pest_meta-2.1.1/Cargo.toml.orig010064400007650000024000000014371345516651200146170ustar0000000000000000[package] name = "pest_meta" description = "pest meta language parser and validator" version = "2.1.1" authors = ["Dragoș Tiselice "] homepage = "https://pest-parser.github.io/" repository = "https://github.com/pest-parser/pest" documentation = "https://docs.rs/pest" keywords = ["pest", "parser", "meta", "optimizer"] categories = ["parsing"] license = "MIT/Apache-2.0" readme = "_README.md" exclude = ["src/grammar.pest"] include = ["Cargo.toml", "src/**/*", "src/grammar.rs", "_README.md", "LICENSE-*"] [dependencies] maplit = "1.0" pest = { path = "../pest", version = "2.1.0" } [badges] codecov = { repository = "pest-parser/pest" } maintenance = { status = "actively-developed" } travis-ci = { repository = "pest-parser/pest" } [build-dependencies] sha-1 = "0.8" pest_meta-2.1.1/Cargo.toml0000644000000024620000000000000110570ustar00# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g. crates.io) dependencies # # If you believe there's an error in this file please file an # issue against the rust-lang/cargo repository. If you're # editing this file be aware that the upstream Cargo.toml # will likely look very different (and much more reasonable) [package] name = "pest_meta" version = "2.1.1" authors = ["Dragoș Tiselice "] exclude = ["src/grammar.pest"] include = ["Cargo.toml", "src/**/*", "src/grammar.rs", "_README.md", "LICENSE-*"] description = "pest meta language parser and validator" homepage = "https://pest-parser.github.io/" documentation = "https://docs.rs/pest" readme = "_README.md" keywords = ["pest", "parser", "meta", "optimizer"] categories = ["parsing"] license = "MIT/Apache-2.0" repository = "https://github.com/pest-parser/pest" [dependencies.maplit] version = "1.0" [dependencies.pest] version = "2.1.0" [build-dependencies.sha-1] version = "0.8" [badges.codecov] repository = "pest-parser/pest" [badges.maintenance] status = "actively-developed" [badges.travis-ci] repository = "pest-parser/pest" pest_meta-2.1.1/LICENSE-APACHE010064400007650000024000000251371332773754600136700ustar0000000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. pest_meta-2.1.1/LICENSE-MIT010064400007650000024000000017771332773754600134040ustar0000000000000000Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pest_meta-2.1.1/_README.md010064400007650000024000000124361345516522100133430ustar0000000000000000

# pest. The Elegant Parser [![Join the chat at https://gitter.im/dragostis/pest](https://badges.gitter.im/dragostis/pest.svg)](https://gitter.im/dragostis/pest?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![Book](https://img.shields.io/badge/book-WIP-4d76ae.svg)](https://pest-parser.github.io/book) [![Docs](https://docs.rs/pest/badge.svg)](https://docs.rs/pest) [![Build Status](https://travis-ci.org/pest-parser/pest.svg?branch=master)](https://travis-ci.org/pest-parser/pest) [![codecov](https://codecov.io/gh/pest-parser/pest/branch/master/graph/badge.svg)](https://codecov.io/gh/pest-parser/pest) [![Crates.io](https://img.shields.io/crates/d/pest.svg)](https://crates.io/crates/pest) [![Crates.io](https://img.shields.io/crates/v/pest.svg)](https://crates.io/crates/pest) pest is a general purpose parser written in Rust with a focus on accessibility, correctness, and performance. It uses parsing expression grammars (or [PEG]) as input, which are similar in spirit to regular expressions, but which offer the enhanced expressivity needed to parse complex languages. [PEG]: https://en.wikipedia.org/wiki/Parsing_expression_grammar ## Getting started The recommended way to start parsing with pest is to read the official [book]. Other helpful resources: * API reference on [docs.rs] * play with grammars and share them on our [fiddle] * leave feedback, ask questions, or greet us on [Gitter] [book]: https://pest-parser.github.io/book [docs.rs]: https://docs.rs/pest [fiddle]: https://pest-parser.github.io/#editor [Gitter]: https://gitter.im/dragostis/pest ## Example The following is an example of a grammar for a list of alpha-numeric identifiers where the first identifier does not start with a digit: ```rust alpha = { 'a'..'z' | 'A'..'Z' } digit = { '0'..'9' } ident = { (alpha | digit)+ } ident_list = _{ !digit ~ ident ~ (" " ~ ident)+ } // ^ // ident_list rule is silent which means it produces no tokens ``` Grammars are saved in separate .pest files which are never mixed with procedural code. This results in an always up-to-date formalization of a language that is easy to read and maintain. ## Meaningful error reporting Based on the grammar definition, the parser also includes automatic error reporting. For the example above, the input `"123"` will result in: ``` thread 'main' panicked at ' --> 1:1 | 1 | 123 | ^--- | = unexpected digit', src/main.rs:12 ``` while `"ab *"` will result in: ``` thread 'main' panicked at ' --> 1:1 | 1 | ab * | ^--- | = expected ident', src/main.rs:12 ``` ## Pairs API The grammar can be used to derive a `Parser` implementation automatically. Parsing returns an iterator of nested token pairs: ```rust extern crate pest; #[macro_use] extern crate pest_derive; use pest::Parser; #[derive(Parser)] #[grammar = "ident.pest"] struct IdentParser; fn main() {    let pairs = IdentParser::parse(Rule::ident_list, "a1 b2").unwrap_or_else(|e| panic!("{}", e)); // Because ident_list is silent, the iterator will contain idents for pair in pairs { // A pair is a combination of the rule which matched and a span of input println!("Rule: {:?}", pair.as_rule()); println!("Span: {:?}", pair.as_span()); println!("Text: {}", pair.as_str()); // A pair can be converted to an iterator of the tokens which make it up: for inner_pair in pair.into_inner() { match inner_pair.as_rule() { Rule::alpha => println!("Letter: {}", inner_pair.as_str()), Rule::digit => println!("Digit: {}", inner_pair.as_str()), _ => unreachable!() }; } } } ``` This produces the following output: ``` Rule: ident Span: Span { start: 0, end: 2 } Text: a1 Letter: a Digit: 1 Rule: ident Span: Span { start: 3, end: 5 } Text: b2 Letter: b Digit: 2 ``` ## Other features * Precedence climbing * Input handling * Custom errors * Runs on stable Rust ## Projects using pest * [pest_meta](https://github.com/pest-parser/pest/blob/master/meta/src/grammar.pest) (bootstrapped) * [brain](https://github.com/brain-lang/brain) * [Chelone](https://github.com/Aaronepower/chelone) * [comrak](https://github.com/kivikakk/comrak) * [elastic-rs](https://github.com/cch123/elastic-rs) * [graphql-parser](https://github.com/Keats/graphql-parser) * [handlebars-rust](https://github.com/sunng87/handlebars-rust) * [hexdino](https://github.com/Luz/hexdino) * [Huia](https://gitlab.com/jimsy/huia/) * [jql](https://github.com/yamafaktory/jql) * [json5-rs](https://github.com/callum-oakley/json5-rs) * [mt940](https://github.com/svenstaro/mt940-rs) * [py_literal](https://github.com/jturner314/py_literal) * [rouler](https://github.com/jarcane/rouler) * [RuSh](https://github.com/lwandrebeck/RuSh) * [rs_pbrt](https://github.com/wahn/rs_pbrt) * [stache](https://github.com/dgraham/stache) * [tera](https://github.com/Keats/tera) * [ui_gen](https://github.com/emoon/ui_gen) * [ukhasnet-parser](https://github.com/adamgreig/ukhasnet-parser) ## Special thanks A special round of applause goes to prof. Marius Minea for his guidance and all pest contributors, some of which being none other than my friends. pest_meta-2.1.1/src/ast.rs010064400007650000024000000251501340723067600136520ustar0000000000000000// pest. The Elegant Parser // Copyright (c) 2018 Dragoș Tiselice // // Licensed under the Apache License, Version 2.0 // or the MIT // license , at your // option. All files in the project carrying such notice may not be copied, // modified, or distributed except according to those terms. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Rule { pub name: String, pub ty: RuleType, pub expr: Expr, } #[derive(Clone, Copy, Debug, Eq, PartialEq)] pub enum RuleType { Normal, Silent, Atomic, CompoundAtomic, NonAtomic, } #[derive(Clone, Debug, Eq, PartialEq)] pub enum Expr { /// Matches an exact string, e.g. `"a"` Str(String), /// Matches an exact string, case insensitively (ASCII only), e.g. `^"a"` Insens(String), /// Matches one character in the range, e.g. `'a'..'z'` Range(String, String), /// Matches the rule with the given name, e.g. `a` Ident(String), /// Matches a custom part of the stack, e.g. `PEEK[..]` PeekSlice(i32, Option), /// Positive lookahead; matches expression without making progress, e.g. `&e` PosPred(Box), /// Negative lookahead; matches if expression doesn't match, without making progress, e.g. `!e` NegPred(Box), /// Matches a sequence of two expressions, e.g. `e1 ~ e2` Seq(Box, Box), /// Matches either of two expressions, e.g. `e1 | e2` Choice(Box, Box), /// Optionally matches an expression, e.g. `e?` Opt(Box), /// Matches an expression zero or more times, e.g. `e*` Rep(Box), /// Matches an expression one or more times, e.g. `e+` RepOnce(Box), /// Matches an expression an exact number of times, e.g. `e{n}` RepExact(Box, u32), /// Matches an expression at least a number of times, e.g. `e{n,}` RepMin(Box, u32), /// Matches an expression at most a number of times, e.g. `e{,n}` RepMax(Box, u32), /// Matches an expression a number of times within a range, e.g. `e{m, n}` RepMinMax(Box, u32, u32), /// Continues to match expressions until one of the strings in the `Vec` is found Skip(Vec), /// Matches an expression and pushes it to the stack, e.g. `push(e)` Push(Box), } impl Expr { pub fn iter_top_down(&self) -> ExprTopDownIterator { ExprTopDownIterator::new(self) } pub fn map_top_down(self, mut f: F) -> Expr where F: FnMut(Expr) -> Expr, { fn map_internal(expr: Expr, f: &mut F) -> Expr where F: FnMut(Expr) -> Expr, { let expr = f(expr); match expr { // TODO: Use box syntax when it gets stabilized. Expr::PosPred(expr) => { let mapped = Box::new(map_internal(*expr, f)); Expr::PosPred(mapped) } Expr::NegPred(expr) => { let mapped = Box::new(map_internal(*expr, f)); Expr::NegPred(mapped) } Expr::Seq(lhs, rhs) => { let mapped_lhs = Box::new(map_internal(*lhs, f)); let mapped_rhs = Box::new(map_internal(*rhs, f)); Expr::Seq(mapped_lhs, mapped_rhs) } Expr::Choice(lhs, rhs) => { let mapped_lhs = Box::new(map_internal(*lhs, f)); let mapped_rhs = Box::new(map_internal(*rhs, f)); Expr::Choice(mapped_lhs, mapped_rhs) } Expr::Rep(expr) => { let mapped = Box::new(map_internal(*expr, f)); Expr::Rep(mapped) } Expr::RepOnce(expr) => { let mapped = Box::new(map_internal(*expr, f)); Expr::RepOnce(mapped) } Expr::RepExact(expr, max) => { let mapped = Box::new(map_internal(*expr, f)); Expr::RepExact(mapped, max) } Expr::RepMin(expr, num) => { let mapped = Box::new(map_internal(*expr, f)); Expr::RepMin(mapped, num) } Expr::RepMax(expr, num) => { let mapped = Box::new(map_internal(*expr, f)); Expr::RepMax(mapped, num) } Expr::RepMinMax(expr, min, max) => { let mapped = Box::new(map_internal(*expr, f)); Expr::RepMinMax(mapped, min, max) } Expr::Opt(expr) => { let mapped = Box::new(map_internal(*expr, f)); Expr::Opt(mapped) } Expr::Push(expr) => { let mapped = Box::new(map_internal(*expr, f)); Expr::Push(mapped) } expr => expr, } } map_internal(self, &mut f) } pub fn map_bottom_up(self, mut f: F) -> Expr where F: FnMut(Expr) -> Expr, { fn map_internal(expr: Expr, f: &mut F) -> Expr where F: FnMut(Expr) -> Expr, { let mapped = match expr { Expr::PosPred(expr) => { // TODO: Use box syntax when it gets stabilized. let mapped = Box::new(map_internal(*expr, f)); Expr::PosPred(mapped) } Expr::NegPred(expr) => { let mapped = Box::new(map_internal(*expr, f)); Expr::NegPred(mapped) } Expr::Seq(lhs, rhs) => { let mapped_lhs = Box::new(map_internal(*lhs, f)); let mapped_rhs = Box::new(map_internal(*rhs, f)); Expr::Seq(mapped_lhs, mapped_rhs) } Expr::Choice(lhs, rhs) => { let mapped_lhs = Box::new(map_internal(*lhs, f)); let mapped_rhs = Box::new(map_internal(*rhs, f)); Expr::Choice(mapped_lhs, mapped_rhs) } Expr::Rep(expr) => { let mapped = Box::new(map_internal(*expr, f)); Expr::Rep(mapped) } Expr::RepOnce(expr) => { let mapped = Box::new(map_internal(*expr, f)); Expr::RepOnce(mapped) } Expr::RepExact(expr, num) => { let mapped = Box::new(map_internal(*expr, f)); Expr::RepExact(mapped, num) } Expr::RepMin(expr, max) => { let mapped = Box::new(map_internal(*expr, f)); Expr::RepMin(mapped, max) } Expr::RepMax(expr, max) => { let mapped = Box::new(map_internal(*expr, f)); Expr::RepMax(mapped, max) } Expr::RepMinMax(expr, min, max) => { let mapped = Box::new(map_internal(*expr, f)); Expr::RepMinMax(mapped, min, max) } Expr::Opt(expr) => { let mapped = Box::new(map_internal(*expr, f)); Expr::Opt(mapped) } Expr::Push(expr) => { let mapped = Box::new(map_internal(*expr, f)); Expr::Push(mapped) } expr => expr, }; f(mapped) } map_internal(self, &mut f) } } pub struct ExprTopDownIterator { current: Option, next: Option, right_branches: Vec, } impl ExprTopDownIterator { pub fn new(expr: &Expr) -> Self { let mut iter = ExprTopDownIterator { current: None, next: None, right_branches: vec![], }; iter.iterate_expr(expr.clone()); iter } fn iterate_expr(&mut self, expr: Expr) { self.current = Some(expr.clone()); match expr { Expr::Seq(lhs, rhs) => { self.right_branches.push(*rhs); self.next = Some(*lhs); } Expr::Choice(lhs, rhs) => { self.right_branches.push(*rhs); self.next = Some(*lhs); } Expr::PosPred(expr) | Expr::NegPred(expr) | Expr::Rep(expr) | Expr::RepOnce(expr) | Expr::RepExact(expr, _) | Expr::RepMin(expr, _) | Expr::RepMax(expr, _) | Expr::RepMinMax(expr, ..) | Expr::Opt(expr) | Expr::Push(expr) => { self.next = Some(*expr); } _ => { self.next = None; } } } } impl Iterator for ExprTopDownIterator { type Item = Expr; fn next(&mut self) -> Option { let result = self.current.take(); if let Some(expr) = self.next.take() { self.iterate_expr(expr); } else if let Some(expr) = self.right_branches.pop() { self.iterate_expr(expr); } result } } #[cfg(test)] mod tests { use super::*; #[test] fn top_down_iterator() { let expr = Expr::Choice( Box::new(Expr::Str(String::from("a"))), Box::new(Expr::Str(String::from("b"))), ); let mut top_down = expr.clone().iter_top_down(); assert_eq!