base64-0.10.1/.gitignore010060000017500001750000000001601325401402100130430ustar0000000000000000target/ Cargo.lock *~ *.swp *.swo main.rs # JetBrains tools .idea *.iml # `perf record` files perf.data* /tmp base64-0.10.1/.travis.yml010060000017500001750000000015251342247400700132050ustar0000000000000000--- language: rust dist: trusty sudo: required matrix: include: - rust: 1.27.2 - rust: stable - rust: beta - rust: nightly addons: apt: packages: # cargo-tarpaulin needs this - libssl-dev install: # For test coverage. In install step so that it can use cache. - cargo tarpaulin --version || RUSTFLAGS="--cfg procmacro2_semver_exempt" cargo install --force cargo-tarpaulin allow_failures: - rust: nightly cache: cargo script: - cargo build --verbose - cargo test --verbose - cargo doc --verbose - 'if [[ "$TRAVIS_RUST_VERSION" = nightly ]]; then cargo bench --no-run; fi' after_success: | if [[ "$TRAVIS_RUST_VERSION" = nightly ]]; then # Calculate test coverage cargo tarpaulin --out Xml bash <(curl -s https://codecov.io/bash) fi base64-0.10.1/Cargo.toml.orig010060000017500001750000000012661342247712400137700ustar0000000000000000[package] name = "base64" version = "0.10.1" authors = ["Alice Maz ", "Marshall Pierce "] description = "encodes and decodes base64 as bytes or utf8" repository = "https://github.com/alicemaz/rust-base64" documentation = "https://github.com/alicemaz/rust-base64/blob/master/README.md" readme = "README.md" keywords = ["base64", "utf8", "encode", "decode"] categories = ["encoding"] license = "MIT/Apache-2.0" [[bench]] name = "benchmarks" harness = false [dependencies] byteorder = "1.2.6" [dev-dependencies] criterion = "0.2" rand = "0.6.1" [profile.bench] # Useful for better disassembly when using `perf record` and `perf annotate` debug = true base64-0.10.1/Cargo.toml0000644000000022360000000000000102370ustar00# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g. crates.io) dependencies # # If you believe there's an error in this file please file an # issue against the rust-lang/cargo repository. If you're # editing this file be aware that the upstream Cargo.toml # will likely look very different (and much more reasonable) [package] name = "base64" version = "0.10.1" authors = ["Alice Maz ", "Marshall Pierce "] description = "encodes and decodes base64 as bytes or utf8" documentation = "https://github.com/alicemaz/rust-base64/blob/master/README.md" readme = "README.md" keywords = ["base64", "utf8", "encode", "decode"] categories = ["encoding"] license = "MIT/Apache-2.0" repository = "https://github.com/alicemaz/rust-base64" [profile.bench] debug = true [[bench]] name = "benchmarks" harness = false [dependencies.byteorder] version = "1.2.6" [dev-dependencies.criterion] version = "0.2" [dev-dependencies.rand] version = "0.6.1" base64-0.10.1/LICENSE-APACHE010060000017500001750000000251371320161076600130240ustar0000000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. base64-0.10.1/LICENSE-MIT010060000017500001750000000020641320161076600125260ustar0000000000000000The MIT License (MIT) Copyright (c) 2015 Alice Maz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. base64-0.10.1/README.md010060000017500001750000000102151342247447500123600ustar0000000000000000[base64](https://crates.io/crates/base64) === [![](https://img.shields.io/crates/v/base64.svg)](https://crates.io/crates/base64) [![Docs](https://docs.rs/base64/badge.svg)](https://docs.rs/base64) [![Build](https://travis-ci.org/alicemaz/rust-base64.svg?branch=master)](https://travis-ci.org/alicemaz/rust-base64) [![codecov](https://codecov.io/gh/alicemaz/rust-base64/branch/master/graph/badge.svg)](https://codecov.io/gh/alicemaz/rust-base64) Made with CLion. Thanks to JetBrains for supporting open source! It's base64. What more could anyone want? Example --- ```rust extern crate base64; use base64::{encode, decode}; fn main() { let a = b"hello world"; let b = "aGVsbG8gd29ybGQ="; assert_eq!(encode(a), b); assert_eq!(a, &decode(b).unwrap()[..]); } ``` See the [docs](https://docs.rs/base64) for all the details. Rust version compatibility --- The minimum required Rust version is 1.27.2. Developing --- Benchmarks are in `benches/`. Running them requires nightly rust, but `rustup` makes it easy: ``` rustup run nightly cargo bench ``` Decoding is aided by some pre-calculated tables, which are generated by: ``` cargo run --example make_tables > src/tables.rs.tmp && mv src/tables.rs.tmp src/tables.rs ``` Profiling --- On Linux, you can use [perf](https://perf.wiki.kernel.org/index.php/Main_Page) for profiling. Then compile the benchmarks with `rustup nightly run cargo bench --no-run`. Run the benchmark binary with `perf` (shown here filtering to one particular benchmark, which will make the results easier to read). `perf` is only available to the root user on most systems as it fiddles with event counters in your CPU, so use `sudo`. We need to run the actual benchmark binary, hence the path into `target`. You can see the actual full path with `rustup run nightly cargo bench -v`; it will print out the commands it runs. If you use the exact path that `bench` outputs, make sure you get the one that's for the benchmarks, not the tests. You may also want to `cargo clean` so you have only one `benchmarks-` binary (they tend to accumulate). ``` sudo perf record target/release/deps/benchmarks-* --bench decode_10mib_reuse ``` Then analyze the results, again with perf: ``` sudo perf annotate -l ``` You'll see a bunch of interleaved rust source and assembly like this. The section with `lib.rs:327` is telling us that 4.02% of samples saw the `movzbl` aka bit shift as the active instruction. However, this percentage is not as exact as it seems due to a phenomenon called *skid*. Basically, a consequence of how fancy modern CPUs are is that this sort of instruction profiling is inherently inaccurate, especially in branch-heavy code. ``` lib.rs:322 0.70 : 10698: mov %rdi,%rax 2.82 : 1069b: shr $0x38,%rax : if morsel == decode_tables::INVALID_VALUE { : bad_byte_index = input_index; : break; : }; : accum = (morsel as u64) << 58; lib.rs:327 4.02 : 1069f: movzbl (%r9,%rax,1),%r15d : // fast loop of 8 bytes at a time : while input_index < length_of_full_chunks { : let mut accum: u64; : : let input_chunk = BigEndian::read_u64(&input_bytes[input_index..(input_index + 8)]); : morsel = decode_table[(input_chunk >> 56) as usize]; lib.rs:322 3.68 : 106a4: cmp $0xff,%r15 : if morsel == decode_tables::INVALID_VALUE { 0.00 : 106ab: je 1090e ``` Fuzzing --- This uses [cargo-fuzz](https://github.com/rust-fuzz/cargo-fuzz). See `fuzz/fuzzers` for the available fuzzing scripts. To run, use an invocation like these: ``` cargo +nightly fuzz run roundtrip cargo +nightly fuzz run roundtrip_no_pad cargo +nightly fuzz run roundtrip_random_config -- -max_len=10240 ``` License --- This project is dual-licensed under MIT and Apache 2.0. base64-0.10.1/RELEASE-NOTES.md010060000017500001750000000047471342247707300134030ustar0000000000000000# Next - TBD # 0.10.1 - Minimum rust version 1.27.2 - Fix bug in streaming encoding ([#90](https://github.com/alicemaz/rust-base64/pull/90)): if the underlying writer didn't write all the bytes given to it, the remaining bytes would not be retried later. See the docs on `EncoderWriter::write`. - Make it configurable whether or not to return an error when decoding detects excess trailing bits. # 0.10.0 - Remove line wrapping. Line wrapping was never a great conceptual fit in this library, and other features (streaming encoding, etc) either couldn't support it or could support only special cases of it with a great increase in complexity. Line wrapping has been pulled out into a [line-wrap](https://crates.io/crates/line-wrap) crate, so it's still available if you need it. - `Base64Display` creation no longer uses a `Result` because it can't fail, which means its helper methods for common configs that `unwrap()` for you are no longer needed - Add a streaming encoder `Write` impl to transparently base64 as you write. - Remove the remaining `unsafe` code. - Remove whitespace stripping to simplify `no_std` support. No out of the box configs use it, and it's trivial to do yourself if needed: `filter(|b| !b" \n\t\r\x0b\x0c".contains(b)`. - Detect invalid trailing symbols when decoding and return an error rather than silently ignoring them. # 0.9.3 - Update safemem # 0.9.2 - Derive `Clone` for `DecodeError`. # 0.9.1 - Add support for `crypt(3)`'s base64 variant. # 0.9.0 - `decode_config_slice` function for no-allocation decoding, analogous to `encode_config_slice` - Decode performance optimization # 0.8.0 - `encode_config_slice` function for no-allocation encoding # 0.7.0 - `STANDARD_NO_PAD` config - `Base64Display` heap-free wrapper for use in format strings, etc # 0.6.0 - Decode performance improvements - Use `unsafe` in fewer places - Added fuzzers # 0.5.2 - Avoid usize overflow when calculating length - Better line wrapping performance # 0.5.1 - Temporarily disable line wrapping - Add Apache 2.0 license # 0.5.0 - MIME support, including configurable line endings and line wrapping - Removed `decode_ws` - Renamed `Base64Error` to `DecodeError` # 0.4.1 - Allow decoding a `AsRef<[u8]>` instead of just a `&str` # 0.4.0 - Configurable padding - Encode performance improvements # 0.3.0 - Added encode/decode functions that do not allocate their own storage - Decode performance improvements - Extraneous padding bytes are no longer ignored. Now, an error will be returned. base64-0.10.1/benches/benchmarks.rs010060000017500001750000000114571337701666000152010ustar0000000000000000extern crate base64; #[macro_use] extern crate criterion; extern crate rand; use base64::display; use base64::{ decode, decode_config_buf, decode_config_slice, encode, encode_config_buf, encode_config_slice, write, Config, }; use criterion::{black_box, Bencher, Criterion, ParameterizedBenchmark, Throughput}; use rand::{FromEntropy, Rng}; use std::io::Write; const TEST_CONFIG: Config = base64::STANDARD; fn do_decode_bench(b: &mut Bencher, &size: &usize) { let mut v: Vec = Vec::with_capacity(size * 3 / 4); fill(&mut v); let encoded = encode(&v); b.iter(|| { let orig = decode(&encoded); black_box(&orig); }); } fn do_decode_bench_reuse_buf(b: &mut Bencher, &size: &usize) { let mut v: Vec = Vec::with_capacity(size * 3 / 4); fill(&mut v); let encoded = encode(&v); let mut buf = Vec::new(); b.iter(|| { decode_config_buf(&encoded, TEST_CONFIG, &mut buf).unwrap(); black_box(&buf); buf.clear(); }); } fn do_decode_bench_slice(b: &mut Bencher, &size: &usize) { let mut v: Vec = Vec::with_capacity(size * 3 / 4); fill(&mut v); let encoded = encode(&v); let mut buf = Vec::new(); buf.resize(size, 0); b.iter(|| { decode_config_slice(&encoded, TEST_CONFIG, &mut buf).unwrap(); black_box(&buf); }); } fn do_encode_bench(b: &mut Bencher, &size: &usize) { let mut v: Vec = Vec::with_capacity(size); fill(&mut v); b.iter(|| { let e = encode(&v); black_box(&e); }); } fn do_encode_bench_display(b: &mut Bencher, &size: &usize) { let mut v: Vec = Vec::with_capacity(size); fill(&mut v); b.iter(|| { let e = format!("{}", display::Base64Display::with_config(&v, TEST_CONFIG)); black_box(&e); }); } fn do_encode_bench_reuse_buf(b: &mut Bencher, &size: &usize) { let mut v: Vec = Vec::with_capacity(size); fill(&mut v); let mut buf = String::new(); b.iter(|| { encode_config_buf(&v, TEST_CONFIG, &mut buf); buf.clear(); }); } fn do_encode_bench_slice(b: &mut Bencher, &size: &usize) { let mut v: Vec = Vec::with_capacity(size); fill(&mut v); let mut buf = Vec::new(); // conservative estimate of encoded size buf.resize(v.len() * 2, 0); b.iter(|| { encode_config_slice(&v, TEST_CONFIG, &mut buf); }); } fn do_encode_bench_stream(b: &mut Bencher, &size: &usize) { let mut v: Vec = Vec::with_capacity(size); fill(&mut v); let mut buf = Vec::new(); buf.reserve(size * 2); b.iter(|| { buf.clear(); let mut stream_enc = write::EncoderWriter::new(&mut buf, TEST_CONFIG); stream_enc.write_all(&v).unwrap(); stream_enc.flush().unwrap(); }); } fn fill(v: &mut Vec) { let cap = v.capacity(); // weak randomness is plenty; we just want to not be completely friendly to the branch predictor let mut r = rand::rngs::SmallRng::from_entropy(); while v.len() < cap { v.push(r.gen::()); } } const BYTE_SIZES: [usize; 5] = [3, 50, 100, 500, 3 * 1024]; // Benchmarks over these byte sizes take longer so we will run fewer samples to // keep the benchmark runtime reasonable. const LARGE_BYTE_SIZES: [usize; 3] = [3 * 1024 * 1024, 10 * 1024 * 1024, 30 * 1024 * 1024]; fn encode_benchmarks(byte_sizes: &[usize]) -> ParameterizedBenchmark { ParameterizedBenchmark::new("encode", do_encode_bench, byte_sizes.iter().cloned()) .warm_up_time(std::time::Duration::from_millis(500)) .measurement_time(std::time::Duration::from_secs(3)) .throughput(|s| Throughput::Bytes(*s as u32)) .with_function("encode_display", do_encode_bench_display) .with_function("encode_reuse_buf", do_encode_bench_reuse_buf) .with_function("encode_slice", do_encode_bench_slice) .with_function("encode_reuse_buf_stream", do_encode_bench_stream) } fn decode_benchmarks(byte_sizes: &[usize]) -> ParameterizedBenchmark { ParameterizedBenchmark::new("decode", do_decode_bench, byte_sizes.iter().cloned()) .warm_up_time(std::time::Duration::from_millis(500)) .measurement_time(std::time::Duration::from_secs(3)) .throughput(|s| Throughput::Bytes(*s as u32)) .with_function("decode_reuse_buf", do_decode_bench_reuse_buf) .with_function("decode_slice", do_decode_bench_slice) } fn bench(c: &mut Criterion) { c.bench("bench_small_input", encode_benchmarks(&BYTE_SIZES[..])); c.bench( "bench_large_input", encode_benchmarks(&LARGE_BYTE_SIZES[..]).sample_size(10), ); c.bench("bench_small_input", decode_benchmarks(&BYTE_SIZES[..])); c.bench( "bench_large_input", decode_benchmarks(&LARGE_BYTE_SIZES[..]).sample_size(10), ); } criterion_group!(benches, bench); criterion_main!(benches); base64-0.10.1/examples/make_tables.rs010060000017500001750000000063261337701666000155410ustar0000000000000000use std::collections::HashMap; use std::iter::Iterator; fn main() { println!("pub const INVALID_VALUE: u8 = 255;"); // A-Z let standard_alphabet: Vec = (0x41..0x5B) // a-z .chain(0x61..0x7B) // 0-9 .chain(0x30..0x3A) // + .chain(0x2B..0x2C) // / .chain(0x2F..0x30) .collect(); print_encode_table(&standard_alphabet, "STANDARD_ENCODE", 0); print_decode_table(&standard_alphabet, "STANDARD_DECODE", 0); // A-Z let url_alphabet: Vec = (0x41..0x5B) // a-z .chain(0x61..0x7B) // 0-9 .chain(0x30..0x3A) // - .chain(0x2D..0x2E) // _s .chain(0x5F..0x60) .collect(); print_encode_table(&url_alphabet, "URL_SAFE_ENCODE", 0); print_decode_table(&url_alphabet, "URL_SAFE_DECODE", 0); // ./0123456789 let crypt_alphabet: Vec = (b'.'..(b'9' + 1)) // A-Z .chain(b'A'..(b'Z' + 1)) // a-z .chain(b'a'..(b'z' + 1)) .collect(); print_encode_table(&crypt_alphabet, "CRYPT_ENCODE", 0); print_decode_table(&crypt_alphabet, "CRYPT_DECODE", 0); } fn print_encode_table(alphabet: &[u8], const_name: &str, indent_depth: usize) { println!("#[cfg_attr(rustfmt, rustfmt_skip)]"); println!( "{:width$}pub const {}: &'static [u8; 64] = &[", "", const_name, width = indent_depth ); for (i, b) in alphabet.iter().enumerate() { println!( "{:width$}{}, // input {} (0x{:X}) => '{}' (0x{:X})", "", b, i, i, String::from_utf8(vec![*b as u8]).unwrap(), b, width = indent_depth + 4 ); } println!("{:width$}];", "", width = indent_depth); } fn print_decode_table(alphabet: &[u8], const_name: &str, indent_depth: usize) { // map of alphabet bytes to 6-bit morsels let mut input_to_morsel = HashMap::::new(); // standard base64 alphabet bytes, in order for (morsel, ascii_byte) in alphabet.iter().enumerate() { // truncation cast is fine here let _ = input_to_morsel.insert(*ascii_byte, morsel as u8); } println!("#[cfg_attr(rustfmt, rustfmt_skip)]"); println!( "{:width$}pub const {}: &'static [u8; 256] = &[", "", const_name, width = indent_depth ); for ascii_byte in 0..256 { let (value, comment) = match input_to_morsel.get(&(ascii_byte as u8)) { None => ( "INVALID_VALUE".to_string(), format!("input {} (0x{:X})", ascii_byte, ascii_byte), ), Some(v) => ( format!("{}", *v), format!( "input {} (0x{:X} char '{}') => {} (0x{:X})", ascii_byte, ascii_byte, String::from_utf8(vec![ascii_byte as u8]).unwrap(), *v, *v ), ), }; println!( "{:width$}{}, // {}", "", value, comment, width = indent_depth + 4 ); } println!("{:width$}];", "", width = indent_depth); } base64-0.10.1/icon_CLion.svg010060000017500001750000000043041342247447500136400ustar0000000000000000 icon_CLion base64-0.10.1/src/chunked_encoder.rs010060000017500001750000000160411340546232200153460ustar0000000000000000use encode::{add_padding, encode_to_slice}; use std::{cmp, str}; use Config; /// The output mechanism for ChunkedEncoder's encoded bytes. pub trait Sink { type Error; /// Handle a chunk of encoded base64 data (as UTF-8 bytes) fn write_encoded_bytes(&mut self, encoded: &[u8]) -> Result<(), Self::Error>; } const BUF_SIZE: usize = 1024; /// A base64 encoder that emits encoded bytes in chunks without heap allocation. pub struct ChunkedEncoder { config: Config, max_input_chunk_len: usize, } impl ChunkedEncoder { pub fn new(config: Config) -> ChunkedEncoder { ChunkedEncoder { config, max_input_chunk_len: max_input_length(BUF_SIZE, config), } } pub fn encode(&self, bytes: &[u8], sink: &mut S) -> Result<(), S::Error> { let mut encode_buf: [u8; BUF_SIZE] = [0; BUF_SIZE]; let encode_table = self.config.char_set.encode_table(); let mut input_index = 0; while input_index < bytes.len() { // either the full input chunk size, or it's the last iteration let input_chunk_len = cmp::min(self.max_input_chunk_len, bytes.len() - input_index); let chunk = &bytes[input_index..(input_index + input_chunk_len)]; let mut b64_bytes_written = encode_to_slice(chunk, &mut encode_buf, encode_table); input_index += input_chunk_len; let more_input_left = input_index < bytes.len(); if self.config.pad && !more_input_left { // no more input, add padding if needed. Buffer will have room because // max_input_length leaves room for it. b64_bytes_written += add_padding(bytes.len(), &mut encode_buf[b64_bytes_written..]); } sink.write_encoded_bytes(&encode_buf[0..b64_bytes_written])?; } Ok(()) } } /// Calculate the longest input that can be encoded for the given output buffer size. /// /// If the config requires padding, two bytes of buffer space will be set aside so that the last /// chunk of input can be encoded safely. /// /// The input length will always be a multiple of 3 so that no encoding state has to be carried over /// between chunks. fn max_input_length(encoded_buf_len: usize, config: Config) -> usize { let effective_buf_len = if config.pad { // make room for padding encoded_buf_len .checked_sub(2) .expect("Don't use a tiny buffer") } else { encoded_buf_len }; // No padding, so just normal base64 expansion. (effective_buf_len / 4) * 3 } // A really simple sink that just appends to a string pub(crate) struct StringSink<'a> { string: &'a mut String, } impl<'a> StringSink<'a> { pub(crate) fn new(s: &mut String) -> StringSink { StringSink { string: s } } } impl<'a> Sink for StringSink<'a> { type Error = (); fn write_encoded_bytes(&mut self, s: &[u8]) -> Result<(), Self::Error> { self.string.push_str(str::from_utf8(s).unwrap()); Ok(()) } } #[cfg(test)] pub mod tests { extern crate rand; use super::*; use tests::random_config; use *; use self::rand::distributions::{Distribution, Uniform}; use self::rand::{FromEntropy, Rng}; #[test] fn chunked_encode_empty() { assert_eq!