euclid-0.20.0/.gitignore010064400017500001750000000000221350247213200132400ustar0000000000000000Cargo.lock target euclid-0.20.0/.travis.yml010064400017500001750000000007361350247213200133750ustar0000000000000000language: rust rust: - 1.23.0 - stable - beta - nightly env: - FEATURES="" - FEATURES="--features serde" matrix: include: - rust: stable env: FEATURES="" - rust: stable env: FEATURES="--features mint" - rust: beta env: FEATURES="" - rust: nightly env: FEATURES="--features unstable" - rust: nightly env: FEATURES="--features unstable,serde" script: - cargo build $FEATURES - cargo test --verbose $FEATURES euclid-0.20.0/COPYRIGHT010064400017500001750000000005011350662705300125550ustar0000000000000000Licensed under the Apache License, Version 2.0 or the MIT license , at your option. All files in the project carrying such notice may not be copied, modified, or distributed except according to those terms. euclid-0.20.0/Cargo.toml.orig010064400017500001750000000010611351365422000141450ustar0000000000000000[package] name = "euclid" version = "0.20.0" authors = ["The Servo Project Developers"] description = "Geometry primitives" documentation = "https://docs.rs/euclid/" repository = "https://github.com/servo/euclid" keywords = ["matrix", "vector", "linear-algebra", "geometry"] categories = ["science"] license = "MIT / Apache-2.0" [features] unstable = [] [dependencies] num-traits = { version = "0.2" } serde = { version = "1.0", features = ["serde_derive"], optional = true } mint = {version = "0.5.1", optional = true} [dev-dependencies] serde_test = "1.0" euclid-0.20.0/Cargo.toml0000644000000021200000000000000104100ustar00# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g. crates.io) dependencies # # If you believe there's an error in this file please file an # issue against the rust-lang/cargo repository. If you're # editing this file be aware that the upstream Cargo.toml # will likely look very different (and much more reasonable) [package] name = "euclid" version = "0.20.0" authors = ["The Servo Project Developers"] description = "Geometry primitives" documentation = "https://docs.rs/euclid/" keywords = ["matrix", "vector", "linear-algebra", "geometry"] categories = ["science"] license = "MIT / Apache-2.0" repository = "https://github.com/servo/euclid" [dependencies.mint] version = "0.5.1" optional = true [dependencies.num-traits] version = "0.2" [dependencies.serde] version = "1.0" features = ["serde_derive"] optional = true [dev-dependencies.serde_test] version = "1.0" [features] unstable = [] euclid-0.20.0/Cargo.toml.orig0000644000000021210000000000000113500ustar00# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies # # If you believe there's an error in this file please file an # issue against the rust-lang/cargo repository. If you're # editing this file be aware that the upstream Cargo.toml # will likely look very different (and much more reasonable) [package] name = "euclid" version = "0.20.0" authors = ["The Servo Project Developers"] description = "Geometry primitives" documentation = "https://docs.rs/euclid/" keywords = ["matrix", "vector", "linear-algebra", "geometry"] categories = ["science"] license = "MIT / Apache-2.0" repository = "https://github.com/servo/euclid" [dependencies.mint] version = "0.5.1" optional = true [dependencies.num-traits] version = "0.2" [dependencies.serde] version = "1.0" features = ["serde_derive"] optional = true [dev-dependencies.serde_test] version = "1.0" [features] unstable = [] euclid-0.20.0/LICENSE-APACHE010064400017500001750000000251371350662705300132220ustar0000000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. euclid-0.20.0/LICENSE-MIT010064400017500001750000000020531350662705300127220ustar0000000000000000Copyright (c) 2012-2013 Mozilla Foundation Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. euclid-0.20.0/README.md010064400017500001750000000003651350662717500125560ustar0000000000000000# euclid This is a small library for geometric types with a focus on 2d graphics and layout. * [Documentation](https://docs.rs/euclid/) * [Release notes](https://github.com/servo/euclid/releases) * [crates.io](https://crates.io/crates/euclid) euclid-0.20.0/src/approxeq.rs010064400017500001750000000022531350662717500142710ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /// Trait for testing approximate equality pub trait ApproxEq { fn approx_epsilon() -> Eps; fn approx_eq(&self, other: &Self) -> bool; fn approx_eq_eps(&self, other: &Self, approx_epsilon: &Eps) -> bool; } macro_rules! approx_eq { ($ty:ty, $eps:expr) => ( impl ApproxEq<$ty> for $ty { #[inline] fn approx_epsilon() -> $ty { $eps } #[inline] fn approx_eq(&self, other: &$ty) -> bool { self.approx_eq_eps(other, &$eps) } #[inline] fn approx_eq_eps(&self, other: &$ty, approx_epsilon: &$ty) -> bool { (*self - *other).abs() < *approx_epsilon } } ) } approx_eq!(f32, 1.0e-6); approx_eq!(f64, 1.0e-6); euclid-0.20.0/src/approxord.rs010064400017500001750000000020531350662717500144460ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /// Utilities for testing approximate ordering - especially true for /// floating point types, where NaN's cannot be ordered. pub fn min(x: T, y: T) -> T { if x <= y { x } else { y } } pub fn max(x: T, y: T) -> T { if x >= y { x } else { y } } #[cfg(test)] mod tests { use super::*; #[test] fn test_min() { assert!(min(0u32, 1u32) == 0u32); assert!(min(-1.0f32, 0.0f32) == -1.0f32); } #[test] fn test_max() { assert!(max(0u32, 1u32) == 1u32); assert!(max(-1.0f32, 0.0f32) == 0.0f32); } } euclid-0.20.0/src/box2d.rs010064400017500001750000000550241351312157200134400ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use scale::Scale; use num::*; use rect::Rect; use point::{point2, Point2D}; use vector::{vec2, Vector2D}; use side_offsets::SideOffsets2D; use size::Size2D; use nonempty::NonEmpty; use approxord::{min, max}; use num_traits::NumCast; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; use core::borrow::Borrow; use core::cmp::PartialOrd; use core::fmt; use core::hash::{Hash, Hasher}; use core::ops::{Add, Div, Mul, Sub}; /// An axis aligned rectangle represented by its minimum and maximum coordinates. #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")))] pub struct Box2D { pub min: Point2D, pub max: Point2D, } impl Hash for Box2D { fn hash(&self, h: &mut H) { self.min.hash(h); self.max.hash(h); } } impl Copy for Box2D {} impl Clone for Box2D { fn clone(&self) -> Self { *self } } impl PartialEq> for Box2D { fn eq(&self, other: &Self) -> bool { self.min.eq(&other.min) && self.max.eq(&other.max) } } impl Eq for Box2D {} impl fmt::Debug for Box2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Box2D({:?}, {:?})", self.min, self.max) } } impl fmt::Display for Box2D { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { write!(formatter, "Box2D({}, {})", self.min, self.max) } } impl Box2D { /// Constructor. pub fn new(min: Point2D, max: Point2D) -> Self { Box2D { min, max, } } } impl Box2D where T: Copy + Zero + PartialOrd, { /// Creates a Box2D of the given size, at offset zero. #[inline] pub fn from_size(size: Size2D) -> Self { let zero = Point2D::zero(); let point = size.to_vector().to_point(); Box2D::from_points(&[zero, point]) } } impl Box2D where T: Copy + PartialOrd, { /// Returns true if the box has a negative area. /// /// The common interpretation for a negative box is to consider it empty. It can be obtained /// by calculating the intersection of two boxes that do not intersect. #[inline] pub fn is_negative(&self) -> bool { self.max.x < self.min.x || self.max.y < self.min.y } /// Returns true if the size is zero or negative. #[inline] pub fn is_empty_or_negative(&self) -> bool { self.max.x <= self.min.x || self.max.y <= self.min.y } #[inline] pub fn to_non_empty(&self) -> Option> { if self.is_empty_or_negative() { return None; } Some(NonEmpty(*self)) } /// Returns true if the two boxes intersect. #[inline] pub fn intersects(&self, other: &Self) -> bool { self.min.x < other.max.x && self.max.x > other.min.x && self.min.y < other.max.y && self.max.y > other.min.y } /// Computes the intersection of two boxes. /// /// The result is a negative box if the boxes do not intersect. #[inline] pub fn intersection(&self, other: &Self) -> Self { Box2D { min: point2( max(self.min.x, other.min.x), max(self.min.y, other.min.y), ), max: point2( min(self.max.x, other.max.x), min(self.max.y, other.max.y), ) } } /// Computes the intersection of two boxes, returning `None` if the boxes do not intersect. #[inline] pub fn try_intersection(&self, other: &Self) -> Option> { let intersection = self.intersection(other); if intersection.is_negative() { return None; } Some(NonEmpty(intersection)) } } impl Box2D where T: Copy + Add, { /// Returns the same box, translated by a vector. #[inline] pub fn translate(&self, by: Vector2D) -> Self { Box2D { min: self.min + by, max: self.max + by, } } } impl Box2D where T: Copy + PartialOrd + Zero, { /// Returns true if this box contains the point. Points are considered /// in the box if they are on the front, left or top faces, but outside if they /// are on the back, right or bottom faces. #[inline] pub fn contains(&self, p: Point2D) -> bool { self.min.x <= p.x && p.x < self.max.x && self.min.y <= p.y && p.y < self.max.y } } impl Box2D where T: Copy + PartialOrd + Zero + Sub, { /// Returns true if this box contains the interior of the other box. Always /// returns true if other is empty, and always returns false if other is /// nonempty but this box is empty. #[inline] pub fn contains_box(&self, other: &Self) -> bool { other.is_empty_or_negative() || (self.min.x <= other.min.x && other.max.x <= self.max.x && self.min.y <= other.min.y && other.max.y <= self.max.y) } } impl Box2D where T: Copy + Sub, { #[inline] pub fn size(&self)-> Size2D { (self.max - self.min).to_size() } #[inline] pub fn to_rect(&self) -> Rect { Rect { origin: self.min, size: self.size(), } } } impl Box2D where T: Copy + PartialEq + Add + Sub, { /// Inflates the box by the specified sizes on each side respectively. #[inline] #[must_use] pub fn inflate(&self, width: T, height: T) -> Self { Box2D { min: point2(self.min.x - width, self.min.y - height), max: point2(self.max.x + width, self.max.y + height), } } } impl Box2D where T: Copy + Zero + PartialOrd + Add + Sub, { /// Calculate the size and position of an inner box. /// /// Subtracts the side offsets from all sides. The horizontal, vertical /// and applicate offsets must not be larger than the original side length. pub fn inner_box(&self, offsets: SideOffsets2D) -> Self { Box2D { min: self.min + vec2(offsets.left, offsets.top), max: self.max - vec2(offsets.right, offsets.bottom), } } /// Calculate the b and position of an outer box. /// /// Add the offsets to all sides. The expanded box is returned. pub fn outer_box(&self, offsets: SideOffsets2D) -> Self { Box2D { min: self.min - vec2(offsets.left, offsets.top), max: self.max + vec2(offsets.right, offsets.bottom), } } } impl Box2D where T: Copy + Zero + PartialOrd, { /// Returns the smallest box containing all of the provided points. pub fn from_points(points: I) -> Self where I: IntoIterator, I::Item: Borrow>, { let mut points = points.into_iter(); // Need at least 2 different points for a valid box (ie: volume > 0). let (mut min_x, mut min_y) = match points.next() { Some(first) => (first.borrow().x, first.borrow().y), None => return Box2D::zero(), }; let (mut max_x, mut max_y) = (min_x, min_y); { let mut assign_min_max = |point: I::Item| { let p = point.borrow(); if p.x < min_x { min_x = p.x } if p.x > max_x { max_x = p.x } if p.y < min_y { min_y = p.y } if p.y > max_y { max_y = p.y } }; match points.next() { Some(second) => assign_min_max(second), None => return Box2D::zero(), } for point in points { assign_min_max(point); } } Box2D { min: point2(min_x, min_y), max: point2(max_x, max_y), } } } impl Box2D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this box and another box. /// /// `t` is expected to be between zero and one. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { Self::new( self.min.lerp(other.min, t), self.max.lerp(other.max, t), ) } } impl Box2D where T: Copy + One + Add + Div, { pub fn center(&self) -> Point2D { let two = T::one() + T::one(); (self.min + self.max.to_vector()) / two } } impl Box2D where T: Copy + PartialOrd, { #[inline] pub fn union(&self, other: &Self) -> Self { Box2D { min: point2( min(self.min.x, other.min.x), min(self.min.y, other.min.y), ), max: point2( max(self.max.x, other.max.x), max(self.max.y, other.max.y), ), } } } impl Box2D where T: Copy, { #[inline] pub fn scale(&self, x: S, y: S) -> Self where T: Mul { Box2D { min: point2(self.min.x * x, self.min.y * y), max: point2(self.max.x * x, self.max.y * y), } } } impl Box2D where T: Copy + Mul + Sub, { #[inline] pub fn area(&self) -> T { let size = self.size(); size.width * size.height } } impl Box2D where T: Copy + Zero, { /// Constructor, setting all sides to zero. pub fn zero() -> Self { Box2D::new(Point2D::zero(), Point2D::zero()) } } impl Box2D where T: PartialEq, { /// Returns true if the size is zero. #[inline] pub fn is_empty(&self) -> bool { self.min.x == self.max.x || self.min.y == self.max.y } } impl Mul for Box2D where T: Copy + Mul, { type Output = Self; #[inline] fn mul(self, scale: T) -> Self { Box2D::new(self.min * scale, self.max * scale) } } impl Div for Box2D where T: Copy + Div, { type Output = Self; #[inline] fn div(self, scale: T) -> Self { Box2D::new(self.min / scale, self.max / scale) } } impl Mul> for Box2D where T: Copy + Mul, { type Output = Box2D; #[inline] fn mul(self, scale: Scale) -> Box2D { Box2D::new(self.min * scale, self.max * scale) } } impl Div> for Box2D where T: Copy + Div, { type Output = Box2D; #[inline] fn div(self, scale: Scale) -> Box2D { Box2D::new(self.min / scale, self.max / scale) } } impl Box2D where T: Copy, { /// Drop the units, preserving only the numeric value. pub fn to_untyped(&self) -> Box2D { Box2D::new(self.min.to_untyped(), self.max.to_untyped()) } /// Tag a unitless value with units. pub fn from_untyped(c: &Box2D) -> Box2D { Box2D::new( Point2D::from_untyped(c.min), Point2D::from_untyped(c.max), ) } } impl Box2D where T0: NumCast + Copy, { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. pub fn cast(&self) -> Box2D { Box2D::new( self.min.cast(), self.max.cast(), ) } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. pub fn try_cast(&self) -> Option> { match (self.min.try_cast(), self.max.try_cast()) { (Some(a), Some(b)) => Some(Box2D::new(a, b)), _ => None, } } } impl Box2D where T: Round, { /// Return a box with edges rounded to integer coordinates, such that /// the returned box has the same set of pixel centers as the original /// one. /// Values equal to 0.5 round up. /// Suitable for most places where integral device coordinates /// are needed, but note that any translation should be applied first to /// avoid pixel rounding errors. /// Note that this is *not* rounding to nearest integer if the values are negative. /// They are always rounding as floor(n + 0.5). #[must_use] pub fn round(&self) -> Self { Box2D::new(self.min.round(), self.max.round()) } } impl Box2D where T: Floor + Ceil, { /// Return a box with faces/edges rounded to integer coordinates, such that /// the original box contains the resulting box. #[must_use] pub fn round_in(&self) -> Self { let min = self.min.ceil(); let max = self.max.floor(); Box2D { min, max } } /// Return a box with faces/edges rounded to integer coordinates, such that /// the original box is contained in the resulting box. #[must_use] pub fn round_out(&self) -> Self { let min = self.min.floor(); let max = self.max.ceil(); Box2D { min, max } } } // Convenience functions for common casts impl Box2D { /// Cast into an `f32` box. pub fn to_f32(&self) -> Box2D { self.cast() } /// Cast into an `f64` box. pub fn to_f64(&self) -> Box2D { self.cast() } /// Cast into an `usize` box, truncating decimals if any. /// /// When casting from floating point boxes, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. pub fn to_usize(&self) -> Box2D { self.cast() } /// Cast into an `u32` box, truncating decimals if any. /// /// When casting from floating point boxes, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. pub fn to_u32(&self) -> Box2D { self.cast() } /// Cast into an `i32` box, truncating decimals if any. /// /// When casting from floating point boxes, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. pub fn to_i32(&self) -> Box2D { self.cast() } /// Cast into an `i64` box, truncating decimals if any. /// /// When casting from floating point boxes, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. pub fn to_i64(&self) -> Box2D { self.cast() } } impl From> for Box2D where T: Copy + Zero + PartialOrd, { fn from(b: Size2D) -> Self { Self::from_size(b) } } #[cfg(test)] mod tests { use side_offsets::SideOffsets2D; use {Point2D, point2, vec2, size2}; use default::Box2D; //use super::*; #[test] fn test_size() { let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); assert_eq!(b.size().width, 20.0); assert_eq!(b.size().height, 20.0); } #[test] fn test_center() { let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); assert_eq!(b.center(), Point2D::zero()); } #[test] fn test_area() { let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); assert_eq!(b.area(), 400.0); } #[test] fn test_from_points() { let b = Box2D::from_points(&[point2(50.0, 160.0), point2(100.0, 25.0)]); assert_eq!(b.min, point2(50.0, 25.0)); assert_eq!(b.max, point2(100.0, 160.0)); } #[test] fn test_round_in() { let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_in(); assert_eq!(b.min.x, -25.0); assert_eq!(b.min.y, -40.0); assert_eq!(b.max.x, 60.0); assert_eq!(b.max.y, 36.0); } #[test] fn test_round_out() { let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_out(); assert_eq!(b.min.x,-26.0); assert_eq!(b.min.y, -41.0); assert_eq!(b.max.x, 61.0); assert_eq!(b.max.y, 37.0); } #[test] fn test_round() { let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round(); assert_eq!(b.min.x,-26.0); assert_eq!(b.min.y, -40.0); assert_eq!(b.max.x, 60.0); assert_eq!(b.max.y, 37.0); } #[test] fn test_from_size() { let b = Box2D::from_size(size2(30.0, 40.0)); assert!(b.min == Point2D::zero()); assert!(b.size().width == 30.0); assert!(b.size().height == 40.0); } #[test] fn test_inner_box() { let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]); let b = b.inner_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0)); assert_eq!(b.max.x, 80.0); assert_eq!(b.max.y, 155.0); assert_eq!(b.min.x, 60.0); assert_eq!(b.min.y, 35.0); } #[test] fn test_outer_box() { let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]); let b = b.outer_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0)); assert_eq!(b.max.x, 120.0); assert_eq!(b.max.y, 165.0); assert_eq!(b.min.x, 40.0); assert_eq!(b.min.y, 15.0); } #[test] fn test_translate() { let size = size2(15.0, 15.0); let mut center = (size / 2.0).to_vector().to_point(); let b = Box2D::from_size(size); assert_eq!(b.center(), center); let translation = vec2(10.0, 2.5); let b = b.translate(translation); center += translation; assert_eq!(b.center(), center); assert_eq!(b.max.x, 25.0); assert_eq!(b.max.y, 17.5); assert_eq!(b.min.x, 10.0); assert_eq!(b.min.y, 2.5); } #[test] fn test_union() { let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(0.0, 20.0)]); let b2 = Box2D::from_points(&[point2(0.0, 20.0), point2(20.0, -20.0)]); let b = b1.union(&b2); assert_eq!(b.max.x, 20.0); assert_eq!(b.max.y, 20.0); assert_eq!(b.min.x, -20.0); assert_eq!(b.min.y, -20.0); } #[test] fn test_intersects() { let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]); let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]); assert!(b1.intersects(&b2)); } #[test] fn test_intersection() { let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]); let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]); let b = b1.intersection(&b2); assert_eq!(b.max.x, 10.0); assert_eq!(b.max.y, 20.0); assert_eq!(b.min.x, -10.0); assert_eq!(b.min.y, -20.0); } #[test] fn test_try_intersection() { let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]); let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]); assert!(b1.try_intersection(&b2).is_some()); let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(-10.0, 20.0)]); let b2 = Box2D::from_points(&[point2(10.0, 20.0), point2(15.0, -20.0)]); assert!(b1.try_intersection(&b2).is_none()); } #[test] fn test_scale() { let b = Box2D::from_points(&[point2(-10.0, -10.0), point2(10.0, 10.0)]); let b = b.scale(0.5, 0.5); assert_eq!(b.max.x, 5.0); assert_eq!(b.max.y, 5.0); assert_eq!(b.min.x, -5.0); assert_eq!(b.min.y, -5.0); } #[test] fn test_lerp() { let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(-10.0, -10.0)]); let b2 = Box2D::from_points(&[point2(10.0, 10.0), point2(20.0, 20.0)]); let b = b1.lerp(b2, 0.5); assert_eq!(b.center(), Point2D::zero()); assert_eq!(b.size().width, 10.0); assert_eq!(b.size().height, 10.0); } #[test] fn test_contains() { let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]); assert!(b.contains(point2(-15.3, 10.5))); } #[test] fn test_contains_box() { let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]); let b2 = Box2D::from_points(&[point2(-14.3, -16.5), point2(6.7, 17.6)]); assert!(b1.contains_box(&b2)); } #[test] fn test_inflate() { let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]); let b = b.inflate(10.0, 5.0); assert_eq!(b.size().width, 60.0); assert_eq!(b.size().height, 50.0); assert_eq!(b.center(), Point2D::zero()); } #[test] fn test_is_empty() { for i in 0..2 { let mut coords_neg = [-20.0, -20.0]; let mut coords_pos = [20.0, 20.0]; coords_neg[i] = 0.0; coords_pos[i] = 0.0; let b = Box2D::from_points(&[Point2D::from(coords_neg), Point2D::from(coords_pos)]); assert!(b.is_empty()); } } } euclid-0.20.0/src/box3d.rs010064400017500001750000000606271351134706000134460ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use scale::Scale; use num::*; use point::Point3D; use vector::Vector3D; use size::Size3D; use approxord::{min, max}; use nonempty::NonEmpty; use num_traits::NumCast; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; use core::borrow::Borrow; use core::cmp::PartialOrd; use core::fmt; use core::hash::{Hash, Hasher}; use core::ops::{Add, Div, Mul, Sub}; /// An axis aligned 3D box represented by its minimum and maximum coordinates. #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")))] pub struct Box3D { pub min: Point3D, pub max: Point3D, } impl Hash for Box3D { fn hash(&self, h: &mut H) { self.min.hash(h); self.max.hash(h); } } impl Copy for Box3D {} impl Clone for Box3D { fn clone(&self) -> Self { *self } } impl PartialEq> for Box3D { fn eq(&self, other: &Self) -> bool { self.min.eq(&other.min) && self.max.eq(&other.max) } } impl Eq for Box3D {} impl fmt::Debug for Box3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Box3D({:?}, {:?})", self.min, self.max) } } impl fmt::Display for Box3D { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { write!(formatter, "Box3D({}, {})", self.min, self.max) } } impl Box3D { /// Constructor. pub fn new(min: Point3D, max: Point3D) -> Self { Box3D { min, max, } } } impl Box3D where T: Copy + Zero + PartialOrd, { /// Creates a Box3D of the given size, at offset zero. #[inline] pub fn from_size(size: Size3D) -> Self { let zero = Point3D::zero(); let point = size.to_vector().to_point(); Box3D::from_points(&[zero, point]) } } impl Box3D where T: Copy + PartialOrd, { /// Returns true if the box has a negative volume. /// /// The common interpretation for a negative box is to consider it empty. It can be obtained /// by calculating the intersection of two boxes that do not intersect. #[inline] pub fn is_negative(&self) -> bool { self.max.x < self.min.x || self.max.y < self.min.y || self.max.z < self.min.z } /// Returns true if the size is zero or negative. #[inline] pub fn is_empty_or_negative(&self) -> bool { self.max.x <= self.min.x || self.max.y <= self.min.y || self.max.z <= self.min.z } #[inline] pub fn to_non_empty(&self) -> Option> { if self.is_empty_or_negative() { return None; } Some(NonEmpty(*self)) } #[inline] pub fn intersects(&self, other: &Self) -> bool { self.min.x < other.max.x && self.max.x > other.min.x && self.min.y < other.max.y && self.max.y > other.min.y && self.min.z < other.max.z && self.max.z > other.min.z } #[inline] pub fn try_intersection(&self, other: &Self) -> Option> { if !self.intersects(other) { return None; } Some(NonEmpty(self.intersection(other))) } pub fn intersection(&self, other: &Self) -> Self { let intersection_min = Point3D::new( max(self.min.x, other.min.x), max(self.min.y, other.min.y), max(self.min.z, other.min.z), ); let intersection_max = Point3D::new( min(self.max.x, other.max.x), min(self.max.y, other.max.y), min(self.max.z, other.max.z), ); Box3D::new( intersection_min, intersection_max, ) } } impl Box3D where T: Copy + Add, { /// Returns the same box3d, translated by a vector. #[inline] #[must_use] pub fn translate(&self, by: Vector3D) -> Self { Box3D { min: self.min + by, max: self.max + by, } } } impl Box3D where T: Copy + PartialOrd + Zero, { /// Returns true if this box3d contains the point. Points are considered /// in the box3d if they are on the front, left or top faces, but outside if they /// are on the back, right or bottom faces. #[inline] pub fn contains(&self, other: Point3D) -> bool { self.min.x <= other.x && other.x < self.max.x && self.min.y <= other.y && other.y < self.max.y && self.min.z <= other.z && other.z < self.max.z } } impl Box3D where T: Copy + PartialOrd + Zero + Sub, { /// Returns true if this box3d contains the interior of the other box3d. Always /// returns true if other is empty, and always returns false if other is /// nonempty but this box3d is empty. #[inline] pub fn contains_box(&self, other: &Self) -> bool { other.is_empty_or_negative() || (self.min.x <= other.min.x && other.max.x <= self.max.x && self.min.y <= other.min.y && other.max.y <= self.max.y && self.min.z <= other.min.z && other.max.z <= self.max.z) } } impl Box3D where T: Copy + Sub, { #[inline] pub fn size(&self)-> Size3D { Size3D::new( self.max.x - self.min.x, self.max.y - self.min.y, self.max.z - self.min.z, ) } } impl Box3D where T: Copy + PartialEq + Add + Sub, { /// Inflates the box by the specified sizes on each side respectively. #[inline] #[must_use] pub fn inflate(&self, width: T, height: T, depth: T) -> Self { Box3D::new( Point3D::new(self.min.x - width, self.min.y - height, self.min.z - depth), Point3D::new(self.max.x + width, self.max.y + height, self.max.z + depth), ) } } impl Box3D where T: Copy + Zero + PartialOrd, { /// Returns the smallest box containing all of the provided points. pub fn from_points(points: I) -> Self where I: IntoIterator, I::Item: Borrow>, { let mut points = points.into_iter(); // Need at least 2 different points for a valid box3d (ie: volume > 0). let (mut min_x, mut min_y, mut min_z) = match points.next() { Some(first) => (first.borrow().x, first.borrow().y, first.borrow().z), None => return Box3D::zero(), }; let (mut max_x, mut max_y, mut max_z) = (min_x, min_y, min_z); { let mut assign_min_max = |point: I::Item| { let p = point.borrow(); if p.x < min_x { min_x = p.x } if p.x > max_x { max_x = p.x } if p.y < min_y { min_y = p.y } if p.y > max_y { max_y = p.y } if p.z < min_z { min_z = p.z } if p.z > max_z { max_z = p.z } }; match points.next() { Some(second) => assign_min_max(second), None => return Box3D::zero(), } for point in points { assign_min_max(point); } } Self::new(Point3D::new(min_x, min_y, min_z), Point3D::new(max_x, max_y, max_z)) } } impl Box3D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this box3d and another box3d. /// /// `t` is expected to be between zero and one. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { Self::new( self.min.lerp(other.min, t), self.max.lerp(other.max, t), ) } } impl Box3D where T: Copy + One + Add + Div, { pub fn center(&self) -> Point3D { let two = T::one() + T::one(); (self.min + self.max.to_vector()) / two } } impl Box3D where T: Copy + Clone + PartialOrd + Add + Sub + Zero, { #[inline] pub fn union(&self, other: &Self) -> Self { Box3D::new( Point3D::new( min(self.min.x, other.min.x), min(self.min.y, other.min.y), min(self.min.z, other.min.z), ), Point3D::new( max(self.max.x, other.max.x), max(self.max.y, other.max.y), max(self.max.z, other.max.z), ), ) } } impl Box3D where T: Copy, { #[inline] pub fn scale(&self, x: S, y: S, z: S) -> Self where T: Mul { Box3D::new( Point3D::new(self.min.x * x, self.min.y * y, self.min.z * z), Point3D::new(self.max.x * x, self.max.y * y, self.max.z * z), ) } } impl Box3D where T: Copy + Mul + Sub, { #[inline] pub fn volume(&self) -> T { let size = self.size(); size.width * size.height * size.depth } #[inline] pub fn xy_area(&self) -> T { let size = self.size(); size.width * size.height } #[inline] pub fn yz_area(&self) -> T { let size = self.size(); size.depth * size.height } #[inline] pub fn xz_area(&self) -> T { let size = self.size(); size.depth * size.width } } impl Box3D where T: Copy + Zero, { /// Constructor, setting all sides to zero. pub fn zero() -> Self { Box3D::new(Point3D::zero(), Point3D::zero()) } } impl Box3D where T: PartialEq, { /// Returns true if the volume is zero. #[inline] pub fn is_empty(&self) -> bool { self.min.x == self.max.x || self.min.y == self.max.y || self.min.z == self.max.z } } impl Mul for Box3D where T: Copy + Mul, { type Output = Self; #[inline] fn mul(self, scale: T) -> Self { Box3D::new(self.min * scale, self.max * scale) } } impl Div for Box3D where T: Copy + Div, { type Output = Self; #[inline] fn div(self, scale: T) -> Self { Box3D::new(self.min / scale, self.max / scale) } } impl Mul> for Box3D where T: Copy + Mul, { type Output = Box3D; #[inline] fn mul(self, scale: Scale) -> Box3D { Box3D::new(self.min * scale, self.max * scale) } } impl Div> for Box3D where T: Copy + Div, { type Output = Box3D; #[inline] fn div(self, scale: Scale) -> Box3D { Box3D::new(self.min / scale, self.max / scale) } } impl Box3D where T: Copy, { /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Box3D { Box3D { min: self.min.to_untyped(), max: self.max.to_untyped(), } } /// Tag a unitless value with units. #[inline] pub fn from_untyped(c: &Box3D) -> Box3D { Box3D { min: Point3D::from_untyped(c.min), max: Point3D::from_untyped(c.max), } } } impl Box3D where T0: NumCast + Copy, { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. pub fn cast(&self) -> Box3D { Box3D::new( self.min.cast(), self.max.cast(), ) } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. pub fn try_cast(&self) -> Option> { match (self.min.try_cast(), self.max.try_cast()) { (Some(a), Some(b)) => Some(Box3D::new(a, b)), _ => None, } } } impl Box3D where T: Round, { /// Return a box3d with edges rounded to integer coordinates, such that /// the returned box3d has the same set of pixel centers as the original /// one. /// Values equal to 0.5 round up. /// Suitable for most places where integral device coordinates /// are needed, but note that any translation should be applied first to /// avoid pixel rounding errors. /// Note that this is *not* rounding to nearest integer if the values are negative. /// They are always rounding as floor(n + 0.5). #[must_use] pub fn round(&self) -> Self { Box3D::new(self.min.round(), self.max.round()) } } impl Box3D where T: Floor + Ceil, { /// Return a box3d with faces/edges rounded to integer coordinates, such that /// the original box3d contains the resulting box3d. #[must_use] pub fn round_in(&self) -> Self { Box3D { min: self.min.ceil(), max: self.max.floor(), } } /// Return a box3d with faces/edges rounded to integer coordinates, such that /// the original box3d is contained in the resulting box3d. #[must_use] pub fn round_out(&self) -> Self { Box3D { min: self.min.floor(), max: self.max.ceil(), } } } // Convenience functions for common casts impl Box3D { /// Cast into an `f32` box3d. pub fn to_f32(&self) -> Box3D { self.cast() } /// Cast into an `f64` box3d. pub fn to_f64(&self) -> Box3D { self.cast() } /// Cast into an `usize` box3d, truncating decimals if any. /// /// When casting from floating point cuboids, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. pub fn to_usize(&self) -> Box3D { self.cast() } /// Cast into an `u32` box3d, truncating decimals if any. /// /// When casting from floating point cuboids, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. pub fn to_u32(&self) -> Box3D { self.cast() } /// Cast into an `i32` box3d, truncating decimals if any. /// /// When casting from floating point cuboids, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. pub fn to_i32(&self) -> Box3D { self.cast() } /// Cast into an `i64` box3d, truncating decimals if any. /// /// When casting from floating point cuboids, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. pub fn to_i64(&self) -> Box3D { self.cast() } } impl From> for Box3D where T: Copy + Zero + PartialOrd, { fn from(b: Size3D) -> Self { Self::from_size(b) } } /// Shorthand for `Box3D::new(Point3D::new(x1, y1, z1), Point3D::new(x2, y2, z2))`. pub fn box3d(min_x: T, min_y: T, min_z: T, max_x: T, max_y: T, max_z: T) -> Box3D { Box3D::new(Point3D::new(min_x, min_y, min_z), Point3D::new(max_x, max_y, max_z)) } #[cfg(test)] mod tests { use {point3, size3, vec3}; use default::{Box3D, Point3D}; #[test] fn test_new() { let b = Box3D::new(point3(-1.0, -1.0, -1.0), point3(1.0, 1.0, 1.0)); assert!