mio-0.6.23/CHANGELOG.md010064400007650000024000000165551376150724400124430ustar0000000000000000# 0.6.23 (Dec 01, 2020) ### Changed - **MSRV**: Increased the MSRV from 1.18.0 (Jun 8, 2017) to 1.31.0 (Dec 6, 2018) (https://github.com/tokio-rs/mio/commit/4879e0d32ddfd98e762fc87240e594a3ad8fca30). ### Fixed - Work around Linux kernel < 2.6.37 bug on 32-bits making timeouts longer then ~30 minutes effectively infinite (https://github.com/tokio-rs/mio/commit/e7cba59950e9c9fa6194e29b5b1e72029e3df455). - Update miow and net2 depedencies to get rid of invalid memory layout assumption (https://github.com/tokio-rs/mio/commit/13f02ac0a86d7c0c0001e5ff8960a0b4340d075c). # 0.6.22 (May 01, 2020) ### Added - Add support for illumos target (#1294) # 0.6.21 (November 27, 2019) ### Fixed - remove `=` dependency on `cfg-if`. # 0.6.20 (November 21, 2019) ### Fixed - Use default IOCP concurrency value (#1161). - setting FD_CLOEXEC in pipe (#1095). # 0.6.19 (May 28, 2018) ### Fixed - Do not trigger HUP events on kqueue platforms (#958). # 0.6.18 (May 24, 2018) ### Fixed - Fix compilation on kqueue platforms with 32bit C long (#948). # 0.6.17 (May 15, 2018) ### Fixed - Don't report `RDHUP` as `HUP` (#939) - Fix lazycell related compilation issues. - Fix EPOLLPRI conflicting with READABLE - Abort process on ref count overflows ### Added - Define PRI on all targets # 0.6.16 (September 5, 2018) * Add EPOLLPRI readiness to UnixReady on supported platforms (#867) * Reduce spurious awaken calls (#875) # 0.6.15 (July 3, 2018) * Implement `Evented` for containers (#840). * Fix android-aarch64 build (#850). # 0.6.14 (March 8, 2018) * Add `Poll::poll_interruptible` (#811) * Add `Ready::all` and `usize` conversions (#825) # 0.6.13 (February 5, 2018) * Fix build on DragonFlyBSD. * Add `TcpListener::from_std` that does not require the socket addr. * Deprecate `TcpListener::from_listener` in favor of from_std. # 0.6.12 (January 5, 2018) * Add `TcpStream::peek` function (#773). * Raise minimum Rust version to 1.18.0. * `Poll`: retry select() when interrupted by a signal (#742). * Deprecate `Events` index access (#713). * Add `Events::clear` (#782). * Add support for `lio_listio` (#780). # 0.6.11 (October 25, 2017) * Allow register to take empty interest (#640). * Fix bug with TCP errors on windows (#725). * Add TcpListener::accept_std (#733). * Update IoVec to fix soundness bug -- includes behavior change. (#747). * Minimum Rust version is now 1.14.0. * Fix Android x86_64 build. * Misc API & doc polish. # 0.6.10 (July 27, 2017) * Experimental support for Fuchsia * Add `only_v6` option for UDP sockets * Fix build on NetBSD * Minimum Rust version is now 1.13.0 * Assignment operators (e.g. `|=`) are now implemented for `Ready` # 0.6.9 (June 7, 2017) * More socket options are exposed through the TCP types, brought in through the `net2` crate. # 0.6.8 (May 26, 2017) * Support Fuchia * POSIX AIO support * Fix memory leak caused by Register::new2 * Windows: fix handling failed TCP connections * Fix build on aarch64-linux-android * Fix usage of `O_CLOEXEC` with `SETFL` # 0.6.7 (April 27, 2017) * Ignore EPIPE coming out of `kevent` * Timer thread should exit when timer is dropped. # 0.6.6 (March 22, 2017) * Add send(), recv() and connect() to UDPSocket. * Fix bug in custom readiness queue * Move net types into `net` module # 0.6.5 (March 14, 2017) * Misc improvements to kqueue bindings * Add official support for iOS, Android, BSD * Reimplement custom readiness queue * `Poll` is now `Sync` * Officially deprecate non-core functionality (timers, channel, etc...) * `Registration` now implements `Evented` * Fix bug around error conditions with `connect` on windows. * Use iovec crate for scatter / gather operations * Only support readable and writable readiness on all platforms * Expose additional readiness in a platform specific capacity # 0.6.4 (January 24, 2017) * Fix compilation on musl * Add `TcpStream::from_stream` which converts a std TCP stream to Mio. # 0.6.3 (January 22, 2017) * Implement readv/writev for `TcpStream`, allowing vectored reads/writes to work across platforms * Remove `nix` dependency * Implement `Display` and `Error` for some channel error types. * Optimize TCP on Windows through `SetFileCompletionNotificationModes` # 0.6.2 (December 18, 2016) * Allow registration of custom handles on Windows (like `EventedFd` on Unix) * Send only one byte for the awakener on Unix instead of four * Fix a bug in the timer implementation which caused an infinite loop # 0.6.1 (October 30, 2016) * Update dependency of `libc` to 0.2.16 * Fix channel `dec` logic * Fix a timer bug around timeout cancellation * Don't allocate buffers for TCP reads on Windows * Touched up documentation in a few places * Fix an infinite looping timer thread on OSX * Fix compile on 32-bit OSX * Fix compile on FreeBSD # 0.6.0 (September 2, 2016) * Shift primary API towards `Poll` * `EventLoop` and types to `deprecated` mod. All contents of the `deprecated` mod will be removed by Mio 1.0. * Increase minimum supported Rust version to 1.9.0 * Deprecate unix domain socket implementation in favor of using a version external to Mio. For example: https://github.com/alexcrichton/mio-uds. * Remove various types now included in `std` * Updated TCP & UDP APIs to match the versions in `std` * Enable implementing `Evented` for any type via `Registration` * Rename `IoEvent` -> `Event` * Access `Event` data via functions vs. public fields. * Expose `Events` as a public type that is passed into `Poll` * Use `std::time::Duration` for all APIs that require a time duration. * Polled events are now retrieved via `Events` type. * Implement `std::error::Error` for `TimerError` * Relax `Send` bound on notify messages. * Remove `Clone` impl for `Timeout` (future proof) * Remove `mio::prelude` * Remove `mio::util` * Remove dependency on bytes # 0.5.0 (December 3, 2015) * Windows support (#239) * NetBSD support (#306) * Android support (#295) * Don't re-export bytes types * Renamed `EventLoop::register_opt` to `EventLoop::register` (#257) * `EventLoopConfig` is now a builder instead of having public struct fields. It is also no longer `Copy`. (#259) * `TcpSocket` is no longer exported in the public API (#262) * Integrate with net2. (#262) * `TcpListener` now returns the remote peer address from `accept` as well (#275) * The `UdpSocket::{send_to, recv_from}` methods are no longer generic over `Buf` or `MutBuf` but instead take slices directly. The return types have also been updated to return the number of bytes transferred. (#260) * Fix bug with kqueue where an error on registration prevented the changelist from getting flushed (#276) * Support sending/receiving FDs over UNIX sockets (#291) * Mio's socket types are permanently associated with an EventLoop (#308) * Reduce unnecessary poll wakeups (#314) # 0.4.1 (July 21, 2015) * [BUGFIX] Fix notify channel concurrency bug (#216) # 0.4.0 (July 16, 2015) * [BUGFIX] EventLoop::register requests all events, not just readable. * [BUGFIX] Attempting to send a message to a shutdown event loop fails correctly. * [FEATURE] Expose TCP shutdown * [IMPROVEMENT] Coalesce readable & writable into `ready` event (#184) * [IMPROVEMENT] Rename TryRead & TryWrite function names to avoid conflict with std. * [IMPROVEMENT] Provide TCP and UDP types in Mio (path to windows #155) * [IMPROVEMENT] Use clock_ticks crate instead of time (path to windows #155) * [IMPROVEMENT] Move unix specific features into mio::unix module * [IMPROVEMENT] TcpListener sets SO_REUSEADDR by default mio-0.6.23/Cargo.toml.orig010064400007650000024000000023411376150724400135050ustar0000000000000000[package] name = "mio" # When releasing to crates.io: # - Update html_root_url. # - Update CHANGELOG.md. # - Update doc URL. # - Create git tag version = "0.6.23" license = "MIT" authors = ["Carl Lerche "] description = "Lightweight non-blocking IO" documentation = "https://docs.rs/mio/0.6.23/mio/" homepage = "https://github.com/tokio-rs/mio" repository = "https://github.com/tokio-rs/mio" readme = "README.md" keywords = ["io", "async", "non-blocking"] categories = ["asynchronous"] include = [ "Cargo.toml", "LICENSE", "README.md", "CHANGELOG.md", "src/**/*.rs" ] [features] with-deprecated = [] default = ["with-deprecated"] [dependencies] log = "0.4" slab = "0.4.0" net2 = "0.2.36" iovec = "0.1.1" cfg-if = "0.1.9" [target.'cfg(target_os = "fuchsia")'.dependencies] fuchsia-zircon = "0.3.2" fuchsia-zircon-sys = "0.3.2" [target.'cfg(unix)'.dependencies] libc = "0.2.54" [target.'cfg(windows)'.dependencies] winapi = "0.2.6" miow = "0.2.2" kernel32-sys = "0.2" [dev-dependencies] env_logger = { version = "0.4.0", default-features = false } tempdir = "0.3.4" bytes = "0.3.0" [[test]] name = "test" path = "test/mod.rs" mio-0.6.23/Cargo.toml0000644000000035270000000000000077540ustar00# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g. crates.io) dependencies # # If you believe there's an error in this file please file an # issue against the rust-lang/cargo repository. If you're # editing this file be aware that the upstream Cargo.toml # will likely look very different (and much more reasonable) [package] name = "mio" version = "0.6.23" authors = ["Carl Lerche "] include = ["Cargo.toml", "LICENSE", "README.md", "CHANGELOG.md", "src/**/*.rs"] description = "Lightweight non-blocking IO" homepage = "https://github.com/tokio-rs/mio" documentation = "https://docs.rs/mio/0.6.23/mio/" readme = "README.md" keywords = ["io", "async", "non-blocking"] categories = ["asynchronous"] license = "MIT" repository = "https://github.com/tokio-rs/mio" [[test]] name = "test" path = "test/mod.rs" [dependencies.cfg-if] version = "0.1.9" [dependencies.iovec] version = "0.1.1" [dependencies.log] version = "0.4" [dependencies.net2] version = "0.2.36" [dependencies.slab] version = "0.4.0" [dev-dependencies.bytes] version = "0.3.0" [dev-dependencies.env_logger] version = "0.4.0" default-features = false [dev-dependencies.tempdir] version = "0.3.4" [features] default = ["with-deprecated"] with-deprecated = [] [target."cfg(target_os = \"fuchsia\")".dependencies.fuchsia-zircon] version = "0.3.2" [target."cfg(target_os = \"fuchsia\")".dependencies.fuchsia-zircon-sys] version = "0.3.2" [target."cfg(unix)".dependencies.libc] version = "0.2.54" [target."cfg(windows)".dependencies.kernel32-sys] version = "0.2" [target."cfg(windows)".dependencies.miow] version = "0.2.2" [target."cfg(windows)".dependencies.winapi] version = "0.2.6" mio-0.6.23/LICENSE010064400007650000024000000020721332435136100116140ustar0000000000000000Copyright (c) 2014 Carl Lerche and other MIO contributors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. mio-0.6.23/README.md010064400007650000024000000045721376150724400121050ustar0000000000000000# Mio – Metal IO Mio is a lightweight I/O library for Rust with a focus on adding as little overhead as possible over the OS abstractions. [![Crates.io][crates-badge]][crates-url] [![MIT licensed][mit-badge]][mit-url] [![Build Status][azure-badge]][azure-url] [![Build Status][cirrus-badge]][cirrus-url] [crates-badge]: https://img.shields.io/crates/v/mio.svg [crates-url]: https://crates.io/crates/mio [mit-badge]: https://img.shields.io/badge/license-MIT-blue.svg [mit-url]: LICENSE [azure-badge]: https://dev.azure.com/tokio-rs/Tokio/_apis/build/status/tokio-rs.mio?branchName=master [azure-url]: https://dev.azure.com/tokio-rs/Tokio/_build/latest?definitionId=2&branchName=master [cirrus-badge]: https://api.cirrus-ci.com/github/carllerche/mio.svg [cirrus-url]: https://cirrus-ci.com/github/carllerche/mio **API documentation** * [master](https://tokio-rs.github.io/mio/doc/mio/) * [v0.6](https://docs.rs/mio/^0.6) This is a low level library, if you are looking for something easier to get started with, see [Tokio](https://tokio.rs). ## Usage To use `mio`, first add this to your `Cargo.toml`: ```toml [dependencies] mio = "0.6" ``` Then, add this to your crate root: ```rust extern crate mio; ``` ## Features * Non-blocking TCP, UDP. * I/O event notification queue backed by epoll, kqueue, and IOCP. * Zero allocations at runtime * Platform specific extensions. ## Non-goals The following are specifically omitted from Mio and are left to the user or higher-level libraries. * File operations * Thread pools / multi-threaded event loop * Timers ## Platforms Currently supported platforms: * Linux * OS X * Windows * FreeBSD * NetBSD * Solaris * Android * iOS There are potentially others. If you find that Mio works on another platform, submit a PR to update the list! ## Community A group of Mio users hang out in the #mio channel on the Mozilla IRC server (irc.mozilla.org). This can be a good place to go for questions. ## Contributing Interested in getting involved? We would love to help you! For simple bug fixes, just submit a PR with the fix and we can discuss the fix directly in the PR. If the fix is more complex, start with an issue. If you want to propose an API change, create an issue to start a discussion with the community. Also, feel free to talk with us in the IRC channel. Finally, be kind. We support the [Rust Code of Conduct](https://www.rust-lang.org/conduct.html). mio-0.6.23/src/channel.rs010064400007650000024000000232531376150724400133700ustar0000000000000000//! Thread safe communication channel implementing `Evented` #![allow(unused_imports, deprecated, missing_debug_implementations)] use {io, Ready, Poll, PollOpt, Registration, SetReadiness, Token}; use event::Evented; use lazycell::{LazyCell, AtomicLazyCell}; use std::any::Any; use std::fmt; use std::error; use std::sync::{mpsc, Arc}; use std::sync::atomic::{AtomicUsize, Ordering}; /// Creates a new asynchronous channel, where the `Receiver` can be registered /// with `Poll`. pub fn channel() -> (Sender, Receiver) { let (tx_ctl, rx_ctl) = ctl_pair(); let (tx, rx) = mpsc::channel(); let tx = Sender { tx, ctl: tx_ctl, }; let rx = Receiver { rx, ctl: rx_ctl, }; (tx, rx) } /// Creates a new synchronous, bounded channel where the `Receiver` can be /// registered with `Poll`. pub fn sync_channel(bound: usize) -> (SyncSender, Receiver) { let (tx_ctl, rx_ctl) = ctl_pair(); let (tx, rx) = mpsc::sync_channel(bound); let tx = SyncSender { tx, ctl: tx_ctl, }; let rx = Receiver { rx, ctl: rx_ctl, }; (tx, rx) } pub fn ctl_pair() -> (SenderCtl, ReceiverCtl) { let inner = Arc::new(Inner { pending: AtomicUsize::new(0), senders: AtomicUsize::new(1), set_readiness: AtomicLazyCell::new(), }); let tx = SenderCtl { inner: inner.clone(), }; let rx = ReceiverCtl { registration: LazyCell::new(), inner, }; (tx, rx) } /// Tracks messages sent on a channel in order to update readiness. pub struct SenderCtl { inner: Arc, } /// Tracks messages received on a channel in order to track readiness. pub struct ReceiverCtl { registration: LazyCell, inner: Arc, } pub struct Sender { tx: mpsc::Sender, ctl: SenderCtl, } pub struct SyncSender { tx: mpsc::SyncSender, ctl: SenderCtl, } pub struct Receiver { rx: mpsc::Receiver, ctl: ReceiverCtl, } pub enum SendError { Io(io::Error), Disconnected(T), } pub enum TrySendError { Io(io::Error), Full(T), Disconnected(T), } struct Inner { // The number of outstanding messages for the receiver to read pending: AtomicUsize, // The number of sender handles senders: AtomicUsize, // The set readiness handle set_readiness: AtomicLazyCell, } impl Sender { pub fn send(&self, t: T) -> Result<(), SendError> { self.tx.send(t) .map_err(SendError::from) .and_then(|_| { self.ctl.inc()?; Ok(()) }) } } impl Clone for Sender { fn clone(&self) -> Sender { Sender { tx: self.tx.clone(), ctl: self.ctl.clone(), } } } impl SyncSender { pub fn send(&self, t: T) -> Result<(), SendError> { self.tx.send(t) .map_err(From::from) .and_then(|_| { self.ctl.inc()?; Ok(()) }) } pub fn try_send(&self, t: T) -> Result<(), TrySendError> { self.tx.try_send(t) .map_err(From::from) .and_then(|_| { self.ctl.inc()?; Ok(()) }) } } impl Clone for SyncSender { fn clone(&self) -> SyncSender { SyncSender { tx: self.tx.clone(), ctl: self.ctl.clone(), } } } impl Receiver { pub fn try_recv(&self) -> Result { self.rx.try_recv().and_then(|res| { let _ = self.ctl.dec(); Ok(res) }) } } impl Evented for Receiver { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.ctl.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.ctl.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.ctl.deregister(poll) } } /* * * ===== SenderCtl / ReceiverCtl ===== * */ impl SenderCtl { /// Call to track that a message has been sent pub fn inc(&self) -> io::Result<()> { let cnt = self.inner.pending.fetch_add(1, Ordering::Acquire); if 0 == cnt { // Toggle readiness to readable if let Some(set_readiness) = self.inner.set_readiness.borrow() { set_readiness.set_readiness(Ready::readable())?; } } Ok(()) } } impl Clone for SenderCtl { fn clone(&self) -> SenderCtl { self.inner.senders.fetch_add(1, Ordering::Relaxed); SenderCtl { inner: self.inner.clone() } } } impl Drop for SenderCtl { fn drop(&mut self) { if self.inner.senders.fetch_sub(1, Ordering::Release) == 1 { let _ = self.inc(); } } } impl ReceiverCtl { pub fn dec(&self) -> io::Result<()> { let first = self.inner.pending.load(Ordering::Acquire); if first == 1 { // Unset readiness if let Some(set_readiness) = self.inner.set_readiness.borrow() { set_readiness.set_readiness(Ready::empty())?; } } // Decrement let second = self.inner.pending.fetch_sub(1, Ordering::AcqRel); if first == 1 && second > 1 { // There are still pending messages. Since readiness was // previously unset, it must be reset here if let Some(set_readiness) = self.inner.set_readiness.borrow() { set_readiness.set_readiness(Ready::readable())?; } } Ok(()) } } impl Evented for ReceiverCtl { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { if self.registration.borrow().is_some() { return Err(io::Error::new(io::ErrorKind::Other, "receiver already registered")); } let (registration, set_readiness) = Registration::new(poll, token, interest, opts); if self.inner.pending.load(Ordering::Relaxed) > 0 { // TODO: Don't drop readiness let _ = set_readiness.set_readiness(Ready::readable()); } self.registration.fill(registration).expect("unexpected state encountered"); self.inner.set_readiness.fill(set_readiness).expect("unexpected state encountered"); Ok(()) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { match self.registration.borrow() { Some(registration) => registration.update(poll, token, interest, opts), None => Err(io::Error::new(io::ErrorKind::Other, "receiver not registered")), } } fn deregister(&self, poll: &Poll) -> io::Result<()> { match self.registration.borrow() { Some(registration) => registration.deregister(poll), None => Err(io::Error::new(io::ErrorKind::Other, "receiver not registered")), } } } /* * * ===== Error conversions ===== * */ impl From> for SendError { fn from(src: mpsc::SendError) -> SendError { SendError::Disconnected(src.0) } } impl From for SendError { fn from(src: io::Error) -> SendError { SendError::Io(src) } } impl From> for TrySendError { fn from(src: mpsc::TrySendError) -> TrySendError { match src { mpsc::TrySendError::Full(v) => TrySendError::Full(v), mpsc::TrySendError::Disconnected(v) => TrySendError::Disconnected(v), } } } impl From> for TrySendError { fn from(src: mpsc::SendError) -> TrySendError { TrySendError::Disconnected(src.0) } } impl From for TrySendError { fn from(src: io::Error) -> TrySendError { TrySendError::Io(src) } } /* * * ===== Implement Error, Debug and Display for Errors ===== * */ impl error::Error for SendError { fn description(&self) -> &str { match *self { SendError::Io(ref io_err) => io_err.description(), SendError::Disconnected(..) => "Disconnected", } } } impl error::Error for TrySendError { fn description(&self) -> &str { match *self { TrySendError::Io(ref io_err) => io_err.description(), TrySendError::Full(..) => "Full", TrySendError::Disconnected(..) => "Disconnected", } } } impl fmt::Debug for SendError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { format_send_error(self, f) } } impl fmt::Display for SendError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { format_send_error(self, f) } } impl fmt::Debug for TrySendError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { format_try_send_error(self, f) } } impl fmt::Display for TrySendError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { format_try_send_error(self, f) } } #[inline] fn format_send_error(e: &SendError, f: &mut fmt::Formatter) -> fmt::Result { match *e { SendError::Io(ref io_err) => write!(f, "{}", io_err), SendError::Disconnected(..) => write!(f, "Disconnected"), } } #[inline] fn format_try_send_error(e: &TrySendError, f: &mut fmt::Formatter) -> fmt::Result { match *e { TrySendError::Io(ref io_err) => write!(f, "{}", io_err), TrySendError::Full(..) => write!(f, "Full"), TrySendError::Disconnected(..) => write!(f, "Disconnected"), } } mio-0.6.23/src/deprecated/event_loop.rs010064400007650000024000000260771376150724400162410ustar0000000000000000use {channel, Poll, Events, Token}; use event::Evented; use deprecated::{Handler, NotifyError}; use event_imp::{Event, Ready, PollOpt}; use timer::{self, Timer, Timeout}; use std::{io, fmt, usize}; use std::default::Default; use std::time::Duration; #[derive(Debug, Default, Clone)] pub struct EventLoopBuilder { config: Config, } /// `EventLoop` configuration details #[derive(Clone, Debug)] struct Config { // == Notifications == notify_capacity: usize, messages_per_tick: usize, // == Timer == timer_tick: Duration, timer_wheel_size: usize, timer_capacity: usize, } impl Default for Config { fn default() -> Config { // Default EventLoop configuration values Config { notify_capacity: 4_096, messages_per_tick: 256, timer_tick: Duration::from_millis(100), timer_wheel_size: 1_024, timer_capacity: 65_536, } } } impl EventLoopBuilder { /// Construct a new `EventLoopBuilder` with the default configuration /// values. pub fn new() -> EventLoopBuilder { EventLoopBuilder::default() } /// Sets the maximum number of messages that can be buffered on the event /// loop's notification channel before a send will fail. /// /// The default value for this is 4096. pub fn notify_capacity(&mut self, capacity: usize) -> &mut Self { self.config.notify_capacity = capacity; self } /// Sets the maximum number of messages that can be processed on any tick of /// the event loop. /// /// The default value for this is 256. pub fn messages_per_tick(&mut self, messages: usize) -> &mut Self { self.config.messages_per_tick = messages; self } pub fn timer_tick(&mut self, val: Duration) -> &mut Self { self.config.timer_tick = val; self } pub fn timer_wheel_size(&mut self, size: usize) -> &mut Self { self.config.timer_wheel_size = size; self } pub fn timer_capacity(&mut self, cap: usize) -> &mut Self { self.config.timer_capacity = cap; self } /// Constructs a new `EventLoop` using the configured values. The /// `EventLoop` will not be running. pub fn build(self) -> io::Result> { EventLoop::configured(self.config) } } /// Single threaded IO event loop. pub struct EventLoop { run: bool, poll: Poll, events: Events, timer: Timer, notify_tx: channel::SyncSender, notify_rx: channel::Receiver, config: Config, } // Token used to represent notifications const NOTIFY: Token = Token(usize::MAX - 1); const TIMER: Token = Token(usize::MAX - 2); impl EventLoop { /// Constructs a new `EventLoop` using the default configuration values. /// The `EventLoop` will not be running. pub fn new() -> io::Result> { EventLoop::configured(Config::default()) } fn configured(config: Config) -> io::Result> { // Create the IO poller let poll = Poll::new()?; let timer = timer::Builder::default() .tick_duration(config.timer_tick) .num_slots(config.timer_wheel_size) .capacity(config.timer_capacity) .build(); // Create cross thread notification queue let (tx, rx) = channel::sync_channel(config.notify_capacity); // Register the notification wakeup FD with the IO poller poll.register(&rx, NOTIFY, Ready::readable(), PollOpt::edge() | PollOpt::oneshot())?; poll.register(&timer, TIMER, Ready::readable(), PollOpt::edge())?; Ok(EventLoop { run: true, poll, timer, notify_tx: tx, notify_rx: rx, config, events: Events::with_capacity(1024), }) } /// Returns a sender that allows sending messages to the event loop in a /// thread-safe way, waking up the event loop if needed. /// /// # Implementation Details /// /// Each [EventLoop](#) contains a lock-free queue with a pre-allocated /// buffer size. The size can be changed by modifying /// [EventLoopConfig.notify_capacity](struct.EventLoopConfig.html#method.notify_capacity). /// When a message is sent to the EventLoop, it is first pushed on to the /// queue. Then, if the EventLoop is currently running, an atomic flag is /// set to indicate that the next loop iteration should be started without /// waiting. /// /// If the loop is blocked waiting for IO events, then it is woken up. The /// strategy for waking up the event loop is platform dependent. For /// example, on a modern Linux OS, eventfd is used. On older OSes, a pipe /// is used. /// /// The strategy of setting an atomic flag if the event loop is not already /// sleeping allows avoiding an expensive wakeup operation if at all possible. pub fn channel(&self) -> Sender { Sender::new(self.notify_tx.clone()) } /// Schedules a timeout after the requested time interval. When the /// duration has been reached, /// [Handler::timeout](trait.Handler.html#method.timeout) will be invoked /// passing in the supplied token. /// /// Returns a handle to the timeout that can be used to cancel the timeout /// using [#clear_timeout](#method.clear_timeout). pub fn timeout(&mut self, token: H::Timeout, delay: Duration) -> timer::Result { self.timer.set_timeout(delay, token) } /// If the supplied timeout has not been triggered, cancel it such that it /// will not be triggered in the future. pub fn clear_timeout(&mut self, timeout: &Timeout) -> bool { self.timer.cancel_timeout(&timeout).is_some() } /// Tells the event loop to exit after it is done handling all events in the /// current iteration. pub fn shutdown(&mut self) { self.run = false; } /// Indicates whether the event loop is currently running. If it's not it has either /// stopped or is scheduled to stop on the next tick. pub fn is_running(&self) -> bool { self.run } /// Registers an IO handle with the event loop. pub fn register(&mut self, io: &E, token: Token, interest: Ready, opt: PollOpt) -> io::Result<()> where E: Evented { self.poll.register(io, token, interest, opt) } /// Re-Registers an IO handle with the event loop. pub fn reregister(&mut self, io: &E, token: Token, interest: Ready, opt: PollOpt) -> io::Result<()> where E: Evented { self.poll.reregister(io, token, interest, opt) } /// Keep spinning the event loop indefinitely, and notify the handler whenever /// any of the registered handles are ready. pub fn run(&mut self, handler: &mut H) -> io::Result<()> { self.run = true; while self.run { // Execute ticks as long as the event loop is running self.run_once(handler, None)?; } Ok(()) } /// Deregisters an IO handle with the event loop. /// /// Both kqueue and epoll will automatically clear any pending events when closing a /// file descriptor (socket). In that case, this method does not need to be called /// prior to dropping a connection from the slab. /// /// Warning: kqueue effectively builds in deregister when using edge-triggered mode with /// oneshot. Calling `deregister()` on the socket will cause a TcpStream error. pub fn deregister(&mut self, io: &E) -> io::Result<()> where E: Evented { self.poll.deregister(io) } /// Spin the event loop once, with a given timeout (forever if `None`), /// and notify the handler if any of the registered handles become ready /// during that time. pub fn run_once(&mut self, handler: &mut H, timeout: Option) -> io::Result<()> { trace!("event loop tick"); // Check the registered IO handles for any new events. Each poll // is for one second, so a shutdown request can last as long as // one second before it takes effect. let events = match self.io_poll(timeout) { Ok(e) => e, Err(err) => { if err.kind() == io::ErrorKind::Interrupted { handler.interrupted(self); 0 } else { return Err(err); } } }; self.io_process(handler, events); handler.tick(self); Ok(()) } #[inline] fn io_poll(&mut self, timeout: Option) -> io::Result { self.poll.poll(&mut self.events, timeout) } // Process IO events that have been previously polled fn io_process(&mut self, handler: &mut H, cnt: usize) { let mut i = 0; trace!("io_process(..); cnt={}; len={}", cnt, self.events.len()); // Iterate over the notifications. Each event provides the token // it was registered with (which usually represents, at least, the // handle that the event is about) as well as information about // what kind of event occurred (readable, writable, signal, etc.) while i < cnt { let evt = self.events.get(i).unwrap(); trace!("event={:?}; idx={:?}", evt, i); match evt.token() { NOTIFY => self.notify(handler), TIMER => self.timer_process(handler), _ => self.io_event(handler, evt) } i += 1; } } fn io_event(&mut self, handler: &mut H, evt: Event) { handler.ready(self, evt.token(), evt.readiness()); } fn notify(&mut self, handler: &mut H) { for _ in 0..self.config.messages_per_tick { match self.notify_rx.try_recv() { Ok(msg) => handler.notify(self, msg), _ => break, } } // Re-register let _ = self.poll.reregister(&self.notify_rx, NOTIFY, Ready::readable(), PollOpt::edge() | PollOpt::oneshot()); } fn timer_process(&mut self, handler: &mut H) { while let Some(t) = self.timer.poll() { handler.timeout(self, t); } } } impl fmt::Debug for EventLoop { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_struct("EventLoop") .field("run", &self.run) .field("poll", &self.poll) .field("config", &self.config) .finish() } } /// Sends messages to the EventLoop from other threads. pub struct Sender { tx: channel::SyncSender } impl fmt::Debug for Sender { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { write!(fmt, "Sender {{ ... }}") } } impl Clone for Sender { fn clone(&self) -> Sender { Sender { tx: self.tx.clone() } } } impl Sender { fn new(tx: channel::SyncSender) -> Sender { Sender { tx } } pub fn send(&self, msg: M) -> Result<(), NotifyError> { self.tx.try_send(msg)?; Ok(()) } } mio-0.6.23/src/deprecated/handler.rs010064400007650000024000000024131376150724400154700ustar0000000000000000use {Ready, Token}; use deprecated::{EventLoop}; #[allow(unused_variables)] pub trait Handler: Sized { type Timeout; type Message; /// Invoked when the socket represented by `token` is ready to be operated /// on. `events` indicates the specific operations that are /// ready to be performed. /// /// For example, when a TCP socket is ready to be read from, `events` will /// have `readable` set. When the socket is ready to be written to, /// `events` will have `writable` set. /// /// This function will only be invoked a single time per socket per event /// loop tick. fn ready(&mut self, event_loop: &mut EventLoop, token: Token, events: Ready) { } /// Invoked when a message has been received via the event loop's channel. fn notify(&mut self, event_loop: &mut EventLoop, msg: Self::Message) { } /// Invoked when a timeout has completed. fn timeout(&mut self, event_loop: &mut EventLoop, timeout: Self::Timeout) { } /// Invoked when `EventLoop` has been interrupted by a signal interrupt. fn interrupted(&mut self, event_loop: &mut EventLoop) { } /// Invoked at the end of an event loop tick. fn tick(&mut self, event_loop: &mut EventLoop) { } } mio-0.6.23/src/deprecated/io.rs010064400007650000024000000012141376150724400144600ustar0000000000000000use ::io::MapNonBlock; use std::io::{self, Read, Write}; pub trait TryRead { fn try_read(&mut self, buf: &mut [u8]) -> io::Result>; } pub trait TryWrite { fn try_write(&mut self, buf: &[u8]) -> io::Result>; } impl TryRead for T { fn try_read(&mut self, dst: &mut [u8]) -> io::Result> { self.read(dst).map_non_block() } } impl TryWrite for T { fn try_write(&mut self, src: &[u8]) -> io::Result> { self.write(src).map_non_block() } } pub trait TryAccept { type Output; fn accept(&self) -> io::Result>; } mio-0.6.23/src/deprecated/mod.rs010064400007650000024000000010351376150724400146310ustar0000000000000000#![allow(deprecated)] mod event_loop; mod io; mod handler; mod notify; #[cfg(all(unix, not(target_os = "fuchsia")))] pub mod unix; pub use self::event_loop::{ EventLoop, EventLoopBuilder, Sender, }; pub use self::io::{ TryAccept, TryRead, TryWrite, }; pub use self::handler::{ Handler, }; pub use self::notify::{ NotifyError, }; #[cfg(all(unix, not(target_os = "fuchsia")))] pub use self::unix::{ pipe, PipeReader, PipeWriter, UnixListener, UnixSocket, UnixStream, Shutdown, }; mio-0.6.23/src/deprecated/notify.rs010064400007650000024000000034251376150724400153670ustar0000000000000000use {channel}; use std::{fmt, io, error, any}; pub enum NotifyError { Io(io::Error), Full(T), Closed(Option), } impl fmt::Debug for NotifyError { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { match *self { NotifyError::Io(ref e) => { write!(fmt, "NotifyError::Io({:?})", e) } NotifyError::Full(..) => { write!(fmt, "NotifyError::Full(..)") } NotifyError::Closed(..) => { write!(fmt, "NotifyError::Closed(..)") } } } } impl fmt::Display for NotifyError { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { match *self { NotifyError::Io(ref e) => { write!(fmt, "IO error: {}", e) } NotifyError::Full(..) => write!(fmt, "Full"), NotifyError::Closed(..) => write!(fmt, "Closed") } } } impl error::Error for NotifyError { fn description(&self) -> &str { match *self { NotifyError::Io(ref err) => err.description(), NotifyError::Closed(..) => "The receiving end has hung up", NotifyError::Full(..) => "Queue is full" } } fn cause(&self) -> Option<&error::Error> { match *self { NotifyError::Io(ref err) => Some(err), _ => None } } } impl From> for NotifyError { fn from(src: channel::TrySendError) -> NotifyError { match src { channel::TrySendError::Io(e) => NotifyError::Io(e), channel::TrySendError::Full(v) => NotifyError::Full(v), channel::TrySendError::Disconnected(v) => NotifyError::Closed(Some(v)), } } } mio-0.6.23/src/deprecated/unix.rs010064400007650000024000000236511376150724400150450ustar0000000000000000use {io, sys, Ready, Poll, PollOpt, Token}; use event::Evented; use deprecated::TryAccept; use io::MapNonBlock; use std::io::{Read, Write}; use std::path::Path; pub use std::net::Shutdown; use std::process; pub use sys::Io; #[derive(Debug)] pub struct UnixSocket { sys: sys::UnixSocket, } impl UnixSocket { /// Returns a new, unbound, non-blocking Unix domain socket pub fn stream() -> io::Result { sys::UnixSocket::stream() .map(From::from) } /// Connect the socket to the specified address pub fn connect + ?Sized>(self, addr: &P) -> io::Result<(UnixStream, bool)> { let complete = match self.sys.connect(addr) { Ok(()) => true, Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => false, Err(e) => return Err(e), }; Ok((From::from(self.sys), complete)) } /// Bind the socket to the specified address pub fn bind + ?Sized>(&self, addr: &P) -> io::Result<()> { self.sys.bind(addr) } /// Listen for incoming requests pub fn listen(self, backlog: usize) -> io::Result { self.sys.listen(backlog)?; Ok(From::from(self.sys)) } pub fn try_clone(&self) -> io::Result { self.sys.try_clone() .map(From::from) } } impl Evented for UnixSocket { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.sys.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.sys.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.sys.deregister(poll) } } impl From for UnixSocket { fn from(sys: sys::UnixSocket) -> UnixSocket { UnixSocket { sys } } } /* * * ===== UnixStream ===== * */ #[derive(Debug)] pub struct UnixStream { sys: sys::UnixSocket, } impl UnixStream { pub fn connect + ?Sized>(path: &P) -> io::Result { UnixSocket::stream() .and_then(|sock| sock.connect(path)) .map(|(sock, _)| sock) } pub fn try_clone(&self) -> io::Result { self.sys.try_clone() .map(From::from) } pub fn shutdown(&self, how: Shutdown) -> io::Result { self.sys.shutdown(how).map(|_| 0) } pub fn read_recv_fd(&mut self, buf: &mut [u8]) -> io::Result<(usize, Option)> { self.sys.read_recv_fd(buf) } pub fn try_read_recv_fd(&mut self, buf: &mut [u8]) -> io::Result)>> { self.read_recv_fd(buf).map_non_block() } pub fn write_send_fd(&mut self, buf: &[u8], fd: RawFd) -> io::Result { self.sys.write_send_fd(buf, fd) } pub fn try_write_send_fd(&mut self, buf: &[u8], fd: RawFd) -> io::Result> { self.write_send_fd(buf, fd).map_non_block() } } impl Read for UnixStream { fn read(&mut self, buf: &mut [u8]) -> io::Result { self.sys.read(buf) } } impl Write for UnixStream { fn write(&mut self, buf: &[u8]) -> io::Result { self.sys.write(buf) } fn flush(&mut self) -> io::Result<()> { self.sys.flush() } } impl Evented for UnixStream { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.sys.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.sys.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.sys.deregister(poll) } } impl From for UnixStream { fn from(sys: sys::UnixSocket) -> UnixStream { UnixStream { sys } } } /* * * ===== UnixListener ===== * */ #[derive(Debug)] pub struct UnixListener { sys: sys::UnixSocket, } impl UnixListener { pub fn bind + ?Sized>(addr: &P) -> io::Result { UnixSocket::stream().and_then(|sock| { sock.bind(addr)?; sock.listen(256) }) } pub fn accept(&self) -> io::Result { self.sys.accept().map(From::from) } pub fn try_clone(&self) -> io::Result { self.sys.try_clone().map(From::from) } } impl Evented for UnixListener { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.sys.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.sys.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.sys.deregister(poll) } } impl TryAccept for UnixListener { type Output = UnixStream; fn accept(&self) -> io::Result> { UnixListener::accept(self).map_non_block() } } impl From for UnixListener { fn from(sys: sys::UnixSocket) -> UnixListener { UnixListener { sys } } } /* * * ===== Pipe ===== * */ pub fn pipe() -> io::Result<(PipeReader, PipeWriter)> { let (rd, wr) = sys::pipe()?; Ok((From::from(rd), From::from(wr))) } #[derive(Debug)] pub struct PipeReader { io: Io, } impl PipeReader { pub fn from_stdout(stdout: process::ChildStdout) -> io::Result { if let Err(e) = sys::set_nonblock(stdout.as_raw_fd()) { return Err(e); } Ok(PipeReader::from(unsafe { Io::from_raw_fd(stdout.into_raw_fd()) })) } pub fn from_stderr(stderr: process::ChildStderr) -> io::Result { if let Err(e) = sys::set_nonblock(stderr.as_raw_fd()) { return Err(e); } Ok(PipeReader::from(unsafe { Io::from_raw_fd(stderr.into_raw_fd()) })) } } impl Read for PipeReader { fn read(&mut self, buf: &mut [u8]) -> io::Result { self.io.read(buf) } } impl<'a> Read for &'a PipeReader { fn read(&mut self, buf: &mut [u8]) -> io::Result { (&self.io).read(buf) } } impl Evented for PipeReader { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.io.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.io.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.io.deregister(poll) } } impl From for PipeReader { fn from(io: Io) -> PipeReader { PipeReader { io } } } #[derive(Debug)] pub struct PipeWriter { io: Io, } impl PipeWriter { pub fn from_stdin(stdin: process::ChildStdin) -> io::Result { if let Err(e) = sys::set_nonblock(stdin.as_raw_fd()) { return Err(e); } Ok(PipeWriter::from(unsafe { Io::from_raw_fd(stdin.into_raw_fd()) })) } } impl Write for PipeWriter { fn write(&mut self, buf: &[u8]) -> io::Result { self.io.write(buf) } fn flush(&mut self) -> io::Result<()> { self.io.flush() } } impl<'a> Write for &'a PipeWriter { fn write(&mut self, buf: &[u8]) -> io::Result { (&self.io).write(buf) } fn flush(&mut self) -> io::Result<()> { (&self.io).flush() } } impl Evented for PipeWriter { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.io.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.io.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.io.deregister(poll) } } impl From for PipeWriter { fn from(io: Io) -> PipeWriter { PipeWriter { io } } } /* * * ===== Conversions ===== * */ use std::os::unix::io::{RawFd, IntoRawFd, AsRawFd, FromRawFd}; impl IntoRawFd for UnixSocket { fn into_raw_fd(self) -> RawFd { self.sys.into_raw_fd() } } impl AsRawFd for UnixSocket { fn as_raw_fd(&self) -> RawFd { self.sys.as_raw_fd() } } impl FromRawFd for UnixSocket { unsafe fn from_raw_fd(fd: RawFd) -> UnixSocket { UnixSocket { sys: FromRawFd::from_raw_fd(fd) } } } impl IntoRawFd for UnixStream { fn into_raw_fd(self) -> RawFd { self.sys.into_raw_fd() } } impl AsRawFd for UnixStream { fn as_raw_fd(&self) -> RawFd { self.sys.as_raw_fd() } } impl FromRawFd for UnixStream { unsafe fn from_raw_fd(fd: RawFd) -> UnixStream { UnixStream { sys: FromRawFd::from_raw_fd(fd) } } } impl IntoRawFd for UnixListener { fn into_raw_fd(self) -> RawFd { self.sys.into_raw_fd() } } impl AsRawFd for UnixListener { fn as_raw_fd(&self) -> RawFd { self.sys.as_raw_fd() } } impl FromRawFd for UnixListener { unsafe fn from_raw_fd(fd: RawFd) -> UnixListener { UnixListener { sys: FromRawFd::from_raw_fd(fd) } } } impl IntoRawFd for PipeReader { fn into_raw_fd(self) -> RawFd { self.io.into_raw_fd() } } impl AsRawFd for PipeReader { fn as_raw_fd(&self) -> RawFd { self.io.as_raw_fd() } } impl FromRawFd for PipeReader { unsafe fn from_raw_fd(fd: RawFd) -> PipeReader { PipeReader { io: FromRawFd::from_raw_fd(fd) } } } impl IntoRawFd for PipeWriter { fn into_raw_fd(self) -> RawFd { self.io.into_raw_fd() } } impl AsRawFd for PipeWriter { fn as_raw_fd(&self) -> RawFd { self.io.as_raw_fd() } } impl FromRawFd for PipeWriter { unsafe fn from_raw_fd(fd: RawFd) -> PipeWriter { PipeWriter { io: FromRawFd::from_raw_fd(fd) } } } mio-0.6.23/src/event_imp.rs010064400007650000024000000727151376150724400137550ustar0000000000000000use {Poll, Token}; use std::{fmt, io, ops}; /// A value that may be registered with `Poll` /// /// Values that implement `Evented` can be registered with `Poll`. Users of Mio /// should not use the `Evented` trait functions directly. Instead, the /// equivalent functions on `Poll` should be used. /// /// See [`Poll`] for more details. /// /// # Implementing `Evented` /// /// There are two types of `Evented` values. /// /// * **System** handles, which are backed by sockets or other system handles. /// These `Evented` handles will be monitored by the system selector. In this /// case, an implementation of `Evented` delegates to a lower level handle. /// /// * **User** handles, which are driven entirely in user space using /// [`Registration`] and [`SetReadiness`]. In this case, the implementer takes /// responsibility for driving the readiness state changes. /// /// [`Poll`]: ../struct.Poll.html /// [`Registration`]: ../struct.Registration.html /// [`SetReadiness`]: ../struct.SetReadiness.html /// /// # Examples /// /// Implementing `Evented` on a struct containing a socket: /// /// ``` /// use mio::{Ready, Poll, PollOpt, Token}; /// use mio::event::Evented; /// use mio::net::TcpStream; /// /// use std::io; /// /// pub struct MyEvented { /// socket: TcpStream, /// } /// /// impl Evented for MyEvented { /// fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) /// -> io::Result<()> /// { /// // Delegate the `register` call to `socket` /// self.socket.register(poll, token, interest, opts) /// } /// /// fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) /// -> io::Result<()> /// { /// // Delegate the `reregister` call to `socket` /// self.socket.reregister(poll, token, interest, opts) /// } /// /// fn deregister(&self, poll: &Poll) -> io::Result<()> { /// // Delegate the `deregister` call to `socket` /// self.socket.deregister(poll) /// } /// } /// ``` /// /// Implement `Evented` using [`Registration`] and [`SetReadiness`]. /// /// ``` /// use mio::{Ready, Registration, Poll, PollOpt, Token}; /// use mio::event::Evented; /// /// use std::io; /// use std::time::Instant; /// use std::thread; /// /// pub struct Deadline { /// when: Instant, /// registration: Registration, /// } /// /// impl Deadline { /// pub fn new(when: Instant) -> Deadline { /// let (registration, set_readiness) = Registration::new2(); /// /// thread::spawn(move || { /// let now = Instant::now(); /// /// if now < when { /// thread::sleep(when - now); /// } /// /// set_readiness.set_readiness(Ready::readable()); /// }); /// /// Deadline { /// when: when, /// registration: registration, /// } /// } /// /// pub fn is_elapsed(&self) -> bool { /// Instant::now() >= self.when /// } /// } /// /// impl Evented for Deadline { /// fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) /// -> io::Result<()> /// { /// self.registration.register(poll, token, interest, opts) /// } /// /// fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) /// -> io::Result<()> /// { /// self.registration.reregister(poll, token, interest, opts) /// } /// /// fn deregister(&self, poll: &Poll) -> io::Result<()> { /// self.registration.deregister(poll) /// } /// } /// ``` pub trait Evented { /// Register `self` with the given `Poll` instance. /// /// This function should not be called directly. Use [`Poll::register`] /// instead. Implementors should handle registration by either delegating /// the call to another `Evented` type or creating a [`Registration`]. /// /// [`Poll::register`]: ../struct.Poll.html#method.register /// [`Registration`]: ../struct.Registration.html fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()>; /// Re-register `self` with the given `Poll` instance. /// /// This function should not be called directly. Use [`Poll::reregister`] /// instead. Implementors should handle re-registration by either delegating /// the call to another `Evented` type or calling /// [`SetReadiness::set_readiness`]. /// /// [`Poll::reregister`]: ../struct.Poll.html#method.reregister /// [`SetReadiness::set_readiness`]: ../struct.SetReadiness.html#method.set_readiness fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()>; /// Deregister `self` from the given `Poll` instance /// /// This function should not be called directly. Use [`Poll::deregister`] /// instead. Implementors should handle deregistration by either delegating /// the call to another `Evented` type or by dropping the [`Registration`] /// associated with `self`. /// /// [`Poll::deregister`]: ../struct.Poll.html#method.deregister /// [`Registration`]: ../struct.Registration.html fn deregister(&self, poll: &Poll) -> io::Result<()>; } impl Evented for Box { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.as_ref().register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.as_ref().reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.as_ref().deregister(poll) } } impl Evented for Box { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.as_ref().register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.as_ref().reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.as_ref().deregister(poll) } } impl Evented for ::std::sync::Arc { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.as_ref().register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.as_ref().reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.as_ref().deregister(poll) } } /// Options supplied when registering an `Evented` handle with `Poll` /// /// `PollOpt` values can be combined together using the various bitwise /// operators. /// /// For high level documentation on polling and poll options, see [`Poll`]. /// /// # Examples /// /// ``` /// use mio::PollOpt; /// /// let opts = PollOpt::edge() | PollOpt::oneshot(); /// /// assert!(opts.is_edge()); /// assert!(opts.is_oneshot()); /// assert!