os_str_bytes-6.0.0/.cargo_vcs_info.json0000644000000001360000000000100135560ustar { "git": { "sha1": "a96a7acec8256f1fb8444738a698b59532ac6107" }, "path_in_vcs": "" }os_str_bytes-6.0.0/COPYRIGHT000064400000000000000000000003750072674642500136760ustar 00000000000000Copyright (c) 2019 Dylan Iuzzolino Licensed under the Apache License, Version 2.0 or the MIT license , at your option. All files in this project may not be copied, modified, or distributed except according to those terms. os_str_bytes-6.0.0/Cargo.toml0000644000000025740000000000100115640ustar # THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies. # # If you are reading this file be aware that the original Cargo.toml # will likely look very different (and much more reasonable). # See Cargo.toml.orig for the original contents. [package] edition = "2018" rust-version = "1.52.0" name = "os_str_bytes" version = "6.0.0" authors = ["dylni"] exclude = [".*", "/rustfmt.toml", "/tests"] description = "Utilities for converting between byte sequences and platform-native strings\n" readme = "README.md" keywords = ["bytes", "osstr", "osstring", "path", "windows"] categories = ["command-line-interface", "development-tools::ffi", "encoding", "os", "rust-patterns"] license = "MIT OR Apache-2.0" repository = "https://github.com/dylni/os_str_bytes" [package.metadata.docs.rs] all-features = true rustc-args = ["--cfg", "os_str_bytes_docs_rs"] rustdoc-args = ["--cfg", "os_str_bytes_docs_rs"] [dependencies.memchr] version = "2.4" optional = true [dependencies.print_bytes] version = "0.5" optional = true [dependencies.uniquote] version = "3.0" optional = true [dev-dependencies.getrandom] version = "0.2" [features] default = ["memchr", "raw_os_str"] raw_os_str = [] os_str_bytes-6.0.0/Cargo.toml.orig000064400000000000000000000016360072674642500152730ustar 00000000000000[package] name = "os_str_bytes" version = "6.0.0" authors = ["dylni"] edition = "2018" rust-version = "1.52.0" description = """ Utilities for converting between byte sequences and platform-native strings """ readme = "README.md" repository = "https://github.com/dylni/os_str_bytes" license = "MIT OR Apache-2.0" keywords = ["bytes", "osstr", "osstring", "path", "windows"] categories = ["command-line-interface", "development-tools::ffi", "encoding", "os", "rust-patterns"] exclude = [".*", "/rustfmt.toml", "/tests"] [package.metadata.docs.rs] all-features = true rustc-args = ["--cfg", "os_str_bytes_docs_rs"] rustdoc-args = ["--cfg", "os_str_bytes_docs_rs"] [dependencies] memchr = { version = "2.4", optional = true } print_bytes = { version = "0.5", optional = true } uniquote = { version = "3.0", optional = true } [dev-dependencies] getrandom = "0.2" [features] default = ["memchr", "raw_os_str"] raw_os_str = [] os_str_bytes-6.0.0/LICENSE-APACHE000064400000000000000000000261350072674642500143310ustar 00000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. os_str_bytes-6.0.0/LICENSE-MIT000064400000000000000000000020600072674642500140300ustar 00000000000000MIT License Copyright (c) 2019 Dylan Iuzzolino Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. os_str_bytes-6.0.0/README.md000064400000000000000000000054400072674642500136600ustar 00000000000000# OsStr Bytes This crate allows interacting with the data stored by [`OsStr`] and [`OsString`], without resorting to panics or corruption for invalid UTF-8. Thus, methods can be used that are already defined on [`[u8]`][slice] and [`Vec`]. Typically, the only way to losslessly construct [`OsStr`] or [`OsString`] from a byte sequence is to use `OsStr::new(str::from_utf8(bytes)?)`, which requires the bytes to be valid in UTF-8. However, since this crate makes conversions directly between the platform encoding and raw bytes, even some strings invalid in UTF-8 can be converted. [![GitHub Build Status](https://github.com/dylni/os_str_bytes/workflows/build/badge.svg?branch=master)](https://github.com/dylni/os_str_bytes/actions?query=branch%3Amaster) ## Usage Add the following lines to your "Cargo.toml" file: ```toml [dependencies] os_str_bytes = "6.0" ``` See the [documentation] for available functionality and examples. ## Rust version support The minimum supported Rust toolchain version depends on the platform:
Target Target Triple Minimum Version
Fortanix *-fortanix-*-sgx nightly (sgx_platform)
Unix Unix 1.52.0
WASI *-wasi 1.52.0
WebAssembly wasm32-*-unknown 1.52.0
Windows *-windows-* 1.52.0
Minor version updates may increase these version requirements. However, the previous two Rust releases will always be supported. If the minimum Rust version must not be increased, use a tilde requirement to prevent updating this crate's minor version: ```toml [dependencies] os_str_bytes = "~6.0" ``` ## License Licensing terms are specified in [COPYRIGHT]. Unless you explicitly state otherwise, any contribution submitted for inclusion in this crate, as defined in [LICENSE-APACHE], shall be licensed according to [COPYRIGHT], without any additional terms or conditions. [COPYRIGHT]: https://github.com/dylni/os_str_bytes/blob/master/COPYRIGHT [documentation]: https://docs.rs/os_str_bytes [LICENSE-APACHE]: https://github.com/dylni/os_str_bytes/blob/master/LICENSE-APACHE [slice]: https://doc.rust-lang.org/std/primitive.slice.html [`OsStr`]: https://doc.rust-lang.org/std/ffi/struct.OsStr.html [`OsString`]: https://doc.rust-lang.org/std/ffi/struct.OsString.html [`Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html os_str_bytes-6.0.0/src/common/mod.rs000064400000000000000000000017270072674642500156110ustar 00000000000000use std::borrow::Cow; use std::convert::Infallible; use std::ffi::OsStr; use std::ffi::OsString; use std::result; #[cfg(all(target_vendor = "fortanix", target_env = "sgx"))] use std::os::fortanix_sgx as os; #[cfg(any(target_os = "hermit", unix))] use std::os::unix as os; #[cfg(target_os = "wasi")] use std::os::wasi as os; use os::ffi::OsStrExt; use os::ffi::OsStringExt; if_raw_str! { pub(super) mod raw; } pub(super) type EncodingError = Infallible; type Result = result::Result; pub(super) fn os_str_from_bytes(string: &[u8]) -> Result> { Ok(Cow::Borrowed(OsStrExt::from_bytes(string))) } pub(super) fn os_str_to_bytes(os_string: &OsStr) -> Cow<'_, [u8]> { Cow::Borrowed(OsStrExt::as_bytes(os_string)) } pub(super) fn os_string_from_vec(string: Vec) -> Result { Ok(OsStringExt::from_vec(string)) } pub(super) fn os_string_into_vec(os_string: OsString) -> Vec { OsStringExt::into_vec(os_string) } os_str_bytes-6.0.0/src/common/raw.rs000064400000000000000000000014570072674642500156230ustar 00000000000000use std::fmt; use std::fmt::Formatter; #[inline(always)] pub(crate) const fn is_continuation(_: u8) -> bool { false } #[inline(always)] pub(crate) fn decode_code_point(_: &[u8]) -> u32 { unreachable!(); } pub(crate) fn ends_with(string: &[u8], suffix: &[u8]) -> bool { string.ends_with(suffix) } pub(crate) fn starts_with(string: &[u8], prefix: &[u8]) -> bool { string.starts_with(prefix) } pub(crate) fn debug(string: &[u8], f: &mut Formatter<'_>) -> fmt::Result { for byte in string { write!(f, "\\x{:02X}", byte)?; } Ok(()) } #[cfg(feature = "uniquote")] pub(crate) mod uniquote { use uniquote::Formatter; use uniquote::Quote; use uniquote::Result; pub(crate) fn escape(string: &[u8], f: &mut Formatter<'_>) -> Result { string.escape(f) } } os_str_bytes-6.0.0/src/iter.rs000064400000000000000000000050310072674642500144750ustar 00000000000000//! Iterators provided by this crate. #![cfg_attr(os_str_bytes_docs_rs, doc(cfg(feature = "raw_os_str")))] use std::fmt; use std::fmt::Debug; use std::fmt::Formatter; use std::iter::FusedIterator; use std::str; use super::pattern::Encoded; use super::Pattern; use super::RawOsStr; // [memchr::memmem::FindIter] is not currently used, since this struct would // become self-referential. Additionally, that iterator does not implement // [DoubleEndedIterator], and its implementation would likely require // significant changes to implement that trait. /// The iterator returned by [`RawOsStr::split`]. pub struct Split<'a, P> where P: Pattern, { string: Option<&'a RawOsStr>, pat: P::__Encoded, } impl<'a, P> Split<'a, P> where P: Pattern, { pub(super) fn new(string: &'a RawOsStr, pat: P) -> Self { let pat = pat.__encode(); assert!( !pat.__get().is_empty(), "cannot split using an empty pattern", ); Self { string: Some(string), pat, } } } macro_rules! impl_next { ( $self:ident , $split_method:ident , $swap_fn:expr ) => {{ $self .string? .$split_method(&$self.pat) .map(|substrings| { let (substring, string) = $swap_fn(substrings); $self.string = Some(string); substring }) .or_else(|| $self.string.take()) }}; } impl

