fixedbitset-0.4.2/.cargo_vcs_info.json0000644000000001360000000000100133510ustar { "git": { "sha1": "da287ee91fb539dc1c12028bf820b7e2c414ed35" }, "path_in_vcs": "" }fixedbitset-0.4.2/.github/workflows/rust.yml000064400000000000000000000013170072674642500173100ustar 00000000000000name: Continuous integration on: push: branches: [ master ] pull_request: branches: [ master ] env: CARGO_TERM_COLOR: always CARGO_INCREMENTAL: 0 jobs: build: runs-on: ubuntu-latest strategy: matrix: rust: [1.39.0, stable, nightly] steps: - uses: actions/checkout@v2 - uses: actions-rs/toolchain@v1 with: profile: minimal toolchain: ${{ matrix.rust }} override: true - name: Tests run: | cargo test -v --no-default-features --tests --lib && cargo build --verbose --features "$FEATURES" && cargo test --verbose --features "$FEATURES" && cargo test --verbose --release --features "$FEATURES" fixedbitset-0.4.2/.gitignore000064400000000000000000000000320072674642500141540ustar 00000000000000target/ .idea/ Cargo.lock fixedbitset-0.4.2/Cargo.toml0000644000000020740000000000100113520ustar # THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies. # # If you are reading this file be aware that the original Cargo.toml # will likely look very different (and much more reasonable). # See Cargo.toml.orig for the original contents. [package] name = "fixedbitset" version = "0.4.2" authors = ["bluss"] description = "FixedBitSet is a simple bitset collection" documentation = "https://docs.rs/fixedbitset/" readme = "README.md" keywords = ["container", "data-structure", "bitvec", "bitset", "no_std"] categories = ["data-structures"] license = "MIT/Apache-2.0" repository = "https://github.com/petgraph/fixedbitset" [package.metadata.release] no-dev-version = true tag-name = "{{version}}" [dependencies.serde] version = "1.0" features = ["derive"] optional = true [dev-dependencies.serde_json] version = "1.0" [features] default = ["std"] std = [] fixedbitset-0.4.2/Cargo.toml.orig000064400000000000000000000011560072674642500150630ustar 00000000000000[package] name = "fixedbitset" version = "0.4.2" authors = ["bluss"] license = "MIT/Apache-2.0" readme = "README.md" description = "FixedBitSet is a simple bitset collection" documentation = "https://docs.rs/fixedbitset/" repository = "https://github.com/petgraph/fixedbitset" keywords = ["container", "data-structure", "bitvec", "bitset", "no_std"] categories = ["data-structures"] [features] std = [] default = ["std"] [package.metadata.release] no-dev-version = true tag-name = "{{version}}" [dependencies] serde = { version = "1.0", features = ["derive"], optional = true } [dev-dependencies] serde_json = "1.0" fixedbitset-0.4.2/LICENSE-APACHE000064400000000000000000000251370072674642500141250ustar 00000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. fixedbitset-0.4.2/LICENSE-MIT000064400000000000000000000020300072674642500136200ustar 00000000000000Copyright (c) 2015-2017 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. fixedbitset-0.4.2/README.md000064400000000000000000000065730072674642500134630ustar 00000000000000fixedbitset --- A simple bitset container for Rust Please read the [API documentation here](https://docs.rs/fixedbitset/) [![build\_status](https://github.com/petgraph/fixedbitset/workflows/Continuous%20integration/badge.svg?branch=master)](https://github.com/petgraph/fixedbitset/actions) [![crates](https://img.shields.io/crates/v/fixedbitset.svg)](https://crates.io/crates/fixedbitset) # Recent Changes - 0.4.2 - [#79](https://github.com/petgraph/fixedbitset/pull/79): Add `is_clear`, clarify `is_empty` and `len` documentation by \@nicopap. - 0.4.1 - Documentation and formatting fixes. - 0.4.0 - [#61](https://github.com/petgraph/fixedbitset/pull/61): Require Rust 1.39. - [#60](https://github.com/petgraph/fixedbitset/pull/60): Add `const` `FixedBitSet::new` consructor by \@jakobhellermann. - [#59](https://github.com/petgraph/fixedbitset/pull/59): Add optional `serde` support by \@keshavsn. - 0.3.2 - [#18](https://github.com/petgraph/fixedbitset/pull/18): Optimize `ones` using `trailing_zeroes` by \@vks - 0.3.1 - Add bit assign operators for references by \@flaghacker - Improve assertion error messages by \@lovasoa - Add documentation examples for `with_capacity_and_blocks` - 0.3.0 - Add `with_capacity_and_blocks` by \@luizirber - Add `difference_with` by \@sunshowers - Implement `Binary` and `Display` traits by \@Dolphindalt - Add `toggle_range` by \@wirelyre - 0.2.0 - Add assign operators for the bit operations by \@jrraymond - Add `symmetric_difference`, `union_with`, `intersection_with` by \@jrraymond - Add `is_subset`, `is_superset`, `is_disjoint` by \@nwn - Add `.toggle(i)` method by \@ShiroUsagi-san - Add default feature \"std\" which can be disabled to make the crate not link the std library. By \@jonimake and \@bluss - Require Rust 1.31. - 0.1.9 - Add intersection, union, difference iterators by \@jrraymond - Add intersection: `&` and union: `|` operator implementations by \@jrraymond - Add Extend and FromIterator implementations (from sequences of bit indices) by \@jrraymond - 0.1.8 - Add missing `#[inline]` on the ones iterator - Fix docs for `insert_range, set_range` - 0.1.7 - Add fast methods `.insert_range`, `.set_range` by \@kennytm - 0.1.6 - Add iterator `.ones()` by \@mneumann - Fix bug with `.count_ones()` where it would erronously have an out-of-bounds panic for even block endpoints - 0.1.5 - Add method `.count_ones(range)`. - 0.1.4 - Remove an assertion in `.copy_bit(from, to)` so that it is in line with the documentation. The `from` bit does not need to be in bounds. - Improve `.grow()` to use `Vec::resize` internally. - 0.1.3 - Add method `.put()` to enable a bit and return previous value - 