(!opts.is_level()); /// ``` /// /// [`Poll`]: struct.Poll.html #[derive(Copy, PartialEq, Eq, Clone, PartialOrd, Ord)] pub struct PollOpt(usize); impl PollOpt { /// Return a `PollOpt` representing no set options. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::PollOpt; /// /// let opt = PollOpt::empty(); /// /// assert!(!opt.is_level()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn empty() -> PollOpt { PollOpt(0) } /// Return a `PollOpt` representing edge-triggered notifications. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::PollOpt; /// /// let opt = PollOpt::edge(); /// /// assert!(opt.is_edge()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn edge() -> PollOpt { PollOpt(0b0001) } /// Return a `PollOpt` representing level-triggered notifications. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::PollOpt; /// /// let opt = PollOpt::level(); /// /// assert!(opt.is_level()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn level() -> PollOpt { PollOpt(0b0010) } /// Return a `PollOpt` representing oneshot notifications. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::PollOpt; /// /// let opt = PollOpt::oneshot(); /// /// assert!(opt.is_oneshot()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn oneshot() -> PollOpt { PollOpt(0b0100) } #[deprecated(since = "0.6.5", note = "removed")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] #[inline] pub fn urgent() -> PollOpt { PollOpt(0b1000) } #[deprecated(since = "0.6.5", note = "removed")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] #[inline] pub fn all() -> PollOpt { PollOpt::edge() | PollOpt::level() | PollOpt::oneshot() } /// Returns true if the options include edge-triggered notifications. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::PollOpt; /// /// let opt = PollOpt::edge(); /// /// assert!(opt.is_edge()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn is_edge(&self) -> bool { self.contains(PollOpt::edge()) } /// Returns true if the options include level-triggered notifications. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::PollOpt; /// /// let opt = PollOpt::level(); /// /// assert!(opt.is_level()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn is_level(&self) -> bool { self.contains(PollOpt::level()) } /// Returns true if the options includes oneshot. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::PollOpt; /// /// let opt = PollOpt::oneshot(); /// /// assert!(opt.is_oneshot()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn is_oneshot(&self) -> bool { self.contains(PollOpt::oneshot()) } #[deprecated(since = "0.6.5", note = "removed")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] #[allow(deprecated)] #[inline] pub fn is_urgent(&self) -> bool { self.contains(PollOpt::urgent()) } #[deprecated(since = "0.6.5", note = "removed")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] #[inline] pub fn bits(&self) -> usize { self.0 } /// Returns true if `self` is a superset of `other`. /// /// `other` may represent more than one option, in which case the function /// only returns true if `self` contains all of the options specified in /// `other`. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::PollOpt; /// /// let opt = PollOpt::oneshot(); /// /// assert!(opt.contains(PollOpt::oneshot())); /// assert!(!opt.contains(PollOpt::edge())); /// ``` /// /// ``` /// use mio::PollOpt; /// /// let opt = PollOpt::oneshot() | PollOpt::edge(); /// /// assert!(opt.contains(PollOpt::oneshot())); /// assert!(opt.contains(PollOpt::edge())); /// ``` /// /// ``` /// use mio::PollOpt; /// /// let opt = PollOpt::oneshot() | PollOpt::edge(); /// /// assert!(!PollOpt::oneshot().contains(opt)); /// assert!(opt.contains(opt)); /// assert!((opt | PollOpt::level()).contains(opt)); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn contains(&self, other: PollOpt) -> bool { (*self & other) == other } /// Adds all options represented by `other` into `self`. /// /// This is equivalent to `*self = *self | other`. /// /// # Examples /// /// ``` /// use mio::PollOpt; /// /// let mut opt = PollOpt::empty(); /// opt.insert(PollOpt::oneshot()); /// /// assert!(opt.is_oneshot()); /// ``` #[inline] pub fn insert(&mut self, other: PollOpt) { self.0 |= other.0; } /// Removes all options represented by `other` from `self`. /// /// This is equivalent to `*self = *self & !other`. /// /// # Examples /// /// ``` /// use mio::PollOpt; /// /// let mut opt = PollOpt::oneshot(); /// opt.remove(PollOpt::oneshot()); /// /// assert!(!opt.is_oneshot()); /// ``` #[inline] pub fn remove(&mut self, other: PollOpt) { self.0 &= !other.0; } } impl ops::BitOr for PollOpt { type Output = PollOpt; #[inline] fn bitor(self, other: PollOpt) -> PollOpt { PollOpt(self.0 | other.0) } } impl ops::BitXor for PollOpt { type Output = PollOpt; #[inline] fn bitxor(self, other: PollOpt) -> PollOpt { PollOpt(self.0 ^ other.0) } } impl ops::BitAnd for PollOpt { type Output = PollOpt; #[inline] fn bitand(self, other: PollOpt) -> PollOpt { PollOpt(self.0 & other.0) } } impl ops::Sub for PollOpt { type Output = PollOpt; #[inline] fn sub(self, other: PollOpt) -> PollOpt { PollOpt(self.0 & !other.0) } } #[deprecated(since = "0.6.10", note = "removed")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] impl ops::Not for PollOpt { type Output = PollOpt; #[inline] fn not(self) -> PollOpt { PollOpt(!self.0) } } impl fmt::Debug for PollOpt { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { let mut one = false; let flags = [ (PollOpt::edge(), "Edge-Triggered"), (PollOpt::level(), "Level-Triggered"), (PollOpt::oneshot(), "OneShot")]; for &(flag, msg) in &flags { if self.contains(flag) { if one { write!(fmt, " | ")? } write!(fmt, "{}", msg)?; one = true } } if !one { fmt.write_str("(empty)")?; } Ok(()) } } #[test] fn test_debug_pollopt() { assert_eq!("(empty)", format!("{:?}", PollOpt::empty())); assert_eq!("Edge-Triggered", format!("{:?}", PollOpt::edge())); assert_eq!("Level-Triggered", format!("{:?}", PollOpt::level())); assert_eq!("OneShot", format!("{:?}", PollOpt::oneshot())); } /// A set of readiness event kinds /// /// `Ready` is a set of operation descriptors indicating which kind of an /// operation is ready to be performed. For example, `Ready::readable()` /// indicates that the associated `Evented` handle is ready to perform a /// `read` operation. /// /// This struct only represents portable event kinds. Since only readable and /// writable events are guaranteed to be raised on all systems, those are the /// only ones available via the `Ready` struct. There are also platform specific /// extensions to `Ready`, i.e. `UnixReady`, which provide additional readiness /// event kinds only available on unix platforms. /// /// `Ready` values can be combined together using the various bitwise operators. /// /// For high level documentation on polling and readiness, see [`Poll`]. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let ready = Ready::readable() | Ready::writable(); /// /// assert!(ready.is_readable()); /// assert!(ready.is_writable()); /// ``` /// /// [`Poll`]: struct.Poll.html /// [`readable`]: #method.readable /// [`writable`]: #method.writable /// [readiness]: struct.Poll.html#readiness-operations #[derive(Copy, PartialEq, Eq, Clone, PartialOrd, Ord)] pub struct Ready(usize); const READABLE: usize = 0b00001; const WRITABLE: usize = 0b00010; // These are deprecated and are moved into platform specific implementations. const ERROR: usize = 0b00100; const HUP: usize = 0b01000; impl Ready { /// Returns the empty `Ready` set. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let ready = Ready::empty(); /// /// assert!(!ready.is_readable()); /// ``` /// /// [`Poll`]: struct.Poll.html pub fn empty() -> Ready { Ready(0) } #[deprecated(since = "0.6.5", note = "use Ready::empty instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub fn none() -> Ready { Ready::empty() } /// Returns a `Ready` representing readable readiness. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let ready = Ready::readable(); /// /// assert!(ready.is_readable()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn readable() -> Ready { Ready(READABLE) } /// Returns a `Ready` representing writable readiness. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let ready = Ready::writable(); /// /// assert!(ready.is_writable()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn writable() -> Ready { Ready(WRITABLE) } #[deprecated(since = "0.6.5", note = "use UnixReady instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] #[inline] pub fn error() -> Ready { Ready(ERROR) } #[deprecated(since = "0.6.5", note = "use UnixReady instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] #[inline] pub fn hup() -> Ready { Ready(HUP) } /// Returns a `Ready` representing readiness for all operations. /// /// This includes platform specific operations as well (`hup`, `aio`, /// `error`, `lio`, `pri`). /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let ready = Ready::all(); /// /// assert!(ready.is_readable()); /// assert!(ready.is_writable()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn all() -> Ready { Ready(READABLE | WRITABLE | ::sys::READY_ALL) } /// Returns true if `Ready` is the empty set /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let ready = Ready::empty(); /// assert!(ready.is_empty()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn is_empty(&self) -> bool { *self == Ready::empty() } #[deprecated(since = "0.6.5", note = "use Ready::is_empty instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] #[inline] pub fn is_none(&self) -> bool { self.is_empty() } /// Returns true if the value includes readable readiness /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let ready = Ready::readable(); /// /// assert!(ready.is_readable()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn is_readable(&self) -> bool { self.contains(Ready::readable()) } /// Returns true if the value includes writable readiness /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let ready = Ready::writable(); /// /// assert!(ready.is_writable()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn is_writable(&self) -> bool { self.contains(Ready::writable()) } #[deprecated(since = "0.6.5", note = "use UnixReady instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] #[inline] pub fn is_error(&self) -> bool { self.contains(Ready(ERROR)) } #[deprecated(since = "0.6.5", note = "use UnixReady instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] #[inline] pub fn is_hup(&self) -> bool { self.contains(Ready(HUP)) } /// Adds all readiness represented by `other` into `self`. /// /// This is equivalent to `*self = *self | other`. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let mut readiness = Ready::empty(); /// readiness.insert(Ready::readable()); /// /// assert!(readiness.is_readable()); /// ``` #[inline] pub fn insert>(&mut self, other: T) { let other = other.into(); self.0 |= other.0; } /// Removes all options represented by `other` from `self`. /// /// This is equivalent to `*self = *self & !other`. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let mut readiness = Ready::readable(); /// readiness.remove(Ready::readable()); /// /// assert!(!readiness.is_readable()); /// ``` #[inline] pub fn remove>(&mut self, other: T) { let other = other.into(); self.0 &= !other.0; } #[deprecated(since = "0.6.5", note = "removed")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] #[inline] pub fn bits(&self) -> usize { self.0 } /// Returns true if `self` is a superset of `other`. /// /// `other` may represent more than one readiness operations, in which case /// the function only returns true if `self` contains all readiness /// specified in `other`. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let readiness = Ready::readable(); /// /// assert!(readiness.contains(Ready::readable())); /// assert!(!readiness.contains(Ready::writable())); /// ``` /// /// ``` /// use mio::Ready; /// /// let readiness = Ready::readable() | Ready::writable(); /// /// assert!(readiness.contains(Ready::readable())); /// assert!(readiness.contains(Ready::writable())); /// ``` /// /// ``` /// use mio::Ready; /// /// let readiness = Ready::readable() | Ready::writable(); /// /// assert!(!Ready::readable().contains(readiness)); /// assert!(readiness.contains(readiness)); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] pub fn contains>(&self, other: T) -> bool { let other = other.into(); (*self & other) == other } /// Create a `Ready` instance using the given `usize` representation. /// /// The `usize` representation must have been obtained from a call to /// `Ready::as_usize`. /// /// The `usize` representation must be treated as opaque. There is no /// guaranteed correlation between the returned value and platform defined /// constants. Also, there is no guarantee that the `usize` representation /// will remain constant across patch releases of Mio. /// /// This function is mainly provided to allow the caller to loa a /// readiness value from an `AtomicUsize`. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let ready = Ready::readable(); /// let ready_usize = ready.as_usize(); /// let ready2 = Ready::from_usize(ready_usize); /// /// assert_eq!(ready, ready2); /// ``` pub fn from_usize(val: usize) -> Ready { Ready(val) } /// Returns a `usize` representation of the `Ready` value. /// /// This `usize` representation must be treated as opaque. There is no /// guaranteed correlation between the returned value and platform defined /// constants. Also, there is no guarantee that the `usize` representation /// will remain constant across patch releases of Mio. /// /// This function is mainly provided to allow the caller to store a /// readiness value in an `AtomicUsize`. /// /// # Examples /// /// ``` /// use mio::Ready; /// /// let ready = Ready::readable(); /// let ready_usize = ready.as_usize(); /// let ready2 = Ready::from_usize(ready_usize); /// /// assert_eq!(ready, ready2); /// ``` pub fn as_usize(&self) -> usize { self.0 } } impl> ops::BitOr for Ready { type Output = Ready; #[inline] fn bitor(self, other: T) -> Ready { Ready(self.0 | other.into().0) } } impl> ops::BitOrAssign for Ready { #[inline] fn bitor_assign(&mut self, other: T) { self.0 |= other.into().0; } } impl> ops::BitXor for Ready { type Output = Ready; #[inline] fn bitxor(self, other: T) -> Ready { Ready(self.0 ^ other.into().0) } } impl> ops::BitXorAssign for Ready { #[inline] fn bitxor_assign(&mut self, other: T) { self.0 ^= other.into().0; } } impl> ops::BitAnd for Ready { type Output = Ready; #[inline] fn bitand(self, other: T) -> Ready { Ready(self.0 & other.into().0) } } impl> ops::BitAndAssign for Ready { #[inline] fn bitand_assign(&mut self, other: T) { self.0 &= other.into().0 } } impl> ops::Sub for Ready { type Output = Ready; #[inline] fn sub(self, other: T) -> Ready { Ready(self.0 & !other.into().0) } } impl> ops::SubAssign for Ready { #[inline] fn sub_assign(&mut self, other: T) { self.0 &= !other.into().0; } } #[deprecated(since = "0.6.10", note = "removed")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] impl ops::Not for Ready { type Output = Ready; #[inline] fn not(self) -> Ready { Ready(!self.0) } } impl fmt::Debug for Ready { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { let mut one = false; let flags = [ (Ready::readable(), "Readable"), (Ready::writable(), "Writable"), (Ready(ERROR), "Error"), (Ready(HUP), "Hup")]; for &(flag, msg) in &flags { if self.contains(flag) { if one { write!(fmt, " | ")? } write!(fmt, "{}", msg)?; one = true } } if !one { fmt.write_str("(empty)")?; } Ok(()) } } #[test] fn test_debug_ready() { assert_eq!("(empty)", format!("{:?}", Ready::empty())); assert_eq!("Readable", format!("{:?}", Ready::readable())); assert_eq!("Writable", format!("{:?}", Ready::writable())); } /// An readiness event returned by [`Poll::poll`]. /// /// `Event` is a [readiness state] paired with a [`Token`]. It is returned by /// [`Poll::poll`]. /// /// For more documentation on polling and events, see [`Poll`]. /// /// # Examples /// /// ``` /// use mio::{Ready, Token}; /// use mio::event::Event; /// /// let event = Event::new(Ready::readable() | Ready::writable(), Token(0)); /// /// assert_eq!(event.readiness(), Ready::readable() | Ready::writable()); /// assert_eq!(event.token(), Token(0)); /// ``` /// /// [`Poll::poll`]: ../struct.Poll.html#method.poll /// [`Poll`]: ../struct.Poll.html /// [readiness state]: ../struct.Ready.html /// [`Token`]: ../struct.Token.html #[derive(Copy, Clone, Eq, PartialEq, Debug)] pub struct Event { kind: Ready, token: Token } impl Event { /// Creates a new `Event` containing `readiness` and `token` /// /// # Examples /// /// ``` /// use mio::{Ready, Token}; /// use mio::event::Event; /// /// let event = Event::new(Ready::readable() | Ready::writable(), Token(0)); /// /// assert_eq!(event.readiness(), Ready::readable() | Ready::writable()); /// assert_eq!(event.token(), Token(0)); /// ``` pub fn new(readiness: Ready, token: Token) -> Event { Event { kind: readiness, token, } } /// Returns the event's readiness. /// /// # Examples /// /// ``` /// use mio::{Ready, Token}; /// use mio::event::Event; /// /// let event = Event::new(Ready::readable() | Ready::writable(), Token(0)); /// /// assert_eq!(event.readiness(), Ready::readable() | Ready::writable()); /// ``` pub fn readiness(&self) -> Ready { self.kind } #[deprecated(since = "0.6.5", note = "use Event::readiness()")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub fn kind(&self) -> Ready { self.kind } /// Returns the event's token. /// /// # Examples /// /// ``` /// use mio::{Ready, Token}; /// use mio::event::Event; /// /// let event = Event::new(Ready::readable() | Ready::writable(), Token(0)); /// /// assert_eq!(event.token(), Token(0)); /// ``` pub fn token(&self) -> Token { self.token } } /* * * ===== Mio internal helpers ===== * */ pub fn ready_as_usize(events: Ready) -> usize { events.0 } pub fn opt_as_usize(opt: PollOpt) -> usize { opt.0 } pub fn ready_from_usize(events: usize) -> Ready { Ready(events) } pub fn opt_from_usize(opt: usize) -> PollOpt { PollOpt(opt) } // Used internally to mutate an `Event` in place // Not used on all platforms #[allow(dead_code)] pub fn kind_mut(event: &mut Event) -> &mut Ready { &mut event.kind } mio-0.6.23/src/io.rs010064400007650000024000000020101376150724400123530ustar0000000000000000// Re-export the io::Result / Error types for convenience pub use std::io::{Read, Write, Result, Error, ErrorKind}; // TODO: Delete this /// A helper trait to provide the map_non_block function on Results. pub trait MapNonBlock { /// Maps a `Result` to a `Result>` by converting /// operation-would-block errors into `Ok(None)`. fn map_non_block(self) -> Result>; } impl MapNonBlock for Result { fn map_non_block(self) -> Result> { use std::io::ErrorKind::WouldBlock; match self { Ok(value) => Ok(Some(value)), Err(err) => { if let WouldBlock = err.kind() { Ok(None) } else { Err(err) } } } } } #[cfg(feature = "with-deprecated")] pub mod deprecated { /// Returns a std `WouldBlock` error without allocating pub fn would_block() -> ::std::io::Error { ::std::io::ErrorKind::WouldBlock.into() } } mio-0.6.23/src/lazycell.rs010064400007650000024000000405171376150724400136010ustar0000000000000000// Original work Copyright (c) 2014 The Rust Project Developers // Modified work Copyright (c) 2016-2018 Nikita Pekin and the lazycell contributors // See the README.md file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![deny(missing_docs)] #![allow(unused)] //! This crate provides a `LazyCell` struct which acts as a lazily filled //! `Cell`. //! //! With a `RefCell`, the inner contents cannot be borrowed for the lifetime of //! the entire object, but only of the borrows returned. A `LazyCell` is a //! variation on `RefCell` which allows borrows to be tied to the lifetime of //! the outer object. //! //! `AtomicLazyCell` is a variant that uses an atomic variable to manage //! coordination in a thread-safe fashion. The limitation of an `AtomicLazyCell` //! is that after it is initialized, it can't be modified. use std::cell::UnsafeCell; use std::mem; use std::sync::atomic::{AtomicUsize, Ordering}; /// A lazily filled `Cell`, with mutable contents. /// /// A `LazyCell` is completely frozen once filled, **unless** you have `&mut` /// access to it, in which case `LazyCell::borrow_mut` may be used to mutate the /// contents. #[derive(Debug, Default)] pub struct LazyCell { inner: UnsafeCell>, } impl LazyCell { /// Creates a new, empty, `LazyCell`. pub fn new() -> LazyCell { LazyCell { inner: UnsafeCell::new(None) } } /// Put a value into this cell. /// /// This function will return `Err(value)` is the cell is already full. pub fn fill(&self, value: T) -> Result<(), T> { let slot = unsafe { &mut *self.inner.get() }; if slot.is_some() { return Err(value); } *slot = Some(value); Ok(()) } /// Put a value into this cell. /// /// Note that this function is infallible but requires `&mut self`. By /// requiring `&mut self` we're guaranteed that no active borrows to this /// cell can exist so we can always fill in the value. This may not always /// be usable, however, as `&mut self` may not be possible to borrow. /// /// # Return value /// /// This function returns the previous value, if any. pub fn replace(&mut self, value: T) -> Option { mem::replace(unsafe { &mut *self.inner.get() }, Some(value)) } /// Test whether this cell has been previously filled. pub fn filled(&self) -> bool { self.borrow().is_some() } /// Borrows the contents of this lazy cell for the duration of the cell /// itself. /// /// This function will return `Some` if the cell has been previously /// initialized, and `None` if it has not yet been initialized. pub fn borrow(&self) -> Option<&T> { unsafe { &*self.inner.get() }.as_ref() } /// Borrows the contents of this lazy cell mutably for the duration of the cell /// itself. /// /// This function will return `Some` if the cell has been previously /// initialized, and `None` if it has not yet been initialized. pub fn borrow_mut(&mut self) -> Option<&mut T> { unsafe { &mut *self.inner.get() }.as_mut() } /// Borrows the contents of this lazy cell for the duration of the cell /// itself. /// /// If the cell has not yet been filled, the cell is first filled using the /// function provided. /// /// # Panics /// /// Panics if the cell becomes filled as a side effect of `f`. pub fn borrow_with T>(&self, f: F) -> &T { if let Some(value) = self.borrow() { return value; } let value = f(); if self.fill(value).is_err() { panic!("borrow_with: cell was filled by closure") } self.borrow().unwrap() } /// Borrows the contents of this `LazyCell` mutably for the duration of the /// cell itself. /// /// If the cell has not yet been filled, the cell is first filled using the /// function provided. /// /// # Panics /// /// Panics if the cell becomes filled as a side effect of `f`. pub fn borrow_mut_with T>(&mut self, f: F) -> &mut T { if !self.filled() { let value = f(); if self.fill(value).is_err() { panic!("borrow_mut_with: cell was filled by closure") } } self.borrow_mut().unwrap() } /// Same as `borrow_with`, but allows the initializing function to fail. /// /// # Panics /// /// Panics if the cell becomes filled as a side effect of `f`. pub fn try_borrow_with(&self, f: F) -> Result<&T, E> where F: FnOnce() -> Result { if let Some(value) = self.borrow() { return Ok(value); } let value = f()?; if self.fill(value).is_err() { panic!("try_borrow_with: cell was filled by closure") } Ok(self.borrow().unwrap()) } /// Same as `borrow_mut_with`, but allows the initializing function to fail. /// /// # Panics /// /// Panics if the cell becomes filled as a side effect of `f`. pub fn try_borrow_mut_with(&mut self, f: F) -> Result<&mut T, E> where F: FnOnce() -> Result { if self.filled() { return Ok(self.borrow_mut().unwrap()); } let value = f()?; if self.fill(value).is_err() { panic!("try_borrow_mut_with: cell was filled by closure") } Ok(self.borrow_mut().unwrap()) } /// Consumes this `LazyCell`, returning the underlying value. pub fn into_inner(self) -> Option { // Rust 1.25 changed UnsafeCell::into_inner() from unsafe to safe // function. This unsafe can be removed when supporting Rust older than // 1.25 is not needed. #[allow(unused_unsafe)] unsafe { self.inner.into_inner() } } } impl LazyCell { /// Returns a copy of the contents of the lazy cell. /// /// This function will return `Some` if the cell has been previously initialized, /// and `None` if it has not yet been initialized. pub fn get(&self) -> Option { unsafe { *self.inner.get() } } } // Tracks the AtomicLazyCell inner state const NONE: usize = 0; const LOCK: usize = 1; const SOME: usize = 2; /// A lazily filled and thread-safe `Cell`, with frozen contents. #[derive(Debug, Default)] pub struct AtomicLazyCell { inner: UnsafeCell>, state: AtomicUsize, } impl AtomicLazyCell { /// Creates a new, empty, `AtomicLazyCell`. pub fn new() -> AtomicLazyCell { Self { inner: UnsafeCell::new(None), state: AtomicUsize::new(NONE), } } /// Put a value into this cell. /// /// This function will return `Err(value)` is the cell is already full. pub fn fill(&self, t: T) -> Result<(), T> { if NONE != self.state.compare_and_swap(NONE, LOCK, Ordering::Acquire) { return Err(t); } unsafe { *self.inner.get() = Some(t) }; if LOCK != self.state.compare_and_swap(LOCK, SOME, Ordering::Release) { panic!("unable to release lock"); } Ok(()) } /// Put a value into this cell. /// /// Note that this function is infallible but requires `&mut self`. By /// requiring `&mut self` we're guaranteed that no active borrows to this /// cell can exist so we can always fill in the value. This may not always /// be usable, however, as `&mut self` may not be possible to borrow. /// /// # Return value /// /// This function returns the previous value, if any. pub fn replace(&mut self, value: T) -> Option { match mem::replace(self.state.get_mut(), SOME) { NONE | SOME => {} _ => panic!("cell in inconsistent state"), } mem::replace(unsafe { &mut *self.inner.get() }, Some(value)) } /// Test whether this cell has been previously filled. pub fn filled(&self) -> bool { self.state.load(Ordering::Acquire) == SOME } /// Borrows the contents of this lazy cell for the duration of the cell /// itself. /// /// This function will return `Some` if the cell has been previously /// initialized, and `None` if it has not yet been initialized. pub fn borrow(&self) -> Option<&T> { match self.state.load(Ordering::Acquire) { SOME => unsafe { &*self.inner.get() }.as_ref(), _ => None, } } /// Consumes this `LazyCell`, returning the underlying value. pub fn into_inner(self) -> Option { // Rust 1.25 changed UnsafeCell::into_inner() from unsafe to safe // function. This unsafe can be removed when supporting Rust older than // 1.25 is not needed. #[allow(unused_unsafe)] unsafe { self.inner.into_inner() } } } impl AtomicLazyCell { /// Returns a copy of the contents of the lazy cell. /// /// This function will return `Some` if the cell has been previously initialized, /// and `None` if it has not yet been initialized. pub fn get(&self) -> Option { match self.state.load(Ordering::Acquire) { SOME => unsafe { *self.inner.get() }, _ => None, } } } unsafe impl Sync for AtomicLazyCell {} unsafe impl Send for AtomicLazyCell {} #[cfg(test)] mod tests { use super::{AtomicLazyCell, LazyCell}; #[test] fn test_borrow_from_empty() { let lazycell: LazyCell = LazyCell::new(); let value = lazycell.borrow(); assert_eq!(value, None); let value = lazycell.get(); assert_eq!(value, None); } #[test] fn test_fill_and_borrow() { let lazycell = LazyCell::new(); assert!(!lazycell.filled()); lazycell.fill(1).unwrap(); assert!(lazycell.filled()); let value = lazycell.borrow(); assert_eq!(value, Some(&1)); let value = lazycell.get(); assert_eq!(value, Some(1)); } #[test] fn test_borrow_mut() { let mut lazycell = LazyCell::new(); assert!(lazycell.borrow_mut().is_none()); lazycell.fill(1).unwrap(); assert_eq!(lazycell.borrow_mut(), Some(&mut 1)); *lazycell.borrow_mut().unwrap() = 2; assert_eq!(lazycell.borrow_mut(), Some(&mut 2)); // official way to reset the cell lazycell = LazyCell::new(); assert!(lazycell.borrow_mut().is_none()); } #[test] fn test_already_filled_error() { let lazycell = LazyCell::new(); lazycell.fill(1).unwrap(); assert_eq!(lazycell.fill(1), Err(1)); } #[test] fn test_borrow_with() { let lazycell = LazyCell::new(); let value = lazycell.borrow_with(|| 1); assert_eq!(&1, value); } #[test] fn test_borrow_with_already_filled() { let lazycell = LazyCell::new(); lazycell.fill(1).unwrap(); let value = lazycell.borrow_with(|| 1); assert_eq!(&1, value); } #[test] fn test_borrow_with_not_called_when_filled() { let lazycell = LazyCell::new(); lazycell.fill(1).unwrap(); let value = lazycell.borrow_with(|| 2); assert_eq!(&1, value); } #[test] #[should_panic] fn test_borrow_with_sound_with_reentrancy() { // Kudos to dbaupp for discovering this issue // https://www.reddit.com/r/rust/comments/5vs9rt/lazycell_a_rust_library_providing_a_lazilyfilled/de527xm/ let lazycell: LazyCell> = LazyCell::new(); let mut reference: Option<&i32> = None; lazycell.borrow_with(|| { let _ = lazycell.fill(Box::new(1)); reference = lazycell.borrow().map(|r| &**r); Box::new(2) }); } #[test] fn test_borrow_mut_with() { let mut lazycell = LazyCell::new(); { let value = lazycell.borrow_mut_with(|| 1); assert_eq!(&mut 1, value); *value = 2; } assert_eq!(&2, lazycell.borrow().unwrap()); } #[test] fn test_borrow_mut_with_already_filled() { let mut lazycell = LazyCell::new(); lazycell.fill(1).unwrap(); let value = lazycell.borrow_mut_with(|| 1); assert_eq!(&1, value); } #[test] fn test_borrow_mut_with_not_called_when_filled() { let mut lazycell = LazyCell::new(); lazycell.fill(1).unwrap(); let value = lazycell.borrow_mut_with(|| 2); assert_eq!(&1, value); } #[test] fn test_try_borrow_with_ok() { let lazycell = LazyCell::new(); let result = lazycell.try_borrow_with::<(), _>(|| Ok(1)); assert_eq!(result, Ok(&1)); } #[test] fn test_try_borrow_with_err() { let lazycell = LazyCell::<()>::new(); let result = lazycell.try_borrow_with(|| Err(1)); assert_eq!(result, Err(1)); } #[test] fn test_try_borrow_with_already_filled() { let lazycell = LazyCell::new(); lazycell.fill(1).unwrap(); let result = lazycell.try_borrow_with::<(), _>(|| unreachable!()); assert_eq!(result, Ok(&1)); } #[test] #[should_panic] fn test_try_borrow_with_sound_with_reentrancy() { let lazycell: LazyCell> = LazyCell::new(); let mut reference: Option<&i32> = None; let _ = lazycell.try_borrow_with::<(), _>(|| { let _ = lazycell.fill(Box::new(1)); reference = lazycell.borrow().map(|r| &**r); Ok(Box::new(2)) }); } #[test] fn test_try_borrow_mut_with_ok() { let mut lazycell = LazyCell::new(); { let result = lazycell.try_borrow_mut_with::<(), _>(|| Ok(1)); assert_eq!(result, Ok(&mut 1)); *result.unwrap() = 2; } assert_eq!(&mut 2, lazycell.borrow().unwrap()); } #[test] fn test_try_borrow_mut_with_err() { let mut lazycell = LazyCell::<()>::new(); let result = lazycell.try_borrow_mut_with(|| Err(1)); assert_eq!(result, Err(1)); } #[test] fn test_try_borrow_mut_with_already_filled() { let mut lazycell = LazyCell::new(); lazycell.fill(1).unwrap(); let result = lazycell.try_borrow_mut_with::<(), _>(|| unreachable!()); assert_eq!(result, Ok(&mut 1)); } #[test] fn test_into_inner() { let lazycell = LazyCell::new(); lazycell.fill(1).unwrap(); let value = lazycell.into_inner(); assert_eq!(value, Some(1)); } #[test] fn test_atomic_borrow_from_empty() { let lazycell: AtomicLazyCell = AtomicLazyCell::new(); let value = lazycell.borrow(); assert_eq!(value, None); let value = lazycell.get(); assert_eq!(value, None); } #[test] fn test_atomic_fill_and_borrow() { let lazycell = AtomicLazyCell::new(); assert!(!lazycell.filled()); lazycell.fill(1).unwrap(); assert!(lazycell.filled()); let value = lazycell.borrow(); assert_eq!(value, Some(&1)); let value = lazycell.get(); assert_eq!(value, Some(1)); } #[test] fn test_atomic_already_filled_panic() { let lazycell = AtomicLazyCell::new(); lazycell.fill(1).unwrap(); assert_eq!(1, lazycell.fill(1).unwrap_err()); } #[test] fn test_atomic_into_inner() { let lazycell = AtomicLazyCell::new(); lazycell.fill(1).unwrap(); let value = lazycell.into_inner(); assert_eq!(value, Some(1)); } #[test] fn normal_replace() { let mut cell = LazyCell::new(); assert_eq!(cell.fill(1), Ok(())); assert_eq!(cell.replace(2), Some(1)); assert_eq!(cell.replace(3), Some(2)); assert_eq!(cell.borrow(), Some(&3)); let mut cell = LazyCell::new(); assert_eq!(cell.replace(2), None); } #[test] fn atomic_replace() { let mut cell = AtomicLazyCell::new(); assert_eq!(cell.fill(1), Ok(())); assert_eq!(cell.replace(2), Some(1)); assert_eq!(cell.replace(3), Some(2)); assert_eq!(cell.borrow(), Some(&3)); } } mio-0.6.23/src/lib.rs010064400007650000024000000230601376150724400125220ustar0000000000000000#![doc(html_root_url = "https://docs.rs/mio/0.6.23")] // Mio targets old versions of the Rust compiler. In order to do this, uses // deprecated APIs. #![allow(bare_trait_objects, deprecated, unknown_lints)] #![deny(missing_docs, missing_debug_implementations)] #![cfg_attr(test, deny(warnings))] // Many of mio's public methods violate this lint, but they can't be fixed // without a breaking change. #![cfg_attr(feature = "cargo-clippy", allow(clippy::trivially_copy_pass_by_ref))] //! A fast, low-level IO library for Rust focusing on non-blocking APIs, event //! notification, and other useful utilities for building high performance IO //! apps. //! //! # Features //! //! * Non-blocking TCP, UDP //! * I/O event notification queue backed by epoll, kqueue, and IOCP //! * Zero allocations at runtime //! * Platform specific extensions //! //! # Non-goals //! //! The following are specifically omitted from Mio and are left to the user or higher-level libraries. //! //! * File operations //! * Thread pools / multi-threaded event loop //! * Timers //! //! # Platforms //! //! Currently supported platforms: //! //! * Linux //! * OS X //! * Windows //! * FreeBSD //! * NetBSD //! * Android //! * iOS //! //! mio can handle interfacing with each of the event notification systems of the aforementioned platforms. The details of //! their implementation are further discussed in [`Poll`]. //! //! # Usage //! //! Using mio starts by creating a [`Poll`], which reads events from the OS and //! put them into [`Events`]. You can handle IO events from the OS with it. //! //! For more detail, see [`Poll`]. //! //! [`Poll`]: struct.Poll.html //! [`Events`]: struct.Events.html //! //! # Example //! //! ``` //! use mio::*; //! use mio::net::{TcpListener, TcpStream}; //! //! // Setup some tokens to allow us to identify which event is //! // for which socket. //! const SERVER: Token = Token(0); //! const CLIENT: Token = Token(1); //! //! let addr = "127.0.0.1:13265".parse().unwrap(); //! //! // Setup the server socket //! let server = TcpListener::bind(&addr).unwrap(); //! //! // Create a poll instance //! let poll = Poll::new().unwrap(); //! //! // Start listening for incoming connections //! poll.register(&server, SERVER, Ready::readable(), //! PollOpt::edge()).unwrap(); //! //! // Setup the client socket //! let sock = TcpStream::connect(&addr).unwrap(); //! //! // Register the socket //! poll.register(&sock, CLIENT, Ready::readable(), //! PollOpt::edge()).unwrap(); //! //! // Create storage for events //! let mut events = Events::with_capacity(1024); //! //! loop { //! poll.poll(&mut events, None).unwrap(); //! //! for event in events.iter() { //! match event.token() { //! SERVER => { //! // Accept and drop the socket immediately, this will close //! // the socket and notify the client of the EOF. //! let _ = server.accept(); //! } //! CLIENT => { //! // The server just shuts down the socket, let's just exit //! // from our event loop. //! return; //! } //! _ => unreachable!(), //! } //! } //! } //! //! ``` extern crate net2; extern crate iovec; extern crate slab; #[cfg(target_os = "fuchsia")] extern crate fuchsia_zircon as zircon; #[cfg(target_os = "fuchsia")] extern crate fuchsia_zircon_sys as zircon_sys; #[cfg(unix)] extern crate libc; #[cfg(windows)] extern crate miow; #[cfg(windows)] extern crate winapi; #[cfg(windows)] extern crate kernel32; #[macro_use] extern crate log; mod event_imp; mod io; mod poll; mod sys; mod token; mod lazycell; pub mod net; #[deprecated(since = "0.6.5", note = "use mio-extras instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub mod channel; #[deprecated(since = "0.6.5", note = "use mio-extras instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub mod timer; #[deprecated(since = "0.6.5", note = "update to use `Poll`")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub mod deprecated; #[deprecated(since = "0.6.5", note = "use iovec crate directly")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub use iovec::IoVec; #[deprecated(since = "0.6.6", note = "use net module instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub mod tcp { pub use net::{TcpListener, TcpStream}; pub use std::net::Shutdown; } #[deprecated(since = "0.6.6", note = "use net module instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub mod udp; pub use poll::{ Poll, Registration, SetReadiness, }; pub use event_imp::{ PollOpt, Ready, }; pub use token::Token; pub mod event { //! Readiness event types and utilities. pub use super::poll::{Events, Iter}; pub use super::event_imp::{Event, Evented}; } pub use event::{ Events, }; #[deprecated(since = "0.6.5", note = "use events:: instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub use event::{Event, Evented}; #[deprecated(since = "0.6.5", note = "use events::Iter instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub use poll::Iter as EventsIter; #[deprecated(since = "0.6.5", note = "std::io::Error can avoid the allocation now")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub use io::deprecated::would_block; #[cfg(all(unix, not(target_os = "fuchsia")))] pub mod unix { //! Unix only extensions pub use sys::{ EventedFd, }; pub use sys::unix::UnixReady; } #[cfg(target_os = "fuchsia")] pub mod fuchsia { //! Fuchsia-only extensions //! //! # Stability //! //! This module depends on the [magenta-sys crate](https://crates.io/crates/magenta-sys) //! and so might introduce breaking changes, even on minor releases, //! so long as that crate remains unstable. pub use sys::{ EventedHandle, }; pub use sys::fuchsia::{FuchsiaReady, zx_signals_t}; } /// Windows-only extensions to the mio crate. /// /// Mio on windows is currently implemented with IOCP for a high-performance /// implementation of asynchronous I/O. Mio then provides TCP and UDP as sample /// bindings for the system to connect networking types to asynchronous I/O. On /// Unix this scheme is then also extensible to all other file descriptors with /// the `EventedFd` type, but on Windows no such analog is available. The /// purpose of this module, however, is to similarly provide a mechanism for /// foreign I/O types to get hooked up into the IOCP event loop. /// /// This module provides two types for interfacing with a custom IOCP handle: /// /// * `Binding` - this type is intended to govern binding with mio's `Poll` /// type. Each I/O object should contain an instance of `Binding` that's /// interfaced with for the implementation of the `Evented` trait. The /// `register`, `reregister`, and `deregister` methods for the `Evented` trait /// all have rough analogs with `Binding`. /// /// Note that this type **does not handle readiness**. That is, this type does /// not handle whether sockets are readable/writable/etc. It's intended that /// IOCP types will internally manage this state with a `SetReadiness` type /// from the `poll` module. The `SetReadiness` is typically lazily created on /// the first time that `Evented::register` is called and then stored in the /// I/O object. /// /// Also note that for types which represent streams of bytes the mio /// interface of *readiness* doesn't map directly to the Windows model of /// *completion*. This means that types will have to perform internal /// buffering to ensure that a readiness interface can be provided. For a /// sample implementation see the TCP/UDP modules in mio itself. /// /// * `Overlapped` - this type is intended to be used as the concrete instances /// of the `OVERLAPPED` type that most win32 methods expect. It's crucial, for /// safety, that all asynchronous operations are initiated with an instance of /// `Overlapped` and not another instantiation of `OVERLAPPED`. /// /// Mio's `Overlapped` type is created with a function pointer that receives /// a `OVERLAPPED_ENTRY` type when called. This `OVERLAPPED_ENTRY` type is /// defined in the `winapi` crate. Whenever a completion is posted to an IOCP /// object the `OVERLAPPED` that was signaled will be interpreted as /// `Overlapped` in the mio crate and this function pointer will be invoked. /// Through this function pointer, and through the `OVERLAPPED` pointer, /// implementations can handle management of I/O events. /// /// When put together these two types enable custom Windows handles to be /// registered with mio's event loops. The `Binding` type is used to associate /// handles and the `Overlapped` type is used to execute I/O operations. When /// the I/O operations are completed a custom function pointer is called which /// typically modifies a `SetReadiness` set by `Evented` methods which will get /// later hooked into the mio event loop. #[cfg(windows)] pub mod windows { pub use sys::{Overlapped, Binding}; } #[cfg(feature = "with-deprecated")] mod convert { use std::time::Duration; const NANOS_PER_MILLI: u32 = 1_000_000; const MILLIS_PER_SEC: u64 = 1_000; /// Convert a `Duration` to milliseconds, rounding up and saturating at /// `u64::MAX`. /// /// The saturating is fine because `u64::MAX` milliseconds are still many /// million years. pub fn millis(duration: Duration) -> u64 { // Round up. let millis = (duration.subsec_nanos() + NANOS_PER_MILLI - 1) / NANOS_PER_MILLI; duration.as_secs().saturating_mul(MILLIS_PER_SEC).saturating_add(u64::from(millis)) } } mio-0.6.23/src/net/mod.rs010064400007650000024000000007071376150724400133240ustar0000000000000000//! Networking primitives //! //! The types provided in this module are non-blocking by default and are //! designed to be portable across all supported Mio platforms. As long as the //! [portability guidelines] are followed, the behavior should be identical no //! matter the target platform. //! //! [portability guidelines]: ../struct.Poll.html#portability mod tcp; mod udp; pub use self::tcp::{TcpListener, TcpStream}; pub use self::udp::UdpSocket; mio-0.6.23/src/net/tcp.rs010064400007650000024000000603421376150724400133340ustar0000000000000000//! Primitives for working with TCP //! //! The types provided in this module are non-blocking by default and are //! designed to be portable across all supported Mio platforms. As long as the //! [portability guidelines] are followed, the behavior should be identical no //! matter the target platform. //! /// [portability guidelines]: ../struct.Poll.html#portability use std::fmt; use std::io::{Read, Write}; use std::net::{self, SocketAddr, SocketAddrV4, SocketAddrV6, Ipv4Addr, Ipv6Addr}; use std::time::Duration; use net2::TcpBuilder; use iovec::IoVec; use {io, sys, Ready, Poll, PollOpt, Token}; use event::Evented; use poll::SelectorId; /* * * ===== TcpStream ===== * */ /// A non-blocking TCP stream between a local socket and a remote socket. /// /// The socket will be closed when the value is dropped. /// /// # Examples /// /// ``` /// # use std::net::TcpListener; /// # use std::error::Error; /// # /// # fn try_main() -> Result<(), Box> { /// # let _listener = TcpListener::bind("127.0.0.1:34254")?; /// use mio::{Events, Ready, Poll, PollOpt, Token}; /// use mio::net::TcpStream; /// use std::time::Duration; /// /// let stream = TcpStream::connect(&"127.0.0.1:34254".parse()?)?; /// /// let poll = Poll::new()?; /// let mut events = Events::with_capacity(128); /// /// // Register the socket with `Poll` /// poll.register(&stream, Token(0), Ready::writable(), /// PollOpt::edge())?; /// /// poll.poll(&mut events, Some(Duration::from_millis(100)))?; /// /// // The socket might be ready at this point /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub struct TcpStream { sys: sys::TcpStream, selector_id: SelectorId, } use std::net::Shutdown; // TODO: remove when fuchsia's set_nonblocking is fixed in libstd #[cfg(target_os = "fuchsia")] fn set_nonblocking(stream: &net::TcpStream) -> io::Result<()> { sys::set_nonblock( ::std::os::unix::io::AsRawFd::as_raw_fd(stream)) } #[cfg(not(target_os = "fuchsia"))] fn set_nonblocking(stream: &net::TcpStream) -> io::Result<()> { stream.set_nonblocking(true) } impl TcpStream { /// Create a new TCP stream and issue a non-blocking connect to the /// specified address. /// /// This convenience method is available and uses the system's default /// options when creating a socket which is then connected. If fine-grained /// control over the creation of the socket is desired, you can use /// `net2::TcpBuilder` to configure a socket and then pass its socket to /// `TcpStream::connect_stream` to transfer ownership into mio and schedule /// the connect operation. pub fn connect(addr: &SocketAddr) -> io::Result { let sock = match *addr { SocketAddr::V4(..) => TcpBuilder::new_v4(), SocketAddr::V6(..) => TcpBuilder::new_v6(), }?; // Required on Windows for a future `connect_overlapped` operation to be // executed successfully. if cfg!