sec1-0.7.2/.cargo_vcs_info.json0000644000000001420000000000100116720ustar { "git": { "sha1": "76f5d7c2a48a2f2c21b7481272b22b97b68102c5" }, "path_in_vcs": "sec1" }sec1-0.7.2/CHANGELOG.md000064400000000000000000000052511046102023000123010ustar 00000000000000# Changelog All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). ## 0.7.2 (2023-04-09) ### Added - Impl `ModulusSize` for `U24` ([#995]) [#995]: https://github.com/RustCrypto/formats/pull/995 ## 0.7.1 (2023-02-27) ### Fixed - Encode `ECPrivateKey` version ([#908]) [#908]: https://github.com/RustCrypto/formats/pull/908 ## 0.7.0 (2023-02-26) [YANKED] ### Changed - MSRV 1.65 ([#805]) - Bump `serdect` to v0.2 ([#893]) - Bump `der` dependency to v0.7 ([#899]) - Bump `spki` dependency to v0.7 ([#900]) - Bump `pkcs8` to v0.10 ([#902]) [#805]: https://github.com/RustCrypto/formats/pull/805 [#893]: https://github.com/RustCrypto/formats/pull/893 [#899]: https://github.com/RustCrypto/formats/pull/899 [#900]: https://github.com/RustCrypto/formats/pull/900 [#902]: https://github.com/RustCrypto/formats/pull/902 ## 0.6.0 (Skipped) - Skipped to synchronize version number with `der` and `spki` ## 0.5.0 (Skipped) - Skipped to synchronize version number with `der` and `spki` ## 0.4.0 (Skipped) - Skipped to synchronize version number with `der` and `spki` ## 0.3.0 (2022-05-08) ### Added - Make `der` feature optional but on-by-default ([#497]) - Make `point` feature optional but on-by-default ([#516]) ### Changed - Use `base16ct` and `serdect` crates ([#648]) - Bump `der` to v0.6 ([#653]) - Bump `pkcs8` to v0.9 ([#656]) [#497]: https://github.com/RustCrypto/formats/pull/497 [#516]: https://github.com/RustCrypto/formats/pull/516 [#648]: https://github.com/RustCrypto/formats/pull/648 [#653]: https://github.com/RustCrypto/formats/pull/653 [#656]: https://github.com/RustCrypto/formats/pull/656 ## 0.2.1 (2021-11-18) ### Added - `serde` feature ([#248]) - Hexadecimal serialization/deserialization support for `EncodedPoint` ([#248]) [#248]: https://github.com/RustCrypto/formats/pull/248 ## 0.2.0 (2021-11-17) [YANKED] ### Added - `pkcs8` feature ([#229]) ### Changed - Rename `From/ToEcPrivateKey` => `DecodeEcPrivateKey`/`EncodeEcPrivateKey` ([#122]) - Use `der::Document` to impl `EcPrivateKeyDocument` ([#133]) - Rust 2021 edition upgrade; MSRV 1.56 ([#136]) - Bump `der` crate dependency to v0.5 ([#222]) ### Removed - I/O related errors ([#158]) [#122]: https://github.com/RustCrypto/formats/pull/122 [#133]: https://github.com/RustCrypto/formats/pull/133 [#136]: https://github.com/RustCrypto/formats/pull/136 [#158]: https://github.com/RustCrypto/formats/pull/158 [#222]: https://github.com/RustCrypto/formats/pull/222 [#229]: https://github.com/RustCrypto/formats/pull/229 ## 0.1.0 (2021-09-22) - Initial release sec1-0.7.2/Cargo.toml0000644000000043260000000000100077000ustar # THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies. # # If you are reading this file be aware that the original Cargo.toml # will likely look very different (and much more reasonable). # See Cargo.toml.orig for the original contents. [package] edition = "2021" rust-version = "1.65" name = "sec1" version = "0.7.2" authors = ["RustCrypto Developers"] description = """ Pure Rust implementation of SEC1: Elliptic Curve Cryptography encoding formats including ASN.1 DER-serialized private keys as well as the Elliptic-Curve-Point-to-Octet-String encoding """ readme = "README.md" keywords = [ "crypto", "key", "elliptic-curve", "secg", ] categories = [ "cryptography", "data-structures", "encoding", "no-std", "parser-implementations", ] license = "Apache-2.0 OR MIT" repository = "https://github.com/RustCrypto/formats/tree/master/sec1" [package.metadata.docs.rs] all-features = true rustdoc-args = [ "--cfg", "docsrs", ] [dependencies.base16ct] version = "0.2" optional = true default-features = false [dependencies.der] version = "0.7" features = ["oid"] optional = true [dependencies.generic-array] version = "0.14.7" optional = true default-features = false [dependencies.pkcs8] version = "0.10" optional = true default-features = false [dependencies.serdect] version = "0.2" features = ["alloc"] optional = true default-features = false [dependencies.subtle] version = "2" optional = true default-features = false [dependencies.zeroize] version = "1" optional = true default-features = false [dev-dependencies.hex-literal] version = "0.3" [dev-dependencies.tempfile] version = "3" [features] alloc = [ "der?/alloc", "pkcs8?/alloc", "zeroize?/alloc", ] default = [ "der", "point", ] der = [ "dep:der", "zeroize", ] pem = [ "alloc", "der/pem", "pkcs8/pem", ] point = [ "dep:base16ct", "dep:generic-array", ] serde = ["dep:serdect"] std = [ "alloc", "der?/std", ] zeroize = [ "dep:zeroize", "der?/zeroize", ] sec1-0.7.2/Cargo.toml.orig000064400000000000000000000031761046102023000133630ustar 00000000000000[package] name = "sec1" version = "0.7.2" description = """ Pure Rust implementation of SEC1: Elliptic Curve Cryptography encoding formats including ASN.1 DER-serialized private keys as well as the Elliptic-Curve-Point-to-Octet-String encoding """ authors = ["RustCrypto Developers"] license = "Apache-2.0 OR MIT" repository = "https://github.com/RustCrypto/formats/tree/master/sec1" categories = ["cryptography", "data-structures", "encoding", "no-std", "parser-implementations"] keywords = ["crypto", "key", "elliptic-curve", "secg"] readme = "README.md" edition = "2021" rust-version = "1.65" [dependencies] base16ct = { version = "0.2", optional = true, default-features = false, path = "../base16ct" } der = { version = "0.7", optional = true, features = ["oid"], path = "../der" } generic-array = { version = "0.14.7", optional = true, default-features = false } pkcs8 = { version = "0.10", optional = true, default-features = false, path = "../pkcs8" } serdect = { version = "0.2", optional = true, default-features = false, features = ["alloc"], path = "../serdect" } subtle = { version = "2", optional = true, default-features = false } zeroize = { version = "1", optional = true, default-features = false } [dev-dependencies] hex-literal = "0.3" tempfile = "3" [features] default = ["der", "point"] alloc = ["der?