smallbitvec-2.5.1/.cargo_vcs_info.json0000644000000001120000000000000133370ustar { "git": { "sha1": "67d01355285eabd97bc4339c580c1ce170185701" } } smallbitvec-2.5.1/.gitignore000064400000000000000000000000370000000000000141030ustar 00000000000000/target/ **/*.rs.bk Cargo.lock smallbitvec-2.5.1/.travis.yml000064400000000000000000000003060000000000000142230ustar 00000000000000language: rust rust: - nightly - beta - stable - 1.36.0 script: | cargo build --verbose && cargo test --verbose && ([ $TRAVIS_RUST_VERSION != nightly ] || cargo bench --verbose bench) smallbitvec-2.5.1/Cargo.toml0000644000000017710000000000000113510ustar # THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies # # If you believe there's an error in this file please file an # issue against the rust-lang/cargo repository. If you're # editing this file be aware that the upstream Cargo.toml # will likely look very different (and much more reasonable) [package] name = "smallbitvec" version = "2.5.1" authors = ["Matt Brubeck "] description = "A bit vector optimized for size and inline storage" documentation = "https://docs.rs/smallbitvec" readme = "README.md" keywords = ["bitvec", "bitmap", "vec", "data-structures"] categories = ["data-structures"] license = "MIT / Apache-2.0" repository = "https://github.com/servo/smallbitvec" [dev-dependencies.bit-vec] version = "0.4.4" [dev-dependencies.rand] version = "0.4.2" smallbitvec-2.5.1/Cargo.toml.orig000064400000000000000000000007110000000000000150010ustar 00000000000000[package] name = "smallbitvec" version = "2.5.1" authors = ["Matt Brubeck "] license = "MIT / Apache-2.0" description = "A bit vector optimized for size and inline storage" repository = "https://github.com/servo/smallbitvec" documentation = "https://docs.rs/smallbitvec" keywords = ["bitvec", "bitmap", "vec", "data-structures"] categories = ["data-structures"] readme = "README.md" [dev-dependencies] rand = "0.4.2" bit-vec = "0.4.4" smallbitvec-2.5.1/LICENSE-APACHE000064400000000000000000000251370000000000000140470ustar 00000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. smallbitvec-2.5.1/LICENSE-MIT000064400000000000000000000020400000000000000135430ustar 00000000000000Copyright (c) 2017 Matt Brubeck Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. smallbitvec-2.5.1/README.md000064400000000000000000000005450000000000000133760ustar 00000000000000# smallbitvec A bit vector that is only one word wide, and can store data either inline or on the heap. Like the `bit-vec` crate but optimized for small inline size and reduced allocations. * [Documentation](https://docs.rs/smallbitvec) * [crates.io](https://crates.io/crates/smallbitvec) * [Release notes](https://github.com/servo/smallbitvec/releases) smallbitvec-2.5.1/benches/bench.rs000064400000000000000000000134440000000000000151550ustar 00000000000000// Copyright 2012-2014 The Rust Project Developers. // Copyright 2017 Matt Brubeck. // See the COPYRIGHT file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![feature(test)] extern crate bit_vec; extern crate rand; extern crate smallbitvec; extern crate test; use std::hash::{Hash, Hasher}; use bit_vec::BitVec; use rand::{weak_rng, Rng, XorShiftRng}; use smallbitvec::SmallBitVec; use test::{black_box, Bencher}; const BENCH_BITS: usize = 1 << 14; const USIZE_BITS: usize = ::std::mem::size_of::() * 8; fn rng() -> XorShiftRng { weak_rng() } #[bench] fn bench_bit_set_big_fixed_bv(b: &mut Bencher) { let mut r = rng(); let mut bit_vec = BitVec::from_elem(BENCH_BITS, false); b.iter(|| { for _ in 0..100 { bit_vec.set((r.next_u64() as usize) % BENCH_BITS, true); } black_box(&bit_vec); }); } #[bench] fn bench_bit_set_big_fixed_sbv(b: &mut Bencher) { let mut r = rng(); let mut bit_vec = SmallBitVec::from_elem(BENCH_BITS, false); b.iter(|| { for _ in 0..100 { bit_vec.set(r.next_u64() as usize % BENCH_BITS, true); } black_box(&bit_vec); }); } #[bench] fn bench_big_set_big_variable_bv(b: &mut Bencher) { let mut r = rng(); let mut bit_vec = BitVec::from_elem(BENCH_BITS, false); b.iter(|| { for _ in 0..100 { bit_vec.set((r.next_u64() as usize) % BENCH_BITS, r.gen()); } black_box(&bit_vec); }); } #[bench] fn bench_bit_set_big_variable_sbv(b: &mut Bencher) { let mut r = rng(); let mut bit_vec = SmallBitVec::from_elem(BENCH_BITS, false); b.iter(|| { for _ in 0..100 { bit_vec.set(r.next_u64() as usize % BENCH_BITS, r.gen()); } black_box(&bit_vec); }); } #[bench] fn bench_bit_set_small_bv(b: &mut Bencher) { let mut r = rng(); let mut bit_vec = BitVec::from_elem(USIZE_BITS, false); b.iter(|| { for _ in 0..100 { bit_vec.set((r.next_u64() as usize) % USIZE_BITS, true); } black_box(&bit_vec); }); } #[bench] fn bench_bit_set_small_sbv(b: &mut Bencher) { let mut r = rng(); let mut bit_vec = SmallBitVec::from_elem(USIZE_BITS, false); b.iter(|| { for _ in 0..100 { bit_vec.set(r.next_u64() as usize % USIZE_BITS, true); } black_box(&bit_vec); }); } #[bench] fn