd2DRSHQ0xsyys0PRe/NZGk0UIDLCOXGdxTewikDG0hFFg5WC2+aiGDS22lLRc JOs+bay4+c4yUpCgOKNxQjD6Q60PqSOCLUxNMhngPKRFqmWaSaY+30q1lexWVqz+TmEhklyBXjrd 8HVWPVvIsApVPPPolnO0Jpbay9AnW2inFJmVkf531PuWo1XDJlSehrAytf47VbPl6M3qWIvkpiKv Oqn/KxSmRaS1FaWmklRTWP6Y94nKXP6M9WhzXvpcX3LWN9ezlz5rGxvbW7tJ43+VS5/xVSnj0ufm +rON9fWNze3UpU97QqLSjHc/qYHabm1LNWDf/bxer+3i4uzuJoioe/fHXgH9Q7TGoB+r8R7pfuf6 JvTFf+YVzxjQH3ElM5bjKnjIrfZ67iouE8rhSiCmnOToRNeCRC2YQnhfcY4/njx39l+dH52drRy8 PeWt8nDv5M3H07dXJ2/P+PSkhPhmAD1QBHWUhZE0rlrEz6RFy35guBeIPMx8Di6G1IY61+AIJiYE PobTyau2KedtyGkgBqsyYh2EfWtzwAryOPikOrex+n7F0K1AzHWb6rx6Kc395gzdtlZ/LUFGTlQF WgWkzD2MGR/p3BB6pBVnrymhESGXczU2QfRdvyt1oX9xJWyqoFZEl7dDxIwhTES+j4+tSunV5ANT hxYkpSGs7Cik5cVHXPbEqWuz1/WZ9xD95lwf0fyggztJts71e6h0fuMBvj7Bslx9cXIsxrYsIqWn nMyln5jGP36/ta/I+f3W4fc1Zdy75CJ6XJPJ8dhNo8857fYp2VgDM4OPaZnThqfzvl3vePhymmZN 3WP0L54TOY0wG0deqqEqpkHNh6ddgc7sFEmaXIGufe582mReXXwF+vR0L94VkovPacZ6PVlLleKp C4/HPxn0CiaGcMKnc3HAp/9OnA+dnoPNwYhZnruhsWub/0we7fSisNgZh0/U4MBWqsFK+NOCo6HE jKMaqBQvshBjhlANnMFbEtTiNV8NVoqNLKhoNenb9mqB5t+xLwyk8erndqv96/vey5NuuxnUDr40 Xpzsdi7bx93jq1dffjn/6P9yWbt7d7Vz/vFR79iznQnuw8ZrFGXTOtv4rbwB2ChBfV9xYl4EIZhN ShbnznCfiRKd4h0iVkiDeteRrzRsQiGrxOKdUjvp5JxS45MqFYwT+JwqyGGCpzaIqW0mO+ccDcfL oWrrMsfbfmue1nnGR5jylXsvm/ccbfPKrdpqCye672v7Euh4nuaP+Wx4xXAqd/7B8+6643ma/yAQ KrZLW45veKPN0O6ZQKjYrhaA52hYbUelSX329irW72nXrHnafwnLWFUkTPbCirbHXPrnISLvIzR4 VXTitW/iNPeCPGUPj1nwKSSPmchIf187fmy0hYxxjsPdqNoDWdAmXrLUzJTH4z2xM9qfQuziPpk5 RRSZp997JFZfkeicdJl/6V2fP/LkkHKJk46qEM28/gpkkgGLZEHYFgnlquPdvusOiWBD75Y3BS98 fnvhNb0eS15POO224YaGUGUgX+KcXNz4u+OD29q6CmlUDfBqNHTD/DfOrJppKiEte3dFdsMDt+vB DYeh5PuZR7FLM+HO5ZKUgmqvRl1nbed57vE+otNUM2izhMyHwwg0WaZBWdaDsqwGZfmSpM6gv1zb opQ+Ybq89WxtbUcoQJWcZXhkOLqao6o5Us2pbTlSLUWsAnx3K+FLY7h8Nup70fJ9tHzZ8e4bHa9/ FwDDdXXlCBhSMcKSCzr3ePsqLjkVKZv2+3TehVWh/ACsb5bukAa+vL67vnzg4o0GdOuFHw6/Lm9Q n+h/0idd0qGS1DEpyz3jws7G1G7tjdrO+rPqqBFnXN6nw87yeRgQwYNBtHx2sbfMr6AtX7gNTI71 LTU5YjSpFqGJeg7Vc7ieQ/Ucrueg3lSMeSBGvMTeuNFQRkC+uRfqtzwV0yzKXttZXdspyvy/ooy1 tedrm8/Xts18wS1hC7SAc5lC7pUD/khziCKOUzgsSsCTdJuJxO2noeBATqdE3n9w/AO0iNZCk06J ShyhweI1DM1SPtBpPFK1NXzwYTyWkz+B7QWKRMf8nBneLCEGcSWlqrWwCrcbcUL6PPKovgC+SBIm wUtTvigty69vRrWtesP5QJuIc44zHFcVHTq3kz9xTeEi74x+YZ/RDaDpaWbUb4mPiiIpfzgv4Idc FVA/COrRLbsw3w6D2562zJwhfTaQ/E7YvafGmw4/UNUyH+AhIqZQtruQxQRkz1V93SMwb3zFAypA 4EmPx9uUM7mmHHjQOZiT8v6ZCa4X9rwQ78U1/UjNRr0TniKjKtBB0GwQn1NdPldfZaBo0Seje8si TEKRjeqleHnJkeQS3sd2ixXYWW6iJKeuD6cLFaUVLsc38I43CJLBNG8lrt75D74fNpg4jS7e9lrF J3yG+3Q+gLT4RGkT9Yo4uThwDuAMSNIEHPjoPNHFW3ii5objGtE4FRuzeJBojAhyffT1a+Q+AI2E Ae9LYgVIirFjfLlHfr/pfVkZdAarp67fvwWzSsCDf1WEzXOm5+HokaDK00YSK4IjVLVzZGR3/VAn V4Aow+T1O/CF+X5tjz0gR5SSgBa+4xxJGX616xIlKrTSCob9leG9iipz/PbqrGzlwuVIv8Qre2tn u7XWWNWOFrchESi6HXb8xt1tFHT95i1xltshn4k0p1aIMCQ+9kkErCtUWsLVIx+vcuLRCHA45uNQ JqeCAMyGbqt597CZRpfnyC047C1U1CRA3Iae1GmyZ7GOyJNG2eDB76Ui7RNWxYn4ErpUuO4Om8Q0 PEG4oSQX1eIB5zuHXCAWa+TpOvpafREE7YlnlL8MszPeZpPxqcz5eJ/msYrjY9JwHJ+8eHl1aVMg f0YLAHU7Lq5/enR6VKH6w4PUlZn14UPJmlT2RRBF/sBo+cXby8uT85IAqOm23zIRf3FyXBpvuLa7 Xfo3ASBJzl5YbncmKHe0PuvBFx9XLgTI6zilJIjeyB0PO64fY6G+S1a3W9+v0vID9E9do/YHnVAS QP2TijxMDb96VbLSp1Ez0LVe0e+S1Vr+UN6alZrH8lmy8uWoF7eJ3yWrXeBBx+PjeHar76Q2nyz/ mrzlfFOWUZaDQM9w6PFWj4sSr4JOPwqkAY1DDaqIoI/zfuNFCN9CKxsqmEO373tdvLbV8+XIF2dv UvarIPKcva4Mb5yzRTmXQ39A5wefxFOWNOLMbW60OXZeuGE9pN2Opfc4eweNBnALbjgH4eirlbkL 1dU4pDPohyBodj02C8W5zyj31P3ivOTDqmtnrq8h1yd5n7qz70cDNf/jAsvLHBc8qcDdc/t913nl NcOv3qfG1/Fdhn57PdzHE1VVhnoH/ES72/dE646t82BcJzE1/nTee30Sb3ybgCDte+x4dKR3U8ov i8oHXXcEwf8FyWbdDivzLUJfBEDugiZAilYg8ys8kNpwnb1+M3TlxGhR+rUbkkRCCLwmanbvsM03 7PEAxZ0XdC7BvVGHhJULEINmSj7pvS4dKT+4OANbMxE/H2d5xXoHicT2TnRLzt4g9LtObW1dNElG mLZpWgt9bSpHotru7owfWlSgPaL95bbnjh88F04vt/fRba/R5gVFQmA/GCn5FRIhSTfiskPQxU4g fEfMjc+dg1EYQtQ9jcE591G8Ph1lUgHqwpqEN03pxpPVi6PL28uLW1rtJEasshYPJpUDPLs19Ota lZQANsHy7ymeX3GADaLRcxrtL0R2c6dlH+2/QkyNveTyYewMrS6hZ7GWS+YBD4MIrHAxCnGBVHw9 qpKpbOyMre0lh/75I2NnvL263Xjjf/h40Qtftpcb3YdPv/x8trv52R29GO6fXZy/Gt993au92Nve 3C2InfEd7UZOm33loyHrjojAo97fUi46PHagkfor7+mWcJ7RrnwiFOZ57WkfGV4KmSbEpwzVsZBz 7YXMmHMMdpaxjg11C6ZvWiFM2/5dFrDhbVIM2vZrKQtafOgKgSZG5rIA5SSo3EOKAfPpxbYJl21B PECKQRs+JmVBCrctBmlYcMuC1B4TxUBN35CyUC1njCzoQt+PsvAT14os8Kl29EotJU4TxS1Ncdco 25Th6CCK0eIWC/tW1kegEmKWO0MxUkUeBcX+CJWw0M4FxQjMTZViTEt7TpTrDRj9dXJxPN95oILn QjmAyhtBFxYPA/7CZrOotGNaZ3XTR6wIqoMbfouOtvJfVzDFx+65WZtiVTcAfuReW+4Zh2Jj+7Rm J1rzuaHFRW1TTjoPC/v1VIv4pLbLGN65eW01T5o7nW7ZLtXyaTm7OmPxD9i/nX8oS7fzD7ZpO//4 P/ql7NQyjWi2KC/vlIV4AkYL1+gRD7lp/rX8ubXyMG0+lsbybLtx9RyLsNQyDLeEedq4G68FWQ8Z Iyw8/Beda7aiMhtKy3O4AWBaSO1CypAqxQyjp10qayXVFXKMm3ZVbQ2VCtp8GTNMKdNzY0RjZbgy SNolmfiGGdOopY2NORUs+6RU0UZFu7Q2PNpgs4bBhKvlmgrslqkWD6IKuZAZS7bgqWEsZ2QjpKtZ 8KQ/GCVlXItnZc8ywiXlMMHSMx/d4vZy7GsGxcQmZlVmWiQGtKSZ2OCVbssykEn5IitWXNWyhN30 LUOYwu/t1VlcXJu0KIszmbZPS9qQpsyARmwsmsW2tWBgY6yIAvNQaVRmtVsBnYNSNqSYto1CkxQv heLFkLXwqJXBnRE7jWYwjLpaq5zNZhidyzYayRRKfPigsx4ejEpiQdF8QAwsZvbJcQwSxpM4y9Bt SH5iH9FlEtMGl0hsHzEQZboQAOpDZ4ppgrPsWrHVgfNio0Rc79UrqfTpk06C2YDTYEvQicoiwOnK WKCzoPLndPzA+hAiKnU+56jfuLDEo4kyOeN5vnmO4ctXoaNOVnOO1KzCHKmWnhwJafU40rJacaSm leFIy+jAkZhWfSMtT+PN/b1RHc/XcOvumYpt3blEn/1U9NhPY/217mme2lp3OqWtFg6WVlMjVf3J VVNrGuRqpzUtcpXSFlEsXTSTpb+YVRdzSA6lLSipm8U2V8zOZlQaO4mymGf7DeTFElrdBfNS7h8d RyQbRWRjc3d9bT1pumwUETrpcUSOpZmjh6CwETYkvl5shA2prW3trm1ubKXDhmD8UHTGYCEIqbaz taXA/qEPxX93ybpqIJ9VoyP/cXXhaMctHxEkppfWamdCgvyXxAPprOtfplWaA2qtPphOp+dvjvYu j5yLo71D5+ol/Xj35ujS2T86fntx5Jy/vbw6OXvh7J19vHpJP1ZSthxphbe72BRCYqK6Yc7X5fMu qGo0Wq77WbA43vs5AZ1SvDuuQwfACPNLnOryDVOJI/6x26cpxkWTRIYWOb1RxME1ETKTYyJKkK+h 28ZFcT5aoKJY864FksS6mGrgS9qyxVJHGVtiByYDKY1OQfsfrv5mNs6orm+trTm0AYe0dD1c7g85 CiqdpwtwgzKoxXs4iJnMbw6FHTm0jkbdJpAAOXBbPolrSTPUDx1RqTk9r+3KdpTTUtaZwCYJH0jl 2CkjkaIEf2YdDibSFbf+ia7l4OW95XfpIaojTQbiD3Ulw3OMZR2dluN0/n/23oW7bRwHG/4rms23 ZyaZXJ377Jkzr3Nr0+bWJG2mk87mlW0lVmNLriQnTU/O/vYPD0BK1M2WEqc7u+/ubFtLIkEQBEEQ AEHaBGCBJnJwVtSRZOgu42m/DxmGXK1sjLB+UhMCJYrmgXlOG3MGTYtMzB7bjnz/h2l+lpaqkn83 SbqkRpmgOzH7MSJxLt5xpCxqYMfnjAyc/IEWFmHn2HvwdIAqV/ACpDnzLPJjepKMcuglGakiIlw/ XOj4917P12eKazZ57rNYQK7Xvh9J0gumkE5jTZIIeX198AIpfTJEIkTAOpI0N4GApKG+J+7cmqio 3g91tmSapAHt53kCO8EdKW1P6uERMhtfOwGSEYdtIthTgCjccP0AUkCT0rvQDvz7zjVS3qqVHtz1 FNgn4B8k9ETK3rYTeGGckoSnoxchtQfnbpY5OLYH6bCPMZ70SaaakbRyI1LN8KSLVY4k2czUZb01 mTehKVEy/ckrWoYvaZVNFcb6m3Vzm6stb2BmZBGcmam+gs7ohVOlvy9fDwlq0RI4wyvfzJj1DsBf YHFjnK2ZmdySJd6GXHdSy5AkXHzuwgIYU1NTZevIZdEqUcAGslwI0rVWAN3TkVI9U+ipklqDeSHp m8FylETVRXNSMgNjrOTT5etLs5mZrNCQDYiSFDWz3gTeUfD6j633t2fHrz4O9/xV5/Xcq/bg0FkO W3MnG/v+0pr7+8e371e+vn/xrDesJh05Dl+VcOv59yqHvx8g7SsNKY2C64S/WUi6zXnb7fy51ELT ruZ5hnfF8ASVC27gmBuAFZ9XANGjwDDI5/2DecCz/Keo323cK8FAzDtZk1JFv+vAr9VdOFaEZNf2 l7lrWx9+3LOzp1leCNunUIN/8y+1Hmc5RWnRvK08jOWhLPLpzWaxxpvXruM4hHjT//flJn/62R5G JATosTmMfNi42NrzM8v9nw9hPnx4StITrCgyFpcMylKgsveTFetCk+hBeoH6+ZyWp+f3JbPqaaDf r1d7gePMRXbvln65z+8PgzsncJYC9wI94SDGvyNFdgPLwM8S0UZPT0CdlwvNV2rp4LVFgI7CPnvJ HU8kUSnSXeo7YYhoKRppWlid3yL/V91NI8T4jJgA1xbI/RGWqqRVG12Bb5qaV0amQ7XidVQIVWDT pBdEk9MQedLGW+O4bXj+GBZ/sCAG+a4hvqsA92TYuOIqgI2edAbS1i3nK62lnjjwdCbEeKQYGTl9 hlsY2iROFcp7uGRJGinEmH+NE0m1lK753LjJ75FKWFkl0mHY7Tcr6fhIiSJNhZ6IVdo8f8WcOmvc e81bk+RRqVa0UCKJIqyzbru0uYwOyFciyZ1l9HjPVwtpfRDXy/hf+bKYMZohq8HFhC1hFyyKPVo2 elcK2NXCVQxOxhUxF2ADLqbb5I1G0m5mlPPdTTe/6nv3rZaAf+XgRo+VjTlk3oR/zWt3H0593CEi mwS4r8EEoxpR8zX3Xn6/kKKsbirPt1dBcy5ji5wmXVbQ5J9YpTYJVVrFUMZNFXwE70iUCerYmN1E EaJDZ9iO1OU8oGdHzbnAv4YbA5fPICHr8dt5a5+vgMLX47cs8wwEOJMpsRHxFS4mLEZ/9Oias/21 g/EUMNYBPHEk84+QNVX1FDjhmp5ZHh1u/fOwc8M+vnzD8rt8U1K0ISkBYmKJ+8wcj7gCc/uzf4uZ HRJ6NPdFyIAP2z5vaUhM273ewMaFQ7igCzKF5QAunRFGxT1dzjUxaqSv+ysfymavNewz/FUAYcGv 2vxpOfsGvK/QmI4T1DpfEa9pXC8EkW+Fvtwspq65VABAbXXXAt/ChU8DXP2FlminbxNAzAoCTdMx gMOubBB4dQnRBN6JAs3Mz9OUK2mTfwDZ68GSQEuWQZ086NGMhQjdazbLZAw5sDupVxCDrtfuDTuO dSmF/1Tc4QZYNXE/WvlwqNuKgDLggRaqxU5g06xoPTCPQvbEaYht3OIE7gU1L4+3Oatwrgvjuyab vXMawh+K+odLpGbl/q+MQUkuLYp7DcOTnhBjO4xfxrmujk8r5A3H/0hMJC5S64Rdx4loWVtYWn4T HWyF9vve7f7HG//27YfF7Xf+omefH6yfDz+0z3cPomHQb344/eovIDx66sbt/BrfQg7EmgHfFcR0 qLd2FOqA26QIHBJ2w0ENTTBRUoU8v8qhmr83FsHB9E//AX8xWPrhevQXUZP+VuawH2IIqpVff0Km aRQYBviHmIQr8pDQLzuBHfkxtLgFEVW6KXAYf2XQP0xnFddYEbVjzVVZ8MCvLEMFshKBYCE0rpQ3 pR4ifzUAcMGqCiKHiOpvEYw5yfhEgfG7qwYH0bikrDEoeWkWOPDbrNaWfN7RlgDz04LZDu5eFRy4 Fq5YLEEoLpSzT0CPxrVqa9dfvK/K8NKce6uwSighIExwe9G8dUGCrDtrnf8+a70/a5YUfDP0HGsT F+Hqw5ZmmUyPdCfkSRM8zfapRKRFPmwIZ1UmY5+e59j6ti8BkHLVW5x3nVUv2SXzmhBLVotvr3RD vmwh46INYo4AVPy+bPK+4Kzr31vnYN0/f1pQuxDWzBX61o3vKE9L/GlakUGDkvakiVQX8SOZ7eYO KwddjWkGJ4acDG+qT3lBCaJpKnFDQlYtdTEnYeyM92fUjJLL18aSS1+cgRuC+HJB7jy3nV8QUuqJ HshEqMc+AmBSBiNWE2kQcd1rz0LcCt9oqPQBdlXE4JWrgU2Xl2cnx/sHu6dn8VIinU62nxoFlT5f axpZIpQhp1bawBlwXBApbbjqG9iSykrKFb3AmhqTHBnzUQEQEmcZlCBuIHkFThfvV77pwiXkNW4+ THNTsnvn8GiDt8AGsX2A9+68X4fyFzghiV7aS1ishOOG4jaObhL94IR5ACc8pK9+6fk+3ygExY4v YJzTKi3esjZHlBbtEg26ETQPJcDTaFSV4HnOLuu6EdvCywtftd0MsYy8U/41UlK3u077VlBVbjiM EvOt4YcTj3/xej8ai0wAsyCEUUh/YCI8uREl8XBnumrhNUmJSNQ6rKdaJHKJms2sLNvd7lcB+4aU bZwpob8BFkcE4KHznF4m29ZYqBp5hVm4sHrfXm0NFvoPVwF/uVI30l8RI0ZXA8RCt3oPVy0HEevh VXsYOSqnkEaKqKhut38iLhgtDvlGhJkK+U7bLIRhVanEiFWXpAUN4ijHqLb0LdRPbqktYa5XIZ8f u+LX0qAOgFXH02SdySf2q9EWhm4oIXywzJK+LC3t8trhtnmcpEAFhXp0W4HDbidNPdWZhfcD7G29 m4Vt0p/lCpRTXfLJbdVwcOUgZ2W3zqMhj4mXJ14I1AoDQ8OtcbELZGo0JJmlV9OB3bfk6BTt+kv0 a14o5fp6tW9mlIxVJ902nrSTSSQHTLzgSkYkWT4ZjOl+ikGINSt5vnDYUEO7PnFAOg70+xT+Fq3t tOqIbdBVhyeVCUJuHHaxLvEYojc+zxPea85nWufHlEo0nuAHxmp2jyUQ67+Fe4TZgNuGZgAzxW/W OXVEnA66PHoixZjUvhcrEUZsBOavKKCjEM1rh8ZxJPdLp8UnVoX/8MgQmOesR4GQrSjakrkvltpy UMba58/jwYT2sO14tm9AOMOro+bxmMrajYow6wcTg3PX233Izv1KwxbDrxAvrxddUUdUZPS9H9wq DZIAWFwNAeejkClgGnVDMZfNTCeZFjjrz1+VOSmF/MLCV6/AuSwIw85oEDZb8bq0ohF+W1y1XVp1 W8xzI+q2SutKsz+PB2GXgsC+bzlTU+i2R5psORm1iE6feb9qh6QoIDwCB9aFKNrwMcbtV4mQFVpV 5s56zY6jYIV272v2NAl0fmKDahmu12rBily/5UTZqNe4KCOOoYtkFYPiuZ9HDrr7VGdKwU0DKQgs SdWTOji7ymeo05ULqoxJV11UI7872C7fDhQByKhYBaNWVrNEYeIXFaoXbp5KM5KWQylW6vX5Tnpf B0qiqccA8op5EQTzsIV52oJ/GTqUGZ4zJlw2ztHURBvWkXMvLoSEp/k41F8hQ9dpzt0fOHyYksnD O9Sh50YPosnVoIG2/+Sjg79X8q3S8L/lo89OY+vD68bq6ZePe78vN/3Oxmlj7dXt671vWx/PncHy eafTXN5cW3xXlnyrGdi0RbL/lQkN5HEgAlg1A/ouszuWESe2CybxtBG3989//nOGQ9Bm+Ocl4t7G Q8tHzU1LfQEFaTtlxJ3xeetMFJcRZzsi8qckhikfW1awWGRS0iBmiYN4L0tjsJ6F06hosVrY5SOq noVXcbxXLYyK4qSq4aQjtz79zQjcIplSDQX2pPP5/ikJs7osiYAiZEZ42qy6sVZInVYYt5QPDrcm Hkv1YyqGikegXvwTaowOdkKJypFNn/7GEU2f/qb8wZlIJqO1iYctWRZxX5VII3NcRgYvTSug1eOL CLQEJvFIvFjQkEHGkRFCauiCdDhQdhCysT/G9/JAH6LLd47pyXLq8wJ1AO0EYCpH5WTb/w4hOETk v360DaOZxNbMJCE1MyMCaUDNCUbHEAoTC4TRqL1odAvkSiq8BOkmXiaWReW8mTIDTy7LYilGL46y 7qZCUESG9DFXGJbuqBl2kgo5seLLzTWFUlbqTCAIgeOZq0NLPn2a1it0vLY/OaiEKJMEfFiPlg7u oJ8I5PjkzT3Sf5+8Sw6uSDRdrL1J/MU0Fc/HVdDLVAwFD4EOgsDDywU8ADrSrhTHNBRGGzCP1C0/ w2i+RIhBTtaOiydAhb9G8AAweWqkwMwMhPbMjBEQwGzD/n6kQBLlLes9Tyma7P63JuH2//E57n7F INifPNcRnz8+y5DRwQKPelrrThuOpOIoR3mqtvrCH6TqCGc41RS3ebpk4qE2QCvAT/OAC/xil3Fi 78qQIWsOGwVE+52LQeCL1C51IqeJWOCElvojXMMpCHnXcqr9kX7fTB/UW6mft4sYZU0LCLOyHDKe mXlZH+0MjrDOaJYs8cBSiXkq9sLuVd1h9c/3cZVKa5dwcqZyMsZO0Gl4Gy9Tbsy4YN7pKaW1yzIu mHJrShlxS6aNWYbv0uSBy4puxWqJvQSw8ili+OE9JO7ETgY6YaG3EDYH0YVRosgtSCWUT4mLFLn/ YiDaf8cli5x9Ktf0MhcocuVNWzPw1kHea7T0VBrhxjH8cyPMO6meVIBq+t9Gg2X9uxpQ5VwbDa9I 6oyAafrPRgMu8FtVayLjKBvVCnO2KQKVh2t65jJ2VWU+Txt5f2MZy0kQkLCzyqJaSDJTUCshLd6j UgGdsdFmgaW+oXDiBMqUzC2TSeExK+IlHDyp76ypcGoBneHku+btW9mYtZY2FvO5+1aX1ldW/y25 +6YWF9c3O8uok07hJ2lbUin8lhpra2tL2RR+QlsUfnISv6XG8vqGAvx9k/jt0rIbwOwH/kcf8g43 FDuNDbsl3jJU/W9Kz6eX3NILbd44m903t/f3t8dXN3+0eru3h/dbb5evDl8R2+4tXQ1frXqvOnNH u79HK9qnxojVSveXGf0JZCP61lrjXpdnI9pv9psxgZNkRNlaeKeLFmcj6ZSRbrnb6/hv3zc/93q/ n1xsuBNNOdJdzfm+NUKkg83f9BZefT5aWl+WGmfcSWiMzUM5dZK4wgUSlqBqcI9e33uOuujvVKUC ejpggusFaa3GtfXFw3xxCxLHq3ayESOZFjhyXVnG2ry/9UnLhv5e1Kzqztvtxb1jI8CDTSR7zXe5 tvLHZnJQDSr1e0H/bVPFf9BcvpWDKzFM7Bp0IiWx69qdjviWeWOskman3PMVm27fNx6WGqObFr0F tA1hnNWislq+Sa4FW6++A4FNhbt2CNOPdQ6J+dOrw/O5lV8WF6elB0nlfAvVT4lZds+98ajHyCOl Y1wKj32VlAVuVcueOPqGvSqld5JJnavy1DNohQ2t4/oPAZQ6OFZYuDHoVy2KTzmOKr65ZdvukQ7k eorF1BOrtBJrsttz2rR+k5Kk/PYO7Yp/ooK0/8qe7aiAmm6hEG4OSIraFQi6tFiHokuLBU2WlC0k KTa3Ygl3PRZ4rkeKu+f0fK/jeypQ9xTW6zP/jkRAV1CrRzB/7po0JRhXeFTwx9rePWZ7kwWvLzuS UEGc2/BPsuPy0xDZm0NoPAPSM3INvixxN5/BrtpY0e+0mKxYvBe8/uLm+vLm+oqi645zR2xz4QS3 XQc6Yn3SNtukk/5iHanMIcLvOw4v0cSYJArP2l3f71lnQ6LnHRGWb4/Iga9NyOU6hFx6oYnfg9p9 FtnwI3auzkinUBl6+Iulv1j8xTre2q1P4B2kcrdO/XuDdV8Nabth04j61pb9YB3Y9w9q7L4jSV+E omc2raH21ZlzYytxKm8sfvME6rm05SYOnbX2sBzDx+633B5iFSO2leUAvSzVVl6Eaoc2zKFXhz5t s8Krn2i/0JkWILtegNuTrO1u9nBQBQzOXKTZJLnr3dwHtAkPrAO4LmkCR3Zg7fmBJQ1b0nAObG1S bv77SXnk292rA9qvevEdunbXkhf1Kbg17HS6cGycI36G988dq8nhblh7Tp3r4Y1jwWKEQKkc1LoE bCz9+wl4hnyltJM79H19dFy9svhVfSLuBMN+35EkqrDTg72tV3YPVo+2IRXhhEs1ZZ0Hcgd2OVGr 5Qso7L7aXewdHffaK4Jp6MCtEjjz8/OZbqZ3S5lTRSopAe9JES8gh7QyVRp44p2G8hUjfq5FGzpV mr/r0vljymd+35FAvKEH6wu81fCcYGMPdwsIjrCswEfMkAp06LnXDkKDuIX8OcUmrAy9B1GcVKgD xmbosczhu+SEEPm6o0i68eXNuz19TCKJOGTYzlcbjjUVfagjiOA2bsGDg0Ss6d1drv3sSUghbK8n mz/sQV2E7QS+fy3IjyPtCYoao6IiDngTCH6VCB3xMbF/7r7rMIEtvuJRSN3E7cT71/CBcdhC4CAw D/6xa1KXPFyYMct10NVRxLt/vfr7m/dCPO3bc+MAqtguap55AV3vhYgkhtxrDk56ysAdrg4Gy7tq 0tNc4GBPnrbuADp07Kxn6qbGs+6AaUtLKkHomIHSVpM4wiVgPzDf2wdc6BF2Zrc9zzFXyhyhinNo xmocCiABbjykvC9WRgtVpyh7QkK+ZPMfY8TRck7PadE6S0upNAmrL5gg4vgysYHKyzbiWq59zWEc bKM4TGEg7WfMDMXolI2md7728Ls6eZ8aTTQd9NWchAiKSVVjFFX+IbYDj5R5yoDl+ZFTTdRh7FzP 5TtmSCwNaLAQXuLz5IsDnDRxEVut4mAGJBqjIbtY9DBXG8ZmFPGtrwhD8a3WAwfhJtKp9QBjFktH 6zeUsKk3XtyGREcSpsMehhUY4aIpjwiDtW4CI/nQ+Xq28zEZSY7T9CVuRJniIXB82p6pGO6HulKU B+6YGDAoH8n3Iek7PYtjo8SyNm4od/uIVRrSAhWlhR7eR/4viGH4P7CP6mhsbHWV7Cv6lHRI2q9H xj/+uDnon2mdxhnMtR7miKMGFl9XiIHt+LIGFlh/6zX1sendbV5IU4aPULkCnwX62/u1k3cCueiW 1gQ2IqkKAfE9lnbbafn+rdioGS24BZRd4cC9dRTYPVVwVIaOLDOl1aNsjmi8y7MKfiWTZA0Bjww6 PXFaAjqHQRGMwr6jqwi3XOm7gbb4NUmCzZ34tgSZnLg9P1rYP6d9knGGNoOLdYZDD7TcfKOBJQXi GvfRKVPpCMqM63YjsYZWEhhVOzscfvWU6+SD3R4O+7RnGdguNoCC5nfs40bB0DKfPrOPXsO7jaSP Jz0bagBsVjeOwriwh7gIt20LwZ/RpdWCUZtEl+jHkuLRo+ZZE4TzMRIImS7v1FnbdUhTy7Vfs1Ob uPIwCzsHtKjm6E51vl77D1p+4Tpja3u/aW1DRziGqM9ZMc3xcnuwXci8LOwbP2QljrzurpUip0Tr 6t5h43RN4abkXhqZspq3X47vz6ViTg6Pqre/+epVU+2T9z3aT9wEyh4/tmqw+GG4LzVfSQibvss2 Qz/pd0yFFTxV8yoarVV2KzJ43Vjet1chjE1aycCtcaI3Pvy6bzX7VhOn4aD58vaJ9pe4qbSFOB4c crHDtovdqdr5ogxRA8fMcLlrOOzQ3q2HEESnj/NFpNb1OGZi1Jlo7eWvcShaBQz8hc8in3758u3g qN9trf0RvX+3t+le99pvjl7b35b9r8u9b9cn9tX+h/CP5c6bj2VnkaFf0MYMxrSv0SxUrB8y4QMo NYX/XaYc/EkkpWJGCQWY/hTwLTtUPO23z5UXF79RPueIj8M5i5z3XJErW4XzRkLX4hkRwzKnTgzj MnFh5/AUJzuu/ankS68CUpznDLLMR67B6D8zM/Uc4jMzuiZc14/4/CjO5kfDi4zvv8z98mj8wStW eB4bg/7jpXaL/jjG4Zr0sdiCqeFMP450tPK9v2gcLtDHy5SLMh27O8K9SW1kfJNP8kvGuGyCEFmv Xjp6ucQhOP2YuPJ+rOLCozbZ9fEI59ojeKjQ4zWW2gU+tOnHjNer2OOVYAAETEfRuEZNNxM1Ns5J FDe0goYMn8q4dtKOmU+f2DXz6dP09GNN3wphwM4RwcDwSYzDwPBnTD/Wc0d88sSfIG2mLOvjWk05 AYjA4y34Jdb7RKpMWZeGeT0np/bYDB9Lybm5uaSiYVmPX06JHMva0ll+Wc8ylguISrZxKXr5RBt3 jgZiN09Wmyk2YxaYtaXd72+3vhxlkM51RyzZ0yXmaUW7mmbmXCNisjZplrEsSzvf1XQsTeKewRez Dsuam6VfuWE3RzcxDhuajWHKNYhpGm/VxJikdVZT6mUNsCliVbWd5igmRliDYmItNYiVso9Kk6YB tNCiqcpdjrdH5hAScyYjNIMDI1krY66CGCV1hSLjYa4KGxunYUm8LLIJpvWkMptikVTHH2zYMPps 7JuZsSzz5WW5VS5pNW3NmyYYxTYrDTj775TZohjfhFliLHLmsoLG2br2zMbZKkYgUo1n7FgFTbPR C00rS1a2jcK22FyVbStnYCpoje1R3FExMZmtpFpg21G2hRJrT0E7bCLiXil7T7Y7+Ff/4R3d1KXm yRwLi1Fn+rKMxdl0M30ZW19yBcRGM60PCmorS64cG2SMlSgRnxW2iwaczH6x2tE/8wTF9zwbtLyy OGutNPJHg5bWFxvrjfW1pP3vdzgIhVOngtTxCfNU0MryCu2c1lYzp4JYYKHsUw8FEdy1jVUFN30o 6HKpsUFvlzdWQK4XOxt0QIpsGD0Qj6EfeaOTplDm3E/MLUUHf5QZKrYxTeLcD073m8OaOviDBmuc +4nh1DqnU/+YCpsh1azmPCBQyvQt0SrxgDQEZWaedyKsZvi4NjtO/ED/RvatTuecOj1QbJYvOLWQ zn1lXSNrjrZCzjPcjAsphlFiwC9vg3cPHZKNNm8FYBlyvTu/d8ebjUk1dkSan0uE7Ui+jIl14uiE iSQWLU9yFdE6pLZUKtKjUjMZDwoXOu/acnhfkpGoZEA53oB6LumVEh1dWq5h2Z7cgbIwXG3xdCo/ UHamZ/MOBj6ew8nRsglOA1DUuKC7mKdV9oCk2Bi2TMrnOMv4NIY5pORzBjlLZpAuT9vis3ilxxjf XWwdh2sfljtLW5u/b3388PuD49xe7H883xpePyw9fDjx105vVzbv3+1vTPSYXolDZ87LqyRZN07a vVRBp8kCMGeLzBdxNqXgasrduveuG7SZWO0eaavRAh5Dz/c9J2JLV7xcMQst/Oa57dtfP5KGdkQ/ XnNqIoBPjOs8vgcwk6pkLUjcZU2l4WTjJAocYjCVETu0HeWZUhkL49w57IlCGk7Zw4v92Imsa9BI FEfJ88YNYoPQtQcDztcXSm42+RwjFs5b4rlNU68gNz4MlzKjYpDc9VlDh03Rm1SmdP/5L6Fc8TeD IwqQirHgdHlJzoFRCKBouqG4/fynkfzEQU+sni+wjZxEg16kC85LajOQN7Q9ZEASGw0EAyDEieFi MZHCG4yq9s2CnXI4ZbiSzbEMT/rkfB3Q+JMk43dONgwg3Z1l7g5pQ0iEZc1ZpPFx2kI2erih1XOu I2WZEIWaCR44yeIkIMp1E0MSz2qxLckIw1ueLmIis2EzikUiQ84v30fI2+j3CMrNLLFfhOwzjtPu SsJOpEO0wt5QRb7mqytUSB2FGUhmABZMGojrHsndeztgSPxgtWxXaFcKaGG4QDOIlywGIzNLJX2r dLvqHRJ1wvSnzExsz+N6WEri81Z32ihMH5HF2Do73SkBfOTfOb3owdK7A7VqRUgjxqLDzQQXL2TX 8XhmpF9zewkb5Vumzfpc5A9I1tAe2evQuu2xQU5nhmQTmiN3LORrXziWg/Fvixs+HLiBG9um1WxB N/DYc+LwiRG6lzDmBSza1OeOP2xFSlzaDDA/+7gZTuvFbKBN2UNlnu3ZiX+wiPd5Zr1nRrjvkj5B cG8VzL6NPGhtByuDbRGfsdi8c23r5JDnAqYVFKGhG3aJeRQ/zFsfkcSVKhP9UIs+ARU2efrX1w5b VomfI3SBiCVqn+Raakv6h6QcOIEKzPneXIh1QjQVYJ6otpj/VEYKI5dhbMM3Dv9lRUCRZpwWmDB4 Uu+EaBWuWzNU8125oiR58wuMXYMejYosQ8xzyhlN+8U51vmQLjPHIEXwm3e+22Hdj6mhMsiKZmpo jmzgV6NSuKWxjhEFwm2LtihZ7eLpx0ztIw8exkkAszSFY5K9SLFaymW5xLx1Ks4Wws5zEHXCmQBV pjbnH2mddUGS9/qcyJSavQkgM4R5OQilXLCmaULSRSfLtRFL0JvDrImXnVzXJUmZSk3GCVxDXoVb nAWTSOdiNkHrjbpI4UWERW5H7uIsHjMiovSe8jSaPLWTPYQiqhpBvUEALUdufC2Y9TB9uEY8Hqqq FsxR4EgqMxoN9kEkQ0Qz3voNn+BMYwca6UWBPwhcWqBoY+MULOvaHl5tXZ/izVvS0ysMNPL1wfjj da7YvTw3HCgFANoYd1JUqMItR47AWeGpDizJRDvxB20/kHIFWg5nKHMlQ6VKwGfBYpdwOvtWkRGS qECih9ZdvRniXin9LS+OtptH1vHRwUdra9c6OT47392xmmdW0zrbPdjjF5nBlH6lBFBewLxyOBaD 5GnZ6nxqt92wL7iXFDnzOTX4myHM74oXSoqeB8P+QBGCpSh9oR2V59znQ9SL7AcyvWL5i5nNTh8E 7JhySimbIfxCEImzksuVE+CmLsb4MrR7bvTwwyR5kxmFeJIZpSYfFiwYylHGopTLVFk1xncjrdJI N2jTp6Mrr33t96OXOtdm0oXcaJU0XbVlZGI1mj51buyAVSZgwOnVXq5tHkd1eSsAndPc5c9Puy9R Nf3NCfyw615H827/Zhhw+4onrm7ca9Xbpkr8qmWEKmGhxCzzCS8nMCyDGqymERMLs9RFaRw19Lqw sLS0GLaXeD94RUsYJ5dnYZti/fAKgTNX/r13RQ9tP9IX1ZFGnsww+TQC33Q08hijXhwfqeQwbf0R xERiwO+MjTX9bvfvgIO+s82CiaekRxVCVoue1aG2k4mbNUx38Thu2chEjBBO9CNjekMB7dIrsppN WxUdfhCW7GM0oj+rGagSh+MkjGSMyL+BOywLDSOiwIO5SBbJcqNVbpWTCgwE9UeYmwrNSEz+nKXo ExY/1pSq2oQuswYdGZ0i0Va6SmteeKqlB9VTOdKrm3JQsardxmikhpHGqFXFImMUH21++bHI7CLd GW9jyS00qFjRRIKi9e0haohfyuAB8P9xxo2ZmXKDxo8pQ4Z4caaUoUL4fWbmaPdiZqaywUHqPNmi MDPzH2JEkH6OsxLM6JsJJmkYkKafuPMHRi+/2b/EwpIOe6smpCtv8+WSvNxeihk4s2WXpXdy2/OZ mbFb8pkZtVwY+2w8mptqPBftoPE+tV3uxVtlwBR+wk0RT9kB/5jZ+T57oFJ73hGDQsNi7meFOpcl 280RCKUXlHj3KvcLlG0hy7WFInDYkgq88+yG8M9PXi1QTDXeYQrAp+764g6M21xKMySWftQbsMp9 1yLiyZtAatsMv6gSXwcXP1iXmFvEEWY6gDw/4g4hZAW5uBsbSyuNsnA7E534kh+gUxSA1/Wpp1dY 81BiQjF4OuLEiMFbXlpZbqxuLG5kYvAyw4daT4zGoxYam+uLqoV0NN4Lp+hOj2pmB4jp9533S8x7 1TN9jw34ayDws27I33dN9T34+nbP+/z+w+lDYzVy7rf7p4cXH1/dXb0bDA57+19utwbve39s3oRv Dhb/ram+dVEdmkUzgrtdHpq140dNTnNvIIQv2Wp4F5ctjjAqPfC7t9HwNs8bryP/49ej/teWs7R9 sHj69utWx3m/ez/3+sNDZ25v7qC1ueS/cISRkvI6Gvu+v303hc4Qs0+xFE8qyzXYRxByPm0DaUvf +A2n0oKIDQJiUjLuyi4JnBiHw/bx++4fUySpO84USYzIVzbxUyifWxL+duLzrgjbCzVFEO39pFZz 6xuPqamyyN8mKkmrbKSo364RkP7h/PzNw/oUzq+k2jjUl9mSNIN1KpuYrEpTU6EzsLliMopltZ/q FzDIFcurBbnUKL7R3sM1Rpa6OieDRDVTdKrJDvFeY8rzWUmbg8Xw099kD0YVTp1oCDuvbw29OcED 9h/gaTcSMiSOr/eeLsX4ZDzydRH1Mnf8CK6h3YuyiB751l4Pl6byNqUIM/5M/CUkK0NsfNaeLI5h VIRjYp/LYspb6x3DfPdOnQ2bJQWXL+7jRZNNdeW9OYtwDemNxBZMrjOeU9QZz8fpuSAKs3055e0w m/CcMy5h6evUSjGnkVJlR+JeEWG/EGHc2ZfFleleGUuz9CTwdDL3RykugU6URTQhkOV8bTuDyKJV ohBJoyTrn5NAVAnSz8v+m8OiNg995Uyt1E6RGznV6lTkqgUyuzRC8dxP5SPAfaIMNLssCvBsTyBc mcxM8lRqg4WWHRGxcXZTuc0yfUh7gvPZeKYQRy01/7/G4uzyxubs5ooglwBJZ7Mp6HtJz+EWCeVe 7sLu5jHMZhGq825E3llQMLp3o3Z3PrpbaDkPvteBWWPYJ1VOsCbWbDmOdRfOWwd7H60562D/wy79 c2gHoVJrkG7gZugkw2dQKJ26j6PYljZWVzas/0PKCZojLjjj5qS8inPjh2xnSslcY93OwqxHINuj /8Ke3f9s93X84k+7R6+mrRPaPrBYD/l4Ac5KwjZybR3uHFShyerqEkjCDZxRA2/QwH8ESQLv4UHl 0FLswFcGvnbsuwd9klunyRpNhJXlZaYBQ/wP6Pu932/5X9v4W1q63Ns/+FNmBuQSsq7QvHi0TmgT 5F9fhxb9fG1xRgzSVStQpLGMiWK08x9Alb7v3ToP4RV2Hnc67/ae4/TCV77fySf5K+r30uYm9TsD 6aX7Xgiy8GWmnfRCWbRKJdQRT4AfPCzcIGcOZszfG4sNtZeZCnuuyjmKZVj852fGSpEgnVmdU+NX QIGSlUjfMUtMyxcTMqyXXY7yyBmEuvHDIQgThPOeE4kStRD5tEWxldl0tbG0ONenKTaHj3ONOZlk c1h85no2NjG0/ocLK8ub63OwPmDicbVG8tiX3i4sbSwvrm7M9W46c4rJ5h78oXczdxfOebzw/TaM +lfiCfv1lPW7OEk8vsBGMez/qtS91Kc2/bCRgZ5U/lsz+X3HYZVp1AKqigjB1APW3fKPr3bm9z6W fpZF3PycjK4UjAdjoa121HVK8K/a06jwZRmTVJvD5WxX9V2+5XrsubS2MXfftoUf7YHdnmNX0LXr BMSTGxtz8HMO5nDA3+Him+qNbXBlY2N1dS5yvLnonsA+gB1vHOd27truvxxDXmw3mQOt5klzmzat CmsmbxFTLXetdckPWfT1/Hx+p1H69RX1xtpT6SXHsuQwx3DZEn2lgSQl+Nf/WHKSLLkeMyEYMnC+ 0p+bYX/ui+N7/ylsWcR4qQKnp2IYHcuUeZbLlnANU3KeL/h30XBXe1nGGv8pTDnpZXxtcc65c3vE op47DJ0QLNruDanAnGDychxadyUfzaG7r0o/bac+JSObZbyhYUwqLjFQd4slJfjX/1hzkvKSGByR mLfuX1lcro1kxkPpQOn3/5ekZVx7/H6vkMnwsuVEJVs9vRPLYFBpmzcGIffWnY9oC9lzvwzdjoHR oe16VyfExXmcDlCWM3FaP53Hs8NC7E/2ltFKKCYUH7cT3UU6y6ob0er32+L3PANI3zhb/P6p18ri 95thz1q15pDYzFpaFACpm8k0pDoDFYRXWGGuGleywixgjiv2GbH8JGQrvbasuAPrk+3Aede52sOK fsWGhqsEe3gB+IuYICaAemNJ4d5YzlV/Cu47ML8oqp9xqs4rhbvxxZIv1jNwbw5vmOz4d2kyqIPs KReLwTYj3C9PQv+4HVmNDcIfP5brsI3jzTthb873HHbkCOpdu98aBje8CCsXzu7ZgXXsOdZr+VQL 33GX81WRpbB1xgnPbzgDHyOs3y3gxEPntzBo/xpwJ/6+sniDpJsoFS/i7ejbr01aGty2vXDuU2OR nxe/vCQYknDS0vbUEeWjWM6WJkMpJAmMm8RG4vdkXYY7P6Xep8I0Ci+kqNoQXO5+0Jm/uVlYPPm8 urP07q33cT1aOth8y+54+pZqDD54zh/uBNp8XKtNtZhzb9C7KfxKtyBSl7NHIsT4wmmFbpS17Fdr SpqB1iAJsEFOJfIvaIJzKHBR4/hoDl31wRulrNwhwIb/MptkjrQ+HO8YXFm9vREBMXIfwG9ffkWn fm78/H7QsSPn57mfD5v7Rz9vH+zvHp3T0882Jxj/+3IzdIOWgxMIOPqrp5b5B4myaY5FV2Hwqy8X qGf/4JTdr55zX/gx+tXu9abuA8drd1M0OOFl6rzLZ1uKj7AW02KEZPkldstf2Mcf0u2xKAhS83XS 0iAO0CoWB1VA00jSQhh4GD/tzZBmUl9qA+Vah36HI+wyYM1vTwN8ngubS31JgFacVSruIzdvjPeV EK3EKq82v7bW86ySxNlmmqrJK+PPfSZsVNYh39gxJhEp+cbGLSWej5MbSXtJV2LRq0VJ6u65TJcz WPKv4qCZchSBFhIDr/WWH754U5x8vwixEq286O76mlgumFQddxA5PgmsUCEVVewNHP8+4jS3jgSu cZz7L3NzUGkY9mLr3fHXZrj2++Gbrvv1eO+gH9nrG2e/n/xu73z9Ntj4fL+5tHq7fnSwv1Jyc5Bq NXuKeqY8zncmPhtSHjWcZFgeH7abBZcPAE6gZSJvy0+pyCpcEsWbwCuOss1ljc4H6aZSSMc2l/jt jHWZCXsdcTjJwDUXQqsTys/MJHGqM8kIpOBo0ZLExVpj42ET+HG0qQF+TDSrlY9inZZE8wzxTEV8 GgArhZ5aTws5NZtO4gzN3hRGXqZDRZli40JEE6KZQZdGS2NiPHUHx4LPhksaTYwLz5SxKQzLTOBj fTVgmpGUCYPPFG+sqVoSCsmlL1PTkRFi5EoDGbmWSjFvBCViRtG4GhgY8YVo1mwUf3i9UH+mLmsG +KUnZmnw4LQ0MzWl/50qCftjVUEhkxEOxhdBdXyoXSl26ci9AuwKA/DqIKdIVRj8Vo4Wx7rl0UmF wtXBol4IWhleRsRZHrdcUFod/MxAsLLWM3FfeQwKw8NGYzEzc5mLqErNv1ohWtPJPXOXM9kYqnFT 7vJf/yqZW//61yfvX//C/FO/OKpHfss0/de/UkgXbt1f1s/6pHCpEp9WgT9rmuXiQtszf+TUhgxb EUVL3F5CO3a4yk8OS5GfOhSgPk0n5SCsGeNTm4pDTcU+RMwEqZiQDk+np+/+fTR8QlBKbToy+fDD 7VSj48j5bdBx95X8u/2qPgEnPbGfGkBRm5pDnJ/Hj0G3GjVHciX7r+Wnclb/BZiyvue/NhXH86Re 8vT6NJ4YBR5qY6UjeKO8wgn4UndUob+5eC0V30fRUjpPKsw8Z9t65IxbaXcrfbwsmX2VECz0s05L K4lPFK0UOS4rNFHkCVXwDcclGijyLlZooMhdSQ2kvYu6A/l9SoUWir2K1EbGBYhGinx2cRPjHX/T CRsLRyQ64/M8cWO8cCmmjJ1lJjvK7pkLKItjglqZGTPtEUs2bGlHVQKnusPLgCV8n3VJpSY/YwPs TI9WDgQcS3E1qVLJOzUNH1QMLHEZjZc/bDc3jOcmkYvcLgmlSoxEk3UrjXEplbqTClxJMbHxR3N4 7OSJKVXgFEpxZuK4KZKUlwum64WWigIfTaowf1AOFS5uviitwK6SpLjpUwErmOUxzBhfLq0fsoA1 ORJHRpYepufDoAe38me1jJWq+NI8m6XKnAja2DNqUotvIobYYIglS1DG+m+CB8isXyEGaiYqqZLx Z1I36q2tzFprfENckh4FzoHllc2VlbL8Pt/1Oj2docS8Tm9jfXFpY3Mze52eiAQUfmIGn8bG2ubm 4pICnM7gQ6Sil0ubfPvgS+Xx+dsr6nm9m/RySV7q5NVZ+zen1YkBfe80OOkLyr7014eMZXkWnJYd Oi0ifUyU0YlwzOJqylXNhbP7prUavA4P33+9b7+11x5a0cPyQePOffOlub11df7H6vu7o92VV73+ zseJ5sLJRtTWeSdHPC9UztLIh5zdUiT4QeVu5DSVsqgis3Vk3bnQW5C+EbamOKVoGPkDXMJMKyXn E5XsxsjbOZSMnmIb3mu+05e/wU1A69c8u0szp03zh1rjRebjt8/9lVsjbYMoEzB0qfB6/Eo8tpnL bjSYtYeb7tphHkww7OugY/45FtDw8G23M8wD8geu5+oIAPUwFljjwF/d6+WB2aTNP4Su6qB+Ggtu 4949fvc5D46k352rzsnL77Gg1jZub2+28qBoNru+PthwJg9jgW0u99+tDPLAWDwKKP45FtBe44/t 0408oDuSlurwN/8cC+jCvY+6BYS/ca8FDP0YC2Tt/t37d0EBkI4KRYBmbUmC4bHAWhcr7z98yQO7 prVvqC+eUw9jgR03trZWu3lgZgCH/B4L6sv6zlrnXR4ULTg9M4wpeU5A8i891fmhSCxVe6kkRQNP +334B0l1sJC+V/hPvuhy1QPSLbsHo86nvyEftnRFbarlIoh0mHpB6d2vJaWfGrxe0AY+JEOTrHNG qEBSMIljSfJ8lca2pEODxzadUr81FrI2SvHiyNLSeOB6PS/dZqbpcW1/KaKGzrU2MVogMX6vvXAd OI5HCrPajsxpZBQznW5bepG1trt29pKICZEmRwQYltnsJIWP9aN11u46HWKMEXiMb05tBPu91jz+ iNmoPRQD7uLCCv1pNFY2lzYXVxbZLHWlN3dXmhhXzJ1XnVa0thmtbs4POkr0Hh5scZyMteX7tyOw fAa1KjKSrZPLNA+bJTGmlcj2ndEOH0g+hu5QBbGf6ceX6ULlkP6EV4ds/8mdjuRfqcBFEern3WEQ duyHWCsNLd6Bcfmnyn0uBIBeKxwo1ItFfdvBemCS4knlSl5XrV6t3FPXHF0oGaO1Xm9xfdNY92GD ngvVHEXZcChjNWysLa5ye+oN/x7LX9l+SLizhCYboc8VaxdJJpkbUMJ+u3E7v7IYWqT/r12F1x4V oH17hH+WBMzeSLxzDRGF+mv2XZZCfa1ovxiJ5EzSS5OI+gHahD2mVAUSjZBrOQxAu7Bt7giYdjQe L0a7ZNVfE2BpLaAilLFMESxsc0J2u1cs3iq2k2C38gxsFcH2TnclZY1JwOcMneOZewvF9krfMdqd /NAtLT2DGnX5vwfGb3er8n8RrYKFU6czIUZ4DtvW63rb5T63faZAha7X55/VLP+0u+pSPu70ZPnn eSvL2EGmDn35tpzrkP9yE+J568Czhu7L19zQDfTe7wV6+u9gf+oP+H7QdSuyfxGpgoWtwL4r0XEr op10VlHyO3TejnjS39thxc7XZCB/cfEmx0Bd98UYaIJTpahDwcKRCr541khPUELVHY+7tZwa1vWH LzweotTU72k9XqZ+gIkjP6jIyyUkum7n1J2WbxrcXoJEoum8NImoH0yiFiv7FUhUl72uW7kdUmRm eZkw7RIRKSkJniYyqzGFaayXjrW+Q7+esx941kiGnp/tcGg4Jifc4edJxHqTIOyIvttzKk6CEgrd 3Zl+SpET9ktrgd9HlFI/QJu+7AwqkKgmdw02+rllqG0ebZ4w7Sa0pazAFQPPW8z2jMj4HXr2HI35 WWPZ85xsj+3gpVW87zMPqB+YAD276jwoJVFu9fDt2xcj0WSWxXqkov6ARqHzQqoF0XAtS8Oe/XIr 0mR2Y9WYo5/tGFHxxTr2vPlTPoSVHUOl/YGXR8Uaz1vNXs+SgAq3r+7/3bVDwsWb5zoCIxVRJLGe 6tJl5S5KBR5xHbks3bZAaMPF1PNvfEQ1cQAUjtq7xuV5BS028KR3gyraVJrkL/U9VIUkv3BCabyC d2ibfgcFgQklxUHNXNmnOpQKW8CnhNMRCtq5cfSFW6sbc41NbqU2B5swtwLnPoa5sjG3IinQngUz s8dfXZxbFj4thjpCkFVqzv7Wce2+73Vadvs2NETBxbYSo6uNuWWZsMUYVGxo+/X+9rCladWYWxE7 ybNgmmavlaXRIJ9LqG2EI9sd/9Rv37po1KBUIxmrjREoVG0p7dRBxyZA/yPn/qMf3B46+m6sZeLX l+SsE7sT6MFZXptbmcR8G7bb2hiysji3Ilrns0D2iB43/rUbquzIoMoosM+lytneK9f24jFYmVsd xbQVgSaOn+X1uZUJsOBJ1+31mMvxtbExt1qZJuNWYlmhmnIOy/vf2lXUAj6Zw9GE/mcsXRMY4Qu7 6/vhuTtQe6WV1bnlCcxQ4sQz/6sCuTm3XDlZ51Oo4t04vVCHeKk2V0YLtYqg326f+g8sgfNSHk1M Yp3/+NH2bp3MSqLWXGpj5Gg8l3Tnzlc7PLW9RCOa0Cpz6HqeE/qRfX7veho0EUwMH88CfU7qsr1l P5zaDxrw6txKNr3gJKl0SDtwL0WhUVKwKlA/8oNtN3p460ZRLGLHLTsVgR8Hrh/H52KFHDUXnkse 2nT3aLtjR11aRN220ZNJyCccJYtFCZa1UaKkIlB16nerN3TeJFxUh0zjVrd4n2k2qyMmW75yXsuZ VDNOf31h3bIja+mX1UWreWjt7pwLvARM5TjGPAoVTkdmwWZbXwijOX9QHAg6tq7nzkWZdF+V61aq ZRKBf1fNkKjUkB9D6wQ5pfoOnyucbIrE+ueuuCc4qh+bAKxrP+AMfC07mqM5B1t/z+KkbBZOmfGZ qejecTwruvfZuhAiPZZH8ksKBOG8pXpr2B1Ur+ercJFBfwn95VYEa4RRn9NjkrYwm4m0LvDkJLC0 cEy9D+I0cMnX4maqMMFfOGdlm75fHy/dng4PwpY7fLu1/b7Xb7pLu2/PWm+7B8PB6u7t3U5zqReV 5aws5uzM2VGmjvozlTqq9+lTyWG9H1/gkJ71KZMwDIfs/vwpcyrPypzGm7Yu+RCdUVDO3SUF1Xk7 KqnOyBll5WhdUjY+Ukel9Rk4o7gcnkuKJ4fmqLwcczNKy9m4pLQ+E0dl1TE2E2s+/ZYUjk+9UWk+ qWaUlcNtSVl1qI1K8lE0o6ScXktKqlNrVPLGvTbKyeG0pBwfSkMptn52MYImrnwKzSiN02dUWp0V M0rKEbOkZHy0jErLaTCjsBwhM0ZYHR2jsslRL6O8nBNLypvnwzgPztRU5tjWJ+9Rn7R61IeoHunl L3P4P/24nJnhMyI4n58TRsy+049J1o9RZ5OmFTjidPOw/5hzFNf2F2ogd4AHTY05+jON5vJHbgq6 ER/ToZZSB1/iZAvwsmhPywTO2AgpjAMtlclh9+1p65EkwyNNmeyZkspQ4sMpAkuSJylFahpcYunj Hj+qYx68QsUnNR6t+L9PHjjlF/4T/yKA/xRPAsGVQwyWdqJgGj3ONGYeL/dS5BU8i5xYmYMCNEgm cMT/a+Ac90/Ql2tAz8TYI5NUCnzYhlxh8BwaT+Bn1mZmHh8v/7w8Oz/4kx5X6PGfCPDO1nU8TF6F Wk/qLi3N1MIuFQE9jVa394/QKpCoDCcTTpzrpeOtakw5CliGKEPpL9+W40KIrBVKZ0F9+RqD4qhU TbDKuGZiP7nPTaH0ah04mTDKbJ8RBRkjiuhH6Q5auzh7/ScTIFvlbi1mBg7QoyorNTDKBMNlOBkx bho6x7YR9KUa0DNxZLn+XrfiicLhXxiYdebkDBZYnqRYS0qBwbPQQs+P53Sn/pxOh/tkKXF3B71G KIHonZp0bqUjZbKUQKBLzMjY48XzMo0GwkaS+QsdSLFyFl6PdhOqHAdZ1EQ3E9CQIQbiFDR0jk/Q 41YZfiYKIEeOnremG2DnPRrATMvh0Y9HHK5w6SVWhk/eP3+SktNV3cWsjahEQNo5jHemI/jHMQ5g 0WisjL/3kwcb9+O2w8brRzT4ydNLlCxO7Ob88/KgufPn4yX7J/+8PNwnCXPJbkURACgHF9+fUBjS 7kBLmSRppNhjRzL59TZAwdcmwgq14fbi2hkfGVdvSHWYF9VCcsmepz8vjz4eojr7hugT4winzp+X J/vnqtgaEG5yMbhKqNgevsDLoRaIS/ZOUJ3X+38qQjXTzoWKhCKAr4/fAwmYwgn6wS4eYMT+83Lr +AxIsHkZBG3iEwzB3G9tLjY7DAsuf4wNvTE1AUjocb77uwK0hI6iO2zUpC9b3B5sjtTpXbSn6LGz C+Kw1YrwavIQsNHtz8vj5ltFHUJ5++IsKXd+fMrUuVSmJ8bMsEtNF1qg0uoSP1ewJaF/VHGUyUgX GWEZ0kXKPtJn3IzwCxLLJFofn8f3mDP5i/IQe8xF/MZw+HnMgvzW9I56zEv8OvaDeTxVpGjsoPd4 OvBL7d32mCn51Smccmg4RkWCBTxmb3kl/kyP54XAiX2/1IlThUXGR09tHOviGae0x3OdP+l4Bw8z SzojDlkPc4hfxL5Ij/mI32kLsscsrzsCQyyo9VGRIPZdeGBUfpcyz3vMcPI+Y3P1mDH5U2zj9Xiy ybvEL+Uxq/PbnNHcu3yrKB+7akBqRfqMFwJUUaOf8Rl5POXli/jYPJ5E/CZn3/Z4IkoL2jXg8RyW nhpOFTMf1vfM3ra6WJy9bWWjsbmynDT+78vepjNrmdnbGosbq0urSxuZ7G3xtEb5pyZwI9iNxrqC nU7glskaNvHUbXKzBJDPW4fx/eVMvInZjxUQ3u2fOyn7bGoFMAy6IlrLzK0FtZKP0+iqXT0ZXTxk pdno/iOT0T3R4H8idlS2maZs40r3zdk6Ioe2yzTNbh4W7JY/jBZwJUjLVr4vsFKqkKU+JxZzZjnb wpQHJ6UNtTfIVtlDSusy70CMcB+pd4Nf8sWGhXeBJcGsZ/Hw4YaXL3yBjXdjAWfiuQHzPlAMb/Ea 2OKCGNavPT+iIi474NTUccOEUQXnTNhs/t6vC8fq+AyL2dZituXus70U8DSCAjEP4sTvubQ6kFoe kuCA1ku8Puxhtkr1CDOIVPvUmNLIDKSi8m8YL5IBms1VSjLRqQdjNHkwQ7fv9mxj81CGN8yiQItk 0i1M9yTBZCCIE+4lgTDJk0O/5RKB44+a9Ewup1MG/IQWTEi50Ioz41rXQ68T2BCSFpa+0PopHNI4 26H1lrZCIW7PcoLpqi0w+sbwaKrTdGUpassdSIavi10jQiRO9YWeQzKAtUh4WRD/JIXmaVfnPFj9 IU0KGkJYXUGSAVGAN1/KUcBMwoVogRjiFqfeA/EwCbeQgDAKCiBqGxjN8x1fhE6XtO1r2+1hEPqO w3UIeUKJ6ODaVt9+AAIB37XUgW4er7UWMkEHDiicp8+CnnXGVFUuHJpetKbAkWPJZOMhvY5Y1LP9 nIWAEhSzwMjT/p0UJxaLpL5cFbZAvwd+6PwW+b/+vbEX0J9ECgnz0oxmmuC6MJPdQdT7ZNAIWVK9 GPVbD9MTrGnd80DLhAWQhAusn4g2xDzTQpW8yDrvkt4KePPcnzruwufkFtVFdXLR7tIarzrlyUUT gsXLXJJe1FwpLkvlfGw0qbxwTFddEEDTrPTHuxlrBvmpX0qmz8ygiToyG+UrC2hDBM/iAeK1TKgC 8GQkKKOYFpdPFZUxUuPl4o//tfIQfDgBcXdpiqiyqVRF4E1rqfbj06UZ+mSIrqzsYD02JTCKEwyX xht8uN8a3uz3u++6e+dvutuLrz8fbu5fPOzu7u5tbG68fh3tN5pDb2f17CKON5hcoEtuYQGqt+69 C78nsGv3XGIbdoOGnu97TjTvBzeGFBOAb3zXYwr2cN9XG+xENNw/3U4WmPyq0F3G01bg34PVZO9G IkJ0Wfmoi1YPSI6bqpCU7alxw7pQjnI6UiBo9FvdqTOHJqMbKRLpJ26rONptPORe+7O7HU0d0WbU DyDEBXbyPAL6iJDDcc3u77+6OHw99doOOve2zlGrn0Y0OR7y68FW8P5u6sy/jhLI+mkE5Gd0ZnD6 +vrr8tSp30Kkg9Lo9dOIJsdDjvr+weHW1NYwxEqtIOunEZCf0RnbP7z9tjul1lnVpH4a0WQJ5ATw 27utsPluasv1MddVV+RhBNhn9GS7ubr9cWnqPLA9NrxIk/HjiEbHw749bBzevJ86G9g6KTL/HAHz GR0ZBserJ87UrucEWjzK7xHNjYe6+7HrflmeunADB7fgClz9NALyMzqyNjjdaTlTR7Zn8IB+GtHk eMgfP293m/tTzX2B2dwfAa1WCLCsGrmmk5bbu8Pm13fS7IFzY7cfeDMix2FPhqTUnevOyTt1QXIG wfTqJE+vXb7sdzCEtko6KU3AoqWsfN31MrcPJ4vsVChYqCHwLRL49GcIn1pqSZEmcpBH7ELSoNXl woV9zu/oUm2loAq01KsEmkUbCxtm0zZHPIZd6NLQ09RFy6JIwPEVkV585/T8AcdCzZI6ORg4Hty4 XB4Lqk+qPvYVSv+gZZA0Omi5ccP/oMZagU/7tXDgtGmL2Md3UoixLWB/EpR7QgT1Xc/z7/glNWeH AzeIHwaDHu1klCILhdtud125kktp0B3aRXoO67V6W0SdG8ib6yFi8NJ7X8U+fFSZI7gUw6QvTWjg aWke9mO9s5Bi/GG0va+7gl98+w1vH1UD/JZ/5q078fCau0m9BRkEtOULXNpf8A6NR80YIrFa854T ZvLU2McsM7JNp6cu65YmY78Ah6y68AJQ2wUWvaq8B4yvfcQHYB+CbRQ2vMkV3/M1cE3ttpN+t9SK z23pXW1MwXDIwXtELeoIbi9WnMs7tK+yQ4sRF7a2eT/2YDlUmvCGBZ+r8KVFIW0L/T5HM6haar9N rQ9ILZcdP4fMyi6UNoZOoHobz5t0ZZ5F1SghrKQMEso2IDt7hnvtY3NFhKnDeO60yevUX18TlyAW 2sbHQiSQ++wWoYk87Lg+iMImi/AXfWV7KHdJKzsJ78Qz1g29iWZ5Jfv+f2AnKQSksSPB5uPmdAwT yzbnK4k5RWLe8qmNrstlTZvLvNW0aI3qsNFHtum0XUQpAtPz/VtsugHm/ekBN6oushT7qq0w7EpY twX7xyz6iFnJRAQp2rRnBzWSqzP0G80GBHw2DTmNYx2KE8lPxQYVikHJSaxQs4ZRQFmhfonZpnhy q5qp2a3eMS48vfNG+2Z4ixU9IxpSb83q0G6U9825QwQz/GNDjxZZ4Mnx9Y5zS0N8psxpZwit7tgY c9g1ajHl3XRifZrlu8qcB6bHNu2JOzBEYSznUiYl5gzwDod0E8v2eoZlpkbrd+lJpiWgmmWxtQ3m KJLJ/xAJVGK9yxI9oe253VPZbnKvTbJTn9Mwqlh3BK4qyXjwNNOGKUUroy9Ji3XolJFGBqF8LPY0 x3CgwvXaNKsgjqFckKz3+w6MlswltZqj9rJ2SwLJFs1Zaxj0MAgBySH6+Iu2mMkd6sSWhujNmEYB xIZtdAChRvMdLu42VR7JshmHhqgcjXlry+naJJeHoiRW0UQSf+CpMlszliTlbGkpKWB99IciZDt3 bihDa7egXrdEXU/4RI4IYHRJoBA7Ck8YLxg0j/k/IHX1fHE8EkltAn0PcQz/Ar3lLgUimUnmIpiE qEjYMgbM9IaB3FhxH/Bi2J+3dNf+kdho7ShC5BCJFugFd9BsvZshjQEtBQGtjsxI1Lp740cBL/i2 x/D6TAJeSvjIjmFtFqtmZuqLcB47eMvz1jmsz9V1yJyykx5OKDbZAYTFW2krGGRlblZ2b57udkJM toDP6vIw4HddWioA1/Br53qXQdDu0GIjpm9lTBd1Ry3akwOUrI2i9NHUeqKya5j0mQNJQYCXhPZ0 3wQu6ISdmHq6puXcxvZn5EJcOOor89YeaSLVpqvS5q5RAVZvdr5owzjtgwKftgFMIUEku1QLHdTZ GgBR23yP9CEiYcdRDi3Qjb9jDiBmFATxadmzwPSz8Z6O4DDehuge2+FVTEYI/bl7tMSuNKk6rveZ HiV3LjVpvslCYsDkfeEDI2zgaO2IJoydTCIKXAidPg/mPyBirmkH3IJqR+Mc+nwjKiuJ4niKgaQR 0ieW+Argq3vaHCB4inSpiDZJ4VU4sPvzy3uCMR7qUC5YyBPykNY7p0dCy5HL5KqQjxlTO4KIwW2m 1RwtwzZ7HhN2io8w0q4E6hSJaMi2dJdrKwMZRSAhgaj4zNKy+xOaFE+kTH8uoA5GomMTklbzsPmb pabKS+FbA73jYVaHGi40h5GP+GAGq9SwzFuDNm2OKob/EPNcufyw2XQKgqJgVnL7VJotSvZCtHv7 St3Ml50L1fsg5qeO1qVliVPrAuFyQ8unB2ZCMRuTkU/diZyiOQRdHfuzwAkHNCWcf2jmKiazbN1c qHQdnmg+vKc1SA6B0HNuSIGnSe1g8xDeE2ysadQK7j+nKf9l6LLjG3NcjjDzGqpXb6mTqK8tWL2U /590HhgP1M4UmoFpsxjgrKrYuhBrWIfM2GLKrhpk0Kjc24EHPeLUGThw4F1fQ1YbBSIHBzvF/COh GGJ7gB4MQx7sERbthRALSUqV13UcyPprBFUzdMx9BkYjNOxFrOygH6QCYtwIJjzeNCKxvxnKK4EY 0nhaDvatXpvXy1h50FrbqGHLijmxt6n4yrP0cfYi21tmq1hFAppL4h4sf+n9Z/KKISZG1uJRM6Hd 2J2bOI9Y8lwbTtqZZ7yoDQnkSe3xngQhFV2nX9SGdOpAYTLw0S9qQzrZPuRjRKexzyjzsjbEraHb 6zRPtmNo+kVtSHKc2on2wy3HHkbu9VCl5Sj+lsDP7xGKGzil7eU95pfpxcq/r404zLs7OJDv3Wzb OrlP/n1tuOAXZZFJ8ZB6Vx+eTardHsm2QsAFH+u3kNR95RuzMPP+SXBFVp34gco+nXtdGypspyTF g4cETsJw+W+14b9ynNsEIj/VhmGEZ8WQjHcj4GXXB5bvJ6fHr06bh4f7R6+4TF2pfxL4N4Hd77s6 SCP9bgQ6xfAOHFpABwVAsx9qQzbqFu0utL3iSi2TV7RGICI/cOJ9xoEqMnc2cNrutdu2tpXZ1FV2 hjr4bJ+1qQkniE3EcVdzX+rDJpX8rK3y7iXPteEcOdGZo26yih9rQzkhkWe3E8ZXz7Xh7Ho0A4ku JlsY70bAK2T947PEyMGF6vL+het1fGM5V88j8CiGc3z2ewyDfteuf+B6Q5XFTD/VhvG+NfQidU9O /Fgbyo7Tcu1EHMtjbSjIwdFL9Sl+UxtWYIeDlhMED1c6DWXmZW2I211aEx2dK9N4URsSKW3t6Pgs BqSenwCn735NweHn2nCaXifwXRU8mTzXhuMauLhPwOMNbSnZiBJDid/UhrX9YHv+jePRTjUZsOTd CHiFMuPseO/8onkq90/WlRfp8D/jxQgsiiHtufRTZy5MnmvDEdbNcHJtKCddP/LDrj+IAcVvElhV dfK3fieZqHgYBaJwjE6OT94fNE+t7ePDk+bR/q4wYN3BeuX7NzppYfxYmzSHbjvwQ19fPW2+qQ2r ORgYCPFTfRh9+5u+Qz1+rA3lDLrmcGBsbNSLEZAKh2r79OPJ+fH2+9PT3aPtp47UdvAwiPztYRA4 nqFlpF+PwKwY6i7rfvrSceNFbUhb58Ze+Lz+NnjLjdq+vmIneR4BJ6Y1P4w5dRTn80s2Nnx4ekSK SnUA6eUzVO6xa6gH+yWi4WDhEAznuWdcplovq6ViVMe1J5SE0TgmERO55TgDq+X7g8wJB3y7LD1f kKQjq3VqgQ9aT01N5Q8f4INKOvY494j0dJc6cj9pSwWTZuL8px8vk0D8XOFc6D6SbGibW650JuKe QOslMVc0E0IPsDqaPVc2E/tOYHV4eq5oJpgdYHVcea5sJgodYCVUPD68owqmo8oBMw7wzgHNBoSD BojazhU0o7sBUmxTuWKpuGwCpoOncwUzodYAqaOec2UzMdIEtrmfKxSHO2u2sy5V7PFMHHI8o4Ju sxSTgOW4YlGQMb5d5oKCEyzGxxUzz5ihv0nlCqHDjFzqy//bEb48VhLOK8OWjt3FuxmLBnPKCMuV l2aQxfMibhW8qtG06dEbGyObx/a/Mf41GagK4a1SuGrkqir93xiV+mOVaNT/ywX+bybs9Mds45pM zwglVZwdF4ZubwZ/TiLkU6H5AuGcAnmSoZoL2TBMHpjLGlGUf/5UKcBBTs4S8pOIn9Sgvn9spEhw M+JRcJmZyYcxzsyMjFy8NMISiYjZ0MXp//oARaFlHICYX0VmZrBKEBknFj8obYwJ6atU6MeyeD+p jdC1J8byCVl0hJ6AqxOCd/mcwDpOKpV0xgjakwk8NVUYSSdYXo4LiQN0vJqebETcJQLb9BQaGwun JBEyWKA/RkCb9OI5gWpacGaEZlUZmY9HE5RGxZo9s0nVAsLFsrFgIyPALmU89b4gF/s1rZfrv0QQ l6Dy1wrQUuT5bwy+4pmVj6iSCcf7W1NWLqRiouSFDmuSpzg4SR4BwPjJoULyGMf7yGMqaEdexVE3 8lgQHmPFsNJBL/I2G7KSoKHjQtSbgqiQfGGO9TB6wiTgSA2FXj6YQn2REAn5bYY6MImNYIWYxGYA grzJRgrg9eVI3z2vDs+JD5hWTec89/q98sfLk/Kqa/zFOS5Ppovbk04fn/2odIiFxOUsT3Acqz6z u1R+K1euPCiPrDwkjlV5TjlHFabauymP2kWpn8TRqKApd6E8weknvxL3nQJpuOC4R9qJFvcqdozJ o/ZumRiph9ixpLkZHiKlWuT8PjH8V+LLkYfEJaO6wW4V9VvcIwor7eVg6FlXRQw8436Ql7H3QB7h AlC/lDE/neH0O6ZvXUH61qV8+tbV5Y3NTXz8/vlbpxY7neVWC3VSaVxVDjMzjeviUmNtcWV9NZPG 1dDsUOOpiVwJ+vLSmoL+fRO5Hvhtuwfc8z4UfC53hKAOb0eqJURV32K/xl8sH6pJ5hfOiFrsWIxD q5NjXkohhZrHqhG+xv65UgOyQwv/wJGVJDa1XBnnbPT688C6kpgRE1Mp+7TE663uslL2Deyl+GMm 82hxTHimYxfYZSeA4h1nrPbrHG60p8MC3ZOtaJ2oe5gGoFrZnY7Y5Vh9A0xqN04Ih+drN8AmiaYq rbuDLkwA2F47bWjAAe+9MXDwOdVB4Mj35mgZJSnVFezNbHwR3CyivyVJ5OpAV8xAygI0Rb3FVNMJ NkHdgtr+4quistg4csfOCYRCl3f8xl68sD52lhg6ZQ4e2A9z9zT/qUOwDxl+0VxPanmF9WR+Si5K 7VjVqShXPvOEL09FKXMlli5JGkoYoLLT73L0xBnh0xkxJacLZpnspGmX+tRJg8ovNB0A+imMjnoT YGFlwp4s62aZBAyQcEZxvsFWWb7BxtLB243w/ujj5x2/fba08m3j8+lq+/X165PB4vFOdDE8pb2X 3f620wsnmm8wc7iwYDlZXbR++nlt2mJVAVvyWauxvBibI8NZFG9pMOsry4e0ffWhow4bi401aymx UZcvBLr9MnTi9WuqFanIEq4cx5OYASgj5o1UPdVzM8ZMTGRpkGnMnoJKueVHUIwzQRMen5129CtE BZj6743tvzcWtwP46NywL49niRlEXpAgob/ZTUL/vg/5n31vMBSRjT8Kg18FzzMHLkTH4VszDJ/C xDueHgM4f6T8a/r1w6jGnj/+yk9/77QQj5IKNBGclDYD9+Wda4/LhvlEDDDX4VLxg878TbpleHe4 5R35PuHWM7SHXcy/lhq0zeMv1pYYy0a1nD10zOfvdtmzy4XTB/LqJQI9R4AEQ8lnA9V3NeY+Tzwr 6Mjllk0oHf/qwR9eITPtFWeFluCpQMXsbcsDZ66lReEmG92YT753PnRws2Lu61OyAZahr9fFhdV+ GN566rKiK1ojxF96FUhB2hG77duHK2UPXlCS0Y90wIAeo1Ed2gvcF+uP8OqC3Gf625dfL2hIfpZA FKfzs+v9DPv8z2pEfoax+Wf0MBZ9ATF54LZpzxj86ssNlixq/SD61XPu4xfRr7a+Pvu8CwXmnsMP 2PqvoI+lw9nQG0uHsUkSOYyUv6UjSnleHqgE5CnaZZjW7tvSD94++8MQDgpDts/zz7yAYeMrxw+i 4x2flUbl3XiLtMwhTGwetCLfcsPfRp+rX8AyF2OWW+II6g+C5WHac2AgKkvEeHmUN20L+Z4hm2JQ DKlAPkk3cl8nJp5izj90IjWcqVcMfxQvopARFZQrVWdyLnBYhjQe4xK/GYvKu9SBsGcgIe0l8dvq eSwC27yRiAPcJkAOadk2Tr/Fb8Zis+/NdZxB1NWbjlyxJ+ByYl6Xol+MxYQKIbBlIuNC+5U0Bngx FgMU4p3wB1fN/GeigSHYHvbkRm0DG+P9WKTMchNA58QOeq6N1TiHUfJpLFK7761M6Qmg9l5uds9g xW+rIDRBBka7ew4s7rDT56eV8W0sZqqsJXVzhZ6AXdimCZudYvrlWHxyhZ+DzfuefZ+ggafx7b+H nx3BRByB+3wcIF8yh2ONd2PxUeXYDjOxIRo4J4hozjAOvxuPkPvV6cHok/v+FEQyy/X4pRr6Zt9/ /qL08f3p8UncOD+Nbfvs/PT46K1oWqVNj9VZi7Sy12z5khBarpbWx+I9bWIHOkK0UY/DR7jCKAtR fkusdxDY+ZCuMQ9dWAxr2PSzZrzn9pxfmoguujq1+6H9cDV39ZbU3KtXDpVxrvb3969cj7Z31C7b Ea8Cn3bOVEpcsVfNILo6CXyofvOfB+o4N7CQdOSAZQksi2CBwRNYFsPinkhp/pmMTb57Ww+IkSEV XJCdtU7YnUWqed92vVm2HlzoXnJggNax8rDSlD7dPbP4ftqXJvbWsGOThhZdwXhKZO71HCLha7fX uzrcLiKhroAzASGudIwNz6j8abi46GwGkQUINUm53Q1o9XCJnIdOt3cNUNdt6k6QSUurLEfsZHXv HN1D9IuI73ihEy60HhaW5xcF9+1ta+ujRY8JEpWHRjIun9G+yurBk6rkoc2G+9RehgvqasU+QFMU NHst23NJEomJnV7Gb1BcPWTIVuw/SoH1On4QpMDqNwxWHuqDDUipSWOr3zBYeagPdoitfwqsfsNg 5aE+2G9O0LLdz8gYkEA2XjLw+Lk2/C3azgbD0AAev0Fx9fAUsDcuDoaaYOWNAouH+mDdrgnSD2mk WKN/7QTfnBv/zvUUvYu/1W9w2Lux08OavOJ21FNtyNuBT1PeBBy/QXH1UB/swyA9nPoFA+Xf9WF+ Q1idARLPMaLyUBvojuP17eDWABu/QXH1UBvsLnb/BtDdMPLjua0eagPdcz1cQW2Ajd+guHqoDzaw PSiRCVT1goHy79owz+xbUi1xKMyAy1qCJoJ6qA35FceHPqTAqjcClh/qgw0cJ0UE/YKB8u/aMF8P PZqUJqrxGxRXD7XB7redDBvEb1BcPdQHi8MEabD6DYOVh/pgI7tnkkA9M0j8rA3wrR/6dyZb6Rco LL9rwzywo7uUENQvUFh+14fpkkSKSHeKHGQESECn33ML5qsnNBR1hxnNx3gnDajH+sCHX51+yx8G NyZ04yWDj59rwz+8NTnukHaunURQxo/1wdo9mJANwPwsQHs5U3IFgH6v49+lQOo3DFQe6oHVGwrH 473EIL2XOKQ9VNvkc/1C2sPves1xL2C8cm6CDNz4pYKtnmvDpz3LkQOnPESFufxjM5P6gtrp0rUb o63zvW2KFv0CheV3bZgnfkYG6hcoLL+fADOIhjd2LwVVvxK48lQb8iltitPzPn6D4uqhPlj4C1JQ 1QsGyr/rw3QGwxZ28vaOe2Z7h6SseiYTnmGPql6ifvJcu6kz2oWk0NcvGC7/rg+zR7P7Ng01fsVw 1dOTIGc2gskrDflJW8GzgZ1aeNQzw8TP+gDvnY6TgqheMEj+/QSYbvRNJEAKsPFWoMcvajdxPgxu HVNO6BcoLL9rw3x/GxAFTX0xfoPi6qE+WM+NnA5Mah3f3LXKeyv+wG2YZSu1lDZ3me0ipB32ulMx v8SHauLonRgT7YxHhHtsuIEdh819iQVHzzbOABAXUBceJIhmLHAm3pksVHl73NTC6e7Z1dnp1TYf Elxg4x6ODm77/QE119IpuDJtKmsU/x4TWsu9RnChdJWPOPwVki0JOr9YYwMUrQpBiTXoUS0102Vj dY0QWV2ToysTSdCkdaXSW6vveuvOzsf368NXXzePv3zcWnoTvvm4tXV19HXlw+d3H1zvzfVe8G3/ Zni2oaNIswmf9j3rAy05TmRHjkVMhRA1187Em6Lg3Nwc2HJmZjz9rXFxoRK6rCBe/vkTotymL8vC NPn4m0zKwiBPznwTQykNehx5NFfAc/TKiwRn6sDMNK4cH5nrHuInuVyWQGYQY5yhqDzyMd1WNg4x CUTPBS6mK2oXmw4jzOErMYcmxlMSOYifHPxnPVo60I/LPHK5y1xEXcXg+NHRetPUmoq84yRcZoTb +Aa0ZKsbT4dWJTwO6bRKAstGNC80flr4W0HoWyrsjUPegKDErclA4W+9sF2mIshyA2z3bTmwXjty 7DIb9JWfhAXxY2bs2PQPJl/lI8Dw+jF+xC9U5bxxwmf4GdMXwVKPmYgpVSAOc3qMw5hSVcPHfHRR qoBNFbIhP0YBBOo86kAc4z0iYx5T4TEZqCpK5VH/m/6axIo8piJHMsU41AMl4mQb5lcj6OIxHVRh gNGRDY+pB/Ud8QkAn4o/MHsvoQCPuZCAFJ7sxX+MvfTmN/tRe8/VW3Z7Pyq39iPYIGETy/RJ483M jOFzltXncqaCF3cmmbEQDKM8oBN0N7MofZJTWPqa9vrq7tbwuNbo9ljHr+7MCLfsZexajVe1Cl7Z 6RE0QLqw0d5WphRSp7CDlEWe+m0ZPlQ+OH/ZFHenFJLfKKQ9oqqQOC+lkPxGIe3fVIXEFSmF5DcK aW+lKhS7FKVc/IiihvtRSis3IRdVvy3DkxgXgtNPF8JvKSR+QVWo0G8nddwuyhcWiKsrd5xUUA+o FTvtpJxyr3Ex9dsyPHCqELvLpAz/RBHlTlMlxPklRfAbJbR3TIooRxYXUb8tw9clhZRjiguxB8sy PFdSRDmZuIj6bRl+KFWInUZShn+iiHIqSQnl/eEiia/IMnxEuhy7c7ic+s2FlMdHFWL3jJThnyii 3DdSQrlauIj6bRneGCmkHCdcSP22DN+KKiRuECkkv1FIe0pUITg2pAh+oYB4PeSzOCn4u/y0EieG lBCXA5eQn1biklAlTJeBFDTfoHzaz6CrKUeAqqKeuHjsMVBFY6O+lI0fUdhwAEjp2FTPhQ9vQRXD mq8L9SJVAL+4CNvl1WcxoksB+Y0i2s6uC8HynQjlUcZzri1G87iyMm2rRvSjlIzN4FI6bZ/mGulX VoFhW6qK+ZmryE8rMU9LCTEmcwn5aSXGZl1CzMKqjDxwKW08lnLKzMvF1G/LsASrQmy2lTL8E0WU WVdKJBZXKVVksLXShlpVkU2qXEl+opQyuaoSyjgqZdQDSsUm1KRcvHDoB1XOXDrYfCmF8AslxLap PrMpUr7zTxRQpkpdIjYnqmLxM5c1rI9SQcyEXFZ+WokZUUookx8XUb8twyqoCpk2OylqvkGFjKWP 683MXOYtaVx9jOHOqmOwm1baEW12x1vWps2T51WSovztTJId4iUnwnhudpSlxsqstbKcT4+ytLK5 2FguS4+i8eBz67MvlydlcX2zs4w66TwpcsA+kydlfXltfTGTJ0UG8Lk5UlZWNhTkv1SOFGHE59sv mZEmmFFl7d+bUoXT0NdPqJIZzHF5IHTm/NI8EMvu2iKz+4g8ECcB0t/2DglHnicGWroj2QQB2Sqp NAEKqcmZyFOuggIj00Cw6QObrJtAjOFJ7ZBYpGWrS9yKvQlSpbuGpwunR204P1gXjtW1cT2A798i Jx+Wl/dHB/uH++e7O9bJ8cXu6Q8MROrFUJZzHSiwTy5/udsaOn8IUup9BjcBFIPNRKwXnDffcTuc eRKJ9iwaH0kUQaL4xuk8YBXZIU29a5307Juh44YWm6iQ7RS+fOuexEDy5jdrn2r7Q+y9PT+at/az 6VRsi/YWAaeBtt4QI1r3nBKDxHEPWGRq2NYZUlP2nBvH68xnMbm3UWIH25oDIoROaoEqs1boWwP/ 3gmQWg9jQM/AlXoIyUNN6rQge8hwC0O56133hpxdkK11bsdtd3vInoq8674lkpbWsmtnfn6edoA0 zgR2SDsvOzHhaiQ6wAo8ZHHm8LhVTpB4i1smUMr3iEPwzQ6QCQRmXDFLdB5cJGU9T0FSoAVhSW5v R10omoQeb5OSVJCwRMLYhYrI0Y+kI0OPEzzbPca+5bRpkpp0QrcEK87TDfMQRhhUviaVhgmMp57P iZORpZGrzqpct5wJfUiy+WEWRanDAWQR+uDS6L1HmtVo6HGuE34d2cwpAIRsslTbbXNC9eAhbv7W c+5VZvBMuVuXk5N03T5MV/gY9oiwGRZyA9qNtJMBCDE52U+hcrZ3aFiJX2ghZAYlcMhfnXKTGbNF MurnPxaHqnORwziHPkufpC7/KnbbpiqyvBpRrchrek4rFael5sT7sVkfaWpabofU4oI++Lk+nKQr cwckScydT3MBuw1cAgHRncOqEIJMBlJtwnCBXQe0/ZLR4ITF0ssSKFIZ2Z5pnGaR8x2ZciJkgA+Z ozgzsiPprj3FQSp9DpIFWhc2jfnQczmjKDEfJ9eV+yFUeqEm7evurde+OqqVRySmb1M30CLJwwkh cRfM0dneheU5ToclBoaOJi9mdsiCgtPwIBMyMgzr3LMjBjbT5hGmKl9kwBmJxzCFHs1yyQ/pQmpS jwUxJn8CLlUOP9LBNvGaLitR+h1DKVks+QFZf0lKkJiiRkvKZNtserSuIKOesXjnXo9tOQuV1CYw ASkUXhpu9sMoyGVrLJcc41yP/dBMuXgFi7lV6U+sO/0lohCQW9bqP1jqUotrTszM8tlK8msFLmd7 J4kM9iobYtU34WSe1/IrtssnZFCiU4WSKFBV6FsteOHl75Xat5qH0icH698PrCtnrpeizf1olXWa N+paM50GMWHon5qqpXyqatal0h8LHeFK0eQ2PiFrudgJjJ911UYxm0EF+/S3AjVRpSyroB7y1R7/ Uwv/pxbWVwt/fLo6KNwv/yW3Kn3y5qyMepd9LesKvxyvk0m5pXmrhuL1yWvkyo9Tsz55y6qOFP1O StUnbwV54SelOQm1VuetvGKED7GownRJ6Tl4KX9ltBkGKP+llBT9kpNQpzWR+H1WZZAvjIRkqqT/ mUajSgZUoM5yECO0S31g69czzajxcmdaUBtra5vlBlTgcQZ5SdNp26ch57jIF7Kjrq7Qfw3UMeyo sYHKsKOubDQ2ltfWV9YzdlTT6vQcayrgL65vKvjf1ZqaHtFsuuknKGHCjk/RuTTzM+tN0PCque2/ 2vCao1DyTiXgDVa+fWMsyw2vW+7NVsDiOybLaLNrukJxbtbSqNr3X+7e7+y+XtxfP2lGg9vzweq2 /Ud0+6q98eX3i/beftAdBDf+putcxVG1E9lfiEEUv5It2hSxJ00I5KGVgrJHNcydaSsqp96oC6I4 X0fKDkv0SjwQuC9oIVxouTctIbJcVbRghMzzJUqHtkfzJDggiS4tywvMXP6ewSO/Q0p3xOSDeKOa vEqgiRIY40sqTQc3SsoijkmeRPBp5THCtXMuvyHGhqZIgC0Fed666OK2M77hJgF77RMQB4JC3w2J ddyHLt7sExAs1+YFaQbEWR2Hp5INe7xjACKuvpwqlPsP+UInKPWyxZm3yowUtPWxw1tRZ7AvkUsR +YKc0O0PeupaqF+KAAgTsVpXxFRFfMnA5rBYlzBVCkSxdTBliUiYif25DJ//XpIGjls0MKSrnsmO VpJrZxotth1Va6aRboady1/4SrgJNrKcbmSLOIR4ZtsfPAQcr7fvXUMhdLBiTLDZlSwJ7T7fqDN3 Qtzns1N80uRcLewpVG4ovCf66jHqcP3DbuWtrmU6Gs9V3fCku7mebrDJao51JrdpVW20yH6doC7X +4ZF83bMtCoNNk+EpsoDe0bLM8JNRyA5Ar6n19Ay8Hxfspq4owgxqo1+lTZY431iA50qDZzJdXiH UBae2M51lXbEHBpnU51Au74zpt3dgRvS1oTPh6jF8RgWjxHNZRi3cKGAstCiHZNSdLLgMktNowRC MAoEVyqfEweYkrR3bLOgQ2QnRC0tk5uDvrW7ILnTCrvFD2MsrLGJMyUnrDl1XeOPsDkNYZnCBQnG TYsQh3w25Nq+o01L5Fhdn9SJG75fl/d5I8zdWtl+eXu39CLVibT2VNoHJt5/oKn6RJ2FEX1uy6X/ xXpbRtdHcbFAW5fWnz+Zqva0xf/DYYTcJ7DqZUYXjiPfx6vZVpF6rSzVqYn9360Ho7vVlV6UVkPF y3H8JKPDxVidZULOWJeF+ibHH5ZrA0sS8VigQ46p2EhXHKkXjgG1nAZVquuNAbNSiFGh/jYG0moG oWKdbAyQtTSQEXrWGEDraqIU6Fdq4LUuNOKwnrF2Cl4pBSepOEIxMurxWm9UKtd0zMYMhcCoW67E ZBsU5aIMTrmSInDKlIUExAh9g4cgNf1iJSERm+YnWf3VzBy3nJv2sUo25jMJjoUcZRPfM63Ll0uL K7PWUlGU7spiY30zQaMwRvf8ZWN0HXuRkEAdM0ZX2+DMGN3VxZXNjfWNtYxt2RhH1HiiZRnQ1zY3 FfTvaln+2y5OsUa260Gaog95pQnFnq75MBdN0FD8b7YT6xldepnVx+umv3L/+fR+//evZ58/tL95 q6tvN05WPzSjuzYRNVpZdE+Xt5dtO77M6i9gd/7yZZWpN8LufON7zr3b68REHm11NosX25xLSdjZ 2tw5Xz9r2NdvGscd7/dlmijfjq6XN9s7H2+ax8frD+3z0y/vNqKL/Ze2OZeuerp7UFGJFAJEfpOa Sd/4nAOr+qX7u8rN9UtTNWg0pH1VjnXGWPplTQBpJHhP8kpBUQED7K/FFPcHjjdH8w63dqNwkqyl 2cF93SIVdBPJV6jUztd2l8QyI+MGxLG0QLb8DrRogL61aev3D1yCd89OZL5fHL5km7TgPoIAwLyW 493BSQ9ZwBeaI/iB2DIMh4F5f2KqN2lMz4kW1DiuIOzikj7q4tLi4t9Jx3acH6wdlSIA4aE0cFpG StGffPaQ0x/LoXnFl/xNz0LJXsBl6AHR2HMeZtkLH7JTOnaKo3yWKD+Rut6Dkq/88vCg4lwTe978 Wxxrhtp+40Si9Hcce7qgj93VqmxjcKludGH1Oljd+LoQ6C9X1/YXnMdGFMKV7Mdp6fHaJG+pM7SG tkiNU0aRPXYCehGpNs0Q/vh3qTtODBZjFCeD8NqN2xsuGwir8AeVbOLq89AjmUkQCA+F56sL4kwu ZJ1zoZHotXp++xYB6yq7O6PMXqAPtF+7xibRVRGtBc6hj+rOSL6d/svQDWRDqSTBnQGBxxsXOToY 5pjrApmuSBShIikGfG/2PBLQhOB7npRtTrlCyunADuIbG2HxoLUVEVc92mDyWyoN2nFKmALuKZgh SteyreW5gaRksMyeM95gSt5wy3GFpLJALUksVWOYn8aXHbvfdh76atw5Zw7oIUFS6h6jZNwzuabG 0SXXFeoJejHvRgtLweayq5JffiDNhYcjNdrxAEPyRQgR68Wv6uLFiSIQ6SPyPYQIgpSBIE01qsYv /M16FfghyaSQdrz9B4gmCQDi/eohfd8mdYlhAPEYMZ4L8RMvYRYy8IRWi2NzcGzOV2KfpGUf8jqC yYIaTzEb/87OLKNHb3yqOuScMEBAvhTyDSwmXfsbp/UB8yibx2/plS89cgaHWaiYoTKpAtbS5ro1 oO0zMjQtrWI737aNJGrC5qmRyPYG76rfr0V86d541Le2A41bsL5Tjtr0VVuFRUnBHxTcDFhS+tOw sbYiufkrlO7dtPKXepWUZciNqqVJCckVzVyyUfm2sMIG8Mmwjt+Z740Zlr4CpAokofeEgF07KmXf syFhqCYEqm9PrH80zFUoX+t6lWdOrTCyK8+tG7+XZ9OSsqHbqzFrWyRyvuVn7UtOAXR87EhUAyXY TwiYEG5CwDBiY0FVZDd+zgp3eV2gFGwhEHsYcX4w0rdgpB96w3AIzSy7SsNYY7seFk5b1lLeNvCq SypiF3p/clxSVU9eKEWQ9z1i0IdbYOghjtyb5T0mNiieaAAOR6sH6lTEWJUi3aud/R3r7Phw9/ho 19rbP9qxPh6/P7X2mtu7W8fHb3/LnsP87N86C8iydsvdms9so25glIQxgzZIgVwzbrdxA/m1P0/K w4A2d0JwLpTVKPMIi0+TDdr8cZyPs6STcUrFveY7HY6s9E8MCdESyib9zCCEEHv4eFw+aQF1HEDO D/6xcyqh4Rl1nmCQDuq3iI21f0m5YlDvZkhwiGrqQAa/cjzOMhYO3IA3whpLGcu4KyXe7cKugsjM nfF2ky995/x8wky0rSdFeRjSYOU6fEGU6ToyQLSvATDqCG2phjhhQArfvLXPNj+Apw1sG9omMQY4 kEgLcvY5xRT3iKomxIXWJe4S8ANth6GIGu0ojrpAMD8asIObIY6KQMJahCK20PIe1oFIphMbDQZO xLtAnlyO5N3r2qEwIbb7VuTCWYYt2z2GqOfDWIYzDtjlAyifl8FcvXbi0eE2rY7v8KEUORdnzByf Twbsftg9pQ6EAx+1fKlEe7h9ZN+xO4ic586NZvh6g7wFknFyueuhBKuYQ5iekq4XwmCD/vB5klaA njoejt0Y+1UlcRasO2JS7EHVKHdSwO5tj/cBIHKHRo8nBFIgmoVgO/r/2fsS7jSSJOG/Um29ebbU Qgh0e1+//jA627oskN1uNKstoICygMJVoMPPb377F0dedVIgZPfszs5aXVRlRkZGZkZGxpW6PRo/ /NVAseOf1tjuou+9q/kKjod75/TpKE1QZ5j94c4O7DsHQ3Gc0RP6QXPEA0wTUtFA+26L2LdcGVFa NXHs4YgV9Lw++lADKDvokR0VD99PiiH7Vtu3B3Z0SlzxoFB37aE3fBqg8glWNdYgHo1AoRVW28ZG TtCcNgwKtCADA9U0uHBoGcGISdsxnHwpEIjP24WCy9ACzxpQGBIMFoZUeRaq53HNosK2UMAytCgA L1TK8di1Pc+fYRjqPWHnHdPBE3gMWhMpzgiXHixFF8STOweNY0O7SZ3oAKngJ/DACWbMAXoVqC6F xShioFbtju33QrsvjQ5ETJlqE9VutOablNOPmndg9Y0wjkXvRNg1rR+doYPhgb5kqHYbGKmc2IBM A8R9OcnlAZccKpSdRPfiTSBUfMbp9NBx+oJfUfCLTP/HCqS+LSYgqXpwHVkVq1Hd/6f1hrlwG9Wj jr+M31atxhg+jH17GDiPIKSIt0Qz9Al4Qsx//ydxU7sPkwQP9YAZSEeretFOhkArGLlhmzUGNjCU jiI6cfAAj9AMC2o8RZgB6pBp9HyQcgLgwW+XM4ie5AIYpryYFci2eZ4zO+qjemyIsW2rVgemHKxa 2H0G8AsO9zStI2paoIHbt/1VIu0Dlh9j9FBA8KRWXE2ftofLiIiBnXGAG6C8J6xvsXX8iSIcCaTv YJ5KVaUtPDz6mINz6DwVBhwp5QBoNKGh4gadUoDOSjXPIEg/P/GRTTqPPbdJGx6mKjVcUEhPLVLm cGdQTwTLzetPMKwO1pgI//LZZQAaErO055Po0gGyGasiNBDYK8H/OwAbl7fdgckywLBB+C/IOQWp oQ+p7xEJNDpFEVcxZxTYCIWQ35FARjgyciguoy9Lh2QjtCfYqIBmg0KUAX/CoTKnn/M4QqaPfAbt x6HwQZ7NLIy5Iu4UhTVkGxj3KIfehCc4aHDn8pbOjjWxCVAH1O9woiZok+jHIfS2baNUtGqVCsD5 StjmpA+0pCnsuzAjAp6dPc+7K0xGgcSo6yEKCEqfi/yivykOTPxM7dLpKG04QwCEkjNdXTv2RsXf KYOyPn3pHh99so6BfBWYQnVg9xF6aFys74mXT05tFnM8Z7RLUvonzAOd1nAGDWK8pYcLh7g12a3R p8IddCc+4hZpAGVI5G3EsEUIMEoQzBdwguCpQCxoJWaSKd/rkxKfGkKBCKQOx9j2MAZS8A8yFEkF L0/TMWxmPRmNqZrDegK24lwdWtawvsJdTRoF1cmiCKwU9hYmPH01pBCmjSgpI1NxFUcvpDDWRXwU MvIdxSbFpe9VazWh8Y80ItMd0Y8pHpbKxVEILMhorU/IaQvWoT0aPcEbr00TGd5cwMczICIwrV/J NyTDHzWafkH8jjtWzG+pJupVUiy1EdssTo8fbIzNQ/98Hq4veZNEqv/BXxe3reOTx9a6/dfWefNg dFm9/1Jotdavbx+DrevJ6MH7Vqp+u29+Oz1Iu0mizhu6oCQZrqzy+vpexFcBi0rfr5jzQIbPXcT7 YFl7kCW7AKSCmu5ZQI5meRwEVlYiE29l5QdNPcRwZQUPH5mG/teLNvBDB+ey6SO+YrjSTeqpQ7Y4 66mcNlYjZjGfqfWZTPQ0n5AJWEshMzO/FJ8+e/NZ1V/jHsw6hxewpodQXFmZzW6Ocf+iIl/uYhqq ZyL3fIOtTOVDSvMa6kkj2YT9WpuuXyuXfEROW8AjsF7aUP2a1MavZzRM44yLGZwbKytRMzGs5zTL cHiAptmk+Z4OQV7o93e2Jn5ns+x3NOLxc/k78GhR7m2h8PZ72h9RBjP+oJFz+Ts9MVjxo+MMxBPC F4+oiJCPZKTTyw8NRd/RkPKdTTPfhbknFRsTB6ws4HI18YNBiR8InP2UVxZtNrl5JardvJrTTCLz cEw3fVCOoSSTx+uZTR3cqA67KMDiy22WWFnJY4lAFrhACwTiy1jOZFFAXP9jREg3IsC8m8NwIK4K s2g9ad0/Epun4/PV/K+z1Puvc6v1Xyeo8xl3RnQeFf3reVTzOHNnUscjMTM08K9/pOadKVbv/Vtq 1eVUXZCWHDbn/y2KcZz/cYU4iwwrK39H3bZg5//O6mwk7t9Sd72ywvrq1wvSU79O00+z/CBV0kiP 5+ufWc1MxAWBOqIAXhFXZ2Uea7RKGS/l00CUNncWKKghFhJnDjXuysq/keYWTmmEOKYtTFW6Kkql aXHhvEaDBaf+RsahUyhZZ77jQyninhk1uLWOQYNb8aDBEvzfZrmkmw+FDYpWkqIFRxjwe2ujhup2 GHQesGfzhg12Ors7pVjYoAyhMsMGy3s763tQOBI2qKYtlp83aLC8t71bWheww0GDjVJ5F95u7G4i BWXHaGotMHYwMyvd30s5jXReZBBiaY4oRFwo5jzTE1tSeoYwRAXoJ4cN9jY5DUR62CDMOjzA2S2K wTSQkt2IBg6GK8wYOvj+svRh84+Po7PP3Y3eqFteP9ze2fv08bLw5/nHg4eWf7U9Kn2t733d2ewu NHQw2ZaayFt1/wwNar+5t9kstobDWzxF3Ip5RQOFu8xt1+3cBrgZ3z7YPh6UbmFUxjIuCw9T53jF bvX8HKUeOk3R2mp7j49CjPQyU8xN8aKMWgmxV94jLD6ATLHneG12QD2cBMU2TIAhq3ttkfQCplUX WHLP6P7vX3/TP5Lsuqiy5a+Er+EiUyAZFTjiGNnM0GqiuN71vcmIO82HI5KbJsO+/YAJnj1SLQ6k r1yEDvQ0xfNncUSAJQs8FAjAD0mdr9OXxI5PRiAGs5YCJWEreAJZdkByLgjcqOMco+hN4gWKlCSr S4L8/M7rQS8oOuh3v6aTRM8HPBOnUAffOQP82XsaoRgeuOyZwS9ZlBOZr3FXI72Zy2m9x5j9wfO7 9tD9xnpqF9Mto3KGTn588rBart+aDPDY1yIlBOW0zkXXJM8mEnTJKgHQJwNqgw+5eDonxdRQ37OM OyDsaah7oXzaLJDaI5QtWdXEmxDelVXaY1nR5Yt21yxxFBeaI3FIwT2PjxXeyMWbkYXATwnIMdMJ anxw916zLkCM7nqwWfCxGPYNl+6sJeUYnaXhQEgbMGapISg2SNhjPGl1JiT+Yu/oVAMiUJInQMLN FOFJEJuL05gs5Tzpe60WTyl5HV4Vb7bzYecgyxCVdWPp0iJOJItA9c59cGH+EJ6tPhywxkX86bvf YISGzri4FEJfefMYk//kqmpVYRr7nnBFmQvh3mYcY1JLI3VYQHuby0+HVNmEZkaBbDwZl1yYhTAK 0YVxMN/oRvmCm8xW4xfevHO7Hmo3gj4qxHDK4+Ft7PXxfOC0efrG2ea5hye6SUCLjnAmCsBC8zhJ O1mh5N5vrEpS9OpSGfCbfa9LysCi1pU+OE0LdgUnq57QzhcNjau6a0/c+JJYD3hdn1gRrN7QAMhZ nXwJax2V2bf/KO+eoI4dJvc/yns8SmP8EtqNUpuvo1KQGZSkmdTk9228rnzk+BgqhGdioDXwQrx9 oHUHZ3uPbot4HK+Kkh1Pmi3gpUUHOh5XXG+wdyIL1fE3AZ4hEEcdkUNIoLwhjt/pk+AQDj9Nz2Nr ESLMCt4ptYDUlIIbFQqoAAzROjTZOUV9nDlEkj4CzyYmzyoD0v5Sh0EOxwvWlYYC9j2bb0hn7S3t NyBe4baRguulMMVwB115pQAeazgXOWmtYO7AXoOGX0OfS2OgBlN6axg42aiMX7XaDuw9pFpFKyyq 2R+FX2oyOlIhh+oVNAcx0FWt5YcOkjXDd7wOqnHDg2JVcNnyjqs1/jip2BolTEekI+5hXTEVcAeF mYN3YJDZ2cbJl4i7dej6gbnGGQcyhPafcGPG0zGdbYWcT+JJE68XoS1XadkD5YSXY6jO3AB4DCKz Cnt2E8UxYU+DMwXzKRv1Jej60BaWwcRJktYA5lQTs4tGoI/0F53msWYTifLpEASPgYtcVEX7F7N+ MtWxMAuoA4mAwMgE2Kdx2h4VEwg69ldxeKp80MvFGiEjpN9ZW2dcKC7iNc+Xtj8GZowX5HpDho7G 3QLdlYJry6KrUFD3+4Sa00gNjUYCArRVXYnrN5TmQVw+F97I5oic7TsdI6xYb5Mnwy+TAC9SiTo3 08+UANh0YKii1F3NgPbsANkwDuYwfYLRh8VwJ5in+kktaeqnxKSmwz1D1jbsbpZK4lQuXljwJgN2 qKczd+Zg2Ia1EXySIb/iN97ZkNFmLtAkwouLVCStSKq/FO8yGnhep6RvLX+til8ZzeWCulcqjf3J uMdf4ZdVx58ZYJ/XC+SG4Z7gDmUtqjuan3XslihjHBFA/IieSBfXNU6TeDCEg6VDrhNcTGRPNN5n YJCrIZDsBnYLtkQ4OQoa4psqv8mA/rz+jXwP9gGQ9WzRqPqd0WQuyHrU2l5rguKPLVUd++pF/Bi6 uK7tOwHKyiCPe/UnOLAPnwS3Eh8s/GKJTxlY5GpMcg9xaYFkHC/EDtN2/jO87gzIrFeHYtD8QSsA ntfjNATQedRpPzjkJ8D1rukVmtRr+DKj2RcgyDu7fVv1Rrfn3u2+N5yIqvAWc+zi9Vn0NgOn6U1D K/WeU5v49y5IjUfocMal4K0lX1v0PqOdZ/QdELi0++hKPZScQ/7MaHA63FSFk90fD52Hb2JqiV8Z TWX1DbYNONsjFuWbV1YKSrmhJVc3xTK8UNHt4q2GBCsql+UhkK5D581pcGbH1xxZE2MuEetDMtFz QZ90PCHvXB9evBwnfodnpItL0ZT8ldFcLqiXaEtGKVsE6OnfGZCf1xEyHnb6dvfBHreEeHWI7zCX exdEUXib0XiuNqq3tds6f6pK1/1aDw9TVp2vDs2i3PP6R47GatMgD/dnbhQA9LpyKeZYha9cSIb1 PMxraAkY4AVw/F3/zqJWLtBX3sBhH2b6jD8Tb3ZZXGfIPcENRCItynkOvzKaywVVC2R8TSNPMS1H J92hsrg+XZ9X8NJauywkJP5llbMkpFyAL4OnVs8b2nJz178zID+jL2mixnmtcqrP2vDLop+s90nG YnpjyHPoAgDTUnhIb0y7YDL4UCfTk0Lx9wSbzplUkcLxUdq7YvZp+hnS3ySb10PbDmxdw8Dzg547 4i5dG290j95a915/QgcH62b4JgQmbRhM2MXAsf1W7/evMtBPLwFSKeI/DKv8DQQY9cIH0cl3W+Pb wP9NqrbMxaPR47wOcQ1hvLscOSu7yr/MbrJCV6gK9Z2U8ADHFNTT5WxJjJjrDU89cVINvdJtonmn EHgFReCcLbCx7MwdTgKALFli+KXRihwN7tUMnZHCZwBDs9Z1x71Jc831QlysSBFlxb7saeijBYhY oR7HWk0yUB+hxyJeRiL1+0L3aLiQo6mk30bVLqqRoWOoYv/dqjlkAVYxqZ61pLFZo/ay1KzaDpjM slmTaw/sON+unFWibDtiY0xq6twbFrhzqIr3MNU9QwnXnbKYjVXYtt3+053HbhF0mXmxvF4qF9d3 iuVysVTC1P97xQJwrcIRnL77DscWFIICnY0KY69wiE4BhdrIlbsTHqG48MDWSSkCPk1ZdQ/v/p4M LKqRMdLpiCMFMMLP84aPwmj+zvPugiIqs+NanRmBfv3SEofgM+8eUCxmKT7ywTacXc3ZAauEGzoh nz8yxCbyrFhT8915pUGTG2hGhgDpb6dSBMgXcV/KBbik6X0Jp47BDtRSZvcT5W+CjlTo7lFpkuty v08RIKvWg3YdkS4cxvyT3iNkJK2cnkJZ2MfJNN2EJ6cjbLg+3utN4QQ9b8SO1z1ow8Hte17XFvRV h/3hj8P3CG8PVpYIlcvyq1klc34Pfb6hU06rhxF783nG0DzJ2v8TBgOdachTiw2BZN5z0R9l7D3Y fpsQX4R/TTJaeWZ2vhQNL34JmSgVcTBu5PV6zHBzN5iFXJ1zu2KKC3kaKyt6G8KAYvTPm9tTMRT5 8Fxvu5CbnUaXRWaJ6rN8CxeALsv0yjMyiapCyBcYr2g3v5UXc+5bQMc06TO8HkUQ2M1wKvP63+sU eDO8xf+jgV9pZLvr5VvbygOQshWE4RdTPev+aSngM/rsiWZWZLT30tLKSsyzLuWsxoFaCfVMPN9y Cdjkprmo3QzLa6jSX4xD2s1wg6Blu5/dDDe5zUxns5vhFpUyXcsa5F+jGMlsjmXLCHMb9v0f6y92 g/ER5Cd28yrJP+xmuLOG5tgsb7Cb4S7RIuT7FZqZpIdahDPXzXBvTd0R+KNdt2DKrnPr/5c8tV6H 6Y+y6eIcsgAerPB5/a+Qi0xzr2ocVj6kR2BG2WzH/rrMXlQGC6SEN3ndoOjOysg7dUliggcUt6M9 lUAu+G7hC+VthEi8LRQKmMWkANgonx9qSv2i+FPDa4e+Gm49gETDcLChz9oBh2qHPWSoRMiPBkFI DxD6Kk+JVFs5pdAn6bBCnyRISyoFnTYVEoCXMaFNyL9EfNU+KMsWwjH2OnQRETjId+hKgijGPTmo YMzvA1ED3AyfDG7WcNtAcNp/gj+rn9S10Pk/gpDhJYGAkpwUqEaCW0OIbDyWyh8BYSVY/9NneYIP AcGP2PHTAYR8ALD5qLk9vWrUXM8DWY8Z0qmL9YjVHZr63lCmbyqiflEPhKU6Q5CSlm0ExStN21rF WqNtCVdZw/xIrZkvGHO0qtInNLTSxJXGT3orf/D4KfOlQF3+pHpRKyOVCZsjCUqayZDKk2mRip1j FgAodeVgPKGYi0N+6Yt3UJAmNBkBxWxm8yDPh8olvYT/cknD5EYf9G8qr+1m9FVZ1biyNHLRN2n/ 4h7pZSwuzC3GbFkChjQpMV7K4MTkVWYhJq/6iTNUW2vS56a07xC0kAmGx8Iw04iw/GT7iRCYcUFp SwVPEuPFcsT20TD7nI7kLNaPkOUjbPVYXhYYskJPYMc/lnOYK6h2yPJAIEJvlmMmCKrFZwZlS+C5 En63nGxWoOqhuSGNAHrF5zIn0PC9lCUgcloypzcq8iOzW6v9xZxSFZP092JiIb9UWvPXydry0BRa rOqe505Ija5aQ4yVvp0LJqnG4+VRlc7lkzXcqka6gvynZXgoba6vWpvr8QwPm9s725u7uvXZEjyI E4tD184uOL+DiHU38zvAhNjZ2Ntaj+R3MGiMNaZleJDpBiIJHgD45lZJAP+xt0Kfuh3gfU+wEyH+ casEluGMqwZjWYA54fX/bTOC1Bv9ANPAygqO7CJzYmzPkRPjh97MXelvHF1+vvjz5Lhy+Xg9Gn76 s3n3YWN//2Ty6XFnZ+/wS6vw7q+PZ6PqQOWGmD3Fxux2Or7NKmKoo0Roh3SAJWUM7SmkCEiOZCUY OHlSjE1CKaZ35zEmNcKTOMwzno60MB9xKjm42DC5nTg/Kw3C49iAYLfRDCAytynlYQQ76wytNDLD kpGEkh+xa5z0jRsjhTsK9ZSxCY+vMZVF3LaWbI6nIp8RjO2PYVHcWQUjN4CO6STKwDqCaTIZrFrI YPVHakzUUO3SU7Jlmr5XhEoKFRiBeXHadCwqVEVj8xmk1edi029OyH4jyBBkY8AtJ7ZpkH5qo0OY TtiuzMRji2HGiYbDz80gyx6i4AKM6gFzCyajhjoNh6wt2I/BE+Xtloq/KJWXicwL6wjmj0UODAfI Pl4EkISfIN0CBmtfGHSQ64uVZvcf7CekEKwEkFhRdYnZAFndt2YdPI5oZ6E8pz5mV6X04XJd0prF Au6w1cfESqw7dh4BT2QIIrmex5kNefUmY5rkGYQPeq1XVbJXLQnIVLW499BWZbIVzn6ttwWr7fE+ 2Ua9OzWabLxORQGP7gPYPkgRTVkbAXAXlbRqglBST0rJrV5ZdodyARI3J3ar2E+Un5lY0PMUE/oi Uy3t2LT7padaAu6h9lmdYwmtSFn7iRQ6ftgWsbKy+F2BT3kRdr9y8yqBu9+8EsqGMJ9+rfizrpbE jnX1BMYabREKC9Tm54gAMwcDfB1hfEbLURamkQz152fzHp6FC2YicnKnM4bXmiG8zmIELDBHk5WJ JZecpcxJk0S79W+T4WG1e3b/fr9zNjhcaCqyXkk+Rf3kYpoxwB41G8IJt4a+H77IltlxaFFycbQh wqD6RVtU4AutDN9KajODMX/iDPlI/hBmRYKpfFXhWUOO3pNp7L36UIZchW5nECuRbt/AvILkCUK5 4seUVrCDmWhdOKSNXKeF2U1pVXh40NKTiWqRoc8djGROY4SqmsHDHZ6IIlM0Ru5EVTrQm5VXmAvx UbhRh6MmLJEBHuccTEDef6JihCS0HupnHB3iQxfbCcItmPsCwzDGSG0R8+4OkcYwZS/zohFsdi0X j9luB5hV1x3bfeTQwu4pmQyhBnti32rDkXkobNac0J4Z0GTU92C5Ri/ejJM3eim0IlAYRXPXiZIj U2A8E9tKbfqZI2NpZR43ZsJHbncSrxwCbRZe0f0xHy459rq4sM8YryUim3BiTMCWHAnFHpkP0fxS f0azetONN0o58umCmYXuucMkcT8DxY8u3hEQR4/fm/IiEoQWNPpE4D0RsPoC8jsg/xvjsl++5AO+ rFnvPHQzoKsl2lJSIS0hprYOYUjP0TVpMkLht0R7eVSED7O5JMZZU8ycTHA5mGX+RCv4rMPjwnlT 8PkcL5iKfYvEKuXOghLvW2nNug6YN7Y83ycfEkPA1jtNpL/hwCx8ruMki1TFnRiEMNxj2iiP3Ttr iRI+pu6NSfIx1x5xMQbdFzDEvPBp542mcojBOwBcsSIIOfRhs7uu7bvBALFjFTTnE7bRAWxgw4mM u5waHTaNqGXA1SVa0iIr0mUawqcKfV1yUhSzpWvxNTBTxwt+FFiDScCXX8CmRi2S0EreVmgBcVuM wpuJ3+eyaG4Diqx9GXVXLRQvVy1n3FpbXuXs53wWofsCGGvy2KENQLeHSxTde0nkRtUs+8QSZuhs A413UePuk+zFSmSECJ9R1qbdnaDz4XGMtx8IwJg4nd10Jz5prWnhCx6GzIC02M8cnw01l4iTDib9 sSvvEAgw6f8dnr7Esczl+1Zyjhls+dyVBxsZNIwHcJ6xtblrATf09emNmlIOlejVhx0UTo54TU/r 7okmJVkbDQsGV4y1PlP/N1X/+UBjBXcwB3oo+7Y9D/2WcLQmQ/RZDjAbPe6lOQlwiUsX+oI9ktcv KGk4oKtfYoL+yb4MehY/CDZJvauxwhJXVUG+0JVoVkXriZ6pauK3UUuONGbqD21JMBcixKAWnmQ2 f7t977Zgxye2hcMePg7HKDXTYG1FB4vap33T4IAesTu1Ujo+HENzjtgnHavji+sPYeT66JSKjpj+ mO1YxEMvkW/aZBAFZjlsuf0Ab+lxLDig0u0R3DLRBm/eER6juKzpXiVg8jDf+/EbE5F5YNdQYsDW kIXjOnFZPqeVT0oBMhrBihDnbSkJzE3ebUVeGj1ykEHseObi5vR1YvfxGJkgNcea5uczp48ODi3f foINScuA0Av9g6ZQ025bZ7VLpBPeS4QKLhZzxP7FnHwDuMATepAKoyOeDHHzGntj8jnlkJGBx37/ Zsa/ucmyQ27HHd5q6BpLt8XXyIj7InjLnIEx4FPkdC8dQ4e3tjzq1xyeggyU12XN2ANpmrRDd253 XPSG9VEVJVR/vBWSVVTuUS7fBTCNEwEuChX1U6MS50bweeT5IvBZ/zareJHMqOQGgORUlfinroOq BIPIYtszXWiEIoq7GIUOa9HtDr94TYPZqVcGXUM729wzZRckdWWvxyAlnNcgETzhUWTsjdwWgZw6 PyhgwX9atYK+Peq46IbH4gFdj4NwlCqARUPBJiJZd+fux55iBFKEwmAGuqGIfF5JSUejSYqumEEz 1nrqtE9WauGCJvFW3I8xFnc7EdekdUYOqSA2xeeTHVLXGS80eME67NGo7zoUC6eoSQOm1xhIe6gH DbWRrCek5Yv7HLnYINdhBPB+OFyRZufo8htzo2EvfXGwwmnOG6aE9MzRxEs017fCF4PhwYGiAfje 1XzjJyQ0B7Fk/ScdIlHVhaMzIRc3PG7DJiEvMaUNhByO7P74iS9gzEFOVgPKYSnef/XvW0UXb/1p T1pArFtqGi9yvfWRezKxE+9vNMf9mgg9xJ0oPm1S5qIvvOm5s7TczMCG5x+RxPjwnUjiwIeXIJqM HW1esLetreVcai5bf8ithy6ka9nozStlIuOKPCV45xiV9IuwK5J8ynmxZ95zZ5ATV9iDFrP4XNuj u+SlqOWi57r7XGExRFa6pxFPyigvFGDj48vXWCvq6WCd3AQWN08ZF09ioAZdZkeWOei+lm+4lCHv wCoY8/mc6SWrhMKRcOMGiWYx4xIRJGK9mi/lCyvxDj08ioOkPYHRRMOC0EvSMU4pdAxF43xGAN0g 32Squ2ToEnXvphoBYphkIiLYQBQVunlZc/goJkKZQmFKQBGAVpD8xJC/cIIOcJu3HBBMEhPlhJVq UQUfvlODkqtPirU+lr/u7RXJCHSL/AflT3QaxZtZb3t26y4QzJWNjmhHZA6pz4ToCGkdY9GoyWua 2vQdOadFtYjxOQK9uHcHjkcdKG/sbO7ulTbEUKhVdeDjxfYw91aNlYZXxMLBgPVhZNXCdfrewbPC ldvqoacg+jSW10vrMyJ/clWNYX6OZ2C8cxvXtrxGEa/AXrW+6Mu1k/r34DTpquxg6HlDZ0xhnGpT WgptSSZ29BydDmkTQs5knAu3pXWRUOscDXUYLIevfxfXBOOMThlNep7i0kEKRsP2m5XoQ7hw4MH4 ZfN8aIOotkmyZRzIy5xkhi7mS/zQKG9tw+za2mYn7oWkf5jqxPnR+6t/0bl47J4f3X21n679wdHJ 3vafk9rF0fuP9cLZx5PNT+8L1T8vNzxpVY+kk3glhAKhZ6GTIxfhcxiy9spVXRPyF77KGg7Jvke3 co57Pl+oDFsjH14oSQBHht7DVOUrX0nNPETtJpwwPJSNH9j9mc6kLnJEAoMyu41K418iPgDkvdOY xSyfHgRTEUUoZAI9IgyLPMuFv6ysWCt/O8N6g3bZjPC08Ha6HLWfk/8H/i+XF1TM8r2ygkeAnrR2 A4meb+CmC19fyqjN/SA+CYsZ2vpsWKcpZYZ2/zHtz8INSFRKdI2K1K4kWIsjUKIWYAkhh41X+zMJ 2650aBKwTXttBLE4ItrKSkVf3rBqtM1mUmp3Dovp69yWUprjKRZQIhwtgVrEyMnThUPAv1tkhrwZ Yqg0RUqvrOQxHFIQaB1p9L/FLog9n2rdo27/x3iXaryzkIpz2eCIsp9/jIkNkZzPUEZYUtgntphl CCuyuWsVHyRooiqqbEUDYavU62dboywi/zOsStS9T87rf0tjEfZ9NpMPdTds0bl5ZeMhhcj+ghYc xHUWOwxh2lAWFA4Oj1hZlhOtKa+fZ0UpSksJTWSbTSCEZFEaN2Y0aeD8VyYLtQSQINPNDUSG51sT LItXysx2AWqf6TCLTp9rEIyZdfUNqXFPE/PjmvploZLHZTxNFU90yKFRp54vSmHeSFRsp3VwVt35 sqkXF4OVQ+ltECKuun5tqqyJFnNopBvJyuS0fmdqQZdpujw4r7MUzubgzqw3pl7mUAvfvOKvwDRn UQM3BCObp+8ovq5M1dJiBkFDs7qS/zwp5ObGitaGitqZlcUkW55LScpCOZ4fGhHN5OuQRjIbD7VK cqhBqZvY4MqK0FvCkDduXmm9IwzpLPpGhVpct2m0hWpGaCifZrGBmkLd5WSdIgFvpKv9YLeMKAqh hhmo9UNzIJRTciCUStt769vrO7r9vFkQYHwoqcDq3NkPsHA47QHHnYXTHmyUSlvlzUjaA5x1WHRa vgP5KiHhwW55R4ANJzwAWu3C243dTaTWT817kK1qxXp0JF9QVP3GgqPqscFFBtVXPxyPvlSvz79e dW698eT2YFj39g68x6fbg7H34Uvlw4ePQeevjn95cPdDg+rJplT1vdGIDhsT1ji2SdOGY4fdJCkX JEVnKO7jk5aoPDryvJGdMj2yGdkpi6rQzs0HGoP00M5NjAtUw20Ed87QxWgTWF/BDUWwxTMuzz8S CdaljGAwwkd5K9AvGgxtqYkYD+OWLKkv73mkeXprvdksby5bIPkUtrbL2/FanDzBcPoPZ1OI3BQQ vyZctQwHiPOLOouKeLyDwzAmFyWFiW09OTYcPlExUu+BHCMELeDoHmrK4m4bREy3FaaI+VIThrQG KES0YDaEZwK+lao046zqu223hadTFB1HrLbEzNR4StZ+H2rsMmPWjV5zDiQ4LhkquVVY2O49nqGO DrhYgCfc0dPIhn2LFRiB4KDMXVYt33bblC8bjj6eSHgaWJOhlJ2gB0SC2dEkCmmJng62qPMauX1n hLo4OJWDIMM6ElhD3mNrgklUZm8Jdh+2CMkDJWMMgor1htWIrk66S7oEENfxSESy+RjHLJi07pZn b5l6Rqd8PvwRcExVxlIyHjtAFi3tzglZKWkoWc4u9goztH4DsvEzHcBJy6JHDOQ1yg5M+LRhK7Hu YIjf/jffFzMzDjprOvWTNJpNB85drEMGsXuCStQxqgs03a03k2Ef03e6dGYHELZld+agMFqweOrA Yglo1uDE9XxxphdGggDOv+4Ipvtogkl/Alzp/SefdDtDYAtwCsbMzCStYPphpb0g4gGVBnCQw14K HQ6pS2lA4XHY6rnITWZGXlow6Own1TXIi5VrgSwxIPU5nWElO4vG2M3SMA7OqOfDKVL65RotQp+G k3EAx4C+4eMAi1//olEuNosWJ/mFJ6Ok1PPT9GBlfwaCkXvGmeNTrleYMDW08uKyzLEdEPhPjuJ8 sN4DTLLksD6SuimFxCEZiin/kvXQ81C/8hUT0+N8JBszJbhCm0UoLMEKQNBHfUkb8xFO2KzhtHp0 RuKgdlbwke6/1WM1HkuIdJEAfh/qZUvrAT4EhA0qBh1qnRJa4dJA5SSQknguMqjJUChwuAtD9XGE m9E9SDJ2G9PhF6i3aMSaDEhqILDIfAasWxCEeIDTv8MKa4ElyFKszcZcXniKB+LhpjGkCHwgrodG AxttZCKzImlVH90WVvF9yt8vWIwx7JHhFaYQcerOO7j4YO7LPtEPeYfalfUrgqmElaYEF4Uxw96e CYfKHjyO+h7rbLUreOxLXohVqHdmdk69yQnhyBu2vb6uL37nrA2yh4NL2JW3Soff5YXi27jQvjj+ nYai32kolsE+w7OF3ifk1drHZUacpu21xqgnQ48AnKUVUqu4rd/jTlCJmiYaIq2m2ereuZseKjEI yi1P+ls09sAZeUO6qkX8AxN6Qc9TTi/KGQZVJXW7SSf8v4MjU9/rWxNrDF10B1YZZFjYYP3ff5+1 f4v0YMKLnTpwJB+26Ai1KE+mP9a33a97B+OHg8dO93B9a//DWd+7e3g/vBweDj9cfTsYHXrfjv74 VC9fp3kyubyNNt0uCA9PpHNl24FL7kpszXDIyiZkiqYP/wXOC59fA6N3WFMQy+wYdg6iicpKySmH KyyytMRHKXwmLwK6qOJ5Z6MId3yB8w6iiSb/n3mYQRzYYP6skwqCYZP2Qo8hCJbtyTOdMbAam2Jf 5ABxc/PfpPPdiUyxhZ4PsIFdk6J/G+EfMWPTZZZkf/MqS6K/eUVrdF2BicnpWN+Qz29e4Ty+eRWX x+FLghzOXCEuXRscYvESNLpQ/Edynk1yFgMVkZONYQrJumg4jzBm8SomfMr3UpQUv4VoKH4ZYp58 o0U2fINo4N88IljDEJQyrH0zymDLlmXqfvMYi17VYA5it1h2eJ7JSCqTQ9ai3fW97Z20jNmv6qgp Xk22Fi00Z/b2tk0GiUjObNJsR3Nmb5b2diLGIx4JLPwM89Hm1oYAHDEfbWO68dJe+SWtR+GhjMhU KXItTYoFmotKm9jRWQ1GOGHN4Q5ZjKjTM5iMFKAXNvHQaUA6vGonErL3k8HdIW9e2utcSiAY0gzk OUU8x8YjjxtEsI1Bu0QmxQwTD+X83wfm6PapaMTSM1tPo20hhGgDyUkLU88r3sHdoXP+x9f+O3f7 Q3Bf3Xb7p4+F3cB1Lh7Pd3b7d3tfg2Fl9OFz72Gx+Qzp7mXjREL9VMEZNI7h+5lphEkUU8VQnAMW Lu7ZEkA8mOXoidxmmvAeDXI8bO1Ot4subCQkohMtXsdgzp40/ZCkotMN7zMm7YtLjtBtHJJTkHXA bR5Am9RGLCxJ6CVSEzuS2OG317rdYqX38NeWf6/Jp+1l6EhvWwIJq8riCQih6B0PtanBiHVNYxLJ n6VNZvw1ricpLZNzNB+IpAu0ceRRd8tJ6is6oxiN/rTizjbyvGcwsNXzkWWMd+Vhb9589ib1SdMR rtHkKL2M5XALR2/o0Jo30CsvW+8x/74++fDBEJ5aID71ySGzB9vjqOc10fPPt1tuMGBP7ASlEf3Y MPscIf51rR6hMDuM4UTEFSr9lYgGQkhHh7qIJjvUHpy8z2uHn8jZGzqRo0mgZxtFm2F3IhyL8fSI 7RIg9tpKa25rGW/ecuhWAnSJJEzl8KFPPHsFw+4yhrNKKum3l6UXHPvy871zfAMDjqw+PoijCtGA /YOxghwzHjIMuldWgDcmKONcu5xgKMik7M4yjj/5DGNGXZBYxVmfhp9EWB5l7dl6B6dyyVkeJLeC dWqj4yo6yQG1bdZUjFFrwcONvvspOOwSDvLSsjRM96gU+t2R162S8RXrS6tYWufZquUBvU6BRgd8 b21a7ZMOnkFwkLSroEVOhHhcFZvTqnQaDKdyoXMj1IGhcuGkc+wyVYRnofAcZJ9GVQsQNf0ZrUqt cmm9NU13IfQu+RzBDruOw/d04LEY9Xhjt/OEh4wkBY/1BvrQL3ZgAi8nOofSikH1zsh3yV2NLn+M Hv1xhpF7rScczsXhHtg2PdO9xOw1jPeBMU9cJUaAVOvhAXc4wSMqzrkBrDCc+4BKgN9xJUBfTNdk pUpIoEjEqtHbwF/yJsVa1CBCX0PExIfYDhc7StU/iq1F7z1pO9kMUI9skGy7LwGZYVbhxCUikZPh 0vMUOVEpZKMiVpZKXcqSL69TN7F6SywcbzbDFYBTcjKEWei2YCpIVk5KEXs0QqWs3pVnJUo+Fbw6 0aYo32cLHzbEWjkmcV8mLIi3haWKlKRqWLz8iFAbcZFPayemCY3sjNxYWZkiya1oD+W4ZMhAWEeP