hex-0.4.0/.gitignore010064400017500001750000000001611351234423500125100ustar0000000000000000# Rust stuff /target Cargo.lock # Misc stuff .* !.gitignore !.travis.yml !.gitlab-ci.yml !.gitlab-ci-matrix.yml hex-0.4.0/.gitlab-ci-matrix.yml010064400017500001750000000015461351234423500144660ustar0000000000000000stages: - compile - test steps: compile: stage: compile script: - cargo build cache: key: "$CI_COMMIT_REF_SLUG:$RUST_KEY" paths: - /root/.cargo/git - /root/.cargo/registry - target/ artifacts: paths: - target/ test: stage: test script: - cargo test - cargo test --no-default-features dependencies: - compile matrix: rust: variable: RUST_KEY variants: stable: image: liuchong/rustup:stable stable-musl: image: liuchong/rustup:stable-musl beta: image: liuchong/rustup:stable beta-musl: image: liuchong/rustup:stable-musl nightly: image: liuchong/rustup:stable allow_failure: true nightly-musl: image: liuchong/rustup:stable-musl allow_failure: true hex-0.4.0/.gitlab-ci.yml010064400017500001750000000064051351234423500131630ustar0000000000000000stages: - compile - test compile:rust-stable: image: liuchong/rustup:stable stage: compile script: - cargo build cache: key: $CI_COMMIT_REF_SLUG:$RUST_KEY paths: - /root/.cargo/git - /root/.cargo/registry - target/ artifacts: paths: - target/ variables: RUST_KEY: rust-stable compile:rust-stable-musl: image: liuchong/rustup:stable-musl stage: compile script: - cargo build cache: key: $CI_COMMIT_REF_SLUG:$RUST_KEY paths: - /root/.cargo/git - /root/.cargo/registry - target/ artifacts: paths: - target/ variables: RUST_KEY: rust-stable-musl compile:rust-beta: image: liuchong/rustup:stable stage: compile script: - cargo build cache: key: $CI_COMMIT_REF_SLUG:$RUST_KEY paths: - /root/.cargo/git - /root/.cargo/registry - target/ artifacts: paths: - target/ variables: RUST_KEY: rust-beta compile:rust-beta-musl: image: liuchong/rustup:stable-musl stage: compile script: - cargo build cache: key: $CI_COMMIT_REF_SLUG:$RUST_KEY paths: - /root/.cargo/git - /root/.cargo/registry - target/ artifacts: paths: - target/ variables: RUST_KEY: rust-beta-musl compile:rust-nightly: image: liuchong/rustup:stable stage: compile script: - cargo build cache: key: $CI_COMMIT_REF_SLUG:$RUST_KEY paths: - /root/.cargo/git - /root/.cargo/registry - target/ artifacts: paths: - target/ variables: RUST_KEY: rust-nightly allow_failure: true compile:rust-nightly-musl: image: liuchong/rustup:stable-musl stage: compile script: - cargo build cache: key: $CI_COMMIT_REF_SLUG:$RUST_KEY paths: - /root/.cargo/git - /root/.cargo/registry - target/ artifacts: paths: - target/ variables: RUST_KEY: rust-nightly-musl allow_failure: true test:rust-stable: image: liuchong/rustup:stable stage: test dependencies: - compile:rust-stable script: - cargo test - cargo test --no-default-features variables: RUST_KEY: rust-stable test:rust-stable-musl: image: liuchong/rustup:stable-musl stage: test dependencies: - compile:rust-stable-musl script: - cargo test - cargo test --no-default-features variables: RUST_KEY: rust-stable-musl test:rust-beta: image: liuchong/rustup:stable stage: test dependencies: - compile:rust-beta script: - cargo test - cargo test --no-default-features variables: RUST_KEY: rust-beta test:rust-beta-musl: image: liuchong/rustup:stable-musl stage: test dependencies: - compile:rust-beta-musl script: - cargo test - cargo test --no-default-features variables: RUST_KEY: rust-beta-musl test:rust-nightly: image: liuchong/rustup:stable stage: test dependencies: - compile:rust-nightly script: - cargo test - cargo test --no-default-features variables: RUST_KEY: rust-nightly allow_failure: true test:rust-nightly-musl: image: liuchong/rustup:stable-musl stage: test dependencies: - compile:rust-nightly-musl script: - cargo test - cargo test --no-default-features variables: RUST_KEY: rust-nightly-musl allow_failure: true hex-0.4.0/.travis.yml010064400017500001750000000004061351234423500126330ustar0000000000000000language: rust os: - linux - windows - osx rust: - stable - beta - nightly env: global: - RUST_BACKTRACE=1 - RUSTFLAGS="-D