DoubleEndedIterator for Split<'_, P> where P: Pattern, { fn next_back(&mut self) -> Option { impl_next!(self, rsplit_once_raw, |(prefix, suffix)| (suffix, prefix)) } } impl<'a, P> Iterator for Split<'a, P> where P: Pattern, { type Item = &'a RawOsStr; #[inline] fn last(mut self) -> Option { self.next_back() } fn next(&mut self) -> Option { impl_next!(self, split_once_raw, |x| x) } } impl

Clone for Split<'_, P> where P: Pattern, { #[inline] fn clone(&self) -> Self { Self { string: self.string, pat: self.pat.clone(), } } } impl

Debug for Split<'_, P> where P: Pattern, { #[inline] fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { f.debug_struct("Split") .field("string", &self.string) .field( "pat", &str::from_utf8(self.pat.__get()).expect("invalid pattern"), ) .finish() } } impl

FusedIterator for Split<'_, P> where P: Pattern {} os_str_bytes-6.0.0/src/lib.rs000064400000000000000000000326170072674642500143120ustar 00000000000000//! This crate allows interacting with the data stored by [`OsStr`] and //! [`OsString`], without resorting to panics or corruption for invalid UTF-8. //! Thus, methods can be used that are already defined on [`[u8]`][slice] and //! [`Vec`]. //! //! Typically, the only way to losslessly construct [`OsStr`] or [`OsString`] //! from a byte sequence is to use `OsStr::new(str::from_utf8(bytes)?)`, which //! requires the bytes to be valid in UTF-8. However, since this crate makes //! conversions directly between the platform encoding and raw bytes, even some //! strings invalid in UTF-8 can be converted. //! //! In most cases, [`RawOsStr`] and [`RawOsString`] should be used. //! [`OsStrBytes`] and [`OsStringBytes`] provide lower-level APIs that are //! easier to misuse. //! //! # Encoding //! //! The encoding of bytes returned or accepted by methods of this crate is //! intentionally left unspecified. It may vary for different platforms, so //! defining it would run contrary to the goal of generic string handling. //! However, the following invariants will always be upheld: //! //! - The encoding will be compatible with UTF-8. In particular, splitting an //! encoded byte sequence by a UTF-8–encoded character always produces other //! valid byte sequences. They can be re-encoded without error using //! [`OsStrBytes::from_raw_bytes`] and similar methods. //! //! - All characters valid in platform strings are representable. [`OsStr`] and //! [`OsString`] can always be losslessly reconstructed from extracted bytes. //! //! Note that the chosen encoding may not match how Rust stores these strings //! internally, which is undocumented. For instance, the result of calling //! [`OsStr::len`] will not necessarily match the number of bytes this crate //! uses to represent the same string. //! //! Additionally, concatenation may yield unexpected results without a UTF-8 //! separator. If two platform strings need to be concatenated, the only safe //! way to do so is using [`OsString::push`]. This limitation also makes it //! undesirable to use the bytes in interchange. //! //! Since this encoding can change between versions and platforms, it should //! not be used for storage. The standard library provides implementations of //! [`OsStrExt`] and [`OsStringExt`] for various platforms, which should be //! preferred for that use case. //! //! # User Input //! //! Traits in this crate should ideally not be used to convert byte sequences //! that did not originate from [`OsStr`] or a related struct. The encoding //! used by this crate is an implementation detail, so it does not make sense //! to expose it to users. //! //! Crate [bstr] offers some useful alternative methods, such as //! [`ByteSlice::to_os_str`] and [`ByteVec::into_os_string`], that are meant //! for user input. But, they reject some byte sequences used to represent //! valid platform strings, which would be undesirable for reliable path //! handling. They are best used only when accepting unknown input. //! //! This crate is meant to help when you already have an instance of [`OsStr`] //! and need to modify the data in a lossless way. //! //! # Features //! //! These features are optional and can be enabled or disabled in a //! "Cargo.toml" file. //! //! ### Default Features //! //! - **memchr** - //! Changes the implementation to use crate [memchr] for better performance. //! This feature is useless when "raw\_os\_str" is disabled. //! //! For more information, see [`RawOsStr`][memchr complexity]. //! //! - **raw\_os\_str** - //! Enables use of [`RawOsStr`] and [`RawOsString`]. //! //! ### Optional Features //! //! - **print\_bytes** - //! Provides implementations of [`print_bytes::ToBytes`] for [`RawOsStr`] and //! [`RawOsString`]. //! //! - **uniquote** - //! Provides implementations of [`uniquote::Quote`] for [`RawOsStr`] and //! [`RawOsString`]. //! //! # Implementation //! //! Some methods return [`Cow`] to account for platform differences. However, //! no guarantee is made that the same variant of that enum will always be //! returned for the same platform. Whichever can be constructed most //! efficiently will be returned. //! //! All traits are [sealed], meaning that they can only be implemented by this //! crate. Otherwise, backward compatibility would be more difficult to //! maintain for new features. //! //! # Complexity //! //! The time complexities of trait methods will vary based on what //! functionality is available for the platform. At worst, they will all be //! linear, but some can take constant time. For example, //! [`OsStringBytes::from_raw_vec`] might be able to reuse the allocation for //! its argument. //! //! # Examples //! //! ``` //! # #[cfg(any())] //! use std::env; //! use std::fs; //! # use std::io; //! //! use os_str_bytes::OsStrBytes; //! //! # mod env { //! # use std::env; //! # use std::ffi::OsString; //! # //! # pub fn args_os() -> impl Iterator { //! # let mut file = env::temp_dir(); //! # file.push("os_str_bytes\u{E9}.txt"); //! # return vec![OsString::new(), file.into_os_string()].into_iter(); //! # } //! # } //! # //! for file in env::args_os().skip(1) { //! if file.to_raw_bytes().first() != Some(&b'-') { //! let string = "Hello, world!"; //! fs::write(&file, string)?; //! assert_eq!(string, fs::read_to_string(file)?); //! } //! } //! # //! # Ok::<_, io::Error>(()) //! ``` //! //! [bstr]: https://crates.io/crates/bstr //! [`ByteSlice::to_os_str`]: https://docs.rs/bstr/0.2.12/bstr/trait.ByteSlice.html#method.to_os_str //! [`ByteVec::into_os_string`]: https://docs.rs/bstr/0.2.12/bstr/trait.ByteVec.html#method.into_os_string //! [memchr complexity]: RawOsStr#complexity //! [memchr]: https://crates.io/crates/memchr //! [`OsStrExt`]: ::std::os::unix::ffi::OsStrExt //! [`OsStringExt`]: ::std::os::unix::ffi::OsStringExt //! [sealed]: https://rust-lang.github.io/api-guidelines/future-proofing.html#c-sealed //! [print\_bytes]: https://crates.io/crates/print_bytes // Only require a nightly compiler when building documentation for docs.rs. // This is a private option that should not be used. // https://github.com/rust-lang/docs.rs/issues/147#issuecomment-389544407 // https://github.com/dylni/os_str_bytes/issues/2 #![cfg_attr(os_str_bytes_docs_rs, feature(doc_cfg))] // Nightly is also currently required for the SGX platform. #![cfg_attr( all(target_vendor = "fortanix", target_env = "sgx"), feature(sgx_platform) )] #![forbid(unsafe_op_in_unsafe_fn)] #![warn(unused_results)] use std::borrow::Cow; use std::error::Error; use std::ffi::OsStr; use std::ffi::OsString; use std::fmt; use std::fmt::Display; use std::fmt::Formatter; use std::path::Path; use std::path::PathBuf; use std::result; macro_rules! if_raw_str { ( $($item:item)+ ) => { $( #[cfg(feature = "raw_os_str")] $item )+ }; } #[cfg_attr( all(target_arch = "wasm32", target_os = "unknown"), path = "wasm32/mod.rs" )] #[cfg_attr(windows, path = "windows/mod.rs")] #[cfg_attr( not(any(all(target_arch = "wasm32", target_os = "unknown"), windows)), path = "common/mod.rs" )] mod imp; mod util; if_raw_str! { pub mod iter; mod pattern; pub use pattern::Pattern; mod raw_str; pub use raw_str::RawOsStr; pub use raw_str::RawOsString; } /// The error that occurs when a byte sequence is not representable in the /// platform encoding. /// /// [`Result::unwrap`] should almost always be called on results containing /// this error. It should be known whether or not byte sequences are properly /// encoded for the platform, since [the module-level documentation][encoding] /// discourages using encoded bytes in interchange. Results are returned /// primarily to make panicking behavior explicit. /// /// On Unix, this error is never returned, but [`OsStrExt`] or [`OsStringExt`] /// should be used instead if that needs to be guaranteed. /// /// [encoding]: self#encoding /// [`OsStrExt`]: ::std::os::unix::ffi::OsStrExt /// [`OsStringExt`]: ::std::os::unix::ffi::OsStringExt /// [`Result::unwrap`]: ::std::result::Result::unwrap #[derive(Debug, Eq, PartialEq)] pub struct EncodingError(imp::EncodingError); impl Display for EncodingError { #[inline] fn fmt(&self, formatter: &mut Formatter<'_>) -> fmt::Result { self.0.fmt(formatter) } } impl Error for EncodingError {} type Result = result::Result; /// A platform agnostic variant of [`OsStrExt`]. /// /// For more information, see [the module-level documentation][module]. /// /// [module]: self /// [`OsStrExt`]: ::std::os::unix::ffi::OsStrExt pub trait OsStrBytes: private::Sealed + ToOwned { /// Converts a byte slice into an equivalent platform-native string. /// /// Provided byte strings should always be valid for the [unspecified /// encoding] used by this crate. /// /// # Errors /// /// See documentation for [`EncodingError`]. /// /// # Examples /// /// ``` /// use std::env; /// use std::ffi::OsStr; /// # use std::io; /// /// use os_str_bytes::OsStrBytes; /// /// let os_string = env::current_exe()?; /// let os_bytes = os_string.to_raw_bytes(); /// assert_eq!(os_string, OsStr::from_raw_bytes(os_bytes).unwrap()); /// # /// # Ok::<_, io::Error>(()) /// ``` /// /// [unspecified encoding]: self#encoding fn from_raw_bytes<'a, S>(string: S) -> Result> where S: Into>; /// Converts a platform-native string into an equivalent byte slice. /// /// The returned bytes string will use an [unspecified encoding]. /// /// # Examples /// /// ``` /// use std::env; /// # use std::io; /// /// use os_str_bytes::OsStrBytes; /// /// let os_string = env::current_exe()?; /// println!("{:?