(windows) { sock.bind(&inaddr_any(addr))?; } TcpStream::connect_stream(sock.to_tcp_stream()?, addr) } /// Creates a new `TcpStream` from the pending socket inside the given /// `std::net::TcpBuilder`, connecting it to the address specified. /// /// This constructor allows configuring the socket before it's actually /// connected, and this function will transfer ownership to the returned /// `TcpStream` if successful. An unconnected `TcpStream` can be created /// with the `net2::TcpBuilder` type (and also configured via that route). /// /// The platform specific behavior of this function looks like: /// /// * On Unix, the socket is placed into nonblocking mode and then a /// `connect` call is issued. /// /// * On Windows, the address is stored internally and the connect operation /// is issued when the returned `TcpStream` is registered with an event /// loop. Note that on Windows you must `bind` a socket before it can be /// connected, so if a custom `TcpBuilder` is used it should be bound /// (perhaps to `INADDR_ANY`) before this method is called. pub fn connect_stream(stream: net::TcpStream, addr: &SocketAddr) -> io::Result { Ok(TcpStream { sys: sys::TcpStream::connect(stream, addr)?, selector_id: SelectorId::new(), }) } /// Creates a new `TcpStream` from a standard `net::TcpStream`. /// /// This function is intended to be used to wrap a TCP stream from the /// standard library in the mio equivalent. The conversion here will /// automatically set `stream` to nonblocking and the returned object should /// be ready to get associated with an event loop. /// /// Note that the TCP stream here will not have `connect` called on it, so /// it should already be connected via some other means (be it manually, the /// net2 crate, or the standard library). pub fn from_stream(stream: net::TcpStream) -> io::Result { set_nonblocking(&stream)?; Ok(TcpStream { sys: sys::TcpStream::from_stream(stream), selector_id: SelectorId::new(), }) } /// Returns the socket address of the remote peer of this TCP connection. pub fn peer_addr(&self) -> io::Result { self.sys.peer_addr() } /// Returns the socket address of the local half of this TCP connection. pub fn local_addr(&self) -> io::Result { self.sys.local_addr() } /// Creates a new independently owned handle to the underlying socket. /// /// The returned `TcpStream` is a reference to the same stream that this /// object references. Both handles will read and write the same stream of /// data, and options set on one stream will be propagated to the other /// stream. pub fn try_clone(&self) -> io::Result { self.sys.try_clone().map(|s| { TcpStream { sys: s, selector_id: self.selector_id.clone(), } }) } /// Shuts down the read, write, or both halves of this connection. /// /// This function will cause all pending and future I/O on the specified /// portions to return immediately with an appropriate value (see the /// documentation of `Shutdown`). pub fn shutdown(&self, how: Shutdown) -> io::Result<()> { self.sys.shutdown(how) } /// Sets the value of the `TCP_NODELAY` option on this socket. /// /// If set, this option disables the Nagle algorithm. This means that /// segments are always sent as soon as possible, even if there is only a /// small amount of data. When not set, data is buffered until there is a /// sufficient amount to send out, thereby avoiding the frequent sending of /// small packets. pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> { self.sys.set_nodelay(nodelay) } /// Gets the value of the `TCP_NODELAY` option on this socket. /// /// For more information about this option, see [`set_nodelay`][link]. /// /// [link]: #method.set_nodelay pub fn nodelay(&self) -> io::Result { self.sys.nodelay() } /// Sets the value of the `SO_RCVBUF` option on this socket. /// /// Changes the size of the operating system's receive buffer associated /// with the socket. pub fn set_recv_buffer_size(&self, size: usize) -> io::Result<()> { self.sys.set_recv_buffer_size(size) } /// Gets the value of the `SO_RCVBUF` option on this socket. /// /// For more information about this option, see /// [`set_recv_buffer_size`][link]. /// /// [link]: #method.set_recv_buffer_size pub fn recv_buffer_size(&self) -> io::Result { self.sys.recv_buffer_size() } /// Sets the value of the `SO_SNDBUF` option on this socket. /// /// Changes the size of the operating system's send buffer associated with /// the socket. pub fn set_send_buffer_size(&self, size: usize) -> io::Result<()> { self.sys.set_send_buffer_size(size) } /// Gets the value of the `SO_SNDBUF` option on this socket. /// /// For more information about this option, see /// [`set_send_buffer_size`][link]. /// /// [link]: #method.set_send_buffer_size pub fn send_buffer_size(&self) -> io::Result { self.sys.send_buffer_size() } /// Sets whether keepalive messages are enabled to be sent on this socket. /// /// On Unix, this option will set the `SO_KEEPALIVE` as well as the /// `TCP_KEEPALIVE` or `TCP_KEEPIDLE` option (depending on your platform). /// On Windows, this will set the `SIO_KEEPALIVE_VALS` option. /// /// If `None` is specified then keepalive messages are disabled, otherwise /// the duration specified will be the time to remain idle before sending a /// TCP keepalive probe. /// /// Some platforms specify this value in seconds, so sub-second /// specifications may be omitted. pub fn set_keepalive(&self, keepalive: Option) -> io::Result<()> { self.sys.set_keepalive(keepalive) } /// Returns whether keepalive messages are enabled on this socket, and if so /// the duration of time between them. /// /// For more information about this option, see [`set_keepalive`][link]. /// /// [link]: #method.set_keepalive pub fn keepalive(&self) -> io::Result> { self.sys.keepalive() } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.sys.set_ttl(ttl) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`set_ttl`][link]. /// /// [link]: #method.set_ttl pub fn ttl(&self) -> io::Result { self.sys.ttl() } /// Sets the value for the `IPV6_V6ONLY` option on this socket. /// /// If this is set to `true` then the socket is restricted to sending and /// receiving IPv6 packets only. In this case two IPv4 and IPv6 applications /// can bind the same port at the same time. /// /// If this is set to `false` then the socket can be used to send and /// receive packets from an IPv4-mapped IPv6 address. pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.sys.set_only_v6(only_v6) } /// Gets the value of the `IPV6_V6ONLY` option for this socket. /// /// For more information about this option, see [`set_only_v6`][link]. /// /// [link]: #method.set_only_v6 pub fn only_v6(&self) -> io::Result { self.sys.only_v6() } /// Sets the value for the `SO_LINGER` option on this socket. pub fn set_linger(&self, dur: Option) -> io::Result<()> { self.sys.set_linger(dur) } /// Gets the value of the `SO_LINGER` option on this socket. /// /// For more information about this option, see [`set_linger`][link]. /// /// [link]: #method.set_linger pub fn linger(&self) -> io::Result> { self.sys.linger() } #[deprecated(since = "0.6.9", note = "use set_keepalive")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub fn set_keepalive_ms(&self, keepalive: Option) -> io::Result<()> { self.set_keepalive(keepalive.map(|v| { Duration::from_millis(u64::from(v)) })) } #[deprecated(since = "0.6.9", note = "use keepalive")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub fn keepalive_ms(&self) -> io::Result> { self.keepalive().map(|v| { v.map(|v| { ::convert::millis(v) as u32 }) }) } /// Get the value of the `SO_ERROR` option on this socket. /// /// This will retrieve the stored error in the underlying socket, clearing /// the field in the process. This can be useful for checking errors between /// calls. pub fn take_error(&self) -> io::Result> { self.sys.take_error() } /// Receives data on the socket from the remote address to which it is /// connected, without removing that data from the queue. On success, /// returns the number of bytes peeked. /// /// Successive calls return the same data. This is accomplished by passing /// `MSG_PEEK` as a flag to the underlying recv system call. pub fn peek(&self, buf: &mut [u8]) -> io::Result { self.sys.peek(buf) } /// Read in a list of buffers all at once. /// /// This operation will attempt to read bytes from this socket and place /// them into the list of buffers provided. Note that each buffer is an /// `IoVec` which can be created from a byte slice. /// /// The buffers provided will be filled in sequentially. A buffer will be /// entirely filled up before the next is written to. /// /// The number of bytes read is returned, if successful, or an error is /// returned otherwise. If no bytes are available to be read yet then /// a "would block" error is returned. This operation does not block. /// /// On Unix this corresponds to the `readv` syscall. pub fn read_bufs(&self, bufs: &mut [&mut IoVec]) -> io::Result { self.sys.readv(bufs) } /// Write a list of buffers all at once. /// /// This operation will attempt to write a list of byte buffers to this /// socket. Note that each buffer is an `IoVec` which can be created from a /// byte slice. /// /// The buffers provided will be written sequentially. A buffer will be /// entirely written before the next is written. /// /// The number of bytes written is returned, if successful, or an error is /// returned otherwise. If the socket is not currently writable then a /// "would block" error is returned. This operation does not block. /// /// On Unix this corresponds to the `writev` syscall. pub fn write_bufs(&self, bufs: &[&IoVec]) -> io::Result { self.sys.writev(bufs) } } fn inaddr_any(other: &SocketAddr) -> SocketAddr { match *other { SocketAddr::V4(..) => { let any = Ipv4Addr::new(0, 0, 0, 0); let addr = SocketAddrV4::new(any, 0); SocketAddr::V4(addr) } SocketAddr::V6(..) => { let any = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0); let addr = SocketAddrV6::new(any, 0, 0, 0); SocketAddr::V6(addr) } } } impl Read for TcpStream { fn read(&mut self, buf: &mut [u8]) -> io::Result { (&self.sys).read(buf) } } impl<'a> Read for &'a TcpStream { fn read(&mut self, buf: &mut [u8]) -> io::Result { (&self.sys).read(buf) } } impl Write for TcpStream { fn write(&mut self, buf: &[u8]) -> io::Result { (&self.sys).write(buf) } fn flush(&mut self) -> io::Result<()> { (&self.sys).flush() } } impl<'a> Write for &'a TcpStream { fn write(&mut self, buf: &[u8]) -> io::Result { (&self.sys).write(buf) } fn flush(&mut self) -> io::Result<()> { (&self.sys).flush() } } impl Evented for TcpStream { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.selector_id.associate_selector(poll)?; self.sys.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.sys.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.sys.deregister(poll) } } impl fmt::Debug for TcpStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&self.sys, f) } } /* * * ===== TcpListener ===== * */ /// A structure representing a socket server /// /// # Examples /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Ready, Poll, PollOpt, Token}; /// use mio::net::TcpListener; /// use std::time::Duration; /// /// let listener = TcpListener::bind(&"127.0.0.1:34255".parse()?)?; /// /// let poll = Poll::new()?; /// let mut events = Events::with_capacity(128); /// /// // Register the socket with `Poll` /// poll.register(&listener, Token(0), Ready::readable(), /// PollOpt::edge())?; /// /// poll.poll(&mut events, Some(Duration::from_millis(100)))?; /// /// // There may be a socket ready to be accepted /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub struct TcpListener { sys: sys::TcpListener, selector_id: SelectorId, } impl TcpListener { /// Convenience method to bind a new TCP listener to the specified address /// to receive new connections. /// /// This function will take the following steps: /// /// 1. Create a new TCP socket. /// 2. Set the `SO_REUSEADDR` option on the socket. /// 3. Bind the socket to the specified address. /// 4. Call `listen` on the socket to prepare it to receive new connections. /// /// If fine-grained control over the binding and listening process for a /// socket is desired then the `net2::TcpBuilder` methods can be used in /// combination with the `TcpListener::from_listener` method to transfer /// ownership into mio. pub fn bind(addr: &SocketAddr) -> io::Result { // Create the socket let sock = match *addr { SocketAddr::V4(..) => TcpBuilder::new_v4(), SocketAddr::V6(..) => TcpBuilder::new_v6(), }?; // Set SO_REUSEADDR, but only on Unix (mirrors what libstd does) if cfg!(unix) { sock.reuse_address(true)?; } // Bind the socket sock.bind(addr)?; // listen let listener = sock.listen(1024)?; Ok(TcpListener { sys: sys::TcpListener::new(listener)?, selector_id: SelectorId::new(), }) } #[deprecated(since = "0.6.13", note = "use from_std instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub fn from_listener(listener: net::TcpListener, _: &SocketAddr) -> io::Result { TcpListener::from_std(listener) } /// Creates a new `TcpListener` from an instance of a /// `std::net::TcpListener` type. /// /// This function will set the `listener` provided into nonblocking mode on /// Unix, and otherwise the stream will just be wrapped up in an mio stream /// ready to accept new connections and become associated with an event /// loop. /// /// The address provided must be the address that the listener is bound to. pub fn from_std(listener: net::TcpListener) -> io::Result { sys::TcpListener::new(listener).map(|s| { TcpListener { sys: s, selector_id: SelectorId::new(), } }) } /// Accepts a new `TcpStream`. /// /// This may return an `Err(e)` where `e.kind()` is /// `io::ErrorKind::WouldBlock`. This means a stream may be ready at a later /// point and one should wait for a notification before calling `accept` /// again. /// /// If an accepted stream is returned, the remote address of the peer is /// returned along with it. pub fn accept(&self) -> io::Result<(TcpStream, SocketAddr)> { let (s, a) = try!(self.accept_std()); Ok((TcpStream::from_stream(s)?, a)) } /// Accepts a new `std::net::TcpStream`. /// /// This method is the same as `accept`, except that it returns a TCP socket /// *in blocking mode* which isn't bound to `mio`. This can be later then /// converted to a `mio` type, if necessary. pub fn accept_std(&self) -> io::Result<(net::TcpStream, SocketAddr)> { self.sys.accept() } /// Returns the local socket address of this listener. pub fn local_addr(&self) -> io::Result { self.sys.local_addr() } /// Creates a new independently owned handle to the underlying socket. /// /// The returned `TcpListener` is a reference to the same socket that this /// object references. Both handles can be used to accept incoming /// connections and options set on one listener will affect the other. pub fn try_clone(&self) -> io::Result { self.sys.try_clone().map(|s| { TcpListener { sys: s, selector_id: self.selector_id.clone(), } }) } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.sys.set_ttl(ttl) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`set_ttl`][link]. /// /// [link]: #method.set_ttl pub fn ttl(&self) -> io::Result { self.sys.ttl() } /// Sets the value for the `IPV6_V6ONLY` option on this socket. /// /// If this is set to `true` then the socket is restricted to sending and /// receiving IPv6 packets only. In this case two IPv4 and IPv6 applications /// can bind the same port at the same time. /// /// If this is set to `false` then the socket can be used to send and /// receive packets from an IPv4-mapped IPv6 address. pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.sys.set_only_v6(only_v6) } /// Gets the value of the `IPV6_V6ONLY` option for this socket. /// /// For more information about this option, see [`set_only_v6`][link]. /// /// [link]: #method.set_only_v6 pub fn only_v6(&self) -> io::Result { self.sys.only_v6() } /// Get the value of the `SO_ERROR` option on this socket. /// /// This will retrieve the stored error in the underlying socket, clearing /// the field in the process. This can be useful for checking errors between /// calls. pub fn take_error(&self) -> io::Result> { self.sys.take_error() } } impl Evented for TcpListener { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.selector_id.associate_selector(poll)?; self.sys.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.sys.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.sys.deregister(poll) } } impl fmt::Debug for TcpListener { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&self.sys, f) } } /* * * ===== UNIX ext ===== * */ #[cfg(all(unix, not(target_os = "fuchsia")))] use std::os::unix::io::{IntoRawFd, AsRawFd, FromRawFd, RawFd}; #[cfg(all(unix, not(target_os = "fuchsia")))] impl IntoRawFd for TcpStream { fn into_raw_fd(self) -> RawFd { self.sys.into_raw_fd() } } #[cfg(all(unix, not(target_os = "fuchsia")))] impl AsRawFd for TcpStream { fn as_raw_fd(&self) -> RawFd { self.sys.as_raw_fd() } } #[cfg(all(unix, not(target_os = "fuchsia")))] impl FromRawFd for TcpStream { unsafe fn from_raw_fd(fd: RawFd) -> TcpStream { TcpStream { sys: FromRawFd::from_raw_fd(fd), selector_id: SelectorId::new(), } } } #[cfg(all(unix, not(target_os = "fuchsia")))] impl IntoRawFd for TcpListener { fn into_raw_fd(self) -> RawFd { self.sys.into_raw_fd() } } #[cfg(all(unix, not(target_os = "fuchsia")))] impl AsRawFd for TcpListener { fn as_raw_fd(&self) -> RawFd { self.sys.as_raw_fd() } } #[cfg(all(unix, not(target_os = "fuchsia")))] impl FromRawFd for TcpListener { unsafe fn from_raw_fd(fd: RawFd) -> TcpListener { TcpListener { sys: FromRawFd::from_raw_fd(fd), selector_id: SelectorId::new(), } } } mio-0.6.23/src/net/udp.rs010064400007650000024000000516511376150724400133410ustar0000000000000000//! Primitives for working with UDP //! //! The types provided in this module are non-blocking by default and are //! designed to be portable across all supported Mio platforms. As long as the //! [portability guidelines] are followed, the behavior should be identical no //! matter the target platform. //! /// [portability guidelines]: ../struct.Poll.html#portability use {io, sys, Ready, Poll, PollOpt, Token}; use event::Evented; use poll::SelectorId; use std::fmt; use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr}; #[cfg(all(unix, not(target_os = "fuchsia")))] use iovec::IoVec; /// A User Datagram Protocol socket. /// /// This is an implementation of a bound UDP socket. This supports both IPv4 and /// IPv6 addresses, and there is no corresponding notion of a server because UDP /// is a datagram protocol. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # /// # fn try_main() -> Result<(), Box> { /// // An Echo program: /// // SENDER -> sends a message. /// // ECHOER -> listens and prints the message received. /// /// use mio::net::UdpSocket; /// use mio::{Events, Ready, Poll, PollOpt, Token}; /// use std::time::Duration; /// /// const SENDER: Token = Token(0); /// const ECHOER: Token = Token(1); /// /// // This operation will fail if the address is in use, so we select different ports for each /// // socket. /// let sender_socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?; /// let echoer_socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?; /// /// // If we do not use connect here, SENDER and ECHOER would need to call send_to and recv_from /// // respectively. /// sender_socket.connect(echoer_socket.local_addr().unwrap())?; /// /// // We need a Poll to check if SENDER is ready to be written into, and if ECHOER is ready to be /// // read from. /// let poll = Poll::new()?; /// /// // We register our sockets here so that we can check if they are ready to be written/read. /// poll.register(&sender_socket, SENDER, Ready::writable(), PollOpt::edge())?; /// poll.register(&echoer_socket, ECHOER, Ready::readable(), PollOpt::edge())?; /// /// let msg_to_send = [9; 9]; /// let mut buffer = [0; 9]; /// /// let mut events = Events::with_capacity(128); /// loop { /// poll.poll(&mut events, Some(Duration::from_millis(100)))?; /// for event in events.iter() { /// match event.token() { /// // Our SENDER is ready to be written into. /// SENDER => { /// let bytes_sent = sender_socket.send(&msg_to_send)?; /// assert_eq!(bytes_sent, 9); /// println!("sent {:?} -> {:?} bytes", msg_to_send, bytes_sent); /// }, /// // Our ECHOER is ready to be read from. /// ECHOER => { /// let num_recv = echoer_socket.recv(&mut buffer)?; /// println!("echo {:?} -> {:?}", buffer, num_recv); /// buffer = [0; 9]; /// # return Ok(()); /// } /// _ => unreachable!() /// } /// } /// } /// # /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub struct UdpSocket { sys: sys::UdpSocket, selector_id: SelectorId, } impl UdpSocket { /// Creates a UDP socket from the given address. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # /// # fn try_main() -> Result<(), Box> { /// use mio::net::UdpSocket; /// /// // We must bind it to an open address. /// let socket = match UdpSocket::bind(&"127.0.0.1:0".parse()?) { /// Ok(new_socket) => new_socket, /// Err(fail) => { /// // We panic! here, but you could try to bind it again on another address. /// panic!("Failed to bind socket. {:?}", fail); /// } /// }; /// /// // Our socket was created, but we should not use it before checking it's readiness. /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn bind(addr: &SocketAddr) -> io::Result { let socket = net::UdpSocket::bind(addr)?; UdpSocket::from_socket(socket) } /// Creates a new mio-wrapped socket from an underlying and bound std /// socket. /// /// This function requires that `socket` has previously been bound to an /// address to work correctly, and returns an I/O object which can be used /// with mio to send/receive UDP messages. /// /// This can be used in conjunction with net2's `UdpBuilder` interface to /// configure a socket before it's handed off to mio, such as setting /// options like `reuse_address` or binding to multiple addresses. pub fn from_socket(socket: net::UdpSocket) -> io::Result { Ok(UdpSocket { sys: sys::UdpSocket::new(socket)?, selector_id: SelectorId::new(), }) } /// Returns the socket address that this socket was created from. /// /// # Examples /// // This assertion is almost, but not quite, universal. It fails on // shared-IP FreeBSD jails. It's hard for mio to know whether we're jailed, // so simply disable the test on FreeBSD. #[cfg_attr(not(target_os = "freebsd"), doc = " ```")] #[cfg_attr(target_os = "freebsd", doc = " ```no_run")] /// # use std::error::Error; /// # /// # fn try_main() -> Result<(), Box> { /// use mio::net::UdpSocket; /// /// let addr = "127.0.0.1:0".parse()?; /// let socket = UdpSocket::bind(&addr)?; /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn local_addr(&self) -> io::Result { self.sys.local_addr() } /// Creates a new independently owned handle to the underlying socket. /// /// The returned `UdpSocket` is a reference to the same socket that this /// object references. Both handles will read and write the same port, and /// options set on one socket will be propagated to the other. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # /// # fn try_main() -> Result<(), Box> { /// use mio::net::UdpSocket; /// /// // We must bind it to an open address. /// let socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?; /// let cloned_socket = socket.try_clone()?; /// /// assert_eq!(socket.local_addr()?, cloned_socket.local_addr()?); /// /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn try_clone(&self) -> io::Result { self.sys.try_clone() .map(|s| { UdpSocket { sys: s, selector_id: self.selector_id.clone(), } }) } /// Sends data on the socket to the given address. On success, returns the /// number of bytes written. /// /// Address type can be any implementor of `ToSocketAddrs` trait. See its /// documentation for concrete examples. /// /// # Examples /// /// ```no_run /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::net::UdpSocket; /// /// let socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?; /// /// // We must check if the socket is writable before calling send_to, /// // or we could run into a WouldBlock error. /// /// let bytes_sent = socket.send_to(&[9; 9], &"127.0.0.1:11100".parse()?)?; /// assert_eq!(bytes_sent, 9); /// # /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn send_to(&self, buf: &[u8], target: &SocketAddr) -> io::Result { self.sys.send_to(buf, target) } /// Receives data from the socket. On success, returns the number of bytes /// read and the address from whence the data came. /// /// # Examples /// /// ```no_run /// # use std::error::Error; /// # /// # fn try_main() -> Result<(), Box> { /// use mio::net::UdpSocket; /// /// let socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?; /// /// // We must check if the socket is readable before calling recv_from, /// // or we could run into a WouldBlock error. /// /// let mut buf = [0; 9]; /// let (num_recv, from_addr) = socket.recv_from(&mut buf)?; /// println!("Received {:?} -> {:?} bytes from {:?}", buf, num_recv, from_addr); /// # /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.sys.recv_from(buf) } /// Sends data on the socket to the address previously bound via connect(). On success, /// returns the number of bytes written. pub fn send(&self, buf: &[u8]) -> io::Result { self.sys.send(buf) } /// Receives data from the socket previously bound with connect(). On success, returns /// the number of bytes read. pub fn recv(&self, buf: &mut [u8]) -> io::Result { self.sys.recv(buf) } /// Connects the UDP socket setting the default destination for `send()` /// and limiting packets that are read via `recv` from the address specified /// in `addr`. pub fn connect(&self, addr: SocketAddr) -> io::Result<()> { self.sys.connect(addr) } /// Sets the value of the `SO_BROADCAST` option for this socket. /// /// When enabled, this socket is allowed to send packets to a broadcast /// address. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # /// # fn try_main() -> Result<(), Box> { /// use mio::net::UdpSocket; /// /// let broadcast_socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?; /// if broadcast_socket.broadcast()? == false { /// broadcast_socket.set_broadcast(true)?; /// } /// /// assert_eq!(broadcast_socket.broadcast()?, true); /// # /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn set_broadcast(&self, on: bool) -> io::Result<()> { self.sys.set_broadcast(on) } /// Gets the value of the `SO_BROADCAST` option for this socket. /// /// For more information about this option, see /// [`set_broadcast`][link]. /// /// [link]: #method.set_broadcast /// /// # Examples /// /// ``` /// # use std::error::Error; /// # /// # fn try_main() -> Result<(), Box> { /// use mio::net::UdpSocket; /// /// let broadcast_socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?; /// assert_eq!(broadcast_socket.broadcast()?, false); /// # /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn broadcast(&self) -> io::Result { self.sys.broadcast() } /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket. /// /// If enabled, multicast packets will be looped back to the local socket. /// Note that this may not have any affect on IPv6 sockets. pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> { self.sys.set_multicast_loop_v4(on) } /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket. /// /// For more information about this option, see /// [`set_multicast_loop_v4`][link]. /// /// [link]: #method.set_multicast_loop_v4 pub fn multicast_loop_v4(&self) -> io::Result { self.sys.multicast_loop_v4() } /// Sets the value of the `IP_MULTICAST_TTL` option for this socket. /// /// Indicates the time-to-live value of outgoing multicast packets for /// this socket. The default value is 1 which means that multicast packets /// don't leave the local network unless explicitly requested. /// /// Note that this may not have any affect on IPv6 sockets. pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> { self.sys.set_multicast_ttl_v4(ttl) } /// Gets the value of the `IP_MULTICAST_TTL` option for this socket. /// /// For more information about this option, see /// [`set_multicast_ttl_v4`][link]. /// /// [link]: #method.set_multicast_ttl_v4 pub fn multicast_ttl_v4(&self) -> io::Result { self.sys.multicast_ttl_v4() } /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket. /// /// Controls whether this socket sees the multicast packets it sends itself. /// Note that this may not have any affect on IPv4 sockets. pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> { self.sys.set_multicast_loop_v6(on) } /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket. /// /// For more information about this option, see /// [`set_multicast_loop_v6`][link]. /// /// [link]: #method.set_multicast_loop_v6 pub fn multicast_loop_v6(&self) -> io::Result { self.sys.multicast_loop_v6() } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # /// # fn try_main() -> Result<(), Box> { /// use mio::net::UdpSocket; /// /// let socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?; /// if socket.ttl()? < 255 { /// socket.set_ttl(255)?; /// } /// /// assert_eq!(socket.ttl()?, 255); /// # /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.sys.set_ttl(ttl) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`set_ttl`][link]. /// /// [link]: #method.set_ttl /// /// # Examples /// /// ``` /// # use std::error::Error; /// # /// # fn try_main() -> Result<(), Box> { /// use mio::net::UdpSocket; /// /// let socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?; /// socket.set_ttl(255)?; /// /// assert_eq!(socket.ttl()?, 255); /// # /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn ttl(&self) -> io::Result { self.sys.ttl() } /// Executes an operation of the `IP_ADD_MEMBERSHIP` type. /// /// This function specifies a new multicast group for this socket to join. /// The address must be a valid multicast address, and `interface` is the /// address of the local interface with which the system should join the /// multicast group. If it's equal to `INADDR_ANY` then an appropriate /// interface is chosen by the system. pub fn join_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.sys.join_multicast_v4(multiaddr, interface) } /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type. /// /// This function specifies a new multicast group for this socket to join. /// The address must be a valid multicast address, and `interface` is the /// index of the interface to join/leave (or 0 to indicate any interface). pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.sys.join_multicast_v6(multiaddr, interface) } /// Executes an operation of the `IP_DROP_MEMBERSHIP` type. /// /// For more information about this option, see /// [`join_multicast_v4`][link]. /// /// [link]: #method.join_multicast_v4 pub fn leave_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.sys.leave_multicast_v4(multiaddr, interface) } /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type. /// /// For more information about this option, see /// [`join_multicast_v6`][link]. /// /// [link]: #method.join_multicast_v6 pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.sys.leave_multicast_v6(multiaddr, interface) } /// Sets the value for the `IPV6_V6ONLY` option on this socket. /// /// If this is set to `true` then the socket is restricted to sending and /// receiving IPv6 packets only. In this case two IPv4 and IPv6 applications /// can bind the same port at the same time. /// /// If this is set to `false` then the socket can be used to send and /// receive packets from an IPv4-mapped IPv6 address. pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.sys.set_only_v6(only_v6) } /// Gets the value of the `IPV6_V6ONLY` option for this socket. /// /// For more information about this option, see [`set_only_v6`][link]. /// /// [link]: #method.set_only_v6 pub fn only_v6(&self) -> io::Result { self.sys.only_v6() } /// Get the value of the `SO_ERROR` option on this socket. /// /// This will retrieve the stored error in the underlying socket, clearing /// the field in the process. This can be useful for checking errors between /// calls. pub fn take_error(&self) -> io::Result> { self.sys.take_error() } /// Receives a single datagram message socket previously bound with connect. /// /// This operation will attempt to read bytes from this socket and place /// them into the list of buffers provided. Note that each buffer is an /// `IoVec` which can be created from a byte slice. /// /// The buffers provided will be filled sequentially. A buffer will be /// entirely filled up before the next is written to. /// /// The number of bytes read is returned, if successful, or an error is /// returned otherwise. If no bytes are available to be read yet then /// a [`WouldBlock`][link] error is returned. This operation does not block. /// /// On Unix this corresponds to the `readv` syscall. /// /// [link]: https://doc.rust-lang.org/nightly/std/io/enum.ErrorKind.html#variant.WouldBlock #[cfg(all(unix, not(target_os = "fuchsia")))] pub fn recv_bufs(&self, bufs: &mut [&mut IoVec]) -> io::Result { self.sys.readv(bufs) } /// Sends data on the socket to the address previously bound via connect. /// /// This operation will attempt to send a list of byte buffers to this /// socket in a single datagram. Note that each buffer is an `IoVec` /// which can be created from a byte slice. /// /// The buffers provided will be written sequentially. A buffer will be /// entirely written before the next is written. /// /// The number of bytes written is returned, if successful, or an error is /// returned otherwise. If the socket is not currently writable then a /// [`WouldBlock`][link] error is returned. This operation does not block. /// /// On Unix this corresponds to the `writev` syscall. /// /// [link]: https://doc.rust-lang.org/nightly/std/io/enum.ErrorKind.html#variant.WouldBlock #[cfg(all(unix, not(target_os = "fuchsia")))] pub fn send_bufs(&self, bufs: &[&IoVec]) -> io::Result { self.sys.writev(bufs) } } impl Evented for UdpSocket { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.selector_id.associate_selector(poll)?; self.sys.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.sys.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.sys.deregister(poll) } } impl fmt::Debug for UdpSocket { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&self.sys, f) } } /* * * ===== UNIX ext ===== * */ #[cfg(all(unix, not(target_os = "fuchsia")))] use std::os::unix::io::{IntoRawFd, AsRawFd, FromRawFd, RawFd}; #[cfg(all(unix, not(target_os = "fuchsia")))] impl IntoRawFd for UdpSocket { fn into_raw_fd(self) -> RawFd { self.sys.into_raw_fd() } } #[cfg(all(unix, not(target_os = "fuchsia")))] impl AsRawFd for UdpSocket { fn as_raw_fd(&self) -> RawFd { self.sys.as_raw_fd() } } #[cfg(all(unix, not(target_os = "fuchsia")))] impl FromRawFd for UdpSocket { unsafe fn from_raw_fd(fd: RawFd) -> UdpSocket { UdpSocket { sys: FromRawFd::from_raw_fd(fd), selector_id: SelectorId::new(), } } } mio-0.6.23/src/poll.rs010064400007650000024000002732411376150724400127320ustar0000000000000000use {sys, Token}; use event_imp::{self as event, Ready, Event, Evented, PollOpt}; use std::{fmt, io, ptr, usize}; use std::cell::UnsafeCell; use std::{mem, ops, isize}; #[cfg(all(unix, not(target_os = "fuchsia")))] use std::os::unix::io::AsRawFd; #[cfg(all(unix, not(target_os = "fuchsia")))] use std::os::unix::io::RawFd; use std::process; use std::sync::{Arc, Mutex, Condvar}; use std::sync::atomic::{AtomicUsize, AtomicPtr, AtomicBool}; use std::sync::atomic::Ordering::{self, Acquire, Release, AcqRel, Relaxed, SeqCst}; use std::time::{Duration, Instant}; // Poll is backed by two readiness queues. The first is a system readiness queue // represented by `sys::Selector`. The system readiness queue handles events // provided by the system, such as TCP and UDP. The second readiness queue is // implemented in user space by `ReadinessQueue`. It provides a way to implement // purely user space `Evented` types. // // `ReadinessQueue` is backed by a MPSC queue that supports reuse of linked // list nodes. This significantly reduces the number of required allocations. // Each `Registration` / `SetReadiness` pair allocates a single readiness node // that is used for the lifetime of the registration. // // The readiness node also includes a single atomic variable, `state` that // tracks most of the state associated with the registration. This includes the // current readiness, interest, poll options, and internal state. When the node // state is mutated, it is queued in the MPSC channel. A call to // `ReadinessQueue::poll` will dequeue and process nodes. The node state can // still be mutated while it is queued in the channel for processing. // Intermediate state values do not matter as long as the final state is // included in the call to `poll`. This is the eventually consistent nature of // the readiness queue. // // The readiness node is ref counted using the `ref_count` field. On creation, // the ref_count is initialized to 3: one `Registration` handle, one // `SetReadiness` handle, and one for the readiness queue. Since the readiness queue // doesn't *always* hold a handle to the node, we don't use the Arc type for // managing ref counts (this is to avoid constantly incrementing and // decrementing the ref count when pushing & popping from the queue). When the // `Registration` handle is dropped, the `dropped` flag is set on the node, then // the node is pushed into the registration queue. When Poll::poll pops the // node, it sees the drop flag is set, and decrements it's ref count. // // The MPSC queue is a modified version of the intrusive MPSC node based queue // described by 1024cores [1]. // // The first modification is that two markers are used instead of a single // `stub`. The second marker is a `sleep_marker` which is used to signal to // producers that the consumer is going to sleep. This sleep_marker is only used // when the queue is empty, implying that the only node in the queue is // `end_marker`. // // The second modification is an `until` argument passed to the dequeue // function. When `poll` encounters a level-triggered node, the node will be // immediately pushed back into the queue. In order to avoid an infinite loop, // `poll` before pushing the node, the pointer is saved off and then passed // again as the `until` argument. If the next node to pop is `until`, then // `Dequeue::Empty` is returned. // // [1] http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue /// Polls for readiness events on all registered values. /// /// `Poll` allows a program to monitor a large number of `Evented` types, /// waiting until one or more become "ready" for some class of operations; e.g. /// reading and writing. An `Evented` type is considered ready if it is possible /// to immediately perform a corresponding operation; e.g. [`read`] or /// [`write`]. /// /// To use `Poll`, an `Evented` type must first be registered with the `Poll` /// instance using the [`register`] method, supplying readiness interest. The /// readiness interest tells `Poll` which specific operations on the handle to /// monitor for readiness. A `Token` is also passed to the [`register`] /// function. When `Poll` returns a readiness event, it will include this token. /// This associates the event with the `Evented` handle that generated the /// event. /// /// [`read`]: tcp/struct.TcpStream.html#method.read /// [`write`]: tcp/struct.TcpStream.html#method.write /// [`register`]: #method.register /// /// # Examples /// /// A basic example -- establishing a `TcpStream` connection. /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Poll, Ready, PollOpt, Token}; /// use mio::net::TcpStream; /// /// use std::net::{TcpListener, SocketAddr}; /// /// // Bind a server socket to connect to. /// let addr: SocketAddr = "127.0.0.1:0".parse()?; /// let server = TcpListener::bind(&addr)?; /// /// // Construct a new `Poll` handle as well as the `Events` we'll store into /// let poll = Poll::new()?; /// let mut events = Events::with_capacity(1024); /// /// // Connect the stream /// let stream = TcpStream::connect(&server.local_addr()?)?; /// /// // Register the stream with `Poll` /// poll.register(&stream, Token(0), Ready::readable() | Ready::writable(), PollOpt::edge())?; /// /// // Wait for the socket to become ready. This has to happens in a loop to /// // handle spurious wakeups. /// loop { /// poll.poll(&mut events, None)?; /// /// for event in &events { /// if event.token() == Token(0) && event.readiness().is_writable() { /// // The socket connected (probably, it could still be a spurious /// // wakeup) /// return Ok(()); /// } /// } /// } /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// /// # Edge-triggered and level-triggered /// /// An [`Evented`] registration may request edge-triggered events or /// level-triggered events. This is done by setting `register`'s /// [`PollOpt`] argument to either [`edge`] or [`level`]. /// /// The difference between the two can be described as follows. Supposed that /// this scenario happens: /// /// 1. A [`TcpStream`] is registered with `Poll`. /// 2. The socket receives 2kb of data. /// 3. A call to [`Poll::poll`] returns the token associated with the socket /// indicating readable readiness. /// 4. 1kb is read from the socket. /// 5. Another call to [`Poll::poll`] is made. /// /// If when the socket was registered with `Poll`, edge triggered events were /// requested, then the call to [`Poll::poll`] done in step **5** will /// (probably) hang despite there being another 1kb still present in the socket /// read buffer. The reason for this is that edge-triggered mode delivers events /// only when changes occur on the monitored [`Evented`]. So, in step *5* the /// caller might end up waiting for some data that is already present inside the /// socket buffer. /// /// With edge-triggered events, operations **must** be performed on the /// `Evented` type until [`WouldBlock`] is returned. In other words, after /// receiving an event indicating readiness for a certain operation, one should /// assume that [`Poll::poll`] may never return another event for the same token /// and readiness until the operation returns [`WouldBlock`]. /// /// By contrast, when level-triggered notifications was requested, each call to /// [`Poll::poll`] will return an event for the socket as long as data remains /// in the socket buffer. Generally, level-triggered events should be avoided if /// high performance is a concern. /// /// Since even with edge-triggered events, multiple events can be generated upon /// receipt of multiple chunks of data, the caller has the option to set the /// [`oneshot`] flag. This tells `Poll` to disable the associated [`Evented`] /// after the event is returned from [`Poll::poll`]. The subsequent calls to /// [`Poll::poll`] will no longer include events for [`Evented`] handles that /// are disabled even if the readiness state changes. The handle can be /// re-enabled by calling [`reregister`]. When handles are disabled, internal /// resources used to monitor the handle are maintained until the handle is /// dropped or deregistered. This makes re-registering the handle a fast /// operation. /// /// For example, in the following scenario: /// /// 1. A [`TcpStream`] is registered with `Poll`. /// 2. The socket receives 2kb of data. /// 3. A call to [`Poll::poll`] returns the token associated with the socket /// indicating readable readiness. /// 4. 2kb is read from the socket. /// 5. Another call to read is issued and [`WouldBlock`] is returned /// 6. The socket receives another 2kb of data. /// 7. Another call to [`Poll::poll`] is made. /// /// Assuming the socket was registered with `Poll` with the [`edge`] and /// [`oneshot`] options, then the call to [`Poll::poll`] in step 7 would block. This /// is because, [`oneshot`] tells `Poll` to disable events for the socket after /// returning an event. /// /// In order to receive the event for the data received in step 6, the socket /// would need to be reregistered using [`reregister`]. /// /// [`PollOpt`]: struct.PollOpt.html /// [`edge`]: struct.PollOpt.html#method.edge /// [`level`]: struct.PollOpt.html#method.level /// [`Poll::poll`]: struct.Poll.html#method.poll /// [`WouldBlock`]: https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.WouldBlock /// [`Evented`]: event/trait.Evented.html /// [`TcpStream`]: tcp/struct.TcpStream.html /// [`reregister`]: #method.reregister /// [`oneshot`]: struct.PollOpt.html#method.oneshot /// /// # Portability /// /// Using `Poll` provides a portable interface across supported platforms as /// long as the caller takes the following into consideration: /// /// ### Spurious events /// /// [`Poll::poll`] may return readiness events even if the associated /// [`Evented`] handle is not actually ready. Given the same code, this may /// happen more on some platforms than others. It is important to never assume /// that, just because a readiness notification was received, that the /// associated operation will succeed as well. /// /// If operation fails with [`WouldBlock`], then the caller should not treat /// this as an error, but instead should wait until another readiness event is /// received. /// /// ### Draining readiness /// /// When using edge-triggered mode, once a readiness event is received, the /// corresponding operation must be performed repeatedly until it returns /// [`WouldBlock`]. Unless this is done, there is no guarantee that another /// readiness event will be delivered, even if further data is received for the /// [`Evented`] handle. /// /// For example, in the first scenario described above, after step 5, even if /// the socket receives more data there is no guarantee that another readiness /// event will be delivered. /// /// ### Readiness operations /// /// The only readiness operations that are guaranteed to be present on all /// supported platforms are [`readable`] and [`writable`]. All other readiness /// operations may have false negatives and as such should be considered /// **hints**. This means that if a socket is registered with [`readable`], /// [`error`], and [`hup`] interest, and either an error or hup is received, a /// readiness event will be generated for the socket, but it **may** only /// include `readable` readiness. Also note that, given the potential for /// spurious events, receiving a readiness event with `hup` or `error` doesn't /// actually mean that a `read` on the socket will return a result matching the /// readiness event. /// /// In other words, portable programs that explicitly check for [`hup`] or /// [`error`] readiness should be doing so as an **optimization** and always be /// able to handle an error or HUP situation when performing the actual read /// operation. /// /// [`readable`]: struct.Ready.html#method.readable /// [`writable`]: struct.Ready.html#method.writable /// [`error`]: unix/struct.UnixReady.html#method.error /// [`hup`]: unix/struct.UnixReady.html#method.hup /// /// ### Registering handles /// /// Unless otherwise noted, it should be assumed that types implementing /// [`Evented`] will never become ready unless they are registered with `Poll`. /// /// For example: /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Poll, Ready, PollOpt, Token}; /// use mio::net::TcpStream; /// use std::time::Duration; /// use std::thread; /// /// let sock = TcpStream::connect(&"216.58.193.100:80".parse()?)