typed-builder-0.20.1/.cargo_vcs_info.json0000644000000001360000000000100136650ustar { "git": { "sha1": "3668822d59ca9f542c463d76420b13bb040e2e91" }, "path_in_vcs": "" }typed-builder-0.20.1/.github/dependabot.yml000064400000000000000000000003621046102023000166460ustar 00000000000000version: 2 updates: - package-ecosystem: "cargo" directory: "/" schedule: interval: "monthly" open-pull-requests-limit: 10 - package-ecosystem: "github-actions" directory: "/" schedule: interval: "monthly" typed-builder-0.20.1/.github/workflows/ci.yml000064400000000000000000000116051046102023000171730ustar 00000000000000name: CI on: pull_request: push: branches: [master] # Sets permissions of the GITHUB_TOKEN to allow deployment to GitHub Pages permissions: contents: read pages: write id-token: write checks: write jobs: ci: name: CI needs: [test, clippy, docs] runs-on: ubuntu-latest steps: - name: Done run: exit 0 test: name: Tests strategy: fail-fast: false matrix: os: [ubuntu-latest] rust: [1.70.0, nightly] runs-on: ${{ matrix.os }} steps: - uses: actions/checkout@v4 - name: Install rust uses: actions-rs/toolchain@v1 with: toolchain: ${{ matrix.rust }} override: true - name: Ready cache if: matrix.os == 'ubuntu-latest' run: sudo chown -R $(whoami):$(id -ng) ~/.cargo/ - name: Cache cargo uses: actions/cache@v4 id: cache with: path: ~/.cargo key: ${{ runner.os }}-cargo-${{ hashFiles('**/Cargo.lock') }} - name: Test typed-builder uses: actions-rs/cargo@v1 with: command: test args: --all-targets nostd-build: name: nostd Build strategy: fail-fast: false matrix: os: [ubuntu-latest] rust: [nightly] runs-on: ${{ matrix.os }} steps: - uses: actions/checkout@v4 - name: Install rust uses: actions-rs/toolchain@v1 with: toolchain: ${{ matrix.rust }} override: true target: aarch64-unknown-none - name: Ready cache if: matrix.os == 'ubuntu-latest' run: sudo chown -R $(whoami):$(id -ng) ~/.cargo/ - name: Cache cargo uses: actions/cache@v4 id: cache with: path: ~/.cargo key: ${{ runner.os }}-cargo-${{ hashFiles('**/Cargo.lock') }} - name: Add rustup components run: rustup component add rust-src --toolchain nightly-x86_64-unknown-linux-gnu - name: Build with nostd uses: actions-rs/cargo@v1 with: command: build args: -Zbuild-std=core --target aarch64-unknown-none fmt: name: Rustfmt runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: actions-rs/toolchain@v1 with: profile: minimal toolchain: nightly override: true components: rustfmt - name: Run fmt --all -- --check uses: actions-rs/cargo@v1 with: command: fmt args: --all -- --check clippy: name: Clippy runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: actions-rs/toolchain@v1 with: profile: minimal toolchain: nightly override: true components: clippy - name: Cache cargo uses: actions/cache@v4 id: cache with: path: ~/.cargo key: ${{ runner.os }}-cargo-${{ hashFiles('**/Cargo.lock') }} - name: Run clippy --all-targets -- uses: actions-rs/clippy-check@v1 with: token: ${{ secrets.GITHUB_TOKEN }} args: --all-targets -- docs: name: Docs runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: actions-rs/toolchain@v1 with: profile: minimal toolchain: nightly override: true - name: Cache cargo uses: actions/cache@v4 id: cache with: path: ~/.cargo key: ${{ runner.os }}-cargo-${{ hashFiles('**/Cargo.lock') }} - name: Run doc tests uses: actions-rs/cargo@v1 with: command: test args: --doc - name: Check typed-builder docs uses: actions-rs/cargo@v1 with: command: doc args: --no-deps docs-ghpages: name: Update Docs in GitHub Pages runs-on: ubuntu-latest if: github.ref == 'refs/heads/master' steps: - uses: actions/checkout@v4 - name: Build docs env: GITHUB_REPO: ${{ github.repository }} GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} run: |- cargo doc --verbose && echo "" > target/doc/index.html - name: Add read permissions run: |- chmod --recursive +r target/doc - name: Upload artifact uses: actions/upload-pages-artifact@v3 with: path: target/doc deploy-ghpages: environment: name: github-pages url: ${{ steps.deployment.outputs.page_url }} runs-on: ubuntu-latest needs: docs-ghpages if: github.ref == 'refs/heads/master' steps: - name: Deploy to GitHub Pages id: deployment uses: actions/deploy-pages@v4 typed-builder-0.20.1/.gitignore000064400000000000000000000005601046102023000144460ustar 00000000000000# Generated by Cargo # will have compiled files and executables /target/ # Remove Cargo.lock from gitignore if creating an executable, leave it for libraries # More information here http://doc.crates.io/guide.html#cargotoml-vs-cargolock Cargo.lock # These are backup files generated by rustfmt **/*.rs.bk /target/ **/*.rs.bk Cargo.lock /typed-builder-macro/target/ typed-builder-0.20.1/CHANGELOG.md000064400000000000000000000271111046102023000142700ustar 00000000000000# Changelog All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.html). ## [Unreleased] ## 0.20.1 - 2025-03-14 ### Fixed - Fix mutator with type parameter using associated type (see issue #157) ## 0.20.0 - 2024-08-22 ### Added - Add `#[builder(setter(strip_option(fallback = field_opt)))]` to add a fallback unstripped method to the builder struct. - Add `#[builder(setter(strip_bool(fallback = field_bool)))]` to add a fallback setter that takes the `bool` value to the builder struct. ## 0.19.1 - 2024-07-14 ### Fixed - Fix mutators for generic fields (see issue #149) ## 0.19.0 - 2024-06-15 ### Added - Use fields' doc comments for the setters. ## 0.18.2 - 2024-04-16 ### Fixed - Also add the licenses to the macro crate. ## 0.18.1 - 2024-01-17 ### Fixed - Add `#[allow(clippy::no_effect_underscore_binding)]` to generated methods that need to destructure intermediate builder state. - Use a proper `OR` syntax for the dual license. ## 0.18.0 - 2023-10-19 ### Fixed - `?Sized` generic parameters are now supported. ## 0.17.0 - 2023-10-15 ### Changed - Internal refactor of attribute parsing - results in better error messages and easier proces for adding new settings. ### Added - `#[builder(mutators(...))]` to generate functions on builder to mutate fields - `#[builder(via_mutator)]` on fields to allow defining fields initialized during `::builder()` for use with `mutators` - `mutable_during_default_resolution` to allow `default` expression mutate previous fields. ### Fixed - Add support for paths with angle brackets (see PR #122 ) ## 0.16.2 - 2023-09-22 ### Fixed - Use generics with the constructor in `build` method (see issue #118) ## 0.16.1 - 2023-09-18 ### Fixed - Add `#[allow(clippy::exhaustive_enums)]` to generated empty enums used for error "reporting" (see issue #112) - Add `#[automatically_derived]` to generated `impl`s (see issue #114) - Add `#[allow(clippy::used_underscore_binding)]` to build method and setter methods (see issue #113) ## 0.16.0 - 2023-08-26 ### Added - `#[builder(crate_module_path = ...)]` for overcoming cases where the derive macro is used in another crate's macro (see issue #109) ## 0.15.2 - 2023-08-03 ### Fixed - Fix const generics generating "empty" entries in some lists, resulting in consecutive commas (see issue #106) ## 0.15.1 - 2023-07-10 ### Fixed - no-std build. ## 0.15.0 - 2023-07-06 ### Changed - [**BREAKING**] Split the derive macro out to [a separate procmacro crate](https://crates.io/crates/typed-builder-macro). This is considered a breaking change because reexporting and/or renmaing the crate can now prevent the generated code from finding the types it needs (see issue #101) ### Fixed - Marking a field as `#[deprecated]` now behaves properly - `TypedBuilder` generated code itself does trigger the deprecation warning, and instead the setter for that field now does. - The "fake" `build` method when required fields are not provided now returns the never type ("`!`"). Refer to PR #97 for more thorough explanation. ### Added - Support for setter method prefixes and suffixes `#[builder(field_defaults(setter(prefix = "...", suffix = "...")))]