/alloc", "pkcs8?/alloc", "zeroize?/alloc"] std = ["alloc", "der?/std"] der = ["dep:der", "zeroize"] pem = ["alloc", "der/pem", "pkcs8/pem"] point = ["dep:base16ct", "dep:generic-array"] serde = ["dep:serdect"] zeroize = ["dep:zeroize", "der?/zeroize"] [package.metadata.docs.rs] all-features = true rustdoc-args = ["--cfg", "docsrs"] sec1-0.7.2/LICENSE-APACHE000064400000000000000000000251411046102023000124140ustar 00000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. sec1-0.7.2/LICENSE-MIT000064400000000000000000000020721046102023000121220ustar 00000000000000Copyright (c) 2021-2022 The RustCrypto Project Developers Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. sec1-0.7.2/README.md000064400000000000000000000037601046102023000117520ustar 00000000000000# [RustCrypto]: SEC1 Elliptic Curve Cryptography Formats [![crate][crate-image]][crate-link] [![Docs][docs-image]][docs-link] [![Build Status][build-image]][build-link] ![Apache2/MIT licensed][license-image] ![Rust Version][rustc-image] [![Project Chat][chat-image]][chat-link] [Documentation][docs-link] ## About Pure Rust implementation of [SEC1: Elliptic Curve Cryptography] encoding formats including ASN.1 DER-serialized private keys (also described in [RFC5915]) as well as the `Elliptic-Curve-Point-to-Octet-String` and `Octet-String-to-Elliptic-Curve-Point` encoding algorithms. ## Minimum Supported Rust Version This crate requires **Rust 1.65** at a minimum. We may change the MSRV in the future, but it will be accompanied by a minor version bump. ## License Licensed under either of: * [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0) * [MIT license](http://opensource.org/licenses/MIT) at your option. ### Contribution Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions. [//]: # (badges) [crate-image]: https://buildstats.info/crate/sec1 [crate-link]: https://crates.io/crates/sec1 [docs-image]: https://docs.rs/sec1/badge.svg [docs-link]: https://docs.rs/sec1/ [license-image]: https://img.shields.io/badge/license-Apache2.0/MIT-blue.svg [rustc-image]: https://img.shields.io/badge/rustc-1.65+-blue.svg [chat-image]: https://img.shields.io/badge/zulip-join_chat-blue.svg [chat-link]: https://rustcrypto.zulipchat.com/#narrow/stream/300570-formats [build-image]: https://github.com/RustCrypto/formats/workflows/sec1/badge.svg?branch=master&event=push [build-link]: https://github.com/RustCrypto/formats/actions [//]: # (links) [RustCrypto]: https://github.com/rustcrypto [SEC1: Elliptic Curve Cryptography]: https://www.secg.org/sec1-v2.pdf [RFC5915]: https://datatracker.ietf.org/doc/html/rfc5915 sec1-0.7.2/src/error.rs000064400000000000000000000041651046102023000127610ustar 00000000000000//! Error types use core::fmt; #[cfg(feature = "pem")] use der::pem; /// Result type with `sec1` crate's [`Error`] type. pub type Result = core::result::Result; /// Error type #[derive(Copy, Clone, Debug, Eq, PartialEq)] #[non_exhaustive] pub enum Error { /// ASN.1 DER-related errors. #[cfg(feature = "der")] Asn1(der::Error), /// Cryptographic errors. /// /// These can be used by EC implementations to signal that a key is /// invalid for cryptographic reasons. This means the document parsed /// correctly, but one of the values contained within was invalid, e.g. /// a number expected to be a prime was not a prime. Crypto, /// PKCS#8 errors. #[cfg(feature = "pkcs8")] Pkcs8(pkcs8::Error), /// Errors relating to the `Elliptic-Curve-Point-to-Octet-String` or /// `Octet-String-to-Elliptic-Curve-Point` encodings. PointEncoding, /// Version errors Version, } impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { #[cfg(feature = "der")] Error::Asn1(err) => write!(f, "SEC1 ASN.1 error: {}", err), Error::Crypto => f.write_str("SEC1 cryptographic error"), #[cfg(feature = "pkcs8")] Error::Pkcs8(err) => write!(f, "{}", err), Error::PointEncoding => f.write_str("elliptic curve point encoding error"), Error::Version => f.write_str("SEC1 version error"), } } } #[cfg(feature = "der")] impl From for Error { fn from(err: der::Error) -> Error { Error::Asn1(err) } } #[cfg(feature = "pem")] impl From for Error { fn from(err: pem::Error) -> Error { der::Error::from(err).into() } } #[cfg(feature = "pkcs8")] impl From for Error { fn from(err: pkcs8::Error) -> Error { Error::Pkcs8(err) } } #[cfg(feature = "pkcs8")] impl From for Error { fn from(err: pkcs8::spki::Error) -> Error { Error::Pkcs8(pkcs8::Error::PublicKey(err)) } } #[cfg(feature = "std")] impl std::error::Error for Error {} sec1-0.7.2/src/lib.rs000064400000000000000000000040221046102023000123660ustar 00000000000000#![no_std] #![cfg_attr(docsrs, feature(doc_auto_cfg))] #![doc = include_str!