("", chunked_encode_str(&[], STANDARD)); } #[test] fn chunked_encode_intermediate_fast_loop() { // > 8 bytes input, will enter the pretty fast loop assert_eq!( "Zm9vYmFyYmF6cXV4", chunked_encode_str(b"foobarbazqux", STANDARD) ); } #[test] fn chunked_encode_fast_loop() { // > 32 bytes input, will enter the uber fast loop assert_eq!( "Zm9vYmFyYmF6cXV4cXV1eGNvcmdlZ3JhdWx0Z2FycGx5eg==", chunked_encode_str(b"foobarbazquxquuxcorgegraultgarplyz", STANDARD) ); } #[test] fn chunked_encode_slow_loop_only() { // < 8 bytes input, slow loop only assert_eq!("Zm9vYmFy", chunked_encode_str(b"foobar", STANDARD)); } #[test] fn chunked_encode_matches_normal_encode_random_string_sink() { let helper = StringSinkTestHelper; chunked_encode_matches_normal_encode_random(&helper); } #[test] fn max_input_length_no_pad() { let config = config_with_pad(false); assert_eq!(768, max_input_length(1024, config)); } #[test] fn max_input_length_with_pad_decrements_one_triple() { let config = config_with_pad(true); assert_eq!(765, max_input_length(1024, config)); } #[test] fn max_input_length_with_pad_one_byte_short() { let config = config_with_pad(true); assert_eq!(765, max_input_length(1025, config)); } #[test] fn max_input_length_with_pad_fits_exactly() { let config = config_with_pad(true); assert_eq!(768, max_input_length(1026, config)); } #[test] fn max_input_length_cant_use_extra_single_encoded_byte() { let config = Config::new(CharacterSet::Standard, false); assert_eq!(300, max_input_length(401, config)); } pub fn chunked_encode_matches_normal_encode_random(sink_test_helper: &S) { let mut input_buf: Vec = Vec::new(); let mut output_buf = String::new(); let mut rng = rand::rngs::SmallRng::from_entropy(); let input_len_range = Uniform::new(1, 10_000); for _ in 0..5_000 { input_buf.clear(); output_buf.clear(); let buf_len = input_len_range.sample(&mut rng); for _ in 0..buf_len { input_buf.push(rng.gen()); } let config = random_config(&mut rng); let chunk_encoded_string = sink_test_helper.encode_to_string(config, &input_buf); encode_config_buf(&input_buf, config, &mut output_buf); assert_eq!( output_buf, chunk_encoded_string, "input len={}, config: pad={}", buf_len, config.pad ); } } fn chunked_encode_str(bytes: &[u8], config: Config) -> String { let mut s = String::new(); { let mut sink = StringSink::new(&mut s); let encoder = ChunkedEncoder::new(config); encoder.encode(bytes, &mut sink).unwrap(); } return s; } fn config_with_pad(pad: bool) -> Config { Config::new(CharacterSet::Standard, pad) } // An abstraction around sinks so that we can have tests that easily to any sink implementation pub trait SinkTestHelper { fn encode_to_string(&self, config: Config, bytes: &[u8]) -> String; } struct StringSinkTestHelper; impl SinkTestHelper for StringSinkTestHelper { fn encode_to_string(&self, config: Config, bytes: &[u8]) -> String { let encoder = ChunkedEncoder::new(config); let mut s = String::new(); { let mut sink = StringSink::new(&mut s); encoder.encode(bytes, &mut sink).unwrap(); } s } } } base64-0.10.1/src/decode.rs010060000017500001750000000730431342247643000134620ustar0000000000000000use byteorder::{BigEndian, ByteOrder}; use {tables, Config, STANDARD}; use std::{error, fmt, str}; // decode logic operates on chunks of 8 input bytes without padding const INPUT_CHUNK_LEN: usize = 8; const DECODED_CHUNK_LEN: usize = 6; // we read a u64 and write a u64, but a u64 of input only yields 6 bytes of output, so the last // 2 bytes of any output u64 should not be counted as written to (but must be available in a // slice). const DECODED_CHUNK_SUFFIX: usize = 2; // how many u64's of input to handle at a time const CHUNKS_PER_FAST_LOOP_BLOCK: usize = 4; const INPUT_BLOCK_LEN: usize = CHUNKS_PER_FAST_LOOP_BLOCK * INPUT_CHUNK_LEN; // includes the trailing 2 bytes for the final u64 write const DECODED_BLOCK_LEN: usize = CHUNKS_PER_FAST_LOOP_BLOCK * DECODED_CHUNK_LEN + DECODED_CHUNK_SUFFIX; /// Errors that can occur while decoding. #[derive(Clone, Debug, PartialEq, Eq)] pub enum DecodeError { /// An invalid byte was found in the input. The offset and offending byte are provided. InvalidByte(usize, u8), /// The length of the input is invalid. InvalidLength, /// The last non-padding input symbol's encoded 6 bits have nonzero bits that will be discarded. /// This is indicative of corrupted or truncated Base64. /// Unlike InvalidByte, which reports symbols that aren't in the alphabet, this error is for /// symbols that are in the alphabet but represent nonsensical encodings. InvalidLastSymbol(usize, u8), } impl fmt::Display for DecodeError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { DecodeError::InvalidByte(index, byte) => { write!(f, "Invalid byte {}, offset {}.", byte, index) } DecodeError::InvalidLength => write!(f, "Encoded text cannot have a 6-bit remainder."), DecodeError::InvalidLastSymbol(index, byte) => { write!(f, "Invalid last symbol {}, offset {}.", byte, index) } } } } impl error::Error for DecodeError { fn description(&self) -> &str { match *self { DecodeError::InvalidByte(_, _) => "invalid byte", DecodeError::InvalidLength => "invalid length", DecodeError::InvalidLastSymbol(_, _) => "invalid last symbol", } } fn cause(&self) -> Option<&error::Error> { None } } ///Decode from string reference as octets. ///Returns a Result containing a Vec. ///Convenience `decode_config(input, base64::STANDARD);`. /// ///# Example /// ///```rust ///extern crate base64; /// ///fn main() { /// let bytes = base64::decode("aGVsbG8gd29ybGQ=").unwrap(); /// println!("{:?}", bytes); ///} ///``` pub fn decode>(input: &T) -> Result, DecodeError> { decode_config(input, STANDARD) } ///Decode from string reference as octets. ///Returns a Result containing a Vec. /// ///# Example /// ///```rust ///extern crate base64; /// ///fn main() { /// let bytes = base64::decode_config("aGVsbG8gd29ybGR+Cg==", base64::STANDARD).unwrap(); /// println!("{:?}", bytes); /// /// let bytes_url = base64::decode_config("aGVsbG8gaW50ZXJuZXR-Cg==", base64::URL_SAFE).unwrap(); /// println!("{:?}", bytes_url); ///} ///``` pub fn decode_config>( input: &T, config: Config, ) -> Result, DecodeError> { let mut buffer = Vec::::with_capacity(input.as_ref().len() * 4 / 3); decode_config_buf(input, config, &mut buffer).map(|_| buffer) } ///Decode from string reference as octets. ///Writes into the supplied buffer to avoid allocation. ///Returns a Result containing an empty tuple, aka (). /// ///# Example /// ///```rust ///extern crate base64; /// ///fn main() { /// let mut buffer = Vec::::new(); /// base64::decode_config_buf("aGVsbG8gd29ybGR+Cg==", base64::STANDARD, &mut buffer).unwrap(); /// println!("{:?}", buffer); /// /// buffer.clear(); /// /// base64::decode_config_buf("aGVsbG8gaW50ZXJuZXR-Cg==", base64::URL_SAFE, &mut buffer) /// .unwrap(); /// println!("{:?}", buffer); ///} ///``` pub fn decode_config_buf>( input: &T, config: Config, buffer: &mut Vec, ) -> Result<(), DecodeError> { let input_bytes = input.as_ref(); let starting_output_len = buffer.len(); let num_chunks = num_chunks(input_bytes); let decoded_len_estimate = num_chunks .checked_mul(DECODED_CHUNK_LEN) .and_then(|p| p.checked_add(starting_output_len)) .expect("Overflow when calculating output buffer length"); buffer.resize(decoded_len_estimate, 0); let bytes_written; { let buffer_slice = &mut buffer.as_mut_slice()[starting_output_len..]; bytes_written = decode_helper(input_bytes, num_chunks, config, buffer_slice)?; } buffer.truncate(starting_output_len + bytes_written); Ok(()) } /// Decode the input into the provided output slice. /// /// This will not write any bytes past exactly what is decoded (no stray garbage bytes at the end). /// /// If you don't know ahead of time what the decoded length should be, size your buffer with a /// conservative estimate for the decoded length of an input: 3 bytes of output for every 4 bytes of /// input, rounded up, or in other words `(input_len + 3) / 4 * 3`. /// /// If the slice is not large enough, this will panic. pub fn decode_config_slice>( input: &T, config: Config, output: &mut [u8], ) -> Result { let input_bytes = input.as_ref(); decode_helper( input_bytes, num_chunks(input_bytes), config, output, ) } /// Return the number of input chunks (including a possibly partial final chunk) in the input fn num_chunks(input: &[u8]) -> usize { input .len() .checked_add(INPUT_CHUNK_LEN - 1) .expect("Overflow when calculating number of chunks in input") / INPUT_CHUNK_LEN } /// Helper to avoid duplicating num_chunks calculation, which is costly on short inputs. /// Returns the number of bytes written, or an error. // We're on the fragile edge of compiler heuristics here. If this is not inlined, slow. If this is // inlined(always), a different slow. plain ol' inline makes the benchmarks happiest at the moment, // but this is fragile and the best setting changes with only minor code modifications. #[inline] fn decode_helper( input: &[u8], num_chunks: usize, config: Config, output: &mut [u8], ) -> Result { let char_set = config.char_set; let decode_table = char_set.decode_table(); let remainder_len = input.len() % INPUT_CHUNK_LEN; // Because the fast decode loop writes in groups of 8 bytes (unrolled to // CHUNKS_PER_FAST_LOOP_BLOCK times 8 bytes, where possible) and outputs 8 bytes at a time (of // which only 6 are valid data), we need to be sure that we stop using the fast decode loop // soon enough that there will always be 2 more bytes of valid data written after that loop. let trailing_bytes_to_skip = match remainder_len { // if input is a multiple of the chunk size, ignore the last chunk as it may have padding, // and the fast decode logic cannot handle padding 0 => INPUT_CHUNK_LEN, // 1 and 5 trailing bytes are illegal: can't decode 6 bits of input into a byte 1 | 5 => return Err(DecodeError::InvalidLength), // This will decode to one output byte, which isn't enough to overwrite the 2 extra bytes // written by the fast decode loop. So, we have to ignore both these 2 bytes and the // previous chunk. 2 => INPUT_CHUNK_LEN + 2, // If this is 3 unpadded chars, then it would actually decode to 2 bytes. However, if this // is an erroneous 2 chars + 1 pad char that would decode to 1 byte, then it should fail // with an error, not panic from going past the bounds of the output slice, so we let it // use stage 3 + 4. 3 => INPUT_CHUNK_LEN + 3, // This can also decode to one output byte because it may be 2 input chars + 2 padding // chars, which would decode to 1 byte. 4 => INPUT_CHUNK_LEN + 4, // Everything else is a legal decode len (given that we don't require padding), and will // decode to at least 2 bytes of output. _ => remainder_len, }; // rounded up to include partial chunks let mut remaining_chunks = num_chunks; let mut input_index = 0; let mut output_index = 0; { let length_of_fast_decode_chunks = input.len().saturating_sub(trailing_bytes_to_skip); // Fast loop, stage 1 // manual unroll to CHUNKS_PER_FAST_LOOP_BLOCK of u64s to amortize slice bounds checks if let Some(max_start_index) = length_of_fast_decode_chunks.checked_sub(INPUT_BLOCK_LEN) { while input_index <= max_start_index { let input_slice = &input[input_index..(input_index + INPUT_BLOCK_LEN)]; let output_slice = &mut output[output_index..(output_index + DECODED_BLOCK_LEN)]; decode_chunk( &input_slice[0..], input_index, decode_table, &mut output_slice[0..], )?; decode_chunk( &input_slice[8..], input_index + 8, decode_table, &mut output_slice[6..], )?; decode_chunk( &input_slice[16..], input_index + 16, decode_table, &mut output_slice[12..], )?; decode_chunk( &input_slice[24..], input_index + 24, decode_table, &mut output_slice[18..], )?; input_index += INPUT_BLOCK_LEN; output_index += DECODED_BLOCK_LEN - DECODED_CHUNK_SUFFIX; remaining_chunks -= CHUNKS_PER_FAST_LOOP_BLOCK; } } // Fast loop, stage 2 (aka still pretty fast loop) // 8 bytes at a time for whatever we didn't do in stage 1. if let Some(max_start_index) = length_of_fast_decode_chunks.checked_sub(INPUT_CHUNK_LEN) { while input_index < max_start_index { decode_chunk( &input[input_index..(input_index + INPUT_CHUNK_LEN)], input_index, decode_table, &mut output [output_index..(output_index + DECODED_CHUNK_LEN + DECODED_CHUNK_SUFFIX)], )?; output_index += DECODED_CHUNK_LEN; input_index += INPUT_CHUNK_LEN; remaining_chunks -= 1; } } } // Stage 3 // If input length was such that a chunk had to be deferred until after the fast loop // because decoding it would have produced 2 trailing bytes that wouldn't then be // overwritten, we decode that chunk here. This way is slower but doesn't write the 2 // trailing bytes. // However, we still need to avoid the last chunk (partial or complete) because it could // have padding, so we always do 1 fewer to avoid the last chunk. for _ in 1..remaining_chunks { decode_chunk_precise( &input[input_index..], input_index, decode_table, &mut output[output_index..(output_index + DECODED_CHUNK_LEN)], )?; input_index += INPUT_CHUNK_LEN; output_index += DECODED_CHUNK_LEN; } // always have one more (possibly partial) block of 8 input debug_assert!(input.len() - input_index > 1 || input.is_empty()); debug_assert!(input.len() - input_index <= 8); // Stage 4 // Finally, decode any leftovers that aren't a complete input block of 8 bytes. // Use a u64 as a stack-resident 8 byte buffer. let mut leftover_bits: u64 = 0; let mut morsels_in_leftover = 0; let mut padding_bytes = 0; let mut first_padding_index: usize = 0; let mut last_symbol = 0_u8; let start_of_leftovers = input_index; for (i, b) in input[start_of_leftovers..].iter().enumerate() { // '=' padding if *b == 0x3D { // There can be bad padding in a few ways: // 1 - Padding with non-padding characters after it // 2 - Padding after zero or one non-padding characters before it // in the current quad. // 3 - More than two characters of padding. If 3 or 4 padding chars // are in the same quad, that implies it will be caught by #2. // If it spreads from one quad to another, it will be caught by // #2 in the second quad. if i % 4 < 2 { // Check for case #2. let bad_padding_index = start_of_leftovers + if padding_bytes > 0 { // If we've already seen padding, report the first padding index. // This is to be consistent with the faster logic above: it will report an // error on the first padding character (since it doesn't expect to see // anything but actual encoded data). first_padding_index } else { // haven't seen padding before, just use where we are now i }; return Err(DecodeError::InvalidByte(bad_padding_index, *b)); } if padding_bytes == 0 { first_padding_index = i; } padding_bytes += 1; continue; } // Check for case #1. // To make '=' handling consistent with the main loop, don't allow // non-suffix '=' in trailing chunk either. Report error as first // erroneous padding. if padding_bytes > 0 { return Err(DecodeError::InvalidByte( start_of_leftovers + first_padding_index, 0x3D, )); } last_symbol = *b; // can use up to 8 * 6 = 48 bits of the u64, if last chunk has no padding. // To minimize shifts, pack the leftovers from left to right. let shift = 64 - (morsels_in_leftover + 1) * 6; // tables are all 256 elements, lookup with a u8 index always succeeds let morsel = decode_table[*b as usize]; if morsel == tables::INVALID_VALUE { return Err(DecodeError::InvalidByte(start_of_leftovers + i, *b)); } leftover_bits |= (morsel as u64) << shift; morsels_in_leftover += 1; } let leftover_bits_ready_to_append = match morsels_in_leftover { 0 => 0, 2 => 8, 3 => 16, 4 => 24, 6 => 32, 7 => 40, 8 => 48, _ => unreachable!( "Impossible: must only have 0 to 8 input bytes in last chunk, with no invalid lengths" ), }; // if there are bits set outside the bits we care about, last symbol encodes trailing bits that // will not be included in the output let mask = !0 >> leftover_bits_ready_to_append; if !config.decode_allow_trailing_bits && (leftover_bits & mask) != 0 { // last morsel is at `morsels_in_leftover` - 1 return Err(DecodeError::InvalidLastSymbol( start_of_leftovers + morsels_in_leftover - 1, last_symbol, )); } let mut leftover_bits_appended_to_buf = 0; while leftover_bits_appended_to_buf < leftover_bits_ready_to_append { // `as` simply truncates the higher bits, which is what we want here let selected_bits = (leftover_bits >> (56 - leftover_bits_appended_to_buf)) as u8; output[output_index] = selected_bits; output_index += 1; leftover_bits_appended_to_buf += 8; } Ok(output_index) } /// Decode 8 bytes of input into 6 bytes of output. 8 bytes of output will be written, but only the /// first 6 of those contain meaningful data. /// /// `input` is the bytes to decode, of which the first 8 bytes will be processed. /// `index_at_start_of_input` is the offset in the overall input (used for reporting errors /// accurately) /// `decode_table` is the lookup table for the particular base64 alphabet. /// `output` will have its first 8 bytes overwritten, of which only the first 6 are valid decoded /// data. // yes, really inline (worth 30-50% speedup) #[inline(always)] fn decode_chunk( input: &[u8], index_at_start_of_input: usize, decode_table: &[u8; 256], output: &mut [u8], ) -> Result<(), DecodeError> { let mut accum: u64; let morsel = decode_table[input[0] as usize]; if morsel == tables::INVALID_VALUE { return Err(DecodeError::InvalidByte(index_at_start_of_input, input[0])); } accum = (morsel as u64) << 58; let morsel = decode_table[input[1] as usize]; if morsel == tables::INVALID_VALUE { return Err(DecodeError::InvalidByte( index_at_start_of_input + 1, input[1], )); } accum |= (morsel as u64) << 52; let morsel = decode_table[input[2] as usize]; if morsel == tables::INVALID_VALUE { return Err(DecodeError::InvalidByte( index_at_start_of_input + 2, input[2], )); } accum |= (morsel as u64) << 46; let morsel = decode_table[input[3] as usize]; if morsel == tables::INVALID_VALUE { return Err(DecodeError::InvalidByte( index_at_start_of_input + 3, input[3], )); } accum |= (morsel as u64) << 40; let morsel = decode_table[input[4] as usize]; if morsel == tables::INVALID_VALUE { return Err(DecodeError::InvalidByte( index_at_start_of_input + 4, input[4], )); } accum |= (morsel as u64) << 34; let morsel = decode_table[input[5] as usize]; if morsel == tables::INVALID_VALUE { return Err(DecodeError::InvalidByte( index_at_start_of_input + 5, input[5], )); } accum |= (morsel as u64) << 28; let morsel = decode_table[input[6] as usize]; if morsel == tables::INVALID_VALUE { return Err(DecodeError::InvalidByte( index_at_start_of_input + 6, input[6], )); } accum |= (morsel as u64) << 22; let morsel = decode_table[input[7] as usize]; if morsel == tables::INVALID_VALUE { return Err(DecodeError::InvalidByte( index_at_start_of_input + 7, input[7], )); } accum |= (morsel as u64) << 16; BigEndian::write_u64(output, accum); Ok(()) } /// Decode an 8-byte chunk, but only write the 6 bytes actually decoded instead of including 2 /// trailing garbage bytes. #[inline] fn decode_chunk_precise( input: &[u8], index_at_start_of_input: usize, decode_table: &[u8; 256], output: &mut [u8], ) -> Result<(), DecodeError> { let mut tmp_buf = [0_u8; 8]; decode_chunk( input, index_at_start_of_input, decode_table, &mut tmp_buf[..], )?; output[0..6].copy_from_slice(&tmp_buf[0..6]); Ok(()) } #[cfg(test)] mod tests { extern crate rand; use super::*; use encode::encode_config_buf; use tests::{assert_encode_sanity, random_config}; use self::rand::distributions::{Distribution, Uniform}; use self::rand::{FromEntropy, Rng}; #[test] fn decode_chunk_precise_writes_only_6_bytes() { let input = b"Zm9vYmFy"; // "foobar" let mut output = [0_u8, 1, 2, 3, 4, 5, 6, 7]; decode_chunk_precise(&input[..], 0, tables::STANDARD_DECODE, &mut output).unwrap(); assert_eq!