j38XOQ1xeZ5QhhBCEhgQCkSglZUZBC2EEZWqFJh8whOCmFVSwjoLF4tuXqWKQ4aeVvf7h8o82GBE wMFX06UZmrP5RBcsejOcWVJ5PZOEglEXiZIJtv1/WAzB7pPW2Li12ZA18HMjQzGrpAn26M8oGZIQ ppY2dv2Z7z58dYpqfhxTUts9U5fbKK+vY7DEXoL/f3l9a6OssYhrdBUWSWpd+9lBAEuOvb5ejl6B qLRYhjp3c293d2tzr7wXUeeG9i6sM6dWF+GXt0sCflirK+j9U/S5i5GpaB4tUP37t7+D73zv/PFp cOUc1/Zr41pzp3r8rXvW22ge71f7n7ulydA/u9y8HOyU7pUScXZdcmReTNPexiiu30kH/UG5RL1O 196Km8bt/vFk4NE9oQZiWCRaH9/FK72YG35vC58qhkSLkWli7wXu3UMMrDcjkscmfdvvP1nXNbU5 L6+iF0APTY+6TgsKe7j34pQPYN+STkncGLJidQYRoo10QiCB28MLeilzBplTR+nXEkRPsKRuVLsJ 57LglsPufKQWxqeM1GiJ24TqJNFFXINMkoLphnWMIWXUbmp8QlgzneRfWMeTBIiEKOgoY38k+4VF l5VuhNJLSKM0iTL4gDQN9c5EGO27D8AphNUAJDHur8ZetkFR7RiySs4IzXu6enXoDQs8ReD/8Udk 5qyyo4CR4IKEf/PmKQoOt/myK0YC5UAqi1IiXQ6Lc1Lc8AScc0RpCpQES1ir2qlK2PBwX5HIRlUV xbTRn8LBkX4GVpL0bncImCRnhJ8+OS9AtD70XWfYTpqYGVdWRkawyOuKB7FGz3rINC70lOGBHYVK KTpCk3zicxuf6P5YxZksZE0TfxFtwkS/wOtvuR2c9vRzEaBd3H95lth9ybO4Hdqa5SfZr0Q7y6yN XvoezGBYJTYKYyC5CRdN/Z6kNMfMETp/a0SrY1hA6Hcn+kbvLPVyEc2wx0yYhOjBMH5aKO24GWQP oSYwq9MiwMNBjUQedFQZSGpdqZdwmB0shlwAzG7bklzmOqrSF0W0Ba4jtWxRCIPtSsw6+dbat9Ft DZi3UAyJ5AuLaPre047ZH+l5EVArA8fHYbmVxOIG5OvZJl7R5K3TdJRKcRvmd3zP+99Cd/uDJDZq Kx/N8ul187lWz6bdnXq6GIy2tx6Oe6Ojbu2vT82NcuXdxq67udn84PU/+bv2/uX53m7zolc7ePic 4lIdF7mxYdQWL738SJDGaAY5WalYUMkSkYZJG4por6wIVzgSVjM0Iwq3mMi7zL7fBdEW/m+hQmsj TTjF3EaEwL+dbIo0wltHnyt8Rim/tGQIltSI1WCpkPJA8UTipChWI1mUo4JJ8p+spiQzKimlNvk1 WZ6ioolSmKwXl4qoTlyIkhUiwg2VDgtBsmREPmFKhOSYSEkUM4xSOBNkiaiQQMUi4oQsm7zFU40k uUBRQg1Iyk5NENTgiF1e1uZtl4rwbiw/xLZLKhPbW2fWeioe/Tx1pzL0hRSd2+Xd3TRFp6jxQhpO e8vetDexTshhVWh6TIfV8vpWqbRTLkc0nGoYSWJ4jo4TWtjcLe+JFv5unqsvv+8h6RapBS39ZC2o AjST1nJ2AbG3LZ9mVW8doYFHZELSOiISHNgLJF2fRW0iy8Gf0ezs+C6eIOMcM9uxLXXkwxD7mIgT p5LatR3cOca2O8QRZYk0fn5AW6E0ldnjMSauwrChMUyxHgfReJR0um8PBrj0nyzkDROYURkQvU6n wIkCPUoKWXA6HbTxSYQ9IxFaOpT2ZITbAybBRsNlRkmaCSgHYHPAZkkkgI65vt0SN0bG6x2y0y9G OeDL2cd3iVTebF3EPeMW42Zg6VG/ePD1R8v8SBjRbHhh5KSfATE3XNdoT4Gti3ZERlG5IsjBMYtM R/RSZjpUtmIyX6Mh1U24uGAG3FUOxVuEfNt0bhHyLUMGdtyCX8gAbsnIKnqjX7PtNbMHKl8B/Uha dtOObc+xhsiiKl/Rw4jYX7o5hOikWK2Rr4j+z4JDCTObjPNIlNR0ChH9VX9L5BIyE3fhimWqOC8/ YRgbBGMWDsL1NqlelGfwty36ls0luOT2mmUsvUbK+p2BwJlMAv0ZsNWdcKuZS3LmtjN5gMRgd83K XsmN2MqaGZEZF/RyYryFWgMzBlqUKhf7xycXhf7k2/p90LkMho7X3/9jsLtj315fXVefJt3rjb3z 25P9xQZaJHGVvO+0KGIq9ogC3ID8pZkcOp7gMlVeL/ccnU2nSGFL75Jvh5pc+Bk92jiXv876Tf43 FEqOHk0xTp5n3BlLejRQxAZnBdexvzKww8oHA1TkXgoRwa78m33uBfYWiaL91fuYF9QxrpgXRFF5 REPcDePTI/dqAXZcQw0E/9S4iRgaIdnRj6QxzveSX5M+ERUJXQ+4q9eJoTR1aiC78z1MQY/uW5RX +bmzpWa4i2kfNoSKCpjRxB9h7gFMh0+NCP7rDuHoYrNrhwGPPfjIUUy5AcrOqiHBSnhqgW2G93Sh ZzWIdHJVxWhk2JT7b+NzDRnFnfvgun6LZlqr7wLwIv40M592NTWXiJYYDxYppMmbgonwHrUwSDcd G8OjdP3+4/5w8/qsPRi09t/vVsLDGYorymoXH/RtazZ6KhZiCjYkKy5uVpNFroaF3jkiaSyny30+ E7DwrY7OWAw7iPoKGFeqJZNFrxhGkg+0addb6ZDnaEMh6PN7RSTTq8I3kJjemJHmo2fIkE9ElIHg u7h9nO97AfpLjS1Bigv5fImQ8BxmlUFa0RODlaCTZIHksJTCH8R9MJwRARXfntV1hpRF3uAKsdph c1S0r2JAXuIcT+2lD8HLH+NjpFBQ5pS60wHOIIKnA4nI4+kFM4XzlGoLOiSnCOc5T/Avi1um8D7T AT4Fz2yp/zmozyjuTz2/xzqQfXwXXICc5lQnqWTYkS5aD98RZ6+h373qhC0c43kqvBESJ3v7ew9D LEj3vawqXiruF0KxC+9Aovs5hHP4WBG7affxCqE25VtqYvIkbJ+3MEyeQgiLm1C7pOCG5eHcOyQR kVlOjR9rjN0R7+wweDxGVkFZwtichll+yD2dDW9kQiyt/wM/Um+MHUdeaGJQgT3EMlhq+gSR3KJY 2hi7G05x4OGNL6jMvbUR4Hjid4S3z764X8cD5gFdwOv/+Fyj4jViih2NEl5GJ42KYjNCyTIHpjSF Uy7lJqMxbWiK4p6icehUwvgkyx4aS5FsS2bmZ6iOjkDQozmkbF3YPlKQgpJy9cZu37pDISeBHA7y MIbBDC07Kj1qpEKo03N0eZjLqiacFqhgzlUlDpci6INGkhiXkOulH4QlckaN8YosNFD33HbbwVsL aGPoyZwN+AuTUnlt3DiwoEt3wsBCEiEzsBTJhkIGMLQ7J7aXNWYtr029aIj+/vPNUmCcJf+03rv9 fmB91q84/66sR/SQ7oxXFHESOQYsAffjmCH4oeDxyIlGI0MWx7QO69nG+6xkn7CncJx17sUMww9i p8CTTZH29lV1uZeNIXRD3Kn1lkdmi1A+SEWLS5gxVjJBLvG6KN8qwVyGDWgxRAnBZMKYGCRTh56j MzE0geFo057grDCOtFQr52zGw7ieiERRdH9gaQdj2Rznrv+0Jg4Roe5N2U0DmLWt3u9ff2MQvxrS MFIU/8l9/jbwfzNeoxfQb0PnQb0Y/2ZjejHEF48xmlY4Kzouiv+WvEsFM+6JlSMuZ47PtEPfbdtP b61DvMmobvfv0HUC3qQUr02GVDzW+xydtyewtP1/bFSOSAvxzhv/enH1q3pbmYy9M2mU/rVyvv8r 6gqh4HNo9Al9SSi4EfkzXT0koHLCzNg0M/r6yWkPneDHdVf4gD1zVtQUFJJx4ZFuqSoAIyhAoeRe 03N0YZiL62KMHkrKYpx3XcVPqSFKTle8gcBzgAnOyDOIXsel3ihIHIea13Kd8ZOCa7wLAdcc7R1q SFv9SdPQI9JFJzF2Mh0DtBBFOqZfhdpHDdBssJHd+9ot2HwTgqwchXOBBLz09AuBDn8JNaGnWt6W aqRTPHk3ecIoTBwU1VT80zPbqgR3tCJVC/JFCK7SWuSEihD2HVtmWjDfhODSm2LNTtfDRCE3J26/ bY9aCrB8EYJ7WbXe4Xvr2OmPckLmUdykeRIdW/E21MYAxDOY93z1q6WuEZ1gwkniI50Jx/aSXB44 PjkZRpjDFLTSmChjFVEMnlE7Yfiah5kt5VEmKVlQSyfFq4Pabe3qtop5jLvFc7QoIHOuegMU2uEE y4hQ7LB29sGTF11Khs5UKNCLwhEEQ1tLUoATPgQTetyn2x4xbSqeI+N3nhz27fG7/kSvG/nCGEHh PIVH0HD1SRFTmgatnqitfkcQFriYyNPzFAO68hX/IK4NPWJzQ9UwN2iGBxUxazEtSXIoy/AmFyb3 l3cm/5sZZMwRMObLzzXTWOT2qe9gBW6AMe6ULRewEWqToACdKbQwjFxoT6Lez6He5Zlf+fzqlRvl QjzqDet0tgc8IS7+WcKJQ06TFzPkNkhFl37LIbVuKPP4IszGYeVDrjrAgJdTzLJ4Xappjr15Jcyw cM7jrmSZXxWj/wXntbnoTJItfj39ZAMndjZkzWyk2iK1Q0Ze4yZ5OccslA1FUPFJA86wU7LH9CFq YXIaG/Hm5AQjI09QbSrMNe0iUzXjFs/IXKVQgOjdlobNL/FuSw4CQYerBDPdDH4xid5XKySHh8xy 8kOSHU5+Sza8ya85LW2ya4Y32XO7M7szGdd7li8Zg5jZlYyrJXqS8accjmRc8Af7kXGjP9GNjBH4 O3qRqSmtUYtP0p9k61lBE8/K38WwAys+h91lGmeVaynTyrOMt1/jXhE309B97NOMLWlIxA040sFR MMKVZ5pdGmFDShoebHoBfkj7N08/aS2Jz76/q03ExPF/QtaPkJVi+X/wHgEsJPX4GWVNmC9ispC4 /E/cRBEzIyRgnqOSMaRJ9gMGKOCKH7PZCejq9qmMcYqFIEEPHNIBk/53eZoJwOxFmt7fLCOV/Y0M LXraool1bGZ1uKn9z9d/E3dDed+YohJ/uS5ENPp5eyFnZFTpnjQZV/RZKqQrNz9jN4TyG8rcvFKq bjirxVTcZkWttA6rqiNts/ZZ6JzjeBnq47Ai1ywaV/+ml5WKXFN9G+0v6V/DeliziNStRjWqceyF gnQBalEFuxHRZ6ZPQEZBH3DofJNTCQkMb7pakyCK2On/fhNVPha1etFUKmq94c8KlW2UtjdWra2N eGLA3XJ5r1zSrf/AeNn1dnujSfcEhi944VAgM162tL6+Vd7Y3YzEyzK7wcLzhskC4PLGlgD8Q1MB 6liOuE4WP/84HQ9O5Z+r5rEWpSBFctrhsF+1uJLiftW0SA38Lc9z+c2/Y+QvqZUr956LqVxJClcB JijDtNiHQ5l6acLwncL0e1XosKI2gPfe2L6bnAwrdFQuwr4nnNzoUZsDEtwtOL/Z5UWtfnJ+ZB1d n+wfnJ6cH9SoZDj5GZ15ZU/GyPr4K/30jeceiM3AsQG3Fs1ExuUQmMJE+IaMe1OLX3qudII1SxfN looKCwLU9NpPKSi1E9tgial47qBuEoRzhZ7Zs+Sqv5ZjJUOo5Wj9DzjwwqnYDQbWAUhHIk/Sj2kb P2lDo224QfEcCgz20nYGNmYtoYpVYBaeH/RcNvNq69zPxvsQjtksZwxd2K88vwsP3+jEL1C/wM0b Mx6D1AkdmwP/UqzkrPhXYS2D+IVEvge2Lmx1P6btdNpVOh1UNgnLaJFTxTjjIov6B3I3Qe6t7CfE 5Vf5pFYbOU6rV9RzgxuU6aNlCpOfQvH0Xh+sddfowlHMlt13bLp80ZaXKlpvYAdDnQZah5zBqO89 OY5Qwq1acAr0Op0ALwllZQ0lzw96k3Hbe8DtntrmfP/xO7h/etflyICcc3RUfH9S+S9a7px/HMlA O7s1sFu+FxSNXHwXVbyr8cEz7+KO4ZmCzov2aLjWXLPqD6gWFVpEVjNOaNEDCIG/3w2KrPFHZVcb T7LEDYT2Hw8SNLP/Zt07D43OFZ+x3tRg7aEFxdpbZgBy5VrHmLIaxb+fs+iuh5JNhNZ+jsYLL7lH kAQMC9xHsV5c4iBX6iAWerUAbItKJuFfUoKSIhX7TShTGkvyNsiGNpqk0IRh+90J8l0LjhloEgoo GZnQYLacojtAjS4+8n0eeKE1348gbQrdCTAxyrtFcmOC40b5VyiM0pa0HLXpUIIAMPU5HIRsDjGa xS3iOXkrQlm8NzZ2ytsku6enrQgLwOrAoPNXTJO5b16xrH3zSsrYDZKdKRdXgni9TC4CS0txwRnf fxey7ncWYr/Dm7eFQuGt+As/EyTP77+W8UtMKhTvG3p3/eebJdvKlNSWZaWIzCNqZstKULmElWOy yneLPzSiG7tEaPFihMSlobdS0djL7t6qXb3hiXbn2jo1uLz7j2gtx7amYCcwfwElx+4hocQ59/cC TyWRVo8AJjPSZS56M/xxHA1by8W+ogwEmUKca7xYGv+ozye+i7uhi0umYA6M7S7mztxqpkXP4pNW ARSb7nit/1QsvRuf7Tt/Lt13uOmPB1cnhycH+wQk2Tc1E9xk99tw9LDUFO6/RxeVU9YMzAHrZMf/ fPd5yRGS2EH9+KQ6L7Dy5vnG9qfqkjzanR98mhdU6fBoY//pYKlnM6jjyuXlwTnw9LkBnrW8jd1g SZ6Y909q1eta7eTifF6A192jevevpbYY1P2Dg8vDq4ODvw7mBVh5t+lvjpdcEXt4cr5/XatffZ4X 3GevXz4eLHVFRuujyhmQb15gB+UP18PjJZlMunpwXru4qh2fXM4LsHLw/umyt+SI1XhxeXL+jLEI Kp+eug9LAzGLzw7qlXlBHX113erT0mAiQR3Ury/nnXW4InYfr5daYhCqF2dn1+cn9bkH9ezuQ620 vdQT2B1fn11czQvrdHLsn/WX2kJq3r+qnM1NtevuwZ+HX5baQsdAsC4P9k/mBvh5WAom10vjJgOs fzqp1w+urHfXp6cw7fgm3jnAdrZrX67dJU9OFOACa/PCOmkFw+3mUvCFYdUuqn9czztRSn/Wm+cV b6nnioE9qdUvMtd+nuiFSPxAtBAVoQtKw0jFZGtl1S50+raL9uu2bw/sX0Gs/VW9Yokp/E654KVE qYnFf16oAwOoWu/N+WJ9j2jUFa3+ON9pHmzIFXV1ACJfejVhLv3ijdcGT8Vut6U0j0dHVvLqlpe2 PpOydMe3uBZTJIUKXftNx7YwpcnK1UM51R1avUmTRCYsy5kA0BLmH4EcSNBEdgBtfEIzLIuRPKfj Z8p4mizhh6W8QvvWvdt+Cpu0pIsuX4ltzhO2dzM51U9NzRAaz6OmCjIJDWyil8yl71VrNWFr0cgs DpeEq+OLxa7nrXX7xcPT/d2/6mJuTnwfRepUtY+cD4tAh/xuXDrm8RzhoNWEKYcPGXkckKZ42JkM iJ7/7z0gDkfTYHzo3js8xF0AX7AnXTjdFsrrpc0CWhXxgNcubDQ3S7sb5db6dkmw7tpkMLD9J7KA kvOZc+/gsQBmeHg+a7qEsUuYx1O68Fbzii+HbXtjW/CZVmsyerI+ffpk1cZwtBV3nQ/adtD7L0sd 1PhoHXBafD7hCn/ASpcMwegfAwvlD+i+23pB3I82Sp8//8W4v+sDrTTBKIP/XmC9s9uw5Ee48msD IC+7iNd6Xrv9ZGmlxeJxxFXXdpwROkd9c9bcsUzgAe9QbfANDvtVe2z3vS4eDh1UmgDNOrbbn/ho zh9K23ySYvc5CBpSobt3fvZNMHtJOWx5e92qObARtAPrzceT/YMLTlGw6Pa/XfU+/CnyuAHnPWGb MTLewMLDfwUvhRD6pLW1tRfF5bzuXdRUZKJjOUIr5OH1C/dO30P1x0JbFgzx/Tf7/rOQas69VT2F 5VWpPjkkoX/kApuXjKzpDZ2u13cGaw+e30btU0BcDVbPdrG0XlwvFe1C20XPsYIHskrPQS+LoFfA sCnfbTsF4AioZyrARJZXUlWxhHUhSljnXMI6xUtw31oVi+Hl6g09R5n6jJz/YuJbZ+yGQeASWH5c yiAHmjE6tJCMAcM/DEkSfP8GQJ2gSgn9UsV6XbWGqB5tsXp0lYpJ1snX4dKCtjBEE6izljJ2nxyr 6fRdh66SFpcat8R+GYwBjO236aoP4hzEL0gwItg9O0DFv4MuwHzNCHpvB+gboyczI0NeT56PfaCg kpEznuDkw0rk/IgKM6sPw71qOcMv3hNXAzR6k8C1kcPbfdi0yAlQOYS7Dnrxom/fmgU94Rux7Tug Icxo2BMQ8XubnfrcYYs0nvh07/VJIwq8p9N3af2hX9GY/JU48gfEsLZdGE1YASfCJ7jbD0CJHqLb cZw+eRG3QQon/jrmy22gt2236VJArRhC3soJds/28QJow68dr5Pu237XoW7oAdFjwS276Cc+wLgY dCLkoRj5Xt/toJ+bmDAY/tV2PFgoeJENQA6+TmChELNvw47a5khfGCP8gRTsw4qw9G0GpDxk+qPX 4tjtULCN6BvuNG1vgC3RoKL6WzQkpGa6IV6h05sMbLr2Gxc9vEubiUlrQxOI4ONW4QyGfKFMZ9K3 WkoZDrPmsdWfsKAMBLaDgEMX0QO/OQmAsieEYAyo0O875NfW8/o8kZnewreONLNyaL0hRrgQoWmy uy1FkuYTrxmk1mSkfNe4HC9RtS7454MP0pp47rh9kNDu8CfNwH6fFguthhDlMVqPnAix06O+h8uf FsvjyMaVkNJR8krjEQJa9ewhS1Gh4I9gMuLLfbAUzAoPuxLmR0wZZgfcLszAMW1iWIm3Ecm31IRD pJ1B00dnwTFdTW9cEM7rjpgLmQ+lHYSgd+CPNwjNmkVwa3zKOGpHo5421m6Fgv1WK9h5G4pbuQi/ +PGCm/+Po5hRdQFOTzGTYAxiSsUFtI2f1CT6j6NYTvyf70ERM77GIKZUXEDb6bR7AQsvNhi1J/8U iqf3+mVNzdi2tm7/zbo+l7UbQf67O4rx0jes8ghRJE1VagQjD/jfp4M5jP0IIMFb4G/WkX152SIg COcit8MmfQyA9lFKdIf2cAwfotyD4cYdGWbv3jT3rmd1L9mHAuv8TGe0S1oRJE3TWVOEA8P5piy9 LKLxIAQtftr5cU4gbzAKHicK31jKiSJMrOg5Kijz69zS9NX1qYyKWKSwKxZQSMyV0FI0Tkrh1X5/ //Va5HDdD92s0MQ51XZbdw9ev8MDlKofejGhOT4d+Tmra1NPKeW126F3K09Wt8bRjhs996xLeexS +UqEuiqdBGlLJkcvN2IQFtDLrLOYmP9H6v3L9W0zBmF63+TkLLUuR31hUhDZB9CpiRkC6g3Icvty uG/FIOTH/c+z0WblnuF8QmblEHvhDBUqXYw/MLJ2Lhr97RiE/OiPPvTGlQuGUwGpk8IVAwszgeB/ yevVZqxeBPedGIT8uF/ejSZbIkNqmKfR5t+c9Pt4+e/LIb8bg5Af+Xr1jy+H+4oR4TXSQSwx5AJx 3YtBmI7rVN6zt3Y7gIOICMUMxiAY306kMHU79m6VYXatXL31/NuB/QX+ivI9JU3etr3hWnlnfNv1 blGrL446QBc854gw8ecQKJc8I5KxkCxjD58sSrSAR308hpGm00cdxog5VJhUUYM/SGUBnHYw/wzg 7fw+9n77R/nQh39hknJHRWnWtcowbaOvKoWd796jnYDL09ESU/AotaKqu0Z144LWZ17PnGQj0gMx Ma82HptXVcZLJUgzUCFjCrIHeVF6MpjazmN/WwgcCOYTzBcNJYQfPUelKX6dW+S65j2DtwuZMoYA h0WwuCMtPqk88pHc8WhMtzAuQL8K5423CvQFn0JkCGWLV1CYGpoK1CXuIb1M9stSyB2DSB1BsP5c 3BAAo4XQw6i9hGdXfhEYn/EkWukHHrWZIPhi/4bNYCRW9QKkU1nIZILae4ApFXpF8NPOXknQ0NQc UJ4RCUy9yYCVwe7TGjFcoPhnBvhkKO/dShVOd77nCU/R8LsMeDOie+Z9g4OiHWaK8fcZDSbDPXc8 Vj8qiOpNBqwZka+BjHHUs7+5NftJkzz0NqOxFJjkzCN8eWJkSfya0caMHap7fqxJ411GQ8nwPjn+ uGcPYjAj7zPgztgB3GvirRkvM5pKgqj8VQafH5/WhcRJawpFm+MP1htvaO22elEnmWd0oSYTXFRR sSFkuPj7jAY13HQ8colFp+7wjszBaEFFPUzgsDlH2tztpocSEyqnOP8omZ8pz2LPGVJSNafNip2V NWooLphcOV3bJy0kQsSUamRSpgMJyFwyC1+YTEmyRljOYDeSCeXUHGFS7hQId9+6dlmc4t717dYd JtcxwBRT6h1cvH/3dCdalkl5jHrQCaGoArLB52DNenNCKRu76ACwQM0TS7BX1chVH6nZd333G8jc aJBZuiOJ1B3axoIJFbGWwkKr7uDi8E+yQxeDofOw1oWJM2muuV4xdh6x0Vet2Pe6v7d+W1fe3GMf BvC3Uvj3rdv+zT/s9ra9vd2S/Vj9+FH4X4qEZwDOOvWi20IOX1jqfQjvHFmruOkMOk6JmCXxTcel WTCnmCRvKbmf3R945DsmjJPavU0lzvmFUjplZKyXMbgvn7I+2odEf3PdhUTX8rAfIyl/KRUTsC1R XrqNKR9PtLtpt40vynC+ioqPB6ffx/8ipJYyQUrPJ3ib4IMxZcz+JsnfX1H2NRd9z+yxxbR/HViw iDwLoE7IsQwTowPPxuzMFA0ZzxS/YiVFIN5QhrgVqyGjCf/5Ru+eKuBQ5DmEYhQlaJZRUYS6DEf/ mYVUeKAuhFF9RhEd9KeL6Gg9E5YK6dMFdRSeWVCF6hkFVXSdWVCF4OmCMmrOLKYC6wxqUDScWUiF y+lCOsrNLKhC4XRBEb0WalPGt+lSGJVmFlFBa2YRikcxS6l4NAMvGUUWGQaONDOGAaPDQoSV0WMG YTFSyyyjosIiZSiaK0x8EfKlC0ajtEL0lQFdRm8x+soso6KzdBmOqjILqbAro6McLWWWUvFUy7h7 qLyFWAFvXGiYMUf/TEgnsKCQp3C407L1HUePIpZMZDmgib7qoCSV6TEUukTdMTqzZMkII/7Nf+M+ jTEuv6LY/Eoynzfh6XscZosXKsqYoLUI2o2MLLcifife00Y8oAapGIq8ideKB8aIebPSyBOaohFd TFBMJFc+YPEyYSlq+shJxpEw8eafF1kSa4aDVuLNzBkYEsp3Gg44ibehJRc3KcgjxHwpNiQOguI0 XmfGZ5hgOMQjDgZFw8QQC7Myx2TEK08JkzDmPAdXxCHki1DQU3vBYRKEUITnWkaYws0wzqB+WECC ROk/EQj/iUD4wREIcuolzX5Nkf+EHPwfDzmIijCNuKd/ksgaNRknuqsIoZn//icjFnZuEf7S/9sy YsUcbUX+6J+VAKsRdxwVQOb3RxWJsWbKoYWrZg5nTFn1J3tfIhqR0xE5UJo8ofSdrgPCS9rC/oqG 2MkujkrsfAu8goDijzLWT/H3y8O10l0JVXsb2ETc4y4P9GSeKAFvEuBUtziDAuxHpypuYcVMnzSj LvuxqbrbWDfdIcyoyB5kquKOHqmQF5ZRg/22VI1dMTbCBcooyD5SquCeKBj1CcpD4hfzVIocc2bz IWokO/4gCeb0J9K3XeZ2FZLLLuQb1FCuP8Z4sGsQ32sYcgGi0mh5MwqzUQ4vvAov7kRPHZOEVsH6 H3bECbnOLP+PRap0K+mbvDiJ6io/GeneoqvGP0XQkx4n37VvCX/4XoD/8WPR9P/4XjRdOuR3OigH +M30oZBfI24NWEx7KshCIQcCLJJo9VfFDQM9Fo7a3GUx0wr+nVUTERu2qQtge7eQzhCFsPVZ0IP/ LtZMrI7oOQ3DjeTZF7f/omaJzbtGaTb/LltFvClKWHGNz2zlXZ5qzRVziTJNIvJkjm1kmlKxlVkt tHrOYiNLjbAFEyHObjc1baZp9lKxU98McQVOt3H+rKt1lAUtfKvOemlHt5v3Uh26kE9eNgkdWJ37 ch0sbNyqozIVG7fqbK7v7u7ubW/sRW7ViQwe1pp2vY4wLEZu18EGttd3RQM/9Had8BBG7IkLMgC/ /kGGXxyAyKU2sczUM91ps/2Tr7RRCtc1urYzEIIHdYS40lXzrnD5uf/no/v59mM52G4/jj780f56 5By/r/z1ZWvDGe51b0+906f1u7URLA+J2I+4IucMzkJwxvNpyPlWQ1LdhFwy0q4nA84B+2QwhmOw ITJyC1HHZ9qlhJy+pu7PpN0NTess0OC06bg+SCblTasHUwuOqx08j6LODe04ShoXm2DCPTvCIQpO vzCc1CuU8/Wlp7xH0paKKYtB0sNVQdyMNGCwRbXoFIJFtHcwB9Gon5ZH60+pLRHw2PP6TdvHZaVa C7lV4DWMIYzzOD4sLL17+WGjNKZ5nJ7e3RhRtXJ0bve0yTLtGvrkebL8UnMCZ8KiJsDNK6p98yrv gBMbpYGOkpp4RZi+oSzY0xmJXd1//GPz65d3m4Xb08uL+t7FxXvv6unkqFAaPDbbk/uj2/V+UP32 7rIiGclC/Iz4dqoYS0i09JpjzYISDXZxyeANShAmpVDUvzd8Fxb7kL3ru9++gSRrqapJ4QlxZzJA 6MF7WMLj6dIDyL1421rUe4zrmlVAguGiXFH9nF4TRqrZ97gaP0+vAwdhzwm8DkwrIJs/4Np4T9z0 umire7DHrR5XUj+jNekpxCZF4Meoheq0Lt4cKnO7TKOpOfTjB7zBfW18X8Rpboz90kRAXuqDqLOE XEnj1HYoGuK4WodF72PzcMgbjPC4I7OYiCKMg/hxevKRE3Enfdy3n6yS9d068r3JyKrBGdmJBDiI gllESe5srK/AbHyvObCfdC9HXrtlB8YMEa19BG6iY+sC6KgXANO75OKpvdnrWRt7HCKQ9Nno2eL6 qPsHwtqXoBfo3iUOHzo2oFSJDgQPqLxORbdU7lkZvTkGtvnWOvce0bK5alXxYkc0RI2Dt9a+BwLn H5vV9ycH1ePK+apVR9wW1esZpnEiCWadweX1TELgHC6/zBz+0T0tta0cnd2AzuKN3GgRmb2nKdvS W6V5OG7Vdt9fLrXsPpq/RRjAIZylrKp4FQGftPXE4MdJ2XZ9EBngqEZeQ8VjTVVu0nhB7kD2ILbn hXguJ6uuezgHdGmZwprLRN2p8d28Qx9QK7Exx5ExUCckkkayXNrdK8vbT1NLpcwgvKMZWbdZL0Kc uaZ3U0gM33rjh7QOSqnir+P6p1S8N7bWt6Z27maysb5u30x2yqV1+LvT2biZbJc34HnXLu3S1ya8 2S5v3Uy2mtvwdatk41en1Ya/rU7b2i8BKRrfevVP/7RCEyaBZi9CMRRz+nYbBdJecOtP0qhW0+WO a1AulSgbGzvTKde4uob+psyN79YFyIf2wOWDGP6z3nm+1+asQJmdp+foKjHX174btFBgUpbcofMg crovbKXdAe53cMhIo6X8nkqe0vbeVBLeTNY3S2UL/7PRpL9b9HcD/25u0IfyOr3iv23+DHvNbxxD k0nI2Xo88Hw4do3639K6rAqk9qe8sTO1z8Gd74fEp0Xg7rtttzXpgxTSs8dp+F+pQsd2ugBXWp/a hTE5vA3I4aTpWF0XJR7rDSrFFj4qbTyRBkGQ1in5PRXZnelDcoamuKvJ8Bd21WMlJ/onAqdoenh4 q/jO0P7FervM/1+wDgawqt4Ey3SEP4XivP4W2HHckAOAzqeQ5M6TAQpwQwRSe7c1nZXROizpdbZZ pr8dXpn8gz/wKqU3YknSihUVCISqRv8pxda1eOalvEk1eKWLV+uG7kpDFa216K9Df/cMpRY1ReBL BL5MCIlnqlqiSmUCxu9Ltn5T5rpcklAuU1Mlwonrlva4GcLZBFHayjH69BzlyPxaZM6WXkfmHkrW Naqa53CrBch3Nf/9/s6SjAS7RbNV9GjNkFIAVJyPHftEA8CJqZKK5IRx1Toflj5pGB275TQ9T8RN 5gTS+9rccvoayJM3GU+asc6YpDapeuUE3sRvCV1NRFqdJobX+06v+bDUcdktSojh4pd1ZCMjdONZ 8SLC+LRWKrvd9tVkSTglcCPSQSiiNZq7jYvB4Z+T46UWbA/cABqnrTckSfjtaADzjMCP33/YaT4u oYH6TkRJ1+gZzrzEng0hiDxkntmZD8FVtby3hIYVcrMUPVJelzW00c7ahF465/t+S9z0VgnuzNWI RJsVbmRJbG9ubY+XUP8qlGR1fMwGuoW/TjDgxhrAniRTTaY0Map2upsHDHwffRX71jt/Yl4NsppV 3fX/2N8WMbLo6jByjfScmTWPH56a92L+ArYDz4wYzqx56e9vtQRbwH5anzxfsD1RGS12GQCuL86e DsT++M7rtu2hdeUFLOATBKuD3ptJEHDX7cBiw/BJ1AQzkOhbAxLu+H0XbYSwPrOHwq/1O1fizo1q 1Xr32dpYW9eg1niwaXjlYHvG7pxwRxfCR1kBmQKGnWwF7pZUmh66w3bBLhz6rgPUemePx30HHccO hNOxbhif0hLQFCUGYvKFQ7jj+04Oj4DpvDoOVhByMuzCqUmPSzIQep5ijVJxsMaCJkP83yIW+hDd +mx0F+tYymQQcv41VLFtt+uOQVBoYSGUE1dNmeEt/EC9PIL6JPT/PNNmoFa+oOVGeWt71YI//yST 20JCl+UMT7Ul3V38UR6c3pUd+N/dxdjbfl/a3f0WnH749sfB9uf7jcqZu3F5v333cHcmbUnCWqWm QBP9iMeepe0/EYsTFlpaakTMPRlhgtnGo+UbH2Y6/FtKMAfJbw3yZ4wZfaguf0uz7hhF4mYc42O6 vcYolGaY0X2ImF4U/v/6V4o25F//uhn+619oBOGnTIvHv/4VJnO68i9uqCFPJcCDbBevozYLbpwN FPycZI2Q7ceaT7edyGZjdgVuhY0I/Pwci4GB2RSLh0QoczxYy61HJFV/P8eI5EZCads1Hsmq9ecg oWbuUiOkQ1fklAJMWOuuZ3wjQQ+ehk66Sl3DW1oyVOTyLbJeIFdEd410wS8wXqayWr9OIa/UTuen G+sYiGACFVPLrBs01cr67aL0yDc3pEm+ucmpS07vX4Ie3excVBlsdNDQ/hodvGlcXRNaKQSPqHyF ujcdvxStdWTGLiUqeyNzRipjNbaG9tUco/X51a3pHYmoik0iK5WpMY21jlS/JKVoegtR1azZREir aRBAqTH1uyy9ZXrjSbpVEwGpgdTtaJWjfrcQHWM6khE1qYmfqSTU+GitYGR+/H3UgDevNLQk9d/N q5+u9ksfkAT1bXhlp6v7lEAV3Z+SlHpScguXTNHeJRdOU9Mll07Rx+nNTWncNBNrJOjMonAjujaC BzXjirBoxbD6TNYL67eidQx1mKwwRWMVhRDSealGwyqoaJ2o3kpWS9AyGVEIrI+SZUldFAVsapVM KWNpKaw1apj6oCgQ1hstr1oNofaJFmDNEBYQ2p1oAVYAiQJCiRMtw6qeZdboNAxdTbQgq3SWWXET VcfElDANpV6JwmEdzPKaJEtpDTo4RVPCMOJ6Fow3EmAwDkM84r+coRFGcYGlVnD8rLiJBkhpcIjf 2OBDvBk9sbm9V94p6+bzhk/Y/T4FJKzOHTaxtONsbbRKWMeInlCOwEb0xMbW7ubO9sbueiR6wjyR Y5VpoRPKXZ9By9gJBL+5syXAh2MnGqXyLrzd2N1E0r1UCMUr2sCxC3GtE36erjp6PZfKCFuMhDuo 2ZgU7yBjT/624Q4K0I8IT6C8eLZl1f0ncvEeexbmmAB2RjwHgy1BpkcvcZAMOJ0KnijYAztYAykx gC/tVQp9C2lGYW5fea07ZwzCY3fiMBPTCYgTvmmlaUgPeKNVrxLbK2gyrtBO1HiZ7WB4KulMixvt p93+btH36WufvoJA8VVcVjzGHISHlQ8ao2TN/iwttoKH+4ciN3ibp0X0zZf5wnScLmntLG4D5XIA w1livAcKKsIsJCi3rBG26TTE5QgsYMhRkAQC5hwe4FRbqxho/8xet7fuNvrFYICsFnp7ixAxntm+ 99z2bdcZU1g5OvdTjPmtCP5Ppcoahb+uyjBiO7jD6WigLEKXORUdRRKopUzRn5RmzaUwaBGtgGmJ mo4DNOgjdk8I1GmH6UfPU3TRC4sj2VhvfaMtJSOOxCS34kk6kGShyzp5ta7RMcFckA05XFouyT1N UpYjB3M/A3DaquPQ2+csL6P7+dfSM3oy70pa/oFLJjppcSpGZ6qQ6nizE8LZ4gxUIWa1FDx4XpAn VmOTOeP6ut2mr+KFyTfDkPE8FXczSYBMno61g8pV9Rgl/8PTyskVNxHygUy++CNtM9WZNmUGzZOz ytHBP8qHRyeHv15c/Rp6bb6A7+rIGM6zqV6Pf3typC/3CYpURawU7mPyVSD50WVNg4kY5hbzZkHt I1YosnJ6ZuxMRiOxQzPgb0PnQbUm0H17ULu8uKrXZkHu6rRaKx4ElCvrZZG7rH2+OD/5cxbkLoMn b+g+vixeOgp6FtRQESJqpWOn7noJLbGL6knl1DrDjLtUaKb1JZmxUEARJw7NYEavzp8zcMuATcoB obNKa+BQfJ+/Ba3aSwCP+Ld68wMXSjTCHsWdUBt4/hPtfPYmdSg3X0M4czy/bY9G1I47vIeTe1Jv hNZsvlZGvAioCdgXJ4Ming/paW3UG/3e+W2jLNqZvl6iMzLsjGLcuhkWps2QzQj0sAdg1B+ToJI/ Tu3g9LBweXVxdlE/AWlUqwMr+x8PruontZPzIwYYct+hPepkzRJJdVBEpI09oFxbmFWCJBnUEWAA 8GTYx3xdTzJ1kNIdOG3MI8hHeMseoOoARYawDMGCR49yD1ZJmKCQYzRxIgEwuhclCxSTSSoTaXs6 3hphborgUUJMI0/9qrKPSQA1XQ6vTg7O9wuHJ+f4IZU0QJvrRZ5oOSEWvS2g9G1I2/GjZQSYVPcl thT3muKgbt+mNnBUQVg993BoMS/nqvxEqS+bTpeSL3GxZ5P76mB//+TD9UG9znGkiZQF0u5fWOcX dSsY2QOZjVPkXEOuAiKpOwwmfZmHjd5ZbLDuc6bXokevoe7YKQSUWvD52H+4rpye1D9b1Yvz+sF5 PbUHH9esU++h4HSA0JR0lNaISDksYuRR6O6rbwPMBdXE1CDcB8zTQ+YCWCs8mOKs8fxOXJ5cVaqf 03AH1C9d3249idSgLibfFfTs2S06GRj5SyJ9ejZyn07q1ePC8fU5ZuZMxVHwJSIa5zjBpClPMBNO 9imFEx15MMtAq1foTVBZitkNWj6cSAJ0EyqSMBlgtqJRYOFBm5ab9+i2YBSAg7nIbzjhikOn4J7v Tbo9kY2MsgSHMh7k7XmU8W/jL3yKbT9ik1vrdkOreUm8FxvcSa16cbXPmgi1N8RgZZ8go3lDDq9P TzmDYQrYRACoMHikXHWaC51an07en4ShFLnPKQSJH6SKxeEgjLwpZS4NPdKQcJvHaJnjXKGXyK8i LYfPXdMazkc8dfze3tvdavWLXR8Wy21L+FPckqgLJ206TN8yPy+iuW4wEucA/mQdVa1Dym/yHJTT kdv58sUpF5dg424FKgUEZepF5Q3fDZDZNEkbtfrVQeUsKqPwUS2PlBLHOFkwHfgDx3towbKMBQw5 A8a9aR259479YD/9gmPtkhfCR7cJS7MCu+X1qI0pRY6fRo71CwgahAzXJez58cw/g3aq0E7y90jw pPE9YVUkd6Xtec1+PO6JQZ2cWbjY6idnB9a7yrvPv1i/lNbZrzqGyz4BSv62EQ51mwfPoNVz3CAe csewRN4X6855IukAhDcqx4lcYFYF1i/4njKukt5MDE4MIX4UrSV/LIXjLRN7k6C2ztHJiEsbr5V/ lNcFa0WxknuOT1kNRtk4Z/K4rF7g/TfWwUcQDqKrhC/ByLFI8t8wirny6Z7kviMzo1DTBDR826gq al6pfHVwBEeCrNKUi1uwi3rlqm6dZBY3gcfKzXujaUIv8UPiUHdBcnbHT5R0kLeJAu8ThVGrMAo2 i63JKCg6E98bOYWN+w0Gd8S1LHhBuOmRCd9HmNjPg+uskgYBSyWVjCGlcJR8oS7GJrO5DWJN3+4n zq7UyxPnI7PDOqsHEHxoPyT/oDCxi2NKSUdbjyBS7ZNVvi9nYJZChvzU1QlOUgrPRl2jmz+CqlMn 72PTe+TZOwS8egV0z3ZbdnwSz0Xmc9aIpZQ0ybyzWDL/hEn8Fi9mAemw73ThmLPm+V1zvgqNzrvT lybk3mIJ+Q67dEpd+gEEhB3f5+VvkI60YsgOfgvNXoZyCYeBF+avbWt3sTTFXrr3dt9/cZI+i7G+ OFn/jXkrtB0M7KBHx+ijh9Iel7s6+jFUkxnEUirMRjbfeYBDtv8jaOb3WwGSTFDrtFqbj1752SHQ a2Oxs8zcWmYjWa5bpWMI4BqWETdrXc/r9tkMIt8VMRtm+/fAb/3WddfvBuUt33fugmbg2XtftndH ra5rd/+xud7F0KW1BEiznE/YoHBq1S+ur84rZwnnEb8fYyYRiNMtDMk2s2TyIIfr9nFgzN2WzmEJ 2wVWhyOmN+zirwMS2G26PxAVdXxes94cHJ1yxL8uqvtgFcjtQtVt2uhie1nbJHX6ZVWoDEN+UPSU bB9K7RWCWXOCfpdwYx1R4tQz+lM7zY02InuOIp9VYZFP9aTKHYEOLagn9mSt9dTEhPoDYeHEI5PZ GWACRQ71Kfr2EJXBUmAKd7CqwFinVDy9uzkRaYWNy8lIvAGaoGexkQZCkLMyCVC2dCVBnQfrL8fu 2+Tl9CIzA9kBWrPvgWv7zAnMiT91zteo7idXLPRE2hVI19L0YHIcXHPHKpbRyqr14Dh3/Sf61LZd eMJe/gp9XHtm10L4U+9IwcF+Y0n9YWVLgZfutC5hSmNyJtKdsYaOg45nz8BbbBGp5yw6XyXhLs5W 07AG4iOhYSjUjFoFUnOIwJ/vLv5UE+t5nRgA0u5Y789hZM/ga8GV9qJpOCOl0UeZXKZNYf55KBJT VKeEJDQvfc+6Yula8XM4JGTyc01gA1PWQQZ0KWlh7BWGGHoCTbcn7Gz3la8nZKc7VlVndU5Z6ulH dNcT22uS+u+ifnxwZdWu35GNM7bfkqVSmbzn3XHZGhaCnGLu5QaEeTvaTtymFkZWWICjSHL5fC2n fAxjInJ33AxVVJSalOgJT5OSocg50vKCgYNXJrpjZ8C66AWYpWPdOq3ChuEN6r7t4rVJipgneP/6 HNQ0oGSSM7HdhA+5yBimnOA9aB4Nemi+HNMtih373sM7JK0WNYAkpRasgT0K4qnyozScg7LeYAQj iAYb7l714uzyoH5Sl7mlZ6BsKwprCnGjxaNvU8j6Gbeinjdg24bR6KJt8zGUjRVU7dOlq2Iqarl+ VppliP0JNEtDIPlbCv1QAstY08nbzguQMOSQUydTZuV8X3j8zE5I3EpgV2GnnRmJOZNvUIiYFcNx SsR4mas95K+/Kv35BzbKySyJGDJVz6ObH15gmZtzw7Nb6BIvV3ulejwHE22FoOQlc7jtlI85CA27 jNsdsj/OALPIKHaKFCXc6P7froPb/MvO4srQ7j8Frpg7lfPK6ee/5iCojWC+zUzRcOspH1MoWjWm q6Qf3lD84E36bTi53dG1JkBDq+f0R9a9a5MDDha1CF0A/bK0PfPkmjy72J9Hchp47dklJ91qwocU WiJPRS/JMCsVzeubm19gaZ8eAq8HybrSvndbMpdkpXYsbckzUKvDkHJQK6nR+HsNwoqu37aLoai0 gKW/l9fpYBypWNy5Z1ai9H98cHp5eH1qnZ6cv4+K/jiZO5NkvW1Y5J+iUAsfi1QD4szlrrmD7oT1 JZs9b8cbXKx9GYmpWKMbca1N8nPl7GtCeULXtqMznyCAxi1yClNoTDsMZqA5g0PVxtPOBnzuTbqO CBfH2GxgHbdNp+tiPGxwC8z31m7TRb7tW8FRpAXP7VpYg1UkssYqXljkP1GIFnkro1YB58Td0Hv4 Af3H7jvNYGQHA+p8oiJI3URJh3OKJksSNF8U0RkGatvd3HC/FB+84W1zMr5tO5jupY0hzlyZAsmd YCy1FRQEAovqvz7BhMQLlUUN/cGUcLjuPB0On+SnxGaqlHp14KkqpUmYuerTFYXuZ+RbFNGaL59u MYTgWwuRxygLq2DO8zRf4vjeMIVI+ZIpqvsrF5JG0YgIlGMUjwmkiFaVv4KD+kL5QzDzzbrdliU4 OM8sYUUi8OSnFauhQtworWBoDcTC1maNskuIeOJoJ8INGjeD2HK0zwqu5LC5qW2ZMWnUFvMmZk2J 8VxJAXBTmxHRMrO1YEaxTW1BB4nN1kgkJC27HTVxjLgyY9aISDAdxouWyXFS5JjEWoZ2hSN/0wPC ZD2O2QrX0mbQxCoi/CpcZ3rslklfz2/r6jkismKjL+vmirNSFF9ZWSHCc7AUruVwYlJkVRZlDEoK fDKDnrD03z/ASc20cOdCYUuRkCXqmAhPijAMoVmYFmsUqSV1t/PHDaX0wogGYqRfKvInpf1IPA/h 8JKxOylocEQOvnte9E0K+FBMDbXyN4yfCeGO/+RCp/9ryECXGMtJi49ZbugwlrypFIyLURt0tqTw lfiuG4l3ifKmRjQMBXOg5QliiQGKBofk7YgWzWcNSomhEIsSiZNDtxaKMtGbpAwbIdmMLXCcU/d2 5jiOW+tWB23ADx2hcWvMjfAOGIsmWW7cJkdeAEAOs4AHHVORDjkU3AFQ5w+TgAZFTAQ86QCI9KbD 8RpMTtw10srnCH0gIDjuw6VoKAOOHAcwcO7H4Xf68J0jCL7L2IDv1nf49LZQwH9vv+M/eoCXDcPJ Poxjqjk+xWd/2fpuHVx/Z3f67zoBXbr3l3AsXiY8hCu6xmFGv0vZPPlEpjZvAOVmDffsGbqf4fWN eJxXvrNDdioeqWRgB2dVK8sjWrZEHsupLRkOyNyC8PhVxWfxGZZEFi69qY1qD109uKEJNufgSp/X 1IZj48sepap02Ok0DHYjA6708RRAheOlKiz9MuWQSK/JdHjG+CPMCI9I8DJcsL+iyhW7FPFGJNHd 9EEMi/AFq7GykuX3t7KiupzLr3A56liX7vWVgEjt1GhvisdfrCWEn9uFL954zJnOQCXBUy6Hy96y 1VCuclmgpjjdyY7O6VwX72lN+bzJLuIkxUN4Hi86RIeUvXP5w8Wx4T1SeKyZCIVaJZwM3zeJRYYL W7wpsTsYA5u5NdCWIBvK73UWbzfsK2Y0r13MzP4kOorFoaa5dkWXkNoRsI2F+XZJfOQBIuaXhZwn 4o2VoD5oiCN2TN6Vp2GqQ8pEPvbS75SynG73eU5OEsXI6Q7xJK8kRjTiJ2QiqV8kFEzCMIzUXP5D aUgbPj8Sb+1Vo5BuRd5FCzLSeb1z0nAxdqXYYAu/Fk3GyH6VXNxixJA3Zoxy0iKK4RZ1UolhKFQ6 GsOwV0oSllILREi+hDtJWm+k70esE9ITwxh540VK4Tj+M3pppKGpXCpieEr/BoWncqJIQlSWZkQX 4vyQhrLwVoghjA4EClnhHJCEKpbTkzaPX0EaJsITQKzqkHXeUpgIu79e1OFy+Hpm630IIfwnNgB6 FzbPIwrCKE8oUGlrZaUhreSvk6zjavNKMbQv6/YI2DwWaC1k5NTwzG0lj2I73eisZZMMC3YU7M2r iJX35lXcujtzr3ObnAEdM/Nunmz0r0BUODup01TBus9NS6/MoWZC+o3S3mZqQnqJQf3gzzpi8DKZ 6bEw8m18Hm/dqpzCZkr6vfIGqhB3IinpQ4OCdebNSQ/wN0vrAn44J70gm+yOsrf8oGT0oak/s2Gd 5k045XwsqfMsGed/csJ5uTpTrzK8rtc2LmGwvb3x8P1GtT784n/58Oeh3zqyyxfnn0e3e6WD28F2 cDU6kFcZEmIzJbCPzIjnZ9G2nb5PvU7Pon3Scm4vvcBx2x6tLgMtLBCtje+iVX5gOmM5TkIxYRp0 YVvFrM+EVRHv8ol6o8UD8RBSyGgNZ3ronOxbPgDJluHWY77auB2YvcDT1NDpF6+r93sH7f7tp+a4 eelcX12OD/e9wqQi7FL5gEvAfHAE5htISklCLRkBVsqtMARrCa/4acrktLocPQnPGq7C2WYTEcFe Gq0SFveeGOmPF/sRF9BI4trZAAtvQOpy8RNs5DAc84IXF9MM33u9Dx4DPnMwQ3htHI9PToLKfmzh L1GfSypdTsWh9RiWF8zVJ0avCkzyzqIr01AS27f9O9wco/hRGwo/+kWXpSZ8jbtpnnsgMLbcYIDG TrZaIyvnDsa98A493BysK5aCcAwe0GZItse0OvvCBQWdN4WvwgiECQ+OBuQq4MOJB/hJWnXA8FPI nptSLqEZtvLC+ZW6CPh6tPeR+TAV3ZOO5Zp3/aKx19gvYZxWrXa8LXfMXmlxgGHEbGBLgxG5WjSf RugkQB4Vbh+4VbHZt1t3KDClIQfEmAzlzV9Wz+32+piLICjCatM4xypHs/jSpICeoOWSZpxV/2gd PI6dIZnnCRI5aJx5TbfvWJXRiMBMm034FCgXx33vYdj37PZbqqvfJ3M1Uhyi8shBnTivgORvBE4v gDiV5Ik1ejd4cVKEI4XvOgFITffcRPhdBuhEGmq9E90VGFhvqt7oySDgpR2MHY4NDRMvf7Y0fCbo BCWcwYx6K3nCIpKWyUJ6o6j77rEt83YSNE2fcL4L+bqFCMEznlZFbaaA/BCrm5H4I47Qpdet6jyU M2Mkqy8SpdbAG77z/z973+LVtrHt/a+ozeoiUMDYPAK5q6uX8EhIIVAgoSnp8pFt2VawJUeSMc49 9/vbv/3beySNXrZsTJrbdXJOGkuax549M3v2e4b59zFMBymsvkiQBkNv0LMeAVTcwBOA1RuCkbSs DDOWaX0icFEziwfx1FKcwZywUf3FA3Xh0Wn7KLC4hcUDdmzePQ4uNLB4sMD5PwosNLB4sA4yUkSm 1UlAHTwsHqQj56vKRTwnUGjgcWD9TNyGp3z783vN5RmKuWh2d8syElMqTBh/yWRL/JwnDkwLU4hi OXTWjFVb30PIRoJf3P9tn3ibYc84tBzbceHRaRoQz0UoxRVcDnw1IaiytaCF2w1xA7Lxoefilqk3 FipBeewoRTM0U35z2G7DNdkRg0PLxVuwyKbXF/WuMt44UO/zi3XjQK6wWHhEyG1te2fVoP/IzZwL iQsJl6JZpJM6//3j/c5D8Lv7R/3zl7fm4KEa3A02z47vHjavRrs7vdrJx+sPa7una+92Q51UqTiT 21hbXUbPsgxrQwl1SqJckdYkUWhO5UiijTI6kGVDjDZK1cEePc+ePTNuoZpIgpOjxcBVs1I8qXSY WDGupCkUNLzrioeorLGOX59CY5RxWyD4x+1MVB5EV4+jLdYEwKRRJOjj20SpHgVIhF2aJLqrDpJy eqriZGEchVnyXiqUuMOGSNKOmy4pTisAC2XnJV9H2hTJWJOKxVgUCborK0a+yIpymlSaEkRV18+e TRInlSj5yfm3fDQSf/5tHNAKSb7T/8Atj8hf+o+R91L7I/WwiUJBLmzP+Jf+9l96X/w9rBeJW+EH qRi9/pdeiwuENSOpKP4kdaMP/4prhX+i2pr4En+U+tqnf8U1wz/pFmIZQz4n2og//mtiK5AG0pXx LlErVUdYdf6gV5PXiYrpmsxMZyry24n1mNvN1OO3E+sRQ5qpRe8m1mF+MV2JXyaqcS3FGWpvE9us mBQyQ0elmbzqVqUy9tQF3e5dYEat7u7F/f7d13pHFiXNhrq1tb1Zq25u1VI21ASCUWdOGyq1X9ur bav2M/d6b+Be752Np7zXOzmPKW7pu+Z2gfZFmmn/b14MvnC7arvf6DOUxXbVi/ev9q+vT49eX56/ f3d4FeFmsmk1p9aTWVfzBM+cxAn7fB3wK+KfehY84cO8TZqanv5kxKp061r7iSHKFmlqPo3+0LuH by38oFzIEsZF6ONGfG7LcwcD2gm2A08eA/znquEOcBEv7TDlsNe1xhL71wbjBp4PW6VFZKVrrLH/ DxHNHjt4Gg0eWdu2ei3q0YOTELXSkhBQz/IJHPZbQy3bIabSNzqE+7zLxdNjLsDoMTOdj8UifkzX c6QWVDz7cceXfEuyIVDZKllU/JkfYzVHYsDFgLjtEnCEWSjm66IVSsSTuogD5efrpNsr0cmbSESY r5O+VaITDrecr32/U6L9K9FazI0pp1uiExKtyiErvfATfWtrN7Jfpxbs9E0kRvmLHl/83WbBNjEu FSyLIZHoSdKjjEB7kYJ/upV/mh1030ln4MVh34csDH2JZ9MpzHL0qtGwO27gjVd1WR2+yRwsIKGQ LBSPSOgKw8tDn9znVFjecLDYMhFRom0QphugdD0whuGFf7mGzalYpWnWgrgJ/DjWG0HePsAdcBj4 3JgjXKX64JbjsPK4DxkfjU3dB89nBJhAqheQrENHRxPKKKJ9vfG6cY376W2n2RvSMUsHBbQrRP/d BidAANdBo3BHcsqMXO+O2+M3Lsflo0gWe/JbrbeWy/hmNYXJB6xp+AOraRNB5JB/dpwlNt+27rl3 gl4NjKCsNIkpwI9VcHqIIZHxqcHgQOX4ONawMHQpDEyBzrM4IpoYNzqMARbWUhidT2iNIWE03sdr rjcGsJB2u7SOsvZ7ohNt5L3w17EY5ehVTAWTjcAd2M3K5t5ObU2AoD7WzDVZuWt+YA3WGmP+V+nr h74wwoQFyGQ8Lt6S2SHOtHyvw0wPr1SaBxr26fFr7dbFeRYt1xaVFYMtfEmYcAIT1RiOubc2rcA1 bE+OkOHFzE9NQpDFCQngU6/2bB+B2LxOZ5jrkzavsaRzPiK8hDawpzS75iNCaZV+8tLA+kY0SqQe izVRKmeKEU6JxTMCngm/HeJ6DaVgRbxTvifPTHN0SlvuSLJYPG5akjt+6KzRUYslLzKT8RzBb4lZ o7Pt9fKqqNvgSNMnScSPnoS+0OYRIhtJozRiaB3NQCG9wUlWgBPCoAHFquTkyKJFfh85wouiBY30 cbSlWgQIGaC1YxoQMpi8rAtupBYYaJ82Jm1TSJHtnkSdAl6RzBHUNNZJpUTcUS+gb9EIY1jjQTM5 pA6y0M80qUJHOEkN4uAkSc3cMxszGzz2jkWyJDHy4zjPidoG+DqkFWDR6jR57RPh5+kjPGGbjbHq mV5Hk6faIIlCbQ70m+GLUiy5yg8CT3/YA34N3F9+qh179DeXYcLiIRpLm4pxwKTNkGQ7DA2mzC5c MYTPONEPrQtJpLQKDQSyI2Fs8TqlzR4wuxEqSpSIk21WHRMxbIatiIkpuYFaEM3C1A+ISeVFihdc rD30uMeWRUdqz8fyGvG2UDjNDqf8EjqzOqbK9LNqHLj9PjTzOFUkz4xxOBz0ONRGvZ17aR0OISwx bUPMLYBnysvJk+5Nz3YJL/0YGkLXPctX0Uc+7AjLHyVBkxBfMA+lFlKGwxaGVeJ/lTHb0p1U1w3w TFg0GizUHTgWhoQIewBqxPGvNCwd+PShUrQ0FMZVgzHRsYiC9oe9wB5A7LZpF8BAZLT4fElxZ3SU w+TDfIxPPG/PRIwxNUi49akkNTVwB0N6bX+l8h7nfSDOrQCkGzUxZs93VSchfKOu3ewarWhJmKox 2ejP/SF9pS4jwAV5Cj0+zmPR68VGIiYX1sjnY3s5C1KZhVwsY5VbAtpN14e8wwhJI0SwDsU583Ei 13vfag97BkdTcSOatJJtNLtvCgeWzxECmeuDoQwH565xaN0Th+mmklrnTHxuT/mG50S/SeVEyNfM 3l3cG8LMB8NGR+YulLdTjNOEDh63aiYAkepznvVwzqQ8bzlkmyyxGqZJCAL3MReZgLHi1pNNcgBq 5FFxcbr/8ejy/bvfzm/eXdUTW6t+E138Hq0MvJoLBh/W/nUfoccDYiFoRrh7WpSV7Re7G7sbaphX HJw8MNO3ipTppjy90I+MG0kfcS1k/4l6bUZRjncNv7abnBJk8er1LKdj1UkOhuV7p97BUuQoT1jP w6iHoeeBVnPiMOMgrDUfzLrfSi4jllRag5EK1KVfj+pL9OqX7tjsIURZkblwGb6jdRhx2GV6LUMo 0m/xLmdfX4byNzdVrKde2M7mj5Xqxlpj2FHSf5jqWmCh45k+TRj9nB3PrHSIwJEiTwXR9tbm9hrt AWLV1npmiJM1lc4uBYqUmwDKApfG+TBMrrkQkp9LM+7c4E6GqB4mDC2nXarUjG1KOPaixg7i9+An Zmu3EF6ZRI83MqtVo/4yXyb0uMBJkuwnxhmyRMytI9/CU8yp5LQpRWaE7aZrOZUbEg5+nQDXTOtH Ocxd/7772n2TOMquCNQWccTcdD7W5XdycCy2dGEUJHEGckEHAgf0ITBYQsGD7y7cPOGoxfJS6FPB OUWgSIZsxWk6VHsDz+6T1EJQuV7HdFh8CROHQr8QqtBkM69yVgHYHVF3ZPWaSAFD4vVn13ayQWSp uKMctL9xRxDNTzgHh+1gZIC7PXR+nXcicnohpmVgVDOxXG9d9KgNkrDWhP8i6zsFEla4Qe3tjqR+ AoKFcbgZ1E0fTy0zngwgL5N5M2rV/fP7Qye+oOLcaSLl8aqMOhwyH+/YMf/1UakQ+cHghA+h8vRZ OPnKA3Y9HhXcG7WoQTpWMLlsryZxFxYBeKC47p1BojjaIgnY5DxeoRyrkCdenMowHqrEzDhecV7M bWYwdz1yISOHg9G02SPoAZCNBOlD4RPRYjTHdZ9JDibWjKdpGu/K/OLUU7DWa2dYmedmOxBbC/as Y/RtZ0hYH5lE1peNV0hb3bMdRgNL/IqUtJQGg7XtSrvQiPVxKKpyRbHOPlRzhZOpjyFEwiQclzkU hAxHkslchDp/h6fXeAnGpbaxtbGxBi6fM+nISBXDQtI7bW/oft4I8TwIi3H6CV3NuWacuU7LHPvA f3Vj0DdeXV2vGjX6cXF4/Qg0xV0uEE/xsjq2PT+4YPfniMHQFt2agZOJx3X03tg1+2vbNKKDq2tk iNsaxI+0WBxjh1707ZbDyiV6u278O0t6Qo4kTovZBgzigh0zP6WKahNQ0JNGbSd2U1wu7mOuWUy/ xbsc8nMdpx9LzQE/lmV/7j/cq/ScXHT6+sgBRfEihx4RHCOGKwVWOcGKC1l9bhb6VdiuFCMlbyVG ILduGgBhS0D+kGLKDGBfkjTIyvAd+gzg83BgIJX+vd0asg0FJiQQtDg/2rpxThwLnysusT4qV9lw ICaArouXTXMAQ7qkBgNJpMpyTuGXmB1xPgacfE84qX2hv0jMFh5aGAiILVJxWz4nvpQNw/p3UwNK UiwyUVaO9ZxBLuTP9GSMltOkJ/AgOAAJkr5lIanlyBhY7qBnrRKHQh2KGUMssmwiZaczahTeAGJm YCiIsVLnqfhr+u566riGryTU7horxiMR5lMmwyMedgg6aDAR+IFT9ehQ80GN094XJ1NmWTHnmZ0b b3r4pN7f30t8T3LbFhTiBcZ7dp1/5mzazPuYOobr1XJKrtQjbeDrxqXVsWl07PyivP0CY+/lxoax f2YcEa0Ezps9rC/68OLl5oZxwR/UbRRrWHB+YEJUTnxPV9zajiryXsG0cZ4x2mR9dgYNYD3lCU9M g7Tu02KHSZZEzJ4VWt2i9To/4iLOHay/jsFiBF7D2AGs0VGb3amrBpPkVW6QCUDIBhIa0Ehm7WjU nNYEzvTMysktwsDKeaKwRnvUMmmR0gxjj2V6UydU3ASzFjg3KuGIpF8MiUpxIFKqG3HoEq6NuFDs dqIrNEPEHw1g6lHMmDaB2PLiCaXy1TW4lI4bkcvKT2OZw0zOEzAK58xsctG5Dpm4DeOq645a7kj6 zT/3itYNfk06XYprgi7lwKAdN+zsC7mzw/Sw7zpBl3aT6HkNthaCNTQR0cRiN5tWkReXTawh/71u nHBTejZMNhzDrifUHa/YucLHDSbUh2iDeJebbK4zeuBEFX3m2gAJtF4aMEFOCVLm0JtcUWmUYJtU AgGNStrh0wQ0gO+a8Y22R2wl52lGOc7i27bZhzlDOWLjatPsNYdROFvgBsTJ44aNEW2US5WtEVs5 3AXhUbaqDJncDtzWmzDPwwnE7H8a1jaqez7vNqgSCL0w8mNI5ddxdmUk6XjxmjgHrf49Hr6cZ9dD y8eBBmTcWC2Hnwp6PQBxbmXbENmgoFIiGflLYxdEnTGxaVSrIekvqCtZzV8ae3qlGg4a44CqZWqV RdrjaLii1HyWlKfUIJoiwxZS6rgIgxSTUGiZ8zuIqzBlJvLUqWDZYbevxQsbums7EvyEvenJfVA+ czeyACfKAUXv1UOaMsproZ77w6+0ByMJbC6SmmrjW1FS7jbcuWz0Vkw5s3pxjlpiK2z4pmmqbjhn Au0gWUIVTLsPcsLeN8KXg/NGS1ALhTTFd/uWiiMyejbkeqNhB3JPFxFmx/iMeAoJ9Il1mmC/71FJ lADg/z2jqQxzGszEG3WQjwBr1idq2PJZtzmCenQs/qSQQwKYkpk8BZG6pD2EVPKDsc+qGsukEXHD qOwPLPOOaSWPy3bu3Z64kPC44LOmfI9Cvh2nOS9AUZI12AlGPHDRWQOXEeVjUxZrzlLMvM/Ofllq eSOcv0IgnVpdl9NSJ0BCNIxxjWBonJFH7xVXEtJFJSsQomsb6xsbuSRLfl/R4Un8qpIBiVCL5KAp XbiFb071YrjAyClfMS2KPPR4bGPJ5VJBRaPWTewjELmY+mU+MUj5NEh+H8XLuInI6sIuY8GJG693 NPY49/PUrpWq/GW2uxQR33+42Xvl7KeSmOQUmNBl0YyWp7igVJIflovORXHjNuTKBLkQhNv7VtQ3 5GMVGBEQEqrWxh4UdlRyaZOExxIpC1TYqUgrgJ+8LyNamdSnCKvWFDdOG+sr8rQNWPFBBZsW88zY Bd+YawttYJFmG1C3QuatO/SYe2O9SpMve8TNkIGxQwK5JlbHCepFhOZLE0w+KKgoieBr9M+WqpGB vuyoQGCUTaykauHNROkzZHAk2/e6vokzn7g/4ZhwhoK/ZsWQTqxc8Z1WIK7K6bMKU+BX/GsFzXXj DOqvONDQ57LDmeXyGLZCOhAXiWHPoLgI9ZMpAb+ckk0nSlyUcHFZujIS7jUcYP49ZDJKeQIpAkCn j0eTE4VB89yHG5uoQZH7TrKt5zzPEuhtCpen/EV1xfQUfEpst6S90SKX//acRYV5tLf/2HtzOT6t 2q82G3/u9Ledk3dHnYN373dPxnun77ePOu3O+Mtl9eRN/WymnEW8B1dWcoKVV1bgsYRbE4gg5Eyn zlr9Xwk9xlB4PGrYKqI4HCp9REajlZV0aK9+x1PGgyW12OXGxdCiGNebEtkr1cC4hPdTR1Rocryu VIwDNuKKU2JwpSKHx8Z1poTUSp045DWuOCVWViomwljjulNCYKN8SzQxOARwESUndkoEod5yExJh +tfzTBTqsjQh+YT2nTHNOc6avylGVA2gfLxnDP33HsAJGL+TaE0NlIWFZt6mIidlFb8sZd8v5Sq5 rC2OidGU8ZL4W8IjVUIxzODfGgsZYysd1xgjaN5AxSUOUFySffOIwETA8LdHIS7FAC3JHqYGE5Qo J4IwxuG3DQm8jYPkCo/e0iGBy0Y28k8lrHtUmJ9GX54upk9N0KzxefHEPWXA3S3IQ+EEZU5yPW5i ebFxdZwA8G8MokP/f2fEnLCPqbC1WWdGrrjnFRfxyHrcGjFNwiP/bNyCREYxZcmO8s9AFZG2zLXT UWJ/PY8yzimpe1KkmbSROTaiszgluEspYUE1vrqgkC4gaEFafP0593vMJ325gz81WkQ+RRUfE1Gl MBDFOUWNTg+RkqrJgKVZF4rawtxSQTzRDE02HxnXJHAkZVQV8xNDMSFSSeqnVSsTW0jFH4V7Jlo4 URSQJkZTH3pATrkFxB/T0T0CcCqcplx7s3CiyV7EXDJLL5MDcTI4gw1MhcfEm01FsUxYTfgsoGaD VPiyyWYyoCUqmwkwmdBJpmwG+qRLbCSjailnkyWiinFQRzzqVAxGDFgiXoNH8n8s/ELD2KSwiggV uPub4yJoI80aChHyQMiKOo3qS8movxr6u80PPfj040eEKU0JNYg2SkFww7JKsNx+isgDbSSbGMlM oQMrKwlXe6qOhRO/DaMC6MN3FAgQ7rcCX3616nh3TfOln4XG5fvs497ySU74IbBxx4XQQkuZ8Isn tD/eFV4ndIUu7Vo5bdukfdcT3KLmIh2TwNgTPCZ6+Y7dOC3VxjdWNPsj+E7D+DlTXtng/+OHLcj4 Nn7YS0/pf60zWzne1Ou8JdgiG66Jf6THMw8z6QOyIsO9nt8/OWczx87CIaQpL+NbtB86C0eEcZqf 8TK39qTOxCFxAUkUz1khLisr8ZvIl1axEytJogKEEp3hhZlT6T8OuN+rA66aSRCBcA5ncJgNq0z2 kA1LlXKJDQtP8YFluHN2NS/CaT6rObs3digVLTA2Lm/YtMOopl6J6/C2neaEKnIO/YldOsN9Fr+Z vL3+45UZfH9emTlb6Im8KMPmZ3GbnLRRZnZzVGdW0n0x2rF5XoqqRtbzMKylBNCXeZsy8inUDihx idMPqKyv3uRNFJ5R36lzXc5y+huc4aJlo7QNikcENAnnNZ0WRk5p38QVLWe9xEDo1z383ReoVLdf bL6oxh1/wxtUavwHdXAU4RVuUAnvjtBvUNnZ296p7m3tpm5QSeuXUW3eS1Soi83NquoieYlK6nqM b3p7SmqI83jYpb0H8z3rYm+5xdyE8p+LUAiK2pfOVx5Tq/giFJ9V/RFKJt9/EhdOXHsS+RUW34X4 eqN5djzyrs9/P9p5/Xn74aY2GF2fDT7fWZ2T03fO26Ovb/4c3v15fbMV+hUuxE00zwk263GMX5Hj bmVYaUIPSsfeuNKviIcJj1vliWFG4IrfsA9ovpNuXstexfToDPJUMr99eZitEU0yTlkOWn14Pqqb mF+FjwtqnQ5XG35oqvXwcUGtuyM6cJQn9yt5WEzLLahApN1D/FxQq3SqdtxeWzVMT8ZrelxM48fE N0fIUA9xy0VRkYmm0Qq8Vru0+C212PiF8YbfLAbQ1/v70vRrk07n5mIajdG6OIySINZq0OEi7b5R T4tp2zObcPyMm7+MX8zWAxobMt+pGpKH2RopAtN3SGoN4/Kv5GFBLRPH46u76a/492LavcYpd20R DtT+5ReGvFlMFyMLCuOezUpV6eRGfzWhlyjUQh5nO1JGRJiTZ8oNv5n3UCFJOiafB/IwcyMk/Edt XPHveZr4POwP9GaMt/Ji9raIPWy4JjsNR6s2ejN7cwPLavl37HipmsMb40pezdxewzaDbi86bNXT hGYet2DM9HrBi3mXiz+y+3FykCv1NHMzbduH5ktaOZaHmRu5M8cmtE7Sym/qaeZmPFZOK7rJv2du gmTqdowUeZi5EZ6oAUmY+jRd0PMcLd2pKLEb+jWh+mwLK58UQuBILDhx3tdX3L6488+z5PL7JF64 5ZEswxYV6SJ6Xkz7Dbs5bmp8Zfi4oNY/f1btvn27oBbdhxhY/r2Ydtuuq/Enx+ppUW17/WHPrIZt 85NRXUzjn4cttZHe0q/FtNkzm57r+2rJnaqnxbR9dqYYYvqxoBbdwH19oRrl34tpt09tJQ4UND7f gVLUhWP6TVMxnO/492LaDYjjviMWnsPypPlrvGItLgs5i+kHHtJ9M7xW8L16Wkzb926vZ43jPfkh el5M+yPP8oOY8t2EjxNaf5JjBEHCVsfSF9qBvFroUlPdwIgQ4/SVelp0F3e6sPcqel5QN+3Gk1Dp psL+8cGVsdimFWJ0TUM4xYvUNYQryW02Qyk2Wkn8bjHdqDav3LY2yXFH8nZCV0+yiwZ0RGk76MJz 59o9FegIn26H9Htq6Z6dvlpMi812OAHHp7O1iMqeTatPJRk/kIfZGikCi6bjSZRU2g5a5M7p98Ij /vRqMS06DVNafPdqQWyOE870u1lnurDFbtjimwW16PbGfQ5442bP1dNi2h5YPTfS3F/Iw2wtV6A8 7DTGQwfBlNzOJZ6N93gxc1uOF6Lvckb0UWWdSM9DnCuLEVmomUBXH05THE7OniKvu14l8VjN9Iop zo3sEBKeuQEuviE7hkqajTqp4akqV/rN0c8zthpW1+swrkpcbp3D/urwmKg3rHoY3FgnHLN5GSZV JMmQj+xwVw+j1OuBW5c+1mUEACtO/YTgaOlExRZmIij36Vl1Ipk4+KN49emh8KoTxkgqtZSGKkZO ElW1R6Kqti7JTOAcITiAO2SIOhIzYiP5vZWLhGuuHo2OvSkVUiCl6NVnH97mI4e3uU7zZ/Z5IDY4 GzOe9HBFWD3JU4H4+5zxIRTTXzXQDA9INRNNazjnWjOzj3PrkePcWq9L9ACNT/OykTH2LLOFlWw6 9A1eqQGs7bmDlYgIEyleYlcdHiEaYTccx1CNGGhk9qFuP3Ko8CSKN6451jY1TzN9D1+LT0GdRlK/ t13JREBlxnW3DUcFnyqi3VxMvHMNb9iyHMv3K8gKgAw5tsqaXXa8SQLKqZQugcZk5HxORr0sOrpW b6CnXlEENX4RQ8KrNNNkDooZs0hNEGcmkHOMXq1dJO475obXjVemI259tNj6poPlP3QIgypjy8hG gEcQ74FEWrw8dCTA1PLLBPXqhtKzvYMTNvx48fpXFTUGFzu5piRG/mydhTjRA1AZnYHIG/GaKOoi v02FZuLn15tm5Rmj9tOPBhNZKvLasxCXNJjUPP+ekmwrSl4Gn1TZKQhZDgMeTmBic6yAnbu+h+xl cLVEbL5HtKU7bER+gexQ7KsRwClQrc9Z8eFn04yFY/lWecYK/YFOz18333Tdzatx8Ofu1drn6taH rVfHtTej48GfH0fHe/bl5xPfvfh414/8gcrnGVszbnUnnb+eF7v0qIhMVFHeOBzKq9x0tK+RP00i NiVBnCMPHL1a6CgzoVpYRK8mPjATKkkBrQq7txRXYEcYvXjotDKhivJy0Wopd5TiOqrAsqHV0RxP GLmaa4rWtDiRFLf8en9fLz0R8hTUocdHcYXQQ0SrpPlxFNfTvD/0quK5wYNVLh3aV+V9Udyo8tXQ q7BfxYQa/F2roPtKFFfTXCy0ugkXiOLKCeeJZRwAqok4WB2N6Y4NmY2oO0JoECgXBgmql986Mtg5 gT+Kz0LyW+hxEBZQHgnJCYgcCaSU9kIvp3sISEHNi0ArGJr/uUzoGcAoyUGIZrnP4iO28+twKAu9 gKAetO/K9s6flVFe+xra1PlzaG7XFyuby2Wt8k+9ZzGDS8fyW18okXWbC0S270SROyTJE3N2AUYS luWi9ZZRiuoWaq3D2IZc1JJud07MobIOF9eL7Ml6tbdvJ1T4/FkvyibdCaX5uz6vSu1RXCVUkyQq KRPspFpis9Vqwb5aXAF2WK1waDQtrhAaWbVKZ2f7xeXpo16UDZ0TSvP3VIV4TxVV02yeWl0xTRbX EjOmViFlbCyumTBUag2EpsTimqHpUasUWwiLq8VWRa1iZPsrrhdZC5fzN2jSZFfUTmaHJox/+j5Q ZoeihjL2vGRdZW8rU1sVnWlLNdsNvbxmLyuu024mTq+E+au4VsJyllNfVKdT64u2Nbe+mKuKW0hZ uwqmP7Y3FbWUmfrIYpU77ZXYEKVv4tNXRe2zcUkf4fFpcVGSMvWiYvkRVkJ+a18nc5HK0KOVnzal mbk8O70qLt3vJQjRqwkE0mmYetFJ43cS43/3ZlLRrl40NGkUlw9NIFolZaworqNMG1oVzS4hXEdk t9Dhvjzlj46ngxhuCfqQWfbxNq3kHowhM1wJzQLLwrOuqPwht6yJl4HkKIZydG/cwLNn1XXjdmVl 4XrvibmgM7A8nZJfjbLGo5xBsT0P/LNp3iFkArRNBm0OnfQ8IM6oPQ9h3GIYZ1YlzwPhPHrvEMxt BrNAzzsPME+gmRZY19bW8E+u7vj2EpCFKbrzKVNaeSyZRG6Tet7C8WbVxMszaYI1wnNbrMz9S08v zupf3owrkr1ISzZWpLDl4qqcGkRCCWvoytdlPfjxG4YF31Y3t1aNnQ1RPyZig2ub1Y3NvRdx/393 dHAUUKlFB1f3NjZ2Nzd3q6noYLUjUHrOoGC0vL21rVr+pkHBP8oCAvBZvTe+z6q8RkvmAuN7a6i5 uPhe9DdDeG+48Qrv0Tg4djY3dg973S+9qzdn9739Q/9i7c+1g+PR2vnvZ52zi49vzv50r9d6v7uh fnv2cOHZ7Q7d7fCX7iZx4d4RSXZeuxr5zrP/MbGFKYVLsAkiz+yXNbaBD5Q+OqqPtvlF+Xbs/67V TFJysXgIzCyRYATsG8EJE+nsiG5vuY+zlnFahXj6w6SKCYAUQdRTJraOx2+vR3uYDeUw8uZEc5hC 5pUAKZdobCpDm2kcn+6fXP5g7N+bdo81rm3kpuVD4KXAnvDkyHcHZIvO7ZkVmH8Rn3rsItWGP7Sy ifaj5a5ZgvhXviOMtHtFaLEc2mMBWsf7eMr2lUtN/MaIixMvhY9yW5OcY1xYXd9kBxHuOcsjUioB VpMzRDWGavLKAflq2AF0V5aFrDKhV0S5ur8P1RUhCnlf1LO/brxXSZ5UkvtVQ6XmN/xolGG+nIbb Gs/S6wHyqZHEG9Cpdftm2Hc9/LigFl38+IAbf/Bj3+MSV0SXxzJE4i+Qucd0cPqM14234KWJJbL6 DSQNQUoWAJSYuMAkkorcfz7unWlarfjCw3LgnrSsaHVpk4UCMp+8acILicMppkqzdAKTkrpURnUF 1Is0RA/gHTjtmCQsgnWJSvO2UQu+b6lc9nF+QVUKfPJza72zrucIogWKJQgnrf/iXPZhslEbZ20T OX1wKklCpbioJFJZFpeLgqGl/HiFBJ3t/3ZkXL2/PDKu3xwZr84PPxrnx8bH8/eXxsX51bXxZv/K 2L82To/26eHFtnHwZv9y/+D66PJq3Ti5Nm5OTk+NV0fG5dHZ+YejQ+PkGG8Pz4+u4kuorgXfKZLH T+ji5N1r4+KEGv1YOXhztM/PZ0fXb84Pr4yb/cvL/XfXBIJxcXR5tv9q/51xfHl+ZoCOEdivLo8O D0/kHrewfX6YYkVeWDKKza3PdyafqcXJKKJTIjrC43wUyHH0jC9N0k8hCCUFR5hi6emE4SLZEyh9 XwOz5c/Cs2Vp+plyC9xG7HXBabI889HBTL4x25Gg6iTJ/coKkXiSFhJUfUWI+QqR8KUC0q0ay5Bl 9X6BJFe1+D2QUwVKAalcCSnkitBFVfrb07xPP06ldZ9+jGgcwJT0YM+Mp6NfS9eMD+5mQXQqTSiY u9epQ34CmkKGfHv72Ppo7uyd7/5x6A+2Dr3To8/D/ufz6ts/j9vjbfPjzutd52h4YJ7dPXkCGj5z aKd4xpnlDONjaDKfOIGb1jh21mJyk1O8nOfsKp9xf2Q34ezp2cqk27VOGAGKTJXYbfQ97eU2f8fZ k0OBoGFUdWosFrPqzIAxftCURN8RppG03FvHkgvd/fzgzO5IsuFrfCwDBj+kl5+8Fp/MmzhlPl4m Rbk8FJ0LOPqbFCBxGzJHKefPTTzxHZDylZ/Dr7wFrhIpxUC594cdqADoEKaDn6/GY+e9hqtyLzes YITbct7Bl8TBLUh0zL4TsrjO3ST2Fj9ceyZS24ZVmZmgxnHZXE9ur8Ore9sLhtFbpDVz7z4NNzas vT6rbYNu8s3rcwbapmNLJUrdd1qea0Mvfm83Lf8H4yan0mpCkO31JI0fMggmCiJrIXKQIn0+HdMM FCc73QpPph/SLYtqmRg4GR0tBUGZrn1OnDxhCjdYISz4wBGzh7upcCtbK0qjrKEqkIsFM9DmIL60 96k/HEB5tB5th3V1yNGky0bpNiuWszZU+1PNtfHG6g2IZN/FS9L4d1bqn62HCieRpn1fqdWqe9u7 tY1d6fTU9jmB+2+cxe6Ez/LUXsguu/AGG+QxBbuU4+UM8DAL6x3X7fQkdS5ftYObdfyKuqHgV7v1 C31JgB0NRgBUS09DBi8x/M3v1Q6GjuWvUzeqW1zlE1Phit2qbuxtbe9VN7e2pQv7PB1QNnXCb8Ds KE5X7vHj3PIJgJ4961d21E3pcfu/MhuaKJhzOKFlqQkFelxbF/YK4BNSle4gdTpox8IxUh/H5Cp1 OuTqwFKNTThKk3TTzT1KsjsoixDNEoOfdTfMtQFwjaooqQTg/Ybv9oacS95xja7pES8jmd4Tfahz S90P07fuTj+eSpOcxBZ3ZNKRFre7SpTkwfb74S2nq5CprIGSRYhcEjPLKYmtZnc9Z45HJT38NYrD vyYoKmbEWTBSW4pxVtNxduqO1jh1eaAumMtBVo71SO+yGd5JtV2tefd+hTZEvWF36mzQYMsX9On1 kVVvuU5QR7p6Ns5aFtt3rZbaKbjzyNdDglffXR3fyCULQye0M4tgAhsVSY6fcQ0jW5767r3ZS8Wg FCBGesM8RUmhJRN2eN+q9WDiqgHOA8qSio1r9xK3VSqUVQTmCue1leOeyqa0nCnisui5pZL6jtjU Z/cd8RKtez40SQCUq26jy2Jh3nHhEIk17NN2wU+58RR2VaINbZv6mqhlehzsbZoADfQtHfRD14k4 ioBt4k8JCMmlGiDbWRyygcnGBbO+1YOn2aoReHxTLC2/xnCMR3UDLWGzIZfQToS4EtLEfFrOjOWU YTR9v80XbwvsB1dX6iJuWdCHxEoE7iAeC/9Ksqyl+hFOSu/qSngrvbczt0HLZXJnOecpfhTz7el5 EyIQbbBQYlS0ITrL0oyMZh4IT7UZ+uzY8ESAsS3sTt6U6o+fk6f2Fp7224RP3HySAVu+h6XzhbDc Ra4OZwEyfk7Blr8apzQd4WRswQIqXVzjSsUTB4rHZjozwVy9RNzF2ZgabWq9yItF9nH+wey5ajVz F/y8iB6uu9aV3Rt0L10zzO5DIge/MvDu0X3oZ3KceB83gfA8+XJHkBdFjdPg3pgeDTqdjyG/67Tl gLfwlYrE4gI5Uu81MVwQsHxVToQ9xRoQcRzjro+40wwJaLotlu9vVQN/PX/ma8YRuZYa2mM5V6MP y9xmWLuggxPlOwVlqGGmhZZnvhbJl+pIUKhgysPeNNKWmLSUhv244R3u37dxxd0zdVe39Bd3JK2V bEQq39gw84chg6euXG0uymPjAH5MvrZZlUU1Xr/Dytnl0O/aioqEj3ENUYtMHfw73PgXKa8jZxVh 3VBKTHSOK8Aogx38bBRVZO1EqAUJL49uuXwvtrqjvjHs+JVODzvAYpF/qILtFXT8e4pxKAq5vEhp HtZEV5fWC4QqBKhyjBuoEH5gb5q/ORyzu4NfqTHw+OVLcrPqdhc+vBWeNYO43tSaXG6R1WOBW1wP b0PBxKTnDz0lgDpw+wPTIXYpVHYxv5Sn7CozeSG1yRrxvlV4aKG2/vXuvefYf3Y2P7zp7HTWmoed V+fOQavnP9Sujxr21R/1g8v9evPyw/ZJQXjoj6/dIDCNA77WY+moD/db3HLP5xfNLjsk5QSPRmp5 nnN6sQKP5R48g3O4G3xgJzuUjLzmVyYaHfOKJ7TbsV9frj48t4GEkjrPIqrrtXNbyCqZI8PmFCW1 cqTG/54905TKKys6x7CyEl6dabAG+JOzYF0vWv/+FLtL/xCFLrDLPre3aX1rvFzL61WXjX8bt3k6 1Hkay1HS8pLMqltv1bzFvTxS17osXJZxa58rP4BZVakMqXJmLtCO3hI7xzrRZVGC3kK3mUtdUFUZ fVWTtNtu8zSVeSRCaEPSaSJVROgXdYCgB5b2qy/zIEmrCGjfLE/QMN7qusOI7CR0jMuzKxKTbuBJ TeIyL2gENfAoaqVGEYxownN0frdK+VboLr5Yhd/yHKq922+isStEIq9yxGkwtjfLYZuYalo1i9HC oX/EYHD/W6X6h34tvDxbNGhoBBES3Mh2uUaIHQrHMKcWLLGbn90W6KnygIk0XCqG59ltoeYpr7qu uNLJ1MrKbVZnlNdARuG0HN3xfZujBspvItYfobYaCDMu+DdXEcRAGpVYp8PPtwmNS7IzUcxIdIUq KEqTJBGUd4lirPhIlBLdSFQoob3ggrqKI9GW0jMkycgkHUU4r4jPZFYez6WUCSj4r4S6IEd6X/4X imXk/6nVorUSh54UCN2h5E5VkCpiqug9rT3chx5J3cxvqjU7UaBeIeFrJSN9zS496+6SZQJofrzi l+wlhrqPjqTZ2lg1tnICaXZeVHd2NmMoEmE0IRTsZ7n6ZPE0G63WZqOBOvpte6FPqBZPs1Xd3tvZ 3NrcSMXTxJQBFeYMqUHjm1s7qvFkSM1ttbZLbzd3t4DBp4qsmXjdHnvQPbtIcv28qYuUDkt/k7KB 1+sC43n+5vv6pmokPr97cfXhw0X7t6D91fYb7Vejd1e/H1x99P784/BL7Z3b/u2w2r45bDr2+28a 0CP6ZW6KGSTTUDoawtSvxkE29IV2Um1j44XfNAdWRWD4VfS3P22/uorq/rR9+PP1yfXpUeQ2gnBH APsL4BcIkk4WyuUrq95+RXuQrxYG7ZXL2vEkrCifLR2Lr2TXfayFd6XVuQbKi48AgG+fvHdFhvWU J3ifL1wVs2NCtZo1/xAnhohWsI6B5zIXRh3ckSABXhaRa0373u7JULImBaoea8/3WxD+jX2HdkBP CzDANhF/X94aRp+zoYh6LrdJxbrL9cusaQisvl+hTWipoJTcahpLKcijqsP+pI4YEhSnxW+QUEq0 gXjjY+qRb6zW1Qhyu7MicyjvFwZSYd8oWe2Pwcbvm+q+ipQHTgFUSUs1MKEWAvM4BF3eEu5bvk+Y hSxFNaxfA/cXYZPG2Gz1hivBSbxqRRj65Tpko372LPZX//mn2rFHf6PNEFVRrf+Csf20uU9l6P8J Voye318dXb7bPzt6c3R5lDdesARd854jCcLRGLhJWa6uBzkX1keZubOYCfkqEGuU50uRUZkmBSog 7b7VEQymLczsOhF85k/MBsoQ68fSUJ43UkwFQtFe5BYceDjVnE79M6HhQUan3hpv8UobJkuSlme7 QwALFQ4tKMvqiQJDiWS/pozGiqNqWo5P1cEPqCuioXaiGfVtIpWyYlIBhgVoio9GW6SaZH/xHCeb jJIDuE6PDjofHJ4WqcC4ja94p5k0WjZfU315tZld0EnP2ynK94WF1dRGjdGIT7bisJpo/NFJmgir mXJ8xPqmgoPjNj42/tIOjcSBsczc+Dc6CUSoKkvrVdlPPyYJ+qcfCwi5Kj+RaqsyRSRafV4IPVbT k0uJoeZaUTqMQtoazm9JqjojRZ2Zmi7PQDoxukXTydsEqUut+8mkcrksOVxZKUcCkSJCjTBD4lZW IrBWVh5FydLUg8mKTjJmjLWpjk6bX168W/vj4f3mibPlf7748NuXr+d/jK++7v929Na5Xxv/+We9 0dv8c/TksTZl32V9DorpHTHKh2dnxCFL10I+iR61CE192skQhnm78UGQ54qQ0/Yzf5hqDmqBWVr4 NUFws+1FUXmFjSrlSsMO1nvjSvVk52qneZhtiLdKfE7EzfEv3QKdh+lyL4tmpVDDrmGD9Za/fvmF 7SFEc9S8xDwhbfxfHGsUvUACPM9uklzq/aL4UfxtW2Yw9KxfkOWnOa5Lu2knE33M04B2WgUw/4qM QcEv2xuPab0YJc+GDmTtxzSOhtftoLL11dnebjyjU48O7zbR25Fl3UnDx6aHw5Yoqz/sZbz6Ev0E YG/CTwHIi3zlR0/73cVv2ORBl7gdeRV+Nsye3XEITuQiiVw5hwPpXS9b0duF1UX65GYQiloAQFRI d/LxiKqGHmLRY2q8UjNsJRfORLPP/GBkdQfNbB70tMNVMPL5SCtVtGyTbZm8UmXNjg2dUqmyM4BK Z5N1nw9DBqOJ2Zw+YVdNNyB+o+e7zsaLaN4Sbyd0Vnb6VPLdHPizg21ZbUQdlyoLw2hJHNIcloXA GzpW0zM5f3OpCoVTmUHYjLPz3nG7LSsIhrXLeFPpLyd0VXZuivGdKTpy3VZzyPJQmeI+Ue6Cac+U 7drBgNjPwC8o/BgsvjUbxN7a9CfCYfxqQjdlMdh0XYg6BZAnh2l5dJ57Rdh+zCivfyNCZaoLyOLn CR2UHV/bJjmTpdMCsGfARvEIK9FhI0/hQVh8Aj9rih9LnYP7pbd3buaS5JLneDGToGzGTUmzJ/0c 9IidbcJsxi8ndZmIKebPySC2NIMXgZkKQ44nW4NNTbf2JgZFz1NExzp/UA6xkSgIn6ah7yc7UNyu 22v5SMvRWwdF5MYZNdLnea9lXPFn45I+XyX7znHn5YdrMTL6nMfPIPTNNTLDtPuAnlYljJck90G+ dYac2gKuaNH4WFxuD51Vo29ZgdH2bMtp+eIiIhYw+tB36bX/A8MykUvXJxS+Diw9omtaDeKAn5za rJo9gQgseLSQVuukk6DSOPKwvR7Dy7+yKsCot7Ian5lafJzCv2wvE7VJM7VUpHMSNQKWDSvaSJhx WBFgxpdWle1iIXorNJghTyXtCKUAXbRiKAFwknIWq4RkDI/UnpdTFpXHzH+MLhoRzCArHcKTkzPx u8SFTBqfODRaeHAIHqJaCiMxvvhXKtkYBzxcyUKQ74kQiPRZgXf58enpc1ZzZDLHdX/UawfPoOLS 4of+n3HQtYVs/9sQUcYY0Hk26PnG/zN+CNyWOTb++3r/Y/3qpnd8vb6uXVOnVkCi52fYKlIk6rOw LDwVorivjcJiDKsUmh3cFOrzt2gx4sZuw7VbYzqG05i7cnuucWnarR+MU1B2gHLtGjeu+0Cw8ddD 1CuNr7irwsIJhG0XFtMQVhbKR6Kpa/YJPV/TOKrSCQWLk/GLQT89i/bguGcZxrHtmD12Sg6IPtAW AgX2X8+yulSPhSUTqNrZKiyn4Wp2aB+JtYcHc2z3+qb78JDGHDwVMVFnJubpkFZ1dYN+vKgaNwd8 hr32iFO9NiO5oXCAMcq07gpLz74lZ4D0kei6o7O556cxdTH0rDM6bi7Ax60aP8CFzse/feLntkoj RxovLJjAS61WLSyoYWYyZI9EBh16LZcooNsiBjmNk3fnxunJ8ZFxc3T029G7wx9oPn64Ztr4b2P/ /dXVyRH9wPFIsrnx34ez7LtEv4Xlk+gqLKYha3aQH4nAvlfvm30SK9LIOyHOlFYzPlGXb8C5v4YL nvGB2LSrO8RLmupVaaxFnRWWTWCsulrdKrX5ZoD1keiy702nvrHxNbPWqhsbPxkd+94yRzxZP3wd 9jyzG74pjaKog8KyCRRtFhbTKfpk2B6JEogpxHe6W2mU7JNscU1C+IjECBKAum6vRYsWOmXAcGVB KcC/ukQaM9qsQgxF/RWWTS6iwmIahmYD9ZEI69p1s9fs1kdde5DG2WuX4wIhMVxCb/CSvffBVm9v 3NGx0jEdOn+7xm/4+ENpnOldFhZPoE0zSxSjbTZoH4m2Fp2dd3VWf2Z2H5yNiTXhm3ZhGyb2jh33 af5ODH9ELB8Cw9EAvUcDpTGn91pYPIG5vVKomxniCdiLctLwQ1pQkteRxBlDYzmtvund6XpprQOu EAlneSnLTvrQV4DMYjaUzFZCP5eeYqV6+dxsfmyeCSwpdRxLqcaN1fBtPfVWBhEFfWj6nX5nZ2Nb pVwI8f1+0DID2t/7XrNLJPFR7X8JvIvPv0v7vw+JS14jdscLjNdDRMZA0Xh1eTVbDymFTwctSQen QPsqbYKBz3qiTs8l+d0b86qLnQ2fO9boB8m4kXJqLA1DapTbH+3NLbVs9pWG7cpqDj04/PNQH9X8 w5uvD68VErMp6kq0RU213Kavx9dCMehXWpXq6dHx6YfTrZ32eHd8YH3Y2Wl8fDG8fvB+79+MTu9/ /3p3+cdht3vxbifYrWBfo2K4ZVl9YlxKqMDGC5LCTRp43+5Zkw7RtFqHt8g5q21p67tDr6lkgkds nt37g/GbS7V5aIkZ5wjYsYnrUcziBPgKGtcm5M0rp9ZXPEyy9WM6LRtEn2ZvPm795vx08/4kr3XA 3uwCzY5jaUzj7H0cvvWCuz+0Pm7sOzttvCvRooaUg7uuae5Ik9EGNY7h+pO3BxpCQjMdpVcHX9zB H8rc4aFTiciKJDDpb2YbKNW8vDrowoLbDM+r5Ls52jtp9az91r3Wmnozoa0UbnLOsMrl0VX96rJO tLxtdyrvcDX0mduyDhBDFEA7LR1mPRkdFBWPOShTpXAKFnUG8u8pbtV8tMN5MM+S9F3kmlGmCR5u f+iAVEMvkQevngme3aDZbGtwspChOIGycSIuRscQ/LGIo5FM8Hwesa8WOBsgmPPIU8EiyyXvSmVp dEMCIA5wYSIF8JqXV6vKIujBC9Boe5a1FrhrsKkYZ2fnlxev12edu+84H83ve5e1+8arvbr7R+fd jXu0+brTOhwG/TWv0xocdjfejau/Hb39+PYsiK5zSuWjUb3mZJwJ/94W+5FOdL4/PDv7a/kTp3HJ NgWWMLf2M39YWClyFM2tmXEzLWwn5ScaBe9m/Es5Yli7z26Ck8JE586EY2eOU2euQ2e68+lOmuka xeAqx0upkPKPjOtP9K3kuqEHJAm/B0NiMzmu+d8v6T8vPzmRByJ9Ra4QP/T6Ww4fI8+t6E2qQOz9 F72KnfwmNKO57C0zIAmXuhie2DMuqho7ZEWvIj+36E3kzha9SXmt5cDGcOjeYzEYWp/qTdLXK3yr uXSFr3TPLekidq6KO4i9gqJ6sSuUVFMOSzpuNL+jsJrWEFLuuLjPPukIxOuCvqVcdMqsyqSnj2pI S97EGV6wlTXXHL3+qrFCi3Ml615zm3eKRdu+yNFGQoPQH47FhNuM3usTecPEo8+4uuA1oi8e78Ii LZV1T4lKzxCSxKEw0/xIoobn8xGJqi/E/2Na3NK3j+0p9uIoHdhTzlNDBvdPDsuSHcX5akp6JXxH I42Af6b8IEL6ZCDtVUTPYp1o0qHBWJrdMWCJDrKoFSL1WDn0aoN+Kq0mPc3eLFVnLlGxaEXwp/wK jKWyhnqAHVeO4d5OwF22tZLQ6uZ9Y2l2OzmAVm3EEO9sJUCevdWSwKet7MbSDCZrQK41ULROZmix JNSasdtYmmxJBoxSPAavVqsmAJzcQkmYgozN2Via3W7LG09vSYM6AfPsTZccR9L0ayzNYEUF8FH1 GHA22CaAn6HNklAnLbC0DScbNwFpVCWGdDO56Sa3URKypCHUWJrNqAhAoxY0lCYAna3JknBn7JHG 0myGPaZrWiMx9C8S0M/WaknoM2ZBImyz2tYwAL2deAB7yRHM3LI2CPwPQlZkduN3Kk0Yzv2UPU14 tbRkIxKJMoVF6EiY0Ja5XoF1K8P3ikVM6hRarDK1xM4ltU6LzFArK2J6UlelZqxYUj3fgJTpUWxO UoWThKa+i9FIvk+01PxlhFhbqI1IzfCzZynLjkxixqwRaGmOEzYcGUG+lSUzaDHM5FURHjU0naS7 EpOLVo/NIelSYjSRUrkWjgw8YhNZNpgR/wUVdSuEetZtC+Gb0DqAPVJSV09babr2f1lPeTJLajy5 k5bpCQQlzjr22Cx51Wpt1ajt5uTJq25u1jaL8uSpXp4oPZ65sWNu1VAHJA+vgu16lNtFS4+3ubOx W92s1jZT6fHibY0Kc6bHo8Zf7G5tqsZT6fF2kF6wuld7yux4P76GyIwRZG0u+AxlDFT9f6PhBJtj gVYSXtLlE+lFE1eYSa9a+95z6W2OtvYPTt/98dvF3vjcr92N36+9HtXXLurnp/Vj1x48/NHf3fn4 Za/52+/fNJce2/2Z8MjSYYUgW66m3cf3Su4RV2o3M7oRe1W0lT7JO9B6REE395x0HSmLPHfY6XJm ZrSWMXKnlLiVZPZYLedwPIzYuSTeKKCdgIzPe1rSalh5fig/GMYF6xA5W2orESkkGZuwpH0rbkt0 hawF5TxNYvjLGqMLlXlJqLH/UtBB65ksRFRYRcDG7wjyGytUp+pZd2FS88y+uYb9t8q5rWndMGmK gbCcz+6YKzJpCNyOBQ5i9sEAXRwWSEJVmC7ToCPI0wIGlbqXhkVLBvX7+iXqxkd3SAtnzEmssUxY R0i0K7FEKiUv5i3KZch3pw88t++yojY9ieru8UbP7YhSueIO1qwW61qh4DXMHpbwGAQWCIgIjrg4 Zfs7YfW5jEW0wlifyFcEJLAWcWA3iRAjtS5yZHvQmVI5UEXOPcoT0zB9LsVKRG6MIYcallqKB8AU HB2GA2vZntVUSnrUDa/MYPUsl2yajvEZZwTspvc4aBwQc1Fkj5Ak9c5xR0R4OnyDu1w2QQWK1ojs IxlrcvmefIh2VXonGs8BOGGUuLsmyXLDHicqXqYh9KjIxGVw8iHMn5B8OX0x/IZdY2NKhl5gQckN KHgvId8sW1CQWCpQY/6Btlo0BFA+wrGys7CuN4uSpHfkFFeAhWXH22zWWi/4rCrOjqdT1Oh41BPk pY8EnAMkBpck+kt5xP52ZWUSdYaoNvMRsJwh3UulSTbfhVBI01ZWQJRXVrAJV1aY9q6sPA255WsC CgH59GOaqML7eD5iqu+RH3j8T0YReVD/YPrH49Op3crKyYclWsUliFmKVP3Abc1DjpbyyFB662ND p/d7Irtd1k/nEQwl30WpjOirLMmGAPvKFPLSyFDzxO5WbL5f2Qp6vb2dykgaw40ghFUSzahg3aOS dQzXr+P+jjrNZXhviMpiwTcupbepeMmYxJFo7B8r0liiU4Y+MPlYMqicADWkTzq8TKHMgHAh/b7u uQ2SjHC3lLGP1/md8q/kzZ1p93m8yzoeloGBvmkApDrNOsCVa59EVpPoQGKUWMYtPbx/lh7U/Vy4 6mujWt2q9p3T7V3vy/V483RDepGZYw3ac7V3hdXK9MW/0wiU1+LMeqNueQFq4gXxq0xDwt018lbU 1g1VNI0Obu/xXKSWdKxg5Hp3IIPpzPXDWrVWw6KnE4PoBC+gVEgDR58zQC3X8rG9W66CJBGYXghJ TA1E25DQD8BLgPNc8m0yhsuWYyrk52QLz4p1B9HRxQc8UffemtyTlRwzqBeu56Kd2h36thlexJ3l sy4tcTrjBomkhRoInP6g7n2r2TUdIvCigCDMBVZHvNqzjeEGLtQkwtKAxcHu0+F1L54OPVCXTL30 tcmM4auRZQXrxhtiE1quccJHQN4MZPFzKWxNAWHIOCA9BWVDzzHzbBPtAqnCOcwjyJNwZRVm0blP 89BhfxdJMIyB0S7DqanpQdnv0Li3TTnjQ5eH5+c4yO9tdvDAgsPVaHSis7pUhX1kuySMOGBjIheK XERmqI85pLJggWh1CBpurAYccbRBYhHo5eQAZ5Iu+vjIKYe6JvaAj3T6GWn0rKyskFo+vHuURXwV KBKdUTiWGGfPiSvAPUgEUwUuScwJ6eID4Utp41c1jtWgrdDqFSAFpicqz/jQEZS3LP5bL1C8LgJc mNW0QEOGylyjWDmmNmrPx5Ibrv8jPmaAdbzO7WSJfahzxHR0ab/id2No46o9apeJidZgn5nDkYVU vTqNSdKWIt/tK7NtKQ6DGEShizllZVcfyP6TAxl/cYFSjuYrS4SPzT5uDvHsr8Ii8Gbh1YXFFQsx OnsWsfTJiXHUBbaa+EtHi0WHhSnXJiolbsM1vbyhpA85vMuSqXMC6xhHwUshi0x8mSPKobk8OSiB +YnPGpU2K7uFL4ctq+I7pnc3rtC4Azg4gQxEtwtBOJVV1HJdohQRc5tEhS4mZXDipK9dDw+9VMlC KJO1C+WrHN3bD5G4BWTJkEwSqOhk6kLWRRt0CNuO7XfpqKUTqEWDWI+FQxIq3AGRub4NikR/XWKr aaGhyQFxBQM5kWUDZSG/dt0eC3fCkMOdzm52DWjmm3YA4anZtHw/hFLbTCJBCcSAkkAbmB3203Qg LMqtciF7IJuc4H5Dxw2sAQYNz8273BewZchR+nJKSIkVoSJrG7sbW9Wd3ANLnCdTKOfHiCQBtJil oRe6w6jSBsV1mfAObM/mqzXxhGlLz2kBrvdBpiFE8fhDcSvZQSza82Q24ZGWal5EL5EkEEvjwzoi 0q0wPWhC5FIc5uoA6pq8gLAtiX5ZLJauw9vUemhaLIlBmk+qnUK3QtEmmAyq5P6LRi2PxBy24Zhj 4hbgl9njuHTsbrh1zEJVRsR9GaFSA0uWjrECyhLS+WRiPp2sx0XZ3MvENXUNezmea7K5oLh0an75 MSN16IcL7g9mPROtwSM2qHHJnMNk3+i5LIt0sRVAmuNjg4RkbEZt60HJBq87f9jvw7VBLXGc2nSU 9c3PtGGVAS+5qeGbTFQKN6HSBBJtJoaFqXRp00sectSVZGsddw3XIWPEeYilo3bgWcSJ+WAt3nD/ xJP1jBBNhfg10I1BVEsxY1MPPy6Q7B1PsgneD5pwc+voUyJf8gBI9DVbwu5DU8WHJ5N1c31MptPw B9LJojJ0vx32jJqkdknmfsXvY9vzUyk4lYdFdKcc9F3ifGL5KpGKJtcdW3rSfBDdAzqEzI6b6XBK NluA+avIVlkw4SFr+GM/sPq4wZrkTXDCQwQYdGxHpmumvpzivjSa0jOHDl9iiOuke3BdD3Bq0iDh tI4TZ6S6W1Df76yR8XrcD4ca9S8Uuu16TWgvBwPFhGdaKdG3SomU7fuKmIkAERW8BQxWFJqBUR30 jYvD60yl+VL35u09gsoyahtVyUrxj9l1jlHdk4oZVKf2j0Fov7OCHPZpyj7suKDlvqmHBWtSC+7S ZabBZhaT5Na5dkrhMGil+gat04Hrwat5DLGEzU+apRcOJSYYfS8AS2srB0ui7nEZwEenwACMM0Qa 1JEDi7kGWevrxrPuWMWJzzoAyUGUHUC05J8THbQqJ00SxGX1C135Nuv/zBz/45Y/j0kSH2bRvt8C jmEDvLGsgmy3k1mMSEO202puvdiswGOKW6zDValO/DLcr5o9EkBb9b5Fkg3rvZScAdLGoMWMWuHM FgxNkn5lh/bKdEYIBArF0hnHxawT1sJabWNtew1y01rDDdZEXluTnSCD8Ltmyx0hykwOi3hAKvII u0iJgsZzagSa2uVQszUzIcCoq7uZWrkTymzmPMOPp7UxHr64q9jwk0tOLRyzkjrQzPRqPAHjY9Vo IAIN3F21skWyRqvFpCownabM1IhEB3/AluhLYhzX4PqFi81Hs7MWjKei1fEolJiN9tYA21AbPKFn cAfvNqvutuv3GzubVXE9xK31gaUQcr+xvrO5rqcZY4T4xivP/Ap9lYOYzs4QUZP+cAAfb8SHtojl GXhux4MO4f2JEYwsE27UrK9DvG/ovxERco/YNC35dwYLJXBXeNbAqLKIlWW+CDYCRiPbaSRiuE4k gShFDajEMVknBnZhxEIIe3ZIivdOoEvIv/WAoxIAKwWIOhXiE/M3cTg+pr3ckkPzZ+PCJX7icbjZ +Nz7UjHrbWtUH3TdwPXrbc/t18fEcVheyxz7yY1nBcNB3QxCTPHkPD+HRusq8Oirr1nhcJYedE2P ZNrAWjXeHWSwUgKVO5lKigCBUPqOPYDK0mT3kkchYu+u3WpUeOwmvKaJPfPqLeu+rmyRdahFHatX B4WKxHOFB99tB4jm1cYOWtw0ByBjFcthCkz8PKzvJgIKMqMqgYqiw3VhG2Wvu7O1U5HtAd6zgLrG xHVnrQuNwSkNUpRZtgMfalgZeaspigpuj5X4Jj5mRlFi6JJXMTv0UBuLIB0SnKwchjpEQNv0g6ZL VN/uOIyGvY1qbWujuqkpLvw1x3oI1hp2Zw1uIzJ8mrAABttkmkJW8RNNydmXmPr2kA9HUb9kgC8x 4iLx/QIeOQYGYjTch+Lhlpnv3ZH10AuVtXV1DtShYKkzna+z+0+dsabWAqto9eu9MLc24Q5s+1XX HUA82XdanmuLbWnGYReJquFEKyAjpuaRCHDGG5sZBEQO+wjwroce7b1xHbZgK+Q54vdsI9YwoiyK 6IbV1JkhLU6Q2B+QFPaPEyVoVMZmEUeVp6zB1/kXgdVpfK2w9Fl3rJGadhjXofKpj9iUk2JB1Rq4 9ojoI9nFut42umPg5+IfMPhaEb07Mx/s/rBvtEwI36FSoWkirIoT8jwOFS92vOoO3Hma3TqR87of uAO/zg3Xe+7I8qLVr57iYUL3j/wXvZ7VIfJvVFe3NzZYaYeDAoYP40XNwHExMzlkjBQRhhtYj/mY MU4+VEC1fSswHHf0OEzs9Le9XngycHCTX6dG60L/iDEYgH+kcxLSiXj0KMzQlv8y1LUzOA5Cpx92 9RsZPZjK86Tlx2DiqNPxYSxAyOpXcxH8wE5v1NlV/ABmsE74+Olg86d9eDTVO27dSnSZyz6vZ6At McZC9c2jhrO9bfpjNRze6CQ3DQcK6jzsaZOoxKetB+OPC2K8ObNLjeTeTseAzdaeXc/G4yyayzNr FIxcGJL5gHnUsLf8vcagMrKEriHrE+y8xMujC97mgWX2iaxBI1lnvbPCSVgWjLxGdt9o2U+N56Ko FuVdYDW7DhtzWjaOx2EvgCsW4k5795by0JsRR0Wy1KNwsjlu3bWnSdbVDV2yrtM+1qTr6rqeBV4t D+Vz1oJ5nihfw/RAFkMyjTjJVRhLHLifZ+VvMNBXgWX17AejRwCBcMqt1RkUlMBb0dISGVSbTmBF zOmR4mUue2qM3Vrw4HgV30QytDqxgs6ApEmOV9N0NtfImAPdC5HrwLyDexEOCbDU4hwLdEReUzGu 142jB6s5ZL9FLnMttPUaod53dssBiRbfClp3zSF81c/RMuL5I2OqAa6e+LeBGbp2FaL3UQzaGfwb /3EMGo3KqBXpbW5MEARYOex7ogT4kFlJWROH5VTgv18ZoTbsHagMvOUdKpmep+wHhrdIoiowiALM Ire6ikQ7V3a3tna2q3t7G5vVbRKd914oaK9oj2vZlyMK8PzM7Nh3pjdYDnUDEJnh/KHiBBc1ptzR lN2+G8PO3RaG6HHOL86kVO8ryOv+l6HtBT34ptIXm37QVlN7Ojn1GgLmM9qWH+KEwfijDX8Kpd/e Yx0q+LuQ2seUfnsvT49qGh0JKofLjnXv9oYs+iO/HCTgF0F3DdlwGq4z9FeZTTCbhDifw6YRRgCP wAHR9v6A3bRjtw5eOuFT6EZPTIZnc50O+E7PQMJWpZh1A3jVRNraDLpKILlQfX0dO+coX23jtecO B0bLYq0Aj6zcTGyP7YcNEi5YtdZi1lGEKouOuKAOe2IwrhO/4PmYFUUh1DzIV4O/xpORAbrEUIsk q5KDePi8OdqZtpxebAlbRaWIz9SW0ot1/YIQtZSem81gaPaWYbBlHuohMBCQN99MZiqpiSQBZuga 79z+0BPPsFzyMHB7444r+jEQ38pmpVqpbr3Y3drb2wqpNnv4eMyfKPvUmlKhrHVazTXU+6+fahsz kp3th+qd9blCAmK9DYrM5jwPjJf0oSQt9CoqajNcHE1k2vDUBX2CWvxMa9Bvr6X2X8bIdT4NCcw9 TlcZRiKC87ChpXWII1lfR+CdxT6ZtGHhmecr1zxbvOJhKHmAZDxeT9k/tEO+cPYexVQcWw1vCI+v fxpfQQMzakUmx7du1zHemM4dLHhT1b1lVtxosHlnVcCC6EaOJvhQ6ED7bgPHG7ulYzWyWUytuU0l 8YSu8U3xJaO1Ec2JrEQSnc64HeOGY2UOVDuZQU7Z3IyarMJgJuI12h583ptIvPis9/HoenWVuyNB v0QwT9Av2iLINcSmVfFm/sp68PmGWETASg6RhK/tr5z1jDgWmLDqRI5rOGRcoshQD9UJ+91hu90L z/gzuPleWg2zhyFo40M2LReWDXGzRGUI+0rrtaiB7TuOzYGltJ8viMVqdofZVR2RZybAvKqJ/Qzp MZQZlYHUXWPBxvLXbGctptdqqPtq32h6uwxUJcZS6BVwKLIeYY4zv7YMEGqj5Xa67tCf2ZGHuyqy /yVQVLwehvZoMKwQ01Sv1RVUdTj1eWbP/kpsSJsO3zA803KMkxPjVCmVH4miUltVTa1KAV/rf3nx 596HBDQ5M8bHELaesbvxc6h9WqWTyUOmvVXjZ6M5pIUbbsMMHGWgL+KSzjw/nOPMQELKOzI5vXng gimIOYmNWqW6XRl6sJMiC/OaN4Q1ZY0EBYtzM/lrREbWErVDaou+4nMNoZF6IhYVpsQgp04/QZgC OeaqP4R9xmy30WaV9lxEq2g7JFBUvEaDje7dpgqPYMa4zhm1Qn8VnxZu2/KQq12yImmaqCNivw9D v5arrnlnDRN3qWF4+Guc2R1xtcuAuqjxqbVcLNnHEx2L9XkTwe542iDKyI6PYqfems4/kpuicRVr afArd/uWYZy++MNxq+LJ1Q3Cjae5Cj4z6x0+U6H4A4utcRLbeerT1+c/Q/LRli2oYI09Rdcz45iy cHn0RXTslHOQNWn1ie2IbzNAsghzkCVsGoXuXZ72N1Sgu9mCuzSQRdvKRPROGOk816nB8BbZPcJD CQzm1brxG7ElOVKcDmjjYfTqRgAdckT1+dWZgeERlUnfMTUjlGqXZKHExG6uVw1aB7ROEI0GFGXA ZM0aDQarBYuF15rwMLGASWL05hqxpmtgTcHhsEeGv0aC9Vqkb1njfP4ySk4rZ5h9cQtw2+IjAePb MIz0UDeePHKSiqjhGyJ50PmIO3HuqMvur972lxZRzS64lRrz5bS7utK+cl+zYZclbhasTVVtrFmU pKUo5j8rUIh/p+OEtNEmxlMij6cCOkm8Y9QnzgoJ9joPoKq7Co0aMlk5cWAJSCpxThhXutTfaKPO 9jqxsRIJskq2+Nq96A3jtuRx5lYUCGmQ8tvh31PyZkXXn10kE3Es+YbQ/8Bg1zlJ3PFOAg9fpvKA cMLR7+GWNA3UGXKMJAdjSLIwqCtcr2U7JufyQPKhtcg7Gjo2S9KCWg8ufK70PnCxCWckwHfxvzFa VmDaPd/wXdfJbrgpk/Qd33PW+exaH+/fvXCCm97oz6s/z6/HjnXmv1r77c5rnr3as5zPLbvvvmqd Hs10zxnu0jCmJUK6nZaliNNX558f8yYRWZ6Y7+h2Yv6iOEWbDhPjkdMPcSpqWRa3WJRxK6VrGlQ1 mV1oQlWVk0jvVvCYzBkUtzAp55DKo/3JeVaQLAjfUlvtEYmBVF/4k84FVNTRnHl/0FyVg9P9OVP7 cK64+RL5cHKzqWl7IlTkZuZRA4hy79yurOhpbyakDlz85mFUPGXeHJUOMJUl51alu5mwGfTUN5x4 5rHJcID2uXPdIDedOzHHDc1iIkuNPo1FNnm+kqlExpqlZKYajKREWpql0ulo0GBu7ploIR/IUhPq mUk0w6h9TFKZlRXHRXrKCbljQqKI+ysWkw9GtQdaMHcKGGQBjdO+YATU48pKSNqQZFN1s7VO7yfm bUHhb5SqRcG0TVtztuwsSwvOykLt0caRJCr6jimRjYU3DzqIj41sbpUVXHSYk0+FcK1wsEP0Lzdr yspKXqYUmuInTY4CQpNOirLCEKcyoMip+nS5TJgmxO/1xCU0Y+mjKE41Uv740hLfatxDNvMIPpXI MrIEPDxJdhEa78E0wX7GYefoE5Y1FYDgg9fnyspKKu0HvYm+QkNr/FvIMgv06j1ul+UrcSSvBhUR l7FbjSOCz1N0VYkCKBXAv6ylypC2fv2V2pqS6AIlkT6CSmorqEyaCq3mjEkmpGatij4npohIojbK 6jAjUpFvgIqksBmlSLiNcx5MxbAcqTlZELR+inMYfPoRUm1+7oJPP86Ss0B1t6ljcHrGAaYTITbD HAEzIVOC8KlIKj77FhNXdlNFrPCMofbLqn9cr6dHxd+mA9fLAlIqNn65VPC7gFbdzaJG4iRuZTLK QhajaL6w9eVHRairwQDPtyrSe3bA5wkuX15sGPmnHzl8/NOPMiDenFos65yLtny4t1qwuJpbKPqn H1f0QOwV2vTZ8E4Vdn0rQCaDn+eAds4A7OVMdLUMZgcrHBslGRt9G4Yozw7hnJHRckvwhBBogRfE KjHp827ETPCyWqzYYnPFKQt8Wzg+M1HGt1pQcBLUOcKMwayUDyZWRBYHZjIU+FbF5s6OupnigJmN KYj4VYRJQ1kmXvc2FTc7B7RzBe0uZ8Jyk8xLHEk704Eroao45nOYM3icFsSHzjHsecJUlwXCGlbx 9NjRWxXVOTtwZQJHWcYsGSKqwMZKKg7wvJVQy9mhnSe4U8hZqKNNxXFq4ObFEc57ks0af7kM1bHE T4I1yANldiAKoiYjVmBCSKQCBmhJBTTeFoYWzg7gPPGNy7PFLcpAwCcwv1Vd35gdzHlDDiNEP1Vw oZqlf+M+7zKhgbezRe7Njqkp4YPLTxAB+ClIngZx2N5Mp4HExYFomYkYuNT+z0qvhdFvzKIiCiri UW85uCxurEgfXhyjtlwqHk3r+DY5nNlndJ6IMlyLIwqQGA4VjjXB9Lkzb7xXtM0WHdm1xBFdS3NE csnIWcy7jhWLxXFYt3qU1AQczRmJpZYiWAmeiBfrW5M6mSdSKpqEwpgohROgJBHRdBsGASUX58Li mYwZl/w80UzLBgmcTxelRMJtksglwohmonMSp0NFcmNybicHx8xMPuaL02EBOTf0RsEPyVMt5M1J C3nOqJloLRfGxyg4sJhvk0Eok8CZKcJluTiIRes9LwTlNoo8kPmKNhRvGZ6v2SJQlqVDVsFNjhNR BaHJuE0FZUxCTKlQjxAKnvx0jEU00mRABgsuM0RcqC5Y5orjJW5XVjhwYSkKWEibORYaOLEcInkp jnZYiqIcDIERcwExIRND8JcxAdFzxSuEuvkoEEGDQAeQVePRRBRzSslogphZ0MwRmlv/TNRN/OZD 6rA9B7M/t4N8RDQSrvC6G7wCD4trkhP7ba53emaBiz/7smoUUmOup/lt1oU82xR7nKumqpCV8t3B b2dw1Na43AX6iysYsfSSPtvziemze2tHTmnG92grvY13xl/PS7hB82jY3Jx2b8aHiuarzPYt7QV7 IMsr5UKc+K7ffdsfBomrb9W1tAT/Xb1nNiw41kbun0oTKJ5w8QflkksHAmR8rTHltal8TVXpyKvJ g5tvbau6tbkXd8yXq6c6HnVpeTEpFNELvp5mr1en3Y6hQCbHKys5MMKlh3tANXjurDHxMT1+9+Oz VqvR2uRre8M7O4PtenSVL/TYgprq1vbmztaLF7u1ddx5P/TY2Ti9ClDniwg4NPc6EuyWxaDGr1Tb 9WEAbHH71d091b665j500K3Wdunt5u4WPHTDwUUeY4nhpSYIBdvDr18T8wt9A3ER7MJLMHRoZ8SI zvpWY6T/RxykMQEmSsjhqPmQxxc3407me9saxd8UtanD4kLEBXNFhA6VMReRsqUOKyGQISiKLnBm 56/oo+mM9SUYr/RwAv73f1eN//nxznb4Uuhgmy+OJaJPT/8TTrzyoo4aYgWNRVxpxpFb3zKP84FX l0xLg5gauVDZhhw96opLjkg98NWzhcG8N8WTkS2SZp8PGJqbz8SyQTIZDEPXCeUuB2/SvtVvwDVx xLYgWFrCqm+GfdcT77Ertx2M6DO/Wi+Ictjv+dQ1c6Pwqy2bIz7s0fK49QrbYSrKUVSwEsAZS14Y 8cVEYcxkClEJ8Mr45Ze9dDykloWXjtdo3nd4ARVfOp4abbRs43vHv+eZx3xnpvk2Mz0TzumJsw3e Nj2baXwCRTlIVAfb4i9zTkdRRcv9HWEH9qgxosuMITRcIJtQSxA+ugAMVDmcEZDgzMpMNy6vu5t4 0rxl4zUvnxLbjl1peQa/Wp5LomjLeoAe+IS92MbwIGcHULb4JMrw5d/sLKruIWe/ZzqqUnmO+pbv E/0GH0hrzvo1cH/5qXbs0d/URAjWjtmL1QDbhGWn7VUcFCQRkpTaEMkoh5Rkr3GMRiosZEzlATEd 8D27PYbnZR+LHbeW+/RsBnBgpBeu+ARiTsT7mhZVqUuAcVwCH2CX8VZCpWkpelbHxIkpTpAcAKPs AOxPARS1WI/HvUg1AS66jZ0kBNq14DhyNq2+YgSgDBHFllq3g0pt/KLX7gnan69oCemn1NvcIOxv zVGvtjFyzDnqtYOqp5ZHoh7/yl5ICNwLYgkfGbyqmaazPABvx2Y2y+kKy6LNmj9sQouIMJaAL7nn /QnVtg1xbOQYbMGh/yN+hv2AtamAm22ABk12Vo5miN1s4UAL1eQAik62JJiGY3oecUM+STAWtNx6 u/C1YPfignlfJUEQIgq08uwwlPhGZLbJerT0arGC5np4u6ostPBmVbXswpMDtrQhewpYHAkwebb2 ag+dcc5sTa0X1D63c+plZlldu5h5n9rw71yj6waQfDBYZiUtuIsFXXaIfhiIDxwtD0URVokO9+CK ZfPJ6DbubXcIgmyK43yXAxvQDhd5btEs05Ex9JbljvLCod2N+nebRSOLYjynjIWkW+r/SYaC8zxs nK33UJUPPewZVjy47bbFaj1TUSADWFVuCsyds0O4AssWL+dQ7p+Gmy+j0cOjcHNpgZcpdzf7Rzqz +uaYzzSP69EQxrK3GDldEz4LlhP6arNRwoBJHnK/bzyXF9sby3wueHRWoS5DwBOiRt/D6QH/xlUQ oahVlLPg+YJG7T6VwyRRzw73AfW4YXZc43mgvOy1LUhttIaYadgKspeRqstYw9FMg19AllGAXsI/ qY05FLiYSAJLDfBpCuw+uCti6Sy0bYY+1Dv03gm6U4+b7S+mefe5aKrLbPC8m8TDQENWxiAxilrr 0TPwHz1oZD8uQLV7Vps5YKAC7npEmMEiEEZS/MiqQVK6oSJrmag+B3o8oBLMkAqHW88uRoEWDmzC AjA5VpuE6bTiilWUVwaVWX5YYhnw/GVoBeHtV9qLGMU58AgzeEYidxz2VMgmnnBAmgHPEWwYA4Sn 05WQhq6KSVMaGuCt6Q57Lbauhb4Yio+EdjKAXpnGrhhDva7LTIvqDGeabEqTyupgitwCa7iigtzG qOtCwxvF1Fn0wQLLSMjAHghpX9wXjnSPmbxPsJ5GT3EsGU78wOyAjN4CVX8VIlJ0elHveZgcZshR hN/EbJOgE3Nx0ekdxfvnfIsn2ljDcQDrnZA0ojB2m3lYjTE0QiNp2IAQcV3E4F9Z8lIIMNxmIel1 iEREkOovEyCaBlIFIC5MNpmKneIpgkDtI7SAlpCevcq39F01M3xj32wR18OSVQyg/jYB4T6mkg/D sIyQd4gQYNEANdd6BEy0SsyhYz+Is38EVPJ1AirAwySa5pXkb2IZTZnopqmOatoDvfHIdVu0V5vM +PBWQmgegjw4Zn9+iOns94Y2yFXX6inJIfO6AGJiJgg6z7OJj4Qcp2oIcyH+SZ/dBh9LWAzzAwkn teQ0R2+yoIGW0deIsW4P6bxV4nJ+75VwG+u7/9juQUfC3+fb9IrEO8PJGo9nzlCGRRzhK7MFJ5gL HOTxyCaAXqJ/c1r/pur/LRiEmSGIkMcPU1RrcV6SCAgjUtl8F7lGWrSfJO6UzjNR2sg6hrMfLymm wrHYFa50XVKM0VUOLeUygUTWmYXkANGUZNGs/M//0FFKFdnjliXr//1f1rclzQ0AG8LwrOoubCAk AElrsvD+KbRWtylO76/n5VVX4vScVE4BTmMDZo5F6Z24RTR5zeKVqClWZtEprcyvSbollj3WzIY8 vaiQlos+i6ao+DMrhIo/s96HzaYGIvAx7P/odaJvU/U6nN+gUIlTgHPW3hRPCStpZEqqHEr+7VQs +RCxbkUAqjFA/3f1JAUDhIJEBrgJAFhuJ1pAdOCfo83A8Gg9/b3ai3z8i9qCIQx1DUtqnSwBG0sa yVl6El0Cd11acXDL/JsoACLnoymag2XuA6dtSh+A1/+R/UPZP0RSWtbH+xUjXzR/nEAetayL0rMI 0EsiOMft6BLvTHJu1ERSPl2YVBq1n5QmHyNDRk1GAuAUsU9NsJLmpPptStKK9lQJUY2pBjWREZai RkrIW8u6m0EZ/64fmWUOnr/3enwALbPY8DTuXrvb27XNGI6Eu1cIx1XAhyKkIgHliRzA9rasja0t 1NEcwCK3Cs0BbLP2oraz86JaTTmApZGPanP6gKGLzRd7qoukD5jC5FM5f/14jSg9F0wmBpAVelFm IZIrL6vyLloRqr5XH63w6C/MdOlUf3/48qp386pzfHfRH3yonrf/uKvW3e5wsHFnva4fHPd7/qtg v/H+JMx0+c18vkKXHEyalimOZWbFIsyqaVicb9PXr12XEV/s20RckdUaH9AoiPbynGq4QZESA0x3 gWrZdhPePtMn/ejyj3Zze1x1/Nre171BvfOlcX/nuBv7O3/etfp/XDm71X7v6IM9fvgYTvriNExX Aclscq6PTBEvkaADOECCL2xcF/F1RD7W19dt/b4HMbzmGKGqLyEnETItvyJSSd9seq6y1OZUqL00 UIM7x5hYtm6YilysG5yNkehfL6QkAdIGBYofaZt2L6Hk0lrefGlcgAdGMgmr3UYGBOpFeGcR9XFc v3ZbsQXP8M27Qvva1kvjykVCA2EqlCTz3OYsPKBoMrnLkR5EQntp5SqBx8Cy8ZEoyifi1Fo3LoS5 VjxsKM8pNlOaD3UpRUBtK3wjRWwXTm9+1CzLbPxFKCiTWI3/DoVEZEa6s8HxkhBGyNYaK+r1lWWc 2neW8cpzjRvarzn2cX7Aj7QWuGGt9ajuWsNz17HXZSOw1PDKquNTnT7V0ays19nrMTQpdXECrnOV mgIxN0ifUhp+bGagUCWpPd6smdcX6i6C4u9T4Xl+TULjHQtfiS4rw8o7N6ifjWnhVLeVzSHxLm46 0hpwJEE418ivW9BpZnAEu73OGhFG7fbn36/P7i7WPw/UAM89u2OzSMA7hi9bu+QkK5bsIX7DG3fq iA+6VvMO+cFyUF/WrMHMNzHsdFK0zabVcN07JjzKVp3/MYbspXHDmjWw/0rWB90B5oYOMe0OtgI2 bMddNSyOOGPitN+6RyqxfYe2VU92lYhed3QoKWoXD4p/lTWU0IhoFkcQxBGvRMyQ0+orr7bcT/po SLy1WSLr+wyMpgJkr1xaCzQkFx7zgUcDo6EcEBmwvHuTg6SlSYl/HrGg7UOjQHXXjVeWY7wm4ctG iGvguo8Y4I1Lf/xuOCj1qA9khOy6QClWEmEfcp5KbmB7nHb3Ed0DKcgbPCJhcUyULzCbsfk772MM GQKhiXByEqLAXouXUz4gKWMeF0pL97RekDkI8eI9RFPhRH7cjnhtez3/0HSaNO/7ozssmJ7ymCv6 quO+z+KrjWVvB9rBiBAqOtOQ5UBLL58Z80zAcRbfELiCjzpskOs7rtGhco+A4WS//4GYNZKYiS2K EJN4q3fKiU1pyQ873VVo4l27uYrs2S50mZZLvCESJndAyh6xKlX3V33TC9Iw8UsdpIbVNIl9Ds1N j+n2kIhaC577B7BgPGh9p7/oAKDjFn/nbcrWjwdOR4vVwxnUiC/Sl497x978xLgTT0LVlx8B9Lk7 8A/tlhOcWaZzHV/HkXqvA6wmim0nooYO2JRnJ7xAkA+2AT0ASCMxZfbEGZ3P3EyMtKwokYZpOROu Wra1brAeYYLhOZSPnt7yvDC5oAxmylmc/5a7Jz6eOn+OtgYHb/e29vvX3aur35p7p0fNF8Rcv/3j Ve/A2t+7fN1fu6oOI+EsbcfuuT2DuNKU3IYvMyN5KZBLCYolLHxdgDiFZkrLTktKZkKlv1dAAgRP LA2hi4zog5eziyiolZFCwqbypQh8/eRookJSEijm/1HtNmbeP/0YMu2ffuRlESmMC7h/buCTE7Ps eFoxChjsp2Srw45zOOFvzP+GkCj2tRTTKnUK2Mw85pIXSRmOMWo5l79LcXVLSW4uHEku+5VkuqJu EtzSbDxSug3mbrI8TVwszYiUZj+W8tiOqN0UtzCRR1jK5Q3QlK7JLGM+WVB4/O12ddXY3ZXDULeZ 7FV3t7bivhMmk6eNkN/YeLHX2kQd3UAS6mZ1A8nexu7W9tb2XspAktSlPso+Qj1Ud3ZUD6kY+Z0t elndq/1tIfJzHfzAxgzWkKkB6zvfuzXk7mZj48/2+1PnRWP0+d1Ns/+mNhx9qVb7ew/eoW9e/O4/ 7Nxsv7/eP3C/pTWkW8WvfTraYoWXTxsK3IWmAsPhBQoeOYYhVSrSlapbPNIizbVLs+65o0iWCV/E