(b.min.x == -1.0); assert!(b.min.y == -1.0); assert!(b.min.z == -1.0); assert!(b.max.x == 1.0); assert!(b.max.y == 1.0); assert!(b.max.z == 1.0); } #[test] fn test_size() { let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)); assert!(b.size().width == 20.0); assert!(b.size().height == 20.0); assert!(b.size().depth == 20.0); } #[test] fn test_center() { let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)); assert!(b.center() == Point3D::zero()); } #[test] fn test_volume() { let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)); assert!(b.volume() == 8000.0); } #[test] fn test_area() { let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)); assert!(b.xy_area() == 400.0); assert!(b.yz_area() == 400.0); assert!(b.xz_area() == 400.0); } #[test] fn test_from_points() { let b = Box3D::from_points(&[point3(50.0, 160.0, 12.5), point3(100.0, 25.0, 200.0)]); assert!(b.min == point3(50.0, 25.0, 12.5)); assert!(b.max == point3(100.0, 160.0, 200.0)); } #[test] fn test_min_max() { let b = Box3D::from_points(&[point3(50.0, 25.0, 12.5), point3(100.0, 160.0, 200.0)]); assert!(b.min.x == 50.0); assert!(b.min.y == 25.0); assert!(b.min.z == 12.5); assert!(b.max.x == 100.0); assert!(b.max.y == 160.0); assert!(b.max.z == 200.0); } #[test] fn test_round_in() { let b = Box3D::from_points(&[point3(-25.5, -40.4, -70.9), point3(60.3, 36.5, 89.8)]).round_in(); assert!(b.min.x == -25.0); assert!(b.min.y == -40.0); assert!(b.min.z == -70.0); assert!(b.max.x == 60.0); assert!(b.max.y == 36.0); assert!(b.max.z == 89.0); } #[test] fn test_round_out() { let b = Box3D::from_points(&[point3(-25.5, -40.4, -70.9), point3(60.3, 36.5, 89.8)]).round_out(); assert!(b.min.x == -26.0); assert!(b.min.y == -41.0); assert!(b.min.z == -71.0); assert!(b.max.x == 61.0); assert!(b.max.y == 37.0); assert!(b.max.z == 90.0); } #[test] fn test_round() { let b = Box3D::from_points(&[point3(-25.5, -40.4, -70.9), point3(60.3, 36.5, 89.8)]).round(); assert!(b.min.x == -26.0); assert!(b.min.y == -40.0); assert!(b.min.z == -71.0); assert!(b.max.x == 60.0); assert!(b.max.y == 37.0); assert!(b.max.z == 90.0); } #[test] fn test_from_size() { let b = Box3D::from_size(size3(30.0, 40.0, 50.0)); assert!(b.min == Point3D::zero()); assert!(b.size().width == 30.0); assert!(b.size().height == 40.0); assert!(b.size().depth == 50.0); } #[test] fn test_translate() { let size = size3(15.0, 15.0, 200.0); let mut center = (size / 2.0).to_vector().to_point(); let b = Box3D::from_size(size); assert!(b.center() == center); let translation = vec3(10.0, 2.5, 9.5); let b = b.translate(translation); center += translation; assert!(b.center() == center); assert!(b.max.x == 25.0); assert!(b.max.y == 17.5); assert!(b.max.z == 209.5); assert!(b.min.x == 10.0); assert!(b.min.y == 2.5); assert!(b.min.z == 9.5); } #[test] fn test_union() { let b1 = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(0.0, 20.0, 20.0)]); let b2 = Box3D::from_points(&[point3(0.0, 20.0, 20.0), point3(20.0, -20.0, -20.0)]); let b = b1.union(&b2); assert!(b.max.x == 20.0); assert!(b.max.y == 20.0); assert!(b.max.z == 20.0); assert!(b.min.x == -20.0); assert!(b.min.y == -20.0); assert!(b.min.z == -20.0); assert!(b.volume() == (40.0 * 40.0 * 40.0)); } #[test] fn test_intersects() { let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(10.0, 20.0, 20.0)]); let b2 = Box3D::from_points(&[point3(-10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]); assert!(b1.intersects(&b2)); } #[test] fn test_intersection() { let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(10.0, 20.0, 20.0)]); let b2 = Box3D::from_points(&[point3(-10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]); let b = b1.intersection(&b2); assert!(b.max.x == 10.0); assert!(b.max.y == 20.0); assert!(b.max.z == 20.0); assert!(b.min.x == -10.0); assert!(b.min.y == -20.0); assert!(b.min.z == -20.0); assert!(b.volume() == (20.0 * 40.0 * 40.0)); } #[test] fn test_try_intersection() { let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(10.0, 20.0, 20.0)]); let b2 = Box3D::from_points(&[point3(-10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]); assert!(b1.try_intersection(&b2).is_some()); let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(-10.0, 20.0, 20.0)]); let b2 = Box3D::from_points(&[point3(10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]); assert!(b1.try_intersection(&b2).is_none()); } #[test] fn test_scale() { let b = Box3D::from_points(&[point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)]); let b = b.scale(0.5, 0.5, 0.5); assert!(b.max.x == 5.0); assert!(b.max.y == 5.0); assert!(b.max.z == 5.0); assert!(b.min.x == -5.0); assert!(b.min.y == -5.0); assert!(b.min.z == -5.0); } #[test] fn test_zero() { let b = Box3D::::zero(); assert!(b.max.x == 0.0); assert!(b.max.y == 0.0); assert!(b.max.z == 0.0); assert!(b.min.x == 0.0); assert!(b.min.y == 0.0); assert!(b.min.z == 0.0); } #[test] fn test_lerp() { let b1 = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(-10.0, -10.0, -10.0)]); let b2 = Box3D::from_points(&[point3(10.0, 10.0, 10.0), point3(20.0, 20.0, 20.0)]); let b = b1.lerp(b2, 0.5); assert!(b.center() == Point3D::zero()); assert!(b.size().width == 10.0); assert!(b.size().height == 10.0); assert!(b.size().depth == 10.0); } #[test] fn test_contains() { let b = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(20.0, 20.0, 20.0)]); assert!(b.contains(point3(-15.3, 10.5, 18.4))); } #[test] fn test_contains_box() { let b1 = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(20.0, 20.0, 20.0)]); let b2 = Box3D::from_points(&[point3(-14.3, -16.5, -19.3), point3(6.7, 17.6, 2.5)]); assert!(b1.contains_box(&b2)); } #[test] fn test_inflate() { let b = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(20.0, 20.0, 20.0)]); let b = b.inflate(10.0, 5.0, 2.0); assert!(b.size().width == 60.0); assert!(b.size().height == 50.0); assert!(b.size().depth == 44.0); assert!(b.center() == Point3D::zero()); } #[test] fn test_is_empty() { for i in 0..3 { let mut coords_neg = [-20.0, -20.0, -20.0]; let mut coords_pos = [20.0, 20.0, 20.0]; coords_neg[i] = 0.0; coords_pos[i] = 0.0; let b = Box3D::from_points(&[Point3D::from(coords_neg), Point3D::from(coords_pos)]); assert!(b.is_empty()); } } } euclid-0.20.0/src/homogen.rs010064400017500001750000000121311350706762000140540ustar0000000000000000// Copyright 2018 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use point::{Point2D, Point3D}; use vector::{Vector2D, Vector3D}; use num::{One, Zero}; use core::fmt; use core::marker::PhantomData; use core::ops::Div; use core::cmp::{Eq, PartialEq}; use core::hash::{Hash}; #[cfg(feature = "serde")] use serde; /// Homogeneous vector in 3D space. #[repr(C)] pub struct HomogeneousVector { pub x: T, pub y: T, pub z: T, pub w: T, #[doc(hidden)] pub _unit: PhantomData, } impl Copy for HomogeneousVector {} impl Clone for HomogeneousVector { fn clone(&self) -> Self { HomogeneousVector { x: self.x.clone(), y: self.y.clone(), z: self.z.clone(), w: self.w.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for HomogeneousVector where T: serde::Deserialize<'de> { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de> { let (x, y, z, w) = try!(serde::Deserialize::deserialize(deserializer)); Ok(HomogeneousVector { x, y, z, w, _unit: PhantomData }) } } #[cfg(feature = "serde")] impl serde::Serialize for HomogeneousVector where T: serde::Serialize { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer { (&self.x, &self.y, &self.z, &self.w).serialize(serializer) } } impl Eq for HomogeneousVector where T: Eq {} impl PartialEq for HomogeneousVector where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y && self.z == other.z && self.w == other.w } } impl Hash for HomogeneousVector where T: Hash { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); self.z.hash(h); self.w.hash(h); } } impl HomogeneousVector { /// Constructor taking scalar values directly. #[inline] pub fn new(x: T, y: T, z: T, w: T) -> Self { HomogeneousVector { x, y, z, w, _unit: PhantomData } } } impl + Zero + PartialOrd, U> HomogeneousVector { /// Convert into Cartesian 2D point. /// /// Returns None if the point is on or behind the W=0 hemisphere. #[inline] pub fn to_point2d(&self) -> Option> { if self.w > T::zero() { Some(Point2D::new(self.x / self.w, self.y / self.w)) } else { None } } /// Convert into Cartesian 3D point. /// /// Returns None if the point is on or behind the W=0 hemisphere. #[inline] pub fn to_point3d(&self) -> Option> { if self.w > T::zero() { Some(Point3D::new(self.x / self.w, self.y / self.w, self.z / self.w)) } else { None } } } impl From> for HomogeneousVector { #[inline] fn from(v: Vector2D) -> Self { HomogeneousVector::new(v.x, v.y, T::zero(), T::zero()) } } impl From> for HomogeneousVector { #[inline] fn from(v: Vector3D) -> Self { HomogeneousVector::new(v.x, v.y, v.z, T::zero()) } } impl From> for HomogeneousVector { #[inline] fn from(p: Point2D) -> Self { HomogeneousVector::new(p.x, p.y, T::zero(), T::one()) } } impl From> for HomogeneousVector { #[inline] fn from(p: Point3D) -> Self { HomogeneousVector::new(p.x, p.y, p.z, T::one()) } } impl fmt::Debug for HomogeneousVector { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "({:?},{:?},{:?},{:?})", self.x, self.y, self.z, self.w) } } impl fmt::Display for HomogeneousVector { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { write!(formatter, "({},{},{},{})", self.x, self.y, self.z, self.w) } } #[cfg(test)] mod homogeneous { use super::HomogeneousVector; use default::{Point2D, Point3D}; #[test] fn roundtrip() { assert_eq!(Some(Point2D::new(1.0, 2.0)), HomogeneousVector::from(Point2D::new(1.0, 2.0)).to_point2d()); assert_eq!(Some(Point3D::new(1.0, -2.0, 0.1)), HomogeneousVector::from(Point3D::new(1.0, -2.0, 0.1)).to_point3d()); } #[test] fn negative() { assert_eq!(None, HomogeneousVector::::new(1.0, 2.0, 3.0, 0.0).to_point2d()); assert_eq!(None, HomogeneousVector::::new(1.0, -2.0, -3.0, -2.0).to_point3d()); } } euclid-0.20.0/src/length.rs010064400017500001750000000340401350662717500137120ustar0000000000000000// Copyright 2014 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A one-dimensional length, tagged with its units. use scale::Scale; use num::Zero; use num_traits::{NumCast, Saturating}; use num::One; #[cfg(feature = "serde")] use serde::{Deserialize, Deserializer, Serialize, Serializer}; use core::cmp::Ordering; use core::ops::{Add, Div, Mul, Neg, Sub}; use core::ops::{AddAssign, DivAssign, MulAssign, SubAssign}; use core::marker::PhantomData; use core::fmt; /// A one-dimensional distance, with value represented by `T` and unit of measurement `Unit`. /// /// `T` can be any numeric type, for example a primitive type like `u64` or `f32`. /// /// `Unit` is not used in the representation of a `Length` value. It is used only at compile time /// to ensure that a `Length` stored with one unit is converted explicitly before being used in an /// expression that requires a different unit. It may be a type without values, such as an empty /// enum. /// /// You can multiply a `Length` by a `scale::Scale` to convert it from one unit to /// another. See the [`Scale`] docs for an example. /// /// [`Scale`]: struct.Scale.html #[repr(C)] pub struct Length(pub T, #[doc(hidden)] pub PhantomData); impl Clone for Length { fn clone(&self) -> Self { Length(self.0.clone(), PhantomData) } } impl Copy for Length {} #[cfg(feature = "serde")] impl<'de, Unit, T> Deserialize<'de> for Length where T: Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de>, { Ok(Length( try!(Deserialize::deserialize(deserializer)), PhantomData, )) } } #[cfg(feature = "serde")] impl Serialize for Length where T: Serialize, { fn serialize(&self, serializer: S) -> Result where S: Serializer, { self.0.serialize(serializer) } } impl Length { pub fn new(x: T) -> Self { Length(x, PhantomData) } } impl Length { pub fn get(&self) -> T { self.0.clone() } } impl fmt::Debug for Length { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.get().fmt(f) } } impl fmt::Display for Length { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.get().fmt(f) } } // length + length impl> Add for Length { type Output = Length; fn add(self, other: Length) -> Length { Length::new(self.get() + other.get()) } } // length += length impl> AddAssign for Length { fn add_assign(&mut self, other: Length) { self.0 += other.get(); } } // length - length impl> Sub> for Length { type Output = Length; fn sub(self, other: Length) -> ::Output { Length::new(self.get() - other.get()) } } // length -= length impl> SubAssign for Length { fn sub_assign(&mut self, other: Length) { self.0 -= other.get(); } } // Saturating length + length and length - length. impl Saturating for Length { fn saturating_add(self, other: Length) -> Length { Length::new(self.get().saturating_add(other.get())) } fn saturating_sub(self, other: Length) -> Length { Length::new(self.get().saturating_sub(other.get())) } } // length / length impl> Div> for Length { type Output = Scale; #[inline] fn div(self, other: Length) -> Scale { Scale::new(self.get() / other.get()) } } // length * scalar impl, U> Mul for Length { type Output = Self; #[inline] fn mul(self, scale: T) -> Self { Length::new(self.get() * scale) } } // length *= scalar impl, U> MulAssign for Length { #[inline] fn mul_assign(&mut self, scale: T) { *self = *self * scale } } // length / scalar impl, U> Div for Length { type Output = Self; #[inline] fn div(self, scale: T) -> Self { Length::new(self.get() / scale) } } // length /= scalar impl, U> DivAssign for Length { #[inline] fn div_assign(&mut self, scale: T) { *self = *self / scale } } // length * scaleFactor impl> Mul> for Length { type Output = Length; #[inline] fn mul(self, scale: Scale) -> Length { Length::new(self.get() * scale.get()) } } // length / scaleFactor impl> Div> for Length { type Output = Length; #[inline] fn div(self, scale: Scale) -> Length { Length::new(self.get() / scale.get()) } } // -length impl> Neg for Length { type Output = Length; #[inline] fn neg(self) -> Length { Length::new(-self.get()) } } impl Length { /// Cast from one numeric representation to another, preserving the units. pub fn cast(&self) -> Length { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. pub fn try_cast(&self) -> Option> { NumCast::from(self.get()).map(Length::new) } } impl PartialEq for Length { fn eq(&self, other: &Self) -> bool { self.get().eq(&other.get()) } } impl PartialOrd for Length { fn partial_cmp(&self, other: &Self) -> Option { self.get().partial_cmp(&other.get()) } } impl Eq for Length {} impl Ord for Length { fn cmp(&self, other: &Self) -> Ordering { self.get().cmp(&other.get()) } } impl Zero for Length { fn zero() -> Self { Length::new(Zero::zero()) } } impl Length where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this length and another length. /// /// `t` is expected to be between zero and one. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { let one_t = T::one() - t; Length::new(one_t * self.get() + t * other.get()) } } #[cfg(test)] mod tests { use super::Length; use num::Zero; use num_traits::Saturating; use scale::Scale; use core::f32::INFINITY; enum Inch {} enum Mm {} enum Cm {} enum Second {} #[cfg(feature = "serde")] mod serde { use super::*; extern crate serde_test; use self::serde_test::Token; use self::serde_test::assert_tokens; #[test] fn test_length_serde() { let one_cm: Length = Length::new(10.0); assert_tokens(&one_cm, &[Token::F32(10.0)]); } } #[test] fn test_clone() { // A cloned Length is a separate length with the state matching the // original Length at the point it was cloned. let mut variable_length: Length = Length::new(12.0); let one_foot = variable_length.clone(); variable_length.0 = 24.0; assert_eq!(one_foot.get(), 12.0); assert_eq!(variable_length.get(), 24.0); } #[test] fn test_get_clones_length_value() { // Calling get returns a clone of the Length's value. // To test this, we need something clone-able - hence a vector. let mut length: Length, Inch> = Length::new(vec![1, 2, 3]); let value = length.get(); length.0.push(4); assert_eq!(value, vec![1, 2, 3]); assert_eq!(length.get(), vec![1, 2, 3, 4]); } #[test] fn test_add() { let length1: Length = Length::new(250); let length2: Length = Length::new(5); let result = length1 + length2; assert_eq!(result.get(), 255); } #[test] fn test_addassign() { let one_cm: Length = Length::new(10.0); let mut measurement: Length = Length::new(5.0); measurement += one_cm; assert_eq!(measurement.get(), 15.0); } #[test] fn test_sub() { let length1: Length = Length::new(250); let length2: Length = Length::new(5); let result = length1 - length2; assert_eq!(result.get(), 245); } #[test] fn test_subassign() { let one_cm: Length = Length::new(10.0); let mut measurement: Length = Length::new(5.0); measurement -= one_cm; assert_eq!(measurement.get(), -5.0); } #[test] fn test_saturating_add() { let length1: Length = Length::new(250); let length2: Length = Length::new(6); let result = length1.saturating_add(length2); assert_eq!(result.get(), 255); } #[test] fn test_saturating_sub() { let length1: Length = Length::new(5); let length2: Length = Length::new(10); let result = length1.saturating_sub(length2); assert_eq!(result.get(), 0); } #[test] fn test_division_by_length() { // Division results in a Scale from denominator units // to numerator units. let length: Length = Length::new(5.0); let duration: Length = Length::new(10.0); let result = length / duration; let expected: Scale = Scale::new(0.5); assert_eq!(result, expected); } #[test] fn test_multiplication() { let length_mm: Length = Length::new(10.0); let cm_per_mm: Scale = Scale::new(0.1); let result = length_mm * cm_per_mm; let expected: Length = Length::new(1.0); assert_eq!(result, expected); } #[test] fn test_multiplication_with_scalar() { let length_mm: Length = Length::new(10.0); let result = length_mm * 2.0; let expected: Length = Length::new(20.0); assert_eq!(result, expected); } #[test] fn test_multiplication_assignment() { let mut length: Length = Length::new(10.0); length *= 2.0; let expected: Length = Length::new(20.0); assert_eq!(length, expected); } #[test] fn test_division_by_scalefactor() { let length: Length = Length::new(5.0); let cm_per_second: Scale = Scale::new(10.0); let result = length / cm_per_second; let expected: Length = Length::new(0.5); assert_eq!(result, expected); } #[test] fn test_division_by_scalar() { let length: Length = Length::new(5.0); let result = length / 2.0; let expected: Length = Length::new(2.5); assert_eq!(result, expected); } #[test] fn test_division_assignment() { let mut length: Length = Length::new(10.0); length /= 2.0; let expected: Length = Length::new(5.0); assert_eq!(length, expected); } #[test] fn test_negation() { let length: Length = Length::new(5.0); let result = -length; let expected: Length = Length::new(-5.0); assert_eq!(result, expected); } #[test] fn test_cast() { let length_as_i32: Length = Length::new(5); let result: Length = length_as_i32.cast(); let length_as_f32: Length = Length::new(5.0); assert_eq!(result, length_as_f32); } #[test] fn test_equality() { let length_5_point_0: Length = Length::new(5.0); let length_5_point_1: Length = Length::new(5.1); let length_0_point_1: Length = Length::new(0.1); assert!(length_5_point_0 == length_5_point_1 - length_0_point_1); assert!(length_5_point_0 != length_5_point_1); } #[test] fn test_order() { let length_5_point_0: Length = Length::new(5.0); let length_5_point_1: Length = Length::new(5.1); let length_0_point_1: Length = Length::new(0.1); assert!(length_5_point_0 < length_5_point_1); assert!(length_5_point_0 <= length_5_point_1); assert!(length_5_point_0 <= length_5_point_1 - length_0_point_1); assert!(length_5_point_1 > length_5_point_0); assert!(length_5_point_1 >= length_5_point_0); assert!(length_5_point_0 >= length_5_point_1 - length_0_point_1); } #[test] fn test_zero_add() { type LengthCm = Length; let length: LengthCm = Length::new(5.0); let result = length - LengthCm::zero(); assert_eq!(result, length); } #[test] fn test_zero_division() { type LengthCm = Length; let length: LengthCm = Length::new(5.0); let length_zero: LengthCm = Length::zero(); let result = length / length_zero; let expected: Scale = Scale::new(INFINITY); assert_eq!(result, expected); } } euclid-0.20.0/src/lib.rs010064400017500001750000000103561351365422000131700ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![cfg_attr(not(test), no_std)] //! A collection of strongly typed math tools for computer graphics with an inclination //! towards 2d graphics and layout. //! //! All types are generic over the scalar type of their component (`f32`, `i32`, etc.), //! and tagged with a generic Unit parameter which is useful to prevent mixing //! values from different spaces. For example it should not be legal to translate //! a screen-space position by a world-space vector and this can be expressed using //! the generic Unit parameter. //! //! This unit system is not mandatory and all * structures have an alias //! with the default unit: `UnknownUnit`. //! for example ```Point2D``` is equivalent to ```Point2D```. //! Client code typically creates a set of aliases for each type and doesn't need //! to deal with the specifics of typed units further. For example: //! //! ```rust //! use euclid::*; //! pub struct ScreenSpace; //! pub type ScreenPoint = Point2D; //! pub type ScreenSize = Size2D; //! pub struct WorldSpace; //! pub type WorldPoint = Point3D; //! pub type ProjectionMatrix = Transform3D; //! // etc... //! ``` //! //! All euclid types are marked `#[repr(C)]` in order to facilitate exposing them to //! foreign function interfaces (provided the underlying scalar type is also `repr(C)`). //! #[cfg(feature = "serde")] #[macro_use] extern crate serde; #[cfg(feature = "mint")] pub extern crate mint; extern crate num_traits; #[cfg(test)] use std as core; pub use box2d::Box2D; pub use length::Length; pub use scale::Scale; pub use transform2d::Transform2D; pub use transform3d::Transform3D; pub use point::{Point2D, Point3D, point2, point3}; pub use vector::{Vector2D, Vector3D, vec2, vec3}; pub use vector::{BoolVector2D, BoolVector3D, bvec2, bvec3}; pub use homogen::HomogeneousVector; pub use nonempty::NonEmpty; pub use rect::{rect, Rect}; pub use rigid::{RigidTransform3D}; pub use box3d::{box3d, Box3D}; pub use translation::{Translation2D, Translation3D}; pub use rotation::{Angle, Rotation2D, Rotation3D}; pub use side_offsets::SideOffsets2D; pub use size::{Size2D, Size3D, size2, size3}; pub use trig::Trig; #[macro_use] mod macros; pub mod approxeq; pub mod approxord; mod box2d; mod homogen; pub mod num; mod length; mod point; mod rect; mod rigid; mod rotation; mod scale; mod side_offsets; mod size; mod transform2d; mod transform3d; mod translation; mod trig; mod vector; mod box3d; mod nonempty; /// The default unit. #[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct UnknownUnit; pub mod default { use super::UnknownUnit; pub type Point2D = super::Point2D; pub type Point3D = super::Point3D; pub type Vector2D = super::Vector2D; pub type Vector3D = super::Vector3D; pub type HomogeneousVector = super::HomogeneousVector; pub type Size2D = super::Size2D; pub type Size3D = super::Size3D; pub type Rect = super::Rect; pub type Box2D = super::Box2D; pub type Box3D = super::Box3D; pub type SideOffsets2D = super::SideOffsets2D; pub type Transform2D = super::Transform2D; pub type Transform3D = super::Transform3D; pub type Rotation2D = super::Rotation2D; pub type Rotation3D = super::Rotation3D; pub type Translation3D = super::Translation3D; pub type Scale = super::Scale; pub type RigidTransform3D = super::RigidTransform3D; } euclid-0.20.0/src/macros.rs010064400017500001750000000021001350662717500137050ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. macro_rules! mint_vec { ($name:ident [ $($field:ident),* ] = $std_name:ident) => { #[cfg(feature = "mint")] impl From> for $name { fn from(v: mint::$std_name) -> Self { $name { $( $field: v.$field, )* _unit: PhantomData, } } } #[cfg(feature = "mint")] impl Into> for $name { fn into(self) -> mint::$std_name { mint::$std_name { $( $field: self.$field, )* } } } } } euclid-0.20.0/src/nonempty.rs010064400017500001750000000161171351134706000142730ustar0000000000000000use {Rect, Box2D, Box3D, Vector2D, Vector3D, size2, point2, point3}; use approxord::{min, max}; use num::Zero; use core::ops::Deref; use core::ops::{Add, Sub}; use core::cmp::{PartialEq}; #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde", serde(transparent))] #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub struct NonEmpty(pub(crate) T); impl Deref for NonEmpty { type Target = T; fn deref(&self) -> &T { &self.0 } } impl NonEmpty { #[inline] pub fn get(&self) -> &T { &self.0 } } impl NonEmpty> where T: Copy + Clone + Zero + PartialOrd + PartialEq + Add + Sub, { #[inline] pub fn union(&self, other: &NonEmpty>) -> NonEmpty> { let origin = point2( min(self.min_x(), other.min_x()), min(self.min_y(), other.min_y()), ); let lower_right_x = max(self.max_x(), other.max_x()); let lower_right_y = max(self.max_y(), other.max_y()); NonEmpty(Rect { origin, size: size2( lower_right_x - origin.x, lower_right_y - origin.y, ), }) } #[inline] pub fn contains_rect(&self, rect: &Self) -> bool { self.min_x() <= rect.min_x() && rect.max_x() <= self.max_x() && self.min_y() <= rect.min_y() && rect.max_y() <= self.max_y() } #[inline] pub fn translate(&self, by: Vector2D) -> Self { NonEmpty(self.0.translate(by)) } } impl NonEmpty> where T: Copy + PartialOrd, { #[inline] pub fn union(&self, other: &NonEmpty>) -> NonEmpty> { NonEmpty(Box2D { min: point2( min(self.min.x, other.min.x), min(self.min.y, other.min.y), ), max: point2( max(self.max.x, other.max.x), max(self.max.y, other.max.y), ), }) } /// Returns true if this box contains the interior of the other box. #[inline] pub fn contains_box(&self, other: &Self) -> bool { self.min.x <= other.min.x && other.max.x <= self.max.x && self.min.y <= other.min.y && other.max.y <= self.max.y } } impl NonEmpty> where T: Copy + Add, { #[inline] pub fn translate(&self, by: Vector2D) -> Self { NonEmpty(self.0.translate(by)) } } impl NonEmpty> where T: Copy + PartialOrd, { #[inline] pub fn union(&self, other: &NonEmpty>) -> NonEmpty> { NonEmpty(Box3D { min: point3( min(self.min.x, other.min.x), min(self.min.y, other.min.y), min(self.min.z, other.min.z), ), max: point3( max(self.max.x, other.max.x), max(self.max.y, other.max.y), max(self.max.z, other.max.z), ), }) } /// Returns true if this box contains the interior of the other box. #[inline] pub fn contains_box(&self, other: &Self) -> bool { self.min.x <= other.min.x && other.max.x <= self.max.x && self.min.y <= other.min.y && other.max.y <= self.max.y && self.min.z <= other.min.z && other.max.z <= self.max.z } } impl NonEmpty> where T: Copy + Add, { #[inline] pub fn translate(&self, by: Vector3D) -> Self { NonEmpty(self.0.translate(by)) } } #[test] fn empty_nonempty() { use default; // zero-width let box1: default::Box2D = Box2D { min: point2(-10, 2), max: point2(-10, 12), }; // zero-height let box2: default::Box2D = Box2D { min: point2(0, 11), max: point2(2, 11), }; // negative width let box3: default::Box2D = Box2D { min: point2(1, 11), max: point2(0, 12), }; // negative height let box4: default::Box2D = Box2D { min: point2(0, 11), max: point2(5, 10), }; assert!(box1.to_non_empty().is_none()); assert!(box2.to_non_empty().is_none()); assert!(box3.to_non_empty().is_none()); assert!(box4.to_non_empty().is_none()); } #[test] fn nonempty_union() { use default; let box1: default::Box2D = Box2D { min: point2(-10, 2), max: point2(15, 12), }; let box2 = Box2D { min: point2(-2, -5), max: point2(10, 5), }; assert_eq!(box1.union(&box2), *box1.to_non_empty().unwrap().union(&box2.to_non_empty().unwrap())); let box3: default::Box3D = Box3D { min: point3(1, -10, 2), max: point3(6, 15, 12), }; let box4 = Box3D { min: point3(0, -2, -5), max: point3(7, 10, 5), }; assert_eq!(box3.union(&box4), *box3.to_non_empty().unwrap().union(&box4.to_non_empty().unwrap())); let rect1: default::Rect = Rect { origin: point2(1, 2), size: size2(3, 4), }; let rect2 = Rect { origin: point2(-1, 5), size: size2(1, 10), }; assert_eq!(rect1.union(&rect2), *rect1.to_non_empty().unwrap().union(&rect2.to_non_empty().unwrap())); } #[test] fn nonempty_contains() { use default; use {vec2, vec3}; let r: NonEmpty> = Rect { origin: point2(-20, 15), size: size2(100, 200), }.to_non_empty().unwrap(); assert!(r.contains_rect(&r)); assert!(!r.contains_rect(&r.translate(vec2(1, 0)))); assert!(!r.contains_rect(&r.translate(vec2(-1, 0)))); assert!(!r.contains_rect(&r.translate(vec2(0, 1)))); assert!(!r.contains_rect(&r.translate(vec2(0, -1)))); let b: NonEmpty> = Box2D { min: point2(-10, 5), max: point2(30, 100), }.to_non_empty().unwrap(); assert!(b.contains_box(&b)); assert!(!b.contains_box(&b.translate(vec2(1, 0)))); assert!(!b.contains_box(&b.translate(vec2(-1, 0)))); assert!(!b.contains_box(&b.translate(vec2(0, 1)))); assert!(!b.contains_box(&b.translate(vec2(0, -1)))); let b: NonEmpty> = Box3D { min: point3(-1, -10, 5), max: point3(10, 30, 100), }.to_non_empty().unwrap(); assert!(b.contains_box(&b)); assert!(!b.contains_box(&b.translate(vec3(0, 1, 0)))); assert!(!b.contains_box(&b.translate(vec3(0, -1, 0)))); assert!