smallvec-1.13.2/.cargo_vcs_info.json0000644000000001360000000000100127260ustar { "git": { "sha1": "0089d0a15bee4792a575b9c51e9d7ace39b3957c" }, "path_in_vcs": "" }smallvec-1.13.2/.github/workflows/main.yml000064400000000000000000000056541046102023000165740ustar 00000000000000name: CI on: push: branches: [v1] pull_request: workflow_dispatch: merge_group: types: [checks_requested] jobs: ci: name: Build/Test strategy: matrix: toolchain: ["stable", "beta", "nightly", "1.36.0"] os: [ubuntu-latest] include: - toolchain: stable fuzz: 1 - toolchain: beta fuzz: 1 - os: windows-latest toolchain: nightly runs-on: ${{ matrix.os }} steps: - uses: actions/checkout@v4 - name: Install packages for fuzzing if: runner.os == 'Linux' && matrix.fuzz == 1 run: sudo apt-get update -y && sudo apt-get install -y binutils-dev libunwind8-dev libcurl4-openssl-dev libelf-dev libdw-dev cmake gcc libiberty-dev - name: Install toolchain uses: dtolnay/rust-toolchain@master with: toolchain: ${{ matrix.toolchain }} - name: Cargo build run: cargo build --verbose - name: Cargo test if: matrix.toolchain != '1.36.0' run: cargo test --verbose - name: Cargo test w/ serde if: matrix.toolchain != '1.36.0' run: cargo test --verbose --features serde - name: Cargo check w/o default features if: matrix.toolchain == 'nightly' run: cargo check --verbose --no-default-features - name: Cargo test w/ union if: matrix.toolchain == 'beta' run: cargo test --verbose --features union - name: Cargo test w/ debugger_visualizer if: matrix.toolchain == 'nightly' run: cargo test --test debugger_visualizer --verbose --features debugger_visualizer -- --test-threads=1 - name: Cargo test w/ debugger_visualizer and union if: matrix.toolchain == 'nightly' run: cargo test --test debugger_visualizer --verbose --features 'debugger_visualizer,union' -- --test-threads=1 - name: Cargo test all features if: matrix.toolchain == 'nightly' run: cargo test --verbose --all-features - name: Cargo bench if: matrix.toolchain == 'nightly' run: cargo bench --verbose bench - name: miri if: matrix.toolchain == 'nightly' && matrix.os == 'ubuntu-latest' run: bash ./scripts/run_miri.sh - name: fuzz if: matrix.fuzz == 1 working-directory: fuzz run: ./travis-fuzz.sh no-std: name: no_std runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - name: Install toolchain uses: dtolnay/rust-toolchain@master with: toolchain: stable target: thumbv7m-none-eabi - name: Cargo build run: cargo build --verbose build_result: name: Result runs-on: ubuntu-latest needs: - "ci" - "no-std" steps: - name: Mark the job as successful run: exit 0 if: success() - name: Mark the job as unsuccessful run: exit 1 if: "!success()" smallvec-1.13.2/.gitignore000064400000000000000000000000571046102023000135100ustar 00000000000000target /Cargo.lock /fuzz/hfuzz_target /.vscode smallvec-1.13.2/Cargo.toml0000644000000032240000000000100107250ustar # THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies. # # If you are reading this file be aware that the original Cargo.toml # will likely look very different (and much more reasonable). # See Cargo.toml.orig for the original contents. [package] edition = "2018" name = "smallvec" version = "1.13.2" authors = ["The Servo Project Developers"] description = "'Small vector' optimization: store up to a small number of items on the stack" documentation = "https://docs.rs/smallvec/" readme = "README.md" keywords = [ "small", "vec", "vector", "stack", "no_std", ] categories = ["data-structures"] license = "MIT OR Apache-2.0" repository = "https://github.com/servo/rust-smallvec" [package.metadata.docs.rs] all-features = true rustdoc-args = [ "--cfg", "docsrs", "--generate-link-to-definition", ] [[test]] name = "debugger_visualizer" path = "tests/debugger_visualizer.rs" test = false required-features = ["debugger_visualizer"] [dependencies.arbitrary] version = "1" optional = true [dependencies.serde] version = "1" optional = true default-features = false [dev-dependencies.bincode] version = "1.0.1" [dev-dependencies.debugger_test] version = "0.1.0" [dev-dependencies.debugger_test_parser] version = "0.1.0" [features] const_generics = [] const_new = ["const_generics"] debugger_visualizer = [] drain_filter = [] drain_keep_rest = ["drain_filter"] may_dangle = [] specialization = [] union = [] write = [] smallvec-1.13.2/Cargo.toml.orig000064400000000000000000000027121046102023000144070ustar 00000000000000[package] name = "smallvec" version = "1.13.2" edition = "2018" authors = ["The Servo Project Developers"] license = "MIT OR Apache-2.0" repository = "https://github.com/servo/rust-smallvec" description = "'Small vector' optimization: store up to a small number of items on the stack" keywords = ["small", "vec", "vector", "stack", "no_std"] categories = ["data-structures"] readme = "README.md" documentation = "https://docs.rs/smallvec/" [features] const_generics = [] const_new = ["const_generics"] write = [] union = [] specialization = [] may_dangle = [] drain_filter = [] drain_keep_rest = ["drain_filter"] # UNSTABLE FEATURES (requires Rust nightly) # Enable to use the #[debugger_visualizer] attribute. debugger_visualizer = [] [dependencies] serde = { version = "1", optional = true, default-features = false } arbitrary = { version = "1", optional = true } [dev_dependencies] bincode = "1.0.1" debugger_test = "0.1.0" debugger_test_parser = "0.1.0" [package.metadata.docs.rs] all-features = true rustdoc-args = ["--cfg", "docsrs", "--generate-link-to-definition"] [[test]] name = "debugger_visualizer" path = "tests/debugger_visualizer.rs" required-features = ["debugger_visualizer"] # Do not run these tests by default. These tests need to # be run with the additional rustc flag `--test-threads=1` # since each test causes a debugger to attach to the current # test process. If multiple debuggers try to attach at the same # time, the test will fail. test = false smallvec-1.13.2/LICENSE-APACHE000064400000000000000000000251371046102023000134520ustar 00000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. smallvec-1.13.2/LICENSE-MIT000064400000000000000000000020601046102023000131500ustar 00000000000000Copyright (c) 2018 The Servo Project Developers Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. smallvec-1.13.2/README.md000064400000000000000000000012111046102023000127700ustar 00000000000000rust-smallvec ============= [Documentation](https://docs.rs/smallvec/) [Release notes](https://github.com/servo/rust-smallvec/releases) "Small vector" optimization for Rust: store up to a small number of items on the stack ## Example ```rust use smallvec::{SmallVec, smallvec}; // This SmallVec can hold up to 4 items on the stack: let mut v: SmallVec<[i32; 4]> = smallvec![1, 2, 3, 4]; // It will automatically move its contents to the heap if // contains more than four items: v.push(5); // SmallVec points to a slice, so you can use normal slice // indexing and other methods to access its contents: v[0] = v[1] + v[2]; v.sort(); ``` smallvec-1.13.2/benches/bench.rs000064400000000000000000000205351046102023000145570ustar 00000000000000#![feature(test)] #![allow(deprecated)] extern crate test; use self::test::Bencher; use smallvec::{ExtendFromSlice, smallvec, SmallVec}; const VEC_SIZE: usize = 16; const SPILLED_SIZE: usize = 100; trait Vector: for<'a> From<&'a [T]> + Extend + ExtendFromSlice { fn new() -> Self; fn push(&mut self, val: T); fn pop(&mut self) -> Option; fn remove(&mut self, p: usize) -> T; fn insert(&mut self, n: usize, val: T); fn from_elem(val: T, n: usize) -> Self; fn from_elems(val: &[T]) -> Self; } impl Vector for Vec { fn new() -> Self { Self::with_capacity(VEC_SIZE) } fn push(&mut self, val: T) { self.push(val) } fn pop(&mut self) -> Option { self.pop() } fn remove(&mut self, p: usize) -> T { self.remove(p) } fn insert(&mut self, n: usize, val: T) { self.insert(n, val) } fn from_elem(val: T, n: usize) -> Self { vec![val; n] } fn from_elems(val: &[T]) -> Self { val.to_owned() } } impl Vector for SmallVec<[T; VEC_SIZE]> { fn new() -> Self { Self::new() } fn push(&mut self, val: T) { self.push(val) } fn pop(&mut self) -> Option { self.pop() } fn remove(&mut self, p: usize) -> T { self.remove(p) } fn insert(&mut self, n: usize, val: T) { self.insert(n, val) } fn from_elem(val: T, n: usize) -> Self { smallvec![val; n] } fn from_elems(val: &[T]) -> Self { SmallVec::from_slice(val) } } macro_rules! make_benches { ($typ:ty { $($b_name:ident => $g_name:ident($($args:expr),*),)* }) => { $( #[bench] fn $b_name(b: &mut Bencher) { $g_name::<$typ>($($args,)* b) } )* } } make_benches! { SmallVec<[u64; VEC_SIZE]> { bench_push => gen_push(SPILLED_SIZE as _), bench_push_small => gen_push(VEC_SIZE as _), bench_insert_push => gen_insert_push(SPILLED_SIZE as _), bench_insert_push_small => gen_insert_push(VEC_SIZE as _), bench_insert => gen_insert(SPILLED_SIZE as _), bench_insert_small => gen_insert(VEC_SIZE as _), bench_remove => gen_remove(SPILLED_SIZE as _), bench_remove_small => gen_remove(VEC_SIZE as _), bench_extend => gen_extend(SPILLED_SIZE as _), bench_extend_small => gen_extend(VEC_SIZE as _), bench_from_iter => gen_from_iter(SPILLED_SIZE as _), bench_from_iter_small => gen_from_iter(VEC_SIZE as _), bench_from_slice => gen_from_slice(SPILLED_SIZE as _), bench_from_slice_small => gen_from_slice(VEC_SIZE as _), bench_extend_from_slice => gen_extend_from_slice(SPILLED_SIZE as _), bench_extend_from_slice_small => gen_extend_from_slice(VEC_SIZE as _), bench_macro_from_elem => gen_from_elem(SPILLED_SIZE as _), bench_macro_from_elem_small => gen_from_elem(VEC_SIZE as _), bench_pushpop => gen_pushpop(), } } make_benches! { Vec { bench_push_vec => gen_push(SPILLED_SIZE as _), bench_push_vec_small => gen_push(VEC_SIZE as _), bench_insert_push_vec => gen_insert_push(SPILLED_SIZE as _), bench_insert_push_vec_small => gen_insert_push(VEC_SIZE as _), bench_insert_vec => gen_insert(SPILLED_SIZE as _), bench_insert_vec_small => gen_insert(VEC_SIZE as _), bench_remove_vec => gen_remove(SPILLED_SIZE as _), bench_remove_vec_small => gen_remove(VEC_SIZE as _), bench_extend_vec => gen_extend(SPILLED_SIZE as _), bench_extend_vec_small => gen_extend(VEC_SIZE as _), bench_from_iter_vec => gen_from_iter(SPILLED_SIZE as _), bench_from_iter_vec_small => gen_from_iter(VEC_SIZE as _), bench_from_slice_vec => gen_from_slice(SPILLED_SIZE as _), bench_from_slice_vec_small => gen_from_slice(VEC_SIZE as _), bench_extend_from_slice_vec => gen_extend_from_slice(SPILLED_SIZE as _), bench_extend_from_slice_vec_small => gen_extend_from_slice(VEC_SIZE as _), bench_macro_from_elem_vec => gen_from_elem(SPILLED_SIZE as _), bench_macro_from_elem_vec_small => gen_from_elem(VEC_SIZE as _), bench_pushpop_vec => gen_pushpop(), } } fn gen_push>(n: u64, b: &mut Bencher) { #[inline(never)] fn push_noinline>(vec: &mut V, x: u64) { vec.push(x); } b.iter(|| { let mut vec = V::new(); for x in 0..n { push_noinline(&mut vec, x); } vec }); } fn gen_insert_push>(n: u64, b: &mut Bencher) { #[inline(never)] fn insert_push_noinline>(vec: &mut V, x: u64) { vec.insert(x as usize, x); } b.iter(|| { let mut vec = V::new(); for x in 0..n { insert_push_noinline(&mut vec, x); } vec }); } fn gen_insert>(n: u64, b: &mut Bencher) { #[inline(never)] fn insert_noinline>(vec: &mut V, p: usize, x: u64) { vec.insert(p, x) } b.iter(|| { let mut vec = V::new(); // Always insert at position 0 so that we are subject to shifts of // many different lengths. vec.push(0); for x in 0..n { insert_noinline(&mut vec, 0, x); } vec }); } fn gen_remove>(n: usize, b: &mut Bencher) { #[inline(never)] fn remove_noinline>(vec: &mut V, p: usize) -> u64 { vec.remove(p) } b.iter(|| { let mut vec = V::from_elem(0, n as _); for _ in 0..n { remove_noinline(&mut vec, 0); } }); } fn gen_extend>(n: u64, b: &mut Bencher) { b.iter(|| { let mut vec = V::new(); vec.extend(0..n); vec }); } fn gen_from_iter>(n: u64, b: &mut Bencher) { let v: Vec = (0..n).collect(); b.iter(|| { let vec = V::from(&v); vec }); } fn gen_from_slice>(n: u64, b: &mut Bencher) { let v: Vec = (0..n).collect(); b.iter(|| { let vec = V::from_elems(&v); vec }); } fn gen_extend_from_slice>(n: u64, b: &mut Bencher) { let v: Vec = (0..n).collect(); b.iter(|| { let mut vec = V::new(); vec.extend_from_slice(&v); vec }); } fn gen_pushpop>(b: &mut Bencher) { #[inline(never)] fn pushpop_noinline>(vec: &mut V, x: u64) -> Option { vec.push(x); vec.pop() } b.iter(|| { let mut vec = V::new(); for x in 0..SPILLED_SIZE as _ { pushpop_noinline(&mut vec, x); } vec }); } fn gen_from_elem>(n: usize, b: &mut Bencher) { b.iter(|| { let vec = V::from_elem(42, n); vec }); } #[bench] fn bench_insert_many(b: &mut Bencher) { #[inline(never)] fn insert_many_noinline>( vec: &mut SmallVec<[u64; VEC_SIZE]>, index: usize, iterable: I, ) { vec.insert_many(index, iterable) } b.iter(|| { let mut vec = SmallVec::<[u64; VEC_SIZE]>::new(); insert_many_noinline(&mut vec, 0, 0..SPILLED_SIZE as _); insert_many_noinline(&mut vec, 0, 0..SPILLED_SIZE as _); vec }); } #[bench] fn bench_insert_from_slice(b: &mut Bencher) { let v: Vec = (0..SPILLED_SIZE as _).collect(); b.iter(|| { let mut vec = SmallVec::<[u64; VEC_SIZE]>::new(); vec.insert_from_slice(0, &v); vec.insert_from_slice(0, &v); vec }); } #[bench] fn bench_macro_from_list(b: &mut Bencher) { b.iter(|| { let vec: SmallVec<[u64; 16]> = smallvec![ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 32, 36, 0x40, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000, 0x20000, 0x40000, 0x80000, 0x100000, ]; vec }); } #[bench] fn bench_macro_from_list_vec(b: &mut Bencher) { b.iter(|| { let vec: Vec = vec![ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 32, 36, 