(top_down.next(), Some(expr)); assert_eq!(top_down.next(), Some(Expr::Str(String::from("a")))); assert_eq!(top_down.next(), Some(Expr::Str(String::from("b")))); assert_eq!(top_down.next(), None); } #[test] fn identity() { let expr = Expr::Choice( Box::new(Expr::Seq( Box::new(Expr::Ident("a".to_owned())), Box::new(Expr::Str("b".to_owned())), )), Box::new(Expr::PosPred(Box::new(Expr::NegPred(Box::new(Expr::Rep( Box::new(Expr::RepOnce(Box::new(Expr::Opt(Box::new(Expr::Choice( Box::new(Expr::Insens("c".to_owned())), Box::new(Expr::Push(Box::new(Expr::Range( "'d'".to_owned(), "'e'".to_owned(), )))), )))))), )))))), ); assert_eq!( expr.clone() .map_bottom_up(|expr| expr) .map_top_down(|expr| expr), expr ); } } pest_meta-2.1.1/src/grammar.pest010064400007650000024000000065051337653042400150420ustar0000000000000000// pest. The Elegant Parser // Copyright (c) 2018 Dragoș Tiselice // // Licensed under the Apache License, Version 2.0 // or the MIT // license , at your // option. All files in the project carrying such notice may not be copied, // modified, or distributed except according to those terms. grammar_rules = _{ SOI ~ grammar_rule+ ~ EOI } grammar_rule = { identifier ~ assignment_operator ~ modifier? ~ opening_brace ~ expression ~ closing_brace } assignment_operator = { "=" } opening_brace = { "{" } closing_brace = { "}" } opening_paren = { "(" } closing_paren = { ")" } opening_brack = { "[" } closing_brack = { "]" } modifier = _{ silent_modifier | atomic_modifier | compound_atomic_modifier | non_atomic_modifier } silent_modifier = { "_" } atomic_modifier = { "@" } compound_atomic_modifier = { "$" } non_atomic_modifier = { "!" } expression = { term ~ (infix_operator ~ term)* } term = { prefix_operator* ~ node ~ postfix_operator* } node = _{ opening_paren ~ expression ~ closing_paren | terminal } terminal = _{ _push | peek_slice | identifier | string | insensitive_string | range } prefix_operator = _{ positive_predicate_operator | negative_predicate_operator } infix_operator = _{ sequence_operator | choice_operator } postfix_operator = _{ optional_operator | repeat_operator | repeat_once_operator | repeat_exact | repeat_min | repeat_max | repeat_min_max } positive_predicate_operator = { "&" } negative_predicate_operator = { "!" } sequence_operator = { "~" } choice_operator = { "|" } optional_operator = { "?" } repeat_operator = { "*" } repeat_once_operator = { "+" } repeat_exact = { opening_brace ~ number ~ closing_brace } repeat_min = { opening_brace ~ number ~ comma ~ closing_brace } repeat_max = { opening_brace ~ comma ~ number ~ closing_brace } repeat_min_max = { opening_brace ~ number ~ comma ~ number ~ closing_brace } number = @{ '0'..'9'+ } integer = @{ number | "-" ~ "0"* ~ '1'..'9' ~ number? } comma = { "," } _push = { "PUSH" ~ opening_paren ~ expression ~ closing_paren } peek_slice = { "PEEK" ~ opening_brack ~ integer? ~ range_operator ~ integer? ~ closing_brack } identifier = @{ !"PUSH" ~ ("_" | alpha) ~ ("_" | alpha_num)* } alpha = _{ 'a'..'z' | 'A'..'Z' } alpha_num = _{ alpha | '0'..'9' } string = ${ quote ~ inner_str ~ quote } insensitive_string = { "^" ~ string } range = { character ~ range_operator ~ character } character = ${ single_quote ~ inner_chr ~ single_quote } inner_str = @{ (!("\"" | "\\") ~ ANY)* ~ (escape ~ inner_str)? } inner_chr = @{ escape | ANY } escape = @{ "\\" ~ ("\"" | "\\" | "r" | "n" | "t" | "0" | "'" | code | unicode) } code = @{ "x" ~ hex_digit{2} } unicode = @{ "u" ~ opening_brace ~ hex_digit{2, 6} ~ closing_brace } hex_digit = @{ '0'..'9' | 'a'..'f' | 'A'..'F' } quote = { "\"" } single_quote = { "'" } range_operator = { ".." } newline = _{ "\n" | "\r\n" } WHITESPACE = _{ " " | "\t" | newline } block_comment = _{ "/*" ~ (block_comment | !"*/" ~ ANY)* ~ "*/" } COMMENT = _{ block_comment | ("//" ~ (!newline ~ ANY)*) } pest_meta-2.1.1/src/grammar.rs010064400007650000024000001037171340723246400145140ustar0000000000000000pub struct PestParser; # [ allow ( dead_code , non_camel_case_types ) ] # [ derive ( Clone , Copy , Debug , Eq , Hash , Ord , PartialEq , PartialOrd ) ] pub enum Rule { EOI , grammar_rules , grammar_rule , assignment_operator , opening_brace , closing_brace , opening_paren , closing_paren , opening_brack , closing_brack , modifier , silent_modifier , atomic_modifier , compound_atomic_modifier , non_atomic_modifier , expression , term , node , terminal , prefix_operator , infix_operator , postfix_operator , positive_predicate_operator , negative_predicate_operator , sequence_operator , choice_operator , optional_operator , repeat_operator , repeat_once_operator , repeat_exact , repeat_min , repeat_max , repeat_min_max , number , integer , comma , _push , peek_slice , identifier , alpha , alpha_num , string , insensitive_string , range , character , inner_str , inner_chr , escape , code , unicode , hex_digit , quote , single_quote , range_operator , newline , WHITESPACE , block_comment , COMMENT } impl :: pest :: Parser < Rule > for PestParser { fn parse < 'i > ( rule : Rule , input : & 'i str ) -> :: std :: result :: Result < :: pest :: iterators :: Pairs < 'i , Rule > , :: pest :: error :: Error < Rule > > { mod rules { pub mod hidden { use super :: super :: Rule ; # [ inline ] # [ allow ( dead_code , non_snake_case , unused_variables ) ] pub fn skip ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { if state . atomicity ( ) == :: pest :: Atomicity :: NonAtomic { state . sequence ( | state | { state . repeat ( | state | { super :: visible :: WHITESPACE ( state ) } ) . and_then ( | state | { state . repeat ( | state | { state . sequence ( | state | { super :: visible :: COMMENT ( state ) . and_then ( | state | { state . repeat ( | state | { super :: visible :: WHITESPACE ( state ) } ) } ) } ) } ) } ) } ) } else { Ok ( state ) } } } pub mod visible { use super :: super :: Rule ; # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn grammar_rules ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . sequence ( | state | { self :: SOI ( state ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { state . sequence ( | state | { self :: grammar_rule ( state ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { state . sequence ( | state | { state . optional ( | state | { self :: grammar_rule ( state ) . and_then ( | state | { state . repeat ( | state | { state . sequence ( | state | { super :: hidden :: skip ( state ) . and_then ( | state | { self :: grammar_rule ( state ) } ) } ) } ) } ) } ) } ) } ) } ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: EOI ( state ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn grammar_rule ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: grammar_rule , | state | { state . sequence ( | state | { self :: identifier ( state ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: assignment_operator ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { state . optional ( | state | { self :: modifier ( state ) } ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: opening_brace ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: expression ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: closing_brace ( state ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn assignment_operator ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: assignment_operator , | state | { state . match_string ( "=" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn opening_brace ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: opening_brace , | state | { state . match_string ( "{" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn closing_brace ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: closing_brace , | state | { state . match_string ( "}" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn opening_paren ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: opening_paren , | state | { state . match_string ( "(" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn closing_paren ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: closing_paren , | state | { state . match_string ( ")" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn opening_brack ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: opening_brack , | state | { state . match_string ( "[" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn closing_brack ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: closing_brack , | state | { state . match_string ( "]" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn modifier ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { self :: silent_modifier ( state ) . or_else ( | state | { self :: atomic_modifier ( state ) } ) . or_else ( | state | { self :: compound_atomic_modifier ( state ) } ) . or_else ( | state | { self :: non_atomic_modifier ( state ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn silent_modifier ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: silent_modifier , | state | { state . match_string ( "_" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn atomic_modifier ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: atomic_modifier , | state | { state . match_string ( "@" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn compound_atomic_modifier ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: compound_atomic_modifier , | state | { state . match_string ( "$" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn non_atomic_modifier ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: non_atomic_modifier , | state | { state . match_string ( "!" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn expression ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: expression , | state | { state . sequence ( | state | { self :: term ( state ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { state . sequence ( | state | { state . optional ( | state | { state . sequence ( | state | { self :: infix_operator ( state ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: term ( state ) } ) } ) . and_then ( | state | { state . repeat ( | state | { state . sequence ( | state | { super :: hidden :: skip ( state ) . and_then ( | state | { state . sequence ( | state | { self :: infix_operator ( state ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: term ( state ) } ) } ) } ) } ) } ) } ) } ) } ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn term ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: term , | state | { state . sequence ( | state | { state . sequence ( | state | { state . optional ( | state | { self :: prefix_operator ( state ) . and_then ( | state | { state . repeat ( | state | { state . sequence ( | state | { super :: hidden :: skip ( state ) . and_then ( | state | { self :: prefix_operator ( state ) } ) } ) } ) } ) } ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: node ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { state . sequence ( | state | { state . optional ( | state | { self :: postfix_operator ( state ) . and_then ( | state | { state . repeat ( | state | { state . sequence ( | state | { super :: hidden :: skip ( state ) . and_then ( | state | { self :: postfix_operator ( state ) } ) } ) } ) } ) } ) } ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn node ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . sequence ( | state | { self :: opening_paren ( state ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: expression ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: closing_paren ( state ) } ) } ) . or_else ( | state | { self :: terminal ( state ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn terminal ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { self :: _push ( state ) . or_else ( | state | { self :: peek_slice ( state ) } ) . or_else ( | state | { self :: identifier ( state ) } ) . or_else ( | state | { self :: string ( state ) } ) . or_else ( | state | { self :: insensitive_string ( state ) } ) . or_else ( | state | { self :: range ( state ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn prefix_operator ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { self :: positive_predicate_operator ( state ) . or_else ( | state | { self :: negative_predicate_operator ( state ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn infix_operator ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { self :: sequence_operator ( state ) . or_else ( | state | { self :: choice_operator ( state ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn postfix_operator ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { self :: optional_operator ( state ) . or_else ( | state | { self :: repeat_operator ( state ) } ) . or_else ( | state | { self :: repeat_once_operator ( state ) } ) . or_else ( | state | { self :: repeat_exact ( state ) } ) . or_else ( | state | { self :: repeat_min ( state ) } ) . or_else ( | state | { self :: repeat_max ( state ) } ) . or_else ( | state | { self :: repeat_min_max ( state ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn positive_predicate_operator ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: positive_predicate_operator , | state | { state . match_string ( "&" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn negative_predicate_operator ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: negative_predicate_operator , | state | { state . match_string ( "!" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn sequence_operator ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: sequence_operator , | state | { state . match_string ( "~" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn choice_operator ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: choice_operator , | state | { state . match_string ( "|" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn optional_operator ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: optional_operator , | state | { state . match_string ( "?" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn repeat_operator ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: repeat_operator , | state | { state . match_string ( "*" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn repeat_once_operator ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: repeat_once_operator , | state | { state . match_string ( "+" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn repeat_exact ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: repeat_exact , | state | { state . sequence ( | state | { self :: opening_brace ( state ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: number ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: closing_brace ( state ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn repeat_min ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: repeat_min , | state | { state . sequence ( | state | { self :: opening_brace ( state ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: number ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: comma ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: closing_brace ( state ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn repeat_max ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: repeat_max , | state | { state . sequence ( | state | { self :: opening_brace ( state ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: comma ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: number ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: closing_brace ( state ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn repeat_min_max ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: repeat_min_max , | state | { state . sequence ( | state | { self :: opening_brace ( state ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: number ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: comma ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: number ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: closing_brace ( state ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn number ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: number , | state | { state . atomic ( :: pest :: Atomicity :: Atomic , | state | { state . sequence ( | state | { state . match_range ( '0' .. '9' ) . and_then ( | state | { state . repeat ( | state | { state . match_range ( '0' .. '9' ) } ) } ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn integer ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: integer , | state | { state . atomic ( :: pest :: Atomicity :: Atomic , | state | { self :: number ( state ) . or_else ( | state | { state . sequence ( | state | { state . match_string ( "-" ) . and_then ( | state | { state . repeat ( | state | { state . match_string ( "0" ) } ) } ) . and_then ( | state | { state . match_range ( '1' .. '9' ) } ) . and_then ( | state | { state . optional ( | state | { self :: number ( state ) } ) } ) } ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn comma ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: comma , | state | { state . match_string ( "," ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn _push ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: _push , | state | { state . sequence ( | state | { state . match_string ( "PUSH" ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: opening_paren ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: expression ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: closing_paren ( state ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn peek_slice ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: peek_slice , | state | { state . sequence ( | state | { state . match_string ( "PEEK" ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: opening_brack ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { state . optional ( | state | { self :: integer ( state ) } ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: range_operator ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { state . optional ( | state | { self :: integer ( state ) } ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: closing_brack ( state ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn identifier ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: identifier , | state | { state . atomic ( :: pest :: Atomicity :: Atomic , | state | { state . sequence ( | state | { state . lookahead ( false , | state | { state . match_string ( "PUSH" ) } ) . and_then ( | state | { state . match_string ( "_" ) . or_else ( | state | { self :: alpha ( state ) } ) } ) . and_then ( | state | { state . repeat ( | state | { state . match_string ( "_" ) . or_else ( | state | { self :: alpha_num ( state ) } ) } ) } ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn alpha ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . match_range ( 'a' .. 'z' ) . or_else ( | state | { state . match_range ( 'A' .. 'Z' ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn alpha_num ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { self :: alpha ( state ) . or_else ( | state | { state . match_range ( '0' .. '9' ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn string ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . atomic ( :: pest :: Atomicity :: CompoundAtomic , | state | { state . rule ( Rule :: string , | state | { state . sequence ( | state | { self :: quote ( state ) . and_then ( | state | { self :: inner_str ( state ) } ) . and_then ( | state | { self :: quote ( state ) } ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn insensitive_string ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: insensitive_string , | state | { state . sequence ( | state | { state . match_string ( "^" ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: string ( state ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn range ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: range , | state | { state . sequence ( | state | { self :: character ( state ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: range_operator ( state ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: character ( state ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn character ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . atomic ( :: pest :: Atomicity :: CompoundAtomic , | state | { state . rule ( Rule :: character , | state | { state . sequence ( | state | { self :: single_quote ( state ) . and_then ( | state | { self :: inner_chr ( state ) } ) . and_then ( | state | { self :: single_quote ( state ) } ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn inner_str ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: inner_str , | state | { state . atomic ( :: pest :: Atomicity :: Atomic , | state | { state . sequence ( | state | { let strings = [ "\"" , "\\" ] ; state . skip_until ( & strings ) . and_then ( | state | { state . optional ( | state | { state . sequence ( | state | { self :: escape ( state ) . and_then ( | state | { self :: inner_str ( state ) } ) } ) } ) } ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn inner_chr ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: inner_chr , | state | { state . atomic ( :: pest :: Atomicity :: Atomic , | state | { self :: escape ( state ) . or_else ( | state | { self :: ANY ( state ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn escape ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: escape , | state | { state . atomic ( :: pest :: Atomicity :: Atomic , | state | { state . sequence ( | state | { state . match_string ( "\\" ) . and_then ( | state | { state . match_string ( "\"" ) . or_else ( | state | { state . match_string ( "\\" ) } ) . or_else ( | state | { state . match_string ( "r" ) } ) . or_else ( | state | { state . match_string ( "n" ) } ) . or_else ( | state | { state . match_string ( "t" ) } ) . or_else ( | state | { state . match_string ( "0" ) } ) . or_else ( | state | { state . match_string ( "\'" ) } ) . or_else ( | state | { self :: code ( state ) } ) . or_else ( | state | { self :: unicode ( state ) } ) } ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn code ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: code , | state | { state . atomic ( :: pest :: Atomicity :: Atomic , | state | { state . sequence ( | state | { state . match_string ( "x" ) . and_then ( | state | { self :: hex_digit ( state ) } ) . and_then ( | state | { self :: hex_digit ( state ) } ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn unicode ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: unicode , | state | { state . atomic ( :: pest :: Atomicity :: Atomic , | state | { state . sequence ( | state | { state . match_string ( "u" ) . and_then ( | state | { self :: opening_brace ( state ) } ) . and_then ( | state | { state . sequence ( | state | { self :: hex_digit ( state ) . and_then ( | state | { self :: hex_digit ( state ) } ) . and_then ( | state | { state . optional ( | state | { self :: hex_digit ( state ) } ) } ) . and_then ( | state | { state . optional ( | state | { self :: hex_digit ( state ) } ) } ) . and_then ( | state | { state . optional ( | state | { self :: hex_digit ( state ) } ) } ) . and_then ( | state | { state . optional ( | state | { self :: hex_digit ( state ) } ) } ) } ) } ) . and_then ( | state | { self :: closing_brace ( state ) } ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn hex_digit ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: hex_digit , | state | { state . atomic ( :: pest :: Atomicity :: Atomic , | state | { state . match_range ( '0' .. '9' ) . or_else ( | state | { state . match_range ( 'a' .. 'f' ) } ) . or_else ( | state | { state . match_range ( 'A' .. 'F' ) } ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn quote ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: quote , | state | { state . match_string ( "\"" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn single_quote ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: single_quote , | state | { state . match_string ( "\'" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn range_operator ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: range_operator , | state | { state . match_string ( ".." ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn newline ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . match_string ( "\n" ) . or_else ( | state | { state . match_string ( "\r\n" ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn WHITESPACE ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . atomic ( :: pest :: Atomicity :: Atomic , | state | { state . match_string ( " " ) . or_else ( | state | { state . match_string ( "\t" ) } ) . or_else ( | state | { self :: newline ( state ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn block_comment ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . sequence ( | state | { state . match_string ( "/*" ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { state . sequence ( | state | { state . optional ( | state | { self :: block_comment ( state ) . or_else ( | state | { state . sequence ( | state | { state . lookahead ( false , | state | { state . match_string ( "*/" ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: ANY ( state ) } ) } ) } ) . and_then ( | state | { state . repeat ( | state | { state . sequence ( | state | { super :: hidden :: skip ( state ) . and_then ( | state | { self :: block_comment ( state ) . or_else ( | state | { state . sequence ( | state | { state . lookahead ( false , | state | { state . match_string ( "*/" ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { self :: ANY ( state ) } ) } ) } ) } ) } ) } ) } ) } ) } ) } ) . and_then ( | state | { super :: hidden :: skip ( state ) } ) . and_then ( | state | { state . match_string ( "*/" ) } ) } ) } # [ inline ] # [ allow ( non_snake_case , unused_variables ) ] pub fn COMMENT ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . atomic ( :: pest :: Atomicity :: Atomic , | state | { self :: block_comment ( state ) . or_else ( | state | { state . sequence ( | state | { state . match_string ( "//" ) . and_then ( | state | { state . repeat ( | state | { state . sequence ( | state | { state . lookahead ( false , | state | { self :: newline ( state ) } ) . and_then ( | state | { self :: ANY ( state ) } ) } ) } ) } ) } ) } ) } ) } # [ inline ] # [ allow ( dead_code , non_snake_case , unused_variables ) ] pub fn SOI ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . start_of_input ( ) } # [ inline ] # [ allow ( dead_code , non_snake_case , unused_variables ) ] pub fn EOI ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . rule ( Rule :: EOI , | state | state . end_of_input ( ) ) } # [ inline ] # [ allow ( dead_code , non_snake_case , unused_variables ) ] pub fn ANY ( state : Box < :: pest :: ParserState < Rule >> ) -> :: pest :: ParseResult < Box < :: pest :: ParserState < Rule >> > { state . skip ( 1 ) } } pub use self :: visible :: * ; } :: pest :: state ( input , | state | { match rule { Rule :: grammar_rules => rules :: grammar_rules ( state ) , Rule :: grammar_rule => rules :: grammar_rule ( state ) , Rule :: assignment_operator => rules :: assignment_operator ( state ) , Rule :: opening_brace => rules :: opening_brace ( state ) , Rule :: closing_brace => rules :: closing_brace ( state ) , Rule :: opening_paren => rules :: opening_paren ( state ) , Rule :: closing_paren => rules :: closing_paren ( state ) , Rule :: opening_brack => rules :: opening_brack ( state ) , Rule :: closing_brack => rules :: closing_brack ( state ) , Rule :: modifier => rules :: modifier ( state ) , Rule :: silent_modifier => rules :: silent_modifier ( state ) , Rule :: atomic_modifier => rules :: atomic_modifier ( state ) , Rule :: compound_atomic_modifier => rules :: compound_atomic_modifier ( state ) , Rule :: non_atomic_modifier => rules :: non_atomic_modifier ( state ) , Rule :: expression => rules :: expression ( state ) , Rule :: term => rules :: term ( state ) , Rule :: node => rules :: node ( state ) , Rule :: terminal => rules :: terminal ( state ) , Rule :: prefix_operator => rules :: prefix_operator ( state ) , Rule :: infix_operator => rules :: infix_operator ( state ) , Rule :: postfix_operator => rules :: postfix_operator ( state ) , Rule :: positive_predicate_operator => rules :: positive_predicate_operator ( state ) , Rule :: negative_predicate_operator => rules :: negative_predicate_operator ( state ) , Rule :: sequence_operator => rules :: sequence_operator ( state ) , Rule :: choice_operator => rules :: choice_operator ( state ) , Rule :: optional_operator => rules :: optional_operator ( state ) , Rule :: repeat_operator => rules :: repeat_operator ( state ) , Rule :: repeat_once_operator => rules :: repeat_once_operator ( state ) , Rule :: repeat_exact => rules :: repeat_exact ( state ) , Rule :: repeat_min => rules :: repeat_min ( state ) , Rule :: repeat_max => rules :: repeat_max ( state ) , Rule :: repeat_min_max => rules :: repeat_min_max ( state ) , Rule :: number => rules :: number ( state ) , Rule :: integer => rules :: integer ( state ) , Rule :: comma => rules :: comma ( state ) , Rule :: _push => rules :: _push ( state ) , Rule :: peek_slice => rules :: peek_slice ( state ) , Rule :: identifier => rules :: identifier ( state ) , Rule :: alpha => rules :: alpha ( state ) , Rule :: alpha_num => rules :: alpha_num ( state ) , Rule :: string => rules :: string ( state ) , Rule :: insensitive_string => rules :: insensitive_string ( state ) , Rule :: range => rules :: range ( state ) , Rule :: character => rules :: character ( state ) , Rule :: inner_str => rules :: inner_str ( state ) , Rule :: inner_chr => rules :: inner_chr ( state ) , Rule :: escape => rules :: escape ( state ) , Rule :: code => rules :: code ( state ) , Rule :: unicode => rules :: unicode ( state ) , Rule :: hex_digit => rules :: hex_digit ( state ) , Rule :: quote => rules :: quote ( state ) , Rule :: single_quote => rules :: single_quote ( state ) , Rule :: range_operator => rules :: range_operator ( state ) , Rule :: newline => rules :: newline ( state ) , Rule :: WHITESPACE => rules :: WHITESPACE ( state ) , Rule :: block_comment => rules :: block_comment ( state ) , Rule :: COMMENT => rules :: COMMENT ( state ) , Rule :: EOI => rules :: EOI ( state ) } } ) } } pest_meta-2.1.1/src/lib.rs010064400007650000024000000060241340723067600136300ustar0000000000000000// pest. The Elegant Parser // Copyright (c) 2018 Dragoș Tiselice // // Licensed under the Apache License, Version 2.0 // or the MIT // license , at your // option. All files in the project carrying such notice may not be copied, // modified, or distributed except according to those terms. #![allow(clippy::range_plus_one)] extern crate maplit; #[cfg(test)] #[macro_use] extern crate pest; #[cfg(not(test))] extern crate pest; use std::fmt::Display; pub mod ast; pub mod optimizer; pub mod parser; pub mod validator; pub fn unwrap_or_report(result: Result) -> T where E: IntoIterator, E::Item: Display, { result.unwrap_or_else(|e| { panic!( "grammar error\n\n".to_owned() + &e.into_iter() .map(|error| format!("{}", error)) .collect::>() .join("\n\n") ) }) } #[doc(hidden)] pub static UNICODE_PROPERTY_NAMES: &[&str] = &[ /* BINARY */ "ALPHABETIC", "BIDI_CONTROL", "CASE_IGNORABLE", "CASED", "CHANGES_WHEN_CASEFOLDED", "CHANGES_WHEN_CASEMAPPED", "CHANGES_WHEN_LOWERCASED", "CHANGES_WHEN_TITLECASED", "CHANGES_WHEN_UPPERCASED", "DASH", "DEFAULT_IGNORABLE_CODE_POINT", "DEPRECATED", "DIACRITIC", "EXTENDER", "GRAPHEME_BASE", "GRAPHEME_EXTEND", "GRAPHEME_LINK", "HEX_DIGIT", "HYPHEN", "IDS_BINARY_OPERATOR", "IDS_TRINARY_OPERATOR", "ID_CONTINUE", "ID_START", "IDEOGRAPHIC", "JOIN_CONTROL", "LOGICAL_ORDER_EXCEPTION", "LOWERCASE", "MATH", "NONCHARACTER_CODE_POINT", "OTHER_ALPHABETIC", "OTHER_DEFAULT_IGNORABLE_CODE_POINT", "OTHER_GRAPHEME_EXTEND", "OTHER_ID_CONTINUE", "OTHER_ID_START", "OTHER_LOWERCASE", "OTHER_MATH", "OTHER_UPPERCASE", "PATTERN_SYNTAX", "PATTERN_WHITE_SPACE", "PREPENDED_CONCATENATION_MARK", "QUOTATION_MARK", "RADICAL", "REGIONAL_INDICATOR", "SENTENCE_TERMINAL", "SOFT_DOTTED", "TERMINAL_PUNCTUATION", "UNIFIED_IDEOGRAPH", "UPPERCASE", "VARIATION_SELECTOR", "WHITE_SPACE", "XID_CONTINUE", "XID_START", /* CATEGORY */ "CASED_LETTER", "CLOSE_PUNCTUATION", "CONNECTOR_PUNCTUATION", "CONTROL", "CURRENCY_SYMBOL", "DASH_PUNCTUATION", "DECIMAL_NUMBER", "ENCLOSING_MARK", "FINAL_PUNCTUATION", "FORMAT", "INITIAL_PUNCTUATION", "LETTER", "LETTER_NUMBER", "LINE_SEPARATOR", "LOWERCASE_LETTER", "MARK", "MATH_SYMBOL", "MODIFIER_LETTER", "MODIFIER_SYMBOL", "NONSPACING_MARK", "NUMBER", "OPEN_PUNCTUATION", "OTHER", "OTHER_LETTER", "OTHER_NUMBER", "OTHER_PUNCTUATION", "OTHER_SYMBOL", "PARAGRAPH_SEPARATOR", "PRIVATE_USE", "PUNCTUATION", "SEPARATOR", "SPACE_SEPARATOR", "SPACING_MARK", "SURROGATE", "SYMBOL", "TITLECASE_LETTER", "UNASSIGNED", "UPPERCASE_LETTER", ]; pest_meta-2.1.1/src/optimizer/concatenator.rs010064400007650000024000000023661340723067600175710ustar0000000000000000// pest. The Elegant Parser // Copyright (c) 2018 Dragoș Tiselice // // Licensed under the Apache License, Version 2.0 // or the MIT // license , at your // option. All files in the project carrying such notice may not be copied, // modified, or distributed except according to those terms. use ast::*; pub fn concatenate(rule: Rule) -> Rule { match rule { Rule { name, ty, expr } => Rule { name, ty, expr: expr.map_bottom_up(|expr| { if ty == RuleType::Atomic { // TODO: Use box syntax when it gets stabilized. match expr { Expr::Seq(lhs, rhs) => match (*lhs, *rhs) { (Expr::Str(lhs), Expr::Str(rhs)) => Expr::Str(lhs + &rhs), (Expr::Insens(lhs), Expr::Insens(rhs)) => Expr::Insens(lhs + &rhs), (lhs, rhs) => Expr::Seq(Box::new(lhs), Box::new(rhs)), }, expr => expr, } } else { expr } }), }, } } pest_meta-2.1.1/src/optimizer/factorizer.rs010064400007650000024000000026361340723067600172610ustar0000000000000000// pest. The Elegant Parser // Copyright (c) 2018 Dragoș Tiselice // // Licensed under the Apache License, Version 2.0 // or the MIT // license , at your // option. All files in the project carrying such notice may not be copied, // modified, or distributed except according to those terms. use ast::*; pub fn factor(rule: Rule) -> Rule { match rule { Rule { name, ty, expr } => Rule { name, ty, expr: expr.map_top_down(|expr| { // TODO: Use box syntax when it gets stabilized. match expr { Expr::Choice(lhs, rhs) => match (*lhs, *rhs) { (Expr::Seq(l1, r1), Expr::Seq(l2, r2)) => { if l1 == l2 { Expr::Seq(l1, Box::new(Expr::Choice(r1, r2))) } else { Expr::Choice( Box::new(Expr::Seq(l1, r1)), Box::new(Expr::Seq(l2, r2)), ) } } (lhs, rhs) => Expr::Choice(Box::new(lhs), Box::new(rhs)), }, expr => expr, } }), }, } } pest_meta-2.1.1/src/optimizer/mod.rs010064400007650000024000000405271340723067600156710ustar0000000000000000// pest. The Elegant Parser // Copyright (c) 2018 Dragoș Tiselice // // Licensed under the Apache License, Version 2.0 // or the MIT // license , at your // option. All files in the project carrying such notice may not be copied, // modified, or distributed except according to those terms. use ast::*; use std::collections::HashMap; #[cfg(test)] macro_rules! box_tree { ( $node:ident( $( $child:ident( $($args:tt)* ) ),+ ) ) => ( $node ( $( Box::new( box_tree!( $child ( $($args )* ) ) ) ),+ ) ); ($expr:expr) => ($expr); } mod concatenator; mod factorizer; mod restorer; mod rotater; mod skipper; mod unroller; pub fn optimize(rules: Vec) -> Vec { let optimized: Vec = rules .into_iter() .map(rotater::rotate) .map(skipper::skip) .map(unroller::unroll) .map(concatenator::concatenate) .map(factorizer::factor) .map(rule_to_optimized_rule) .collect(); let rules = to_hash_map(&optimized); optimized .into_iter() .map(|rule| restorer::restore_on_err(rule, &rules)) .collect() } fn rule_to_optimized_rule(rule: Rule) -> OptimizedRule { fn to_optimized(expr: Expr) -> OptimizedExpr { match expr { Expr::Str(string) => OptimizedExpr::Str(string), Expr::Insens(string) => OptimizedExpr::Insens(string), Expr::Range(start, end) => OptimizedExpr::Range(start, end), Expr::Ident(ident) => OptimizedExpr::Ident(ident), Expr::PeekSlice(start, end) => OptimizedExpr::PeekSlice(start, end), Expr::PosPred(expr) => OptimizedExpr::PosPred(Box::new(to_optimized(*expr))), Expr::NegPred(expr) => OptimizedExpr::NegPred(Box::new(to_optimized(*expr))), Expr::Seq(lhs, rhs) => { OptimizedExpr::Seq(Box::new(to_optimized(*lhs)), Box::new(to_optimized(*rhs))) } Expr::Choice(lhs, rhs) => { OptimizedExpr::Choice(Box::new(to_optimized(*lhs)), Box::new(to_optimized(*rhs))) } Expr::Opt(expr) => OptimizedExpr::Opt(Box::new(to_optimized(*expr))), Expr::Rep(expr) => OptimizedExpr::Rep(Box::new(to_optimized(*expr))), Expr::Skip(strings) => OptimizedExpr::Skip(strings), Expr::Push(expr) => OptimizedExpr::Push(Box::new(to_optimized(*expr))), Expr::RepOnce(_) | Expr::RepExact(..) | Expr::RepMin(..) | Expr::RepMax(..) | Expr::RepMinMax(..) => unreachable!("No valid transformation to OptimizedRule"), } } OptimizedRule { name: rule.name, ty: rule.ty, expr: to_optimized(rule.expr), } } fn to_hash_map(rules: &[OptimizedRule]) -> HashMap { rules .iter() .map(|r| (r.name.clone(), r.expr.clone())) .collect() } #[derive(Clone, Debug, Eq, PartialEq)] pub struct OptimizedRule { pub name: String, pub ty: RuleType, pub expr: OptimizedExpr, } #[derive(Clone, Debug, Eq, PartialEq)] pub enum OptimizedExpr { Str(String), Insens(String), Range(String, String), Ident(String), PeekSlice(i32, Option), PosPred(Box), NegPred(Box), Seq(Box, Box), Choice(Box, Box), Opt(Box), Rep(Box), Skip(Vec), Push(Box), RestoreOnErr(Box), } impl OptimizedExpr { pub fn iter_top_down(&self) -> OptimizedExprTopDownIterator { OptimizedExprTopDownIterator::new(self) } pub fn map_top_down(self, mut f: F) -> OptimizedExpr where F: FnMut(OptimizedExpr) -> OptimizedExpr, { fn map_internal(expr: OptimizedExpr, f: &mut F) -> OptimizedExpr where F: FnMut(OptimizedExpr) -> OptimizedExpr, { let expr = f(expr); match expr { // TODO: Use box syntax when it gets stabilized. OptimizedExpr::PosPred(expr) => { let mapped = Box::new(map_internal(*expr, f)); OptimizedExpr::PosPred(mapped) } OptimizedExpr::NegPred(expr) => { let mapped = Box::new(map_internal(*expr, f)); OptimizedExpr::NegPred(mapped) } OptimizedExpr::Seq(lhs, rhs) => { let mapped_lhs = Box::new(map_internal(*lhs, f)); let mapped_rhs = Box::new(map_internal(*rhs, f)); OptimizedExpr::Seq(mapped_lhs, mapped_rhs) } OptimizedExpr::Choice(lhs, rhs) => { let mapped_lhs = Box::new(map_internal(*lhs, f)); let mapped_rhs = Box::new(map_internal(*rhs, f)); OptimizedExpr::Choice(mapped_lhs, mapped_rhs) } OptimizedExpr::Rep(expr) => { let mapped = Box::new(map_internal(*expr, f)); OptimizedExpr::Rep(mapped) } OptimizedExpr::Opt(expr) => { let mapped = Box::new(map_internal(*expr, f)); OptimizedExpr::Opt(mapped) } OptimizedExpr::Push(expr) => { let mapped = Box::new(map_internal(*expr, f)); OptimizedExpr::Push(mapped) } expr => expr, } } map_internal(self, &mut f) } pub fn map_bottom_up(self, mut f: F) -> OptimizedExpr where F: FnMut(OptimizedExpr) -> OptimizedExpr, { fn map_internal(expr: OptimizedExpr, f: &mut F) -> OptimizedExpr where F: FnMut(OptimizedExpr) -> OptimizedExpr, { let mapped = match expr { OptimizedExpr::PosPred(expr) => { // TODO: Use box syntax when it gets stabilized. let mapped = Box::new(map_internal(*expr, f)); OptimizedExpr::PosPred(mapped) } OptimizedExpr::NegPred(expr) => { let mapped = Box::new(map_internal(*expr, f)); OptimizedExpr::NegPred(mapped) } OptimizedExpr::Seq(lhs, rhs) => { let mapped_lhs = Box::new(map_internal(*lhs, f)); let mapped_rhs = Box::new(map_internal(*rhs, f)); OptimizedExpr::Seq(mapped_lhs, mapped_rhs) } OptimizedExpr::Choice(lhs, rhs) => { let mapped_lhs = Box::new(map_internal(*lhs, f)); let mapped_rhs = Box::new(map_internal(*rhs, f)); OptimizedExpr::Choice(mapped_lhs, mapped_rhs) } OptimizedExpr::Rep(expr) => { let mapped = Box::new(map_internal(*expr, f)); OptimizedExpr::Rep(mapped) } OptimizedExpr::Opt(expr) => { let mapped = Box::new(map_internal(*expr, f)); OptimizedExpr::Opt(mapped) } OptimizedExpr::Push(expr) => { let mapped = Box::new(map_internal(*expr, f)); OptimizedExpr::Push(mapped) } expr => expr, }; f(mapped) } map_internal(self, &mut f) } } pub struct OptimizedExprTopDownIterator { current: Option, next: Option, right_branches: Vec, } impl OptimizedExprTopDownIterator { pub fn new(expr: &OptimizedExpr) -> Self { let mut iter = OptimizedExprTopDownIterator { current: None, next: None, right_branches: vec![], }; iter.iterate_expr(expr.clone()); iter } fn iterate_expr(&mut self, expr: OptimizedExpr) { self.current = Some(expr.clone()); match expr { OptimizedExpr::Seq(lhs, rhs) => { self.right_branches.push(*rhs); self.next = Some(*lhs); } OptimizedExpr::Choice(lhs, rhs) => { self.right_branches.push(*rhs); self.next = Some(*lhs); } OptimizedExpr::PosPred(expr) | OptimizedExpr::NegPred(expr) | OptimizedExpr::Rep(expr) | OptimizedExpr::Opt(expr) | OptimizedExpr::Push(expr) => { self.next = Some(*expr); } _ => { self.next = None; } } } } impl Iterator for OptimizedExprTopDownIterator { type Item = OptimizedExpr; fn next(&mut self) -> Option { let result = self.current.take(); if let Some(expr) = self.next.take() { self.iterate_expr(expr); } else if let Some(expr) = self.right_branches.pop() { self.iterate_expr(expr); } result } } #[cfg(test)] mod tests { use super::*; #[test] fn rotate() { let rules = { use ast::Expr::*; vec![Rule { name: "rule".to_owned(), ty: RuleType::Normal, expr: box_tree!(Choice( Choice( Choice(Str(String::from("a")), Str(String::from("b"))), Str(String::from("c")) ), Str(String::from("d")) )), }] }; let rotated = { use optimizer::OptimizedExpr::*; vec![OptimizedRule { name: "rule".to_owned(), ty: RuleType::Normal, expr: box_tree!(Choice( Str(String::from("a")), Choice( Str(String::from("b")), Choice(Str(String::from("c")), Str(String::from("d"))) ) )), }] }; assert_eq!(optimize(rules), rotated); } #[test] fn skip() { let rules = { use ast::Expr::*; vec![Rule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: box_tree!