euclid-0.22.7/.cargo_vcs_info.json0000644000000001360000000000100123710ustar { "git": { "sha1": "8f7f356399bc60616e49aecea8a854bd82c04f8e" }, "path_in_vcs": "" }euclid-0.22.7/.github/workflows/main.yml000064400000000000000000000024610072674642500162600ustar 00000000000000name: CI on: push: branches: [auto] pull_request: workflow_dispatch: jobs: linux-ci: name: Linux runs-on: ubuntu-latest strategy: matrix: features: ["", "--features serde", "--no-default-features --features libm"] version: ["1.34.0", "stable", "beta", "nightly"] include: - version: stable features: --features mint - version: nightly features: --features unstable - version: nightly features: --features unstable,serde steps: - uses: actions/checkout@v2 - name: Install nightly toolchain uses: actions-rs/toolchain@v1 with: profile: minimal toolchain: ${{ matrix.version }} override: true - name: Cargo build run: cargo build ${{ matrix.features }} - name: Cargo test run: cargo test ${{ matrix.features }} env: RUST_BACKTRACE: 1 - name: bytemuck run: cargo check --features bytemuck build_result: name: homu build finished runs-on: ubuntu-latest needs: - "linux-ci" steps: - name: Mark the job as successful run: exit 0 if: success() - name: Mark the job as unsuccessful run: exit 1 if: "!success()" euclid-0.22.7/.gitignore000064400000000000000000000000220072674642500131730ustar 00000000000000Cargo.lock target euclid-0.22.7/COPYRIGHT000064400000000000000000000005010072674642500125000ustar 00000000000000Licensed under the Apache License, Version 2.0 or the MIT license , at your option. All files in the project carrying such notice may not be copied, modified, or distributed except according to those terms. euclid-0.22.7/Cargo.toml0000644000000024520000000000100103720ustar # THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies. # # If you are reading this file be aware that the original Cargo.toml # will likely look very different (and much more reasonable). # See Cargo.toml.orig for the original contents. [package] edition = "2018" name = "euclid" version = "0.22.7" authors = ["The Servo Project Developers"] description = "Geometry primitives" documentation = "https://docs.rs/euclid/" keywords = ["matrix", "vector", "linear-algebra", "geometry"] categories = ["science"] license = "MIT / Apache-2.0" repository = "https://github.com/servo/euclid" [dependencies.arbitrary] version = "1" features = ["derive"] optional = true [dependencies.bytemuck] version = "1.9" optional = true [dependencies.mint] version = "0.5.1" optional = true [dependencies.num-traits] version = "0.2.10" default-features = false [dependencies.serde] version = "1.0" features = ["serde_derive"] optional = true default-features = false [dev-dependencies.serde_test] version = "1.0" [features] default = ["std"] libm = ["num-traits/libm"] std = ["num-traits/std"] unstable = [] euclid-0.22.7/Cargo.toml.orig000064400000000000000000000014650072674642500141060ustar 00000000000000[package] name = "euclid" version = "0.22.7" authors = ["The Servo Project Developers"] edition = "2018" description = "Geometry primitives" documentation = "https://docs.rs/euclid/" repository = "https://github.com/servo/euclid" keywords = ["matrix", "vector", "linear-algebra", "geometry"] categories = ["science"] license = "MIT / Apache-2.0" [features] default = ["std"] unstable = [] std = ["num-traits/std"] libm = ["num-traits/libm"] [dependencies] num-traits = { version = "0.2.10", default-features = false } serde = { version = "1.0", default-features = false, features = ["serde_derive"], optional = true } mint = {version = "0.5.1", optional = true} arbitrary = { version = "1", optional = true, features = ["derive"] } bytemuck = { version = "1.9", optional = true } [dev-dependencies] serde_test = "1.0" euclid-0.22.7/LICENSE-APACHE000064400000000000000000000251370072674642500131450ustar 00000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. euclid-0.22.7/LICENSE-MIT000064400000000000000000000020530072674642500126450ustar 00000000000000Copyright (c) 2012-2013 Mozilla Foundation Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. euclid-0.22.7/README.md000064400000000000000000000003650072674642500124740ustar 00000000000000# euclid This is a small library for geometric types with a focus on 2d graphics and layout. * [Documentation](https://docs.rs/euclid/) * [Release notes](https://github.com/servo/euclid/releases) * [crates.io](https://crates.io/crates/euclid) euclid-0.22.7/src/angle.rs000064400000000000000000000220520072674642500134350ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use crate::approxeq::ApproxEq; use crate::trig::Trig; use core::cmp::{Eq, PartialEq}; use core::hash::Hash; use core::iter::Sum; use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, Sub, SubAssign}; use num_traits::real::Real; use num_traits::{Float, FloatConst, NumCast, One, Zero}; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// An angle in radians #[derive(Copy, Clone, Default, Debug, PartialEq, Eq, PartialOrd, Hash)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))] pub struct Angle { pub radians: T, } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Angle {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Angle {} impl Angle { #[inline] pub fn radians(radians: T) -> Self { Angle { radians } } #[inline] pub fn get(self) -> T { self.radians } } impl Angle where T: Trig, { #[inline] pub fn degrees(deg: T) -> Self { Angle { radians: T::degrees_to_radians(deg), } } #[inline] pub fn to_degrees(self) -> T { T::radians_to_degrees(self.radians) } } impl Angle where T: Rem + Sub + Add + Zero + FloatConst + PartialOrd + Copy, { /// Returns this angle in the [0..2*PI[ range. pub fn positive(&self) -> Self { let two_pi = T::PI() + T::PI(); let mut a = self.radians % two_pi; if a < T::zero() { a = a + two_pi; } Angle::radians(a) } /// Returns this angle in the ]-PI..PI] range. pub fn signed(&self) -> Self { Angle::pi() - (Angle::pi() - *self).positive() } } impl Angle where T: Rem + Mul + Sub + Add + One + FloatConst + Copy, { /// Returns the shortest signed angle between two angles. /// /// Takes wrapping and signs into account. pub fn angle_to(&self, to: Self) -> Self { let two = T::one() + T::one(); let max = T::PI() * two; let d = (to.radians - self.radians) % max; Angle::radians(two * d % max - d) } /// Linear interpolation between two angles, using the shortest path. pub fn lerp(&self, other: Self, t: T) -> Self { *self + self.angle_to(other) * t } } impl Angle where T: Float, { /// Returns true if the angle is a finite number. #[inline] pub fn is_finite(self) -> bool { self.radians.is_finite() } } impl Angle where T: Real, { /// Returns (sin(self), cos(self)). pub fn sin_cos(self) -> (T, T) { self.radians.sin_cos() } } impl Angle where T: Zero, { pub fn zero() -> Self { Angle::radians(T::zero()) } } impl Angle where T: FloatConst + Add, { pub fn pi() -> Self { Angle::radians(T::PI()) } pub fn two_pi() -> Self { Angle::radians(T::PI() + T::PI()) } pub fn frac_pi_2() -> Self { Angle::radians(T::FRAC_PI_2()) } pub fn frac_pi_3() -> Self { Angle::radians(T::FRAC_PI_3()) } pub fn frac_pi_4() -> Self { Angle::radians(T::FRAC_PI_4()) } } impl Angle where T: NumCast + Copy, { /// Cast from one numeric representation to another. #[inline] pub fn cast(&self) -> Angle { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another. pub fn try_cast(&self) -> Option> { NumCast::from(self.radians).map(|radians| Angle { radians }) } // Convenience functions for common casts. /// Cast angle to `f32`. #[inline] pub fn to_f32(&self) -> Angle { self.cast() } /// Cast angle `f64`. #[inline] pub fn to_f64(&self) -> Angle { self.cast() } } impl> Add for Angle { type Output = Self; fn add(self, other: Self) -> Self { Self::radians(self.radians + other.radians) } } impl> Add<&Self> for Angle { type Output = Self; fn add(self, other: &Self) -> Self { Self::radians(self.radians + other.radians) } } impl Sum for Angle { fn sum>(iter: I) -> Self { iter.fold(Self::zero(), Add::add) } } impl<'a, T: 'a + Add + Copy + Zero> Sum<&'a Self> for Angle { fn sum>(iter: I) -> Self { iter.fold(Self::zero(), Add::add) } } impl> AddAssign for Angle { fn add_assign(&mut self, other: Angle) { self.radians += other.radians; } } impl> Sub> for Angle { type Output = Angle; fn sub(self, other: Angle) -> ::Output { Angle::radians(self.radians - other.radians) } } impl> SubAssign for Angle { fn sub_assign(&mut self, other: Angle) { self.radians -= other.radians; } } impl> Div> for Angle { type Output = T; #[inline] fn div(self, other: Angle) -> T { self.radians / other.radians } } impl> Div for Angle { type Output = Angle; #[inline] fn div(self, factor: T) -> Angle { Angle::radians(self.radians / factor) } } impl> DivAssign for Angle { fn div_assign(&mut self, factor: T) { self.radians /= factor; } } impl> Mul for Angle { type Output = Angle; #[inline] fn mul(self, factor: T) -> Angle { Angle::radians(self.radians * factor) } } impl> MulAssign for Angle { fn mul_assign(&mut self, factor: T) { self.radians *= factor; } } impl> Neg for Angle { type Output = Self; fn neg(self) -> Self { Angle::radians(-self.radians) } } impl> ApproxEq for Angle { #[inline] fn approx_epsilon() -> T { T::approx_epsilon() } #[inline] fn approx_eq_eps(&self, other: &Angle, approx_epsilon: &T) -> bool { self.radians.approx_eq_eps(&other.radians, approx_epsilon) } } #[test] fn wrap_angles() { use core::f32::consts::{FRAC_PI_2, PI}; assert!(Angle::radians(0.0).positive().approx_eq(&Angle::zero())); assert!(Angle::radians(FRAC_PI_2) .positive() .approx_eq(&Angle::frac_pi_2())); assert!(Angle::radians(-FRAC_PI_2) .positive() .approx_eq(&Angle::radians(3.0 * FRAC_PI_2))); assert!(Angle::radians(3.0 * FRAC_PI_2) .positive() .approx_eq(&Angle::radians(3.0 * FRAC_PI_2))); assert!(Angle::radians(5.0 * FRAC_PI_2) .positive() .approx_eq(&Angle::frac_pi_2())); assert!(Angle::radians(2.0 * PI) .positive() .approx_eq(&Angle::zero())); assert!(Angle::radians(-2.0 * PI) .positive() .approx_eq(&Angle::zero())); assert!(Angle::radians(PI).positive().approx_eq(&Angle::pi())); assert!(Angle::radians(-PI).positive().approx_eq(&Angle::pi())); assert!(Angle::radians(FRAC_PI_2) .signed() .approx_eq(&Angle::frac_pi_2())); assert!(Angle::radians(3.0 * FRAC_PI_2) .signed() .approx_eq(&-Angle::frac_pi_2())); assert!(Angle::radians(5.0 * FRAC_PI_2) .signed() .approx_eq(&Angle::frac_pi_2())); assert!(Angle::radians(2.0 * PI).signed().approx_eq(&Angle::zero())); assert!(Angle::radians(-2.0 * PI).signed().approx_eq(&Angle::zero())); assert!(Angle::radians(-PI).signed().approx_eq(&Angle::pi())); assert!(Angle::radians(PI).signed().approx_eq(&Angle::pi())); } #[test] fn lerp() { type A = Angle; let a = A::radians(1.0); let b = A::radians(2.0); assert!(a.lerp(b, 0.25).approx_eq(&Angle::radians(1.25))); assert!(a.lerp(b, 0.5).approx_eq(&Angle::radians(1.5))); assert!(a.lerp(b, 0.75).approx_eq(&Angle::radians(1.75))); assert!(a .lerp(b + A::two_pi(), 0.75) .approx_eq(&Angle::radians(1.75))); assert!(a .lerp(b - A::two_pi(), 0.75) .approx_eq(&Angle::radians(1.75))); assert!(a .lerp(b + A::two_pi() * 5.0, 0.75) .approx_eq(&Angle::radians(1.75))); } #[test] fn sum() { type A = Angle; let angles = [A::radians(1.0), A::radians(2.0), A::radians(3.0)]; let sum = A::radians(6.0); assert_eq!(angles.iter().sum::(), sum); } euclid-0.22.7/src/approxeq.rs000064400000000000000000000026500072674642500142100ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /// Trait for testing approximate equality pub trait ApproxEq { /// Default epsilon value fn approx_epsilon() -> Eps; /// Returns `true` is this object is approximately equal to the other one, using /// a provided epsilon value. fn approx_eq_eps(&self, other: &Self, approx_epsilon: &Eps) -> bool; /// Returns `true` is this object is approximately equal to the other one, using /// the `approx_epsilon()` epsilon value. fn approx_eq(&self, other: &Self) -> bool { self.approx_eq_eps(other, &Self::approx_epsilon()) } } macro_rules! approx_eq { ($ty:ty, $eps:expr) => { impl ApproxEq<$ty> for $ty { #[inline] fn approx_epsilon() -> $ty { $eps } #[inline] fn approx_eq_eps(&self, other: &$ty, approx_epsilon: &$ty) -> bool { num_traits::Float::abs(*self - *other) < *approx_epsilon } } }; } approx_eq!(f32, 1.0e-6); approx_eq!(f64, 1.0e-6); euclid-0.22.7/src/approxord.rs000064400000000000000000000020520072674642500143630ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utilities for testing approximate ordering - especially true for //! floating point types, where NaN's cannot be ordered. pub fn min(x: T, y: T) -> T { if x <= y { x } else { y } } pub fn max(x: T, y: T) -> T { if x >= y { x } else { y } } #[cfg(test)] mod tests { use super::*; #[test] fn test_min() { assert!(min(0u32, 1u32) == 0u32); assert!(min(-1.0f32, 0.0f32) == -1.0f32); } #[test] fn test_max() { assert!(max(0u32, 1u32) == 1u32); assert!(max(-1.0f32, 0.0f32) == 0.0f32); } } euclid-0.22.7/src/box2d.rs000064400000000000000000000642640072674642500134000ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use crate::approxord::{max, min}; use crate::num::*; use crate::point::{point2, Point2D}; use crate::rect::Rect; use crate::scale::Scale; use crate::side_offsets::SideOffsets2D; use crate::size::Size2D; use crate::vector::{vec2, Vector2D}; use num_traits::{NumCast, Float}; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; use core::borrow::Borrow; use core::cmp::PartialOrd; use core::fmt; use core::hash::{Hash, Hasher}; use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub, Range}; /// A 2d axis aligned rectangle represented by its minimum and maximum coordinates. /// /// # Representation /// /// This struct is similar to [`Rect`], but stores rectangle as two endpoints /// instead of origin point and size. Such representation has several advantages over /// [`Rect`] representation: /// - Several operations are more efficient with `Box2D`, including [`intersection`], /// [`union`], and point-in-rect. /// - The representation is less susceptible to overflow. With [`Rect`], computation /// of second point can overflow for a large range of values of origin and size. /// However, with `Box2D`, computation of [`size`] cannot overflow if the coordinates /// are signed and the resulting size is unsigned. /// /// A known disadvantage of `Box2D` is that translating the rectangle requires translating /// both points, whereas translating [`Rect`] only requires translating one point. /// /// # Empty box /// /// A box is considered empty (see [`is_empty`]) if any of the following is true: /// - it's area is empty, /// - it's area is negative (`min.x > max.x` or `min.y > max.y`), /// - it contains NaNs. /// /// [`Rect`]: struct.Rect.html /// [`intersection`]: #method.intersection /// [`is_empty`]: #method.is_empty /// [`union`]: #method.union /// [`size`]: #method.size #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")) )] pub struct Box2D { pub min: Point2D, pub max: Point2D, } impl Hash for Box2D { fn hash(&self, h: &mut H) { self.min.hash(h); self.max.hash(h); } } impl Copy for Box2D {} impl Clone for Box2D { fn clone(&self) -> Self { Self::new(self.min.clone(), self.max.clone()) } } impl PartialEq for Box2D { fn eq(&self, other: &Self) -> bool { self.min.eq(&other.min) && self.max.eq(&other.max) } } impl Eq for Box2D {} impl fmt::Debug for Box2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("Box2D") .field(&self.min) .field(&self.max) .finish() } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Box2D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Box2D {} impl Box2D { /// Constructor. #[inline] pub const fn new(min: Point2D, max: Point2D) -> Self { Box2D { min, max } } /// Constructor. #[inline] pub fn from_origin_and_size(origin: Point2D, size: Size2D) -> Self where T: Copy + Add { Box2D { min: origin, max: point2(origin.x + size.width, origin.y + size.height), } } /// Creates a Box2D of the given size, at offset zero. #[inline] pub fn from_size(size: Size2D) -> Self where T: Zero { Box2D { min: Point2D::zero(), max: point2(size.width, size.height), } } } impl Box2D where T: PartialOrd, { /// Returns true if the box has a negative area. /// /// The common interpretation for a negative box is to consider it empty. It can be obtained /// by calculating the intersection of two boxes that do not intersect. #[inline] pub fn is_negative(&self) -> bool { self.max.x < self.min.x || self.max.y < self.min.y } /// Returns true if the size is zero, negative or NaN. #[inline] pub fn is_empty(&self) -> bool { !(self.max.x > self.min.x && self.max.y > self.min.y) } /// Returns `true` if the two boxes intersect. #[inline] pub fn intersects(&self, other: &Self) -> bool { self.min.x < other.max.x && self.max.x > other.min.x && self.min.y < other.max.y && self.max.y > other.min.y } /// Returns `true` if this box contains the point. Points are considered /// in the box if they are on the front, left or top faces, but outside if they /// are on the back, right or bottom faces. #[inline] pub fn contains(&self, p: Point2D) -> bool { self.min.x <= p.x && p.x < self.max.x && self.min.y <= p.y && p.y < self.max.y } /// Returns `true` if this box contains the interior of the other box. Always /// returns `true` if other is empty, and always returns `false` if other is /// nonempty but this box is empty. #[inline] pub fn contains_box(&self, other: &Self) -> bool { other.is_empty() || (self.min.x <= other.min.x && other.max.x <= self.max.x && self.min.y <= other.min.y && other.max.y <= self.max.y) } } impl Box2D where T: Copy + PartialOrd, { #[inline] pub fn to_non_empty(&self) -> Option { if self.is_empty() { return None; } Some(*self) } /// Computes the intersection of two boxes, returning `None` if the boxes do not intersect. #[inline] pub fn intersection(&self, other: &Self) -> Option { let b = self.intersection_unchecked(other); if b.is_empty() { return None; } Some(b) } /// Computes the intersection of two boxes without check whether they do intersect. /// /// The result is a negative box if the boxes do not intersect. /// This can be useful for computing the intersection of more than two boxes, as /// it is possible to chain multiple intersection_unchecked calls and check for /// empty/negative result at the end. #[inline] pub fn intersection_unchecked(&self, other: &Self) -> Self { Box2D { min: point2(max(self.min.x, other.min.x), max(self.min.y, other.min.y)), max: point2(min(self.max.x, other.max.x), min(self.max.y, other.max.y)), } } /// Computes the union of two boxes. /// /// If either of the boxes is empty, the other one is returned. #[inline] pub fn union(&self, other: &Self) -> Self { if other.is_empty() { return *self; } if self.is_empty() { return *other; } Box2D { min: point2(min(self.min.x, other.min.x), min(self.min.y, other.min.y)), max: point2(max(self.max.x, other.max.x), max(self.max.y, other.max.y)), } } } impl Box2D where T: Copy + Add, { /// Returns the same box, translated by a vector. #[inline] pub fn translate(&self, by: Vector2D) -> Self { Box2D { min: self.min + by, max: self.max + by, } } } impl Box2D where T: Copy + Sub, { #[inline] pub fn size(&self) -> Size2D { (self.max - self.min).to_size() } /// Change the size of the box by adjusting the max endpoint /// without modifying the min endpoint. #[inline] pub fn set_size(&mut self, size: Size2D) { let diff = (self.size() - size).to_vector(); self.max -= diff; } #[inline] pub fn width(&self) -> T { self.max.x - self.min.x } #[inline] pub fn height(&self) -> T { self.max.y - self.min.y } #[inline] pub fn to_rect(&self) -> Rect { Rect { origin: self.min, size: self.size(), } } } impl Box2D where T: Copy + Add + Sub, { /// Inflates the box by the specified sizes on each side respectively. #[inline] #[must_use] pub fn inflate(&self, width: T, height: T) -> Self { Box2D { min: point2(self.min.x - width, self.min.y - height), max: point2(self.max.x + width, self.max.y + height), } } /// Calculate the size and position of an inner box. /// /// Subtracts the side offsets from all sides. The horizontal, vertical /// and applicate offsets must not be larger than the original side length. pub fn inner_box(&self, offsets: SideOffsets2D) -> Self { Box2D { min: self.min + vec2(offsets.left, offsets.top), max: self.max - vec2(offsets.right, offsets.bottom), } } /// Calculate the b and position of an outer box. /// /// Add the offsets to all sides. The expanded box is returned. pub fn outer_box(&self, offsets: SideOffsets2D) -> Self { Box2D { min: self.min - vec2(offsets.left, offsets.top), max: self.max + vec2(offsets.right, offsets.bottom), } } } impl Box2D where T: Copy + Zero + PartialOrd, { /// Returns the smallest box containing all of the provided points. pub fn from_points(points: I) -> Self where I: IntoIterator, I::Item: Borrow>, { let mut points = points.into_iter(); let (mut min_x, mut min_y) = match points.next() { Some(first) => first.borrow().to_tuple(), None => return Box2D::zero(), }; let (mut max_x, mut max_y) = (min_x, min_y); for point in points { let p = point.borrow(); if p.x < min_x { min_x = p.x } if p.x > max_x { max_x = p.x } if p.y < min_y { min_y = p.y } if p.y > max_y { max_y = p.y } } Box2D { min: point2(min_x, min_y), max: point2(max_x, max_y), } } } impl Box2D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this box and another box. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { Self::new(self.min.lerp(other.min, t), self.max.lerp(other.max, t)) } } impl Box2D where T: Copy + One + Add + Div, { pub fn center(&self) -> Point2D { let two = T::one() + T::one(); (self.min + self.max.to_vector()) / two } } impl Box2D where T: Copy + Mul + Sub, { #[inline] pub fn area(&self) -> T { let size = self.size(); size.width * size.height } } impl Box2D where T: Zero, { /// Constructor, setting all sides to zero. pub fn zero() -> Self { Box2D::new(Point2D::zero(), Point2D::zero()) } } impl Mul for Box2D { type Output = Box2D; #[inline] fn mul(self, scale: T) -> Self::Output { Box2D::new(self.min * scale, self.max * scale) } } impl MulAssign for Box2D { #[inline] fn mul_assign(&mut self, scale: T) { *self *= Scale::new(scale); } } impl Div for Box2D { type Output = Box2D; #[inline] fn div(self, scale: T) -> Self::Output { Box2D::new(self.min / scale, self.max / scale) } } impl DivAssign for Box2D { #[inline] fn div_assign(&mut self, scale: T) { *self /= Scale::new(scale); } } impl Mul> for Box2D { type Output = Box2D; #[inline] fn mul(self, scale: Scale) -> Self::Output { Box2D::new(self.min * scale, self.max * scale) } } impl MulAssign> for Box2D { #[inline] fn mul_assign(&mut self, scale: Scale) { self.min *= scale; self.max *= scale; } } impl Div> for Box2D { type Output = Box2D; #[inline] fn div(self, scale: Scale) -> Self::Output { Box2D::new(self.min / scale, self.max / scale) } } impl DivAssign> for Box2D { #[inline] fn div_assign(&mut self, scale: Scale) { self.min /= scale; self.max /= scale; } } impl Box2D where T: Copy, { #[inline] pub fn x_range(&self) -> Range { self.min.x..self.max.x } #[inline] pub fn y_range(&self) -> Range { self.min.y..self.max.y } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Box2D { Box2D::new(self.min.to_untyped(), self.max.to_untyped()) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(c: &Box2D) -> Box2D { Box2D::new(Point2D::from_untyped(c.min), Point2D::from_untyped(c.max)) } /// Cast the unit #[inline] pub fn cast_unit(&self) -> Box2D { Box2D::new(self.min.cast_unit(), self.max.cast_unit()) } #[inline] pub fn scale(&self, x: S, y: S) -> Self where T: Mul, { Box2D { min: point2(self.min.x * x, self.min.y * y), max: point2(self.max.x * x, self.max.y * y), } } } impl Box2D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. #[inline] pub fn cast(&self) -> Box2D { Box2D::new(self.min.cast(), self.max.cast()) } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. pub fn try_cast(&self) -> Option> { match (self.min.try_cast(), self.max.try_cast()) { (Some(a), Some(b)) => Some(Box2D::new(a, b)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` box. #[inline] pub fn to_f32(&self) -> Box2D { self.cast() } /// Cast into an `f64` box. #[inline] pub fn to_f64(&self) -> Box2D { self.cast() } /// Cast into an `usize` box, truncating decimals if any. /// /// When casting from floating point boxes, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_usize(&self) -> Box2D { self.cast() } /// Cast into an `u32` box, truncating decimals if any. /// /// When casting from floating point boxes, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_u32(&self) -> Box2D { self.cast() } /// Cast into an `i32` box, truncating decimals if any. /// /// When casting from floating point boxes, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_i32(&self) -> Box2D { self.cast() } /// Cast into an `i64` box, truncating decimals if any. /// /// When casting from floating point boxes, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_i64(&self) -> Box2D { self.cast() } } impl Box2D { /// Returns true if all members are finite. #[inline] pub fn is_finite(self) -> bool { self.min.is_finite() && self.max.is_finite() } } impl Box2D where T: Round, { /// Return a box with edges rounded to integer coordinates, such that /// the returned box has the same set of pixel centers as the original /// one. /// Values equal to 0.5 round up. /// Suitable for most places where integral device coordinates /// are needed, but note that any translation should be applied first to /// avoid pixel rounding errors. /// Note that this is *not* rounding to nearest integer if the values are negative. /// They are always rounding as floor(n + 0.5). #[must_use] pub fn round(&self) -> Self { Box2D::new(self.min.round(), self.max.round()) } } impl Box2D where T: Floor + Ceil, { /// Return a box with faces/edges rounded to integer coordinates, such that /// the original box contains the resulting box. #[must_use] pub fn round_in(&self) -> Self { let min = self.min.ceil(); let max = self.max.floor(); Box2D { min, max } } /// Return a box with faces/edges rounded to integer coordinates, such that /// the original box is contained in the resulting box. #[must_use] pub fn round_out(&self) -> Self { let min = self.min.floor(); let max = self.max.ceil(); Box2D { min, max } } } impl From> for Box2D where T: Copy + Zero + PartialOrd, { fn from(b: Size2D) -> Self { Self::from_size(b) } } impl Default for Box2D { fn default() -> Self { Box2D { min: Default::default(), max: Default::default(), } } } #[cfg(test)] mod tests { use crate::default::Box2D; use crate::side_offsets::SideOffsets2D; use crate::{point2, size2, vec2, Point2D}; //use super::*; #[test] fn test_size() { let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); assert_eq!(b.size().width, 20.0); assert_eq!(b.size().height, 20.0); } #[test] fn test_width_height() { let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); assert!(b.width() == 20.0); assert!(b.height() == 20.0); } #[test] fn test_center() { let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); assert_eq!(b.center(), Point2D::zero()); } #[test] fn test_area() { let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); assert_eq!(b.area(), 400.0); } #[test] fn test_from_points() { let b = Box2D::from_points(&[point2(50.0, 160.0), point2(100.0, 25.0)]); assert_eq!(b.min, point2(50.0, 25.0)); assert_eq!(b.max, point2(100.0, 160.0)); } #[test] fn test_round_in() { let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_in(); assert_eq!(b.min.x, -25.0); assert_eq!(b.min.y, -40.0); assert_eq!(b.max.x, 60.0); assert_eq!(b.max.y, 36.0); } #[test] fn test_round_out() { let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_out(); assert_eq!(b.min.x, -26.0); assert_eq!(b.min.y, -41.0); assert_eq!(b.max.x, 61.0); assert_eq!(b.max.y, 37.0); } #[test] fn test_round() { let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round(); assert_eq!(b.min.x, -25.0); assert_eq!(b.min.y, -40.0); assert_eq!(b.max.x, 60.0); assert_eq!(b.max.y, 37.0); } #[test] fn test_from_size() { let b = Box2D::from_size(size2(30.0, 40.0)); assert!(b.min == Point2D::zero()); assert!(b.size().width == 30.0); assert!(b.size().height == 40.0); } #[test] fn test_inner_box() { let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]); let b = b.inner_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0)); assert_eq!(b.max.x, 80.0); assert_eq!(b.max.y, 155.0); assert_eq!(b.min.x, 60.0); assert_eq!(b.min.y, 35.0); } #[test] fn test_outer_box() { let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]); let b = b.outer_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0)); assert_eq!(b.max.x, 120.0); assert_eq!(b.max.y, 165.0); assert_eq!(b.min.x, 40.0); assert_eq!(b.min.y, 15.0); } #[test] fn test_translate() { let size = size2(15.0, 15.0); let mut center = (size / 2.0).to_vector().to_point(); let b = Box2D::from_size(size); assert_eq!(b.center(), center); let translation = vec2(10.0, 2.5); let b = b.translate(translation); center += translation; assert_eq!(b.center(), center); assert_eq!(b.max.x, 25.0); assert_eq!(b.max.y, 17.5); assert_eq!(b.min.x, 10.0); assert_eq!(b.min.y, 2.5); } #[test] fn test_union() { let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(0.0, 20.0)]); let b2 = Box2D::from_points(&[point2(0.0, 20.0), point2(20.0, -20.0)]); let b = b1.union(&b2); assert_eq!(b.max.x, 20.0); assert_eq!(b.max.y, 20.0); assert_eq!(b.min.x, -20.0); assert_eq!(b.min.y, -20.0); } #[test] fn test_intersects() { let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]); let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]); assert!(b1.intersects(&b2)); } #[test] fn test_intersection_unchecked() { let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]); let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]); let b = b1.intersection_unchecked(&b2); assert_eq!(b.max.x, 10.0); assert_eq!(b.max.y, 20.0); assert_eq!(b.min.x, -10.0); assert_eq!(b.min.y, -20.0); } #[test] fn test_intersection() { let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]); let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]); assert!(b1.intersection(&b2).is_some()); let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(-10.0, 20.0)]); let b2 = Box2D::from_points(&[point2(10.0, 20.0), point2(15.0, -20.0)]); assert!(b1.intersection(&b2).is_none()); } #[test] fn test_scale() { let b = Box2D::from_points(&[point2(-10.0, -10.0), point2(10.0, 10.0)]); let b = b.scale(0.5, 0.5); assert_eq!(b.max.x, 5.0); assert_eq!(b.max.y, 5.0); assert_eq!(b.min.x, -5.0); assert_eq!(b.min.y, -5.0); } #[test] fn test_lerp() { let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(-10.0, -10.0)]); let b2 = Box2D::from_points(&[point2(10.0, 10.0), point2(20.0, 20.0)]); let b = b1.lerp(b2, 0.5); assert_eq!(b.center(), Point2D::zero()); assert_eq!(b.size().width, 10.0); assert_eq!(b.size().height, 10.0); } #[test] fn test_contains() { let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]); assert!(b.contains(point2(-15.3, 10.5))); } #[test] fn test_contains_box() { let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]); let b2 = Box2D::from_points(&[point2(-14.3, -16.5), point2(6.7, 17.6)]); assert!(b1.contains_box(&b2)); } #[test] fn test_inflate() { let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]); let b = b.inflate(10.0, 5.0); assert_eq!(b.size().width, 60.0); assert_eq!(b.size().height, 50.0); assert_eq!(b.center(), Point2D::zero()); } #[test] fn test_is_empty() { for i in 0..2 { let mut coords_neg = [-20.0, -20.0]; let mut coords_pos = [20.0, 20.0]; coords_neg[i] = 0.0; coords_pos[i] = 0.0; let b = Box2D::from_points(&[Point2D::from(coords_neg), Point2D::from(coords_pos)]); assert!(b.is_empty()); } } #[test] fn test_nan_empty() { use std::f32::NAN; assert!(Box2D { min: point2(NAN, 2.0), max: point2(1.0, 3.0) }.is_empty()); assert!(Box2D { min: point2(0.0, NAN), max: point2(1.0, 2.0) }.is_empty()); assert!(Box2D { min: point2(1.0, -2.0), max: point2(NAN, 2.0) }.is_empty()); assert!(Box2D { min: point2(1.0, -2.0), max: point2(0.0, NAN) }.is_empty()); } #[test] fn test_from_origin_and_size() { let b = Box2D::from_origin_and_size(point2(1.0, 2.0), size2(3.0, 4.0)); assert_eq!(b.min, point2(1.0, 2.0)); assert_eq!(b.size(), size2(3.0, 4.0)); } #[test] fn test_set_size() { let mut b = Box2D { min: point2(1.0, 2.0), max: point2(3.0, 4.0), }; b.set_size(size2(5.0, 6.0)); assert_eq!(b.min, point2(1.0, 2.0)); assert_eq!(b.size(), size2(5.0, 6.0)); } } euclid-0.22.7/src/box3d.rs000064400000000000000000000646610072674642500134020ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use crate::approxord::{max, min}; use crate::num::*; use crate::point::{point3, Point3D}; use crate::scale::Scale; use crate::size::Size3D; use crate::vector::Vector3D; use num_traits::{NumCast, Float}; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; use core::borrow::Borrow; use core::cmp::PartialOrd; use core::fmt; use core::hash::{Hash, Hasher}; use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub, Range}; /// An axis aligned 3D box represented by its minimum and maximum coordinates. #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")) )] pub struct Box3D { pub min: Point3D, pub max: Point3D, } impl Hash for Box3D { fn hash(&self, h: &mut H) { self.min.hash(h); self.max.hash(h); } } impl Copy for Box3D {} impl Clone for Box3D { fn clone(&self) -> Self { Self::new(self.min.clone(), self.max.clone()) } } impl PartialEq for Box3D { fn eq(&self, other: &Self) -> bool { self.min.eq(&other.min) && self.max.eq(&other.max) } } impl Eq for Box3D {} impl fmt::Debug for Box3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("Box3D") .field(&self.min) .field(&self.max) .finish() } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Box3D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Box3D {} impl Box3D { /// Constructor. #[inline] pub const fn new(min: Point3D, max: Point3D) -> Self { Box3D { min, max } } /// Creates a Box3D of the given size, at offset zero. #[inline] pub fn from_size(size: Size3D) -> Self where T: Zero { Box3D { min: Point3D::zero(), max: point3(size.width, size.height, size.depth), } } } impl Box3D where T: PartialOrd, { /// Returns true if the box has a negative volume. /// /// The common interpretation for a negative box is to consider it empty. It can be obtained /// by calculating the intersection of two boxes that do not intersect. #[inline] pub fn is_negative(&self) -> bool { self.max.x < self.min.x || self.max.y < self.min.y || self.max.z < self.min.z } /// Returns true if the size is zero, negative or NaN. #[inline] pub fn is_empty(&self) -> bool { !(self.max.x > self.min.x && self.max.y > self.min.y && self.max.z > self.min.z) } #[inline] pub fn intersects(&self, other: &Self) -> bool { self.min.x < other.max.x && self.max.x > other.min.x && self.min.y < other.max.y && self.max.y > other.min.y && self.min.z < other.max.z && self.max.z > other.min.z } /// Returns `true` if this box3d contains the point. Points are considered /// in the box3d if they are on the front, left or top faces, but outside if they /// are on the back, right or bottom faces. #[inline] pub fn contains(&self, other: Point3D) -> bool { self.min.x <= other.x && other.x < self.max.x && self.min.y <= other.y && other.y < self.max.y && self.min.z <= other.z && other.z < self.max.z } /// Returns `true` if this box3d contains the interior of the other box3d. Always /// returns `true` if other is empty, and always returns `false` if other is /// nonempty but this box3d is empty. #[inline] pub fn contains_box(&self, other: &Self) -> bool { other.is_empty() || (self.min.x <= other.min.x && other.max.x <= self.max.x && self.min.y <= other.min.y && other.max.y <= self.max.y && self.min.z <= other.min.z && other.max.z <= self.max.z) } } impl Box3D where T: Copy + PartialOrd, { #[inline] pub fn to_non_empty(&self) -> Option { if self.is_empty() { return None; } Some(*self) } #[inline] pub fn intersection(&self, other: &Self) -> Option { let b = self.intersection_unchecked(other); if b.is_empty() { return None; } Some(b) } pub fn intersection_unchecked(&self, other: &Self) -> Self { let intersection_min = Point3D::new( max(self.min.x, other.min.x), max(self.min.y, other.min.y), max(self.min.z, other.min.z), ); let intersection_max = Point3D::new( min(self.max.x, other.max.x), min(self.max.y, other.max.y), min(self.max.z, other.max.z), ); Box3D::new(intersection_min, intersection_max) } /// Computes the union of two boxes. /// /// If either of the boxes is empty, the other one is returned. #[inline] pub fn union(&self, other: &Self) -> Self { if other.is_empty() { return *self; } if self.is_empty() { return *other; } Box3D::new( Point3D::new( min(self.min.x, other.min.x), min(self.min.y, other.min.y), min(self.min.z, other.min.z), ), Point3D::new( max(self.max.x, other.max.x), max(self.max.y, other.max.y), max(self.max.z, other.max.z), ), ) } } impl Box3D where T: Copy + Add, { /// Returns the same box3d, translated by a vector. #[inline] #[must_use] pub fn translate(&self, by: Vector3D) -> Self { Box3D { min: self.min + by, max: self.max + by, } } } impl Box3D where T: Copy + Sub, { #[inline] pub fn size(&self) -> Size3D { Size3D::new( self.max.x - self.min.x, self.max.y - self.min.y, self.max.z - self.min.z, ) } #[inline] pub fn width(&self) -> T { self.max.x - self.min.x } #[inline] pub fn height(&self) -> T { self.max.y - self.min.y } #[inline] pub fn depth(&self) -> T { self.max.z - self.min.z } } impl Box3D where T: Copy + Add + Sub, { /// Inflates the box by the specified sizes on each side respectively. #[inline] #[must_use] pub fn inflate(&self, width: T, height: T, depth: T) -> Self { Box3D::new( Point3D::new(self.min.x - width, self.min.y - height, self.min.z - depth), Point3D::new(self.max.x + width, self.max.y + height, self.max.z + depth), ) } } impl Box3D where T: Copy + Zero + PartialOrd, { /// Returns the smallest box containing all of the provided points. pub fn from_points(points: I) -> Self where I: IntoIterator, I::Item: Borrow>, { let mut points = points.into_iter(); let (mut min_x, mut min_y, mut min_z) = match points.next() { Some(first) => first.borrow().to_tuple(), None => return Box3D::zero(), }; let (mut max_x, mut max_y, mut max_z) = (min_x, min_y, min_z); for point in points { let p = point.borrow(); if p.x < min_x { min_x = p.x } if p.x > max_x { max_x = p.x } if p.y < min_y { min_y = p.y } if p.y > max_y { max_y = p.y } if p.z < min_z { min_z = p.z } if p.z > max_z { max_z = p.z } } Box3D { min: point3(min_x, min_y, min_z), max: point3(max_x, max_y, max_z), } } } impl Box3D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this box3d and another box3d. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { Self::new(self.min.lerp(other.min, t), self.max.lerp(other.max, t)) } } impl Box3D where T: Copy + One + Add + Div, { pub fn center(&self) -> Point3D { let two = T::one() + T::one(); (self.min + self.max.to_vector()) / two } } impl Box3D where T: Copy + Mul + Sub, { #[inline] pub fn volume(&self) -> T { let size = self.size(); size.width * size.height * size.depth } #[inline] pub fn xy_area(&self) -> T { let size = self.size(); size.width * size.height } #[inline] pub fn yz_area(&self) -> T { let size = self.size(); size.depth * size.height } #[inline] pub fn xz_area(&self) -> T { let size = self.size(); size.depth * size.width } } impl Box3D where T: Zero, { /// Constructor, setting all sides to zero. pub fn zero() -> Self { Box3D::new(Point3D::zero(), Point3D::zero()) } } impl Mul for Box3D { type Output = Box3D; #[inline] fn mul(self, scale: T) -> Self::Output { Box3D::new(self.min * scale, self.max * scale) } } impl MulAssign for Box3D { #[inline] fn mul_assign(&mut self, scale: T) { self.min *= scale; self.max *= scale; } } impl Div for Box3D { type Output = Box3D; #[inline] fn div(self, scale: T) -> Self::Output { Box3D::new(self.min / scale.clone(), self.max / scale) } } impl DivAssign for Box3D { #[inline] fn div_assign(&mut self, scale: T) { self.min /= scale; self.max /= scale; } } impl Mul> for Box3D { type Output = Box3D; #[inline] fn mul(self, scale: Scale) -> Self::Output { Box3D::new(self.min * scale.clone(), self.max * scale) } } impl MulAssign> for Box3D { #[inline] fn mul_assign(&mut self, scale: Scale) { self.min *= scale.clone(); self.max *= scale; } } impl Div> for Box3D { type Output = Box3D; #[inline] fn div(self, scale: Scale) -> Self::Output { Box3D::new(self.min / scale.clone(), self.max / scale) } } impl DivAssign> for Box3D { #[inline] fn div_assign(&mut self, scale: Scale) { self.min /= scale.clone(); self.max /= scale; } } impl Box3D where T: Copy, { #[inline] pub fn x_range(&self) -> Range { self.min.x..self.max.x } #[inline] pub fn y_range(&self) -> Range { self.min.y..self.max.y } #[inline] pub fn z_range(&self) -> Range { self.min.z..self.max.z } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Box3D { Box3D { min: self.min.to_untyped(), max: self.max.to_untyped(), } } /// Tag a unitless value with units. #[inline] pub fn from_untyped(c: &Box3D) -> Box3D { Box3D { min: Point3D::from_untyped(c.min), max: Point3D::from_untyped(c.max), } } /// Cast the unit #[inline] pub fn cast_unit(&self) -> Box3D { Box3D::new(self.min.cast_unit(), self.max.cast_unit()) } #[inline] pub fn scale(&self, x: S, y: S, z: S) -> Self where T: Mul, { Box3D::new( Point3D::new(self.min.x * x, self.min.y * y, self.min.z * z), Point3D::new(self.max.x * x, self.max.y * y, self.max.z * z), ) } } impl Box3D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. #[inline] pub fn cast(&self) -> Box3D { Box3D::new(self.min.cast(), self.max.cast()) } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. pub fn try_cast(&self) -> Option> { match (self.min.try_cast(), self.max.try_cast()) { (Some(a), Some(b)) => Some(Box3D::new(a, b)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` box3d. #[inline] pub fn to_f32(&self) -> Box3D { self.cast() } /// Cast into an `f64` box3d. #[inline] pub fn to_f64(&self) -> Box3D { self.cast() } /// Cast into an `usize` box3d, truncating decimals if any. /// /// When casting from floating point cuboids, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_usize(&self) -> Box3D { self.cast() } /// Cast into an `u32` box3d, truncating decimals if any. /// /// When casting from floating point cuboids, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_u32(&self) -> Box3D { self.cast() } /// Cast into an `i32` box3d, truncating decimals if any. /// /// When casting from floating point cuboids, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_i32(&self) -> Box3D { self.cast() } /// Cast into an `i64` box3d, truncating decimals if any. /// /// When casting from floating point cuboids, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_i64(&self) -> Box3D { self.cast() } } impl Box3D { /// Returns true if all members are finite. #[inline] pub fn is_finite(self) -> bool { self.min.is_finite() && self.max.is_finite() } } impl Box3D where T: Round, { /// Return a box3d with edges rounded to integer coordinates, such that /// the returned box3d has the same set of pixel centers as the original /// one. /// Values equal to 0.5 round up. /// Suitable for most places where integral device coordinates /// are needed, but note that any translation should be applied first to /// avoid pixel rounding errors. /// Note that this is *not* rounding to nearest integer if the values are negative. /// They are always rounding as floor(n + 0.5). #[must_use] pub fn round(&self) -> Self { Box3D::new(self.min.round(), self.max.round()) } } impl Box3D where T: Floor + Ceil, { /// Return a box3d with faces/edges rounded to integer coordinates, such that /// the original box3d contains the resulting box3d. #[must_use] pub fn round_in(&self) -> Self { Box3D { min: self.min.ceil(), max: self.max.floor(), } } /// Return a box3d with faces/edges rounded to integer coordinates, such that /// the original box3d is contained in the resulting box3d. #[must_use] pub fn round_out(&self) -> Self { Box3D { min: self.min.floor(), max: self.max.ceil(), } } } impl From> for Box3D where T: Copy + Zero + PartialOrd, { fn from(b: Size3D) -> Self { Self::from_size(b) } } impl Default for Box3D { fn default() -> Self { Box3D { min: Default::default(), max: Default::default(), } } } /// Shorthand for `Box3D::new(Point3D::new(x1, y1, z1), Point3D::new(x2, y2, z2))`. pub fn box3d( min_x: T, min_y: T, min_z: T, max_x: T, max_y: T, max_z: T, ) -> Box3D { Box3D::new( Point3D::new(min_x, min_y, min_z), Point3D::new(max_x, max_y, max_z), ) } #[cfg(test)] mod tests { use crate::default::{Box3D, Point3D}; use crate::{point3, size3, vec3}; #[test] fn test_new() { let b = Box3D::new(point3(-1.0, -1.0, -1.0), point3(1.0, 1.0, 1.0)); assert!