0x40, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000, 0x20000, 0x40000, 0x80000, 0x100000, ]; vec }); } smallvec-1.13.2/debug_metadata/README.md000064400000000000000000000121571046102023000157310ustar 00000000000000## Debugger Visualizers Many languages and debuggers enable developers to control how a type is displayed in a debugger. These are called "debugger visualizations" or "debugger views". The Windows debuggers (WinDbg\CDB) support defining custom debugger visualizations using the `Natvis` framework. To use Natvis, developers write XML documents using the natvis schema that describe how debugger types should be displayed with the `.natvis` extension. (See: https://docs.microsoft.com/en-us/visualstudio/debugger/create-custom-views-of-native-objects?view=vs-2019) The Natvis files provide patterns which match type names a description of how to display those types. The Natvis schema can be found either online (See: https://code.visualstudio.com/docs/cpp/natvis#_schema) or locally at `\Xml\Schemas\1033\natvis.xsd`. The GNU debugger (GDB) supports defining custom debugger views using Pretty Printers. Pretty printers are written as python scripts that describe how a type should be displayed when loaded up in GDB/LLDB. (See: https://sourceware.org/gdb/onlinedocs/gdb/Pretty-Printing.html#Pretty-Printing) The pretty printers provide patterns, which match type names, and for matching types, describe how to display those types. (For writing a pretty printer, see: https://sourceware.org/gdb/onlinedocs/gdb/Writing-a-Pretty_002dPrinter.html#Writing-a-Pretty_002dPrinter). ### Embedding Visualizers Through the use of the currently unstable `#[debugger_visualizer]` attribute, the `smallvec` crate can embed debugger visualizers into the crate metadata. Currently the two types of visualizers supported are Natvis and Pretty printers. For Natvis files, when linking an executable with a crate that includes Natvis files, the MSVC linker will embed the contents of all Natvis files into the generated `PDB`. For pretty printers, the compiler will encode the contents of the pretty printer in the `.debug_gdb_scripts` section of the `ELF` generated. ### Testing Visualizers The `smallvec` crate supports testing debugger visualizers defined for this crate. The entry point for these tests are `tests/debugger_visualizer.rs`. These tests are defined using the `debugger_test` and `debugger_test_parser` crates. The `debugger_test` crate is a proc macro crate which defines a single proc macro attribute, `#[debugger_test]`. For more detailed information about this crate, see https://crates.io/crates/debugger_test. The CI pipeline for the `smallvec` crate has been updated to run the debugger visualizer tests to ensure debugger visualizers do not become broken/stale. The `#[debugger_test]` proc macro attribute may only be used on test functions and will run the function under the debugger specified by the `debugger` meta item. This proc macro attribute has 3 required values: 1. The first required meta item, `debugger`, takes a string value which specifies the debugger to launch. 2. The second required meta item, `commands`, takes a string of new line (`\n`) separated list of debugger commands to run. 3. The third required meta item, `expected_statements`, takes a string of new line (`\n`) separated list of statements that must exist in the debugger output. Pattern matching through regular expressions is also supported by using the `pattern:` prefix for each expected statement. #### Example: ```rust #[debugger_test( debugger = "cdb", commands = "command1\ncommand2\ncommand3", expected_statements = "statement1\nstatement2\nstatement3")] fn test() { } ``` Using a multiline string is also supported, with a single debugger command/expected statement per line: ```rust #[debugger_test( debugger = "cdb", commands = " command1 command2 command3", expected_statements = " statement1 pattern:statement[0-9]+ statement3")] fn test() { } ``` In the example above, the second expected statement uses pattern matching through a regular expression by using the `pattern:` prefix. #### Testing Locally Currently, only Natvis visualizations have been defined for the `smallvec` crate via `debug_metadata/smallvec.natvis`, which means the `tests/debugger_visualizer.rs` tests need to be run on Windows using the `*-pc-windows-msvc` targets. To run these tests locally, first ensure the debugging tools for Windows are installed or install them following the steps listed here, [Debugging Tools for Windows](https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/). Once the debugging tools have been installed, the tests can be run in the same manner as they are in the CI pipeline. #### Note When running the debugger visualizer tests, `tests/debugger_visualizer.rs`, they need to be run consecutively and not in parallel. This can be achieved by passing the flag `--test-threads=1` to rustc. This is due to how the debugger tests are run. Each test marked with the `#[debugger_test]` attribute launches a debugger and attaches it to the current test process. If tests are running in parallel, the test will try to attach a debugger to the current process which may already have a debugger attached causing the test to fail. For example: ``` cargo test --test debugger_visualizer --features debugger_visualizer -- --test-threads=1 ``` smallvec-1.13.2/debug_metadata/smallvec.natvis000064400000000000000000000030311046102023000174750ustar 00000000000000 {{ len={len()} is_inline={is_inline()} }} is_inline() ? $T2 : capacity len() data_ptr() len() data_ptr() {{ len={len()} is_inline={is_inline()} }} is_inline() ? $T2 : capacity len() len() data_ptr() smallvec-1.13.2/scripts/run_miri.sh000064400000000000000000000013321046102023000153640ustar 00000000000000#!/usr/bin/bash set -ex # Clean out our target dir, which may have artifacts compiled by a version of # rust different from the one we're about to download. cargo clean # Install and run the latest version of nightly where miri built successfully. # Taken from: https://github.com/rust-lang/miri#running-miri-on-ci MIRI_NIGHTLY=nightly-$(curl -s https://rust-lang.github.io/rustup-components-history/x86_64-unknown-linux-gnu/miri) echo "Installing latest nightly with Miri: $MIRI_NIGHTLY" rustup override unset rustup default "$MIRI_NIGHTLY" rustup component add miri cargo miri setup cargo miri test --verbose cargo miri test --verbose --features union cargo miri test --verbose --all-features rustup override set nightly smallvec-1.13.2/src/arbitrary.rs000064400000000000000000000010721046102023000146520ustar 00000000000000use crate::{Array, SmallVec}; use arbitrary::{Arbitrary, Unstructured}; impl<'a, A: Array> Arbitrary<'a> for SmallVec where ::Item: Arbitrary<'a>, { fn arbitrary(u: &mut Unstructured<'a>) -> arbitrary::Result { u.arbitrary_iter()?.collect() } fn arbitrary_take_rest(u: Unstructured<'a>) -> arbitrary::Result { u.arbitrary_take_rest_iter()?.collect() } fn size_hint(depth: usize) -> (usize, Option) { arbitrary::size_hint::and(::size_hint(depth), (0, None)) } } smallvec-1.13.2/src/lib.rs000064400000000000000000002324211046102023000134250ustar 00000000000000// Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Small vectors in various sizes. These store a certain number of elements inline, and fall back //! to the heap for larger allocations. This can be a useful optimization for improving cache //! locality and reducing allocator traffic for workloads that fit within the inline buffer. //! //! ## `no_std` support //! //! By default, `smallvec` does not depend on `std`. However, the optional //! `write` feature implements the `std::io::Write` trait for vectors of `u8`. //! When this feature is enabled, `smallvec` depends on `std`. //! //! ## Optional features //! //! ### `serde` //! //! When this optional dependency is enabled, `SmallVec` implements the `serde::Serialize` and //! `serde::Deserialize` traits. //! //! ### `write` //! //! When this feature is enabled, `SmallVec<[u8; _]>` implements the `std::io::Write` trait. //! This feature is not compatible with `#![no_std]` programs. //! //! ### `union` //! //! **This feature requires Rust 1.49.** //! //! When the `union` feature is enabled `smallvec` will track its state (inline or spilled) //! without the use of an enum tag, reducing the size of the `smallvec` by one machine word. //! This means that there is potentially no space overhead compared to `Vec`. //! Note that `smallvec` can still be larger than `Vec` if the inline buffer is larger than two //! machine words. //! //! To use this feature add `features = ["union"]` in the `smallvec` section of Cargo.toml. //! Note that this feature requires Rust 1.49. //! //! Tracking issue: [rust-lang/rust#55149](https://github.com/rust-lang/rust/issues/55149) //! //! ### `const_generics` //! //! **This feature requires Rust 1.51.** //! //! When this feature is enabled, `SmallVec` works with any arrays of any size, not just a fixed //! list of sizes. //! //! ### `const_new` //! //! **This feature requires Rust 1.51.** //! //! This feature exposes the functions [`SmallVec::new_const`], [`SmallVec::from_const`], and [`smallvec_inline`] which enables the `SmallVec` to be initialized from a const context. //! For details, see the //! [Rust Reference](https://doc.rust-lang.org/reference/const_eval.html#const-functions). //! //! ### `drain_filter` //! //! **This feature is unstable.** It may change to match the unstable `drain_filter` method in libstd. //! //! Enables the `drain_filter` method, which produces an iterator that calls a user-provided //! closure to determine which elements of the vector to remove and yield from the iterator. //! //! ### `drain_keep_rest` //! //! **This feature is unstable.** It may change to match the unstable `drain_keep_rest` method in libstd. //! //! Enables the `DrainFilter::keep_rest` method. //! //! ### `specialization` //! //! **This feature is unstable and requires a nightly build of the Rust toolchain.** //! //! When this feature is enabled, `SmallVec::from(slice)` has improved performance for slices //! of `Copy` types. (Without this feature, you can use `SmallVec::from_slice` to get optimal //! performance for `Copy` types.) //! //! Tracking issue: [rust-lang/rust#31844](https://github.com/rust-lang/rust/issues/31844) //! //! ### `may_dangle` //! //! **This feature is unstable and requires a nightly build of the Rust toolchain.** //! //! This feature makes the Rust compiler less strict about use of vectors that contain borrowed //! references. For details, see the //! [Rustonomicon](https://doc.rust-lang.org/1.42.0/nomicon/dropck.html#an-escape-hatch). //! //! Tracking issue: [rust-lang/rust#34761](https://github.com/rust-lang/rust/issues/34761) #![no_std] #![cfg_attr(docsrs, feature(doc_cfg))] #![cfg_attr(feature = "specialization", allow(incomplete_features))] #![cfg_attr(feature = "specialization", feature(specialization))] #![cfg_attr(feature = "may_dangle", feature(dropck_eyepatch))] #![cfg_attr( feature = "debugger_visualizer", feature(debugger_visualizer), debugger_visualizer(natvis_file = "../debug_metadata/smallvec.natvis") )] #![deny(missing_docs)] #[doc(hidden)] pub extern crate alloc; #[cfg(any(test, feature = "write"))] extern crate std; #[cfg(test)] mod tests; #[allow(deprecated)] use alloc::alloc::{Layout, LayoutErr}; use alloc::boxed::Box; use alloc::{vec, vec::Vec}; use core::borrow::{Borrow, BorrowMut}; use core::cmp; use core::fmt; use core::hash::{Hash, Hasher}; use core::hint::unreachable_unchecked; use core::iter::{repeat, FromIterator, FusedIterator, IntoIterator}; use core::mem; use core::mem::MaybeUninit; use core::ops::{self, Range, RangeBounds}; use core::ptr::{self, NonNull}; use core::slice::{self, SliceIndex}; #[cfg(feature = "serde")] use serde::{ de::{Deserialize, Deserializer, SeqAccess, Visitor}, ser::{Serialize, SerializeSeq, Serializer}, }; #[cfg(feature = "serde")] use core::marker::PhantomData; #[cfg(feature = "write")] use std::io; #[cfg(feature = "drain_keep_rest")] use core::mem::ManuallyDrop; /// Creates a [`SmallVec`] containing the arguments. /// /// `smallvec!` allows `SmallVec`s to be defined with the same syntax as array expressions. /// There are two forms of this macro: /// /// - Create a [`SmallVec`] containing a given list of elements: /// /// ``` /// # use smallvec::{smallvec, SmallVec}; /// # fn main() { /// let v: SmallVec<[_; 128]> = smallvec![1, 2, 3]; /// assert_eq!(v[0], 1); /// assert_eq!(v[1], 2); /// assert_eq!(v[2], 3); /// # } /// ``` /// /// - Create a [`SmallVec`] from a given element and size: /// /// ``` /// # use smallvec::{smallvec, SmallVec}; /// # fn main() { /// let v: SmallVec<[_; 0x8000]> = smallvec![1; 3]; /// assert_eq!(v, SmallVec::from_buf([1, 1, 1])); /// # } /// ``` /// /// Note that unlike array expressions this syntax supports all elements /// which implement [`Clone`] and the number of elements doesn't have to be /// a constant. /// /// This will use `clone` to duplicate an expression, so one should be careful /// using this with types having a nonstandard `Clone` implementation. For /// example, `smallvec![Rc::new(1); 5]` will create a vector of five references /// to the same boxed integer value, not five references pointing to independently /// boxed integers. #[macro_export] macro_rules! smallvec { // count helper: transform any expression into 1 (@one $x:expr) => (1usize); ($elem:expr; $n:expr) => ({ $crate::SmallVec::from_elem($elem, $n) }); ($($x:expr),*$(,)*) => ({ let count = 0usize $(+ $crate::smallvec!