("../README.md")] #![doc( html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg", html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg" )] #![forbid(unsafe_code)] #![warn( clippy::mod_module_files, clippy::unwrap_used, missing_docs, rust_2018_idioms, unused_qualifications )] //! ## `serde` support //! //! When the `serde` feature of this crate is enabled, the [`EncodedPoint`] //! type receives impls of [`serde::Serialize`] and [`serde::Deserialize`]. //! //! Additionally, when both the `alloc` and `serde` features are enabled, the //! serializers/deserializers will autodetect if a "human friendly" textual //! encoding is being used, and if so encode the points as hexadecimal. #[cfg(feature = "alloc")] #[allow(unused_extern_crates)] extern crate alloc; #[cfg(feature = "std")] extern crate std; #[cfg(feature = "point")] pub mod point; mod error; #[cfg(feature = "der")] mod parameters; #[cfg(feature = "der")] mod private_key; #[cfg(feature = "der")] mod traits; #[cfg(feature = "der")] pub use der; pub use crate::error::{Error, Result}; #[cfg(feature = "point")] pub use crate::point::EncodedPoint; #[cfg(feature = "point")] pub use generic_array::typenum::consts; #[cfg(feature = "der")] pub use crate::{parameters::EcParameters, private_key::EcPrivateKey, traits::DecodeEcPrivateKey}; #[cfg(all(feature = "alloc", feature = "der"))] pub use crate::traits::EncodeEcPrivateKey; #[cfg(feature = "pem")] pub use der::pem::{self, LineEnding}; #[cfg(feature = "pkcs8")] pub use pkcs8; #[cfg(feature = "pkcs8")] use pkcs8::ObjectIdentifier; #[cfg(all(doc, feature = "serde"))] use serdect::serde; /// Algorithm [`ObjectIdentifier`] for elliptic curve public key cryptography /// (`id-ecPublicKey`). /// /// #[cfg(feature = "pkcs8")] pub const ALGORITHM_OID: ObjectIdentifier = ObjectIdentifier::new_unwrap("1.2.840.10045.2.1"); sec1-0.7.2/src/parameters.rs000064400000000000000000000042441046102023000137710ustar 00000000000000use der::{ asn1::{AnyRef, ObjectIdentifier}, DecodeValue, EncodeValue, FixedTag, Header, Length, Reader, Tag, Writer, }; /// Elliptic curve parameters as described in /// [RFC5480 Section 2.1.1](https://datatracker.ietf.org/doc/html/rfc5480#section-2.1.1): /// /// ```text /// ECParameters ::= CHOICE { /// namedCurve OBJECT IDENTIFIER /// -- implicitCurve NULL /// -- specifiedCurve SpecifiedECDomain /// } /// -- implicitCurve and specifiedCurve MUST NOT be used in PKIX. /// -- Details for SpecifiedECDomain can be found in [X9.62]. /// -- Any future additions to this CHOICE should be coordinated /// -- with ANSI X9. /// ``` #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub enum EcParameters { /// Elliptic curve named by a particular OID. /// /// > namedCurve identifies all the required values for a particular /// > set of elliptic curve domain parameters to be represented by an /// > object identifier. NamedCurve(ObjectIdentifier), } impl<'a> DecodeValue<'a> for EcParameters { fn decode_value>(decoder: &mut R, header: Header) -> der::Result { ObjectIdentifier::decode_value(decoder, header).map(Self::NamedCurve) } } impl EncodeValue for EcParameters { fn value_len(&self) -> der::Result { match self { Self::NamedCurve(oid) => oid.value_len(), } } fn encode_value(&self, writer: &mut impl Writer) -> der::Result<()> { match self { Self::NamedCurve(oid) => oid.encode_value(writer), } } } impl EcParameters { /// Obtain the `namedCurve` OID. pub fn named_curve(self) -> Option { match self { Self::NamedCurve(oid) => Some(oid), } } } impl<'a> From<&'a EcParameters> for AnyRef<'a> { fn from(params: &'a EcParameters) -> AnyRef<'a> { match params { EcParameters::NamedCurve(oid) => oid.into(), } } } impl From for EcParameters { fn from(oid: ObjectIdentifier) -> EcParameters { EcParameters::NamedCurve(oid) } } impl FixedTag for EcParameters { const TAG: Tag = Tag::ObjectIdentifier; } sec1-0.7.2/src/point.rs000064400000000000000000000560331046102023000127620ustar 00000000000000//! Support for the SEC1 `Elliptic-Curve-Point-to-Octet-String` and //! `Octet-String-to-Elliptic-Curve-Point` encoding algorithms. //! //! Described in [SEC1: Elliptic Curve Cryptography] (Version 2.0) section 2.3.3 (p.10). //! //! [SEC1: Elliptic Curve Cryptography]: https://www.secg.org/sec1-v2.pdf use crate::{Error, Result}; use base16ct::HexDisplay; use core::{ cmp::Ordering, fmt::{self, Debug}, ops::Add, str, }; use generic_array::{ typenum::{U1, U24, U28, U32, U48, U66}, ArrayLength, GenericArray, }; #[cfg(feature = "alloc")] use alloc::boxed::Box; #[cfg(feature = "serde")] use serdect::serde::{de, ser, Deserialize, Serialize}; #[cfg(feature = "subtle")] use subtle::{Choice, ConditionallySelectable}; #[cfg(feature = "zeroize")] use zeroize::Zeroize; /// Trait for supported modulus sizes which precomputes the typenums for /// various point encodings so they don't need to be included as bounds. // TODO(tarcieri): replace this all with const generic expressions. pub trait ModulusSize: 'static + ArrayLength + Copy + Debug { /// Size of a compressed point for the given elliptic curve when encoded /// using the SEC1 `Elliptic-Curve-Point-to-Octet-String` algorithm /// (including leading `0x02` or `0x03` tag byte). type CompressedPointSize: 'static + ArrayLength + Copy + Debug; /// Size of an uncompressed point for the given elliptic curve when encoded /// using the SEC1 `Elliptic-Curve-Point-to-Octet-String` algorithm /// (including leading `0x04` tag byte). type UncompressedPointSize: 'static + ArrayLength + Copy + Debug; /// Size of an untagged point for given elliptic curve, i.e. size of two /// serialized base field elements. type UntaggedPointSize: 'static + ArrayLength + Copy + Debug; } macro_rules! impl_modulus_size { ($($size:ty),+) => { $(impl ModulusSize for $size { type CompressedPointSize = <$size as Add>::Output; type UncompressedPointSize = >::Output; type UntaggedPointSize = <$size as Add>::Output; })+ } } impl_modulus_size!