(&vec![b'f', b'o', b'o', b'b', b'a', b'r', 6, 7], &output); } #[test] fn decode_chunk_writes_8_bytes() { let input = b"Zm9vYmFy"; // "foobar" let mut output = [0_u8, 1, 2, 3, 4, 5, 6, 7]; decode_chunk(&input[..], 0, tables::STANDARD_DECODE, &mut output).unwrap(); assert_eq!(&vec![b'f', b'o', b'o', b'b', b'a', b'r', 0, 0], &output); } #[test] fn decode_into_nonempty_vec_doesnt_clobber_existing_prefix() { let mut orig_data = Vec::new(); let mut encoded_data = String::new(); let mut decoded_with_prefix = Vec::new(); let mut decoded_without_prefix = Vec::new(); let mut prefix = Vec::new(); let prefix_len_range = Uniform::new(0, 1000); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { orig_data.clear(); encoded_data.clear(); decoded_with_prefix.clear(); decoded_without_prefix.clear(); prefix.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { orig_data.push(rng.gen()); } let config = random_config(&mut rng); encode_config_buf(&orig_data, config, &mut encoded_data); assert_encode_sanity(&encoded_data, config, input_len); let prefix_len = prefix_len_range.sample(&mut rng); // fill the buf with a prefix for _ in 0..prefix_len { prefix.push(rng.gen()); } decoded_with_prefix.resize(prefix_len, 0); decoded_with_prefix.copy_from_slice(&prefix); // decode into the non-empty buf decode_config_buf(&encoded_data, config, &mut decoded_with_prefix).unwrap(); // also decode into the empty buf decode_config_buf(&encoded_data, config, &mut decoded_without_prefix).unwrap(); assert_eq!( prefix_len + decoded_without_prefix.len(), decoded_with_prefix.len() ); assert_eq!(orig_data, decoded_without_prefix); // append plain decode onto prefix prefix.append(&mut decoded_without_prefix); assert_eq!(prefix, decoded_with_prefix); } } #[test] fn decode_into_slice_doesnt_clobber_existing_prefix_or_suffix() { let mut orig_data = Vec::new(); let mut encoded_data = String::new(); let mut decode_buf = Vec::new(); let mut decode_buf_copy: Vec = Vec::new(); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { orig_data.clear(); encoded_data.clear(); decode_buf.clear(); decode_buf_copy.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { orig_data.push(rng.gen()); } let config = random_config(&mut rng); encode_config_buf(&orig_data, config, &mut encoded_data); assert_encode_sanity(&encoded_data, config, input_len); // fill the buffer with random garbage, long enough to have some room before and after for _ in 0..5000 { decode_buf.push(rng.gen()); } // keep a copy for later comparison decode_buf_copy.extend(decode_buf.iter()); let offset = 1000; // decode into the non-empty buf let decode_bytes_written = decode_config_slice(&encoded_data, config, &mut decode_buf[offset..]).unwrap(); assert_eq!(orig_data.len(), decode_bytes_written); assert_eq!( orig_data, &decode_buf[offset..(offset + decode_bytes_written)] ); assert_eq!(&decode_buf_copy[0..offset], &decode_buf[0..offset]); assert_eq!( &decode_buf_copy[offset + decode_bytes_written..], &decode_buf[offset + decode_bytes_written..] ); } } #[test] fn decode_into_slice_fits_in_precisely_sized_slice() { let mut orig_data = Vec::new(); let mut encoded_data = String::new(); let mut decode_buf = Vec::new(); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { orig_data.clear(); encoded_data.clear(); decode_buf.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { orig_data.push(rng.gen()); } let config = random_config(&mut rng); encode_config_buf(&orig_data, config, &mut encoded_data); assert_encode_sanity(&encoded_data, config, input_len); decode_buf.resize(input_len, 0); // decode into the non-empty buf let decode_bytes_written = decode_config_slice(&encoded_data, config, &mut decode_buf[..]).unwrap(); assert_eq!(orig_data.len(), decode_bytes_written); assert_eq!(orig_data, decode_buf); } } #[test] fn detect_invalid_last_symbol_two_bytes() { let decode = |input, forgiving| { decode_config(input, STANDARD.decode_allow_trailing_bits(forgiving)) }; // example from https://github.com/alicemaz/rust-base64/issues/75 assert!(decode("iYU=", false).is_ok()); // trailing 01 assert_eq!(Err(DecodeError::InvalidLastSymbol(2, b'V')), decode("iYV=", false)); assert_eq!(Ok(vec![137, 133]), decode("iYV=", true)); // trailing 10 assert_eq!(Err(DecodeError::InvalidLastSymbol(2, b'W')), decode("iYW=", false)); assert_eq!(Ok(vec![137, 133]), decode("iYV=", true)); // trailing 11 assert_eq!(Err(DecodeError::InvalidLastSymbol(2, b'X')), decode("iYX=", false)); assert_eq!(Ok(vec![137, 133]), decode("iYV=", true)); // also works when there are 2 quads in the last block assert_eq!(Err(DecodeError::InvalidLastSymbol(6, b'X')), decode("AAAAiYX=", false)); assert_eq!(Ok(vec![0, 0, 0, 137, 133]), decode("AAAAiYX=", true)); } #[test] fn detect_invalid_last_symbol_one_byte() { // 0xFF -> "/w==", so all letters > w, 0-9, and '+', '/' should get InvalidLastSymbol assert!(decode("/w==").is_ok()); // trailing 01 assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'x')), decode("/x==")); assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'z')), decode("/z==")); assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'0')), decode("/0==")); assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'9')), decode("/9==")); assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'+')), decode("/+==")); assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'/')), decode("//==")); // also works when there are 2 quads in the last block assert_eq!( Err(DecodeError::InvalidLastSymbol(5, b'x')), decode("AAAA/x==") ); } #[test] fn detect_invalid_last_symbol_every_possible_three_symbols() { let mut base64_to_bytes = ::std::collections::HashMap::new(); let mut bytes = [0_u8; 2]; for b1 in 0_u16..256 { bytes[0] = b1 as u8; for b2 in 0_u16..256 { bytes[1] = b2 as u8; let mut b64 = vec![0_u8; 4]; assert_eq!(4, ::encode_config_slice(&bytes, STANDARD, &mut b64[..])); let mut v = ::std::vec::Vec::with_capacity(2); v.extend_from_slice(&bytes[..]); assert!(base64_to_bytes.insert(b64, v).is_none()); } } // every possible combination of symbols must either decode to 2 bytes or get InvalidLastSymbol let mut symbols = [0_u8; 4]; for &s1 in STANDARD.char_set.encode_table().iter() { symbols[0] = s1; for &s2 in STANDARD.char_set.encode_table().iter() { symbols[1] = s2; for &s3 in STANDARD.char_set.encode_table().iter() { symbols[2] = s3; symbols[3] = b'='; match base64_to_bytes.get(&symbols[..]) { Some(bytes) => { assert_eq!(Ok(bytes.to_vec()), decode_config(&symbols, STANDARD)) } None => assert_eq!( Err(DecodeError::InvalidLastSymbol(2, s3)), decode_config(&symbols[..], STANDARD) ), } } } } } #[test] fn detect_invalid_last_symbol_every_possible_two_symbols() { let mut base64_to_bytes = ::std::collections::HashMap::new(); for b in 0_u16..256 { let mut b64 = vec![0_u8; 4]; assert_eq!(4, ::encode_config_slice(&[b as u8], STANDARD, &mut b64[..])); let mut v = ::std::vec::Vec::with_capacity(1); v.push(b as u8); assert!(base64_to_bytes.insert(b64, v).is_none()); } // every possible combination of symbols must either decode to 1 byte or get InvalidLastSymbol let mut symbols = [0_u8; 4]; for &s1 in STANDARD.char_set.encode_table().iter() { symbols[0] = s1; for &s2 in STANDARD.char_set.encode_table().iter() { symbols[1] = s2; symbols[2] = b'='; symbols[3] = b'='; match base64_to_bytes.get(&symbols[..]) { Some(bytes) => { assert_eq!(Ok(bytes.to_vec()), decode_config(&symbols, STANDARD)) } None => assert_eq!( Err(DecodeError::InvalidLastSymbol(1, s2)), decode_config(&symbols[..], STANDARD) ), } } } } } base64-0.10.1/src/display.rs010060000017500001750000000050721337701666000137050ustar0000000000000000//! Enables base64'd output anywhere you might use a `Display` implementation, like a format string. //! //! ``` //! use base64::display::Base64Display; //! //! let data = vec![0x0, 0x1, 0x2, 0x3]; //! let wrapper = Base64Display::with_config(&data, base64::STANDARD); //! //! assert_eq!("base64: AAECAw==", format!("base64: {}", wrapper)); //! ``` use super::chunked_encoder::ChunkedEncoder; use super::Config; use std::fmt::{Display, Formatter}; use std::{fmt, str}; /// A convenience wrapper for base64'ing bytes into a format string without heap allocation. pub struct Base64Display<'a> { bytes: &'a [u8], chunked_encoder: ChunkedEncoder, } impl<'a> Base64Display<'a> { /// Create a `Base64Display` with the provided config. pub fn with_config(bytes: &[u8], config: Config) -> Base64Display { Base64Display { bytes, chunked_encoder: ChunkedEncoder::new(config), } } } impl<'a> Display for Base64Display<'a> { fn fmt(&self, formatter: &mut Formatter) -> Result<(), fmt::Error> { let mut sink = FormatterSink { f: formatter }; self.chunked_encoder.encode(self.bytes, &mut sink) } } struct FormatterSink<'a, 'b: 'a> { f: &'a mut Formatter<'b>, } impl<'a, 'b: 'a> super::chunked_encoder::Sink for FormatterSink<'a, 'b> { type Error = fmt::Error; fn write_encoded_bytes(&mut self, encoded: &[u8]) -> Result<(), Self::Error> { // Avoid unsafe. If max performance is needed, write your own display wrapper that uses // unsafe here to gain about 10-15%. self.f .write_str(str::from_utf8(encoded).expect("base64 data was not utf8")) } } #[cfg(test)] mod tests { use super::super::chunked_encoder::tests::{ chunked_encode_matches_normal_encode_random, SinkTestHelper, }; use super::super::*; use super::*; #[test] fn basic_display() { assert_eq!( "~$Zm9vYmFy#*", format!("~${}#*", Base64Display::with_config(b"foobar", STANDARD)) ); assert_eq!( "~$Zm9vYmFyZg==#*", format!("~${}#*", Base64Display::with_config(b"foobarf", STANDARD)) ); } #[test] fn display_encode_matches_normal_encode() { let helper = DisplaySinkTestHelper; chunked_encode_matches_normal_encode_random(&helper); } struct DisplaySinkTestHelper; impl SinkTestHelper for DisplaySinkTestHelper { fn encode_to_string(&self, config: Config, bytes: &[u8]) -> String { format!("{}", Base64Display::with_config(bytes, config)) } } } base64-0.10.1/src/encode.rs010060000017500001750000000547751340546232200135030ustar0000000000000000use byteorder::{BigEndian, ByteOrder}; use {Config, STANDARD}; ///Encode arbitrary octets as base64. ///Returns a String. ///Convenience for `encode_config(input, base64::STANDARD);`. /// ///# Example /// ///```rust ///extern crate base64; /// ///fn main() { /// let b64 = base64::encode(b"hello world"); /// println!("{}", b64); ///} ///``` pub fn encode>(input: &T) -> String { encode_config(input, STANDARD) } ///Encode arbitrary octets as base64. ///Returns a String. /// ///# Example /// ///```rust ///extern crate base64; /// ///fn main() { /// let b64 = base64::encode_config(b"hello world~", base64::STANDARD); /// println!("{}", b64); /// /// let b64_url = base64::encode_config(b"hello internet~", base64::URL_SAFE); /// println!("{}", b64_url); ///} ///``` pub fn encode_config>(input: &T, config: Config) -> String { let mut buf = match encoded_size(input.as_ref().len(), config) { Some(n) => vec![0; n], None => panic!("integer overflow when calculating buffer size"), }; let encoded_len = encode_config_slice(input.as_ref(), config, &mut buf[..]); debug_assert_eq!(encoded_len, buf.len()); String::from_utf8(buf).expect("Invalid UTF8") } ///Encode arbitrary octets as base64. ///Writes into the supplied output buffer, which will grow the buffer if needed. /// ///# Example /// ///```rust ///extern crate base64; /// ///fn main() { /// let mut buf = String::new(); /// base64::encode_config_buf(b"hello world~", base64::STANDARD, &mut buf); /// println!("{}", buf); /// /// buf.clear(); /// base64::encode_config_buf(b"hello internet~", base64::URL_SAFE, &mut buf); /// println!("{}", buf); ///} ///``` pub fn encode_config_buf>(input: &T, config: Config, buf: &mut String) { let input_bytes = input.as_ref(); { let mut sink = ::chunked_encoder::StringSink::new(buf); let encoder = ::chunked_encoder::ChunkedEncoder::new(config); encoder .encode(input_bytes, &mut sink) .expect("Writing to a String shouldn't fail") } } /// Encode arbitrary octets as base64. /// Writes into the supplied output buffer. /// /// This is useful if you wish to avoid allocation entirely (e.g. encoding into a stack-resident /// or statically-allocated buffer). /// /// # Panics /// /// If `output` is too small to hold the encoded version of `input`, a panic will result. /// /// # Example /// /// ```rust /// extern crate base64; /// /// fn main() { /// let s = b"hello internet!"; /// let mut buf = Vec::new(); /// // make sure we'll have a slice big enough for base64 + padding /// buf.resize(s.len() * 4 / 3 + 4, 0); /// /// let bytes_written = base64::encode_config_slice(s, /// base64::STANDARD, &mut buf); /// /// // shorten our vec down to just what was written /// buf.resize(bytes_written, 0); /// /// assert_eq!(s, base64::decode(&buf).unwrap().as_slice()); /// } /// ``` pub fn encode_config_slice>( input: &T, config: Config, output: &mut [u8], ) -> usize { let input_bytes = input.as_ref(); let encoded_size = encoded_size(input_bytes.len(), config) .expect("usize overflow when calculating buffer size"); let mut b64_output = &mut output[0..encoded_size]; encode_with_padding(&input_bytes, config, encoded_size, &mut b64_output); encoded_size } /// B64-encode and pad (if configured). /// /// This helper exists to avoid recalculating encoded_size, which is relatively expensive on short /// inputs. /// /// `encoded_size` is the encoded size calculated for `input`. /// /// `output` must be of size `encoded_size`. /// /// All bytes in `output` will be written to since it is exactly the size of the output. fn encode_with_padding(input: &[u8], config: Config, encoded_size: usize, output: &mut [u8]) { debug_assert_eq!(encoded_size, output.len()); let b64_bytes_written = encode_to_slice(input, output, config.char_set.encode_table()); let padding_bytes = if config.pad { add_padding(input.len(), &mut output[b64_bytes_written..]) } else { 0 }; let encoded_bytes = b64_bytes_written .checked_add(padding_bytes) .expect("usize overflow when calculating b64 length"); debug_assert_eq!(encoded_size, encoded_bytes); } /// Encode input bytes to utf8 base64 bytes. Does not pad. /// `output` must be long enough to hold the encoded `input` without padding. /// Returns the number of bytes written. #[inline] pub fn encode_to_slice(input: &[u8], output: &mut [u8], encode_table: &[u8; 64]) -> usize { let mut input_index: usize = 0; const BLOCKS_PER_FAST_LOOP: usize = 4; const LOW_SIX_BITS: u64 = 0x3F; // we read 8 bytes at a time (u64) but only actually consume 6 of those bytes. Thus, we need // 2 trailing bytes to be available to read.. let last_fast_index = input.len().saturating_sub(BLOCKS_PER_FAST_LOOP * 6 + 2); let mut output_index = 0; if last_fast_index > 0 { while input_index <= last_fast_index { // Major performance wins from letting the optimizer do the bounds check once, mostly // on the output side let input_chunk = &input[input_index..(input_index + (BLOCKS_PER_FAST_LOOP * 6 + 2))]; let output_chunk = &mut output[output_index..(output_index + BLOCKS_PER_FAST_LOOP * 8)]; // Hand-unrolling for 32 vs 16 or 8 bytes produces yields performance about equivalent // to unsafe pointer code on a Xeon E5-1650v3. 64 byte unrolling was slightly better for // large inputs but significantly worse for 50-byte input, unsurprisingly. I suspect // that it's a not uncommon use case to encode smallish chunks of data (e.g. a 64-byte // SHA-512 digest), so it would be nice if that fit in the unrolled loop at least once. // Plus, single-digit percentage performance differences might well be quite different // on different hardware. let input_u64 = BigEndian::read_u64(&input_chunk[0..]); output_chunk[0] = encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; output_chunk[1] = encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; output_chunk[2] = encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; output_chunk[3] = encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; output_chunk[4] = encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; output_chunk[5] = encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; output_chunk[6] = encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; output_chunk[7] = encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; let input_u64 = BigEndian::read_u64(&input_chunk[6..]); output_chunk[8] = encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; output_chunk[9] = encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; output_chunk[10] = encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; output_chunk[11] = encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; output_chunk[12] = encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; output_chunk[13] = encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; output_chunk[14] = encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; output_chunk[15] = encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; let input_u64 = BigEndian::read_u64(&input_chunk[12..]); output_chunk[16] = encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; output_chunk[17] = encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; output_chunk[18] = encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; output_chunk[19] = encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; output_chunk[20] = encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; output_chunk[21] = encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; output_chunk[22] = encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; output_chunk[23] = encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; let input_u64 = BigEndian::read_u64(&input_chunk[18..]); output_chunk[24] = encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; output_chunk[25] = encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; output_chunk[26] = encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; output_chunk[27] = encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; output_chunk[28] = encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; output_chunk[29] = encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; output_chunk[30] = encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; output_chunk[31] = encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; output_index += BLOCKS_PER_FAST_LOOP * 8; input_index += BLOCKS_PER_FAST_LOOP * 6; } } // Encode what's left after the fast loop. const LOW_SIX_BITS_U8: u8 = 0x3F; let rem = input.len() % 3; let start_of_rem = input.len() - rem; // start at the first index not handled by fast loop, which may be 0. while input_index < start_of_rem { let input_chunk = &input[input_index..