?; /// /// thread::sleep(Duration::from_secs(1)); /// /// let poll = Poll::new()?; /// /// // The connect is not guaranteed to have started until it is registered at /// // this point /// poll.register(&sock, Token(0), Ready::readable() | Ready::writable(), PollOpt::edge())?; /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// /// # Implementation notes /// /// `Poll` is backed by the selector provided by the operating system. /// /// | OS | Selector | /// |------------|-----------| /// | Linux | [epoll] | /// | OS X, iOS | [kqueue] | /// | Windows | [IOCP] | /// | FreeBSD | [kqueue] | /// | Android | [epoll] | /// /// On all supported platforms, socket operations are handled by using the /// system selector. Platform specific extensions (e.g. [`EventedFd`]) allow /// accessing other features provided by individual system selectors. For /// example, Linux's [`signalfd`] feature can be used by registering the FD with /// `Poll` via [`EventedFd`]. /// /// On all platforms except windows, a call to [`Poll::poll`] is mostly just a /// direct call to the system selector. However, [IOCP] uses a completion model /// instead of a readiness model. In this case, `Poll` must adapt the completion /// model Mio's API. While non-trivial, the bridge layer is still quite /// efficient. The most expensive part being calls to `read` and `write` require /// data to be copied into an intermediate buffer before it is passed to the /// kernel. /// /// Notifications generated by [`SetReadiness`] are handled by an internal /// readiness queue. A single call to [`Poll::poll`] will collect events from /// both from the system selector and the internal readiness queue. /// /// [epoll]: http://man7.org/linux/man-pages/man7/epoll.7.html /// [kqueue]: https://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2 /// [IOCP]: https://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx /// [`signalfd`]: http://man7.org/linux/man-pages/man2/signalfd.2.html /// [`EventedFd`]: unix/struct.EventedFd.html /// [`SetReadiness`]: struct.SetReadiness.html /// [`Poll::poll`]: struct.Poll.html#method.poll pub struct Poll { // Platform specific IO selector selector: sys::Selector, // Custom readiness queue readiness_queue: ReadinessQueue, // Use an atomic to first check if a full lock will be required. This is a // fast-path check for single threaded cases avoiding the extra syscall lock_state: AtomicUsize, // Sequences concurrent calls to `Poll::poll` lock: Mutex<()>, // Wakeup the next waiter condvar: Condvar, } /// Handle to a user space `Poll` registration. /// /// `Registration` allows implementing [`Evented`] for types that cannot work /// with the [system selector]. A `Registration` is always paired with a /// `SetReadiness`, which allows updating the registration's readiness state. /// When [`set_readiness`] is called and the `Registration` is associated with a /// [`Poll`] instance, a readiness event will be created and eventually returned /// by [`poll`]. /// /// A `Registration` / `SetReadiness` pair is created by calling /// [`Registration::new2`]. At this point, the registration is not being /// monitored by a [`Poll`] instance, so calls to `set_readiness` will not /// result in any readiness notifications. /// /// `Registration` implements [`Evented`], so it can be used with [`Poll`] using /// the same [`register`], [`reregister`], and [`deregister`] functions used /// with TCP, UDP, etc... types. Once registered with [`Poll`], readiness state /// changes result in readiness events being dispatched to the [`Poll`] instance /// with which `Registration` is registered. /// /// **Note**, before using `Registration` be sure to read the /// [`set_readiness`] documentation and the [portability] notes. The /// guarantees offered by `Registration` may be weaker than expected. /// /// For high level documentation, see [`Poll`]. /// /// # Examples /// /// ``` /// use mio::{Ready, Registration, Poll, PollOpt, Token}; /// use mio::event::Evented; /// /// use std::io; /// use std::time::Instant; /// use std::thread; /// /// pub struct Deadline { /// when: Instant, /// registration: Registration, /// } /// /// impl Deadline { /// pub fn new(when: Instant) -> Deadline { /// let (registration, set_readiness) = Registration::new2(); /// /// thread::spawn(move || { /// let now = Instant::now(); /// /// if now < when { /// thread::sleep(when - now); /// } /// /// set_readiness.set_readiness(Ready::readable()); /// }); /// /// Deadline { /// when: when, /// registration: registration, /// } /// } /// /// pub fn is_elapsed(&self) -> bool { /// Instant::now() >= self.when /// } /// } /// /// impl Evented for Deadline { /// fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) /// -> io::Result<()> /// { /// self.registration.register(poll, token, interest, opts) /// } /// /// fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) /// -> io::Result<()> /// { /// self.registration.reregister(poll, token, interest, opts) /// } /// /// fn deregister(&self, poll: &Poll) -> io::Result<()> { /// poll.deregister(&self.registration) /// } /// } /// ``` /// /// [system selector]: struct.Poll.html#implementation-notes /// [`Poll`]: struct.Poll.html /// [`Registration::new2`]: struct.Registration.html#method.new2 /// [`Evented`]: event/trait.Evented.html /// [`set_readiness`]: struct.SetReadiness.html#method.set_readiness /// [`register`]: struct.Poll.html#method.register /// [`reregister`]: struct.Poll.html#method.reregister /// [`deregister`]: struct.Poll.html#method.deregister /// [portability]: struct.Poll.html#portability pub struct Registration { inner: RegistrationInner, } unsafe impl Send for Registration {} unsafe impl Sync for Registration {} /// Updates the readiness state of the associated `Registration`. /// /// See [`Registration`] for more documentation on using `SetReadiness` and /// [`Poll`] for high level polling documentation. /// /// [`Poll`]: struct.Poll.html /// [`Registration`]: struct.Registration.html #[derive(Clone)] pub struct SetReadiness { inner: RegistrationInner, } unsafe impl Send for SetReadiness {} unsafe impl Sync for SetReadiness {} /// Used to associate an IO type with a Selector #[derive(Debug)] pub struct SelectorId { id: AtomicUsize, } struct RegistrationInner { // Unsafe pointer to the registration's node. The node is ref counted. This // cannot "simply" be tracked by an Arc because `Poll::poll` has an implicit // handle though it isn't stored anywhere. In other words, `Poll::poll` // needs to decrement the ref count before the node is freed. node: *mut ReadinessNode, } #[derive(Clone)] struct ReadinessQueue { inner: Arc, } unsafe impl Send for ReadinessQueue {} unsafe impl Sync for ReadinessQueue {} struct ReadinessQueueInner { // Used to wake up `Poll` when readiness is set in another thread. awakener: sys::Awakener, // Head of the MPSC queue used to signal readiness to `Poll::poll`. head_readiness: AtomicPtr, // Tail of the readiness queue. // // Only accessed by Poll::poll. Coordination will be handled by the poll fn tail_readiness: UnsafeCell<*mut ReadinessNode>, // Fake readiness node used to punctuate the end of the readiness queue. // Before attempting to read from the queue, this node is inserted in order // to partition the queue between nodes that are "owned" by the dequeue end // and nodes that will be pushed on by producers. end_marker: Box, // Similar to `end_marker`, but this node signals to producers that `Poll` // has gone to sleep and must be woken up. sleep_marker: Box, // Similar to `end_marker`, but the node signals that the queue is closed. // This happens when `ReadyQueue` is dropped and signals to producers that // the nodes should no longer be pushed into the queue. closed_marker: Box, } /// Node shared by a `Registration` / `SetReadiness` pair as well as the node /// queued into the MPSC channel. struct ReadinessNode { // Node state, see struct docs for `ReadinessState` // // This variable is the primary point of coordination between all the // various threads concurrently accessing the node. state: AtomicState, // The registration token cannot fit into the `state` variable, so it is // broken out here. In order to atomically update both the state and token // we have to jump through a few hoops. // // First, `state` includes `token_read_pos` and `token_write_pos`. These can // either be 0, 1, or 2 which represent a token slot. `token_write_pos` is // the token slot that contains the most up to date registration token. // `token_read_pos` is the token slot that `poll` is currently reading from. // // When a call to `update` includes a different token than the one currently // associated with the registration (token_write_pos), first an unused token // slot is found. The unused slot is the one not represented by // `token_read_pos` OR `token_write_pos`. The new token is written to this // slot, then `state` is updated with the new `token_write_pos` value. This // requires that there is only a *single* concurrent call to `update`. // // When `poll` reads a node state, it checks that `token_read_pos` matches // `token_write_pos`. If they do not match, then it atomically updates // `state` such that `token_read_pos` is set to `token_write_pos`. It will // then read the token at the newly updated `token_read_pos`. token_0: UnsafeCell, token_1: UnsafeCell, token_2: UnsafeCell, // Used when the node is queued in the readiness linked list. Accessing // this field requires winning the "queue" lock next_readiness: AtomicPtr, // Ensures that there is only one concurrent call to `update`. // // Each call to `update` will attempt to swap `update_lock` from `false` to // `true`. If the CAS succeeds, the thread has obtained the update lock. If // the CAS fails, then the `update` call returns immediately and the update // is discarded. update_lock: AtomicBool, // Pointer to Arc readiness_queue: AtomicPtr<()>, // Tracks the number of `ReadyRef` pointers ref_count: AtomicUsize, } /// Stores the ReadinessNode state in an AtomicUsize. This wrapper around the /// atomic variable handles encoding / decoding `ReadinessState` values. struct AtomicState { inner: AtomicUsize, } const MASK_2: usize = 4 - 1; const MASK_4: usize = 16 - 1; const QUEUED_MASK: usize = 1 << QUEUED_SHIFT; const DROPPED_MASK: usize = 1 << DROPPED_SHIFT; const READINESS_SHIFT: usize = 0; const INTEREST_SHIFT: usize = 4; const POLL_OPT_SHIFT: usize = 8; const TOKEN_RD_SHIFT: usize = 12; const TOKEN_WR_SHIFT: usize = 14; const QUEUED_SHIFT: usize = 16; const DROPPED_SHIFT: usize = 17; /// Tracks all state for a single `ReadinessNode`. The state is packed into a /// `usize` variable from low to high bit as follows: /// /// 4 bits: Registration current readiness /// 4 bits: Registration interest /// 4 bits: Poll options /// 2 bits: Token position currently being read from by `poll` /// 2 bits: Token position last written to by `update` /// 1 bit: Queued flag, set when node is being pushed into MPSC queue. /// 1 bit: Dropped flag, set when all `Registration` handles have been dropped. #[derive(Debug, Copy, Clone, Eq, PartialEq)] struct ReadinessState(usize); /// Returned by `dequeue_node`. Represents the different states as described by /// the queue documentation on 1024cores.net. enum Dequeue { Data(*mut ReadinessNode), Empty, Inconsistent, } const AWAKEN: Token = Token(usize::MAX); const MAX_REFCOUNT: usize = (isize::MAX) as usize; /* * * ===== Poll ===== * */ impl Poll { /// Return a new `Poll` handle. /// /// This function will make a syscall to the operating system to create the /// system selector. If this syscall fails, `Poll::new` will return with the /// error. /// /// See [struct] level docs for more details. /// /// [struct]: struct.Poll.html /// /// # Examples /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Poll, Events}; /// use std::time::Duration; /// /// let poll = match Poll::new() { /// Ok(poll) => poll, /// Err(e) => panic!("failed to create Poll instance; err={:?}", e), /// }; /// /// // Create a structure to receive polled events /// let mut events = Events::with_capacity(1024); /// /// // Wait for events, but none will be received because no `Evented` /// // handles have been registered with this `Poll` instance. /// let n = poll.poll(&mut events, Some(Duration::from_millis(500)))?; /// assert_eq!(n, 0); /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn new() -> io::Result { is_send::(); is_sync::(); let poll = Poll { selector: sys::Selector::new()?, readiness_queue: ReadinessQueue::new()?, lock_state: AtomicUsize::new(0), lock: Mutex::new(()), condvar: Condvar::new(), }; // Register the notification wakeup FD with the IO poller poll.readiness_queue.inner.awakener.register(&poll, AWAKEN, Ready::readable(), PollOpt::edge())?; Ok(poll) } /// Register an `Evented` handle with the `Poll` instance. /// /// Once registered, the `Poll` instance will monitor the `Evented` handle /// for readiness state changes. When it notices a state change, it will /// return a readiness event for the handle the next time [`poll`] is /// called. /// /// See the [`struct`] docs for a high level overview. /// /// # Arguments /// /// `handle: &E: Evented`: This is the handle that the `Poll` instance /// should monitor for readiness state changes. /// /// `token: Token`: The caller picks a token to associate with the socket. /// When [`poll`] returns an event for the handle, this token is included. /// This allows the caller to map the event to its handle. The token /// associated with the `Evented` handle can be changed at any time by /// calling [`reregister`]. /// /// `token` cannot be `Token(usize::MAX)` as it is reserved for internal /// usage. /// /// See documentation on [`Token`] for an example showing how to pick /// [`Token`] values. /// /// `interest: Ready`: Specifies which operations `Poll` should monitor for /// readiness. `Poll` will only return readiness events for operations /// specified by this argument. /// /// If a socket is registered with readable interest and the socket becomes /// writable, no event will be returned from [`poll`]. /// /// The readiness interest for an `Evented` handle can be changed at any /// time by calling [`reregister`]. /// /// `opts: PollOpt`: Specifies the registration options. The most common /// options being [`level`] for level-triggered events, [`edge`] for /// edge-triggered events, and [`oneshot`]. /// /// The registration options for an `Evented` handle can be changed at any /// time by calling [`reregister`]. /// /// # Notes /// /// Unless otherwise specified, the caller should assume that once an /// `Evented` handle is registered with a `Poll` instance, it is bound to /// that `Poll` instance for the lifetime of the `Evented` handle. This /// remains true even if the `Evented` handle is deregistered from the poll /// instance using [`deregister`]. /// /// This function is **thread safe**. It can be called concurrently from /// multiple threads. /// /// [`struct`]: # /// [`reregister`]: #method.reregister /// [`deregister`]: #method.deregister /// [`poll`]: #method.poll /// [`level`]: struct.PollOpt.html#method.level /// [`edge`]: struct.PollOpt.html#method.edge /// [`oneshot`]: struct.PollOpt.html#method.oneshot /// [`Token`]: struct.Token.html /// /// # Examples /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Poll, Ready, PollOpt, Token}; /// use mio::net::TcpStream; /// use std::time::{Duration, Instant}; /// /// let poll = Poll::new()?; /// let socket = TcpStream::connect(&"216.58.193.100:80".parse()?)?; /// /// // Register the socket with `poll` /// poll.register(&socket, Token(0), Ready::readable() | Ready::writable(), PollOpt::edge())?; /// /// let mut events = Events::with_capacity(1024); /// let start = Instant::now(); /// let timeout = Duration::from_millis(500); /// /// loop { /// let elapsed = start.elapsed(); /// /// if elapsed >= timeout { /// // Connection timed out /// return Ok(()); /// } /// /// let remaining = timeout - elapsed; /// poll.poll(&mut events, Some(remaining))?; /// /// for event in &events { /// if event.token() == Token(0) { /// // Something (probably) happened on the socket. /// return Ok(()); /// } /// } /// } /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn register(&self, handle: &E, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> where E: Evented { validate_args(token)?; /* * Undefined behavior: * - Reusing a token with a different `Evented` without deregistering * (or closing) the original `Evented`. */ trace!("registering with poller"); // Register interests for this socket handle.register(self, token, interest, opts)?; Ok(()) } /// Re-register an `Evented` handle with the `Poll` instance. /// /// Re-registering an `Evented` handle allows changing the details of the /// registration. Specifically, it allows updating the associated `token`, /// `interest`, and `opts` specified in previous `register` and `reregister` /// calls. /// /// The `reregister` arguments fully override the previous values. In other /// words, if a socket is registered with [`readable`] interest and the call /// to `reregister` specifies [`writable`], then read interest is no longer /// requested for the handle. /// /// The `Evented` handle must have previously been registered with this /// instance of `Poll` otherwise the call to `reregister` will return with /// an error. /// /// `token` cannot be `Token(usize::MAX)` as it is reserved for internal /// usage. /// /// See the [`register`] documentation for details about the function /// arguments and see the [`struct`] docs for a high level overview of /// polling. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Poll, Ready, PollOpt, Token}; /// use mio::net::TcpStream; /// /// let poll = Poll::new()?; /// let socket = TcpStream::connect(&"216.58.193.100:80".parse()?)?; /// /// // Register the socket with `poll`, requesting readable /// poll.register(&socket, Token(0), Ready::readable(), PollOpt::edge())?; /// /// // Reregister the socket specifying a different token and write interest /// // instead. `PollOpt::edge()` must be specified even though that value /// // is not being changed. /// poll.reregister(&socket, Token(2), Ready::writable(), PollOpt::edge())?; /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// /// [`struct`]: # /// [`register`]: #method.register /// [`readable`]: struct.Ready.html#method.readable /// [`writable`]: struct.Ready.html#method.writable pub fn reregister(&self, handle: &E, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> where E: Evented { validate_args(token)?; trace!("registering with poller"); // Register interests for this socket handle.reregister(self, token, interest, opts)?; Ok(()) } /// Deregister an `Evented` handle with the `Poll` instance. /// /// When an `Evented` handle is deregistered, the `Poll` instance will /// no longer monitor it for readiness state changes. Unlike disabling /// handles with oneshot, deregistering clears up any internal resources /// needed to track the handle. /// /// A handle can be passed back to `register` after it has been /// deregistered; however, it must be passed back to the **same** `Poll` /// instance. /// /// `Evented` handles are automatically deregistered when they are dropped. /// It is common to never need to explicitly call `deregister`. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Poll, Ready, PollOpt, Token}; /// use mio::net::TcpStream; /// use std::time::Duration; /// /// let poll = Poll::new()?; /// let socket = TcpStream::connect(&"216.58.193.100:80".parse()?)?; /// /// // Register the socket with `poll` /// poll.register(&socket, Token(0), Ready::readable(), PollOpt::edge())?; /// /// poll.deregister(&socket)?; /// /// let mut events = Events::with_capacity(1024); /// /// // Set a timeout because this poll should never receive any events. /// let n = poll.poll(&mut events, Some(Duration::from_secs(1)))?; /// assert_eq!(0, n); /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn deregister(&self, handle: &E) -> io::Result<()> where E: Evented { trace!("deregistering handle with poller"); // Deregister interests for this socket handle.deregister(self)?; Ok(()) } /// Wait for readiness events /// /// Blocks the current thread and waits for readiness events for any of the /// `Evented` handles that have been registered with this `Poll` instance. /// The function will block until either at least one readiness event has /// been received or `timeout` has elapsed. A `timeout` of `None` means that /// `poll` will block until a readiness event has been received. /// /// The supplied `events` will be cleared and newly received readiness events /// will be pushed onto the end. At most `events.capacity()` events will be /// returned. If there are further pending readiness events, they will be /// returned on the next call to `poll`. /// /// A single call to `poll` may result in multiple readiness events being /// returned for a single `Evented` handle. For example, if a TCP socket /// becomes both readable and writable, it may be possible for a single /// readiness event to be returned with both [`readable`] and [`writable`] /// readiness **OR** two separate events may be returned, one with /// [`readable`] set and one with [`writable`] set. /// /// Note that the `timeout` will be rounded up to the system clock /// granularity (usually 1ms), and kernel scheduling delays mean that /// the blocking interval may be overrun by a small amount. /// /// `poll` returns the number of readiness events that have been pushed into /// `events` or `Err` when an error has been encountered with the system /// selector. The value returned is deprecated and will be removed in 0.7.0. /// Accessing the events by index is also deprecated. Events can be /// inserted by other events triggering, thus making sequential access /// problematic. Use the iterator API instead. See [`iter`]. /// /// See the [struct] level documentation for a higher level discussion of /// polling. /// /// [`readable`]: struct.Ready.html#method.readable /// [`writable`]: struct.Ready.html#method.writable /// [struct]: # /// [`iter`]: struct.Events.html#method.iter /// /// # Examples /// /// A basic example -- establishing a `TcpStream` connection. /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Poll, Ready, PollOpt, Token}; /// use mio::net::TcpStream; /// /// use std::net::{TcpListener, SocketAddr}; /// use std::thread; /// /// // Bind a server socket to connect to. /// let addr: SocketAddr = "127.0.0.1:0".parse()?; /// let server = TcpListener::bind(&addr)?; /// let addr = server.local_addr()?.clone(); /// /// // Spawn a thread to accept the socket /// thread::spawn(move || { /// let _ = server.accept(); /// }); /// /// // Construct a new `Poll` handle as well as the `Events` we'll store into /// let poll = Poll::new()?; /// let mut events = Events::with_capacity(1024); /// /// // Connect the stream /// let stream = TcpStream::connect(&addr)?; /// /// // Register the stream with `Poll` /// poll.register(&stream, Token(0), Ready::readable() | Ready::writable(), PollOpt::edge())?; /// /// // Wait for the socket to become ready. This has to happens in a loop to /// // handle spurious wakeups. /// loop { /// poll.poll(&mut events, None)?; /// /// for event in &events { /// if event.token() == Token(0) && event.readiness().is_writable() { /// // The socket connected (probably, it could still be a spurious /// // wakeup) /// return Ok(()); /// } /// } /// } /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// /// [struct]: # pub fn poll(&self, events: &mut Events, timeout: Option) -> io::Result { self.poll1(events, timeout, false) } /// Like `poll`, but may be interrupted by a signal /// /// If `poll` is inturrupted while blocking, it will transparently retry the syscall. If you /// want to handle signals yourself, however, use `poll_interruptible`. pub fn poll_interruptible(&self, events: &mut Events, timeout: Option) -> io::Result { self.poll1(events, timeout, true) } fn poll1(&self, events: &mut Events, mut timeout: Option, interruptible: bool) -> io::Result { let zero = Some(Duration::from_millis(0)); // At a high level, the synchronization strategy is to acquire access to // the critical section by transitioning the atomic from unlocked -> // locked. If the attempt fails, the thread will wait on the condition // variable. // // # Some more detail // // The `lock_state` atomic usize combines: // // - locked flag, stored in the least significant bit // - number of waiting threads, stored in the rest of the bits. // // When a thread transitions the locked flag from 0 -> 1, it has // obtained access to the critical section. // // When entering `poll`, a compare-and-swap from 0 -> 1 is attempted. // This is a fast path for the case when there are no concurrent calls // to poll, which is very common. // // On failure, the mutex is locked, and the thread attempts to increment // the number of waiting threads component of `lock_state`. If this is // successfully done while the locked flag is set, then the thread can // wait on the condition variable. // // When a thread exits the critical section, it unsets the locked flag. // If there are any waiters, which is atomically determined while // unsetting the locked flag, then the condvar is notified. let mut curr = self.lock_state.compare_and_swap(0, 1, SeqCst); if 0 != curr { // Enter slower path let mut lock = self.lock.lock().unwrap(); let mut inc = false; loop { if curr & 1 == 0 { // The lock is currently free, attempt to grab it let mut next = curr | 1; if inc { // The waiter count has previously been incremented, so // decrement it here next -= 2; } let actual = self.lock_state.compare_and_swap(curr, next, SeqCst); if actual != curr { curr = actual; continue; } // Lock acquired, break from the loop break; } if timeout == zero { if inc { self.lock_state.fetch_sub(2, SeqCst); } return Ok(0); } // The lock is currently held, so wait for it to become // free. If the waiter count hasn't been incremented yet, do // so now if !inc { let next = curr.checked_add(2).expect("overflow"); let actual = self.lock_state.compare_and_swap(curr, next, SeqCst); if actual != curr { curr = actual; continue; } // Track that the waiter count has been incremented for // this thread and fall through to the condvar waiting inc = true; } lock = match timeout { Some(to) => { let now = Instant::now(); // Wait to be notified let (l, _) = self.condvar.wait_timeout(lock, to).unwrap(); // See how much time was elapsed in the wait let elapsed = now.elapsed(); // Update `timeout` to reflect how much time is left to // wait. if elapsed >= to { timeout = zero; } else { // Update the timeout timeout = Some(to - elapsed); } l } None => { self.condvar.wait(lock).unwrap() } }; // Reload the state curr = self.lock_state.load(SeqCst); // Try to lock again... } } let ret = self.poll2(events, timeout, interruptible); // Release the lock if 1 != self.lock_state.fetch_and(!1, Release) { // Acquire the mutex let _lock = self.lock.lock().unwrap(); // There is at least one waiting thread, so notify one self.condvar.notify_one(); } ret } #[inline] #[cfg_attr(feature = "cargo-clippy", allow(clippy::if_same_then_else))] fn poll2(&self, events: &mut Events, mut timeout: Option, interruptible: bool) -> io::Result { // Compute the timeout value passed to the system selector. If the // readiness queue has pending nodes, we still want to poll the system // selector for new events, but we don't want to block the thread to // wait for new events. if timeout == Some(Duration::from_millis(0)) { // If blocking is not requested, then there is no need to prepare // the queue for sleep // // The sleep_marker should be removed by readiness_queue.poll(). } else if self.readiness_queue.prepare_for_sleep() { // The readiness queue is empty. The call to `prepare_for_sleep` // inserts `sleep_marker` into the queue. This signals to any // threads setting readiness that the `Poll::poll` is going to // sleep, so the awakener should be used. } else { // The readiness queue is not empty, so do not block the thread. timeout = Some(Duration::from_millis(0)); } loop { let now = Instant::now(); // First get selector events let res = self.selector.select(&mut events.inner, AWAKEN, timeout); match res { Ok(true) => { // Some awakeners require reading from a FD. self.readiness_queue.inner.awakener.cleanup(); break; } Ok(false) => break, Err(ref e) if e.kind() == io::ErrorKind::Interrupted && !interruptible => { // Interrupted by a signal; update timeout if necessary and retry if let Some(to) = timeout { let elapsed = now.elapsed(); if elapsed >= to { break; } else { timeout = Some(to - elapsed); } } } Err(e) => return Err(e), } } // Poll custom event queue self.readiness_queue.poll(&mut events.inner); // Return number of polled events Ok(events.inner.len()) } } fn validate_args(token: Token) -> io::Result<()> { if token == AWAKEN { return Err(io::Error::new(io::ErrorKind::Other, "invalid token")); } Ok(()) } impl fmt::Debug for Poll { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_struct("Poll") .finish() } } #[cfg(all(unix, not(target_os = "fuchsia")))] impl AsRawFd for Poll { fn as_raw_fd(&self) -> RawFd { self.selector.as_raw_fd() } } /// A collection of readiness events. /// /// `Events` is passed as an argument to [`Poll::poll`] and will be used to /// receive any new readiness events received since the last poll. Usually, a /// single `Events` instance is created at the same time as a [`Poll`] and /// reused on each call to [`Poll::poll`]. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Poll}; /// use std::time::Duration; /// /// let mut events = Events::with_capacity(1024); /// let poll = Poll::new()?; /// /// assert_eq!(0, events.len()); /// /// // Register `Evented` handles with `poll` /// /// poll.poll(&mut events, Some(Duration::from_millis(100)))?; /// /// for event in &events { /// println!("event={:?}", event); /// } /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// /// [`Poll::poll`]: struct.Poll.html#method.poll /// [`Poll`]: struct.Poll.html pub struct Events { inner: sys::Events, } /// [`Events`] iterator. /// /// This struct is created by the [`iter`] method on [`Events`]. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Poll}; /// use std::time::Duration; /// /// let mut events = Events::with_capacity(1024); /// let poll = Poll::new()?; /// /// // Register handles with `poll` /// /// poll.poll(&mut events, Some(Duration::from_millis(100)))?; /// /// for event in events.iter() { /// println!("event={:?}", event); /// } /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// /// [`Events`]: struct.Events.html /// [`iter`]: struct.Events.html#method.iter #[derive(Debug, Clone)] pub struct Iter<'a> { inner: &'a Events, pos: usize, } /// Owned [`Events`] iterator. /// /// This struct is created by the `into_iter` method on [`Events`]. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Poll}; /// use std::time::Duration; /// /// let mut events = Events::with_capacity(1024); /// let poll = Poll::new()?; /// /// // Register handles with `poll` /// /// poll.poll(&mut events, Some(Duration::from_millis(100)))?; /// /// for event in events { /// println!("event={:?}", event); /// } /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// [`Events`]: struct.Events.html #[derive(Debug)] pub struct IntoIter { inner: Events, pos: usize, } impl Events { /// Return a new `Events` capable of holding up to `capacity` events. /// /// # Examples /// /// ``` /// use mio::Events; /// /// let events = Events::with_capacity(1024); /// /// assert_eq!(1024, events.capacity()); /// ``` pub fn with_capacity(capacity: usize) -> Events { Events { inner: sys::Events::with_capacity(capacity), } } #[deprecated(since="0.6.10", note="Index access removed in favor of iterator only API.")] #[doc(hidden)] pub fn get(&self, idx: usize) -> Option { self.inner.get(idx) } #[doc(hidden)] #[deprecated(since="0.6.10", note="Index access removed in favor of iterator only API.")] pub fn len(&self) -> usize { self.inner.len() } /// Returns the number of `Event` values that `self` can hold. /// /// ``` /// use mio::Events; /// /// let events = Events::with_capacity(1024); /// /// assert_eq!(1024, events.capacity()); /// ``` pub fn capacity(&self) -> usize { self.inner.capacity() } /// Returns `true` if `self` contains no `Event` values. /// /// # Examples /// /// ``` /// use mio::Events; /// /// let events = Events::with_capacity(1024); /// /// assert!(events.is_empty()); /// ``` pub fn is_empty(&self) -> bool { self.inner.is_empty() } /// Returns an iterator over the `Event` values. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Poll}; /// use std::time::Duration; /// /// let mut events = Events::with_capacity(1024); /// let poll = Poll::new()?; /// /// // Register handles with `poll` /// /// poll.poll(&mut events, Some(Duration::from_millis(100)))?; /// /// for event in events.iter() { /// println!("event={:?}", event); /// } /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn iter(&self) -> Iter { Iter { inner: self, pos: 0 } } /// Clearing all `Event` values from container explicitly. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Poll}; /// use std::time::Duration; /// /// let mut events = Events::with_capacity(1024); /// let poll = Poll::new()?; /// /// // Register handles with `poll` /// for _ in 0..2 { /// events.clear(); /// poll.poll(&mut events, Some(Duration::from_millis(100)))?; /// /// for event in events.iter() { /// println!("event={:?}", event); /// } /// } /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn clear(&mut self) { self.inner.clear(); } } impl<'a> IntoIterator for &'a Events { type Item = Event; type IntoIter = Iter<'a>; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'a> Iterator for Iter<'a> { type Item = Event; fn next(&mut self) -> Option { let ret = self.inner.inner.get(self.pos); self.pos += 1; ret } } impl IntoIterator for Events { type Item = Event; type IntoIter = IntoIter; fn into_iter(self) -> Self::IntoIter { IntoIter { inner: self, pos: 0, } } } impl Iterator for IntoIter { type Item = Event; fn next(&mut self) -> Option { let ret = self.inner.inner.get(self.pos); self.pos += 1; ret } } impl fmt::Debug for Events { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("Events") .field("capacity", &self.capacity()) .finish() } } // ===== Accessors for internal usage ===== pub fn selector(poll: &Poll) -> &sys::Selector { &poll.selector } /* * * ===== Registration ===== * */ // TODO: get rid of this, windows depends on it for now #[allow(dead_code)] pub fn new_registration(poll: &Poll, token: Token, ready: Ready, opt: PollOpt) -> (Registration, SetReadiness) { Registration::new_priv(poll, token, ready, opt) } impl Registration { /// Create and return a new `Registration` and the associated /// `SetReadiness`. /// /// See [struct] documentation for more detail and [`Poll`] /// for high level documentation on polling. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Ready, Registration, Poll, PollOpt, Token}; /// use std::thread; /// /// let (registration, set_readiness) = Registration::new2(); /// /// thread::spawn(move || { /// use std::time::Duration; /// thread::sleep(Duration::from_millis(500)); /// /// set_readiness.set_readiness(Ready::readable()); /// }); /// /// let poll = Poll::new()?; /// poll.register(®istration, Token(0), Ready::readable() | Ready::writable(), PollOpt::edge())?; /// /// let mut events = Events::with_capacity(256); /// /// loop { /// poll.poll(&mut events, None); /// /// for event in &events { /// if event.token() == Token(0) && event.readiness().is_readable() { /// return Ok(()); /// } /// } /// } /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// [struct]: # /// [`Poll`]: struct.Poll.html pub fn new2() -> (Registration, SetReadiness) { // Allocate the registration node. The new node will have `ref_count` // set to 2: one SetReadiness, one Registration. let node = Box::into_raw(Box::new(ReadinessNode::new( ptr::null_mut(), Token(0), Ready::empty(), PollOpt::empty(), 2))); let registration = Registration { inner: RegistrationInner { node, }, }; let set_readiness = SetReadiness { inner: RegistrationInner { node, }, }; (registration, set_readiness) } #[deprecated(since = "0.6.5", note = "use `new2` instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub fn new(poll: &Poll, token: Token, interest: Ready, opt: PollOpt) -> (Registration, SetReadiness) { Registration::new_priv(poll, token, interest, opt) } // TODO: Get rid of this (windows depends on it for now) fn new_priv(poll: &Poll, token: Token, interest: Ready, opt: PollOpt) -> (Registration, SetReadiness) { is_send::(); is_sync::(); is_send::(); is_sync::(); // Clone handle to the readiness queue, this bumps the ref count let queue = poll.readiness_queue.inner.clone(); // Convert to a *mut () pointer let queue: *mut () = unsafe { mem::transmute(queue) }; // Allocate the registration node. The new node will have `ref_count` // set to 3: one SetReadiness, one Registration, and one Poll handle. let node = Box::into_raw(Box::new(ReadinessNode::new( queue, token, interest, opt, 3))); let registration = Registration { inner: RegistrationInner { node, }, }; let set_readiness = SetReadiness { inner: RegistrationInner { node, }, }; (registration, set_readiness) } #[deprecated(since = "0.6.5", note = "use `Evented` impl")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub fn update(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.inner.update(poll, token, interest, opts) } #[deprecated(since = "0.6.5", note = "use `Poll::deregister` instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub fn deregister(&self, poll: &Poll) -> io::Result<()> { self.inner.update(poll, Token(0), Ready::empty(), PollOpt::empty()) } } impl Evented for Registration { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.inner.update(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.inner.update(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.inner.update(poll, Token(0), Ready::empty(), PollOpt::empty()) } } impl Drop for Registration { fn drop(&mut self) { // `flag_as_dropped` toggles the `dropped` flag and notifies // `Poll::poll` to release its handle (which is just decrementing // the ref count). if self.inner.state.flag_as_dropped() { // Can't do anything if the queuing fails let _ = self.inner.enqueue_with_wakeup(); } } } impl fmt::Debug for Registration { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_struct("Registration") .finish() } } impl SetReadiness { /// Returns the registration's current readiness. /// /// # Note /// /// There is no guarantee that `readiness` establishes any sort of memory /// ordering. Any concurrent data access must be synchronized using another /// strategy. /// /// # Examples /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Registration, Ready}; /// /// let (registration, set_readiness) = Registration::new2(); /// /// assert!(set_readiness.readiness().is_empty()); /// /// set_readiness.set_readiness(Ready::readable())?; /// assert!(set_readiness.readiness().is_readable()); /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` pub fn readiness(&self) -> Ready { self.inner.readiness() } /// Set the registration's readiness /// /// If the associated `Registration` is registered with a [`Poll`] instance /// and has requested readiness events that include `ready`, then a future /// call to [`Poll::poll`] will receive a readiness event representing the /// readiness state change. /// /// # Note /// /// There is no guarantee that `readiness` establishes any sort of memory /// ordering. Any concurrent data access must be synchronized using another /// strategy. /// /// There is also no guarantee as to when the readiness event will be /// delivered to poll. A best attempt will be made to make the delivery in a /// "timely" fashion. For example, the following is **not** guaranteed to /// work: /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Registration, Ready, Poll, PollOpt, Token}; /// /// let poll = Poll::new()?; /// let (registration, set_readiness) = Registration::new2(); /// /// poll.register(®istration, /// Token(0), /// Ready::readable(), /// PollOpt::edge())?; /// /// // Set the readiness, then immediately poll to try to get the readiness /// // event /// set_readiness.set_readiness(Ready::readable())?; /// /// let mut events = Events::with_capacity(1024); /// poll.poll(&mut events, None)?; /// /// // There is NO guarantee that the following will work. It is possible /// // that the readiness event will be delivered at a later time. /// let event = events.get(0).unwrap(); /// assert_eq!(event.token(), Token(0)); /// assert!(event.readiness().is_readable()); /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// /// # Examples /// /// A simple example, for a more elaborate example, see the [`Evented`] /// documentation. /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Registration, Ready}; /// /// let (registration, set_readiness) = Registration::new2(); /// /// assert!(set_readiness.readiness().is_empty()); /// /// set_readiness.set_readiness(Ready::readable())?; /// assert!(set_readiness.readiness().is_readable()); /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// /// [`Registration`]: struct.Registration.html /// [`Evented`]: event/trait.Evented.html#examples /// [`Poll`]: struct.Poll.html /// [`Poll::poll`]: struct.Poll.html#method.poll pub fn set_readiness(&self, ready: Ready) -> io::Result<()> { self.inner.set_readiness(ready) } } impl fmt::Debug for SetReadiness { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("SetReadiness") .finish() } } impl RegistrationInner { /// Get the registration's readiness. fn readiness(&self) -> Ready { self.state.load(Relaxed).readiness() } /// Set the registration's readiness. /// /// This function can be called concurrently by an arbitrary number of /// SetReadiness handles. fn set_readiness(&self, ready: Ready) -> io::Result<()> { // Load the current atomic state. let mut state = self.state.load(Acquire); let mut next; loop { next = state; if state.is_dropped() { // Node is dropped, no more notifications return Ok(()); } // Update the readiness next.set_readiness(ready); // If the readiness is not blank, try to obtain permission to // push the node into the readiness queue. if !next.effective_readiness().is_empty() { next.set_queued(); } let actual = self.state.compare_and_swap(state, next, AcqRel); if state == actual { break; } state = actual; } if !state.is_queued() && next.is_queued() { // We toggled the queued flag, making us responsible for queuing the // node in the MPSC readiness queue. self.enqueue_with_wakeup()?; } Ok(()) } /// Update the registration details associated with the node fn update(&self, poll: &Poll, token: Token, interest: Ready, opt: PollOpt) -> io::Result<()> { // First, ensure poll instances match // // Load the queue pointer, `Relaxed` is sufficient here as only the // pointer is being operated on. The actual memory is guaranteed to be // visible the `poll: &Poll` ref passed as an argument to the function. let mut queue = self.readiness_queue.load(Relaxed); let other: &*mut () = unsafe { &*(&poll.readiness_queue.inner as *const _ as *const *mut ()) }; let other = *other; debug_assert!(mem::size_of::>() == mem::size_of::<*mut ()>()); if queue.is_null() { // Attempt to set the queue pointer. `Release` ordering synchronizes // with `Acquire` in `ensure_with_wakeup`. let actual = self.readiness_queue.compare_and_swap( queue, other, Release); if actual.is_null() { // The CAS succeeded, this means that the node's ref count // should be incremented to reflect that the `poll` function // effectively owns the node as well. // // `Relaxed` ordering used for the same reason as in // RegistrationInner::clone self.ref_count.fetch_add(1, Relaxed); // Note that the `queue` reference stored in our // `readiness_queue` field is intended to be a strong reference, // so now that we've successfully claimed the reference we bump // the refcount here. // // Down below in `release_node` when we deallocate this // `RegistrationInner` is where we'll transmute this back to an // arc and decrement the reference count. mem::forget(poll.readiness_queue.clone()); } else { // The CAS failed, another thread set the queue pointer, so ensure // that the pointer and `other` match if actual != other { return Err(io::Error::new(io::ErrorKind::Other, "registration handle associated with another `Poll` instance")); } } queue = other; } else if queue != other { return Err(io::Error::new(io::ErrorKind::Other, "registration handle associated with another `Poll` instance")); } unsafe { let actual = &poll.readiness_queue.inner as *const _ as *const usize; debug_assert_eq!(queue as usize, *actual); } // The `update_lock` atomic is used as a flag ensuring only a single // thread concurrently enters the `update` critical section. Any // concurrent calls to update are discarded. If coordinated updates are // required, the Mio user is responsible for handling that. // // Acquire / Release ordering is used on `update_lock` to ensure that // data access to the `token_*` variables are scoped to the critical // section. // Acquire the update lock. if self.update_lock.compare_and_swap(false, true, Acquire) { // The lock is already held. Discard the update return Ok(()); } // Relaxed ordering is acceptable here as the only memory that needs to // be visible as part of the update are the `token_*` variables, and // ordering has already been handled by the `update_lock` access. let mut state = self.state.load(Relaxed); let mut next; // Read the current token, again this memory has been ordered by the // acquire on `update_lock`. let curr_token_pos = state.token_write_pos(); let curr_token = unsafe { self::token(self, curr_token_pos) }; let mut next_token_pos = curr_token_pos; // If the `update` call is changing the token, then compute the next // available token slot and write the token there. // // Note that this computation is happening *outside* of the // compare-and-swap loop. The update lock ensures that only a single // thread could be mutating the write_token_position, so the // `next_token_pos` will never need to be recomputed even if // `token_read_pos` concurrently changes. This is because // `token_read_pos` can ONLY concurrently change to the current value of // `token_write_pos`, so `next_token_pos` will always remain valid. if token != curr_token { next_token_pos = state.next_token_pos(); // Update the token match next_token_pos { 0 => unsafe { *self.token_0.get() = token }, 1 => unsafe { *self.token_1.get() = token }, 2 => unsafe { *self.token_2.get() = token }, _ => unreachable!(), } } // Now enter the compare-and-swap loop loop { next = state; // The node is only dropped once all `Registration` handles are // dropped. Only `Registration` can call `update`. debug_assert!(!state.is_dropped()); // Update the write token position, this will also release the token // to Poll::poll. next.set_token_write_pos(next_token_pos); // Update readiness and poll opts next.set_interest(interest); next.set_poll_opt(opt); // If there is effective readiness, the node will need to be queued // for processing. This exact behavior is still TBD, so we are // conservative for now and always fire. // // See https://github.com/carllerche/mio/issues/535. if !next.effective_readiness().is_empty() { next.set_queued(); } // compare-and-swap the state values. Only `Release` is needed here. // The `Release` ensures that `Poll::poll` will see the token // update and the update function doesn't care about any other // memory visibility. let actual = self.state.compare_and_swap(state, next, Release); if actual == state { break; } // CAS failed, but `curr_token_pos` should not have changed given // that we still hold the update lock. debug_assert_eq!(curr_token_pos, actual.token_write_pos()); state = actual; } // Release the lock self.update_lock.store(false, Release); if !state.is_queued() && next.is_queued() { // We are responsible for enqueing the node. enqueue_with_wakeup(queue, self)?; } Ok(()) } } impl ops::Deref for RegistrationInner { type Target = ReadinessNode; fn deref(&self) -> &ReadinessNode { unsafe { &*self.node } } } impl Clone for RegistrationInner { fn clone(&self) -> RegistrationInner { // Using a relaxed ordering is alright here, as knowledge of the // original reference prevents other threads from erroneously deleting // the object. // // As explained in the [Boost documentation][1], Increasing the // reference counter can always be done with memory_order_relaxed: New // references to an object can only be formed from an existing // reference, and passing an existing reference from one thread to // another must already provide any required synchronization. // // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) let old_size = self.ref_count.fetch_add(1, Relaxed); // However we need to guard against massive refcounts in case someone // is `mem::forget`ing Arcs. If we don't do this the count can overflow // and users will use-after free. We racily saturate to `isize::MAX` on // the assumption that there aren't ~2 billion threads incrementing // the reference count at once. This branch will never be taken in // any realistic program. // // We abort because such a program is incredibly degenerate, and we // don't care to support it. if old_size & !MAX_REFCOUNT != 0 { process::abort(); } RegistrationInner { node: self.node, } } } impl Drop for RegistrationInner { fn drop(&mut self) { // Only handles releasing from `Registration` and `SetReadiness` // handles. Poll has to call this itself. release_node(self.node); } } /* * * ===== ReadinessQueue ===== * */ impl ReadinessQueue { /// Create a new `ReadinessQueue`. fn new() -> io::Result { is_send::(); is_sync::(); let end_marker = Box::new(ReadinessNode::marker()); let sleep_marker = Box::new(ReadinessNode::marker()); let closed_marker = Box::new(ReadinessNode::marker()); let ptr = &*end_marker as *const _ as *mut _; Ok(ReadinessQueue { inner: Arc::new(ReadinessQueueInner { awakener: sys::Awakener::new()?, head_readiness: AtomicPtr::new(ptr), tail_readiness: UnsafeCell::new(ptr), end_marker, sleep_marker, closed_marker, }) }) } /// Poll the queue for new events fn poll(&self, dst: &mut sys::Events) { // `until` is set with the first node that gets re-enqueued due to being // set to have level-triggered notifications. This prevents an infinite // loop where `Poll::poll` will keep dequeuing nodes it enqueues. let mut until = ptr::null_mut(); if dst.len() == dst.capacity() { // If `dst` is already full, the readiness queue won't be drained. // This might result in `sleep_marker` staying in the queue and // unecessary pipe writes occuring. self.inner.clear_sleep_marker(); } 'outer: while dst.len() < dst.capacity() { // Dequeue a node. If the queue is in an inconsistent state, then // stop polling. `Poll::poll` will be called again shortly and enter // a syscall, which should be enough to enable the other thread to // finish the queuing process. let ptr = match unsafe { self.inner.dequeue_node(until) } { Dequeue::Empty | Dequeue::Inconsistent => break, Dequeue::Data(ptr) => ptr, }; let node = unsafe { &*ptr }; // Read the node state with Acquire ordering. This allows reading // the token variables. let mut state = node.state.load(Acquire); let mut next; let mut readiness; let mut opt; loop { // Build up any changes to the readiness node's state and // attempt the CAS at the end next = state; // Given that the node was just read from the queue, the // `queued` flag should still be set. debug_assert!