bit-vec-0.6.3/.cargo_vcs_info.json0000644000000001120000000000000123640ustar { "git": { "sha1": "975189772f60f87ee84b77b8cd648beac6b86703" } } bit-vec-0.6.3/.gitignore000064400000000000000000000000220000000000000131220ustar 00000000000000target Cargo.lock bit-vec-0.6.3/.travis.yml000064400000000000000000000007100000000000000132470ustar 00000000000000language: rust sudo: false matrix: include: - rust: stable - rust: nightly script: - cargo build - cargo test - cargo test --features serde - | if [ "$TRAVIS_RUST_VERSION" == "nightly" ]; then cargo test --no-default-features cargo test --no-default-features --features serde; fi - cargo doc --no-deps after_success: | if [ "$TRAVIS_RUST_VERSION" == "nightly" ]; then cargo bench; fi bit-vec-0.6.3/Cargo.toml0000644000000024060000000000000103720ustar # THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies # # If you believe there's an error in this file please file an # issue against the rust-lang/cargo repository. If you're # editing this file be aware that the upstream Cargo.toml # will likely look very different (and much more reasonable) [package] name = "bit-vec" version = "0.6.3" authors = ["Alexis Beingessner "] description = "A vector of bits" homepage = "https://github.com/contain-rs/bit-vec" documentation = "https://contain-rs.github.io/bit-vec/bit_vec" readme = "README.md" keywords = ["data-structures", "bitvec", "bitmask", "bitmap", "bit"] license = "MIT/Apache-2.0" repository = "https://github.com/contain-rs/bit-vec" [dependencies.serde] version = "1.0" features = ["derive"] optional = true default-features = false [dev-dependencies.rand] version = "0.7" [dev-dependencies.rand_xorshift] version = "0.2" [dev-dependencies.serde_json] version = "1.0" [features] default = ["std"] serde_no_std = ["serde/alloc"] serde_std = ["std", "serde/std"] std = [] bit-vec-0.6.3/Cargo.toml.orig000064400000000000000000000013040000000000000140250ustar 00000000000000[package] name = "bit-vec" version = "0.6.3" authors = ["Alexis Beingessner "] license = "MIT/Apache-2.0" description = "A vector of bits" repository = "https://github.com/contain-rs/bit-vec" homepage = "https://github.com/contain-rs/bit-vec" documentation = "https://contain-rs.github.io/bit-vec/bit_vec" keywords = ["data-structures", "bitvec", "bitmask", "bitmap", "bit"] readme = "README.md" [dependencies] serde = { version = "1.0", default-features = false, features = ["derive"], optional = true } [dev-dependencies] serde_json = "1.0" rand = "0.7" rand_xorshift = "0.2" [features] default = ["std"] serde_std = ["std", "serde/std"] serde_no_std = ["serde/alloc"] std = [] bit-vec-0.6.3/LICENSE-APACHE000064400000000000000000000251420000000000000130700ustar 00000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. bit-vec-0.6.3/LICENSE-MIT000064400000000000000000000020570000000000000126000ustar 00000000000000Copyright (c) 2015 The Rust Project Developers Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. bit-vec-0.6.3/README.md000064400000000000000000000030410000000000000124150ustar 00000000000000

bit-vec

A vector of bits.

[![crates.io](https://img.shields.io/crates/v/bit-vec?label=latest)](https://crates.io/crates/bit-vec) [![Documentation](https://docs.rs/bit-vec/badge.svg?version=0.6.2)](https://docs.rs/bit-vec/0.6.2/bit_vec/) [![Version](https://img.shields.io/badge/rustc-1.42+-ab6000.svg)](https://blog.rust-lang.org/2020/03/12/Rust-1.42.html)
[![Dependency Status](https://deps.rs/crate/bit-vec/0.6.2/status.svg)](https://deps.rs/crate/bit-vec/0.6.2) [![Build Status](https://travis-ci.org/contain-rs/bit-vec.svg?branch=master)](https://travis-ci.org/contain-rs/bit-vec) [![Download Status](https://img.shields.io/crates/d/bit-vec.svg)](https://crates.io/crates/bit-vec)

Documentation is available at https://contain-rs.github.io/bit-vec/bit_vec. [![Build Status](https://travis-ci.org/contain-rs/bit-vec.svg?branch=master)](https://travis-ci.org/contain-rs/bit-vec) [![crates.io](http://meritbadge.herokuapp.com/bit-vec)](https://crates.io/crates/bit-vec) ## Usage Add this to your Cargo.toml: ```toml [dependencies] bit-vec = "0.6" ``` and this to your crate root: ```rust extern crate bit_vec; ``` If you want [serde](https://github.com/serde-rs/serde) support, include the feature like this: ```toml [dependencies] bit-vec = { version = "0.6", features = ["serde"] } ``` If you want to use bit-vec in a program that has `#![no_std]`, just drop default features: ```toml [dependencies] bit-vec = { version = "0.6", default-features = false } ``` bit-vec-0.6.3/benches/bench.rs000064400000000000000000000121740000000000000142010ustar 00000000000000// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![feature(test)] extern crate test; extern crate rand; extern crate rand_xorshift; extern crate bit_vec; use test::{Bencher, black_box}; use rand::{Rng, RngCore, SeedableRng}; use rand_xorshift::XorShiftRng; use bit_vec::BitVec; const HUGE_BENCH_BITS : usize = 1 << 20; const BENCH_BITS : usize = 1 << 14; const U32_BITS: usize = 32; fn small_rng() -> XorShiftRng { XorShiftRng::from_entropy() } #[bench] fn bench_usize_small(b: &mut Bencher) { let mut r = small_rng(); let mut bit_vec = 0 as usize; b.iter(|| { for _ in 0..100 { bit_vec |= 1 << ((r.next_u32() as usize) % U32_BITS); } black_box(&bit_vec); }); } #[bench] fn bench_bit_set_big_fixed(b: &mut Bencher) { let mut r = small_rng(); let mut bit_vec = BitVec::from_elem(BENCH_BITS, false); b.iter(|| { for _ in 0..100 { bit_vec.set((r.next_u32() as usize) % BENCH_BITS, true); } black_box(&bit_vec); }); } #[bench] fn bench_bit_set_big_variable(b: &mut Bencher) { let mut r = small_rng(); let mut bit_vec = BitVec::from_elem(BENCH_BITS, false); b.iter(|| { for _ in 0..100 { bit_vec.set((r.next_u32() as usize) % BENCH_BITS, r.gen()); } black_box(&bit_vec); }); } #[bench] fn bench_bit_set_small(b: &mut Bencher) { let mut r = small_rng(); let mut bit_vec = BitVec::from_elem(U32_BITS, false); b.iter(|| { for _ in 0..100 { bit_vec.set((r.next_u32() as usize) % U32_BITS, true); } black_box(&bit_vec); }); } #[bench] fn bench_bit_vec_big_or(b: &mut Bencher) { let mut b1 = BitVec::from_elem(BENCH_BITS, false); let b2 = BitVec::from_elem(BENCH_BITS, false); b.iter(|| { b1.or(&b2) }) } #[bench] fn bench_bit_vec_big_xnor(b: &mut Bencher) { let mut b1 = BitVec::from_elem(BENCH_BITS, false); let b2 = BitVec::from_elem(BENCH_BITS, false); b.iter(|| { b1.xnor(&b2) }) } #[bench] fn bench_bit_vec_big_negate_xor(b: &mut Bencher) { let mut b1 = BitVec::from_elem(BENCH_BITS, false); let b2 = BitVec::from_elem(BENCH_BITS, false); b.iter(|| { let res = b1.xor(&b2); b1.negate(); res }) } #[bench] fn bench_bit_vec_huge_xnor(b: &mut Bencher) { let mut b1 = BitVec::from_elem(HUGE_BENCH_BITS, false); let b2 = BitVec::from_elem(HUGE_BENCH_BITS, false); b.iter(|| { b1.xnor(&b2) }) } #[bench] fn bench_bit_vec_huge_negate_xor(b: &mut Bencher) { let mut b1 = BitVec::from_elem(HUGE_BENCH_BITS, false); let b2 = BitVec::from_elem(HUGE_BENCH_BITS, false); b.iter(|| { let res = b1.xor(&b2); b1.negate(); res }) } #[bench] fn bench_bit_vec_small_iter(b: &mut Bencher) { let bit_vec = BitVec::from_elem(U32_BITS, false); b.iter(|| { let mut sum = 0; for _ in 0..10 { for pres in &bit_vec { sum += pres as usize; } } sum }) } #[bench] fn bench_bit_vec_big_iter(b: &mut Bencher) { let bit_vec = BitVec::from_elem(BENCH_BITS, false); b.iter(|| { let mut sum = 0; for pres in &bit_vec { sum += pres as usize; } sum }) } #[bench] fn bench_from_elem(b: &mut Bencher) { let cap = black_box(BENCH_BITS); let bit = black_box(true); b.iter(|| { // create a BitVec and popcount it BitVec::from_elem(cap, bit).blocks() .fold(0, |acc, b| acc + b.count_ones()) }); b.bytes = cap as u64 / 8; } #[bench] fn bench_erathostenes(b: &mut test::Bencher) { let mut primes = vec![]; b.iter(|| { primes.clear(); let mut sieve = BitVec::from_elem(1 << 16, true); black_box(&mut sieve); let mut i = 2; while i < sieve.len() { if sieve[i] == true { primes.push(i); } let mut j = i; while j < sieve.len() { sieve.set(j, false); j += i; } i += 1; } black_box(&mut sieve); }); } #[bench] fn bench_erathostenes_set_all(b: &mut test::Bencher) { let mut primes = vec![]; let mut sieve = BitVec::from_elem(1 << 16, true); b.iter(|| { primes.clear(); black_box(&mut sieve); sieve.set_all(); black_box(&mut sieve); let mut i = 2; while i < sieve.len() { if sieve[i] == true { primes.push(i); } let mut j = i; while j < sieve.len() { sieve.set(j, false); j += i; } i += 1; } black_box(&mut sieve); }); } bit-vec-0.6.3/crusader.sh000075500000000000000000000002540000000000000133100ustar 00000000000000#!