bench_bit_vec_small_eq_bv(b: &mut Bencher) { let x = BitVec::from_elem(USIZE_BITS, false); let y = BitVec::from_elem(USIZE_BITS, false); b.iter(|| x == y); } #[bench] fn bench_bit_vec_small_eq_sbv(b: &mut Bencher) { let x = SmallBitVec::from_elem(USIZE_BITS, false); let y = SmallBitVec::from_elem(USIZE_BITS, false); b.iter(|| x == y); } #[bench] fn bench_bit_vec_big_eq_bv(b: &mut Bencher) { let x = BitVec::from_elem(BENCH_BITS, false); let y = BitVec::from_elem(BENCH_BITS, false); b.iter(|| x == y); } #[bench] fn bench_bit_vec_big_eq_sbv(b: &mut Bencher) { let x = SmallBitVec::from_elem(BENCH_BITS, false); let y = SmallBitVec::from_elem(BENCH_BITS, false); b.iter(|| x == y); } #[bench] fn bench_bit_vec_small_iter_bv(b: &mut Bencher) { let bit_vec = BitVec::from_elem(USIZE_BITS, false); b.iter(|| { let mut sum = 0; for _ in 0..10 { for pres in &bit_vec { sum += pres as usize; } } sum }) } #[bench] fn bench_bit_vec_small_iter_sbv(b: &mut Bencher) { let bit_vec = SmallBitVec::from_elem(USIZE_BITS, false); b.iter(|| { let mut sum = 0; for _ in 0..10 { for pres in &bit_vec { sum += pres as usize; } } sum }) } #[bench] fn bench_bit_vec_big_iter_bv(b: &mut Bencher) { let bit_vec = BitVec::from_elem(BENCH_BITS, false); b.iter(|| { let mut sum = 0; for pres in &bit_vec { sum += pres as usize; } sum }) } #[bench] fn bench_bit_vec_big_iter_sbv(b: &mut Bencher) { let bit_vec = SmallBitVec::from_elem(BENCH_BITS, false); b.iter(|| { let mut sum = 0; for pres in &bit_vec { sum += pres as usize; } sum }) } #[bench] fn bench_from_elem_bv(b: &mut Bencher) { let cap = black_box(BENCH_BITS); let bit = black_box(true); b.iter(|| BitVec::from_elem(cap, bit)); b.bytes = cap as u64 / 8; } #[bench] fn bench_from_elem_sbv(b: &mut Bencher) { let cap = black_box(BENCH_BITS); let bit = black_box(true); b.iter(|| SmallBitVec::from_elem(cap, bit)); b.bytes = cap as u64 / 8; } #[bench] fn bench_remove_small(b: &mut Bencher) { b.iter(|| { let mut v = SmallBitVec::from_elem(USIZE_BITS, false); for _ in 0..USIZE_BITS { v.remove(0); } }); } #[bench] fn bench_remove_big(b: &mut Bencher) { b.iter(|| { let mut v = SmallBitVec::from_elem(BENCH_BITS, false); for _ in 0..200 { v.remove(0); } }); } #[bench] fn bench_hash_small(b: &mut Bencher) { let mut hasher = std::collections::hash_map::DefaultHasher::new(); let v = SmallBitVec::from_elem(USIZE_BITS, false); b.iter(|| { v.hash(&mut hasher); }); black_box(hasher.finish()); } #[bench] fn bench_hash_big(b: &mut Bencher) { let mut hasher = std::collections::hash_map::DefaultHasher::new(); let v = SmallBitVec::from_elem(BENCH_BITS, false); b.iter(|| { v.hash(&mut hasher); }); black_box(hasher.finish()); } smallbitvec-2.5.1/src/lib.rs000064400000000000000000000732260000000000000140300ustar 00000000000000// Copyright 2017 Matt Brubeck. See the COPYRIGHT file at the top-level // directory of this distribution and at http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! [`SmallBitVec`] is a bit vector, a vector of single-bit values stored compactly in memory. //! //! SmallBitVec grows dynamically, like the standard `Vec` type. It can hold up to about one //! word of bits inline (without a separate heap allocation). If the number of bits exceeds this //! inline capacity, it will allocate a buffer on the heap. //! //! [`SmallBitVec`]: struct.SmallBitVec.html //! //! # Example //! //! ``` //! use smallbitvec::SmallBitVec; //! //! let mut v = SmallBitVec::new(); //! v.push(true); //! v.push(false); //! //! assert_eq!(v[0], true); //! assert_eq!(v[1], false); //! ``` #![no_std] extern crate alloc; use alloc::{vec, vec::Vec, boxed::Box}; use core::cmp::max; use core::fmt; use core::hash; use core::iter::{DoubleEndedIterator, ExactSizeIterator, FromIterator}; use core::mem::{forget, replace, size_of}; use core::ops::{Index, Range}; use core::slice; /// Creates a [`SmallBitVec`] containing the arguments. /// /// `sbvec!` allows `SmallBitVec`s to be defined with the same syntax as array expressions. /// There are two forms of this macro: /// /// - Create a [`SmallBitVec`] containing a given list of elements: /// /// ``` /// # #[macro_use] extern crate smallbitvec; /// # use smallbitvec::SmallBitVec; /// # fn main() { /// let v = sbvec![true, false, true]; /// assert_eq!(v[0], true); /// assert_eq!(v[1], false); /// assert_eq!(v[2], true); /// # } /// ``` /// /// - Create a [`SmallBitVec`] from a given element and size: /// /// ``` /// # #[macro_use] extern crate smallbitvec; /// # use smallbitvec::SmallBitVec; /// # fn main() { /// let v = sbvec![true; 3]; /// assert!(v.into_iter().eq(vec![true, true, true].into_iter())); /// # } /// ``` #[macro_export] macro_rules! sbvec { ($elem:expr; $n:expr) => ( $crate::SmallBitVec::from_elem($n, $elem) ); ($($x:expr),*) => ( [$($x),*].iter().cloned().collect::<$crate::SmallBitVec>() ); ($($x:expr,)*) => ( sbvec![$($x),*] ); } // FIXME: replace this with `debug_assert!