bit-set-0.5.0/.gitignore010066400017510001751000000000221326743603300133010ustar0000000000000000target Cargo.lock bit-set-0.5.0/.travis.yml010066400017510001751000000006641326743603300134360ustar0000000000000000language: rust sudo: false matrix: include: - rust: stable - rust: nightly env: FEATURES="--features nightly" script: - cargo build $FEATURES - cargo test $FEATURES - cargo doc --no-deps after_success: | [ "$TRAVIS_RUST_VERSION" = nightly ] && [ "$TRAVIS_BRANCH" = master ] && [ "$TRAVIS_PULL_REQUEST" = false ] && bash deploy-docs.sh notifications: webhooks: http://huon.me:54857/travis bit-set-0.5.0/Cargo.toml.orig010066400017510001751000000010741326743603300142100ustar0000000000000000[package] name = "bit-set" version = "0.5.0" authors = ["Alexis Beingessner "] license = "MIT/Apache-2.0" description = "A set of bits" repository = "https://github.com/contain-rs/bit-set" homepage = "https://github.com/contain-rs/bit-set" documentation = "https://contain-rs.github.io/bit-set/bit_set" keywords = ["data-structures", "bitset"] readme = "README.md" [dev-dependencies] rand = "0.3" [dependencies.bit-vec] version = "0.5.0" default-features = false [features] default = ["std"] nightly = ["bit-vec/nightly"] std = ["bit-vec/std"] bit-set-0.5.0/Cargo.toml0000644000000021160000000000000104420ustar00# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g. crates.io) dependencies # # If you believe there's an error in this file please file an # issue against the rust-lang/cargo repository. If you're # editing this file be aware that the upstream Cargo.toml # will likely look very different (and much more reasonable) [package] name = "bit-set" version = "0.5.0" authors = ["Alexis Beingessner "] description = "A set of bits" homepage = "https://github.com/contain-rs/bit-set" documentation = "https://contain-rs.github.io/bit-set/bit_set" readme = "README.md" keywords = ["data-structures", "bitset"] license = "MIT/Apache-2.0" repository = "https://github.com/contain-rs/bit-set" [dependencies.bit-vec] version = "0.5.0" default-features = false [dev-dependencies.rand] version = "0.3" [features] default = ["std"] nightly = ["bit-vec/nightly"] std = ["bit-vec/std"] bit-set-0.5.0/LICENSE-APACHE010066400017510001751000000251421326743603300132470ustar0000000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. bit-set-0.5.0/LICENSE-MIT010066400017510001751000000020571326743603300127570ustar0000000000000000Copyright (c) 2016 The Rust Project Developers Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. bit-set-0.5.0/README.md010066400017510001751000000012471326743603300126020ustar0000000000000000**WARNING: THIS PROJECT IS IN MAINTENANCE MODE, DUE TO INSUFFICIENT MAINTAINER RESOURCES** It works fine, but will generally no longer be improved. We are currently only accepting changes which: * keep this compiling with the latest versions of Rust or its dependencies. * have minimal review requirements, such as documentation changes (so not totally new APIs). ------ A Set of bits. Documentation is available at https://contain-rs.github.io/bit-set/bit_set. [![Build Status](https://travis-ci.org/contain-rs/bit-set.svg?branch=master)](https://travis-ci.org/contain-rs/bit-set) [![crates.io](http://meritbadge.herokuapp.com/bit-set)](https://crates.io/crates/bit-set) bit-set-0.5.0/deploy-docs.sh010077500017510001751000000006501326743603300141010ustar0000000000000000#!/bin/bash set -o errexit -o nounset rev=$(git rev-parse --short HEAD) cd target/doc git init git config user.email 'FlashCat@users.noreply.github.com' git config user.name 'FlashCat' git remote add upstream "https://${GH_TOKEN}@github.com/${TRAVIS_REPO_SLUG}.git" git fetch upstream gh-pages git reset upstream/gh-pages touch . git add -A . git commit -m "rebuild pages at ${rev}" git push -q upstream HEAD:gh-pages bit-set-0.5.0/src/lib.rs010066400017510001751000001175461326743603300132400ustar0000000000000000// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! An implementation of a set using a bit vector as an underlying //! representation for holding unsigned numerical elements. //! //! It should also be noted that the amount of storage necessary for holding a //! set of objects is proportional to the maximum of the objects when viewed //! as a `usize`. //! //! # Examples //! //! ``` //! use bit_set::BitSet; //! //! // It's a regular set //! let mut s = BitSet::new(); //! s.insert(0); //! s.insert(3); //! s.insert(7); //! //! s.remove(7); //! //! if !s.contains(7) { //! println!