(b.min.x == -1.0); assert!(b.min.y == -1.0); assert!(b.min.z == -1.0); assert!(b.max.x == 1.0); assert!(b.max.y == 1.0); assert!(b.max.z == 1.0); } #[test] fn test_size() { let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)); assert!(b.size().width == 20.0); assert!(b.size().height == 20.0); assert!(b.size().depth == 20.0); } #[test] fn test_width_height_depth() { let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)); assert!(b.width() == 20.0); assert!(b.height() == 20.0); assert!(b.depth() == 20.0); } #[test] fn test_center() { let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)); assert!(b.center() == Point3D::zero()); } #[test] fn test_volume() { let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)); assert!(b.volume() == 8000.0); } #[test] fn test_area() { let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)); assert!(b.xy_area() == 400.0); assert!(b.yz_area() == 400.0); assert!(b.xz_area() == 400.0); } #[test] fn test_from_points() { let b = Box3D::from_points(&[point3(50.0, 160.0, 12.5), point3(100.0, 25.0, 200.0)]); assert!(b.min == point3(50.0, 25.0, 12.5)); assert!(b.max == point3(100.0, 160.0, 200.0)); } #[test] fn test_min_max() { let b = Box3D::from_points(&[point3(50.0, 25.0, 12.5), point3(100.0, 160.0, 200.0)]); assert!(b.min.x == 50.0); assert!(b.min.y == 25.0); assert!(b.min.z == 12.5); assert!(b.max.x == 100.0); assert!(b.max.y == 160.0); assert!(b.max.z == 200.0); } #[test] fn test_round_in() { let b = Box3D::from_points(&[point3(-25.5, -40.4, -70.9), point3(60.3, 36.5, 89.8)]).round_in(); assert!(b.min.x == -25.0); assert!(b.min.y == -40.0); assert!(b.min.z == -70.0); assert!(b.max.x == 60.0); assert!(b.max.y == 36.0); assert!(b.max.z == 89.0); } #[test] fn test_round_out() { let b = Box3D::from_points(&[point3(-25.5, -40.4, -70.9), point3(60.3, 36.5, 89.8)]) .round_out(); assert!(b.min.x == -26.0); assert!(b.min.y == -41.0); assert!(b.min.z == -71.0); assert!(b.max.x == 61.0); assert!(b.max.y == 37.0); assert!(b.max.z == 90.0); } #[test] fn test_round() { let b = Box3D::from_points(&[point3(-25.5, -40.4, -70.9), point3(60.3, 36.5, 89.8)]).round(); assert!(b.min.x == -25.0); assert!(b.min.y == -40.0); assert!(b.min.z == -71.0); assert!(b.max.x == 60.0); assert!(b.max.y == 37.0); assert!(b.max.z == 90.0); } #[test] fn test_from_size() { let b = Box3D::from_size(size3(30.0, 40.0, 50.0)); assert!(b.min == Point3D::zero()); assert!(b.size().width == 30.0); assert!(b.size().height == 40.0); assert!(b.size().depth == 50.0); } #[test] fn test_translate() { let size = size3(15.0, 15.0, 200.0); let mut center = (size / 2.0).to_vector().to_point(); let b = Box3D::from_size(size); assert!(b.center() == center); let translation = vec3(10.0, 2.5, 9.5); let b = b.translate(translation); center += translation; assert!(b.center() == center); assert!(b.max.x == 25.0); assert!(b.max.y == 17.5); assert!(b.max.z == 209.5); assert!(b.min.x == 10.0); assert!(b.min.y == 2.5); assert!(b.min.z == 9.5); } #[test] fn test_union() { let b1 = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(0.0, 20.0, 20.0)]); let b2 = Box3D::from_points(&[point3(0.0, 20.0, 20.0), point3(20.0, -20.0, -20.0)]); let b = b1.union(&b2); assert!(b.max.x == 20.0); assert!(b.max.y == 20.0); assert!(b.max.z == 20.0); assert!(b.min.x == -20.0); assert!(b.min.y == -20.0); assert!(b.min.z == -20.0); assert!(b.volume() == (40.0 * 40.0 * 40.0)); } #[test] fn test_intersects() { let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(10.0, 20.0, 20.0)]); let b2 = Box3D::from_points(&[point3(-10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]); assert!(b1.intersects(&b2)); } #[test] fn test_intersection_unchecked() { let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(10.0, 20.0, 20.0)]); let b2 = Box3D::from_points(&[point3(-10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]); let b = b1.intersection_unchecked(&b2); assert!(b.max.x == 10.0); assert!(b.max.y == 20.0); assert!(b.max.z == 20.0); assert!(b.min.x == -10.0); assert!(b.min.y == -20.0); assert!(b.min.z == -20.0); assert!(b.volume() == (20.0 * 40.0 * 40.0)); } #[test] fn test_intersection() { let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(10.0, 20.0, 20.0)]); let b2 = Box3D::from_points(&[point3(-10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]); assert!(b1.intersection(&b2).is_some()); let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(-10.0, 20.0, 20.0)]); let b2 = Box3D::from_points(&[point3(10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]); assert!(b1.intersection(&b2).is_none()); } #[test] fn test_scale() { let b = Box3D::from_points(&[point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)]); let b = b.scale(0.5, 0.5, 0.5); assert!(b.max.x == 5.0); assert!(b.max.y == 5.0); assert!(b.max.z == 5.0); assert!(b.min.x == -5.0); assert!(b.min.y == -5.0); assert!(b.min.z == -5.0); } #[test] fn test_zero() { let b = Box3D::::zero(); assert!(b.max.x == 0.0); assert!(b.max.y == 0.0); assert!(b.max.z == 0.0); assert!(b.min.x == 0.0); assert!(b.min.y == 0.0); assert!(b.min.z == 0.0); } #[test] fn test_lerp() { let b1 = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(-10.0, -10.0, -10.0)]); let b2 = Box3D::from_points(&[point3(10.0, 10.0, 10.0), point3(20.0, 20.0, 20.0)]); let b = b1.lerp(b2, 0.5); assert!(b.center() == Point3D::zero()); assert!(b.size().width == 10.0); assert!(b.size().height == 10.0); assert!(b.size().depth == 10.0); } #[test] fn test_contains() { let b = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(20.0, 20.0, 20.0)]); assert!(b.contains(point3(-15.3, 10.5, 18.4))); } #[test] fn test_contains_box() { let b1 = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(20.0, 20.0, 20.0)]); let b2 = Box3D::from_points(&[point3(-14.3, -16.5, -19.3), point3(6.7, 17.6, 2.5)]); assert!(b1.contains_box(&b2)); } #[test] fn test_inflate() { let b = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(20.0, 20.0, 20.0)]); let b = b.inflate(10.0, 5.0, 2.0); assert!(b.size().width == 60.0); assert!(b.size().height == 50.0); assert!(b.size().depth == 44.0); assert!(b.center() == Point3D::zero()); } #[test] fn test_is_empty() { for i in 0..3 { let mut coords_neg = [-20.0, -20.0, -20.0]; let mut coords_pos = [20.0, 20.0, 20.0]; coords_neg[i] = 0.0; coords_pos[i] = 0.0; let b = Box3D::from_points(&[Point3D::from(coords_neg), Point3D::from(coords_pos)]); assert!(b.is_empty()); } } #[test] fn test_nan_empty_or_negative() { use std::f32::NAN; assert!(Box3D { min: point3(NAN, 2.0, 1.0), max: point3(1.0, 3.0, 5.0) }.is_empty()); assert!(Box3D { min: point3(0.0, NAN, 1.0), max: point3(1.0, 2.0, 5.0) }.is_empty()); assert!(Box3D { min: point3(1.0, -2.0, NAN), max: point3(3.0, 2.0, 5.0) }.is_empty()); assert!(Box3D { min: point3(1.0, -2.0, 1.0), max: point3(NAN, 2.0, 5.0) }.is_empty()); assert!(Box3D { min: point3(1.0, -2.0, 1.0), max: point3(0.0, NAN, 5.0) }.is_empty()); assert!(Box3D { min: point3(1.0, -2.0, 1.0), max: point3(0.0, 1.0, NAN) }.is_empty()); } } euclid-0.22.7/src/homogen.rs000064400000000000000000000131070072674642500140040ustar 00000000000000// Copyright 2018 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use crate::point::{Point2D, Point3D}; use crate::vector::{Vector2D, Vector3D}; use crate::num::{One, Zero}; use core::cmp::{Eq, PartialEq}; use core::fmt; use core::hash::Hash; use core::marker::PhantomData; use core::ops::Div; #[cfg(feature = "serde")] use serde; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// Homogeneous vector in 3D space. #[repr(C)] pub struct HomogeneousVector { pub x: T, pub y: T, pub z: T, pub w: T, #[doc(hidden)] pub _unit: PhantomData, } impl Copy for HomogeneousVector {} impl Clone for HomogeneousVector { fn clone(&self) -> Self { HomogeneousVector { x: self.x.clone(), y: self.y.clone(), z: self.z.clone(), w: self.w.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for HomogeneousVector where T: serde::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (x, y, z, w) = serde::Deserialize::deserialize(deserializer)?; Ok(HomogeneousVector { x, y, z, w, _unit: PhantomData, }) } } #[cfg(feature = "serde")] impl serde::Serialize for HomogeneousVector where T: serde::Serialize, { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (&self.x, &self.y, &self.z, &self.w).serialize(serializer) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for HomogeneousVector {} #[cfg(feature = "bytemuck")] unsafe impl Pod for HomogeneousVector {} impl Eq for HomogeneousVector where T: Eq {} impl PartialEq for HomogeneousVector where T: PartialEq, { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y && self.z == other.z && self.w == other.w } } impl Hash for HomogeneousVector where T: Hash, { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); self.z.hash(h); self.w.hash(h); } } impl HomogeneousVector { /// Constructor taking scalar values directly. #[inline] pub const fn new(x: T, y: T, z: T, w: T) -> Self { HomogeneousVector { x, y, z, w, _unit: PhantomData, } } } impl + Zero + PartialOrd, U> HomogeneousVector { /// Convert into Cartesian 2D point. /// /// Returns None if the point is on or behind the W=0 hemisphere. #[inline] pub fn to_point2d(self) -> Option> { if self.w > T::zero() { Some(Point2D::new(self.x / self.w, self.y / self.w)) } else { None } } /// Convert into Cartesian 3D point. /// /// Returns None if the point is on or behind the W=0 hemisphere. #[inline] pub fn to_point3d(self) -> Option> { if self.w > T::zero() { Some(Point3D::new( self.x / self.w, self.y / self.w, self.z / self.w, )) } else { None } } } impl From> for HomogeneousVector { #[inline] fn from(v: Vector2D) -> Self { HomogeneousVector::new(v.x, v.y, T::zero(), T::zero()) } } impl From> for HomogeneousVector { #[inline] fn from(v: Vector3D) -> Self { HomogeneousVector::new(v.x, v.y, v.z, T::zero()) } } impl From> for HomogeneousVector { #[inline] fn from(p: Point2D) -> Self { HomogeneousVector::new(p.x, p.y, T::zero(), T::one()) } } impl From> for HomogeneousVector { #[inline] fn from(p: Point3D) -> Self { HomogeneousVector::new(p.x, p.y, p.z, T::one()) } } impl fmt::Debug for HomogeneousVector { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("") .field(&self.x) .field(&self.y) .field(&self.z) .field(&self.w) .finish() } } #[cfg(test)] mod homogeneous { use super::HomogeneousVector; use crate::default::{Point2D, Point3D}; #[test] fn roundtrip() { assert_eq!( Some(Point2D::new(1.0, 2.0)), HomogeneousVector::from(Point2D::new(1.0, 2.0)).to_point2d() ); assert_eq!( Some(Point3D::new(1.0, -2.0, 0.1)), HomogeneousVector::from(Point3D::new(1.0, -2.0, 0.1)).to_point3d() ); } #[test] fn negative() { assert_eq!( None, HomogeneousVector::::new(1.0, 2.0, 3.0, 0.0).to_point2d() ); assert_eq!( None, HomogeneousVector::::new(1.0, -2.0, -3.0, -2.0).to_point3d() ); } } euclid-0.22.7/src/length.rs000064400000000000000000000373540072674642500136430ustar 00000000000000// Copyright 2014 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A one-dimensional length, tagged with its units. use crate::approxeq::ApproxEq; use crate::num::Zero; use crate::scale::Scale; use crate::approxord::{max, min}; use crate::num::One; use core::cmp::Ordering; use core::fmt; use core::hash::{Hash, Hasher}; use core::iter::Sum; use core::marker::PhantomData; use core::ops::{Add, Div, Mul, Neg, Sub}; use core::ops::{AddAssign, DivAssign, MulAssign, SubAssign}; use num_traits::{NumCast, Saturating}; #[cfg(feature = "serde")] use serde::{Deserialize, Deserializer, Serialize, Serializer}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// A one-dimensional distance, with value represented by `T` and unit of measurement `Unit`. /// /// `T` can be any numeric type, for example a primitive type like `u64` or `f32`. /// /// `Unit` is not used in the representation of a `Length` value. It is used only at compile time /// to ensure that a `Length` stored with one unit is converted explicitly before being used in an /// expression that requires a different unit. It may be a type without values, such as an empty /// enum. /// /// You can multiply a `Length` by a `scale::Scale` to convert it from one unit to /// another. See the [`Scale`] docs for an example. /// /// [`Scale`]: struct.Scale.html #[repr(C)] pub struct Length(pub T, #[doc(hidden)] pub PhantomData); impl Clone for Length { fn clone(&self) -> Self { Length(self.0.clone(), PhantomData) } } impl Copy for Length {} #[cfg(feature = "serde")] impl<'de, T, U> Deserialize<'de> for Length where T: Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de>, { Ok(Length(Deserialize::deserialize(deserializer)?, PhantomData)) } } #[cfg(feature = "serde")] impl Serialize for Length where T: Serialize, { fn serialize(&self, serializer: S) -> Result where S: Serializer, { self.0.serialize(serializer) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Length {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Length {} impl Length { /// Associate a value with a unit of measure. #[inline] pub const fn new(x: T) -> Self { Length(x, PhantomData) } } impl Length { /// Unpack the underlying value from the wrapper. pub fn get(self) -> T { self.0 } /// Cast the unit #[inline] pub fn cast_unit(self) -> Length { Length::new(self.0) } /// Linearly interpolate between this length and another length. /// /// # Example /// /// ```rust /// use euclid::default::Length; /// /// let from = Length::new(0.0); /// let to = Length::new(8.0); /// /// assert_eq!(from.lerp(to, -1.0), Length::new(-8.0)); /// assert_eq!(from.lerp(to, 0.0), Length::new( 0.0)); /// assert_eq!(from.lerp(to, 0.5), Length::new( 4.0)); /// assert_eq!(from.lerp(to, 1.0), Length::new( 8.0)); /// assert_eq!(from.lerp(to, 2.0), Length::new(16.0)); /// ``` #[inline] pub fn lerp(self, other: Self, t: T) -> Self where T: One + Sub + Mul + Add, { let one_t = T::one() - t.clone(); Length::new(one_t * self.0.clone() + t * other.0) } } impl Length { /// Returns minimum between this length and another length. #[inline] pub fn min(self, other: Self) -> Self { min(self, other) } /// Returns maximum between this length and another length. #[inline] pub fn max(self, other: Self) -> Self { max(self, other) } } impl Length { /// Cast from one numeric representation to another, preserving the units. #[inline] pub fn cast(self) -> Length { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. pub fn try_cast(self) -> Option> { NumCast::from(self.0).map(Length::new) } } impl fmt::Debug for Length { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.0.fmt(f) } } impl Default for Length { #[inline] fn default() -> Self { Length::new(Default::default()) } } impl Hash for Length { fn hash(&self, h: &mut H) { self.0.hash(h); } } // length + length impl Add for Length { type Output = Length; fn add(self, other: Self) -> Self::Output { Length::new(self.0 + other.0) } } // length + &length impl Add<&Self> for Length { type Output = Length; fn add(self, other: &Self) -> Self::Output { Length::new(self.0 + other.0) } } // length_iter.copied().sum() impl + Zero, U> Sum for Length { fn sum>(iter: I) -> Self { iter.fold(Self::zero(), Add::add) } } // length_iter.sum() impl<'a, T: 'a + Add + Copy + Zero, U: 'a> Sum<&'a Self> for Length { fn sum>(iter: I) -> Self { iter.fold(Self::zero(), Add::add) } } // length += length impl AddAssign for Length { fn add_assign(&mut self, other: Self) { self.0 += other.0; } } // length - length impl Sub for Length { type Output = Length; fn sub(self, other: Length) -> Self::Output { Length::new(self.0 - other.0) } } // length -= length impl SubAssign for Length { fn sub_assign(&mut self, other: Self) { self.0 -= other.0; } } // Saturating length + length and length - length. impl Saturating for Length { fn saturating_add(self, other: Self) -> Self { Length::new(self.0.saturating_add(other.0)) } fn saturating_sub(self, other: Self) -> Self { Length::new(self.0.saturating_sub(other.0)) } } // length / length impl Div> for Length { type Output = Scale; #[inline] fn div(self, other: Length) -> Self::Output { Scale::new(self.0 / other.0) } } // length * scalar impl Mul for Length { type Output = Length; #[inline] fn mul(self, scale: T) -> Self::Output { Length::new(self.0 * scale) } } // length *= scalar impl, U> MulAssign for Length { #[inline] fn mul_assign(&mut self, scale: T) { *self = *self * scale } } // length / scalar impl Div for Length { type Output = Length; #[inline] fn div(self, scale: T) -> Self::Output { Length::new(self.0 / scale) } } // length /= scalar impl, U> DivAssign for Length { #[inline] fn div_assign(&mut self, scale: T) { *self = *self / scale } } // length * scaleFactor impl Mul> for Length { type Output = Length; #[inline] fn mul(self, scale: Scale) -> Self::Output { Length::new(self.0 * scale.0) } } // length / scaleFactor impl Div> for Length { type Output = Length; #[inline] fn div(self, scale: Scale) -> Self::Output { Length::new(self.0 / scale.0) } } // -length impl Neg for Length { type Output = Length; #[inline] fn neg(self) -> Self::Output { Length::new(-self.0) } } impl PartialEq for Length { fn eq(&self, other: &Self) -> bool { self.0.eq(&other.0) } } impl PartialOrd for Length { fn partial_cmp(&self, other: &Self) -> Option { self.0.partial_cmp(&other.0) } } impl Eq for Length {} impl Ord for Length { fn cmp(&self, other: &Self) -> Ordering { self.0.cmp(&other.0) } } impl Zero for Length { #[inline] fn zero() -> Self { Length::new(Zero::zero()) } } impl> ApproxEq for Length { #[inline] fn approx_epsilon() -> T { T::approx_epsilon() } #[inline] fn approx_eq_eps(&self, other: &Length, approx_epsilon: &T) -> bool { self.0.approx_eq_eps(&other.0, approx_epsilon) } } #[cfg(test)] mod tests { use super::Length; use crate::num::Zero; use crate::scale::Scale; use core::f32::INFINITY; use num_traits::Saturating; enum Inch {} enum Mm {} enum Cm {} enum Second {} #[cfg(feature = "serde")] mod serde { use super::*; extern crate serde_test; use self::serde_test::assert_tokens; use self::serde_test::Token; #[test] fn test_length_serde() { let one_cm: Length = Length::new(10.0); assert_tokens(&one_cm, &[Token::F32(10.0)]); } } #[test] fn test_clone() { // A cloned Length is a separate length with the state matching the // original Length at the point it was cloned. let mut variable_length: Length = Length::new(12.0); let one_foot = variable_length.clone(); variable_length.0 = 24.0; assert_eq!(one_foot.get(), 12.0); assert_eq!(variable_length.get(), 24.0); } #[test] fn test_add() { let length1: Length = Length::new(250); let length2: Length = Length::new(5); assert_eq!((length1 + length2).get(), 255); assert_eq!((length1 + &length2).get(), 255); } #[test] fn test_sum() { type L = Length; let lengths = [L::new(1.0), L::new(2.0), L::new(3.0)]; assert_eq!(lengths.iter().sum::(), L::new(6.0)); } #[test] fn test_addassign() { let one_cm: Length = Length::new(10.0); let mut measurement: Length = Length::new(5.0); measurement += one_cm; assert_eq!(measurement.get(), 15.0); } #[test] fn test_sub() { let length1: Length = Length::new(250); let length2: Length = Length::new(5); let result = length1 - length2; assert_eq!(result.get(), 245); } #[test] fn test_subassign() { let one_cm: Length = Length::new(10.0); let mut measurement: Length = Length::new(5.0); measurement -= one_cm; assert_eq!(measurement.get(), -5.0); } #[test] fn test_saturating_add() { let length1: Length = Length::new(250); let length2: Length = Length::new(6); let result = length1.saturating_add(length2); assert_eq!(result.get(), 255); } #[test] fn test_saturating_sub() { let length1: Length = Length::new(5); let length2: Length = Length::new(10); let result = length1.saturating_sub(length2); assert_eq!(result.get(), 0); } #[test] fn test_division_by_length() { // Division results in a Scale from denominator units // to numerator units. let length: Length = Length::new(5.0); let duration: Length = Length::new(10.0); let result = length / duration; let expected: Scale = Scale::new(0.5); assert_eq!(result, expected); } #[test] fn test_multiplication() { let length_mm: Length = Length::new(10.0); let cm_per_mm: Scale = Scale::new(0.1); let result = length_mm * cm_per_mm; let expected: Length = Length::new(1.0); assert_eq!(result, expected); } #[test] fn test_multiplication_with_scalar() { let length_mm: Length = Length::new(10.0); let result = length_mm * 2.0; let expected: Length = Length::new(20.0); assert_eq!(result, expected); } #[test] fn test_multiplication_assignment() { let mut length: Length = Length::new(10.0); length *= 2.0; let expected: Length = Length::new(20.0); assert_eq!(length, expected); } #[test] fn test_division_by_scalefactor() { let length: Length = Length::new(5.0); let cm_per_second: Scale = Scale::new(10.0); let result = length / cm_per_second; let expected: Length = Length::new(0.5); assert_eq!(result, expected); } #[test] fn test_division_by_scalar() { let length: Length = Length::new(5.0); let result = length / 2.0; let expected: Length = Length::new(2.5); assert_eq!(result, expected); } #[test] fn test_division_assignment() { let mut length: Length = Length::new(10.0); length /= 2.0; let expected: Length = Length::new(5.0); assert_eq!(length, expected); } #[test] fn test_negation() { let length: Length = Length::new(5.0); let result = -length; let expected: Length = Length::new(-5.0); assert_eq!(result, expected); } #[test] fn test_cast() { let length_as_i32: Length = Length::new(5); let result: Length = length_as_i32.cast(); let length_as_f32: Length = Length::new(5.0); assert_eq!(result, length_as_f32); } #[test] fn test_equality() { let length_5_point_0: Length = Length::new(5.0); let length_5_point_1: Length = Length::new(5.1); let length_0_point_1: Length = Length::new(0.1); assert!(length_5_point_0 == length_5_point_1 - length_0_point_1); assert!(length_5_point_0 != length_5_point_1); } #[test] fn test_order() { let length_5_point_0: Length = Length::new(5.0); let length_5_point_1: Length = Length::new(5.1); let length_0_point_1: Length = Length::new(0.1); assert!(length_5_point_0 < length_5_point_1); assert!(length_5_point_0 <= length_5_point_1); assert!(length_5_point_0 <= length_5_point_1 - length_0_point_1); assert!(length_5_point_1 > length_5_point_0); assert!(length_5_point_1 >= length_5_point_0); assert!(length_5_point_0 >= length_5_point_1 - length_0_point_1); } #[test] fn test_zero_add() { type LengthCm = Length; let length: LengthCm = Length::new(5.0); let result = length - LengthCm::zero(); assert_eq!(result, length); } #[test] fn test_zero_division() { type LengthCm = Length; let length: LengthCm = Length::new(5.0); let length_zero: LengthCm = Length::zero(); let result = length / length_zero; let expected: Scale = Scale::new(INFINITY); assert_eq!(result, expected); } } euclid-0.22.7/src/lib.rs000064400000000000000000000106710072674642500131210ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![cfg_attr(not(test), no_std)] //! A collection of strongly typed math tools for computer graphics with an inclination //! towards 2d graphics and layout. //! //! All types are generic over the scalar type of their component (`f32`, `i32`, etc.), //! and tagged with a generic Unit parameter which is useful to prevent mixing //! values from different spaces. For example it should not be legal to translate //! a screen-space position by a world-space vector and this can be expressed using //! the generic Unit parameter. //! //! This unit system is not mandatory and all structures have an alias //! with the default unit: `UnknownUnit`. //! for example ```default::Point2D``` is equivalent to ```Point2D```. //! Client code typically creates a set of aliases for each type and doesn't need //! to deal with the specifics of typed units further. For example: //! //! ```rust //! use euclid::*; //! pub struct ScreenSpace; //! pub type ScreenPoint = Point2D; //! pub type ScreenSize = Size2D; //! pub struct WorldSpace; //! pub type WorldPoint = Point3D; //! pub type ProjectionMatrix = Transform3D; //! // etc... //! ``` //! //! All euclid types are marked `#[repr(C)]` in order to facilitate exposing them to //! foreign function interfaces (provided the underlying scalar type is also `repr(C)`). //! #![deny(unconditional_recursion)] pub use crate::angle::Angle; pub use crate::box2d::Box2D; pub use crate::homogen::HomogeneousVector; pub use crate::length::Length; pub use crate::point::{point2, point3, Point2D, Point3D}; pub use crate::scale::Scale; pub use crate::transform2d::Transform2D; pub use crate::transform3d::Transform3D; pub use crate::vector::{bvec2, bvec3, BoolVector2D, BoolVector3D}; pub use crate::vector::{vec2, vec3, Vector2D, Vector3D}; pub use crate::box3d::{box3d, Box3D}; pub use crate::rect::{rect, Rect}; pub use crate::rigid::RigidTransform3D; pub use crate::rotation::{Rotation2D, Rotation3D}; pub use crate::side_offsets::SideOffsets2D; pub use crate::size::{size2, size3, Size2D, Size3D}; pub use crate::translation::{Translation2D, Translation3D}; pub use crate::trig::Trig; #[macro_use] mod macros; mod angle; pub mod approxeq; pub mod approxord; mod box2d; mod box3d; mod homogen; mod length; pub mod num; mod point; mod rect; mod rigid; mod rotation; mod scale; mod side_offsets; mod size; mod transform2d; mod transform3d; mod translation; mod trig; mod vector; /// The default unit. #[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct UnknownUnit; pub mod default { //! A set of aliases for all types, tagged with the default unknown unit. use super::UnknownUnit; pub type Length = super::Length; pub type Point2D = super::Point2D; pub type Point3D = super::Point3D; pub type Vector2D = super::Vector2D; pub type Vector3D = super::Vector3D; pub type HomogeneousVector = super::HomogeneousVector; pub type Size2D = super::Size2D; pub type Size3D = super::Size3D; pub type Rect = super::Rect; pub type Box2D = super::Box2D; pub type Box3D = super::Box3D; pub type SideOffsets2D = super::SideOffsets2D; pub type Transform2D = super::Transform2D; pub type Transform3D = super::Transform3D; pub type Rotation2D = super::Rotation2D; pub type Rotation3D = super::Rotation3D; pub type Translation2D = super::Translation2D; pub type Translation3D = super::Translation3D; pub type Scale = super::Scale; pub type RigidTransform3D = super::RigidTransform3D; } euclid-0.22.7/src/macros.rs000064400000000000000000000021000072674642500136230ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. macro_rules! mint_vec { ($name:ident [ $($field:ident),* ] = $std_name:ident) => { #[cfg(feature = "mint")] impl From> for $name { fn from(v: mint::$std_name) -> Self { $name { $( $field: v.$field, )* _unit: PhantomData, } } } #[cfg(feature = "mint")] impl Into> for $name { fn into(self) -> mint::$std_name { mint::$std_name { $( $field: self.$field, )* } } } } } euclid-0.22.7/src/num.rs000064400000000000000000000074520072674642500131550ustar 00000000000000// Copyright 2014 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A one-dimensional length, tagged with its units. use num_traits; // Euclid has its own Zero and One traits instead of of using the num_traits equivalents. // Unfortunately, num_traits::Zero requires Add, which opens a bag of sad things: // - Most importantly, for Point2D to implement Zero it would need to implement Add which we // don't want (we allow "Point + Vector" and "Vector + Vector" semantics and purposefully disallow // "Point + Point". // - Some operations that require, say, One and Div (for example Scale::inv) currently return a // type parameterized over T::Output which is ambiguous with num_traits::One because it inherits // Mul which also has an Output associated type. To fix it need to complicate type signatures // by using ::Output which makes the code and documentation harder to read. // // On the other hand, euclid::num::Zero/One are automatically implemented for all types that // implement their num_traits counterpart. Euclid users never need to explicitly use // euclid::num::Zero/One and can/should only manipulate the num_traits equivalents without risk // of compatibility issues with euclid. pub trait Zero { fn zero() -> Self; } impl Zero for T { fn zero() -> T { num_traits::Zero::zero() } } pub trait One { fn one() -> Self; } impl One for T { fn one() -> T { num_traits::One::one() } } /// Defines the nearest integer value to the original value. pub trait Round: Copy { /// Rounds to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). #[must_use] fn round(self) -> Self; } /// Defines the biggest integer equal or lower than the original value. pub trait Floor: Copy { /// Rounds to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). #[must_use] fn floor(self) -> Self; } /// Defines the smallest integer equal or greater than the original value. pub trait Ceil: Copy { /// Rounds to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). #[must_use] fn ceil(self) -> Self; } macro_rules! num_int { ($ty:ty) => { impl Round for $ty { #[inline] fn round(self) -> $ty { self } } impl Floor for $ty { #[inline] fn floor(self) -> $ty { self } } impl Ceil for $ty { #[inline] fn ceil(self) -> $ty { self } } }; } macro_rules! num_float { ($ty:ty) => { impl Round for $ty { #[inline] fn round(self) -> $ty { (self + 0.5).floor() } } impl Floor for $ty { #[inline] fn floor(self) -> $ty { num_traits::Float::floor(self) } } impl Ceil for $ty { #[inline] fn ceil(self) -> $ty { num_traits::Float::ceil(self) } } }; } num_int!(i16); num_int!(u16); num_int!(i32); num_int!(u32); num_int!(i64); num_int!(u64); num_int!(isize); num_int!(usize); num_float!(f32); num_float!(f64); euclid-0.22.7/src/point.rs000064400000000000000000001445050072674642500135100ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use crate::approxeq::ApproxEq; use crate::approxord::{max, min}; use crate::length::Length; use crate::num::*; use crate::scale::Scale; use crate::size::{Size2D, Size3D}; use crate::vector::{vec2, vec3, Vector2D, Vector3D}; use core::cmp::{Eq, PartialEq}; use core::fmt; use core::hash::Hash; use core::marker::PhantomData; use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; #[cfg(feature = "mint")] use mint; use num_traits::real::Real; use num_traits::{Float, NumCast}; #[cfg(feature = "serde")] use serde; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// A 2d Point tagged with a unit. #[repr(C)] pub struct Point2D { pub x: T, pub y: T, #[doc(hidden)] pub _unit: PhantomData, } impl Copy for Point2D {} impl Clone for Point2D { fn clone(&self) -> Self { Point2D { x: self.x.clone(), y: self.y.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Point2D where T: serde::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (x, y) = serde::Deserialize::deserialize(deserializer)?; Ok(Point2D { x, y, _unit: PhantomData, }) } } #[cfg(feature = "serde")] impl serde::Serialize for Point2D where T: serde::Serialize, { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (&self.x, &self.y).serialize(serializer) } } #[cfg(feature = "arbitrary")] impl<'a, T, U> arbitrary::Arbitrary<'a> for Point2D where T: arbitrary::Arbitrary<'a>, { fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result { let (x, y) = arbitrary::Arbitrary::arbitrary(u)?; Ok(Point2D { x, y, _unit: PhantomData, }) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Point2D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Point2D {} impl Eq for Point2D where T: Eq {} impl PartialEq for Point2D where T: PartialEq, { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y } } impl Hash for Point2D where T: Hash, { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); } } mint_vec!(Point2D[x, y] = Point2); impl fmt::Debug for Point2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("").field(&self.x).field(&self.y).finish() } } impl Default for Point2D { fn default() -> Self { Point2D::new(Default::default(), Default::default()) } } impl Point2D { /// Constructor, setting all components to zero. #[inline] pub fn origin() -> Self where T: Zero, { point2(Zero::zero(), Zero::zero()) } /// The same as [`origin()`](#method.origin). #[inline] pub fn zero() -> Self where T: Zero, { Self::origin() } /// Constructor taking scalar values directly. #[inline] pub const fn new(x: T, y: T) -> Self { Point2D { x, y, _unit: PhantomData, } } /// Constructor taking properly Lengths instead of scalar values. #[inline] pub fn from_lengths(x: Length, y: Length) -> Self { point2(x.0, y.0) } /// Constructor setting all components to the same value. #[inline] pub fn splat(v: T) -> Self where T: Clone, { Point2D { x: v.clone(), y: v, _unit: PhantomData, } } /// Tag a unitless value with units. #[inline] pub fn from_untyped(p: Point2D) -> Self { point2(p.x, p.y) } } impl Point2D { /// Create a 3d point from this one, using the specified z value. #[inline] pub fn extend(self, z: T) -> Point3D { point3(self.x, self.y, z) } /// Cast this point into a vector. /// /// Equivalent to subtracting the origin from this point. #[inline] pub fn to_vector(self) -> Vector2D { Vector2D { x: self.x, y: self.y, _unit: PhantomData, } } /// Swap x and y. /// /// # Example /// /// ```rust /// # use euclid::{Point2D, point2}; /// enum Mm {} /// /// let point: Point2D<_, Mm> = point2(1, -8); /// /// assert_eq!(point.yx(), point2(-8, 1)); /// ``` #[inline] pub fn yx(self) -> Self { point2(self.y, self.x) } /// Drop the units, preserving only the numeric value. /// /// # Example /// /// ```rust /// # use euclid::{Point2D, point2}; /// enum Mm {} /// /// let point: Point2D<_, Mm> = point2(1, -8); /// /// assert_eq!(point.x, point.to_untyped().x); /// assert_eq!(point.y, point.to_untyped().y); /// ``` #[inline] pub fn to_untyped(self) -> Point2D { point2(self.x, self.y) } /// Cast the unit, preserving the numeric value. /// /// # Example /// /// ```rust /// # use euclid::{Point2D, point2}; /// enum Mm {} /// enum Cm {} /// /// let point: Point2D<_, Mm> = point2(1, -8); /// /// assert_eq!(point.x, point.cast_unit::().x); /// assert_eq!(point.y, point.cast_unit::().y); /// ``` #[inline] pub fn cast_unit(self) -> Point2D { point2(self.x, self.y) } /// Cast into an array with x and y. /// /// # Example /// /// ```rust /// # use euclid::{Point2D, point2}; /// enum Mm {} /// /// let point: Point2D<_, Mm> = point2(1, -8); /// /// assert_eq!(point.to_array(), [1, -8]); /// ``` #[inline] pub fn to_array(self) -> [T; 2] { [self.x, self.y] } /// Cast into a tuple with x and y. /// /// # Example /// /// ```rust /// # use euclid::{Point2D, point2}; /// enum Mm {} /// /// let point: Point2D<_, Mm> = point2(1, -8); /// /// assert_eq!(point.to_tuple(), (1, -8)); /// ``` #[inline] pub fn to_tuple(self) -> (T, T) { (self.x, self.y) } /// Convert into a 3d point with z-coordinate equals to zero. #[inline] pub fn to_3d(self) -> Point3D where T: Zero, { point3(self.x, self.y, Zero::zero()) } /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::point2; /// enum Mm {} /// /// assert_eq!(point2::<_, Mm>(-0.1, -0.8).round(), point2::<_, Mm>(0.0, -1.0)) /// ``` #[inline] #[must_use] pub fn round(self) -> Self where T: Round, { point2(self.x.round(), self.y.round()) } /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::point2; /// enum Mm {} /// /// assert_eq!(point2::<_, Mm>(-0.1, -0.8).ceil(), point2::<_, Mm>(0.0, 0.0)) /// ``` #[inline] #[must_use] pub fn ceil(self) -> Self where T: Ceil, { point2(self.x.ceil(), self.y.ceil()) } /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::point2; /// enum Mm {} /// /// assert_eq!(point2::<_, Mm>(-0.1, -0.8).floor(), point2::<_, Mm>(-1.0, -1.0)) /// ``` #[inline] #[must_use] pub fn floor(self) -> Self where T: Floor, { point2(self.x.floor(), self.y.floor()) } /// Linearly interpolate between this point and another point. /// /// # Example /// /// ```rust /// use euclid::point2; /// use euclid::default::Point2D; /// /// let from: Point2D<_> = point2(0.0, 10.0); /// let to: Point2D<_> = point2(8.0, -4.0); /// /// assert_eq!(from.lerp(to, -1.0), point2(-8.0, 24.0)); /// assert_eq!(from.lerp(to, 0.0), point2( 0.0, 10.0)); /// assert_eq!(from.lerp(to, 0.5), point2( 4.0, 3.0)); /// assert_eq!(from.lerp(to, 1.0), point2( 8.0, -4.0)); /// assert_eq!(from.lerp(to, 2.0), point2(16.0, -18.0)); /// ``` #[inline] pub fn lerp(self, other: Self, t: T) -> Self where T: One + Sub + Mul + Add, { let one_t = T::one() - t; point2(one_t * self.x + t * other.x, one_t * self.y + t * other.y) } } impl Point2D { #[inline] pub fn min(self, other: Self) -> Self { point2(min(self.x, other.x), min(self.y, other.y)) } #[inline] pub fn max(self, other: Self) -> Self { point2(max(self.x, other.x), max(self.y, other.y)) } /// Returns the point each component of which clamped by corresponding /// components of `start` and `end`. /// /// Shortcut for `self.max(start).min(end)`. #[inline] pub fn clamp(self, start: Self, end: Self) -> Self where T: Copy, { self.max(start).min(end) } } impl Point2D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn cast(self) -> Point2D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn try_cast(self) -> Option> { match (NumCast::from(self.x), NumCast::from(self.y)) { (Some(x), Some(y)) => Some(point2(x, y)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` point. #[inline] pub fn to_f32(self) -> Point2D { self.cast() } /// Cast into an `f64` point. #[inline] pub fn to_f64(self) -> Point2D { self.cast() } /// Cast into an `usize` point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_usize(self) -> Point2D { self.cast() } /// Cast into an `u32` point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u32(self) -> Point2D { self.cast() } /// Cast into an i32 point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i32(self) -> Point2D { self.cast() } /// Cast into an i64 point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i64(self) -> Point2D { self.cast() } } impl Point2D { /// Returns true if all members are finite. #[inline] pub fn is_finite(self) -> bool { self.x.is_finite() && self.y.is_finite() } } impl, U> Point2D { #[inline] pub fn add_size(self, other: &Size2D) -> Self { point2(self.x + other.width, self.y + other.height) } } impl, U> Point2D { #[inline] pub fn distance_to(self, other: Self) -> T { (self - other).length() } } impl Neg for Point2D { type Output = Point2D; #[inline] fn neg(self) -> Self::Output { point2(-self.x, -self.y) } } impl Add> for Point2D { type Output = Point2D; #[inline] fn add(self, other: Size2D) -> Self::Output { point2(self.x + other.width, self.y + other.height) } } impl AddAssign> for Point2D { #[inline] fn add_assign(&mut self, other: Size2D) { self.x += other.width; self.y += other.height; } } impl Add> for Point2D { type Output = Point2D; #[inline] fn add(self, other: Vector2D) -> Self::Output { point2(self.x + other.x, self.y + other.y) } } impl, U> AddAssign> for Point2D { #[inline] fn add_assign(&mut self, other: Vector2D) { *self = *self + other } } impl Sub for Point2D { type Output = Vector2D; #[inline] fn sub(self, other: Self) -> Self::Output { vec2(self.x - other.x, self.y - other.y) } } impl Sub> for Point2D { type Output = Point2D; #[inline] fn sub(self, other: Size2D) -> Self::Output { point2(self.x - other.width, self.y - other.height) } } impl SubAssign> for Point2D { #[inline] fn sub_assign(&mut self, other: Size2D) { self.x -= other.width; self.y -= other.height; } } impl Sub> for Point2D { type Output = Point2D; #[inline] fn sub(self, other: Vector2D) -> Self::Output { point2(self.x - other.x, self.y - other.y) } } impl, U> SubAssign> for Point2D { #[inline] fn sub_assign(&mut self, other: Vector2D) { *self = *self - other } } impl Mul for Point2D { type Output = Point2D; #[inline] fn mul(self, scale: T) -> Self::Output { point2(self.x * scale, self.y * scale) } } impl, U> MulAssign for Point2D { #[inline] fn mul_assign(&mut self, scale: T) { *self = *self * scale } } impl Mul> for Point2D { type Output = Point2D; #[inline] fn mul(self, scale: Scale) -> Self::Output { point2(self.x * scale.0, self.y * scale.0) } } impl MulAssign> for Point2D { #[inline] fn mul_assign(&mut self, scale: Scale) { self.x *= scale.0; self.y *= scale.0; } } impl Div for Point2D { type Output = Point2D; #[inline] fn div(self, scale: T) -> Self::Output { point2(self.x / scale, self.y / scale) } } impl, U> DivAssign for Point2D { #[inline] fn div_assign(&mut self, scale: T) { *self = *self / scale } } impl Div> for Point2D { type Output = Point2D; #[inline] fn div(self, scale: Scale) -> Self::Output { point2(self.x / scale.0, self.y / scale.0) } } impl DivAssign> for Point2D { #[inline] fn div_assign(&mut self, scale: Scale) { self.x /= scale.0; self.y /= scale.0; } } impl Zero for Point2D { #[inline] fn zero() -> Self { Self::origin() } } impl Round for Point2D { /// See [Point2D::round()](#method.round) #[inline] fn round(self) -> Self { self.round() } } impl Ceil for Point2D { /// See [Point2D::ceil()](#method.ceil) #[inline] fn ceil(self) -> Self { self.ceil() } } impl Floor for Point2D { /// See [Point2D::floor()](#method.floor) #[inline] fn floor(self) -> Self { self.floor() } } impl, U> ApproxEq> for Point2D { #[inline] fn approx_epsilon() -> Self { point2(T::approx_epsilon(), T::approx_epsilon()) } #[inline] fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) } } impl Into<[T; 2]> for Point2D { fn into(self) -> [T; 2] { [self.x, self.y] } } impl From<[T; 2]> for Point2D { fn from([x, y]: [T; 2]) -> Self { point2(x, y) } } impl Into<(T, T)> for Point2D { fn into(self) -> (T, T) { (self.x, self.y) } } impl From<(T, T)> for Point2D { fn from(tuple: (T, T)) -> Self { point2(tuple.0, tuple.1) } } /// A 3d Point tagged with a unit. #[repr(C)] pub struct Point3D { pub x: T, pub y: T, pub z: T, #[doc(hidden)] pub _unit: PhantomData, } mint_vec!