0.1.2 - Add method `.copy_bit()` (by fuine) - impl Default - 0.1.1 - Update documentation URL - 0.1.0 - Add method `.grow()` # License Dual-licensed to be compatible with the Rust project. Licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) or the [MIT license](https://opensource.org/licenses/MIT), at your option. This file may not be copied, modified, or distributed except according to those terms. fixedbitset-0.4.2/benches/benches.rs000064400000000000000000000055520072674642500155640ustar 00000000000000#![feature(test)] extern crate test; extern crate fixedbitset; use test::Bencher; use fixedbitset::{FixedBitSet}; use std::mem::size_of; #[inline] fn iter_ones_using_contains(fb: &FixedBitSet, f: &mut F) { for bit in 0 .. fb.len() { if fb.contains(bit) { f(bit); } } } #[inline] fn iter_ones_using_slice_directly(fb: &FixedBitSet, f: &mut F) { for (block_idx, &block) in fb.as_slice().iter().enumerate() { let mut bit_pos = block_idx * size_of::() * 8; let mut block: u32 = block; while block != 0 { if (block & 1) == 1 { f(bit_pos); } block = block >> 1; bit_pos += 1; } } } #[bench] fn bench_iter_ones_using_contains_all_zeros(b: &mut Bencher) { const N: usize = 1_000_000; let fb = FixedBitSet::with_capacity(N); b.iter(|| { let mut count = 0; iter_ones_using_contains(&fb, &mut |_bit| count += 1); count }); } #[bench] fn bench_iter_ones_using_contains_all_ones(b: &mut Bencher) { const N: usize = 1_000_000; let mut fb = FixedBitSet::with_capacity(N); fb.insert_range(..); b.iter(|| { let mut count = 0; iter_ones_using_contains(&fb, &mut |_bit| count += 1); count }); } #[bench] fn bench_iter_ones_using_slice_directly_all_zero(b: &mut Bencher) { const N: usize = 1_000_000; let fb = FixedBitSet::with_capacity(N); b.iter(|| { let mut count = 0; iter_ones_using_slice_directly(&fb, &mut |_bit| count += 1); count }); } #[bench] fn bench_iter_ones_using_slice_directly_all_ones(b: &mut Bencher) { const N: usize = 1_000_000; let mut fb = FixedBitSet::with_capacity(N); fb.insert_range(..); b.iter(|| { let mut count = 0; iter_ones_using_slice_directly(&fb, &mut |_bit| count += 1); count }); } #[bench] fn bench_iter_ones_all_zeros(b: &mut Bencher) { const N: usize = 1_000_000; let fb = FixedBitSet::with_capacity(N); b.iter(|| { let mut count = 0; for _ in fb.ones() { count += 1; } count }); } #[bench] fn bench_iter_ones_all_ones(b: &mut Bencher) { const N: usize = 1_000_000; let mut fb = FixedBitSet::with_capacity(N); fb.insert_range(..); b.iter(|| { let mut count = 0; for _ in fb.ones() { count += 1; } count }); } #[bench] fn bench_insert_range(b: &mut Bencher) { const N: usize = 1_000_000; let mut fb = FixedBitSet::with_capacity(N); b.iter(|| { fb.insert_range(..) }); } #[bench] fn bench_insert_range_using_loop(b: &mut Bencher) { const N: usize = 1_000_000; let mut fb = FixedBitSet::with_capacity(N); b.iter(|| { for i in 0..N { fb.insert(i); } }); } fixedbitset-0.4.2/src/lib.rs000064400000000000000000001320570072674642500141040ustar 00000000000000//! `FixedBitSet` is a simple fixed size set of bits. //! //! //! ### Crate features //! //! - `std` (default feature) //! Disabling this feature disables using std and instead uses crate alloc. //! Requires Rust 1.36 to disable. //! //! ### Rust Version //! //! This version of fixedbitset requires Rust 1.39 or later. //! #![doc(html_root_url = "https://docs.rs/fixedbitset/0.4.2/")] #![cfg_attr(not(feature = "std"), no_std)] #[cfg(not(feature = "std"))] extern crate alloc; #[cfg(not(feature = "std"))] use alloc::{vec, vec::Vec}; #[cfg(not(feature = "std"))] use core as std; mod range; #[cfg(feature = "serde")] extern crate serde; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; use std::fmt::Write; use std::fmt::{Binary, Display, Error, Formatter}; pub use range::IndexRange; use std::cmp::{Ord, Ordering}; use std::iter::{Chain, FromIterator}; use std::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Index}; const BITS: usize = 32; type Block = u32; #[inline] fn div_rem(x: usize, d: usize) -> (usize, usize) { (x / d, x % d) } /// `FixedBitSet` is a simple fixed size set of bits that each can /// be enabled (1 / **true**) or disabled (0 / **false**). /// /// The bit set has a fixed capacity in terms of enabling bits (and the /// capacity can grow using the `grow` method). /// /// Derived traits depend on both the zeros and ones, so [0,1] is not equal to /// [0,1,0]. #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Default)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct FixedBitSet { data: Vec, /// length in bits length: usize, } impl FixedBitSet { /// Create a new empty **FixedBitSet**. pub const fn new() -> Self { FixedBitSet { data: Vec::new(), length: 0, } } /// Create a new **FixedBitSet** with a specific number of bits, /// all initially clear. pub fn with_capacity(bits: usize) -> Self { let (mut blocks, rem) = div_rem(bits, BITS); blocks += (rem > 0) as usize; FixedBitSet { data: vec![0; blocks], length: bits, } } /// Create a new **FixedBitSet** with a specific number of bits, /// initialized from provided blocks. /// /// If the blocks are not the exact size needed for the capacity /// they will be padded with zeros (if shorter) or truncated to /// the capacity (if longer). /// /// For example: /// ``` /// let data = vec![4]; /// let bs = fixedbitset::FixedBitSet::with_capacity_and_blocks(4, data); /// assert_eq!(format!