pax_global_header00006660000000000000000000000064144521620540014515gustar00rootroot0000000000000052 comment=3d6cd8f6be74a9608f7e695c6f47990b1693d772 async-channel-1.9.0/000077500000000000000000000000001445216205400142475ustar00rootroot00000000000000async-channel-1.9.0/.github/000077500000000000000000000000001445216205400156075ustar00rootroot00000000000000async-channel-1.9.0/.github/dependabot.yml000066400000000000000000000002331445216205400204350ustar00rootroot00000000000000version: 2 updates: - package-ecosystem: cargo directory: / schedule: interval: weekly commit-message: prefix: '' labels: [] async-channel-1.9.0/.github/workflows/000077500000000000000000000000001445216205400176445ustar00rootroot00000000000000async-channel-1.9.0/.github/workflows/ci.yml000066400000000000000000000037741445216205400207750ustar00rootroot00000000000000name: CI permissions: contents: read on: pull_request: push: branches: - master schedule: - cron: '0 2 * * 0' env: CARGO_INCREMENTAL: 0 CARGO_NET_GIT_FETCH_WITH_CLI: true CARGO_NET_RETRY: 10 CARGO_TERM_COLOR: always RUST_BACKTRACE: 1 RUSTFLAGS: -D warnings RUSTDOCFLAGS: -D warnings RUSTUP_MAX_RETRIES: 10 defaults: run: shell: bash jobs: test: runs-on: ${{ matrix.os }} strategy: fail-fast: false matrix: os: [ubuntu-latest] rust: [nightly, beta, stable] steps: - uses: actions/checkout@v3 - name: Install Rust run: rustup update ${{ matrix.rust }} && rustup default ${{ matrix.rust }} - run: cargo build --all --all-features --all-targets - name: Run cargo check (without dev-dependencies to catch missing feature flags) if: startsWith(matrix.rust, 'nightly') run: cargo check -Z features=dev_dep - run: cargo test msrv: runs-on: ubuntu-latest strategy: matrix: # When updating this, the reminder to update the minimum supported # Rust version in Cargo.toml. rust: ['1.45'] steps: - uses: actions/checkout@v3 - name: Install Rust run: rustup update ${{ matrix.rust }} && rustup default ${{ matrix.rust }} - run: cargo build clippy: runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 - name: Install Rust run: rustup update stable - run: cargo clippy --all-features --all-targets fmt: runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 - name: Install Rust run: rustup update stable - run: cargo fmt --all --check security_audit: permissions: checks: write contents: read issues: write runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 # https://github.com/rustsec/audit-check/issues/2 - uses: rustsec/audit-check@master with: token: ${{ secrets.GITHUB_TOKEN }} async-channel-1.9.0/.github/workflows/release.yml000066400000000000000000000006411445216205400220100ustar00rootroot00000000000000name: Release permissions: contents: write on: push: tags: - v[0-9]+.* jobs: create-release: if: github.repository_owner == 'smol-rs' runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 - uses: taiki-e/create-gh-release-action@v1 with: changelog: CHANGELOG.md branch: master env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} async-channel-1.9.0/.gitignore000066400000000000000000000000361445216205400162360ustar00rootroot00000000000000/target **/*.rs.bk Cargo.lock async-channel-1.9.0/CHANGELOG.md000066400000000000000000000023161445216205400160620ustar00rootroot00000000000000# Version 1.9.0 - Fix a bug where `WeakSender/WeakReceiver` could incorrectly return `Some` even if the channel is already closed (#60) - Remove the unnecessary `T: Clone` bound from `WeakSender/WeakReceiver`'s `Clone` implementation (#62) # Version 1.8.0 - Prevent deadlock if sender/receiver is forgotten (#49) - Add weak sender and receiver (#51) - Update `concurrent-queue` to v2 (#50) # Version 1.7.1 - Work around MSRV increase due to a cargo bug. # Version 1.7.0 - Add `send_blocking` and `recv_blocking` (#47) # Version 1.6.1 - Make `send` return `Send` (#34) # Version 1.6.0 - Added `Send` and `Recv` futures (#33) - impl `FusedStream` for `Receiver` (#30) # Version 1.5.1 - Fix typos in the docs. # Version 1.5.0 - Add `receiver_count()` and `sender_count()`. # Version 1.4.2 - Fix a bug that would sometime cause 100% CPU usage. # Version 1.4.1 - Update dependencies. # Version 1.4.0 - Update dependencies. # Version 1.3.0 - Add `Sender::is_closed()` and `Receiver::is_closed()`. # Version 1.2.0 - Add `Sender::close()` and `Receiver::close()`. # Version 1.1.1 - Replace `usize::MAX` with `std::usize::MAX`. # Version 1.1.0 - Add methods to error types. # Version 1.0.0 - Initial version async-channel-1.9.0/Cargo.toml000066400000000000000000000011741445216205400162020ustar00rootroot00000000000000[package] name = "async-channel" # When publishing a new version: # - Update CHANGELOG.md # - Create "v1.x.y" git tag version = "1.9.0" authors = ["Stjepan Glavina "] edition = "2018" rust-version = "1.45" description = "Async multi-producer multi-consumer channel" license = "Apache-2.0 OR MIT" repository = "https://github.com/smol-rs/async-channel" keywords = ["mpmc", "mpsc", "spmc", "chan", "futures"] categories = ["asynchronous", "concurrency"] exclude = ["/.*"] [dependencies] concurrent-queue = "2" event-listener = "2.4.0" futures-core = "0.3.5" [dev-dependencies] easy-parallel = "3" futures-lite = "1" async-channel-1.9.0/LICENSE-APACHE000066400000000000000000000251371445216205400162030ustar00rootroot00000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. async-channel-1.9.0/LICENSE-MIT000066400000000000000000000017771445216205400157170ustar00rootroot00000000000000Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. async-channel-1.9.0/README.md000066400000000000000000000033461445216205400155340ustar00rootroot00000000000000# async-channel [![Build](https://github.com/smol-rs/async-channel/workflows/Build%20and%20test/badge.svg)]( https://github.com/smol-rs/async-channel/actions) [![License](https://img.shields.io/badge/license-Apache--2.0_OR_MIT-blue.svg)]( https://github.com/smol-rs/async-channel) [![Cargo](https://img.shields.io/crates/v/async-channel.svg)]( https://crates.io/crates/async-channel) [![Documentation](https://docs.rs/async-channel/badge.svg)]( https://docs.rs/async-channel) An async multi-producer multi-consumer channel, where each message can be received by only one of all existing consumers. There are two kinds of channels: 1. Bounded channel with limited capacity. 