("There is no 7"); //! } //! //! // Can initialize from a `BitVec` //! let other = BitSet::from_bytes(&[0b11010000]); //! //! s.union_with(&other); //! //! // Print 0, 1, 3 in some order //! for x in s.iter() { //! println!("{}", x); //! } //! //! // Can convert back to a `BitVec` //! let bv = s.into_bit_vec(); //! assert!(bv[3]); //! ``` #![no_std] #![cfg_attr(all(test, feature = "nightly"), feature(test))] #[cfg(all(test, feature = "nightly"))] extern crate test; #[cfg(all(test, feature = "nightly"))] extern crate rand; extern crate bit_vec; #[cfg(test)] #[macro_use] extern crate std; use bit_vec::{BitVec, Blocks, BitBlock}; use core::cmp::Ordering; use core::cmp; use core::fmt; use core::hash; use core::iter::{self, Chain, Enumerate, FromIterator, Repeat, Skip, Take}; type MatchWords<'a, B> = Chain>, Skip>>>>; /// Computes how many blocks are needed to store that many bits fn blocks_for_bits(bits: usize) -> usize { // If we want 17 bits, dividing by 32 will produce 0. So we add 1 to make sure we // reserve enough. But if we want exactly a multiple of 32, this will actually allocate // one too many. So we need to check if that's the case. We can do that by computing if // bitwise AND by `32 - 1` is 0. But LLVM should be able to optimize the semantically // superior modulo operator on a power of two to this. // // Note that we can technically avoid this branch with the expression // `(nbits + BITS - 1) / 32::BITS`, but if nbits is almost usize::MAX this will overflow. if bits % B::bits() == 0 { bits / B::bits() } else { bits / B::bits() + 1 } } // Take two BitVec's, and return iterators of their words, where the shorter one // has been padded with 0's fn match_words<'a, 'b, B: BitBlock>(a: &'a BitVec, b: &'b BitVec) -> (MatchWords<'a, B>, MatchWords<'b, B>) { let a_len = a.storage().len(); let b_len = b.storage().len(); // have to uselessly pretend to pad the longer one for type matching if a_len < b_len { (a.blocks().enumerate().chain(iter::repeat(B::zero()).enumerate().take(b_len).skip(a_len)), b.blocks().enumerate().chain(iter::repeat(B::zero()).enumerate().take(0).skip(0))) } else { (a.blocks().enumerate().chain(iter::repeat(B::zero()).enumerate().take(0).skip(0)), b.blocks().enumerate().chain(iter::repeat(B::zero()).enumerate().take(a_len).skip(b_len))) } } pub struct BitSet { bit_vec: BitVec, } impl Clone for BitSet { fn clone(&self) -> Self { BitSet { bit_vec: self.bit_vec.clone(), } } fn clone_from(&mut self, other: &Self) { self.bit_vec.clone_from(&other.bit_vec); } } impl Default for BitSet { #[inline] fn default() -> Self { BitSet { bit_vec: Default::default() } } } impl FromIterator for BitSet { fn from_iter>(iter: I) -> Self { let mut ret = Self::default(); ret.extend(iter); ret } } impl Extend for BitSet { #[inline] fn extend>(&mut self, iter: I) { for i in iter { self.insert(i); } } } impl PartialOrd for BitSet { #[inline] fn partial_cmp(&self, other: &Self) -> Option { self.iter().partial_cmp(other) } } impl Ord for BitSet { #[inline] fn cmp(&self, other: &Self) -> Ordering { self.iter().cmp(other) } } impl PartialEq for BitSet { #[inline] fn eq(&self, other: &Self) -> bool { self.iter().eq(other) } } impl Eq for BitSet {} impl BitSet { /// Creates a new empty `BitSet`. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::new(); /// ``` #[inline] pub fn new() -> Self { Self::default() } /// Creates a new `BitSet` with initially no contents, able to /// hold `nbits` elements without resizing. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::with_capacity(100); /// assert!(s.capacity() >= 100); /// ``` #[inline] pub fn with_capacity(nbits: usize) -> Self { let bit_vec = BitVec::from_elem(nbits, false); Self::from_bit_vec(bit_vec) } /// Creates a new `BitSet` from the given bit vector. /// /// # Examples /// /// ``` /// extern crate bit_vec; /// extern crate bit_set; /// /// fn main() { /// use bit_vec::BitVec; /// use bit_set::BitSet; /// /// let bv = BitVec::from_bytes(&[0b01100000]); /// let s = BitSet::from_bit_vec(bv); /// /// // Print 1, 2 in arbitrary order /// for x in s.iter() { /// println!