("{:b}", bs), "0010"); /// ``` pub fn with_capacity_and_blocks>(bits: usize, blocks: I) -> Self { let (mut n_blocks, rem) = div_rem(bits, BITS); n_blocks += (rem > 0) as usize; let mut data: Vec = blocks.into_iter().collect(); // Pad data with zeros if smaller or truncate if larger if data.len() != n_blocks { data.resize(n_blocks, 0); } // Disable bits in blocks beyond capacity let end = data.len() * 32; for (block, mask) in Masks::new(bits..end, end) { unsafe { *data.get_unchecked_mut(block) &= !mask; } } FixedBitSet { data, length: bits } } /// Grow capacity to **bits**, all new bits initialized to zero pub fn grow(&mut self, bits: usize) { let (mut blocks, rem) = div_rem(bits, BITS); blocks += (rem > 0) as usize; if bits > self.length { self.length = bits; self.data.resize(blocks, 0); } } /// The length of the [`FixedBitSet`] in bits. /// /// Note: `len` includes both set and unset bits. /// ``` /// # use fixedbitset::FixedBitSet; /// let bitset = FixedBitSet::with_capacity(10); /// // there are 0 set bits, but 10 unset bits /// assert_eq!(bitset.len(), 10); /// ``` /// `len` does not return the count of set bits. For that, use /// [`bitset.count_ones(..)`](FixedBitSet::count_ones) instead. #[inline] pub fn len(&self) -> usize { self.length } /// `true` if the [`FixedBitSet`] is empty. /// /// Note that an "empty" `FixedBitSet` is a `FixedBitSet` with /// no bits (meaning: it's length is zero). If you want to check /// if all bits are unset, use [`FixedBitSet::is_clear`]. /// /// ``` /// # use fixedbitset::FixedBitSet; /// let bitset = FixedBitSet::with_capacity(10); /// assert!(!bitset.is_empty()); /// /// let bitset = FixedBitSet::with_capacity(0); /// assert!(bitset.is_empty()); /// ``` #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// `true` if all bits in the [`FixedBitSet`] are unset. /// /// As opposed to [`FixedBitSet::is_empty`], which is `true` only for /// sets without any bits, set or unset. /// /// ``` /// # use fixedbitset::FixedBitSet; /// let mut bitset = FixedBitSet::with_capacity(10); /// assert!(bitset.is_clear()); /// /// bitset.insert(2); /// assert!(!bitset.is_clear()); /// ``` /// /// This is equivalent to [`bitset.count_ones(..) == 0`](FixedBitSet::count_ones). #[inline] pub fn is_clear(&self) -> bool { self.data.iter().all(|block| *block == 0) } /// Return **true** if the bit is enabled in the **FixedBitSet**, /// **false** otherwise. /// /// Note: bits outside the capacity are always disabled. /// /// Note: Also available with index syntax: `bitset[bit]`. #[inline] pub fn contains(&self, bit: usize) -> bool { let (block, i) = div_rem(bit, BITS); match self.data.get(block) { None => false, Some(b) => (b & (1 << i)) != 0, } } /// Clear all bits. #[inline] pub fn clear(&mut self) { for elt in &mut self.data[..] { *elt = 0 } } /// Enable `bit`. /// /// **Panics** if **bit** is out of bounds. #[inline] pub fn insert(&mut self, bit: usize) { assert!( bit < self.length, "insert at index {} exceeds fixbitset size {}", bit, self.length ); let (block, i) = div_rem(bit, BITS); unsafe { *self.data.get_unchecked_mut(block) |= 1 << i; } } /// Enable `bit`, and return its previous value. /// /// **Panics** if **bit** is out of bounds. #[inline] pub fn put(&mut self, bit: usize) -> bool { assert!( bit < self.length, "put at index {} exceeds fixbitset size {}", bit, self.length ); let (block, i) = div_rem(bit, BITS); unsafe { let word = self.data.get_unchecked_mut(block); let prev = *word & (1 << i) != 0; *word |= 1 << i; prev } } /// Toggle `bit` (inverting its state). /// /// ***Panics*** if **bit** is out of bounds #[inline] pub fn toggle(&mut self, bit: usize) { assert!( bit < self.length, "toggle at index {} exceeds fixbitset size {}", bit, self.length ); let (block, i) = div_rem(bit, BITS); unsafe { *self.data.get_unchecked_mut(block) ^= 1 << i; } } /// **Panics** if **bit** is out of bounds. #[inline] pub fn set(&mut self, bit: usize, enabled: bool) { assert!( bit < self.length, "set at index {} exceeds fixbitset size {}", bit, self.length ); let (block, i) = div_rem(bit, BITS); unsafe { let elt = self.data.get_unchecked_mut(block); if enabled { *elt |= 1 << i; } else { *elt &= !(1 << i); } } } /// Copies boolean value from specified bit to the specified bit. /// /// **Panics** if **to** is out of bounds. #[inline] pub fn copy_bit(&mut self, from: usize, to: usize) { assert!( to < self.length, "copy at index {} exceeds fixbitset size {}", to, self.length ); let (to_block, t) = div_rem(to, BITS); let enabled = self.contains(from); unsafe { let to_elt = self.data.get_unchecked_mut(to_block); if enabled { *to_elt |= 1 << t; } else { *to_elt &= !(1 << t); } } } /// Count the number of set bits in the given bit range. /// /// Use `..` to count the whole content of the bitset. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn count_ones(&self, range: T) -> usize { Masks::new(range, self.length) .map(|(block, mask)| unsafe { let value = *self.data.get_unchecked(block); (value & mask).count_ones() as usize }) .sum() } /// Sets every bit in the given range to the given state (`enabled`) /// /// Use `..` to set the whole bitset. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn set_range(&mut self, range: T, enabled: bool) { for (block, mask) in Masks::new(range, self.length) { unsafe { if enabled { *self.data.get_unchecked_mut(block) |= mask; } else { *self.data.get_unchecked_mut(block) &= !mask; } } } } /// Enables every bit in the given range. /// /// Use `..` to make the whole bitset ones. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn insert_range(&mut self, range: T) { self.set_range(range, true); } /// Toggles (inverts) every bit in the given range. /// /// Use `..` to toggle the whole bitset. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn toggle_range(&mut self, range: T) { for (block, mask) in Masks::new(range, self.length) { unsafe { *self.data.get_unchecked_mut(block) ^= mask; } } } /// View the bitset as a slice of `u32` blocks #[inline] pub fn as_slice(&self) -> &[u32] { &self.data } /// View the bitset as a mutable slice of `u32` blocks. Writing past the bitlength in the last /// will cause `contains` to return potentially incorrect results for bits past the bitlength. #[inline] pub fn as_mut_slice(&mut self) -> &mut [u32] { &mut self.data } /// Iterates over all enabled bits. /// /// Iterator element is the index of the `1` bit, type `usize`. #[inline] pub fn ones(&self) -> Ones { match self.as_slice().split_first() { Some((&block, rem)) => Ones { bitset: block, block_idx: 0, remaining_blocks: rem, }, None => Ones { bitset: 0, block_idx: 0, remaining_blocks: &[], }, } } /// Returns a lazy iterator over the intersection of two `FixedBitSet`s pub fn intersection<'a>(&'a self, other: &'a FixedBitSet) -> Intersection<'a> { Intersection { iter: self.ones(), other, } } /// Returns a lazy iterator over the union of two `FixedBitSet`s. pub fn union<'a>(&'a self, other: &'a FixedBitSet) -> Union<'a> { Union { iter: self.ones().chain(other.difference(self)), } } /// Returns a lazy iterator over the difference of two `FixedBitSet`s. The difference of `a` /// and `b` is the elements of `a` which are not in `b`. pub fn difference<'a>(&'a self, other: &'a FixedBitSet) -> Difference<'a> { Difference { iter: self.ones(), other, } } /// Returns a lazy iterator over the symmetric difference of two `FixedBitSet`s. /// The symmetric difference of `a` and `b` is the elements of one, but not both, sets. pub fn symmetric_difference<'a>(&'a self, other: &'a FixedBitSet) -> SymmetricDifference<'a> { SymmetricDifference { iter: self.difference(other).chain(other.difference(self)), } } /// In-place union of two `FixedBitSet`s. /// /// On calling this method, `self`'s capacity may be increased to match `other`'s. pub fn union_with(&mut self, other: &FixedBitSet) { if other.len() >= self.len() { self.grow(other.len()); } for (x, y) in self.data.iter_mut().zip(other.data.iter()) { *x |= *y; } } /// In-place intersection of two `FixedBitSet`s. /// /// On calling this method, `self`'s capacity will remain the same as before. pub fn intersect_with(&mut self, other: &FixedBitSet) { for (x, y) in self.data.iter_mut().zip(other.data.iter()) { *x &= *y; } let mn = std::cmp::min(self.data.len(), other.data.len()); for wd in &mut self.data[mn..] { *wd = 0; } } /// In-place difference of two `FixedBitSet`s. /// /// On calling this method, `self`'s capacity will remain the same as before. pub fn difference_with(&mut self, other: &FixedBitSet) { for (x, y) in self.data.iter_mut().zip(other.data.iter()) { *x &= !*y; } // There's no need to grow self or do any other adjustments. // // * If self is longer than other, the bits at the end of self won't be affected since other // has them implicitly set to 0. // * If other is longer than self, the bits at the end of other are irrelevant since self // has them set to 0 anyway. } /// In-place symmetric difference of two `FixedBitSet`s. /// /// On calling this method, `self`'s capacity may be increased to match `other`'s. pub fn symmetric_difference_with(&mut self, other: &FixedBitSet) { if other.len() >= self.len() { self.grow(other.len()); } for (x, y) in self.data.iter_mut().zip(other.data.iter()) { *x ^= *y; } } /// Returns `true` if `self` has no elements in common with `other`. This /// is equivalent to checking for an empty intersection. pub fn is_disjoint(&self, other: &FixedBitSet) -> bool { self.data .iter() .zip(other.data.iter()) .all(|(x, y)| x & y == 0) } /// Returns `true` if the set is a subset of another, i.e. `other` contains /// at least all the values in `self`. pub fn is_subset(&self, other: &FixedBitSet) -> bool { self.data .iter() .zip(other.data.iter()) .all(|(x, y)| x & !y == 0) && self.data.iter().skip(other.data.len()).all(|x| *x == 0) } /// Returns `true` if the set is a superset of another, i.e. `self` contains /// at least all the values in `other`. pub fn is_superset(&self, other: &FixedBitSet) -> bool { other.is_subset(self) } } impl Binary for FixedBitSet { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { if f.alternate() { f.write_str("0b")?; } for i in 0..self.length { if self[i] { f.write_char('1')?; } else { f.write_char('0')?; } } Ok(()) } } impl Display for FixedBitSet { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { Binary::fmt(&self, f) } } /// An iterator producing elements in the difference of two sets. /// /// This struct is created by the [`FixedBitSet::difference`] method. pub struct Difference<'a> { iter: Ones<'a>, other: &'a FixedBitSet, } impl<'a> Iterator for Difference<'a> { type Item = usize; #[inline] fn next(&mut self) -> Option { while let Some(nxt) = self.iter.next() { if !self.other.contains(nxt) { return Some(nxt); } } None } } /// An iterator producing elements in the symmetric difference of two sets. /// /// This struct is created by the [`FixedBitSet::symmetric_difference`] method. pub struct SymmetricDifference<'a> { iter: Chain, Difference<'a>>, } impl<'a> Iterator for SymmetricDifference<'a> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.iter.next() } } /// An iterator producing elements in the intersection of two sets. /// /// This struct is created by the [`FixedBitSet::intersection`] method. pub struct Intersection<'a> { iter: Ones<'a>, other: &'a FixedBitSet, } impl<'a> Iterator for Intersection<'a> { type Item = usize; // the bit position of the '1' #[inline] fn next(&mut self) -> Option { while let Some(nxt) = self.iter.next() { if self.other.contains(nxt) { return Some(nxt); } } None } } /// An iterator producing elements in the union of two sets. /// /// This struct is created by the [`FixedBitSet::union`] method. pub struct Union<'a> { iter: Chain, Difference<'a>>, } impl<'a> Iterator for Union<'a> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.iter.next() } } struct Masks { first_block: usize, first_mask: Block, last_block: usize, last_mask: Block, } impl Masks { #[inline] fn new(range: T, length: usize) -> Masks { let start = range.start().unwrap_or(0); let end = range.end().unwrap_or(length); assert!