smallvec-1.7.0/.cargo_vcs_info.json0000644000000001120000000000100126410ustar { "git": { "sha1": "58edc0e53876c35d160acf99a60de8a564eeec2b" } } smallvec-1.7.0/.gitignore000064400000000000000000000000460072674642500134570ustar 00000000000000target /Cargo.lock /fuzz/hfuzz_target smallvec-1.7.0/.travis.yml000064400000000000000000000016630072674642500136060ustar 00000000000000language: rust addons: apt: update: true packages: - binutils-dev - libunwind8-dev - libcurl4-openssl-dev - libelf-dev - libdw-dev - cmake - gcc - libiberty-dev matrix: include: - rust: 1.36.0 - rust: nightly - rust: beta env: DO_FUZZ=true - rust: stable env: DO_FUZZ=true script: | cargo build --verbose && cargo test --verbose && cargo test --verbose --features serde && ([ $TRAVIS_RUST_VERSION != nightly ] || cargo check --verbose --no-default-features) && ([ $TRAVIS_RUST_VERSION != beta ] || cargo test --verbose --features union) && ([ $TRAVIS_RUST_VERSION != nightly ] || cargo test --verbose --all-features) && ([ $TRAVIS_RUST_VERSION != nightly ] || cargo bench --verbose bench) && ([ $TRAVIS_RUST_VERSION != nightly ] || bash ./scripts/run_miri.sh) && if [ "$DO_FUZZ" = true ] then ( cd fuzz ./travis-fuzz.sh ) fi smallvec-1.7.0/Cargo.toml0000644000000023130000000000100106440ustar # THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies. # # If you are reading this file be aware that the original Cargo.toml # will likely look very different (and much more reasonable). # See Cargo.toml.orig for the original contents. [package] edition = "2018" name = "smallvec" version = "1.7.0" authors = ["The Servo Project Developers"] description = "'Small vector' optimization: store up to a small number of items on the stack" documentation = "https://docs.rs/smallvec/" readme = "README.md" keywords = ["small", "vec", "vector", "stack", "no_std"] categories = ["data-structures"] license = "MIT/Apache-2.0" repository = "https://github.com/servo/rust-smallvec" [package.metadata.docs.rs] all-features = true rustdoc-args = ["--cfg", "docsrs"] [dependencies.serde] version = "1" optional = true default-features = false [dev-dependencies.bincode] version = "1.0.1" [features] const_generics = [] const_new = ["const_generics"] may_dangle = [] specialization = [] union = [] write = [] smallvec-1.7.0/Cargo.toml.orig000064400000000000000000000013730072674642500143620ustar 00000000000000[package] name = "smallvec" version = "1.7.0" edition = "2018" authors = ["The Servo Project Developers"] license = "MIT/Apache-2.0" repository = "https://github.com/servo/rust-smallvec" description = "'Small vector' optimization: store up to a small number of items on the stack" keywords = ["small", "vec", "vector", "stack", "no_std"] categories = ["data-structures"] readme = "README.md" documentation = "https://docs.rs/smallvec/" [features] const_generics = [] const_new = ["const_generics"] write = [] union = [] specialization = [] may_dangle = [] [dependencies] serde = { version = "1", optional = true, default-features = false } [dev_dependencies] bincode = "1.0.1" [package.metadata.docs.rs] all-features = true rustdoc-args = ["--cfg", "docsrs"] smallvec-1.7.0/LICENSE-APACHE000064400000000000000000000251370072674642500134230ustar 00000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. smallvec-1.7.0/LICENSE-MIT000064400000000000000000000020600072674642500131210ustar 00000000000000Copyright (c) 2018 The Servo Project Developers Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. smallvec-1.7.0/README.md000064400000000000000000000012110072674642500127410ustar 00000000000000rust-smallvec ============= [Documentation](https://docs.rs/smallvec/) [Release notes](https://github.com/servo/rust-smallvec/releases) "Small vector" optimization for Rust: store up to a small number of items on the stack ## Example ```rust use smallvec::{SmallVec, smallvec}; // This SmallVec can hold up to 4 items on the stack: let mut v: SmallVec<[i32; 4]> = smallvec![1, 2, 3, 4]; // It will automatically move its contents to the heap if // contains more than four items: v.push(5); // SmallVec points to a slice, so you can use normal slice // indexing and other methods to access its contents: v[0] = v[1] + v[2]; v.sort(); ``` smallvec-1.7.0/benches/bench.rs000064400000000000000000000175760072674642500145430ustar 00000000000000#![feature(test)] #![allow(deprecated)] #[macro_use] extern crate smallvec; extern crate test; use self::test::Bencher; use smallvec::{ExtendFromSlice, SmallVec}; const VEC_SIZE: usize = 16; const SPILLED_SIZE: usize = 100; trait Vector: for<'a> From<&'a [T]> + Extend + ExtendFromSlice { fn new() -> Self; fn push(&mut self, val: T); fn pop(&mut self) -> Option; fn remove(&mut self, p: usize) -> T; fn insert(&mut self, n: usize, val: T); fn from_elem(val: T, n: usize) -> Self; fn from_elems(val: &[T]) -> Self; } impl Vector for Vec { fn new() -> Self { Self::with_capacity(VEC_SIZE) } fn push(&mut self, val: T) { self.push(val) } fn pop(&mut self) -> Option { self.pop() } fn remove(&mut self, p: usize) -> T { self.remove(p) } fn insert(&mut self, n: usize, val: T) { self.insert(n, val) } fn from_elem(val: T, n: usize) -> Self { vec![val; n] } fn from_elems(val: &[T]) -> Self { val.to_owned() } } impl Vector for SmallVec<[T; VEC_SIZE]> { fn new() -> Self { Self::new() } fn push(&mut self, val: T) { self.push(val) } fn pop(&mut self) -> Option { self.pop() } fn remove(&mut self, p: usize) -> T { self.remove(p) } fn insert(&mut self, n: usize, val: T) { self.insert(n, val) } fn from_elem(val: T, n: usize) -> Self { smallvec![val; n] } fn from_elems(val: &[T]) -> Self { SmallVec::from_slice(val) } } macro_rules! make_benches { ($typ:ty { $($b_name:ident => $g_name:ident($($args:expr),*),)* }) => { $( #[bench] fn $b_name(b: &mut Bencher) { $g_name::<$typ>($($args,)* b) } )* } } make_benches! { SmallVec<[u64; VEC_SIZE]> { bench_push => gen_push(SPILLED_SIZE as _), bench_push_small => gen_push(VEC_SIZE as _), bench_insert => gen_insert(SPILLED_SIZE as _), bench_insert_small => gen_insert(VEC_SIZE as _), bench_remove => gen_remove(SPILLED_SIZE as _), bench_remove_small => gen_remove(VEC_SIZE as _), bench_extend => gen_extend(SPILLED_SIZE as _), bench_extend_small => gen_extend(VEC_SIZE as _), bench_from_iter => gen_from_iter(SPILLED_SIZE as _), bench_from_iter_small => gen_from_iter(VEC_SIZE as _), bench_from_slice => gen_from_slice(SPILLED_SIZE as _), bench_from_slice_small => gen_from_slice(VEC_SIZE as _), bench_extend_from_slice => gen_extend_from_slice(SPILLED_SIZE as _), bench_extend_from_slice_small => gen_extend_from_slice(VEC_SIZE as _), bench_macro_from_elem => gen_from_elem(SPILLED_SIZE as _), bench_macro_from_elem_small => gen_from_elem(VEC_SIZE as _), bench_pushpop => gen_pushpop(), } } make_benches! { Vec { bench_push_vec => gen_push(SPILLED_SIZE as _), bench_push_vec_small => gen_push(VEC_SIZE as _), bench_insert_vec => gen_insert(SPILLED_SIZE as _), bench_insert_vec_small => gen_insert(VEC_SIZE as _), bench_remove_vec => gen_remove(SPILLED_SIZE as _), bench_remove_vec_small => gen_remove(VEC_SIZE as _), bench_extend_vec => gen_extend(SPILLED_SIZE as _), bench_extend_vec_small => gen_extend(VEC_SIZE as _), bench_from_iter_vec => gen_from_iter(SPILLED_SIZE as _), bench_from_iter_vec_small => gen_from_iter(VEC_SIZE as _), bench_from_slice_vec => gen_from_slice(SPILLED_SIZE as _), bench_from_slice_vec_small => gen_from_slice(VEC_SIZE as _), bench_extend_from_slice_vec => gen_extend_from_slice(SPILLED_SIZE as _), bench_extend_from_slice_vec_small => gen_extend_from_slice(VEC_SIZE as _), bench_macro_from_elem_vec => gen_from_elem(SPILLED_SIZE as _), bench_macro_from_elem_vec_small => gen_from_elem(VEC_SIZE as _), bench_pushpop_vec => gen_pushpop(), } } fn gen_push>(n: u64, b: &mut Bencher) { #[inline(never)] fn push_noinline>(vec: &mut V, x: u64) { vec.push(x); } b.iter(|| { let mut vec = V::new(); for x in 0..n { push_noinline(&mut vec, x); } vec }); } fn gen_insert>(n: u64, b: &mut Bencher) { #[inline(never)] fn insert_noinline>(vec: &mut V, p: usize, x: u64) { vec.insert(p, x) } b.iter(|| { let mut vec = V::new(); // Add one element, with each iteration we insert one before the end. // This means that we benchmark the insertion operation and not the // time it takes to `ptr::copy` the data. vec.push(0); for x in 0..n { insert_noinline(&mut vec, x as _, x); } vec }); } fn gen_remove>(n: usize, b: &mut Bencher) { #[inline(never)] fn remove_noinline>(vec: &mut V, p: usize) -> u64 { vec.remove(p) } b.iter(|| { let mut vec = V::from_elem(0, n as _); for x in (0..n - 1).rev() { remove_noinline(&mut vec, x); } }); } fn gen_extend>(n: u64, b: &mut Bencher) { b.iter(|| { let mut vec = V::new(); vec.extend(0..n); vec }); } fn gen_from_iter>(n: u64, b: &mut Bencher) { let v: Vec = (0..n).collect(); b.iter(|| { let vec = V::from(&v); vec }); } fn gen_from_slice>(n: u64, b: &mut Bencher) { let v: Vec = (0..n).collect(); b.iter(|| { let vec = V::from_elems(&v); vec }); } fn gen_extend_from_slice>(n: u64, b: &mut Bencher) { let v: Vec = (0..n).collect(); b.iter(|| { let mut vec = V::new(); vec.extend_from_slice(&v); vec }); } fn gen_pushpop>(b: &mut Bencher) { #[inline(never)] fn pushpop_noinline>(vec: &mut V, x: u64) -> Option { vec.push(x); vec.pop() } b.iter(|| { let mut vec = V::new(); for x in 0..SPILLED_SIZE as _ { pushpop_noinline(&mut vec, x); } vec }); } fn gen_from_elem>(n: usize, b: &mut Bencher) { b.iter(|| { let vec = V::from_elem(42, n); vec }); } #[bench] fn bench_insert_many(b: &mut Bencher) { #[inline(never)] fn insert_many_noinline>( vec: &mut SmallVec<[u64; VEC_SIZE]>, index: usize, iterable: I, ) { vec.insert_many(index, iterable) } b.iter(|| { let mut vec = SmallVec::<[u64; VEC_SIZE]>::new(); insert_many_noinline(&mut vec, 0, 0..SPILLED_SIZE as _); insert_many_noinline(&mut vec, 0, 0..SPILLED_SIZE as _); vec }); } #[bench] fn bench_insert_from_slice(b: &mut Bencher) { let v: Vec = (0..SPILLED_SIZE as _).collect(); b.iter(|| { let mut vec = SmallVec::<[u64; VEC_SIZE]>::new(); vec.insert_from_slice(0, &v); vec.insert_from_slice(0, &v); vec }); } #[bench] fn bench_macro_from_list(b: &mut Bencher) { b.iter(|| { let vec: SmallVec<[u64; 16]> = smallvec![ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 32, 36, 0x40, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000, 0x20000, 0x40000, 0x80000, 0x100000, ]; vec }); } #[bench] fn bench_macro_from_list_vec(b: &mut Bencher) { b.iter(|| { let vec: Vec = vec![ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 32, 36, 0x40, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000, 0x20000, 0x40000, 0x80000, 0x100000, ]; vec }); } smallvec-1.7.0/scripts/run_miri.sh000064400000000000000000000012470072674642500153420ustar 00000000000000#!