2. Unbounded channel with unlimited capacity. A channel has the `Sender` and `Receiver` side. Both sides are cloneable and can be shared among multiple threads. When all `Sender`s or all `Receiver`s are dropped, the channel becomes closed. When a channel is closed, no more messages can be sent, but remaining messages can still be received. The channel can also be closed manually by calling `Sender::close()` or `Receiver::close()`. ## Examples ```rust let (s, r) = async_channel::unbounded(); assert_eq!(s.send("Hello").await, Ok(())); assert_eq!(r.recv().await, Ok("Hello")); ``` ## License Licensed under either of * Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0) * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT) at your option. #### Contribution Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions. async-channel-1.9.0/src/000077500000000000000000000000001445216205400150365ustar00rootroot00000000000000async-channel-1.9.0/src/lib.rs000066400000000000000000001033051445216205400161540ustar00rootroot00000000000000//! An async multi-producer multi-consumer channel, where each message can be received by only //! one of all existing consumers. //! //! There are two kinds of channels: //! //! 1. [Bounded][`bounded()`] channel with limited capacity. //! 2. [Unbounded][`unbounded()`] channel with unlimited capacity. //! //! A channel has the [`Sender`] and [`Receiver`] side. Both sides are cloneable and can be shared //! among multiple threads. //! //! When all [`Sender`]s or all [`Receiver`]s are dropped, the channel becomes closed. When a //! channel is closed, no more messages can be sent, but remaining messages can still be received. //! //! The channel can also be closed manually by calling [`Sender::close()`] or //! [`Receiver::close()`]. //! //! # Examples //! //! ``` //! # futures_lite::future::block_on(async { //! let (s, r) = async_channel::unbounded(); //! //! assert_eq!(s.send("Hello").await, Ok(())); //! assert_eq!(r.recv().await, Ok("Hello")); //! # }); //! ``` #![forbid(unsafe_code)] #![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)] use std::error; use std::fmt; use std::future::Future; use std::pin::Pin; use std::process; use std::sync::atomic::{AtomicUsize, Ordering}; use std::sync::Arc; use std::task::{Context, Poll}; use std::usize; use concurrent_queue::{ConcurrentQueue, PopError, PushError}; use event_listener::{Event, EventListener}; use futures_core::stream::Stream; struct Channel { /// Inner message queue. queue: ConcurrentQueue, /// Send operations waiting while the channel is full. send_ops: Event, /// Receive operations waiting while the channel is empty and not closed. recv_ops: Event, /// Stream operations while the channel is empty and not closed. stream_ops: Event, /// The number of currently active `Sender`s. sender_count: AtomicUsize, /// The number of currently active `Receivers`s. receiver_count: AtomicUsize, } impl Channel { /// Closes the channel and notifies all blocked operations. /// /// Returns `true` if this call has closed the channel and it was not closed already. fn close(&self) -> bool { if self.queue.close() { // Notify all send operations. self.send_ops.notify(usize::MAX); // Notify all receive and stream operations. self.recv_ops.notify(usize::MAX); self.stream_ops.notify(usize::MAX); true } else { false } } } /// Creates a bounded channel. /// /// The created channel has space to hold at most `cap` messages at a time. /// /// # Panics /// /// Capacity must be a positive number. If `cap` is zero, this function will panic. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::{bounded, TryRecvError, TrySendError}; /// /// let (s, r) = bounded(1); /// /// assert_eq!(s.send(10).await, Ok(())); /// assert_eq!(s.try_send(20), Err(TrySendError::Full(20))); /// /// assert_eq!(r.recv().await, Ok(10)); /// assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); /// # }); /// ``` pub fn bounded(cap: usize) -> (Sender, Receiver) { assert!(cap > 0, "capacity cannot be zero"); let channel = Arc::new(Channel { queue: ConcurrentQueue::bounded(cap), send_ops: Event::new(), recv_ops: Event::new(), stream_ops: Event::new(), sender_count: AtomicUsize::new(1), receiver_count: AtomicUsize::new(1), }); let s = Sender { channel: channel.clone(), }; let r = Receiver { channel, listener: None, }; (s, r) } /// Creates an unbounded channel. /// /// The created channel can hold an unlimited number of messages. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::{unbounded, TryRecvError}; /// /// let (s, r) = unbounded(); /// /// assert_eq!(s.send(10).await, Ok(())); /// assert_eq!(s.send(20).await, Ok(())); /// /// assert_eq!(r.recv().await, Ok(10)); /// assert_eq!(r.recv().await, Ok(20)); /// assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); /// # }); /// ``` pub fn unbounded() -> (Sender, Receiver) { let channel = Arc::new(Channel { queue: ConcurrentQueue::unbounded(), send_ops: Event::new(), recv_ops: Event::new(), stream_ops: Event::new(), sender_count: AtomicUsize::new(1), receiver_count: AtomicUsize::new(1), }); let s = Sender { channel: channel.clone(), }; let r = Receiver { channel, listener: None, }; (s, r) } /// The sending side of a channel. /// /// Senders can be cloned and shared among threads. When all senders associated with a channel are /// dropped, the channel becomes closed. /// /// The channel can also be closed manually by calling [`Sender::close()`]. pub struct Sender { /// Inner channel state. channel: Arc>, } impl Sender { /// Attempts to send a message into the channel. /// /// If the channel is full or closed, this method returns an error. /// /// # Examples /// /// ``` /// use async_channel::{bounded, TrySendError}; /// /// let (s, r) = bounded(1); /// /// assert_eq!(s.try_send(1), Ok(())); /// assert_eq!(s.try_send(2), Err(TrySendError::Full(2))); /// /// drop(r); /// assert_eq!(s.try_send(3), Err(TrySendError::Closed(3))); /// ``` pub fn try_send(&self, msg: T) -> Result<(), TrySendError> { match self.channel.queue.push(msg) { Ok(()) => { // Notify a blocked receive operation. If the notified operation gets canceled, // it will notify another blocked receive operation. self.channel.recv_ops.notify_additional(1); // Notify all blocked streams. self.channel.stream_ops.notify(usize::MAX); Ok(()) } Err(PushError::Full(msg)) => Err(TrySendError::Full(msg)), Err(PushError::Closed(msg)) => Err(TrySendError::Closed(msg)), } } /// Sends a message into the channel. /// /// If the channel is full, this method waits until there is space for a message. /// /// If the channel is closed, this method returns an error. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::{unbounded, SendError}; /// /// let (s, r) = unbounded(); /// /// assert_eq!(s.send(1).await, Ok(())); /// drop(r); /// assert_eq!(s.send(2).await, Err(SendError(2))); /// # }); /// ``` pub fn send(&self, msg: T) -> Send<'_, T> { Send { sender: self, listener: None, msg: Some(msg), } } /// Sends a message into this channel using the blocking strategy. /// /// If the channel is full, this method will block until there is room. /// If the channel is closed, this method returns an error. /// /// # Blocking /// /// Rather than using asynchronous waiting, like the [`send`](Self::send) method, /// this method will block the current thread until the message is sent. /// /// This method should not be used in an asynchronous context. It is intended /// to be used such that a channel can be used in both asynchronous and synchronous contexts. /// Calling this method in an asynchronous context may result in deadlocks. /// /// # Examples /// /// ``` /// use async_channel::{unbounded, SendError}; /// /// let (s, r) = unbounded(); /// /// assert_eq!(s.send_blocking(1), Ok(())); /// drop(r); /// assert_eq!(s.send_blocking(2), Err(SendError(2))); /// ``` pub fn send_blocking(&self, msg: T) -> Result<(), SendError> { self.send(msg).wait() } /// Closes the channel. /// /// Returns `true` if this call has closed the channel and it was not closed already. /// /// The remaining messages can still be received. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::{unbounded, RecvError}; /// /// let (s, r) = unbounded(); /// assert_eq!(s.send(1).await, Ok(())); /// assert!(s.close()); /// /// assert_eq!(r.recv().await, Ok(1)); /// assert_eq!(r.recv().await, Err(RecvError)); /// # }); /// ``` pub fn close(&self) -> bool { self.channel.close() } /// Returns `true` if the channel is closed. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::{unbounded, RecvError}; /// /// let (s, r) = unbounded::<()>(); /// assert!(!s.is_closed()); /// /// drop(r); /// assert!(s.is_closed()); /// # }); /// ``` pub fn is_closed(&self) -> bool { self.channel.queue.is_closed() } /// Returns `true` if the channel is empty. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::unbounded; /// /// let (s, r) = unbounded(); /// /// assert!(s.is_empty()); /// s.send(1).await; /// assert!(!s.is_empty()); /// # }); /// ``` pub fn is_empty(&self) -> bool { self.channel.queue.is_empty() } /// Returns `true` if the channel is full. /// /// Unbounded channels are never full. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::bounded; /// /// let (s, r) = bounded(1); /// /// assert!(!s.is_full()); /// s.send(1).await; /// assert!(s.is_full()); /// # }); /// ``` pub fn is_full(&self) -> bool { self.channel.queue.is_full() } /// Returns the number of messages in the channel. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::unbounded; /// /// let (s, r) = unbounded(); /// assert_eq!(s.len(), 0); /// /// s.send(1).await; /// s.send(2).await; /// assert_eq!(s.len(), 2); /// # }); /// ``` pub fn len(&self) -> usize { self.channel.queue.len() } /// Returns the channel capacity if it's bounded. /// /// # Examples /// /// ``` /// use async_channel::{bounded, unbounded}; /// /// let (s, r) = bounded::(5); /// assert_eq!(s.capacity(), Some(5)); /// /// let (s, r) = unbounded::(); /// assert_eq!(s.capacity(), None); /// ``` pub fn capacity(&self) -> Option { self.channel.queue.capacity() } /// Returns the number of receivers for the channel. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::unbounded; /// /// let (s, r) = unbounded::<()>(); /// assert_eq!(s.receiver_count(), 1); /// /// let r2 = r.clone(); /// assert_eq!(s.receiver_count(), 2); /// # }); /// ``` pub fn receiver_count(&self) -> usize { self.channel.receiver_count.load(Ordering::SeqCst) } /// Returns the number of senders for the channel. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::unbounded; /// /// let (s, r) = unbounded::<()>(); /// assert_eq!(s.sender_count(), 1); /// /// let s2 = s.clone(); /// assert_eq!(s.sender_count(), 2); /// # }); /// ``` pub fn sender_count(&self) -> usize { self.channel.sender_count.load(Ordering::SeqCst) } /// Downgrade the sender to a weak reference. pub fn downgrade(&self) -> WeakSender { WeakSender { channel: self.channel.clone(), } } } impl Drop for Sender { fn drop(&mut self) { // Decrement the sender count and close the channel if it drops down to zero. if self.channel.sender_count.fetch_sub(1, Ordering::AcqRel) == 1 { self.channel.close(); } } } impl fmt::Debug for Sender { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "Sender {{ .. }}") } } impl Clone for Sender { fn clone(&self) -> Sender { let count = self.channel.sender_count.fetch_add(1, Ordering::Relaxed); // Make sure the count never overflows, even if lots of sender clones are leaked. if count > usize::MAX / 2 { process::abort(); } Sender { channel: self.channel.clone(), } } } /// The receiving side of a channel. /// /// Receivers can be cloned and shared among threads. When all receivers associated with a channel /// are dropped, the channel becomes closed. /// /// The channel can also be closed manually by calling [`Receiver::close()`]. /// /// Receivers implement the [`Stream`] trait. pub struct Receiver { /// Inner channel state. channel: Arc>, /// Listens for a send or close event to unblock this stream. listener: Option, } impl Receiver { /// Attempts to receive a message from the channel. /// /// If the channel is empty, or empty and closed, this method returns an error. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::{unbounded, TryRecvError}; /// /// let (s, r) = unbounded(); /// assert_eq!(s.send(1).await, Ok(())); /// /// assert_eq!(r.try_recv(), Ok(1)); /// assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); /// /// drop(s); /// assert_eq!