`. This either prepends or appends the provided string to the setter method. This allows method names like: `set_x()`, `with_y()`, or `set_z_value()`. ## 0.14.0 - 2023-03-08 ### Added - `build_method(into)` and `build_method(into = ...)`. ## 0.13.0 - 2023-03-05 ### Changed y - [**BREAKING**] Builder state parameter moved to the end of the generated builder type's parameters list. - Generated builder type's builder state parameter now defaults to tuple of empty tuples. This means the empty builder, where no parameter is yet set. ### Fixed - `#[builder(build_method(...))]` now affects the fake `build` method that's generated to add information to the compiler error. ## 0.12.0 - 2023-01-29 ### Removed - [**BREAKING**] `builder_method_doc = "..."`, `builder_type_doc = "..."` and `build_method_doc = "..."` are replaced with `builder_method(doc = "...")`, `builder_type(doc = "...")` and `build_method(doc = "...")`. ### Added - `build_method(...)` now has a `doc` field. - `builder_method(...)` and `builder_type(...)`, which are structured similarly to `build_method(...)`. ## 0.11.0 - 2022-10-29 ### Added - `#[builder(build_method(vis="pub", name=build))]` for customizing visibility and fn name of the final build method (the default visibility is `pub`, and default build name is `build`) ## 0.10.0 - 2022-02-13 ### Added - `#[builder(setter(strip_bool))]` for making zero arguments setters for `bool` fields that just set them to `true` (the `default` automatically becomes `false`) ## 0.9.1 - 2021-09-04 ### Fixed - Add `extern crate proc_macro;` to solve some weird problem (https://github.com/idanarye/rust-typed-builder/issues/57) - Use unambiguous `::` prefixed absolute paths in generated code. ## 0.9.0 - 2021-01-31 ### Added - Builder type implements `Clone` when all set fields support clone. - `#[builder(setter(transform = ...))]` attribute for running a transform on a setter's argument to convert them to the field's type. ### Fixed - Fix code generation for raw identifiers. ## 0.8.0 - 2020-12-06 ### Changed - Upgraded the Rust edition to 2018. ### Added - `#[field_defaults(...)]` attribute for settings default attributes for all the fields. ## 0.7.1 - 2020-11-20 ### Fixed - Fix lifetime bounds erroneously preserved in phantom generics. ## 0.7.0 - 2020-07-23 ### Added - Brought back `default_code`, because it needed to resolve conflict with other custom derive proc-macro crates that try to parse `[#builder(default = ...)]` attribute in order to decide if they are relevant to them - and fail because the expect them to be simple literals. ## 0.6.0 - 2020-05-18 ### Added - Ability to use `into` and `strip_option` simultaneously for a field. ### Changed - [**BREAKING**] Specifying `skip` twice in the same `builder(setter(...))` is no longer supported. Then again, if you were doing that you probably deserve having your code broken. ## 0.5.1 - 2020-01-26 ### Fixed - Prevent Clippy from warning about the `panic!()` in the faux build method. ## 0.5.0 - 2020-01-25 ### Changed - [**BREAKING**] Move `doc` and `skip` into a subsetting named `setter(...)`. This means that `#[builder(doc = "...")]`, for example, should now be written as `#[builder(setter(doc = "..."))]`. - [**BREAKING**] Setter arguments by default are no longer automatically converted to the target type with `into()`. If you want to automatically convert them, use `#[builder(setter(into))]`. This new default enables rustc inference for generic types and proper integer literal type detection. - Improve build errors for incomplete `.build()` and repeated setters, by creating faux methods with deprecation warnings. ### Added - `#[builder(setter(strip_option))]` for making setters for `Option` fields automatically wrap the argument with `Some(...)`. Note that this is a weaker conversion than `#[builder(setter(into))]`, and thus can still support type inference and integer literal type detection. ### Removed - [**BREAKING**] Removed the `default_code` setting (`#[builder(default_code = "...")]`) because it is no longer required now that Rust and `syn` support arbitrary expressions in attributes. ## 0.4.1 - 2020-01-17 ### Fixed - [**BREAKING**] now state types are placed before original generic types. Previously, all state types are appended to generic arguments. For example, `Foo<'a, X, Y>` yields `FooBuilder<'a, X, Y, ((), ())>` **previously**, and now it becomes `FooBuilder<'a, ((), ()), X, Y, >.`. This change fix compiler error for struct with default type like `Foo<'a, X, Y=Bar>`. Rust only allow type parameters with a default to be trailing. ## 0.4.0 - 2019-12-13 ### Added - `#![no_std]` is now supported out of the box. (You don't need to opt into any features, it just works.) - [**BREAKING**] a `default_code` expression can now refer to the values of earlier fields by name (This is extremely unlikely to break your code, but could in theory due to shadowing) - `#[builder(skip)]` on fields, to not provide a method to set that field. - Control of documentation: - `#[builder(doc = "…")]` on fields, to document the field's method on the builder. Unlike `#[doc]`, you can currently only have one value rather than one attribute per line; but that's not a big deal since you don't get to use the `///` sugar anyway. Just use a multiline string. - `#[builder(doc, builder_method_doc = "…", builder_type_doc = "…", build_method_doc = "…")]` on structs: - `doc` unhides the builder type from the documentation. - `builder_method_doc = "…"` replaces the default documentation that will be generated for the builder() method of the type for which the builder is being generated. - `builder_type_doc = "…"` replaces the default documentation that will be generated for the builder type. Implies `doc`. - `build_method_doc = "…"` replaces the default documentation that will be generated for the build() method of the builder type. Implies `doc`. ### Changed - [**BREAKING**] Renamed the generated builder type from `TypedBuilder_BuilderFor_Foo` to `FooBuilder`, for improved ergonomics, especially when you enable documentation of the builder type. - Generic identifiers were also changed, from `TypedBuilder_genericType_x` to `__x`. This is still expected to avoid all name collisions, but is easier to read in the builder type docs if you enable them. - Renamed the conversion helper trait for documentation purposes (`TypedBuilder_conversionHelperTrait_Foo` to `FooBuilder_Optional`), and its method name for simpler code. - [**BREAKING**] `default_code` is now lazily evaluated instead of eagerly; any side-effects that there might have been will no longer occur. As is usual in this release, this is very unlikely to affect you. - The restriction that there be only one `#[builder]` attribute per field has been lifted. You can now write `#[builder(skip)] #[builder(default)]` instead of `#[builder(skip, default)]` if you want to. As was already the case, latest definition wins. - [**BREAKING**] Use a single generic parameter to represent the builder type's state (see issue #21). Previously we would use a parameter for each field. ### Changed - Move to dual license - MIT/Apache-2.0. Previously this project was just MIT. ## 0.3.0 - 2019-02-19 ### Added - `#[builder(default_code = "...")]` syntax for defaults that cannot be parsed as attributes no matter what. ### Changed - Move the docs from the crate to the custom derive proc macro. ## 0.2.0 - 2019-02-06 ### Changed - Upgraded `syn` version to support Rust 2018. - [**BREAKING**] Changed attribute style to `#[builder(...)]`: - `#[default]` -> `#[builder(default)]` - `#[default=...]` -> `#[builder(default=...)]