}", os_string.to_raw_bytes()); /// # /// # Ok::<_, io::Error>(()) /// ``` /// /// [unspecified encoding]: self#encoding #[must_use] fn to_raw_bytes(&self) -> Cow<'_, [u8]>; } impl OsStrBytes for OsStr { #[inline] fn from_raw_bytes<'a, S>(string: S) -> Result> where S: Into>, { match string.into() { Cow::Borrowed(string) => { imp::os_str_from_bytes(string).map_err(EncodingError) } Cow::Owned(string) => { OsStringBytes::from_raw_vec(string).map(Cow::Owned) } } } #[inline] fn to_raw_bytes(&self) -> Cow<'_, [u8]> { imp::os_str_to_bytes(self) } } impl OsStrBytes for Path { #[inline] fn from_raw_bytes<'a, S>(string: S) -> Result> where S: Into>, { OsStr::from_raw_bytes(string).map(|os_string| match os_string { Cow::Borrowed(os_string) => Cow::Borrowed(Self::new(os_string)), Cow::Owned(os_string) => Cow::Owned(os_string.into()), }) } #[inline] fn to_raw_bytes(&self) -> Cow<'_, [u8]> { self.as_os_str().to_raw_bytes() } } /// A platform agnostic variant of [`OsStringExt`]. /// /// For more information, see [the module-level documentation][module]. /// /// [module]: self /// [`OsStringExt`]: ::std::os::unix::ffi::OsStringExt pub trait OsStringBytes: private::Sealed + Sized { /// Converts a byte vector into an equivalent platform-native string. /// /// Provided byte strings should always be valid for the [unspecified /// encoding] used by this crate. /// /// # Errors /// /// See documentation for [`EncodingError`]. /// /// # Examples /// /// ``` /// use std::env; /// use std::ffi::OsString; /// # use std::io; /// /// use os_str_bytes::OsStringBytes; /// /// let os_string = env::current_exe()?; /// let os_bytes = os_string.clone().into_raw_vec(); /// assert_eq!(os_string, OsString::from_raw_vec(os_bytes).unwrap()); /// # /// # Ok::<_, io::Error>(()) /// ``` /// /// [unspecified encoding]: self#encoding fn from_raw_vec(string: Vec) -> Result; /// Converts a platform-native string into an equivalent byte vector. /// /// The returned byte string will use an [unspecified encoding]. /// /// # Examples /// /// ``` /// use std::env; /// # use std::io; /// /// use os_str_bytes::OsStringBytes; /// /// let os_string = env::current_exe()?; /// println!("{:?}", os_string.into_raw_vec()); /// # /// # Ok::<_, io::Error>(()) /// ``` /// /// [unspecified encoding]: self#encoding #[must_use] fn into_raw_vec(self) -> Vec; } impl OsStringBytes for OsString { #[inline] fn from_raw_vec(string: Vec) -> Result { imp::os_string_from_vec(string).map_err(EncodingError) } #[inline] fn into_raw_vec(self) -> Vec { imp::os_string_into_vec(self) } } impl OsStringBytes for PathBuf { #[inline] fn from_raw_vec(string: Vec) -> Result { OsString::from_raw_vec(string).map(Into::into) } #[inline] fn into_raw_vec(self) -> Vec { self.into_os_string().into_raw_vec() } } mod private { use std::ffi::OsStr; use std::ffi::OsString; use std::path::Path; use std::path::PathBuf; pub trait Sealed {} impl Sealed for char {} impl Sealed for OsStr {} impl Sealed for OsString {} impl Sealed for Path {} impl Sealed for PathBuf {} impl Sealed for &str {} impl Sealed for &String {} } os_str_bytes-6.0.0/src/pattern.rs000064400000000000000000000032000072674642500152030ustar 00000000000000use super::private; pub trait Encoded { fn __get(&self) -> &[u8]; } #[derive(Clone)] pub struct EncodedChar { buffer: [u8; 4], length: usize, } impl Encoded for EncodedChar { #[inline] fn __get(&self) -> &[u8] { &self.buffer[..self.length] } } impl Encoded for &str { #[inline] fn __get(&self) -> &[u8] { self.as_bytes() } } /// Allows a type to be used for searching by [`RawOsStr`] and [`RawOsString`]. /// /// This trait is very similar to [`str::pattern::Pattern`], but its methods /// are private and it is implemented for different types. /// /// [`RawOsStr`]: super::RawOsStr /// [`RawOsString`]: super::RawOsString /// [`str::pattern::Pattern`]: ::std::str::pattern::Pattern #[cfg_attr(os_str_bytes_docs_rs, doc(cfg(feature = "raw_os_str")))] pub trait Pattern: private::Sealed { #[doc(hidden)] type __Encoded: Clone + Encoded; #[doc(hidden)] fn __encode(self) -> Self::__Encoded; } impl Pattern for char { #[doc(hidden)] type __Encoded = EncodedChar; #[doc(hidden)] fn __encode(self) -> Self::__Encoded { let mut encoded = EncodedChar { buffer: [0; 4], length: 0, }; encoded.length = self.encode_utf8(&mut encoded.buffer).len(); encoded } } impl Pattern for &str { #[doc(hidden)] type __Encoded = Self; #[doc(hidden)] fn __encode(self) -> Self::__Encoded { self } } impl<'a> Pattern for &'a String { #[doc(hidden)] type __Encoded = <&'a str as Pattern>::__Encoded; #[doc(hidden)] fn __encode(self) -> Self::__Encoded { (**self).__encode() } } os_str_bytes-6.0.0/src/raw_str.rs000064400000000000000000000730660072674642500152300ustar 00000000000000use std::borrow::Borrow; use std::borrow::Cow; use std::borrow::ToOwned; use std::ffi::OsStr; use std::ffi::OsString; use std::fmt; use std::fmt::Debug; use std::fmt::Display; use std::fmt::Formatter; use std::mem; use std::ops::Deref; use std::ops::Index; use std::ops::Range; use std::ops::RangeFrom; use std::ops::RangeFull; use std::ops::RangeInclusive; use std::ops::RangeTo; use std::ops::RangeToInclusive; use std::str; #[cfg(feature = "memchr")] use memchr::memmem::find; #[cfg(feature = "memchr")] use memchr::memmem::rfind; use super::imp::raw; use super::iter::Split; use super::pattern::Encoded as EncodedPattern; use super::OsStrBytes; use super::OsStringBytes; use super::Pattern; #[cfg(not(feature = "memchr"))] fn find(string: &[u8], pat: &[u8]) -> Option { for i in 0..=string.len().checked_sub(pat.len())? { if string[i..].starts_with(pat) { return Some(i); } } None } #[cfg(not(feature = "memchr"))] fn rfind(string: &[u8], pat: &[u8]) -> Option { for i in (pat.len()..=string.len()).rev() { if string[..i].ends_with(pat) { return Some(i - pat.len()); } } None } macro_rules! impl_trim_matches { ( $self:ident , $pat:expr , $strip_method:ident ) => {{ let pat = $pat.__encode(); let pat = pat.__get(); if pat.is_empty() { return $self; } let mut string = &$self.0; while let Some(substring) = string.$strip_method(pat) { string = substring; } Self::from_raw_bytes_unchecked(string) }}; } macro_rules! impl_split_once_raw { ( $self:ident , $pat:expr , $find_fn:expr ) => {{ let pat = $pat.__get(); let index = $find_fn(&$self.0, pat)?; let prefix = &$self.0[..index]; let suffix = &$self.0[index + pat.len()..]; Some(( Self::from_raw_bytes_unchecked(prefix), Self::from_raw_bytes_unchecked(suffix), )) }}; } /// A container for the byte strings converted by [`OsStrBytes`]. /// /// This wrapper is intended to prevent violating the invariants of the /// [unspecified encoding] used by this crate and minimize encoding /// conversions. /// /// Although this type is annotated with `#[repr(transparent)]`, the inner /// representation is not stable. Transmuting between this type and any other /// causes immediate undefined behavior. /// /// # Indices /// /// Methods of this struct that accept indices require that the index lie on a /// UTF-8 boundary. Although it is possible to manipulate platform strings /// based on other indices, this crate currently does not support them for /// slicing methods. They would add significant complication to the /// implementation and are generally not necessary. However, all indices /// returned by this struct can be used for slicing. /// /// On Unix, all indices are permitted, to avoid false positives. However, /// relying on this implementation detail is discouraged. Platform-specific /// indices are error-prone. /// /// # Complexity /// /// All searching methods have worst-case multiplicative time complexity (i.e., /// `O(self.raw_len() * pat.len())`). Enabling the "memchr" feature allows /// these methods to instead run in linear time in the worst case (documented /// for [`memchr::memmem::find`][memchr complexity]). /// /// [memchr complexity]: memchr::memmem::find#complexity /// [unspecified encoding]: super#encoding #[derive(Eq, Hash, Ord, PartialEq, PartialOrd)] #[cfg_attr(os_str_bytes_docs_rs, doc(cfg(feature = "raw_os_str")))] #[repr(transparent)] pub struct RawOsStr([u8]); impl RawOsStr { fn from_raw_bytes_unchecked(string: &[u8]) -> &Self { // SAFETY: This struct has a layout that makes this operation safe. unsafe { mem::transmute(string) } } /// Converts a platform-native string into a representation that can be /// more easily manipulated. /// /// This method performs the necessary conversion immediately, so it can be /// expensive to call. It is recommended to continue using the returned /// instance as long as possible (instead of the original [`OsStr`]), to /// avoid repeated conversions. /// /// # Examples /// /// ``` /// use std::env; /// # use std::io; /// /// use os_str_bytes::RawOsStr; /// /// let os_string = env::current_exe()?.into_os_string(); /// println!("{:?}", RawOsStr::new(&os_string)); /// # /// # Ok::<_, io::Error>(()) /// ``` #[inline] #[must_use] pub fn new(string: &OsStr) -> Cow<'_, Self> { match string.to_raw_bytes() { Cow::Borrowed(string) => { Cow::Borrowed(Self::from_raw_bytes_unchecked(string)) } Cow::Owned(string) => Cow::Owned(RawOsString(string)), } } /// Wraps a string, without copying or encoding conversion. /// /// This method is much more efficient than [`RawOsStr::new`], since the /// [encoding] used by this crate is compatible with UTF-8. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let string = "foobar"; /// let raw = RawOsStr::from_str(string); /// assert_eq!(string, raw); /// ``` /// /// [encoding]: super#encoding #[allow(clippy::should_implement_trait)] #[inline] #[must_use] pub fn from_str(string: &str) -> &Self { Self::from_raw_bytes_unchecked(string.as_bytes()) } /// Returns the byte string stored by this container. /// /// The result will match what would be returned by /// [`OsStrBytes::to_raw_bytes`] for the same string. /// /// # Examples /// /// ``` /// use std::env; /// # use std::io; /// /// use os_str_bytes::OsStrBytes; /// use os_str_bytes::RawOsStr; /// /// let os_string = env::current_exe()?.into_os_string(); /// let raw = RawOsStr::new(&os_string); /// assert_eq!(os_string.to_raw_bytes(), raw.as_raw_bytes()); /// # /// # Ok::<_, io::Error>(()) /// ``` #[inline] #[must_use] pub fn as_raw_bytes(&self) -> &[u8] { &self.0 } /// Equivalent to [`str::contains`]. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("foobar"); /// assert!(raw.contains("oo")); /// assert!(!raw.contains("of")); /// ``` #[inline] #[must_use] pub fn contains