/usr/bin/bash set -ex # Clean out our target dir, which may have artifacts compiled by a version of # rust different from the one we're about to download. cargo clean # Install and run the latest version of nightly where miri built successfully. # Taken from: https://github.com/rust-lang/miri#running-miri-on-ci MIRI_NIGHTLY=nightly-$(curl -s https://rust-lang.github.io/rustup-components-history/x86_64-unknown-linux-gnu/miri) echo "Installing latest nightly with Miri: $MIRI_NIGHTLY" rustup default "$MIRI_NIGHTLY" rustup component add miri cargo miri setup cargo miri test --verbose cargo miri test --verbose --features union cargo miri test --verbose --all-features smallvec-1.7.0/src/lib.rs000064400000000000000000001770250072674642500134060ustar 00000000000000// Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Small vectors in various sizes. These store a certain number of elements inline, and fall back //! to the heap for larger allocations. This can be a useful optimization for improving cache //! locality and reducing allocator traffic for workloads that fit within the inline buffer. //! //! ## `no_std` support //! //! By default, `smallvec` does not depend on `std`. However, the optional //! `write` feature implements the `std::io::Write` trait for vectors of `u8`. //! When this feature is enabled, `smallvec` depends on `std`. //! //! ## Optional features //! //! ### `serde` //! //! When this optional dependency is enabled, `SmallVec` implements the `serde::Serialize` and //! `serde::Deserialize` traits. //! //! ### `write` //! //! When this feature is enabled, `SmallVec<[u8; _]>` implements the `std::io::Write` trait. //! This feature is not compatible with `#![no_std]` programs. //! //! ### `union` //! //! **This feature requires Rust 1.49.** //! //! When the `union` feature is enabled `smallvec` will track its state (inline or spilled) //! without the use of an enum tag, reducing the size of the `smallvec` by one machine word. //! This means that there is potentially no space overhead compared to `Vec`. //! Note that `smallvec` can still be larger than `Vec` if the inline buffer is larger than two //! machine words. //! //! To use this feature add `features = ["union"]` in the `smallvec` section of Cargo.toml. //! Note that this feature requires Rust 1.49. //! //! Tracking issue: [rust-lang/rust#55149](https://github.com/rust-lang/rust/issues/55149) //! //! ### `const_generics` //! //! **This feature requires Rust 1.51.** //! //! When this feature is enabled, `SmallVec` works with any arrays of any size, not just a fixed //! list of sizes. //! //! ### `const_new` //! //! **This feature requires Rust 1.51.** //! //! This feature exposes the functions [`SmallVec::new_const`], [`SmallVec::from_const`], and [`smallvec_inline`] which enables the `SmallVec` to be initialized from a const context. //! For details, see the //! [Rust Reference](https://doc.rust-lang.org/reference/const_eval.html#const-functions). //! //! ### `specialization` //! //! **This feature is unstable and requires a nightly build of the Rust toolchain.** //! //! When this feature is enabled, `SmallVec::from(slice)` has improved performance for slices //! of `Copy` types. (Without this feature, you can use `SmallVec::from_slice` to get optimal //! performance for `Copy` types.) //! //! Tracking issue: [rust-lang/rust#31844](https://github.com/rust-lang/rust/issues/31844) //! //! ### `may_dangle` //! //! **This feature is unstable and requires a nightly build of the Rust toolchain.** //! //! This feature makes the Rust compiler less strict about use of vectors that contain borrowed //! references. For details, see the //! [Rustonomicon](https://doc.rust-lang.org/1.42.0/nomicon/dropck.html#an-escape-hatch). //! //! Tracking issue: [rust-lang/rust#34761](https://github.com/rust-lang/rust/issues/34761) #![no_std] #![cfg_attr(docsrs, feature(doc_cfg))] #![cfg_attr(feature = "specialization", allow(incomplete_features))] #![cfg_attr(feature = "specialization", feature(specialization))] #![cfg_attr(feature = "may_dangle", feature(dropck_eyepatch))] #![deny(missing_docs)] #[doc(hidden)] pub extern crate alloc; #[cfg(any(test, feature = "write"))] extern crate std; #[cfg(test)] mod tests; #[allow(deprecated)] use alloc::alloc::{Layout, LayoutErr}; use alloc::boxed::Box; use alloc::{vec, vec::Vec}; use core::borrow::{Borrow, BorrowMut}; use core::cmp; use core::fmt; use core::hash::{Hash, Hasher}; use core::hint::unreachable_unchecked; use core::iter::{repeat, FromIterator, FusedIterator, IntoIterator}; use core::mem; use core::mem::MaybeUninit; use core::ops::{self, Range, RangeBounds}; use core::ptr::{self, NonNull}; use core::slice::{self, SliceIndex}; #[cfg(feature = "serde")] use serde::{ de::{Deserialize, Deserializer, SeqAccess, Visitor}, ser::{Serialize, SerializeSeq, Serializer}, }; #[cfg(feature = "serde")] use core::marker::PhantomData; #[cfg(feature = "write")] use std::io; /// Creates a [`SmallVec`] containing the arguments. /// /// `smallvec!` allows `SmallVec`s to be defined with the same syntax as array expressions. /// There are two forms of this macro: /// /// - Create a [`SmallVec`] containing a given list of elements: /// /// ``` /// # #[macro_use] extern crate smallvec; /// # use smallvec::SmallVec; /// # fn main() { /// let v: SmallVec<[_; 128]> = smallvec![1, 2, 3]; /// assert_eq!(v[0], 1); /// assert_eq!(v[1], 2); /// assert_eq!(v[2], 3); /// # } /// ``` /// /// - Create a [`SmallVec`] from a given element and size: /// /// ``` /// # #[macro_use] extern crate smallvec; /// # use smallvec::SmallVec; /// # fn main() { /// let v: SmallVec<[_; 0x8000]> = smallvec![1; 3]; /// assert_eq!(v, SmallVec::from_buf([1, 1, 1])); /// # } /// ``` /// /// Note that unlike array expressions this syntax supports all elements /// which implement [`Clone`] and the number of elements doesn't have to be /// a constant. /// /// This will use `clone` to duplicate an expression, so one should be careful /// using this with types having a nonstandard `Clone` implementation. For /// example, `smallvec![Rc::new(1); 5]` will create a vector of five references /// to the same boxed integer value, not five references pointing to independently /// boxed integers. #[macro_export] macro_rules! smallvec { // count helper: transform any expression into 1 (@one $x:expr) => (1usize); ($elem:expr; $n:expr) => ({ $crate::SmallVec::from_elem($elem, $n) }); ($($x:expr),*$(,)*) => ({ let count = 0usize $(+ $crate::smallvec!(@one $x))*; #[allow(unused_mut)] let mut vec = $crate::SmallVec::new(); if count <= vec.inline_size() { $(vec.push($x);)* vec } else { $crate::SmallVec::from_vec($crate::alloc::vec![$($x,)*]) } }); } /// Creates an inline [`SmallVec`] containing the arguments. This macro is enabled by the feature `const_new`. /// /// `smallvec_inline!` allows `SmallVec`s to be defined with the same syntax as array expressions in `const` contexts. /// The inline storage `A` will always be an array of the size specified by the arguments. /// There are two forms of this macro: /// /// - Create a [`SmallVec`] containing a given list of elements: /// /// ``` /// # #[macro_use] extern crate smallvec; /// # use smallvec::SmallVec; /// # fn main() { /// const V: SmallVec<[i32; 3]> = smallvec_inline![1, 2, 3]; /// assert_eq!(V[0], 1); /// assert_eq!(V[1], 2); /// assert_eq!(V[2], 3); /// # } /// ``` /// /// - Create a [`SmallVec`] from a given element and size: /// /// ``` /// # #[macro_use] extern crate smallvec; /// # use smallvec::SmallVec; /// # fn main() { /// const V: SmallVec<[i32; 3]> = smallvec_inline![1; 3]; /// assert_eq!(V, SmallVec::from_buf([1, 1, 1])); /// # } /// ``` /// /// Note that the behavior mimics that of array expressions, in contrast to [`smallvec`]. #[cfg(feature = "const_new")] #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))] #[macro_export] macro_rules! smallvec_inline { // count helper: transform any expression into 1 (@one $x:expr) => (1usize); ($elem:expr; $n:expr) => ({ $crate::SmallVec::<[_; $n]>::from_const([$elem; $n]) }); ($($x:expr),+ $(,)?) => ({ const N: usize = 0usize $(+ $crate::smallvec_inline!(@one $x))*; $crate::SmallVec::<[_; N]>::from_const([$($x,)*]) }); } /// `panic!()` in debug builds, optimization hint in release. #[cfg(not(feature = "union"))] macro_rules! debug_unreachable { () => { debug_unreachable!("entered unreachable code") }; ($e:expr) => { if cfg!(not(debug_assertions)) { unreachable_unchecked(); } else { panic!($e); } }; } /// Trait to be implemented by a collection that can be extended from a slice /// /// ## Example /// /// ```rust /// use smallvec::{ExtendFromSlice, SmallVec}; /// /// fn initialize>(v: &mut V) { /// v.extend_from_slice(b"Test!"); /// } /// /// let mut vec = Vec::new(); /// initialize(&mut vec); /// assert_eq!(&vec, b"Test!"); /// /// let mut small_vec = SmallVec::<[u8; 8]>::new(); /// initialize(&mut small_vec); /// assert_eq!(&small_vec as &[_], b"Test!"); /// ``` #[doc(hidden)] #[deprecated] pub trait ExtendFromSlice { /// Extends a collection from a slice of its element type fn extend_from_slice(&mut self, other: &[T]); } #[allow(deprecated)] impl ExtendFromSlice for Vec { fn extend_from_slice(&mut self, other: &[T]) { Vec::extend_from_slice(self, other) } } /// Error type for APIs with fallible heap allocation #[derive(Debug)] pub enum CollectionAllocErr { /// Overflow `usize::MAX` or other error during size computation CapacityOverflow, /// The allocator return an error AllocErr { /// The layout that was passed to the allocator layout: Layout, }, } impl fmt::Display for CollectionAllocErr { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "Allocation error: {:?}", self) } } #[allow(deprecated)] impl From for CollectionAllocErr { fn from(_: LayoutErr) -> Self { CollectionAllocErr::CapacityOverflow } } fn infallible(result: Result) -> T { match result { Ok(x) => x, Err(CollectionAllocErr::CapacityOverflow) => panic!