` - [**BREAKING**] `default` no longer needs to be a string. - But you need to change your code anyways because the attribute style was changed. ## 0.1.1 - 2018-07-24 ### Fixed - Allow missing docs in structs that derive `TypedBuilder`. ## 0.1.0 - 2017-10-05 ### Added - Custom derive for generating the builder pattern. - All setters are accepting `Into` values. - Compile time verification that all fields are set before calling `.build()`. - Compile time verification that no field is set more than once. - Ability to annotate fields with `#[default]` to make them optional and specify a default value when the user does not set them. - Generates simple documentation for the `.builder()` method. typed-builder-0.20.1/Cargo.lock0000644000000025250000000000100116440ustar # This file is automatically @generated by Cargo. # It is not intended for manual editing. version = 4 [[package]] name = "proc-macro2" version = "1.0.69" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "134c189feb4956b20f6f547d2cf727d4c0fe06722b20a0eec87ed445a97f92da" dependencies = [ "unicode-ident", ] [[package]] name = "quote" version = "1.0.33" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "5267fca4496028628a95160fc423a33e8b2e6af8a5302579e322e4b520293cae" dependencies = [ "proc-macro2", ] [[package]] name = "syn" version = "2.0.39" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "23e78b90f2fcf45d3e842032ce32e3f2d1545ba6636271dcbf24fa306d87be7a" dependencies = [ "proc-macro2", "quote", "unicode-ident", ] [[package]] name = "typed-builder" version = "0.20.1" dependencies = [ "typed-builder-macro", ] [[package]] name = "typed-builder-macro" version = "0.20.1" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "3c36781cc0e46a83726d9879608e4cf6c2505237e263a8eb8c24502989cfdb28" dependencies = [ "proc-macro2", "quote", "syn", ] [[package]] name = "unicode-ident" version = "1.0.12" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b" typed-builder-0.20.1/Cargo.toml0000644000000027620000000000100116720ustar # THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies. # # If you are reading this file be aware that the original Cargo.toml # will likely look very different (and much more reasonable). # See Cargo.toml.orig for the original contents. [package] edition = "2021" name = "typed-builder" version = "0.20.1" authors = [ "IdanArye ", "Chris Morgan ", ] build = false autolib = false autobins = false autoexamples = false autotests = false autobenches = false description = "Compile-time type-checked builder derive" documentation = "https://idanarye.github.io/rust-typed-builder/" readme = "README.md" keywords = ["builder"] categories = ["rust-patterns"] license = "MIT OR Apache-2.0" repository = "https://github.com/idanarye/rust-typed-builder" [lib] name = "typed_builder" path = "src/lib.rs" [[example]] name = "complicate_build" path = "examples/complicate_build.rs" [[example]] name = "example" path = "examples/example.rs" [[example]] name = "example_prefix_suffix" path = "examples/example_prefix_suffix.rs" [[test]] name = "no_std" path = "tests/no_std.rs" [[test]] name = "no_type_leakage" path = "tests/no_type_leakage.rs" [[test]] name = "tests" path = "tests/tests.rs" [dependencies.typed-builder-macro] version = "=0.20.1" typed-builder-0.20.1/Cargo.toml.orig000064400000000000000000000015511046102023000153460ustar 00000000000000[workspace] members = [".", "./typed-builder-macro"] [workspace.package] description = "Compile-time type-checked builder derive" version = "0.20.1" authors = ["IdanArye ", "Chris Morgan "] edition = "2021" license = "MIT OR Apache-2.0" repository = "https://github.com/idanarye/rust-typed-builder" documentation = "https://idanarye.github.io/rust-typed-builder/" readme = "README.md" keywords = ["builder"] categories = ["rust-patterns"] [package] name = "typed-builder" description.workspace = true version.workspace = true authors.workspace = true edition.workspace = true license.workspace = true repository.workspace = true documentation.workspace = true readme.workspace = true keywords.workspace = true categories.workspace = true [dependencies] typed-builder-macro = { path = "typed-builder-macro", version = "=0.20.1" } typed-builder-0.20.1/LICENSE-APACHE000064400000000000000000000251371046102023000144110ustar 00000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. typed-builder-0.20.1/LICENSE-MIT000064400000000000000000000017771046102023000141250ustar 00000000000000Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. typed-builder-0.20.1/README.md000064400000000000000000000075561046102023000137510ustar 00000000000000[![Build Status](https://github.com/idanarye/rust-typed-builder/workflows/CI/badge.svg)](https://github.com/idanarye/rust-typed-builder/actions) [![Latest Version](https://img.shields.io/crates/v/typed-builder.svg)](https://crates.io/crates/typed-builder) [![Rust Documentation](https://img.shields.io/badge/api-rustdoc-blue.svg)](https://idanarye.github.io/rust-typed-builder/) # Rust Typed Builder Creates a compile-time verified builder: ```rust use typed_builder::TypedBuilder; #[derive(TypedBuilder)] struct Foo { // Mandatory Field: x: i32, // #[builder(default)] without parameter - use the type's default // #[builder(setter(strip_option))] - wrap the setter argument with `Some(...)` #[builder(default, setter(strip_option))] y: Option, // Or you can set the default #[builder(default=20)] z: i32, } ``` Build in any order: ```rust Foo::builder().x(1).y(2).z(3).build(); Foo::builder().z(1).x(2).y(3).build(); ``` Omit optional fields(the one marked with `#[default]`): ```rust Foo::builder().x(1).build() ``` But you can't omit non-optional arguments - or it won't compile: ```rust Foo::builder().build(); // missing x Foo::builder().x(1).y(2).y(3); // y is specified twice ``` ## Features * Custom derive for generating the builder pattern. * Ability to annotate fields with `#[builder(setter(into))]` to make their setters accept `Into` values. * Compile time verification that all fields are set before calling `.build()`. * Compile time verification that no field is set more than once. * Ability to annotate fields with `#[builder(default)]` to make them optional and specify a default value when the user does not set them. * Generates simple documentation for the `.builder()` method. * Customizable method name and visibility of the `.build()` method. ## Limitations * The build errors when you neglect to set a field or set a field describe the actual problem as a deprecation warning, not as the main error. * The generated builder type has ugly internal name and many generic parameters. It is not meant for passing around and doing fancy builder tricks - only for nicer object creation syntax(constructor with named arguments and optional arguments). * For the that reason, all builder methods are call-by-move and the builder is not cloneable. Saves the trouble of determining if the fields are cloneable... * If you want a builder you can pass around, check out [derive-builder](https://crates.io/crates/derive_builder). It's API does not conflict with typed-builder's so you can be able to implement them both on the same type. ## Conflicts * `TypedBuilder` accepts arbitrary Rust code for `#[builder(default = ...)]`, but other custom derive proc-macro crates may try to parse them using the older restrictions that allow only literals. To solve this, use `#[builder(default_code = "...")]` instead. ## Alternatives - and why typed-builder is better * [derive-builder](https://crates.io/crates/derive_builder) - does all the checks in runtime, returning a `Result` you need to unwrap. * [safe-builder-derive](https://crates.io/crates/safe-builder-derive) - this one does compile-time checks - by generating a type for each possible state of the builder. Rust can remove the dead code, but your build time will still be exponential. typed-builder is encoding the builder's state in the generics arguments - so Rust will only generate the path you actually use. ## License Licensed under either of * Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0) * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT) at your option. ### Contribution Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions. typed-builder-0.20.1/examples/complicate_build.rs000064400000000000000000000032161046102023000201420ustar 00000000000000#![allow(clippy::disallowed_names)] mod scope { use typed_builder::TypedBuilder; #[derive(Debug, PartialEq, TypedBuilder)] #[builder(build_method(vis="", name=__build))] pub struct Foo { // Mandatory Field: x: i32, // #[builder(default)] without parameter - use the type's default // #[builder(setter(strip_option))] - wrap the setter argument with `Some(...)