(!b.contains_box(&b.translate(vec3(0, 0, 1)))); assert!(!b.contains_box(&b.translate(vec3(0, 0, -1)))); assert!(!b.contains_box(&b.translate(vec3(1, 1, 0)))); assert!(!b.contains_box(&b.translate(vec3(1, -1, 0)))); assert!(!b.contains_box(&b.translate(vec3(1, 0, 1)))); assert!(!b.contains_box(&b.translate(vec3(1, 0, -1)))); assert!(!b.contains_box(&b.translate(vec3(-1, 1, 0)))); assert!(!b.contains_box(&b.translate(vec3(-1, -1, 0)))); assert!(!b.contains_box(&b.translate(vec3(-1, 0, 1)))); assert!(!b.contains_box(&b.translate(vec3(-1, 0, -1)))); } euclid-0.20.0/src/num.rs010064400017500001750000000034631350662717500132350ustar0000000000000000// Copyright 2014 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A one-dimensional length, tagged with its units. use num_traits; pub trait Zero { fn zero() -> Self; } impl Zero for T { fn zero() -> T { num_traits::Zero::zero() } } pub trait One { fn one() -> Self; } impl One for T { fn one() -> T { num_traits::One::one() } } pub trait Round: Copy { fn round(self) -> Self; } pub trait Floor: Copy { fn floor(self) -> Self; } pub trait Ceil: Copy { fn ceil(self) -> Self; } macro_rules! num_int { ($ty:ty) => ( impl Round for $ty { #[inline] fn round(self) -> $ty { self } } impl Floor for $ty { #[inline] fn floor(self) -> $ty { self } } impl Ceil for $ty { #[inline] fn ceil(self) -> $ty { self } } ) } macro_rules! num_float { ($ty:ty) => ( impl Round for $ty { #[inline] fn round(self) -> $ty { self.round() } } impl Floor for $ty { #[inline] fn floor(self) -> $ty { self.floor() } } impl Ceil for $ty { #[inline] fn ceil(self) -> $ty { self.ceil() } } ) } num_int!(i16); num_int!(u16); num_int!(i32); num_int!(u32); num_int!(i64); num_int!(u64); num_int!(isize); num_int!(usize); num_float!(f32); num_float!(f64); euclid-0.20.0/src/point.rs010064400017500001750000000731201350732666300135630ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use approxeq::ApproxEq; use length::Length; use scale::Scale; use size::{Size2D, Size3D}; #[cfg(feature = "mint")] use mint; use num::*; use num_traits::{Float, NumCast}; use vector::{Vector2D, Vector3D, vec2, vec3}; use core::fmt; use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign}; use core::marker::PhantomData; use core::cmp::{Eq, PartialEq}; use core::hash::{Hash}; #[cfg(feature = "serde")] use serde; /// A 2d Point tagged with a unit. #[repr(C)] pub struct Point2D { pub x: T, pub y: T, #[doc(hidden)] pub _unit: PhantomData, } impl Copy for Point2D {} impl Clone for Point2D { fn clone(&self) -> Self { Point2D { x: self.x.clone(), y: self.y.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Point2D where T: serde::Deserialize<'de> { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de> { let (x, y) = try!(serde::Deserialize::deserialize(deserializer)); Ok(Point2D { x, y, _unit: PhantomData }) } } #[cfg(feature = "serde")] impl serde::Serialize for Point2D where T: serde::Serialize { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer { (&self.x, &self.y).serialize(serializer) } } impl Eq for Point2D where T: Eq {} impl PartialEq for Point2D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y } } impl Hash for Point2D where T: Hash { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); } } mint_vec!(Point2D[x, y] = Point2); impl Point2D { /// Constructor, setting all components to zero. #[inline] pub fn origin() -> Self { point2(Zero::zero(), Zero::zero()) } #[inline] pub fn zero() -> Self { Self::origin() } /// Convert into a 3d point. #[inline] pub fn to_3d(&self) -> Point3D { point3(self.x, self.y, Zero::zero()) } } impl fmt::Debug for Point2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "({:?},{:?})", self.x, self.y) } } impl fmt::Display for Point2D { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { write!(formatter, "({},{})", self.x, self.y) } } impl Default for Point2D { fn default() -> Self { Point2D::new(Default::default(), Default::default()) } } impl Point2D { /// Constructor taking scalar values directly. #[inline] pub fn new(x: T, y: T) -> Self { Point2D { x, y, _unit: PhantomData, } } } impl Point2D { /// Constructor taking properly Lengths instead of scalar values. #[inline] pub fn from_lengths(x: Length, y: Length) -> Self { point2(x.0, y.0) } /// Create a 3d point from this one, using the specified z value. #[inline] pub fn extend(&self, z: T) -> Point3D { point3(self.x, self.y, z) } /// Cast this point into a vector. /// /// Equivalent to subtracting the origin from this point. #[inline] pub fn to_vector(&self) -> Vector2D { Vector2D { x: self.x, y: self.y, _unit: PhantomData, } } /// Swap x and y. #[inline] pub fn yx(&self) -> Self { point2(self.y, self.x) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Point2D { point2(self.x, self.y) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(p: Point2D) -> Self { point2(p.x, p.y) } #[inline] pub fn to_array(&self) -> [T; 2] { [self.x, self.y] } #[inline] pub fn to_tuple(&self) -> (T, T) { (self.x, self.y) } } impl, U> Point2D { #[inline] pub fn add_size(&self, other: &Size2D) -> Self { point2(self.x + other.width, self.y + other.height) } } impl, U> Add> for Point2D { type Output = Self; #[inline] fn add(self, other: Size2D) -> Self { point2(self.x + other.width, self.y + other.height) } } impl, U> AddAssign> for Point2D { #[inline] fn add_assign(&mut self, other: Vector2D) { *self = *self + other } } impl, U> SubAssign> for Point2D { #[inline] fn sub_assign(&mut self, other: Vector2D) { *self = *self - other } } impl, U> Add> for Point2D { type Output = Self; #[inline] fn add(self, other: Vector2D) -> Self { point2(self.x + other.x, self.y + other.y) } } impl, U> Sub for Point2D { type Output = Vector2D; #[inline] fn sub(self, other: Self) -> Vector2D { vec2(self.x - other.x, self.y - other.y) } } impl, U> Sub> for Point2D { type Output = Self; #[inline] fn sub(self, other: Vector2D) -> Self { point2(self.x - other.x, self.y - other.y) } } impl Point2D { #[inline] pub fn min(self, other: Self) -> Self { point2(self.x.min(other.x), self.y.min(other.y)) } #[inline] pub fn max(self, other: Self) -> Self { point2(self.x.max(other.x), self.y.max(other.y)) } #[inline] pub fn clamp(&self, start: Self, end: Self) -> Self { self.max(start).min(end) } } impl, U> Mul for Point2D { type Output = Self; #[inline] fn mul(self, scale: T) -> Self { point2(self.x * scale, self.y * scale) } } impl, U> MulAssign for Point2D { #[inline] fn mul_assign(&mut self, scale: T) { *self = *self * scale } } impl, U> Div for Point2D { type Output = Self; #[inline] fn div(self, scale: T) -> Self { point2(self.x / scale, self.y / scale) } } impl, U> DivAssign for Point2D { #[inline] fn div_assign(&mut self, scale: T) { *self = *self / scale } } impl, U1, U2> Mul> for Point2D { type Output = Point2D; #[inline] fn mul(self, scale: Scale) -> Point2D { point2(self.x * scale.get(), self.y * scale.get()) } } impl, U1, U2> Div> for Point2D { type Output = Point2D; #[inline] fn div(self, scale: Scale) -> Point2D { point2(self.x / scale.get(), self.y / scale.get()) } } impl Point2D { /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// For example `{ -0.1, -0.8 }.round() == { 0.0, -1.0 }`. #[inline] #[must_use] pub fn round(&self) -> Self { point2(self.x.round(), self.y.round()) } } impl Point2D { /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// For example `{ -0.1, -0.8 }.ceil() == { 0.0, 0.0 }`. #[inline] #[must_use] pub fn ceil(&self) -> Self { point2(self.x.ceil(), self.y.ceil()) } } impl Point2D { /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// For example `{ -0.1, -0.8 }.floor() == { -1.0, -1.0 }`. #[inline] #[must_use] pub fn floor(&self) -> Self { point2(self.x.floor(), self.y.floor()) } } impl Point2D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn cast(&self) -> Point2D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn try_cast(&self) -> Option> { match (NumCast::from(self.x), NumCast::from(self.y)) { (Some(x), Some(y)) => Some(point2(x, y)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` point. #[inline] pub fn to_f32(&self) -> Point2D { self.cast() } /// Cast into an `f64` point. #[inline] pub fn to_f64(&self) -> Point2D { self.cast() } /// Cast into an `usize` point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_usize(&self) -> Point2D { self.cast() } /// Cast into an `u32` point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u32(&self) -> Point2D { self.cast() } /// Cast into an i32 point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i32(&self) -> Point2D { self.cast() } /// Cast into an i64 point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i64(&self) -> Point2D { self.cast() } } impl Point2D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this point and another point. /// /// `t` is expected to be between zero and one. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { let one_t = T::one() - t; point2(one_t * self.x + t * other.x, one_t * self.y + t * other.y) } } impl, U> ApproxEq> for Point2D { #[inline] fn approx_epsilon() -> Self { point2(T::approx_epsilon(), T::approx_epsilon()) } #[inline] fn approx_eq(&self, other: &Self) -> bool { self.x.approx_eq(&other.x) && self.y.approx_eq(&other.y) } #[inline] fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) } } impl Into<[T; 2]> for Point2D { fn into(self) -> [T; 2] { self.to_array() } } impl From<[T; 2]> for Point2D { fn from(array: [T; 2]) -> Self { point2(array[0], array[1]) } } impl Into<(T, T)> for Point2D { fn into(self) -> (T, T) { self.to_tuple() } } impl From<(T, T)> for Point2D { fn from(tuple: (T, T)) -> Self { point2(tuple.0, tuple.1) } } /// A 3d Point tagged with a unit. #[repr(C)] pub struct Point3D { pub x: T, pub y: T, pub z: T, #[doc(hidden)] pub _unit: PhantomData, } mint_vec!(Point3D[x, y, z] = Point3); impl Copy for Point3D {} impl Clone for Point3D { fn clone(&self) -> Self { Point3D { x: self.x.clone(), y: self.y.clone(), z: self.z.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Point3D where T: serde::Deserialize<'de> { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de> { let (x, y, z) = try!(serde::Deserialize::deserialize(deserializer)); Ok(Point3D { x, y, z, _unit: PhantomData }) } } #[cfg(feature = "serde")] impl serde::Serialize for Point3D where T: serde::Serialize { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer { (&self.x, &self.y, &self.z).serialize(serializer) } } impl Eq for Point3D where T: Eq {} impl PartialEq for Point3D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y && self.z == other.z } } impl Hash for Point3D where T: Hash { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); self.z.hash(h); } } impl Point3D { /// Constructor, setting all components to zero. #[inline] pub fn origin() -> Self { point3(Zero::zero(), Zero::zero(), Zero::zero()) } #[inline] pub fn zero() -> Self { Self::origin() } } impl Point3D { #[inline] pub fn to_array_4d(&self) -> [T; 4] { [self.x, self.y, self.z, One::one()] } #[inline] pub fn to_tuple_4d(&self) -> (T, T, T, T) { (self.x, self.y, self.z, One::one()) } } impl Point3D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this point and another point. /// /// `t` is expected to be between zero and one. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { let one_t = T::one() - t; point3( one_t * self.x + t * other.x, one_t * self.y + t * other.y, one_t * self.z + t * other.z, ) } } impl fmt::Debug for Point3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "({:?},{:?},{:?})", self.x, self.y, self.z) } } impl fmt::Display for Point3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "({},{},{})", self.x, self.y, self.z) } } impl Default for Point3D { fn default() -> Self { Point3D::new(Default::default(), Default::default(), Default::default()) } } impl Point3D { /// Constructor taking scalar values directly. #[inline] pub fn new(x: T, y: T, z: T) -> Self { Point3D { x, y, z, _unit: PhantomData, } } /// Constructor taking properly Lengths instead of scalar values. #[inline] pub fn from_lengths(x: Length, y: Length, z: Length) -> Self { point3(x.0, y.0, z.0) } /// Cast this point into a vector. /// /// Equivalent to subtracting the origin to this point. #[inline] pub fn to_vector(&self) -> Vector3D { Vector3D { x: self.x, y: self.y, z: self.z, _unit: PhantomData, } } /// Returns a 2d point using this point's x and y coordinates #[inline] pub fn xy(&self) -> Point2D { point2(self.x, self.y) } /// Returns a 2d point using this point's x and z coordinates #[inline] pub fn xz(&self) -> Point2D { point2(self.x, self.z) } /// Returns a 2d point using this point's x and z coordinates #[inline] pub fn yz(&self) -> Point2D { point2(self.y, self.z) } #[inline] pub fn to_array(&self) -> [T; 3] { [self.x, self.y, self.z] } #[inline] pub fn to_tuple(&self) -> (T, T, T) { (self.x, self.y, self.z) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Point3D { point3(self.x, self.y, self.z) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(p: Point3D) -> Self { point3(p.x, p.y, p.z) } /// Convert into a 2d point. #[inline] pub fn to_2d(&self) -> Point2D { self.xy() } } impl, U> Point3D { #[inline] pub fn add_size(&self, other: &Size3D) -> Self { point3(self.x + other.width, self.y + other.height, self.z + other.depth) } } impl, U> AddAssign> for Point3D { #[inline] fn add_assign(&mut self, other: Vector3D) { *self = *self + other } } impl, U> SubAssign> for Point3D { #[inline] fn sub_assign(&mut self, other: Vector3D) { *self = *self - other } } impl, U> Add> for Point3D { type Output = Self; #[inline] fn add(self, other: Vector3D) -> Self { point3(self.x + other.x, self.y + other.y, self.z + other.z) } } impl, U> Sub for Point3D { type Output = Vector3D; #[inline] fn sub(self, other: Self) -> Vector3D { vec3(self.x - other.x, self.y - other.y, self.z - other.z) } } impl, U> Sub> for Point3D { type Output = Self; #[inline] fn sub(self, other: Vector3D) -> Self { point3(self.x - other.x, self.y - other.y, self.z - other.z) } } impl, U> Mul for Point3D { type Output = Self; #[inline] fn mul(self, scale: T) -> Self { point3(self.x * scale, self.y * scale, self.z * scale) } } impl, U1, U2> Mul> for Point3D { type Output = Point3D; #[inline] fn mul(self, scale: Scale) -> Point3D { point3(self.x * scale.get(), self.y * scale.get(), self.z * scale.get()) } } impl, U> Div for Point3D { type Output = Self; #[inline] fn div(self, scale: T) -> Self { point3(self.x / scale, self.y / scale, self.z / scale) } } impl, U1, U2> Div> for Point3D { type Output = Point3D; #[inline] fn div(self, scale: Scale) -> Point3D { point3(self.x / scale.get(), self.y / scale.get(), self.z / scale.get()) } } impl Point3D { #[inline] pub fn min(self, other: Self) -> Self { point3( self.x.min(other.x), self.y.min(other.y), self.z.min(other.z), ) } #[inline] pub fn max(self, other: Self) -> Self { point3( self.x.max(other.x), self.y.max(other.y), self.z.max(other.z), ) } #[inline] pub fn clamp(&self, start: Self, end: Self) -> Self { self.max(start).min(end) } } impl Point3D { /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). #[inline] #[must_use] pub fn round(&self) -> Self { point3(self.x.round(), self.y.round(), self.z.round()) } } impl Point3D { /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). #[inline] #[must_use] pub fn ceil(&self) -> Self { point3(self.x.ceil(), self.y.ceil(), self.z.ceil()) } } impl Point3D { /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). #[inline] #[must_use] pub fn floor(&self) -> Self { point3(self.x.floor(), self.y.floor(), self.z.floor()) } } impl Point3D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn cast(&self) -> Point3D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn try_cast(&self) -> Option> { match ( NumCast::from(self.x), NumCast::from(self.y), NumCast::from(self.z), ) { (Some(x), Some(y), Some(z)) => Some(point3(x, y, z)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` point. #[inline] pub fn to_f32(&self) -> Point3D { self.cast() } /// Cast into an `f64` point. #[inline] pub fn to_f64(&self) -> Point3D { self.cast() } /// Cast into an `usize` point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_usize(&self) -> Point3D { self.cast() } /// Cast into an `u32` point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u32(&self) -> Point3D { self.cast() } /// Cast into an `i32` point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i32(&self) -> Point3D { self.cast() } /// Cast into an `i64` point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i64(&self) -> Point3D { self.cast() } } impl, U> ApproxEq> for Point3D { #[inline] fn approx_epsilon() -> Self { point3( T::approx_epsilon(), T::approx_epsilon(), T::approx_epsilon(), ) } #[inline] fn approx_eq(&self, other: &Self) -> bool { self.x.approx_eq(&other.x) && self.y.approx_eq(&other.y) && self.z.approx_eq(&other.z) } #[inline] fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) && self.z.approx_eq_eps(&other.z, &eps.z) } } impl Into<[T; 3]> for Point3D { fn into(self) -> [T; 3] { self.to_array() } } impl From<[T; 3]> for Point3D { fn from(array: [T; 3]) -> Self { point3(array[0], array[1], array[2]) } } impl Into<(T, T, T)> for Point3D { fn into(self) -> (T, T, T) { self.to_tuple() } } impl From<(T, T, T)> for Point3D { fn from(tuple: (T, T, T)) -> Self { point3(tuple.0, tuple.1, tuple.2) } } #[inline] pub fn point2(x: T, y: T) -> Point2D { Point2D { x, y, _unit: PhantomData, } } #[inline] pub fn point3(x: T, y: T, z: T) -> Point3D { Point3D { x, y, z, _unit: PhantomData, } } #[cfg(test)] mod point2d { use default::Point2D; use {point2, vec2}; use scale::Scale; #[cfg(feature = "mint")] use mint; #[test] pub fn test_scalar_mul() { let p1: Point2D = Point2D::new(3.0, 5.0); let result = p1 * 5.0; assert_eq!(result, Point2D::new(15.0, 25.0)); } #[test] pub fn test_min() { let p1 = Point2D::new(1.0, 3.0); let p2 = Point2D::new(2.0, 2.0); let result = p1.min(p2); assert_eq!(result, Point2D::new(1.0, 2.0)); } #[test] pub fn test_max() { let p1 = Point2D::new(1.0, 3.0); let p2 = Point2D::new(2.0, 2.0); let result = p1.max(p2); assert_eq!(result, Point2D::new(2.0, 3.0)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let p1 = Point2D::new(1.0, 3.0); let pm: mint::Point2<_> = p1.into(); let p2 = Point2D::from(pm); assert_eq!(p1, p2); } pub enum Mm {} pub enum Cm {} pub type Point2DMm = super::Point2D; pub type Point2DCm = super::Point2D; #[test] pub fn test_add() { let p1 = Point2DMm::new(1.0, 2.0); let p2 = vec2(3.0, 4.0); let result = p1 + p2; assert_eq!(result, Point2DMm::new(4.0, 6.0)); } #[test] pub fn test_add_assign() { let mut p1 = Point2DMm::new(1.0, 2.0); p1 += vec2(3.0, 4.0); assert_eq!(p1, Point2DMm::new(4.0, 6.0)); } #[test] pub fn test_typed_scalar_mul() { let p1 = Point2DMm::new(1.0, 2.0); let cm_per_mm: Scale = Scale::new(0.1); let result = p1 * cm_per_mm; assert_eq!(result, Point2DCm::new(0.1, 0.2)); } #[test] pub fn test_conv_vector() { for i in 0..100 { // We don't care about these values as long as they are not the same. let x = i as f32 * 0.012345; let y = i as f32 * 0.987654; let p: Point2D = point2(x, y); assert_eq!(p.to_vector().to_point(), p); } } #[test] pub fn test_swizzling() { let p: Point2D = point2(1, 2); assert_eq!(p.yx(), point2(2, 1)); } } #[cfg(test)] mod point3d { use default; use default::Point3D; use {point2, point3}; #[cfg(feature = "mint")] use mint; #[test] pub fn test_min() { let p1 = Point3D::new(1.0, 3.0, 5.0); let p2 = Point3D::new(2.0, 2.0, -1.0); let result = p1.min(p2); assert_eq!(result, Point3D::new(1.0, 2.0, -1.0)); } #[test] pub fn test_max() { let p1 = Point3D::new(1.0, 3.0, 5.0); let p2 = Point3D::new(2.0, 2.0, -1.0); let result = p1.max(p2); assert_eq!(result, Point3D::new(2.0, 3.0, 5.0)); } #[test] pub fn test_conv_vector() { use point3; for i in 0..100 { // We don't care about these values as long as they are not the same. let x = i as f32 * 0.012345; let y = i as f32 * 0.987654; let z = x * y; let p: Point3D = point3(x, y, z); assert_eq!(p.to_vector().to_point(), p); } } #[test] pub fn test_swizzling() { let p: default::Point3D = point3(1, 2, 3); assert_eq!(p.xy(), point2(1, 2)); assert_eq!(p.xz(), point2(1, 3)); assert_eq!(p.yz(), point2(2, 3)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let p1 = Point3D::new(1.0, 3.0, 5.0); let pm: mint::Point3<_> = p1.into(); let p2 = Point3D::from(pm); assert_eq!(p1, p2); } } euclid-0.20.0/src/rect.rs010064400017500001750000000622371351364257500133760ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use scale::Scale; use num::*; use box2d::Box2D; use point::Point2D; use vector::Vector2D; use side_offsets::SideOffsets2D; use size::Size2D; use approxord::{min, max}; use nonempty::NonEmpty; use num_traits::NumCast; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; use core::borrow::Borrow; use core::cmp::PartialOrd; use core::fmt; use core::hash::{Hash, Hasher}; use core::ops::{Add, Div, Mul, Sub, Range}; /// A 2d Rectangle optionally tagged with a unit. #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")))] pub struct Rect { pub origin: Point2D, pub size: Size2D, } impl Hash for Rect { fn hash(&self, h: &mut H) { self.origin.hash(h); self.size.hash(h); } } impl Copy for Rect {} impl Clone for Rect { fn clone(&self) -> Self { *self } } impl PartialEq> for Rect { fn eq(&self, other: &Self) -> bool { self.origin.eq(&other.origin) && self.size.eq(&other.size) } } impl Eq for Rect {} impl fmt::Debug for Rect { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Rect({:?} at {:?})", self.size, self.origin) } } impl fmt::Display for Rect { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { write!(formatter, "Rect({} at {})", self.size, self.origin) } } impl Default for Rect { fn default() -> Self { Rect::new(Default::default(), Default::default()) } } impl Rect { /// Constructor. pub fn new(origin: Point2D, size: Size2D) -> Self { Rect { origin, size, } } } impl Rect where T: Copy + Zero { /// Creates a rect of the given size, at offset zero. pub fn from_size(size: Size2D) -> Self { Rect { origin: Point2D::zero(), size, } } } impl Rect where T: Copy + Clone + Zero + PartialOrd + PartialEq + Add + Sub, { #[inline] pub fn intersects(&self, other: &Self) -> bool { self.origin.x < other.origin.x + other.size.width && other.origin.x < self.origin.x + self.size.width && self.origin.y < other.origin.y + other.size.height && other.origin.y < self.origin.y + self.size.height } #[inline] pub fn min(&self) -> Point2D { self.origin } #[inline] pub fn max(&self) -> Point2D { self.origin + self.size } #[inline] pub fn max_x(&self) -> T { self.origin.x + self.size.width } #[inline] pub fn min_x(&self) -> T { self.origin.x } #[inline] pub fn max_y(&self) -> T { self.origin.y + self.size.height } #[inline] pub fn min_y(&self) -> T { self.origin.y } #[inline] pub fn x_range(&self) -> Range { self.min_x()..self.max_x() } #[inline] pub fn y_range(&self) -> Range { self.min_y()..self.max_y() } #[inline] pub fn intersection(&self, other: &Self) -> Option { if !self.intersects(other) { return None; } let upper_left = Point2D::new( max(self.min_x(), other.min_x()), max(self.min_y(), other.min_y()), ); let lower_right_x = min(self.max_x(), other.max_x()); let lower_right_y = min(self.max_y(), other.max_y()); Some(Rect::new( upper_left, Size2D::new(lower_right_x - upper_left.x, lower_right_y - upper_left.y), )) } /// Returns the same rectangle, translated by a vector. #[inline] #[must_use] pub fn translate(&self, by: Vector2D) -> Self { Self::new(self.origin + by, self.size) } /// Returns true if this rectangle contains the point. Points are considered /// in the rectangle if they are on the left or top edge, but outside if they /// are on the right or bottom edge. #[inline] pub fn contains(&self, other: Point2D) -> bool { self.origin.x <= other.x && other.x < self.origin.x + self.size.width && self.origin.y <= other.y && other.y < self.origin.y + self.size.height } /// Returns true if this rectangle contains the interior of rect. Always /// returns true if rect is empty, and always returns false if rect is /// nonempty but this rectangle is empty. #[inline] pub fn contains_rect(&self, rect: &Self) -> bool { rect.is_empty_or_negative() || (self.min_x() <= rect.min_x() && rect.max_x() <= self.max_x() && self.min_y() <= rect.min_y() && rect.max_y() <= self.max_y()) } #[inline] #[must_use] pub fn inflate(&self, width: T, height: T) -> Self { Rect::new( Point2D::new(self.origin.x - width, self.origin.y - height), Size2D::new( self.size.width + width + width, self.size.height + height + height, ), ) } #[inline] pub fn to_box2d(&self) -> Box2D { Box2D { min: self.min(), max: self.max(), } } /// Calculate the size and position of an inner rectangle. /// /// Subtracts the side offsets from all sides. The horizontal and vertical /// offsets must not be larger than the original side length. /// This method assumes y oriented downward. pub fn inner_rect(&self, offsets: SideOffsets2D) -> Self { let rect = Rect::new( Point2D::new( self.origin.x + offsets.left, self.origin.y + offsets.top ), Size2D::new( self.size.width - offsets.horizontal(), self.size.height - offsets.vertical() ) ); debug_assert!(rect.size.width >= Zero::zero()); debug_assert!(rect.size.height >= Zero::zero()); rect } /// Calculate the size and position of an outer rectangle. /// /// Add the offsets to all sides. The expanded rectangle is returned. /// This method assumes y oriented downward. pub fn outer_rect(&self, offsets: SideOffsets2D) -> Self { Rect::new( Point2D::new( self.origin.x - offsets.left, self.origin.y - offsets.top ), Size2D::new( self.size.width + offsets.horizontal(), self.size.height + offsets.vertical() ) ) } /// Returns the smallest rectangle defined by the top/bottom/left/right-most /// points provided as parameter. /// /// Note: This function has a behavior that can be surprising because /// the right-most and bottom-most points are exactly on the edge /// of the rectangle while the `contains` function is has exclusive /// semantic on these edges. This means that the right-most and bottom-most /// points provided to `from_points` will count as not contained by the rect. /// This behavior may change in the future. pub fn from_points(points: I) -> Self where I: IntoIterator, I::Item: Borrow>, { let mut points = points.into_iter(); let (mut min_x, mut min_y) = match points.next() { Some(first) => (first.borrow().x, first.borrow().y), None => return Rect::zero(), }; let (mut max_x, mut max_y) = (min_x, min_y); for point in points { let p = point.borrow(); if p.x < min_x { min_x = p.x } if p.x > max_x { max_x = p.x } if p.y < min_y { min_y = p.y } if p.y > max_y { max_y = p.y } } Rect::new( Point2D::new(min_x, min_y), Size2D::new(max_x - min_x, max_y - min_y), ) } } impl Rect where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this rectangle and another rectangle. /// /// `t` is expected to be between zero and one. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { Self::new( self.origin.lerp(other.origin, t), self.size.lerp(other.size, t), ) } } impl Rect where T: Copy + One + Add + Div, { pub fn center(&self) -> Point2D { let two = T::one() + T::one(); self.origin + self.size.to_vector() / two } } impl Rect where T: Copy + Clone + PartialOrd + Add + Sub + Zero, { #[inline] pub fn union(&self, other: &Self) -> Self { if self.size == Zero::zero() { return *other; } if other.size == Zero::zero() { return *self; } let upper_left = Point2D::new( min(self.min_x(), other.min_x()), min(self.min_y(), other.min_y()), ); let lower_right_x = max(self.max_x(), other.max_x()); let lower_right_y = max(self.max_y(), other.max_y()); Rect::new( upper_left, Size2D::new(lower_right_x - upper_left.x, lower_right_y - upper_left.y), ) } } impl Rect { #[inline] pub fn scale(&self, x: S, y: S) -> Self where T: Copy + Clone + Mul, { Rect::new( Point2D::new(self.origin.x * x, self.origin.y * y), Size2D::new(self.size.width * x, self.size.height * y), ) } } impl, U> Rect { #[inline] pub fn area(&self) -> T { self.size.area() } } impl Rect { /// Constructor, setting all sides to zero. pub fn zero() -> Self { Rect::new(Point2D::origin(), Size2D::zero()) } /// Returns true if the size is zero, regardless of the origin's value. pub fn is_empty(&self) -> bool { self.size.width == Zero::zero() || self.size.height == Zero::zero() } } impl Rect { #[inline] pub fn is_empty_or_negative(&self) -> bool { self.size.is_empty_or_negative() } #[inline] pub fn to_non_empty(&self) -> Option> { if self.is_empty_or_negative() { return None; } Some(NonEmpty(*self)) } } impl, U> Mul for Rect { type Output = Self; #[inline] fn mul(self, scale: T) -> Self { Rect::new(self.origin * scale, self.size * scale) } } impl, U> Div for Rect { type Output = Self; #[inline] fn div(self, scale: T) -> Self { Rect::new(self.origin / scale, self.size / scale) } } impl, U1, U2> Mul> for Rect { type Output = Rect; #[inline] fn mul(self, scale: Scale) -> Rect { Rect::new(self.origin * scale, self.size * scale) } } impl, U1, U2> Div> for Rect { type Output = Rect; #[inline] fn div(self, scale: Scale) -> Rect { Rect::new(self.origin / scale, self.size / scale) } } impl Rect { /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Rect { Rect::new(self.origin.to_untyped(), self.size.to_untyped()) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(r: &Rect) -> Rect { Rect::new( Point2D::from_untyped(r.origin), Size2D::from_untyped(r.size), ) } } impl Rect { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. pub fn cast(&self) -> Rect { Rect::new( self.origin.cast(), self.size.cast(), ) } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. pub fn try_cast(&self) -> Option> { match (self.origin.try_cast(), self.size.try_cast()) { (Some(origin), Some(size)) => Some(Rect::new(origin, size)), _ => None, } } } impl + Sub, U> Rect { /// Return a rectangle with edges rounded to integer coordinates, such that /// the returned rectangle has the same set of pixel centers as the original /// one. /// Edges at offset 0.5 round up. /// Suitable for most places where integral device coordinates /// are needed, but note that any translation should be applied first to /// avoid pixel rounding errors. /// Note that this is *not* rounding to nearest integer if the values are negative. /// They are always rounding as floor(n + 0.5). #[must_use] pub fn round(&self) -> Self { let origin = self.origin.round(); let size = self.origin.add_size(&self.size).round() - origin; Rect::new(origin, Size2D::new(size.x, size.y)) } /// Return a rectangle with edges rounded to integer coordinates, such that /// the original rectangle contains the resulting rectangle. #[must_use] pub fn round_in(&self) -> Self { let origin = self.origin.ceil(); let size = self.origin.add_size(&self.size).floor() - origin; Rect::new(origin, Size2D::new(size.x, size.y)) } /// Return a rectangle with edges rounded to integer coordinates, such that /// the original rectangle is contained in the resulting rectangle. #[must_use] pub fn round_out(&self) -> Self { let origin = self.origin.floor(); let size = self.origin.add_size(&self.size).ceil() - origin; Rect::new(origin, Size2D::new(size.x, size.y)) } } // Convenience functions for common casts impl Rect { /// Cast into an `f32` rectangle. pub fn to_f32(&self) -> Rect { self.cast() } /// Cast into an `f64` rectangle. pub fn to_f64(&self) -> Rect { self.cast() } /// Cast into an `usize` rectangle, truncating decimals if any. /// /// When casting from floating point rectangles, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. pub fn to_usize(&self) -> Rect { self.cast() } /// Cast into an `u32` rectangle, truncating decimals if any. /// /// When casting from floating point rectangles, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. pub fn to_u32(&self) -> Rect { self.cast() } /// Cast into an `i32` rectangle, truncating decimals if any. /// /// When casting from floating point rectangles, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. pub fn to_i32(&self) -> Rect { self.cast() } /// Cast into an `i64` rectangle, truncating decimals if any. /// /// When casting from floating point rectangles, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. pub fn to_i64(&self) -> Rect { self.cast() } } impl From> for Rect where T: Copy + Zero { fn from(size: Size2D) -> Self { Self::from_size(size) } } /// Shorthand for `Rect::new(Point2D::new(x, y), Size2D::new(w, h))`. pub fn rect(x: T, y: T, w: T, h: T) -> Rect { Rect::new(Point2D::new(x, y), Size2D::new(w, h)) } #[cfg(test)] mod tests { use default::{Point2D, Rect, Size2D}; use {point2, vec2, rect, size2}; use side_offsets::SideOffsets2D; #[test] fn test_translate() { let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32)); let pp = p.translate(vec2(10, 15)); assert!