(&self, pat: P) -> bool where P: Pattern, { self.find(pat).is_some() } /// Equivalent to [`str::ends_with`]. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("foobar"); /// assert!(raw.ends_with("bar")); /// assert!(!raw.ends_with("foo")); /// ``` #[inline] #[must_use] pub fn ends_with

(&self, pat: P) -> bool where P: Pattern, { let pat = pat.__encode(); let pat = pat.__get(); self.0.ends_with(pat) } /// Equivalent to [`str::ends_with`] but accepts this type for the pattern. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("foobar"); /// assert!(raw.ends_with_os(RawOsStr::from_str("bar"))); /// assert!(!raw.ends_with_os(RawOsStr::from_str("foo"))); /// ``` #[inline] #[must_use] pub fn ends_with_os(&self, pat: &Self) -> bool { raw::ends_with(&self.0, &pat.0) } /// Equivalent to [`str::find`]. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("foobar"); /// assert_eq!(Some(1), raw.find("o")); /// assert_eq!(None, raw.find("of")); /// ``` #[inline] #[must_use] pub fn find

(&self, pat: P) -> Option where P: Pattern, { let pat = pat.__encode(); let pat = pat.__get(); find(&self.0, pat) } /// Equivalent to [`str::is_empty`]. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// assert!(RawOsStr::from_str("").is_empty()); /// assert!(!RawOsStr::from_str("foobar").is_empty()); /// ``` #[inline] #[must_use] pub fn is_empty(&self) -> bool { self.0.is_empty() } /// Returns the length of the byte string stored by this container. /// /// Only the following assumptions can be made about the result: /// - The length of any Unicode character is the length of its UTF-8 /// representation (i.e., [`char::len_utf8`]). /// - Splitting a string at a UTF-8 boundary will return two strings with /// lengths that sum to the length of the original string. /// /// This method may return a different result than would [`OsStr::len`] /// when called on same string, since [`OsStr`] uses an unspecified /// encoding. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// assert_eq!(6, RawOsStr::from_str("foobar").raw_len()); /// assert_eq!(0, RawOsStr::from_str("").raw_len()); /// ``` #[inline] #[must_use] pub fn raw_len(&self) -> usize { self.0.len() } /// Equivalent to [`str::rfind`]. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("foobar"); /// assert_eq!(Some(2), raw.rfind("o")); /// assert_eq!(None, raw.rfind("of")); /// ``` #[inline] #[must_use] pub fn rfind

(&self, pat: P) -> Option where P: Pattern, { let pat = pat.__encode(); let pat = pat.__get(); rfind(&self.0, pat) } pub(super) fn rsplit_once_raw

(&self, pat: &P) -> Option<(&Self, &Self)> where P: EncodedPattern, { impl_split_once_raw!(self, pat, rfind) } /// Equivalent to [`str::rsplit_once`]. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("foobar"); /// assert_eq!( /// Some((RawOsStr::from_str("fo"), RawOsStr::from_str("bar"))), /// raw.rsplit_once("o"), /// ); /// assert_eq!(None, raw.rsplit_once("of")); /// ``` #[inline] #[must_use] pub fn rsplit_once