(Point3D[x, y, z] = Point3); impl Copy for Point3D {} impl Clone for Point3D { fn clone(&self) -> Self { Point3D { x: self.x.clone(), y: self.y.clone(), z: self.z.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Point3D where T: serde::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (x, y, z) = serde::Deserialize::deserialize(deserializer)?; Ok(Point3D { x, y, z, _unit: PhantomData, }) } } #[cfg(feature = "serde")] impl serde::Serialize for Point3D where T: serde::Serialize, { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (&self.x, &self.y, &self.z).serialize(serializer) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Point3D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Point3D {} impl Eq for Point3D where T: Eq {} impl PartialEq for Point3D where T: PartialEq, { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y && self.z == other.z } } impl Hash for Point3D where T: Hash, { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); self.z.hash(h); } } impl fmt::Debug for Point3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("") .field(&self.x) .field(&self.y) .field(&self.z) .finish() } } impl Default for Point3D { fn default() -> Self { Point3D::new(Default::default(), Default::default(), Default::default()) } } impl Point3D { /// Constructor, setting all components to zero. #[inline] pub fn origin() -> Self where T: Zero, { point3(Zero::zero(), Zero::zero(), Zero::zero()) } /// The same as [`origin()`](#method.origin). #[inline] pub fn zero() -> Self where T: Zero, { Self::origin() } /// Constructor taking scalar values directly. #[inline] pub const fn new(x: T, y: T, z: T) -> Self { Point3D { x, y, z, _unit: PhantomData, } } /// Constructor taking properly Lengths instead of scalar values. #[inline] pub fn from_lengths(x: Length, y: Length, z: Length) -> Self { point3(x.0, y.0, z.0) } /// Constructor setting all components to the same value. #[inline] pub fn splat(v: T) -> Self where T: Clone, { Point3D { x: v.clone(), y: v.clone(), z: v, _unit: PhantomData, } } /// Tag a unitless value with units. #[inline] pub fn from_untyped(p: Point3D) -> Self { point3(p.x, p.y, p.z) } } impl Point3D { /// Cast this point into a vector. /// /// Equivalent to subtracting the origin to this point. #[inline] pub fn to_vector(self) -> Vector3D { Vector3D { x: self.x, y: self.y, z: self.z, _unit: PhantomData, } } /// Returns a 2d point using this point's x and y coordinates #[inline] pub fn xy(self) -> Point2D { point2(self.x, self.y) } /// Returns a 2d point using this point's x and z coordinates #[inline] pub fn xz(self) -> Point2D { point2(self.x, self.z) } /// Returns a 2d point using this point's x and z coordinates #[inline] pub fn yz(self) -> Point2D { point2(self.y, self.z) } /// Cast into an array with x, y and z. /// /// # Example /// /// ```rust /// # use euclid::{Point3D, point3}; /// enum Mm {} /// /// let point: Point3D<_, Mm> = point3(1, -8, 0); /// /// assert_eq!(point.to_array(), [1, -8, 0]); /// ``` #[inline] pub fn to_array(self) -> [T; 3] { [self.x, self.y, self.z] } #[inline] pub fn to_array_4d(self) -> [T; 4] where T: One, { [self.x, self.y, self.z, One::one()] } /// Cast into a tuple with x, y and z. /// /// # Example /// /// ```rust /// # use euclid::{Point3D, point3}; /// enum Mm {} /// /// let point: Point3D<_, Mm> = point3(1, -8, 0); /// /// assert_eq!(point.to_tuple(), (1, -8, 0)); /// ``` #[inline] pub fn to_tuple(self) -> (T, T, T) { (self.x, self.y, self.z) } #[inline] pub fn to_tuple_4d(self) -> (T, T, T, T) where T: One, { (self.x, self.y, self.z, One::one()) } /// Drop the units, preserving only the numeric value. /// /// # Example /// /// ```rust /// # use euclid::{Point3D, point3}; /// enum Mm {} /// /// let point: Point3D<_, Mm> = point3(1, -8, 0); /// /// assert_eq!(point.x, point.to_untyped().x); /// assert_eq!(point.y, point.to_untyped().y); /// assert_eq!(point.z, point.to_untyped().z); /// ``` #[inline] pub fn to_untyped(self) -> Point3D { point3(self.x, self.y, self.z) } /// Cast the unit, preserving the numeric value. /// /// # Example /// /// ```rust /// # use euclid::{Point3D, point3}; /// enum Mm {} /// enum Cm {} /// /// let point: Point3D<_, Mm> = point3(1, -8, 0); /// /// assert_eq!(point.x, point.cast_unit::().x); /// assert_eq!(point.y, point.cast_unit::().y); /// assert_eq!(point.z, point.cast_unit::().z); /// ``` #[inline] pub fn cast_unit(self) -> Point3D { point3(self.x, self.y, self.z) } /// Convert into a 2d point. #[inline] pub fn to_2d(self) -> Point2D { self.xy() } /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::point3; /// enum Mm {} /// /// assert_eq!(point3::<_, Mm>(-0.1, -0.8, 0.4).round(), point3::<_, Mm>(0.0, -1.0, 0.0)) /// ``` #[inline] #[must_use] pub fn round(self) -> Self where T: Round, { point3(self.x.round(), self.y.round(), self.z.round()) } /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::point3; /// enum Mm {} /// /// assert_eq!(point3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), point3::<_, Mm>(0.0, 0.0, 1.0)) /// ``` #[inline] #[must_use] pub fn ceil(self) -> Self where T: Ceil, { point3(self.x.ceil(), self.y.ceil(), self.z.ceil()) } /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::point3; /// enum Mm {} /// /// assert_eq!(point3::<_, Mm>(-0.1, -0.8, 0.4).floor(), point3::<_, Mm>(-1.0, -1.0, 0.0)) /// ``` #[inline] #[must_use] pub fn floor(self) -> Self where T: Floor, { point3(self.x.floor(), self.y.floor(), self.z.floor()) } /// Linearly interpolate between this point and another point. /// /// # Example /// /// ```rust /// use euclid::point3; /// use euclid::default::Point3D; /// /// let from: Point3D<_> = point3(0.0, 10.0, -1.0); /// let to: Point3D<_> = point3(8.0, -4.0, 0.0); /// /// assert_eq!(from.lerp(to, -1.0), point3(-8.0, 24.0, -2.0)); /// assert_eq!(from.lerp(to, 0.0), point3( 0.0, 10.0, -1.0)); /// assert_eq!(from.lerp(to, 0.5), point3( 4.0, 3.0, -0.5)); /// assert_eq!(from.lerp(to, 1.0), point3( 8.0, -4.0, 0.0)); /// assert_eq!(from.lerp(to, 2.0), point3(16.0, -18.0, 1.0)); /// ``` #[inline] pub fn lerp(self, other: Self, t: T) -> Self where T: One + Sub + Mul + Add, { let one_t = T::one() - t; point3( one_t * self.x + t * other.x, one_t * self.y + t * other.y, one_t * self.z + t * other.z, ) } } impl Point3D { #[inline] pub fn min(self, other: Self) -> Self { point3( min(self.x, other.x), min(self.y, other.y), min(self.z, other.z), ) } #[inline] pub fn max(self, other: Self) -> Self { point3( max(self.x, other.x), max(self.y, other.y), max(self.z, other.z), ) } /// Returns the point each component of which clamped by corresponding /// components of `start` and `end`. /// /// Shortcut for `self.max(start).min(end)`. #[inline] pub fn clamp(self, start: Self, end: Self) -> Self where T: Copy, { self.max(start).min(end) } } impl Point3D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn cast(self) -> Point3D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn try_cast(self) -> Option> { match ( NumCast::from(self.x), NumCast::from(self.y), NumCast::from(self.z), ) { (Some(x), Some(y), Some(z)) => Some(point3(x, y, z)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` point. #[inline] pub fn to_f32(self) -> Point3D { self.cast() } /// Cast into an `f64` point. #[inline] pub fn to_f64(self) -> Point3D { self.cast() } /// Cast into an `usize` point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_usize(self) -> Point3D { self.cast() } /// Cast into an `u32` point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u32(self) -> Point3D { self.cast() } /// Cast into an `i32` point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i32(self) -> Point3D { self.cast() } /// Cast into an `i64` point, truncating decimals if any. /// /// When casting from floating point points, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i64(self) -> Point3D { self.cast() } } impl Point3D { /// Returns true if all members are finite. #[inline] pub fn is_finite(self) -> bool { self.x.is_finite() && self.y.is_finite() && self.z.is_finite() } } impl, U> Point3D { #[inline] pub fn add_size(self, other: Size3D) -> Self { point3( self.x + other.width, self.y + other.height, self.z + other.depth, ) } } impl, U> Point3D { #[inline] pub fn distance_to(self, other: Self) -> T { (self - other).length() } } impl Neg for Point3D { type Output = Point3D; #[inline] fn neg(self) -> Self::Output { point3(-self.x, -self.y, -self.z) } } impl Add> for Point3D { type Output = Point3D; #[inline] fn add(self, other: Size3D) -> Self::Output { point3( self.x + other.width, self.y + other.height, self.z + other.depth, ) } } impl AddAssign> for Point3D { #[inline] fn add_assign(&mut self, other: Size3D) { self.x += other.width; self.y += other.height; self.z += other.depth; } } impl Add> for Point3D { type Output = Point3D; #[inline] fn add(self, other: Vector3D) -> Self::Output { point3(self.x + other.x, self.y + other.y, self.z + other.z) } } impl, U> AddAssign> for Point3D { #[inline] fn add_assign(&mut self, other: Vector3D) { *self = *self + other } } impl Sub for Point3D { type Output = Vector3D; #[inline] fn sub(self, other: Self) -> Self::Output { vec3(self.x - other.x, self.y - other.y, self.z - other.z) } } impl Sub> for Point3D { type Output = Point3D; #[inline] fn sub(self, other: Size3D) -> Self::Output { point3( self.x - other.width, self.y - other.height, self.z - other.depth, ) } } impl SubAssign> for Point3D { #[inline] fn sub_assign(&mut self, other: Size3D) { self.x -= other.width; self.y -= other.height; self.z -= other.depth; } } impl Sub> for Point3D { type Output = Point3D; #[inline] fn sub(self, other: Vector3D) -> Self::Output { point3(self.x - other.x, self.y - other.y, self.z - other.z) } } impl, U> SubAssign> for Point3D { #[inline] fn sub_assign(&mut self, other: Vector3D) { *self = *self - other } } impl Mul for Point3D { type Output = Point3D; #[inline] fn mul(self, scale: T) -> Self::Output { point3( self.x * scale, self.y * scale, self.z * scale, ) } } impl MulAssign for Point3D { #[inline] fn mul_assign(&mut self, scale: T) { self.x *= scale; self.y *= scale; self.z *= scale; } } impl Mul> for Point3D { type Output = Point3D; #[inline] fn mul(self, scale: Scale) -> Self::Output { point3( self.x * scale.0, self.y * scale.0, self.z * scale.0, ) } } impl MulAssign> for Point3D { #[inline] fn mul_assign(&mut self, scale: Scale) { *self *= scale.0; } } impl Div for Point3D { type Output = Point3D; #[inline] fn div(self, scale: T) -> Self::Output { point3( self.x / scale, self.y / scale, self.z / scale, ) } } impl DivAssign for Point3D { #[inline] fn div_assign(&mut self, scale: T) { self.x /= scale; self.y /= scale; self.z /= scale; } } impl Div> for Point3D { type Output = Point3D; #[inline] fn div(self, scale: Scale) -> Self::Output { point3( self.x / scale.0, self.y / scale.0, self.z / scale.0, ) } } impl DivAssign> for Point3D { #[inline] fn div_assign(&mut self, scale: Scale) { *self /= scale.0; } } impl Zero for Point3D { #[inline] fn zero() -> Self { Self::origin() } } impl Round for Point3D { /// See [Point3D::round()](#method.round) #[inline] fn round(self) -> Self { self.round() } } impl Ceil for Point3D { /// See [Point3D::ceil()](#method.ceil) #[inline] fn ceil(self) -> Self { self.ceil() } } impl Floor for Point3D { /// See [Point3D::floor()](#method.floor) #[inline] fn floor(self) -> Self { self.floor() } } impl, U> ApproxEq> for Point3D { #[inline] fn approx_epsilon() -> Self { point3( T::approx_epsilon(), T::approx_epsilon(), T::approx_epsilon(), ) } #[inline] fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) && self.z.approx_eq_eps(&other.z, &eps.z) } } impl Into<[T; 3]> for Point3D { fn into(self) -> [T; 3] { [self.x, self.y, self.z] } } impl From<[T; 3]> for Point3D { fn from([x, y, z]: [T; 3]) -> Self { point3(x, y, z) } } impl Into<(T, T, T)> for Point3D { fn into(self) -> (T, T, T) { (self.x, self.y, self.z) } } impl From<(T, T, T)> for Point3D { fn from(tuple: (T, T, T)) -> Self { point3(tuple.0, tuple.1, tuple.2) } } /// Shorthand for `Point2D::new(x, y)`. #[inline] pub const fn point2(x: T, y: T) -> Point2D { Point2D { x, y, _unit: PhantomData, } } /// Shorthand for `Point3D::new(x, y)`. #[inline] pub const fn point3(x: T, y: T, z: T) -> Point3D { Point3D { x, y, z, _unit: PhantomData, } } #[cfg(test)] mod point2d { use crate::default::Point2D; use crate::point2; #[cfg(feature = "mint")] use mint; #[test] pub fn test_min() { let p1 = Point2D::new(1.0, 3.0); let p2 = Point2D::new(2.0, 2.0); let result = p1.min(p2); assert_eq!(result, Point2D::new(1.0, 2.0)); } #[test] pub fn test_max() { let p1 = Point2D::new(1.0, 3.0); let p2 = Point2D::new(2.0, 2.0); let result = p1.max(p2); assert_eq!(result, Point2D::new(2.0, 3.0)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let p1 = Point2D::new(1.0, 3.0); let pm: mint::Point2<_> = p1.into(); let p2 = Point2D::from(pm); assert_eq!(p1, p2); } #[test] pub fn test_conv_vector() { for i in 0..100 { // We don't care about these values as long as they are not the same. let x = i as f32 * 0.012345; let y = i as f32 * 0.987654; let p: Point2D = point2(x, y); assert_eq!(p.to_vector().to_point(), p); } } #[test] pub fn test_swizzling() { let p: Point2D = point2(1, 2); assert_eq!(p.yx(), point2(2, 1)); } #[test] pub fn test_distance_to() { let p1 = Point2D::new(1.0, 2.0); let p2 = Point2D::new(2.0, 2.0); assert_eq!(p1.distance_to(p2), 1.0); let p1 = Point2D::new(1.0, 2.0); let p2 = Point2D::new(1.0, 4.0); assert_eq!(p1.distance_to(p2), 2.0); } mod ops { use crate::default::Point2D; use crate::scale::Scale; use crate::{size2, vec2, Vector2D}; pub enum Mm {} pub enum Cm {} pub type Point2DMm = crate::Point2D; pub type Point2DCm = crate::Point2D; #[test] pub fn test_neg() { assert_eq!(-Point2D::new(1.0, 2.0), Point2D::new(-1.0, -2.0)); assert_eq!(-Point2D::new(0.0, 0.0), Point2D::new(-0.0, -0.0)); assert_eq!(-Point2D::new(-1.0, -2.0), Point2D::new(1.0, 2.0)); } #[test] pub fn test_add_size() { let p1 = Point2DMm::new(1.0, 2.0); let p2 = size2(3.0, 4.0); let result = p1 + p2; assert_eq!(result, Point2DMm::new(4.0, 6.0)); } #[test] pub fn test_add_assign_size() { let mut p1 = Point2DMm::new(1.0, 2.0); p1 += size2(3.0, 4.0); assert_eq!(p1, Point2DMm::new(4.0, 6.0)); } #[test] pub fn test_add_vec() { let p1 = Point2DMm::new(1.0, 2.0); let p2 = vec2(3.0, 4.0); let result = p1 + p2; assert_eq!(result, Point2DMm::new(4.0, 6.0)); } #[test] pub fn test_add_assign_vec() { let mut p1 = Point2DMm::new(1.0, 2.0); p1 += vec2(3.0, 4.0); assert_eq!(p1, Point2DMm::new(4.0, 6.0)); } #[test] pub fn test_sub() { let p1 = Point2DMm::new(1.0, 2.0); let p2 = Point2DMm::new(3.0, 4.0); let result = p1 - p2; assert_eq!(result, Vector2D::<_, Mm>::new(-2.0, -2.0)); } #[test] pub fn test_sub_size() { let p1 = Point2DMm::new(1.0, 2.0); let p2 = size2(3.0, 4.0); let result = p1 - p2; assert_eq!(result, Point2DMm::new(-2.0, -2.0)); } #[test] pub fn test_sub_assign_size() { let mut p1 = Point2DMm::new(1.0, 2.0); p1 -= size2(3.0, 4.0); assert_eq!(p1, Point2DMm::new(-2.0, -2.0)); } #[test] pub fn test_sub_vec() { let p1 = Point2DMm::new(1.0, 2.0); let p2 = vec2(3.0, 4.0); let result = p1 - p2; assert_eq!(result, Point2DMm::new(-2.0, -2.0)); } #[test] pub fn test_sub_assign_vec() { let mut p1 = Point2DMm::new(1.0, 2.0); p1 -= vec2(3.0, 4.0); assert_eq!(p1, Point2DMm::new(-2.0, -2.0)); } #[test] pub fn test_mul_scalar() { let p1: Point2D = Point2D::new(3.0, 5.0); let result = p1 * 5.0; assert_eq!(result, Point2D::new(15.0, 25.0)); } #[test] pub fn test_mul_assign_scalar() { let mut p1 = Point2D::new(3.0, 5.0); p1 *= 5.0; assert_eq!(p1, Point2D::new(15.0, 25.0)); } #[test] pub fn test_mul_scale() { let p1 = Point2DMm::new(1.0, 2.0); let cm_per_mm: Scale = Scale::new(0.1); let result = p1 * cm_per_mm; assert_eq!(result, Point2DCm::new(0.1, 0.2)); } #[test] pub fn test_mul_assign_scale() { let mut p1 = Point2DMm::new(1.0, 2.0); let scale: Scale = Scale::new(0.1); p1 *= scale; assert_eq!(p1, Point2DMm::new(0.1, 0.2)); } #[test] pub fn test_div_scalar() { let p1: Point2D = Point2D::new(15.0, 25.0); let result = p1 / 5.0; assert_eq!(result, Point2D::new(3.0, 5.0)); } #[test] pub fn test_div_assign_scalar() { let mut p1: Point2D = Point2D::new(15.0, 25.0); p1 /= 5.0; assert_eq!(p1, Point2D::new(3.0, 5.0)); } #[test] pub fn test_div_scale() { let p1 = Point2DCm::new(0.1, 0.2); let cm_per_mm: Scale = Scale::new(0.1); let result = p1 / cm_per_mm; assert_eq!(result, Point2DMm::new(1.0, 2.0)); } #[test] pub fn test_div_assign_scale() { let mut p1 = Point2DMm::new(0.1, 0.2); let scale: Scale = Scale::new(0.1); p1 /= scale; assert_eq!(p1, Point2DMm::new(1.0, 2.0)); } #[test] pub fn test_point_debug_formatting() { let n = 1.23456789; let p1 = Point2D::new(n, -n); let should_be = format!("({:.4}, {:.4})", n, -n); let got = format!("{:.4?}", p1); assert_eq!(got, should_be); } } } #[cfg(test)] mod point3d { use crate::default; use crate::default::Point3D; use crate::{point2, point3}; #[cfg(feature = "mint")] use mint; #[test] pub fn test_min() { let p1 = Point3D::new(1.0, 3.0, 5.0); let p2 = Point3D::new(2.0, 2.0, -1.0); let result = p1.min(p2); assert_eq!(result, Point3D::new(1.0, 2.0, -1.0)); } #[test] pub fn test_max() { let p1 = Point3D::new(1.0, 3.0, 5.0); let p2 = Point3D::new(2.0, 2.0, -1.0); let result = p1.max(p2); assert_eq!(result, Point3D::new(2.0, 3.0, 5.0)); } #[test] pub fn test_conv_vector() { use crate::point3; for i in 0..100 { // We don't care about these values as long as they are not the same. let x = i as f32 * 0.012345; let y = i as f32 * 0.987654; let z = x * y; let p: Point3D = point3(x, y, z); assert_eq!(p.to_vector().to_point(), p); } } #[test] pub fn test_swizzling() { let p: default::Point3D = point3(1, 2, 3); assert_eq!(p.xy(), point2(1, 2)); assert_eq!(p.xz(), point2(1, 3)); assert_eq!(p.yz(), point2(2, 3)); } #[test] pub fn test_distance_to() { let p1 = Point3D::new(1.0, 2.0, 3.0); let p2 = Point3D::new(2.0, 2.0, 3.0); assert_eq!(p1.distance_to(p2), 1.0); let p1 = Point3D::new(1.0, 2.0, 3.0); let p2 = Point3D::new(1.0, 4.0, 3.0); assert_eq!(p1.distance_to(p2), 2.0); let p1 = Point3D::new(1.0, 2.0, 3.0); let p2 = Point3D::new(1.0, 2.0, 6.0); assert_eq!(p1.distance_to(p2), 3.0); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let p1 = Point3D::new(1.0, 3.0, 5.0); let pm: mint::Point3<_> = p1.into(); let p2 = Point3D::from(pm); assert_eq!(p1, p2); } mod ops { use crate::default::Point3D; use crate::scale::Scale; use crate::{size3, vec3, Vector3D}; pub enum Mm {} pub enum Cm {} pub type Point3DMm = crate::Point3D; pub type Point3DCm = crate::Point3D; #[test] pub fn test_neg() { assert_eq!(-Point3D::new(1.0, 2.0, 3.0), Point3D::new(-1.0, -2.0, -3.0)); assert_eq!(-Point3D::new(0.0, 0.0, 0.0), Point3D::new(-0.0, -0.0, -0.0)); assert_eq!(-Point3D::new(-1.0, -2.0, -3.0), Point3D::new(1.0, 2.0, 3.0)); } #[test] pub fn test_add_size() { let p1 = Point3DMm::new(1.0, 2.0, 3.0); let p2 = size3(4.0, 5.0, 6.0); let result = p1 + p2; assert_eq!(result, Point3DMm::new(5.0, 7.0, 9.0)); } #[test] pub fn test_add_assign_size() { let mut p1 = Point3DMm::new(1.0, 2.0, 3.0); p1 += size3(4.0, 5.0, 6.0); assert_eq!(p1, Point3DMm::new(5.0, 7.0, 9.0)); } #[test] pub fn test_add_vec() { let p1 = Point3DMm::new(1.0, 2.0, 3.0); let p2 = vec3(4.0, 5.0, 6.0); let result = p1 + p2; assert_eq!(result, Point3DMm::new(5.0, 7.0, 9.0)); } #[test] pub fn test_add_assign_vec() { let mut p1 = Point3DMm::new(1.0, 2.0, 3.0); p1 += vec3(4.0, 5.0, 6.0); assert_eq!(p1, Point3DMm::new(5.0, 7.0, 9.0)); } #[test] pub fn test_sub() { let p1 = Point3DMm::new(1.0, 2.0, 3.0); let p2 = Point3DMm::new(4.0, 5.0, 6.0); let result = p1 - p2; assert_eq!(result, Vector3D::<_, Mm>::new(-3.0, -3.0, -3.0)); } #[test] pub fn test_sub_size() { let p1 = Point3DMm::new(1.0, 2.0, 3.0); let p2 = size3(4.0, 5.0, 6.0); let result = p1 - p2; assert_eq!(result, Point3DMm::new(-3.0, -3.0, -3.0)); } #[test] pub fn test_sub_assign_size() { let mut p1 = Point3DMm::new(1.0, 2.0, 3.0); p1 -= size3(4.0, 5.0, 6.0); assert_eq!(p1, Point3DMm::new(-3.0, -3.0, -3.0)); } #[test] pub fn test_sub_vec() { let p1 = Point3DMm::new(1.0, 2.0, 3.0); let p2 = vec3(4.0, 5.0, 6.0); let result = p1 - p2; assert_eq!(result, Point3DMm::new(-3.0, -3.0, -3.0)); } #[test] pub fn test_sub_assign_vec() { let mut p1 = Point3DMm::new(1.0, 2.0, 3.0); p1 -= vec3(4.0, 5.0, 6.0); assert_eq!(p1, Point3DMm::new(-3.0, -3.0, -3.0)); } #[test] pub fn test_mul_scalar() { let p1: Point3D = Point3D::new(3.0, 5.0, 7.0); let result = p1 * 5.0; assert_eq!(result, Point3D::new(15.0, 25.0, 35.0)); } #[test] pub fn test_mul_assign_scalar() { let mut p1: Point3D = Point3D::new(3.0, 5.0, 7.0); p1 *= 5.0; assert_eq!(p1, Point3D::new(15.0, 25.0, 35.0)); } #[test] pub fn test_mul_scale() { let p1 = Point3DMm::new(1.0, 2.0, 3.0); let cm_per_mm: Scale = Scale::new(0.1); let result = p1 * cm_per_mm; assert_eq!(result, Point3DCm::new(0.1, 0.2, 0.3)); } #[test] pub fn test_mul_assign_scale() { let mut p1 = Point3DMm::new(1.0, 2.0, 3.0); let scale: Scale = Scale::new(0.1); p1 *= scale; assert_eq!(p1, Point3DMm::new(0.1, 0.2, 0.3)); } #[test] pub fn test_div_scalar() { let p1: Point3D = Point3D::new(15.0, 25.0, 35.0); let result = p1 / 5.0; assert_eq!(result, Point3D::new(3.0, 5.0, 7.0)); } #[test] pub fn test_div_assign_scalar() { let mut p1: Point3D = Point3D::new(15.0, 25.0, 35.0); p1 /= 5.0; assert_eq!(p1, Point3D::new(3.0, 5.0, 7.0)); } #[test] pub fn test_div_scale() { let p1 = Point3DCm::new(0.1, 0.2, 0.3); let cm_per_mm: Scale = Scale::new(0.1); let result = p1 / cm_per_mm; assert_eq!(result, Point3DMm::new(1.0, 2.0, 3.0)); } #[test] pub fn test_div_assign_scale() { let mut p1 = Point3DMm::new(0.1, 0.2, 0.3); let scale: Scale = Scale::new(0.1); p1 /= scale; assert_eq!(p1, Point3DMm::new(1.0, 2.0, 3.0)); } } } euclid-0.22.7/src/rect.rs000064400000000000000000000672510072674642500133160ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use crate::box2d::Box2D; use crate::num::*; use crate::point::Point2D; use crate::scale::Scale; use crate::side_offsets::SideOffsets2D; use crate::size::Size2D; use crate::vector::Vector2D; use num_traits::{NumCast, Float}; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; use core::borrow::Borrow; use core::cmp::PartialOrd; use core::fmt; use core::hash::{Hash, Hasher}; use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Range, Sub}; /// A 2d Rectangle optionally tagged with a unit. /// /// # Representation /// /// `Rect` is represented by an origin point and a size. /// /// See [`Box2D`] for a rectangle represented by two endpoints. /// /// # Empty rectangle /// /// A rectangle is considered empty (see [`is_empty`]) if any of the following is true: /// - it's area is empty, /// - it's area is negative (`size.x < 0` or `size.y < 0`), /// - it contains NaNs. /// /// [`is_empty`]: #method.is_empty /// [`Box2D`]: struct.Box2D.html #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")) )] pub struct Rect { pub origin: Point2D, pub size: Size2D, } #[cfg(feature = "arbitrary")] impl<'a, T, U> arbitrary::Arbitrary<'a> for Rect where T: arbitrary::Arbitrary<'a>, { fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result { let (origin, size) = arbitrary::Arbitrary::arbitrary(u)?; Ok(Rect { origin, size, }) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Rect {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Rect {} impl Hash for Rect { fn hash(&self, h: &mut H) { self.origin.hash(h); self.size.hash(h); } } impl Copy for Rect {} impl Clone for Rect { fn clone(&self) -> Self { Self::new(self.origin.clone(), self.size.clone()) } } impl PartialEq for Rect { fn eq(&self, other: &Self) -> bool { self.origin.eq(&other.origin) && self.size.eq(&other.size) } } impl Eq for Rect {} impl fmt::Debug for Rect { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Rect(")?; fmt::Debug::fmt(&self.size, f)?; write!(f, " at ")?; fmt::Debug::fmt(&self.origin, f)?; write!(f, ")") } } impl Default for Rect { fn default() -> Self { Rect::new(Default::default(), Default::default()) } } impl Rect { /// Constructor. #[inline] pub const fn new(origin: Point2D, size: Size2D) -> Self { Rect { origin, size } } } impl Rect where T: Zero, { /// Constructor, setting all sides to zero. #[inline] pub fn zero() -> Self { Rect::new(Point2D::origin(), Size2D::zero()) } /// Creates a rect of the given size, at offset zero. #[inline] pub fn from_size(size: Size2D) -> Self { Rect { origin: Point2D::zero(), size, } } } impl Rect where T: Copy + Add, { #[inline] pub fn min(&self) -> Point2D { self.origin } #[inline] pub fn max(&self) -> Point2D { self.origin + self.size } #[inline] pub fn max_x(&self) -> T { self.origin.x + self.size.width } #[inline] pub fn min_x(&self) -> T { self.origin.x } #[inline] pub fn max_y(&self) -> T { self.origin.y + self.size.height } #[inline] pub fn min_y(&self) -> T { self.origin.y } #[inline] pub fn width(&self) -> T { self.size.width } #[inline] pub fn height(&self) -> T { self.size.height } #[inline] pub fn x_range(&self) -> Range { self.min_x()..self.max_x() } #[inline] pub fn y_range(&self) -> Range { self.min_y()..self.max_y() } /// Returns the same rectangle, translated by a vector. #[inline] #[must_use] pub fn translate(&self, by: Vector2D) -> Self { Self::new(self.origin + by, self.size) } #[inline] pub fn to_box2d(&self) -> Box2D { Box2D { min: self.min(), max: self.max(), } } } impl Rect where T: Copy + PartialOrd + Add, { /// Returns true if this rectangle contains the point. Points are considered /// in the rectangle if they are on the left or top edge, but outside if they /// are on the right or bottom edge. #[inline] pub fn contains(&self, p: Point2D) -> bool { self.to_box2d().contains(p) } #[inline] pub fn intersects(&self, other: &Self) -> bool { self.to_box2d().intersects(&other.to_box2d()) } } impl Rect where T: Copy + PartialOrd + Add + Sub, { #[inline] pub fn intersection(&self, other: &Self) -> Option { let box2d = self.to_box2d().intersection_unchecked(&other.to_box2d()); if box2d.is_empty() { return None; } Some(box2d.to_rect()) } } impl Rect where T: Copy + Add + Sub, { #[inline] #[must_use] pub fn inflate(&self, width: T, height: T) -> Self { Rect::new( Point2D::new(self.origin.x - width, self.origin.y - height), Size2D::new( self.size.width + width + width, self.size.height + height + height, ), ) } } impl Rect where T: Copy + Zero + PartialOrd + Add, { /// Returns true if this rectangle contains the interior of rect. Always /// returns true if rect is empty, and always returns false if rect is /// nonempty but this rectangle is empty. #[inline] pub fn contains_rect(&self, rect: &Self) -> bool { rect.is_empty() || (self.min_x() <= rect.min_x() && rect.max_x() <= self.max_x() && self.min_y() <= rect.min_y() && rect.max_y() <= self.max_y()) } } impl Rect where T: Copy + Zero + PartialOrd + Add + Sub, { /// Calculate the size and position of an inner rectangle. /// /// Subtracts the side offsets from all sides. The horizontal and vertical /// offsets must not be larger than the original side length. /// This method assumes y oriented downward. pub fn inner_rect(&self, offsets: SideOffsets2D) -> Self { let rect = Rect::new( Point2D::new(self.origin.x + offsets.left, self.origin.y + offsets.top), Size2D::new( self.size.width - offsets.horizontal(), self.size.height - offsets.vertical(), ), ); debug_assert!(rect.size.width >= Zero::zero()); debug_assert!(rect.size.height >= Zero::zero()); rect } } impl Rect where T: Copy + Add + Sub, { /// Calculate the size and position of an outer rectangle. /// /// Add the offsets to all sides. The expanded rectangle is returned. /// This method assumes y oriented downward. pub fn outer_rect(&self, offsets: SideOffsets2D) -> Self { Rect::new( Point2D::new(self.origin.x - offsets.left, self.origin.y - offsets.top), Size2D::new( self.size.width + offsets.horizontal(), self.size.height + offsets.vertical(), ), ) } } impl Rect where T: Copy + Zero + PartialOrd + Sub, { /// Returns the smallest rectangle defined by the top/bottom/left/right-most /// points provided as parameter. /// /// Note: This function has a behavior that can be surprising because /// the right-most and bottom-most points are exactly on the edge /// of the rectangle while the `contains` function is has exclusive /// semantic on these edges. This means that the right-most and bottom-most /// points provided to `from_points` will count as not contained by the rect. /// This behavior may change in the future. pub fn from_points(points: I) -> Self where I: IntoIterator, I::Item: Borrow>, { Box2D::from_points(points).to_rect() } } impl Rect where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this rectangle and another rectangle. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { Self::new( self.origin.lerp(other.origin, t), self.size.lerp(other.size, t), ) } } impl Rect where T: Copy + One + Add + Div, { pub fn center(&self) -> Point2D { let two = T::one() + T::one(); self.origin + self.size.to_vector() / two } } impl Rect where T: Copy + PartialOrd + Add + Sub + Zero, { #[inline] pub fn union(&self, other: &Self) -> Self { self.to_box2d().union(&other.to_box2d()).to_rect() } } impl Rect { #[inline] pub fn scale(&self, x: S, y: S) -> Self where T: Copy + Mul, { Rect::new( Point2D::new(self.origin.x * x, self.origin.y * y), Size2D::new(self.size.width * x, self.size.height * y), ) } } impl, U> Rect { #[inline] pub fn area(&self) -> T { self.size.area() } } impl Rect { #[inline] pub fn is_empty(&self) -> bool { self.size.is_empty() } } impl Rect { #[inline] pub fn to_non_empty(&self) -> Option { if self.is_empty() { return None; } Some(*self) } } impl Mul for Rect { type Output = Rect; #[inline] fn mul(self, scale: T) -> Self::Output { Rect::new(self.origin * scale, self.size * scale) } } impl MulAssign for Rect { #[inline] fn mul_assign(&mut self, scale: T) { *self *= Scale::new(scale); } } impl Div for Rect { type Output = Rect; #[inline] fn div(self, scale: T) -> Self::Output { Rect::new(self.origin / scale.clone(), self.size / scale) } } impl DivAssign for Rect { #[inline] fn div_assign(&mut self, scale: T) { *self /= Scale::new(scale); } } impl Mul> for Rect { type Output = Rect; #[inline] fn mul(self, scale: Scale) -> Self::Output { Rect::new(self.origin * scale.clone(), self.size * scale) } } impl MulAssign> for Rect { #[inline] fn mul_assign(&mut self, scale: Scale) { self.origin *= scale.clone(); self.size *= scale; } } impl Div> for Rect { type Output = Rect; #[inline] fn div(self, scale: Scale) -> Self::Output { Rect::new(self.origin / scale.clone(), self.size / scale) } } impl DivAssign> for Rect { #[inline] fn div_assign(&mut self, scale: Scale) { self.origin /= scale.clone(); self.size /= scale; } } impl Rect { /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Rect { Rect::new(self.origin.to_untyped(), self.size.to_untyped()) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(r: &Rect) -> Rect { Rect::new( Point2D::from_untyped(r.origin), Size2D::from_untyped(r.size), ) } /// Cast the unit #[inline] pub fn cast_unit(&self) -> Rect { Rect::new(self.origin.cast_unit(), self.size.cast_unit()) } } impl Rect { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. #[inline] pub fn cast(&self) -> Rect { Rect::new(self.origin.cast(), self.size.cast()) } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. pub fn try_cast(&self) -> Option> { match (self.origin.try_cast(), self.size.try_cast()) { (Some(origin), Some(size)) => Some(Rect::new(origin, size)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` rectangle. #[inline] pub fn to_f32(&self) -> Rect { self.cast() } /// Cast into an `f64` rectangle. #[inline] pub fn to_f64(&self) -> Rect { self.cast() } /// Cast into an `usize` rectangle, truncating decimals if any. /// /// When casting from floating point rectangles, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_usize(&self) -> Rect { self.cast() } /// Cast into an `u32` rectangle, truncating decimals if any. /// /// When casting from floating point rectangles, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_u32(&self) -> Rect { self.cast() } /// Cast into an `u64` rectangle, truncating decimals if any. /// /// When casting from floating point rectangles, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_u64(&self) -> Rect { self.cast() } /// Cast into an `i32` rectangle, truncating decimals if any. /// /// When casting from floating point rectangles, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_i32(&self) -> Rect { self.cast() } /// Cast into an `i64` rectangle, truncating decimals if any. /// /// When casting from floating point rectangles, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_i64(&self) -> Rect { self.cast() } } impl Rect { /// Returns true if all members are finite. #[inline] pub fn is_finite(self) -> bool { self.origin.is_finite() && self.size.is_finite() } } impl + Sub, U> Rect { /// Return a rectangle with edges rounded to integer coordinates, such that /// the returned rectangle has the same set of pixel centers as the original /// one. /// Edges at offset 0.5 round up. /// Suitable for most places where integral device coordinates /// are needed, but note that any translation should be applied first to /// avoid pixel rounding errors. /// Note that this is *not* rounding to nearest integer if the values are negative. /// They are always rounding as floor(n + 0.5). /// /// # Usage notes /// Note, that when using with floating-point `T` types that method can significantly /// loose precision for large values, so if you need to call this method very often it /// is better to use [`Box2D`]. /// /// [`Box2D`]: struct.Box2D.html #[must_use] pub fn round(&self) -> Self { self.to_box2d().round().to_rect() } /// Return a rectangle with edges rounded to integer coordinates, such that /// the original rectangle contains the resulting rectangle. /// /// # Usage notes /// Note, that when using with floating-point `T` types that method can significantly /// loose precision for large values, so if you need to call this method very often it /// is better to use [`Box2D`]. /// /// [`Box2D`]: struct.Box2D.html #[must_use] pub fn round_in(&self) -> Self { self.to_box2d().round_in().to_rect() } /// Return a rectangle with edges rounded to integer coordinates, such that /// the original rectangle is contained in the resulting rectangle. /// /// # Usage notes /// Note, that when using with floating-point `T` types that method can significantly /// loose precision for large values, so if you need to call this method very often it /// is better to use [`Box2D`]. /// /// [`Box2D`]: struct.Box2D.html #[must_use] pub fn round_out(&self) -> Self { self.to_box2d().round_out().to_rect() } } impl From> for Rect where T: Zero, { fn from(size: Size2D) -> Self { Self::from_size(size) } } /// Shorthand for `Rect::new(Point2D::new(x, y), Size2D::new(w, h))`. pub const fn rect(x: T, y: T, w: T, h: T) -> Rect { Rect::new(Point2D::new(x, y), Size2D::new(w, h)) } #[cfg(test)] mod tests { use crate::default::{Point2D, Rect, Size2D}; use crate::side_offsets::SideOffsets2D; use crate::{point2, rect, size2, vec2}; #[test] fn test_translate() { let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32)); let pp = p.translate(vec2(10, 15)); assert!(pp.size.width == 50); assert!(pp.size.height == 40); assert!(pp.origin.x == 10); assert!(pp.origin.y == 15); let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40)); let rr = r.translate(vec2(0, -10)); assert!(rr.size.width == 50); assert!(rr.size.height == 40); assert!(rr.origin.x == -10); assert!(rr.origin.y == -15); } #[test] fn test_union() { let p = Rect::new(Point2D::new(0, 0), Size2D::new(50, 40)); let q = Rect::new(Point2D::new(20, 20), Size2D::new(5, 5)); let r = Rect::new(Point2D::new(-15, -30), Size2D::new(200, 15)); let s = Rect::new(Point2D::new(20, -15), Size2D::new(250, 200)); let pq = p.union(&q); assert!(pq.origin == Point2D::new(0, 0)); assert!(pq.size == Size2D::new(50, 40)); let pr = p.union(&r); assert!(pr.origin == Point2D::new(-15, -30)); assert!(pr.size == Size2D::new(200, 70)); let ps = p.union(&s); assert!(ps.origin == Point2D::new(0, -15)); assert!(ps.size == Size2D::new(270, 200)); } #[test] fn test_intersection() { let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20)); let q = Rect::new(Point2D::new(5, 15), Size2D::new(10, 10)); let r = Rect::new(Point2D::new(-5, -5), Size2D::new(8, 8)); let pq = p.intersection(&q); assert!(pq.is_some()); let pq = pq.unwrap(); assert!(pq.origin == Point2D::new(5, 15)); assert!(pq.size == Size2D::new(5, 5)); let pr = p.intersection(&r); assert!(pr.is_some()); let pr = pr.unwrap(); assert!(pr.origin == Point2D::new(0, 0)); assert!(pr.size == Size2D::new(3, 3)); let qr = q.intersection(&r); assert!(qr.is_none()); } #[test] fn test_intersection_overflow() { // test some scenarios where the intersection can overflow but // the min_x() and max_x() don't. Gecko currently fails these cases let p = Rect::new(Point2D::new(-2147483648, -2147483648), Size2D::new(0, 0)); let q = Rect::new( Point2D::new(2136893440, 2136893440), Size2D::new(279552, 279552), ); let r = Rect::new(Point2D::new(-2147483648, -2147483648), Size2D::new(1, 1)); assert!(p.is_empty()); let pq = p.intersection(&q); assert!(pq.is_none()); let qr = q.intersection(&r); assert!(qr.is_none()); } #[test] fn test_contains() { let r = Rect::new(Point2D::new(-20, 15), Size2D::new(100, 200)); assert!(r.contains(Point2D::new(0, 50))); assert!(r.contains(Point2D::new(-10, 200))); // The `contains` method is inclusive of the top/left edges, but not the // bottom/right edges. assert!(r.contains(Point2D::new(-20, 15))); assert!(!r.contains(Point2D::new(80, 15))); assert!(!r.contains(Point2D::new(80, 215))); assert!(!r.contains(Point2D::new(-20, 215))); // Points beyond the top-left corner. assert!(!r.contains(Point2D::new(-25, 15))); assert!(!r.contains(Point2D::new(-15, 10))); // Points beyond the top-right corner. assert!(!r.contains(Point2D::new(85, 20))); assert!(!r.contains(Point2D::new(75, 10))); // Points beyond the bottom-right corner. assert!(!r.contains(Point2D::new(85, 210))); assert!(!r.contains(Point2D::new(75, 220))); // Points beyond the bottom-left corner. assert!(!r.contains(Point2D::new(-25, 210))); assert!(!r.contains(Point2D::new(-15, 220))); let r = Rect::new(Point2D::new(-20.0, 15.0), Size2D::new(100.0, 200.0)); assert!(r.contains_rect(&r)); assert!(!r.contains_rect(&r.translate(vec2(0.1, 0.0)))); assert!(!r.contains_rect(&r.translate(vec2(-0.1, 0.0)))); assert!(!r.contains_rect(&r.translate(vec2(0.0, 0.1)))); assert!(!r.contains_rect(&r.translate(vec2(0.0, -0.1)))); // Empty rectangles are always considered as contained in other rectangles, // even if their origin is not. let p = Point2D::new(1.0, 1.0); assert!(!r.contains(p)); assert!(r.contains_rect(&Rect::new(p, Size2D::zero()))); } #[test] fn test_scale() { let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32)); let pp = p.scale(10, 15); assert!(pp.size.width == 500); assert!(pp.size.height == 600); assert!(pp.origin.x == 0); assert!(pp.origin.y == 0); let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40)); let rr = r.scale(1, 20); assert!(rr.size.width == 50); assert!(rr.size.height == 800); assert!(rr.origin.x == -10); assert!(rr.origin.y == -100); } #[test] fn test_inflate() { let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 10)); let pp = p.inflate(10, 20); assert!(pp.size.width == 30); assert!(pp.size.height == 50); assert!(pp.origin.x == -10); assert!(pp.origin.y == -20); let r = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20)); let rr = r.inflate(-2, -5); assert!(rr.size.width == 6); assert!(rr.size.height == 10); assert!(rr.origin.x == 2); assert!(rr.origin.y == 5); } #[test] fn test_inner_outer_rect() { let inner_rect = Rect::new(point2(20, 40), size2(80, 100)); let offsets = SideOffsets2D::new(20, 10, 10, 10); let outer_rect = inner_rect.outer_rect(offsets); assert_eq!(outer_rect.origin.x, 10); assert_eq!(outer_rect.origin.y, 20); assert_eq!(outer_rect.size.width, 100); assert_eq!(outer_rect.size.height, 130); assert_eq!(outer_rect.inner_rect(offsets), inner_rect); } #[test] fn test_min_max_x_y() { let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32)); assert!(p.max_y() == 40); assert!(p.min_y() == 0); assert!(p.max_x() == 50); assert!(p.min_x() == 0); let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40)); assert!(r.max_y() == 35); assert!(r.min_y() == -5); assert!(r.max_x() == 40); assert!(r.min_x() == -10); } #[test] fn test_width_height() { let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40)); assert!(r.width() == 50); assert!(r.height() == 40); } #[test] fn test_is_empty() { assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 0u32)).is_empty()); assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(10u32, 0u32)).is_empty()); assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 10u32)).is_empty()); assert!(!Rect::new(Point2D::new(0u32, 0u32), Size2D::new(1u32, 1u32)).is_empty()); assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 0u32)).is_empty()); assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(10u32, 0u32)).is_empty()); assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 10u32)).is_empty()); assert!