(r.try_recv(), Err(TryRecvError::Closed)); /// # }); /// ``` pub fn try_recv(&self) -> Result { match self.channel.queue.pop() { Ok(msg) => { // Notify a blocked send operation. If the notified operation gets canceled, it // will notify another blocked send operation. self.channel.send_ops.notify_additional(1); Ok(msg) } Err(PopError::Empty) => Err(TryRecvError::Empty), Err(PopError::Closed) => Err(TryRecvError::Closed), } } /// Receives a message from the channel. /// /// If the channel is empty, this method waits until there is a message. /// /// If the channel is closed, this method receives a message or returns an error if there are /// no more messages. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::{unbounded, RecvError}; /// /// let (s, r) = unbounded(); /// /// assert_eq!(s.send(1).await, Ok(())); /// drop(s); /// /// assert_eq!(r.recv().await, Ok(1)); /// assert_eq!(r.recv().await, Err(RecvError)); /// # }); /// ``` pub fn recv(&self) -> Recv<'_, T> { Recv { receiver: self, listener: None, } } /// Receives a message from the channel using the blocking strategy. /// /// If the channel is empty, this method waits until there is a message. /// If the channel is closed, this method receives a message or returns an error if there are /// no more messages. /// /// # Blocking /// /// Rather than using asynchronous waiting, like the [`recv`](Self::recv) method, /// this method will block the current thread until the message is sent. /// /// This method should not be used in an asynchronous context. It is intended /// to be used such that a channel can be used in both asynchronous and synchronous contexts. /// Calling this method in an asynchronous context may result in deadlocks. /// /// # Examples /// /// ``` /// use async_channel::{unbounded, RecvError}; /// /// let (s, r) = unbounded(); /// /// assert_eq!(s.send_blocking(1), Ok(())); /// drop(s); /// /// assert_eq!(r.recv_blocking(), Ok(1)); /// assert_eq!(r.recv_blocking(), Err(RecvError)); /// ``` pub fn recv_blocking(&self) -> Result { self.recv().wait() } /// Closes the channel. /// /// Returns `true` if this call has closed the channel and it was not closed already. /// /// The remaining messages can still be received. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::{unbounded, RecvError}; /// /// let (s, r) = unbounded(); /// assert_eq!(s.send(1).await, Ok(())); /// /// assert!(r.close()); /// assert_eq!(r.recv().await, Ok(1)); /// assert_eq!(r.recv().await, Err(RecvError)); /// # }); /// ``` pub fn close(&self) -> bool { self.channel.close() } /// Returns `true` if the channel is closed. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::{unbounded, RecvError}; /// /// let (s, r) = unbounded::<()>(); /// assert!(!r.is_closed()); /// /// drop(s); /// assert!(r.is_closed()); /// # }); /// ``` pub fn is_closed(&self) -> bool { self.channel.queue.is_closed() } /// Returns `true` if the channel is empty. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::unbounded; /// /// let (s, r) = unbounded(); /// /// assert!(s.is_empty()); /// s.send(1).await; /// assert!(!s.is_empty()); /// # }); /// ``` pub fn is_empty(&self) -> bool { self.channel.queue.is_empty() } /// Returns `true` if the channel is full. /// /// Unbounded channels are never full. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::bounded; /// /// let (s, r) = bounded(1); /// /// assert!(!r.is_full()); /// s.send(1).await; /// assert!(r.is_full()); /// # }); /// ``` pub fn is_full(&self) -> bool { self.channel.queue.is_full() } /// Returns the number of messages in the channel. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::unbounded; /// /// let (s, r) = unbounded(); /// assert_eq!(r.len(), 0); /// /// s.send(1).await; /// s.send(2).await; /// assert_eq!(r.len(), 2); /// # }); /// ``` pub fn len(&self) -> usize { self.channel.queue.len() } /// Returns the channel capacity if it's bounded. /// /// # Examples /// /// ``` /// use async_channel::{bounded, unbounded}; /// /// let (s, r) = bounded::(5); /// assert_eq!(r.capacity(), Some(5)); /// /// let (s, r) = unbounded::(); /// assert_eq!(r.capacity(), None); /// ``` pub fn capacity(&self) -> Option { self.channel.queue.capacity() } /// Returns the number of receivers for the channel. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::unbounded; /// /// let (s, r) = unbounded::<()>(); /// assert_eq!(r.receiver_count(), 1); /// /// let r2 = r.clone(); /// assert_eq!(r.receiver_count(), 2); /// # }); /// ``` pub fn receiver_count(&self) -> usize { self.channel.receiver_count.load(Ordering::SeqCst) } /// Returns the number of senders for the channel. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_channel::unbounded; /// /// let (s, r) = unbounded::<()>(); /// assert_eq!(r.sender_count(), 1); /// /// let s2 = s.clone(); /// assert_eq!(r.sender_count(), 2); /// # }); /// ``` pub fn sender_count(&self) -> usize { self.channel.sender_count.load(Ordering::SeqCst) } /// Downgrade the receiver to a weak reference. pub fn downgrade(&self) -> WeakReceiver { WeakReceiver { channel: self.channel.clone(), } } } impl Drop for Receiver { fn drop(&mut self) { // Decrement the receiver count and close the channel if it drops down to zero. if self.channel.receiver_count.fetch_sub(1, Ordering::AcqRel) == 1 { self.channel.close(); } } } impl fmt::Debug for Receiver { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "Receiver {{ .. }}") } } impl Clone for Receiver { fn clone(&self) -> Receiver { let count = self.channel.receiver_count.fetch_add(1, Ordering::Relaxed); // Make sure the count never overflows, even if lots of receiver clones are leaked. if count > usize::MAX / 2 { process::abort(); } Receiver { channel: self.channel.clone(), listener: None, } } } impl Stream for Receiver { type Item = T; fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll> { loop { // If this stream is listening for events, first wait for a notification. if let Some(listener) = self.listener.as_mut() { futures_core::ready!