(state.is_queued()); // The dropped flag means we need to release the node and // perform no further processing on it. if state.is_dropped() { // Release the node and continue release_node(ptr); continue 'outer; } // Process the node readiness = state.effective_readiness(); opt = state.poll_opt(); if opt.is_edge() { // Mark the node as dequeued next.set_dequeued(); if opt.is_oneshot() && !readiness.is_empty() { next.disarm(); } } else if readiness.is_empty() { next.set_dequeued(); } // Ensure `token_read_pos` is set to `token_write_pos` so that // we read the most up to date token value. next.update_token_read_pos(); if state == next { break; } let actual = node.state.compare_and_swap(state, next, AcqRel); if actual == state { break; } state = actual; } // If the queued flag is still set, then the node must be requeued. // This typically happens when using level-triggered notifications. if next.is_queued() { if until.is_null() { // We never want to see the node again until = ptr; } // Requeue the node self.inner.enqueue_node(node); } if !readiness.is_empty() { // Get the token let token = unsafe { token(node, next.token_read_pos()) }; // Push the event dst.push_event(Event::new(readiness, token)); } } } /// Prepare the queue for the `Poll::poll` thread to block in the system /// selector. This involves changing `head_readiness` to `sleep_marker`. /// Returns true if successful and `poll` can block. fn prepare_for_sleep(&self) -> bool { let end_marker = self.inner.end_marker(); let sleep_marker = self.inner.sleep_marker(); let tail = unsafe { *self.inner.tail_readiness.get() }; // If the tail is currently set to the sleep_marker, then check if the // head is as well. If it is, then the queue is currently ready to // sleep. If it is not, then the queue is not empty and there should be // no sleeping. if tail == sleep_marker { return self.inner.head_readiness.load(Acquire) == sleep_marker; } // If the tail is not currently set to `end_marker`, then the queue is // not empty. if tail != end_marker { return false; } // The sleep marker is *not* currently in the readiness queue. // // The sleep marker is only inserted in this function. It is also only // inserted in the tail position. This is guaranteed by first checking // that the end marker is in the tail position, pushing the sleep marker // after the end marker, then removing the end marker. // // Before inserting a node into the queue, the next pointer has to be // set to null. Again, this is only safe to do when the node is not // currently in the queue, but we already have ensured this. self.inner.sleep_marker.next_readiness.store(ptr::null_mut(), Relaxed); let actual = self.inner.head_readiness.compare_and_swap( end_marker, sleep_marker, AcqRel); debug_assert!(actual != sleep_marker); if actual != end_marker { // The readiness queue is not empty return false; } // The current tail should be pointing to `end_marker` debug_assert!(unsafe { *self.inner.tail_readiness.get() == end_marker }); // The `end_marker` next pointer should be null debug_assert!(self.inner.end_marker.next_readiness.load(Relaxed).is_null()); // Update tail pointer. unsafe { *self.inner.tail_readiness.get() = sleep_marker; } true } } impl Drop for ReadinessQueue { fn drop(&mut self) { // Close the queue by enqueuing the closed node self.inner.enqueue_node(&*self.inner.closed_marker); loop { // Free any nodes that happen to be left in the readiness queue let ptr = match unsafe { self.inner.dequeue_node(ptr::null_mut()) } { Dequeue::Empty => break, Dequeue::Inconsistent => { // This really shouldn't be possible as all other handles to // `ReadinessQueueInner` are dropped, but handle this by // spinning I guess? continue; } Dequeue::Data(ptr) => ptr, }; let node = unsafe { &*ptr }; let state = node.state.load(Acquire); debug_assert!(state.is_queued()); release_node(ptr); } } } impl ReadinessQueueInner { fn wakeup(&self) -> io::Result<()> { self.awakener.wakeup() } /// Prepend the given node to the head of the readiness queue. This is done /// with relaxed ordering. Returns true if `Poll` needs to be woken up. fn enqueue_node_with_wakeup(&self, node: &ReadinessNode) -> io::Result<()> { if self.enqueue_node(node) { self.wakeup()?; } Ok(()) } /// Push the node into the readiness queue fn enqueue_node(&self, node: &ReadinessNode) -> bool { // This is the 1024cores.net intrusive MPSC queue [1] "push" function. let node_ptr = node as *const _ as *mut _; // Relaxed used as the ordering is "released" when swapping // `head_readiness` node.next_readiness.store(ptr::null_mut(), Relaxed); unsafe { let mut prev = self.head_readiness.load(Acquire); loop { if prev == self.closed_marker() { debug_assert!(node_ptr != self.closed_marker()); // debug_assert!(node_ptr != self.end_marker()); debug_assert!(node_ptr != self.sleep_marker()); if node_ptr != self.end_marker() { // The readiness queue is shutdown, but the enqueue flag was // set. This means that we are responsible for decrementing // the ready queue's ref count debug_assert!(node.ref_count.load(Relaxed) >= 2); release_node(node_ptr); } return false; } let act = self.head_readiness.compare_and_swap(prev, node_ptr, AcqRel); if prev == act { break; } prev = act; } debug_assert!((*prev).next_readiness.load(Relaxed).is_null()); (*prev).next_readiness.store(node_ptr, Release); prev == self.sleep_marker() } } fn clear_sleep_marker(&self) { let end_marker = self.end_marker(); let sleep_marker = self.sleep_marker(); unsafe { let tail = *self.tail_readiness.get(); if tail != self.sleep_marker() { return; } // The empty markeer is *not* currently in the readiness queue // (since the sleep markeris). self.end_marker.next_readiness.store(ptr::null_mut(), Relaxed); let actual = self.head_readiness.compare_and_swap( sleep_marker, end_marker, AcqRel); debug_assert!(actual != end_marker); if actual != sleep_marker { // The readiness queue is not empty, we cannot remove the sleep // markeer return; } // Update the tail pointer. *self.tail_readiness.get() = end_marker; } } /// Must only be called in `poll` or `drop` unsafe fn dequeue_node(&self, until: *mut ReadinessNode) -> Dequeue { // This is the 1024cores.net intrusive MPSC queue [1] "pop" function // with the modifications mentioned at the top of the file. let mut tail = *self.tail_readiness.get(); let mut next = (*tail).next_readiness.load(Acquire); if tail == self.end_marker() || tail == self.sleep_marker() || tail == self.closed_marker() { if next.is_null() { // Make sure the sleep marker is removed (as we are no longer // sleeping self.clear_sleep_marker(); return Dequeue::Empty; } *self.tail_readiness.get() = next; tail = next; next = (*next).next_readiness.load(Acquire); } // Only need to check `until` at this point. `until` is either null, // which will never match tail OR it is a node that was pushed by // the current thread. This means that either: // // 1) The queue is inconsistent, which is handled explicitly // 2) We encounter `until` at this point in dequeue // 3) we will pop a different node if tail == until { return Dequeue::Empty; } if !next.is_null() { *self.tail_readiness.get() = next; return Dequeue::Data(tail); } if self.head_readiness.load(Acquire) != tail { return Dequeue::Inconsistent; } // Push the stub node self.enqueue_node(&*self.end_marker); next = (*tail).next_readiness.load(Acquire); if !next.is_null() { *self.tail_readiness.get() = next; return Dequeue::Data(tail); } Dequeue::Inconsistent } fn end_marker(&self) -> *mut ReadinessNode { &*self.end_marker as *const ReadinessNode as *mut ReadinessNode } fn sleep_marker(&self) -> *mut ReadinessNode { &*self.sleep_marker as *const ReadinessNode as *mut ReadinessNode } fn closed_marker(&self) -> *mut ReadinessNode { &*self.closed_marker as *const ReadinessNode as *mut ReadinessNode } } impl ReadinessNode { /// Return a new `ReadinessNode`, initialized with a ref_count of 3. fn new(queue: *mut (), token: Token, interest: Ready, opt: PollOpt, ref_count: usize) -> ReadinessNode { ReadinessNode { state: AtomicState::new(interest, opt), // Only the first token is set, the others are initialized to 0 token_0: UnsafeCell::new(token), token_1: UnsafeCell::new(Token(0)), token_2: UnsafeCell::new(Token(0)), next_readiness: AtomicPtr::new(ptr::null_mut()), update_lock: AtomicBool::new(false), readiness_queue: AtomicPtr::new(queue), ref_count: AtomicUsize::new(ref_count), } } fn marker() -> ReadinessNode { ReadinessNode { state: AtomicState::new(Ready::empty(), PollOpt::empty()), token_0: UnsafeCell::new(Token(0)), token_1: UnsafeCell::new(Token(0)), token_2: UnsafeCell::new(Token(0)), next_readiness: AtomicPtr::new(ptr::null_mut()), update_lock: AtomicBool::new(false), readiness_queue: AtomicPtr::new(ptr::null_mut()), ref_count: AtomicUsize::new(0), } } fn enqueue_with_wakeup(&self) -> io::Result<()> { let queue = self.readiness_queue.load(Acquire); if queue.is_null() { // Not associated with a queue, nothing to do return Ok(()); } enqueue_with_wakeup(queue, self) } } fn enqueue_with_wakeup(queue: *mut (), node: &ReadinessNode) -> io::Result<()> { debug_assert!(!queue.is_null()); // This is ugly... but we don't want to bump the ref count. let queue: &Arc = unsafe { &*(&queue as *const *mut () as *const Arc) }; queue.enqueue_node_with_wakeup(node) } unsafe fn token(node: &ReadinessNode, pos: usize) -> Token { match pos { 0 => *node.token_0.get(), 1 => *node.token_1.get(), 2 => *node.token_2.get(), _ => unreachable!(), } } fn release_node(ptr: *mut ReadinessNode) { unsafe { // `AcqRel` synchronizes with other `release_node` functions and ensures // that the drop happens after any reads / writes on other threads. if (*ptr).ref_count.fetch_sub(1, AcqRel) != 1 { return; } let node = Box::from_raw(ptr); // Decrement the readiness_queue Arc let queue = node.readiness_queue.load(Acquire); if queue.is_null() { return; } let _: Arc = mem::transmute(queue); } } impl AtomicState { fn new(interest: Ready, opt: PollOpt) -> AtomicState { let state = ReadinessState::new(interest, opt); AtomicState { inner: AtomicUsize::new(state.into()), } } /// Loads the current `ReadinessState` fn load(&self, order: Ordering) -> ReadinessState { self.inner.load(order).into() } /// Stores a state if the current state is the same as `current`. fn compare_and_swap(&self, current: ReadinessState, new: ReadinessState, order: Ordering) -> ReadinessState { self.inner.compare_and_swap(current.into(), new.into(), order).into() } // Returns `true` if the node should be queued fn flag_as_dropped(&self) -> bool { let prev: ReadinessState = self.inner.fetch_or(DROPPED_MASK | QUEUED_MASK, Release).into(); // The flag should not have been previously set debug_assert!(!prev.is_dropped()); !prev.is_queued() } } impl ReadinessState { // Create a `ReadinessState` initialized with the provided arguments #[inline] fn new(interest: Ready, opt: PollOpt) -> ReadinessState { let interest = event::ready_as_usize(interest); let opt = event::opt_as_usize(opt); debug_assert!(interest <= MASK_4); debug_assert!(opt <= MASK_4); let mut val = interest << INTEREST_SHIFT; val |= opt << POLL_OPT_SHIFT; ReadinessState(val) } #[inline] fn get(self, mask: usize, shift: usize) -> usize{ (self.0 >> shift) & mask } #[inline] fn set(&mut self, val: usize, mask: usize, shift: usize) { self.0 = (self.0 & !(mask << shift)) | (val << shift) } /// Get the readiness #[inline] fn readiness(self) -> Ready { let v = self.get(MASK_4, READINESS_SHIFT); event::ready_from_usize(v) } #[inline] fn effective_readiness(self) -> Ready { self.readiness() & self.interest() } /// Set the readiness #[inline] fn set_readiness(&mut self, v: Ready) { self.set(event::ready_as_usize(v), MASK_4, READINESS_SHIFT); } /// Get the interest #[inline] fn interest(self) -> Ready { let v = self.get(MASK_4, INTEREST_SHIFT); event::ready_from_usize(v) } /// Set the interest #[inline] fn set_interest(&mut self, v: Ready) { self.set(event::ready_as_usize(v), MASK_4, INTEREST_SHIFT); } #[inline] fn disarm(&mut self) { self.set_interest(Ready::empty()); } /// Get the poll options #[inline] fn poll_opt(self) -> PollOpt { let v = self.get(MASK_4, POLL_OPT_SHIFT); event::opt_from_usize(v) } /// Set the poll options #[inline] fn set_poll_opt(&mut self, v: PollOpt) { self.set(event::opt_as_usize(v), MASK_4, POLL_OPT_SHIFT); } #[inline] fn is_queued(self) -> bool { self.0 & QUEUED_MASK == QUEUED_MASK } /// Set the queued flag #[inline] fn set_queued(&mut self) { // Dropped nodes should never be queued debug_assert!(!self.is_dropped()); self.0 |= QUEUED_MASK; } #[inline] fn set_dequeued(&mut self) { debug_assert!(self.is_queued()); self.0 &= !QUEUED_MASK } #[inline] fn is_dropped(self) -> bool { self.0 & DROPPED_MASK == DROPPED_MASK } #[inline] fn token_read_pos(self) -> usize { self.get(MASK_2, TOKEN_RD_SHIFT) } #[inline] fn token_write_pos(self) -> usize { self.get(MASK_2, TOKEN_WR_SHIFT) } #[inline] fn next_token_pos(self) -> usize { let rd = self.token_read_pos(); let wr = self.token_write_pos(); match wr { 0 => { match rd { 1 => 2, 2 => 1, 0 => 1, _ => unreachable!(), } } 1 => { match rd { 0 => 2, 2 => 0, 1 => 2, _ => unreachable!(), } } 2 => { match rd { 0 => 1, 1 => 0, 2 => 0, _ => unreachable!(), } } _ => unreachable!(), } } #[inline] fn set_token_write_pos(&mut self, val: usize) { self.set(val, MASK_2, TOKEN_WR_SHIFT); } #[inline] fn update_token_read_pos(&mut self) { let val = self.token_write_pos(); self.set(val, MASK_2, TOKEN_RD_SHIFT); } } impl From for usize { fn from(src: ReadinessState) -> usize { src.0 } } impl From for ReadinessState { fn from(src: usize) -> ReadinessState { ReadinessState(src) } } fn is_send() {} fn is_sync() {} impl SelectorId { pub fn new() -> SelectorId { SelectorId { id: AtomicUsize::new(0), } } pub fn associate_selector(&self, poll: &Poll) -> io::Result<()> { let selector_id = self.id.load(Ordering::SeqCst); if selector_id != 0 && selector_id != poll.selector.id() { Err(io::Error::new(io::ErrorKind::Other, "socket already registered")) } else { self.id.store(poll.selector.id(), Ordering::SeqCst); Ok(()) } } } impl Clone for SelectorId { fn clone(&self) -> SelectorId { SelectorId { id: AtomicUsize::new(self.id.load(Ordering::SeqCst)), } } } #[test] #[cfg(all(unix, not(target_os = "fuchsia")))] pub fn as_raw_fd() { let poll = Poll::new().unwrap(); assert!(poll.as_raw_fd() > 0); } mio-0.6.23/src/sys/fuchsia/awakener.rs010064400007650000024000000041761376150724400160200ustar0000000000000000use {io, poll, Evented, Ready, Poll, PollOpt, Token}; use zircon; use std::sync::{Arc, Mutex, Weak}; pub struct Awakener { /// Token and weak reference to the port on which Awakener was registered. /// /// When `Awakener::wakeup` is called, these are used to send a wakeup message to the port. inner: Mutex)>>, } impl Awakener { /// Create a new `Awakener`. pub fn new() -> io::Result { Ok(Awakener { inner: Mutex::new(None) }) } /// Send a wakeup signal to the `Selector` on which the `Awakener` was registered. pub fn wakeup(&self) -> io::Result<()> { let inner_locked = self.inner.lock().unwrap(); let &(token, ref weak_port) = inner_locked.as_ref().expect("Called wakeup on unregistered awakener."); let port = weak_port.upgrade().expect("Tried to wakeup a closed port."); let status = 0; // arbitrary let packet = zircon::Packet::from_user_packet( token.0 as u64, status, zircon::UserPacket::from_u8_array([0; 32])); Ok(port.queue(&packet)?) } pub fn cleanup(&self) {} } impl Evented for Awakener { fn register(&self, poll: &Poll, token: Token, _events: Ready, _opts: PollOpt) -> io::Result<()> { let mut inner_locked = self.inner.lock().unwrap(); if inner_locked.is_some() { panic!("Called register on already-registered Awakener."); } *inner_locked = Some((token, Arc::downgrade(poll::selector(poll).port()))); Ok(()) } fn reregister(&self, poll: &Poll, token: Token, _events: Ready, _opts: PollOpt) -> io::Result<()> { let mut inner_locked = self.inner.lock().unwrap(); *inner_locked = Some((token, Arc::downgrade(poll::selector(poll).port()))); Ok(()) } fn deregister(&self, _poll: &Poll) -> io::Result<()> { let mut inner_locked = self.inner.lock().unwrap(); *inner_locked = None; Ok(()) } }mio-0.6.23/src/sys/fuchsia/eventedfd.rs010064400007650000024000000170671376150724400161720ustar0000000000000000use {io, poll, Evented, Ready, Poll, PollOpt, Token}; use libc; use zircon; use zircon::AsHandleRef; use sys::fuchsia::{DontDrop, poll_opts_to_wait_async, sys}; use std::mem; use std::os::unix::io::RawFd; use std::sync::{Arc, Mutex}; /// Properties of an `EventedFd`'s current registration #[derive(Debug)] pub struct EventedFdRegistration { token: Token, handle: DontDrop, rereg_signals: Option<(zircon::Signals, zircon::WaitAsyncOpts)>, } impl EventedFdRegistration { unsafe fn new(token: Token, raw_handle: sys::zx_handle_t, rereg_signals: Option<(zircon::Signals, zircon::WaitAsyncOpts)>, ) -> Self { EventedFdRegistration { token: token, handle: DontDrop::new(zircon::Handle::from_raw(raw_handle)), rereg_signals: rereg_signals } } pub fn rereg_signals(&self) -> Option<(zircon::Signals, zircon::WaitAsyncOpts)> { self.rereg_signals } } /// An event-ed file descriptor. The file descriptor is owned by this structure. #[derive(Debug)] pub struct EventedFdInner { /// Properties of the current registration. registration: Mutex>, /// Owned file descriptor. /// /// `fd` is closed on `Drop`, so modifying `fd` is a memory-unsafe operation. fd: RawFd, /// Owned `fdio_t` pointer. fdio: *const sys::fdio_t, } impl EventedFdInner { pub fn rereg_for_level(&self, port: &zircon::Port) { let registration_opt = self.registration.lock().unwrap(); if let Some(ref registration) = *registration_opt { if let Some((rereg_signals, rereg_opts)) = registration.rereg_signals { let _res = registration .handle.inner_ref() .wait_async_handle( port, registration.token.0 as u64, rereg_signals, rereg_opts); } } } pub fn registration(&self) -> &Mutex> { &self.registration } pub fn fdio(&self) -> &sys::fdio_t { unsafe { &*self.fdio } } } impl Drop for EventedFdInner { fn drop(&mut self) { unsafe { sys::__fdio_release(self.fdio); let _ = libc::close(self.fd); } } } // `EventedInner` must be manually declared `Send + Sync` because it contains a `RawFd` and a // `*const sys::fdio_t`. These are only used to make thread-safe system calls, so accessing // them is entirely thread-safe. // // Note: one minor exception to this are the calls to `libc::close` and `__fdio_release`, which // happen on `Drop`. These accesses are safe because `drop` can only be called at most once from // a single thread, and after it is called no other functions can be called on the `EventedFdInner`. unsafe impl Sync for EventedFdInner {} unsafe impl Send for EventedFdInner {} #[derive(Clone, Debug)] pub struct EventedFd { pub inner: Arc } impl EventedFd { pub unsafe fn new(fd: RawFd) -> Self { let fdio = sys::__fdio_fd_to_io(fd); assert!(fdio != ::std::ptr::null(), "FileDescriptor given to EventedFd must be valid."); EventedFd { inner: Arc::new(EventedFdInner { registration: Mutex::new(None), fd: fd, fdio: fdio, }) } } fn handle_and_signals_for_events(&self, interest: Ready, opts: PollOpt) -> (sys::zx_handle_t, zircon::Signals) { let epoll_events = ioevent_to_epoll(interest, opts); unsafe { let mut raw_handle: sys::zx_handle_t = mem::uninitialized(); let mut signals: sys::zx_signals_t = mem::uninitialized(); sys::__fdio_wait_begin(self.inner.fdio, epoll_events, &mut raw_handle, &mut signals); (raw_handle, signals) } } fn register_with_lock( &self, registration: &mut Option, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { if registration.is_some() { return Err(io::Error::new( io::ErrorKind::AlreadyExists, "Called register on an already registered file descriptor.")); } let (raw_handle, signals) = self.handle_and_signals_for_events(interest, opts); let needs_rereg = opts.is_level() && !opts.is_oneshot(); // If we need to reregister, then each registration should be `oneshot` let opts = opts | if needs_rereg { PollOpt::oneshot() } else { PollOpt::empty() }; let rereg_signals = if needs_rereg { Some((signals, poll_opts_to_wait_async(opts))) } else { None }; *registration = Some( unsafe { EventedFdRegistration::new(token, raw_handle, rereg_signals) } ); // We don't have ownership of the handle, so we can't drop it let handle = DontDrop::new(unsafe { zircon::Handle::from_raw(raw_handle) }); let registered = poll::selector(poll) .register_fd(handle.inner_ref(), self, token, signals, opts); if registered.is_err() { *registration = None; } registered } fn deregister_with_lock( &self, registration: &mut Option, poll: &Poll) -> io::Result<()> { let old_registration = if let Some(old_reg) = registration.take() { old_reg } else { return Err(io::Error::new( io::ErrorKind::NotFound, "Called rereregister on an unregistered file descriptor.")) }; poll::selector(poll) .deregister_fd(old_registration.handle.inner_ref(), old_registration.token) } } impl Evented for EventedFd { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.register_with_lock( &mut *self.inner.registration.lock().unwrap(), poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { // Take out the registration lock let mut registration_lock = self.inner.registration.lock().unwrap(); // Deregister self.deregister_with_lock(&mut *registration_lock, poll)?; self.register_with_lock( &mut *registration_lock, poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { let mut registration_lock = self.inner.registration.lock().unwrap(); self.deregister_with_lock(&mut *registration_lock, poll) } } fn ioevent_to_epoll(interest: Ready, opts: PollOpt) -> u32 { use event_imp::ready_from_usize; const HUP: usize = 0b01000; let mut kind = 0; if interest.is_readable() { kind |= libc::EPOLLIN; } if interest.is_writable() { kind |= libc::EPOLLOUT; } if interest.contains(ready_from_usize(HUP)) { kind |= libc::EPOLLRDHUP; } if opts.is_edge() { kind |= libc::EPOLLET; } if opts.is_oneshot() { kind |= libc::EPOLLONESHOT; } if opts.is_level() { kind &= !libc::EPOLLET; } kind as u32 } mio-0.6.23/src/sys/fuchsia/handles.rs010064400007650000024000000043771376150724400156440ustar0000000000000000use {io, poll, Evented, Ready, Poll, PollOpt, Token}; use zircon_sys::zx_handle_t; use std::sync::Mutex; /// Wrapper for registering a `HandleBase` type with mio. #[derive(Debug)] pub struct EventedHandle { /// The handle to be registered. handle: zx_handle_t, /// The current `Token` with which the handle is registered with mio. token: Mutex>, } impl EventedHandle { /// Create a new `EventedHandle` which can be registered with mio /// in order to receive event notifications. /// /// The underlying handle must not be dropped while the /// `EventedHandle` still exists. pub unsafe fn new(handle: zx_handle_t) -> Self { EventedHandle { handle: handle, token: Mutex::new(None), } } /// Get the underlying handle being registered. pub fn get_handle(&self) -> zx_handle_t { self.handle } } impl Evented for EventedHandle { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { let mut this_token = self.token.lock().unwrap(); { poll::selector(poll).register_handle(self.handle, token, interest, opts)?; *this_token = Some(token); } Ok(()) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { let mut this_token = self.token.lock().unwrap(); { poll::selector(poll).deregister_handle(self.handle, token)?; *this_token = None; poll::selector(poll).register_handle(self.handle, token, interest, opts)?; *this_token = Some(token); } Ok(()) } fn deregister(&self, poll: &Poll) -> io::Result<()> { let mut this_token = self.token.lock().unwrap(); let token = if let Some(token) = *this_token { token } else { return Err(io::Error::new( io::ErrorKind::NotFound, "Attempted to deregister an unregistered handle.")) }; { poll::selector(poll).deregister_handle(self.handle, token)?; *this_token = None; } Ok(()) } } mio-0.6.23/src/sys/fuchsia/mod.rs010064400007650000024000000103461376150724400147760ustar0000000000000000use {io, Ready, PollOpt}; use libc; use zircon; use std::mem; use std::net::{IpAddr, Ipv4Addr, SocketAddr}; use std::ops::{Deref, DerefMut}; use std::os::unix::io::RawFd; mod awakener; mod handles; mod eventedfd; mod net; mod ready; mod selector; use self::eventedfd::{EventedFd, EventedFdInner}; use self::ready::assert_fuchsia_ready_repr; pub use self::awakener::Awakener; pub use self::handles::EventedHandle; pub use self::net::{TcpListener, TcpStream, UdpSocket}; pub use self::selector::{Events, Selector}; pub use self::ready::{FuchsiaReady, zx_signals_t}; // Set non-blocking (workaround since the std version doesn't work in fuchsia) // TODO: fix the std version and replace this pub fn set_nonblock(fd: RawFd) -> io::Result<()> { cvt(unsafe { libc::fcntl(fd, libc::F_SETFL, libc::O_NONBLOCK) }).map(|_| ()) } /// Workaround until fuchsia's recv_from is fixed unsafe fn recv_from(fd: RawFd, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { let flags = 0; let n = cvt( libc::recv(fd, buf.as_mut_ptr() as *mut libc::c_void, buf.len(), flags) )?; // random address-- we don't use it let addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 8080); Ok((n as usize, addr)) } mod sys { #![allow(non_camel_case_types)] use std::os::unix::io::RawFd; pub use zircon_sys::{zx_handle_t, zx_signals_t}; // 17 fn pointers we don't need for mio :) pub type fdio_ops_t = [usize; 17]; pub type atomic_int_fast32_t = usize; // TODO: https://github.com/rust-lang/libc/issues/631 #[repr(C)] pub struct fdio_t { pub ops: *const fdio_ops_t, pub magic: u32, pub refcount: atomic_int_fast32_t, pub dupcount: u32, pub flags: u32, } #[link(name="fdio")] extern { pub fn __fdio_fd_to_io(fd: RawFd) -> *const fdio_t; pub fn __fdio_release(io: *const fdio_t); pub fn __fdio_wait_begin( io: *const fdio_t, events: u32, handle_out: &mut zx_handle_t, signals_out: &mut zx_signals_t, ); pub fn __fdio_wait_end( io: *const fdio_t, signals: zx_signals_t, events_out: &mut u32, ); } } fn epoll_event_to_ready(epoll: u32) -> Ready { let epoll = epoll as i32; // casts the bits directly let mut kind = Ready::empty(); if (epoll & libc::EPOLLIN) != 0 || (epoll & libc::EPOLLPRI) != 0 { kind = kind | Ready::readable(); } if (epoll & libc::EPOLLOUT) != 0 { kind = kind | Ready::writable(); } kind /* TODO: support? // EPOLLHUP - Usually means a socket error happened if (epoll & libc::EPOLLERR) != 0 { kind = kind | UnixReady::error(); } if (epoll & libc::EPOLLRDHUP) != 0 || (epoll & libc::EPOLLHUP) != 0 { kind = kind | UnixReady::hup(); } */ } fn poll_opts_to_wait_async(poll_opts: PollOpt) -> zircon::WaitAsyncOpts { if poll_opts.is_oneshot() { zircon::WaitAsyncOpts::Once } else { zircon::WaitAsyncOpts::Repeating } } trait IsMinusOne { fn is_minus_one(&self) -> bool; } impl IsMinusOne for i32 { fn is_minus_one(&self) -> bool { *self == -1 } } impl IsMinusOne for isize { fn is_minus_one(&self) -> bool { *self == -1 } } fn cvt(t: T) -> ::io::Result { use std::io; if t.is_minus_one() { Err(io::Error::last_os_error()) } else { Ok(t) } } /// Utility type to prevent the type inside of it from being dropped. #[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)] struct DontDrop(Option); impl DontDrop { fn new(t: T) -> DontDrop { DontDrop(Some(t)) } fn inner_ref(&self) -> &T { self.0.as_ref().unwrap() } fn inner_mut(&mut self) -> &mut T { self.0.as_mut().unwrap() } } impl Deref for DontDrop { type Target = T; fn deref(&self) -> &Self::Target { self.inner_ref() } } impl DerefMut for DontDrop { fn deref_mut(&mut self) -> &mut Self::Target { self.inner_mut() } } impl Drop for DontDrop { fn drop(&mut self) { let inner = self.0.take(); mem::forget(inner); } } mio-0.6.23/src/sys/fuchsia/net.rs010064400007650000024000000273231376150724400150100ustar0000000000000000use {io, Evented, Ready, Poll, PollOpt, Token}; use iovec::IoVec; use iovec::unix as iovec; use libc; use net2::TcpStreamExt; #[allow(unused_imports)] // only here for Rust 1.8 use net2::UdpSocketExt; use sys::fuchsia::{recv_from, set_nonblock, EventedFd, DontDrop}; use std::cmp; use std::io::{Read, Write}; use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr}; use std::os::unix::io::AsRawFd; use std::time::Duration; #[derive(Debug)] pub struct TcpStream { io: DontDrop, evented_fd: EventedFd, } impl TcpStream { pub fn connect(stream: net::TcpStream, addr: &SocketAddr) -> io::Result { try!(set_nonblock(stream.as_raw_fd())); let connected = stream.connect(addr); match connected { Ok(..) => {} Err(ref e) if e.raw_os_error() == Some(libc::EINPROGRESS) => {} Err(e) => return Err(e), } let evented_fd = unsafe { EventedFd::new(stream.as_raw_fd()) }; return Ok(TcpStream { io: DontDrop::new(stream), evented_fd: evented_fd, }) } pub fn from_stream(stream: net::TcpStream) -> TcpStream { let evented_fd = unsafe { EventedFd::new(stream.as_raw_fd()) }; TcpStream { io: DontDrop::new(stream), evented_fd: evented_fd, } } pub fn peer_addr(&self) -> io::Result { self.io.peer_addr() } pub fn local_addr(&self) -> io::Result { self.io.local_addr() } pub fn try_clone(&self) -> io::Result { self.io.try_clone().map(|s| { let evented_fd = unsafe { EventedFd::new(s.as_raw_fd()) }; TcpStream { io: DontDrop::new(s), evented_fd: evented_fd, } }) } pub fn shutdown(&self, how: net::Shutdown) -> io::Result<()> { self.io.shutdown(how) } pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> { self.io.set_nodelay(nodelay) } pub fn nodelay(&self) -> io::Result { self.io.nodelay() } pub fn set_recv_buffer_size(&self, size: usize) -> io::Result<()> { self.io.set_recv_buffer_size(size) } pub fn recv_buffer_size(&self) -> io::Result { self.io.recv_buffer_size() } pub fn set_send_buffer_size(&self, size: usize) -> io::Result<()> { self.io.set_send_buffer_size(size) } pub fn send_buffer_size(&self) -> io::Result { self.io.send_buffer_size() } pub fn set_keepalive(&self, keepalive: Option) -> io::Result<()> { self.io.set_keepalive(keepalive) } pub fn keepalive(&self) -> io::Result> { self.io.keepalive() } pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.io.set_ttl(ttl) } pub fn ttl(&self) -> io::Result { self.io.ttl() } pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.io.set_only_v6(only_v6) } pub fn only_v6(&self) -> io::Result { self.io.only_v6() } pub fn set_linger(&self, dur: Option) -> io::Result<()> { self.io.set_linger(dur) } pub fn linger(&self) -> io::Result> { self.io.linger() } pub fn take_error(&self) -> io::Result> { self.io.take_error() } pub fn peek(&self, buf: &mut [u8]) -> io::Result { self.io.peek(buf) } pub fn readv(&self, bufs: &mut [&mut IoVec]) -> io::Result { unsafe { let slice = iovec::as_os_slice_mut(bufs); let len = cmp::min(::max_value() as usize, slice.len()); let rc = libc::readv(self.io.as_raw_fd(), slice.as_ptr(), len as libc::c_int); if rc < 0 { Err(io::Error::last_os_error()) } else { Ok(rc as usize) } } } pub fn writev(&self, bufs: &[&IoVec]) -> io::Result { unsafe { let slice = iovec::as_os_slice(bufs); let len = cmp::min(::max_value() as usize, slice.len()); let rc = libc::writev(self.io.as_raw_fd(), slice.as_ptr(), len as libc::c_int); if rc < 0 { Err(io::Error::last_os_error()) } else { Ok(rc as usize) } } } } impl<'a> Read for &'a TcpStream { fn read(&mut self, buf: &mut [u8]) -> io::Result { self.io.inner_ref().read(buf) } } impl<'a> Write for &'a TcpStream { fn write(&mut self, buf: &[u8]) -> io::Result { self.io.inner_ref().write(buf) } fn flush(&mut self) -> io::Result<()> { self.io.inner_ref().flush() } } impl Evented for TcpStream { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.evented_fd.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.evented_fd.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.evented_fd.deregister(poll) } } #[derive(Debug)] pub struct TcpListener { io: DontDrop, evented_fd: EventedFd, } impl TcpListener { pub fn new(inner: net::TcpListener) -> io::Result { set_nonblock(inner.as_raw_fd())?; let evented_fd = unsafe { EventedFd::new(inner.as_raw_fd()) }; Ok(TcpListener { io: DontDrop::new(inner), evented_fd: evented_fd, }) } pub fn local_addr(&self) -> io::Result { self.io.local_addr() } pub fn try_clone(&self) -> io::Result { self.io.try_clone().map(|io| { let evented_fd = unsafe { EventedFd::new(io.as_raw_fd()) }; TcpListener { io: DontDrop::new(io), evented_fd: evented_fd, } }) } pub fn accept(&self) -> io::Result<(TcpStream, SocketAddr)> { self.io.accept().and_then(|(s, a)| { set_nonblock(s.as_raw_fd())?; let evented_fd = unsafe { EventedFd::new(s.as_raw_fd()) }; return Ok((TcpStream { io: DontDrop::new(s), evented_fd: evented_fd, }, a)) }) } #[allow(deprecated)] pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.io.set_only_v6(only_v6) } #[allow(deprecated)] pub fn only_v6(&self) -> io::Result { self.io.only_v6() } pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.io.set_ttl(ttl) } pub fn ttl(&self) -> io::Result { self.io.ttl() } pub fn take_error(&self) -> io::Result> { self.io.take_error() } } impl Evented for TcpListener { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.evented_fd.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.evented_fd.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.evented_fd.deregister(poll) } } #[derive(Debug)] pub struct UdpSocket { io: DontDrop, evented_fd: EventedFd, } impl UdpSocket { pub fn new(socket: net::UdpSocket) -> io::Result { set_nonblock(socket.as_raw_fd())?; let evented_fd = unsafe { EventedFd::new(socket.as_raw_fd()) }; Ok(UdpSocket { io: DontDrop::new(socket), evented_fd: evented_fd, }) } pub fn local_addr(&self) -> io::Result { self.io.local_addr() } pub fn try_clone(&self) -> io::Result { self.io.try_clone().and_then(|io| { UdpSocket::new(io) }) } pub fn send_to(&self, buf: &[u8], target: &SocketAddr) -> io::Result { self.io.send_to(buf, target) } pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { unsafe { recv_from(self.io.as_raw_fd(), buf) } } pub fn send(&self, buf: &[u8]) -> io::Result { self.io.send(buf) } pub fn recv(&self, buf: &mut [u8]) -> io::Result { self.io.recv(buf) } pub fn connect(&self, addr: SocketAddr) -> io::Result<()> { self.io.connect(addr) } pub fn broadcast(&self) -> io::Result { self.io.broadcast() } pub fn set_broadcast(&self, on: bool) -> io::Result<()> { self.io.set_broadcast(on) } pub fn multicast_loop_v4(&self) -> io::Result { self.io.multicast_loop_v4() } pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> { self.io.set_multicast_loop_v4(on) } pub fn multicast_ttl_v4(&self) -> io::Result { self.io.multicast_ttl_v4() } pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> { self.io.set_multicast_ttl_v4(ttl) } pub fn multicast_loop_v6(&self) -> io::Result { self.io.multicast_loop_v6() } pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> { self.io.set_multicast_loop_v6(on) } pub fn ttl(&self) -> io::Result { self.io.ttl() } pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.io.set_ttl(ttl) } pub fn join_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.io.join_multicast_v4(multiaddr, interface) } pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.io.join_multicast_v6(multiaddr, interface) } pub fn leave_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.io.leave_multicast_v4(multiaddr, interface) } pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.io.leave_multicast_v6(multiaddr, interface) } pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.io.set_only_v6(only_v6) } pub fn only_v6(&self) -> io::Result { self.io.only_v6() } pub fn take_error(&self) -> io::Result> { self.io.take_error() } } impl Evented for UdpSocket { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.evented_fd.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.evented_fd.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.evented_fd.deregister(poll) } } mio-0.6.23/src/sys/fuchsia/ready.rs010064400007650000024000000104051376150724400153170ustar0000000000000000use event_imp::{Ready, ready_as_usize, ready_from_usize}; pub use zircon_sys::{ zx_signals_t, ZX_OBJECT_READABLE, ZX_OBJECT_WRITABLE, }; use std::ops; // The following impls are valid because Fuchsia and mio both represent // "readable" as `1 << 0` and "writable" as `1 << 2`. // We define this assertion here and call it from `Selector::new`, // since `Selector:;new` is guaranteed to be called during a standard mio runtime, // unlike the functions in this file. #[inline] pub fn assert_fuchsia_ready_repr() { debug_assert!( ZX_OBJECT_READABLE.bits() as usize == ready_as_usize(Ready::readable()), "Zircon ZX_OBJECT_READABLE should have the same repr as Ready::readable()" ); debug_assert!( ZX_OBJECT_WRITABLE.bits() as usize == ready_as_usize(Ready::writable()), "Zircon ZX_OBJECT_WRITABLE should have the same repr as Ready::writable()" ); } /// Fuchsia specific extensions to `Ready` /// /// Provides additional readiness event kinds that are available on Fuchsia. /// /// Conversion traits are implemented between `Ready` and `FuchsiaReady`. /// /// For high level documentation on polling and readiness, see [`Poll`]. /// /// [`Poll`]: struct.Poll.html #[derive(Debug, Copy, PartialEq, Eq, Clone, PartialOrd, Ord)] pub struct FuchsiaReady(Ready); impl FuchsiaReady { /// Returns the `FuchsiaReady` as raw zircon signals. /// This function is just a more explicit, non-generic version of /// `FuchsiaReady::into`. #[inline] pub fn into_zx_signals(self) -> zx_signals_t { zx_signals_t::from_bits_truncate(ready_as_usize(self.0) as u32) } } impl Into for FuchsiaReady { #[inline] fn into(self) -> zx_signals_t { self.into_zx_signals() } } impl From for FuchsiaReady { #[inline] fn from(src: zx_signals_t) -> Self { FuchsiaReady(src.into()) } } impl From for Ready { #[inline] fn from(src: zx_signals_t) -> Self { ready_from_usize(src.bits() as usize) } } impl From for FuchsiaReady { #[inline] fn from(src: Ready) -> FuchsiaReady { FuchsiaReady(src) } } impl From for Ready { #[inline] fn from(src: FuchsiaReady) -> Ready { src.0 } } impl ops::Deref for FuchsiaReady { type Target = Ready; #[inline] fn deref(&self) -> &Ready { &self.0 } } impl ops::DerefMut for FuchsiaReady { #[inline] fn deref_mut(&mut self) -> &mut Ready { &mut self.0 } } impl ops::BitOr for FuchsiaReady { type Output = FuchsiaReady; #[inline] fn bitor(self, other: FuchsiaReady) -> FuchsiaReady { (self.0 | other.0).into() } } impl ops::BitXor for FuchsiaReady { type Output = FuchsiaReady; #[inline] fn bitxor(self, other: FuchsiaReady) -> FuchsiaReady { (self.0 ^ other.0).into() } } impl ops::BitAnd for FuchsiaReady { type Output = FuchsiaReady; #[inline] fn bitand(self, other: FuchsiaReady) -> FuchsiaReady { (self.0 & other.0).into() } } impl ops::Sub for FuchsiaReady { type Output = FuchsiaReady; #[inline] fn sub(self, other: FuchsiaReady) -> FuchsiaReady { (self.0 & !other.0).into() } } #[deprecated(since = "0.6.10", note = "removed")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] impl ops::Not for FuchsiaReady { type Output = FuchsiaReady; #[inline] fn not(self) -> FuchsiaReady { (!self.0).into() } } impl ops::BitOr for FuchsiaReady { type Output = FuchsiaReady; #[inline] fn bitor(self, other: zx_signals_t) -> FuchsiaReady { self | FuchsiaReady::from(other) } } impl ops::BitXor for FuchsiaReady { type Output = FuchsiaReady; #[inline] fn bitxor(self, other: zx_signals_t) -> FuchsiaReady { self ^ FuchsiaReady::from(other) } } impl ops::BitAnd for FuchsiaReady { type Output = FuchsiaReady; #[inline] fn bitand(self, other: zx_signals_t) -> FuchsiaReady { self & FuchsiaReady::from(other) } } impl ops::Sub for FuchsiaReady { type Output = FuchsiaReady; #[inline] fn sub(self, other: zx_signals_t) -> FuchsiaReady { self - FuchsiaReady::from(other) } } mio-0.6.23/src/sys/fuchsia/selector.rs010064400007650000024000000303031376150724400160320ustar0000000000000000use {io, Event, PollOpt, Ready, Token}; use sys::fuchsia::{ assert_fuchsia_ready_repr, epoll_event_to_ready, poll_opts_to_wait_async, EventedFd, EventedFdInner, FuchsiaReady, }; use zircon; use zircon::AsHandleRef; use zircon_sys::zx_handle_t; use std::collections::hash_map; use std::fmt; use std::mem; use std::sync::atomic::{AtomicBool, AtomicUsize, ATOMIC_USIZE_INIT, Ordering}; use std::sync::{Arc, Mutex, Weak}; use std::time::Duration; use sys; /// The kind of registration-- file descriptor or handle. /// /// The last bit of a token is set to indicate the type of the registration. #[derive(Copy, Clone, Eq, PartialEq)] enum RegType { Fd, Handle, } fn key_from_token_and_type(token: Token, reg_type: RegType) -> io::Result { let key = token.0 as u64; let msb = 1u64 << 63; if (key & msb) != 0 { return Err(io::Error::new( io::ErrorKind::InvalidInput, "Most-significant bit of token must remain unset.")); } Ok(match reg_type { RegType::Fd => key, RegType::Handle => key | msb, }) } fn token_and_type_from_key(key: u64) -> (Token, RegType) { let msb = 1u64 << 63; ( Token((key & !msb) as usize), if (key & msb) == 0 { RegType::Fd } else { RegType::Handle } ) } /// Each Selector has a globally unique(ish) ID associated with it. This ID /// gets tracked by `TcpStream`, `TcpListener`, etc... when they are first /// registered with the `Selector`. If a type that is previously associated with /// a `Selector` attempts to register itself with a different `Selector`, the /// operation will return with an error. This matches windows behavior. static NEXT_ID: AtomicUsize = ATOMIC_USIZE_INIT; pub struct Selector { id: usize, /// Zircon object on which the handles have been registered, and on which events occur port: Arc, /// Whether or not `tokens_to_rereg` contains any elements. This is a best-effort attempt /// used to prevent having to lock `tokens_to_rereg` when it is empty. has_tokens_to_rereg: AtomicBool, /// List of `Token`s corresponding to registrations that need to be reregistered before the /// next `port::wait`. This is necessary to provide level-triggered behavior for /// `Async::repeating` registrations. /// /// When a level-triggered `Async::repeating` event is seen, its token is added to this list so /// that it will be reregistered before the next `port::wait` call, making `port::wait` return /// immediately if the signal was high during the reregistration. /// /// Note: when used at the same time, the `tokens_to_rereg` lock should be taken out _before_ /// `token_to_fd`. tokens_to_rereg: Mutex>, /// Map from tokens to weak references to `EventedFdInner`-- a structure describing a /// file handle, its associated `fdio` object, and its current registration. token_to_fd: Mutex>>, } impl Selector { pub fn new() -> io::Result { // Assertion from fuchsia/ready.rs to make sure that FuchsiaReady's representation is // compatible with Ready. assert_fuchsia_ready_repr(); let port = Arc::new( zircon::Port::create(zircon::PortOpts::Default)? ); // offset by 1 to avoid choosing 0 as the id of a selector let id = NEXT_ID.fetch_add(1, Ordering::Relaxed) + 1; let has_tokens_to_rereg = AtomicBool::new(false); let tokens_to_rereg = Mutex::new(Vec::new()); let token_to_fd = Mutex::new(hash_map::HashMap::new()); Ok(Selector { id: id, port: port, has_tokens_to_rereg: has_tokens_to_rereg, tokens_to_rereg: tokens_to_rereg, token_to_fd: token_to_fd, }) } pub fn id(&self) -> usize { self.id } /// Returns a reference to the underlying port `Arc`. pub fn port(&self) -> &Arc { &self.port } /// Reregisters all registrations pointed to by the `tokens_to_rereg` list /// if `has_tokens_to_rereg`. fn reregister_handles(&self) -> io::Result<()> { // We use `Ordering::Acquire` to make sure that we see all `tokens_to_rereg` // written before the store using `Ordering::Release`. if self.has_tokens_to_rereg.load(Ordering::Acquire) { let mut tokens = self.tokens_to_rereg.lock().unwrap(); let token_to_fd = self.token_to_fd.lock().unwrap(); for token in tokens.drain(0..) { if let Some(eventedfd) = token_to_fd.get(&token) .and_then(|h| h.upgrade()) { eventedfd.rereg_for_level(&self.port); } } self.has_tokens_to_rereg.store(false, Ordering::Release); } Ok(()) } pub fn select(&self, evts: &mut Events, _awakener: Token, timeout: Option) -> io::Result { evts.clear(); self.reregister_handles()?; let deadline = match timeout { Some(duration) => { let nanos = duration.as_secs().saturating_mul(1_000_000_000) .saturating_add(duration.subsec_nanos() as u64); zircon::deadline_after(nanos) } None => zircon::ZX_TIME_INFINITE, }; let packet = match self.port.wait(deadline) { Ok(packet) => packet, Err(zircon::Status::ErrTimedOut) => return Ok(false), Err(e) => Err(e)?, }; let observed_signals = match packet.contents() { zircon::PacketContents::SignalOne(signal_packet) => { signal_packet.observed() } zircon::PacketContents::SignalRep(signal_packet) => { signal_packet.observed() } zircon::PacketContents::User(_user_packet) => { // User packets are only ever sent by an Awakener return Ok(true); } }; let key = packet.key(); let (token, reg_type) = token_and_type_from_key(key); match reg_type { RegType::Handle => { // We can return immediately-- no lookup or registration necessary. evts.events.push(Event::new(Ready::from(observed_signals), token)); Ok(false) }, RegType::Fd => { // Convert the signals to epoll events using __fdio_wait_end, // and add to reregistration list if necessary. let events: u32; { let handle = if let Some(handle) = self.token_to_fd.lock().unwrap() .get(&token) .and_then(|h| h.upgrade()) { handle } else { // This handle is apparently in the process of removal. // It has been removed from the list, but port_cancel has not been called. return Ok(false); }; events = unsafe { let mut events: u32 = mem::uninitialized(); sys::fuchsia::sys::__fdio_wait_end(handle.fdio(), observed_signals, &mut events); events }; // If necessary, queue to be reregistered before next port_await let needs_to_rereg = { let registration_lock = handle.registration().lock().unwrap(); registration_lock .as_ref() .and_then(|r| r.rereg_signals()) .is_some() }; if needs_to_rereg { let mut tokens_to_rereg_lock = self.tokens_to_rereg.lock().unwrap(); tokens_to_rereg_lock.push(token); // We use `Ordering::Release` to make sure that we see all `tokens_to_rereg` // written before the store. self.has_tokens_to_rereg.store(true, Ordering::Release); } } evts.events.push(Event::new(epoll_event_to_ready(events), token)); Ok(false) }, } } /// Register event interests for the given IO handle with the OS pub fn register_fd(&self, handle: &zircon::Handle, fd: &EventedFd, token: Token, signals: zircon::Signals, poll_opts: PollOpt) -> io::Result<()> { { let mut token_to_fd = self.token_to_fd.lock().unwrap(); match token_to_fd.entry(token) { hash_map::Entry::Occupied(_) => return Err(io::Error::new(io::ErrorKind::AlreadyExists, "Attempted to register a filedescriptor on an existing token.")), hash_map::Entry::Vacant(slot) => slot.insert(Arc::downgrade(&fd.inner)), }; } let wait_async_opts = poll_opts_to_wait_async(poll_opts); let wait_res = handle.wait_async_handle(&self.port, token.0 as u64, signals, wait_async_opts); if wait_res.is_err() { self.token_to_fd.lock().unwrap().remove(&token); } Ok(wait_res?) } /// Deregister event interests for the given IO handle with the OS pub fn deregister_fd(&self, handle: &zircon::Handle, token: Token) -> io::Result<()> { self.token_to_fd.lock().unwrap().remove(&token); // We ignore NotFound errors since oneshots are automatically deregistered, // but mio will attempt to deregister them manually. self.port.cancel(&*handle, token.0 as u64) .map_err(io::Error::from) .or_else(|e| if e.kind() == io::ErrorKind::NotFound { Ok(()) } else { Err(e) }) } pub fn register_handle(&self, handle: zx_handle_t, token: Token, interests: Ready, poll_opts: PollOpt) -> io::Result<()> { if poll_opts.is_level() && !poll_opts.is_oneshot() { return Err(io::Error::new(io::ErrorKind::InvalidInput, "Repeated level-triggered events are not supported on Fuchsia handles.")); } let temp_handle = unsafe { zircon::Handle::from_raw(handle) }; let res = temp_handle.wait_async_handle( &self.port, key_from_token_and_type(token, RegType::Handle)?, FuchsiaReady::from(interests).into_zx_signals(), poll_opts_to_wait_async(poll_opts)); mem::forget(temp_handle); Ok(res?) } pub fn deregister_handle(&self, handle: zx_handle_t, token: Token) -> io::Result<()> { let temp_handle = unsafe { zircon::Handle::from_raw(handle) }; let res = self.port.cancel(&temp_handle, key_from_token_and_type(token, RegType::Handle)?); mem::forget(temp_handle); Ok(res?) } } pub struct Events { events: Vec } impl Events { pub fn with_capacity(_u: usize) -> Events { // The Fuchsia selector only handles one event at a time, // so we ignore the default capacity and set it to one. Events { events: Vec::with_capacity(1) } } pub fn len(&self) -> usize { self.events.len() } pub fn capacity(&self) -> usize { self.events.capacity() } pub fn is_empty(&self) -> bool { self.events.is_empty() } pub fn get(&self, idx: usize) -> Option { self.events.get(idx).map(|e| *e) } pub fn push_event(&mut self, event: Event) { self.events.push(event) } pub fn clear(&mut self) { self.events.events.drain(0..); } } impl fmt::Debug for Events { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_struct("Events") .field("len", &self.len()) .finish() } } mio-0.6.23/src/sys/mod.rs010064400007650000024000000017111376150724400133500ustar0000000000000000#[cfg(all(unix, not(target_os = "fuchsia")))] pub use self::unix::{ Awakener, EventedFd, Events, Io, Selector, TcpStream, TcpListener, UdpSocket, pipe, set_nonblock, }; #[cfg(all(unix, not(target_os = "fuchsia")))] pub use self::unix::READY_ALL; #[cfg(all(unix, not(target_os = "fuchsia")))] #[cfg(feature = "with-deprecated")] pub use self::unix::UnixSocket; #[cfg(all(unix, not(target_os = "fuchsia")))] pub mod unix; #[cfg(windows)] pub use self::windows::{ Awakener, Events, Selector, TcpStream, TcpListener, UdpSocket, Overlapped, Binding, }; #[cfg(windows)] mod windows; #[cfg(target_os = "fuchsia")] pub use self::fuchsia::{ Awakener, Events, EventedHandle, Selector, TcpStream, TcpListener, UdpSocket, set_nonblock, }; #[cfg(target_os = "fuchsia")] pub mod fuchsia; #[cfg(not(all(unix, not(target_os = "fuchsia"))))] pub const READY_ALL: usize = 0; mio-0.6.23/src/sys/unix/awakener.rs010064400007650000024000000035021376150724400153510ustar0000000000000000pub use self::pipe::Awakener; /// Default awakener backed by a pipe mod pipe { use sys::unix; use {io, Ready, Poll, PollOpt, Token}; use event::Evented; use std::io::{Read, Write}; /* * * ===== Awakener ===== * */ pub struct Awakener { reader: unix::Io, writer: unix::Io, } impl Awakener { pub fn new() -> io::Result { let (rd, wr) = unix::pipe()?; Ok(Awakener { reader: rd, writer: wr, }) } pub fn wakeup(&self) -> io::Result<()> { match (&self.writer).write(&[1]) { Ok(_) => Ok(()), Err(e) => { if e.kind() == io::ErrorKind::WouldBlock { Ok(()) } else { Err(e) } } } } pub fn cleanup(&self) { let mut buf = [0; 128]; loop { // Consume data until all bytes are purged match (&self.reader).read(&mut buf) { Ok(i) if i > 0 => {}, _ => return, } } } fn reader(&self) -> &unix::Io { &self.reader } } impl Evented for Awakener { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.reader().register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.reader().reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.reader().deregister(poll) } } } mio-0.6.23/src/sys/unix/dlsym.rs010064400007650000024000000024501376150724400147050ustar0000000000000000use std::marker; use std::mem; use std::sync::atomic::{AtomicUsize, Ordering}; use libc; macro_rules! dlsym { (fn $name:ident($($t:ty),*) -> $ret:ty) => ( #[allow(bad_style)] static $name: ::sys::unix::dlsym::DlSym $ret> = ::sys::unix::dlsym::DlSym { name: concat!