(&self, pat: P) -> Option<(&Self, &Self)> where P: Pattern, { self.rsplit_once_raw(&pat.__encode()) } // https://github.com/rust-lang/rust/blob/49c68bd53f90e375bfb3cbba8c1c67a9e0adb9c0/src/libcore/str/mod.rs#L2184-L2221 #[cold] #[inline(never)] #[track_caller] fn index_boundary_error(&self, index: usize) -> ! { debug_assert!(raw::is_continuation(self.0[index])); let start = self.0[..index] .iter() .rposition(|&x| !raw::is_continuation(x)) .expect("invalid raw bytes"); let mut end = index + 1; end += self.0[end..] .iter() .position(|&x| !raw::is_continuation(x)) .unwrap_or_else(|| self.raw_len() - end); let code_point = raw::decode_code_point(&self.0[start..end]); panic!( "byte index {} is not a valid boundary; it is inside U+{:04X} \ (bytes {}..{})", index, code_point, start, end, ); } #[track_caller] fn check_bound(&self, index: usize) { if let Some(&byte) = self.0.get(index) { if raw::is_continuation(byte) { self.index_boundary_error(index); } } } /// Equivalent to [`str::split`], but empty patterns are not accepted. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range or empty. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("foobar"); /// assert_eq!(["f", "", "bar"], *raw.split("o").collect::>()); /// ``` #[inline] #[must_use] pub fn split

(&self, pat: P) -> Split<'_, P> where P: Pattern, { Split::new(self, pat) } /// Equivalent to [`str::split_at`]. /// /// # Panics /// /// Panics if the index is not a [valid boundary]. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("foobar"); /// assert_eq!( /// ((RawOsStr::from_str("fo"), RawOsStr::from_str("obar"))), /// raw.split_at(2), /// ); /// ``` /// /// [valid boundary]: #indices #[inline] #[must_use] pub fn split_at(&self, mid: usize) -> (&Self, &Self) { self.check_bound(mid); let (prefix, suffix) = self.0.split_at(mid); ( Self::from_raw_bytes_unchecked(prefix), Self::from_raw_bytes_unchecked(suffix), ) } pub(super) fn split_once_raw

(&self, pat: &P) -> Option<(&Self, &Self)> where P: EncodedPattern, { impl_split_once_raw!(self, pat, find) } /// Equivalent to [`str::split_once`]. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("foobar"); /// assert_eq!( /// Some((RawOsStr::from_str("f"), RawOsStr::from_str("obar"))), /// raw.split_once("o"), /// ); /// assert_eq!(None, raw.split_once("of")); /// ``` #[inline] #[must_use] pub fn split_once

(&self, pat: P) -> Option<(&Self, &Self)> where P: Pattern, { self.split_once_raw(&pat.__encode()) } /// Equivalent to [`str::starts_with`]. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("foobar"); /// assert!(raw.starts_with("foo")); /// assert!(!raw.starts_with("bar")); /// ``` #[inline] #[must_use] pub fn starts_with

(&self, pat: P) -> bool where P: Pattern, { let pat = pat.__encode(); let pat = pat.__get(); self.0.starts_with(pat) } /// Equivalent to [`str::starts_with`] but accepts this type for the /// pattern. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("foobar"); /// assert!(raw.starts_with_os(RawOsStr::from_str("foo"))); /// assert!(!raw.starts_with_os(RawOsStr::from_str("bar"))); /// ``` #[inline] #[must_use] pub fn starts_with_os(&self, pat: &Self) -> bool { raw::starts_with(&self.0, &pat.0) } /// Equivalent to [`str::strip_prefix`]. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("111foo1bar111"); /// assert_eq!( /// Some(RawOsStr::from_str("11foo1bar111")), /// raw.strip_prefix("1"), /// ); /// assert_eq!(None, raw.strip_prefix("o")); /// ``` #[inline] #[must_use] pub fn strip_prefix

(&self, pat: P) -> Option<&Self> where P: Pattern, { let pat = pat.__encode(); let pat = pat.__get(); self.0.strip_prefix(pat).map(Self::from_raw_bytes_unchecked) } /// Equivalent to [`str::strip_suffix`]. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("111foo1bar111"); /// assert_eq!( /// Some(RawOsStr::from_str("111foo1bar11")), /// raw.strip_suffix("1"), /// ); /// assert_eq!(None, raw.strip_suffix("o")); /// ``` #[inline] #[must_use] pub fn strip_suffix

(&self, pat: P) -> Option<&Self> where P: Pattern, { let pat = pat.__encode(); let pat = pat.__get(); self.0.strip_suffix(pat).map(Self::from_raw_bytes_unchecked) } /// Converts this representation back to a platform-native string. /// /// # Examples /// /// ``` /// use std::env; /// # use std::io; /// /// use os_str_bytes::RawOsStr; /// /// let os_string = env::current_exe()?.into_os_string(); /// let raw = RawOsStr::new(&os_string); /// assert_eq!(os_string, raw.to_os_str()); /// # /// # Ok::<_, io::Error>(()) /// ``` #[inline] #[must_use] pub fn to_os_str(&self) -> Cow<'_, OsStr> { OsStr::from_raw_bytes(&self.0).expect("invalid raw bytes") } /// Equivalent to [`OsStr::to_str`]. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let string = "foobar"; /// let raw = RawOsStr::from_str(string); /// assert_eq!(Some(string), raw.to_str()); /// ``` #[inline] #[must_use] pub fn to_str(&self) -> Option<&str> { str::from_utf8(&self.0).ok() } /// Converts this string to the best UTF-8 representation possible. /// /// Invalid sequences will be replaced with /// [`char::REPLACEMENT_CHARACTER`]. /// /// This method may return a different result than would /// [`OsStr::to_string_lossy`] when called on same string, since [`OsStr`] /// uses an unspecified encoding. /// /// # Examples /// /// ``` /// use std::env; /// # use std::io; /// /// use os_str_bytes::RawOsStr; /// /// let os_string = env::current_exe()?.into_os_string(); /// let raw = RawOsStr::new(&os_string); /// println!("{}", raw.to_str_lossy()); /// # /// # Ok::<_, io::Error>(()) /// ``` #[inline] #[must_use] pub fn to_str_lossy(&self) -> Cow<'_, str> { String::from_utf8_lossy(&self.0) } /// Equivalent to [`str::trim_end_matches`]. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("111foo1bar111"); /// assert_eq!("111foo1bar", raw.trim_end_matches("1")); /// assert_eq!("111foo1bar111", raw.trim_end_matches("o")); /// ``` #[must_use] pub fn trim_end_matches

(&self, pat: P) -> &Self where P: Pattern, { impl_trim_matches!(self, pat, strip_suffix) } /// Equivalent to [`str::trim_start_matches`]. /// /// # Panics /// /// Panics if the pattern is a byte outside of the ASCII range. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsStr; /// /// let raw = RawOsStr::from_str("111foo1bar111"); /// assert_eq!("foo1bar111", raw.trim_start_matches("1")); /// assert_eq!("111foo1bar111", raw.trim_start_matches("o")); /// ``` #[must_use] pub fn trim_start_matches