` when it’s usable in `const`: // * https://github.com/rust-lang/rust/issues/49146 // * https://github.com/rust-lang/rust/issues/51999 macro_rules! const_debug_assert_le { ($left: ident <= $right: expr) => { #[cfg(debug_assertions)] // Causes an `index out of bounds` panic if `$left` is too large [(); $right + 1][$left]; } } #[cfg(test)] mod tests; /// A resizable bit vector, optimized for size and inline storage. /// /// `SmallBitVec` is exactly one word wide. Depending on the required capacity, this word /// either stores the bits inline, or it stores a pointer to a separate buffer on the heap. pub struct SmallBitVec { data: usize, } /// Total number of bits per word. #[inline(always)] const fn inline_bits() -> usize { size_of::() * 8 } /// For an inline vector, all bits except two can be used as storage capacity: /// /// - The rightmost bit is set to zero to signal an inline vector. /// - The position of the rightmost nonzero bit encodes the length. #[inline(always)] const fn inline_capacity() -> usize { inline_bits() - 2 } /// Left shift amount to access the nth bit #[inline(always)] const fn inline_shift(n: usize) -> usize { const_debug_assert_le!(n <= inline_capacity()); // The storage starts at the leftmost bit. inline_bits() - 1 - n } /// An inline vector with the nth bit set. #[inline(always)] const fn inline_index(n: usize) -> usize { 1 << inline_shift(n) } /// An inline vector with the leftmost `n` bits set. #[inline(always)] fn inline_ones(n: usize) -> usize { if n == 0 { 0 } else { !0 << (inline_bits() - n) } } /// If the rightmost bit of `data` is set, then the remaining bits of `data` /// are a pointer to a heap allocation. const HEAP_FLAG: usize = 1; /// The allocation will contain a `Header` followed by a [Storage] buffer. type Storage = usize; /// The number of bits in one `Storage`. #[inline(always)] fn bits_per_storage() -> usize { size_of::() * 8 } /// Data stored at the start of the heap allocation. /// /// `Header` must have the same alignment as `Storage`. struct Header { /// The number of bits in this bit vector. len: Storage, /// The number of elements in the [usize] buffer that follows this header. buffer_len: Storage, } impl Header { /// Create a heap allocation with enough space for a header, /// plus a buffer of at least `cap` bits, each initialized to `val`. fn new(cap: usize, len: usize, val: bool) -> *mut Header { let alloc_len = header_len() + buffer_len(cap); let init = if val { !0 } else { 0 }; let v: Vec = vec![init; alloc_len]; let buffer_len = v.capacity() - header_len(); let header_ptr = v.as_ptr() as *mut Header; forget(v); unsafe { (*header_ptr).len = len; (*header_ptr).buffer_len = buffer_len; } header_ptr } } /// The number of `Storage` elements to allocate to hold a header. #[inline(always)] fn header_len() -> usize { size_of::
() / size_of::() } /// The minimum number of `Storage` elements to hold at least `cap` bits. #[inline(always)] fn buffer_len(cap: usize) -> usize { (cap + bits_per_storage() - 1) / bits_per_storage() } /// A typed representation of a `SmallBitVec`'s internal storage. /// /// The layout of the data inside both enum variants is a private implementation detail. pub enum InternalStorage { /// The internal representation of a `SmallBitVec` that has not spilled to a /// heap allocation. Inline(usize), /// The contents of the heap allocation of a spilled `SmallBitVec`. Spilled(Box<[usize]>), } impl SmallBitVec { /// Create an empty vector. #[inline] pub const fn new() -> SmallBitVec { SmallBitVec { data: inline_index(0), } } /// Create a vector containing `len` bits, each set to `val`. #[inline] pub fn from_elem(len: usize, val: bool) -> SmallBitVec { if len <= inline_capacity() { return SmallBitVec { data: if val { inline_ones(len + 1) } else { inline_index(len) }, }; } let header_ptr = Header::new(len, len, val); SmallBitVec { data: (header_ptr as usize) | HEAP_FLAG, } } /// Create an empty vector with enough storage pre-allocated to store at least `cap` bits /// without resizing. #[inline] pub fn with_capacity(cap: usize) -> SmallBitVec { // Use inline storage if possible. if cap <= inline_capacity() { return SmallBitVec::new(); } // Otherwise, allocate on the heap. let header_ptr = Header::new(cap, 0, false); SmallBitVec { data: (header_ptr as usize) | HEAP_FLAG, } } /// The number of bits stored in this bit vector. #[inline] pub fn len(&self) -> usize { if self.is_inline() { // The rightmost nonzero bit is a sentinel. All bits to the left of // the sentinel bit are the elements of the bit vector. inline_bits() - self.data.trailing_zeros() as usize - 1 } else { self.header().len } } /// Returns `true` if this vector contains no bits. #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// The number of bits that can be stored in this bit vector without re-allocating. #[inline] pub fn capacity(&self) -> usize { if self.is_inline() { inline_capacity() } else { self.header().buffer_len * bits_per_storage() } } /// Get the nth bit in this bit vector. #[inline] pub fn get(&self, n: usize) -> Option { if n < self.len() { Some(unsafe { self.get_unchecked(n) }) } else { None } } /// Get the last bit in this bit vector. #[inline] pub fn last(&self) -> Option { self.len().checked_sub(1).map(|n| unsafe { self.get_unchecked(n) }) } /// Get the nth bit in this bit vector, without bounds checks. #[inline] pub unsafe fn get_unchecked(&self, n: usize) -> bool { if self.is_inline() { self.data & inline_index(n) != 0 } else { let buffer = self.buffer(); let i = n / bits_per_storage(); let offset = n % bits_per_storage(); *buffer.get_unchecked(i) & (1 << offset) != 0 } } /// Set the nth bit in this bit vector to `val`. Panics if the index is out of bounds. #[inline] pub fn set(&mut self, n: usize, val: bool) { assert!(n < self.len(), "Index {} out of bounds", n); unsafe { self.set_unchecked(n, val); } } /// Set the nth bit in this bit vector to `val`, without bounds checks. #[inline] pub unsafe fn set_unchecked(&mut self, n: usize, val: bool) { if self.is_inline() { if val { self.data |= inline_index(n); } else { self.data &= !inline_index(n); } } else { let buffer = self.buffer_mut(); let i = n / bits_per_storage(); let offset = n % bits_per_storage(); if val { *buffer.get_unchecked_mut(i) |= 1 << offset; } else { *buffer.get_unchecked_mut(i) &= !(1 << offset); } } } /// Append a bit to the end of the vector. /// /// ``` /// use smallbitvec::SmallBitVec; /// let mut v = SmallBitVec::new(); /// v.push(true); /// /// assert_eq!(v.len(), 1); /// assert_eq!(v.get(0), Some(true)); /// ``` #[inline] pub fn push(&mut self, val: bool) { let idx = self.len(); if idx == self.capacity() { self.reserve(1); } unsafe { self.set_len(idx + 1); self.set_unchecked(idx, val); } } /// Remove the last bit from the vector and return it, if there is one. /// /// ``` /// use smallbitvec::SmallBitVec; /// let mut v = SmallBitVec::new(); /// v.push(false); /// /// assert_eq!(v.pop(), Some(false)); /// assert_eq!(v.len(), 0); /// assert_eq!(v.pop(), None); /// ``` #[inline] pub fn pop(&mut self) -> Option { self.len().checked_sub(1).map(|last| unsafe { let val = self.get_unchecked(last); self.set_len(last); val }) } /// Remove and return the bit at index `idx`, shifting all later bits toward the front. /// /// Panics if the index is out of bounds. #[inline] pub fn remove(&mut self, idx: usize) -> bool { let len = self.len(); let val = self[idx]; if self.is_inline() { // Shift later bits, including the length bit, toward the front. let mask = !inline_ones(idx); let new_vals = (self.data & mask) << 1; self.data = (self.data & !mask) | (new_vals & mask); } else { let first = idx / bits_per_storage(); let offset = idx % bits_per_storage(); let count = buffer_len(len); { // Shift bits within the first storage block. let buf = self.buffer_mut(); let mask = !0 << offset; let new_vals = (buf[first] & mask) >> 1; buf[first] = (buf[first] & !mask) | (new_vals & mask); } // Shift bits in subsequent storage blocks. for i in (first + 1)..count { // Move the first bit into the previous block. let bit_idx = i * bits_per_storage(); unsafe { let first_bit = self.get_unchecked(bit_idx); self.set_unchecked(bit_idx - 1, first_bit); } // Shift the remaining bits. self.buffer_mut()[i] >>= 1; } // Decrement the length. unsafe { self.set_len(len - 1); } } val } /// Remove all elements from the vector, without deallocating its buffer. #[inline] pub fn clear(&mut self) { unsafe { self.set_len(0); } } /// Reserve capacity for at least `additional` more elements to be inserted. /// /// May reserve more space than requested, to avoid frequent reallocations. /// /// Panics if the new capacity overflows `usize`. /// /// Re-allocates only if `self.capacity() < self.len() + additional`. #[inline] pub fn reserve(&mut self, additional: usize) { let old_cap = self.capacity(); let new_cap = self.len() .checked_add(additional) .expect("capacity overflow"); if new_cap <= old_cap { return; } // Ensure the new capacity is at least double, to guarantee exponential growth. let double_cap = old_cap.saturating_mul(2); self.reallocate(max(new_cap, double_cap)); } /// Set the length of the vector. The length must not exceed the capacity. /// /// If this makes the vector longer, then the values of its new elements /// are not specified. #[inline] unsafe fn set_len(&mut self, len: usize) { debug_assert!(len <= self.capacity()); if self.is_inline() { let sentinel = inline_index(len); let mask = !(sentinel - 1); self.data |= sentinel; self.data &= mask; } else { self.header_mut().len = len; } } /// Returns an iterator that yields the bits of the vector in order, as `bool` values. #[inline] pub fn iter(&self) -> Iter { Iter { vec: self, range: 0..self.len(), } } /// Returns an immutable view of a range of bits from this vec. /// ``` /// #[macro_use] extern crate smallbitvec; /// let v = sbvec![true, false, true]; /// let r = v.range(1..3); /// assert_eq!