(stringify!($name), "\0"), addr: ::std::sync::atomic::ATOMIC_USIZE_INIT, _marker: ::std::marker::PhantomData, }; ) } pub struct DlSym { pub name: &'static str, pub addr: AtomicUsize, pub _marker: marker::PhantomData, } impl DlSym { pub fn get(&self) -> Option<&F> { assert_eq!(mem::size_of::(), mem::size_of::()); unsafe { if self.addr.load(Ordering::SeqCst) == 0 { self.addr.store(fetch(self.name), Ordering::SeqCst); } if self.addr.load(Ordering::SeqCst) == 1 { None } else { mem::transmute::<&AtomicUsize, Option<&F>>(&self.addr) } } } } unsafe fn fetch(name: &str) -> usize { assert_eq!(name.as_bytes()[name.len() - 1], 0); match libc::dlsym(libc::RTLD_DEFAULT, name.as_ptr() as *const _) as usize { 0 => 1, n => n, } } mio-0.6.23/src/sys/unix/epoll.rs010064400007650000024000000170501376150724400146720ustar0000000000000000#![allow(deprecated)] use std::os::unix::io::AsRawFd; use std::os::unix::io::RawFd; use std::sync::atomic::{AtomicUsize, Ordering, ATOMIC_USIZE_INIT}; use std::time::Duration; use std::{cmp, i32}; use libc::{self, c_int}; use libc::{EPOLLERR, EPOLLHUP, EPOLLONESHOT}; use libc::{EPOLLET, EPOLLOUT, EPOLLIN, EPOLLPRI}; use {io, Ready, PollOpt, Token}; use event_imp::Event; use sys::unix::{cvt, UnixReady}; use sys::unix::io::set_cloexec; /// Each Selector has a globally unique(ish) ID associated with it. This ID /// gets tracked by `TcpStream`, `TcpListener`, etc... when they are first /// registered with the `Selector`. If a type that is previously associated with /// a `Selector` attempts to register itself with a different `Selector`, the /// operation will return with an error. This matches windows behavior. static NEXT_ID: AtomicUsize = ATOMIC_USIZE_INIT; #[derive(Debug)] pub struct Selector { id: usize, epfd: RawFd, } impl Selector { pub fn new() -> io::Result { let epfd = unsafe { // Emulate `epoll_create` by using `epoll_create1` if it's available // and otherwise falling back to `epoll_create` followed by a call to // set the CLOEXEC flag. dlsym!(fn epoll_create1(c_int) -> c_int); match epoll_create1.get() { Some(epoll_create1_fn) => { cvt(epoll_create1_fn(libc::EPOLL_CLOEXEC))? } None => { let fd = cvt(libc::epoll_create(1024))?; drop(set_cloexec(fd)); fd } } }; // offset by 1 to avoid choosing 0 as the id of a selector let id = NEXT_ID.fetch_add(1, Ordering::Relaxed) + 1; Ok(Selector { id: id, epfd: epfd, }) } pub fn id(&self) -> usize { self.id } /// Wait for events from the OS pub fn select(&self, evts: &mut Events, awakener: Token, timeout: Option) -> io::Result { // A bug in kernels < 2.6.37 makes timeouts larger than LONG_MAX / CONFIG_HZ // (approx. 30 minutes with CONFIG_HZ=1200) effectively infinite on 32 bits // architectures. The magic number is the same constant used by libuv. #[cfg(target_pointer_width = "32")] const MAX_SAFE_TIMEOUT: u64 = 1789569; #[cfg(not(target_pointer_width = "32"))] const MAX_SAFE_TIMEOUT: u64 = c_int::max_value() as u64; let timeout_ms = timeout .map(|to| cmp::min(millis(to), MAX_SAFE_TIMEOUT) as c_int) .unwrap_or(-1); // Wait for epoll events for at most timeout_ms milliseconds evts.clear(); unsafe { let cnt = cvt(libc::epoll_wait(self.epfd, evts.events.as_mut_ptr(), evts.events.capacity() as i32, timeout_ms))?; let cnt = cnt as usize; evts.events.set_len(cnt); for i in 0..cnt { if evts.events[i].u64 as usize == awakener.into() { evts.events.remove(i); return Ok(true); } } } Ok(false) } /// Register event interests for the given IO handle with the OS pub fn register(&self, fd: RawFd, token: Token, interests: Ready, opts: PollOpt) -> io::Result<()> { let mut info = libc::epoll_event { events: ioevent_to_epoll(interests, opts), u64: usize::from(token) as u64 }; unsafe { cvt(libc::epoll_ctl(self.epfd, libc::EPOLL_CTL_ADD, fd, &mut info))?; Ok(()) } } /// Register event interests for the given IO handle with the OS pub fn reregister(&self, fd: RawFd, token: Token, interests: Ready, opts: PollOpt) -> io::Result<()> { let mut info = libc::epoll_event { events: ioevent_to_epoll(interests, opts), u64: usize::from(token) as u64 }; unsafe { cvt(libc::epoll_ctl(self.epfd, libc::EPOLL_CTL_MOD, fd, &mut info))?; Ok(()) } } /// Deregister event interests for the given IO handle with the OS pub fn deregister(&self, fd: RawFd) -> io::Result<()> { // The &info argument should be ignored by the system, // but linux < 2.6.9 required it to be not null. // For compatibility, we provide a dummy EpollEvent. let mut info = libc::epoll_event { events: 0, u64: 0, }; unsafe { cvt(libc::epoll_ctl(self.epfd, libc::EPOLL_CTL_DEL, fd, &mut info))?; Ok(()) } } } fn ioevent_to_epoll(interest: Ready, opts: PollOpt) -> u32 { let mut kind = 0; if interest.is_readable() { kind |= EPOLLIN; } if interest.is_writable() { kind |= EPOLLOUT; } if UnixReady::from(interest).is_priority() { kind |= EPOLLPRI; } if opts.is_edge() { kind |= EPOLLET; } if opts.is_oneshot() { kind |= EPOLLONESHOT; } if opts.is_level() { kind &= !EPOLLET; } kind as u32 } impl AsRawFd for Selector { fn as_raw_fd(&self) -> RawFd { self.epfd } } impl Drop for Selector { fn drop(&mut self) { unsafe { let _ = libc::close(self.epfd); } } } pub struct Events { events: Vec, } impl Events { pub fn with_capacity(u: usize) -> Events { Events { events: Vec::with_capacity(u) } } #[inline] pub fn len(&self) -> usize { self.events.len() } #[inline] pub fn capacity(&self) -> usize { self.events.capacity() } #[inline] pub fn is_empty(&self) -> bool { self.events.is_empty() } #[inline] pub fn get(&self, idx: usize) -> Option { self.events.get(idx).map(|event| { let epoll = event.events as c_int; let mut kind = Ready::empty(); if (epoll & EPOLLIN) != 0 { kind = kind | Ready::readable(); } if (epoll & EPOLLPRI) != 0 { kind = kind | Ready::readable() | UnixReady::priority(); } if (epoll & EPOLLOUT) != 0 { kind = kind | Ready::writable(); } // EPOLLHUP - Usually means a socket error happened if (epoll & EPOLLERR) != 0 { kind = kind | UnixReady::error(); } if (epoll & EPOLLHUP) != 0 { kind = kind | UnixReady::hup(); } let token = self.events[idx].u64; Event::new(kind, Token(token as usize)) }) } pub fn push_event(&mut self, event: Event) { self.events.push(libc::epoll_event { events: ioevent_to_epoll(event.readiness(), PollOpt::empty()), u64: usize::from(event.token()) as u64 }); } pub fn clear(&mut self) { unsafe { self.events.set_len(0); } } } const NANOS_PER_MILLI: u32 = 1_000_000; const MILLIS_PER_SEC: u64 = 1_000; /// Convert a `Duration` to milliseconds, rounding up and saturating at /// `u64::MAX`. /// /// The saturating is fine because `u64::MAX` milliseconds are still many /// million years. pub fn millis(duration: Duration) -> u64 { // Round up. let millis = (duration.subsec_nanos() + NANOS_PER_MILLI - 1) / NANOS_PER_MILLI; duration.as_secs().saturating_mul(MILLIS_PER_SEC).saturating_add(millis as u64) } mio-0.6.23/src/sys/unix/eventedfd.rs010064400007650000024000000061201376150724400155170ustar0000000000000000use {io, poll, Ready, Poll, PollOpt, Token}; use event::Evented; use std::os::unix::io::RawFd; /* * * ===== EventedFd ===== * */ #[derive(Debug)] /// Adapter for [`RawFd`] providing an [`Evented`] implementation. /// /// `EventedFd` enables registering any type with an FD with [`Poll`]. /// /// While only implementations for TCP and UDP are provided, Mio supports /// registering any FD that can be registered with the underlying OS selector. /// `EventedFd` provides the necessary bridge. /// /// Note that `EventedFd` takes a `&RawFd`. This is because `EventedFd` **does /// not** take ownership of the FD. Specifically, it will not manage any /// lifecycle related operations, such as closing the FD on drop. It is expected /// that the `EventedFd` is constructed right before a call to /// [`Poll::register`]. See the examples for more detail. /// /// # Examples /// /// Basic usage /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Ready, Poll, PollOpt, Token}; /// use mio::unix::EventedFd; /// /// use std::os::unix::io::AsRawFd; /// use std::net::TcpListener; /// /// // Bind a std listener /// let listener = TcpListener::bind("127.0.0.1:0")?; /// /// let poll = Poll::new()?; /// /// // Register the listener /// poll.register(&EventedFd(&listener.as_raw_fd()), /// Token(0), Ready::readable(), PollOpt::edge())?; /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// /// Implementing [`Evented`] for a custom type backed by a [`RawFd`]. /// /// ``` /// use mio::{Ready, Poll, PollOpt, Token}; /// use mio::event::Evented; /// use mio::unix::EventedFd; /// /// use std::os::unix::io::RawFd; /// use std::io; /// /// pub struct MyIo { /// fd: RawFd, /// } /// /// impl Evented for MyIo { /// fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) /// -> io::Result<()> /// { /// EventedFd(&self.fd).register(poll, token, interest, opts) /// } /// /// fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) /// -> io::Result<()> /// { /// EventedFd(&self.fd).reregister(poll, token, interest, opts) /// } /// /// fn deregister(&self, poll: &Poll) -> io::Result<()> { /// EventedFd(&self.fd).deregister(poll) /// } /// } /// ``` /// /// [`RawFd`]: https://doc.rust-lang.org/std/os/unix/io/type.RawFd.html /// [`Evented`]: ../event/trait.Evented.html /// [`Poll`]: ../struct.Poll.html /// [`Poll::register`]: ../struct.Poll.html#method.register pub struct EventedFd<'a>(pub &'a RawFd); impl<'a> Evented for EventedFd<'a> { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { poll::selector(poll).register(*self.0, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { poll::selector(poll).reregister(*self.0, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { poll::selector(poll).deregister(*self.0) } } mio-0.6.23/src/sys/unix/io.rs010064400007650000024000000045001376150724400141620ustar0000000000000000use std::fs::File; use std::io::{Read, Write}; use std::os::unix::io::{IntoRawFd, AsRawFd, FromRawFd, RawFd}; use libc; use {io, Ready, Poll, PollOpt, Token}; use event::Evented; use unix::EventedFd; use sys::unix::cvt; pub fn set_nonblock(fd: libc::c_int) -> io::Result<()> { unsafe { let flags = libc::fcntl(fd, libc::F_GETFL); cvt(libc::fcntl(fd, libc::F_SETFL, flags | libc::O_NONBLOCK)).map(|_|()) } } pub fn set_cloexec(fd: libc::c_int) -> io::Result<()> { unsafe { let flags = libc::fcntl(fd, libc::F_GETFD); cvt(libc::fcntl(fd, libc::F_SETFD, flags | libc::FD_CLOEXEC)).map(|_| ()) } } /* * * ===== Basic IO type ===== * */ /// Manages a FD #[derive(Debug)] pub struct Io { fd: File, } impl Io { /// Try to clone the FD pub fn try_clone(&self) -> io::Result { Ok(Io { fd: self.fd.try_clone()? }) } } impl FromRawFd for Io { unsafe fn from_raw_fd(fd: RawFd) -> Io { Io { fd: File::from_raw_fd(fd) } } } impl IntoRawFd for Io { fn into_raw_fd(self) -> RawFd { self.fd.into_raw_fd() } } impl AsRawFd for Io { fn as_raw_fd(&self) -> RawFd { self.fd.as_raw_fd() } } impl Evented for Io { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { EventedFd(&self.as_raw_fd()).register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { EventedFd(&self.as_raw_fd()).reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { EventedFd(&self.as_raw_fd()).deregister(poll) } } impl Read for Io { fn read(&mut self, dst: &mut [u8]) -> io::Result { (&self.fd).read(dst) } } impl<'a> Read for &'a Io { fn read(&mut self, dst: &mut [u8]) -> io::Result { (&self.fd).read(dst) } } impl Write for Io { fn write(&mut self, src: &[u8]) -> io::Result { (&self.fd).write(src) } fn flush(&mut self) -> io::Result<()> { (&self.fd).flush() } } impl<'a> Write for &'a Io { fn write(&mut self, src: &[u8]) -> io::Result { (&self.fd).write(src) } fn flush(&mut self) -> io::Result<()> { (&self.fd).flush() } } mio-0.6.23/src/sys/unix/kqueue.rs010064400007650000024000000276701376150724400150670ustar0000000000000000use std::{cmp, fmt, ptr}; #[cfg(not(target_os = "netbsd"))] use std::os::raw::{c_int, c_short}; use std::os::unix::io::AsRawFd; use std::os::unix::io::RawFd; use std::collections::HashMap; use std::sync::atomic::{AtomicUsize, Ordering, ATOMIC_USIZE_INIT}; use std::time::Duration; use libc::{self, time_t}; use {io, Ready, PollOpt, Token}; use event_imp::{self as event, Event}; use sys::unix::{cvt, UnixReady}; use sys::unix::io::set_cloexec; /// Each Selector has a globally unique(ish) ID associated with it. This ID /// gets tracked by `TcpStream`, `TcpListener`, etc... when they are first /// registered with the `Selector`. If a type that is previously associated with /// a `Selector` attempts to register itself with a different `Selector`, the /// operation will return with an error. This matches windows behavior. static NEXT_ID: AtomicUsize = ATOMIC_USIZE_INIT; #[cfg(not(target_os = "netbsd"))] type Filter = c_short; #[cfg(not(target_os = "netbsd"))] type UData = *mut ::libc::c_void; #[cfg(not(target_os = "netbsd"))] type Count = c_int; #[cfg(target_os = "netbsd")] type Filter = u32; #[cfg(target_os = "netbsd")] type UData = ::libc::intptr_t; #[cfg(target_os = "netbsd")] type Count = usize; macro_rules! kevent { ($id: expr, $filter: expr, $flags: expr, $data: expr) => { libc::kevent { ident: $id as ::libc::uintptr_t, filter: $filter as Filter, flags: $flags, fflags: 0, data: 0, udata: $data as UData, } } } pub struct Selector { id: usize, kq: RawFd, } impl Selector { pub fn new() -> io::Result { // offset by 1 to avoid choosing 0 as the id of a selector let id = NEXT_ID.fetch_add(1, Ordering::Relaxed) + 1; let kq = unsafe { cvt(libc::kqueue())? }; drop(set_cloexec(kq)); Ok(Selector { id, kq, }) } pub fn id(&self) -> usize { self.id } pub fn select(&self, evts: &mut Events, awakener: Token, timeout: Option) -> io::Result { let timeout = timeout.map(|to| { libc::timespec { tv_sec: cmp::min(to.as_secs(), time_t::max_value() as u64) as time_t, // `Duration::subsec_nanos` is guaranteed to be less than one // billion (the number of nanoseconds in a second), making the // cast to i32 safe. The cast itself is needed for platforms // where C's long is only 32 bits. tv_nsec: libc::c_long::from(to.subsec_nanos() as i32), } }); let timeout = timeout.as_ref().map(|s| s as *const _).unwrap_or(ptr::null_mut()); evts.clear(); unsafe { let cnt = cvt(libc::kevent(self.kq, ptr::null(), 0, evts.sys_events.0.as_mut_ptr(), evts.sys_events.0.capacity() as Count, timeout))?; evts.sys_events.0.set_len(cnt as usize); Ok(evts.coalesce(awakener)) } } pub fn register(&self, fd: RawFd, token: Token, interests: Ready, opts: PollOpt) -> io::Result<()> { trace!("registering; token={:?}; interests={:?}", token, interests); let flags = if opts.contains(PollOpt::edge()) { libc::EV_CLEAR } else { 0 } | if opts.contains(PollOpt::oneshot()) { libc::EV_ONESHOT } else { 0 } | libc::EV_RECEIPT; unsafe { let r = if interests.contains(Ready::readable()) { libc::EV_ADD } else { libc::EV_DELETE }; let w = if interests.contains(Ready::writable()) { libc::EV_ADD } else { libc::EV_DELETE }; let mut changes = [ kevent!(fd, libc::EVFILT_READ, flags | r, usize::from(token)), kevent!(fd, libc::EVFILT_WRITE, flags | w, usize::from(token)), ]; cvt(libc::kevent(self.kq, changes.as_ptr(), changes.len() as Count, changes.as_mut_ptr(), changes.len() as Count, ::std::ptr::null()))?; for change in changes.iter() { debug_assert_eq!(change.flags & libc::EV_ERROR, libc::EV_ERROR); // Test to see if an error happened if change.data == 0 { continue } // Older versions of OSX (10.11 and 10.10 have been witnessed) // can return EPIPE when registering a pipe file descriptor // where the other end has already disappeared. For example code // that creates a pipe, closes a file descriptor, and then // registers the other end will see an EPIPE returned from // `register`. // // It also turns out that kevent will still report events on the // file descriptor, telling us that it's readable/hup at least // after we've done this registration. As a result we just // ignore `EPIPE` here instead of propagating it. // // More info can be found at carllerche/mio#582 if change.data as i32 == libc::EPIPE && change.filter == libc::EVFILT_WRITE as Filter { continue } // ignore ENOENT error for EV_DELETE let orig_flags = if change.filter == libc::EVFILT_READ as Filter { r } else { w }; if change.data as i32 == libc::ENOENT && orig_flags & libc::EV_DELETE != 0 { continue } return Err(::std::io::Error::from_raw_os_error(change.data as i32)); } Ok(()) } } pub fn reregister(&self, fd: RawFd, token: Token, interests: Ready, opts: PollOpt) -> io::Result<()> { // Just need to call register here since EV_ADD is a mod if already // registered self.register(fd, token, interests, opts) } pub fn deregister(&self, fd: RawFd) -> io::Result<()> { unsafe { // EV_RECEIPT is a nice way to apply changes and get back per-event results while not // draining the actual changes. let filter = libc::EV_DELETE | libc::EV_RECEIPT; #[cfg(not(target_os = "netbsd"))] let mut changes = [ kevent!(fd, libc::EVFILT_READ, filter, ptr::null_mut()), kevent!(fd, libc::EVFILT_WRITE, filter, ptr::null_mut()), ]; #[cfg(target_os = "netbsd")] let mut changes = [ kevent!(fd, libc::EVFILT_READ, filter, 0), kevent!(fd, libc::EVFILT_WRITE, filter, 0), ]; cvt(libc::kevent(self.kq, changes.as_ptr(), changes.len() as Count, changes.as_mut_ptr(), changes.len() as Count, ::std::ptr::null())).map(|_| ())?; if changes[0].data as i32 == libc::ENOENT && changes[1].data as i32 == libc::ENOENT { return Err(::std::io::Error::from_raw_os_error(changes[0].data as i32)); } for change in changes.iter() { debug_assert_eq!(libc::EV_ERROR & change.flags, libc::EV_ERROR); if change.data != 0 && change.data as i32 != libc::ENOENT { return Err(::std::io::Error::from_raw_os_error(changes[0].data as i32)); } } Ok(()) } } } impl fmt::Debug for Selector { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_struct("Selector") .field("id", &self.id) .field("kq", &self.kq) .finish() } } impl AsRawFd for Selector { fn as_raw_fd(&self) -> RawFd { self.kq } } impl Drop for Selector { fn drop(&mut self) { unsafe { let _ = libc::close(self.kq); } } } pub struct Events { sys_events: KeventList, events: Vec, event_map: HashMap, } struct KeventList(Vec); unsafe impl Send for KeventList {} unsafe impl Sync for KeventList {} impl Events { pub fn with_capacity(cap: usize) -> Events { Events { sys_events: KeventList(Vec::with_capacity(cap)), events: Vec::with_capacity(cap), event_map: HashMap::with_capacity(cap) } } #[inline] pub fn len(&self) -> usize { self.events.len() } #[inline] pub fn capacity(&self) -> usize { self.events.capacity() } #[inline] pub fn is_empty(&self) -> bool { self.events.is_empty() } pub fn get(&self, idx: usize) -> Option { self.events.get(idx).cloned() } fn coalesce(&mut self, awakener: Token) -> bool { let mut ret = false; self.events.clear(); self.event_map.clear(); for e in self.sys_events.0.iter() { let token = Token(e.udata as usize); let len = self.events.len(); if token == awakener { // TODO: Should this return an error if event is an error. It // is not critical as spurious wakeups are permitted. ret = true; continue; } let idx = *self.event_map.entry(token) .or_insert(len); if idx == len { // New entry, insert the default self.events.push(Event::new(Ready::empty(), token)); } if e.flags & libc::EV_ERROR != 0 { event::kind_mut(&mut self.events[idx]).insert(*UnixReady::error()); } if e.filter == libc::EVFILT_READ as Filter { event::kind_mut(&mut self.events[idx]).insert(Ready::readable()); } else if e.filter == libc::EVFILT_WRITE as Filter { event::kind_mut(&mut self.events[idx]).insert(Ready::writable()); } #[cfg(any(target_os = "dragonfly", target_os = "freebsd", target_os = "ios", target_os = "macos"))] { if e.filter == libc::EVFILT_AIO { event::kind_mut(&mut self.events[idx]).insert(UnixReady::aio()); } } #[cfg(any(target_os = "freebsd"))] { if e.filter == libc::EVFILT_LIO { event::kind_mut(&mut self.events[idx]).insert(UnixReady::lio()); } } } ret } pub fn push_event(&mut self, event: Event) { self.events.push(event); } pub fn clear(&mut self) { self.sys_events.0.truncate(0); self.events.truncate(0); self.event_map.clear(); } } impl fmt::Debug for Events { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_struct("Events") .field("len", &self.sys_events.0.len()) .finish() } } #[test] fn does_not_register_rw() { use {Poll, Ready, PollOpt, Token}; use unix::EventedFd; let kq = unsafe { libc::kqueue() }; let kqf = EventedFd(&kq); let poll = Poll::new().unwrap(); // registering kqueue fd will fail if write is requested (On anything but some versions of OS // X) poll.register(&kqf, Token(1234), Ready::readable(), PollOpt::edge() | PollOpt::oneshot()).unwrap(); } #[cfg(any(target_os = "dragonfly", target_os = "freebsd", target_os = "ios", target_os = "macos"))] #[test] fn test_coalesce_aio() { let mut events = Events::with_capacity(1); events.sys_events.0.push(kevent!(0x1234, libc::EVFILT_AIO, 0, 42)); events.coalesce(Token(0)); assert!(events.events[0].readiness() == UnixReady::aio().into()); assert!(events.events[0].token() == Token(42)); } mio-0.6.23/src/sys/unix/mod.rs010064400007650000024000000054011376150724400143330ustar0000000000000000use libc::{self, c_int}; #[macro_use] pub mod dlsym; #[cfg(any( target_os = "android", target_os = "illumos", target_os = "linux", target_os = "solaris" ))] mod epoll; #[cfg(any( target_os = "android", target_os = "illumos", target_os = "linux", target_os = "solaris" ))] pub use self::epoll::{Events, Selector}; #[cfg(any(target_os = "bitrig", target_os = "dragonfly", target_os = "freebsd", target_os = "ios", target_os = "macos", target_os = "netbsd", target_os = "openbsd"))] mod kqueue; #[cfg(any(target_os = "bitrig", target_os = "dragonfly", target_os = "freebsd", target_os = "ios", target_os = "macos", target_os = "netbsd", target_os = "openbsd"))] pub use self::kqueue::{Events, Selector}; mod awakener; mod eventedfd; mod io; mod ready; mod tcp; mod udp; mod uio; #[cfg(feature = "with-deprecated")] mod uds; pub use self::awakener::Awakener; pub use self::eventedfd::EventedFd; pub use self::io::{Io, set_nonblock}; pub use self::ready::{UnixReady, READY_ALL}; pub use self::tcp::{TcpStream, TcpListener}; pub use self::udp::UdpSocket; #[cfg(feature = "with-deprecated")] pub use self::uds::UnixSocket; pub use iovec::IoVec; use std::os::unix::io::FromRawFd; pub fn pipe() -> ::io::Result<(Io, Io)> { // Use pipe2 for atomically setting O_CLOEXEC if we can, but otherwise // just fall back to using `pipe`. dlsym!(fn pipe2(*mut c_int, c_int) -> c_int); let mut pipes = [0; 2]; unsafe { match pipe2.get() { Some(pipe2_fn) => { let flags = libc::O_NONBLOCK | libc::O_CLOEXEC; cvt(pipe2_fn(pipes.as_mut_ptr(), flags))?; Ok((Io::from_raw_fd(pipes[0]), Io::from_raw_fd(pipes[1]))) } None => { cvt(libc::pipe(pipes.as_mut_ptr()))?; // Ensure the pipe are closed if any of the system calls below // fail. let r = Io::from_raw_fd(pipes[0]); let w = Io::from_raw_fd(pipes[1]); cvt(libc::fcntl(pipes[0], libc::F_SETFD, libc::FD_CLOEXEC))?; cvt(libc::fcntl(pipes[1], libc::F_SETFD, libc::FD_CLOEXEC))?; cvt(libc::fcntl(pipes[0], libc::F_SETFL, libc::O_NONBLOCK))?; cvt(libc::fcntl(pipes[1], libc::F_SETFL, libc::O_NONBLOCK))?; Ok((r, w)) } } } } trait IsMinusOne { fn is_minus_one(&self) -> bool; } impl IsMinusOne for i32 { fn is_minus_one(&self) -> bool { *self == -1 } } impl IsMinusOne for isize { fn is_minus_one(&self) -> bool { *self == -1 } } fn cvt(t: T) -> ::io::Result { use std::io; if t.is_minus_one() { Err(io::Error::last_os_error()) } else { Ok(t) } } mio-0.6.23/src/sys/unix/ready.rs010064400007650000024000000327561376150724400146750ustar0000000000000000use event_imp::{Ready, ready_as_usize, ready_from_usize}; use std::ops; use std::fmt; /// Unix specific extensions to `Ready` /// /// Provides additional readiness event kinds that are available on unix /// platforms. Unix platforms are able to provide readiness events for /// additional socket events, such as HUP and error. /// /// HUP events occur when the remote end of a socket hangs up. In the TCP case, /// this occurs when the remote end of a TCP socket shuts down writes. /// /// Error events occur when the socket enters an error state. In this case, the /// socket will also receive a readable or writable event. Reading or writing to /// the socket will result in an error. /// /// Conversion traits are implemented between `Ready` and `UnixReady`. See the /// examples. /// /// For high level documentation on polling and readiness, see [`Poll`]. /// /// # Examples /// /// Most of the time, all that is needed is using bit operations /// /// ``` /// use mio::Ready; /// use mio::unix::UnixReady; /// /// let ready = Ready::readable() | UnixReady::hup(); /// /// assert!(ready.is_readable()); /// assert!(UnixReady::from(ready).is_hup()); /// ``` /// /// Basic conversion between ready types. /// /// ``` /// use mio::Ready; /// use mio::unix::UnixReady; /// /// // Start with a portable ready /// let ready = Ready::readable(); /// /// // Convert to a unix ready, adding HUP /// let mut unix_ready = UnixReady::from(ready) | UnixReady::hup(); /// /// unix_ready.insert(UnixReady::error()); /// /// // `unix_ready` maintains readable interest /// assert!(unix_ready.is_readable()); /// assert!(unix_ready.is_hup()); /// assert!(unix_ready.is_error()); /// /// // Convert back to `Ready` /// let ready = Ready::from(unix_ready); /// /// // Readable is maintained /// assert!(ready.is_readable()); /// ``` /// /// Registering readable and error interest on a socket /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Ready, Poll, PollOpt, Token}; /// use mio::net::TcpStream; /// use mio::unix::UnixReady; /// /// let addr = "216.58.193.68:80".parse()?; /// let socket = TcpStream::connect(&addr)?; /// /// let poll = Poll::new()?; /// /// poll.register(&socket, /// Token(0), /// Ready::readable() | UnixReady::error(), /// PollOpt::edge())?; /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// /// [`Poll`]: ../struct.Poll.html /// [readiness]: struct.Poll.html#readiness-operations #[derive(Copy, PartialEq, Eq, Clone, PartialOrd, Ord)] pub struct UnixReady(Ready); const ERROR: usize = 0b00_0100; const HUP: usize = 0b00_1000; #[cfg(any(target_os = "dragonfly", target_os = "freebsd", target_os = "ios", target_os = "macos"))] const AIO: usize = 0b01_0000; #[cfg(not(any(target_os = "dragonfly", target_os = "freebsd", target_os = "ios", target_os = "macos")))] const AIO: usize = 0b00_0000; #[cfg(any(target_os = "freebsd"))] const LIO: usize = 0b10_0000; #[cfg(not(any(target_os = "freebsd")))] const LIO: usize = 0b00_0000; #[cfg(any( target_os = "android", target_os = "illumos", target_os = "linux", target_os = "solaris" ))] const PRI: usize = 0b100_0000; #[cfg(not(any( target_os = "android", target_os = "illumos", target_os = "linux", target_os = "solaris" )))] const PRI: usize = 0; // Export to support `Ready::all` pub const READY_ALL: usize = ERROR | HUP | AIO | LIO | PRI; #[test] fn test_ready_all() { let readable = Ready::readable().as_usize(); let writable = Ready::writable().as_usize(); assert_eq!( READY_ALL | readable | writable, ERROR + HUP + AIO + LIO + PRI + readable + writable ); // Issue #896. #[cfg(any( target_os = "android", target_os = "illumos", target_os = "linux", target_os = "solaris" ))] assert!(!Ready::from(UnixReady::priority()).is_writable()); } impl UnixReady { /// Returns a `Ready` representing AIO completion readiness /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::unix::UnixReady; /// /// let ready = UnixReady::aio(); /// /// assert!(ready.is_aio()); /// ``` /// /// [`Poll`]: ../struct.Poll.html #[inline] #[cfg(any(target_os = "dragonfly", target_os = "freebsd", target_os = "ios", target_os = "macos"))] pub fn aio() -> UnixReady { UnixReady(ready_from_usize(AIO)) } #[cfg(not(any(target_os = "dragonfly", target_os = "freebsd", target_os = "ios", target_os = "macos")))] #[deprecated(since = "0.6.12", note = "this function is now platform specific")] #[doc(hidden)] pub fn aio() -> UnixReady { UnixReady(Ready::empty()) } /// Returns a `Ready` representing error readiness. /// /// **Note that only readable and writable readiness is guaranteed to be /// supported on all platforms**. This means that `error` readiness /// should be treated as a hint. For more details, see [readiness] in the /// poll documentation. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::unix::UnixReady; /// /// let ready = UnixReady::error(); /// /// assert!(ready.is_error()); /// ``` /// /// [`Poll`]: ../struct.Poll.html /// [readiness]: ../struct.Poll.html#readiness-operations #[inline] pub fn error() -> UnixReady { UnixReady(ready_from_usize(ERROR)) } /// Returns a `Ready` representing HUP readiness. /// /// A HUP (or hang-up) signifies that a stream socket **peer** closed the /// connection, or shut down the writing half of the connection. /// /// **Note that only readable and writable readiness is guaranteed to be /// supported on all platforms**. This means that `hup` readiness /// should be treated as a hint. For more details, see [readiness] in the /// poll documentation. It is also unclear if HUP readiness will remain in 0.7. See /// [here][issue-941]. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::unix::UnixReady; /// /// let ready = UnixReady::hup(); /// /// assert!(ready.is_hup()); /// ``` /// /// [`Poll`]: ../struct.Poll.html /// [readiness]: ../struct.Poll.html#readiness-operations /// [issue-941]: https://github.com/tokio-rs/mio/issues/941 #[inline] pub fn hup() -> UnixReady { UnixReady(ready_from_usize(HUP)) } /// Returns a `Ready` representing LIO completion readiness /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::unix::UnixReady; /// /// let ready = UnixReady::lio(); /// /// assert!(ready.is_lio()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] #[cfg(any(target_os = "freebsd"))] pub fn lio() -> UnixReady { UnixReady(ready_from_usize(LIO)) } /// Returns a `Ready` representing priority (`EPOLLPRI`) readiness /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::unix::UnixReady; /// /// let ready = UnixReady::priority(); /// /// assert!(ready.is_priority()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] #[cfg(any( target_os = "android", target_os = "illumos", target_os = "linux", target_os = "solaris" ))] pub fn priority() -> UnixReady { UnixReady(ready_from_usize(PRI)) } /// Returns true if `Ready` contains AIO readiness /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::unix::UnixReady; /// /// let ready = UnixReady::aio(); /// /// assert!(ready.is_aio()); /// ``` /// /// [`Poll`]: ../struct.Poll.html #[inline] #[cfg(any(target_os = "dragonfly", target_os = "freebsd", target_os = "ios", target_os = "macos"))] pub fn is_aio(&self) -> bool { self.contains(ready_from_usize(AIO)) } #[deprecated(since = "0.6.12", note = "this function is now platform specific")] #[cfg(feature = "with-deprecated")] #[cfg(not(any(target_os = "dragonfly", target_os = "freebsd", target_os = "ios", target_os = "macos")))] #[doc(hidden)] pub fn is_aio(&self) -> bool { false } /// Returns true if the value includes error readiness /// /// **Note that only readable and writable readiness is guaranteed to be /// supported on all platforms**. This means that `error` readiness should /// be treated as a hint. For more details, see [readiness] in the poll /// documentation. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::unix::UnixReady; /// /// let ready = UnixReady::error(); /// /// assert!(ready.is_error()); /// ``` /// /// [`Poll`]: ../struct.Poll.html /// [readiness]: ../struct.Poll.html#readiness-operations #[inline] pub fn is_error(&self) -> bool { self.contains(ready_from_usize(ERROR)) } /// Returns true if the value includes HUP readiness /// /// A HUP (or hang-up) signifies that a stream socket **peer** closed the /// connection, or shut down the writing half of the connection. /// /// **Note that only readable and writable readiness is guaranteed to be /// supported on all platforms**. This means that `hup` readiness /// should be treated as a hint. For more details, see [readiness] in the /// poll documentation. /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::unix::UnixReady; /// /// let ready = UnixReady::hup(); /// /// assert!(ready.is_hup()); /// ``` /// /// [`Poll`]: ../struct.Poll.html /// [readiness]: ../struct.Poll.html#readiness-operations #[inline] pub fn is_hup(&self) -> bool { self.contains(ready_from_usize(HUP)) } /// Returns true if `Ready` contains LIO readiness /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::unix::UnixReady; /// /// let ready = UnixReady::lio(); /// /// assert!(ready.is_lio()); /// ``` #[inline] #[cfg(any(target_os = "freebsd"))] pub fn is_lio(&self) -> bool { self.contains(ready_from_usize(LIO)) } /// Returns true if `Ready` contains priority (`EPOLLPRI`) readiness /// /// See [`Poll`] for more documentation on polling. /// /// # Examples /// /// ``` /// use mio::unix::UnixReady; /// /// let ready = UnixReady::priority(); /// /// assert!(ready.is_priority()); /// ``` /// /// [`Poll`]: struct.Poll.html #[inline] #[cfg(any( target_os = "android", target_os = "illumos", target_os = "linux", target_os = "solaris" ))] pub fn is_priority(&self) -> bool { self.contains(ready_from_usize(PRI)) } } impl From for UnixReady { fn from(src: Ready) -> UnixReady { UnixReady(src) } } impl From for Ready { fn from(src: UnixReady) -> Ready { src.0 } } impl ops::Deref for UnixReady { type Target = Ready; fn deref(&self) -> &Ready { &self.0 } } impl ops::DerefMut for UnixReady { fn deref_mut(&mut self) -> &mut Ready { &mut self.0 } } impl ops::BitOr for UnixReady { type Output = UnixReady; #[inline] fn bitor(self, other: UnixReady) -> UnixReady { (self.0 | other.0).into() } } impl ops::BitXor for UnixReady { type Output = UnixReady; #[inline] fn bitxor(self, other: UnixReady) -> UnixReady { (self.0 ^ other.0).into() } } impl ops::BitAnd for UnixReady { type Output = UnixReady; #[inline] fn bitand(self, other: UnixReady) -> UnixReady { (self.0 & other.0).into() } } impl ops::Sub for UnixReady { type Output = UnixReady; #[inline] fn sub(self, other: UnixReady) -> UnixReady { ready_from_usize(ready_as_usize(self.0) & !ready_as_usize(other.0)).into() } } #[deprecated(since = "0.6.10", note = "removed")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] impl ops::Not for UnixReady { type Output = UnixReady; #[inline] fn not(self) -> UnixReady { (!self.0).into() } } impl fmt::Debug for UnixReady { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { let mut one = false; let flags = [ (UnixReady(Ready::readable()), "Readable"), (UnixReady(Ready::writable()), "Writable"), (UnixReady::error(), "Error"), (UnixReady::hup(), "Hup"), #[allow(deprecated)] (UnixReady::aio(), "Aio"), #[cfg(any( target_os = "android", target_os = "illumos", target_os = "linux", target_os = "solaris" ))] (UnixReady::priority(), "Priority"), ]; for &(flag, msg) in &flags { if self.contains(flag) { if one { write!(fmt, " | ")? } write!(fmt, "{}", msg)?; one = true } } if !one { fmt.write_str("(empty)")?; } Ok(()) } } mio-0.6.23/src/sys/unix/tcp.rs010064400007650000024000000155271376150724400143540ustar0000000000000000use std::fmt; use std::io::{Read, Write}; use std::net::{self, SocketAddr}; use std::os::unix::io::{RawFd, FromRawFd, IntoRawFd, AsRawFd}; use std::time::Duration; use libc; use net2::TcpStreamExt; use iovec::IoVec; use {io, Ready, Poll, PollOpt, Token}; use event::Evented; use sys::unix::eventedfd::EventedFd; use sys::unix::io::set_nonblock; use sys::unix::uio::VecIo; pub struct TcpStream { inner: net::TcpStream, } pub struct TcpListener { inner: net::TcpListener, } impl TcpStream { pub fn connect(stream: net::TcpStream, addr: &SocketAddr) -> io::Result { set_nonblock(stream.as_raw_fd())?; match stream.connect(addr) { Ok(..) => {} Err(ref e) if e.raw_os_error() == Some(libc::EINPROGRESS) => {} Err(e) => return Err(e), } Ok(TcpStream { inner: stream, }) } pub fn from_stream(stream: net::TcpStream) -> TcpStream { TcpStream { inner: stream, } } pub fn peer_addr(&self) -> io::Result { self.inner.peer_addr() } pub fn local_addr(&self) -> io::Result { self.inner.local_addr() } pub fn try_clone(&self) -> io::Result { self.inner.try_clone().map(|s| { TcpStream { inner: s, } }) } pub fn shutdown(&self, how: net::Shutdown) -> io::Result<()> { self.inner.shutdown(how) } pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> { self.inner.set_nodelay(nodelay) } pub fn nodelay(&self) -> io::Result { self.inner.nodelay() } pub fn set_recv_buffer_size(&self, size: usize) -> io::Result<()> { self.inner.set_recv_buffer_size(size) } pub fn recv_buffer_size(&self) -> io::Result { self.inner.recv_buffer_size() } pub fn set_send_buffer_size(&self, size: usize) -> io::Result<()> { self.inner.set_send_buffer_size(size) } pub fn send_buffer_size(&self) -> io::Result { self.inner.send_buffer_size() } pub fn set_keepalive(&self, keepalive: Option) -> io::Result<()> { self.inner.set_keepalive(keepalive) } pub fn keepalive(&self) -> io::Result> { self.inner.keepalive() } pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.inner.set_ttl(ttl) } pub fn ttl(&self) -> io::Result { self.inner.ttl() } pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.inner.set_only_v6(only_v6) } pub fn only_v6(&self) -> io::Result { self.inner.only_v6() } pub fn set_linger(&self, dur: Option) -> io::Result<()> { self.inner.set_linger(dur) } pub fn linger(&self) -> io::Result> { self.inner.linger() } pub fn take_error(&self) -> io::Result> { self.inner.take_error() } pub fn peek(&self, buf: &mut [u8]) -> io::Result { self.inner.peek(buf) } pub fn readv(&self, bufs: &mut [&mut IoVec]) -> io::Result { self.inner.readv(bufs) } pub fn writev(&self, bufs: &[&IoVec]) -> io::Result { self.inner.writev(bufs) } } impl<'a> Read for &'a TcpStream { fn read(&mut self, buf: &mut [u8]) -> io::Result { (&self.inner).read(buf) } } impl<'a> Write for &'a TcpStream { fn write(&mut self, buf: &[u8]) -> io::Result { (&self.inner).write(buf) } fn flush(&mut self) -> io::Result<()> { (&self.inner).flush() } } impl Evented for TcpStream { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { EventedFd(&self.as_raw_fd()).register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { EventedFd(&self.as_raw_fd()).reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { EventedFd(&self.as_raw_fd()).deregister(poll) } } impl fmt::Debug for TcpStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&self.inner, f) } } impl FromRawFd for TcpStream { unsafe fn from_raw_fd(fd: RawFd) -> TcpStream { TcpStream { inner: net::TcpStream::from_raw_fd(fd), } } } impl IntoRawFd for TcpStream { fn into_raw_fd(self) -> RawFd { self.inner.into_raw_fd() } } impl AsRawFd for TcpStream { fn as_raw_fd(&self) -> RawFd { self.inner.as_raw_fd() } } impl TcpListener { pub fn new(inner: net::TcpListener) -> io::Result { set_nonblock(inner.as_raw_fd())?; Ok(TcpListener { inner, }) } pub fn local_addr(&self) -> io::Result { self.inner.local_addr() } pub fn try_clone(&self) -> io::Result { self.inner.try_clone().map(|s| { TcpListener { inner: s, } }) } pub fn accept(&self) -> io::Result<(net::TcpStream, SocketAddr)> { self.inner.accept() } #[allow(deprecated)] pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.inner.set_only_v6(only_v6) } #[allow(deprecated)] pub fn only_v6(&self) -> io::Result { self.inner.only_v6() } pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.inner.set_ttl(ttl) } pub fn ttl(&self) -> io::Result { self.inner.ttl() } pub fn take_error(&self) -> io::Result> { self.inner.take_error() } } impl Evented for TcpListener { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { EventedFd(&self.as_raw_fd()).register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { EventedFd(&self.as_raw_fd()).reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { EventedFd(&self.as_raw_fd()).deregister(poll) } } impl fmt::Debug for TcpListener { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&self.inner, f) } } impl FromRawFd for TcpListener { unsafe fn from_raw_fd(fd: RawFd) -> TcpListener { TcpListener { inner: net::TcpListener::from_raw_fd(fd), } } } impl IntoRawFd for TcpListener { fn into_raw_fd(self) -> RawFd { self.inner.into_raw_fd() } } impl AsRawFd for TcpListener { fn as_raw_fd(&self) -> RawFd { self.inner.as_raw_fd() } } mio-0.6.23/src/sys/unix/udp.rs010064400007650000024000000113121376150724400143420ustar0000000000000000use {io, Ready, Poll, PollOpt, Token}; use event::Evented; use unix::EventedFd; use sys::unix::uio::VecIo; use std::fmt; use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr}; use std::os::unix::io::{RawFd, IntoRawFd, AsRawFd, FromRawFd}; #[allow(unused_imports)] // only here for Rust 1.8 use net2::UdpSocketExt; use iovec::IoVec; pub struct UdpSocket { io: net::UdpSocket, } impl UdpSocket { pub fn new(socket: net::UdpSocket) -> io::Result { socket.set_nonblocking(true)?; Ok(UdpSocket { io: socket, }) } pub fn local_addr(&self) -> io::Result { self.io.local_addr() } pub fn try_clone(&self) -> io::Result { self.io.try_clone().map(|io| { UdpSocket { io, } }) } pub fn send_to(&self, buf: &[u8], target: &SocketAddr) -> io::Result { self.io.send_to(buf, target) } pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.io.recv_from(buf) } pub fn send(&self, buf: &[u8]) -> io::Result { self.io.send(buf) } pub fn recv(&self, buf: &mut [u8]) -> io::Result { self.io.recv(buf) } pub fn connect(&self, addr: SocketAddr) -> io::Result<()> { self.io.connect(addr) } pub fn broadcast(&self) -> io::Result { self.io.broadcast() } pub fn set_broadcast(&self, on: bool) -> io::Result<()> { self.io.set_broadcast(on) } pub fn multicast_loop_v4(&self) -> io::Result { self.io.multicast_loop_v4() } pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> { self.io.set_multicast_loop_v4(on) } pub fn multicast_ttl_v4(&self) -> io::Result { self.io.multicast_ttl_v4() } pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> { self.io.set_multicast_ttl_v4(ttl) } pub fn multicast_loop_v6(&self) -> io::Result { self.io.multicast_loop_v6() } pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> { self.io.set_multicast_loop_v6(on) } pub fn ttl(&self) -> io::Result { self.io.ttl() } pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.io.set_ttl(ttl) } pub fn join_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.io.join_multicast_v4(multiaddr, interface) } pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.io.join_multicast_v6(multiaddr, interface) } pub fn leave_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.io.leave_multicast_v4(multiaddr, interface) } pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.io.leave_multicast_v6(multiaddr, interface) } pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.io.set_only_v6(only_v6) } pub fn only_v6(&self) -> io::Result { self.io.only_v6() } pub fn take_error(&self) -> io::Result> { self.io.take_error() } pub fn readv(&self, bufs: &mut [&mut IoVec]) -> io::Result { self.io.readv(bufs) } pub fn writev(&self, bufs: &[&IoVec]) -> io::Result { self.io.writev(bufs) } } impl Evented for UdpSocket { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { EventedFd(&self.as_raw_fd()).register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { EventedFd(&self.as_raw_fd()).reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { EventedFd(&self.as_raw_fd()).deregister(poll) } } impl fmt::Debug for UdpSocket { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&self.io, f) } } impl FromRawFd for UdpSocket { unsafe fn from_raw_fd(fd: RawFd) -> UdpSocket { UdpSocket { io: net::UdpSocket::from_raw_fd(fd), } } } impl IntoRawFd for UdpSocket { fn into_raw_fd(self) -> RawFd { self.io.into_raw_fd() } } impl AsRawFd for UdpSocket { fn as_raw_fd(&self) -> RawFd { self.io.as_raw_fd() } } mio-0.6.23/src/sys/unix/uds.rs010064400007650000024000000174111376150724400143530ustar0000000000000000use std::io::{Read, Write}; use std::mem; use std::net::Shutdown; use std::os::unix::prelude::*; use std::path::Path; use std::ptr; use libc; use {io, Ready, Poll, PollOpt, Token}; use event::Evented; use sys::unix::{cvt, Io}; use sys::unix::io::{set_nonblock, set_cloexec}; trait MyInto { fn my_into(self) -> T; } impl MyInto for usize { fn my_into(self) -> u32 { self as u32 } } impl MyInto for usize { fn my_into(self) -> usize { self } } unsafe fn sockaddr_un(path: &Path) -> io::Result<(libc::sockaddr_un, libc::socklen_t)> { let mut addr: libc::sockaddr_un = mem::zeroed(); addr.sun_family = libc::AF_UNIX as libc::sa_family_t; let bytes = path.as_os_str().as_bytes(); if bytes.len() >= addr.sun_path.len() { return Err(io::Error::new(io::ErrorKind::InvalidInput, "path must be shorter than SUN_LEN")) } for (dst, src) in addr.sun_path.iter_mut().zip(bytes.iter()) { *dst = *src as libc::c_char; } // null byte for pathname addresses is already there because we zeroed the // struct let mut len = sun_path_offset() + bytes.len(); match bytes.get(0) { Some(&0) | None => {} Some(_) => len += 1, } Ok((addr, len as libc::socklen_t)) } fn sun_path_offset() -> usize { unsafe { // Work with an actual instance of the type since using a null pointer is UB let addr: libc::sockaddr_un = mem::uninitialized(); let base = &addr as *const _ as usize; let path = &addr.sun_path as *const _ as usize; path - base } } #[derive(Debug)] pub struct UnixSocket { io: Io, } impl UnixSocket { /// Returns a new, unbound, non-blocking Unix domain socket pub fn stream() -> io::Result { #[cfg(target_os = "linux")] use libc::{SOCK_CLOEXEC, SOCK_NONBLOCK}; #[cfg(not(target_os = "linux"))] const SOCK_CLOEXEC: libc::c_int = 0; #[cfg(not(target_os = "linux"))] const SOCK_NONBLOCK: libc::c_int = 0; unsafe { if cfg!