(@one $x))*; #[allow(unused_mut)] let mut vec = $crate::SmallVec::new(); if count <= vec.inline_size() { $(vec.push($x);)* vec } else { $crate::SmallVec::from_vec($crate::alloc::vec![$($x,)*]) } }); } /// Creates an inline [`SmallVec`] containing the arguments. This macro is enabled by the feature `const_new`. /// /// `smallvec_inline!` allows `SmallVec`s to be defined with the same syntax as array expressions in `const` contexts. /// The inline storage `A` will always be an array of the size specified by the arguments. /// There are two forms of this macro: /// /// - Create a [`SmallVec`] containing a given list of elements: /// /// ``` /// # use smallvec::{smallvec_inline, SmallVec}; /// # fn main() { /// const V: SmallVec<[i32; 3]> = smallvec_inline![1, 2, 3]; /// assert_eq!(V[0], 1); /// assert_eq!(V[1], 2); /// assert_eq!(V[2], 3); /// # } /// ``` /// /// - Create a [`SmallVec`] from a given element and size: /// /// ``` /// # use smallvec::{smallvec_inline, SmallVec}; /// # fn main() { /// const V: SmallVec<[i32; 3]> = smallvec_inline![1; 3]; /// assert_eq!(V, SmallVec::from_buf([1, 1, 1])); /// # } /// ``` /// /// Note that the behavior mimics that of array expressions, in contrast to [`smallvec`]. #[cfg(feature = "const_new")] #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))] #[macro_export] macro_rules! smallvec_inline { // count helper: transform any expression into 1 (@one $x:expr) => (1usize); ($elem:expr; $n:expr) => ({ $crate::SmallVec::<[_; $n]>::from_const([$elem; $n]) }); ($($x:expr),+ $(,)?) => ({ const N: usize = 0usize $(+ $crate::smallvec_inline!(@one $x))*; $crate::SmallVec::<[_; N]>::from_const([$($x,)*]) }); } /// `panic!()` in debug builds, optimization hint in release. #[cfg(not(feature = "union"))] macro_rules! debug_unreachable { () => { debug_unreachable!("entered unreachable code") }; ($e:expr) => { if cfg!(debug_assertions) { panic!($e); } else { unreachable_unchecked(); } }; } /// Trait to be implemented by a collection that can be extended from a slice /// /// ## Example /// /// ```rust /// use smallvec::{ExtendFromSlice, SmallVec}; /// /// fn initialize>(v: &mut V) { /// v.extend_from_slice(b"Test!"); /// } /// /// let mut vec = Vec::new(); /// initialize(&mut vec); /// assert_eq!(&vec, b"Test!"); /// /// let mut small_vec = SmallVec::<[u8; 8]>::new(); /// initialize(&mut small_vec); /// assert_eq!(&small_vec as &[_], b"Test!"); /// ``` #[doc(hidden)] #[deprecated] pub trait ExtendFromSlice { /// Extends a collection from a slice of its element type fn extend_from_slice(&mut self, other: &[T]); } #[allow(deprecated)] impl ExtendFromSlice for Vec { fn extend_from_slice(&mut self, other: &[T]) { Vec::extend_from_slice(self, other) } } /// Error type for APIs with fallible heap allocation #[derive(Debug)] pub enum CollectionAllocErr { /// Overflow `usize::MAX` or other error during size computation CapacityOverflow, /// The allocator return an error AllocErr { /// The layout that was passed to the allocator layout: Layout, }, } impl fmt::Display for CollectionAllocErr { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "Allocation error: {:?}", self) } } #[allow(deprecated)] impl From for CollectionAllocErr { fn from(_: LayoutErr) -> Self { CollectionAllocErr::CapacityOverflow } } fn infallible(result: Result) -> T { match result { Ok(x) => x, Err(CollectionAllocErr::CapacityOverflow) => panic!("capacity overflow"), Err(CollectionAllocErr::AllocErr { layout }) => alloc::alloc::handle_alloc_error(layout), } } /// FIXME: use `Layout::array` when we require a Rust version where it’s stable /// fn layout_array(n: usize) -> Result { let size = mem::size_of::() .checked_mul(n) .ok_or(CollectionAllocErr::CapacityOverflow)?; let align = mem::align_of::(); Layout::from_size_align(size, align).map_err(|_| CollectionAllocErr::CapacityOverflow) } unsafe fn deallocate(ptr: NonNull, capacity: usize) { // This unwrap should succeed since the same did when allocating. let layout = layout_array::(capacity).unwrap(); alloc::alloc::dealloc(ptr.as_ptr() as *mut u8, layout) } /// An iterator that removes the items from a `SmallVec` and yields them by value. /// /// Returned from [`SmallVec::drain`][1]. /// /// [1]: struct.SmallVec.html#method.drain pub struct Drain<'a, T: 'a + Array> { tail_start: usize, tail_len: usize, iter: slice::Iter<'a, T::Item>, vec: NonNull>, } impl<'a, T: 'a + Array> fmt::Debug for Drain<'a, T> where T::Item: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("Drain").field(&self.iter.as_slice()).finish() } } unsafe impl<'a, T: Sync + Array> Sync for Drain<'a, T> {} unsafe impl<'a, T: Send + Array> Send for Drain<'a, T> {} impl<'a, T: 'a + Array> Iterator for Drain<'a, T> { type Item = T::Item; #[inline] fn next(&mut self) -> Option { self.iter .next() .map(|reference| unsafe { ptr::read(reference) }) } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a, T: 'a + Array> DoubleEndedIterator for Drain<'a, T> { #[inline] fn next_back(&mut self) -> Option { self.iter .next_back() .map(|reference| unsafe { ptr::read(reference) }) } } impl<'a, T: Array> ExactSizeIterator for Drain<'a, T> { #[inline] fn len(&self) -> usize { self.iter.len() } } impl<'a, T: Array> FusedIterator for Drain<'a, T> {} impl<'a, T: 'a + Array> Drop for Drain<'a, T> { fn drop(&mut self) { self.for_each(drop); if self.tail_len > 0 { unsafe { let source_vec = self.vec.as_mut(); // memmove back untouched tail, update to new length let start = source_vec.len(); let tail = self.tail_start; if tail != start { // as_mut_ptr creates a &mut, invalidating other pointers. // This pattern avoids calling it with a pointer already present. let ptr = source_vec.as_mut_ptr(); let src = ptr.add(tail); let dst = ptr.add(start); ptr::copy(src, dst, self.tail_len); } source_vec.set_len(start + self.tail_len); } } } } #[cfg(feature = "drain_filter")] /// An iterator which uses a closure to determine if an element should be removed. /// /// Returned from [`SmallVec::drain_filter`][1]. /// /// [1]: struct.SmallVec.html#method.drain_filter pub struct DrainFilter<'a, T, F> where F: FnMut(&mut T::Item) -> bool, T: Array, { vec: &'a mut SmallVec, /// The index of the item that will be inspected by the next call to `next`. idx: usize, /// The number of items that have been drained (removed) thus far. del: usize, /// The original length of `vec` prior to draining. old_len: usize, /// The filter test predicate. pred: F, /// A flag that indicates a panic has occurred in the filter test predicate. /// This is used as a hint in the drop implementation to prevent consumption /// of the remainder of the `DrainFilter`. Any unprocessed items will be /// backshifted in the `vec`, but no further items will be dropped or /// tested by the filter predicate. panic_flag: bool, } #[cfg(feature = "drain_filter")] impl fmt::Debug for DrainFilter<'_, T, F> where F: FnMut(&mut T::Item) -> bool, T: Array, T::Item: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("DrainFilter").field(&self.vec.as_slice()).finish() } } #[cfg(feature = "drain_filter")] impl Iterator for DrainFilter<'_, T, F> where F: FnMut(&mut T::Item) -> bool, T: Array, { type Item = T::Item; fn next(&mut self) -> Option { unsafe { while self.idx < self.old_len { let i = self.idx; let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len); self.panic_flag = true; let drained = (self.pred)(&mut v[i]); self.panic_flag = false; // Update the index *after* the predicate is called. If the index // is updated prior and the predicate panics, the element at this // index would be leaked. self.idx += 1; if drained { self.del += 1; return Some(ptr::read(&v[i])); } else if self.del > 0 { let del = self.del; let src: *const Self::Item = &v[i]; let dst: *mut Self::Item = &mut v[i - del]; ptr::copy_nonoverlapping(src, dst, 1); } } None } } fn size_hint(&self) -> (usize, Option) { (0, Some(self.old_len - self.idx)) } } #[cfg(feature = "drain_filter")] impl Drop for DrainFilter<'_, T, F> where F: FnMut(&mut T::Item) -> bool, T: Array, { fn drop(&mut self) { struct BackshiftOnDrop<'a, 'b, T, F> where F: FnMut(&mut T::Item) -> bool, T: Array { drain: &'b mut DrainFilter<'a, T, F>, } impl<'a, 'b, T, F> Drop for BackshiftOnDrop<'a, 'b, T, F> where F: FnMut(&mut T::Item) -> bool, T: Array { fn drop(&mut self) { unsafe { if self.drain.idx < self.drain.old_len && self.drain.del > 0 { // This is a pretty messed up state, and there isn't really an // obviously right thing to do. We don't want to keep trying // to execute `pred`, so we just backshift all the unprocessed // elements and tell the vec that they still exist. The backshift // is required to prevent a double-drop of the last successfully // drained item prior to a panic in the predicate. let ptr = self.drain.vec.as_mut_ptr(); let src = ptr.add(self.drain.idx); let dst = src.sub(self.drain.del); let tail_len = self.drain.old_len - self.drain.idx; src.copy_to(dst, tail_len); } self.drain.vec.set_len(self.drain.old_len - self.drain.del); } } } let backshift = BackshiftOnDrop { drain: self }; // Attempt to consume any remaining elements if the filter predicate // has not yet panicked. We'll backshift any remaining elements // whether we've already panicked or if the consumption here panics. if !backshift.drain.panic_flag { backshift.drain.for_each(drop); } } } #[cfg(feature = "drain_keep_rest")] impl DrainFilter<'_, T, F> where F: FnMut(&mut T::Item) -> bool, T: Array { /// Keep unyielded elements in the source `Vec`. /// /// # Examples /// /// ``` /// # use smallvec::{smallvec, SmallVec}; /// /// let mut vec: SmallVec<[char; 2]> = smallvec!['a', 'b', 'c']; /// let mut drain = vec.drain_filter(|_| true); /// /// assert_eq!(drain.next().unwrap(), 'a'); /// /// // This call keeps 'b' and 'c' in the vec. /// drain.keep_rest(); /// /// // If we wouldn't call `keep_rest()`, /// // `vec` would be empty. /// assert_eq!(vec, SmallVec::<[char; 2]>::from_slice(&['b', 'c'])); /// ``` pub fn keep_rest(self) { // At this moment layout looks like this: // // _____________________/-- old_len // / \ // [kept] [yielded] [tail] // \_______/ ^-- idx // \-- del // // Normally `Drop` impl would drop [tail] (via .for_each(drop), ie still calling `pred`) // // 1. Move [tail] after [kept] // 2. Update length of the original vec to `old_len - del` // a. In case of ZST, this is the only thing we want to do // 3. Do *not* drop self, as everything is put in a consistent state already, there is nothing to do let mut this = ManuallyDrop::new(self); unsafe { // ZSTs have no identity, so we don't need to move them around. let needs_move = mem::size_of::() != 0; if needs_move && this.idx < this.old_len && this.del > 0 { let ptr = this.vec.as_mut_ptr(); let src = ptr.add(this.idx); let dst = src.sub(this.del); let tail_len = this.old_len - this.idx; src.copy_to(dst, tail_len); } let new_len = this.old_len - this.del; this.vec.set_len(new_len); } } } #[cfg(feature = "union")] union SmallVecData { inline: core::mem::ManuallyDrop>, heap: (NonNull, usize), } #[cfg(all(feature = "union", feature = "const_new"))] impl SmallVecData<[T; N]> { #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))] #[inline] const fn from_const(inline: MaybeUninit<[T; N]>) -> Self { SmallVecData { inline: core::mem::ManuallyDrop::new(inline), } } } #[cfg(feature = "union")] impl SmallVecData { #[inline] unsafe fn inline(&self) -> ConstNonNull { ConstNonNull::new(self.inline.as_ptr() as *const A::Item).unwrap() } #[inline] unsafe fn inline_mut(&mut self) -> NonNull { NonNull::new(self.inline.as_mut_ptr() as *mut A::Item).unwrap() } #[inline] fn from_inline(inline: MaybeUninit) -> SmallVecData { SmallVecData { inline: core::mem::ManuallyDrop::new(inline), } } #[inline] unsafe fn into_inline(self) -> MaybeUninit { core::mem::ManuallyDrop::into_inner(self.inline) } #[inline] unsafe fn heap(&self) -> (ConstNonNull, usize) { (ConstNonNull(self.heap.0), self.heap.1) } #[inline] unsafe fn heap_mut(&mut self) -> (NonNull, &mut usize) { let h = &mut self.heap; (h.0, &mut h.1) } #[inline] fn from_heap(ptr: NonNull, len: usize) -> SmallVecData { SmallVecData { heap: (ptr, len) } } } #[cfg(not(feature = "union"))] enum SmallVecData { Inline(MaybeUninit), // Using NonNull and NonZero here allows to reduce size of `SmallVec`. Heap { // Since we never allocate on heap // unless our capacity is bigger than inline capacity // heap capacity cannot be less than 1. // Therefore, pointer cannot be null too. ptr: NonNull, len: usize, }, } #[cfg(all(not(feature = "union"), feature = "const_new"))] impl SmallVecData<[T; N]> { #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))] #[inline] const fn from_const(inline: MaybeUninit<[T; N]>) -> Self { SmallVecData::Inline(inline) } } #[cfg(not(feature = "union"))] impl SmallVecData { #[inline] unsafe fn inline(&self) -> ConstNonNull { match self { SmallVecData::Inline(a) => ConstNonNull::new(a.as_ptr() as *const A::Item).unwrap(), _ => debug_unreachable!(), } } #[inline] unsafe fn inline_mut(&mut self) -> NonNull { match self { SmallVecData::Inline(a) => NonNull::new(a.as_mut_ptr() as *mut A::Item).unwrap(), _ => debug_unreachable!(), } } #[inline] fn from_inline(inline: MaybeUninit) -> SmallVecData { SmallVecData::Inline(inline) } #[inline] unsafe fn into_inline(self) -> MaybeUninit { match self { SmallVecData::Inline(a) => a, _ => debug_unreachable!(), } } #[inline] unsafe fn heap(&self) -> (ConstNonNull, usize) { match self { SmallVecData::Heap { ptr, len } => (ConstNonNull(*ptr), *len), _ => debug_unreachable!(), } } #[inline] unsafe fn heap_mut(&mut self) -> (NonNull, &mut usize) { match self { SmallVecData::Heap { ptr, len } => (*ptr, len), _ => debug_unreachable!