lebe-0.5.2/.cargo_vcs_info.json0000644000000001360000000000100117470ustar { "git": { "sha1": "65f45436514fadcdee8b1b1ddb59b402cbe293eb" }, "path_in_vcs": "" }lebe-0.5.2/.github/workflows/rust.yml000064400000000000000000000005260072674642500157070ustar 00000000000000name: Rust on: push: branches: [ "master" ] pull_request: branches: [ "master" ] env: CARGO_TERM_COLOR: always jobs: build: runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 - name: Build run: cargo build --verbose - name: Run tests run: cargo test --verbose lebe-0.5.2/.gitignore000064400000000000000000000000550072674642500125570ustar 00000000000000/target **/*.rs.bk Cargo.lock .idea *.imllebe-0.5.2/Cargo.toml0000644000000024670000000000100077560ustar # THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies. # # If you are reading this file be aware that the original Cargo.toml # will likely look very different (and much more reasonable). # See Cargo.toml.orig for the original contents. [package] edition = "2018" name = "lebe" version = "0.5.2" authors = ["johannesvollmer "] description = "Tiny, dead simple, high performance endianness conversions with a generic API" documentation = "https://docs.rs/crate/lebe/" readme = "README.md" keywords = [ "endianness", "binary", "io", "byteorder", "endian", ] categories = [ "encoding", "filesystem", "algorithms", ] license = "BSD-3-Clause" repository = "https://github.com/johannesvollmer/lebe" [profile.bench] lto = true debug = true [lib] path = "src/lib.rs" test = true doctest = true bench = true doc = true plugin = false proc-macro = false [[bench]] name = "benches" harness = false [dev-dependencies.bencher] version = "0.1.5" [dev-dependencies.byteorder] version = "1.4.3" [features] [badges.maintenance] status = "actively-developed" lebe-0.5.2/Cargo.toml.orig000064400000000000000000000015310072674642500134560ustar 00000000000000[package] name = "lebe" version = "0.5.2" authors = ["johannesvollmer "] edition = "2018" description = "Tiny, dead simple, high performance endianness conversions with a generic API" repository = "https://github.com/johannesvollmer/lebe" documentation = "https://docs.rs/crate/lebe/" readme = "README.md" license = "BSD-3-Clause" keywords = ["endianness", "binary", "io", "byteorder", "endian"] categories = ["encoding", "filesystem", "algorithms"] [lib] path = "src/lib.rs" test = true doctest = true bench = true doc = true plugin = false proc-macro = false [badges] maintenance = { status = "actively-developed" } [features] # simd = [] [dev-dependencies] bencher = "0.1.5" byteorder = "1.4.3" [[bench]] name = "benches" harness = false [profile.bench] lto = true debug = true lebe-0.5.2/LICENSE-BSD-3-Clause000064400000000000000000000027710072674642500135630ustar 00000000000000Copyright (c) 2022 Contributors to the lebe Project. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. lebe-0.5.2/README.md000064400000000000000000000056470072674642500120620ustar 00000000000000[![Rust Docs](https://docs.rs/lebe/badge.svg)](https://docs.rs/lebe) [![Crate Crate](https://img.shields.io/crates/v/lebe.svg)](https://crates.io/crates/lebe) ![Lines of Code](https://tokei.rs/b1/github/johannesvollmer/lebe?category=code) # LEBE Tiny, dead simple, high performance endianness conversions with a generic API. This crate purposefully does not have a different method, like `write_u16(my_value)`, for each primitive type. Instead, this uses generic type inference: `write(my_u16)`. # Purpose This crate has exactly two purposes: 1. Simple conversion between slices of primitives and byte arrays without unsafe code 2. Simple and fast conversion from one endianness to the other one The [byteorder crate](https://github.com/BurntSushi/byteorder) uses ![Lines