(Pin::new(listener).poll(cx)); self.listener = None; } loop { // Attempt to receive a message. match self.try_recv() { Ok(msg) => { // The stream is not blocked on an event - drop the listener. self.listener = None; return Poll::Ready(Some(msg)); } Err(TryRecvError::Closed) => { // The stream is not blocked on an event - drop the listener. self.listener = None; return Poll::Ready(None); } Err(TryRecvError::Empty) => {} } // Receiving failed - now start listening for notifications or wait for one. match self.listener.as_mut() { None => { // Create a listener and try sending the message again. self.listener = Some(self.channel.stream_ops.listen()); } Some(_) => { // Go back to the outer loop to poll the listener. break; } } } } } } impl futures_core::stream::FusedStream for Receiver { fn is_terminated(&self) -> bool { self.channel.queue.is_closed() && self.channel.queue.is_empty() } } /// A [`Sender`] that prevents the channel from not being closed. /// /// This is created through the [`Sender::downgrade`] method. In order to use it, it needs /// to be upgraded into a [`Sender`] through the `upgrade` method. pub struct WeakSender { channel: Arc>, } impl WeakSender { /// Upgrade the [`WeakSender`] into a [`Sender`]. pub fn upgrade(&self) -> Option> { if self.channel.queue.is_closed() { None } else { match self.channel.sender_count.fetch_update( Ordering::Relaxed, Ordering::Relaxed, |count| if count == 0 { None } else { Some(count + 1) }, ) { Err(_) => None, Ok(new_value) if new_value > usize::MAX / 2 => { // Make sure the count never overflows, even if lots of sender clones are leaked. process::abort(); } Ok(_) => Some(Sender { channel: self.channel.clone(), }), } } } } impl Clone for WeakSender { fn clone(&self) -> Self { WeakSender { channel: self.channel.clone(), } } } impl fmt::Debug for WeakSender { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "WeakSender {{ .. }}") } } /// A [`Receiver`] that prevents the channel from not being closed. /// /// This is created through the [`Receiver::downgrade`] method. In order to use it, it needs /// to be upgraded into a [`Receiver`] through the `upgrade` method. pub struct WeakReceiver { channel: Arc>, } impl WeakReceiver { /// Upgrade the [`WeakReceiver`] into a [`Receiver`]. pub fn upgrade(&self) -> Option> { if self.channel.queue.is_closed() { None } else { match self.channel.receiver_count.fetch_update( Ordering::Relaxed, Ordering::Relaxed, |count| if count == 0 { None } else { Some(count + 1) }, ) { Err(_) => None, Ok(new_value) if new_value > usize::MAX / 2 => { // Make sure the count never overflows, even if lots of receiver clones are leaked. process::abort(); } Ok(_) => Some(Receiver { channel: self.channel.clone(), listener: None, }), } } } } impl Clone for WeakReceiver { fn clone(&self) -> Self { WeakReceiver { channel: self.channel.clone(), } } } impl fmt::Debug for WeakReceiver { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "WeakReceiver {{ .. }}") } } /// An error returned from [`Sender::send()`]. /// /// Received because the channel is closed. #[derive(PartialEq, Eq, Clone, Copy)] pub struct SendError(pub T); impl SendError { /// Unwraps the message that couldn't be sent. pub fn into_inner(self) -> T { self.0 } } impl error::Error for SendError {} impl fmt::Debug for SendError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "SendError(..)") } } impl fmt::Display for SendError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "sending into a closed channel") } } /// An error returned from [`Sender::try_send()`]. #[derive(PartialEq, Eq, Clone, Copy)] pub enum TrySendError { /// The channel is full but not closed. Full(T), /// The channel is closed. Closed(T), } impl TrySendError { /// Unwraps the message that couldn't be sent. pub fn into_inner(self) -> T { match self { TrySendError::Full(t) => t, TrySendError::Closed(t) => t, } } /// Returns `true` if the channel is full but not closed. pub fn is_full(&self) -> bool { match self { TrySendError::Full(_) => true, TrySendError::Closed(_) => false, } } /// Returns `true` if the channel is closed. pub fn is_closed(&self) -> bool { match self { TrySendError::Full(_) => false, TrySendError::Closed(_) => true, } } } impl error::Error for TrySendError {} impl fmt::Debug for TrySendError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { TrySendError::Full(..) => write!(f, "Full(..)"), TrySendError::Closed(..) => write!(f, "Closed(..)"), } } } impl fmt::Display for TrySendError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { TrySendError::Full(..) => write!(f, "sending into a full channel"), TrySendError::Closed(..) => write!(f, "sending into a closed channel"), } } } /// An error returned from [`Receiver::recv()`]. /// /// Received because the channel is empty and closed. #[derive(PartialEq, Eq, Clone, Copy, Debug)] pub struct RecvError; impl error::Error for RecvError {} impl fmt::Display for RecvError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "receiving from an empty and closed channel") } } /// An error returned from [`Receiver::try_recv()`]. #[derive(PartialEq, Eq, Clone, Copy, Debug)] pub enum TryRecvError { /// The channel is empty but not closed. Empty, /// The channel is empty and closed. Closed, } impl TryRecvError { /// Returns `true` if the channel is empty but not closed. pub fn is_empty(&self) -> bool { match self { TryRecvError::Empty => true, TryRecvError::Closed => false, } } /// Returns `true` if the channel is empty and closed. pub fn is_closed(&self) -> bool { match self { TryRecvError::Empty => false, TryRecvError::Closed => true, } } } impl error::Error for TryRecvError {} impl fmt::Display for TryRecvError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { TryRecvError::Empty => write!(f, "receiving from an empty channel"), TryRecvError::Closed => write!(f, "receiving from an empty and closed channel"), } } } /// A future returned by [`Sender::send()`]. #[derive(Debug)] #[must_use = "futures do nothing unless you `.await` or poll them"] pub struct Send<'a, T> { sender: &'a Sender, listener: Option, msg: Option, } impl<'a, T> Send<'a, T> { /// Run this future with the given `Strategy`. fn run_with_strategy( &mut self, cx: &mut S::Context, ) -> Poll>> { loop { let msg = self.msg.take().unwrap(); // Attempt to send a message. match self.sender.try_send(msg) { Ok(()) => return Poll::Ready(Ok(())), Err(TrySendError::Closed(msg)) => return Poll::Ready(Err(SendError(msg))), Err(TrySendError::Full(m)) => self.msg = Some(m), } // Sending failed - now start listening for notifications or wait for one. match self.listener.take() { None => { // Start listening and then try sending again. self.listener = Some(self.sender.channel.send_ops.listen()); } Some(l) => { // Poll using the given strategy if let Err(l) = S::poll(l, cx) { self.listener = Some(l); return Poll::Pending; } } } } } /// Run using the blocking strategy. fn wait(mut self) -> Result<(), SendError> { match self.run_with_strategy::(&mut ()) { Poll::Ready(res) => res, Poll::Pending => unreachable!