(input_index + 3)]; let output_chunk = &mut output[output_index..(output_index + 4)]; output_chunk[0] = encode_table[(input_chunk[0] >> 2) as usize]; output_chunk[1] = encode_table[((input_chunk[0] << 4 | input_chunk[1] >> 4) & LOW_SIX_BITS_U8) as usize]; output_chunk[2] = encode_table[((input_chunk[1] << 2 | input_chunk[2] >> 6) & LOW_SIX_BITS_U8) as usize]; output_chunk[3] = encode_table[(input_chunk[2] & LOW_SIX_BITS_U8) as usize]; input_index += 3; output_index += 4; } if rem == 2 { output[output_index] = encode_table[(input[start_of_rem] >> 2) as usize]; output[output_index + 1] = encode_table[((input[start_of_rem] << 4 | input[start_of_rem + 1] >> 4) & LOW_SIX_BITS_U8) as usize]; output[output_index + 2] = encode_table[((input[start_of_rem + 1] << 2) & LOW_SIX_BITS_U8) as usize]; output_index += 3; } else if rem == 1 { output[output_index] = encode_table[(input[start_of_rem] >> 2) as usize]; output[output_index + 1] = encode_table[((input[start_of_rem] << 4) & LOW_SIX_BITS_U8) as usize]; output_index += 2; } output_index } /// calculate the base64 encoded string size, including padding if appropriate pub fn encoded_size(bytes_len: usize, config: Config) -> Option { let rem = bytes_len % 3; let complete_input_chunks = bytes_len / 3; let complete_chunk_output = complete_input_chunks.checked_mul(4); if rem > 0 { if config.pad { complete_chunk_output.and_then(|c| c.checked_add(4)) } else { let encoded_rem = match rem { 1 => 2, 2 => 3, _ => unreachable!("Impossible remainder"), }; complete_chunk_output.and_then(|c| c.checked_add(encoded_rem)) } } else { complete_chunk_output } } /// Write padding characters. /// `output` is the slice where padding should be written, of length at least 2. /// /// Returns the number of padding bytes written. pub fn add_padding(input_len: usize, output: &mut [u8]) -> usize { let rem = input_len % 3; let mut bytes_written = 0; for _ in 0..((3 - rem) % 3) { output[bytes_written] = b'='; bytes_written += 1; } bytes_written } #[cfg(test)] mod tests { extern crate rand; use super::*; use decode::decode_config_buf; use tests::{assert_encode_sanity, random_config}; use {Config, STANDARD, URL_SAFE_NO_PAD}; use self::rand::distributions::{Distribution, Uniform}; use self::rand::{FromEntropy, Rng}; use std; use std::str; #[test] fn encoded_size_correct_standard() { assert_encoded_length(0, 0, STANDARD); assert_encoded_length(1, 4, STANDARD); assert_encoded_length(2, 4, STANDARD); assert_encoded_length(3, 4, STANDARD); assert_encoded_length(4, 8, STANDARD); assert_encoded_length(5, 8, STANDARD); assert_encoded_length(6, 8, STANDARD); assert_encoded_length(7, 12, STANDARD); assert_encoded_length(8, 12, STANDARD); assert_encoded_length(9, 12, STANDARD); assert_encoded_length(54, 72, STANDARD); assert_encoded_length(55, 76, STANDARD); assert_encoded_length(56, 76, STANDARD); assert_encoded_length(57, 76, STANDARD); assert_encoded_length(58, 80, STANDARD); } #[test] fn encoded_size_correct_no_pad() { assert_encoded_length(0, 0, URL_SAFE_NO_PAD); assert_encoded_length(1, 2, URL_SAFE_NO_PAD); assert_encoded_length(2, 3, URL_SAFE_NO_PAD); assert_encoded_length(3, 4, URL_SAFE_NO_PAD); assert_encoded_length(4, 6, URL_SAFE_NO_PAD); assert_encoded_length(5, 7, URL_SAFE_NO_PAD); assert_encoded_length(6, 8, URL_SAFE_NO_PAD); assert_encoded_length(7, 10, URL_SAFE_NO_PAD); assert_encoded_length(8, 11, URL_SAFE_NO_PAD); assert_encoded_length(9, 12, URL_SAFE_NO_PAD); assert_encoded_length(54, 72, URL_SAFE_NO_PAD); assert_encoded_length(55, 74, URL_SAFE_NO_PAD); assert_encoded_length(56, 75, URL_SAFE_NO_PAD); assert_encoded_length(57, 76, URL_SAFE_NO_PAD); assert_encoded_length(58, 78, URL_SAFE_NO_PAD); } #[test] fn encoded_size_overflow() { assert_eq!(None, encoded_size(std::usize::MAX, STANDARD)); } #[test] fn encode_config_buf_into_nonempty_buffer_doesnt_clobber_prefix() { let mut orig_data = Vec::new(); let mut prefix = String::new(); let mut encoded_data_no_prefix = String::new(); let mut encoded_data_with_prefix = String::new(); let mut decoded = Vec::new(); let prefix_len_range = Uniform::new(0, 1000); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { orig_data.clear(); prefix.clear(); encoded_data_no_prefix.clear(); encoded_data_with_prefix.clear(); decoded.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { orig_data.push(rng.gen()); } let prefix_len = prefix_len_range.sample(&mut rng); for _ in 0..prefix_len { // getting convenient random single-byte printable chars that aren't base64 is // annoying prefix.push('#'); } encoded_data_with_prefix.push_str(&prefix); let config = random_config(&mut rng); encode_config_buf(&orig_data, config, &mut encoded_data_no_prefix); encode_config_buf(&orig_data, config, &mut encoded_data_with_prefix); assert_eq!( encoded_data_no_prefix.len() + prefix_len, encoded_data_with_prefix.len() ); assert_encode_sanity(&encoded_data_no_prefix, config, input_len); assert_encode_sanity(&encoded_data_with_prefix[prefix_len..], config, input_len); // append plain encode onto prefix prefix.push_str(&mut encoded_data_no_prefix); assert_eq!(prefix, encoded_data_with_prefix); decode_config_buf(&encoded_data_no_prefix, config, &mut decoded).unwrap(); assert_eq!(orig_data, decoded); } } #[test] fn encode_config_slice_into_nonempty_buffer_doesnt_clobber_suffix() { let mut orig_data = Vec::new(); let mut encoded_data = Vec::new(); let mut encoded_data_original_state = Vec::new(); let mut decoded = Vec::new(); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { orig_data.clear(); encoded_data.clear(); encoded_data_original_state.clear(); decoded.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { orig_data.push(rng.gen()); } // plenty of existing garbage in the encoded buffer for _ in 0..10 * input_len { encoded_data.push(rng.gen()); } encoded_data_original_state.extend_from_slice(&encoded_data); let config = random_config(&mut rng); let encoded_size = encoded_size(input_len, config).unwrap(); assert_eq!( encoded_size, encode_config_slice(&orig_data, config, &mut encoded_data) ); assert_encode_sanity( std::str::from_utf8(&encoded_data[0..encoded_size]).unwrap(), config, input_len, ); assert_eq!( &encoded_data[encoded_size..], &encoded_data_original_state[encoded_size..] ); decode_config_buf(&encoded_data[0..encoded_size], config, &mut decoded).unwrap(); assert_eq!(orig_data, decoded); } } #[test] fn encode_config_slice_fits_into_precisely_sized_slice() { let mut orig_data = Vec::new(); let mut encoded_data = Vec::new(); let mut decoded = Vec::new(); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { orig_data.clear(); encoded_data.clear(); decoded.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { orig_data.push(rng.gen()); } let config = random_config(&mut rng); let encoded_size = encoded_size(input_len, config).unwrap(); encoded_data.resize(encoded_size, 0); assert_eq!( encoded_size, encode_config_slice(&orig_data, config, &mut encoded_data) ); assert_encode_sanity( std::str::from_utf8(&encoded_data[0..encoded_size]).unwrap(), config, input_len, ); decode_config_buf(&encoded_data[0..encoded_size], config, &mut decoded).unwrap(); assert_eq!(orig_data, decoded); } } #[test] fn encode_to_slice_random_valid_utf8() { let mut input = Vec::new(); let mut output = Vec::new(); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { input.clear(); output.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { input.push(rng.gen()); } let config = random_config(&mut rng); // fill up the output buffer with garbage let encoded_size = encoded_size(input_len, config).unwrap(); for _ in 0..encoded_size { output.push(rng.gen()); } let orig_output_buf = output.to_vec(); let bytes_written = encode_to_slice(&input, &mut output, config.char_set.encode_table()); // make sure the part beyond bytes_written is the same garbage it was before assert_eq!(orig_output_buf[bytes_written..], output[bytes_written..]); // make sure the encoded bytes are UTF-8 let _ = str::from_utf8(&output[0..bytes_written]).unwrap(); } } #[test] fn encode_with_padding_random_valid_utf8() { let mut input = Vec::new(); let mut output = Vec::new(); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { input.clear(); output.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { input.push(rng.gen()); } let config = random_config(&mut rng); // fill up the output buffer with garbage let encoded_size = encoded_size(input_len, config).unwrap(); for _ in 0..encoded_size + 1000 { output.push(rng.gen()); } let orig_output_buf = output.to_vec(); encode_with_padding(&input, config, encoded_size, &mut output[0..encoded_size]); // make sure the part beyond b64 is the same garbage it was before assert_eq!(orig_output_buf[encoded_size..], output[encoded_size..]); // make sure the encoded bytes are UTF-8 let _ = str::from_utf8(&output[0..encoded_size]).unwrap(); } } #[test] fn add_padding_random_valid_utf8() { let mut output = Vec::new(); let mut rng = rand::rngs::SmallRng::from_entropy(); // cover our bases for length % 3 for input_len in 0..10 { output.clear(); // fill output with random for _ in 0..10 { output.push(rng.gen()); } let orig_output_buf = output.to_vec(); let bytes_written = add_padding(input_len, &mut output); // make sure the part beyond bytes_written is the same garbage it was before assert_eq!(orig_output_buf[bytes_written..], output[bytes_written..]); // make sure the encoded bytes are UTF-8 let _ = str::from_utf8(&output[0..bytes_written]).unwrap(); } } fn assert_encoded_length(input_len: usize, encoded_len: usize, config: Config) { assert_eq!(encoded_len, encoded_size(input_len, config).unwrap()); let mut bytes: Vec = Vec::new(); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..input_len { bytes.push(rng.gen()); } let encoded = encode_config(&bytes, config); assert_encode_sanity(&encoded, config, input_len); assert_eq!(encoded_len, encoded.len()); } } base64-0.10.1/src/lib.rs010060000017500001750000000144651342247663300130150ustar0000000000000000//! # Configs //! //! There isn't just one type of Base64; that would be too simple. You need to choose a character //! set (standard, URL-safe, etc) and padding suffix (yes/no). //! The `Config` struct encapsulates this info. There are some common configs included: `STANDARD`, //! `URL_SAFE`, etc. You can also make your own `Config` if needed. //! //! The functions that don't have `config` in the name (e.g. `encode()` and `decode()`) use the //! `STANDARD` config . //! //! The functions that write to a slice (the ones that end in `_slice`) are generally the fastest //! because they don't need to resize anything. If it fits in your workflow and you care about //! performance, keep using the same buffer (growing as need be) and use the `_slice` methods for //! the best performance. //! //! # Encoding //! //! Several different encoding functions are available to you depending on your desire for //! convenience vs performance. //! //! | Function | Output | Allocates | //! | ----------------------- | ---------------------------- | ------------------------------ | //! | `encode` | Returns a new `String` | Always | //! | `encode_config` | Returns a new `String` | Always | //! | `encode_config_buf` | Appends to provided `String` | Only if `String` needs to grow | //! | `encode_config_slice` | Writes to provided `&[u8]` | Never | //! //! All of the encoding functions that take a `Config` will pad as per the config. //! //! # Decoding //! //! Just as for encoding, there are different decoding functions available. //! //! | Function | Output | Allocates | //! | ----------------------- | ----------------------------- | ------------------------------ | //! | `decode` | Returns a new `Vec` | Always | //! | `decode_config` | Returns a new `Vec` | Always | //! | `decode_config_buf` | Appends to provided `Vec` | Only if `Vec` needs to grow | //! | `decode_config_slice` | Writes to provided `&[u8]` | Never | //! //! Unlike encoding, where all possible input is valid, decoding can fail (see `DecodeError`). //! //! Input can be invalid because it has invalid characters or invalid padding. (No padding at all is //! valid, but excess padding is not.) Whitespace in the input is invalid. //! //! # Panics //! //! If length calculations result in overflowing `usize`, a panic will result. //! //! The `_slice` flavors of encode or decode will panic if the provided output slice is too small, #![cfg_attr(feature = "cargo-clippy", allow(cast_lossless))] #![deny( missing_docs, trivial_casts, trivial_numeric_casts, unused_extern_crates, unused_import_braces, unused_results, variant_size_differences, warnings, unsafe_code )] extern crate byteorder; mod chunked_encoder; pub mod display; mod tables; pub mod write; mod encode; pub use encode::{encode, encode_config, encode_config_buf, encode_config_slice}; mod decode; pub use decode::{decode, decode_config, decode_config_buf, decode_config_slice, DecodeError}; #[cfg(test)] mod tests; /// Available encoding character sets #[derive(Clone, Copy, Debug)] pub enum CharacterSet { /// The standard character set (uses `+` and `/`). /// /// See [RFC 3548](https://tools.ietf.org/html/rfc3548#section-3). Standard, /// The URL safe character set (uses `-` and `_`). /// /// See [RFC 3548](https://tools.ietf.org/html/rfc3548#section-4). UrlSafe, /// The `crypt(3)` character set (uses `./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz`). /// /// Not standardized, but folk wisdom on the net asserts that this alphabet is what crypt uses. Crypt, } impl CharacterSet { fn encode_table(self) -> &'static [u8; 64] { match self { CharacterSet::Standard => tables::STANDARD_ENCODE, CharacterSet::UrlSafe => tables::URL_SAFE_ENCODE, CharacterSet::Crypt => tables::CRYPT_ENCODE, } } fn decode_table(self) -> &'static [u8; 256] { match self { CharacterSet::Standard => tables::STANDARD_DECODE, CharacterSet::UrlSafe => tables::URL_SAFE_DECODE, CharacterSet::Crypt => tables::CRYPT_DECODE, } } } /// Contains configuration parameters for base64 encoding #[derive(Clone, Copy, Debug)] pub struct Config { /// Character set to use char_set: CharacterSet, /// True to pad output with `=` characters pad: bool, /// True to ignore excess nonzero bits in the last few symbols, otherwise an error is returned. decode_allow_trailing_bits: bool, } impl Config { /// Create a new `Config`. pub fn new(char_set: CharacterSet, pad: bool) -> Config { Config { char_set, pad, decode_allow_trailing_bits: false } } /// Sets whether to pad output with `=` characters. pub fn pad(self, pad: bool) -> Config { Config { pad, ..self } } /// Sets whether to emit errors for nonzero trailing bits. /// /// This is useful when implementing /// [forgiving-base64 decode](https://infra.spec.whatwg.org/#forgiving-base64-decode). pub fn decode_allow_trailing_bits(self, allow: bool) -> Config { Config { decode_allow_trailing_bits: allow, ..self } } } /// Standard character set with padding. pub const STANDARD: Config = Config { char_set: CharacterSet::Standard, pad: true, decode_allow_trailing_bits: false, }; /// Standard character set without padding. pub const STANDARD_NO_PAD: Config = Config { char_set: CharacterSet::Standard, pad: false, decode_allow_trailing_bits: false, }; /// URL-safe character set with padding pub const URL_SAFE: Config = Config { char_set: CharacterSet::UrlSafe, pad: true, decode_allow_trailing_bits: false, }; /// URL-safe character set without padding pub const URL_SAFE_NO_PAD: Config = Config { char_set: CharacterSet::UrlSafe, pad: false, decode_allow_trailing_bits: false, }; /// As per `crypt(3)` requirements pub const CRYPT: Config = Config { char_set: CharacterSet::Crypt, pad: false, decode_allow_trailing_bits: false, }; base64-0.10.1/src/tables.rs010060000017500001750000001160211337701666000135070ustar0000000000000000pub const INVALID_VALUE: u8 = 255; #[cfg_attr(rustfmt, rustfmt_skip)] pub const STANDARD_ENCODE: &[u8; 64] = &[ 65, // input 0 (0x0) => 'A' (0x41) 66, // input 1 (0x1) => 'B' (0x42) 67, // input 2 (0x2) => 'C' (0x43) 68, // input 3 (0x3) => 'D' (0x44) 69, // input 4 (0x4) => 'E' (0x45) 70, // input 5 (0x5) => 'F' (0x46) 71, // input 6 (0x6) => 'G' (0x47) 72, // input 7 (0x7) => 'H' (0x48) 73, // input 8 (0x8) => 'I' (0x49) 74, // input 9 (0x9) => 'J' (0x4A) 75, // input 10 (0xA) => 'K' (0x4B) 76, // input 11 (0xB) => 'L' (0x4C) 77, // input 12 (0xC) => 'M' (0x4D) 78, // input 13 (0xD) => 'N' (0x4E) 79, // input 14 (0xE) => 'O' (0x4F) 80, // input 15 (0xF) => 'P' (0x50) 81, // input 16 (0x10) => 'Q' (0x51) 82, // input 17 (0x11) => 'R' (0x52) 83, // input 18 (0x12) => 'S' (0x53) 84, // input 19 (0x13) => 'T' (0x54) 85, // input 20 (0x14) => 'U' (0x55) 86, // input 21 (0x15) => 'V' (0x56) 87, // input 22 (0x16) => 'W' (0x57) 88, // input 23 (0x17) => 'X' (0x58) 89, // input 24 (0x18) => 'Y' (0x59) 90, // input 25 (0x19) => 'Z' (0x5A) 97, // input 26 (0x1A) => 'a' (0x61) 98, // input 27 (0x1B) => 'b' (0x62) 99, // input 28 (0x1C) => 'c' (0x63) 100, // input 29 (0x1D) => 'd' (0x64) 101, // input 30 (0x1E) => 'e' (0x65) 102, // input 31 (0x1F) => 'f' (0x66) 103, // input 32 (0x20) => 'g' (0x67) 104, // input 33 (0x21) => 'h' (0x68) 105, // input 34 (0x22) => 'i' (0x69) 106, // input 35 (0x23) => 'j' (0x6A) 107, // input 36 (0x24) => 'k' (0x6B) 108, // input 37 (0x25) => 'l' (0x6C) 109, // input 38 (0x26) => 'm' (0x6D) 110, // input 39 (0x27) => 'n' (0x6E) 111, // input 40 (0x28) => 'o' (0x6F) 112, // input 41 (0x29) => 'p' (0x70) 113, // input 42 (0x2A) => 'q' (0x71) 114, // input 43 (0x2B) => 'r' (0x72) 115, // input 44 (0x2C) => 's' (0x73) 116, // input 45 (0x2D) => 't' (0x74) 117, // input 46 (0x2E) => 'u' (0x75) 118, // input 47 (0x2F) => 'v' (0x76) 119, // input 48 (0x30) => 'w' (0x77) 120, // input 49 (0x31) => 'x' (0x78) 121, // input 50 (0x32) => 'y' (0x79) 122, // input 51 (0x33) => 'z' (0x7A) 48, // input 52 (0x34) => '0' (0x30) 49, // input 53 (0x35) => '1' (0x31) 50, // input 54 (0x36) => '2' (0x32) 51, // input 55 (0x37) => '3' (0x33) 52, // input 56 (0x38) => '4' (0x34) 53, // input 57 (0x39) => '5' (0x35) 54, // input 58 (0x3A) => '6' (0x36) 55, // input 59 (0x3B) => '7' (0x37) 56, // input 60 (0x3C) => '8' (0x38) 57, // input 61 (0x3D) => '9' (0x39) 43, // input 62 (0x3E) => '+' (0x2B) 47, // input 63 (0x3F) => '/' (0x2F) ]; #[cfg_attr(rustfmt, rustfmt_skip)] pub