/bin/bash git clone https://github.com/brson/cargo-crusader cd cargo-crusader cargo build --release export PATH=$PATH:`pwd`/target/release/ cd ../ cargo crusader exit bit-vec-0.6.3/src/lib.rs000064400000000000000000002301610000000000000130460ustar 00000000000000// Copyright 2012-2020 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // FIXME(Gankro): BitVec and BitSet are very tightly coupled. Ideally (for // maintenance), they should be in separate files/modules, with BitSet only // using BitVec's public API. This will be hard for performance though, because // `BitVec` will not want to leak its internal representation while its internal // representation as `u32`s must be assumed for best performance. // (1) Be careful, most things can overflow here because the amount of bits in // memory can overflow `usize`. // (2) Make sure that the underlying vector has no excess length: // E. g. `nbits == 16`, `storage.len() == 2` would be excess length, // because the last word isn't used at all. This is important because some // methods rely on it (for *CORRECTNESS*). // (3) Make sure that the unused bits in the last word are zeroed out, again // other methods rely on it for *CORRECTNESS*. // (4) `BitSet` is tightly coupled with `BitVec`, so any changes you make in // `BitVec` will need to be reflected in `BitSet`. //! Collections implemented with bit vectors. //! //! # Examples //! //! This is a simple example of the [Sieve of Eratosthenes][sieve] //! which calculates prime numbers up to a given limit. //! //! [sieve]: http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes //! //! ``` //! use bit_vec::BitVec; //! //! let max_prime = 10000; //! //! // Store the primes as a BitVec //! let primes = { //! // Assume all numbers are prime to begin, and then we //! // cross off non-primes progressively //! let mut bv = BitVec::from_elem(max_prime, true); //! //! // Neither 0 nor 1 are prime //! bv.set(0, false); //! bv.set(1, false); //! //! for i in 2.. 1 + (max_prime as f64).sqrt() as usize { //! // if i is a prime //! if bv[i] { //! // Mark all multiples of i as non-prime (any multiples below i * i //! // will have been marked as non-prime previously) //! for j in i.. { //! if i * j >= max_prime { //! break; //! } //! bv.set(i * j, false) //! } //! } //! } //! bv //! }; //! //! // Simple primality tests below our max bound //! let print_primes = 20; //! print!("The primes below {} are: ", print_primes); //! for x in 0..print_primes { //! if primes.get(x).unwrap_or(false) { //! print!("{} ", x); //! } //! } //! println!(); //! //! let num_primes = primes.iter().filter(|x| *x).count(); //! println!("There are {} primes below {}", num_primes, max_prime); //! assert_eq!(num_primes, 1_229); //! ``` #![doc(html_root_url = "https://docs.rs/bit-vec/0.6.3")] #![no_std] #[cfg(any(test, feature = "std"))] #[macro_use] extern crate std; #[cfg(feature="std")] use std::vec::Vec; #[cfg(feature="serde")] extern crate serde; #[cfg(feature="serde")] use serde::{Serialize, Deserialize}; #[cfg(not(feature="std"))] #[macro_use] extern crate alloc; #[cfg(not(feature="std"))] use alloc::vec::Vec; use core::cmp::Ordering; use core::cmp; use core::fmt; use core::hash; use core::mem; use core::iter::FromIterator; use core::slice; use core::{u8, usize}; use core::iter::repeat; use core::ops::*; type MutBlocks<'a, B> = slice::IterMut<'a, B>; /// Abstracts over a pile of bits (basically unsigned primitives) pub trait BitBlock: Copy + Add + Sub + Shl + Shr + Not + BitAnd + BitOr + BitXor + Rem + Eq + Ord + hash::Hash { /// How many bits it has fn bits() -> usize; /// How many bytes it has #[inline] fn bytes() -> usize { Self::bits() / 8 } /// Convert a byte into this type (lowest-order bits set) fn from_byte(byte: u8) -> Self; /// Count the number of 1's in the bitwise repr fn count_ones(self) -> usize; /// Get `0` fn zero() -> Self; /// Get `1` fn one() -> Self; } macro_rules! bit_block_impl { ($(($t: ident, $size: expr)),*) => ($( impl BitBlock for $t { #[inline] fn bits() -> usize { $size } #[inline] fn from_byte(byte: u8) -> Self { $t::from(byte) } #[inline] fn count_ones(self) -> usize { self.count_ones() as usize } #[inline] fn one() -> Self { 1 } #[inline] fn zero() -> Self { 0 } } )*) } bit_block_impl!{ (u8, 8), (u16, 16), (u32, 32), (u64, 64), (usize, core::mem::size_of::() * 8) } fn reverse_bits(byte: u8) -> u8 { let mut result = 0; for i in 0..u8::bits() { result |= ((byte >> i) & 1) << (u8::bits() - 1 - i); } result } static TRUE: bool = true; static FALSE: bool = false; /// The bitvector type. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::from_elem(10, false); /// /// // insert all primes less than 10 /// bv.set(2, true); /// bv.set(3, true); /// bv.set(5, true); /// bv.set(7, true); /// println!("{:?}", bv); /// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count()); /// /// // flip all values in bitvector, producing non-primes less than 10 /// bv.negate(); /// println!("{:?}", bv); /// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count()); /// /// // reset bitvector to empty /// bv.clear(); /// println!("{:?}", bv); /// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count()); /// ``` #[cfg_attr(feature="serde", derive(Serialize, Deserialize))] pub struct BitVec { /// Internal representation of the bit vector storage: Vec, /// The number of valid bits in the internal representation nbits: usize } // FIXME(Gankro): NopeNopeNopeNopeNope (wait for IndexGet to be a thing) impl Index for BitVec { type Output = bool; #[inline] fn index(&self, i: usize) -> &bool { if self.get(i).expect("index out of bounds") { &TRUE } else { &FALSE } } } /// Computes how many blocks are needed to store that many bits fn blocks_for_bits(bits: usize) -> usize { // If we want 17 bits, dividing by 32 will produce 0. So we add 1 to make sure we // reserve enough. But if we want exactly a multiple of 32, this will actually allocate // one too many. So we need to check if that's the case. We can do that by computing if // bitwise AND by `32 - 1` is 0. But LLVM should be able to optimize the semantically // superior modulo operator on a power of two to this. // // Note that we can technically avoid this branch with the expression // `(nbits + U32_BITS - 1) / 32::BITS`, but if nbits is almost usize::MAX this will overflow. if bits % B::bits() == 0 { bits / B::bits() } else { bits / B::bits() + 1 } } /// Computes the bitmask for the final word of the vector fn mask_for_bits(bits: usize) -> B { // Note especially that a perfect multiple of U32_BITS should mask all 1s. (!B::zero()) >> ((B::bits() - bits % B::bits()) % B::bits()) } type B = u32; impl BitVec { /// Creates an empty `BitVec`. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// let mut bv = BitVec::new(); /// ``` #[inline] pub fn new() -> Self { Default::default() } /// Creates a `BitVec` that holds `nbits` elements, setting each element /// to `bit`. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::from_elem(10, false); /// assert_eq!(bv.len(), 10); /// for x in bv.iter() { /// assert_eq!(x, false); /// } /// ``` #[inline] pub fn from_elem(nbits: usize, bit: bool) -> Self { let nblocks = blocks_for_bits::(nbits); let mut bit_vec = BitVec { storage: vec![if bit { !B::zero() } else { B::zero() }; nblocks], nbits, }; bit_vec.fix_last_block(); bit_vec } /// Constructs a new, empty `BitVec` with the specified capacity. /// /// The bitvector will be able to hold at least `capacity` bits without /// reallocating. If `capacity` is 0, it will not allocate. /// /// It is important to note that this function does not specify the /// *length* of the returned bitvector, but only the *capacity*. #[inline] pub fn with_capacity(nbits: usize) -> Self { BitVec { storage: Vec::with_capacity(blocks_for_bits::(nbits)), nbits: 0, } } /// Transforms a byte-vector into a `BitVec`. Each byte becomes eight bits, /// with the most significant bits of each byte coming first. Each /// bit becomes `true` if equal to 1 or `false` if equal to 0. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let bv = BitVec::from_bytes(&[0b10100000, 0b00010010]); /// assert!