warnings" matrix: allow_failures: - rust: nightly script: - cargo test - cargo test --no-default-features hex-0.4.0/Cargo.toml.orig010064400017500001750000000005521354020723600134130ustar0000000000000000[package] name = "hex" version = "0.4.0" authors = ["KokaKiwi "] description = "Encoding and decoding data into/from hexadecimal representation." license = "MIT OR Apache-2.0" documentation = "https://docs.rs/hex/" repository = "https://github.com/KokaKiwi/rust-hex" edition = "2018" [features] default = ["std"] std = [] benchmarks = [] hex-0.4.0/Cargo.toml0000644000000015670000000000000076670ustar00# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies # # If you believe there's an error in this file please file an # issue against the rust-lang/cargo repository. If you're # editing this file be aware that the upstream Cargo.toml # will likely look very different (and much more reasonable) [package] edition = "2018" name = "hex" version = "0.4.0" authors = ["KokaKiwi "] description = "Encoding and decoding data into/from hexadecimal representation." documentation = "https://docs.rs/hex/" license = "MIT OR Apache-2.0" repository = "https://github.com/KokaKiwi/rust-hex" [features] benchmarks = [] default = ["std"] std = [] hex-0.4.0/LICENSE-APACHE010064400017500001750000000261361351042067500124570ustar0000000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "{}" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright {yyyy} {name of copyright owner} Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. hex-0.4.0/LICENSE-MIT010064400017500001750000000021451351042067500121610ustar0000000000000000Copyright (c) 2013-2014 The Rust Project Developers. Copyright (c) 2015-2016 The rust-hex Developers Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. hex-0.4.0/README.md010064400017500001750000000010261351042067500120010ustar0000000000000000Documentation: https://docs.rs/hex ## License Licensed under either of * Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0) * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT) at your option. ### Contribution Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions. hex-0.4.0/src/lib.rs010064400017500001750000000310641351234423500124310ustar0000000000000000#![cfg_attr(feature = "benchmarks", feature(test))] #![cfg_attr(not(feature = "std"), no_std)] // Copyright (c) 2013-2014 The Rust Project Developers. // Copyright (c) 2015-2018 The rust-hex Developers. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Encoding and decoding hex strings. //! //! For most cases, you can simply use the `decode()`, `encode()` and //! `encode_upper()` functions. If you need a bit more control, use the traits //! `ToHex` and `FromHex` instead. //! //! # Example //! //! ``` //! extern crate hex; //! //! fn main() { //! let hex_string = hex::encode("Hello world!"); //! println!("{}", hex_string); // Prints '48656c6c6f20776f726c6421' //! } //! ``` #[cfg(not(feature = "std"))] extern crate alloc; #[cfg(not(feature = "std"))] use alloc::{string::String, vec::Vec}; use core::fmt; use core::iter; /// Encoding values as hex string. /// /// This trait is implemented for all `T` which implement `AsRef<[u8]>`. This /// includes `String`, `str`, `Vec` and `[u8]`. /// /// # Example /// /// ``` /// use hex::ToHex; /// /// println!("{}", "Hello world!".encode_hex::()); /// ``` /// /// *Note*: instead of using this trait, you might want to use `encode()`. pub trait ToHex { /// Encode the hex strict representing `self` into the result.. Lower case /// letters are used (e.g. `f9b4ca`) fn encode_hex>(&self) -> T; /// Encode the hex strict representing `self` into the result.. Lower case /// letters are used (e.g. `F9B4CA`) fn encode_hex_upper>(&self) -> T; } const HEX_CHARS_LOWER: &[u8; 16] = b"0123456789abcdef"; const HEX_CHARS_UPPER: &[u8; 16] = b"0123456789ABCDEF"; struct BytesToHexChars<'a> { inner: ::core::slice::Iter<'a, u8>, table: &'static [u8; 16], next: Option, } impl<'a> BytesToHexChars<'a> { fn new(inner: &'a [u8], table: &'static [u8; 16]) -> BytesToHexChars<'a> { BytesToHexChars { inner: inner.iter(), table, next: None, } } } impl<'a> Iterator for BytesToHexChars<'a> { type Item = char; fn next(&mut self) -> Option { match self.next.take() { Some(current) => Some(current), None => { self.inner.next().map(|byte| { let current = self.table[(byte >> 4) as usize] as char; self.next = Some(self.table[(byte & 0xf) as usize] as char); current }) } } } fn size_hint(&self) -> (usize, Option) { let length = self.len(); (length, Some(length)) } } impl<'a> iter::ExactSizeIterator for BytesToHexChars<'a> { fn len(&self) -> usize { let mut length = self.inner.len() * 2; if self.next.is_some() { length += 1; } length } } fn encode_to_iter>(table: &'static [u8; 16], source: &[u8]) -> T { BytesToHexChars::new(source, table).collect() } impl> ToHex for T { fn encode_hex>(&self) -> U { encode_to_iter(HEX_CHARS_LOWER, self.as_ref()) } fn encode_hex_upper>(&self) -> U { encode_to_iter(HEX_CHARS_UPPER, self.as_ref()) } } /// The error type for decoding a hex string into `Vec` or `[u8; N]`. #[derive(Debug, Clone, Copy, PartialEq)] pub enum FromHexError { /// An invalid character was found. Valid ones are: `0...9`, `a...f` /// or `A...F`. InvalidHexCharacter { c: char, index: usize, }, /// A hex string's length needs to be even, as two digits correspond to /// one byte. OddLength, /// If the hex string is decoded into a fixed sized container, such as an /// array, the hex string's length * 2 has to match the container's /// length. InvalidStringLength, } #[cfg(feature = "std")] impl std::error::Error for FromHexError { fn description(&self) -> &str { match *self { FromHexError::InvalidHexCharacter { .. } => "invalid character", FromHexError::OddLength => "odd number of digits", FromHexError::InvalidStringLength => "invalid string length", } } } impl fmt::Display for FromHexError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { FromHexError::InvalidHexCharacter { c, index } => write!(f, "Invalid character '{}' at position {}", c, index), FromHexError::OddLength => write!(f, "Odd number of digits"), FromHexError::InvalidStringLength => write!(f, "Invalid string length"), } } } /// Types that can be decoded from a hex string. /// /// This trait is implemented for `Vec` and small `u8`-arrays. /// /// # Example /// /// ``` /// use hex::FromHex; /// /// match Vec::from_hex("48656c6c6f20776f726c6421") { /// Ok(vec) => { /// for b in vec { /// println!("{}", b as char); /// } /// } /// Err(e) => { /// // Deal with the error ... /// } /// } /// ``` pub trait FromHex: Sized { type Error; /// Creates an instance of type `Self` from the given hex string, or fails /// with a custom error type. /// /// Both, upper and lower case characters are valid and can even be /// mixed (e.g. `f9b4ca`, `F9B4CA` and `f9B4Ca` are all valid strings). fn from_hex>(hex: T) -> Result; } fn val(c: u8, idx: usize) -> Result { match c { b'A'..=b'F' => Ok(c - b'A' + 10), b'a'..=b'f' => Ok(c - b'a' + 10), b'0'..=b'9' => Ok(c - b'0'), _ => { Err(FromHexError::InvalidHexCharacter { c: c as char, index: idx, }) } } } impl FromHex for Vec { type Error = FromHexError; fn from_hex>(hex: T) -> Result { let hex = hex.as_ref(); if hex.len() % 2 != 0 { return Err(FromHexError::OddLength); } hex.chunks(2).enumerate().map(|(i, pair)| { Ok(val(pair[0], 2 * i)? << 4 | val(pair[1], 2 * i + 1)?) }).collect() } } // Helper macro to implement the trait for a few fixed sized arrays. Once Rust // has type level integers, this should be removed. macro_rules! from_hex_array_impl { ($($len:expr)+) => {$( impl FromHex for [u8; $len] { type Error = FromHexError; fn from_hex>(hex: T) -> Result { let mut out = [0u8; $len]; decode_to_slice(hex, &mut out as &mut [u8])?; Ok(out) } } )+} } from_hex_array_impl! { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 160 192 200 224 256 384 512 768 1024 2048 4096 8192 16384 32768 } #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))] from_hex_array_impl! { 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 } #[cfg(target_pointer_width = "64")] from_hex_array_impl! { 4294967296 } /// Encodes `data` as hex string using lowercase characters. /// /// Lowercase characters are used (e.g. `f9b4ca`). The resulting string's /// length is always even, each byte in `data` is always encoded using two hex /// digits. Thus, the resulting string contains exactly twice as many bytes as /// the input data. /// /// # Example /// /// ``` /// assert_eq!