(), } } #[inline] fn from_heap(ptr: NonNull, len: usize) -> SmallVecData { SmallVecData::Heap { ptr, len } } } unsafe impl Send for SmallVecData {} unsafe impl Sync for SmallVecData {} /// A `Vec`-like container that can store a small number of elements inline. /// /// `SmallVec` acts like a vector, but can store a limited amount of data inline within the /// `SmallVec` struct rather than in a separate allocation. If the data exceeds this limit, the /// `SmallVec` will "spill" its data onto the heap, allocating a new buffer to hold it. /// /// The amount of data that a `SmallVec` can store inline depends on its backing store. The backing /// store can be any type that implements the `Array` trait; usually it is a small fixed-sized /// array. For example a `SmallVec<[u64; 8]>` can hold up to eight 64-bit integers inline. /// /// ## Example /// /// ```rust /// use smallvec::SmallVec; /// let mut v = SmallVec::<[u8; 4]>::new(); // initialize an empty vector /// /// // The vector can hold up to 4 items without spilling onto the heap. /// v.extend(0..4); /// assert_eq!(v.len(), 4); /// assert!(!v.spilled()); /// /// // Pushing another element will force the buffer to spill: /// v.push(4); /// assert_eq!(v.len(), 5); /// assert!(v.spilled()); /// ``` pub struct SmallVec { // The capacity field is used to determine which of the storage variants is active: // If capacity <= Self::inline_capacity() then the inline variant is used and capacity holds the current length of the vector (number of elements actually in use). // If capacity > Self::inline_capacity() then the heap variant is used and capacity holds the size of the memory allocation. capacity: usize, data: SmallVecData, } impl SmallVec { /// Construct an empty vector #[inline] pub fn new() -> SmallVec { // Try to detect invalid custom implementations of `Array`. Hopefully, // this check should be optimized away entirely for valid ones. assert!( mem::size_of::() == A::size() * mem::size_of::() && mem::align_of::() >= mem::align_of::() ); SmallVec { capacity: 0, data: SmallVecData::from_inline(MaybeUninit::uninit()), } } /// Construct an empty vector with enough capacity pre-allocated to store at least `n` /// elements. /// /// Will create a heap allocation only if `n` is larger than the inline capacity. /// /// ``` /// # use smallvec::SmallVec; /// /// let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(100); /// /// assert!(v.is_empty()); /// assert!(v.capacity() >= 100); /// ``` #[inline] pub fn with_capacity(n: usize) -> Self { let mut v = SmallVec::new(); v.reserve_exact(n); v } /// Construct a new `SmallVec` from a `Vec`. /// /// Elements will be copied to the inline buffer if `vec.capacity() <= Self::inline_capacity()`. /// /// ```rust /// use smallvec::SmallVec; /// /// let vec = vec![1, 2, 3, 4, 5]; /// let small_vec: SmallVec<[_; 3]> = SmallVec::from_vec(vec); /// /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); /// ``` #[inline] pub fn from_vec(mut vec: Vec) -> SmallVec { if vec.capacity() <= Self::inline_capacity() { // Cannot use Vec with smaller capacity // because we use value of `Self::capacity` field as indicator. unsafe { let mut data = SmallVecData::::from_inline(MaybeUninit::uninit()); let len = vec.len(); vec.set_len(0); ptr::copy_nonoverlapping(vec.as_ptr(), data.inline_mut().as_ptr(), len); SmallVec { capacity: len, data, } } } else { let (ptr, cap, len) = (vec.as_mut_ptr(), vec.capacity(), vec.len()); mem::forget(vec); let ptr = NonNull::new(ptr) // See docs: https://doc.rust-lang.org/std/vec/struct.Vec.html#method.as_mut_ptr .expect("Cannot be null by `Vec` invariant"); SmallVec { capacity: cap, data: SmallVecData::from_heap(ptr, len), } } } /// Constructs a new `SmallVec` on the stack from an `A` without /// copying elements. /// /// ```rust /// use smallvec::SmallVec; /// /// let buf = [1, 2, 3, 4, 5]; /// let small_vec: SmallVec<_> = SmallVec::from_buf(buf); /// /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); /// ``` #[inline] pub fn from_buf(buf: A) -> SmallVec { SmallVec { capacity: A::size(), data: SmallVecData::from_inline(MaybeUninit::new(buf)), } } /// Constructs a new `SmallVec` on the stack from an `A` without /// copying elements. Also sets the length, which must be less or /// equal to the size of `buf`. /// /// ```rust /// use smallvec::SmallVec; /// /// let buf = [1, 2, 3, 4, 5, 0, 0, 0]; /// let small_vec: SmallVec<_> = SmallVec::from_buf_and_len(buf, 5); /// /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); /// ``` #[inline] pub fn from_buf_and_len(buf: A, len: usize) -> SmallVec { assert!(len <= A::size()); unsafe { SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), len) } } /// Constructs a new `SmallVec` on the stack from an `A` without /// copying elements. Also sets the length. The user is responsible /// for ensuring that `len <= A::size()`. /// /// ```rust /// use smallvec::SmallVec; /// use std::mem::MaybeUninit; /// /// let buf = [1, 2, 3, 4, 5, 0, 0, 0]; /// let small_vec: SmallVec<_> = unsafe { /// SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), 5) /// }; /// /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); /// ``` #[inline] pub unsafe fn from_buf_and_len_unchecked(buf: MaybeUninit, len: usize) -> SmallVec { SmallVec { capacity: len, data: SmallVecData::from_inline(buf), } } /// Sets the length of a vector. /// /// This will explicitly set the size of the vector, without actually /// modifying its buffers, so it is up to the caller to ensure that the /// vector is actually the specified size. pub unsafe fn set_len(&mut self, new_len: usize) { let (_, len_ptr, _) = self.triple_mut(); *len_ptr = new_len; } /// The maximum number of elements this vector can hold inline #[inline] fn inline_capacity() -> usize { if mem::size_of::() > 0 { A::size() } else { // For zero-size items code like `ptr.add(offset)` always returns the same pointer. // Therefore all items are at the same address, // and any array size has capacity for infinitely many items. // The capacity is limited by the bit width of the length field. // // `Vec` also does this: // https://github.com/rust-lang/rust/blob/1.44.0/src/liballoc/raw_vec.rs#L186 // // In our case, this also ensures that a smallvec of zero-size items never spills, // and we never try to allocate zero bytes which `std::alloc::alloc` disallows. core::usize::MAX } } /// The maximum number of elements this vector can hold inline #[inline] pub fn inline_size(&self) -> usize { Self::inline_capacity() } /// The number of elements stored in the vector #[inline] pub fn len(&self) -> usize { self.triple().1 } /// Returns `true` if the vector is empty #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// The number of items the vector can hold without reallocating #[inline] pub fn capacity(&self) -> usize { self.triple().2 } /// Returns a tuple with (data ptr, len, capacity) /// Useful to get all `SmallVec` properties with a single check of the current storage variant. #[inline] fn triple(&self) -> (ConstNonNull, usize, usize) { unsafe { if self.spilled() { let (ptr, len) = self.data.heap(); (ptr, len, self.capacity) } else { (self.data.inline(), self.capacity, Self::inline_capacity()) } } } /// Returns a tuple with (data ptr, len ptr, capacity) #[inline] fn triple_mut(&mut self) -> (NonNull, &mut usize, usize) { unsafe { if self.spilled() { let (ptr, len_ptr) = self.data.heap_mut(); (ptr, len_ptr, self.capacity) } else { ( self.data.inline_mut(), &mut self.capacity, Self::inline_capacity(), ) } } } /// Returns `true` if the data has spilled into a separate heap-allocated buffer. #[inline] pub fn spilled(&self) -> bool { self.capacity > Self::inline_capacity() } /// Creates a draining iterator that removes the specified range in the vector /// and yields the removed items. /// /// Note 1: The element range is removed even if the iterator is only /// partially consumed or not consumed at all. /// /// Note 2: It is unspecified how many elements are removed from the vector /// if the `Drain` value is leaked. /// /// # Panics /// /// Panics if the starting point is greater than the end point or if /// the end point is greater than the length of the vector. pub fn drain(&mut self, range: R) -> Drain<'_, A> where R: RangeBounds, { use core::ops::Bound::*; let len = self.len(); let start = match range.start_bound() { Included(&n) => n, Excluded(&n) => n.checked_add(1).expect("Range start out of bounds"), Unbounded => 0, }; let end = match range.end_bound() { Included(&n) => n.checked_add(1).expect("Range end out of bounds"), Excluded(&n) => n, Unbounded => len, }; assert!(start <= end); assert!(end <= len); unsafe { self.set_len(start); let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start); Drain { tail_start: end, tail_len: len - end, iter: range_slice.iter(), // Since self is a &mut, passing it to a function would invalidate the slice iterator. vec: NonNull::new_unchecked(self as *mut _), } } } #[cfg(feature = "drain_filter")] /// Creates an iterator which uses a closure to determine if an element should be removed. /// /// If the closure returns true, the element is removed and yielded. If the closure returns /// false, the element will remain in the vector and will not be yielded by the iterator. /// /// Using this method is equivalent to the following code: /// ``` /// # use smallvec::SmallVec; /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 }; /// # let mut vec: SmallVec<[i32; 8]> = SmallVec::from_slice(&[1i32, 2, 3, 4, 5, 6]); /// let mut i = 0; /// while i < vec.len() { /// if some_predicate(&mut vec[i]) { /// let val = vec.remove(i); /// // your code here /// } else { /// i += 1; /// } /// } /// /// # assert_eq!(vec, SmallVec::<[i32; 8]>::from_slice(&[1i32, 4, 5])); /// ``` /// /// /// But `drain_filter` is easier to use. `drain_filter` is also more efficient, /// because it can backshift the elements of the array in bulk. /// /// Note that `drain_filter` also lets you mutate every element in the filter closure, /// regardless of whether you choose to keep or remove it. /// /// # Examples /// /// Splitting an array into evens and odds, reusing the original allocation: /// /// ``` /// # use smallvec::SmallVec; /// let mut numbers: SmallVec<[i32; 16]> = SmallVec::from_slice(&[1i32, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]); /// /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::>(); /// let odds = numbers; /// /// assert_eq!(evens, SmallVec::<[i32; 16]>::from_slice(&[2i32, 4, 6, 8, 14])); /// assert_eq!(odds, SmallVec::<[i32; 16]>::from_slice(&[1i32, 3, 5, 9, 11, 13, 15])); /// ``` pub fn drain_filter(&mut self, filter: F) -> DrainFilter<'_, A, F,> where F: FnMut(&mut A::Item) -> bool, { let old_len = self.len(); // Guard against us getting leaked (leak amplification) unsafe { self.set_len(0); } DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false } } /// Append an item to the vector. #[inline] pub fn push(&mut self, value: A::Item) { unsafe { let (mut ptr, mut len, cap) = self.triple_mut(); if *len == cap { self.reserve_one_unchecked(); let (heap_ptr, heap_len) = self.data.heap_mut(); ptr = heap_ptr; len = heap_len; } ptr::write(ptr.as_ptr().add(*len), value); *len += 1; } } /// Remove an item from the end of the vector and return it, or None if empty. #[inline] pub fn pop(&mut self) -> Option { unsafe { let (ptr, len_ptr, _) = self.triple_mut(); let ptr: *const _ = ptr.as_ptr(); if *len_ptr == 0 { return None; } let last_index = *len_ptr - 1; *len_ptr = last_index; Some(ptr::read(ptr.add(last_index))) } } /// Moves all the elements of `other` into `self`, leaving `other` empty. /// /// # Example /// /// ``` /// # use smallvec::{SmallVec, smallvec}; /// let mut v0: SmallVec<[u8; 16]> = smallvec![1, 2, 3]; /// let mut v1: SmallVec<[u8; 32]> = smallvec![4, 5, 6]; /// v0.append(&mut v1); /// assert_eq!(*v0, [1, 2, 3, 4, 5, 6]); /// assert_eq!(*v1, []); /// ``` pub fn append(&mut self, other: &mut SmallVec) where B: Array, { self.extend(other.drain(..)) } /// Re-allocate to set the capacity to `max(new_cap, inline_size())`. /// /// Panics if `new_cap` is less than the vector's length /// or if the capacity computation overflows `usize`. pub fn grow(&mut self, new_cap: usize) { infallible(self.try_grow(new_cap)) } /// Re-allocate to set the capacity to `max(new_cap, inline_size())`. /// /// Panics if `new_cap` is less than the vector's length pub fn try_grow(&mut self, new_cap: usize) -> Result<(), CollectionAllocErr> { unsafe { let unspilled = !self.spilled(); let (ptr, &mut len, cap) = self.triple_mut(); assert!(new_cap >= len); if new_cap <= Self::inline_capacity() { if unspilled { return Ok(()); } self.data = SmallVecData::from_inline(MaybeUninit::uninit()); ptr::copy_nonoverlapping(ptr.as_ptr(), self.data.inline_mut().as_ptr(), len); self.capacity = len; deallocate(ptr, cap); } else if new_cap != cap { let layout = layout_array::(new_cap)?; debug_assert!(layout.size() > 0); let new_alloc; if unspilled { new_alloc = NonNull::new(alloc::alloc::alloc(layout)) .ok_or(CollectionAllocErr::AllocErr { layout })? .cast(); ptr::copy_nonoverlapping(ptr.as_ptr(), new_alloc.as_ptr(), len); } else { // This should never fail since the same succeeded // when previously allocating `ptr`. let old_layout = layout_array::(cap)?; let new_ptr = alloc::alloc::realloc(ptr.as_ptr() as *mut u8, old_layout, layout.size()); new_alloc = NonNull::new(new_ptr) .ok_or(CollectionAllocErr::AllocErr { layout })? .cast(); } self.data = SmallVecData::from_heap(new_alloc, len); self.capacity = new_cap; } Ok(()) } } /// Reserve capacity for `additional` more elements to be inserted. /// /// May reserve more space to avoid frequent reallocations. /// /// Panics if the capacity computation overflows `usize`. #[inline] pub fn reserve(&mut self, additional: usize) { infallible(self.try_reserve(additional)) } /// Internal method used to grow in push() and insert(), where we know already we have to grow. #[cold] fn reserve_one_unchecked(&mut self) { debug_assert_eq!