( start <= end && end <= length, "invalid range {}..{} for a fixedbitset of size {}", start, end, length ); let (first_block, first_rem) = div_rem(start, BITS); let (last_block, last_rem) = div_rem(end, BITS); Masks { first_block: first_block as usize, first_mask: Block::max_value() << first_rem, last_block: last_block as usize, last_mask: (Block::max_value() >> 1) >> (BITS - last_rem - 1), // this is equivalent to `MAX >> (BITS - x)` with correct semantics when x == 0. } } } impl Iterator for Masks { type Item = (usize, Block); #[inline] fn next(&mut self) -> Option { match self.first_block.cmp(&self.last_block) { Ordering::Less => { let res = (self.first_block, self.first_mask); self.first_block += 1; self.first_mask = !0; Some(res) } Ordering::Equal => { let mask = self.first_mask & self.last_mask; let res = if mask == 0 { None } else { Some((self.first_block, mask)) }; self.first_block += 1; res } Ordering::Greater => None, } } } /// An iterator producing the indices of the set bit in a set. /// /// This struct is created by the [`FixedBitSet::ones`] method. pub struct Ones<'a> { bitset: Block, block_idx: usize, remaining_blocks: &'a [Block], } impl<'a> Iterator for Ones<'a> { type Item = usize; // the bit position of the '1' #[inline] fn next(&mut self) -> Option { while self.bitset == 0 { if self.remaining_blocks.is_empty() { return None; } self.bitset = self.remaining_blocks[0]; self.remaining_blocks = &self.remaining_blocks[1..]; self.block_idx += 1; } let t = self.bitset & (0 as Block).wrapping_sub(self.bitset); let r = self.bitset.trailing_zeros() as usize; self.bitset ^= t; Some(self.block_idx * BITS + r) } } impl Clone for FixedBitSet { #[inline] fn clone(&self) -> Self { FixedBitSet { data: self.data.clone(), length: self.length, } } } /// Return **true** if the bit is enabled in the bitset, /// or **false** otherwise. /// /// Note: bits outside the capacity are always disabled, and thus /// indexing a FixedBitSet will not panic. impl Index for FixedBitSet { type Output = bool; #[inline] fn index(&self, bit: usize) -> &bool { if self.contains(bit) { &true } else { &false } } } /// Sets the bit at index **i** to **true** for each item **i** in the input **src**. impl Extend for FixedBitSet { fn extend>(&mut self, src: I) { let iter = src.into_iter(); for i in iter { if i >= self.len() { self.grow(i + 1); } self.put(i); } } } /// Return a FixedBitSet containing bits set to **true** for every bit index in /// the iterator, other bits are set to **false**. impl FromIterator for FixedBitSet { fn from_iter>(src: I) -> Self { let mut fbs = FixedBitSet::with_capacity(0); fbs.extend(src); fbs } } impl<'a> BitAnd for &'a FixedBitSet { type Output = FixedBitSet; fn bitand(self, other: &FixedBitSet) -> FixedBitSet { let (short, long) = { if self.len() <= other.len() { (&self.data, &other.data) } else { (&other.data, &self.data) } }; let mut data = short.clone(); for (data, block) in data.iter_mut().zip(long.iter()) { *data &= *block; } let len = std::cmp::min(self.len(), other.len()); FixedBitSet { data, length: len } } } impl<'a> BitAndAssign for FixedBitSet { fn bitand_assign(&mut self, other: Self) { self.intersect_with(&other); } } impl<'a> BitAndAssign<&Self> for FixedBitSet { fn bitand_assign(&mut self, other: &Self) { self.intersect_with(other); } } impl<'a> BitOr for &'a FixedBitSet { type Output = FixedBitSet; fn bitor(self, other: &FixedBitSet) -> FixedBitSet { let (short, long) = { if self.len() <= other.len() { (&self.data, &other.data) } else { (&other.data, &self.data) } }; let mut data = long.clone(); for (data, block) in data.iter_mut().zip(short.iter()) { *data |= *block; } let len = std::cmp::max(self.len(), other.len()); FixedBitSet { data, length: len } } } impl<'a> BitOrAssign for FixedBitSet { fn bitor_assign(&mut self, other: Self) { self.union_with(&other); } } impl<'a> BitOrAssign<&Self> for FixedBitSet { fn bitor_assign(&mut self, other: &Self) { self.union_with(other); } } impl<'a> BitXor for &'a FixedBitSet { type Output = FixedBitSet; fn bitxor(self, other: &FixedBitSet) -> FixedBitSet { let (short, long) = { if self.len() <= other.len() { (&self.data, &other.data) } else { (&other.data, &self.data) } }; let mut data = long.clone(); for (data, block) in data.iter_mut().zip(short.iter()) { *data ^= *block; } let len = std::cmp::max(self.len(), other.len()); FixedBitSet { data, length: len } } } impl<'a> BitXorAssign for FixedBitSet { fn bitxor_assign(&mut self, other: Self) { self.symmetric_difference_with(&other); } } impl<'a> BitXorAssign<&Self> for FixedBitSet { fn bitxor_assign(&mut self, other: &Self) { self.symmetric_difference_with(other); } } #[test] fn it_works() { const N: usize = 50; let mut fb = FixedBitSet::with_capacity(N); for i in 0..(N + 10) { assert_eq!(fb.contains(i), false); } fb.insert(10); fb.set(11, false); fb.set(12, false); fb.set(12, true); fb.set(N - 1, true); assert!(fb.contains(10)); assert!(!fb.contains(11)); assert!(fb.contains(12)); assert!(fb.contains(N - 1)); for i in 0..N { let contain = i == 10 || i == 12 || i == N - 1; assert_eq!(contain, fb[i]); } fb.clear(); } #[test] fn with_blocks() { let fb = FixedBitSet::with_capacity_and_blocks(50, vec![8u32, 0u32]); assert!(fb.contains(3)); let ones: Vec<_> = fb.ones().collect(); assert_eq!(ones.len(), 1); } #[test] fn with_blocks_too_small() { let mut fb = FixedBitSet::with_capacity_and_blocks(500, vec![8u32, 0u32]); fb.insert(400); assert!