(&self, pat: P) -> &Self where P: Pattern, { impl_trim_matches!(self, pat, strip_prefix) } } impl AsRef for RawOsStr { #[inline] fn as_ref(&self) -> &Self { self } } impl AsRef for str { #[inline] fn as_ref(&self) -> &RawOsStr { RawOsStr::from_str(self) } } impl AsRef for String { #[inline] fn as_ref(&self) -> &RawOsStr { (**self).as_ref() } } impl Default for &RawOsStr { #[inline] fn default() -> Self { RawOsStr::from_str("") } } impl<'a> From<&'a RawOsStr> for Cow<'a, RawOsStr> { #[inline] fn from(other: &'a RawOsStr) -> Self { Cow::Borrowed(other) } } macro_rules! r#impl { ( $index_type:ty $(, $index_var:ident , $first_bound:expr $(, $second_bound:expr)?)? ) => { impl Index<$index_type> for RawOsStr { type Output = Self; #[inline] fn index(&self, idx: $index_type) -> &Self::Output { $( let $index_var = &idx; self.check_bound($first_bound); $(self.check_bound($second_bound);)? )? Self::from_raw_bytes_unchecked(&self.0[idx]) } } }; } r#impl!(Range, x, x.start, x.end); r#impl!(RangeFrom, x, x.start); r#impl!(RangeFull); // [usize::MAX] will always be a valid inclusive end index. #[rustfmt::skip] r#impl!(RangeInclusive, x, *x.start(), x.end().wrapping_add(1)); r#impl!(RangeTo, x, x.end); r#impl!(RangeToInclusive, x, x.end.wrapping_add(1)); impl ToOwned for RawOsStr { type Owned = RawOsString; #[inline] fn to_owned(&self) -> Self::Owned { RawOsString(self.0.to_owned()) } } /// A container for the byte strings converted by [`OsStringBytes`]. /// /// For more information, see [`RawOsStr`]. /// /// [unspecified encoding]: super#encoding #[derive(Clone, Default, Eq, Hash, Ord, PartialEq, PartialOrd)] #[cfg_attr(os_str_bytes_docs_rs, doc(cfg(feature = "raw_os_str")))] pub struct RawOsString(Vec); impl RawOsString { /// Converts a platform-native string into a representation that can be /// more easily manipulated. /// /// For more information, see [`RawOsStr::new`]. /// /// # Examples /// /// ``` /// use std::env; /// # use std::io; /// /// use os_str_bytes::RawOsString; /// /// let os_string = env::current_exe()?.into_os_string(); /// println!("{:?}", RawOsString::new(os_string)); /// # /// # Ok::<_, io::Error>(()) /// ``` #[inline] #[must_use] pub fn new(string: OsString) -> Self { Self(string.into_raw_vec()) } /// Wraps a string, without copying or encoding conversion. /// /// This method is much more efficient than [`RawOsString::new`], since the /// [encoding] used by this crate is compatible with UTF-8. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsString; /// /// let string = "foobar".to_owned(); /// let raw = RawOsString::from_string(string.clone()); /// assert_eq!(string, raw); /// ``` /// /// [encoding]: super#encoding #[inline] #[must_use] pub fn from_string(string: String) -> Self { Self(string.into_bytes()) } /// Converts this representation back to a platform-native string. /// /// # Examples /// /// ``` /// use std::env; /// # use std::io; /// /// use os_str_bytes::RawOsString; /// /// let os_string = env::current_exe()?.into_os_string(); /// let raw = RawOsString::new(os_string.clone()); /// assert_eq!(os_string, raw.into_os_string()); /// # /// # Ok::<_, io::Error>(()) /// ``` #[inline] #[must_use] pub fn into_os_string(self) -> OsString { OsString::from_raw_vec(self.0).expect("invalid raw bytes") } /// Returns the byte string stored by this container. /// /// The result will match what would be returned by /// [`OsStringBytes::into_raw_vec`] for the same string. /// /// # Examples /// /// ``` /// use std::env; /// # use std::io; /// /// use os_str_bytes::OsStringBytes; /// use os_str_bytes::RawOsString; /// /// let os_string = env::current_exe()?.into_os_string(); /// let raw = RawOsString::new(os_string.clone()); /// assert_eq!(os_string.into_raw_vec(), raw.into_raw_vec()); /// # /// # Ok::<_, io::Error>(()) /// ``` #[inline] #[must_use] pub fn into_raw_vec(self) -> Vec { self.0 } /// Equivalent to [`OsString::into_string`]. /// /// # Examples /// /// ``` /// use os_str_bytes::RawOsString; /// /// let string = "foobar".to_owned(); /// let raw = RawOsString::from_string(string.clone()); /// assert_eq!(Ok(string), raw.into_string()); /// ``` #[inline] pub fn into_string(self) -> Result { String::from_utf8(self.0).map_err(|x| Self(x.into_bytes())) } } impl AsRef for RawOsString { #[inline] fn as_ref(&self) -> &RawOsStr { self } } impl Borrow for RawOsString { #[inline] fn borrow(&self) -> &RawOsStr { self } } impl Deref for RawOsString { type Target = RawOsStr; #[inline] fn deref(&self) -> &Self::Target { RawOsStr::from_raw_bytes_unchecked(&self.0) } } impl From for RawOsString { #[inline] fn from(other: String) -> Self { Self::from_string(other) } } impl From for Cow<'_, RawOsStr> { #[inline] fn from(other: RawOsString) -> Self { Cow::Owned(other) } } macro_rules! r#impl { ( $index_type:ty ) => { impl Index<$index_type> for RawOsString { type Output = RawOsStr; #[inline] fn index(&self, idx: $index_type) -> &Self::Output { &(**self)[idx] } } }; } r#impl!(Range); r#impl!(RangeFrom); r#impl!(RangeFull); r#impl!(RangeInclusive); r#impl!(RangeTo); r#impl!(RangeToInclusive); struct Buffer<'a>(&'a [u8]); impl Debug for Buffer<'_> { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { f.write_str("\"")?; let mut string = self.0; let mut invalid_length = 0; while !string.is_empty() { let (invalid, substring) = string.split_at(invalid_length); let valid = match str::from_utf8(substring) { Ok(valid) => { string = &[]; valid } Err(error) => { let (valid, substring) = substring.split_at(error.valid_up_to()); let invalid_char_length = error.error_len().unwrap_or_else(|| substring.len()); if valid.is_empty() { invalid_length += invalid_char_length; continue; } string = substring; invalid_length = invalid_char_length; // SAFETY: This slice was validated to be UTF-8. unsafe { str::from_utf8_unchecked(valid) } } }; raw::debug(invalid, f)?; Display::fmt(&valid.escape_debug(), f)?; } f.write_str("\"") } } macro_rules! r#impl { ( $type:ty ) => { impl Debug for $type { #[inline] fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { f.debug_tuple(stringify!($type)) .field(&Buffer(&self.0)) .finish() } } }; } r#impl!(RawOsStr); r#impl!(RawOsString); macro_rules! r#impl { ( $type:ty , $other_type:ty ) => { impl PartialEq<$other_type> for $type { #[inline] fn eq(&self, other: &$other_type) -> bool { let raw: &RawOsStr = self; let other: &RawOsStr = other.as_ref(); raw == other } } impl PartialEq<$type> for $other_type { #[inline] fn eq(&self, other: &$type) -> bool { other == self } } }; } r#impl!(RawOsStr, RawOsString); r#impl!(&RawOsStr, RawOsString); r#impl!(RawOsStr, str); r#impl!(RawOsStr, String); r#impl!(&RawOsStr, String); r#impl!(RawOsString, str); r#impl!(RawOsString, &str); r#impl!