Qow4+/VholepDFZx1mVjOYDWTHDzO1lm7hWxWc2uljdlYHf8ISfWihK0IHtKOCYig3XzzqzjShpu wOcGwjuh2fcmTDqGFjV4+afgC5Qyki7wI74wEt6Wxgti6fpwovReGu99ZNJhmQAeEri/xUJWNVza gkxCQK1579otYzDkOOywdMTBMX+6bhy6ifuph/SVuA86Sb0BHeOWJI/g094XbcKka4b5QfmPwH1G 4cbABR3iYBO5yjCjCZcvgYZvLFIXdsw1V5Jq8NcvvxwiZ/DPv6v+fr5mnpSHiL8QgX4hhiB6gaRj HvEWtCV+CW905CaMsAlDNRHNmT5u/j1Fditrw8uQqvid2PA2u1svvjC5KLbhJdES0ajYhvcM2/LT j+HSJeZ22jbUNlrR9rrNLPEJKQQWvssUv7LypLsEydAm7g7k7TKMyH9q/vV/m7v+yiO0xFZIbIPk FlgWdi1tw82uqyfL2NDdCn/NTAVUNgoIp+NfnWH/l6o0u+/faZOQ2srSX0jDZuk93BYV2WPS1xX/ VqqHcO2mYzNSfe6U77No9+x09/ydXqVr04zU+179zrW/Dvs2EuK3hk2aKOwkeGzXSZSw3brbGvu+ NVZH1JmHBGpcw9g/24+hRfq5eeAqmonctf347mI09Da+7FkVUUvU+c6huu0gsxkxnXInBOjIi83q CzX0U76X6CQsgxTNXGahQDnVnVEI1B3hhJ0doQLj8dcbw16j3nDHYTZIXxJ1Kghx+Qsh7be4XgZv sqh4GU1gIxKjyMAbsVXJ16lO4tbgB8qSpcWZK4kpFzdGqDQgc6+GWVVXicq1kVdUKGBSpZRwdQp7 1nTi8A701Q1/kb8jug3LGgKmpoSOthWHgeVOnaY3klNEBs/XK0ILonRNRpMEkDSWE8FlE/qYtDRY 2yV9XtJE8oCg8DIqxvH+75N75Eu4c3vUE2x7eZOrLrJMt5+41ntK+4Tp4L649cx6Kd04dhMdnMGw Iekz1V0tlfcHN18efut49tftYOPr2fCF8+ef3e19JQV8dIfXVGNypzU8sWKEjtdEoCB/CctFN8vz A843+cqP2oX0QXfiICbNuzqbp7Ch0esvv/D1qz9t7r+jDSUjxq/UcAWgvw+4Y9P5qfZqPzTK0aOx rxvjvgsgwzNHYAyfJgBZ0eccbKmsB4YfQXQFiyMq9O2Gdgl1iKIm+JkelL6O/wbwrgZWcwgiHyJf e/GdgQq6L+eSYlei5wmAJhbK370WPtgtS1l7+ecEuP8O8MJ2iF6Ehh1F1sLjPHz9nQF+5rYI5gsW mdE7PXMgwQQwv6t1cSWSbbgB+WEC7BNADO4mQqimk/gyJUvP14vTL9fLmdu8Gw4mdZKi4yHplqfw yE/yChzdzAWSHEI63x/eZVMc4VcO9x17T3dZg206sJgR/8v3M7eHbAgUZUJo17M9wx2wxUs5y03S vuUBxwWu1cVVq0bXRGAQhJJVmJKbXYKDBJRVdS0DMfFmEJD4o2758O2+3TM9o2F1zXubWHvbjy56 CEPjSolGzO7ys0S76awva5MkuFYrIcONJ1TXtyUHyq+mOMbEaFN2bkhPMdONsRLbbQw8DJLkEKW4 eQTO33CsXnSvOTUrtxrE9zeF2ohfQ9u7gknC0CCE5GJ20qbQpIqkgy+PcL7mCC+Kq9PlEokLXSc5 iYNsx5ZfcRBjC2swCBS2VTRCNsMXDmgaxZtTkyBzt6hlQ4Rm6MCWI2GmiNrxwGn5mNmhc28hII5e 7p/tP2anvnd8whOuOFat833iHEKLHPGtdeN9sq90AYIlsPlKUw6GNmxcDoebdkhWRywoPccOI2Wm ozgBQ3KaZE7yg0r1ZUPokgE0JUfDQmdpn3W5ooxjlULPHa0pxxw2fmOBijcQK+UeMVPXaI4bif10 oth+GL9ZPW6JRwfC3k1bXXNDy5RILaBjTxSO5MXcQCm9bkBTiWKIf32pmc8O4SohWvYWCHPHYRw6 0CBHuhW02Ldw571yQorVLL/GTRkn4trDcOOaVt6bNMHqArUmbn3ybLMcac/sV6H1nCeE14RO3dAR Ic5iU66EDWUyBserZbGLY1HGgPnXzGF8TdJkU4IRORExxsLczDSphEtPxXxzYCCd27TY4BKiD22x iGMxIjIOTV018+PnI1pU/gTRriI8dRC2zDlC2JhC8wQ/N+uhiXvPqhs/ZddpdpnyqsSmGuCC2FgU xau16B0DK2vPuIk86tilwMBl6QYIqEvcUbybTi3dg/eiZ461nRYWhzoU5h1zEL2i2Y6Yrv/P3rc4 t20re/8rbHLvJHZty287+eZOxu+48auWE6e1Ox5KoiTGEqmSkh1lzty//dvfLkCCL4mUnbS95/Sc 1iIJLBYLYLEvLMRwhlggx+6HYPIN/yv6KoW5y4E+l67eZRm/Sv3gjMX3xKfp2ySDyDSxJOwBsGow 0lK749B95qlC22SzRxt1w3ZJwnywO/Be+hyY9QVH5R+U44tX0lPYL08VCbGUY/Y5OWQ83ApJ2yXy JcTOTZ/dcyr7OstkPVn7tE8Iir3xklUn0RapCBTwKJGFynrA4ZVKguR8SiqEj4FSf5kI/IajMXXM oSBMlfs2Au9wup84fq+3SBMjVERJD+yStacpWljiGpzM2PaQ4wY3RvaI+uANaNvnyEYb6TlyHP/Y VFQGAw4KjOfwFfacloMAQISDDkFEmoYLzMlaRsHHLqQMEyhvVw2Hbft2D8meWJZbMBYIEYYBNXf6 1rHgidBbIv07aeBZp+eJCo1N0EMkLt4NkI8EYxgiXPMJsxMmWkuu7yS+buO60xAzZuAQ8bEI1OiE 6E0nrPFVOXkDe4z1G1lGUJhXE3Fans8cjUX1THEAU7nv2BAwoFLqdc6zUvxR2OwQn2kSARN3Af5o JLNpcFiq/wghXjKkcOiiSRztxh6qjZMTSeSR9bWkewEXAntS/i25RU2WZX+AeESwJFksEgiNySIJ Qxr+cEiFOW5RE26OGxVWwhlhcN+YjZXAhFGXLTgNUEoFbTf9wThiAty87UkUq54AKkcRbqLC5l8g YiHzDgZtYPefnXc2RmNW09V1izzWjtw5Df9XWEPffJo3/484Urx9hLZ+1XA6uEWefyM2sgdVhcn6 FGZ7TESDfcnhXCEKo5pGkrkpo6f3Fo3lO+sTXxAFQNH2TALjERWuP9oD2YGNF4xTgcKqi1Ffk/Xo hVEvmglH2LhjGnHwoxKRxSU+fIc74R8x6f12Gz2bWUWNIi52EOVoez/vDGi6N11u8ef6yGspqQD/ ljXdDf/H1gk+OT8Sgr8FvGWC//6K71n98FqvnOJZVBks8tCQHEQrUaShLm25jYAklKlNTZ2wvGcp PkKzsu+6DTFOnB3uIcrbHSjvw/PS6uArdAnwd85eFEmVUL4jOdJRxzJn6hh+mCsiTwfPvGb4Wv2W RGoymUUZ4UtPlRCfgP8UQdrqjFwEg3vmUeIl64PjDIRhpIpzminRjNl0xNfVEyMcD2Arw+EcvsUe wr4W4JS848g+wLmwnkge5Dc0J05it9C7yYKw/wWEBsA/jd2bxXaexLKjSIAwz7CQg8Egj+qvj6Tt Gbs328ZgYvWctittPe+s1BYy0TCxo/ZJncJF81q6xfE6ZXakT/0oWcRMU/S6i2tsHx2ZXAHONAwG nGsR4W1YHG1S2xq0+BeY4ZL224dEQhRpOoFKLkbKrDpc4Mtgu2E4wrEMSBJ8G+AY69hzgiXrVFDm vH6JWBQ5bwHyI8ck9CfJVAYBFgcxQIHcxBFlSB4lws8pnPIlKJGHQ2G49FOjDlKudOIrJKvQjEfn tYfnTGK4SpQ8+Jgp+RTP9+9Or2Vbu+dX19Yi5ws95at/ravAtXvhW2v/ZM+6oNG3VgR4whuUi6Ai oGxxTyk/xR+3O+o1rF1fDlM/pZ2q5afgddwf9HzY8N5aZyyEn/g0nd6TUp+BVLXlquWnYPrJbjaJ 5WeqVW2mavkpaNW7zqD7txvWnb0dGk//yPEt5DbsWfXeqGOtZsBUbbZq+Slo7pPc3LXqOGSUU7mg sV9GxKBX1p5afCpqxFz6DQlxeEIzFYtPwWrPDkJrjRhd4OL84BAHYFW96W0WjlJBecFxPVN8Co71 Acm/PklMpacbN7RammcXFZ+C1yHtkbWDz1cHJyc7b3n3+NhvYD+vD22JVijdtuT8KV28Mqpndr9J K3cUOiO5IaJ0U9tPLT4Fszqfjz0lNUcS35RoaYc4j8qSNHvpKWidIuzc+tm6tBsNtxVaH0i+a5Fg vWsPh0qFL9n26psnlp6CaR2i4bUfkGi871ZgyfURkjTyLe7PUWUalrTTkvAb2NbB50zdGZqbocoU DM92d6zVDyvZCVzUlDMYWivZ4ZpUfBa8Lvz7e+LMV6RY4HgLaXj75SnIjZafEgXFp2AIzndycHQO 2+8X5O8+9R9cx2JPHExtGXgVm69YfAq2BzuI9QpIBz88PtyxKg54zvqsWHwKesJgrD3ceh+QBsIX wz+W30/Om0MrKwVUKjwFQ5qJpIlbH3wcrrY+vbV2R0iyXo0zouWV5UqlKyPKWZSR/cDBwis9zmhs NSukTCq9mSk9BTUeVU51vfNtROr9KlExoPWiXXNnziOtIuXiLYtFNZwrM6I6zmNZsjGey3msDIhq DVYrPQU95kCE3YNDAhij+t4JEIeS5RAF7Z75D3nSabXSU7A8hDHnoN/oOX3rGslHdMRRiRYPcVYp dwupXGEKlp8dz2/0kJRkrxtAQIMjtzQd3/s9t2WP81uepc4UbEWEPPSDpjJZPbW9WepMwfHSb947 Q+vEQZRBpvIsDc5SZwqSGWsY7UL9AayxkZ+c2HyPJoZhGfubTItpodJZj4ThMfCUjZ19Btp5iZTl iyEx4Zf682JomOYPRz2ky8fB6CgZ1tXuvhk/WHASc5Jzjh0WjIG0AqchXO33Ll9pEgPnXwkjtxhq EeUPVBLx7Ekb7iCILLhNv8W/b6R57fEOwUjpEWT/43VNRWvNKUrrSoKCAEuQGZ7K0BoNJDoDgRU5 +S+zA6LbkZ4XYzSdCOejQF2ektf//MybmWEq9KPqcH71mEIn39UxHfq1636MwqFdS+zcTwe7tl9X UOnXM8E8HadIcTqOD8M+TxPiBlXg5eGZIH8Dk1OAmeE9E1xkIICVSoHWRqtngs7H4O/tYKgpzmLY h0QW0Sc1MPDvnX6E/YU8PRPsNgk9Dss8CrwhBT1TE2HfDruNwNdZbOp4RkI/FUry9BZ2Lk/1SsLP Z4J66iMEJHg/wp6nx1beWfLymRq6qK+roa2L0Pp0kJ8b/tdzTwW44ME6V+6Up8NObov7jt3TB4p1 fJnaH/jTMzUqIA/34nAf1cjhnpWM+HlSM3sq4kia0E/PBJwFBoHMP58JbJ6YEshlSDhoIg1+Qsju qW9e3pxpdLYUu+lRX4SGHC5YHyVngwR2Wsdx5BsnqJuQefeHXfmaIG+GkFI48zqmX1HaCsRop1JW ZHJVyDG1aGOO475VlgqOzU7mqshPVmGdw5G7urrxAXEsOjWhka+73Gj+jdMCN781vjQHzka48vGs Hra2lkdX1x/c4ENj/au3c3DoPo4P1xYP3OZ6d6coLfBufBUcYiI5iETuwJMjAQgE+YmTFSVzB76k f26SKX/KZ0/KHjeb4xvJXt7kJ/aZADmVHogTxAISwUrl25kAJIWeXnAz5/uZIx3qqRmmcmgEqCcF mXTKA457VyGND7ddmCNnpsZnTNcjl83NZ0DPzxcxnWfIlfOqQo4cNQNvcvPcxJTKZMeRJXBzmTg1 y6lqkrd1FpGWN7d4/t+oPDRx5QmZa9Tyk0rNbrJObjaaqIZKDpOcAlVyzCiU95KpY/DyBrtl+bmV d2w/J+43me+FJ7ZKpvIdm4qyt3B7mil8xwZ1E0Tdxeiff+X+JEJzRpPviA3D564baUm+Y3tGK8KL o+X9HRuNGyGi37Af8Tu2xvC5cxED0lk9vmOrur6RWoRx0Jk6vmPTcXIQkFcZCr9je6oFIXGcacPg jZNzdOiKKnlGXG9K1g2V4/7lS06QcetZJKaSKLqyZM3PPzG9BdJnsqjb+d4JK2QbK0g7UThomRQW c1H3V9H9aoklzN4+R6qIGzQX4z5pDGUvZtRuqm3gVHputsQP30HgXIrIvwbyV0rQYFL/x6ZcuMnP kFBIibLpF+aymRUi+qyDPpVTIyTW4w9JdnD74slJDm5flE9ucFM1MUHhIGWma5wCwZimGxiG50pC YI7Oj0srEPVlE32pmBfARHnmk/43yXNDMiTZEckeUpqbcqD/9sWJg7swcICfZtE/4OB+NBhbiv9V OXmfGYz/nKV/2ln6V9kz9Lcvppydv32hzsy/Kj4rT3PRn3ZGPpoJ25gJ1Q65mxMBOud/jq3/3z+2 Hs2XN4pzfNdz5+YMO6Z+QLGZ9SR5LT4rzqTUz4TIk09+35Q4ZV1eBCh9JHya0sfHwA0xYmVZDVri WDZfPqAKsDZW5oB1QsQrfWQ6boj1nrKHns3GMuSaejA5te8bx4sriQDf+fxxpl9/mxPF8aCxtjTT mWBzBP+hp3wj84Xi52xyx6t/Wf+yznboPwcfrX/R4+K/3i6+5X/xLRPFV3imlSDoI1yJn7eePl1a XKL4nGdxHXXisriAnH0s/l5wCrG4wr8QHxCfCKSv6pyc+UuKyem84hK5J+WSLavzbVI+PrWmv6yC 4NEvlJl4giwqvJGuZp7mir5tm78YgfhkFX2SY1DGDxSZfMpJFV59Y/xgwKkTR/TZOHeTfuIaxumf 9PdsaX0SB9/kkI3+hTIokXcmJirD+OhfKA26TjqfUlwzc1YkKhCjpIhSdG6DyvEpi/gvozTpDIUq urKsf6yhSuo0g/q2uq5/bCrilTxZkKmvhyob5W+USBQtjringhIeb/zg+Z4T/W5hGag49eRv1MiP RKdyZmRw5jGe/hIVnimQUz4RoZ0pkX5EjQyjjcKlX+WESWdhpHG49W6KgooTcoOndm2WHKZGK7P1 PBVGXMGMyvAjSzqcBsBJ2/Dx1qJ/ysYPg8VnYoO556UBAI3zURTfixfzseumhMwLW/g8bNCu9XFC cY7HlaJr+/UJBemrKmeEwU4ob0TPSjWRXyfUUMGwUppn3YTCEt8qZfUeNKF4FLaquhDFlU6oEwej SiUVLTqhho4ulfIGG5hQx4gaVb2JYzonVIsjQaUWgjUnFOewTtX3RNzlhDrJoE1Fg/r6hBr0VYrp MMkJZVVYpZSP7BJqfXC444TKySXMpRXxpL6KZJwAQQpKEKRU3VN67YRKuohUYG4zoTR/l6JRyOCE 4nlsKYhjD+fMawt/4IW9qrQREUcvV9fWtlbVRayZ23pfQKyD7kYatOEIAP7f6QZfx15eXt1CHeMG 3+hmRuMG3/WtreXl5e3V7dQNvinao9aMN/iub22+IdKoFlI3+K6sbtPbte31v+wK30xfi4KgYGSv FnkZxzw9NeIS5GcTxTNdGbyygap/3ZXBEaDvfMUvB6mSKKicZZHHN7rgErbyRKQumBHxIkSaLRGp 3eaXUYsIvuQHHRWlj2HrwXYgMJN3ry1Zv/kjtogh4pZkug6JljBSO/CJaH9+sznC7eP0JnyE0wzm EScRVnvLgbUTrm3LMEtG9mrvKJPZvK6H2YrvC5EQY6IkBxlE+DoqqVvpy+OmYNG2/1TnPnZ+5TVE Skjt0hmOcDlqh71YTubmFd14mchiPRlnubRWF5Vba1f/9DbaPGOLb63VnYsWSHxf7bQ5dpMza2Tn K5psczyVXlWbQiIlcxCwOeYT9ticaTMXTYxXDmxyDJKjMIrHsHQLNCV43zbJDAKatE3c2RrNNbso hvto+cvpWn9lo9H80Niyf9n7ffXx1wNv+Esz2PNGF6dHH7cf2mveYsN2t3UM97OE+XeDmrlMcpIa voe5kPTvfefBxvaOLUKZjax6s+u0RipxwqQchjmnNi8CR+lL1lL8j1iBrO0FZS4592B6tk7skUe7 WrLUyrIupfF53fCH3blUqXVd6iLw2epivf4w9of+nIBTdqctXQrynbVPmq0GgzI7ow4sGNaGLsVd nHqWNEnJPdrKbFyXLErzcxBRwzBwjZBdjZBVRDQKw7AhIWTv3j2lS8dfbZLunqUrmfnAJipBcnWt sCtmqajDGbKYpd5k58PO7q88a2KyWFGL2fkQl1pZeRLxmsrICbYoO0hFmkXzfhfzPjmwK9GMngW3 Q+1+/WSPesO3OGDghfBxPglNXp5JNFej5TkLmh9Jl+XD8k/AKhrXJeJxTTX8EQOaBatL94H2ZTBN WR+zYJdZDuBUtjeCa2dFJud2LnuMS+EkEpdKTpNUKVkO27wchlgNujkqdOg0Ai5lrepSOcshKqUY 8vZsVFPrQOeTq0iv7FIAamKIiykxC177ME/agUrxVhGtnGEEhx4Ebs9aFe6RP4xxqWiw87uoSslq NwYoak2VO4WxNoI1lRApwWB2+XlWKV5Uib+FFJ9LER75K3aJsqdUzjBFgR1yfimKRlXhcByQQsql S8r0CFFNidIhAgYRmiL+DnVlTEO3m+n3WzGBL7nD2ub9eLOhTmSqA1pXCrbEU3CnWdSRVFRxL5NT OJfAE+mrNPSwFq6Muxs10mJ8msYOa+2e83jXdmwis3MXOqTFj/sNv6fPub+XKEjoFs7XAW0wkC1V EbimNeQkwhE9flOeaOK1AiSBdzIhhxlcGYMz7PjWTVSE1CHDbF9AIxLmHNaAdKTUjETrPGwtd2tu 0LwDMLELwfKkSHR8uaeDFQy0Ea+TCDDFtyRnKo8Krw+7b9+BV5J2Jw3vnO5YO/IiNV/idqw8dT9n lWSxc/r49d7tdHtw+Vna0IXpEDpR2KNKvSKlU41nmy6f3js3XU9d4jcZbolk3nuCYqZ4KrFP6Yze uY1ciqXYijinTN4SyYfwKT0H9uyQmM7p1ZE5E1Rv+BMmFnysGXZozefO7/6ww9p+Ft4vbAQQfo5/ LbwgbjQdJKZli+Z2Y+T2wL+ysPeNr1PhNUkVgt5FULOQ9uygZe2pqLWpoJxWNweEVuqM6gX1Bzb8 zFkQF/x+avPhgJiVthwkMYjCRk/RT+s1PGMoLMxrElCaDCdOx26ODbgCVl4LxKlg2JjvpaksgE75 W1lAw04TR0azvaS31n5gt5MXFxaA6QVNkiazUE4uaaIPrdc9t+/SuppOH8Jn4AdeFhIR7oI+WK/D 9mMpMDYOtDqtDHkCjMGOfJwKh4mIWXsx6vVy5oKMP3+cCotwapNgS1t1EZxD+TwdEq/ZkVOM0T4+ ToXTjGdycq1lJ/rB/vup4KiDR35g9i4aOgsfygBQEyUD40Tel5/VfgaEUEZE/6kQGuCnQ/BFk8YC aJe/QXm9n05jQuXBD4ZdPwvnk7yfCuLC8bzxPoTK9ii1mwggLmDpEgY8/KwopjCVSEz5+XR4xJvK z/wGnd1Ve8DPe8zj+f3PNDF+jva5n+vMBqluB/wDMLBo8VetOIEWrSh8UbNevvCs/tlgbz8rDoW/ 4Az4q5b2z1ygSbAGDCuePvip1trPxiQHrvSFBB8G5/8sO8TPxmD/LJxM6LpzcmKdH1pX7w9OY6Ly r5RYVJhosITIcdV1g9bihR0Mx5ynplYfwkjfGVt1hNBm4BeAKRpcJcwiPqJh93rG6pYPCK/Ah6mz EMA6NlwGNAVk54lgHen35ZYnQCHvRNMdjjlkKIbEsYx7iItmv/9UUILIsNmBY0CyLCiy7h3Fr6aC AUZ/jlxniBO9Ohw8gvUrvljG6fZS8OIkDhKkS+I2B0jJEnv736vLpM3SfyPiSWPXNvzJTBaoOuoc 1tWnUm2SaGS3nAGiTlsm5/PsfeNtKVAD0iGZj8Zsht7QIj83qk+oj7p2k7Dpj5m1KFSo/o68jcHw r6esoeNYw2cRE7mdMkAL6ubhHzGWcAkue3Nrjd9OpaKsFpqBj+43rgUyXMAVX9t32rDzLtnh4Ku5 hMqItUTYJeiQ4shibfLUdr07QFaIDo8wda5RaCqWAIfZNtC+sWigGMDU+qXnSnF1sPbAbUrikqgL F3g1tT6jr5YOVVo6OppaRTVJexh2d7PHdX5VFkDH77Xabtg10O5DBJK3MRT+9ZTpzda7SpM6x7Ws LBgwneR2KtehTP1hMFoT3DtmxTLjljZIhpb1oce8dsb2Iy0Mv8NUCxw56xXKkls0G/tNFeTTrAGC srT8Jw0nhukap8KGOK5l2RZ34J06E5zAAXYYpUNLI8aLGN5P1nyG0FXHDCo9n2CzLlm8qpC6O49q GTmN6ZWwbLleuNKukSADje1u6N/de/4jImXusDTvmj3bw687AUP4GCzZ2tNuk9x5T+2hP0z8iG7R m7hepoezZV2uKLJGpGBe6HotR/NUHKWSo8rETPpZg7NhWuPsaw3H8Sw5u6yOmYIFWiSU6md9shyx aBZLm0sMKWuwLNERvS2QON11egPujj0Y1FR8Rk2SD9TsO7dVW11bXpVewRBmN4eEGle3RBp3AoTV 4/xBcR/lRJQbHeNVh5J4lvIpJc5GZp0c1bGKWzYR1uHsF0iAoA4Y5nS3u5nbw8legmjabvZce+VP uEOU4+YOx7p43rZHbMi2O7S9qckq2WJwwfbNCVhQnc+T/WGJ1MQjhrMmkV8jxDGCcGgZfiHU+ymG kyKXdEZN2CmRRFE6P5HoOKxfVrsrISN/i6SSOxYJwk2HRz/0B10XyUbYymkEIeIwb6+nZ0egzKBq 0hvdi4XV0fKy7VivIScQ4NO3w6O5yL0CIUkiF1/TWPOhW5qhOPdG05VeAJU9og1O0uNMIgttEPhV LgPBy4J7VB3ZgSzPOQsYdrgAg0RtT9sCFyylEuI48kJ651sQfFjEoAdn2ExM4jIjXS4bZRTk+yx5 KI2opmiiXds92cJlmnG4byo2lVOLzc+XCSPCsUc5kpHrNs0EB6Fkrus0EyCEkskohFTJKApBWi8T KISSWW84PLLpYCH0P5ob/G5C17NhCTHIOMLF6LpRIS+sB40XhOlMoLeVF3yT26hZMoFepiNmySgI J0nvSYE4+fTOC8bhLieCa7LknRwyAwiFITA5wCYGtgCYDlTJ1o16kht+grrpcJIJw4ZZmgkSMYZt SqBIlkCpklGwiBq2EgEjBcOWEzSCvsZBIFlKTQ7tQO0oVGMiibCeUgEYBSSKSyaImY9QOhDD7HjU siqbDMbg5Iz487xhr1Ek7cSYh9INIOrVwPXqO4c+WNatp3PNFoYyROHHwDuOg2A8b8qGF0RAigkQ SYcVYhzm0INMjEIcZmB3QiPMoDgU4fY2eYZwLx15cGMECVTpS2HowVw2wGB+/saICCjRSjqqYG5+ 3uIJiVyjoAzW63yJCIB5Wcs43Mv+eetflnK989HXt2/xfz4Dm/GV4/BormM7wj/XIz5H6uaN6cDW zuuomlbRM7VM13RcGjQpcmlztYQfOg6pz3ddSw0tTkSlU97pOZjrbsS1HJXJeqA1sEIPclQ3637m uqabOCqb51Xm0qYvOKZPrvNYMDO9vib5005iwSXl3Y0qZN3Bgo3pwzWhp12+XNp01JqFs45dAc6E ZK9STBe8y3XfGlWU/8lsIsdPa1Rg52pqtqWdsZlxJn0lnmhFfldNJXaXmgil/KpCfdMlahbO+lAN 5GXXNYubnlIuaPo3o4L5DlEur/yYJsysy5NLJh2VUYUJDs455oSxHy6qk+GE3L1/e8flHLg3slhM dCoyo076/xKEzXEa8vgl/XyJKlnXINdI+fMSVTIuQK6RcNwlV1nSz8elM665RAt5Lj2uVuRkS9Su 7MBTyyzpbEuATPvnZFUoX0mipOlSkb3FcJ0lYaYcbXOYAHkeMYw6ox77sJL0NTxexnAb+1lJj5bC 1/BCmbyh0HkVcT9USdRI+KfK0kxQYC9Sml6xt0kXWzo6SraoBlP7hNIQYucRl+vHfp90yYSXiGXU f4mmocdkiq/mptDpErU02XXD0mXkkrmZ5laJoJZw1KDvxZ4Xw7fyExVEx3O8IjwrtQsiQbwEe+dm n+jvALqm40KLxTdZR0EJRGJvA2Tt2f0HCodpZv0Yo6puA6D3LKZ/pd9Cxb19MdH+/qrI7n77Qvox Wf+Nxrisc+CvSutws7q+sWBtLMv1Q4ncDsurq4W5HVQj3yePAwobCRyiQ8pGAodVmhZbG8tv1lMJ HKIBQPkZUzcA9vrmqoKdTN2g+v29cja8YBkDuGedKPj8H09I1hMCalXIEhENuvZsZNJEqDkvC/v/ eJYI/Jji403zOEw6CJIRi1vdeNheXq/RpLBpbT9gL6NJ8UjjdGfTGqA5zIIVqCKAdBS7cFXJEY3k bUgUadPftt1HltpAmDt4OxJXcjZ7l9Yb36HV4gmUCqPgX5MOfKgjWEj7GWYCBN5Lx6LwAPUcg1+y tIUS9qZKxFKXJMjeKS2gX+pF3AQvJ+4xekYNcjO5nQDlvkSSF9HtbU7Z7OW/Kge/h6ztIvTIbAKP eHBttiAuctZU8TFmr1CsR/M/AUaywCiiAfOL0Bm1/EVFAp1zVhcAPHUwq6CdM5+zFLPJ19e5Vm2k JyQOp6hsWR9DiG1IGVvjuxLYaswTB3yKOseyB4AkUi5L0nTUgIaBdgr7u0PsPdqz0A3kQOW08dR8 fWD38a7jKzyNXNuTuhhdDGmM6Q5zbb6WhfO38289umjVkL+o6RO+GAAsYkEEa/XTVz8r+4ifM69I d2ONeVxxXhE1LyKOGqcVIVnyuXhDsRT8DGyMTRXwawg/iVlGklHcGCt9Oj4JTiFXhyT4gfKkZBc/ S+H6io0yyxvFn2ctA6t564evVzQ68+IUSj73kkvPeUxnY6Ln53gpvKfzk/f+2+ND/bBzGn7aGw+H 5436yLv4/c3n8+3F7aPfr1buzs7WWssPV79H93Q+S9SNOjUNT4bXCAcqrqjgYHW838LfwyN5fb1q PcAASzS79MekYzkPDs2wq+4oCJEDdGXQt/aurH8xYCO+KwkPT5mALOP+w63P94cj55vgzdcmYrTi ZRjdoBjikof01dIpOSHZvUg4yrRfuHBZm6apeEearM4H/pKeVdCbgVY8X42iaTEmu+U/Dzo/Ehtx M4scvbK8Ik3DqzZELnK8fie+Z3gx5Whw6SbLCGzibI5VplhJChWLU9RCdIHTs9qBw3YOYZnYUBww BjAPfb3GAnFQ4hkjDQCYE2fye1bD9/nGJOsLAm9grpJLXlQSxEy+vMeubyGV+Nj3HCPar20/+LiW x2q7HWx8xJRIL/GRAdZBmIHnN2gD5Cuscg5TR3Qqv4r+/N0Zft1QAejR5aOqgLiNZf2kB8hYtzmS Z3bEXiI2bFGrcou4DSNmOWrASqBeOOOjnXyjPd4ef0n63B9J6Sc9bxjgNo07oj/t6PDD03bfpUXi t5VS8t7pDX6yTscq+kD2uQeXbyh5V0yB8v3Hrvb8feeVJhB3EKYwQLRmJBHxFkrz2pBQKvREOGPk JJf9Uc7ZJ5mmn1E2kl3adSyP9HahYrLFKEXDhZO5O7Ax4issYEwakXCDq1DkCkIsr4bb8XFjDLZ9 b4xVzju+ebuFBcmki7RxJEzguqveAgQB6kmsyZuX2aBNSTaH6DOqf+sd8hUYZVQ+Hgi+YVHMtnIh oYyM8cIYdog2QfZ+Ri6RVUaSFMXNUqMgYKuKT1zBbXJHQt8eyGVXAqaA1qbwF5+711Sw+I4bUAIR vhCwVRMSHCFfh8MAJt+h71v9EXGnuIjB71J3EP0/o9TQHwBnbgUXJwnR+ZoPt61hOHwjja2YNddT suCStaexVXdjaHtTojS3siCTovXgw2JmIcSm43gtG+OrRXiHL6YAHnJRULQ3hhGH5hYCJ5JKH1wf KaWNywnbsbWtQfJi6ZGUq0rskCVobFc0OCOYxKgffgs0pxeBQ1pUSHhSI2rxp4Z4Cb5T3FfVtBE+ NMTdZWzbHwS+usqhgaXQ8Zyh3DESjbhsTNLBFrvm27APMhC+TmpB9DzLswMiC61KrBVJBoty3sgf weIIful7bthfko1hWufTg9jAbFjkUUt1LlIE4utUQOcm7j8LQtEVeK4Y91U92ordTUPDXA+Ykcql jUYgvxJ+HbYU8+T3rNVla+zgmgy7I8eaYkgLBmtRVOUElqKramjpu7lKIYmc9FoxCTgQKlJIJy92 DgJTcVA8P3CpN1WWcYaayRpbBE0y1QNG1ogEj59cSCn/ZX0MQhGK5IhoCEVIi2l4xwgLG3zt4yYd XnZ9GcJYPcSgY/Yi2m8gF+8pBiCJFLI0gz8dV20ZHkl1DZl4wqnLaVR3wnvBzLU9lX4q/TZGt2is 3hOVH/3g3mhXj3LUME2ndNu6GqSPmE7GS4NQBS1HG6fe5EQV6496Q5ekAZ3C2XqtLjRSzMP6wob5 HhYyu+CJZuaFRnMWbldibTyLtYDYBcD06PLL6fQ6wfVs5jbM24rcOMVTPD7mwpI2lMfPn+N1hwdc b+R4jhyZ4aIsBti4yrAIdbDIfXt87Cl0I/TTHwzCFzIzk28I6mxuSGB/jX7RlvY5i+Vrdnh4zE/1 sJQgOyAet9N0l7cG4bNIK9Nj5n0et1GCDzMbMYvQUowv+DIsO6iXSDwmOZj2OZaX25IXIjgWMKki fgNDDpKPF9EiTYW4/9ajpCLWPRAjz6jfkJlGI8L3hgXCn311f1iMf0JERFQuX5UtfTZ6xfsFV8Xl XxGbZU5LT3x7IC19XPGHq0uKlsMO8eT+gKMRonvdHOvBp4VbVGXf//rVes1sMrpWL2E5491n4PjE BOaKgMim0us5HS1beWo3mXXiMMToSsb4CkfabQSwsacnrJCR1Bm6pMWMidRdny8l1Bp4ZtvMzvA8 hNJ3h2LLEpFrAVfsPsAqaRjPeLbZWjRaMNY1j3I8LdK9wWM0nw99EkZ11PWfIxuKO8sGiEsmjjsi 5TPgd/Bk4kp2ppaHv9C7YTuQvPyxOP2TyHdKVEp2Ui81g7iw5lrgN+qGzFz0pxGvjusDMaSQ7vhu WJNaiBvB5bAskU8iR3oMxA4sezwsJ6pPHHtPA05jxBdENXAZpHHDMobGD3AyitYJAj2TBBKyYWJA THG+2tCG32Yvj4326OiGOtUwVBaQH/cPcnw7F6C2SDZXIykVS069K7nOlviGyEmqmzqbeQ+XdIu/ mKGr9ZcipAja6oJeXKnLy5tm1DdH6wY0jTlYnKOzIkb3VqIFSCaAcB6tosSyhF2az7LI1aqufG7A KN7s+gg1E/IR4Vv+qDFM8eF+4U3oajsT/qyKMWzSrHKu8VaRPEQl7v1E0SFFY6wJmPvE/I/bjbX2 Br6rhVrED/R6MQ/pk8iTUfYMa1ys7KUndnboa9r+IY+TDEC5tp+K1h4O3HrJrjnemgXmufYV6bve WXlebJFWnU7oMNHIE+/xs1h64ORhDkbqKm6xJ11tSJwrRUI8RrzhWBY4aeQL2LNZC5elucAf4JyE 9ZV0MY89giwPRgNrQVIO+Xpj5iSOI3EqCIIRVERRl5kfKnFmQfvpLgXP4+FPGgKrzLEUz2oy348Z RlccJAZt1kUQD0rJiS4nXuQiepCX7dMpyloN3BCPritJJZ7RcvktLqIXL1mpRvdJqoEUkm4GnMUN ENn2YHvNMTxh0RW2bP0eeQjwgxaupYrUjvVxUAQ3cAlN8DzTDF8om+RhHalE0bXNBFZfgcyjyioS jUQ/LZXqWRCMYsPTWMPhnrGWx/UTpiZDd2LkH1VwKb8PcePbwLFFrQ0j+SggkKbum5xYT1S0/jq2 FPOQmDcZusMkBlXoUbh2xDjbe7THIU03X/ub9d49wiE4u/8ThLoAsaz5gTFZMpTr3o/yqL20+7YA /jggNNBJPQt1RN8x/K3qMGRqzJLQZ0hz23PaKoXcEVggwyxIcRsX3bfVSp5a8srtlywZ7UiZ4k9O mxs3ov3Vyk8tAPPT3MSVNhe3yhUUZ3e5svhgrvzE1hE/M7B4Lj1nwhodDd/CFeMWphjNYwSm834K 1QSOy5aPi9/Te1neBl8w0ZOFKi5C9eBGa+QCNmeIt1gT8WaXIpPB3lvoSDGnTS/pGJAS+fM7VbEb wiqNdD9X3UT4Aofe8+GUVEeepfXAEeW25bQQwR2zaHFd4x1J/LFf6JED5Pm21hidZ6GG5wyxmwoG OzqqyDqT19Ypu8aeiQQKuIItlECf/LZCJrZ/Cz7JCoYgxZQgJSuuMBuKswe0GO7owv0yt8kUVaZK ri8bgtKeOuGRwsrwks1Egcwg6XmqrC9hbW2t8bjtaAc3ya+245Pc40KIoiHwnMdnbvnH7vW1y4P6 ogdnzimB26NhsDmYPt4TYmDJWnf1yzsalbbbqfFV2JPr50ySrK0Vv8SoucjF41z6RbGs/6n3n3pV 6kWxz/wwJSg5yhylVhwfBPo7ZCUzRQO1pMr0p1wirpvVDeSp2diUc1kF6biIELT0W47XdPgUTLm0 XJr5FV4t+Ob86O4sbLk7ztrXb+9/r3929958PN/fHqw+tC4WrzqnjZ3TX86867sv6zrsNJ3may9A AAHkyNqoNnBJ8Byxc0wiXBD1ZnHQHDFxX4JmkwedcPdiHH8KZiX3Mc7PVw8ynZ/HEfzp22l8ri+7 JeMEInC4mcr6J5wOnLa5rEoWmu/ZBFoYIk9OYRRmIfBUMCfjaqD6Twm1fFUtxBK91LOnKC4yd+Ko sEpMHJk5f7zOCYCcw9ScHHNYOCA5ctJskY/qHEOEYRSiyNiViycsgSVPINWWWs+xvVmCCm+9lSVq UwcKCu2sv2dMoKV84zfcAwnrKzrekR8VOFcU+3frrYIM06P7FIHq6UC+CG0xff97BPGJX3RiFN+r 6tF7t96aGotZ4/Pm5/9eIXm33jp6lCa6EXRH02rGOLtbbwOwzQlZMZJufn624LlbbxMtTwqPw2rB PLGsmYLhkJ7PWmSncm7sW8wNJUeUP1NAW9ROiRC2Wio+bSmqXDIODSgbUWZCHNT/AdFkMbnYhRHj PjUm7PbF1Fiw2xfZGLBaNrrLYr6h6F0YxXX7IoreiuFOi9qKuychWWhpCzO0fEiVmqzzEkM1/5bn r7zD9FAhUYYMNlOs03xix0uFOM1XDWxS2E0KZFJFqgUuqUq5gUq33na09AtCjkA6c4BniDK69d6g lXQYybPFEam9/PuHDM3PYzbNo3MTI4NIGFtmZl4++Ef1IU2jf36cD9GCJdPZQnmwp/2dondu0o4b a0Ikzh+vpxuIsT5XWGZ9zjicV4n4G62Bm1rKnHUzKeClrFKSDqVh3RbmhnpePAw+8mQoiHJRi+D4 nxfQkpkXZcdehj7Ii0wBo0kGo7zKBqEoIVuHmah0T1UjS2hEOJpEVZ8YQKKE4CohIgT2L40KyQpM +athYojFDEsihsfJ32692WIwfohty7spFS5BVLP79hzjhKxuHORg/ctCBAP9QXiCxfmDBQFkDV5c XOT/0Hv5g/+ibip4gL5vLm7Rf7X50cLAaWTEnPQkH7sYUJAjw3R6vypNOfUA5zmMU9oTbthyZKiu ugXO6LINGe5tGZp857LpWC4LOuW7loG8KXIdT4eqPNAqC7i8UzBe5Xl6J0BM1p7oYJbmphum8w2M 2jKtzIt703yzhThP5fAvG4wpKJznei0EnGOgVI7cH2PoZu5Y5Fud0x8nu1A1j1i05hd5X/9eP8wE PD8y/98Kcvyt5+T/W1ldWd9c33gTt8/5xn5IBsCX9oa9bq+jTiIRoMoqZCYCXF5Z3Vrf3thMJQLU 8wPFZ80DSKDXN5cV6B+bB/DEbdOONO5NSgao1g57/pL576J5k5cAT3kb1ZLMyX+3sv3MGfDQYoUE eHrNF/on++cfTs/u/Y0vvy4fj389uLAb4/c7X8aHq71Pp8Orla8HH+vH21fnG2c729o/yXj9qIR6 08NMHv1HtZHFkftKcI/y3JJo21OaTRyEhYs5IBkusatZgjqwUUu5AQQFGxdHYEKS4BdKMkUPYg2G BDYgVuyUp8mL4pmGyloKwTnRB8E2inuh33HTgkV+dIsRhs1SrcKI1QC7iR21RtvbV/nR9fv+oOs3 3CY9EG/wkbc3gI9Y7E0QNzsBLaaWmMdJanL7PCGoYw2dLWFS4GF3BU9n59bF+cnx1fFenYvI2wTu oGZspGGJPNq+0kYhiRqfEk+zO4LjjR03jrioGChXzUZT7CmHD2krzftYeJ1U5ejU+sW/V0GC2c97 xPAH1rV/LdnCa0jdWVD04GuTZAGYdCKLXLzUi+AfR3OoT+qlsh5QcwXF4/OvJ7RzBMS5SDv0kDCL g1OjrxYUf5Knu35hxzl/b8j5ewuLwBrbw2RvjFot8bAWl/UxF+1m1yVJHgNOT31wcKkmkyxb79hq uS1zJcFU9Zl0H/ZM0R5EGtKwVgIQSauFo3gKn7QD6Yh6ogL+s6XO223x4EzsaHTyPudT4EJPhnHJ Uhd1iAyqdNOiavWdiS1eOs1gBBbuDWsnh3LBbV6pSTDqJMo8DmhlFhZQkTUFn6/8uvWJTSYTJjNf 2dX35TxN3mflZYaa2+7RemrYKjQ9W/iaU/J3IQFYr4d2QNNC7JEd3OYACstVANkcBpUCpJ6StVFH Hqmkja6/zftycdJGYv+RABAnbNTpGgv3rnjfmiDSJzfFuSfta6/M/UxgL4FFi5fge+9GoqK/NHYb PFfaWRhZq2DvwKdJGwW+612By+ZsAXg/md9zOslXSaaOd7cv8jj37QuTY6OcyZ75OY8Xy4cpjJcx YS77qgR3RWlmpfwjyTfxKsUk8Yrzk+DvFPbHZTSvw0OKscmr6GvMsvhJ8Sf8TjIjfqM4j/zOYzP4 Upqn3LLCZa5kLFS1fCumoTztBYPF38729n57f+mEtju6WO43/9z4vT0c3y9vnJ1ffaJSx+2V0z9/ fdY0lCxYXTu9Jrz1w2zWlEK5dAEep8iQrqPHHAv+dl+SmV8jyT8MGNd20MR1UUtcPUdm3Ouq28Fz hMUERjk2GsLqJT02hnH2G3qlzTsxwtm2i8EX803VcKJFLHp9z5lqVva+gna7G5mGX3o+8RhnYHtO Lx1RLoThOhpCo+c379mtKG9jShr8UKitKcoP6XrfH5+tpdWlDTirkMpVDlOUHePcQdDMvLbptlpt B2fS7oZ+v4Gw3QFxK3fUV0cYsBVc0RdEPqkvqT6UnQyYxn77UU9iION4i6Ow5uHSpNXlbTZjSKvS 3wGbWz244r9Xm5trmxub0uYvI+Kmq5vWe38IMaKgSf6dHig1VNm7uadPAHUF9rQJcCiXMApSOUO/ I7EPkYsDm73n+w0Lrid9SQyYSwI9mQ0oZy56POd3vojeUs8hqcPvxyfS4lcxNGsx8ig1RmNEGtHO L56mEF6///qv/3pXvkVtYmemIe0iTbKWMGL7tYFAzsmSLHg9gWhdcNxcn3ZaFTDEkyheGx/1Z5Jh +HuiryTxwu+nb/ThYcElRcgWrsT/KZgkO6ouBpLmNbNkb2D+gPHv9Kwy55W+hLQbn83NmV0Z2mAP JobSG9dWG0GvOR6+RHyhrca+fu8SScKuVeeXtP9fPFyI7hBhGGVTmAB75Xr9sec7L/t+DPt0FFB3 SFhSkBEdLoJEOEMLqxvN/ukvGy+HIweB+GpYbUkNfiUvU6QtA3bl48rpZa//8tFpeQbgU7eF62RJ 5PMQPzED3E+NL4ej05dDdXBAT0N1jIClUxnK6rBXV7u9sd1+2Q7cCDIurBvQKka8Od5ar/cv6jOQ eeWy8eXjRe9lCCYWT5NHFhE/Dqy6eh9DtvLWqczM3Z77DbcyGZehctEy85aFRz1xu2u97d2XkLFI DiHFQCUV2Off1u2ItqP1GKOcDiagtfs7VxsCjS/bw4aj+qkfK8Nc+9Ne3RKYJAgHw2449D11Vu59 /KIqXPvjypezbxpu4BNbaROng42+r4HjrYT24OIpxKVXbeTya/vXFWkEEd3sOxXo5/oxAzM75sXj mCvYmBvCS46MVU3i58SNIdu0TKhLzXS5wLRJljEOvKRHU6iGuTE+mYsAqsTmlDPrJzcCSW7kucNx YLutZGt7+pN1iW+TulrUBq6YSMCEYM6XJHXZnKH1liEsF9S1Uyo/qZ2szTnRaJaLvh99kYZ3bQTe LXmkUhMvIgZKSrvK9hC3lbVsTQL/2+Hl4fkHtUbdjjca8P78VPA5Qqe0AQUHe3U1qCUEgGsVETQ7 YNLcXbVSDvFzAqTUdTB6kfA8OIJqn7dQuqt4Ovgon/hh4tRzRmwlEIzw0XCYYPX0VIpqSRek0TSy JjDLCpt2z0GIebI7+TtWDTHXzqUDgwZMHxOahtwXFSzC4ARGPZjtjOW+20PwYHmELp1H12sdfFTy Zj42UqgIjV0SSiHMnDgdhHSVb1sC1MKDj5PaZglYChYhUB/3HmzPDhFqXbJpgtq23d6QWJo3pfNA 4JDKwijlehbNsAI09gKf2NalY/f6Vo2qcDRfSXz2gxHxT94jdx1bJ6DIR0jK6p2TixehtBN+g8pZ ni4HH3e+0bQbqm00HwFQpN61W8S02cxe1PrVIxsQO4hAwt6YmBnZtuX65guIXnv2MJw4KOpeei5s oXQRDrv065uDw0ut7MxMbcbMND7W+UsJDiLs4alcBGbLoNLcbU8enQ920Let94gVL2wUrCtAfH5q UCa2exE4sPgjyu7EpnE9I7lrEiJGeYsrWKhRhNMO4WNtrFbAhza7ncv9SRjsWGrX2B+HMHLbRY3v 9hyHL3h8L+dRyiMBQbw1CqdPA4joKFiEwnGvR/pPin3mSmsyNY8Rx4sTN/BUcKESU3bYfGx2Xc+e uLau9kR+zEFy72yDELwdrTtv7NvRm8321u1oc3V5m/67Ybet1zvBuOOHc1n6pXqgqVmEakpvHHx1 f2mMXw4Cvxka22YV8HLmY9SAhTNNFdzLNab/EN8T4Ml3cVM4uaJC4ZbMZvn3FM9klA0gY2znIC7/ b5DEIYMZQvRlBf2UmIdl+vucqR2i8L5KKR0KXTj23fv3G+ef/cXuw5utT/6vJ6udxlawuPXn5+vG 9crpzuNO51P98PSL92tYlNLhDAdv4cTy78dsoLNb1s5X3CjruXYTogDpninfDw9+7MCpsXA8k3cG M/slXDH4gcjRx9iPkhse+xi5XvhIJVXKc4WUcUcn3SoqFFYukf7jtWmLpk9qsmDhvLRMf4d6OaWq 9TLpk0gA5IjslNdgCv56SU3ySCSxvsk4CYwmsjpYnrMhBTDtAagCjx0J+jTOBKppQz7zP7wpbbkX QrGxXo8Q/5H3ytJexr6erH6TbzH/47U5sdR3juBOVGYFIG0Cj+k2LLCfYxOabBtPjkzC1J1GTenE eronTdq8CPMN0oKmaW8zTdnc15tJ5uZ0/aS5WuqnbcnpOikDtGo0aSdO18lYl1VTOWbgTNWUAVlq 5pt503WTBmKpmTXhpmulTb9zfC5Y/+9ljjGXRyxhhI3nU7Htdg7YpAytOfXyrLSomrWm5lTON8dK 9SJ7aRbMJOsrYKWtozkQ8kyrcoygyM45hftmzaZ6NUXmTwYvgv0rZbhMLUTD3KlH+WYvaYNM1gDP z9gupR8l7IwalmGjVEjPWzf55sLM5BQL4xxXyTcBZqqI1VCqaIteVChnn5CSaVNdMQ+jwmyCS5Zg A50eE604ibmNX720Dj4y4ebnIfMptZZ45zxie0xbGMNV9jVZxFIFnDw2aknNyIb1yrBdMYArw1Rm QlHGKKmetT1x3ciqlW5eW5IU2obhiOtFFql0vaQBSGrn2ns06qZ1yQSWZ7wRcLGthmGkLUJpjBIG GIGQY29hUJFRB2tfIGTtJ4qeSXMJV0/bZXiO0HT4WC+cDoZRg0EYphKzH6apwphIsWWCKxMJzEoF ZgVFxNiKwHXzbBYmsKyFQNEhaxBgeGJzEN6jQESKvdQ09HiukTAQaKZF1Evo7wYhoX2r+VVe2eaW IuVe86gok1Vql02o01xYFTWV5FpCBzY1X4mm+yuOZ20tL1grK6vZ41nry8sba9tx6z/wcNabdWd5 PXs4S0UPm4ezVtaW32y9WX6TOpwFBoyisx7MIrCbb1YU2OTBrJuVVRxfWtteB8m+2/msI+r4hKNZ Gf3VNCugWurAViY22zivFRGh8MDW2jOf1+IWKxzYigBVOmCVOkI3LXxdFZ8Qvj5aI+yAZXH4+sdB z21jvyCNg4fPwEv3JB0zm6lTMXr2l1877c7vn/rvj3udlr+697V5dLzdrXcOe4dXv3z9fPGb+7m+ ev/xauvit2eNno1vaE/YGFlapT3NXfKDTu1RjDNqt1oc6b4usgae+zbPjrpHE+2eA/w5qwEpOy6H 3j9iU22MWevG1nKNhmFccDnonTYyjzYdnMr3Rx1oPAapc5PJx+bP5IU06WgsJsA6fiObVAisol4g JU84cJEtDRvRgtVGQsoOcrihfxZ0BtdReRhsjvNnyaXT8xvKCCqgdePyZGQ+oeGzByqrDmoy+4FO EXKiwTbJGoukz5LAwOi0OGccZ8hgBCRbU2iRStiiyS/5JMykMWF/EhoYBRvJXIY4U4B+LVhdUqlC ZF3BnsacgJiZSq6EYeDcIyxns1WDH9EXldGTyBd2AZN64yLRJlMoiQQ/pMdBYZa0TsczMx7dy48n B9bLlbfW/vkZm+Lh272ydg+sHWv/eO9D3mRITgF5kqB6M6Ffi6TVodAQ2TesJk6q0JyUv3bohgvI 3MI5OIIoZynXdr1mb9TC+DHrlcMZJENKUhFO1sBgAAHp1wqx0lKG0rjoAXnzxKCEbEoqbypyotKm 4UTHMppjz23ScC/QxOjQ6D9A50PrJNdAlqJiS9Z7dLA7tsJ7h1gGiqOBNkxHbCaymrSDQYxvutS/ PokCXpNRht3V/+o2kQHSHVJHJVkfshQpvmCcNU11Kzmi6WHHu2xUSmJ5y6xzrHipT4msMFXtRztE Hpyh7+GsBbNZZliysJ3WIjXk1B4HNVL1t2rLK7WVFcXMQlp4ocnSsP8sgj9RLVJeQoeYnB30xosr m8v0zyJxscUHlwSE/qLfXmzTOCH77CLMs4uSj1R5lq4jnCRLmbJJctditlWik9RHWrRLnV7tz82V rwcCfZ+Uq7G1T0OzaF0EfhuHWpClLbmlPaWx48dPqypQ3GyMFJae9cEJiUUe0nRiEgWstKRvIanU 2kPvl9aOtLbnI03gLnL6RnaRZMN7PhYiFuZMTSJH4VK852HK1N5srK2sbW+vba5v1pAELLXJLbZc tZVe2+4i7SFeTfaumAZJVJS3tAJWmMctEPreD3kGg6uOMWM3asv0/+0aIbi2Tj8XMbSYffWhM+g6 3uKe3yNJbbgYLnYcksP8kNjCYsd3Qpqpgd1bDAejABM9cBZb4PTgaIvy95Hkxncth/hB73/0ZDYH /YMP2vMCpemlGrRUgxFjDq24YQsNW9zwgsUtE78cjElaRm4ZadyKG59pBHnNtxpftuKlThzH7tUC 3/b8e2ex4Y/DxYYbDLste7zIWpxJkLbdp84tYqMPF5VU0x11akTe1c3tlW011Pu7v1DnLwWmRTCN DmvgFgNPdFqgsxihzjvyCWalZr8fSbASv5vQ+3QIWJLDZrmpmNN4mHLkpvJ0FXIos+XQpy66nLbJ acXuo9HK8td+jeSJuy9u/442EWRYCiHs3z0gwdyd3757pEXiOvxu4PvdWnM98Ja/uO/41OTX4f+s KUfzqPaL3V5d3iJKn/gd36I5kY5uLI/82B8NRySVAXs22L57+J9B5/3n3Y2D9m+L+kqZHk52Wudd eCphpjj22r0RbCR84HGATGnp9VwGB/bFPPJOzAj8bje71w7tu2wCIX27tra2sbK8urq1vbyyvPVm e3l7WTBCSUuKhn1IJs+Kkx7RwH9s0ZjJ2Cpei3dX9I5aNNi5arB6czFDP3CcSx1LMKpd0aCQhBsi q+5r+962dno914GtLeymQt3LNJOm9BefT+Wq8NlffIcWbYeH9kpKPYWE6BNJ/YMwaBqU27cfXPiN j1wSAWmmY90doVj9co/aVSYKS2EJZpA+31eu6cySTCzueEmutFvbX9eQ+gj72V3T9u5Ip0cqzjtI M6Qj38Hnd2ffSXLjWtN+sx7eP0brUe31NFj7Pol6rT2SLntqffQ5MXWLr2eYqRfuEqnHIxms7u7n h4OrNpTbqEnSF0mfcQaw3/Pk5/TWyBhOu1qXWC3yaLodYYxVGx86TjiAasXNJ+gnCFzpApgwqr22 Wg142yR+bWdar7DF87CdpJulfrse6Q9uiwM6YGBYtPbqddXXWs8GO6vWZdCShorZbpemYExh8y0M pueHooeKGQyqh6imyls0odmqO9MVci3S6idWVpgxItGJJCc52Xu4VDNlF3kjScmhCcKZhqkfK8uS 2RQ5AVivV4mhSexW2tVrDkKY0J9iDLD4cLUA2nSlSZ5DaHEx9vstUgtri+vv/MH/rExCVHCMMWPF Xl9EoXPHctIE4Lw2G86Kar947sqvgswpaSKcfZ+QWCPpxBvayBJgOC5ZodcmP3qYqeG+aoYpBPxr y6xrKfmK8Or0nEV0j7hPFrMVZW1JIBWAJZAqfMSV4WlqTWThVadm3SVRzQ7Sp5ymdBgm667fc6Dw 43/xJazJ1zGipaY9W8KDXgt0iCHqNxN6nQ/LfoyPw9PvyvUTaMyEwTAYIT+tvqwiApZ6Xxmu5z+6 SI8ZY6deVIYU2F7L78OqjdUawUu+rgxV5Z4O/TasbRHU5OvKUBGt0hvLNI2nh/GyMsRorbGPtaWP DOZ9qQy73iXBZ3xHWrITwFU0Uidfcj9Vhn5KfODUqdPiVfHXyXeV4R05w2unp06Px88xnD9KAnpv DwZjlqrj2WS8q4zYmX/BSb5dGMn9+IRb6n1luBHDu2S/Uoxs+kNlyHukVnWcK3cQgYzeVIZV95sk NOwRl/hG4mGMY+J1ZaiXvLp3msPwvH1KG3UzApz5Uhl2w+S6eKgMYZdTr5/ttGl17LR89vpEEPM+ Vm4BF26FJ+69c9V1Dt0gHCK/cdRE7tcJbaS23Gwku46+waTCTWHSEonB1pWvnKDvLPEYvXcClXgj bmvKEUolfHj9CVrSS08dDjw7jYHnnSsoBD8BdkvB3jdhVwCtrW5FysmMGE/WGyeD5t95NvxpEe9R cHjUGJsOOQxgQni/dvF+//j+ndiBxXI2h+yyJ2sA4yV8LHhl+AbznYFLGXJNoUy5swDaqf08pwAM 57QeGFUqe7vizfz8d3Hazs8bQZFPcTPruCEQFKHfz+3HjSH/WMet2e6P89QKLVXME7U9P286XF8Z jtaoyF/qSVU4/LP9pgbJMebzyaWScIBK4Gu+BzEZZfz3cn1KaG0552QUlGd6N7MAJjgc0xDYZSkQ 9io4EdNg2BepYo+LvH1xROFszkSOwIx6OtHL9uoJ3rU4Zvpv411UhM341l6V96ndvhCxEb602xeJ Pn5PryDHiWLl4r4PSy/iQr8b9zPXvZXAOCGkfU9/mxC+nPMrgeEUp5rALevCirlXVVeZWtgTPVYx dE3WhNNLQEzzR6X5AbuypOpE11J+17RvSnO2ym6jGB3TCxV1ZbK3pniqJSbrc/qRIszKOnUiHAu8 RAKwrJMmgjbB7aO5bzkPjDoXcWLUj7pY0atCoFKV8plKwmXCjeV7FEq5PtLzmR0q0oV8qFX9FIlJ VtFfInhUd1GkO8X+jiyw8l6FCGAlP4Y5fLFgl3UrALFa2j/AI4u3kdVfnmFDkl/Gy7QxXRXQpnB5 TNmz5WXKHK3aNK3J8ipj9FXvs/Za9cG0wsobZTf9Qz2a1lB5k7ZnqhbS1kh5HZsSVbGkOVBeZmx2 6j1b4uRnntVMfcq1dumBvDkrNFLRQk6ZtaKZcHN2Gs2laWYpZkSq2n5cbUKdVl+uIOIqUYViI5LZ QsnNYK767UMv6qxk7ngpnYbFdD7g8NSDLysL1kr21MvK6vLq9sb2ZozWjzv3gsLmgRd93sA48LK2 trWysb3yZi114CW596LSjEdf0MDqmzXVwA++kwiyNXDPWunw+dlMbTx9yp+PmX6fEW64qno+BrPd nB3xNFRNVjgfo6XEwiMi+3sXlys7x/XH+27vY3v3zcVj86y50jzZ3/lyetn+bT/c3WpedDp/bp1/ /OEXGqWvdsAm37D1navq3liIjhC8TCup2En54b2jLqhls6R543yTOT6u4iVl75ENYrDziEQbAivc dcy2GoEgFbSpDda51ogmnYNdDPeUu994n7FIFgu6Dt4103crLOk7Up2vbL5TN0c46gYEf+B6gKDM M1pQXmD7Dt6AUQGX6G5WnRsCiUJwvNomRV3d3T7wCUfI/LgPVy7vtYjJ4Kgq9UBa0O9JasAtyUOY AtSFrDTKgBZdnoxj1LD4FRFadazFF4ZTfxe5FkvqXjLDfRkbdtmjWZnVaRTVV4t0mw+8QorPZo3u tagTLcn4YFalWQiS/GfKPfeUA1Unz6/0AGPgkqNa8ehcePyl718s7m+7jT3Pu+uHI+fqcpUkh/6V e3k9PPz1+HO4eXR3t+UeP+vRucjJFh84upBewGSt7+DGboZZOGQ/AW5ShloK8n4k1Y9m2Ad6JlFV 1l3q7FJi7UoaM34/LaOZptlXOynQxXSOuxE3efBVzO/KhJGHkHIL5vkcZ0GvMQt6dRjTafIqYoun Pw/P58GxOROOtNgDp0Zajd+SKJnnQHDHG8vN3lhXeOv08Vovaty1w1XltTnfNM6aeXz8AEbUcXzj w4Pfe4jm5oeIOREUVtmR02Rg93lCa4aV7QA/XHdh2w98UvphzeHJ74aW45FUGZCw1lpAOhFwCWJP ch/4veMMwEG8DjFXWK2WLPPQPfiL8m6xZ8m2YES2HogLO8Mx+BhriAuMnY1qza6wQPSiCWeL3eS0 FIoNLUgFLq8Ao3jLN69oszvwGaHBJT3baGlLRfEXChoYANre4D+EZNtT99jHx+KyJNrR/IHhXBHJ oWIKPpwEBq7WRxpRybtk7EyB0/XhBcb98OxaZfvZ0CjRISnaW7L2aQY2iczaJdpwiLwt+MMU5NlG uHCK5oUGxIWjhSU3kTu0UOy+Eb30G1FfPMbstfNlnjo96oIf2MhVhduEsT35FnKRYCbzV/ZtCMpt 6oPXGvWV5BOvsZy1lMBJL3ZowB3/YWl0X9PtLQ79RbSXt9ovNU4kJbAUIahxk+XWeylUCCati0XX WySSLI7UeZUkKsceLRGhJ2gnVaLVnthpnhu9RuA/hk6tqQwwXXegMM7D85Mgdk66I9bRs+HCCQL7 Y5CfGPVSPpF2OIvg6dj6VHaU+Hd6YqupPf1wa87hepn9bjxagmcqGT3/Sp6lndx9Y4uKDVB/jmCL zyMEm67kcykyGCjUDWsre+TEasfrUYa9Cs/gUv9XpfDdMf6GaMwGGzZCRlbYQE97YWAPurxt2M2m M8Aqpd3r0YGNBnEHzOBNqNgMoRHRFgNjdGU57K/TDKpieqL3rR5NTYDpWyqNoRv2azb9HYeuGmkQ 0O/BU8Eorqxafdrmu+ZUGtodzCSWHtAFLsD7xtghFZH6y5YeDptYEqd7JMPntZHThGijagyxNJiK FrRToYX4vMH/HrtjYDFmqAHtYw8yIC17XH1MkUWS7w80MIixUhOVCcj4RGMjc5an5n3l4bl6dJyh hLTI1MV8XLBCNV42qKb6x7M+GjusFcaWNk75CbnKtdUuHsJhFUDiUi1wbfFgWH2nDxMv+oE+iW1O h9VU7kI9MujxGtVLGT9IO5V7P+PEs8ryS6UXrIaLKCRUgvWD8RGhLbIfZu7qrIzdvqjPWE8fL08w oMEQkRbVV9KZD8KJ5UM2mQqVmUhysyczQv/R0zI08yInaJMQhiAM4k4S9gRPMPh0ExELsnhUnnc5 JJ2Gs5ASu4eoz+NLoyMiPdAptfFhctPu0PfjvRV14w3OMA4NIduT+N4ZITFZk4VOWRwagPUYYDl5 iF9jvteCtZhJlbdlVh6ZC/DaHjaZ+PD3/s6B1cWGqtOOS9gLTCU6+7hFTLv/07u4Tjx3eQkZ8/qp s5DzIWpugvmIMUO4G6sVS5ZwaXrmLIlRcyqcl9ktFtCjzXrogoWoPxuMse0gei5GUMyHlfFT+1no YJOSYD61ESGvaoCZVxnmlc15Y4mEI6Vuuv2+25HFz6KD0x51HCwoYj9jLAM2dMkVwTRVWk7bHvWq N6w600W2YNsbWyShhaLfMHtibT5ULMlkR+wi4fhG2i7t8H6BJIhoPQl5u/C5mju+y757D3ciPyKq 0lyAtEZIfWbtF7NqyapDgWZ6CMfnAAPaBTl+lQafkOkjEWTXf0RAwFJ1+5Dquho0+MLZGLAgk0lZ 65RzCO46GhjwFSxKGSeSMGD2TDAa7HUB50OkFU3bUzw50O40fkLqeGh3HATBEOd03g39//nv1cOA /p1sA+IV0kxvGiQG2MWql9a5eX/DMOlQ2Bl3ZwQvMAIJ07dQl7c13gwqg5VRUhdok8hC4pJsgx6G HWyCxKbR4N+GzKcuDEvwgipRiBp1ZTf0g4bbajleZZjJXl4RgfUo6vBh52vXHoVYDgu65wjAJmUF t1DLsPO15tRB9d2xXmOU/OGcoUaRbOX0uBQtMuIPgT8IcDu5oJyin+oB/07ruqpbz6kQwxzUt8dy nztLsSQu8ukH+vmWsZiqKcc9iIx3E3qWqpw+OcOTEbK7LKJiI8PHD7AVspSPS75Vvoz4u7Vo1Uc0 ThJqroCKb5tFXer5kf9gcLEdUjN82g0QQpO2EZTDHSuOpIiea4OdIzJ7afhQ2yOZAdeK5/ThIiqM 69mpcB7dpmERF+fM2HkgplVMdKYW1A5GNEfjQ2nymEKmVBN5FEqY+U/fn+/lUeaU1lPPeu9DLCep X9Ewr+Hy5En3UvIKf1TX4xkvZulpcTNiFVRGwaitxNvnbbDe9Ic9mvRRW/rF8zZzbfeMs/f89LwN nEE/JVHsGFnbje6k3j9vox8/dF2Ozo9HSr+ZpaGpC+DjBzYSDkWtcklY/5q3HpCnnYPcPyxmM9/n oZNZFvw7vVmo7cK8XGpaHEJ8ypAZcORNnnTE8IfdIBR7j2Z0DJvEmkKInEOFUZxF8y++YeiX7q+n u8HXZm/Ze2zbi4edDVK2vrWvj7bth5XV1mbnYDwaDHvbj1/vC24Yyj+rOD//FArL6atFTjWecoKb JxWLvek4hsgBlUkYaU91Alih75tDRlOATHdyAkqhd1pDSfiM501X8fwPcBADiX+0N/jV83iBQYd/ istXTRywE+vly5vndcz+8Trj/52TtlSLNOsL3KqJQ8PFjtoMuAqu0YIm0g7YTBMpr2YBmEJHaQZe wlGZhpZxdcpSj08aWDi5rW6JyahXmbYMX2C6pbRxlZ+laBJMCadgoryeXv/x/M3u+csl6F/n3stF R6zD/44+vFxyPIujLhfy39Abl4vnj3W55aJQ7FfLLZ5wnuWWeC4P2asCz9irXI8Yce5ncGVN4/gJ d9pcPoViJ9bti9h5Bc0ndlyhnDitbl+Ud1blNvejPVK5SJRxO+VWfDbfUi7053QgvSrrOHr1LA6j Sf15Bq/Qq0neIFpLE7wJE9ZIGd/FnBaui5wOuT0v6cDJrVvVS/M37H4Zx0puxfn5q7/CYwILgmBz ayZzYUl8siujWES3DKNGDJ+/0Ihl3Azz8+U8C69SHoXo+Geuh0PjEjec8Q3oCTLN0ZBUGebn2SuQ 6tj8fE2b9bNdzre9p5pPmENgxU83W4vt6XmNJ+zfeQW00TrvGxub8z6kTMN5RSJzbrbjE42sk/qf Y8SNyKEmqnmEq8yZ3sgg+NSTuzhvub6cPbz75s369kbc+I87ufvS3rDX7eyNdepQmnlj3fLG8sr6 xspW6gBvzPWecnp3dXn9zfbGloL+V1xclxzKlKk1NoFVN7SCKs95aHdteYZDu895qd1Ug/e35qft 7eHiw7fHjc0vB5enX+7aR18fPvx+dPT7jtsN9z8P1oODb7vd7ZPmDz+0CxORdXxM2wZeTYvTCGrH /SMS9TtX/nvaNw79ACbZOEXM2kbnsbXJz0Rs7CG0d989rK+u3LntOxJI7mg3VqdE72jG3D3SOgj1 vUi7O2dnO7snB9blwcV5/ao+Md+nXCaG3HR1/pi84czP5PPmjn46jroau6T2oHeSXkCCBbLSwF5D Yi9GoEaLssfKC+c8CYnliMjP5Ff2aCXKhLjkljMtWDtn+5YiGvbblDIBoVkZluNwK3HwpNxk2Xyt Zif2E/GS4M+QSdL6sAAugMRwpBOhCexNx+7ADkA7zvleEQRWiocig5KEfQARHl8nX37wzxuGEv35 TJ0hcuy0HtwmFBFibL0QjgJ4M2gFQ9tBFdOXK4WxiiJnbvyKG4snfrbZ5OBDECW21enoAOhsBTXe IHukUJF24Y1YIt8S7cl2W0YQ6hWsRaJjm41B8gJbf/SDVtRoHIUKSkPkVpasR5Ayno/cDu3jeJlD lOP+zjUpd+MTsGK7t4vb7SPy6H01Js7Ezv6jJllOJ5KIJwd8oIxjg5HX7IphWMgNAYsNn4c8MLk3 Y5pN1TSjlMdsaECt9hILHJpJvHNkeTL/nuKT1pvttCQBOtVt8f2t4db4T96Qi3ME5O1TkSwQZwuI 2eBNZvcpVHnzoT99F2QfDvK98q6Gh5Uly5zL8/N/3fx9NWQFdzWJ0T6bJgs3n1tvTZVPbDWv0lvM rbe+JFbW1IYCm9DG34wIwGlT4VSG8yeZvbe1pKhmcu1bbzsi1HQeffvC5M2v8nny7YtqvPjGYLGc 1y6PGcP8++ZvNh60TJaXCA2hamnWKBaaG+pqzOLm0lwFPCJvsRtBKWW1gINfToKBvbveOtsc1b1z 7+qy8+G38NreXh21vzYO7td/DR6u7ze/9T+Fz5+i4soOaXySh0zUYCMMBGPgB4gbMHbylh3cL4hN HKmSF6Qq/kUSSrZdUU999rlhwKFbYXnnXAmbjT/TU1OXVea00GoGbBdkPwgxlnuYcxE7gkfH++KP 8QvpqpGF3JM2rF22ZYfsHPaDISncvTEbiF3vgVgyY88KamIXbftBx5HZArwkYwJ3iZFWGRS0A1Ca jVTJnxC9gbUVKipQD9oItCCkviDKRSzssMBTpS8IyejbiCaCI0/9hOnbao+a9w6yXYl1MY9gATtP 8LPpt8SRgn/m5+vRWj4akUqM6R7WsDjFAAVIuoaAFUgacPbWI/yKQ9OFAseCkiIHfscCBdEAmAtt Hz3EI4RLS0vWR2FI/Z9yJZCciPdrGLZlB23xWEughAWio9DUWMW8VYokiUq3pF86JMZuMBIswzDm +wpzngk9WvU0u0btNqzleCMbOA1RgwQTsDDq3iAqr7OSMXNT3Y3EqAKxLkPhSSTmvcQP3I6LAATl FCxJ1Z1AFg7s3yvLy/9NU5Gt2EZkOVAfSi5SmqfvssQGUwOll9xhbYMYwb0rFD1m640OaqBlYPca o77w6sAJRz2EYIBlx9ResHbRSsDLvdl1mvfcLqNgN3Tsw5K1g2UkTF6zc6wSGJS+ICe04ugcMIJS UXcCjAex/Mao1RobK6nSWEwajKtgzMRsOEAmQauCHVOIZYOLESto4JXALwzWzRnH00guitwZOmJk yToXr2Xr3bt31i/gPCMv1PasnzJmAuVE/nNk95A0nP32LgcjyHJ6Z10ivgQjdMyrg+ih3NtcESYx 1NLe7d/OP5LYAT+swPbZISpsmQlUfQQ+TRgASIUqmJGwPqsfXmcO200n568j6gwPhQtH4iPyVCVy vtAURmHiqCiO6GHwb5qcbVvd060+QeK6R+hiF5sYU4Dm42wzb1K38TSFBRY74vJYo0zLU6nDA9v3 zUuoxC8t7jnNH7SCQyPMkX3RroiZWZL07IglcjsJgxN0Pb2qsxwo29fZ2T0SvVobVt/1RtiqLMiX ykuKOI3Ab5AaiosqRnAFujrRsckwfQSOwYXMUZNttzdUlq/qIz6J1TCljHZprp8sIPwpprkKHig9 77XQpb38DANw41gTRKY0MNSjYOigk0SCFiiNMCAw5BCJbsGNRTSPnJo63ExIyaRLDGQNGYn7iBY1 rg5UL+IBmpWOkwgZbe+QxdhtdO/B0ctrnxEQjSkQnylfZQDPBv1oEdcdcSiZ9N3JPxeXQ2rWbOzB oId7ZSDckiZ0r2KWAqXnQf9RIiSJhKyrYF/koGRhoKccXUsicQhVQ4WlRJM00ohm5bTQ4CYQbk+U uZ2TE9xNQGJ0e8x8lxSlsmQ4RhgTaYcuByTxdM0sKLjHFpFsHWI1DwG/aZDIwxqb+PEXeAQwe+0Q 8jJRaufkeue3ujSQq36K4vlaFEw1iBxbNbeA4AqlmSJEDtmjLdbVVIQKVTu0+xwowrHgNUNxYue9 R5pDk1QqQnNIY2zoTQhrJh2mNSc6R6xvK3R4v42U3q+cGZFDM8CwgGWOJUXB4sUlcbKSIiQegU/H 5yc7V8fnZ9b5oXX1/rhu8b099Pf49PRg/3jn6sDa3Tlbst4fn129tY4Peee+Prjk12cH+6x179Q/ 0K+rc+vw+OgjfTr/eGVdvz/eey/QUGX38vzDwQI1cUA16gQAbXCD52cHufOi6rQ8/jxhUtah+O2R Sph7jjNnCiqjUxShi62Bd2uOfx1rowJHrEFugn4WoAIsJPreIHpT/4VEDZf5hDZcIJ5of+fyg/X+ 4+n5JWqr4wYElkeVL2dSEcK+jlqMolD16QeMedcO+sRybNeDtI/R5ymhmRFVCYzANTQADbI/GLLw wQpoOnJuJtpPIv2Zb9kJQxcwjCe+XGwbPeZOhbzxUXGQNOvxztwwpLWu6SOJXzE82TSsM2LvbzlG 07yDSoL9wA8QpYN7L2wOeQs5ji1wVFCpQ5t9CEsEspVGsWPY4vAO+9qMpDwuJmUc1MZu/x4bCSBi i5gvc4QjQ2GckcmLTi8+IohkLMwQe6+xB/CcpGV4dn6VoWR75HnxqUF+iulXPFCVejuhu6zd58RZ yVTl6Yy1ES0XXi1MCKw8fKbtM8Ro0SNHHnqcOzzEhsHyetnZtsuUZuUIy041wysQWzHvMaxZAVEY MZxApxLMH//axHuluY46UXA7Wt1cWVHR8sR+2K7H0z5aMxwXoXZIFhtYMCZe1SS9jvTscDjuJfYa krJ4T0NbGa09DHum0AwHSajkY7UjyVkCB7eVcV9ESI57G/VqBU+X2kBDKwnRGUQ1ITN/nWxUMifj Os5pRJORn+LWMwTOh/E092kGWvuxiWvBYtE0epOENdkZnAbbCGyoq1+cQGUJSL6rjCaul+s5CXDx q+rQcANOfJBeHitDOfBwSuVYiUQRtOTrylDbbnvY5ctPVJxuPDLZT5WhHyE8sbkL70oE1ng3Azys 24bvNwxw+lVlaLTkhz4xfJzns7ENRUAzXyrDPnVs7xf/3jgbH72pDoujcCFHu8N4b0m8TcKstnjO nOZ9gzbA1uXFUQTdfPkU4CVU0ZKQYII6TOyu0ZvKsNiSB1/L3TVNn4GNY2cR2LyPlVvwPXYSGGCj NzPAov0LN1YloEXvKsMbdP2hTxveoEGibc+YoukPScjVBv7St8Phacz11HMMUna/MoDQSZrtiHM8 6plJGbKfKtMCFytd8h5dt8cxJZKvDaRfH8EN0Rv1vpF8oa6vDZy5kq2FA1JyWm7zPm4pflWdNENa n8NEAo7oTWVCDH0/9I1rztVzZTgjz/mKs9lO64vbNdh+6n1luHzroZgIWm48rZKvq5OQ9jcS+Nox PHmujt6w3XJbLhySid0u9X4C3MnybTbOclf8dniRlMYjtCqZdLX+bNh19asU0nFr1r/ofzs9GHSg EEK5S9OlpPhIcDKom/6w9bX+n/6Wwi3padHOZegpEJYjC7oPmzJbB9LxrQmym5SdFlkVpT3ZG/Wt I2p13/8Kf+XY2js747j1CvlP1HM28PuJIQgnvs/WLdborF/sge2xgvUIDwORipWwwHZxOgznEx99 qzvy7sdWz6ZPiA3iY9c0FjDkwFV5FbA9cgjHewdeRX1mFIY2fSK1b3sxdJd6zR56UrOxqYhV14Zp oA01CkeIQ8vu+O+sM6Q7IAmTwcAmQFTo4XptEmfVySg247W4nB+GuL7ynYVeQjltj/iwx1vktHhg +8ZowD61nEluOI3LjXdOdpecK+O/Z3IXuyjK5U19P3xsP6z5bwbffm19c8bbnjPeca83+1+C3x86 9uC3ztX9m/ra4Zf1guQuL1q0jDnAJnXoII5huX2RG7ty+6IgZqVKvAo4m/aT/PDglFeJoJR5Rnf+ h0eggAQcYFImyAS3Jb58OX+8NC/n7qaEg8zPW7fepGCPm4TrrvhYU95CYgegHDZ8zpiOuJPSywsM ZjoigztWFG/xKhtncVM6fiKOQ9XbjoRhzH2vcIpXyTAKo/tqlBNBEDfJ2Ibi0EGm0NMiGTjW9IdG MMSd/8R9nxx/gAWRG1yAFEI0rv/7v6lYgv/934IIgqhdafYm7akvWhjVogDmKrv5eRANJ/6rlPP+ OZbvjD56LLJc33xMS5m/+jD4JI8691PvAz/IX16LzRAmzoL083qxuXs/2kdt9kk6NcnDLIHWhQ5k HOb/ZziOb1/kOYxJWPlRjuL5+b+Jc9iUFz7zBIi9ufGMVO4uvZX9W/hqI7oIWXI9raRTQZ+9faFW b+w3rZl+0e/vDY2RPVbsFCvsu/kya8phacyez8fc8g9wK4ILEbFncxsC30WVlG2aE/BWDkVPdf4R 39BOvxvFLgwvXiwr5jr/5IJw/O9ljjMPUj8hDIKLi05+m4dX5IX2jUXFTUeXvDFcVeqFeJvkIeU0 kpdZx476YLpr9JvI4SIvMp4R9T72d6hn0zsRoW96FaKXkYtAlYns/PKcZ45Xn2Iju36ODeXyJm3R jhpV5uj4MW1JVh+ShuAi868qHNtyNdzYQquelZVVntK2UnmbNGlqSNpQqZ5S5kaZ//izQnqwKHkk zJpWvIoioq5WgzqRtfPVzOlKX29EaShjjMuqWcq6x4eC2DBSMj3GixNI0xcBkpY6HQfVn54qY3Nz wdrcyKbK2Nx+s726FmOSyJXx4go56xKYsOiYypvB2b3u7BapMHde2H5EuVkTaLTb21srW6hjJtDQ JzbNBBpvVt5sbq5upBNo5A476s6aSoPaWdtaV+3wBhOTdXOdXq68Wf3LMmn8xyrKenrOmP/E6+YZ E4X8xWlCIkA/Iq0HjxNypUHSGkRDzWJD3E/W/lgWfKfUPIi6XI1QwPaGMiKr2JNvism4SJpdYirO Usf3Oz3kqO3XHp0Gchs5NUmfWRP+sxh6hIQT1Jym1/nSafu00Ox+w+k27lteq02k/dLuNO0vX6SH da5k1aUSYxQ7UHLivViQFFxIpEYuWYh1SH6GSQ6LB8Ro4ECTCtpVmwZWHUMVBKHn2Z7vjfvEM7B4 +qI4jAY9X/Kz9S0AomEemecAptAIIhprjzi0HjCBVA9FpzzE6+n9M0vTyA5gYQ5Jo0KHF+g1Neh/ XbDqdtsOXEH8nAhnL1nHSMYXWqHbd3t2QEvTU+maqS9JKlM1JIqObJVESWKOyFPWjChXE3JE6XM9 mCrEOD4KMfUUotxb5LAm5qFskti3AXQQOqOWrzRr0yJTFNYaUTgn5m4fSTX7fgMIUCc422YQvtXp 7jj5ZjTQ0fAGMttHSZdMcSt5oyrzAOP5ZX9nsPXrztKXgboGlzMiOl9tmB14qsHQXGvYOLOtUCHu hA2GxkE6Km7IupNzj1KezAQ4A7vXj+WkldF2bzCqIcXiXYckMGJu/h3EyrvVjWX6x2BqIScjcO9g 3tQ5edgGgXEwsAGJ+khFKAs5eWSVf0/xX2l+Oi0TRIbdx+9UJohgIxgwzy3OBKFJErH4OPvDd+GS rF29vEkuoVi4fHa+yFkjfjSb0500uE8kyKfZGiP478enOLcebBZPZUURoFvvphoHiYYklyfNMVu5 iVZ4sSb2jFxlLss9JP9gOuuCuWzzMy04RT7o5aOdg4N68/jzZrC3dtGNHM3PF8tQghcXO2J0z142 ht7tC7HSEhjJ4MmpQ6Q19WKHX8XsN2dn2sjg9LJ+sbN3EGNtChFcOqorkd0wlMvXRCy3JFVLQj7N h5pIv5baK2cFk74RKEb4wlEJ+Y2UqTn4M5mukbpeOD+zdxg7iWszH1SWQmLvbSzPgdscksoEVtiL jPyEBMOnn5FvQDiUurFD4QLrpjgxXGxgJmoLyowf7S60YjgNTOJoNml8Lb68o8fJlhPOBWwSuBFk AV4DtjPCPsguVDPFPfE1ycAuul9ovYbTcGX75znxgHiqOhQ17ApdJEdmwpnbd5ru32sU94xkBjkD h3kf5eUXszR0PbbL+8zwsIzYQ0VcBdsd6KsszLz9OS25JjCxXPLwyR5aYJtSrc93xHCtiWGmfuOB 3Y7wp4e10A6adtgvCvbrBHa/b8Mu50h6XicIkIq4oDibp6wG7RWyr3dEFiwsKWEf8CQTJpgiYU3Z uGjyDJtqvLO1Ze5p561viX0Rtm7lZDLno5mHIjdckB/SpDYGd1fcM5G3R9+VE91vo8cXBEItOVhk S5PqlBHHq+gwHSwoGfrwnneZ6NYOrMQFuG2InaM/JPH07pXnhtoLfBho4ALwOuxjx4uQwaGxOLCQ gHPrRqihquJ68Pc0uzDO6KSLJVZUHuOGsTZ/VeUw7vckt7ZHPdpEBv8o/v1RyVIqq3tjNBz6nihd OYwASZ9Vuu4msbA/R27zHjwSklMTfA3mKB404cuKq0s6f8wftTDok5ZgZBVkrBaVN3Gl2Kl2RvAy qrz2MWVENNRRXTFWOgAF/fCijrBspLqYjQxMk/R7DRAbjplsRYMSl6BNBhEN9x5urYCoru8sQeL3 IB0LjNt8GKaxirBa1d0ConBF139EBjtLLqL5cUvr0glpp9Yn4/4h6+oKVmtXn2NJIV1oiHKXMgqC YHHNNl7f2u3ZzXvrfJQWQ3MMUsobDN0ZwRYYQh1G5FkXxwtqp8aXUO4qkYhCXp2xNqV2/TYNvF5q RsoADuxITIWpXYw6aNf8x18PlWx87Xot0pKnd+tStCqRL0hvG0ssymn9wnY9lWdzBlS2el82Pwsq O14r8N10KH4OKtAB2TFPGxrxRTbcS10IqEDxgq34By1ce1V6wTz7XLzojXBfmozsziB/g8qn0ncx lChW/X/XgKw6+B/78US7jElg/p2ewd9rPVwrFU4qlVkGb8UXTVppmLLECCIIg3BIhv5EWlEaqZyh dhxWa5ULMNFaBrTxIoZsGkXByKHdIqjIhtjTEWTK0pdLJHEY1RxE8GDoa/1ae3CnLrrIGEr4rRH0 Jijr9/XofYomiVVVpn3REFLNnyJPlt6KaK0/0IY71Gfd+D4TiwNbcOsS5u3AL0KEf08xlUenInY0 gTF+LiI0SM1nO0M4HA1c6i67Kquc9NFW96xn+onmsR1DbINopzil2CtYJNAoozPqslV10Sc4zPHl icqha9pqmHsQuFE/TEVeKssItcTnHgJEaPbcdmHyUfxIHk4TffLi5GCnfsCV5AX/NORUBLWYawhs rUHMT13NBH7jIh4XNwvef69zPTo/9vOc6DHsq8Zck1BKWFlwK1gDt30GSioHZ2VJPGVSRcWbhM3y jxtR7/4A8ZHX+uXNH6/FMjmHCDQIcZZ8wYfTOcPSbb5k0r/MM/nhYuG/r3FPZ8b+S4x6IGIeGZXN TT0+i4mN1xag8X/mJRxLmc4Q2TZv5ZvH8KXIFoZvOYav+PVUKxeKzmLSinpTyUI1bw/nv785an6e AM7PF1idkssMyi6WmWkiKr3Y8u0z6ut3Mcfc5NlQClPwTzfM4GjLrFaXfJoYBg/1qrwJZH4eZg8a uQqWjvzhjMwSuWOZg7W2CDCntW4yKv0fN437P/hMz3fS219pfZ1dxkrj/uNmAMWZGp6iWXMlpRv/ ceO0/oAvuZICnD+aGe2U6ZN2299AP/njr/Cvp73rN6T5cN//3fS1/OHTyhQTytSDaGLhAgOiVFLd MRSaUmoMmr3JqhSQafgdCzU3BfL+HzfCzaUQznC+taxZ/cTWrUQSkpRNwJRI9XZmcFBnrJS7meBi ekVA04YFT9aBfP8+xhlPxi1CoUjxJUx7i7SOnEISxIWjrvL+c8inAUPpbW8RsUYlYMi1iXKSkFVB Alh3+AynrUCqcZFp8dbK6pGGHsvoZPVXAqBmTF79WA+1RP98ZeqdIB3z0qgzWWOnByYff8+x93rg rbkQ2EZphm2VioGvyxmg37CuDxUtAeTJkfCb2wvW5nY2EH5reW3jzWqMTjIQXqFzg/PHf/CsBzJ5 wfD20y+RXF7eetNaQx0zBl7Hqpkx8Bsr61vbK2+WUzHw0eRD+Vnj3gn2+ps1BTsZ965Irnv03BHv L05I+ZbjSuhA1r6AMn8bIwF4NAlPovzTj6paPs/qZ4xTX9mYIVIdi8+cpPHa0KNVIVRdc/nCu2za G4u/d38ZLJ7sffi090v/1+7nYb197p5c/v7bkfO1f3Wycxe0Hrd22zuPP/xGy6Rxh6/ysq7e71xZ ++d8nPD9zqeDUs7foEZTcjiizcp270dx7Nv6Y3C/vVVj6f4Ogs1dy78jZs3LiBgxukjj7Q9gUrE7 4Z0fqGBaHIu9uDy/OLi0rnaO6rXDk53jS+v6+OTE2sW9Y6fnnw7201mBUjlNs9asY9Y6WYAiIWRA Qo3bcPl825BPM5p3iKtj+vkzesnao8VMPYh0JKwznKRnFTfSp7BS1Ulcfcj10eYjaub9JwkclZQI dVp0aYttXSIH+rR56bX2QJjhenDpD1ukkOcECy1rWZ5iTtNr4elhxsM/e994vRSHGZtzJVqjcagx 8Zf8mXhTblIUasLPOUvnxBzwt5pQQOhZZk96/DAq6UFLBJqqTfL5zOK5TGcwmDCaLwcDgSGCJtR1 65TTbCd5RHbB5bbl9ye1pR2I515vnG4lESM4rZmJM1Q5u2nksXdP7EjacfSEVmuyHN+pecr+G/wr Tp3/3th9j1L/vbGvfKgiLfJLSSFFLa6swyTie+Y1KVmkvxeCF75D8z+NobyNUFxb/itRxJxJI4h3 +bjw7/QQGwhex8m3fhMseDgKtxj8iPdKdi5I8OfUDTRZs4BPg03PQLMn8WOh5PTNIUXgqR3+BBma eaVKEOH5j6bJRRt1HlwSmjOO4geY/SIvMT/FCLAoTyyca6OBxK4tOGSTRhYMhTKgcy4f3mWIbevJ YCFDgeeQkP4A1xQcNg98Yeha4ujO6c5nZHagNbJqPTrOPdKySHIPMzEIvevbnoPMbIvYiNjFwybj Zv6NLxGyOXG0UWeufDlXBNmfNz+VMoT7wxNhIRUbhwwbMh5DfejIsIwp+1kXR2d7yIMHBcRaWdZW dKYCPXLhe5u6BKufGTblsCOL91BtP11I3X3VQLq0b+kIPWMUp/VaG5JVwiplycemHDgdapANjqSO DZymS4o+Y7ugD8Owv0y2dXQYzgXY1XzPjFKfhoHJLnh8OcWLA/OlCAgjD2bjmJ+TCqgYqVoUcGsQ IVY2FmOOWoEEZz50UhdJzaxTn/S+2tWn7HIoAWVD2m67Paiz75HkYtcO3eaCdUEjM/JIvRUPJDxe lSCDBYR85y5NnoGL0+TRmcNSMGA/hOMjZa61Xm/SkHvDLg0l8f+5ChBptYPbwl02lISLmDyVAGQu RUfWiwoQaOZEHWKewNwgK5aKP0+EXJFF4TGNMv5YN3V59weyi1VoX/FdbSFXNlpZFBC9+VHozguY M3bF0viSdeLYD8AJ3kzhCUpA5/Vk89pj1wnn93qkF43Ahx/MRTovdhRWQJdmj1owrvfg97jllmPT 4L8+Q5a0MxsO9ypzQJhHoAX5kJk6sayeP2rVaEVZkNAHXR+OJziTF+Bz7cOew1wxvhkDFeKnBBVY XqmA0ym7dlSaRSRQjOHeMI/5w2jIN2/EuRGuYn5XiEiuRd9IrAdrlQwqbQLwI8o4sUu5CrKcCiWm CBqLm4dn3kCm3bPdACjfoBpP1gSCFdqlqYDMIaQ0icWOVEHiKchxR3PWqwBIb+9qYsFtymwqREaZ PjZmiFnRZ+3JJ7VuCE9OFVpxLkdi0F7LHluvD+pXc6C95HEFQXiPlc/Kky2riHAhtjK2EINFOzpm vbEE1f6HHJJ8tFIKL6QhSp4MyyEhoznxgqEoE7Q8aiLxHgVGgZfpqEHIpEoMHbp9ppgIbDkfuA2R 3ZSAoVMTDgO3z3lcuXs9x+vQytZzlgfAwDtpkkoC4tRBWnBjuVjstAzo08keRm8MN2HHR/GiHj30 mkvDh7gj8hzjX4QNfsSizDUjg0HEhEJ/TMTSKkMuMoEtCYLyNNuJRWJcJ6Cabs0EsOQ5Q6UWFH2t 3oY49Fia5kkxfDCayPlYqgV1lZuaCIn0qszdkNtMr3WR1FRGXRKa3uZSPaNoCQ+IVaw/x73xfa3l 4rTxo+vVmusrvf6fgbJq6Hy9WMOpHhjBftnOnMOBFbgOiYA5hwmzFCXEqF9X1C/mxZGiZL78/+y9 CXPbONIw/Fe4SW1l4teHLl95ampWluXYia9YcpzE2XJREiXRlkiFpCw7NfX89q8PEAAPSaQkZ2a/ Z2c3iQACjUbjajT6yERBHeJn6qqExcncUA4ta3TiBK5ARYxyyofckM/doGkPq06n7tltBTeanRsq vat3YNaRjwVzUMPtX0FP/5y7lRrOHw9fimrjUJc4kZ0b6iVsaSdBFa98DVMpVUezZ0FN8zdSg/lv 05YabW68dcm+lp6FazvRXiJfNUgsrI1+BHDxEB8rn+MAR1fY+giU6PcccbtUH40sa3rxnKGUHMrk X14rOYLWO6OKfjkH5Jh99uUwZqeN95Mh6ro8a4XQFFW7aLP7dWCGhi1UDwmv7HB5gLsEHX3oYQ83 lTY6meblTCc6cAvi+sE4sTPk4jZyOgM4k/CURJ/D6IyXkiwE0K6pEVFtlnHLpnV8W0JXafDXC0QT mPrO+OHuU+Xn02AyKt7vf/x08uHJnty0N8zn0cZgNLwsNT42Kz+/PV+UrnbOpkUTSEzGuMpyXLSu XlrmiebffncM1AGS8nJVdZ6knR1x3koxeMbnHXKlguN2G5VQD3TpdEZYaeLchDg80WAocB7owuZV tCjl24km6W6yghaEeJrgq/9NFTPjx7U1liML17PT3vBQNnw7X0ybtRPh7riQzFi84eUT8W4JOW5S eouwiuhC+u8hi+XOlaB8Btnq2tpLyFNRnXWaHPWNlJ+urRHpyvI+uHJ5KIKvkFN5OWlXKOxE6Nt8 8Z4mycQiO1Qkl5gSq+1StSkySCywt0nCrywCRiy+T9rxadJDmr+F0BxDyQQpv8g++Vcv8SPoJbnI /lp5HiFTJjpnktZR+Uo4cReWxX1/hQXZXXVM9kYtwOxKSNa+vxISNajmosfzUIKmwOSUnFFTMEvT 5GLsUB1Az5WDERSetLOkXFRsjwNW0L64sBCLIMGs/huJqBAlDokRSp5ShEkLiJAQ6nLyIiULImBr a3NEPGtrUsk4VUqDQKZJV8JvKWIRJlDoDj+3yOM2IqGY7owto9TjLZ2UuvAC01sx4QRnCekCJ+Ky AJEdu+FzZvoNXHysRe/VnBm7Fjt3d3f4RV1sk3fW+TdVXdkri3KyvKUsp4osDTF1NeTKzs7ubkU1 HFFDFjVeRu0YC+v6xqHSmqZvXC4X97cLu3txn9v6NF9G5xjhl4r7An6ar+3yDl0gX0zzuI4zEnlj nCvYk6QYAYtFlmFOWQDGcpomA3jzF9/9scer1EVeQBN5lT6z5woILg+aT5XDSbE3mtx/OBzfWwf+ abllPw9qP2onX672f/zcOC33T4+se/eXKyJXPQ4MEnKNHGXrj5Ap5BnZYlaki/EbsDAqv4cVcNsL gPHDg0S/uukCHk04KA4eMgn2yam8Ka8L8kKBMxc5ozRmqlE/PaLGN/OKkFanafujv80TYrqmLdJK zj2lYfti5NYYlFXQNt47xD3s0ovpn/Z3wl+6jPoImpWSaUzQWLN4mLVm6ewdmtTjMd8AaPp1LHqU LBZ4dnAq8qUY+VIsGWcnp6cYgarRvLo4fy98vRFakVkcwTFc/7jsKSLH6Oez13pdPatSyArVv6lC dPLNIkR8fNFqYeQ4PjD4PSfqvyXpCTKBESDUc93N3mDL8X8e7PmvhaE+o1PlRAyr9GfoKWB/NL8+ PASvlZ0wQz6U6WWAX+2dfDtrvvastj0SKF/R7/xAcWgEVPPhq92ovkbT9p5njvp2m0GfqIyl4H9u fftcGLzu2SIm9ns7ZzDsGLzdaql37rymY54h0kG8FMxvRw+l55PXdPKK3uPPpWC65vlB4eG1K8h5 UZsBLR6qm5zaXY/gnMTlC4tGuB6KOLtLzvcbjDjleSSBY+7FQSlQ3+qMMQqJhDOj6ekrOXGdwa2P bSzhYuzj0r6BBPf2FFhkMv4y4V/Z7pSlTglNmot7cH/cwvq4taHJNjecokDM3pjwl6YnYHHnTaNr TYS1A3p/l9s9mXyjlInkMgGG1OXgneQexTAnoSsEYDSkKIjv3ClaG3OIgyFVnpgqNycfT4zTk/OP xnH9ir3VqBc9lKThG5uwLe+QpSkhTwU1xYYbdCSOYZ6ETBbPcOyFsPPPgiBKmLaQhQcCYETmtnh3 FJezIVp+MOEQG+UzQMPZbKFMFo3tsIgIdsjSN7zm6Z7+UnxQ/utf0TETxzTalDArQjIpEmMEHOos lA3ipZ0kdw6GAESJmI3Bf0kUSfJsEQoUxwqD5G0SvRwOAsiMBhbGyIUUXo5HFn1XAMAJ+sFwwvg7 gAG0JGcAFkC+/QGBcM9UB7hDKRM72k/esNFDDIfQ9awfYxuoTtcDzOyj3BCWr8SYj3Zt+AU2LREP l0RHnov7IayUNM9JmbW2DwAnDF0I9LHMdp9lW/GOMjlhxraR04LpAtwUzlp8ASBZJi61bE5aaX1I GIE802SGNt1Ut+hX+l6c0id648PVuCFsuQUzgWQLJTHMHbJPnER3xfMJSedI9E92VUQkIftDeGSe GqAFUxdjVrPM0HoamxRgtWPB2mGBOQou2XeMbuIKV68J060k8MMHlo75vK69tEQ7RqeecJAjGNdI f8KJBDzoGLhkuMrDmiIxKswc3x1g8FQgifUYCvxC7hopQ+XMFs4pjF3Vx0WCflGQd0N+FiPTDbV9 YZ0kt7gdcWEXHZ3QykMJKtMWn4Js6vPXZvjuBBXDyKrPGAgbYztzWK2wAD9KIaEnNq7BMARm+D0x Xkj4sfdooVhVug8SOUh3cQvALZfeoURkWh/u+TDliQXH/ijPULhELRwS4qhhieme8vJNRsANGXEY goHbQxJuRcma6MwNBfOkRzAiYVhvXUS5RDzp4QiFz+ItjhahDD7Ls4nPF5ocIVWsYQsWmkXhw8hp gLho0X0FBxTG0xua3gNKwQ0WSnBdkkm7hEtom62oNXG9Dtz6fB44xhfRp53qWSwZxBYPWJQdKj9P +BCHJ4+Sq9OQo4ssH+M1xuZgHsOC6DBcA1RHVxEQJJmgSzKth8LV1LhFGNEawceUcJPVxmlRTMRe LvkPvnv6aijwiAXSsWhKehzCdZrA4ZJGms8+hkJPK2L+RG7R9I4ljv/kO134NgbVbFzFMZT7HqAs gIfHmI6vsOiUe0mAAR1NONbbD+hnRMR95wL6zIno4Yw8PIhIfMZu3tbjaCb6fyP28Gjv48KDdaZl BEPoAcXYxjNYkjfWbU2O0KMo4YGIAE4PfOEbKGDQGg9FYFxsJ9q+7VHTGJQcQODsxwGI92ThyYTo oDYBYSk5CxbC4/KNUwzXAcxmNSChmzgCgvVOcaLQFvLOuD0GZmlodqx/rxu3J7AB0Y9Lz92qwcaN v48wgum/jfXbK94yt9S9F3PPIPVv+YZFLHooiaE9JoxZ/AyHogkDHj68I27MyYXLBfkezK1sFY1b ipv6b4OCGPrkFQgG1Nm4qIleL7NbI28coC8bPFZgtAIT5i/Jtm1/uKpxwxOrbzOLAdSPgxUaFuGG ThHceVcP4tqE3tbEwqc4fI7UFFj1TAIuOPjwZKXmAw6UvGl8RH2JSd9Ff4XhmutY5kDw1f7E7gb4 Kjqju2ma7/iD1XVl4GlkvE3j0XbF4uF56IvXzvXwmd0WYk1RGxc64QXjILFRyEy/Hk8hP7rloSjW wttdGFdcBp/GbQg5sHV8I8Vpl/oVLysdC7i7DsZH8vBpLQBeR3BWWHjsAJeTGN0ZZJyJ9jGun+7Y 2dzcTGowph4QV4AcPm2s4zWHWF4Z+Zy2Qh8jq7OqkNBoCVDVgS4s65ID+DHmtz1kpeSB7sO9jYKR 20N8FcVdvgvD4wLX+kHiI3ZouFvgmBLrQrHY/L45or3exI0YOd1TS+8RP5rjbGUXMxFBQIJo0wQa PHuayGVT54c6O+Kir8O4cycDH/oghxhzAi2Cl0QHIvYEjk7mSJSAPaLBwDuplD1g3bh8L3YtmuEJ zA3Fvom9kfBTApa0XSlBElUIdvD2QxhvFk8FogtJXxqSHv/IgvwU0cdvIoxae2BDQ0jRtzkwZp/Y zWe8OQupEBWK+spOX/H67ogezQIK0Sb3RpUVwyd9IUag+bbpwGTWgIU5uWEdHHySUOB37vot2G2E ODRM5YZxgDpMXdMPkL4KGz03N8zWuNOzAjVvI1kLQPN6+uCJtILDu+l8QG1guIHTkYBEOorQ7MBR cZA1uI/C6S1BinTuPrYtVFJUmFEyPxTYKdvjAF+rFSiVlxsebBCwL6jOUVJByUz3PkoLrMh80PKi aOWjf9vuoEO/ECimcvcS3+Lp4FZTTGXlhwb8i8aFcTI/lLHnhVYhIqVgZKb7GK58wLsiD6hP0lj+ AoBZXANMd8vq2agBoJMu8S1/7xkGcp6pg5PyNXcbHRe5IAmUk/lJgfs+MCkTu93XRj2SG0Ut3/wG QBPPHEUgU0bu/mL3es8dD2UeCpqWmRsiHg+RNR1m5Idk+/3AmihAnI7CyUe4Lux3GmaYWgbce7sr hPgSpsrK3d+eh1yhhMTJ3FBQlVftEZRaAAYaKaitQaQVnKzrwG5bqFw2tLRtS8uLIpaP9rYH0yEy 0WRO7v5+MEcmnjsRZkfPzA3x3hoMFA9GqdwwPsK123QiOKmsKLR8pBvCdiFBYiI3aviWa0oQlMoN 4xJ6Mg4OxhiVQoLSMxXErNNtZP/8qaGFqdxoeTAzFTNIqSiMfLT2LTMySUU6N1r+SD7Mhqn8MAJg 3xUMTOWHMfb74mE/TC0GA0MLROFgTm5Yj5bapuD3IvVNJzJCMicKK9+wAxAUEMIVUIcrsnIj+dkO zKEtrs8qreAkF0hcjYRuxxdpV3kqnfv27D+E/KLESsuL9jAf6ar+A2J4bOMLAVBLna2JL9FmMsAm 0xxkSCRMmZMbFtx7zNHdGdzINHNzlZcfHkx/mCI15mMVyEh2bqjIFmMAgyijTDkLwQKOyWq7KGDX rw6xD4tBfsmrQ3i3cT3toq9l5ocIWOFdo2XpN00tMzfEjuX7lqdmpkgvCifSVS0vN7xD+8mOckYy Jz8sb+w8oDqL+6CzhNFsBTW5raWDRVzuDkxHHW4yJzeK4XWF1eslwGh2fhS7/N9Y+0+7iKR8XKAJ QE8T8XAyd/+RcufWRK2/MCM3JEQgMgvDjIUgscVUBBZnLQQNDkJXm4AqKzc0JM+NZ0f2Qy0vN7ze YBxYTteztJugzMoPzbMpIpeCJTJyQzrGZ7/+pefeW221SUVyc8PsU+1npL6EqOUpeFmXgN210Vgv AlDLy40g8KQOqiIpYCIjN6QHC+OqRGUFWl7+rn7EmGGWU3Odrk0x7TRBccq3BRpwMH6Jf9G9tB3g akahanzqp/zgcTxKkQVYyk3UofVkt2Psu5aXG96ZPbTbcYmOnpm/mzBdLJNM3QUfI+EmviwC3IVj Q++9zMndd9eDa0+o8K/SueGQwtcYpnWsu7H83HDjiyexcDLC8QfuJI6blqfgZR0EfxgDxun8iLlj H080BUhk5Ie0AllBY+w92o/mAI8yCUrPzA2xaQ+PXS9wtQudysoNLXA75vOJGSoK6zmLwfKTd8NY /gJweZ/s0K1FA6tnR6HmuyrXzYBunFWnwwexGvXkp2UawniDX91xXZMbqqzcdLlxvUHH7V6aDr61 qukQy58BN1W6ceq2MaheODdzizTGqHIV2U1V1gxc0qFVg4HpBGZdVwnQ8nLDq/XhVOu5keWo5eWH 5w7Gw9bYjwLUMnNDPDOBGYiAkzm5YT2aaPLwaHmR4YjkKphZN2rE5PxrTYIT6cUANV3gBDU1Cy0v d2+x7iXsgzA7VGf1zIUgnrp+1emhK5AITJU9A+o0xSm9DRyEtu+jRNtr9//48Ts5YPlnuSoMKUlr C/9gUEXPbgd3vve7cMKHf9DZ3O/C6qCtSge/m6FgOIZgVA2onMRJ2ZAEd8VCkYHA1ZV11zD7D03p KB5wgSFO7/Lrrat6465xdUdsdW/rHDdxjKJbc4cjM7BbIYM8C+0UfasGatihdiDb6iYUOcdbLcDW eTAdqxM+bkTyVHuk8IpqYGyA/w+pHkkKtqzIhcYSbeEkDHUVhU0EOWnjahgj2xRxz9M1sej3HGty 6bsP5wl5sPhb+I+sMZuHCqV+YI7RPwZplwrNRkTWcKxg4noPnLIxm2I7s849kEnNnhz0yOqgcXtn 3YC/fqWDxh2vNinsFbfNHx+qnerJoHxz3DkdPZxX6uOPgwe/u7f77Wvl2Cttn0j/CzEHjUkrd2yY 4h6/FvvODFv0//3fYuF//xf/KcI/SStzXDy3yu8eop9iR04uAbHBqYbiGEz8Vlh2S9c8qUbgGIvZ uNVU1mOlE7bdXIFvifHCEVttLqgZVKt+TTXC5jrv7W6irDKo5jJkCJYopZtJi/ZRgTdRTjd95nIX tUQhacss6f06Yp2MuaSXPc/8+LtjGBhYHsY2YSI8w8kirsmkqTEhk8lumLA21tZe1jL4Nmrfm6k/ pCL7lhYIqvumGwCvEW1n2fzeMvjphrtTkUlaAr/NaNpLw/ivf0lt/v8g2921tX/9C7Gnebu2gE0u jMgcM1wEXdw0YNKlW9WKMXXmGtLCBiPtYaeOYtySlr3UltD9Z24DWMDs72Pzurb2XztXtnOFYfkV pq04b8pI97m2qjyD/2ueOtU8FUlZQVIub28KtEZo2whtGZtR3LeI4i9gJgqYvZxp6JtMJqE8JVdq BSqPtxex/GSvyDtEPAQ5y3oTOvd/xGATabIr9qDZFphMvz1RNmJFCeSaZTi5FTWLVNvvYsaQIS+R 37SR52zCoJHAQbd+sXWi2Giw5YiBYegeMdxF/qNsCd+k2hBSP5vIgSxiD4gUymf5d5tYHtNcxc42 ABR+4tfWMhrt3abY3k1rOXk14cZevzYi1nc8R7YiFnUiQxrFcRoN2/gXm6iJ3IipmfiuTMXCDLLu MkRS2Gjh9ZHSocGV+MpmUyKhWT+JwmSwJEEpkyMJju2HxG9laiIy2JRHJNAGR1aLWtDI7KQCW/RL zKKFv7HpSQgjYjoi8ZR2ICKpG3NwlrTGEEk2oZAAyAJCpjRzBs4QFgmcYMOC8DcZBIQVNZV+CUzp 53M6omPPWawkz7+VZruEQGrq/JP1zfm3riIeFmXFb/5NKtsSSKh/LVL0Mip+kza0+E1azdpv0k7m NGoYy1+sWCCha2q+nCE0cw2xUFIVbtWCUQqzEmJCx1Xkq9dJTuvapyInqj/KmTjDWP1TpSMqnFp2 +hTVNSdVYan6yFmh7mIkpVVROoQiHVH4C/uOBViNj9NRnTs5Z1OU5eQ3l1TgFDjSZFPfNJQwKXTK VEbAamGqfqjZxTmabpbICNWrOBnVkeI8TZ9JLg1NS0nkhHpGnNQUg8I6KSo98lNCG0cnR0n81nVl OEdXbAlrJJRS1IdQ1USkhboIp+JKH5wbqmxwSlOykItTqE6IVKgAIZLaWo1oI3CWpk7AGUojQEtr r/phrv74Lpdd8rlcftLevkVG7Pmal7p6fVbrW70oc4b+KMw5+rOuyNEfZjlLvaxyOvIOqi+e8681 PRm+Uaoc+cqosrRnQofE7FsZn/ZSnvVSnvToOS8UFd9Of4yDdmPPdyLED2CU4eVNFF5bS76mRR/L 6IqBXNcqnsjW1nS/yX+10/piqbi9WyqWVdO/zm3960Jhd79Txjq69/rQEbTmvb5UKJZ2t4v7xZj3 epxzy3itR7iVnbKAG/NaXyztodv6vcqLuq0/tbuwJp5hKWE/kk+XWGZl74/YBEk3/p5O4rG9VfqI 9/ufzOtJ9+T46cv2/Zdv5evB0YHzdb+0bweV6qft4qeedRl8LvV2zF/vI/7KgpvtQ2Dj9bFlA1+K wonYKz5yReEOB7utbpqxUQuv3PxpUz3o531kDodieRfuJbtAwzXdg3vHktNC+W9PJ8Vtej/prImS 5W28UQTKLYkdMOuEOTi4enhoDe7en3fvu53nL2WnuWH71Uenc/rj5lvv9PzLTenzk/94WKqGE2Z1 Wgb4Q6lOHH0fFwrdtodSCss4tMaB3+77I89s9wcoljiMz5YpLztxYnGjx8BmuF7HGUeUV/FF1bKd n+M+cDOWM0ubI6aZwo6NLvBZAp86142604Pzoo/iG+B3vPCFyHeNCT+4MvCZ8XejBKk/4RGb9EKX Epo3qbdXKm8Wdjdhu9+FTf9doRCLMwxUMgcw/21lCCzSGnXo51yFJ+RfnJY/mtWptBVO3JL/2m+1 xLRAQCn/GkdYEIZvYvYHHOB9IL7q/0q0M6FBGAAm2gugwkTLzAk2PvcUTLmqN67oSz7AcqpbLZSQ bfqO68L5twn3i60OLBBu4zX+NOyh0eDPs9pIzpjZLaN8EdbPZq+3dVitHauVrObltYNiUxSIQ8GN huU9Cr3d2IKKYUS/0pX10tEBbFAqMVQyWFz2Pc8dj3zBGR/WRejkFAwto4G1N95745GIBJATwbhe bUr04mi7QtcGY+wYTbMXX9CqqRBGgEdQ+CnAPV21Hnja7z5sMXbPAcq0LQwHxL3+DPtPYLUfuHdB f26Fb5bds4D35fHSK2zpzW1JVAhWy+08T8Grk9oMfooP5VM/vnmrRbNhHI+HbtxINNCJkb2htGMi cXXj9kIty3l/6CbnWJPMFVJug1n+0PVQkeX/zSVLZNQWHZhYXN/owFBMtRkYZG1o2gGeGBm43sP/ M6nL6iOSIN08xFdCunG8P4k5zREIZyEypb2P1cvrZjNReiVoO7PQPofDBSjeD+KuPrJgndZcpmHX W40vi2l/EpNg3p8pk2nen8TcykailQzVjzjp9KGCM/iBH6VnIpKjvUxjpZrNTMK/bKgykmglY9WN k04fq6MB33tg1qCMPM5xvuR4HQ3+WSv/86Amm45Tbdqfv2zUchBrJSPXihNRH7nrxsYl6VrE3Se8 5JhpjU6lUibEVkKfII6wTp+m5XmuZ/vD8QLHXKK5zIyC3uyc+ZeYxwlSZutDjEkO+WJOhax89utC FQUgDVRqGyNBUEJhDQnYrDtD8rIEBMK72tZEuwzFLzeZ7/Lz0ZZvt6jJhXGVQwu+3FhPLLvlP7qD h9d+RzgXoSelMFt1hGUUUUSlzZNq9xS3DauCIU431BNzGnJR+6b0W7KOKr5eeboUhdMKQ/qVfr3V 4fRQN9NRlqkirfX0N9sJhUxvk6KZdKj+xA5+Wl7EZE7Lm4Fl/I6bQtQLL/BXSc1p2yC+GaK08Yrb EdIj88eWNfbckfWapLYR+qGtw0bddgLPnGVhnqGPdWyCJ4+Nhhlxj2Av0V/PtLygj7pMpOmyZd33 Jvdb9Bjldu+406aDDwkCE7G80T4kfiLm7O7Z2BeHxjIdE9MXYClHCWHGDPymQzIdzxzFlgbkKFhZ 10PHuhuNNQdIIp0bKc8cDoHYmj9smROFNc2APMtYkMorFV5yMFpjC6auOFhVOnevkVpup236mrW2 lpcfnvswJrVKXN2aO8lYfm64XctzfKuvQZQ5+WHZg6HmLQpTi8EYmpEx0PJyw+MFMHQfbc1qWc9c EGLMeZSemRti37W8+LzT8nLD65i+C3drP4AjfKJ5s4zl54brue0HK2hZugdFLU/By7rF+IHpBZ71 ED/QY/kzEM2wNzRQF5rKLrk1wPL1EZa+nikjit+0bSwdaAtjyfvA1Cu2SGXN6Hg6tMOjAwkGfueu f2T2Pc/UXAZwOj8cO0D7rMO6ghTmKFhZZ8lR7cB8tjSvb2FGbrQOXA/lGOYhDNpwrPF58Q9RyPlG FFgfc/BgFSpqOoc5uRGuekNbf3cU6dxwjhufJQz4nb8+clnmQUO5upA5uWF1gqFaQQHf1fLUH7qj keZynZMzoGTaImxLeBxbco84bFTvri7fq0XIaYVe1kn/HtB4EG+VMqmB+c2xxv/gKDfzgV3aVtAY wl8SnsxZFORP3PfVkuSkApaAkmEU1EPNkoMAx9xP2xxYvmMFPyeWp3jYxJcZGE+BbdnuWMHDVG4Y p6jFqY5lTuaGco7C80PLu3Sh+mAQRoNP+5IbNuxY0Xswp3PD2YHLINzBJByRzg2HGYGR57YG1jDO dYXZi0Ida+yMylLQsi5ZoPod7CMSlkjnRuvBs2wf7TI0v44yKwot38lEwgwJk1K5keuMJ9ZgYDmA UGD5gYNTTYJM+5i/BeCq7OF4gMqhCrKWmRvixO0PgjE6CxiaNvxf0TXxZQbsDDuYLklecg87OyAu MDDVPqGyZmCZDq3dUXsW/M5dv3F5qLkRpFRuGHBDJ81lBUfm5IZ1aFuXcEWwVNwAmZMbVrejxCXw O3f9ke2ZgeWMovhEcnPDtO4U9wi/VX3jt/PUQzrD5ERFl3YfTXWchJocJfNO0QZ07tD2Di3nI2rd q+kRzc/d+TkRkzJCOazfuy210jmZG0rHIkMU1N/UFkAkdwGYdyfVYVXf2zCt4GQ9cNAlgI6WSOdG qGs7pvNTFwGJDA2lXMxh1zPRCr1jq6NBZeVG7z1LAS7tthpOLS83PM/SzyxK5YYxsT1UuTW7CpDK WgCa71tOAp7KzA3RD8Yde6wuWiKdG86VNbB7OM8v+/bA9d1RX/MHn/YxdwvvLdyVUA9EG9wwS0HL uiYsz8QHSLV7cjo3WuggCYk/Dn6qharycsPrAk/U1cXpYUZuSLBd1A/VdZ6Ti0DRViel8sNwe1Yb nVbExHex/PxwWZ/duvsxtvS4HbH83HAZn8CzEqJgyssNj6x3NRmXSOeG8+CiIaYEw0kFJevUB2bW sRzbaVneQHttiWbnRk4M4thXUiiVNQNaBo7k1DI9NLI3eDenWkvyJIxaDNMZWM6CguYU6HwmBi3M zg21bvrPd9xVCVLLyw2P0UHvFfHpTHkz4MmxocQcCyDpdpPflA1z3A0tTsgQb4YTTmEA9PI+OA9N 32iY0O6gharcjtGdaSCzbvTN8QjIRo/VkAWHjd6vdfTX0e4PzQHkik+sTtDubxLNhBZFFvr9jd10 HtTOSjXb+nrkHO9Ud76cFfo/2pWzo+LO+8bwZ1C6ev/8Y+Puwjy17d4UN52vvr/6jE6TTPSHYbwf uC0TqGRb3hi9cTodo+YOR+QrI8zsiJHpwiihJReQlHJ2YJMyDvHQIJWYU6sFZ60xgRIf4Q7ldrvW wDFcaNtAZQV31DV4n0T3d/3A+Dk2HsbeT8hEgm1+f2VsGGSFbBpnlvdgDWLmWIj72loWO6pbzRxq qos8PJwiVmcJcynhVyWXFZRwxSKNm9bW3lGOkbRY2pJGSeQpQmknYeqW5qf4E7MRGvDMxT8R6zll ckSW0OwDMnQUOM0miIvWYvY7KVZ5qnDcEEcj8RQDHqq3YdyuraVZ0aytKQgxQ5xYxahxS1jvXSaL GQYFqx3HJ26ywkMtDUv+lBYj3513G+/+xD/QcaHcLltNN+54++etMGGY7lUnTbMvu3FGQrFv1p8p yoGz/kg9wbfUaVLlV51ONZygTmsFpy24RK81w4cUTCM9jaGlGxoo7FJtE97+yXYFVE9TY1fVUm0D qFNpxTP1LK9u/y8eVV1FXNEhVfGe6JBaPhMhcirO/2I6xJWuFS1SFduJFlPrZKJHvHYmrH8xVZSS taJHqro40SOldCZKxNS9Yzho2skKiVSdbEIiUTzzHhTXqU4h39SNiM4UPFJS1Zr5XGGHKkJZmeoQ GHnYM88gWIc0PWMBJqIl/O/fMBnRJWYvv69fv15bS1cJRjjSKw3q9XJK3A6jOrjim65jGwKPqcYy 1FtdLXX6NMij7kqkohZnKKqSh0JonvRDp7ebX+1UtU56o2J8QnqR+qdOPs8chTQL9TA5JXUn2dE5 QyTtRw1kqEymAISqiCInpkzIuUoVUKRJnU/7LdTydDyFYp2eFXGBpau2ibZjymmiW0qNTM6VmHJY 2FvS59I6G2phSfdKmkoVZ6BWFP8K9ZtEKtRJki6OQk0jTh7EtIKUCzip4sPpUE2HU6hsI35JtRmB ajAUv4QSC42i6BWqoMD0C9sQmiNhkhVAhBhe5Ekljmi2UM2g/xFs4m000AktiDCfdBv4t9BR4ERC oUDRQfP9FD72cyoUlogn+0jmWI1y+GjOKfXOLZHlR2v+nfa+HH7SX41FzfjjriSIOCY0kmjPrZyB L6b8i98+RSvyDZPT6h2S0/iWyL+ir4KcZ91VxPudxCTyKKdN6vjbmmieX8ZE2/zAFXZff6eSJMF3 JTlpxWuRwFQ88USnjvZwwxksmuK3F87h1xP+rb2ChBnaQ4ZoVrxEcCrtyUA2hZRADjfEOJTli+5o EvkQWyFTl/1FwbhMyE7E5dRhiaiUmXO5DMuIOSeU8nJKCB3C/kZFrjoIkpiGwxyTdGoTjwtHElLu yJm62FAvRkI+3UXPL/QWdlssl9aNSoGFVbrLsJ3y/v6OanwJf2Hsoye7vzBz26yYFayj+wsTXoc0 d2HFSqFS2S5vb8fchQEvhyUXdBaGUIs72wJqzFnYTgUyi/ull/UVhu4CsQdJ6Sp+/pUiUsTCzO5J TJJ0qiux8op9iVGL2Z2JiYn7y9x/UWAj8v6MDgPRpzTuHeQTfOz/I/R7PrDRfaDqOTkVJILD2KA/ cnRZyK7yx6OB3SUPwuikGrgBGJ1nDDBBkQk6GP0Fjw+jh87iYBNHl8BB33PHPQ6XQuLefxhVpD60 hLWl52kKFTBy0fN56KQbFip6PUSPieiIDmc0tj2CLQIro5Nw0x74ImbDxHzmuDPofB6DrAgn2hyO Y9J3gVPBkDmAYO4YWVndl4XuD6e6Lyv32pN7miHT/ZdJVCkkiZyWypfZf8d12rjiSRmnLlIsSdKI 07ZklLAlVx7+UG9s2Jb/z1JhPFqHvycW/AX9wAwff/NuRLfv10+l3f/Bonjawj8Y5MMMkDqQCFys yJsbJvtY2YftrWVqFtzaW908q9/qwHcRo8ML+Ov8ogl/Xzfq8HezenBab2zir771DP8AwfHvbtdq w2EFP1uYyxjUGlwSWGr4B1i8YOzVgVnHGy1k2F34C+Yq/O1YVNfEqrhi8LfzDOO7OR/9+bbQNMZ4 zrR2ycs+DjXBUUWM79+hQKm9h29FxUpnsIEHU2l7f/j9O3wbYm6xjAmsyH7jfnM2WV+Jk5k8wZnU OK8vjrViYQwvdN9rwIrF28dGy8I573YNNF1fp+gT67jYtnBJu2PW902+3uqgYXGMMIwUAAHgXrAO K+fRtTuYAWefN6apjC3C+Qqc4Dp69Lcw8IJP9F83HoHzHrtjn1rGE3zD9GjV+xPL4ogzbXRlSxuI KRRpZiMFDAmF+vHHI7xOr+PatzESRvBMAR8EsHV85sCnDWjDRrejA/cREOIpRt+xcdgxxsBCGegO 3un4fXuEIZA8a4MCvjwFGJrhJ9KRVqLdZjx41YhOjX38jmct7n9iY4BNxRuiYy7c3NBVr4hCPLVr tLlipDjH9B6Qor7pteFawX0WUGmHI3z7Y2BrADIF2eGIDuMWslsYN0tsg7DDOnAnoJgzTD4KQAa7 L+2XSLMkvePqEHNXRQdOFod2ZZwVojdb9A9GLCGYMWWJuZMbd2QAxttli8g/hisybu3oVRqJj+3x DKfdusPP3SnkBSrxXsHoMSAKjuE/+4FFIY5aVt98tMk9sonh456RTjADcO/zZOQ2nFgYiwbWG8Wf gQUFs66Dkb4w7gWH2sDp40BnYQgCmi4mxmlC36DonBmGBA9NQn8axuJ0BXAwXdHXM10nfAph5T1y 4AwP/UCzP+lIPBQ6r6PjgyneWUIVJ81dpbZzYcADjNeUwGr2jOBY01cYz4UKR2NPu4nBxV80/tXB QJzaFCioleII9N3W1oh2ezGC/mYPVsm4tWm7iofhyF+8v8tMDrbGFI7t94n+xfDSA0tN5ypkQBfJ U2BgQtxE2hgUkPgKjD6GUWskIFp5FFEFN0fCThhGfHeoBs0W3AUaZw0M5WZZDnB6uNHIZig4AjpG xidnnFlD5GTg36AtAw15NN0oIIrtYcSoR7P9zMTIQwKTtnpmDYl/Om8c3YSRsPKDE7G1Agwwgbc2 D5YTBc+DoVc7FobMw4n9jDG9uhgmY8KeyDeNj5Y1UlHv2rD2ODQjhb6iHnfHA1zOKXUTcyv1mSTK xSmx+faPTmW7swVnFnHCd9DqnSx7x4V5BjYsjli4xMwTdKLlLIdd2/YouhaH16EdR0zzPE0g8yeZ dd/g+G4YwIlnIfr2N1qeO6GTDWrYFoWDgwnl+hhpErOv6g1EIeTSMVwoxdcBDgEDoeXGSXQbCY57 +3j0SEwNcOE0nEgOin5FbOyPsRv8zzUVgRKbm5sqF5FKlulGy+DdO4yNhtwL7RbLThKzNIJJwojf 2U7qvFhmS+L1CLwJ0gKHQNvk0uFshftv6tZNdbTIsUhm7A1pk8hbnof9bOG+B2fcYIJMSOptLblk aXFCvgg2iyF1AoxsidNMv19SPYySii+QVAlz+XCHb/8w+EwidKOMiHxPnFYgbUA7MIdpKGHxAJvn wc6z4XY3MEVIwMG9QSE5N2CHhTx/A+blBomJrM5GBa4Y7b3t3e3t4t7rzcdn8+e+0y0KRcmaFosK Q425I4yqRYEjhA/7sRANTLmETMeapyCGaiTcUaVqq1DcKpWpG57tWxtAOf4BvZGTdEOfhXgfo6Bs +o2wvP8/PseJ7MIAjemqPwfNtIlEW4cUfdHVAboeBulL7VNsaeGc2TInD8A6YzgaQAXW59ZQLTjR ixt5yp9zuACF6qaBC43mITP0Kbcp6Gr7AbcB4cEL85JMaPpo6Msfrwd0rkul1uQnhZk2h+nXjOUe b7FBofhkr89wQGWbaR9Vq4s3eu1wpGWrM1DQZaupX1fRrCRhC/YCt5skLeerppagq4I50qxZtMyV dqhnd1NmCuauohk5CDXbg93mg25MnvJttU26Q93kKZavmlpiqCRMigWUaAlzV9vOe1NfZNFs1dLi DakJgEw+7hcpcyP8tNIG712M3JRojLJX2hAdPMmGKFs1tMRgKZARr2TR7FV0SQ6/OG+S8yJxEC3e mEQfrREmZhAGAkj9tIoGZScuKdRgom+UvYqGJPojfbuI5K60GVLMsbwRxlVONqd/Vc0uMR0lwZqW qfl+iGavooMSIgWFT2mJ85fvVMinBROMZ+Px/UctL7W+Fd9Lkbi5+NJdlQy70o5vtZ5ah4cNbvVi LHXqV9LWu1ka9ZK4GvtVhasKdpjU89GCRFydMmETtW2KM6WcncZnH5uP9I5miNcxe8iBzuGijM8f yHALyfgffHFK0DNxo62Z/tgc1FCu7vkkY2AFRQGHOyuug+1YuF24swEJ2lb+C8NN3Tg8OTTOL5pG 7apebdaN5nHdqF2c1+qXTePiyLg5vjitNy7O6sZZ/aze+AdLJyJXDBSYkRy0ZRktF+XtRsci2TYF TMankHDcQsGVeIkwRgOzTZJ8INskWQyBwkh7PUuK1R5tgGs0x8PWwFs3mjzLGRyLfkX8v8CYWC0f Nb8oep7FIvfIk/B0qkRGbGtg0RNX4NFrGD7PPVjWCB+98IHOHIz6ZgvlzKbw5jJzDEgye8T3Igz+ d4qSY6kmbTR4tKliVIobn5yYl35j0rcps+W7GDV08Az356F1Z3vK5UzKtyjq+RzGtCwCIe6HWsYy QJOrQoJPflqqIdfpeWbgn9oP1snwyH5U96zkp2UaOjSdh+jtUeZEwWaB5Rw6Otcq0rnh1J+tFiwv jcuROct0FUVTQR82Sv8+fLuO5+ZGtW+ORsp4nFK5YRxjrZo7ea/fBvXM3BAJj7bnTjoKoJaXH95w qNwxYCIKId8wHLuTG9NvYjxa1VuVlxu5Y3z29A9QNHjgaaxPLH8ZuLWx5uEhlr8MKWwHn6KDOw/v dWrdRLOXawCOI1bHi1694h9yU+cjnnROZMqqrNzQhmYHsRjaA0VnLW8ZEsROmbSDJROUKJAEjHxI 4f5aB67CHao1oOUp0Mmn1ykAXRhKimHes1H/VZEx8SV338+tceCZA1Y8125psfyF6RHyoL3uc9tk /vMSIHbHgzPUT4PF6wSub449zTXKhQMHLDIrcVcaCnG0RkZFo56FfJFnPRB7FASoN7QxVJpPPXs4 wjwHWSnUGNoQhVQGMleOnSjE2OSmJ+F+bGpbisxZmIYABJX5n+Evz9VcZaq8pUC7D9bQdd67l0JF RDUQ/6KayTp1w5qX1kiHqzKXwlxqGZ5bEzV9otlLNjB6buAmFYEe5kVBZ4DnmZ41QptuzXeMlrcM qg3H0oQelFoGXLNv1fpwzetfdK/cno5v4stSzRzX7y6rtY8KushYCijcGoHhoEscnLQa5pH8pZpw TT84UzNapJcD6Z5ZJ97gyPXoXw129MMyjeATW+TEDDMU0KwrW16gTcfW2I+UD0vARpUsNFhqi5M0 9VOUIHnAR+QdKR9yQ76x/T4akEiIYUZuSCViQypR1kTPnEXVLKKmpPDh9WU9qjLsB+OueJGL4R+R M6RA8l1UfptfNXuIVPwtJDAEJhoPFX+TUG7KN11qmPwqxEsiFn2i0KLRU8NCkiyZxKuspQKlRW+Z iHrXFS2jIbhS28sl45RtEy25ZUXWXO1Ok+PKJsSQGKTjKHoZzVus0QV0DCROSigo5oLYdZLzIx2t XCHEUpZNl/y1ZFK+z7dybm5uGInE3D9nP/nJDxfTPpyfJT6sfIUkJNbRVSK1W+J3vYxzxGlngH7u ooQ/cffJ2oabpY0LZ/C8VCtOzE1NaivQkzMr8aQ3deKuaIwcS0R9e6lhkg287EjJZl56sPT+/AXj hZ7QHOHU+6WGTG/jZUdNb+mlBy7Wq79g7MhmlwQmku16qSFMaeplRzKlwZce0JQm/5pxDVzhAv6l RlM28LJjKJt56ZHT+5NnvBZg1rau6o27xtVdzXW6dm/rHC100HqnhhZpgd0Kpd2oN08fybaHDdbo cww3wd7R7znGw9LJ5YnQXxbK+pbRgCuxHZBjgb+D+1NN2Ryxk4NloKFVqCocKmGL937Ek24q+N6v jBDYnRVqQmAem4wB2LY5IvMusjsEkGzDG4LcjKqSZ6Ht39gr6qNbnfz4cn5weFH5MDm5OBxeVI6/ fHm4/tByPrt3w9O7Vv382DJ7h+fuNK+oZDjoImXZyIKU1W2ckC6bOUd9M6BLL7I1NsajdWPC1tJj 0gJB1N74bFmijIppSJgINBDCmJj8yiAwMhA2Di9IC+S6UTeEYTAMvfXMfkaFSTDa1SEENAY20BTY iBoCGzbZ/bAOjGnQikWzODT+VQ7LvjtrazTrYma86E4rq+XuGhrssoNTYyM0eFzKEjcB6Nfb3SZQ aP+HWtnqHfmLbGojs22OeSy7UkKMF7F5pZp/XwNXRG9pa9a1tTVIw9/SQlWjL7otIttT/FncNJJG pbfqkCGWYFM6y8tqWkq7R1Fqgf0Cw1AD//sVJqHRns2294yW/UuNOW9Da7oZHi8TLHwOU87YiOc3 yIzW/wXWlqkIzzWl/P5KN6H8/gpbUHloMonC0FRTSTkEYj3lG4N0S8kY2aeYO2qr/z/CdhERjTo+ vc1kJqjo+iIGi8yCxQwC36QZAipEuNDCNojUpBy8pDKvbi94eyO3bWFbMXWezRfpv02aBTIqyOQb 7CAvLCxN93jgZIE0O7toiVSbuCmtsBVbrAn1dRSEX6IfyIYsUkc2pNl9TSlAt+xYk/IrWlBN+8a2 UOmoKvOl9O9sbZT+jWbFNBoIV7OpCIVmOOk1ld1Mem02c0mvS5Yp6Z90e5FplGLLj/RvbJQha64Z 