(U24, U28, U32, U48, U66); /// SEC1 encoded curve point. /// /// This type is an enum over the compressed and uncompressed encodings, /// useful for cases where either encoding can be supported, or conversions /// between the two forms. #[derive(Clone, Default)] pub struct EncodedPoint where Size: ModulusSize, { bytes: GenericArray, } #[allow(clippy::len_without_is_empty)] impl EncodedPoint where Size: ModulusSize, { /// Decode elliptic curve point (compressed or uncompressed) from the /// `Elliptic-Curve-Point-to-Octet-String` encoding described in /// SEC 1: Elliptic Curve Cryptography (Version 2.0) section /// 2.3.3 (page 10). /// /// pub fn from_bytes(input: impl AsRef<[u8]>) -> Result { let input = input.as_ref(); // Validate tag let tag = input .first() .cloned() .ok_or(Error::PointEncoding) .and_then(Tag::from_u8)?; // Validate length let expected_len = tag.message_len(Size::to_usize()); if input.len() != expected_len { return Err(Error::PointEncoding); } let mut bytes = GenericArray::default(); bytes[..expected_len].copy_from_slice(input); Ok(Self { bytes }) } /// Decode elliptic curve point from raw uncompressed coordinates, i.e. /// encoded as the concatenated `x || y` coordinates with no leading SEC1 /// tag byte (which would otherwise be `0x04` for an uncompressed point). pub fn from_untagged_bytes(bytes: &GenericArray) -> Self { let (x, y) = bytes.split_at(Size::to_usize()); Self::from_affine_coordinates(x.into(), y.into(), false) } /// Encode an elliptic curve point from big endian serialized coordinates /// (with optional point compression) pub fn from_affine_coordinates( x: &GenericArray, y: &GenericArray, compress: bool, ) -> Self { let tag = if compress { Tag::compress_y(y.as_slice()) } else { Tag::Uncompressed }; let mut bytes = GenericArray::default(); bytes[0] = tag.into(); bytes[1..(Size::to_usize() + 1)].copy_from_slice(x); if !compress { bytes[(Size::to_usize() + 1)..].copy_from_slice(y); } Self { bytes } } /// Return [`EncodedPoint`] representing the additive identity /// (a.k.a. point at infinity) pub fn identity() -> Self { Self::default() } /// Get the length of the encoded point in bytes pub fn len(&self) -> usize { self.tag().message_len(Size::to_usize()) } /// Get byte slice containing the serialized [`EncodedPoint`]. pub fn as_bytes(&self) -> &[u8] { &self.bytes[..self.len()] } /// Get boxed byte slice containing the serialized [`EncodedPoint`] #[cfg(feature = "alloc")] pub fn to_bytes(&self) -> Box<[u8]> { self.as_bytes().to_vec().into_boxed_slice() } /// Is this [`EncodedPoint`] compact? pub fn is_compact(&self) -> bool { self.tag().is_compact() } /// Is this [`EncodedPoint`] compressed? pub fn is_compressed(&self) -> bool { self.tag().is_compressed() } /// Is this [`EncodedPoint`] the additive identity? (a.k.a. point at infinity) pub fn is_identity(&self) -> bool { self.tag().is_identity() } /// Compress this [`EncodedPoint`], returning a new [`EncodedPoint`]. pub fn compress(&self) -> Self { match self.coordinates() { Coordinates::Compressed { .. } | Coordinates::Compact { .. } | Coordinates::Identity => self.clone(), Coordinates::Uncompressed { x, y } => Self::from_affine_coordinates(x, y, true), } } /// Get the SEC1 tag for this [`EncodedPoint`] pub fn tag(&self) -> Tag { // Tag is ensured valid by the constructor Tag::from_u8(self.bytes[0]).expect("invalid tag") } /// Get the [`Coordinates`] for this [`EncodedPoint`]. #[inline] pub fn coordinates(&self) -> Coordinates<'_, Size> { if self.is_identity() { return Coordinates::Identity; } let (x, y) = self.bytes[1..].split_at(Size::to_usize()); if self.is_compressed() { Coordinates::Compressed { x: x.into(), y_is_odd: self.tag() as u8 & 1 == 1, } } else if self.is_compact() { Coordinates::Compact { x: x.into() } } else { Coordinates::Uncompressed { x: x.into(), y: y.into(), } } } /// Get the x-coordinate for this [`EncodedPoint`]. /// /// Returns `None` if this point is the identity point. pub fn x(&self) -> Option<&GenericArray> { match self.coordinates() { Coordinates::Identity => None, Coordinates::Compressed { x, .. } => Some(x), Coordinates::Uncompressed { x, .. } => Some(x), Coordinates::Compact { x } => Some(x), } } /// Get the y-coordinate for this [`EncodedPoint`]. /// /// Returns `None` if this point is compressed or the identity point. pub fn y(&self) -> Option<&GenericArray> { match self.coordinates() { Coordinates::Compressed { .. } | Coordinates::Identity => None, Coordinates::Uncompressed { y, .. } => Some(y), Coordinates::Compact { .. } => None, } } } impl AsRef<[u8]> for EncodedPoint where Size: ModulusSize, { #[inline] fn as_ref(&self) -> &[u8] { self.as_bytes() } } #[cfg(feature = "subtle")] impl ConditionallySelectable for EncodedPoint where Size: ModulusSize, >::ArrayType: Copy, { fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self { let mut bytes = GenericArray::default(); for (i, byte) in bytes.iter_mut().enumerate() { *byte = u8::conditional_select(&a.bytes[i], &b.bytes[i], choice); } Self { bytes } } } impl Copy for EncodedPoint where Size: ModulusSize, >::ArrayType: Copy, { } impl Debug for EncodedPoint where Size: ModulusSize, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "EncodedPoint({:?})", self.coordinates()) } } impl Eq for EncodedPoint {} impl PartialEq for EncodedPoint where Size: ModulusSize, { fn eq(&self, other: &Self) -> bool { self.as_bytes() == other.as_bytes() } } impl PartialOrd for EncodedPoint where Size: ModulusSize, { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl Ord for EncodedPoint where Size: ModulusSize, { fn cmp(&self, other: &Self) -> Ordering { self.as_bytes().cmp(other.as_bytes()) } } impl TryFrom<&[u8]> for EncodedPoint where Size: ModulusSize, { type Error = Error; fn try_from(bytes: &[u8]) -> Result { Self::from_bytes(bytes) } } #[cfg(feature = "zeroize")] impl Zeroize for EncodedPoint where Size: ModulusSize, { fn zeroize(&mut self) { self.bytes.zeroize(); *self = Self::identity(); } } impl fmt::Display for EncodedPoint where Size: ModulusSize, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:X}", self) } } impl fmt::LowerHex for EncodedPoint where Size: ModulusSize, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:x}", HexDisplay(self.as_bytes())) } } impl fmt::UpperHex for EncodedPoint where Size: ModulusSize, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:X}", HexDisplay(self.as_bytes())) } } /// Decode a SEC1-encoded point from hexadecimal. /// /// Upper and lower case hexadecimal are both