(RawOsString, String); #[cfg(feature = "print_bytes")] #[cfg_attr(os_str_bytes_docs_rs, doc(cfg(feature = "print_bytes")))] mod print_bytes { use print_bytes::ByteStr; use print_bytes::ToBytes; #[cfg(windows)] use print_bytes::WideStr; #[cfg(windows)] use crate::imp::raw; use super::RawOsStr; use super::RawOsString; impl ToBytes for RawOsStr { #[inline] fn to_bytes(&self) -> ByteStr<'_> { self.0.to_bytes() } #[cfg(windows)] #[inline] fn to_wide(&self) -> Option { Some(WideStr::new(raw::encode_wide_unchecked(&self.0).collect())) } } impl ToBytes for RawOsString { #[inline] fn to_bytes(&self) -> ByteStr<'_> { (**self).to_bytes() } #[cfg(windows)] #[inline] fn to_wide(&self) -> Option { (**self).to_wide() } } } #[cfg(feature = "uniquote")] #[cfg_attr(os_str_bytes_docs_rs, doc(cfg(feature = "uniquote")))] mod uniquote { use uniquote::Formatter; use uniquote::Quote; use uniquote::Result; use crate::imp::raw; use super::RawOsStr; use super::RawOsString; impl Quote for RawOsStr { #[inline] fn escape(&self, f: &mut Formatter<'_>) -> Result { raw::uniquote::escape(&self.0, f) } } impl Quote for RawOsString { #[inline] fn escape(&self, f: &mut Formatter<'_>) -> Result { (**self).escape(f) } } } os_str_bytes-6.0.0/src/util.rs000064400000000000000000000004250072674642500145110ustar 00000000000000pub(super) const BYTE_SHIFT: u8 = 6; pub(super) const CONT_MASK: u8 = (1 << BYTE_SHIFT) - 1; pub(super) const CONT_TAG: u8 = 0b1000_0000; #[cfg_attr(not(windows), allow(dead_code))] pub(super) const fn is_continuation(byte: u8) -> bool { byte & !CONT_MASK == CONT_TAG } os_str_bytes-6.0.0/src/wasm32/mod.rs000064400000000000000000000025610072674642500154320ustar 00000000000000use std::borrow::Cow; use std::error::Error; use std::ffi::OsStr; use std::ffi::OsString; use std::fmt; use std::fmt::Display; use std::fmt::Formatter; use std::result; use std::str; use std::str::Utf8Error; if_raw_str! { pub(super) mod raw; } #[derive(Debug, Eq, PartialEq)] pub(super) struct EncodingError(Utf8Error); impl Display for EncodingError { fn fmt(&self, formatter: &mut Formatter<'_>) -> fmt::Result { write!(formatter, "os_str_bytes: {}", self.0) } } impl Error for EncodingError {} type Result = result::Result; macro_rules! expect_utf8 { ( $result:expr ) => { $result.expect( "platform string contains invalid UTF-8, which should not be \ possible", ) }; } pub(super) fn os_str_from_bytes(string: &[u8]) -> Result> { str::from_utf8(string) .map(|x| Cow::Borrowed(OsStr::new(x))) .map_err(EncodingError) } pub(super) fn os_str_to_bytes(os_string: &OsStr) -> Cow<'_, [u8]> { Cow::Borrowed(expect_utf8!(os_string.to_str()).as_bytes()) } pub(super) fn os_string_from_vec(string: Vec) -> Result { String::from_utf8(string) .map(Into::into) .map_err(|x| EncodingError(x.utf8_error())) } pub(super) fn os_string_into_vec(os_string: OsString) -> Vec { expect_utf8!(os_string.into_string()).into_bytes() } os_str_bytes-6.0.0/src/wasm32/raw.rs000064400000000000000000000017470072674642500154510ustar 00000000000000use std::fmt; use std::fmt::Formatter; use std::str; pub(crate) use crate::util::is_continuation; pub(crate) fn decode_code_point(string: &[u8]) -> u32 { let string = str::from_utf8(string).expect("invalid string"); let mut chars = string.chars(); let ch = chars .next() .expect("cannot parse code point from empty string"); assert_eq!(None, chars.next(), "multiple code points found"); ch.into() } pub(crate) fn ends_with(string: &[u8], suffix: &[u8]) -> bool { string.ends_with(suffix) } pub(crate) fn starts_with(string: &[u8], prefix: &[u8]) -> bool { string.starts_with(prefix) } pub(crate) fn debug(string: &[u8], _: &mut Formatter<'_>) -> fmt::Result { assert!(string.is_empty()); Ok(()) } #[cfg(feature = "uniquote")] pub(crate) mod uniquote { use uniquote::Formatter; use uniquote::Quote; use uniquote::Result; pub(crate) fn escape(string: &[u8], f: &mut Formatter<'_>) -> Result { string.escape(f) } } os_str_bytes-6.0.0/src/windows/mod.rs000064400000000000000000000111510072674642500160030ustar 00000000000000// These functions are necessarily inefficient, because they must revert // encoding conversions performed by the standard library. However, there is // currently no better alternative. use std::borrow::Cow; use std::error::Error; use std::ffi::OsStr; use std::ffi::OsString; use std::fmt; use std::fmt::Display; use std::fmt::Formatter; use std::os::windows::ffi::OsStrExt; use std::os::windows::ffi::OsStringExt; use std::result; use std::str; if_raw_str! { pub(super) mod raw; } mod wtf8; use wtf8::encode_wide; use wtf8::DecodeWide; #[derive(Debug, Eq, PartialEq)] pub(super) enum EncodingError { Byte(u8), CodePoint(u32), End(), } impl EncodingError { fn position(&self) -> Cow<'_, str> { match self { Self::Byte(byte) => Cow::Owned(format!("byte b'\\x{:02X}'", byte)), Self::CodePoint(code_point) => { Cow::Owned(format!("code point U+{:04X}", code_point)) } Self::End() => Cow::Borrowed("end of string"), } } } impl Display for EncodingError { fn fmt(&self, formatter: &mut Formatter<'_>) -> fmt::Result { write!( formatter, "byte sequence is not representable in the platform encoding; \ error at {}", self.position(), ) } } impl Error for EncodingError {} type Result = result::Result; fn from_bytes(string: &[u8]) -> Result { let encoder = encode_wide(string); // Collecting an iterator into a result ignores the size hint: // https://github.com/rust-lang/rust/issues/48994 let mut encoded_string = Vec::with_capacity(encoder.size_hint().0); for wchar in encoder { encoded_string.push(wchar?); } Ok(OsStringExt::from_wide(&encoded_string)) } fn to_bytes(os_string: &OsStr) -> Vec { let encoder = OsStrExt::encode_wide(os_string); let mut string = Vec::with_capacity(encoder.size_hint().0); string.extend(DecodeWide::new(encoder)); string } pub(super) fn os_str_from_bytes(string: &[u8]) -> Result> { from_bytes(string).map(Cow::Owned) } pub(super) fn os_str_to_bytes(os_string: &OsStr) -> Cow<'_, [u8]> { Cow::Owned(to_bytes(os_string)) } pub(super) fn os_string_from_vec(string: Vec) -> Result { from_bytes(&string) } pub(super) fn os_string_into_vec(os_string: OsString) -> Vec { to_bytes(&os_string) } #[cfg(test)] mod tests { use std::ffi::OsStr; use crate::OsStrBytes; use super::EncodingError; #[test] fn test_invalid() { use EncodingError::Byte; use EncodingError::CodePoint; use EncodingError::End; test_error(Byte(b'\x83'), b"\x0C\x83\xD7\x3E"); test_error(Byte(b'\x52'), b"\x19\xF7\x52\x84"); test_error(Byte(b'\xB8'), b"\x70\xB8\x1F\x66"); test_error(CodePoint(0x34_0388), b"\x70\xFD\x80\x8E\x88"); test_error(Byte(b'\x80'), b"\x80"); test_error(Byte(b'\x80'), b"\x80\x80"); test_error(Byte(b'\x80'), b"\x80\x80\x80"); test_error(Byte(b'\x81'), b"\x81"); test_error(Byte(b'\x88'), b"\x88\xB4\xC7\x46"); test_error(Byte(b'\x97'), b"\x97\xCE\x06"); test_error(Byte(b'\x00'), b"\xC2\x00"); test_error(Byte(b'\x7F'), b"\xC2\x7F"); test_error(Byte(b'\x09'), b"\xCD\x09\x95"); test_error(Byte(b'\x43'), b"\xCD\x43\x5F\xA0"); test_error(Byte(b'\x69'), b"\xD7\x69\xB2"); test_error(CodePoint(0x528), b"\xE0\x94\xA8"); test_error(CodePoint(0x766), b"\xE0\x9D\xA6\x12\xAE"); test_error(Byte(b'\xFD'), b"\xE2\xAB\xFD\x51"); test_error(Byte(b'\xC4'), b"\xE3\xC4"); test_error(CodePoint(0xDC00), b"\xED\xA0\x80\xED\xB0\x80"); test_error(End(), b"\xF1"); test_error(End(), b"\xF1\x80"); test_error(End(), b"\xF1\x80\x80"); test_error(Byte(b'\xF1'), b"\xF1\x80\x80\xF1"); test_error(CodePoint(0x11_09CC), b"\xF4\x90\xA7\x8C"); test_error(CodePoint(0x15_EC46), b"\xF5\x9E\xB1\x86"); test_error(End(), b"\xFB"); test_error(End(), b"\xFB\x80"); test_error(End(), b"\xFB\x80\x80"); test_error(CodePoint(0x2C_0000), b"\xFB\x80\x80\x80"); test_error(End(), b"\xFF"); test_error(End(), b"\xFF\x80"); test_error(End(), b"\xFF\x80\x80"); test_error(CodePoint(0x3C_0000), b"\xFF\x80\x80\x80"); test_error(CodePoint(0x3C_6143), b"\xFF\x86\x85\x83"); fn test_error(error: EncodingError, string: &[u8]) { assert_eq!( Err(error), OsStr::from_raw_bytes(string).map_err(|x| x.0), ); } } } os_str_bytes-6.0.0/src/windows/raw.rs000064400000000000000000000022270072674642500160210ustar 00000000000000use std::fmt; use std::fmt::Formatter; pub(crate) use crate::util::is_continuation; use super::wtf8; pub(crate) use super::wtf8::ends_with; pub(crate) use super::wtf8::starts_with; use super::wtf8::CodePoints; pub(crate) fn encode_wide_unchecked( string: &[u8], ) -> impl '_ + Iterator { wtf8::encode_wide(string).map(|x| x.expect("invalid string")) } pub(crate) fn decode_code_point(string: &[u8]) -> u32 { let mut code_points = CodePoints::new(string.iter().copied()); let code_point = code_points .next() .expect("cannot parse code point from empty string") .expect("invalid string"); assert_eq!