("capacity overflow"), Err(CollectionAllocErr::AllocErr { layout }) => alloc::alloc::handle_alloc_error(layout), } } /// FIXME: use `Layout::array` when we require a Rust version where it’s stable /// https://github.com/rust-lang/rust/issues/55724 fn layout_array(n: usize) -> Result { let size = mem::size_of::() .checked_mul(n) .ok_or(CollectionAllocErr::CapacityOverflow)?; let align = mem::align_of::(); Layout::from_size_align(size, align).map_err(|_| CollectionAllocErr::CapacityOverflow) } unsafe fn deallocate(ptr: *mut T, capacity: usize) { // This unwrap should succeed since the same did when allocating. let layout = layout_array::(capacity).unwrap(); alloc::alloc::dealloc(ptr as *mut u8, layout) } /// An iterator that removes the items from a `SmallVec` and yields them by value. /// /// Returned from [`SmallVec::drain`][1]. /// /// [1]: struct.SmallVec.html#method.drain pub struct Drain<'a, T: 'a + Array> { tail_start: usize, tail_len: usize, iter: slice::Iter<'a, T::Item>, vec: NonNull>, } impl<'a, T: 'a + Array> fmt::Debug for Drain<'a, T> where T::Item: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("Drain").field(&self.iter.as_slice()).finish() } } unsafe impl<'a, T: Sync + Array> Sync for Drain<'a, T> {} unsafe impl<'a, T: Send + Array> Send for Drain<'a, T> {} impl<'a, T: 'a + Array> Iterator for Drain<'a, T> { type Item = T::Item; #[inline] fn next(&mut self) -> Option { self.iter .next() .map(|reference| unsafe { ptr::read(reference) }) } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a, T: 'a + Array> DoubleEndedIterator for Drain<'a, T> { #[inline] fn next_back(&mut self) -> Option { self.iter .next_back() .map(|reference| unsafe { ptr::read(reference) }) } } impl<'a, T: Array> ExactSizeIterator for Drain<'a, T> { #[inline] fn len(&self) -> usize { self.iter.len() } } impl<'a, T: Array> FusedIterator for Drain<'a, T> {} impl<'a, T: 'a + Array> Drop for Drain<'a, T> { fn drop(&mut self) { self.for_each(drop); if self.tail_len > 0 { unsafe { let source_vec = self.vec.as_mut(); // memmove back untouched tail, update to new length let start = source_vec.len(); let tail = self.tail_start; if tail != start { let src = source_vec.as_ptr().add(tail); let dst = source_vec.as_mut_ptr().add(start); ptr::copy(src, dst, self.tail_len); } source_vec.set_len(start + self.tail_len); } } } } #[cfg(feature = "union")] union SmallVecData { inline: core::mem::ManuallyDrop>, heap: (*mut A::Item, usize), } #[cfg(all(feature = "union", feature = "const_new"))] impl SmallVecData<[T; N]> { #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))] #[inline] const fn from_const(inline: MaybeUninit<[T; N]>) -> Self { SmallVecData { inline: core::mem::ManuallyDrop::new(inline), } } } #[cfg(feature = "union")] impl SmallVecData { #[inline] unsafe fn inline(&self) -> *const A::Item { self.inline.as_ptr() as *const A::Item } #[inline] unsafe fn inline_mut(&mut self) -> *mut A::Item { self.inline.as_mut_ptr() as *mut A::Item } #[inline] fn from_inline(inline: MaybeUninit) -> SmallVecData { SmallVecData { inline: core::mem::ManuallyDrop::new(inline), } } #[inline] unsafe fn into_inline(self) -> MaybeUninit { core::mem::ManuallyDrop::into_inner(self.inline) } #[inline] unsafe fn heap(&self) -> (*mut A::Item, usize) { self.heap } #[inline] unsafe fn heap_mut(&mut self) -> &mut (*mut A::Item, usize) { &mut self.heap } #[inline] fn from_heap(ptr: *mut A::Item, len: usize) -> SmallVecData { SmallVecData { heap: (ptr, len) } } } #[cfg(not(feature = "union"))] enum SmallVecData { Inline(MaybeUninit), Heap((*mut A::Item, usize)), } #[cfg(all(not(feature = "union"), feature = "const_new"))] impl SmallVecData<[T; N]> { #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))] #[inline] const fn from_const(inline: MaybeUninit<[T; N]>) -> Self { SmallVecData::Inline(inline) } } #[cfg(not(feature = "union"))] impl SmallVecData { #[inline] unsafe fn inline(&self) -> *const A::Item { match self { SmallVecData::Inline(a) => a.as_ptr() as *const A::Item, _ => debug_unreachable!(), } } #[inline] unsafe fn inline_mut(&mut self) -> *mut A::Item { match self { SmallVecData::Inline(a) => a.as_mut_ptr() as *mut A::Item, _ => debug_unreachable!(), } } #[inline] fn from_inline(inline: MaybeUninit) -> SmallVecData { SmallVecData::Inline(inline) } #[inline] unsafe fn into_inline(self) -> MaybeUninit { match self { SmallVecData::Inline(a) => a, _ => debug_unreachable!(), } } #[inline] unsafe fn heap(&self) -> (*mut A::Item, usize) { match self { SmallVecData::Heap(data) => *data, _ => debug_unreachable!(), } } #[inline] unsafe fn heap_mut(&mut self) -> &mut (*mut A::Item, usize) { match self { SmallVecData::Heap(data) => data, _ => debug_unreachable!(), } } #[inline] fn from_heap(ptr: *mut A::Item, len: usize) -> SmallVecData { SmallVecData::Heap((ptr, len)) } } unsafe impl Send for SmallVecData {} unsafe impl Sync for SmallVecData {} /// A `Vec`-like container that can store a small number of elements inline. /// /// `SmallVec` acts like a vector, but can store a limited amount of data inline within the /// `SmallVec` struct rather than in a separate allocation. If the data exceeds this limit, the /// `SmallVec` will "spill" its data onto the heap, allocating a new buffer to hold it. /// /// The amount of data that a `SmallVec` can store inline depends on its backing store. The backing /// store can be any type that implements the `Array` trait; usually it is a small fixed-sized /// array. For example a `SmallVec<[u64; 8]>` can hold up to eight 64-bit integers inline. /// /// ## Example /// /// ```rust /// use smallvec::SmallVec; /// let mut v = SmallVec::<[u8; 4]>::new(); // initialize an empty vector /// /// // The vector can hold up to 4 items without spilling onto the heap. /// v.extend(0..4); /// assert_eq!(v.len(), 4); /// assert!(!v.spilled()); /// /// // Pushing another element will force the buffer to spill: /// v.push(4); /// assert_eq!(v.len(), 5); /// assert!(v.spilled()); /// ``` pub struct SmallVec { // The capacity field is used to determine which of the storage variants is active: // If capacity <= Self::inline_capacity() then the inline variant is used and capacity holds the current length of the vector (number of elements actually in use). // If capacity > Self::inline_capacity() then the heap variant is used and capacity holds the size of the memory allocation. capacity: usize, data: SmallVecData, } impl SmallVec { /// Construct an empty vector #[inline] pub fn new() -> SmallVec { // Try to detect invalid custom implementations of `Array`. Hopefully, // this check should be optimized away entirely for valid ones. assert!( mem::size_of::() == A::size() * mem::size_of::() && mem::align_of::() >= mem::align_of::() ); SmallVec { capacity: 0, data: SmallVecData::from_inline(MaybeUninit::uninit()), } } /// Construct an empty vector with enough capacity pre-allocated to store at least `n` /// elements. /// /// Will create a heap allocation only if `n` is larger than the inline capacity. /// /// ``` /// # use smallvec::SmallVec; /// /// let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(100); /// /// assert!(v.is_empty()); /// assert!(v.capacity() >= 100); /// ``` #[inline] pub fn with_capacity(n: usize) -> Self { let mut v = SmallVec::new(); v.reserve_exact(n); v } /// Construct a new `SmallVec` from a `Vec`. /// /// Elements will be copied to the inline buffer if vec.capacity() <= Self::inline_capacity(). /// /// ```rust /// use smallvec::SmallVec; /// /// let vec = vec![1, 2, 3, 4, 5]; /// let small_vec: SmallVec<[_; 3]> = SmallVec::from_vec(vec); /// /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); /// ``` #[inline] pub fn from_vec(mut vec: Vec) -> SmallVec { if vec.capacity() <= Self::inline_capacity() { unsafe { let mut data = SmallVecData::::from_inline(MaybeUninit::uninit()); let len = vec.len(); vec.set_len(0); ptr::copy_nonoverlapping(vec.as_ptr(), data.inline_mut(), len); SmallVec { capacity: len, data, } } } else { let (ptr, cap, len) = (vec.as_mut_ptr(), vec.capacity(), vec.len()); mem::forget(vec); SmallVec { capacity: cap, data: SmallVecData::from_heap(ptr, len), } } } /// Constructs a new `SmallVec` on the stack from an `A` without /// copying elements. /// /// ```rust /// use smallvec::SmallVec; /// /// let buf = [1, 2, 3, 4, 5]; /// let small_vec: SmallVec<_> = SmallVec::from_buf(buf); /// /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); /// ``` #[inline] pub fn from_buf(buf: A) -> SmallVec { SmallVec { capacity: A::size(), data: SmallVecData::from_inline(MaybeUninit::new(buf)), } } /// Constructs a new `SmallVec` on the stack from an `A` without /// copying elements. Also sets the length, which must be less or /// equal to the size of `buf`. /// /// ```rust /// use smallvec::SmallVec; /// /// let buf = [1, 2, 3, 4, 5, 0, 0, 0]; /// let small_vec: SmallVec<_> = SmallVec::from_buf_and_len(buf, 5); /// /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); /// ``` #[inline] pub fn from_buf_and_len(buf: A, len: usize) -> SmallVec { assert!(len <= A::size()); unsafe { SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), len) } } /// Constructs a new `SmallVec` on the stack from an `A` without /// copying elements. Also sets the length. The user is responsible /// for ensuring that `len <= A::size()`. /// /// ```rust /// use smallvec::SmallVec; /// use std::mem::MaybeUninit; /// /// let buf = [1, 2, 3, 4, 5, 0, 0, 0]; /// let small_vec: SmallVec<_> = unsafe { /// SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), 5) /// }; /// /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); /// ``` #[inline] pub unsafe fn from_buf_and_len_unchecked(buf: MaybeUninit, len: usize) -> SmallVec { SmallVec { capacity: len, data: SmallVecData::from_inline(buf), } } /// Sets the length of a vector. /// /// This will explicitly set the size of the vector, without actually /// modifying its buffers, so it is up to the caller to ensure that the /// vector is actually the specified size. pub unsafe fn set_len(&mut self, new_len: usize) { let (_, len_ptr, _) = self.triple_mut(); *len_ptr = new_len; } /// The maximum number of elements this vector can hold inline #[inline] fn inline_capacity() -> usize { if mem::size_of::() > 0 { A::size() } else { // For zero-size items code like `ptr.add(offset)` always returns the same pointer. // Therefore all items are at the same address, // and any array size has capacity for infinitely many items. // The capacity is limited by the bit width of the length field. // // `Vec` also does this: // https://github.com/rust-lang/rust/blob/1.44.0/src/liballoc/raw_vec.rs#L186 // // In our case, this also ensures that a smallvec of zero-size items never spills, // and we never try to allocate zero bytes which `std::alloc::alloc` disallows. core::usize::MAX } } /// The maximum number of elements this vector can hold inline #[inline] pub fn inline_size(&self) -> usize { Self::inline_capacity() } /// The number of elements stored in the vector #[inline] pub fn len(&self) -> usize { self.triple().1 } /// Returns `true` if the vector is empty #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// The number of items the vector can hold without reallocating #[inline] pub fn