(pp.size.width == 50); assert!(pp.size.height == 40); assert!(pp.origin.x == 10); assert!(pp.origin.y == 15); let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40)); let rr = r.translate(vec2(0, -10)); assert!(rr.size.width == 50); assert!(rr.size.height == 40); assert!(rr.origin.x == -10); assert!(rr.origin.y == -15); } #[test] fn test_union() { let p = Rect::new(Point2D::new(0, 0), Size2D::new(50, 40)); let q = Rect::new(Point2D::new(20, 20), Size2D::new(5, 5)); let r = Rect::new(Point2D::new(-15, -30), Size2D::new(200, 15)); let s = Rect::new(Point2D::new(20, -15), Size2D::new(250, 200)); let pq = p.union(&q); assert!(pq.origin == Point2D::new(0, 0)); assert!(pq.size == Size2D::new(50, 40)); let pr = p.union(&r); assert!(pr.origin == Point2D::new(-15, -30)); assert!(pr.size == Size2D::new(200, 70)); let ps = p.union(&s); assert!(ps.origin == Point2D::new(0, -15)); assert!(ps.size == Size2D::new(270, 200)); } #[test] fn test_intersection() { let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20)); let q = Rect::new(Point2D::new(5, 15), Size2D::new(10, 10)); let r = Rect::new(Point2D::new(-5, -5), Size2D::new(8, 8)); let pq = p.intersection(&q); assert!(pq.is_some()); let pq = pq.unwrap(); assert!(pq.origin == Point2D::new(5, 15)); assert!(pq.size == Size2D::new(5, 5)); let pr = p.intersection(&r); assert!(pr.is_some()); let pr = pr.unwrap(); assert!(pr.origin == Point2D::new(0, 0)); assert!(pr.size == Size2D::new(3, 3)); let qr = q.intersection(&r); assert!(qr.is_none()); } #[test] fn test_contains() { let r = Rect::new(Point2D::new(-20, 15), Size2D::new(100, 200)); assert!(r.contains(Point2D::new(0, 50))); assert!(r.contains(Point2D::new(-10, 200))); // The `contains` method is inclusive of the top/left edges, but not the // bottom/right edges. assert!(r.contains(Point2D::new(-20, 15))); assert!(!r.contains(Point2D::new(80, 15))); assert!(!r.contains(Point2D::new(80, 215))); assert!(!r.contains(Point2D::new(-20, 215))); // Points beyond the top-left corner. assert!(!r.contains(Point2D::new(-25, 15))); assert!(!r.contains(Point2D::new(-15, 10))); // Points beyond the top-right corner. assert!(!r.contains(Point2D::new(85, 20))); assert!(!r.contains(Point2D::new(75, 10))); // Points beyond the bottom-right corner. assert!(!r.contains(Point2D::new(85, 210))); assert!(!r.contains(Point2D::new(75, 220))); // Points beyond the bottom-left corner. assert!(!r.contains(Point2D::new(-25, 210))); assert!(!r.contains(Point2D::new(-15, 220))); let r = Rect::new(Point2D::new(-20.0, 15.0), Size2D::new(100.0, 200.0)); assert!(r.contains_rect(&r)); assert!(!r.contains_rect(&r.translate(vec2(0.1, 0.0)))); assert!(!r.contains_rect(&r.translate(vec2(-0.1, 0.0)))); assert!(!r.contains_rect(&r.translate(vec2(0.0, 0.1)))); assert!(!r.contains_rect(&r.translate(vec2(0.0, -0.1)))); // Empty rectangles are always considered as contained in other rectangles, // even if their origin is not. let p = Point2D::new(1.0, 1.0); assert!(!r.contains(p)); assert!(r.contains_rect(&Rect::new(p, Size2D::zero()))); } #[test] fn test_scale() { let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32)); let pp = p.scale(10, 15); assert!(pp.size.width == 500); assert!(pp.size.height == 600); assert!(pp.origin.x == 0); assert!(pp.origin.y == 0); let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40)); let rr = r.scale(1, 20); assert!(rr.size.width == 50); assert!(rr.size.height == 800); assert!(rr.origin.x == -10); assert!(rr.origin.y == -100); } #[test] fn test_inflate() { let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 10)); let pp = p.inflate(10, 20); assert!(pp.size.width == 30); assert!(pp.size.height == 50); assert!(pp.origin.x == -10); assert!(pp.origin.y == -20); let r = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20)); let rr = r.inflate(-2, -5); assert!(rr.size.width == 6); assert!(rr.size.height == 10); assert!(rr.origin.x == 2); assert!(rr.origin.y == 5); } #[test] fn test_inner_outer_rect() { let inner_rect = Rect::new(point2(20, 40), size2(80, 100)); let offsets = SideOffsets2D::new(20, 10, 10, 10); let outer_rect = inner_rect.outer_rect(offsets); assert_eq!(outer_rect.origin.x, 10); assert_eq!(outer_rect.origin.y, 20); assert_eq!(outer_rect.size.width, 100); assert_eq!(outer_rect.size.height, 130); assert_eq!(outer_rect.inner_rect(offsets), inner_rect); } #[test] fn test_min_max_x_y() { let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32)); assert!(p.max_y() == 40); assert!(p.min_y() == 0); assert!(p.max_x() == 50); assert!(p.min_x() == 0); let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40)); assert!(r.max_y() == 35); assert!(r.min_y() == -5); assert!(r.max_x() == 40); assert!(r.min_x() == -10); } #[test] fn test_is_empty() { assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 0u32)).is_empty()); assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(10u32, 0u32)).is_empty()); assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 10u32)).is_empty()); assert!(!Rect::new(Point2D::new(0u32, 0u32), Size2D::new(1u32, 1u32)).is_empty()); assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 0u32)).is_empty()); assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(10u32, 0u32)).is_empty()); assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 10u32)).is_empty()); assert!(!Rect::new(Point2D::new(10u32, 10u32), Size2D::new(1u32, 1u32)).is_empty()); } #[test] fn test_round() { let mut x = -2.0; let mut y = -2.0; let mut w = -2.0; let mut h = -2.0; while x < 2.0 { while y < 2.0 { while w < 2.0 { while h < 2.0 { let rect = Rect::new(Point2D::new(x, y), Size2D::new(w, h)); assert!(rect.contains_rect(&rect.round_in())); assert!(rect.round_in().inflate(1.0, 1.0).contains_rect(&rect)); assert!(rect.round_out().contains_rect(&rect)); assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round_out())); assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round())); assert!(rect.round().inflate(1.0, 1.0).contains_rect(&rect)); h += 0.1; } w += 0.1; } y += 0.1; } x += 0.1 } } #[test] fn test_center() { let r: Rect = rect(-2, 5, 4, 10); assert_eq!(r.center(), point2(0, 10)); let r: Rect = rect(1.0, 2.0, 3.0, 4.0); assert_eq!(r.center(), point2(2.5, 4.0)); } } euclid-0.20.0/src/rigid.rs010064400017500001750000000202431350732666300135260ustar0000000000000000use approxeq::ApproxEq; use num_traits::Float; use trig::Trig; use {Rotation3D, Transform3D, Vector3D}; /// A rigid transformation. All lengths are preserved under such a transformation. /// /// /// Internally, this is a rotation and a translation, with the rotation /// applied first (i.e. `Rotation * Translation`, in row-vector notation) /// /// This can be more efficient to use over full matrices, especially if you /// have to deal with the decomposed quantities often. #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[repr(C)] pub struct RigidTransform3D { pub rotation: Rotation3D, pub translation: Vector3D, } // All matrix multiplication in this file is in row-vector notation, // i.e. a vector `v` is transformed with `v * T`, and if you want to apply `T1` // before `T2` you use `T1 * T2` impl, Src, Dst> RigidTransform3D { /// Construct a new rigid transformation, where the `rotation` applies first #[inline] pub fn new(rotation: Rotation3D, translation: Vector3D) -> Self { Self { rotation, translation, } } /// Construct an identity transform #[inline] pub fn identity() -> Self { Self { rotation: Rotation3D::identity(), translation: Vector3D::zero(), } } /// Construct a new rigid transformation, where the `translation` applies first #[inline] pub fn new_from_reversed( translation: Vector3D, rotation: Rotation3D, ) -> Self { // T * R // = (R * R^-1) * T * R // = R * (R^-1 * T * R) // = R * T' // // T' = (R^-1 * T * R) is also a translation matrix // It is equivalent to the translation matrix obtained by rotating the // translation by R let translation = rotation.transform_vector3d(translation); Self { rotation, translation, } } #[inline] pub fn from_rotation(rotation: Rotation3D) -> Self { Self { rotation, translation: Vector3D::zero(), } } #[inline] pub fn from_translation(translation: Vector3D) -> Self { Self { translation, rotation: Rotation3D::identity(), } } /// Decompose this into a translation and an rotation to be applied in the opposite order /// /// i.e., the translation is applied _first_ #[inline] pub fn decompose_reversed(&self) -> (Vector3D, Rotation3D) { // self = R * T // = R * T * (R^-1 * R) // = (R * T * R^-1) * R) // = T' * R // // T' = (R^ * T * R^-1) is T rotated by R^-1 let translation = self.rotation.inverse().transform_vector3d(self.translation); (translation, self.rotation) } /// Returns the multiplication of the two transforms such that /// other's transformation applies after self's transformation. /// /// i.e., this produces `self * other` in row-vector notation #[inline] pub fn post_transform( &self, other: &RigidTransform3D, ) -> RigidTransform3D { // self = R1 * T1 // other = R2 * T2 // result = R1 * T1 * R2 * T2 // = R1 * (R2 * R2^-1) * T1 * R2 * T2 // = (R1 * R2) * (R2^-1 * T1 * R2) * T2 // = R' * T' * T2 // = R' * T'' // // (R2^-1 * T2 * R2^) = T' = T2 rotated by R2 // R1 * R2 = R' // T' * T2 = T'' = vector addition of translations T2 and T' let t_prime = other .rotation .transform_vector3d(self.translation); let r_prime = self.rotation.post_rotate(&other.rotation); let t_prime2 = t_prime + other.translation; RigidTransform3D { rotation: r_prime, translation: t_prime2, } } /// Returns the multiplication of the two transforms such that /// self's transformation applies after other's transformation. /// /// i.e., this produces `other * self` in row-vector notation #[inline] pub fn pre_transform( &self, other: &RigidTransform3D, ) -> RigidTransform3D { other.post_transform(&self) } /// Inverts the transformation #[inline] pub fn inverse(&self) -> RigidTransform3D { // result = (self)^-1 // = (R * T)^-1 // = T^-1 * R^-1 // = (R^-1 * R) * T^-1 * R^-1 // = R^-1 * (R * T^-1 * R^-1) // = R' * T' // // T' = (R * T^-1 * R^-1) = (-T) rotated by R^-1 // R' = R^-1 // // An easier way of writing this is to use new_from_reversed() with R^-1 and T^-1 RigidTransform3D::new_from_reversed( -self.translation, self.rotation.inverse(), ) } pub fn to_transform(&self) -> Transform3D where T: Trig, { self.translation .to_transform() .pre_transform(&self.rotation.to_transform()) } } impl, Src, Dst> From> for RigidTransform3D { fn from(rot: Rotation3D) -> Self { Self::from_rotation(rot) } } impl, Src, Dst> From> for RigidTransform3D { fn from(t: Vector3D) -> Self { Self::from_translation(t) } } #[cfg(test)] mod test { use super::RigidTransform3D; use default::{Rotation3D, Transform3D, Vector3D}; #[test] fn test_rigid_construction() { let translation = Vector3D::new(12.1, 17.8, -5.5); let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3); let rigid = RigidTransform3D::new(rotation, translation); assert!(rigid .to_transform() .approx_eq(&translation.to_transform().pre_transform(&rotation.to_transform()))); let rigid = RigidTransform3D::new_from_reversed(translation, rotation); assert!(rigid.to_transform().approx_eq( &translation .to_transform() .post_transform(&rotation.to_transform()) )); } #[test] fn test_rigid_decomposition() { let translation = Vector3D::new(12.1, 17.8, -5.5); let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3); let rigid = RigidTransform3D::new(rotation, translation); let (t2, r2) = rigid.decompose_reversed(); assert!(rigid .to_transform() .approx_eq(&t2.to_transform().post_transform(&r2.to_transform()))); } #[test] fn test_rigid_inverse() { let translation = Vector3D::new(12.1, 17.8, -5.5); let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3); let rigid = RigidTransform3D::new(rotation, translation); let inverse = rigid.inverse(); assert!(rigid .post_transform(&inverse) .to_transform() .approx_eq(&Transform3D::identity())); assert!(inverse .to_transform() .approx_eq(&rigid.to_transform().inverse().unwrap())); } #[test] fn test_rigid_multiply() { let translation = Vector3D::new(12.1, 17.8, -5.5); let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3); let translation2 = Vector3D::new(9.3, -3.9, 1.1); let rotation2 = Rotation3D::unit_quaternion(0.1, 0.2, 0.3, -0.4); let rigid = RigidTransform3D::new(rotation, translation); let rigid2 = RigidTransform3D::new(rotation2, translation2); assert!(rigid .post_transform(&rigid2) .to_transform() .approx_eq(&rigid.to_transform().post_transform(&rigid2.to_transform()))); assert!(rigid .pre_transform(&rigid2) .to_transform() .approx_eq(&rigid.to_transform().pre_transform(&rigid2.to_transform()))); } } euclid-0.20.0/src/rotation.rs010064400017500001750000000777361350732666300143120ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use approxeq::ApproxEq; use num_traits::{Float, FloatConst, One, Zero, NumCast}; use core::fmt; use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, Sub, SubAssign}; use core::marker::PhantomData; use core::cmp::{Eq, PartialEq}; use core::hash::{Hash}; use trig::Trig; use {Point2D, Point3D, Vector2D, Vector3D, point2, point3, vec3}; use {Transform2D, Transform3D, UnknownUnit}; #[cfg(feature = "serde")] use serde; /// An angle in radians #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Hash)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct Angle { pub radians: T, } impl Angle { #[inline] pub fn radians(radians: T) -> Self { Angle { radians } } #[inline] pub fn get(self) -> T { self.radians } } impl Angle where T: Trig, { #[inline] pub fn degrees(deg: T) -> Self { Angle { radians: T::degrees_to_radians(deg), } } #[inline] pub fn to_degrees(self) -> T { T::radians_to_degrees(self.radians) } } impl Angle where T: Rem + Sub + Add + Zero + FloatConst + PartialOrd + Copy, { /// Returns this angle in the [0..2*PI[ range. pub fn positive(&self) -> Self { let two_pi = T::PI() + T::PI(); let mut a = self.radians % two_pi; if a < T::zero() { a = a + two_pi; } Angle::radians(a) } /// Returns this angle in the ]-PI..PI] range. pub fn signed(&self) -> Self { Angle::pi() - (Angle::pi() - *self).positive() } } impl Angle where T: Float, { /// Returns (sin(self), cos(self)). pub fn sin_cos(self) -> (T, T) { self.radians.sin_cos() } } impl Angle where T: Zero, { pub fn zero() -> Self { Angle::radians(T::zero()) } } impl Angle where T: FloatConst + Add, { pub fn pi() -> Self { Angle::radians(T::PI()) } pub fn two_pi() -> Self { Angle::radians(T::PI() + T::PI()) } pub fn frac_pi_2() -> Self { Angle::radians(T::FRAC_PI_2()) } pub fn frac_pi_3() -> Self { Angle::radians(T::FRAC_PI_3()) } pub fn frac_pi_4() -> Self { Angle::radians(T::FRAC_PI_4()) } } impl> Add for Angle { type Output = Angle; fn add(self, other: Angle) -> Angle { Angle::radians(self.radians + other.radians) } } impl> AddAssign for Angle { fn add_assign(&mut self, other: Angle) { self.radians += other.radians; } } impl> Sub> for Angle { type Output = Angle; fn sub(self, other: Angle) -> ::Output { Angle::radians(self.radians - other.radians) } } impl> SubAssign for Angle { fn sub_assign(&mut self, other: Angle) { self.radians -= other.radians; } } impl> Div> for Angle { type Output = T; #[inline] fn div(self, other: Angle) -> T { self.radians / other.radians } } impl> Div for Angle { type Output = Angle; #[inline] fn div(self, factor: T) -> Angle { Angle::radians(self.radians / factor) } } impl> DivAssign for Angle { fn div_assign(&mut self, factor: T) { self.radians /= factor; } } impl> Mul for Angle { type Output = Angle; #[inline] fn mul(self, factor: T) -> Angle { Angle::radians(self.radians * factor) } } impl> MulAssign for Angle { fn mul_assign(&mut self, factor: T) { self.radians *= factor; } } impl> Neg for Angle { type Output = Self; fn neg(self) -> Self { Angle::radians(-self.radians) } } /// A transform that can represent rotations in 2d, represented as an angle in radians. #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde", serde(bound(serialize = "T: serde::Serialize", deserialize = "T: serde::Deserialize<'de>")))] pub struct Rotation2D { pub angle : T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } impl Copy for Rotation2D {} impl Clone for Rotation2D { fn clone(&self) -> Self { Rotation2D { angle: self.angle.clone(), _unit: PhantomData, } } } impl Eq for Rotation2D where T: Eq {} impl PartialEq for Rotation2D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.angle == other.angle } } impl Hash for Rotation2D where T: Hash { fn hash(&self, h: &mut H) { self.angle.hash(h); } } impl Rotation2D { #[inline] /// Creates a rotation from an angle in radians. pub fn new(angle: Angle) -> Self { Rotation2D { angle: angle.radians, _unit: PhantomData, } } pub fn radians(angle: T) -> Self { Self::new(Angle::radians(angle)) } /// Creates the identity rotation. #[inline] pub fn identity() -> Self where T: Zero, { Self::radians(T::zero()) } } impl Rotation2D where T: Clone, { /// Returns self.angle as a strongly typed `Angle`. pub fn get_angle(&self) -> Angle { Angle::radians(self.angle.clone()) } } impl Rotation2D where T: Copy + Clone + Add + Sub + Mul + Div + Neg + PartialOrd + Float + One + Zero, { /// Creates a 3d rotation (around the z axis) from this 2d rotation. #[inline] pub fn to_3d(&self) -> Rotation3D { Rotation3D::around_z(self.get_angle()) } /// Returns the inverse of this rotation. #[inline] pub fn inverse(&self) -> Rotation2D { Rotation2D::radians(-self.angle) } /// Returns a rotation representing the other rotation followed by this rotation. #[inline] pub fn pre_rotate( &self, other: &Rotation2D, ) -> Rotation2D { Rotation2D::radians(self.angle + other.angle) } /// Returns a rotation representing this rotation followed by the other rotation. #[inline] pub fn post_rotate( &self, other: &Rotation2D, ) -> Rotation2D { other.pre_rotate(self) } /// Returns the given 2d point transformed by this rotation. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_point(&self, point: Point2D) -> Point2D { let (sin, cos) = Float::sin_cos(self.angle); point2(point.x * cos - point.y * sin, point.y * cos + point.x * sin) } /// Returns the given 2d vector transformed by this rotation. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_vector(&self, vector: Vector2D) -> Vector2D { self.transform_point(vector.to_point()).to_vector() } } impl Rotation2D where T: Copy + Clone + Add + Mul + Div + Sub + Trig + PartialOrd + One + Zero, { /// Returns the matrix representation of this rotation. #[inline] pub fn to_transform(&self) -> Transform2D { Transform2D::create_rotation(self.get_angle()) } } /// A transform that can represent rotations in 3d, represented as a quaternion. /// /// Most methods expect the quaternion to be normalized. /// When in doubt, use `unit_quaternion` instead of `quaternion` to create /// a rotation as the former will ensure that its result is normalized. /// /// Some people use the `x, y, z, w` (or `w, x, y, z`) notations. The equivalence is /// as follows: `x -> i`, `y -> j`, `z -> k`, `w -> r`. /// The memory layout of this type corresponds to the `x, y, z, w` notation #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde", serde(bound(serialize = "T: serde::Serialize", deserialize = "T: serde::Deserialize<'de>")))] pub struct Rotation3D { /// Component multiplied by the imaginary number `i`. pub i: T, /// Component multiplied by the imaginary number `j`. pub j: T, /// Component multiplied by the imaginary number `k`. pub k: T, /// The real part. pub r: T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } impl Copy for Rotation3D {} impl Clone for Rotation3D { fn clone(&self) -> Self { Rotation3D { i: self.i.clone(), j: self.j.clone(), k: self.k.clone(), r: self.r.clone(), _unit: PhantomData, } } } impl Eq for Rotation3D where T: Eq {} impl PartialEq for Rotation3D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.i == other.i && self.j == other.j && self.k == other.k && self.r == other.r } } impl Hash for Rotation3D where T: Hash { fn hash(&self, h: &mut H) { self.i.hash(h); self.j.hash(h); self.k.hash(h); self.r.hash(h); } } impl Rotation3D { /// Creates a rotation around from a quaternion representation. /// /// The parameters are a, b, c and r compose the quaternion `a*i + b*j + c*k + r` /// where `a`, `b` and `c` describe the vector part and the last parameter `r` is /// the real part. /// /// The resulting quaternion is not necessarily normalized. See `unit_quaternion`. #[inline] pub fn quaternion(a: T, b: T, c: T, r: T) -> Self { Rotation3D { i: a, j: b, k: c, r, _unit: PhantomData, } } } impl Rotation3D where T: Copy, { /// Returns the vector part (i, j, k) of this quaternion. #[inline] pub fn vector_part(&self) -> Vector3D { vec3(self.i, self.j, self.k) } } impl Rotation3D where T: Float, { /// Creates the identity rotation. #[inline] pub fn identity() -> Self { let zero = T::zero(); let one = T::one(); Self::quaternion(zero, zero, zero, one) } /// Creates a rotation around from a quaternion representation and normalizes it. /// /// The parameters are a, b, c and r compose the quaternion `a*i + b*j + c*k + r` /// before normalization, where `a`, `b` and `c` describe the vector part and the /// last parameter `r` is the real part. #[inline] pub fn unit_quaternion(i: T, j: T, k: T, r: T) -> Self { Self::quaternion(i, j, k, r).normalize() } /// Creates a rotation around a given axis. pub fn around_axis(axis: Vector3D, angle: Angle) -> Self { let axis = axis.normalize(); let two = T::one() + T::one(); let (sin, cos) = Angle::sin_cos(angle / two); Self::quaternion(axis.x * sin, axis.y * sin, axis.z * sin, cos) } /// Creates a rotation around the x axis. pub fn around_x(angle: Angle) -> Self { let zero = Zero::zero(); let two = T::one() + T::one(); let (sin, cos) = Angle::sin_cos(angle / two); Self::quaternion(sin, zero, zero, cos) } /// Creates a rotation around the y axis. pub fn around_y(angle: Angle) -> Self { let zero = Zero::zero(); let two = T::one() + T::one(); let (sin, cos) = Angle::sin_cos(angle / two); Self::quaternion(zero, sin, zero, cos) } /// Creates a rotation around the z axis. pub fn around_z(angle: Angle) -> Self { let zero = Zero::zero(); let two = T::one() + T::one(); let (sin, cos) = Angle::sin_cos(angle / two); Self::quaternion(zero, zero, sin, cos) } /// Creates a rotation from Euler angles. /// /// The rotations are applied in roll then pitch then yaw order. /// /// - Roll (also called bank) is a rotation around the x axis. /// - Pitch (also called bearing) is a rotation around the y axis. /// - Yaw (also called heading) is a rotation around the z axis. pub fn euler(roll: Angle, pitch: Angle, yaw: Angle) -> Self { let half = T::one() / (T::one() + T::one()); let (sy, cy) = Float::sin_cos(half * yaw.get()); let (sp, cp) = Float::sin_cos(half * pitch.get()); let (sr, cr) = Float::sin_cos(half * roll.get()); Self::quaternion( cy * sr * cp - sy * cr * sp, cy * cr * sp + sy * sr * cp, sy * cr * cp - cy * sr * sp, cy * cr * cp + sy * sr * sp, ) } /// Returns the inverse of this rotation. #[inline] pub fn inverse(&self) -> Rotation3D { Rotation3D::quaternion(-self.i, -self.j, -self.k, self.r) } /// Computes the norm of this quaternion #[inline] pub fn norm(&self) -> T { self.square_norm().sqrt() } #[inline] pub fn square_norm(&self) -> T { (self.i * self.i + self.j * self.j + self.k * self.k + self.r * self.r) } /// Returns a unit quaternion from this one. #[inline] pub fn normalize(&self) -> Self { self.mul(T::one() / self.norm()) } #[inline] pub fn is_normalized(&self) -> bool where T: ApproxEq, { let eps = NumCast::from(1.0e-5).unwrap(); self.square_norm().approx_eq_eps(&T::one(), &eps) } /// Spherical linear interpolation between this rotation and another rotation. /// /// `t` is expected to be between zero and one. pub fn slerp(&self, other: &Self, t: T) -> Self where T: ApproxEq, { debug_assert!(self.is_normalized()); debug_assert!(other.is_normalized()); let r1 = *self; let mut r2 = *other; let mut dot = r1.i * r2.i + r1.j * r2.j + r1.k * r2.k + r1.r * r2.r; let one = T::one(); if dot.approx_eq(&T::one()) { // If the inputs are too close, linearly interpolate to avoid precision issues. return r1.lerp(&r2, t); } // If the dot product is negative, the quaternions // have opposite handed-ness and slerp won't take // the shorter path. Fix by reversing one quaternion. if dot < T::zero() { r2 = r2.mul(-T::one()); dot = -dot; } // For robustness, stay within the domain of acos. dot = Float::min(dot, one); // Angle between r1 and the result. let theta = Float::acos(dot) * t; // r1 and r3 form an orthonormal basis. let r3 = r2.sub(r1.mul(dot)).normalize(); let (sin, cos) = Float::sin_cos(theta); r1.mul(cos).add(r3.mul(sin)) } /// Basic Linear interpolation between this rotation and another rotation. /// /// `t` is expected to be between zero and one. #[inline] pub fn lerp(&self, other: &Self, t: T) -> Self { let one_t = T::one() - t; self.mul(one_t).add(other.mul(t)).normalize() } /// Returns the given 3d point transformed by this rotation. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. pub fn transform_point3d(&self, point: Point3D) -> Point3D where T: ApproxEq, { debug_assert!(self.is_normalized()); let two = T::one() + T::one(); let cross = self.vector_part().cross(point.to_vector().to_untyped()) * two; point3( point.x + self.r * cross.x + self.j * cross.z - self.k * cross.y, point.y + self.r * cross.y + self.k * cross.x - self.i * cross.z, point.z + self.r * cross.z + self.i * cross.y - self.j * cross.x, ) } /// Returns the given 2d point transformed by this rotation then projected on the xy plane. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_point2d(&self, point: Point2D) -> Point2D where T: ApproxEq, { self.transform_point3d(point.to_3d()).xy() } /// Returns the given 3d vector transformed by this rotation. /// /// The input vector must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_vector3d(&self, vector: Vector3D) -> Vector3D where T: ApproxEq, { self.transform_point3d(vector.to_point()).to_vector() } /// Returns the given 2d vector transformed by this rotation then projected on the xy plane. /// /// The input vector must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_vector2d(&self, vector: Vector2D) -> Vector2D where T: ApproxEq, { self.transform_vector3d(vector.to_3d()).xy() } /// Returns the matrix representation of this rotation. #[inline] pub fn to_transform(&self) -> Transform3D where T: ApproxEq, { debug_assert!(self.is_normalized()); let i2 = self.i + self.i; let j2 = self.j + self.j; let k2 = self.k + self.k; let ii = self.i * i2; let ij = self.i * j2; let ik = self.i * k2; let jj = self.j * j2; let jk = self.j * k2; let kk = self.k * k2; let ri = self.r * i2; let rj = self.r * j2; let rk = self.r * k2; let one = T::one(); let zero = T::zero(); let m11 = one - (jj + kk); let m12 = ij + rk; let m13 = ik - rj; let m21 = ij - rk; let m22 = one - (ii + kk); let m23 = jk + ri; let m31 = ik + rj; let m32 = jk - ri; let m33 = one - (ii + jj); Transform3D::row_major( m11, m12, m13, zero, m21, m22, m23, zero, m31, m32, m33, zero, zero, zero, zero, one, ) } /// Returns a rotation representing the other rotation followed by this rotation. pub fn pre_rotate( &self, other: &Rotation3D, ) -> Rotation3D where T: ApproxEq, { debug_assert!(self.is_normalized()); Rotation3D::quaternion( self.i * other.r + self.r * other.i + self.j * other.k - self.k * other.j, self.j * other.r + self.r * other.j + self.k * other.i - self.i * other.k, self.k * other.r + self.r * other.k + self.i * other.j - self.j * other.i, self.r * other.r - self.i * other.i - self.j * other.j - self.k * other.k, ) } /// Returns a rotation representing this rotation followed by the other rotation. #[inline] pub fn post_rotate( &self, other: &Rotation3D, ) -> Rotation3D where T: ApproxEq, { other.pre_rotate(self) } // add, sub and mul are used internally for intermediate computation but aren't public // because they don't carry real semantic meanings (I think?). #[inline] fn add(&self, other: Self) -> Self { Self::quaternion( self.i + other.i, self.j + other.j, self.k + other.k, self.r + other.r, ) } #[inline] fn sub(&self, other: Self) -> Self { Self::quaternion( self.i - other.i, self.j - other.j, self.k - other.k, self.r - other.r, ) } #[inline] fn mul(&self, factor: T) -> Self { Self::quaternion( self.i * factor, self.j * factor, self.k * factor, self.r * factor, ) } } impl fmt::Debug for Rotation3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "Quat({:?}*i + {:?}*j + {:?}*k + {:?})", self.i, self.j, self.k, self.r ) } } impl fmt::Display for Rotation3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "Quat({}*i + {}*j + {}*k + {})", self.i, self.j, self.k, self.r ) } } impl ApproxEq for Rotation3D where T: Copy + Neg + ApproxEq, { fn approx_epsilon() -> T { T::approx_epsilon() } fn approx_eq(&self, other: &Self) -> bool { self.approx_eq_eps(other, &Self::approx_epsilon()) } fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool { (self.i.approx_eq_eps(&other.i, eps) && self.j.approx_eq_eps(&other.j, eps) && self.k.approx_eq_eps(&other.k, eps) && self.r.approx_eq_eps(&other.r, eps)) || (self.i.approx_eq_eps(&-other.i, eps) && self.j.approx_eq_eps(&-other.j, eps) && self.k.approx_eq_eps(&-other.k, eps) && self.r.approx_eq_eps(&-other.r, eps)) } } #[test] fn simple_rotation_2d() { use core::f32::consts::{FRAC_PI_2, PI}; use default::Rotation2D; let ri = Rotation2D::identity(); let r90 = Rotation2D::radians(FRAC_PI_2); let rm90 = Rotation2D::radians(-FRAC_PI_2); let r180 = Rotation2D::radians(PI); assert!( ri.transform_point(point2(1.0, 2.0)) .approx_eq(&point2(1.0, 2.0)) ); assert!( r90.transform_point(point2(1.0, 2.0)) .approx_eq(&point2(-2.0, 1.0)) ); assert!( rm90.transform_point(point2(1.0, 2.0)) .approx_eq(&point2(2.0, -1.0)) ); assert!( r180.transform_point(point2(1.0, 2.0)) .approx_eq(&point2(-1.0, -2.0)) ); assert!( r90.inverse() .inverse() .transform_point(point2(1.0, 2.0)) .approx_eq(&r90.transform_point(point2(1.0, 2.0))) ); } #[test] fn simple_rotation_3d_in_2d() { use core::f32::consts::{FRAC_PI_2, PI}; use default::Rotation3D; let ri = Rotation3D::identity(); let r90 = Rotation3D::around_z(Angle::radians(FRAC_PI_2)); let rm90 = Rotation3D::around_z(Angle::radians(-FRAC_PI_2)); let r180 = Rotation3D::around_z(Angle::radians(PI)); assert!