const STANDARD_DECODE: &[u8; 256] = &[ INVALID_VALUE, // input 0 (0x0) INVALID_VALUE, // input 1 (0x1) INVALID_VALUE, // input 2 (0x2) INVALID_VALUE, // input 3 (0x3) INVALID_VALUE, // input 4 (0x4) INVALID_VALUE, // input 5 (0x5) INVALID_VALUE, // input 6 (0x6) INVALID_VALUE, // input 7 (0x7) INVALID_VALUE, // input 8 (0x8) INVALID_VALUE, // input 9 (0x9) INVALID_VALUE, // input 10 (0xA) INVALID_VALUE, // input 11 (0xB) INVALID_VALUE, // input 12 (0xC) INVALID_VALUE, // input 13 (0xD) INVALID_VALUE, // input 14 (0xE) INVALID_VALUE, // input 15 (0xF) INVALID_VALUE, // input 16 (0x10) INVALID_VALUE, // input 17 (0x11) INVALID_VALUE, // input 18 (0x12) INVALID_VALUE, // input 19 (0x13) INVALID_VALUE, // input 20 (0x14) INVALID_VALUE, // input 21 (0x15) INVALID_VALUE, // input 22 (0x16) INVALID_VALUE, // input 23 (0x17) INVALID_VALUE, // input 24 (0x18) INVALID_VALUE, // input 25 (0x19) INVALID_VALUE, // input 26 (0x1A) INVALID_VALUE, // input 27 (0x1B) INVALID_VALUE, // input 28 (0x1C) INVALID_VALUE, // input 29 (0x1D) INVALID_VALUE, // input 30 (0x1E) INVALID_VALUE, // input 31 (0x1F) INVALID_VALUE, // input 32 (0x20) INVALID_VALUE, // input 33 (0x21) INVALID_VALUE, // input 34 (0x22) INVALID_VALUE, // input 35 (0x23) INVALID_VALUE, // input 36 (0x24) INVALID_VALUE, // input 37 (0x25) INVALID_VALUE, // input 38 (0x26) INVALID_VALUE, // input 39 (0x27) INVALID_VALUE, // input 40 (0x28) INVALID_VALUE, // input 41 (0x29) INVALID_VALUE, // input 42 (0x2A) 62, // input 43 (0x2B char '+') => 62 (0x3E) INVALID_VALUE, // input 44 (0x2C) INVALID_VALUE, // input 45 (0x2D) INVALID_VALUE, // input 46 (0x2E) 63, // input 47 (0x2F char '/') => 63 (0x3F) 52, // input 48 (0x30 char '0') => 52 (0x34) 53, // input 49 (0x31 char '1') => 53 (0x35) 54, // input 50 (0x32 char '2') => 54 (0x36) 55, // input 51 (0x33 char '3') => 55 (0x37) 56, // input 52 (0x34 char '4') => 56 (0x38) 57, // input 53 (0x35 char '5') => 57 (0x39) 58, // input 54 (0x36 char '6') => 58 (0x3A) 59, // input 55 (0x37 char '7') => 59 (0x3B) 60, // input 56 (0x38 char '8') => 60 (0x3C) 61, // input 57 (0x39 char '9') => 61 (0x3D) INVALID_VALUE, // input 58 (0x3A) INVALID_VALUE, // input 59 (0x3B) INVALID_VALUE, // input 60 (0x3C) INVALID_VALUE, // input 61 (0x3D) INVALID_VALUE, // input 62 (0x3E) INVALID_VALUE, // input 63 (0x3F) INVALID_VALUE, // input 64 (0x40) 0, // input 65 (0x41 char 'A') => 0 (0x0) 1, // input 66 (0x42 char 'B') => 1 (0x1) 2, // input 67 (0x43 char 'C') => 2 (0x2) 3, // input 68 (0x44 char 'D') => 3 (0x3) 4, // input 69 (0x45 char 'E') => 4 (0x4) 5, // input 70 (0x46 char 'F') => 5 (0x5) 6, // input 71 (0x47 char 'G') => 6 (0x6) 7, // input 72 (0x48 char 'H') => 7 (0x7) 8, // input 73 (0x49 char 'I') => 8 (0x8) 9, // input 74 (0x4A char 'J') => 9 (0x9) 10, // input 75 (0x4B char 'K') => 10 (0xA) 11, // input 76 (0x4C char 'L') => 11 (0xB) 12, // input 77 (0x4D char 'M') => 12 (0xC) 13, // input 78 (0x4E char 'N') => 13 (0xD) 14, // input 79 (0x4F char 'O') => 14 (0xE) 15, // input 80 (0x50 char 'P') => 15 (0xF) 16, // input 81 (0x51 char 'Q') => 16 (0x10) 17, // input 82 (0x52 char 'R') => 17 (0x11) 18, // input 83 (0x53 char 'S') => 18 (0x12) 19, // input 84 (0x54 char 'T') => 19 (0x13) 20, // input 85 (0x55 char 'U') => 20 (0x14) 21, // input 86 (0x56 char 'V') => 21 (0x15) 22, // input 87 (0x57 char 'W') => 22 (0x16) 23, // input 88 (0x58 char 'X') => 23 (0x17) 24, // input 89 (0x59 char 'Y') => 24 (0x18) 25, // input 90 (0x5A char 'Z') => 25 (0x19) INVALID_VALUE, // input 91 (0x5B) INVALID_VALUE, // input 92 (0x5C) INVALID_VALUE, // input 93 (0x5D) INVALID_VALUE, // input 94 (0x5E) INVALID_VALUE, // input 95 (0x5F) INVALID_VALUE, // input 96 (0x60) 26, // input 97 (0x61 char 'a') => 26 (0x1A) 27, // input 98 (0x62 char 'b') => 27 (0x1B) 28, // input 99 (0x63 char 'c') => 28 (0x1C) 29, // input 100 (0x64 char 'd') => 29 (0x1D) 30, // input 101 (0x65 char 'e') => 30 (0x1E) 31, // input 102 (0x66 char 'f') => 31 (0x1F) 32, // input 103 (0x67 char 'g') => 32 (0x20) 33, // input 104 (0x68 char 'h') => 33 (0x21) 34, // input 105 (0x69 char 'i') => 34 (0x22) 35, // input 106 (0x6A char 'j') => 35 (0x23) 36, // input 107 (0x6B char 'k') => 36 (0x24) 37, // input 108 (0x6C char 'l') => 37 (0x25) 38, // input 109 (0x6D char 'm') => 38 (0x26) 39, // input 110 (0x6E char 'n') => 39 (0x27) 40, // input 111 (0x6F char 'o') => 40 (0x28) 41, // input 112 (0x70 char 'p') => 41 (0x29) 42, // input 113 (0x71 char 'q') => 42 (0x2A) 43, // input 114 (0x72 char 'r') => 43 (0x2B) 44, // input 115 (0x73 char 's') => 44 (0x2C) 45, // input 116 (0x74 char 't') => 45 (0x2D) 46, // input 117 (0x75 char 'u') => 46 (0x2E) 47, // input 118 (0x76 char 'v') => 47 (0x2F) 48, // input 119 (0x77 char 'w') => 48 (0x30) 49, // input 120 (0x78 char 'x') => 49 (0x31) 50, // input 121 (0x79 char 'y') => 50 (0x32) 51, // input 122 (0x7A char 'z') => 51 (0x33) INVALID_VALUE, // input 123 (0x7B) INVALID_VALUE, // input 124 (0x7C) INVALID_VALUE, // input 125 (0x7D) INVALID_VALUE, // input 126 (0x7E) INVALID_VALUE, // input 127 (0x7F) INVALID_VALUE, // input 128 (0x80) INVALID_VALUE, // input 129 (0x81) INVALID_VALUE, // input 130 (0x82) INVALID_VALUE, // input 131 (0x83) INVALID_VALUE, // input 132 (0x84) INVALID_VALUE, // input 133 (0x85) INVALID_VALUE, // input 134 (0x86) INVALID_VALUE, // input 135 (0x87) INVALID_VALUE, // input 136 (0x88) INVALID_VALUE, // input 137 (0x89) INVALID_VALUE, // input 138 (0x8A) INVALID_VALUE, // input 139 (0x8B) INVALID_VALUE, // input 140 (0x8C) INVALID_VALUE, // input 141 (0x8D) INVALID_VALUE, // input 142 (0x8E) INVALID_VALUE, // input 143 (0x8F) INVALID_VALUE, // input 144 (0x90) INVALID_VALUE, // input 145 (0x91) INVALID_VALUE, // input 146 (0x92) INVALID_VALUE, // input 147 (0x93) INVALID_VALUE, // input 148 (0x94) INVALID_VALUE, // input 149 (0x95) INVALID_VALUE, // input 150 (0x96) INVALID_VALUE, // input 151 (0x97) INVALID_VALUE, // input 152 (0x98) INVALID_VALUE, // input 153 (0x99) INVALID_VALUE, // input 154 (0x9A) INVALID_VALUE, // input 155 (0x9B) INVALID_VALUE, // input 156 (0x9C) INVALID_VALUE, // input 157 (0x9D) INVALID_VALUE, // input 158 (0x9E) INVALID_VALUE, // input 159 (0x9F) INVALID_VALUE, // input 160 (0xA0) INVALID_VALUE, // input 161 (0xA1) INVALID_VALUE, // input 162 (0xA2) INVALID_VALUE, // input 163 (0xA3) INVALID_VALUE, // input 164 (0xA4) INVALID_VALUE, // input 165 (0xA5) INVALID_VALUE, // input 166 (0xA6) INVALID_VALUE, // input 167 (0xA7) INVALID_VALUE, // input 168 (0xA8) INVALID_VALUE, // input 169 (0xA9) INVALID_VALUE, // input 170 (0xAA) INVALID_VALUE, // input 171 (0xAB) INVALID_VALUE, // input 172 (0xAC) INVALID_VALUE, // input 173 (0xAD) INVALID_VALUE, // input 174 (0xAE) INVALID_VALUE, // input 175 (0xAF) INVALID_VALUE, // input 176 (0xB0) INVALID_VALUE, // input 177 (0xB1) INVALID_VALUE, // input 178 (0xB2) INVALID_VALUE, // input 179 (0xB3) INVALID_VALUE, // input 180 (0xB4) INVALID_VALUE, // input 181 (0xB5) INVALID_VALUE, // input 182 (0xB6) INVALID_VALUE, // input 183 (0xB7) INVALID_VALUE, // input 184 (0xB8) INVALID_VALUE, // input 185 (0xB9) INVALID_VALUE, // input 186 (0xBA) INVALID_VALUE, // input 187 (0xBB) INVALID_VALUE, // input 188 (0xBC) INVALID_VALUE, // input 189 (0xBD) INVALID_VALUE, // input 190 (0xBE) INVALID_VALUE, // input 191 (0xBF) INVALID_VALUE, // input 192 (0xC0) INVALID_VALUE, // input 193 (0xC1) INVALID_VALUE, // input 194 (0xC2) INVALID_VALUE, // input 195 (0xC3) INVALID_VALUE, // input 196 (0xC4) INVALID_VALUE, // input 197 (0xC5) INVALID_VALUE, // input 198 (0xC6) INVALID_VALUE, // input 199 (0xC7) INVALID_VALUE, // input 200 (0xC8) INVALID_VALUE, // input 201 (0xC9) INVALID_VALUE, // input 202 (0xCA) INVALID_VALUE, // input 203 (0xCB) INVALID_VALUE, // input 204 (0xCC) INVALID_VALUE, // input 205 (0xCD) INVALID_VALUE, // input 206 (0xCE) INVALID_VALUE, // input 207 (0xCF) INVALID_VALUE, // input 208 (0xD0) INVALID_VALUE, // input 209 (0xD1) INVALID_VALUE, // input 210 (0xD2) INVALID_VALUE, // input 211 (0xD3) INVALID_VALUE, // input 212 (0xD4) INVALID_VALUE, // input 213 (0xD5) INVALID_VALUE, // input 214 (0xD6) INVALID_VALUE, // input 215 (0xD7) INVALID_VALUE, // input 216 (0xD8) INVALID_VALUE, // input 217 (0xD9) INVALID_VALUE, // input 218 (0xDA) INVALID_VALUE, // input 219 (0xDB) INVALID_VALUE, // input 220 (0xDC) INVALID_VALUE, // input 221 (0xDD) INVALID_VALUE, // input 222 (0xDE) INVALID_VALUE, // input 223 (0xDF) INVALID_VALUE, // input 224 (0xE0) INVALID_VALUE, // input 225 (0xE1) INVALID_VALUE, // input 226 (0xE2) INVALID_VALUE, // input 227 (0xE3) INVALID_VALUE, // input 228 (0xE4) INVALID_VALUE, // input 229 (0xE5) INVALID_VALUE, // input 230 (0xE6) INVALID_VALUE, // input 231 (0xE7) INVALID_VALUE, // input 232 (0xE8) INVALID_VALUE, // input 233 (0xE9) INVALID_VALUE, // input 234 (0xEA) INVALID_VALUE, // input 235 (0xEB) INVALID_VALUE, // input 236 (0xEC) INVALID_VALUE, // input 237 (0xED) INVALID_VALUE, // input 238 (0xEE) INVALID_VALUE, // input 239 (0xEF) INVALID_VALUE, // input 240 (0xF0) INVALID_VALUE, // input 241 (0xF1) INVALID_VALUE, // input 242 (0xF2) INVALID_VALUE, // input 243 (0xF3) INVALID_VALUE, // input 244 (0xF4) INVALID_VALUE, // input 245 (0xF5) INVALID_VALUE, // input 246 (0xF6) INVALID_VALUE, // input 247 (0xF7) INVALID_VALUE, // input 248 (0xF8) INVALID_VALUE, // input 249 (0xF9) INVALID_VALUE, // input 250 (0xFA) INVALID_VALUE, // input 251 (0xFB) INVALID_VALUE, // input 252 (0xFC) INVALID_VALUE, // input 253 (0xFD) INVALID_VALUE, // input 254 (0xFE) INVALID_VALUE, // input 255 (0xFF) ]; #[cfg_attr(rustfmt, rustfmt_skip)] pub const URL_SAFE_ENCODE: &[u8; 64] = &[ 65, // input 0 (0x0) => 'A' (0x41) 66, // input 1 (0x1) => 'B' (0x42) 67, // input 2 (0x2) => 'C' (0x43) 68, // input 3 (0x3) => 'D' (0x44) 69, // input 4 (0x4) => 'E' (0x45) 70, // input 5 (0x5) => 'F' (0x46) 71, // input 6 (0x6) => 'G' (0x47) 72, // input 7 (0x7) => 'H' (0x48) 73, // input 8 (0x8) => 'I' (0x49) 74, // input 9 (0x9) => 'J' (0x4A) 75, // input 10 (0xA) => 'K' (0x4B) 76, // input 11 (0xB) => 'L' (0x4C) 77, // input 12 (0xC) => 'M' (0x4D) 78, // input 13 (0xD) => 'N' (0x4E) 79, // input 14 (0xE) => 'O' (0x4F) 80, // input 15 (0xF) => 'P' (0x50) 81, // input 16 (0x10) => 'Q' (0x51) 82, // input 17 (0x11) => 'R' (0x52) 83, // input 18 (0x12) => 'S' (0x53) 84, // input 19 (0x13) => 'T' (0x54) 85, // input 20 (0x14) => 'U' (0x55) 86, // input 21 (0x15) => 'V' (0x56) 87, // input 22 (0x16) => 'W' (0x57) 88, // input 23 (0x17) => 'X' (0x58) 89, // input 24 (0x18) => 'Y' (0x59) 90, // input 25 (0x19) => 'Z' (0x5A) 97, // input 26 (0x1A) => 'a' (0x61) 98, // input 27 (0x1B) => 'b' (0x62) 99, // input 28 (0x1C) => 'c' (0x63) 100, // input 29 (0x1D) => 'd' (0x64) 101, // input 30 (0x1E) => 'e' (0x65) 102, // input 31 (0x1F) => 'f' (0x66) 103, // input 32 (0x20) => 'g' (0x67) 104, // input 33 (0x21) => 'h' (0x68) 105, // input 34 (0x22) => 'i' (0x69) 106, // input 35 (0x23) => 'j' (0x6A) 107, // input 36 (0x24) => 'k' (0x6B) 108, // input 37 (0x25) => 'l' (0x6C) 109, // input 38 (0x26) => 'm' (0x6D) 110, // input 39 (0x27) => 'n' (0x6E) 111, // input 40 (0x28) => 'o' (0x6F) 112, // input 41 (0x29) => 'p' (0x70) 113, // input 42 (0x2A) => 'q' (0x71) 114, // input 43 (0x2B) => 'r' (0x72) 115, // input 44 (0x2C) => 's' (0x73) 116, // input 45 (0x2D) => 't' (0x74) 117, // input 46 (0x2E) => 'u' (0x75) 118, // input 47 (0x2F) => 'v' (0x76) 119, // input 48 (0x30) => 'w' (0x77) 120, // input 49 (0x31) => 'x' (0x78) 121, // input 50 (0x32) => 'y' (0x79) 122, // input 51 (0x33) => 'z' (0x7A) 48, // input 52 (0x34) => '0' (0x30) 49, // input 53 (0x35) => '1' (0x31) 50, // input 54 (0x36) => '2' (0x32) 51, // input 55 (0x37) => '3' (0x33) 52, // input 56 (0x38) => '4' (0x34) 53, // input 57 (0x39) => '5' (0x35) 54, // input 58 (0x3A) => '6' (0x36) 55, // input 59 (0x3B) => '7' (0x37) 56, // input 60 (0x3C) => '8' (0x38) 57, // input 61 (0x3D) => '9' (0x39) 45, // input 62 (0x3E) => '-' (0x2D) 95, // input 63 (0x3F) => '_' (0x5F) ]; #[cfg_attr(rustfmt, rustfmt_skip)] pub const URL_SAFE_DECODE: &[u8; 256] = &[ INVALID_VALUE, // input 0 (0x0) INVALID_VALUE, // input 1 (0x1) INVALID_VALUE, // input 2 (0x2) INVALID_VALUE, // input 3 (0x3) INVALID_VALUE, // input 4 (0x4) INVALID_VALUE, // input 5 (0x5) INVALID_VALUE, // input 6 (0x6) INVALID_VALUE, // input 7 (0x7) INVALID_VALUE, // input 8 (0x8) INVALID_VALUE, // input 9 (0x9) INVALID_VALUE, // input 10 (0xA) INVALID_VALUE, // input 11 (0xB) INVALID_VALUE, // input 12 (0xC) INVALID_VALUE, // input 13 (0xD) INVALID_VALUE, // input 14 (0xE) INVALID_VALUE, // input 15 (0xF) INVALID_VALUE, // input 16 (0x10) INVALID_VALUE, // input 17 (0x11) INVALID_VALUE, // input 18 (0x12) INVALID_VALUE, // input 19 (0x13) INVALID_VALUE, // input 20 (0x14) INVALID_VALUE, // input 21 (0x15) INVALID_VALUE, // input 22 (0x16) INVALID_VALUE, // input 23 (0x17) INVALID_VALUE, // input 24 (0x18) INVALID_VALUE, // input 25 (0x19) INVALID_VALUE, // input 26 (0x1A) INVALID_VALUE, // input 27 (0x1B) INVALID_VALUE, // input 28 (0x1C) INVALID_VALUE, // input 29 (0x1D) INVALID_VALUE, // input 30 (0x1E) INVALID_VALUE, // input 31 (0x1F) INVALID_VALUE, // input 32 (0x20) INVALID_VALUE, // input 33 (0x21) INVALID_VALUE, // input 34 (0x22) INVALID_VALUE, // input 35 (0x23) INVALID_VALUE, // input 36 (0x24) INVALID_VALUE, // input 37 (0x25) INVALID_VALUE, // input 38 (0x26) INVALID_VALUE, // input 39 (0x27) INVALID_VALUE, // input 40 (0x28) INVALID_VALUE, // input 41 (0x29) INVALID_VALUE, // input 42 (0x2A) INVALID_VALUE, // input 43 (0x2B) INVALID_VALUE, // input 44 (0x2C) 62, // input 45 (0x2D char '-') => 62 (0x3E) INVALID_VALUE, // input 46 (0x2E) INVALID_VALUE, // input 47 (0x2F) 52, // input 48 (0x30 char '0') => 52 (0x34) 53, // input 49 (0x31 char '1') => 53 (0x35) 54, // input 50 (0x32 char '2') => 54 (0x36) 55, // input 51 (0x33 char '3') => 55 (0x37) 56, // input 52 (0x34 char '4') => 56 (0x38) 57, // input 53 (0x35 char '5') => 57 (0x39) 58, // input 54 (0x36 char '6') => 58 (0x3A) 59, // input 55 (0x37 char '7') => 59 (0x3B) 60, // input 56 (0x38 char '8') => 60 (0x3C) 61, // input 57 (0x39 char '9') => 61 (0x3D) INVALID_VALUE, // input 58 (0x3A) INVALID_VALUE, // input 59 (0x3B) INVALID_VALUE, // input 60 (0x3C) INVALID_VALUE, // input 61 (0x3D) INVALID_VALUE, // input 62 (0x3E) INVALID_VALUE, // input 63 (0x3F) INVALID_VALUE, // input 64 (0x40) 0, // input 65 (0x41 char 'A') => 0 (0x0) 1, // input 66 (0x42 char 'B') => 1 (0x1) 2, // input 67 (0x43 char 'C') => 2 (0x2) 3, // input 68 (0x44 char 'D') => 3 (0x3) 4, // input 69 (0x45 char 'E') => 4 (0x4) 5, // input 70 (0x46 char 'F') => 5 (0x5) 6, // input 71 (0x47 char 'G') => 6 (0x6) 7, // input 72 (0x48 char 'H') => 7 (0x7) 8, // input 73 (0x49 char 'I') => 8 (0x8) 9, // input 74 (0x4A char 'J') => 9 (0x9) 10, // input 75 (0x4B char 'K') => 10 (0xA) 11, // input 76 (0x4C char 'L') => 11 (0xB) 12, // input 77 (0x4D char 'M') => 12 (0xC) 13, // input 78 (0x4E char 'N') => 13 (0xD) 14, // input 79 (0x4F char 'O') => 14 (0xE) 15, // input 80 (0x50 char 'P') => 15 (0xF) 16, // input 81 (0x51 char 'Q') => 16 (0x10) 17, // input 82 (0x52 char 'R') => 17 (0x11) 18, // input 83 (0x53 char 'S') => 18 (0x12) 19, // input 84 (0x54 char 'T') => 19 (0x13) 20, // input 85 (0x55 char 'U') => 20 (0x14) 21, // input 86 (0x56 char 'V') => 21 (0x15) 22, // input 87 (0x57 char 'W') => 22 (0x16) 23, // input 88 (0x58 char 'X') => 23 (0x17) 24, // input 89 (0x59 char 'Y') => 24 (0x18) 25, // input 90 (0x5A char 'Z') => 25 (0x19) INVALID_VALUE, // input 91 (0x5B) INVALID_VALUE, // input 92 (0x5C) INVALID_VALUE, // input 93 (0x5D) INVALID_VALUE, // input 94 (0x5E) 63, // input 95 (0x5F char '_') => 63 (0x3F) INVALID_VALUE, // input 96 (0x60) 26, // input 97 (0x61 char 'a') => 26 (0x1A) 27, // input 98 (0x62 char 'b') => 27 (0x1B) 28, // input 99 (0x63 char 'c') => 28 (0x1C) 29, // input 100 (0x64 char 'd') => 29 (0x1D) 30, // input 101 (0x65 char 'e') => 30 (0x1E) 31, // input 102 (0x66 char 'f') => 31 (0x1F) 32, // input 103 (0x67 char 'g') => 32 (0x20) 33, // input 104 (0x68 char 'h') => 33 (0x21) 34, // input 105 (0x69 char 'i') => 34 (0x22) 35, // input 106 (0x6A char 'j') => 35 (0x23) 36, // input 107 (0x6B char 'k') => 36 (0x24) 37, // input 108 (0x6C char 'l') => 37 (0x25) 38, // input 109 (0x6D char 'm') => 38 (0x26) 39, // input 110 (0x6E char 'n') => 39 (0x27) 40, // input 111 (0x6F char 'o') => 40 (0x28) 41, // input 112 (0x70 char 'p') => 41 (0x29) 42, // input 113 (0x71 char 'q') => 42 (0x2A) 43, // input 114 (0x72 char 'r') => 43 (0x2B) 44, // input 115 (0x73 char 's') => 44 (0x2C) 45, // input 116 (0x74 char 't') => 45 (0x2D) 46, // input 117 (0x75 char 'u') => 46 (0x2E) 47, // input 118 (0x76 char 'v') => 47 (0x2F) 48, // input 119 (0x77 char 'w') => 48 (0x30) 49, // input 120 (0x78 char 'x') => 49 (0x31) 50, // input 121 (0x79 char 'y') => 50 (0x32) 51, // input 122 (0x7A char 'z') => 51 (0x33) INVALID_VALUE, // input 123 (0x7B) INVALID_VALUE, // input 124 (0x7C) INVALID_VALUE, // input 125 (0x7D) INVALID_VALUE, // input 126 (0x7E) INVALID_VALUE, // input 127 (0x7F) INVALID_VALUE, // input 128 (0x80) INVALID_VALUE, // input 129 (0x81) INVALID_VALUE, // input 130 (0x82) INVALID_VALUE, // input 131 (0x83) INVALID_VALUE, // input 132 (0x84) INVALID_VALUE, // input 133 (0x85) INVALID_VALUE, // input 134 (0x86) INVALID_VALUE, // input 135 (0x87) INVALID_VALUE, // input 136 (0x88) INVALID_VALUE, // input 137 (0x89) INVALID_VALUE, // input 138 (0x8A) INVALID_VALUE, // input 139 (0x8B) INVALID_VALUE, // input 140 (0x8C) INVALID_VALUE, // input 141 (0x8D) INVALID_VALUE, // input 142 (0x8E) INVALID_VALUE, // input 143 (0x8F) INVALID_VALUE, // input 144 (0x90) INVALID_VALUE, // input 145 (0x91) INVALID_VALUE, // input 146 (0x92) INVALID_VALUE, // input 147 (0x93) INVALID_VALUE, // input 148 (0x94) INVALID_VALUE, // input 149 (0x95) INVALID_VALUE, // input 150 (0x96) INVALID_VALUE, // input 151 (0x97) INVALID_VALUE, // input 152 (0x98) INVALID_VALUE, // input 153 (0x99) INVALID_VALUE, // input 154 (0x9A) INVALID_VALUE, // input 155 (0x9B) INVALID_VALUE, // input 156 (0x9C) INVALID_VALUE, // input 157 (0x9D) INVALID_VALUE, // input 158 (0x9E) INVALID_VALUE, // input 159 (0x9F) INVALID_VALUE, // input 160 (0xA0) INVALID_VALUE, // input 161 (0xA1) INVALID_VALUE, // input 162 (0xA2) INVALID_VALUE, // input 163 (0xA3) INVALID_VALUE, // input 164 (0xA4) INVALID_VALUE, // input 165 (0xA5) INVALID_VALUE, // input 166 (0xA6) INVALID_VALUE, // input 167 (0xA7) INVALID_VALUE, // input 168 (0xA8) INVALID_VALUE, // input 169 (0xA9) INVALID_VALUE, // input 170 (0xAA) INVALID_VALUE, // input 171 (0xAB) INVALID_VALUE, // input 172 (0xAC) INVALID_VALUE, // input 173 (0xAD) INVALID_VALUE, // input 174 (0xAE) INVALID_VALUE, // input 175 (0xAF) INVALID_VALUE, // input 176 (0xB0) INVALID_VALUE, // input 177 (0xB1) INVALID_VALUE, // input 178 (0xB2) INVALID_VALUE, // input 179 (0xB3) INVALID_VALUE, // input 180 (0xB4) INVALID_VALUE, // input 