capacity(&self) -> usize { self.triple().2 } /// Returns a tuple with (data ptr, len, capacity) /// Useful to get all SmallVec properties with a single check of the current storage variant. #[inline] fn triple(&self) -> (*const A::Item, usize, usize) { unsafe { if self.spilled() { let (ptr, len) = self.data.heap(); (ptr, len, self.capacity) } else { (self.data.inline(), self.capacity, Self::inline_capacity()) } } } /// Returns a tuple with (data ptr, len ptr, capacity) #[inline] fn triple_mut(&mut self) -> (*mut A::Item, &mut usize, usize) { unsafe { if self.spilled() { let &mut (ptr, ref mut len_ptr) = self.data.heap_mut(); (ptr, len_ptr, self.capacity) } else { ( self.data.inline_mut(), &mut self.capacity, Self::inline_capacity(), ) } } } /// Returns `true` if the data has spilled into a separate heap-allocated buffer. #[inline] pub fn spilled(&self) -> bool { self.capacity > Self::inline_capacity() } /// Creates a draining iterator that removes the specified range in the vector /// and yields the removed items. /// /// Note 1: The element range is removed even if the iterator is only /// partially consumed or not consumed at all. /// /// Note 2: It is unspecified how many elements are removed from the vector /// if the `Drain` value is leaked. /// /// # Panics /// /// Panics if the starting point is greater than the end point or if /// the end point is greater than the length of the vector. pub fn drain(&mut self, range: R) -> Drain<'_, A> where R: RangeBounds, { use core::ops::Bound::*; let len = self.len(); let start = match range.start_bound() { Included(&n) => n, Excluded(&n) => n.checked_add(1).expect("Range start out of bounds"), Unbounded => 0, }; let end = match range.end_bound() { Included(&n) => n.checked_add(1).expect("Range end out of bounds"), Excluded(&n) => n, Unbounded => len, }; assert!(start <= end); assert!(end <= len); unsafe { self.set_len(start); let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start); Drain { tail_start: end, tail_len: len - end, iter: range_slice.iter(), vec: NonNull::from(self), } } } /// Append an item to the vector. #[inline] pub fn push(&mut self, value: A::Item) { unsafe { let (mut ptr, mut len, cap) = self.triple_mut(); if *len == cap { self.reserve(1); let &mut (heap_ptr, ref mut heap_len) = self.data.heap_mut(); ptr = heap_ptr; len = heap_len; } ptr::write(ptr.add(*len), value); *len += 1; } } /// Remove an item from the end of the vector and return it, or None if empty. #[inline] pub fn pop(&mut self) -> Option { unsafe { let (ptr, len_ptr, _) = self.triple_mut(); if *len_ptr == 0 { return None; } let last_index = *len_ptr - 1; *len_ptr = last_index; Some(ptr::read(ptr.add(last_index))) } } /// Moves all the elements of `other` into `self`, leaving `other` empty. /// /// # Example /// /// ``` /// # use smallvec::{SmallVec, smallvec}; /// let mut v0: SmallVec<[u8; 16]> = smallvec![1, 2, 3]; /// let mut v1: SmallVec<[u8; 32]> = smallvec![4, 5, 6]; /// v0.append(&mut v1); /// assert_eq!(*v0, [1, 2, 3, 4, 5, 6]); /// assert_eq!(*v1, []); /// ``` pub fn append(&mut self, other: &mut SmallVec) where B: Array, { self.extend(other.drain(..)) } /// Re-allocate to set the capacity to `max(new_cap, inline_size())`. /// /// Panics if `new_cap` is less than the vector's length /// or if the capacity computation overflows `usize`. pub fn grow(&mut self, new_cap: usize) { infallible(self.try_grow(new_cap)) } /// Re-allocate to set the capacity to `max(new_cap, inline_size())`. /// /// Panics if `new_cap` is less than the vector's length pub fn try_grow(&mut self, new_cap: usize) -> Result<(), CollectionAllocErr> { unsafe { let (ptr, &mut len, cap) = self.triple_mut(); let unspilled = !self.spilled(); assert!(new_cap >= len); if new_cap <= self.inline_size() { if unspilled { return Ok(()); } self.data = SmallVecData::from_inline(MaybeUninit::uninit()); ptr::copy_nonoverlapping(ptr, self.data.inline_mut(), len); self.capacity = len; deallocate(ptr, cap); } else if new_cap != cap { let layout = layout_array::(new_cap)?; debug_assert!(layout.size() > 0); let new_alloc; if unspilled { new_alloc = NonNull::new(alloc::alloc::alloc(layout)) .ok_or(CollectionAllocErr::AllocErr { layout })? .cast() .as_ptr(); ptr::copy_nonoverlapping(ptr, new_alloc, len); } else { // This should never fail since the same succeeded // when previously allocating `ptr`. let old_layout = layout_array::(cap)?; let new_ptr = alloc::alloc::realloc(ptr as *mut u8, old_layout, layout.size()); new_alloc = NonNull::new(new_ptr) .ok_or(CollectionAllocErr::AllocErr { layout })? .cast() .as_ptr(); } self.data = SmallVecData::from_heap(new_alloc, len); self.capacity = new_cap; } Ok(()) } } /// Reserve capacity for `additional` more elements to be inserted. /// /// May reserve more space to avoid frequent reallocations. /// /// Panics if the capacity computation overflows `usize`. #[inline] pub fn reserve(&mut self, additional: usize) { infallible(self.try_reserve(additional)) } /// Reserve capacity for `additional` more elements to be inserted. /// /// May reserve more space to avoid frequent reallocations. pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> { // prefer triple_mut() even if triple() would work // so that the optimizer removes duplicated calls to it // from callers like insert() let (_, &mut len, cap) = self.triple_mut(); if cap - len >= additional { return Ok(()); } let new_cap = len .checked_add(additional) .and_then(usize::checked_next_power_of_two) .ok_or(CollectionAllocErr::CapacityOverflow)?; self.try_grow(new_cap) } /// Reserve the minimum capacity for `additional` more elements to be inserted. /// /// Panics if the new capacity overflows `usize`. pub fn reserve_exact(&mut self, additional: usize) { infallible(self.try_reserve_exact(additional)) } /// Reserve the minimum capacity for `additional` more elements to be inserted. pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> { let (_, &mut len, cap) = self.triple_mut(); if cap - len >= additional { return Ok(()); } let new_cap = len .checked_add(additional) .ok_or(CollectionAllocErr::CapacityOverflow)?; self.try_grow(new_cap) } /// Shrink the capacity of the vector as much as possible. /// /// When possible, this will move data from an external heap buffer to the vector's inline /// storage. pub fn shrink_to_fit(&mut self) { if !self.spilled() { return; } let len = self.len(); if self.inline_size() >= len { unsafe { let (ptr, len) = self.data.heap(); self.data = SmallVecData::from_inline(MaybeUninit::uninit()); ptr::copy_nonoverlapping(ptr, self.data.inline_mut(), len); deallocate(ptr, self.capacity); self.capacity = len; } } else if self.capacity() > len { self.grow(len); } } /// Shorten the vector, keeping the first `len` elements and dropping the rest. /// /// If `len` is greater than or equal to the vector's current length, this has no /// effect. /// /// This does not re-allocate. If you want the vector's capacity to shrink, call /// `shrink_to_fit` after truncating. pub fn truncate(&mut self, len: usize) { unsafe { let (ptr, len_ptr, _) = self.triple_mut(); while len < *len_ptr { let last_index = *len_ptr - 1; *len_ptr = last_index; ptr::drop_in_place(ptr.add(last_index)); } } } /// Extracts a slice containing the entire vector. /// /// Equivalent to `&s[..]`. pub fn as_slice(&self) -> &[A::Item] { self } /// Extracts a mutable slice of the entire vector. /// /// Equivalent to `&mut s[..]`. pub fn as_mut_slice(&mut self) -> &mut [A::Item] { self } /// Remove the element at position `index`, replacing it with the last element. /// /// This does not preserve ordering, but is O(1). /// /// Panics if `index` is out of bounds. #[inline] pub fn swap_remove(&mut self, index: usize) -> A::Item { let len = self.len(); self.swap(len - 1, index); self.pop() .unwrap_or_else(|| unsafe { unreachable_unchecked() }) } /// Remove all elements from the vector. #[inline] pub fn clear(&mut self) { self.truncate(0); } /// Remove and return the element at position `index`, shifting all elements after it to the /// left. /// /// Panics if `index` is out of bounds. pub fn remove(&mut self, index: usize) -> A::Item { unsafe { let (mut ptr, len_ptr, _) = self.triple_mut(); let len = *len_ptr; assert!(index < len); *len_ptr = len - 1; ptr = ptr.add(index); let item = ptr::read(ptr); ptr::copy(ptr.add(1), ptr, len - index - 1); item } } /// Insert an element at position `index`, shifting all elements after it to the right. /// /// Panics if `index` is out of bounds. pub fn insert(&mut self, index: usize, element: A::Item) { self.reserve(1); unsafe { let (mut ptr, len_ptr, _) = self.triple_mut(); let len = *len_ptr; assert!(index <= len); *len_ptr = len + 1; ptr = ptr.add(index); ptr::copy(ptr, ptr.add(1), len - index); ptr::write(ptr, element); } } /// Insert multiple elements at position `index`, shifting all following elements toward the /// back. pub fn insert_many>(&mut self, index: usize, iterable: I) { let mut iter = iterable.into_iter(); if index == self.len() { return self.extend(iter); } let (lower_size_bound, _) = iter.size_hint(); assert!(lower_size_bound <= core::isize::MAX as usize); // Ensure offset is indexable assert!(index + lower_size_bound >= index); // Protect against overflow let mut num_added = 0; let old_len = self.len(); assert!(index <= old_len); unsafe { // Reserve space for `lower_size_bound` elements. self.reserve(lower_size_bound); let start = self.as_mut_ptr(); let ptr = start.add(index); // Move the trailing elements. ptr::copy(ptr, ptr.add(lower_size_bound), old_len - index); // In case the iterator panics, don't double-drop the items we just copied above. self.set_len(0); let mut guard = DropOnPanic { start, skip: index..