("{}", x); /// } /// } /// ``` #[inline] pub fn from_bit_vec(bit_vec: BitVec) -> Self { BitSet { bit_vec: bit_vec } } pub fn from_bytes(bytes: &[u8]) -> Self { BitSet { bit_vec: BitVec::from_bytes(bytes) } } } impl BitSet { /// Returns the capacity in bits for this bit vector. Inserting any /// element less than this amount will not trigger a resizing. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::with_capacity(100); /// assert!(s.capacity() >= 100); /// ``` #[inline] pub fn capacity(&self) -> usize { self.bit_vec.capacity() } /// Reserves capacity for the given `BitSet` to contain `len` distinct elements. In the case /// of `BitSet` this means reallocations will not occur as long as all inserted elements /// are less than `len`. /// /// The collection may reserve more space to avoid frequent reallocations. /// /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::new(); /// s.reserve_len(10); /// assert!(s.capacity() >= 10); /// ``` pub fn reserve_len(&mut self, len: usize) { let cur_len = self.bit_vec.len(); if len >= cur_len { self.bit_vec.reserve(len - cur_len); } } /// Reserves the minimum capacity for the given `BitSet` to contain `len` distinct elements. /// In the case of `BitSet` this means reallocations will not occur as long as all inserted /// elements are less than `len`. /// /// Note that the allocator may give the collection more space than it requests. Therefore /// capacity can not be relied upon to be precisely minimal. Prefer `reserve_len` if future /// insertions are expected. /// /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::new(); /// s.reserve_len_exact(10); /// assert!(s.capacity() >= 10); /// ``` pub fn reserve_len_exact(&mut self, len: usize) { let cur_len = self.bit_vec.len(); if len >= cur_len { self.bit_vec.reserve_exact(len - cur_len); } } /// Consumes this set to return the underlying bit vector. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::new(); /// s.insert(0); /// s.insert(3); /// /// let bv = s.into_bit_vec(); /// assert!(bv[0]); /// assert!(bv[3]); /// ``` #[inline] pub fn into_bit_vec(self) -> BitVec { self.bit_vec } /// Returns a reference to the underlying bit vector. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::new(); /// s.insert(0); /// /// let bv = s.get_ref(); /// assert_eq!(bv[0], true); /// ``` #[inline] pub fn get_ref(&self) -> &BitVec { &self.bit_vec } #[inline] fn other_op(&mut self, other: &Self, mut f: F) where F: FnMut(B, B) -> B { // Unwrap BitVecs let self_bit_vec = &mut self.bit_vec; let other_bit_vec = &other.bit_vec; let self_len = self_bit_vec.len(); let other_len = other_bit_vec.len(); // Expand the vector if necessary if self_len < other_len { self_bit_vec.grow(other_len - self_len, false); } // virtually pad other with 0's for equal lengths let other_words = { let (_, result) = match_words(self_bit_vec, other_bit_vec); result }; // Apply values found in other for (i, w) in other_words { let old = self_bit_vec.storage()[i]; let new = f(old, w); unsafe { self_bit_vec.storage_mut()[i] = new; } } } /// Truncates the underlying vector to the least length required. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::new(); /// s.insert(32183231); /// s.remove(32183231); /// /// // Internal storage will probably be bigger than necessary /// println!("old capacity: {}", s.capacity()); /// /// // Now should be smaller /// s.shrink_to_fit(); /// println!("new capacity: {}", s.capacity()); /// ``` #[inline] pub fn shrink_to_fit(&mut self) { let bit_vec = &mut self.bit_vec; // Obtain original length let old_len = bit_vec.storage().len(); // Obtain coarse trailing zero length let n = bit_vec.storage().iter().rev().take_while(|&&n| n == B::zero()).count(); // Truncate let trunc_len = cmp::max(old_len - n, 1); unsafe { bit_vec.storage_mut().truncate(trunc_len); bit_vec.set_len(trunc_len * B::bits()); } } /// Iterator over each usize stored in the `BitSet`. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let s = BitSet::from_bytes(&[0b01001010]); /// /// // Print 1, 4, 6 in arbitrary order /// for x in s.iter() { /// println!("{}", x); /// } /// ``` #[inline] pub fn iter(&self) -> Iter { Iter(BlockIter::from_blocks(self.bit_vec.blocks())) } /// Iterator over each usize stored in `self` union `other`. /// See [union_with](#method.union_with) for an efficient in-place version. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = BitSet::from_bytes(&[0b01101000]); /// let b = BitSet::from_bytes(&[0b10100000]); /// /// // Print 0, 1, 2, 4 in arbitrary order /// for x in a.union(&b) { /// println!