( ri.transform_point2d(point2(1.0, 2.0)) .approx_eq(&point2(1.0, 2.0)) ); assert!( r90.transform_point2d(point2(1.0, 2.0)) .approx_eq(&point2(-2.0, 1.0)) ); assert!( rm90.transform_point2d(point2(1.0, 2.0)) .approx_eq(&point2(2.0, -1.0)) ); assert!( r180.transform_point2d(point2(1.0, 2.0)) .approx_eq(&point2(-1.0, -2.0)) ); assert!( r90.inverse() .inverse() .transform_point2d(point2(1.0, 2.0)) .approx_eq(&r90.transform_point2d(point2(1.0, 2.0))) ); } #[test] fn pre_post() { use core::f32::consts::FRAC_PI_2; use default::Rotation3D; let r1 = Rotation3D::around_x(Angle::radians(FRAC_PI_2)); let r2 = Rotation3D::around_y(Angle::radians(FRAC_PI_2)); let r3 = Rotation3D::around_z(Angle::radians(FRAC_PI_2)); let t1 = r1.to_transform(); let t2 = r2.to_transform(); let t3 = r3.to_transform(); let p = point3(1.0, 2.0, 3.0); // Check that the order of transformations is correct (corresponds to what // we do in Transform3D). let p1 = r1.post_rotate(&r2).post_rotate(&r3).transform_point3d(p); let p2 = t1.post_transform(&t2).post_transform(&t3).transform_point3d(p); assert!(p1.approx_eq(&p2.unwrap())); // Check that changing the order indeed matters. let p3 = t3.post_transform(&t1).post_transform(&t2).transform_point3d(p); assert!(!p1.approx_eq(&p3.unwrap())); } #[test] fn to_transform3d() { use default::Rotation3D; use core::f32::consts::{FRAC_PI_2, PI}; let rotations = [ Rotation3D::identity(), Rotation3D::around_x(Angle::radians(FRAC_PI_2)), Rotation3D::around_x(Angle::radians(-FRAC_PI_2)), Rotation3D::around_x(Angle::radians(PI)), Rotation3D::around_y(Angle::radians(FRAC_PI_2)), Rotation3D::around_y(Angle::radians(-FRAC_PI_2)), Rotation3D::around_y(Angle::radians(PI)), Rotation3D::around_z(Angle::radians(FRAC_PI_2)), Rotation3D::around_z(Angle::radians(-FRAC_PI_2)), Rotation3D::around_z(Angle::radians(PI)), ]; let points = [ point3(0.0, 0.0, 0.0), point3(1.0, 2.0, 3.0), point3(-5.0, 3.0, -1.0), point3(-0.5, -1.0, 1.5), ]; for rotation in &rotations { for &point in &points { let p1 = rotation.transform_point3d(point); let p2 = rotation.to_transform().transform_point3d(point); assert!(p1.approx_eq(&p2.unwrap())); } } } #[test] fn slerp() { use default::Rotation3D; let q1 = Rotation3D::quaternion(1.0, 0.0, 0.0, 0.0); let q2 = Rotation3D::quaternion(0.0, 1.0, 0.0, 0.0); let q3 = Rotation3D::quaternion(0.0, 0.0, -1.0, 0.0); // The values below can be obtained with a python program: // import numpy // import quaternion // q1 = numpy.quaternion(1, 0, 0, 0) // q2 = numpy.quaternion(0, 1, 0, 0) // quaternion.slerp_evaluate(q1, q2, 0.2) assert!(q1.slerp(&q2, 0.0).approx_eq(&q1)); assert!(q1.slerp(&q2, 0.2).approx_eq(&Rotation3D::quaternion( 0.951056516295154, 0.309016994374947, 0.0, 0.0 ))); assert!(q1.slerp(&q2, 0.4).approx_eq(&Rotation3D::quaternion( 0.809016994374947, 0.587785252292473, 0.0, 0.0 ))); assert!(q1.slerp(&q2, 0.6).approx_eq(&Rotation3D::quaternion( 0.587785252292473, 0.809016994374947, 0.0, 0.0 ))); assert!(q1.slerp(&q2, 0.8).approx_eq(&Rotation3D::quaternion( 0.309016994374947, 0.951056516295154, 0.0, 0.0 ))); assert!(q1.slerp(&q2, 1.0).approx_eq(&q2)); assert!(q1.slerp(&q3, 0.0).approx_eq(&q1)); assert!(q1.slerp(&q3, 0.2).approx_eq(&Rotation3D::quaternion( 0.951056516295154, 0.0, -0.309016994374947, 0.0 ))); assert!(q1.slerp(&q3, 0.4).approx_eq(&Rotation3D::quaternion( 0.809016994374947, 0.0, -0.587785252292473, 0.0 ))); assert!(q1.slerp(&q3, 0.6).approx_eq(&Rotation3D::quaternion( 0.587785252292473, 0.0, -0.809016994374947, 0.0 ))); assert!(q1.slerp(&q3, 0.8).approx_eq(&Rotation3D::quaternion( 0.309016994374947, 0.0, -0.951056516295154, 0.0 ))); assert!(q1.slerp(&q3, 1.0).approx_eq(&q3)); } #[test] fn around_axis() { use core::f32::consts::{FRAC_PI_2, PI}; use default::Rotation3D; // Two sort of trivial cases: let r1 = Rotation3D::around_axis(vec3(1.0, 1.0, 0.0), Angle::radians(PI)); let r2 = Rotation3D::around_axis(vec3(1.0, 1.0, 0.0), Angle::radians(FRAC_PI_2)); assert!( r1.transform_point3d(point3(1.0, 2.0, 0.0)) .approx_eq(&point3(2.0, 1.0, 0.0)) ); assert!( r2.transform_point3d(point3(1.0, 0.0, 0.0)) .approx_eq(&point3(0.5, 0.5, -0.5.sqrt())) ); // A more arbitrary test (made up with numpy): let r3 = Rotation3D::around_axis(vec3(0.5, 1.0, 2.0), Angle::radians(2.291288)); assert!(r3.transform_point3d(point3(1.0, 0.0, 0.0)).approx_eq(&point3( -0.58071821, 0.81401868, -0.01182979 ))); } #[test] fn from_euler() { use core::f32::consts::FRAC_PI_2; use default::Rotation3D; // First test simple separate yaw pitch and roll rotations, because it is easy to come // up with the corresponding quaternion. // Since several quaternions can represent the same transformation we compare the result // of transforming a point rather than the values of each quaternions. let p = point3(1.0, 2.0, 3.0); let angle = Angle::radians(FRAC_PI_2); let zero = Angle::radians(0.0); // roll let roll_re = Rotation3D::euler(angle, zero, zero); let roll_rq = Rotation3D::around_x(angle); let roll_pe = roll_re.transform_point3d(p); let roll_pq = roll_rq.transform_point3d(p); // pitch let pitch_re = Rotation3D::euler(zero, angle, zero); let pitch_rq = Rotation3D::around_y(angle); let pitch_pe = pitch_re.transform_point3d(p); let pitch_pq = pitch_rq.transform_point3d(p); // yaw let yaw_re = Rotation3D::euler(zero, zero, angle); let yaw_rq = Rotation3D::around_z(angle); let yaw_pe = yaw_re.transform_point3d(p); let yaw_pq = yaw_rq.transform_point3d(p); assert!(roll_pe.approx_eq(&roll_pq)); assert!(pitch_pe.approx_eq(&pitch_pq)); assert!(yaw_pe.approx_eq(&yaw_pq)); // Now check that the yaw pitch and roll transformations when combined are applied in // the proper order: roll -> pitch -> yaw. let ypr_e = Rotation3D::euler(angle, angle, angle); let ypr_q = roll_rq.post_rotate(&pitch_rq).post_rotate(&yaw_rq); let ypr_pe = ypr_e.transform_point3d(p); let ypr_pq = ypr_q.transform_point3d(p); assert!(ypr_pe.approx_eq(&ypr_pq)); } #[test] fn wrap_angles() { use core::f32::consts::{FRAC_PI_2, PI}; assert!(Angle::radians(0.0).positive().radians.approx_eq(&0.0)); assert!( Angle::radians(FRAC_PI_2) .positive() .radians .approx_eq(&FRAC_PI_2) ); assert!( Angle::radians(-FRAC_PI_2) .positive() .radians .approx_eq(&(3.0 * FRAC_PI_2)) ); assert!( Angle::radians(3.0 * FRAC_PI_2) .positive() .radians .approx_eq(&(3.0 * FRAC_PI_2)) ); assert!( Angle::radians(5.0 * FRAC_PI_2) .positive() .radians .approx_eq(&FRAC_PI_2) ); assert!(Angle::radians(2.0 * PI).positive().radians.approx_eq(&0.0)); assert!(Angle::radians(-2.0 * PI).positive().radians.approx_eq(&0.0)); assert!(Angle::radians(PI).positive().radians.approx_eq(&PI)); assert!(Angle::radians(-PI).positive().radians.approx_eq(&PI)); assert!( Angle::radians(FRAC_PI_2) .signed() .radians .approx_eq(&FRAC_PI_2) ); assert!( Angle::radians(3.0 * FRAC_PI_2) .signed() .radians .approx_eq(&-FRAC_PI_2) ); assert!( Angle::radians(5.0 * FRAC_PI_2) .signed() .radians .approx_eq(&FRAC_PI_2) ); assert!(Angle::radians(2.0 * PI).signed().radians.approx_eq(&0.0)); assert!(Angle::radians(-2.0 * PI).signed().radians.approx_eq(&0.0)); assert!(Angle::radians(-PI).signed().radians.approx_eq(&PI)); assert!(Angle::radians(PI).signed().radians.approx_eq(&PI)); } euclid-0.20.0/src/scale.rs010064400017500001750000000145671350732666300135330ustar0000000000000000// Copyright 2014 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A type-checked scaling factor between units. use num::One; use num_traits::NumCast; #[cfg(feature = "serde")] use serde; use core::fmt; use core::ops::{Add, Div, Mul, Neg, Sub}; use core::marker::PhantomData; use {Point2D, Rect, Size2D, Vector2D}; /// A scaling factor between two different units of measurement. /// /// This is effectively a type-safe float, intended to be used in combination with other types like /// `length::Length` to enforce conversion between systems of measurement at compile time. /// /// `Src` and `Dst` represent the units before and after multiplying a value by a `Scale`. They /// may be types without values, such as empty enums. For example: /// /// ```rust /// use euclid::Scale; /// use euclid::Length; /// enum Mm {}; /// enum Inch {}; /// /// let mm_per_inch: Scale = Scale::new(25.4); /// /// let one_foot: Length = Length::new(12.0); /// let one_foot_in_mm: Length = one_foot * mm_per_inch; /// ``` #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde", serde(bound(serialize = "T: serde::Serialize", deserialize = "T: serde::Deserialize<'de>")))] pub struct Scale(pub T, #[doc(hidden)] pub PhantomData<(Src, Dst)>); impl Scale { pub fn new(x: T) -> Self { Scale(x, PhantomData) } } impl Scale { pub fn get(&self) -> T { self.0.clone() } } impl Scale { /// Identity scaling, could be used to safely transit from one space to another. pub const ONE: Self = Scale(1.0, PhantomData); } impl, Src, Dst> Scale { /// The inverse Scale (1.0 / self). pub fn inv(&self) -> Scale { let one: T = One::one(); Scale::new(one / self.get()) } } // scale0 * scale1 impl, A, B, C> Mul> for Scale { type Output = Scale; #[inline] fn mul(self, other: Scale) -> Scale { Scale::new(self.get() * other.get()) } } // scale0 + scale1 impl, Src, Dst> Add for Scale { type Output = Scale; #[inline] fn add(self, other: Scale) -> Scale { Scale::new(self.get() + other.get()) } } // scale0 - scale1 impl, Src, Dst> Sub for Scale { type Output = Scale; #[inline] fn sub(self, other: Scale) -> Scale { Scale::new(self.get() - other.get()) } } impl Scale { /// Cast from one numeric representation to another, preserving the units. pub fn cast(&self) -> Scale { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. pub fn try_cast(&self) -> Option> { NumCast::from(self.get()).map(Scale::new) } } impl Scale where T: Copy + Clone + Mul + Neg + PartialEq + One, { /// Returns the given point transformed by this scale. #[inline] pub fn transform_point(&self, point: Point2D) -> Point2D { Point2D::new(point.x * self.get(), point.y * self.get()) } /// Returns the given vector transformed by this scale. #[inline] pub fn transform_vector(&self, vec: Vector2D) -> Vector2D { Vector2D::new(vec.x * self.get(), vec.y * self.get()) } /// Returns the given vector transformed by this scale. #[inline] pub fn transform_size(&self, size: Size2D) -> Size2D { Size2D::new(size.width * self.get(), size.height * self.get()) } /// Returns the given rect transformed by this scale. #[inline] pub fn transform_rect(&self, rect: &Rect) -> Rect { Rect::new( self.transform_point(rect.origin), self.transform_size(rect.size), ) } /// Returns the inverse of this scale. #[inline] pub fn inverse(&self) -> Scale { Scale::new(-self.get()) } /// Returns true if this scale has no effect. #[inline] pub fn is_identity(&self) -> bool { self.get() == T::one() } } // FIXME: Switch to `derive(PartialEq, Clone)` after this Rust issue is fixed: // https://github.com/mozilla/rust/issues/7671 impl PartialEq for Scale { fn eq(&self, other: &Scale) -> bool { self.0 == other.0 } } impl Clone for Scale { fn clone(&self) -> Scale { Scale::new(self.get()) } } impl Copy for Scale {} impl fmt::Debug for Scale { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.0.fmt(f) } } impl fmt::Display for Scale { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.0.fmt(f) } } #[cfg(test)] mod tests { use super::Scale; enum Inch {} enum Cm {} enum Mm {} #[test] fn test_scale() { let mm_per_inch: Scale = Scale::new(25.4); let cm_per_mm: Scale = Scale::new(0.1); let mm_per_cm: Scale = cm_per_mm.inv(); assert_eq!(mm_per_cm.get(), 10.0); let cm_per_inch: Scale = mm_per_inch * cm_per_mm; assert_eq!(cm_per_inch, Scale::new(2.54)); let a: Scale = Scale::new(2); let b: Scale = Scale::new(3); assert!(a != b); assert_eq!(a, a.clone()); assert_eq!(a.clone() + b.clone(), Scale::new(5)); assert_eq!(a - b, Scale::new(-1)); } } euclid-0.20.0/src/side_offsets.rs010064400017500001750000000106021351312157200150700ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A group of side offsets, which correspond to top/left/bottom/right for borders, padding, //! and margins in CSS. use length::Length; use num::Zero; use core::fmt; use core::ops::Add; use core::marker::PhantomData; use core::cmp::{Eq, PartialEq}; use core::hash::{Hash}; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; /// A group of 2D side offsets, which correspond to top/left/bottom/right for borders, padding, /// and margins in CSS, optionally tagged with a unit. #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")))] pub struct SideOffsets2D { pub top: T, pub right: T, pub bottom: T, pub left: T, #[doc(hidden)] pub _unit: PhantomData, } impl Copy for SideOffsets2D {} impl Clone for SideOffsets2D { fn clone(&self) -> Self { SideOffsets2D { top: self.top.clone(), right: self.right.clone(), bottom: self.bottom.clone(), left: self.left.clone(), _unit: PhantomData, } } } impl Eq for SideOffsets2D where T: Eq {} impl PartialEq for SideOffsets2D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.top == other.top && self.right == other.right && self.bottom == other.bottom && self.left == other.left } } impl Hash for SideOffsets2D where T: Hash { fn hash(&self, h: &mut H) { self.top.hash(h); self.right.hash(h); self.bottom.hash(h); self.left.hash(h); } } impl fmt::Debug for SideOffsets2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "({:?},{:?},{:?},{:?})", self.top, self.right, self.bottom, self.left ) } } impl Default for SideOffsets2D { fn default() -> Self { SideOffsets2D { top: Default::default(), right: Default::default(), bottom: Default::default(), left: Default::default(), _unit: PhantomData, } } } impl SideOffsets2D { /// Constructor taking a scalar for each side. pub fn new(top: T, right: T, bottom: T, left: T) -> Self { SideOffsets2D { top, right, bottom, left, _unit: PhantomData, } } /// Constructor taking a typed Length for each side. pub fn from_lengths( top: Length, right: Length, bottom: Length, left: Length, ) -> Self { SideOffsets2D::new(top.0, right.0, bottom.0, left.0) } /// Constructor setting the same value to all sides, taking a scalar value directly. pub fn new_all_same(all: T) -> Self { SideOffsets2D::new(all, all, all, all) } /// Constructor setting the same value to all sides, taking a typed Length. pub fn from_length_all_same(all: Length) -> Self { SideOffsets2D::new_all_same(all.0) } } impl SideOffsets2D where T: Add + Copy, { pub fn horizontal(&self) -> T { self.left + self.right } pub fn vertical(&self) -> T { self.top + self.bottom } } impl Add for SideOffsets2D where T: Copy + Add, { type Output = Self; fn add(self, other: Self) -> Self { SideOffsets2D::new( self.top + other.top, self.right + other.right, self.bottom + other.bottom, self.left + other.left, ) } } impl SideOffsets2D { /// Constructor, setting all sides to zero. pub fn zero() -> Self { SideOffsets2D::new(Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero()) } } euclid-0.20.0/src/size.rs010064400017500001750000000643001350732666300134040ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; #[cfg(feature = "mint")] use mint; use length::Length; use scale::Scale; use vector::{Vector2D, vec2, BoolVector2D}; use vector::{Vector3D, vec3, BoolVector3D}; use num::*; use num_traits::{Float, NumCast, Signed}; use core::fmt; use core::ops::{Add, Div, Mul, Sub}; use core::marker::PhantomData; use core::cmp::{Eq, PartialEq}; use core::hash::{Hash}; #[cfg(feature = "serde")] use serde; /// A 2d size tagged with a unit. #[repr(C)] pub struct Size2D { pub width: T, pub height: T, #[doc(hidden)] pub _unit: PhantomData, } impl Copy for Size2D {} impl Clone for Size2D { fn clone(&self) -> Self { Size2D { width: self.width.clone(), height: self.height.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Size2D where T: serde::Deserialize<'de> { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de> { let (width, height) = try!(serde::Deserialize::deserialize(deserializer)); Ok(Size2D { width, height, _unit: PhantomData }) } } #[cfg(feature = "serde")] impl serde::Serialize for Size2D where T: serde::Serialize { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer { (&self.width, &self.height).serialize(serializer) } } impl Eq for Size2D where T: Eq {} impl PartialEq for Size2D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.width == other.width && self.height == other.height } } impl Hash for Size2D where T: Hash { fn hash(&self, h: &mut H) { self.width.hash(h); self.height.hash(h); } } impl fmt::Debug for Size2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?}×{:?}", self.width, self.height) } } impl fmt::Display for Size2D { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { write!(formatter, "({}x{})", self.width, self.height) } } impl Default for Size2D { fn default() -> Self { Size2D::new(Default::default(), Default::default()) } } impl Size2D { /// Constructor taking scalar values. pub fn new(width: T, height: T) -> Self { Size2D { width, height, _unit: PhantomData, } } } impl Size2D { /// Constructor taking scalar strongly typed lengths. pub fn from_lengths(width: Length, height: Length) -> Self { Size2D::new(width.get(), height.get()) } } impl Size2D { /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). pub fn round(&self) -> Self { Size2D::new(self.width.round(), self.height.round()) } } impl Size2D { /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). pub fn ceil(&self) -> Self { Size2D::new(self.width.ceil(), self.height.ceil()) } } impl Size2D { /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). pub fn floor(&self) -> Self { Size2D::new(self.width.floor(), self.height.floor()) } } impl, U> Add for Size2D { type Output = Self; fn add(self, other: Self) -> Self { Size2D::new(self.width + other.width, self.height + other.height) } } impl, U> Sub for Size2D { type Output = Self; fn sub(self, other: Self) -> Self { Size2D::new(self.width - other.width, self.height - other.height) } } impl, U> Size2D { pub fn area(&self) -> T::Output { self.width * self.height } } impl Size2D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this size and another size. /// /// `t` is expected to be between zero and one. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { let one_t = T::one() - t; size2( one_t * self.width + t * other.width, one_t * self.height + t * other.height, ) } } impl Size2D { pub fn is_empty_or_negative(&self) -> bool { let zero = T::zero(); self.width <= zero || self.height <= zero } } impl Size2D { pub fn zero() -> Self { Size2D::new(Zero::zero(), Zero::zero()) } } impl Zero for Size2D { fn zero() -> Self { Size2D::new(Zero::zero(), Zero::zero()) } } impl, U> Mul for Size2D { type Output = Self; #[inline] fn mul(self, scale: T) -> Self { Size2D::new(self.width * scale, self.height * scale) } } impl, U> Div for Size2D { type Output = Self; #[inline] fn div(self, scale: T) -> Self { Size2D::new(self.width / scale, self.height / scale) } } impl, U1, U2> Mul> for Size2D { type Output = Size2D; #[inline] fn mul(self, scale: Scale) -> Size2D { Size2D::new(self.width * scale.get(), self.height * scale.get()) } } impl, U1, U2> Div> for Size2D { type Output = Size2D; #[inline] fn div(self, scale: Scale) -> Size2D { Size2D::new(self.width / scale.get(), self.height / scale.get()) } } impl Size2D { /// Returns self.width as a Length carrying the unit. #[inline] pub fn to_array(&self) -> [T; 2] { [self.width, self.height] } #[inline] pub fn to_tuple(&self) -> (T, T) { (self.width, self.height) } #[inline] pub fn to_vector(&self) -> Vector2D { vec2(self.width, self.height) } /// Drop the units, preserving only the numeric value. pub fn to_untyped(&self) -> Size2D { Size2D::new(self.width, self.height) } /// Tag a unitless value with units. pub fn from_untyped(p: Size2D) -> Self { Size2D::new(p.width, p.height) } } impl Size2D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn cast(&self) -> Size2D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn try_cast(&self) -> Option> { match (NumCast::from(self.width), NumCast::from(self.height)) { (Some(w), Some(h)) => Some(Size2D::new(w, h)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` size. pub fn to_f32(&self) -> Size2D { self.cast() } /// Cast into an `f64` size. pub fn to_f64(&self) -> Size2D { self.cast() } /// Cast into an `uint` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. pub fn to_usize(&self) -> Size2D { self.cast() } /// Cast into an `u32` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. pub fn to_u32(&self) -> Size2D { self.cast() } /// Cast into an `i32` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. pub fn to_i32(&self) -> Size2D { self.cast() } /// Cast into an `i64` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. pub fn to_i64(&self) -> Size2D { self.cast() } } impl Size2D where T: Signed, { pub fn abs(&self) -> Self { size2(self.width.abs(), self.height.abs()) } pub fn is_positive(&self) -> bool { self.width.is_positive() && self.height.is_positive() } } impl Size2D { pub fn greater_than(&self, other: Self) -> BoolVector2D { BoolVector2D { x: self.width > other.width, y: self.height > other.height, } } pub fn lower_than(&self, other: Self) -> BoolVector2D { BoolVector2D { x: self.width < other.width, y: self.height < other.height, } } } impl Size2D { pub fn equal(&self, other: Self) -> BoolVector2D { BoolVector2D { x: self.width == other.width, y: self.height == other.height, } } pub fn not_equal(&self, other: Self) -> BoolVector2D { BoolVector2D { x: self.width != other.width, y: self.height != other.height, } } } impl Size2D { #[inline] pub fn min(self, other: Self) -> Self { size2( self.width.min(other.width), self.height.min(other.height), ) } #[inline] pub fn max(self, other: Self) -> Self { size2( self.width.max(other.width), self.height.max(other.height), ) } #[inline] pub fn clamp(&self, start: Self, end: Self) -> Self { self.max(start).min(end) } } /// Shorthand for `Size2D::new(w, h)`. pub fn size2(w: T, h: T) -> Size2D { Size2D::new(w, h) } #[cfg(feature = "mint")] impl From> for Size2D { fn from(v: mint::Vector2) -> Self { Size2D { width: v.x, height: v.y, _unit: PhantomData, } } } #[cfg(feature = "mint")] impl Into> for Size2D { fn into(self) -> mint::Vector2 { mint::Vector2 { x: self.width, y: self.height, } } } impl From> for Size2D { fn from(v: Vector2D) -> Self { Size2D { width: v.x, height: v.y, _unit: PhantomData, } } } impl Into<[T; 2]> for Size2D { fn into(self) -> [T; 2] { self.to_array() } } impl From<[T; 2]> for Size2D { fn from(array: [T; 2]) -> Self { size2(array[0], array[1]) } } impl Into<(T, T)> for Size2D { fn into(self) -> (T, T) { self.to_tuple() } } impl From<(T, T)> for Size2D { fn from(tuple: (T, T)) -> Self { size2(tuple.0, tuple.1) } } #[cfg(test)] mod size2d { use default::Size2D; #[cfg(feature = "mint")] use mint; #[test] pub fn test_add() { let p1 = Size2D::new(1.0, 2.0); let p2 = Size2D::new(3.0, 4.0); assert_eq!(p1 + p2, Size2D::new(4.0, 6.0)); let p1 = Size2D::new(1.0, 2.0); let p2 = Size2D::new(0.0, 0.0); assert_eq!(p1 + p2, Size2D::new(1.0, 2.0)); let p1 = Size2D::new(1.0, 2.0); let p2 = Size2D::new(-3.0, -4.0); assert_eq!(p1 + p2, Size2D::new(-2.0, -2.0)); let p1 = Size2D::new(0.0, 0.0); let p2 = Size2D::new(0.0, 0.0); assert_eq!(p1 + p2, Size2D::new(0.0, 0.0)); } #[test] pub fn test_sub() { let p1 = Size2D::new(1.0, 2.0); let p2 = Size2D::new(3.0, 4.0); assert_eq!(p1 - p2, Size2D::new(-2.0, -2.0)); let p1 = Size2D::new(1.0, 2.0); let p2 = Size2D::new(0.0, 0.0); assert_eq!(p1 - p2, Size2D::new(1.0, 2.0)); let p1 = Size2D::new(1.0, 2.0); let p2 = Size2D::new(-3.0, -4.0); assert_eq!(p1 - p2, Size2D::new(4.0, 6.0)); let p1 = Size2D::new(0.0, 0.0); let p2 = Size2D::new(0.0, 0.0); assert_eq!(p1 - p2, Size2D::new(0.0, 0.0)); } #[test] pub fn test_area() { let p = Size2D::new(1.5, 2.0); assert_eq!(p.area(), 3.0); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let s1 = Size2D::new(1.0, 2.0); let sm: mint::Vector2<_> = s1.into(); let s2 = Size2D::from(sm); assert_eq!(s1, s2); } } /// A 3d size tagged with a unit. #[repr(C)] pub struct Size3D { pub width: T, pub height: T, pub depth: T, #[doc(hidden)] pub _unit: PhantomData, } impl Copy for Size3D {} impl Clone for Size3D { fn clone(&self) -> Self { Size3D { width: self.width.clone(), height: self.height.clone(), depth: self.depth.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Size3D where T: serde::Deserialize<'de> { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de> { let (width, height, depth) = try!(serde::Deserialize::deserialize(deserializer)); Ok(Size3D { width, height, depth, _unit: PhantomData }) } } #[cfg(feature = "serde")] impl serde::Serialize for Size3D where T: serde::Serialize { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer { (&self.width, &self.height, &self.depth).serialize(serializer) } } impl Eq for Size3D where T: Eq {} impl PartialEq for Size3D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.width == other.width && self.height == other.height && self.depth == other.depth } } impl Hash for Size3D where T: Hash { fn hash(&self, h: &mut H) { self.width.hash(h); self.height.hash(h); self.depth.hash(h); } } impl fmt::Debug for Size3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?}×{:?}×{:?}", self.width, self.height, self.depth) } } impl fmt::Display for Size3D { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { write!(formatter, "({}x{}x{})", self.width, self.height, self.depth) } } impl Default for Size3D { fn default() -> Self { Size3D::new(Default::default(), Default::default(), Default::default()) } } impl Size3D { /// Constructor taking scalar values. pub fn new(width: T, height: T, depth: T) -> Self { Size3D { width, height, depth, _unit: PhantomData, } } } impl Size3D { /// Constructor taking scalar strongly typed lengths. pub fn from_lengths(width: Length, height: Length, depth: Length) -> Self { Size3D::new(width.get(), height.get(), depth.get()) } } impl Size3D { /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). pub fn round(&self) -> Self { Size3D::new(self.width.round(), self.height.round(), self.depth.round()) } } impl Size3D { /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). pub fn ceil(&self) -> Self { Size3D::new(self.width.ceil(), self.height.ceil(), self.depth.ceil()) } } impl Size3D { /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). pub fn floor(&self) -> Self { Size3D::new(self.width.floor(), self.height.floor(), self.depth.floor()) } } impl, U> Add for Size3D { type Output = Self; fn add(self, other: Self) -> Self { Size3D::new(self.width + other.width, self.height + other.height, self.depth + other.depth) } } impl, U> Sub for Size3D { type Output = Self; fn sub(self, other: Self) -> Self { Size3D::new(self.width - other.width, self.height - other.height, self.depth - other.depth) } } impl, U> Size3D { pub fn volume(&self) -> T { self.width * self.height * self.depth } } impl Size3D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this size and another size. /// /// `t` is expected to be between zero and one. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { let one_t = T::one() - t; size3( one_t * self.width + t * other.width, one_t * self.height + t * other.height, one_t * self.depth + t * other.depth, ) } } impl Size3D { pub fn is_empty_or_negative(&self) -> bool { let zero = T::zero(); self.width <= zero || self.height <= zero || self.depth <= zero } } impl Size3D { pub fn zero() -> Self { Size3D::new(Zero::zero(), Zero::zero(), Zero::zero()) } } impl Zero for Size3D { fn zero() -> Self { Size3D::new(Zero::zero(), Zero::zero(), Zero::zero()) } } impl, U> Mul for Size3D { type Output = Self; #[inline] fn mul(self, scale: T) -> Self { Size3D::new(self.width * scale, self.height * scale, self.depth * scale) } } impl, U> Div for Size3D { type Output = Self; #[inline] fn div(self, scale: T) -> Self { Size3D::new(self.width / scale, self.height / scale, self.depth / scale) } } impl, U1, U2> Mul> for Size3D { type Output = Size3D; #[inline] fn mul(self, scale: Scale) -> Size3D { Size3D::new(self.width * scale.get(), self.height * scale.get(), self.depth * scale.get()) } } impl, U1, U2> Div> for Size3D { type Output = Size3D; #[inline] fn div(self, scale: Scale) -> Size3D { Size3D::new(self.width / scale.get(), self.height / scale.get(), self.depth / scale.get()) } } impl Size3D { /// Returns self.width as a Length carrying the unit. #[inline] pub fn to_array(&self) -> [T; 3] { [self.width, self.height, self.depth] } #[inline] pub fn to_vector(&self) -> Vector3D { vec3(self.width, self.height, self.depth) } /// Drop the units, preserving only the numeric value. pub fn to_untyped(&self) -> Size3D { Size3D::new(self.width, self.height, self.depth) } /// Tag a unitless value with units. pub fn from_untyped(p: Size3D) -> Self { Size3D::new(p.width, p.height, p.depth) } } impl Size3D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn cast(&self) -> Size3D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn try_cast(&self) -> Option> { match (NumCast::from(self.width), NumCast::from(self.height), NumCast::from(self.depth)) { (Some(w), Some(h), Some(d)) => Some(Size3D::new(w, h, d)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` size. pub fn to_f32(&self) -> Size3D { self.cast() } /// Cast into an `f64` size. pub fn to_f64(&self) -> Size3D { self.cast() } /// Cast into an `uint` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. pub fn to_usize(&self) -> Size3D { self.cast() } /// Cast into an `u32` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. pub fn to_u32(&self) -> Size3D { self.cast() } /// Cast into an `i32` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. pub fn to_i32(&self) -> Size3D { self.cast() } /// Cast into an `i64` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. pub fn to_i64(&self) -> Size3D { self.cast() } } impl Size3D where T: Signed, { pub fn abs(&self) -> Self { size3(self.width.abs(), self.height.abs(), self.depth.abs()) } pub fn is_positive(&self) -> bool { self.width.is_positive() && self.height.is_positive() && self.depth.is_positive() } } impl Size3D { pub fn greater_than(&self, other: Self) -> BoolVector3D { BoolVector3D { x: self.width > other.width, y: self.height > other.height, z: self.depth > other.depth, } } pub fn lower_than(&self, other: Self) -> BoolVector3D { BoolVector3D { x: self.width < other.width, y: self.height < other.height, z: self.depth < other.depth, } } } impl Size3D { pub fn equal(&self, other: Self) -> BoolVector3D { BoolVector3D { x: self.width == other.width, y: self.height == other.height, z: self.depth == other.depth, } } pub fn not_equal(&self, other: Self) -> BoolVector3D { BoolVector3D { x: self.width != other.width, y: self.height != other.height, z: self.depth != other.depth, } } } impl Size3D { #[inline] pub fn min(self, other: Self) -> Self { size3( self.width.min(other.width), self.height.min(other.height), self.depth.min(other.depth), ) } #[inline] pub fn max(self, other: Self) -> Self { size3( self.width.max(other.width), self.height.max(other.height), self.depth.max(other.depth), ) } #[inline] pub fn clamp(&self, start: Self, end: Self) -> Self { self.max(start).min(end) } } /// Shorthand for `Size3D::new(w, h, d)`. pub fn size3(w: T, h: T, d: T) -> Size3D { Size3D::new(w, h, d) } #[cfg(feature = "mint")] impl From> for Size3D { fn from(v: mint::Vector3) -> Self { Size3D { width: v.x, height: v.y, depth: v.z, _unit: PhantomData, } } } #[cfg(feature = "mint")] impl Into> for Size3D { fn into(self) -> mint::Vector3 { mint::Vector3 { x: self.width, y: self.height, z: self.depth, } } } euclid-0.20.0/src/transform2d.rs010064400017500001750000000547721351364257500147070ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![cfg_attr(feature = "cargo-clippy", allow(just_underscores_and_digits))] use super::{UnknownUnit, Angle}; #[cfg(feature = "mint")] use mint; use num::{One, Zero}; use point::{Point2D, point2}; use vector::{Vector2D, vec2}; use rect::Rect; use transform3d::Transform3D; use core::ops::{Add, Mul, Div, Sub, Neg}; use core::marker::PhantomData; use core::cmp::{Eq, PartialEq}; use core::hash::{Hash}; use approxeq::ApproxEq; use trig::Trig; use core::fmt; use num_traits::NumCast; #[cfg(feature = "serde")] use serde; /// A 2d transform stored as a 3 by 2 matrix in row-major order in memory. /// /// Transforms can be parametrized over the source and destination units, to describe a /// transformation from a space to another. /// For example, `Transform2D::transform_point4d` /// takes a `Point2D` and returns a `Point2D`. /// /// Transforms expose a set of convenience methods for pre- and post-transformations. /// A pre-transformation corresponds to adding an operation that is applied before /// the rest of the transformation, while a post-transformation adds an operation /// that is applied after. /// /// These transforms are for working with _row vectors_, so the matrix math for transforming /// a vector is `v * T`. If your library is using column vectors, use `row_major` functions when you /// are asked for `column_major` representations and vice versa. #[repr(C)] pub struct Transform2D { pub m11: T, pub m12: T, pub m21: T, pub m22: T, pub m31: T, pub m32: T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } impl Copy for Transform2D {} impl Clone for Transform2D { fn clone(&self) -> Self { Transform2D { m11: self.m11.clone(), m12: self.m12.clone(), m21: self.m21.clone(), m22: self.m22.clone(), m31: self.m31.clone(), m32: self.m32.