(Rep(Seq( NegPred(Choice(Str(String::from("a")), Str(String::from("b")))), Ident(String::from("ANY")) ))), }] }; let skipped = vec![OptimizedRule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: OptimizedExpr::Skip(vec![String::from("a"), String::from("b")]), }]; assert_eq!(optimize(rules), skipped); } #[test] fn concat_strings() { let rules = { use ast::Expr::*; vec![Rule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: box_tree!(Seq( Seq(Str(String::from("a")), Str(String::from("b"))), Seq(Str(String::from("c")), Str(String::from("d"))) )), }] }; let concatenated = vec![OptimizedRule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: OptimizedExpr::Str(String::from("abcd")), }]; assert_eq!(optimize(rules), concatenated); } #[test] fn unroll_loop_exact() { let rules = vec![Rule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: Expr::RepExact(Box::new(Expr::Ident(String::from("a"))), 3), }]; let unrolled = { use optimizer::OptimizedExpr::*; vec![OptimizedRule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: box_tree!(Seq( Ident(String::from("a")), Seq(Ident(String::from("a")), Ident(String::from("a"))) )), }] }; assert_eq!(optimize(rules), unrolled); } #[test] fn unroll_loop_max() { let rules = vec![Rule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: Expr::RepMax(Box::new(Expr::Str("a".to_owned())), 3), }]; let unrolled = { use optimizer::OptimizedExpr::*; vec![OptimizedRule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: box_tree!(Seq( Opt(Str(String::from("a"))), Seq(Opt(Str(String::from("a"))), Opt(Str(String::from("a")))) )), }] }; assert_eq!(optimize(rules), unrolled); } #[test] fn unroll_loop_min() { let rules = vec![Rule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: Expr::RepMin(Box::new(Expr::Str("a".to_owned())), 2), }]; let unrolled = { use optimizer::OptimizedExpr::*; vec![OptimizedRule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: box_tree!(Seq( Str(String::from("a")), Seq(Str(String::from("a")), Rep(Str(String::from("a")))) )), }] }; assert_eq!(optimize(rules), unrolled); } #[test] fn unroll_loop_min_max() { let rules = vec![Rule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: Expr::RepMinMax(Box::new(Expr::Str("a".to_owned())), 2, 3), }]; let unrolled = { use optimizer::OptimizedExpr::*; vec![OptimizedRule { name: "rule".to_owned(), ty: RuleType::Atomic, /* TODO possible room for improvement here: * if the sequences were rolled out in the opposite * order, we could further optimize the strings * in cases like this. Str(String::from(("aa")), Opt(Str(String::from("a"))) */ expr: box_tree!(Seq( Str(String::from("a")), Seq(Str(String::from("a")), Opt(Str(String::from("a")))) )), }] }; assert_eq!(optimize(rules), unrolled); } #[test] fn concat_insensitive_strings() { let rules = { use ast::Expr::*; vec![Rule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: box_tree!(Seq( Seq(Insens(String::from("a")), Insens(String::from("b"))), Seq(Insens(String::from("c")), Insens(String::from("d"))) )), }] }; let concatenated = vec![OptimizedRule { name: "rule".to_owned(), ty: RuleType::Atomic, expr: OptimizedExpr::Insens(String::from("abcd")), }]; assert_eq!(optimize(rules), concatenated); } #[test] fn long_common_sequence() { let rules = { use ast::Expr::*; vec![Rule { name: "rule".to_owned(), ty: RuleType::Silent, expr: box_tree!(Choice( Seq( Ident(String::from("a")), Seq(Ident(String::from("b")), Ident(String::from("c"))) ), Seq( Seq(Ident(String::from("a")), Ident(String::from("b"))), Ident(String::from("d")) ) )), }] }; let optimized = { use optimizer::OptimizedExpr::*; vec![OptimizedRule { name: "rule".to_owned(), ty: RuleType::Silent, expr: box_tree!(Seq( Ident(String::from("a")), Seq( Ident(String::from("b")), Choice(Ident(String::from("c")), Ident(String::from("d"))) ) )), }] }; assert_eq!(optimize(rules), optimized); } } pest_meta-2.1.1/src/optimizer/restorer.rs010064400007650000024000000112671340723067600167560ustar0000000000000000// pest. The Elegant Parser // Copyright (c) 2018 Dragoș Tiselice // // Licensed under the Apache License, Version 2.0 // or the MIT // license , at your // option. All files in the project carrying such notice may not be copied, // modified, or distributed except according to those terms. use std::collections::HashMap; use optimizer::*; pub fn restore_on_err( rule: OptimizedRule, rules: &HashMap, ) -> OptimizedRule { match rule { OptimizedRule { name, ty, expr } => { let expr = expr.map_bottom_up(|expr| wrap_branching_exprs(expr, rules)); OptimizedRule { name, ty, expr } } } } fn wrap_branching_exprs( expr: OptimizedExpr, rules: &HashMap, ) -> OptimizedExpr { match expr { OptimizedExpr::Opt(expr) => { if child_modifies_state(&expr, rules, &mut HashMap::new()) { OptimizedExpr::Opt(Box::new(OptimizedExpr::RestoreOnErr(expr))) } else { OptimizedExpr::Opt(expr) } } OptimizedExpr::Choice(lhs, rhs) => { let wrapped_lhs = if child_modifies_state(&lhs, rules, &mut HashMap::new()) { Box::new(OptimizedExpr::RestoreOnErr(lhs)) } else { lhs }; let wrapped_rhs = if child_modifies_state(&rhs, rules, &mut HashMap::new()) { Box::new(OptimizedExpr::RestoreOnErr(rhs)) } else { rhs }; OptimizedExpr::Choice(wrapped_lhs, wrapped_rhs) } OptimizedExpr::Rep(expr) => { if child_modifies_state(&expr, rules, &mut HashMap::new()) { OptimizedExpr::Rep(Box::new(OptimizedExpr::RestoreOnErr(expr))) } else { OptimizedExpr::Rep(expr) } } _ => expr, } } fn child_modifies_state( expr: &OptimizedExpr, rules: &HashMap, cache: &mut HashMap>, ) -> bool { expr.iter_top_down().any(|expr| match expr { OptimizedExpr::Push(_) => true, OptimizedExpr::Ident(ref name) if name == "DROP" => true, OptimizedExpr::Ident(ref name) if name == "POP" => true, OptimizedExpr::Ident(ref name) => match cache.get(name).cloned() { Some(option) => match option { Some(cached) => cached, None => { cache.insert(name.to_owned(), Some(false)); false } }, None => { cache.insert(name.to_owned(), None); let result = match rules.get(name) { Some(expr) => child_modifies_state(expr, rules, cache), None => false, }; cache.insert(name.to_owned(), Some(result)); result } }, _ => false, }) } #[cfg(test)] mod tests { use super::*; use optimizer::OptimizedExpr::*; #[test] fn restore_no_stack_children() { let rules = vec![OptimizedRule { name: "rule".to_owned(), ty: RuleType::Normal, expr: box_tree!(Opt(Str("a".to_string()))), }]; assert_eq!( restore_on_err(rules[0].clone(), &to_hash_map(&rules)), rules[0].clone() ); } #[test] fn restore_with_child_stack_ops() { let rules = vec![OptimizedRule { name: "rule".to_owned(), ty: RuleType::Normal, expr: box_tree!(Rep(Push(Str("a".to_string())))), }]; let restored = OptimizedRule { name: "rule".to_owned(), ty: RuleType::Normal, expr: box_tree!(Rep(RestoreOnErr(Push(Str("a".to_string()))))), }; assert_eq!( restore_on_err(rules[0].clone(), &to_hash_map(&rules)), restored ); } #[test] fn restore_choice_branch_with_and_branch_without() { let rules = vec![OptimizedRule { name: "rule".to_owned(), ty: RuleType::Normal, expr: box_tree!(Choice(Push(Str("a".to_string())), Str("a".to_string()))), }]; let restored = OptimizedRule { name: "rule".to_owned(), ty: RuleType::Normal, expr: box_tree!(Choice( RestoreOnErr(Push(Str("a".to_string()))), Str("a".to_string()) )), }; assert_eq!( restore_on_err(rules[0].clone(), &to_hash_map(&rules)), restored ); } } pest_meta-2.1.1/src/optimizer/rotater.rs010064400007650000024000000027111340723067600165630ustar0000000000000000// pest. The Elegant Parser // Copyright (c) 2018 Dragoș Tiselice // // Licensed under the Apache License, Version 2.0 // or the MIT // license , at your // option. All files in the project carrying such notice may not be copied, // modified, or distributed except according to those terms. use ast::*; pub fn rotate(rule: Rule) -> Rule { fn rotate_internal(expr: Expr) -> Expr { match expr { // TODO: Use box syntax when it gets stabilized. Expr::Seq(lhs, rhs) => { let lhs = *lhs; match lhs { Expr::Seq(ll, lr) => { rotate_internal(Expr::Seq(ll, Box::new(Expr::Seq(lr, rhs)))) } lhs => Expr::Seq(Box::new(lhs), rhs), } } Expr::Choice(lhs, rhs) => { let lhs = *lhs; match lhs { Expr::Choice(ll, lr) => { rotate_internal(Expr::Choice(ll, Box::new(Expr::Choice(lr, rhs)))) } lhs => Expr::Choice(Box::new(lhs), rhs), } } expr => expr, } } match rule { Rule { name, ty, expr } => Rule { name, ty, expr: expr.map_top_down(rotate_internal), }, } } pest_meta-2.1.1/src/optimizer/skipper.rs010064400007650000024000000036131340723067600165620ustar0000000000000000// pest. The Elegant Parser // Copyright (c) 2018 Dragoș Tiselice // // Licensed under the Apache License, Version 2.0 // or the MIT // license , at your // option. All files in the project carrying such notice may not be copied, // modified, or distributed except according to those terms. use ast::*; pub fn skip(rule: Rule) -> Rule { fn populate_choices(expr: Expr, mut choices: Vec) -> Option { match expr { Expr::Choice(lhs, rhs) => { if let Expr::Str(string) = *lhs { choices.push(string); populate_choices(*rhs, choices) } else { None } } Expr::Str(string) => { choices.push(string); Some(Expr::Skip(choices)) } _ => None, } } match rule { Rule { name, ty, expr } => Rule { name, ty, expr: if ty == RuleType::Atomic { expr.map_top_down(|expr| { // TODO: Use box syntax when it gets stabilized. if let Expr::Rep(expr) = expr.clone() { if let Expr::Seq(lhs, rhs) = *expr.clone() { if let (Expr::NegPred(expr), Expr::Ident(ident)) = (*lhs, *rhs) { if ident == "ANY" { if let Some(expr) = populate_choices(*expr, vec![]) { return expr; } } } } }; expr }) } else { expr }, }, } } pest_meta-2.1.1/src/optimizer/unroller.rs010064400007650000024000000051301340723067600167430ustar0000000000000000// pest. The Elegant Parser // Copyright (c) 2018 Dragoș Tiselice // // Licensed under the Apache License, Version 2.0 // or the MIT // license , at your // option. All files in the project carrying such notice may not be copied, // modified, or distributed except according to those terms. use ast::*; pub fn unroll(rule: Rule) -> Rule { match rule { Rule { name, ty, expr } => Rule { name, ty, expr: expr.map_bottom_up(|expr| match expr { Expr::RepOnce(expr) => Expr::Seq(expr.clone(), Box::new(Expr::Rep(expr))), Expr::RepExact(expr, num) => (1..num + 1) .map(|_| *expr.clone()) .rev() .fold(None, |rep, expr| match rep { None => Some(expr), Some(rep) => Some(Expr::Seq(Box::new(expr), Box::new(rep))), }) .unwrap(), Expr::RepMin(expr, min) => (1..min + 2) .map(|i| { if i <= min { *expr.clone() } else { Expr::Rep(expr.clone()) } }) .rev() .fold(None, |rep, expr| match rep { None => Some(expr), Some(rep) => Some(Expr::Seq(Box::new(expr), Box::new(rep))), }) .unwrap(), Expr::RepMax(expr, max) => (1..max + 1) .map(|_| Expr::Opt(expr.clone())) .rev() .fold(None, |rep, expr| match rep { None => Some(expr), Some(rep) => Some(Expr::Seq(Box::new(expr), Box::new(rep))), }) .unwrap(), Expr::RepMinMax(expr, min, max) => (1..max + 1) .map(|i| { if i <= min { *expr.clone() } else { Expr::Opt(expr.clone()) } }) .rev() .fold(None, |rep, expr| match rep { None => Some(expr), Some(rep) => Some(Expr::Seq(Box::new(expr), Box::new(rep))), }) .unwrap(), expr => expr, }), }, } } pest_meta-2.1.1/src/parser.rs010064400007650000024000001357751340723067600143760ustar0000000000000000// pest. The Elegant Parser // Copyright (c) 2018 Dragoș Tiselice // // Licensed under the Apache License, Version 2.0 // or the MIT // license , at your // option. All files in the project carrying such notice may not be copied, // modified, or distributed except according to those terms. use std::char; use std::iter::Peekable; use pest::error::{Error, ErrorVariant}; use pest::iterators::{Pair, Pairs}; use pest::prec_climber::{Assoc, Operator, PrecClimber}; use pest::{Parser, Span}; use ast::{Expr, Rule as AstRule, RuleType}; use validator; include!("grammar.rs"); pub fn parse(rule: Rule, data: &str) -> Result, Error> { PestParser::parse(rule, data) } #[derive(Clone, Debug, Eq, PartialEq)] pub struct ParserRule<'i> { pub name: String, pub span: Span<'i>, pub ty: RuleType, pub node: ParserNode<'i>, } #[derive(Clone, Debug, Eq, PartialEq)] pub struct ParserNode<'i> { pub expr: ParserExpr<'i>, pub span: Span<'i>, } impl<'i> ParserNode<'i> { pub fn filter_map_top_down(self, mut f: F) -> Vec where F: FnMut(ParserNode<'i>) -> Option, { pub fn filter_internal<'i, F, T>(node: ParserNode<'i>, f: &mut F, result: &mut Vec) where F: FnMut(ParserNode<'i>) -> Option, { if let Some(value) = f(node.clone()) { result.push(value); } match node.expr { // TODO: Use box syntax when it gets stabilized. ParserExpr::PosPred(node) => { filter_internal(*node, f, result); } ParserExpr::NegPred(node) => { filter_internal(*node, f, result); } ParserExpr::Seq(lhs, rhs) => { filter_internal(*lhs, f, result); filter_internal(*rhs, f, result); } ParserExpr::Choice(lhs, rhs) => { filter_internal(*lhs, f, result); filter_internal(*rhs, f, result); } ParserExpr::Rep(node) => { filter_internal(*node, f, result); } ParserExpr::RepOnce(node) => { filter_internal(*node, f, result); } ParserExpr::RepExact(node, _) => { filter_internal(*node, f, result); } ParserExpr::RepMin(node, _) => { filter_internal(*node, f, result); } ParserExpr::RepMax(node, _) => { filter_internal(*node, f, result); } ParserExpr::RepMinMax(node, ..) => { filter_internal(*node, f, result); } ParserExpr::Opt(node) => { filter_internal(*node, f, result); } ParserExpr::Push(node) => { filter_internal(*node, f, result); } _ => (), } } let mut result = vec![]; filter_internal(self, &mut f, &mut result); result } } #[derive(Clone, Debug, Eq, PartialEq)] pub enum ParserExpr<'i> { Str(String), Insens(String), Range(String, String), Ident(String), PeekSlice(i32, Option), PosPred(Box>), NegPred(Box>), Seq(Box>, Box>), Choice(Box>, Box>), Opt(Box>), Rep(Box>), RepOnce(Box>), RepExact(Box>, u32), RepMin(Box>, u32), RepMax(Box>, u32), RepMinMax(Box>, u32, u32), Push(Box>), } fn convert_rule(rule: ParserRule) -> AstRule { match rule { ParserRule { name, ty, node, .. } => { let expr = convert_node(node); AstRule { name, ty, expr } } } } fn convert_node(node: ParserNode) -> Expr { match node.expr { ParserExpr::Str(string) => Expr::Str(string), ParserExpr::Insens(string) => Expr::Insens(string), ParserExpr::Range(start, end) => Expr::Range(start, end), ParserExpr::Ident(ident) => Expr::Ident(ident), ParserExpr::PeekSlice(start, end) => Expr::PeekSlice(start, end), ParserExpr::PosPred(node) => Expr::PosPred(Box::new(convert_node(*node))), ParserExpr::NegPred(node) => Expr::NegPred(Box::new(convert_node(*node))), ParserExpr::Seq(node1, node2) => Expr::Seq( Box::new(convert_node(*node1)), Box::new(convert_node(*node2)), ), ParserExpr::Choice(node1, node2) => Expr::Choice( Box::new(convert_node(*node1)), Box::new(convert_node(*node2)), ), ParserExpr::Opt(node) => Expr::Opt(Box::new(convert_node(*node))), ParserExpr::Rep(node) => Expr::Rep(Box::new(convert_node(*node))), ParserExpr::RepOnce(node) => Expr::RepOnce(Box::new(convert_node(*node))), ParserExpr::RepExact(node, num) => Expr::RepExact(Box::new(convert_node(*node)), num), ParserExpr::RepMin(node, max) => Expr::RepMin(Box::new(convert_node(*node)), max), ParserExpr::RepMax(node, max) => Expr::RepMax(Box::new(convert_node(*node)), max), ParserExpr::RepMinMax(node, min, max) => { Expr::RepMinMax(Box::new(convert_node(*node)), min, max) } ParserExpr::Push(node) => Expr::Push(Box::new(convert_node(*node))), } } pub fn consume_rules(pairs: Pairs) -> Result, Vec>> { let rules = consume_rules_with_spans(pairs)?; let errors = validator::validate_ast(&rules); if errors.is_empty() { Ok(rules.into_iter().map(convert_rule).collect()) } else { Err(errors) } } fn consume_rules_with_spans<'i>( pairs: Pairs<'i, Rule>, ) -> Result>, Vec>> { let climber = PrecClimber::new(vec![ Operator::new(Rule::choice_operator, Assoc::Left), Operator::new(Rule::sequence_operator, Assoc::Left), ]); pairs .filter(|pair| pair.as_rule() == Rule::grammar_rule) .map(|pair| { let mut pairs = pair.into_inner().peekable(); let span = pairs.next().unwrap().into_span(); let name = span.as_str().to_owned(); pairs.next().unwrap(); // assignment_operator let ty = if pairs.peek().unwrap().as_rule() != Rule::opening_brace { match pairs.next().unwrap().as_rule() { Rule::silent_modifier => RuleType::Silent, Rule::atomic_modifier => RuleType::Atomic, Rule::compound_atomic_modifier => RuleType::CompoundAtomic, Rule::non_atomic_modifier => RuleType::NonAtomic, _ => unreachable!(), } } else { RuleType::Normal }; pairs.next().unwrap(); // opening_brace let node = consume_expr(pairs.next().unwrap().into_inner().peekable(), &climber)?; Ok(ParserRule { name, span, ty, node, }) }) .collect() } fn consume_expr<'i>( pairs: Peekable>, climber: &PrecClimber, ) -> Result, Vec>> { fn unaries<'i>( mut pairs: Peekable>, climber: &PrecClimber, ) -> Result, Vec>> { let pair = pairs.next().unwrap(); let node = match pair.as_rule() { Rule::opening_paren => { let node = unaries(pairs, climber)?; let end = node.span.end_pos(); ParserNode { expr: node.expr, span: pair.into_span().start_pos().span(&end), } } Rule::positive_predicate_operator => { let node = unaries(pairs, climber)?; let end = node.span.end_pos(); ParserNode { expr: ParserExpr::PosPred(Box::new(node)), span: pair.into_span().start_pos().span(&end), } } Rule::negative_predicate_operator => { let node = unaries(pairs, climber)?; let end = node.span.end_pos(); ParserNode { expr: ParserExpr::NegPred(Box::new(node)), span: pair.into_span().start_pos().span(&end), } } other_rule => { let node = match other_rule { Rule::expression => consume_expr(pair.into_inner().peekable(), climber)?, Rule::_push => { let start = pair.clone().into_span().start_pos(); let mut pairs = pair.into_inner(); pairs.next().unwrap(); // opening_paren let pair = pairs.next().unwrap(); let node = consume_expr(pair.into_inner().peekable(), climber)?; let end = node.span.end_pos(); ParserNode { expr: ParserExpr::Push(Box::new(node)), span: start.span(&end), } } Rule::peek_slice => { let mut pairs = pair.clone().into_inner(); pairs.next().unwrap(); // opening_brack let pair_start = pairs.next().unwrap(); // .. or integer let start: i32 = match pair_start.as_rule() { Rule::range_operator => 0, Rule::integer => { pairs.next().unwrap(); // .. pair_start.as_str().parse().unwrap() } _ => unreachable!(), }; let pair_end = pairs.next().unwrap(); // integer or } let end: Option = match pair_end.as_rule() { Rule::closing_brack => None, Rule::integer => { pairs.next().unwrap(); // } Some(pair_end.as_str().parse().unwrap()) } _ => unreachable!(), }; ParserNode { expr: ParserExpr::PeekSlice(start, end), span: pair.into_span(), } } Rule::identifier => ParserNode { expr: ParserExpr::Ident(pair.as_str().to_owned()), span: pair.clone().into_span(), }, Rule::string => { let string = unescape(pair.as_str()).expect("incorrect string literal"); ParserNode { expr: ParserExpr::Str(string[1..string.len() - 1].to_owned()), span: pair.clone().into_span(), } } Rule::insensitive_string => { let string = unescape(pair.as_str()).expect("incorrect string literal"); ParserNode { expr: ParserExpr::Insens(string[2..string.len() - 1].to_owned()), span: pair.clone().into_span(), } } Rule::range => { let mut pairs = pair.into_inner(); let pair = pairs.next().unwrap(); let start = unescape(pair.as_str()).expect("incorrect char literal"); let start_pos = pair.clone().into_span().start_pos(); pairs.next(); let pair = pairs.next().unwrap(); let end = unescape(pair.as_str()).expect("incorrect char literal"); let end_pos = pair.clone().into_span().end_pos(); ParserNode { expr: ParserExpr::Range( start[1..start.len() - 1].to_owned(), end[1..end.len() - 1].to_owned(), ), span: start_pos.span(&end_pos), } } _ => unreachable!(), }; pairs.fold( Ok(node), |node: Result, Vec>>, pair| { let node = node?; let node = match pair.as_rule() { Rule::optional_operator => { let start = node.span.start_pos(); ParserNode { expr: ParserExpr::Opt(Box::new(node)), span: start.span(&pair.into_span().end_pos()), } } Rule::repeat_operator => { let start = node.span.start_pos(); ParserNode { expr: ParserExpr::Rep(Box::new(node)), span: start.span(&pair.into_span().end_pos()), } } Rule::repeat_once_operator => { let start = node.span.start_pos(); ParserNode { expr: ParserExpr::RepOnce(Box::new(node)), span: start.span(&pair.into_span().end_pos()), } } Rule::repeat_exact => { let mut inner = pair.clone().into_inner(); inner.next().unwrap(); // opening_brace let number = inner.next().unwrap(); let num = if let Ok(num) = number.as_str().parse::() { num } else { return Err(vec![Error::new_from_span( ErrorVariant::CustomError { message: "number cannot overflow u32".to_owned(), }, number.into_span(), )]); }; if num == 0 { let error: Error = Error::new_from_span( ErrorVariant::CustomError { message: "cannot repeat 0 times".to_owned(), }, number.into_span(), ); return Err(vec![error]); } let start = node.span.start_pos(); ParserNode { expr: ParserExpr::RepExact(Box::new(node), num), span: start.span(&pair.into_span().end_pos()), } } Rule::repeat_min => { let mut inner = pair.clone().into_inner(); inner.next().unwrap(); // opening_brace let min_number = inner.next().unwrap(); let min = if let Ok(min) = min_number.as_str().parse::() { min } else { return Err(vec![Error::new_from_span( ErrorVariant::CustomError { message: "number cannot overflow u32".to_owned(), }, min_number.into_span(), )]); }; let start = node.span.start_pos(); ParserNode { expr: ParserExpr::RepMin(Box::new(node), min), span: start.span(&pair.into_span().end_pos()), } } Rule::repeat_max => { let mut inner = pair.clone().into_inner(); inner.next().unwrap(); // opening_brace inner.next().unwrap(); // comma let max_number = inner.next().unwrap(); let max = if let Ok(max) = max_number.as_str().parse::() { max } else { return Err(vec![Error::new_from_span( ErrorVariant::CustomError { message: "number cannot overflow u32".to_owned(), }, max_number.into_span(), )]); }; if max == 0 { let error: Error = Error::new_from_span( ErrorVariant::CustomError { message: "cannot repeat 0 times".to_owned(), }, max_number.into_span(), ); return Err(vec![error]); } let start = node.span.start_pos(); ParserNode { expr: ParserExpr::RepMax(Box::new(node), max), span: start.span(&pair.into_span().end_pos()), } } Rule::repeat_min_max => { let mut inner = pair.clone().into_inner(); inner.next().unwrap(); // opening_brace let min_number = inner.next().unwrap(); let min = if let Ok(min) = min_number.as_str().parse::() { min } else { return Err(vec![Error::new_from_span( ErrorVariant::CustomError { message: "number cannot overflow u32".to_owned(), }, min_number.into_span(), )]); }; inner.next().unwrap(); // comma let max_number = inner.next().unwrap(); let max = if let Ok(max) = max_number.as_str().parse::() { max } else { return Err(vec![Error::new_from_span( ErrorVariant::CustomError { message: "number cannot overflow u32".to_owned(), }, max_number.into_span(), )]); }; if max == 0 { let error: Error = Error::new_from_span( ErrorVariant::CustomError { message: "cannot repeat 0 times".to_owned(), }, max_number.into_span(), ); return Err(vec![error]); } let start = node.span.start_pos(); ParserNode { expr: ParserExpr::RepMinMax(Box::new(node), min, max), span: start.span(&pair.into_span().end_pos()), } } Rule::closing_paren => { let start = node.span.start_pos(); ParserNode { expr: node.expr, span: start.span(&pair.into_span().end_pos()), } } _ => unreachable!(), }; Ok(node) }, )? } }; Ok(node) } let term = |pair: Pair<'i, Rule>| unaries(pair.into_inner().peekable(), climber); let infix = |lhs: Result, Vec>>, op: Pair<'i, Rule>, rhs: Result, Vec>>| match op.as_rule() { Rule::sequence_operator => { let lhs = lhs?; let rhs = rhs?; let start = lhs.span.start_pos(); let end = rhs.span.end_pos(); Ok(ParserNode { expr: ParserExpr::Seq(Box::new(lhs), Box::new(rhs)), span: start.span(&end), }) } Rule::choice_operator => { let lhs = lhs?; let rhs = rhs?; let start = lhs.span.start_pos(); let end = rhs.span.end_pos(); Ok(ParserNode { expr: ParserExpr::Choice(Box::new(lhs), Box::new(rhs)), span: start.span(&end), }) } _ => unreachable!(), }; climber.climb(pairs, term, infix) } fn unescape(string: &str) -> Option { let mut result = String::new(); let mut chars = string.chars(); loop { match chars.next() { Some('\\') => match chars.next()? { '"' => result.push('"'), '\\' => result.push('\\'), 'r' => result.push('\r'), 'n' => result.push('\n'), 't' => result.push('\t'), '0' => result.push('\0'), '\'' => result.push('\''), 'x' => { let string: String = chars.clone().take(2).collect(); if string.len() != 2 { return None; } for _ in 0..string.len() { chars.next()?; } let value = u8::from_str_radix(&string, 16).ok()?; result.push(char::from(value)); } 'u' => { if chars.next()? != '{' { return None; } let string: String = chars.clone().take_while(|c| *c != '}').collect(); if string.len() < 2 || 6 < string.len() { return None; } for _ in 0..string.len() + 1 { chars.next()?; } let value = u32::from_str_radix(&string, 16).ok()?; result.push(char::from_u32(value)?); } _ => return None, }, Some(c) => result.push(c), None => return Some(result), }; } } #[cfg(test)] mod tests { use super::super::unwrap_or_report; use super::*; #[test] fn rules() { parses_to! { parser: PestParser, input: "a = { b } c = { d }", rule: Rule::grammar_rules, tokens: [ grammar_rule(0, 9, [ identifier(0, 1), assignment_operator(2, 3), opening_brace(4, 5), expression(6, 8, [ term(6, 8, [ identifier(6, 7) ]) ]), closing_brace(8, 9) ]), grammar_rule(10, 19, [ identifier(10, 11), assignment_operator(12, 13), opening_brace(14, 15), expression(16, 18, [ term(16, 18, [ identifier(16, 17) ]) ]), closing_brace(18, 19) ]) ] }; } #[test] fn rule() { parses_to! { parser: PestParser, input: "a = ! { b ~ c }", rule: Rule::grammar_rule, tokens: [ grammar_rule(0, 15, [ identifier(0, 1), assignment_operator(2, 3), non_atomic_modifier(4, 5), opening_brace(6, 7), expression(8, 14, [ term(8, 10, [ identifier(8, 9) ]), sequence_operator(10, 11), term(12, 14, [ identifier(12, 13) ]) ]), closing_brace(14, 15) ]) ] }; } #[test] fn expression() { parses_to! { parser: PestParser, input: "_a | 'a'..'b' ~ !^\"abc\" ~ (d | e)*?", rule: Rule::expression, tokens: [ expression(0, 35, [ term(0, 3, [ identifier(0, 2) ]), choice_operator(3, 4), term(5, 14, [ range(5, 13, [ character(5, 8, [ single_quote(5, 6), inner_chr(6, 7), single_quote(7, 8) ]), range_operator(8, 10), character(10, 13, [ single_quote(10, 11), inner_chr(11, 12), single_quote(12, 13) ]) ]) ]), sequence_operator(14, 15), term(16, 24, [ negative_predicate_operator(16, 17), insensitive_string(17, 23, [ string(18, 23, [ quote(18, 19), inner_str(19, 22), quote(22, 23) ]) ]) ]), sequence_operator(24, 25), term(26, 35, [ opening_paren(26, 27), expression(27, 32, [ term(27, 29, [ identifier(27, 28) ]), choice_operator(29, 30), term(31, 32, [ identifier(31, 32) ]) ]), closing_paren(32, 33), repeat_operator(33, 34), optional_operator(34, 35) ]) ]) ] }; } #[test] fn repeat_exact() { parses_to! { parser: PestParser, input: "{1}", rule: Rule::repeat_exact, tokens: [ repeat_exact(0, 3, [ opening_brace(0, 1), number(1, 2), closing_brace(2, 3) ]) ] }; } #[test] fn repeat_min() { parses_to! { parser: PestParser, input: "{2,}", rule: Rule::repeat_min, tokens: [ repeat_min(0, 4, [ opening_brace(0,1), number(1,2), comma(2,3), closing_brace(3,4) ]) ] } } #[test] fn repeat_max() { parses_to! { parser: PestParser, input: "{, 3}", rule: Rule::repeat_max, tokens: [ repeat_max(0, 5, [ opening_brace(0,1), comma(1,2), number(3,4), closing_brace(4,5) ]) ] } } #[test] fn repeat_min_max() { parses_to! { parser: PestParser, input: "{1, 2}", rule: Rule::repeat_min_max, tokens: [ repeat_min_max(0, 6, [ opening_brace(0, 1), number(1, 2), comma(2, 3), number(4, 5), closing_brace(5, 6) ]) ] }; } #[test] fn push() { parses_to! { parser: PestParser, input: "PUSH ( a )", rule: Rule::_push, tokens: [ _push(0, 10, [ opening_paren(5, 6), expression(7, 9, [ term(7, 9, [ identifier(7, 8) ]) ]), closing_paren(9, 10) ]) ] }; } #[test] fn peek_slice_all() { parses_to! { parser: PestParser, input: "PEEK[..]", rule: Rule::peek_slice, tokens: [ peek_slice(0, 8, [ opening_brack(4, 5), range_operator(5, 7), closing_brack(7, 8) ]) ] }; } #[test] fn peek_slice_start() { parses_to! { parser: PestParser, input: "PEEK[1..]", rule: Rule::peek_slice, tokens: [ peek_slice(0, 9, [ opening_brack(4, 5), integer(5, 6), range_operator(6, 8), closing_brack(8, 9) ]) ] }; } #[test] fn peek_slice_end() { parses_to! { parser: PestParser, input: "PEEK[ ..