(!Rect::new(Point2D::new(10u32, 10u32), Size2D::new(1u32, 1u32)).is_empty()); } #[test] fn test_round() { let mut x = -2.0; let mut y = -2.0; let mut w = -2.0; let mut h = -2.0; while x < 2.0 { while y < 2.0 { while w < 2.0 { while h < 2.0 { let rect = Rect::new(Point2D::new(x, y), Size2D::new(w, h)); assert!(rect.contains_rect(&rect.round_in())); assert!(rect.round_in().inflate(1.0, 1.0).contains_rect(&rect)); assert!(rect.round_out().contains_rect(&rect)); assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round_out())); assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round())); assert!(rect.round().inflate(1.0, 1.0).contains_rect(&rect)); h += 0.1; } w += 0.1; } y += 0.1; } x += 0.1 } } #[test] fn test_center() { let r: Rect = rect(-2, 5, 4, 10); assert_eq!(r.center(), point2(0, 10)); let r: Rect = rect(1.0, 2.0, 3.0, 4.0); assert_eq!(r.center(), point2(2.5, 4.0)); } #[test] fn test_nan() { let r1: Rect = rect(-2.0, 5.0, 4.0, std::f32::NAN); let r2: Rect = rect(std::f32::NAN, -1.0, 3.0, 10.0); assert_eq!(r1.intersection(&r2), None); } } euclid-0.22.7/src/rigid.rs000064400000000000000000000222570072674642500134540ustar 00000000000000//! All matrix multiplication in this module is in row-vector notation, //! i.e. a vector `v` is transformed with `v * T`, and if you want to apply `T1` //! before `T2` you use `T1 * T2` use crate::approxeq::ApproxEq; use crate::trig::Trig; use crate::{Rotation3D, Transform3D, UnknownUnit, Vector3D}; use num_traits::real::Real; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// A rigid transformation. All lengths are preserved under such a transformation. /// /// /// Internally, this is a rotation and a translation, with the rotation /// applied first (i.e. `Rotation * Translation`, in row-vector notation) /// /// This can be more efficient to use over full matrices, especially if you /// have to deal with the decomposed quantities often. #[derive(Debug, PartialEq, Eq, Hash)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[repr(C)] pub struct RigidTransform3D { pub rotation: Rotation3D, pub translation: Vector3D, } impl RigidTransform3D { /// Construct a new rigid transformation, where the `rotation` applies first #[inline] pub const fn new(rotation: Rotation3D, translation: Vector3D) -> Self { Self { rotation, translation, } } } impl RigidTransform3D { pub fn cast_unit(&self) -> RigidTransform3D { RigidTransform3D { rotation: self.rotation.cast_unit(), translation: self.translation.cast_unit(), } } } impl, Src, Dst> RigidTransform3D { /// Construct an identity transform #[inline] pub fn identity() -> Self { Self { rotation: Rotation3D::identity(), translation: Vector3D::zero(), } } /// Construct a new rigid transformation, where the `translation` applies first #[inline] pub fn new_from_reversed( translation: Vector3D, rotation: Rotation3D, ) -> Self { // T * R // = (R * R^-1) * T * R // = R * (R^-1 * T * R) // = R * T' // // T' = (R^-1 * T * R) is also a translation matrix // It is equivalent to the translation matrix obtained by rotating the // translation by R let translation = rotation.transform_vector3d(translation); Self { rotation, translation, } } #[inline] pub fn from_rotation(rotation: Rotation3D) -> Self { Self { rotation, translation: Vector3D::zero(), } } #[inline] pub fn from_translation(translation: Vector3D) -> Self { Self { translation, rotation: Rotation3D::identity(), } } /// Decompose this into a translation and an rotation to be applied in the opposite order /// /// i.e., the translation is applied _first_ #[inline] pub fn decompose_reversed(&self) -> (Vector3D, Rotation3D) { // self = R * T // = R * T * (R^-1 * R) // = (R * T * R^-1) * R) // = T' * R // // T' = (R^ * T * R^-1) is T rotated by R^-1 let translation = self.rotation.inverse().transform_vector3d(self.translation); (translation, self.rotation) } /// Returns the multiplication of the two transforms such that /// other's transformation applies after self's transformation. /// /// i.e., this produces `self * other` in row-vector notation #[inline] pub fn then( &self, other: &RigidTransform3D, ) -> RigidTransform3D { // self = R1 * T1 // other = R2 * T2 // result = R1 * T1 * R2 * T2 // = R1 * (R2 * R2^-1) * T1 * R2 * T2 // = (R1 * R2) * (R2^-1 * T1 * R2) * T2 // = R' * T' * T2 // = R' * T'' // // (R2^-1 * T2 * R2^) = T' = T2 rotated by R2 // R1 * R2 = R' // T' * T2 = T'' = vector addition of translations T2 and T' let t_prime = other.rotation.transform_vector3d(self.translation); let r_prime = self.rotation.then(&other.rotation); let t_prime2 = t_prime + other.translation; RigidTransform3D { rotation: r_prime, translation: t_prime2, } } /// Inverts the transformation #[inline] pub fn inverse(&self) -> RigidTransform3D { // result = (self)^-1 // = (R * T)^-1 // = T^-1 * R^-1 // = (R^-1 * R) * T^-1 * R^-1 // = R^-1 * (R * T^-1 * R^-1) // = R' * T' // // T' = (R * T^-1 * R^-1) = (-T) rotated by R^-1 // R' = R^-1 // // An easier way of writing this is to use new_from_reversed() with R^-1 and T^-1 RigidTransform3D::new_from_reversed(-self.translation, self.rotation.inverse()) } pub fn to_transform(&self) -> Transform3D where T: Trig, { self.rotation.to_transform().then(&self.translation.to_transform()) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> RigidTransform3D { RigidTransform3D { rotation: self.rotation.to_untyped(), translation: self.translation.to_untyped(), } } /// Tag a unitless value with units. #[inline] pub fn from_untyped(transform: &RigidTransform3D) -> Self { RigidTransform3D { rotation: Rotation3D::from_untyped(&transform.rotation), translation: Vector3D::from_untyped(transform.translation), } } } impl Copy for RigidTransform3D {} impl Clone for RigidTransform3D { fn clone(&self) -> Self { RigidTransform3D { rotation: self.rotation.clone(), translation: self.translation.clone(), } } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for RigidTransform3D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for RigidTransform3D {} impl, Src, Dst> From> for RigidTransform3D { fn from(rot: Rotation3D) -> Self { Self::from_rotation(rot) } } impl, Src, Dst> From> for RigidTransform3D { fn from(t: Vector3D) -> Self { Self::from_translation(t) } } #[cfg(test)] mod test { use super::RigidTransform3D; use crate::default::{Rotation3D, Transform3D, Vector3D}; #[test] fn test_rigid_construction() { let translation = Vector3D::new(12.1, 17.8, -5.5); let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3); let rigid = RigidTransform3D::new(rotation, translation); assert!(rigid.to_transform().approx_eq( &rotation.to_transform().then(&translation.to_transform()) )); let rigid = RigidTransform3D::new_from_reversed(translation, rotation); assert!(rigid.to_transform().approx_eq( &translation.to_transform().then(&rotation.to_transform()) )); } #[test] fn test_rigid_decomposition() { let translation = Vector3D::new(12.1, 17.8, -5.5); let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3); let rigid = RigidTransform3D::new(rotation, translation); let (t2, r2) = rigid.decompose_reversed(); assert!(rigid .to_transform() .approx_eq(&t2.to_transform().then(&r2.to_transform()))); } #[test] fn test_rigid_inverse() { let translation = Vector3D::new(12.1, 17.8, -5.5); let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3); let rigid = RigidTransform3D::new(rotation, translation); let inverse = rigid.inverse(); assert!(rigid .then(&inverse) .to_transform() .approx_eq(&Transform3D::identity())); assert!(inverse .to_transform() .approx_eq(&rigid.to_transform().inverse().unwrap())); } #[test] fn test_rigid_multiply() { let translation = Vector3D::new(12.1, 17.8, -5.5); let rotation = Rotation3D::unit_quaternion(0.5, -7.8, 2.2, 4.3); let translation2 = Vector3D::new(9.3, -3.9, 1.1); let rotation2 = Rotation3D::unit_quaternion(0.1, 0.2, 0.3, -0.4); let rigid = RigidTransform3D::new(rotation, translation); let rigid2 = RigidTransform3D::new(rotation2, translation2); assert!(rigid .then(&rigid2) .to_transform() .approx_eq(&rigid.to_transform().then(&rigid2.to_transform()))); assert!(rigid2 .then(&rigid) .to_transform() .approx_eq(&rigid2.to_transform().then(&rigid.to_transform()))); } } euclid-0.22.7/src/rotation.rs000064400000000000000000000740130072674642500142120ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use crate::approxeq::ApproxEq; use crate::trig::Trig; use crate::{point2, point3, vec3, Angle, Point2D, Point3D, Vector2D, Vector3D}; use crate::{Transform2D, Transform3D, UnknownUnit}; use core::cmp::{Eq, PartialEq}; use core::fmt; use core::hash::Hash; use core::marker::PhantomData; use core::ops::{Add, Mul, Neg, Sub}; use num_traits::real::Real; use num_traits::{NumCast, One, Zero}; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// A transform that can represent rotations in 2d, represented as an angle in radians. #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde", serde(bound( serialize = "T: serde::Serialize", deserialize = "T: serde::Deserialize<'de>" )) )] pub struct Rotation2D { /// Angle in radians pub angle: T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } impl Copy for Rotation2D {} impl Clone for Rotation2D { fn clone(&self) -> Self { Rotation2D { angle: self.angle.clone(), _unit: PhantomData, } } } impl Eq for Rotation2D where T: Eq {} impl PartialEq for Rotation2D where T: PartialEq, { fn eq(&self, other: &Self) -> bool { self.angle == other.angle } } impl Hash for Rotation2D where T: Hash, { fn hash(&self, h: &mut H) { self.angle.hash(h); } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Rotation2D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Rotation2D {} impl Rotation2D { /// Creates a rotation from an angle in radians. #[inline] pub fn new(angle: Angle) -> Self { Rotation2D { angle: angle.radians, _unit: PhantomData, } } /// Creates a rotation from an angle in radians. pub fn radians(angle: T) -> Self { Self::new(Angle::radians(angle)) } /// Creates the identity rotation. #[inline] pub fn identity() -> Self where T: Zero, { Self::radians(T::zero()) } } impl Rotation2D { /// Cast the unit, preserving the numeric value. /// /// # Example /// /// ```rust /// # use euclid::Rotation2D; /// enum Local {} /// enum World {} /// /// enum Local2 {} /// enum World2 {} /// /// let to_world: Rotation2D<_, Local, World> = Rotation2D::radians(42); /// /// assert_eq!(to_world.angle, to_world.cast_unit::().angle); /// ``` #[inline] pub fn cast_unit(&self) -> Rotation2D { Rotation2D { angle: self.angle, _unit: PhantomData, } } /// Drop the units, preserving only the numeric value. /// /// # Example /// /// ```rust /// # use euclid::Rotation2D; /// enum Local {} /// enum World {} /// /// let to_world: Rotation2D<_, Local, World> = Rotation2D::radians(42); /// /// assert_eq!(to_world.angle, to_world.to_untyped().angle); /// ``` #[inline] pub fn to_untyped(&self) -> Rotation2D { self.cast_unit() } /// Tag a unitless value with units. /// /// # Example /// /// ```rust /// # use euclid::Rotation2D; /// use euclid::UnknownUnit; /// enum Local {} /// enum World {} /// /// let rot: Rotation2D<_, UnknownUnit, UnknownUnit> = Rotation2D::radians(42); /// /// assert_eq!(rot.angle, Rotation2D::<_, Local, World>::from_untyped(&rot).angle); /// ``` #[inline] pub fn from_untyped(r: &Rotation2D) -> Self { r.cast_unit() } } impl Rotation2D where T: Copy, { /// Returns self.angle as a strongly typed `Angle`. pub fn get_angle(&self) -> Angle { Angle::radians(self.angle) } } impl Rotation2D { /// Creates a 3d rotation (around the z axis) from this 2d rotation. #[inline] pub fn to_3d(&self) -> Rotation3D { Rotation3D::around_z(self.get_angle()) } /// Returns the inverse of this rotation. #[inline] pub fn inverse(&self) -> Rotation2D { Rotation2D::radians(-self.angle) } /// Returns a rotation representing the other rotation followed by this rotation. #[inline] pub fn then( &self, other: &Rotation2D, ) -> Rotation2D { Rotation2D::radians(self.angle + other.angle) } /// Returns the given 2d point transformed by this rotation. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_point(&self, point: Point2D) -> Point2D { let (sin, cos) = Real::sin_cos(self.angle); point2(point.x * cos - point.y * sin, point.y * cos + point.x * sin) } /// Returns the given 2d vector transformed by this rotation. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_vector(&self, vector: Vector2D) -> Vector2D { self.transform_point(vector.to_point()).to_vector() } } impl Rotation2D where T: Copy + Add + Sub + Mul + Zero + Trig, { /// Returns the matrix representation of this rotation. #[inline] pub fn to_transform(&self) -> Transform2D { Transform2D::rotation(self.get_angle()) } } /// A transform that can represent rotations in 3d, represented as a quaternion. /// /// Most methods expect the quaternion to be normalized. /// When in doubt, use `unit_quaternion` instead of `quaternion` to create /// a rotation as the former will ensure that its result is normalized. /// /// Some people use the `x, y, z, w` (or `w, x, y, z`) notations. The equivalence is /// as follows: `x -> i`, `y -> j`, `z -> k`, `w -> r`. /// The memory layout of this type corresponds to the `x, y, z, w` notation #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde", serde(bound( serialize = "T: serde::Serialize", deserialize = "T: serde::Deserialize<'de>" )) )] pub struct Rotation3D { /// Component multiplied by the imaginary number `i`. pub i: T, /// Component multiplied by the imaginary number `j`. pub j: T, /// Component multiplied by the imaginary number `k`. pub k: T, /// The real part. pub r: T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } impl Copy for Rotation3D {} impl Clone for Rotation3D { fn clone(&self) -> Self { Rotation3D { i: self.i.clone(), j: self.j.clone(), k: self.k.clone(), r: self.r.clone(), _unit: PhantomData, } } } impl Eq for Rotation3D where T: Eq {} impl PartialEq for Rotation3D where T: PartialEq, { fn eq(&self, other: &Self) -> bool { self.i == other.i && self.j == other.j && self.k == other.k && self.r == other.r } } impl Hash for Rotation3D where T: Hash, { fn hash(&self, h: &mut H) { self.i.hash(h); self.j.hash(h); self.k.hash(h); self.r.hash(h); } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Rotation3D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Rotation3D {} impl Rotation3D { /// Creates a rotation around from a quaternion representation. /// /// The parameters are a, b, c and r compose the quaternion `a*i + b*j + c*k + r` /// where `a`, `b` and `c` describe the vector part and the last parameter `r` is /// the real part. /// /// The resulting quaternion is not necessarily normalized. See [`unit_quaternion`]. /// /// [`unit_quaternion`]: #method.unit_quaternion #[inline] pub fn quaternion(a: T, b: T, c: T, r: T) -> Self { Rotation3D { i: a, j: b, k: c, r, _unit: PhantomData, } } /// Creates the identity rotation. #[inline] pub fn identity() -> Self where T: Zero + One, { Self::quaternion(T::zero(), T::zero(), T::zero(), T::one()) } } impl Rotation3D where T: Copy, { /// Returns the vector part (i, j, k) of this quaternion. #[inline] pub fn vector_part(&self) -> Vector3D { vec3(self.i, self.j, self.k) } /// Cast the unit, preserving the numeric value. /// /// # Example /// /// ```rust /// # use euclid::Rotation3D; /// enum Local {} /// enum World {} /// /// enum Local2 {} /// enum World2 {} /// /// let to_world: Rotation3D<_, Local, World> = Rotation3D::quaternion(1, 2, 3, 4); /// /// assert_eq!(to_world.i, to_world.cast_unit::().i); /// assert_eq!(to_world.j, to_world.cast_unit::().j); /// assert_eq!(to_world.k, to_world.cast_unit::().k); /// assert_eq!(to_world.r, to_world.cast_unit::().r); /// ``` #[inline] pub fn cast_unit(&self) -> Rotation3D { Rotation3D { i: self.i, j: self.j, k: self.k, r: self.r, _unit: PhantomData, } } /// Drop the units, preserving only the numeric value. /// /// # Example /// /// ```rust /// # use euclid::Rotation3D; /// enum Local {} /// enum World {} /// /// let to_world: Rotation3D<_, Local, World> = Rotation3D::quaternion(1, 2, 3, 4); /// /// assert_eq!(to_world.i, to_world.to_untyped().i); /// assert_eq!(to_world.j, to_world.to_untyped().j); /// assert_eq!(to_world.k, to_world.to_untyped().k); /// assert_eq!(to_world.r, to_world.to_untyped().r); /// ``` #[inline] pub fn to_untyped(&self) -> Rotation3D { self.cast_unit() } /// Tag a unitless value with units. /// /// # Example /// /// ```rust /// # use euclid::Rotation3D; /// use euclid::UnknownUnit; /// enum Local {} /// enum World {} /// /// let rot: Rotation3D<_, UnknownUnit, UnknownUnit> = Rotation3D::quaternion(1, 2, 3, 4); /// /// assert_eq!(rot.i, Rotation3D::<_, Local, World>::from_untyped(&rot).i); /// assert_eq!(rot.j, Rotation3D::<_, Local, World>::from_untyped(&rot).j); /// assert_eq!(rot.k, Rotation3D::<_, Local, World>::from_untyped(&rot).k); /// assert_eq!(rot.r, Rotation3D::<_, Local, World>::from_untyped(&rot).r); /// ``` #[inline] pub fn from_untyped(r: &Rotation3D) -> Self { r.cast_unit() } } impl Rotation3D where T: Real, { /// Creates a rotation around from a quaternion representation and normalizes it. /// /// The parameters are a, b, c and r compose the quaternion `a*i + b*j + c*k + r` /// before normalization, where `a`, `b` and `c` describe the vector part and the /// last parameter `r` is the real part. #[inline] pub fn unit_quaternion(i: T, j: T, k: T, r: T) -> Self { Self::quaternion(i, j, k, r).normalize() } /// Creates a rotation around a given axis. pub fn around_axis(axis: Vector3D, angle: Angle) -> Self { let axis = axis.normalize(); let two = T::one() + T::one(); let (sin, cos) = Angle::sin_cos(angle / two); Self::quaternion(axis.x * sin, axis.y * sin, axis.z * sin, cos) } /// Creates a rotation around the x axis. pub fn around_x(angle: Angle) -> Self { let zero = Zero::zero(); let two = T::one() + T::one(); let (sin, cos) = Angle::sin_cos(angle / two); Self::quaternion(sin, zero, zero, cos) } /// Creates a rotation around the y axis. pub fn around_y(angle: Angle) -> Self { let zero = Zero::zero(); let two = T::one() + T::one(); let (sin, cos) = Angle::sin_cos(angle / two); Self::quaternion(zero, sin, zero, cos) } /// Creates a rotation around the z axis. pub fn around_z(angle: Angle) -> Self { let zero = Zero::zero(); let two = T::one() + T::one(); let (sin, cos) = Angle::sin_cos(angle / two); Self::quaternion(zero, zero, sin, cos) } /// Creates a rotation from Euler angles. /// /// The rotations are applied in roll then pitch then yaw order. /// /// - Roll (also called bank) is a rotation around the x axis. /// - Pitch (also called bearing) is a rotation around the y axis. /// - Yaw (also called heading) is a rotation around the z axis. pub fn euler(roll: Angle, pitch: Angle, yaw: Angle) -> Self { let half = T::one() / (T::one() + T::one()); let (sy, cy) = Real::sin_cos(half * yaw.get()); let (sp, cp) = Real::sin_cos(half * pitch.get()); let (sr, cr) = Real::sin_cos(half * roll.get()); Self::quaternion( cy * sr * cp - sy * cr * sp, cy * cr * sp + sy * sr * cp, sy * cr * cp - cy * sr * sp, cy * cr * cp + sy * sr * sp, ) } /// Returns the inverse of this rotation. #[inline] pub fn inverse(&self) -> Rotation3D { Rotation3D::quaternion(-self.i, -self.j, -self.k, self.r) } /// Computes the norm of this quaternion. #[inline] pub fn norm(&self) -> T { self.square_norm().sqrt() } /// Computes the squared norm of this quaternion. #[inline] pub fn square_norm(&self) -> T { self.i * self.i + self.j * self.j + self.k * self.k + self.r * self.r } /// Returns a [unit quaternion] from this one. /// /// [unit quaternion]: https://en.wikipedia.org/wiki/Quaternion#Unit_quaternion #[inline] pub fn normalize(&self) -> Self { self.mul(T::one() / self.norm()) } /// Returns `true` if [norm] of this quaternion is (approximately) one. /// /// [norm]: #method.norm #[inline] pub fn is_normalized(&self) -> bool where T: ApproxEq, { let eps = NumCast::from(1.0e-5).unwrap(); self.square_norm().approx_eq_eps(&T::one(), &eps) } /// Spherical linear interpolation between this rotation and another rotation. /// /// `t` is expected to be between zero and one. pub fn slerp(&self, other: &Self, t: T) -> Self where T: ApproxEq, { debug_assert!(self.is_normalized()); debug_assert!(other.is_normalized()); let r1 = *self; let mut r2 = *other; let mut dot = r1.i * r2.i + r1.j * r2.j + r1.k * r2.k + r1.r * r2.r; let one = T::one(); if dot.approx_eq(&T::one()) { // If the inputs are too close, linearly interpolate to avoid precision issues. return r1.lerp(&r2, t); } // If the dot product is negative, the quaternions // have opposite handed-ness and slerp won't take // the shorter path. Fix by reversing one quaternion. if dot < T::zero() { r2 = r2.mul(-T::one()); dot = -dot; } // For robustness, stay within the domain of acos. dot = Real::min(dot, one); // Angle between r1 and the result. let theta = Real::acos(dot) * t; // r1 and r3 form an orthonormal basis. let r3 = r2.sub(r1.mul(dot)).normalize(); let (sin, cos) = Real::sin_cos(theta); r1.mul(cos).add(r3.mul(sin)) } /// Basic Linear interpolation between this rotation and another rotation. #[inline] pub fn lerp(&self, other: &Self, t: T) -> Self { let one_t = T::one() - t; self.mul(one_t).add(other.mul(t)).normalize() } /// Returns the given 3d point transformed by this rotation. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. pub fn transform_point3d(&self, point: Point3D) -> Point3D where T: ApproxEq, { debug_assert!(self.is_normalized()); let two = T::one() + T::one(); let cross = self.vector_part().cross(point.to_vector().to_untyped()) * two; point3( point.x + self.r * cross.x + self.j * cross.z - self.k * cross.y, point.y + self.r * cross.y + self.k * cross.x - self.i * cross.z, point.z + self.r * cross.z + self.i * cross.y - self.j * cross.x, ) } /// Returns the given 2d point transformed by this rotation then projected on the xy plane. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_point2d(&self, point: Point2D) -> Point2D where T: ApproxEq, { self.transform_point3d(point.to_3d()).xy() } /// Returns the given 3d vector transformed by this rotation. /// /// The input vector must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_vector3d(&self, vector: Vector3D) -> Vector3D where T: ApproxEq, { self.transform_point3d(vector.to_point()).to_vector() } /// Returns the given 2d vector transformed by this rotation then projected on the xy plane. /// /// The input vector must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_vector2d(&self, vector: Vector2D) -> Vector2D where T: ApproxEq, { self.transform_vector3d(vector.to_3d()).xy() } /// Returns the matrix representation of this rotation. #[inline] pub fn to_transform(&self) -> Transform3D where T: ApproxEq, { debug_assert!(self.is_normalized()); let i2 = self.i + self.i; let j2 = self.j + self.j; let k2 = self.k + self.k; let ii = self.i * i2; let ij = self.i * j2; let ik = self.i * k2; let jj = self.j * j2; let jk = self.j * k2; let kk = self.k * k2; let ri = self.r * i2; let rj = self.r * j2; let rk = self.r * k2; let one = T::one(); let zero = T::zero(); let m11 = one - (jj + kk); let m12 = ij + rk; let m13 = ik - rj; let m21 = ij - rk; let m22 = one - (ii + kk); let m23 = jk + ri; let m31 = ik + rj; let m32 = jk - ri; let m33 = one - (ii + jj); Transform3D::new( m11, m12, m13, zero, m21, m22, m23, zero, m31, m32, m33, zero, zero, zero, zero, one, ) } /// Returns a rotation representing this rotation followed by the other rotation. #[inline] pub fn then( &self, other: &Rotation3D, ) -> Rotation3D where T: ApproxEq, { debug_assert!(self.is_normalized()); Rotation3D::quaternion( other.i * self.r + other.r * self.i + other.j * self.k - other.k * self.j, other.j * self.r + other.r * self.j + other.k * self.i - other.i * self.k, other.k * self.r + other.r * self.k + other.i * self.j - other.j * self.i, other.r * self.r - other.i * self.i - other.j * self.j - other.k * self.k, ) } // add, sub and mul are used internally for intermediate computation but aren't public // because they don't carry real semantic meanings (I think?). #[inline] fn add(&self, other: Self) -> Self { Self::quaternion( self.i + other.i, self.j + other.j, self.k + other.k, self.r + other.r, ) } #[inline] fn sub(&self, other: Self) -> Self { Self::quaternion( self.i - other.i, self.j - other.j, self.k - other.k, self.r - other.r, ) } #[inline] fn mul(&self, factor: T) -> Self { Self::quaternion( self.i * factor, self.j * factor, self.k * factor, self.r * factor, ) } } impl fmt::Debug for Rotation3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "Quat({:?}*i + {:?}*j + {:?}*k + {:?})", self.i, self.j, self.k, self.r ) } } impl ApproxEq for Rotation3D where T: Copy + Neg + ApproxEq, { fn approx_epsilon() -> T { T::approx_epsilon() } fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool { (self.i.approx_eq_eps(&other.i, eps) && self.j.approx_eq_eps(&other.j, eps) && self.k.approx_eq_eps(&other.k, eps) && self.r.approx_eq_eps(&other.r, eps)) || (self.i.approx_eq_eps(&-other.i, eps) && self.j.approx_eq_eps(&-other.j, eps) && self.k.approx_eq_eps(&-other.k, eps) && self.r.approx_eq_eps(&-other.r, eps)) } } #[test] fn simple_rotation_2d() { use crate::default::Rotation2D; use core::f32::consts::{FRAC_PI_2, PI}; let ri = Rotation2D::identity(); let r90 = Rotation2D::radians(FRAC_PI_2); let rm90 = Rotation2D::radians(-FRAC_PI_2); let r180 = Rotation2D::radians(PI); assert!(ri .transform_point(point2(1.0, 2.0)) .approx_eq(&point2(1.0, 2.0))); assert!(r90 .transform_point(point2(1.0, 2.0)) .approx_eq(&point2(-2.0, 1.0))); assert!(rm90 .transform_point(point2(1.0, 2.0)) .approx_eq(&point2(2.0, -1.0))); assert!(r180 .transform_point(point2(1.0, 2.0)) .approx_eq(&point2(-1.0, -2.0))); assert!(r90 .inverse() .inverse() .transform_point(point2(1.0, 2.0)) .approx_eq(&r90.transform_point(point2(1.0, 2.0)))); } #[test] fn simple_rotation_3d_in_2d() { use crate::default::Rotation3D; use core::f32::consts::{FRAC_PI_2, PI}; let ri = Rotation3D::identity(); let r90 = Rotation3D::around_z(Angle::radians(FRAC_PI_2)); let rm90 = Rotation3D::around_z(Angle::radians(-FRAC_PI_2)); let r180 = Rotation3D::around_z(Angle::radians(PI)); assert!(ri .transform_point2d(point2(1.0, 2.0)) .approx_eq(&point2(1.0, 2.0))); assert!(r90 .transform_point2d(point2(1.0, 2.0)) .approx_eq(&point2(-2.0, 1.0))); assert!(rm90 .transform_point2d(point2(1.0, 2.0)) .approx_eq(&point2(2.0, -1.0))); assert!(r180 .transform_point2d(point2(1.0, 2.0)) .approx_eq(&point2(-1.0, -2.0))); assert!(r90 .inverse() .inverse() .transform_point2d(point2(1.0, 2.0)) .approx_eq(&r90.transform_point2d(point2(1.0, 2.0)))); } #[test] fn pre_post() { use crate::default::Rotation3D; use core::f32::consts::FRAC_PI_2; let r1 = Rotation3D::around_x(Angle::radians(FRAC_PI_2)); let r2 = Rotation3D::around_y(Angle::radians(FRAC_PI_2)); let r3 = Rotation3D::around_z(Angle::radians(FRAC_PI_2)); let t1 = r1.to_transform(); let t2 = r2.to_transform(); let t3 = r3.to_transform(); let p = point3(1.0, 2.0, 3.0); // Check that the order of transformations is correct (corresponds to what // we do in Transform3D). let p1 = r1.then(&r2).then(&r3).transform_point3d(p); let p2 = t1 .then(&t2) .then(&t3) .transform_point3d(p); assert!(p1.approx_eq(&p2.unwrap())); // Check that changing the order indeed matters. let p3 = t3 .then(&t1) .then(&t2) .transform_point3d(p); assert!(!p1.approx_eq(&p3.unwrap())); } #[test] fn to_transform3d() { use crate::default::Rotation3D; use core::f32::consts::{FRAC_PI_2, PI}; let rotations = [ Rotation3D::identity(), Rotation3D::around_x(Angle::radians(FRAC_PI_2)), Rotation3D::around_x(Angle::radians(-FRAC_PI_2)), Rotation3D::around_x(Angle::radians(PI)), Rotation3D::around_y(Angle::radians(FRAC_PI_2)), Rotation3D::around_y(Angle::radians(-FRAC_PI_2)), Rotation3D::around_y(Angle::radians(PI)), Rotation3D::around_z(Angle::radians(FRAC_PI_2)), Rotation3D::around_z(Angle::radians(-FRAC_PI_2)), Rotation3D::around_z(Angle::radians(PI)), ]; let points = [ point3(0.0, 0.0, 0.0), point3(1.0, 2.0, 3.0), point3(-5.0, 3.0, -1.0), point3(-0.5, -1.0, 1.5), ]; for rotation in &rotations { for &point in &points { let p1 = rotation.transform_point3d(point); let p2 = rotation.to_transform().transform_point3d(point); assert!(p1.approx_eq(&p2.unwrap())); } } } #[test] fn slerp() { use crate::default::Rotation3D; let q1 = Rotation3D::quaternion(1.0, 0.0, 0.0, 0.0); let q2 = Rotation3D::quaternion(0.0, 1.0, 0.0, 0.0); let q3 = Rotation3D::quaternion(0.0, 0.0, -1.0, 0.0); // The values below can be obtained with a python program: // import numpy // import quaternion // q1 = numpy.quaternion(1, 0, 0, 0) // q2 = numpy.quaternion(0, 1, 0, 0) // quaternion.slerp_evaluate(q1, q2, 0.2) assert!(q1.slerp(&q2, 0.0).approx_eq(&q1)); assert!(q1.slerp(&q2, 0.2).approx_eq(&Rotation3D::quaternion( 0.951056516295154, 0.309016994374947, 0.0, 0.0 ))); assert!(q1.slerp(&q2, 0.4).approx_eq(&Rotation3D::quaternion( 0.809016994374947, 0.587785252292473, 0.0, 0.0 ))); assert!(q1.slerp(&q2, 0.6).approx_eq(&Rotation3D::quaternion( 0.587785252292473, 0.809016994374947, 0.0, 0.0 ))); assert!(q1.slerp(&q2, 0.8).approx_eq(&Rotation3D::quaternion( 0.309016994374947, 0.951056516295154, 0.0, 0.0 ))); assert!(q1.slerp(&q2, 1.0).approx_eq(&q2)); assert!(q1.slerp(&q3, 0.0).approx_eq(&q1)); assert!(q1.slerp(&q3, 0.2).approx_eq(&Rotation3D::quaternion( 0.951056516295154, 0.0, -0.309016994374947, 0.0 ))); assert!(q1.slerp(&q3, 0.4).approx_eq(&Rotation3D::quaternion( 0.809016994374947, 0.0, -0.587785252292473, 0.0 ))); assert!(q1.slerp(&q3, 0.6).approx_eq(&Rotation3D::quaternion( 0.587785252292473, 0.0, -0.809016994374947, 0.0 ))); assert!(q1.slerp(&q3, 0.8).approx_eq(&Rotation3D::quaternion( 0.309016994374947, 0.0, -0.951056516295154, 0.0 ))); assert!(q1.slerp(&q3, 1.0).approx_eq(&q3)); } #[test] fn around_axis() { use crate::default::Rotation3D; use core::f32::consts::{FRAC_PI_2, PI}; // Two sort of trivial cases: let r1 = Rotation3D::around_axis(vec3(1.0, 1.0, 0.0), Angle::radians(PI)); let r2 = Rotation3D::around_axis(vec3(1.0, 1.0, 0.0), Angle::radians(FRAC_PI_2)); assert!(r1 .transform_point3d(point3(1.0, 2.0, 0.0)) .approx_eq(&point3(2.0, 1.0, 0.0))); assert!(r2 .transform_point3d(point3(1.0, 0.0, 0.0)) .approx_eq(&point3(0.5, 0.5, -0.5.sqrt()))); // A more arbitrary test (made up with numpy): let r3 = Rotation3D::around_axis(vec3(0.5, 1.0, 2.0), Angle::radians(2.291288)); assert!(r3 .transform_point3d(point3(1.0, 0.0, 0.0)) .approx_eq(&point3(-0.58071821, 0.81401868, -0.01182979))); } #[test] fn from_euler() { use crate::default::Rotation3D; use core::f32::consts::FRAC_PI_2; // First test simple separate yaw pitch and roll rotations, because it is easy to come // up with the corresponding quaternion. // Since several quaternions can represent the same transformation we compare the result // of transforming a point rather than the values of each quaternions. let p = point3(1.0, 2.0, 3.0); let angle = Angle::radians(FRAC_PI_2); let zero = Angle::radians(0.0); // roll let roll_re = Rotation3D::euler(angle, zero, zero); let roll_rq = Rotation3D::around_x(angle); let roll_pe = roll_re.transform_point3d(p); let roll_pq = roll_rq.transform_point3d(p); // pitch let pitch_re = Rotation3D::euler(zero, angle, zero); let pitch_rq = Rotation3D::around_y(angle); let pitch_pe = pitch_re.transform_point3d(p); let pitch_pq = pitch_rq.transform_point3d(p); // yaw let yaw_re = Rotation3D::euler(zero, zero, angle); let yaw_rq = Rotation3D::around_z(angle); let yaw_pe = yaw_re.transform_point3d(p); let yaw_pq = yaw_rq.transform_point3d(p); assert!(roll_pe.approx_eq(&roll_pq)); assert!(pitch_pe.approx_eq(&pitch_pq)); assert!(yaw_pe.approx_eq(&yaw_pq)); // Now check that the yaw pitch and roll transformations when combined are applied in // the proper order: roll -> pitch -> yaw. let ypr_e = Rotation3D::euler(angle, angle, angle); let ypr_q = roll_rq.then(&pitch_rq).then(&yaw_rq); let ypr_pe = ypr_e.transform_point3d(p); let ypr_pq = ypr_q.transform_point3d(p); assert!(ypr_pe.approx_eq(&ypr_pq)); } euclid-0.22.7/src/scale.rs000064400000000000000000000270170072674642500134440ustar 00000000000000// Copyright 2014 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A type-checked scaling factor between units. use crate::num::One; use crate::{Point2D, Point3D, Rect, Size2D, Vector2D, Box2D, Box3D}; use core::cmp::Ordering; use core::fmt; use core::hash::{Hash, Hasher}; use core::marker::PhantomData; use core::ops::{Add, Div, Mul, Sub}; use num_traits::NumCast; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// A scaling factor between two different units of measurement. /// /// This is effectively a type-safe float, intended to be used in combination with other types like /// `length::Length` to enforce conversion between systems of measurement at compile time. /// /// `Src` and `Dst` represent the units before and after multiplying a value by a `Scale`. They /// may be types without values, such as empty enums. For example: /// /// ```rust /// use euclid::Scale; /// use euclid::Length; /// enum Mm {}; /// enum Inch {}; /// /// let mm_per_inch: Scale = Scale::new(25.4); /// /// let one_foot: Length = Length::new(12.0); /// let one_foot_in_mm: Length = one_foot * mm_per_inch; /// ``` #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde", serde(bound( serialize = "T: serde::Serialize", deserialize = "T: serde::Deserialize<'de>" )) )] pub struct Scale(pub T, #[doc(hidden)] pub PhantomData<(Src, Dst)>); impl Scale { #[inline] pub const fn new(x: T) -> Self { Scale(x, PhantomData) } /// Creates an identity scale (1.0). #[inline] pub fn identity() -> Self where T: One { Scale::new(T::one()) } /// Returns the given point transformed by this scale. /// /// # Example /// /// ```rust /// use euclid::{Scale, point2}; /// enum Mm {}; /// enum Cm {}; /// /// let to_mm: Scale = Scale::new(10); /// /// assert_eq!(to_mm.transform_point(point2(42, -42)), point2(420, -420)); /// ``` #[inline] pub fn transform_point(self, point: Point2D) -> Point2D where T: Copy + Mul, { Point2D::new(point.x * self.0, point.y * self.0) } /// Returns the given point transformed by this scale. #[inline] pub fn transform_point3d(self, point: Point3D) -> Point3D where T: Copy + Mul, { Point3D::new(point.x * self.0, point.y * self.0, point.z * self.0) } /// Returns the given vector transformed by this scale. /// /// # Example /// /// ```rust /// use euclid::{Scale, vec2}; /// enum Mm {}; /// enum Cm {}; /// /// let to_mm: Scale = Scale::new(10); /// /// assert_eq!(to_mm.transform_vector(vec2(42, -42)), vec2(420, -420)); /// ``` #[inline] pub fn transform_vector(self, vec: Vector2D) -> Vector2D where T: Copy + Mul, { Vector2D::new(vec.x * self.0, vec.y * self.0) } /// Returns the given vector transformed by this scale. /// /// # Example /// /// ```rust /// use euclid::{Scale, size2}; /// enum Mm {}; /// enum Cm {}; /// /// let to_mm: Scale = Scale::new(10); /// /// assert_eq!(to_mm.transform_size(size2(42, -42)), size2(420, -420)); /// ``` #[inline] pub fn transform_size(self, size: Size2D) -> Size2D where T: Copy + Mul, { Size2D::new(size.width * self.0, size.height * self.0) } /// Returns the given rect transformed by this scale. /// /// # Example /// /// ```rust /// use euclid::{Scale, rect}; /// enum Mm {}; /// enum Cm {}; /// /// let to_mm: Scale = Scale::new(10); /// /// assert_eq!(to_mm.transform_rect(&rect(1, 2, 42, -42)), rect(10, 20, 420, -420)); /// ``` #[inline] pub fn transform_rect(self, rect: &Rect) -> Rect where T: Copy + Mul, { Rect::new( self.transform_point(rect.origin), self.transform_size(rect.size), ) } /// Returns the given box transformed by this scale. #[inline] pub fn transform_box2d(self, b: &Box2D) -> Box2D where T: Copy + Mul, { Box2D { min: self.transform_point(b.min), max: self.transform_point(b.max), } } /// Returns the given box transformed by this scale. #[inline] pub fn transform_box3d(self, b: &Box3D) -> Box3D where T: Copy + Mul, { Box3D { min: self.transform_point3d(b.min), max: self.transform_point3d(b.max), } } /// Returns `true` if this scale has no effect. /// /// # Example /// /// ```rust /// use euclid::Scale; /// use euclid::num::One; /// enum Mm {}; /// enum Cm {}; /// /// let cm_per_mm: Scale = Scale::new(0.1); /// let mm_per_mm: Scale = Scale::new(1.0); /// /// assert_eq!(cm_per_mm.is_identity(), false); /// assert_eq!(mm_per_mm.is_identity(), true); /// assert_eq!(mm_per_mm, Scale::one()); /// ``` #[inline] pub fn is_identity(self) -> bool where T: PartialEq + One, { self.0 == T::one() } /// Returns the underlying scalar scale factor. #[inline] pub fn get(self) -> T { self.0 } /// The inverse Scale (1.0 / self). /// /// # Example /// /// ```rust /// use euclid::Scale; /// enum Mm {}; /// enum Cm {}; /// /// let cm_per_mm: Scale = Scale::new(0.1); /// /// assert_eq!(cm_per_mm.inverse(), Scale::new(10.0)); /// ``` pub fn inverse(self) -> Scale where T: One + Div, { let one: T = One::one(); Scale::new(one / self.0) } } impl Scale { /// Cast from one numeric representation to another, preserving the units. /// /// # Panics /// /// If the source value cannot be represented by the target type `NewT`, then /// method panics. Use `try_cast` if that must be case. /// /// # Example /// /// ```rust /// use euclid::Scale; /// enum Mm {}; /// enum Cm {}; /// /// let to_mm: Scale = Scale::new(10); /// /// assert_eq!(to_mm.cast::(), Scale::new(10.0)); /// ``` /// That conversion will panic, because `i32` not enough to store such big numbers: /// ```rust,should_panic /// use euclid::Scale; /// enum Mm {};// millimeter = 10^-2 meters /// enum Em {};// exameter = 10^18 meters /// /// // Panics /// let to_em: Scale = Scale::new(10e20).cast(); /// ``` #[inline] pub fn cast(self) -> Scale { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// If the source value cannot be represented by the target type `NewT`, then `None` /// is returned. /// /// # Example /// /// ```rust /// use euclid::Scale; /// enum Mm {}; /// enum Cm {}; /// enum Em {};// Exameter = 10^18 meters /// /// let to_mm: Scale = Scale::new(10); /// let to_em: Scale = Scale::new(10e20); /// /// assert_eq!(to_mm.try_cast::(), Some(Scale::new(10.0))); /// // Integer to small to store that number /// assert_eq!(to_em.try_cast::(), None); /// ``` pub fn try_cast(self) -> Option> { NumCast::from(self.0).map(Scale::new) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Scale {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Scale {} // scale0 * scale1 // (A,B) * (B,C) = (A,C) impl Mul> for Scale { type Output = Scale; #[inline] fn mul(self, other: Scale) -> Self::Output { Scale::new(self.0 * other.0) } } // scale0 + scale1 impl Add for Scale { type Output = Scale; #[inline] fn add(self, other: Scale) -> Self::Output { Scale::new(self.0 + other.0) } } // scale0 - scale1 impl Sub for Scale { type Output = Scale; #[inline] fn sub(self, other: Scale) -> Self::Output { Scale::new(self.0 - other.0) } } // FIXME: Switch to `derive(PartialEq, Clone)` after this Rust issue is fixed: // https://github.com/rust-lang/rust/issues/26925 impl PartialEq for Scale { fn eq(&self, other: &Scale) -> bool { self.0 == other.0 } } impl Eq for Scale {} impl PartialOrd for Scale { fn partial_cmp(&self, other: &Self) -> Option { self.0.partial_cmp(&other.0) } } impl Ord for Scale { fn cmp(&self, other: &Self) -> Ordering { self.0.cmp(&other.0) } } impl Clone for Scale { fn clone(&self) -> Scale { Scale::new(self.0.clone()) } } impl Copy for Scale {} impl fmt::Debug for Scale { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.0.fmt(f) } } impl Default for Scale { fn default() -> Self { Self::new(T::default()) } } impl Hash for Scale { fn hash(&self, state: &mut H) { self.0.hash(state) } } impl One for Scale { #[inline] fn one() -> Self { Scale::new(T::one()) } } #[cfg(test)] mod tests { use super::Scale; enum Inch {} enum Cm {} enum Mm {} #[test] fn test_scale() { let mm_per_inch: Scale = Scale::new(25.4); let cm_per_mm: Scale = Scale::new(0.1); let mm_per_cm: Scale = cm_per_mm.inverse(); assert_eq!(mm_per_cm.get(), 10.0); let one: Scale = cm_per_mm * mm_per_cm; assert_eq!(one.get(), 1.0); let one: Scale = mm_per_cm * cm_per_mm; assert_eq!(one.get(), 1.0); let cm_per_inch: Scale = mm_per_inch * cm_per_mm; // mm cm cm // ---- x ---- = ---- // inch mm inch assert_eq!(cm_per_inch, Scale::new(2.54)); let a: Scale = Scale::new(2); let b: Scale = Scale::new(3); assert_ne!(a, b); assert_eq!(a, a.clone()); assert_eq!(a.clone() + b.clone(), Scale::new(5)); assert_eq!(a - b, Scale::new(-1)); } } euclid-0.22.7/src/side_offsets.rs000064400000000000000000000322370072674642500150320ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A group of side offsets, which correspond to top/left/bottom/right for borders, padding, //! and margins in CSS. use crate::length::Length; use crate::num::Zero; use crate::scale::Scale; use crate::Vector2D; use core::cmp::{Eq, PartialEq}; use core::fmt; use core::hash::Hash; use core::marker::PhantomData; use core::ops::{Add, AddAssign, Sub, SubAssign, Div, DivAssign, Mul, MulAssign, Neg}; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// A group of 2D side offsets, which correspond to top/right/bottom/left for borders, padding, /// and margins in CSS, optionally tagged with a unit. #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")) )] pub struct SideOffsets2D { pub top: T, pub right: T, pub bottom: T, pub left: T, #[doc(hidden)] pub _unit: PhantomData, } #[cfg(feature = "arbitrary")] impl<'a, T, U> arbitrary::Arbitrary<'a> for SideOffsets2D where T: arbitrary::Arbitrary<'a>, { fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result { let (top, right, bottom, left) = arbitrary::Arbitrary::arbitrary(u)?; Ok(SideOffsets2D { top, right, bottom, left, _unit: PhantomData, }) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for SideOffsets2D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for SideOffsets2D {} impl Copy for SideOffsets2D {} impl Clone for SideOffsets2D { fn clone(&self) -> Self { SideOffsets2D { top: self.top.clone(), right: self.right.clone(), bottom: self.bottom.clone(), left: self.left.clone(), _unit: PhantomData, } } } impl Eq for SideOffsets2D where T: Eq {} impl PartialEq for SideOffsets2D where T: PartialEq, { fn eq(&self, other: &Self) -> bool { self.top == other.top && self.right == other.right && self.bottom == other.bottom && self.left == other.left } } impl Hash for SideOffsets2D where T: Hash, { fn hash(&self, h: &mut H) { self.top.hash(h); self.right.hash(h); self.bottom.hash(h); self.left.hash(h); } } impl fmt::Debug for SideOffsets2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "({:?