(bv.eq_vec(&[true, false, true, false, /// false, false, false, false, /// false, false, false, true, /// false, false, true, false])); /// ``` pub fn from_bytes(bytes: &[u8]) -> Self { let len = bytes.len().checked_mul(u8::bits()).expect("capacity overflow"); let mut bit_vec = BitVec::with_capacity(len); let complete_words = bytes.len() / B::bytes(); let extra_bytes = bytes.len() % B::bytes(); bit_vec.nbits = len; for i in 0..complete_words { let mut accumulator = B::zero(); for idx in 0..B::bytes() { accumulator |= B::from_byte(reverse_bits(bytes[i * B::bytes() + idx])) << (idx * 8) } bit_vec.storage.push(accumulator); } if extra_bytes > 0 { let mut last_word = B::zero(); for (i, &byte) in bytes[complete_words * B::bytes()..].iter().enumerate() { last_word |= B::from_byte(reverse_bits(byte)) << (i * 8); } bit_vec.storage.push(last_word); } bit_vec } /// Creates a `BitVec` of the specified length where the value at each index /// is `f(index)`. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let bv = BitVec::from_fn(5, |i| { i % 2 == 0 }); /// assert!(bv.eq_vec(&[true, false, true, false, true])); /// ``` #[inline] pub fn from_fn(len: usize, mut f: F) -> Self where F: FnMut(usize) -> bool { let mut bit_vec = BitVec::from_elem(len, false); for i in 0..len { bit_vec.set(i, f(i)); } bit_vec } } impl BitVec { /// Applies the given operation to the blocks of self and other, and sets /// self to be the result. This relies on the caller not to corrupt the /// last word. #[inline] fn process(&mut self, other: &BitVec, mut op: F) -> bool where F: FnMut(B, B) -> B { assert_eq!(self.len(), other.len()); debug_assert_eq!(self.storage.len(), other.storage.len()); let mut changed_bits = B::zero(); for (a, b) in self.blocks_mut().zip(other.blocks()) { let w = op(*a, b); changed_bits = changed_bits | (*a ^ w); *a = w; } changed_bits != B::zero() } /// Iterator over mutable refs to the underlying blocks of data. #[inline] fn blocks_mut(&mut self) -> MutBlocks { // (2) self.storage.iter_mut() } /// Iterator over the underlying blocks of data #[inline] pub fn blocks(&self) -> Blocks { // (2) Blocks{iter: self.storage.iter()} } /// Exposes the raw block storage of this BitVec /// /// Only really intended for BitSet. #[inline] pub fn storage(&self) -> &[B] { &self.storage } /// Exposes the raw block storage of this BitVec /// /// Can probably cause unsafety. Only really intended for BitSet. #[inline] pub unsafe fn storage_mut(&mut self) -> &mut Vec { &mut self.storage } /// Helper for procedures involving spare space in the last block. #[inline] fn last_block_with_mask(&self) -> Option<(B, B)> { let extra_bits = self.len() % B::bits(); if extra_bits > 0 { let mask = (B::one() << extra_bits) - B::one(); let storage_len = self.storage.len(); Some((self.storage[storage_len - 1], mask)) } else { None } } /// Helper for procedures involving spare space in the last block. #[inline] fn last_block_mut_with_mask(&mut self) -> Option<(&mut B, B)> { let extra_bits = self.len() % B::bits(); if extra_bits > 0 { let mask = (B::one() << extra_bits) - B::one(); let storage_len = self.storage.len(); Some((&mut self.storage[storage_len - 1], mask)) } else { None } } /// An operation might screw up the unused bits in the last block of the /// `BitVec`. As per (3), it's assumed to be all 0s. This method fixes it up. fn fix_last_block(&mut self) { if let Some((last_block, used_bits)) = self.last_block_mut_with_mask() { *last_block = *last_block & used_bits; } } /// Operations such as change detection for xnor, nor and nand are easiest /// to implement when unused bits are all set to 1s. fn fix_last_block_with_ones(&mut self) { if let Some((last_block, used_bits)) = self.last_block_mut_with_mask() { *last_block = *last_block | !used_bits; } } /// Check whether last block's invariant is fine. fn is_last_block_fixed(&self) -> bool { if let Some((last_block, used_bits)) = self.last_block_with_mask() { last_block & !used_bits == B::zero() } else { true } } /// Ensure the invariant for the last block. /// /// An operation might screw up the unused bits in the last block of the /// `BitVec`. /// /// This method fails in case the last block is not fixed. The check /// is skipped outside testing. #[inline] fn ensure_invariant(&self) { if cfg!(test) { debug_assert!(self.is_last_block_fixed()); } } /// Retrieves the value at index `i`, or `None` if the index is out of bounds. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let bv = BitVec::from_bytes(&[0b01100000]); /// assert_eq!(bv.get(0), Some(false)); /// assert_eq!(bv.get(1), Some(true)); /// assert_eq!(bv.get(100), None); /// /// // Can also use array indexing /// assert_eq!(bv[1], true); /// ``` #[inline] pub fn get(&self, i: usize) -> Option { self.ensure_invariant(); if i >= self.nbits { return None; } let w = i / B::bits(); let b = i % B::bits(); self.storage.get(w).map(|&block| (block & (B::one() << b)) != B::zero() ) } /// Sets the value of a bit at an index `i`. /// /// # Panics /// /// Panics if `i` is out of bounds. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::from_elem(5, false); /// bv.set(3, true); /// assert_eq!(bv[3], true); /// ``` #[inline] pub fn set(&mut self, i: usize, x: bool) { self.ensure_invariant(); assert!(i < self.nbits, "index out of bounds: {:?} >= {:?}", i, self.nbits); let w = i / B::bits(); let b = i % B::bits(); let flag = B::one() << b; let val = if x { self.storage[w] | flag } else { self.storage[w] & !flag }; self.storage[w] = val; } /// Sets all bits to 1. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let before = 0b01100000; /// let after = 0b11111111; /// /// let mut bv = BitVec::from_bytes(&[before]); /// bv.set_all(); /// assert_eq!(bv, BitVec::from_bytes(&[after])); /// ``` #[inline] pub fn set_all(&mut self) { self.ensure_invariant(); for w in &mut self.storage { *w = !B::zero(); } self.fix_last_block(); } /// Flips all bits. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let before = 0b01100000; /// let after = 0b10011111; /// /// let mut bv = BitVec::from_bytes(&[before]); /// bv.negate(); /// assert_eq!(bv, BitVec::from_bytes(&[after])); /// ``` #[inline] pub fn negate(&mut self) { self.ensure_invariant(); for w in &mut self.storage { *w = !*w; } self.fix_last_block(); } /// Calculates the union of two bitvectors. This acts like the bitwise `or` /// function. /// /// Sets `self` to the union of `self` and `other`. Both bitvectors must be /// the same length. Returns `true` if `self` changed. /// /// # Panics /// /// Panics if the bitvectors are of different lengths. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let a = 0b01100100; /// let b = 0b01011010; /// let res = 0b01111110; /// /// let mut a = BitVec::from_bytes(&[a]); /// let b = BitVec::from_bytes(&[b]); /// /// assert!(a.union(&b)); /// assert_eq!(a, BitVec::from_bytes(&[res])); /// ``` #[deprecated( since = "0.7.0", note = "Please use the 'or' function instead" )] #[inline] pub fn union(&mut self, other: &Self) -> bool { self.or(other) } /// Calculates the intersection of two bitvectors. This acts like the /// bitwise `and` function. /// /// Sets `self` to the intersection of `self` and `other`. Both bitvectors /// must be the same length. Returns `true` if `self` changed. /// /// # Panics /// /// Panics if the bitvectors are of different lengths. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let a = 0b01100100; /// let b = 0b01011010; /// let res = 0b01000000; /// /// let mut a = BitVec::from_bytes(&[a]); /// let b = BitVec::from_bytes(&[b]); /// /// assert!(a.intersect(&b)); /// assert_eq!(a, BitVec::from_bytes(&[res])); /// ``` #[deprecated( since = "0.7.0", note = "Please use the 'and' function instead" )] #[inline] pub fn intersect(&mut self, other: &Self) -> bool { self.and(other) } /// Calculates the bitwise `or` of two bitvectors. /// /// Sets `self` to the union of `self` and `other`. Both bitvectors must be /// the same length. Returns `true` if `self` changed. /// /// # Panics /// /// Panics if the bitvectors are of different lengths. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let a = 0b01100100; /// let b = 0b01011010; /// let res = 0b01111110; /// /// let mut a = BitVec::from_bytes(&[a]); /// let b = BitVec::from_bytes(&[b]); /// /// assert!(a.or(&b)); /// assert_eq!(a, BitVec::from_bytes(&[res])); /// ``` #[inline] pub fn or(&mut self, other: &Self) -> bool { self.ensure_invariant(); debug_assert!