` #[builder(default, setter(strip_option))] y: Option, // Or you can set the default #[builder(default = 20)] z: i32, } // Customize build method to add complicated logic. // // The signature might be frightening at first glance, // but we don't need to infer this whole ourselves. // // We can use `cargo expand` to show code expanded by `TypedBuilder`, // copy the generated `__build` method, and modify the content of the build method. #[allow(non_camel_case_types)] impl<__z: typed_builder::Optional, __y: typed_builder::Optional>> FooBuilder<((i32,), __y, __z)> { pub fn build(self) -> Bar { let foo = self.__build(); Bar { x: foo.x + 1, y: foo.y.map(|y| y + 1), z: foo.z + 1, } } } #[derive(Debug, PartialEq)] pub struct Bar { pub x: i32, pub y: Option, pub z: i32, } } use scope::{Bar, Foo}; fn main() { assert_eq!(Foo::builder().x(1).y(2).z(3).build(), Bar { x: 2, y: Some(3), z: 4 }); // This will not compile - because `__build` is a private method // Foo::builder().x(1).y(2).z(3).__build() } typed-builder-0.20.1/examples/example.rs000064400000000000000000000020741046102023000162770ustar 00000000000000use typed_builder::TypedBuilder; #[derive(Debug, PartialEq, TypedBuilder)] struct Foo { /// `x` value. /// /// This field is mandatory. x: i32, // #[builder(default)] without parameter - use the type's default // #[builder(setter(strip_option))] - wrap the setter argument with `Some(...)` #[builder( default, setter(strip_option, doc = "Set `y`. If you don't specify a value it'll default to no value.",) )] y: Option, // Or you can set the default #[builder(default = 20)] z: i32, } fn main() { assert_eq!(Foo::builder().x(1).y(2).z(3).build(), Foo { x: 1, y: Some(2), z: 3 }); // Change the order of construction: assert_eq!(Foo::builder().z(1).x(2).y(3).build(), Foo { x: 2, y: Some(3), z: 1 }); // Optional fields are optional: assert_eq!(Foo::builder().x(1).build(), Foo { x: 1, y: None, z: 20 }); // This will not compile - because we did not set x: // Foo::builder().build(); // This will not compile - because we set y twice: // Foo::builder().x(1).y(2).y(3); } typed-builder-0.20.1/examples/example_prefix_suffix.rs000064400000000000000000000022311046102023000212330ustar 00000000000000use typed_builder::TypedBuilder; #[derive(Debug, PartialEq, TypedBuilder)] #[builder(field_defaults(setter(prefix = "with_", suffix = "_value")))] struct Foo { // Mandatory Field: x: i32, // #[builder(default)] without parameter - use the type's default // #[builder(setter(strip_option))] - wrap the setter argument with `Some(...)` #[builder(default, setter(strip_option))] y: Option, // Or you can set the default #[builder(default = 20)] z: i32, } fn main() { assert_eq!( Foo::builder().with_x_value(1).with_y_value(2).with_z_value(3).build(), Foo { x: 1, y: Some(2), z: 3 } ); // Change the order of construction: assert_eq!( Foo::builder().with_z_value(1).with_x_value(2).with_y_value(3).build(), Foo { x: 2, y: Some(3), z: 1 } ); // Optional fields are optional: assert_eq!(Foo::builder().with_x_value(1).build(), Foo { x: 1, y: None, z: 20 }); // This will not compile - because we did not set x: // Foo::builder().build(); // This will not compile - because we set y twice: // Foo::builder().with_x_value(1).with_y_value(2).with_y_value(3); } typed-builder-0.20.1/rustfmt.toml000064400000000000000000000000201046102023000150460ustar 00000000000000max_width = 130 typed-builder-0.20.1/src/lib.rs000064400000000000000000000370151046102023000143660ustar 00000000000000#![no_std] use core::ops::FnOnce; /// `TypedBuilder` is not a real type - deriving it will generate a `::builder()` method on your /// struct that will return a compile-time checked builder. Set the fields using setters with the /// same name as the struct's fields and call `.build()` when you are done to create your object. /// /// Trying to set the same fields twice will generate a compile-time error. Trying to build without /// setting one of the fields will also generate a compile-time error - unless that field is marked /// as `#[builder(default)]`, in which case the `::default()` value of it's type will be picked. If /// you want to set a different default, use `#[builder(default=...)]`. /// /// # Examples /// /// ``` /// use typed_builder::TypedBuilder; /// /// #[derive(PartialEq, TypedBuilder)] /// struct Foo { /// // Mandatory Field: /// x: i32, /// /// // #[builder(default)] without parameter - use the type's default /// // #[builder(setter(strip_option))] - wrap the setter argument with `Some(...)` /// #[builder(default, setter(strip_option))] /// y: Option, /// /// // Or you can set the default /// #[builder(default=20)] /// z: i32, /// } /// /// assert!( /// Foo::builder().x(1).y(2).z(3).build() /// == Foo { x: 1, y: Some(2), z: 3, }); /// /// // Change the order of construction: /// assert!( /// Foo::builder().z(1).x(2).y(3).build() /// == Foo { x: 2, y: Some(3), z: 1, }); /// /// // Optional fields are optional: /// assert!( /// Foo::builder().x(1).build() /// == Foo { x: 1, y: None, z: 20, }); /// /// // This will not compile - because we did not set x: /// // Foo::builder().build(); /// /// // This will not compile - because we set y twice: /// // Foo::builder().x(1).y(2).y(3); /// ``` /// /// # Customization with attributes /// /// In addition to putting `#[derive(TypedBuilder)]` on a type, you can specify a `#[builder(...)]` /// attribute on the type, and on any fields in it. /// /// On the **type**, the following values are permitted: /// /// - `doc`: enable documentation of the builder type. By default, the builder type is given /// `#[doc(hidden)]`, so that the `builder()` method will show `FooBuilder` as its return type, /// but it won't be a link. If you turn this on, the builder type and its `build` method will get /// sane defaults. The field methods on the builder will be undocumented by default. /// /// - `crate_module_path`: This is only needed when `typed_builder` is reexported from another /// crate - which usually happens when another macro uses it. In that case, it is the /// reponsibility of that macro to set the `crate_module_path` to the _unquoted_ module path from /// which the `typed_builder` crate can be accessed, so that the `TypedBuilder` macro will be /// able to access the typed declared in it. /// /// Defaults to `#[builder(crate_module_path=::typed_builder)]`. /// /// - The following subsections: /// - `builder_method(...)`: customize the builder method that creates the builder type /// - `builder_type(...)`: customize the builder type /// - `build_method(...)`: customize the final build method /// /// All have the same fields: /// - `vis = "..."`: sets the visibility of the build method, default is `pub` /// - `name = ...`: sets the fn name of the build method, default is `build` /// - `doc = "..."` replaces the default documentation that will be generated for the /// `build()` method of the builder type. Setting this implies `doc`. /// /// /// - The `build_method(...)` subsection also has: /// - `into` or `into = ...`: change the output type of the builder. When a specific value/type /// is set via the assignment, this will be the output type of the builder. If no specific /// type is set, but `into` is specified, the return type will be generic and the user can /// decide which type shall be constructed. In both cases an [`Into`] conversion is required to /// be defined from the original type to the target type. /// /// - `field_defaults(...)` is structured like the `#[builder(...)]` attribute you can put on the /// fields and sets default options for fields of the type. If specific field need to revert some /// options to the default defaults they can prepend `!