(self.len(), self.capacity()); let new_cap = self.len() .checked_add(1) .and_then(usize::checked_next_power_of_two) .expect("capacity overflow"); infallible(self.try_grow(new_cap)) } /// Reserve capacity for `additional` more elements to be inserted. /// /// May reserve more space to avoid frequent reallocations. pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> { // prefer triple_mut() even if triple() would work so that the optimizer removes duplicated // calls to it from callers. let (_, &mut len, cap) = self.triple_mut(); if cap - len >= additional { return Ok(()); } let new_cap = len .checked_add(additional) .and_then(usize::checked_next_power_of_two) .ok_or(CollectionAllocErr::CapacityOverflow)?; self.try_grow(new_cap) } /// Reserve the minimum capacity for `additional` more elements to be inserted. /// /// Panics if the new capacity overflows `usize`. pub fn reserve_exact(&mut self, additional: usize) { infallible(self.try_reserve_exact(additional)) } /// Reserve the minimum capacity for `additional` more elements to be inserted. pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> { let (_, &mut len, cap) = self.triple_mut(); if cap - len >= additional { return Ok(()); } let new_cap = len .checked_add(additional) .ok_or(CollectionAllocErr::CapacityOverflow)?; self.try_grow(new_cap) } /// Shrink the capacity of the vector as much as possible. /// /// When possible, this will move data from an external heap buffer to the vector's inline /// storage. pub fn shrink_to_fit(&mut self) { if !self.spilled() { return; } let len = self.len(); if self.inline_size() >= len { unsafe { let (ptr, len) = self.data.heap(); self.data = SmallVecData::from_inline(MaybeUninit::uninit()); ptr::copy_nonoverlapping(ptr.as_ptr(), self.data.inline_mut().as_ptr(), len); deallocate(ptr.0, self.capacity); self.capacity = len; } } else if self.capacity() > len { self.grow(len); } } /// Shorten the vector, keeping the first `len` elements and dropping the rest. /// /// If `len` is greater than or equal to the vector's current length, this has no /// effect. /// /// This does not re-allocate. If you want the vector's capacity to shrink, call /// `shrink_to_fit` after truncating. pub fn truncate(&mut self, len: usize) { unsafe { let (ptr, len_ptr, _) = self.triple_mut(); let ptr = ptr.as_ptr(); while len < *len_ptr { let last_index = *len_ptr - 1; *len_ptr = last_index; ptr::drop_in_place(ptr.add(last_index)); } } } /// Extracts a slice containing the entire vector. /// /// Equivalent to `&s[..]`. pub fn as_slice(&self) -> &[A::Item] { self } /// Extracts a mutable slice of the entire vector. /// /// Equivalent to `&mut s[..]`. pub fn as_mut_slice(&mut self) -> &mut [A::Item] { self } /// Remove the element at position `index`, replacing it with the last element. /// /// This does not preserve ordering, but is O(1). /// /// Panics if `index` is out of bounds. #[inline] pub fn swap_remove(&mut self, index: usize) -> A::Item { let len = self.len(); self.swap(len - 1, index); self.pop() .unwrap_or_else(|| unsafe { unreachable_unchecked() }) } /// Remove all elements from the vector. #[inline] pub fn clear(&mut self) { self.truncate(0); } /// Remove and return the element at position `index`, shifting all elements after it to the /// left. /// /// Panics if `index` is out of bounds. pub fn remove(&mut self, index: usize) -> A::Item { unsafe { let (ptr, len_ptr, _) = self.triple_mut(); let len = *len_ptr; assert!(index < len); *len_ptr = len - 1; let ptr = ptr.as_ptr().add(index); let item = ptr::read(ptr); ptr::copy(ptr.add(1), ptr, len - index - 1); item } } /// Insert an element at position `index`, shifting all elements after it to the right. /// /// Panics if `index > len`. pub fn insert(&mut self, index: usize, element: A::Item) { unsafe { let (mut ptr, mut len_ptr, cap) = self.triple_mut(); if *len_ptr == cap { self.reserve_one_unchecked(); let (heap_ptr, heap_len_ptr) = self.data.heap_mut(); ptr = heap_ptr; len_ptr = heap_len_ptr; } let mut ptr = ptr.as_ptr(); let len = *len_ptr; if index > len { panic!("index exceeds length"); } // SAFETY: add is UB if index > len, but we panicked first ptr = ptr.add(index); if index < len { // Shift element to the right of `index`. ptr::copy(ptr, ptr.add(1), len - index); } *len_ptr = len + 1; ptr::write(ptr, element); } } /// Insert multiple elements at position `index`, shifting all following elements toward the /// back. pub fn insert_many>(&mut self, index: usize, iterable: I) { let mut iter = iterable.into_iter(); if index == self.len() { return self.extend(iter); } let (lower_size_bound, _) = iter.size_hint(); assert!(lower_size_bound <= core::isize::MAX as usize); // Ensure offset is indexable assert!(index + lower_size_bound >= index); // Protect against overflow let mut num_added = 0; let old_len = self.len(); assert!(index <= old_len); unsafe { // Reserve space for `lower_size_bound` elements. self.reserve(lower_size_bound); let start = self.as_mut_ptr(); let ptr = start.add(index); // Move the trailing elements. ptr::copy(ptr, ptr.add(lower_size_bound), old_len - index); // In case the iterator panics, don't double-drop the items we just copied above. self.set_len(0); let mut guard = DropOnPanic { start, skip: index..(index + lower_size_bound), len: old_len + lower_size_bound, }; // The set_len above invalidates the previous pointers, so we must re-create them. let start = self.as_mut_ptr(); let ptr = start.add(index); while num_added < lower_size_bound { let element = match iter.next() { Some(x) => x, None => break, }; let cur = ptr.add(num_added); ptr::write(cur, element); guard.skip.start += 1; num_added += 1; } if num_added < lower_size_bound { // Iterator provided fewer elements than the hint. Move the tail backward. ptr::copy( ptr.add(lower_size_bound), ptr.add(num_added), old_len - index, ); } // There are no more duplicate or uninitialized slots, so the guard is not needed. self.set_len(old_len + num_added); mem::forget(guard); } // Insert any remaining elements one-by-one. for element in iter { self.insert(index + num_added, element); num_added += 1; } struct DropOnPanic { start: *mut T, skip: Range, // Space we copied-out-of, but haven't written-to yet. len: usize, } impl Drop for DropOnPanic { fn drop(&mut self) { for i in 0..self.len { if !self.skip.contains(&i) { unsafe { ptr::drop_in_place(self.start.add(i)); } } } } } } /// Convert a `SmallVec` to a `Vec`, without reallocating if the `SmallVec` has already spilled onto /// the heap. pub fn into_vec(mut self) -> Vec { if self.spilled() { unsafe { let (ptr, &mut len) = self.data.heap_mut(); let v = Vec::from_raw_parts(ptr.as_ptr(), len, self.capacity); mem::forget(self); v } } else { self.into_iter().collect() } } /// Converts a `SmallVec` into a `Box<[T]>` without reallocating if the `SmallVec` has already spilled /// onto the heap. /// /// Note that this will drop any excess capacity. pub fn into_boxed_slice(self) -> Box<[A::Item]> { self.into_vec().into_boxed_slice() } /// Convert the `SmallVec` into an `A` if possible. Otherwise return `Err(Self)`. /// /// This method returns `Err(Self)` if the `SmallVec` is too short (and the `A` contains uninitialized elements), /// or if the `SmallVec` is too long (and all the elements were spilled to the heap). pub fn into_inner(self) -> Result { if self.spilled() || self.len() != A::size() { // Note: A::size, not Self::inline_capacity Err(self) } else { unsafe { let data = ptr::read(&self.data); mem::forget(self); Ok(data.into_inline().assume_init()) } } } /// Retains only the elements specified by the predicate. /// /// In other words, remove all elements `e` such that `f(&e)` returns `false`. /// This method operates in place and preserves the order of the retained /// elements. pub fn retain bool>(&mut self, mut f: F) { let mut del = 0; let len = self.len(); for i in 0..len { if !f(&mut self[i]) { del += 1; } else if del > 0 { self.swap(i - del, i); } } self.truncate(len - del); } /// Retains only the elements specified by the predicate. /// /// This method is identical in behaviour to [`retain`]; it is included only /// to maintain api-compatability with `std::Vec`, where the methods are /// separate for historical reasons. pub fn retain_mut bool>(&mut self, f: F) { self.retain(f) } /// Removes consecutive duplicate elements. pub fn dedup(&mut self) where A::Item: PartialEq, { self.dedup_by(|a, b| a == b); } /// Removes consecutive duplicate elements using the given equality relation. pub fn dedup_by(&mut self, mut same_bucket: F) where F: FnMut(&mut A::Item, &mut A::Item) -> bool, { // See the implementation of Vec::dedup_by in the // standard library for an explanation of this algorithm. let len = self.len(); if len <= 1 { return; } let ptr = self.as_mut_ptr(); let mut w: usize = 1; unsafe { for r in 1..len { let p_r = ptr.add(r); let p_wm1 = ptr.add(w - 1); if !same_bucket(&mut *p_r, &mut *p_wm1) { if r != w { let p_w = p_wm1.add(1); mem::swap(&mut *p_r, &mut *p_w); } w += 1; } } } self.truncate(w); } /// Removes consecutive elements that map to the same key. pub fn dedup_by_key(&mut self, mut key: F) where F: FnMut(&mut A::Item) -> K, K: PartialEq, { self.dedup_by(|a, b| key(a) == key(b)); } /// Resizes the `SmallVec` in-place so that `len` is equal to `new_len`. /// /// If `new_len` is greater than `len`, the `SmallVec` is extended by the difference, with each /// additional slot filled with the result of calling the closure `f`. The return values from `f` /// will end up in the `SmallVec` in the order they have been generated. /// /// If `new_len` is less than `len`, the `SmallVec` is simply truncated. /// /// This method uses a closure to create new values on every push. If you'd rather `Clone` a given /// value, use `resize`. If you want to use the `Default` trait to generate values, you can pass /// `Default::default()` as the second argument. /// /// Added for `std::vec::Vec` compatibility (added in Rust 1.33.0) /// /// ``` /// # use smallvec::{smallvec, SmallVec}; /// let mut vec : SmallVec<[_; 4]> = smallvec![1, 2, 3]; /// vec.resize_with(5, Default::default); /// assert_eq!(&*vec, &[1, 2, 3, 0, 0]); /// /// let mut vec : SmallVec<[_; 4]> = smallvec![]; /// let mut p = 1; /// vec.resize_with(4, || { p *= 2; p }); /// assert_eq!(&*vec, &[2, 4, 8, 16]); /// ``` pub fn resize_with(&mut self, new_len: usize, f: F) where F: FnMut() -> A::Item, { let old_len = self.len(); if old_len < new_len { let mut f = f; let additional = new_len - old_len; self.reserve(additional); for _ in 0..additional { self.push(f()); } } else if old_len > new_len { self.truncate(new_len); } } /// Creates a `SmallVec` directly from the raw components of another /// `SmallVec`. /// /// # Safety /// /// This is highly unsafe, due to the number of invariants that aren't /// checked: /// /// * `ptr` needs to have been previously allocated via `SmallVec` for its /// spilled storage (at least, it's highly likely to be incorrect if it /// wasn't). /// * `ptr`'s `A::Item` type needs to be the same size and alignment that /// it was allocated with /// * `length` needs to be less than or equal to `capacity`. /// * `capacity` needs to be the capacity that the pointer was allocated /// with. /// /// Violating these may cause problems like corrupting the allocator's /// internal data structures. /// /// Additionally, `capacity` must be greater than the amount of inline /// storage `A` has; that is, the new `SmallVec` must need to spill over /// into heap allocated storage. This condition is asserted against. /// /// The ownership of `ptr` is effectively transferred to the /// `SmallVec` which may then deallocate, reallocate or change the /// contents of memory pointed to by the pointer at will. Ensure /// that nothing else uses the pointer after calling this /// function. /// /// # Examples /// /// ``` /// # use smallvec::{smallvec, SmallVec}; /// use std::mem; /// use std::ptr; /// /// fn main() { /// let mut v: SmallVec<[_; 1]> = smallvec![1, 2, 3]; /// /// // Pull out the important parts of `v`. /// let p = v.as_mut_ptr(); /// let len = v.len(); /// let cap = v.capacity(); /// let spilled = v.spilled(); /// /// unsafe { /// // Forget all about `v`. The heap allocation that stored the /// // three values won't be deallocated. /// mem::forget(v); /// /// // Overwrite memory with [4, 5, 6]. /// // /// // This is only safe if `spilled` is true! Otherwise, we are /// // writing into the old `SmallVec`'s inline storage on the /// // stack. /// assert!(spilled); /// for i in 0..len { /// ptr::write(p.add(i), 4 + i); /// } /// /// // Put everything back together into a SmallVec with a different /// // amount of inline storage, but which is still less than `cap`. /// let rebuilt = SmallVec::<[_; 2]>::from_raw_parts(p, len, cap); /// assert_eq!(&*rebuilt, &[4, 5, 6]); /// } /// } #[inline] pub unsafe fn from_raw_parts(ptr: *mut A::Item, length: usize, capacity: usize) -> SmallVec { // SAFETY: We require caller to provide same ptr as we alloc // and we never alloc null pointer. let ptr = unsafe { debug_assert!(!ptr.is_null(), "Called `from_raw_parts` with null pointer."); NonNull::new_unchecked(ptr) }; assert!