of Code](https://tokei.rs/b1/github/BurntSushi/byteorder?category=code) for this. This simplifies reading and writing binary data to files or network streams. # Usage Write values. ```rust use lebe::io::WriteEndian; use std::io::Write; fn main(){ let mut output_bytes: Vec = Vec::new(); let numbers: &[i32] = &[ 32, 102, 420, 594 ]; output_bytes.write_as_little_endian(numbers.len()).unwrap(); output_bytes.write_as_little_endian(numbers).unwrap(); } ``` Read numbers. ```rust use lebe::io::ReadEndian; use std::io::Read; fn main(){ let mut input_bytes: &[u8] = &[ 3, 244 ]; let number: u16 = input_bytes.read_from_little_endian().unwrap(); } ``` Read slices. ```rust use lebe::io::ReadEndian; use std::io::Read; fn main(){ let mut input_bytes: &[u8] = &[ 0, 2, 0, 3, 244, 1, 0, 3, 244, 1 ]; let len: u16 = input_bytes.read_from_little_endian().unwrap(); let mut numbers = vec![ 0.0; len as usize ]; input_bytes.read_from_little_endian_into(numbers.as_mut_slice()).unwrap(); } ``` Convert slices in-place. ```rust use lebe::Endian; fn main(){ let mut numbers: &[i32] = &[ 32, 102, 420, 594 ]; numbers.convert_current_to_little_endian(); } ``` # Why not use [byteorder](https://crates.io/crates/byteorder)? This crate supports batch-writing slices with native speed where the os has the matching endianness. Writing slices in `byteorder` must be done manually, and may be slower than expected. This crate does provide u8 and i8 slice operations for completeness. Also, the API of this crate looks simpler. # Why not use [endianness](https://crates.io/crates/endianness)? This crate has no runtime costs, just as `byteorder`. # Why not use this crate? The other crates probably have better documentation. # Fun Facts LEBE is made up from 'le' for little endian and 'be' for big endian. If you say that word using english pronounciation, a german might think you said the german word for 'love'. lebe-0.5.2/benches/benches.rs000064400000000000000000000100730072674642500141540ustar 00000000000000#[macro_use] extern crate bencher; use bencher::Bencher; use lebe::prelude::*; use byteorder::{ReadBytesExt, LittleEndian, BigEndian, WriteBytesExt}; use std::io::{Read, Write, Cursor}; const COUNT_8: usize = 2048; const COUNT_16: usize = COUNT_8 / 2; const COUNT_32: usize = COUNT_8 / 4; const COUNT_64: usize = COUNT_8 / 8; fn bytes(count: usize) -> Cursor> { let vec: Vec = (0..count).map(|i| (i % 256) as u8).collect(); Cursor::new(vec) } fn floats(count: usize) -> Vec { (0..count).map(|i| i as f32).collect() } fn read_slice_f32_le_crate(bench: &mut Bencher) { bench.iter(move ||{ let mut target = vec![ 0_f32; COUNT_32 ]; bencher::black_box(bytes(COUNT_8).read_from_little_endian_into(target.as_mut_slice())).unwrap(); bencher::black_box(target); }) } fn read_slice_f32_le_byteorder(bench: &mut Bencher) { bench.iter(move ||{ let mut target = vec![ 0_f32; COUNT_32 ]; bencher::black_box(bytes(COUNT_8).read_f32_into::(target.as_mut_slice())).unwrap(); bencher::black_box(target); }) } fn read_slice_f32_be_crate(bench: &mut Bencher) { bench.iter(move ||{ let mut target = vec![ 0_f32; COUNT_32 ]; bencher::black_box(bytes(COUNT_8).read_from_big_endian_into(target.as_mut_slice())).unwrap(); bencher::black_box(target); }) } fn read_slice_f32_be_byteorder(bench: &mut Bencher) { bench.iter(move ||{ let mut target = vec![ 0_f32; COUNT_32 ]; bencher::black_box(bytes(COUNT_8).read_f32_into::(target.as_mut_slice())).unwrap(); bencher::black_box(target); }) } // FIXME faster than baseline?!?!! fn write_slice_f32_le_crate(bench: &mut Bencher) { bench.iter(move ||{ let data = floats(COUNT_32); let mut output = Vec::with_capacity(COUNT_8); bencher::black_box(output.write_as_little_endian(data.as_slice())).unwrap(); assert_eq!