-1]", rule: Rule::peek_slice, tokens: [ peek_slice(0, 11, [ opening_brack(4, 5), range_operator(6, 8), integer(8, 10), closing_brack(10, 11) ]) ] }; } #[test] fn peek_slice_start_end() { parses_to! { parser: PestParser, input: "PEEK[-5..10]", rule: Rule::peek_slice, tokens: [ peek_slice(0, 12, [ opening_brack(4, 5), integer(5, 7), range_operator(7, 9), integer(9, 11), closing_brack(11, 12) ]) ] }; } #[test] fn identifier() { parses_to! { parser: PestParser, input: "_a8943", rule: Rule::identifier, tokens: [ identifier(0, 6) ] }; } #[test] fn string() { parses_to! { parser: PestParser, input: "\"aaaaa\\n\\r\\t\\\\\\0\\'\\\"\\x0F\\u{123abC}\\u{12}aaaaa\"", rule: Rule::string, tokens: [ string(0, 46, [ quote(0, 1), inner_str(1, 45), quote(45, 46) ]) ] }; } #[test] fn insensitive_string() { parses_to! { parser: PestParser, input: "^ \"\\\"hi\"", rule: Rule::insensitive_string, tokens: [ insensitive_string(0, 9, [ string(3, 9, [ quote(3, 4), inner_str(4, 8), quote(8, 9) ]) ]) ] }; } #[test] fn range() { parses_to! { parser: PestParser, input: "'\\n' .. '\\x1a'", rule: Rule::range, tokens: [ range(0, 14, [ character(0, 4, [ single_quote(0, 1), inner_chr(1, 3), single_quote(3, 4) ]), range_operator(5, 7), character(8, 14, [ single_quote(8, 9), inner_chr(9, 13), single_quote(13, 14) ]) ]) ] }; } #[test] fn character() { parses_to! { parser: PestParser, input: "'\\u{123abC}'", rule: Rule::character, tokens: [ character(0, 12, [ single_quote(0, 1), inner_chr(1, 11), single_quote(11, 12) ]) ] }; } #[test] fn number() { parses_to! { parser: PestParser, input: "0123", rule: Rule::number, tokens: [ number(0, 4) ] }; } #[test] fn comment() { parses_to! { parser: PestParser, input: "a ~ // asda\n b", rule: Rule::expression, tokens: [ expression(0, 17, [ term(0, 2, [ identifier(0, 1) ]), sequence_operator(2, 3), term(16, 17, [ identifier(16, 17) ]) ]) ] }; } #[test] fn wrong_identifier() { fails_with! { parser: PestParser, input: "0", rule: Rule::grammar_rules, positives: vec![Rule::identifier], negatives: vec![], pos: 0 }; } #[test] fn missing_assignment_operator() { fails_with! { parser: PestParser, input: "a {}", rule: Rule::grammar_rules, positives: vec![Rule::assignment_operator], negatives: vec![], pos: 2 }; } #[test] fn wrong_modifier() { fails_with! { parser: PestParser, input: "a = *{}", rule: Rule::grammar_rules, positives: vec![ Rule::opening_brace, Rule::silent_modifier, Rule::atomic_modifier, Rule::compound_atomic_modifier, Rule::non_atomic_modifier ], negatives: vec![], pos: 4 }; } #[test] fn missing_opening_brace() { fails_with! { parser: PestParser, input: "a = _", rule: Rule::grammar_rules, positives: vec![Rule::opening_brace], negatives: vec![], pos: 5 }; } #[test] fn empty_rule() { fails_with! { parser: PestParser, input: "a = {}", rule: Rule::grammar_rules, positives: vec![Rule::term], negatives: vec![], pos: 5 }; } #[test] fn missing_rhs() { fails_with! { parser: PestParser, input: "a = { b ~ }", rule: Rule::grammar_rules, positives: vec![Rule::term], negatives: vec![], pos: 10 }; } #[test] fn wrong_op() { fails_with! { parser: PestParser, input: "a = { b % }", rule: Rule::grammar_rules, positives: vec![ Rule::opening_brace, Rule::closing_brace, Rule::sequence_operator, Rule::choice_operator, Rule::optional_operator, Rule::repeat_operator, Rule::repeat_once_operator ], negatives: vec![], pos: 8 }; } #[test] fn missing_closing_paren() { fails_with! { parser: PestParser, input: "a = { (b }", rule: Rule::grammar_rules, positives: vec![ Rule::opening_brace, Rule::closing_paren, Rule::sequence_operator, Rule::choice_operator, Rule::optional_operator, Rule::repeat_operator, Rule::repeat_once_operator ], negatives: vec![], pos: 9 }; } #[test] fn missing_term() { fails_with! { parser: PestParser, input: "a = { ! }", rule: Rule::grammar_rules, positives: vec![ Rule::opening_paren, Rule::positive_predicate_operator, Rule::negative_predicate_operator, Rule::_push, Rule::peek_slice, Rule::identifier, Rule::insensitive_string, Rule::quote, Rule::single_quote ], negatives: vec![], pos: 8 }; } #[test] fn string_missing_ending_quote() { fails_with! { parser: PestParser, input: "a = { \" }", rule: Rule::grammar_rules, positives: vec![Rule::quote], negatives: vec![], pos: 9 }; } #[test] fn insensitive_missing_string() { fails_with! { parser: PestParser, input: "a = { ^ }", rule: Rule::grammar_rules, positives: vec![Rule::quote], negatives: vec![], pos: 8 }; } #[test] fn char_missing_ending_single_quote() { fails_with! { parser: PestParser, input: "a = { \' }", rule: Rule::grammar_rules, positives: vec![Rule::single_quote], negatives: vec![], pos: 8 }; } #[test] fn range_missing_range_operator() { fails_with! { parser: PestParser, input: "a = { \'a\' }", rule: Rule::grammar_rules, positives: vec![Rule::range_operator], negatives: vec![], pos: 10 }; } #[test] fn wrong_postfix() { fails_with! { parser: PestParser, input: "a = { a& }", rule: Rule::grammar_rules, positives: vec![ Rule::opening_brace, Rule::closing_brace, Rule::sequence_operator, Rule::choice_operator, Rule::optional_operator, Rule::repeat_operator, Rule::repeat_once_operator ], negatives: vec![], pos: 7 }; } #[test] fn ast() { let input = "rule = _{ a{1} ~ \"a\"{3,} ~ b{, 2} ~ \"b\"{1, 2} | !(^\"c\" | PUSH('d'..'e'))?* }"; let pairs = PestParser::parse(Rule::grammar_rules, input).unwrap(); let ast = consume_rules_with_spans(pairs).unwrap(); let ast: Vec<_> = ast.into_iter().map(|rule| convert_rule(rule)).collect(); assert_eq!( ast, vec![AstRule { name: "rule".to_owned(), ty: RuleType::Silent, expr: Expr::Choice( Box::new(Expr::Seq( Box::new(Expr::Seq( Box::new(Expr::Seq( Box::new(Expr::RepExact(Box::new(Expr::Ident("a".to_owned())), 1)), Box::new(Expr::RepMin(Box::new(Expr::Str("a".to_owned())), 3)) )), Box::new(Expr::RepMax(Box::new(Expr::Ident("b".to_owned())), 2)) )), Box::new(Expr::RepMinMax(Box::new(Expr::Str("b".to_owned())), 1, 2)) )), Box::new(Expr::NegPred(Box::new(Expr::Rep(Box::new(Expr::Opt( Box::new(Expr::Choice( Box::new(Expr::Insens("c".to_owned())), Box::new(Expr::Push(Box::new(Expr::Range( "d".to_owned(), "e".to_owned() )))) )) )))))) ) },] ); } #[test] fn ast_peek_slice() { let input = "rule = _{ PEEK[-04..] ~ PEEK[..3] }"; let pairs = PestParser::parse(Rule::grammar_rules, input).unwrap(); let ast = consume_rules_with_spans(pairs).unwrap(); let ast: Vec<_> = ast.into_iter().map(|rule| convert_rule(rule)).collect(); assert_eq!( ast, vec![AstRule { name: "rule".to_owned(), ty: RuleType::Silent, expr: Expr::Seq( Box::new(Expr::PeekSlice(-4, None)), Box::new(Expr::PeekSlice(0, Some(3))), ) }], ); } #[test] #[should_panic(expected = "grammar error --> 1:13 | 1 | rule = { \"\"{4294967297} } | ^--------^ | = number cannot overflow u32")] fn repeat_exact_overflow() { let input = "rule = { \"\"{4294967297} }"; let pairs = PestParser::parse(Rule::grammar_rules, input).unwrap(); unwrap_or_report(consume_rules_with_spans(pairs)); } #[test] #[should_panic(expected = "grammar error --> 1:13 | 1 | rule = { \"\"{0} } | ^ | = cannot repeat 0 times")] fn repeat_exact_zero() { let input = "rule = { \"\"{0} }"; let pairs = PestParser::parse(Rule::grammar_rules, input).unwrap(); unwrap_or_report(consume_rules_with_spans(pairs)); } #[test] #[should_panic(expected = "grammar error --> 1:13 | 1 | rule = { \"\"{4294967297,} } | ^--------^ | = number cannot overflow u32")] fn repeat_min_overflow() { let input = "rule = { \"\"{4294967297,} }"; let pairs = PestParser::parse(Rule::grammar_rules, input).unwrap(); unwrap_or_report(consume_rules_with_spans(pairs)); } #[test] #[should_panic(expected = "grammar error --> 1:14 | 1 | rule = { \"\"{,4294967297} } | ^--------^ | = number cannot overflow u32")] fn repeat_max_overflow() { let input = "rule = { \"\"{,4294967297} }"; let pairs = PestParser::parse(Rule::grammar_rules, input).unwrap(); unwrap_or_report(consume_rules_with_spans(pairs)); } #[test] #[should_panic(expected = "grammar error --> 1:14 | 1 | rule = { \"\"{,0} } | ^ | = cannot repeat 0 times")] fn repeat_max_zero() { let input = "rule = { \"\"{,0} }"; let pairs = PestParser::parse(Rule::grammar_rules, input).unwrap(); unwrap_or_report(consume_rules_with_spans(pairs)); } #[test] #[should_panic(expected = "grammar error --> 1:13 | 1 | rule = { \"\"{4294967297,4294967298} } | ^--------^ | = number cannot overflow u32")] fn repeat_min_max_overflow() { let input = "rule = { \"\"{4294967297,4294967298} }"; let pairs = PestParser::parse(Rule::grammar_rules, input).unwrap(); unwrap_or_report(consume_rules_with_spans(pairs)); } #[test] #[should_panic(expected = "grammar error --> 1:15 | 1 | rule = { \"\"{0,0} } | ^ | = cannot repeat 0 times")] fn repeat_min_max_zero() { let input = "rule = { \"\"{0,0} }"; let pairs = PestParser::parse(Rule::grammar_rules, input).unwrap(); unwrap_or_report(consume_rules_with_spans(pairs)); } #[test] fn unescape_all() { let string = r"a\nb\x55c\u{111}d"; assert_eq!(unescape(string), Some("a\nb\x55c\u{111}d".to_owned())); } #[test] fn unescape_empty_escape() { let string = r"\"; assert_eq!(unescape(string), None); } #[test] fn unescape_wrong_escape() { let string = r"\w"; assert_eq!(unescape(string), None); } #[test] fn unescape_backslash() { let string = "\\\\"; assert_eq!(unescape(string), Some("\\".to_owned())); } #[test] fn unescape_return() { let string = "\\r"; assert_eq!(unescape(string), Some("\r".to_owned())); } #[test] fn unescape_tab() { let string = "\\t"; assert_eq!(unescape(string), Some("\t".to_owned())); } #[test] fn unescape_null() { let string = "\\0"; assert_eq!(unescape(string), Some("\0".to_owned())); } #[test] fn unescape_single_quote() { let string = "\\'"; assert_eq!(unescape(string), Some("\'".to_owned())); } #[test] fn unescape_wrong_byte() { let string = r"\xfg"; assert_eq!(unescape(string), None); } #[test] fn unescape_short_byte() { let string = r"\xf"; assert_eq!(unescape(string), None); } #[test] fn unescape_no_open_brace_unicode() { let string = r"\u11"; assert_eq!(unescape(string), None); } #[test] fn unescape_no_close_brace_unicode() { let string = r"\u{11"; assert_eq!(unescape(string), None); } #[test] fn unescape_short_unicode() { let string = r"\u{1}"; assert_eq!(unescape(string), None); } #[test] fn unescape_long_unicode() { let string = r"\u{1111111}"; assert_eq!(unescape(string), None); } } pest_meta-2.1.1/src/validator.rs010064400007650000024000000620671345516522100150540ustar0000000000000000// pest. The Elegant Parser // Copyright (c) 2018 Dragoș Tiselice // // Licensed under the Apache License, Version 2.0 // or the MIT // license , at your // option. All files in the project carrying such notice may not be copied, // modified, or distributed except according to those terms. use std::collections::{HashMap, HashSet}; use pest::error::{Error, ErrorVariant, InputLocation}; use pest::iterators::Pairs; use pest::Span; use parser::{ParserExpr, ParserNode, ParserRule, Rule}; use UNICODE_PROPERTY_NAMES; #[allow(clippy::needless_pass_by_value)] pub fn validate_pairs<'i>(pairs: Pairs<'i, Rule>) -> Result, Vec>> { let mut rust_keywords = HashSet::new(); rust_keywords.insert("abstract"); rust_keywords.insert("alignof"); rust_keywords.insert("as"); rust_keywords.insert("become"); rust_keywords.insert("box"); rust_keywords.insert("break"); rust_keywords.insert("const"); rust_keywords.insert("continue"); rust_keywords.insert("crate"); rust_keywords.insert("do"); rust_keywords.insert("else"); rust_keywords.insert("enum"); rust_keywords.insert("extern"); rust_keywords.insert("false"); rust_keywords.insert("final"); rust_keywords.insert("fn"); rust_keywords.insert("for"); rust_keywords.insert("if"); rust_keywords.insert("impl"); rust_keywords.insert("in"); rust_keywords.insert("let"); rust_keywords.insert("loop"); rust_keywords.insert("macro"); rust_keywords.insert("match"); rust_keywords.insert("mod"); rust_keywords.insert("move"); rust_keywords.insert("mut"); rust_keywords.insert("offsetof"); rust_keywords.insert("override"); rust_keywords.insert("priv"); rust_keywords.insert("proc"); rust_keywords.insert("pure"); rust_keywords.insert("pub"); rust_keywords.insert("ref"); rust_keywords.insert("return"); rust_keywords.insert("Self"); rust_keywords.insert("self"); rust_keywords.insert("sizeof"); rust_keywords.insert("static"); rust_keywords.insert("struct"); rust_keywords.insert("super"); rust_keywords.insert("trait"); rust_keywords.insert("true"); rust_keywords.insert("type"); rust_keywords.insert("typeof"); rust_keywords.insert("unsafe"); rust_keywords.insert("unsized"); rust_keywords.insert("use"); rust_keywords.insert("virtual"); rust_keywords.insert("where"); rust_keywords.insert("while"); rust_keywords.insert("yield"); let mut pest_keywords = HashSet::new(); pest_keywords.insert("_"); pest_keywords.insert("ANY"); pest_keywords.insert("DROP"); pest_keywords.insert("EOI"); pest_keywords.insert("PEEK"); pest_keywords.insert("PEEK_ALL"); pest_keywords.insert("POP"); pest_keywords.insert("POP_ALL"); pest_keywords.insert("PUSH"); pest_keywords.insert("SOI"); let mut builtins = HashSet::new(); builtins.insert("ANY"); builtins.insert("DROP"); builtins.insert("EOI"); builtins.insert("PEEK"); builtins.insert("PEEK_ALL"); builtins.insert("POP"); builtins.insert("POP_ALL"); builtins.insert("SOI"); builtins.insert("ASCII_DIGIT"); builtins.insert("ASCII_NONZERO_DIGIT"); builtins.insert("ASCII_BIN_DIGIT"); builtins.insert("ASCII_OCT_DIGIT"); builtins.insert("ASCII_HEX_DIGIT"); builtins.insert("ASCII_ALPHA_LOWER"); builtins.insert("ASCII_ALPHA_UPPER"); builtins.insert("ASCII_ALPHA"); builtins.insert("ASCII_ALPHANUMERIC"); builtins.insert("ASCII"); builtins.insert("NEWLINE"); builtins.extend(UNICODE_PROPERTY_NAMES); let definitions: Vec<_> = pairs .clone() .filter(|pair| pair.as_rule() == Rule::grammar_rule) .map(|pair| pair.into_inner().next().unwrap().into_span()) .collect(); let called_rules: Vec<_> = pairs .clone() .filter(|pair| pair.as_rule() == Rule::grammar_rule) .flat_map(|pair| { pair.into_inner() .flatten() .skip(1) .filter(|pair| pair.as_rule() == Rule::identifier) .map(|pair| pair.into_span()) }) .collect(); let mut errors = vec![]; errors.extend(validate_rust_keywords(&definitions, &rust_keywords)); errors.extend(validate_pest_keywords(&definitions, &pest_keywords)); errors.extend(validate_already_defined(&definitions)); errors.extend(validate_undefined(&definitions, &called_rules, &builtins)); if !errors.is_empty() { return Err(errors); } let definitions: HashSet<_> = definitions.iter().map(|span| span.as_str()).collect(); let called_rules: HashSet<_> = called_rules.iter().map(|span| span.as_str()).collect(); let defaults = called_rules.difference(&definitions); Ok(defaults.cloned().collect()) } #[allow(clippy::implicit_hasher, clippy::ptr_arg)] pub fn validate_rust_keywords<'i>( definitions: &Vec>, rust_keywords: &HashSet<&str>, ) -> Vec> { let mut errors = vec![]; for definition in definitions { let name = definition.as_str(); if rust_keywords.contains(name) { errors.push(Error::new_from_span( ErrorVariant::CustomError { message: format!