},{:?},{:?},{:?})", self.top, self.right, self.bottom, self.left ) } } impl Default for SideOffsets2D { fn default() -> Self { SideOffsets2D { top: Default::default(), right: Default::default(), bottom: Default::default(), left: Default::default(), _unit: PhantomData, } } } impl SideOffsets2D { /// Constructor taking a scalar for each side. /// /// Sides are specified in top-right-bottom-left order following /// CSS's convention. pub const fn new(top: T, right: T, bottom: T, left: T) -> Self { SideOffsets2D { top, right, bottom, left, _unit: PhantomData, } } /// Constructor taking a typed Length for each side. /// /// Sides are specified in top-right-bottom-left order following /// CSS's convention. pub fn from_lengths( top: Length, right: Length, bottom: Length, left: Length, ) -> Self { SideOffsets2D::new(top.0, right.0, bottom.0, left.0) } /// Construct side offsets from min and a max vector offsets. /// /// The outer rect of the resulting side offsets is equivalent to translating /// a rectangle's upper-left corner with the min vector and translating the /// bottom-right corner with the max vector. pub fn from_vectors_outer(min: Vector2D, max: Vector2D) -> Self where T: Neg, { SideOffsets2D { left: -min.x, top: -min.y, right: max.x, bottom: max.y, _unit: PhantomData, } } /// Construct side offsets from min and a max vector offsets. /// /// The inner rect of the resulting side offsets is equivalent to translating /// a rectangle's upper-left corner with the min vector and translating the /// bottom-right corner with the max vector. pub fn from_vectors_inner(min: Vector2D, max: Vector2D) -> Self where T: Neg, { SideOffsets2D { left: min.x, top: min.y, right: -max.x, bottom: -max.y, _unit: PhantomData, } } /// Constructor, setting all sides to zero. pub fn zero() -> Self where T: Zero, { SideOffsets2D::new(Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero()) } /// Returns `true` if all side offsets are zero. pub fn is_zero(&self) -> bool where T: Zero + PartialEq, { let zero = T::zero(); self.top == zero && self.right == zero && self.bottom == zero && self.left == zero } /// Constructor setting the same value to all sides, taking a scalar value directly. pub fn new_all_same(all: T) -> Self where T : Copy { SideOffsets2D::new(all, all, all, all) } /// Constructor setting the same value to all sides, taking a typed Length. pub fn from_length_all_same(all: Length) -> Self where T : Copy { SideOffsets2D::new_all_same(all.0) } pub fn horizontal(&self) -> T where T: Copy + Add { self.left + self.right } pub fn vertical(&self) -> T where T: Copy + Add { self.top + self.bottom } } impl Add for SideOffsets2D where T: Add, { type Output = Self; fn add(self, other: Self) -> Self { SideOffsets2D::new( self.top + other.top, self.right + other.right, self.bottom + other.bottom, self.left + other.left, ) } } impl AddAssign for SideOffsets2D where T: AddAssign, { fn add_assign(&mut self, other: Self) { self.top += other.top; self.right += other.right; self.bottom += other.bottom; self.left += other.left; } } impl Sub for SideOffsets2D where T: Sub, { type Output = Self; fn sub(self, other: Self) -> Self { SideOffsets2D::new( self.top - other.top, self.right - other.right, self.bottom - other.bottom, self.left - other.left, ) } } impl SubAssign for SideOffsets2D where T: SubAssign, { fn sub_assign(&mut self, other: Self) { self.top -= other.top; self.right -= other.right; self.bottom -= other.bottom; self.left -= other.left; } } impl Neg for SideOffsets2D where T: Neg { type Output = Self; fn neg(self) -> Self { SideOffsets2D { top: -self.top, right: -self.right, bottom: -self.bottom, left: -self.left, _unit: PhantomData, } } } impl Mul for SideOffsets2D { type Output = SideOffsets2D; #[inline] fn mul(self, scale: T) -> Self::Output { SideOffsets2D::new( self.top * scale, self.right * scale, self.bottom * scale, self.left * scale, ) } } impl MulAssign for SideOffsets2D { #[inline] fn mul_assign(&mut self, other: T) { self.top *= other; self.right *= other; self.bottom *= other; self.left *= other; } } impl Mul> for SideOffsets2D { type Output = SideOffsets2D; #[inline] fn mul(self, scale: Scale) -> Self::Output { SideOffsets2D::new( self.top * scale.0, self.right * scale.0, self.bottom * scale.0, self.left * scale.0, ) } } impl MulAssign> for SideOffsets2D { #[inline] fn mul_assign(&mut self, other: Scale) { *self *= other.0; } } impl Div for SideOffsets2D { type Output = SideOffsets2D; #[inline] fn div(self, scale: T) -> Self::Output { SideOffsets2D::new( self.top / scale, self.right / scale, self.bottom / scale, self.left / scale, ) } } impl DivAssign for SideOffsets2D { #[inline] fn div_assign(&mut self, other: T) { self.top /= other; self.right /= other; self.bottom /= other; self.left /= other; } } impl Div> for SideOffsets2D { type Output = SideOffsets2D; #[inline] fn div(self, scale: Scale) -> Self::Output { SideOffsets2D::new( self.top / scale.0, self.right / scale.0, self.bottom / scale.0, self.left / scale.0, ) } } impl DivAssign> for SideOffsets2D { fn div_assign(&mut self, other: Scale) { *self /= other.0; } } #[test] fn from_vectors() { use crate::{point2, vec2}; type Box2D = crate::default::Box2D; let b = Box2D { min: point2(10, 10), max: point2(20, 20), }; let outer = b.outer_box(SideOffsets2D::from_vectors_outer(vec2(-1, -2), vec2(3, 4))); let inner = b.inner_box(SideOffsets2D::from_vectors_inner(vec2(1, 2), vec2(-3, -4))); assert_eq!( outer, Box2D { min: point2(9, 8), max: point2(23, 24) } ); assert_eq!( inner, Box2D { min: point2(11, 12), max: point2(17, 16) } ); } #[test] fn test_is_zero() { let s1: SideOffsets2D = SideOffsets2D::new_all_same(0.0); assert!(s1.is_zero()); let s2: SideOffsets2D = SideOffsets2D::new(1.0, 2.0, 3.0, 4.0); assert!(!s2.is_zero()); } #[cfg(test)] mod ops { use crate::Scale; pub enum Mm {} pub enum Cm {} type SideOffsets2D = crate::default::SideOffsets2D; type SideOffsets2DMm = crate::SideOffsets2D; type SideOffsets2DCm = crate::SideOffsets2D; #[test] fn test_mul_scalar() { let s = SideOffsets2D::new(1.0, 2.0, 3.0, 4.0); let result = s * 3.0; assert_eq!(result, SideOffsets2D::new(3.0, 6.0, 9.0, 12.0)); } #[test] fn test_mul_assign_scalar() { let mut s = SideOffsets2D::new(1.0, 2.0, 3.0, 4.0); s *= 2.0; assert_eq!(s, SideOffsets2D::new(2.0, 4.0, 6.0, 8.0)); } #[test] fn test_mul_scale() { let s = SideOffsets2DMm::new(0.0, 1.0, 3.0, 2.0); let cm_per_mm: Scale = Scale::new(0.1); let result = s * cm_per_mm; assert_eq!(result, SideOffsets2DCm::new(0.0, 0.1, 0.3, 0.2)); } #[test] fn test_mul_assign_scale() { let mut s = SideOffsets2DMm::new(2.0, 4.0, 6.0, 8.0); let scale: Scale = Scale::new(0.1); s *= scale; assert_eq!(s, SideOffsets2DMm::new(0.2, 0.4, 0.6, 0.8)); } #[test] fn test_div_scalar() { let s = SideOffsets2D::new(10.0, 20.0, 30.0, 40.0); let result = s / 10.0; assert_eq!(result, SideOffsets2D::new(1.0, 2.0, 3.0, 4.0)); } #[test] fn test_div_assign_scalar() { let mut s = SideOffsets2D::new(10.0, 20.0, 30.0, 40.0); s /= 10.0; assert_eq!(s, SideOffsets2D::new(1.0, 2.0, 3.0, 4.0)); } #[test] fn test_div_scale() { let s = SideOffsets2DCm::new(0.1, 0.2, 0.3, 0.4); let cm_per_mm: Scale = Scale::new(0.1); let result = s / cm_per_mm; assert_eq!(result, SideOffsets2DMm::new(1.0, 2.0, 3.0, 4.0)); } #[test] fn test_div_assign_scale() { let mut s = SideOffsets2DMm::new(0.1, 0.2, 0.3, 0.4); let scale: Scale = Scale::new(0.1); s /= scale; assert_eq!(s, SideOffsets2DMm::new(1.0, 2.0, 3.0, 4.0)); } } euclid-0.22.7/src/size.rs000064400000000000000000001453600072674642500133310ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use crate::approxord::{max, min}; use crate::length::Length; use crate::num::*; use crate::scale::Scale; use crate::vector::{vec2, BoolVector2D, Vector2D}; use crate::vector::{vec3, BoolVector3D, Vector3D}; #[cfg(feature = "mint")] use mint; use core::cmp::{Eq, PartialEq}; use core::fmt; use core::hash::Hash; use core::iter::Sum; use core::marker::PhantomData; use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; use num_traits::{NumCast, Signed, Float}; #[cfg(feature = "serde")] use serde; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// A 2d size tagged with a unit. #[repr(C)] pub struct Size2D { /// The extent of the element in the `U` units along the `x` axis (usually horizontal). pub width: T, /// The extent of the element in the `U` units along the `y` axis (usually vertical). pub height: T, #[doc(hidden)] pub _unit: PhantomData, } impl Copy for Size2D {} impl Clone for Size2D { fn clone(&self) -> Self { Size2D { width: self.width.clone(), height: self.height.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Size2D where T: serde::Deserialize<'de>, { /// Deserializes 2d size from tuple of width and height. fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (width, height) = serde::Deserialize::deserialize(deserializer)?; Ok(Size2D { width, height, _unit: PhantomData, }) } } #[cfg(feature = "serde")] impl serde::Serialize for Size2D where T: serde::Serialize, { /// Serializes 2d size to tuple of width and height. fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (&self.width, &self.height).serialize(serializer) } } #[cfg(feature = "arbitrary")] impl<'a, T, U> arbitrary::Arbitrary<'a> for Size2D where T: arbitrary::Arbitrary<'a>, { fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result { let (width, height) = arbitrary::Arbitrary::arbitrary(u)?; Ok(Size2D { width, height, _unit: PhantomData, }) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Size2D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Size2D {} impl Eq for Size2D where T: Eq {} impl PartialEq for Size2D where T: PartialEq, { fn eq(&self, other: &Self) -> bool { self.width == other.width && self.height == other.height } } impl Hash for Size2D where T: Hash, { fn hash(&self, h: &mut H) { self.width.hash(h); self.height.hash(h); } } impl fmt::Debug for Size2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&self.width, f)?; write!(f, "x")?; fmt::Debug::fmt(&self.height, f) } } impl Default for Size2D { fn default() -> Self { Size2D::new(Default::default(), Default::default()) } } impl Size2D { /// The same as [`Zero::zero()`] but available without importing trait. /// /// [`Zero::zero()`]: ./num/trait.Zero.html#tymethod.zero #[inline] pub fn zero() -> Self where T: Zero, { Size2D::new(Zero::zero(), Zero::zero()) } /// Constructor taking scalar values. #[inline] pub const fn new(width: T, height: T) -> Self { Size2D { width, height, _unit: PhantomData, } } /// Constructor taking scalar strongly typed lengths. #[inline] pub fn from_lengths(width: Length, height: Length) -> Self { Size2D::new(width.0, height.0) } /// Constructor setting all components to the same value. #[inline] pub fn splat(v: T) -> Self where T: Clone, { Size2D { width: v.clone(), height: v, _unit: PhantomData, } } /// Tag a unitless value with units. #[inline] pub fn from_untyped(p: Size2D) -> Self { Size2D::new(p.width, p.height) } } impl Size2D { /// Return this size as an array of two elements (width, then height). #[inline] pub fn to_array(self) -> [T; 2] { [self.width, self.height] } /// Return this size as a tuple of two elements (width, then height). #[inline] pub fn to_tuple(self) -> (T, T) { (self.width, self.height) } /// Return this size as a vector with width and height. #[inline] pub fn to_vector(self) -> Vector2D { vec2(self.width, self.height) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(self) -> Size2D { self.cast_unit() } /// Cast the unit #[inline] pub fn cast_unit(self) -> Size2D { Size2D::new(self.width, self.height) } /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::size2; /// enum Mm {} /// /// assert_eq!(size2::<_, Mm>(-0.1, -0.8).round(), size2::<_, Mm>(0.0, -1.0)) /// ``` #[inline] #[must_use] pub fn round(self) -> Self where T: Round, { Size2D::new(self.width.round(), self.height.round()) } /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::size2; /// enum Mm {} /// /// assert_eq!(size2::<_, Mm>(-0.1, -0.8).ceil(), size2::<_, Mm>(0.0, 0.0)) /// ``` #[inline] #[must_use] pub fn ceil(self) -> Self where T: Ceil, { Size2D::new(self.width.ceil(), self.height.ceil()) } /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::size2; /// enum Mm {} /// /// assert_eq!(size2::<_, Mm>(-0.1, -0.8).floor(), size2::<_, Mm>(-1.0, -1.0)) /// ``` #[inline] #[must_use] pub fn floor(self) -> Self where T: Floor, { Size2D::new(self.width.floor(), self.height.floor()) } /// Returns result of multiplication of both components pub fn area(self) -> T::Output where T: Mul, { self.width * self.height } /// Linearly interpolate each component between this size and another size. /// /// # Example /// /// ```rust /// use euclid::size2; /// use euclid::default::Size2D; /// /// let from: Size2D<_> = size2(0.0, 10.0); /// let to: Size2D<_> = size2(8.0, -4.0); /// /// assert_eq!(from.lerp(to, -1.0), size2(-8.0, 24.0)); /// assert_eq!(from.lerp(to, 0.0), size2( 0.0, 10.0)); /// assert_eq!(from.lerp(to, 0.5), size2( 4.0, 3.0)); /// assert_eq!(from.lerp(to, 1.0), size2( 8.0, -4.0)); /// assert_eq!(from.lerp(to, 2.0), size2(16.0, -18.0)); /// ``` #[inline] pub fn lerp(self, other: Self, t: T) -> Self where T: One + Sub + Mul + Add, { let one_t = T::one() - t; self * one_t + other * t } } impl Size2D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn cast(self) -> Size2D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn try_cast(self) -> Option> { match (NumCast::from(self.width), NumCast::from(self.height)) { (Some(w), Some(h)) => Some(Size2D::new(w, h)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` size. #[inline] pub fn to_f32(self) -> Size2D { self.cast() } /// Cast into an `f64` size. #[inline] pub fn to_f64(self) -> Size2D { self.cast() } /// Cast into an `uint` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_usize(self) -> Size2D { self.cast() } /// Cast into an `u32` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u32(self) -> Size2D { self.cast() } /// Cast into an `u64` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u64(self) -> Size2D { self.cast() } /// Cast into an `i32` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i32(self) -> Size2D { self.cast() } /// Cast into an `i64` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i64(self) -> Size2D { self.cast() } } impl Size2D { /// Returns true if all members are finite. #[inline] pub fn is_finite(self) -> bool { self.width.is_finite() && self.height.is_finite() } } impl Size2D { /// Computes the absolute value of each component. /// /// For `f32` and `f64`, `NaN` will be returned for component if the component is `NaN`. /// /// For signed integers, `::MIN` will be returned for component if the component is `::MIN`. pub fn abs(self) -> Self { size2(self.width.abs(), self.height.abs()) } /// Returns `true` if both components is positive and `false` any component is zero or negative. pub fn is_positive(self) -> bool { self.width.is_positive() && self.height.is_positive() } } impl Size2D { /// Returns the size each component of which are minimum of this size and another. #[inline] pub fn min(self, other: Self) -> Self { size2(min(self.width, other.width), min(self.height, other.height)) } /// Returns the size each component of which are maximum of this size and another. #[inline] pub fn max(self, other: Self) -> Self { size2(max(self.width, other.width), max(self.height, other.height)) } /// Returns the size each component of which clamped by corresponding /// components of `start` and `end`. /// /// Shortcut for `self.max(start).min(end)`. #[inline] pub fn clamp(self, start: Self, end: Self) -> Self where T: Copy, { self.max(start).min(end) } // Returns true if this size is larger or equal to the other size in all dimensions. #[inline] pub fn contains(self, other: Self) -> bool { self.width >= other.width && self.height >= other.height } /// Returns vector with results of "greater then" operation on each component. pub fn greater_than(self, other: Self) -> BoolVector2D { BoolVector2D { x: self.width > other.width, y: self.height > other.height, } } /// Returns vector with results of "lower then" operation on each component. pub fn lower_than(self, other: Self) -> BoolVector2D { BoolVector2D { x: self.width < other.width, y: self.height < other.height, } } /// Returns `true` if any component of size is zero, negative, or NaN. pub fn is_empty(self) -> bool where T: Zero, { let zero = T::zero(); // The condition is experessed this way so that we return true in // the presence of NaN. !(self.width > zero && self.height > zero) } } impl Size2D { /// Returns vector with results of "equal" operation on each component. pub fn equal(self, other: Self) -> BoolVector2D { BoolVector2D { x: self.width == other.width, y: self.height == other.height, } } /// Returns vector with results of "not equal" operation on each component. pub fn not_equal(self, other: Self) -> BoolVector2D { BoolVector2D { x: self.width != other.width, y: self.height != other.height, } } } impl Round for Size2D { /// See [`Size2D::round()`](#method.round). #[inline] fn round(self) -> Self { self.round() } } impl Ceil for Size2D { /// See [`Size2D::ceil()`](#method.ceil). #[inline] fn ceil(self) -> Self { self.ceil() } } impl Floor for Size2D { /// See [`Size2D::floor()`](#method.floor). #[inline] fn floor(self) -> Self { self.floor() } } impl Zero for Size2D { #[inline] fn zero() -> Self { Size2D::new(Zero::zero(), Zero::zero()) } } impl Neg for Size2D { type Output = Size2D; #[inline] fn neg(self) -> Self::Output { Size2D::new(-self.width, -self.height) } } impl Add for Size2D { type Output = Size2D; #[inline] fn add(self, other: Self) -> Self::Output { Size2D::new(self.width + other.width, self.height + other.height) } } impl, U> Add<&Self> for Size2D { type Output = Self; fn add(self, other: &Self) -> Self { Size2D::new(self.width + other.width, self.height + other.height) } } impl + Zero, U> Sum for Size2D { fn sum>(iter: I) -> Self { iter.fold(Self::zero(), Add::add) } } impl<'a, T: 'a + Add + Copy + Zero, U: 'a> Sum<&'a Self> for Size2D { fn sum>(iter: I) -> Self { iter.fold(Self::zero(), Add::add) } } impl AddAssign for Size2D { #[inline] fn add_assign(&mut self, other: Self) { self.width += other.width; self.height += other.height; } } impl Sub for Size2D { type Output = Size2D; #[inline] fn sub(self, other: Self) -> Self::Output { Size2D::new(self.width - other.width, self.height - other.height) } } impl SubAssign for Size2D { #[inline] fn sub_assign(&mut self, other: Self) { self.width -= other.width; self.height -= other.height; } } impl Mul for Size2D { type Output = Size2D; #[inline] fn mul(self, scale: T) -> Self::Output { Size2D::new(self.width * scale, self.height * scale) } } impl MulAssign for Size2D { #[inline] fn mul_assign(&mut self, other: T) { self.width *= other; self.height *= other; } } impl Mul> for Size2D { type Output = Size2D; #[inline] fn mul(self, scale: Scale) -> Self::Output { Size2D::new(self.width * scale.0, self.height * scale.0) } } impl MulAssign> for Size2D { #[inline] fn mul_assign(&mut self, other: Scale) { *self *= other.0; } } impl Div for Size2D { type Output = Size2D; #[inline] fn div(self, scale: T) -> Self::Output { Size2D::new(self.width / scale, self.height / scale) } } impl DivAssign for Size2D { #[inline] fn div_assign(&mut self, other: T) { self.width /= other; self.height /= other; } } impl Div> for Size2D { type Output = Size2D; #[inline] fn div(self, scale: Scale) -> Self::Output { Size2D::new(self.width / scale.0, self.height / scale.0) } } impl DivAssign> for Size2D { #[inline] fn div_assign(&mut self, other: Scale) { *self /= other.0; } } /// Shorthand for `Size2D::new(w, h)`. #[inline] pub const fn size2(w: T, h: T) -> Size2D { Size2D::new(w, h) } #[cfg(feature = "mint")] impl From> for Size2D { #[inline] fn from(v: mint::Vector2) -> Self { Size2D { width: v.x, height: v.y, _unit: PhantomData, } } } #[cfg(feature = "mint")] impl Into> for Size2D { #[inline] fn into(self) -> mint::Vector2 { mint::Vector2 { x: self.width, y: self.height, } } } impl From> for Size2D { #[inline] fn from(v: Vector2D) -> Self { size2(v.x, v.y) } } impl Into<[T; 2]> for Size2D { #[inline] fn into(self) -> [T; 2] { [self.width, self.height] } } impl From<[T; 2]> for Size2D { #[inline] fn from([w, h]: [T; 2]) -> Self { size2(w, h) } } impl Into<(T, T)> for Size2D { #[inline] fn into(self) -> (T, T) { (self.width, self.height) } } impl From<(T, T)> for Size2D { #[inline] fn from(tuple: (T, T)) -> Self { size2(tuple.0, tuple.1) } } #[cfg(test)] mod size2d { use crate::default::Size2D; #[cfg(feature = "mint")] use mint; #[test] pub fn test_area() { let p = Size2D::new(1.5, 2.0); assert_eq!(p.area(), 3.0); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let s1 = Size2D::new(1.0, 2.0); let sm: mint::Vector2<_> = s1.into(); let s2 = Size2D::from(sm); assert_eq!(s1, s2); } mod ops { use crate::default::Size2D; use crate::scale::Scale; pub enum Mm {} pub enum Cm {} pub type Size2DMm = crate::Size2D; pub type Size2DCm = crate::Size2D; #[test] pub fn test_neg() { assert_eq!(-Size2D::new(1.0, 2.0), Size2D::new(-1.0, -2.0)); assert_eq!(-Size2D::new(0.0, 0.0), Size2D::new(-0.0, -0.0)); assert_eq!(-Size2D::new(-1.0, -2.0), Size2D::new(1.0, 2.0)); } #[test] pub fn test_add() { let s1 = Size2D::new(1.0, 2.0); let s2 = Size2D::new(3.0, 4.0); assert_eq!(s1 + s2, Size2D::new(4.0, 6.0)); assert_eq!(s1 + &s2, Size2D::new(4.0, 6.0)); let s1 = Size2D::new(1.0, 2.0); let s2 = Size2D::new(0.0, 0.0); assert_eq!(s1 + s2, Size2D::new(1.0, 2.0)); assert_eq!(s1 + &s2, Size2D::new(1.0, 2.0)); let s1 = Size2D::new(1.0, 2.0); let s2 = Size2D::new(-3.0, -4.0); assert_eq!(s1 + s2, Size2D::new(-2.0, -2.0)); assert_eq!(s1 + &s2, Size2D::new(-2.0, -2.0)); let s1 = Size2D::new(0.0, 0.0); let s2 = Size2D::new(0.0, 0.0); assert_eq!(s1 + s2, Size2D::new(0.0, 0.0)); assert_eq!(s1 + &s2, Size2D::new(0.0, 0.0)); } #[test] pub fn test_add_assign() { let mut s = Size2D::new(1.0, 2.0); s += Size2D::new(3.0, 4.0); assert_eq!(s, Size2D::new(4.0, 6.0)); let mut s = Size2D::new(1.0, 2.0); s += Size2D::new(0.0, 0.0); assert_eq!(s, Size2D::new(1.0, 2.0)); let mut s = Size2D::new(1.0, 2.0); s += Size2D::new(-3.0, -4.0); assert_eq!(s, Size2D::new(-2.0, -2.0)); let mut s = Size2D::new(0.0, 0.0); s += Size2D::new(0.0, 0.0); assert_eq!(s, Size2D::new(0.0, 0.0)); } #[test] pub fn test_sum() { let sizes = [ Size2D::new(0.0, 1.0), Size2D::new(1.0, 2.0), Size2D::new(2.0, 3.0) ]; let sum = Size2D::new(3.0, 6.0); assert_eq!(sizes.iter().sum::>(), sum); } #[test] pub fn test_sub() { let s1 = Size2D::new(1.0, 2.0); let s2 = Size2D::new(3.0, 4.0); assert_eq!(s1 - s2, Size2D::new(-2.0, -2.0)); let s1 = Size2D::new(1.0, 2.0); let s2 = Size2D::new(0.0, 0.0); assert_eq!(s1 - s2, Size2D::new(1.0, 2.0)); let s1 = Size2D::new(1.0, 2.0); let s2 = Size2D::new(-3.0, -4.0); assert_eq!(s1 - s2, Size2D::new(4.0, 6.0)); let s1 = Size2D::new(0.0, 0.0); let s2 = Size2D::new(0.0, 0.0); assert_eq!(s1 - s2, Size2D::new(0.0, 0.0)); } #[test] pub fn test_sub_assign() { let mut s = Size2D::new(1.0, 2.0); s -= Size2D::new(3.0, 4.0); assert_eq!(s, Size2D::new(-2.0, -2.0)); let mut s = Size2D::new(1.0, 2.0); s -= Size2D::new(0.0, 0.0); assert_eq!(s, Size2D::new(1.0, 2.0)); let mut s = Size2D::new(1.0, 2.0); s -= Size2D::new(-3.0, -4.0); assert_eq!(s, Size2D::new(4.0, 6.0)); let mut s = Size2D::new(0.0, 0.0); s -= Size2D::new(0.0, 0.0); assert_eq!(s, Size2D::new(0.0, 0.0)); } #[test] pub fn test_mul_scalar() { let s1: Size2D = Size2D::new(3.0, 5.0); let result = s1 * 5.0; assert_eq!(result, Size2D::new(15.0, 25.0)); } #[test] pub fn test_mul_assign_scalar() { let mut s1 = Size2D::new(3.0, 5.0); s1 *= 5.0; assert_eq!(s1, Size2D::new(15.0, 25.0)); } #[test] pub fn test_mul_scale() { let s1 = Size2DMm::new(1.0, 2.0); let cm_per_mm: Scale = Scale::new(0.1); let result = s1 * cm_per_mm; assert_eq!(result, Size2DCm::new(0.1, 0.2)); } #[test] pub fn test_mul_assign_scale() { let mut s1 = Size2DMm::new(1.0, 2.0); let scale: Scale = Scale::new(0.1); s1 *= scale; assert_eq!(s1, Size2DMm::new(0.1, 0.2)); } #[test] pub fn test_div_scalar() { let s1: Size2D = Size2D::new(15.0, 25.0); let result = s1 / 5.0; assert_eq!(result, Size2D::new(3.0, 5.0)); } #[test] pub fn test_div_assign_scalar() { let mut s1: Size2D = Size2D::new(15.0, 25.0); s1 /= 5.0; assert_eq!(s1, Size2D::new(3.0, 5.0)); } #[test] pub fn test_div_scale() { let s1 = Size2DCm::new(0.1, 0.2); let cm_per_mm: Scale = Scale::new(0.1); let result = s1 / cm_per_mm; assert_eq!(result, Size2DMm::new(1.0, 2.0)); } #[test] pub fn test_div_assign_scale() { let mut s1 = Size2DMm::new(0.1, 0.2); let scale: Scale = Scale::new(0.1); s1 /= scale; assert_eq!(s1, Size2DMm::new(1.0, 2.0)); } #[test] pub fn test_nan_empty() { use std::f32::NAN; assert!(Size2D::new(NAN, 2.0).is_empty()); assert!(Size2D::new(0.0, NAN).is_empty()); assert!(Size2D::new(NAN, -2.0).is_empty()); } } } /// A 3d size tagged with a unit. #[repr(C)] pub struct Size3D { /// The extent of the element in the `U` units along the `x` axis. pub width: T, /// The extent of the element in the `U` units along the `y` axis. pub height: T, /// The extent of the element in the `U` units along the `z` axis. pub depth: T, #[doc(hidden)] pub _unit: PhantomData, } impl Copy for Size3D {} impl Clone for Size3D { fn clone(&self) -> Self { Size3D { width: self.width.clone(), height: self.height.clone(), depth: self.depth.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Size3D where T: serde::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (width, height, depth) = serde::Deserialize::deserialize(deserializer)?; Ok(Size3D { width, height, depth, _unit: PhantomData, }) } } #[cfg(feature = "serde")] impl serde::Serialize for Size3D where T: serde::Serialize, { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (&self.width, &self.height, &self.depth).serialize(serializer) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Size3D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Size3D {} impl Eq for Size3D where T: Eq {} impl PartialEq for Size3D where T: PartialEq, { fn eq(&self, other: &Self) -> bool { self.width == other.width && self.height == other.height && self.depth == other.depth } } impl Hash for Size3D where T: Hash, { fn hash(&self, h: &mut H) { self.width.hash(h); self.height.hash(h); self.depth.hash(h); } } impl fmt::Debug for Size3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&self.width, f)?; write!(f, "x")?; fmt::Debug::fmt(&self.height, f)?; write!(f, "x")?; fmt::Debug::fmt(&self.depth, f) } } impl Default for Size3D { fn default() -> Self { Size3D::new(Default::default(), Default::default(), Default::default()) } } impl Size3D { /// The same as [`Zero::zero()`] but available without importing trait. /// /// [`Zero::zero()`]: ./num/trait.Zero.html#tymethod.zero pub fn zero() -> Self where T: Zero, { Size3D::new(Zero::zero(), Zero::zero(), Zero::zero()) } /// Constructor taking scalar values. #[inline] pub const fn new(width: T, height: T, depth: T) -> Self { Size3D { width, height, depth, _unit: PhantomData, } } /// Constructor taking scalar strongly typed lengths. #[inline] pub fn from_lengths(width: Length, height: Length, depth: Length) -> Self { Size3D::new(width.0, height.0, depth.0) } /// Constructor setting all components to the same value. #[inline] pub fn splat(v: T) -> Self where T: Clone, { Size3D { width: v.clone(), height: v.clone(), depth: v, _unit: PhantomData, } } /// Tag a unitless value with units. #[inline] pub fn from_untyped(p: Size3D) -> Self { Size3D::new(p.width, p.height, p.depth) } } impl Size3D { /// Return this size as an array of three elements (width, then height, then depth). #[inline] pub fn to_array(self) -> [T; 3] { [self.width, self.height, self.depth] } /// Return this size as an array of three elements (width, then height, then depth). #[inline] pub fn to_tuple(self) -> (T, T, T) { (self.width, self.height, self.depth) } /// Return this size as a vector with width, height and depth. #[inline] pub fn to_vector(self) -> Vector3D { vec3(self.width, self.height, self.depth) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(self) -> Size3D { self.cast_unit() } /// Cast the unit #[inline] pub fn cast_unit(self) -> Size3D { Size3D::new(self.width, self.height, self.depth) } /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::size3; /// enum Mm {} /// /// assert_eq!(size3::<_, Mm>(-0.1, -0.8, 0.4).round(), size3::<_, Mm>(0.0, -1.0, 0.0)) /// ``` #[inline] #[must_use] pub fn round(self) -> Self where T: Round, { Size3D::new(self.width.round(), self.height.round(), self.depth.round()) } /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::size3; /// enum Mm {} /// /// assert_eq!(size3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), size3::<_, Mm>(0.0, 0.0, 1.0)) /// ``` #[inline] #[must_use] pub fn ceil(self) -> Self where T: Ceil, { Size3D::new(self.width.ceil(), self.height.ceil(), self.depth.ceil()) } /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::size3; /// enum Mm {} /// /// assert_eq!(size3::<_, Mm>(-0.1, -0.8, 0.4).floor(), size3::<_, Mm>(-1.0, -1.0, 0.0)) /// ``` #[inline] #[must_use] pub fn floor(self) -> Self where T: Floor, { Size3D::new(self.width.floor(), self.height.floor(), self.depth.floor()) } /// Returns result of multiplication of all components pub fn volume(self) -> T where T: Mul, { self.width * self.height * self.depth } /// Linearly interpolate between this size and another size. /// /// # Example /// /// ```rust /// use euclid::size3; /// use euclid::default::Size3D; /// /// let from: Size3D<_> = size3(0.0, 10.0, -1.0); /// let to: Size3D<_> = size3(8.0, -4.0, 0.0); /// /// assert_eq!(from.lerp(to, -1.0), size3(-8.0, 24.0, -2.0)); /// assert_eq!(from.lerp(to, 0.0), size3( 0.0, 10.0, -1.0)); /// assert_eq!(from.lerp(to, 0.5), size3( 4.0, 3.0, -0.5)); /// assert_eq!(from.lerp(to, 1.0), size3( 8.0, -4.0, 0.0)); /// assert_eq!(from.lerp(to, 2.0), size3(16.0, -18.0, 1.0)); /// ``` #[inline] pub fn lerp(self, other: Self, t: T) -> Self where T: One + Sub + Mul + Add, { let one_t = T::one() - t; self * one_t + other * t } } impl Size3D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn cast(self) -> Size3D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn try_cast(self) -> Option> { match ( NumCast::from(self.width), NumCast::from(self.height), NumCast::from(self.depth), ) { (Some(w), Some(h), Some(d)) => Some(Size3D::new(w, h, d)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` size. #[inline] pub fn to_f32(self) -> Size3D { self.cast() } /// Cast into an `f64` size. #[inline] pub fn to_f64(self) -> Size3D { self.cast() } /// Cast into an `uint` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_usize(self) -> Size3D { self.cast() } /// Cast into an `u32` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u32(self) -> Size3D { self.cast() } /// Cast into an `i32` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i32(self) -> Size3D { self.cast() } /// Cast into an `i64` size, truncating decimals if any. /// /// When casting from floating point sizes, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i64(self) -> Size3D { self.cast() } } impl Size3D { /// Returns true if all members are finite. #[inline] pub fn is_finite(self) -> bool { self.width.is_finite() && self.height.is_finite() && self.depth.is_finite() } } impl Size3D { /// Computes the absolute value of each component. /// /// For `f32` and `f64`, `NaN` will be returned for component if the component is `NaN`. /// /// For signed integers, `::MIN` will be returned for component if the component is `::MIN`. pub fn abs(self) -> Self { size3(self.width.abs(), self.height.abs(), self.depth.abs()) } /// Returns `true` if all components is positive and `false` any component is zero or negative. pub fn is_positive(self) -> bool { self.width.is_positive() && self.height.is_positive() && self.depth.is_positive() } } impl Size3D { /// Returns the size each component of which are minimum of this size and another. #[inline] pub fn min(self, other: Self) -> Self { size3( min(self.width, other.width), min(self.height, other.height), min(self.depth, other.depth), ) } /// Returns the size each component of which are maximum of this size and another. #[inline] pub fn max(self, other: Self) -> Self { size3( max(self.width, other.width), max(self.height, other.height), max(self.depth, other.depth), ) } /// Returns the size each component of which clamped by corresponding /// components of `start` and `end`. /// /// Shortcut for `self.max(start).min(end)`. #[inline] pub fn clamp(self, start: Self, end: Self) -> Self where T: Copy, { self.max(start).min(end) } // Returns true if this size is larger or equal to the other size in all dimensions. #[inline] pub fn contains(self, other: Self) -> bool { self.width >= other.width && self.height >= other.height && self.depth >= other.depth } /// Returns vector with results of "greater than" operation on each component. pub fn greater_than(self, other: Self) -> BoolVector3D { BoolVector3D { x: self.width > other.width, y: self.height > other.height, z: self.depth > other.depth, } } /// Returns vector with results of "lower than" operation on each component. pub fn lower_than(self, other: Self) -> BoolVector3D { BoolVector3D { x: self.width < other.width, y: self.height < other.height, z: self.depth < other.depth, } } /// Returns `true` if any component of size is zero, negative or NaN. pub fn is_empty(self) -> bool where T: Zero, { let zero = T::zero(); !(self.width > zero && self.height > zero && self.depth <= zero) } } impl Size3D { /// Returns vector with results of "equal" operation on each component. pub fn equal(self, other: Self) -> BoolVector3D { BoolVector3D { x: self.width == other.width, y: self.height == other.height, z: self.depth == other.depth, } } /// Returns vector with results of "not equal" operation on each component. pub fn not_equal(self, other: Self) -> BoolVector3D { BoolVector3D { x: self.width != other.width, y: self.height != other.height, z: self.depth != other.depth, } } } impl Round for Size3D { /// See [`Size3D::round()`](#method.round). #[inline] fn round(self) -> Self { self.round() } } impl Ceil for Size3D { /// See [`Size3D::ceil()`](#method.ceil). #[inline] fn ceil(self) -> Self { self.ceil() } } impl Floor for Size3D { /// See [`Size3D::floor()`](#method.floor). #[inline] fn floor(self) -> Self { self.floor() } } impl Zero for Size3D { #[inline] fn zero() -> Self { Size3D::new(Zero::zero(), Zero::zero(), Zero::zero()) } } impl Neg for Size3D { type Output = Size3D; #[inline] fn neg(self) -> Self::Output { Size3D::new(-self.width, -self.height, -self.depth) } } impl Add for Size3D { type Output = Size3D; #[inline] fn add(self, other: Self) -> Self::Output { Size3D::new( self.width + other.width, self.height + other.height, self.depth + other.depth, ) } } impl, U> Add<&Self> for Size3D { type Output = Self; fn add(self, other: &Self) -> Self { Size3D::new( self.width + other.width, self.height + other.height, self.depth + other.depth, ) } } impl + Zero, U> Sum for Size3D { fn sum>(iter: I) -> Self { iter.fold(Self::zero(), Add::add) } } impl<'a, T: 'a + Add + Copy + Zero, U: 'a> Sum<&'a Self> for Size3D { fn sum>(iter: I) -> Self { iter.fold(Self::zero(), Add::add) } } impl AddAssign for Size3D { #[inline] fn add_assign(&mut self, other: Self) { self.width += other.width; self.height += other.height; self.depth += other.depth; } } impl Sub for Size3D { type Output = Size3D; #[inline] fn sub(self, other: Self) -> Self::Output { Size3D::new( self.width - other.width, self.height - other.height, self.depth - other.depth, ) } } impl SubAssign for Size3D { #[inline] fn sub_assign(&mut self, other: Self) { self.width -= other.width; self.height -= other.height; self.depth -= other.depth; } } impl Mul for Size3D { type Output = Size3D; #[inline] fn mul(self, scale: T) -> Self::Output { Size3D::new( self.width * scale, self.height * scale, self.depth * scale, ) } } impl MulAssign for Size3D { #[inline] fn mul_assign(&mut self, other: T) { self.width *= other; self.height *= other; self.depth *= other; } } impl Mul> for Size3D { type Output = Size3D; #[inline] fn mul(self, scale: Scale) -> Self::Output { Size3D::new( self.width * scale.0, self.height * scale.0, self.depth * scale.0, ) } } impl MulAssign> for Size3D { #[inline] fn mul_assign(&mut self, other: Scale) { *self *= other.0; } } impl Div for Size3D { type Output = Size3D; #[inline] fn div(self, scale: T) -> Self::Output { Size3D::new( self.width / scale, self.height / scale, self.depth / scale, ) } } impl DivAssign for Size3D { #[inline] fn div_assign(&mut self, other: T) { self.width /= other; self.height /= other; self.depth /= other; } } impl Div> for Size3D { type Output = Size3D; #[inline] fn div(self, scale: Scale) -> Self::Output { Size3D::new( self.width / scale.0, self.height / scale.0, self.depth / scale.0, ) } } impl DivAssign> for Size3D { #[inline] fn div_assign(&mut self, other: Scale) { *self /= other.0; } } #[cfg(feature = "mint")] impl From> for Size3D { #[inline] fn from(v: mint::Vector3) -> Self { size3(v.x, v.y, v.z) } } #[cfg(feature = "mint")] impl Into> for Size3D { #[inline] fn into(self) -> mint::Vector3 { mint::Vector3 { x: self.width, y: self.height, z: self.depth, } } } impl From> for Size3D { #[inline] fn from(v: Vector3D) -> Self { size3(v.x, v.y, v.z) } } impl Into<[T; 3]> for Size3D { #[inline] fn into(self) -> [T; 3] { [self.width, self.height, self.depth] } } impl From<[T; 3]> for Size3D { #[inline] fn from([w, h, d]: [T; 3]) -> Self { size3(w, h, d) } } impl Into<(T, T, T)> for Size3D { #[inline] fn into(self) -> (T, T, T) { (self.width, self.height, self.depth) } } impl From<(T, T, T)> for Size3D { #[inline] fn from(tuple: (T, T, T)) -> Self { size3(tuple.0, tuple.1, tuple.2) } } /// Shorthand for `Size3D::new(w, h, d)`. #[inline] pub const fn size3(w: T, h: T, d: T) -> Size3D { Size3D::new(w, h, d) } #[cfg(test)] mod size3d { mod ops { use crate::default::Size3D; use crate::scale::Scale; pub enum Mm {} pub enum Cm {} pub type Size3DMm = crate::Size3D; pub type Size3DCm = crate::Size3D; #[test] pub fn test_neg() { assert_eq!(-Size3D::new(1.0, 2.0, 3.0), Size3D::new(-1.0, -2.0, -3.0)); assert_eq!(-Size3D::new(0.0, 0.0, 0.0), Size3D::new(-0.0, -0.0, -0.0)); assert_eq!(-Size3D::new(-1.0, -2.0, -3.0), Size3D::new(1.0, 2.0, 3.0)); } #[test] pub fn test_add() { let s1 = Size3D::new(1.0, 2.0, 3.0); let s2 = Size3D::new(4.0, 5.0, 6.0); assert_eq!(s1 + s2, Size3D::new(5.0, 7.0, 9.0)); assert_eq!(s1 + &s2, Size3D::new(5.0, 7.0, 9.0)); let s1 = Size3D::new(1.0, 2.0, 3.0); let s2 = Size3D::new(0.0, 0.0, 0.0); assert_eq!(s1 + s2, Size3D::new(1.0, 2.0, 3.0)); assert_eq!(s1 + &s2, Size3D::new(1.0, 2.0, 3.0)); let s1 = Size3D::new(1.0, 2.0, 3.0); let s2 = Size3D::new(-4.0, -5.0, -6.0); assert_eq!(s1 + s2, Size3D::new(-3.0, -3.0, -3.0)); assert_eq!(s1 + &s2, Size3D::new(-3.0, -3.0, -3.0)); let s1 = Size3D::new(0.0, 0.0, 0.0); let s2 = Size3D::new(0.0, 0.0, 0.0); assert_eq!(s1 + s2, Size3D::new(0.0, 0.0, 0.0)); assert_eq!(s1 + &s2, Size3D::new(0.0, 0.0, 0.0)); } #[test] pub fn test_sum() { let sizes = [ Size3D::new(0.0, 1.0, 2.0), Size3D::new(1.0, 2.0, 3.0), Size3D::new(2.0, 3.0, 4.0) ]; let sum = Size3D::new(3.0, 6.0, 9.0); assert_eq!(sizes.iter().sum::>(), sum); } #[test] pub fn test_add_assign() { let mut s = Size3D::new(1.0, 2.0, 3.0); s += Size3D::new(4.0, 5.0, 6.0); assert_eq!(s, Size3D::new(5.0, 7.0, 9.0)); let mut s = Size3D::new(1.0, 2.0, 3.0); s += Size3D::new(0.0, 0.0, 0.0); assert_eq!(s, Size3D::new(1.0, 2.0, 3.0)); let mut s = Size3D::new(1.0, 2.0, 3.0); s += Size3D::new(-4.0, -5.0, -6.0); assert_eq!(s, Size3D::new(-3.0, -3.0, -3.0)); let mut s = Size3D::new(0.0, 0.0, 0.0); s += Size3D::new(0.0, 0.0, 0.0); assert_eq!(s, Size3D::new(0.0, 0.0, 0.0)); } #[test] pub fn test_sub() { let s1 = Size3D::new(1.0, 2.0, 3.0); let s2 = Size3D::new(4.0, 5.0, 6.0); assert_eq!(s1 - s2, Size3D::new(-3.0, -3.0, -3.0)); let s1 = Size3D::new(1.0, 2.0, 3.0); let s2 = Size3D::new(0.0, 0.0, 0.0); assert_eq!(s1 - s2, Size3D::new(1.0, 2.0, 3.0)); let s1 = Size3D::new(1.0, 2.0, 3.0); let s2 = Size3D::new(-4.0, -5.0, -6.0); assert_eq!(s1 - s2, Size3D::new(5.0, 7.0, 9.0)); let s1 = Size3D::new(0.0, 0.0, 0.0); let s2 = Size3D::new(0.0, 0.0, 0.0); assert_eq!(s1 - s2, Size3D::new(0.0, 0.0, 0.0)); } #[test] pub fn test_sub_assign() { let mut s = Size3D::new(1.0, 2.0, 3.0); s -= Size3D::new(4.0, 5.0, 6.0); assert_eq!(s, Size3D::new(-3.0, -3.0, -3.0)); let mut s = Size3D::new(1.0, 2.0, 3.0); s -= Size3D::new(0.0, 0.0, 0.0); assert_eq!(s, Size3D::new(1.0, 2.0, 3.0)); let mut s = Size3D::new(1.0, 2.0, 3.0); s -= Size3D::new(-4.0, -5.0, -6.0); assert_eq!(s, Size3D::new(5.0, 7.0, 9.0)); let mut s = Size3D::new(0.0, 0.0, 0.0); s -= Size3D::new(0.0, 0.0, 0.0); assert_eq!(s, Size3D::new(0.0, 0.0, 0.0)); } #[test] pub fn test_mul_scalar() { let s1: Size3D = Size3D::new(3.0, 5.0, 7.0); let result = s1 * 5.0; assert_eq!(result, Size3D::new(15.0, 25.0, 35.0)); } #[test] pub fn test_mul_assign_scalar() { let mut s1: Size3D = Size3D::new(3.0, 5.0, 7.0); s1 *= 5.0; assert_eq!(s1, Size3D::new(15.0, 25.0, 35.0)); } #[test] pub fn test_mul_scale() { let s1 = Size3DMm::new(1.0, 2.0, 3.0); let cm_per_mm: Scale = Scale::new(0.1); let result = s1 * cm_per_mm; assert_eq!(result, Size3DCm::new(0.1, 0.2, 0.3)); } #[test] pub fn test_mul_assign_scale() { let mut s1 = Size3DMm::new(1.0, 2.0, 3.0); let scale: Scale = Scale::new(0.1); s1 *= scale; assert_eq!(s1, Size3DMm::new(0.1, 0.2, 0.3)); } #[test] pub fn test_div_scalar() { let s1: Size3D = Size3D::new(15.0, 25.0, 35.0); let result = s1 / 5.0; assert_eq!(result, Size3D::new(3.0, 5.0, 7.0)); } #[test] pub fn test_div_assign_scalar() { let mut s1: Size3D = Size3D::new(15.0, 25.0, 35.0); s1 /= 5.0; assert_eq!(s1, Size3D::new(3.0, 5.0, 7.0)); } #[test] pub fn test_div_scale() { let s1 = Size3DCm::new(0.1, 0.2, 0.3); let cm_per_mm: Scale = Scale::new(0.1); let result = s1 / cm_per_mm; assert_eq!(result, Size3DMm::new(1.0, 2.0, 3.0)); } #[test] pub fn test_div_assign_scale() { let mut s1 = Size3DMm::new(0.1, 0.2, 0.3); let scale: Scale = Scale::new(0.1); s1 /= scale; assert_eq!(s1, Size3DMm::new(1.0, 2.0, 3.0)); } #[test] pub fn test_nan_empty() { use std::f32::NAN; assert!(Size3D::new(NAN, 2.0, 3.0).is_empty()); assert!(Size3D::new(0.0, NAN, 0.0).is_empty()); assert!