181 (0xB5) INVALID_VALUE, // input 182 (0xB6) INVALID_VALUE, // input 183 (0xB7) INVALID_VALUE, // input 184 (0xB8) INVALID_VALUE, // input 185 (0xB9) INVALID_VALUE, // input 186 (0xBA) INVALID_VALUE, // input 187 (0xBB) INVALID_VALUE, // input 188 (0xBC) INVALID_VALUE, // input 189 (0xBD) INVALID_VALUE, // input 190 (0xBE) INVALID_VALUE, // input 191 (0xBF) INVALID_VALUE, // input 192 (0xC0) INVALID_VALUE, // input 193 (0xC1) INVALID_VALUE, // input 194 (0xC2) INVALID_VALUE, // input 195 (0xC3) INVALID_VALUE, // input 196 (0xC4) INVALID_VALUE, // input 197 (0xC5) INVALID_VALUE, // input 198 (0xC6) INVALID_VALUE, // input 199 (0xC7) INVALID_VALUE, // input 200 (0xC8) INVALID_VALUE, // input 201 (0xC9) INVALID_VALUE, // input 202 (0xCA) INVALID_VALUE, // input 203 (0xCB) INVALID_VALUE, // input 204 (0xCC) INVALID_VALUE, // input 205 (0xCD) INVALID_VALUE, // input 206 (0xCE) INVALID_VALUE, // input 207 (0xCF) INVALID_VALUE, // input 208 (0xD0) INVALID_VALUE, // input 209 (0xD1) INVALID_VALUE, // input 210 (0xD2) INVALID_VALUE, // input 211 (0xD3) INVALID_VALUE, // input 212 (0xD4) INVALID_VALUE, // input 213 (0xD5) INVALID_VALUE, // input 214 (0xD6) INVALID_VALUE, // input 215 (0xD7) INVALID_VALUE, // input 216 (0xD8) INVALID_VALUE, // input 217 (0xD9) INVALID_VALUE, // input 218 (0xDA) INVALID_VALUE, // input 219 (0xDB) INVALID_VALUE, // input 220 (0xDC) INVALID_VALUE, // input 221 (0xDD) INVALID_VALUE, // input 222 (0xDE) INVALID_VALUE, // input 223 (0xDF) INVALID_VALUE, // input 224 (0xE0) INVALID_VALUE, // input 225 (0xE1) INVALID_VALUE, // input 226 (0xE2) INVALID_VALUE, // input 227 (0xE3) INVALID_VALUE, // input 228 (0xE4) INVALID_VALUE, // input 229 (0xE5) INVALID_VALUE, // input 230 (0xE6) INVALID_VALUE, // input 231 (0xE7) INVALID_VALUE, // input 232 (0xE8) INVALID_VALUE, // input 233 (0xE9) INVALID_VALUE, // input 234 (0xEA) INVALID_VALUE, // input 235 (0xEB) INVALID_VALUE, // input 236 (0xEC) INVALID_VALUE, // input 237 (0xED) INVALID_VALUE, // input 238 (0xEE) INVALID_VALUE, // input 239 (0xEF) INVALID_VALUE, // input 240 (0xF0) INVALID_VALUE, // input 241 (0xF1) INVALID_VALUE, // input 242 (0xF2) INVALID_VALUE, // input 243 (0xF3) INVALID_VALUE, // input 244 (0xF4) INVALID_VALUE, // input 245 (0xF5) INVALID_VALUE, // input 246 (0xF6) INVALID_VALUE, // input 247 (0xF7) INVALID_VALUE, // input 248 (0xF8) INVALID_VALUE, // input 249 (0xF9) INVALID_VALUE, // input 250 (0xFA) INVALID_VALUE, // input 251 (0xFB) INVALID_VALUE, // input 252 (0xFC) INVALID_VALUE, // input 253 (0xFD) INVALID_VALUE, // input 254 (0xFE) INVALID_VALUE, // input 255 (0xFF) ]; #[cfg_attr(rustfmt, rustfmt_skip)] pub const CRYPT_ENCODE: &[u8; 64] = &[ 46, // input 0 (0x0) => '.' (0x2E) 47, // input 1 (0x1) => '/' (0x2F) 48, // input 2 (0x2) => '0' (0x30) 49, // input 3 (0x3) => '1' (0x31) 50, // input 4 (0x4) => '2' (0x32) 51, // input 5 (0x5) => '3' (0x33) 52, // input 6 (0x6) => '4' (0x34) 53, // input 7 (0x7) => '5' (0x35) 54, // input 8 (0x8) => '6' (0x36) 55, // input 9 (0x9) => '7' (0x37) 56, // input 10 (0xA) => '8' (0x38) 57, // input 11 (0xB) => '9' (0x39) 65, // input 12 (0xC) => 'A' (0x41) 66, // input 13 (0xD) => 'B' (0x42) 67, // input 14 (0xE) => 'C' (0x43) 68, // input 15 (0xF) => 'D' (0x44) 69, // input 16 (0x10) => 'E' (0x45) 70, // input 17 (0x11) => 'F' (0x46) 71, // input 18 (0x12) => 'G' (0x47) 72, // input 19 (0x13) => 'H' (0x48) 73, // input 20 (0x14) => 'I' (0x49) 74, // input 21 (0x15) => 'J' (0x4A) 75, // input 22 (0x16) => 'K' (0x4B) 76, // input 23 (0x17) => 'L' (0x4C) 77, // input 24 (0x18) => 'M' (0x4D) 78, // input 25 (0x19) => 'N' (0x4E) 79, // input 26 (0x1A) => 'O' (0x4F) 80, // input 27 (0x1B) => 'P' (0x50) 81, // input 28 (0x1C) => 'Q' (0x51) 82, // input 29 (0x1D) => 'R' (0x52) 83, // input 30 (0x1E) => 'S' (0x53) 84, // input 31 (0x1F) => 'T' (0x54) 85, // input 32 (0x20) => 'U' (0x55) 86, // input 33 (0x21) => 'V' (0x56) 87, // input 34 (0x22) => 'W' (0x57) 88, // input 35 (0x23) => 'X' (0x58) 89, // input 36 (0x24) => 'Y' (0x59) 90, // input 37 (0x25) => 'Z' (0x5A) 97, // input 38 (0x26) => 'a' (0x61) 98, // input 39 (0x27) => 'b' (0x62) 99, // input 40 (0x28) => 'c' (0x63) 100, // input 41 (0x29) => 'd' (0x64) 101, // input 42 (0x2A) => 'e' (0x65) 102, // input 43 (0x2B) => 'f' (0x66) 103, // input 44 (0x2C) => 'g' (0x67) 104, // input 45 (0x2D) => 'h' (0x68) 105, // input 46 (0x2E) => 'i' (0x69) 106, // input 47 (0x2F) => 'j' (0x6A) 107, // input 48 (0x30) => 'k' (0x6B) 108, // input 49 (0x31) => 'l' (0x6C) 109, // input 50 (0x32) => 'm' (0x6D) 110, // input 51 (0x33) => 'n' (0x6E) 111, // input 52 (0x34) => 'o' (0x6F) 112, // input 53 (0x35) => 'p' (0x70) 113, // input 54 (0x36) => 'q' (0x71) 114, // input 55 (0x37) => 'r' (0x72) 115, // input 56 (0x38) => 's' (0x73) 116, // input 57 (0x39) => 't' (0x74) 117, // input 58 (0x3A) => 'u' (0x75) 118, // input 59 (0x3B) => 'v' (0x76) 119, // input 60 (0x3C) => 'w' (0x77) 120, // input 61 (0x3D) => 'x' (0x78) 121, // input 62 (0x3E) => 'y' (0x79) 122, // input 63 (0x3F) => 'z' (0x7A) ]; #[cfg_attr(rustfmt, rustfmt_skip)] pub const CRYPT_DECODE: &[u8; 256] = &[ INVALID_VALUE, // input 0 (0x0) INVALID_VALUE, // input 1 (0x1) INVALID_VALUE, // input 2 (0x2) INVALID_VALUE, // input 3 (0x3) INVALID_VALUE, // input 4 (0x4) INVALID_VALUE, // input 5 (0x5) INVALID_VALUE, // input 6 (0x6) INVALID_VALUE, // input 7 (0x7) INVALID_VALUE, // input 8 (0x8) INVALID_VALUE, // input 9 (0x9) INVALID_VALUE, // input 10 (0xA) INVALID_VALUE, // input 11 (0xB) INVALID_VALUE, // input 12 (0xC) INVALID_VALUE, // input 13 (0xD) INVALID_VALUE, // input 14 (0xE) INVALID_VALUE, // input 15 (0xF) INVALID_VALUE, // input 16 (0x10) INVALID_VALUE, // input 17 (0x11) INVALID_VALUE, // input 18 (0x12) INVALID_VALUE, // input 19 (0x13) INVALID_VALUE, // input 20 (0x14) INVALID_VALUE, // input 21 (0x15) INVALID_VALUE, // input 22 (0x16) INVALID_VALUE, // input 23 (0x17) INVALID_VALUE, // input 24 (0x18) INVALID_VALUE, // input 25 (0x19) INVALID_VALUE, // input 26 (0x1A) INVALID_VALUE, // input 27 (0x1B) INVALID_VALUE, // input 28 (0x1C) INVALID_VALUE, // input 29 (0x1D) INVALID_VALUE, // input 30 (0x1E) INVALID_VALUE, // input 31 (0x1F) INVALID_VALUE, // input 32 (0x20) INVALID_VALUE, // input 33 (0x21) INVALID_VALUE, // input 34 (0x22) INVALID_VALUE, // input 35 (0x23) INVALID_VALUE, // input 36 (0x24) INVALID_VALUE, // input 37 (0x25) INVALID_VALUE, // input 38 (0x26) INVALID_VALUE, // input 39 (0x27) INVALID_VALUE, // input 40 (0x28) INVALID_VALUE, // input 41 (0x29) INVALID_VALUE, // input 42 (0x2A) INVALID_VALUE, // input 43 (0x2B) INVALID_VALUE, // input 44 (0x2C) INVALID_VALUE, // input 45 (0x2D) 0, // input 46 (0x2E char '.') => 0 (0x0) 1, // input 47 (0x2F char '/') => 1 (0x1) 2, // input 48 (0x30 char '0') => 2 (0x2) 3, // input 49 (0x31 char '1') => 3 (0x3) 4, // input 50 (0x32 char '2') => 4 (0x4) 5, // input 51 (0x33 char '3') => 5 (0x5) 6, // input 52 (0x34 char '4') => 6 (0x6) 7, // input 53 (0x35 char '5') => 7 (0x7) 8, // input 54 (0x36 char '6') => 8 (0x8) 9, // input 55 (0x37 char '7') => 9 (0x9) 10, // input 56 (0x38 char '8') => 10 (0xA) 11, // input 57 (0x39 char '9') => 11 (0xB) INVALID_VALUE, // input 58 (0x3A) INVALID_VALUE, // input 59 (0x3B) INVALID_VALUE, // input 60 (0x3C) INVALID_VALUE, // input 61 (0x3D) INVALID_VALUE, // input 62 (0x3E) INVALID_VALUE, // input 63 (0x3F) INVALID_VALUE, // input 64 (0x40) 12, // input 65 (0x41 char 'A') => 12 (0xC) 13, // input 66 (0x42 char 'B') => 13 (0xD) 14, // input 67 (0x43 char 'C') => 14 (0xE) 15, // input 68 (0x44 char 'D') => 15 (0xF) 16, // input 69 (0x45 char 'E') => 16 (0x10) 17, // input 70 (0x46 char 'F') => 17 (0x11) 18, // input 71 (0x47 char 'G') => 18 (0x12) 19, // input 72 (0x48 char 'H') => 19 (0x13) 20, // input 73 (0x49 char 'I') => 20 (0x14) 21, // input 74 (0x4A char 'J') => 21 (0x15) 22, // input 75 (0x4B char 'K') => 22 (0x16) 23, // input 76 (0x4C char 'L') => 23 (0x17) 24, // input 77 (0x4D char 'M') => 24 (0x18) 25, // input 78 (0x4E char 'N') => 25 (0x19) 26, // input 79 (0x4F char 'O') => 26 (0x1A) 27, // input 80 (0x50 char 'P') => 27 (0x1B) 28, // input 81 (0x51 char 'Q') => 28 (0x1C) 29, // input 82 (0x52 char 'R') => 29 (0x1D) 30, // input 83 (0x53 char 'S') => 30 (0x1E) 31, // input 84 (0x54 char 'T') => 31 (0x1F) 32, // input 85 (0x55 char 'U') => 32 (0x20) 33, // input 86 (0x56 char 'V') => 33 (0x21) 34, // input 87 (0x57 char 'W') => 34 (0x22) 35, // input 88 (0x58 char 'X') => 35 (0x23) 36, // input 89 (0x59 char 'Y') => 36 (0x24) 37, // input 90 (0x5A char 'Z') => 37 (0x25) INVALID_VALUE, // input 91 (0x5B) INVALID_VALUE, // input 92 (0x5C) INVALID_VALUE, // input 93 (0x5D) INVALID_VALUE, // input 94 (0x5E) INVALID_VALUE, // input 95 (0x5F) INVALID_VALUE, // input 96 (0x60) 38, // input 97 (0x61 char 'a') => 38 (0x26) 39, // input 98 (0x62 char 'b') => 39 (0x27) 40, // input 99 (0x63 char 'c') => 40 (0x28) 41, // input 100 (0x64 char 'd') => 41 (0x29) 42, // input 101 (0x65 char 'e') => 42 (0x2A) 43, // input 102 (0x66 char 'f') => 43 (0x2B) 44, // input 103 (0x67 char 'g') => 44 (0x2C) 45, // input 104 (0x68 char 'h') => 45 (0x2D) 46, // input 105 (0x69 char 'i') => 46 (0x2E) 47, // input 106 (0x6A char 'j') => 47 (0x2F) 48, // input 107 (0x6B char 'k') => 48 (0x30) 49, // input 108 (0x6C char 'l') => 49 (0x31) 50, // input 109 (0x6D char 'm') => 50 (0x32) 51, // input 110 (0x6E char 'n') => 51 (0x33) 52, // input 111 (0x6F char 'o') => 52 (0x34) 53, // input 112 (0x70 char 'p') => 53 (0x35) 54, // input 113 (0x71 char 'q') => 54 (0x36) 55, // input 114 (0x72 char 'r') => 55 (0x37) 56, // input 115 (0x73 char 's') => 56 (0x38) 57, // input 116 (0x74 char 't') => 57 (0x39) 58, // input 117 (0x75 char 'u') => 58 (0x3A) 59, // input 118 (0x76 char 'v') => 59 (0x3B) 60, // input 119 (0x77 char 'w') => 60 (0x3C) 61, // input 120 (0x78 char 'x') => 61 (0x3D) 62, // input 121 (0x79 char 'y') => 62 (0x3E) 63, // input 122 (0x7A char 'z') => 63 (0x3F) INVALID_VALUE, // input 123 (0x7B) INVALID_VALUE, // input 124 (0x7C) INVALID_VALUE, // input 125 (0x7D) INVALID_VALUE, // input 126 (0x7E) INVALID_VALUE, // input 127 (0x7F) INVALID_VALUE, // input 128 (0x80) INVALID_VALUE, // input 129 (0x81) INVALID_VALUE, // input 130 (0x82) INVALID_VALUE, // input 131 (0x83) INVALID_VALUE, // input 132 (0x84) INVALID_VALUE, // input 133 (0x85) INVALID_VALUE, // input 134 (0x86) INVALID_VALUE, // input 135 (0x87) INVALID_VALUE, // input 136 (0x88) INVALID_VALUE, // input 137 (0x89) INVALID_VALUE, // input 138 (0x8A) INVALID_VALUE, // input 139 (0x8B) INVALID_VALUE, // input 140 (0x8C) INVALID_VALUE, // input 141 (0x8D) INVALID_VALUE, // input 142 (0x8E) INVALID_VALUE, // input 143 (0x8F) INVALID_VALUE, // input 144 (0x90) INVALID_VALUE, // input 145 (0x91) INVALID_VALUE, // input 146 (0x92) INVALID_VALUE, // input 147 (0x93) INVALID_VALUE, // input 148 (0x94) INVALID_VALUE, // input 149 (0x95) INVALID_VALUE, // input 150 (0x96) INVALID_VALUE, // input 151 (0x97) INVALID_VALUE, // input 152 (0x98) INVALID_VALUE, // input 153 (0x99) INVALID_VALUE, // input 154 (0x9A) INVALID_VALUE, // input 155 (0x9B) INVALID_VALUE, // input 156 (0x9C) INVALID_VALUE, // input 157 (0x9D) INVALID_VALUE, // input 158 (0x9E) INVALID_VALUE, // input 159 (0x9F) INVALID_VALUE, // input 160 (0xA0) INVALID_VALUE, // input 161 (0xA1) INVALID_VALUE, // input 162 (0xA2) INVALID_VALUE, // input 163 (0xA3) INVALID_VALUE, // input 164 (0xA4) INVALID_VALUE, // input 165 (0xA5) INVALID_VALUE, // input 166 (0xA6) INVALID_VALUE, // input 167 (0xA7) INVALID_VALUE, // input 168 (0xA8) INVALID_VALUE, // input 169 (0xA9) INVALID_VALUE, // input 170 (0xAA) INVALID_VALUE, // input 171 (0xAB) INVALID_VALUE, // input 172 (0xAC) INVALID_VALUE, // input 173 (0xAD) INVALID_VALUE, // input 174 (0xAE) INVALID_VALUE, // input 175 (0xAF) INVALID_VALUE, // input 176 (0xB0) INVALID_VALUE, // input 177 (0xB1) INVALID_VALUE, // input 178 (0xB2) INVALID_VALUE, // input 179 (0xB3) INVALID_VALUE, // input 180 (0xB4) INVALID_VALUE, // input 181 (0xB5) INVALID_VALUE, // input 182 (0xB6) INVALID_VALUE, // input 183 (0xB7) INVALID_VALUE, // input 184 (0xB8) INVALID_VALUE, // input 185 (0xB9) INVALID_VALUE, // input 186 (0xBA) INVALID_VALUE, // input 187 (0xBB) INVALID_VALUE, // input 188 (0xBC) INVALID_VALUE, // input 189 (0xBD) INVALID_VALUE, // input 190 (0xBE) INVALID_VALUE, // input 191 (0xBF) INVALID_VALUE, // input 192 (0xC0) INVALID_VALUE, // input 193 (0xC1) INVALID_VALUE, // input 194 (0xC2) INVALID_VALUE, // input 195 (0xC3) INVALID_VALUE, // input 196 (0xC4) INVALID_VALUE, // input 197 (0xC5) INVALID_VALUE, // input 198 (0xC6) INVALID_VALUE, // input 199 (0xC7) INVALID_VALUE, // input 200 (0xC8) INVALID_VALUE, // input 201 (0xC9) INVALID_VALUE, // input 202 (0xCA) INVALID_VALUE, // input 203 (0xCB) INVALID_VALUE, // input 204 (0xCC) INVALID_VALUE, // input 205 (0xCD) INVALID_VALUE, // input 206 (0xCE) INVALID_VALUE, // input 207 (0xCF) INVALID_VALUE, // input 208 (0xD0) INVALID_VALUE, // input 209 (0xD1) INVALID_VALUE, // input 210 (0xD2) INVALID_VALUE, // input 211 (0xD3) INVALID_VALUE, // input 212 (0xD4) INVALID_VALUE, // input 213 (0xD5) INVALID_VALUE, // input 214 (0xD6) INVALID_VALUE, // input 215 (0xD7) INVALID_VALUE, // input 216 (0xD8) INVALID_VALUE, // input 217 (0xD9) INVALID_VALUE, // input 218 (0xDA) INVALID_VALUE, // input 219 (0xDB) INVALID_VALUE, // input 220 (0xDC) INVALID_VALUE, // input 221 (0xDD) INVALID_VALUE, // input 222 (0xDE) INVALID_VALUE, // input 223 (0xDF) INVALID_VALUE, // input 224 (0xE0) INVALID_VALUE, // input 225 (0xE1) INVALID_VALUE, // input 226 (0xE2) INVALID_VALUE, // input 227 (0xE3) INVALID_VALUE, // input 228 (0xE4) INVALID_VALUE, // input 229 (0xE5) INVALID_VALUE, // input 230 (0xE6) INVALID_VALUE, // input 231 (0xE7) INVALID_VALUE, // input 232 (0xE8) INVALID_VALUE, // input 233 (0xE9) INVALID_VALUE, // input 234 (0xEA) INVALID_VALUE, // input 235 (0xEB) INVALID_VALUE, // input 236 (0xEC) INVALID_VALUE, // input 237 (0xED) INVALID_VALUE, // input 238 (0xEE) INVALID_VALUE, // input 239 (0xEF) INVALID_VALUE, // input 240 (0xF0) INVALID_VALUE, // input 241 (0xF1) INVALID_VALUE, // input 242 (0xF2) INVALID_VALUE, // input 243 (0xF3) INVALID_VALUE, // input 244 (0xF4) INVALID_VALUE, // input 245 (0xF5) INVALID_VALUE, // input 246 (0xF6) INVALID_VALUE, // input 247 (0xF7) INVALID_VALUE, // input 248 (0xF8) INVALID_VALUE, // input 249 (0xF9) INVALID_VALUE, // input 250 (0xFA) INVALID_VALUE, // input 251 (0xFB) INVALID_VALUE, // input 252 (0xFC) INVALID_VALUE, // input 253 (0xFD) INVALID_VALUE, // input 254 (0xFE) INVALID_VALUE, // input 255 (0xFF) ]; base64-0.10.1/src/tests.rs010060000017500001750000000041171340546232200133710ustar0000000000000000extern crate rand; use encode::encoded_size; use *; use std::str; use self::rand::distributions::{Distribution, Uniform}; use self::rand::{FromEntropy, Rng}; use self::rand::seq::SliceRandom; #[test] fn roundtrip_random_config_short() { // exercise the slower encode/decode routines that operate on shorter buffers more vigorously roundtrip_random_config(Uniform::new(0, 50), 10_000); } #[test] fn roundtrip_random_config_long() { roundtrip_random_config(Uniform::new(0, 1000), 10_000); } pub fn assert_encode_sanity(encoded: &str, config: Config, input_len: usize) { let input_rem = input_len % 3; let expected_padding_len = if input_rem > 0 { if config.pad { 3 - input_rem } else { 0 } } else { 0 }; let expected_encoded_len = encoded_size(input_len, config).unwrap(); assert_eq!(expected_encoded_len, encoded.len()); let padding_len = encoded.chars().filter(|&c| c == '=').count(); assert_eq!(expected_padding_len, padding_len); let _ = str::from_utf8(encoded.as_bytes()).expect("Base64 should be valid utf8"); } fn roundtrip_random_config(input_len_range: Uniform, iterations: u32) { let mut input_buf: Vec = Vec::new(); let mut encoded_buf = String::new(); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..iterations { input_buf.clear(); encoded_buf.clear(); let input_len = input_len_range.sample(&mut rng); let config = random_config(&mut rng); for _ in 0..input_len { input_buf.push(rng.gen()); } encode_config_buf(&input_buf, config, &mut encoded_buf); assert_encode_sanity(&encoded_buf, config, input_len); assert_eq!(input_buf, decode_config(&encoded_buf, config).unwrap()); } } pub fn random_config(rng: &mut R) -> Config { const CHARSETS: &[CharacterSet] = &[ CharacterSet::UrlSafe, CharacterSet::Standard, CharacterSet::Crypt, ]; let charset = *CHARSETS.choose(rng).unwrap(); Config::new(charset, rng.gen()) } base64-0.10.1/src/write/encoder.rs010060000017500001750000000344141342247400700150050ustar0000000000000000use encode::encode_to_slice; use std::io::{ErrorKind, Result, Write}; use std::{cmp, fmt}; use {encode_config_slice, Config}; pub(crate) const BUF_SIZE: usize = 1024; /// The most bytes whose encoding will fit in `BUF_SIZE` const MAX_INPUT_LEN: usize = BUF_SIZE / 4 * 3; // 3 bytes of input = 4 bytes of base64, always (because we don't allow line wrapping) const MIN_ENCODE_CHUNK_SIZE: usize = 3; /// A `Write` implementation that base64 encodes data before delegating to the wrapped writer. /// /// Because base64 has special handling for the end of the input data (padding, etc), there's a /// `finish()` method on this type that encodes any leftover input bytes and adds padding if /// appropriate. It's called automatically when deallocated (see the `Drop` implementation), but /// any error that occurs when invoking the underlying writer will be suppressed. If you want to /// handle such errors, call `finish()` yourself. /// /// # Examples /// /// ``` /// use std::io::Write; /// /// // use a vec as the simplest possible `Write` -- in real code this is probably a file, etc. /// let mut wrapped_writer = Vec::new(); /// { /// let mut enc = base64::write::EncoderWriter::new( /// &mut wrapped_writer, base64::STANDARD); /// /// // handle errors as you normally would /// enc.write_all(b"asdf").unwrap(); /// // could leave this out to be called by Drop, if you don't care /// // about handling errors /// enc.finish().unwrap(); /// /// } /// /// // base64 was written to the writer /// assert_eq!(b"YXNkZg==", &wrapped_writer[..]); /// /// ``` /// /// # Panics /// /// Calling `write()` after `finish()` is invalid and will panic. /// /// # Errors /// /// Base64 encoding itself does not generate errors, but errors from the wrapped writer will be /// returned as per the contract of `Write`. /// /// # Performance /// /// It has some minor performance loss compared to encoding slices (a couple percent). /// It does not do any heap allocation. pub struct EncoderWriter<'a, W: 'a + Write> { config: Config, /// Where encoded data is written to w: &'a mut W, /// Holds a partial chunk, if any, after the last `write()`, so that we may then fill the chunk /// with the next `write()`, encode it, then proceed with the rest of the input normally. extra_input: [u8; MIN_ENCODE_CHUNK_SIZE], /// How much of `extra` is occupied, in `[0, MIN_ENCODE_CHUNK_SIZE]`. extra_input_occupied_len: usize, /// Buffer to encode into. May hold leftover encoded bytes from a previous write call that the underlying writer /// did not write last time. output: [u8; BUF_SIZE], /// How much of `output` is occupied with encoded data that couldn't be written last time output_occupied_len: usize, /// True iff padding / partial last chunk has been written. finished: bool, /// panic safety: don't write again in destructor if writer panicked while we were writing to it panicked: bool, } impl<'a, W: Write> fmt::Debug for EncoderWriter<'a, W> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "extra_input: {:?