(target_os = "linux") { let flags = libc::SOCK_STREAM | SOCK_CLOEXEC | SOCK_NONBLOCK; match cvt(libc::socket(libc::AF_UNIX, flags, 0)) { Ok(fd) => return Ok(UnixSocket::from_raw_fd(fd)), Err(ref e) if e.raw_os_error() == Some(libc::EINVAL) => {} Err(e) => return Err(e), } } let fd = cvt(libc::socket(libc::AF_UNIX, libc::SOCK_STREAM, 0))?; let fd = UnixSocket::from_raw_fd(fd); set_cloexec(fd.as_raw_fd())?; set_nonblock(fd.as_raw_fd())?; Ok(fd) } } /// Connect the socket to the specified address pub fn connect + ?Sized>(&self, addr: &P) -> io::Result<()> { unsafe { let (addr, len) = sockaddr_un(addr.as_ref())?; cvt(libc::connect(self.as_raw_fd(), &addr as *const _ as *const _, len))?; Ok(()) } } /// Listen for incoming requests pub fn listen(&self, backlog: usize) -> io::Result<()> { unsafe { cvt(libc::listen(self.as_raw_fd(), backlog as i32))?; Ok(()) } } pub fn accept(&self) -> io::Result { unsafe { let fd = cvt(libc::accept(self.as_raw_fd(), ptr::null_mut(), ptr::null_mut()))?; let fd = Io::from_raw_fd(fd); set_cloexec(fd.as_raw_fd())?; set_nonblock(fd.as_raw_fd())?; Ok(UnixSocket { io: fd }) } } /// Bind the socket to the specified address pub fn bind + ?Sized>(&self, addr: &P) -> io::Result<()> { unsafe { let (addr, len) = sockaddr_un(addr.as_ref())?; cvt(libc::bind(self.as_raw_fd(), &addr as *const _ as *const _, len))?; Ok(()) } } pub fn try_clone(&self) -> io::Result { Ok(UnixSocket { io: self.io.try_clone()? }) } pub fn shutdown(&self, how: Shutdown) -> io::Result<()> { let how = match how { Shutdown::Read => libc::SHUT_RD, Shutdown::Write => libc::SHUT_WR, Shutdown::Both => libc::SHUT_RDWR, }; unsafe { cvt(libc::shutdown(self.as_raw_fd(), how))?; Ok(()) } } pub fn read_recv_fd(&mut self, buf: &mut [u8]) -> io::Result<(usize, Option)> { unsafe { let mut iov = libc::iovec { iov_base: buf.as_mut_ptr() as *mut _, iov_len: buf.len(), }; struct Cmsg { hdr: libc::cmsghdr, data: [libc::c_int; 1], } let mut cmsg: Cmsg = mem::zeroed(); let mut msg: libc::msghdr = mem::zeroed(); msg.msg_iov = &mut iov; msg.msg_iovlen = 1; msg.msg_control = &mut cmsg as *mut _ as *mut _; msg.msg_controllen = mem::size_of_val(&cmsg).my_into(); let bytes = cvt(libc::recvmsg(self.as_raw_fd(), &mut msg, 0))?; const SCM_RIGHTS: libc::c_int = 1; let fd = if cmsg.hdr.cmsg_level == libc::SOL_SOCKET && cmsg.hdr.cmsg_type == SCM_RIGHTS { Some(cmsg.data[0]) } else { None }; Ok((bytes as usize, fd)) } } pub fn write_send_fd(&mut self, buf: &[u8], fd: RawFd) -> io::Result { unsafe { let mut iov = libc::iovec { iov_base: buf.as_ptr() as *mut _, iov_len: buf.len(), }; struct Cmsg { hdr: libc::cmsghdr, data: [libc::c_int; 1], } let mut cmsg: Cmsg = mem::zeroed(); cmsg.hdr.cmsg_len = mem::size_of_val(&cmsg).my_into(); cmsg.hdr.cmsg_level = libc::SOL_SOCKET; cmsg.hdr.cmsg_type = 1; // SCM_RIGHTS cmsg.data[0] = fd; let mut msg: libc::msghdr = mem::zeroed(); msg.msg_iov = &mut iov; msg.msg_iovlen = 1; msg.msg_control = &mut cmsg as *mut _ as *mut _; msg.msg_controllen = mem::size_of_val(&cmsg).my_into(); let bytes = cvt(libc::sendmsg(self.as_raw_fd(), &msg, 0))?; Ok(bytes as usize) } } } impl Read for UnixSocket { fn read(&mut self, buf: &mut [u8]) -> io::Result { self.io.read(buf) } } impl Write for UnixSocket { fn write(&mut self, buf: &[u8]) -> io::Result { self.io.write(buf) } fn flush(&mut self) -> io::Result<()> { self.io.flush() } } impl Evented for UnixSocket { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.io.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.io.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.io.deregister(poll) } } impl From for UnixSocket { fn from(io: Io) -> UnixSocket { UnixSocket { io } } } impl FromRawFd for UnixSocket { unsafe fn from_raw_fd(fd: RawFd) -> UnixSocket { UnixSocket { io: Io::from_raw_fd(fd) } } } impl IntoRawFd for UnixSocket { fn into_raw_fd(self) -> RawFd { self.io.into_raw_fd() } } impl AsRawFd for UnixSocket { fn as_raw_fd(&self) -> RawFd { self.io.as_raw_fd() } } mio-0.6.23/src/sys/unix/uio.rs010064400007650000024000000025041376150724400143510ustar0000000000000000use std::cmp; use std::io; use std::os::unix::io::AsRawFd; use libc; use iovec::IoVec; use iovec::unix as iovec; pub trait VecIo { fn readv(&self, bufs: &mut [&mut IoVec]) -> io::Result; fn writev(&self, bufs: &[&IoVec]) -> io::Result; } impl VecIo for T { fn readv(&self, bufs: &mut [&mut IoVec]) -> io::Result { unsafe { let slice = iovec::as_os_slice_mut(bufs); let len = cmp::min(::max_value() as usize, slice.len()); let rc = libc::readv(self.as_raw_fd(), slice.as_ptr(), len as libc::c_int); if rc < 0 { Err(io::Error::last_os_error()) } else { Ok(rc as usize) } } } fn writev(&self, bufs: &[&IoVec]) -> io::Result { unsafe { let slice = iovec::as_os_slice(bufs); let len = cmp::min(::max_value() as usize, slice.len()); let rc = libc::writev(self.as_raw_fd(), slice.as_ptr(), len as libc::c_int); if rc < 0 { Err(io::Error::last_os_error()) } else { Ok(rc as usize) } } } }mio-0.6.23/src/sys/windows/awakener.rs010064400007650000024000000035371376150724400160700ustar0000000000000000use std::sync::Mutex; use miow::iocp::CompletionStatus; use {io, poll, Ready, Poll, PollOpt, Token}; use event::Evented; use sys::windows::Selector; pub struct Awakener { inner: Mutex>, } struct AwakenerInner { token: Token, selector: Selector, } impl Awakener { pub fn new() -> io::Result { Ok(Awakener { inner: Mutex::new(None), }) } pub fn wakeup(&self) -> io::Result<()> { // Each wakeup notification has NULL as its `OVERLAPPED` pointer to // indicate that it's from this awakener and not part of an I/O // operation. This is specially recognized by the selector. // // If we haven't been registered with an event loop yet just silently // succeed. if let Some(inner) = self.inner.lock().unwrap().as_ref() { let status = CompletionStatus::new(0, usize::from(inner.token), 0 as *mut _); inner.selector.port().post(status)?; } Ok(()) } pub fn cleanup(&self) { // noop } } impl Evented for Awakener { fn register(&self, poll: &Poll, token: Token, events: Ready, opts: PollOpt) -> io::Result<()> { assert_eq!(opts, PollOpt::edge()); assert_eq!(events, Ready::readable()); *self.inner.lock().unwrap() = Some(AwakenerInner { selector: poll::selector(poll).clone_ref(), token: token, }); Ok(()) } fn reregister(&self, poll: &Poll, token: Token, events: Ready, opts: PollOpt) -> io::Result<()> { self.register(poll, token, events, opts) } fn deregister(&self, _poll: &Poll) -> io::Result<()> { *self.inner.lock().unwrap() = None; Ok(()) } } mio-0.6.23/src/sys/windows/buffer_pool.rs010064400007650000024000000007641376150724400165740ustar0000000000000000pub struct BufferPool { pool: Vec>, } impl BufferPool { pub fn new(cap: usize) -> BufferPool { BufferPool { pool: Vec::with_capacity(cap) } } pub fn get(&mut self, default_cap: usize) -> Vec { self.pool.pop().unwrap_or_else(|| Vec::with_capacity(default_cap)) } pub fn put(&mut self, mut buf: Vec) { if self.pool.len() < self.pool.capacity(){ unsafe { buf.set_len(0); } self.pool.push(buf); } } } mio-0.6.23/src/sys/windows/from_raw_arc.rs010064400007650000024000000066221376150724400167320ustar0000000000000000//! A "Manual Arc" which allows manually frobbing the reference count //! //! This module contains a copy of the `Arc` found in the standard library, //! stripped down to the bare bones of what we actually need. The reason this is //! done is for the ability to concretely know the memory layout of the `Inner` //! structure of the arc pointer itself (e.g. `ArcInner` in the standard //! library). //! //! We do some unsafe casting from `*mut OVERLAPPED` to a `FromRawArc` to //! ensure that data lives for the length of an I/O operation, but this means //! that we have to know the layouts of the structures involved. This //! representation primarily guarantees that the data, `T` is at the front of //! the inner pointer always. //! //! Note that we're missing out on some various optimizations implemented in the //! standard library: //! //! * The size of `FromRawArc` is actually two words because of the drop flag //! * The compiler doesn't understand that the pointer in `FromRawArc` is never //! null, so Option> is not a nullable pointer. use std::ops::Deref; use std::mem; use std::sync::atomic::{self, AtomicUsize, Ordering}; pub struct FromRawArc { _inner: *mut Inner, } unsafe impl Send for FromRawArc { } unsafe impl Sync for FromRawArc { } #[repr(C)] struct Inner { data: T, cnt: AtomicUsize, } impl FromRawArc { pub fn new(data: T) -> FromRawArc { let x = Box::new(Inner { data: data, cnt: AtomicUsize::new(1), }); FromRawArc { _inner: unsafe { mem::transmute(x) } } } pub unsafe fn from_raw(ptr: *mut T) -> FromRawArc { // Note that if we could use `mem::transmute` here to get a libstd Arc // (guaranteed) then we could just use std::sync::Arc, but this is the // crucial reason this currently exists. FromRawArc { _inner: ptr as *mut Inner } } } impl Clone for FromRawArc { fn clone(&self) -> FromRawArc { // Atomic ordering of Relaxed lifted from libstd, but the general idea // is that you need synchronization to communicate this increment to // another thread, so this itself doesn't need to be synchronized. unsafe { (*self._inner).cnt.fetch_add(1, Ordering::Relaxed); } FromRawArc { _inner: self._inner } } } impl Deref for FromRawArc { type Target = T; fn deref(&self) -> &T { unsafe { &(*self._inner).data } } } impl Drop for FromRawArc { fn drop(&mut self) { unsafe { // Atomic orderings lifted from the standard library if (*self._inner).cnt.fetch_sub(1, Ordering::Release) != 1 { return } atomic::fence(Ordering::Acquire); drop(mem::transmute::<_, Box>(self._inner)); } } } #[cfg(test)] mod tests { use super::FromRawArc; #[test] fn smoke() { let a = FromRawArc::new(1); assert_eq!(*a, 1); assert_eq!(*a.clone(), 1); } #[test] fn drops() { struct A<'a>(&'a mut bool); impl<'a> Drop for A<'a> { fn drop(&mut self) { *self.0 = true; } } let mut a = false; { let a = FromRawArc::new(A(&mut a)); let _ = a.clone(); assert!(!*a.0); } assert!(a); } } mio-0.6.23/src/sys/windows/mod.rs010064400007650000024000000201471376150724400150460ustar0000000000000000//! Implementation of mio for Windows using IOCP //! //! This module uses I/O Completion Ports (IOCP) on Windows to implement mio's //! Unix epoll-like interface. Unfortunately these two I/O models are //! fundamentally incompatible: //! //! * IOCP is a completion-based model where work is submitted to the kernel and //! a program is notified later when the work finished. //! * epoll is a readiness-based model where the kernel is queried as to what //! work can be done, and afterwards the work is done. //! //! As a result, this implementation for Windows is much less "low level" than //! the Unix implementation of mio. This design decision was intentional, //! however. //! //! ## What is IOCP? //! //! The [official docs][docs] have a comprehensive explanation of what IOCP is, //! but at a high level it requires the following operations to be executed to //! perform some I/O: //! //! 1. A completion port is created //! 2. An I/O handle and a token is registered with this completion port //! 3. Some I/O is issued on the handle. This generally means that an API was //! invoked with a zeroed `OVERLAPPED` structure. The API will immediately //! return. //! 4. After some time, the application queries the I/O port for completed //! events. The port will returned a pointer to the `OVERLAPPED` along with //! the token presented at registration time. //! //! Many I/O operations can be fired off before waiting on a port, and the port //! will block execution of the calling thread until an I/O event has completed //! (or a timeout has elapsed). //! //! Currently all of these low-level operations are housed in a separate `miow` //! crate to provide a 0-cost abstraction over IOCP. This crate uses that to //! implement all fiddly bits so there's very few actual Windows API calls or //! `unsafe` blocks as a result. //! //! [docs]: https://msdn.microsoft.com/en-us/library/windows/desktop/aa365198%28v=vs.85%29.aspx //! //! ## Safety of IOCP //! //! Unfortunately for us, IOCP is pretty unsafe in terms of Rust lifetimes and //! such. When an I/O operation is submitted to the kernel, it involves handing //! the kernel a few pointers like a buffer to read/write, an `OVERLAPPED` //! structure pointer, and perhaps some other buffers such as for socket //! addresses. These pointers all have to remain valid **for the entire I/O //! operation's duration**. //! //! There's no way to define a safe lifetime for these pointers/buffers over //! the span of an I/O operation, so we're forced to add a layer of abstraction //! (not 0-cost) to make these APIs safe. Currently this implementation //! basically just boxes everything up on the heap to give it a stable address //! and then keys off that most of the time. //! //! ## From completion to readiness //! //! Translating a completion-based model to a readiness-based model is also no //! easy task, and a significant portion of this implementation is managing this //! translation. The basic idea behind this implementation is to issue I/O //! operations preemptively and then translate their completions to a "I'm //! ready" event. //! //! For example, in the case of reading a `TcpSocket`, as soon as a socket is //! connected (or registered after an accept) a read operation is executed. //! While the read is in progress calls to `read` will return `WouldBlock`, and //! once the read is completed we translate the completion notification into a //! `readable` event. Once the internal buffer is drained (e.g. all data from it //! has been read) a read operation is re-issued. //! //! Write operations are a little different from reads, and the current //! implementation is to just schedule a write as soon as `write` is first //! called. While that write operation is in progress all future calls to //! `write` will return `WouldBlock`. Completion of the write then translates to //! a `writable` event. Note that this will probably want to add some layer of //! internal buffering in the future. //! //! ## Buffer Management //! //! As there's lots of I/O operations in flight at any one point in time, //! there's lots of live buffers that need to be juggled around (e.g. this //! implementation's own internal buffers). //! //! Currently all buffers are created for the I/O operation at hand and are then //! discarded when it completes (this is listed as future work below). //! //! ## Callback Management //! //! When the main event loop receives a notification that an I/O operation has //! completed, some work needs to be done to translate that to a set of events //! or perhaps some more I/O needs to be scheduled. For example after a //! `TcpStream` is connected it generates a writable event and also schedules a //! read. //! //! To manage all this the `Selector` uses the `OVERLAPPED` pointer from the //! completion status. The selector assumes that all `OVERLAPPED` pointers are //! actually pointers to the interior of a `selector::Overlapped` which means //! that right after the `OVERLAPPED` itself there's a function pointer. This //! function pointer is given the completion status as well as another callback //! to push events onto the selector. //! //! The callback for each I/O operation doesn't have any environment, so it //! relies on memory layout and unsafe casting to translate an `OVERLAPPED` //! pointer (or in this case a `selector::Overlapped` pointer) to a type of //! `FromRawArc` (see module docs for why this type exists). //! //! ## Thread Safety //! //! Currently all of the I/O primitives make liberal use of `Arc` and `Mutex` //! as an implementation detail. The main reason for this is to ensure that the //! types are `Send` and `Sync`, but the implementations have not been stressed //! in multithreaded situations yet. As a result, there are bound to be //! functional surprises in using these concurrently. //! //! ## Future Work //! //! First up, let's take a look at unimplemented portions of this module: //! //! * The `PollOpt::level()` option is currently entirely unimplemented. //! * Each `EventLoop` currently owns its completion port, but this prevents an //! I/O handle from being added to multiple event loops (something that can be //! done on Unix). Additionally, it hinders event loops moving across threads. //! This should be solved by likely having a global `Selector` which all //! others then communicate with. //! * Although Unix sockets don't exist on Windows, there are named pipes and //! those should likely be bound here in a similar fashion to `TcpStream`. //! //! Next up, there are a few performance improvements and optimizations that can //! still be implemented //! //! * Buffer management right now is pretty bad, they're all just allocated //! right before an I/O operation and discarded right after. There should at //! least be some form of buffering buffers. //! * No calls to `write` are internally buffered before being scheduled, which //! means that writing performance is abysmal compared to Unix. There should //! be some level of buffering of writes probably. use std::io; use std::os::windows::prelude::*; use kernel32; use winapi; mod awakener; #[macro_use] mod selector; mod tcp; mod udp; mod from_raw_arc; mod buffer_pool; pub use self::awakener::Awakener; pub use self::selector::{Events, Selector, Overlapped, Binding}; pub use self::tcp::{TcpStream, TcpListener}; pub use self::udp::UdpSocket; #[derive(Copy, Clone)] enum Family { V4, V6, } unsafe fn cancel(socket: &AsRawSocket, overlapped: &Overlapped) -> io::Result<()> { let handle = socket.as_raw_socket() as winapi::HANDLE; let ret = kernel32::CancelIoEx(handle, overlapped.as_mut_ptr()); if ret == 0 { Err(io::Error::last_os_error()) } else { Ok(()) } } unsafe fn no_notify_on_instant_completion(handle: winapi::HANDLE) -> io::Result<()> { // TODO: move those to winapi const FILE_SKIP_COMPLETION_PORT_ON_SUCCESS: winapi::UCHAR = 1; const FILE_SKIP_SET_EVENT_ON_HANDLE: winapi::UCHAR = 2; let flags = FILE_SKIP_COMPLETION_PORT_ON_SUCCESS | FILE_SKIP_SET_EVENT_ON_HANDLE; let r = kernel32::SetFileCompletionNotificationModes(handle, flags); if r == winapi::TRUE { Ok(()) } else { Err(io::Error::last_os_error()) } } mio-0.6.23/src/sys/windows/selector.rs010064400007650000024000000456231376150724400161150ustar0000000000000000#![allow(deprecated)] use std::{fmt, io}; use std::cell::UnsafeCell; use std::os::windows::prelude::*; use std::sync::{Arc, Mutex}; use std::sync::atomic::{AtomicUsize, Ordering, ATOMIC_USIZE_INIT}; use std::time::Duration; use lazycell::AtomicLazyCell; use winapi::*; use miow; use miow::iocp::{CompletionPort, CompletionStatus}; use event_imp::{Event, Evented, Ready}; use poll::{self, Poll}; use sys::windows::buffer_pool::BufferPool; use {Token, PollOpt}; /// Each Selector has a globally unique(ish) ID associated with it. This ID /// gets tracked by `TcpStream`, `TcpListener`, etc... when they are first /// registered with the `Selector`. If a type that is previously associated with /// a `Selector` attempts to register itself with a different `Selector`, the /// operation will return with an error. This matches windows behavior. static NEXT_ID: AtomicUsize = ATOMIC_USIZE_INIT; /// The guts of the Windows event loop, this is the struct which actually owns /// a completion port. /// /// Internally this is just an `Arc`, and this allows handing out references to /// the internals to I/O handles registered on this selector. This is /// required to schedule I/O operations independently of being inside the event /// loop (e.g. when a call to `write` is seen we're not "in the event loop"). pub struct Selector { inner: Arc, } struct SelectorInner { /// Unique identifier of the `Selector` id: usize, /// The actual completion port that's used to manage all I/O port: CompletionPort, /// A pool of buffers usable by this selector. /// /// Primitives will take buffers from this pool to perform I/O operations, /// and once complete they'll be put back in. buffers: Mutex, } impl Selector { pub fn new() -> io::Result { // offset by 1 to avoid choosing 0 as the id of a selector let id = NEXT_ID.fetch_add(1, Ordering::Relaxed) + 1; CompletionPort::new(0).map(|cp| { Selector { inner: Arc::new(SelectorInner { id: id, port: cp, buffers: Mutex::new(BufferPool::new(256)), }), } }) } pub fn select(&self, events: &mut Events, awakener: Token, timeout: Option) -> io::Result { trace!("select; timeout={:?}", timeout); // Clear out the previous list of I/O events and get some more! events.clear(); trace!("polling IOCP"); let n = match self.inner.port.get_many(&mut events.statuses, timeout) { Ok(statuses) => statuses.len(), Err(ref e) if e.raw_os_error() == Some(WAIT_TIMEOUT as i32) => 0, Err(e) => return Err(e), }; let mut ret = false; for status in events.statuses[..n].iter() { // This should only ever happen from the awakener, and we should // only ever have one awakener right now, so assert as such. if status.overlapped() as usize == 0 { assert_eq!(status.token(), usize::from(awakener)); ret = true; continue; } let callback = unsafe { (*(status.overlapped() as *mut Overlapped)).callback }; trace!("select; -> got overlapped"); callback(status.entry()); } trace!("returning"); Ok(ret) } /// Gets a reference to the underlying `CompletionPort` structure. pub fn port(&self) -> &CompletionPort { &self.inner.port } /// Gets a new reference to this selector, although all underlying data /// structures will refer to the same completion port. pub fn clone_ref(&self) -> Selector { Selector { inner: self.inner.clone() } } /// Return the `Selector`'s identifier pub fn id(&self) -> usize { self.inner.id } } impl SelectorInner { fn identical(&self, other: &SelectorInner) -> bool { (self as *const SelectorInner) == (other as *const SelectorInner) } } // A registration is stored in each I/O object which keeps track of how it is // associated with a `Selector` above. // // Once associated with a `Selector`, a registration can never be un-associated // (due to IOCP requirements). This is actually implemented through the // `poll::Registration` and `poll::SetReadiness` APIs to keep track of all the // level/edge/filtering business. /// A `Binding` is embedded in all I/O objects associated with a `Poll` /// object. /// /// Each registration keeps track of which selector the I/O object is /// associated with, ensuring that implementations of `Evented` can be /// conformant for the various methods on Windows. /// /// If you're working with custom IOCP-enabled objects then you'll want to /// ensure that one of these instances is stored in your object and used in the /// implementation of `Evented`. /// /// For more information about how to use this see the `windows` module /// documentation in this crate. pub struct Binding { selector: AtomicLazyCell>, } impl Binding { /// Creates a new blank binding ready to be inserted into an I/O /// object. /// /// Won't actually do anything until associated with a `Poll` loop. pub fn new() -> Binding { Binding { selector: AtomicLazyCell::new() } } /// Registers a new handle with the `Poll` specified, also assigning the /// `token` specified. /// /// This function is intended to be used as part of `Evented::register` for /// custom IOCP objects. It will add the specified handle to the internal /// IOCP object with the provided `token`. All future events generated by /// the handled provided will be received by the `Poll`'s internal IOCP /// object. /// /// # Unsafety /// /// This function is unsafe as the `Poll` instance has assumptions about /// what the `OVERLAPPED` pointer used for each I/O operation looks like. /// Specifically they must all be instances of the `Overlapped` type in /// this crate. More information about this can be found on the /// `windows` module in this crate. pub unsafe fn register_handle(&self, handle: &AsRawHandle, token: Token, poll: &Poll) -> io::Result<()> { let selector = poll::selector(poll); // Ignore errors, we'll see them on the next line. drop(self.selector.fill(selector.inner.clone())); self.check_same_selector(poll)?; selector.inner.port.add_handle(usize::from(token), handle) } /// Same as `register_handle` but for sockets. pub unsafe fn register_socket(&self, handle: &AsRawSocket, token: Token, poll: &Poll) -> io::Result<()> { let selector = poll::selector(poll); drop(self.selector.fill(selector.inner.clone())); self.check_same_selector(poll)?; selector.inner.port.add_socket(usize::from(token), handle) } /// Reregisters the handle provided from the `Poll` provided. /// /// This is intended to be used as part of `Evented::reregister` but note /// that this function does not currently reregister the provided handle /// with the `poll` specified. IOCP has a special binding for changing the /// token which has not yet been implemented. Instead this function should /// be used to assert that the call to `reregister` happened on the same /// `Poll` that was passed into to `register`. /// /// Eventually, though, the provided `handle` will be re-assigned to have /// the token `token` on the given `poll` assuming that it's been /// previously registered with it. /// /// # Unsafety /// /// This function is unsafe for similar reasons to `register`. That is, /// there may be pending I/O events and such which aren't handled correctly. pub unsafe fn reregister_handle(&self, _handle: &AsRawHandle, _token: Token, poll: &Poll) -> io::Result<()> { self.check_same_selector(poll) } /// Same as `reregister_handle`, but for sockets. pub unsafe fn reregister_socket(&self, _socket: &AsRawSocket, _token: Token, poll: &Poll) -> io::Result<()> { self.check_same_selector(poll) } /// Deregisters the handle provided from the `Poll` provided. /// /// This is intended to be used as part of `Evented::deregister` but note /// that this function does not currently deregister the provided handle /// from the `poll` specified. IOCP has a special binding for that which has /// not yet been implemented. Instead this function should be used to assert /// that the call to `deregister` happened on the same `Poll` that was /// passed into to `register`. /// /// # Unsafety /// /// This function is unsafe for similar reasons to `register`. That is, /// there may be pending I/O events and such which aren't handled correctly. pub unsafe fn deregister_handle(&self, _handle: &AsRawHandle, poll: &Poll) -> io::Result<()> { self.check_same_selector(poll) } /// Same as `deregister_handle`, but for sockets. pub unsafe fn deregister_socket(&self, _socket: &AsRawSocket, poll: &Poll) -> io::Result<()> { self.check_same_selector(poll) } fn check_same_selector(&self, poll: &Poll) -> io::Result<()> { let selector = poll::selector(poll); match self.selector.borrow() { Some(prev) if prev.identical(&selector.inner) => Ok(()), Some(_) | None => Err(other("socket already registered")), } } } impl fmt::Debug for Binding { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("Binding") .finish() } } /// Helper struct used for TCP and UDP which bundles a `binding` with a /// `SetReadiness` handle. pub struct ReadyBinding { binding: Binding, readiness: Option, } impl ReadyBinding { /// Creates a new blank binding ready to be inserted into an I/O object. /// /// Won't actually do anything until associated with an `Selector` loop. pub fn new() -> ReadyBinding { ReadyBinding { binding: Binding::new(), readiness: None, } } /// Returns whether this binding has been associated with a selector /// yet. pub fn registered(&self) -> bool { self.readiness.is_some() } /// Acquires a buffer with at least `size` capacity. /// /// If associated with a selector, this will attempt to pull a buffer from /// that buffer pool. If not associated with a selector, this will allocate /// a fresh buffer. pub fn get_buffer(&self, size: usize) -> Vec { match self.binding.selector.borrow() { Some(i) => i.buffers.lock().unwrap().get(size), None => Vec::with_capacity(size), } } /// Returns a buffer to this binding. /// /// If associated with a selector, this will push the buffer back into the /// selector's pool of buffers. Otherwise this will just drop the buffer. pub fn put_buffer(&self, buf: Vec) { if let Some(i) = self.binding.selector.borrow() { i.buffers.lock().unwrap().put(buf); } } /// Sets the readiness of this I/O object to a particular `set`. /// /// This is later used to fill out and respond to requests to `poll`. Note /// that this is all implemented through the `SetReadiness` structure in the /// `poll` module. pub fn set_readiness(&self, set: Ready) { if let Some(ref i) = self.readiness { trace!("set readiness to {:?}", set); i.set_readiness(set).expect("event loop disappeared?"); } } /// Queries what the current readiness of this I/O object is. /// /// This is what's being used to generate events returned by `poll`. pub fn readiness(&self) -> Ready { match self.readiness { Some(ref i) => i.readiness(), None => Ready::empty(), } } /// Implementation of the `Evented::register` function essentially. /// /// Returns an error if we're already registered with another event loop, /// and otherwise just reassociates ourselves with the event loop to /// possible change tokens. pub fn register_socket(&mut self, socket: &AsRawSocket, poll: &Poll, token: Token, events: Ready, opts: PollOpt, registration: &Mutex>) -> io::Result<()> { trace!("register {:?} {:?}", token, events); unsafe { self.binding.register_socket(socket, token, poll)?; } let (r, s) = poll::new_registration(poll, token, events, opts); self.readiness = Some(s); *registration.lock().unwrap() = Some(r); Ok(()) } /// Implementation of `Evented::reregister` function. pub fn reregister_socket(&mut self, socket: &AsRawSocket, poll: &Poll, token: Token, events: Ready, opts: PollOpt, registration: &Mutex>) -> io::Result<()> { trace!("reregister {:?} {:?}", token, events); unsafe { self.binding.reregister_socket(socket, token, poll)?; } registration.lock().unwrap() .as_mut().unwrap() .reregister(poll, token, events, opts) } /// Implementation of the `Evented::deregister` function. /// /// Doesn't allow registration with another event loop, just shuts down /// readiness notifications and such. pub fn deregister(&mut self, socket: &AsRawSocket, poll: &Poll, registration: &Mutex>) -> io::Result<()> { trace!("deregistering"); unsafe { self.binding.deregister_socket(socket, poll)?; } registration.lock().unwrap() .as_ref().unwrap() .deregister(poll) } } fn other(s: &str) -> io::Error { io::Error::new(io::ErrorKind::Other, s) } #[derive(Debug)] pub struct Events { /// Raw I/O event completions are filled in here by the call to `get_many` /// on the completion port above. These are then processed to run callbacks /// which figure out what to do after the event is done. statuses: Box<[CompletionStatus]>, /// Literal events returned by `get` to the upwards `EventLoop`. This file /// doesn't really modify this (except for the awakener), instead almost all /// events are filled in by the `ReadinessQueue` from the `poll` module. events: Vec, } impl Events { pub fn with_capacity(cap: usize) -> Events { // Note that it's possible for the output `events` to grow beyond the // capacity as it can also include deferred events, but that's certainly // not the end of the world! Events { statuses: vec![CompletionStatus::zero(); cap].into_boxed_slice(), events: Vec::with_capacity(cap), } } pub fn is_empty(&self) -> bool { self.events.is_empty() } pub fn len(&self) -> usize { self.events.len() } pub fn capacity(&self) -> usize { self.events.capacity() } pub fn get(&self, idx: usize) -> Option { self.events.get(idx).map(|e| *e) } pub fn push_event(&mut self, event: Event) { self.events.push(event); } pub fn clear(&mut self) { self.events.truncate(0); } } macro_rules! overlapped2arc { ($e:expr, $t:ty, $($field:ident).+) => ({ let offset = offset_of!($t, $($field).+); debug_assert!(offset < mem::size_of::<$t>()); FromRawArc::from_raw(($e as usize - offset) as *mut $t) }) } macro_rules! offset_of { ($t:ty, $($field:ident).+) => ( &(*(0 as *const $t)).$($field).+ as *const _ as usize ) } // See sys::windows module docs for why this exists. // // The gist of it is that `Selector` assumes that all `OVERLAPPED` pointers are // actually inside one of these structures so it can use the `Callback` stored // right after it. // // We use repr(C) here to ensure that we can assume the overlapped pointer is // at the start of the structure so we can just do a cast. /// A wrapper around an internal instance over `miow::Overlapped` which is in /// turn a wrapper around the Windows type `OVERLAPPED`. /// /// This type is required to be used for all IOCP operations on handles that are /// registered with an event loop. The event loop will receive notifications /// over `OVERLAPPED` pointers that have completed, and it will cast that /// pointer to a pointer to this structure and invoke the associated callback. #[repr(C)] pub struct Overlapped { inner: UnsafeCell, callback: fn(&OVERLAPPED_ENTRY), } impl Overlapped { /// Creates a new `Overlapped` which will invoke the provided `cb` callback /// whenever it's triggered. /// /// The returned `Overlapped` must be used as the `OVERLAPPED` passed to all /// I/O operations that are registered with mio's event loop. When the I/O /// operation associated with an `OVERLAPPED` pointer completes the event /// loop will invoke the function pointer provided by `cb`. pub fn new(cb: fn(&OVERLAPPED_ENTRY)) -> Overlapped { Overlapped { inner: UnsafeCell::new(miow::Overlapped::zero()), callback: cb, } } /// Get the underlying `Overlapped` instance as a raw pointer. /// /// This can be useful when only a shared borrow is held and the overlapped /// pointer needs to be passed down to winapi. pub fn as_mut_ptr(&self) -> *mut OVERLAPPED { unsafe { (*self.inner.get()).raw() } } } impl fmt::Debug for Overlapped { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("Overlapped") .finish() } } // Overlapped's APIs are marked as unsafe Overlapped's APIs are marked as // unsafe as they must be used with caution to ensure thread safety. The // structure itself is safe to send across threads. unsafe impl Send for Overlapped {} unsafe impl Sync for Overlapped {} mio-0.6.23/src/sys/windows/tcp.rs010064400007650000024000000712521376150724400150600ustar0000000000000000use std::fmt; use std::io::{self, Read, ErrorKind}; use std::mem; use std::net::{self, SocketAddr, Shutdown}; use std::os::windows::prelude::*; use std::sync::{Mutex, MutexGuard}; use std::time::Duration; use miow::iocp::CompletionStatus; use miow::net::*; use net2::{TcpBuilder, TcpStreamExt as Net2TcpExt}; use winapi::*; use iovec::IoVec; use {poll, Ready, Poll, PollOpt, Token}; use event::Evented; use sys::windows::from_raw_arc::FromRawArc; use sys::windows::selector::{Overlapped, ReadyBinding}; use sys::windows::Family; pub struct TcpStream { /// Separately stored implementation to ensure that the `Drop` /// implementation on this type is only executed when it's actually dropped /// (many clones of this `imp` are made). imp: StreamImp, registration: Mutex>, } pub struct TcpListener { imp: ListenerImp, registration: Mutex>, } #[derive(Clone)] struct StreamImp { /// A stable address and synchronized access for all internals. This serves /// to ensure that all `Overlapped` pointers are valid for a long period of /// time as well as allowing completion callbacks to have access to the /// internals without having ownership. /// /// Note that the reference count also allows us "loan out" copies to /// completion ports while I/O is running to guarantee that this stays alive /// until the I/O completes. You'll notice a number of calls to /// `mem::forget` below, and these only happen on successful scheduling of /// I/O and are paired with `overlapped2arc!` macro invocations in the /// completion callbacks (to have a decrement match the increment). inner: FromRawArc, } #[derive(Clone)] struct ListenerImp { inner: FromRawArc, } struct StreamIo { inner: Mutex, read: Overlapped, // also used for connect write: Overlapped, socket: net::TcpStream, } struct ListenerIo { inner: Mutex, accept: Overlapped, family: Family, socket: net::TcpListener, } struct StreamInner { iocp: ReadyBinding, deferred_connect: Option, read: State<(), ()>, write: State<(Vec, usize), (Vec, usize)>, /// whether we are instantly notified of success /// (FILE_SKIP_COMPLETION_PORT_ON_SUCCESS, /// without a roundtrip through the event loop) instant_notify: bool, } struct ListenerInner { iocp: ReadyBinding, accept: State, accept_buf: AcceptAddrsBuf, instant_notify: bool, } enum State { Empty, // no I/O operation in progress Pending(T), // an I/O operation is in progress Ready(U), // I/O has finished with this value Error(io::Error), // there was an I/O error } impl TcpStream { fn new(socket: net::TcpStream, deferred_connect: Option) -> TcpStream { TcpStream { registration: Mutex::new(None), imp: StreamImp { inner: FromRawArc::new(StreamIo { read: Overlapped::new(read_done), write: Overlapped::new(write_done), socket: socket, inner: Mutex::new(StreamInner { iocp: ReadyBinding::new(), deferred_connect: deferred_connect, read: State::Empty, write: State::Empty, instant_notify: false, }), }), }, } } pub fn connect(socket: net::TcpStream, addr: &SocketAddr) -> io::Result { socket.set_nonblocking(true)?; Ok(TcpStream::new(socket, Some(*addr))) } pub fn from_stream(stream: net::TcpStream) -> TcpStream { TcpStream::new(stream, None) } pub fn peer_addr(&self) -> io::Result { self.imp.inner.socket.peer_addr() } pub fn local_addr(&self) -> io::Result { self.imp.inner.socket.local_addr() } pub fn try_clone(&self) -> io::Result { self.imp.inner.socket.try_clone().map(|s| TcpStream::new(s, None)) } pub fn shutdown(&self, how: Shutdown) -> io::Result<()> { self.imp.inner.socket.shutdown(how) } pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> { self.imp.inner.socket.set_nodelay(nodelay) } pub fn nodelay(&self) -> io::Result { self.imp.inner.socket.nodelay() } pub fn set_recv_buffer_size(&self, size: usize) -> io::Result<()> { self.imp.inner.socket.set_recv_buffer_size(size) } pub fn recv_buffer_size(&self) -> io::Result { self.imp.inner.socket.recv_buffer_size() } pub fn set_send_buffer_size(&self, size: usize) -> io::Result<()> { self.imp.inner.socket.set_send_buffer_size(size) } pub fn send_buffer_size(&self) -> io::Result { self.imp.inner.socket.send_buffer_size() } pub fn set_keepalive(&self, keepalive: Option) -> io::Result<()> { self.imp.inner.socket.set_keepalive(keepalive) } pub fn keepalive(&self) -> io::Result> { self.imp.inner.socket.keepalive() } pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.imp.inner.socket.set_ttl(ttl) } pub fn ttl(&self) -> io::Result { self.imp.inner.socket.ttl() } pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.imp.inner.socket.set_only_v6(only_v6) } pub fn only_v6(&self) -> io::Result { self.imp.inner.socket.only_v6() } pub fn set_linger(&self, dur: Option) -> io::Result<()> { self.imp.inner.socket.set_linger(dur) } pub fn linger(&self) -> io::Result> { self.imp.inner.socket.linger() } pub fn take_error(&self) -> io::Result> { if let Some(e) = self.imp.inner.socket.take_error()? { return Ok(Some(e)) } // If the syscall didn't return anything then also check to see if we've // squirreled away an error elsewhere for example as part of a connect // operation. // // Typically this is used like so: // // 1. A `connect` is issued // 2. Wait for the socket to be writable // 3. Call `take_error` to see if the connect succeeded. // // Right now the `connect` operation finishes in `read_done` below and // fill will in `State::Error` in the `read` slot if it fails, so we // extract that here. let mut me = self.inner(); match mem::replace(&mut me.read, State::Empty) { State::Error(e) => { self.imp.schedule_read(&mut me); Ok(Some(e)) } other => { me.read = other; Ok(None) } } } fn inner(&self) -> MutexGuard { self.imp.inner() } fn before_read(&self) -> io::Result> { let mut me = self.inner(); match me.read { // Empty == we're not associated yet, and if we're pending then // these are both cases where we return "would block" State::Empty | State::Pending(()) => return Err(io::ErrorKind::WouldBlock.into()), // If we got a delayed error as part of a `read_overlapped` below, // return that here. Also schedule another read in case it was // transient. State::Error(_) => { let e = match mem::replace(&mut me.read, State::Empty) { State::Error(e) => e, _ => panic!(), }; self.imp.schedule_read(&mut me); return Err(e) } // If we're ready for a read then some previous 0-byte read has // completed. In that case the OS's socket buffer has something for // us, so we just keep pulling out bytes while we can in the loop // below. State::Ready(()) => {} } Ok(me) } fn post_register(&self, interest: Ready, me: &mut StreamInner) { if interest.is_readable() { self.imp.schedule_read(me); } // At least with epoll, if a socket is registered with an interest in // writing and it's immediately writable then a writable event is // generated immediately, so do so here. if interest.is_writable() { if let State::Empty = me.write { self.imp.add_readiness(me, Ready::writable()); } } } pub fn read(&self, buf: &mut [u8]) -> io::Result { match IoVec::from_bytes_mut(buf) { Some(vec) => self.readv(&mut [vec]), None => Ok(0), } } pub fn peek(&self, buf: &mut [u8]) -> io::Result { let mut me = self.before_read()?; match (&self.imp.inner.socket).peek(buf) { Ok(n) => Ok(n), Err(e) => { me.read = State::Empty; self.imp.schedule_read(&mut me); Err(e) } } } pub fn readv(&self, bufs: &mut [&mut IoVec]) -> io::Result { let mut me = self.before_read()?; // TODO: Does WSARecv work on a nonblocking sockets? We ideally want to // call that instead of looping over all the buffers and calling // `recv` on each buffer. I'm not sure though if an overlapped // socket in nonblocking mode would work with that use case, // however, so for now we just call `recv`. let mut amt = 0; for buf in bufs { match (&self.imp.inner.socket).read(buf) { // If we did a partial read, then return what we've read so far Ok(n) if n < buf.len() => return Ok(amt + n), // Otherwise filled this buffer entirely, so try to fill the // next one as well. Ok(n) => amt += n, // If we hit an error then things get tricky if we've already // read some data. If the error is "would block" then we just // return the data we've read so far while scheduling another // 0-byte read. // // If we've read data and the error kind is not "would block", // then we stash away the error to get returned later and return // the data that we've read. // // Finally if we haven't actually read any data we just // reschedule a 0-byte read to happen again and then return the // error upwards. Err(e) => { if amt > 0 && e.kind() == io::ErrorKind::WouldBlock { me.read = State::Empty; self.imp.schedule_read(&mut me); return Ok(amt) } else if amt > 0 { me.read = State::Error(e); return Ok(amt) } else { me.read = State::Empty; self.imp.schedule_read(&mut me); return Err(e) } } } } Ok(amt) } pub fn write(&self, buf: &[u8]) -> io::Result { match IoVec::from_bytes(buf) { Some(vec) => self.writev(&[vec]), None => Ok(0), } } pub fn writev(&self, bufs: &[&IoVec]) -> io::Result { let mut me = self.inner(); let me = &mut *me; match mem::replace(&mut me.write, State::Empty) { State::Empty => {} State::Error(e) => return Err(e), other => { me.write = other; return Err(io::ErrorKind::WouldBlock.into()) } } if !me.iocp.registered() { return Err(io::ErrorKind::WouldBlock.into()) } if bufs.is_empty() { return Ok(0) } let len = bufs.iter().map(|b| b.len()).fold(0, |a, b| a + b); let mut intermediate = me.iocp.get_buffer(len); for buf in bufs { intermediate.extend_from_slice(buf); } self.imp.schedule_write(intermediate, 0, me); Ok(len) } pub fn flush(&self) -> io::Result<()> { Ok(()) } } impl StreamImp { fn inner(&self) -> MutexGuard { self.inner.inner.lock().unwrap() } fn schedule_connect(&self, addr: &SocketAddr) -> io::Result<()> { unsafe { trace!