(Size3D::new(1.0, 2.0, NAN).is_empty()); } } } euclid-0.22.7/src/transform2d.rs000064400000000000000000000577730072674642500146320ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![cfg_attr(feature = "cargo-clippy", allow(just_underscores_and_digits))] use super::{UnknownUnit, Angle}; #[cfg(feature = "mint")] use mint; use crate::num::{One, Zero}; use crate::point::{Point2D, point2}; use crate::vector::{Vector2D, vec2}; use crate::rect::Rect; use crate::box2d::Box2D; use crate::transform3d::Transform3D; use core::ops::{Add, Mul, Div, Sub}; use core::marker::PhantomData; use core::cmp::{Eq, PartialEq}; use core::hash::{Hash}; use crate::approxeq::ApproxEq; use crate::trig::Trig; use core::fmt; use num_traits::NumCast; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// A 2d transform represented by a column-major 3 by 3 matrix, compressed down to 3 by 2. /// /// Transforms can be parametrized over the source and destination units, to describe a /// transformation from a space to another. /// For example, `Transform2D::transform_point4d` /// takes a `Point2D` and returns a `Point2D`. /// /// Transforms expose a set of convenience methods for pre- and post-transformations. /// Pre-transformations (`pre_*` methods) correspond to adding an operation that is /// applied before the rest of the transformation, while post-transformations (`then_*` /// methods) add an operation that is applied after. /// /// The matrix representation is conceptually equivalent to a 3 by 3 matrix transformation /// compressed to 3 by 2 with the components that aren't needed to describe the set of 2d /// transformations we are interested in implicitly defined: /// /// ```text /// | m11 m12 0 | |x| |x'| /// | m21 m22 0 | x |y| = |y'| /// | m31 m32 1 | |1| |w | /// ``` /// /// When translating Transform2D into general matrix representations, consider that the /// representation follows the column-major notation with column vectors. /// /// The translation terms are m31 and m32. #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")) )] pub struct Transform2D { pub m11: T, pub m12: T, pub m21: T, pub m22: T, pub m31: T, pub m32: T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } #[cfg(feature = "arbitrary")] impl<'a, T, Src, Dst> arbitrary::Arbitrary<'a> for Transform2D where T: arbitrary::Arbitrary<'a>, { fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result { let (m11, m12, m21, m22, m31, m32) = arbitrary::Arbitrary::arbitrary(u)?; Ok(Transform2D { m11, m12, m21, m22, m31, m32, _unit: PhantomData, }) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Transform2D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Transform2D {} impl Copy for Transform2D {} impl Clone for Transform2D { fn clone(&self) -> Self { Transform2D { m11: self.m11.clone(), m12: self.m12.clone(), m21: self.m21.clone(), m22: self.m22.clone(), m31: self.m31.clone(), m32: self.m32.clone(), _unit: PhantomData, } } } impl Eq for Transform2D where T: Eq {} impl PartialEq for Transform2D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.m11 == other.m11 && self.m12 == other.m12 && self.m21 == other.m21 && self.m22 == other.m22 && self.m31 == other.m31 && self.m32 == other.m32 } } impl Hash for Transform2D where T: Hash { fn hash(&self, h: &mut H) { self.m11.hash(h); self.m12.hash(h); self.m21.hash(h); self.m22.hash(h); self.m31.hash(h); self.m32.hash(h); } } impl Transform2D { /// Create a transform specifying its components in using the column-major-column-vector /// matrix notation. /// /// For example, the translation terms m31 and m32 are the last two parameters parameters. /// /// ``` /// use euclid::default::Transform2D; /// let tx = 1.0; /// let ty = 2.0; /// let translation = Transform2D::new( /// 1.0, 0.0, /// 0.0, 1.0, /// tx, ty, /// ); /// ``` pub const fn new(m11: T, m12: T, m21: T, m22: T, m31: T, m32: T) -> Self { Transform2D { m11, m12, m21, m22, m31, m32, _unit: PhantomData, } } /// Returns true is this transform is approximately equal to the other one, using /// T's default epsilon value. /// /// The same as [`ApproxEq::approx_eq()`] but available without importing trait. /// /// [`ApproxEq::approx_eq()`]: ./approxeq/trait.ApproxEq.html#method.approx_eq #[inline] pub fn approx_eq(&self, other: &Self) -> bool where T : ApproxEq { >::approx_eq(&self, &other) } /// Returns true is this transform is approximately equal to the other one, using /// a provided epsilon value. /// /// The same as [`ApproxEq::approx_eq_eps()`] but available without importing trait. /// /// [`ApproxEq::approx_eq_eps()`]: ./approxeq/trait.ApproxEq.html#method.approx_eq_eps #[inline] pub fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool where T : ApproxEq { >::approx_eq_eps(&self, &other, &eps) } } impl Transform2D { /// Returns an array containing this transform's terms. /// /// The terms are laid out in the same order as they are /// specified in `Transform2D::new`, that is following the /// column-major-column-vector matrix notation. /// /// For example the translation terms are found in the /// last two slots of the array. #[inline] pub fn to_array(&self) -> [T; 6] { [ self.m11, self.m12, self.m21, self.m22, self.m31, self.m32 ] } /// Returns an array containing this transform's terms transposed. /// /// The terms are laid out in transposed order from the same order of /// `Transform3D::new` and `Transform3D::to_array`, that is following /// the row-major-column-vector matrix notation. /// /// For example the translation terms are found at indices 2 and 5 /// in the array. #[inline] pub fn to_array_transposed(&self) -> [T; 6] { [ self.m11, self.m21, self.m31, self.m12, self.m22, self.m32 ] } /// Equivalent to `to_array` with elements packed two at a time /// in an array of arrays. #[inline] pub fn to_arrays(&self) -> [[T; 2]; 3] { [ [self.m11, self.m12], [self.m21, self.m22], [self.m31, self.m32], ] } /// Create a transform providing its components via an array /// of 6 elements instead of as individual parameters. /// /// The order of the components corresponds to the /// column-major-column-vector matrix notation (the same order /// as `Transform2D::new`). #[inline] pub fn from_array(array: [T; 6]) -> Self { Self::new( array[0], array[1], array[2], array[3], array[4], array[5], ) } /// Equivalent to `from_array` with elements packed two at a time /// in an array of arrays. /// /// The order of the components corresponds to the /// column-major-column-vector matrix notation (the same order /// as `Transform3D::new`). #[inline] pub fn from_arrays(array: [[T; 2]; 3]) -> Self { Self::new( array[0][0], array[0][1], array[1][0], array[1][1], array[2][0], array[2][1], ) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Transform2D { Transform2D::new( self.m11, self.m12, self.m21, self.m22, self.m31, self.m32 ) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(p: &Transform2D) -> Self { Transform2D::new( p.m11, p.m12, p.m21, p.m22, p.m31, p.m32 ) } /// Returns the same transform with a different source unit. #[inline] pub fn with_source(&self) -> Transform2D { Transform2D::new( self.m11, self.m12, self.m21, self.m22, self.m31, self.m32, ) } /// Returns the same transform with a different destination unit. #[inline] pub fn with_destination(&self) -> Transform2D { Transform2D::new( self.m11, self.m12, self.m21, self.m22, self.m31, self.m32, ) } /// Create a 3D transform from the current transform pub fn to_3d(&self) -> Transform3D where T: Zero + One, { Transform3D::new_2d(self.m11, self.m12, self.m21, self.m22, self.m31, self.m32) } } impl Transform2D { /// Cast from one numeric representation to another, preserving the units. #[inline] pub fn cast(&self) -> Transform2D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. pub fn try_cast(&self) -> Option> { match (NumCast::from(self.m11), NumCast::from(self.m12), NumCast::from(self.m21), NumCast::from(self.m22), NumCast::from(self.m31), NumCast::from(self.m32)) { (Some(m11), Some(m12), Some(m21), Some(m22), Some(m31), Some(m32)) => { Some(Transform2D::new( m11, m12, m21, m22, m31, m32 )) }, _ => None } } } impl Transform2D where T: Zero + One, { /// Create an identity matrix: /// /// ```text /// 1 0 /// 0 1 /// 0 0 /// ``` #[inline] pub fn identity() -> Self { Self::translation(T::zero(), T::zero()) } /// Intentional not public, because it checks for exact equivalence /// while most consumers will probably want some sort of approximate /// equivalence to deal with floating-point errors. fn is_identity(&self) -> bool where T: PartialEq, { *self == Self::identity() } } /// Methods for combining generic transformations impl Transform2D where T: Copy + Add + Mul, { /// Returns the multiplication of the two matrices such that mat's transformation /// applies after self's transformation. #[must_use] pub fn then(&self, mat: &Transform2D) -> Transform2D { Transform2D::new( self.m11 * mat.m11 + self.m12 * mat.m21, self.m11 * mat.m12 + self.m12 * mat.m22, self.m21 * mat.m11 + self.m22 * mat.m21, self.m21 * mat.m12 + self.m22 * mat.m22, self.m31 * mat.m11 + self.m32 * mat.m21 + mat.m31, self.m31 * mat.m12 + self.m32 * mat.m22 + mat.m32, ) } } /// Methods for creating and combining translation transformations impl Transform2D where T: Zero + One, { /// Create a 2d translation transform: /// /// ```text /// 1 0 /// 0 1 /// x y /// ``` #[inline] pub fn translation(x: T, y: T) -> Self { let _0 = || T::zero(); let _1 = || T::one(); Self::new( _1(), _0(), _0(), _1(), x, y, ) } /// Applies a translation after self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn then_translate(&self, v: Vector2D) -> Self where T: Copy + Add + Mul, { self.then(&Transform2D::translation(v.x, v.y)) } /// Applies a translation before self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn pre_translate(&self, v: Vector2D) -> Self where T: Copy + Add + Mul, { Transform2D::translation(v.x, v.y).then(self) } } /// Methods for creating and combining rotation transformations impl Transform2D where T: Copy + Add + Sub + Mul + Zero + Trig, { /// Returns a rotation transform. #[inline] pub fn rotation(theta: Angle) -> Self { let _0 = Zero::zero(); let cos = theta.get().cos(); let sin = theta.get().sin(); Transform2D::new( cos, sin, _0 - sin, cos, _0, _0 ) } /// Applies a rotation after self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn then_rotate(&self, theta: Angle) -> Self { self.then(&Transform2D::rotation(theta)) } /// Applies a rotation before self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn pre_rotate(&self, theta: Angle) -> Self { Transform2D::rotation(theta).then(self) } } /// Methods for creating and combining scale transformations impl Transform2D { /// Create a 2d scale transform: /// /// ```text /// x 0 /// 0 y /// 0 0 /// ``` #[inline] pub fn scale(x: T, y: T) -> Self where T: Zero, { let _0 = || Zero::zero(); Self::new( x, _0(), _0(), y, _0(), _0(), ) } /// Applies a scale after self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn then_scale(&self, x: T, y: T) -> Self where T: Copy + Add + Mul + Zero, { self.then(&Transform2D::scale(x, y)) } /// Applies a scale before self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn pre_scale(&self, x: T, y: T) -> Self where T: Copy + Mul, { Transform2D::new( self.m11 * x, self.m12 * x, self.m21 * y, self.m22 * y, self.m31, self.m32 ) } } /// Methods for apply transformations to objects impl Transform2D where T: Copy + Add + Mul, { /// Returns the given point transformed by this transform. #[inline] #[must_use] pub fn transform_point(&self, point: Point2D) -> Point2D { Point2D::new( point.x * self.m11 + point.y * self.m21 + self.m31, point.x * self.m12 + point.y * self.m22 + self.m32 ) } /// Returns the given vector transformed by this matrix. #[inline] #[must_use] pub fn transform_vector(&self, vec: Vector2D) -> Vector2D { vec2(vec.x * self.m11 + vec.y * self.m21, vec.x * self.m12 + vec.y * self.m22) } /// Returns a rectangle that encompasses the result of transforming the given rectangle by this /// transform. #[inline] #[must_use] pub fn outer_transformed_rect(&self, rect: &Rect) -> Rect where T: Sub + Zero + PartialOrd, { let min = rect.min(); let max = rect.max(); Rect::from_points(&[ self.transform_point(min), self.transform_point(max), self.transform_point(point2(max.x, min.y)), self.transform_point(point2(min.x, max.y)), ]) } /// Returns a box that encompasses the result of transforming the given box by this /// transform. #[inline] #[must_use] pub fn outer_transformed_box(&self, b: &Box2D) -> Box2D where T: Sub + Zero + PartialOrd, { Box2D::from_points(&[ self.transform_point(b.min), self.transform_point(b.max), self.transform_point(point2(b.max.x, b.min.y)), self.transform_point(point2(b.min.x, b.max.y)), ]) } } impl Transform2D where T: Copy + Sub + Mul + Div + PartialEq + Zero + One, { /// Computes and returns the determinant of this transform. pub fn determinant(&self) -> T { self.m11 * self.m22 - self.m12 * self.m21 } /// Returns whether it is possible to compute the inverse transform. #[inline] pub fn is_invertible(&self) -> bool { self.determinant() != Zero::zero() } /// Returns the inverse transform if possible. #[must_use] pub fn inverse(&self) -> Option> { let det = self.determinant(); let _0: T = Zero::zero(); let _1: T = One::one(); if det == _0 { return None; } let inv_det = _1 / det; Some(Transform2D::new( inv_det * self.m22, inv_det * (_0 - self.m12), inv_det * (_0 - self.m21), inv_det * self.m11, inv_det * (self.m21 * self.m32 - self.m22 * self.m31), inv_det * (self.m31 * self.m12 - self.m11 * self.m32), )) } } impl Default for Transform2D where T: Zero + One { /// Returns the [identity transform](#method.identity). fn default() -> Self { Self::identity() } } impl, Src, Dst> ApproxEq for Transform2D { #[inline] fn approx_epsilon() -> T { T::approx_epsilon() } /// Returns true is this transform is approximately equal to the other one, using /// a provided epsilon value. fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool { self.m11.approx_eq_eps(&other.m11, eps) && self.m12.approx_eq_eps(&other.m12, eps) && self.m21.approx_eq_eps(&other.m21, eps) && self.m22.approx_eq_eps(&other.m22, eps) && self.m31.approx_eq_eps(&other.m31, eps) && self.m32.approx_eq_eps(&other.m32, eps) } } impl fmt::Debug for Transform2D where T: Copy + fmt::Debug + PartialEq + One + Zero { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if self.is_identity() { write!(f, "[I]") } else { self.to_array().fmt(f) } } } #[cfg(feature = "mint")] impl From> for Transform2D { fn from(m: mint::RowMatrix3x2) -> Self { Transform2D { m11: m.x.x, m12: m.x.y, m21: m.y.x, m22: m.y.y, m31: m.z.x, m32: m.z.y, _unit: PhantomData, } } } #[cfg(feature = "mint")] impl Into> for Transform2D { fn into(self) -> mint::RowMatrix3x2 { mint::RowMatrix3x2 { x: mint::Vector2 { x: self.m11, y: self.m12 }, y: mint::Vector2 { x: self.m21, y: self.m22 }, z: mint::Vector2 { x: self.m31, y: self.m32 }, } } } #[cfg(test)] mod test { use super::*; use crate::default; use crate::approxeq::ApproxEq; #[cfg(feature = "mint")] use mint; use core::f32::consts::FRAC_PI_2; type Mat = default::Transform2D; fn rad(v: f32) -> Angle { Angle::radians(v) } #[test] pub fn test_translation() { let t1 = Mat::translation(1.0, 2.0); let t2 = Mat::identity().pre_translate(vec2(1.0, 2.0)); let t3 = Mat::identity().then_translate(vec2(1.0, 2.0)); assert_eq!(t1, t2); assert_eq!(t1, t3); assert_eq!(t1.transform_point(Point2D::new(1.0, 1.0)), Point2D::new(2.0, 3.0)); assert_eq!(t1.then(&t1), Mat::translation(2.0, 4.0)); } #[test] pub fn test_rotation() { let r1 = Mat::rotation(rad(FRAC_PI_2)); let r2 = Mat::identity().pre_rotate(rad(FRAC_PI_2)); let r3 = Mat::identity().then_rotate(rad(FRAC_PI_2)); assert_eq!(r1, r2); assert_eq!(r1, r3); assert!(r1.transform_point(Point2D::new(1.0, 2.0)).approx_eq(&Point2D::new(-2.0, 1.0))); assert!(r1.then(&r1).approx_eq(&Mat::rotation(rad(FRAC_PI_2*2.0)))); } #[test] pub fn test_scale() { let s1 = Mat::scale(2.0, 3.0); let s2 = Mat::identity().pre_scale(2.0, 3.0); let s3 = Mat::identity().then_scale(2.0, 3.0); assert_eq!(s1, s2); assert_eq!(s1, s3); assert!(s1.transform_point(Point2D::new(2.0, 2.0)).approx_eq(&Point2D::new(4.0, 6.0))); } #[test] pub fn test_pre_then_scale() { let m = Mat::rotation(rad(FRAC_PI_2)).then_translate(vec2(6.0, 7.0)); let s = Mat::scale(2.0, 3.0); assert_eq!(m.then(&s), m.then_scale(2.0, 3.0)); } #[test] pub fn test_inverse_simple() { let m1 = Mat::identity(); let m2 = m1.inverse().unwrap(); assert!(m1.approx_eq(&m2)); } #[test] pub fn test_inverse_scale() { let m1 = Mat::scale(1.5, 0.3); let m2 = m1.inverse().unwrap(); assert!(m1.then(&m2).approx_eq(&Mat::identity())); assert!(m2.then(&m1).approx_eq(&Mat::identity())); } #[test] pub fn test_inverse_translate() { let m1 = Mat::translation(-132.0, 0.3); let m2 = m1.inverse().unwrap(); assert!(m1.then(&m2).approx_eq(&Mat::identity())); assert!(m2.then(&m1).approx_eq(&Mat::identity())); } #[test] fn test_inverse_none() { assert!(Mat::scale(2.0, 0.0).inverse().is_none()); assert!(Mat::scale(2.0, 2.0).inverse().is_some()); } #[test] pub fn test_pre_post() { let m1 = default::Transform2D::identity().then_scale(1.0, 2.0).then_translate(vec2(1.0, 2.0)); let m2 = default::Transform2D::identity().pre_translate(vec2(1.0, 2.0)).pre_scale(1.0, 2.0); assert!(m1.approx_eq(&m2)); let r = Mat::rotation(rad(FRAC_PI_2)); let t = Mat::translation(2.0, 3.0); let a = Point2D::new(1.0, 1.0); assert!(r.then(&t).transform_point(a).approx_eq(&Point2D::new(1.0, 4.0))); assert!(t.then(&r).transform_point(a).approx_eq(&Point2D::new(-4.0, 3.0))); assert!(t.then(&r).transform_point(a).approx_eq(&r.transform_point(t.transform_point(a)))); } #[test] fn test_size_of() { use core::mem::size_of; assert_eq!(size_of::>(), 6*size_of::()); assert_eq!(size_of::>(), 6*size_of::()); } #[test] pub fn test_is_identity() { let m1 = default::Transform2D::identity(); assert!(m1.is_identity()); let m2 = m1.then_translate(vec2(0.1, 0.0)); assert!(!m2.is_identity()); } #[test] pub fn test_transform_vector() { // Translation does not apply to vectors. let m1 = Mat::translation(1.0, 1.0); let v1 = vec2(10.0, -10.0); assert_eq!(v1, m1.transform_vector(v1)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let m1 = Mat::rotation(rad(FRAC_PI_2)); let mm: mint::RowMatrix3x2<_> = m1.into(); let m2 = Mat::from(mm); assert_eq!(m1, m2); } } euclid-0.22.7/src/transform3d.rs000064400000000000000000001451260072674642500146210ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![cfg_attr(feature = "cargo-clippy", allow(just_underscores_and_digits))] use super::{UnknownUnit, Angle}; use crate::approxeq::ApproxEq; use crate::homogen::HomogeneousVector; #[cfg(feature = "mint")] use mint; use crate::trig::Trig; use crate::point::{Point2D, point2, Point3D, point3}; use crate::vector::{Vector2D, Vector3D, vec2, vec3}; use crate::rect::Rect; use crate::box2d::Box2D; use crate::box3d::Box3D; use crate::transform2d::Transform2D; use crate::scale::Scale; use crate::num::{One, Zero}; use core::ops::{Add, Mul, Sub, Div, Neg}; use core::marker::PhantomData; use core::fmt; use core::cmp::{Eq, PartialEq}; use core::hash::{Hash}; use num_traits::NumCast; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// A 3d transform stored as a column-major 4 by 4 matrix. /// /// Transforms can be parametrized over the source and destination units, to describe a /// transformation from a space to another. /// For example, `Transform3D::transform_point3d` /// takes a `Point3D` and returns a `Point3D`. /// /// Transforms expose a set of convenience methods for pre- and post-transformations. /// Pre-transformations (`pre_*` methods) correspond to adding an operation that is /// applied before the rest of the transformation, while post-transformations (`then_*` /// methods) add an operation that is applied after. /// /// When translating Transform3D into general matrix representations, consider that the /// representation follows the column major notation with column vectors. /// /// ```text /// |x'| | m11 m12 m13 m14 | |x| /// |y'| | m21 m22 m23 m24 | |y| /// |z'| = | m31 m32 m33 m34 | x |y| /// |w | | m41 m42 m43 m44 | |1| /// ``` /// /// The translation terms are m41, m42 and m43. #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")) )] pub struct Transform3D { pub m11: T, pub m12: T, pub m13: T, pub m14: T, pub m21: T, pub m22: T, pub m23: T, pub m24: T, pub m31: T, pub m32: T, pub m33: T, pub m34: T, pub m41: T, pub m42: T, pub m43: T, pub m44: T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } #[cfg(feature = "arbitrary")] impl<'a, T, Src, Dst> arbitrary::Arbitrary<'a> for Transform3D where T: arbitrary::Arbitrary<'a>, { fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result { let (m11, m12, m13, m14) = arbitrary::Arbitrary::arbitrary(u)?; let (m21, m22, m23, m24) = arbitrary::Arbitrary::arbitrary(u)?; let (m31, m32, m33, m34) = arbitrary::Arbitrary::arbitrary(u)?; let (m41, m42, m43, m44) = arbitrary::Arbitrary::arbitrary(u)?; Ok(Transform3D { m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44, _unit: PhantomData, }) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Transform3D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Transform3D {} impl Copy for Transform3D {} impl Clone for Transform3D { fn clone(&self) -> Self { Transform3D { m11: self.m11.clone(), m12: self.m12.clone(), m13: self.m13.clone(), m14: self.m14.clone(), m21: self.m21.clone(), m22: self.m22.clone(), m23: self.m23.clone(), m24: self.m24.clone(), m31: self.m31.clone(), m32: self.m32.clone(), m33: self.m33.clone(), m34: self.m34.clone(), m41: self.m41.clone(), m42: self.m42.clone(), m43: self.m43.clone(), m44: self.m44.clone(), _unit: PhantomData, } } } impl Eq for Transform3D where T: Eq {} impl PartialEq for Transform3D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.m11 == other.m11 && self.m12 == other.m12 && self.m13 == other.m13 && self.m14 == other.m14 && self.m21 == other.m21 && self.m22 == other.m22 && self.m23 == other.m23 && self.m24 == other.m24 && self.m31 == other.m31 && self.m32 == other.m32 && self.m33 == other.m33 && self.m34 == other.m34 && self.m41 == other.m41 && self.m42 == other.m42 && self.m43 == other.m43 && self.m44 == other.m44 } } impl Hash for Transform3D where T: Hash { fn hash(&self, h: &mut H) { self.m11.hash(h); self.m12.hash(h); self.m13.hash(h); self.m14.hash(h); self.m21.hash(h); self.m22.hash(h); self.m23.hash(h); self.m24.hash(h); self.m31.hash(h); self.m32.hash(h); self.m33.hash(h); self.m34.hash(h); self.m41.hash(h); self.m42.hash(h); self.m43.hash(h); self.m44.hash(h); } } impl Transform3D { /// Create a transform specifying all of it's component as a 4 by 4 matrix. /// /// Components are specified following column-major-column-vector matrix notation. /// For example, the translation terms m41, m42, m43 are the 13rd, 14th and 15th parameters. /// /// ``` /// use euclid::default::Transform3D; /// let tx = 1.0; /// let ty = 2.0; /// let tz = 3.0; /// let translation = Transform3D::new( /// 1.0, 0.0, 0.0, 0.0, /// 0.0, 1.0, 0.0, 0.0, /// 0.0, 0.0, 1.0, 0.0, /// tx, ty, tz, 1.0, /// ); /// ``` #[inline] #[cfg_attr(feature = "cargo-clippy", allow(too_many_arguments))] pub const fn new( m11: T, m12: T, m13: T, m14: T, m21: T, m22: T, m23: T, m24: T, m31: T, m32: T, m33: T, m34: T, m41: T, m42: T, m43: T, m44: T, ) -> Self { Transform3D { m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44, _unit: PhantomData, } } /// Create a transform representing a 2d transformation from the components /// of a 2 by 3 matrix transformation. /// /// Components follow the column-major-column-vector notation (m41 and m42 /// representating the translation terms). /// /// ```text /// m11 m12 0 0 /// m21 m22 0 0 /// 0 0 1 0 /// m41 m42 0 1 /// ``` #[inline] pub fn new_2d(m11: T, m12: T, m21: T, m22: T, m41: T, m42: T) -> Self where T: Zero + One, { let _0 = || T::zero(); let _1 = || T::one(); Self::new( m11, m12, _0(), _0(), m21, m22, _0(), _0(), _0(), _0(), _1(), _0(), m41, m42, _0(), _1() ) } /// Returns `true` if this transform can be represented with a `Transform2D`. /// /// See #[inline] pub fn is_2d(&self) -> bool where T: Zero + One + PartialEq, { let (_0, _1): (T, T) = (Zero::zero(), One::one()); self.m31 == _0 && self.m32 == _0 && self.m13 == _0 && self.m23 == _0 && self.m43 == _0 && self.m14 == _0 && self.m24 == _0 && self.m34 == _0 && self.m33 == _1 && self.m44 == _1 } } impl Transform3D { /// Returns an array containing this transform's terms. /// /// The terms are laid out in the same order as they are /// specified in `Transform3D::new`, that is following the /// column-major-column-vector matrix notation. /// /// For example the translation terms are found on the /// 13th, 14th and 15th slots of the array. #[inline] pub fn to_array(&self) -> [T; 16] { [ self.m11, self.m12, self.m13, self.m14, self.m21, self.m22, self.m23, self.m24, self.m31, self.m32, self.m33, self.m34, self.m41, self.m42, self.m43, self.m44 ] } /// Returns an array containing this transform's terms transposed. /// /// The terms are laid out in transposed order from the same order of /// `Transform3D::new` and `Transform3D::to_array`, that is following /// the row-major-column-vector matrix notation. /// /// For example the translation terms are found at indices 3, 7 and 11 /// of the array. #[inline] pub fn to_array_transposed(&self) -> [T; 16] { [ self.m11, self.m21, self.m31, self.m41, self.m12, self.m22, self.m32, self.m42, self.m13, self.m23, self.m33, self.m43, self.m14, self.m24, self.m34, self.m44 ] } /// Equivalent to `to_array` with elements packed four at a time /// in an array of arrays. #[inline] pub fn to_arrays(&self) -> [[T; 4]; 4] { [ [self.m11, self.m12, self.m13, self.m14], [self.m21, self.m22, self.m23, self.m24], [self.m31, self.m32, self.m33, self.m34], [self.m41, self.m42, self.m43, self.m44] ] } /// Equivalent to `to_array_transposed` with elements packed /// four at a time in an array of arrays. #[inline] pub fn to_arrays_transposed(&self) -> [[T; 4]; 4] { [ [self.m11, self.m21, self.m31, self.m41], [self.m12, self.m22, self.m32, self.m42], [self.m13, self.m23, self.m33, self.m43], [self.m14, self.m24, self.m34, self.m44] ] } /// Create a transform providing its components via an array /// of 16 elements instead of as individual parameters. /// /// The order of the components corresponds to the /// column-major-column-vector matrix notation (the same order /// as `Transform3D::new`). #[inline] pub fn from_array(array: [T; 16]) -> Self { Self::new( array[0], array[1], array[2], array[3], array[4], array[5], array[6], array[7], array[8], array[9], array[10], array[11], array[12], array[13], array[14], array[15], ) } /// Equivalent to `from_array` with elements packed four at a time /// in an array of arrays. /// /// The order of the components corresponds to the /// column-major-column-vector matrix notation (the same order /// as `Transform3D::new`). #[inline] pub fn from_arrays(array: [[T; 4]; 4]) -> Self { Self::new( array[0][0], array[0][1], array[0][2], array[0][3], array[1][0], array[1][1], array[1][2], array[1][3], array[2][0], array[2][1], array[2][2], array[2][3], array[3][0], array[3][1], array[3][2], array[3][3], ) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(m: &Transform3D) -> Self { Transform3D::new( m.m11, m.m12, m.m13, m.m14, m.m21, m.m22, m.m23, m.m24, m.m31, m.m32, m.m33, m.m34, m.m41, m.m42, m.m43, m.m44, ) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Transform3D { Transform3D::new( self.m11, self.m12, self.m13, self.m14, self.m21, self.m22, self.m23, self.m24, self.m31, self.m32, self.m33, self.m34, self.m41, self.m42, self.m43, self.m44, ) } /// Returns the same transform with a different source unit. #[inline] pub fn with_source(&self) -> Transform3D { Transform3D::new( self.m11, self.m12, self.m13, self.m14, self.m21, self.m22, self.m23, self.m24, self.m31, self.m32, self.m33, self.m34, self.m41, self.m42, self.m43, self.m44, ) } /// Returns the same transform with a different destination unit. #[inline] pub fn with_destination(&self) -> Transform3D { Transform3D::new( self.m11, self.m12, self.m13, self.m14, self.m21, self.m22, self.m23, self.m24, self.m31, self.m32, self.m33, self.m34, self.m41, self.m42, self.m43, self.m44, ) } /// Create a 2D transform picking the relevant terms from this transform. /// /// This method assumes that self represents a 2d transformation, callers /// should check that [`self.is_2d()`] returns `true` beforehand. /// /// [`self.is_2d()`]: #method.is_2d pub fn to_2d(&self) -> Transform2D { Transform2D::new( self.m11, self.m12, self.m21, self.m22, self.m41, self.m42 ) } } impl Transform3D where T: Zero + One, { /// Creates an identity matrix: /// /// ```text /// 1 0 0 0 /// 0 1 0 0 /// 0 0 1 0 /// 0 0 0 1 /// ``` #[inline] pub fn identity() -> Self { Self::translation(T::zero(), T::zero(), T::zero()) } /// Intentional not public, because it checks for exact equivalence /// while most consumers will probably want some sort of approximate /// equivalence to deal with floating-point errors. #[inline] fn is_identity(&self) -> bool where T: PartialEq, { *self == Self::identity() } /// Create a 2d skew transform. /// /// See pub fn skew(alpha: Angle, beta: Angle) -> Self where T: Trig, { let _0 = || T::zero(); let _1 = || T::one(); let (sx, sy) = (beta.radians.tan(), alpha.radians.tan()); Self::new( _1(), sx, _0(), _0(), sy, _1(), _0(), _0(), _0(), _0(), _1(), _0(), _0(), _0(), _0(), _1(), ) } /// Create a simple perspective transform, projecting to the plane `z = -d`. /// /// ```text /// 1 0 0 0 /// 0 1 0 0 /// 0 0 1 -1/d /// 0 0 0 1 /// ``` /// /// See . pub fn perspective(d: T) -> Self where T: Neg + Div, { let _0 = || T::zero(); let _1 = || T::one(); Self::new( _1(), _0(), _0(), _0(), _0(), _1(), _0(), _0(), _0(), _0(), _1(), -_1() / d, _0(), _0(), _0(), _1(), ) } } /// Methods for combining generic transformations impl Transform3D where T: Copy + Add + Mul, { /// Returns the multiplication of the two matrices such that mat's transformation /// applies after self's transformation. /// /// Assuming row vectors, this is equivalent to self * mat #[must_use] pub fn then(&self, other: &Transform3D) -> Transform3D { Transform3D::new( self.m11 * other.m11 + self.m12 * other.m21 + self.m13 * other.m31 + self.m14 * other.m41, self.m11 * other.m12 + self.m12 * other.m22 + self.m13 * other.m32 + self.m14 * other.m42, self.m11 * other.m13 + self.m12 * other.m23 + self.m13 * other.m33 + self.m14 * other.m43, self.m11 * other.m14 + self.m12 * other.m24 + self.m13 * other.m34 + self.m14 * other.m44, self.m21 * other.m11 + self.m22 * other.m21 + self.m23 * other.m31 + self.m24 * other.m41, self.m21 * other.m12 + self.m22 * other.m22 + self.m23 * other.m32 + self.m24 * other.m42, self.m21 * other.m13 + self.m22 * other.m23 + self.m23 * other.m33 + self.m24 * other.m43, self.m21 * other.m14 + self.m22 * other.m24 + self.m23 * other.m34 + self.m24 * other.m44, self.m31 * other.m11 + self.m32 * other.m21 + self.m33 * other.m31 + self.m34 * other.m41, self.m31 * other.m12 + self.m32 * other.m22 + self.m33 * other.m32 + self.m34 * other.m42, self.m31 * other.m13 + self.m32 * other.m23 + self.m33 * other.m33 + self.m34 * other.m43, self.m31 * other.m14 + self.m32 * other.m24 + self.m33 * other.m34 + self.m34 * other.m44, self.m41 * other.m11 + self.m42 * other.m21 + self.m43 * other.m31 + self.m44 * other.m41, self.m41 * other.m12 + self.m42 * other.m22 + self.m43 * other.m32 + self.m44 * other.m42, self.m41 * other.m13 + self.m42 * other.m23 + self.m43 * other.m33 + self.m44 * other.m43, self.m41 * other.m14 + self.m42 * other.m24 + self.m43 * other.m34 + self.m44 * other.m44, ) } } /// Methods for creating and combining translation transformations impl Transform3D where T: Zero + One, { /// Create a 3d translation transform: /// /// ```text /// 1 0 0 0 /// 0 1 0 0 /// 0 0 1 0 /// x y z 1 /// ``` #[inline] pub fn translation(x: T, y: T, z: T) -> Self { let _0 = || T::zero(); let _1 = || T::one(); Self::new( _1(), _0(), _0(), _0(), _0(), _1(), _0(), _0(), _0(), _0(), _1(), _0(), x, y, z, _1(), ) } /// Returns a transform with a translation applied before self's transformation. #[must_use] pub fn pre_translate(&self, v: Vector3D) -> Self where T: Copy + Add + Mul, { Transform3D::translation(v.x, v.y, v.z).then(self) } /// Returns a transform with a translation applied after self's transformation. #[must_use] pub fn then_translate(&self, v: Vector3D) -> Self where T: Copy + Add + Mul, { self.then(&Transform3D::translation(v.x, v.y, v.z)) } } /// Methods for creating and combining rotation transformations impl Transform3D where T: Copy + Add + Sub + Mul + Div + Zero + One + Trig, { /// Create a 3d rotation transform from an angle / axis. /// The supplied axis must be normalized. pub fn rotation(x: T, y: T, z: T, theta: Angle) -> Self { let (_0, _1): (T, T) = (Zero::zero(), One::one()); let _2 = _1 + _1; let xx = x * x; let yy = y * y; let zz = z * z; let half_theta = theta.get() / _2; let sc = half_theta.sin() * half_theta.cos(); let sq = half_theta.sin() * half_theta.sin(); Transform3D::new( _1 - _2 * (yy + zz) * sq, _2 * (x * y * sq + z * sc), _2 * (x * z * sq - y * sc), _0, _2 * (x * y * sq - z * sc), _1 - _2 * (xx + zz) * sq, _2 * (y * z * sq + x * sc), _0, _2 * (x * z * sq + y * sc), _2 * (y * z * sq - x * sc), _1 - _2 * (xx + yy) * sq, _0, _0, _0, _0, _1 ) } /// Returns a transform with a rotation applied after self's transformation. #[must_use] pub fn then_rotate(&self, x: T, y: T, z: T, theta: Angle) -> Self { self.then(&Transform3D::rotation(x, y, z, theta)) } /// Returns a transform with a rotation applied before self's transformation. #[must_use] pub fn pre_rotate(&self, x: T, y: T, z: T, theta: Angle) -> Self { Transform3D::rotation(x, y, z, theta).then(self) } } /// Methods for creating and combining scale transformations impl Transform3D where T: Zero + One, { /// Create a 3d scale transform: /// /// ```text /// x 0 0 0 /// 0 y 0 0 /// 0 0 z 0 /// 0 0 0 1 /// ``` #[inline] pub fn scale(x: T, y: T, z: T) -> Self { let _0 = || T::zero(); let _1 = || T::one(); Self::new( x, _0(), _0(), _0(), _0(), y, _0(), _0(), _0(), _0(), z, _0(), _0(), _0(), _0(), _1(), ) } /// Returns a transform with a scale applied before self's transformation. #[must_use] pub fn pre_scale(&self, x: T, y: T, z: T) -> Self where T: Copy + Add + Mul, { Transform3D::new( self.m11 * x, self.m12 * x, self.m13 * x, self.m14 * x, self.m21 * y, self.m22 * y, self.m23 * y, self.m24 * y, self.m31 * z, self.m32 * z, self.m33 * z, self.m34 * z, self.m41 , self.m42, self.m43, self.m44 ) } /// Returns a transform with a scale applied after self's transformation. #[must_use] pub fn then_scale(&self, x: T, y: T, z: T) -> Self where T: Copy + Add + Mul, { self.then(&Transform3D::scale(x, y, z)) } } /// Methods for apply transformations to objects impl Transform3D where T: Copy + Add + Mul, { /// Returns the homogeneous vector corresponding to the transformed 2d point. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_point2d_homogeneous( &self, p: Point2D ) -> HomogeneousVector { let x = p.x * self.m11 + p.y * self.m21 + self.m41; let y = p.x * self.m12 + p.y * self.m22 + self.m42; let z = p.x * self.m13 + p.y * self.m23 + self.m43; let w = p.x * self.m14 + p.y * self.m24 + self.m44; HomogeneousVector::new(x, y, z, w) } /// Returns the given 2d point transformed by this transform, if the transform makes sense, /// or `None` otherwise. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_point2d(&self, p: Point2D) -> Option> where T: Div + Zero + PartialOrd, { //Note: could use `transform_point2d_homogeneous()` but it would waste the calculus of `z` let w = p.x * self.m14 + p.y * self.m24 + self.m44; if w > T::zero() { let x = p.x * self.m11 + p.y * self.m21 + self.m41; let y = p.x * self.m12 + p.y * self.m22 + self.m42; Some(Point2D::new(x / w, y / w)) } else { None } } /// Returns the given 2d vector transformed by this matrix. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_vector2d(&self, v: Vector2D) -> Vector2D { vec2( v.x * self.m11 + v.y * self.m21, v.x * self.m12 + v.y * self.m22, ) } /// Returns the homogeneous vector corresponding to the transformed 3d point. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_point3d_homogeneous( &self, p: Point3D ) -> HomogeneousVector { let x = p.x * self.m11 + p.y * self.m21 + p.z * self.m31 + self.m41; let y = p.x * self.m12 + p.y * self.m22 + p.z * self.m32 + self.m42; let z = p.x * self.m13 + p.y * self.m23 + p.z * self.m33 + self.m43; let w = p.x * self.m14 + p.y * self.m24 + p.z * self.m34 + self.m44; HomogeneousVector::new(x, y, z, w) } /// Returns the given 3d point transformed by this transform, if the transform makes sense, /// or `None` otherwise. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_point3d(&self, p: Point3D) -> Option> where T: Div + Zero + PartialOrd, { self.transform_point3d_homogeneous(p).to_point3d() } /// Returns the given 3d vector transformed by this matrix. /// /// The input point must be use the unit Src, and the returned point has the unit Dst. #[inline] pub fn transform_vector3d(&self, v: Vector3D) -> Vector3D { vec3( v.x * self.m11 + v.y * self.m21 + v.z * self.m31, v.x * self.m12 + v.y * self.m22 + v.z * self.m32, v.x * self.m13 + v.y * self.m23 + v.z * self.m33, ) } /// Returns a rectangle that encompasses the result of transforming the given rectangle by this /// transform, if the transform makes sense for it, or `None` otherwise. pub fn outer_transformed_rect(&self, rect: &Rect) -> Option> where T: Sub + Div + Zero + PartialOrd, { let min = rect.min(); let max = rect.max(); Some(Rect::from_points(&[ self.transform_point2d(min)?, self.transform_point2d(max)?, self.transform_point2d(point2(max.x, min.y))?, self.transform_point2d(point2(min.x, max.y))?, ])) } /// Returns a 2d box that encompasses the result of transforming the given box by this /// transform, if the transform makes sense for it, or `None` otherwise. pub fn outer_transformed_box2d(&self, b: &Box2D) -> Option> where T: Sub + Div + Zero + PartialOrd, { Some(Box2D::from_points(&[ self.transform_point2d(b.min)?, self.transform_point2d(b.max)?, self.transform_point2d(point2(b.max.x, b.min.y))?, self.transform_point2d(point2(b.min.x, b.max.y))?, ])) } /// Returns a 3d box that encompasses the result of transforming the given box by this /// transform, if the transform makes sense for it, or `None` otherwise. pub fn outer_transformed_box3d(&self, b: &Box3D) -> Option> where T: Sub + Div + Zero + PartialOrd, { Some(Box3D::from_points(&[ self.transform_point3d(point3(b.min.x, b.min.y, b.min.z))?, self.transform_point3d(point3(b.min.x, b.min.y, b.max.z))?, self.transform_point3d(point3(b.min.x, b.max.y, b.min.z))?, self.transform_point3d(point3(b.min.x, b.max.y, b.max.z))?, self.transform_point3d(point3(b.max.x, b.min.y, b.min.z))?, self.transform_point3d(point3(b.max.x, b.min.y, b.max.z))?, self.transform_point3d(point3(b.max.x, b.max.y, b.min.z))?, self.transform_point3d(point3(b.max.x, b.max.y, b.max.z))?, ])) } } impl Transform3D where T: Copy + Add + Sub + Mul + Div + Neg + PartialOrd + One + Zero { /// Create an orthogonal projection transform. pub fn ortho(left: T, right: T, bottom: T, top: T, near: T, far: T) -> Self { let tx = -((right + left) / (right - left)); let ty = -((top + bottom) / (top - bottom)); let tz = -((far + near) / (far - near)); let (_0, _1): (T, T) = (Zero::zero(), One::one()); let _2 = _1 + _1; Transform3D::new( _2 / (right - left), _0 , _0 , _0, _0 , _2 / (top - bottom), _0 , _0, _0 , _0 , -_2 / (far - near), _0, tx , ty , tz , _1 ) } /// Check whether shapes on the XY plane with Z pointing towards the /// screen transformed by this matrix would be facing back. pub fn is_backface_visible(&self) -> bool { // inverse().m33 < 0; let det = self.determinant(); let m33 = self.m12 * self.m24 * self.m41 - self.m14 * self.m22 * self.m41 + self.m14 * self.m21 * self.m42 - self.m11 * self.m24 * self.m42 - self.m12 * self.m21 * self.m44 + self.m11 * self.m22 * self.m44; let _0: T = Zero::zero(); (m33 * det) < _0 } /// Returns whether it is possible to compute the inverse transform. #[inline] pub fn is_invertible(&self) -> bool { self.determinant() != Zero::zero() } /// Returns the inverse transform if possible. pub fn inverse(&self) -> Option> { let det = self.determinant(); if det == Zero::zero() { return None; } // todo(gw): this could be made faster by special casing // for simpler transform types. let m = Transform3D::new( self.m23*self.m34*self.m42 - self.m24*self.m33*self.m42 + self.m24*self.m32*self.m43 - self.m22*self.m34*self.m43 - self.m23*self.m32*self.m44 + self.m22*self.m33*self.m44, self.m14*self.m33*self.m42 - self.m13*self.m34*self.m42 - self.m14*self.m32*self.m43 + self.m12*self.m34*self.m43 + self.m13*self.m32*self.m44 - self.m12*self.m33*self.m44, self.m13*self.m24*self.m42 - self.m14*self.m23*self.m42 + self.m14*self.m22*self.m43 - self.m12*self.m24*self.m43 - self.m13*self.m22*self.m44 + self.m12*self.m23*self.m44, self.m14*self.m23*self.m32 - self.m13*self.m24*self.m32 - self.m14*self.m22*self.m33 + self.m12*self.m24*self.m33 + self.m13*self.m22*self.m34 - self.m12*self.m23*self.m34, self.m24*self.m33*self.m41 - self.m23*self.m34*self.m41 - self.m24*self.m31*self.m43 + self.m21*self.m34*self.m43 + self.m23*self.m31*self.m44 - self.m21*self.m33*self.m44, self.m13*self.m34*self.m41 - self.m14*self.m33*self.m41 + self.m14*self.m31*self.m43 - self.m11*self.m34*self.m43 - self.m13*self.m31*self.m44 + self.m11*self.m33*self.m44, self.m14*self.m23*self.m41 - self.m13*self.m24*self.m41 - self.m14*self.m21*self.m43 + self.m11*self.m24*self.m43 + self.m13*self.m21*self.m44 - self.m11*self.m23*self.m44, self.m13*self.m24*self.m31 - self.m14*self.m23*self.m31 + self.m14*self.m21*self.m33 - self.m11*self.m24*self.m33 - self.m13*self.m21*self.m34 + self.m11*self.m23*self.m34, self.m22*self.m34*self.m41 - self.m24*self.m32*self.m41 + self.m24*self.m31*self.m42 - self.m21*self.m34*self.m42 - self.m22*self.m31*self.m44 + self.m21*self.m32*self.m44, self.m14*self.m32*self.m41 - self.m12*self.m34*self.m41 - self.m14*self.m31*self.m42 + self.m11*self.m34*self.m42 + self.m12*self.m31*self.m44 - self.m11*self.m32*self.m44, self.m12*self.m24*self.m41 - self.m14*self.m22*self.m41 + self.m14*self.m21*self.m42 - self.m11*self.m24*self.m42 - self.m12*self.m21*self.m44 + self.m11*self.m22*self.m44, self.m14*self.m22*self.m31 - self.m12*self.m24*self.m31 - self.m14*self.m21*self.m32 + self.m11*self.m24*self.m32 + self.m12*self.m21*self.m34 - self.m11*self.m22*self.m34, self.m23*self.m32*self.m41 - self.m22*self.m33*self.m41 - self.m23*self.m31*self.m42 + self.m21*self.m33*self.m42 + self.m22*self.m31*self.m43 - self.m21*self.m32*self.m43, self.m12*self.m33*self.m41 - self.m13*self.m32*self.m41 + self.m13*self.m31*self.m42 - self.m11*self.m33*self.m42 - self.m12*self.m31*self.m43 + self.m11*self.m32*self.m43, self.m13*self.m22*self.m41 - self.m12*self.m23*self.m41 - self.m13*self.m21*self.m42 + self.m11*self.m23*self.m42 + self.m12*self.m21*self.m43 - self.m11*self.m22*self.m43, self.m12*self.m23*self.m31 - self.m13*self.m22*self.m31 + self.m13*self.m21*self.m32 - self.m11*self.m23*self.m32 - self.m12*self.m21*self.m33 + self.m11*self.m22*self.m33 ); let _1: T = One::one(); Some(m.mul_s(_1 / det)) } /// Compute the determinant of the transform. pub fn determinant(&self) -> T { self.m14 * self.m23 * self.m32 * self.m41 - self.m13 * self.m24 * self.m32 * self.m41 - self.m14 * self.m22 * self.m33 * self.m41 + self.m12 * self.m24 * self.m33 * self.m41 + self.m13 * self.m22 * self.m34 * self.m41 - self.m12 * self.m23 * self.m34 * self.m41 - self.m14 * self.m23 * self.m31 * self.m42 + self.m13 * self.m24 * self.m31 * self.m42 + self.m14 * self.m21 * self.m33 * self.m42 - self.m11 * self.m24 * self.m33 * self.m42 - self.m13 * self.m21 * self.m34 * self.m42 + self.m11 * self.m23 * self.m34 * self.m42 + self.m14 * self.m22 * self.m31 * self.m43 - self.m12 * self.m24 * self.m31 * self.m43 - self.m14 * self.m21 * self.m32 * self.m43 + self.m11 * self.m24 * self.m32 * self.m43 + self.m12 * self.m21 * self.m34 * self.m43 - self.m11 * self.m22 * self.m34 * self.m43 - self.m13 * self.m22 * self.m31 * self.m44 + self.m12 * self.m23 * self.m31 * self.m44 + self.m13 * self.m21 * self.m32 * self.m44 - self.m11 * self.m23 * self.m32 * self.m44 - self.m12 * self.m21 * self.m33 * self.m44 + self.m11 * self.m22 * self.m33 * self.m44 } /// Multiplies all of the transform's component by a scalar and returns the result. #[must_use] pub fn mul_s(&self, x: T) -> Self { Transform3D::new( self.m11 * x, self.m12 * x, self.m13 * x, self.m14 * x, self.m21 * x, self.m22 * x, self.m23 * x, self.m24 * x, self.m31 * x, self.m32 * x, self.m33 * x, self.m34 * x, self.m41 * x, self.m42 * x, self.m43 * x, self.m44 * x ) } /// Convenience function to create a scale transform from a `Scale`. pub fn from_scale(scale: Scale) -> Self { Transform3D::scale(scale.get(), scale.get(), scale.get()) } } impl Transform3D where T: Copy + Mul + Div + Zero + One + PartialEq, { /// Returns a projection of this transform in 2d space. pub fn project_to_2d(&self) -> Self { let (_0, _1): (T, T) = (Zero::zero(), One::one()); let mut result = self.clone(); result.m31 = _0; result.m32 = _0; result.m13 = _0; result.m23 = _0; result.m33 = _1; result.m43 = _0; result.m34 = _0; // Try to normalize perspective when possible to convert to a 2d matrix. // Some matrices, such as those derived from perspective transforms, can // modify m44 from 1, while leaving the rest of the fourth column // (m14, m24) at 0. In this case, after resetting the third row and // third column above, the value of m44 functions only to scale the // coordinate transform divide by W. The matrix can be converted to // a true 2D matrix by normalizing out the scaling effect of m44 on // the remaining components ahead of time. if self.m14 == _0 && self.m24 == _0 && self.m44 != _0 && self.m44 != _1 { let scale = _1 / self.m44; result.m11 = result.m11 * scale; result.m12 = result.m12 * scale; result.m21 = result.m21 * scale; result.m22 = result.m22 * scale; result.m41 = result.m41 * scale; result.m42 = result.m42 * scale; result.m44 = _1; } result } } impl Transform3D { /// Cast from one numeric representation to another, preserving the units. #[inline] pub fn cast(&self) -> Transform3D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. pub fn try_cast(&self) -> Option> { match (NumCast::from(self.m11), NumCast::from(self.m12), NumCast::from(self.m13), NumCast::from(self.m14), NumCast::from(self.m21), NumCast::from(self.m22), NumCast::from(self.m23), NumCast::from(self.m24), NumCast::from(self.m31), NumCast::from(self.m32), NumCast::from(self.m33), NumCast::from(self.m34), NumCast::from(self.m41), NumCast::from(self.m42), NumCast::from(self.m43), NumCast::from(self.m44)) { (Some(m11), Some(m12), Some(m13), Some(m14), Some(m21), Some(m22), Some(m23), Some(m24), Some(m31), Some(m32), Some(m33), Some(m34), Some(m41), Some(m42), Some(m43), Some(m44)) => { Some(Transform3D::new(m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44)) }, _ => None } } } impl, Src, Dst> Transform3D { /// Returns true is this transform is approximately equal to the other one, using /// T's default epsilon value. /// /// The same as [`ApproxEq::approx_eq()`] but available without importing trait. /// /// [`ApproxEq::approx_eq()`]: ./approxeq/trait.ApproxEq.html#method.approx_eq #[inline] pub fn approx_eq(&self, other: &Self) -> bool { >::approx_eq(&self, &other) } /// Returns true is this transform is approximately equal to the other one, using /// a provided epsilon value. /// /// The same as [`ApproxEq::approx_eq_eps()`] but available without importing trait. /// /// [`ApproxEq::approx_eq_eps()`]: ./approxeq/trait.ApproxEq.html#method.approx_eq_eps #[inline] pub fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool { >::approx_eq_eps(&self, &other, &eps) } } impl, Src, Dst> ApproxEq for Transform3D { #[inline] fn approx_epsilon() -> T { T::approx_epsilon() } fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool { self.m11.approx_eq_eps(&other.m11, eps) && self.m12.approx_eq_eps(&other.m12, eps) && self.m13.approx_eq_eps(&other.m13, eps) && self.m14.approx_eq_eps(&other.m14, eps) && self.m21.approx_eq_eps(&other.m21, eps) && self.m22.approx_eq_eps(&other.m22, eps) && self.m23.approx_eq_eps(&other.m23, eps) && self.m24.approx_eq_eps(&other.m24, eps) && self.m31.approx_eq_eps(&other.m31, eps) && self.m32.approx_eq_eps(&other.m32, eps) && self.m33.approx_eq_eps(&other.m33, eps) && self.m34.approx_eq_eps(&other.m34, eps) && self.m41.approx_eq_eps(&other.m41, eps) && self.m42.approx_eq_eps(&other.m42, eps) && self.m43.approx_eq_eps(&other.m43, eps) && self.m44.approx_eq_eps(&other.m44, eps) } } impl Default for Transform3D where T: Zero + One { /// Returns the [identity transform](#method.identity). fn default() -> Self { Self::identity() } } impl fmt::Debug for Transform3D where T: Copy + fmt::Debug + PartialEq + One + Zero { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if self.is_identity() { write!(f, "[I]") } else { self.to_array().fmt(f) } } } #[cfg(feature = "mint")] impl From> for Transform3D { fn from(m: mint::RowMatrix4) -> Self { Transform3D { m11: m.x.x, m12: m.x.y, m13: m.x.z, m14: m.x.w, m21: m.y.x, m22: m.y.y, m23: m.y.z, m24: m.y.w, m31: m.z.x, m32: m.z.y, m33: m.z.z, m34: m.z.w, m41: m.w.x, m42: m.w.y, m43: m.w.z, m44: m.w.w, _unit: PhantomData, } } } #[cfg(feature = "mint")] impl Into> for Transform3D { fn into(self) -> mint::RowMatrix4 { mint::RowMatrix4 { x: mint::Vector4 { x: self.m11, y: self.m12, z: self.m13, w: self.m14 }, y: mint::Vector4 { x: self.m21, y: self.m22, z: self.m23, w: self.m24 }, z: mint::Vector4 { x: self.m31, y: self.m32, z: self.m33, w: self.m34 }, w: mint::Vector4 { x: self.m41, y: self.m42, z: self.m43, w: self.m44 }, } } } #[cfg(test)] mod tests { use crate::approxeq::ApproxEq; use super::*; use crate::{point2, point3}; use crate::default; use core::f32::consts::{FRAC_PI_2, PI}; type Mf32 = default::Transform3D; // For convenience. fn rad(v: f32) -> Angle { Angle::radians(v) } #[test] pub fn test_translation() { let t1 = Mf32::translation(1.0, 2.0, 3.0); let t2 = Mf32::identity().pre_translate(vec3(1.0, 2.0, 3.0)); let t3 = Mf32::identity().then_translate(vec3(1.0, 2.0, 3.0)); assert_eq!(t1, t2); assert_eq!(t1, t3); assert_eq!(t1.transform_point3d(point3(1.0, 1.0, 1.0)), Some(point3(2.0, 3.0, 4.0))); assert_eq!(t1.transform_point2d(point2(1.0, 1.0)), Some(point2(2.0, 3.0))); assert_eq!(t1.then(&t1), Mf32::translation(2.0, 4.0, 6.0)); assert!(!t1.is_2d()); assert_eq!(Mf32::translation(1.0, 2.0, 3.0).to_2d(), Transform2D::translation(1.0, 2.0)); } #[test] pub fn test_rotation() { let r1 = Mf32::rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2)); let r2 = Mf32::identity().pre_rotate(0.0, 0.0, 1.0, rad(FRAC_PI_2)); let r3 = Mf32::identity().then_rotate(0.0, 0.0, 1.0, rad(FRAC_PI_2)); assert_eq!(r1, r2); assert_eq!(r1, r3); assert!(r1.transform_point3d(point3(1.0, 2.0, 3.0)).unwrap().approx_eq(&point3(-2.0, 1.0, 3.0))); assert!(r1.transform_point2d(point2(1.0, 2.0)).unwrap().approx_eq(&point2(-2.0, 1.0))); assert!(r1.then(&r1).approx_eq(&Mf32::rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2*2.0)))); assert!(r1.is_2d()); assert!(r1.to_2d().approx_eq(&Transform2D::rotation(rad(FRAC_PI_2)))); } #[test] pub fn test_scale() { let s1 = Mf32::scale(2.0, 3.0, 4.0); let s2 = Mf32::identity().pre_scale(2.0, 3.0, 4.0); let s3 = Mf32::identity().then_scale(2.0, 3.0, 4.0); assert_eq!(s1, s2); assert_eq!(s1, s3); assert!(s1.transform_point3d(point3(2.0, 2.0, 2.0)).unwrap().approx_eq(&point3(4.0, 6.0, 8.0))); assert!(s1.transform_point2d(point2(2.0, 2.0)).unwrap().approx_eq(&point2(4.0, 6.0))); assert_eq!(s1.then(&s1), Mf32::scale(4.0, 9.0, 16.0)); assert!(!s1.is_2d()); assert_eq!(Mf32::scale(2.0, 3.0, 0.0).to_2d(), Transform2D::scale(2.0, 3.0)); } #[test] pub fn test_pre_then_scale() { let m = Mf32::rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2)).then_translate(vec3(6.0, 7.0, 8.0)); let s = Mf32::scale(2.0, 3.0, 4.0); assert_eq!(m.then(&s), m.then_scale(2.0, 3.0, 4.0)); } #[test] pub fn test_ortho() { let (left, right, bottom, top) = (0.0f32, 1.0f32, 0.1f32, 1.0f32); let (near, far) = (-1.0f32, 1.0f32); let result = Mf32::ortho(left, right, bottom, top, near, far); let expected = Mf32::new( 2.0, 0.0, 0.0, 0.0, 0.0, 2.22222222, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, -1.22222222, -0.0, 1.0 ); assert!(result.approx_eq(&expected)); } #[test] pub fn test_is_2d() { assert!(Mf32::identity().is_2d()); assert!(Mf32::rotation(0.0, 0.0, 1.0, rad(0.7854)).is_2d()); assert!(!Mf32::rotation(0.0, 1.0, 0.0, rad(0.7854)).is_2d()); } #[test] pub fn test_new_2d() { let m1 = Mf32::new_2d(1.0, 2.0, 3.0, 4.0, 5.0, 6.0); let m2 = Mf32::new( 1.0, 2.0, 0.0, 0.0, 3.0, 4.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 5.0, 6.0, 0.0, 1.0 ); assert_eq!(m1, m2); } #[test] pub fn test_inverse_simple() { let m1 = Mf32::identity(); let m2 = m1.inverse().unwrap(); assert!(m1.approx_eq(&m2)); } #[test] pub fn test_inverse_scale() { let m1 = Mf32::scale(1.5, 0.3, 2.1); let m2 = m1.inverse().unwrap(); assert!(m1.then(&m2).approx_eq(&Mf32::identity())); assert!(m2.then(&m1).approx_eq(&Mf32::identity())); } #[test] pub fn test_inverse_translate() { let m1 = Mf32::translation(-132.0, 0.3, 493.0); let m2 = m1.inverse().unwrap(); assert!(m1.then(&m2).approx_eq(&Mf32::identity())); assert!(m2.then(&m1).approx_eq(&Mf32::identity())); } #[test] pub fn test_inverse_rotate() { let m1 = Mf32::rotation(0.0, 1.0, 0.0, rad(1.57)); let m2 = m1.inverse().unwrap(); assert!(m1.then(&m2).approx_eq(&Mf32::identity())); assert!(m2.then(&m1).approx_eq(&Mf32::identity())); } #[test] pub fn test_inverse_transform_point_2d() { let m1 = Mf32::translation(100.0, 200.0, 0.0); let m2 = m1.inverse().unwrap(); assert!(m1.then(&m2).approx_eq(&Mf32::identity())); assert!(m2.then(&m1).approx_eq(&Mf32::identity())); let p1 = point2(1000.0, 2000.0); let p2 = m1.transform_point2d(p1); assert_eq!(p2, Some(point2(1100.0, 2200.0))); let p3 = m2.transform_point2d(p2.unwrap()); assert_eq!(p3, Some(p1)); } #[test] fn test_inverse_none() { assert!(Mf32::scale(2.0, 0.0, 2.0).inverse().is_none()); assert!(Mf32::scale(2.0, 2.0, 2.0).inverse().is_some()); } #[test] pub fn test_pre_post() { let m1 = default::Transform3D::identity().then_scale(1.0, 2.0, 3.0).then_translate(vec3(1.0, 2.0, 3.0)); let m2 = default::Transform3D::identity().pre_translate(vec3(1.0, 2.0, 3.0)).pre_scale(1.0, 2.0, 3.0); assert!(m1.approx_eq(&m2)); let r = Mf32::rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2)); let t = Mf32::translation(2.0, 3.0, 0.0); let a = point3(1.0, 1.0, 1.0); assert!(r.then(&t).transform_point3d(a).unwrap().approx_eq(&point3(1.0, 4.0, 1.0))); assert!(t.then(&r).transform_point3d(a).unwrap().approx_eq(&point3(-4.0, 3.0, 1.0))); assert!(t.then(&r).transform_point3d(a).unwrap().approx_eq(&r.transform_point3d(t.transform_point3d(a).unwrap()).unwrap())); } #[test] fn test_size_of() { use core::mem::size_of; assert_eq!(size_of::>(), 16*size_of::()); assert_eq!(size_of::>(), 16*size_of::()); } #[test] pub fn test_transform_associativity() { let m1 = Mf32::new(3.0, 2.0, 1.5, 1.0, 0.0, 4.5, -1.0, -4.0, 0.0, 3.5, 2.5, 40.0, 0.0, 3.0, 0.0, 1.0); let m2 = Mf32::new(1.0, -1.0, 3.0, 0.0, -1.0, 0.5, 0.0, 2.0, 1.5, -2.0, 6.0, 0.0, -2.5, 6.0, 1.0, 1.0); let p = point3(1.0, 3.0, 5.0); let p1 = m1.then(&m2).transform_point3d(p).unwrap(); let p2 = m2.transform_point3d(m1.transform_point3d(p).unwrap()).unwrap(); assert!(p1.approx_eq(&p2)); } #[test] pub fn test_is_identity() { let m1 = default::Transform3D::identity(); assert!(m1.is_identity()); let m2 = m1.then_translate(vec3(0.1, 0.0, 0.0)); assert!(!m2.is_identity()); } #[test] pub fn test_transform_vector() { // Translation does not apply to vectors. let m = Mf32::translation(1.0, 2.0, 3.0); let v1 = vec3(10.0, -10.0, 3.0); assert_eq!(v1, m.transform_vector3d(v1)); // While it does apply to points. assert_ne!(Some(v1.to_point()), m.transform_point3d(v1.to_point())); // same thing with 2d vectors/points let v2 = vec2(10.0, -5.0); assert_eq!(v2, m.transform_vector2d(v2)); assert_ne!(Some(v2.to_point()), m.transform_point2d(v2.to_point())); } #[test] pub fn test_is_backface_visible() { // backface is not visible for rotate-x 0 degree. let r1 = Mf32::rotation(1.0, 0.0, 0.0, rad(0.0)); assert!(!r1.is_backface_visible()); // backface is not visible for rotate-x 45 degree. let r1 = Mf32::rotation(1.0, 0.0, 0.0, rad(PI * 0.25)); assert!(!r1.is_backface_visible()); // backface is visible for rotate-x 180 degree. let r1 = Mf32::rotation(1.0, 0.0, 0.0, rad(PI)); assert!(r1.is_backface_visible()); // backface is visible for rotate-x 225 degree. let r1 = Mf32::rotation(1.0, 0.0, 0.0, rad(PI * 1.25)); assert!(r1.is_backface_visible()); // backface is not visible for non-inverseable matrix let r1 = Mf32::scale(2.0, 0.0, 2.0); assert!(!r1.is_backface_visible()); } #[test] pub fn test_homogeneous() { let m = Mf32::new( 1.0, 2.0, 0.5, 5.0, 3.0, 4.0, 0.25, 6.0, 0.5, -1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 2.0, ); assert_eq!( m.transform_point2d_homogeneous(point2(1.0, 2.0)), HomogeneousVector::new(6.0, 11.0, 0.0, 19.0), ); assert_eq!( m.transform_point3d_homogeneous(point3(1.0, 2.0, 4.0)), HomogeneousVector::new(8.0, 7.0, 4.0, 15.0), ); } #[test] pub fn test_perspective_division() { let p = point2(1.0, 2.0); let mut m = Mf32::identity(); assert!(m.transform_point2d(p).is_some()); m.m44 = 0.0; assert_eq!(None, m.transform_point2d(p)); m.m44 = 1.0; m.m24 = -1.0; assert_eq!(None, m.transform_point2d(p)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let m1 = Mf32::rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2)); let mm: mint::RowMatrix4<_> = m1.into(); let m2 = Mf32::from(mm); assert_eq!(m1, m2); } } euclid-0.22.7/src/translation.rs000064400000000000000000000601050072674642500147060ustar 00000000000000// Copyright 2018 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use crate::num::*; use crate::UnknownUnit; use crate::{point2, point3, vec2, vec3, Box2D, Box3D, Rect, Size2D}; use crate::{Point2D, Point3D, Transform2D, Transform3D, Vector2D, Vector3D}; use core::cmp::{Eq, PartialEq}; use core::fmt; use core::hash::Hash; use core::marker::PhantomData; use core::ops::{Add, AddAssign, Neg, Sub, SubAssign}; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// A 2d transformation from a space to another that can only express translations. /// /// The main benefit of this type over a Vector2D is the ability to cast /// between a source and a destination spaces. /// /// Example: /// /// ``` /// use euclid::{Translation2D, Point2D, point2}; /// struct ParentSpace; /// struct ChildSpace; /// type ScrollOffset = Translation2D; /// type ParentPoint = Point2D; /// type ChildPoint = Point2D; /// /// let scrolling = ScrollOffset::new(0, 100); /// let p1: ParentPoint = point2(0, 0); /// let p2: ChildPoint = scrolling.transform_point(p1); /// ``` /// #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde", serde(bound( serialize = "T: serde::Serialize", deserialize = "T: serde::Deserialize<'de>" )) )] pub struct Translation2D { pub x: T, pub y: T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } #[cfg(feature = "arbitrary")] impl<'a, T, Src, Dst> arbitrary::Arbitrary<'a> for Translation2D where T: arbitrary::Arbitrary<'a>, { fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result { let (x, y) = arbitrary::Arbitrary::arbitrary(u)?; Ok(Translation2D { x, y, _unit: PhantomData, }) } } impl Copy for Translation2D {} impl Clone for Translation2D { fn clone(&self) -> Self { Translation2D { x: self.x.clone(), y: self.y.clone(), _unit: PhantomData, } } } impl Eq for Translation2D where T: Eq {} impl PartialEq for Translation2D where T: PartialEq, { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y } } impl Hash for Translation2D where T: Hash, { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); } } impl Translation2D { #[inline] pub const fn new(x: T, y: T) -> Self { Translation2D { x, y, _unit: PhantomData, } } #[inline] pub fn splat(v: T) -> Self where T: Clone, { Translation2D { x: v.clone(), y: v, _unit: PhantomData, } } /// Creates no-op translation (both `x` and `y` is `zero()`). #[inline] pub fn identity() -> Self where T: Zero, { Self::new(T::zero(), T::zero()) } /// Check if translation does nothing (both x and y is `zero()`). /// /// ```rust /// use euclid::default::Translation2D; /// /// assert_eq!(Translation2D::::identity().is_identity(), true); /// assert_eq!(Translation2D::new(0, 0).is_identity(), true); /// assert_eq!(Translation2D::new(1, 0).is_identity(), false); /// assert_eq!(Translation2D::new(0, 1).is_identity(), false); /// ``` #[inline] pub fn is_identity(&self) -> bool where T: Zero + PartialEq, { let _0 = T::zero(); self.x == _0 && self.y == _0 } /// No-op, just cast the unit. #[inline] pub fn transform_size(&self, s: Size2D) -> Size2D { Size2D::new(s.width, s.height) } } impl Translation2D { /// Cast into a 2D vector. #[inline] pub fn to_vector(&self) -> Vector2D { vec2(self.x, self.y) } /// Cast into an array with x and y. #[inline] pub fn to_array(&self) -> [T; 2] { [self.x, self.y] } /// Cast into a tuple with x and y. #[inline] pub fn to_tuple(&self) -> (T, T) { (self.x, self.y) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Translation2D { Translation2D { x: self.x, y: self.y, _unit: PhantomData, } } /// Tag a unitless value with units. #[inline] pub fn from_untyped(t: &Translation2D) -> Self { Translation2D { x: t.x, y: t.y, _unit: PhantomData, } } /// Returns the matrix representation of this translation. #[inline] pub fn to_transform(&self) -> Transform2D where T: Zero + One, { (*self).into() } /// Translate a point and cast its unit. #[inline] pub fn transform_point(&self, p: Point2D) -> Point2D where T: Add, { point2(p.x + self.x, p.y + self.y) } /// Translate a rectangle and cast its unit. #[inline] pub fn transform_rect(&self, r: &Rect) -> Rect where T: Add, { Rect { origin: self.transform_point(r.origin), size: self.transform_size(r.size), } } /// Translate a 2D box and cast its unit. #[inline] pub fn transform_box(&self, r: &Box2D) -> Box2D where T: Add, { Box2D { min: self.transform_point(r.min), max: self.transform_point(r.max), } } /// Return the inverse transformation. #[inline] pub fn inverse(&self) -> Translation2D where T: Neg, { Translation2D::new(-self.x, -self.y) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Translation2D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Translation2D {} impl Add> for Translation2D { type Output = Translation2D; fn add(self, other: Translation2D) -> Self::Output { Translation2D::new(self.x + other.x, self.y + other.y) } } impl AddAssign> for Translation2D { fn add_assign(&mut self, other: Translation2D) { self.x += other.x; self.y += other.y; } } impl Sub> for Translation2D { type Output = Translation2D; fn sub(self, other: Translation2D) -> Self::Output { Translation2D::new(self.x - other.x, self.y - other.y) } } impl SubAssign> for Translation2D { fn sub_assign(&mut self, other: Translation2D) { self.x -= other.x; self.y -= other.y; } } impl From> for Translation2D { fn from(v: Vector2D) -> Self { Translation2D::new(v.x, v.y) } } impl Into> for Translation2D { fn into(self) -> Vector2D { vec2(self.x, self.y) } } impl Into> for Translation2D where T: Zero + One, { fn into(self) -> Transform2D { Transform2D::translation(self.x, self.y) } } impl Default for Translation2D where T: Zero, { fn default() -> Self { Self::identity() } } impl fmt::Debug for Translation2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Translation({:?},{:?})", self.x, self.y) } } /// A 3d transformation from a space to another that can only express translations. /// /// The main benefit of this type over a Vector3D is the ability to cast /// between a source and a destination spaces. #[repr(C)] pub struct Translation3D { pub x: T, pub y: T, pub z: T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } impl Copy for Translation3D {} impl Clone for Translation3D { fn clone(&self) -> Self { Translation3D { x: self.x.clone(), y: self.y.clone(), z: self.z.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, Src, Dst> serde::Deserialize<'de> for Translation3D where T: serde::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (x, y, z) = serde::Deserialize::deserialize(deserializer)?; Ok(Translation3D { x, y, z, _unit: PhantomData, }) } } #[cfg(feature = "serde")] impl serde::Serialize for Translation3D where T: serde::Serialize, { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (&self.x, &self.y, &self.z).serialize(serializer) } } impl Eq for Translation3D where T: Eq {} impl PartialEq for Translation3D where T: PartialEq, { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y && self.z == other.z } } impl Hash for Translation3D where T: Hash, { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); self.z.hash(h); } } impl Translation3D { #[inline] pub const fn new(x: T, y: T, z: T) -> Self { Translation3D { x, y, z, _unit: PhantomData, } } #[inline] pub fn splat(v: T) -> Self where T: Clone, { Translation3D { x: v.clone(), y: v.clone(), z: v, _unit: PhantomData, } } /// Creates no-op translation (`x`, `y` and `z` is `zero()`). #[inline] pub fn identity() -> Self where T: Zero, { Translation3D::new(T::zero(), T::zero(), T::zero()) } /// Check if translation does nothing (`x`, `y` and `z` is `zero()`). /// /// ```rust /// use euclid::default::Translation3D; /// /// assert_eq!(Translation3D::::identity().is_identity(), true); /// assert_eq!(Translation3D::new(0, 0, 0).is_identity(), true); /// assert_eq!(Translation3D::new(1, 0, 0).is_identity(), false); /// assert_eq!(Translation3D::new(0, 1, 0).is_identity(), false); /// assert_eq!(Translation3D::new(0, 0, 1).is_identity(), false); /// ``` #[inline] pub fn is_identity(&self) -> bool where T: Zero + PartialEq, { let _0 = T::zero(); self.x == _0 && self.y == _0 && self.z == _0 } /// No-op, just cast the unit. #[inline] pub fn transform_size(self, s: Size2D) -> Size2D { Size2D::new(s.width, s.height) } } impl Translation3D { /// Cast into a 3D vector. #[inline] pub fn to_vector(&self) -> Vector3D { vec3(self.x, self.y, self.z) } /// Cast into an array with x, y and z. #[inline] pub fn to_array(&self) -> [T; 3] { [self.x, self.y, self.z] } /// Cast into a tuple with x, y and z. #[inline] pub fn to_tuple(&self) -> (T, T, T) { (self.x, self.y, self.z) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Translation3D { Translation3D { x: self.x, y: self.y, z: self.z, _unit: PhantomData, } } /// Tag a unitless value with units. #[inline] pub fn from_untyped(t: &Translation3D) -> Self { Translation3D { x: t.x, y: t.y, z: t.z, _unit: PhantomData, } } /// Returns the matrix representation of this translation. #[inline] pub fn to_transform(&self) -> Transform3D where T: Zero + One, { (*self).into() } /// Translate a point and cast its unit. #[inline] pub fn transform_point3d(&self, p: &Point3D) -> Point3D where T: Add, { point3(p.x + self.x, p.y + self.y, p.z + self.z) } /// Translate a point and cast its unit. #[inline] pub fn transform_point2d(&self, p: &Point2D) -> Point2D where T: Add, { point2(p.x + self.x, p.y + self.y) } /// Translate a 2D box and cast its unit. #[inline] pub fn transform_box2d(&self, b: &Box2D) -> Box2D where T: Add, { Box2D { min: self.transform_point2d(&b.min), max: self.transform_point2d(&b.max), } } /// Translate a 3D box and cast its unit. #[inline] pub fn transform_box3d(&self, b: &Box3D) -> Box3D where T: Add, { Box3D { min: self.transform_point3d(&b.min), max: self.transform_point3d(&b.max), } } /// Translate a rectangle and cast its unit. #[inline] pub fn transform_rect(&self, r: &Rect) -> Rect where T: Add, { Rect { origin: self.transform_point2d(&r.origin), size: self.transform_size(r.size), } } /// Return the inverse transformation. #[inline] pub fn inverse(&self) -> Translation3D where T: Neg, { Translation3D::new(-self.x, -self.y, -self.z) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Translation3D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Translation3D {} impl Add> for Translation3D { type Output = Translation3D; fn add(self, other: Translation3D) -> Self::Output { Translation3D::new(self.x + other.x, self.y + other.y, self.z + other.z) } } impl AddAssign> for Translation3D { fn add_assign(&mut self, other: Translation3D) { self.x += other.x; self.y += other.y; self.z += other.z; } } impl Sub> for Translation3D { type Output = Translation3D; fn sub(self, other: Translation3D) -> Self::Output { Translation3D::new(self.x - other.x, self.y - other.y, self.z - other.z) } } impl SubAssign> for Translation3D { fn sub_assign(&mut self, other: Translation3D) { self.x -= other.x; self.y -= other.y; self.z -= other.z; } } impl From> for Translation3D { fn from(v: Vector3D) -> Self { Translation3D::new(v.x, v.y, v.z) } } impl Into> for Translation3D { fn into(self) -> Vector3D { vec3(self.x, self.y, self.z) } } impl Into> for Translation3D where T: Zero + One, { fn into(self) -> Transform3D { Transform3D::translation(self.x, self.y, self.z) } } impl Default for Translation3D where T: Zero, { fn default() -> Self { Self::identity() } } impl fmt::Debug for Translation3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Translation({:?},{:?},{:?})", self.x, self.y, self.z) } } #[cfg(test)] mod _2d { #[test] fn simple() { use crate::{rect, Rect, Translation2D}; struct A; struct B; type Translation = Translation2D; type SrcRect = Rect; type DstRect = Rect; let tx = Translation::new(10, -10); let r1: SrcRect = rect(10, 20, 30, 40); let r2: DstRect = tx.transform_rect(&r1); assert_eq!(r2, rect(20, 10, 30, 40)); let inv_tx = tx.inverse(); assert_eq!(inv_tx.transform_rect(&r2), r1); assert!((tx + inv_tx).is_identity()); } /// Operation tests mod ops { use crate::default::Translation2D; #[test] fn test_add() { let t1 = Translation2D::new(1.0, 2.0); let t2 = Translation2D::new(3.0, 4.0); assert_eq!(t1 + t2, Translation2D::new(4.0, 6.0)); let t1 = Translation2D::new(1.0, 2.0); let t2 = Translation2D::new(0.0, 0.0); assert_eq!(t1 + t2, Translation2D::new(1.0, 2.0)); let t1 = Translation2D::new(1.0, 2.0); let t2 = Translation2D::new(-3.0, -4.0); assert_eq!(t1 + t2, Translation2D::new(-2.0, -2.0)); let t1 = Translation2D::new(0.0, 0.0); let t2 = Translation2D::new(0.0, 0.0); assert_eq!(t1 + t2, Translation2D::new(0.0, 0.0)); } #[test] pub fn test_add_assign() { let mut t = Translation2D::new(1.0, 2.0); t += Translation2D::new(3.0, 4.0); assert_eq!(t, Translation2D::new(4.0, 6.0)); let mut t = Translation2D::new(1.0, 2.0); t += Translation2D::new(0.0, 0.0); assert_eq!(t, Translation2D::new(1.0, 2.0)); let mut t = Translation2D::new(1.0, 2.0); t += Translation2D::new(-3.0, -4.0); assert_eq!(t, Translation2D::new(-2.0, -2.0)); let mut t = Translation2D::new(0.0, 0.0); t += Translation2D::new(0.0, 0.0); assert_eq!(t, Translation2D::new(0.0, 0.0)); } #[test] pub fn test_sub() { let t1 = Translation2D::new(1.0, 2.0); let t2 = Translation2D::new(3.0, 4.0); assert_eq!(t1 - t2, Translation2D::new(-2.0, -2.0)); let t1 = Translation2D::new(1.0, 2.0); let t2 = Translation2D::new(0.0, 0.0); assert_eq!(t1 - t2, Translation2D::new(1.0, 2.0)); let t1 = Translation2D::new(1.0, 2.0); let t2 = Translation2D::new(-3.0, -4.0); assert_eq!(t1 - t2, Translation2D::new(4.0, 6.0)); let t1 = Translation2D::new(0.0, 0.0); let t2 = Translation2D::new(0.0, 0.0); assert_eq!(t1 - t2, Translation2D::new(0.0, 0.0)); } #[test] pub fn test_sub_assign() { let mut t = Translation2D::new(1.0, 2.0); t -= Translation2D::new(3.0, 4.0); assert_eq!(t, Translation2D::new(-2.0, -2.0)); let mut t = Translation2D::new(1.0, 2.0); t -= Translation2D::new(0.0, 0.0); assert_eq!(t, Translation2D::new(1.0, 2.0)); let mut t = Translation2D::new(1.0, 2.0); t -= Translation2D::new(-3.0, -4.0); assert_eq!(t, Translation2D::new(4.0, 6.0)); let mut t = Translation2D::new(0.0, 0.0); t -= Translation2D::new(0.0, 0.0); assert_eq!(t, Translation2D::new(0.0, 0.0)); } } } #[cfg(test)] mod _3d { #[test] fn simple() { use crate::{point3, Point3D, Translation3D}; struct A; struct B; type Translation = Translation3D; type SrcPoint = Point3D; type DstPoint = Point3D; let tx = Translation::new(10, -10, 100); let p1: SrcPoint = point3(10, 20, 30); let p2: DstPoint = tx.transform_point3d(&p1); assert_eq!(p2, point3(20, 10, 130)); let inv_tx = tx.inverse(); assert_eq!(inv_tx.transform_point3d(&p2), p1); assert!((tx + inv_tx).is_identity()); } /// Operation tests mod ops { use crate::default::Translation3D; #[test] pub fn test_add() { let t1 = Translation3D::new(1.0, 2.0, 3.0); let t2 = Translation3D::new(4.0, 5.0, 6.0); assert_eq!(t1 + t2, Translation3D::new(5.0, 7.0, 9.0)); let t1 = Translation3D::new(1.0, 2.0, 3.0); let t2 = Translation3D::new(0.0, 0.0, 0.0); assert_eq!(t1 + t2, Translation3D::new(1.0, 2.0, 3.0)); let t1 = Translation3D::new(1.0, 2.0, 3.0); let t2 = Translation3D::new(-4.0, -5.0, -6.0); assert_eq!(t1 + t2, Translation3D::new(-3.0, -3.0, -3.0)); let t1 = Translation3D::new(0.0, 0.0, 0.0); let t2 = Translation3D::new(0.0, 0.0, 0.0); assert_eq!(t1 + t2, Translation3D::new(0.0, 0.0, 0.0)); } #[test] pub fn test_add_assign() { let mut t = Translation3D::new(1.0, 2.0, 3.0); t += Translation3D::new(4.0, 5.0, 6.0); assert_eq!(t, Translation3D::new(5.0, 7.0, 9.0)); let mut t = Translation3D::new(1.0, 2.0, 3.0); t += Translation3D::new(0.0, 0.0, 0.0); assert_eq!(t, Translation3D::new(1.0, 2.0, 3.0)); let mut t = Translation3D::new(1.0, 2.0, 3.0); t += Translation3D::new(-4.0, -5.0, -6.0); assert_eq!(t, Translation3D::new(-3.0, -3.0, -3.0)); let mut t = Translation3D::new(0.0, 0.0, 0.0); t += Translation3D::new(0.0, 0.0, 0.0); assert_eq!(t, Translation3D::new(0.0, 0.0, 0.0)); } #[test] pub fn test_sub() { let t1 = Translation3D::new(1.0, 2.0, 3.0); let t2 = Translation3D::new(4.0, 5.0, 6.0); assert_eq!(t1 - t2, Translation3D::new(-3.0, -3.0, -3.0)); let t1 = Translation3D::new(1.0, 2.0, 3.0); let t2 = Translation3D::new(0.0, 0.0, 0.0); assert_eq!(t1 - t2, Translation3D::new(1.0, 2.0, 3.0)); let t1 = Translation3D::new(1.0, 2.0, 3.0); let t2 = Translation3D::new(-4.0, -5.0, -6.0); assert_eq!(t1 - t2, Translation3D::new(5.0, 7.0, 9.0)); let t1 = Translation3D::new(0.0, 0.0, 0.0); let t2 = Translation3D::new(0.0, 0.0, 0.0); assert_eq!(t1 - t2, Translation3D::new(0.0, 0.0, 0.0)); } #[test] pub fn test_sub_assign() { let mut t = Translation3D::new(1.0, 2.0, 3.0); t -= Translation3D::new(4.0, 5.0, 6.0); assert_eq!(t, Translation3D::new(-3.0, -3.0, -3.0)); let mut t = Translation3D::new(1.0, 2.0, 3.0); t -= Translation3D::new(0.0, 0.0, 0.0); assert_eq!(t, Translation3D::new(1.0, 2.0, 3.0)); let mut t = Translation3D::new(1.0, 2.0, 3.0); t -= Translation3D::new(-4.0, -5.0, -6.0); assert_eq!(t, Translation3D::new(5.0, 7.0, 9.0)); let mut t = Translation3D::new(0.0, 0.0, 0.0); t -= Translation3D::new(0.0, 0.0, 0.0); assert_eq!(t, Translation3D::new(0.0, 0.0, 0.0)); } } } euclid-0.22.7/src/trig.rs000064400000000000000000000052210072674642500133130ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /// Trait for basic trigonometry functions, so they can be used on generic numeric types pub trait Trig { fn sin(self) -> Self; fn cos(self) -> Self; fn tan(self) -> Self; fn fast_atan2(y: Self, x: Self) -> Self; fn degrees_to_radians(deg: Self) -> Self; fn radians_to_degrees(rad: Self) -> Self; } macro_rules! trig { ($ty:ident) => { impl Trig for $ty { #[inline] fn sin(self) -> $ty { num_traits::Float::sin(self) } #[inline] fn cos(self) -> $ty { num_traits::Float::cos(self) } #[inline] fn tan(self) -> $ty { num_traits::Float::tan(self) } /// A slightly faster approximation of `atan2`. /// /// Note that it does not deal with the case where both x and y are 0. #[inline] fn fast_atan2(y: $ty, x: $ty) -> $ty { // This macro is used with f32 and f64 and clippy warns about the extra // precision with f32. #![cfg_attr(feature = "cargo-clippy", allow(excessive_precision))] // See https://math.stackexchange.com/questions/1098487/atan2-faster-approximation#1105038 use core::$ty::consts; let x_abs = num_traits::Float::abs(x); let y_abs = num_traits::Float::abs(y); let a = x_abs.min(y_abs) / x_abs.max(y_abs); let s = a * a; let mut result = ((-0.046_496_474_9 * s + 0.159_314_22) * s - 0.327_622_764) * s * a + a; if y_abs > x_abs { result = consts::FRAC_PI_2 - result; } if x < 0.0 { result = consts::PI - result } if y < 0.0 { result = -result } result } #[inline] fn degrees_to_radians(deg: Self) -> Self { deg.to_radians() } #[inline] fn radians_to_degrees(rad: Self) -> Self { rad.to_degrees() } } }; } trig!(f32); trig!(f64); euclid-0.22.7/src/vector.rs000064400000000000000000002132320072674642500136530ustar 00000000000000// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use crate::approxeq::ApproxEq; use crate::approxord::{max, min}; use crate::length::Length; use crate::num::*; use crate::point::{point2, point3, Point2D, Point3D}; use crate::scale::Scale; use crate::size::{size2, size3, Size2D, Size3D}; use crate::transform2d::Transform2D; use crate::transform3d::Transform3D; use crate::trig::Trig; use crate::Angle; use core::cmp::{Eq, PartialEq}; use core::fmt; use core::hash::Hash; use core::iter::Sum; use core::marker::PhantomData; use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; #[cfg(feature = "mint")] use mint; use num_traits::real::Real; use num_traits::{Float, NumCast, Signed}; #[cfg(feature = "serde")] use serde; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; /// A 2d Vector tagged with a unit. #[repr(C)] pub struct Vector2D { /// The `x` (traditionally, horizontal) coordinate. pub x: T, /// The `y` (traditionally, vertical) coordinate. pub y: T, #[doc(hidden)] pub _unit: PhantomData, } mint_vec!(Vector2D[x, y] = Vector2); impl Copy for Vector2D {} impl Clone for Vector2D { fn clone(&self) -> Self { Vector2D { x: self.x.clone(), y: self.y.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Vector2D where T: serde::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (x, y) = serde::Deserialize::deserialize(deserializer)?; Ok(Vector2D { x, y, _unit: PhantomData, }) } } #[cfg(feature = "serde")] impl serde::Serialize for Vector2D where T: serde::Serialize, { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (&self.x, &self.y).serialize(serializer) } } #[cfg(feature = "arbitrary")] impl<'a, T, U> arbitrary::Arbitrary<'a> for Vector2D where T: arbitrary::Arbitrary<'a>, { fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result { let (x, y) = arbitrary::Arbitrary::arbitrary(u)?; Ok(Vector2D { x, y, _unit: PhantomData, }) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Vector2D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Vector2D {} impl Eq for Vector2D {} impl PartialEq for Vector2D { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y } } impl Hash for Vector2D { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); } } impl Zero for Vector2D { /// Constructor, setting all components to zero. #[inline] fn zero() -> Self { Vector2D::new(Zero::zero(), Zero::zero()) } } impl fmt::Debug for Vector2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("").field(&self.x).field(&self.y).finish() } } impl Default for Vector2D { fn default() -> Self { Vector2D::new(Default::default(), Default::default()) } } impl Vector2D { /// Constructor, setting all components to zero. #[inline] pub fn zero() -> Self where T: Zero, { Vector2D::new(Zero::zero(), Zero::zero()) } /// Constructor, setting all components to one. #[inline] pub fn one() -> Self where T: One, { Vector2D::new(One::one(), One::one()) } /// Constructor taking scalar values directly. #[inline] pub const fn new(x: T, y: T) -> Self { Vector2D { x, y, _unit: PhantomData, } } /// Constructor setting all components to the same value. #[inline] pub fn splat(v: T) -> Self where T: Clone, { Vector2D { x: v.clone(), y: v, _unit: PhantomData, } } /// Constructor taking angle and length pub fn from_angle_and_length(angle: Angle, length: T) -> Self where T: Trig + Mul + Copy, { vec2(length * angle.radians.cos(), length * angle.radians.sin()) } /// Constructor taking properly Lengths instead of scalar values. #[inline] pub fn from_lengths(x: Length, y: Length) -> Self { vec2(x.0, y.0) } /// Tag a unit-less value with units. #[inline] pub fn from_untyped(p: Vector2D) -> Self { vec2(p.x, p.y) } /// Computes the vector with absolute values of each component. /// /// # Example /// /// ```rust /// # use std::{i32, f32}; /// # use euclid::vec2; /// enum U {} /// /// assert_eq!(vec2::<_, U>(-1, 2).abs(), vec2(1, 2)); /// /// let vec = vec2::<_, U>(f32::NAN, -f32::MAX).abs(); /// assert!(vec.x.is_nan()); /// assert_eq!(vec.y, f32::MAX); /// ``` /// /// # Panics /// /// The behavior for each component follows the scalar type's implementation of /// `num_traits::Signed::abs`. pub fn abs(self) -> Self where T: Signed, { vec2(self.x.abs(), self.y.abs()) } /// Dot product. #[inline] pub fn dot(self, other: Self) -> T where T: Add + Mul, { self.x * other.x + self.y * other.y } /// Returns the norm of the cross product [self.x, self.y, 0] x [other.x, other.y, 0]. #[inline] pub fn cross(self, other: Self) -> T where T: Sub + Mul, { self.x * other.y - self.y * other.x } /// Returns the component-wise multiplication of the two vectors. #[inline] pub fn component_mul(self, other: Self) -> Self where T: Mul, { vec2(self.x * other.x, self.y * other.y) } /// Returns the component-wise division of the two vectors. #[inline] pub fn component_div(self, other: Self) -> Self where T: Div, { vec2(self.x / other.x, self.y / other.y) } } impl Vector2D { /// Create a 3d vector from this one, using the specified z value. #[inline] pub fn extend(self, z: T) -> Vector3D { vec3(self.x, self.y, z) } /// Cast this vector into a point. /// /// Equivalent to adding this vector to the origin. #[inline] pub fn to_point(self) -> Point2D { Point2D { x: self.x, y: self.y, _unit: PhantomData, } } /// Swap x and y. #[inline] pub fn yx(self) -> Self { vec2(self.y, self.x) } /// Cast this vector into a size. #[inline] pub fn to_size(self) -> Size2D { size2(self.x, self.y) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(self) -> Vector2D { vec2(self.x, self.y) } /// Cast the unit. #[inline] pub fn cast_unit(self) -> Vector2D { vec2(self.x, self.y) } /// Cast into an array with x and y. #[inline] pub fn to_array(self) -> [T; 2] { [self.x, self.y] } /// Cast into a tuple with x and y. #[inline] pub fn to_tuple(self) -> (T, T) { (self.x, self.y) } /// Convert into a 3d vector with `z` coordinate equals to `T::zero()`. #[inline] pub fn to_3d(self) -> Vector3D where T: Zero, { vec3(self.x, self.y, Zero::zero()) } /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::vec2; /// enum Mm {} /// /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).round(), vec2::<_, Mm>(0.0, -1.0)) /// ``` #[inline] #[must_use] pub fn round(self) -> Self where T: Round, { vec2(self.x.round(), self.y.round()) } /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::vec2; /// enum Mm {} /// /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).ceil(), vec2::<_, Mm>(0.0, 0.0)) /// ``` #[inline] #[must_use] pub fn ceil(self) -> Self where T: Ceil, { vec2(self.x.ceil(), self.y.ceil()) } /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::vec2; /// enum Mm {} /// /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).floor(), vec2::<_, Mm>(-1.0, -1.0)) /// ``` #[inline] #[must_use] pub fn floor(self) -> Self where T: Floor, { vec2(self.x.floor(), self.y.floor()) } /// Returns the signed angle between this vector and the x axis. /// Positive values counted counterclockwise, where 0 is `+x` axis, `PI/2` /// is `+y` axis. /// /// The returned angle is between -PI and PI. pub fn angle_from_x_axis(self) -> Angle where T: Trig, { Angle::radians(Trig::fast_atan2(self.y, self.x)) } /// Creates translation by this vector in vector units. #[inline] pub fn to_transform(self) -> Transform2D where T: Zero + One, { Transform2D::translation(self.x, self.y) } } impl Vector2D where T: Copy + Mul + Add, { /// Returns the vector's length squared. #[inline] pub fn square_length(self) -> T { self.x * self.x + self.y * self.y } /// Returns this vector projected onto another one. /// /// Projecting onto a nil vector will cause a division by zero. #[inline] pub fn project_onto_vector(self, onto: Self) -> Self where T: Sub + Div, { onto * (self.dot(onto) / onto.square_length()) } /// Returns the signed angle between this vector and another vector. /// /// The returned angle is between -PI and PI. pub fn angle_to(self, other: Self) -> Angle where T: Sub + Trig, { Angle::radians(Trig::fast_atan2(self.cross(other), self.dot(other))) } } impl Vector2D { /// Return the normalized vector even if the length is larger than the max value of Float. #[inline] #[must_use] pub fn robust_normalize(self) -> Self { let length = self.length(); if length.is_infinite() { let scaled = self / T::max_value(); scaled / scaled.length() } else { self / length } } /// Returns true if all members are finite. #[inline] pub fn is_finite(self) -> bool { self.x.is_finite() && self.y.is_finite() } } impl Vector2D { /// Returns the vector length. #[inline] pub fn length(self) -> T { self.square_length().sqrt() } /// Returns the vector with length of one unit. #[inline] #[must_use] pub fn normalize(self) -> Self { self / self.length() } /// Returns the vector with length of one unit. /// /// Unlike [`Vector2D::normalize`](#method.normalize), this returns None in the case that the /// length of the vector is zero. #[inline] #[must_use] pub fn try_normalize(self) -> Option { let len = self.length(); if len == T::zero() { None } else { Some(self / len) } } /// Return this vector scaled to fit the provided length. #[inline] pub fn with_length(self, length: T) -> Self { self.normalize() * length } /// Return this vector capped to a maximum length. #[inline] pub fn with_max_length(self, max_length: T) -> Self { let square_length = self.square_length(); if square_length > max_length * max_length { return self * (max_length / square_length.sqrt()); } self } /// Return this vector with a minimum length applied. #[inline] pub fn with_min_length(self, min_length: T) -> Self { let square_length = self.square_length(); if square_length < min_length * min_length { return self * (min_length / square_length.sqrt()); } self } /// Return this vector with minimum and maximum lengths applied. #[inline] pub fn clamp_length(self, min: T, max: T) -> Self { debug_assert!