accepted, however mixed case is /// rejected. impl str::FromStr for EncodedPoint where Size: ModulusSize, { type Err = Error; fn from_str(hex: &str) -> Result { let mut buf = GenericArray::::default(); base16ct::mixed::decode(hex, &mut buf) .map_err(|_| Error::PointEncoding) .and_then(Self::from_bytes) } } #[cfg(feature = "serde")] impl Serialize for EncodedPoint where Size: ModulusSize, { fn serialize(&self, serializer: S) -> core::result::Result where S: ser::Serializer, { serdect::slice::serialize_hex_upper_or_bin(&self.as_bytes(), serializer) } } #[cfg(feature = "serde")] impl<'de, Size> Deserialize<'de> for EncodedPoint where Size: ModulusSize, { fn deserialize(deserializer: D) -> core::result::Result where D: de::Deserializer<'de>, { let bytes = serdect::slice::deserialize_hex_or_bin_vec(deserializer)?; Self::from_bytes(bytes).map_err(de::Error::custom) } } /// Enum representing the coordinates of either compressed or uncompressed /// SEC1-encoded elliptic curve points. #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub enum Coordinates<'a, Size: ModulusSize> { /// Identity point (a.k.a. point at infinity) Identity, /// Compact curve point Compact { /// x-coordinate x: &'a GenericArray, }, /// Compressed curve point Compressed { /// x-coordinate x: &'a GenericArray, /// Is the y-coordinate odd? y_is_odd: bool, }, /// Uncompressed curve point Uncompressed { /// x-coordinate x: &'a GenericArray, /// y-coordinate y: &'a GenericArray, }, } impl<'a, Size: ModulusSize> Coordinates<'a, Size> { /// Get the tag octet needed to encode this set of [`Coordinates`] pub fn tag(&self) -> Tag { match self { Coordinates::Compact { .. } => Tag::Compact, Coordinates::Compressed { y_is_odd, .. } => { if *y_is_odd { Tag::CompressedOddY } else { Tag::CompressedEvenY } } Coordinates::Identity => Tag::Identity, Coordinates::Uncompressed { .. } => Tag::Uncompressed, } } } /// Tag byte used by the `Elliptic-Curve-Point-to-Octet-String` encoding. #[derive(Copy, Clone, Debug, Eq, PartialEq)] #[repr(u8)] pub enum Tag { /// Identity point (`0x00`) Identity = 0, /// Compressed point with even y-coordinate (`0x02`) CompressedEvenY = 2, /// Compressed point with odd y-coordinate (`0x03`) CompressedOddY = 3, /// Uncompressed point (`0x04`) Uncompressed = 4, /// Compact point (`0x05`) Compact = 5, } impl Tag { /// Parse a tag value from a byte pub fn from_u8(byte: u8) -> Result { match byte { 0 => Ok(Tag::Identity), 2 => Ok(Tag::CompressedEvenY), 3 => Ok(Tag::CompressedOddY), 4 => Ok(Tag::Uncompressed), 5 => Ok(Tag::Compact), _ => Err(Error::PointEncoding), } } /// Is this point compact? pub fn is_compact(self) -> bool { matches!(self, Tag::Compact) } /// Is this point compressed? pub fn is_compressed(self) -> bool { matches!(self, Tag::CompressedEvenY | Tag::CompressedOddY) } /// Is this point the identity point? pub fn is_identity(self) -> bool { self == Tag::Identity } /// Compute the expected total message length for a message prefixed /// with this tag (including the tag byte), given the field element size /// (in bytes) for a particular elliptic curve. pub fn message_len(self, field_element_size: usize) -> usize { 1 + match self { Tag::Identity => 0, Tag::CompressedEvenY | Tag::CompressedOddY => field_element_size, Tag::Uncompressed => field_element_size * 2, Tag::Compact => field_element_size, } } /// Compress the given y-coordinate, returning a `Tag::Compressed*` value fn compress_y(y: &[u8]) -> Self { // Is the y-coordinate odd in the SEC1 sense: `self mod 2 == 1`? if y.as_ref().last().expect("empty y-coordinate") & 1 == 1 { Tag::CompressedOddY } else { Tag::CompressedEvenY } } } impl TryFrom for Tag { type Error = Error; fn try_from(byte: u8) -> Result { Self::from_u8(byte) } } impl From for u8 { fn from(tag: Tag) -> u8 { tag as u8 } } #[cfg(test)] mod tests { use super::{Coordinates, Tag}; use core::str::FromStr; use generic_array::{typenum::U32, GenericArray}; use hex_literal::hex; #[cfg(feature = "alloc")] use alloc::string::ToString; #[cfg(feature = "subtle")] use subtle::ConditionallySelectable; type EncodedPoint = super::EncodedPoint; /// Identity point const IDENTITY_BYTES: [u8; 1] = [0]; /// Example uncompressed point const UNCOMPRESSED_BYTES: [u8; 65] = hex!("0411111111111111111111111111111111111111111111111111111111111111112222222222222222222222222222222222222222222222222222222222222222"); /// Example compressed point: `UNCOMPRESSED_BYTES` after point compression const COMPRESSED_BYTES: [u8; 33] = hex!("021111111111111111111111111111111111111111111111111111111111111111"); #[test] fn decode_compressed_point() { // Even y-coordinate let compressed_even_y_bytes = hex!("020100000000000000000000000000000000000000000000000000000000000000"); let compressed_even_y = EncodedPoint::from_bytes(&compressed_even_y_bytes[..]).unwrap(); assert!(compressed_even_y.is_compressed()); assert_eq!(compressed_even_y.tag(), Tag::CompressedEvenY); assert_eq!(compressed_even_y.len(), 33); assert_eq!(compressed_even_y.as_bytes(), &compressed_even_y_bytes[..]); assert_eq!( compressed_even_y.coordinates(), Coordinates::Compressed { x: &hex!("0100000000000000000000000000000000000000000000000000000000000000").into(), y_is_odd: false } ); assert_eq!( compressed_even_y.x().unwrap(), &hex!("0100000000000000000000000000000000000000000000000000000000000000").into() ); assert_eq!(compressed_even_y.y(), None); // Odd y-coordinate let compressed_odd_y_bytes = hex!("030200000000000000000000000000000000000000000000000000000000000000"); let compressed_odd_y = EncodedPoint::from_bytes(&compressed_odd_y_bytes[..]).unwrap(); assert!(compressed_odd_y.is_compressed()); assert_eq!(compressed_odd_y.tag(), Tag::CompressedOddY); assert_eq!(compressed_odd_y.len(), 33); assert_eq!(compressed_odd_y.as_bytes(), &compressed_odd_y_bytes[..]); assert_eq!