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, Src, Dst> serde::Deserialize<'de> for Transform2D where T: serde::Deserialize<'de> { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de> { let ( m11, m12, m21, m22, m31, m32, ) = try!(serde::Deserialize::deserialize(deserializer)); Ok(Transform2D { m11, m12, m21, m22, m31, m32, _unit: PhantomData }) } } #[cfg(feature = "serde")] impl serde::Serialize for Transform2D where T: serde::Serialize { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer { ( &self.m11, &self.m12, &self.m21, &self.m22, &self.m31, &self.m32, ).serialize(serializer) } } impl Eq for Transform2D where T: Eq {} impl PartialEq for Transform2D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.m11 == other.m11 && self.m12 == other.m12 && self.m21 == other.m21 && self.m22 == other.m22 && self.m31 == other.m31 && self.m32 == other.m32 } } impl Hash for Transform2D where T: Hash { fn hash(&self, h: &mut H) { self.m11.hash(h); self.m12.hash(h); self.m21.hash(h); self.m22.hash(h); self.m31.hash(h); self.m32.hash(h); } } impl Transform2D { /// Create a transform specifying its matrix elements in row-major order. /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), then please use `column_major` pub fn row_major(m11: T, m12: T, m21: T, m22: T, m31: T, m32: T) -> Self { Transform2D { m11, m12, m21, m22, m31, m32, _unit: PhantomData, } } /// Create a transform specifying its matrix elements in column-major order. /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), then please use `row_major` pub fn column_major(m11: T, m21: T, m31: T, m12: T, m22: T, m32: T) -> Self { Transform2D { m11, m12, m21, m22, m31, m32, _unit: PhantomData, } } /// Returns an array containing this transform's terms in row-major order (the order /// in which the transform is actually laid out in memory). /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), then please use `to_column_major_array` pub fn to_row_major_array(&self) -> [T; 6] { [ self.m11, self.m12, self.m21, self.m22, self.m31, self.m32 ] } /// Returns an array containing this transform's terms in column-major order. /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), then please use `to_row_major_array` pub fn to_column_major_array(&self) -> [T; 6] { [ self.m11, self.m21, self.m31, self.m12, self.m22, self.m32 ] } /// Returns an array containing this transform's 3 rows in (in row-major order) /// as arrays. /// /// This is a convenience method to interface with other libraries like glium. /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), this will return column major arrays. pub fn to_row_arrays(&self) -> [[T; 2]; 3] { [ [self.m11, self.m12], [self.m21, self.m22], [self.m31, self.m32], ] } /// Creates a transform from an array of 6 elements in row-major order. /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), please provide a column major array. pub fn from_row_major_array(array: [T; 6]) -> Self { Self::row_major( array[0], array[1], array[2], array[3], array[4], array[5], ) } /// Creates a transform from 3 rows of 2 elements (row-major order). /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), please provide a column major array. pub fn from_row_arrays(array: [[T; 2]; 3]) -> Self { Self::row_major( array[0][0], array[0][1], array[1][0], array[1][1], array[2][0], array[2][1], ) } /// Drop the units, preserving only the numeric value. pub fn to_untyped(&self) -> Transform2D { Transform2D::row_major( self.m11, self.m12, self.m21, self.m22, self.m31, self.m32 ) } /// Tag a unitless value with units. pub fn from_untyped(p: &Transform2D) -> Self { Transform2D::row_major( p.m11, p.m12, p.m21, p.m22, p.m31, p.m32 ) } } impl Transform2D { /// Cast from one numeric representation to another, preserving the units. pub fn cast(&self) -> Transform2D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. pub fn try_cast(&self) -> Option> { match (NumCast::from(self.m11), NumCast::from(self.m12), NumCast::from(self.m21), NumCast::from(self.m22), NumCast::from(self.m31), NumCast::from(self.m32)) { (Some(m11), Some(m12), Some(m21), Some(m22), Some(m31), Some(m32)) => { Some(Transform2D::row_major( m11, m12, m21, m22, m31, m32 )) }, _ => None } } } impl Transform2D where T: Copy + PartialEq + One + Zero { pub fn identity() -> Self { let (_0, _1) = (Zero::zero(), One::one()); Transform2D::row_major( _1, _0, _0, _1, _0, _0 ) } // Intentional not public, because it checks for exact equivalence // while most consumers will probably want some sort of approximate // equivalence to deal with floating-point errors. fn is_identity(&self) -> bool { *self == Transform2D::identity() } } impl Transform2D where T: Copy + Clone + Add + Mul + Div + Sub + Trig + PartialOrd + One + Zero { /// Returns the multiplication of the two matrices such that mat's transformation /// applies after self's transformation. /// /// Assuming row vectors, this is equivalent to self * mat #[must_use] pub fn post_transform(&self, mat: &Transform2D) -> Transform2D { Transform2D::row_major( self.m11 * mat.m11 + self.m12 * mat.m21, self.m11 * mat.m12 + self.m12 * mat.m22, self.m21 * mat.m11 + self.m22 * mat.m21, self.m21 * mat.m12 + self.m22 * mat.m22, self.m31 * mat.m11 + self.m32 * mat.m21 + mat.m31, self.m31 * mat.m12 + self.m32 * mat.m22 + mat.m32, ) } /// Returns the multiplication of the two matrices such that mat's transformation /// applies before self's transformation. /// /// Assuming row vectors, this is equivalent to mat * self #[inline] #[must_use] pub fn pre_transform(&self, mat: &Transform2D) -> Transform2D { mat.post_transform(self) } /// Returns a translation transform. #[inline] pub fn create_translation(x: T, y: T) -> Self { let (_0, _1): (T, T) = (Zero::zero(), One::one()); Transform2D::row_major( _1, _0, _0, _1, x, y ) } /// Applies a translation after self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn post_translate(&self, v: Vector2D) -> Self { self.post_transform(&Transform2D::create_translation(v.x, v.y)) } /// Applies a translation before self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn pre_translate(&self, v: Vector2D) -> Self { self.pre_transform(&Transform2D::create_translation(v.x, v.y)) } /// Returns a scale transform. pub fn create_scale(x: T, y: T) -> Self { let _0 = Zero::zero(); Transform2D::row_major( x, _0, _0, y, _0, _0 ) } /// Applies a scale after self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn post_scale(&self, x: T, y: T) -> Self { self.post_transform(&Transform2D::create_scale(x, y)) } /// Applies a scale before self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn pre_scale(&self, x: T, y: T) -> Self { Transform2D::row_major( self.m11 * x, self.m12, self.m21, self.m22 * y, self.m31, self.m32 ) } /// Returns a rotation transform. #[inline] pub fn create_rotation(theta: Angle) -> Self { let _0 = Zero::zero(); let cos = theta.get().cos(); let sin = theta.get().sin(); Transform2D::row_major( cos, _0 - sin, sin, cos, _0, _0 ) } /// Applies a rotation after self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn post_rotate(&self, theta: Angle) -> Self { self.post_transform(&Transform2D::create_rotation(theta)) } /// Applies a rotation before self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn pre_rotate(&self, theta: Angle) -> Self { self.pre_transform(&Transform2D::create_rotation(theta)) } /// Returns the given point transformed by this transform. /// /// Assuming row vectors, this is equivalent to `p * self` #[inline] #[must_use] pub fn transform_point(&self, point: Point2D) -> Point2D { Point2D::new( point.x * self.m11 + point.y * self.m21 + self.m31, point.x * self.m12 + point.y * self.m22 + self.m32 ) } /// Returns the given vector transformed by this matrix. /// /// Assuming row vectors, this is equivalent to `v * self` #[inline] #[must_use] pub fn transform_vector(&self, vec: Vector2D) -> Vector2D { vec2(vec.x * self.m11 + vec.y * self.m21, vec.x * self.m12 + vec.y * self.m22) } /// Returns a rectangle that encompasses the result of transforming the given rectangle by this /// transform. #[inline] #[must_use] pub fn transform_rect(&self, rect: &Rect) -> Rect { let min = rect.min(); let max = rect.max(); Rect::from_points(&[ self.transform_point(min), self.transform_point(max), self.transform_point(point2(max.x, min.y)), self.transform_point(point2(min.x, max.y)), ]) } /// Computes and returns the determinant of this transform. pub fn determinant(&self) -> T { self.m11 * self.m22 - self.m12 * self.m21 } /// Returns the inverse transform if possible. #[must_use] pub fn inverse(&self) -> Option> { let det = self.determinant(); let _0: T = Zero::zero(); let _1: T = One::one(); if det == _0 { return None; } let inv_det = _1 / det; Some(Transform2D::row_major( inv_det * self.m22, inv_det * (_0 - self.m12), inv_det * (_0 - self.m21), inv_det * self.m11, inv_det * (self.m21 * self.m32 - self.m22 * self.m31), inv_det * (self.m31 * self.m12 - self.m11 * self.m32), )) } /// Returns the same transform with a different destination unit. #[inline] pub fn with_destination(&self) -> Transform2D { Transform2D::row_major( self.m11, self.m12, self.m21, self.m22, self.m31, self.m32, ) } /// Returns the same transform with a different source unit. #[inline] pub fn with_source(&self) -> Transform2D { Transform2D::row_major( self.m11, self.m12, self.m21, self.m22, self.m31, self.m32, ) } } impl Transform2D where T: Copy + Clone + Add + Sub + Mul + Div + Neg + PartialOrd + Trig + One + Zero { /// Create a 3D transform from the current transform pub fn to_3d(&self) -> Transform3D { Transform3D::row_major_2d(self.m11, self.m12, self.m21, self.m22, self.m31, self.m32) } } impl Default for Transform2D where T: Copy + PartialEq + One + Zero { fn default() -> Self { Self::identity() } } impl, Src, Dst> Transform2D { pub fn approx_eq(&self, other: &Self) -> bool { self.m11.approx_eq(&other.m11) && self.m12.approx_eq(&other.m12) && self.m21.approx_eq(&other.m21) && self.m22.approx_eq(&other.m22) && self.m31.approx_eq(&other.m31) && self.m32.approx_eq(&other.m32) } } impl fmt::Debug for Transform2D where T: Copy + fmt::Debug + PartialEq + One + Zero { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if self.is_identity() { write!(f, "[I]") } else { self.to_row_major_array().fmt(f) } } } #[cfg(feature = "mint")] impl From> for Transform2D { fn from(m: mint::RowMatrix3x2) -> Self { Transform2D { m11: m.x.x, m12: m.x.y, m21: m.y.x, m22: m.y.y, m31: m.z.x, m32: m.z.y, _unit: PhantomData, } } } #[cfg(feature = "mint")] impl Into> for Transform2D { fn into(self) -> mint::RowMatrix3x2 { mint::RowMatrix3x2 { x: mint::Vector2 { x: self.m11, y: self.m12 }, y: mint::Vector2 { x: self.m21, y: self.m22 }, z: mint::Vector2 { x: self.m31, y: self.m32 }, } } } #[cfg(test)] mod test { use super::*; use default; use approxeq::ApproxEq; #[cfg(feature = "mint")] use mint; use core::f32::consts::FRAC_PI_2; type Mat = default::Transform2D; fn rad(v: f32) -> Angle { Angle::radians(v) } #[test] pub fn test_translation() { let t1 = Mat::create_translation(1.0, 2.0); let t2 = Mat::identity().pre_translate(vec2(1.0, 2.0)); let t3 = Mat::identity().post_translate(vec2(1.0, 2.0)); assert_eq!(t1, t2); assert_eq!(t1, t3); assert_eq!(t1.transform_point(Point2D::new(1.0, 1.0)), Point2D::new(2.0, 3.0)); assert_eq!(t1.post_transform(&t1), Mat::create_translation(2.0, 4.0)); } #[test] pub fn test_rotation() { let r1 = Mat::create_rotation(rad(FRAC_PI_2)); let r2 = Mat::identity().pre_rotate(rad(FRAC_PI_2)); let r3 = Mat::identity().post_rotate(rad(FRAC_PI_2)); assert_eq!(r1, r2); assert_eq!(r1, r3); assert!(r1.transform_point(Point2D::new(1.0, 2.0)).approx_eq(&Point2D::new(2.0, -1.0))); assert!(r1.post_transform(&r1).approx_eq(&Mat::create_rotation(rad(FRAC_PI_2*2.0)))); } #[test] pub fn test_scale() { let s1 = Mat::create_scale(2.0, 3.0); let s2 = Mat::identity().pre_scale(2.0, 3.0); let s3 = Mat::identity().post_scale(2.0, 3.0); assert_eq!(s1, s2); assert_eq!(s1, s3); assert!(s1.transform_point(Point2D::new(2.0, 2.0)).approx_eq(&Point2D::new(4.0, 6.0))); } #[test] fn test_column_major() { assert_eq!( Mat::row_major( 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ), Mat::column_major( 1.0, 3.0, 5.0, 2.0, 4.0, 6.0, ) ); } #[test] pub fn test_inverse_simple() { let m1 = Mat::identity(); let m2 = m1.inverse().unwrap(); assert!(m1.approx_eq(&m2)); } #[test] pub fn test_inverse_scale() { let m1 = Mat::create_scale(1.5, 0.3); let m2 = m1.inverse().unwrap(); assert!(m1.pre_transform(&m2).approx_eq(&Mat::identity())); } #[test] pub fn test_inverse_translate() { let m1 = Mat::create_translation(-132.0, 0.3); let m2 = m1.inverse().unwrap(); assert!(m1.pre_transform(&m2).approx_eq(&Mat::identity())); } #[test] fn test_inverse_none() { assert!(Mat::create_scale(2.0, 0.0).inverse().is_none()); assert!(Mat::create_scale(2.0, 2.0).inverse().is_some()); } #[test] pub fn test_pre_post() { let m1 = default::Transform2D::identity().post_scale(1.0, 2.0).post_translate(vec2(1.0, 2.0)); let m2 = default::Transform2D::identity().pre_translate(vec2(1.0, 2.0)).pre_scale(1.0, 2.0); assert!(m1.approx_eq(&m2)); let r = Mat::create_rotation(rad(FRAC_PI_2)); let t = Mat::create_translation(2.0, 3.0); let a = Point2D::new(1.0, 1.0); assert!(r.post_transform(&t).transform_point(a).approx_eq(&Point2D::new(3.0, 2.0))); assert!(t.post_transform(&r).transform_point(a).approx_eq(&Point2D::new(4.0, -3.0))); assert!(t.post_transform(&r).transform_point(a).approx_eq(&r.transform_point(t.transform_point(a)))); assert!(r.pre_transform(&t).transform_point(a).approx_eq(&Point2D::new(4.0, -3.0))); assert!(t.pre_transform(&r).transform_point(a).approx_eq(&Point2D::new(3.0, 2.0))); assert!(t.pre_transform(&r).transform_point(a).approx_eq(&t.transform_point(r.transform_point(a)))); } #[test] fn test_size_of() { use core::mem::size_of; assert_eq!(size_of::>(), 6*size_of::()); assert_eq!(size_of::>(), 6*size_of::()); } #[test] pub fn test_is_identity() { let m1 = default::Transform2D::identity(); assert!(m1.is_identity()); let m2 = m1.post_translate(vec2(0.1, 0.0)); assert!(!m2.is_identity()); } #[test] pub fn test_transform_vector() { // Translation does not apply to vectors. let m1 = Mat::create_translation(1.0, 1.0); let v1 = vec2(10.0, -10.0); assert_eq!(v1, m1.transform_vector(v1)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let m1 = Mat::create_rotation(rad(FRAC_PI_2)); let mm: mint::RowMatrix3x2<_> = m1.into(); let m2 = Mat::from(mm); assert_eq!(m1, m2); } } euclid-0.20.0/src/transform3d.rs010064400017500001750000001374311351364257500147020ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![cfg_attr(feature = "cargo-clippy", allow(just_underscores_and_digits))] use super::{UnknownUnit, Angle}; use approxeq::ApproxEq; use homogen::HomogeneousVector; #[cfg(feature = "mint")] use mint; use trig::Trig; use point::{Point2D, point2, Point3D}; use vector::{Vector2D, Vector3D, vec2, vec3}; use rect::Rect; use transform2d::Transform2D; use scale::Scale; use num::{One, Zero}; use core::ops::{Add, Mul, Sub, Div, Neg}; use core::marker::PhantomData; use core::fmt; use core::cmp::{Eq, PartialEq}; use core::hash::{Hash}; use num_traits::NumCast; #[cfg(feature = "serde")] use serde; /// A 3d transform stored as a 4 by 4 matrix in row-major order in memory. /// /// Transforms can be parametrized over the source and destination units, to describe a /// transformation from a space to another. /// For example, `Transform3D::transform_point3d` /// takes a `Point3D` and returns a `Point3D`. /// /// Transforms expose a set of convenience methods for pre- and post-transformations. /// A pre-transformation corresponds to adding an operation that is applied before /// the rest of the transformation, while a post-transformation adds an operation /// that is applied after. /// /// These transforms are for working with _row vectors_, so the matrix math for transforming /// a vector is `v * T`. If your library is using column vectors, use `row_major` functions when you /// are asked for `column_major` representations and vice versa. #[repr(C)] pub struct Transform3D { pub m11: T, pub m12: T, pub m13: T, pub m14: T, pub m21: T, pub m22: T, pub m23: T, pub m24: T, pub m31: T, pub m32: T, pub m33: T, pub m34: T, pub m41: T, pub m42: T, pub m43: T, pub m44: T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } impl Copy for Transform3D {} impl Clone for Transform3D { fn clone(&self) -> Self { Transform3D { m11: self.m11.clone(), m12: self.m12.clone(), m13: self.m13.clone(), m14: self.m14.clone(), m21: self.m21.clone(), m22: self.m22.clone(), m23: self.m23.clone(), m24: self.m24.clone(), m31: self.m31.clone(), m32: self.m32.clone(), m33: self.m33.clone(), m34: self.m34.clone(), m41: self.m41.clone(), m42: self.m42.clone(), m43: self.m43.clone(), m44: self.m44.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, Src, Dst> serde::Deserialize<'de> for Transform3D where T: serde::Deserialize<'de> { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de> { let ( m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44, ) = try!(serde::Deserialize::deserialize(deserializer)); Ok(Transform3D { m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44, _unit: PhantomData }) } } #[cfg(feature = "serde")] impl serde::Serialize for Transform3D where T: serde::Serialize { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer { ( &self.m11, &self.m12, &self.m13, &self.m14, &self.m21, &self.m22, &self.m23, &self.m24, &self.m31, &self.m32, &self.m33, &self.m34, &self.m41, &self.m42, &self.m43, &self.m44, ).serialize(serializer) } } impl Eq for Transform3D where T: Eq {} impl PartialEq for Transform3D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.m11 == other.m11 && self.m12 == other.m12 && self.m13 == other.m13 && self.m14 == other.m14 && self.m21 == other.m21 && self.m22 == other.m22 && self.m23 == other.m23 && self.m24 == other.m24 && self.m31 == other.m31 && self.m32 == other.m32 && self.m33 == other.m33 && self.m34 == other.m34 && self.m41 == other.m41 && self.m42 == other.m42 && self.m43 == other.m43 && self.m44 == other.m44 } } impl Hash for Transform3D where T: Hash { fn hash(&self, h: &mut H) { self.m11.hash(h); self.m12.hash(h); self.m13.hash(h); self.m14.hash(h); self.m21.hash(h); self.m22.hash(h); self.m23.hash(h); self.m24.hash(h); self.m31.hash(h); self.m32.hash(h); self.m33.hash(h); self.m34.hash(h); self.m41.hash(h); self.m42.hash(h); self.m43.hash(h); self.m44.hash(h); } } impl Transform3D { /// Create a transform specifying its components in row-major order. /// /// For example, the translation terms m41, m42, m43 on the last row with the /// row-major convention) are the 13rd, 14th and 15th parameters. /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), then please use `column_major` #[inline] #[cfg_attr(feature = "cargo-clippy", allow(too_many_arguments))] pub fn row_major( m11: T, m12: T, m13: T, m14: T, m21: T, m22: T, m23: T, m24: T, m31: T, m32: T, m33: T, m34: T, m41: T, m42: T, m43: T, m44: T) -> Self { Transform3D { m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44, _unit: PhantomData, } } /// Create a transform specifying its components in column-major order. /// /// For example, the translation terms m41, m42, m43 on the last column with the /// column-major convention) are the 4th, 8th and 12nd parameters. /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), then please use `row_major` #[inline] #[cfg_attr(feature = "cargo-clippy", allow(too_many_arguments))] pub fn column_major( m11: T, m21: T, m31: T, m41: T, m12: T, m22: T, m32: T, m42: T, m13: T, m23: T, m33: T, m43: T, m14: T, m24: T, m34: T, m44: T) -> Self { Transform3D { m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44, _unit: PhantomData, } } } impl Transform3D where T: Copy + Clone + PartialEq + One + Zero { #[inline] pub fn identity() -> Self { let (_0, _1): (T, T) = (Zero::zero(), One::one()); Transform3D::row_major( _1, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1 ) } // Intentional not public, because it checks for exact equivalence // while most consumers will probably want some sort of approximate // equivalence to deal with floating-point errors. #[inline] fn is_identity(&self) -> bool { *self == Transform3D::identity() } } impl Transform3D where T: Copy + Clone + Add + Sub + Mul + Div + Neg + PartialOrd + Trig + One + Zero { /// Create a 4 by 4 transform representing a 2d transformation, specifying its components /// in row-major order. #[inline] pub fn row_major_2d(m11: T, m12: T, m21: T, m22: T, m41: T, m42: T) -> Self { let (_0, _1): (T, T) = (Zero::zero(), One::one()); Transform3D::row_major( m11, m12, _0, _0, m21, m22, _0, _0, _0, _0, _1, _0, m41, m42, _0, _1 ) } /// Create an orthogonal projection transform. pub fn ortho(left: T, right: T, bottom: T, top: T, near: T, far: T) -> Self { let tx = -((right + left) / (right - left)); let ty = -((top + bottom) / (top - bottom)); let tz = -((far + near) / (far - near)); let (_0, _1): (T, T) = (Zero::zero(), One::one()); let _2 = _1 + _1; Transform3D::row_major( _2 / (right - left), _0 , _0 , _0, _0 , _2 / (top - bottom), _0 , _0, _0 , _0 , -_2 / (far - near), _0, tx , ty , tz , _1 ) } /// Returns true if this transform can be represented with a `Transform2D`. /// /// See #[inline] pub fn is_2d(&self) -> bool { let (_0, _1): (T, T) = (Zero::zero(), One::one()); self.m31 == _0 && self.m32 == _0 && self.m13 == _0 && self.m23 == _0 && self.m43 == _0 && self.m14 == _0 && self.m24 == _0 && self.m34 == _0 && self.m33 == _1 && self.m44 == _1 } /// Create a 2D transform picking the relevant terms from this transform. /// /// This method assumes that self represents a 2d transformation, callers /// should check that self.is_2d() returns true beforehand. pub fn to_2d(&self) -> Transform2D { Transform2D::row_major( self.m11, self.m12, self.m21, self.m22, self.m41, self.m42 ) } /// Check whether shapes on the XY plane with Z pointing towards the /// screen transformed by this matrix would be facing back. pub fn is_backface_visible(&self) -> bool { // inverse().m33 < 0; let det = self.determinant(); let m33 = self.m12 * self.m24 * self.m41 - self.m14 * self.m22 * self.m41 + self.m14 * self.m21 * self.m42 - self.m11 * self.m24 * self.m42 - self.m12 * self.m21 * self.m44 + self.m11 * self.m22 * self.m44; let _0: T = Zero::zero(); (m33 * det) < _0 } pub fn approx_eq(&self, other: &Self) -> bool where T : ApproxEq { self.m11.approx_eq(&other.m11) && self.m12.approx_eq(&other.m12) && self.m13.approx_eq(&other.m13) && self.m14.approx_eq(&other.m14) && self.m21.approx_eq(&other.m21) && self.m22.approx_eq(&other.m22) && self.m23.approx_eq(&other.m23) && self.m24.approx_eq(&other.m24) && self.m31.approx_eq(&other.m31) && self.m32.approx_eq(&other.m32) && self.m33.approx_eq(&other.m33) && self.m34.approx_eq(&other.m34) && self.m41.approx_eq(&other.m41) && self.m42.approx_eq(&other.m42) && self.m43.approx_eq(&other.m43) && self.m44.approx_eq(&other.m44) } /// Returns the same transform with a different destination unit. #[inline] pub fn with_destination(&self) -> Transform3D { Transform3D::row_major( self.m11, self.m12, self.m13, self.m14, self.m21, self.m22, self.m23, self.m24, self.m31, self.m32, self.m33, self.m34, self.m41, self.m42, self.m43, self.m44, ) } /// Returns the same transform with a different source unit. #[inline] pub fn with_source(&self) -> Transform3D { Transform3D::row_major( self.m11, self.m12, self.m13, self.m14, self.m21, self.m22, self.m23, self.m24, self.m31, self.m32, self.m33, self.m34, self.m41, self.m42, self.m43, self.m44, ) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Transform3D { Transform3D::row_major( self.m11, self.m12, self.m13, self.m14, self.m21, self.m22, self.m23, self.m24, self.m31, self.m32, self.m33, self.m34, self.m41, self.m42, self.m43, self.m44, ) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(m: &Transform3D) -> Self { Transform3D::row_major( m.m11, m.m12, m.m13, m.m14, m.m21, m.m22, m.m23, m.m24, m.m31, m.m32, m.m33, m.m34, m.m41, m.m42, m.m43, m.m44, ) } /// Returns the multiplication of the two matrices such that mat's transformation /// applies after self's transformation. /// /// Assuming row vectors, this is equivalent to self * mat #[must_use] pub fn post_transform(&self, mat: &Transform3D) -> Transform3D { Transform3D::row_major( self.m11 * mat.m11 + self.m12 * mat.m21 + self.m13 * mat.m31 + self.m14 * mat.m41, self.m11 * mat.m12 + self.m12 * mat.m22 + self.m13 * mat.m32 + self.m14 * mat.m42, self.m11 * mat.m13 + self.m12 * mat.m23 + self.m13 * mat.m33 + self.m14 * mat.m43, self.m11 * mat.m14 + self.m12 * mat.m24 + self.m13 * mat.m34 + self.m14 * mat.m44, self.m21 * mat.m11 + self.m22 * mat.m21 + self.m23 * mat.m31 + self.m24 * mat.m41, self.m21 * mat.m12 + self.m22 * mat.m22 + self.m23 * mat.m32 + self.m24 * mat.m42, self.m21 * mat.m13 + self.m22 * mat.m23 + self.m23 * mat.m33 + self.m24 * mat.m43, self.m21 * mat.m14 + self.m22 * mat.m24 + self.m23 * mat.m34 + self.m24 * mat.m44, self.m31 * mat.m11 + self.m32 * mat.m21 + self.m33 * mat.m31 + self.m34 * mat.m41, self.m31 * mat.m12 + self.m32 * mat.m22 + self.m33 * mat.m32 + self.m34 * mat.m42, self.m31 * mat.m13 + self.m32 * mat.m23 + self.m33 * mat.m33 + self.m34 * mat.m43, self.m31 * mat.m14 + self.m32 * mat.m24 + self.m33 * mat.m34 + self.m34 * mat.m44, self.m41 * mat.m11 + self.m42 * mat.m21 + self.m43 * mat.m31 + self.m44 * mat.m41, self.m41 * mat.m12 + self.m42 * mat.m22 + self.m43 * mat.m32 + self.m44 * mat.m42, self.m41 * mat.m13 + self.m42 * mat.m23 + self.m43 * mat.m33 + self.m44 * mat.m43, self.m41 * mat.m14 + self.m42 * mat.m24 + self.m43 * mat.m34 + self.m44 * mat.m44, ) } /// Returns the multiplication of the two matrices such that mat's transformation /// applies before self's transformation. /// /// Assuming row vectors, this is equivalent to mat * self #[inline] #[must_use] pub fn pre_transform(&self, mat: &Transform3D) -> Transform3D { mat.post_transform(self) } /// Returns the inverse transform if possible. pub fn inverse(&self) -> Option> { let det = self.determinant(); if det == Zero::zero() { return None; } // todo(gw): this could be made faster by special casing // for simpler transform types. let m = Transform3D::row_major( self.m23*self.m34*self.m42 - self.m24*self.m33*self.m42 + self.m24*self.m32*self.m43 - self.m22*self.m34*self.m43 - self.m23*self.m32*self.m44 + self.m22*self.m33*self.m44, self.m14*self.m33*self.m42 - self.m13*self.m34*self.m42 - self.m14*self.m32*self.m43 + self.m12*self.m34*self.m43 + self.m13*self.m32*self.m44 - self.m12*self.m33*self.m44, self.m13*self.m24*self.m42 - self.m14*self.m23*self.m42 + self.m14*self.m22*self.m43 - self.m12*self.m24*self.m43 - self.m13*self.m22*self.m44 + self.m12*self.m23*self.m44, self.m14*self.m23*self.m32 - self.m13*self.m24*self.m32 - self.m14*self.m22*self.m33 + self.m12*self.m24*self.m33 + self.m13*self.m22*self.m34 - self.m12*self.m23*self.m34, self.m24*self.m33*self.m41 - self.m23*self.m34*self.m41 - self.m24*self.m31*self.m43 + self.m21*self.m34*self.m43 + self.m23*self.m31*self.m44 - self.m21*self.m33*self.m44, self.m13*self.m34*self.m41 - self.m14*self.m33*self.m41 + self.m14*self.m31*self.m43 - self.m11*self.m34*self.m43 - self.m13*self.m31*self.m44 + self.m11*self.m33*self.m44, self.m14*self.m23*self.m41 - self.m13*self.m24*self.m41 - self.m14*self.m21*self.m43 + self.m11*self.m24*self.m43 + self.m13*self.m21*self.m44 - self.m11*self.m23*self.m44, self.m13*self.m24*self.m31 - self.m14*self.m23*self.m31 + self.m14*self.m21*self.m33 - self.m11*self.m24*self.m33 - self.m13*self.m21*self.m34 + self.m11*self.m23*self.m34, self.m22*self.m34*self.m41 - self.m24*self.m32*self.m41 + self.m24*self.m31*self.m42 - self.m21*self.m34*self.m42 - self.m22*self.m31*self.m44 + self.m21*self.m32*self.m44, self.m14*self.m32*self.m41 - self.m12*self.m34*self.m41 - self.m14*self.m31*self.m42 + self.m11*self.m34*self.m42 + self.m12*self.m31*self.m44 - self.m11*self.m32*self.m44, self.m12*self.m24*self.m41 - self.m14*self.m22*self.m41 + self.m14*self.m21*self.m42 - self.m11*self.m24*self.m42 - self.m12*self.m21*self.m44 + self.m11*self.m22*self.m44, self.m14*self.m22*self.m31 - self.m12*self.m24*self.m31 - self.m14*self.m21*self.m32 + self.m11*self.m24*self.m32 + self.m12*self.m21*self.m34 - self.m11*self.m22*self.m34, self.m23*self.m32*self.m41 - self.m22*self.m33*self.m41 - self.m23*self.m31*self.m42 + self.m21*self.m33*self.m42 + self.m22*self.m31*self.m43 - self.m21*self.m32*self.m43, self.m12*self.m33*self.m41 - self.m13*self.m32*self.m41 + self.m13*self.m31*self.m42 - self.m11*self.m33*self.m42 - self.m12*self.m31*self.m43 + self.m11*self.m32*self.m43, self.m13*self.m22*self.m41 - self.m12*self.m23*self.m41 - self.m13*self.m21*self.m42 + self.m11*self.m23*self.m42 + self.m12*self.m21*self.m43 - self.m11*self.m22*self.m43, self.m12*self.m23*self.m31 - self.m13*self.m22*self.m31 + self.m13*self.m21*self.m32 - self.m11*self.m23*self.m32 - self.m12*self.m21*self.m33 + self.m11*self.m22*self.m33 ); let _1: T = One::one(); Some(m.mul_s(_1 / det)) } /// Compute the determinant of the transform. pub fn determinant(&self) -> T { self.m14 * self.m23 * self.m32 * self.m41 - self.m13 * self.m24 * self.m32 * self.m41 - self.m14 * self.m22 * self.m33 * self.m41 + self.m12 * self.m24 * self.m33 * self.m41 + self.m13 * self.m22 * self.m34 * self.m41 - self.m12 * self.m23 * self.m34 * self.m41 - self.m14 * self.m23 * self.m31 * self.m42 + self.m13 * self.m24 * self.m31 * self.m42 + self.m14 * self.m21 * self.m33 * self.m42 - self.m11 * self.m24 * self.m33 * self.m42 - self.m13 * self.m21 * self.m34 * self.m42 + self.m11 * self.m23 * self.m34 * self.m42 + self.m14 * self.m22 * self.m31 * self.m43 - self.m12 * self.m24 * self.m31 * self.m43 - self.m14 * self.m21 * self.m32 * self.m43 + self.m11 * self.m24 * self.m32 * self.m43 + self.m12 * self.m21 * self.m34 * self.m43 - self.m11 * self.m22 * self.m34 * self.m43 - self.m13 * self.m22 * self.m31 * self.m44 + self.m12 * self.m23 * self.m31 * self.m44 + self.m13 * self.m21 * self.m32 * self.m44 - self.m11 * self.m23 * self.m32 * self.m44 - self.m12 * self.m21 * self.m33 * self.m44 + self.m11 * self.m22 * self.m33 * self.m44 } /// Multiplies all of the transform's component by a scalar and returns the result. #[must_use] pub fn mul_s(&self, x: T) -> Self { Transform3D::row_major( self.m11 * x, self.m12 * x, self.m13 * x, self.m14 * x, self.m21 * x, self.m22 * x, self.m23 * x, self.m24 * x, self.m31 * x, self.m32 * x, self.m33 * x, self.m34 * x, self.m41 * x, self.m42 * x, self.m43 * x, self.m44 * x ) } /// Convenience function to create a scale transform from a `Scale`. pub fn from_scale(scale: Scale) -> Self { Transform3D::create_scale(scale.get(), scale.get(), scale.get()) } /// Returns the homogeneous vector corresponding to the transformed 2d point. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. /// /// Assuming row vectors, this is equivalent to `p * self` #[inline] pub fn transform_point2d_homogeneous( &self, p: Point2D ) -> HomogeneousVector { let x = p.x * self.m11 + p.y * self.m21 + self.m41; let y = p.x * self.m12 + p.y * self.m22 + self.m42; let z = p.x * self.m13 + p.y * self.m23 + self.m43; let w = p.x * self.m14 + p.y * self.m24 + self.m44; HomogeneousVector::new(x, y, z, w) } /// Returns the given 2d point transformed by this transform, if the transform makes sense, /// or `None` otherwise. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. /// /// Assuming row vectors, this is equivalent to `p * self` #[inline] pub fn transform_point2d(&self, p: Point2D) -> Option> { //Note: could use `transform_point2d_homogeneous()` but it would waste the calculus of `z` let w = p.x * self.m14 + p.y * self.m24 + self.m44; if w > T::zero() { let x = p.x * self.m11 + p.y * self.m21 + self.m41; let y = p.x * self.m12 + p.y * self.m22 + self.m42; Some(Point2D::new(x / w, y / w)) } else { None } } /// Returns the given 2d vector transformed by this matrix. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. /// /// Assuming row vectors, this is equivalent to `v * self` #[inline] pub fn transform_vector2d(&self, v: Vector2D) -> Vector2D { vec2( v.x * self.m11 + v.y * self.m21, v.x * self.m12 + v.y * self.m22, ) } /// Returns the homogeneous vector corresponding to the transformed 3d point. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. /// /// Assuming row vectors, this is equivalent to `p * self` #[inline] pub fn transform_point3d_homogeneous( &self, p: Point3D ) -> HomogeneousVector { let x = p.x * self.m11 + p.y * self.m21 + p.z * self.m31 + self.m41; let y = p.x * self.m12 + p.y * self.m22 + p.z * self.m32 + self.m42; let z = p.x * self.m13 + p.y * self.m23 + p.z * self.m33 + self.m43; let w = p.x * self.m14 + p.y * self.m24 + p.z * self.m34 + self.m44; HomogeneousVector::new(x, y, z, w) } /// Returns the given 3d point transformed by this transform, if the transform makes sense, /// or `None` otherwise. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. /// /// Assuming row vectors, this is equivalent to `p * self` #[inline] pub fn transform_point3d(&self, p: Point3D) -> Option> { self.transform_point3d_homogeneous(p).to_point3d() } /// Returns the given 3d vector transformed by this matrix. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. /// /// Assuming row vectors, this is equivalent to `v * self` #[inline] pub fn transform_vector3d(&self, v: Vector3D) -> Vector3D { vec3( v.x * self.m11 + v.y * self.m21 + v.z * self.m31, v.x * self.m12 + v.y * self.m22 + v.z * self.m32, v.x * self.m13 + v.y * self.m23 + v.z * self.m33, ) } /// Returns a rectangle that encompasses the result of transforming the given rectangle by this /// transform, if the transform makes sense for it, or `None` otherwise. pub fn transform_rect(&self, rect: &Rect) -> Option> { let min = rect.min(); let max = rect.max(); Some(Rect::from_points(&[ self.transform_point2d(min)?, self.transform_point2d(max)?, self.transform_point2d(point2(max.x, min.y))?, self.transform_point2d(point2(min.x, max.y))?, ])) } /// Create a 3d translation transform pub fn create_translation(x: T, y: T, z: T) -> Self { let (_0, _1): (T, T) = (Zero::zero(), One::one()); Transform3D::row_major( _1, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1, _0, x, y, z, _1 ) } /// Returns a transform with a translation applied before self's transformation. #[must_use] pub fn pre_translate(&self, v: Vector3D) -> Self { self.pre_transform(&Transform3D::create_translation(v.x, v.y, v.z)) } /// Returns a transform with a translation applied after self's transformation. #[must_use] pub fn post_translate(&self, v: Vector3D) -> Self { self.post_transform(&Transform3D::create_translation(v.x, v.y, v.z)) } /// Returns a projection of this transform in 2d space. pub fn project_to_2d(&self) -> Self { let (_0, _1): (T, T) = (Zero::zero(), One::one()); let mut result = self.clone(); result.m31 = _0; result.m32 = _0; result.m13 = _0; result.m23 = _0; result.m33 = _1; result.m43 = _0; result.m34 = _0; // Try to normalize perspective when possible to convert to a 2d matrix. // Some matrices, such as those derived from perspective transforms, can // modify m44 from 1, while leaving the rest of the fourth column // (m14, m24) at 0. In this case, after resetting the third row and // third column above, the value of m44 functions only to scale the // coordinate transform divide by W. The matrix can be converted to // a true 2D matrix by normalizing out the scaling effect of m44 on // the remaining components ahead of time. if self.m14 == _0 && self.m24 == _0 && self.m44 != _0 && self.m44 != _1 { let scale = _1 / self.m44; result.m11 = result.m11 * scale; result.m12 = result.m12 * scale; result.m21 = result.m21 * scale; result.m22 = result.m22 * scale; result.m41 = result.m41 * scale; result.m42 = result.m42 * scale; result.m44 = _1; } result } /// Create a 3d scale transform pub fn create_scale(x: T, y: T, z: T) -> Self { let (_0, _1): (T, T) = (Zero::zero(), One::one()); Transform3D::row_major( x, _0, _0, _0, _0, y, _0, _0, _0, _0, z, _0, _0, _0, _0, _1 ) } /// Returns a transform with a scale applied before self's transformation. #[must_use] pub fn pre_scale(&self, x: T, y: T, z: T) -> Self { Transform3D::row_major( self.m11 * x, self.m12, self.m13, self.m14, self.m21 , self.m22 * y, self.m23, self.m24, self.m31 , self.m32, self.m33 * z, self.m34, self.m41 , self.m42, self.m43, self.m44 ) } /// Returns a transform with a scale applied after self's transformation. #[must_use] pub fn post_scale(&self, x: T, y: T, z: T) -> Self { self.post_transform(&Transform3D::create_scale(x, y, z)) } /// Create a 3d rotation transform from an angle / axis. /// The supplied axis must be normalized. pub fn create_rotation(x: T, y: T, z: T, theta: Angle) -> Self { let (_0, _1): (T, T) = (Zero::zero(), One::one()); let _2 = _1 + _1; let xx = x * x; let yy = y * y; let zz = z * z; let half_theta = theta.get() / _2; let sc = half_theta.sin() * half_theta.cos(); let sq = half_theta.sin() * half_theta.sin(); Transform3D::row_major( _1 - _2 * (yy + zz) * sq, _2 * (x * y * sq - z * sc), _2 * (x * z * sq + y * sc), _0, _2 * (x * y * sq + z * sc), _1 - _2 * (xx + zz) * sq, _2 * (y * z * sq - x * sc), _0, _2 * (x * z * sq - y * sc), _2 * (y * z * sq + x * sc), _1 - _2 * (xx + yy) * sq, _0, _0, _0, _0, _1 ) } /// Returns a transform with a rotation applied after self's transformation. #[must_use] pub fn post_rotate(&self, x: T, y: T, z: T, theta: Angle) -> Self { self.post_transform(&Transform3D::create_rotation(x, y, z, theta)) } /// Returns a transform with a rotation applied before self's transformation. #[must_use] pub fn pre_rotate(&self, x: T, y: T, z: T, theta: Angle) -> Self { self.pre_transform(&Transform3D::create_rotation(x, y, z, theta)) } /// Create a 2d skew transform. /// /// See pub fn create_skew(alpha: Angle, beta: Angle) -> Self { let (_0, _1): (T, T) = (Zero::zero(), One::one()); let (sx, sy) = (beta.get().tan(), alpha.get().tan()); Transform3D::row_major( _1, sx, _0, _0, sy, _1, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1 ) } /// Create a simple perspective projection transform pub fn create_perspective(d: T) -> Self { let (_0, _1): (T, T) = (Zero::zero(), One::one()); Transform3D::row_major( _1, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1, -_1 / d, _0, _0, _0, _1 ) } } impl Transform3D { /// Returns an array containing this transform's terms in row-major order (the order /// in which the transform is actually laid out in memory). /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), then please use `to_column_major_array` pub fn to_row_major_array(&self) -> [T; 16] { [ self.m11, self.m12, self.m13, self.m14, self.m21, self.m22, self.m23, self.m24, self.m31, self.m32, self.m33, self.m34, self.m41, self.m42, self.m43, self.m44 ] } /// Returns an array containing this transform's terms in column-major order. /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), then please use `to_row_major_array` pub fn to_column_major_array(&self) -> [T; 16] { [ self.m11, self.m21, self.m31, self.m41, self.m12, self.m22, self.m32, self.m42, self.m13, self.m23, self.m33, self.m43, self.m14, self.m24, self.m34, self.m44 ] } /// Returns an array containing this transform's 4 rows in (in row-major order) /// as arrays. /// /// This is a convenience method to interface with other libraries like glium. /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), then please use `to_column_arrays` pub fn to_row_arrays(&self) -> [[T; 4]; 4] { [ [self.m11, self.m12, self.m13, self.m14], [self.m21, self.m22, self.m23, self.m24], [self.m31, self.m32, self.m33, self.m34], [self.m41, self.m42, self.m43, self.m44] ] } /// Returns an array containing this transform's 4 columns in (in row-major order, /// or 4 rows in column-major order) as arrays. /// /// This is a convenience method to interface with other libraries like glium. /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), then please use `to_row_arrays` pub fn to_column_arrays(&self) -> [[T; 4]; 4] { [ [self.m11, self.m21, self.m31, self.m41], [self.m12, self.m22, self.m32, self.m42], [self.m13, self.m23, self.m33, self.m43], [self.m14, self.m24, self.m34, self.m44] ] } /// Creates a transform from an array of 16 elements in row-major order. /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), please provide column-major data to this function. pub fn from_array(array: [T; 16]) -> Self { Self::row_major( array[0], array[1], array[2], array[3], array[4], array[5], array[6], array[7], array[8], array[9], array[10], array[11], array[12], array[13], array[14], array[15], ) } /// Creates a transform from 4 rows of 4 elements (row-major order). /// /// Beware: This library is written with the assumption that row vectors /// are being used. If your matrices use column vectors (i.e. transforming a vector /// is `T * v`), please provide column-major data to tis function. pub fn from_row_arrays(array: [[T; 4]; 4]) -> Self { Self::row_major( array[0][0], array[0][1], array[0][2], array[0][3], array[1][0], array[1][1], array[1][2], array[1][3], array[2][0], array[2][1], array[2][2], array[2][3], array[3][0], array[3][1], array[3][2], array[3][3], ) } } impl Transform3D { /// Cast from one numeric representation to another, preserving the units. pub fn cast(&self) -> Transform3D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. pub fn try_cast(&self) -> Option> { match (NumCast::from(self.m11), NumCast::from(self.m12), NumCast::from(self.m13), NumCast::from(self.m14), NumCast::from(self.m21), NumCast::from(self.m22), NumCast::from(self.m23), NumCast::from(self.m24), NumCast::from(self.m31), NumCast::from(self.m32), NumCast::from(self.m33), NumCast::from(self.m34), NumCast::from(self.m41), NumCast::from(self.m42), NumCast::from(self.m43), NumCast::from(self.m44)) { (Some(m11), Some(m12), Some(m13), Some(m14), Some(m21), Some(m22), Some(m23), Some(m24), Some(m31), Some(m32), Some(m33), Some(m34), Some(m41), Some(m42), Some(m43), Some(m44)) => { Some(Transform3D::row_major(m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44)) }, _ => None } } } impl Default for Transform3D where T: Copy + PartialEq + One + Zero { fn default() -> Self { Self::identity() } } impl fmt::Debug for Transform3D where T: Copy + fmt::Debug + PartialEq + One + Zero { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if self.is_identity() { write!(f, "[I]") } else { self.to_row_major_array().fmt(f) } } } #[cfg(feature = "mint")] impl From> for Transform3D { fn from(m: mint::RowMatrix4) -> Self { Transform3D { m11: m.x.x, m12: m.x.y, m13: m.x.z, m14: m.x.w, m21: m.y.x, m22: m.y.y, m23: m.y.z, m24: m.y.w, m31: m.z.x, m32: m.z.y, m33: m.z.z, m34: m.z.w, m41: m.w.x, m42: m.w.y, m43: m.w.z, m44: m.w.w, _unit: PhantomData, } } } #[cfg(feature = "mint")] impl Into> for Transform3D { fn into(self) -> mint::RowMatrix4 { mint::RowMatrix4 { x: mint::Vector4 { x: self.m11, y: self.m12, z: self.m13, w: self.m14 }, y: mint::Vector4 { x: self.m21, y: self.m22, z: self.m23, w: self.m24 }, z: mint::Vector4 { x: self.m31, y: self.m32, z: self.m33, w: self.m34 }, w: mint::Vector4 { x: self.m41, y: self.m42, z: self.m43, w: self.m44 }, } } } #[cfg(test)] mod tests { use approxeq::ApproxEq; use super::*; use {point2, point3}; use default; use core::f32::consts::{FRAC_PI_2, PI}; type Mf32 = default::Transform3D; // For convenience. fn rad(v: f32) -> Angle { Angle::radians(v) } #[test] pub fn test_translation() { let t1 = Mf32::create_translation(1.0, 2.0, 3.0); let t2 = Mf32::identity().pre_translate(vec3(1.0, 2.0, 3.0)); let t3 = Mf32::identity().post_translate(vec3(1.0, 2.0, 3.0)); assert_eq!(t1, t2); assert_eq!(t1, t3); assert_eq!(t1.transform_point3d(point3(1.0, 1.0, 1.0)), Some(point3(2.0, 3.0, 4.0))); assert_eq!(t1.transform_point2d(point2(1.0, 1.0)), Some(point2(2.0, 3.0))); assert_eq!(t1.post_transform(&t1), Mf32::create_translation(2.0, 4.0, 6.0)); assert!(!t1.is_2d()); assert_eq!(Mf32::create_translation(1.0, 2.0, 3.0).to_2d(), Transform2D::create_translation(1.0, 2.0)); } #[test] pub fn test_rotation() { let r1 = Mf32::create_rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2)); let r2 = Mf32::identity().pre_rotate(0.0, 0.0, 1.0, rad(FRAC_PI_2)); let r3 = Mf32::identity().post_rotate(0.0, 0.0, 1.0, rad(FRAC_PI_2)); assert_eq!(r1, r2); assert_eq!(r1, r3); assert!(r1.transform_point3d(point3(1.0, 2.0, 3.0)).unwrap().approx_eq(&point3(2.0, -1.0, 3.0))); assert!(r1.transform_point2d(point2(1.0, 2.0)).unwrap().approx_eq(&point2(2.0, -1.0))); assert!(r1.post_transform(&r1).approx_eq(&Mf32::create_rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2*2.0)))); assert!(r1.is_2d()); assert!(r1.to_2d().approx_eq(&Transform2D::create_rotation(rad(FRAC_PI_2)))); } #[test] pub fn test_scale() { let s1 = Mf32::create_scale(2.0, 3.0, 4.0); let s2 = Mf32::identity().pre_scale(2.0, 3.0, 4.0); let s3 = Mf32::identity().post_scale(2.0, 3.0, 4.0); assert_eq!(s1, s2); assert_eq!(s1, s3); assert!(s1.transform_point3d(point3(2.0, 2.0, 2.0)).unwrap().approx_eq(&point3(4.0, 6.0, 8.0))); assert!(s1.transform_point2d(point2(2.0, 2.0)).unwrap().approx_eq(&point2(4.0, 6.0))); assert_eq!(s1.post_transform(&s1), Mf32::create_scale(4.0, 9.0, 16.0)); assert!(!s1.is_2d()); assert_eq!(Mf32::create_scale(2.0, 3.0, 0.0).to_2d(), Transform2D::create_scale(2.0, 3.0)); } #[test] pub fn test_ortho() { let (left, right, bottom, top) = (0.0f32, 1.0f32, 0.1f32, 1.0f32); let (near, far) = (-1.0f32, 1.0f32); let result = Mf32::ortho(left, right, bottom, top, near, far); let expected = Mf32::row_major( 2.0, 0.0, 0.0, 0.0, 0.0, 2.22222222, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, -1.22222222, -0.0, 1.0 ); assert!(result.approx_eq(&expected)); } #[test] pub fn test_is_2d() { assert!(Mf32::identity().is_2d()); assert!(Mf32::create_rotation(0.0, 0.0, 1.0, rad(0.7854)).is_2d()); assert!(!Mf32::create_rotation(0.0, 1.0, 0.0, rad(0.7854)).is_2d()); } #[test] pub fn test_row_major_2d() { let m1 = Mf32::row_major_2d(1.0, 2.0, 3.0, 4.0, 5.0, 6.0); let m2 = Mf32::row_major( 1.0, 2.0, 0.0, 0.0, 3.0, 4.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 5.0, 6.0, 0.0, 1.0 ); assert_eq!(m1, m2); } #[test] fn test_column_major() { assert_eq!( Mf32::row_major( 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, ), Mf32::column_major( 1.0, 5.0, 9.0, 13.0, 2.0, 6.0, 10.0, 14.0, 3.0, 7.0, 11.0, 15.0, 4.0, 8.0, 12.0, 16.0, ) ); } #[test] pub fn test_inverse_simple() { let m1 = Mf32::identity(); let m2 = m1.inverse().unwrap(); assert!(m1.approx_eq(&m2)); } #[test] pub fn test_inverse_scale() { let m1 = Mf32::create_scale(1.5, 0.3, 2.1); let m2 = m1.inverse().unwrap(); assert!(m1.pre_transform(&m2).approx_eq(&Mf32::identity())); } #[test] pub fn test_inverse_translate() { let m1 = Mf32::create_translation(-132.0, 0.3, 493.0); let m2 = m1.inverse().unwrap(); assert!(m1.pre_transform(&m2).approx_eq(&Mf32::identity())); } #[test] pub fn test_inverse_rotate() { let m1 = Mf32::create_rotation(0.0, 1.0, 0.0, rad(1.57)); let m2 = m1.inverse().unwrap(); assert!(m1.pre_transform(&m2).approx_eq(&Mf32::identity())); } #[test] pub fn test_inverse_transform_point_2d() { let m1 = Mf32::create_translation(100.0, 200.0, 0.0); let m2 = m1.inverse().unwrap(); assert!(m1.pre_transform(&m2).approx_eq(&Mf32::identity())); let p1 = point2(1000.0, 2000.0); let p2 = m1.transform_point2d(p1); assert_eq!(p2, Some(point2(1100.0, 2200.0))); let p3 = m2.transform_point2d(p2.unwrap()); assert_eq!(p3, Some(p1)); } #[test] fn test_inverse_none() { assert!(Mf32::create_scale(2.0, 0.0, 2.0).inverse().is_none()); assert!(Mf32::create_scale(2.0, 2.0, 2.0).inverse().is_some()); } #[test] pub fn test_pre_post() { let m1 = default::Transform3D::identity().post_scale(1.0, 2.0, 3.0).post_translate(vec3(1.0, 2.0, 3.0)); let m2 = default::Transform3D::identity().pre_translate(vec3(1.0, 2.0, 3.0)).pre_scale(1.0, 2.0, 3.0); assert!(m1.approx_eq(&m2)); let r = Mf32::create_rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2)); let t = Mf32::create_translation(2.0, 3.0, 0.0); let a = point3(1.0, 1.0, 1.0); assert!(r.post_transform(&t).transform_point3d(a).unwrap().approx_eq(&point3(3.0, 2.0, 1.0))); assert!(t.post_transform(&r).transform_point3d(a).unwrap().approx_eq(&point3(4.0, -3.0, 1.0))); assert!(t.post_transform(&r).transform_point3d(a).unwrap().approx_eq(&r.transform_point3d(t.transform_point3d(a).unwrap()).unwrap())); assert!(r.pre_transform(&t).transform_point3d(a).unwrap().approx_eq(&point3(4.0, -3.0, 1.0))); assert!(t.pre_transform(&r).transform_point3d(a).unwrap().approx_eq(&point3(3.0, 2.0, 1.0))); assert!(t.pre_transform(&r).transform_point3d(a).unwrap().approx_eq(&t.transform_point3d(r.transform_point3d(a).unwrap()).unwrap())); } #[test] fn test_size_of() { use core::mem::size_of; assert_eq!(size_of::>(), 16*size_of::()); assert_eq!(size_of::>(), 16*size_of::()); } #[test] pub fn test_transform_associativity() { let m1 = Mf32::row_major(3.0, 2.0, 1.5, 1.0, 0.0, 4.5, -1.0, -4.0, 0.0, 3.5, 2.5, 40.0, 0.0, 3.0, 0.0, 1.0); let m2 = Mf32::row_major(1.0, -1.0, 3.0, 0.0, -1.0, 0.5, 0.0, 2.0, 1.5, -2.0, 6.0, 0.0, -2.5, 6.0, 1.0, 1.0); let p = point3(1.0, 3.0, 5.0); let p1 = m2.pre_transform(&m1).transform_point3d(p).unwrap(); let p2 = m2.transform_point3d(m1.transform_point3d(p).unwrap()).unwrap(); assert!(p1.approx_eq(&p2)); } #[test] pub fn test_is_identity() { let m1 = default::Transform3D::identity(); assert!(m1.is_identity()); let m2 = m1.post_translate(vec3(0.1, 0.0, 0.0)); assert!(!m2.is_identity()); } #[test] pub fn test_transform_vector() { // Translation does not apply to vectors. let m = Mf32::create_translation(1.0, 2.0, 3.0); let v1 = vec3(10.0, -10.0, 3.0); assert_eq!(v1, m.transform_vector3d(v1)); // While it does apply to points. assert_ne!(Some(v1.to_point()), m.transform_point3d(v1.to_point())); // same thing with 2d vectors/points let v2 = vec2(10.0, -5.0); assert_eq!(v2, m.transform_vector2d(v2)); assert_ne!(Some(v2.to_point()), m.transform_point2d(v2.to_point())); } #[test] pub fn test_is_backface_visible() { // backface is not visible for rotate-x 0 degree. let r1 = Mf32::create_rotation(1.0, 0.0, 0.0, rad(0.0)); assert!(!r1.is_backface_visible()); // backface is not visible for rotate-x 45 degree. let r1 = Mf32::create_rotation(1.0, 0.0, 0.0, rad(PI * 0.25)); assert!(!r1.is_backface_visible()); // backface is visible for rotate-x 180 degree. let r1 = Mf32::create_rotation(1.0, 0.0, 0.0, rad(PI)); assert!(r1.is_backface_visible()); // backface is visible for rotate-x 225 degree. let r1 = Mf32::create_rotation(1.0, 0.0, 0.0, rad(PI * 1.25)); assert!(r1.is_backface_visible()); // backface is not visible for non-inverseable matrix let r1 = Mf32::create_scale(2.0, 0.0, 2.0); assert!(!r1.is_backface_visible()); } #[test] pub fn test_homogeneous() { let m = Mf32::row_major( 1.0, 2.0, 0.5, 5.0, 3.0, 4.0, 0.25, 6.0, 0.5, -1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 2.0, ); assert_eq!( m.transform_point2d_homogeneous(point2(1.0, 2.0)), HomogeneousVector::new(6.0, 11.0, 0.0, 19.0), ); assert_eq!( m.transform_point3d_homogeneous(point3(1.0, 2.0, 4.0)), HomogeneousVector::new(8.0, 7.0, 4.0, 15.0), ); } #[test] pub fn test_perspective_division() { let p = point2(1.0, 2.0); let mut m = Mf32::identity(); assert!(m.transform_point2d(p).is_some()); m.m44 = 0.0; assert_eq!(None, m.transform_point2d(p)); m.m44 = 1.0; m.m24 = -1.0; assert_eq!(None, m.transform_point2d(p)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let m1 = Mf32::create_rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2)); let mm: mint::RowMatrix4<_> = m1.into(); let m2 = Mf32::from(mm); assert_eq!(m1, m2); } } euclid-0.20.0/src/translation.rs010064400017500001750000000333701350732666300147730ustar0000000000000000// Copyright 2018 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use {Vector2D, Point2D, Vector3D, Point3D, Transform2D, Transform3D}; use {Size2D, Rect, vec2, point2, vec3, point3}; use num::*; use trig::Trig; use core::ops::{Add, Sub, Neg, Mul, Div}; use core::marker::PhantomData; use core::fmt; use core::cmp::{Eq, PartialEq}; use core::hash::{Hash}; #[cfg(feature = "serde")] use serde; /// A 2d transformation from a space to another that can only express translations. /// /// The main benefit of this type over a Vector2D is the ability to cast /// between a source and a destination spaces. /// /// Example: /// /// ``` /// use euclid::{Translation2D, Point2D, point2}; /// struct ParentSpace; /// struct ChildSpace; /// type ScrollOffset = Translation2D; /// type ParentPoint = Point2D; /// type ChildPoint = Point2D; /// /// let scrolling = ScrollOffset::new(0, 100); /// let p1: ParentPoint = point2(0, 0); /// let p2: ChildPoint = scrolling.transform_point(p1); /// ``` /// #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde", serde(bound(serialize = "T: serde::Serialize", deserialize = "T: serde::Deserialize<'de>")))] pub struct Translation2D { pub x: T, pub y: T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } impl Copy for Translation2D {} impl Clone for Translation2D { fn clone(&self) -> Self { Translation2D { x: self.x.clone(), y: self.y.clone(), _unit: PhantomData, } } } impl Eq for Translation2D where T: Eq {} impl PartialEq for Translation2D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y } } impl Hash for Translation2D where T: Hash { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); } } impl Translation2D { #[inline] pub fn new(x: T, y: T) -> Self { Translation2D { x, y, _unit: PhantomData, } } } impl Translation2D where T : Copy { #[inline] pub fn to_array(&self) -> [T; 2] { [self.x, self.y] } #[inline] pub fn to_tuple(&self) -> (T, T) { (self.x, self.y) } } impl Translation2D where T : Copy + Zero { #[inline] pub fn identity() -> Self { let _0 = T::zero(); Translation2D::new(_0, _0) } } impl Translation2D where T: Zero + PartialEq { #[inline] pub fn is_identity(&self) -> bool { self.x == T::zero() && self.y == T::zero() } } impl Translation2D where T: Copy + Add { /// Translate a point and cast its unit. #[inline] pub fn transform_point(&self, p: Point2D) -> Point2D { point2(p.x + self.x, p.y + self.y) } /// Translate a rectangle and cast its unit. #[inline] pub fn transform_rect(&self, r: &Rect) -> Rect { Rect { origin: self.transform_point(r.origin), size: self.transform_size(r.size), } } /// No-op, just cast the unit. #[inline] pub fn transform_size(&self, s: Size2D) -> Size2D { Size2D::new(s.width, s.height) } /// Cast into a 2D vector. pub fn to_vector(&self) -> Vector2D { vec2(self.x, self.y) } } impl Translation2D where T: Copy + Neg { /// Return the inverse transformation. #[inline] pub fn inverse(&self) -> Translation2D { Translation2D::new(-self.x, -self.y) } } impl Add> for Translation2D where T: Copy + Add { type Output = Translation2D; fn add(self, other: Translation2D) -> Translation2D { Translation2D::new( self.x + other.x, self.y + other.y, ) } } impl Sub> for Translation2D where T: Copy + Sub { type Output = Translation2D; fn sub(self, other: Translation2D) -> Translation2D { Translation2D::new( self.x - other.x, self.y - other.y, ) } } impl Translation2D where T: Copy + Clone + Add + Mul + Div + Sub + Trig + PartialOrd + One + Zero, { /// Returns the matrix representation of this translation. #[inline] pub fn to_transform(&self) -> Transform2D { Transform2D::create_translation(self.x, self.y) } } impl From> for Translation2D where T: Copy { fn from(v: Vector2D) -> Self { Translation2D::new(v.x, v.y) } } impl Into> for Translation2D where T: Copy { fn into(self) -> Vector2D { vec2(self.x, self.y) } } impl Into> for Translation2D where T: Copy + Clone + Add + Mul + Div + Sub + Trig + PartialOrd + One + Zero, { fn into(self) -> Transform2D { self.to_transform() } } impl Default for Translation2D where T: Copy + Zero { fn default() -> Self { Self::identity() } } impl fmt::Debug for Translation2D where T: Copy + fmt::Debug { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.to_array().fmt(f) } } /// A 3d transformation from a space to another that can only express translations. /// /// The main benefit of this type over a Vector3D is the ability to cast /// between a source and a destination spaces. #[repr(C)] pub struct Translation3D { pub x: T, pub y: T, pub z: T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } impl Copy for Translation3D {} impl Clone for Translation3D { fn clone(&self) -> Self { Translation3D { x: self.x.clone(), y: self.y.clone(), z: self.z.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, Src, Dst> serde::Deserialize<'de> for Translation3D where T: serde::Deserialize<'de> { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de> { let (x, y, z) = try!(serde::Deserialize::deserialize(deserializer)); Ok(Translation3D { x, y, z, _unit: PhantomData }) } } #[cfg(feature = "serde")] impl serde::Serialize for Translation3D where T: serde::Serialize { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer { (&self.x, &self.y, &self.z).serialize(serializer) } } impl Eq for Translation3D where T: Eq {} impl PartialEq for Translation3D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y && self.z == other.z } } impl Hash for Translation3D where T: Hash { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); self.z.hash(h); } } impl Translation3D { #[inline] pub fn new(x: T, y: T, z: T) -> Self { Translation3D { x, y, z, _unit: PhantomData, } } } impl Translation3D where T: Copy { #[inline] pub fn to_array(&self) -> [T; 3] { [self.x, self.y, self.z] } #[inline] pub fn to_tuple(&self) -> (T, T, T) { (self.x, self.y, self.z) } } impl Translation3D where T: Copy + Zero { #[inline] pub fn identity() -> Self { let _0 = T::zero(); Translation3D::new(_0, _0, _0) } } impl Translation3D where T: Zero + PartialEq { #[inline] pub fn is_identity(&self) -> bool { self.x == T::zero() && self.y == T::zero() && self.z == T::zero() } } impl Translation3D where T: Copy + Add { /// Translate a point and cast its unit. #[inline] pub fn transform_point3d(&self, p: &Point3D) -> Point3D { point3(p.x + self.x, p.y + self.y, p.z + self.z) } /// Translate a point and cast its unit. #[inline] pub fn transform_point2d(&self, p: &Point2D) -> Point2D { point2(p.x + self.x, p.y + self.y) } /// Translate a rectangle and cast its unit. #[inline] pub fn transform_rect(&self, r: &Rect) -> Rect { Rect { origin: self.transform_point2d(&r.origin), size: self.transform_size(r.size), } } /// No-op, just cast the unit. #[inline] pub fn transform_size(self, s: Size2D) -> Size2D { Size2D::new(s.width, s.height) } /// Cast into a 3D vector. pub fn to_vector(&self) -> Vector3D { vec3(self.x, self.y, self.z) } } impl Translation3D where T: Copy + Neg { /// Return the inverse transformation. #[inline] pub fn inverse(&self) -> Translation3D { Translation3D::new(-self.x, -self.y, -self.z) } } impl Add> for Translation3D where T: Copy + Add { type Output = Translation3D; fn add(self, other: Translation3D) -> Translation3D { Translation3D::new( self.x + other.x, self.y + other.y, self.z + other.z, ) } } impl Sub> for Translation3D where T: Copy + Sub { type Output = Translation3D; fn sub(self, other: Translation3D) -> Translation3D { Translation3D::new( self.x - other.x, self.y - other.y, self.z - other.z, ) } } impl Translation3D where T: Copy + Clone + Add + Sub + Mul + Div + Neg + PartialOrd + Trig + One + Zero, { /// Returns the matrix representation of this translation. #[inline] pub fn to_transform(&self) -> Transform3D { Transform3D::create_translation(self.x, self.y, self.z) } } impl From> for Translation3D where T: Copy { fn from(v: Vector3D) -> Self { Translation3D::new(v.x, v.y, v.z) } } impl Into> for Translation3D where T: Copy { fn into(self) -> Vector3D { vec3(self.x, self.y, self.z) } } impl Into> for Translation3D where T: Copy + Clone + Add + Sub + Mul + Div + Neg + PartialOrd + Trig + One + Zero, { fn into(self) -> Transform3D { self.to_transform() } } impl Default for Translation3D where T: Copy + Zero { fn default() -> Self { Self::identity() } } impl fmt::Debug for Translation3D where T: Copy + fmt::Debug { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.to_array().fmt(f) } } #[test] fn simple_translation2d() { use rect; struct A; struct B; type Translation = Translation2D; type SrcRect = Rect; type DstRect = Rect; let tx = Translation::new(10, -10); let r1: SrcRect = rect(10, 20, 30, 40); let r2: DstRect = tx.transform_rect(&r1); assert_eq!(r2, rect(20, 10, 30, 40)); let inv_tx = tx.inverse(); assert_eq!(inv_tx.transform_rect(&r2), r1); assert!