(other.is_last_block_fixed()); self.process(other, |w1, w2| (w1 | w2)) } /// Calculates the bitwise `and` of two bitvectors. /// /// Sets `self` to the intersection of `self` and `other`. Both bitvectors /// must be the same length. Returns `true` if `self` changed. /// /// # Panics /// /// Panics if the bitvectors are of different lengths. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let a = 0b01100100; /// let b = 0b01011010; /// let res = 0b01000000; /// /// let mut a = BitVec::from_bytes(&[a]); /// let b = BitVec::from_bytes(&[b]); /// /// assert!(a.and(&b)); /// assert_eq!(a, BitVec::from_bytes(&[res])); /// ``` #[inline] pub fn and(&mut self, other: &Self) -> bool { self.ensure_invariant(); debug_assert!(other.is_last_block_fixed()); self.process(other, |w1, w2| (w1 & w2)) } /// Calculates the difference between two bitvectors. /// /// Sets each element of `self` to the value of that element minus the /// element of `other` at the same index. Both bitvectors must be the same /// length. Returns `true` if `self` changed. /// /// # Panics /// /// Panics if the bitvectors are of different length. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let a = 0b01100100; /// let b = 0b01011010; /// let a_b = 0b00100100; // a - b /// let b_a = 0b00011010; // b - a /// /// let mut bva = BitVec::from_bytes(&[a]); /// let bvb = BitVec::from_bytes(&[b]); /// /// assert!(bva.difference(&bvb)); /// assert_eq!(bva, BitVec::from_bytes(&[a_b])); /// /// let bva = BitVec::from_bytes(&[a]); /// let mut bvb = BitVec::from_bytes(&[b]); /// /// assert!(bvb.difference(&bva)); /// assert_eq!(bvb, BitVec::from_bytes(&[b_a])); /// ``` #[inline] pub fn difference(&mut self, other: &Self) -> bool { self.ensure_invariant(); debug_assert!(other.is_last_block_fixed()); self.process(other, |w1, w2| (w1 & !w2)) } /// Calculates the xor of two bitvectors. /// /// Sets `self` to the xor of `self` and `other`. Both bitvectors must be /// the same length. Returns `true` if `self` changed. /// /// # Panics /// /// Panics if the bitvectors are of different length. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let a = 0b01100110; /// let b = 0b01010100; /// let res = 0b00110010; /// /// let mut a = BitVec::from_bytes(&[a]); /// let b = BitVec::from_bytes(&[b]); /// /// assert!(a.xor(&b)); /// assert_eq!(a, BitVec::from_bytes(&[res])); /// ``` #[inline] pub fn xor(&mut self, other: &Self) -> bool { self.ensure_invariant(); debug_assert!(other.is_last_block_fixed()); self.process(other, |w1, w2| (w1 ^ w2)) } /// Calculates the nand of two bitvectors. /// /// Sets `self` to the nand of `self` and `other`. Both bitvectors must be /// the same length. Returns `true` if `self` changed. /// /// # Panics /// /// Panics if the bitvectors are of different length. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let a = 0b01100110; /// let b = 0b01010100; /// let res = 0b10111011; /// /// let mut a = BitVec::from_bytes(&[a]); /// let b = BitVec::from_bytes(&[b]); /// /// assert!(a.nand(&b)); /// assert_eq!(a, BitVec::from_bytes(&[res])); /// ``` #[inline] pub fn nand(&mut self, other: &Self) -> bool { self.ensure_invariant(); debug_assert!(other.is_last_block_fixed()); self.fix_last_block_with_ones(); let result = self.process(other, |w1, w2| !(w1 & w2)); self.fix_last_block(); result } /// Calculates the nor of two bitvectors. /// /// Sets `self` to the nor of `self` and `other`. Both bitvectors must be /// the same length. Returns `true` if `self` changed. /// /// # Panics /// /// Panics if the bitvectors are of different length. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let a = 0b01100110; /// let b = 0b01010100; /// let res = 0b10001001; /// /// let mut a = BitVec::from_bytes(&[a]); /// let b = BitVec::from_bytes(&[b]); /// /// assert!(a.nor(&b)); /// assert_eq!(a, BitVec::from_bytes(&[res])); /// ``` #[inline] pub fn nor(&mut self, other: &Self) -> bool { self.ensure_invariant(); debug_assert!(other.is_last_block_fixed()); self.fix_last_block_with_ones(); let result = self.process(other, |w1, w2| !(w1 | w2)); self.fix_last_block(); result } /// Calculates the xnor of two bitvectors. /// /// Sets `self` to the xnor of `self` and `other`. Both bitvectors must be /// the same length. Returns `true` if `self` changed. /// /// # Panics /// /// Panics if the bitvectors are of different length. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let a = 0b01100110; /// let b = 0b01010100; /// let res = 0b11001101; /// /// let mut a = BitVec::from_bytes(&[a]); /// let b = BitVec::from_bytes(&[b]); /// /// assert!(a.xnor(&b)); /// assert_eq!(a, BitVec::from_bytes(&[res])); /// ``` #[inline] pub fn xnor(&mut self, other: &Self) -> bool { self.ensure_invariant(); debug_assert!(other.is_last_block_fixed()); self.fix_last_block_with_ones(); let result = self.process(other, |w1, w2| !(w1 ^ w2)); self.fix_last_block(); result } /// Returns `true` if all bits are 1. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::from_elem(5, true); /// assert_eq!(bv.all(), true); /// /// bv.set(1, false); /// assert_eq!(bv.all(), false); /// ``` #[inline] pub fn all(&self) -> bool { self.ensure_invariant(); let mut last_word = !B::zero(); // Check that every block but the last is all-ones... self.blocks().all(|elem| { let tmp = last_word; last_word = elem; tmp == !B::zero() // and then check the last one has enough ones }) && (last_word == mask_for_bits(self.nbits)) } /// Returns an iterator over the elements of the vector in order. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let bv = BitVec::from_bytes(&[0b01110100, 0b10010010]); /// assert_eq!(bv.iter().filter(|x| *x).count(), 7); /// ``` #[inline] pub fn iter(&self) -> Iter { self.ensure_invariant(); Iter { bit_vec: self, range: 0..self.nbits } } /// Moves all bits from `other` into `Self`, leaving `other` empty. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut a = BitVec::from_bytes(&[0b10000000]); /// let mut b = BitVec::from_bytes(&[0b01100001]); /// /// a.append(&mut b); /// /// assert_eq!(a.len(), 16); /// assert_eq!(b.len(), 0); /// assert!(a.eq_vec(&[true, false, false, false, false, false, false, false, /// false, true, true, false, false, false, false, true])); /// ``` pub fn append(&mut self, other: &mut Self) { self.ensure_invariant(); debug_assert!(other.is_last_block_fixed()); let b = self.len() % B::bits(); let o = other.len() % B::bits(); let will_overflow = (b + o > B::bits()) || (o == 0 && b != 0); self.nbits += other.len(); other.nbits = 0; if b == 0 { self.storage.append(&mut other.storage); } else { self.storage.reserve(other.storage.len()); for block in other.storage.drain(..) { { let last = self.storage.last_mut().unwrap(); *last = *last | (block << b); } self.storage.push(block >> (B::bits() - b)); } // Remove additional block if the last shift did not overflow if !will_overflow { self.storage.pop(); } } } /// Splits the `BitVec` into two at the given bit, /// retaining the first half in-place and returning the second one. /// /// # Panics /// /// Panics if `at` is out of bounds. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// let mut a = BitVec::new(); /// a.push(true); /// a.push(false); /// a.push(false); /// a.push(true); /// /// let b = a.split_off(2); /// /// assert_eq!(a.len(), 2); /// assert_eq!(b.len(), 2); /// assert!(a.eq_vec(&[true, false])); /// assert!(b.eq_vec(&[false, true])); /// ``` pub fn split_off(&mut self, at: usize) -> Self { self.ensure_invariant(); assert!(at <= self.len(), "`at` out of bounds"); let mut other = BitVec::::default(); if at == 0 { mem::swap(self, &mut other); return other; } else if at == self.len() { return other; } let w = at / B::bits(); let b = at % B::bits(); other.nbits = self.nbits - at; self.nbits = at; if b == 0 { // Split at block boundary other.storage = self.storage.split_off(w); } else { other.storage.reserve(self.storage.len() - w); { let mut iter = self.storage[w..].iter(); let mut last = *iter.next().unwrap(); for &cur in iter { other.storage.push((last >> b) | (cur << (B::bits() - b))); last = cur; } other.storage.push(last >> b); } self.storage.truncate(w + 1); self.fix_last_block(); } other } /// Returns `true` if all bits are 0. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::from_elem(10, false); /// assert_eq!(bv.none(), true); /// /// bv.set(3, true); /// assert_eq!