( compressed_odd_y.coordinates(), Coordinates::Compressed { x: &hex!("0200000000000000000000000000000000000000000000000000000000000000").into(), y_is_odd: true } ); assert_eq!( compressed_odd_y.x().unwrap(), &hex!("0200000000000000000000000000000000000000000000000000000000000000").into() ); assert_eq!(compressed_odd_y.y(), None); } #[test] fn decode_uncompressed_point() { let uncompressed_point = EncodedPoint::from_bytes(&UNCOMPRESSED_BYTES[..]).unwrap(); assert!(!uncompressed_point.is_compressed()); assert_eq!(uncompressed_point.tag(), Tag::Uncompressed); assert_eq!(uncompressed_point.len(), 65); assert_eq!(uncompressed_point.as_bytes(), &UNCOMPRESSED_BYTES[..]); assert_eq!( uncompressed_point.coordinates(), Coordinates::Uncompressed { x: &hex!("1111111111111111111111111111111111111111111111111111111111111111").into(), y: &hex!("2222222222222222222222222222222222222222222222222222222222222222").into() } ); assert_eq!( uncompressed_point.x().unwrap(), &hex!("1111111111111111111111111111111111111111111111111111111111111111").into() ); assert_eq!( uncompressed_point.y().unwrap(), &hex!("2222222222222222222222222222222222222222222222222222222222222222").into() ); } #[test] fn decode_identity() { let identity_point = EncodedPoint::from_bytes(&IDENTITY_BYTES[..]).unwrap(); assert!(identity_point.is_identity()); assert_eq!(identity_point.tag(), Tag::Identity); assert_eq!(identity_point.len(), 1); assert_eq!(identity_point.as_bytes(), &IDENTITY_BYTES[..]); assert_eq!(identity_point.coordinates(), Coordinates::Identity); assert_eq!(identity_point.x(), None); assert_eq!(identity_point.y(), None); } #[test] fn decode_invalid_tag() { let mut compressed_bytes = COMPRESSED_BYTES; let mut uncompressed_bytes = UNCOMPRESSED_BYTES; for bytes in &mut [&mut compressed_bytes[..], &mut uncompressed_bytes[..]] { for tag in 0..=0xFF { // valid tags if tag == 2 || tag == 3 || tag == 4 || tag == 5 { continue; } (*bytes)[0] = tag; let decode_result = EncodedPoint::from_bytes(&*bytes); assert!(decode_result.is_err()); } } } #[test] fn decode_truncated_point() { for bytes in &[&COMPRESSED_BYTES[..], &UNCOMPRESSED_BYTES[..]] { for len in 0..bytes.len() { let decode_result = EncodedPoint::from_bytes(&bytes[..len]); assert!(decode_result.is_err()); } } } #[test] fn from_untagged_point() { let untagged_bytes = hex!("11111111111111111111111111111111111111111111111111111111111111112222222222222222222222222222222222222222222222222222222222222222"); let uncompressed_point = EncodedPoint::from_untagged_bytes(GenericArray::from_slice(&untagged_bytes[..])); assert_eq!(uncompressed_point.as_bytes(), &UNCOMPRESSED_BYTES[..]); } #[test] fn from_affine_coordinates() { let x = hex!("1111111111111111111111111111111111111111111111111111111111111111"); let y = hex!("2222222222222222222222222222222222222222222222222222222222222222"); let uncompressed_point = EncodedPoint::from_affine_coordinates(&x.into(), &y.into(), false); assert_eq!(uncompressed_point.as_bytes(), &UNCOMPRESSED_BYTES[..]); let compressed_point = EncodedPoint::from_affine_coordinates(&x.into(), &y.into(), true); assert_eq!(compressed_point.as_bytes(), &COMPRESSED_BYTES[..]); } #[test] fn compress() { let uncompressed_point = EncodedPoint::from_bytes(&UNCOMPRESSED_BYTES[..]).unwrap(); let compressed_point = uncompressed_point.compress(); assert_eq!(compressed_point.as_bytes(), &COMPRESSED_BYTES[..]); } #[cfg(feature = "subtle")] #[test] fn conditional_select() { let a = EncodedPoint::from_bytes(&COMPRESSED_BYTES[..]).unwrap(); let b = EncodedPoint::from_bytes(&UNCOMPRESSED_BYTES[..]).unwrap(); let a_selected = EncodedPoint::conditional_select(&a, &b, 0.into()); assert_eq!(a, a_selected); let b_selected = EncodedPoint::conditional_select(&a, &b, 1.into()); assert_eq!(b, b_selected); } #[test] fn identity() { let identity_point = EncodedPoint::identity(); assert_eq!(identity_point.tag(), Tag::Identity); assert_eq!(identity_point.len(), 1); assert_eq!(identity_point.as_bytes(), &IDENTITY_BYTES[..]); // identity is default assert_eq!(identity_point, EncodedPoint::default()); } #[test] fn decode_hex() { let point = EncodedPoint::from_str( "021111111111111111111111111111111111111111111111111111111111111111", ) .unwrap(); assert_eq!(point.as_bytes(), COMPRESSED_BYTES); } #[cfg(feature = "alloc")] #[test] fn to_bytes() { let uncompressed_point = EncodedPoint::from_bytes(&UNCOMPRESSED_BYTES[..]).unwrap(); assert_eq!(&*uncompressed_point.to_bytes(), &UNCOMPRESSED_BYTES[..]); } #[cfg(feature = "alloc")] #[test] fn to_string() { let point = EncodedPoint::from_bytes(&COMPRESSED_BYTES[..]).unwrap(); assert_eq!( point.to_string(), "021111111111111111111111111111111111111111111111111111111111111111" ); } } sec1-0.7.2/src/private_key.rs000064400000000000000000000130271046102023000141470ustar 00000000000000//! SEC1 elliptic curve private key support. //! //! Support for ASN.1 DER-encoded elliptic curve private keys as described in //! SEC1: Elliptic Curve Cryptography (Version 2.0) Appendix C.4 (p.108): //! //! use crate::{EcParameters, Error, Result}; use core::fmt; use der::{ asn1::{BitStringRef, ContextSpecific, ContextSpecificRef, OctetStringRef}, Decode, DecodeValue, Encode, EncodeValue, Header, Length, Reader, Sequence, Tag, TagMode, TagNumber, Writer, }; #[cfg(all(feature = "alloc", feature = "zeroize"))] use der::SecretDocument; #[cfg(feature = "pem")] use der::pem::PemLabel; /// `ECPrivateKey` version. /// /// From [RFC5913 Section 3]: /// > version specifies the syntax version number of the elliptic curve /// > private key structure. For this version of the document, it SHALL /// > be set to ecPrivkeyVer1, which is of type INTEGER and whose value /// > is one (1). /// /// [RFC5915 Section 3]: https://datatracker.ietf.org/doc/html/rfc5915#section-3 const VERSION: u8 = 1; /// Context-specific tag number