2jagWU2oaT7jWZC9KTMUzQpC2zIST216leoUuwXJGmV9Ioyu6FyWCbdz7QmmLvg0/euIwYJ+3/u/ ZmWgdR0v2GhAAFwayUbQdMDAwDia2cBb5KBTbQJCewA1b7ZS9faVO2Ohcy8zkqPEfC1/TGi2q29K T12kha658DMa6ocr36QRZW/OY2Vt/h1RutY+C61pkTMcDjX8dM1lkRPTPU7kooawAhBV7NUgx9Vx RbamZMsZmk6srCsUXMOETn4kmFAplVlxdVCRH1PmDHG73YroWqr1l0FZ8y1ONtLCBPY/MFAD00DV SmNj+IaULvEKMzZI3VL8NFDNUmWHrn2lfqSimKbZqGXGtRHVB6VOqEpHlAA1KJpKH+doCniyFOnP yVQzrvKmDW6osKZnRfXM9C+sJqalo6pd8kOolkVp7UwKVari+XizF3pSDECdYuGipmypn8RJXZ/I EDvI68s6cIWk+hNK7YQ6DyXF/mT8KQ6TP8OzCH6JDTTUncBt6U/tD8AStTOdecYbUfrNW4B9S83l PrCMN1TvzVuAENUumXV2Gm+iZal6tHdTD6v53KnxRh0LAtobcbAisaUSCOXd3NxA789r8NcF/nV+ lkbX6mAwFaE4A7ZF5JTvParenKciqqa936iKcx5/wvbwPUZrbfZDztu8vYLjdsGOhTUX6ZvWaq7u Yb28PeRn5gU7qVVepJ/RtnN1VVTN29vIG+yCnU7CWKTvSSh5SRCFkJcSgTtasP9hzUV6rbWaq69Y j7ayqe+esMfNfzt9qztJzuJA/tU1Hfj/IBffS3qRD50uRx3IV0r7O/uq9YgH+VfkSXk9sw95i17b ZP/m+pAvFHb3O2Wso/mQl66fNSfyld1KEf6/sx9zIh8bJay1oEN5bKGyXRYtRB3K6/7IX8CVfHQU Y2+Vf4O3Zpp7q3Qvv4B3eVwU+txSkzhsMbt7+flP0qXAfuiNjhonB1/h8mI/HhbKw6dg5969ur76 WPvaGn36vD2pXfY+F8/CJ2lCLJez+tismucyPUFylccu00vek08xHMSLYJrLdOwojNMgzVt6vCrV 0MtHXIHPJ2K5c/f5/uHpfjB6rJZGQS2k1Er0MObY7QO7+YSTWphvHImU0k2he0EWQJee1aAHO9W2 gBAtZ8Jq2hgHAsXTqvHeHJhPcbNIVR7FSly2uGN8GMNJ9qdRKL8rFIyDRlPVol9z7CoWxPHKMgdG wxwExik+4U2tpWG699dgeoahL1AVxTNqsKtNraUwLRUTmGodfEFUiahnZsez4568UtEsh2iWMKzs LyPoARwE1sB1NEWy6TjuSlIW3pV/HY6fzYHlWU4vC44G4CWQLO7NJ6QwJJqWH24NUjsu6oVaQ/je fEr0qWBsGKUYptdwGFva7qXhNcuneFI9bypzLTdq9Ty50w661s4WHAB3Q3xHgKMJWJ7OHWJ99wjs mVxVd8gsWB2hV2/AeMUWy2Ltd8rjXm9rbHVNDtFn3g0ssze27jAY1iAVqRCFM/y2GiQq4x+7W/gU ltJg4a4UIUOA7GDnbmI7khb4Wh4bssgYpZ8fVOSUems0hFIRnz6RynEbNszLbgJjmAO75wBB2vh2 JaxrLoXbiKiFS2rRrOXwOShr2ctBmjlaatH3h1lLXgoPpKswzkltoFhgKBFl3dSS+Emt69OjWuqi zgDoFO4I3sh1WQE6Q4XMKC5RcIaydyqEYjEBYkrJKN3OaosTLo0ZyFAt2dnVF8xLPvyk9v9iiWDE DoQMiOCnTGdNRlgKA43W1wEv7MXQU7WYav8hUPIOaLGcADGlJH5SY3Z+vfh6OLcmGGt2YMkhylAp OXdXXzA38SoJEFNKRonXWJx2DXcc9M3hKBCezzJUSfZz9QUz2nBQOspCUFY6P06Mx5WFLRtXlj8e iEP1pRkSFH4y5vMP+sPQn0yGslnLXYxGGHSZfRVkKM+0SZReKb9RP2Uo8ydHcRd44cyHHH6afT3J CqkKdbOWLW0UDGGI/UsmcdMdGQ0UKgovLS89gy8HGKWaEZ8/fy7F2M4vWctecjxKcsBTyjbdwBRM 5UtN33NYUAxn/uRI7m6/rmCy5MtOyqrvYxz7/07LlLL/nZbTC77crKyNPQ+aNk6c+zEaV1D5v9fE JNTECTe/dF3oJhse6qAIgr3UhDrbNK7ce5dBzR/Yarhy5hc9BD6MNPpR+TxRaYXzIR71rogpYHFY OZVKcN5SMkfS9t/y0IIpDBQlFU9VTD1iQLiVCPA02FdW55Bh4zNYHOYN5CmQUWFriG7HbfubPdft DdjqwB+h3M/vW1bgb3W2iuPqQfdLd7ffuvh8Vqtv7z+a1vNRpVc/2DOrreum7x/sfrGqpc7wuLpl QaOve3bn9wJjokJw3aDBAr6i3qBw8Q/1QaFHvyJrjil+Zvsc1mHeAAA5fLfdxpfj9oMVBuo5GD/j U67m+NoaDDCnyaWiCCTIk6B4ivB0u1gpdfYwPUJj6ztSAHC7d/jyn5Ae3xV9fEs0h2IGwG3U4J3A xzflBinbGWf4PDhr6NJQi06GLSHHtQAruC8IcrDEuEnCXaMZfss977quG7Sgf3271x+g/kYE/LHM nTW86SJhxZeP3EC4RIlBSd/IoxVLC9csL1yzMrdm1DXbHFt0abatD+07tJWGiymt7z4qOKCSgi6A ollGeiEzfACEj+c5nACEajF/uYW8Oe0l/fPV+ODLdq11U3Td/ceTO+d4r3I/etw7rT5eOt3dz+Xr z8fF+1GteFKZYiGfDNyNDa8Zt+HLOGlo8s+3xnfHgE+oNBu+3L01buWTNuSHL3WQnfJ6/W/jN3qb e5sKJ/bsHIOWfGGeDS0mDY5CS3sFng1Oe76NgUq+1M6GJJ9YY3CSr6mz4chn0CictBdPDZD639oa QkRRwFvxNIlpXkxv2Wz7ll78ZmjupRwN+R8X396KV72cDS3yight0cNd3qYWfCsUBF8z4i9+38nk 5E9EBgYK/o9PafDP5QAVy98f4s/A//O786fxbuOdof6W/+mZ8m8sXyxACofy9KiGGo3yPQmnVviH ChZFQXx0wZKxJRMvv7ZWLK2tiTpinhiYHX0MgCKUW6CykX+p1bKAgKJtrB8RU8fbLFZE6QYX1uSy 0aJM5qgUE5YNU7kGfAoUQyEi/POnEUr+4CcXJcrpxFUJ/ElJ8RdiVT+FmiyAE+jxMvrTQOkY/EOC L7nQDE0uJQeeGCAoeomwavQXXJrhH7oPxxGS/+moRJHCS65OE/wjCRMRQrwUDmkYhAjE75tybCQS fN2DH7GbnDEFC/wvuibEMvjuiOsZJKvUq8ilKhyW1/KyAxtd7FYCG2aG/UG/3KCWc/QawltMGoQo 1wp79vdXsdvC91dqg3qZ64o8Cl7jbQOQ128N8RvDv3+L3zTe3s7g4vNtrgveJeiIT+Ps//3dyUj5 +H0BxzDOzk8fxeSFQNKUD2tkkN/qiVIkVY6kKrkVwCUruZzu9y3qeBcLBWZbIwrgO3vFkmo8ov8t 2ngh7e8S/Yd1NO1vqcWqaX+XdvfLO3t7pXJM+1tNM6ywoOI3Aq8UCgJ4VPH7tljag9zyXgXp9lL6 368aaMtGpEzeUvA7fsmhgC2+iaW3Gv1r03nWB/dl1a/73zqDg+ZG5ezrRXD8sFf9YL//fPm5v9N+ fzPYvr+5qTxsmyd3w6fO16+Lq1/n1zmmS750yWGy8Tl+mKIfKLaUbvfJftQ3FdqU6Dxh2HIoDMqM XbMVcKNlwZ2Yne3Atk3exYwh8rk41C5aw+C1d+C6D3Cs9sYw4rCVWD46IEsJIJ0uplDNNWzcqrda cI53jR9j2J9hQvgGTLnxgBzcmD62Y7O9QKLnqQcD0UKcqD4eMsIDfse0AXvVyBCdU9GOP5UalExK Lxpk2rgF+6Hjd4EXSCBuoq+Qvwj7JLpHta3TxhZuq3YbJlXbG+NCQCdYHhrDP+Dx3MJ7ZA9RjaAJ CB0dfTn5rNVidFI+zMXjIOKvCD3RBGykj913xYtWsto5muwTE4EUxzvPVos5jHA7hBMfdrMtK2iv A8nJkRz+G51qDo5Irwf1YoNMQiAbvX8RmAQWueROK7S06Pm7tMFNt7SguSI3U2VlEd8/4H4eW/+S F5mxccDNfandgNmXtbV8a/x2+kSfwQwmVw3JHdaMxZbqypBAFPItv5SFhUDmrR0ss/BCWVtTiwMG Pboe4nMQJ5iceDnNdczCaPtD3y5+eC4EJ53qZeW+2tj7duSedcvbz/ee3T87GJ+Mre6Hvr9SS560 B8jk0XRE5uPJDSBFZC1WD9ylNnuDrfpV6f5cCLDRrZ4AZFx0uwRs1qY4A+zB/qRy+onBHqMlnoA9 SAR4yAW2V70qDHZiYGNvJvmhml8+VY5F1AeC+ilcPMtALV6Mhp1LhkreKNAedxmArWe3ZIqhuoHF B6ucb31LoXnT/jG8v2aoZ+Y9rJ/6I95Il4E5cXpf3ovwTme4CevTMx1m7CE2OcNrodFmoup0dHAN b9rBVrFnPrQE5S7wHoiX9Cs+U3iXnYHZdPAzDiBua+orb45GNPDbXThlhcf50FXFKtHHgxGHnls4 RWEAn5YLz4eIow9qiA4IbuBfWs5C0BMd4PNL3PUTL+1Nzl9NUzTUYi3CT+2d+aj6aRax5k70a9/C c/JEeZ5MwJiOZzjjy+ZOtyvY76Y9YjNn9E2FZ+HslTgFOB6OIfQd2xw5uwK65Q1XBB65kmcYwXGL ZXzk3u2Px99P7Y9fv0w+fDz6JvQLYMIAVwFHPtyaOXhVef9/fOM9MnGLNR0XL0J6jNMeRYufetbO fjB62nk8PuoPPp6dPY7O3xceJruNn92Ni8fi5dW2M/xS+PLhfYVEi3+M/dHv6LrXDsNDXHrWiJJE pwYwPUM41t35159UXOUYD34GFaEwc9O3233mH5DDwmH4YzHosyhx/HDTf2rV7ebxly+m2zSP7dr5 p+Hn3qT55dR73+63f5jlqvWpNnq/F64+8rlp3KOb3j6swYH1aA2MHdbxyoWb3vFW3+oVuYEazhGk 7HiEHS9vLgB6Bkcc7n5b2w/jZ7O3Va7cmc7deNQhEVmbXJ/5d3R7uAvcu55wNzse3aF7ZUGEGI52 abfw/xbDUg19yym0GHq13R6jDyiaW+VNVkteHPJTefeniNJddeyhiY7ogPmnLi4GetaMau5dbVx/ sjp7tcnF5dVk9/OTHeyUq98uh+275tVFY3tj57R1aNYuT1lsn1xbp7ZP7kQPLxuM5IKbT0iASnnn vhyaqQvYgenQVWdR+OEBol2MtMkm2oKLaLhDmHDxCpcxuTdfYC3LNs3u1LYC9MVNKEGT7DN1Vktz jy58ZDVq7PMwUXsKnpkW3/OTDdfwkfl0x8X8O/xtmX5wh49Zd+SNA8W7d0gtuOu58nS+ograKXFZ /UIvYAaF0cBKM7o8BWltvmyPx0+WuJLUr40j0+ki20QtXJIP4iXaQeKEl5ShX3kaz+jTEs1o3Snd P90Xf05pJuzcEk2lDPcAZs3Ws2kWu8OJ3Xp8CEMZ0e5zSr6EgHVrP+hsrvFbeXP7bdZGFRV7w/7V eF80gN5eHq1OZMamdyZLaM1+CVPhC+8l7vnvkoJTQMUxN0k3o2s6gek/I2NJZKDYDq5joTMlu+1v dazAtAdb7d1CoWCW2uXCfmGnuG2apXK71d3eRr9ExVa5a3a6rfK2tc2dqmwW2OhUdYQRi6IpmPtj N+jaT+lowkY0Hm76+GxkbViO/URY8spkeZK/tVvcrVQ2zqsbRyfn1dONo+p5s9r4ugH82QaDtvyN f5b2PoydzY1SaQMXxT9L+3+Mfq+USrvQA8k142QCrnfwe/E1CuzEZ+4S1LaMElt/zu7VlYVBNywv pUMp8y6xzez09ncdc2sIdL8zYadhYHiujzx3ZHmD57vA7N2hM/C7UB1O7DJNs2eYg4ERZs9Gdoc+ YL/JWzgXocwcRZKKsGLgTA8DdQRjn3r5+sJBuSajybdFVMCBz+9QImELmwCFa1QVtxLmK6HzPnpI 5x5qkuhomTS8cs77zl5pu1Cxtgsts7Vd2C3td7u7VqtYqJjtXWu/s1u0YIrs7YsrAR09p1ZKuNTY kwj3SPavjKkzEw8Qx3TalvHbQqjD3cffCt8st4QSKnrqVcjwbsUNTj9Cc7Qebz6k2/6eWW5tl9pF a2+7vdvabe+2t3cL3fbefrnVKrfanW7R2i63xSYIk/bG9QYd34hQ4cN4sGnsvH1HWkOkRmrUTW9B AVa+DlR2urD8ix2zbe0UW1ZrpwD/s7qlolU09/cq7W2zVSxapjhzp3SgiW6pa33T6anOzMA9bgdA o9Sk+Zg+I8R58nW40+se/OrhXmqh0Brh6C/4XnDpuZ1xG3JOTz7XDfTBa3z58uXzyckMaq0O9wpg asKk7O7vl3d3t7uddqG8X2jtW3u7pXLJLBesnfZOcVecBDXYYlvACRg12BhNu+cYdXRo7Tqs61nc +8cvQXqvaO3DerJ2ujuF8o7Z2Te3t63iXqlsWp2d7X2zuLddtKxtMUHPrYlxQY8A5sA4Cayhb1Qf AQw+p83CN3VKnruB3bamzMkp/Yitsl89WfWlvbdXLrSK23tm19ytlEulTqvbNotWq1IpbJf39wvF VqENs1ZQ7spq4xPdM09WEvWbjokKjKZRs5AHDVd+02r3HXR0bhzaKOMbDwIbqUQLX/CJ6VReVc8q O4W9vd3CTqdYKLW65d02bmGl3c6uWdnb7hTghtsqmaWOOBmiPVNWMZeNc5WY3avKr+jVXqHdqWzv wfqE4dopFIqF7dZ+ZbezA6xoB/jR/eLevlUJl+eV1TM9fLvDjRd9n6MKLWoTwdxHFdPAs9v8Jolu 7pkJwXAzXeTA2VJgC65MXQtY6I4Y2hmdTF0gStx7avXgPsuKHdGZLZiaGHOVwhegkjR2h6T371IW 3QyuMmnzhfytgWpiqk9p607ydYpxiT+KJ/BQB9KPA7dyIuQ3UUl0/EGcvmgMXDRoIuPiJvaAA0uL 4qSedalqcgYeuw6517QMkvIb1z5MiSpGE5FaF8lKZxjGLcFMJ8sdue0xxlny4R9UxsJzQD0mJMvX n0YD4BCMsdMGenp6mK0pNQ5djumDt98ABTHt/kZ/zM/f+J6MAdqGvI3Oq+yPhJOoeQU76MIeOUkR ZUp+4pBd1NNs+OJAczQqY2i2PeH4KlkLfy0+q1PaDMIQH7TgYSlj7syVHM4zffGdDFHtD13po8b6 1OUn5v1p975ZEw9Li55tajHwlZNFySr3nSa6R7EoLspEX9LA/fEHi9V0UCQgMCqbfFufB6HKYR3D 4jqgVKpMGb62vOoOCv2dzpbftz23ZzrWXd+lCGR42W1Zd6JzHYzaVSmGsvywsCEKKxpn6gPuphsV IaDXe4Ackj8EznPUhwPIMEfsECUyQ9L2evmUe2o7D6kTRM2Pm1KneH283PyIg047SMWlBI47czCE v1uu5xgNW/htmUeseAtTTmt1WHNzqNp0GuYt1BBNj40ubIiwZs2B1pUjyDOamLkQYP0F+OjoDnbn u/q5wJo/LQR2lnCKv436Iib0ESYXa6S1ObS2jnAAjngA5Nv1EVxOW677kB9uuDr1h07UvNsiEZqQ oEE7gvxfudji7VCAmp5nDjUKMeiT8Mtc4LWBjTLNQ3fiDFzgQRKNqXV20rD2xsKT6W/nVY1JnVXL vxiUGnVRq36dsdZp7cu+eSZqfbicxRCn7h9XGIrToliY4llh9h7S6hW/Oau67IfKcrDtMUQtY0ZH ZkDyzG4UEmQsBqk3MIcY6zIKLsxdDOZK1HAjkKODc/G5MvgmJl4o5pTjOgPwzJlxI2JvzZ4XX3qt 3Ut3RfNCgIZl2mnhkmWwQKfDgxm9mA6INVd6wKcCQ9Y2R7TjMFCM+OcZdcqN+YzI0QDc+QZwGQhc d+Bvul5vq9MSG8x7/mI08dNCsFuDMd4pAzo/GOiF1wGkhWP/g/D7QtCZNKZnP5sDVvLkJqqcoz98 0e0F+/FgLzBLcS8ePY5M4N71di4fLykrP8AQebxvw+nnUKROBsqovg8/LATbcja73WJFsHk6M0DA j3Owf3HQCNd0egPBEuhgq5S9ENS+ZT7CVY7Co2pwj7XsheDyDLFc76dlolsFjnautVCnT0ZNfpvR TOpO0+A7LusukQI6FZ23ZaC+tLgdo+a1uhqKGL6bidb59wlFWpYz27PgNuxjdAu7a2DYDIqvh2Ex zBD+evjDAGYB4wqSLg9HSfTNrpW9JSF4QNAKXQrerncFlzV69ME79sjFd1mON94WV5d1ow334wdN aCZqa4Kz36CuSjp+d6J9tAkxDvlbazRgK+m+NcwuCqt0hOErmybgOQDXqCndDMcPiIMq6BiZnREl G4L0wbstbRbDPv/7ty1fw/XYHnTslkfxNH1j+IzBl131mc+TJBYU1mRiDwZhuHvD9GM3wy0fozzj 5IBEajM8ozXcqLGZc3lafkKWFV9YWvQ1WmPcdqxBIYqi33NsV6TPFOLWUVEB2XXjy5+f9Us72U3O 8I4irFhyOEfJr89PnYI7CQB3/C2hL4nnWYMvM3W4zGgnDypVnp1daFMk1sOTz/rEPzoqVt6iIExc /o1zd8Jzkh7xYB15FkacRJhXl+/VMxDG0YPZMEYFVtqNS5sFrdHohVblrxvhHgsHjhDrhtTmJROR JybnQyiaYAKFKTUReC8CWmlRe1rPRDxSlcIf0xqiG5UhrlRIKeP7uFAw91E5h3x9oI5O49N19apu 1M9Pvhi1i81147R5uEmPDVdkzoyCa2Qno93JMif/xh5z3FrgD+o/zNLFx8lp8er85OtVf3R+Pxg1 ve0frerTttee2B+PmgdmYYrHnFcfxyOXwm5pq4IWRA+DyAqF/+/edxmNOGpcIq24BA/NdihvtQox s5F4BbYwSa2gmd+r8mw6kigvTT3i5dkoRC8vjTjiRdnSQy8aNc+Il2dDDr28bngRL80GGpHSKMYX tIyXZtMLWRr/fY1/qeq1cB1pEKUkjVW+hFWBhB0qh7EdhY5KzMIhk22eVj1qxRBpL2LzoNeJ2SVM bzIsoVfWbQ5kzSlWCun9FFYE05uNGiFEZoU0FCAjgekgiFizxjBpI6A1k6bvnxhKNhDQsWumKfJz PV0/lnX/9Yq4sYba+G+EFr6qF5d1pSj168CmqcorgLPUiZdR1Y+MVIo6fZIUrIAfmSZT1N2zYZ9H vV5vNakDnxxuUpmfUYmU0qOjpk3IxPvBYurwevtxtfU08qKSe6ROXCE9pRLpr0f2i4SCeLbRWEY1 Pa39qBJ5EnNWPI/UnKkSHt0+0lXL06ClKX3HYEVUxmftQ7rCt9bUFVV+k6ZrnWOKLaT0rfd4jjp2 YpGwKrcOIdKRlD6EvALpZqdWDBGY3iprXCeneUTzeSrZEsrTb1k1WgcX03OWGIScEelEpw/z69fS Z5XQaL5FDWMJYu4D1WK6zISMaD+mqnwr1IHVlJ3xFLRSPeV0HWUdVaV/fBtXCJ46gIl5v5AWsoYF /kf4km7LvPzbVJVgSdxUXeJIY2trrA+8hv4SbjU13EXnSFZ1RvSSQJuOwCSqv3qLgvjsKMT0d9/K LuL6SdcwnaoiO6/VeLM59XbZYdYUpNLUXhfEJ6saLvr70kYhVJqNDoDYalhdNkLdzPqoObqx4IQi fObrmC6MSFZlV0Zkpt7owjhk1V2NjarUO11kXUXGe2VKnfOQiGORUwWVByGK7fdXl43z769mY1ZZ FLOsKqQhZqtXtlwQ8axaotE5ldDU1E+V5EEFmXF1zFupUTn3dI04qVTTcS2uWXkbuZiLXYt1Kt/G FSjRxasRgipuop+bNNVI/FraNGarQmKh8qaRUH3E/MqmMVXVEb9vb6Kz0GmqjVhiZ9M4dJ0301UY sdBuWAhVFTFjL8yIqyS+0VURseR+WDKhckikKWwat9r3dPXAfEOozYqknqC2R2lMOmsI8uAjryJ0 /NbW0tT6wkJ//PEHFpDKemG+0sfDz7cJ1bi5vWkvpoknsQ+V6bD5pP6cRh4p2guV5FIPZlaPi7I9 SR02WSttcxCo3UaU0ebtKGpDCasrfTPVGlIsppwmW2PZnSybqm8mYeNVQYGdcXGQOmSyqlD4UrXT lMPC0kJrKzoL5mp8hbWlYla0fpoml6gSV9C6RdWr+BizatZb+Fi/TnxkDSz8+OEy8ZEVrfRFl6o6 lTqzWGlKn1m65lMkAxWYIhlSDylaTNMkYoIl9H3iSLByUFoHNA2fVPRZtyeyML6gLo4s9xQq6oSj l9Cqic7juCqOqqYpyygsUpRrwhrpmjCyakR3JqwjVFtQMKGrtMRQ1FViwpqhsoqakxGNFrlOouon UcARdZVoDaFTIsunqKBEK7C2iAY/olcSltU1QGTZhLZIWDqhzRGjS6oiiD6rktocat7MVdngYqw3 8WYVmhlxgKtVwPgePnACQ4wKF99foaIFJGYrWLyJK1YwljP0KDwK/PD9u6428f37v79/R9WJqboM 37/TwEDNdOWIhBLGVEhygG/ldIirL/xlbquL6Ju6uJ3it7pYKe5XhCfjX+u4GgtHPFYLb6C6x+qd ym65vFfej3ms5kMNCy/qrRoAF7YLAnDMW/UO0qO4X3pRZ9W4/c/wVT1H8+ON0vj4HtdlQd3zVWt4 fH8VZfO+v5qp0QHrwAmHKZNmBlZYsRoG0tbM7u1bTpRQoSLh7ruIPsz/1g6/H4561aOfJ60Te3RT db7cB4/fqp8qvv2x8cF6PLge3Xz78XzndXq9zw+/0uE3B2bD20e4XtB5ruG4cNGzPLHD45sVnDus PTMllJsyBrrCizjO1oiSUEigxF0qINl4wu9izE94/OJuAHsO99NnPCjZ2TFNWKxlwCQw8ZmM8Y35 jkiqGAn5QcflXsvrr2/gxgJXcgD1DqnhkxjPVg/2xm98W3PGGJNj3TA7HXyesuB89dt9YMuMgdvm kvD/ked24aSCj+FFRNL8LR7UotGgbwbGo+0ib0tkHJgT47cxEgnv5M4YSPe8brRg+0fnuuuGFbQ3 3+bWbFqdp+jJ7vAnrYzpnqKbNMZyGSpX0a8zzjwcsLU1ObNuNS/S2SZVQvKTaQJx8Kj/f0yQ+BAh +dW45PSk/OFTr9v79nl4fDLoddxS7an9/mSv3+gdDY6aH56+XH61vzRKD9fN3UsZvkA7RBffrmiC V7XTCscslKnhwziQw6UHLgM2amJCR6PkRiSmTM/leUJd4kaYImrf2UyxqO5vh+jM390YXmJ3S/Ml y2BlI6Q9nqeR88bRDUMvAkcBCQoQlmhlnlY6ViRpHi1HOqWtDk6nILwV+Bbk8zrgaUh0dp5xIvo4 Ua8IOU0DlnpujEJBLQr7UvWxU9XrSzwGWcmg0fo17WWlzbtwbd5pa1PYb4SrNu6rNTvFTrRlKTaE DJuBH9kNEgt+Ha6O9o+xtQUkQ1/wwOsAJ921cVsmoS+UAEqzG3bfHtoD09Mbe8u3pRaSe+hK1de5 xC4vSezy5l3LDe5oAjGFD2DPpIlobBnVkN+mW2hOOjMQ4LXDfXILqA3wfOowXg/hFgyN0xSUnD21 tCAxKksSo7J592DCgNxN+q7ydvkRs4wbzspJA7x6WE8m3hPeabIAQRHc+vBAa5twuqM0ATtPtIl0 QyIsFbYTu142+mwvSZ9tbWWaQWC2H8Sckauyyrk5qSSrC6Bw2g7GtOLgKhRdMuJK4RMr4HEIPVi/ JvIEYu+fS4adJcmws3nH55B+BBlCupmz63jb4t17iJIkmPId27PaAd0pWVwKPJU49lCeNYQVQisG eJ7wsZH3/Pndp1PxMx8ByMJ06RQgFgrJOSB2zQ2J2bCYXaEXPz4RhKgKqcBulFLOWdpeUS3HfRT2 68selDwAzE0xyc8toAsso75LmnW0R/yBEvn2AwqQhIHUtFFgfM5YphKeH2lIXtHJF676eUN5gywn 22kI/yNAQAtfslmOSAdOz4KhxgHH8WIxYfr5jHRe6hjOT+GOO4SzUJC4OoJNCjXYDjl3NkUXbHFC OvtCY4zbnRllYTWtDt2wMTEHwmBCyYYoMedmJs0z6mqs6eHU4EaxzN/CAio3H874w07AGrbILanz e91geQ9+CE942rDxSYfnaI7r7SoNd4DaThcZsDZF7ctpwDP1DvXj29On9996k87Xqy+V84uuNars TWqnz62jz8ejvV6jMWpt9749Vg4Cd5oBj5oQMRFl7qG5ZVBSOp64Hr3dNHCdoGLHa+OW7i8z7t/6 8uD7t6hs3EYuJ3NBYFFSllndveTN1PtIiCPcOG7TLgZzsU0c7VPuHtSj/5B7Q0gUuBncTufl85NG vykQPVbJ34dIAwd/G+G38+MZZ+I5qNaCfLhsRmK4rc81we7mRzKFk2aarooTFugCqyt2ipA/zY+r ZHcJw5UyrIjlqvhRtdtFOFC5j83lGTNShvnQcH9EHWjJSIZtSb4RCcZsIep4vRA7KHsYZ9kydkiw fWrHT7OknAslwsopWIrDyggHmbPcT7uvGpQJZLvE4eVTf9ln3nWjmHzirRR3ysWKQiPyxPuqEaDu tGmgjSVrDSIqL/Pk+9rcNitmBevoL7+hdF97+S1v7+8WdncKxdjLryA7ll7w6Rcg7+zu7QnIf0mg 4lMbbX2eB7MegHNzV2LPX4Txpbm3yqfSnb/7S6n/9bHy4NZaxQ+njc+dWuuD92UwmDQ+lMsfflz1 vFKvaw171+43/7C9+EupWLwrewUbuuMJdXr6I5jftsMrROwVLF4R87TSOd9mfvw8udyrf7Su3t89 WN3dzuevJ9vuffvy/u7z/sPD9tPzwbPb3TiyClZ9pW8z/DCcuD6nbdCicwnWQJt6lMvAaTNmTacr 68cY2INU8XHkXTrp9fYwZCtwp6eHRZzxfh+Vly3L2+AlZJHat2V67T7cMwK7jYsR+U2DA8gSmQ1/ PBya3rQwhqglRgXQoACYEJnAlb7Rp9MZVjoaMgrVYLkHUFsjdzRGjgyPZGSMfsOrPEa2N8ajRzcA ZmFKw6hfQZiHrNQA2wDGwDF2YDdxgj7AH7BIMVmb4rc6vCmZA9h0O0KrbZ3U2fk3g7ad9mDcYfYJ D5aBQYp4uNehljksmulttAZuD9XT18V75jpwJR3LhX/xGtLzzFHfbk/zc4vcopokimfsDkwYXtZ1 Ce9SphxpRFONthjWdcOyiQEWTJ8Cy/Vw0ElTLwCg5gBvYGJTTRGYxZzfLr8Swv1bWwY1zkqNQzlv 8l84G2RDpDjorXv3gWPxJrsjx8psjX00TnW7XZgZ+AtHTl4Vptd0NvAks4iccPuQ11rTsdodnMLh 07tgnKcAqno9suUmuwkaHTgj4Xg2w7Ek8uH9to1j6NKKozkRTgI8qtCwwDZhu4+ucwvnHdB+SttE qA5ZCAGrYLeFo/9kQeDOgYnB+QKzsIdsD6pLWnjiy27y+ZKkV3zieFuRJIWcwV8JgWTHg9HQzd6R bdjqbBUOyt2fvePqzcbw87eOc/DRPO7XzopXg7MjESCWhSBGgyeeUT2rotJ1OPXT4i+mhelJRSo2 u3lOM5tRLIhgf6jwQRcmzNbvS/E4Cou2GltTtDNw0++tgDcKXPKq3Mrb5U34jx+/U2P/LFf/WdoF MsPfJMzHPyhZ/N2x2KcZ/glNaYCL+V2+TeNUdce+PlbqUX0m2vHwVpiXfGHAX0o9qkveaEj/z7bE KRFTnkpO/lTKCL37ox/9XUt4hEV/Pu1koKJ8AHdPdu8/iCBZ9RFM1CHcZ93eAgFtNKAXZ18OW2VB 8f6zHx4+i8LrdPdPCyJsNmzZozESFUZwKaCt6knjeSJeUmhQ3OFy3T7tN2uNUzE4JjLOcPAv2fX7 ++LxlQj9dmyZg6C/FLgvn8ufLoRv4BogCDdewXMtCrF6sn3arYmNyHTc9B0gH8za52D/WijeHKxg PrY61d4HceTXnUcbxhqPwKVgPo9+DA6Ec0DyTDFYekZWnivHh+JIObfG3kpoaR893/wUB8Wl/9zu L0/O8vDj6ckPMYnQvn6WS8T54D46VvnEZnANtx1uzcutm1L5U7kv4kJWgUv33NHyHW/8rDcrHwQt zYEFDNHyQN9X3u/UG+Hk7MGGbqVoseSDWd3+9P4ydGdsLY/jh/ajN7wUQ9S2NeHZDLDyyZsS8eOT s+PcGfHc1yM4/JEthcOZ9WysIeb/hleVwEZZNV5K0LsSv1xdN6pG3QQWtebi3+jtge9zXI9+Rtl5 ZHcJEUqgNEChGnjab7iyDuyeAyRpW2iFzzRAk1pqxvgN27U8h1MbiAo3DRv1PCj8kpC19KESKCSq bOk4b8n+EDQ0WprSuU5qQzvo0mGjMmIH+IFOmfQKH4DVHD6jrVKI2vw6MIOIcHwhrJmBOXiGoUPR H+wBcLXYqKMYtUeXhSbcAPyoLqHeRKT3GTq4Sx0sZu/gobdpfHD7jlHtDMRml6HWxciCGu02Cgwu +apso+4wb+1jr2eJo3eZvhQL3JlS9t5c8jUSH2/tdh/NWS6fJ9aAFYEy1D9xfLTza6O/rkSdRfHP jj4ORmPsw+3PNK5c3143LvuHWSsnysVWTrhYOBVuEuLrHP0IqUIgDjAS8f8dlEqafUved6SUmu2U RgMTMuHyiB7aLDKy6toO+s/wNw2yDWA1GZTm4MshLFG4ueOZTy97Zsg3rxst5tPW+YYPp9i6MWLW nzZrEgfRwmYBAwDYNI6gKfrKwlsq1MI2Jp4dWOMRavDT46HVEniY9DBAvkf4wXVoPmCn0CA0MNpo sgw/fGhq7GETNG7L6biEw/K3UXK5P9u72zv70AYit3e+DBoPn0+r4x23vXd/9POs3uuOnaHdsKyj 7t2nKUouotXYE8xr8ueZJhaOqLCk3s/jsra41FkaixY3jReQGiPkEgniXlhKjA2VcWVkkgpj6Qqj tTIpMMLcJpjZpL5YfodNBv96KW84C17fRiSv+edXuNISk2umVFZNk3lSWDHO+aWuYsh/iZRVTYWY VFWMeQ4pakjB8M/GxoYcK9RNmy/gVLoDi8hRNW8B7OIrXZ45VUEhJheNgJsio5wKK03aGQGYJkR8 M0t5IoQ3R4oZkWBGpZeyfTyoyLvShrG2FhMvrq3xh9tQMqhQEvc4Fh8SMCimy/sSRVkwGBYVUrxE KZb0haVqmmwuUZSFeGFRKXFLlGO5XFhOk6MlSrK8LSzJ0rFEIRagSQxDmVeiHEvGwnKaJCtRkiVe YUkhn0qUYhmWJLWSOiVKsnRKEkbKkhIFWeQkUdQkRImiLEqSoyflPomCLB6S5CFpTqIQC3zCQrqM JlGUhTmqM0rykijKIhqJoyZPSRRlwYsippSSJEqyNCUsKWQfiVIsH5Edikg0EoVZ+EGFqYK2NRpR UcVaLgkFrVb8M1ua8CeLCf7U7v9Y6d0G//fuz/BX5CcWkRf5P/UbuvEndnbRy/d3R96e/4xeiwFu lhsvOj6TV9Y/p91FAZh+zVSVRLOJC6CuS5NFHW1VnkZKe3APIPUpPLA1PyO7pf29/b091fxf5mkk 1KPR1M2KO8VSYa+ysxNTNwsPKiy+oL4ZgC7u7u8I0H9bfbP/w3diuotG1d/kSvl1+m+4GvVZrZbP KxaNrFL/rRT4FyPzqmbXjvaPHi7P7clD5We3smcOrj/WeleHPyc/P+65F1dmaQn9t/zSGaXUkuLq I6I+7QO1W3AzjXpcWId7pYec6OCZJR2xt+WozDuttYs+TxnMlcJ/1DsFMg68E6dK6uDMCFtDwKAn nrzafQuYckRNZJPD0RA/pg6iGFdBmIkhCWpOjoyvF9fG5UWjaTSqzZOrunFxZXy4+Fhv4I+b42qz /rl+ZRzX4cuJcXNyemp8qJ4ZVeO4enV5cXFunJwjhCujeXx1UW3mlgGtTIGx9Gj/nOvGI0JouVY0 dx6aj46cU4JdbQCAcJRvM4/av3+bPQnQyzjAXvlYxamFFEiSKKf25s9B+bz88PTtwu3u97aLHy8P ncNKZez3auef7k9a39q7zrW18/hc+lJdqfZm/MkL8+ZpjMBllVScfVRTtzrxAOmUnPN2N2XkUF/6 iZG7sfMGNZ0CE2bSXQCHBU5MtJli8Hi2pmnULdZGhx02o5RPvByF6ZWAD8ye0Axowi889m/Qq+1K YEd2zLq24lYCHSbFYEBCQG6gAQw6rOKVwRdSUAaO8joXvatR3gz4mV59yZAbp0kA+w36UAxdR66z Y7amXY3FaQwXub0Jq37M9pPHX+t7O4G1eT8SbiCKCq/5tR9ct35Q/6lql/LU7l7Vn3efv6ra5Ty1 P/Tvf144bVW7kqf28NB+uLQOVe3tPLXvd0c7Py92VO2dPLWHz8f1z533qvbuvNooDVP1x7Wvg+4Y 61sCwN48ABHCVVrHj9ZANb+fp3Zh22ydftMGrVjIU/0sePrU3d/Wqs+fcLLyR2e/0e+K1VTU55qx tbWVnwGrZT3KtZYSDelj9JwSjWz06Xzy+Vv9w0WxKvaYdn9idwNt650OVCfd5+Jh5+TDiSLdyH2w YEO561pwf+sbE7hI4KqfBReocgJ3pIEfUoUhJbIVDPoV8xoRVTghtrBhWfjo0Xc9uH8Mng13RG9E +EyDsg8rwKgGbNoJ1xF6d0HC2x5cFdEL4x/GjTWCe1gAICZGYBEYunzZ7POR2LVxt0siK3yYGmJo hBGU8Z99CmEBxw6M4NgBzsZDAT/GVuiYz38YB4jbmHhOLARf8JXlEQ0qgz4BDvruGEMiCY/H+DQA u2r4AuYOLdexNL9RyDsNSS7VshCbtu2j8+GQ1Uj68oNt2omHAIYhJXSIKaWATHRpTnE4Qon4MKZN bnWsi/ntOl3gxDt/GMcYplp1wKSHMc8kp559azDCkH+KSSA6YMy+zdg8iPpBSZkGWbBU3AKWVnzZ MQ68S3ICGEi3g3PZQDKjZ3YmS4yJm4KYxIRVl9CLqWZBS7PpGSMykInpOFTx1vScMnVT4XIQuT2E lqvqnvDguBNeUaoOLctod+bSLZVX2WpiNnkDj9FEQV8nNPK3mMa9oNEvvuu+SIOR3ZnC/RiC5ZvR VPX8cF5zuJ2KLTryqJSGg++jmbzoMz6btUwMJJLkCFVbvEySc1CeLzAd3G6AOyS+cFvPJM8WsQ2B W7N+jGHDCQUQOWcf3RLexTAyiBo8pU8cwyV/7iiOQ8/ZuKFhKI62xePEV2KS08FSQaESbtsuRS2h FTMye9amYTRlWZSjYXdwO7fY8YUxcAMyDTU4dAuCwLf8Ce504wFvyGzuTZWiN3CAHt7Qh+u0YMTP gftIL/nD2Yt0AV3EgdUNBCdB8KLqgyGs+BRqwdwZPG8VT3cqRa/J9Q8vjPOLplG7OG9Wa02Yj18P Lg6/Gkf1avP6qn5owBU9cizzMK9U91B1Bj+oecA8UmzbjOp4zetpY7fz/MVKA35yWD9vnhx9PTl/ b5ycH11cnVWbJyiPaBA9qqenFzf1w3Xjsn51cnHIvZ66g09VKMvZY75DLNVjGNvWT8GsRYEfXpzL U7RpHNRhrI1qo3Fcbaa1qg/2inrHd5yleud2P3ytCfOXeO9o3EgSBZO4eYwDe3lxetI8qVVPty4+ 169OvxoNHM3rxi8aTr6WLdXhL+bPk6+7acCphw2jCeNniM4f1E8voNe4ZI9hHjeuD9IQWH0/+QK5 VD8bVe/4/D4NOI0or88m9DitqdX3iC+1S/Xo49PD6fl5GvDUqXp0dXFmwIZ7eNIkaek69hnGsW6c wtw1Lo6MBnqK/0Uzl+/kS/X/0/2Xz/vtNODQZ+78zUnz2Dg7aZzWq4dIA+hwo36OcuSL8+rpSQOO n+ZJ87TeYMExbFlX9TOgBmv75ifCdPVe/j7FWZ3WqeGDNzgTN9hop2CxQU8aeIS8v4bD5fTkvN6Y jWfMU14Ks3R9fnF0dFI7qZ4aJ1c1qpRk1Gyvvek7LtzyAgyFY7wOiDG0HVPdhpO10no5sVrtvhno 0LaiwLjnmYvHOpyTOUSWDa9R51Ywcb2HNGKujo+KNn0cXpLTGp1iqzEN1pXVI6XSsyzwVsxMRe4s dlUpuXCReC41mr6QsjVhAoN90b30MN6f1ROMV8qHGQ3l37aSF7NqcGX5okQsc0bLmRpofPDH0qeu Ss8Au4oO1WCRD6x7yxMvLCkfZmCQqaEhvkk64/DGrOfMAL1k5+zqpdtpm/pYyawZrWYC/n6MgUBN JyEtjH+Y0dCS3etbV1bn0h4M0sYv5eMMTDI1WIVV3HOszhksN9mQnjmjgeW6ympjH8Y+xsNNUDz1 6wxcMjV5Zjkf4T7Tla2EGTMAL9fJS9fyT81Jonux/BntZ2qGAgt1PVSG9BofhBl0Mn9GM/m4nikH MYsrmn3TeUhxdk67j5rMlFQYSan3wO2506Qf9HuOLoZyyxqRdr0zLoymO26bzrpxQyKZqhcYzb47 /oM03f4OVldVagop0aa/SS4ckZBnIUCKQdLCTnelzuNq7JCuh83ChlM4t7rXG0+lfn97/yDobZff 79TvK8+Ppev7s+be9YeLDbt6PcUO6RVOEWBv/z/23oS5bRzpH/4qnLi2EuuxLd925qmpeeUrccbX Ws5ks/aOi5IoiWOJVCjJjlP572d/+9cNgOCly3KSnWezO4kIgkADaDT6htMW3aLj1vwOMsAhKMiL 4HTqdKFSZxfBsOPAm3jYatP7aAD/NnayjYYth9bA5+ie9mMvCOl3yomDl5GmFHfEpl0s4Moi766h GC50fWEHikVTF+ypil4p+GCQ8o6Iv42NHYUfxxYNq0vbQ6HwS9go4m9st4PCT7RXj/nK8iUo/Agr Ijr9+DulaFfK98JP1fs4Qycmc5QvwPVa7JZd4AKwSLsgv5Jl6adKG/mVLIM+VdrMr2TZ7anSVn4l yzxPlbbzK1lWeKq0k1/JMrZTpd24UrFNneq9zm/MMp1TpbXV/FqWiRy1CqbdsoSjlj3vaYP3oti3 EXkxmb26EGk0kkp72hKdnJQxRmz1bYHxOX+slulaPi+nDc7A4pI4xP31TckvR5mQMQVXyl6MG03r BXZi1LtOWnhfTmHZLUSRmK4yaVleXqZ+SqXR1tlSqbA9RUppeccbYnn9ucdSaSKragmHkaK0liW0 GJiY3pZKYv2i7xXFtU2bhS1osmt9njBUFn4Ye33GJkv0nTAxyvZRG3FCUyW1uIJ5m9raaE22GBFp Np3SX8RcyKi05nwlRmEi85yZ+aSFb5Fm6eevapbWaYKowVJpSssXdkeqdbGqIdV4aUO3enB+9jJp Vcr5UIxTAKtU2oy/zFGHF1pucloVoxCDs6Ubncg6ktOW2Fu4rW3dVsoCkfOVWC/4q52Rw5pUy5/T h9gTuI9d3cfTNek5HYninqkeM2fUT65yO+dTUY/HpPcmSGqwUTJGXY0qmoyM1S9bRAAb1lIWy2lM lF8fVTxlcKW3lLGo9PPyMqLmboKvcpGApQ11pCit01Q1GRDRKUpFrRm038eqHakTK9lMf0rbJe/T qildLUdXJB8kND5SOVfZIrWNykRqpvQWahgp7UO8liWlCzCjS0r5JTt2YpIQvBfnwhypfAPED6GF p0fkra0uOds5IXkb26uv17ZiYJJ54WNgUK6AyYvP65FQEt72e17dbxLPg2ozxuktrK7uvG5s4Bs7 PbyOGkmkh1/f3thY31pNp4dPHqz4alzYntIeZLLEr2+vbm6qDlJRe9/kgvBDJOlB5gNoLDCQrEIG 1fK1Kow4k2d013NQGNC2uT7viDYe/RQhbaahqULQ5p2Cfb3vbnQZyuIIpv3I7fUeDzwQIjMzoxOx pz9JxPNkk9PMrogT39+3nMZFxU3WOkNkvQDhItYcss0AqSZUhJUwdMp3NOk5/GTz4mSGw+c0B8aG x9PKR2Y79s9Pj/fBdFSZrz8hpsE5OqlcHuKf8w/O+7Oj45Mr4lTSNvf/JxCN021ftUluNfsIQmyD U5WAm6d5r9OmZTl2OHDqjBT0Hlix4hzbl90ixDUaPDp/hjW5ngodNjyONMm6OLeIPafGG6G5iU9V TblZInTt7BC80TmYxGPwiPuV99VDhKSZ9i6Jp3UuKlfEfxIvWTk9PVYhhXFDqXZ/qxCv+OHt+SWz 2FXn8Gz//P1l5Q31dBxzn8IGrmT6OrkkJu4j9XlwWD1+c+agocMVYiY/cKzdPjHYYLMd08shwX+e BimzPE+xCYinQpVDqtueN3CqokIVy+DEN/6FzaRYKCsuCy7oct60rDfOMgnOfRLU8nqZ4r7onG5k EnQv56dvnKvL94ndcPgPyD+0coc//bT209raT6K5HxlM8BegEONn06bdll5c0jJ53XDg3baQD0ja /ODxbkQ5bAt9p+eFvY73k5XUh09xyN/8scMfp6OGx9KZBOzlxjBQhta4nZQJizhcy48nt0q949NI x1Qi4WIAvjFdLQP2U/bfXwCxYsr04fySJFYhbkQRDSV03lZINIUI/LZyesi9jiBnhR3ZVsrAJ6Yy aJiog/iZ2+OFepX4SImetv7X73887Nw1YMKSVogv8byg7vbiRhZV2pW8PxnbadfvNDqPAAU5nnzd bKY4bt4ZC2TvzK2v/cOKr8oD0kmDRsDhTxrAnvfQ8L2er/aweZwGoLU3UbUzes5ywNF/8qA6JW7d Vwstv6eB52jn1P0w9fTEf3iiskCdbW9Kg/RjGnAuzt2TvSeAgz/5EO0/1sJII7x6mAay7u56+59P gCwXqPPzw0tpD7+mAae5vfthzN4bCU4BQP1aW3kb49c0AP326e9r0ZMAKgApItm3Fj6QaCItX8qz s+fajhVj4QuOf2/9Ntv65YLVHkYkz3cfb71HfWvOWxQ5p4/O4aMd4z8eti9/tmv3M8CWBxehthf1 zEFvHqeBxzuvX3buZ0evDFAXbr3r6qtG+LcFTvrr4j+ZdpHI0g2QGE4twSkVOJIqbmL3vP9bTMe/ HfkfKsR8xDkJvZfO/mXl4uJjzHqkHbXVp/8WKKblOqDR8fvDlg7EO6Bn57jvvKcSblHQIRvdfOch lZx89Bv/Hlm9Nux0+m1/oBVq5ts99cLcJzyuJZGQ3EgNSFh8uFRN8BVf1srJZnXcoXzNt3xK+QSt dId9XwULqO9PUTLyy4YbtLwoHPZt0e5AFzoiolgtJBsoFHBqYdi89SN158peSOLL8eWJ3U4WFLfl 9UiggCDQQ85d/rTS8pwLVepcZC+CmddGlRxKMBEensHgdHK8/5E/zEmulNXH4FWM+doA32Cp7NPQ hTsWNxbXWXIe2j5yHxNJ6sPoKalv2UkLKX0HuDX3Abo0rws9DNIj0zmmGoOd88HxmtT+YImE+wCp kZFokC/RrrM1uzwMwshv+YHbWUkByFf10mcDh5UmSC3yvx1P0qRximbqFikD47cp6Fdw2++Qc+Ai P7FAO8C0QI8LH4NeSLLpI+ZG3M5wrShytKH2MBAIlxyPLQBup6PuK/WaLq53NnPbF0XVA7K3dXyP TbvUZNcbtMMGO26YO4mdln8Pq7S1MKyphGmp3kZiOTiE4AZg6MehL1NzucJjS4ZV8JpDtXf5/kRF oOTiASztysKtLvr2cGV5nZZ+2COYjPWCs8tFHgCVxZhz1MX3PSbWVqD3O31fZeO1OhhEOJXGx1H/ Q3awic0BJrO26yhKJoRI3x2tHAP6Hnx12InAxZ3QvcinbaddBZohjBnspGjhk3Ij4e8HyrOgP6DB y7rYBOkwaEV+vy0gxs88JMWNiPUOXklytzf0poHnPGCjLGUarIbNwYMbeW8IYtOqXZhpmgmi2+Xs qF4UhZHSqheSvbFrhdTd587l4T7o3OUhLN+C4GMXCRmlNXmiTUgsHi0EEe0GJ8lmxxnakboGUwcH 92QjCbtO5g7ypJYnMTmFB0lCUzYIe+VfOcEz/TJX1A1+IQIiIFIxZ5o30Ehq+K49sXqnqlzjK845 0MCkq09mImeakbeJM1M23SogLfq5Uz0/uvpQuTx03pxfirJm7CJcAWVtpX4HZpfHBN0Ti7I7SGV/ otnsK1xr2QhoF8bz9NQRImX/OfxfqvCesJ1kMg3nfn8hbl98oNE+v+PfbvCoHOqaj+wTpjPJI1m/ Sq7rvKIZ6ZSb7p23KItNvANOFaQVRap2dtWDsYTIBTVOQ8dxsOLwsa7uDlAHjw/N+cDp+F1fjC10 2LpdvCWOjfZ5MOzCLk4HGR0syBzfYEfFPkMNYFVmUrlnQRt2cV1Cy40aHfA0flM5JjJZCx+ejFpb K0yEj38/PiEiAiz7cFi5dD6cXx5MuNGRfxnWT/Hx8j7TGa1MTbwxcGYP4FUIly/snf6KI+mVcb4P Bm79DtPnt8IBkqk24bKIxXoIowZmBp88+H0QXptq17y2e48FYQ6GiciSuUtAOAyi1FhI5hTAOAHr xYWgzgDjTYv41h62vowgs9t/98MONnM6eX9maqbiJrPhoAs9/7OnyBJ/E/OsU0QuGCd/y6rypnJC 5IKdG0aEaGhr9fPHaMxoBp1iFiaL31A27zlFblgmdbMI7uOj03G7IZvjU/e+4M8MNnIg0E3w9etX +kslHud/8VwqTT+1pdL/+yqUbEaDMbsQpwzF//537LecsAv/+99OqTTSAvwyz/LLTrtTG3i5qRkN u9qVrcTeeDlGWLyGn955sxl7sI+ytS4ay6r6FB9bee8znEz648kMpmgcSFGEI9ezGgdHQDqpdXLx q3P9r1dsKFzkX7AHyi8x+8lvbd3TLo3sB5c/mlJpMsMWOyLyn+vYHMWO1/Hj4qtro4k0TpYFNqnF kban64xVibvKlC4647q0LEyLeTpRGZKxFXE35ml888ZelNu4/sN9iPGHO5Cf41s31p+RrRsrz/XZ 9ia3T/+Ob9zYcsY0jj+qfWWX4T7U7/H9GMvMmH6kCxhauH38GN+4sbOMaVw3D7MJN48f45s3VpOx zesOLPMH9xObR8b3Zmwgxb1JJwlLBneTMHeM78lYNAp60qsttgm93vI0vnXLPlHQvvzB7SkwNnD7 8nNU9fQfXBgUmxOEQMQGhwlon9a1l0oF+nUieqoO0b5rWyHOvcUa80Wn7FyL7pvfiEqcS/O02lwn Rw/OH8RqbK5mlNz2S0tLbVWydNp2ZVZJW9VYac0V0lpnNaqEfnqRRq61ySNOMK1+Rtycc53RIXPL KXXzomMv0UJSE4yiLFNVKuVqehHf802Vu3RqGoUu5LisIvfmRan0l9LZ8hoZBa0sz2zK2OINOUKr +fXHUFiWjU5ynCaynNQzFmsXMfA8FeFXZ87qv+tCXd2IfT1GG8iaQKX0ebKGjyYiR0sH4UoFWo7U vJWTejXg2ddildhX5/+uuosmZpTK6uv/SW0UqBLJTqJEWrQDIiYJCprTvVxGoWIHAG3tbu5u78Qd f7sbuRaaze1tlwNH7EgfHV1RjyN91l9vbbx+vbqzmYr0SZAPfDMuzkcXqbZ1oA/a31ldV+0nA31S 0SPzDvFJrmBKCTW9ugiTMM+Yn43vHfKjj47ChCt7rw8G21dv9/2zvebf7y8+fAnvN/f2P0Sft4PT 5deDk9rB8c7AC+utT61veYtVTuo+3BsNegvK1iPqfO0Hyw2vN2j/S5+hrJjEa8XoOH2+7dQTLhHH sOKXROdDE52fPC9hi+aHeJn6KyuiG09Uyt7AoxkglEiaouaQ08s0wzpNYIPbsPIXZa9TaSPW3NWD AoWlbTJUmQyYY42GgzaRenqks5xIv6LFhrEuaPiKVsbi1eJ7m5kR46jzP1Gi+pbhZptx70O/YdIR JHh5n5WmQ75eesC8tOsQ6BEqvML5qxas4ZIspC/IjiEq6FC2JJ2I9lXUdAq5vOHpDGzR1vXkam5h rPpeB2w8jYXTUdTo8MMJFMjsZ3sIQsT1MwNYUENRKocgEWcRKtvCOFidLag/Zvp5tsFXoJpcjY2X tl2SUSXENX8qb08Ipr/WIfhxjMg2MY80cqnAHcZ2ldwbdCyk1htqQoxWvIXiKjI9qMFhsmvhQDgn JqUK17N18+ZyDXPJSnnZsZlPk1cBjTGUzC9mcbATiJmjOGbxyCyaIexxxGKp9DzkSxT5SfKEkpLZ 1KUk3Snh3dNJC1qZlo7gm+cjGmh9jhQCzVnkgGG38bVVvO/N7Cc3+XV2w7LiZcxmZ1WZtVVldZOb kXvM23l5YKe3WBqtga5JXE6E0o5nKdxg82zt/Pjh+PXH34/OW49/b/y9tedfbAXt7vnOp6uWv//u zdnxx+39urkYcy7W1yzJwq/k2T6KyoJa8CXq0iSueHcdYjo5JD++7d3e6UyEYoqb4iNy6ZY8jk6Q OA5SuXVVUQOBtspFzt8t78oYLmmV78SIDfItaInTBnkSKOse7RGhvHFlWG8zdREmn6z26AHvMhVD 9qCPqxHGZOowZeDnpO8hB0fuOxXnyjl03jjnzqVzTL+UF2IidDKHaUz0qzFX3cH94cg/+ry+sHFw EfmBdkQ6cPhJcwB5a+uIL/1knQwOHh+6lYXKsfIlIRGGZExoBY6JWHQ6fssL6ukcqjP2tdF+v9qN FiotOjZIFB9qpyaroLij7NRPOZ3vhvW7h98W9vxw4NWVl6B6KO51muH19tvh1tbCftil8xM0mbsw j/Pp5PRi/dPm8cIhyVAttbXk93yaX70a9lbXFw7ruM3ZeHWbx+JOnr4+9c23w+q7hTM3sBZIPxV3 PM3o9s6qv7/758JlWIP1XQ1OP82ni81P4fo/theQkMaLaR8/zKeD9xtru+8OF6rI76Wax8/5NH66 v/b5oLNwBb10L9SxEeaxsBN+zF9805VOx8aahrXVNbXAHqepk+Jf6dzUXhDpcOgcqvvB69RVsr1k T/YRKN2MOBRzaHTF0hE3PFhmWIHJSn/fg1686XB73qv+olMdDBvwFwJj6t1DAVz3lmsuEiCCCRqK gt+6QJ2a9Dphj1lmaom4FDdgQxIwPWAY5e7iOvIv+V/4+5WiWVCqaOv22eSI0teRoizMsCJ7+cpZ wh42B2nFM3jONjoUy1fk1v1+F/cvf+Z/jd7WG9QF4KxYVc3hyPF2Ni3EsbDUuqHJGGvF9FK54ttd q6phuf8Xg235zSJZ8ixmvzPT1As7HcGI/jC69x6L2tgDQ4wMf8g8G9s1el6kLVVYih5bLQua2Nda bj0H/FHPry/xQ9NB6kw60oFtxDi1BupibKPqZGOVD8Vmh/luRtHk/QjZXisx1/5zoXS8NKsOwsYR gVWNEVKXUsY6D4SInG6zxkt550ZdF1LaIAxJkDaWq8BruRhcRp1f0HdlGhFQv0b1GJ3QbQcJztaX N3jgk+wFFvDwKiarsQzO31tEPSGSs7jc18I4S4uy0Dx3WaG8AJgrNKbQaAJ52xa3MRV4HKsjqw57 OEgcbQ13RFQAnRHRm3N9Ig0eYSR8MFn4p73Ri0h4jnwGAATIEwQuRqF9DVlHLJsk7W9r0yYPkWft mkuWnEfPjZKKjkyzZU005ZEp8RFbk9g1VPuRikm773Fay5sgczKlZSWuH0sb8RozPY+vbUwdtnx+ CVplz90UWJYFvxeFda9BFLYPol0EY3xW6iysYABoGYK6lRskhkgYBHk/BcT8O308SbEcYeeBHLPx sZ1zWB/TCer3iWo+0h6Qk5gN+Nh/TIDFyNkHBQSmodKjVBFEhvuHbG5GYXnd5BpyGv2ac9i/gjN3 SHSbPSvgoksYGQfgyYf0QVzk1B6dLqyuaq8wJ2GFhvQiWJf4EIqoI9CawGF3RRBjn4gOJwQWBoT3 BQzPTFPbjz0c1zBpcdNEAvrIobyE9a5Bi4hfXpOwgH/D/NuhhgMmjGqUBGxerBs/nAdM7RjsYdBw QYxhr+33h10+N3H0xe2YheA5Zb8V3QuKeh2iLR1iHgaw8/PWhAMTFGbIWMtroX/wSYE898rnIAdq vLinqQG5bnhQG3Ddjn9H5K6N1McwluvmcEp39QQBaqIsAaaX+cg+nV9MiOuSmI/opvgGsXMGzo8Q lDFvogQ1Lz05qxqEDid+oG7JSaJtviJoUnEp42Vh7VZ9Tpa3W5tfBoMyXHNuw+bt+ura9u2DD8tb v6xEX3jt0DThVbw/+VceX8+/slR27oBv7ta2wroN+FYx4NYd8M8F+Bi4+3Ru1Nu/fvqF1W9/26gA 8LBpgt3gaoxz+bYf/UKHoi5mN5jI63j38JrKC42zRmklWXnSKGdbEFqNz3++LkcmeOW+fxvFh9gt 8jsPvNtG6PVvWZJRywT7vfrEuecEqnHrzgF/FI/LVh9MNZScw0rJrDiK7S7NsZQSKafqTmGEkpYf 3lXfnyhtIveE5P57YGCWnCrYF2G0Lz3F5My5+z+/fLz/5+tU90izDUKYc//x9P0lZvdUSyeKW7Hm 1ryyjjPiQYbdeUAQ4xrz7SYdyKVyCNOMXoU2Ip0Ls3Qpmdi1eJ4GIG+7wxvrfz7Q+fs/fvA/VWEt Jtr0gfeQt92vSPIX9gH/OapFpzrsdvUtAAQZOozHp+45OIp8SF3AtCrO5kfrvp1xA08MNZ/cwepQ /uwFIXzK1spdWQ9j5T3FVQzLl6IrUWBWj67s+wvHLUba9KDO0Q476laNayVXzeH/8CMmiWB9kVtZ qGekWjHqHNqSbYn6wl/waSQqN1zhtvPoaqanxA1RacWTmsHIbTRWdNou9RDPhANXGOLdonsf7Kj4 IHpsGhM4srdGpWBI96fowdqnnfB9T3rV9sdYjge0hBwxHNN34L9ur75VHSh2mmYWGOrnE7dJG95f vT/feysN27LGdG3mnAVu15VWK6eVJ0H45eDheONA2hIDqGMsoE9p92zw+vhYwaivO524qZwBtzrE 2RLF4OAvaVYX8e7EVSJTdxJT4Bzz3kLCzCevEklUJu5pAXbc/KSS476k5eUU5emP5YNEPXg8pKtl +2hv4+mveC7IyPQ409I3yvLFkwIEHny5c99uC7DvAx8xCOkjOP/8sWeSLRi3iO3seOA6pTku5YhP KZ2t2aMOXIjtFqVk6tb2w36XV1vaMo9TN8RQwE4QKmQXsH7nkqlbq/TvgCRiNlDEzi6ausEqXKIV YPg5dQN89Yw1shENpI7+qTDv/uhD/fO92iY4NFj6GNFZTosEbfxpTBVSmq244TyV1tT9+P1uGmoq mrrBszAkaOLUW/Hz1E2Nzys4YUMdmh1CbX0anOjHEQ09BQV60U70TjEkMTUe0VlOiwlCnocCqYaf gALckncRRgrV4uepm7r0CAwl9Cls4iLRVM6CTpXhIMStMYqEqKepm6n6XRg89f5XT1M3Q+L778SY 9y+i8E+vHifTsQunbnTP7fv1Y0TGKfC4wJGSqVtTMz24cCON77rI4bIRLT4F6S82gvv3W3p+RW06 eovlNMkrZb7NQ/t000/A+4n8LcY3E/smKRw1zyOamm6mk9OihNjc2Tm60tcuPWl21NJCza99rfjO J99bbrqflC7rqPL3mVqdTpLfi8KHvudUOqOms6AzaBMHD7g0ToK4F34qixKgHPuDH3G4JOxRV1Jz +m6ol3rNW13dWuFLsrp+DbdwocNfIU970S+pm7YM5xz49btf8Bc8SP+2cST/N68RvRp4nV/+tr6h LRG0/oG9/u9CkvmGbE/LCmq5GMcPaQZbirMiTDkrZhl3AIXuvZ7Y5zls9TRsjHeTyXajFwuowbYl GmPDa3pB3+t4bmso2BdjfLZl/j3Gr91k4JETzrKbceTXiDRIyqv9+bMgPdl3aAnxgzN6CT2XW9Ak azNZcqbvcrn2/XGt1mt/+HLVGpy9eeP/WflyfL+5dhJ6fz+6j95Xqsfd3Yq7//79Re+h6HLt82Hk vMXEWTNfiTw645s+TaaXcubm0Afc6jmJM3WuN7xxyl6UUAeVkKB0nXR4zv02oUdZLP2MCFL2el6M 3ZxRBufmRfZmxpP4MC864R2eaA4XxXUC3XJeIyfHG5lhKl1b7sNx2LbiK5LuxjQcZxkzU+ARnPnc OBLHX8ZuvZnaWVdgfKagVF65mY+SHrymn33tYZv5IO2Raz4Rl9lM/YRzbVxZe79m6qe9ZfGJHoT2 XM18lPJzNd1ovijzQcpr1Xyg3Eoz9ZMuqHF1yOKZyrY7qalqHD4z1dMOogrrr4vdOAnzU46f8Q3o FhFOkF16/0O6YBrAEz6XfNoy/V1bcZ7Bj/ImWF+BHSTjNZkNndpYcb6FQ+RNgNwI07g/3gRIGjCF s+NNsL3i7D+va+NNsLPiJB0ZW7lOjK1iB8abYDe5OM/mrngTvCZon8M5kRB3NTkIdoEhQmD8D4ky PMnlkLqgzTFXD0NqkvfF3B0KqeEN4N7T/Ac1TZjARfBa3efNPgrqZvY0r8Df4BbpgnbH+vjhgui0 m57qK6a8WXc/dIkzTTp1FP1LOOYBph/ICe/mhXxAFW9e5DrdvfxBnO0wcf/1rEt71plDNuNKx5wV yJLtuzYi/ZCF15oij3SMU8xMuoutKbsY5cJW0MWmdDGmh1HOZjm2xRwnM8m4JDAAiuvyeC+tKUc/ vb/YouKZnesrEEcbAhCpXBLFPCR9weVj3K7M3CoeVty2Mi3YnlPpT8TVKvGJAGg8n14qj6cUtLHT lP64wG0pRfS1q5P6KmmIvo6twqMswumJG2+kLkIibZxWCbuK7MtqhKNdgv51ExTgeqF+MhYYsl5B 3GdpNq8ftRdjZ55r5axjll89L47y2REBqNDhJo1K4qXDQ7rOONGkK4vHjVS2T+V0PXGgkXpwdUkv vXaGkRppB5Z0a+LsInWPL/fTr8VnRV5nnEtye054paihJxxFclmeXDcT+fpfr8RZxDxpB5BF8wg/ jxhxFv5zdhA4rQX9g7aT9qpIL4N4Xizylku7SjDgaa8Ku6r4QMTV5FlqGM8Gfm2e7M/FVyH+XLwZ pEbC+4CrJEpUM/AskO/xy2qbC9mFgFcvOx+x1Tw9I+IRIG0pbpfrKTY3LpAqCfN7qgaVSKXYqs41 4kc1VwVpbvmlMX/zS2Mb53GlRxVjWXpUYuTWo4rrZZh3qcLPbFSOX/OjvE5aiblKwpas1lCZf2X5 1INaJGXSlcVTD2pCk/ZZmdJkmVS07a5cy7LMWqMwltR4JNremjuHlukuPYliNNWTaFVUs2iVqHky 2jjMkFa9yeQYjahMj3nMBYp6i22F2d7UCzXqyt8N4EUmQTWDxlhXxDmOOk3RVdoaF7N5xYY8+TRp CTP9z2CZG2GVG2mR44m+LjCI8QynzxKjbZJP48GONoRNncrxBWtRYEuAxIKvn5rV8XptbX3JWXut LDF2bse19bXNnbVNlcMvk93xxT6nQSRYDgxTAoieJ90jKtt5HnVGKivP48b6xs7q662NrVSeR+uE xRczZnmk1rd3V3dU68ksj9fbmKW11+uYRD0koyWcU67HF/Ehh2FkTZaoU6Dy/lGsiTe86JydaU4p JtfWZ8gx6QY8hXqlYrRXPU6RYdK08y0yQipRAvKBNAo17U/OheSEboQ0Zm+5zqxonGVa8kgjQ3GH 9V2iHqx5TaQpa0sbomQhXB0gpzeWzedE1UwrEXATKdWo1IYyCxn1qc3asLuU7Jmbom9Zgyk8KloY OLwk/TYhHuGgwj1pBss7BPqsOFesxm4NH/tOnbph/bTbIbmnftdfcX7m+4ensUfPLQfexs5OjwnY iBx4795Xr87OT49PDN7FKfC++dq9nHnNXs5prdKzhWlITNGUmdX2Kxf7nfDwpDE8rRyf/bPuecd/ bt79o7Gz/c9w++/79/trV7v7zfXB298qc82sJn4uzFHU+j0uqukEZpLQXacUpHEpfWXf6YRsFsKC cEq6WEsMO0mLbwIYuJ07RVTBXIju1GyZvtPCGbTinHgDcEQ4thz3ATKdMl5E7pdHh29woMdHWlPO MO/bTTAydcNuumle0X4fGI4BYAGlfUXi0QUxt/Z+kx2XMxup4AbJnoN03bii58Nx9eD8lKuNzxxj XIokSunYhpg2ii8JJBvDbo9mu+t2Xet9LXwE3Gzmo6XkHJJ5lWSTEMvdlgUBEnMycdU+NyFa6UF+ BBZN2GC4UvPKR9GJ92m43XjfOBV0AV/Zyu9WpjJ2eJIRyo3YsX/QsAyjBjGJLZXgyy5JtWCTwfRk qqVI5tlLV8qZ8UoNFLPPEwIUoeF0aFKauFXAOufZJAuM4/c03loECd9pqSsLakyxmrwJ2MIQhcIo ANf6If/TUBoMOR2UKYn4B48WRpm6Gm50J/NWNFt9H24s7Nayq7xW06XfYNbOkAsUtxXIrPTdR5Wb hlMzXCV3HmcFpXOGNi624FJcEbbJTuLTCmyXbPvu8yfHjttdYZcjzGBvKLQdFnWYDettdVGIhb8K Ix/aoeoPVfExr3BeNfTxawzCyOl/Q2T9y/obFRllFcSTnshlMNdZ/9D2gjSX8uCRJEdDisQaTtID vBFA1KG4x0Oz47bUInTC8I7NTVKYwLTsWP8Mup1BO9IJHu2SeLTPNthqO0HWifQ/4jqYAS72CFyn 5cFE3pcXo7cMcfaDcODeDc04TMnU4xh/GPBF2ebUL7xCe4Y7r+seBGvLmbTg1uuR9Z5873W69dhV e23FOWX3nGU/WO64D3zsnNJJrA0IYPGg5+ioBUt5eRfczGp3KFeZyB1/fIS7tX7YGbLbA3vn3Icd WIPEjurBiB0AZ+gdLtthIuvzxRsOLmfBLTLMP4BMoF5yQGAlUoAyxxMygwEZsxoGxyflAyrTLjXa 14LqxJdr1InpjQhE8aUa0GEShBbR64UwXcHxPqaM786opz67BTX9Ovg54jSl6B11dXb+dtgnHr/R d15hmh/g4rLIUxIQ2WyFoJGA3fbE5Q/D6rnaB3EBD5K3wU8wu4k+HYZkj2UHopqZtkBPgrDpdv2O 8utNFcZtMj834EOWecNgGZM47JGE6WHaH2jeoM3NA1l9OQh5PkxHyWKrqwwiTXJ7cDFK4y4gpU/r W3Gj+8SgSMDF9Cgct4cDCdgSAWMhJ2F5eY4Ss2Cr1hLmYkNkLFv5XXO3H5bdOkH12O1DCqHD4da9 rbtiPadjD64acFimjm7vQ5ynykHd64MoiRSEVo9olXqur5K/y9nGmxd6Uu2Ix3hPLJQwT9IvJCLG 2Ai7kjgkuIXxG+VECGjYvCiTcP4bb9ghSax1T+xfy3JgYdNCEkDj7A6TuqZ+mrnZ2hns3m+B5NGk 05R8Gvpfbt0BtBi3xBwPwi4mCMzHLQjVLcnN4S1hspod4KzWraaTv8UnyPxQD7cvhexuZfwCZ6Wa b2kr9wdgtIIQNN5pDuu4YonWgaZi3ntmc8WpthnvNFUN7/QRPT3sSt4ksdoFewsSyxo23iexa+iK c2kS7hOuMNuuqphiF5epkVTK/nuEukAExr8GSfEAl/1pqKcwIikd55UnFyn5A60btF4OezUwXpBs Vyxa/jEWjttCodmPqUPMSUzceY+bx8EDLiWOGsxQ27Wg0JCZXHEObOFh3ku2xbhGj+pm5MiCjvC+ B/Wm/4UxMMkmT7+eiXFgNbGPauyjysqDgUv8HVEGOKXyjCfqs0mhsQR//iFOpsQp23/s9lzav1/g AEUrCURgkoqFXnEuOq7yvCL0MW3SujbuQ3bxZD/dvnKA7A9rTkQrAJPIMArgf4db/YjwgVITGuF4 lPOMt5TwNoxSPms9Hk0XaQwLcHlZZ4nQJOoyCyvH+lUsm4TBvQ8b+vmFoC1oz4OrTiCefaaOsTRD 80i0KYE8XXGTpZctt8/maNRlXiG9BIOwwwsw7hr4qfFqW2gYLiHzsPvCBlyCZiUFCEYRhSB2hkx1 4PB+xDCbvK2hksOmhc9c7DyypNdVkIqWnGZrxXkPW5ilaKQpdkXbx8r/lou7Bh1EFjDbKR3A1YrJ WnMYcfmA715shXRg6AsPWbpXt4Y7NQKJya3L3UAqYxSDXYuA4bsxdeTR/OZ+h+fe++yLw7Ii89PP uhpQ0/M6/CPwxJLSCqFTxSDoIPUGYAsOTWe8QnW44Mh2GTCDizll+V4TXplXmCN4AdEyeG7ug3iG BjHLjWH3ZwxEs4sw9CiXLxmWnnFifS2sFkUykwBeWsCa0M3Tt/Oe8V2e8SO37tVEztbpCqefdKUl F1dqfc8JZpKnp+82vYFoWnuRf+/WHxGnAGU1cNMepo4OwGGoHfOZAkR30McSNfMgFcHLGVccyiHH oilmtkIckHWAhk6/HhFZTN/LiJgIWsR6G/tH35gYhU2ftiBcO0Dp+m0i7H0rkfX8pv01TzvPtmCH 2O76bb836/QnDyk0LRwoDR7jSyOTVIDRACIlexir6kU14ffkA4frYY+du3FkpD9OHfpiIalHj70B rsPFaWmsk/IxvpWzzqJCrn7JJ8lDOOzI+svyixb+4pRbOb+Y+9q4ycUxG15ZZtWg57JMEEKUlyTo uIpcwNTqmIdlRZx4Jpi78rvweYCro1oXPVkQfB+YTtHeUK2mAkjQC855I/ITeff7d+gQymHxfn31 iN3Am0zO/p5MxuK8ZxohJx98WlvmeLQ24vhShOPp5zZmJcB8KKREBxaPoXgecLs1j0aovfXkgIBt bLnjN3ERMZMeD5eTwtXPMYFNiRtTWTFpyCckQpyyEmci705PlpwrFyd1Mwq7tC6I11hSxzm0n8Mu OLUI1wurbz5Qf8THj5nustF9yZNWzk2u9tvE09vDk4uj9yfOyfHZb0rpx+W6Vn66BKP4TK5SRsh9 1FaY7cOzLe9dc6t9q4LpwRmFHLrFETtB2nCSWn7TYUGSgEkBGiF1s5eQHzS8zwIhtLlCktpMge6C jBL5OwFJtFCnVPiAn8ZhlR/gMf9jwNmgc7wOFYjA+pYNTob88bb/MQDt+rhBGbEv8ECB249OVUJV zBvax/zmeWE20B1VqPOPAkaq8PkhGK92fdaeDyzFqSkp7HvK1MHFnU+puk2DMQqOvOstx1Png+N9 3DZeuZQlT5Lmye0xOZ0lDTH4nf9uVuOLrhRPzwGUGM7vLoI0nVP6p85NplAoec7r4sSOhmvsCnu6 8G52N44/f1nbWfmzp8zx1SGdnk4XPdDZcs8dctuiD2ZWqoPgSE6oQPyuBy4CASHiucEH9YCtLtD0 I8LYY4NlVxTICDllJZ6y2gyJVwiafkQsgerNgaiBeBE+z0mUlFDkPvgdr4NottojV6XTL2CLCXvw QFFILSGSO74LJD10HYJR31jfUdZ00H7pmJi9MFA6kak1vNkle3VaPirvlavlg0WF92NXK2FOW3Kc JgcimudalHyP6MPY+vYKnldhYN6CP2ZO+PNgkdbJHbbace0MAFMNrUoj+8crpf1fnGxs1YHXW1Kx kVDorTjeSmvF+QfYzV/oeVkQRMFHaHKkXiXKnZYXiO4KWLD/5hjcn0SjAl/5Rnr61yOsqyuTzcyj PHj1tvyB12+yER643cBRZrolQtYmjbMKXdSBmvsVcKcS28nXefY6LsKhiFPqD1yY9iDxNzwJNoUs MuwPWfDzE0I+7Qwo2Uns8IgX9/kbjq1ilVP/wfMGHEyEKgj/dCP2YmWenphxSJqZEUw1MdXz8vnb yeakSpIG3PvhecXG3CX5xyF+ppn5ZiooTuQ8HQvCiY8IHuc88MSU6sBLltW7NbcGTYqETT+Q2KrM lrjg9olT9Oq8fFr+uHhQFrFgLJDnCJMvn/qNRscrfyTpqUVzpPGmzFgE5HhIe4TcQxFJ5Bcxg7CR 3/kNlX4AdK0P21XPjbQ2cObh7B1Kyq6x48CvNNG1z5t31TOv9c8LuC8K+d3zB/W2c+iytnqfNvId DgluXU6cqtKq9kPHjyJ/IDX5HGIxW7TrQO0ACietl/KkXl21CD1wECIDBaYFwgkQQPy1njg3J/vl 3+m/swln6CR8WEbwKpGs8u8IY7MLzkIObKWf0BrzOcnJN6C6FilbHD6hxG/DzMA2MiqOY8HbNPj6 EFRCRYrTKQL7vKPUemrcckR34EbwxPG/2S9X30w29jfIBhE4+0QFiUJW627Pa4WuZKKcuf93IczL Lhx3aQd8ngyS814PmU1YXXTuNfweoZBqYIl1fmKh51fDfix2yWG04pw3Bx6ieFKLwh6ypjZhIdVn Vw4QcWRuGAxDmLfh9mpCC6Ahm9IekJ2FI/FAHTvwow7rcE/D4M5jT9FHZfZ0WKdFhypOXbYiYaRl mOsQ9QulL200jCbT8nSAnk9It48EbbFAnJyED0XtC2TTQHarEI8j8IGPMKLLzcWzQ7m/dzQZlPg1 iuD9s/mPg8MzN2aw993B8t5wMGDNFzfKdA7eReyuR+OFJpMt4L1ehDD2cg/xHQFMh124ysIcTcOk zeR0XElnESgKoLd1T0wyvWGkUBQ6yy6MZEhNZDvauf1+O1T3tc08Xe8qB4eTzRdOYL9JmFeJWvDN PlAW3sPPxA3RMJZTGnS4MYNrIIptPETEgsrHNDGUniTcLIT9ybq+CSt0sojQ7SQ1J+IvRWgtqNDw EhJxrsSS0b6k2jCPcTs2gPx7TAhJnP2POTPZYS8xv11lsLQZ8EbkdiGjMVkg3Gq4tEs5Uu1HyEuZ DVcgKs5PbTaJwGuWxgWwhE1iAxv8A2WU4LAi5eXM+AaQacv11M6qEWvW4Bww4rPMJAlsPPbYPVP0 iHPdaCU1EVb4NfMh4XaSF59NsjiT5ZtUMZGFmSZfEK3gyLTJUk1asSsGOW5eCKPsOiSMR++rrKzH z+OVmxe0bfcJKkIAh5E6FZrC62k2EPKVZNfpyWElL2cPJ3mZCiN5OXH4CJMAMzKdQTIVGxKngHJK x2g8N9Lj5agID3k5XWTHdSJYQ1pYMfHGxrpgxXgslpx/JyI0ApORU6D/ttETL0dFTQioyfCINLh5 YQs3iFTDIvD2tsIUCItVeMLNiwq7LXyHsISbFzIuHWbAqX0SY9JBAQh/e1IwQMnhnmKv/3RPsOG8 HOeJL+DGLvep/UA7wkk5x98EX79+xYb4efnnr/QffpZK0ziTl0pf7aPqORzDSyUQhFJJHyFz8P++ eWH8vgnV5uHvbZkWCv24DccgUuA0vtkZ5f2KLFXWSVocpGlZJnF2vi70O06mFSiwOWmuYlbf58Uf wKf5GpOe41w83QTM7ODMGcNKpTyPY1rDMd7D8m2B0y99/p/hwHvz4mOh4y7tTjzdvEg46qIULiSW g+7LwQrmIutNe/PiNOFFS1S99JU/mMwD9uUcPV+Jgj+XxyuOoDl5ut684L2S8XDFrI/0bJUpjT1a BT0LHFFxcPy1nUpl+Blf0Hhf/if4db4s8OdE3D7V5U2X53xJo3ySI+XLH9SBUhZ1lN+jIS/5vovm RaHPolVjcl9FtR7P7aPIg5/MsdDMw3+Yc6DjKC64yKuPBsaHil4CVCLa+J/kkceiTEo2gLCccKLT uUxLpeuMk1vMHRnZ1fKMs1PD5nmfTcRbxW5sdnMFfmKTt8g+Z3aL4s31kpd58maMS5jd1GmOk9Xk TeY5b1mtmw/EdSr5QokeOYUkIOnrKKQ4KUfoax6SyKDQIfbaSVb5qiqSiPqVxdRSKesUQ9vkOs+D JU4Ll+/7sihk4D/DseUaaJhwWUmn6xP/FqSbKyW8UGh6vp2LiVC0pKsIAfA9/EAElNifA8fEczpr vJyLk4aaQDhbYN5GeVJI1RPai19ndHeQFmK3BbDK0/kkvJzYF0H62jvcx3bNdwDI3bCW88Dit/AL ULOq7fuY3B/PeC9AshGeACywsEullKUcSzyVGfzlROZv6LenMHsDsKNTgmUOlmkZ5tE59sHRGPMx hNccs7E0sb93BNxM2GpzUdIy7y5+WxMu5Hox3arFrRwcEswT2VchNPNKjrarZs/o5NM123rMvBRa Oxeda/Pb1M5wJnF1O6/dZFlDoaMfgpntKiuPGLuemjp0FVkvV1ezqUN3Xu+sb8bQJPOGXkGIyUDz PGlDF1ZXd143NvANtiuKBlu3JpeflT10c31rbXV9bet1KntozBDigxmTh1LjqzsbG6rxZPJQNel6 SOAX5pk2NLmmKaNj1swY/ljmYMbTZLpQg+l5+ULN/BcnDN0E1k6bMRSXVNmIF6O77vRHzRmKH7HX yaVoFbxMYpk6eHUP2pUyqyjKfR9Xaajot8Ozq+PLQ6d6fHC4V7mMXSkclYqSZUkGeQVXZahU+JWT E+fi8LJK0sqJc3x2dH55WoHsor+SL4y2MlCXX6nrDZq0g4YiQfjErPSdV4RLhHJru3wdUh+Hgwob THnV5DufxJVEwo8zHNnzEBGWmdgMPFiDfYWzXutHlPr9zlNmy6BFcifQOd1ik9Cd+AZ1jbZVkG4Z 5VAslBM6B+INms3chuWs9ukUhcBkmk8Wx51MOFVVyTAt+LBMkvmg/agHLU1M4Z2ht8u47KvaP6Mw ++r6vfv6gbdUcfbVGIXNJo7Tr5ZKBvWvk9jMCb2L0H/x+2O40h+UbKxVuDkhRlo4NxmmZbBIATES N9Krg1lPLkl+ule3KN3r4Xbz6Lb+sPtbZetjo3n6unl6cHr/bvP45P1q89325u5V9bfmffPM361t PkO61wTFSG+9eFxm28VF8ZZL7bjkCYiFUAr4Br7TWXrdh7sHGNXoNbGzbhS54IxbWhPJ2eTBBYTI uDt4gFoT0moIIzxba5RpH7Kkr72Xk+FfyeSDhe55+iaQ6uZFS5Gv5LT8TocuK4RF/QelHXPAHA5d RS5gKq0oFj9+I2pZuVo6RY8yDnq5EEvqQLnUDvvqTTL9VDKzYHsdT9X3e6fH1SrtTRWIzKWZKUiC IxkU3/K1PqLO4AvxuAF5lzeGBOSTx9GZsPOO11QBuNxcQVbDEbVmDavLaXtt0dwkxdp2wVSgaQI3 85ASbcYzY6Oo0BZBzJEOsTkA7efRHjaksd0DQvY0W4itJkS1WhALgxauSqXWiYkb1vmRWjirHp0k D8BCV9qx07m+mJqWg5DpOZuJLDOYz6ZVS3IXbUOfAcKhyk/aVgEDDk5Y/ihs8i0Ts83uCNuHMsDJ htOmIyWVPHVaNkZNS+J4M7Ap+7scmCCqOA6J2qztzn9WPkCnSMglq5Q6/rAfcD2i6MQivs1Wq/yc B7YAy/H+K+z8GSau1uEh8HlvzhK7kEG0GLjZZ3lzEcieP51gCviaX753BfMJ8UkUVDDFiLIG3Jq4 6GaZ6XlNdqbWdIPcWsQdyUkQDVdwL+ywdSLHQi078uZgcm4vF2xX5I9Z0e7XMUX3uNhFNZQ2gKaT 12h3KsIilfsO5ULdzKO2ZnKTxkLsRolrFfpsKOjCqarFjlSskW906aTKjma6ydxehGqWllYsa2L5 hXcDNINCo+BHkO0mtzU0Jd4EPl/4zBd5wsEAcL+/VD6DXsA2cWgMlxzwdfR3y28+IVVSDMEOnWaE mSEuQeiQ0NHANQaZNnM//RCvCm1p9rymSbj34J3aC6PAsrWDQLI6XW812h0iALGpePmBiDxmUWn3 Mv1PFZ2R5ozW8bR/fnpKQs7UnI7cYvh/ltPBu8wZFDuG0KIlb4HWJm8+F4BU/Tvh6gfPcAbBDLTc HkL3yD50sduEkglZTQZPC41+rCqEt3kB/skhPgb/xs5bhqXZUw6N6XE6e7h+mwAuN7WPGoifXA9M rA94HdboF03Z2Dk66hBXRIwfvKEQhYNrOYmtw72OS06yU3FR84P+sKO8uJjfwFXxA3aTs71xTIgF VBc98aACEGl5KaWyVyQZDqmEId6vg/CXHNFR+alBDyjDnCC1wkxE4fzq7aGo7v5LETIQ5KHTB1zL w3gxgDXUEm0VWhK3YIqku3EYylSh67m4vZX9qgi17v1QPNWAZLGbZNfF1fHATxyHvCeUb5Sfd8NL 0xcfnIL9Mt2eVl6CjfAhwE1hvFfqHZ8vCgJHwxgrNw6BkNg6LR6W9u9PhSoaz3ltwi86AXOBAvuA 7pVmTvzWjG+4MrWj8/jU5T2ezA0hRJL3N1+JpgA3ILMfqahplGMlAEpi+Tz3vS/R3bnqon6IYC7E NAzcO/wQMUN89j4NaT3gj9ePeanMRD6dalTNJcf8UZJ0/IdvcLzIavX+9CKVRi5RxN3l0+bCxovX YmrYppATMz0XdjBH+GSiUvP23WHyvN5jr2sraVXJd4ZsAptQpsfChucI1wO8UQxQ/PSdIWr6zcEj /xXPlSn6zrDV3Abc43rtcBBam9Iu/c4Q3rf6cCqydoAp+c6QwdTnRYN2CHe5GLxk8XeGkR3IeLaa rs4nkCn+zjAO/Ka+x0ke5gvPTDzD1WXl6OhY8v38dRmGpJHsy5t/NlfVSrBZDEy5uJRAfIAjFRxj ta78ey3Qf/gCfDBBs8Khc9T8IIS+k72dkclAeyghMC3y2MgjHT/XRPPzGEcIkyaibEsCP4ulgBj6 9jAaqDh0Gg68JNk97UdIGVKBYNokwiz+2iifgvETH2jxJFPWbhYRY0NiobHOHwxZLpblm8LrZD45 QdT72VOCqFoplzuO94hRoFT6Pl4BIAgcLCIZDa5LpRxj/s2LtBFfx1T9VCqlgyrETWAx0exCno1e glsWFiyTvAprKpUytvaSeJ58/fqV/vqZG15W/6LkCfbpUinHJk3L8dX5zjZmBwNbXyQAn886zOOc 1drLAG6kAcw3LM5op2X45ml3BWNuScsyhnlZRGPnrNyhoCuxS5ZKli2SxpgxP9KoZ7QtqqBOAMo2 xZeCxS+LbYhIHzPCdsgzNKkFkOCeg3mPu8w10gEbPIQkzNPy9tXQKk2StOFMUaOM9ns8NTJ7Yv52 I9kTz2YHismOseBQj08w2hC039Iic21bUorCKMbpZhezOMF2kxkRIm1CuHlhTAd0kioKPBd7gE7R lbQD8JrOUZvP2SQKtPiKBKDN6VX0iAicXjVfKulF9wczrzgh+dSKdsyrQRPNzhhN+SiMMH2zmpmf E6pdq4b+rZWY/Gg0h/wk+jp5ESvKpNWEcoqLjO7HkeeksgXjQGlSvaFLWc8gY5bhKiF/1FivRwvC aQZSRGhmIG/pz6iWZ5QDbZf0yQKnbIdn51UQKk9tDsF6cvzU7uaSs7a2lhM+tbm28Xo3BioRP6U6 eZ54KVS2AqWM270VKLWxtbq+urH7eisVKBVvqadESlHraztbq6p1Pq5+iEiplBRsxjsP+ZaRKRnk pMOA8mKc1DsjrmZCnLZnCHAC3tuYEiOknrcfNcCJ4zpwjKRz4uQEYfARmfDlzQbAmBQ5cZqaZsf1 VYoc8GziuV74JfKnCW83QJAqo8NjMid9E3FxnNIFB96Zffk5gR+CXNUTHvPckmb79Uk5rV5Er60w gdZ+SEXjZJAvLlPROP2t8BOvf3E0zonf9C6i8MqXSEtrvfF+5kXDhE+wQla1guVAOH5mGW5eWNNP HFrutKcHjvGkRpsf6VIrinQ5b+76fz7e/3a/Q1u4fX8c3gYHu39eBBe1D5+uPlU/7R+tUWeX/7y/ P5xrpIsESnxguResGkbh0DAcGsevjFHJUArRByaqcc6Lk4urRWmBJkxm2O9CYeQhx01TOD8WOwMd VepGPPcoZHaWM1KAN2CxxY9zOTzou7Kz+w0/YneJs3Pn4vzk+Op4P/dOicTnMixr0RxWVOUMOSy+ ou7AA5zMbTTAlofIfBIsNyWwvhn5JOvSD8YhYh7PqkcfrJHwrxGXSX2kmVEJjkh2jFFbNAMxaaC5 t+hEaF9VTa9IuPs0JHYuLpwCBCXJyla0dk+dkwZJ3hWw+oTODk4jCA8QOwCFeqaq0cDr20s4rlcI EZaWxOg8oNvBBBBJ+Mn5aHQmOoeRpwL4QUlaSoeJ3zQJU3QuyhedWMqjqSb6AqVoE6lMQ8ZvSOwO EqHRvDJmh4FyvZmoizNuRQt8UWIWidJ4LdYeMuzvAx/pF6oDpIRbcaqe97PzhjeOpFeBdOwGkKRq yIgzFQzQ37R8pJ0Ikc+PH6AZURkfCMIV5wP2KWR7876JlBxfMGAQgL7XeRwgy6LJADYFDDlU/ChJ xXmMQsObTuDe+y0jF7OUqTkc6zzOdFrWG9je+Ad+X2tJbFqWt/+51StOPghWSdK96dwTaXVLWi8X w6Wby954SX03hnUVCB9xEHzkCW/X4OHKUg84nh5a5QCZkOgop6OwdEpHSB0ZJU+ANkvOkR+4Aatx zQKqxL7E8DahA8LEEWveYfIazyYH+ksCRXmQ75MaYpU/CJVwdtEPYgm8R69876v8j9QAS89IDwVl qQrrp0ffG5SDIfHroq/GbIk+1aGzsjNorzgyFgZJOj9xH9SvPT/kDql2I5RkXFS6T6vvQ3Phd1j/ xXUzCCC/3z62iBwTIDoFqtOKwrCrP1Nj5JG5d97ysMcQtgkdi1q8go1psJzYMAVVz+hU6Hv1YccF zSquxweRJAhUyvjAG4A76S9ZAIq6bsnkoaPFJ97daxyrab16gMKsGG4fWfU4VzTRMZKC6qCurw4/ u0hr87N1fFyFdJbDjgSwcFDrlJhIF/dTXE8F4We7uoCWGfTazBJ2db88ag4urbSNE1S/QlZZjOTP 8E4hbUHNfT6QFCuoFsx5hfcJi35uUjiLUZC0cHK6dXrac2Wf1WkggNw7Wz5525L8x+nysMvUkUgH Ul9uTMsCeREiNy/wfPzQDyKfs2VNgoEXNDvo+004BmFzb5LsJNiscOD9zFUtT9VTrVdQ3LKyRKgM 4rEGRtL0cDJWnbhYzsEBMojU6JTxkPEetxw8LDOZIpLFfBUrDfUxmTyQZRQJMis0fI9IH2aoR7Na F2exHOK+B+0rqHlynJIGHXvR7zKnjnTE6XEzs8pqKFZ1kpyPDtMhcszK4ZqFXo9oXboNVqP6SIdL y07nOPIeidJSqDEysJjZRYecNxrvWK8cil6UK6oEu0ipiyzHfHS6dWxXEuxaSldGdXg31yJCiiJR doI1fxt2w147rPkuLJp1v9/lxMYkZXAKK0AqSeiIxINJptX3Bu2Ajg0o//vIoGXYCt4pjwPkImNe QrDIVncnWB3BmThlvUwsZDgmocJZqaTOZZ3PWfNWyhzCGbDB3CAnbctiqtJ9uZLYdsWpiO656/4Z RoyXTexl4L609L7q7CH1+RKUyZoVGLKuh1513Ae2Hjc8pLWDOpwYJmYvFX4nfPoZ1ORtKNbqXLXd 4A6LmIP6OcuHp3FELkdN/rf1o4j+s4hfmtixylUZDzE1SVJp4S2DmefjnoVfHMaSA9gXJZ2vJLTU 50kXsyyHlRl+dvRJEt/3kOP310+/sFbhZxpGj0bMq4P/4B/yS+A9mAKdVfa2H/0SBjJJhBXOBX2V HnqWNj8VPDfwu4TEI6GpSB053PGfc+Fl3CvnD1qb2LaRcL1FCrAYqDduRHzjs4PlwTcD2QNBqEbC V4FXVgzfPpGjoX3GPxOAXTowR8J1ShVwm1DgkQD37OCAo/eikQDtcxV7rj6EmZiJ+UNGPI33OBKw U9SwwBIJ6fmXsN4J+TgbCdy+rvTc0PREyGQ3gJEQKWlUKj43VDhrcEPWaNq1b2o9NzxKpzMaHKVQ e35ovI5Xx0GHjEKjADq06j03TP16OwzFLlEETpWr2EQzBOP1/DuuiUstR0F2hPSlMVwkPwXPT6FE kB8JV1WqPDckomcZCclbrpKglgPkZH122AaRe++NnqUrrvItiOXf1teJe/vb+iqUwfRQANYC+EJI 6fqgaYjr3gj4UtJ1e0PX6huO9lLr/qD3TcZexpX4Ub6ekO2lEf9GYiDU5kj+LyBTIWRD6FuR2nkE 4PktUmtVVr6jadMkNScqebQ9dZvt8GEQmrb4aeo2Gn4cLEa/p/5+EDbcRx9eR4GnrGXp0hFtFqlQ TA8L5cvD6m318nYfCfBb5TN4r0CDgpPOHcDBSDpNdaLEJP49xtJrwg2A5ka9zY4cP0JIAYARKV2Z CUXn3wGwPpzQPJj9RCsQQkZemXYCJgsBuF7f2l5y6C9xwSkIBKA5o3UiwaTusafGZAEBIDwj0xse bz0Oq1vvPn151zy83Ag/7H3Zv+u6jS9r1e2Hf3zw3r375+Hn36pvzlrvdrXRNxVgkLY6p1xWFgoM u8DM72DERbelkmWlFdfJBWsQYoVF6dqKM4t5FZ+ur8A6OMJ2evOChnrzAg3yT20jvXnB32/AnXp+ hk80uckp7udt1UTLWyvKX3wGkyW+l4vA4hHO1R6JDuSqrWcyNqKDXaPpnIclkTGyyDyIl1czmgIZ +9HSf4198zP2YUqfYNnD53lmPJRnbHZcmVd7XgY61eJIa9zNi9FWuJsXi9zOSFMbKhTZ1RiIrBEN xfu5FrPrWP074holm71OWcwWRxrGeDBhjhUML3JNXvJFvn1LnTkwX+Cu2u9qpWLSkjRJociYn0ql XJMTwV1kZSqV+KAzliWq+n2NScnp/q+BaN4GopfGMCRHkbYCybxbO3Niw0zhFp7IHqRuQltYIFSM bTT6wrNrYwMpis0YKYbbZpeEySUphjPFuE4YONi4MVOfti0lr5vYXqFsFTP1YswieV3EJgdtbpip j6yNI6+zhB1hpn6MqSKv+YRVgC0CM/Vh2R/yerFU/Fq9P1M3sTEhrxetq5+p6YQ1IK91xRiy3n2m HnppDX9eL/talT5TFyAFsbo+r32tG5+p+YT2Pa91S9E9UwdphXpeH7b2WmuuZ+rM0pTn9RProkUP PVMfRuOd14NolWdq19JZ57Vsa4m1hnimfiyNdF4/RuM7U+OWSjmvcaOunanxmxf6+5sXOV0Y1fCi HI84H/MVu+asLCd1sXwpia2xFajLKfUqV/toq2FNPVad8nv+Zcob/iOX0r+mLKHa5LeJEh7FTXD9 r1cTqC5nuJ1M1CyuA2bpFWSlOYXXrS45uzmXk61trK5tb62pIKlMfF0Knitc3gl4vk3AnY6ssQLu 1nd3V9d2d9Z3UgF3Nn7ikxkj7tZ3d17vvn6tmv+mEXcv9sD94tK/sj65MZCsvhl1MU7h3CdVGjMW TXF52NjAuk2g1LSRdSOvDkOXUwTWgVSNVCqf7+ycNk5r+x+Pm79vfa5+eXPxW+1q22/U2oenb9sX 1fBwsL32Z/dN9525M+ebBerhR9/YsC5ODivVQxJ8Dvlma+fopHJ86VSOrg4vnYvz6tXx2ZvcG2Ky zm4XhKREoYdQIvS14rQm6RWgw2TdpQ+9o75z1Gm40CGr68tF4faYUdkBJfnGKFYToCoU4dDkML4N gWgBYX7dY3kWAe/QHbQhffUs1SJr+wYkyvj0paoBEaBHOLninCLiHHk44jA2PjqgNyA5szNh9NNb uTVPGuC7mLskeXeybpvOpYdr3KluSi2ODSRA96ED7pKE2+jL59nOl5lXIzQveg9typA3QlENN3A7 j31fbJs57+u01YveEfKHUdHLJrUcFX2anLW/I7bf+bsaS2auKv07WDVw8T0UqVLLeZW5275JXLGz toXgcFxYrRzix3V+5j2kDbs/s8enpNc+V3e7cxUpcuy7XJkUiraL9QZHhz+/nazjg+Ta2N3TeQJx n61AIYnfrPAAhRDVhHyoVKDA4xYdXeWE52rXo4UDj1021qBhQJxO2dzfMA68io0YNnBvQo8z1DS8 HuOrbXESaF+hqzKAUpereWgAB86j5KGYcGmO3MCpKByyIaAyqHvLD1Bts0JNLGxG6aiWIeUAfpzK 2A1tDu8+wlOTv0SpGXFjM5LETEj8kh3t6z1jA32FqRHVFae6qru4iRuaSlzWqRTsEzX/1mw7u/1T DzdXg2bZjfDvMVbauQUkb/jd+1U+N4sDko/8yDvE/cDdt15EmGSOa/uSwElOJeHZ/+qnDsaIfGwF x0qpNO1JggbNscEP8RnBj/pA4AdQf/7BpJ5/CV0XuFKEm6CZmVZLgyDGpdLPTkmT3dJ4YitfxtQU 389IQF+OIZzSlaaM6GguxFCaVdQOrU5M4EolJmovJyRm+hJLECj0MxFNUigIBMA3MZ3Bi/Rux/7N 2+KJUPxsSsbZedo4UCHtbIZVDqPGSgtZsyKPLyXvthmiXMeeZABDQbtg+1XDbq/HzD5yOZJwMF2j MeX+4HXq0GfTmiZ6K2dppXGCSr+IO809r3JuGqlY+doaYgUWvDoTe3donZO83QaK5PBWkZNVuCHA 4ggwjgWNZpVol90TweWUZITTnYbOd5Y7tf5gSILoCk1tx+PJHfbL9MALuCwruCxLWPYba2u7azs7 m+u7q792B7/syuz459V4Nti6ldsREHalFYYt1U+fhGkPXfXLKqfYr37jF3qzEqgJWfni1lzpoxI0 otC3vM9GntvD9M8jfXrHb/Rv4VgyX7S9Tm/KT3AETPkJrWzNuHZO/hmdVVgXxShO/BktzbRfELbW mSYtTfnlIFIxgxN/0R/ADWDqucDPNB2CRrPfpebgY0J09XEljFplMxgcDTztt6ZoBdRQUA1mRO7X wrMccPg3/zKkJi8lOEOaoA3q+4rFzChpM9GL+SZ/N2WUtmkCxY4HaLu83bnbbvXLfCX9LbYysZ2D Qce7dTvd27rXIUp0G3Mkt8J7lWPaqgHudMv7XLtoVfbQQ9FLQFX0bo/hycyBEBSr3tdMA0+bl9r6 RlQm5sMPbunvTgepNfufhm7jlk49d9gZENPdcosmZB8fZiCKX0p75SoaLKpWkX6++dDvGt0vYfmx 4/f7nhvcgpsnXkHp3EYN+qP6JAOO+l3llr7ReNjBhr1pMnDmVM/0qH5/oFamBXhWiOMV8Fd3W20k hb+l9feJ26b9GJHkx9pX0CYSUu69x+wKEMNeNJIKGih6WZV2C19zd9POQ+403JGkFYW0oyKZh4YL LfRy3e3UM6PJbv3ELqJPhh2YEeYC2DTrc/cpqNWYC7oVLui2/+B3+0OSmkkeo7UawF2654t3WXaZ qqp2Bir1+6h4DxkFTPbVFW/Lbz4ZfrexWisrQ/WtKz7gLBvr4+JX7amSmQidiCkNkPpdiK/v+0k6 kpg8dJ0/C/wrJQOkDuYtA6GlesuexvEJ/PQJfMIRHJ+7Dh+wzPI71r6Rxf86ByBnOA/5EHRSp51j H2tzA2+6M0sfVI51Ij0RlPRxk1PHMYeJhYyMb0XIyHk5ksi4r7IEH/kdeJ2k0VEaTeTzmPx2E10p M/xg3OgXArW3jfo+HmLybpTCPkgAHNOHqwKYEqrw/H5mvV2lELqGtioWQtdQ+oCUHcGCL3HVSmFP 9cG4nuoqUs3otfP7GHGFUmHnzWBc500dN2oZA/L7H9FNtzuum666BS5Wrud3Mssg+2PXsq/WsupF iM8Y0f+obtyx3SgFhupG9MSjJ3WW8Q7CcYDo4MIrt3PnnAcqpU8+BCM6ehy7rI9qWY+Go3bHLIP8 9Hlc358UZT4LWWk646p+GTuZX9RkUj/jN8mEtynJe8PNZKAafz4lfbX+tlHpIpp3D5pj1i3ivzE5 XEzx4Bc60WWQgCY+fUwsgRX0mzqb5JjlnzyceYwtD5RLr++ZU3IaQCY4g4n7bA47HMAyyQEcRzRn xtb004pUjDFvPNoC41T9gRKJcsYjvSdioAt6B11QITeY1abHrKfXv/2zN7L7d27PDWDCUgE7cwCF z9fYOvDb3qffh637PCiMi6CDU5bqz6H31EREWBJZEUzIaCjmOwfjET3NZBbBBUbTuXBVfomnQQYs 9RRuwtjQM25Vp5AF0EseMEeHyvwA48Ib/d0c4NHbRtZIQCI61QfqTATIBWpPBch4isAhuhOQghGJ k/dgjmWrOGhL2HTYXU/ikcRoHvb8gE2AzpHkB+fVJgGacHCFO4vF3fx4fn5P55IXIBJXwp/abp2D Holo14lPhpadoybVFS3sKsjXpHRCEt5gdO+LzXsYhJooiD2z77yqXPzWX3IOu6KX6csFRosIBkq4 enD8lLKFIq6Ho0ZV7OcUI+FDhieorgRBifh1G20V7gMLLKpnMGjCvYZQrg3BqsPPvQ6isMzVavHd bQwnY88UwGszvQyg5ZJQ7fTYfYInipOIUiGi6jC0uFD5JEzkXBFLvn3Ho9acB8+748B2xKfhbhcV 7ieO69x+0ovA6lf5O8jHHDnse5HxKkg4eI0bPOGgcpClZe/A3FJGnJ/74D72iSVyG4mb2ixswXa3 ECmNPDyX7N2gY9xU9LHy9TBW1ulgxX06KhwVXjFqBdgNQG0T3C3EMWnGG5jxD5GSse4mCwUHjzt7 iN/NaVSFHSd8LmInCY76TXvKzIrtegOVt91Wa1grdx9vYZP1otte2+17t006bSMi99xpmfZXvbGz qejtK08CcyV/q+wD5xzUi2NBvWYTgYQyPMRl2o4nsGM3MreSTrQuirlObgc9ZbGXheMOB+0QgeNC bjiRAC+UjJjvB6QzlW3uMv2o54rPB/DPXFSGtfVwF+GxcihKdtAnkoj4g2CJdxeTIlpGaZYjUB1X d8uICmIKLOG4ff5G7l6w+p9iPqoqu4dFGdp+o+EFIleq5B/OwG314eoEYgah06XTo9sD5oVSRw4e 5Z6TiSituSPXKJ1ZfPzRqcB2rgiuCU5Qe6g8FpVo4AEO8B0mlV7jJ+fqkQ7LVp6jbmR0YXWSVvD7 +uhw81+vFlREnmR5NhfOqWlbid8tqpHqz6UPaTYBJSgaR6eLA6vZlQt9vkSD8JAesj0pCflwkxuO mZLkMPAQq5pAAnudEM4j7C0hJzSoD3s6KdynFUX8bowfLi4w7UUSU60BWKZZbeXmaZ9kNQeuOHXt h73H8oXbz+bI5cecRb0Zrm+vbjn8z/ZsncPVi/bpqdubGJWSLWSU6D87lQ4msuHY5u1kqwkwa52w fgc8se5BzumoIl44fOlfGlTnjLB52Xk3pDVZ23D+P2f7563XTuXUeXN6ZXfIv9P9TTxZjHhVOsTV GS8H6l4YEE2QQyENV9EUXoY1QrBXH1eUOp2WsLG70aC/65uri+UrCCPx28XyER1FuMHzLlH6xvWp Z7vkxEOUe3aK+eGCWihX3TtiY8vVsNf23fKbIcJ7y5VOM0TaGYbCo78b6zOiE7uxOof3eXafoslI NpFCHmueLdPmCGzihzdeEDyW98F9lU+Gd27Co/hHwrqcHvMsLWMH/EwIle0tPYyCQUwwbZUhLjJ2 1uY1b1d0JsPL74qIcydXWs1O26nrlWEQ3Au9x/IRMW/Zeun+C3qfYMCMJ+tzG+/RUPuEjRvlYafh t9yg/M5teUF5jx25slXTHRd0O+lA11ZnGmgukdEunc4RJ+3iz5OEJN1YAnjDRhAbr50hY71HzC/Y 9cSReNLauh4xsL7llJFfmcbg18Y2efqoRz2upq5XfcCdvuNqP/j+cFydDW2ZK64CJqk+rOVmGEzM zPbmuCr9IN+fOd1dLVTWzOJqE7TkES9n6WvzK+n1lOxwY9vsupE/dpkaYXDnPd7RVhlX84vXaSg7 V3GlrjeAC++4and+VBs7bfAVbYaWhjS/Wk+yI42r5hGBabNvxriasVJyXM3PXhDWOm7Du623I6Re QH6/Md9IEpZ6hMt2x096z7/r+mPHxit9RwMcV7HfdfvtGvU9tmIPir/xs6pRsu4G7njs0DTh/W+T 1jz7OK5mddjzolNMwOVwLLinbsuneeq9G3bH7rZT3x+E3bEbSCXnejNpxYOhZ5nc8qtetb2q3+m1 L0N3LLaqZqvtYbM5QWrV9JFkHUp7UfggSsS+XBdjulHmg5T2CYqFct/t0oAaaBWugOVu6ixzOx2+ rjiRld4JcbO77s1pDqlSg3ZdfRBGj8muLRxTmlxPKanLRvumsBnKl5X8oeee4tmTeIIEEGMneExQ oMluCs1dMr6DeJTzHnLhsXp04EGHSsL94MGD6gcxHv0lXdVVUUnIxsaZAEZlvtVxh8+f+rYw/AU1 JohrWcqLk9mIGjpIRpR+kcdhWKwMPvJq0dAlrFkPGkvO+uraDvTNol/+vxglMwkOzjN9sIo5mzJt cPFdsVsX28vv9ir13/uVyqfHd3+2Ts4ety63vry52q63DmrVh8+df3QGzb3lekHa4GwQHDpeWLg2 qXBGBLAtIp+NqmlZs9MhaSrxTalkBZmVs8r4n0olTmVXuCs0siPzXU4wWCm7V0ojcPqasC8G/SnI vMioe60wLW5zRryVSMw//jgisv/HHwi6on9Yl/3HHzpKh37qgCf6ie7p74YJTKKnAW3yP/7QAUT0 8xoEP5HgaIZwIB0lyhGcsqh/JP2EaRGv/7D8c/8Q3eIfrFz8Q/Q/8RRNY6GZyV940fnjKwEkLrn4 J+GT+4dyyp0RoKl8gxUkRjP0h6hnZut6Ur9f1WlOY84f8JaYpvfYC4NbpWbPvAeaQgRY0GgklALD QtDENA3Hw5o0AEQNS7CJltWERMTdjgi4UF/raATnD5jU/oBN7Q+JJZgN+CmjIxQUKhTA+YPmEO79 BA00nrOBMEVMgsrjZW3lBezmzGYmujbC2X42MGfcyTRdI13rZwRmyl1MUKS0u7P1O/kW/sp52dJN sbfTNF1b+9esO6142rNeXlzDoz1ufRJPeAZUO6nHn07i4L5IB/+y+fM1/kmAxNa+uM1J3NIXHYUw Fl5M4mQOWK6VkT3+chIPcZ4A9tyOv5vE5Zt7VM7Q8ZeTuGsvUodpL2qrhQk8sblv4/8cfzuJ87TM 8NHQWphJXKHRpXOt3ZHjbydxZeYpjj2M448n8U9mknddKqXcdUulaXbROIfiEdmJuYidiDEFDErC XXc6QKSNeB8nvHN1LuYF6iPhQmv30fTTvC360mkq7S/T3q+6FSBKgTctNeM4uqGMA6sNRtYHdhFf Zr8d3XnKg9UaRo6D6HRTnaCcutWMgyV7elrAjXMfHdUWO2um10oGl3T95EZiJBCHTHlcW3Ge6FyJ Vtb5zo7v4jn5cozHJMDb0HeejHOHvB7hyDg1LrB/pMhCmyvGZzDr0njzwnJlvHnxPC6MNy+SrovU z1iXRUC+xSs7uz/iy6f4IQIAuW/mP8jJ8Nq4/E2DMRorp/MxXJzdlxBzu7Oiz8i/uKMgBru74nw7 L0B0KP+LyW7CmU9KJ/bVQ2WH/hh3vHznOCb0lmvdJNWf11EuNQU5HnBKtrQd3NLzZnmu6bRgGSEz 7YymRVYoaG9vE74Mt7ej/HnSy2b5gr1M+YBJnWfyyFEuXuhhOn8uGUBiBhPOWobtW9D1kjOHUfKU SsWMh9XMs1oqpWTiZ52/cWDmeyUJnEkPIwEz40E0roNcLyBpHx490mqex85EDae9buwVT3nRSGvX nKZdK5EX5THp/KIKEz4uqkxcWdRD7LGiCpKOKaoQ/ifq5wZJ2vJLe5PorrY31S/4hlh1auGjrmLK 2aEjBaPy21ClbLRXv2MvDFXAzha6ovhUqCd2ndBwiIeEelKOEBoA4++gCmKGWxXkeS+oV0knBd0+ +yLY0MPlQIOiPQv0s3IgSE2B+AmowtgdIFVw9lEVJIz7qsy24esiMdWrJ2ORTz7D8K5Kriz7erKS MqPzhkzYw68tQ7YRiFKs0hiD+OJoszebM1YSs1Vs8balJP2/6+e5wcBY+J52YYGq3U9cVrC9tbNe dFOB+uB5LiZY8NzV1fUdfGPdT2AS7Vr3E2zubu6ubq+9Tt9PkOGK8d2MlxRQHzs7Oxuqj+QlBdfb m1S49nodZlg9vnlfVZBcypTttNB8mWefjC34L5/Hcv8DWzmBASwfxjcyZHI7T3Mhw/oWPtVzP9l9 DMQB2xsh3m4aB6a4j8E09C3uT6gOcMmeg6sla25NvGmn8GnQA35ysu31z73VdZ6U4mTbfxIzFnj1 uxodsg2++iov33ZqROk2UaWgoWfL6pt1edJHDGPY2uqa1IUddABNBop/pab01XuSBzfj+VTs7iwO 0e+y4+TPc+IubGoDfY/c4frQDh23EUZar4TGlIWABLohkRli1JvD5FXaVqtnunMSvbguGiQiI5dB EYtKJLsnMnqv/UisJBcOA5evViR4lxzWZEllvo2FGmjjxkoSRWt9j3Yhbs2EoANm3McdybhQjD4t AGnZOf9MA2w4B+KOAFJYUPVD+5FVPPU2DYOv0AT/AJRfVieJg6tYs85Gikdxu+6XMGBiZiZi+Xe3 2wOVZB5Big6HvXZI0soyclRHmIRlvuO13OiV91bXVveu/r5xeVxG+0QS1m7XfvW9X95fHe2yIYAD 64gyrm1ubO1ur29vr5rifvTL7vKaeaSjmGh6o/+LwYn/uRdoFKpq5y8MKHbkN7A7CvafnRh459IH r8ozaMUe2C0J3v5aMMnnkeMtd/xPQ7/4YpAkPEXT3R94LoRYGibPuT5ob/vltd2NdfidKI/Fqb6J h5AepAUs/05vRLUVk+6P6Upchfcj69y5oeT+HGaSHpyFTo3I06PSnuPiopBV6SxbLbfBjZAQuO8F fXoNxAXSgvqJalmpLlktRhXc/p2+aVsuO7Z1mWET6h1sPZXvnbmIxBqUc0mzzHX+u3hOhXJkw3Jp iLTHvB6dGDwWdXs6dJBOj3YuAcIKYygU7/0GSai49zx0HqDhIwLyAFWZXMmq6zsPLhw7MU8D9w6X 4kbE4ygNVZ+kBhqaHPJMa6DRL4TObGedw16pLPHdI4ELjophVTowggMsGOuy+2HXe4hT/zNPZ+bH qcv9nCswL9yHPMbWkD1SATjPiYbO6WIboskazCyiqE+vjHxxcRqvhymZaBW6MK5KhvScCtVhrYfL IqDZtZR8ZjqyOmaQ0K66YlAcTS2Nc1E3BEeLOD7R3jc7YFVpgftyzzwumq65crVAyPdTQA3ecoY9 pxERDV5xTjxX3+xFfB4JIy2+h1eAaYShnF812ajFIBDTF7YeA74OjH7TTorkIqWxX8IUF8G5GJ9W SFJZjktYrb7EKCkIi6v6gBOsSSVGUkpBmSJzGwOfh1zHHSijWRyGOqDJobmXwY+Cr2yTlqeSr30c iZj3d2d7V84xWHHn1IUyg1sfR9NYhxrzIOxwCFrTbMoF1cTA1T3G8ByuxmHOn7AN3S2hthuFDb4s GbOIm5T5avOAP275UUeufcYF923ISQ8eDFjMi6Cqj2uZ6eN4WxqaA/oJ0YQwiK9c1hZN+gX3RxDK AdMurC1XZvY0F2qBtxDr8SvvoEuYiXKoaybP0VsQRRhYaAPwJR0g4cSK25AWA8jQFZCJuWKQ2Kmq RtuSgzd83F6xaggEPtbM6K3DpX6XRFiQJGEL2ZxAY8+7kCgFXBYvTa+J1YDWTM/V5cUbQ1vtwnje 4m4zEziqk6IlJ1z36/27x6brRzqJdbpYcOo5ejdDPMPUxt0b3AlQ/mzdm27UJsz2r148GwTYccQ3 dtVmS/A5cfmzdd/0SCBzmzBw2Omxc948GwiX/FCJur4X9y41XBQ+W8du84F+4Doj060pmkunuZZ4 LGzHa9kUNrHoyXcxHJLbekZIigCpkfihDq8kFNYLC4RXJCgrZwNm5a0jrRENif8XYT58SAT4TwUt 9X9B/NvgcT8MOwfDhrUnU+UxXCO6muRIyQGi5d5ZaWEuD/EHav8ArF7LG0AMUmJuDhSqtzHaLhNF tudGNZpKOkV7xD4QW9hrD7tO063TUrEie75hYVqJP1EAkdH4zyV0yNKLjQ71gaNvgfLqX6/S6i5j eV3I4Tr0uyeqpHQzjjmwvoMSygBxc5OneDKvJ1U1Xb/ErXJ6BxfrY0qllwlz2bdRReWooSwVVLH6 afFXPREJbZAuLJWm09iIfY69vhWWOaxbMbNdgtz4nTUoimqncH/FhvBHUIDE8Bi0+eFUHmVLp5GY QKW7MEUzayteJrUUdh/Pq5eAA7M1njwFRLLKN9E0vExoGMTJ2t5uxaoAs6XFG/T/qLyv5+D6aYJ5 kUNELmWxnc/5bFQLppBnIS18S/nsorZp2UKMEraqISSQm2OKjNCkpARbPLykAGyYCdWKGTgLosWt GEBEkC1sRq1+cUPpmumWkoLhv26CwpZSomW6obSAVwxSumamKanN0lpxK5f8IHJeugEjdxV/Hktr 6Y+zUtMIR+hs5TIHdliET7dpyUDFYKWlqMWphCRrJOWMgIOXcGwiYcQpFkKm9gV6ccHnKkLeY8gE enZ+eA4fofW17d2t3RighJPQC470Ejd3QTUG5JmchlZXd143NvCN5TRkHAYUf0zFaxs76xuba5tr 2ymnoTxyiE9n9BtCN2vr26qbpN+Qmsvv4jHEuDBHRxjlIiab5y/uB8M7jG+N/kKnwaOwjmDFODih T8ex2yN6ScjddbR03wcLEDifEDWDFLdTahMm9Z3R27PQd2bj9afWZ57IYt+ZE8Kh6oCwYt+Mwyxh 7Dszh1lIw4FmCzpP+NuMT1Jytz3Y2TsKakdvj/ZbV+E/hsf/7H08vhicbuw9eH+nyne/bZy0g+r2 P/o6SUmOLmV6/MjLbaq5VzBvxKOmcx/yY47lItnImnjetRG2A4c7xduZ0Bgz2UT7H8EWoCtEu/W8 EEcVsVokh/qQ4yCC0CPSGkAXgfOKyn2Vpz3fZ6EQrvUV55/x8i859xBOhBN+c3ykpQRc5v5pqCOA oB1ZAuqQ8IuKWp4h+cFpeHWXefMHKKSiwB6Ylv1ScBa55CQB3ZAJJAa0hfFHJIqhGyJkvRB30pOY wBD5NBYABVD9ANQcOhIOEQobLOSwoI4qXTe680RkgywRL4iSalU8mvkUIkukvqLfr/rDehsCjMyI g5MH8WwQKCWksOOz9OU5CHSpDaG8MobbCCLPICRGgXhxU4oO3tAEXkQ0qeqWgClXdHPFOQ0l2hJd k8zqYaHaj72Q1rEvs0PiKc+DzBcNP96tEkfJIlMHh7WHSfGgNiF0ZMmp4bc4qBPyAeSuVkSi7Uyw btGivj2uOvT/s/Mrp+IcHO5Vrg6d80vn8OD9fuXqmKho9f3e5eHBwfEVx4ghouvB77d5R3g1Jf12 6LQPmJoBhfsQdYEsHEeqA5V8VI+W+AFpQhDMwTuKBDKQ4SWeGTwByIypoEX7bFhj6kSkpg9todcv 49djH6rrGokqQPlynTikNvSsUd+7FdygaV3RZGYfr519fg0RsKpr8IxZttdRcxnTKcnqdUkY16Wj V4iTlPHPcaZ4szB7kd9yG1hWDvOSkDac6UsOSX9EKYHSS7HWyx0MXCA0jaDpcfguzjiqXfNb4SB6 pNkkOkfDWoLAGAKVAhXs2cai9Xueh+0TccAnouT4EIRSwAv6xg0l326Qgl0CiZkdUmvOSgwJhEWP iu9haEXQAZZ3aHrxLw31kQGB7/Q9lB1KT6J1RSyu83pza02JekYNBPUqUOPlek8LG/QUJKGKp2V1 mQ4OVaaC1DJbXMW4EdsawrPq0YkOUF7C1k2FoE7RbHXY6yFoFKqY+PhfXtYEtRcSvWA6jzxdEHRI DKBVhCYZgaKD5WWclZy/oPMImtH2ayQnNP43XgLwNkCzfm5fslzxmaH7YY299O67gQqztPV3CkIg odMbBkQhRKtnRI6EVq8CtROdHeBrIqXz8qFdghZN71mxE3ARoEejg3gcgrnEJ9EAahw2uiJKOLPl OYoXX3XBOtBkLMfjnAa9D6F8kpFRO95nhHuLXrUNnSJCTPt+nWjgvccB+0NoKUkqC3g78xhY/8Ub kN4bAM3eECBrXhPsoBohvuV4GecETL188IqPVTnv+dyIR7Qo9LPh0f7ljq3P8pFChYl3PSwo7bUm shwBMwx8LIu7SnqX4wymtADwlSF3YuODbYHOVYxgUhFMiz35pg2ha1QBobncAm3gPriZwHvET5kT sIb8pJgxiSbmk4OhpZHTOBpDtu4wKtBBCMPNoyIc3PfgcZplPiOejlbWpXMJYFtB9EQstYIUtJJa 5zB7WVoq6HhNkh4HRIg+0umoSCrH0ENDx5HwwRCr3zCsHA9BJkN9DWLiYzig4TCCAItIOkyuCHVZ xoY1k8sK3Afa/qzcZKKEzwZY38nHfhqCUkdgVwaCA4wuHk5mQgFNiEmIB8Oy4lShzdalvNzAA+6+ qQ5//RYjxlnvvGJ2jBXjSp2xx/vmOKDReItCUhBxPRPprMghpuhCOr6e1+7eDzWGK4W7nB/AXsZt xaoJxYlpINM+oh6GLi0JMTE0KWBTk9aI06ENowTux1ziGWGZjXE3RH5TZc30A4YHZ27EhhbCFUTA 85b/EN8cFSEMnc7AkHcWbB1ML7uwLCjhBLaopFNizePDtekRRXqQDI5TzKWWuEQqVFvAbYJpoH0A MvsYsxnESDOX0fc+87/tsBvScVTzXWL1iOno6wfFj8QbXNEGi35f4LSp+4jjCzFDhAdQ24gBV5gh /C0YJ0yN8J8DuAMQcUOoEvg6zLYLasqUNGTS4BG19kNiQBnRiGPl7ekOByGMh3XGnlGTZJwl8lnA i7bfCeGdoLLzFzKBpnWpkZpsYAcY+yiELZKmoBaFbmO5xjFlacwckKBEqIMhMaEWoiGm1lM3+sx1 YDQL6iCMLq8lEVSktkHbbEoA0RNRhGrvgz6Bwbhqe6FyubWHwsAXjORD24McDOIEoSXELqHtDriR K4l2CadCoBextMMMky8ijt5/dcTQB/0h00jwBdb0xAI7tH2uynMJCyXnEFYNM46dgMhEkrKCNhYx kERNoVv8X24AahbME6OiFjkhTsmhHMCmWHTisHEO5joFnhEyJpsuYr3wsyoSkTKwEaWiAf7ssL9L 5Dq/RcOWvoVE6mdbLEr3nBRd0r5OmMoVf1DeaPx590XdEpDCQuZe+iZ9jCUxMBCxR89IISnvSolL zeNXjZFL9ktyk7TX8fRGMELec8kEklRiyOWobAQ84yqVI/LF0POvEcQx3bw5ik3zpiRufgo2JN2+ GyB5md2+KZkH+CAp2HDDLqvurE4S5fPqCrsu0QcK5tF4ZY+zjR4Qvxj2fDf210u/mKizNK1n3Iuv 4p4EF23gjt6fnOyfn56+PzuunhrIEqUpsMYCcwKNC41rYnhyZ81QrjgwMl2aAix/vsZ0Y3aE3Ytd OI9ORBuV3Y6p8nl0VeEd+GiPJi6aqIP8NRWJbXIcywUOvLluqeqqO0iy5ROBOaartzA2EEN2HFT4 XDR9pV/Mo7MPXjuiIz3M9pZ5M4/uzryWK7oq+nuoojuy5fPo6jAAG7cXafmi2nNj9M17GXc66mDJ xTH2PeG3MyMYHdu9yOtBFWmgtMomA25MH9riZVELKYhbn71xI8i5+j6ZVOE8OtFMxuCyEm/BuGyi LtIryCzS4WdmpnXaUK43sZo5AaVWrXdFVOgjn7zAapdMBOm4bpRzCNpd77ohq/Ev33B++rhHvHEu PVGDc6rHufSNIUbIiT9Y6eogCvM8tx4mtk8M+7fuANsZilVjljiB9EVCRsW8YiUPK3Kg1npfVTn5 +N1EUKexh2+K197Pxl1AgsX1NfL8MMaYblzzYWuGbY2kl6S1eZRPvjKnT+GSP70Zmeej4pwH3nKV uL7lajvssQroEPZVpYaFcCgbcsk5NcbUY8uYehnal29PNjk/SOAAKFCBK0D63hCVU8+ysOusft/C aK77+h6GcHV5San0FzFuv0wYtV+iQcuYrWf6exmodf8/qNH5utAwHPtLTkzjC23QehmQCNIYjWVi nB/PBCxwfXfzLidKn8ykWyqtCNBTWWjlk/9aX7+d9VVm/L+W1f9gy6os4V/Pairj+lEtogLdX83a +XJyK+fLfOumzMv/Ycul8BSWFVK4ih/bvCgw/tdwKBNxE/zxahKjIAfGyFVLpdL1xKY7E6aTNAAu mhheam8hzz7HqLWgjHGy0SxlVteUxPTVFMXWq7gkaXCyy9k6pAvShhuBgo0wpk7SsMKNLSxo04ip ZaaZrRwZaO3CtBHBABNr/KUPpUiPZyOlddflaU24eZFRWps3ac2zLs/TBKtLd1iraypayth4JYxG NT0rrAU1w9CFlxVuOaVslHrXtnowlo7sUsneLDWzar1EwFieTlB/btR0cS+xJk9XOgFlmVh1NoM0 l9bYcccLCwsmlUCsTLODTSYKNztBaCuHuGLumK4Im4CWnhptdr21urrkbK/K/bZ2yNna1urm5k4M VDLk7DgIwnsQjsB7APUiDoaPbgu0vPgzqtkNbxW7QUNfmj0OLT95tQ6+seLQNjdXd15v7G5vpuLQ cpRfT4lDQzfbW6uqmx8nDm0+Sk7Gtf9Gs02rZg5H21li35gLzgku2RtYI2GrokSJgBQZnCMAPGt9 QGIF1QWnoL0g49ZuAghdhKDE63DGCpZ8ux7i43UzTEnkGh1cMOB3hZ/i25oIRUSG6oG8NVRTddzn EoMBRlF4dAWEc5DwMGQmxtQmTgpsTwcCa+2er+n5M7wTYaMdIjgcSRSQDaEv+ZXzLRapSSyVnJPj s9+qztW5I9pAp3J56BydX+4dHxwcnuE6+bOTj7Rgl4eHZ9W351dVrlA5OTn/cHhAXPnhZfX8rHLi HJ/RR6eiWjx9X6V2Tj5UPladvUNnn748p9ZxlfXZef4nx1Xd5hTQJ1FAXa90fsEzS6dzBypftwmJ UiXf4HlG2DJJXIIwRL8sVdeQlc1oRTLADMPB/8qtYctcQL2g/UtpO67jhEwuBPQ8h62pR0Iw2f6p gA6guTEq2TiJgclruTfsCcO75AaIW+cWn22I+5waCLS0McQNdLRbFd7GdaCX5jwrBZMBjT2tNXFh kOFCSISghksq75Afzw+LyB2oU1lUVIyLP5gC10icggajSbJWJivtp6E/wCzrzWqs0ekX3IkY7nmW mQRQOxCBxOjwMy8PYZco1LGwy4yvWgFJHEDYtGxmGbjLNs0cZ0ubNGo3c1bFZSrj/ePu5yYfGMVR u+nZMOdUHLK7BlX0E2k5hK3vRb5fPoVsg+ddxwT8eDQZoG0AtLkS2ZsXmvpgR8SE9eb/b+9LmNvG kYX/CmZSWxNrLOvymVdT88m2fMRnLDnejLPjoiRKYiyRiij5SGXfb//6AEjwkkhJdrLvvdlNQoFg o9FoNBrdjcavStrwxnldtgww0Iy1bGEYRCMoAMOobCAqscILCKnJKx3PJcgpbHqTXahKCMWIlwWF ymfaQYSPu4cbwToZz7ofDT5cXLbqFfd9+7j411+l/OW4cnlX2uhWDw/Wi/+8e3x4dI8bk/WWe/YC Z933KHcfTNUOXShM+c+QULGBPb0N9XEk/GRkBjOvhAlTeKOuHjgCRT28kHqSnxulZtI0OpzZ6JAb rWOmJZKZmoYyZ6uRLDORZrnNQ5B/BhPXxgxxfYH7l+mtxoWsX/MtzbCjGzt2lnGJ4jpA60LXRNsT SvQ/x84f/ygfjOBPuA/chTOuz+ZEpx2O+0lFsigWMRSjjFVyWw5cXegYXxmDg+qH6Y3GUQyffE2p iq6NtGkbIpkoYcmD5clPw4eeDQoNQcMqewbwYz50IaUrAecSb7GDlQflCDkabZlXrK2fD8zQoyXT mDImCvGW83iS5OZbmDhNrE96H4M4LpwR9ud/XOJuL7EHu9enp/Uj0AXenh7X6ityPd9rXMMS/YlW dHiA1T+xP3yE2z/nEpn0iBjarNednXJbhl3vOXYHdMQ2h7BpYMPnZehpivocJE956eRZvsa0Cj/2 Tq/3j88PFdDreu3qvHpWq68mqVNLIP/GuLjRLL8o+SsvR/6LxlHtyo8tYjoT8SWxgaoC6gj0KdTO G/U1pKo4v1yTwUhQTvWXQMnN4pZRkaevXoiS60unJAVuefTTQrgubs4/XjRqYvfq+LC6X1uFsqPq VbVeRzKqUgzxOry6uD7fryP7i5vjxt5R/uj6vAFsDDuUC4KGo4WDhfwsLquHtfoC1J7d15YMaZED QvfE31XuMKji/o4DR+7gAzLbF9qdzdZo8FUqGC80bBtLH7b9i3PPRNEgWSw8iQ1bqcbVBfxYFe8v Tmp1HKSji/MaSJCz43qjejKN/vN2cXPpXYRtotel6u7FdUNcXpweN473jqvnMM/P99VvkKO+AJir Z+G46tn6Ajm9yL0UamXRZby6CyMEMuvgCgTTVRU6e0p9Pbo4u7g8utg93hP10+sr2c/QvEno3tQ2 YW2s105rew0pJq+u8Jmm7MFp9fiK5vWni2uYuRfAQTcgb2v4WD/ePa0tDQtYIpSEpu7uroGkRrbG 5RBW0OvTfVr3jj8eny6tUZCmV7Wz2tkuiKXGURU6VwMZ97HGgoqpUoVeioPj0wYs2WotqR9jgOvV 0vBIEA/avPEzwH+dYOpmqclf4BpHKBH3f7iuNRo1ajtuAjC+8fhlnwGc8hZTdafYCEyZARcjq2tR 1u+2aaC1IkCKAkbegv5vwnZBv4RLFfmdRb9w8NMJbM4ovLBvqJNlepH/aTz5I6LLb9VfYkr3g+fH