` to the option they need to revert, and /// it would ignore the field defaults for that option in that field. /// /// ``` /// use typed_builder::TypedBuilder; /// /// #[derive(TypedBuilder)] /// #[builder(field_defaults(default, setter(strip_option)))] /// struct Foo { /// // Defaults to None, options-stripping is performed: /// x: Option, /// /// // Defaults to 0, option-stripping is not performed: /// #[builder(setter(!strip_option))] /// y: i32, /// /// // Defaults to Some(13), option-stripping is performed: /// #[builder(default = Some(13))] /// z: Option, /// /// // Accepts params `(x: f32, y: f32)` /// #[builder(setter(!strip_option, transform = |x: f32, y: f32| Point { x, y }))] /// w: Point, /// } /// /// #[derive(Default)] /// struct Point { x: f32, y: f32 } /// ``` /// /// - `mutators(...)` takes functions, that can mutate fields inside of the builder. /// See [mutators](#mutators) for details. /// /// On each **field**, the following values are permitted: /// /// - `default`: make the field optional, defaulting to `Default::default()`. This requires that /// the field type implement `Default`. Mutually exclusive with any other form of default. /// /// - `default = ...`: make the field optional, defaulting to the expression `...`. /// /// - `default_code = "..."`: make the field optional, defaulting to the expression `...`. Note that /// you need to enclose it in quotes, which allows you to use it together with other custom /// derive proc-macro crates that complain about "expected literal". /// Note that if `...` contains a string, you can use raw string literals to avoid escaping the /// double quotes - e.g. `#[builder(default_code = r#""default text".to_owned()"#)]`. /// /// - `via_mutators`: initialize the field when constructing the builder, useful in combination /// with [mutators](#mutators). /// /// - `via_mutators = ...` or `via_mutators(init = ...)`: initialies the field with the expression `...` /// when constructing the builder, useful in combination with [mutators](#mutators). /// /// - `mutators(...)` takes functions, that can mutate fields inside of the builder. /// Mutators specified on a field, mark this field as required, see [mutators](#mutators) for details. /// /// - `setter(...)`: settings for the field setters. The following values are permitted inside: /// /// - `doc = "..."`: sets the documentation for the field's setter on the builder type. This will be /// of no value unless you enable docs for the builder type with `#[builder(doc)]` or similar on /// the type. /// /// - `skip`: do not define a method on the builder for this field. This requires that a default /// be set. /// /// - `into`: automatically convert the argument of the setter method to the type of the field. /// Note that this conversion interferes with Rust's type inference and integer literal /// detection, so this may reduce ergonomics if the field type is generic or an unsigned integer. /// /// - `strip_option`: for `Option<...>` fields only, this makes the setter wrap its argument with /// `Some(...)`, relieving the caller from having to do this. Note that with this setting on /// one cannot set the field to `None` with the setter - so the only way to get it to be `None` /// is by using `#[builder(default)]` and not calling the field's setter. /// /// - `strip_option(fallback = field_opt)`: for `Option<...>` fields only. As above this /// still wraps the argument with `Some(...)`. The name given to the fallback method adds /// another method to the builder without wrapping the argument in `Some`. You can now call /// `field_opt(Some(...))` instead of `field(...)`. /// /// - `strip_bool`: for `bool` fields only, this makes the setter receive no arguments and simply /// set the field's value to `true`. When used, the `default` is automatically set to `false`. /// /// - `strip_bool(fallback = field_bool)`: for `bool` fields only. As above this /// allows passing the boolean value. The name given to the fallback method adds /// another method to the builder without where the bool value can be specified. /// /// - `transform = |param1: Type1, param2: Type2 ...| expr`: this makes the setter accept /// `param1: Type1, param2: Type2 ...` instead of the field type itself. The parameters are /// transformed into the field type using the expression `expr`. The transformation is performed /// when the setter is called. /// /// - `prefix = "..."` prepends the setter method with the specified prefix. For example, setting /// `prefix = "with_"` results in setters like `with_x` or `with_y`. This option is combinable /// with `suffix = "..."`. /// /// - `suffix = "..."` appends the setter method with the specified suffix. For example, setting /// `suffix = "_value"` results in setters like `x_value` or `y_value`. This option is combinable /// with `prefix = "..."`. /// /// - `mutable_during_default_resolution`: when expressions in `default = ...` field attributes /// are evaluated, this field will be mutable, allowing earlier-defined fields to be mutated by /// later-defined fields. /// **Warning** - Use this feature with care! If the field that mutates the previous field in /// its `default` expression is set via a setter, that mutation will not happen. /// /// # Mutators /// Set fields can be mutated using mutators, these can be defind via `mutators(...)`. /// /// Fields annotated with `#[builder(via_mutators)]` are always available to mutators. Additional fields, /// that the mutator accesses need to be delcared using `#[mutator(requires = [field1, field2, ...])]`. /// The mutator will only be availible to call when they are set. /// /// Mutators on a field, result in them automatically making the field required, i.e., it needs to be /// marked as `via_mutators`, or its setter be called. Appart from that, they behave identically. /// /// ``` /// use typed_builder::TypedBuilder; /// /// #[derive(PartialEq, Debug, TypedBuilder)] /// #[builder(mutators( /// // Mutator has only acces to fields marked as `via_mutators`. /// fn inc_a(&mut self, a: i32){ /// self.a += a; /// } /// // Mutator has access to `x` additionally. /// #[mutator(requires = [x])] /// fn x_into_b(&mut self) { /// self.b.push(self.x) /// } /// ))] /// struct Struct { /// // Does not require explicit `requires = [x]`, as the field /// // the mutator is specifed on, is required implicitly. /// #[builder(mutators( /// fn x_into_b_field(self) { /// self.b.push(self.x) /// } /// ))] /// x: i32, /// #[builder(via_mutators(init = 1))] /// a: i32, /// #[builder(via_mutators)] /// b: Vec /// } /// /// // Mutators do not enforce only being called once /// assert_eq!( /// Struct::builder().x(2).x_into_b().x_into_b().x_into_b_field().inc_a(2).build(), /// Struct {x: 2, a: 3, b: vec![2, 2, 2]}); /// ``` pub use typed_builder_macro::TypedBuilder; #[doc(hidden)] pub trait Optional { fn into_value T>(self, default: F) -> T; } impl Optional for () { fn into_value T>(self, default: F) -> T { default() } } impl Optional for (T,) { fn into_value T>(self, _: F) -> T { self.0 } } // It'd be nice for the compilation tests to live in tests/ with the rest, but short of pulling in // some other test runner for that purpose (e.g. compiletest_rs), rustdoc compile_fail in this // crate is all we can use. #[doc(hidden)] /// When a property is non-default, you can't ignore it: /// /// ```compile_fail /// use typed_builder::TypedBuilder; /// /// #[derive(TypedBuilder)] /// struct Foo { /// x: i8, /// } /// /// let _ = Foo::builder().build(); /// ``` /// /// When a property is skipped, you can't set it: /// (“method `y` not found for this”) /// /// ```compile_fail /// use typed_builder::TypedBuilder; /// /// #[derive(PartialEq, TypedBuilder)] /// struct Foo { /// #[builder(default, setter(skip))] /// y: i8, /// } /// /// let _ = Foo::builder().y(1i8).build(); /// ``` /// /// But you can build a record: /// /// ``` /// use typed_builder::TypedBuilder; /// /// #[derive(PartialEq, TypedBuilder)] /// struct Foo { /// #[builder(default, setter(skip))] /// y: i8, /// } /// /// let _ = Foo::builder().build(); /// ``` /// /// `skip` without `default` is disallowed: /// (“error: #[builder(skip)] must be accompanied by default”) /// /// ```compile_fail /// use typed_builder::TypedBuilder; /// /// #[derive(PartialEq, TypedBuilder)] /// struct Foo { /// #[builder(setter(skip))] /// y: i8, /// } /// ``` /// /// `clone` does not work if non-Clone fields have already been set /// /// ```compile_fail /// use typed_builder::TypedBuilder; /// /// #[derive(Default)] /// struct Uncloneable; /// /// #[derive(TypedBuilder)] /// struct Foo { /// x: Uncloneable, /// y: i32, /// } /// /// let _ = Foo::builder().x(Uncloneable).clone(); /// ``` /// /// Same, but with generics /// /// ```compile_fail /// use typed_builder::TypedBuilder; /// /// #[derive(Default)] /// struct Uncloneable; /// /// #[derive(TypedBuilder)] /// struct Foo { /// x: T, /// y: i32, /// } /// /// let _ = Foo::builder().x(Uncloneable).clone(); /// ``` /// /// Handling deprecated fields: /// /// ```compile_fail /// use typed_builder::TypedBuilder; /// /// #[derive(TypedBuilder)] /// struct Foo { /// #[deprecated = "Don't use this!"] /// #[allow(dead_code)] /// value: i32, /// } /// /// #[deny(deprecated)] /// Foo::builder().value(42).build(); /// ``` /// /// Handling invalid property for `strip_option` /// /// ```compile_fail /// use typed_builder::TypedBuilder; /// /// #[derive(TypedBuilder)] /// struct Foo { /// #[builder(setter(strip_option(invalid_field = "should_fail")))] /// value: Option, /// } /// ``` /// /// Handling multiple properties for `strip_option` /// /// ```compile_fail /// use typed_builder::TypedBuilder; /// /// #[derive(TypedBuilder)] /// struct Foo { /// #[builder(setter(strip_option(fallback = value_opt, fallback = value_opt2)))] /// value: Option, /// } /// ``` /// /// Handling alternative properties for `strip_option` /// /// ```compile_fail /// use typed_builder::TypedBuilder; /// /// #[derive(TypedBuilder)] /// struct Foo { /// #[builder(setter(strip_option(type = value_opt, fallback = value_opt2)))] /// value: Option, /// } /// ``` /// /// Handling invalid property for `strip_bool` /// /// ```compile_fail /// use typed_builder::TypedBuilder; /// /// #[derive(TypedBuilder)] /// struct Foo { /// #[builder(setter(strip_bool(invalid_field = should_fail)))] /// value: bool, /// } /// ``` /// /// Handling multiple propertes for `strip_bool` /// /// ```compile_fail /// use typed_builder::TypedBuilder; /// /// #[derive(TypedBuilder)] /// struct Foo { /// #[builder(setter(strip_bool(fallback = value_bool, fallback = value_bool2)))] /// value: bool, /// } /// ``` /// /// Handling alternative propertes for `strip_bool` /// /// ```compile_fail /// use typed_builder::TypedBuilder; /// /// #[derive(TypedBuilder)] /// struct Foo { /// #[builder(setter(strip_bool(invalid = value_bool, fallback = value_bool2)))] /// value: bool, /// } /// ``` fn _compile_fail_tests() {} typed-builder-0.20.1/tests/no_std.rs000064400000000000000000000064011046102023000154540ustar 00000000000000#![warn(clippy::pedantic)] #![no_std] use typed_builder::TypedBuilder; #[test] fn test_simple() { #[derive(PartialEq, TypedBuilder)] struct Foo { x: i32, y: i32, } assert!(Foo::builder().x(1).y(2).build() == Foo { x: 1, y: 2 }); assert!(Foo::builder().y(1).x(2).build() == Foo { x: 2, y: 1 }); } #[test] fn test_lifetime() { #[derive(PartialEq, TypedBuilder)] struct Foo<'a, 'b> { x: &'a i32, y: &'b i32, } assert!(Foo::builder().x(&1).y(&2).build() == Foo { x: &1, y: &2 }); } #[test] fn test_generics() { #[derive(PartialEq, TypedBuilder)] struct Foo { x: S, y: T, } assert!(Foo::builder().x(1).y(2).build() == Foo { x: 1, y: 2 }); } #[test] fn test_into() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(setter(into))] x: i32, } assert!(Foo::builder().x(1_u8).build() == Foo { x: 1 }); } #[test] fn test_default() { #[derive(PartialEq, TypedBuilder)] struct Foo { /// x value. #[builder(default, setter(strip_option))] x: Option, #[builder(default = 10)] /// y value. y: i32, /// z value. #[builder(default = [20, 30, 40])] z: [i32; 3], } assert!( Foo::builder().build() == Foo { x: None, y: 10, z: [20, 30, 40] } ); assert!( Foo::builder().x(1).build() == Foo { x: Some(1), y: 10, z: [20, 30, 40] } ); assert!( Foo::builder().y(2).build() == Foo { x: None, y: 2, z: [20, 30, 40] } ); assert!( Foo::builder().x(1).y(2).build() == Foo { x: Some(1), y: 2, z: [20, 30, 40] } ); assert!( Foo::builder().z([1, 2, 3]).build() == Foo { x: None, y: 10, z: [1, 2, 3] } ); } #[test] fn test_field_dependencies_in_build() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(default, setter(strip_option))] x: Option, #[builder(default = 10)] y: i32, #[builder(default = [y, 30, 40])] z: [i32; 3], } assert!( Foo::builder().build() == Foo { x: None, y: 10, z: [10, 30, 40] } ); assert!( Foo::builder().x(1).build() == Foo { x: Some(1), y: 10, z: [10, 30, 40] } ); assert!( Foo::builder().y(2).build() == Foo { x: None, y: 2, z: [2, 30, 40] } ); assert!( Foo::builder().x(1).y(2).build() == Foo { x: Some(1), y: 2, z: [2, 30, 40] } ); assert!( Foo::builder().z([1, 2, 3]).build() == Foo { x: None, y: 10, z: [1, 2, 3] } ); } typed-builder-0.20.1/tests/no_type_leakage.rs000064400000000000000000000007771046102023000173260ustar 00000000000000// As long as this test compiles, it passes (test does not occur at runtime) use typed_builder::TypedBuilder; #[derive(PartialEq, TypedBuilder)] #[builder( build_method(vis="pub", into=Bar), builder_method(vis=""), builder_type(vis="pub", name=BarBuilder), )] struct Foo { x: i32, } #[allow(unused)] pub struct Bar(Foo); impl Bar { pub fn builder() -> BarBuilder { Foo::builder() } } impl From for Bar { fn from(wrapped: Foo) -> Self { Bar(wrapped) } } typed-builder-0.20.1/tests/tests.rs000064400000000000000000000571371046102023000153440ustar 00000000000000#![warn(clippy::pedantic)] #![allow(clippy::disallowed_names, clippy::type_complexity)] use typed_builder::TypedBuilder; #[test] fn test_simple() { #[derive(PartialEq, TypedBuilder)] struct Foo { x: i32, y: i32, } assert!(Foo::builder().x(1).y(2).build() == Foo { x: 1, y: 2 }); assert!(Foo::builder().y(1).x(2).build() == Foo { x: 2, y: 1 }); } #[test] fn test_lifetime() { #[derive(PartialEq, TypedBuilder)] struct Foo<'a, 'b> { x: &'a i32, y: &'b i32, } assert!(Foo::builder().x(&1).y(&2).build() == Foo { x: &1, y: &2 }); } #[test] fn test_lifetime_bounded() { #[derive(PartialEq, TypedBuilder)] struct Foo<'a, 'b: 'a> { x: &'a i32, y: &'b i32, } assert!(Foo::builder().x(&1).y(&2).build() == Foo { x: &1, y: &2 }); } #[test] fn test_mutable_borrows() { #[derive(PartialEq, TypedBuilder)] struct Foo<'a, 'b> { x: &'a mut i32, y: &'b mut i32, } let mut a = 1; let mut b = 2; { let foo = Foo::builder().x(&mut a).y(&mut b).build(); *foo.x *= 10; *foo.y *= 100; } assert!(a == 10); assert!(b == 200); } #[test] fn test_generics() { #[derive(PartialEq, TypedBuilder)] struct Foo { x: S, y: T, } assert!(Foo::builder().x(1).y(2).build() == Foo { x: 1, y: 2 }); } #[test] fn test_2d_const_generics() { #[derive(PartialEq, TypedBuilder)] struct Foo { data: [[u32; NUM_ROWS]; NUM_COLS], } assert!(Foo::builder().data([[]]).build() == Foo { data: [[]] }); } #[test] fn test_multiple_const_generics() { #[derive(PartialEq, TypedBuilder)] struct Foo { data: [u32; A], data2: [u32; B], data3: [u32; C], } assert!( Foo::builder().data([1]).data2([2, 3]).data3([]).build() == Foo { data: [1], data2: [2, 3], data3: [] } ); } #[test] fn test_const_generics_with_other_generics() { #[derive(PartialEq, TypedBuilder)] struct Foo { data: [B; A], data2: [B; 3], } assert!( Foo::builder().data([3]).data2([0, 1, 2]).build() == Foo { data: [3], data2: [0, 1, 2] } ); } #[test] fn test_into() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(setter(into))] x: i32, } assert!(Foo::builder().x(1_u8).build() == Foo { x: 1 }); } #[test] fn test_strip_option_with_into() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(setter(strip_option, into))] x: Option, } assert!