(index + lower_size_bound), len: old_len + lower_size_bound, }; while num_added < lower_size_bound { let element = match iter.next() { Some(x) => x, None => break, }; let cur = ptr.add(num_added); ptr::write(cur, element); guard.skip.start += 1; num_added += 1; } if num_added < lower_size_bound { // Iterator provided fewer elements than the hint. Move the tail backward. ptr::copy( ptr.add(lower_size_bound), ptr.add(num_added), old_len - index, ); } // There are no more duplicate or uninitialized slots, so the guard is not needed. self.set_len(old_len + num_added); mem::forget(guard); } // Insert any remaining elements one-by-one. for element in iter { self.insert(index + num_added, element); num_added += 1; } struct DropOnPanic { start: *mut T, skip: Range, // Space we copied-out-of, but haven't written-to yet. len: usize, } impl Drop for DropOnPanic { fn drop(&mut self) { for i in 0..self.len { if !self.skip.contains(&i) { unsafe { ptr::drop_in_place(self.start.add(i)); } } } } } } /// Convert a SmallVec to a Vec, without reallocating if the SmallVec has already spilled onto /// the heap. pub fn into_vec(self) -> Vec { if self.spilled() { unsafe { let (ptr, len) = self.data.heap(); let v = Vec::from_raw_parts(ptr, len, self.capacity); mem::forget(self); v } } else { self.into_iter().collect() } } /// Converts a `SmallVec` into a `Box<[T]>` without reallocating if the `SmallVec` has already spilled /// onto the heap. /// /// Note that this will drop any excess capacity. pub fn into_boxed_slice(self) -> Box<[A::Item]> { self.into_vec().into_boxed_slice() } /// Convert the SmallVec into an `A` if possible. Otherwise return `Err(Self)`. /// /// This method returns `Err(Self)` if the SmallVec is too short (and the `A` contains uninitialized elements), /// or if the SmallVec is too long (and all the elements were spilled to the heap). pub fn into_inner(self) -> Result { if self.spilled() || self.len() != A::size() { // Note: A::size, not Self::inline_capacity Err(self) } else { unsafe { let data = ptr::read(&self.data); mem::forget(self); Ok(data.into_inline().assume_init()) } } } /// Retains only the elements specified by the predicate. /// /// In other words, remove all elements `e` such that `f(&e)` returns `false`. /// This method operates in place and preserves the order of the retained /// elements. pub fn retain bool>(&mut self, mut f: F) { let mut del = 0; let len = self.len(); for i in 0..len { if !f(&mut self[i]) { del += 1; } else if del > 0 { self.swap(i - del, i); } } self.truncate(len - del); } /// Removes consecutive duplicate elements. pub fn dedup(&mut self) where A::Item: PartialEq, { self.dedup_by(|a, b| a == b); } /// Removes consecutive duplicate elements using the given equality relation. pub fn dedup_by(&mut self, mut same_bucket: F) where F: FnMut(&mut A::Item, &mut A::Item) -> bool, { // See the implementation of Vec::dedup_by in the // standard library for an explanation of this algorithm. let len = self.len(); if len <= 1 { return; } let ptr = self.as_mut_ptr(); let mut w: usize = 1; unsafe { for r in 1..len { let p_r = ptr.add(r); let p_wm1 = ptr.add(w - 1); if !same_bucket(&mut *p_r, &mut *p_wm1) { if r != w { let p_w = p_wm1.add(1); mem::swap(&mut *p_r, &mut *p_w); } w += 1; } } } self.truncate(w); } /// Removes consecutive elements that map to the same key. pub fn dedup_by_key(&mut self, mut key: F) where F: FnMut(&mut A::Item) -> K, K: PartialEq, { self.dedup_by(|a, b| key(a) == key(b)); } /// Resizes the `SmallVec` in-place so that `len` is equal to `new_len`. /// /// If `new_len` is greater than `len`, the `SmallVec` is extended by the difference, with each /// additional slot filled with the result of calling the closure `f`. The return values from `f` //// will end up in the `SmallVec` in the order they have been generated. /// /// If `new_len` is less than `len`, the `SmallVec` is simply truncated. /// /// This method uses a closure to create new values on every push. If you'd rather `Clone` a given /// value, use `resize`. If you want to use the `Default` trait to generate values, you can pass /// `Default::default()` as the second argument. /// /// Added for std::vec::Vec compatibility (added in Rust 1.33.0) /// /// ``` /// # use smallvec::{smallvec, SmallVec}; /// let mut vec : SmallVec<[_; 4]> = smallvec![1, 2, 3]; /// vec.resize_with(5, Default::default); /// assert_eq!(&*vec, &[1, 2, 3, 0, 0]); /// /// let mut vec : SmallVec<[_; 4]> = smallvec![]; /// let mut p = 1; /// vec.resize_with(4, || { p *= 2; p }); /// assert_eq!(&*vec, &[2, 4, 8, 16]); /// ``` pub fn resize_with(&mut self, new_len: usize, f: F) where F: FnMut() -> A::Item, { let old_len = self.len(); if old_len < new_len { let mut f = f; let additional = new_len - old_len; self.reserve(additional); for _ in 0..additional { self.push(f()); } } else if old_len > new_len { self.truncate(new_len); } } /// Creates a `SmallVec` directly from the raw components of another /// `SmallVec`. /// /// # Safety /// /// This is highly unsafe, due to the number of invariants that aren't /// checked: /// /// * `ptr` needs to have been previously allocated via `SmallVec` for its /// spilled storage (at least, it's highly likely to be incorrect if it /// wasn't). /// * `ptr`'s `A::Item` type needs to be the same size and alignment that /// it was allocated with /// * `length` needs to be less than or equal to `capacity`. /// * `capacity` needs to be the capacity that the pointer was allocated /// with. /// /// Violating these may cause problems like corrupting the allocator's /// internal data structures. /// /// Additionally, `capacity` must be greater than the amount of inline /// storage `A` has; that is, the new `SmallVec` must need to spill over /// into heap allocated storage. This condition is asserted against. /// /// The ownership of `ptr` is effectively transferred to the /// `SmallVec` which may then deallocate, reallocate or change the /// contents of memory pointed to by the pointer at will. Ensure /// that nothing else uses the pointer after calling this /// function. /// /// # Examples /// /// ``` /// # #[macro_use] extern crate smallvec; /// # use smallvec::SmallVec; /// use std::mem; /// use std::ptr; /// /// fn main() { /// let mut v: SmallVec<[_; 1]> = smallvec![1, 2, 3]; /// /// // Pull out the important parts of `v`. /// let p = v.as_mut_ptr(); /// let len = v.len(); /// let cap = v.capacity(); /// let spilled = v.spilled(); /// /// unsafe { /// // Forget all about `v`. The heap allocation that stored the /// // three values won't be deallocated. /// mem::forget(v); /// /// // Overwrite memory with [4, 5, 6]. /// // /// // This is only safe if `spilled` is true! Otherwise, we are /// // writing into the old `SmallVec`'s inline storage on the /// // stack. /// assert!(spilled); /// for i in 0..len { /// ptr::write(p.add(i), 4 + i); /// } /// /// // Put everything back together into a SmallVec with a different /// // amount of inline storage, but which is still less than `cap`. /// let rebuilt = SmallVec::<[_; 2]>::from_raw_parts(p, len, cap); /// assert_eq!(&*rebuilt, &[4, 5, 6]); /// } /// } #[inline] pub unsafe fn from_raw_parts(ptr: *mut A::Item, length: usize, capacity: usize) -> SmallVec { assert!(capacity > Self::inline_capacity()); SmallVec { capacity, data: SmallVecData::from_heap(ptr, length), } } /// Returns a raw pointer to the vector's buffer. pub fn as_ptr(&self) -> *const A::Item { // We shadow the slice method of the same name to avoid going through // `deref`, which creates an intermediate reference that may place // additional safety constraints on the contents of the slice. self.triple().0 } /// Returns a raw mutable pointer to the vector's buffer. pub fn as_mut_ptr(&mut self) -> *mut A::Item { // We shadow the slice method of the same name to avoid going through // `deref_mut`, which creates an intermediate reference that may place // additional safety constraints on the contents of the slice. self.triple_mut().0 } } impl SmallVec where A::Item: Copy, { /// Copy the elements from a slice into a new `SmallVec`. /// /// For slices of `Copy` types, this is more efficient than `SmallVec::from(slice)`. pub fn from_slice(slice: &[A::Item]) -> Self { let len = slice.len(); if len <= Self::inline_capacity() { SmallVec { capacity: len, data: SmallVecData::from_inline(unsafe { let mut data: MaybeUninit = MaybeUninit::uninit(); ptr::copy_nonoverlapping( slice.as_ptr(), data.as_mut_ptr() as *mut A::Item, len, ); data }), } } else { let mut b = slice.to_vec(); let (ptr, cap) = (b.as_mut_ptr(), b.capacity()); mem::forget(b); SmallVec { capacity: cap, data: SmallVecData::from_heap(ptr, len), } } } /// Copy elements from a slice into the vector at position `index`, shifting any following /// elements toward the back. /// /// For slices of `Copy` types, this is more efficient than `insert`. pub fn insert_from_slice(&mut self, index: usize, slice: &[A::Item]) { self.reserve(slice.len()); let len = self.len(); assert!(index <= len); unsafe { let slice_ptr = slice.as_ptr(); let ptr = self.as_mut_ptr().add(index); ptr::copy(ptr, ptr.add(slice.len()), len - index); ptr::copy_nonoverlapping(slice_ptr, ptr, slice.len()); self.set_len(len + slice.len()); } } /// Copy elements from a slice and append them to the vector. /// /// For slices of `Copy` types, this is more efficient than `extend`. #[inline] pub fn extend_from_slice(&mut self, slice: &[A::Item]) { let len = self.len(); self.insert_from_slice(len, slice); } } impl SmallVec where A::Item: Clone, { /// Resizes the vector so that its length is equal to `len`. /// /// If `len` is less than the current length, the vector simply truncated. /// /// If `len` is greater than the current length, `value` is appended to the /// vector until its length equals `len`. pub fn resize(&mut self, len: usize, value: A::Item) { let old_len = self.len(); if len > old_len { self.extend(repeat(value).take(len - old_len)); } else { self.truncate(len); } } /// Creates a `SmallVec` with `n` copies of `elem`. /// ``` /// use smallvec::SmallVec; /// /// let v = SmallVec::<[char; 128]>::from_elem('d', 2); /// assert_eq!