(r[1], true); /// ``` #[inline] pub fn range(&self, range: Range) -> VecRange { assert!(range.end <= self.len(), "range out of bounds"); VecRange { vec: &self, range } } /// Returns true if all the bits in the vec are set to zero/false. /// /// On an empty vector, returns true. #[inline] pub fn all_false(&self) -> bool { let mut len = self.len(); if len == 0 { return true; } if self.is_inline() { let mask = inline_ones(len); self.data & mask == 0 } else { for &storage in self.buffer() { if len >= bits_per_storage() { if storage != 0 { return false; } len -= bits_per_storage(); } else { let mask = (1 << len) - 1; if storage & mask != 0 { return false; } break; } } true } } /// Returns true if all the bits in the vec are set to one/true. /// /// On an empty vector, returns true. #[inline] pub fn all_true(&self) -> bool { let mut len = self.len(); if len == 0 { return true; } if self.is_inline() { let mask = inline_ones(len); self.data & mask == mask } else { for &storage in self.buffer() { if len >= bits_per_storage() { if storage != !0 { return false; } len -= bits_per_storage(); } else { let mask = (1 << len) - 1; if storage & mask != mask { return false; } break; } } true } } /// Shorten the vector, keeping the first `len` elements and dropping the rest. /// /// If `len` is greater than or equal to the vector's current length, this has no /// effect. /// /// This does not re-allocate. pub fn truncate(&mut self, len: usize) { unsafe { if len < self.len() { self.set_len(len); } } } /// Resizes the vector so that its length is equal to `len`. /// /// If `len` is less than the current length, the vector simply truncated. /// /// If `len` is greater than the current length, `value` is appended to the /// vector until its length equals `len`. pub fn resize(&mut self, len: usize, value: bool) { let old_len = self.len(); if len > old_len { unsafe { self.reallocate(len); self.set_len(len); for i in old_len..len { self.set(i, value); } } } else { self.truncate(len); } } /// Resize the vector to have capacity for at least `cap` bits. /// /// `cap` must be at least as large as the length of the vector. fn reallocate(&mut self, cap: usize) { let old_cap = self.capacity(); if cap <= old_cap { return; } assert!(self.len() <= cap); if self.is_heap() { let old_buffer_len = self.header().buffer_len; let new_buffer_len = buffer_len(cap); let old_alloc_len = header_len() + old_buffer_len; let new_alloc_len = header_len() + new_buffer_len; let old_ptr = self.header_raw() as *mut Storage; let mut v = unsafe { Vec::from_raw_parts(old_ptr, old_alloc_len, old_alloc_len) }; v.resize(new_alloc_len, 0); v.shrink_to_fit(); self.data = v.as_ptr() as usize | HEAP_FLAG; forget(v); self.header_mut().buffer_len = new_buffer_len; } else { let old_self = replace(self, SmallBitVec::with_capacity(cap)); unsafe { self.set_len(old_self.len()); for i in 0..old_self.len() { self.set_unchecked(i, old_self.get_unchecked(i)); } } } } /// If the vector owns a heap allocation, returns a pointer to the start of the allocation. /// /// The layout of the data at this allocation is a private implementation detail. #[inline] pub fn heap_ptr(&self) -> Option<*const usize> { if self.is_heap() { Some((self.data & !HEAP_FLAG) as *const Storage) } else { None } } /// Converts this `SmallBitVec` into its internal representation. /// /// The layout of the data inside both enum variants is a private implementation detail. #[inline] pub fn into_storage(self) -> InternalStorage { if self.is_heap() { let alloc_len = header_len() + self.header().buffer_len; let ptr = self.header_raw() as *mut Storage; let slice = unsafe { Box::from_raw(slice::from_raw_parts_mut(ptr, alloc_len)) }; forget(self); InternalStorage::Spilled(slice) } else { InternalStorage::Inline(self.data) } } /// Creates a `SmallBitVec` directly from the internal storage of another /// `SmallBitVec`. /// /// # Safety /// /// This is highly unsafe. `storage` needs to have been previously generated /// via `SmallBitVec::into_storage` (at least, it's highly likely to be /// incorrect if it wasn't.) Violating this may cause problems like corrupting the /// allocator's internal data structures. /// /// # Examples /// /// ``` /// # use smallbitvec::{InternalStorage, SmallBitVec}; /// /// fn main() { /// let v = SmallBitVec::from_elem(200, false); /// /// // Get the internal representation of the SmallBitVec. /// // unless we transfer its ownership somewhere else. /// let storage = v.into_storage(); /// /// /// Make a copy of the SmallBitVec's data. /// let cloned_storage = match storage { /// InternalStorage::Spilled(vs) => InternalStorage::Spilled(vs.clone()), /// inline => inline, /// }; /// /// /// Create a new SmallBitVec from the coped storage. /// let v = unsafe { SmallBitVec::from_storage(cloned_storage) }; /// } /// ``` pub unsafe fn from_storage(storage: InternalStorage) -> SmallBitVec { match storage { InternalStorage::Inline(data) => SmallBitVec { data }, InternalStorage::Spilled(vs) => { let ptr = Box::into_raw(vs); SmallBitVec { data: (ptr as *mut usize as usize) | HEAP_FLAG, } } } } /// If the rightmost bit is set, then we treat it as inline storage. #[inline] fn is_inline(&self) -> bool { self.data & HEAP_FLAG == 0 } /// Otherwise, `data` is a pointer to a heap allocation. #[inline] fn is_heap(&self) -> bool { !self.is_inline() } /// Get the header of a heap-allocated vector. #[inline] fn header_raw(&self) -> *mut Header { assert!