("{}", x); /// } /// ``` #[inline] pub fn union<'a>(&'a self, other: &'a Self) -> Union<'a, B> { fn or(w1: B, w2: B) -> B { w1 | w2 } Union(BlockIter::from_blocks(TwoBitPositions { set: self.bit_vec.blocks(), other: other.bit_vec.blocks(), merge: or, })) } /// Iterator over each usize stored in `self` intersect `other`. /// See [intersect_with](#method.intersect_with) for an efficient in-place version. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = BitSet::from_bytes(&[0b01101000]); /// let b = BitSet::from_bytes(&[0b10100000]); /// /// // Print 2 /// for x in a.intersection(&b) { /// println!("{}", x); /// } /// ``` #[inline] pub fn intersection<'a>(&'a self, other: &'a Self) -> Intersection<'a, B> { fn bitand(w1: B, w2: B) -> B { w1 & w2 } let min = cmp::min(self.bit_vec.len(), other.bit_vec.len()); Intersection(BlockIter::from_blocks(TwoBitPositions { set: self.bit_vec.blocks(), other: other.bit_vec.blocks(), merge: bitand, }).take(min)) } /// Iterator over each usize stored in the `self` setminus `other`. /// See [difference_with](#method.difference_with) for an efficient in-place version. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = BitSet::from_bytes(&[0b01101000]); /// let b = BitSet::from_bytes(&[0b10100000]); /// /// // Print 1, 4 in arbitrary order /// for x in a.difference(&b) { /// println!("{}", x); /// } /// /// // Note that difference is not symmetric, /// // and `b - a` means something else. /// // This prints 0 /// for x in b.difference(&a) { /// println!("{}", x); /// } /// ``` #[inline] pub fn difference<'a>(&'a self, other: &'a Self) -> Difference<'a, B> { fn diff(w1: B, w2: B) -> B { w1 & !w2 } Difference(BlockIter::from_blocks(TwoBitPositions { set: self.bit_vec.blocks(), other: other.bit_vec.blocks(), merge: diff, })) } /// Iterator over each usize stored in the symmetric difference of `self` and `other`. /// See [symmetric_difference_with](#method.symmetric_difference_with) for /// an efficient in-place version. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = BitSet::from_bytes(&[0b01101000]); /// let b = BitSet::from_bytes(&[0b10100000]); /// /// // Print 0, 1, 4 in arbitrary order /// for x in a.symmetric_difference(&b) { /// println!("{}", x); /// } /// ``` #[inline] pub fn symmetric_difference<'a>(&'a self, other: &'a Self) -> SymmetricDifference<'a, B> { fn bitxor(w1: B, w2: B) -> B { w1 ^ w2 } SymmetricDifference(BlockIter::from_blocks(TwoBitPositions { set: self.bit_vec.blocks(), other: other.bit_vec.blocks(), merge: bitxor, })) } /// Unions in-place with the specified other bit vector. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = 0b01101000; /// let b = 0b10100000; /// let res = 0b11101000; /// /// let mut a = BitSet::from_bytes(&[a]); /// let b = BitSet::from_bytes(&[b]); /// let res = BitSet::from_bytes(&[res]); /// /// a.union_with(&b); /// assert_eq!(a, res); /// ``` #[inline] pub fn union_with(&mut self, other: &Self) { self.other_op(other, |w1, w2| w1 | w2); } /// Intersects in-place with the specified other bit vector. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = 0b01101000; /// let b = 0b10100000; /// let res = 0b00100000; /// /// let mut a = BitSet::from_bytes(&[a]); /// let b = BitSet::from_bytes(&[b]); /// let res = BitSet::from_bytes(&[res]); /// /// a.intersect_with(&b); /// assert_eq!(a, res); /// ``` #[inline] pub fn intersect_with(&mut self, other: &Self) { self.other_op(other, |w1, w2| w1 & w2); } /// Makes this bit vector the difference with the specified other bit vector /// in-place. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = 0b01101000; /// let b = 0b10100000; /// let a_b = 0b01001000; // a - b /// let b_a = 0b10000000; // b - a /// /// let mut bva = BitSet::from_bytes(&[a]); /// let bvb = BitSet::from_bytes(&[b]); /// let bva_b = BitSet::from_bytes(&[a_b]); /// let bvb_a = BitSet::from_bytes(&[b_a]); /// /// bva.difference_with(&bvb); /// assert_eq!(bva, bva_b); /// /// let bva = BitSet::from_bytes(&[a]); /// let mut bvb = BitSet::from_bytes(&[b]); /// /// bvb.difference_with(&bva); /// assert_eq!(bvb, bvb_a); /// ``` #[inline] pub fn difference_with(&mut self, other: &Self) { self.other_op(other, |w1, w2| w1 & !w2); } /// Makes this bit vector the symmetric difference with the specified other /// bit vector in-place. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = 0b01101000; /// let b = 0b10100000; /// let res = 0b11001000; /// /// let mut a = BitSet::from_bytes(&[a]); /// let b = BitSet::from_bytes(&[b]); /// let res = BitSet::from_bytes(&[res]); /// /// a.symmetric_difference_with(&b); /// assert_eq!(a, res); /// ``` #[inline] pub fn symmetric_difference_with(&mut self, other: &Self) { self.other_op(other, |w1, w2| w1 ^ w2); } /* /// Moves all elements from `other` into `Self`, leaving `other` empty. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut a = BitSet::new(); /// a.insert(2); /// a.insert(6); /// /// let mut b = BitSet::new(); /// b.insert(1); /// b.insert(3); /// b.insert(6); /// /// a.append(&mut b); /// /// assert_eq!(a.len(), 4); /// assert_eq!(b.len(), 0); /// assert_eq!(a, BitSet::from_bytes(&[0b01110010])); /// ``` pub fn append(&mut self, other: &mut Self) { self.union_with(other); other.clear(); } /// Splits the `BitSet` into two at the given key including the key. /// Retains the first part in-place while returning the second part. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut a = BitSet::new(); /// a.insert(2); /// a.insert(6); /// a.insert(1); /// a.insert(3); /// /// let b = a.split_off(3); /// /// assert_eq!(a.len(), 2); /// assert_eq!(b.len(), 2); /// assert_eq!(a, BitSet::from_bytes(&[0b01100000])); /// assert_eq!(b, BitSet::from_bytes(&[0b00010010])); /// ``` pub fn split_off(&mut self, at: usize) -> Self { let mut other = BitSet::new(); if at == 0 { swap(self, &mut other); return other; } else if at >= self.bit_vec.len() { return other; } // Calculate block and bit at which to split let w = at / BITS; let b = at % BITS; // Pad `other` with `w` zero blocks, // append `self`'s blocks in the range from `w` to the end to `other` other.bit_vec.storage_mut().extend(repeat(0u32).take(w) .chain(self.bit_vec.storage()[w..].iter().cloned())); other.bit_vec.nbits = self.bit_vec.nbits; if b > 0 { other.bit_vec.storage_mut()[w] &= !0 << b; } // Sets `bit_vec.len()` and fixes the last block as well self.bit_vec.truncate(at); other } */ /// Returns the number of set bits in this set. #[inline] pub fn len(&self) -> usize { self.bit_vec.blocks().fold(0, |acc, n| acc + n.count_ones() as usize) } /// Returns whether there are no bits set in this set #[inline] pub fn is_empty(&self) -> bool { self.bit_vec.none() } /// Clears all bits in this set #[inline] pub fn clear(&mut self) { self.bit_vec.clear(); } /// Returns `true` if this set contains the specified integer. #[inline] pub fn contains(&self, value: usize) -> bool { let bit_vec = &self.bit_vec; value < bit_vec.len() && bit_vec[value] } /// Returns `true` if the set has no elements in common with `other`. /// This is equivalent to checking for an empty intersection. #[inline] pub fn is_disjoint(&self, other: &Self) -> bool { self.intersection(other).next().is_none() } /// Returns `true` if the set is a subset of another. #[inline] pub fn is_subset(&self, other: &Self) -> bool { let self_bit_vec = &self.bit_vec; let other_bit_vec = &other.bit_vec; let other_blocks = blocks_for_bits::(other_bit_vec.len()); // Check that `self` intersect `other` is self self_bit_vec.blocks().zip(other_bit_vec.blocks()).all(|(w1, w2)| w1 & w2 == w1) && // Make sure if `self` has any more blocks than `other`, they're all 0 self_bit_vec.blocks().skip(other_blocks).all(|w| w == B::zero()) } /// Returns `true` if the set is a superset of another. #[inline] pub fn is_superset(&self, other: &Self) -> bool { other.is_subset(self) } /// Adds a value to the set. Returns `true` if the value was not already /// present in the set. pub fn insert(&mut self, value: usize) -> bool { if self.contains(value) { return false; } // Ensure we have enough space to hold the new element let len = self.bit_vec.len(); if value >= len { self.bit_vec.grow(value - len + 1, false) } self.bit_vec.set(value, true); return true; } /// Removes a value from the set. Returns `true` if the value was /// present in the set. pub fn remove(&mut self, value: usize) -> bool { if !self.contains(value) { return false; } self.bit_vec.set(value, false); return true; } } impl fmt::Debug for BitSet { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_set().entries(self).finish() } } impl hash::Hash for BitSet { fn hash(&self, state: &mut H) { for pos in self { pos.hash(state); } } } #[derive(Clone)] struct BlockIter { head: B, head_offset: usize, tail: T, } impl BlockIter where T: Iterator { fn from_blocks(mut blocks: T) -> BlockIter { let h = blocks.next().unwrap_or(B::zero()); BlockIter {tail: blocks, head: h, head_offset: 0} } } /// An iterator combining two `BitSet` iterators. #[derive(Clone)] struct TwoBitPositions<'a, B: 'a> { set: Blocks<'a, B>, other: Blocks<'a, B>, merge: fn(B, B) -> B, } /// An iterator for `BitSet`. #[derive(Clone)] pub struct Iter<'a, B: 'a>(BlockIter, B>); #[derive(Clone)] pub struct Union<'a, B: 'a>(BlockIter, B>); #[derive(Clone)] pub struct Intersection<'a, B: 'a>(Take, B>>); #[derive(Clone)] pub struct Difference<'a, B: 'a>(BlockIter, B>); #[derive(Clone)] pub struct SymmetricDifference<'a, B: 'a>(BlockIter, B>); impl<'a, T, B: BitBlock> Iterator for BlockIter where T: Iterator { type Item = usize; fn next(&mut self) -> Option { while self.head == B::zero() { match self.tail.next() { Some(w) => self.head = w, None => return None } self.head_offset += B::bits(); } // from the current block, isolate the // LSB and subtract 1, producing k: // a block with a number of set bits // equal to the index of the LSB let k = (self.head & (!self.head + B::one())) - B::one(); // update block, removing the LSB self.head = self.head & (self.head - B::one()); // return offset + (index of LSB) Some(self.head_offset + (B::count_ones(k) as usize)) } #[inline] fn size_hint(&self) -> (usize, Option) { match self.tail.size_hint() { (_, Some(h)) => (0, Some(1 + h * B::bits())), _ => (0, None) } } } impl<'a, B: BitBlock> Iterator for TwoBitPositions<'a, B> { type Item = B; fn next(&mut self) -> Option { match (self.set.next(), self.other.next()) { (Some(a), Some(b)) => Some((self.merge)(a, b)), (Some(a), None) => Some((self.merge)(a, B::zero())), (None, Some(b)) => Some((self.merge)(B::zero(), b)), _ => return None } } #[inline] fn size_hint(&self) -> (usize, Option) { let (a, au) = self.set.size_hint(); let (b, bu) = self.other.size_hint(); let upper = match (au, bu) { (Some(au), Some(bu)) => Some(cmp::max(au, bu)), _ => None }; (cmp::max(a, b), upper) } } impl<'a, B: BitBlock> Iterator for Iter<'a, B> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl<'a, B: BitBlock> Iterator for Union<'a, B> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl<'a, B: BitBlock> Iterator for Intersection<'a, B> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl<'a, B: BitBlock> Iterator for Difference<'a, B> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl<'a, B: BitBlock> Iterator for SymmetricDifference<'a, B> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl<'a, B: BitBlock> IntoIterator for &'a BitSet { type Item = usize; type IntoIter = Iter<'a, B>; fn into_iter(self) -> Iter<'a, B> { self.iter() } } #[cfg(test)] mod tests { use std::cmp::Ordering::{Equal, Greater, Less}; use super::BitSet; use bit_vec::BitVec; use std::vec::Vec; #[test] fn test_bit_set_show() { let mut s = BitSet::new(); s.insert(1); s.insert(10); s.insert(50); s.insert(2); assert_eq!("{1, 2, 10, 50}", format!("{:?}", s)); } #[test] fn test_bit_set_from_usizes() { let usizes = vec![0, 2, 2, 3]; let a: BitSet = usizes.into_iter().collect(); let mut b = BitSet::new(); b.insert(0); b.insert(2); b.insert(3); assert_eq!(a, b); } #[test] fn test_bit_set_iterator() { let usizes = vec![0, 2, 2, 3]; let bit_vec: BitSet = usizes.into_iter().collect(); let idxs: Vec<_> = bit_vec.iter().collect(); assert_eq!(idxs, [0, 2, 3]); let long: BitSet = (0..10000).filter(|&n| n % 2 == 0).collect(); let real: Vec<_> = (0..10000/2).map(|x| x*2).collect(); let idxs: Vec<_> = long.iter().collect(); assert_eq!(idxs, real); } #[test] fn test_bit_set_frombit_vec_init() { let bools = [true, false]; let lengths = [10, 64, 100]; for &b in &bools { for &l in &lengths { let bitset = BitSet::from_bit_vec(BitVec::from_elem(l, b)); assert_eq!(bitset.contains(1), b); assert_eq!(bitset.contains((l-1)), b); assert!(!bitset.contains(l)); } } } #[test] fn test_bit_vec_masking() { let b = BitVec::from_elem(140, true); let mut bs = BitSet::from_bit_vec(b); assert!(bs.contains(139)); assert!(!bs.contains(140)); assert!(bs.insert(150)); assert!(!bs.contains(140)); assert!(!bs.contains(149)); assert!(bs.contains(150)); assert!(!bs.contains(151)); } #[test] fn test_bit_set_basic() { let mut b = BitSet::new(); assert!