YQGXE0yZfGfdtQwbFpk7d+jYY8O2Ju4dWlvGFmwUC63m19HXh60/yev6NP5jk9HySMAhuD5i9BQ/ YCEqNnqGDOMN02D0bLYmI7QEejTwizTy0dashwFc/SEbKvEXBZj9Irz/0mMUIalavIFW40mTr6l9 NMat3p8Pf7Qvx0flk8vJh6bEEi1PvjNgb4RBM+LYFfsTzqPBPoI6ctwc1MqE218Xg2HlaFg97MqD vg0KsMQ4PUoqa9kY/GK5Y9iEYjTBGs+zjCjVe8aA4jvFsD+hgLkAkgW8MNzFQDHgwQYeCfFnQ/jF yzS/5wyasN61D62O37Re6DebgUtmt3sC8MdWq/E8dLojY9jzj79G3szT8SuZU9+zUbyLYmCMBgae IvAdLX7RC7VpOxQDjKEkbMnVrmqKvJoHh0CDSRIvXlnDO+B7TocROkL3g9MRHWOJJ+/CUxHdRoV9 82nobO8U2FjErUfZB8TbvvNkDj3t2MWwP6sVh9v01UkXolfGwDVdmPiXVtf0zilHyv1GIgvZHNuX yhfXLa7DijU2YDkxoHTk3qFHDATz8x1G1t0ZdptLMEjHGVNshNzK1Fv8BRndjzgrfh3qoFE/fGRe Hx+pCSSVyx8z/HzeobUP0DuMBh+JXdm/X/D9tOOEyiX4GucJg5ZJ76aCpdgmHde1mv1nXkvZ46EJ xnR0/FnOHiYMY/jgYbLrA6faG/xP3MZ4K7RYwBROjxUPVJwPQoOVwpfhw4r3LUzJrB8Bp4J48R8A G3IyaBQI+wCSsu2n9y2o+EWEflD9kAQwBumY7bfejzcil2NrP/sjw1MmjTE/J+dJbpbl3mtXcMO3 yWb0BXuYy8nAVzoSe5vW2L1wq+LvW8/EpDO9bgmXQbB0gPb2Z7Ezv3DP2Qjt9byi93x5Jt4X7gSb G1eIfbEX69CLH2RefaGezoam1vFMtlefZBtAsv2L89/mMWku3GfFfZuAxJzGx6XgoIle38xIEgvv bZEyK7WdkI7Eqw8XM/YFQGWy2AW+XNTsFgCGHBNvB/PGQhuHsB1tRZ4u1kiu2bWgobn+49t1BOAX MW4VdDMSmqwCJinoS8gWlMxQL2CN4nmIePvmpIC5KKWRyO//LdpxPv8asN98/pXsNkGp8hxjeNGM QoiZBnK6+WU2ZM2k4/c5Zi8Zta1Mr72nmUMkjyZVjRgvkP+wdoxxAKv7NggFNr5i1DqgkU7frCdz Vryokrt+n163Mf2Sm+/f5KY7eSRidvRy9Y/uqnHe3E7dzs61Qs27vV7huDUVyprmTJC3AVvw8M92 cVVsx5z9qWxXKpWy33jg7I9sI+54j/FS10up6FztWE9la3OnUlovVULHeiIDhN/NeaYH2yiWN2Ub P9OZnnkMDbH7pjirAjOkscTjPpX/Jed9yBRzhkfSXTwBzyeebY7axRmMy9uIMgrghdWYrwexYIdX wIQYPThUH0+GFmUwMqh61AZax5WYMj3wIflHcqCF675IfP3MW7HKT2WHhnNKfP0NUKuFZ6W7DqHu 8YUfX5+dtEhQUG816lGQeiytwvhhi3FIZQwfvrjaPjasjY+PG43Di8t/Prd7g69729Vi4277w/Hh R9McV06LmwP7qnS91PBhzx7uu1KxN5jAqN/2Z/6hI27wPceoxMU3KKakHzecTiHOtYLB4zqtPBdD +AWBJnMxR3T3ECCGwPujxAvzmG4VR4XMBAXbbmGuH3E4MpqYnqaHQe+UjMIZgsSxVwVmeEKjG0eG PweP3aCu4prBfG1av/ZY9Me5fS9Nw56M0fAGHCYJHCn2+5TQQHAkrq5Pa/V0FC+twBj126ZNF2e/ 44PWnHwAVx3D4nwuHumo86SWhxk8qe/lFbFvjTAqH2cS6eldUDmlIlWgvQWaRdfE28POM6xSyNc4 1bpINFqCsP4KDA7elO0MhhZmFgE9SyVpY/pj7pYkHCoroqEOOHgHZmhVOq8f3OApAz4ug79gb4B5 OsgUjIlDnP4D9tFFLRU1+C+T0bOwTbNNXQGNvj9pm5zkSab9Ikt0EirrK9gNTBiGR5qBonTfKOVg md6HjRXOCgO7JJmOBa+kb5l4VbbsUjSpCI7WyMzT/2UrlIfC0lMycTUUw9hRvBob01iYcdHJ9OPY 4/wBMIBtG+LeNIf+7gqzUow4lYv7CBKI86wkAAty7lmtXq8ecliIFqyCoNH4jCMFgyjzM8EoAY+2 zBHmucAcToA0zuHQ9RWYuA5vGU+HwblDh80LasdS9xJRhJCaAi3oHOX/aS5R/h99P2tO65Awzdfg uWmaIw+WX5QZmtW2nLHbwWw4MOo0m323bdzLzC1Uz8k1sW88H9tXE1gQDA9+9FVm6JewkAJaNzCJ Dyx1uCRanhnug+GO+88s8TygemFmiJgIBfYHdyMTJJrvlg8WZ4baM9pjp6f7+b2SzLBQ/Fr2mJLi eOD0wswQ90BVxqky7FmtA8PqT7QRinmXGf4V7M1x3QKNvYswfNaNvJkJe69eF4+gE8j9GS7SA4Ny 7Ay0tJoy7SBIemNCIpSyPuG3R2hfgt0NLkexS/yFbdaezTZwpn0/1hzyoXIf0cyuV8/3OVUHo03u T+HMnopmwjA1gPZNPBMKKjTlGZUZOOlUIboWxpigay0r6X4Sr7WsFdqL53JTKcUmeE1pLkTV4RdW gvEsp1J+ERlN041osfj+s53LkXqqEpEuUQFFcK+qbWKDP0K1xHZn65FY6wcojdjs8W9ZNEPmCqn6 5XKZtT1K3+dpeYrLkhU5Zr2CppvxT03B4oI4NUi+imow8kVYL+HSgFYhgQfVAomCt6rz78DKzEUx y6d8E1n6mBRLX9+iS5fQ7TlpjMy/1qkQzSkmp/WlGJ2Fjc7l9eKqKJVKUbPz+s7WlrIUvrLZuUz/ 4Te62VkZrXSz8+ZWqbxT2gpnkwrbiRYyO0MbxWJFtvHzmJ2nLnTIxinXf2KjJVqX5zAuIzvrHLKQ dXmmBXBQ/tZs7H+5/nj8fPq8vtXb2f12eVLu3hze7dt3xdO9T7W9TbNzcvBl7CoL4KtZq/EhuGPm 0EPOVyGTTTTNLpAaBQvOOlrOcUiJy2A9DFnaKDk5rq8Yr9d1HFyqDBfXIyuaWVucTfpjC/0TvFzg Mgry1hjxCktZMOmbkelCTXxtiLE5wLz70DSMBOuT2p160wwA4ZModKsFPs2OrD2c4KC75L5kIh6M SCPD7KxV9x4k74cJpmF2IiHU6vKM+RtVe4BCpTcq72wXRl1+QVou5Vu+87Oke6cP5SvOqUivlo4Y x52gI5wjDLjpMywQDSoRx3YHV2IkzPTm1djQuxmbgrSuiYhk8cuka+Jr7ytlBZnimpCd9YSJ75HI qcwuqWcKqkKvPUNyWiTQmzdvbpMZd4rrWx9xFSB6G8djKWBkY2eOqr1NYqoU7YW5lMMOZJgO6cP4 vzAX4ABrQ5/R7/PhzL38dHp4fll9uq+efxt1Gsb1/rZ5cjIyL06q+d399gfLuNn9q3FeXarfh4/K nRot4xvGJIkvDnJkdeSaGAfkIHdgduw87C0GtIGDzQUbpFLlLJlGZ0aiGJ7lgXwg8acjoiakdG2l u0xv8XbKr9RO5ZXaWX+ldjZStRM+LjrnOvRSqzI2SGHFX61uyT/bH5V88zYwtVfLWl1TNx86J1DA gwJSPlPLu86Y1D38A8vhF7M1/oNe/KNcZKS81xLUHw3TGMDbBxermOrywiscKFg0A/1B6C/Xj5rR HD1H0d+3cFvRBuyO7QfYYUY6cNyBd7B6w9/eRepP5a3/GkMBppGD/Q484VoM/8iPvC8ew190Tfzb sOEvvPdgDPt4Iog/8kJiJOrm6CHiO5qXIiHGojsMOuaIllrGoCGLxNVkgEpN3CV7CVob/+QJjr21 m+5Qm/TBCn1914Gh4dYIVk6hmneBrenTabo8GY/UqzGuzvyWfo60554w+lbXBrq0TLxxgLuKZiBJ 2XFvZu0DUNnS1r0cWS0mml65oONU8PAlOHg7RgLyeMdBtAl8FRhtOdgGL/M02kBTdwzLvDEooEqD w+5Co/l7p4/XkhktBlXHWXeiygg5f6zHOk3jUam3ekb/XvZ3dnUQz9G6Adq8XPeNvvlk2O2Rme8r 9YjhVdUL4elN2Qlx+ixFcIq6nyfFolHZqEieSiJFweMM/qU4PuNkupiwTP1pZlODfespav68c+nZ eDbyrmE7XRk58AkKRJ0KCK1MzIOv2IaBF2wYrowo0swaKYDMnltzMNSB9cRBpd6iKK5opxkOtxBv 01GSwWkkZeQHju5l5sx2y+TQfUNO6hRcxx0sNCx5Cj3FJxfDoWPD77T1A7R6g77HPLkMpHvfp0QE 4FKZv1QB/N6D/k2wZrNYqfSuyBu8FJWDfXSHeK9VKT8srW+HO/m2ygOeGSgRrmn05S3BYbIlzYM0 lNn4AZQpbYT7Id6e/3yk2clImvK78qKkibLMz0eXctluZ6TL+qJ0kRkC/V78jAxTzsowm4szTFmm Q9IpczQnZRjodn64sRUGGgGYlTaV4g+gTXkn3I8fQJw5lJHLkTmwYHt6ahrdCa/NL6jUvmG8Zi/m aNNIW/dwP23NS8eypZb1Yus/vvIpyObHEEXnZAhczoozGSIB4O+V1Cy+uROpmXUKBonAttGlEaEy Nw3K0Z4lVF06DdhuuzQayHzMyglxsJedGkH8fi9vLoCh/9XmTDCL0XEm+ClQYuhYnp+XGJMUVSVJ lkeDreXSIKoipwX4e/p1c2M7UnPRpeugKvYmQ3GAx/HjKLLMhev/9rpxaJS3AL8zg2PlUzBBDNqP lgwO93EWZZEX7IfMDPMltPi+03XyHaM1kTdr+DAj8BZl6UPHkNH7S+ZlvLybsc9mV4yhxDBhNzMX sElrmdCmDNJc8MxOfwGADWcsBdNSJ6A/lAGME62DETsrGu0tFy2trZ75jUGhvd5y0diKZeG+zp4x pai+lFCTNeIUFVNLgNRrUDnadpqFeGGCwyA7+Uej33LGElADSsQNl8xB7NQ9Zs07RUVWT1NUTN10 DEe8CrGdvvUAG9p81xo5E+nfv+AycUhlfNQoE8WjfUmoyGEty6yYnuA/iLsHoO6M8843S0ryM/wt LuB3djqzZpuiYmrGTk2+1BVLUcG06LJfdTFB0v8t/HND+7+FP81MfYmFP7VkjEqnhIovIBmj0uI/ TjJGbQgJFVPTOSrGEiqmp3O05qvQGfk67zz1jbaZb/WMQdMc9Q21r7ygcrHnl8+x/qdWj1ITdfkV ZxhYXor4s/Wt7OT+kTyctmKUJRbVAo7xMKwVubEoXRQIjkneNh9lmPBLx35kUyaoZ9JKNLt2zR1b eFK3La7M8WQkybnMlVRvDV/NIm4M238xWvf5R6vv4nFehvQe05PfyCJCLRPTH+CxgckIun1qckan FB+VxcCxxz3p00pixpcjg4vHMfMt45sDopUh1bFI7HFRdjJUWz2rr25JSVF//QdToGs0YdL280Nj gsdoJREOuVRcytLsdDjDcy99cWp1DTzZIxqmIefb7G/L4tE0738YSe5B9hs2rAhNdV3QCZXAegAl 2UnR6FndXtrKmG2gHWOSnlM6+xcLysdL59FLT6ZfOyifSbmIftVkhNJ/gI8B0qvoc0l7TFMw4iB0 TqIwchwZ9yedgn4Nas6neAwS9BxYH2Kj0EOYeksUJbBgeMHdayL4OHhed/2w+ur4ELjfz3QTLPb7 Jb5HkufVnVbLHNXHI+BMH0CgdOr3B44zxtCdfefR7jvqpEjMi1RQjoCD+5hUwUcl+moqJMY81JGp X8jQDo7s8D4MlPrf68Ols+T3yItYrkw+E2HZbfPJFycS0kH1g2QYjUO4I8tsPHLSRwNOh2QiDchn eewm4a1/iCOCPj0FWD3TTLrAXA8o9/f6k6ZYYF6FxbYmsiOUuDGbLp7RCUPOOh7QzPjRwsQ3NBay yUhzDa6zjOY6RstsOs791PYOZKVlNEgZTLojY6C3KA+waYCOVbVltIks3sEbVpisw54zdmDfJTkl sdf0Rdb2ExHQl3zcZtBfeWME2tqDWSgXSxulUnFTUSTv2HnXNoawG9d2l7KRunyxOG4oAIb9ibvW dZxunzOX/544KIdUKUJu+XzZl9ctZsAoFiGk1rOWSj1pgD45kwbUydpmfKPtSReapPbk8h9pb5+q TGluAbEVWsOWJa1Ac6YuRfoi+wjvIw3MIF+kNRoy4x5Tw1Fb/696sIf6pr5aa9AKEyAwbNIlBhHY 8nnq4hKmVmrsmWoz0GfECMnSzo4WQZqtB9oOP+btrC7Qk8R5Dn46s9yW2e8btqkuQV2YpcJCrGdh lnctYEaCpIX3iF9Gmpo+PFHmoiXKBmFnj11odW1yX+hItY+3TInCao++WQiBsDJECwddZmGq0+Qa IIy4FZd6lYUaT6A6LR28T8yPMR1aFBFmPNGgtwvjMFVHbKmsGesP2/3JesG4o0xYTudO4nwnt7R3 ajFTqWCi+KpVLQFleqIyb0JsqvI4omn4fv6Vc+BBhY9WC68mMMSeY+NpZnwamW7L0lZZrT1uQjXY 7Dute7yYV251X6Kst47P5+bTWKDdQlj2O7GJ+3F3VayLnjMZwcOWGFj2ZCw3cPwJf16Ig7nswiRB 8SZoC9dYza8yQpkXrkNPcmzpeUaqHS91aaNn6nlEeMwpQdpPkbIU0bPQsmKbfMKf72sFlRMzgnqY I26UuGEtKyFiEpGqzuiZSG/LG5urAv7iFHdLyUeqZENitpnHcqe9d1Ud/bVuDduVjnVz8PRlc2vr +kP/+jnfaB6+351cf3Gq7evnlso2g4ZoLb/plNkayk2Dld9kTDCDfEw3St4WZ+frkel5xG0pQ91y hrqVDHXXM9TdSFX3dZMw4fda9pIXSaaEEJOyeSRCjMvP0eU2AnlGpuQYScov4pHGRzuUUSMTVlrW kKkZQ+KzhfyWNkkIVYzmBvE6E5ucI7EjoQELJPsgkHw3qp+rA8swLWtcBoFjm1OIfRdSf/guMCOG gH/phD78Cy/fAcj8u/h/4PVtMNUEYx6jdcXY6IOJK1agOZl2ghAxTWr+NiaNQ5ZGYtJDYEuY1wH7 p1I2YFtJdLqYjCOEajjZqKTlEciCvZaPALDOqTQCue9EHx5cRDt4nl+d5c/lxNtbdMNOaTJycH+F +Oi7wOMG0DftJAH8UocE4PH2X2/1qH9AbyYZ1Ll0+JoOVkso+hnylbdVHB4POG5TACF1bjvxy9LG CkbXx30qj6nip3hkOfwpNBn7nTr3y9+tR75bT2pQnYvFD/FYZ/jD8uYKnssMFNNBS/hWnRtN/La8 k/wxMkLwLCWzrbgtFP71TrwRb9XbBqo68MX3z5/ffEe33gAAHu7DX3w8kTgaB44GT/4FZblcJZf7 HqR8ceX775Xi980drrAerlCB9+Ud7/0Gvld6xcFeANQKvP+9vAk1crlN/Ie+wIcgERDi5vfNTX6/ FX4PvAAVit83tqGC1/caDGe4/9700Y7xqKn+AvyvzqoQuuroyQqfNRHBPjB3UZkfXbjizXhEmg5q ILYkujTZ5H007CtGUfGOK9pPBqlX4JDDFZRuYwN5UPUon1f/qu6keEKxFwztmyKGIpIvGCiIaJZ2 YGWqiO+l78Xv5QqB12PYswDXo+EJNEy09e8bALhEbHobitbOAjsYjITQd76X4X8Am5H2Q/CygPUD +RDkFvxZB5AAtCSZIpeTIbySJV6CIX4qftgBbmC6ri+Nrpvwp0IcVioyI0RD97JATwgLxKY2oBn8 HwqpMMNlaSLKbxXkaPiDqwf8u4Hjxhyiwrt8xUAktYRtUDAX6gOeEOUoKn/98HlMvvkuwqFTOtfE MYZijUDoUhYCBMKgVr4HYpi+q+AkaiIQFpSliUCI0cp3FR/0XQX+EPRwvE2WBsIRPCvf42JvxHcZ VUPt6QEtWdrSQ2NWvlNgi/guQ1a+hxbM0HgH/4d3Bv/9twxGEX//3XyGv9Ta7od+MG5qMyORi40d 8VpAriAh9vfbXI480Lnciizw90AyBAN4rhCKquCicJREsNR3H+gA+DkQoLAi/gaR+DeGCwS7krwv o4AD+R1vnf+We+e/M+3vghtyNEdodInx0ysq3f4t/ekeX2g8IfGSLnCvRozbXPVcOq+9qnEub1nX 8zp7lePd1Qo0eYgD3DvTzUyfwrfK2p3I+9l8xAosu2jF3+iM9ccp0cUrOyI9qcGBjXHBqlbYE+pX jzpPV4Q/4jDguZzPsKyi3v4ta4LACI+z8lpK7EL+NqGY0gepIZ7oiERg2GwEmlwEdHC8rkTh8See Z5BmvMfUuVzA6SYVmdu/3+oOsZXE8ZbuNNln9l5pPJvGBya/fUtbooAnCpoNz86AM0t9KWnBrqNk XKNOqBAAz5cjYUwVFq05nEgsKch8++Y2gKfWhJju76HhI+t66A8DFmmdMElAYPBRFTU7MDvxiVwf K/pVAWluvVnW1eql8vqq2NiKXnKzVSytb/iNp73jZjhyBnhrvNmyOhb0YnXuu26wsn7Jjbr+QLvk plzcqqxvVSql0CU3ioWw+px32yDo0vaGBB282waIhjfSV7bXkWwvdcXNr3XUJiihf9QDhe91N9Jv 09xHCMJY4j02P/qWdCU6En1MxvqHx4/10VNl51vj7q/1r+UnZzt/XDw/ebT/OmuUz282J92nrx/b 9eHja95jM+VGgXNHuEMQzw5fz4EXZfClGyO8cgwIiTdoXMEuq+k8irr15HsE6WlKLnyAfGaqoN5U X1T7w54BGn/r3hVvq5cgxOnWjhbd+zfBez/GPXE9bKMtqbwG/xP/xYaliX1vg1qaviXAbc8YuuLU gW0SufcyoAkfD5ymBWoNXc/3S6Yv62a/Q6IKafsL/MSb2k3NLRW5NzxhvaJF09Wh8XhjA/lLVUYY sd/buDdEqfgPuqJQc+ymwJnM4Ohvx4uFRd3omOIA+OXGGd37r8iPiXsrvKHRfJqAILAN3Dpmaspk 2SNdZNLyThcH4iClB1XtgHgijrbw+sghWfpFq+c4Ll7DJ4whkG0ICzFwT6ePV0TirYneLTXpG8IH lZXYoKsoBZoCRNscG8AibXlnoLz60IVRbsLWE9rCD2eN8aggZx7o2E2YAQUCxuMccyZJS4Ucj7t3 iwT9mOHLX979QeNSs09SNfn+INVPT4j7Fwjl8Y7ITDKK1GD8iuQP/1pUtngww3LDexGQCV5pqvl+ G5y0iTpqdM6vBKe11+znXyNT9fOviVPU+2z69JOUXGxqMZBcxtly69uxYugSP09WcmGmQ3bSOU2q pGlX9/bJ04d2pfnx/cFl88w82XxoXm92Hh4Gm3cbT3dH69vP1XXzqt96HFzUlnpfUTjeCcs4yCog RN4c1KqN66va/j/KxdPj85N6bFiTis5iMFHNoGrboDe2TNoCRSSIL/0ismskCbs2aVqu0+GRcS2z axZMOz9h40GhtFHOl3cq25uVfGmzADIjjxZHo58fWCMjb9jtfLdvfHPhZzvv0pVf+eak08lbgyEo smY7P7Ra93nQ3003j3sh+MTAS0nzbfMhD4Tq5kt6fN0vTAOYyTD5TfP+nTgE8KviDFpbFWgllQGz PoFSdjeZBaX+6hY2vzx8LW0UQFUeOe1Ji5hg7KCmd4cK5t0QELp7MPsPJii7Pdipy1hEDduP9FbU 8S1fmAbTrqUdLFo2yp3OlruNQ3U3IWF4Vy6X7oYoDu5sYED3biS95hJXlJUlkKsoL86xwhTUgstP mKu52Fu45sK+Yjtfu8x0qOnLfQLIHyL62Gz1bKsFG3jAE0hOYS56AGg0+m8WUniXMGzj17pdj//n AfcGRV1+0M7TPikMgY8IhIJNY+Z/x+oHTnomzvow6QkgXW1WV0QTBwSMPw7eehaM+45KkABS0hIS O3CMqe0IRjyIcpObocIof3+elDfkUYtYDotFNeYaoDeotsRTLHCHT3wvfYUr3F+7ncCrb2wp2LFh usU71K6mxEW7jSI04RVyIt7hLHX+9FTJ2jW3k9Q1t7NA12QYaBz+/NwxzTZe2x55vdzutUZJ3WvJ qTVX98jKYz0sg2XRIjI3ywaPXYQ7b7eSOm/Lu5CwcWH0w4tm6DTH0vo/VycSGdSWDDpvJzp9UEUi 75J6QO/CopaLoyvA7FUusgP0ZTXq/uGFd8aKI2nVdZy1br/wYedT9zQ+N31w1aGV4MbsA248lMG1 gSrL1+oudrUx2xTeirwqDN9KSNuDq03YXvL97VKQ6Rs6+AMrOmwu2mJouGOo+uBgaI+7FkWRfkS/ 9ZsDRdHsO0NY+UOnayaF66b1foL7GqaEXuJThdCI+fLQaKpD2d5v/yvoMoZ88z7TR2YA6ms3DpXj sXtXG8oLG/3fs9HIn07a8rolrUD/ru/iZhWaB7ojEAy8fWbELD/MWTz2TBt3bHiNuW4wCvIC7BFh Z9eCTRuCos1vDF/EibGR+jKW7dLIsjAz6zsQbffB8D0Hr3442m8vOtkjLeD01P26qjnchnAb+kHo TKDlxEford7a+CGkTCJcefowE1glUHTXaRDyJ+3M6lygA95rOe3QBEPQAwe1Z4GPl1GqnaDjWyf9 3USp8MFD2iERNqvlU8ATb6NGacQig9yWBXFltkYTNAPIbN6BSZCCMbEH0hmz9tR0nqgDsCO+rhda /UnTLQxHDijA5p/4y2r/Uals7WzvFEs75dLWVlHlcgcB+U/4mMIT/O7xxiC+VxEksFcjd+3wUJIL Zwf87nJuolnDEwEXXak260gyPyGGKlgWfLUSovik/d7GeNuslAsdjDTtP9+p0Ia7keKPO7k/kz3W gAhPHshzClOQlAt8pDzEQdeu2Zn0NRmYlVNUpzcHxhA96+qctF8wBckEmGSZ2UTLgQ4RRkaVZAcJ EGENxTNL9yAJ7517Y2QHZqUyY5gPQtaaqxGYiZOB6wtzULs5emdt2BsWSpVKebO8nm84w/zlyEJ9 wDJdsiCdoME2f0x3wefZptvOl/Klcr5cLEnBx1Ocagqu6eOYelapAVPrDqK557TNi86eY6PFh9vC wCqB5Wh4lW+yUwRH0p0MKdJL0YTFyJ7hmmRe+xMvte9Dd/+42tzrgcJ9RYFhl3ty1OmXoDemPA6c GYXkaUnW6Y7xVRKYlb2xOKh+WHJLjUZdshg8CU8NDraSZD9ImsxhLZ70l+shtIyrAuiMyhwa0mzK EfzfTORXjGOo8/yB+jy8PcCyqKS4HDl5Dp8TtWuxbzyL9elixd/JvJ+Abrc5lqkLvGIhTfyld+IM oy9tazIQD+6aqJ3v1UShIF+X34nurjN26dXEPrE5xA+BJe+gTXsNlrQ10+3D8gxk4NHbxHWuT50o DFscjAdc++ZPemobz3/IK3DIM3AWSHdITwnb66Tx9CnHjYrzqiDSbWQiXakYpZ1HuoO+NUTLHZEH JjbsEyZAR518tb75gJ4QrLFL2qGoY4TSfyYNT6uN6tlcZCxNIePu1QnR5xz0mwDxLmHC05vj88Zf /0kU4w6QG3EfdlfOM+oraQl2rUUzaORqOMJot2Mcmbjxak5Ac7We8MxaMpVIF9D2SFEvzeFugc3+ bgEWif64Vxg5Rhu0jzXDHUqlfkmUyuQMmNKh0CoRdzj1H+WDEfxRy4d3S686qcrvi+o9PNZQ3HN3 9zCCVqD7EY0TdCLZHaOfk5YELGuaODAyg2AsPaIGCr9Tby9P//DlOyd25TdxVv+QdZDWEt+XTB8E F5iYpBRv6IBrwrZ7ZoIJBn/JXl+/G/sX4U4H8Ygy/YGDkWGp4iBIs6DfQH3vSvIrv8DvhTDGaNkT Y0uFHkWn54UNEomjDFhbZ8sShRage+vB4IGVDEFWpLcqnIBHKAp01+ygJ9twaRdpCOITy7FXBUgc jBboMblm9TWsUIH6xN0N6FHoE5+4HEuQEaprYgA3w+RnH2xC3/bm7QHopFJTgycxhImpdaHJFJOR BEhw48Gx2qI9GcKcQyGUgM41BhoIz7X+YLK7l0aRIw5gQzeCmS1N9FEIuyYMNMaKjnHHht89ktFS 4oHIDkw8X8SsQaZJ0N3bVqcDggC4Q2cNNEJEUQ3rk+Fp40v2/QtxftGgb0IW6FlT6BJI5wV1kAHP RhEVGxRDHDxADi4Ak7om8DqfCOg5w6HZxqwUY2eIvXRgoEeCwh6SmB0PgTyAWIAxbBnIh8/OBA23 feveRNaER6OrrlqPfl6zu8AKGOZxCbiiyRH0JNi/uWhvodNBuIuh8qbZMx4sZ8JbyCiogz5QfxX2 mQ5GBstZ0QPmoa24YXcn2NJb2IYC9FUMe6F/e87Age43LWNVmONWUj+JwMj3zmTcolChDol+GSZD SoSKVvEj1KJw6j0DZYP9LNDu7JC5QoAQhq52LAykClhekYqugA5gfA4M2CquL8CvLj4C1rYp7Alx JyEv3radpydg3am9wMbJjNiboJ7aBUq3KGLfyWOEsGMXUFCh9Gy1Jq7kINpuuyIvhORc0KYeyHkC 0PjUUXLA4mKb1WvWT2B7R1CoayQ31qb1MhL1BGxfP7hZSQx9iu710ygmcnfooSh3oHEbxOisjSVW RIYe9qA/V2ZLxXX6BIiinAXuDcVy7DvdiAKwGNz62DQjF6wsBhLG8MixnUhEw2JQq6Aguq5lu3sg oLQoq4QVMCzHA969GSGUXuIgTQ7TSYKfIhvUj/LTpaFcTCIpFVPa+sF5pNyH87P1J3fv2Li++2e7 13v8dnlx+s/Bca971PranvSLrfPJjVmulA68GP9wHimdZKTFxuWPQlLI40ReZJ+guL6Vz3ZOBOL0 sOB2apCbHzs5fQf4mnF6guLzqDc68gkxb//6bKeI/1QzaY7gO0YkEtCWJurUbzV9/Jx2AlieGEvb xlxRbtQcHjLWGouJXqNqlDxDj0hbwQ/xj2JIjtiiYuJTfw2UgWNcLug0Ij0Bab1IL++AXGxPPajw Dcd58c8ISDwUR6gCe654n+RuvQAdr51p4VgrOe9T5Hzvhx9QldB8fFPTwqO0pvxwJ69IBThlam5a uJLWnAq/SYCtKImBMRolc7cqUsan5JQIoRU8Y5quwQTgibSzOzpwisOJQlZMehuKjEkzu/S4cW1K vguFyOA5T5wGQi6eWPU111FsL1rRh60Ft+jRKwTKD0uZFYzix5toH1IcyZzRI0rQvYkJF6FyyX9e TMgKJQsMx2z4ckNbw7T1i78KnMXHUU8K2vCrt3oeaGSRaBwGV5XREkF+iguu4OrBo/6qfkLEBH8S OvGvvpke/UAMmxdpIhiQffE/aEqPKPBbWyRSgQ7ZK/BedIEP2w9AoGkkK+IslIEC0yaqrBL+UpIi 4s6fBkrNeeT8jHEEktS6q19DyHfUB1PBaB59HX/NC++jqzvr9cqaN93j1RlueP3zqL/bR/GFHO0B dojzgQfmnDelEYWAEz1AsqALW8uMMK+1IUAkzWedhoGUx1uHEXBJpwCCzmxfvQo5nIVS2qR8VJ5l mc7CWxBjHcT0jlZa5QTO5Rbz++ZuPeePN3Zz+9007STeSxvCHz2x0IGlOF9foSNBV2m4L6VgX1J6 QF8MbW4u4q/0sZY+ScA5pRsygirJNm3Zjm49pzsfEV1iefxf7ja9Wy5xDqZ1Fc5wEyJigFHIj5eT uN7Bf2oKa4c+1Xyn/2hqs1NuhYkOZdLgmtu/kOOEu1PpMwPatpXrK7F7YafZSsA1htAW84MhhDRO r9sswhTqrui+rVv2UKX5nmsSWr6/6lb5ndJAQG/VSgq3FDaRwQfFhFq2w0lJf41VcuxJUhslbPfl PUTYSlp3ENadx/dDrL8cR49HlCxeHfzolVw4Hn4v6q+5DXlX/Nkxtxq15mGe3QdDW0ARdaeQYEXp mDh3fS8JqkTT6/qej9l1yZsxu5ryUMyuGfQ6kMJIiwOvBHq+hTRJmH5FgYEl+OHCqZi2t1dFabsc TcVU2ixtFXd8HAK5mAgHStKwGp+RCbiVUh2tzp2J6U2xuLXTruA3ekImlU9CS8hUKe1sbRd3ttdD CZk82Y7158zIhLA3yiUJ+4dkZMLd05SETK9pgSKOW2JOp82fPafT6PHS/HS8bYw3bpyTnf2Tjf3r v4pnm1+urswv5fbE+HZ2+elbsTt03zuvmdOJvcxSzDO5afB9cokWjtjIMjhDUShumX7h02yPKWYi /ADiGljn0OrIfH3asKh2GLmFwRC2WkiaxDuN21BxxOI5a577T9+Ia5Jz1oT64/Gqn7rmTbrhoeVv YbKFsUUEYlDMmPOkcn1xdfShWext5K+uR4OKe3i0uV9sb4z3+xsnI+f49Pnmsn7/vLVtf1hqzhNO WLCLBOMt3pQounchRxIm2fzKve4ixWCh8oPQYIsSuSY3mB1h+kG0QEuw4durq8MIIaAxhyWPzGfB cZIxx2YbPcv1BbaAHyimQep20SwpsFN52SuB3SLhDIRzWphqpw174f5QbYTdNdBX0VXU6XDmHew5 frRKX7mmKR5Bd5aKPLfowN4D9G1U4k1bPILehlqnYwd89xq+u5MxtPn8C+h7NqnQY4TYAC7qj0Rz 4uI+F5AcwZqHyI3izpBGSZ3E8E1jTNmWiNK8v8O0TcgPMlMpogD1xS7XZKE3dTj8Y9NpQnYIQBUU eiL+YAKrYhMbDw3LmmjgVaj+7VqIIs5HJhFJALUmu47AwenBmCClcLdhttfEDYB1hryLAuKBLjaG GmtKp5fSBL9Uc5/o+y44M5IoGSM6mKoZPoijLT3FB+V47/34RtkX9GXSVpupSiyE3R5gnnjkXMx2 tSaqY9x3qP04aCS4O4ZdBCg9yHwmCHmN4mqfYbjM/Gjzxr0vMgzodkB6AoRjQd4maA13R5jsCrd9 hM7IHDgPBm3VCzANYUGh/unx+LiBRPTNp5ZJ0o71L5i46EbECRwcj0kBdop2+96ATaKkuF7k03RN HJmw2ZOY4EQ1QSuEMRaPmHOXpjBAN5oOmh2guG88apNr1kAgD+NAWrhTVvtcqaCBBDJpd+kxOBAT Oo0BFA/mWihydc/BzSDdcUL+UxxEoSaDgxaCscEDS8nWmsi7QFazzWKIB/oZy3nBxhEz5EhwhzR6 X0xozw9Syh2aKPpE36G9JNqzAA6JK+gKcBXPQ1g8bLxSiLXiAU5MzJnn8wlmSSchSyiiEQCQRKXR DcurWSSN5e22Y3uNjRFBmewMmBxo/uhoyezQQyvK63lM5Yv2BctpR/p/CfQdAGGsYZ97iDlYHTRc GP3mBLp3TLKemWbsgGjpwCxY9ajcNWFGCJxHzsgAcQkk5/FM18V9C61Zyk44wqH8OoEyGMuBadhM fIMl8vXVKfMPjpMlb9CiLJFrgPiqwL8f4J9HszmAfwbDdS2PpDluZaA82hi6nWfYLAmExvitevZD tsjEqgz8FS3kKJ595TX6jpCgqbkKoypsB+VEqz8BGUV9SI+uvAKO13agQl7yLS7eBdj8Ib8icU0b 9ooj2F+B2N+F3fO96IxwD/inqOM1ZbA1o98CA6z+xAUDxQUCyUA6yaZjoyvQPqPYER33Wg6/8Jw/ h/5PQIQ+r6Ipkfiwg/ecAVfZAm1NjlQyyNBo9PN9qwP86qj5FApxT4Xp3sgBic/4halzhiuFoRQc omtgtGFVAzRIpiGy3lKnF/rj+2fk48BHsyoPnkH0gfYxdGx5EXGoUP+YjGUWKlEj8xfxFuYoCEL3 3hoS52JtIu/KtCENR6eSHqOfaI9RNPfIVGD075W9AOlGNg9UAUH0y+9/EXs9QA8TnK+S9IDq6AWC ycUjjK4WtP1DgeJnIXnYIlnkiT8YMwBAyy7oMiNQV7WsudPVrogSrgWtdXcbH77snDOljz4cpj/L HyRYAy01FmwVk0hGUsZx2vqUHauP0NjM0kYmrKS1hFciT9lz30U7HLN0nDFsKd45aT7a3/+kr+Pm TgbqoWDjYKbO0fpX64bpVmN9qGq3Tw2MZRFvUTzjOtjFfjD6Ml0q7TFwQXHkxfOpiDy7n5xTtNbp wBIDMu56SN4EfLvkjv/z68Z+t8gdh4VhXCy5uOuRiqKXXmzBbrVg7zPAeJ1hz0U9qO84w+TuLreH 3/6qt7fuuYe7VvdsMhr2yps8fCDUm0YTVFZvHGGge7pKRIoIcfoA/loGLWCx7OG/UuHTRUITFoX2 n17cEm7y2Y2Pe1As4QqL0gdE8Jlh3/AG4MxpmwOmTqhQsQEg8YB38CzU+VP0fIWx8IeDEdBL/NZW YfM8Fl9QfUItbkCOIIx26YB6Oje3eDgmsM2gdmBULr01C9Ykp9h5NHgxnWerF5HbEePJ4fHZpR+D VWl/MYwOrLCD4R3Ok7tSsYTOhNF47MAeyXJ7d0ri3qFhyXm8GzvS8oKQeGFBJuLaqfCOG0iU9Uhz to0ojzZI+Y5p9kHXQVkfc+Iprofh7TSbB//EPS2aCP9AkyP3gJR23PpwHAOupr42N9WIsXtwUKd3 qW0YAdRxHKxOA6QfKrrq0HO4NA6NCDFnNJNBC5u/EdxlwXYEwPnql1e0jAYOJv3+mfNgmTigXhuB 0mU0M6EVMEAqv2gZDQTQD2KdYVMYA1UHuiREq7i/DWDLJcsADxufS9i5BMihlflNLEYVaZTU+yCL ltGJtuH2WsYgwC5a2TKa8C6uCjQSKF1OM0PQdkNtqCK/gQUGY3/SbJrtwHj7RcvoAsDx9hMBaRrY ZMzsRuxGpe65B07xclKql0bu6/iFFyWy8SJ5/bALwhpbUDZ1r90wheLpMrM5tduc0uQeV0nXdPDM 7gwnoXcMD1ETEjeySZGDbNrhTOkjfPmzmf+7nEFpRu0nPhG62T7oFP8afb3b2XQ/bfy1390cHdzt Ns++TtZL44P69uPzxc2HqvPPu6dPSSdC0ZnQRM2vbQxsaY+25ViEfKrkWIb/Yn2jFO9ILk4vQDig kca4RulIw7TQJenkpHpvBPkw8fGnZVFELjs/4ldAh1SuRbq9MFawSTflClKK3IsINCfSug1/e1V3 YVInYhx+3I1cbuluu99eyl2HoeqzPXQBD9xcfjd/gOf1qeVyL+pHA0IsyXX222yXWYhP2o792xyu L0D5RbxdjN0inqzPv6KeEOfB+vwrea64iXReqXhnU7yLieG+vPuI20nrGsrlFnAH8cW7OZHRu1MI Wg3+xALvQfe1ZPCw8NImvQf44/V8JL/F+EYQA5ETt5pLw1+fo/4PuTL7uw74uQyPBQ1PLtElocbv dl4PgqeiBLwS1JtIs1M8BB4e8Qb9cCvsAgi2ks1g7zWY0r7+W9iuHkaJbfZBlEJ2c2STlPZyD70Z Bm7SYkJ1JA5kvtbN0zOM0l6TqGJ6puNwN9nGzE2I2zij7RQtdBnWYmo6nX33Nski63UqgmFYl4qz 9sqpikZbJoO0Dfj2V1UaMJeqQs28qYqCBklVqtkPtWb4PKn6pT9LE5sq0SxggU+UGUsV6YYnVRa0 FPmlyorjA9RMMTotlJSSx0JCNg+uehtvnUhWzLFlrxqdsgmAiFobkkFFjBc0qJ+DRxvSHOLAhnGJ wg8XPsRRLhdXRalYjJ7iWN9Y395KulH71wbeKq6weKFjHGX6D7/Rj3GoEGv9GMd2sbS5sVXaDh3j CI8DfvZ1ztMc0ERlc0c28SNOcwQHNnK39v+oXTWxdvrTIt6YJR4XWfYV4IjNMk+LuKNxdb2481ep OapVJ5XHi9PLp0/lD+bOuFL+aDZG9897tXqv33h/4t0R+hqnRcjQVrgqNK5qtbq4vKg3js8PxdX1 aa3OYcNBm54z04o8hnXSN2/TLwLDdm3cJduitP27f+iIDX5Re7Gg08SrgvgDFIvWCHcMMEDAf8Aj Y8mswMP5MShlLblRsE1g9jGd8sYCPp4aRhI43EPRldlICcEkZPZ554X6Oi34oGlNhi7uC80xPaDu wNo7NIdzC/ekLdo+CiJCEuTgAWBUeEw6yk3Iw5z7PCmDXCLLTx7PeVp4t+4Itn84pZgEYzz6Sioh NIZo8hFik2daQrunsOJIkinrQ5v2v320oeBJTiIj7P+A76xE9CVhSCnCHWEB93dpKsOI4RFP3mAY 3S5Jk5EUOQ/QLRBl7iANJLaMtM0WpU9j5EHwouI2sky0QDhoQBgn9gFtNLjzZruFFM2KnqC696wm rH4y8Fb/vKCmg2bwrmNCvv3qJ8rIxxNJFET9tLp3ksfpJVSFuOkVddLUAJtnUcfjsG0D9tKPyC59 44nMdpSVak3gUKqJAv8eHh9IxtCnDnUGjTJDczTAlBdt4mTc6wHgaN/4GY/soq3rmfccXQfvpYZN Qbf3jnYMoCKjgcvQA5onw75jtIkbVsMzpuBNGMpYBltWyfzAa7AzwLEiBmCjFE8qXilRNZcbH8pW EMU4LmajXjs9kGS/Pieio7iUfI8mQAaTwd2wvJNko52HIa0oySfJSHJ4i5d/fixJYGPfS2uoL9OX seL2s11eE8sUrixDAW5lTSxBTn6218nO+LJS8bO9wRMniwz8bG96XQxJvM/2VvBVSvn22d4Ofpde mn22d9bIvpxGdiFnZBBNvJl6LeGDbaWWNL+9moQhms0UIOEpTKqimrcZD1W2T06rg7ur+t344G7j /GRnp2m+P/nr4dvZSfmkZjxvu4Zz/9jZOtlpekeKl+JaDiez9uQnPniK05vCVa1+V7+623PsjtUt nONmHq1D6KYALgXJ54NkfYpBeRAUAYg+I6NtOdjt8Ee6SGYAMZcpKVDShHR/fHC0VY+FpJLl049w TyX8mEuze+t5TE0SybLNMGdfm+2h7MdkasfxA22BBG0E1Gb65TfJMfE+HHnvd+hCj9AVIIShtNeT o0U5hUeYfwmnHs1gEUxrw+thzLnXBtq6HVgNtE0oTjt/0rBRW03ggTGyvkwM2wissEmsJU1nME8m nI7RKJRuTrfeM0U+Wi7sbMkYgaApXZJ428JMT5zaPoFt6MdFpwNrmonpW3TvoMGen3oLlwnRRt+i ThvVFvlqU3Vh1iDiYgw7SRMWd9F8FifoWBT7ZgvkX0ATpOcwR00Z4gASL8G1AVIQnFCU8VQ+9AjF N8BcmZzO6J3Gga0eeZ5AIXg0zXtc434RddPk02GoUyLvBbo5c595w4A8CMDloD7wOCbdvxNCfDlb 3SApQRMLEfA/ex/soN/qAcMMMut55Gpqwz+tvmPjz73dfS99E+gy+8boXpybY3EGD1M2by+uKSa0 q+mOwTFGTTI8yLMUy4Q24lXNFJVjlM+Cp3MikWlBYOylwjmyHpAEjz2rz1Eo4u0x+5ldH9wjUkQ4 TUy+5UJfol+tJd01Mp+OmwAsrdYbjcaPcSFp3/NkODWNkc1xCYyp3oIXfUWoxUcd8jNKrYHTxpR5 LuZaZ4mHOhOvNBioocZgTCo1enBHJqpy0Y57tgb6EZbdsRLsldaHOOk8fSVU0hlLsqwljF/MhiUG +9CnSZaVYFfUVieE2SpV43UjugeiyvwS9mOjMdrG59wIEagoJ6XbGwW7ErDJhPrz4hson1y8lQqQ 6Ap1LJpdWBxWASPeU1otfAdvudfrbYy96xugtTu3b7Tu73Am3blyAO+aI3iDL9HTL08DofAiTBKW uHBkdSzzhfaD9N0yOG9iT+c78s+DQsGWoMguVKNwpF9KHKFGgmsju45AAQZtFwOAnAGxpIwrRFek hNyeIBWpFDUzCjTEH57OwhhRAkQot0YCoyItmcSdomQotaRptHrMNWviHEcImmNzAn7ZR98QdBoW GZhaXWAx1agK3kPMvP5OGTf6ERZbsYMS/rl8SenpvUEBN4PdQ6lntcyzmrKJOY0NJJa08sEiMzYj l9tr0z0PlOvDgriKcSEtnKmyHRk3CDS3TZZCFGvMu6SYy3nCHX11YmoQYSFdjwMXrFKeXUWe+vWr iO+i8Tw0KfsuKTU7K7hio2KKlXiWDSx7wkG57tBosVyJ7izoOdyjpD7Fs4SSgBRi4N2iHSLhtI1M +OfyhydOK6ii95u0zei2Y6p2QE/ZtYL9i/NqoyYaMo3WNIkcT3nNmPSh+eTW5O2a9THuFWRkZR22 XGjmEvujSVdcwqRqaZkb6GmGlSDU0kX1aPdSkv1MWUwkYEwajvmlpzUQS4rqXuP4Y01c1hrHjeOL 8/psisQN4H/buGOjDMagilsUC/XfBGr64HigQi8Ib87OHaGIT5DxrvXP91dx6zVOQSm2aNqhaj2v 5SR+XLS4u2bt26Y8jH2DoQy0wiGf8jHrhNEIt00tR/MpvrGNB6uLgTGff+U8wlB4hLF3go2DGIBx ZtoTyRe182tN8FzJ/eMVxxgRFprg0eZtivNfmgKC1yfsPmM6ZYvv1PTfTYfhz+w3jDCdNdBi2R0e GR+zmMU7Uh6HYw2UPu41J83QlrhTp8Wpjuugqlodq5US5+C4b542rx/luF/Xhd/elA7MBOo8Xe8e 7Utmckb9dixc5uRMgB/7W13TkmIK43xYz45Hc0l0PrbHMCtBR5iDzjF771HhwUSAqNlzRz7ib9Aq AYeMVJcrpQo3YnB70sQCiLcn0I+wuJ4BM0jw7pcvBz152zmuWuLAsDMiGQS4+80+fZAr+hng3VoE 2Pn6xlVVik6gnsDcwKOM6AENh62BgaazEWg1tjqAebl3dkVDIt4e0m0SYbv7DLjJjOvzmngtHkb9 Gbo2Dwv7fWhWW8UPOxovVPW7aKegqNMa9tUU1K0p9wTrZoS2ARuTpLcL8wDeN5rwGUOE57mQaxtW /7ltNDFaVE0m8sMA/ZA16A7HzFCxqzDzrZbe3z0qyAwLPho53ZHzCPtplfEDfuH2Uc37zDAfjKFD 8kiKI/xpfcMg/3kEUn3swM6qhqYI08TNtJTWVIxXHqjyzJCV7ZiP0oSE3UcqzAYzyN731jfnUG6e ziZ2q4e7ejIo4R9Ra6ManLEFwBr48KJzxeZ2OWJQhBt8WTgF4pJmP95N1TfbXbqiD1/OmPY4TY0h 4iapfG4+Ni1zPn7om8aDmukfJhaf7onbAM0G9fMzv2JR8wkvI1NAPSatyeJscINs+v76or8pU4t4 A0vWp2P/0o1FGug4vZuJvHmcRNWRMWo/GvrGJDvQg+3qhtXTgZr94SIAz5/PbbMu2XPS1Weq5Ils 0GHwuhgmguErSjE79AqmwFrSHL1AW2H6+RlV+4iqu7JoCr7x8B7xwlXrG4OC3zfwe9f6NhccOns0 GUq8EFJdlmQDFxzwyZf1D6e6Jlrr4/nuRUDWn43OvbSFEchTo21NlUvTB7t23jBHY8Oy1eklfDVj LCVGUesXxQoxbt6FjiQ2r/DFFByTG5Hd3rv4MDiQKjh6sggqOp7RjTMF8PTOK+tXyn6rbpK9BT6T U45xUbB8ZFLtFRGmNTDHTt/sGn2Q4gwT6/gzLVKJIIcMPPEEiG/SddvDuIbSmdHmbTi0vbjcvr44 k7N3QPbFA1gL5gLpSlSbrbWWIYcFVjCjbYi834/dPVhzB0PD6jJvxLcynWX2ekaWaaIZEfcOjzYG 0sBALIOgpuAxG+L26af2+IIhHkN3j4xvCFPAX7Zt9leFGD6+E0OQrsZw2NeNdJHGpnc6FonAtbw0 L9TFq55EplIhL/Sd0tXpriEqnBHv7WVi8VrN491hXhoOZGo6rDYlO5AKEX+N9EDzRumJA/QDnp29 Jzur1PgxIANKbVQpoNg2H6VPWwPRBFFpmvYvlFWjxTtEpfmFo5t0Q+0Muv/EaX0qu5fXT+sXRx8e Qf/eXt8djU5rT3vv65dPzrUzNJ/LH5+LN518c9I+Tkrr03U4BkStc6FIXmIAIIQgH9TssNuVQKIe f8VE0MF3antH4bLwKg+kR6nDV07yXe/SGUSXzxIWuZwWuVqQHptf8NJYAvDZ5mvWEUL2gFPZxvyc S0ITQdxOixP1jmdHYkzplC4BWEaoqAdM0Wla3CdWJtLNIH+gCTxTr1E9lyWk8jcksyfJZBzObzI6 Ei9SJZDRIyS5XGn7dxhwfz6/5jGS1wwz/DHHT3I5DBsEAs+KFFzwCMqrRQG+1rkWcZsuWu9fbz/b SgYmx/8B2qUiJTWaP3LPm9NTZ7Schywh5DwMTWz8PibWzZv38nhOLqei1nK5VZGLxqflFo1KS388 J5ejAzrAxy8dYZbjwLKcHk52i3yZnIaD5MGCgWSYEYhGUBvjcEhYzABRcBcNz4wwrhx+9j8mUosV ixBLh6aENyNuE8KakgZ0RqjUCjDhvHFPjHcSykrbwDIMQlpRT2XvqbgyJYYoFwodohQ5npIW7Wg4 AIj0FUYujaTRA3GUxAlJGqqJQLwgmsCb25mb94h+yRE0vmZ1mxTcEvmSI2JW/B56yIXDWiJVcrnY mBXOQeTVU73iUJSgzJA4cBAKDVg04kQBk23fhuJDwrA4lERmgmFEgRoY0pELRXLkYAC9yBCRFBHi 0RSz6QWCNrCfmBwsGn7xr7eFN5TaJpfTjK4wQWKiJhBCIPQh3CGOkcABgprheIZwZY59wFmOtdnB G67D3uBY/GKiDRCOHiMwJTOUH1ogsY0EA1AuHxw3ZT2WFXGSkHM/jCtHAMha5LEP12CXvqxR89zw 4WrsrJfVot51QizkifdhSgpJh3kY9BR6Rj3fXm+r6rJvHxC7uHWShP3ShGbAiS1rS58zvWdftDcE ERcyVdKdzXqLe+QZ9sapRT9lhbC7i2oF3GKyYtCPRdU8T5esEvXIUrWI/zbMSexppbpBj6zHI7rv VPlNw5Rmb6v8JOgQJdABt2nsyGpeTYSh+Sh5jKQHUzYRdD1SDfZMvgBlI/6+ALGUb1BWTvThhSnG jj+dU5RjLlyTPXiBmmZ/GK7FLjlZy3ehKfdZuDo73BS1PM8YdU3znMUOlXRueegoN5XH5CFhVPAc UFRDOqfkS92h5L1WPie90+wgCveD/Uh6Pfb6hOuxc4i6E/Lr4IcxLhkPQFSRIcuUarIX8riEG2b3 DDXs+1QUsr5vxKOd70JRi04uh68CTo5cjusHCiVGsKjO0nbk5+jqUEPkexnCHWBnhD8Xkj0H3pdB nwP1nZ0DXr/xJ1ePuAFkSyms9hEAbPVHujHXET2Vkd2vnWyeX9ETpKTKdFfnbZBBexn8evF0d8Xi qtiKyXa3s12sJGe7MwSmY8zjvgXRiMt3N4Ttl3NntGGLgFXmzHmHlfVkdyoLjJbsrryxsblR3Nwq hpLdEa0XSXGHgMulbQk4lOJuGwlXXifKqd68coa7eS3AL+27IMZMn6xOvpOWhphcdZiRcZm56ojo //43jpyBCWmxvs5bbHGX9P/3v/8/xSCOg8C8GAA= headers: Accept-Ranges: [bytes] Connection: [keep-alive] Content-Encoding: [gzip] Content-Length: ['326867'] Content-Type: [application/json; charset=UTF-8] Date: ['Fri, 07 Jul 2017 05:52:30 GMT'] Server: [snooserv] Strict-Transport-Security: [max-age=15552000; includeSubDomains; preload] Vary: [accept-encoding] Via: [1.1 varnish] X-Cache: [MISS] X-Cache-Hits: ['0'] X-Moose: [majestic] X-Served-By: [cache-iad2130-IAD] X-Timer: ['S1499406749.453473,VS0,VE562'] cache-control: ['private, s-maxage=0, max-age=0, must-revalidate, max-age=0, must-revalidate'] expires: ['-1'] set-cookie: ['session_tracker=EsHcNvrMDzIw7rl10k.0.1499406749460.Z0FBQUFBQlpYeUdkbE4zWlVrOHZIRFh4S243cHUxTnE0cV9nYnFZRDFpUlVtZm8wOHhtTUJfU3g1MXVrMGk5REJsNEZiUUV6Rm5SbHJZeEduSGFJZDlLaDdKamlzb2xzZlJoVWhPVktSZmpoaHJBdktqbkhQNEVQQWN4dDRnLThKMlhiV2VkQnNRd2o; Domain=reddit.com; Max-Age=7199; Path=/; expires=Fri, 07-Jul-2017 07:52:29 GMT; secure'] x-content-type-options: [nosniff] x-frame-options: [SAMEORIGIN] x-ratelimit-remaining: ['597.0'] x-ratelimit-reset: ['451'] x-ratelimit-used: ['3'] x-reddit-tracking: ['https://pixel.redditmedia.com/pixel/of_destiny.png?v=%2BHTJBcfQwGBW9vuIHyj0EuYdahp%2Bw70Ve2nDjnnNOm%2FD0tkJu2kDJs8mo74%2BG0uM8LmTnB6FjkpimE8WU5SKf%2Bk0mn4XZ%2BuE'] x-ua-compatible: [IE=edge] x-xss-protection: [1; mode=block] status: {code: 200, message: OK} - request: body: null headers: Accept: ['*/*'] Accept-Encoding: ['gzip, deflate'] Authorization: ['**********'] Connection: [keep-alive] Cookie: [edgebucket=FCaLeYpsJ64Y4b61zH; session_tracker=EsHcNvrMDzIw7rl10k.0.1499406749460.Z0FBQUFBQlpYeUdkbE4zWlVrOHZIRFh4S243cHUxTnE0cV9nYnFZRDFpUlVtZm8wOHhtTUJfU3g1MXVrMGk5REJsNEZiUUV6Rm5SbHJZeEduSGFJZDlLaDdKamlzb2xzZlJoVWhPVktSZmpoaHJBdktqbkhQNEVQQWN4dDRnLThKMlhiV2VkQnNRd2o; loid=0000000000000lqnao.2.1425202840186.Z0FBQUFBQlpYeUdhdHFFRkJMVXZTQ1hoYUdjNGI4SHhGSG9NemY2bElIQUZqTjZCRFBjVkJQMnpQdHcxS2dyd1hjWWh2QllvQmg1ZWVrUlhYVG5mMW41S1FaNXJoTFRyc1hpUVpWWHNZU21TWmM5Tnd1QUJyTmcyM0dOaWFIc3VEYlU5X05WNF9wMW0] User-Agent: [RTV Theme Demo PRAW/3.6.1 Python/3.6.1 b'Darwin-14.5.0-x86_64-i386-64bit'] method: GET uri: https://oauth.reddit.com/api/multi/mine/.json response: body: string: !!binary | H4sIAKMhX1kC/+1ZW48TuRL+KyYrMUs0M2E0MywDOg/htqAD7GpnJB4ARU67kvbG3e71ZUIG8d9P lfvqTjLLchqJI50Hhu7P7qpy+XO5qvL+82glczF6xEav+RwUiDdeOTk6ZCPBHUf88yjh+QyEdPji jAcakrZQfDPLeQb0acoTlLKkr3ZAAmxiZOGkzmepyxQN31Xu8Z2jI3b5dPbbixfs6Oju0j0mUMhr lihu7b8+jDLxYVTjBT08Fz7hJIcrZv3ckFWWGVhyI1AZq5QeskTnjsucsEJbnONS7hguhKWgCrbR nsmc/jP1N+wvD9Ydk6pJ0PUh/5A3ihNdSBBsYXTGCOQsNbBAEyfegpn8wW0qxdEbruRqkk0qkZPS +lunBH28XmStOTyjJ2q89tTbylHk1cQAd0A7d3J28eDk4uzi5Pz4Pg0EW2dkK3n6VvUkSKKzZt7Q tuReKURK15JvEXv/udnTl3p9pV/ip6Mvh6yFM3Ac+aCRIRE+VzgV/R6jNTEicGpXb8FZSLbngtmC yQQUMbvyThvJlR19+dh6ZOZdUnvlwYOTyisr2MwSrbQhAT8lAKeLh7T6a2nlXCrpNjRQGHmNMhq3 1BoJWINcpo702iSFEg9MlQkNF9ylrb8TeY1CbwJZZ0XKb2B22vN791hk4QR+f3oTqbtcfn8rOz7+ fOvwvdGXsC0DBJCSbgVSoBtDYnS4MPJ7qp22TC9YqYGRimN2l2fFY5xz+m1BoJSF/mnN7gaAHcOD HP7TBw/PT05Pz8/2H/4dqv/Zwc/0MtO54Jv4HK6NXCrYLHUOa6lEPHjpQCk8E3DpuImHkA+51kLB 3LtedHiaSqU27+hPPPC7TFYKnqYAFp7p3Pe+m3qj82kuXkr7BLY+9tncaNuzT1ucf5XClcx706dK JlAOPvPzOfTMVz7nhS+K3ldWiw3CMWh4LnSGyiXEAySbS7V5gn+gJ+lKz3tI4ouErwCjgzdb22B1 kUootOOZ7y3ymTa9yZcpCDt9rR2u762+Qu3x+Cq/71I83fbf3GQ8HnuiM3QGWv4E6SJ0L4YbnlmM MSlsOWHujZFOE08SL0R/d5IU97aAnjKMpwZxkod8Tbnp3Tobv5KFTHoLLiDPN+jzQvfnv+AYM18Y ueW+S5r7BqOpzndfJHjCzh6enVcn7Me4SNqTvOcu2RfjKL7tuQV2hIn6BtgxNGD0X2NsAbPwymqf i+gK2DE03D0QbK3cg47ic4un65DBpwKMzAD5gkHRkwFLQ+oPmXV4oJdAKO7qNU6pbutg3TF7taBb N1wkP51ePDbA8F7mSrEFz3AbuWFr6dJIA8NDK5PDcGmvcr3GuxxQngkmWecXWyKX4Ig9eMU7jRe+ gaA31+6QrUElOoM77BVba68EwxsbGE5DHxi52JSJwrZ6JjRYEsHwiIK1OFltKM2wElfP8EIAhQ5i KTIX3xfaZGReZTpZjGoznyP7mSwFcbXmG1teqmQ4Hj95VOjCoyUNeMi0Ydwym+v5XNqU4dFlhQEX POstjeHmWIAMvXsV6UH9Oxay4LklE6zMClwCMkfRzAJ0oYAprUM2FByHu2HRWSHc4brXhOJSsjt7 7v9XjAuBZ6a9JUt3orGCvl3oBC3WOcs07pKe28Qb2kqiBlJH46YkYVPwSOGXaGTWISAKqFy2wBMV 7KlZdUWbzDj+wzXk5dI7tKxWXntG4k4GlnGGrl5Ca1fHXcTb4GyJV/F1+RoW84otQDkkkiHeaOJA Q3P0Z1CFzqblktG4I4U3mIQCGdVf1DH7mbyHp0bny+DCDIOtQyoQRSD4uR18FKITZPQ8B9qUPcob smZ4J+Iyl5AbmHDjpHUTi9KYQg631MODgjmBxGmuwYh48SwBULTD6AzMpjfosKNtlt2ptgRXe82V B8q255gpKFj6DFPygnjr6ik4uKYYkGtpoSRXuch7e4gW++xdHQI7xJuEJVf8E1K03ghn0btHPd9u a/KqfKNnJaO4SA9tcmsmXQdQsaeqvHbHSNDTS2nDU6niq9RRSWN0smq01MAQwsMmRNIbZAjx8Ek7 5GjHQeF9CNGF0csbTKFat1TAEMJXhvvY6Q0yhHjawZg5DTKE+CWmXUnayC5fhxCMkdgj9ySym859 o6GHD6HKbnKXFj5vd6BBhhBP/o6k18AQwm2qYYmpaWt6BQwhXIqs9bvIhhCp9EI2MullKKGpLFJd RKJLaAgFGPz5KsHcopHfIEOIT5T2wvDW+hoYQjjFqjimV8AQwkOjMQ4vLTSEAqExt4rkN8gQ4uca M25Kw1rza2QI8RinIlZW70OIFliW/8lvblq/VMAQwgu7wfpYgJJJTJ0YH0IVxzp4jkV/o6MGhhBe aMqmFSSUjcmk7gpuDwyhbK2NEvFl1UJDKMhBV82KznHogl+lZFKnn+VrmDTFcoQKMsrnwWCurTCf h9Dl7tY2VZmCoY9qgqrA1WXCG+R8Q4ZbBmksCUW7Ox3sq5b0NyowZZAQa2ihIRQ03oqVxPAQiuYY Wovwy0wbrxpoCAWlyU5TOdlbRwl+lZJdFPu7Fj43f4KYZJNe2yn6JW/vpF1WVaZ8fTv/7OLi9Oz8 4dkvt7Tz9xnwD5v6GBH+8oDzE2q4xE1RgRGpB/FsLnEDQiCJRzKZy4z3GsnP8CaYlp/slBODCwlK GDQm/NIVj02vee5+5UbAm23dUQW6PbwwAHQf9Vq+5K+p6dkQCsEdMqz85NI2iO7Xv/Ry67eO17+9 e/7H0+nl8x26Ykh7F7ptlZKP241o4sbJL/crbvwYjehdHNzuRn+vTuvBcB1WEvU/1Vk96HZUD37M TioF3/+3Tb+hbToex63S8fgRGw/RFD3oNEMPiDMlSs3Pg+/X9BzfIyaMx9/WyxyPw9dssqPh2Iw0 XcMaaDt97cdlc675pO6o1UDbBetKjfVUvab6td8hqvG2ndMVFQFN16SRJbLmObQoui9Va6GG2mZA jTT1e3d50WI6dXINtZVtM6kpRmukrh+bb+qir1HUK9RqvKmqWhf0KqF6oFO11FBUZyD431UHjdhu pl9jndS8hnrJdOOcNvWNZ1bJar77h9V9CVvz8+q+CfQj68f/AG7XdaukJwAA headers: Accept-Ranges: [bytes] Connection: [keep-alive] Content-Encoding: [gzip] Content-Length: ['2325'] Content-Type: [application/json; charset=UTF-8] Date: ['Fri, 07 Jul 2017 05:52:35 GMT'] Server: [snooserv] Strict-Transport-Security: [max-age=15552000; includeSubDomains; preload] Vary: [accept-encoding] Via: [1.1 varnish] X-Cache: [MISS] X-Cache-Hits: ['0'] X-Moose: [majestic] X-Served-By: [cache-iad2130-IAD] X-Timer: ['S1499406755.999195,VS0,VE37'] cache-control: ['private, s-maxage=0, max-age=0, must-revalidate, max-age=0, must-revalidate'] expires: ['-1'] set-cookie: ['session_tracker=EsHcNvrMDzIw7rl10k.0.1499406755003.Z0FBQUFBQlpYeUdqeVFOYlZ4VTFrQ21TYTlYdEtQU2l4b2o4eWlOUlBvc0EyVXN1Z2dIVXdpVG5qaDRGcnRoSUNQQ0N1Qjd5ZW9CUnMzVmdIUFFtWk5qVVNXS1pQT3dCUEx3dnlvMU0wRm9qTEhFVE1YQWMtN19XdUxKaUlJZXU2M3ROMGhsYzNnZEQ; Domain=reddit.com; Max-Age=7199; Path=/; expires=Fri, 07-Jul-2017 07:52:35 GMT; secure'] x-content-type-options: [nosniff] x-frame-options: [SAMEORIGIN] x-ratelimit-remaining: ['596.0'] x-ratelimit-reset: ['445'] x-ratelimit-used: ['4'] x-reddit-tracking: ['https://pixel.redditmedia.com/pixel/of_destiny.png?v=UV07SwR81k%2Bg4cSqYfqerf0a881zIQIy2tSk0FtBMNBnze851TEZ54uBE6XhCrdYk7h3DwDzLqW1%2F7gbzloW4N9QeGVypPiL'] x-ua-compatible: [IE=edge] x-xss-protection: [1; mode=block] status: {code: 200, message: OK} - request: body: null headers: Accept: ['*/*'] Accept-Encoding: ['gzip, deflate'] Authorization: ['**********'] Connection: [keep-alive] Cookie: [edgebucket=NYHc412EI2rjmJup8w; session_tracker=Vb9Xwzzo4W6mNCWsGB.0.1499485205400.Z0FBQUFBQlpZRlFWbGNqTWFSN1dvUjdjaHlJbVJnSF9jbG01OENOTXp4VEFyMWVEaUNXS1I5YnZ6dG9JbVdORXVGYU82Yzh1bjVnZmlZUXFuUFlzOXR0VURadzFsS0NqZkZKSk9pRy1NMjdDZFI0V0NiOUNheHhFQVdZMmhxcDM2OThfUDYzQkZnQi0] User-Agent: [RTV Theme Demo PRAW/3.6.1 Python/3.6.1 b'Darwin-14.5.0-x86_64-i386-64bit'] method: GET uri: https://oauth.reddit.com/r/Python/comments/4dy7xr.json response: body: string: !!binary | H4sIABdUYFkC/+19CXfbRrL1X+loznu2E4oiuIn0nDk5juwkmnGWL3befHlRjtwkmiQsLDQWUczM 5Le/utUNEARJCZRIBnHkk9gS0N3operW0tXVP//r6Mrx7aPn4ui1E8WOPz6qiSNbxpIe/evIC+yJ jCb0s5+4Lr0ZThzXDpVPT35eVI1bS7WGgR+rKL6k2ooejKQbKXo/kL6v7MvBfNGcp2xHXipvoNDO v/5Dj6JkECrbdmI0/P08ngQ+Go+UO4rVTXw5iT0Xr/7bjf/6yfGxeHN2+d2XX4rj4/8ex3/FQ9u5 FkNXRtHfLo48++IofT7FDy+okVAMJzLGWIUUAycWMyeeCG8uBkEUCTkIkljEEyV8Z6jEf0tv+tcP SYB2w3guXCeOXSUiNQxVvHgpgpGIhsFUCVfJKzQ9CgOPSkexGAbeNFQT5UdO4AvHF3pUzZqgb3vS VsJT9EHHv6qL85GYBwlVSVxbyOhKfJU4diCupS9+oN5Rk4GvxIeEppcaq4kZjUTMuDQ1NlCfY6Qn PNQLn3+m6UhnIJ2ub81s5ecVU7r15FwcrZmUi6PKTAYG6DpXKlpQXJSMx1Se6DAKQozaPE8iFV6G akoPUfrnX3huhkmoLplIcy3Ia6bWlKwdZoG2PT+9CfHBa0fNLqnPfq71fEvL5D50neHVUns0cyHY ptWmX3SPqGMyCvzcMGRCsxbiw1dyFAS/Sjfx9Gj9q8uRK53w0qxqNm7DVpe+9NQlrcHIueHvHoUn CzaT02kYXBe4lB6El1Yv10c78KQDEGD6qS/qTxzbZnRIS/qJR5Phecrnee026Fk8SbyBLx3mYybC rHN6MuPOZfPDpDHHO5qyeGl+ckMcRtEls3pxYja/HxN+cXPoiB3MeFLx8yCUPhGFHGHu4zDBp2RI eKdX2zwJlRdcS9csSG56Y1pGZ6mfQ+lf4muLyk50ielaPKDZUpfpemfrPw0cV2Ft0ydTFXoSw8bc nKTLdZJO64mmvRNndEnsAtJz7Util8sx2OWSeOQy5ZFLsMgls8ilE58sz308n6IfR9NkQETJ1BQU aBO0gyJx63JB8MT0Ui+R1e42rNNOt9OpY0qTkFd4EsfT6PnJyWw2q+tP1anrux7H0sIv0/6HRNLi Eqblpzl2CLLQvQ0oUwJazMAvk3iYDr7d7aWDn4KymIkLAJJMr4NYXYaSmqanjXqviUKBXcSfaycq 0D64aVHItEdkdU2EhLYy/tSyPHGiCddHyf/8B21KYPyi7kCNNPXpEjWxG33AWqp1G3uvUQo28Rgz vmkhT38FhKf5cR1+wNiyFtjXQrhtXc9v2l1UWkKJVRRIWday9PfugGgrCDwnQrtTSXOVTUN+EA/B Z+hbeBpGDsFEjDeMaIGNH4+YnmtiSsI4IiE9oT6A4kPxypPDiAjfHznj+lqsvQtNlwCUPreknd2q iJXr1CZthmesDORu0iaxgJcrwuo2LMygz7rMEcoy9jWt016jzex/CxytgY1ev2HqadhgwrLVNAar 4fEadFiLBesZP8/WFeHNjwlnHsdSzbFsjf+zdmfYR6Wy+N/S37sD/weDQTjHUGpFCcBY4geug1d7 FAE/qaguUPmACM/frCqAZytdAPDWaavX2B7Am41ex9QzAA7KSAEcPz8MwMtobltRekZ0JSm9WytD 6C9cV107brfLU7uG1MfXDpupeyT1l4GKtC/hin0JUgykTfqErULhjMS5AFyImPR51uHLMwSjyf3Z YYt+VZVpMqIpWHx9+nuz1nPUaoiflAwj8XUwGMzhBPo+DMah9Dy4hs4j/0ksLo5e3ZCZ6yh/qC54 pleZzOo2u+Y7mslAlCmPbTChtuCxRyVpr2PZXhj3x+EMlUpCVDlb7MU3QUhlrtDwKkDNGkmvyayy P4D6e0IcEE2oAODA8eNAjN1gQKOvi/Mn9NRXVFdMiGVseFKlP6dHYxnTsGEXRepDAjaJhAydKPOu Ajk+QZ/KI1rKDvfGtFuHws7xv7T6f33YkKoKhhl5FjSI9mmvex8Nwuo3TD2jQWBlqqtAZJxSkjuB z3dz50zNBvRsPXMeQnv4KfMEspwGBYoZwYWIA1vOeTMEOyBSuJLmWI4Vtkv8saqLC//Cfzfy4nfG TRiqOAl9KhkM3qshNj78WDo+iBv7JzT3HrUdxSE9gX/RGU7YD0kvqVYcS/odBWkeaJC0chH1oS7e 0qN3l5fqhkZ/+Y4UCeoQ8xTKmk/pDnBDw8AbOD4GQv/PAt3NN550XRpgjO0eqjpWesMHhUy3CfIT ai+BrxNkAv6mYpGwFXU5mCu7Jgb09vyJJ6Ik5A+E6kkkooB0G19G8dz8PaNpczB89GmghA3H6l+P nx0Yqu6/sHkA0hDEv+AHaG/4mZadS6W/758E8l9PqWG5C1tTxoZx7pJYMpGQJ5rs4RbEU1mhkKJi QSg0u21LbwtsJRSs/mnX1NNCASj6UWu822uJndaIhUJJOVROS7wm5lBh/PvJobeBkDZxasBIVdOc Imhi+NkA5mMUE7Vg40yDme3YYiLd0TEBIJXS4MKc+lR6Af0ToA2BrfVx9KxGOAeGxszLIZXnbX4p Rok/xI7XobcDfvfxVhZRUvouOqr63UZ/e0RpWo2eqbeqZj4cUXauZma8VpK9m3h9N39PeX0U/WE4 WsPjKrreO49P1Bz2HlM5vVchDZ5Jf/GYGUYVn2rZXnwaTKmFOAjJ+IKOsHhxdkyy1FXiv2pkebH4 X7z7XoWueY14FM0WvuYPSHSMOqpDIzhzyXxz5zWy3G5iEfisAXBMz8whDWGgVQnUO85Y1TT42omm 5iO/wUxUZIK72P72uWVBf7gc6VFPL45+e1ETv724OHomZASt4rkugT/0W521oUj8Tfx8cTRRrhtc 0AJcHJEy59qfXBz9csELckjsovnMG7tr1nPl9dK6rrxdWt+Vt8V1XimwZr1XypRb9w064X5IYc3H QtZl88puRieL2DtNL4vfC3SzTDOLYkw7i19ruVA/TUuL338xMiHthO6p7ly1xEWGlwUXbY/+u48C 2rFapp5RQPFjKi8gOx4mLyqogX5MPtePaSzbWwbtodrGQ1Uu3HKgbHVFyMHjXdUbZq3TiGd5j3rD N5KmSJAQGMGkj5QfKSjJnvpEfA0XzNP3Aa3d2J1n3plnwoS9Qj1Gw24g7dSIB3zh/0yuHHyn+NYB 5dwDuYEVPAm3DxBlMUjzb26gldX6U9otav2nvd7mnbaUfFZgvNnoN0w9DeOg9So7l1MuKsm6x/1a Gd6NYnWt/Pf2Bta1Bg2Guj2y7luyXIlD/QCexkV0KQxaeizphS+wGeIQdaYmalpMeDK8EnbiTaED ap1L+TZr0P9kBxl8h3oXORDqhgxdx9eBq1SaFLaYvYtP4HeTLhhJh/MfdhscM5Bj6XUzkXt9vxlZ o0jily0mKevCymRVFjFSlikiRrvftDYixoad9maja5laGi+YwSrsJsh4tyRglJP1thrh2Xq4OISH 4LucJHuXyul3n6c2czSP6lFsw1zLhPjF0dfaJl48YmsmJ+ajOilfKlLTgzJ+fix4mNlSBenMTJW+ XGK3jTZhfh6Ksn5hxPG8LH5dLWrmqfh4MV9/GCswY4fiNkSv3d6sPtCC4hhXfcq67SoqWP1+11Rf 1SIebcGPzn5yPnQkKpXE1HI7K9JVN9K3VTiVa05EaEnWtPeth2n/r6DlE3W9c/D0mdmAlYQSs4jV BDvAfwMZOUN6Otf6BakitB7UZ1a8jkV6uskOhlFdt1sPwvFJ68R1BqEM5yd6g7cOpPyL/tixfnQc zf1Y3mAQ5WE45aF7A/FOxr6Ky4m7wEHXSb8oxYSWjbrx8GnSw3h4O9x1mQG47qvB7/wgKgPmKR8W wLzb7PVON4J5ygcrKE4aYcPU+0PsAGVwsFMY6jSb+G89Ah1CtTsX7xE8N5M+DKAp0Wc8OvSm69o+ 5Dm7UmyQ0sGKgdPute7BBo1O19RbZYOHKzM7Z4OMJkuyQbtTK8MHP9vKVTQzv6xywoFOJ/6TI7Fy 20a8p6QRO7+rb+KZIJu4dBYuoLKQrS09GQ/mn112/f5st8JJ6Pvu+C4jvMKO0ukp/bM931nEraae MSJAqI9HHRcVK21FPI7lcSz7HsvWlup10p1PUKmkbCwXi/5S+mcytB1G0TVKYtAbKLzao2zk7bxg cO0ESQQbLJxDnJDoiOQgiBGkTDKEwfmAUm9pS+7Ozt1fru1XncxopqBONlq9/j2Ob1innYaptxqp yzlAHqVadRHncSzVHMvWkuCm273eKoGL/twdkuBK+lfzAM2uioFZNOnzqz2KgTdJqPTWKNnqEdsN ju/EVFbQ5AeJP+QIu7r4Qidnw04oLXxkjrDYz9lJaTIwRa5jK863UvdVfPIPde343wT2r2QHzqIr 52Q6j+LAP8au57FlWQ2rI7gKwdzBA0MePnA0teSDvPcsLNyP926C5R97HnNTWlUBmbHSsoBsWd2O dQ8B2eyRwbjpfONp7aECcuf+loyvd4okr24CWtJvpG87A1dt2gCZtqfsmdwjpOQOGkdKIQsjiBWc 6HjZiYuLIyTFG050Rscz/cW60KeUpTuT88ic6XVinPUahs5AIYca4jbUTDje1GUG1fG9QnwZhELd SDzOgl4mwUy8DIPpILjJtcHHiTcy/HPedGBd1HUDgWHMA5/aPL9Img2r7wk8oU8NAVUYT1rbDLRm ehhMlX8cBUlIb5Z7ixHrAdfEMAmxRqTkJti5om5eKzeY8lkUgibTe94PSrcnBm4wjuq2eYN0d7Ea Tk6oc+2TRvvEweLYyZAI+djghPSPkykVxKP3Tnw8kJGyj/UOx/Fy307wpQv/HMfhnsTiyqcp9BLs 33B6znSIfOSOz8nwkUfEzRCcCDcIrjhGjqfXjE2MacbjUCksLy0mklVwQZq7UCVI0YWzeUSscZQj hlqatYJfEXtxDDmxckLULZ5mm2PU+iQZ8DyYOTHweIJvnngyItY9waHvy6EesniWoTp1IIrTg4xh 4scO9cQBkQ1dRdNGQKBiKjQLabVBNtLXZ3+yo5xPzz77rMaxRmfPeICRUP4Ypx/R3bRJ5V87YeDr ZQ2VpiHbGY0UzxAfSTfjfhIBACTWT3x1hqbp+1xuiAPtaBBHOtE69ZsehAhppO6/fv0/3+ilFX8/ f6snmxjQw8lOMSEsIsqnCZ75BXLkSfdwbl53wBzo5CMCQTLmc6Jz4skooAkYuomtP2e6i6Eg32qU MpUheUw+HJV6cTVuMRn/6LuS5IZ4M+MtQXgswdh+vv+DOZF0QB+igaD3GUmA7j5lnmRp/KlQBK2Z AI8IyvTBBScU44A4m6O6mITCQJ9SRdEAR0g5YYoKx/icJNrlFAPpoAiB/avjY0wyqa0KjM6nxlBd iu9ffS+wdYklwhBZi+AwL/pQ4EBrIO6IaLaoDrG2HSSDlHd4cxSTHYGr0Mktt2YeGCuzJnfCZpRe hLRotM6FuCyjdr7RnaB3zg9wLxTPqz5a+Rkg4yj6nguqMU6HCgH9ispW7Hau4ysK6AGkw9JG+X6/ tVBpVxfT7DGSkMoIpdLCau1SbS+5lqd/+/o5K6HSMnDB/R+vLNxA1A8Wj2hJeWhqISf5W/rhRyEx V1CyIoZtZtkVPL+9RsPqbTRsj87oq+IMVpVDKxiw42qNmduxmqaVVTMX+cqqZuamtuZOzdzbHGbX s2nI4Ux7tG7fBMBGjbOERzNpQ9lh8OJQfzZgx5KJ3z68V+uu3uUVtUUvK8tPKQkV+Om03Wht5qfN jqJ2p2nqrXIQYgUqxkEZPe+Ug0o5ig6xBYkjhHxIZwZ1gEXCV0EwdhUr45xCSaWHb0g8rUrrhX7N lqXOtr9yCEkUROrC6wsPxzqDJNcuaw6mKE54UflPaUmvPl2UOT5mpWAGacc6DdSmUPdbxsfHjpah VFEbUfVPtwOFnRl8u5vtDbqLXoDse1ssRE6LL7sguSpmYRaaD1Yor/Nsv1aLtsyi5ZqrKlpmcFFA S6vR6DU3omVJ7cPqWU3Tyip2PnwXevfYmQJYSezEPsHd2Bkn4RV1/HIcuBuOel77/Wljz8D5Zmru PiK65uj6er1urhaBrjwiw8gWE8fDjTBE22SByDGfRSS2SDVwiSxtU6jVzISkNSyiLLSZbKy8TZyI rHJgIwlXT/Y1R5+7TL9EFSJJhnfR4bMdAj5cLfrDT1hlMSdls0IIZ7/Zbt0nKUi31TX1NMqALXd3 mryCsS5bxyFcz6/b25hV5c6jbrpH5lCQ9l0oBmoo4WBLfb1juGmITUTiu47HTlgya0I4nMCPE7io huwE2tKD/mA4eVhnK8vKKWEV1YfTTn/zMe/NrNzrnZp6q0c6P0pW/pjCoz6msWwNsbPB3PqASiUh ttxVLd8H7nw4B4ej6VWYncnOaROv9gizKVxJeLCh+pAOooacKz2a+0PtpE4GI1JvqQkxmAtbjWTi IsUaH+M8FyOHXbzE8PAfzJHybZS4dfFPOI5fhmgKp1EItkiZYVcuKUwEf+xY1qMWpv20UehSKgzh jqiL72ybaik/dbejdmjzjsvctD+khfWxpwMERpdfO35yI1zkBca3s0FRQzysxZBqggaeOh44UfBs Mk8N4YlxCbDLnbW8WB+lCUYjZ4g9Rv3lQ8ubx1XjVSs4MtatXt6PcOcqVlUQZ/BTEMQdq9+4h07d bLYsU08LYsDV7ryej4J4r2PZXnj53e420YXlTqwkvnNjh4Gv2q4zYoNvjQAbjjv7Ptv81twFAFsb 9vKTgbSfGPfiN2os6/w3O/GimMCHd0vFP0gxfxnEZMDXBHuZuNT/4GbTE/z04xTpY7hWSNY3b7iS Aj9JYoC2vtng62AGR2m9zr5m4EQmRxz/OnCvEZTi689Lf+7R7NbFt8rRPgH4Jz3pyzE67QfmCYf4 ThjjCHqnckgD1kn4U18Do33Ce+S23seRYhIQUbtwrl4pjl+gEUpxNuFMMuiMgulB0MibQTiCrbuG EpKRdxTKxK6Lr03CVkmTj6Tk8FVEcShnxx4cqjQFgyRCq5HiPWCyYBIvQbZrgeGZGAf6gQfNg4nq 4gc1VBzoAvmhH+ot9wHijCLl/KoXBZD87f+KMYbAUQEkjViweEr6ent66TUG4+ByARAIia5zHxjv sJPl68B157MgQN5uiEf+Bi4XQCvonemH2ZcfSc/hc0U4o57FgEcqTqY8P95cpKBQFy/gD6bKJE91 lARsOX951rTnZ4ibRQn0ORzJiaKEvphGUupvLVNH9g53kkMGhgJ4g4Hismg4g5YrIGKD+uYH/jEI RMWQqmyHUpUw8fn+B7AChN6EM5bpLpN0h58b3T7XB4W1nKBB8Bd0a5wILfVu4RHOb9M8IcIpjWVA E/g+se7IIQUjImvXpaaNjP2nc+VMSceQCH5RWCUmQI4ggBKQhlkRCSpCoYW1jHYV6SfzKX4bukGy sKCzmISJcqcYEE2bCdcwl/kww3gEUqRt0KeulJryrI4jIiD659AaG8NULoYthavsEcFW9vPe4Suv 6OQD3zJEWy1QDDvLKhW1sEfse8S+W7Evp5JvxMB8mUcs3DcWrtg965i9MsZQqs4WQ0AandN7hYBY p6be6mHaKgZRpTp1SW2+XAjIy1eN///TD+dffPftj2evX52fvTg7f7lBpz+AUwqosiSfrXa/1ew2 U6t1f2IaX17hhqoQfrryRS9A89S6T1KiZqtv6q3u3z/cC7B7wk8JryThl/PBljFjr3+1Zry5v0eS RzgyYoFxUqLGZxkiUhH4HjSSOb6w4THTdmdqJPCxAVIKSTbA6TVVAYkkje6sMHFmIJyVGEMV4CZr UDXwiIPiUwkSka5FX1Yc0qs1IqXYqP3C7G27wdgZ1kgXIYXU/5UdfROoMLiRM3ATSBsIO+yTO4iY J6VLdBpffcEtfYKWviTyS6B0pK5LUk1Sv6H2BlKjHqkJ1Gk+cYecs1ZdvH7xrXgz94f6QbNufIRn 7LDTD1v1rFEogew7pDE4CLQnRcaJFle6OFQ0UOzTjcM5i1VaF1oU1gj4mIvMR6BzWqV6rj4a4N5C syJCCxOWyBwgXrdn4xr9fTOiv6fhe92FJRzbv51Rko5W9Xtdu6B77ZnENvRiN1S3ofGtCHFNG6sZ gZeodIVCS1JnSplLyvGWFHoP6jQS7g+QZThF/4Lwa/cbjfucEG82mqbeqgv84cFrFXSBb+82bvza 5XUoKW/LKZrlYo0PIXBf/qOW+dtgJC5bVTRR184QFrwwXhEqff7jWU18QZxsoMhU0UUXhpgXRLhG FFd/sxU5naqDH+rMRpdH8wOMMo+YlcKPlJoL+EFmY2uz8lw2FLbfa5pWVlXpRzTRaOLF7S3Q5Ljc LtSLyJZzGZGE+x2RRNC0KnZ+EaXYgavUr1L8AGYZ8sFWuKoGAQ4/S6Od8Qk3fUzR0eGdUKAGcwX5 7rBYZ0cs6+BO/DbQR1F5ExxeTA4bdfgal4PHHuxxuGvULdYHN89AzqMuK7x/nxJ/EXw67e497lW1 +t2uqafhhplld3izc9M948KSzF+O98v7rA4Rr7rZZ7UmVHKnDFlln1W28gXKt3qtzj3UdqvX75h6 q87ah4eQ7p7wU8IrSfhWOadVOSV63BnzguyR6N9OsivG4B8grdBVo/QY2fFxGhNt4rFcsv0RER1N sfVCJiq7CDgVQIB8I+iJOQyh9+lILX0RQUBMoF36ZKdj2wZBYYrzb5iGeLO00/gvbH5gP4pbXJxm W7Sd5SfI5dqoUUMBC9pz3hS5KowiC+yeqCe23rXD9pYOWJPCxe3f/MGnp7yNFH0u+p+z2NMbvCYN hIyfaflndtdwnGOuK+qGdBY5fZrNc8YTDJoseYkIP0/aiCXnbScvIWU7IkKAS4fmh97XcJ0hTdHC p2EqYH/UDRA/RzNHAvk4Do5p9TGaAB6ET5YA607V4YE2CYhleQf8D040G9SVO+kom4SPjp4qK4ZS HF4WQ1a/cdpcs6W0pfXXtfqmFWP95Z1JFbzlJJMMZaXSDk4MjSZhsmdh9PV6fktpeBlIDOenp+wy xjFM/3oN0x/a0Nr7eCrLrSl9Frj1tN/o3+cWiE6jaeoZ/swfPKri9Ssps+yWP9/L+dV8kIS/rrJo 3uezRw795wT5nWwtGSGNDGmzoOb0ULGSHtOtofLPxZsJ36SKfSOSMYuifDHlgTlyp/2vLPel1Ffk vp51i6zczH0wg5ekY5778Phh3FdB5+if+7RBq9fZ5qhcOV/P7bdpXzuzxr79Oy9min2Z6X3Qh7Wd Vr5eVfTIlr/g8Gm1+7c4fG65Gnqju6eKgjulw5K0X1Jw6zQSwIVakfoPJLgvjl6qyBlzBK3MLOKL I/E0knMx5bafwS9fyN54QauV1jP3qS8qczAxdhJ1GR07vChQ47OHOAcoQyJoHWnNcSHpR4YKQdLY ZNAy1lyMtnidRjizPc59J03Zo4k8jkgcH/oGNzb7OVfuuslcvL1rUhclN07uosjvPslVBaqMVwtq Tq/V7N8jjNjqtNum3p9FzdleNRhcfzjdAh7LOcNDJ7qSA3dN7OaBwJG5A/lPZzK0o2PH59C4GK55 44WLyC4H74DPODOQOQ+QuRYdzpMG2wLRKOyooyJkzCMEDJ7Kmpgp9GXdZxz0ic0hnW5NJzPDzmqa MginM9RMRHNSo7wIiVzHofR4r3aRslfVx3XxQxLFzxbhe7rbDkLxgivtetRz9bnGBP1+sICD+NCg utvJzwXL3GsR8mCX9whXYF2qisMZKBQUxo7VWxftfxcON5utxsaz7Y8wzDD8oSNnW8BwOQttGkSx R0TzO8IwJ6kAo02gxbjSG9jYGgmYZw4PTLd3p7L8mFJHgR9PO73mPfSiZvu0YeqtmnCP/MhW43uv t82NouXUohckQc5INyK1fF1w3IGY8iJpNAajn4gJqKsudih5a5QtjOl8OucYUyVGCWLyD82i23Wu qgybkU/RkGm3e/dgWKvT6Zp6fxIB+ud2154G3d2H5v2DtNfvXDS76qyddV3FCt8eYafdRM0DQkm7 WVV4yBa4IM/b7VPrHrGnTavTN/VW5XkFXbIZtZWk73KnWHxpe/LG8ZI14Q4Hkqxs55kTGtKPZjjg pw1bPiCXbhQIP0ANPhHGad1lhKzupJYeWto+vMOVZbGUxoos1uz2N6dZv4XFWj1Tb/U0yaMErrgE fhzL41j2PZattby5EzXZQb5TKaiigbPh4qV5f/x+38HngH5xzoeghnHCBtyHhMSZSWUK6WIH4jN9 HCnAzXX6RHyWX5Rv/aNanIWbJZGf5TB6SxMiaLFIKungcP4OSaXhFXJSOTi5zVWGOJnEt6LN07QF LPbM/+JntFQTX+oVMf9sevZLnfvyFD8/M9kN2JOMln7EkXTxKe/YSYTxDtKhPhc39HyALikaFHUb zmUa/9MbeLcH+oq3xjM0JcPx5JNDRk6tyyWkveJLp7f2u4QrqkOxVxv7dfuS59s1TawmCODm1vz7 INpomYGsP7qvXxYHmQ3x4aS0zYQyya1UqIjylkHjsvLWtrr99j3cJ61ezzL1VpW3Ch7Ny4B6p5Lh rZLem6nymxZvsa/Kh9lVe7LviK07RcO7z949HFkMLL/79N1abnrH7PRulZ/eFRjqnY7h0B+hZr9w 4plDb979+x1HVLxj1Hgn3iNjHnWeb++jjj6xhbqZAo6eZlm4cayGejzHzWeYnxB5+HC/a9rmb9wh n1ZP+ZEzlC62FvkI7uHkwhqsvWWt8nj62RLw7WwJ85/4dPkT61Y2X5wXebnKyoLny68D06zmejrI V//3cgWQR/41Tyn+Xy5WpJzcMaSNFJSV2UBJ+c/+tjIB6wiMC1VRDqRAuCwHWv2OdctNrZvlQLfb 2ng3awVPqmaAXFIOlPMD32IhzCbNEb/aowRgOkxzvPBl4Ez7F0e/XRzpxKrQUwaGlv0gznRtfUM4 V+HtIAvkjIOGxGoN/nk0Ym3a1zcKPNGa4cgJIxy3i5Dqie0Gbo2Ag/HGhNARLhBDWNwYK3jLLxpr Go4UDRVhdYWWxW8W1ZKJG4njpg4E4S/hmvKasE4aJi3WryokGHWuHdxGLYiPg7BOA4wUhi0QxqJV 2oGayGsn0JknMHO4094NkGHqtUJnoitnurgjfUSQrScIh9ChEBMUE3r9prVUHuFvT3mMz/iKbwXI lSBoQCJ3FVMNqOH3WbwKd+BLnk5a94GrvOe6+GLSUB7AjbNRBPspmGeJbOIsM7y+KBoJUHXOXG+a EOtEiyLshZzHqi7eBHx8g89TOshATMuNA5ZGEcfXLX6g1XTdeV4m6RIj2PPFZJq4SUgiHhpSrepg SZoq4p1QETiaO+HYssgVjvXtdDIbIHVOf30YqJCvP49nfJZ16IycoZhKpHjTt5XjIvMB/opZXjk+ vaGPxcgjq/u9mESdUVDPp7ZuQoYR0Rg0zB8zjMz2yYKXOHeuxFnYCd9h7uqEbfRvMJ0GEUQ49+Zz aswyf7KrQkbFfpGExZMxUVbic6iqjW82Ox2TOKRQXKRldCVIflqEYwvX+KkIEkzGHBS3YpH/9vTY MsZ1Y+1rGMp4fGyh/hs4qTdwuMYFnGTGtNapRj5MlimEiInHoMeNtWUOyduRoN7cvNKy6bXB15HU mAkGjBctOM+T76nljDVSBSj9PLo0wBeIWPSxZzNPxCCsF/OdLumRQlqmM5wHjgOTcs6TQyTQLt5c uOB0+m8oSRvAYoS4LDFlBeLjpS7oxcv4OyN7XjlaRRB21o/cPHuO73iJxwwB7cvxbXWjG+ObGM16 481yH20VS8etazr/TP/jcMFgqsLcOMzC2SRuQEfg+nQWs9qWufZxuWydYDeP5zTROXj4bQnSBxqQ 9fSck7KO2G7+Pg60YKi+GQmTQRQThQ8n+Ma5ieLTMYs0JYv+Oz6BncN8YCISzQSm8EHadsJhhNwq S7dF7QDpqtPj5NwV7LWsm0mcLAVFpm0sg5bGjjWgjKky+qt4mtLdMz07OeIgwY5UiFnHzN1Cmeb7 NiWaBcibIlLYiOwkwiOkI4tBponLaZ3sZDnGUo8lFaciTBydTt0JM7gi0RoR8St/OK8XPGNmH6ff P11VAXdlCBU9J3imjaNC/raFBrOI7/8td26ANZoV/brYfO4DOc0nX+0O51EZ3WibXqRrk7MEV5F2 i/5tqW3toKsF7WyLvu5LfdtmUCtqXm50B1P3VueMf9mBBpgbzV2aYGFZH6QR5v0af0zNcNOSfBzK Ym59CkrjmnFv4dM32iVplsVXuSLQMKFd8qdu8+BzN4wGeis+7lcTXTMl+GUvymlumJVVUgtLUUZZ zePBGlWrwkpr1vMNymt+ZH9AJXYDba8RNX9kvTY/Sv65Im7XzO9YiJ3qdpqt+8ROtbptU281PLGC qZgyL2hJt2u57bf/p2YDZ7juSCRP+cjucWzuHj2vtzpdDa7cYUJovipAFpO0TXqHnRYvAle+BBrZ 0hqo782jKswpwIkkzKN1lcycyNUGhUWnceMeG1hdHOJLcRobUHnZRBUa6elFPluI+8nGqBrnCqLY wPElSc3AP+Ev0Ch0TMGJUfXYkn9FlPCc1F2cd6RWz6EJEPANw4A0IzkIZUQDry3flYwTifQxdTN1 IXJ4MYHmpskV55qzHNximas1VspoG2LJSbdcSN+Egl5i3gYJsY8WFbmJDaXtBDy9vlK21jRyN1ow TIKMPFIHCH9JYkVImq7nPaWjlM6QvEerzZpSUnsmIySjeaJLnC5voaOlZgbqEC6bU/Z6sdIPp0uU LbrUd2oEU8Z5CHq9egKAmlVb3q/VCNi0emuQc1feisxk3Noz8cj2lWP7DbpPWSTIKKAcIqz52haG VQ46ABvF90vlUvgAdBQLZAVFWfvrEWaqqz6m+lNRfWw0emvybt+tPlpNU2911/7hp1seQ+/3Opat w6JvJu+nPOCS2jfiNu7Wvm8Jerhpj2JN93tUvbVkkBFOsioxDeXYI2NxSEK4RjC9sLN52ylBBgsP F2kxgAXISTFwxvC2kDWKG10ufCNr0hbJvHdIwqG5OaBsqT0OMkIzIXIO1w8ZaJxiddnR5/wWO52F XLuF2agqimZ8UIh9ajca/XucEWxZVtPUWz1CXEEjPOPKkjBQzggfKBXGRMfrkeAgRjgcQg7ca04I Yc8aaRKKH169eP36J6Js46E99EnA0v2qLL+kBFPgl0a/0d98mdRGfmn2Gk1T71Hr+Pi1jrkzfc85 mHcKN7doHfPeeDJgut8f1rzwc3sdhY0etqZhCNbJcIWAtdigNPeTn2mnOWEA2SmLQG4yeuHgx23o SLn8F72NId7+8OMrY8enj7588frNK9My7z4kOLCDvSnWSGZh4I9rQpujKMM7uQpbTWzU8Xu9oUEF zuow/TALBwTEik5eTpHZdhKritwZ762c9um175FavtXrNUy9VeSuoKaTIcFOocdWkUck6/ieM5yo TWk/DqHwgN/BEJkfzoQJsh7Orih2pvxtyRP4N7jT8lfJSHhliJQdnf10rSP74kgOhhdHP3MTv+gC T+STtWUts6WrXzVR5oXrshWR2yScQwWiqRyGzgB3A4dKd1sXCcIIueNdbGbHgel/4/cAq6Ud+pXJ Lho/9530PIBs7yvkH9j1TKu0+CVbrayXMvuJP7OpvcUKNss6DXe1wpVF0hRKiudlrEZnTbDknUja bTZNvVUkfbgOvHMkzeBsp0i6QYk7WEoZvt6CU9AiToIUZKgeiKRZ2dcA804187aer0U9jjYxgfRN sa4Ac+Mi1H6lAMPGEnSua4ZLnWhY0a/fhnKokKRVPOVLiqnj2BAZSmJJxFQ8e252FMWXjqsIysFX UWw7fKbmgqbPhWpES0aDxDuivcQ1LI5q/6vC4KXZA3qFLaDniy2hwZz3iNZ0lDQmWn5ke103DHpc 55UJzGQ+adXb9ZZ4es3/Pu8PTlsja9hS3QZ17Es1EM2WaDasTk00ms87zeeN1jNxceH//NXZmWjX m3VLPH1BcKLEuT+s660L0el2u8/EU5tQu/XslydrunFwcZISXQbE2xLfwySFoVKm0OLLRSFDXByy t6nQErXe2twyxZajVqZUboElGf+UUW3+A/x6mYJNWUPFpvCFX4qKi53PBrFEzcW3WaklquanWOK9 U3b2pVu6dqsgr5KkzURNYY+rc9o6XbPRf5ekbTZ7HVNvVdLi6cMkbQW9Tdt6aJrtoXu91QVc+nN3 CPchoSqN/ncV71HA2Yhxrp4dDgiu10CK3WPHZU21JtS4Lr5NnPhK1sXXfHcENTwnxdTnh2RRmXvk kJ8NOyb8mIMyEXmPqO7hUILro3q9LrYTKQ+8Kmd3w8xQZMvhVlRlX5D1MpCcnnZuS7V+9Gbux/LG SAi9N4bM+sN81pQcvpy2T5czsD/iy4rxcDqf7d4D7Niu4gq13wtgHFJZZjj1Q3yib5vV0SXKD5Lx JGXBiFgIF1jqaCWXtB/xXl5LmMXTGEwFs3mmBofeltp19ysKAwvqK+gT7U6ze5+YGavbNvX+JPz+ p969mrVGH7bJVl/uirM77vd77193mfT3B14vOV4dER40twpHNT6HTjAGDuApuPpKzWGOknHSbOlQ EY7BBG6EKk5C5n0PyICLeamghYPD25rUD9R/Xi5F5u5jQJUFtpQ0C8DW6nSs9kZg23z34KmppWGt 6pcGpzxSki/L6RTxhCNZB4EbW9z6wRQL9C/lzTPpi3MtkjOqjXXuaL7o2pwEPLTCULZbVeWXjGSW +cXqtTvdezgWrE7n1NT7kygC9xCerQ/bZNk6Lselyg+Dm+DAF3vnGfRrNa9x5D/EB46zH5oVVztQ VabLSKAopNqde8WONTqnS7FjTDIfNdf9ydVv5W2Tr7Vcnr471G9//Ou+Qze+ShykpgyDWOnLFvXe z89IS4IT3pCnchz88nQSx9PnJyez2ayOK2s9WR8G3gnZ224wjk6uHTXDTXT199H083hCQ7b/1uuQ /veMQyV+MJqwwOYKdTdSgtiMmp5J7L7zd2cTRRI8FBGOWA+RNcGe03DpR+JshFlRtwYKSTU+F28T zqxhUn6IT5FQ4VOBAz2R8SDY19KP5RhpSb7B7g6RpyK1Or3eUUcBcORDOEbjODrl8PcvjkwPzGf5 hDhfAp72Z0RgkIQqwo5lgAqFjnKNcShtPkjEzy6OeB6+wGWWHJMu/GCmk3J4CO3ygpjoiPN3UEdk pDUbzxmnx+5H1PVwjC7bSgyoAJfUay9adSx/edh/oKWzgWbwXgpa+xFVuie56C8ViI/FiMSLJRPI bDrilz3TF76jPHwIhMZ90L/uiOQWG4hlSW9Rg0lw8evdpLgou2k290al1dUNDLgXdYNOmtRgnW6w 2YDtbkyFUEUDNpUyJSUb3t4t2a6SkLSBpNdfFW171I3zkg37Ue+w8JFO5E3aRKCzd0RbaskPhEt0 BL+kO97cJyb/pUzS+f5VlVEyWilYrn2rccudh0RZ8SQZsARA4J30Q/FvQoWWeHWNvCsuEfp6XrK6 zebSpYj46aNWsrdWTK9ndnub0OLjcpqp4yOTWRyEX7XtseLlORgX5y3cC727pU/yX0OyjEZKabnm qc8veL7Ks3JKDvdm5oX0vLVfi2KVZeWUbgoyr9FvnDY2snK6aKuc2ms0TT1jD3/0Fw7/ue3hpi23 2Uovtx01vb4KyKpgAl9jD6vIYpLdMd7ktYY3CYJNxqDvxdWISM8ATReHlZHDcl6H/zmY6g0dT6mY 92lI1dWnlHFoCOl6dGIOoAJv7Bgbhbd6kHQEPwxZ7C9e8guTnkTdyGHszjl+PVLuaEsr78FYt7u5 yDbGdj8nVcXXjEGKNkWz1d+sKm3E12aj1TH1/hjbYimvlsSH426tDEDIMPaGQzf5HaNtXgZLm7uQ 9sgJo/SeL2/qNizx9BxOEf8qpVtiGb/+zOSzYS3h72o0EmdBOMDJPjGdzCNnSGsjiNm+pVlQrvhW xbMgvCokm9o/3/8OI6wqF2dkXDB4Tk+tW7a2N3Kx1e61lja3mew/ai1pe83Cag+2CQIuuVd352HJ A8EH52m2NYfNpB+zQB1OQifyiG+29Ew8mNXv6E1V2TKjkYJwbZ52u/c4BGf1ez1T73Ez749nvHxM Y9kaLm867a0ULby9Gy1fRLacSwKBDabYLBpp7XaPSPmTmtYQF0wfrwt9ew4f25UC9yEcWikq9iZ3 SCHfq6oiZkYmy4jZsprpoYGtELPZazWXDhvgpwonYMjotSSXlNMplDtwgjW+UeaQhv+eNz/2yCEv 3CioiWCANE4RGcWzCbGDmKoAh/Sw2zhWvoqRk5xe0odpsqdBpM+5K/99MDd/c2KRZDhUyHLK136M Q+lxDngvYHr/bkQGPyzuT8TFRXRg1vu9hllVXs6IuaD9nPb797kys9mx0qs2V+MHK+hayDirJC8f n9bKMPNtIu9AtoEwlnd2Ie9AkVrAYa4SKQ99UtWJXGn92AU3cpSr76KQ/lzooYmAIwqogs8VwB5r WeIOZji0IVKhkVeW7VO6Lxo9nfuFDfe7y2HDzCe7M3ru5vtf/g9mzkl8mU4BAA== headers: Accept-Ranges: [bytes] Connection: [keep-alive] Content-Encoding: [gzip] Content-Length: ['12415'] Content-Type: [application/json; charset=UTF-8] Date: ['Sat, 08 Jul 2017 03:40:07 GMT'] Server: [snooserv] Strict-Transport-Security: [max-age=15552000; includeSubDomains; preload] Vary: [accept-encoding] Via: [1.1 varnish] X-Cache: [MISS] X-Cache-Hits: ['0'] X-Moose: [majestic] X-Served-By: [cache-ord1729-ORD] X-Timer: ['S1499485207.224590,VS0,VE353'] cache-control: ['private, s-maxage=0, max-age=0, must-revalidate, max-age=0, must-revalidate'] expires: ['-1'] set-cookie: ['loid=0000000000000lqnao.2.1425202840186.Z0FBQUFBQlpZRlFYbnVld0xNenhUVzhkUkN5MFE4bXotdTF5ZU03LVp4VWs4Z1MtczRpb01CSVR5S1pzVTVuQU8xNmtVbjRFWjlSbzJ4WHJiNDFlZEkzUmVzTDBKT1NwQU1uaS15WDZMZDBIcEhtTnhHNEJzSHNrbks4M0NBWmNKUTZqNnJNY1BQVHM; Domain=reddit.com; Max-Age=63071999; Path=/; expires=Mon, 08-Jul-2019 03:40:07 GMT; secure', 'session_tracker=Vb9Xwzzo4W6mNCWsGB.0.1499485207338.Z0FBQUFBQlpZRlFYaDZWd21uRU56b2ZfaWZKcHlkWTZ4TjM4eEdvSF84ZmlEX2lvVmVIeXlIRHZ0MVlYc1YyV1cxNXdYRW83UVZsSUxsbEtjaXM4TDJ3TWNzdWRwVEVmek0zZThrbkNfN01PUnpndHZDY0czN2ZIU3pSWUVOa1dlX0lpTk9rTTkyOGU; Domain=reddit.com; Max-Age=7199; Path=/; expires=Sat, 08-Jul-2017 05:40:07 GMT; secure'] x-content-type-options: [nosniff] x-frame-options: [SAMEORIGIN] x-ratelimit-remaining: ['598.0'] x-ratelimit-reset: ['593'] x-ratelimit-used: ['2'] x-reddit-tracking: ['https://pixel.redditmedia.com/pixel/of_destiny.png?v=5aXaZpJwTnOLjmstpewhC5MFDVF0tg4VqadGPTZSF7ah3SIkhjsdsnIUc%2FkpLgeIB0fRFTJ6nj%2FfdAbAOnRLO3hsSCFClldz'] x-ua-compatible: [IE=edge] x-xss-protection: [1; mode=block] status: {code: 200, message: OK} version: 1 rtv-1.21.0+dfsg.orig/scripts/build_authors.py0000755000175000017500000000252513222035043020522 0ustar noahfxnoahfx#!/usr/bin/env python # -*- coding: utf-8 -*- """ Scrape the project contributors list from Github and update AUTHORS.rst """ from __future__ import unicode_literals import os import time import logging import requests _filepath = os.path.dirname(os.path.relpath(__file__)) FILENAME = os.path.abspath(os.path.join(_filepath, '..', 'AUTHORS.rst')) URL = "https://api.github.com/repos/michael-lazar/rtv/contributors" HEADER = """\ ================ RTV Contributors ================ Thanks to the following people for their contributions to this project. """ def main(): logging.captureWarnings(True) # Request the list of contributors print('GET {}'.format(URL)) resp = requests.get(URL) contributors = resp.json() lines = [] for contributor in contributors: time.sleep(1.0) # Request each contributor individually to get the full name print('GET {}'.format(contributor['url'])) resp = requests.get(contributor['url']) user = resp.json() name = user.get('name') or user['login'] url = user['html_url'] lines.append('* `{} <{}>`_'.format(name, url)) print('Writing to {}'.format(FILENAME)) text = HEADER + '\n'.join(lines) text = text.encode('utf-8') with open(FILENAME, 'wb') as fp: fp.write(text) if __name__ == '__main__': main() rtv-1.21.0+dfsg.orig/scripts/build_manpage.py0000755000175000017500000000542713222035043020451 0ustar noahfxnoahfx#!/usr/bin/env python """ Internal tool used to automatically generate an up-to-date version of the rtv man page. Currently this script should be manually ran after each version bump. In the future, it would be nice to have this functionality built into setup.py. Usage: $ python scripts/build_manpage.py """ import os import sys from datetime import datetime _filepath = os.path.dirname(os.path.relpath(__file__)) ROOT = os.path.abspath(os.path.join(_filepath, '..')) sys.path.insert(0, ROOT) import rtv from rtv import config def main(): parser = config.build_parser() help_text = parser.format_help() help_sections = help_text.split('\n\n') del help_sections[1] data = {} print('Fetching version') data['version'] = rtv.__version__ print('Fetching release date') data['release_date'] = datetime.utcnow().strftime('%B %d, %Y') print('Fetching synopsis') synopsis = help_sections[0].replace('usage: ', '') synopsis = ' '.join(line.strip() for line in synopsis.split('\n')) data['synopsis'] = synopsis print('Fetching description') data['description'] = help_sections[1] # Build the options section for each argument from the help section # Example Before: # -h, --help show this help message and exit # Example After # .TP # \fB-h\fR, \fB--help\fR # show this help message and exit options = '' lines = help_sections[2].split('\n')[1:] # positional arguments lines.extend(help_sections[3].split('\n')[1:]) # optional arguments lines = [line.strip() for line in lines] arguments = [] for line in lines: if line.startswith('-'): arguments.append(line) elif line.startswith('URL'): # Special case for URL which is a positional argument arguments.append(line) else: arguments[-1] = arguments[-1] + ' ' + line for argument in arguments: flag, description = (col.strip() for col in argument.split(' ', 1)) flag = ', '.join(r'\fB'+f+r'\fR' for f in flag.split(', ')) options += '\n'.join(('.TP', flag, description, '\n')) data['options'] = options print('Fetching license') data['license'] = rtv.__license__ print('Fetching copyright') data['copyright'] = rtv.__copyright__ # Escape dashes is all of the sections data = {k: v.replace('-', r'\-') for k, v in data.items()} print('Reading from %s/scripts/rtv.1.template' % ROOT) with open(os.path.join(ROOT, 'scripts/rtv.1.template')) as fp: template = fp.read() print('Populating template') out = template.format(**data) print('Writing to %s/rtv.1' % ROOT) with open(os.path.join(ROOT, 'rtv.1'), 'w') as fp: fp.write(out) if __name__ == '__main__': main() rtv-1.21.0+dfsg.orig/scripts/count_lines.sh0000755000175000017500000000062113222035043020155 0ustar noahfxnoahfx#!/usr/bin/env bash ROOT="$(dirname "$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )")" cd ${ROOT} echo -e "\nTests: " echo "$(wc -l tests/*.py)" echo -e "\nScripts: " echo "$(wc -l scripts/*)" echo -e "\nTemplates: " echo "$(wc -l rtv/templates/*)" echo -e "\nCode: " echo "$(wc -l rtv/*.py)" echo -e "\nCombined: " echo "$(cat tests/*.py scripts/* rtv/templates/* rtv/*.py | wc -l) total lines" rtv-1.21.0+dfsg.orig/scripts/update_packages.py0000755000175000017500000000254613222035043021001 0ustar noahfxnoahfx#!/usr/bin/env python # -*- coding: utf-8 -*- """ Update the project's bundled dependencies by downloading the git repository and copying over the most recent commit. """ import os import shutil import subprocess import tempfile _filepath = os.path.dirname(os.path.relpath(__file__)) ROOT = os.path.abspath(os.path.join(_filepath, '..')) PRAW_REPO = 'https://github.com/michael-lazar/praw3.git' def main(): tmpdir = tempfile.mkdtemp() subprocess.check_call(['git', 'clone', PRAW_REPO, tmpdir]) # Update the commit hash reference os.chdir(tmpdir) p = subprocess.Popen(['git', 'rev-parse', 'HEAD'], stdout=subprocess.PIPE) p.wait() commit = p.stdout.read().strip() print('Found commit %s' % commit) regex = 's/^__praw_hash__ =.*$/__praw_hash__ = \'%s\'/g' % commit packages_root = os.path.join(ROOT, 'rtv', 'packages', '__init__.py') print('Updating commit hash in %s' % packages_root) subprocess.check_call(['sed', '-i', '', regex, packages_root]) # Overwrite the project files src = os.path.join(tmpdir, 'praw') dest = os.path.join(ROOT, 'rtv', 'packages', 'praw') print('Copying package files to %s' % dest) shutil.rmtree(dest, ignore_errors=True) shutil.copytree(src, dest) # Cleanup print('Removing directory %s' % tmpdir) shutil.rmtree(tmpdir) if __name__ == '__main__': main() rtv-1.21.0+dfsg.orig/scripts/inspect_webbrowser.py0000755000175000017500000000145013222035043021560 0ustar noahfxnoahfx#!/usr/bin/env python """ Utility script used to examine the python webbrowser module with different OSs. """ import os os.environ['BROWSER'] = 'firefox' # If we want to override the $BROWSER variable that the python webbrowser # references, it needs to be done before the webbrowser module is imported # for the first time. RTV_BROWSER, BROWSER = os.environ.get('RTV_BROWSER'), os.environ.get('BROWSER') if RTV_BROWSER: os.environ['BROWSER'] = RTV_BROWSER print('RTV_BROWSER=%s' % RTV_BROWSER) print('BROWSER=%s' % BROWSER) import webbrowser print('webbrowser._browsers:') for key, val in webbrowser._browsers.items(): print(' %s: %s' % (key, val)) print('webbrowser._tryorder:') for name in webbrowser._tryorder: print(' %s' % name) webbrowser.open_new_tab('https://www.python.org') rtv-1.21.0+dfsg.orig/scripts/RELEASE_CHECKLIST.md0000644000175000017500000000274313222035043020276 0ustar noahfxnoahfxRelease Checklist ----------------- 1. Switch to the master branch and stash any uncommited changes. 2. Bump the version number in [rtv/\_\_version\_\_.py](rtv/__version__.py). 3. Update the release notes in the [CHANGELOG.rst](CHANGELOG.rst). 4. Update the contributer list by running [``scripts/build_authors.py``](scripts/build_authors.py). 5. Re-generate the manpage by running [``scripts/build_manpage.py``](scripts/build_manpage.py). 6. Make sure the bundled packages are up-to-date by running [``scripts/update_packages.py``](scripts/update_packages.py). 7. Commit all changes to the master branch. 8. Clean out any old build/release files by running [``scripts/pip_clean.py``](scripts/pip_clean.py). 9. Build the source tarball and binary wheel: ``$ python3 setup.py sdist bdist_wheel`` 10. Upload the packages to PyPI: ``$ twine upload dist/*`` 11. Verify that the upload was successful: ``$ pip install rtv --upgrade --force-reinstall`` 12. Smoke test the new release on Python 2 and Python 3. 12. Create a new release on Github and copy the release notes from the changelog. 13. Use Github to delete any old branches that have been merged. Packaging Guide --------------- The most up-to-date and pragmatic guide on packaging for PyPI is given here (as of Fall 2017): https://packaging.python.org/tutorials/distributing-packages/ PyPI Credentials ---------------- PyPI credentials are stored in plaintext in the **~/.pypirc** file. ``` [pypi] username = michael-lazar password = secret ``` rtv-1.21.0+dfsg.orig/scripts/rtv.1.template0000644000175000017500000000247713222035043020016 0ustar noahfxnoahfx.TH "RTV" "1" "{release_date}" "Version {version}" "Usage and Commands" .SH NAME RTV - Reddit Terminal Viewer .SH SYNOPSIS {synopsis} .SH DESCRIPTION {description} .SH OPTIONS {options} .SH CONTROLS Move the cursor using the arrow keys or vim style movement. .br Press \fBup\fR and \fBdown\fR to scroll through submissions. .br Press \fBright\fR to view the selected submission and \fBleft\fR to return. .br Press \fB?\fR to open the help screen. .SH FILES .TP .BR $XDG_CONFIG_HOME/rtv/rtv.cfg The configuration file can be used to customize default program settings. .TP .BR $XDG_DATA_HOME/rtv/refresh-token After you login to reddit, your most recent OAuth refresh token will be stored for future sessions. .TP .BR $XDG_DATA_HOME/rtv/history.log This file stores URLs that have been recently opened in order to visually highlight them as "seen". .SH ENVIRONMENT .TP .BR RTV_EDITOR Text editor to use when editing comments and submissions. Will fallback to \fI$EDITOR\fR. .TP .BR RTV_URLVIEWER Url viewer to use to extract links from comments. Requires a compatible program to be installed. .TP .BR RTV_BROWSER Web browser to use when opening links. Will fallback to \fI$BROWSER\fR. .SH AUTHOR Michael Lazar (2017). .SH BUGS Report bugs to \fIhttps://github.com/michael-lazar/rtv/issues\fR .SH LICENSE {license} rtv-1.21.0+dfsg.orig/scripts/pip_clean.sh0000755000175000017500000000055413222035043017572 0ustar noahfxnoahfx#!