(output.len(), COUNT_8); bencher::black_box(output); }) } fn write_slice_f32_le_byteorder(bench: &mut Bencher) { bench.iter(move ||{ let data = floats(COUNT_32); let mut output = Vec::with_capacity(COUNT_8); for number in data { bencher::black_box(output.write_f32::(number)).unwrap(); } assert_eq!(output.len(), COUNT_8); bencher::black_box(output); }) } fn write_slice_f32_be_crate(bench: &mut Bencher) { bench.iter(move ||{ let data = floats(COUNT_32); let mut output = Vec::with_capacity(COUNT_8); bencher::black_box(output.write_as_big_endian(data.as_slice())).unwrap(); assert_eq!(output.len(), COUNT_8); bencher::black_box(output); }) } fn write_slice_f32_be_byteorder(bench: &mut Bencher) { bench.iter(move ||{ let data = floats(COUNT_32); let mut output = Vec::with_capacity(COUNT_8); for number in data { bencher::black_box(output.write_f32::(number)).unwrap(); } assert_eq!(output.len(), COUNT_8); bencher::black_box(output); }) } fn read_slice_baseline(bench: &mut Bencher) { bench.iter(move ||{ let mut target = vec![ 0_u8; COUNT_8 ]; bencher::black_box(bytes(COUNT_8).read_exact(target.as_mut_slice())).unwrap(); bencher::black_box(target); }) } fn write_slice_baseline(bench: &mut Bencher) { bench.iter(move ||{ let data = bytes(COUNT_8).into_inner(); let mut output = Vec::with_capacity(COUNT_8); bencher::black_box(output.write_all(data.as_slice())).unwrap(); bencher::black_box(output); }) } benchmark_group!( benches, read_slice_f32_be_byteorder, read_slice_f32_be_crate, read_slice_f32_le_byteorder, read_slice_f32_le_crate, write_slice_f32_le_byteorder, write_slice_f32_le_crate, write_slice_f32_be_byteorder, write_slice_f32_be_crate, read_slice_baseline, write_slice_baseline ); benchmark_main!(benches);lebe-0.5.2/src/lib.rs000064400000000000000000000513220072674642500124750ustar 00000000000000#![warn( missing_docs, unused, trivial_numeric_casts, future_incompatible, rust_2018_compatibility, rust_2018_idioms, clippy::all )] #![doc(html_root_url = "https://docs.rs/lebe/0.5.0")] //! Dead simple endianness conversions. //! The following operations are implemented on //! `u8`, `i8`, `u16`, `i16`, `u32`, `i32`, `u64`, `i64`, `u128`, `i128`, `f32`, `f64`: //! //! //! ### Read Numbers //! ```rust //! use lebe::prelude::*; //! let mut reader: &[u8] = &[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]; //! //! let number : u64 = reader.read_from_little_endian()?; //! let number = u64::read_from_big_endian(&mut reader)?; //! # Ok::<(), std::io::Error>(()) //! ``` //! //! ### Read Slices //! ```rust //! use std::io::Read; //! use lebe::prelude::*; //! let mut reader: &[u8] = &[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]; //! //! let mut numbers: &mut [u64] = &mut [0, 0]; //! reader.read_from_little_endian_into(numbers)?; //! # Ok::<(), std::io::Error>(()) //! ``` //! //! ### Write Numbers //! ```rust //! use std::io::Read; //! use lebe::prelude::*; //! let mut writer: Vec = Vec::new(); //! //! let number: u64 = 1237691; //! writer.write_as_big_endian(&number)?; //! # Ok::<(), std::io::Error>(()) //! ``` //! //! ### Write Slices //! ```rust //! use std::io::Write; //! use lebe::prelude::*; //! let mut writer: Vec = Vec::new(); //! //! let numbers: &[u64] = &[1_u64, 234545_u64]; //! writer.write_as_little_endian(numbers)?; //! # Ok::<(), std::io::Error>(()) //! ``` //! /// Exports some of the most common types. pub mod prelude { pub use super::Endian; pub use super::io::{ WriteEndian, ReadEndian, ReadPrimitive }; } /// Represents values that can swap their bytes to reverse their endianness. /// /// Supports converting values in-place using [`swap_bytes`] or [`convert_current_to_little_endian`]: /// Supports converting while transferring ownership using /// [`from_little_endian_into_current`] or [`from_current_into_little_endian`]. /// /// /// For the types `u8`, `i8`, `&[u8]` and `&[i8]`, this trait will never transform any data, /// as they are just implemented for completeness. pub trait Endian { /// Swaps all bytes in this value, inverting its endianness. fn swap_bytes(&mut self); /// On a little endian machine, this does nothing. /// On a big endian machine, the bytes of this value are reversed. #[inline] fn convert_current_to_little_endian(&mut self) { #[cfg(target_endian = "big")] { self.swap_bytes(); } } /// On a big endian machine, this does nothing. /// On a little endian machine, the bytes of this value are reversed. #[inline] fn convert_current_to_big_endian(&mut self) { #[cfg(target_endian = "little")] { self.swap_bytes(); } } /// On a little endian machine, this does nothing. /// On a big endian machine, the bytes of this value are reversed. #[inline] fn convert_little_endian_to_current(&mut self) { #[cfg(target_endian = "big")] { self.swap_bytes(); } } /// On a big endian machine, this does nothing. /// On a little endian machine, the bytes of this value are reversed. #[inline] fn convert_big_endian_to_current(&mut self) { #[cfg(target_endian = "little")] { self.swap_bytes(); } } /// On a little endian machine, this does nothing. /// On a big endian machine, the bytes of this value are reversed. #[inline] fn from_current_into_little_endian(mut self) -> Self where Self: Sized { self.convert_current_to_little_endian(); self } /// On a big endian machine, this does nothing. /// On a little endian machine, the bytes of this value are reversed. #[inline] fn from_current_into_big_endian(mut self) -> Self where Self: Sized { self.convert_current_to_big_endian(); self } /// On a little endian machine, this does nothing. /// On a big endian machine, the bytes of this value are reversed. #[inline] fn from_little_endian_into_current(mut self) -> Self where Self: Sized { self.convert_little_endian_to_current(); self } /// On a big endian machine, this does nothing. /// On a little endian machine, the bytes of this value are reversed. #[inline] fn from_big_endian_into_current(mut self) -> Self where Self: Sized { self.convert_big_endian_to_current(); self } } // call a macro for each argument macro_rules! call_single_arg_macro_for_each { ($macro: ident, $( $arguments: ident ),* ) => { $( $macro! { $arguments } )* }; } // implement this interface for primitive signed and unsigned integers macro_rules! implement_simple_primitive_endian { ($type: ident) => { impl Endian for $type { fn swap_bytes(&mut self) { *self = $type::swap_bytes(*self); } } }; } call_single_arg_macro_for_each! { implement_simple_primitive_endian, u16, u32, u64, u128, i16, i32, i64, i128 } // no-op implementations impl Endian for u8 { fn swap_bytes(&mut self) {} } impl Endian for i8 { fn swap_bytes(&mut self) {} } impl Endian for [u8] { fn swap_bytes(&mut self) {} } impl Endian for [i8] { fn swap_bytes(&mut self) {} } // implement this interface for primitive floats, because they do not have a `swap_bytes()` in `std` macro_rules! implement_float_primitive_by_bits { ($type: ident) => { impl Endian for $type { fn swap_bytes(&mut self) { *self = Self::from_bits(self.to_bits().swap_bytes()); } } }; } implement_float_primitive_by_bits!(f32); implement_float_primitive_by_bits!