(b.insert(3)); assert!(!b.insert(3)); assert!(b.contains(3)); assert!(b.insert(4)); assert!(!b.insert(4)); assert!(b.contains(3)); assert!(b.insert(400)); assert!(!b.insert(400)); assert!(b.contains(400)); assert_eq!(b.len(), 3); } #[test] fn test_bit_set_intersection() { let mut a = BitSet::new(); let mut b = BitSet::new(); assert!(a.insert(11)); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(77)); assert!(a.insert(103)); assert!(a.insert(5)); assert!(b.insert(2)); assert!(b.insert(11)); assert!(b.insert(77)); assert!(b.insert(5)); assert!(b.insert(3)); let expected = [3, 5, 11, 77]; let actual: Vec<_> = a.intersection(&b).collect(); assert_eq!(actual, expected); } #[test] fn test_bit_set_difference() { let mut a = BitSet::new(); let mut b = BitSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(200)); assert!(a.insert(500)); assert!(b.insert(3)); assert!(b.insert(200)); let expected = [1, 5, 500]; let actual: Vec<_> = a.difference(&b).collect(); assert_eq!(actual, expected); } #[test] fn test_bit_set_symmetric_difference() { let mut a = BitSet::new(); let mut b = BitSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(b.insert(3)); assert!(b.insert(9)); assert!(b.insert(14)); assert!(b.insert(220)); let expected = [1, 5, 11, 14, 220]; let actual: Vec<_> = a.symmetric_difference(&b).collect(); assert_eq!(actual, expected); } #[test] fn test_bit_set_union() { let mut a = BitSet::new(); let mut b = BitSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(a.insert(160)); assert!(a.insert(19)); assert!(a.insert(24)); assert!(a.insert(200)); assert!(b.insert(1)); assert!(b.insert(5)); assert!(b.insert(9)); assert!(b.insert(13)); assert!(b.insert(19)); let expected = [1, 3, 5, 9, 11, 13, 19, 24, 160, 200]; let actual: Vec<_> = a.union(&b).collect(); assert_eq!(actual, expected); } #[test] fn test_bit_set_subset() { let mut set1 = BitSet::new(); let mut set2 = BitSet::new(); assert!(set1.is_subset(&set2)); // {} {} set2.insert(100); assert!(set1.is_subset(&set2)); // {} { 1 } set2.insert(200); assert!(set1.is_subset(&set2)); // {} { 1, 2 } set1.insert(200); assert!(set1.is_subset(&set2)); // { 2 } { 1, 2 } set1.insert(300); assert!(!set1.is_subset(&set2)); // { 2, 3 } { 1, 2 } set2.insert(300); assert!(set1.is_subset(&set2)); // { 2, 3 } { 1, 2, 3 } set2.insert(400); assert!(set1.is_subset(&set2)); // { 2, 3 } { 1, 2, 3, 4 } set2.remove(100); assert!(set1.is_subset(&set2)); // { 2, 3 } { 2, 3, 4 } set2.remove(300); assert!(!set1.is_subset(&set2)); // { 2, 3 } { 2, 4 } set1.remove(300); assert!(set1.is_subset(&set2)); // { 2 } { 2, 4 } } #[test] fn test_bit_set_is_disjoint() { let a = BitSet::from_bytes(&[0b10100010]); let b = BitSet::from_bytes(&[0b01000000]); let c = BitSet::new(); let d = BitSet::from_bytes(&[0b00110000]); assert!(!a.is_disjoint(&d)); assert!(!d.is_disjoint(&a)); assert!(a.is_disjoint(&b)); assert!(a.is_disjoint(&c)); assert!(b.is_disjoint(&a)); assert!(b.is_disjoint(&c)); assert!(c.is_disjoint(&a)); assert!(c.is_disjoint(&b)); } #[test] fn test_bit_set_union_with() { //a should grow to include larger elements let mut a = BitSet::new(); a.insert(0); let mut b = BitSet::new(); b.insert(5); let expected = BitSet::from_bytes(&[0b10000100]); a.union_with(&b); assert_eq!(a, expected); // Standard let mut a = BitSet::from_bytes(&[0b10100010]); let mut b = BitSet::from_bytes(&[0b01100010]); let c = a.clone(); a.union_with(&b); b.union_with(&c); assert_eq!(a.len(), 4); assert_eq!(b.len(), 4); } #[test] fn test_bit_set_intersect_with() { // Explicitly 0'ed bits let mut a = BitSet::from_bytes(&[0b10100010]); let mut b = BitSet::from_bytes(&[0b00000000]); let c = a.clone(); a.intersect_with(&b); b.intersect_with(&c); assert!(a.is_empty()); assert!(b.is_empty()); // Uninitialized bits should behave like 0's let mut a = BitSet::from_bytes(&[0b10100010]); let mut b = BitSet::new(); let c = a.clone(); a.intersect_with(&b); b.intersect_with(&c); assert!(a.is_empty()); assert!(b.is_empty()); // Standard let mut a = BitSet::from_bytes(&[0b10100010]); let mut b = BitSet::from_bytes(&[0b01100010]); let c = a.clone(); a.intersect_with(&b); b.intersect_with(&c); assert_eq!(a.len(), 2); assert_eq!(b.len(), 2); } #[test] fn test_bit_set_difference_with() { // Explicitly 0'ed bits let mut a = BitSet::from_bytes(&[0b00000000]); let b = BitSet::from_bytes(&[0b10100010]); a.difference_with(&b); assert!