(Foo::builder().x(1_u8).build() == Foo { x: Some(1) }); } #[test] fn test_into_with_strip_option() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(setter(into, strip_option))] x: Option, } assert!(Foo::builder().x(1_u8).build() == Foo { x: Some(1) }); } #[test] fn test_strip_option_with_fallback() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(setter(strip_option(fallback = x_opt)))] x: Option, } assert!(Foo::builder().x(1).build() == Foo { x: Some(1) }); assert!(Foo::builder().x_opt(Some(1)).build() == Foo { x: Some(1) }); } #[test] fn test_into_with_strip_option_with_fallback() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(setter(into, strip_option(fallback = x_opt)))] x: Option, } assert!(Foo::builder().x(1_u8).build() == Foo { x: Some(1) }); assert!(Foo::builder().x_opt(Some(1)).build() == Foo { x: Some(1) }); } #[test] fn test_strip_bool() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(setter(into, strip_bool))] x: bool, } assert!(Foo::builder().x().build() == Foo { x: true }); assert!(Foo::builder().build() == Foo { x: false }); } #[test] fn test_strip_bool_with_fallback() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(setter(into, strip_bool(fallback = x_bool)))] x: bool, } assert!(Foo::builder().x().build() == Foo { x: true }); assert!(Foo::builder().x_bool(false).build() == Foo { x: false }); assert!(Foo::builder().build() == Foo { x: false }); } #[test] fn test_default() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(default, setter(strip_option))] x: Option, #[builder(default = 10)] y: i32, #[builder(default = vec![20, 30, 40])] z: Vec, } assert!( Foo::builder().build() == Foo { x: None, y: 10, z: vec![20, 30, 40] } ); assert!( Foo::builder().x(1).build() == Foo { x: Some(1), y: 10, z: vec![20, 30, 40] } ); assert!( Foo::builder().y(2).build() == Foo { x: None, y: 2, z: vec![20, 30, 40] } ); assert!( Foo::builder().x(1).y(2).build() == Foo { x: Some(1), y: 2, z: vec![20, 30, 40] } ); assert!( Foo::builder().z(vec![1, 2, 3]).build() == Foo { x: None, y: 10, z: vec![1, 2, 3] } ); } #[test] fn test_field_dependencies_in_build() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(default, setter(strip_option))] x: Option, #[builder(default = 10)] y: i32, #[builder(default = vec![y, 30, 40])] z: Vec, } assert!( Foo::builder().build() == Foo { x: None, y: 10, z: vec![10, 30, 40] } ); assert!( Foo::builder().x(1).build() == Foo { x: Some(1), y: 10, z: vec![10, 30, 40] } ); assert!( Foo::builder().y(2).build() == Foo { x: None, y: 2, z: vec![2, 30, 40] } ); assert!( Foo::builder().x(1).y(2).build() == Foo { x: Some(1), y: 2, z: vec![2, 30, 40] } ); assert!( Foo::builder().z(vec![1, 2, 3]).build() == Foo { x: None, y: 10, z: vec![1, 2, 3] } ); } // compile-fail tests for skip are in src/lib.rs out of necessity. These are just the bland // successful cases. #[test] fn test_skip() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(default, setter(skip))] x: i32, #[builder(setter(into))] y: i32, #[builder(default = y + 1, setter(skip))] z: i32, } assert!(Foo::builder().y(1_u8).build() == Foo { x: 0, y: 1, z: 2 }); } #[test] fn test_docs() { #[derive(TypedBuilder)] #[builder( builder_method(doc = "Point::builder() method docs"), builder_type(doc = "PointBuilder type docs"), build_method(doc = "PointBuilder.build() method docs") )] struct Point { #[allow(dead_code)] x: i32, #[builder( default = x, setter( doc = "Set `z`. If you don't specify a value it'll default to the value specified for `x`.", ), )] #[allow(dead_code)] y: i32, } let _ = Point::builder(); } #[test] fn test_builder_name() { #[derive(TypedBuilder)] struct Foo {} let _: FooBuilder<_> = Foo::builder(); } // NOTE: `test_builder_type_stability` and `test_builder_type_stability_with_other_generics` are // meant to ensure we don't break things for people that use custom `impl`s on the builder // type before the tuple field generic param transformation traits are in. // See: // - https://github.com/idanarye/rust-typed-builder/issues/22 // - https://github.com/idanarye/rust-typed-builder/issues/23 #[test] fn test_builder_type_stability() { #[derive(PartialEq, TypedBuilder)] struct Foo { x: i32, y: i32, z: i32, } impl FooBuilder<((), Y, ())> { fn xz(self, x: i32, z: i32) -> FooBuilder<((i32,), Y, (i32,))> { self.x(x).z(z) } } assert!(Foo::builder().xz(1, 2).y(3).build() == Foo { x: 1, y: 3, z: 2 }); assert!(Foo::builder().xz(1, 2).y(3).build() == Foo::builder().x(1).z(2).y(3).build()); assert!(Foo::builder().y(1).xz(2, 3).build() == Foo { x: 2, y: 1, z: 3 }); assert!(Foo::builder().y(1).xz(2, 3).build() == Foo::builder().y(1).x(2).z(3).build()); } #[test] fn test_builder_type_stability_with_other_generics() { #[derive(PartialEq, TypedBuilder)] struct Foo { x: X, y: Y, } impl FooBuilder { fn x_default(self) -> FooBuilder { self.x(X::default()) } } assert!(Foo::builder().x_default().y(1.0).build() == Foo { x: 0, y: 1.0 }); assert!( Foo::builder().y("hello".to_owned()).x_default().build() == Foo { x: "", y: "hello".to_owned() } ); } #[test] #[allow(clippy::items_after_statements)] fn test_builder_type_with_default_on_generic_type() { #[derive(PartialEq, TypedBuilder)] struct Types { x: X, y: Y, } assert!(Types::builder().x(()).y(()).build() == Types { x: (), y: () }); #[derive(PartialEq, TypedBuilder)] struct TypeAndLifetime<'a, X, Y: Default, Z = usize> { x: X, y: Y, z: &'a Z, } let a = 0; assert!(TypeAndLifetime::builder().x(()).y(0).z(&a).build() == TypeAndLifetime { x: (), y: 0, z: &0 }); #[derive(PartialEq, TypedBuilder)] struct Foo<'a, X, Y: Default, Z: Default = usize, M = ()> { x: X, y: &'a Y, z: Z, m: M, } impl<'a, X, Y: Default, M, X_, Y_, M_> FooBuilder<'a, X, Y, usize, M, (X_, Y_, (), M_)> { fn z_default(self) -> FooBuilder<'a, X, Y, usize, M, (X_, Y_, (usize,), M_)> { self.z(usize::default()) } } impl<'a, X, Y: Default, Z: Default, X_, Y_, Z_> FooBuilder<'a, X, Y, Z, (), (X_, Y_, Z_, ())> { fn m_default(self) -> FooBuilder<'a, X, Y, Z, (), (X_, Y_, Z_, ((),))> { self.m(()) } } // compile test if rustc can infer type for `z` and `m` Foo::<(), _, _, f64>::builder().x(()).y(&a).z_default().m(1.0).build(); Foo::<(), _, _, _>::builder().x(()).y(&a).z_default().m_default().build(); assert!( Foo::builder().x(()).y(&a).z_default().m(1.0).build() == Foo { x: (), y: &0, z: 0, m: 1.0 } ); assert!( Foo::builder().x(()).y(&a).z(9).m(1.0).build() == Foo { x: (), y: &0, z: 9, m: 1.0 } ); } #[test] fn test_builder_type_skip_into() { #[derive(PartialEq, TypedBuilder)] struct Foo { x: X, } // compile test if rustc can infer type for `x` Foo::builder().x(()).build(); assert!(Foo::builder().x(()).build() == Foo { x: () }); } #[test] fn test_default_code() { #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(default_code = "\"text1\".to_owned()")] x: String, #[builder(default_code = r#""text2".to_owned()"#)] y: String, } assert!( Foo::builder().build() == Foo { x: "text1".to_owned(), y: "text2".to_owned() } ); } #[test] fn test_field_defaults_default_value() { #[derive(PartialEq, TypedBuilder)] #[builder(field_defaults(default = 12))] struct Foo { x: i32, #[builder(!default)] y: String, #[builder(default = 13)] z: i32, } assert!( Foo::builder().y("bla".to_owned()).build() == Foo { x: 12, y: "bla".to_owned(), z: 13 } ); } #[test] fn test_field_defaults_setter_options() { #[derive(PartialEq, TypedBuilder)] #[builder(field_defaults(setter(strip_option)))] struct Foo { x: Option, #[builder(setter(!strip_option))] y: i32, } assert!(Foo::builder().x(1).y(2).build() == Foo { x: Some(1), y: 2 }); } #[test] fn test_clone_builder() { #[derive(PartialEq, Default)] struct Uncloneable; #[derive(PartialEq, TypedBuilder)] struct Foo { x: i32, y: i32, #[builder(default)] z: Uncloneable, } let semi_built = Foo::builder().x(1); assert!( semi_built.clone().y(2).build() == Foo { x: 1, y: 2, z: Uncloneable } ); assert!( semi_built.y(3).build() == Foo { x: 1, y: 3, z: Uncloneable } ); } #[test] #[allow(clippy::items_after_statements)] fn test_clone_builder_with_generics() { #[derive(PartialEq, Default)] struct Uncloneable; #[derive(PartialEq, TypedBuilder)] struct Foo { x: T, y: i32, } let semi_built1 = Foo::builder().x(1); assert!