(min <= max); self.with_min_length(min).with_max_length(max) } } impl Vector2D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate each component between this vector and another vector. /// /// # Example /// /// ```rust /// use euclid::vec2; /// use euclid::default::Vector2D; /// /// let from: Vector2D<_> = vec2(0.0, 10.0); /// let to: Vector2D<_> = vec2(8.0, -4.0); /// /// assert_eq!(from.lerp(to, -1.0), vec2(-8.0, 24.0)); /// assert_eq!(from.lerp(to, 0.0), vec2( 0.0, 10.0)); /// assert_eq!(from.lerp(to, 0.5), vec2( 4.0, 3.0)); /// assert_eq!(from.lerp(to, 1.0), vec2( 8.0, -4.0)); /// assert_eq!(from.lerp(to, 2.0), vec2(16.0, -18.0)); /// ``` #[inline] pub fn lerp(self, other: Self, t: T) -> Self { let one_t = T::one() - t; self * one_t + other * t } /// Returns a reflection vector using an incident ray and a surface normal. #[inline] pub fn reflect(self, normal: Self) -> Self { let two = T::one() + T::one(); self - normal * two * self.dot(normal) } } impl Vector2D { /// Returns the vector each component of which are minimum of this vector and another. #[inline] pub fn min(self, other: Self) -> Self { vec2(min(self.x, other.x), min(self.y, other.y)) } /// Returns the vector each component of which are maximum of this vector and another. #[inline] pub fn max(self, other: Self) -> Self { vec2(max(self.x, other.x), max(self.y, other.y)) } /// Returns the vector each component of which is clamped by corresponding /// components of `start` and `end`. /// /// Shortcut for `self.max(start).min(end)`. #[inline] pub fn clamp(self, start: Self, end: Self) -> Self where T: Copy, { self.max(start).min(end) } /// Returns vector with results of "greater than" operation on each component. #[inline] pub fn greater_than(self, other: Self) -> BoolVector2D { BoolVector2D { x: self.x > other.x, y: self.y > other.y, } } /// Returns vector with results of "lower than" operation on each component. #[inline] pub fn lower_than(self, other: Self) -> BoolVector2D { BoolVector2D { x: self.x < other.x, y: self.y < other.y, } } } impl Vector2D { /// Returns vector with results of "equal" operation on each component. #[inline] pub fn equal(self, other: Self) -> BoolVector2D { BoolVector2D { x: self.x == other.x, y: self.y == other.y, } } /// Returns vector with results of "not equal" operation on each component. #[inline] pub fn not_equal(self, other: Self) -> BoolVector2D { BoolVector2D { x: self.x != other.x, y: self.y != other.y, } } } impl Vector2D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating vector to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn cast(self) -> Vector2D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating vector to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn try_cast(self) -> Option> { match (NumCast::from(self.x), NumCast::from(self.y)) { (Some(x), Some(y)) => Some(Vector2D::new(x, y)), _ => None, } } // Convenience functions for common casts. /// Cast into an `f32` vector. #[inline] pub fn to_f32(self) -> Vector2D { self.cast() } /// Cast into an `f64` vector. #[inline] pub fn to_f64(self) -> Vector2D { self.cast() } /// Cast into an `usize` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_usize(self) -> Vector2D { self.cast() } /// Cast into an `u32` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u32(self) -> Vector2D { self.cast() } /// Cast into an i32 vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i32(self) -> Vector2D { self.cast() } /// Cast into an i64 vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i64(self) -> Vector2D { self.cast() } } impl Neg for Vector2D { type Output = Vector2D; #[inline] fn neg(self) -> Self::Output { vec2(-self.x, -self.y) } } impl Add for Vector2D { type Output = Vector2D; #[inline] fn add(self, other: Self) -> Self::Output { Vector2D::new(self.x + other.x, self.y + other.y) } } impl Add<&Self> for Vector2D { type Output = Vector2D; #[inline] fn add(self, other: &Self) -> Self::Output { Vector2D::new(self.x + other.x, self.y + other.y) } } impl + Zero, U> Sum for Vector2D { fn sum>(iter: I) -> Self { iter.fold(Self::zero(), Add::add) } } impl<'a, T: 'a + Add + Copy + Zero, U: 'a> Sum<&'a Self> for Vector2D { fn sum>(iter: I) -> Self { iter.fold(Self::zero(), Add::add) } } impl, U> AddAssign for Vector2D { #[inline] fn add_assign(&mut self, other: Self) { *self = *self + other } } impl Sub for Vector2D { type Output = Vector2D; #[inline] fn sub(self, other: Self) -> Self::Output { vec2(self.x - other.x, self.y - other.y) } } impl, U> SubAssign> for Vector2D { #[inline] fn sub_assign(&mut self, other: Self) { *self = *self - other } } impl Mul for Vector2D { type Output = Vector2D; #[inline] fn mul(self, scale: T) -> Self::Output { vec2(self.x * scale, self.y * scale) } } impl, U> MulAssign for Vector2D { #[inline] fn mul_assign(&mut self, scale: T) { *self = *self * scale } } impl Mul> for Vector2D { type Output = Vector2D; #[inline] fn mul(self, scale: Scale) -> Self::Output { vec2(self.x * scale.0, self.y * scale.0) } } impl MulAssign> for Vector2D { #[inline] fn mul_assign(&mut self, scale: Scale) { self.x *= scale.0; self.y *= scale.0; } } impl Div for Vector2D { type Output = Vector2D; #[inline] fn div(self, scale: T) -> Self::Output { vec2(self.x / scale, self.y / scale) } } impl, U> DivAssign for Vector2D { #[inline] fn div_assign(&mut self, scale: T) { *self = *self / scale } } impl Div> for Vector2D { type Output = Vector2D; #[inline] fn div(self, scale: Scale) -> Self::Output { vec2(self.x / scale.0, self.y / scale.0) } } impl DivAssign> for Vector2D { #[inline] fn div_assign(&mut self, scale: Scale) { self.x /= scale.0; self.y /= scale.0; } } impl Round for Vector2D { /// See [`Vector2D::round()`](#method.round) #[inline] fn round(self) -> Self { self.round() } } impl Ceil for Vector2D { /// See [`Vector2D::ceil()`](#method.ceil) #[inline] fn ceil(self) -> Self { self.ceil() } } impl Floor for Vector2D { /// See [`Vector2D::floor()`](#method.floor) #[inline] fn floor(self) -> Self { self.floor() } } impl, U> ApproxEq> for Vector2D { #[inline] fn approx_epsilon() -> Self { vec2(T::approx_epsilon(), T::approx_epsilon()) } #[inline] fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) } } impl Into<[T; 2]> for Vector2D { fn into(self) -> [T; 2] { [self.x, self.y] } } impl From<[T; 2]> for Vector2D { fn from([x, y]: [T; 2]) -> Self { vec2(x, y) } } impl Into<(T, T)> for Vector2D { fn into(self) -> (T, T) { (self.x, self.y) } } impl From<(T, T)> for Vector2D { fn from(tuple: (T, T)) -> Self { vec2(tuple.0, tuple.1) } } impl From> for Vector2D { fn from(size: Size2D) -> Self { vec2(size.width, size.height) } } /// A 3d Vector tagged with a unit. #[repr(C)] pub struct Vector3D { /// The `x` (traditionally, horizontal) coordinate. pub x: T, /// The `y` (traditionally, vertical) coordinate. pub y: T, /// The `z` (traditionally, depth) coordinate. pub z: T, #[doc(hidden)] pub _unit: PhantomData, } mint_vec!(Vector3D[x, y, z] = Vector3); impl Copy for Vector3D {} impl Clone for Vector3D { fn clone(&self) -> Self { Vector3D { x: self.x.clone(), y: self.y.clone(), z: self.z.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Vector3D where T: serde::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (x, y, z) = serde::Deserialize::deserialize(deserializer)?; Ok(Vector3D { x, y, z, _unit: PhantomData, }) } } #[cfg(feature = "serde")] impl serde::Serialize for Vector3D where T: serde::Serialize, { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (&self.x, &self.y, &self.z).serialize(serializer) } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Vector3D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Vector3D {} impl Eq for Vector3D {} impl PartialEq for Vector3D { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y && self.z == other.z } } impl Hash for Vector3D { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); self.z.hash(h); } } impl Zero for Vector3D { /// Constructor, setting all components to zero. #[inline] fn zero() -> Self { vec3(Zero::zero(), Zero::zero(), Zero::zero()) } } impl fmt::Debug for Vector3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("") .field(&self.x) .field(&self.y) .field(&self.z) .finish() } } impl Default for Vector3D { fn default() -> Self { Vector3D::new(Default::default(), Default::default(), Default::default()) } } impl Vector3D { /// Constructor, setting all components to zero. #[inline] pub fn zero() -> Self where T: Zero, { vec3(Zero::zero(), Zero::zero(), Zero::zero()) } /// Constructor, setting all components to one. #[inline] pub fn one() -> Self where T: One, { vec3(One::one(), One::one(), One::one()) } /// Constructor taking scalar values directly. #[inline] pub const fn new(x: T, y: T, z: T) -> Self { Vector3D { x, y, z, _unit: PhantomData, } } /// Constructor setting all components to the same value. #[inline] pub fn splat(v: T) -> Self where T: Clone, { Vector3D { x: v.clone(), y: v.clone(), z: v, _unit: PhantomData, } } /// Constructor taking properly Lengths instead of scalar values. #[inline] pub fn from_lengths(x: Length, y: Length, z: Length) -> Vector3D { vec3(x.0, y.0, z.0) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(p: Vector3D) -> Self { vec3(p.x, p.y, p.z) } /// Computes the vector with absolute values of each component. /// /// # Example /// /// ```rust /// # use std::{i32, f32}; /// # use euclid::vec3; /// enum U {} /// /// assert_eq!(vec3::<_, U>(-1, 0, 2).abs(), vec3(1, 0, 2)); /// /// let vec = vec3::<_, U>(f32::NAN, 0.0, -f32::MAX).abs(); /// assert!(vec.x.is_nan()); /// assert_eq!(vec.y, 0.0); /// assert_eq!(vec.z, f32::MAX); /// ``` /// /// # Panics /// /// The behavior for each component follows the scalar type's implementation of /// `num_traits::Signed::abs`. pub fn abs(self) -> Self where T: Signed, { vec3(self.x.abs(), self.y.abs(), self.z.abs()) } /// Dot product. #[inline] pub fn dot(self, other: Self) -> T where T: Add + Mul, { self.x * other.x + self.y * other.y + self.z * other.z } } impl Vector3D { /// Cross product. #[inline] pub fn cross(self, other: Self) -> Self where T: Sub + Mul, { vec3( self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x, ) } /// Returns the component-wise multiplication of the two vectors. #[inline] pub fn component_mul(self, other: Self) -> Self where T: Mul, { vec3(self.x * other.x, self.y * other.y, self.z * other.z) } /// Returns the component-wise division of the two vectors. #[inline] pub fn component_div(self, other: Self) -> Self where T: Div, { vec3(self.x / other.x, self.y / other.y, self.z / other.z) } /// Cast this vector into a point. /// /// Equivalent to adding this vector to the origin. #[inline] pub fn to_point(self) -> Point3D { point3(self.x, self.y, self.z) } /// Returns a 2d vector using this vector's x and y coordinates #[inline] pub fn xy(self) -> Vector2D { vec2(self.x, self.y) } /// Returns a 2d vector using this vector's x and z coordinates #[inline] pub fn xz(self) -> Vector2D { vec2(self.x, self.z) } /// Returns a 2d vector using this vector's x and z coordinates #[inline] pub fn yz(self) -> Vector2D { vec2(self.y, self.z) } /// Cast into an array with x, y and z. #[inline] pub fn to_array(self) -> [T; 3] { [self.x, self.y, self.z] } /// Cast into an array with x, y, z and 0. #[inline] pub fn to_array_4d(self) -> [T; 4] where T: Zero, { [self.x, self.y, self.z, Zero::zero()] } /// Cast into a tuple with x, y and z. #[inline] pub fn to_tuple(self) -> (T, T, T) { (self.x, self.y, self.z) } /// Cast into a tuple with x, y, z and 0. #[inline] pub fn to_tuple_4d(self) -> (T, T, T, T) where T: Zero, { (self.x, self.y, self.z, Zero::zero()) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(self) -> Vector3D { vec3(self.x, self.y, self.z) } /// Cast the unit. #[inline] pub fn cast_unit(self) -> Vector3D { vec3(self.x, self.y, self.z) } /// Convert into a 2d vector. #[inline] pub fn to_2d(self) -> Vector2D { self.xy() } /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::vec3; /// enum Mm {} /// /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).round(), vec3::<_, Mm>(0.0, -1.0, 0.0)) /// ``` #[inline] #[must_use] pub fn round(self) -> Self where T: Round, { vec3(self.x.round(), self.y.round(), self.z.round()) } /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::vec3; /// enum Mm {} /// /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), vec3::<_, Mm>(0.0, 0.0, 1.0)) /// ``` #[inline] #[must_use] pub fn ceil(self) -> Self where T: Ceil, { vec3(self.x.ceil(), self.y.ceil(), self.z.ceil()) } /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::vec3; /// enum Mm {} /// /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).floor(), vec3::<_, Mm>(-1.0, -1.0, 0.0)) /// ``` #[inline] #[must_use] pub fn floor(self) -> Self where T: Floor, { vec3(self.x.floor(), self.y.floor(), self.z.floor()) } /// Creates translation by this vector in vector units #[inline] pub fn to_transform(self) -> Transform3D where T: Zero + One, { Transform3D::translation(self.x, self.y, self.z) } } impl Vector3D where T: Copy + Mul + Add, { /// Returns the vector's length squared. #[inline] pub fn square_length(self) -> T { self.x * self.x + self.y * self.y + self.z * self.z } /// Returns this vector projected onto another one. /// /// Projecting onto a nil vector will cause a division by zero. #[inline] pub fn project_onto_vector(self, onto: Self) -> Self where T: Sub + Div, { onto * (self.dot(onto) / onto.square_length()) } } impl Vector3D { /// Return the normalized vector even if the length is larger than the max value of Float. #[inline] #[must_use] pub fn robust_normalize(self) -> Self { let length = self.length(); if length.is_infinite() { let scaled = self / T::max_value(); scaled / scaled.length() } else { self / length } } /// Returns true if all members are finite. #[inline] pub fn is_finite(self) -> bool { self.x.is_finite() && self.y.is_finite() && self.z.is_finite() } } impl Vector3D { /// Returns the positive angle between this vector and another vector. /// /// The returned angle is between 0 and PI. pub fn angle_to(self, other: Self) -> Angle where T: Trig, { Angle::radians(Trig::fast_atan2( self.cross(other).length(), self.dot(other), )) } /// Returns the vector length. #[inline] pub fn length(self) -> T { self.square_length().sqrt() } /// Returns the vector with length of one unit #[inline] #[must_use] pub fn normalize(self) -> Self { self / self.length() } /// Returns the vector with length of one unit. /// /// Unlike [`Vector2D::normalize`](#method.normalize), this returns None in the case that the /// length of the vector is zero. #[inline] #[must_use] pub fn try_normalize(self) -> Option { let len = self.length(); if len == T::zero() { None } else { Some(self / len) } } /// Return this vector capped to a maximum length. #[inline] pub fn with_max_length(self, max_length: T) -> Self { let square_length = self.square_length(); if square_length > max_length * max_length { return self * (max_length / square_length.sqrt()); } self } /// Return this vector with a minimum length applied. #[inline] pub fn with_min_length(self, min_length: T) -> Self { let square_length = self.square_length(); if square_length < min_length * min_length { return self * (min_length / square_length.sqrt()); } self } /// Return this vector with minimum and maximum lengths applied. #[inline] pub fn clamp_length(self, min: T, max: T) -> Self { debug_assert!(min <= max); self.with_min_length(min).with_max_length(max) } } impl Vector3D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate each component between this vector and another vector. /// /// # Example /// /// ```rust /// use euclid::vec3; /// use euclid::default::Vector3D; /// /// let from: Vector3D<_> = vec3(0.0, 10.0, -1.0); /// let to: Vector3D<_> = vec3(8.0, -4.0, 0.0); /// /// assert_eq!(from.lerp(to, -1.0), vec3(-8.0, 24.0, -2.0)); /// assert_eq!(from.lerp(to, 0.0), vec3( 0.0, 10.0, -1.0)); /// assert_eq!(from.lerp(to, 0.5), vec3( 4.0, 3.0, -0.5)); /// assert_eq!(from.lerp(to, 1.0), vec3( 8.0, -4.0, 0.0)); /// assert_eq!(from.lerp(to, 2.0), vec3(16.0, -18.0, 1.0)); /// ``` #[inline] pub fn lerp(self, other: Self, t: T) -> Self { let one_t = T::one() - t; self * one_t + other * t } /// Returns a reflection vector using an incident ray and a surface normal. #[inline] pub fn reflect(self, normal: Self) -> Self { let two = T::one() + T::one(); self - normal * two * self.dot(normal) } } impl Vector3D { /// Returns the vector each component of which are minimum of this vector and another. #[inline] pub fn min(self, other: Self) -> Self { vec3( min(self.x, other.x), min(self.y, other.y), min(self.z, other.z), ) } /// Returns the vector each component of which are maximum of this vector and another. #[inline] pub fn max(self, other: Self) -> Self { vec3( max(self.x, other.x), max(self.y, other.y), max(self.z, other.z), ) } /// Returns the vector each component of which is clamped by corresponding /// components of `start` and `end`. /// /// Shortcut for `self.max(start).min(end)`. #[inline] pub fn clamp(self, start: Self, end: Self) -> Self where T: Copy, { self.max(start).min(end) } /// Returns vector with results of "greater than" operation on each component. #[inline] pub fn greater_than(self, other: Self) -> BoolVector3D { BoolVector3D { x: self.x > other.x, y: self.y > other.y, z: self.z > other.z, } } /// Returns vector with results of "lower than" operation on each component. #[inline] pub fn lower_than(self, other: Self) -> BoolVector3D { BoolVector3D { x: self.x < other.x, y: self.y < other.y, z: self.z < other.z, } } } impl Vector3D { /// Returns vector with results of "equal" operation on each component. #[inline] pub fn equal(self, other: Self) -> BoolVector3D { BoolVector3D { x: self.x == other.x, y: self.y == other.y, z: self.z == other.z, } } /// Returns vector with results of "not equal" operation on each component. #[inline] pub fn not_equal(self, other: Self) -> BoolVector3D { BoolVector3D { x: self.x != other.x, y: self.y != other.y, z: self.z != other.z, } } } impl Vector3D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating vector to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn cast(self) -> Vector3D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating vector to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn try_cast(self) -> Option> { match ( NumCast::from(self.x), NumCast::from(self.y), NumCast::from(self.z), ) { (Some(x), Some(y), Some(z)) => Some(vec3(x, y, z)), _ => None, } } // Convenience functions for common casts. /// Cast into an `f32` vector. #[inline] pub fn to_f32(self) -> Vector3D { self.cast() } /// Cast into an `f64` vector. #[inline] pub fn to_f64(self) -> Vector3D { self.cast() } /// Cast into an `usize` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_usize(self) -> Vector3D { self.cast() } /// Cast into an `u32` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u32(self) -> Vector3D { self.cast() } /// Cast into an `i32` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i32(self) -> Vector3D { self.cast() } /// Cast into an `i64` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i64(self) -> Vector3D { self.cast() } } impl Neg for Vector3D { type Output = Vector3D; #[inline] fn neg(self) -> Self::Output { vec3(-self.x, -self.y, -self.z) } } impl Add for Vector3D { type Output = Vector3D; #[inline] fn add(self, other: Self) -> Self::Output { vec3(self.x + other.x, self.y + other.y, self.z + other.z) } } impl<'a, T: 'a + Add + Copy, U: 'a> Add<&Self> for Vector3D { type Output = Vector3D; #[inline] fn add(self, other: &Self) -> Self::Output { vec3(self.x + other.x, self.y + other.y, self.z + other.z) } } impl + Zero, U> Sum for Vector3D { fn sum>(iter: I) -> Self { iter.fold(Self::zero(), Add::add) } } impl<'a, T: 'a + Add + Copy + Zero, U: 'a> Sum<&'a Self> for Vector3D { fn sum>(iter: I) -> Self { iter.fold(Self::zero(), Add::add) } } impl, U> AddAssign for Vector3D { #[inline] fn add_assign(&mut self, other: Self) { *self = *self + other } } impl Sub for Vector3D { type Output = Vector3D; #[inline] fn sub(self, other: Self) -> Self::Output { vec3(self.x - other.x, self.y - other.y, self.z - other.z) } } impl, U> SubAssign> for Vector3D { #[inline] fn sub_assign(&mut self, other: Self) { *self = *self - other } } impl Mul for Vector3D { type Output = Vector3D; #[inline] fn mul(self, scale: T) -> Self::Output { vec3( self.x * scale, self.y * scale, self.z * scale, ) } } impl, U> MulAssign for Vector3D { #[inline] fn mul_assign(&mut self, scale: T) { *self = *self * scale } } impl Mul> for Vector3D { type Output = Vector3D; #[inline] fn mul(self, scale: Scale) -> Self::Output { vec3( self.x * scale.0, self.y * scale.0, self.z * scale.0, ) } } impl MulAssign> for Vector3D { #[inline] fn mul_assign(&mut self, scale: Scale) { self.x *= scale.0; self.y *= scale.0; self.z *= scale.0; } } impl Div for Vector3D { type Output = Vector3D; #[inline] fn div(self, scale: T) -> Self::Output { vec3( self.x / scale, self.y / scale, self.z / scale, ) } } impl, U> DivAssign for Vector3D { #[inline] fn div_assign(&mut self, scale: T) { *self = *self / scale } } impl Div> for Vector3D { type Output = Vector3D; #[inline] fn div(self, scale: Scale) -> Self::Output { vec3( self.x / scale.0, self.y / scale.0, self.z / scale.0, ) } } impl DivAssign> for Vector3D { #[inline] fn div_assign(&mut self, scale: Scale) { self.x /= scale.0; self.y /= scale.0; self.z /= scale.0; } } impl Round for Vector3D { /// See [`Vector3D::round()`](#method.round) #[inline] fn round(self) -> Self { self.round() } } impl Ceil for Vector3D { /// See [`Vector3D::ceil()`](#method.ceil) #[inline] fn ceil(self) -> Self { self.ceil() } } impl Floor for Vector3D { /// See [`Vector3D::floor()`](#method.floor) #[inline] fn floor(self) -> Self { self.floor() } } impl, U> ApproxEq> for Vector3D { #[inline] fn approx_epsilon() -> Self { vec3( T::approx_epsilon(), T::approx_epsilon(), T::approx_epsilon(), ) } #[inline] fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) && self.z.approx_eq_eps(&other.z, &eps.z) } } impl Into<[T; 3]> for Vector3D { fn into(self) -> [T; 3] { [self.x, self.y, self.z] } } impl From<[T; 3]> for Vector3D { fn from([x, y, z]: [T; 3]) -> Self { vec3(x, y, z) } } impl Into<(T, T, T)> for Vector3D { fn into(self) -> (T, T, T) { (self.x, self.y, self.z) } } impl From<(T, T, T)> for Vector3D { fn from(tuple: (T, T, T)) -> Self { vec3(tuple.0, tuple.1, tuple.2) } } /// A 2d vector of booleans, useful for component-wise logic operations. #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub struct BoolVector2D { pub x: bool, pub y: bool, } /// A 3d vector of booleans, useful for component-wise logic operations. #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub struct BoolVector3D { pub x: bool, pub y: bool, pub z: bool, } impl BoolVector2D { /// Returns `true` if all components are `true` and `false` otherwise. #[inline] pub fn all(self) -> bool { self.x && self.y } /// Returns `true` if any component are `true` and `false` otherwise. #[inline] pub fn any(self) -> bool { self.x || self.y } /// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`. #[inline] pub fn none(self) -> bool { !self.any() } /// Returns new vector with by-component AND operation applied. #[inline] pub fn and(self, other: Self) -> Self { BoolVector2D { x: self.x && other.x, y: self.y && other.y, } } /// Returns new vector with by-component OR operation applied. #[inline] pub fn or(self, other: Self) -> Self { BoolVector2D { x: self.x || other.x, y: self.y || other.y, } } /// Returns new vector with results of negation operation on each component. #[inline] pub fn not(self) -> Self { BoolVector2D { x: !self.x, y: !self.y, } } /// Returns point, each component of which or from `a`, or from `b` depending on truly value /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. #[inline] pub fn select_point(self, a: Point2D, b: Point2D) -> Point2D { point2( if self.x { a.x } else { b.x }, if self.y { a.y } else { b.y }, ) } /// Returns vector, each component of which or from `a`, or from `b` depending on truly value /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. #[inline] pub fn select_vector(self, a: Vector2D, b: Vector2D) -> Vector2D { vec2( if self.x { a.x } else { b.x }, if self.y { a.y } else { b.y }, ) } /// Returns size, each component of which or from `a`, or from `b` depending on truly value /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. #[inline] pub fn select_size(self, a: Size2D, b: Size2D) -> Size2D { size2( if self.x { a.width } else { b.width }, if self.y { a.height } else { b.height }, ) } } impl BoolVector3D { /// Returns `true` if all components are `true` and `false` otherwise. #[inline] pub fn all(self) -> bool { self.x && self.y && self.z } /// Returns `true` if any component are `true` and `false` otherwise. #[inline] pub fn any(self) -> bool { self.x || self.y || self.z } /// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`. #[inline] pub fn none(self) -> bool { !self.any() } /// Returns new vector with by-component AND operation applied. #[inline] pub fn and(self, other: Self) -> Self { BoolVector3D { x: self.x && other.x, y: self.y && other.y, z: self.z && other.z, } } /// Returns new vector with by-component OR operation applied. #[inline] pub fn or(self, other: Self) -> Self { BoolVector3D { x: self.x || other.x, y: self.y || other.y, z: self.z || other.z, } } /// Returns new vector with results of negation operation on each component. #[inline] pub fn not(self) -> Self { BoolVector3D { x: !self.x, y: !self.y, z: !self.z, } } /// Returns point, each component of which or from `a`, or from `b` depending on truly value /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. #[inline] pub fn select_point(self, a: Point3D, b: Point3D) -> Point3D { point3( if self.x { a.x } else { b.x }, if self.y { a.y } else { b.y }, if self.z { a.z } else { b.z }, ) } /// Returns vector, each component of which or from `a`, or from `b` depending on truly value /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. #[inline] pub fn select_vector(self, a: Vector3D, b: Vector3D) -> Vector3D { vec3( if self.x { a.x } else { b.x }, if self.y { a.y } else { b.y }, if self.z { a.z } else { b.z }, ) } /// Returns size, each component of which or from `a`, or from `b` depending on truly value /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. #[inline] #[must_use] pub fn select_size(self, a: Size3D, b: Size3D) -> Size3D { size3( if self.x { a.width } else { b.width }, if self.y { a.height } else { b.height }, if self.z { a.depth } else { b.depth }, ) } /// Returns a 2d vector using this vector's x and y coordinates. #[inline] pub fn xy(self) -> BoolVector2D { BoolVector2D { x: self.x, y: self.y, } } /// Returns a 2d vector using this vector's x and z coordinates. #[inline] pub fn xz(self) -> BoolVector2D { BoolVector2D { x: self.x, y: self.z, } } /// Returns a 2d vector using this vector's y and z coordinates. #[inline] pub fn yz(self) -> BoolVector2D { BoolVector2D { x: self.y, y: self.z, } } } /// Convenience constructor. #[inline] pub const fn vec2(x: T, y: T) -> Vector2D { Vector2D { x, y, _unit: PhantomData, } } /// Convenience constructor. #[inline] pub const fn vec3(x: T, y: T, z: T) -> Vector3D { Vector3D { x, y, z, _unit: PhantomData, } } /// Shorthand for `BoolVector2D { x, y }`. #[inline] pub const fn bvec2(x: bool, y: bool) -> BoolVector2D { BoolVector2D { x, y } } /// Shorthand for `BoolVector3D { x, y, z }`. #[inline] pub const fn bvec3(x: bool, y: bool, z: bool) -> BoolVector3D { BoolVector3D { x, y, z } } #[cfg(test)] mod vector2d { use crate::scale::Scale; use crate::{default, vec2}; #[cfg(feature = "mint")] use mint; type Vec2 = default::Vector2D; #[test] pub fn test_scalar_mul() { let p1: Vec2 = vec2(3.0, 5.0); let result = p1 * 5.0; assert_eq!(result, Vec2::new(15.0, 25.0)); } #[test] pub fn test_dot() { let p1: Vec2 = vec2(2.0, 7.0); let p2: Vec2 = vec2(13.0, 11.0); assert_eq!(p1.dot(p2), 103.0); } #[test] pub fn test_cross() { let p1: Vec2 = vec2(4.0, 7.0); let p2: Vec2 = vec2(13.0, 8.0); let r = p1.cross(p2); assert_eq!(r, -59.0); } #[test] pub fn test_normalize() { use std::f32; let p0: Vec2 = Vec2::zero(); let p1: Vec2 = vec2(4.0, 0.0); let p2: Vec2 = vec2(3.0, -4.0); assert!(p0.normalize().x.is_nan() && p0.normalize().y.is_nan()); assert_eq!(p1.normalize(), vec2(1.0, 0.0)); assert_eq!(p2.normalize(), vec2(0.6, -0.8)); let p3: Vec2 = vec2(::std::f32::MAX, ::std::f32::MAX); assert_ne!( p3.normalize(), vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()) ); assert_eq!( p3.robust_normalize(), vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()) ); let p4: Vec2 = Vec2::zero(); assert!(p4.try_normalize().is_none()); let p5: Vec2 = Vec2::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE); assert!(p5.try_normalize().is_none()); let p6: Vec2 = vec2(4.0, 0.0); let p7: Vec2 = vec2(3.0, -4.0); assert_eq!(p6.try_normalize().unwrap(), vec2(1.0, 0.0)); assert_eq!(p7.try_normalize().unwrap(), vec2(0.6, -0.8)); } #[test] pub fn test_min() { let p1: Vec2 = vec2(1.0, 3.0); let p2: Vec2 = vec2(2.0, 2.0); let result = p1.min(p2); assert_eq!(result, vec2(1.0, 2.0)); } #[test] pub fn test_max() { let p1: Vec2 = vec2(1.0, 3.0); let p2: Vec2 = vec2(2.0, 2.0); let result = p1.max(p2); assert_eq!(result, vec2(2.0, 3.0)); } #[test] pub fn test_angle_from_x_axis() { use crate::approxeq::ApproxEq; use core::f32::consts::FRAC_PI_2; let right: Vec2 = vec2(10.0, 0.0); let down: Vec2 = vec2(0.0, 4.0); let up: Vec2 = vec2(0.0, -1.0); assert!(right.angle_from_x_axis().get().approx_eq(&0.0)); assert!(down.angle_from_x_axis().get().approx_eq(&FRAC_PI_2)); assert!(up.angle_from_x_axis().get().approx_eq(&-FRAC_PI_2)); } #[test] pub fn test_angle_to() { use crate::approxeq::ApproxEq; use core::f32::consts::FRAC_PI_2; let right: Vec2 = vec2(10.0, 0.0); let right2: Vec2 = vec2(1.0, 0.0); let up: Vec2 = vec2(0.0, -1.0); let up_left: Vec2 = vec2(-1.0, -1.0); assert!(right.angle_to(right2).get().approx_eq(&0.0)); assert!(right.angle_to(up).get().approx_eq(&-FRAC_PI_2)); assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2)); assert!(up_left .angle_to(up) .get() .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005)); } #[test] pub fn test_with_max_length() { use crate::approxeq::ApproxEq; let v1: Vec2 = vec2(0.5, 0.5); let v2: Vec2 = vec2(1.0, 0.0); let v3: Vec2 = vec2(0.1, 0.2); let v4: Vec2 = vec2(2.0, -2.0); let v5: Vec2 = vec2(1.0, 2.0); let v6: Vec2 = vec2(-1.0, 3.0); assert_eq!(v1.with_max_length(1.0), v1); assert_eq!(v2.with_max_length(1.0), v2); assert_eq!(v3.with_max_length(1.0), v3); assert_eq!(v4.with_max_length(10.0), v4); assert_eq!(v5.with_max_length(10.0), v5); assert_eq!(v6.with_max_length(10.0), v6); let v4_clamped = v4.with_max_length(1.0); assert!(v4_clamped.length().approx_eq(&1.0)); assert!(v4_clamped.normalize().approx_eq(&v4.normalize())); let v5_clamped = v5.with_max_length(1.5); assert!(v5_clamped.length().approx_eq(&1.5)); assert!(v5_clamped.normalize().approx_eq(&v5.normalize())); let v6_clamped = v6.with_max_length(2.5); assert!(v6_clamped.length().approx_eq(&2.5)); assert!(v6_clamped.normalize().approx_eq(&v6.normalize())); } #[test] pub fn test_project_onto_vector() { use crate::approxeq::ApproxEq; let v1: Vec2 = vec2(1.0, 2.0); let x: Vec2 = vec2(1.0, 0.0); let y: Vec2 = vec2(0.0, 1.0); assert!(v1.project_onto_vector(x).approx_eq(&vec2(1.0, 0.0))); assert!(v1.project_onto_vector(y).approx_eq(&vec2(0.0, 2.0))); assert!(v1.project_onto_vector(-x).approx_eq(&vec2(1.0, 0.0))); assert!(v1.project_onto_vector(x * 10.0).approx_eq(&vec2(1.0, 0.0))); assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1)); assert!(v1.project_onto_vector(-v1).approx_eq(&v1)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let v1 = Vec2::new(1.0, 3.0); let vm: mint::Vector2<_> = v1.into(); let v2 = Vec2::from(vm); assert_eq!(v1, v2); } pub enum Mm {} pub enum Cm {} pub type Vector2DMm = super::Vector2D; pub type Vector2DCm = super::Vector2D; #[test] pub fn test_add() { let p1 = Vector2DMm::new(1.0, 2.0); let p2 = Vector2DMm::new(3.0, 4.0); assert_eq!(p1 + p2, vec2(4.0, 6.0)); assert_eq!(p1 + &p2, vec2(4.0, 6.0)); } #[test] pub fn test_sum() { let vecs = [ Vector2DMm::new(1.0, 2.0), Vector2DMm::new(3.0, 4.0), Vector2DMm::new(5.0, 6.0) ]; let sum = Vector2DMm::new(9.0, 12.0); assert_eq!(vecs.iter().sum::>(), sum); } #[test] pub fn test_add_assign() { let mut p1 = Vector2DMm::new(1.0, 2.0); p1 += vec2(3.0, 4.0); assert_eq!(p1, vec2(4.0, 6.0)); } #[test] pub fn test_tpyed_scalar_mul() { let p1 = Vector2DMm::new(1.0, 2.0); let cm_per_mm = Scale::::new(0.1); let result: Vector2DCm = p1 * cm_per_mm; assert_eq!(result, vec2(0.1, 0.2)); } #[test] pub fn test_swizzling() { let p: default::Vector2D = vec2(1, 2); assert_eq!(p.yx(), vec2(2, 1)); } #[test] pub fn test_reflect() { use crate::approxeq::ApproxEq; let a: Vec2 = vec2(1.0, 3.0); let n1: Vec2 = vec2(0.0, -1.0); let n2: Vec2 = vec2(1.0, -1.0).normalize(); assert!(a.reflect(n1).approx_eq(&vec2(1.0, -3.0))); assert!(a.reflect(n2).approx_eq(&vec2(3.0, 1.0))); } } #[cfg(test)] mod vector3d { use crate::scale::Scale; use crate::{default, vec2, vec3}; #[cfg(feature = "mint")] use mint; type Vec3 = default::Vector3D; #[test] pub fn test_add() { let p1 = Vec3::new(1.0, 2.0, 3.0); let p2 = Vec3::new(4.0, 5.0, 6.0); assert_eq!(p1 + p2, vec3(5.0, 7.0, 9.0)); assert_eq!(p1 + &p2, vec3(5.0, 7.0, 9.0)); } #[test] pub fn test_sum() { let vecs = [ Vec3::new(1.0, 2.0, 3.0), Vec3::new(4.0, 5.0, 6.0), Vec3::new(7.0, 8.0, 9.0) ]; let sum = Vec3::new(12.0, 15.0, 18.0); assert_eq!(vecs.iter().sum::(), sum); } #[test] pub fn test_dot() { let p1: Vec3 = vec3(7.0, 21.0, 32.0); let p2: Vec3 = vec3(43.0, 5.0, 16.0); assert_eq!(p1.dot(p2), 918.0); } #[test] pub fn test_cross() { let p1: Vec3 = vec3(4.0, 7.0, 9.0); let p2: Vec3 = vec3(13.0, 8.0, 3.0); let p3 = p1.cross(p2); assert_eq!(p3, vec3(-51.0, 105.0, -59.0)); } #[test] pub fn test_normalize() { use std::f32; let p0: Vec3 = Vec3::zero(); let p1: Vec3 = vec3(0.0, -6.0, 0.0); let p2: Vec3 = vec3(1.0, 2.0, -2.0); assert!( p0.normalize().x.is_nan() && p0.normalize().y.is_nan() && p0.normalize().z.is_nan() ); assert_eq!(p1.normalize(), vec3(0.0, -1.0, 0.0)); assert_eq!(p2.normalize(), vec3(1.0 / 3.0, 2.0 / 3.0, -2.0 / 3.0)); let p3: Vec3 = vec3(::std::f32::MAX, ::std::f32::MAX, 0.0); assert_ne!( p3.normalize(), vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0) ); assert_eq!( p3.robust_normalize(), vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0) ); let p4: Vec3 = Vec3::zero(); assert!(p4.try_normalize().is_none()); let p5: Vec3 = Vec3::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE, f32::MIN_POSITIVE); assert!(p5.try_normalize().is_none()); let p6: Vec3 = vec3(4.0, 0.0, 3.0); let p7: Vec3 = vec3(3.0, -4.0, 0.0); assert_eq!(p6.try_normalize().unwrap(), vec3(0.8, 0.0, 0.6)); assert_eq!(p7.try_normalize().unwrap(), vec3(0.6, -0.8, 0.0)); } #[test] pub fn test_min() { let p1: Vec3 = vec3(1.0, 3.0, 5.0); let p2: Vec3 = vec3(2.0, 2.0, -1.0); let result = p1.min(p2); assert_eq!(result, vec3(1.0, 2.0, -1.0)); } #[test] pub fn test_max() { let p1: Vec3 = vec3(1.0, 3.0, 5.0); let p2: Vec3 = vec3(2.0, 2.0, -1.0); let result = p1.max(p2); assert_eq!(result, vec3(2.0, 3.0, 5.0)); } #[test] pub fn test_clamp() { let p1: Vec3 = vec3(1.0, -1.0, 5.0); let p2: Vec3 = vec3(2.0, 5.0, 10.0); let p3: Vec3 = vec3(-1.0, 2.0, 20.0); let result = p3.clamp(p1, p2); assert_eq!(result, vec3(1.0, 2.0, 10.0)); } #[test] pub fn test_typed_scalar_mul() { enum Mm {} enum Cm {} let p1 = super::Vector3D::::new(1.0, 2.0, 3.0); let cm_per_mm = Scale::::new(0.1); let result: super::Vector3D = p1 * cm_per_mm; assert_eq!(result, vec3(0.1, 0.2, 0.3)); } #[test] pub fn test_swizzling() { let p: Vec3 = vec3(1.0, 2.0, 3.0); assert_eq!(p.xy(), vec2(1.0, 2.0)); assert_eq!(p.xz(), vec2(1.0, 3.0)); assert_eq!(p.yz(), vec2(2.0, 3.0)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let v1 = Vec3::new(1.0, 3.0, 5.0); let vm: mint::Vector3<_> = v1.into(); let v2 = Vec3::from(vm); assert_eq!(v1, v2); } #[test] pub fn test_reflect() { use crate::approxeq::ApproxEq; let a: Vec3 = vec3(1.0, 3.0, 2.0); let n1: Vec3 = vec3(0.0, -1.0, 0.0); let n2: Vec3 = vec3(0.0, 1.0, 1.0).normalize(); assert!(a.reflect(n1).approx_eq(&vec3(1.0, -3.0, 2.0))); assert!(a.reflect(n2).approx_eq(&vec3(1.0, -2.0, -3.0))); } #[test] pub fn test_angle_to() { use crate::approxeq::ApproxEq; use core::f32::consts::FRAC_PI_2; let right: Vec3 = vec3(10.0, 0.0, 0.0); let right2: Vec3 = vec3(1.0, 0.0, 0.0); let up: Vec3 = vec3(0.0, -1.0, 0.0); let up_left: Vec3 = vec3(-1.0, -1.0, 0.0); assert!(right.angle_to(right2).get().approx_eq(&0.0)); assert!(right.angle_to(up).get().approx_eq(&FRAC_PI_2)); assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2)); assert!(up_left .angle_to(up) .get() .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005)); } #[test] pub fn test_with_max_length() { use crate::approxeq::ApproxEq; let v1: Vec3 = vec3(0.5, 0.5, 0.0); let v2: Vec3 = vec3(1.0, 0.0, 0.0); let v3: Vec3 = vec3(0.1, 0.2, 0.3); let v4: Vec3 = vec3(2.0, -2.0, 2.0); let v5: Vec3 = vec3(1.0, 2.0, -3.0); let v6: Vec3 = vec3(-1.0, 3.0, 2.0); assert_eq!(v1.with_max_length(1.0), v1); assert_eq!(v2.with_max_length(1.0), v2); assert_eq!(v3.with_max_length(1.0), v3); assert_eq!(v4.with_max_length(10.0), v4); assert_eq!(v5.with_max_length(10.0), v5); assert_eq!(v6.with_max_length(10.0), v6); let v4_clamped = v4.with_max_length(1.0); assert!(v4_clamped.length().approx_eq(&1.0)); assert!(v4_clamped.normalize().approx_eq(&v4.normalize())); let v5_clamped = v5.with_max_length(1.5); assert!(v5_clamped.length().approx_eq(&1.5)); assert!(v5_clamped.normalize().approx_eq(&v5.normalize())); let v6_clamped = v6.with_max_length(2.5); assert!(v6_clamped.length().approx_eq(&2.5)); assert!(v6_clamped.normalize().approx_eq(&v6.normalize())); } #[test] pub fn test_project_onto_vector() { use crate::approxeq::ApproxEq; let v1: Vec3 = vec3(1.0, 2.0, 3.0); let x: Vec3 = vec3(1.0, 0.0, 0.0); let y: Vec3 = vec3(0.0, 1.0, 0.0); let z: Vec3 = vec3(0.0, 0.0, 1.0); assert!(v1.project_onto_vector(x).approx_eq(&vec3(1.0, 0.0, 0.0))); assert!(v1.project_onto_vector(y).approx_eq(&vec3(0.0, 2.0, 0.0))); assert!(v1.project_onto_vector(z).approx_eq(&vec3(0.0, 0.0, 3.0))); assert!(v1.project_onto_vector(-x).approx_eq(&vec3(1.0, 0.0, 0.0))); assert!(v1 .project_onto_vector(x * 10.0) .approx_eq(&vec3(1.0, 0.0, 0.0))); assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1)); assert!(v1.project_onto_vector(-v1).approx_eq(&v1)); } } #[cfg(test)] mod bool_vector { use super::*; use crate::default; type Vec2 = default::Vector2D; type Vec3 = default::Vector3D; #[test] fn test_bvec2() { assert_eq!( Vec2::new(1.0, 2.0).greater_than(Vec2::new(2.0, 1.0)), bvec2(false, true), ); assert_eq!( Vec2::new(1.0, 2.0).lower_than(Vec2::new(2.0, 1.0)), bvec2(true, false), ); assert_eq!( Vec2::new(1.0, 2.0).equal(Vec2::new(1.0, 3.0)), bvec2(true, false), ); assert_eq!( Vec2::new(1.0, 2.0).not_equal(Vec2::new(1.0, 3.0)), bvec2(false, true), ); assert!(bvec2(true, true).any()); assert!(bvec2(false, true).any()); assert!(bvec2(true, false).any()); assert!(!bvec2(false, false).any()); assert!(bvec2(false, false).none()); assert!(bvec2(true, true).all()); assert!(!bvec2(false, true).all()); assert!(!bvec2(true, false).all()); assert!(!bvec2(false, false).all()); assert_eq!(bvec2(true, false).not(), bvec2(false, true)); assert_eq!( bvec2(true, false).and(bvec2(true, true)), bvec2(true, false) ); assert_eq!(bvec2(true, false).or(bvec2(true, true)), bvec2(true, true)); assert_eq!( bvec2(true, false).select_vector(Vec2::new(1.0, 2.0), Vec2::new(3.0, 4.0)), Vec2::new(1.0, 4.0), ); } #[test] fn test_bvec3() { assert_eq!( Vec3::new(1.0, 2.0, 3.0).greater_than(Vec3::new(3.0, 2.0, 1.0)), bvec3(false, false, true), ); assert_eq!( Vec3::new(1.0, 2.0, 3.0).lower_than(Vec3::new(3.0, 2.0, 1.0)), bvec3(true, false, false), ); assert_eq!( Vec3::new(1.0, 2.0, 3.0).equal(Vec3::new(3.0, 2.0, 1.0)), bvec3(false, true, false), ); assert_eq!( Vec3::new(1.0, 2.0, 3.0).not_equal(Vec3::new(3.0, 2.0, 1.0)), bvec3(true, false, true), ); assert!(bvec3(true, true, false).any()); assert!(bvec3(false, true, false).any()); assert!(bvec3(true, false, false).any()); assert!(!bvec3(false, false, false).any()); assert!(bvec3(false, false, false).none()); assert!(bvec3(true, true, true).all()); assert!(!bvec3(false, true, false).all()); assert!(!bvec3(true, false, false).all()); assert!(!bvec3(false, false, false).all()); assert_eq!(bvec3(true, false, true).not(), bvec3(false, true, false)); assert_eq!( bvec3(true, false, true).and(bvec3(true, true, false)), bvec3(true, false, false) ); assert_eq!( bvec3(true, false, false).or(bvec3(true, true, false)), bvec3(true, true, false) ); assert_eq!( bvec3(true, false, true) .select_vector(Vec3::new(1.0, 2.0, 3.0), Vec3::new(4.0, 5.0, 6.0)), Vec3::new(1.0, 5.0, 3.0), ); } }