/usr/bin/env bash # Removes any lingering build/release files from the project directory find . -type f -name '*.pyc' -delete find . -type f -name '*.pyo' -delete find . -type d -name '__pycache__' -exec rm -rv {} + find . -type d -name 'build' -exec rm -rv {} + find . -type d -name 'dist' -exec rm -rv {} + find . -type d -name '*.egg-info' -exec rm -rv {} + rtv-1.21.0+dfsg.orig/CHANGELOG.rst0000644000175000017500000004335313222035043015637 0ustar noahfxnoahfx============= RTV Changelog ============= .. _1.21.0: http://github.com/michael-lazar/rtv/releases/tag/v1.21.0 .. _1.20.0: http://github.com/michael-lazar/rtv/releases/tag/v1.20.0 .. _1.19.0: http://github.com/michael-lazar/rtv/releases/tag/v1.19.0 .. _1.18.0: http://github.com/michael-lazar/rtv/releases/tag/v1.18.0 .. _1.17.1: http://github.com/michael-lazar/rtv/releases/tag/v1.17.1 .. _1.17.0: http://github.com/michael-lazar/rtv/releases/tag/v1.17.0 .. _1.16.0: http://github.com/michael-lazar/rtv/releases/tag/v1.16.0 .. _1.15.1: http://github.com/michael-lazar/rtv/releases/tag/v1.15.1 .. _1.15.0: http://github.com/michael-lazar/rtv/releases/tag/v1.15.0 .. _1.14.1: http://github.com/michael-lazar/rtv/releases/tag/v1.14.1 .. _1.13.0: http://github.com/michael-lazar/rtv/releases/tag/v1.13.0 .. _1.12.1: http://github.com/michael-lazar/rtv/releases/tag/v1.12.1 .. _1.12.0: http://github.com/michael-lazar/rtv/releases/tag/v1.12.0 .. _1.11.0: http://github.com/michael-lazar/rtv/releases/tag/v1.11.0 .. _1.10.0: http://github.com/michael-lazar/rtv/releases/tag/v1.10.0 .. _1.9.1: http://github.com/michael-lazar/rtv/releases/tag/v1.9.1 .. _1.9.0: http://github.com/michael-lazar/rtv/releases/tag/v1.9.0 .. _1.8.1: http://github.com/michael-lazar/rtv/releases/tag/v1.8.1 .. _1.8.0: http://github.com/michael-lazar/rtv/releases/tag/v1.8.0 .. _1.7.0: http://github.com/michael-lazar/rtv/releases/tag/v1.7.0 .. _1.6.1: http://github.com/michael-lazar/rtv/releases/tag/v1.6.1 .. _1.6: http://github.com/michael-lazar/rtv/releases/tag/v1.6 .. _1.5: http://github.com/michael-lazar/rtv/releases/tag/v1.5 .. _1.4.2: http://github.com/michael-lazar/rtv/releases/tag/v1.4.2 .. _1.4.1: http://github.com/michael-lazar/rtv/releases/tag/v1.4.1 .. _1.4: http://github.com/michael-lazar/rtv/releases/tag/v1.4 .. _1.3: http://github.com/michael-lazar/rtv/releases/tag/v1.3 .. _1.2.2: http://github.com/michael-lazar/rtv/releases/tag/v1.2.2 .. _1.2.1: http://github.com/michael-lazar/rtv/releases/tag/v1.2.1 .. _1.2: http://github.com/michael-lazar/rtv/releases/tag/v1.2 -------------------- 1.21.0_ (2017-12-30) -------------------- Features * Full support for customizable themes has been added. For more information, see the new section on themes in the README, and the ``THEMES.md`` file. Bugfixes * Fixed incorrect URL strings being sent to the **opera** web browser. * Fixed timeout messages for the **surf** and **vimb** web browsers. * Switched to using ``XDG_DATA_HOME`` to store the rtv browser history and credentials file. -------------------- 1.20.0_ (2017-12-05) -------------------- Features * Text piped to the ``$PAGER`` will now wrap on word / sentence breaks. * New MIME parsers have been added for liveleak.com and worldstarhiphop.com. Bugfixes * Fixed a regression where text from the web browser's stdout/stderr was being sent to the terminal window. * Fixed crashing on startup when the terminal doesn't support colors. * Fixed broken text formatting when running inside of emacs ``term``. Codebase * Dropped support for python 3.3 because it's no longer supported upstream by **pytest**. The application will still install through pip but will no longer be tested. * Added a text logo to the README. -------------------- 1.19.0_ (2017-10-24) -------------------- Features * Greatly improved loading times by using smarter rate limiting and page caching. * The logout prompt is now visible as a popup notification. * New MIME parsers have been added for gifs.com, giphy.com, imgtc.com, imgflip.com, livememe.com, makeameme.org and flickr.com * Improved mailcap examples for parsing video links with mpv. Bugfixes * Patched a backwards-incompatible Reddit API change with the comment permalink now being returned in the response JSON. * Fixed crashing when a comment contained exotic unicode characters like emojis. * Removed the option to select custom sorting ranges for controversial and top comments. * Fixed MIME parsing for single image Imgur galleries. Codebase * Preliminary refactoring for the upcoming theme support. * Created some utility scripts for project maintenance. * Created a release checklist document. * Updated the README gif images and document layout. -------------------- 1.18.0_ (2017-09-06) -------------------- Features * The ``rtv -l`` flag has been deprecated and replaced with a positional argument, in order to match the syntax of other command line web browsers. * NSFW content is now filtered according to the user's reddit profile settings. * ``$RTV_BROWSER`` has been added as a way to set the preferred web browser. * Sorting options for **relevance** and **comments** are now displayed on the search results page. * An **[S]** badge is now displayed next to the submission author. * The gfycat MIME parser has been expanded to support more URLs. * New MIME parsers have been added for oddshot.tv, clips.twitch.tv, clippituser.tv, and Reddit's beta hosted videos. Bugfixes * Users can now use the prompt to navigate to "/comments/..." pages from inside of a submission. * Users can now navigate to multireddits using the "/u/me/" prefix. * Fixed the ``$BROWSER`` behavior on macOS to support the **chrome**, **firefox**, **safari**, and **default** keywords. Codebase * Travis CI tests have been moved to the trusty environment. * Added more detailed logging of the environment and settings at startup. -------------------- 1.17.1_ (2017-08-06) -------------------- Bugfixes * ``J``/``K`` commands are now restricted to the submission page. -------------------- 1.17.0_ (2017-08-03) -------------------- Features * Added the ``J`` command to jump to the next sibling comment. * Added the ``K`` command to jump to the parent comment. * Search results can now be sorted, and the title bar has been updated to display the current search query. * Imgur URLs are now resolved via the Imgur API. This enables the loading of large albums with over 10 images. An ``imgur_client_id`` option has been added to the RTV configuration. * A MIME parser has been added for www.liveleak.com. * RTV now respects the ``$VISUAL`` environment variable. Bugfixes * Fixed a screen refresh bug on urxvt terminals. * New key bindings will now attempt to fallback to their default key if not defined in the user's configuration file. Documentation * Added additional mailcap examples for framebuffer videos and iTerm2. * Python version information is now captured in the log at startup. -------------------- 1.16.0_ (2017-06-08) -------------------- Features * Added the ability to copy links to the OS clipboad with ``y`` and ``Y``. * Both submissions and comments can now be viewed on **/user/** pages. * A MIME parser has been added for www.streamable.com. * A MIME parser has been added for www.vidme.com. * Submission URLs can now be opened while viewing the comments page. Bugfixes * More graceful handling for the invalid LOCALE error on MacOS. * A fatal error is now raised when trying to run on Windows without curses. * Fixed an error when trying to view saved comments. * Invalid refresh-tokens are now automatically deleted. * Users who are signed up for Reddit's beta profiles can now launch RTV. -------------------- 1.15.1_ (2017-04-09) -------------------- Codebase * Removed the mailcap-fix dependency for python versions >= 3.6.0. * Enabled installing test dependencies with ``pip install rtv[test]``. -------------------- 1.15.0_ (2017-03-30) -------------------- Features * Added the ability to open comment threads using the submission's permalink. E.g. **/comments/30rwj2** Bugfixes * Updated ``requests`` requirement to fix a bug in version 2.3.0. * Fixed an edge case where comment trees were unfolding out of order. Codebase * Removed dependency on the PyPI ``praw`` package. A version of PRAW 3 is now bundled with rtv. This should make installation easier because users are no longer required to maintain a legacy version of praw in their python dependencies. * Removed ``update-checker`` dependency. -------------------- 1.14.1_ (2017-01-12) -------------------- Features * The order-by option menu now triggers after a single '2' or '5' keystroke instead of needing to double press. Bugfixes * Mailcap now handles multi-part shell commands correctly, e.g. "emacs -nw" * OS X no longer relies on $DISPLAY to check if there is a display available. * Added error handling for terminals that don't support hiding the cursor. * Fixed a bug on tmux that prevented scrolling when $TERM was set to "xterm-256color" instead of screen. Documentation * Added section to FAQ about garbled characters output by curses. -------------------- 1.13.0_ (2016-10-17) -------------------- Features * Pressing `2` or `5` twice now opens a menu to select the time frame. * Added the `hide_username` config option. * Added the `max_comment_cols` config option. Bugfixes * Fixed the terminal title from displaying b'' in py3. * Flipped j and k in the documentation. * Fixed bug when selecting post order for the front page. * Added more descriptive error messages for invalid subreddits. -------------------- 1.12.1_ (2016-09-27) -------------------- Bugfixes * Fixed security vulnerability where malicious URLs could inject python code. * No longer hangs when using mpv on long videos. * Now falls back to ascii mode when the system locale is not utf-8. -------------------- 1.12.0_ (2016-08-25) -------------------- Features * Added a help banner with common key bindings. * Added `gg` and `G` bindings to jump to the top and bottom the the page. * Updated help screen now opens with the system PAGER. * The `/` prompt now works from inside of submissions. * Added an Instagram parser to extract images and videos from urls. Bugixes * Shortened reddit links (https://redd.it/) will now work with ``-s``. Codebase * Removed the Tornado dependency from the project. * Added a requirements.txt file. * Fixed a bunch of tests where cassettes were not being generated. * Added compatability for pytest-xdist. -------------------- 1.11.0_ (2016-08-02) -------------------- Features * Added the ability to open image and video urls with the user's mailcap file. * New ``--enable-media`` and ``copy-mailcap`` commands to support mailcap. * New command `w` to save submissions and comments. * New command `p` to toggle between the front page and the last visited subreddit. * New command `S` to view subscribed multireddits. * Extended ``/`` prompt to work with users, multireddits, and domains. * New page ``/u/saved`` to view saved submissions. * You can now specify the sort period by appending **-(period)**, E.g. **/r/python/top-week**. Bugfixes * Terminal title is now only set when $DISPLAY is present. * Urlview now works on the submission as well as comments. * Fixed text encoding when using urlview. * Removed `futures` dependency from the python 3 wheel. * Unhandled resource warnings on exit are now ignored. Documentation * Various README updates. * Updated asciinema demo video. * Added script to update the AUTHORS.rst file. -------------------- 1.10.0_ (2016-07-11) -------------------- Features * New command, `b` extracts urls from comments using urlviewer. * Comment files will no longer be destroyed if RTV encounters an error while posting. * The terminal title now displays the subreddit name/url. Bugfixes * Fixed crash when entering empty or invalid subreddit name. * Fixed crash when opening x-posts linked to subreddits. * Fixed a bug where the terminal title wasn't getting set. * **/r/me** is now displayed as *My Submissions* in the header. ------------------- 1.9.1_ (2016-06-13) ------------------- Features * Better support for */r/random*. * Added a ``monochrome`` config setting to disable all color. * Improved cursor positioning when expanding/hiding comments. * Show ``(not enough space)`` when comments are too large. Bugfixes * Fixed permissions when copying the config file. * Fixed bug where submission indicies were duplicated when paging. * Specify praw v3.4.0 to avoid installing praw 4. Documentation * Added section to the readme on Arch Linux installation. * Updated a few argument descriptions. * Added a proper ascii logo. ------------------- 1.9.0_ (2016-04-05) ------------------- Features * You can now open long posts/comments with the $PAGER by pressing `l`. * Changed a couple of visual separators. Documentation * Added testing instructions to the FAQ. ------------------- 1.8.1_ (2016-03-01) ------------------- Features * All keys are now rebindable through the config. * New bindings - ctrl-d and ctrl-u for page up / page down. * Added tag for stickied posts and comments. * Added bullet between timestamp and comment count. Bugfixes * Links starting with np.reddit.com no longer return `Forbidden`. Documentation * Updated README. ------------------- 1.8.0_ (2015-12-20) ------------------- Features * A banner on the top of the page now displays the selected page sort order. * Hidden scores now show up as "- pts". * Oauth settings are now accesible through the config file. * New argument `--config` specifies the config file to use. * New argument `--copy-config` generates a default config file. Documentation * Added a keyboard reference from keyboardlayouteditor.com * Added a link to an asciinema demo video ------------------- 1.7.0_ (2015-12-08) ------------------- **Note** This version comes with a large change in the internal structure of the project, but does not break backwards compatibility. This includes adding a new test suite that will hopefully improve the stability of future releases. Continuous Integration additions * Travis-CI https://travis-ci.org/michael-lazar/rtv * Coveralls https://coveralls.io/github/michael-lazar/rtv * Gitter (chat) https://gitter.im/michael-lazar/rtv * Added a tox config for local testing * Added a pylint config for static code and style analysis * The project now uses VCR.py to record HTTP interactions for testing. Features * Added a wider utilization of the loading screen for functions that make reddit API calls. * In-progress loading screens can now be cancelled by pressing the `Esc` key. Bugfixes * OSX users should now be able to login using OAuth. * Comments now return the correct nested level when loading "More Comments". * Several unicode fixes, the project is now much more consistent in the way that unicode is handled. * Several undocumented bug fixes as a result of the code restructure. ------------------- 1.6.1_ (2015-10-19) ------------------- Bugfixes * Fixed authentication checking for */r/me*. * Added force quit option with the `Q` key. * Removed option to sort subscriptions. * Fixed crash with pressing `i` when not logged in. * Removed futures requirement from the python 3 distribution. Documentation * Updated screenshot in README. * Added section to the FAQ on installation. ----------------- 1.6_ (2015-10-14) ----------------- Features * Switched all authentication to OAuth. * Can now list the version with `rtv --version`. * Added a man page. * Added confirmation prompt when quitting. * Submissions now display the index in front of their title. Bugfixes * Streamlined error logging. Documentation * Added missing docs for the `i` key. * New documentation for OAuth. * New FAQ section. ----------------- 1.5_ (2015-08-26) ----------------- Features * New page to view and open subscribed subreddits with `s`. * Sorting method can now be toggled with the `1` - `5` keys. * Links to x-posts are now opened inside of RTV. Bugfixes * Added */r/* to subreddit names in the subreddit view. ------------------- 1.4.2_ (2015-08-01) ------------------- Features * Pressing the `o` key now opens selfposts directly inside of rtv. Bugfixes * Fixed invalid subreddits from throwing unexpected errors. ------------------- 1.4.1_ (2015-07-11) ------------------- Features * Added the ability to check for unread messages with the `i` key. * Upped required PRAW version to 3. Bugfixes * Fixed crash caused by downvoting. * Missing flairs now display properly. * Fixed ResourceWarning on Python 3.2+. ----------------- 1.4_ (2015-05-16) ----------------- Features * Unicode support has been vastly improved and is now turned on by default. Ascii only mode can be toggled with the `--ascii` command line flag. * Added pageup and pagedown with the `m` and `n` keys. * Support for terminal based webbrowsers such as links and w3m. * Browsing history is now persistent and stored in `$XDG_CACHE_HOME`. Bugfixes * Several improvements for handling unicode. * Fixed crash caused by resizing the window and exiting a submission. ----------------- 1.3_ (2015-04-22) ----------------- Features * Added edit `e` and delete `d` for comments and submissions. * Added *nsfw* tags. Bugfixes * Upvote/downvote icon now displays in the submission selfpost. * Loading large *MoreComment* blocks no longer hangs the program. * Improved logging and error handling with praw interactions. ------------------- 1.2.2_ (2015-04-07) ------------------- Bugfixes * Fixed default subreddit not being set. Documentation * Added changelog and contributor links to the README. ------------------- 1.2.1_ (2015-04-06) ------------------- Bugfixes * Fixed crashing on invalid subreddit names ----------------- 1.2_ (2015-04-06) ----------------- Features * Added user login / logout with the `u` key. * Added subreddit searching with the `f` key. * Added submission posting with the `p` key. * Added viewing of user submissions with `/r/me`. * Program title now displays in the terminal window. * Gold symbols now display on guilded comments and posts. * Moved default config location to XDG_CONFIG_HOME. Bugfixes * Improved error handling for submission / comment posts. * Fixed handling of unicode flairs. * Improved displaying of the help message and selfposts on small terminal windows. * The author's name now correctly highlights in submissions * Corrected user agent formatting. * Various minor bugfixes. ------------------ 1.1.1 (2015-03-30) ------------------ * Post comments using your text editor. rtv-1.21.0+dfsg.orig/rtv/0000755000175000017500000000000013222035043014421 5ustar noahfxnoahfxrtv-1.21.0+dfsg.orig/rtv/clipboard.py0000644000175000017500000000226013222035043016732 0ustar noahfxnoahfx# -*- coding: utf-8 -*- from __future__ import unicode_literals import sys import subprocess from .exceptions import ProgramError def _subprocess_copy(text, args_list): p = subprocess.Popen(args_list, stdin=subprocess.PIPE, close_fds=True) p.communicate(input=text.encode('utf-8')) def copy(text): """ Copy text to OS clipboard. """ if sys.platform == 'darwin': copy_osx(text) else: # For Linux, BSD, cygwin, etc. copy_linux(text) def copy_osx(text): _subprocess_copy(text, ['pbcopy', 'w']) def copy_linux(text): def get_command_name(): # Checks for the installation of xsel or xclip for cmd in ['xsel', 'xclip']: cmd_exists = subprocess.call( ['which', cmd], stdout=subprocess.PIPE, stderr=subprocess.PIPE) == 0 if cmd_exists: return cmd return None cmd_args = { 'xsel': ['xsel', '-b', '-i'], 'xclip': ['xclip', '-selection', 'c']} cmd_name = get_command_name() if cmd_name is None: raise ProgramError("External copy application not found") _subprocess_copy(text, cmd_args.get(cmd_name)) rtv-1.21.0+dfsg.orig/rtv/__version__.py0000644000175000017500000000013013222035043017246 0ustar noahfxnoahfx# -*- coding: utf-8 -*- from __future__ import unicode_literals __version__ = '1.21.0' rtv-1.21.0+dfsg.orig/rtv/__main__.py0000644000175000017500000002133713222035043016521 0ustar noahfxnoahfx# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import print_function import os import sys import locale import logging import warnings import six import requests # Need to check for curses comparability before performing the rtv imports try: import curses except ImportError: if sys.platform == 'win32': sys.exit('Fatal Error: This program is not compatible with Windows ' 'Operating Systems.\nPlease try installing on either Linux ' 'or Mac OS') else: sys.exit('Fatal Error: Your python distribution appears to be missing ' '_curses.so.\nWas it compiled without support for curses?') # If we want to override the $BROWSER variable that the python webbrowser # references, it needs to be done before the webbrowser module is imported # for the first time. webbrowser_import_warning = ('webbrowser' in sys.modules) RTV_BROWSER, BROWSER = os.environ.get('RTV_BROWSER'), os.environ.get('BROWSER') if RTV_BROWSER: os.environ['BROWSER'] = RTV_BROWSER from . import docs from . import packages from .packages import praw from .config import Config, copy_default_config, copy_default_mailcap from .theme import Theme from .oauth import OAuthHelper from .terminal import Terminal from .content import RequestHeaderRateLimiter from .objects import curses_session, patch_webbrowser from .subreddit_page import SubredditPage from .exceptions import ConfigError from .__version__ import __version__ _logger = logging.getLogger(__name__) # Pycharm debugging note: # You can use pycharm to debug a curses application by launching rtv in a # console window (python -m rtv) and using pycharm to attach to the remote # process. On Ubuntu, you may need to allow ptrace permissions by setting # ptrace_scope to 0 in /etc/sysctl.d/10-ptrace.conf. # http://blog.mellenthin.de/archives/2010/10/18/gdb-attach-fails def main(): """Main entry point""" # Squelch SSL warnings logging.captureWarnings(True) if six.PY3: # These ones get triggered even when capturing warnings is turned on warnings.simplefilter('ignore', ResourceWarning) #pylint:disable=E0602 # Set the terminal title if os.getenv('DISPLAY'): title = 'rtv {0}'.format(__version__) sys.stdout.write('\x1b]2;{0}\x07'.format(title)) sys.stdout.flush() args = Config.get_args() fargs, bindings = Config.get_file(args.get('config')) # Apply the file config first, then overwrite with any command line args config = Config() config.update(**fargs) config.update(**args) # If key bindings are supplied in the config file, overwrite the defaults if bindings: config.keymap.set_bindings(bindings) # Copy the default config file and quit if config['copy_config']: copy_default_config() return if config['copy_mailcap']: copy_default_mailcap() return if config['list_themes']: Theme.print_themes() return # Load the browsing history from previous sessions config.load_history() # Load any previously saved auth session token config.load_refresh_token() if config['clear_auth']: config.delete_refresh_token() if config['log']: # Log request headers to the file (print hack only works on python 3.x) # from http import client # _http_logger = logging.getLogger('http.client') # client.HTTPConnection.debuglevel = 2 # def print_to_file(*args, **_): # if args[0] != "header:": # _http_logger.info(' '.join(args)) # client.print = print_to_file logging.basicConfig( level=logging.DEBUG, filename=config['log'], format='%(asctime)s:%(levelname)s:%(filename)s:%(lineno)d:%(message)s') _logger.info('Starting new session, RTV v%s', __version__) _logger.info('%s, %s', sys.executable, sys.version) env = [ ('$DISPLAY', os.getenv('DISPLAY')), ('$TERM', os.getenv('TERM')), ('$XDG_CONFIG_HOME', os.getenv('XDG_CONFIG_HOME')), ('$RTV_EDITOR', os.getenv('RTV_EDITOR')), ('$RTV_URLVIEWER', os.getenv('RTV_URLVIEWER')), ('$RTV_BROWSER', RTV_BROWSER), ('$BROWSER', BROWSER), ('$PAGER', os.getenv('PAGER')), ('$VISUAL', os.getenv('VISUAL')), ('$EDITOR', os.getenv('EDITOR'))] _logger.info('Environment: %s', env) else: # Add an empty handler so the logger doesn't complain logging.root.addHandler(logging.NullHandler()) # Make sure the locale is UTF-8 for unicode support default_locale = locale.setlocale(locale.LC_ALL, '') try: encoding = locale.getlocale()[1] or locale.getdefaultlocale()[1] except ValueError: # http://stackoverflow.com/a/19961403 # OS X on some terminals will set the LC_CTYPE to "UTF-8" # (as opposed to something like "en_US.UTF-8") and python # doesn't know how to handle it. _logger.warning('Error parsing system locale: `%s`,' ' falling back to utf-8', default_locale) encoding = 'UTF-8' if not encoding or encoding.lower() != 'utf-8': text = ('System encoding was detected as (%s) instead of UTF-8' ', falling back to ascii only mode' % encoding) warnings.warn(text) config['ascii'] = True _logger.info('RTV module path: %s', os.path.abspath(__file__)) # Check the praw version if packages.__praw_bundled__: _logger.info('Using packaged PRAW distribution, ' 'commit %s', packages.__praw_hash__) else: _logger.info('Packaged PRAW not found, falling back to system ' 'installed version %s', praw.__version__) # Update the webbrowser module's default behavior patch_webbrowser() if webbrowser_import_warning: _logger.warning('webbrowser module was unexpectedly imported before' '$BROWSER could be overwritten') # Construct the reddit user agent user_agent = docs.AGENT.format(version=__version__) try: with curses_session() as stdscr: term = Terminal(stdscr, config) if config['monochrome'] or config['theme'] == 'monochrome': _logger.info('Using monochrome theme') theme = Theme(use_color=False) elif config['theme'] and config['theme'] != 'default': _logger.info('Loading theme: %s', config['theme']) theme = Theme.from_name(config['theme']) else: # Set to None to let the terminal figure out which theme # to use depending on if colors are supported or not theme = None term.set_theme(theme) with term.loader('Initializing', catch_exception=False): reddit = praw.Reddit(user_agent=user_agent, decode_html_entities=False, disable_update_check=True, handler=RequestHeaderRateLimiter()) # Dial the request cache up from 30 seconds to 5 minutes # I'm trying this out to make navigation back and forth # between pages quicker, it may still need to be fine tuned. reddit.config.api_request_delay = 300 # Authorize on launch if the refresh token is present oauth = OAuthHelper(reddit, term, config) if config.refresh_token: oauth.authorize() name = config['subreddit'] with term.loader('Loading subreddit'): page = SubredditPage(reddit, term, config, oauth, name) if term.loader.exception: return # Open the supplied submission link before opening the subreddit if config['link']: # Expand shortened urls like https://redd.it/ # Praw won't accept the shortened versions, add the reddit # headers to avoid a 429 response from reddit.com url = requests.head(config['link'], headers=reddit.http.headers, allow_redirects=True).url page.open_submission(url=url) # Launch the subreddit page page.loop() except ConfigError as e: _logger.exception(e) print(e) except Exception as e: _logger.exception(e) raise except KeyboardInterrupt: pass finally: # Try to save the browsing history config.save_history() # Ensure sockets are closed to prevent a ResourceWarning if 'reddit' in locals(): reddit.handler.http.close() sys.exit(main()) rtv-1.21.0+dfsg.orig/rtv/docs.py0000644000175000017500000001115013222035043015721 0ustar noahfxnoahfx# -*- coding: utf-8 -*- from __future__ import unicode_literals AGENT = """\ desktop:https://github.com/michael-lazar/rtv:{version}\ (by /u/civilization_phaze_3)\ """ SUMMARY = """ RTV (Reddit Terminal Viewer) is a terminal interface to view and interact with reddit. """ USAGE = """\ rtv [URL] [-s SUBREDDIT] $ rtv https://www.reddit.com/r/programming/comments/7h9l31 $ rtv -s linux """ CONTROLS = """ Move the cursor using the arrow keys or vim style movement. Press `?` to open the help screen. """ HELP = """\ ==================================== Reddit Terminal Viewer https://github.com/michael-lazar/rtv ==================================== [Commands] j : Move the cursor down k : Move the cursor up n : Move down one page m : Move up one page gg : Jump to the first post G : Jump to the last post J : Jump to the next sibling comment K : Jump to the parent comment 1 : Sort by hot 2 : Sort by top 3 : Sort by rising 4 : Sort by new 5 : Sort by controversial p : Return to the front page r : Refresh page u : Login or logout / : Open the subreddit prompt f : Open the search prompt ? : Show the help screen q : Quit Q : Force quit a : Upvote z : Downvote c : Compose a new submission/comment e : Edit a submission/comment d : Delete a submission/comment i : Display new messages s : Show subscribed subreddits S : Show subscribed multireddits w : Save a submission/comment l : View comments, or open comment in pager h : Return to subreddit o : Open the submission or comment url SPACE : Fold or expand the selected comment tree b : Display urls with urlview y : Copy submission permalink to clipboard Y : Copy submission link to clipboard F2 : Cycle to previous theme F3 : Cycle to next theme [Prompt] The `/` prompt accepts subreddits in the following formats - python - /r/python - /r/python/new (sort) - /r/python/controversial-year (sort and order) - /r/python+linux (multireddit) - /r/python/comments/30rwj2 (submission comments) - /comments/30rwj2 (submission comments shorthand) - /r/front (front page) - /u/me (your submissions) - /u/saved (your saved posts) - /u/spez (a user's submissions) - /u/multi-mod/m/android (curated multireddit) - /domain/python.org (search by domain) """ BANNER = """ [1]hot [2]top [3]rising [4]new [5]controversial """ BANNER_SEARCH = """ [1]relevance [2]top [3]comments [4]new """ FOOTER_SUBREDDIT = """ [?]Help [q]Quit [l]Comments [/]Prompt [u]Login [o]Open [c]Post [a/z]Vote """ FOOTER_SUBMISSION = """ [?]Help [q]Quit [h]Return [space]Fold/Expand [o]Open [c]Comment [a/z]Vote """ FOOTER_SUBSCRIPTION = """ [?]Help [q]Quit [h]Return [l]Select """ COMMENT_FILE = """ # Please enter a comment. Lines starting with '#' will be ignored, # and an empty message aborts the comment. # # Replying to {author}'s {type} {content} """ COMMENT_EDIT_FILE = """{content} # Please enter a comment. Lines starting with '#' will be ignored, # and an empty message aborts the comment. # # Editing your comment """ SUBMISSION_FILE = """ # Please enter your submission. Lines starting with '#' will be ignored, # and an empty message aborts the submission. # # The first line will be interpreted as the title # The following lines will be interpreted as the content # # Posting to {name} """ SUBMISSION_EDIT_FILE = """{content} # Please enter your submission. Lines starting with '#' will be ignored, # and an empty message aborts the submission. # # Editing {name} """ OAUTH_ACCESS_DENIED = """\

Access Denied


Reddit Terminal Viewer was denied access and will continue to operate in unauthenticated mode, you can close this window.

""" OAUTH_ERROR = """\

Error


{error}

""" OAUTH_INVALID = """\

Wait...


This page is supposed to be a Reddit OAuth callback. You can't just come here hands in your pocket!

""" OAUTH_SUCCESS = """\

Access Granted


Reddit Terminal Viewer will now log in, you can close this window.

""" TIME_ORDER_MENU = """ Links from: [1] Past hour [2] Past 24 hours [3] Past week [4] Past month [5] Past year [6] All time """ rtv-1.21.0+dfsg.orig/rtv/objects.py0000644000175000017500000006153213222035043016433 0ustar noahfxnoahfx# -*- coding: utf-8 -*- from __future__ import unicode_literals import re import os import sys import time import signal import inspect import weakref import logging import threading import webbrowser import curses import curses.ascii from contextlib import contextmanager import six import requests from . import exceptions from .packages import praw _logger = logging.getLogger(__name__) def patch_webbrowser(): """ Patch webbrowser on macOS to support setting BROWSER=firefox, BROWSER=chrome, etc.. https://bugs.python.org/issue31348 """ # Add support for browsers that aren't defined in the python standard library webbrowser.register('surf', None, webbrowser.BackgroundBrowser('surf')) webbrowser.register('vimb', None, webbrowser.BackgroundBrowser('vimb')) # Fix the opera browser, see https://github.com/michael-lazar/rtv/issues/476. # By default, opera will open a new tab in the current window, which is # what we want to do anyway. webbrowser.register('opera', None, webbrowser.BackgroundBrowser('opera')) if sys.platform != 'darwin' or 'BROWSER' not in os.environ: return # This is a copy of what's at the end of webbrowser.py, except that # it adds MacOSXOSAScript entries instead of GenericBrowser entries. _userchoices = os.environ["BROWSER"].split(os.pathsep) for cmdline in reversed(_userchoices): if cmdline in ('safari', 'firefox', 'chrome', 'default'): browser = webbrowser.MacOSXOSAScript(cmdline) try: webbrowser.register(cmdline, None, browser, update_tryorder=-1) except TypeError: # 3.7 nightly build changed the method signature # pylint: disable=unexpected-keyword-arg webbrowser.register(cmdline, None, browser, preferred=True) @contextmanager def curses_session(): """ Setup terminal and initialize curses. Most of this copied from curses.wrapper in order to convert the wrapper into a context manager. """ try: # Curses must wait for some time after the Escape key is pressed to # check if it is the beginning of an escape sequence indicating a # special key. The default wait time is 1 second, which means that # http://stackoverflow.com/questions/27372068 os.environ['ESCDELAY'] = '25' # Initialize curses stdscr = curses.initscr() # Turn off echoing of keys, and enter cbreak mode, where no buffering # is performed on keyboard input curses.noecho() curses.cbreak() # In keypad mode, escape sequences for special keys (like the cursor # keys) will be interpreted and a special value like curses.KEY_LEFT # will be returned stdscr.keypad(1) # Start color, too. Harmless if the terminal doesn't have color; user # can test with has_color() later on. The try/catch works around a # minor bit of over-conscientiousness in the curses module -- the error # return from C start_color() is ignorable. try: curses.start_color() curses.use_default_colors() except: _logger.warning('Curses failed to initialize color support') # Hide the blinking cursor try: curses.curs_set(0) except: _logger.warning('Curses failed to initialize the cursor mode') yield stdscr finally: if 'stdscr' in locals(): stdscr.keypad(0) curses.echo() curses.nocbreak() curses.endwin() class LoadScreen(object): """ Display a loading dialog while waiting for a blocking action to complete. This class spins off a separate thread to animate the loading screen in the background. The loading thread also takes control of stdscr.getch(). If an exception occurs in the main thread while the loader is active, the exception will be caught, attached to the loader object, and displayed as a notification. The attached exception can be used to trigger context sensitive actions. For example, if the connection hangs while opening a submission, the user may press ctrl-c to raise a KeyboardInterrupt. In this case we would *not* want to refresh the current page. >>> with self.terminal.loader(...) as loader: >>> # Perform a blocking request to load content >>> blocking_request(...) >>> >>> if loader.exception is None: >>> # Only run this if the load was successful >>> self.refresh_content() When a loader is nested inside of itself, the outermost loader takes priority and all of the nested loaders become no-ops. Call arguments given to nested loaders will be ignored, and errors will propagate to the parent. >>> with self.terminal.loader(...) as loader: >>> >>> # Additional loaders will be ignored >>> with self.terminal.loader(...): >>> raise KeyboardInterrupt() >>> >>> # This code will not be executed because the inner loader doesn't >>> # catch the exception >>> assert False >>> >>> # The exception is finally caught by the outer loader >>> assert isinstance(terminal.loader.exception, KeyboardInterrupt) """ EXCEPTION_MESSAGES = [ (exceptions.RTVError, '{0}'), (praw.errors.OAuthException, 'OAuth Error'), (praw.errors.OAuthScopeRequired, 'Not logged in'), (praw.errors.LoginRequired, 'Not logged in'), (praw.errors.InvalidCaptcha, 'Error, captcha required'), (praw.errors.InvalidSubreddit, '{0.args[0]}'), (praw.errors.PRAWException, '{0.__class__.__name__}'), (requests.exceptions.RequestException, '{0.__class__.__name__}'), ] def __init__(self, terminal): self.exception = None self.catch_exception = None self.depth = 0 self._terminal = weakref.proxy(terminal) self._args = None self._animator = None self._is_running = None def __call__( self, message='Downloading', trail='...', delay=0.5, interval=0.4, catch_exception=True): """ Params: delay (float): Length of time that the loader will wait before printing on the screen. Used to prevent flicker on pages that load very fast. interval (float): Length of time between each animation frame. message (str): Message to display trail (str): Trail of characters that will be animated by the loading screen. catch_exception (bool): If an exception occurs while the loader is active, this flag determines whether it is caught or allowed to bubble up. """ if self.depth > 0: return self self.exception = None self.catch_exception = catch_exception self._args = (delay, interval, message, trail) return self def __enter__(self): self.depth += 1 if self.depth > 1: return self self._animator = threading.Thread(target=self.animate, args=self._args) self._animator.daemon = True self._is_running = True self._animator.start() return self def __exit__(self, exc_type, e, exc_tb): self.depth -= 1 if self.depth > 0: return self._is_running = False self._animator.join() if e is None or not self.catch_exception: # Skip exception handling return self.exception = e exc_name = type(e).__name__ _logger.info('Loader caught: %s - %s', exc_name, e) if isinstance(e, KeyboardInterrupt): # Don't need to print anything for this one, just swallow it return True for e_type, message in self.EXCEPTION_MESSAGES: # Some exceptions we want to swallow and display a notification if isinstance(e, e_type): msg = message.format(e) self._terminal.show_notification(msg, style='Error') return True def animate(self, delay, interval, message, trail): # The animation starts with a configurable delay before drawing on the # screen. This is to prevent very short loading sections from # flickering on the screen before immediately disappearing. with self._terminal.no_delay(): start = time.time() while (time.time() - start) < delay: # Pressing escape triggers a keyboard interrupt if self._terminal.getch() == self._terminal.ESCAPE: os.kill(os.getpid(), signal.SIGINT) self._is_running = False if not self._is_running: return time.sleep(0.01) # Build the notification window. Note that we need to use # curses.newwin() instead of stdscr.derwin() so the text below the # notification window does not got erased when we cover it up. message_len = len(message) + len(trail) n_rows, n_cols = self._terminal.stdscr.getmaxyx() v_offset, h_offset = self._terminal.stdscr.getbegyx() s_row = (n_rows - 3) // 2 + v_offset s_col = (n_cols - message_len - 1) // 2 + h_offset window = curses.newwin(3, message_len + 2, s_row, s_col) window.bkgd(str(' '), self._terminal.attr('NoticeLoading')) # Animate the loading prompt until the stopping condition is triggered # when the context manager exits. with self._terminal.no_delay(): while True: for i in range(len(trail) + 1): if not self._is_running: window.erase() del window self._terminal.stdscr.touchwin() self._terminal.stdscr.refresh() return window.erase() window.border() self._terminal.add_line(window, message + trail[:i], 1, 1) window.refresh() # Break up the designated sleep interval into smaller # chunks so we can more responsively check for interrupts. for _ in range(int(interval/0.01)): # Pressing escape triggers a keyboard interrupt if self._terminal.getch() == self._terminal.ESCAPE: os.kill(os.getpid(), signal.SIGINT) self._is_running = False break time.sleep(0.01) class Navigator(object): """ Handles the math behind cursor movement and screen paging. This class determines how cursor movements effect the currently displayed page. For example, if scrolling down the page, items are drawn from the bottom up. This ensures that the item at the very bottom of the screen (the one selected by cursor) will be fully drawn and not cut off. Likewise, when scrolling up the page, items are drawn from the top down. If the cursor is moved around without hitting the top or bottom of the screen, the current mode is preserved. """ def __init__( self, valid_page_cb, page_index=0, cursor_index=0, inverted=False, top_item_height=None): """ Params: valid_page_callback (func): This function, usually `Content.get`, takes a page index and raises an IndexError if that index falls out of bounds. This is used to determine the upper and lower bounds of the page, i.e. when to stop scrolling. page_index (int): Initial page index. cursor_index (int): Initial cursor index, relative to the page. inverted (bool): Whether the page scrolling is reversed of not. normal - The page is drawn from the top of the screen, starting with the page index, down to the bottom of the screen. inverted - The page is drawn from the bottom of the screen, starting with the page index, up to the top of the screen. top_item_height (int): If this is set to a non-null value The number of columns that the top-most item should utilize if non-inverted. This is used for a special mode where all items are drawn non-inverted except for the top one. """ self.page_index = page_index self.cursor_index = cursor_index self.inverted = inverted self.top_item_height = top_item_height self._page_cb = valid_page_cb @property def step(self): return 1 if not self.inverted else -1 @property def position(self): return self.page_index, self.cursor_index, self.inverted @property def absolute_index(self): """ Return the index of the currently selected item. """ return self.page_index + (self.step * self.cursor_index) def move(self, direction, n_windows): """ Move the cursor up or down by the given increment. Params: direction (int): `1` will move the cursor down one item and `-1` will move the cursor up one item. n_windows (int): The number of items that are currently being drawn on the screen. Returns: valid (bool): Indicates whether or not the attempted cursor move is allowed. E.g. When the cursor is on the last comment, attempting to scroll down any further would not be valid. redraw (bool): Indicates whether or not the screen needs to be redrawn. """ assert direction in (-1, 1) valid, redraw = True, False forward = ((direction * self.step) > 0) if forward: if self.page_index < 0: if self._is_valid(0): # Special case - advance the page index if less than zero self.page_index = 0 self.cursor_index = 0 redraw = True else: valid = False else: self.cursor_index += 1 if not self._is_valid(self.absolute_index): # Move would take us out of bounds self.cursor_index -= 1 valid = False elif self.cursor_index >= (n_windows - 1): # Flip the orientation and reset the cursor self.flip(self.cursor_index) self.cursor_index = 0 self.top_item_height = None redraw = True else: if self.cursor_index > 0: self.cursor_index -= 1 if self.top_item_height and self.cursor_index == 0: # Selecting the partially displayed item self.top_item_height = None redraw = True else: self.page_index -= self.step if self._is_valid(self.absolute_index): # We have reached the beginning of the page - move the # index self.top_item_height = None redraw = True else: self.page_index += self.step valid = False # Revert return valid, redraw def move_page(self, direction, n_windows): """ Move the page down (positive direction) or up (negative direction). Paging down: The post on the bottom of the page becomes the post at the top of the page and the cursor is moved to the top. Paging up: The post at the top of the page becomes the post at the bottom of the page and the cursor is moved to the bottom. """ assert direction in (-1, 1) assert n_windows >= 0 # top of subreddit/submission page or only one # submission/reply on the screen: act as normal move if (self.absolute_index < 0) | (n_windows == 0): valid, redraw = self.move(direction, n_windows) else: # first page if self.absolute_index < n_windows and direction < 0: self.page_index = -1 self.cursor_index = 0 self.inverted = False # not submission mode: starting index is 0 if not self._is_valid(self.absolute_index): self.page_index = 0 valid = True else: # flip to the direction of movement if ((direction > 0) & (self.inverted is True))\ | ((direction < 0) & (self.inverted is False)): self.page_index += (self.step * (n_windows-1)) self.inverted = not self.inverted self.cursor_index \ = (n_windows-(direction < 0)) - self.cursor_index valid = False adj = 0 # check if reached the bottom while not valid: n_move = n_windows - adj if n_move == 0: break self.page_index += n_move * direction valid = self._is_valid(self.absolute_index) if not valid: self.page_index -= n_move * direction adj += 1 redraw = True return valid, redraw def flip(self, n_windows): """ Flip the orientation of the page. """ assert n_windows >= 0 self.page_index += (self.step * n_windows) self.cursor_index = n_windows self.inverted = not self.inverted self.top_item_height = None def _is_valid(self, page_index): """ Check if a page index will cause entries to fall outside valid range. """ try: self._page_cb(page_index) except IndexError: return False else: return True class Controller(object): """ Event handler for triggering functions with curses keypresses. Register a keystroke to a class method using the @register decorator. >>> @Controller.register('a', 'A') >>> def func(self, *args) >>> ... Register a KeyBinding that can be defined later by the config file >>> @Controller.register(Command("UPVOTE")) >>> def upvote(self, *args) >> ... Bind the controller to a class instance and trigger a key. Additional arguments will be passed to the function. >>> controller = Controller(self) >>> controller.trigger('a', *args) """ character_map = {} def __init__(self, instance, keymap=None): self.instance = instance # Build a list of parent controllers that follow the object's MRO # to check if any parent controllers have registered the keypress self.parents = inspect.getmro(type(self))[:-1] # Keep track of last key press for doubles like `gg` self.last_char = None if not keymap: return # Go through the controller and all of it's parents and look for # Command objects in the character map. Use the keymap the lookup the # keys associated with those command objects and add them to the # character map. for controller in self.parents: for command, func in controller.character_map.copy().items(): if isinstance(command, Command): for key in keymap.get(command): val = keymap.parse(key) # If a double key press is defined, the first half # must be unbound if isinstance(val, tuple): if controller.character_map.get(val[0]) is not None: raise exceptions.ConfigError( "Invalid configuration! `%s` is bound to " "duplicate commands in the " "%s" % (key, controller.__name__)) # Mark the first half of the double with None so # that no other command can use it controller.character_map[val[0]] = None # Check if the key is already programmed to trigger a # different function. if controller.character_map.get(val, func) != func: raise exceptions.ConfigError( "Invalid configuration! `%s` is bound to " "duplicate commands in the " "%s" % (key, controller.__name__)) controller.character_map[val] = func def trigger(self, char, *args, **kwargs): if isinstance(char, six.string_types) and len(char) == 1: char = ord(char) func = None # Check if the controller (or any of the controller's parents) have # registered a function to the given key for controller in self.parents: func = controller.character_map.get((self.last_char, char)) if func: break func = controller.character_map.get(char) if func: break if func: self.last_char = None return func(self.instance, *args, **kwargs) else: self.last_char = char return None @classmethod def register(cls, *chars): def inner(f): for char in chars: if isinstance(char, six.string_types) and len(char) == 1: cls.character_map[ord(char)] = f else: cls.character_map[char] = f return f return inner class Command(object): """ Minimal class that should be used to wrap abstract commands that may be implemented as one or more physical keystrokes. E.g. Command("REFRESH") can be represented by the KeyMap to be triggered by either `r` or `F5` """ def __init__(self, val): self.val = val.upper() def __repr__(self): return 'Command(%s)' % self.val def __eq__(self, other): return repr(self) == repr(other) def __ne__(self, other): return not self == other def __hash__(self): return hash(repr(self)) class KeyMap(object): """ Mapping between commands and the keys that they represent. """ def __init__(self, bindings): self._keymap = None self.set_bindings(bindings) def set_bindings(self, bindings): new_keymap = {} for command, keys in bindings.items(): if not isinstance(command, Command): command = Command(command) new_keymap[command] = keys if not self._keymap: self._keymap = new_keymap else: self._keymap.update(new_keymap) def get(self, command): if not isinstance(command, Command): command = Command(command) try: return self._keymap[command] except KeyError: raise exceptions.ConfigError('Invalid configuration! `%s` key is ' 'undefined' % command.val) @classmethod def parse(cls, key): """ Parse a key represented by a string and return its character code. """ try: if isinstance(key, int): return key elif re.match('[<]KEY_.*[>]', key): # Curses control character return getattr(curses, key[1:-1]) elif re.match('[<].*[>]', key): # Ascii control character return getattr(curses.ascii, key[1:-1]) elif key.startswith('0x'): # Ascii hex code return int(key, 16) elif len(key) == 2: # Double presses return tuple(cls.parse(k) for k in key) else: # Ascii character code = ord(key) if 0 <= code <= 255: return code # Python 3.3 has a curses.get_wch() function that we can use # for unicode keys, but Python 2.7 is limited to ascii. raise exceptions.ConfigError('Invalid configuration! `%s` is ' 'not in the ascii range' % key) except (AttributeError, ValueError, TypeError): raise exceptions.ConfigError('Invalid configuration! "%s" is not a ' 'valid key' % key) rtv-1.21.0+dfsg.orig/rtv/submission_page.py0000644000175000017500000004044613222035043020172 0ustar noahfxnoahfx# -*- coding: utf-8 -*- from __future__ import unicode_literals import re import time from . import docs from .content import SubmissionContent, SubredditContent from .page import Page, PageController, logged_in from .objects import Navigator, Command from .exceptions import TemporaryFileError class SubmissionController(PageController): character_map = {} class SubmissionPage(Page): FOOTER = docs.FOOTER_SUBMISSION def __init__(self, reddit, term, config, oauth, url=None, submission=None): super(SubmissionPage, self).__init__(reddit, term, config, oauth) self.controller = SubmissionController(self, keymap=config.keymap) if url: self.content = SubmissionContent.from_url( reddit, url, term.loader, max_comment_cols=config['max_comment_cols']) else: self.content = SubmissionContent( submission, term.loader, max_comment_cols=config['max_comment_cols']) # Start at the submission post, which is indexed as -1 self.nav = Navigator(self.content.get, page_index=-1) self.selected_subreddit = None @SubmissionController.register(Command('SORT_HOT')) def sort_content_hot(self): self.refresh_content(order='hot') @SubmissionController.register(Command('SORT_TOP')) def sort_content_top(self): self.refresh_content(order='top') @SubmissionController.register(Command('SORT_RISING')) def sort_content_rising(self): self.refresh_content(order='rising') @SubmissionController.register(Command('SORT_NEW')) def sort_content_new(self): self.refresh_content(order='new') @SubmissionController.register(Command('SORT_CONTROVERSIAL')) def sort_content_controversial(self): self.refresh_content(order='controversial') @SubmissionController.register(Command('SUBMISSION_TOGGLE_COMMENT')) def toggle_comment(self): """ Toggle the selected comment tree between visible and hidden """ current_index = self.nav.absolute_index self.content.toggle(current_index) # This logic handles a display edge case after a comment toggle. We # want to make sure that when we re-draw the page, the cursor stays at # its current absolute position on the screen. In order to do this, # apply a fixed offset if, while inverted, we either try to hide the # bottom comment or toggle any of the middle comments. if self.nav.inverted: data = self.content.get(current_index) if data['hidden'] or self.nav.cursor_index != 0: window = self._subwindows[-1][0] n_rows, _ = window.getmaxyx() self.nav.flip(len(self._subwindows) - 1) self.nav.top_item_height = n_rows @SubmissionController.register(Command('SUBMISSION_EXIT')) def exit_submission(self): """ Close the submission and return to the subreddit page """ self.active = False def refresh_content(self, order=None, name=None): """ Re-download comments and reset the page index """ order = order or self.content.order url = name or self.content.name # Hack to allow an order specified in the name by prompt_subreddit() to # override the current default if order == 'ignore': order = None with self.term.loader('Refreshing page'): self.content = SubmissionContent.from_url( self.reddit, url, self.term.loader, order=order, max_comment_cols=self.config['max_comment_cols']) if not self.term.loader.exception: self.nav = Navigator(self.content.get, page_index=-1) @SubmissionController.register(Command('PROMPT')) def prompt_subreddit(self): """ Open a prompt to navigate to a different subreddit """ name = self.term.prompt_input('Enter page: /') if name is not None: # Check if opening a submission url or a subreddit url # Example patterns for submissions: # comments/571dw3 # /comments/571dw3 # /r/pics/comments/571dw3/ # https://www.reddit.com/r/pics/comments/571dw3/at_disneyland submission_pattern = re.compile(r'(^|/)comments/(?P.+?)