(v, SmallVec::from_buf(['d', 'd'])); /// ``` pub fn from_elem(elem: A::Item, n: usize) -> Self { if n > Self::inline_capacity() { vec![elem; n].into() } else { let mut v = SmallVec::::new(); unsafe { let (ptr, len_ptr, _) = v.triple_mut(); let mut local_len = SetLenOnDrop::new(len_ptr); for i in 0..n { ::core::ptr::write(ptr.add(i), elem.clone()); local_len.increment_len(1); } } v } } } impl ops::Deref for SmallVec { type Target = [A::Item]; #[inline] fn deref(&self) -> &[A::Item] { unsafe { let (ptr, len, _) = self.triple(); slice::from_raw_parts(ptr, len) } } } impl ops::DerefMut for SmallVec { #[inline] fn deref_mut(&mut self) -> &mut [A::Item] { unsafe { let (ptr, &mut len, _) = self.triple_mut(); slice::from_raw_parts_mut(ptr, len) } } } impl AsRef<[A::Item]> for SmallVec { #[inline] fn as_ref(&self) -> &[A::Item] { self } } impl AsMut<[A::Item]> for SmallVec { #[inline] fn as_mut(&mut self) -> &mut [A::Item] { self } } impl Borrow<[A::Item]> for SmallVec { #[inline] fn borrow(&self) -> &[A::Item] { self } } impl BorrowMut<[A::Item]> for SmallVec { #[inline] fn borrow_mut(&mut self) -> &mut [A::Item] { self } } #[cfg(feature = "write")] #[cfg_attr(docsrs, doc(cfg(feature = "write")))] impl> io::Write for SmallVec { #[inline] fn write(&mut self, buf: &[u8]) -> io::Result { self.extend_from_slice(buf); Ok(buf.len()) } #[inline] fn write_all(&mut self, buf: &[u8]) -> io::Result<()> { self.extend_from_slice(buf); Ok(()) } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } } #[cfg(feature = "serde")] #[cfg_attr(docsrs, doc(cfg(feature = "serde")))] impl Serialize for SmallVec where A::Item: Serialize, { fn serialize(&self, serializer: S) -> Result { let mut state = serializer.serialize_seq(Some(self.len()))?; for item in self { state.serialize_element(&item)?; } state.end() } } #[cfg(feature = "serde")] #[cfg_attr(docsrs, doc(cfg(feature = "serde")))] impl<'de, A: Array> Deserialize<'de> for SmallVec where A::Item: Deserialize<'de>, { fn deserialize>(deserializer: D) -> Result { deserializer.deserialize_seq(SmallVecVisitor { phantom: PhantomData, }) } } #[cfg(feature = "serde")] struct SmallVecVisitor { phantom: PhantomData, } #[cfg(feature = "serde")] impl<'de, A: Array> Visitor<'de> for SmallVecVisitor where A::Item: Deserialize<'de>, { type Value = SmallVec; fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result { formatter.write_str("a sequence") } fn visit_seq(self, mut seq: B) -> Result where B: SeqAccess<'de>, { use serde::de::Error; let len = seq.size_hint().unwrap_or(0); let mut values = SmallVec::new(); values.try_reserve(len).map_err(B::Error::custom)?; while let Some(value) = seq.next_element()? { values.push(value); } Ok(values) } } #[cfg(feature = "specialization")] trait SpecFrom { fn spec_from(slice: S) -> SmallVec; } #[cfg(feature = "specialization")] mod specialization; #[cfg(feature = "specialization")] impl<'a, A: Array> SpecFrom for SmallVec where A::Item: Copy, { #[inline] fn spec_from(slice: &'a [A::Item]) -> SmallVec { SmallVec::from_slice(slice) } } impl<'a, A: Array> From<&'a [A::Item]> for SmallVec where A::Item: Clone, { #[cfg(not(feature = "specialization"))] #[inline] fn from(slice: &'a [A::Item]) -> SmallVec { slice.iter().cloned().collect() } #[cfg(feature = "specialization")] #[inline] fn from(slice: &'a [A::Item]) -> SmallVec { SmallVec::spec_from(slice) } } impl From> for SmallVec { #[inline] fn from(vec: Vec) -> SmallVec { SmallVec::from_vec(vec) } } impl From for SmallVec { #[inline] fn from(array: A) -> SmallVec { SmallVec::from_buf(array) } } impl> ops::Index for SmallVec { type Output = I::Output; fn index(&self, index: I) -> &I::Output { &(**self)[index] } } impl> ops::IndexMut for SmallVec { fn index_mut(&mut self, index: I) -> &mut I::Output { &mut (&mut **self)[index] } } #[allow(deprecated)] impl ExtendFromSlice for SmallVec where A::Item: Copy, { fn extend_from_slice(&mut self, other: &[A::Item]) { SmallVec::extend_from_slice(self, other) } } impl FromIterator for SmallVec { #[inline] fn from_iter>(iterable: I) -> SmallVec { let mut v = SmallVec::new(); v.extend(iterable); v } } impl Extend for SmallVec { fn extend>(&mut self, iterable: I) { let mut iter = iterable.into_iter(); let (lower_size_bound, _) = iter.size_hint(); self.reserve(lower_size_bound); unsafe { let (ptr, len_ptr, cap) = self.triple_mut(); let mut len = SetLenOnDrop::new(len_ptr); while len.get() < cap { if let Some(out) = iter.next() { ptr::write(ptr.add(len.get()), out); len.increment_len(1); } else { return; } } } for elem in iter { self.push(elem); } } } impl fmt::Debug for SmallVec where A::Item: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.iter()).finish() } } impl Default for SmallVec { #[inline] fn default() -> SmallVec { SmallVec::new() } } #[cfg(feature = "may_dangle")] unsafe impl<#[may_dangle] A: Array> Drop for SmallVec { fn drop(&mut self) { unsafe { if self.spilled() { let (ptr, len) = self.data.heap(); Vec::from_raw_parts(ptr, len, self.capacity); } else { ptr::drop_in_place(&mut self[..]); } } } } #[cfg(not(feature = "may_dangle"))] impl Drop for SmallVec { fn drop(&mut self) { unsafe { if self.spilled() { let (ptr, len) = self.data.heap(); Vec::from_raw_parts(ptr, len, self.capacity); } else { ptr::drop_in_place(&mut self[..]); } } } } impl Clone for SmallVec where A::Item: Clone, { #[inline] fn clone(&self) -> SmallVec { SmallVec::from(self.as_slice()) } fn clone_from(&mut self, source: &Self) { // Inspired from `impl Clone for Vec`. // drop anything that will not be overwritten self.truncate(source.len()); // self.len <= other.len due to the truncate above, so the // slices here are always in-bounds. let (init, tail) = source.split_at(self.len()); // reuse the contained values' allocations/resources. self.clone_from_slice(init); self.extend(tail.iter().cloned()); } } impl PartialEq> for SmallVec where A::Item: PartialEq, { #[inline] fn eq(&self, other: &SmallVec) -> bool { self[..] == other[..] } } impl Eq for SmallVec where A::Item: Eq {} impl PartialOrd for SmallVec where A::Item: PartialOrd, { #[inline] fn partial_cmp(&self, other: &SmallVec) -> Option { PartialOrd::partial_cmp(&**self, &**other) } } impl Ord for SmallVec where A::Item: Ord, { #[inline] fn cmp(&self, other: &SmallVec) -> cmp::Ordering { Ord::cmp(&**self, &**other) } } impl Hash for SmallVec where A::Item: Hash, { fn hash(&self, state: &mut H) { (**self).hash(state) } } unsafe impl Send for SmallVec where A::Item: Send {} /// An iterator that consumes a `SmallVec` and yields its items by value. /// /// Returned from [`SmallVec::into_iter`][1]. /// /// [1]: struct.SmallVec.html#method.into_iter pub struct IntoIter { data: SmallVec, current: usize, end: usize, } impl fmt::Debug for IntoIter where A::Item: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("IntoIter").field(&self.as_slice()).finish() } } impl Clone for IntoIter where A::Item: Clone, { fn clone(&self) -> IntoIter { SmallVec::from(self.as_slice()).into_iter() } } impl Drop for IntoIter { fn drop(&mut self) { for _ in self {} } } impl Iterator for IntoIter { type Item = A::Item; #[inline] fn next(&mut self) -> Option { if self.current == self.end { None } else { unsafe { let current = self.current; self.current += 1; Some(ptr::read(self.data.as_ptr().add(current))) } } } #[inline] fn size_hint(&self) -> (usize, Option) { let size = self.end - self.current; (size, Some(size)) } } impl DoubleEndedIterator for IntoIter { #[inline] fn next_back(&mut self) -> Option { if self.current == self.end { None } else { unsafe { self.end -= 1; Some(ptr::read(self.data.as_ptr().add(self.end))) } } } } impl ExactSizeIterator for IntoIter {} impl FusedIterator for IntoIter {} impl IntoIter { /// Returns the remaining items of this iterator as a slice. pub fn as_slice(&self) -> &[A::Item] { let len = self.end - self.current; unsafe { core::slice::from_raw_parts(self.data.as_ptr().add(self.current), len) } } /// Returns the remaining items of this iterator as a mutable slice. pub fn as_mut_slice(&mut self) -> &mut [A::Item] { let len = self.end - self.current; unsafe { core::slice::from_raw_parts_mut(self.data.as_mut_ptr().add(self.current), len) } } } impl IntoIterator for SmallVec { type IntoIter = IntoIter; type Item = A::Item; fn into_iter(mut self) -> Self::IntoIter { unsafe { // Set SmallVec len to zero as `IntoIter` drop handles dropping of the elements let len = self.len(); self.set_len(0); IntoIter { data: self, current: 0, end: len, } } } } impl<'a, A: Array> IntoIterator for &'a SmallVec { type IntoIter = slice::Iter<'a, A::Item>; type Item = &'a A::Item; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'a, A: Array> IntoIterator for &'a mut SmallVec { type IntoIter = slice::IterMut<'a, A::Item>; type Item = &'a mut A::Item; fn into_iter(self) -> Self::IntoIter { self.iter_mut() } } /// Types that can be used as the backing store for a SmallVec pub unsafe trait Array { /// The type of the array's elements. type Item; /// Returns the number of items the array can hold. fn size() -> usize; } /// Set the length of the vec when the `SetLenOnDrop` value goes out of scope. /// /// Copied from https://github.com/rust-lang/rust/pull/36355 struct SetLenOnDrop<'a> { len: &'a mut usize, local_len: usize, } impl<'a> SetLenOnDrop<'a> { #[inline] fn new(len: &'a mut usize) -> Self { SetLenOnDrop { local_len: *len, len, } } #[inline] fn get(&self) -> usize { self.local_len } #[inline] fn increment_len(&mut self, increment: usize) { self.local_len += increment; } } impl<'a> Drop for SetLenOnDrop<'a> { #[inline] fn drop(&mut self) { *self.len = self.local_len; } } #[cfg(feature = "const_new")] impl SmallVec<[T; N]> { /// Construct an empty vector. /// /// This is a `const` version of [`SmallVec::new`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays. #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))] #[inline] pub const fn new_const() -> Self { SmallVec { capacity: 0, data: SmallVecData::from_const(MaybeUninit::uninit()), } } /// The array passed as an argument is moved to be an inline version of `SmallVec`. /// /// This is a `const` version of [`SmallVec::from_buf`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays. #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))] #[inline] pub const fn from_const(items: [T; N]) -> Self { SmallVec { capacity: N, data: SmallVecData::from_const(MaybeUninit::new(items)), } } } #[cfg(all(feature = "const_generics", not(doc)))] #[cfg_attr(docsrs, doc(cfg(feature = "const_generics")))] unsafe impl Array for [T; N] { type Item = T; fn size() -> usize { N } } #[cfg(any(not(feature = "const_generics"), doc))] macro_rules! impl_array( ($($size:expr),+) => { $( unsafe impl Array for [T; $size] { type Item = T; fn size() -> usize { $size } } )+ } ); #[cfg(any(not(feature = "const_generics"), doc))] impl_array!( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 36, 0x40, 0x60, 0x80, 0x100, 0x200, 0x400, 0x600, 0x800, 0x1000, 0x2000, 0x4000, 0x6000, 0x8000, 0x10000, 0x20000, 0x40000, 0x60000, 0x80000, 0x10_0000 ); /// Convenience trait for constructing a `SmallVec` pub trait ToSmallVec { /// Construct a new `SmallVec` from a slice. fn to_smallvec(&self) -> SmallVec; } impl ToSmallVec for [A::Item] where A::Item: Copy, { #[inline] fn to_smallvec(&self) -> SmallVec { SmallVec::from_slice(self) } } smallvec-1.7.0/src/specialization.rs000064400000000000000000000011430072674642500156410ustar 00000000000000// Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Implementations that require `default fn`. use super::{Array, SmallVec, SpecFrom}; impl<'a, A: Array> SpecFrom for SmallVec where A::Item: Clone, { #[inline] default fn spec_from(slice: &'a [A::Item]) -> SmallVec { slice.into_iter().cloned().collect() } } smallvec-1.7.0/src/tests.rs000064400000000000000000000601560072674642500137760ustar 00000000000000use crate::{smallvec, SmallVec}; use std::iter::FromIterator; use alloc::borrow::ToOwned; use alloc::boxed::Box; use alloc::rc::Rc; use alloc::{vec, vec::Vec}; #[test] pub fn test_zero() { let mut v = SmallVec::<[_; 0]>::new(); assert!