(capacity > Self::inline_capacity()); SmallVec { capacity, data: SmallVecData::from_heap(ptr, length), } } /// Returns a raw pointer to the vector's buffer. pub fn as_ptr(&self) -> *const A::Item { // We shadow the slice method of the same name to avoid going through // `deref`, which creates an intermediate reference that may place // additional safety constraints on the contents of the slice. self.triple().0.as_ptr() } /// Returns a raw mutable pointer to the vector's buffer. pub fn as_mut_ptr(&mut self) -> *mut A::Item { // We shadow the slice method of the same name to avoid going through // `deref_mut`, which creates an intermediate reference that may place // additional safety constraints on the contents of the slice. self.triple_mut().0.as_ptr() } } impl SmallVec where A::Item: Copy, { /// Copy the elements from a slice into a new `SmallVec`. /// /// For slices of `Copy` types, this is more efficient than `SmallVec::from(slice)`. pub fn from_slice(slice: &[A::Item]) -> Self { let len = slice.len(); if len <= Self::inline_capacity() { SmallVec { capacity: len, data: SmallVecData::from_inline(unsafe { let mut data: MaybeUninit = MaybeUninit::uninit(); ptr::copy_nonoverlapping( slice.as_ptr(), data.as_mut_ptr() as *mut A::Item, len, ); data }), } } else { let mut b = slice.to_vec(); let cap = b.capacity(); let ptr = NonNull::new(b.as_mut_ptr()).expect("Vec always contain non null pointers."); mem::forget(b); SmallVec { capacity: cap, data: SmallVecData::from_heap(ptr, len), } } } /// Copy elements from a slice into the vector at position `index`, shifting any following /// elements toward the back. /// /// For slices of `Copy` types, this is more efficient than `insert`. #[inline] pub fn insert_from_slice(&mut self, index: usize, slice: &[A::Item]) { self.reserve(slice.len()); let len = self.len(); assert!(index <= len); unsafe { let slice_ptr = slice.as_ptr(); let ptr = self.as_mut_ptr().add(index); ptr::copy(ptr, ptr.add(slice.len()), len - index); ptr::copy_nonoverlapping(slice_ptr, ptr, slice.len()); self.set_len(len + slice.len()); } } /// Copy elements from a slice and append them to the vector. /// /// For slices of `Copy` types, this is more efficient than `extend`. #[inline] pub fn extend_from_slice(&mut self, slice: &[A::Item]) { let len = self.len(); self.insert_from_slice(len, slice); } } impl SmallVec where A::Item: Clone, { /// Resizes the vector so that its length is equal to `len`. /// /// If `len` is less than the current length, the vector simply truncated. /// /// If `len` is greater than the current length, `value` is appended to the /// vector until its length equals `len`. pub fn resize(&mut self, len: usize, value: A::Item) { let old_len = self.len(); if len > old_len { self.extend(repeat(value).take(len - old_len)); } else { self.truncate(len); } } /// Creates a `SmallVec` with `n` copies of `elem`. /// ``` /// use smallvec::SmallVec; /// /// let v = SmallVec::<[char; 128]>::from_elem('d', 2); /// assert_eq!(v, SmallVec::from_buf(['d', 'd'])); /// ``` pub fn from_elem(elem: A::Item, n: usize) -> Self { if n > Self::inline_capacity() { vec![elem; n].into() } else { let mut v = SmallVec::::new(); unsafe { let (ptr, len_ptr, _) = v.triple_mut(); let ptr = ptr.as_ptr(); let mut local_len = SetLenOnDrop::new(len_ptr); for i in 0..n { ::core::ptr::write(ptr.add(i), elem.clone()); local_len.increment_len(1); } } v } } } impl ops::Deref for SmallVec { type Target = [A::Item]; #[inline] fn deref(&self) -> &[A::Item] { unsafe { let (ptr, len, _) = self.triple(); slice::from_raw_parts(ptr.as_ptr(), len) } } } impl ops::DerefMut for SmallVec { #[inline] fn deref_mut(&mut self) -> &mut [A::Item] { unsafe { let (ptr, &mut len, _) = self.triple_mut(); slice::from_raw_parts_mut(ptr.as_ptr(), len) } } } impl AsRef<[A::Item]> for SmallVec { #[inline] fn as_ref(&self) -> &[A::Item] { self } } impl AsMut<[A::Item]> for SmallVec { #[inline] fn as_mut(&mut self) -> &mut [A::Item] { self } } impl Borrow<[A::Item]> for SmallVec { #[inline] fn borrow(&self) -> &[A::Item] { self } } impl BorrowMut<[A::Item]> for SmallVec { #[inline] fn borrow_mut(&mut self) -> &mut [A::Item] { self } } #[cfg(feature = "write")] #[cfg_attr(docsrs, doc(cfg(feature = "write")))] impl> io::Write for SmallVec { #[inline] fn write(&mut self, buf: &[u8]) -> io::Result { self.extend_from_slice(buf); Ok(buf.len()) } #[inline] fn write_all(&mut self, buf: &[u8]) -> io::Result<()> { self.extend_from_slice(buf); Ok(()) } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } } #[cfg(feature = "serde")] #[cfg_attr(docsrs, doc(cfg(feature = "serde")))] impl Serialize for SmallVec where A::Item: Serialize, { fn serialize(&self, serializer: S) -> Result { let mut state = serializer.serialize_seq(Some(self.len()))?; for item in self { state.serialize_element(&item)?; } state.end() } } #[cfg(feature = "serde")] #[cfg_attr(docsrs, doc(cfg(feature = "serde")))] impl<'de, A: Array> Deserialize<'de> for SmallVec where A::Item: Deserialize<'de>, { fn deserialize>(deserializer: D) -> Result { deserializer.deserialize_seq(SmallVecVisitor { phantom: PhantomData, }) } } #[cfg(feature = "serde")] struct SmallVecVisitor { phantom: PhantomData, } #[cfg(feature = "serde")] impl<'de, A: Array> Visitor<'de> for SmallVecVisitor where A::Item: Deserialize<'de>, { type Value = SmallVec; fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result { formatter.write_str("a sequence") } fn visit_seq(self, mut seq: B) -> Result where B: SeqAccess<'de>, { use serde::de::Error; let len = seq.size_hint().unwrap_or(0); let mut values = SmallVec::new(); values.try_reserve(len).map_err(B::Error::custom)?; while let Some(value) = seq.next_element()? { values.push(value); } Ok(values) } } #[cfg(feature = "specialization")] trait SpecFrom { fn spec_from(slice: S) -> SmallVec; } #[cfg(feature = "specialization")] mod specialization; #[cfg(feature = "arbitrary")] mod arbitrary; #[cfg(feature = "specialization")] impl<'a, A: Array> SpecFrom for SmallVec where A::Item: Copy, { #[inline] fn spec_from(slice: &'a [A::Item]) -> SmallVec { SmallVec::from_slice(slice) } } impl<'a, A: Array> From<&'a [A::Item]> for SmallVec where A::Item: Clone, { #[cfg(not(feature = "specialization"))] #[inline] fn from(slice: &'a [A::Item]) -> SmallVec { slice.iter().cloned().collect() } #[cfg(feature = "specialization")] #[inline] fn from(slice: &'a [A::Item]) -> SmallVec { SmallVec::spec_from(slice) } } impl From> for SmallVec { #[inline] fn from(vec: Vec) -> SmallVec { SmallVec::from_vec(vec) } } impl From for SmallVec { #[inline] fn from(array: A) -> SmallVec { SmallVec::from_buf(array) } } impl> ops::Index for SmallVec { type Output = I::Output; fn index(&self, index: I) -> &I::Output { &(**self)[index] } } impl> ops::IndexMut for SmallVec { fn index_mut(&mut self, index: I) -> &mut I::Output { &mut (&mut **self)[index] } } #[allow(deprecated)] impl ExtendFromSlice for SmallVec where A::Item: Copy, { fn extend_from_slice(&mut self, other: &[A::Item]) { SmallVec::extend_from_slice(self, other) } } impl FromIterator for SmallVec { #[inline] fn from_iter>(iterable: I) -> SmallVec { let mut v = SmallVec::new(); v.extend(iterable); v } } impl Extend for SmallVec { fn extend>(&mut self, iterable: I) { let mut iter = iterable.into_iter(); let (lower_size_bound, _) = iter.size_hint(); self.reserve(lower_size_bound); unsafe { let (ptr, len_ptr, cap) = self.triple_mut(); let ptr = ptr.as_ptr(); let mut len = SetLenOnDrop::new(len_ptr); while len.get() < cap { if let Some(out) = iter.next() { ptr::write(ptr.add(len.get()), out); len.increment_len(1); } else { return; } } } for elem in iter { self.push(elem); } } } impl fmt::Debug for SmallVec where A::Item: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.iter()).finish() } } impl Default for SmallVec { #[inline] fn default() -> SmallVec { SmallVec::new() } } #[cfg(feature = "may_dangle")] unsafe impl<#[may_dangle] A: Array> Drop for SmallVec { fn drop(&mut self) { unsafe { if self.spilled() { let (ptr, &mut len) = self.data.heap_mut(); Vec::from_raw_parts(ptr.as_ptr(), len, self.capacity); } else { ptr::drop_in_place(&mut self[..]); } } } } #[cfg(not(feature = "may_dangle"))] impl Drop for SmallVec { fn drop(&mut self) { unsafe { if self.spilled() { let (ptr, &mut len) = self.data.heap_mut(); drop(Vec::from_raw_parts(ptr.as_ptr(), len, self.capacity)); } else { ptr::drop_in_place(&mut self[..]); } } } } impl Clone for SmallVec where A::Item: Clone, { #[inline] fn clone(&self) -> SmallVec { SmallVec::from(self.as_slice()) } fn clone_from(&mut self, source: &Self) { // Inspired from `impl Clone for Vec`. // drop anything that will not be overwritten self.truncate(source.len()); // self.len <= other.len due to the truncate above, so the // slices here are always in-bounds. let (init, tail) = source.split_at(self.len()); // reuse the contained values' allocations/resources. self.clone_from_slice(init); self.extend(tail.iter().cloned()); } } impl PartialEq> for SmallVec where A::Item: PartialEq, { #[inline] fn eq(&self, other: &SmallVec) -> bool { self[..] == other[..] } } impl Eq for SmallVec where A::Item: Eq {} impl PartialOrd for SmallVec where A::Item: PartialOrd, { #[inline] fn partial_cmp(&self, other: &SmallVec) -> Option { PartialOrd::partial_cmp(&**self, &**other) } } impl Ord for SmallVec where A::Item: Ord, { #[inline] fn cmp(&self, other: &SmallVec) -> cmp::Ordering { Ord::cmp(&**self, &**other) } } impl Hash for SmallVec where A::Item: Hash, { fn hash(&self, state: &mut H) { (**self).hash(state) } } unsafe impl Send for SmallVec where A::Item: Send {} /// An iterator that consumes a `SmallVec` and yields its items by value. /// /// Returned from [`SmallVec::into_iter`][1]. /// /// [1]: struct.SmallVec.html#method.into_iter pub struct IntoIter { data: SmallVec, current: usize, end: usize, } impl fmt::Debug for IntoIter where A::Item: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("IntoIter").field(&self.as_slice()).finish() } } impl Clone for IntoIter where A::Item: Clone, { fn clone(&self) -> IntoIter { SmallVec::from(self.as_slice()).into_iter() } } impl Drop for IntoIter { fn drop(&mut self) { for _ in self {} } } impl Iterator for IntoIter { type Item = A::Item; #[inline] fn next(&mut self) -> Option { if self.current == self.end { None } else { unsafe { let current = self.current; self.current += 1; Some(ptr::read(self.data.as_ptr().add(current))) } } } #[inline] fn size_hint(&self) -> (usize, Option) { let size = self.end - self.current; (size, Some(size)) } } impl DoubleEndedIterator for IntoIter { #[inline] fn next_back(&mut self) -> Option { if self.current == self.end { None } else { unsafe { self.end -= 1; Some(ptr::read(self.data.as_ptr().add(self.end))) } } } } impl ExactSizeIterator for IntoIter {} impl FusedIterator for IntoIter {} impl IntoIter { /// Returns the remaining items of this iterator as a slice. pub fn as_slice(&self) -> &[A::Item] { let len = self.end - self.current; unsafe { core::slice::from_raw_parts(self.data.as_ptr().add(self.current), len) } } /// Returns the remaining items of this iterator as a mutable slice. pub fn as_mut_slice(&mut self) -> &mut [A::Item] { let len = self.end - self.current; unsafe { core::slice::from_raw_parts_mut(self.data.as_mut_ptr().add(self.current), len) } } } impl IntoIterator for SmallVec { type IntoIter = IntoIter; type Item = A::Item; fn into_iter(mut self) -> Self::IntoIter { unsafe { // Set SmallVec len to zero as `IntoIter` drop handles dropping of the elements let len = self.len(); self.set_len(0); IntoIter { data: self, current: 0, end: len, } } } } impl<'a, A: Array> IntoIterator for &'a SmallVec { type IntoIter = slice::Iter<'a, A::Item>; type Item = &'a A::Item; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'a, A: Array> IntoIterator for &'a mut SmallVec { type IntoIter = slice::IterMut<'a, A::Item>; type Item = &'a mut A::Item; fn into_iter(self) -> Self::IntoIter { self.iter_mut() } } /// Types that can be used as the backing store for a [`SmallVec`]. pub unsafe trait Array { /// The type of the array's elements. type Item; /// Returns the number of items the array can hold. fn size() -> usize; } /// Set the length of the vec when the `SetLenOnDrop` value goes out of scope. /// /// Copied from struct SetLenOnDrop<'a> { len: &'a mut usize, local_len: usize, } impl<'a> SetLenOnDrop<'a> { #[inline] fn new(len: &'a mut usize) -> Self { SetLenOnDrop { local_len: *len, len, } } #[inline] fn get(&self) -> usize { self.local_len } #[inline] fn increment_len(&mut self, increment: usize) { self.local_len += increment; } } impl<'a> Drop for SetLenOnDrop<'a> { #[inline] fn drop(&mut self) { *self.len = self.local_len; } } #[cfg(feature = "const_new")] impl SmallVec<[T; N]> { /// Construct an empty vector. /// /// This is a `const` version of [`SmallVec::new`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays. #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))] #[inline] pub const fn new_const() -> Self { SmallVec { capacity: 0, data: SmallVecData::from_const(MaybeUninit::uninit()), } } /// The array passed as an argument is moved to be an inline version of `SmallVec`. /// /// This is a `const` version of [`SmallVec::from_buf`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays. #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))] #[inline] pub const fn from_const(items: [T; N]) -> Self { SmallVec { capacity: N, data: SmallVecData::from_const(MaybeUninit::new(items)), } } /// Constructs a new `SmallVec` on the stack from an array without /// copying elements. Also sets the length. The user is responsible /// for ensuring that `len <= N`. /// /// This is a `const` version of [`SmallVec::from_buf_and_len_unchecked`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays. #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))] #[inline] pub const unsafe fn from_const_with_len_unchecked(items: [T; N], len: usize) -> Self { SmallVec { capacity: len, data: SmallVecData::from_const(MaybeUninit::new(items)), } } } #[cfg(feature = "const_generics")] #[cfg_attr(docsrs, doc(cfg(feature = "const_generics")))] unsafe impl Array for [T; N] { type Item = T; #[inline] fn size() -> usize { N } } #[cfg(not(feature = "const_generics"))] macro_rules! impl_array( ($($size:expr),+) => { $( unsafe impl Array for [T; $size] { type Item = T; #[inline] fn size() -> usize { $size } } )+ } ); #[cfg(not(feature = "const_generics"))] impl_array!( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 36, 0x40, 0x60, 0x80, 0x100, 0x200, 0x400, 0x600, 0x800, 0x1000, 0x2000, 0x4000, 0x6000, 0x8000, 0x10000, 0x20000, 0x40000, 0x60000, 0x80000, 0x10_0000 ); /// Convenience trait for constructing a `SmallVec` pub trait ToSmallVec { /// Construct a new `SmallVec` from a slice. fn to_smallvec(&self) -> SmallVec; } impl ToSmallVec for [A::Item] where A::Item: Copy, { #[inline] fn to_smallvec(&self) -> SmallVec { SmallVec::from_slice(self) } } // Immutable counterpart for `NonNull`. #[repr(transparent)] struct ConstNonNull(NonNull); impl ConstNonNull { #[inline] fn new(ptr: *const T) -> Option { NonNull::new(ptr as *mut T).map(Self) } #[inline] fn as_ptr(self) -> *const T { self.0.as_ptr() } } impl Clone for ConstNonNull { #[inline] fn clone(&self) -> Self { *self } } impl Copy for ConstNonNull {} smallvec-1.13.2/src/specialization.rs000064400000000000000000000011431046102023000156700ustar 00000000000000// Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Implementations that require `default fn`. use super::{Array, SmallVec, SpecFrom}; impl<'a, A: Array> SpecFrom for SmallVec where A::Item: Clone, { #[inline] default fn spec_from(slice: &'a [A::Item]) -> SmallVec { slice.into_iter().cloned().collect() } } smallvec-1.13.2/src/tests.rs000064400000000000000000000645131046102023000140260ustar 00000000000000use crate::{smallvec, SmallVec}; use std::iter::FromIterator; use alloc::borrow::ToOwned; use alloc::boxed::Box; use alloc::rc::Rc; use alloc::{vec, vec::Vec}; #[test] pub fn test_zero() { let mut v = SmallVec::<[_; 0]>::new(); assert!(!v.spilled()); v.push(0usize); assert!(v.spilled()); assert_eq!(&*v, &[0]); } // We heap allocate all these strings so that double frees will show up under valgrind. #[test] pub fn test_inline() { let mut v = SmallVec::<[_; 16]>::new(); v.push("hello".to_owned()); v.push("there".to_owned()); assert_eq!(&*v, &["hello".to_owned(), "there".to_owned(),][..]); } #[test] pub fn test_spill() { let mut v = SmallVec::<[_; 2]>::new(); v.push("hello".to_owned()); assert_eq!(v[0], "hello"); v.push("there".to_owned()); v.push("burma".to_owned()); assert_eq!(v[0], "hello"); v.push("shave".to_owned()); assert_eq!( &*v, &[ "hello".to_owned(), "there".to_owned(), "burma".to_owned(), "shave".to_owned(), ][..] ); } #[test] pub fn test_double_spill() { let mut v = SmallVec::<[_; 2]>::new(); v.push("hello".to_owned()); v.push("there".to_owned()); v.push("burma".to_owned()); v.push("shave".to_owned()); v.push("hello".to_owned()); v.push("there".to_owned()); v.push("burma".to_owned()); v.push("shave".to_owned()); assert_eq!( &*v, &[ "hello".to_owned(), "there".to_owned(), "burma".to_owned(), "shave".to_owned(), "hello".to_owned(), "there".to_owned(), "burma".to_owned(), "shave".to_owned(), ][..] ); } // https://github.com/servo/rust-smallvec/issues/4 #[test] fn issue_4() { SmallVec::<[Box; 2]>::new(); } // https://github.com/servo/rust-smallvec/issues/5 #[test] fn issue_5() { assert!(Some(SmallVec::<[&u32; 2]>::new()).is_some()); } #[test] fn test_with_capacity() { let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(1); assert!(v.is_empty()); assert!(!v.spilled()); assert_eq!(v.capacity(), 3); let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(10); assert!(v.is_empty()); assert!(v.spilled()); assert_eq!(v.capacity(), 10); } #[test] fn drain() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(3); assert_eq!(v.drain(..).collect::>(), &[3]); // spilling the vec v.push(3); v.push(4); v.push(5); let old_capacity = v.capacity(); assert_eq!(v.drain(1..).collect::>(), &[4, 5]); // drain should not change the capacity assert_eq!(v.capacity(), old_capacity); // Exercise the tail-shifting code when in the inline state // This has the potential to produce UB due to aliasing let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(1); v.push(2); assert_eq!(v.drain(..1).collect::>(), &[1]); } #[test] fn drain_rev() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(3); assert_eq!(v.drain(..).rev().collect::>(), &[3]); // spilling the vec v.push(3); v.push(4); v.push(5); assert_eq!(v.drain(..).rev().collect::>(), &[5, 4, 3]); } #[test] fn drain_forget() { let mut v: SmallVec<[u8; 1]> = smallvec![0, 1, 2, 3, 4, 5, 6, 7]; std::mem::forget(v.drain(2..5)); assert_eq!(v.len(), 2); } #[test] fn into_iter() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(3); assert_eq!(v.into_iter().collect::>(), &[3]); // spilling the vec let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(3); v.push(4); v.push(5); assert_eq!(v.into_iter().collect::>(), &[3, 4, 5]); } #[test] fn into_iter_rev() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(3); assert_eq!(v.into_iter().rev().collect::>(), &[3]); // spilling the vec let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(3); v.push(4); v.push(5); assert_eq!(v.into_iter().rev().collect::>(), &[5, 4, 3]); } #[test] fn into_iter_drop() { use std::cell::Cell; struct DropCounter<'a>(&'a Cell); impl<'a> Drop for DropCounter<'a> { fn drop(&mut self) { self.0.set(self.0.get() + 1); } } { let cell = Cell::new(0); let mut v: SmallVec<[DropCounter<'_>; 2]> = SmallVec::new(); v.push(DropCounter(&cell)); v.into_iter(); assert_eq!(cell.get(), 1); } { let cell = Cell::new(0); let mut v: SmallVec<[DropCounter<'_>; 2]> = SmallVec::new(); v.push(DropCounter(&cell)); v.push(DropCounter(&cell)); assert!(v.into_iter().next().is_some()); assert_eq!(cell.get(), 2); } { let cell = Cell::new(0); let mut v: SmallVec<[DropCounter<'_>; 2]> = SmallVec::new(); v.push(DropCounter(&cell)); v.push(DropCounter(&cell)); v.push(DropCounter(&cell)); assert!(v.into_iter().next().is_some()); assert_eq!(cell.get(), 3); } { let cell = Cell::new(0); let mut v: SmallVec<[DropCounter<'_>; 2]> = SmallVec::new(); v.push(DropCounter(&cell)); v.push(DropCounter(&cell)); v.push(DropCounter(&cell)); { let mut it = v.into_iter(); assert!(it.next().is_some()); assert!(it.next_back().is_some()); } assert_eq!(cell.get(), 3); } } #[test] fn test_capacity() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.reserve(1); assert_eq!(v.capacity(), 2); assert!(!v.spilled()); v.reserve_exact(0x100); assert!(v.capacity() >= 0x100); v.push(0); v.push(1); v.push(2); v.push(3); v.shrink_to_fit(); assert!(v.capacity() < 0x100); } #[test] fn test_truncate() { let mut v: SmallVec<[Box; 8]> = SmallVec::new(); for x in 0..8 { v.push(Box::new(x)); } v.truncate(4); assert_eq!(v.len(), 4); assert!(!v.spilled()); assert_eq!(*v.swap_remove(1), 1); assert_eq!(*v.remove(1), 3); v.insert(1, Box::new(3)); assert_eq!(&v.iter().map(|v| **v).collect::>(), &[0, 3, 2]); } #[test] fn test_insert_many() { let mut v: SmallVec<[u8; 8]> = SmallVec::new(); for x in 0..4 { v.push(x); } assert_eq!(v.len(), 4); v.insert_many(1, [5, 6].iter().cloned()); assert_eq!( &v.iter().map(|v| *v).collect::>(), &[0, 5, 6, 1, 2, 3] ); } struct MockHintIter { x: T, hint: usize, } impl Iterator for MockHintIter { type Item = T::Item; fn next(&mut self) -> Option { self.x.next() } fn size_hint(&self) -> (usize, Option) { (self.hint, None) } } #[test] fn test_insert_many_short_hint() { let mut v: SmallVec<[u8; 8]> = SmallVec::new(); for x in 0..4 { v.push(x); } assert_eq!(v.len(), 4); v.insert_many( 1, MockHintIter { x: [5, 6].iter().cloned(), hint: 5, }, ); assert_eq!( &v.iter().map(|v| *v).collect::>(), &[0, 5, 6, 1, 2, 3] ); } #[test] fn test_insert_many_long_hint() { let mut v: SmallVec<[u8; 8]> = SmallVec::new(); for x in 0..4 { v.push(x); } assert_eq!(v.len(), 4); v.insert_many( 1, MockHintIter { x: [5, 6].iter().cloned(), hint: 1, }, ); assert_eq!( &v.iter().map(|v| *v).collect::>(), &[0, 5, 6, 1, 2, 3] ); } // https://github.com/servo/rust-smallvec/issues/96 mod insert_many_panic { use crate::{smallvec, SmallVec}; use alloc::boxed::Box; struct PanicOnDoubleDrop { dropped: Box, } impl PanicOnDoubleDrop { fn new() -> Self { Self { dropped: Box::new(false), } } } impl Drop for PanicOnDoubleDrop { fn drop(&mut self) { assert!(!*self.dropped, "already dropped"); *self.dropped = true; } } /// Claims to yield `hint` items, but actually yields `count`, then panics. struct BadIter { hint: usize, count: usize, } impl Iterator for BadIter { type Item = PanicOnDoubleDrop; fn size_hint(&self) -> (usize, Option) { (self.hint, None) } fn next(&mut self) -> Option { if self.count == 0 { panic!() } self.count -= 1; Some(PanicOnDoubleDrop::new()) } } #[test] fn panic_early_at_start() { let mut vec: SmallVec<[PanicOnDoubleDrop; 0]> = smallvec![PanicOnDoubleDrop::new(), PanicOnDoubleDrop::new(),]; let result = ::std::panic::catch_unwind(move || { vec.insert_many(0, BadIter { hint: 1, count: 0 }); }); assert!(result.is_err()); } #[test] fn panic_early_in_middle() { let mut vec: SmallVec<[PanicOnDoubleDrop; 0]> = smallvec![PanicOnDoubleDrop::new(), PanicOnDoubleDrop::new(),]; let result = ::std::panic::catch_unwind(move || { vec.insert_many(1, BadIter { hint: 4, count: 2 }); }); assert!(result.is_err()); } #[test] fn panic_early_at_end() { let mut vec: SmallVec<[PanicOnDoubleDrop; 0]> = smallvec![PanicOnDoubleDrop::new(), PanicOnDoubleDrop::new(),]; let result = ::std::panic::catch_unwind(move || { vec.insert_many(2, BadIter { hint: 3, count: 1 }); }); assert!(result.is_err()); } #[test] fn panic_late_at_start() { let mut vec: SmallVec<[PanicOnDoubleDrop; 0]> = smallvec![PanicOnDoubleDrop::new(), PanicOnDoubleDrop::new(),]; let result = ::std::panic::catch_unwind(move || { vec.insert_many(0, BadIter { hint: 3, count: 5 }); }); assert!(result.is_err()); } #[test] fn panic_late_at_end() { let mut vec: SmallVec<[PanicOnDoubleDrop; 0]> = smallvec![PanicOnDoubleDrop::new(), PanicOnDoubleDrop::new(),]; let result = ::std::panic::catch_unwind(move || { vec.insert_many(2, BadIter { hint: 3, count: 5 }); }); assert!(result.is_err()); } } #[test] #[should_panic] fn test_invalid_grow() { let mut v: SmallVec<[u8; 8]> = SmallVec::new(); v.extend(0..8); v.grow(5); } #[test] #[should_panic] fn drain_overflow() { let mut v: SmallVec<[u8; 8]> = smallvec![0]; v.drain(..=std::usize::MAX); } #[test] fn test_insert_from_slice() { let mut v: SmallVec<[u8; 8]> = SmallVec::new(); for x in 0..4 { v.push(x); } assert_eq!(v.len(), 4); v.insert_from_slice(1, &[5, 6]); assert_eq!( &v.iter().map(|v| *v).collect::>(), &[0, 5, 6, 1, 2, 3] ); } #[test] fn test_extend_from_slice() { let mut v: SmallVec<[u8; 8]> = SmallVec::new(); for x in 0..4 { v.push(x); } assert_eq!(v.len(), 4); v.extend_from_slice(&[5, 6]); assert_eq!( &v.iter().map(|v| *v).collect::>(), &[0, 1, 2, 3, 5, 6] ); } #[test] #[should_panic] fn test_drop_panic_smallvec() { // This test should only panic once, and not double panic, // which would mean a double drop struct DropPanic; impl Drop for DropPanic { fn drop(&mut self) { panic!("drop"); } } let mut v = SmallVec::<[_; 1]>::new(); v.push(DropPanic); } #[test] fn test_eq() { let mut a: SmallVec<[u32; 2]> = SmallVec::new(); let mut b: SmallVec<[u32; 2]> = SmallVec::new(); let mut c: SmallVec<[u32; 2]> = SmallVec::new(); // a = [1, 2] a.push(1); a.push(2); // b = [1, 2] b.push(1); b.push(2); // c = [3, 4] c.push(3); c.push(4); assert!(a == b); assert!(a != c); } #[test] fn test_ord() { let mut a: SmallVec<[u32; 2]> = SmallVec::new(); let mut b: SmallVec<[u32; 2]> = SmallVec::new(); let mut c: SmallVec<[u32; 2]> = SmallVec::new(); // a = [1] a.push(1); // b = [1, 1] b.push(1); b.push(1); // c = [1, 2] c.push(1); c.push(2); assert!(a < b); assert!(b > a); assert!(b < c); assert!(c > b); } #[test] fn test_hash() { use std::collections::hash_map::DefaultHasher; use std::hash::Hash; { let mut a: SmallVec<[u32; 2]> = SmallVec::new(); let b = [1, 2]; a.extend(b.iter().cloned()); let mut hasher = DefaultHasher::new(); assert_eq!(a.hash(&mut hasher), b.hash(&mut hasher)); } { let mut a: SmallVec<[u32; 2]> = SmallVec::new(); let b = [1, 2, 11, 12]; a.extend(b.iter().cloned()); let mut hasher = DefaultHasher::new(); assert_eq!(a.hash(&mut hasher), b.hash(&mut hasher)); } } #[test] fn test_as_ref() { let mut a: SmallVec<[u32; 2]> = SmallVec::new(); a.push(1); assert_eq!(a.as_ref(), [1]); a.push(2); assert_eq!(a.as_ref(), [1, 2]); a.push(3); assert_eq!(a.as_ref(), [1, 2, 3]); } #[test] fn test_as_mut() { let mut a: SmallVec<[u32; 2]> = SmallVec::new(); a.push(1); assert_eq!(a.as_mut(), [1]); a.push(2); assert_eq!(a.as_mut(), [1, 2]); a.push(3); assert_eq!(a.as_mut(), [1, 2, 3]); a.as_mut()[1] = 4; assert_eq!(a.as_mut(), [1, 4, 3]); } #[test] fn test_borrow() { use std::borrow::Borrow; let mut a: SmallVec<[u32; 2]> = SmallVec::new(); a.push(1); assert_eq!(a.borrow(), [1]); a.push(2); assert_eq!(a.borrow(), [1, 2]); a.push(3); assert_eq!(a.borrow(), [1, 2, 3]); } #[test] fn test_borrow_mut() { use std::borrow::BorrowMut; let mut a: SmallVec<[u32; 2]> = SmallVec::new(); a.push(1); assert_eq!