($|/)') match = submission_pattern.search(name) if match: url = 'https://www.reddit.com/comments/{0}' self.refresh_content('ignore', url.format(match.group('id'))) else: with self.term.loader('Loading page'): content = SubredditContent.from_name( self.reddit, name, self.term.loader) if not self.term.loader.exception: self.selected_subreddit = content self.active = False @SubmissionController.register(Command('SUBMISSION_OPEN_IN_BROWSER')) def open_link(self): """ Open the selected item with the web browser """ data = self.get_selected_item() if data['type'] == 'Submission': self.term.open_link(data['url_full']) self.config.history.add(data['url_full']) elif data['type'] == 'Comment' and data['permalink']: self.term.open_browser(data['permalink']) else: self.term.flash() @SubmissionController.register(Command('SUBMISSION_OPEN_IN_PAGER')) def open_pager(self): """ Open the selected item with the system's pager """ n_rows, n_cols = self.term.stdscr.getmaxyx() data = self.get_selected_item() if data['type'] == 'Submission': text = '\n\n'.join((data['permalink'], data['text'])) self.term.open_pager(text, wrap=n_cols) elif data['type'] == 'Comment': text = '\n\n'.join((data['permalink'], data['body'])) self.term.open_pager(text, wrap=n_cols) else: self.term.flash() @SubmissionController.register(Command('SUBMISSION_POST')) @logged_in def add_comment(self): """ Submit a reply to the selected item. Selected item: Submission - add a top level comment Comment - add a comment reply """ data = self.get_selected_item() if data['type'] == 'Submission': body = data['text'] reply = data['object'].add_comment elif data['type'] == 'Comment': body = data['body'] reply = data['object'].reply else: self.term.flash() return # Construct the text that will be displayed in the editor file. # The post body will be commented out and added for reference lines = ['# |' + line for line in body.split('\n')] content = '\n'.join(lines) comment_info = docs.COMMENT_FILE.format( author=data['author'], type=data['type'].lower(), content=content) with self.term.open_editor(comment_info) as comment: if not comment: self.term.show_notification('Canceled') return with self.term.loader('Posting', delay=0): reply(comment) # Give reddit time to process the submission time.sleep(2.0) if self.term.loader.exception is None: self.reload_page() else: raise TemporaryFileError() @SubmissionController.register(Command('DELETE')) @logged_in def delete_comment(self): """ Delete the selected comment """ if self.get_selected_item()['type'] == 'Comment': self.delete_item() else: self.term.flash() @SubmissionController.register(Command('SUBMISSION_OPEN_IN_URLVIEWER')) def comment_urlview(self): """ Open the selected comment with the URL viewer """ data = self.get_selected_item() comment = data.get('body') or data.get('text') or data.get('url_full') if comment: self.term.open_urlview(comment) else: self.term.flash() @SubmissionController.register(Command('SUBMISSION_GOTO_PARENT')) def move_parent_up(self): """ Move the cursor up to the comment's parent. If the comment is top-level, jump to the previous top-level comment. """ cursor = self.nav.absolute_index if cursor > 0: level = max(self.content.get(cursor)['level'], 1) while self.content.get(cursor - 1)['level'] >= level: self._move_cursor(-1) cursor -= 1 self._move_cursor(-1) else: self.term.flash() self.clear_input_queue() @SubmissionController.register(Command('SUBMISSION_GOTO_SIBLING')) def move_sibling_next(self): """ Jump to the next comment that's at the same level as the selected comment and shares the same parent. """ cursor = self.nav.absolute_index if cursor >= 0: level = self.content.get(cursor)['level'] try: move = 1 while self.content.get(cursor + move)['level'] > level: move += 1 except IndexError: self.term.flash() else: if self.content.get(cursor + move)['level'] == level: for _ in range(move): self._move_cursor(1) else: self.term.flash() else: self.term.flash() self.clear_input_queue() def _draw_item(self, win, data, inverted): if data['type'] == 'MoreComments': return self._draw_more_comments(win, data) elif data['type'] == 'HiddenComment': return self._draw_more_comments(win, data) elif data['type'] == 'Comment': return self._draw_comment(win, data, inverted) else: return self._draw_submission(win, data) def _draw_comment(self, win, data, inverted): n_rows, n_cols = win.getmaxyx() n_cols -= 1 # Handle the case where the window is not large enough to fit the text. valid_rows = range(0, n_rows) offset = 0 if not inverted else -(data['n_rows'] - n_rows) # If there isn't enough space to fit the comment body on the screen, # replace the last line with a notification. split_body = data['split_body'] if data['n_rows'] > n_rows: # Only when there is a single comment on the page and not inverted if not inverted and len(self._subwindows) == 1: cutoff = data['n_rows'] - n_rows + 1 split_body = split_body[:-cutoff] split_body.append('(Not enough space to display)') row = offset if row in valid_rows: if data['is_author']: attr = self.term.attr('CommentAuthorSelf') text = '{author} [S]'.format(**data) else: attr = self.term.attr('CommentAuthor') text = '{author}'.format(**data) self.term.add_line(win, text, row, 1, attr) if data['flair']: attr = self.term.attr('UserFlair') self.term.add_space(win) self.term.add_line(win, '{flair}'.format(**data), attr=attr) arrow, attr = self.term.get_arrow(data['likes']) self.term.add_space(win) self.term.add_line(win, arrow, attr=attr) attr = self.term.attr('Score') self.term.add_space(win) self.term.add_line(win, '{score}'.format(**data), attr=attr) attr = self.term.attr('Created') self.term.add_space(win) self.term.add_line(win, '{created}'.format(**data), attr=attr) if data['gold']: attr = self.term.attr('Gold') self.term.add_space(win) self.term.add_line(win, self.term.guilded, attr=attr) if data['stickied']: attr = self.term.attr('Stickied') self.term.add_space(win) self.term.add_line(win, '[stickied]', attr=attr) if data['saved']: attr = self.term.attr('Saved') self.term.add_space(win) self.term.add_line(win, '[saved]', attr=attr) for row, text in enumerate(split_body, start=offset+1): attr = self.term.attr('CommentText') if row in valid_rows: self.term.add_line(win, text, row, 1, attr=attr) # curses.vline() doesn't support custom colors so need to build the # cursor bar on the left of the comment one character at a time index = data['level'] % len(self.term.theme.CURSOR_BARS) attr = self.term.attr(self.term.theme.CURSOR_BARS[index]) for y in range(n_rows): self.term.addch(win, y, 0, self.term.vline, attr) def _draw_more_comments(self, win, data): n_rows, n_cols = win.getmaxyx() n_cols -= 1 attr = self.term.attr('HiddenCommentText') self.term.add_line(win, '{body}'.format(**data), 0, 1, attr=attr) attr = self.term.attr('HiddenCommentExpand') self.term.add_space(win) self.term.add_line(win, '[{count}]'.format(**data), attr=attr) index = data['level'] % len(self.term.theme.CURSOR_BARS) attr = self.term.attr(self.term.theme.CURSOR_BARS[index]) self.term.addch(win, 0, 0, self.term.vline, attr) def _draw_submission(self, win, data): n_rows, n_cols = win.getmaxyx() n_cols -= 3 # one for each side of the border + one for offset attr = self.term.attr('SubmissionTitle') for row, text in enumerate(data['split_title'], start=1): self.term.add_line(win, text, row, 1, attr) row = len(data['split_title']) + 1 attr = self.term.attr('SubmissionAuthor') self.term.add_line(win, '{author}'.format(**data), row, 1, attr) if data['flair']: attr = self.term.attr('SubmissionFlair') self.term.add_space(win) self.term.add_line(win, '{flair}'.format(**data), attr=attr) attr = self.term.attr('SubmissionSubreddit') self.term.add_space(win) self.term.add_line(win, '/r/{subreddit}'.format(**data), attr=attr) attr = self.term.attr('Created') self.term.add_space(win) self.term.add_line(win, '{created_long}'.format(**data), attr=attr) row = len(data['split_title']) + 2 if data['url_full'] in self.config.history: attr = self.term.attr('LinkSeen') else: attr = self.term.attr('Link') self.term.add_line(win, '{url}'.format(**data), row, 1, attr) offset = len(data['split_title']) + 3 # Cut off text if there is not enough room to display the whole post split_text = data['split_text'] if data['n_rows'] > n_rows: cutoff = data['n_rows'] - n_rows + 1 split_text = split_text[:-cutoff] split_text.append('(Not enough space to display)') attr = self.term.attr('SubmissionText') for row, text in enumerate(split_text, start=offset): self.term.add_line(win, text, row, 1, attr=attr) row = len(data['split_title']) + len(split_text) + 3 attr = self.term.attr('Score') self.term.add_line(win, '{score}'.format(**data), row, 1, attr=attr) arrow, attr = self.term.get_arrow(data['likes']) self.term.add_space(win) self.term.add_line(win, arrow, attr=attr) attr = self.term.attr('CommentCount') self.term.add_space(win) self.term.add_line(win, '{comments}'.format(**data), attr=attr) if data['gold']: attr = self.term.attr('Gold') self.term.add_space(win) self.term.add_line(win, self.term.guilded, attr=attr) if data['nsfw']: attr = self.term.attr('NSFW') self.term.add_space(win) self.term.add_line(win, 'NSFW', attr=attr) if data['saved']: attr = self.term.attr('Saved') self.term.add_space(win) self.term.add_line(win, '[saved]', attr=attr) win.border() rtv-1.21.0+dfsg.orig/rtv/exceptions.py0000644000175000017500000000241113222035043017152 0ustar noahfxnoahfx# -*- coding: utf-8 -*- from __future__ import unicode_literals class EscapeInterrupt(Exception): "Signal that the ESC key has been pressed" class ConfigError(Exception): "There was a problem with the configuration" class RTVError(Exception): "Base RTV error class" class AccountError(RTVError): "Could not access user account" class SubmissionError(RTVError): "Submission could not be loaded" class SubredditError(RTVError): "Subreddit could not be loaded" class NoSubmissionsError(RTVError): "No submissions for the given page" def __init__(self, name): self.name = name message = '`{0}` has no submissions'.format(name) super(NoSubmissionsError, self).__init__(message) class SubscriptionError(RTVError): "Content could not be fetched" class ProgramError(RTVError): "Problem executing an external program" class BrowserError(RTVError): "Could not open a web browser tab" class TemporaryFileError(RTVError): "Indicates that an error has occurred and the file should not be deleted" class MailcapEntryNotFound(RTVError): "A valid mailcap entry could not be coerced from the given url" class InvalidRefreshToken(RTVError): "The refresh token is corrupt and cannot be used to login" rtv-1.21.0+dfsg.orig/rtv/content.py0000644000175000017500000010720313222035043016450 0ustar noahfxnoahfx# -*- coding: utf-8 -*- from __future__ import unicode_literals import re import time import logging from datetime import datetime from timeit import default_timer as timer import six from kitchen.text.display import wrap from . import exceptions from .packages import praw from .packages.praw.errors import InvalidSubreddit from .packages.praw.helpers import normalize_url from .packages.praw.handlers import DefaultHandler _logger = logging.getLogger(__name__) class Content(object): def get(self, index, n_cols): """ Grab the item at the given index, and format the text to fit a width of n columns. """ raise NotImplementedError def iterate(self, index, step, n_cols=70): """ Return an iterator that starts and the current index and increments by the given step. """ while True: if step < 0 and index < 0: # Hack to prevent displaying a submission's post if iterating # comments in the negative direction break try: yield self.get(index, n_cols=n_cols) except IndexError: break index += step @property def range(self): """ Return the minimm and maximum valid indicies. """ raise NotImplementedError @staticmethod def flatten_comments(comments, root_level=0): """ Flatten a PRAW comment tree while preserving the nested level of each comment via the `nested_level` attribute. There are a couple of different ways that the input comment list can be organized depending on its source: 1. Comments that are returned from the get_submission() api call. In this case, the comments list will contain only top level comments and replies will be attached to those comments via the `comment.replies` property. 2. Comments that are returned from the comments() method on a MoreComments object. In this case, the api returns all of the comments and replies as a flat list. We need to sort out which ones are replies to other comments by looking at the parent_id parameter and checking if the id matches another comment. In addition, there is a bug in praw where a MoreComments object that is also a reply will be added below the comment as a sibling instead of a child. So it is especially important that this method is robust and double-checks all of the parent_id's of the comments. Reference: https://github.com/praw-dev/praw/issues/391 """ stack = comments[:] for item in stack: item.nested_level = root_level retval, parent_candidates = [], {} while stack: item = stack.pop(0) # The MoreComments item count should never be zero, discard it if # it is. Need to look into this further. if isinstance(item, praw.objects.MoreComments) and item.count == 0: continue if item.parent_id: # Search the list of previous comments for a possible parent # The match is based off of the parent_id parameter E.g. # parent.id = c0tprcm # child.parent_id = t1_c0tprcm parent = parent_candidates.get(item.parent_id[3:]) if parent: item.nested_level = parent.nested_level + 1 # Add all of the attached replies to the front of the stack to be # parsed separately if hasattr(item, 'replies'): for n in item.replies: n.nested_level = item.nested_level + 1 stack[0:0] = item.replies # The comment is now a potential parent for the items that are # remaining on the stack. parent_candidates[item.id] = item retval.append(item) return retval @classmethod def strip_praw_comment(cls, comment): """ Parse through a submission comment and return a dict with data ready to be displayed through the terminal. """ data = {} data['object'] = comment if isinstance(comment, praw.objects.MoreComments): data['type'] = 'MoreComments' data['level'] = comment.nested_level data['count'] = comment.count data['body'] = 'More comments' data['hidden'] = True elif hasattr(comment, 'nested_level'): author = getattr(comment, 'author', '[deleted]') name = getattr(author, 'name', '[deleted]') sub = getattr(comment, 'submission', '[deleted]') sub_author = getattr(sub, 'author', '[deleted]') sub_name = getattr(sub_author, 'name', '[deleted]') flair = getattr(comment, 'author_flair_text', '') permalink = getattr(comment, 'permalink', None) stickied = getattr(comment, 'stickied', False) data['type'] = 'Comment' data['level'] = comment.nested_level data['body'] = comment.body data['created'] = cls.humanize_timestamp(comment.created_utc) data['score'] = '{0} pts'.format( '-' if comment.score_hidden else comment.score) data['author'] = name data['is_author'] = (name == sub_name) data['flair'] = flair data['likes'] = comment.likes data['gold'] = comment.gilded > 0 data['permalink'] = permalink data['stickied'] = stickied data['hidden'] = False data['saved'] = comment.saved else: # Saved comments don't have a nested level and are missing a couple # of fields like ``submission``. As a result, we can only load a # subset of fields to avoid triggering a separate api call to load # the full comment. author = getattr(comment, 'author', '[deleted]') stickied = getattr(comment, 'stickied', False) flair = getattr(comment, 'author_flair_text', '') data['type'] = 'SavedComment' data['level'] = None data['title'] = '[Comment] {0}'.format(comment.body) data['comments'] = None data['url_full'] = comment._fast_permalink data['url'] = comment._fast_permalink data['permalink'] = comment._fast_permalink data['nsfw'] = comment.over_18 data['subreddit'] = six.text_type(comment.subreddit) data['url_type'] = 'selfpost' data['score'] = '{0} pts'.format( '-' if comment.score_hidden else comment.score) data['likes'] = comment.likes data['created'] = cls.humanize_timestamp(comment.created_utc) data['saved'] = comment.saved data['stickied'] = stickied data['gold'] = comment.gilded > 0 data['author'] = author data['flair'] = flair return data @classmethod def strip_praw_submission(cls, sub): """ Parse through a submission and return a dict with data ready to be displayed through the terminal. Definitions: permalink - URL to the reddit page with submission comments. url_full - URL that the submission points to. url - URL that will be displayed on the subreddit page, may be "selfpost", "x-post submission", "x-post subreddit", or an external link. """ reddit_link = re.compile( r'https?://(www\.)?(np\.)?redd(it\.com|\.it)/r/.*') author = getattr(sub, 'author', '[deleted]') name = getattr(author, 'name', '[deleted]') flair = getattr(sub, 'link_flair_text', '') data = {} data['object'] = sub data['type'] = 'Submission' data['title'] = sub.title data['text'] = sub.selftext data['created'] = cls.humanize_timestamp(sub.created_utc) data['created_long'] = cls.humanize_timestamp(sub.created_utc, True) data['comments'] = '{0} comments'.format(sub.num_comments) data['score'] = '{0} pts'.format('-' if sub.hide_score else sub.score) data['author'] = name data['permalink'] = sub.permalink data['subreddit'] = six.text_type(sub.subreddit) data['flair'] = '[{0}]'.format(flair.strip(' []')) if flair else '' data['url_full'] = sub.url data['likes'] = sub.likes data['gold'] = sub.gilded > 0 data['nsfw'] = sub.over_18 data['stickied'] = sub.stickied data['hidden'] = False data['xpost_subreddit'] = None data['index'] = None # This is filled in later by the method caller data['saved'] = sub.saved if sub.url.split('/r/')[-1] == sub.permalink.split('/r/')[-1]: data['url'] = 'self.{0}'.format(data['subreddit']) data['url_type'] = 'selfpost' elif reddit_link.match(sub.url): # Strip the subreddit name from the permalink to avoid having # submission.subreddit.url make a separate API call url_parts = sub.url.split('/') data['xpost_subreddit'] = url_parts[4] data['url'] = 'self.{0}'.format(url_parts[4]) if 'comments' in url_parts: data['url_type'] = 'x-post submission' else: data['url_type'] = 'x-post subreddit' else: data['url'] = sub.url data['url_type'] = 'external' return data @staticmethod def strip_praw_subscription(subscription): """ Parse through a subscription and return a dict with data ready to be displayed through the terminal. """ data = {} data['object'] = subscription if isinstance(subscription, praw.objects.Multireddit): data['type'] = 'Multireddit' data['name'] = subscription.path data['title'] = subscription.description_md else: data['type'] = 'Subscription' data['name'] = "/r/" + subscription.display_name data['title'] = subscription.title return data @staticmethod def humanize_timestamp(utc_timestamp, verbose=False): """ Convert a utc timestamp into a human readable relative-time. """ timedelta = datetime.utcnow() - datetime.utcfromtimestamp(utc_timestamp) seconds = int(timedelta.total_seconds()) if seconds < 60: return 'moments ago' if verbose else '0min' minutes = seconds // 60 if minutes < 60: return '%d minutes ago' % minutes if verbose else '%dmin' % minutes hours = minutes // 60 if hours < 24: return '%d hours ago' % hours if verbose else '%dhr' % hours days = hours // 24 if days < 30: return '%d days ago' % days if verbose else '%dday' % days months = days // 30.4 if months < 12: return '%d months ago' % months if verbose else '%dmonth' % months years = months // 12 return '%d years ago' % years if verbose else '%dyr' % years @staticmethod def wrap_text(text, width): """ Wrap text paragraphs to the given character width while preserving newlines. """ out = [] for paragraph in text.splitlines(): # Wrap returns an empty list when paragraph is a newline. In order # to preserve newlines we substitute a list containing an empty # string. lines = wrap(paragraph, width=width) or [''] out.extend(lines) return out class SubmissionContent(Content): """ Grab a submission from PRAW and lazily store comments to an internal list for repeat access. """ def __init__(self, submission, loader, indent_size=2, max_indent_level=8, order=None, max_comment_cols=120): submission_data = self.strip_praw_submission(submission) comments = self.flatten_comments(submission.comments) self.indent_size = indent_size self.max_indent_level = max_indent_level self.name = submission_data['permalink'] self.order = order self.query = None self._loader = loader self._submission = submission self._submission_data = submission_data self._comment_data = [self.strip_praw_comment(c) for c in comments] self._max_comment_cols = max_comment_cols @classmethod def from_url(cls, reddit, url, loader, indent_size=2, max_indent_level=8, order=None, max_comment_cols=120): url = url.replace('http:', 'https:') # Reddit forces SSL # Sometimes reddit will return a 403 FORBIDDEN when trying to access an # np link while using OAUTH. Cause is unknown. url = url.replace('https://np.', 'https://www.') submission = reddit.get_submission(url, comment_sort=order) return cls(submission, loader, indent_size, max_indent_level, order, max_comment_cols) @property def range(self): return -1, len(self._comment_data) - 1 def get(self, index, n_cols=70): """ Grab the `i`th submission, with the title field formatted to fit inside of a window of width `n` """ if index < -1: raise IndexError elif index == -1: data = self._submission_data data['split_title'] = self.wrap_text(data['title'], width=n_cols-2) data['split_text'] = self.wrap_text(data['text'], width=n_cols-2) data['n_rows'] = len(data['split_title'] + data['split_text']) + 5 data['h_offset'] = 0 else: data = self._comment_data[index] indent_level = min(data['level'], self.max_indent_level) data['h_offset'] = indent_level * self.indent_size if data['type'] == 'Comment': width = min(n_cols - data['h_offset'], self._max_comment_cols) data['split_body'] = self.wrap_text(data['body'], width=width) data['n_rows'] = len(data['split_body']) + 1 else: data['n_rows'] = 1 return data def toggle(self, index, n_cols=70): """ Toggle the state of the object at the given index. If it is a comment, pack it into a hidden comment. If it is a hidden comment, unpack it. If it is more comments, load the comments. """ data = self.get(index) if data['type'] == 'Submission': # Can't hide the submission! pass elif data['type'] == 'Comment': cache = [data] count = 1 for d in self.iterate(index + 1, 1, n_cols): if d['level'] <= data['level']: break count += d.get('count', 1) cache.append(d) comment = { 'type': 'HiddenComment', 'cache': cache, 'count': count, 'level': data['level'], 'body': 'Hidden', 'hidden': True} self._comment_data[index:index + len(cache)] = [comment] elif data['type'] == 'HiddenComment': self._comment_data[index:index + 1] = data['cache'] elif data['type'] == 'MoreComments': with self._loader('Loading comments'): # Undefined behavior if using a nested loader here assert self._loader.depth == 1 comments = data['object'].comments(update=True) if not self._loader.exception: comments = self.flatten_comments(comments, data['level']) comment_data = [self.strip_praw_comment(c) for c in comments] self._comment_data[index:index + 1] = comment_data else: raise ValueError('%s type not recognized' % data['type']) class SubredditContent(Content): """ Grab a subreddit from PRAW and lazily stores submissions to an internal list for repeat access. """ def __init__(self, name, submissions, loader, order=None, max_title_rows=4, query=None, filter_nsfw=False): self.name = name self.order = order self.query = query self.max_title_rows = max_title_rows self.filter_nsfw = filter_nsfw self._loader = loader self._submissions = submissions self._submission_data = [] # Verify that content exists for the given submission generator. # This is necessary because PRAW loads submissions lazily, and # there is is no other way to check things like multireddits that # don't have a real corresponding subreddit object. try: self.get(0) except IndexError: full_name = self.name if self.order: full_name += '/' + self.order raise exceptions.NoSubmissionsError(full_name) @classmethod def from_name(cls, reddit, name, loader, order=None, query=None): """ Params: reddit (praw.Reddit): Instance of the reddit api. name (text): The name of the desired subreddit, user, multireddit, etc. In most cases this translates directly from the URL that reddit itself uses. This is what users will type in the command prompt when they navigate to a new location. loader (terminal.loader): Handler for the load screen that will be displayed when making http requests. order (text): If specified, the order that posts will be sorted in. For `top` and `controversial`, you can specify the time frame by including a dash, e.g. "top-year". If an order is not specified, it will be extracted from the name. query (text): Content to search for on the given subreddit or user's page. """ # TODO: This desperately needs to be refactored # Strip leading, trailing, and redundant backslashes parts = [seg for seg in name.strip(' /').split('/') if seg] # Check for the resource type, assume /r/ as the default if len(parts) >= 3 and parts[2] == 'm': # E.g. /u/civilization_phaze_3/m/multireddit -> # resource_root = "u/civilization_phaze_3/m" # parts = ["multireddit"] resource_root, parts = '/'.join(parts[:3]), parts[3:] elif len(parts) > 1 and parts[0] in ['r', 'u', 'user', 'domain']: # E.g. /u/civilization_phaze_3 -> # resource_root = "u" # parts = ["civilization_phaze_3"] # # E.g. /r/python/top-week -> # resource_root = "r" # parts = ["python", "top-week"] resource_root = parts.pop(0) else: resource_root = 'r' if resource_root == 'user': resource_root = 'u' elif resource_root.startswith('user/'): resource_root = 'u' + resource_root[4:] # There should at most two parts left, the resource and the order if len(parts) == 1: resource, resource_order = parts[0], None elif len(parts) == 2: resource, resource_order = parts else: raise InvalidSubreddit('`{}` is an invalid format'.format(name)) if not resource: # Praw does not correctly handle empty strings # https://github.com/praw-dev/praw/issues/615 raise InvalidSubreddit('Subreddit cannot be empty') # If the order was explicitly passed in, it will take priority over # the order that was extracted from the name order = order or resource_order display_order = order display_name = '/'.join(['', resource_root, resource]) # Split the order from the period E.g. controversial-all, top-hour if order and '-' in order: order, period = order.split('-', 1) else: period = None if query: # The allowed orders for sorting search results are different orders = ['relevance', 'top', 'comments', 'new', None] period_allowed = ['top', 'comments'] else: orders = ['hot', 'top', 'rising', 'new', 'controversial', None] period_allowed = ['top', 'controversial'] if order not in orders: raise InvalidSubreddit('Invalid order `%s`' % order) if period not in ['all', 'day', 'hour', 'month', 'week', 'year', None]: raise InvalidSubreddit('Invalid period `%s`' % period) if period and order not in period_allowed: raise InvalidSubreddit( '`%s` order does not allow sorting by period' % order) # On some objects, praw doesn't allow you to pass arguments for the # order and period. Instead you need to call special helper functions # such as Multireddit.get_controversial_from_year(). Build the method # name here for convenience. if period: method_alias = 'get_{0}_from_{1}'.format(order, period) elif order: method_alias = 'get_{0}'.format(order) else: method_alias = 'get_hot' # Here's where we start to build the submission generators if query: if resource_root == 'u': search = '/r/{subreddit}/search' author = reddit.user.name if resource == 'me' else resource query = 'author:{0} {1}'.format(author, query) subreddit = None else: search = resource_root + '/{subreddit}/search' subreddit = None if resource == 'front' else resource reddit.config.API_PATHS['search'] = search submissions = reddit.search(query, subreddit=subreddit, sort=order, period=period) elif resource_root == 'domain': order = order or 'hot' submissions = reddit.get_domain_listing( resource, sort=order, period=period, limit=None) elif resource_root.endswith('/m'): redditor = resource_root.split('/')[1] if redditor == 'me': if not reddit.is_oauth_session(): raise exceptions.AccountError('Not logged in') else: redditor = reddit.user.name display_name = display_name.replace( '/me/', '/{0}/'.format(redditor)) multireddit = reddit.get_multireddit(redditor, resource) submissions = getattr(multireddit, method_alias)(limit=None) elif resource_root == 'u' and resource == 'me': if not reddit.is_oauth_session(): raise exceptions.AccountError('Not logged in') else: order = order or 'new' submissions = reddit.user.get_overview(sort=order, limit=None) elif resource_root == 'u' and resource == 'saved': if not reddit.is_oauth_session(): raise exceptions.AccountError('Not logged in') else: order = order or 'new' submissions = reddit.user.get_saved(sort=order, limit=None) elif resource_root == 'u': order = order or 'new' period = period or 'all' redditor = reddit.get_redditor(resource) submissions = redditor.get_overview( sort=order, time=period, limit=None) elif resource == 'front': if order in (None, 'hot'): submissions = reddit.get_front_page(limit=None) elif period: # For the front page, praw makes you send the period as `t` # instead of calling reddit.get_hot_from_week() method_alias = 'get_{0}'.format(order) method = getattr(reddit, method_alias) submissions = method(limit=None, params={'t': period}) else: submissions = getattr(reddit, method_alias)(limit=None) else: subreddit = reddit.get_subreddit(resource) submissions = getattr(subreddit, method_alias)(limit=None) # For special subreddits like /r/random we want to replace the # display name with the one returned by the request. display_name = '/r/{0}'.format(subreddit.display_name) filter_nsfw = (reddit.user and reddit.user.over_18 is False) # We made it! return cls(display_name, submissions, loader, order=display_order, query=query, filter_nsfw=filter_nsfw) @property def range(self): # Note that for subreddits, the submissions are generated lazily and # there is no actual "end" index. Instead, we return the bottom index # that we have loaded so far. return 0, len(self._submission_data) - 1 def get(self, index, n_cols=70): """ Grab the `i`th submission, with the title field formatted to fit inside of a window of width `n_cols` """ if index < 0: raise IndexError nsfw_count = 0 while index >= len(self._submission_data): try: with self._loader('Loading more submissions'): submission = next(self._submissions) if self._loader.exception: raise IndexError except StopIteration: raise IndexError else: # Skip NSFW posts based on the reddit user's profile settings. # If we see 20+ NSFW posts at the beginning, assume the subreddit # only has NSFW content and abort. This allows us to avoid making # an additional API call to check if a subreddit is over18 (which # doesn't work for things like multireddits anyway) if self.filter_nsfw and submission.over_18: nsfw_count += 1 if not self._submission_data and nsfw_count >= 20: raise exceptions.SubredditError( 'You must be over 18+ to view this subreddit') continue else: nsfw_count = 0 if hasattr(submission, 'title'): data = self.strip_praw_submission(submission) else: # when submission is a saved comment data = self.strip_praw_comment(submission) data['index'] = len(self._submission_data) + 1 # Add the post number to the beginning of the title data['title'] = '{0}. {1}'.format(data['index'], data['title']) self._submission_data.append(data) # Modifies the original dict, faster than copying data = self._submission_data[index] data['split_title'] = self.wrap_text(data['title'], width=n_cols) if len(data['split_title']) > self.max_title_rows: data['split_title'] = data['split_title'][:self.max_title_rows-1] data['split_title'].append('(Not enough space to display)') data['n_rows'] = len(data['split_title']) + 3 data['h_offset'] = 0 return data class SubscriptionContent(Content): def __init__(self, name, subscriptions, loader): self.name = name self.order = None self.query = None self._loader = loader self._subscriptions = subscriptions self._subscription_data = [] try: self.get(0) except IndexError: raise exceptions.SubscriptionError('No content') # Load 1024 subscriptions up front (one http request's worth) # For most people this should be all of their subscriptions. This # allows the user to jump to the end of the page with `G`. if name != 'Popular Subreddits': try: self.get(1023) except IndexError: pass @classmethod def from_user(cls, reddit, loader, content_type='subreddit'): if content_type == 'subreddit': name = 'My Subreddits' items = reddit.get_my_subreddits(limit=None) elif content_type == 'multireddit': name = 'My Multireddits' # Multireddits are returned as a list items = iter(reddit.get_my_multireddits()) elif content_type == 'popular': name = 'Popular Subreddits' items = reddit.get_popular_subreddits(limit=None) else: raise exceptions.SubscriptionError('Invalid type %s', content_type) return cls(name, items, loader) @property def range(self): return 0, len(self._subscription_data) - 1 def get(self, index, n_cols=70): """ Grab the `i`th object, with the title field formatted to fit inside of a window of width `n_cols` """ if index < 0: raise IndexError while index >= len(self._subscription_data): try: with self._loader('Loading content'): subscription = next(self._subscriptions) if self._loader.exception: raise IndexError except StopIteration: raise IndexError else: data = self.strip_praw_subscription(subscription) self._subscription_data.append(data) data = self._subscription_data[index] data['split_title'] = self.wrap_text(data['title'], width=n_cols) data['n_rows'] = len(data['split_title']) + 1 data['h_offset'] = 0 return data class RequestHeaderRateLimiter(DefaultHandler): """Custom PRAW request handler for rate-limiting requests. This is an alternative to PRAW 3's DefaultHandler that uses Reddit's modern API guidelines to rate-limit requests based on the X-Ratelimit-* headers returned from Reddit. Most of these methods are copied from or derived from the DefaultHandler. References: https://github.com/reddit/reddit/wiki/API https://github.com/praw-dev/prawcore/blob/master/prawcore/rate_limit.py """ def __init__(self): # In PRAW's convention, these variables were bound to the # class so the cache could be shared among all of the ``reddit`` # instances. In RTV's use-case there is only ever a single reddit # instance so it made sense to clean up the globals and transfer them # to method variables self.cache = {} self.timeouts = {} # These are used for the header rate-limiting self.used = None self.remaining = None self.seconds_to_reset = None self.next_request_timestamp = None super(RequestHeaderRateLimiter, self).__init__() def _delay(self): """ Pause before making the next HTTP request. """ if self.next_request_timestamp is None: return sleep_seconds = self.next_request_timestamp - time.time() if sleep_seconds <= 0: return time.sleep(sleep_seconds) def _update(self, response_headers): """ Update the state of the rate limiter based on the response headers: X-Ratelimit-Used: Approximate number of requests used this period X-Ratelimit-Remaining: Approximate number of requests left to use X-Ratelimit-Reset: Approximate number of seconds to end of period PRAW 5's rate limiting logic is structured for making hundreds of evenly-spaced API requests, which makes sense for running something like a bot or crawler. This handler's logic, on the other hand, is geared more towards interactive usage. It allows for short, sporadic bursts of requests. The assumption is that actual users browsing reddit shouldn't ever be in danger of hitting the rate limit. If they do hit the limit, they will be cutoff until the period resets. """ if 'x-ratelimit-remaining' not in response_headers: # This could be because the API returned an error response, or it # could be because we're using something like read-only credentials # which Reddit doesn't appear to care about rate limiting. return self.used = float(response_headers['x-ratelimit-used']) self.remaining = float(response_headers['x-ratelimit-remaining']) self.seconds_to_reset = int(response_headers['x-ratelimit-reset']) _logger.debug('Rate limit: %s used, %s remaining, %s reset', self.used, self.remaining, self.seconds_to_reset) if self.remaining <= 0: self.next_request_timestamp = time.time() + self.seconds_to_reset else: self.next_request_timestamp = None def _clear_timeouts(self, cache_timeout): """ Clear the cache of timed out results. """ for key in list(self.timeouts): if timer() - self.timeouts[key] > cache_timeout: del self.timeouts[key] del self.cache[key] def clear_cache(self): """Remove all items from the cache.""" self.cache = {} self.timeouts = {} def evict(self, urls): """Remove items from cache matching URLs. Return the number of items removed. """ if isinstance(urls, six.text_type): urls = [urls] urls = set(normalize_url(url) for url in urls) retval = 0 for key in list(self.cache): if key[0] in urls: retval += 1 del self.cache[key] del self.timeouts[key] return retval def request(self, _cache_key, _cache_ignore, _cache_timeout, **kwargs): """ This is a wrapper function that handles the caching of the request. See DefaultHandler.with_cache for reference. """ if _cache_key: # Pop the request's session cookies from the cache key. # These appear to be unreliable and change with every # request. Also, with the introduction of OAuth I don't think # that cookies are being used to store anything that # differentiates API requests anyways url, items = _cache_key _cache_key = (url, (items[0], items[1], items[3], items[4])) if kwargs['request'].method != 'GET': # I added this check for RTV, I have no idea why PRAW would ever # want to cache POST/PUT/DELETE requests _cache_ignore = True if _cache_ignore: return self._request(**kwargs) self._clear_timeouts(_cache_timeout) if _cache_key in self.cache: return self.cache[_cache_key] result = self._request(**kwargs) # The handlers don't call `raise_for_status` so we need to ignore # status codes that will result in an exception that should not be # cached. if result.status_code not in (200, 302): return result self.timeouts[_cache_key] = timer() self.cache[_cache_key] = result return result def _request(self, request, proxies, timeout, verify, **_): """ This is where we apply rate limiting and make the HTTP request. """ settings = self.http.merge_environment_settings( request.url, proxies, False, verify, None) self._delay() response = self.http.send( request, timeout=timeout, allow_redirects=False, **settings) self._update(response.headers) return response rtv-1.21.0+dfsg.orig/rtv/themes/0000755000175000017500000000000013222035043015706 5ustar noahfxnoahfxrtv-1.21.0+dfsg.orig/rtv/themes/default.cfg.example0000644000175000017500000000521413222035043021447 0ustar noahfxnoahfx[theme] ; = Normal = default default normal Selected = default default normal SelectedCursor = default default reverse TitleBar = cyan - bold+reverse OrderBar = yellow - bold OrderBarHighlight = yellow - bold+reverse HelpBar = cyan - bold+reverse Prompt = cyan - bold+reverse NoticeInfo = - - bold NoticeLoading = - - bold NoticeError = - - bold NoticeSuccess = - - bold CursorBlock = - - - CursorBar1 = magenta - - CursorBar2 = cyan - - CursorBar3 = green - - CursorBar4 = yellow - - CommentAuthor = blue - bold CommentAuthorSelf = green - bold CommentCount = - - - CommentText = - - - Created = - - - Downvote = red - bold Gold = yellow - bold HiddenCommentExpand = - - bold HiddenCommentText = - - - MultiredditName = yellow - bold MultiredditText = - - - NeutralVote = - - bold NSFW = red - bold+reverse Saved = green - - Score = - - - Separator = - - bold Stickied = green - - SubscriptionName = yellow - bold SubscriptionText = - - - SubmissionAuthor = green - bold SubmissionFlair = red - - SubmissionSubreddit = yellow - - SubmissionText = - - - SubmissionTitle = - - bold SubmissionTitleSeen = - - - Upvote = green - bold Link = blue - underline LinkSeen = magenta - underline UserFlair = yellow - boldrtv-1.21.0+dfsg.orig/rtv/themes/molokai.cfg0000644000175000017500000000630413222035043020025 0ustar noahfxnoahfx# https://github.com/tomasr/molokai # normal ansi_252, ansi_234 # line number ansi_239, ansi_235 # cursor ansi_252, ansi_236 # pmenusel ansi_255, ansi_242 # text - normal ansi_252 # text - dim ansi_244 # text - ultra dim ansi_241 # purple ansi_141 # green ansi_154 # magenta ansi_199, ansi_16 # gold ansi_222, ansi_233 # red ansi_197 # red - dim ansi_203 # orange ansi_208 # blue ansi_81 # blue - dim ansi_67, ansi_16 [theme] ; = Normal = ansi_252 ansi_234 normal Selected = ansi_252 ansi_236 normal SelectedCursor = ansi_252 ansi_234 bold+reverse TitleBar = ansi_81 - bold+reverse OrderBar = ansi_244 ansi_235 - OrderBarHighlight = ansi_244 ansi_235 bold+reverse HelpBar = ansi_81 - bold+reverse Prompt = ansi_208 - bold+reverse NoticeInfo = - - bold NoticeLoading = - - bold NoticeError = ansi_199 - bold NoticeSuccess = ansi_154 - bold CursorBlock = ansi_252 - - CursorBar1 = ansi_141 - - CursorBar2 = ansi_197 - - CursorBar3 = ansi_154 - - CursorBar4 = ansi_208 - - CommentAuthor = ansi_81 - - CommentAuthorSelf = ansi_154 - - CommentCount = - - - CommentText = - - - Created = - - - Downvote = ansi_197 - bold Gold = ansi_222 - bold HiddenCommentExpand = ansi_244 - bold HiddenCommentText = ansi_244 - - MultiredditName = - - bold MultiredditText = ansi_244 - - NeutralVote = - - bold NSFW = ansi_197 - bold+reverse Saved = ansi_199 - - Score = - - bold Separator = ansi_241 - bold Stickied = ansi_208 - - SubscriptionName = - - bold SubscriptionText = ansi_244 - - SubmissionAuthor = ansi_154 - - SubmissionFlair = ansi_197 - - SubmissionSubreddit = ansi_222 - - SubmissionText = - - - SubmissionTitle = - - bold SubmissionTitleSeen = - - - Upvote = ansi_154 - bold Link = ansi_67 - underline LinkSeen = ansi_141 - underline UserFlair = ansi_222 - boldrtv-1.21.0+dfsg.orig/rtv/themes/papercolor.cfg0000644000175000017500000000621313222035043020537 0ustar noahfxnoahfx# https://github.com/NLKNguyen/papercolor-theme # background ansi_255 # negative ansi_124 # positive ansi_28 # olive ansi_64 # neutral ansi_31 # comment ansi_102 # navy ansi_24 # foreground ansi_238 # nontext ansi_250 # red ansi_160 # pink ansi_162 # purple ansi_91 # accent ansi_166 # orange ansi_166 # blue ansi_25 # highlight ansi_24 # aqua ansi_31 # green ansi_28 [theme] ; = Normal = ansi_238 ansi_255 normal Selected = ansi_238 ansi_254 normal SelectedCursor = ansi_238 ansi_255 bold+reverse TitleBar = ansi_24 - bold+reverse OrderBar = ansi_25 - bold OrderBarHighlight = ansi_25 - bold+reverse HelpBar = ansi_24 - bold+reverse Prompt = ansi_31 - bold+reverse NoticeInfo = ansi_238 ansi_252 bold NoticeLoading = ansi_238 ansi_252 bold NoticeError = ansi_124 ansi_225 bold NoticeSuccess = ansi_28 ansi_157 bold CursorBlock = ansi_102 - - CursorBar1 = ansi_162 - - CursorBar2 = ansi_166 - - CursorBar3 = ansi_25 - - CursorBar4 = ansi_91 - - CommentAuthor = ansi_25 - bold CommentAuthorSelf = ansi_64 - bold CommentCount = - - - CommentText = - - - Created = - - - Downvote = ansi_124 - bold Gold = ansi_166 - bold HiddenCommentExpand = ansi_102 - bold HiddenCommentText = ansi_102 - - MultiredditName = - - bold MultiredditText = ansi_102 - - NeutralVote = - - bold NSFW = ansi_160 - bold+reverse Saved = ansi_31 - bold Score = - - bold Separator = - - bold Stickied = ansi_166 - bold SubscriptionName = - - bold SubscriptionText = ansi_102 - - SubmissionAuthor = ansi_64 - bold SubmissionFlair = ansi_162 - bold SubmissionSubreddit = ansi_166 - bold SubmissionText = - - - SubmissionTitle = - - bold SubmissionTitleSeen = - - - Upvote = ansi_28 - bold Link = ansi_24 - underline LinkSeen = ansi_91 - underline UserFlair = ansi_162 - boldrtv-1.21.0+dfsg.orig/rtv/themes/solarized-light.cfg0000644000175000017500000000622713222035043021477 0ustar noahfxnoahfx# http://ethanschoonover.com/solarized # base03 ansi_234 # base02 ansi_235 # base01 ansi_240 (optional emphasized content) # base00 ansi_241 (body text / primary content) # base0 ansi_244 # base1 ansi_245 (comments / secondary content) # base2 ansi_254 (background highlights) # base3 ansi_230 (background) # yellow ansi_136 # orange ansi_166 # red ansi_160 # magenta ansi_125 # violet ansi_61 # blue ansi_33 # cyan ansi_37 # green ansi_64 [theme] ; = Normal = ansi_241 ansi_230 normal Selected = ansi_241 ansi_254 normal SelectedCursor = ansi_241 ansi_254 bold+reverse TitleBar = ansi_37 - bold+reverse OrderBar = ansi_245 - bold OrderBarHighlight = ansi_245 - bold+reverse HelpBar = ansi_37 - bold+reverse Prompt = ansi_33 - bold+reverse NoticeInfo = - - bold NoticeLoading = - - bold NoticeError = ansi_160 - bold NoticeSuccess = ansi_64 - bold CursorBlock = ansi_245 - - CursorBar1 = ansi_125 - - CursorBar2 = ansi_160 - - CursorBar3 = ansi_61 - - CursorBar4 = ansi_37 - - CommentAuthor = ansi_33 - bold CommentAuthorSelf = ansi_64 - bold CommentCount = - - - CommentText = - - - Created = - - - Downvote = ansi_160 - bold Gold = ansi_136 - bold HiddenCommentExpand = ansi_245 - bold HiddenCommentText = ansi_245 - - MultiredditName = ansi_240 - bold MultiredditText = ansi_245 - - NeutralVote = - - bold NSFW = ansi_160 - bold+reverse Saved = ansi_125 - bold Score = - - - Separator = - - bold Stickied = ansi_136 - bold SubscriptionName = ansi_240 - bold SubscriptionText = ansi_245 - - SubmissionAuthor = ansi_64 - bold SubmissionFlair = ansi_160 - bold SubmissionSubreddit = ansi_166 - bold SubmissionText = - - - SubmissionTitle = ansi_240 - bold SubmissionTitleSeen = - - - Upvote = ansi_64 - bold Link = ansi_33 - underline LinkSeen = ansi_61 - underline UserFlair = ansi_136 - boldrtv-1.21.0+dfsg.orig/rtv/themes/solarized-dark.cfg0000644000175000017500000000621313222035043021304 0ustar noahfxnoahfx# http://ethanschoonover.com/solarized # base3 ansi_230 # base2 ansi_254 # base1 ansi_245 (optional emphasized content) # base0 ansi_244 (body text / primary content) # base00 ansi_241 # base01 ansi_240 (comments / secondary content) # base02 ansi_235 (background highlights) # base03 ansi_234 (background) # yellow ansi_136 # orange ansi_166 # red ansi_160 # magenta ansi_125 # violet ansi_61 # blue ansi_33 # cyan ansi_37 # green ansi_64 [theme] ; = Normal = ansi_244 ansi_234 normal Selected = ansi_244 ansi_235 normal SelectedCursor = ansi_244 ansi_235 bold+reverse TitleBar = ansi_37 - bold+reverse OrderBar = ansi_245 - bold OrderBarHighlight = ansi_245 - bold+reverse HelpBar = ansi_37 - bold+reverse Prompt = ansi_33 - bold+reverse NoticeInfo = - - bold NoticeLoading = - - bold NoticeError = ansi_160 - bold NoticeSuccess = ansi_64 - bold CursorBlock = ansi_240 - - CursorBar1 = ansi_125 - - CursorBar2 = ansi_160 - - CursorBar3 = ansi_61 - - CursorBar4 = ansi_37 - - CommentAuthor = ansi_33 - bold CommentAuthorSelf = ansi_64 - bold CommentCount = - - - CommentText = - - - Created = - - - Downvote = ansi_160 - bold Gold = ansi_136 - bold HiddenCommentExpand = ansi_240 - bold HiddenCommentText = ansi_240 - - MultiredditName = ansi_245 - bold MultiredditText = ansi_240 - - NeutralVote = - - bold NSFW = ansi_160 - bold+reverse Saved = ansi_125 - - Score = - - - Separator = - - bold Stickied = ansi_136 - - SubscriptionName = ansi_245 - bold SubscriptionText = ansi_240 - - SubmissionAuthor = ansi_64 - bold SubmissionFlair = ansi_160 - - SubmissionSubreddit = ansi_166 - - SubmissionText = - - - SubmissionTitle = ansi_245 - bold SubmissionTitleSeen = - - - Upvote = ansi_64 - bold Link = ansi_33 - underline LinkSeen = ansi_61 - underline UserFlair = ansi_136 - boldrtv-1.21.0+dfsg.orig/rtv/terminal.py0000644000175000017500000010057213222035043016613 0ustar noahfxnoahfx# -*- coding: utf-8 -*- from __future__ import unicode_literals import os import sys import time import shlex import codecs import curses import logging import threading import webbrowser import subprocess import curses.ascii from curses import textpad from multiprocessing import Process from contextlib import contextmanager from tempfile import NamedTemporaryFile import six from kitchen.text.display import textual_width_chop from . import exceptions, mime_parsers, content from .theme import Theme, ThemeList from .objects import LoadScreen try: # Fix only needed for versions prior to python 3.6 from mailcap_fix import mailcap except ImportError: import mailcap try: # Added in python 3.4+ from html import unescape except ImportError: from six.moves import html_parser unescape = html_parser.HTMLParser().unescape _logger = logging.getLogger(__name__) class Terminal(object): MIN_HEIGHT = 10 MIN_WIDTH = 20 # ASCII codes ESCAPE = 27 RETURN = 10 SPACE = 32 def __init__(self, stdscr, config): self.stdscr = stdscr self.config = config self.loader = LoadScreen(self) self.theme = None # Initialized by term.set_theme() self.theme_list = ThemeList() self._display = None self._mailcap_dict = mailcap.getcaps() self._term = os.environ.get('TERM') # This is a hack, the MIME parsers should be stateless # but we need to load the imgur credentials from the config mime_parsers.ImgurApiMIMEParser.CLIENT_ID = config['imgur_client_id'] @property def up_arrow(self): return '^' if self.config['ascii'] else '▲' @property def down_arrow(self): return 'v' if self.config['ascii'] else '▼' @property def neutral_arrow(self): return 'o' if self.config['ascii'] else '•' @property def guilded(self): return '*' if self.config['ascii'] else '✪' @property def vline(self): return getattr(curses, 'ACS_VLINE', ord('|')) @property def display(self): """ Use a number of methods to guess if the default webbrowser will open in the background as opposed to opening directly in the terminal. """ if self._display is None: if sys.platform == 'darwin': # OS X won't set $DISPLAY unless xQuartz is installed. # If you're using OS X and you want to access a terminal # browser, you need to set it manually via $BROWSER. # See issue #166 display = True else: display = bool(os.environ.get("DISPLAY")) # Use the convention defined here to parse $BROWSER # https://docs.python.org/2/library/webbrowser.html console_browsers = ['www-browser', 'links', 'links2', 'elinks', 'lynx', 'w3m'] if "BROWSER" in os.environ: user_browser = os.environ["BROWSER"].split(os.pathsep)[0] if user_browser in console_browsers: display = False if webbrowser._tryorder: if webbrowser._tryorder[0] in console_browsers: display = False self._display = display return self._display @staticmethod def flash(): """ Flash the screen to indicate that an action was invalid. """ return curses.flash() @staticmethod def curs_set(val): """ Change the cursor visibility, may fail for some terminals with limited cursor support. """ try: curses.curs_set(val) except: pass @staticmethod def addch(window, y, x, ch, attr): """ Curses addch() method that fixes a major bug in python 3.4. See http://bugs.python.org/issue21088 """ if sys.version_info[:3] == (3, 4, 0): y, x = x, y window.addch(y, x, ch, attr) def getch(self): """ Wait for a keypress and return the corresponding character code (int). """ return self.stdscr.getch() @staticmethod @contextmanager def suspend(): """ Suspend curses in order to open another subprocess in the terminal. """ try: curses.endwin() yield finally: curses.doupdate() @contextmanager def no_delay(self): """ Temporarily turn off character delay mode. In this mode, getch will not block while waiting for input and will return -1 if no key has been pressed. """ try: self.stdscr.nodelay(1) yield finally: self.stdscr.nodelay(0) def get_arrow(self, likes): """ Curses does define constants for symbols (e.g. curses.ACS_BULLET). However, they rely on using the curses.addch() function, which has been found to be buggy and a general PITA to work with. By defining them as unicode points they can be added via the more reliable curses.addstr(). http://bugs.python.org/issue21088 """ if likes is None: return self.neutral_arrow, self.attr('NeutralVote') elif likes: return self.up_arrow, self.attr('Upvote') else: return self.down_arrow, self.attr('Downvote') def clean(self, string, n_cols=None): """ Required reading! http://nedbatchelder.com/text/unipain.html Python 2 input string will be a unicode type (unicode code points). Curses will accept unicode if all of the points are in the ascii range. However, if any of the code points are not valid ascii curses will throw a UnicodeEncodeError: 'ascii' codec can't encode character, ordinal not in range(128). If we encode the unicode to a utf-8 byte string and pass that to curses, it will render correctly. Python 3 input string will be a string type (unicode code points). Curses will accept that in all cases. However, the n character count in addnstr will not be correct. If code points are passed to addnstr, curses will treat each code point as one character and will not account for wide characters. If utf-8 is passed in, addnstr will treat each 'byte' as a single character. Reddit's api sometimes chokes and double-encodes some html characters Praw handles the initial decoding, but we need to do a second pass just to make sure. See https://github.com/michael-lazar/rtv/issues/96 Example: &amp; -> returned directly from reddit's api & -> returned after PRAW decodes the html characters & -> returned after our second pass, this is the true value """ if n_cols is not None and n_cols <= 0: return '' if isinstance(string, six.text_type): string = unescape(string) if self.config['ascii']: if isinstance(string, six.binary_type): string = string.decode('utf-8') string = string.encode('ascii', 'replace') return string[:n_cols] if n_cols else string else: if n_cols: string = textual_width_chop(string, n_cols) if isinstance(string, six.text_type): string = string.encode('utf-8') return string def add_line(self, window, text, row=None, col=None, attr=None): """ Unicode aware version of curses's built-in addnstr method. Safely draws a line of text on the window starting at position (row, col). Checks the boundaries of the window and cuts off the text if it exceeds the length of the window. """ # The following arg combos must be supported to conform with addnstr # (window, text) # (window, text, attr) # (window, text, row, col) # (window, text, row, col, attr) cursor_row, cursor_col = window.getyx() row = row if row is not None else cursor_row col = col if col is not None else cursor_col max_rows, max_cols = window.getmaxyx() n_cols = max_cols - col - 1 if n_cols <= 0: # Trying to draw outside of the screen bounds return try: text = self.clean(text, n_cols) params = [] if attr is None else [attr] window.addstr(row, col, text, *params) except curses.error as e: _logger.warning('add_line raised an exception') _logger.exception(str(e)) @staticmethod def add_space(window): """ Shortcut for adding a single space to a window at the current position """ row, col = window.getyx() _, max_cols = window.getmaxyx() n_cols = max_cols - col - 1 if n_cols <= 0: # Trying to draw outside of the screen bounds return window.addstr(row, col, ' ') def show_notification(self, message, timeout=None, style='Info'): """ Overlay a message box on the center of the screen and wait for input. Params: message (list or string): List of strings, one per line. timeout (float): Optional, maximum length of time that the message will be shown before disappearing. style (str): The theme element that will be applied to the notification window """ assert style in ('Info', 'Warning', 'Error', 'Success') if isinstance(message, six.string_types): message = message.splitlines() n_rows, n_cols = self.stdscr.getmaxyx() v_offset, h_offset = self.stdscr.getbegyx() box_width = max(len(m) for m in message) + 2 box_height = len(message) + 2 # Cut off the lines of the message that don't fit on the screen box_width = min(box_width, n_cols) box_height = min(box_height, n_rows) message = message[:box_height-2] s_row = (n_rows - box_height) // 2 + v_offset s_col = (n_cols - box_width) // 2 + h_offset window = curses.newwin(box_height, box_width, s_row, s_col) window.bkgd(str(' '), self.attr('Notice{0}'.format(style))) window.erase() window.border() for index, line in enumerate(message, start=1): self.add_line(window, line, index, 1) window.refresh() ch, start = -1, time.time() with self.no_delay(): while timeout is None or time.time() - start < timeout: ch = self.getch() if ch != -1: break time.sleep(0.01) window.clear() del window self.stdscr.touchwin() self.stdscr.refresh() return ch def open_link(self, url): """ Open a media link using the definitions from the user's mailcap file. Most urls are parsed using their file extension, but special cases exist for websites that are prevalent on reddit such as Imgur and Gfycat. If there are no valid mailcap definitions, RTV will fall back to using the default webbrowser. RTV checks for certain mailcap fields to determine how to open a link: - If ``copiousoutput`` is specified, the curses application will be paused and stdout will be piped to the system pager. - If `needsterminal`` is specified, the curses application will yield terminal control to the subprocess until it has exited. - Otherwise, we assume that the subprocess is meant to open a new x-window, and we swallow all stdout output. Examples: Stream youtube videos with VLC Browse images and imgur albums with feh Watch .webm videos through your terminal with mplayer View images directly in your terminal with fbi or w3m Play .mp3 files with sox player Send HTML pages your pager using to html2text ...anything is possible! """ if not self.config['enable_media']: return self.open_browser(url) try: with self.loader('Checking link', catch_exception=False): command, entry = self.get_mailcap_entry(url) except exceptions.MailcapEntryNotFound: return self.open_browser(url) _logger.info('Executing command: %s', command) needs_terminal = 'needsterminal' in entry copious_output = 'copiousoutput' in entry if needs_terminal or copious_output: # Blocking, pause rtv until the process returns with self.suspend(): os.system('clear') p = subprocess.Popen( [command], stderr=subprocess.PIPE, universal_newlines=True, shell=True) _, stderr = p.communicate() if copious_output: six.moves.input('Press any key to continue') code = p.poll() if code != 0: _logger.warning(stderr) self.show_notification( 'Program exited with status={0}\n{1}'.format( code, stderr.strip()), style='Error') else: # Non-blocking, open a background process with self.loader('Opening page', delay=0): p = subprocess.Popen( [command], shell=True, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Wait a little while to make sure that the command doesn't # exit with an error. This isn't perfect, but it should be good # enough to catch invalid commands. time.sleep(1.0) code = p.poll() if code is not None and code != 0: _, stderr = p.communicate() raise exceptions.BrowserError( 'Program exited with status={0}\n{1}'.format( code, stderr.strip())) # Spin off a thread with p.communicate() to avoid subprocess # hang when the stodout/stderr PIPE gets filled up. This # behavior was discovered when opening long gifs with mpv # because mpv sends a progress bar to stderr. # https://thraxil.org/users/anders/posts/2008/03/13/ threading.Thread(target=p.communicate).start() def get_mailcap_entry(self, url): """ Search through the mime handlers list and attempt to find the appropriate command to open the provided url with. Will raise a MailcapEntryNotFound exception if no valid command exists. Params: url (text): URL that will be checked Returns: command (text): The string of the command that should be executed in a subprocess to open the resource. entry (dict): The full mailcap entry for the corresponding command """ for parser in mime_parsers.parsers: if parser.pattern.match(url): # modified_url may be the same as the original url, but it # could also be updated to point to a different page, or it # could refer to the location of a temporary file with the # page's downloaded content. try: modified_url, content_type = parser.get_mimetype(url) except Exception as e: # If Imgur decides to change its html layout, let it fail # silently in the background instead of crashing. _logger.warning('parser %s raised an exception', parser) _logger.exception(e) raise exceptions.MailcapEntryNotFound() if not content_type: _logger.info('Content type could not be determined') raise exceptions.MailcapEntryNotFound() elif content_type == 'text/html': _logger.info('Content type text/html, deferring to browser') raise exceptions.MailcapEntryNotFound() command, entry = mailcap.findmatch( self._mailcap_dict, content_type, filename=modified_url) if not entry: _logger.info('Could not find a valid mailcap entry') raise exceptions.MailcapEntryNotFound() return command, entry # No parsers matched the url raise exceptions.MailcapEntryNotFound() def open_browser(self, url): """ Open the given url using the default webbrowser. The preferred browser can specified with the $BROWSER environment variable. If not specified, python webbrowser will try to determine the default to use based on your system. For browsers requiring an X display, we open a new subprocess and redirect stdout/stderr to devnull. This is a workaround to stop BackgroundBrowsers (e.g. xdg-open, any BROWSER command ending in "&"), from spewing warning messages to the console. See http://bugs.python.org/issue22277 for a better description of the problem. For console browsers (e.g. w3m), RTV will suspend and display the browser window within the same terminal. This mode is triggered either when 1. $BROWSER is set to a known console browser, or 2. $DISPLAY is undefined, indicating that the terminal is running headless There may be other cases where console browsers are opened (xdg-open?) but are not detected here. These cases are still unhandled and will probably be broken if we incorrectly assume that self.display=True. """ if self.display: with self.loader('Opening page in a new window'): def open_url_silent(url): # This used to be done using subprocess.Popen(). # It was switched to multiprocessing.Process so that we # can re-use the webbrowser instance that has been patched # by RTV. It's also safer because it doesn't inject # python code through the command line. # Surpress stdout/stderr from the browser, see # https://stackoverflow.com/questions/2323080. We can't # depend on replacing sys.stdout & sys.stderr because # webbrowser uses Popen(). stdout, stderr = os.dup(1), os.dup(2) null = os.open(os.devnull, os.O_RDWR) try: os.dup2(null, 1) os.dup2(null, 2) webbrowser.open_new_tab(url) finally: null.close() os.dup2(stdout, 1) os.dup2(stderr, 2) p = Process(target=open_url_silent, args=(url,)) p.start() # Give the browser 7 seconds to open a new tab. Because the # display is set, calling webbrowser should be non-blocking. # If it blocks or returns an error, something went wrong. try: p.join(7) if p.is_alive(): raise exceptions.BrowserError( 'Timeout waiting for browser to open') finally: # This will be hit on the browser timeout, but also if the # user presses