(self.is_heap()); (self.data & !HEAP_FLAG) as *mut Header } #[inline] fn header_mut(&mut self) -> &mut Header { unsafe { &mut *self.header_raw() } } #[inline] fn header(&self) -> &Header { unsafe { &*self.header_raw() } } /// Get the buffer of a heap-allocated vector. #[inline] fn buffer_raw(&self) -> *mut [Storage] { unsafe { let header_ptr = self.header_raw(); let buffer_len = (*header_ptr).buffer_len; let buffer_ptr = (header_ptr as *mut Storage) .offset((size_of::
() / size_of::()) as isize); slice::from_raw_parts_mut(buffer_ptr, buffer_len) } } #[inline] fn buffer_mut(&mut self) -> &mut [Storage] { unsafe { &mut *self.buffer_raw() } } #[inline] fn buffer(&self) -> &[Storage] { unsafe { &*self.buffer_raw() } } } // Trait implementations: impl fmt::Debug for SmallBitVec { #[inline] fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_list() .entries(self.iter().map(|b| b as u8)) .finish() } } impl Default for SmallBitVec { #[inline] fn default() -> Self { Self::new() } } impl PartialEq for SmallBitVec { fn eq(&self, other: &Self) -> bool { // Compare by inline representation if self.is_inline() && other.is_inline() { return self.data == other.data; } let len = self.len(); if len != other.len() { return false; } // Compare by heap representation if self.is_heap() && other.is_heap() { let buf0 = self.buffer(); let buf1 = other.buffer(); let full_blocks = len / bits_per_storage(); let remainder = len % bits_per_storage(); if buf0[..full_blocks] != buf1[..full_blocks] { return false; } if remainder != 0 { let mask = (1 << remainder) - 1; if buf0[full_blocks] & mask != buf1[full_blocks] & mask { return false; } } return true; } // Representations differ; fall back to bit-by-bit comparison Iterator::eq(self.iter(), other.iter()) } } impl Eq for SmallBitVec {} impl Drop for SmallBitVec { fn drop(&mut self) { if self.is_heap() { unsafe { let header_ptr = self.header_raw(); let alloc_ptr = header_ptr as *mut Storage; let alloc_len = header_len() + (*header_ptr).buffer_len; Vec::from_raw_parts(alloc_ptr, alloc_len, alloc_len); } } } } impl Clone for SmallBitVec { fn clone(&self) -> Self { if self.is_inline() { return SmallBitVec { data: self.data }; } let buffer_len = self.header().buffer_len; let alloc_len = header_len() + buffer_len; let ptr = self.header_raw() as *mut Storage; let raw_allocation = unsafe { slice::from_raw_parts(ptr, alloc_len) }; let v = raw_allocation.to_vec(); let header_ptr = v.as_ptr() as *mut Header; forget(v); SmallBitVec { data: (header_ptr as usize) | HEAP_FLAG, } } } impl Index for SmallBitVec { type Output = bool; #[inline(always)] fn index(&self, i: usize) -> &bool { assert!(i < self.len(), "index out of range"); if self.get(i).unwrap() { &true } else { &false } } } impl hash::Hash for SmallBitVec { #[inline] fn hash(&self, state: &mut H) { let len = self.len(); len.hash(state); if self.is_inline() { reverse_bits(self.data & inline_ones(len)).hash(state); } else { let full_blocks = len / bits_per_storage(); let remainder = len % bits_per_storage(); let buffer = self.buffer(); if full_blocks != 0 { buffer[..full_blocks].hash(state); } if remainder != 0 { let mask = (1 << remainder) - 1; (buffer[full_blocks] & mask).hash(state); } } } } impl Extend for SmallBitVec { #[inline] fn extend>(&mut self, iter: I) { let iter = iter.into_iter(); let (min, _) = iter.size_hint(); assert!(min <= usize::max_value(), "capacity overflow"); self.reserve(min); for element in iter { self.push(element) } } } impl FromIterator for SmallBitVec { #[inline] fn from_iter>(iter: I) -> Self { let mut v = SmallBitVec::new(); v.extend(iter); v } } impl IntoIterator for SmallBitVec { type Item = bool; type IntoIter = IntoIter; #[inline] fn into_iter(self) -> IntoIter { IntoIter { range: 0..self.len(), vec: self, } } } impl<'a> IntoIterator for &'a SmallBitVec { type Item = bool; type IntoIter = Iter<'a>; #[inline] fn into_iter(self) -> Iter<'a> { self.iter() } } /// An iterator that owns a SmallBitVec and yields its bits as `bool` values. /// /// Returned from [`SmallBitVec::into_iter`][1]. /// /// [1]: struct.SmallBitVec.html#method.into_iter pub struct IntoIter { vec: SmallBitVec, range: Range, } impl Iterator for IntoIter { type Item = bool; #[inline] fn next(&mut self) -> Option { self.range .next() .map(|i| unsafe { self.vec.get_unchecked(i) }) } #[inline] fn