(fb.contains(400)); } #[test] fn with_blocks_too_big() { let fb = FixedBitSet::with_capacity_and_blocks(1, vec![8u32]); // since capacity is 1, 3 shouldn't be set here assert!(!fb.contains(3)); } #[test] fn with_blocks_too_big_range_check() { let fb = FixedBitSet::with_capacity_and_blocks(1, vec![0xff]); // since capacity is 1, only 0 should be set assert!(fb.contains(0)); for i in 1..0xff { assert!(!fb.contains(i)); } } #[test] fn grow() { let mut fb = FixedBitSet::with_capacity(48); for i in 0..fb.len() { fb.set(i, true); } let old_len = fb.len(); fb.grow(72); for j in 0..fb.len() { assert_eq!(fb.contains(j), j < old_len); } fb.set(64, true); assert!(fb.contains(64)); } #[test] fn test_toggle() { let mut fb = FixedBitSet::with_capacity(16); fb.toggle(1); fb.put(2); fb.toggle(2); fb.put(3); assert!(fb.contains(1)); assert!(!fb.contains(2)); assert!(fb.contains(3)); } #[test] fn copy_bit() { let mut fb = FixedBitSet::with_capacity(48); for i in 0..fb.len() { fb.set(i, true); } fb.set(42, false); fb.copy_bit(42, 2); assert!(!fb.contains(42)); assert!(!fb.contains(2)); assert!(fb.contains(1)); fb.copy_bit(1, 42); assert!(fb.contains(42)); fb.copy_bit(1024, 42); assert!(!fb[42]); } #[test] fn count_ones() { let mut fb = FixedBitSet::with_capacity(100); fb.set(11, true); fb.set(12, true); fb.set(7, true); fb.set(35, true); fb.set(40, true); fb.set(77, true); fb.set(95, true); fb.set(50, true); fb.set(99, true); assert_eq!(fb.count_ones(..7), 0); assert_eq!(fb.count_ones(..8), 1); assert_eq!(fb.count_ones(..11), 1); assert_eq!(fb.count_ones(..12), 2); assert_eq!(fb.count_ones(..13), 3); assert_eq!(fb.count_ones(..35), 3); assert_eq!(fb.count_ones(..36), 4); assert_eq!(fb.count_ones(..40), 4); assert_eq!(fb.count_ones(..41), 5); assert_eq!(fb.count_ones(50..), 4); assert_eq!(fb.count_ones(70..95), 1); assert_eq!(fb.count_ones(70..96), 2); assert_eq!(fb.count_ones(70..99), 2); assert_eq!(fb.count_ones(..), 9); assert_eq!(fb.count_ones(0..100), 9); assert_eq!(fb.count_ones(0..0), 0); assert_eq!(fb.count_ones(100..100), 0); assert_eq!(fb.count_ones(7..), 9); assert_eq!(fb.count_ones(8..), 8); } #[test] fn ones() { let mut fb = FixedBitSet::with_capacity(100); fb.set(11, true); fb.set(12, true); fb.set(7, true); fb.set(35, true); fb.set(40, true); fb.set(77, true); fb.set(95, true); fb.set(50, true); fb.set(99, true); let ones: Vec<_> = fb.ones().collect(); assert_eq!(vec![7, 11, 12, 35, 40, 50, 77, 95, 99], ones); } #[test] fn iter_ones_range() { fn test_range(from: usize, to: usize, capa: usize) { assert!(to <= capa); let mut fb = FixedBitSet::with_capacity(capa); for i in from..to { fb.insert(i); } let ones: Vec<_> = fb.ones().collect(); let expected: Vec<_> = (from..to).collect(); assert_eq!(expected, ones); } for i in 0..100 { test_range(i, 100, 100); test_range(0, i, 100); } } #[should_panic] #[test] fn count_ones_oob() { let fb = FixedBitSet::with_capacity(100); fb.count_ones(90..101); } #[should_panic] #[test] fn count_ones_negative_range() { let fb = FixedBitSet::with_capacity(100); fb.count_ones(90..80); } #[test] fn count_ones_panic() { for i in 1..128 { let fb = FixedBitSet::with_capacity(i); for j in 0..fb.len() + 1 { for k in j..fb.len() + 1 { assert_eq!(fb.count_ones(j..k), 0); } } } } #[test] fn default() { let fb = FixedBitSet::default(); assert_eq!(fb.len(), 0); } #[test] fn insert_range() { let mut fb = FixedBitSet::with_capacity(97); fb.insert_range(..3); fb.insert_range(9..32); fb.insert_range(37..81); fb.insert_range(90..); for i in 0..97 { assert_eq!( fb.contains(i), i < 3 || 9 <= i && i < 32 || 37 <= i && i < 81 || 90 <= i ); } assert!(!fb.contains(97)); assert!(!fb.contains(127)); assert!(!fb.contains(128)); } #[test] fn set_range() { let mut fb = FixedBitSet::with_capacity(48); fb.insert_range(..); fb.set_range(..32, false); fb.set_range(37.., false); fb.set_range(5..9, true); fb.set_range(40..40, true); for i in 0..48 { assert_eq!(fb.contains(i), 5 <= i && i < 9 || 32 <= i && i < 37); } assert!(!fb.contains(48)); assert!(!fb.contains(64)); } #[test] fn toggle_range() { let mut fb = FixedBitSet::with_capacity(40); fb.insert_range(..10); fb.insert_range(34..38); fb.toggle_range(5..12); fb.toggle_range(30..); for i in 0..40 { assert_eq!( fb.contains(i), i < 5 || 10 <= i && i < 12 || 30 <= i && i < 34 || 38 <= i ); } assert!(!fb.contains(40)); assert!(!fb.contains(64)); } #[test] fn bitand_equal_lengths() { let len = 109; let a_end = 59; let b_start = 23; let mut a = FixedBitSet::with_capacity(len); let mut b = FixedBitSet::with_capacity(len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a & &b; for i in 0..b_start { assert!(!ab.contains(i)); } for i in b_start..a_end { assert!(ab.contains(i)); } for i in a_end..len { assert!(!ab.contains(i)); } assert_eq!(a.len(), ab.len()); } #[test] fn bitand_first_smaller() { let a_len = 113; let b_len = 137; let len = std::cmp::min(a_len, b_len); let a_end = 97; let b_start = 89; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a & &b; for i in 0..b_start { assert!(!ab.contains(i)); } for i in b_start..a_end { assert!(ab.contains(i)); } for i in a_end..len { assert!(!ab.contains(i)); } assert_eq!(a.len(), ab.len()); } #[test] fn bitand_first_larger() { let a_len = 173; let b_len = 137; let len = std::cmp::min(a_len, b_len); let a_end = 107; let b_start = 43; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a & &b; for i in 0..b_start { assert!(!ab.contains(i)); } for i in b_start..a_end { assert!(ab.contains(i)); } for i in a_end..len { assert!(!ab.contains(i)); } assert_eq!(b.len(), ab.len()); } #[test] fn intersection() { let len = 109; let a_end = 59; let b_start = 23; let mut a = FixedBitSet::with_capacity(len); let mut b = FixedBitSet::with_capacity(len); a.set_range(..a_end, true); b.set_range(b_start.., true); let mut ab = a.intersection(&b).collect::(); for i in 0..b_start { assert!