(semi_built1.clone().y(2).build() == Foo { x: 1, y: 2 }); assert!(semi_built1.y(3).build() == Foo { x: 1, y: 3 }); let semi_built2 = Foo::builder().x("four"); assert!(semi_built2.clone().y(5).build() == Foo { x: "four", y: 5 }); assert!(semi_built2.y(6).build() == Foo { x: "four", y: 6 }); // Just to make sure it can build with generic bounds #[allow(dead_code)] #[derive(TypedBuilder)] struct Bar where T: std::fmt::Display, { x: T, } } #[test] fn test_builder_on_struct_with_keywords() { #[allow(non_camel_case_types)] #[derive(PartialEq, TypedBuilder)] struct r#struct { r#fn: u32, #[builder(default, setter(strip_option))] r#type: Option, #[builder(default = Some(()), setter(skip))] r#enum: Option<()>, #[builder(setter(into))] r#union: String, } assert!( r#struct::builder().r#fn(1).r#union("two").build() == r#struct { r#fn: 1, r#type: None, r#enum: Some(()), r#union: "two".to_owned(), } ); } #[test] fn test_builder_on_struct_with_keywords_prefix_suffix() { #[allow(non_camel_case_types)] #[derive(PartialEq, TypedBuilder)] #[builder(field_defaults(setter(prefix = "set_", suffix = "_value")))] struct r#struct { r#fn: u32, #[builder(default, setter(strip_option))] r#type: Option, #[builder(default = Some(()), setter(skip))] r#enum: Option<()>, #[builder(setter(into))] r#union: String, } assert!( r#struct::builder().r#set_fn_value(1).r#set_union_value("two").build() == r#struct { r#fn: 1, r#type: None, r#enum: Some(()), r#union: "two".to_owned(), } ); } #[test] fn test_unsized_generic_params() { use std::marker::PhantomData; #[derive(TypedBuilder)] struct GenericStructure where K: ?Sized, { key: PhantomData, value: PhantomData, } } #[test] fn test_field_setter_transform() { #[derive(PartialEq)] struct Point { x: i32, y: i32, } #[derive(PartialEq, TypedBuilder)] struct Foo { #[builder(setter(transform = |x: i32, y: i32| Point { x, y }))] point: Point, } assert!( Foo::builder().point(1, 2).build() == Foo { point: Point { x: 1, y: 2 } } ); } #[test] fn test_build_method() { #[derive(PartialEq, TypedBuilder)] #[builder(build_method(vis="", name=__build))] struct Foo { x: i32, } assert!(Foo::builder().x(1).__build() == Foo { x: 1 }); } #[test] fn test_builder_method() { #[derive(PartialEq, TypedBuilder)] #[builder(builder_method(vis="", name=__builder))] struct Foo { x: i32, } assert!(Foo::__builder().x(1).build() == Foo { x: 1 }); } #[test] fn test_builder_type() { #[derive(PartialEq, TypedBuilder)] #[builder(builder_type(vis="", name=__FooBuilder))] struct Foo { x: i32, } let builder: __FooBuilder<_> = Foo::builder(); assert!(builder.x(1).build() == Foo { x: 1 }); } #[test] fn test_default_builder_type() { #[derive(Debug, PartialEq, TypedBuilder)] #[builder(builder_method(vis = ""), builder_type(name = InnerBuilder), build_method(into = Outer))] struct Inner { a: i32, b: i32, } #[derive(Debug, PartialEq)] struct Outer(Inner); impl Outer { pub fn builder() -> InnerBuilder { Inner::builder() } } impl From for Outer { fn from(value: Inner) -> Self { Self(value) } } let outer = Outer::builder().a(3).b(5).build(); assert_eq!(outer, Outer(Inner { a: 3, b: 5 })); } #[test] fn test_into_set_generic_impl_from() { #[derive(TypedBuilder)] #[builder(build_method(into))] struct Foo { value: i32, } #[derive(Debug, PartialEq)] struct Bar { value: i32, } impl From for Bar { fn from(value: Foo) -> Self { Self { value: value.value } } } let bar: Bar = Foo::builder().value(42).build(); assert_eq!(bar, Bar { value: 42 }); } #[test] fn test_into_angle_bracket_type() { #[derive(Debug, PartialEq, TypedBuilder)] #[builder(build_method(into = std::sync::Arc))] struct Foo { value: i32, } let foo: std::sync::Arc = Foo::builder().value(42).build(); assert_eq!(*foo, Foo { value: 42 }); } #[test] fn test_into_set_generic_impl_into() { #[derive(TypedBuilder)] #[builder(build_method(into))] struct Foo { value: i32, } #[derive(Debug, PartialEq)] struct Bar { value: i32, } impl From for Bar { fn from(val: Foo) -> Self { Self { value: val.value } } } let bar: Bar = Foo::builder().value(42).build(); assert_eq!(bar, Bar { value: 42 }); } #[test] fn test_prefix() { #[derive(Debug, PartialEq, TypedBuilder)] #[builder(field_defaults(setter(prefix = "with_")))] struct Foo { x: i32, y: i32, } let foo = Foo::builder().with_x(1).with_y(2).build(); assert_eq!(foo, Foo { x: 1, y: 2 }); } #[test] fn test_suffix() { #[derive(Debug, PartialEq, TypedBuilder)] #[builder(field_defaults(setter(suffix = "_value")))] struct Foo { x: i32, y: i32, } let foo = Foo::builder().x_value(1).y_value(2).build(); assert_eq!(foo, Foo { x: 1, y: 2 }); } #[test] fn test_prefix_and_suffix() { #[derive(Debug, PartialEq, TypedBuilder)] #[builder(field_defaults(setter(prefix = "with_", suffix = "_value")))] struct Foo { x: i32, y: i32, } let foo = Foo::builder().with_x_value(1).with_y_value(2).build(); assert_eq!(foo, Foo { x: 1, y: 2 }); } #[test] fn test_issue_118() { #[derive(TypedBuilder)] #[builder(build_method(into=Bar))] struct Foo { #[builder(default, setter(skip))] #[allow(dead_code)] foo: Option, } struct Bar; impl From> for Bar { fn from(_value: Foo) -> Self { Self } } let _ = Foo::::builder().build(); } #[test] fn test_mutable_defaults() { #[derive(TypedBuilder, PartialEq, Debug)] struct Foo { #[builder(default, mutable_during_default_resolution, setter(strip_option))] x: Option, #[builder(default = if let Some(x) = x.as_mut() { *x *= 2; *x } else { Default::default() })] y: i32, } let foo = Foo::builder().x(5).build(); assert_eq!(foo, Foo { x: Some(10), y: 10 }); } #[test] fn test_preinitialized_fields() { #[derive(Debug, PartialEq, TypedBuilder)] struct Foo { x: i32, #[builder(via_mutators)] y: i32, #[builder(via_mutators = 2)] z: i32, #[builder(via_mutators(init = 2))] w: i32, } let foo = Foo::builder().x(1).build(); assert_eq!(foo, Foo { x: 1, y: 0, z: 2, w: 2 }); } #[test] fn test_mutators_item() { #[derive(Debug, PartialEq, TypedBuilder)] #[builder(mutators( #[mutator(requires = [x])] fn inc_x(self) { self.x += 1; } #[mutator(requires = [x])] fn inc_x_by(self, x: i32) { self.x += x; } fn inc_preset(self) { self.y += 1; self.z += 1; self.w += 1; } #[mutator(requires = [x])] fn inc_y_by_x(self) { self.y += self.x; } ))] struct Foo { x: i32, #[builder(via_mutators)] y: i32, #[builder(via_mutators = 2)] z: i32, #[builder(via_mutators(init = 2))] w: i32, } let foo = Foo::builder().x(1).inc_x().inc_preset().build(); assert_eq!(foo, Foo { x: 2, y: 1, z: 3, w: 3 }); let foo = Foo::builder().x(1).inc_x_by(4).inc_y_by_x().build(); assert_eq!(foo, Foo { x: 5, y: 5, z: 2, w: 2 }); } #[test] fn test_mutators_field() { #[derive(Debug, PartialEq, TypedBuilder)] #[builder(mutators())] struct Foo { #[builder(mutators( fn inc_x(self) { self.x += 1; } #[mutator(requires = [y])] fn inc_y_by_x(self) { self.y += self.x; } ))] x: i32, #[builder(default)] y: i32, #[builder(via_mutators = 2, mutators( fn inc_preset(self) { self.z += 1; self.w += 1; } ))] z: i32, #[builder(via_mutators(init = 2))] w: i32, } let foo = Foo::builder().x(1).inc_x().inc_preset().build(); assert_eq!(foo, Foo { x: 2, y: 0, z: 3, w: 3 }); let foo = Foo::builder().x(1).y(1).inc_y_by_x().build(); assert_eq!(foo, Foo { x: 1, y: 2, z: 2, w: 2 }); } #[test] fn test_mutators_for_generic_fields() { use core::ops::AddAssign; #[derive(Debug, PartialEq, TypedBuilder)] struct Foo { #[builder(via_mutators, mutators( fn x_plus(self, plus: S) { self.x += plus; } ))] x: S, y: T, } assert_eq!(Foo::builder().x_plus(1).y(2).build(), Foo { x: 1, y: 2 }); } #[test] fn test_mutators_with_type_param() { use core::ops::AddAssign; trait HasS { type MyS: Default + AddAssign; } #[derive(Debug, PartialEq, TypedBuilder)] struct Foo { #[builder(via_mutators, mutators( fn x_plus>(self, s: ::MyS) { self.x += s; } ))] x: S, } struct HasSImpl; impl HasS for HasSImpl { type MyS = u32; } assert_eq!(Foo::builder().x_plus::(1).build(), Foo { x: 1 }); }