(hex::encode("Hello world!"), "48656c6c6f20776f726c6421"); /// assert_eq!(hex::encode(vec![1, 2, 3, 15, 16]), "0102030f10"); /// ``` pub fn encode>(data: T) -> String { data.encode_hex() } /// Encodes `data` as hex string using uppercase characters. /// /// Apart from the characters' casing, this works exactly like `encode()`. /// /// # Example /// /// ``` /// assert_eq!(hex::encode_upper("Hello world!"), "48656C6C6F20776F726C6421"); /// assert_eq!(hex::encode_upper(vec![1, 2, 3, 15, 16]), "0102030F10"); /// ``` pub fn encode_upper>(data: T) -> String { data.encode_hex_upper() } /// Decodes a hex string into raw bytes. /// /// Both, upper and lower case characters are valid in the input string and can /// even be mixed (e.g. `f9b4ca`, `F9B4CA` and `f9B4Ca` are all valid strings). /// /// # Example /// ``` /// assert_eq!( /// hex::decode("48656c6c6f20776f726c6421"), /// Ok("Hello world!".to_owned().into_bytes()) /// ); /// /// assert_eq!(hex::decode("123"), Err(hex::FromHexError::OddLength)); /// assert!(hex::decode("foo").is_err()); /// ``` pub fn decode>(data: T) -> Result, FromHexError> { FromHex::from_hex(data) } /// Decode a hex string into a mutable bytes slice. /// /// Both, upper and lower case characters are valid in the input string and can /// even be mixed (e.g. `f9b4ca`, `F9B4CA` and `f9B4Ca` are all valid strings). /// /// # Example /// ``` /// let mut bytes = [0u8; 4]; /// assert_eq!(hex::decode_to_slice("6b697769", &mut bytes as &mut [u8]), Ok(())); /// assert_eq!(&bytes, b"kiwi"); /// ``` pub fn decode_to_slice>(data: T, out: &mut [u8]) -> Result<(), FromHexError> { let data = data.as_ref(); if data.len() % 2 != 0 { return Err(FromHexError::OddLength); } if data.len() / 2 != out.len() { return Err(FromHexError::InvalidStringLength); } for (i, byte) in out.iter_mut().enumerate() { *byte = val(data[2 * i], 2 * i)? << 4 | val(data[2 * i + 1], 2 * i + 1)?; } Ok(()) } #[cfg(test)] mod test { use super::*; #[test] fn test_encode() { assert_eq!(encode("foobar"), "666f6f626172"); } #[test] fn test_decode() { assert_eq!(decode("666f6f626172"), Ok(String::from("foobar").into_bytes())); } #[test] pub fn test_from_hex_okay_str() { assert_eq!( Vec::from_hex("666f6f626172").unwrap(), b"foobar" ); assert_eq!( Vec::from_hex("666F6F626172").unwrap(), b"foobar" ); } #[test] pub fn test_from_hex_okay_bytes() { assert_eq!( Vec::from_hex(b"666f6f626172").unwrap(), b"foobar" ); assert_eq!( Vec::from_hex(b"666F6F626172").unwrap(), b"foobar" ); } #[test] pub fn test_invalid_length() { assert_eq!( Vec::from_hex("1").unwrap_err(), FromHexError::OddLength ); assert_eq!( Vec::from_hex("666f6f6261721").unwrap_err(), FromHexError::OddLength ); } #[test] pub fn test_invalid_char() { assert_eq!( Vec::from_hex("66ag").unwrap_err(), FromHexError::InvalidHexCharacter { c: 'g', index: 3 } ); } #[test] pub fn test_empty() { assert_eq!(Vec::from_hex("").unwrap(), b""); } #[test] pub fn test_from_hex_whitespace() { assert_eq!( Vec::from_hex("666f 6f62617").unwrap_err(), FromHexError::InvalidHexCharacter { c: ' ', index: 4 } ); } #[test] pub fn test_from_hex_array() { assert_eq!( <[u8; 6] as FromHex>::from_hex("666f6f626172"), Ok([0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72]) ); assert_eq!( <[u8; 5] as FromHex>::from_hex("666f6f626172"), Err(FromHexError::InvalidStringLength) ); } } #[cfg(all(feature = "benchmarks", test))] mod bench { extern crate test; use self::test::Bencher; use super::*; const MY_OWN_SOURCE: &[u8] = include_bytes!("lib.rs"); #[bench] fn a_bench(b: &mut Bencher) { b.bytes = MY_OWN_SOURCE.len() as u64; b.iter(|| { encode(MY_OWN_SOURCE) }); } } hex-0.4.0/.cargo_vcs_info.json0000644000000001120000000000000116520ustar00{ "git": { "sha1": "ff816074fd284dcb59adda00a35730d9d2ed4e74" } }