(!ab.contains(i)); } for i in b_start..a_end { assert!(ab.contains(i)); } for i in a_end..len { assert!(!ab.contains(i)); } a.intersect_with(&b); // intersection + collect produces the same results but with a shorter length. ab.grow(a.len()); assert_eq!( ab, a, "intersection and intersect_with produce the same results" ); } #[test] fn union() { let a_len = 173; let b_len = 137; let a_start = 139; let b_end = 107; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(a_start.., true); b.set_range(..b_end, true); let ab = a.union(&b).collect::(); for i in a_start..a_len { assert!(ab.contains(i)); } for i in 0..b_end { assert!(ab.contains(i)); } for i in b_end..a_start { assert!(!ab.contains(i)); } a.union_with(&b); assert_eq!(ab, a, "union and union_with produce the same results"); } #[test] fn difference() { let a_len = 83; let b_len = 151; let a_start = 0; let a_end = 79; let b_start = 53; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(a_start..a_end, true); b.set_range(b_start..b_len, true); let mut a_diff_b = a.difference(&b).collect::(); for i in a_start..b_start { assert!(a_diff_b.contains(i)); } for i in b_start..b_len { assert!(!a_diff_b.contains(i)); } a.difference_with(&b); // difference + collect produces the same results but with a shorter length. a_diff_b.grow(a.len()); assert_eq!( a_diff_b, a, "difference and difference_with produce the same results" ); } #[test] fn symmetric_difference() { let a_len = 83; let b_len = 151; let a_start = 47; let a_end = 79; let b_start = 53; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(a_start..a_end, true); b.set_range(b_start..b_len, true); let a_sym_diff_b = a.symmetric_difference(&b).collect::(); for i in 0..a_start { assert!(!a_sym_diff_b.contains(i)); } for i in a_start..b_start { assert!(a_sym_diff_b.contains(i)); } for i in b_start..a_end { assert!(!a_sym_diff_b.contains(i)); } for i in a_end..b_len { assert!(a_sym_diff_b.contains(i)); } a.symmetric_difference_with(&b); assert_eq!( a_sym_diff_b, a, "symmetric_difference and _with produce the same results" ); } #[test] fn bitor_equal_lengths() { let len = 109; let a_start = 17; let a_end = 23; let b_start = 19; let b_end = 59; let mut a = FixedBitSet::with_capacity(len); let mut b = FixedBitSet::with_capacity(len); a.set_range(a_start..a_end, true); b.set_range(b_start..b_end, true); let ab = &a | &b; for i in 0..a_start { assert!(!ab.contains(i)); } for i in a_start..b_end { assert!(ab.contains(i)); } for i in b_end..len { assert!(!ab.contains(i)); } assert_eq!(ab.len(), len); } #[test] fn bitor_first_smaller() { let a_len = 113; let b_len = 137; let a_end = 89; let b_start = 97; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a | &b; for i in 0..a_end { assert!(ab.contains(i)); } for i in a_end..b_start { assert!(!ab.contains(i)); } for i in b_start..b_len { assert!(ab.contains(i)); } assert_eq!(b_len, ab.len()); } #[test] fn bitor_first_larger() { let a_len = 173; let b_len = 137; let a_start = 139; let b_end = 107; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(a_start.., true); b.set_range(..b_end, true); let ab = &a | &b; for i in a_start..a_len { assert!(ab.contains(i)); } for i in 0..b_end { assert!(ab.contains(i)); } for i in b_end..a_start { assert!(!ab.contains(i)); } assert_eq!(a_len, ab.len()); } #[test] fn bitxor_equal_lengths() { let len = 109; let a_end = 59; let b_start = 23; let mut a = FixedBitSet::with_capacity(len); let mut b = FixedBitSet::with_capacity(len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a ^ &b; for i in 0..b_start { assert!(ab.contains(i)); } for i in b_start..a_end { assert!(!ab.contains(i)); } for i in a_end..len { assert!(ab.contains(i)); } assert_eq!(a.len(), ab.len()); } #[test] fn bitxor_first_smaller() { let a_len = 113; let b_len = 137; let len = std::cmp::max(a_len, b_len); let a_end = 97; let b_start = 89; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a ^ &b; for i in 0..b_start { assert!(ab.contains(i)); } for i in b_start..a_end { assert!(!ab.contains(i)); } for i in a_end..len { assert!(ab.contains(i)); } assert_eq!(b.len(), ab.len()); } #[test] fn bitxor_first_larger() { let a_len = 173; let b_len = 137; let len = std::cmp::max(a_len, b_len); let a_end = 107; let b_start = 43; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a ^ &b; for i in 0..b_start { assert!(ab.contains(i)); } for i in b_start..a_end { assert!(!ab.contains(i)); } for i in a_end..b_len { assert!(ab.contains(i)); } for i in b_len..len { assert!(!ab.contains(i)); } assert_eq!(a.len(), ab.len()); } #[test] fn bitand_assign_shorter() { let a_ones: Vec = vec![2, 3, 7, 19, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let b_ones: Vec = vec![2, 7, 8, 11, 23, 31, 32]; let a_and_b: Vec = vec![2, 7, 31, 32]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); a &= b; let res = a.ones().collect::>(); assert!(res == a_and_b); } #[test] fn bitand_assign_longer() { let a_ones: Vec = vec![2, 7, 8, 11, 23, 31, 32]; let b_ones: Vec = vec![2, 3, 7, 19, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let a_and_b: Vec = vec![2, 7, 31, 32]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); a &= b; let res = a.ones().collect::>(); assert!(res == a_and_b); } #[test] fn bitor_assign_shorter() { let a_ones: Vec = vec![2, 3, 7, 19, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let b_ones: Vec = vec![2, 7, 8, 11, 23, 31, 32]; let a_or_b: Vec = vec![2, 3, 7, 8, 11, 19, 23, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); a |= b; let res = a.ones().collect::>(); assert!