("scheduling a connect"); self.inner.socket.connect_overlapped(addr, &[], self.inner.read.as_mut_ptr())?; } // see docs above on StreamImp.inner for rationale on forget mem::forget(self.clone()); Ok(()) } /// Schedule a read to happen on this socket, enqueuing us to receive a /// notification when a read is ready. /// /// Note that this does *not* work with a buffer. When reading a TCP stream /// we actually read into a 0-byte buffer so Windows will send us a /// notification when the socket is otherwise ready for reading. This allows /// us to avoid buffer allocations for in-flight reads. fn schedule_read(&self, me: &mut StreamInner) { match me.read { State::Empty => {} State::Ready(_) | State::Error(_) => { self.add_readiness(me, Ready::readable()); return; } _ => return, } me.iocp.set_readiness(me.iocp.readiness() - Ready::readable()); trace!("scheduling a read"); let res = unsafe { self.inner.socket.read_overlapped(&mut [], self.inner.read.as_mut_ptr()) }; match res { // Note that `Ok(true)` means that this completed immediately and // our socket is readable. This typically means that the caller of // this function (likely `read` above) can try again as an // optimization and return bytes quickly. // // Normally, though, although the read completed immediately // there's still an IOCP completion packet enqueued that we're going // to receive. // // You can configure this behavior (miow) with // SetFileCompletionNotificationModes to indicate that `Ok(true)` // does **not** enqueue a completion packet. (This is the case // for me.instant_notify) // // Note that apparently libuv has scary code to work around bugs in // `WSARecv` for UDP sockets apparently for handles which have had // the `SetFileCompletionNotificationModes` function called on them, // worth looking into! Ok(Some(_)) if me.instant_notify => { me.read = State::Ready(()); self.add_readiness(me, Ready::readable()); } Ok(_) => { // see docs above on StreamImp.inner for rationale on forget me.read = State::Pending(()); mem::forget(self.clone()); } Err(e) => { me.read = State::Error(e); self.add_readiness(me, Ready::readable()); } } } /// Similar to `schedule_read`, except that this issues, well, writes. /// /// This function will continually attempt to write the entire contents of /// the buffer `buf` until they have all been written. The `pos` argument is /// the current offset within the buffer up to which the contents have /// already been written. /// /// A new writable event (e.g. allowing another write) will only happen once /// the buffer has been written completely (or hit an error). fn schedule_write(&self, buf: Vec, mut pos: usize, me: &mut StreamInner) { // About to write, clear any pending level triggered events me.iocp.set_readiness(me.iocp.readiness() - Ready::writable()); loop { trace!("scheduling a write of {} bytes", buf[pos..].len()); let ret = unsafe { self.inner.socket.write_overlapped(&buf[pos..], self.inner.write.as_mut_ptr()) }; match ret { Ok(Some(transferred_bytes)) if me.instant_notify => { trace!("done immediately with {} bytes", transferred_bytes); if transferred_bytes == buf.len() - pos { self.add_readiness(me, Ready::writable()); me.write = State::Empty; break; } pos += transferred_bytes; } Ok(_) => { trace!("scheduled for later"); // see docs above on StreamImp.inner for rationale on forget me.write = State::Pending((buf, pos)); mem::forget(self.clone()); break; } Err(e) => { trace!("write error: {}", e); me.write = State::Error(e); self.add_readiness(me, Ready::writable()); me.iocp.put_buffer(buf); break; } } } } /// Pushes an event for this socket onto the selector its registered for. /// /// When an event is generated on this socket, if it happened after the /// socket was closed then we don't want to actually push the event onto our /// selector as otherwise it's just a spurious notification. fn add_readiness(&self, me: &mut StreamInner, set: Ready) { me.iocp.set_readiness(set | me.iocp.readiness()); } } fn read_done(status: &OVERLAPPED_ENTRY) { let status = CompletionStatus::from_entry(status); let me2 = StreamImp { inner: unsafe { overlapped2arc!(status.overlapped(), StreamIo, read) }, }; let mut me = me2.inner(); match mem::replace(&mut me.read, State::Empty) { State::Pending(()) => { trace!("finished a read: {}", status.bytes_transferred()); assert_eq!(status.bytes_transferred(), 0); me.read = State::Ready(()); return me2.add_readiness(&mut me, Ready::readable()) } s => me.read = s, } // If a read didn't complete, then the connect must have just finished. trace!("finished a connect"); // By guarding with socket.result(), we ensure that a connection // was successfully made before performing operations requiring a // connected socket. match unsafe { me2.inner.socket.result(status.overlapped()) } .and_then(|_| me2.inner.socket.connect_complete()) { Ok(()) => { me2.add_readiness(&mut me, Ready::writable()); me2.schedule_read(&mut me); } Err(e) => { me2.add_readiness(&mut me, Ready::readable() | Ready::writable()); me.read = State::Error(e); } } } fn write_done(status: &OVERLAPPED_ENTRY) { let status = CompletionStatus::from_entry(status); trace!("finished a write {}", status.bytes_transferred()); let me2 = StreamImp { inner: unsafe { overlapped2arc!(status.overlapped(), StreamIo, write) }, }; let mut me = me2.inner(); let (buf, pos) = match mem::replace(&mut me.write, State::Empty) { State::Pending(pair) => pair, _ => unreachable!(), }; let new_pos = pos + (status.bytes_transferred() as usize); if new_pos == buf.len() { me2.add_readiness(&mut me, Ready::writable()); } else { me2.schedule_write(buf, new_pos, &mut me); } } impl Evented for TcpStream { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { let mut me = self.inner(); me.iocp.register_socket(&self.imp.inner.socket, poll, token, interest, opts, &self.registration)?; unsafe { super::no_notify_on_instant_completion(self.imp.inner.socket.as_raw_socket() as HANDLE)?; me.instant_notify = true; } // If we were connected before being registered process that request // here and go along our merry ways. Note that the callback for a // successful connect will worry about generating writable/readable // events and scheduling a new read. if let Some(addr) = me.deferred_connect.take() { return self.imp.schedule_connect(&addr).map(|_| ()) } self.post_register(interest, &mut me); Ok(()) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { let mut me = self.inner(); me.iocp.reregister_socket(&self.imp.inner.socket, poll, token, interest, opts, &self.registration)?; self.post_register(interest, &mut me); Ok(()) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.inner().iocp.deregister(&self.imp.inner.socket, poll, &self.registration) } } impl fmt::Debug for TcpStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("TcpStream") .finish() } } impl Drop for TcpStream { fn drop(&mut self) { // If we're still internally reading, we're no longer interested. Note // though that we don't cancel any writes which may have been issued to // preserve the same semantics as Unix. // // Note that "Empty" here may mean that a connect is pending, so we // cancel even if that happens as well. unsafe { match self.inner().read { State::Pending(_) | State::Empty => { trace!("cancelling active TCP read"); drop(super::cancel(&self.imp.inner.socket, &self.imp.inner.read)); } State::Ready(_) | State::Error(_) => {} } } } } impl TcpListener { pub fn new(socket: net::TcpListener) -> io::Result { let addr = socket.local_addr()?; Ok(TcpListener::new_family(socket, match addr { SocketAddr::V4(..) => Family::V4, SocketAddr::V6(..) => Family::V6, })) } fn new_family(socket: net::TcpListener, family: Family) -> TcpListener { TcpListener { registration: Mutex::new(None), imp: ListenerImp { inner: FromRawArc::new(ListenerIo { accept: Overlapped::new(accept_done), family: family, socket: socket, inner: Mutex::new(ListenerInner { iocp: ReadyBinding::new(), accept: State::Empty, accept_buf: AcceptAddrsBuf::new(), instant_notify: false, }), }), }, } } pub fn accept(&self) -> io::Result<(net::TcpStream, SocketAddr)> { let mut me = self.inner(); let ret = match mem::replace(&mut me.accept, State::Empty) { State::Empty => return Err(io::ErrorKind::WouldBlock.into()), State::Pending(t) => { me.accept = State::Pending(t); return Err(io::ErrorKind::WouldBlock.into()); } State::Ready((s, a)) => Ok((s, a)), State::Error(e) => Err(e), }; self.imp.schedule_accept(&mut me); return ret } pub fn local_addr(&self) -> io::Result { self.imp.inner.socket.local_addr() } pub fn try_clone(&self) -> io::Result { self.imp.inner.socket.try_clone().map(|s| { TcpListener::new_family(s, self.imp.inner.family) }) } #[allow(deprecated)] pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.imp.inner.socket.set_only_v6(only_v6) } #[allow(deprecated)] pub fn only_v6(&self) -> io::Result { self.imp.inner.socket.only_v6() } pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.imp.inner.socket.set_ttl(ttl) } pub fn ttl(&self) -> io::Result { self.imp.inner.socket.ttl() } pub fn take_error(&self) -> io::Result> { self.imp.inner.socket.take_error() } fn inner(&self) -> MutexGuard { self.imp.inner() } } impl ListenerImp { fn inner(&self) -> MutexGuard { self.inner.inner.lock().unwrap() } fn schedule_accept(&self, me: &mut ListenerInner) { match me.accept { State::Empty => {} _ => return } me.iocp.set_readiness(me.iocp.readiness() - Ready::readable()); let res = match self.inner.family { Family::V4 => TcpBuilder::new_v4(), Family::V6 => TcpBuilder::new_v6(), }.and_then(|builder| unsafe { trace!("scheduling an accept"); self.inner.socket.accept_overlapped(&builder, &mut me.accept_buf, self.inner.accept.as_mut_ptr()) }); match res { Ok((socket, _)) => { // see docs above on StreamImp.inner for rationale on forget me.accept = State::Pending(socket); mem::forget(self.clone()); } Err(e) => { me.accept = State::Error(e); self.add_readiness(me, Ready::readable()); } } } // See comments in StreamImp::push fn add_readiness(&self, me: &mut ListenerInner, set: Ready) { me.iocp.set_readiness(set | me.iocp.readiness()); } } fn accept_done(status: &OVERLAPPED_ENTRY) { let status = CompletionStatus::from_entry(status); let me2 = ListenerImp { inner: unsafe { overlapped2arc!(status.overlapped(), ListenerIo, accept) }, }; let mut me = me2.inner(); let socket = match mem::replace(&mut me.accept, State::Empty) { State::Pending(s) => s, _ => unreachable!(), }; trace!("finished an accept"); let result = me2.inner.socket.accept_complete(&socket).and_then(|()| { me.accept_buf.parse(&me2.inner.socket) }).and_then(|buf| { buf.remote().ok_or_else(|| { io::Error::new(ErrorKind::Other, "could not obtain remote address") }) }); me.accept = match result { Ok(remote_addr) => State::Ready((socket, remote_addr)), Err(e) => State::Error(e), }; me2.add_readiness(&mut me, Ready::readable()); } impl Evented for TcpListener { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { let mut me = self.inner(); me.iocp.register_socket(&self.imp.inner.socket, poll, token, interest, opts, &self.registration)?; unsafe { super::no_notify_on_instant_completion(self.imp.inner.socket.as_raw_socket() as HANDLE)?; me.instant_notify = true; } self.imp.schedule_accept(&mut me); Ok(()) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { let mut me = self.inner(); me.iocp.reregister_socket(&self.imp.inner.socket, poll, token, interest, opts, &self.registration)?; self.imp.schedule_accept(&mut me); Ok(()) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.inner().iocp.deregister(&self.imp.inner.socket, poll, &self.registration) } } impl fmt::Debug for TcpListener { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("TcpListener") .finish() } } impl Drop for TcpListener { fn drop(&mut self) { // If we're still internally reading, we're no longer interested. unsafe { match self.inner().accept { State::Pending(_) => { trace!("cancelling active TCP accept"); drop(super::cancel(&self.imp.inner.socket, &self.imp.inner.accept)); } State::Empty | State::Ready(_) | State::Error(_) => {} } } } } mio-0.6.23/src/sys/windows/udp.rs010064400007650000024000000322471376150724400150630ustar0000000000000000//! UDP for IOCP //! //! Note that most of this module is quite similar to the TCP module, so if //! something seems odd you may also want to try the docs over there. use std::fmt; use std::io::prelude::*; use std::io; use std::mem; use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr}; use std::sync::{Mutex, MutexGuard}; #[allow(unused_imports)] use net2::{UdpBuilder, UdpSocketExt}; use winapi::*; use miow::iocp::CompletionStatus; use miow::net::SocketAddrBuf; use miow::net::UdpSocketExt as MiowUdpSocketExt; use {poll, Ready, Poll, PollOpt, Token}; use event::Evented; use sys::windows::from_raw_arc::FromRawArc; use sys::windows::selector::{Overlapped, ReadyBinding}; pub struct UdpSocket { imp: Imp, registration: Mutex>, } #[derive(Clone)] struct Imp { inner: FromRawArc, } struct Io { read: Overlapped, write: Overlapped, socket: net::UdpSocket, inner: Mutex, } struct Inner { iocp: ReadyBinding, read: State, Vec>, write: State, (Vec, usize)>, read_buf: SocketAddrBuf, } enum State { Empty, Pending(T), Ready(U), Error(io::Error), } impl UdpSocket { pub fn new(socket: net::UdpSocket) -> io::Result { Ok(UdpSocket { registration: Mutex::new(None), imp: Imp { inner: FromRawArc::new(Io { read: Overlapped::new(recv_done), write: Overlapped::new(send_done), socket: socket, inner: Mutex::new(Inner { iocp: ReadyBinding::new(), read: State::Empty, write: State::Empty, read_buf: SocketAddrBuf::new(), }), }), }, }) } pub fn local_addr(&self) -> io::Result { self.imp.inner.socket.local_addr() } pub fn try_clone(&self) -> io::Result { self.imp.inner.socket.try_clone().and_then(UdpSocket::new) } /// Note that unlike `TcpStream::write` this function will not attempt to /// continue writing `buf` until its entirely written. /// /// TODO: This... may be wrong in the long run. We're reporting that we /// successfully wrote all of the bytes in `buf` but it's possible /// that we don't actually end up writing all of them! pub fn send_to(&self, buf: &[u8], target: &SocketAddr) -> io::Result { let mut me = self.inner(); let me = &mut *me; match me.write { State::Empty => {} _ => return Err(io::ErrorKind::WouldBlock.into()), } if !me.iocp.registered() { return Err(io::ErrorKind::WouldBlock.into()) } let interest = me.iocp.readiness(); me.iocp.set_readiness(interest - Ready::writable()); let mut owned_buf = me.iocp.get_buffer(64 * 1024); let amt = owned_buf.write(buf)?; unsafe { trace!("scheduling a send"); self.imp.inner.socket.send_to_overlapped(&owned_buf, target, self.imp.inner.write.as_mut_ptr()) }?; me.write = State::Pending(owned_buf); mem::forget(self.imp.clone()); Ok(amt) } /// Note that unlike `TcpStream::write` this function will not attempt to /// continue writing `buf` until its entirely written. /// /// TODO: This... may be wrong in the long run. We're reporting that we /// successfully wrote all of the bytes in `buf` but it's possible /// that we don't actually end up writing all of them! pub fn send(&self, buf: &[u8]) -> io::Result { let mut me = self.inner(); let me = &mut *me; match me.write { State::Empty => {} _ => return Err(io::ErrorKind::WouldBlock.into()), } if !me.iocp.registered() { return Err(io::ErrorKind::WouldBlock.into()) } let interest = me.iocp.readiness(); me.iocp.set_readiness(interest - Ready::writable()); let mut owned_buf = me.iocp.get_buffer(64 * 1024); let amt = owned_buf.write(buf)?; unsafe { trace!("scheduling a send"); self.imp.inner.socket.send_overlapped(&owned_buf, self.imp.inner.write.as_mut_ptr()) }?; me.write = State::Pending(owned_buf); mem::forget(self.imp.clone()); Ok(amt) } pub fn recv_from(&self, mut buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { let mut me = self.inner(); match mem::replace(&mut me.read, State::Empty) { State::Empty => Err(io::ErrorKind::WouldBlock.into()), State::Pending(b) => { me.read = State::Pending(b); Err(io::ErrorKind::WouldBlock.into()) } State::Ready(data) => { // If we weren't provided enough space to receive the message // then don't actually read any data, just return an error. if buf.len() < data.len() { me.read = State::Ready(data); Err(io::Error::from_raw_os_error(WSAEMSGSIZE as i32)) } else { let r = if let Some(addr) = me.read_buf.to_socket_addr() { buf.write(&data).unwrap(); Ok((data.len(), addr)) } else { Err(io::Error::new(io::ErrorKind::Other, "failed to parse socket address")) }; me.iocp.put_buffer(data); self.imp.schedule_read_from(&mut me); r } } State::Error(e) => { self.imp.schedule_read_from(&mut me); Err(e) } } } pub fn recv(&self, buf: &mut [u8]) -> io::Result { //Since recv_from can be used on connected sockets just call it and drop the address. self.recv_from(buf).map(|(size,_)| size) } pub fn connect(&self, addr: SocketAddr) -> io::Result<()> { self.imp.inner.socket.connect(addr) } pub fn broadcast(&self) -> io::Result { self.imp.inner.socket.broadcast() } pub fn set_broadcast(&self, on: bool) -> io::Result<()> { self.imp.inner.socket.set_broadcast(on) } pub fn multicast_loop_v4(&self) -> io::Result { self.imp.inner.socket.multicast_loop_v4() } pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> { self.imp.inner.socket.set_multicast_loop_v4(on) } pub fn multicast_ttl_v4(&self) -> io::Result { self.imp.inner.socket.multicast_ttl_v4() } pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> { self.imp.inner.socket.set_multicast_ttl_v4(ttl) } pub fn multicast_loop_v6(&self) -> io::Result { self.imp.inner.socket.multicast_loop_v6() } pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> { self.imp.inner.socket.set_multicast_loop_v6(on) } pub fn ttl(&self) -> io::Result { self.imp.inner.socket.ttl() } pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.imp.inner.socket.set_ttl(ttl) } pub fn join_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.imp.inner.socket.join_multicast_v4(multiaddr, interface) } pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.imp.inner.socket.join_multicast_v6(multiaddr, interface) } pub fn leave_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.imp.inner.socket.leave_multicast_v4(multiaddr, interface) } pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.imp.inner.socket.leave_multicast_v6(multiaddr, interface) } pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.imp.inner.socket.set_only_v6(only_v6) } pub fn only_v6(&self) -> io::Result { self.imp.inner.socket.only_v6() } pub fn take_error(&self) -> io::Result> { self.imp.inner.socket.take_error() } fn inner(&self) -> MutexGuard { self.imp.inner() } fn post_register(&self, interest: Ready, me: &mut Inner) { if interest.is_readable() { //We use recv_from here since it is well specified for both //connected and non-connected sockets and we can discard the address //when calling recv(). self.imp.schedule_read_from(me); } // See comments in TcpSocket::post_register for what's going on here if interest.is_writable() { if let State::Empty = me.write { self.imp.add_readiness(me, Ready::writable()); } } } } impl Imp { fn inner(&self) -> MutexGuard { self.inner.inner.lock().unwrap() } fn schedule_read_from(&self, me: &mut Inner) { match me.read { State::Empty => {} _ => return, } let interest = me.iocp.readiness(); me.iocp.set_readiness(interest - Ready::readable()); let mut buf = me.iocp.get_buffer(64 * 1024); let res = unsafe { trace!("scheduling a read"); let cap = buf.capacity(); buf.set_len(cap); self.inner.socket.recv_from_overlapped(&mut buf, &mut me.read_buf, self.inner.read.as_mut_ptr()) }; match res { Ok(_) => { me.read = State::Pending(buf); mem::forget(self.clone()); } Err(e) => { me.read = State::Error(e); self.add_readiness(me, Ready::readable()); me.iocp.put_buffer(buf); } } } // See comments in tcp::StreamImp::push fn add_readiness(&self, me: &Inner, set: Ready) { me.iocp.set_readiness(set | me.iocp.readiness()); } } impl Evented for UdpSocket { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { let mut me = self.inner(); me.iocp.register_socket(&self.imp.inner.socket, poll, token, interest, opts, &self.registration)?; self.post_register(interest, &mut me); Ok(()) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { let mut me = self.inner(); me.iocp.reregister_socket(&self.imp.inner.socket, poll, token, interest, opts, &self.registration)?; self.post_register(interest, &mut me); Ok(()) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.inner().iocp.deregister(&self.imp.inner.socket, poll, &self.registration) } } impl fmt::Debug for UdpSocket { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("UdpSocket") .finish() } } impl Drop for UdpSocket { fn drop(&mut self) { let inner = self.inner(); // If we're still internally reading, we're no longer interested. Note // though that we don't cancel any writes which may have been issued to // preserve the same semantics as Unix. unsafe { match inner.read { State::Pending(_) => { drop(super::cancel(&self.imp.inner.socket, &self.imp.inner.read)); } State::Empty | State::Ready(_) | State::Error(_) => {} } } } } fn send_done(status: &OVERLAPPED_ENTRY) { let status = CompletionStatus::from_entry(status); trace!("finished a send {}", status.bytes_transferred()); let me2 = Imp { inner: unsafe { overlapped2arc!(status.overlapped(), Io, write) }, }; let mut me = me2.inner(); me.write = State::Empty; me2.add_readiness(&mut me, Ready::writable()); } fn recv_done(status: &OVERLAPPED_ENTRY) { let status = CompletionStatus::from_entry(status); trace!("finished a recv {}", status.bytes_transferred()); let me2 = Imp { inner: unsafe { overlapped2arc!(status.overlapped(), Io, read) }, }; let mut me = me2.inner(); let mut buf = match mem::replace(&mut me.read, State::Empty) { State::Pending(buf) => buf, _ => unreachable!(), }; unsafe { buf.set_len(status.bytes_transferred() as usize); } me.read = State::Ready(buf); me2.add_readiness(&mut me, Ready::readable()); } mio-0.6.23/src/timer.rs010064400007650000024000000367151376150724400131070ustar0000000000000000//! Timer optimized for I/O related operations #![allow(deprecated, missing_debug_implementations)] use {convert, io, Ready, Poll, PollOpt, Registration, SetReadiness, Token}; use event::Evented; use lazycell::LazyCell; use slab::Slab; use std::{cmp, error, fmt, u64, usize, iter, thread}; use std::sync::Arc; use std::sync::atomic::{AtomicUsize, Ordering}; use std::time::{Duration, Instant}; use self::TimerErrorKind::TimerOverflow; pub struct Timer { // Size of each tick in milliseconds tick_ms: u64, // Slab of timeout entries entries: Slab>, // Timeout wheel. Each tick, the timer will look at the next slot for // timeouts that match the current tick. wheel: Vec, // Tick 0's time instant start: Instant, // The current tick tick: Tick, // The next entry to possibly timeout next: Token, // Masks the target tick to get the slot mask: u64, // Set on registration with Poll inner: LazyCell, } pub struct Builder { // Approximate duration of each tick tick: Duration, // Number of slots in the timer wheel num_slots: usize, // Max number of timeouts that can be in flight at a given time. capacity: usize, } #[derive(Clone, Debug)] pub struct Timeout { // Reference into the timer entry slab token: Token, // Tick that it should match up with tick: u64, } struct Inner { registration: Registration, set_readiness: SetReadiness, wakeup_state: WakeupState, wakeup_thread: thread::JoinHandle<()>, } impl Drop for Inner { fn drop(&mut self) { // 1. Set wakeup state to TERMINATE_THREAD (https://github.com/carllerche/mio/blob/master/src/timer.rs#L451) self.wakeup_state.store(TERMINATE_THREAD, Ordering::Release); // 2. Wake him up self.wakeup_thread.thread().unpark(); } } #[derive(Copy, Clone, Debug)] struct WheelEntry { next_tick: Tick, head: Token, } // Doubly linked list of timer entries. Allows for efficient insertion / // removal of timeouts. struct Entry { state: T, links: EntryLinks, } #[derive(Copy, Clone)] struct EntryLinks { tick: Tick, prev: Token, next: Token } type Tick = u64; const TICK_MAX: Tick = u64::MAX; // Manages communication with wakeup thread type WakeupState = Arc; pub type Result = ::std::result::Result; // TODO: remove pub type TimerResult = Result; /// Deprecated and unused. #[derive(Debug)] pub struct TimerError; /// Deprecated and unused. #[derive(Debug)] pub enum TimerErrorKind { TimerOverflow, } // TODO: Remove pub type OldTimerResult = Result; const TERMINATE_THREAD: usize = 0; const EMPTY: Token = Token(usize::MAX); impl Builder { pub fn tick_duration(mut self, duration: Duration) -> Builder { self.tick = duration; self } pub fn num_slots(mut self, num_slots: usize) -> Builder { self.num_slots = num_slots; self } pub fn capacity(mut self, capacity: usize) -> Builder { self.capacity = capacity; self } pub fn build(self) -> Timer { Timer::new(convert::millis(self.tick), self.num_slots, self.capacity, Instant::now()) } } impl Default for Builder { fn default() -> Builder { Builder { tick: Duration::from_millis(100), num_slots: 256, capacity: 65_536, } } } impl Timer { fn new(tick_ms: u64, num_slots: usize, capacity: usize, start: Instant) -> Timer { let num_slots = num_slots.next_power_of_two(); let capacity = capacity.next_power_of_two(); let mask = (num_slots as u64) - 1; let wheel = iter::repeat(WheelEntry { next_tick: TICK_MAX, head: EMPTY }) .take(num_slots).collect(); Timer { tick_ms, entries: Slab::with_capacity(capacity), wheel, start, tick: 0, next: EMPTY, mask, inner: LazyCell::new(), } } pub fn set_timeout(&mut self, delay_from_now: Duration, state: T) -> Result { let delay_from_start = self.start.elapsed() + delay_from_now; self.set_timeout_at(delay_from_start, state) } fn set_timeout_at(&mut self, delay_from_start: Duration, state: T) -> Result { let mut tick = duration_to_tick(delay_from_start, self.tick_ms); trace!("setting timeout; delay={:?}; tick={:?}; current-tick={:?}", delay_from_start, tick, self.tick); // Always target at least 1 tick in the future if tick <= self.tick { tick = self.tick + 1; } self.insert(tick, state) } fn insert(&mut self, tick: Tick, state: T) -> Result { // Get the slot for the requested tick let slot = (tick & self.mask) as usize; let curr = self.wheel[slot]; // Insert the new entry let entry = Entry::new(state, tick, curr.head); let token = Token(self.entries.insert(entry)); if curr.head != EMPTY { // If there was a previous entry, set its prev pointer to the new // entry self.entries[curr.head.into()].links.prev = token; } // Update the head slot self.wheel[slot] = WheelEntry { next_tick: cmp::min(tick, curr.next_tick), head: token, }; self.schedule_readiness(tick); trace!("inserted timeout; slot={}; token={:?}", slot, token); // Return the new timeout Ok(Timeout { token, tick }) } pub fn cancel_timeout(&mut self, timeout: &Timeout) -> Option { let links = match self.entries.get(timeout.token.into()) { Some(e) => e.links, None => return None }; // Sanity check if links.tick != timeout.tick { return None; } self.unlink(&links, timeout.token); Some(self.entries.remove(timeout.token.into()).state) } pub fn poll(&mut self) -> Option { let target_tick = current_tick(self.start, self.tick_ms); self.poll_to(target_tick) } fn poll_to(&mut self, mut target_tick: Tick) -> Option { trace!("tick_to; target_tick={}; current_tick={}", target_tick, self.tick); if target_tick < self.tick { target_tick = self.tick; } while self.tick <= target_tick { let curr = self.next; trace!("ticking; curr={:?}", curr); if curr == EMPTY { self.tick += 1; let slot = self.slot_for(self.tick); self.next = self.wheel[slot].head; // Handle the case when a slot has a single timeout which gets // canceled before the timeout expires. In this case, the // slot's head is EMPTY but there is a value for next_tick. Not // resetting next_tick here causes the timer to get stuck in a // loop. if self.next == EMPTY { self.wheel[slot].next_tick = TICK_MAX; } } else { let slot = self.slot_for(self.tick); if curr == self.wheel[slot].head { self.wheel[slot].next_tick = TICK_MAX; } let links = self.entries[curr.into()].links; if links.tick <= self.tick { trace!("triggering; token={:?}", curr); // Unlink will also advance self.next self.unlink(&links, curr); // Remove and return the token return Some(self.entries.remove(curr.into()).state); } else { let next_tick = self.wheel[slot].next_tick; self.wheel[slot].next_tick = cmp::min(next_tick, links.tick); self.next = links.next; } } } // No more timeouts to poll if let Some(inner) = self.inner.borrow() { trace!("unsetting readiness"); let _ = inner.set_readiness.set_readiness(Ready::empty()); if let Some(tick) = self.next_tick() { self.schedule_readiness(tick); } } None } fn unlink(&mut self, links: &EntryLinks, token: Token) { trace!("unlinking timeout; slot={}; token={:?}", self.slot_for(links.tick), token); if links.prev == EMPTY { let slot = self.slot_for(links.tick); self.wheel[slot].head = links.next; } else { self.entries[links.prev.into()].links.next = links.next; } if links.next != EMPTY { self.entries[links.next.into()].links.prev = links.prev; if token == self.next { self.next = links.next; } } else if token == self.next { self.next = EMPTY; } } fn schedule_readiness(&self, tick: Tick) { if let Some(inner) = self.inner.borrow() { // Coordinate setting readiness w/ the wakeup thread let mut curr = inner.wakeup_state.load(Ordering::Acquire); loop { if curr as Tick <= tick { // Nothing to do, wakeup is already scheduled return; } // Attempt to move the wakeup time forward trace!("advancing the wakeup time; target={}; curr={}", tick, curr); let actual = inner.wakeup_state.compare_and_swap(curr, tick as usize, Ordering::Release); if actual == curr { // Signal to the wakeup thread that the wakeup time has // been changed. trace!("unparking wakeup thread"); inner.wakeup_thread.thread().unpark(); return; } curr = actual; } } } // Next tick containing a timeout fn next_tick(&self) -> Option { if self.next != EMPTY { let slot = self.slot_for(self.entries[self.next.into()].links.tick); if self.wheel[slot].next_tick == self.tick { // There is data ready right now return Some(self.tick); } } self.wheel.iter().map(|e| e.next_tick).min() } fn slot_for(&self, tick: Tick) -> usize { (self.mask & tick) as usize } } impl Default for Timer { fn default() -> Timer { Builder::default().build() } } impl Evented for Timer { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { if self.inner.borrow().is_some() { return Err(io::Error::new(io::ErrorKind::Other, "timer already registered")); } let (registration, set_readiness) = Registration::new(poll, token, interest, opts); let wakeup_state = Arc::new(AtomicUsize::new(usize::MAX)); let thread_handle = spawn_wakeup_thread( wakeup_state.clone(), set_readiness.clone(), self.start, self.tick_ms); self.inner.fill(Inner { registration, set_readiness, wakeup_state, wakeup_thread: thread_handle, }).expect("timer already registered"); if let Some(next_tick) = self.next_tick() { self.schedule_readiness(next_tick); } Ok(()) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { match self.inner.borrow() { Some(inner) => inner.registration.update(poll, token, interest, opts), None => Err(io::Error::new(io::ErrorKind::Other, "receiver not registered")), } } fn deregister(&self, poll: &Poll) -> io::Result<()> { match self.inner.borrow() { Some(inner) => inner.registration.deregister(poll), None => Err(io::Error::new(io::ErrorKind::Other, "receiver not registered")), } } } impl fmt::Debug for Inner { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_struct("Inner") .field("registration", &self.registration) .field("wakeup_state", &self.wakeup_state.load(Ordering::Relaxed)) .finish() } } fn spawn_wakeup_thread(state: WakeupState, set_readiness: SetReadiness, start: Instant, tick_ms: u64) -> thread::JoinHandle<()> { thread::spawn(move || { let mut sleep_until_tick = state.load(Ordering::Acquire) as Tick; loop { if sleep_until_tick == TERMINATE_THREAD as Tick { return; } let now_tick = current_tick(start, tick_ms); trace!("wakeup thread: sleep_until_tick={:?}; now_tick={:?}", sleep_until_tick, now_tick); if now_tick < sleep_until_tick { // Calling park_timeout with u64::MAX leads to undefined // behavior in pthread, causing the park to return immediately // and causing the thread to tightly spin. Instead of u64::MAX // on large values, simply use a blocking park. match tick_ms.checked_mul(sleep_until_tick - now_tick) { Some(sleep_duration) => { trace!("sleeping; tick_ms={}; now_tick={}; sleep_until_tick={}; duration={:?}", tick_ms, now_tick, sleep_until_tick, sleep_duration); thread::park_timeout(Duration::from_millis(sleep_duration)); } None => { trace!("sleeping; tick_ms={}; now_tick={}; blocking sleep", tick_ms, now_tick); thread::park(); } } sleep_until_tick = state.load(Ordering::Acquire) as Tick; } else { let actual = state.compare_and_swap(sleep_until_tick as usize, usize::MAX, Ordering::AcqRel) as Tick; if actual == sleep_until_tick { trace!("setting readiness from wakeup thread"); let _ = set_readiness.set_readiness(Ready::readable()); sleep_until_tick = usize::MAX as Tick; } else { sleep_until_tick = actual as Tick; } } } }) } fn duration_to_tick(elapsed: Duration, tick_ms: u64) -> Tick { // Calculate tick rounding up to the closest one let elapsed_ms = convert::millis(elapsed); elapsed_ms.saturating_add(tick_ms / 2) / tick_ms } fn current_tick(start: Instant, tick_ms: u64) -> Tick { duration_to_tick(start.elapsed(), tick_ms) } impl Entry { fn new(state: T, tick: u64, next: Token) -> Entry { Entry { state, links: EntryLinks { tick, prev: EMPTY, next, }, } } } impl fmt::Display for TimerError { fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result { // `TimerError` will never be constructed. unreachable!(); } } impl error::Error for TimerError { fn description(&self) -> &str { // `TimerError` will never be constructed. unreachable!(); } } impl fmt::Display for TimerErrorKind { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { match *self { TimerOverflow => write!(fmt, "TimerOverflow"), } } } mio-0.6.23/src/token.rs010064400007650000024000000122061376150724400130740ustar0000000000000000/// Associates readiness notifications with [`Evented`] handles. /// /// `Token` is a wrapper around `usize` and is used as an argument to /// [`Poll::register`] and [`Poll::reregister`]. /// /// See [`Poll`] for more documentation on polling. /// /// # Example /// /// Using `Token` to track which socket generated the notification. In this /// example, `HashMap` is used, but usually something like [`slab`] is better. /// /// ``` /// # use std::error::Error; /// # fn try_main() -> Result<(), Box> { /// use mio::{Events, Ready, Poll, PollOpt, Token}; /// use mio::net::TcpListener; /// /// use std::thread; /// use std::io::{self, Read}; /// use std::collections::HashMap; /// /// // After this number of sockets is accepted, the server will shutdown. /// const MAX_SOCKETS: usize = 32; /// /// // Pick a token that will not be used by any other socket and use that one /// // for the listener. /// const LISTENER: Token = Token(1024); /// /// // Used to store the sockets. /// let mut sockets = HashMap::new(); /// /// // This is used to generate a unique token for a socket /// let mut next_socket_index = 0; /// /// // The `Poll` instance /// let poll = Poll::new()?; /// /// // Tcp listener /// let listener = TcpListener::bind(&"127.0.0.1:0".parse()?)?; /// /// // Register the listener /// poll.register(&listener, /// LISTENER, /// Ready::readable(), /// PollOpt::edge())?; /// /// // Spawn a thread that will connect a bunch of sockets then close them /// let addr = listener.local_addr()?; /// thread::spawn(move || { /// use std::net::TcpStream; /// /// // +1 here is to connect an extra socket to signal the socket to close /// for _ in 0..(MAX_SOCKETS+1) { /// // Connect then drop the socket /// let _ = TcpStream::connect(&addr).unwrap(); /// } /// }); /// /// // Event storage /// let mut events = Events::with_capacity(1024); /// /// // Read buffer, this will never actually get filled /// let mut buf = [0; 256]; /// /// // The main event loop /// loop { /// // Wait for events /// poll.poll(&mut events, None)?; /// /// for event in &events { /// match event.token() { /// LISTENER => { /// // Perform operations in a loop until `WouldBlock` is /// // encountered. /// loop { /// match listener.accept() { /// Ok((socket, _)) => { /// // Shutdown the server /// if next_socket_index == MAX_SOCKETS { /// return Ok(()); /// } /// /// // Get the token for the socket /// let token = Token(next_socket_index); /// next_socket_index += 1; /// /// // Register the new socket w/ poll /// poll.register(&socket, /// token, /// Ready::readable(), /// PollOpt::edge())?; /// /// // Store the socket /// sockets.insert(token, socket); /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// // Socket is not ready anymore, stop accepting /// break; /// } /// e => panic!("err={:?}", e), // Unexpected error /// } /// } /// } /// token => { /// // Always operate in a loop /// loop { /// match sockets.get_mut(&token).unwrap().read(&mut buf) { /// Ok(0) => { /// // Socket is closed, remove it from the map /// sockets.remove(&token); /// break; /// } /// // Data is not actually sent in this example /// Ok(_) => unreachable!(), /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// // Socket is not ready anymore, stop reading /// break; /// } /// e => panic!("err={:?}", e), // Unexpected error /// } /// } /// } /// } /// } /// } /// # Ok(()) /// # } /// # /// # fn main() { /// # try_main().unwrap(); /// # } /// ``` /// /// [`Evented`]: event/trait.Evented.html /// [`Poll`]: struct.Poll.html /// [`Poll::register`]: struct.Poll.html#method.register /// [`Poll::reregister`]: struct.Poll.html#method.reregister /// [`slab`]: https://crates.io/crates/slab #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct Token(pub usize); impl From for Token { fn from(val: usize) -> Token { Token(val) } } impl From for usize { fn from(val: Token) -> usize { val.0 } } mio-0.6.23/src/udp.rs010064400007650000024000000274121376150724400125510ustar0000000000000000//! Primitives for working with UDP //! //! The types provided in this module are non-blocking by default and are //! designed to be portable across all supported Mio platforms. As long as the //! [portability guidelines] are followed, the behavior should be identical no //! matter the target platform. //! //! [portability guidelines]: ../struct.Poll.html#portability #![allow(deprecated)] use {sys, Ready, Poll, PollOpt, Token}; use io::{self, MapNonBlock}; use event::Evented; use poll::SelectorId; use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr}; /// A User Datagram Protocol socket. /// /// This is an implementation of a bound UDP socket. This supports both IPv4 and /// IPv6 addresses, and there is no corresponding notion of a server because UDP /// is a datagram protocol. #[derive(Debug)] pub struct UdpSocket { sys: sys::UdpSocket, selector_id: SelectorId, } impl UdpSocket { /// Creates a UDP socket from the given address. pub fn bind(addr: &SocketAddr) -> io::Result { let socket = net::UdpSocket::bind(addr)?; UdpSocket::from_socket(socket) } /// Creates a new mio-wrapped socket from an underlying and bound std /// socket. /// /// This function requires that `socket` has previously been bound to an /// address to work correctly, and returns an I/O object which can be used /// with mio to send/receive UDP messages. /// /// This can be used in conjunction with net2's `UdpBuilder` interface to /// configure a socket before it's handed off to mio, such as setting /// options like `reuse_address` or binding to multiple addresses. pub fn from_socket(socket: net::UdpSocket) -> io::Result { Ok(UdpSocket { sys: sys::UdpSocket::new(socket)?, selector_id: SelectorId::new(), }) } /// Returns the socket address that this socket was created from. pub fn local_addr(&self) -> io::Result { self.sys.local_addr() } /// Creates a new independently owned handle to the underlying socket. /// /// The returned `UdpSocket` is a reference to the same socket that this /// object references. Both handles will read and write the same port, and /// options set on one socket will be propagated to the other. pub fn try_clone(&self) -> io::Result { self.sys.try_clone() .map(|s| { UdpSocket { sys: s, selector_id: self.selector_id.clone(), } }) } /// Sends data on the socket to the given address. On success, returns the /// number of bytes written. /// /// Address type can be any implementor of `ToSocketAddrs` trait. See its /// documentation for concrete examples. pub fn send_to(&self, buf: &[u8], target: &SocketAddr) -> io::Result> { self.sys.send_to(buf, target).map_non_block() } /// Receives data from the socket and stores data in the supplied buffer `buf`. On success, /// returns the number of bytes read and the address from whence the data came. /// /// The function must be called with valid byte array `buf` of sufficient size to /// hold the message bytes. If a message is too long to fit in the supplied buffer, /// excess bytes may be discarded. /// /// The function does not read from `buf`, but is overwriting previous content of `buf`. /// /// Assuming the function has read `n` bytes, slicing `&buf[..n]` provides /// efficient access with iterators and boundary checks. pub fn recv_from(&self, buf: &mut [u8]) -> io::Result> { self.sys.recv_from(buf).map_non_block() } /// Sends data on the socket to the address previously bound via connect(). On success, /// returns the number of bytes written. pub fn send(&self, buf: &[u8]) -> io::Result> { self.sys.send(buf).map_non_block() } /// Receives data from the socket previously bound with connect() and stores data in /// the supplied buffer `buf`. On success, returns the number of bytes read. /// /// The function must be called with valid byte array `buf` of sufficient size to /// hold the message bytes. If a message is too long to fit in the supplied buffer, /// excess bytes may be discarded. /// /// The function does not read from `buf`, but is overwriting previous content of `buf`. /// /// Assuming the function has read `n` bytes, slicing `&buf[..n]` provides /// efficient access with iterators and boundary checks. pub fn recv(&self, buf: &mut [u8]) -> io::Result> { self.sys.recv(buf).map_non_block() } /// Connects the UDP socket setting the default destination for `send()` /// and limiting packets that are read via `recv` from the address specified /// in `addr`. pub fn connect(&self, addr: SocketAddr) -> io::Result<()> { self.sys.connect(addr) } /// Gets the value of the `SO_BROADCAST` option for this socket. /// /// For more information about this option, see /// [`set_broadcast`][link]. /// /// [link]: #method.set_broadcast pub fn broadcast(&self) -> io::Result { self.sys.broadcast() } /// Sets the value of the `SO_BROADCAST` option for this socket. /// /// When enabled, this socket is allowed to send packets to a broadcast /// address. pub fn set_broadcast(&self, on: bool) -> io::Result<()> { self.sys.set_broadcast(on) } /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket. /// /// For more information about this option, see /// [`set_multicast_loop_v4`][link]. /// /// [link]: #method.set_multicast_loop_v4 pub fn multicast_loop_v4(&self) -> io::Result { self.sys.multicast_loop_v4() } /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket. /// /// If enabled, multicast packets will be looped back to the local socket. /// Note that this may not have any affect on IPv6 sockets. pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> { self.sys.set_multicast_loop_v4(on) } /// Gets the value of the `IP_MULTICAST_TTL` option for this socket. /// /// For more information about this option, see /// [`set_multicast_ttl_v4`][link]. /// /// [link]: #method.set_multicast_ttl_v4 pub fn multicast_ttl_v4(&self) -> io::Result { self.sys.multicast_ttl_v4() } /// Sets the value of the `IP_MULTICAST_TTL` option for this socket. /// /// Indicates the time-to-live value of outgoing multicast packets for /// this socket. The default value is 1 which means that multicast packets /// don't leave the local network unless explicitly requested. /// /// Note that this may not have any affect on IPv6 sockets. pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> { self.sys.set_multicast_ttl_v4(ttl) } /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket. /// /// For more information about this option, see /// [`set_multicast_loop_v6`][link]. /// /// [link]: #method.set_multicast_loop_v6 pub fn multicast_loop_v6(&self) -> io::Result { self.sys.multicast_loop_v6() } /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket. /// /// Controls whether this socket sees the multicast packets it sends itself. /// Note that this may not have any affect on IPv4 sockets. pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> { self.sys.set_multicast_loop_v6(on) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`set_ttl`][link]. /// /// [link]: #method.set_ttl pub fn ttl(&self) -> io::Result { self.sys.ttl() } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.sys.set_ttl(ttl) } /// Executes an operation of the `IP_ADD_MEMBERSHIP` type. /// /// This function specifies a new multicast group for this socket to join. /// The address must be a valid multicast address, and `interface` is the /// address of the local interface with which the system should join the /// multicast group. If it's equal to `INADDR_ANY` then an appropriate /// interface is chosen by the system. pub fn join_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.sys.join_multicast_v4(multiaddr, interface) } /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type. /// /// This function specifies a new multicast group for this socket to join. /// The address must be a valid multicast address, and `interface` is the /// index of the interface to join/leave (or 0 to indicate any interface). pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.sys.join_multicast_v6(multiaddr, interface) } /// Executes an operation of the `IP_DROP_MEMBERSHIP` type. /// /// For more information about this option, see /// [`join_multicast_v4`][link]. /// /// [link]: #method.join_multicast_v4 pub fn leave_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.sys.leave_multicast_v4(multiaddr, interface) } /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type. /// /// For more information about this option, see /// [`join_multicast_v6`][link]. /// /// [link]: #method.join_multicast_v6 pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.sys.leave_multicast_v6(multiaddr, interface) } /// Get the value of the `SO_ERROR` option on this socket. /// /// This will retrieve the stored error in the underlying socket, clearing /// the field in the process. This can be useful for checking errors between /// calls. pub fn take_error(&self) -> io::Result> { self.sys.take_error() } } impl Evented for UdpSocket { fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.selector_id.associate_selector(poll)?; self.sys.register(poll, token, interest, opts) } fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> { self.sys.reregister(poll, token, interest, opts) } fn deregister(&self, poll: &Poll) -> io::Result<()> { self.sys.deregister(poll) } } /* * * ===== UNIX ext ===== * */ #[cfg(all(unix, not(target_os = "fuchsia")))] use std::os::unix::io::{IntoRawFd, AsRawFd, FromRawFd, RawFd}; #[cfg(all(unix, not(target_os = "fuchsia")))] impl IntoRawFd for UdpSocket { fn into_raw_fd(self) -> RawFd { self.sys.into_raw_fd() } } #[cfg(all(unix, not(target_os = "fuchsia")))] impl AsRawFd for UdpSocket { fn as_raw_fd(&self) -> RawFd { self.sys.as_raw_fd() } } #[cfg(all(unix, not(target_os = "fuchsia")))] impl FromRawFd for UdpSocket { unsafe fn from_raw_fd(fd: RawFd) -> UdpSocket { UdpSocket { sys: FromRawFd::from_raw_fd(fd), selector_id: SelectorId::new(), } } } mio-0.6.23/.cargo_vcs_info.json0000644000000001120000000000000117410ustar00{ "git": { "sha1": "26d103351e251827d8bd7711a19a091b1a2bb9d4" } }