(f64); macro_rules! implement_slice_by_element { ($type: ident) => { impl Endian for [$type] { fn swap_bytes(&mut self) { for number in self.iter_mut() { // TODO SIMD? number.swap_bytes(); } } } }; } call_single_arg_macro_for_each! { implement_slice_by_element, u16, u32, u64, u128, i16, i32, i64, i128, f64, f32 } /// Easily write primitives and slices of primitives to /// binary `std::io::Write` streams and easily read from binary `std::io::Read` streams. /// /// Also contains the unsafe `bytes` module for reinterpreting values as byte slices and vice versa. pub mod io { use super::Endian; use std::io::{Read, Write, Result}; /// Reinterpret values as byte slices and byte slices as values unsafely. pub mod bytes { use std::io::{Read, Write, Result}; /// View this slice of values as a slice of bytes. #[inline] pub unsafe fn slice_as_bytes(value: &[T]) -> &[u8] { std::slice::from_raw_parts( value.as_ptr() as *const u8, value.len() * std::mem::size_of::() ) } /// View this slice of values as a mutable slice of bytes. #[inline] pub unsafe fn slice_as_bytes_mut(value: &mut [T]) -> &mut [u8] { std::slice::from_raw_parts_mut( value.as_mut_ptr() as *mut u8, value.len() * std::mem::size_of::() ) } /// View this reference as a slice of bytes. #[inline] pub unsafe fn value_as_bytes(value: &T) -> &[u8] { std::slice::from_raw_parts( value as *const T as *const u8, std::mem::size_of::() ) } /// View this reference as a mutable slice of bytes. #[inline] pub unsafe fn value_as_bytes_mut(value: &mut T) ->&mut [u8] { std::slice::from_raw_parts_mut( value as *mut T as *mut u8, std::mem::size_of::() ) } /// View this slice as a mutable slice of bytes and write it. #[inline] pub unsafe fn write_slice(write: &mut impl Write, value: &[T]) -> Result<()> { write.write_all(slice_as_bytes(value)) } /// Read a slice of bytes into the specified slice. #[inline] pub unsafe fn read_slice(read: &mut impl Read, value: &mut [T]) -> Result<()> { read.read_exact(slice_as_bytes_mut(value)) } /// View this reference as a mutable slice of bytes and write it. #[inline] pub unsafe fn write_value(write: &mut impl Write, value: &T) -> Result<()> { write.write_all(value_as_bytes(value)) } /// Read a slice of bytes into the specified reference. #[inline] pub unsafe fn read_value(read: &mut impl Read, value: &mut T) -> Result<()> { read.read_exact(value_as_bytes_mut(value)) } } /// A `std::io::Write` output stream which supports writing any primitive values as bytes. /// Will encode the values to be either little endian or big endian, as desired. /// /// This extension trait is implemented for all `Write` types. /// Add `use lebe::io::WriteEndian;` to your code /// to automatically unlock this functionality for all types that implement `Write`. pub trait WriteEndian { /// Write the byte value of the specified reference, converting it to little endianness fn write_as_little_endian(&mut self, value: &T) -> Result<()>; /// Write the byte value of the specified reference, converting it to big endianness fn write_as_big_endian(&mut self, value: &T) -> Result<()>; /// Write the byte value of the specified reference, not converting it fn write_as_native_endian(&mut self, value: &T) -> Result<()> { #[cfg(target_endian = "little")] { self.write_as_little_endian(value) } #[cfg(target_endian = "big")] { self.write_as_big_endian(value) } } } /// A `std::io::Read` input stream which supports reading any primitive values from bytes. /// Will decode the values from either little endian or big endian, as desired. /// /// This extension trait is implemented for all `Read` types. /// Add `use lebe::io::ReadEndian;` to your code /// to automatically unlock this functionality for all types that implement `Read`. pub trait ReadEndian { /// Read into the supplied reference. Acts the same as `std::io::Read::read_exact`. fn read_from_little_endian_into(&mut self, value: &mut T) -> Result<()>; /// Read into the supplied reference. Acts the same as `std::io::Read::read_exact`. fn read_from_big_endian_into(&mut self, value: &mut T) -> Result<()>; /// Read into the supplied reference. Acts the same as `std::io::Read::read_exact`. fn read_from_native_endian_into(&mut self, value: &mut T) -> Result<()> { #[cfg(target_endian = "little")] { self.read_from_little_endian_into(value) } #[cfg(target_endian = "big")] { self.read_from_big_endian_into(value) } } /// Read the byte value of the inferred type #[inline] fn read_from_little_endian(&mut self) -> Result where T: Sized + Default { let mut value = T::default(); self.read_from_little_endian_into(&mut value)?; Ok(value) } /// Read the byte value of the inferred type #[inline] fn read_from_big_endian(&mut self) -> Result where T: Sized + Default { let mut value = T::default(); self.read_from_big_endian_into(&mut value)?; Ok(value) } /// Read the byte value of the inferred type #[inline] fn read_from_native_endian(&mut self) -> Result where T: Sized + Default { #[cfg(target_endian = "little")] { self.read_from_little_endian() } #[cfg(target_endian = "big")] { self.read_from_big_endian() } } } // implement primitive for all types that are implemented by `Read` impl, P: Default> ReadPrimitive for P {} /// Offers a prettier versions of reading a primitive number. /// /// The default way of reading a value is: /// ```rust /// # use std::io::Read; /// # use lebe::prelude::*; /// # let mut reader : &[u8] = &[2, 1]; /// /// let number: u16 = reader.read_from_little_endian()?; /// println!("{}", number); /// # Ok::<(), std::io::Error>(()) /// /// ``` /// /// This trait enables you to use expressions: /// ```rust /// # use std::io::Read; /// # use lebe::prelude::*; /// # let mut reader : &[u8] = &[2, 1]; /// /// println!("{}", u16::read_from_little_endian(&mut reader)?); /// # Ok::<(), std::io::Error>(()) /// ``` /// . /// pub trait ReadPrimitive> : Sized + Default { /// Read this value from the supplied reader. Same as `ReadEndian::read_from_little_endian()`. fn read_from_little_endian(read: &mut R) -> Result { read.read_from_little_endian() } /// Read this value from the supplied reader. Same as `ReadEndian::read_from_big_endian()`. fn read_from_big_endian(read: &mut R) -> Result { read.read_from_big_endian() } /// Read this value from the supplied reader. Same as `ReadEndian::read_from_native_endian()`. fn read_from_native_endian(read: &mut R) -> Result { read.read_from_native_endian() } } macro_rules! implement_simple_primitive_write { ($type: ident) => { impl WriteEndian<$type> for W { fn write_as_little_endian(&mut self, value: &$type) -> Result<()> { unsafe { bytes::write_value(self, &value.from_current_into_little_endian()) } } fn write_as_big_endian(&mut self, value: &$type) -> Result<()> { unsafe { bytes::write_value(self, &value.from_current_into_big_endian()) } } } impl ReadEndian<$type> for R { #[inline] fn read_from_little_endian_into(&mut self, value: &mut $type) -> Result<()> { unsafe { bytes::read_value(self, value)?; } value.convert_little_endian_to_current(); Ok(()) } #[inline] fn read_from_big_endian_into(&mut self, value: &mut $type) -> Result<()> { unsafe { bytes::read_value(self, value)?; } value.convert_big_endian_to_current(); Ok(()) } } }; } call_single_arg_macro_for_each! { implement_simple_primitive_write, u8, u16, u32, u64, u128, i8, i16, i32, i64, i128, f32, f64 } macro_rules! implement_slice_io { ($type: ident) => { impl WriteEndian<[$type]> for W { fn write_as_little_endian(&mut self, value: &[$type]) -> Result<()> { #[cfg(target_endian = "big")] { for number in value { // TODO SIMD! self.write_as_little_endian(number)?; } } // else write whole slice #[cfg(target_endian = "little")] unsafe { bytes::write_slice(self, value)?; } Ok(()) } fn write_as_big_endian(&mut self, value: &[$type]) -> Result<()> { #[cfg(target_endian = "little")] { for number in value { // TODO SIMD! self.write_as_big_endian(number)?; } } // else