(a.is_empty()); // Uninitialized bits should behave like 0's let mut a = BitSet::new(); let b = BitSet::from_bytes(&[0b11111111]); a.difference_with(&b); assert!(a.is_empty()); // Standard let mut a = BitSet::from_bytes(&[0b10100010]); let mut b = BitSet::from_bytes(&[0b01100010]); let c = a.clone(); a.difference_with(&b); b.difference_with(&c); assert_eq!(a.len(), 1); assert_eq!(b.len(), 1); } #[test] fn test_bit_set_symmetric_difference_with() { //a should grow to include larger elements let mut a = BitSet::new(); a.insert(0); a.insert(1); let mut b = BitSet::new(); b.insert(1); b.insert(5); let expected = BitSet::from_bytes(&[0b10000100]); a.symmetric_difference_with(&b); assert_eq!(a, expected); let mut a = BitSet::from_bytes(&[0b10100010]); let b = BitSet::new(); let c = a.clone(); a.symmetric_difference_with(&b); assert_eq!(a, c); // Standard let mut a = BitSet::from_bytes(&[0b11100010]); let mut b = BitSet::from_bytes(&[0b01101010]); let c = a.clone(); a.symmetric_difference_with(&b); b.symmetric_difference_with(&c); assert_eq!(a.len(), 2); assert_eq!(b.len(), 2); } #[test] fn test_bit_set_eq() { let a = BitSet::from_bytes(&[0b10100010]); let b = BitSet::from_bytes(&[0b00000000]); let c = BitSet::new(); assert!(a == a); assert!(a != b); assert!(a != c); assert!(b == b); assert!(b == c); assert!(c == c); } #[test] fn test_bit_set_cmp() { let a = BitSet::from_bytes(&[0b10100010]); let b = BitSet::from_bytes(&[0b00000000]); let c = BitSet::new(); assert_eq!(a.cmp(&b), Greater); assert_eq!(a.cmp(&c), Greater); assert_eq!(b.cmp(&a), Less); assert_eq!(b.cmp(&c), Equal); assert_eq!(c.cmp(&a), Less); assert_eq!(c.cmp(&b), Equal); } #[test] fn test_bit_vec_remove() { let mut a = BitSet::new(); assert!(a.insert(1)); assert!(a.remove(1)); assert!(a.insert(100)); assert!(a.remove(100)); assert!(a.insert(1000)); assert!(a.remove(1000)); a.shrink_to_fit(); } #[test] fn test_bit_vec_clone() { let mut a = BitSet::new(); assert!(a.insert(1)); assert!(a.insert(100)); assert!(a.insert(1000)); let mut b = a.clone(); assert!(a == b); assert!(b.remove(1)); assert!(a.contains(1)); assert!(a.remove(1000)); assert!(b.contains(1000)); } /* #[test] fn test_bit_set_append() { let mut a = BitSet::new(); a.insert(2); a.insert(6); let mut b = BitSet::new(); b.insert(1); b.insert(3); b.insert(6); a.append(&mut b); assert_eq!(a.len(), 4); assert_eq!(b.len(), 0); assert!(b.capacity() >= 6); assert_eq!(a, BitSet::from_bytes(&[0b01110010])); } #[test] fn test_bit_set_split_off() { // Split at 0 let mut a = BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01101011, 0b10101101]); let b = a.split_off(0); assert_eq!(a.len(), 0); assert_eq!(b.len(), 21); assert_eq!(b, BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01101011, 0b10101101]); // Split behind last element let mut a = BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01101011, 0b10101101]); let b = a.split_off(50); assert_eq!(a.len(), 21); assert_eq!(b.len(), 0); assert_eq!(a, BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01101011, 0b10101101])); // Split at arbitrary element let mut a = BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01101011, 0b10101101]); let b = a.split_off(34); assert_eq!(a.len(), 12); assert_eq!(b.len(), 9); assert_eq!(a, BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01000000])); assert_eq!(b, BitSet::from_bytes(&[0, 0, 0, 0, 0b00101011, 0b10101101])); } */ } #[cfg(all(test, feature = "nightly"))] mod bench { use super::BitSet; use bit_vec::BitVec; use rand::{Rng, thread_rng, ThreadRng}; use test::{Bencher, black_box}; const BENCH_BITS: usize = 1 << 14; const BITS: usize = 32; fn rng() -> ThreadRng { thread_rng() } #[bench] fn bench_bit_vecset_small(b: &mut Bencher) { let mut r = rng(); let mut bit_vec = BitSet::new(); b.iter(|| { for _ in 0..100 { bit_vec.insert((r.next_u32() as usize) % BITS); } black_box(&bit_vec); }); } #[bench] fn bench_bit_vecset_big(b: &mut Bencher) { let mut r = rng(); let mut bit_vec = BitSet::new(); b.iter(|| { for _ in 0..100 { bit_vec.insert((r.next_u32() as usize) % BENCH_BITS); } black_box(&bit_vec); }); } #[bench] fn bench_bit_vecset_iter(b: &mut Bencher) { let bit_vec = BitSet::from_bit_vec(BitVec::from_fn(BENCH_BITS, |idx| {idx % 3 == 0})); b.iter(|| { let mut sum = 0; for idx in &bit_vec { sum += idx as usize; } sum }) } }