("{} is a rust keyword", name), }, definition.clone(), )) } } errors } #[allow(clippy::implicit_hasher, clippy::ptr_arg)] pub fn validate_pest_keywords<'i>( definitions: &Vec>, pest_keywords: &HashSet<&str>, ) -> Vec> { let mut errors = vec![]; for definition in definitions { let name = definition.as_str(); if pest_keywords.contains(name) { errors.push(Error::new_from_span( ErrorVariant::CustomError { message: format!("{} is a pest keyword", name), }, definition.clone(), )) } } errors } #[allow(clippy::ptr_arg)] pub fn validate_already_defined<'i>(definitions: &Vec>) -> Vec> { let mut errors = vec![]; let mut defined = HashSet::new(); for definition in definitions { let name = definition.as_str(); if defined.contains(&name) { errors.push(Error::new_from_span( ErrorVariant::CustomError { message: format!("rule {} already defined", name), }, definition.clone(), )) } else { defined.insert(name); } } errors } #[allow(clippy::implicit_hasher, clippy::ptr_arg)] pub fn validate_undefined<'i>( definitions: &Vec>, called_rules: &Vec>, builtins: &HashSet<&str>, ) -> Vec> { let mut errors = vec![]; let definitions: HashSet<_> = definitions.iter().map(|span| span.as_str()).collect(); for rule in called_rules { let name = rule.as_str(); if !definitions.contains(name) && !builtins.contains(name) { errors.push(Error::new_from_span( ErrorVariant::CustomError { message: format!("rule {} is undefined", name), }, rule.clone(), )) } } errors } #[allow(clippy::ptr_arg)] pub fn validate_ast<'a, 'i: 'a>(rules: &'a Vec>) -> Vec> { let mut errors = vec![]; errors.extend(validate_repetition(rules)); errors.extend(validate_choices(rules)); errors.extend(validate_whitespace_comment(rules)); errors.extend(validate_left_recursion(rules)); errors.sort_by_key(|error| match error.location { InputLocation::Span(span) => span, _ => unreachable!(), }); errors } fn is_non_progressing<'i>( expr: &ParserExpr<'i>, rules: &HashMap>, trace: &mut Vec, ) -> bool { match *expr { ParserExpr::Str(ref string) => string == "", ParserExpr::Ident(ref ident) => { if ident == "soi" || ident == "eoi" { return true; } if !trace.contains(ident) { if let Some(node) = rules.get(ident) { trace.push(ident.clone()); let result = is_non_progressing(&node.expr, rules, trace); trace.pop().unwrap(); return result; } } false } ParserExpr::PosPred(_) => true, ParserExpr::NegPred(_) => true, ParserExpr::Seq(ref lhs, ref rhs) => { is_non_progressing(&lhs.expr, rules, trace) && is_non_progressing(&rhs.expr, rules, trace) } ParserExpr::Choice(ref lhs, ref rhs) => { is_non_progressing(&lhs.expr, rules, trace) || is_non_progressing(&rhs.expr, rules, trace) } _ => false, } } fn is_non_failing<'i>( expr: &ParserExpr<'i>, rules: &HashMap>, trace: &mut Vec, ) -> bool { match *expr { ParserExpr::Str(ref string) => string == "", ParserExpr::Ident(ref ident) => { if !trace.contains(ident) { if let Some(node) = rules.get(ident) { trace.push(ident.clone()); let result = is_non_failing(&node.expr, rules, trace); trace.pop().unwrap(); return result; } } false } ParserExpr::Opt(_) => true, ParserExpr::Rep(_) => true, ParserExpr::Seq(ref lhs, ref rhs) => { is_non_failing(&lhs.expr, rules, trace) && is_non_failing(&rhs.expr, rules, trace) } ParserExpr::Choice(ref lhs, ref rhs) => { is_non_failing(&lhs.expr, rules, trace) || is_non_failing(&rhs.expr, rules, trace) } _ => false, } } fn validate_repetition<'a, 'i: 'a>(rules: &'a [ParserRule<'i>]) -> Vec> { let mut result = vec![]; let map = to_hash_map(rules); for rule in rules { let mut errors = rule.node .clone() .filter_map_top_down(|node| match node.expr { ParserExpr::Rep(ref other) | ParserExpr::RepOnce(ref other) | ParserExpr::RepMin(ref other, _) => { if is_non_failing(&other.expr, &map, &mut vec![]) { Some(Error::new_from_span( ErrorVariant::CustomError { message: "expression inside repetition cannot fail and will repeat \ infinitely" .to_owned() }, node.span.clone() )) } else if is_non_progressing(&other.expr, &map, &mut vec![]) { Some(Error::new_from_span( ErrorVariant::CustomError { message: "expression inside repetition is non-progressing and will repeat \ infinitely" .to_owned(), }, node.span.clone() )) } else { None } } _ => None }); result.append(&mut errors); } result } fn validate_choices<'a, 'i: 'a>(rules: &'a [ParserRule<'i>]) -> Vec> { let mut result = vec![]; let map = to_hash_map(rules); for rule in rules { let mut errors = rule .node .clone() .filter_map_top_down(|node| match node.expr { ParserExpr::Choice(ref lhs, _) => { let node = match lhs.expr { ParserExpr::Choice(_, ref rhs) => rhs, _ => lhs, }; if is_non_failing(&node.expr, &map, &mut vec![]) { Some(Error::new_from_span( ErrorVariant::CustomError { message: "expression cannot fail; following choices cannot be reached" .to_owned(), }, node.span.clone(), )) } else { None } } _ => None, }); result.append(&mut errors); } result } fn validate_whitespace_comment<'a, 'i: 'a>(rules: &'a [ParserRule<'i>]) -> Vec> { let map = to_hash_map(rules); rules .iter() .filter_map(|rule| { if rule.name == "WHITESPACE" || rule.name == "COMMENT" { if is_non_failing(&rule.node.expr, &map, &mut vec![]) { Some(Error::new_from_span( ErrorVariant::CustomError { message: format!( "{} cannot fail and will repeat infinitely", &rule.name ), }, rule.node.span.clone(), )) } else if is_non_progressing(&rule.node.expr, &map, &mut vec![]) { Some(Error::new_from_span( ErrorVariant::CustomError { message: format!( "{} is non-progressing and will repeat infinitely", &rule.name ), }, rule.node.span.clone(), )) } else { None } } else { None } }) .collect() } fn validate_left_recursion<'a, 'i: 'a>(rules: &'a [ParserRule<'i>]) -> Vec> { left_recursion(to_hash_map(rules)) } fn to_hash_map<'a, 'i: 'a>(rules: &'a [ParserRule<'i>]) -> HashMap> { rules.iter().map(|r| (r.name.clone(), &r.node)).collect() } #[allow(clippy::needless_pass_by_value)] fn left_recursion<'a, 'i: 'a>(rules: HashMap>) -> Vec> { fn check_expr<'a, 'i: 'a>( node: &'a ParserNode<'i>, rules: &'a HashMap>, trace: &mut Vec, ) -> Option> { match node.expr.clone() { ParserExpr::Ident(other) => { if trace[0] == other { trace.push(other); let chain = trace .iter() .map(|ident| ident.as_ref()) .collect::>() .join(" -> "); return Some(Error::new_from_span( ErrorVariant::CustomError { message: format!( "rule {} is left-recursive ({}); pest::prec_climber might be useful \ in this case", node.span.as_str(), chain ) }, node.span.clone() )); } if !trace.contains(&other) { if let Some(node) = rules.get(&other) { trace.push(other); let result = check_expr(node, rules, trace); trace.pop().unwrap(); return result; } } None } ParserExpr::Seq(ref lhs, ref rhs) => { if is_non_failing(&lhs.expr, rules, &mut vec![trace.last().unwrap().clone()]) { check_expr(rhs, rules, trace) } else { check_expr(lhs, rules, trace) } } ParserExpr::Choice(ref lhs, ref rhs) => { check_expr(&lhs, rules, trace).or_else(|| check_expr(&rhs, rules, trace)) } ParserExpr::Rep(ref node) => check_expr(&node, rules, trace), ParserExpr::RepOnce(ref node) => check_expr(&node, rules, trace), ParserExpr::Opt(ref node) => check_expr(&node, rules, trace), ParserExpr::PosPred(ref node) => check_expr(&node, rules, trace), ParserExpr::NegPred(ref node) => check_expr(&node, rules, trace), ParserExpr::Push(ref node) => check_expr(&node, rules, trace), _ => None, } } let mut errors = vec![]; for (ref name, ref node) in &rules { let name = (*name).clone(); if let Some(error) = check_expr(node, &rules, &mut vec![name]) { errors.push(error); } } errors } #[cfg(test)] mod tests { use super::super::parser::{consume_rules, PestParser}; use super::super::unwrap_or_report; use super::*; use pest::Parser; #[test] #[should_panic(expected = "grammar error --> 1:1 | 1 | let = { \"a\" } | ^-^ | = let is a rust keyword")] fn rust_keyword() { let input = "let = { \"a\" }"; unwrap_or_report(validate_pairs( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:1 | 1 | ANY = { \"a\" } | ^-^ | = ANY is a pest keyword")] fn pest_keyword() { let input = "ANY = { \"a\" }"; unwrap_or_report(validate_pairs( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:13 | 1 | a = { \"a\" } a = { \"a\" } | ^ | = rule a already defined")] fn already_defined() { let input = "a = { \"a\" } a = { \"a\" }"; unwrap_or_report(validate_pairs( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:7 | 1 | a = { b } | ^ | = rule b is undefined")] fn undefined() { let input = "a = { b }"; unwrap_or_report(validate_pairs( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] fn valid_recursion() { let input = "a = { \"\" ~ \"a\"? ~ \"a\"* ~ (\"a\" | \"b\") ~ a }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:16 | 1 | WHITESPACE = { \"\" } | ^^ | = WHITESPACE cannot fail and will repeat infinitely")] fn non_failing_whitespace() { let input = "WHITESPACE = { \"\" }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:13 | 1 | COMMENT = { soi } | ^-^ | = COMMENT is non-progressing and will repeat infinitely")] fn non_progressing_comment() { let input = "COMMENT = { soi }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:7 | 1 | a = { (\"\")* } | ^---^ | = expression inside repetition cannot fail and will repeat infinitely")] fn non_failing_repetition() { let input = "a = { (\"\")* }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:18 | 1 | a = { \"\" } b = { a* } | ^^ | = expression inside repetition cannot fail and will repeat infinitely")] fn indirect_non_failing_repetition() { let input = "a = { \"\" } b = { a* }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:20 | 1 | a = { \"a\" ~ (\"b\" ~ (\"\")*) } | ^---^ | = expression inside repetition cannot fail and will repeat infinitely")] fn deep_non_failing_repetition() { let input = "a = { \"a\" ~ (\"b\" ~ (\"\")*) }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:7 | 1 | a = { (\"\" ~ &\"a\" ~ !\"a\" ~ (soi | eoi))* } | ^-------------------------------^ | = expression inside repetition is non-progressing and will repeat infinitely")] fn non_progressing_repetition() { let input = "a = { (\"\" ~ &\"a\" ~ !\"a\" ~ (soi | eoi))* }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:20 | 1 | a = { !\"a\" } b = { a* } | ^^ | = expression inside repetition is non-progressing and will repeat infinitely")] fn indirect_non_progressing_repetition() { let input = "a = { !\"a\" } b = { a* }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:7 | 1 | a = { a } | ^ | = rule a is left-recursive (a -> a); pest::prec_climber might be useful in this case")] fn simple_left_recursion() { let input = "a = { a }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:7 | 1 | a = { b } b = { a } | ^ | = rule b is left-recursive (b -> a -> b); pest::prec_climber might be useful in this case --> 1:17 | 1 | a = { b } b = { a } | ^ | = rule a is left-recursive (a -> b -> a); pest::prec_climber might be useful in this case")] fn indirect_left_recursion() { let input = "a = { b } b = { a }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:39 | 1 | a = { \"\" ~ \"a\"? ~ \"a\"* ~ (\"a\" | \"\") ~ a } | ^ | = rule a is left-recursive (a -> a); pest::prec_climber might be useful in this case")] fn non_failing_left_recursion() { let input = "a = { \"\" ~ \"a\"? ~ \"a\"* ~ (\"a\" | \"\") ~ a }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:13 | 1 | a = { \"a\" | a } | ^ | = rule a is left-recursive (a -> a); pest::prec_climber might be useful in this case")] fn non_primary_choice_left_recursion() { let input = "a = { \"a\" | a }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:7 | 1 | a = { \"a\"* | \"a\" | \"b\" } | ^--^ | = expression cannot fail; following choices cannot be reached")] fn lhs_non_failing_choice() { let input = "a = { \"a\"* | \"a\" | \"b\" }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:13 | 1 | a = { \"a\" | \"a\"* | \"b\" } | ^--^ | = expression cannot fail; following choices cannot be reached")] fn lhs_non_failing_choice_middle() { let input = "a = { \"a\" | \"a\"* | \"b\" }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] #[should_panic(expected = "grammar error --> 1:7 | 1 | a = { b | \"a\" } b = { \"b\"* | \"c\" } | ^ | = expression cannot fail; following choices cannot be reached --> 1:23 | 1 | a = { b | \"a\" } b = { \"b\"* | \"c\" } | ^--^ | = expression cannot fail; following choices cannot be reached")] fn lhs_non_failing_nested_choices() { let input = "a = { b | \"a\" } b = { \"b\"* | \"c\" }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } #[test] fn skip_can_be_defined() { let input = "skip = { \"\" }"; unwrap_or_report(consume_rules( PestParser::parse(Rule::grammar_rules, input).unwrap(), )); } }