(bv.none(), false); /// ``` #[inline] pub fn none(&self) -> bool { self.blocks().all(|w| w == B::zero()) } /// Returns `true` if any bit is 1. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::from_elem(10, false); /// assert_eq!(bv.any(), false); /// /// bv.set(3, true); /// assert_eq!(bv.any(), true); /// ``` #[inline] pub fn any(&self) -> bool { !self.none() } /// Organises the bits into bytes, such that the first bit in the /// `BitVec` becomes the high-order bit of the first byte. If the /// size of the `BitVec` is not a multiple of eight then trailing bits /// will be filled-in with `false`. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::from_elem(3, true); /// bv.set(1, false); /// /// assert_eq!(bv.to_bytes(), [0b10100000]); /// /// let mut bv = BitVec::from_elem(9, false); /// bv.set(2, true); /// bv.set(8, true); /// /// assert_eq!(bv.to_bytes(), [0b00100000, 0b10000000]); /// ``` pub fn to_bytes(&self) -> Vec { self.ensure_invariant(); // Oh lord, we're mapping this to bytes bit-by-bit! fn bit(bit_vec: &BitVec, byte: usize, bit: usize) -> u8 { let offset = byte * 8 + bit; if offset >= bit_vec.nbits { 0 } else { (bit_vec[offset] as u8) << (7 - bit) } } let len = self.nbits / 8 + if self.nbits % 8 == 0 { 0 } else { 1 }; (0..len).map(|i| bit(self, i, 0) | bit(self, i, 1) | bit(self, i, 2) | bit(self, i, 3) | bit(self, i, 4) | bit(self, i, 5) | bit(self, i, 6) | bit(self, i, 7) ).collect() } /// Compares a `BitVec` to a slice of `bool`s. /// Both the `BitVec` and slice must have the same length. /// /// # Panics /// /// Panics if the `BitVec` and slice are of different length. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let bv = BitVec::from_bytes(&[0b10100000]); /// /// assert!(bv.eq_vec(&[true, false, true, false, /// false, false, false, false])); /// ``` #[inline] pub fn eq_vec(&self, v: &[bool]) -> bool { assert_eq!(self.nbits, v.len()); self.iter().zip(v.iter().cloned()).all(|(b1, b2)| b1 == b2) } /// Shortens a `BitVec`, dropping excess elements. /// /// If `len` is greater than the vector's current length, this has no /// effect. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::from_bytes(&[0b01001011]); /// bv.truncate(2); /// assert!(bv.eq_vec(&[false, true])); /// ``` #[inline] pub fn truncate(&mut self, len: usize) { self.ensure_invariant(); if len < self.len() { self.nbits = len; // This fixes (2). self.storage.truncate(blocks_for_bits::(len)); self.fix_last_block(); } } /// Reserves capacity for at least `additional` more bits to be inserted in the given /// `BitVec`. The collection may reserve more space to avoid frequent reallocations. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::from_elem(3, false); /// bv.reserve(10); /// assert_eq!(bv.len(), 3); /// assert!(bv.capacity() >= 13); /// ``` #[inline] pub fn reserve(&mut self, additional: usize) { let desired_cap = self.len().checked_add(additional).expect("capacity overflow"); let storage_len = self.storage.len(); if desired_cap > self.capacity() { self.storage.reserve(blocks_for_bits::(desired_cap) - storage_len); } } /// Reserves the minimum capacity for exactly `additional` more bits to be inserted in the /// given `BitVec`. Does nothing if the capacity is already sufficient. /// /// Note that the allocator may give the collection more space than it requests. Therefore /// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future /// insertions are expected. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::from_elem(3, false); /// bv.reserve(10); /// assert_eq!(bv.len(), 3); /// assert!(bv.capacity() >= 13); /// ``` #[inline] pub fn reserve_exact(&mut self, additional: usize) { let desired_cap = self.len().checked_add(additional).expect("capacity overflow"); let storage_len = self.storage.len(); if desired_cap > self.capacity() { self.storage.reserve_exact(blocks_for_bits::(desired_cap) - storage_len); } } /// Returns the capacity in bits for this bit vector. Inserting any /// element less than this amount will not trigger a resizing. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::new(); /// bv.reserve(10); /// assert!(bv.capacity() >= 10); /// ``` #[inline] pub fn capacity(&self) -> usize { self.storage.capacity().checked_mul(B::bits()).unwrap_or(usize::MAX) } /// Grows the `BitVec` in-place, adding `n` copies of `value` to the `BitVec`. /// /// # Panics /// /// Panics if the new len overflows a `usize`. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::from_bytes(&[0b01001011]); /// bv.grow(2, true); /// assert_eq!(bv.len(), 10); /// assert_eq!(bv.to_bytes(), [0b01001011, 0b11000000]); /// ``` pub fn grow(&mut self, n: usize, value: bool) { self.ensure_invariant(); // Note: we just bulk set all the bits in the last word in this fn in multiple places // which is technically wrong if not all of these bits are to be used. However, at the end // of this fn we call `fix_last_block` at the end of this fn, which should fix this. let new_nbits = self.nbits.checked_add(n).expect("capacity overflow"); let new_nblocks = blocks_for_bits::(new_nbits); let full_value = if value { !B::zero() } else { B::zero() }; // Correct the old tail word, setting or clearing formerly unused bits let num_cur_blocks = blocks_for_bits::(self.nbits); if self.nbits % B::bits() > 0 { let mask = mask_for_bits::(self.nbits); if value { let block = &mut self.storage[num_cur_blocks - 1]; *block = *block | !mask; } else { // Extra bits are already zero by invariant. } } // Fill in words after the old tail word let stop_idx = cmp::min(self.storage.len(), new_nblocks); for idx in num_cur_blocks..stop_idx { self.storage[idx] = full_value; } // Allocate new words, if needed if new_nblocks > self.storage.len() { let to_add = new_nblocks - self.storage.len(); self.storage.extend(repeat(full_value).take(to_add)); } // Adjust internal bit count self.nbits = new_nbits; self.fix_last_block(); } /// Removes the last bit from the BitVec, and returns it. Returns None if the BitVec is empty. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::from_bytes(&[0b01001001]); /// assert_eq!(bv.pop(), Some(true)); /// assert_eq!(bv.pop(), Some(false)); /// assert_eq!(bv.len(), 6); /// ``` #[inline] pub fn pop(&mut self) -> Option { self.ensure_invariant(); if self.is_empty() { None } else { let i = self.nbits - 1; let ret = self[i]; // (3) self.set(i, false); self.nbits = i; if self.nbits % B::bits() == 0 { // (2) self.storage.pop(); } Some(ret) } } /// Pushes a `bool` onto the end. /// /// # Examples /// /// ``` /// use bit_vec::BitVec; /// /// let mut bv = BitVec::new(); /// bv.push(true); /// bv.push(false); /// assert!(bv.eq_vec(&[true, false])); /// ``` #[inline] pub fn push(&mut self, elem: bool) { if self.nbits % B::bits() == 0 { self.storage.push(B::zero()); } let insert_pos = self.nbits; self.nbits = self.nbits.checked_add(1).expect("Capacity overflow"); self.set(insert_pos, elem); } /// Returns the total number of bits in this vector #[inline] pub fn len(&self) -> usize { self.nbits } /// Sets the number of bits that this BitVec considers initialized. /// /// Almost certainly can cause bad stuff. Only really intended for BitSet. #[inline] pub unsafe fn set_len(&mut self, len: usize) { self.nbits = len; } /// Returns true if there are no bits in this vector #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Clears all bits in this vector. #[inline] pub fn clear(&mut self) { self.ensure_invariant(); for w in &mut self.storage { *w = B::zero(); } } /// Shrinks the capacity of the underlying storage as much as /// possible. /// /// It will drop down as close as possible to the length but the /// allocator may still inform the underlying storage that there /// is space for a few more elements/bits. pub fn shrink_to_fit(&mut self) { self.storage.shrink_to_fit(); } } impl Default for BitVec { #[inline] fn default() -> Self { BitVec { storage: Vec::new(), nbits: 0 } } } impl FromIterator for BitVec { #[inline] fn from_iter>(iter: I) -> Self { let mut ret: Self = Default::default(); ret.extend(iter); ret } } impl Extend for BitVec { #[inline] fn extend>(&mut self, iterable: I) { self.ensure_invariant(); let iterator = iterable.into_iter(); let (min, _) = iterator.size_hint(); self.reserve(min); for element in iterator { self.push(element) } } } impl Clone for BitVec { #[inline] fn clone(&self) -> Self { self.ensure_invariant(); BitVec { storage: self.storage.clone(), nbits: self.nbits } } #[inline] fn clone_from(&mut self, source: &Self) { debug_assert!