write whole slice #[cfg(target_endian = "big")] unsafe { bytes::write_slice(self, value)?; } Ok(()) } } impl ReadEndian<[$type]> for R { fn read_from_little_endian_into(&mut self, value: &mut [$type]) -> Result<()> { unsafe { bytes::read_slice(self, value)? }; value.convert_little_endian_to_current(); Ok(()) } fn read_from_big_endian_into(&mut self, value: &mut [$type]) -> Result<()> { unsafe { bytes::read_slice(self, value)? }; value.convert_big_endian_to_current(); Ok(()) } } }; } call_single_arg_macro_for_each! { implement_slice_io, u8, u16, u32, u64, u128, i8, i16, i32, i64, i128, f64, f32 } // TODO: SIMD /*impl ReadEndian<[f32]> for R { fn read_from_little_endian_into(&mut self, value: &mut [f32]) -> Result<()> { unsafe { bytes::read_slice(self, value)? }; value.convert_little_endian_to_current(); Ok(()) } fn read_from_big_endian_into(&mut self, value: &mut [f32]) -> Result<()> { unsafe { bytes::read_slice(self, value)? }; value.convert_big_endian_to_current(); Ok(()) } } impl WriteEndian<[f32]> for W { fn write_as_big_endian(&mut self, value: &[f32]) -> Result<()> { if cfg!(target_endian = "little") { // FIX ME this SIMD optimization makes no difference ... why? like, ZERO difference, not even worse // #[cfg(feature = "simd")] #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] unsafe { if is_x86_feature_detected!("avx2") { write_bytes_avx(self, value); return Ok(()); } } // otherwise (no avx2 available) // for number in value { // self.write_as_little_endian(number); // } // // return Ok(()); unimplemented!(); #[target_feature(enable = "avx2")] #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] unsafe fn write_bytes_avx(write: &mut impl Write, slice: &[f32]) -> Result<()> { #[cfg(target_arch = "x86")] use std::arch::x86 as mm; #[cfg(target_arch = "x86_64")] use std::arch::x86_64 as mm; let bytes: &[u8] = crate::io::bytes::slice_as_bytes(slice); let mut chunks = bytes.chunks_exact(32); let indices = mm::_mm256_set_epi8( 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 // 3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12, // 3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12 ); for chunk in &mut chunks { let data = mm::_mm256_loadu_si256(chunk.as_ptr() as _); let result = mm::_mm256_shuffle_epi8(data, indices); let mut out = [0_u8; 32]; mm::_mm256_storeu_si256(out.as_mut_ptr() as _, result); write.write_all(&out)?; } let remainder = chunks.remainder(); { // copy remainder into larger slice, with zeroes at the end let mut last_chunk = [0_u8; 32]; last_chunk[0..remainder.len()].copy_from_slice(remainder); let data = mm::_mm256_loadu_si256(last_chunk.as_ptr() as _); let result = mm::_mm256_shuffle_epi8(data, indices); mm::_mm256_storeu_si256(last_chunk.as_mut_ptr() as _, result); write.write_all(&last_chunk[0..remainder.len()])?; } Ok(()) } } else { unsafe { bytes::write_slice(self, value)?; } Ok(()) } } fn write_as_little_endian(&mut self, value: &[f32]) -> Result<()> { for number in value { self.write_as_little_endian(number)?; } Ok(()) } }*/ } lebe-0.5.2/tests/tests.rs000064400000000000000000000121120072674642500134360ustar 00000000000000extern crate lebe; use lebe::prelude::*; use std::mem; use byteorder::{WriteBytesExt, LittleEndian, BigEndian, ReadBytesExt}; #[test] fn make_le_u32_slice() { // as seen on https://doc.rust-lang.org/std/primitive.u32.html#method.to_le let n = 0x1Au32; let mut n_le = [n]; n_le.convert_current_to_little_endian(); if cfg!(target_endian = "little") { assert_eq!(n_le, [n]) } else { assert_eq!(n_le, [u32::swap_bytes(n)]) } // assert_eq!(n_le, byteorder::LittleEndian::from_) } #[test] fn make_be_u32_slice() { // as seen on https://doc.rust-lang.org/std/primitive.u32.html#method.to_be let n = 0x1Au32; let mut n_be = [n]; n_be.convert_current_to_big_endian(); if cfg!