(!v.spilled()); v.push(0usize); assert!(v.spilled()); assert_eq!(&*v, &[0]); } // We heap allocate all these strings so that double frees will show up under valgrind. #[test] pub fn test_inline() { let mut v = SmallVec::<[_; 16]>::new(); v.push("hello".to_owned()); v.push("there".to_owned()); assert_eq!(&*v, &["hello".to_owned(), "there".to_owned(),][..]); } #[test] pub fn test_spill() { let mut v = SmallVec::<[_; 2]>::new(); v.push("hello".to_owned()); assert_eq!(v[0], "hello"); v.push("there".to_owned()); v.push("burma".to_owned()); assert_eq!(v[0], "hello"); v.push("shave".to_owned()); assert_eq!( &*v, &[ "hello".to_owned(), "there".to_owned(), "burma".to_owned(), "shave".to_owned(), ][..] ); } #[test] pub fn test_double_spill() { let mut v = SmallVec::<[_; 2]>::new(); v.push("hello".to_owned()); v.push("there".to_owned()); v.push("burma".to_owned()); v.push("shave".to_owned()); v.push("hello".to_owned()); v.push("there".to_owned()); v.push("burma".to_owned()); v.push("shave".to_owned()); assert_eq!( &*v, &[ "hello".to_owned(), "there".to_owned(), "burma".to_owned(), "shave".to_owned(), "hello".to_owned(), "there".to_owned(), "burma".to_owned(), "shave".to_owned(), ][..] ); } /// https://github.com/servo/rust-smallvec/issues/4 #[test] fn issue_4() { SmallVec::<[Box; 2]>::new(); } /// https://github.com/servo/rust-smallvec/issues/5 #[test] fn issue_5() { assert!(Some(SmallVec::<[&u32; 2]>::new()).is_some()); } #[test] fn test_with_capacity() { let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(1); assert!(v.is_empty()); assert!(!v.spilled()); assert_eq!(v.capacity(), 3); let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(10); assert!(v.is_empty()); assert!(v.spilled()); assert_eq!(v.capacity(), 10); } #[test] fn drain() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(3); assert_eq!(v.drain(..).collect::>(), &[3]); // spilling the vec v.push(3); v.push(4); v.push(5); let old_capacity = v.capacity(); assert_eq!(v.drain(1..).collect::>(), &[4, 5]); // drain should not change the capacity assert_eq!(v.capacity(), old_capacity); } #[test] fn drain_rev() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(3); assert_eq!(v.drain(..).rev().collect::>(), &[3]); // spilling the vec v.push(3); v.push(4); v.push(5); assert_eq!(v.drain(..).rev().collect::>(), &[5, 4, 3]); } #[test] fn drain_forget() { let mut v: SmallVec<[u8; 1]> = smallvec![0, 1, 2, 3, 4, 5, 6, 7]; std::mem::forget(v.drain(2..5)); assert_eq!(v.len(), 2); } #[test] fn into_iter() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(3); assert_eq!(v.into_iter().collect::>(), &[3]); // spilling the vec let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(3); v.push(4); v.push(5); assert_eq!(v.into_iter().collect::>(), &[3, 4, 5]); } #[test] fn into_iter_rev() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(3); assert_eq!(v.into_iter().rev().collect::>(), &[3]); // spilling the vec let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(3); v.push(4); v.push(5); assert_eq!(v.into_iter().rev().collect::>(), &[5, 4, 3]); } #[test] fn into_iter_drop() { use std::cell::Cell; struct DropCounter<'a>(&'a Cell); impl<'a> Drop for DropCounter<'a> { fn drop(&mut self) { self.0.set(self.0.get() + 1); } } { let cell = Cell::new(0); let mut v: SmallVec<[DropCounter<'_>; 2]> = SmallVec::new(); v.push(DropCounter(&cell)); v.into_iter(); assert_eq!(cell.get(), 1); } { let cell = Cell::new(0); let mut v: SmallVec<[DropCounter<'_>; 2]> = SmallVec::new(); v.push(DropCounter(&cell)); v.push(DropCounter(&cell)); assert!(v.into_iter().next().is_some()); assert_eq!(cell.get(), 2); } { let cell = Cell::new(0); let mut v: SmallVec<[DropCounter<'_>; 2]> = SmallVec::new(); v.push(DropCounter(&cell)); v.push(DropCounter(&cell)); v.push(DropCounter(&cell)); assert!(v.into_iter().next().is_some()); assert_eq!(cell.get(), 3); } { let cell = Cell::new(0); let mut v: SmallVec<[DropCounter<'_>; 2]> = SmallVec::new(); v.push(DropCounter(&cell)); v.push(DropCounter(&cell)); v.push(DropCounter(&cell)); { let mut it = v.into_iter(); assert!(it.next().is_some()); assert!(it.next_back().is_some()); } assert_eq!(cell.get(), 3); } } #[test] fn test_capacity() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.reserve(1); assert_eq!(v.capacity(), 2); assert!(!v.spilled()); v.reserve_exact(0x100); assert!(v.capacity() >= 0x100); v.push(0); v.push(1); v.push(2); v.push(3); v.shrink_to_fit(); assert!(v.capacity() < 0x100); } #[test] fn test_truncate() { let mut v: SmallVec<[Box; 8]> = SmallVec::new(); for x in 0..8 { v.push(Box::new(x)); } v.truncate(4); assert_eq!(v.len(), 4); assert!(!v.spilled()); assert_eq!(*v.swap_remove(1), 1); assert_eq!(*v.remove(1), 3); v.insert(1, Box::new(3)); assert_eq!(&v.iter().map(|v| **v).collect::>(), &[0, 3, 2]); } #[test] fn test_insert_many() { let mut v: SmallVec<[u8; 8]> = SmallVec::new(); for x in 0..4 { v.push(x); } assert_eq!(v.len(), 4); v.insert_many(1, [5, 6].iter().cloned()); assert_eq!( &v.iter().map(|v| *v).collect::>(), &[0, 5, 6, 1, 2, 3] ); } struct MockHintIter { x: T, hint: usize, } impl Iterator for MockHintIter { type Item = T::Item; fn next(&mut self) -> Option { self.x.next() } fn size_hint(&self) -> (usize, Option) { (self.hint, None) } } #[test] fn test_insert_many_short_hint() { let mut v: SmallVec<[u8; 8]> = SmallVec::new(); for x in 0..4 { v.push(x); } assert_eq!(v.len(), 4); v.insert_many( 1, MockHintIter { x: [5, 6].iter().cloned(), hint: 5, }, ); assert_eq!( &v.iter().map(|v| *v).collect::>(), &[0, 5, 6, 1, 2, 3] ); } #[test] fn test_insert_many_long_hint() { let mut v: SmallVec<[u8; 8]> = SmallVec::new(); for x in 0..4 { v.push(x); } assert_eq!(v.len(), 4); v.insert_many( 1, MockHintIter { x: [5, 6].iter().cloned(), hint: 1, }, ); assert_eq!( &v.iter().map(|v| *v).collect::>(), &[0, 5, 6, 1, 2, 3] ); } // https://github.com/servo/rust-smallvec/issues/96 mod insert_many_panic { use crate::{smallvec, SmallVec}; use alloc::boxed::Box; struct PanicOnDoubleDrop { dropped: Box, } impl PanicOnDoubleDrop { fn new() -> Self { Self { dropped: Box::new(false), } } } impl Drop for PanicOnDoubleDrop { fn drop(&mut self) { assert!(!*self.dropped, "already dropped"); *self.dropped = true; } } /// Claims to yield `hint` items, but actually yields `count`, then panics. struct BadIter { hint: usize, count: usize, } impl Iterator for BadIter { type Item = PanicOnDoubleDrop; fn size_hint(&self) -> (usize, Option) { (self.hint, None) } fn next(&mut self) -> Option { if self.count == 0 { panic!() } self.count -= 1; Some(PanicOnDoubleDrop::new()) } } #[test] fn panic_early_at_start() { let mut vec: SmallVec<[PanicOnDoubleDrop; 0]> = smallvec![PanicOnDoubleDrop::new(), PanicOnDoubleDrop::new(),]; let result = ::std::panic::catch_unwind(move || { vec.insert_many(0, BadIter { hint: 1, count: 0 }); }); assert!(result.is_err()); } #[test] fn panic_early_in_middle() { let mut vec: SmallVec<[PanicOnDoubleDrop; 0]> = smallvec![PanicOnDoubleDrop::new(), PanicOnDoubleDrop::new(),]; let result = ::std::panic::catch_unwind(move || { vec.insert_many(1, BadIter { hint: 4, count: 2 }); }); assert!(result.is_err()); } #[test] fn panic_early_at_end() { let mut vec: SmallVec<[PanicOnDoubleDrop; 0]> = smallvec![PanicOnDoubleDrop::new(), PanicOnDoubleDrop::new(),]; let result = ::std::panic::catch_unwind(move || { vec.insert_many(2, BadIter { hint: 3, count: 1 }); }); assert!(result.is_err()); } #[test] fn panic_late_at_start() { let mut vec: SmallVec<[PanicOnDoubleDrop; 0]> = smallvec![PanicOnDoubleDrop::new(), PanicOnDoubleDrop::new(),]; let result = ::std::panic::catch_unwind(move || { vec.insert_many(0, BadIter { hint: 3, count: 5 }); }); assert!(result.is_err()); } #[test] fn panic_late_at_end() { let mut vec: SmallVec<[PanicOnDoubleDrop; 0]> = smallvec![PanicOnDoubleDrop::new(), PanicOnDoubleDrop::new(),]; let result = ::std::panic::catch_unwind(move || { vec.insert_many(2, BadIter { hint: 3, count: 5 }); }); assert!(result.is_err()); } } #[test] #[should_panic] fn test_invalid_grow() { let mut v: SmallVec<[u8; 8]> = SmallVec::new(); v.extend(0..8); v.grow(5); } #[test] #[should_panic] fn drain_overflow() { let mut v: SmallVec<[u8; 8]> = smallvec![0]; v.drain(..=std::usize::MAX); } #[test] fn test_insert_from_slice() { let mut v: SmallVec<[u8; 8]> = SmallVec::new(); for x in 0..4 { v.push(x); } assert_eq!(v.len(), 4); v.insert_from_slice(1, &[5, 6]); assert_eq!( &v.iter().map(|v| *v).collect::>(), &[0, 5, 6, 1, 2, 3] ); } #[test] fn test_extend_from_slice() { let mut v: SmallVec<[u8; 8]> = SmallVec::new(); for x in 0..4 { v.push(x); } assert_eq!(v.len(), 4); v.extend_from_slice(&[5, 6]); assert_eq!( &v.iter().map(|v| *v).collect::>(), &[0, 1, 2, 3, 5, 6] ); } #[test] #[should_panic] fn test_drop_panic_smallvec() { // This test should only panic once, and not double panic, // which would mean a double drop struct DropPanic; impl Drop for DropPanic { fn drop(&mut self) { panic!("drop"); } } let mut v = SmallVec::<[_; 1]>::new(); v.push(DropPanic); } #[test] fn test_eq() { let mut a: SmallVec<[u32; 2]> = SmallVec::new(); let mut b: SmallVec<[u32; 2]> = SmallVec::new(); let mut c: SmallVec<[u32; 2]> = SmallVec::new(); // a = [1, 2] a.push(1); a.push(2); // b = [1, 2] b.push(1); b.push(2); // c = [3, 4] c.push(3); c.push(4); assert!(a == b); assert!(a != c); } #[test] fn test_ord() { let mut a: SmallVec<[u32; 2]> = SmallVec::new(); let mut b: SmallVec<[u32; 2]> = SmallVec::new(); let mut c: SmallVec<[u32; 2]> = SmallVec::new(); // a = [1] a.push(1); // b = [1, 1] b.push(1); b.push(1); // c = [1, 2] c.push(1); c.push(2); assert!(a < b); assert!(b > a); assert!(b < c); assert!(c > b); } #[test] fn test_hash() { use std::collections::hash_map::DefaultHasher; use std::hash::Hash; { let mut a: SmallVec<[u32; 2]> = SmallVec::new(); let b = [1, 2]; a.extend(b.iter().cloned()); let mut hasher = DefaultHasher::new(); assert_eq!(a.hash(&mut hasher), b.hash(&mut hasher)); } { let mut a: SmallVec<[u32; 2]> = SmallVec::new(); let b = [1, 2, 11, 12]; a.extend(b.iter().cloned()); let mut hasher = DefaultHasher::new(); assert_eq!(a.hash(&mut hasher), b.hash(&mut hasher)); } } #[test] fn test_as_ref() { let mut a: SmallVec<[u32; 2]> = SmallVec::new(); a.push(1); assert_eq!(a.as_ref(), [1]); a.push(2); assert_eq!(a.as_ref(), [1, 2]); a.push(3); assert_eq!(a.as_ref(), [1, 2, 3]); } #[test] fn test_as_mut() { let mut a: SmallVec<[u32; 2]> = SmallVec::new(); a.push(1); assert_eq!(a.as_mut(), [1]); a.push(2); assert_eq!(a.as_mut(), [1, 2]); a.push(3); assert_eq!(a.as_mut(), [1, 2, 3]); a.as_mut()[1] = 4; assert_eq!