(), } } } impl<'a, T> Unpin for Send<'a, T> {} impl<'a, T> Future for Send<'a, T> { type Output = Result<(), SendError>; fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll { self.run_with_strategy::>(cx) } } /// A future returned by [`Receiver::recv()`]. #[derive(Debug)] #[must_use = "futures do nothing unless you `.await` or poll them"] pub struct Recv<'a, T> { receiver: &'a Receiver, listener: Option, } impl<'a, T> Unpin for Recv<'a, T> {} impl<'a, T> Recv<'a, T> { /// Run this future with the given `Strategy`. fn run_with_strategy( &mut self, cx: &mut S::Context, ) -> Poll> { loop { // Attempt to receive a message. match self.receiver.try_recv() { Ok(msg) => return Poll::Ready(Ok(msg)), Err(TryRecvError::Closed) => return Poll::Ready(Err(RecvError)), Err(TryRecvError::Empty) => {} } // Receiving failed - now start listening for notifications or wait for one. match self.listener.take() { None => { // Start listening and then try receiving again. self.listener = Some(self.receiver.channel.recv_ops.listen()); } Some(l) => { // Poll using the given strategy. if let Err(l) = S::poll(l, cx) { self.listener = Some(l); return Poll::Pending; } } } } } /// Run with the blocking strategy. fn wait(mut self) -> Result { match self.run_with_strategy::(&mut ()) { Poll::Ready(res) => res, Poll::Pending => unreachable!(), } } } impl<'a, T> Future for Recv<'a, T> { type Output = Result; fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll { self.run_with_strategy::>(cx) } } /// A strategy used to poll an `EventListener`. trait Strategy { /// Context needed to be provided to the `poll` method. type Context; /// Polls the given `EventListener`. /// /// Returns the `EventListener` back if it was not completed; otherwise, /// returns `Ok(())`. fn poll(evl: EventListener, cx: &mut Self::Context) -> Result<(), EventListener>; } /// Non-blocking strategy for use in asynchronous code. struct NonBlocking<'a>(&'a mut ()); impl<'a> Strategy for NonBlocking<'a> { type Context = Context<'a>; fn poll(mut evl: EventListener, cx: &mut Context<'a>) -> Result<(), EventListener> { match Pin::new(&mut evl).poll(cx) { Poll::Ready(()) => Ok(()), Poll::Pending => Err(evl), } } } /// Blocking strategy for use in synchronous code. struct Blocking; impl Strategy for Blocking { type Context = (); fn poll(evl: EventListener, _cx: &mut ()) -> Result<(), EventListener> { evl.wait(); Ok(()) } } async-channel-1.9.0/tests/000077500000000000000000000000001445216205400154115ustar00rootroot00000000000000async-channel-1.9.0/tests/bounded.rs000066400000000000000000000273511445216205400174070ustar00rootroot00000000000000#![allow(clippy::bool_assert_comparison)] use std::sync::atomic::{AtomicUsize, Ordering}; use std::thread::sleep; use std::time::Duration; use async_channel::{bounded, RecvError, SendError, TryRecvError, TrySendError}; use easy_parallel::Parallel; use futures_lite::{future, prelude::*}; fn ms(ms: u64) -> Duration { Duration::from_millis(ms) } #[test] fn smoke() { let (s, r) = bounded(1); future::block_on(s.send(7)).unwrap(); assert_eq!(r.try_recv(), Ok(7)); future::block_on(s.send(8)).unwrap(); assert_eq!(future::block_on(r.recv()), Ok(8)); assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); } #[test] fn smoke_blocking() { let (s, r) = bounded(1); s.send_blocking(7).unwrap(); assert_eq!(r.try_recv(), Ok(7)); s.send_blocking(8).unwrap(); assert_eq!(future::block_on(r.recv()), Ok(8)); future::block_on(s.send(9)).unwrap(); assert_eq!(r.recv_blocking(), Ok(9)); assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); } #[test] fn capacity() { for i in 1..10 { let (s, r) = bounded::<()>(i); assert_eq!(s.capacity(), Some(i)); assert_eq!(r.capacity(), Some(i)); } } #[test] fn len_empty_full() { let (s, r) = bounded(2); assert_eq!(s.len(), 0); assert_eq!(s.is_empty(), true); assert_eq!(s.is_full(), false); assert_eq!(r.len(), 0); assert_eq!(r.is_empty(), true); assert_eq!(r.is_full(), false); future::block_on(s.send(())).unwrap(); assert_eq!(s.len(), 1); assert_eq!(s.is_empty(), false); assert_eq!(s.is_full(), false); assert_eq!(r.len(), 1); assert_eq!(r.is_empty(), false); assert_eq!(r.is_full(), false); future::block_on(s.send(())).unwrap(); assert_eq!(s.len(), 2); assert_eq!(s.is_empty(), false); assert_eq!(s.is_full(), true); assert_eq!(r.len(), 2); assert_eq!(r.is_empty(), false); assert_eq!(r.is_full(), true); future::block_on(r.recv()).unwrap(); assert_eq!(s.len(), 1); assert_eq!(s.is_empty(), false); assert_eq!(s.is_full(), false); assert_eq!(r.len(), 1); assert_eq!(r.is_empty(), false); assert_eq!(r.is_full(), false); } #[test] fn try_recv() { let (s, r) = bounded(100); Parallel::new() .add(move || { assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); sleep(ms(1500)); assert_eq!(r.try_recv(), Ok(7)); sleep(ms(500)); assert_eq!(r.try_recv(), Err(TryRecvError::Closed)); }) .add(move || { sleep(ms(1000)); future::block_on(s.send(7)).unwrap(); }) .run(); } #[test] fn recv() { let (s, r) = bounded(100); Parallel::new() .add(move || { assert_eq!(future::block_on(r.recv()), Ok(7)); sleep(ms(1000)); assert_eq!(future::block_on(r.recv()), Ok(8)); sleep(ms(1000)); assert_eq!(future::block_on(r.recv()), Ok(9)); assert_eq!(future::block_on(r.recv()), Err(RecvError)); }) .add(move || { sleep(ms(1500)); future::block_on(s.send(7)).unwrap(); future::block_on(s.send(8)).unwrap(); future::block_on(s.send(9)).unwrap(); }) .run(); } #[test] fn try_send() { let (s, r) = bounded(1); Parallel::new() .add(move || { assert_eq!(s.try_send(1), Ok(())); assert_eq!(s.try_send(2), Err(TrySendError::Full(2))); sleep(ms(1500)); assert_eq!(s.try_send(3), Ok(())); sleep(ms(500)); assert_eq!(s.try_send(4), Err(TrySendError::Closed(4))); }) .add(move || { sleep(ms(1000)); assert_eq!(r.try_recv(), Ok(1)); assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); assert_eq!(future::block_on(r.recv()), Ok(3)); }) .run(); } #[test] fn send() { let (s, r) = bounded(1); Parallel::new() .add(|| { future::block_on(s.send(7)).unwrap(); sleep(ms(1000)); future::block_on(s.send(8)).unwrap(); sleep(ms(1000)); future::block_on(s.send(9)).unwrap(); sleep(ms(1000)); future::block_on(s.send(10)).unwrap(); }) .add(|| { sleep(ms(1500)); assert_eq!