(target_endian = "big") { assert_eq!(n_be, [n]) } else { assert_eq!(n_be, [n.swap_bytes()]) } } #[test] fn make_le_u16_slice() { // as seen on https://doc.rust-lang.org/std/primitive.u16.html#method.to_le let n = 0x1Au16; let mut n_le = [n]; n_le.convert_current_to_little_endian(); if cfg!(target_endian = "little") { assert_eq!(n_le, [n]) } else { assert_eq!(n_le, [n.swap_bytes()]) } } #[test] fn make_le_i64_slice() { // as seen on https://doc.rust-lang.org/std/primitive.u64.html#method.to_be let n1 = 0x14F3EEBCCD93895A_i64; let n2 = 0x114F3EF99B81CC5A_i64; let mut n_be = [n1, n2]; n_be.convert_current_to_big_endian(); if cfg!(target_endian = "big") { assert_eq!(n_be, [n1, n2]) } else { assert_eq!(n_be, [n1.swap_bytes(), n2.swap_bytes()]) } } #[test] fn make_be_f64() { let i = 0x14F3EEBCCD93895A_u64; let mut f: f64 = unsafe { mem::transmute(i) }; f.convert_current_to_big_endian(); assert_eq!(f, unsafe { mem::transmute(i.to_be()) }) } #[test] fn into_be_f64() { let i = 0x14F3EEBCCD93895A_u64; let f: f64 = unsafe { mem::transmute(i) }; let f = f.from_current_into_big_endian(); assert_eq!(f, unsafe { mem::transmute(i.to_be()) }) } #[test] fn into_be_i16() { let i = 0x195A_i16; let be = i.from_current_into_big_endian(); if cfg!(target_endian = "big") { assert_eq!(be, i) } else { assert_eq!(be, i.swap_bytes()) } } #[test] fn into_be_u32() { let i = 0x1220943_u32; let be = i.from_current_into_big_endian(); if cfg!(target_endian = "big") { assert_eq!(be, i) } else { assert_eq!(be, i.swap_bytes()) } } #[test] fn cmp_read_be_u16() { let read: &[u8] = &[0x33, 0xbb]; let a = u16::read_from_big_endian(&mut read.clone()).unwrap(); let b: u16 = read.clone().read_from_big_endian().unwrap(); let c = read.clone().read_u16::().unwrap(); assert_eq!(a, b); assert_eq!(a, c); } #[test] fn cmp_read_le_u16() { let read: &[u8] = &[0x33, 0xbb]; let a = u16::read_from_little_endian(&mut read.clone()).unwrap(); let b: u16 = read.clone().read_from_little_endian().unwrap(); let c = read.clone().read_u16::().unwrap(); assert_eq!(a, b); assert_eq!(a, c); } #[test] fn cmp_read_le_f32() { let read: &[u8] = &[0x33, 0xBB, 0x44, 0xCC]; let a = f32::read_from_little_endian(&mut read.clone()).unwrap(); let b: f32 = read.clone().read_from_little_endian().unwrap(); let c = read.clone().read_f32::().unwrap(); assert_eq!(a, b); assert_eq!(a, c); } #[test] fn cmp_read_be_slice() { let mut write_expected = Vec::new(); let mut write_actual = Vec::new(); let data: Vec = (0..31*31).map(|i| i as f32).collect(); for number in &data { write_expected.write_f32::(*number).unwrap(); } write_actual.write_as_big_endian(data.as_slice()).unwrap(); assert_eq!(write_actual, write_expected); } #[test] fn cmp_write_le_slice() { let mut write_expected = Vec::new(); let mut write_actual = Vec::new(); let data: Vec = (0..31*31).map(|i| i as f32).collect(); for number in &data { write_expected.write_f32::(*number).unwrap(); } write_actual.write_as_little_endian(data.as_slice()).unwrap(); assert_eq!(write_actual, write_expected); } #[test] fn cmp_write_le_u32() { let mut write_expected = Vec::new(); let mut write_actual = Vec::new(); let data = 0x23573688_u32; write_expected.write_u32::(data).unwrap(); write_actual.write_as_little_endian(&data).unwrap(); assert_eq!(write_actual, write_expected); } #[test] fn cmp_write_le_slice_u64() { let mut write_expected = Vec::new(); let mut write_actual = Vec::new(); let data: Vec = (1000..1000+310*31).map(|i| i as u64).collect(); for number in &data { write_expected.write_u64::(*number).unwrap(); } write_actual.write_as_little_endian(data.as_slice()).unwrap(); assert_eq!(write_actual, write_expected); }