size_hint(&self) -> (usize, Option) { self.range.size_hint() } } impl DoubleEndedIterator for IntoIter { #[inline] fn next_back(&mut self) -> Option { self.range .next_back() .map(|i| unsafe { self.vec.get_unchecked(i) }) } } impl ExactSizeIterator for IntoIter {} /// An iterator that borrows a SmallBitVec and yields its bits as `bool` values. /// /// Returned from [`SmallBitVec::iter`][1]. /// /// [1]: struct.SmallBitVec.html#method.iter pub struct Iter<'a> { vec: &'a SmallBitVec, range: Range, } impl<'a> Default for Iter<'a> { #[inline] fn default() -> Self { const EMPTY: &'static SmallBitVec = &SmallBitVec::new(); Self { vec: EMPTY, range: 0..0, } } } impl<'a> Iterator for Iter<'a> { type Item = bool; #[inline] fn next(&mut self) -> Option { self.range .next() .map(|i| unsafe { self.vec.get_unchecked(i) }) } #[inline] fn size_hint(&self) -> (usize, Option) { self.range.size_hint() } } impl<'a> DoubleEndedIterator for Iter<'a> { #[inline] fn next_back(&mut self) -> Option { self.range .next_back() .map(|i| unsafe { self.vec.get_unchecked(i) }) } } impl<'a> ExactSizeIterator for Iter<'a> {} /// An immutable view of a range of bits from a borrowed SmallBitVec. /// /// Returned from [`SmallBitVec::range`][1]. /// /// [1]: struct.SmallBitVec.html#method.range #[derive(Debug, Clone)] pub struct VecRange<'a> { vec: &'a SmallBitVec, range: Range, } impl<'a> VecRange<'a> { #[inline] pub fn iter(&self) -> Iter<'a> { Iter { vec: self.vec, range: self.range.clone(), } } } impl<'a> Index for VecRange<'a> { type Output = bool; #[inline] fn index(&self, i: usize) -> &bool { let vec_i = i + self.range.start; assert!(vec_i < self.range.end, "index out of range"); &self.vec[vec_i] } } fn reverse_bits(mut value: usize) -> usize { let mut result = 0; for _ in 0..inline_bits() { result <<= 1; result |= value & 1; value >>= 1; } result } smallbitvec-2.5.1/src/tests.rs000064400000000000000000000221640000000000000144170ustar 00000000000000// Copyright 2017 Matt Brubeck. See the COPYRIGHT file at the top-level // directory of this distribution and at http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::*; use alloc::format; #[cfg(target_pointer_width = "32")] #[test] fn test_inline_capacity() { assert_eq!(inline_capacity(), 30); } #[cfg(target_pointer_width = "64")] #[test] fn test_inline_capacity() { assert_eq!(inline_capacity(), 62); } #[test] fn new() { let v = SmallBitVec::new(); assert_eq!(v.len(), 0); assert_eq!(v.capacity(), inline_capacity()); assert!(v.is_empty()); assert!(v.is_inline()); } #[test] fn with_capacity_inline() { for cap in 0..(inline_capacity() + 1) { let v = SmallBitVec::with_capacity(cap); assert_eq!(v.len(), 0); assert_eq!(v.capacity(), inline_capacity()); assert!(v.is_inline()); } } #[test] fn with_capacity_heap() { let cap = inline_capacity() + 1; let v = SmallBitVec::with_capacity(cap); assert_eq!(v.len(), 0); assert!(v.capacity() > inline_capacity()); assert!(v.is_heap()); } #[test] fn set_len_inline() { let mut v = SmallBitVec::new(); for i in 0..(inline_capacity() + 1) { unsafe { v.set_len(i); } assert_eq!(v.len(), i); } for i in (0..(inline_capacity() + 1)).rev() { unsafe { v.set_len(i); } assert_eq!(v.len(), i); } } #[test] fn set_len_heap() { let mut v = SmallBitVec::with_capacity(500); unsafe { v.set_len(30); } assert_eq!(v.len(), 30); } #[test] fn push_many() { let mut v = SmallBitVec::new(); for i in 0..500 { v.push(i % 3 == 0); } assert_eq!(v.len(), 500); for i in 0..500 { assert_eq!(v.get(i).unwrap(), (i % 3 == 0), "{}", i); assert_eq!(v[i], v.get(i).unwrap()); } } #[test] #[should_panic(expected = "index out of range")] fn index_out_of_bounds() { let v = SmallBitVec::new(); v[0]; } #[test] #[should_panic(expected = "index out of range")] fn index_out_of_bounds_nonempty() { let mut v = SmallBitVec::new(); v.push(true); v[1 << 32]; } #[test] fn get_out_of_bounds() { let v = SmallBitVec::new(); assert!(v.get(0).is_none()); } #[test] #[should_panic] fn set_out_of_bounds() { let mut v = SmallBitVec::new(); v.set(2, false); } #[test] fn all_false() { let mut v = SmallBitVec::new(); assert!(v.all_false()); for _ in 0..100 { v.push(false); assert!(v.all_false()); let mut v2 = v.clone(); v2.push(true); assert!(!v2.all_false()); } } #[test] fn all_true() { let mut v = SmallBitVec::new(); assert!(v.all_true()); for _ in 0..100 { v.push(true); assert!(v.all_true()); let mut v2 = v.clone(); v2.push(false); assert!(!v2.all_true()); } } #[test] fn iter() { let mut v = SmallBitVec::new(); v.push(true); v.push(false); v.push(false); let mut i = v.iter(); assert_eq!(i.next(), Some(true)); assert_eq!(i.next(), Some(false)); assert_eq!(i.next(), Some(false)); assert_eq!(i.next(), None); } #[test] fn into_iter() { let mut v = SmallBitVec::new(); v.push(true); v.push(false); v.push(false); let mut i = v.into_iter(); assert_eq!(i.next(), Some(true)); assert_eq!(i.next(), Some(false)); assert_eq!(i.next(), Some(false)); assert_eq!