(a.borrow_mut(), [1]); a.push(2); assert_eq!(a.borrow_mut(), [1, 2]); a.push(3); assert_eq!(a.borrow_mut(), [1, 2, 3]); BorrowMut::<[u32]>::borrow_mut(&mut a)[1] = 4; assert_eq!(a.borrow_mut(), [1, 4, 3]); } #[test] fn test_from() { assert_eq!(&SmallVec::<[u32; 2]>::from(&[1][..])[..], [1]); assert_eq!(&SmallVec::<[u32; 2]>::from(&[1, 2, 3][..])[..], [1, 2, 3]); let vec = vec![]; let small_vec: SmallVec<[u8; 3]> = SmallVec::from(vec); assert_eq!(&*small_vec, &[]); drop(small_vec); let vec = vec![1, 2, 3, 4, 5]; let small_vec: SmallVec<[u8; 3]> = SmallVec::from(vec); assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); drop(small_vec); let vec = vec![1, 2, 3, 4, 5]; let small_vec: SmallVec<[u8; 1]> = SmallVec::from(vec); assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); drop(small_vec); let array = [1]; let small_vec: SmallVec<[u8; 1]> = SmallVec::from(array); assert_eq!(&*small_vec, &[1]); drop(small_vec); let array = [99; 128]; let small_vec: SmallVec<[u8; 128]> = SmallVec::from(array); assert_eq!(&*small_vec, vec![99u8; 128].as_slice()); drop(small_vec); } #[test] fn test_from_slice() { assert_eq!(&SmallVec::<[u32; 2]>::from_slice(&[1][..])[..], [1]); assert_eq!( &SmallVec::<[u32; 2]>::from_slice(&[1, 2, 3][..])[..], [1, 2, 3] ); } #[test] fn test_exact_size_iterator() { let mut vec = SmallVec::<[u32; 2]>::from(&[1, 2, 3][..]); assert_eq!(vec.clone().into_iter().len(), 3); assert_eq!(vec.drain(..2).len(), 2); assert_eq!(vec.into_iter().len(), 1); } #[test] fn test_into_iter_as_slice() { let vec = SmallVec::<[u32; 2]>::from(&[1, 2, 3][..]); let mut iter = vec.clone().into_iter(); assert_eq!(iter.as_slice(), &[1, 2, 3]); assert_eq!(iter.as_mut_slice(), &[1, 2, 3]); iter.next(); assert_eq!(iter.as_slice(), &[2, 3]); assert_eq!(iter.as_mut_slice(), &[2, 3]); iter.next_back(); assert_eq!(iter.as_slice(), &[2]); assert_eq!(iter.as_mut_slice(), &[2]); } #[test] fn test_into_iter_clone() { // Test that the cloned iterator yields identical elements and that it owns its own copy // (i.e. no use after move errors). let mut iter = SmallVec::<[u8; 2]>::from_iter(0..3).into_iter(); let mut clone_iter = iter.clone(); while let Some(x) = iter.next() { assert_eq!(x, clone_iter.next().unwrap()); } assert_eq!(clone_iter.next(), None); } #[test] fn test_into_iter_clone_partially_consumed_iterator() { // Test that the cloned iterator only contains the remaining elements of the original iterator. let mut iter = SmallVec::<[u8; 2]>::from_iter(0..3).into_iter().skip(1); let mut clone_iter = iter.clone(); while let Some(x) = iter.next() { assert_eq!(x, clone_iter.next().unwrap()); } assert_eq!(clone_iter.next(), None); } #[test] fn test_into_iter_clone_empty_smallvec() { let mut iter = SmallVec::<[u8; 2]>::new().into_iter(); let mut clone_iter = iter.clone(); assert_eq!(iter.next(), None); assert_eq!(clone_iter.next(), None); } #[test] fn shrink_to_fit_unspill() { let mut vec = SmallVec::<[u8; 2]>::from_iter(0..3); vec.pop(); assert!(vec.spilled()); vec.shrink_to_fit(); assert!(!vec.spilled(), "shrink_to_fit will un-spill if possible"); } #[test] fn test_into_vec() { let vec = SmallVec::<[u8; 2]>::from_iter(0..2); assert_eq!(vec.into_vec(), vec![0, 1]); let vec = SmallVec::<[u8; 2]>::from_iter(0..3); assert_eq!(vec.into_vec(), vec![0, 1, 2]); } #[test] fn test_into_inner() { let vec = SmallVec::<[u8; 2]>::from_iter(0..2); assert_eq!(vec.into_inner(), Ok([0, 1])); let vec = SmallVec::<[u8; 2]>::from_iter(0..1); assert_eq!(vec.clone().into_inner(), Err(vec)); let vec = SmallVec::<[u8; 2]>::from_iter(0..3); assert_eq!(vec.clone().into_inner(), Err(vec)); } #[test] fn test_from_vec() { let vec = vec![]; let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[]); drop(small_vec); let vec = vec![]; let small_vec: SmallVec<[u8; 1]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[]); drop(small_vec); let vec = vec![1]; let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[1]); drop(small_vec); let vec = vec![1, 2, 3]; let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[1, 2, 3]); drop(small_vec); let vec = vec![1, 2, 3, 4, 5]; let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); drop(small_vec); let vec = vec![1, 2, 3, 4, 5]; let small_vec: SmallVec<[u8; 1]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); drop(small_vec); } #[test] fn test_retain() { // Test inline data storate let mut sv: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 2, 3, 3, 4]); sv.retain(|&mut i| i != 3); assert_eq!(sv.pop(), Some(4)); assert_eq!(sv.pop(), Some(2)); assert_eq!(sv.pop(), Some(1)); assert_eq!(sv.pop(), None); // Test spilled data storage let mut sv: SmallVec<[i32; 3]> = SmallVec::from_slice(&[1, 2, 3, 3, 4]); sv.retain(|&mut i| i != 3); assert_eq!(sv.pop(), Some(4)); assert_eq!(sv.pop(), Some(2)); assert_eq!(sv.pop(), Some(1)); assert_eq!(sv.pop(), None); // Test that drop implementations are called for inline. let one = Rc::new(1); let mut sv: SmallVec<[Rc; 3]> = SmallVec::new(); sv.push(Rc::clone(&one)); assert_eq!(Rc::strong_count(&one), 2); sv.retain(|_| false); assert_eq!(Rc::strong_count(&one), 1); // Test that drop implementations are called for spilled data. let mut sv: SmallVec<[Rc; 1]> = SmallVec::new(); sv.push(Rc::clone(&one)); sv.push(Rc::new(2)); assert_eq!(Rc::strong_count(&one), 2); sv.retain(|_| false); assert_eq!(Rc::strong_count(&one), 1); } #[test] fn test_dedup() { let mut dupes: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 1, 2, 3, 3]); dupes.dedup(); assert_eq!(&*dupes, &[1, 2, 3]); let mut empty: SmallVec<[i32; 5]> = SmallVec::new(); empty.dedup(); assert!(empty.is_empty()); let mut all_ones: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 1, 1, 1, 1]); all_ones.dedup(); assert_eq!(all_ones.len(), 1); let mut no_dupes: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 2, 3, 4, 5]); no_dupes.dedup(); assert_eq!(no_dupes.len(), 5); } #[test] fn test_resize() { let mut v: SmallVec<[i32; 8]> = SmallVec::new(); v.push(1); v.resize(5, 0); assert_eq!(v[..], [1, 0, 0, 0, 0][..]); v.resize(2, -1); assert_eq!(v[..], [1, 0][..]); } #[cfg(feature = "write")] #[test] fn test_write() { use std::io::Write; let data = [1, 2, 3, 4, 5]; let mut small_vec: SmallVec<[u8; 2]> = SmallVec::new(); let len = small_vec.write(&data[..]).unwrap(); assert_eq!(len, 5); assert_eq!(small_vec.as_ref(), data.as_ref()); let mut small_vec: SmallVec<[u8; 2]> = SmallVec::new(); small_vec.write_all(&data[..]).unwrap(); assert_eq!(small_vec.as_ref(), data.as_ref()); } #[cfg(feature = "serde")] #[test] fn test_serde() { use bincode::{config, deserialize}; let mut small_vec: SmallVec<[i32; 2]> = SmallVec::new(); small_vec.push(1); let encoded = config().limit(100).serialize(&small_vec).unwrap(); let decoded: SmallVec<[i32; 2]> = deserialize(&encoded).unwrap(); assert_eq!(small_vec, decoded); small_vec.push(2); // Spill the vec small_vec.push(3); small_vec.push(4); // Check again after spilling. let encoded = config().limit(100).serialize(&small_vec).unwrap(); let decoded: SmallVec<[i32; 2]> = deserialize(&encoded).unwrap(); assert_eq!(small_vec, decoded); } #[test] fn grow_to_shrink() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(1); v.push(2); v.push(3); assert!(v.spilled()); v.clear(); // Shrink to inline. v.grow(2); assert!(!v.spilled()); assert_eq!(v.capacity(), 2); assert_eq!(v.len(), 0); v.push(4); assert_eq!(v[..], [4]); } #[test] fn resumable_extend() { let s = "a b c"; // This iterator yields: (Some('a'), None, Some('b'), None, Some('c')), None let it = s .chars() .scan(0, |_, ch| if ch.is_whitespace() { None } else { Some(ch) }); let mut v: SmallVec<[char; 4]> = SmallVec::new(); v.extend(it); assert_eq!(v[..], ['a']); } // #139 #[test] fn uninhabited() { enum Void {} let _sv = SmallVec::<[Void; 8]>::new(); } #[test] fn grow_spilled_same_size() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(0); v.push(1); v.push(2); assert!(v.spilled()); assert_eq!(v.capacity(), 4); // grow with the same capacity v.grow(4); assert_eq!(v.capacity(), 4); assert_eq!(v[..], [0, 1, 2]); } #[cfg(feature = "const_generics")] #[test] fn const_generics() { let _v = SmallVec::<[i32; 987]>::default(); } #[cfg(feature = "const_new")] #[test] fn const_new() { let v = const_new_inner(); assert_eq!(v.capacity(), 4); assert_eq!(v.len(), 0); let v = const_new_inline_sized(); assert_eq!(v.capacity(), 4); assert_eq!(v.len(), 4); assert_eq!(v[0], 1); let v = const_new_inline_args(); assert_eq!(v.capacity(), 2); assert_eq!(v.len(), 2); assert_eq!(v[0], 1); assert_eq!(v[1], 4); let v = const_new_with_len(); assert_eq!(v.capacity(), 4); assert_eq!(v.len(), 3); assert_eq!(v[0], 2); assert_eq!(v[1], 5); assert_eq!(v[2], 7); } #[cfg(feature = "const_new")] const fn const_new_inner() -> SmallVec<[i32; 4]> { SmallVec::<[i32; 4]>::new_const() } #[cfg(feature = "const_new")] const fn const_new_inline_sized() -> SmallVec<[i32; 4]> { crate::smallvec_inline![1; 4] } #[cfg(feature = "const_new")] const fn const_new_inline_args() -> SmallVec<[i32; 2]> { crate::smallvec_inline![1, 4] } #[cfg(feature = "const_new")] const fn const_new_with_len() -> SmallVec<[i32; 4]> { unsafe { SmallVec::<[i32; 4]>::from_const_with_len_unchecked([2, 5, 7, 0], 3) } } #[test] fn empty_macro() { let _v: SmallVec<[u8; 1]> = smallvec![]; } #[test] fn zero_size_items() { SmallVec::<[(); 0]>::new().push(()); } #[test] fn test_insert_many_overflow() { let mut v: SmallVec<[u8; 1]> = SmallVec::new(); v.push(123); // Prepare an iterator with small lower bound let iter = (0u8..5).filter(|n| n % 2 == 0); assert_eq!(iter.size_hint().0, 0); v.insert_many(0, iter); assert_eq!(&*v, &[0, 2, 4, 123]); } #[test] fn test_clone_from() { let mut a: SmallVec<[u8; 2]> = SmallVec::new(); a.push(1); a.push(2); a.push(3); let mut b: SmallVec<[u8; 2]> = SmallVec::new(); b.push(10); let mut c: SmallVec<[u8; 2]> = SmallVec::new(); c.push(20); c.push(21); c.push(22); a.clone_from(&b); assert_eq!(&*a, &[10]); b.clone_from(&c); assert_eq!(&*b, &[20, 21, 22]); } #[test] fn test_size() { use core::mem::size_of; assert_eq!(24, size_of::>()); } #[cfg(feature = "drain_filter")] #[test] fn drain_filter() { let mut a: SmallVec<[u8; 2]> = smallvec![1u8, 2, 3, 4, 5, 6, 7, 8]; let b: SmallVec<[u8; 2]> = a.drain_filter(|x| *x % 3 == 0).collect(); assert_eq!(a, SmallVec::<[u8; 2]>::from_slice(&[1u8, 2, 4, 5, 7, 8])); assert_eq!(b, SmallVec::<[u8; 2]>::from_slice(&[3u8, 6])); } #[cfg(feature = "drain_keep_rest")] #[test] fn drain_keep_rest() { let mut a: SmallVec<[i32; 3]> = smallvec![1i32, 2, 3, 4, 5, 6, 7, 8]; let mut df = a.drain_filter(|x| *x % 2 == 0); assert_eq!(df.next().unwrap(), 2); assert_eq!(df.next().unwrap(), 4); df.keep_rest(); assert_eq!(a, SmallVec::<[i32; 3]>::from_slice(&[1i32, 3, 5, 6, 7, 8])); } /// This assortment of tests, in combination with miri, verifies we handle UB on fishy arguments /// given to SmallVec. Draining and extending the allocation are fairly well-tested earlier, but /// `smallvec.insert(usize::MAX, val)` once slipped by! /// /// All code that indexes into SmallVecs should be tested with such "trivially wrong" args. #[test] fn max_dont_panic() { let mut sv: SmallVec<[i32; 2]> = smallvec![0]; let _ = sv.get(usize::MAX); sv.truncate(usize::MAX); } #[test] #[should_panic] fn max_remove() { let mut sv: SmallVec<[i32; 2]> = smallvec![0]; sv.remove(usize::MAX); } #[test] #[should_panic] fn max_swap_remove() { let mut sv: SmallVec<[i32; 2]> = smallvec![0]; sv.swap_remove(usize::MAX); } #[test] #[should_panic] fn test_insert_out_of_bounds() { let mut v: SmallVec<[i32; 4]> = SmallVec::new(); v.insert(10, 6); } smallvec-1.13.2/tests/debugger_visualizer.rs000064400000000000000000000035401046102023000172710ustar 00000000000000use debugger_test::debugger_test; use smallvec::{smallvec, SmallVec}; #[inline(never)] fn __break() {} #[debugger_test( debugger = "cdb", commands = r#" .nvlist dx sv g dx sv g dx sv "#, expected_statements = r#" sv : { len=0x2 is_inline=true } [Type: smallvec::SmallVec >] [] [Type: smallvec::SmallVec >] [capacity] : 4 [len] : 0x2 [Type: unsigned __int64] [0] : 1 [Type: int] [1] : 2 [Type: int] sv : { len=0x5 is_inline=false } [Type: smallvec::SmallVec >] [] [Type: smallvec::SmallVec >] [capacity] : 0x8 [Type: unsigned __int64] [len] : 0x5 [Type: unsigned __int64] [0] : 5 [Type: int] [1] : 2 [Type: int] [2] : 3 [Type: int] [3] : 4 [Type: int] [4] : 5 [Type: int] sv : { len=0x5 is_inline=false } [Type: smallvec::SmallVec >] [] [Type: smallvec::SmallVec >] [capacity] : 0x8 [Type: unsigned __int64] [len] : 0x5 [Type: unsigned __int64] [0] : 2 [Type: int] [1] : 3 [Type: int] [2] : 4 [Type: int] [3] : 5 [Type: int] [4] : 5 [Type: int] "# )] #[inline(never)] fn test_debugger_visualizer() { // This SmallVec can hold up to 4 items on the stack: let mut sv: SmallVec<[i32; 4]> = smallvec![1, 2]; __break(); // Overfill the SmallVec to move its contents to the heap for i in 3..6 { sv.push(i); } // Update the contents of the first value of the SmallVec. sv[0] = sv[1] + sv[2]; __break(); // Sort the SmallVec in place. sv.sort(); __break(); } smallvec-1.13.2/tests/macro.rs000064400000000000000000000010361046102023000143270ustar 00000000000000/// This file tests `smallvec!` without actually having the macro in scope. /// This forces any recursion to use a `$crate` prefix to reliably find itself. #[test] fn smallvec() { let mut vec: smallvec::SmallVec<[i32; 2]>; macro_rules! check { ($init:tt) => { vec = smallvec::smallvec! $init; assert_eq!(*vec, *vec! $init); } } check!([0; 0]); check!([1; 1]); check!([2; 2]); check!([3; 3]); check!([]); check!([1]); check!([1, 2]); check!([1, 2, 3]); }