(a.as_mut(), [1, 4, 3]); } #[test] fn test_borrow() { use std::borrow::Borrow; let mut a: SmallVec<[u32; 2]> = SmallVec::new(); a.push(1); assert_eq!(a.borrow(), [1]); a.push(2); assert_eq!(a.borrow(), [1, 2]); a.push(3); assert_eq!(a.borrow(), [1, 2, 3]); } #[test] fn test_borrow_mut() { use std::borrow::BorrowMut; let mut a: SmallVec<[u32; 2]> = SmallVec::new(); a.push(1); assert_eq!(a.borrow_mut(), [1]); a.push(2); assert_eq!(a.borrow_mut(), [1, 2]); a.push(3); assert_eq!(a.borrow_mut(), [1, 2, 3]); BorrowMut::<[u32]>::borrow_mut(&mut a)[1] = 4; assert_eq!(a.borrow_mut(), [1, 4, 3]); } #[test] fn test_from() { assert_eq!(&SmallVec::<[u32; 2]>::from(&[1][..])[..], [1]); assert_eq!(&SmallVec::<[u32; 2]>::from(&[1, 2, 3][..])[..], [1, 2, 3]); let vec = vec![]; let small_vec: SmallVec<[u8; 3]> = SmallVec::from(vec); assert_eq!(&*small_vec, &[]); drop(small_vec); let vec = vec![1, 2, 3, 4, 5]; let small_vec: SmallVec<[u8; 3]> = SmallVec::from(vec); assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); drop(small_vec); let vec = vec![1, 2, 3, 4, 5]; let small_vec: SmallVec<[u8; 1]> = SmallVec::from(vec); assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); drop(small_vec); let array = [1]; let small_vec: SmallVec<[u8; 1]> = SmallVec::from(array); assert_eq!(&*small_vec, &[1]); drop(small_vec); let array = [99; 128]; let small_vec: SmallVec<[u8; 128]> = SmallVec::from(array); assert_eq!(&*small_vec, vec![99u8; 128].as_slice()); drop(small_vec); } #[test] fn test_from_slice() { assert_eq!(&SmallVec::<[u32; 2]>::from_slice(&[1][..])[..], [1]); assert_eq!( &SmallVec::<[u32; 2]>::from_slice(&[1, 2, 3][..])[..], [1, 2, 3] ); } #[test] fn test_exact_size_iterator() { let mut vec = SmallVec::<[u32; 2]>::from(&[1, 2, 3][..]); assert_eq!(vec.clone().into_iter().len(), 3); assert_eq!(vec.drain(..2).len(), 2); assert_eq!(vec.into_iter().len(), 1); } #[test] fn test_into_iter_as_slice() { let vec = SmallVec::<[u32; 2]>::from(&[1, 2, 3][..]); let mut iter = vec.clone().into_iter(); assert_eq!(iter.as_slice(), &[1, 2, 3]); assert_eq!(iter.as_mut_slice(), &[1, 2, 3]); iter.next(); assert_eq!(iter.as_slice(), &[2, 3]); assert_eq!(iter.as_mut_slice(), &[2, 3]); iter.next_back(); assert_eq!(iter.as_slice(), &[2]); assert_eq!(iter.as_mut_slice(), &[2]); } #[test] fn test_into_iter_clone() { // Test that the cloned iterator yields identical elements and that it owns its own copy // (i.e. no use after move errors). let mut iter = SmallVec::<[u8; 2]>::from_iter(0..3).into_iter(); let mut clone_iter = iter.clone(); while let Some(x) = iter.next() { assert_eq!(x, clone_iter.next().unwrap()); } assert_eq!(clone_iter.next(), None); } #[test] fn test_into_iter_clone_partially_consumed_iterator() { // Test that the cloned iterator only contains the remaining elements of the original iterator. let mut iter = SmallVec::<[u8; 2]>::from_iter(0..3).into_iter().skip(1); let mut clone_iter = iter.clone(); while let Some(x) = iter.next() { assert_eq!(x, clone_iter.next().unwrap()); } assert_eq!(clone_iter.next(), None); } #[test] fn test_into_iter_clone_empty_smallvec() { let mut iter = SmallVec::<[u8; 2]>::new().into_iter(); let mut clone_iter = iter.clone(); assert_eq!(iter.next(), None); assert_eq!(clone_iter.next(), None); } #[test] fn shrink_to_fit_unspill() { let mut vec = SmallVec::<[u8; 2]>::from_iter(0..3); vec.pop(); assert!(vec.spilled()); vec.shrink_to_fit(); assert!(!vec.spilled(), "shrink_to_fit will un-spill if possible"); } #[test] fn test_into_vec() { let vec = SmallVec::<[u8; 2]>::from_iter(0..2); assert_eq!(vec.into_vec(), vec![0, 1]); let vec = SmallVec::<[u8; 2]>::from_iter(0..3); assert_eq!(vec.into_vec(), vec![0, 1, 2]); } #[test] fn test_into_inner() { let vec = SmallVec::<[u8; 2]>::from_iter(0..2); assert_eq!(vec.into_inner(), Ok([0, 1])); let vec = SmallVec::<[u8; 2]>::from_iter(0..1); assert_eq!(vec.clone().into_inner(), Err(vec)); let vec = SmallVec::<[u8; 2]>::from_iter(0..3); assert_eq!(vec.clone().into_inner(), Err(vec)); } #[test] fn test_from_vec() { let vec = vec![]; let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[]); drop(small_vec); let vec = vec![]; let small_vec: SmallVec<[u8; 1]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[]); drop(small_vec); let vec = vec![1]; let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[1]); drop(small_vec); let vec = vec![1, 2, 3]; let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[1, 2, 3]); drop(small_vec); let vec = vec![1, 2, 3, 4, 5]; let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); drop(small_vec); let vec = vec![1, 2, 3, 4, 5]; let small_vec: SmallVec<[u8; 1]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); drop(small_vec); } #[test] fn test_retain() { // Test inline data storate let mut sv: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 2, 3, 3, 4]); sv.retain(|&mut i| i != 3); assert_eq!(sv.pop(), Some(4)); assert_eq!(sv.pop(), Some(2)); assert_eq!(sv.pop(), Some(1)); assert_eq!(sv.pop(), None); // Test spilled data storage let mut sv: SmallVec<[i32; 3]> = SmallVec::from_slice(&[1, 2, 3, 3, 4]); sv.retain(|&mut i| i != 3); assert_eq!(sv.pop(), Some(4)); assert_eq!(sv.pop(), Some(2)); assert_eq!(sv.pop(), Some(1)); assert_eq!(sv.pop(), None); // Test that drop implementations are called for inline. let one = Rc::new(1); let mut sv: SmallVec<[Rc; 3]> = SmallVec::new(); sv.push(Rc::clone(&one)); assert_eq!(Rc::strong_count(&one), 2); sv.retain(|_| false); assert_eq!(Rc::strong_count(&one), 1); // Test that drop implementations are called for spilled data. let mut sv: SmallVec<[Rc; 1]> = SmallVec::new(); sv.push(Rc::clone(&one)); sv.push(Rc::new(2)); assert_eq!(Rc::strong_count(&one), 2); sv.retain(|_| false); assert_eq!(Rc::strong_count(&one), 1); } #[test] fn test_dedup() { let mut dupes: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 1, 2, 3, 3]); dupes.dedup(); assert_eq!(&*dupes, &[1, 2, 3]); let mut empty: SmallVec<[i32; 5]> = SmallVec::new(); empty.dedup(); assert!(empty.is_empty()); let mut all_ones: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 1, 1, 1, 1]); all_ones.dedup(); assert_eq!(all_ones.len(), 1); let mut no_dupes: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 2, 3, 4, 5]); no_dupes.dedup(); assert_eq!(no_dupes.len(), 5); } #[test] fn test_resize() { let mut v: SmallVec<[i32; 8]> = SmallVec::new(); v.push(1); v.resize(5, 0); assert_eq!(v[..], [1, 0, 0, 0, 0][..]); v.resize(2, -1); assert_eq!(v[..], [1, 0][..]); } #[cfg(feature = "write")] #[test] fn test_write() { use std::io::Write; let data = [1, 2, 3, 4, 5]; let mut small_vec: SmallVec<[u8; 2]> = SmallVec::new(); let len = small_vec.write(&data[..]).unwrap(); assert_eq!(len, 5); assert_eq!(small_vec.as_ref(), data.as_ref()); let mut small_vec: SmallVec<[u8; 2]> = SmallVec::new(); small_vec.write_all(&data[..]).unwrap(); assert_eq!(small_vec.as_ref(), data.as_ref()); } #[cfg(feature = "serde")] extern crate bincode; #[cfg(feature = "serde")] #[test] fn test_serde() { use self::bincode::{config, deserialize}; let mut small_vec: SmallVec<[i32; 2]> = SmallVec::new(); small_vec.push(1); let encoded = config().limit(100).serialize(&small_vec).unwrap(); let decoded: SmallVec<[i32; 2]> = deserialize(&encoded).unwrap(); assert_eq!(small_vec, decoded); small_vec.push(2); // Spill the vec small_vec.push(3); small_vec.push(4); // Check again after spilling. let encoded = config().limit(100).serialize(&small_vec).unwrap(); let decoded: SmallVec<[i32; 2]> = deserialize(&encoded).unwrap(); assert_eq!(small_vec, decoded); } #[test] fn grow_to_shrink() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(1); v.push(2); v.push(3); assert!(v.spilled()); v.clear(); // Shrink to inline. v.grow(2); assert!(!v.spilled()); assert_eq!(v.capacity(), 2); assert_eq!(v.len(), 0); v.push(4); assert_eq!(v[..], [4]); } #[test] fn resumable_extend() { let s = "a b c"; // This iterator yields: (Some('a'), None, Some('b'), None, Some('c')), None let it = s .chars() .scan(0, |_, ch| if ch.is_whitespace() { None } else { Some(ch) }); let mut v: SmallVec<[char; 4]> = SmallVec::new(); v.extend(it); assert_eq!(v[..], ['a']); } // #139 #[test] fn uninhabited() { enum Void {} let _sv = SmallVec::<[Void; 8]>::new(); } #[test] fn grow_spilled_same_size() { let mut v: SmallVec<[u8; 2]> = SmallVec::new(); v.push(0); v.push(1); v.push(2); assert!(v.spilled()); assert_eq!(v.capacity(), 4); // grow with the same capacity v.grow(4); assert_eq!(v.capacity(), 4); assert_eq!(v[..], [0, 1, 2]); } #[cfg(feature = "const_generics")] #[test] fn const_generics() { let _v = SmallVec::<[i32; 987]>::default(); } #[cfg(feature = "const_new")] #[test] fn const_new() { let v = const_new_inner(); assert_eq!(v.capacity(), 4); assert_eq!(v.len(), 0); let v = const_new_inline_sized(); assert_eq!(v.capacity(), 4); assert_eq!(v.len(), 4); assert_eq!(v[0], 1); let v = const_new_inline_args(); assert_eq!(v.capacity(), 2); assert_eq!(v.len(), 2); assert_eq!(v[0], 1); assert_eq!(v[1], 4); } #[cfg(feature = "const_new")] const fn const_new_inner() -> SmallVec<[i32; 4]> { SmallVec::<[i32; 4]>::new_const() } #[cfg(feature = "const_new")] const fn const_new_inline_sized() -> SmallVec<[i32; 4]> { crate::smallvec_inline![1; 4] } #[cfg(feature = "const_new")] const fn const_new_inline_args() -> SmallVec<[i32; 2]> { crate::smallvec_inline![1, 4] } #[test] fn empty_macro() { let _v: SmallVec<[u8; 1]> = smallvec![]; } #[test] fn zero_size_items() { SmallVec::<[(); 0]>::new().push(()); } #[test] fn test_insert_many_overflow() { let mut v: SmallVec<[u8; 1]> = SmallVec::new(); v.push(123); // Prepare an iterator with small lower bound let iter = (0u8..5).filter(|n| n % 2 == 0); assert_eq!(iter.size_hint().0, 0); v.insert_many(0, iter); assert_eq!(&*v, &[0, 2, 4, 123]); } #[test] fn test_clone_from() { let mut a: SmallVec<[u8; 2]> = SmallVec::new(); a.push(1); a.push(2); a.push(3); let mut b: SmallVec<[u8; 2]> = SmallVec::new(); b.push(10); let mut c: SmallVec<[u8; 2]> = SmallVec::new(); c.push(20); c.push(21); c.push(22); a.clone_from(&b); assert_eq!(&*a, &[10]); b.clone_from(&c); assert_eq!(&*b, &[20, 21, 22]); } smallvec-1.7.0/tests/macro.rs000064400000000000000000000010360072674642500143000ustar 00000000000000/// This file tests `smallvec!` without actually having the macro in scope. /// This forces any recursion to use a `$crate` prefix to reliably find itself. #[test] fn smallvec() { let mut vec: smallvec::SmallVec<[i32; 2]>; macro_rules! check { ($init:tt) => { vec = smallvec::smallvec! $init; assert_eq!(*vec, *vec! $init); } } check!([0; 0]); check!([1; 1]); check!([2; 2]); check!([3; 3]); check!([]); check!([1]); check!([1, 2]); check!([1, 2, 3]); }