(future::block_on(r.recv()), Ok(7)); assert_eq!(future::block_on(r.recv()), Ok(8)); assert_eq!(future::block_on(r.recv()), Ok(9)); }) .run(); } #[test] fn send_after_close() { let (s, r) = bounded(100); future::block_on(s.send(1)).unwrap(); future::block_on(s.send(2)).unwrap(); future::block_on(s.send(3)).unwrap(); drop(r); assert_eq!(future::block_on(s.send(4)), Err(SendError(4))); assert_eq!(s.try_send(5), Err(TrySendError::Closed(5))); assert_eq!(future::block_on(s.send(6)), Err(SendError(6))); } #[test] fn recv_after_close() { let (s, r) = bounded(100); future::block_on(s.send(1)).unwrap(); future::block_on(s.send(2)).unwrap(); future::block_on(s.send(3)).unwrap(); drop(s); assert_eq!(future::block_on(r.recv()), Ok(1)); assert_eq!(future::block_on(r.recv()), Ok(2)); assert_eq!(future::block_on(r.recv()), Ok(3)); assert_eq!(future::block_on(r.recv()), Err(RecvError)); } #[test] fn len() { const COUNT: usize = 25_000; const CAP: usize = 1000; let (s, r) = bounded(CAP); assert_eq!(s.len(), 0); assert_eq!(r.len(), 0); for _ in 0..CAP / 10 { for i in 0..50 { future::block_on(s.send(i)).unwrap(); assert_eq!(s.len(), i + 1); } for i in 0..50 { future::block_on(r.recv()).unwrap(); assert_eq!(r.len(), 50 - i - 1); } } assert_eq!(s.len(), 0); assert_eq!(r.len(), 0); for i in 0..CAP { future::block_on(s.send(i)).unwrap(); assert_eq!(s.len(), i + 1); } for _ in 0..CAP { future::block_on(r.recv()).unwrap(); } assert_eq!(s.len(), 0); assert_eq!(r.len(), 0); Parallel::new() .add(|| { for i in 0..COUNT { assert_eq!(future::block_on(r.recv()), Ok(i)); let len = r.len(); assert!(len <= CAP); } }) .add(|| { for i in 0..COUNT { future::block_on(s.send(i)).unwrap(); let len = s.len(); assert!(len <= CAP); } }) .run(); assert_eq!(s.len(), 0); assert_eq!(r.len(), 0); } #[test] fn receiver_count() { let (s, r) = bounded::<()>(5); let receiver_clones: Vec<_> = (0..20).map(|_| r.clone()).collect(); assert_eq!(s.receiver_count(), 21); assert_eq!(r.receiver_count(), 21); drop(receiver_clones); assert_eq!(s.receiver_count(), 1); assert_eq!(r.receiver_count(), 1); } #[test] fn sender_count() { let (s, r) = bounded::<()>(5); let sender_clones: Vec<_> = (0..20).map(|_| s.clone()).collect(); assert_eq!(s.sender_count(), 21); assert_eq!(r.sender_count(), 21); drop(sender_clones); assert_eq!(s.receiver_count(), 1); assert_eq!(r.receiver_count(), 1); } #[test] fn close_wakes_sender() { let (s, r) = bounded(1); Parallel::new() .add(move || { assert_eq!(future::block_on(s.send(())), Ok(())); assert_eq!(future::block_on(s.send(())), Err(SendError(()))); }) .add(move || { sleep(ms(1000)); drop(r); }) .run(); } #[test] fn close_wakes_receiver() { let (s, r) = bounded::<()>(1); Parallel::new() .add(move || { assert_eq!(future::block_on(r.recv()), Err(RecvError)); }) .add(move || { sleep(ms(1000)); drop(s); }) .run(); } #[test] fn forget_blocked_sender() { let (s1, r) = bounded(2); let s2 = s1.clone(); Parallel::new() .add(move || { assert!(future::block_on(s1.send(3)).is_ok()); assert!(future::block_on(s1.send(7)).is_ok()); let mut s1_fut = s1.send(13); // Poll but keep the future alive. assert_eq!(future::block_on(future::poll_once(&mut s1_fut)), None); sleep(ms(500)); }) .add(move || { sleep(ms(100)); assert!(future::block_on(s2.send(42)).is_ok()); }) .add(move || { sleep(ms(200)); assert_eq!(future::block_on(r.recv()), Ok(3)); assert_eq!(future::block_on(r.recv()), Ok(7)); sleep(ms(100)); assert_eq!(r.try_recv(), Ok(42)); }) .run(); } #[test] fn forget_blocked_receiver() { let (s, r1) = bounded(2); let r2 = r1.clone(); Parallel::new() .add(move || { let mut r1_fut = r1.recv(); // Poll but keep the future alive. assert_eq!(future::block_on(future::poll_once(&mut r1_fut)), None); sleep(ms(500)); }) .add(move || { sleep(ms(100)); assert_eq!(future::block_on(r2.recv()), Ok(3)); }) .add(move || { sleep(ms(200)); assert!(future::block_on(s.send(3)).is_ok()); assert!(future::block_on(s.send(7)).is_ok()); sleep(ms(100)); assert!(s.try_send(42).is_ok()); }) .run(); } #[test] fn spsc() { const COUNT: usize = 100_000; let (s, r) = bounded(3); Parallel::new() .add(move || { for i in 0..COUNT { assert_eq!(future::block_on(r.recv()), Ok(i)); } assert_eq!(future::block_on(r.recv()), Err(RecvError)); }) .add(move || { for i in 0..COUNT { future::block_on(s.send(i)).unwrap(); } }) .run(); } #[test] fn mpmc() { const COUNT: usize = 25_000; const THREADS: usize = 4; let (s, r) = bounded::(3); let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::>(); Parallel::new() .each(0..THREADS, |_| { for _ in 0..COUNT { let n = future::block_on(r.recv()).unwrap(); v[n].fetch_add(1, Ordering::SeqCst); } }) .each(0..THREADS, |_| { for i in 0..COUNT { future::block_on(s.send(i)).unwrap(); } }) .run(); for c in v { assert_eq!(c.load(Ordering::SeqCst), THREADS); } } #[test] fn mpmc_stream() { const COUNT: usize = 25_000; const THREADS: usize = 4; let (s, r) = bounded::(3); let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::>(); let v = &v; Parallel::new() .each(0..THREADS, { let mut r = r; move |_| { for _ in 0..COUNT { let n = future::block_on(r.next()).unwrap(); v[n].fetch_add(1, Ordering::SeqCst); } } }) .each(0..THREADS, |_| { for i in 0..COUNT { future::block_on(s.send(i)).unwrap(); } }) .run(); for c in v { assert_eq!(c.load(Ordering::SeqCst), THREADS); } } #[test] fn weak() { let (s, r) = bounded::(3); // Create a weak sender/receiver pair. let (weak_s, weak_r) = (s.downgrade(), r.downgrade()); // Upgrade and send. { let s = weak_s.upgrade().unwrap(); s.send_blocking(3).unwrap(); let r = weak_r.upgrade().unwrap(); assert_eq!(r.recv_blocking(), Ok(3)); } // Drop the original sender/receiver pair. drop((s, r)); // Try to upgrade again. { assert!(weak_s.upgrade().is_none()); assert!(weak_r.upgrade().is_none()); } } async-channel-1.9.0/tests/unbounded.rs000066400000000000000000000176261445216205400177560ustar00rootroot00000000000000#![allow(clippy::bool_assert_comparison)] use std::sync::atomic::{AtomicUsize, Ordering}; use std::thread::sleep; use std::time::Duration; use async_channel::{unbounded, RecvError, SendError, TryRecvError, TrySendError}; use easy_parallel::Parallel; use futures_lite::{future, prelude::*}; fn ms(ms: u64) -> Duration { Duration::from_millis(ms) } #[test] fn smoke() { let (s, r) = unbounded(); s.try_send(7).unwrap(); assert_eq!