(res == a_or_b); } #[test] fn bitor_assign_longer() { let a_ones: Vec = vec![2, 7, 8, 11, 23, 31, 32]; let b_ones: Vec = vec![2, 3, 7, 19, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let a_or_b: Vec = vec![2, 3, 7, 8, 11, 19, 23, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); a |= b; let res = a.ones().collect::>(); assert!(res == a_or_b); } #[test] fn bitxor_assign_shorter() { let a_ones: Vec = vec![2, 3, 7, 19, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let b_ones: Vec = vec![2, 7, 8, 11, 23, 31, 32]; let a_xor_b: Vec = vec![3, 8, 11, 19, 23, 37, 41, 43, 47, 71, 73, 101]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); a ^= b; let res = a.ones().collect::>(); assert!(res == a_xor_b); } #[test] fn bitxor_assign_longer() { let a_ones: Vec = vec![2, 7, 8, 11, 23, 31, 32]; let b_ones: Vec = vec![2, 3, 7, 19, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let a_xor_b: Vec = vec![3, 8, 11, 19, 23, 37, 41, 43, 47, 71, 73, 101]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); a ^= b; let res = a.ones().collect::>(); assert!(res == a_xor_b); } #[test] fn op_assign_ref() { let mut a = FixedBitSet::with_capacity(8); let b = FixedBitSet::with_capacity(8); //check that all assign type operators work on references a &= &b; a |= &b; a ^= &b; } #[test] fn subset_superset_shorter() { let a_ones: Vec = vec![7, 31, 32, 63]; let b_ones: Vec = vec![2, 7, 19, 31, 32, 37, 41, 43, 47, 63, 73, 101]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); assert!(a.is_subset(&b) && b.is_superset(&a)); a.insert(14); assert!(!a.is_subset(&b) && !b.is_superset(&a)); } #[test] fn subset_superset_longer() { let a_len = 153; let b_len = 75; let a_ones: Vec = vec![7, 31, 32, 63]; let b_ones: Vec = vec![2, 7, 19, 31, 32, 37, 41, 43, 47, 63, 73]; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.extend(a_ones.iter().cloned()); b.extend(b_ones.iter().cloned()); assert!(a.is_subset(&b) && b.is_superset(&a)); a.insert(100); assert!(!a.is_subset(&b) && !b.is_superset(&a)); } #[test] fn is_disjoint_first_shorter() { let a_len = 75; let b_len = 153; let a_ones: Vec = vec![2, 19, 32, 37, 41, 43, 47, 73]; let b_ones: Vec = vec![7, 23, 31, 63, 124]; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.extend(a_ones.iter().cloned()); b.extend(b_ones.iter().cloned()); assert!(a.is_disjoint(&b)); a.insert(63); assert!(!a.is_disjoint(&b)); } #[test] fn is_disjoint_first_longer() { let a_ones: Vec = vec![2, 19, 32, 37, 41, 43, 47, 73, 101]; let b_ones: Vec = vec![7, 23, 31, 63]; let a = a_ones.iter().cloned().collect::(); let mut b = b_ones.iter().cloned().collect::(); assert!(a.is_disjoint(&b)); b.insert(2); assert!(!a.is_disjoint(&b)); } #[test] fn extend_on_empty() { let items: Vec = vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 27, 29, 31, 37, 167]; let mut fbs = FixedBitSet::with_capacity(0); fbs.extend(items.iter().cloned()); let ones = fbs.ones().collect::>(); assert!(ones == items); } #[test] fn extend() { let items: Vec = vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 27, 29, 31, 37, 167]; let mut fbs = FixedBitSet::with_capacity(168); let new: Vec = vec![7, 37, 67, 137]; for i in &new { fbs.put(*i); } fbs.extend(items.iter().cloned()); let ones = fbs.ones().collect::>(); let expected = { let mut tmp = items.clone(); tmp.extend(new); tmp.sort(); tmp.dedup(); tmp }; assert!(ones == expected); } #[test] fn from_iterator() { let items: Vec = vec![0, 2, 4, 6, 8]; let fb = items.iter().cloned().collect::(); for i in items { assert!(fb.contains(i)); } for i in vec![1, 3, 5, 7] { assert!(!fb.contains(i)); } assert_eq!(fb.len(), 9); } #[test] fn from_iterator_ones() { let len = 257; let mut fb = FixedBitSet::with_capacity(len); for i in (0..len).filter(|i| i % 7 == 0) { fb.put(i); } fb.put(len - 1); let dup = fb.ones().collect::(); assert_eq!(fb.len(), dup.len()); assert_eq!( fb.ones().collect::>(), dup.ones().collect::>() ); } #[cfg(feature = "std")] #[test] fn binary_trait() { let items: Vec = vec![1, 5, 7, 10, 14, 15]; let fb = items.iter().cloned().collect::(); assert_eq!(format!("{:b}", fb), "0100010100100011"); assert_eq!(format!("{:#b}", fb), "0b0100010100100011"); } #[cfg(feature = "std")] #[test] fn display_trait() { let len = 8; let mut fb = FixedBitSet::with_capacity(len); fb.put(4); fb.put(2); assert_eq!(format!("{}", fb), "00101000"); assert_eq!(format!("{:#}", fb), "0b00101000"); } #[test] #[cfg(feature = "serde")] fn test_serialize() { let mut fb = FixedBitSet::with_capacity(10); fb.put(2); fb.put(3); fb.put(6); fb.put(8); let serialized = serde_json::to_string(&fb).unwrap(); assert_eq!(r#"{"data":[332],"length":10}"#, serialized); } #[test] fn test_is_clear() { let mut fb = FixedBitSet::with_capacity(0); assert!(fb.is_clear()); fb.grow(1); assert!(fb.is_clear()); fb.put(0); assert!(!fb.is_clear()); fb.grow(42); fb.clear(); assert!(fb.is_clear()); fb.put(17); fb.put(19); assert!(!fb.is_clear()); }fixedbitset-0.4.2/src/range.rs000064400000000000000000000016420072674642500144250ustar 00000000000000use std::ops::{ RangeFull, RangeFrom, RangeTo, Range, }; // Taken from https://github.com/bluss/odds/blob/master/src/range.rs. /// **IndexRange** is implemented by Rust's built-in range types, produced /// by range syntax like `..`, `a..`, `..b` or `c..d`. pub trait IndexRange { #[inline] /// Start index (inclusive) fn start(&self) -> Option { None } #[inline] /// End index (exclusive) fn end(&self) -> Option { None } } impl IndexRange for RangeFull {} impl IndexRange for RangeFrom { #[inline] fn start(&self) -> Option { Some(self.start) } } impl IndexRange for RangeTo { #[inline] fn end(&self) -> Option { Some(self.end) } } impl IndexRange for Range { #[inline] fn start(&self) -> Option { Some(self.start) } #[inline] fn end(&self) -> Option { Some(self.end) } }