((tx + inv_tx).is_identity()); } #[test] fn simple_translation3d() { struct A; struct B; type Translation = Translation3D; type SrcPoint = Point3D; type DstPoint = Point3D; let tx = Translation::new(10, -10, 100); let p1: SrcPoint = point3(10, 20, 30); let p2: DstPoint = tx.transform_point3d(&p1); assert_eq!(p2, point3(20, 10, 130)); let inv_tx = tx.inverse(); assert_eq!(inv_tx.transform_point3d(&p2), p1); assert!((tx + inv_tx).is_identity()); } euclid-0.20.0/src/trig.rs010064400017500001750000000047161350662717500134050ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /// Trait for basic trigonometry functions, so they can be used on generic numeric types pub trait Trig { fn sin(self) -> Self; fn cos(self) -> Self; fn tan(self) -> Self; fn fast_atan2(y: Self, x: Self) -> Self; fn degrees_to_radians(deg: Self) -> Self; fn radians_to_degrees(rad: Self) -> Self; } macro_rules! trig { ($ty:ident) => ( impl Trig for $ty { #[inline] fn sin(self) -> $ty { self.sin() } #[inline] fn cos(self) -> $ty { self.cos() } #[inline] fn tan(self) -> $ty { self.tan() } /// A slightly faster approximation of `atan2`. /// /// Note that it does not deal with the case where both x and y are 0. #[inline] fn fast_atan2(y: $ty, x: $ty) -> $ty { // This macro is used with f32 and f64 and clippy warns about the extra // precision with f32. #![cfg_attr(feature = "cargo-clippy", allow(excessive_precision))] // See https://math.stackexchange.com/questions/1098487/atan2-faster-approximation#1105038 use core::$ty::consts; let x_abs = x.abs(); let y_abs = y.abs(); let a = x_abs.min(y_abs) / x_abs.max(y_abs); let s = a * a; let mut result = ((-0.046_496_474_9 * s + 0.159_314_22) * s - 0.327_622_764) * s * a + a; if y_abs > x_abs { result = consts::FRAC_PI_2 - result; } if x < 0.0 { result = consts::PI - result } if y < 0.0 { result = -result } result } #[inline] fn degrees_to_radians(deg: Self) -> Self { deg.to_radians() } #[inline] fn radians_to_degrees(rad: Self) -> Self { rad.to_degrees() } } ) } trig!(f32); trig!(f64); euclid-0.20.0/src/vector.rs010064400017500001750000001265641350732666300137470ustar0000000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use approxeq::ApproxEq; use length::Length; #[cfg(feature = "mint")] use mint; use point::{Point2D, Point3D, point2, point3}; use size::{Size2D, size2}; use scale::Scale; use transform2d::Transform2D; use transform3d::Transform3D; use trig::Trig; use Angle; use num::*; use num_traits::{Float, NumCast, Signed}; use core::fmt; use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; use core::marker::PhantomData; use core::cmp::{Eq, PartialEq}; use core::hash::{Hash}; #[cfg(feature = "serde")] use serde; /// A 2d Vector tagged with a unit. #[repr(C)] pub struct Vector2D { pub x: T, pub y: T, #[doc(hidden)] pub _unit: PhantomData, } mint_vec!(Vector2D[x, y] = Vector2); impl Copy for Vector2D {} impl Clone for Vector2D { fn clone(&self) -> Self { Vector2D { x: self.x.clone(), y: self.y.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Vector2D where T: serde::Deserialize<'de> { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de> { let (x, y) = try!(serde::Deserialize::deserialize(deserializer)); Ok(Vector2D { x, y, _unit: PhantomData }) } } #[cfg(feature = "serde")] impl serde::Serialize for Vector2D where T: serde::Serialize { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer { (&self.x, &self.y).serialize(serializer) } } impl Eq for Vector2D where T: Eq {} impl PartialEq for Vector2D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y } } impl Hash for Vector2D where T: Hash { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); } } impl Vector2D { /// Constructor, setting all components to zero. #[inline] pub fn zero() -> Self { Vector2D::new(Zero::zero(), Zero::zero()) } /// Convert into a 3d vector. #[inline] pub fn to_3d(&self) -> Vector3D { vec3(self.x, self.y, Zero::zero()) } } impl fmt::Debug for Vector2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "({:?},{:?})", self.x, self.y) } } impl fmt::Display for Vector2D { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { write!(formatter, "({},{})", self.x, self.y) } } impl Default for Vector2D { fn default() -> Self { Vector2D::new(Default::default(), Default::default()) } } impl Vector2D { /// Constructor taking scalar values directly. #[inline] pub fn new(x: T, y: T) -> Self { Vector2D { x, y, _unit: PhantomData, } } } impl Vector2D { /// Constructor taking properly Lengths instead of scalar values. #[inline] pub fn from_lengths(x: Length, y: Length) -> Self { vec2(x.0, y.0) } /// Create a 3d vector from this one, using the specified z value. #[inline] pub fn extend(&self, z: T) -> Vector3D { vec3(self.x, self.y, z) } /// Cast this vector into a point. /// /// Equivalent to adding this vector to the origin. #[inline] pub fn to_point(&self) -> Point2D { Point2D { x: self.x, y: self.y, _unit: PhantomData, } } /// Swap x and y. #[inline] pub fn yx(&self) -> Self { vec2(self.y, self.x) } /// Cast this vector into a size. #[inline] pub fn to_size(&self) -> Size2D { size2(self.x, self.y) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Vector2D { vec2(self.x, self.y) } /// Tag a unit-less value with units. #[inline] pub fn from_untyped(p: Vector2D) -> Self { vec2(p.x, p.y) } /// Cast the unit #[inline] pub fn cast_unit(&self) -> Vector2D { vec2(self.x, self.y) } #[inline] pub fn to_array(&self) -> [T; 2] { [self.x, self.y] } #[inline] pub fn to_tuple(&self) -> (T, T) { (self.x, self.y) } } impl Vector2D where T: Copy + Clone + Add + Mul + Div + Sub + Trig + PartialOrd + One + Zero { #[inline] pub fn to_transform(&self) -> Transform2D { Transform2D::create_translation(self.x, self.y) } } impl Vector2D where T: Trig + Copy + Sub, { /// Returns the angle between this vector and the x axis between -PI and PI. pub fn angle_from_x_axis(&self) -> Angle { Angle::radians(Trig::fast_atan2(self.y, self.x)) } } impl Vector2D where T: Copy + Mul + Add + Sub, { /// Dot product. #[inline] pub fn dot(self, other: Self) -> T { self.x * other.x + self.y * other.y } /// Returns the norm of the cross product [self.x, self.y, 0] x [other.x, other.y, 0].. #[inline] pub fn cross(self, other: Self) -> T { self.x * other.y - self.y * other.x } #[inline] pub fn normalize(self) -> Self where T: Float, { self / self.length() } /// Return the normalized vector even if the length is larger than the max value of Float. #[inline] pub fn robust_normalize(self) -> Self where T: Float, { let length = self.length(); if length.is_infinite() { let scaled = self / T::max_value(); scaled / scaled.length() } else { self / length } } #[inline] pub fn square_length(&self) -> T { self.x * self.x + self.y * self.y } #[inline] pub fn length(&self) -> T where T: Float, { self.square_length().sqrt() } } impl Vector2D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this vector and another vector. /// /// `t` is expected to be between zero and one. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { let one_t = T::one() - t; (*self) * one_t + other * t } } impl, U> Add for Vector2D { type Output = Self; fn add(self, other: Self) -> Self { Vector2D::new(self.x + other.x, self.y + other.y) } } impl, U> AddAssign for Vector2D { #[inline] fn add_assign(&mut self, other: Self) { *self = *self + other } } impl, U> SubAssign> for Vector2D { #[inline] fn sub_assign(&mut self, other: Self) { *self = *self - other } } impl, U> Sub for Vector2D { type Output = Self; #[inline] fn sub(self, other: Self) -> Self { vec2(self.x - other.x, self.y - other.y) } } impl, U> Neg for Vector2D { type Output = Self; #[inline] fn neg(self) -> Self { vec2(-self.x, -self.y) } } impl Vector2D { #[inline] pub fn min(self, other: Self) -> Self { vec2(self.x.min(other.x), self.y.min(other.y)) } #[inline] pub fn max(self, other: Self) -> Self { vec2(self.x.max(other.x), self.y.max(other.y)) } #[inline] pub fn clamp(&self, start: Self, end: Self) -> Self { self.max(start).min(end) } } impl, U> Mul for Vector2D { type Output = Self; #[inline] fn mul(self, scale: T) -> Self { vec2(self.x * scale, self.y * scale) } } impl, U> Div for Vector2D { type Output = Self; #[inline] fn div(self, scale: T) -> Self { vec2(self.x / scale, self.y / scale) } } impl, U> MulAssign for Vector2D { #[inline] fn mul_assign(&mut self, scale: T) { *self = *self * scale } } impl, U> DivAssign for Vector2D { #[inline] fn div_assign(&mut self, scale: T) { *self = *self / scale } } impl, U1, U2> Mul> for Vector2D { type Output = Vector2D; #[inline] fn mul(self, scale: Scale) -> Self::Output { vec2(self.x * scale.get(), self.y * scale.get()) } } impl, U1, U2> Div> for Vector2D { type Output = Vector2D; #[inline] fn div(self, scale: Scale) -> Self::Output { vec2(self.x / scale.get(), self.y / scale.get()) } } impl Vector2D { /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// For example `{ -0.1, -0.8 }.round() == { 0.0, -1.0 }`. #[inline] #[must_use] pub fn round(&self) -> Self { vec2(self.x.round(), self.y.round()) } } impl Vector2D { /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// For example `{ -0.1, -0.8 }.ceil() == { 0.0, 0.0 }`. #[inline] #[must_use] pub fn ceil(&self) -> Self { vec2(self.x.ceil(), self.y.ceil()) } } impl Vector2D { /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// For example `{ -0.1, -0.8 }.floor() == { -1.0, -1.0 }`. #[inline] #[must_use] pub fn floor(&self) -> Self { vec2(self.x.floor(), self.y.floor()) } } impl Vector2D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating vector to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn cast(&self) -> Vector2D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating vector to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn try_cast(&self) -> Option> { match (NumCast::from(self.x), NumCast::from(self.y)) { (Some(x), Some(y)) => Some(Vector2D::new(x, y)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` vector. #[inline] pub fn to_f32(&self) -> Vector2D { self.cast() } /// Cast into an `f64` vector. #[inline] pub fn to_f64(&self) -> Vector2D { self.cast() } /// Cast into an `usize` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_usize(&self) -> Vector2D { self.cast() } /// Cast into an `u32` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u32(&self) -> Vector2D { self.cast() } /// Cast into an i32 vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i32(&self) -> Vector2D { self.cast() } /// Cast into an i64 vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i64(&self) -> Vector2D { self.cast() } } impl, U> ApproxEq> for Vector2D { #[inline] fn approx_epsilon() -> Self { vec2(T::approx_epsilon(), T::approx_epsilon()) } #[inline] fn approx_eq(&self, other: &Self) -> bool { self.x.approx_eq(&other.x) && self.y.approx_eq(&other.y) } #[inline] fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) } } impl Into<[T; 2]> for Vector2D { fn into(self) -> [T; 2] { self.to_array() } } impl From<[T; 2]> for Vector2D { fn from(array: [T; 2]) -> Self { vec2(array[0], array[1]) } } impl Into<(T, T)> for Vector2D { fn into(self) -> (T, T) { self.to_tuple() } } impl From<(T, T)> for Vector2D { fn from(tuple: (T, T)) -> Self { vec2(tuple.0, tuple.1) } } impl From> for Vector2D { fn from(size: Size2D) -> Self { size.to_vector() } } impl Vector2D where T: Signed, { pub fn abs(&self) -> Self { vec2(self.x.abs(), self.y.abs()) } } /// A 3d Vector tagged with a unit. #[repr(C)] pub struct Vector3D { pub x: T, pub y: T, pub z: T, #[doc(hidden)] pub _unit: PhantomData, } mint_vec!(Vector3D[x, y, z] = Vector3); impl Copy for Vector3D {} impl Clone for Vector3D { fn clone(&self) -> Self { Vector3D { x: self.x.clone(), y: self.y.clone(), z: self.z.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Vector3D where T: serde::Deserialize<'de> { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de> { let (x, y, z) = try!(serde::Deserialize::deserialize(deserializer)); Ok(Vector3D { x, y, z, _unit: PhantomData }) } } #[cfg(feature = "serde")] impl serde::Serialize for Vector3D where T: serde::Serialize { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer { (&self.x, &self.y, &self.z).serialize(serializer) } } impl Eq for Vector3D where T: Eq {} impl PartialEq for Vector3D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y && self.z == other.z } } impl Hash for Vector3D where T: Hash { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); self.z.hash(h); } } impl Vector3D { /// Constructor, setting all components to zero. #[inline] pub fn zero() -> Self { vec3(Zero::zero(), Zero::zero(), Zero::zero()) } #[inline] pub fn to_array_4d(&self) -> [T; 4] { [self.x, self.y, self.z, Zero::zero()] } #[inline] pub fn to_tuple_4d(&self) -> (T, T, T, T) { (self.x, self.y, self.z, Zero::zero()) } } impl fmt::Debug for Vector3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "({:?},{:?},{:?})", self.x, self.y, self.z) } } impl fmt::Display for Vector3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "({},{},{})", self.x, self.y, self.z) } } impl Default for Vector3D { fn default() -> Self { Vector3D::new(Default::default(), Default::default(), Default::default()) } } impl Vector3D { /// Constructor taking scalar values directly. #[inline] pub fn new(x: T, y: T, z: T) -> Self { Vector3D { x, y, z, _unit: PhantomData, } } } impl Vector3D { /// Constructor taking properly Lengths instead of scalar values. #[inline] pub fn from_lengths(x: Length, y: Length, z: Length) -> Vector3D { vec3(x.0, y.0, z.0) } /// Cast this vector into a point. /// /// Equivalent to adding this vector to the origin. #[inline] pub fn to_point(&self) -> Point3D { point3(self.x, self.y, self.z) } /// Returns a 2d vector using this vector's x and y coordinates #[inline] pub fn xy(&self) -> Vector2D { vec2(self.x, self.y) } /// Returns a 2d vector using this vector's x and z coordinates #[inline] pub fn xz(&self) -> Vector2D { vec2(self.x, self.z) } /// Returns a 2d vector using this vector's x and z coordinates #[inline] pub fn yz(&self) -> Vector2D { vec2(self.y, self.z) } #[inline] pub fn to_array(&self) -> [T; 3] { [self.x, self.y, self.z] } #[inline] pub fn to_tuple(&self) -> (T, T, T) { (self.x, self.y, self.z) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Vector3D { vec3(self.x, self.y, self.z) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(p: Vector3D) -> Self { vec3(p.x, p.y, p.z) } /// Convert into a 2d vector. #[inline] pub fn to_2d(&self) -> Vector2D { self.xy() } } impl Vector3D where T: Copy + Clone + Add + Mul + Div + Sub + Trig + PartialOrd + One + Zero + Neg { #[inline] pub fn to_transform(&self) -> Transform3D { Transform3D::create_translation(self.x, self.y, self.z) } } impl + Add + Sub + Copy, U> Vector3D { // Dot product. #[inline] pub fn dot(self, other: Self) -> T { self.x * other.x + self.y * other.y + self.z * other.z } // Cross product. #[inline] pub fn cross(self, other: Self) -> Self { vec3( self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x, ) } #[inline] pub fn normalize(self) -> Self where T: Float, { self / self.length() } /// Return the normalized vector even if the length is larger than the max value of Float. #[inline] pub fn robust_normalize(self) -> Self where T: Float, { let length = self.length(); if length.is_infinite() { let scaled = self / T::max_value(); scaled / scaled.length() } else { self / length } } #[inline] pub fn square_length(&self) -> T { self.x * self.x + self.y * self.y + self.z * self.z } #[inline] pub fn length(&self) -> T where T: Float, { self.square_length().sqrt() } } impl Vector3D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this vector and another vector. /// /// `t` is expected to be between zero and one. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { let one_t = T::one() - t; (*self) * one_t + other * t } } impl, U> Add for Vector3D { type Output = Self; #[inline] fn add(self, other: Self) -> Self { vec3(self.x + other.x, self.y + other.y, self.z + other.z) } } impl, U> Sub for Vector3D { type Output = Self; #[inline] fn sub(self, other: Self) -> Self { vec3(self.x - other.x, self.y - other.y, self.z - other.z) } } impl, U> AddAssign for Vector3D { #[inline] fn add_assign(&mut self, other: Self) { *self = *self + other } } impl, U> SubAssign> for Vector3D { #[inline] fn sub_assign(&mut self, other: Self) { *self = *self - other } } impl, U> Neg for Vector3D { type Output = Self; #[inline] fn neg(self) -> Self { vec3(-self.x, -self.y, -self.z) } } impl, U> Mul for Vector3D { type Output = Self; #[inline] fn mul(self, scale: T) -> Self { Self::new(self.x * scale, self.y * scale, self.z * scale) } } impl, U> Div for Vector3D { type Output = Self; #[inline] fn div(self, scale: T) -> Self { Self::new(self.x / scale, self.y / scale, self.z / scale) } } impl, U> MulAssign for Vector3D { #[inline] fn mul_assign(&mut self, scale: T) { *self = *self * scale } } impl, U> DivAssign for Vector3D { #[inline] fn div_assign(&mut self, scale: T) { *self = *self / scale } } impl Vector3D { #[inline] pub fn min(self, other: Self) -> Self { vec3( self.x.min(other.x), self.y.min(other.y), self.z.min(other.z), ) } #[inline] pub fn max(self, other: Self) -> Self { vec3( self.x.max(other.x), self.y.max(other.y), self.z.max(other.z), ) } #[inline] pub fn clamp(&self, start: Self, end: Self) -> Self { self.max(start).min(end) } } impl, U1, U2> Mul> for Vector3D { type Output = Vector3D; #[inline] fn mul(self, scale: Scale) -> Self::Output { vec3(self.x * scale.get(), self.y * scale.get(), self.z * scale.get()) } } impl, U1, U2> Div> for Vector3D { type Output = Vector3D; #[inline] fn div(self, scale: Scale) -> Self::Output { vec3(self.x / scale.get(), self.y / scale.get(), self.z / scale.get()) } } impl Vector3D { /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). #[inline] #[must_use] pub fn round(&self) -> Self { vec3(self.x.round(), self.y.round(), self.z.round()) } } impl Vector3D { /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). #[inline] #[must_use] pub fn ceil(&self) -> Self { vec3(self.x.ceil(), self.y.ceil(), self.z.ceil()) } } impl Vector3D { /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). #[inline] #[must_use] pub fn floor(&self) -> Self { vec3(self.x.floor(), self.y.floor(), self.z.floor()) } } impl Vector3D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating vector to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn cast(&self) -> Vector3D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating vector to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn try_cast(&self) -> Option> { match ( NumCast::from(self.x), NumCast::from(self.y), NumCast::from(self.z), ) { (Some(x), Some(y), Some(z)) => Some(vec3(x, y, z)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` vector. #[inline] pub fn to_f32(&self) -> Vector3D { self.cast() } /// Cast into an `f64` vector. #[inline] pub fn to_f64(&self) -> Vector3D { self.cast() } /// Cast into an `usize` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_usize(&self) -> Vector3D { self.cast() } /// Cast into an `u32` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u32(&self) -> Vector3D { self.cast() } /// Cast into an `i32` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i32(&self) -> Vector3D { self.cast() } /// Cast into an `i64` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i64(&self) -> Vector3D { self.cast() } } impl, U> ApproxEq> for Vector3D { #[inline] fn approx_epsilon() -> Self { vec3( T::approx_epsilon(), T::approx_epsilon(), T::approx_epsilon(), ) } #[inline] fn approx_eq(&self, other: &Self) -> bool { self.x.approx_eq(&other.x) && self.y.approx_eq(&other.y) && self.z.approx_eq(&other.z) } #[inline] fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) && self.z.approx_eq_eps(&other.z, &eps.z) } } impl Into<[T; 3]> for Vector3D { fn into(self) -> [T; 3] { self.to_array() } } impl From<[T; 3]> for Vector3D { fn from(array: [T; 3]) -> Self { vec3(array[0], array[1], array[2]) } } impl Into<(T, T, T)> for Vector3D { fn into(self) -> (T, T, T) { self.to_tuple() } } impl From<(T, T, T)> for Vector3D { fn from(tuple: (T, T, T)) -> Self { vec3(tuple.0, tuple.1, tuple.2) } } impl Vector3D where T: Signed, { pub fn abs(&self) -> Self { vec3(self.x.abs(), self.y.abs(), self.z.abs()) } } #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub struct BoolVector2D { pub x: bool, pub y: bool, } #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub struct BoolVector3D { pub x: bool, pub y: bool, pub z: bool, } impl BoolVector2D { #[inline] pub fn all(&self) -> bool { self.x && self.y } #[inline] pub fn any(&self) -> bool { self.x || self.y } #[inline] pub fn none(&self) -> bool { !self.any() } #[inline] pub fn and(&self, other: Self) -> Self { BoolVector2D { x: self.x && other.x, y: self.y && other.y, } } #[inline] pub fn or(&self, other: Self) -> Self { BoolVector2D { x: self.x || other.x, y: self.y || other.y, } } #[inline] pub fn not(&self) -> Self { BoolVector2D { x: !self.x, y: !self.y, } } #[inline] pub fn select_point(&self, a: Point2D, b: Point2D) -> Point2D { point2( if self.x { a.x } else { b.x }, if self.y { a.y } else { b.y }, ) } #[inline] pub fn select_vector(&self, a: Vector2D, b: Vector2D) -> Vector2D { vec2( if self.x { a.x } else { b.x }, if self.y { a.y } else { b.y }, ) } #[inline] pub fn select_size(&self, a: Size2D, b: Size2D) -> Size2D { size2( if self.x { a.width } else { b.width }, if self.y { a.height } else { b.height }, ) } } impl BoolVector3D { #[inline] pub fn all(&self) -> bool { self.x && self.y && self.z } #[inline] pub fn any(&self) -> bool { self.x || self.y || self.z } #[inline] pub fn none(&self) -> bool { !self.any() } #[inline] pub fn and(&self, other: Self) -> Self { BoolVector3D { x: self.x && other.x, y: self.y && other.y, z: self.z && other.z, } } #[inline] pub fn or(&self, other: Self) -> Self { BoolVector3D { x: self.x || other.x, y: self.y || other.y, z: self.z || other.z, } } #[inline] pub fn not(&self) -> Self { BoolVector3D { x: !self.x, y: !self.y, z: !self.z, } } #[inline] pub fn select_point(&self, a: Point3D, b: Point3D) -> Point3D { point3( if self.x { a.x } else { b.x }, if self.y { a.y } else { b.y }, if self.z { a.z } else { b.z }, ) } #[inline] pub fn select_vector(&self, a: Vector3D, b: Vector3D) -> Vector3D { vec3( if self.x { a.x } else { b.x }, if self.y { a.y } else { b.y }, if self.z { a.z } else { b.z }, ) } #[inline] pub fn xy(&self) -> BoolVector2D { BoolVector2D { x: self.x, y: self.y, } } #[inline] pub fn xz(&self) -> BoolVector2D { BoolVector2D { x: self.x, y: self.z, } } #[inline] pub fn yz(&self) -> BoolVector2D { BoolVector2D { x: self.y, y: self.z, } } } impl Vector2D { #[inline] pub fn greater_than(&self, other: Self) -> BoolVector2D { BoolVector2D { x: self.x > other.x, y: self.y > other.y, } } #[inline] pub fn lower_than(&self, other: Self) -> BoolVector2D { BoolVector2D { x: self.x < other.x, y: self.y < other.y, } } } impl Vector2D { #[inline] pub fn equal(&self, other: Self) -> BoolVector2D { BoolVector2D { x: self.x == other.x, y: self.y == other.y, } } #[inline] pub fn not_equal(&self, other: Self) -> BoolVector2D { BoolVector2D { x: self.x != other.x, y: self.y != other.y, } } } impl Vector3D { #[inline] pub fn greater_than(&self, other: Self) -> BoolVector3D { BoolVector3D { x: self.x > other.x, y: self.y > other.y, z: self.z > other.z, } } #[inline] pub fn lower_than(&self, other: Self) -> BoolVector3D { BoolVector3D { x: self.x < other.x, y: self.y < other.y, z: self.z < other.z, } } } impl Vector3D { #[inline] pub fn equal(&self, other: Self) -> BoolVector3D { BoolVector3D { x: self.x == other.x, y: self.y == other.y, z: self.z == other.z, } } #[inline] pub fn not_equal(&self, other: Self) -> BoolVector3D { BoolVector3D { x: self.x != other.x, y: self.y != other.y, z: self.z != other.z, } } } /// Convenience constructor. #[inline] pub fn vec2(x: T, y: T) -> Vector2D { Vector2D { x, y, _unit: PhantomData, } } /// Convenience constructor. #[inline] pub fn vec3(x: T, y: T, z: T) -> Vector3D { Vector3D { x, y, z, _unit: PhantomData, } } #[inline] pub fn bvec2(x: bool, y: bool) -> BoolVector2D { BoolVector2D { x, y } } #[inline] pub fn bvec3(x: bool, y: bool, z: bool) -> BoolVector3D { BoolVector3D { x, y, z } } #[cfg(test)] mod vector2d { use {default, vec2}; use scale::Scale; #[cfg(feature = "mint")] use mint; type Vec2 = default::Vector2D; #[test] pub fn test_scalar_mul() { let p1: Vec2 = vec2(3.0, 5.0); let result = p1 * 5.0; assert_eq!(result, Vec2::new(15.0, 25.0)); } #[test] pub fn test_dot() { let p1: Vec2 = vec2(2.0, 7.0); let p2: Vec2 = vec2(13.0, 11.0); assert_eq!(p1.dot(p2), 103.0); } #[test] pub fn test_cross() { let p1: Vec2 = vec2(4.0, 7.0); let p2: Vec2 = vec2(13.0, 8.0); let r = p1.cross(p2); assert_eq!(r, -59.0); } #[test] pub fn test_normalize() { let p0: Vec2 = Vec2::zero(); let p1: Vec2 = vec2(4.0, 0.0); let p2: Vec2 = vec2(3.0, -4.0); assert!(p0.normalize().x.is_nan() && p0.normalize().y.is_nan()); assert_eq!(p1.normalize(), vec2(1.0, 0.0)); assert_eq!(p2.normalize(), vec2(0.6, -0.8)); let p3: Vec2 = vec2(::std::f32::MAX, ::std::f32::MAX); assert_ne!(p3.normalize(), vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt())); assert_eq!(p3.robust_normalize(), vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt())); } #[test] pub fn test_min() { let p1: Vec2 = vec2(1.0, 3.0); let p2: Vec2 = vec2(2.0, 2.0); let result = p1.min(p2); assert_eq!(result, vec2(1.0, 2.0)); } #[test] pub fn test_max() { let p1: Vec2 = vec2(1.0, 3.0); let p2: Vec2 = vec2(2.0, 2.0); let result = p1.max(p2); assert_eq!(result, vec2(2.0, 3.0)); } #[test] pub fn test_angle_from_x_axis() { use core::f32::consts::FRAC_PI_2; use approxeq::ApproxEq; let right: Vec2 = vec2(10.0, 0.0); let down: Vec2 = vec2(0.0, 4.0); let up: Vec2 = vec2(0.0, -1.0); assert!(right.angle_from_x_axis().get().approx_eq(&0.0)); assert!(down.angle_from_x_axis().get().approx_eq(&FRAC_PI_2)); assert!(up.angle_from_x_axis().get().approx_eq(&-FRAC_PI_2)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let v1 = Vec2::new(1.0, 3.0); let vm: mint::Vector2<_> = v1.into(); let v2 = Vec2::from(vm); assert_eq!(v1, v2); } pub enum Mm {} pub enum Cm {} pub type Vector2DMm = super::Vector2D; pub type Vector2DCm = super::Vector2D; #[test] pub fn test_add() { let p1 = Vector2DMm::new(1.0, 2.0); let p2 = Vector2DMm::new(3.0, 4.0); let result = p1 + p2; assert_eq!(result, vec2(4.0, 6.0)); } #[test] pub fn test_add_assign() { let mut p1 = Vector2DMm::new(1.0, 2.0); p1 += vec2(3.0, 4.0); assert_eq!(p1, vec2(4.0, 6.0)); } #[test] pub fn test_tpyed_scalar_mul() { let p1 = Vector2DMm::new(1.0, 2.0); let cm_per_mm = Scale::::new(0.1); let result: Vector2DCm = p1 * cm_per_mm; assert_eq!(result, vec2(0.1, 0.2)); } #[test] pub fn test_swizzling() { let p: default::Vector2D = vec2(1, 2); assert_eq!(p.yx(), vec2(2, 1)); } } #[cfg(test)] mod vector3d { #[cfg(feature = "mint")] use mint; use {default, vec2, vec3}; use scale::Scale; type Vec3 = default::Vector3D; #[test] pub fn test_dot() { let p1: Vec3 = vec3(7.0, 21.0, 32.0); let p2: Vec3 = vec3(43.0, 5.0, 16.0); assert_eq!(p1.dot(p2), 918.0); } #[test] pub fn test_cross() { let p1: Vec3 = vec3(4.0, 7.0, 9.0); let p2: Vec3 = vec3(13.0, 8.0, 3.0); let p3 = p1.cross(p2); assert_eq!(p3, vec3(-51.0, 105.0, -59.0)); } #[test] pub fn test_normalize() { let p0: Vec3 = Vec3::zero(); let p1: Vec3 = vec3(0.0, -6.0, 0.0); let p2: Vec3 = vec3(1.0, 2.0, -2.0); assert!( p0.normalize().x.is_nan() && p0.normalize().y.is_nan() && p0.normalize().z.is_nan() ); assert_eq!(p1.normalize(), vec3(0.0, -1.0, 0.0)); assert_eq!(p2.normalize(), vec3(1.0 / 3.0, 2.0 / 3.0, -2.0 / 3.0)); let p3: Vec3 = vec3(::std::f32::MAX, ::std::f32::MAX, 0.0); assert_ne!(p3.normalize(), vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0)); assert_eq!(p3.robust_normalize(), vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0)); } #[test] pub fn test_min() { let p1: Vec3 = vec3(1.0, 3.0, 5.0); let p2: Vec3 = vec3(2.0, 2.0, -1.0); let result = p1.min(p2); assert_eq!(result, vec3(1.0, 2.0, -1.0)); } #[test] pub fn test_max() { let p1: Vec3 = vec3(1.0, 3.0, 5.0); let p2: Vec3 = vec3(2.0, 2.0, -1.0); let result = p1.max(p2); assert_eq!(result, vec3(2.0, 3.0, 5.0)); } #[test] pub fn test_clamp() { let p1: Vec3 = vec3(1.0, -1.0, 5.0); let p2: Vec3 = vec3(2.0, 5.0, 10.0); let p3: Vec3 = vec3(-1.0, 2.0, 20.0); let result = p3.clamp(p1, p2); assert_eq!(result, vec3(1.0, 2.0, 10.0)); } #[test] pub fn test_typed_scalar_mul() { enum Mm {} enum Cm {} let p1 = super::Vector3D::::new(1.0, 2.0, 3.0); let cm_per_mm = Scale::::new(0.1); let result: super::Vector3D = p1 * cm_per_mm; assert_eq!(result, vec3(0.1, 0.2, 0.3)); } #[test] pub fn test_swizzling() { let p: Vec3 = vec3(1.0, 2.0, 3.0); assert_eq!(p.xy(), vec2(1.0, 2.0)); assert_eq!(p.xz(), vec2(1.0, 3.0)); assert_eq!(p.yz(), vec2(2.0, 3.0)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let v1 = Vec3::new(1.0, 3.0, 5.0); let vm: mint::Vector3<_> = v1.into(); let v2 = Vec3::from(vm); assert_eq!(v1, v2); } } #[cfg(test)] mod bool_vector { use default; use super::*; type Vec2 = default::Vector2D; type Vec3 = default::Vector3D; #[test] fn test_bvec2() { assert_eq!( Vec2::new(1.0, 2.0).greater_than(Vec2::new(2.0, 1.0)), bvec2(false, true), ); assert_eq!( Vec2::new(1.0, 2.0).lower_than(Vec2::new(2.0, 1.0)), bvec2(true, false), ); assert_eq!( Vec2::new(1.0, 2.0).equal(Vec2::new(1.0, 3.0)), bvec2(true, false), ); assert_eq!( Vec2::new(1.0, 2.0).not_equal(Vec2::new(1.0, 3.0)), bvec2(false, true), ); assert!(bvec2(true, true).any()); assert!(bvec2(false, true).any()); assert!(bvec2(true, false).any()); assert!(!bvec2(false, false).any()); assert!(bvec2(false, false).none()); assert!(bvec2(true, true).all()); assert!(!bvec2(false, true).all()); assert!(!bvec2(true, false).all()); assert!(!bvec2(false, false).all()); assert_eq!(bvec2(true, false).not(), bvec2(false, true)); assert_eq!(bvec2(true, false).and(bvec2(true, true)), bvec2(true, false)); assert_eq!(bvec2(true, false).or(bvec2(true, true)), bvec2(true, true)); assert_eq!( bvec2(true, false).select_vector(Vec2::new(1.0, 2.0), Vec2::new(3.0, 4.0)), Vec2::new(1.0, 4.0), ); } #[test] fn test_bvec3() { assert_eq!( Vec3::new(1.0, 2.0, 3.0).greater_than(Vec3::new(3.0, 2.0, 1.0)), bvec3(false, false, true), ); assert_eq!( Vec3::new(1.0, 2.0, 3.0).lower_than(Vec3::new(3.0, 2.0, 1.0)), bvec3(true, false, false), ); assert_eq!( Vec3::new(1.0, 2.0, 3.0).equal(Vec3::new(3.0, 2.0, 1.0)), bvec3(false, true, false), ); assert_eq!( Vec3::new(1.0, 2.0, 3.0).not_equal(Vec3::new(3.0, 2.0, 1.0)), bvec3(true, false, true), ); assert!(bvec3(true, true, false).any()); assert!(bvec3(false, true, false).any()); assert!(bvec3(true, false, false).any()); assert!(!bvec3(false, false, false).any()); assert!(bvec3(false, false, false).none()); assert!(bvec3(true, true, true).all()); assert!(!bvec3(false, true, false).all()); assert!(!bvec3(true, false, false).all()); assert!(!bvec3(false, false, false).all()); assert_eq!(bvec3(true, false, true).not(), bvec3(false, true, false)); assert_eq!(bvec3(true, false, true).and(bvec3(true, true, false)), bvec3(true, false, false)); assert_eq!(bvec3(true, false, false).or(bvec3(true, true, false)), bvec3(true, true, false)); assert_eq!( bvec3(true, false, true).select_vector(Vec3::new(1.0, 2.0, 3.0), Vec3::new(4.0, 5.0, 6.0)), Vec3::new(1.0, 5.0, 3.0), ); } } euclid-0.20.0/.cargo_vcs_info.json0000644000000001120000000000000124110ustar00{ "git": { "sha1": "aea5eeb155e58e1c4786962a003cd351e953be3f" } }