} extra_input_occupied_len:{:?} output[..5]: {:?} output_occupied_len: {:?}", self.extra_input, self.extra_input_occupied_len, &self.output[0..5], self.output_occupied_len ) } } impl<'a, W: Write> EncoderWriter<'a, W> { /// Create a new encoder that will write to the provided delegate writer `w`. pub fn new(w: &'a mut W, config: Config) -> EncoderWriter<'a, W> { EncoderWriter { config, w, extra_input: [0u8; MIN_ENCODE_CHUNK_SIZE], extra_input_occupied_len: 0, output: [0u8; BUF_SIZE], output_occupied_len: 0, finished: false, panicked: false, } } /// Encode all remaining buffered data and write it, including any trailing incomplete input /// triples and associated padding. /// /// Once this succeeds, no further writes can be performed, as that would produce invalid /// base64. /// /// This may write to the delegate writer multiple times if the delegate writer does not accept all input provided /// to its `write` each invocation. /// /// # Errors /// /// The first error that is not of [`ErrorKind::Interrupted`] will be returned. pub fn finish(&mut self) -> Result<()> { if self.finished { return Ok(()); }; self.write_all_encoded_output()?; if self.extra_input_occupied_len > 0 { let encoded_len = encode_config_slice( &self.extra_input[..self.extra_input_occupied_len], self.config, &mut self.output[..], ); self.output_occupied_len = encoded_len; self.write_all_encoded_output()?; // write succeeded, do not write the encoding of extra again if finish() is retried self.extra_input_occupied_len = 0; } self.finished = true; Ok(()) } /// Write as much of the encoded output to the delegate writer as it will accept, and store the /// leftovers to be attempted at the next write() call. Updates `self.output_occupied_len`. /// /// # Errors /// /// Errors from the delegate writer are returned. In the case of an error, /// `self.output_occupied_len` will not be updated, as errors from `write` are specified to mean /// that no write took place. fn write_to_delegate(&mut self, current_output_len: usize) -> Result<()> { self.panicked = true; let res = self.w.write(&self.output[..current_output_len]); self.panicked = false; return res.map(|consumed| { debug_assert!(consumed <= current_output_len); if consumed < current_output_len { self.output_occupied_len = current_output_len.checked_sub(consumed).unwrap(); // If we're blocking on I/O, the minor inefficiency of copying bytes to the // start of the buffer is the least of our concerns... // Rotate moves more than we need to, but copy_within isn't stabilized yet. self.output.rotate_left(consumed); } else { self.output_occupied_len = 0; } () }); } /// Write all buffered encoded output. If this returns `Ok`, `self.output_occupied_len` is `0`. /// /// This is basically write_all for the remaining buffered data but without the undesirable /// abort-on-`Ok(0)` behavior. /// /// # Errors /// /// Any error emitted by the delegate writer abort the write loop and is returned, unless it's /// `Interrupted`, in which case the error is ignored and writes will continue. fn write_all_encoded_output(&mut self) -> Result<()> { while self.output_occupied_len > 0 { let remaining_len = self.output_occupied_len; match self.write_to_delegate(remaining_len) { // try again on interrupts ala write_all Err(ref e) if e.kind() == ErrorKind::Interrupted => {} // other errors return Err(e) => return Err(e), // success no-ops because remaining length is already updated Ok(_) => {} }; } debug_assert_eq!(0, self.output_occupied_len); Ok(()) } } impl<'a, W: Write> Write for EncoderWriter<'a, W> { /// Encode input and then write to the delegate writer. /// /// Under non-error circumstances, this returns `Ok` with the value being the number of bytes /// of `input` consumed. The value may be `0`, which interacts poorly with `write_all`, which /// interprets `Ok(0)` as an error, despite it being allowed by the contract of `write`. See /// https://github.com/rust-lang/rust/issues/56889 for more on that. /// /// If the previous call to `write` provided more (encoded) data than the delegate writer could /// accept in a single call to its `write`, the remaining data is buffered. As long as buffered /// data is present, subsequent calls to `write` will try to write the remaining buffered data /// to the delegate and return either `Ok(0)` -- and therefore not consume any of `input` -- or /// an error. /// /// # Errors /// /// Any errors emitted by the delegate writer are returned. fn write(&mut self, input: &[u8]) -> Result { if self.finished { panic!("Cannot write more after calling finish()"); } if input.is_empty() { return Ok(0); } // The contract of `Write::write` places some constraints on this implementation: // - a call to `write()` represents at most one call to a wrapped `Write`, so we can't // iterate over the input and encode multiple chunks. // - Errors mean that "no bytes were written to this writer", so we need to reset the // internal state to what it was before the error occurred // before reading any input, write any leftover encoded output from last time if self.output_occupied_len > 0 { let current_len = self.output_occupied_len; return self.write_to_delegate(current_len) // did not read any input .map(|_| 0) } debug_assert_eq!(0, self.output_occupied_len); // how many bytes, if any, were read into `extra` to create a triple to encode let mut extra_input_read_len = 0; let mut input = input; let orig_extra_len = self.extra_input_occupied_len; let mut encoded_size = 0; // always a multiple of MIN_ENCODE_CHUNK_SIZE let mut max_input_len = MAX_INPUT_LEN; // process leftover un-encoded input from last write if self.extra_input_occupied_len > 0 { debug_assert!(self.extra_input_occupied_len < 3); if input.len() + self.extra_input_occupied_len >= MIN_ENCODE_CHUNK_SIZE { // Fill up `extra`, encode that into `output`, and consume as much of the rest of // `input` as possible. // We could write just the encoding of `extra` by itself but then we'd have to // return after writing only 4 bytes, which is inefficient if the underlying writer // would make a syscall. extra_input_read_len = MIN_ENCODE_CHUNK_SIZE - self.extra_input_occupied_len; debug_assert!(extra_input_read_len > 0); // overwrite only bytes that weren't already used. If we need to rollback extra_len // (when the subsequent write errors), the old leading bytes will still be there. self.extra_input[self.extra_input_occupied_len..MIN_ENCODE_CHUNK_SIZE] .copy_from_slice(&input[0..extra_input_read_len]); let len = encode_to_slice( &self.extra_input[0..MIN_ENCODE_CHUNK_SIZE], &mut self.output[..], self.config.char_set.encode_table(), ); debug_assert_eq!(4, len); input = &input[extra_input_read_len..]; // consider extra to be used up, since we encoded it self.extra_input_occupied_len = 0; // don't clobber where we just encoded to encoded_size = 4; // and don't read more than can be encoded max_input_len = MAX_INPUT_LEN - MIN_ENCODE_CHUNK_SIZE; // fall through to normal encoding } else { // `extra` and `input` are non empty, but `|extra| + |input| < 3`, so there must be // 1 byte in each. debug_assert_eq!(1, input.len()); debug_assert_eq!(1, self.extra_input_occupied_len); self.extra_input[self.extra_input_occupied_len] = input[0]; self.extra_input_occupied_len += 1; return Ok(1); }; } else if input.len() < MIN_ENCODE_CHUNK_SIZE { // `extra` is empty, and `input` fits inside it self.extra_input[0..input.len()].copy_from_slice(input); self.extra_input_occupied_len = input.len(); return Ok(input.len()); }; // either 0 or 1 complete chunks encoded from extra debug_assert!(encoded_size == 0 || encoded_size == 4); debug_assert!( // didn't encode extra input MAX_INPUT_LEN == max_input_len // encoded one triple || MAX_INPUT_LEN == max_input_len + MIN_ENCODE_CHUNK_SIZE ); // encode complete triples only let input_complete_chunks_len = input.len() - (input.len() % MIN_ENCODE_CHUNK_SIZE); let input_chunks_to_encode_len = cmp::min(input_complete_chunks_len, max_input_len); debug_assert_eq!(0, max_input_len % MIN_ENCODE_CHUNK_SIZE); debug_assert_eq!(0, input_chunks_to_encode_len % MIN_ENCODE_CHUNK_SIZE); encoded_size += encode_to_slice( &input[..(input_chunks_to_encode_len)], &mut self.output[encoded_size..], self.config.char_set.encode_table(), ); // not updating `self.output_occupied_len` here because if the below write fails, it should // "never take place" -- the buffer contents we encoded are ignored and perhaps retried // later, if the consumer chooses. self.write_to_delegate(encoded_size) // no matter whether we wrote the full encoded buffer or not, we consumed the same // input .map(|_| extra_input_read_len + input_chunks_to_encode_len) .map_err( |e| { // in case we filled and encoded `extra`, reset extra_len self.extra_input_occupied_len = orig_extra_len; e }) } /// Because this is usually treated as OK to call multiple times, it will *not* flush any /// incomplete chunks of input or write padding. fn flush(&mut self) -> Result<()> { self.write_all_encoded_output()?; self.w.flush() } } impl<'a, W: Write> Drop for EncoderWriter<'a, W> { fn drop(&mut self) { if !self.panicked { // like `BufWriter`, ignore errors during drop let _ = self.finish(); } } } base64-0.10.1/src/write/encoder_tests.rs010060000017500001750000000407411342247400700162270ustar0000000000000000extern crate rand; use super::EncoderWriter; use tests::random_config; use {encode_config, encode_config_buf, STANDARD_NO_PAD, URL_SAFE}; use std::io::{Cursor, Write}; use std::{cmp, io, str}; use self::rand::Rng; #[test] fn encode_three_bytes() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, URL_SAFE); let sz = enc.write(b"abc").unwrap(); assert_eq!(sz, 3); } assert_eq!(&c.get_ref()[..], encode_config("abc", URL_SAFE).as_bytes()); } #[test] fn encode_nine_bytes_two_writes() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, URL_SAFE); let sz = enc.write(b"abcdef").unwrap(); assert_eq!(sz, 6); let sz = enc.write(b"ghi").unwrap(); assert_eq!(sz, 3); } assert_eq!( &c.get_ref()[..], encode_config("abcdefghi", URL_SAFE).as_bytes() ); } #[test] fn encode_one_then_two_bytes() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, URL_SAFE); let sz = enc.write(b"a").unwrap(); assert_eq!(sz, 1); let sz = enc.write(b"bc").unwrap(); assert_eq!(sz, 2); } assert_eq!(&c.get_ref()[..], encode_config("abc", URL_SAFE).as_bytes()); } #[test] fn encode_one_then_five_bytes() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, URL_SAFE); let sz = enc.write(b"a").unwrap(); assert_eq!(sz, 1); let sz = enc.write(b"bcdef").unwrap(); assert_eq!(sz, 5); } assert_eq!( &c.get_ref()[..], encode_config("abcdef", URL_SAFE).as_bytes() ); } #[test] fn encode_1_2_3_bytes() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, URL_SAFE); let sz = enc.write(b"a").unwrap(); assert_eq!(sz, 1); let sz = enc.write(b"bc").unwrap(); assert_eq!(sz, 2); let sz = enc.write(b"def").unwrap(); assert_eq!(sz, 3); } assert_eq!( &c.get_ref()[..], encode_config("abcdef", URL_SAFE).as_bytes() ); } #[test] fn encode_with_padding() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, URL_SAFE); enc.write_all(b"abcd").unwrap(); enc.flush().unwrap(); } assert_eq!(&c.get_ref()[..], encode_config("abcd", URL_SAFE).as_bytes()); } #[test] fn encode_with_padding_multiple_writes() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, URL_SAFE); assert_eq!(1, enc.write(b"a").unwrap()); assert_eq!(2, enc.write(b"bc").unwrap()); assert_eq!(3, enc.write(b"def").unwrap()); assert_eq!(1, enc.write(b"g").unwrap()); enc.flush().unwrap(); } assert_eq!( &c.get_ref()[..], encode_config("abcdefg", URL_SAFE).as_bytes() ); } #[test] fn finish_writes_extra_byte() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, URL_SAFE); assert_eq!(6, enc.write(b"abcdef").unwrap()); // will be in extra assert_eq!(1, enc.write(b"g").unwrap()); // 1 trailing byte = 2 encoded chars let _ = enc.finish().unwrap(); } assert_eq!( &c.get_ref()[..], encode_config("abcdefg", URL_SAFE).as_bytes() ); } #[test] fn write_partial_chunk_encodes_partial_chunk() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, STANDARD_NO_PAD); // nothing encoded yet assert_eq!(2, enc.write(b"ab").unwrap()); // encoded here let _ = enc.finish().unwrap(); } assert_eq!( &c.get_ref()[..], encode_config("ab", STANDARD_NO_PAD).as_bytes() ); assert_eq!(3, c.get_ref().len()); } #[test] fn write_1_chunk_encodes_complete_chunk() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, STANDARD_NO_PAD); assert_eq!(3, enc.write(b"abc").unwrap()); let _ = enc.finish().unwrap(); } assert_eq!( &c.get_ref()[..], encode_config("abc", STANDARD_NO_PAD).as_bytes() ); assert_eq!(4, c.get_ref().len()); } #[test] fn write_1_chunk_and_partial_encodes_only_complete_chunk() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, STANDARD_NO_PAD); // "d" not written assert_eq!(3, enc.write(b"abcd").unwrap()); let _ = enc.finish().unwrap(); } assert_eq!( &c.get_ref()[..], encode_config("abc", STANDARD_NO_PAD).as_bytes() ); assert_eq!(4, c.get_ref().len()); } #[test] fn write_2_partials_to_exactly_complete_chunk_encodes_complete_chunk() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, STANDARD_NO_PAD); assert_eq!(1, enc.write(b"a").unwrap()); assert_eq!(2, enc.write(b"bc").unwrap()); let _ = enc.finish().unwrap(); } assert_eq!( &c.get_ref()[..], encode_config("abc", STANDARD_NO_PAD).as_bytes() ); assert_eq!(4, c.get_ref().len()); } #[test] fn write_partial_then_enough_to_complete_chunk_but_not_complete_another_chunk_encodes_complete_chunk_without_consuming_remaining() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, STANDARD_NO_PAD); assert_eq!(1, enc.write(b"a").unwrap()); // doesn't consume "d" assert_eq!(2, enc.write(b"bcd").unwrap()); let _ = enc.finish().unwrap(); } assert_eq!( &c.get_ref()[..], encode_config("abc", STANDARD_NO_PAD).as_bytes() ); assert_eq!(4, c.get_ref().len()); } #[test] fn write_partial_then_enough_to_complete_chunk_and_another_chunk_encodes_complete_chunks() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, STANDARD_NO_PAD); assert_eq!(1, enc.write(b"a").unwrap()); // completes partial chunk, and another chunk assert_eq!(5, enc.write(b"bcdef").unwrap()); let _ = enc.finish().unwrap(); } assert_eq!( &c.get_ref()[..], encode_config("abcdef", STANDARD_NO_PAD).as_bytes() ); assert_eq!(8, c.get_ref().len()); } #[test] fn write_partial_then_enough_to_complete_chunk_and_another_chunk_and_another_partial_chunk_encodes_only_complete_chunks() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, STANDARD_NO_PAD); assert_eq!(1, enc.write(b"a").unwrap()); // completes partial chunk, and another chunk, with one more partial chunk that's not // consumed assert_eq!(5, enc.write(b"bcdefe").unwrap()); let _ = enc.finish().unwrap(); } assert_eq!( &c.get_ref()[..], encode_config("abcdef", STANDARD_NO_PAD).as_bytes() ); assert_eq!(8, c.get_ref().len()); } #[test] fn drop_calls_finish_for_you() { let mut c = Cursor::new(Vec::new()); { let mut enc = EncoderWriter::new(&mut c, STANDARD_NO_PAD); assert_eq!(1, enc.write(b"a").unwrap()); } assert_eq!( &c.get_ref()[..], encode_config("a", STANDARD_NO_PAD).as_bytes() ); assert_eq!(2, c.get_ref().len()); } #[test] fn every_possible_split_of_input() { let mut rng = rand::thread_rng(); let mut orig_data = Vec::::new(); let mut stream_encoded = Vec::::new(); let mut normal_encoded = String::new(); let size = 5_000; for i in 0..size { orig_data.clear(); stream_encoded.clear(); normal_encoded.clear(); for _ in 0..size { orig_data.push(rng.gen()); } let config = random_config(&mut rng); encode_config_buf(&orig_data, config, &mut normal_encoded); { let mut stream_encoder = EncoderWriter::new(&mut stream_encoded, config); // Write the first i bytes, then the rest stream_encoder.write_all(&orig_data[0..i]).unwrap(); stream_encoder.write_all(&orig_data[i..]).unwrap(); } assert_eq!(normal_encoded, str::from_utf8(&stream_encoded).unwrap()); } } #[test] fn encode_random_config_matches_normal_encode_reasonable_input_len() { // choose up to 2 * buf size, so ~half the time it'll use a full buffer do_encode_random_config_matches_normal_encode(super::encoder::BUF_SIZE * 2) } #[test] fn encode_random_config_matches_normal_encode_tiny_input_len() { do_encode_random_config_matches_normal_encode(10) } #[test] fn retrying_writes_that_error_with_interrupted_works() { let mut rng = rand::thread_rng(); let mut orig_data = Vec::::new(); let mut stream_encoded = Vec::::new(); let mut normal_encoded = String::new(); for _ in 0..1_000 { orig_data.clear(); stream_encoded.clear(); normal_encoded.clear(); let orig_len: usize = rng.gen_range(100, 20_000); for _ in 0..orig_len { orig_data.push(rng.gen()); } // encode the normal way let config = random_config(&mut rng); encode_config_buf(&orig_data, config, &mut normal_encoded); // encode via the stream encoder { let mut interrupt_rng = rand::thread_rng(); let mut interrupting_writer = InterruptingWriter { w: &mut stream_encoded, rng: &mut interrupt_rng, fraction: 0.8, }; let mut stream_encoder = EncoderWriter::new(&mut interrupting_writer, config); let mut bytes_consumed = 0; while bytes_consumed < orig_len { // use short inputs since we want to use `extra` a lot as that's what needs rollback // when errors occur let input_len: usize = cmp::min(rng.gen_range(0, 10), orig_len - bytes_consumed); retry_interrupted_write_all( &mut stream_encoder, &orig_data[bytes_consumed..bytes_consumed + input_len], ).unwrap(); bytes_consumed += input_len; } loop { let res = stream_encoder.finish(); match res { Ok(_) => break, Err(e) => match e.kind() { io::ErrorKind::Interrupted => continue, _ => Err(e).unwrap(), // bail }, } } assert_eq!(orig_len, bytes_consumed); } assert_eq!(normal_encoded, str::from_utf8(&stream_encoded).unwrap()); } } #[test] fn writes_that_only_write_part_of_input_and_sometimes_interrupt_produce_correct_encoded_data() { let mut rng = rand::thread_rng(); let mut orig_data = Vec::::new(); let mut stream_encoded = Vec::::new(); let mut normal_encoded = String::new(); for _ in 0..1_000 { orig_data.clear(); stream_encoded.clear(); normal_encoded.clear(); let orig_len: usize = rng.gen_range(100, 20_000); for _ in 0..orig_len { orig_data.push(rng.gen()); } // encode the normal way let config = random_config(&mut rng); encode_config_buf(&orig_data, config, &mut normal_encoded); // encode via the stream encoder { let mut partial_rng = rand::thread_rng(); let mut partial_writer = PartialInterruptingWriter { w: &mut stream_encoded, rng: &mut partial_rng, full_input_fraction: 0.1, no_interrupt_fraction: 0.1 }; let mut stream_encoder = EncoderWriter::new(&mut partial_writer, config); let mut bytes_consumed = 0; while bytes_consumed < orig_len { // use at most medium-length inputs to exercise retry logic more aggressively let input_len: usize = cmp::min(rng.gen_range(0, 100), orig_len - bytes_consumed); let res = stream_encoder.write(&orig_data[bytes_consumed..bytes_consumed + input_len]); // retry on interrupt match res { Ok(len) => bytes_consumed += len, Err(e) => match e.kind() { io::ErrorKind::Interrupted => continue, _ => { panic!