for the elliptic curve parameters. const EC_PARAMETERS_TAG: TagNumber = TagNumber::new(0); /// Context-specific tag number for the public key. const PUBLIC_KEY_TAG: TagNumber = TagNumber::new(1); /// SEC1 elliptic curve private key. /// /// Described in [SEC1: Elliptic Curve Cryptography (Version 2.0)] /// Appendix C.4 (p.108) and also [RFC5915 Section 3]: /// /// ```text /// ECPrivateKey ::= SEQUENCE { /// version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1), /// privateKey OCTET STRING, /// parameters [0] ECParameters {{ NamedCurve }} OPTIONAL, /// publicKey [1] BIT STRING OPTIONAL /// } /// ``` /// /// When encoded as PEM (text), keys in this format begin with the following: /// /// ```text /// -----BEGIN EC PRIVATE KEY----- /// ``` /// /// [SEC1: Elliptic Curve Cryptography (Version 2.0)]: https://www.secg.org/sec1-v2.pdf /// [RFC5915 Section 3]: https://datatracker.ietf.org/doc/html/rfc5915#section-3 #[derive(Clone)] pub struct EcPrivateKey<'a> { /// Private key data. pub private_key: &'a [u8], /// Elliptic curve parameters. pub parameters: Option, /// Public key data, optionally available if version is V2. pub public_key: Option<&'a [u8]>, } impl<'a> EcPrivateKey<'a> { fn context_specific_parameters(&self) -> Option> { self.parameters.as_ref().map(|params| ContextSpecificRef { tag_number: EC_PARAMETERS_TAG, tag_mode: TagMode::Explicit, value: params, }) } fn context_specific_public_key( &self, ) -> der::Result>>> { self.public_key .map(|pk| { BitStringRef::from_bytes(pk).map(|value| ContextSpecific { tag_number: PUBLIC_KEY_TAG, tag_mode: TagMode::Explicit, value, }) }) .transpose() } } impl<'a> DecodeValue<'a> for EcPrivateKey<'a> { fn decode_value>(reader: &mut R, header: Header) -> der::Result { reader.read_nested(header.length, |reader| { if u8::decode(reader)? != VERSION { return Err(der::Tag::Integer.value_error()); } let private_key = OctetStringRef::decode(reader)?.as_bytes(); let parameters = reader.context_specific(EC_PARAMETERS_TAG, TagMode::Explicit)?; let public_key = reader .context_specific::>(PUBLIC_KEY_TAG, TagMode::Explicit)? .map(|bs| bs.as_bytes().ok_or_else(|| Tag::BitString.value_error())) .transpose()?; Ok(EcPrivateKey { private_key, parameters, public_key, }) }) } } impl EncodeValue for EcPrivateKey<'_> { fn value_len(&self) -> der::Result { VERSION.encoded_len()? + OctetStringRef::new(self.private_key)?.encoded_len()? + self.context_specific_parameters().encoded_len()? + self.context_specific_public_key()?.encoded_len()? } fn encode_value(&self, writer: &mut impl Writer) -> der::Result<()> { VERSION.encode(writer)?; OctetStringRef::new(self.private_key)?.encode(writer)?; self.context_specific_parameters().encode(writer)?; self.context_specific_public_key()?.encode(writer)?; Ok(()) } } impl<'a> Sequence<'a> for EcPrivateKey<'a> {} impl<'a> TryFrom<&'a [u8]> for EcPrivateKey<'a> { type Error = Error; fn try_from(bytes: &'a [u8]) -> Result> { Ok(Self::from_der(bytes)?) } } impl<'a> fmt::Debug for EcPrivateKey<'a> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("EcPrivateKey") .field("parameters", &self.parameters) .field("public_key", &self.public_key) .finish_non_exhaustive() } } #[cfg(feature = "alloc")] impl TryFrom> for SecretDocument { type Error = Error; fn try_from(private_key: EcPrivateKey<'_>) -> Result { SecretDocument::try_from(&private_key) } } #[cfg(feature = "alloc")] impl TryFrom<&EcPrivateKey<'_>> for SecretDocument { type Error = Error; fn try_from(private_key: &EcPrivateKey<'_>) -> Result { Ok(Self::encode_msg(private_key)?) } } #[cfg(feature = "pem")] impl PemLabel for EcPrivateKey<'_> { const PEM_LABEL: &'static str = "EC PRIVATE KEY"; } sec1-0.7.2/src/traits.rs000064400000000000000000000100501046102023000131240ustar 00000000000000//! Traits for parsing objects from SEC1 encoded documents use crate::Result; #[cfg(feature = "alloc")] use der::SecretDocument; #[cfg(feature = "pem")] use {crate::LineEnding, alloc::string::String, der::pem::PemLabel}; #[cfg(feature = "pkcs8")] use { crate::{EcPrivateKey, ALGORITHM_OID}, der::Decode, }; #[cfg(feature = "std")] use std::path::Path; #[cfg(feature = "pem")] use zeroize::Zeroizing; /// Parse an [`EcPrivateKey`] from a SEC1-encoded document. pub trait DecodeEcPrivateKey: Sized { /// Deserialize SEC1 private key from ASN.1 DER-encoded data /// (binary format). fn from_sec1_der(bytes: &[u8]) -> Result; /// Deserialize SEC1-encoded private key from PEM. /// /// Keys in this format begin with the following: /// /// ```text /// -----BEGIN EC PRIVATE KEY----- /// ``` #[cfg(feature = "pem")] fn from_sec1_pem(s: &str) -> Result { let (label, doc) = SecretDocument::from_pem(s)?; EcPrivateKey::validate_pem_label(label)?; Self::from_sec1_der(doc.as_bytes()) } /// Load SEC1 private key from an ASN.1 DER-encoded file on the local /// filesystem (binary format). #[cfg(feature = "std")] fn read_sec1_der_file(path: impl AsRef) -> Result { Self::from_sec1_der(SecretDocument::read_der_file(path)?.as_bytes()) } /// Load SEC1 private key from a PEM-encoded file on the local filesystem. #[cfg(all(feature = "pem", feature = "std"))] fn read_sec1_pem_file(path: impl AsRef) -> Result { let (label, doc) = SecretDocument::read_pem_file(path)?; EcPrivateKey::validate_pem_label(&label)?; Self::from_sec1_der(doc.as_bytes()) } } /// Serialize a [`EcPrivateKey`] to a SEC1 encoded document. #[cfg(feature = "alloc")] pub trait EncodeEcPrivateKey { /// Serialize a [`SecretDocument`] containing a SEC1-encoded private key. fn to_sec1_der(&self) -> Result; /// Serialize this private key as PEM-encoded SEC1 with the given [`LineEnding`]. /// /// To use the OS's native line endings, pass `Default::default()`. #[cfg(feature = "pem")] fn to_sec1_pem(&self, line_ending: LineEnding) -> Result> { let doc = self.to_sec1_der()?; Ok(doc.to_pem(EcPrivateKey::PEM_LABEL, line_ending)?) } /// Write ASN.1 DER-encoded SEC1 private key to the given path. #[cfg(feature = "std")] fn write_sec1_der_file(&self, path: impl AsRef) -> Result<()> { Ok(self.to_sec1_der()?.write_der_file(path)?) } /// Write ASN.1 DER-encoded SEC1 private key to the given path. #[cfg(all(feature = "pem", feature = "std"))] fn write_sec1_pem_file(&self, path: impl AsRef, line_ending: LineEnding) -> Result<()> { let doc = self.to_sec1_der()?; Ok(doc.write_pem_file(path, EcPrivateKey::PEM_LABEL, line_ending)?) } } #[cfg(feature = "pkcs8")] impl DecodeEcPrivateKey for T where T: for<'a> TryFrom, Error = pkcs8::Error>, { fn from_sec1_der(private_key: &[u8]) -> Result { let params_oid = EcPrivateKey::from_der(private_key)? .parameters .and_then(|params| params.named_curve()); let algorithm = pkcs8::AlgorithmIdentifierRef { oid: ALGORITHM_OID, parameters: params_oid.as_ref().map(Into::into), }; Ok(Self::try_from(pkcs8::PrivateKeyInfo { algorithm, private_key, public_key: None, })?) } } #[cfg(all(feature = "alloc", feature = "pkcs8"))] impl EncodeEcPrivateKey for T { fn to_sec1_der(&self) -> Result { let doc = self.to_pkcs8_der()?; let pkcs8_key = pkcs8::PrivateKeyInfo::from_der(doc.as_bytes())?; pkcs8_key.algorithm.assert_algorithm_oid(ALGORITHM_OID)?; let mut pkcs1_key = EcPrivateKey::from_der(pkcs8_key.private_key)?; pkcs1_key.parameters = Some(pkcs8_key.algorithm.parameters_oid()?.into()); pkcs1_key.try_into() } } sec1-0.7.2/tests/examples/p256-priv.der000064400000000000000000000001711046102023000156120ustar 000000000000000w ibAqVc4 iTUjJg *H=DB_/,؝7K&$R-79āD0M~jЏ_+RDp)sec1-0.7.2/tests/examples/p256-priv.pem000064400000000000000000000003431046102023000156220ustar 00000000000000-----BEGIN EC PRIVATE KEY----- MHcCAQEEIGliQXFWGmM0DeDn2GnyoFSSVY4aBIaLap+FSoZniBiNoAoGCCqGSM49 AwEHoUQDQgAEHKz/tV8vLO/YnYnrN0smgRUkUoAt7qCZFgaBN9g5z3/EgaREkjBN fvZqwRe+/oOo0I8VXytS+fYY3URwKQSODw== -----END EC PRIVATE KEY----- sec1-0.7.2/tests/private_key.rs000064400000000000000000000024431046102023000145220ustar 00000000000000//! SEC1 private key tests #![cfg(feature = "der")] use der::asn1::ObjectIdentifier; use hex_literal::hex; use sec1::{EcParameters, EcPrivateKey}; #[cfg(feature = "alloc")] use der::Encode; /// NIST P-256 SEC1 private key encoded as ASN.1 DER. /// /// Note: this key is extracted from the corresponding `p256-priv.der` /// example key in the `pkcs8` crate. const P256_DER_EXAMPLE: &[u8] = include_bytes!("examples/p256-priv.der"); #[test] fn decode_p256_der() { let key = EcPrivateKey::try_from(P256_DER_EXAMPLE).unwrap(); // Extracted using: // $ openssl asn1parse -in tests/examples/p256-priv.pem assert_eq!( key.private_key, hex!("69624171561A63340DE0E7D869F2A05492558E1A04868B6A9F854A866788188D") ); assert_eq!( key.parameters, Some(EcParameters::NamedCurve( ObjectIdentifier::new("1.2.840.10045.3.1.7").unwrap() )) ); assert_eq!(key.public_key, Some(hex!("041CACFFB55F2F2CEFD89D89EB374B2681152452802DEEA09916068137D839CF7FC481A44492304D7EF66AC117BEFE83A8D08F155F2B52F9F618DD447029048E0F").as_ref())); } #[cfg(feature = "alloc")] #[test] fn encode_p256_der() { let key = EcPrivateKey::try_from(P256_DER_EXAMPLE).unwrap(); let key_encoded = key.to_der().unwrap(); assert_eq!(P256_DER_EXAMPLE, key_encoded); } sec1-0.7.2/tests/traits.rs000064400000000000000000000051661046102023000135130ustar 00000000000000//! Tests for SEC1 encoding/decoding traits. #![cfg(any(feature = "pem", all(feature = "der", feature = "std")))] use der::SecretDocument; use sec1::{DecodeEcPrivateKey, EncodeEcPrivateKey, Result}; #[cfg(feature = "pem")] use sec1::der::pem::LineEnding; #[cfg(feature = "std")] use tempfile::tempdir; #[cfg(all(feature = "pem", feature = "std"))] use std::fs; /// SEC1 `EcPrivateKey` encoded as ASN.1 DER const P256_DER_EXAMPLE: &[u8] = include_bytes!("examples/p256-priv.der"); /// SEC1 `EcPrivateKey` encoded as PEM #[cfg(feature = "pem")] const P256_PEM_EXAMPLE: &str = include_str!("examples/p256-priv.pem"); /// Mock private key type for testing trait impls against. pub struct MockPrivateKey(Vec); impl AsRef<[u8]> for MockPrivateKey { fn as_ref(&self) -> &[u8] { self.0.as_ref() } } impl DecodeEcPrivateKey for MockPrivateKey { fn from_sec1_der(bytes: &[u8]) -> Result { Ok(MockPrivateKey(bytes.to_vec())) } } impl EncodeEcPrivateKey for MockPrivateKey { fn to_sec1_der(&self) -> Result { Ok(SecretDocument::try_from(self.as_ref())?) } } #[cfg(feature = "pem")] #[test] fn from_sec1_pem() { let key = MockPrivateKey::from_sec1_pem(P256_PEM_EXAMPLE).unwrap(); assert_eq!(key.as_ref(), P256_DER_EXAMPLE); } #[cfg(feature = "std")] #[test] fn read_sec1_der_file() { let key = MockPrivateKey::read_sec1_der_file("tests/examples/p256-priv.der").unwrap(); assert_eq!(key.as_ref(), P256_DER_EXAMPLE); } #[cfg(all(feature = "pem", feature = "std"))] #[test] fn read_sec1_pem_file() { let key = MockPrivateKey::read_sec1_pem_file("tests/examples/p256-priv.pem").unwrap(); assert_eq!(key.as_ref(), P256_DER_EXAMPLE); } #[cfg(feature = "pem")] #[test] fn to_sec1_pem() { let pem = MockPrivateKey(P256_DER_EXAMPLE.to_vec()) .to_sec1_pem(LineEnding::LF) .unwrap(); assert_eq!(&*pem, P256_PEM_EXAMPLE); } #[cfg(feature = "std")] #[test] fn write_sec1_der_file() { let dir = tempdir().unwrap(); let path = dir.path().join("example.der"); MockPrivateKey(P256_DER_EXAMPLE.to_vec()) .write_sec1_der_file(&path) .unwrap(); let key = MockPrivateKey::read_sec1_der_file(&path).unwrap(); assert_eq!(key.as_ref(), P256_DER_EXAMPLE); } #[cfg(all(feature = "pem", feature = "std"))] #[test] fn write_sec1_pem_file() { let dir = tempdir().unwrap(); let path = dir.path().join("example.pem"); MockPrivateKey(P256_DER_EXAMPLE.to_vec()) .write_sec1_pem_file(&path, LineEnding::LF) .unwrap(); let pem = fs::read_to_string(path).unwrap(); assert_eq!(&pem, P256_PEM_EXAMPLE); }