(source.is_last_block_fixed()); self.nbits = source.nbits; self.storage.clone_from(&source.storage); } } impl PartialOrd for BitVec { #[inline] fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl Ord for BitVec { #[inline] fn cmp(&self, other: &Self) -> Ordering { self.ensure_invariant(); debug_assert!(other.is_last_block_fixed()); let mut a = self.iter(); let mut b = other.iter(); loop { match (a.next(), b.next()) { (Some(x), Some(y)) => match x.cmp(&y) { Ordering::Equal => {} otherwise => return otherwise, }, (None, None) => return Ordering::Equal, (None, _) => return Ordering::Less, (_, None) => return Ordering::Greater, } } } } impl fmt::Debug for BitVec { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { self.ensure_invariant(); for bit in self { write!(fmt, "{}", if bit { 1 } else { 0 })?; } Ok(()) } } impl hash::Hash for BitVec { #[inline] fn hash(&self, state: &mut H) { self.ensure_invariant(); self.nbits.hash(state); for elem in self.blocks() { elem.hash(state); } } } impl cmp::PartialEq for BitVec { #[inline] fn eq(&self, other: &Self) -> bool { if self.nbits != other.nbits { self.ensure_invariant(); other.ensure_invariant(); return false; } self.blocks().zip(other.blocks()).all(|(w1, w2)| w1 == w2) } } impl cmp::Eq for BitVec {} /// An iterator for `BitVec`. #[derive(Clone)] pub struct Iter<'a, B: 'a = u32> { bit_vec: &'a BitVec, range: Range, } impl<'a, B: BitBlock> Iterator for Iter<'a, B> { type Item = bool; #[inline] fn next(&mut self) -> Option { // NB: indexing is slow for extern crates when it has to go through &TRUE or &FALSE // variables. get is more direct, and unwrap is fine since we're sure of the range. self.range.next().map(|i| self.bit_vec.get(i).unwrap()) } fn size_hint(&self) -> (usize, Option) { self.range.size_hint() } } impl<'a, B: BitBlock> DoubleEndedIterator for Iter<'a, B> { #[inline] fn next_back(&mut self) -> Option { self.range.next_back().map(|i| self.bit_vec.get(i).unwrap()) } } impl<'a, B: BitBlock> ExactSizeIterator for Iter<'a, B> {} impl<'a, B: BitBlock> IntoIterator for &'a BitVec { type Item = bool; type IntoIter = Iter<'a, B>; #[inline] fn into_iter(self) -> Iter<'a, B> { self.iter() } } pub struct IntoIter { bit_vec: BitVec, range: Range, } impl Iterator for IntoIter { type Item = bool; #[inline] fn next(&mut self) -> Option { self.range.next().map(|i| self.bit_vec.get(i).unwrap()) } } impl DoubleEndedIterator for IntoIter { #[inline] fn next_back(&mut self) -> Option { self.range.next_back().map(|i| self.bit_vec.get(i).unwrap()) } } impl ExactSizeIterator for IntoIter {} impl IntoIterator for BitVec { type Item = bool; type IntoIter = IntoIter; #[inline] fn into_iter(self) -> IntoIter { let nbits = self.nbits; IntoIter { bit_vec: self, range: 0..nbits } } } /// An iterator over the blocks of a `BitVec`. #[derive(Clone)] pub struct Blocks<'a, B: 'a> { iter: slice::Iter<'a, B>, } impl<'a, B: BitBlock> Iterator for Blocks<'a, B> { type Item = B; #[inline] fn next(&mut self) -> Option { self.iter.next().cloned() } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a, B: BitBlock> DoubleEndedIterator for Blocks<'a, B> { #[inline] fn next_back(&mut self) -> Option { self.iter.next_back().cloned() } } impl<'a, B: BitBlock> ExactSizeIterator for Blocks<'a, B> {} #[cfg(test)] mod tests { use super::{BitVec, Iter, Vec}; // This is stupid, but I want to differentiate from a "random" 32 const U32_BITS: usize = 32; #[test] fn test_to_str() { let zerolen = BitVec::new(); assert_eq!(format!("{:?}", zerolen), ""); let eightbits = BitVec::from_elem(8, false); assert_eq!(format!("{:?}", eightbits), "00000000") } #[test] fn test_0_elements() { let act = BitVec::new(); let exp = Vec::new(); assert!(act.eq_vec(&exp)); assert!(act.none() && act.all()); } #[test] fn test_1_element() { let mut act = BitVec::from_elem(1, false); assert!(act.eq_vec(&[false])); assert!(act.none() && !act.all()); act = BitVec::from_elem(1, true); assert!(act.eq_vec(&[true])); assert!(!act.none() && act.all()); } #[test] fn test_2_elements() { let mut b = BitVec::from_elem(2, false); b.set(0, true); b.set(1, false); assert_eq!(format!("{:?}", b), "10"); assert!(!b.none() && !b.all()); } #[test] fn test_10_elements() { let mut act; // all 0 act = BitVec::from_elem(10, false); assert!((act.eq_vec( &[false, false, false, false, false, false, false, false, false, false]))); assert!(act.none() && !act.all()); // all 1 act = BitVec::from_elem(10, true); assert!((act.eq_vec(&[true, true, true, true, true, true, true, true, true, true]))); assert!(!act.none() && act.all()); // mixed act = BitVec::from_elem(10, false); act.set(0, true); act.set(1, true); act.set(2, true); act.set(3, true); act.set(4, true); assert!((act.eq_vec(&[true, true, true, true, true, false, false, false, false, false]))); assert!(!act.none() && !act.all()); // mixed act = BitVec::from_elem(10, false); act.set(5, true); act.set(6, true); act.set(7, true); act.set(8, true); act.set(9, true); assert!((act.eq_vec(&[false, false, false, false, false, true, true, true, true, true]))); assert!(!act.none() && !act.all()); // mixed act = BitVec::from_elem(10, false); act.set(0, true); act.set(3, true); act.set(6, true); act.set(9, true); assert!((act.eq_vec(&[true, false, false, true, false, false, true, false, false, true]))); assert!(!act.none() && !act.all()); } #[test] fn test_31_elements() { let mut act; // all 0 act = BitVec::from_elem(31, false); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false])); assert!(act.none() && !act.all()); // all 1 act = BitVec::from_elem(31, true); assert!(act.eq_vec( &[true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true])); assert!(!act.none() && act.all()); // mixed act = BitVec::from_elem(31, false); act.set(0, true); act.set(1, true); act.set(2, true); act.set(3, true); act.set(4, true); act.set(5, true); act.set(6, true); act.set(7, true); assert!(act.eq_vec( &[true, true, true, true, true, true, true, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false])); assert!(!act.none() && !act.all()); // mixed act = BitVec::from_elem(31, false); act.set(16, true); act.set(17, true); act.set(18, true); act.set(19, true); act.set(20, true); act.set(21, true); act.set(22, true); act.set(23, true); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true, true, true, true, true, true, false, false, false, false, false, false, false])); assert!(!act.none() && !act.all()); // mixed act = BitVec::from_elem(31, false); act.set(24, true); act.set(25, true); act.set(26, true); act.set(27, true); act.set(28, true); act.set(29, true); act.set(30, true); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true, true, true, true, true])); assert!(!act.none() && !act.all()); // mixed act = BitVec::from_elem(31, false); act.set(3, true); act.set(17, true); act.set(30, true); assert!(act.eq_vec( &[false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, true])); assert!(!act.none() && !act.all()); } #[test] fn test_32_elements() { let mut act; // all 0 act = BitVec::from_elem(32, false); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false])); assert!(act.none() && !act.all()); // all 1 act = BitVec::from_elem(32, true); assert!(act.eq_vec( &[true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true])); assert!(!act.none() && act.all()); // mixed act = BitVec::from_elem(32, false); act.set(0, true); act.set(1, true); act.set(2, true); act.set(3, true); act.set(4, true); act.set(5, true); act.set(6, true); act.set(7, true); assert!(act.eq_vec( &[true, true, true, true, true, true, true, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false])); assert!(!act.none() && !act.all()); // mixed act = BitVec::from_elem(32, false); act.set(16, true); act.set(17, true); act.set(18, true); act.set(19, true); act.set(20, true); act.set(21, true); act.set(22, true); act.set(23, true); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true, true, true, true, true, true, false, false, false, false, false, false, false, false])); assert!(!act.none() && !act.all()); // mixed act = BitVec::from_elem(32, false); act.set(24, true); act.set(25, true); act.set(26, true); act.set(27, true); act.set(28, true); act.set(29, true); act.set(30, true); act.set(31, true); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true, true, true, true, true, true])); assert!