(r.try_recv(), Ok(7)); future::block_on(s.send(8)).unwrap(); assert_eq!(future::block_on(r.recv()), Ok(8)); assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); } #[test] fn smoke_blocking() { let (s, r) = unbounded(); s.send_blocking(7).unwrap(); assert_eq!(r.try_recv(), Ok(7)); s.send_blocking(8).unwrap(); assert_eq!(future::block_on(r.recv()), Ok(8)); future::block_on(s.send(9)).unwrap(); assert_eq!(r.recv_blocking(), Ok(9)); assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); } #[test] fn capacity() { let (s, r) = unbounded::<()>(); assert_eq!(s.capacity(), None); assert_eq!(r.capacity(), None); } #[test] fn len_empty_full() { let (s, r) = unbounded(); assert_eq!(s.len(), 0); assert_eq!(s.is_empty(), true); assert_eq!(s.is_full(), false); assert_eq!(r.len(), 0); assert_eq!(r.is_empty(), true); assert_eq!(r.is_full(), false); future::block_on(s.send(())).unwrap(); assert_eq!(s.len(), 1); assert_eq!(s.is_empty(), false); assert_eq!(s.is_full(), false); assert_eq!(r.len(), 1); assert_eq!(r.is_empty(), false); assert_eq!(r.is_full(), false); future::block_on(r.recv()).unwrap(); assert_eq!(s.len(), 0); assert_eq!(s.is_empty(), true); assert_eq!(s.is_full(), false); assert_eq!(r.len(), 0); assert_eq!(r.is_empty(), true); assert_eq!(r.is_full(), false); } #[test] fn try_recv() { let (s, r) = unbounded(); Parallel::new() .add(move || { assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); sleep(ms(1500)); assert_eq!(r.try_recv(), Ok(7)); sleep(ms(500)); assert_eq!(r.try_recv(), Err(TryRecvError::Closed)); }) .add(move || { sleep(ms(1000)); future::block_on(s.send(7)).unwrap(); }) .run(); } #[test] fn recv() { let (s, r) = unbounded(); Parallel::new() .add(move || { assert_eq!(future::block_on(r.recv()), Ok(7)); sleep(ms(1000)); assert_eq!(future::block_on(r.recv()), Ok(8)); sleep(ms(1000)); assert_eq!(future::block_on(r.recv()), Ok(9)); assert_eq!(future::block_on(r.recv()), Err(RecvError)); }) .add(move || { sleep(ms(1500)); future::block_on(s.send(7)).unwrap(); future::block_on(s.send(8)).unwrap(); future::block_on(s.send(9)).unwrap(); }) .run(); } #[test] fn try_send() { let (s, r) = unbounded(); for i in 0..1000 { assert_eq!(s.try_send(i), Ok(())); } drop(r); assert_eq!(s.try_send(777), Err(TrySendError::Closed(777))); } #[test] fn send() { let (s, r) = unbounded(); for i in 0..1000 { assert_eq!(future::block_on(s.send(i)), Ok(())); } drop(r); assert_eq!(future::block_on(s.send(777)), Err(SendError(777))); } #[test] fn send_after_close() { let (s, r) = unbounded(); future::block_on(s.send(1)).unwrap(); future::block_on(s.send(2)).unwrap(); future::block_on(s.send(3)).unwrap(); drop(r); assert_eq!(future::block_on(s.send(4)), Err(SendError(4))); assert_eq!(s.try_send(5), Err(TrySendError::Closed(5))); } #[test] fn recv_after_close() { let (s, r) = unbounded(); future::block_on(s.send(1)).unwrap(); future::block_on(s.send(2)).unwrap(); future::block_on(s.send(3)).unwrap(); drop(s); assert_eq!(future::block_on(r.recv()), Ok(1)); assert_eq!(future::block_on(r.recv()), Ok(2)); assert_eq!(future::block_on(r.recv()), Ok(3)); assert_eq!(future::block_on(r.recv()), Err(RecvError)); } #[test] fn len() { let (s, r) = unbounded(); assert_eq!(s.len(), 0); assert_eq!(r.len(), 0); for i in 0..50 { future::block_on(s.send(i)).unwrap(); assert_eq!(s.len(), i + 1); } for i in 0..50 { future::block_on(r.recv()).unwrap(); assert_eq!(r.len(), 50 - i - 1); } assert_eq!(s.len(), 0); assert_eq!(r.len(), 0); } #[test] fn receiver_count() { let (s, r) = unbounded::<()>(); let receiver_clones: Vec<_> = (0..20).map(|_| r.clone()).collect(); assert_eq!(s.receiver_count(), 21); assert_eq!(r.receiver_count(), 21); drop(receiver_clones); assert_eq!(s.receiver_count(), 1); assert_eq!(r.receiver_count(), 1); } #[test] fn sender_count() { let (s, r) = unbounded::<()>(); let sender_clones: Vec<_> = (0..20).map(|_| s.clone()).collect(); assert_eq!(s.sender_count(), 21); assert_eq!(r.sender_count(), 21); drop(sender_clones); assert_eq!(s.receiver_count(), 1); assert_eq!(r.receiver_count(), 1); } #[test] fn close_wakes_receiver() { let (s, r) = unbounded::<()>(); Parallel::new() .add(move || { assert_eq!(future::block_on(r.recv()), Err(RecvError)); }) .add(move || { sleep(ms(1000)); drop(s); }) .run(); } #[test] fn spsc() { const COUNT: usize = 100_000; let (s, r) = unbounded(); Parallel::new() .add(move || { for i in 0..COUNT { assert_eq!(future::block_on(r.recv()), Ok(i)); } assert_eq!(future::block_on(r.recv()), Err(RecvError)); }) .add(move || { for i in 0..COUNT { future::block_on(s.send(i)).unwrap(); } }) .run(); } #[test] fn mpmc() { const COUNT: usize = 25_000; const THREADS: usize = 4; let (s, r) = unbounded::(); let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::>(); Parallel::new() .each(0..THREADS, |_| { for _ in 0..COUNT { let n = future::block_on(r.recv()).unwrap(); v[n].fetch_add(1, Ordering::SeqCst); } }) .each(0..THREADS, |_| { for i in 0..COUNT { future::block_on(s.send(i)).unwrap(); } }) .run(); assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); for c in v { assert_eq!(c.load(Ordering::SeqCst), THREADS); } } #[test] fn mpmc_stream() { const COUNT: usize = 25_000; const THREADS: usize = 4; let (s, r) = unbounded::(); let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::>(); let v = &v; Parallel::new() .each(0..THREADS, { let mut r = r.clone(); move |_| { for _ in 0..COUNT { let n = future::block_on(r.next()).unwrap(); v[n].fetch_add(1, Ordering::SeqCst); } } }) .each(0..THREADS, |_| { for i in 0..COUNT { future::block_on(s.send(i)).unwrap(); } }) .run(); assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); for c in v { assert_eq!(c.load(Ordering::SeqCst), THREADS); } } #[test] fn weak() { let (s, r) = unbounded::(); // Create a weak sender/receiver pair. let (weak_s, weak_r) = (s.downgrade(), r.downgrade()); // Upgrade and send. { let s = weak_s.upgrade().unwrap(); s.send_blocking(3).unwrap(); let r = weak_r.upgrade().unwrap(); assert_eq!(r.recv_blocking(), Ok(3)); } // Drop the original sender/receiver pair. drop((s, r)); // Try to upgrade again. { assert!(weak_s.upgrade().is_none()); assert!(weak_r.upgrade().is_none()); } }