("should not see other errors"); } }, } }; stream_encoder.finish().unwrap(); assert_eq!(orig_len, bytes_consumed); } assert_eq!(normal_encoded, str::from_utf8(&stream_encoded).unwrap()); } } /// Retry writes until all the data is written or an error that isn't Interrupted is returned. fn retry_interrupted_write_all(w: &mut W, buf: &[u8]) -> io::Result<()> { let mut bytes_consumed = 0; while bytes_consumed < buf.len() { let res = w.write(&buf[bytes_consumed..]); match res { Ok(len) => bytes_consumed += len, Err(e) => match e.kind() { io::ErrorKind::Interrupted => continue, _ => { return Err(e) } }, } } Ok(()) } fn do_encode_random_config_matches_normal_encode(max_input_len: usize) { let mut rng = rand::thread_rng(); let mut orig_data = Vec::::new(); let mut stream_encoded = Vec::::new(); let mut normal_encoded = String::new(); for _ in 0..1_000 { orig_data.clear(); stream_encoded.clear(); normal_encoded.clear(); let orig_len: usize = rng.gen_range(100, 20_000); for _ in 0..orig_len { orig_data.push(rng.gen()); } // encode the normal way let config = random_config(&mut rng); encode_config_buf(&orig_data, config, &mut normal_encoded); // encode via the stream encoder { let mut stream_encoder = EncoderWriter::new(&mut stream_encoded, config); let mut bytes_consumed = 0; while bytes_consumed < orig_len { let input_len: usize = cmp::min(rng.gen_range(0, max_input_len), orig_len - bytes_consumed); // write a little bit of the data stream_encoder .write_all(&orig_data[bytes_consumed..bytes_consumed + input_len]) .unwrap(); bytes_consumed += input_len; } stream_encoder.finish().unwrap(); assert_eq!(orig_len, bytes_consumed); } assert_eq!(normal_encoded, str::from_utf8(&stream_encoded).unwrap()); } } /// A `Write` implementation that returns Interrupted some fraction of the time, randomly. struct InterruptingWriter<'a, W: 'a + Write, R: 'a + Rng> { w: &'a mut W, rng: &'a mut R, /// In [0, 1]. If a random number in [0, 1] is `<= threshold`, `Write` methods will return /// an `Interrupted` error fraction: f64, } impl<'a, W: Write, R: Rng> Write for InterruptingWriter<'a, W, R> { fn write(&mut self, buf: &[u8]) -> io::Result { if self.rng.gen_range(0.0, 1.0) <= self.fraction { return Err(io::Error::new(io::ErrorKind::Interrupted, "interrupted")); } self.w.write(buf) } fn flush(&mut self) -> io::Result<()> { if self.rng.gen_range(0.0, 1.0) <= self.fraction { return Err(io::Error::new(io::ErrorKind::Interrupted, "interrupted")); } self.w.flush() } } /// A `Write` implementation that sometimes will only write part of its input. struct PartialInterruptingWriter<'a, W: 'a + Write, R: 'a + Rng> { w: &'a mut W, rng: &'a mut R, /// In [0, 1]. If a random number in [0, 1] is `<= threshold`, `write()` will write all its /// input. Otherwise, it will write a random substring full_input_fraction: f64, no_interrupt_fraction: f64 } impl<'a, W: Write, R: Rng> Write for PartialInterruptingWriter<'a, W, R> { fn write(&mut self, buf: &[u8]) -> io::Result { if self.rng.gen_range(0.0, 1.0) > self.no_interrupt_fraction{ return Err(io::Error::new(io::ErrorKind::Interrupted, "interrupted")); } if self.rng.gen_range(0.0, 1.0) <= self.full_input_fraction || buf.len() == 0 { // pass through the buf untouched self.w.write(buf) } else { // only use a prefix of it self.w.write(&buf[0..(self.rng.gen_range(0, buf.len() - 1))]) } } fn flush(&mut self) -> io::Result<()> { self.w.flush() } }base64-0.10.1/src/write/mod.rs010060000017500001750000000002271336535245100141440ustar0000000000000000//! Implementations of `io::Write` to transparently handle base64. mod encoder; pub use self::encoder::EncoderWriter; #[cfg(test)] mod encoder_tests; base64-0.10.1/tests/decode.rs010060000017500001750000000216311337701666000140350ustar0000000000000000extern crate base64; use base64::*; mod helpers; use helpers::*; #[test] fn decode_rfc4648_0() { compare_decode("", ""); } #[test] fn decode_rfc4648_1() { compare_decode("f", "Zg=="); } #[test] fn decode_rfc4648_1_just_a_bit_of_padding() { // allows less padding than required compare_decode("f", "Zg="); } #[test] fn decode_rfc4648_1_no_padding() { compare_decode("f", "Zg"); } #[test] fn decode_rfc4648_2() { compare_decode("fo", "Zm8="); } #[test] fn decode_rfc4648_2_no_padding() { compare_decode("fo", "Zm8"); } #[test] fn decode_rfc4648_3() { compare_decode("foo", "Zm9v"); } #[test] fn decode_rfc4648_4() { compare_decode("foob", "Zm9vYg=="); } #[test] fn decode_rfc4648_4_no_padding() { compare_decode("foob", "Zm9vYg"); } #[test] fn decode_rfc4648_5() { compare_decode("fooba", "Zm9vYmE="); } #[test] fn decode_rfc4648_5_no_padding() { compare_decode("fooba", "Zm9vYmE"); } #[test] fn decode_rfc4648_6() { compare_decode("foobar", "Zm9vYmFy"); } #[test] fn decode_reject_null() { assert_eq!( DecodeError::InvalidByte(3, 0x0), decode_config("YWx\0pY2U==", config_std_pad()).unwrap_err() ); } #[test] fn decode_single_pad_byte_after_2_chars_in_trailing_quad_ok() { for num_quads in 0..25 { let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect(); s.push_str("Zg="); let input_len = num_quads * 3 + 1; // Since there are 3 bytes in the trailing quad, want to be sure this allows for the fact // that it could be bad padding rather than assuming that it will decode to 2 bytes and // therefore allow 1 extra round of fast decode logic (stage 1 / 2). let mut decoded = Vec::new(); decoded.resize(input_len, 0); assert_eq!( input_len, decode_config_slice(&s, STANDARD, &mut decoded).unwrap() ); } } //this is a MAY in the rfc: https://tools.ietf.org/html/rfc4648#section-3.3 #[test] fn decode_1_pad_byte_in_fast_loop_then_extra_padding_chunk_error() { for num_quads in 0..25 { let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect(); s.push_str("YWxpY2U====="); // since the first 8 bytes are handled in stage 1 or 2, the padding is detected as a // generic invalid byte, not specifcally a padding issue. // Could argue that the *next* padding byte (in the next quad) is technically the first // erroneous one, but reporting that accurately is more complex and probably nobody cares assert_eq!( DecodeError::InvalidByte(num_quads * 4 + 7, b'='), decode(&s).unwrap_err() ); } } #[test] fn decode_2_pad_bytes_in_leftovers_then_extra_padding_chunk_error() { for num_quads in 0..25 { let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect(); s.push_str("YWxpY2UABB===="); // 6 bytes (4 padding) after last 8-byte chunk, so it's decoded by stage 4. // First padding byte is invalid. assert_eq!( DecodeError::InvalidByte(num_quads * 4 + 10, b'='), decode(&s).unwrap_err() ); } } #[test] fn decode_valid_bytes_after_padding_in_leftovers_error() { for num_quads in 0..25 { let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect(); s.push_str("YWxpY2UABB=B"); // 4 bytes after last 8-byte chunk, so it's decoded by stage 4. // First (and only) padding byte is invalid. assert_eq!( DecodeError::InvalidByte(num_quads * 4 + 10, b'='), decode(&s).unwrap_err() ); } } #[test] fn decode_absurd_pad_error() { for num_quads in 0..25 { let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect(); s.push_str("==Y=Wx===pY=2U====="); // Plenty of remaining bytes, so handled by stage 1 or 2. // first padding byte assert_eq!( DecodeError::InvalidByte(num_quads * 4, b'='), decode(&s).unwrap_err() ); } } #[test] fn decode_extra_padding_after_1_pad_bytes_in_trailing_quad_returns_error() { for num_quads in 0..25 { let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect(); s.push_str("EEE==="); // handled by stage 1, 2, or 4 depending on length // first padding byte -- which would be legal if it was the only padding assert_eq!( DecodeError::InvalidByte(num_quads * 4 + 3, b'='), decode(&s).unwrap_err() ); } } #[test] fn decode_extra_padding_after_2_pad_bytes_in_trailing_quad_2_returns_error() { for num_quads in 0..25 { let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect(); s.push_str("EE===="); // handled by stage 1, 2, or 4 depending on length // first padding byte -- which would be legal if it was by itself assert_eq!( DecodeError::InvalidByte(num_quads * 4 + 2, b'='), decode(&s).unwrap_err() ); } } #[test] fn decode_start_quad_with_padding_returns_error() { for num_quads in 0..25 { // add enough padding to ensure that we'll hit all 4 stages at the different lengths for pad_bytes in 1..32 { let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect(); let padding: String = std::iter::repeat("=").take(pad_bytes).collect(); s.push_str(&padding); if pad_bytes % 4 == 1 { // detected in early length check assert_eq!(DecodeError::InvalidLength, decode(&s).unwrap_err()); } else { // padding lengths 2 - 8 are handled by stage 4 // padding length >= 8 will hit at least one chunk at stages 1, 2, 3 at different // prefix lengths assert_eq!( DecodeError::InvalidByte(num_quads * 4, b'='), decode(&s).unwrap_err() ); } } } } #[test] fn decode_padding_followed_by_non_padding_returns_error() { for num_quads in 0..25 { for pad_bytes in 0..31 { let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect(); let padding: String = std::iter::repeat("=").take(pad_bytes).collect(); s.push_str(&padding); s.push_str("E"); if pad_bytes % 4 == 0 { assert_eq!(DecodeError::InvalidLength, decode(&s).unwrap_err()); } else { // pad len 1 - 8 will be handled by stage 4 // pad len 9 (suffix len 10) will have 8 bytes of padding handled by stage 3 // first padding byte assert_eq!( DecodeError::InvalidByte(num_quads * 4, b'='), decode(&s).unwrap_err() ); } } } } #[test] fn decode_one_char_in_quad_with_padding_error() { for num_quads in 0..25 { let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect(); s.push_str("E="); assert_eq!( DecodeError::InvalidByte(num_quads * 4 + 1, b'='), decode(&s).unwrap_err() ); // more padding doesn't change the error s.push_str("="); assert_eq!( DecodeError::InvalidByte(num_quads * 4 + 1, b'='), decode(&s).unwrap_err() ); s.push_str("="); assert_eq!( DecodeError::InvalidByte(num_quads * 4 + 1, b'='), decode(&s).unwrap_err() ); } } #[test] fn decode_one_char_in_quad_without_padding_error() { for num_quads in 0..25 { let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect(); s.push('E'); assert_eq!(DecodeError::InvalidLength, decode(&s).unwrap_err()); } } #[test] fn decode_reject_invalid_bytes_with_correct_error() { for length in 1..100 { for index in 0_usize..length { for invalid_byte in " \t\n\r\x0C\x0B\x00%*.".bytes() { let prefix: String = std::iter::repeat("A").take(index).collect(); let suffix: String = std::iter::repeat("B").take(length - index - 1).collect(); let input = prefix + &String::from_utf8(vec![invalid_byte]).unwrap() + &suffix; assert_eq!( length, input.len(), "length {} error position {}", length, index ); if length % 4 == 1 { assert_eq!(DecodeError::InvalidLength, decode(&input).unwrap_err()); } else { assert_eq!( DecodeError::InvalidByte(index, invalid_byte), decode(&input).unwrap_err() ); } } } } } fn config_std_pad() -> Config { Config::new(CharacterSet::Standard, true) } base64-0.10.1/tests/encode.rs010060000017500001750000000050001336534451300140350ustar0000000000000000extern crate base64; use base64::*; fn compare_encode(expected: &str, target: &[u8]) { assert_eq!(expected, encode(target)); } #[test] fn encode_rfc4648_0() { compare_encode("", b""); } #[test] fn encode_rfc4648_1() { compare_encode("Zg==", b"f"); } #[test] fn encode_rfc4648_2() { compare_encode("Zm8=", b"fo"); } #[test] fn encode_rfc4648_3() { compare_encode("Zm9v", b"foo"); } #[test] fn encode_rfc4648_4() { compare_encode("Zm9vYg==", b"foob"); } #[test] fn encode_rfc4648_5() { compare_encode("Zm9vYmE=", b"fooba"); } #[test] fn encode_rfc4648_6() { compare_encode("Zm9vYmFy", b"foobar"); } #[test] fn encode_all_ascii() { let mut ascii = Vec::::with_capacity(128); for i in 0..128 { ascii.push(i); } compare_encode( "AAECAwQFBgcICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vMDEyMzQ1Njc4OTo7P\ D0+P0BBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZWltcXV5fYGFiY2RlZmdoaWprbG1ub3BxcnN0dXZ3eHl6e3x9fn8\ =", &ascii, ); } #[test] fn encode_all_bytes() { let mut bytes = Vec::::with_capacity(256); for i in 0..255 { bytes.push(i); } bytes.push(255); //bug with "overflowing" ranges? compare_encode( "AAECAwQFBgcICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vMDEyMzQ1Njc4OTo7P\ D0+P0BBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZWltcXV5fYGFiY2RlZmdoaWprbG1ub3BxcnN0dXZ3eHl6e3x9fn\ +AgYKDhIWGh4iJiouMjY6PkJGSk5SVlpeYmZqbnJ2en6ChoqOkpaanqKmqq6ytrq+wsbKztLW2t7i5uru8vb6\ /wMHCw8TFxsfIycrLzM3Oz9DR0tPU1dbX2Nna29zd3t/g4eLj5OXm5+jp6uvs7e7v8PHy8/T19vf4+fr7/P3+/w==", &bytes, ); } #[test] fn encode_all_bytes_url() { let mut bytes = Vec::::with_capacity(256); for i in 0..255 { bytes.push(i); } bytes.push(255); //bug with "overflowing" ranges? assert_eq!( "AAECAwQFBgcICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vMDEyMzQ1Njc4OTo7PD0\ -P0BBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZWltcXV5fYGFiY2RlZmdoaWprbG1ub3BxcnN0dXZ3eHl6e3x9fn\ -AgYKDhIWGh4iJiouMjY6PkJGSk5SVlpeYmZqbnJ2en6ChoqOkpaanqKmqq6ytrq\ -wsbKztLW2t7i5uru8vb6_wMHCw8TFxsfIycrLzM3Oz9DR0tPU1dbX2Nna29zd3t_g4eLj5OXm5-jp6uvs7e7v8PHy\ 8_T19vf4-fr7_P3-_w==", encode_config(&bytes, URL_SAFE) ); } #[test] fn encode_url_safe_without_padding() { let encoded = encode_config(b"alice", URL_SAFE_NO_PAD); assert_eq!(&encoded, "YWxpY2U"); assert_eq!( String::from_utf8(decode(&encoded).unwrap()).unwrap(), "alice" ); } base64-0.10.1/tests/helpers.rs010060000017500001750000000004631325401402100142330ustar0000000000000000extern crate base64; use base64::*; pub fn compare_decode(expected: &str, target: &str) { assert_eq!( expected, String::from_utf8(decode(target).unwrap()).unwrap() ); assert_eq!( expected, String::from_utf8(decode(target.as_bytes()).unwrap()).unwrap() ); } base64-0.10.1/tests/tests.rs010060000017500001750000000117761337701666000137650ustar0000000000000000extern crate base64; extern crate rand; use rand::{FromEntropy, Rng}; use base64::*; mod helpers; use helpers::*; // generate random contents of the specified length and test encode/decode roundtrip fn roundtrip_random( byte_buf: &mut Vec, str_buf: &mut String, config: Config, byte_len: usize, approx_values_per_byte: u8, max_rounds: u64, ) { // let the short ones be short but don't let it get too crazy large let num_rounds = calculate_number_of_rounds(byte_len, approx_values_per_byte, max_rounds); let mut r = rand::rngs::SmallRng::from_entropy(); let mut decode_buf = Vec::new(); for _ in 0..num_rounds { byte_buf.clear(); str_buf.clear(); decode_buf.clear(); while byte_buf.len() < byte_len { byte_buf.push(r.gen::()); } encode_config_buf(&byte_buf, config, str_buf); decode_config_buf(&str_buf, config, &mut decode_buf).unwrap(); assert_eq!(byte_buf, &decode_buf); } } fn calculate_number_of_rounds(byte_len: usize, approx_values_per_byte: u8, max: u64) -> u64 { // don't overflow let mut prod = approx_values_per_byte as u64; for _ in 0..byte_len { if prod > max { return max; } prod = prod.saturating_mul(prod); } prod } fn no_pad_config() -> Config { Config::new(CharacterSet::Standard, false) } #[test] fn roundtrip_random_short_standard() { let mut byte_buf: Vec = Vec::new(); let mut str_buf = String::new(); for input_len in 0..40 { roundtrip_random(&mut byte_buf, &mut str_buf, STANDARD, input_len, 4, 10000); } } #[test] fn roundtrip_random_with_fast_loop_standard() { let mut byte_buf: Vec = Vec::new(); let mut str_buf = String::new(); for input_len in 40..100 { roundtrip_random(&mut byte_buf, &mut str_buf, STANDARD, input_len, 4, 1000); } } #[test] fn roundtrip_random_short_no_padding() { let mut byte_buf: Vec = Vec::new(); let mut str_buf = String::new(); for input_len in 0..40 { roundtrip_random( &mut byte_buf, &mut str_buf, no_pad_config(), input_len, 4, 10000, ); } } #[test] fn roundtrip_random_no_padding() { let mut byte_buf: Vec = Vec::new(); let mut str_buf = String::new(); for input_len in 40..100 { roundtrip_random( &mut byte_buf, &mut str_buf, no_pad_config(), input_len, 4, 1000, ); } } #[test] fn roundtrip_decode_trailing_10_bytes() { // This is a special case because we decode 8 byte blocks of input at a time as much as we can, // ideally unrolled to 32 bytes at a time, in stages 1 and 2. Since we also write a u64's worth // of bytes (8) to the output, we always write 2 garbage bytes that then will be overwritten by // the NEXT block. However, if the next block only contains 2 bytes, it will decode to 1 byte, // and therefore be too short to cover up the trailing 2 garbage bytes. Thus, we have stage 3 // to handle that case. for num_quads in 0..25 { let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect(); s.push_str("EFGHIJKLZg"); let decoded = decode(&s).unwrap(); assert_eq!(num_quads * 3 + 7, decoded.len()); assert_eq!(s, encode_config(&decoded, STANDARD_NO_PAD)); } } #[test] fn display_wrapper_matches_normal_encode() { let mut bytes = Vec::::with_capacity(256); for i in 0..255 { bytes.push(i); } bytes.push(255); assert_eq!( encode(&bytes), format!( "{}", base64::display::Base64Display::with_config(&bytes, STANDARD) ) ); } #[test] fn because_we_can() { compare_decode("alice", "YWxpY2U="); compare_decode("alice", &encode(b"alice")); compare_decode("alice", &encode(&decode(&encode(b"alice")).unwrap())); } #[test] fn encode_config_slice_can_use_inline_buffer() { let mut buf: [u8; 22] = [0; 22]; let mut larger_buf: [u8; 24] = [0; 24]; let mut input: [u8; 16] = [0; 16]; let mut rng = rand::rngs::SmallRng::from_entropy(); for elt in &mut input { *elt = rng.gen(); } assert_eq!(22, encode_config_slice(&input, STANDARD_NO_PAD, &mut buf)); let decoded = decode_config(&buf, STANDARD_NO_PAD).unwrap(); assert_eq!(decoded, input); // let's try it again with padding assert_eq!(24, encode_config_slice(&input, STANDARD, &mut larger_buf)); let decoded = decode_config(&buf, STANDARD).unwrap(); assert_eq!(decoded, input); } #[test] #[should_panic(expected = "index 24 out of range for slice of length 22")] fn encode_config_slice_panics_when_buffer_too_small() { let mut buf: [u8; 22] = [0; 22]; let mut input: [u8; 16] = [0; 16]; let mut rng = rand::rngs::SmallRng::from_entropy(); for elt in &mut input { *elt = rng.gen(); } encode_config_slice(&input, STANDARD, &mut buf); } base64-0.10.1/.cargo_vcs_info.json0000644000000001120000000000000122300ustar00{ "git": { "sha1": "6dc5dd724de381a8985e0fb3b4cfdb845b872996" } }