(!act.none() && !act.all()); // mixed act = BitVec::from_elem(32, false); act.set(3, true); act.set(17, true); act.set(30, true); act.set(31, true); assert!(act.eq_vec( &[false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, true, true])); assert!(!act.none() && !act.all()); } #[test] fn test_33_elements() { let mut act; // all 0 act = BitVec::from_elem(33, false); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false])); assert!(act.none() && !act.all()); // all 1 act = BitVec::from_elem(33, true); assert!(act.eq_vec( &[true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true])); assert!(!act.none() && act.all()); // mixed act = BitVec::from_elem(33, false); act.set(0, true); act.set(1, true); act.set(2, true); act.set(3, true); act.set(4, true); act.set(5, true); act.set(6, true); act.set(7, true); assert!(act.eq_vec( &[true, true, true, true, true, true, true, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false])); assert!(!act.none() && !act.all()); // mixed act = BitVec::from_elem(33, false); act.set(16, true); act.set(17, true); act.set(18, true); act.set(19, true); act.set(20, true); act.set(21, true); act.set(22, true); act.set(23, true); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true, true, true, true, true, true, false, false, false, false, false, false, false, false, false])); assert!(!act.none() && !act.all()); // mixed act = BitVec::from_elem(33, false); act.set(24, true); act.set(25, true); act.set(26, true); act.set(27, true); act.set(28, true); act.set(29, true); act.set(30, true); act.set(31, true); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true, true, true, true, true, true, false])); assert!(!act.none() && !act.all()); // mixed act = BitVec::from_elem(33, false); act.set(3, true); act.set(17, true); act.set(30, true); act.set(31, true); act.set(32, true); assert!(act.eq_vec( &[false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true])); assert!(!act.none() && !act.all()); } #[test] fn test_equal_differing_sizes() { let v0 = BitVec::from_elem(10, false); let v1 = BitVec::from_elem(11, false); assert_ne!(v0, v1); } #[test] fn test_equal_greatly_differing_sizes() { let v0 = BitVec::from_elem(10, false); let v1 = BitVec::from_elem(110, false); assert_ne!(v0, v1); } #[test] fn test_equal_sneaky_small() { let mut a = BitVec::from_elem(1, false); a.set(0, true); let mut b = BitVec::from_elem(1, true); b.set(0, true); assert_eq!(a, b); } #[test] fn test_equal_sneaky_big() { let mut a = BitVec::from_elem(100, false); for i in 0..100 { a.set(i, true); } let mut b = BitVec::from_elem(100, true); for i in 0..100 { b.set(i, true); } assert_eq!(a, b); } #[test] fn test_from_bytes() { let bit_vec = BitVec::from_bytes(&[0b10110110, 0b00000000, 0b11111111]); let str = concat!("10110110", "00000000", "11111111"); assert_eq!(format!("{:?}", bit_vec), str); } #[test] fn test_to_bytes() { let mut bv = BitVec::from_elem(3, true); bv.set(1, false); assert_eq!(bv.to_bytes(), [0b10100000]); let mut bv = BitVec::from_elem(9, false); bv.set(2, true); bv.set(8, true); assert_eq!(bv.to_bytes(), [0b00100000, 0b10000000]); } #[test] fn test_from_bools() { let bools = vec![true, false, true, true]; let bit_vec: BitVec = bools.iter().map(|n| *n).collect(); assert_eq!(format!("{:?}", bit_vec), "1011"); } #[test] fn test_to_bools() { let bools = vec![false, false, true, false, false, true, true, false]; assert_eq!(BitVec::from_bytes(&[0b00100110]).iter().collect::>(), bools); } #[test] fn test_bit_vec_iterator() { let bools = vec![true, false, true, true]; let bit_vec: BitVec = bools.iter().map(|n| *n).collect(); assert_eq!(bit_vec.iter().collect::>(), bools); let long: Vec<_> = (0..10000).map(|i| i % 2 == 0).collect(); let bit_vec: BitVec = long.iter().map(|n| *n).collect(); assert_eq!(bit_vec.iter().collect::>(), long) } #[test] fn test_small_difference() { let mut b1 = BitVec::from_elem(3, false); let mut b2 = BitVec::from_elem(3, false); b1.set(0, true); b1.set(1, true); b2.set(1, true); b2.set(2, true); assert!(b1.difference(&b2)); assert!(b1[0]); assert!(!b1[1]); assert!(!b1[2]); } #[test] fn test_big_difference() { let mut b1 = BitVec::from_elem(100, false); let mut b2 = BitVec::from_elem(100, false); b1.set(0, true); b1.set(40, true); b2.set(40, true); b2.set(80, true); assert!(b1.difference(&b2)); assert!(b1[0]); assert!(!b1[40]); assert!(!b1[80]); } #[test] fn test_small_xor() { let mut a = BitVec::from_bytes(&[0b0011]); let b = BitVec::from_bytes(&[0b0101]); let c = BitVec::from_bytes(&[0b0110]); assert!(a.xor(&b)); assert_eq!(a,c); } #[test] fn test_small_xnor() { let mut a = BitVec::from_bytes(&[0b0011]); let b = BitVec::from_bytes(&[0b1111_0101]); let c = BitVec::from_bytes(&[0b1001]); assert!(a.xnor(&b)); assert_eq!(a,c); } #[test] fn test_small_nand() { let mut a = BitVec::from_bytes(&[0b1111_0011]); let b = BitVec::from_bytes(&[0b1111_0101]); let c = BitVec::from_bytes(&[0b1110]); assert!(a.nand(&b)); assert_eq!(a,c); } #[test] fn test_small_nor() { let mut a = BitVec::from_bytes(&[0b0011]); let b = BitVec::from_bytes(&[0b1111_0101]); let c = BitVec::from_bytes(&[0b1000]); assert!(a.nor(&b)); assert_eq!(a,c); } #[test] fn test_big_xor() { let mut a = BitVec::from_bytes(&[ // 88 bits 0, 0, 0b00010100, 0, 0, 0, 0, 0b00110100, 0, 0, 0]); let b = BitVec::from_bytes(&[ // 88 bits 0, 0, 0b00010100, 0, 0, 0, 0, 0, 0, 0, 0b00110100]); let c = BitVec::from_bytes(&[ // 88 bits 0, 0, 0, 0, 0, 0, 0, 0b00110100, 0, 0, 0b00110100]); assert!(a.xor(&b)); assert_eq!(a,c); } #[test] fn test_big_xnor() { let mut a = BitVec::from_bytes(&[ // 88 bits 0, 0, 0b00010100, 0, 0, 0, 0, 0b00110100, 0, 0, 0]); let b = BitVec::from_bytes(&[ // 88 bits 0, 0, 0b00010100, 0, 0, 0, 0, 0, 0, 0, 0b00110100]); let c = BitVec::from_bytes(&[ // 88 bits !0, !0, !0, !0, !0, !0, !0, !0b00110100, !0, !0, !0b00110100]); assert!(a.xnor(&b)); assert_eq!(a,c); } #[test] fn test_small_clear() { let mut b = BitVec::from_elem(14, true); assert!(!b.none() && b.all()); b.clear(); assert!(b.none() && !b.all()); } #[test] fn test_big_clear() { let mut b = BitVec::from_elem(140, true); assert!(!b.none() && b.all()); b.clear(); assert!(b.none() && !b.all()); } #[test] fn test_bit_vec_lt() { let mut a = BitVec::from_elem(5, false); let mut b = BitVec::from_elem(5, false); assert!(!(a < b) && !(b < a)); b.set(2, true); assert!(a < b); a.set(3, true); assert!(a < b); a.set(2, true); assert!(!(a < b) && b < a); b.set(0, true); assert!(a < b); } #[test] fn test_ord() { let mut a = BitVec::from_elem(5, false); let mut b = BitVec::from_elem(5, false); assert!(a <= b && a >= b); a.set(1, true); assert!(a > b && a >= b); assert!(b < a && b <= a); b.set(1, true); b.set(2, true); assert!(b > a && b >= a); assert!(a < b && a <= b); } #[test] fn test_small_bit_vec_tests() { let v = BitVec::from_bytes(&[0]); assert!(!v.all()); assert!(!v.any()); assert!(v.none()); let v = BitVec::from_bytes(&[0b00010100]); assert!(!v.all()); assert!(v.any()); assert!(!v.none()); let v = BitVec::from_bytes(&[0xFF]); assert!(v.all()); assert!(v.any()); assert!(!v.none()); } #[test] fn test_big_bit_vec_tests() { let v = BitVec::from_bytes(&[ // 88 bits 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); assert!(!v.all()); assert!(!v.any()); assert!(v.none()); let v = BitVec::from_bytes(&[ // 88 bits 0, 0, 0b00010100, 0, 0, 0, 0, 0b00110100, 0, 0, 0]); assert!(!v.all()); assert!(v.any()); assert!(!v.none()); let v = BitVec::from_bytes(&[ // 88 bits 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]); assert!(v.all()); assert!(v.any()); assert!(!v.none()); } #[test] fn test_bit_vec_push_pop() { let mut s = BitVec::from_elem(5 * U32_BITS - 2, false); assert_eq!(s.len(), 5 * U32_BITS - 2); assert_eq!(s[5 * U32_BITS - 3], false); s.push(true); s.push(true); assert_eq!(s[5 * U32_BITS - 2], true); assert_eq!(s[5 * U32_BITS - 1], true); // Here the internal vector will need to be extended s.push(false); assert_eq!(s[5 * U32_BITS], false); s.push(false); assert_eq!(s[5 * U32_BITS + 1], false); assert_eq!(s.len(), 5 * U32_BITS + 2); // Pop it all off assert_eq!(s.pop(), Some(false)); assert_eq!(s.pop(), Some(false)); assert_eq!(s.pop(), Some(true)); assert_eq!(s.pop(), Some(true)); assert_eq!(s.len(), 5 * U32_BITS - 2); } #[test] fn test_bit_vec_truncate() { let mut s = BitVec::from_elem(5 * U32_BITS, true); assert_eq!(s, BitVec::from_elem(5 * U32_BITS, true)); assert_eq!