the ESC key. We always want to kill the # webbrowser process if it hasn't opened the tab and # terminated by now. try: p.terminate() except OSError: pass else: with self.suspend(): webbrowser.open_new_tab(url) def open_pager(self, data, wrap=None): """ View a long block of text using the system's default pager. The data string will be piped directly to the pager. """ pager = os.getenv('PAGER') or 'less' command = shlex.split(pager) if wrap: data_lines = content.Content.wrap_text(data, wrap) data = '\n'.join(data_lines) try: with self.suspend(): _logger.debug('Running command: %s', command) p = subprocess.Popen(command, stdin=subprocess.PIPE) try: p.communicate(data.encode('utf-8')) except KeyboardInterrupt: p.terminate() except OSError as e: _logger.exception(e) self.show_notification('Could not open pager %s' % pager) @contextmanager def open_editor(self, data=''): """ Open a file for editing using the system's default editor. After the file has been altered, the text will be read back and lines starting with '#' will be stripped. If an error occurs inside of the context manager, the file will be preserved. Otherwise, the file will be deleted when the context manager closes. Params: data (str): If provided, text will be written to the file before opening it with the editor. Returns: text (str): The text that the user entered into the editor. """ with NamedTemporaryFile(prefix='rtv_', suffix='.txt', delete=False) as fp: # Create a tempory file and grab the name, but close immediately so # we can re-open using the right encoding filepath = fp.name with codecs.open(filepath, 'w', 'utf-8') as fp: fp.write(data) _logger.info('File created: %s', filepath) editor = (os.getenv('RTV_EDITOR') or os.getenv('VISUAL') or os.getenv('EDITOR') or 'nano') command = shlex.split(editor) + [filepath] try: with self.suspend(): _logger.debug('Running command: %s', command) p = subprocess.Popen(command) try: p.communicate() except KeyboardInterrupt: p.terminate() except OSError as e: _logger.exception(e) self.show_notification('Could not open file with %s' % editor) with codecs.open(filepath, 'r', 'utf-8') as fp: text = ''.join(line for line in fp if not line.startswith('#')) text = text.rstrip() try: yield text except exceptions.TemporaryFileError: # All exceptions will cause the file to *not* be removed, but these # ones should also be swallowed _logger.info('Caught TemporaryFileError') self.show_notification('Post saved as: %s' % filepath) else: # If no errors occurred, try to remove the file try: os.remove(filepath) except OSError: _logger.warning('Could not delete: %s', filepath) else: _logger.info('File deleted: %s', filepath) def open_urlview(self, data): """ Pipe a block of text to urlview, which displays a list of urls contained in the text and allows the user to open them with their web browser. """ urlview = os.getenv('RTV_URLVIEWER') or 'urlview' command = shlex.split(urlview) try: with self.suspend(): _logger.debug('Running command: %s', command) p = subprocess.Popen(command, stdin=subprocess.PIPE) try: p.communicate(input=data.encode('utf-8')) except KeyboardInterrupt: p.terminate() code = p.poll() if code == 1: # Clear the "No URLs found." message from stdout sys.stdout.write("\033[F") sys.stdout.flush() if code == 1: self.show_notification('No URLs found') except OSError as e: _logger.exception(e) self.show_notification( 'Failed to open {0}'.format(urlview)) def text_input(self, window, allow_resize=False): """ Transform a window into a text box that will accept user input and loop until an escape sequence is entered. If the escape key (27) is pressed, cancel the textbox and return None. Otherwise, the textbox will wait until it is full (^j, or a new line is entered on the bottom line) or the BEL key (^g) is pressed. """ window.clear() # Set cursor mode to 1 because 2 doesn't display on some terminals self.curs_set(1) # Keep insert_mode off to avoid the recursion error described here # http://bugs.python.org/issue13051 textbox = textpad.Textbox(window) textbox.stripspaces = 0 def validate(ch): "Filters characters for special key sequences" if ch == self.ESCAPE: raise exceptions.EscapeInterrupt() if (not allow_resize) and (ch == curses.KEY_RESIZE): raise exceptions.EscapeInterrupt() # Fix backspace for iterm if ch == curses.ascii.DEL: ch = curses.KEY_BACKSPACE return ch # Wrapping in an exception block so that we can distinguish when the # user hits the return character from when the user tries to back out # of the input. try: out = textbox.edit(validate=validate) if isinstance(out, six.binary_type): out = out.decode('utf-8') except exceptions.EscapeInterrupt: out = None self.curs_set(0) return self.strip_textpad(out) def prompt_input(self, prompt, key=False): """ Display a text prompt at the bottom of the screen. Params: prompt (string): Text prompt that will be displayed key (bool): If true, grab a single keystroke instead of a full string. This can be faster than pressing enter for single key prompts (e.g. y/n?) """ n_rows, n_cols = self.stdscr.getmaxyx() v_offset, h_offset = self.stdscr.getbegyx() ch, attr = str(' '), self.attr('Prompt') prompt = self.clean(prompt, n_cols-1) # Create a new window to draw the text at the bottom of the screen, # so we can erase it when we're done. s_row = v_offset + n_rows - 1 s_col = h_offset prompt_win = curses.newwin(1, len(prompt) + 1, s_row, s_col) prompt_win.bkgd(ch, attr) self.add_line(prompt_win, prompt) prompt_win.refresh() # Create a separate window for text input s_col = h_offset + len(prompt) input_win = curses.newwin(1, n_cols - len(prompt), s_row, s_col) input_win.bkgd(ch, attr) input_win.refresh() if key: self.curs_set(1) ch = self.getch() # We can't convert the character to unicode, because it may return # Invalid values for keys that don't map to unicode characters, # e.g. F1 text = ch if ch != self.ESCAPE else None self.curs_set(0) else: text = self.text_input(input_win) prompt_win.clear() input_win.clear() del prompt_win del input_win self.stdscr.touchwin() self.stdscr.refresh() return text def prompt_y_or_n(self, prompt): """ Wrapper around prompt_input for simple yes/no queries. """ ch = self.prompt_input(prompt, key=True) if ch in (ord('Y'), ord('y')): return True elif ch in (ord('N'), ord('n'), None): return False else: self.flash() return False @staticmethod def strip_textpad(text): """ Attempt to intelligently strip excess whitespace from the output of a curses textpad. """ if text is None: return text # Trivial case where the textbox is only one line long. if '\n' not in text: return text.rstrip() # Allow one space at the end of the line. If there is more than one # space, assume that a newline operation was intended by the user stack, current_line = [], '' for line in text.split('\n'): if line.endswith(' ') or not line: stack.append(current_line + line.rstrip()) current_line = '' else: current_line += line stack.append(current_line) # Prune empty lines at the bottom of the textbox. for item in stack[::-1]: if len(item) == 0: stack.pop() else: break out = '\n'.join(stack) return out def clear_screen(self): """ In the beginning this always called touchwin(). However, a bug was discovered in tmux when TERM was set to `xterm-256color`, where only part of the screen got redrawn when scrolling. tmux automatically sets TERM to `screen-256color`, but many people choose to override this in their tmux.conf or .bashrc file which can cause issues. Using clearok() instead seems to fix the problem, with the trade off of slightly more expensive screen refreshes. Update: It was discovered that using clearok() introduced a separate bug for urxvt users in which their screen flashed when scrolling. Heuristics were added to make it work with as many configurations as possible. It's still not perfect (e.g. urxvt + xterm-256color) will screen flash, but it should work in all cases if the user sets their TERM correctly. Reference: https://github.com/michael-lazar/rtv/issues/343 https://github.com/michael-lazar/rtv/issues/323 """ if self._term != 'xterm-256color': self.stdscr.touchwin() else: self.stdscr.clearok(True) def attr(self, element): """ Shortcut for fetching the color + attribute code for an element. """ # The theme must be initialized before calling this assert self.theme is not None return self.theme.get(element) @staticmethod def check_theme(theme): """ Check if the given theme is compatible with the terminal """ terminal_colors = curses.COLORS if curses.has_colors() else 0 if theme.required_colors > terminal_colors: return False elif theme.required_color_pairs > curses.COLOR_PAIRS: return False else: return True def set_theme(self, theme=None): """ Check that the terminal supports the provided theme, and applies the theme to the terminal if possible. If the terminal doesn't support the theme, this falls back to the default theme. The default theme only requires 8 colors so it should be compatible with any terminal that supports basic colors. """ terminal_colors = curses.COLORS if curses.has_colors() else 0 default_theme = Theme(use_color=bool(terminal_colors)) if theme is None: theme = default_theme elif theme.required_color_pairs > curses.COLOR_PAIRS: _logger.warning( 'Theme `%s` requires %s color pairs, but $TERM=%s only ' 'supports %s color pairs, switching to default theme', theme.name, theme.required_color_pairs, self._term, curses.COLOR_PAIRS) theme = default_theme elif theme.required_colors > terminal_colors: _logger.warning( 'Theme `%s` requires %s colors, but $TERM=%s only ' 'supports %s colors, switching to default theme', theme.name, theme.required_colors, self._term, curses.COLORS) theme = default_theme theme.bind_curses() self.theme = theme # Apply the default color to the whole screen self.stdscr.bkgd(str(' '), self.attr('Normal')) rtv-1.21.0+dfsg.orig/rtv/config.py0000644000175000017500000002265713222035043016254 0ustar noahfxnoahfx# -*- coding: utf-8 -*- from __future__ import unicode_literals import os import codecs import shutil import argparse from functools import partial import six from six.moves import configparser from . import docs, __version__ from .objects import KeyMap PACKAGE = os.path.dirname(__file__) HOME = os.path.expanduser('~') TEMPLATES = os.path.join(PACKAGE, 'templates') DEFAULT_CONFIG = os.path.join(TEMPLATES, 'rtv.cfg') DEFAULT_MAILCAP = os.path.join(TEMPLATES, 'mailcap') DEFAULT_THEMES = os.path.join(PACKAGE, 'themes') XDG_CONFIG_HOME = os.getenv('XDG_CONFIG_HOME', os.path.join(HOME, '.config')) XDG_DATA_HOME = os.getenv('XDG_DATA_HOME', os.path.join(HOME, '.local', 'share')) CONFIG = os.path.join(XDG_CONFIG_HOME, 'rtv', 'rtv.cfg') MAILCAP = os.path.join(HOME, '.mailcap') TOKEN = os.path.join(XDG_DATA_HOME, 'rtv', 'refresh-token') HISTORY = os.path.join(XDG_DATA_HOME, 'rtv', 'history.log') THEMES = os.path.join(XDG_CONFIG_HOME, 'rtv', 'themes') def build_parser(): parser = argparse.ArgumentParser( prog='rtv', description=docs.SUMMARY, epilog=docs.CONTROLS, usage=docs.USAGE, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( 'link', metavar='URL', nargs='?', help='[optional] Full URL of a submission to open') parser.add_argument( '-s', dest='subreddit', help='Name of the subreddit that will be loaded on start') parser.add_argument( '-l', dest='link_deprecated', help=argparse.SUPPRESS) # Deprecated, use the positional arg instead parser.add_argument( '--log', metavar='FILE', action='store', help='Log HTTP requests to the given file') parser.add_argument( '--config', metavar='FILE', action='store', help='Load configuration settings from the given file') parser.add_argument( '--ascii', action='store_const', const=True, help='Enable ascii-only mode') parser.add_argument( '--monochrome', action='store_const', const=True, help='Disable color') parser.add_argument( '--theme', metavar='FILE', action='store', help='Color theme to use, see --list-themes for valid options') parser.add_argument( '--list-themes', metavar='FILE', action='store_const', const=True, help='List all of the available color themes') parser.add_argument( '--non-persistent', dest='persistent', action='store_const', const=False, help='Forget the authenticated user when the program exits') parser.add_argument( '--clear-auth', dest='clear_auth', action='store_const', const=True, help='Remove any saved user data before launching') parser.add_argument( '--copy-config', dest='copy_config', action='store_const', const=True, help='Copy the default configuration to {HOME}/.config/rtv/rtv.cfg') parser.add_argument( '--copy-mailcap', dest='copy_mailcap', action='store_const', const=True, help='Copy an example mailcap configuration to {HOME}/.mailcap') parser.add_argument( '--enable-media', dest='enable_media', action='store_const', const=True, help='Open external links using programs defined in the mailcap config') parser.add_argument( '-V', '--version', action='version', version='rtv '+__version__) return parser def copy_default_mailcap(filename=MAILCAP): """ Copy the example mailcap configuration to the specified file. """ return _copy_settings_file(DEFAULT_MAILCAP, filename, 'mailcap') def copy_default_config(filename=CONFIG): """ Copy the default rtv user configuration to the specified file. """ return _copy_settings_file(DEFAULT_CONFIG, filename, 'config') def _copy_settings_file(source, destination, name): """ Copy a file from the repo to the user's home directory. """ if os.path.exists(destination): try: ch = six.moves.input( 'File %s already exists, overwrite? y/[n]):' % destination) if ch not in ('Y', 'y'): return except KeyboardInterrupt: return filepath = os.path.dirname(destination) if not os.path.exists(filepath): os.makedirs(filepath) print('Copying default %s to %s' % (name, destination)) shutil.copy(source, destination) os.chmod(destination, 0o664) class OrderedSet(object): """ A simple implementation of an ordered set. A set is used to check for membership, and a list is used to maintain ordering. """ def __init__(self, elements=None): elements = elements or [] self._set = set(elements) self._list = elements def __contains__(self, item): return item in self._set def __len__(self): return len(self._list) def __getitem__(self, item): return self._list[item] def add(self, item): self._set.add(item) self._list.append(item) class Config(object): """ This class manages the loading and saving of configs and other files. """ def __init__(self, history_file=HISTORY, token_file=TOKEN, **kwargs): self.history_file = history_file self.token_file = token_file self.config = kwargs default, bindings = self.get_file(DEFAULT_CONFIG) self.default = default self.keymap = KeyMap(bindings) # `refresh_token` and `history` are saved/loaded at separate locations, # so they are treated differently from the rest of the config options. self.refresh_token = None self.history = OrderedSet() def __getitem__(self, item): if item in self.config: return self.config[item] else: return self.default.get(item, None) def __setitem__(self, key, value): self.config[key] = value def __delitem__(self, key): self.config.pop(key, None) def update(self, **kwargs): self.config.update(kwargs) def load_refresh_token(self): if os.path.exists(self.token_file): with open(self.token_file) as fp: self.refresh_token = fp.read().strip() else: self.refresh_token = None def save_refresh_token(self): self._ensure_filepath(self.token_file) with open(self.token_file, 'w+') as fp: fp.write(self.refresh_token) def delete_refresh_token(self): if os.path.exists(self.token_file): os.remove(self.token_file) self.refresh_token = None def load_history(self): if os.path.exists(self.history_file): with codecs.open(self.history_file, encoding='utf-8') as fp: self.history = OrderedSet([line.strip() for line in fp]) else: self.history = OrderedSet() def save_history(self): self._ensure_filepath(self.history_file) with codecs.open(self.history_file, 'w+', encoding='utf-8') as fp: fp.writelines('\n'.join(self.history[-self['history_size']:])) def delete_history(self): if os.path.exists(self.history_file): os.remove(self.history_file) self.history = OrderedSet() @staticmethod def get_args(): """ Load settings from the command line. """ parser = build_parser() args = vars(parser.parse_args()) # Overwrite the deprecated "-l" option into the link variable if args['link_deprecated'] and args['link'] is None: args['link'] = args['link_deprecated'] args.pop('link_deprecated', None) # Filter out argument values that weren't supplied return {key: val for key, val in args.items() if val is not None} @classmethod def get_file(cls, filename=None): """ Load settings from an rtv configuration file. """ if filename is None: filename = CONFIG config = configparser.ConfigParser() if os.path.exists(filename): with codecs.open(filename, encoding='utf-8') as fp: config.readfp(fp) return cls._parse_rtv_file(config) @staticmethod def _parse_rtv_file(config): rtv = {} if config.has_section('rtv'): rtv = dict(config.items('rtv')) params = { 'ascii': partial(config.getboolean, 'rtv'), 'monochrome': partial(config.getboolean, 'rtv'), 'clear_auth': partial(config.getboolean, 'rtv'), 'persistent': partial(config.getboolean, 'rtv'), 'enable_media': partial(config.getboolean, 'rtv'), 'history_size': partial(config.getint, 'rtv'), 'oauth_redirect_port': partial(config.getint, 'rtv'), 'oauth_scope': lambda x: rtv[x].split(','), 'max_comment_cols': partial(config.getint, 'rtv'), 'hide_username': partial(config.getboolean, 'rtv') } for key, func in params.items(): if key in rtv: rtv[key] = func(key) bindings = {} if config.has_section('bindings'): bindings = dict(config.items('bindings')) for name, keys in bindings.items(): bindings[name] = [key.strip() for key in keys.split(',')] return rtv, bindings @staticmethod def _ensure_filepath(filename): """ Ensure that the directory exists before trying to write to the file. """ filepath = os.path.dirname(filename) if not os.path.exists(filepath): os.makedirs(filepath) rtv-1.21.0+dfsg.orig/rtv/templates/0000755000175000017500000000000013222035043016417 5ustar noahfxnoahfxrtv-1.21.0+dfsg.orig/rtv/templates/index.html0000644000175000017500000000127213222035043020416 0ustar noahfxnoahfx RTV OAuth2 Helper ${message} rtv-1.21.0+dfsg.orig/rtv/templates/mailcap0000644000175000017500000000652613222035043017761 0ustar noahfxnoahfx# Example mailcap file for Reddit Terminal Viewer # https://github.com/michael-lazar/rtv/ # # Copy the contents of this file to {HOME}/.mailcap, or point to using $MAILCAPS # Then launch RTV using the --enable-media flag. All shell commands defined in # this file depend on external programs that must be installed on your system. # # HELP REQUESTED! If you come up with your own commands (especially for OS X) # and would like to share, please post an issue on the GitHub tracker and we # can get them added to this file as references. # # # Mailcap 101 # - The first entry with a matching MIME type will be executed, * is a wildcard # - %s will be replaced with the image or video url # - Add ``test=test -n "$DISPLAY"`` if your command opens a new window # - Add ``needsterminal`` for commands that use the terminal # - Add ``copiousoutput`` for commands that dump text to stdout ############################################################################### # Commands below this point will open media in a separate window without # pausing execution of RTV. ############################################################################### # Feh is a simple and effective image viewer # Note that rtv returns a list of urls for imgur albums, so we don't put quotes # around the `%s` image/x-imgur-album; feh -g 640x480 %s; test=test -n "$DISPLAY" image/gif; mpv '%s' --autofit 640x480 --loop=inf; test=test -n "$DISPLAY" image/*; feh -g 640x480 '%s'; test=test -n "$DISPLAY" # Youtube videos are assigned a custom mime-type, which can be streamed with # vlc or youtube-dl. video/x-youtube; vlc '%s' --width 640 --height 480; test=test -n "$DISPLAY" video/x-youtube; mpv --ytdl-format=best '%s' --autofit 640x480; test=test -n "$DISPLAY" # Mpv is a simple and effective video streamer video/*; mpv '%s' --autofit 640x480 --loop=inf; test=test -n "$DISPLAY" ############################################################################### # Commands below this point will attempt to display media directly in the # terminal when X is not available. ############################################################################### # View images directly in your terminal with iTerm2 # curl -L https://iterm2.com/misc/install_shell_integration_and_utilities.sh | bash # image/*; curl -s %s | ~/.iterm2/imgcat && read -n 1; needsterminal # View true images in the terminal, supported by rxvt-unicode, xterm and st # Requires the w3m-img package # image/*; w3m -o 'ext_image_viewer=off' '%s'; needsterminal # Don't have a solution for albums yet image/x-imgur-album; echo # 256 color images using half-width unicode characters # Much higher quality that img2txt, but must be built from source # https://github.com/rossy/img2xterm image/*; curl -s '%s' | convert -resize 80x80 - jpg:/tmp/rtv.jpg && img2xterm /tmp/rtv.jpg; needsterminal; copiousoutput # Display images in classic ascii using img2txt and lib-caca image/*; curl -s '%s' | convert - jpg:/tmp/rtv.jpg && img2txt -f utf8 /tmp/rtv.jpg; needsterminal; copiousoutput # Full motion videos - requires a framebuffer to view video/x-youtube; mpv -vo drm -quiet '%s'; needsterminal video/*; mpv -vo drm -quiet '%s'; needsterminal # Ascii videos # video/x-youtube; youtube-dl -q -o - '%s' | mplayer -cache 8192 -vo caca -quiet -; needsterminal # video/*; wget '%s' -O - | mplayer -cache 8192 -vo caca -quiet -; needsterminal rtv-1.21.0+dfsg.orig/rtv/templates/rtv.cfg0000644000175000017500000001151513222035043017716 0ustar noahfxnoahfx; Reddit Terminal Viewer Configuration File ; https://github.com/michael-lazar/rtv ; ; This file should be placed in $XDG_CONFIG/rtv/rtv.cfg ; If $XDG_CONFIG is not set, use ~/.config/rtv/rtv.cfg [rtv] ################## # General Settings ################## ; Turn on ascii-only mode to disable all unicode characters. ; This may be necessary for compatibility with some terminal browsers. ascii = False ; Turn on monochrome mode to disable color. monochrome = False ; Enable debugging by logging all HTTP requests and errors to the given file. ;log = /tmp/rtv.log ; Default subreddit that will be opened when the program launches. subreddit = front ;subreddit = python ;subreddit = python+linux+programming ;subreddit = all ; Allow rtv to store reddit authentication credentials between sessions. persistent = True ; Clear any stored credentials when the program starts. clear_auth = False ; Maximum number of opened links that will be saved in the history file. history_size = 200 ; Open external links using programs defined in the mailcap config. enable_media = False ; Maximum number of columns for a comment max_comment_cols = 120 ; Hide username if logged in, display "Logged in" instead hide_username = False ; Color theme, use "rtv --list-themes" to view a list of valid options. ; This can be an absolute filepath, or the name of a theme file that has ; been installed into either the custom of default theme paths. ;theme = monokai ################ # OAuth Settings ################ ; This sections defines the paramaters that will be used during the OAuth ; authentication process. rtv is registered as an "installed app", ; see https://github.com/reddit/reddit/wiki/OAuth2 for more information. ; These settings are defined at https://www.reddit.com/prefs/apps and should ; not be altered unless you are defining your own developer application. oauth_client_id = E2oEtRQfdfAfNQ oauth_client_secret = praw_gapfill oauth_redirect_uri = http://127.0.0.1:65000/ ; Port that the rtv webserver will listen on. This should match the redirect ; uri defined above. oauth_redirect_port = 65000 ; Access permissions that will be requested. oauth_scope = edit,history,identity,mysubreddits,privatemessages,read,report,save,submit,subscribe,vote ; This is a separate token for the imgur api. It's used to extract images ; from imgur links and albums so they can be opened with mailcap. ; See https://imgur.com/account/settings/apps to generate your own key. imgur_client_id = 93396265f59dec9 [bindings] ############## # Key Bindings ############## ; If you would like to define custom bindings, copy this section into your ; config file with the [bindings] heading. All commands must be bound to at ; least one key for the config to be valid. ; ; 1.) Plain keys can be represented by either uppercase/lowercase characters ; or the hexadecimal numbers referring their ascii codes. For reference, see ; https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart ; e.g. Q, q, 1, ? ; e.g. 0x20 (space), 0x3c (less-than sign) ; ; 2.) Special ascii control codes should be surrounded with <>. For reference, ; see https://en.wikipedia.org/wiki/ASCII#ASCII_control_code_chart ; e.g. (enter), (escape) ; ; 3.) Other special keys are defined by curses, they should be surrounded by <> ; and prefixed with KEY_. For reference, see ; https://docs.python.org/2/library/curses.html#constants ; e.g. (left arrow), , (page down) ; ; Notes: ; - Curses is unreliable and should always be used in conjunction ; with . ; - Use 0x20 for the space key. ; - A subset of Ctrl modifiers are available through the ascii control codes. ; For example, Ctrl-D will trigger an signal. See the table above for ; a complete reference. ; Base page EXIT = q FORCE_EXIT = Q HELP = ? SORT_HOT = 1 SORT_TOP = 2 SORT_RISING = 3 SORT_NEW = 4 SORT_CONTROVERSIAL = 5 MOVE_UP = k, MOVE_DOWN = j, PREVIOUS_THEME = NEXT_THEME = PAGE_UP = m, , PAGE_DOWN = n, , PAGE_TOP = gg PAGE_BOTTOM = G UPVOTE = a DOWNVOTE = z LOGIN = u DELETE = d EDIT = e INBOX = i REFRESH = r, PROMPT = / SAVE = w COPY_PERMALINK = y COPY_URL = Y ; Submission page SUBMISSION_TOGGLE_COMMENT = 0x20 SUBMISSION_OPEN_IN_BROWSER = o, , SUBMISSION_POST = c SUBMISSION_EXIT = h, SUBMISSION_OPEN_IN_PAGER = l, SUBMISSION_OPEN_IN_URLVIEWER = b SUBMISSION_GOTO_PARENT = K SUBMISSION_GOTO_SIBLING = J ; Subreddit page SUBREDDIT_SEARCH = f SUBREDDIT_POST = c SUBREDDIT_OPEN = l, SUBREDDIT_OPEN_IN_BROWSER = o, , SUBREDDIT_OPEN_SUBSCRIPTIONS = s SUBREDDIT_OPEN_MULTIREDDITS = S SUBREDDIT_FRONTPAGE = p ; Subscription page SUBSCRIPTION_SELECT = l, , , SUBSCRIPTION_EXIT = h, s, S, , rtv-1.21.0+dfsg.orig/rtv/subscription_page.py0000644000175000017500000000752713222035043020526 0ustar noahfxnoahfx# -*- coding: utf-8 -*- from __future__ import unicode_literals from . import docs from .page import Page, PageController from .content import SubscriptionContent, SubredditContent from .objects import Navigator, Command class SubscriptionController(PageController): character_map = {} class SubscriptionPage(Page): FOOTER = docs.FOOTER_SUBSCRIPTION def __init__(self, reddit, term, config, oauth, content_type='subreddit'): super(SubscriptionPage, self).__init__(reddit, term, config, oauth) self.controller = SubscriptionController(self, keymap=config.keymap) self.content = SubscriptionContent.from_user( reddit, term.loader, content_type) self.nav = Navigator(self.content.get) self.content_type = content_type self.selected_subreddit = None def refresh_content(self, order=None, name=None): """ Re-download all subscriptions and reset the page index """ # reddit.get_my_subreddits() does not support sorting by order if order: self.term.flash() return with self.term.loader(): self.content = SubscriptionContent.from_user( self.reddit, self.term.loader, self.content_type) if not self.term.loader.exception: self.nav = Navigator(self.content.get) @SubscriptionController.register(Command('PROMPT')) def prompt_subreddit(self): """ Open a prompt to navigate to a different subreddit """ name = self.term.prompt_input('Enter page: /') if name is not None: with self.term.loader('Loading page'): content = SubredditContent.from_name( self.reddit, name, self.term.loader) if not self.term.loader.exception: self.selected_subreddit = content self.active = False @SubscriptionController.register(Command('SUBSCRIPTION_SELECT')) def select_subreddit(self): """ Store the selected subreddit and return to the subreddit page """ name = self.get_selected_item()['name'] with self.term.loader('Loading page'): content = SubredditContent.from_name( self.reddit, name, self.term.loader) if not self.term.loader.exception: self.selected_subreddit = content self.active = False @SubscriptionController.register(Command('SUBSCRIPTION_EXIT')) def close_subscriptions(self): """ Close subscriptions and return to the subreddit page """ self.active = False def _draw_banner(self): # Subscriptions can't be sorted, so disable showing the order menu pass def _draw_item(self, win, data, inverted): n_rows, n_cols = win.getmaxyx() n_cols -= 1 # Leave space for the cursor in the first column # Handle the case where the window is not large enough to fit the data. valid_rows = range(0, n_rows) offset = 0 if not inverted else -(data['n_rows'] - n_rows) row = offset if row in valid_rows: if data['type'] == 'Multireddit': attr = self.term.attr('MultiredditName') else: attr = self.term.attr('SubscriptionName') self.term.add_line(win, '{name}'.format(**data), row, 1, attr) row = offset + 1 for row, text in enumerate(data['split_title'], start=row): if row in valid_rows: if data['type'] == 'Multireddit': attr = self.term.attr('MultiredditText') else: attr = self.term.attr('SubscriptionText') self.term.add_line(win, text, row, 1, attr) attr = self.term.attr('CursorBlock') for y in range(n_rows): self.term.addch(win, y, 0, str(' '), attr) rtv-1.21.0+dfsg.orig/rtv/theme.py0000644000175000017500000005206313222035043016103 0ustar noahfxnoahfximport os import codecs import curses import logging from collections import OrderedDict from contextlib import contextmanager import six from six.moves import configparser from .config import THEMES, DEFAULT_THEMES from .exceptions import ConfigError _logger = logging.getLogger(__name__) class Theme(object): ATTRIBUTE_CODES = { '-': None, '': None, 'normal': curses.A_NORMAL, 'bold': curses.A_BOLD, 'reverse': curses.A_REVERSE, 'underline': curses.A_UNDERLINE, 'standout': curses.A_STANDOUT } COLOR_CODES = { '-': None, 'default': -1, 'black': curses.COLOR_BLACK, 'red': curses.COLOR_RED, 'green': curses.COLOR_GREEN, 'yellow': curses.COLOR_YELLOW, 'blue': curses.COLOR_BLUE, 'magenta': curses.COLOR_MAGENTA, 'cyan': curses.COLOR_CYAN, 'light_gray': curses.COLOR_WHITE, 'dark_gray': 8, 'bright_red': 9, 'bright_green': 10, 'bright_yellow': 11, 'bright_blue': 12, 'bright_magenta': 13, 'bright_cyan': 14, 'white': 15, } for i in range(256): COLOR_CODES['ansi_{0}'.format(i)] = i # For compatibility with as many terminals as possible, the default theme # can only use the 8 basic colors with the default color as the background DEFAULT_THEME = { 'modifiers': { 'Normal': (-1, -1, curses.A_NORMAL), 'Selected': (-1, -1, curses.A_NORMAL), 'SelectedCursor': (-1, -1, curses.A_REVERSE), }, 'page': { 'TitleBar': (curses.COLOR_CYAN, None, curses.A_BOLD | curses.A_REVERSE), 'OrderBar': (curses.COLOR_YELLOW, None, curses.A_BOLD), 'OrderBarHighlight': (curses.COLOR_YELLOW, None, curses.A_BOLD | curses.A_REVERSE), 'HelpBar': (curses.COLOR_CYAN, None, curses.A_BOLD | curses.A_REVERSE), 'Prompt': (curses.COLOR_CYAN, None, curses.A_BOLD | curses.A_REVERSE), 'NoticeInfo': (None, None, curses.A_BOLD), 'NoticeLoading': (None, None, curses.A_BOLD), 'NoticeError': (None, None, curses.A_BOLD), 'NoticeSuccess': (None, None, curses.A_BOLD), }, # Fields that might be highlighted by the "SelectedCursor" element 'cursor': { 'CursorBlock': (None, None, None), 'CursorBar1': (curses.COLOR_MAGENTA, None, None), 'CursorBar2': (curses.COLOR_CYAN, None, None), 'CursorBar3': (curses.COLOR_GREEN, None, None), 'CursorBar4': (curses.COLOR_YELLOW, None, None), }, # Fields that might be highlighted by the "Selected" element 'normal': { 'CommentAuthor': (curses.COLOR_BLUE, None, curses.A_BOLD), 'CommentAuthorSelf': (curses.COLOR_GREEN, None, curses.A_BOLD), 'CommentCount': (None, None, None), 'CommentText': (None, None, None), 'Created': (None, None, None), 'Downvote': (curses.COLOR_RED, None, curses.A_BOLD), 'Gold': (curses.COLOR_YELLOW, None, curses.A_BOLD), 'HiddenCommentExpand': (None, None, curses.A_BOLD), 'HiddenCommentText': (None, None, None), 'MultiredditName': (curses.COLOR_YELLOW, None, curses.A_BOLD), 'MultiredditText': (None, None, None), 'NeutralVote': (None, None, curses.A_BOLD), 'NSFW': (curses.COLOR_RED, None, curses.A_BOLD | curses.A_REVERSE), 'Saved': (curses.COLOR_GREEN, None, None), 'Score': (None, None, None), 'Separator': (None, None, curses.A_BOLD), 'Stickied': (curses.COLOR_GREEN, None, None), 'SubscriptionName': (curses.COLOR_YELLOW, None, curses.A_BOLD), 'SubscriptionText': (None, None, None), 'SubmissionAuthor': (curses.COLOR_GREEN, None, curses.A_BOLD), 'SubmissionFlair': (curses.COLOR_RED, None, None), 'SubmissionSubreddit': (curses.COLOR_YELLOW, None, None), 'SubmissionText': (None, None, None), 'SubmissionTitle': (None, None, curses.A_BOLD), 'SubmissionTitleSeen': (None, None, None), 'Upvote': (curses.COLOR_GREEN, None, curses.A_BOLD), 'Link': (curses.COLOR_BLUE, None, curses.A_UNDERLINE), 'LinkSeen': (curses.COLOR_MAGENTA, None, curses.A_UNDERLINE), 'UserFlair': (curses.COLOR_YELLOW, None, curses.A_BOLD) } } DEFAULT_ELEMENTS = {k: v for group in DEFAULT_THEME.values() for k, v in group.items()} # The SubmissionPage uses this to determine which color bar to use CURSOR_BARS = ['CursorBar1', 'CursorBar2', 'CursorBar3', 'CursorBar4'] def __init__(self, name=None, source=None, elements=None, use_color=True): """ Params: name (str): A unique string that describes the theme source (str): A string that describes the source of the theme: built-in - Should only be used when Theme() is called directly preset - Themes packaged with rtv installed - Themes in ~/.config/rtv/themes/ custom - When a filepath is explicitly provided, e.g. ``rtv --theme=/path/to/theme_file.cfg`` elements (dict): The theme's element map, should be in the same format as Theme.DEFAULT_THEME. """ if source not in (None, 'built-in', 'preset', 'installed', 'custom'): raise ValueError('Invalid source') if name is None and source is None: name = 'default' if use_color else 'monochrome' source = 'built-in' elif name is None or source is None: raise ValueError('Must specify both `name` and `source`, or neither one') self.name = name self.source = source self.use_color = use_color self._color_pair_map = None self._attribute_map = None self._selected = None self.required_color_pairs = 0 self.required_colors = 0 if elements is None: elements = self.DEFAULT_ELEMENTS.copy() # Set any elements that weren't defined by the config to fallback to # the default color and attributes for key in self.DEFAULT_ELEMENTS.keys(): if key not in elements: elements[key] = (None, None, None) self._set_fallback(elements, 'Normal', (-1, -1, curses.A_NORMAL)) self._set_fallback(elements, 'Selected', 'Normal') self._set_fallback(elements, 'SelectedCursor', 'Normal') # Create the "Selected" versions of elements, which are prefixed with # the @ symbol. For example, "@CommentText" represents how comment # text is formatted when it is highlighted by the cursor. for name in self.DEFAULT_THEME['normal']: dest = '@{0}'.format(name) self._set_fallback(elements, name, 'Selected', dest) for name in self.DEFAULT_THEME['cursor']: dest = '@{0}'.format(name) self._set_fallback(elements, name, 'SelectedCursor', dest) # Fill in the ``None`` values for all of the elements with normal text for name in self.DEFAULT_THEME['normal']: self._set_fallback(elements, name, 'Normal') for name in self.DEFAULT_THEME['cursor']: self._set_fallback(elements, name, 'Normal') for name in self.DEFAULT_THEME['page']: self._set_fallback(elements, name, 'Normal') self.elements = elements if self.use_color: # Pre-calculate how many colors / color pairs the theme will need colors, color_pairs = set(), set() for fg, bg, _ in self.elements.values(): colors.add(fg) colors.add(bg) color_pairs.add((fg, bg)) # Don't count the default (-1, -1) as a color pair because it # doesn't need to be initialized by curses.init_pair(). color_pairs.discard((-1, -1)) self.required_color_pairs = len(color_pairs) # Determine how many colors the terminal needs to support in order # to be able to use the theme. This uses the common breakpoints # that 99% of terminals follow and doesn't take into account # 88 color themes. self.required_colors = None for marker in [0, 8, 16, 256]: if max(colors) < marker: self.required_colors = marker break @property def display_string(self): return '{0} ({1})'.format(self.name, self.source) def bind_curses(self): """ Bind the theme's colors to curses's internal color pair map. This method must be called once (after curses has been initialized) before any element attributes can be accessed. Color codes and other special attributes will be mixed bitwise into a single value that can be passed into curses draw functions. """ self._color_pair_map = {} self._attribute_map = {} for element, item in self.elements.items(): fg, bg, attrs = item color_pair = (fg, bg) if self.use_color and color_pair != (-1, -1): # Curses limits the number of available color pairs, so we # need to reuse them if there are multiple elements with the # same foreground and background. if color_pair not in self._color_pair_map: # Index 0 is reserved by curses for the default color index = len(self._color_pair_map) + 1 curses.init_pair(index, color_pair[0], color_pair[1]) self._color_pair_map[color_pair] = curses.color_pair(index) attrs |= self._color_pair_map[color_pair] self._attribute_map[element] = attrs def get(self, element, selected=False): """ Returns the curses attribute code for the given element. """ if self._attribute_map is None: raise RuntimeError('Attempted to access theme attribute before ' 'calling initialize_curses_theme()') if selected or self._selected: element = '@{0}'.format(element) return self._attribute_map[element] @contextmanager def turn_on_selected(self): """ Sets the selected modifier inside of context block. For example: >>> with theme.turn_on_selected(): >>> attr = theme.get('CursorBlock') Is the same as: >>> attr = theme.get('CursorBlock', selected=True) Is also the same as: >>> attr = theme.get('@CursorBlock') """ # This context manager should never be nested assert self._selected is None self._selected = True try: yield finally: self._selected = None @classmethod def list_themes(cls, path=THEMES): """ Compile all of the themes configuration files in the search path. """ themes, errors = [], OrderedDict() def load_themes(path, source): """ Load all themes in the given path. """ if os.path.isdir(path): for filename in sorted(os.listdir(path)): if not filename.endswith('.cfg'): continue filepath = os.path.join(path, filename) name = filename[:-4] try: # Make sure the theme is valid theme = cls.from_file(filepath, source) except Exception as e: errors[(source, name)] = e else: themes.append(theme) themes.extend([Theme(use_color=True), Theme(use_color=False)]) load_themes(DEFAULT_THEMES, 'preset') load_themes(path, 'installed') return themes, errors @classmethod def print_themes(cls, path=THEMES): """ Prints a human-readable summary of the installed themes to stdout. This is intended to be used as a command-line utility, outside of the main curses display loop. """ themes, errors = cls.list_themes(path=path + '/') print('\nInstalled ({0}):'.format(path)) installed = [t for t in themes if t.source == 'installed'] if installed: for theme in installed: line = ' {0:<20}[requires {1} colors]' print(line.format(theme.name, theme.required_colors)) else: print(' (empty)') print('\nPresets:') preset = [t for t in themes if t.source == 'preset'] for theme in preset: line = ' {0:<20}[requires {1} colors]' print(line.format(theme.name, theme.required_colors)) print('\nBuilt-in:') built_in = [t for t in themes if t.source == 'built-in'] for theme in built_in: line = ' {0:<20}[requires {1} colors]' print(line.format(theme.name, theme.required_colors)) if errors: print('\nWARNING: Some files encountered errors:') for (source, name), error in errors.items(): theme_info = '({0}) {1}'.format(source, name) # Align multi-line error messages with the right column err_message = six.text_type(error).replace('\n', '\n' + ' ' * 20) print(' {0:<20}{1}'.format(theme_info, err_message)) print('') @classmethod def from_name(cls, name, path=THEMES): """ Search for the given theme on the filesystem and attempt to load it. Directories will be checked in a pre-determined order. If the name is provided as an absolute file path, it will be loaded directly. """ if os.path.isfile(name): return cls.from_file(name, 'custom') filename = os.path.join(path, '{0}.cfg'.format(name)) if os.path.isfile(filename): return cls.from_file(filename, 'installed') filename = os.path.join(DEFAULT_THEMES, '{0}.cfg'.format(name)) if os.path.isfile(filename): return cls.from_file(filename, 'preset') raise ConfigError('Could not find theme named "{0}"'.format(name)) @classmethod def from_file(cls, filename, source): """ Load a theme from the specified configuration file. Parameters: filename: The name of the filename to load. source: A description of where the theme was loaded from. """ _logger.info('Loading theme %s', filename) try: config = configparser.ConfigParser() config.optionxform = six.text_type # Preserve case with codecs.open(filename, encoding='utf-8') as fp: config.readfp(fp) except configparser.ParsingError as e: raise ConfigError(e.message) if not config.has_section('theme'): raise ConfigError( 'Error loading {0}:\n' ' missing [theme] section'.format(filename)) theme_name = os.path.basename(filename) theme_name, _ = os.path.splitext(theme_name) elements = {} for element, line in config.items('theme'): if element not in cls.DEFAULT_ELEMENTS: # Could happen if using a new config with an older version # of the software _logger.info('Skipping element %s', element) continue elements[element] = cls._parse_line(element, line, filename) return cls(name=theme_name, source=source, elements=elements) @classmethod def _parse_line(cls, element, line, filename=None): """ Parse a single line from a theme file. Format: : """ items = line.split() if len(items) == 2: fg, bg, attrs = items[0], items[1], '' elif len(items) == 3: fg, bg, attrs = items else: raise ConfigError( 'Error loading {0}, invalid line:\n' ' {1} = {2}'.format(filename, element, line)) if fg.startswith('#'): fg = cls.rgb_to_ansi(fg) if bg.startswith('#'): bg = cls.rgb_to_ansi(bg) if fg not in cls.COLOR_CODES: raise ConfigError( 'Error loading {0}, invalid :\n' ' {1} = {2}'.format(filename, element, line)) fg_code = cls.COLOR_CODES[fg] if bg not in cls.COLOR_CODES: raise ConfigError( 'Error loading {0}, invalid :\n' ' {1} = {2}'.format(filename, element, line)) bg_code = cls.COLOR_CODES[bg] attrs_code = curses.A_NORMAL for attr in attrs.split('+'): if attr not in cls.ATTRIBUTE_CODES: raise ConfigError( 'Error loading {0}, invalid :\n' ' {1} = {2}'.format(filename, element, line)) attr_code = cls.ATTRIBUTE_CODES[attr] if attr_code is None: attrs_code = None break else: attrs_code |= attr_code return fg_code, bg_code, attrs_code @staticmethod def _set_fallback(elements, src_field, fallback, dest_field=None): """ Helper function used to set the fallback attributes of an element when they are defined by the configuration as "None" or "-". """ if dest_field is None: dest_field = src_field if isinstance(fallback, six.string_types): fallback = elements[fallback] attrs = elements[src_field] elements[dest_field] = ( attrs[0] if attrs[0] is not None else fallback[0], attrs[1] if attrs[1] is not None else fallback[1], attrs[2] if attrs[2] is not None else fallback[2]) @staticmethod def rgb_to_ansi(color): """ Converts hex RGB to the 6x6x6 xterm color space Args: color (str): RGB color string in the format "#RRGGBB" Returns: str: ansi color string in the format "ansi_n", where n is between 16 and 230 Reference: https://github.com/chadj2/bash-ui/blob/master/COLORS.md """ if color[0] != '#' or len(color) != 7: return None try: r = round(int(color[1:3], 16) / 51.0) # Normalize between 0-5 g = round(int(color[3:5], 16) / 51.0) b = round(int(color[5:7], 16) / 51.0) n = int(36 * r + 6 * g + b + 16) return 'ansi_{0:d}'.format(n) except ValueError: return None class ThemeList(object): """ This is a small container around Theme.list_themes() that can be used to cycle through all of the available themes. """ def __init__(self): self.themes = None self.errors = None def reload(self): """ This acts as a lazy load, it won't read all of the theme files from disk until the first time somebody tries to access the theme list. """ self.themes, self.errors = Theme.list_themes() def _step(self, theme, direction): """ Traverse the list in the given direction and return the next theme """ if not self.themes: self.reload() # Try to find the starting index key = (theme.source, theme.name) for i, val in enumerate(self.themes): if (val.source, val.name) == key: index = i break else: # If the theme was set from a custom source it might # not be a part of the list returned by list_themes(). self.themes.insert(0, theme) index = 0 index = (index + direction) % len(self.themes) new_theme = self.themes[index] return new_theme def next(self, theme): return self._step(theme, 1) def previous(self, theme): return self._step(theme, -1) rtv-1.21.0+dfsg.orig/rtv/subreddit_page.py0000644000175000017500000003254113222035043017761 0ustar noahfxnoahfx# -*- coding: utf-8 -*- from __future__ import unicode_literals import re import time from . import docs from .content import SubredditContent from .page import Page, PageController, logged_in from .objects import Navigator, Command from .submission_page import SubmissionPage from .subscription_page import SubscriptionPage from .exceptions import TemporaryFileError class SubredditController(PageController): character_map = {} class SubredditPage(Page): FOOTER = docs.FOOTER_SUBREDDIT def __init__(self, reddit, term, config, oauth, name): """ Params: name (string): Name of subreddit to open url (string): Optional submission to load upon start """ super(SubredditPage, self).__init__(reddit, term, config, oauth) self.controller = SubredditController(self, keymap=config.keymap) self.content = SubredditContent.from_name(reddit, name, term.loader) self.nav = Navigator(self.content.get) self.toggled_subreddit = None def refresh_content(self, order=None, name=None): """ Re-download all submissions and reset the page index """ order = order or self.content.order # Preserve the query if staying on the current page if name is None: query = self.content.query else: query = None name = name or self.content.name # Hack to allow an order specified in the name by prompt_subreddit() to # override the current default if order == 'ignore': order = None with self.term.loader('Refreshing page'): self.content = SubredditContent.from_name( self.reddit, name, self.term.loader, order=order, query=query) if not self.term.loader.exception: self.nav = Navigator(self.content.get) @SubredditController.register(Command('SORT_HOT')) def sort_content_hot(self): if self.content.query: self.refresh_content(order='relevance') else: self.refresh_content(order='hot') @SubredditController.register(Command('SORT_TOP')) def sort_content_top(self): order = self._prompt_period('top') if order is None: self.term.show_notification('Invalid option') else: self.refresh_content(order=order) @SubredditController.register(Command('SORT_RISING')) def sort_content_rising(self): if self.content.query: order = self._prompt_period('comments') if order is None: self.term.show_notification('Invalid option') else: self.refresh_content(order=order) else: self.refresh_content(order='rising') @SubredditController.register(Command('SORT_NEW')) def sort_content_new(self): self.refresh_content(order='new') @SubredditController.register(Command('SORT_CONTROVERSIAL')) def sort_content_controversial(self): if self.content.query: self.term.flash() else: order = self._prompt_period('controversial') if order is None: self.term.show_notification('Invalid option') else: self.refresh_content(order=order) @SubredditController.register(Command('SUBREDDIT_SEARCH')) def search_subreddit(self, name=None): """ Open a prompt to search the given subreddit """ name = name or self.content.name query = self.term.prompt_input('Search {0}: '.format(name)) if not query: return with self.term.loader('Searching'): self.content = SubredditContent.from_name( self.reddit, name, self.term.loader, query=query) if not self.term.loader.exception: self.nav = Navigator(self.content.get) @SubredditController.register(Command('PROMPT')) def prompt_subreddit(self): """ Open a prompt to navigate to a different subreddit" """ name = self.term.prompt_input('Enter page: /') if name is not None: # Check if opening a submission url or a subreddit url # Example patterns for submissions: # comments/571dw3 # /comments/571dw3 # /r/pics/comments/571dw3/ # https://www.reddit.com/r/pics/comments/571dw3/at_disneyland submission_pattern = re.compile(r'(^|/)comments/(?P.+?)($|/)') match = submission_pattern.search(name) if match: submission_url = 'https://www.reddit.com/comments/{0}' self.open_submission(submission_url.format(match.group('id'))) else: self.refresh_content(order='ignore', name=name) @SubredditController.register(Command('SUBREDDIT_FRONTPAGE')) def show_frontpage(self): """ If on a subreddit, remember it and head back to the front page. If this was pressed on the front page, go back to the last subreddit. """ if self.content.name != '/r/front': target = '/r/front' self.toggled_subreddit = self.content.name else: target = self.toggled_subreddit # target still may be empty string if this command hasn't yet been used if target is not None: self.refresh_content(order='ignore', name=target) @SubredditController.register(Command('SUBREDDIT_OPEN')) def open_submission(self, url=None): """ Select the current submission to view posts. """ data = {} if url is None: data = self.get_selected_item() url = data['permalink'] with self.term.loader('Loading submission'): page = SubmissionPage( self.reddit, self.term, self.config, self.oauth, url=url) if self.term.loader.exception: return page.loop() if data.get('url_type') == 'selfpost': self.config.history.add(data['url_full']) if page.selected_subreddit is not None: self.content = page.selected_subreddit self.nav = Navigator(self.content.get) @SubredditController.register(Command('SUBREDDIT_OPEN_IN_BROWSER')) def open_link(self): """ Open a link with the webbrowser """ data = self.get_selected_item() if data['url_type'] == 'selfpost': self.open_submission() elif data['url_type'] == 'x-post subreddit': self.refresh_content(order='ignore', name=data['xpost_subreddit']) elif data['url_type'] == 'x-post submission': self.open_submission(url=data['url_full']) self.config.history.add(data['url_full']) else: self.term.open_link(data['url_full']) self.config.history.add(data['url_full']) @SubredditController.register(Command('SUBREDDIT_POST')) @logged_in def post_submission(self): """ Post a new submission to the given subreddit """ # Check that the subreddit can be submitted to name = self.content.name if '+' in name or name in ('/r/all', '/r/front', '/r/me', '/u/saved'): self.term.show_notification("Can't post to {0}".format(name)) return submission_info = docs.SUBMISSION_FILE.format(name=name) with self.term.open_editor(submission_info) as text: if not text: self.term.show_notification('Canceled') return elif '\n' not in text: self.term.show_notification('Missing body') return title, content = text.split('\n', 1) with self.term.loader('Posting', delay=0): submission = self.reddit.submit(name, title, text=content, raise_captcha_exception=True) # Give reddit time to process the submission time.sleep(2.0) if self.term.loader.exception: raise TemporaryFileError() if not self.term.loader.exception: # Open the newly created post with self.term.loader('Loading submission'): page = SubmissionPage( self.reddit, self.term, self.config, self.oauth, submission=submission) if self.term.loader.exception: return page.loop() if page.selected_subreddit is not None: self.content = page.selected_subreddit self.nav = Navigator(self.content.get) else: self.reload_page() @SubredditController.register(Command('SUBREDDIT_OPEN_SUBSCRIPTIONS')) @logged_in def open_subscriptions(self): """ Open user subscriptions page """ with self.term.loader('Loading subscriptions'): page = SubscriptionPage(self.reddit, self.term, self.config, self.oauth, content_type='subreddit') if self.term.loader.exception: return page.loop() # When the user has chosen a subreddit in the subscriptions list, # refresh content with the selected subreddit if page.selected_subreddit is not None: self.content = page.selected_subreddit self.nav = Navigator(self.content.get) @SubredditController.register(Command('SUBREDDIT_OPEN_MULTIREDDITS')) @logged_in def open_multireddit_subscriptions(self): """ Open user multireddit subscriptions page """ with self.term.loader('Loading multireddits'): page = SubscriptionPage(self.reddit, self.term, self.config, self.oauth, content_type='multireddit') if self.term.loader.exception: return page.loop() # When the user has chosen a subreddit in the subscriptions list, # refresh content with the selected subreddit if page.selected_subreddit is not None: self.content = page.selected_subreddit self.nav = Navigator(self.content.get) def _draw_item(self, win, data, inverted): n_rows, n_cols = win.getmaxyx() n_cols -= 1 # Leave space for the cursor in the first column # Handle the case where the window is not large enough to fit the data. valid_rows = range(0, n_rows) offset = 0 if not inverted else -(data['n_rows'] - n_rows) n_title = len(data['split_title']) if data['url_full'] in self.config.history: attr = self.term.attr('SubmissionTitleSeen') else: attr = self.term.attr('SubmissionTitle') for row, text in enumerate(data['split_title'], start=offset): if row in valid_rows: self.term.add_line(win, text, row, 1, attr) row = n_title + offset if data['url_full'] in self.config.history: attr = self.term.attr('LinkSeen') else: attr = self.term.attr('Link') if row in valid_rows: self.term.add_line(win, '{url}'.format(**data), row, 1, attr) row = n_title + offset + 1 if row in valid_rows: attr = self.term.attr('Score') self.term.add_line(win, '{score}'.format(**data), row, 1, attr) self.term.add_space(win) arrow, attr = self.term.get_arrow(data['likes']) self.term.add_line(win, arrow, attr=attr) self.term.add_space(win) attr = self.term.attr('Created') self.term.add_line(win, '{created}'.format(**data), attr=attr) if data['comments'] is not None: attr = self.term.attr('Separator') self.term.add_space(win) self.term.add_line(win, '-', attr=attr) attr = self.term.attr('CommentCount') self.term.add_space(win) self.term.add_line(win, '{comments}'.format(**data), attr=attr) if data['saved']: attr = self.term.attr('Saved') self.term.add_space(win) self.term.add_line(win, '[saved]', attr=attr) if data['stickied']: attr = self.term.attr('Stickied') self.term.add_space(win) self.term.add_line(win, '[stickied]', attr=attr) if data['gold']: attr = self.term.attr('Gold') self.term.add_space(win) self.term.add_line(win, self.term.guilded, attr=attr) if data['nsfw']: attr = self.term.attr('NSFW') self.term.add_space(win) self.term.add_line(win, 'NSFW', attr=attr) row = n_title + offset + 2 if row in valid_rows: attr = self.term.attr('SubmissionAuthor') self.term.add_line(win, '{author}'.format(**data), row, 1, attr) self.term.add_space(win) attr = self.term.attr('SubmissionSubreddit') self.term.add_line(win, '/r/{subreddit}'.format(**data), attr=attr) if data['flair']: attr = self.term.attr('SubmissionFlair') self.term.add_space(win) self.term.add_line(win, '{flair}'.format(**data), attr=attr) attr = self.term.attr('CursorBlock') for y in range(n_rows): self.term.addch(win, y, 0, str(' '), attr) rtv-1.21.0+dfsg.orig/rtv/mime_parsers.py0000644000175000017500000004015513222035043017466 0ustar noahfxnoahfximport re import logging import mimetypes import requests from bs4 import BeautifulSoup _logger = logging.getLogger(__name__) class BaseMIMEParser(object): """ BaseMIMEParser can be sub-classed to define custom handlers for determining the MIME type of external urls. """ pattern = re.compile(r'.*$') @staticmethod def get_mimetype(url): """ Guess based on the file extension. Args: url (text): Web url that was linked to by a reddit submission. Returns: modified_url (text): The url (or filename) that will be used when constructing the command to run. content_type (text): The mime-type that will be used when constructing the command to run. If the mime-type is unknown, return None and the program will fallback to using the web browser. """ filename = url.split('?')[0] filename = filename.split('#')[0] content_type, _ = mimetypes.guess_type(filename) return url, content_type class OpenGraphMIMEParser(BaseMIMEParser): """ Open graph protocol is used on many web pages. If the page is a video page both of the above tags will be present and priority is given to video content. see http://ogp.me """ pattern = re.compile(r'.*$') @staticmethod def get_mimetype(url): page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') for og_type in ['video', 'image']: tag = soup.find('meta', attrs={'property':'og:' + og_type + ':secure_url'}) or \ soup.find('meta', attrs={'property': 'og:' + og_type}) if tag: return BaseMIMEParser.get_mimetype(tag.get('content')) return url, None class GfycatMIMEParser(BaseMIMEParser): """ Gfycat provides a primitive json api to generate image links. URLs can be downloaded as either gif, webm, or mjpg. Webm was selected because it's fast and works with VLC. https://gfycat.com/api https://gfycat.com/UntidyAcidicIberianemeraldlizard --> https://giant.gfycat.com/UntidyAcidicIberianemeraldlizard.webm """ pattern = re.compile(r'https?://(www\.)?gfycat\.com/[^.]+$') @staticmethod def get_mimetype(url): parts = url.replace('gifs/detail/', '').split('/') api_url = '/'.join(parts[:-1] + ['cajax', 'get'] + parts[-1:]) resp = requests.get(api_url) image_url = resp.json()['gfyItem']['webmUrl'] return image_url, 'video/webm' class YoutubeMIMEParser(BaseMIMEParser): """ Youtube videos can be streamed with vlc or downloaded with youtube-dl. Assign a custom mime-type so they can be referenced in mailcap. """ pattern = re.compile( r'(?:https?://)?(m\.)?(?:youtu\.be/|(?:www\.)?youtube\.com/watch' r'(?:\.php)?\'?.*v=)([a-zA-Z0-9\-_]+)') @staticmethod def get_mimetype(url): return url, 'video/x-youtube' class GifvMIMEParser(BaseMIMEParser): """ Special case for .gifv, which is a custom video format for imgur serves as html with a special