(None, code_points.next(), "multiple code points found"); code_point } pub(crate) fn debug(string: &[u8], f: &mut Formatter<'_>) -> fmt::Result { for wchar in encode_wide_unchecked(string) { write!(f, "\\u{{{:X}}}", wchar)?; } Ok(()) } #[cfg(feature = "uniquote")] pub(crate) mod uniquote { use uniquote::Formatter; use uniquote::Result; pub(crate) fn escape(string: &[u8], f: &mut Formatter<'_>) -> Result { f.escape_utf16(super::encode_wide_unchecked(string)) } } os_str_bytes-6.0.0/src/windows/wtf8/code_points.rs000064400000000000000000000061250072674642500204270ustar 00000000000000use std::iter::Peekable; use std::mem; use crate::util::is_continuation; use crate::util::BYTE_SHIFT; use crate::util::CONT_MASK; use super::EncodingError; use super::Result; pub(in super::super) struct CodePoints where I: Iterator, { iter: Peekable, surrogate: bool, } impl CodePoints where I: Iterator, { pub(in super::super) fn new(string: S) -> Self where S: IntoIterator, { Self { iter: string.into_iter().peekable(), surrogate: false, } } fn consume_next(&mut self, code_point: &mut u32) -> Result<()> { if let Some(&byte) = self.iter.peek() { if !is_continuation(byte) { self.surrogate = false; // Not consuming this byte will be useful if this crate ever // offers a way to encode lossily. return Err(EncodingError::Byte(byte)); } *code_point = (*code_point << BYTE_SHIFT) | u32::from(byte & CONT_MASK); let removed = self.iter.next(); debug_assert_eq!(Some(byte), removed); } else { return Err(EncodingError::End()); } Ok(()) } pub(super) fn inner_size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl Iterator for CodePoints where I: Iterator, { type Item = Result; fn next(&mut self) -> Option { let byte = self.iter.next()?; let mut code_point: u32 = byte.into(); macro_rules! consume_next { () => {{ if let Err(error) = self.consume_next(&mut code_point) { return Some(Err(error)); } }}; } let prev_surrogate = mem::replace(&mut self.surrogate, false); let mut invalid = false; if !byte.is_ascii() { if byte < 0xC2 { return Some(Err(EncodingError::Byte(byte))); } if byte < 0xE0 { code_point &= 0x1F; } else { code_point &= 0x0F; consume_next!(); if byte >= 0xF0 { if code_point.wrapping_sub(0x10) >= 0x100 { invalid = true; } consume_next!(); // This condition is optimized to detect surrogate code points. } else if code_point & 0xFE0 == 0x360 { if code_point & 0x10 == 0 { self.surrogate = true; } else if prev_surrogate { // Decoding a broken surrogate pair would be lossy. invalid = true; } } if code_point < 0x20 { invalid = true; } } consume_next!(); } if invalid { return Some(Err(EncodingError::CodePoint(code_point))); } Some(Ok(code_point)) } } os_str_bytes-6.0.0/src/windows/wtf8/convert.rs000064400000000000000000000100570072674642500176000ustar 00000000000000use std::char; use std::char::DecodeUtf16; use std::num::NonZeroU16; use crate::util::BYTE_SHIFT; use crate::util::CONT_MASK; use crate::util::CONT_TAG; use super::CodePoints; use super::Result; const MIN_HIGH_SURROGATE: u16 = 0xD800; const MIN_LOW_SURROGATE: u16 = 0xDC00; const MIN_SURROGATE_CODE: u32 = (u16::MAX as u32) + 1; macro_rules! static_assert { ( $condition:expr ) => { const _: () = [()][if $condition { 0 } else { 1 }]; }; } pub(in super::super) struct DecodeWide where I: Iterator, { iter: DecodeUtf16, code_point: u32, shift: u8, } impl DecodeWide where I: Iterator, { pub(in super::super) fn new(string: S) -> Self where S: IntoIterator, { Self { iter: char::decode_utf16(string), code_point: 0, shift: 0, } } } impl Iterator for DecodeWide where I: Iterator, { type Item = u8; fn next(&mut self) -> Option { if let Some(shift) = self.shift.checked_sub(BYTE_SHIFT) { self.shift = shift; return Some( ((self.code_point >> self.shift) as u8 & CONT_MASK) | CONT_TAG, ); } self.code_point = self .iter .next()? .map(Into::into) .unwrap_or_else(|x| x.unpaired_surrogate().into()); macro_rules! decode { ( $tag:expr ) => { Some((self.code_point >> self.shift) as u8 | $tag) }; } macro_rules! try_decode { ( $tag:expr , $upper_bound:expr ) => { if self.code_point < $upper_bound { return decode!($tag); } self.shift += BYTE_SHIFT; }; } try_decode!(0, 0x80); try_decode!(0xC0, 0x800); try_decode!(0xE0, MIN_SURROGATE_CODE); decode!(0xF0) } fn size_hint(&self) -> (usize, Option) { let (low, high) = self.iter.size_hint(); let shift = self.shift.into(); ( low.saturating_add(shift), high.and_then(|x| x.checked_mul(4)) .and_then(|x| x.checked_add(shift)), ) } } struct EncodeWide where I: Iterator, { iter: CodePoints, surrogate: Option, } impl EncodeWide where I: Iterator, { pub(in super::super) fn new(string: S) -> Self where S: IntoIterator, { Self { iter: CodePoints::new(string), surrogate: None, } } } impl Iterator for EncodeWide where I: Iterator, { type Item = Result; fn next(&mut self) -> Option { if let Some(surrogate) = self.surrogate.take() { return Some(Ok(surrogate.get())); } self.iter.next().map(|code_point| { code_point.map(|code_point| { code_point .checked_sub(MIN_SURROGATE_CODE) .map(|offset| { static_assert!(MIN_LOW_SURROGATE != 0); self.surrogate = Some(unsafe { NonZeroU16::new_unchecked( (offset & 0x3FF) as u16 | MIN_LOW_SURROGATE, ) }); (offset >> 10) as u16 | MIN_HIGH_SURROGATE }) .unwrap_or(code_point as u16) }) }) } fn size_hint(&self) -> (usize, Option) { let (low, high) = self.iter.inner_size_hint(); let additional = self.surrogate.is_some().into(); ( (low.saturating_add(2) / 3).saturating_add(additional), high.and_then(|x| x.checked_add(additional)), ) } } pub(in super::super) fn encode_wide( string: &[u8], ) -> impl '_ + Iterator> { EncodeWide::new(string.iter().copied()) } os_str_bytes-6.0.0/src/windows/wtf8/mod.rs000064400000000000000000000006210072674642500166730ustar 00000000000000// This module implements the WTF-8 encoding specification: // https://simonsapin.github.io/wtf-8/ use super::EncodingError; use super::Result; mod code_points; pub(super) use code_points::CodePoints; mod convert; pub(super) use convert::encode_wide; pub(super) use convert::DecodeWide; if_raw_str! { mod string; pub(crate) use string::ends_with; pub(crate) use string::starts_with; } os_str_bytes-6.0.0/src/windows/wtf8/string.rs000064400000000000000000000041310072674642500174220ustar 00000000000000use crate::util::is_continuation; use super::encode_wide; const SURROGATE_LENGTH: usize = 3; pub(crate) fn ends_with(string: &[u8], mut suffix: &[u8]) -> bool { let index = match string.len().checked_sub(suffix.len()) { Some(index) => index, None => return false, }; if let Some(&byte) = string.get(index) { if is_continuation(byte) { let index = index.checked_sub(1).expect("invalid string"); let mut wide_surrogate = match suffix.get(..SURROGATE_LENGTH) { Some(surrogate) => encode_wide(surrogate), None => return false, }; let surrogate_wchar = wide_surrogate .next() .expect("failed decoding non-empty suffix"); if wide_surrogate.next().is_some() || encode_wide(&string[index..]) .take_while(Result::is_ok) .nth(1) != Some(surrogate_wchar) { return false; } suffix = &suffix[SURROGATE_LENGTH..]; } } string.ends_with(suffix) } pub(crate) fn starts_with(string: &[u8], mut prefix: &[u8]) -> bool { if let Some(&byte) = string.get(prefix.len()) { if is_continuation(byte) { let index = match prefix.len().checked_sub(SURROGATE_LENGTH) { Some(index) => index, None => return false, }; let (substring, surrogate) = prefix.split_at(index); let mut wide_surrogate = encode_wide(surrogate); let surrogate_wchar = wide_surrogate .next() .expect("failed decoding non-empty prefix"); if surrogate_wchar.is_err() || wide_surrogate.next().is_some() || encode_wide(&string[index..]) .next() .expect("failed decoding non-empty substring") != surrogate_wchar { return false; } prefix = substring; } } string.starts_with(prefix) }