(s.len(), 5 * U32_BITS); s.truncate(4 * U32_BITS); assert_eq!(s, BitVec::from_elem(4 * U32_BITS, true)); assert_eq!(s.len(), 4 * U32_BITS); // Truncating to a size > s.len() should be a noop s.truncate(5 * U32_BITS); assert_eq!(s, BitVec::from_elem(4 * U32_BITS, true)); assert_eq!(s.len(), 4 * U32_BITS); s.truncate(3 * U32_BITS - 10); assert_eq!(s, BitVec::from_elem(3 * U32_BITS - 10, true)); assert_eq!(s.len(), 3 * U32_BITS - 10); s.truncate(0); assert_eq!(s, BitVec::from_elem(0, true)); assert_eq!(s.len(), 0); } #[test] fn test_bit_vec_reserve() { let mut s = BitVec::from_elem(5 * U32_BITS, true); // Check capacity assert!(s.capacity() >= 5 * U32_BITS); s.reserve(2 * U32_BITS); assert!(s.capacity() >= 7 * U32_BITS); s.reserve(7 * U32_BITS); assert!(s.capacity() >= 12 * U32_BITS); s.reserve_exact(7 * U32_BITS); assert!(s.capacity() >= 12 * U32_BITS); s.reserve(7 * U32_BITS + 1); assert!(s.capacity() >= 12 * U32_BITS + 1); // Check that length hasn't changed assert_eq!(s.len(), 5 * U32_BITS); s.push(true); s.push(false); s.push(true); assert_eq!(s[5 * U32_BITS - 1], true); assert_eq!(s[5 * U32_BITS - 0], true); assert_eq!(s[5 * U32_BITS + 1], false); assert_eq!(s[5 * U32_BITS + 2], true); } #[test] fn test_bit_vec_grow() { let mut bit_vec = BitVec::from_bytes(&[0b10110110, 0b00000000, 0b10101010]); bit_vec.grow(32, true); assert_eq!(bit_vec, BitVec::from_bytes(&[0b10110110, 0b00000000, 0b10101010, 0xFF, 0xFF, 0xFF, 0xFF])); bit_vec.grow(64, false); assert_eq!(bit_vec, BitVec::from_bytes(&[0b10110110, 0b00000000, 0b10101010, 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0])); bit_vec.grow(16, true); assert_eq!(bit_vec, BitVec::from_bytes(&[0b10110110, 0b00000000, 0b10101010, 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF])); } #[test] fn test_bit_vec_extend() { let mut bit_vec = BitVec::from_bytes(&[0b10110110, 0b00000000, 0b11111111]); let ext = BitVec::from_bytes(&[0b01001001, 0b10010010, 0b10111101]); bit_vec.extend(ext.iter()); assert_eq!(bit_vec, BitVec::from_bytes(&[0b10110110, 0b00000000, 0b11111111, 0b01001001, 0b10010010, 0b10111101])); } #[test] fn test_bit_vec_append() { // Append to BitVec that holds a multiple of U32_BITS bits let mut a = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011]); let mut b = BitVec::new(); b.push(false); b.push(true); b.push(true); a.append(&mut b); assert_eq!(a.len(), 35); assert_eq!(b.len(), 0); assert!(b.capacity() >= 3); assert!(a.eq_vec(&[true, false, true, false, false, false, false, false, false, false, false, true, false, false, true, false, true, false, false, true, false, false, true, false, false, false, true, true, false, false, true, true, false, true, true])); // Append to arbitrary BitVec let mut a = BitVec::new(); a.push(true); a.push(false); let mut b = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b10010101]); a.append(&mut b); assert_eq!(a.len(), 42); assert_eq!(b.len(), 0); assert!(b.capacity() >= 40); assert!(a.eq_vec(&[true, false, true, false, true, false, false, false, false, false, false, false, false, true, false, false, true, false, true, false, false, true, false, false, true, false, false, false, true, true, false, false, true, true, true, false, false, true, false, true, false, true])); // Append to empty BitVec let mut a = BitVec::new(); let mut b = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b10010101]); a.append(&mut b); assert_eq!(a.len(), 40); assert_eq!(b.len(), 0); assert!(b.capacity() >= 40); assert!(a.eq_vec(&[true, false, true, false, false, false, false, false, false, false, false, true, false, false, true, false, true, false, false, true, false, false, true, false, false, false, true, true, false, false, true, true, true, false, false, true, false, true, false, true])); // Append empty BitVec let mut a = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b10010101]); let mut b = BitVec::new(); a.append(&mut b); assert_eq!(a.len(), 40); assert_eq!(b.len(), 0); assert!(a.eq_vec(&[true, false, true, false, false, false, false, false, false, false, false, true, false, false, true, false, true, false, false, true, false, false, true, false, false, false, true, true, false, false, true, true, true, false, false, true, false, true, false, true])); } #[test] fn test_bit_vec_split_off() { // Split at 0 let mut a = BitVec::new(); a.push(true); a.push(false); a.push(false); a.push(true); let b = a.split_off(0); assert_eq!(a.len(), 0); assert_eq!(b.len(), 4); assert!(b.eq_vec(&[true, false, false, true])); // Split at last bit a.truncate(0); a.push(true); a.push(false); a.push(false); a.push(true); let b = a.split_off(4); assert_eq!(a.len(), 4); assert_eq!(b.len(), 0); assert!(a.eq_vec(&[true, false, false, true])); // Split at block boundary let mut a = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b11110011]); let b = a.split_off(32); assert_eq!(a.len(), 32); assert_eq!(b.len(), 8); assert!(a.eq_vec(&[true, false, true, false, false, false, false, false, false, false, false, true, false, false, true, false, true, false, false, true, false, false, true, false, false, false, true, true, false, false, true, true])); assert!(b.eq_vec(&[true, true, true, true, false, false, true, true])); // Don't split at block boundary let mut a = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01101011, 0b10101101]); let b = a.split_off(13); assert_eq!(a.len(), 13); assert_eq!(b.len(), 35); assert!(a.eq_vec(&[true, false, true, false, false, false, false, false, false, false, false, true, false])); assert!(b.eq_vec(&[false, true, false, true, false, false, true, false, false, true, false, false, false, true, true, false, false, true, true, false, true, true, false, true, false, true, true, true, false, true, false, true, true, false, true])); } #[test] fn test_into_iter() { let bools = vec![true, false, true, true]; let bit_vec: BitVec = bools.iter().map(|n| *n).collect(); let mut iter = bit_vec.into_iter(); assert_eq!(Some(true), iter.next()); assert_eq!(Some(false), iter.next()); assert_eq!(Some(true), iter.next()); assert_eq!(Some(true), iter.next()); assert_eq!(None, iter.next()); assert_eq!(None, iter.next()); let bit_vec: BitVec = bools.iter().map(|n| *n).collect(); let mut iter = bit_vec.into_iter(); assert_eq!(Some(true), iter.next_back()); assert_eq!(Some(true), iter.next_back()); assert_eq!(Some(false), iter.next_back()); assert_eq!(Some(true), iter.next_back()); assert_eq!(None, iter.next_back()); assert_eq!(None, iter.next_back()); let bit_vec: BitVec = bools.iter().map(|n| *n).collect(); let mut iter = bit_vec.into_iter(); assert_eq!(Some(true), iter.next_back()); assert_eq!(Some(true), iter.next()); assert_eq!(Some(false), iter.next()); assert_eq!(Some(true), iter.next_back()); assert_eq!(None, iter.next()); assert_eq!(None, iter.next_back()); } #[test] fn iter() { let b = BitVec::with_capacity(10); let _a: Iter = b.iter(); } #[cfg(feature="serde")] #[test] fn test_serialization() { let bit_vec: BitVec = BitVec::new(); let serialized = serde_json::to_string(&bit_vec).unwrap(); let unserialized: BitVec = serde_json::from_str(&serialized).unwrap(); assert_eq!(bit_vec, unserialized); let bools = vec![true, false, true, true]; let bit_vec: BitVec = bools.iter().map(|n| *n).collect(); let serialized = serde_json::to_string(&bit_vec).unwrap(); let unserialized = serde_json::from_str(&serialized).unwrap(); assert_eq!(bit_vec, unserialized); } #[test] fn test_bit_vec_unaligned_small_append() { let mut a = BitVec::from_elem(8, false); a.set(7, true); let mut b = BitVec::from_elem(16, false); b.set(14, true); let mut c = BitVec::from_elem(8, false); c.set(6, true); c.set(7, true); a.append(&mut b); a.append(&mut c); assert_eq!(&[01, 00, 02, 03][..], &*a.to_bytes()); } #[test] fn test_bit_vec_unaligned_large_append() { let mut a = BitVec::from_elem(48, false); a.set(47, true); let mut b = BitVec::from_elem(48, false); b.set(46, true); let mut c = BitVec::from_elem(48, false); c.set(46, true); c.set(47, true); a.append(&mut b); a.append(&mut c); assert_eq!(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03][..], &*a.to_bytes()); } #[test] fn test_bit_vec_append_aligned_to_unaligned() { let mut a = BitVec::from_elem(2, true); let mut b = BitVec::from_elem(32, false); let mut c = BitVec::from_elem(8, true); a.append(&mut b); a.append(&mut c); assert_eq!(&[0xc0, 0x00, 0x00, 0x00, 0x3f, 0xc0][..], &*a.to_bytes()); } }