(i.next(), None); } #[test] fn iter_back() { let mut v = SmallBitVec::new(); v.push(true); v.push(false); v.push(false); let mut i = v.iter(); assert_eq!(i.next_back(), Some(false)); assert_eq!(i.next_back(), Some(false)); assert_eq!(i.next_back(), Some(true)); assert_eq!(i.next(), None); } #[test] fn range() { let mut v = SmallBitVec::new(); v.push(true); v.push(false); v.push(false); v.push(true); let r = v.range(0..2); let mut ri = r.iter(); assert_eq!(ri.next(), Some(true)); assert_eq!(ri.next(), Some(false)); assert_eq!(ri.next(), None); assert_eq!(r[0], true); } #[test] #[should_panic(expected = "range out of bounds")] fn range_oob() { let mut v = SmallBitVec::new(); v.push(true); v.range(0..2); } #[test] #[should_panic(expected = "index out of range")] fn range_index_oob() { let mut v = SmallBitVec::new(); v.push(true); v.push(false); v.push(true); let r = v.range(1..2); r[1]; } #[test] fn debug() { let mut v = SmallBitVec::new(); v.push(true); v.push(false); v.push(false); assert_eq!(format!("{:?}", v), "[1, 0, 0]") } #[test] fn from_elem() { for len in 0..100 { let ones = SmallBitVec::from_elem(len, true); assert_eq!(ones.len(), len); assert!(ones.all_true()); let zeros = SmallBitVec::from_elem(len, false); assert_eq!(zeros.len(), len); assert!(zeros.all_false()); } } #[test] fn remove() { let mut v = SmallBitVec::new(); v.push(false); v.push(true); v.push(false); v.push(false); v.push(true); assert_eq!(v.remove(1), true); assert_eq!(format!("{:?}", v), "[0, 0, 0, 1]"); assert_eq!(v.remove(0), false); assert_eq!(format!("{:?}", v), "[0, 0, 1]"); v.remove(2); assert_eq!(format!("{:?}", v), "[0, 0]"); v.remove(1); assert_eq!(format!("{:?}", v), "[0]"); v.remove(0); assert_eq!(format!("{:?}", v), "[]"); } #[test] fn remove_big() { let mut v = SmallBitVec::from_elem(256, false); v.set(100, true); v.set(255, true); v.remove(0); assert_eq!(v.len(), 255); assert_eq!(v.get(0).unwrap(), false); assert_eq!(v.get(99).unwrap(), true); assert_eq!(v.get(100).unwrap(), false); assert_eq!(v.get(253).unwrap(), false); assert_eq!(v.get(254).unwrap(), true); v.remove(254); assert_eq!(v.len(), 254); assert_eq!(v.get(0).unwrap(), false); assert_eq!(v.get(99).unwrap(), true); assert_eq!(v.get(100).unwrap(), false); assert_eq!(v.get(253).unwrap(), false); v.remove(99); assert_eq!(v, SmallBitVec::from_elem(253, false)); } #[test] fn eq() { assert_eq!(sbvec![], sbvec![]); assert_eq!(sbvec![true], sbvec![true]); assert_eq!(sbvec![false], sbvec![false]); assert_ne!(sbvec![], sbvec![false]); assert_ne!(sbvec![true], sbvec![]); assert_ne!(sbvec![true], sbvec![false]); assert_ne!(sbvec![false], sbvec![true]); assert_eq!(sbvec![true, false], sbvec![true, false]); assert_eq!(sbvec![true; 400], sbvec![true; 400]); assert_eq!(sbvec![false; 400], sbvec![false; 400]); assert_ne!(sbvec![true, false], sbvec![true, true]); assert_ne!(sbvec![true; 400], sbvec![true; 401]); assert_ne!(sbvec![false; 401], sbvec![false; 400]); } #[test] fn truncate_inline() { let mut v = sbvec![false, true, false, false, true]; v.truncate(10); assert_eq!(v.len(), 5); v.truncate(3); assert_eq!(v, sbvec![false, true, false]); v.truncate(0); assert_eq!(v, sbvec![]); } #[test] fn truncate_large() { let mut v = SmallBitVec::from_elem(256, false); v.set(2, true); v.set(100, true); v.set(255, true); v.truncate(500); assert_eq!(v.len(), 256); v.truncate(150); assert_eq!(v.len(), 150); assert_eq!(v.get(0).unwrap(), false); assert_eq!(v.get(99).unwrap(), false); assert_eq!(v.get(100).unwrap(), true); assert_eq!(v.get(101).unwrap(), false); assert_eq!(v.get(149).unwrap(), false); v.truncate(5); assert_eq!(v.len(), 5); assert_eq!(v, sbvec![false, false, true, false, false]); } #[test] fn resize() { let mut v = sbvec![false, true, false, false, true]; v.resize(3, false); assert_eq!(v, sbvec![false, true, false]); v.resize(8, true); assert_eq!(v, sbvec![false, true, false, true, true, true, true, true]); v.resize(100, false); assert_eq!(v.len(), 100); assert_eq!(v.get(0).unwrap(), false); assert_eq!(v.get(1).unwrap(), true); assert_eq!(v.get(2).unwrap(), false); assert_eq!(v.get(3).unwrap(), true); assert_eq!(v.get(4).unwrap(), true); assert_eq!(v.get(7).unwrap(), true); assert_eq!(v.get(8).unwrap(), false); assert_eq!(v.get(9).unwrap(), false); assert_eq!(v.get(98).unwrap(), false); assert_eq!(v.get(99).unwrap(), false); } #[test] fn hash() { extern crate std; use core::hash::{Hash, Hasher}; let v1 = sbvec![true, false, true, false, true, true, true]; let mut v2 = v1.clone(); v2.reserve(100_000); assert_eq!(v1, v2); let hash = |v: &SmallBitVec| { let mut hasher = std::collections::hash_map::DefaultHasher::new(); v.hash(&mut hasher); hasher.finish() }; assert_eq!(hash(&v1), hash(&v2)); let mut v3 = v1.clone(); v3.push(false); assert_ne!(hash(&v1), hash(&v3)); let mut v4 = v2.clone(); v4.push(false); assert_ne!(hash(&v2), hash(&v4)); assert_eq!(v3, v4); assert_eq!(hash(&v3), hash(&v4)); }